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Abstract

In this research, the dynamics of a typical class of hydraulic actuators is studied
and actuator leakage Fault Detection and Isolation (FDI) schemes are proposed based
on the Extended Kalman Filtering (EKF) algorithm.

A dynamic model of the hydraulic actuation test rig combined with an actuator
friction model is first derived. The parameters of the friction model are obtained
by careful experiments. Simulations conducted to validate the model shows that the
simulation errors are bounded within 10% of actual measurements and, within the
normal operating bandwidth, the dynamic model adequately represents the actuator
used in the test rig.

Based on the validated dynamic model, an offline actuator leakage fault detection
scheme employing EKF algorithm is developed. Simulations and experiments are
carried out to verify the effectiveness of the proposed FDI scheme without the presence
of external disturbance. With a residual generation scheme that compared the actual
measurements and the EKF estimates, three types of leakage - the cylinder chamber
leakage at either side of the actuator and the leakage between the two chambers -
are tested. The leakage faults are detected and identified by tracking the variation
of the residual errors and an offline actuator FDI scheme is developed. The leakage
identification patterns are recognized.

To further study the performance of the EKF based FDI scheme in normal operat-
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Abstract 11

ing conditions with external disturbances, the system model is improved to estimate
any arbitrary load. Actuator friction is regarded as part of the external disturbance
in this phase and, together with the environmental load, becomes a time-varying
parameter of the system. Simulations and experiments show that the external load,
including the actuator friction, can be accurately estimated. Different types of testing
signals are applied to investigate the effectiveness of the FDI scheme. Experiments
show that the leakage fault identification patterns are consistent with the conclu-
sion obtained in the unloaded mode. A potential online FDI scheme and an offline

actuator friction estimator are further proposed.
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Chapter 1

Introduction

1.1 Preliminary Remarks

With the rapid development of modern machinery, hydraulically powered ma-
chines are widely used in various fields. Due to their complexities, the reliability of
these systems is under serious consideration. As a result, fault detection and isolation
(FDI) techniques for hydraulic systems have been growing in the past decade. This
growth benefited greatly from the development of personal computers. More and
more computationally intensive methods can now be applied to this research area.
However, due to its nonlinearity, hydraulic FDI technology is far from satisfactory.

Typical hydraulically powered systems consisting of hydraulic pumps, solenoid
servovalves and hydraulic actuators are popular in industrial applications, such as
the airplane flight control and off-highway machines. Since the reliability of these
systems is crucial for safe operation, a sound diagnostic system can efficiently im-
prove the safety by detecting and identifying the faults. In some applications such as
the unmanned flight vehicle operation, the system is required to keep working with
the presence of faults. When this occurs, if the information of the fault can be ob-

tained and analyzed, the control system can be adjusted or different control strategies
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can correspondingly be applied to implement fault tolerant control. Furthermore, a
diagnostic system can report abnormal operating conditions to prevent the faulty

system from more serious damage.

1.2 Faults in Hydraulic Systems

1.2.1 Basic System Structure

In the aforementioned hydraulic actuation systems, hydraulic power supplies are
always necessary to pressurize the hydraulic fluid to a constant pressure, typically
3.5 to 21 MPa. This high-pressure flow is then regulated by the control valves and
delivered to the actuator. The actuator, consisting of a cylinder that is separated
into two chambers by a movable piston, is connected to the corresponding outlets of
a servovalve. The flow at the outlets is controlled by an electric input; therefore the
piston in the cylinder is pushed by high-pressure flow causing it to move according to
the input signal. In practice, a rod is attached to the piston to transfer force between

the actuator and the load.
1.2.2 Common Faults and Related Research

When the system above is considered, various papers show that faults may occur
at any of the three components (Skormin and Apone, 1995; Zhou et al., 2002; Zavarehi
et al., 1999; Khan and Sepehri, 2002; Zhang and Jiang, 2002). The topics cover a
wide range from mechanical component failure, fluid contamination and pipe leakage
to metal wear. One of the greatest concerns among these topics is the leakage of
hydraulic fluid. Since the high pressure propagates everywhere within the hydraulic

pipe, leakage can occur almost anywhere in the system. According to its location,
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leakage can be classified into two types: internal leakage and external leakage. If
the fluid leaks to another part of the fluid circulation within the hydraulic system,
it is internal leakage; if the fluid leaks out of the hydraulic circulation, it is external

leakage.

Leakage Faults

Leakages in hydraulic systems are caused by different sources. One primary source
is the wear of the valves, pistons and other moving components. Debris caused by
the wear in turn accelerates the process (Skormin and Apone, 1995). Mechanically, a
tiny leakage is designed between the moving parts to guarantee non-stick movement
without excessive friction and to supply necessary lubrication for the contact surface
(slippers, bearings, barrel and drive shaft of the pump) (Skormin and Apone, 1995).
The contamination particles can gradually deteriorate this condition by widening
the clearance between the moving parts and eventually cause the performance of
the system to fall below the tolerable level of the design. Component defect and
connection damage are other causes that contribute to the leakage faults.

In the hydraulic power supply, leakage occurs mainly around the pump. Among
these hydraulic pumps, a class of Variable Displacement Pumps (VDP) is broadly
applied. Driven by an electric motor, the barrel of the VDP, which contains cylinders
and pistons, rotates. The pistons are attached to the swashplate by their slippers and
the slippers/pistons are rotated inside the barrel along the face of the swashplate. The
pistons move in and out so that the hydraulic fluid is drawn into VDP through the
suction port and is expelled out of VDP through the discharge port. The swashplate

angle is adjustable to regulate the pressure of outlet flow. Skormin and Apone (1995)
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analyzed the mechanism of typical failures of hydraulic pumps, including the leakage
and its causes.

Leakage in the actuator is another cause of leakage faults. Both the seal of the
piston and the inner wall of the cylinder can wear during the running time. As
a result, the clearance in between permits more hydraulic fluid to flow across the
chambers. This cross-port leakage is an internal leakage and may cause the actuator
to stall if it deteriorates. Extra power is then needed from the pump to compensate
the pressure loss from the cross-port leakage.

Skormin et al. (1994) built a linear model for a hydraulic actuation system in
which the leakage faults, the control valve fault, the bulk modulus change and the
excessive friction fault were discussed. Crowther et al. (1998) simulated the cross-port
leakage of an actuator by introducing a cross-port bleed valve between the annulus
and the piston sides. External leakages at connecting pipes and couplers were of less
interest among researchers but still drew attention. Ashton et al. (1998) showed
their work on detecting the pipeline leakage for oil transportation with a nonlinear
observer. The model is, however, not suitable for complexities of hydraulic actuation

systems.

Other Faults under Investigation

Supply pressure fluctuation is a type of common fault that occurs in hydraulic
systems. A malfunctioning pump causes supply pressure fluctuations that seriously
affect the performance of the actuator. Most commercial power supplies regulate
the pressure by adjusting the pressure relief valve. According to Merritt (1967), valve

controlled hydraulic systems are most efficient when designed such that the maximum
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load pressure is approximately 68% of the nominal supply pressure. Therefore, a drop
in supply pressure leads to a less efficient system. In extreme situations, stalling of
the actuator occurs. On the other hand, excessive supply pressure causes accelerated
wear on the hydraulic components. This may lead to unexpected behavior in which
serious damage may occur. Rising pressure will eventually destroy the power supply
unit if the situation is not corrected in time.

The causes of fluctuation in supply pressure vary. In some cases, the malfunction
is due to the breach of delicate components of the pump and valves. This changes the
characteristics of the pump, such as the motor efficiency and total inertia (Yu et al.,
1997). Preston et al. (1996) simulated the system dynamics with a 10% drop in pump
pressure. An increase of the initial force on the adjustable springs of a bent-axis type
VDP was investigated by Zhou et al. (2002). Partially or entirely damaged connection
between the pump and the rest of the system can also cause significant loss of pressure
on the whole system. In severe cases, the supply pressure may be reduced to between
40% (Crowther et al, 1998) and 60% (Niksefat and Sepehri, 2002) of the nominal
value. Broken pipes and blocked high-pressure filters are common explanations for
this type of failure.

Fluid contamination also directly causes an array of problems by changing the
effective bulk modulus (EBM) of the hydraulic oil. EBM describes the stiffness as
both the compressibility of the fluid and the expansion of the cylinder, hoses or pipes.
An important indicator for fluid characteristics, EBM is sensitive to fluid contami-
nants such as water and air. The properties of mechanical components are generally

unchanged (Skormin and Apone, 1995). Small amounts of solid contaminants, such
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as dirt, metal, sand and rubber, do not cause significant change on EBM, though they
do contribute considerably to component wear. Water and air entrained in the fluid
are crucial to the hydraulic characteristics. Since the bulk modulus of air as compared
to hydraulic fluid is so small, a tiny amount of air trapped in the hydraulic circuit
considerably reduces EBM. This results in a slower system response and softens the
characteristics of the actuator when the load is applied. On the contrary, water drops
mixed in hydraulic fluid increase EBM as the bulk modulus of water is higher than
that of the hydraulic fluid. Therefore, the stiffness of the system increases.

Skormin and Apone (1995) reported a drop of 20% in EBM where air contam-
ination exists. An increase of 10% in EBM due to water contamination was also
reported in the same paper. Yu (1997) showed that a change of 10% in EBM could
be detected. Furthermore, Zavarehi et al. (1999) showed that change in EBM had
little influence on the performance of a proportional servovalve.

Other system faults caused by parameter changes are studied in various research
papers. Servovalves, the primary executors of control commands, are important parts
for hydraulic systems. Popular servovalves are designed to have at least two stages so
that they are sensitive and can swiftly respond to the control signals while supplying
enough power to drive the actuator. Zavarehi et al. (1999) constructed a nonlinear
model for a two-stage proportional servovalve. With this model, critical parameters
such as the effective orifice area of the servovalve were monitored using the extended
Kalman filter. Their research shows the possibility to diagnose servovalve faults
caused by component wear, which is the main cause for change of the effective orifice

area.
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Coulomb friction of moving components as an important parameter can signifi-
cantly affect the dynamic performance of an actuator. Lischinsky et al. (1999) showed
this friction may go up to 30% of the total driving force. Crowther et al. (1997) sim-
ulated dynamic friction of the load using a bleed valve across the load actuator and
observed change of the friction coefficient with a trained neural network. The pilot
spool friction in a two-stage servovalve was monitored by Zavarehi et al. (1999).

Research on mechanical and electrical failures of system components is relatively
sparse. Loss of magnetism of the pump motor was considered by Skormin and Apone
(1994). Zhou et al. (2002) presented loss of the compressed air that was supplied to
the reservoir in aircraft applications.

In this study, leakages on the actuator are considered.

1.3 Fault Detection and Diagnosis in Hydraulic
Systems

As a branch of fault detection and isolation (FDI) research, FDI for hydraulic
systems has developed rapidly in the past decade. Hydraulic system FDI is rela-
tively difficult due to the strong nonlinearity of hydraulic components. In spite of
this, researchers have accomplished many achievements. Several system-modeling
techniques have been developed for reconstructing nonlinear system information and
variation detection. Residual generation strategies are also put forward to handle the

nonlinearities.
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1.3.1 Parametric Model-Based FDI Schemes

As a general system identification method, least squares (LS) algorithm or, in its
numerically efficient form, recursive least squares (RLS) is suitable in practical appli-
cations where the process parameters are not known at all or just partially known.
Models based on this algorithm are called auto regressive with exogenous input (ARX)
models. Using this algorithm, the process model can be expressed in terms of a pa-
rameter vector and running-time data vectors. Sampling at a certain frequency, the
actual process is discretized and the parameters are estimated by minimizing the sum
of squares of the equation error. Therefore, the basic idea of RLS is to find a proper
parameter vector so that the system represented by this model best fits the physical
system and the determination of the vector is based on the parameter estimation
methods which utilize input and output sequences of the systemn.

Since implementation of the model is not unique, an appropriate realization of
the model is the key for obtaining correct parameter estimates (Isermann, 1992). Yu
(1997) showed an application of ARX parameter estimation on a hydraulic torque
rig. If the basic structure of the model is known, the order of the LS model or the
dimension of the parameter vector can be readily obtained. Otherwise, theoretical de-
termination of the ARX model is impossible, which is common in actual applications.
Obtaining a best-fit parameter vector without losing too much system information
is the only feasible strategy. Hahn et al. (2001) applied an empirical model in a
vehicle power auto-transmission control system. The order of the ARX model was
obtained by trial-and-error and was then adjusted from the tenth to the second order

to simplify the representation of the system.



Chapter 1: Introduction 9

Although simplification of system model is possible, the mismatch of model param-
eters and system parameters, however, incurs a problem for FDI research - elements
of the acquired parameter vector are irrelevant to actual physical parameters of the
system. In attempting to solve this problem, the concept of vector space was de-
veloped by Tan and Sepehri (2002) who showed a way to construct this space. The
pattern of faults in this vector space could be classified by neural networks.

On the other hand, the linear nature of RLS confines its applications in nonlinear
systems. An improved algorithm called RLS with forgetting factor was developed to
handle this drawback. The forgetting factor exponentially removes the influence of
old data when new measurements become available. However, only slow time-varying
systems can be considered because convergence of this algorithm is always a concern
when only limited data are available for nonlinear system. Song and Sepehri (2002)
showed a possible way for sinusoidal signal fault detection of pump fault in a hydraulic
actuator using this algorithm. Pump pressure fluctuation fault was discussed and

sinusoidal test signals were applied to the experimental results.
1.3.2 Observer-Based FDI Schemes

State-observer techniques for linear systems have been well developed. Meanwhile,
attempts to extend observers into nonlinear applications have also been conducted. As
a result, different types of observer have been developed to explore their feasibilities of
estimating state variables, which are essential for abnormal condition monitoring. Ac-
cording to Garcia and Frank (1997), observers can be classified into nonlinear identity
observer (NIO), nonlinear unknown input observer (NUIO), disturbance-decoupling

nonlinear observer (DDNO), adaptive nonlinear observer (ANO) and bilinear systems
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state observer (BSO).

