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ABSTRACT

The local buckling of thin-walled fabricated steel cylin-
ders loaded in pure flexure is investigated. Analyses to
predict inelastic buckling of these shells are conducted
using the finite element technique. The program used,
NISA80, 1includes both material and geometric nonlinearities

in the prediction of the limit load.

A rational technique is developed to incorporate initial
inperfections into the analyses. A previous experimental
investigation conducted at the University of Alberta in

1981, provided the initial data base for this investigation.

The investigation here in involved a series of nonlinear
anlaysis on various mesh configurations. Results from these
analyses are compared with the University of Alberta testing
of two flexurally loaded <cylinders fabricated from 3.4-mm

and 5-mm plate and approximately 1525 mm in diameter.

On the basis of the limited amount of test evidence
available for the flexurally 1loaded fabricated cylinders,
the results of the nonlinear analysis are acceptable. The
nonlinear finite element technigue incorporating initial
imperfections, 1is a reliable means of predicting the limit

point load of a flexurally loaded fabricated cylinder.
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Further experimental study 1is regquired to establish a
larger data base for the flexural buckling strength of
fabricated steel tubes. Additional testing is required to
determine the effects of residual stresses on the buckling

strength of thin-walled tubes with large R/t ratios.
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Chapter I

INTRODUCTION

1.1 THIN-WALLED TUBULAR MEMBERS

The use of thin-walled tubular members constructed from
steel sheets is growing in application in c¢ivil engineering
structures. The need for increased knowledge concerning the
complex structural stability of these shells is in direct
response to this growth. Exhaustive investigation by Yamaki
(1) has provided a complete solution to the problem of buck-
ling in cylindrical shells subjected to compression, =~ tor-
sion, and pressure. However, to date only a few investiga-
tions have focussed attention on the interaction of pure
bending and the buckling phenomenon. In this investigation
an analysis is conducted into the stresses produced by pure
bending and their effect on the 1local buckling of thin-

walled tubular members.

Thin-walled structures fabricated from cold-formed steel
plates consist of stiffened and unstiffened cylinders with
small thickness-to-radius ratios t/R. Tubular steel struc-
tures, in most cases, are space-type structures. Cylindrical
forms of such structures with large diameter-to-thickness

ratios D/t are most often referred to as Shells.
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Tubular shells offer several advantages, as explained by

Troitsky (2):

1.

Structurally, the shell is very efficient:

- a continuous medium which permits a high portion of
the material to be used to capacity;

- material is distributed along the perimeter provid-
ing a large radius of gyration;

- stability of a circular cylinder 1is optimum in all
directions compared to other available sections:

- substantially smaller aerodynamic and hydrodynamié
resistances;

- minimal perimeter of contact leading to reduced
maintenance against corrosion compared to a section
of equal <cross sectional area, such as a wide-

flange beam

The cylindrical shell has the capacity to perform
technological functions and simultaneously to serve

as a carrying structure:

- conveyor galleries and pipelines both act in this

manner.
Fase of Fabrication:

- the advantages are numerous but the introduction of
sophisticated welding technigques provided a bench-

mark in their extensive use.
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The most difficult area in the design of tubular shells

is the assessment of stability requirements. Thin-walled
cylindrical shells may fail either by the instability of the
shell as a whole, 1involving bending of the axis, or by the
local instability of the wall of the shell. This report
will deal with the latter type of failure, commonly called

local buckling or wrinkling.

1.2 STATEMENT OF THE PROBLEM

Current North American code specifications (3),(4),(5).
base design recommendations on empirical local-buckling-
strength equations established from tests on sharp-yielding
mild steel cylinders. Recently, a distinction has been made
(Baker et al. (6)) between local buckling strength of cyl-
indrical members subjected to wuniform axial compression and
that of such members subjected to flexural loading. Unfor-
tunately these formulations do not predict the response of
the structure in the plastic range of analysis. Furthermore
these formulations are based on limited data available for
flexurally loaded tubular steel members. These data show a
large degree of scatter, and to date no unified theory
exists to explain the observed experimental behaviour (Baker
et al. (6)). Hence there exists a great deal of uncertain-
ty in the prediction of local buckling behaviour of thin-

walled cylindrical shells subjected to flexure.



1.3 OBJECTIVES

The objective of this study is to predict analytically the
nonlinear response of cylindrical shell specimens’subjected
to pure bending, tested in a previous experimental investi-
gation at the University of Alberta (7). By comparing the
limit point load of the experimental investigation with the
analytical response, iﬁ is hoped that the analytical proce-
dure may be extended to predict the nonlinear response of

any cylinders subjected to bending with large R/t ratios.



Chapter 11

REVIEW OF LOCAL INSTABILITY

2.1 INTRODUCTION

A structure subjected to a compressive load which, after
an infinitesimal increase in the load, undergoes a large
change in its equilibrium configuration 1is said to have
reached its buckling load. According to linear theory, dis-
placements are proportional to the applied loads. However
the buckling phenomenon denotes a disproportionate increase
in displacement resulting from a small increase in the load.
Therefore a nonlinear shell theory 1is required (Troitsky

(2)).

A thin-walled cylindrical shell subjected to compressive
forces may fail either due to the instability of the entire
shell, resulting in bending of the longitudinal axis, or due
to local instability of the thin wall, which may or may not
involve lateral distortion of the axis. The former type of
failure, known as overall buckling, was investigated by
Euler and 1is directly related to the ratio of length to
radius of gyration (L/r). The latter, known as local buck-
ling or wrinkling, is of primary concern in the design of

thin-walled cylindrical shells since it is often the govern-
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ing consideration, Furthermore, since the criterion is one
of stability, failure may initiate at load levels corre-

sponding to nominal stresses well below the yield strength.