NIO is asymptotically stable if a feedback gain matrix satisfies certain conditions
(Adjallah et al., 1994). In some cases, the feedback gain matrix can be a constant
matrix if the nonlinear system representation satisfies certain constraints (Frank,
1987). Gaddouna and Ouladsine (1997) applied a linear state observer with unknown
input to a hydraulic system. A similar observer was built by Hahn (2001) and the
state model was identified using RLS algorithm.

NUIO takes advantage of the structure of the system model, which is assumed
to be in observable canonical form and a constant state transformation is conducted.
However, since it is difficult to transform a general system into the required form,
its applications on nonlinear systems are limited. Khan et al. (2002) showed the
possibility of applying a nonlinear observer on a hydraulic test rig. As an improvement
of NUIO, DDNO basically applies the same idea as NUIO except that a nonlinear
state transformation is used rather than a linear one. It linearizes the system at a
chosen set point and approximates the system by omitting the second and higher
order terms in the linear expansion of the system. On solving the problem of the
weakness in detecting slowly developing faults, ANO is developed. In certain types
of nonlinear systems, bilinear models are studied and applied to suspension systems,
fermentation processes, hydraulic drives and heat exchange systems. Yu et al. (1994)
developed a bilinear fault detection scheme for hydraulic systems with BSO. Similar

work has also been reported by Preston et al. (1996).
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1.3.3 Artificial Neural Network-Based FDI Schemes

Artificial neural network (ANN) as a newly developed technique has found its
applications in many fields that require pattern recognition and parameter approxi-
mation. ANNs have different structures, among which is the well-known structure of
multi-layer perceptron (MLP). This type of ANN consists of several layers and each
of those layers contains a number of processing nodes, called neurons. The first layer
is called the input layer, the last layer the output layer, while the layers in between
are defined as hidden layers. Different layers are coupled by connections that identify
themselves as weight matrices. When fed with actual system inputs in training stage,
ANN achieves self-regulation to approximate the actual system output by adjusting
values of the weights that connect different neurons. A sensitive but slow algorithm
for this learning phase is called Back Propagation. This algorithm updates all weights
iteratively from the last layer to the first. However, it does not guarantee a conver-
gence, which is a major disadvantage of MLP networks. By forcing the training phase
to an end, the user can obtain a perceptron network based on the training data with
minimum error.

Crowther et al. (1998) presented an output vector space classification approach
for increased pump pressure, increased actuator friction and internal leakage fault
diagnosis of a hydraulic actuator. It shows that, training separate ANNs alone using
experimental data for specific fault allows quick and accurate detection for that fault.
But these ANNs are not sensitive to faults other than that they are trained to detect.
Yu (2001) also showed a 3-layer perceptron network for fault diagnosis in a hydraulic

turbine governor.
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1.3.4 Kalman Filtering Theory-Based FDI Scheme

The Kalman filter (KF) theory is another widely applied technique in nonlinear
and stochastic system modeling such as navigation problems (Sridhar et al, 1993;
Foresti, 2001). Based on state space modeling, the Kalman filter (KF) is developed
to recursively estimate system states. Mathematically, Kalman filter theory relies on
Bayesian estimation to obtain the a posteriori estimate of current states by correcting
the a priori estimate using the current measurements of outputs. If the system is fully
observable, all state variables can be estimated utilizing system input and output
sequences. Due to its mathematical nature, KF works not only on static systems,
but also on dynamic systems, while linearity is a sufficient condition. To apply KF
to nonlinear systems, researchers developed extensions of Kalman filter algorithms
called extended Kalman filters (EKF). The basic idea of EKF is to linearize the
system based on the latest estimation of system states. If the sampling interval is
small enough, the output of EKF estimator can converge to the system output with
satisfactory precision.

Both the KF and the EKF algorithms consist of two stages: (i) time updating
phase, which uses system equations that represent the actual process to calculate
the evolution of the state and, (ii) measurement updating phase, which corrects the
estimation with current measurements to obtain the a posteriori estimation.

The applications of KF and EKF estimation in fault diagnosis have been reported
in many industrial areas. However, few literatures have been contributed to hydraulic
power systems. Abbas (1998) applied this algorithm in a linear electrohydraulic drive

system. Zavarehi et al. (1999) showed the feasibility of applying EKF algorithm in
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modeling a two stage proportional servovalve. With the presence of friction in the
model, this paper shows that it is possible to monitor some key parameters of the
servovalve. Zhang and Jiang (2002) developed an active fault-tolerant control scheme
for a class of aircraft actuators. An adaptive Kalman filter was applied in their
research to detect parameter changes and the system representation was specially
constructed so that an effectiveness factor was introduced to indicate the seriousness
of the faulty mode. However, the system was linearized to simplify the problem and
only simulation studies were conducted. Chinniah et al. (2003) developed an EKF
based method to estimate the parameters of an actuator friction model as well as the
effective bulk modulus of the hydraulic fluid. When actuator leakages are considered,

no literature has been reported focusing on nonlinear actuation systems.

1.4 Objectives and Scope of This Research

With all the reviewed research and attempts shown in Section 1.3, hydraulic FDI
is still under development and is attracting much attention. This study presents the
application of EKF towards hydraulic actuator leakage FDI. It focuses on the leakage
faults around a typical hydraulic actuator that is widely used on aircrafts. These
leakage faults include external leakage on either side of the actuator cylinder and the
cross-port internal leakage between the two cylinder chambers.

The objective of this study is to firstly verify the feasibility of applying EKF to
nonlinear electrohydraulic actuation systems. A nonlinear model for an actuator test
rig will be developed and simulation results will be shown to verify the model and

the EKF based FDI scheme. Secondly, an offline leakage FDI scheme using EKF
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algorithm will be developed and tested with experiments. In this phase, different
input signals, including sinusoidal, step and pseudorandom signals will be applied to
the test rig. Thirdly, the external load will be included and the system model and
FDI scheme will be modified to accomplish online fault detection. A simple external

load will be set up to simulate environmental interaction.

1.5 Thesis Outlines

This thesis consists of eight chapters. Chapter 1 introduces hydraulic system
applications and the development of FDI techniques. The scope and objectives of
this research are also outlined in this chapter.

Chapter 2: The electrohydraulic actuation test rig is introduced in this chap-
ter. Specifications of the test rig are listed and the system structure is diagrammed.
Nonlinear dynamic equations and a mathematical model of the test rig are developed.

Chapter 3: The system model that takes dynamic effects and was developed in
Chapter 2 is validated in this chapter by simulation. The simulation results are
compared with actual running data obtained from the test rig to verify the fidelity of
the model.

Chapter 4: The Kalman filtering algorithm is introduced in this chapter and the
basic FDI scheme is developed, based on EKF algorithm.

Chapter 5: The FDI scheme developed in Chapter 4 is validated in this chapter.
Different types of signal are tested on the test rig and the results are discussed to
illustrate the effectiveness of this FDI scheme. An offline FDI scheme is summarized

at the end of this chapter.
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Chapter 6: The system model and the FDI algorithm are further developed to
include unknown external load. With this development, the FDI scheme has the
potential to detect actuator leakages when the actuator is in faulty but running
condition.

Chapter 7: Simulation and test results are elaborated in this chapter to illustrate
the effectiveness of the FDI scheme developed in Chapter 6.

Contributions made in this study are provided in Chapter 8.



Chapter 2

Experimental Test Rig
Configuration and System
Modeling

2.1 Experimental Setup

The experimental setup is shown in Figure 2.1 and its schematic is shown in Figure
2.2. The entire system is powered by a motor driven hydraulic pump, which offers
continuous and stable high-pressure hydraulic fluid (up to 18.27MPa, i.e., 2650psi) to
the actuator.

The actuator is a double-rod cylinder. Since the actuator is symmetric and can
actually move in either direction, modeling of the two chambers are identical. The
two chambers are thus noted as chamber 1 and chamber 2. The actuator is con-
nected to and controlled by a Moog D765 servovalve (see Figure 2.2). This servovalve
receives control signals from a PC equipped with a DAS-16 data acquisition board
and a Metrabyte M5312 encoder card. When operated at 20.7MPa (3000psi), Moog
D765 valve can supply the actuator with hydraulic fluid at a rate of 34L/min. In

the experiments, the actual operating pressure is set to ~ 13.8MPa (2000psi). All
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Figure 2.1: Hydraulic actuator and fault simulation system.

the control strategies and experimental algorithms are implemented on the PC with
a Pentium III processor. Using a Metrabyte M5312 quadrature incremental encoder
card, the displacement of the actuator can be measured. With its rotary optical en-
coder, M5312 reaches a resolution of 0.03mm per increment. Other necessary system
states are measured by transducers mounted on the hydraulic circuit and transmitted
to the DAS-16 board; meanwhile, the DAS-16 board also transmits control signals
from PC to Moog D765 valve.

Figure 2.3 shows the leakage faults the test rig can simulate. Since the actuator
is symmetric, the positive direction for the rod’s movement is arbitrarily defined and
the cylinder chambers of the actuator are labeled accordingly. The entire system
structure is shown in Figure 2.4.

Working as a fault simulator, the test rig is designed to reproduce common faults
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Figure 2.2: Hydraulic test rig with its interfacing.

in the actuator. These include the external leakage at both chambers of the actuator
cylinder, the internal (cross-port) leakage between the two chambers, the supply line
leakage and the return line blockage (filter blockage). In this study, only actuator
leakages are considered. Figure 2.5 shows pictures of the bypasses where the external
leakages occur. The pipe shown in the center of both pictures consists of a bypass
that communicates the corresponding chamber and the return line. Two valves, a
ball valve and a needle valve, are mounted in series on each of the bypasses. The

ball valve is designed to break the hydraulic flow, while the needle valve can be finely
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Figure 2.3: Schematic of actuator leakages faults.

tuned to create specific amount of leakage at the chamber it links to. The bypass
mechanism for both chambers is similar.

The bypass for the cross-port leakage simulation is shown in Figure 2.6a and has
the similar mechanism as external leakages. A flow meter is mounted between the
ball valve and the needle valve. This arrangement is also applied to the pump leakage

simulation, shown in Figure 2.6b.

2.2 Dynamic Equations

Understanding the dynamic features of the servovalve and the actuator is essen-
tial. The dynamics of a high performance servovalve can be properly represented by

equations given by Merritt (1967). Given the shape of the discharge orifices, various



Chapter 2: Test Rig Configuration and System Modeling 20

position actuator
encoder
pressure (x) ,,,,,,,,,,,,,,,,,,,,,,,,,, ‘ ' IS
N ' . s
transducer cross-port :
leakage
(internal)
L AN T
L = 2N AT
AN NV S St PR e '
A A ‘
e SRR _|line leakage - N
N7 —T L (external)\ Mot
accumulator P ( ) <4
s R Oz T \,‘
N N v
ball valve/,‘\ o > .., /" senovalve
e ; ] 1 L
e < v/
IO v A
<, o ]
AN
1
flow meter —» % 0 pump .
. leakage R
‘r g N @
o ~ o
check valve: -~ return line filter
high pressure filter<\-
reducing-relieving
valve
fluid return

fluid supply

Figure 2.4: Detailed schematic of actuation system showing sensors and bypasses.

models between the spool displacement and the flow can be developed. By applying

a linear orifice area gradient related to the spool displacement, the flow equations of

the servovalve become:

@1 = Cqwzsp/2(ps — p1)
PV Tep > 0 (2.1)

go = dewsp %(P2 _pe)
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(a) Chamber 1 (b} Chamber 2

Figure 2.5: Bypasses for external leakages at either chamber of the actuator cylinder.

(a) Bypass for crossport leakage (b) Bypass for pump leakage

Figure 2.6: Bypasses for cross-port leakage and pump leakage.

g1 = Cd’wl's) 2 (pl —pe)
Ve 2y < 0 (2.2)

g2 = Odwwsp (ps - p?)

2

where ¢; and ¢ are the flows between the servovalve and the chambers 1 and 2 of the
actuator. Pressures p, and p. are the pump pressure and the return pressure. The
pressures at chamber 1 and chamber 2 of the cylinder are given as p; and py. Variable
Zsp is the displacement of the spool of the servovalve. Servovalve parameters Cy and
w are the orifice coefficient of discharge and the orifice area gradient; and p is the
density of the hydraulic oil.

Continuity equations for hydraulic flow of the actuator in which internal and
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external leakage are modeled, are

¢ = Ay + 5Vi(22)P1 + gat + en (2.3)
@2 = At — 5Va(2a)P2 — G + qaz

A is the effective piston area; z, represents the actuator displacement; effective

bulk modulus of the hydraulic fluid is indicated by 8. Internal leakage flow across the

piston seal is g;. External flow leaks from chamber 1 and 2 of the actuator are g.;; and

Gel2, respectively. More detailed discussion about leakage modeling will be elaborated

in Chapter 5. Vi(z,) and V,(z,) are the volumes of fluid trapped in corresponding

chambers of the actuator, and are formulated by the following equations:

Vi(zo) = VP + Alzy — Xonin) (2.0

Va(wa) = V9 + A(Xnaw — 24)

where VP and V) are volumes of fluid trapped in the supply pipes connected to
chamber 1 and chamber 2, estimated from the test rig. X, and X,,.. are the
positions when the ram is fully retracted and fully extended. Although equation
(2.3) represents the general form of continuity dynamics, only a healthy system is
modeled with the intention to detect the variation caused by the leakages. As a
result, leakages q;, gein and gep will be simulated to produce leakages in the program
and estimated in experiments.

The dynamics of the servovalve are characterized by a typical linear second-order

system between the spool displacement, z,,, and the valve input voltage, .
(2.5)

where w, is the natural frequency; ks, is the DC gain, and d,, is the damping ratio.
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The dynamics of the actuator are modeled based on the pressure difference be-
tween the inlet and the outlet side of the cylinder. This pressure difference generates

the force, f,, which pushes the piston in the cylinder.
fo=(p1—p2)A (2.6)
The dynamic equation of an ideal unloaded actuator is
Male = fo (2.7)
where m, is the mass of the ram.

2.3 Actuator Frictions

As an inevitable factor in moving machinery, friction and its impact have to be
handled carefully. In hydraulic actuators the seals’ friction is substantial due to the
high fluid pressure and may account for up to 30% of the total driving force (Lischin-
sky et al, 1999). Because the existence of friction significantly changes the dynamics
of the system, researchers have put considerable efforts into modeling friction. In
its simplest form, friction can be modeled as a sign function with non-unity magni-
tudes. However, this simple form generally does not satisfy the modeling requirement.
For this reason, additional models are developed to describe the dynamic features of
friction. A typical stick-slip friction model was proposed by Karnopp (1985). Also
reported were state space representation (Canudas-de-Wit et al., 1995) and empirical
models (Kwak, et al., 1999; Bonchis et al., 1999). After extensive experiments on the

test station, the improved Karnopp model by Laval (1996) has been adopted in this



Chapter 2: Test Rig Configuration and System Modeling 24

research to model the friction in the actuator. The final form of the model is

Ea]

(foo = (fst — fa) (1 — e V]sgn(de) + di, g # 0
Fe= fo fo<fa & 2,=0 (2.8)

fat Jo2 foo & 3, =0
in which, z, is the velocity of the actuator and F, is the actuator friction. The
static friction and the slip friction are f; and fy, respectively. Factor o works as the
constant that decides the decay ratio from stick friction to slip friction, while d is the

effective damping ratio. The function sgn(-) is a sign function that can be expressed

as:
Lo T 7é 0
sgn(t,) = ol (2.9)
0 2,=0

Equation (2.8) shows that the friction force is dependent on the actuator force
when the actuator is still. This definition guarantees that static friction is always op-
posing the driving force with the same magnitude preventing it from moving. After
the actuator starts to move, the friction starts from the stiction when the actuator
velocity is close to zero and then decreases when the velocity increases. When the
velocity increases more, the influence of the actuator viscosity becomes significant.
The Karnopp model is a symmetric model. However it can be adjusted to be asym-
metric in implementation, which is critical for actual applications. With this model,

equations (2.6)and (2.7) are combined to form the following

Jo=(p1 — p2)A =mud, + Fo (2.10)



Chapter 2: Test Rig Configuration and System Modeling 25

2.4 State Space Model

Based on equations (2.1) to (2.10), the nonlinear state space model for the entire
system under normal operating condition can be constructed. Choosing the state
vector

X = [:L.h L2,X3, T4, Ts, 'II;G]T = [xspyppr) Ly, "L.'a.a 'I.L.Sp]T (211)
The state space model for the servovalve and the actuator is shown below.

Ty = Tg

Tg;[C’d'wxl. 2(ps —29) — Azs] 11 >0

Vl za) CdLU.Llw/ - p(, AL5 T < 0
—Cywzx 1/ )+ Axs] z1 >0

By = viten ' ' (2.12)
VO(“ C’dwml,/ —23) + Azs] 21 <0

By =

j34:.7j5

j35 = (ACLQ ALL‘g — FL(£L5>)

Ma

T = —2dmwnTs — Wiz + kgw3u
F. represents the actuator friction. With the definition of the state variables, equation

(2.8) becomes the following:

75

oo = (foo — fa) (1 — em = Y)sgn(ws) + dxs 25 #0
FC(:ES) - fa‘ fa < fst & Ty = 0 (213)

fSt fa.Zfst & x5 =0

correspondingly, the sign function is:

sgn(zs) = 3] (2.14)
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In order to apply the discrete EKF algorithm, and to meet the requirement of
digital computing, equation (2.12) is discretized using the forward difference method.
Equation (2.12) is thus approximated by a discrete nonlinear state space model shown

in equation (2.15), in which T is the sampling interval.

z1(k+ 1) = Tze(k) + 21 (k)
T (k—l— 1) _ ﬁ[cdwlﬂk) ?‘—(ps - .LQ(/C)) — ALs(lC)] + LQ(A) ll(k) >0
vy [Cawer (k) /2 (ws (k) = pe) — Aws(k)] + 22(k) @1 (k

(
vg(fﬁk))[_cdwh k)y/2(x3(k) = pe) + Aws (k)] + zs(k) 21(k) > 0

l’s(k -+ ].) = -
Va(z4(k))

za(k + 1) = Txs(k) + z4(k)
z5(k 4+ 1) = ;- (Axo(k) — Azs(k) — Fo(zs(k))) + x5 (k)

(
[—Cawzxq (k) (p6 —a3(k)) + Azs(k)] + x3(k) z1(k) <0

ze(k + 1) = T[—2dpwnzs (k) — w221 (k) + kspw2u(k + 1)] + z6(k)

(2.15)
Again, the actuator friction is presented by the following equations:
|25 (k)]

[foe = (fse = fa) (1 — ™ & )]sgn(zs(k))

+das(k) |5 (k)| > v,
Fe(zs(k)) = (2.16)

fa fa<f.st & IxS(A)lSUo

fst fa 2 fst & ]-LS('IV)I S Vo

where v, is the threshold for zero in numerical computation and the sign function is:

est) 1o (k)] > v,
sgn(zs(k)) = { =P z5(%)] (2.17)

The actual system parameters applied in the state space model are listed in Table

2.1. The parameters related to the structure of the test rig are obtained from the
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product specifications of the actuator, the servovalve and the power unit. The value
of bulk modulus, 3, reported in this table is taken from Merrit (1967). The friction
model parameters are results based on a series of experiments for identifying the
friction model. This procedure is shown in Chapter 3. The determination of sampling
time is also based on simulation and experimental results which will be elaborated in

following chapters.

Table 2.1: Hydraulic test station parameters

LParameter ] Value | Parameter ‘ Value
A (m?) 6.33 x 107* || kg, (V/m) | 2.794 x 1075
my (kg) 10.0 wy, (rad/s) 200.07
Xmin () 0 A 0.7
Xinaz (M) 0.6069 VP (m?) 2.14 x 1075
d(N-s/m) 350 V¥ (m?) 2.14 x 1075
Cy 2.915 x 10-2 || p (kg/m?) 847.15
3 (Pa) 6.89%10% | v,(m/s) 0.001
for (N) 2.4x10% w(m?/m) | 2.075 x 1072
Fa(N) 1.1x10% || T(s) 0.001
a (m/s) 0.04




Chapter 3
Model Validation

In this Chapter, simulations and tests are carried out to validate the state space
model developed in Chapter 2. Friction model parameters are identified through ex-
periments prior to the simulation to obtain an accurate friction model. Two types of
signals, sinusoidal and varying frequency inputs, are applied in the validation. To be
specific, the input signals are applied to both the actual system and the simulation
program in open-loop mode, then the actual system measurements and the simu-
lation results are compared. In this validation, the simulation program adequately

represents the actual system.

3.1 Identification of Friction Parameters

Accurate friction model parameters are necessary for the system model. Exper-
iments have been carried out on the test rig in two steps: (1) obtaining the plot of
taking-off actuation force vs velocity and (2), obtaining the average actuation force
under different velocities. The actuator works in unloaded mode in both scenarios.
To be specific, step (1) records the actuation force when the actuator starts to move.

This is achieved by slowly increasing the input of the servovalve. In the experiments,
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this increase is controlled by the PC. Peaks of the actuation force are observed even
without noticeable change on the velocity curves. The acceleration force can thus be
ignored and the maximum actuation forces are recorded as the stiction. Ten locations
are sampled evenly along entire length of the stroke and the average value is adopted.
In step (2), specific constant velocities are maintained and the average actuation
force is obtained. The average force is recorded as the slip friction at corresponding
velocity.

With experiments in different velocities, the Force-vs-Velocity curve is obtained.
Figure 3.1 shows the experimental values for fy and f,; are around 2.4kN and 1.1kN,
respectively, while the damping ratio, d, is around 250~ 360 N-s/m. The factor, «,
is chosen as 0.04 m/s according to the actual measurements. The velocity-dependent
friction model is also shown in Figure 3.1. After these parameters determined, the

simulation program outputs match the actual system measurements.

3.2 Validation of State Space Model

The state space model is validated by comparing the simulated and the measured
states given the same input signals. With the same input sequence, the simulation
program and the actual actuator are supposed to produce similar state trajectories.
Simulations shown in this section use two types of input signals: sinusoidal inputs
and varying frequency sinusoidal inputs. The actuator typically works with low fre-
quency region. Therefore, the varying frequency inputs reveal the actuator’s working

bandwidth.
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Figure 3.1: Experimental curves of actuator friction.

3.2.1

Sinusoidal Inputs

0.5

The sinusoidal signal, u = 3.0sin (27t 4 0.1) volts, is applied as the input for the

servovalve. The test rig and the simulation both run for 10 seconds. Results are

shown in Figures 3.2 to 3.6, which are the trajectories of the actuator displacement,

o, the chamber pressures p; and p, and the spool displacement, z,.

From Figure 3.2, it can be seen that the simulation program successfully represents

the actuator displacement. The simulated and the measured displacements are so

close to each other that it is difficult to distinguish them in the plot. An upward

shifting is observed on the plot. This shift indicates the actuator is drifting towards

one side of the cylinder during the movement.

This is due to asymmetry of the
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Figure 3.2: Servovalve inputs, measured and simulated actuator displacements (mea-
sured and simulated displacements overlap).

extending friction and the retraction friction, as well as the tiny spool drift in the
servovalve. By adjusting the friction model, this drift can be successfully simulated.

Figure 3.3 shows detailed trajectories of the measured and simulated actuator
displacement and corresponding simulation error. The range of the simulation error
is within 2 x 1073 m with an average of 2.8 x 107 m. Compared to the amplitude of
the movement, this error can be ignored. The comparison between the measurement
and the simulation of chamber pressures is shown in Figures 3.4 and 3.5. The figures
show that the simulation data are close to the actual chamber pressures and the errors
are within the range of 10° Pa. Average values of the pressure errors at chambers 1
and 2 are 1.8 x 10°Pa and 1.1 x 10° Pa. These errors are within 10% of the actual

measurements and are considered acceptable. In EKF modeling, these errors are
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classified as modeling uncertainties which are represented by process noises.
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Figure 3.3: Closeup plot of the measured (M) and simulated (S) actuator displace-
ments, and the simulation error.

The displacement of servovalve spool is shown in Figure 3.6. By carefully investi-
gating the figure, it is seen that a bias exists in the measurement curve. This bias is
caused by the imprecision of the servovalve and can be improved by recalibrating the

servovalve. The average of this bias is —9.8 x 107%m, i.e. 10% of the actual amplitude

of the spool displacement.
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Figure 3.4: Measured (M) and simulated (S) pressure at chamber 1, and simulation

error.

3.2.2 Varying Frequency Inputs

To further test the system model in frequency domain, specially designed varying
frequency inputs are applied. With the input 3.0sin(m(1 + £)¢) volts, the actuator
runs for 40 seconds so that the frequency of the input signals range from 0.5~10.5Hz,
which covers the bandwidth of actuator operation. Test results are shown in Figures
3.7 to 3.11. Figures 3.7 and 3.8 show that the simulated actuator displacements
matches the actual measurements with an error range of 4 x 1073 m. Simulation
results for the chamber pressures are shown in Figures 3.9 and 3.10, in which the
average errors are 5.6 x 10° Pa and -2.4x10° Pa at chamber 1 and 2.

Simulation result for the spool displacement is shown in Figure 3.11, in which it

can be observed that the simulation error of the spool displacement increases when
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Figure 3.5: Measured (M) and simulated (S) pressure at chamber 2, and simulation
error.

the frequency of the input signal increases. This indicates the model is not sufficiently
reflecting the actual system characteristics in high frequency region. However, this
error is acceptable within the normal range of operating frequency.

With the test shown above, it can be concluded that the developed state space
model can effectively represent the actual test rig, though the simulation errors are
inevitable and some of them have to be seriously considered when constructing the

process noise covariance matrices in later sections.
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at chamber 1, and simulation error.
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Chapter 4

Development of Fault Detection
and Isolation Scheme Based on
Kalman Filter

Kalman filter is named after its inventor, Rudolf Emil Kalman (born May 19,
1930). This mathematical technique is now widely used in control systems and avion-
ics to extract a signal from a series of incomplete and noisy measurements. In 1960,
R.E. Kalman (1960) published his famous paper describing a recursive solution to the
discrete-data linear filtering problem. Since that time, due in large part to advances
in digital computing, the Kalman filter has been the subject of extensive research and
application, particularly in the area of autonomous or assisted navigation.

The basic Kalman filtering algorithm is derived applying stochastic process and
probability theory to linear problems. It provides a general way to statistically esti-
mate the states of a linear dynamic system if the state space model of the system is
known. The concept of extended Kalman filter (EKF) is developed later to further
expand this algorithm to time-varying and even nonlinear systems. EKF continually
linearizes the model of the system at each step around the a posterior: estimate of

the state vector that is obtained at last sampling time and computes the a priori
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estimate of the state vector for current sampling time. Corrections to this a prior:
estimate are then calculated using new measurements to update the a priori estimate

to the a posteriori estimate of system states at current sampling time.

4.1 Basic Kalman Filter

First consider a linear dynamic system represented in the form of a linear state

space difference equation.
Xp = AXp_1 + Buy + Ww_4 (4.1)

where x;, is the system state vector of dimension n. Vector ug is the input vector of
dimension r. A is the n x n transition matrix; B is the n x r input matrix; W is
the n X s process noise matrix and vectors wy represents the process noise that has a

dimension of s. The available measurements are modeled by the following equation:
z, = Hxy -+ v (4.2)

in which, z; is the measurement vector of dimension m. H is the m x n measurement,
matrix, and v, is the measurement noise vector of dimension m. The process and
measurement noises are assumed to be white, Gaussian and independent of each
other. With these assumptions, the noises can be regarded as stationary stochastic
processes that have normal probability distributions with mean values equal to 0 and
covariance matrices Q and R; i.e., distributions f(w) ~ N(0, Q) and f(v) ~ N(0,R),
where the notation N represents normal distribution.

At current sampling time, k&, the o posteriori estimates of the system states at

sampling time k— 1 are available and can be denoted as X;"_ ;. The purpose of Kalman
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filter is to obtain the a posteriori estimate, %, for current sampling time using
the information of X;_; and current measurement z;. Since the system is regarded
as a stochastic process, the system states {x;}i = 0,1, ,k} are random variables
and their probability distributions are conditional with the existence of measurement
sequence {z;  z;}. If we assume this conditional distribution to be Gaussian, the
expectation of xy, is the optimal estimate, i.e. X = E[x;|z; 2], where the operator
E[] denotes the expectation of a random variable. Correspondingly, the conditional
covariance matrix is given as P} = F[(xy — %) (%, —%7)T|z1  2¢]. The conditional
probability density is:

b @) k)T (4.3)
(2m)" P

Sxulzn  zi) =

Define the a priori estimate at current sampling time as X;,. It can be obtained

as the optimal estimate at the kth sampling time based on the a posteriori estimate
at the (K — 1)th sampling time, which is X, = A%}, + Bug_;. The conditional
covariance matrix is given as P, = E[(xx — X )(xx — %)% |z1  2zr_1). It can be

proved (Maybeck, 1979) that the following relations exist providing aforementioned

state vector and noise distributions are applicable.

)A(Z_ =X + I(/C(Z/zC — Hf(;) (44)
Pf = (I-KH)P; (4.5)
P, = AP;_ AT+ wQWT (4.6)

where K, is defined as the Kalman gain, and is given by the following equation:

K, =P ,H'(HP;HT +R)™! (4.7)
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Equations (4.4) to (4.7) present an implementation for linear Kalman filter. From
these equations the Kalman filter algorithm can be described as two stages of com-
putation: (a) the filter predicts the system state at current sampling time with the
information of previous inputs and measurements (a priori); (b) the prediction of the
system state is corrected using the information of measurements at current sampling
time, and an adjustable Kalman gain (a posteriori):

Stage 1: time updating (prediction):

o= — Aot

(4.8)
o= AP, AT+ wWQWT
Stage 2: measurements updating (correction):
K, = PLHT(HP;HT + R)~!
X = %5 + Ki(zp — HX}) (4.9)

P =(1-KH)P;
This algorithm adopts a recursive way to propagate the a posterior: estimates

following the evolution of the actual system state.

4.2 Extended Kalman Filter

Basic Kalman filter gives a general way for estimating states of a linear stochastic
difference equation. For time-varying and nonlinear systems, however, a Kalman
filter that linearizes the model of an actual system around the current mean and
covariance is employed. This is referred to as the algorithm of extended Kalman filter
(EKF). The basic algorithm for EKF is similar to those of Kalman filter. Consider a

nonlinear system represented by the following stochastic difference equation (Welch
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and Bishop, 2001)( Jazwinski, 1970):

xp = (X1, Uy, Wi_1) (4.10)

Zi = h(Xk, V;C)
where f(-) and h(-) are the nonlinear functions describing the system state vector, X,
and the measurement vector, z,. Vector uy is the input vector of dimension . The
process noise and measurement noise vectors wy, and v} are s-vector and m-vector as

defined before. The linearized representation of this nonlinear system is

X =~ X + A(Xk_l — 5(+_ ) + WW}C_l
¢ i (4.11)

Zp = 21; + I‘I(X;L - }A(;) + VVk

where X, is the a priori estimate of system state or in other words, the prediction
of the system states at current sampling time given the information of previous esti-
mation and measurements; and 2z is the approximation, calculated by the following
equations

x; = (X, u, 0)

(4.12)

ik = h()A(;, O)

A, H, W, and V are Jacobian matrices of the linearized model updated at each

sampling time. Suppose the current instant is sampling time %, the matrices are

obtained by

0 f
Az = g (4.13)
d(j) (%7 ;,1:,0)
Ohyy
Hyppi = 4.14
] O(j) (%7.0) ( )
Ofy
dwyy (X7 ,,u5,0)
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Ohyy
Ay

;7.0

With the linearization above, the complete EKF algorithm can also be grouped
into two stages as shown in the following:

Stage 1: time updating equations (prediction):

}A{}; = f(f{;—b Uy, O)

(4.17)
Py = AP;_ AT + W, QW
Stage 2: measurements updating equations (correction):
K, =P;HY(HP;HT + V,R,V])~!
%f =%; + Ki[zx — h(&;, 0)] (4.18)

P{=(1-KH)P,

As seen, the updating equations of EKF are similar to those of the standard
KF. However in EKF, the Jacobian matrices are updated at each step, &k, due to
the requirement of continual linearization. The measurement and the process noise
covariance matrices are also considered to be changing at each step. However, similar
to those in the derivation of basic Kalman filter, the noise covariance matrices can be
constant if the noises are stationary processes that are white and Gaussian. In this

research, the covariance matrices were estimated prior to the experiment.

4.3 Application to Hydraulic Actuation Systems

To apply EKF algorithm to the state space model represented by equation (2.15),
it is necessary to determine the elements of Jacobian matrices A, W, H and V. Given

the sampling time 7', the elements of matrix A can be obtained from equation (4.11)
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as
a2 _[0h 0F 0% 0h 01 0k)" (4.9
ox Ox’ 0x’0x’ox’ Ox’ Ox .
where
0f
3_X - [1a O) 05 O’ 0’ T]
gy Cawa1 (k)2 (ps — a(k)),
~1
R AeG) dell(k)(m)’

ox
N (@4 /»))1/1(3’4(””)) [dexl(k) %(ps —29(k)) — Ax5(k)J,

vl(w4(;c)) (_A)=
0

“vl(—Zf(k Cawar(k)/2(za(k) — pe),

1
1+ chwh(k)(m>’
P

ho)o r1(h) 5 0
~ vty Va (@a(k)) [ Cawas (k) 2 (w3 (k) — pe) — Aws (k)],

T8
V1($4(k))( A)’

0

VQ(Zf(/c)) < — Cqwz1 (k) %(xg(k) - pe)>,

0,

1 — Coap (M ——l ,

ofs _ |7 V“““’””( awni(h)(; %(m(k)—pa)) e (k) > 0
ox ) .

~ vty Vel (k) [ — Cqwz1(k),/2(z3(k) — pe) + Ag;s(k;)]’

s
Va(zq (k) 4,
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Vg(ff(k)) ( — Cyqwz (k) %(Ps - l’s(@)),

0,

] T8 ( derl(k)<___— —1>>
b Va(zy(k)) 2(ps—zalk ’
fs 4k py/ 5 (ps—z3(k)) z1(k) <0

0x .
— e Va(a () — Cawa () /(s — 3(R) + Axs(8)],
T8
Vit 0 (A):
0
ofs
ax—[o, 0, 0, 1, T, 0
Ofs T T dF,
—0, =4 - _
ox 0 A A 0 ( T sl 1), 0]

%;E:[—wi’f, 0, 0, 0, 0, (=2dpw,T +1)]

d:fj%c) is the first order derivative of the friction model with respect to the actu-

ator velocity, zs(k), and is given in equation (4.20). Since the friction is piecewise

continuous, dfﬁb is defined only on the continuous portions of the friction model.

dF. — Uemdn) o= BB son (s (k) + d |25 (k)| > v, 420)
deslk) | o 2s(k)] < 0,

H changes when different possible measurement combinations are chosen. If the

measurement is the actuator displacement, z, then H is a (1 x 6) matrix
H=0 0 0 1 0 0] (4.21)

If the measurements are p; and pp then H is a (2 X 6) matrix as

010000
H= (4.22)

001000
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If the measurements are z,, p; and p, then H is a (3 X 6) matrix as

000100

H=|1010000 (4.23)

001000
Assume the noises w; (¢ = 1, ,6) are independent of each other, the covariance

matrices of W and V are unity matrices.

4.4 Residual Error Generation and Fault Detec-
tion

By applying the EKF estimator to the hydraulic system, a sequence of estimated
state vectors, {X|i = 1,...,k}, is available. The basic algorithm is to compare

at each sampling time, k, the estimated state vector, X;, with the measured state

vector, zg, to compute the estimation residual vector, eg.
e = Z — H}A(z_ (424)

Under normal operating condition, outputs of the EKF estimator should closely con-
verge to the actual system states at each sampling time. However, due to the uncer-
tainties in modeling, the residual errors, ey, are maintained at relatively low levels
but can not be eliminated when the system is healthy. Thus, the residual errors under
normal conditions reflect the estimation errors. When a fault occurs, the system’s
dynamic features change. Theoretically, a discrepancy lies between the faulty system
and the EKF estimator which is designed based on the healthy system. Due to this
discrepancy, the estimation of the EKF on specific system states diverges from the

measured state trajectories. By tracing the variation of the residual errors, a fault
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can be detected. Meanwhile, by observing the pattern of the residual errors, different
faults can be identified.

Residual errors are further processed after the experiments by applying the moving
average method to the error sequences. Extra noises in the residual errors that are
caused by system vibration can thus be reduced and the main statistic characteristics
are more significant. The moving average of the errors (MAE), e,, is calculated from
€a = %, where the size of the data window, n, is chosen as 4000 (sampled at

1000Hz) considering the working bandwidth of the actuator.

4.5 Initial Conditions

In the absence of any data at initial time & = 0, choices for the initial state
vector, X§, and the covariance matrix, Pg, can be accordingly set to the expected
values (Haykin, 2001). In practice, ]::’(T can be set to a sufficiently positive-definite
matrix that is diagonally salient. In this research, 15?; is set to be a diagonal matrix
with P{[i,7] = 10%. The initial vector can be arbitrarily chosen. However, basic
physical rules have to be complied with - the initial values of the chamber pressures
should be within the range of [p,, ps|. Therefore, the initial vector applied in this
research is X5 = [0m, 6.8 x 10°Pa, 6.8 x 10°Pa, Om, 0m/s, Om/s]”, in which the

chamber pressures are reasonably set to be the mean of p. and ps.
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Leakage Fault Detection in the
Absence of External Load

In this chapter, experiments are carried out on the test rig to investigate the
performance of the proposed FDI scheme. Both open-loop and closed-loop config-
urations are tested in the experiments. In open-loop configuration, only sinusoidal
input signals are applied to the test rig. While in closed-loop configuration, which is
more practical to industrial applications, both sinusoidal and pseudo-random position
references are tested.

The experiments focus on leakage faults in the actuator. Both internal and ex-
ternal leakages, as mentioned in the previous section, are individually set in the
experiments. For each leakage fault, two levels of leakage are tested.

The sampling frequency for the experiments is 1000 Hz. This frequency has been
tested to be the lowest applicable sampling frequency for EKF to effectively converge
to the system model. The actuator displacement, the cylinder pressures at chamber
I and 2 and the spool displacement are measured online. However, only the measure-
ments of the actuator displacement and the chamber pressures are used as the inputs

to EKF. Together with the system input u, the EKF estimator required four inputs.



Chapter 5: Leakage Fault Detection in the Absence of External Load 50

The process noise covariance matrix, which is determined empirically with sufficient

consideration on modeling uncertainties and simulation errors, is shown below:

10—20
104
104
1078
10-¢

10720

It is assumed that the noise characteristics of different system states are indepen-
dent of each other. The measurement noise variances are determined as 10~%m for
the actuator displacement, and 10° Pa for the chamber pressures, i.e. the matrix R
is given as the following: R = diag[10™* 10%° 10°]. In all the experiments, the
actuator displacement, and the chamber pressures are measured; therefore, equation

4.23 is applied.
5.1 Open-Loop Tests

In this section, the sinusoidal inputs, v = 3.0sin(«t + 0.1), are applied to the
test rig. In each experiment, the actuator is moved to an initial position prior to
the experiment. The purpose of this initial positioning is to prevent the actuator
from running out of its stroke. Each experiment lasts for 40 seconds and a fault is
manually initiated on the test rig at the 18¢th second. Since the system runs in open-
loop configuration, no correction effect is expected when the actuator keeps drifting

towards one end due to the leakage on that side. The configuration of the EKF
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estimator is shown in Figure 5.1 where it can be seen that the residual errors are

direct subtraction of the actual measurements and their estimates.
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Figure 5.1: Test rig and extended Kalman filter in open-loop configuration.

5.1.1 External Leakage Fault Detection
Leakage Fault at Chamber 1

Experimental results are shown in Figures 5.2 to 5.5. It can be observed that
the actuator keeps shifting towards chamber 1 after the leakage occurred. This is
obviously due to the leakage at chamber 1 which reduces the power to push the
piston towards chamber 2.

Leakages are measured and recorded. Different levels of leakage can be obtained
by manually tuning the opening of corresponding needle valve, which are shown in
Figure 2.5 and 2.6. In the experiments, two levels of leakage (Low and High) are
generated and tested. Since the leakage flow is essentially dependent on the pressure

difference, constant leakage flow is impossible for the system. The concept of leakage
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coefficient (LC) is introduced to evaluate the leakage and different models have been

developed to describe the leakage flow as shown in the following equations.

gt = kau(p1 — p2)
Gell = kell(pl - pe) (51)

Gel2 = kelQ(pQ - pe)
and

g1 = kin/(p1 = p2)
Gel1l = kell (pl —pe) (52)

Qet2 = keioy/ (P2 — Pe)

where constants k;, ke and keo are the corresponding LCs. Equation (5.1) assumes
that the leakages are proportional to the pressure difference while equation (5.2) as-
sumes that the leakages are proportional to the square root of the pressure difference.

From the actual measurement of the leakage flow, ke is available using equation

(5.3) when the linear model, which is represented in equation (5.1), is applied:

1 el 5 el
el _ 167 %1075 . —det__ (5.3)

ko = .
"T108.60 (1 - po) (p1 — pe)

in which the leakage flow g3 is in liter per minute (1/min) and the chamber pressures
are in Pascal (Pa). The leakage and the corresponding LC are shown in Figure 5.6b.
However the plot of ke is still very noisy in Figure 5.6 due to the measurement noise
and the oscillation of the system. The mean of the LC with lower leakage is k.3 =
1.59 x 10712 (m®/s - Pa) and the standard deviation is .1 = 3.79 x 10713 (m?®/s - Pa).

When the square-root model is applied, k. is obtained using equation (5.4). The

mean of the LC with lower leakage is k¢ = 3.87 x 1079 (m3/s - Pa) and the standard
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deviation is o; = 8.03 x 1071% (m3/s - Pa).

1 [ e
Gel 167 %1070 —=2L (5.4)

kell - ’
1060\ /(p, — pe) (1 — pe)

The plot of the corresponding LC is shown in Figure 5.6a. It can be seen the LC
obtained from the square-root model is slightly less fluctuated than the linear model.
However, due to the difference of the models, the two plots are incomparable. An
index of indicating how intensive the fluctuation can be defined by comparing the
ratio of oy and ke since the mean and the standard deviation from both models

are available, as shown in the following equation.

Oell

x 100% (5.5)
kell

For kg1, this index is 23.8% with the linear model and 20.7% with the square-root
model. Therefore the square-root model is more applicable for leakage estimation and
it will be used for later experimental data in this study.

Referring to Figures 5.4 and 5.5, it can be seen that the chamber pressures change
radically when the leakage is set at the 18th second. However, the EKE estimator can
only closely trace the variation of the pressure at chamber 2. The estimation of the
pressure at chamber 1 obviously diverges from the actual measurement. The plots for
the moving average of the residual errors show that the residual error of the pressure
at chamber 1 increases rapidly and is then stabilized at a higher level, whereas the
moving average of the residual error at chamber 2 does not change much even after
the leakage is set. This difference clearly indicates the occurrence of the leakage at

chamber 1.
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Figure 5.2: Valve input, actuator displacement and leakage at chamber 1.
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Figure 5.3: Measured and overlapped estimated actuator displacements, residual er-
ror, and MAE.



Chapter 5: Leakage Fault Detection in the Absence of External Load

95

Pressure (x106Pa)
~

02

-0.2
-0.4
~0.6

Error (x106Pa)

0.6
~05
3
& 04
o
%03}
Wozar
=04f

20

Time (s)

25

30

35

40

Figure 5.4: Measured (M) and estimated (E) pressures at chamber 1, residual error,
and MAE. Estimated pressure follows the measured closely when there is no leakage.

Figure 5.5: Measured and overlapped estimated pressures at chamber 2, residual error

and MAE.
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Figure 5.6: Leakage and the leakage coefficient at chamber 1.

Leakage Fault at Chamber 2

Considering the symmetric structure of the actuator, the performance of the
proposed FDI scheme with leakage at chamber 2 is expected to be similar to that
at chamber 1. Experiments verified this prediction. Figure 5.7 shows the plot of
the leakage and corresponding k.2 at chamber 2. The mean value of the leakage
cocfficient is ke = 4.04 x 1072 (m3/s - Pa) and the standard variance is o, =
7.03 x 107 (m3/s - Pa). Similar to the calculation of k. in section 5.1.1, the co-

efficient k)5 is estimated as the following:

! del2__ —167x 1070 ——2__ (5.6)

kelQ = .
10°-60 . /(py — pe) (P2 — pe)

Figures 5.8 to 5.11 show the experimental results related to the low leakage fault

at chamber 2. In Figure 5.8, it can be seen that the actuator keeps shifting towards
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chamber 2 due to the leakage on the same side. It is also clearly seen from Figures 5.10
and 5.11 that the moving average of the residual error of the pressure at chamber
2 increases from 10° to 2 x 10° (Pa) and remains at this level after the leakage is
created, while the residual error at chamber 1 does not change significantly even after
the fault has occurred. Therefore the EKF estimator clearly identifics the occurrence

of chamber leakage faults through the increase of residual error at the faulty chamber.
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Figure 5.7: Leakage and the leakage coefficient at chamber 2.

5.1.2 Internal Leakage Fault Detection

Different from the external leakage faults at the actuator chambers, the internal
leakage occurs on the piston seal. The leakage flow thus moves from higher-pressure
side to lower-pressure side of the actuator when the system is running. This leakage

is introduced by adjusting the needle valve mounted on the bypass that connects the
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Figure 5.8: Valve input signal, measured actuator displacement and leakage at cham-
ber 2.
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Figure 5.10: Measured and overlapped estimated pressures at chamber 1, residual

error, and MAE.
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Figure 5.11: Measured (M) and estimated (E) pressures at chamber 2, error and MAE

(estimated pressure closely follows the measured when there is no leakage).
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two chambers, which is shown in Figure 2.6a. Similar to that in previous sections,

the estimation of k; is obtained by applying the square-root model.

1 qil -5 qil
= . =1.67x107°.
3.
10°-60 1(101 - Pz)] ](pl - Pz)l

Figure 5.12 shows plots of the leakage and corresponding k;. The mean of the

ki (5.7)

leakage cocfficient is obtained as ky = 1.11 x 1073 (m3/s - Pa), and the standard
deviation is oy = 2.60 x 107 (m®/s - Pa).

The valve input and actuator displacement are shown in Figure 5.13. Comparing
the plot of leakage in the same figure, it can be seen that the amplitude of the actuator
displacement is reduced due to the internal leakage.

Generally, internal leakage damps the movement of the actuator and significantly
affects the residual error of the actuator displacement (Figure 5.14). This is different
from the residual errors with external leakage faults (Figures 5.3 and 5.9). Exploring
the experimental results shown in Figures 5.15 and 5.16, it can be observed that the

residual error of the chamber pressures both increase.
5.1.3 Fault Detection with Different Level of Leakages

By applying different level of leakages on the test rig, the variation of the residual
errors related to the change of leakage flows can be obtained. Table 5.1 shows the
leakage faults applied to the actuator.

Experimental results show that EKF is sensitive to the parameter change and
the amount of leakage. A minimum external leakage flow of 0.1541/min is detected.
Figures 5.17 and 5.18 show two levels of leakage at chamber 1 and variation of cor-

responding MAE of the chamber pressure p;. With the increase of the leakage flow
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Figure 5.16: Measured (M) and estimated (E) pressures at chamber 2, residual error
and MAE (estimated pressure closely follows the measured when there is no leakage).

at chamber 1, residual error of the chamber pressure accordingly increases after the
occurrence of the leakage (Figure 5.14). The results shown in Figures 5.20, 5.22 and
5.23 illustrate consistent conclusion with the presence of leakage at chamber 2 and
internal leakage.

What is noticeable in the results is the pattern of variations of the residual error
corresponding to different leakage faults. Table 5.1 shows these patterns as well.
When different leakage occurs at chamber 1. the MAE of the pressure at chamber
1 increases much more aggressively than that at the other chamber. For leakage
at chamber 2, the MAE of pressure at chamber 2 increases. When the internal
(crossport) leakage is initiated, MAEs of both chamber pressures increase. Therefore

each leakage fault has a unique variation pattern and all three patterns are different
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Figure 5.18: MAEs of chamber 1 pressure with low and high leakages at chamber 1.
(a): MAE with low leakage; (b): MAE with high leakage; (c): comparison of (a) and

(b).



Chapter 5: Leakage Fault Detection in the Absence of External Load 65

2 Y T T T T T T
— (a)
= [ B
£ 1.5
2
o I b
o
Il
w051 b
g
O I 1 T 1 i 1 1
0 5 10 15 20 25 30 35 40
2 T T T T T T T
— (b)
c
€ 15h
2
g 1r -
2
$ ost i
-t
0 T T 1 1 1 1 1
Q 5 10 15 20 25 30 35 40
2 T T T T T T (
= (c) ! j-
£ 15k H o ' A {1
€ A LI e -y
2 Nl 1’L“.rﬂif'1‘fr'f"x' TN J-{"y{&n"“ v "1),.“;“;‘
= L i babe gl | e
o 1 ;qlf:.liq.!‘ .L.,,Js.vkix-f ¥
§ s ! d
S : ! \L
0 h\ 1 e < L 1. 1 1
4] 5 10 15 20 25 30 35 40

Time (s)

Figure 5.19: Low (L) and high (H) leakages at chamber 2. (a): low leakage; (b): high
leakage; (c): comparison of (a) and (b).
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Figure 5.20: MAEs of chamber 2 pressure with low and high leakages at chamber 2.
(a): MAE with low leakage; (b): MAE with high leakage; (c): comparison of (a) and
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Table 5.1: Leakage faults parameters and chamber pressure MAEs in open-loop con-
figuration.

Location of leakage | Chamber 1 | Chamber 2 | crossport leakage
Leakage level Low | High || Low | High || Low | High

Mean of LC 3.87 | 7.67 | 4.04 | 9.50 | 11.10 14.43
(m?/s - Pa) x 107°

Standard deviation | 8.03 | 14.04 || 7.03 | 16.26 || 26.00 30.90
(m3/s- Pa) x 1010
MAE of Chamber 1 || 0.19 | 0.34 || 0.10 | 0.15 || 0.16 0.22
(Pa) x 10°

MAE of Chamber 2 || 0.08 | 0.11 | 0.21 | 0.40 || 0.20 0.26
(Pa) x 10°

from each other so that the leakage faults can be identified by observing the variation
of residual errors.

Also interesting is that, in Table 5.1, it clearly shows that the MAE at the faulty
chamber increases proportionally with the increase of leakage fault, while for the

internal (crossport) leakage, MAE of both chamber pressures increase proportionally.

5.2 Closed-Loop Tests

Based on the tests in open-loop configuration, more tests are carried out in closed-
loop configuration to investigate the performance of the FDI scheme with control sys-
tems, which is the normal operation in actual applications. A proportional controller
is employed in this phase to regulate the motion of the actuator.

The experiments are conducted using two types of references: sinusoidal signal

and pseudorandom signal. The sinusoidal signal is characterized with amplitude of
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Figure 5.23: MAEs of chamber 2 pressure with low and high internal leakages. (a):
MAE with low leakage; (b): MAE with high leakage; (c): comparison of (a) and (b).

0.2m and period of 2 seconds and the pseudorandom signal is generated with a region
of [0.05m, 0.5m] and each random value is held for 2 seconds. Each pseudorandom
test applies a unique input sequence.

The proportional controller is implemented by the PC. With a unity feedback
of the actuator displacement and a DC gain of 50, the controller shows satisfactory
steady-state responses. The block diagram of the system with controller is shown in
Figure 5.24.

To fully investigate the performance of the proposed FDI scheme, aforementioned
reference signals are applied to the test rig. All the parameters are kept the same as
those for open-loop configuration to guarantee consistency with the open-loop results.

Since the system is in closed-loop configuration, it can be seen from Figure 5.24 that
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Figure 5.24: Test rig and the extended Kalman filter in closed-loop configuration.

the EKF acceptes the valve control signal u rather than the reference signal r, as its

nput.
5.2.1 Sinusoidal References

The experimental results are shown in Figures 5.25 to 5.28. Experiments show
that the conclusions are consistent with those obtained in open-loop configuration
even though the tests are carried out under closed-loop control scheme.

Table 5.2 presents the specifications of the leakage faults set to the test rig in

closed-loop configuration as well as the variation of moving average errors.
5.2.2 Pseudorandom References

The pseudo random reference sequence simulates the working condition for a class
of applications, in which series of simple ”position-hold” operations are repeated
continuously. This is common in off-highway machinery and the control surfaces of
airplanes. With this reference sequence, the control signal delivered to the servovalve

is similar to what is shown in the subplot for input, Figure 5.29. It is seen from
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Figure 5.25: Reference signal, servovalve inputs, actuator displacement and leakage
at chamber 1.

Table 5.2: Leakage fault parameters and chamber pressure MAEs in closed-loop con-
figuration.

Location of leakage | Chamber 1 Chamber 2 || Internal leakage
Leakage level Low | High || Low [ High | Low | High

Mean of LC 418 | 7.31 || 6.06 | 10.07 || 10.12 12.28
(m®/s - Pa) x 107° '

Standard deviation || 12.70 | 15.43 || 15.34 | 20.60 || 23.60 | 24.10
(m3/s - Pa) x 10710
MAE of Chamber 1 || 0.24 | 0.38 || 0.17 | 0.20 || 0.20 0.29
(Pa) x 10°

MAE of Chamber 2 | 0.19 | 0.25 || 0.32 | 0.49 | 0.25 0.31
(Pa) x 106
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Figure 5.26: Leakages at chamber 1 and MAEs of chamber pressures. (a): low and
high leakages; (b): MAEs of chamber 1 pressure; (c): MAEs of chamber 2 pressure.
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Figure 5.27: Leakages at chamber 2 and MAEs of chamber pressures. (a): low and
high leakages; (b): MAEs of chamber 1 pressure; (c): MAEs of chamber 2 pressure.
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Figure 5.28: Internal leakages and MAEs of chamber pressures. (a): low and high
leakages; (b): MAEs of chamber 1 pressure; (c) MAEs of chamber 2 pressure.

Figures 5.29 to 5.32 that the residual errors are not as smooth and constant as those
obtained in sinusoidal test when low leakage occurs at chamber 1. This is mainly
due to the discontinuity of the control signal and the significant variance of leakage
flow. Nevertheless, the increase of residual errors still illustrates the occurrence of the
leakage. The moving average error of the pressure at chamber 1 increases in Figure
5.31 though the fluctuation is more noticeable due to random excitation. Most of
the moving average values exceeds 2 x 10° Pa after the leakage occurrs at the 18th
second, while the moving average of the residual error on the other side stays below
2 x 10° Pa. The identification patterns for different leakages still exist when the plots
of the residual errors are investigated. This is consistent with previous conclusions.

When different leakage levels are applied to the actuator, the residual errors show
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Figure 5.29: Reference signal, servovalve inputs, actuator displacement and leakage
at chamber 1.

their sensitivities to the variation of leakage flow. Figures 5.33 to 5.39 show the
variation of residual errors with different leakage levels. Observe the leakage flows
shown in Figures 5.33, 5.35 and 5.37, it can be seen that due to the pseudorandom
reference inputs, the leakage flows are pulsive. Furthermore, the leakage flows do not
increase accordingly even though the leakage coefficients have significantly increased.

As a result, the difference between the MAE of chamber pressures is not signif-
icant and constant ranges for MAEs are hard to obtain. However, when the plots
of MAEs are compared with corresponding leakage flows, it can be concluded that
higher leakage flows cause larger increases in residual errors. For instance, the differ-
ence between the low and high leakage flow in Figure 5.33 are significant between the

20th and the 35th second. The increase of MAE with high leakage is consequently
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Figure 5.30: Measured and overlapped estimated actuator displacements and MAE
with leakage at chamber 1.
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Figure 5.31: Measured (M) and estimated (E) chamber 1 pressures, residual error and
MAE with leakage at chamber 1 (Estimated pressure closely follows the measured
when there is no leakage.
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Figure 5.32: Measured (M) and estimated (E) chamber 2 pressures, residual error
and MAE with leakage at chamber 2.
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Figure 5.33: Low (L) and high (H) leakages at chamber 1. (a): low leakage; (b): high
leakage; (c): comparison of (a) and (b).
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Figure 5.34: MAEs of chamber 1 pressure with low (L) and high (H) leakages at
chamber 1. (a): MAE with low leakage; (b): MAE with high leakage; (c): comparison
of (a) and (b).
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Figure 5.35: Low (L) and high (H) leakages at chamber 2. (a): low leakage; (b): high
leakage; (c): comparison of (a) and (b).
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Figure 5.36: MAEs of chamber 2 pressure with low (L) and high (H) leakages at
chamber 2. (a): MAE with low leakage; (b): MAE with high leakage; (c): comparison
of (a) and (b).
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Figure 5.37: Low (L) and high (H) internal leakages. (a): low leakage; (b): high
leakage; (c): comparison of (a) and (b).
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Figure 5.38: MAESs of chamber 1 pressure with low (L) and high (H) internal leakages.
Subplot (a): MAE with low leakage; (b): MAE with high leakage; (c): comparison of
(a) and (b).

very significant during the same period. This is also verified by the following plots for
leakage at chamber 2 and crossport leakage. The specifications of different leakage

levels are shown in Table 5.3:

Table 5.3: Leakage fault parameters in closed-loop configuration with pseudorandom
references.

Location of leakage || Chamber 1 Chamber 2 || Internal leakage
Leakage level Low | High || Low | High | Low | High

Mean of LC 6.83 | 12.69 || 8.45 | 12.52 | 13.42 15.54
(m®/s - Pa) x 1077

Standard deviation | 10.19 | 20.20 || 14.58 | 20.40 || 18.70 | 21.50
(m3/s - Pa) x 10710
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Figure 5.39: MAEs of chamber 2 pressure with low (L) and high (H) internal leakages.
(a): MAE with low leakage; (b): MAE with high leakage; (c): comparison of (a) and
(b).

5.3 Summary of Test Results

Experiments show that, with only three low-cost measurements, i.e., the actuator
displacement and the line pressures, the constructed EKF-based fault detector is
experimentally shown to successfully identify types and distinguish levels, of external
as well as internal individual leakage faults in the actuator. No specific assuiptions
about the models for the leakage faults have been made. It is shown that according
to the residual errors obtained by monitoring the chamber pressures only, different
patterns can be obtained, which can be used to detect leakage faults at the early stage.
Particularly, it is observed that the magnitude of the change of the residual errors,

caused by the leakage faults, increase proportionally with the increase of fault levels.




Chapter 5: Leakage Foult Detection in the Absence of External Load 80

This is significant since it allows the progress of the leakage flows to be monitored.



Chapter 6

Leakage Fault Detection and
Isolation Subject to External Load

In Chapter 2 to 5, the modeling of a class of electrohydraulic actuation system and
corresponding estimating scheme were introduced. An appropriate scheme for leakage
fault detection and isolation based on EKF theory was developed and tested on an
experimental setup. However, the actuation system was only tested in unloaded mode.
When external load exists, the system characteristics change due to the disturbance
of external load and experiments verified that the FDI scheme based on unloaded
system modeling does not converge when external load exists. On the other hand,
most actuation systems inevitably interact with the environment such as the air flow
on the aircraft control surface and the dynamic load on the boom or stick of an
excavator.

Meanwhile, the actuator friction is always an important factor that has to be
handled carefully. Due to its nonlinearity, appropriate modeling of the friction is
difficult and subject to change with component wear and parameter drifting. Some
researchers have shown various approaches to determine the parameters of certain

friction model (Chinniah et al; 2003). However, it is impossible to precisely measure
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the friction and set up the friction model for each individual actuator. Therefore
online estimation of friction has apparent advantage in dealing with the nonlinearities
caused by friction.

In Chapter 2, the friction was seperately modeled and was combined with system
modeling. In this chapter, the friction and external load are regarded as time-varying
parameters of the actuation system and are modeled together as an expanded state
variable of the system. Corresponding leakage detection scheme is developed and

shown in this chapter.

6.1 Environmental Setup

To simulate the external load, the environment is approximated as an elastic body
with a large modulus of elasticity. On the test rig, a stiff coil spring is employed for
this purpose (see Figure 6.1). The coil spring, with a modulus of 6 x 10° N/m, can
generate up to 6000 N when compressed by 1 cm. A force sensor [0~22,000N (50001b)]
is mounted at the end of the actuator rod to instantly measure the external force.
Detailed modeling of the environment or the spring is avoided as the environment is
expected to be estimated and recognized by the FDI scheme.

Figure 6.2 shows the experimental setup. The coil spring is installed on the track
of the rod at certain position so that when the rod extends it presses on the spring.
The spring is then compressed and generates a reactive force. Varying load is thus

obtained at different positions when the compression of the spring.



Chapter 6: Leakage Fault Detection and Isolation Subject to Ezternal Load

83

Figure 6.1: Coil spring environment simulator.
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Figure 6.2: Hydraulic test station with a spring-like environment.
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6.2 Modeling of External Load

An actuator working in actual applications deals with varying loads that are un-
predictable. Attempts have been made to model this operating condition and re-
searches that consider load for real-time control and estimation have been reported
in the literature. Lin (1996) showed a RLS estimator with torque observer in an
induction motor controller design. The torque observer implemented inverse dynam-
ics of the motor to observe the torque, while the key parameter of the observer was
obtained from an EKF. More direct application of EKF in load estimation has been
reported by Beineke et al (1997) in whose paper the load condition was described
by deterministic characteristics. The torque of a motor drive was directly regarded
as an expanded system state in the EKF and the estimation of friction and loading
torque was reported to be successful. Zavarehi et al (1999) showed the possibility of
estimating some immeasurable key-parameters of a servovalve.

As a statistical method, EKF is based on Bayesian estimation. All system states
are considered to be random variables due to the disturbance of white noises and are
estimated based on previous estimates and updates of the measurements. On the
other hand, the dynamic model of the system regulates the evolution of system states

and characterizes the conditional estimation, shown in the following equation:
x5 = Elx|z1 - - 2] (6.1)

where %] is the a posteriori estimate at time instance k, E[] represents the expecta-
tion, Xy, is the system state at time instance k, and z; (1 = 1...k) are the updates of

measurements. When a system parameter, 6, is included in this model, it is regarded
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as a random walk with certain mean (expectation) but deteriorated by noise. Ideally,
the parameter is time invariant so that it can be expressed by the following differential

equation with noise that can be characterized as a random variable:

2—(2 =0+ ¢(t) (6.2)

where g(t) represents the density of the white noise. It can be seen from this equation
that the EKF is indifferent to the system states and the parameters so the formulation
of them is identical. Furthermore, the corresponding covariance in the Kalman filter
algorithm serves as a design parameter to describe how fast the parameter is expected
to vary. The bigger this variance is, the better time-varying parameters are tracked

but the constant parameters are noisier (Beineke et al, 1997).

6.3 Modified System Model and FDI Scheme

6.3.1 System Model

The system model for the actuation system is represented by the flow equations

described in Chapter 2. These equations are referred again for convenience:

¢ = Cawzsp\/2(ps — p
' P/ Pe = P1) Z4 > 0 (6.3)
¢z = Cqwsp,/2(p2 — po)

1= Odwzvsp\/ % (pl — pe)
g2 = demsp\/ % (ps "' Pz)

Without considering the servovalve leakages in the healthy system, we have

Tsp <0 (6.4)

q = Az, + %W(%)Pl (6.5)

g2 = Az, — %‘/2(33@)]52
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where
V (CLa) = VVO —+ A(l‘a — Xmin)
' ' (6.6)
‘/2(:["11) = Vgo + A(Xmarls - xa)
and the dynamic equation of the servovalve is given as
1. dm . 1
U = __—kspw% Tep + —l;s;w—n-ﬂ?sp -+ ]\,TS;:ESP (67)

Equations (6.3) to (6.7) describe the dynamics of the hydraulic system. To include
the external force in the system modeling, consider Figure 6.2 and equation (2.10),

then the following equation is obtained:

Jo=(p1 —p2)A=muio+ F. + F; (6.8)

where, as defined before, f, is the actuator force generated by the pressure difference
between the two chambers. F is the friction and F, is the external resistance force.
For actual applications, F, and F, are unknown but bounded values when the system
is working under normal operation condition, so that the effective load (disturbance)
for the actuator, including friction and external load, can be given as F, = F, + F,.
This external disturbance is characterized as a stochastic process in the actuator

model and equation (6.8) is rewritten as:

fo = Madia + F. (6.9)

When the external load varies, it implies that the mean of this stochastic process
varies. Furthermore, if the external load F,. does not exist, equation (6.9) becomes

cquation (2.10) and the estimation of external load reflects the actuator friction.
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6.3.2 FDI Scheme Development
System Re-modeling

Similar to the analysis in Chapter 4, this system is regarded as a stochastic process
contaminated with process noise wg and measurement noise v, which can be shown

as

£=1(¢ u)+w;
y= h(§,v)

where v is the input signal and y is the measurement array. Choosing the actuator

(6.10)

displacement and its velocity, the chamber pressures, the displacement of the valve
spool and its velocity, the state vector is €=[ Zgp, P1, P2, Ta, Ta, Tsp | L. Correspondingly,

the state space model of the actuation system is formulated as:

G=&+w

o1 vren [Cawés 2 (ps — &) — A&| +ws & >0
iy [Cawén /2 (6 — po) — Abs] +w;, & <0

gy = V2(€4)[ Cd“’fl\/er Al +wz & >0 (6.11)
ey = Cawéay [2(ps — &3) + As] +ws & <0

5.6 = "2dmwn£6 - wrzzél + kspwgu + We

To further estimate the unknown external resistance, F, is also formulated as a

special state. EKF regards this parameter as a random variable so that the stochastic
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process in equation (6.10) is expanded as the following system:
£ f(£7 ’LL) Wy
. +
y =h(&,v)
where 8=[F,] represents possible parameter array being estimated and w, is the corre-
sponding noise array. Following the formulation of equation (6.12), an expanded state
vector can be defined in a general form as x = [£ 0]T = [z, D1, Po, Ta, T, Tspy Lo |T

and the corresponding noise array can be rewritten as:
— T _ T
W = [W£ W9] - [wl’ Wy, W3, Wy, W5, We, ’LU7]

The state space model of the expanded system is then discretized using forward

difference method, as shown in the following equations:

Tty [Cawer (k)2 (ps — za(k)) — Axs (k)]

+5E2(k> + ’lUQ(k) 'L‘l(k') >0
ok +1) = (6.14)
%[del‘l(k) %(552(1’3) — pe) — Az (k)]

itoogi [~ Cawz (k) [2(za(k) — pe) + Aws (k)]

+’133(k) + wg(k) T (k) >0

z3(k+1) = (6.15)
oy [~ Cawz: (k) 2(ps — w3(k)) + Azs (k)]
+z3(k) + ws(k) xz1(k) <0

2a(k + 1) = T (k) + wa(k) + wa (k) (6.16)
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ws(k+1) = %(Aw(k) — Awa(k) — z2(k)) + 35 (k) + ws(k)  (6.17)

CIZG(I\? + 1) = T[—Qdmwnﬂfg(k’> — ujiilfl(k) + kspw;?L’IL(k -+ 1)] + l‘(,(]ﬁ) -+ wb(k) (618)
wr(k +1) = z7(k) + wr (k) (6.19)
where T represents the sampling interval,i.e., sampling time is KT

Jacobian Matrices

Based on the discrete model represented by equation (6.12) to (6.19), the FDI
scheme is constructed. Similar to the procedure discussed in Chapter 4, to apply
EKF algorithm to the aforementioned space model, the Jacobian matrices A, W,
H and V are required. Knowing the sampling time, T, matrix A is obtained from

equation (4.11) as

A_OF _[0h 8f Ofs Ofs Ofs 0fs Ofi]" (6.20)
Ox Ox’ 0x’ ox’ Ox’ Ox’ Ox’ Ox -
where
afr
o= 0, 0 0 0 T 0
vy Cawei (k)2 (ps — s (k)),
T8 : _1
T+ vl(m(k>>cdw”1(k)(p\/§m>’
%IXE: 0 z1(k) >0
Vz(u(;,))vl(ﬂ(/v [de% s — 22(k)) — Azs(k ]
Vateay (—A)s
0, 0
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—vl(ff(@)cdwfﬂl(k) 2(@a(k) ~ pe);

1
ot _ |0, nR =0

ox
v% (k))‘/l($4(l°)) {Cduml(r’f) 2(wa(k) = pe) ~ Ax5(k)],

Wi ($4(k))( A)
0, 0

vy | — Cawzr (k)2 (ws(k) = o),
0,

1+ Cawz: (k) { ——=2ee }
Ofs _ ) { il )(ﬂ\/%(msw)—pe)) z1(k) >0
ox .

— vty Vo(@a(R)) | — Cawa (k) /2 (w3 (k) — po) + Aws(k)],

13
Va(xa(k))

0, O

vg(if(k))( Cawzr (k) /2 (ps —$3(k))>

0,
1+ ‘—E— [ - deilil(k)(—_l—*—)}
§ 2 (wa(k)) ’
%_J;{ _ 2 py/ 2 (ps—=3(k)) iL'l(k) <0
— ey Va(@a(k)) | = Cawzs (k)2 (ps — w5(k)) + As (k)],

Vatea@y (A

0, 0
Ofs
A , I, 0, 0
I (0, 0, 0, 1, T, 0, 0]

I T
8f0 = [Oa iA: _1443 07 ]-7 07 —_—]
ox My Mg Mg

dfs

WXT 0, 0, 0, 0, (~2dmw,T+1), 0]
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Af
— =1[0, 0, 0, 0, 0, 0, 1
ox [ ’ ]
The EKF generates a sequence of estimated state vector, X}, given the measure-
ments, yx, at each sampling time. Selected elements of the estimated state vector are

then compared with the corresponding measurements to compute the state residual

error, e;. Choosing the measurements as yi = [z4(k), pi(k), p2(k)]T; we have

000100
H.=|101000 0 (6.21)

0 01000
Noise Matrices

Similar to the assumptions in Chapter 4, covariance matrices Q; and Ry are
considered to be stationary, white and Gaussian. Furthermore, it is assumed that
the noise characteristics of different system state variables are independent of each
other. Thus, both Qi and Ry, are diagonal, and the values of their elements should be
estimated prior to the experiment. Finally, it can be concluded from the assumptions

of the noise vectors that the Jacobian matrices of Wy, and V. are unity matrices.

System Configuration and Residual Error Generation

Since the hydraulic actuator interacts with external load, it is necessary to apply
a closed-loop control scheme to guarantee the actuation system works in normal
operating condition. Therefore, the configuration of the proposed system is similar to
the closed-loop configuration that has been employed in Section 5.2, shown in Figure
5.24. The measurements of the actuator displacement, z,, and the chamber pressures,

p1 and ps, are sampled and delivered to the expanded EKF along with the control
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signal, u. By observing the variation of the moving average of the residual errors,
e, pertaining to the chamber pressures only, leakage faults arc identificd. Note that
although the measurement of actuator displacement is not included in the pattern
recognition, it is essential for the EKF to avoid biased estimation.

Under normal operating conditions, the actuation system interacts with varying
external loads. The estimates of EKF closely converge to the system states since the
effect of the environmental resistance is considered in system modeling. By applying
the same residual generating scheme described in Section 4.4, leakage faults can be

detected and identified.



Chapter 7

Simulation Analysis and
Experimental Results

With the development of the parameter estimation model, a FDI scheme towards
online hydraulic actuator leakage fault detection under varying load was proposed in
Chapter 6. Choosing the chamber pressures and the actuator displacement as the
input for the EKF, this FDI scheme is consistent with the unloaded scheme discussed
in Chapter 4. The FDI scheme will be validated by exhaustive simulation and then
tested by experiments in this Chapter. Due to the existence of external load, only
closed-loop control is implemented on the test rig. Two types of input signals, the
sinusoidal and the pseudorandom are applied to the proposed FDI scheme. With the
presence of external spring load, the proposed FDI scheme is shown to effectively

detect leakage faults both in simulations and experiments.

7.1 Simulation Studies

Simulation of the proposed FDI scheme will be elaborated in this section. The
external leakage at each cylinder chamber and the internal leakage between the cham-

bers are considered.
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7.1.1 Leakage Faults Detection with Sinusoidal Input

In the simulation, the environmental load is modeled by a linear spring. This is
consistent with the actual experimental setting. A virtual spring with a modulus of
2 x 10*N/m is simulated and set to be placed in front of the actuator at the position
of 0.22m. The simulation program tracks the external resistance generated by this
virtual spring and records the system states, as well as the simulated leakages. Each
simulation test lasts for 60 seconds during which different leakage faults are introduced
into the healthy system at the 20t¢h second. The sinusoidal position references are
formulated by the following function: r(¢) = 0.34+0.2 xsin(7t+0.1) where ¢ represents

the simulation time.

Estimation of Effective Actuator Friction

With the development of FDI scheme in Chapter 6, all external disturbances are
regarded as load, including the effective actuator friction. However, the actuator
friction is inherent and is always present. When no external load is applied to the

actuator, it can be observed from equation (6.9), i.e., F, = F, and
fa:maita”*‘Fc (71)

Equation (7.1) indicates that the dynamic actuator friction can be theoretically
estimated by the FDI scheme. This is verified by simulation. Figure 7.1 shows the
plot of actuation force in the presence of only actuator friction. With above analysis,
we know this plot actually shows the estimation of simulated actuator friction.

In Figure 7.1, friction is the only external resistance and the actuation force is

mainly used to overcome the friction. The second plot shows the simulated friction.
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Figure 7.1: Actuation force, simulated friction and estimated friction force.

It can be seen that the estimated friction closely matches the simulated friction that
is calculated by the simulation program [see equation (2.13)]. Therefore the dynamic
actuator friction can be accurately estimated by running the system unloaded. This

verifies the effectiveness of estimating nonlinear external load using the expanded

EKF.

Leakage at Chamber 1

Starting from this section, all simulations are conducted in the presence of loading
that is generated by a spring model. Figures 7.2 to 7.6 show the simulation results of
the leakage at chamber 1. The reference and the valve control signals are shown in
Figure 7.2. A leakage coefficient of 2 x 10712 (m?®/s - Pa) is set and the corresponding

leakage is shown in Figure 7.3. The simulated and estimated actuator displacements,
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which are close to each other, are also shown in this figure. It can be seen from the
subplot of MAE that the residual error significantly incrcases after the occurrence of
leakage.

The trajectories of the chamber pressures are shown in Figure 7.4 and 7.5. The
residual error of the pressure at chamber 1 significantly increases from the normal level
after the occurrence of leakage. Meanwhile, it can be seen that the residual error of
the pressure at chamber 2 also slightly increases after the leékage, Considering the
parameters of the system and the FDI scheme are kept the same as unloaded mode
modeling, this is due to the modification of system modeling. However, pattern of
MAE variation under leakage at chamber 1 is still consistent with the conclusion
obtained in Chapter 5.

The estimation of the external force is shown in Figure 7.6. The upper plot shows
the calculated external force by summing up the friction force and the virtual spring
force. The simulated environmental resistance force ranges up to 1500N. This figure
shows that the estimated environmental force perfectly matches the calculated values

used in the simulation.

Leakage at Chamber 2

The simulation results of the leakage at chamber 2 are shown in Figures 7.7, 7.8
and 7.9. With a leakage coefficient of 2 x 1072 (m3/s - Pa), the leakage introduced to
the actuation system is shown in Figure 7.7. The corresponding chamber pressures
are shown in Figures 7.8 and 7.9, from which it can be seen that the residual error of
the pressure at chamber 2 increases significantly, while the residual error at chamber

1 only increase slightly. This trend is consistent with that of the previous simulation
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Figure 7.2: Position references for actuator and control signals for servovalve.
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MAE.
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Figure 7.6: Simulated and estimated external force.

and experiments in unloaded mode.

Internal Leakage

The simulation results of the internal leakage are shown in Figures 7.10 to 7.12. A
leakage coefficient of 4x 107! (m?/s - Pa) is applied. The leakage is bi-directional (fea-
tured by positive flow and negative flow) according to the direction of the movement
of the actuator and it is also noted that, in Figures 7.10, the leakage on the extension
stroke is greater than that of the retraction stroke, which is due to the existence of
the external load. The chamber pressures are shown in Figures 7.11 and 7.12. The
increase of the MAEs indicates the occurrence of the internal leakage and the increase

at both chambers identifies the internal leakage from the external leakages.
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Different Leakage Levels

The sensitivity of the proposed FDI scheme is tested by simulation. Three lev-
els of leakage are simulated with the occurrence of different type of leakage faults.
Figure 7.13 shows that three leakages, with leakage coefficients 2 x 10712 (m®/s - Pa),
4% 1072 (m3/s - Pa), and 6 x 10712 (m®/s - Pa), are introduced in chamber 1 and con-
sequently, the residual errors of the chamber pressures change. Although the MAE
of the pressure at chamber 2 increases proportionally with the increase of leakage,
the variation of the residual error at chamber 1 is much more significant. The leak-
age fault at chamber 1 is obviously featured by the increase of MAE at chamber 1.
Comparatively, the variation of MAE with the presence of leakage at chamber 2 is
shown in Figure 7.14, in which it can be seen that the residual error at chamber 2
increased more significantly than that of chamber 1. As a result, the difference of
MAEs between chambers tells the occurrence of leakage. When the internal leak-
age 1s considered, Figure 7.15 shows that the residual errors in both of the chambers
equally increased though the magnitudes are relatively small due to the small internal
leakage flows. The leakage cocflicients applied in the internal leakage simulation are
4 x 107 (m®/s- Pa), 6 x 1072 (m®/s - Pa), and 8 x 102 (m®/s - Pa).

The above simulation studies show that the FDI scheme, which is based on the
modificd model, is effective in leakage detecting and identifying with sinusoidal input
signals. The simulation results show that the change of residual errors is consistent

to previous conclusion.
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2.

7.1.2 Leakage Faults with Pseudorandom Input

Pseudorandom reference signals are designed to simulate the normal operation
conditions for most of applications. The magnitude of the input signal varies ran-
domly between [0.1m, 0.5m] and the duration of the inputs is also considered to be a
random variable, which changes between [0.2s, 4.0s]. External and internal leakages

are tested and the simulation results are shown in this section.
Leakage at Chamber 1
The reference and the valve control inputs of the test are shown in Figure 7.16.

With the change of the reference signals, the control input reached the maximum of

+10 volts. As a result, severe fluctuation of the leakage is observed in Figure 7.17
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(L), medium (M) and high (dashed-dot) leakages; b) MAEs at chamber 1; ¢) MAEs
at chamber 2.

with a leakage coefficient of 2 x 10712 (m3/s - Pa).

The pressures at chambers 1 and 2 are shown in Figures 7.18 and 7.19. Variation of
the moving average of the residual errors indicates the same trend in residual errors
with the presence of leakage as that of the sinusoidal input signals. This further

verifies the effectiveness of the proposed FDI scheme.

Different Level of Leakage

Two different levels of leakages, with the leakage coeflicients of 2x 10712 (m3/s - Pa)
and 6 x 10712 (m3/s - Pa), are applied to the simulation tests. Figures 7.20, 7.21 and
7.22 show the simulated leakage and the MAE of both chamber pressures with the

presence of leakages at chambers 1, 2 and internal leakage.
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Although the leakage and the residual errors fluctuate more due to the randomness
of the input signal, it is still obvious that the changes of the residual errors are

consistent with previous conclusion.

7.2 Experimental Results

Experiments using sinusoidal and pseudorandom references are carried out on the
test rig in this section. A spring with the stiffness of Kgpring (shown in Figure 6.2),
which generates reacting force against the actuator, is fixed in front of the actuator to
simulate the environment. The actuator engages the environment at the position of
0.176 m within its extension stroke so that the load of the actuator varies, depending

on the depth the actuator compressing the spring, from zero to a certain amount.



Chapter 7: Simulation Analysis and Ezperimental Results 109

3 T T ¥ T 3 T
—~ {{a) ¢ ' :
H K i
g " P\ \]’: :} « 11 l‘ , E
3 2 } | !‘} | \ ER t‘ \
> iL l‘ H o \ N el g
o { yoph oy ' { { gt 4
gL ‘ AT RVINTIN o Bl
& 1\ A \ 11( N f J’( N ] J]l [
] ! ) oy N it ‘|
0 1 ! 1 . )
0 10 20 30 40 50 860
80 T T T T T

@
=3
T

MAE (x10%Pa)
oy
o
H

20
o A
0 10 20 30 40 50 60
100 T T T T T
. (c)
&
oy H
% 501 h 4
w < \\ PN
<
=
0 . L
0 10 20 30 40 50 60

Time (s)
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Only closed-loop control is applied to the experiments. Two sets of position ref-
erence signals, the sinusoidal and the pseudorandom, are applied to the system. The
leakage faults are introduced to the test rig at ~ 20s of each test and are kept until
the end of the test.

The parameters of the test rig, used in the EKF model, have been summarized in
Table 2.1, Chapter 2. Besides these parameters. the stiffness of the environment is
represented by a coil spring with its elastic modulus, Kpring = 6.0 x 10° (N/m).

Simulation in previous sections has shown that the friction can be estimated in
normal conditions. Alternatively, estimation of critical parameters of the friction can
be made using the EKF (see Chinniah et al, 2003). Extra experiments in this section

will also show that with the proposed FDI scheme, the friction can be estimated
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offline in unloaded mode.

The initial state vector, %{, and the covariance matrix, P{, are set according to
section 4.5. Since the extended state is included in the model, 15(”)* is a 7 X 7 matrix
and x¢ = [0, 6.8 x 10%, 6.8 x 10°, 0, 0, 0, 0]T.

In order to produce a good convergence rate, the covariance matrices, Qr and Ry,
are selected based on the combination of system noise analysis, modeling uncertainties
and comparison between the simulation and experimental results. Similar to Chapter
5, the matrix Q is chosen as Q = diag[107%°, 104, 104, 1075, 107, 1072, 10?] and
the matrix R is given as R = diag[1074, 10, 10%].

With above parameter settings for the proposed FDI scheme, experiments on
external and internal leakages are carried out. Extensive experiments show that
leakage of 0.25 ~ 0.35L/min is the lowest leakage that can be detected by the pro-
posed FDI scheme. Considering the inherent errors of the flow meter, which is around
0.05 ~ 0.1 L/min even in healthy mode, and the modeling error, this value is regarded

small in leakage detection.
7.2.1 Leakage Faults with Sinusoidal Inputs

Similar to the simulation and previous experiments, the sinusoidal references
are given as 0.5Hz with the amplitude between [0.167m, 0.187m]|, r(¢) = 0.177 +
0.02sin(7t) m. Each test lasts for 60 seconds and leakage faults are introduced into

the system around the 20th second.
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Leakage at Chamber 1

Experimental results of the test with leakage fault at chamber 1 are shown in
Figures 7.23 to 7.26. Experiments show the leakage (0.32L/min) in Figure 7.23 is
the lowest leakage that can be detected by the proposed FDI scheme. From the
actual measurement of the leakage flow in Figure 7.23, the leakage coefficient ke is

estimated using equation (5.4). This equation repeated here for convenience:

1 Gell -5 Gel1
kepn = . =167x%x107° . ———/——=
10°-60 \/(p, — p.) J(o1 — pe)

in which the leakage flow gy is in liter per minute (L /min) and the chamber pressures
are in Pascal (Pa). The mean value of leakage coefficient on lower leakage is: k.1 =
7.65 x 107% (m®/s - Pa) and the standard deviation is oo = 22.08 x 1071 (m3/s - Pa).

Compare Figures 7.24 and 7.25. The variation of MAE of the chamber pressures
can be clearly observed. Rather than the increase of the residual error at chamber
1, the residual error at chamber 2 even reduces after the occurrence of leakage at
chamber 1.

The estimated external force, F,, is shown in Figure 7.26, which is close to the
calculated actuator force, F,. The measured environmental force is also shown in
the same figure and it ranges between [0, 5000 N]. Since the environmental force is
available, the actuator friction can thus be calculated according to equation (6.1).
Figure 7.26 shows the friction ranges within [-1000, 2000 N]. It is also clear that the
measurement for the friction model parameters are [-2400, 2400 N] in Chapter 3. The
difference is caused by the wear of the cylinder after large amount of experiments. It
shows that the friction model parameters are time-varying and dynamic estimation of

these parameters is necessary. Also interesting is that the asymmetry in the positive



Chapter 7: Simulation Analysis

and Experimental Results 113

1 T T T Y T
=
€
2
o 05r b
©
=
[]
1)
0 1 1 L 1 1
0 10 20 30 40 50 60
0.19 T T T T T
E
= 0.18 g
2
1]
% .17
4
016 1 1 1 1 1
10 20 30 40 50 60
0.19 T T T T T
E
= 0.18 -
£
@
&
3 017
2
fa]
0.16 1 1 ] 1 1
10 20 30 40 50 60
Time (s}

Figure 7.23:
ment.

Leakage at chamber 1, reference inputs and measured actuator displace-

15

-
=

Pressure (MPa)

T T

A

4 0

-
o

S

Pressure (MPa)
>

T ¥ T T

E

L O ™

o o
o -
T

MAE (MPa)
<)
N
T

1
o
T

L L ! L L 1 1 $

25 30 35 40 45 50 55
Time (s)

Figure 7.24: Measured (M) and estimated (E) chamber 1 pressure, closeup plots and

MAE.



Chapter 7: Simulation Analysis and Experimental Results 114

Pressure (MPa)

—~ 8
[v] I
o
26
il
5
24
<4
)
18 19 20 21 22 23 24
04 T T T T T T T T T T H
< 0.3r
s
= 0.2 -
w
<
= 01f E
0 1 1 i 1 1 H 1 i 1 1. )
0 5 10 15 20 25 30 35 40 45 50 55
Time (s)
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closeup plots and MAE.

and negative section of the friction further supports the analysis in Section 3.2 about

the drifting of the sinusoidal movement in open-loop configuration.

Leakage at Chamber 2

The test results of leakage at chamber 2 are shown in Figure 7.27. Experiments
show the leakage flow of 0.345L/min is the lowest leakage that can be detected.

Similar to the calculation of kg, the coefficient k.o is estimated as follows:

1 del2 — 167 % 10-3- Gel2

10°-60  /(p, — p.) (p2 — pe)

kelQ

The mean value of the leakage coefficient on lower leakage flow is ke = 10.68 x
107 (m®/s - Pa) and the standard variance is o¢ = 31.30 x 1073 (m?®/s - Pa). The

residual error of the pressure at chamber 2 increases after the occurrence of the leakage
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Figure 7.26: Estimated external force, measured environmental force and estimated
effective actuator friction.

at the same chamber while the residual error at the other chamber keeps intact.

Internal Leakage

The leakage is shown in Figure 7.28. On average, the leakage is 0.255 L /min, but
this is only a rough estimation of the leakage due to the oscillation caused by the
external resistance. Since the flow meter is indifferent to the direction of the flow,
only positive readings are obtained in the experiments for internal leakage. However,
it can be observed that the leakage is much higher when the actuator extends than
when it retracts. The external resistance plays a main role on this asymmetry.

Similar to that in previous sections, the estimation of kj is obtained by applying
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Figure 7.27: Leakage at chamber 2 and MAE of pressures at chamber 1 and chamber
2.

a nonlinear square-root model.

! B —167x 107 ——2

ky = : e
10° - 60 |(p1 — p2)] |(p1 — p2)|

The mean value of the leakage coefficient on lower leakage, ky = 8.65x107%(m?*/s - Pa),

is obtained and the standard deviation is oy = 33.22 x 107 (m3/s - Pa).

Different Level of Leakages

Bascd on the recognition of minimum leakages of different leakages, multilevel
leakages are tested and are shown in Figures 7.29, 7.30 and 7.31. For each type
of leakage, three levels of leakages are tested. Figure 7.29 shows different levels of
leakages at chamber 1 and Table 7.1 shows the average leakage flow before and after

the leakage as well as the variation of the moving average of the chamber pressure
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Figure 7.28: Internal leakage, MAE of pressures at chamber 1 and chamber 2.

residuals. From Figure 7.29 it can be seen that, although the fluctuation of the leakage
flow increases due to the increase of the bleed valve opening, statistically the leakage
increases by observing its arithmetical average values in Table 7.1. Therefore, the

MAE at chamber 1 increases proportionally.

Table 7.1: Leakage parameters at chamber 1 and chamber pressure MAEs.

Medium

Leakage level

Faulty status

Before | After

Average Leakage flow
(L/min)

MAE of chamber 1
(x10°Pa)

MAE of chamber 2
(x10° Pa)

0.32

0.65

Low
Before | After
0.09
0.31
0.32

0.25

0.09

0.30

0.34

0.46

1.08

0.35

0.56

1.33

High
Before | After
0.09
0.31
0.36

0.45
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Figure 7.29: Low (L), medium (M) and high (H) leakage at chamber 1, MAE of
pressures at chamber 1 and chamber 2.

The leakages at chamber 2 are shown in Figure 7.30, in which the residual error
at chamber 2 increases along with the increase of leakage. Corresponding variation

of chamber residuals are shown in Table 7.2.

Table 7.2: Leakage parameters at chamber 2 and chamber pressure MAEs.

Leakage level Low Medium High
Faulty status Before | After || Before | After || Before | After

Average Leakage flow || 0.09 | 0.35 0.09 | 0.53 0.09 | 0.68
(L/min)
MAE of chamber 1 0.30 | 0.26 0.33 | 0.26 0.34 | 0.34
(x105Pa)

MAE of chamber 2 0.31 0.46 0.28 | 0.93 0.30 1.31
(x10° Pa)
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Figure 7.30: Low (L), medium (M) and high (H) leakage at chamber 2, MAEs of
pressure at chamber 1 and chamber 2.

Figure 7.31 shows three levels of internal leakage. Corresponding variation of
chamber residuals are shown in Table 7.3. It is obvious that with the increase of the
opening of the bleeding valve, the leakage in extension stroke increases much more

than in retraction stroke.
7.2.2 Leakage Faults with Pseudorandom Inputs

Considering the actual applications of hydraulic actuators, the pseudorandom ref-
erences are tested with randomly varying magnitude (0.174 ~ 0.184 m) and duration

(0.2 ~ 45) and the duration for each test is 60 seconds.
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Figure 7.31: Low (L), medium (M) and high (H) internal leakage, MAEs of pressure

at chamber 1 and chamber 2.

Table 7.3: Internal leakage parameters and chamber pressure MAEs.

Leakage level

Faulty status

Average Leakage flow
(L/min)

MAE of chamber 1
(x10° Pa)

MAE of chamber 2
(x10° Pa)

0.26

0.79

Low
Before | After
0.02
0.32
0.26

0.58

Medium
Before | After
0.02 0.38
0.32 1.08
0.25 0.75

0.84

High
Before | After
0.02
0.31
0.27

Leakage at Chamber 1

Test results for the leakage at chamber 1 are shown in Figures 7.32 to 7.36. With

a minimum leakage, 0.32 L/min on average, the test is shown in the following figures.
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The variation of the MAE of the chamber pressures is shown in Figures 7.34 and
7.35, in which the MAE at chamber 1 increases accordingly after the occurrence of
the leakage.

The estimated external force, F,, as well as the measurement of the environmental
force, are shown in Figure 7.36. The actuator friction is estimated applying equation
(6.9). From the plot it can be observed the friction is within the range of [-2400N,
2400N]. This result is consistent to the modeling and previous experiments on deter-
mining the friction model.
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Figure 7.32: Leakage at chamber 1, reference inputs and servovalve control inputs.

Leakage at Chamber 2

Figure 7.37 shows the test of leakage at chamber 2. The moving averages of the

residual errors show the increase in the moving average of chamber 2 while the residual
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error in chamber 1 kept at the same level.
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Figure 7.37: Leakage at chamber 2, MAE of pressures at chamber 1 and chamber 2.

Internal Leakage

When the internal leakage is considered, the experiment shows the leakage is
more fluctuating and it is hard to characterize the leakage. Accordingly, the moving
averages of the residual errors fluctuate more but still increases after the occurrence

of leakage, which is shown in Figure 7.38.

Different Level of Leakages

The tests on different levels of leakage are shown in Figures 7.39 to 7.41. Although
the trend of the MAEs are deteriorated by the random inputs and the leakage thus
oscillates more, the conclusion obtained in Chapter 4 is still applicable.

The above tests clearly show that, in the presence of loading, the actuator leakage
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can be detected and identified online. By observing the residual error of the chamber
pressures one can identify the occurrence of various leakage faults. The increase of the
MAE of only one chamber pressure, indicates the occurrence of the external leakage in
that chamber, while the increase of the MAE of both chamber pressures indicates the
occurrence of internal (cross-port) leakage. However, due to the randomness of the
input and the involvement of closed-loop control strategy, the leakage flows are more
variable and hard to measure. Consequently, no general average values are available
for the moving average errors. On the other hand, it can be observed from Figures
7.39 to 7.41 that the moving average errors increase proportionally when the leakages

increase.



Chapter 8

Summary and Contributions

In this research, extended Kalman filter (EKF') based fault detection and isolation
(FDI) schemes for hydraulic actuation systems were proposed. The nature of the
EKF requires a relatively accurate model of the system under normal operation. If
this requirement is satisfied, as shown in this research, the EKF is expected to give
good estimation of the observable system states. This conclusion was shown both
in simulations and experiments. However, it is difficult to inspect the observability
of the hydraulic actuation system due to its nonlinearity; therefore, the theoretical
convergence of the algorithm is not determined, though the algorithm converged in
all experiments.

An offline actuator leakage fault detection scheme was first developed and both
simulations and experiments were carried out to verify the effectiveness of this scheme.
Represented by a state space model, the entire actuation system was characterized
by six state variables, namely the servovalve solenoid spool displacement and its
first derivative, the actuator cylinder chamber pressures, the actuator displacement
and the actuator velocity. To more accurately reflect the actual scenario, a velocity

dependant friction model (Karnopp) was included in the dynamics of the actuator for
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the offline model. Tests with different excitation signals showed that the response of
the system model was satisfactory within the bandwidth (up to 10.5 Hz) of normal
operations and the maximum simulation error was 10% (chamber pressures).

With a residual generation scheme that compares the actual measurements and
the EKF estimation outputs, three types of leakages - external leakage from either
side of the actuator and internal leakage between the two chambers of the actuator-
were tested. The moving averages of the absolute residual errors were calculated to
reflect their trends. By tracking the variation of the residual errors, the leakage faults
were detected and identified.

Experiments in open-loop configuration were carried out to test the effectiveness
of the EKF based actuator leakage FDI scheme. Sinusoidal inputs were tested to
evaluate offline FDI. All the three leakage faults were tested and the FDI strategy was
tested with different leakage levels. Experimental results showed that the FDI scheme
is able to detect leakages and single actuator leakages can be identified successfully
by recognizing the variation pattern of the moving average errors of the chamber
pressures. The patterns are indicated by the increase of corresponding moving average
error of the chamber pressures, from 10° Pa to 1.5 x 10° Pa and higher, proportional
to the leakage flow.

The sinusoidal signal test was further conducted in closed-loop configuration. Ex-
periments showed that the proposed FDI strategy can ceffectively detect and identify
the actuator leakage faults in a closed-loop control configuration. The conclusion
obtained are consistent with those test results in an open-loop configuration. There-

fore, the proposed FDI strategy is suitable for system offline self-test. Additionally,
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pseudorandom input tests were also conducted to show the potential of the proposed
FDI scheme for online applications. Experiments showed that, with pseudorandom
inputs, the EKF estimator still reliably responds to the occurrence of the actuator
leakage faults and identifies them.

Finally, experiments showed that, with the increase of the leakage flow, the in-
dicative residual errors increase. This was shown when different levels of leakage were
applied to the system. Test results illustrated that the MAE of the residual error of
chamber 1 pressure rose up to 1.9 x 10°Pa and 3.4 x 10° Pa with average external
leakages of 0.55L/min and 1.01 L/min at the same chamber. Changes of the MAE
of corresponding chamber pressures with external leakages at chamber 2 and inter-
nal (crossport) leakages showed similar increases. However, it is difficult to preciscly
quantitify this increase. This trend can be used to qualitatively evaluate the leakage
fault levels in future.

The above tests that were conducted under no-load condition laid the ground for
design of the EKF based FDI technique for hydraulic actuators with environmental
interactions. The proposed FDI scheme was therefore modified aiming at online fault
detection under the more realistic loading condition. The nonlinear system model
that includes a comprehensive friction model was improved, and was integrated with
modeling of the environment. This modification was based on the consideration of
online detection of actuator leakages while the actuation system was loaded with
unpredictable resistance. As a result, a method to dynamically estimate the external
load was also introduced. Furthermore, actuator friction, modeled as part of the

external load in the system, was estimated when the system was running un-loaded,
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i.e., a technique for online measuring the actuator friction has been established.

Similar to configurations in the offline mode, with only three measurements, i.e.,
the actuator displacement and the chamber pressures, the EKF-based fault detector
was experimentally shown to successfully identify external and internal leakage faults
in the actuator with the existence of external disturbance, which was emulated by a
strong coil spring. When working in a fault-free mode, the external load, including the
friction, was estimated. Experimental results showed that different patterns obtained
were consistent to what had been concluded in offfine mode. A minimum leakage of
0.25 to 0.30L/min was detected using the proposed FDI system.

The approach described in this study can be used towards online condition mon-
itoring of hydraulic systems with respect to actuator leakage faults. Future work
should involve the investigation of the stability of the proposed FDI scheme to leak-
age faults by improving convergence of the key parameter of the EKF - the covariance
matrix which should always maintain positive definiteness during the calculation. A
possible way to prevent it from degrading into a singular matrix is the computational
procedure called square root update (Kaminski, 1971). This was not investigated
in this thesis. Furthermore, with the reliable detection of leakage faults and quan-
tified information, fault tolerant control techniques can be applied to improve the

performance of hydraulic machinery by re-configuring the controller.
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