2.2 LOCAL BUCKLING IN CYLINDRICAL SHELLS

Local instability is a function of the ratié of the
thickness to the radius of the shell wall (t/R). As implied
in its name, it is local in nature and results in character-
istic bulges or wrinkles. Initiation of failure depends on
the combined compressive stresses at the specific point in

guestion and is independent of the length of the shell.

In the case of columns and flat plates it is possible to
use the classical small-deflection theory to predict the
buckling load. In general, however this method of analysis
may not be used for shell structures. As early as 1940, Von
Karman (8) and his collaborators showed the significant dif-
ference in results between the buckling stress predicted by
linear theory and that predicted by nonlinear theory. This
was attributed to the fundamental nonlinear nature of the
buckling process in thin-walled shells. Following these
findings and continuing to the present, numerous testing
programs have been conducted to verify the proposed nonli-

near shell theories that followed.

The buckling load for some types of shell may be much

lower than the load predicted by classical small-deflection
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theory. In addition, the scatter of test data may be quite
large. For example, if a set of ten nominally identical
thin-walled cylinders of the same geometry were fabricated
from a particular metal, none of the cylinders would fail at
the same load. 1In fact, the scatter of results may range to
500 percent and the average buckling load may be one-eighth
of the theoretical buckling load (Baker (6)). The depen-
dence of the cylindrical shell buckling load on small devia-
tions from the perfect circular cylindrical shape, as well
as local edge conditions, have resulted in severe discrep-

ancies between theoretical and experimental failure loads.

Current methods of establishing design data tend to treat
both initial imperfections and edge conditions as random
events, Available test results are lumped together without
regard to specimen construction or method of testing.
Results are analyzed to yield 1lower bounds or statistical
correction factors to be applied to simplified versions of
theoretical results. When using a 1lower-bound correction

factor, data which do not seem typical are left out.

Statistical correction factors are determined by calcu-
lating a best-fit curve for a given set of data (Baker (6)).
After establishing the standard deviation of the test data,
small-sample theory is used to formulate a design curve for
certain probability limits. For a 90% probability level,
the chances are about 9 out of 10 that a shell subject to
the critical buckling 1load will not buckle. The proposed

formulations are only approximate.



2.3 BENDING STABILITY

A solution to local buckling induced by pure flexure was
first introduced in 1932 by Flugge (9). His method utilized
a linearly elastic stability theory which incorporated an
assumed buckle wavelength-to-radius ratio. A later paper by
Timoshenko (10) cited Flugge's calculation and the theory
stood for some time. Flugge's calculation predicted a buck-
ling stress that was 1.3 times the corresponding axial com-
pressive buckling stress. Experimental work at that time

supported those findings.

Work by Seida and Weingarten (11) in 1961 pointed out
Flugge's assumed critical wavelength was incorrect. Their
results indicated that, although the ratio of bending and
compressive stresses can vary widely with wavelength, when
the wavelength 1is minimized, the critical buckling stress
due to flexure is approximately the same as the compressive
buckling stress. At this point the small-displacement theo-
ry was abandoned as a basis for differentiating between
critical buckling stresses caused by bending and compres-

sion,

A fundamental differenée between uniformly compressed
cylinders and flexurally loaded ones 1is the limit-point
buckling mode inherent to the latter. Compressed cylinders
display a distinct bifurcation-type buckling mode as dis-

cussed by Stephens et al. (7). Bifurcation-type buckling



a
is chara-cterized by a load curve which displays a distint
bifurcation point in which the load path seperates into sta-

ble and unstable branches.

Flexurally loaded tubes display the so-called "Brazier
Effect"” in response to the applied load. First investigated
by Brazier (12) in 1927, this effect is characterized by the
cylinder assuming an oval shape'due to the applied lo;d.
Any member subjected to bending will assume a curvature.
This curvature results 1in components of the longitudinal
tensile and compressive forces that are directed toward the
neutral surface of the tube. | These fqrces in turn sqgueeze
the tube into an oval shape, thereby decreasing the moment
of inertia. This results in a reduction of the stiffness
.and, eventually, a loss of stability. Based on the geometry
of the undeformed cross section, Brazier predicted the crit-

ical buckling stress as

—

Gy = 0.33 E t/R (2.1

As reported by Troitsky (2) in a state-of-the-art trea-
tise, the current consensus among various investigators is
that bending tests of cylinders similar to those tested in
axial compression show that buckling occurs over the com-
pressi§n side of the cylinders in the same wave form, and
with approximately the same wavelengths, as in axially—ioad—

ed cylinders. Also similar to axially-loaded cylinders,
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pure-bending test results show exactly the same decrease of
load with an increase of the ratio R/t. For moderately long
cylinders Baker et al. (6) reports, the critical buckling

stress 1is

Oy = ny CE t/R (2.2)

cr

where t = thickness
R = mean radius of the shell

E = modulus of Elasticity

1
Co= V3 -9

y = correlation factor for unstiffened
unpressurized circular cylinders

= plasticity correction term

The factor y, 1is included to account for the difference
between the theoretical and experimental results for cylin-
ders subjected to axial compression. The classical theoret-
ical value for the buckling coefficient is y,=1. vy, may be
obtained from figure 2.1 . For elastic buckling the value
of n=1 is used.

The critical buckling stress for cylinders subjected to
bending may be obtained from the above equation but vy, is
replaced by the bending correlation factor, y,, as shown in
figure 2.2. The critical buckling stress will represent the

maximum stress due to the bending moment (i.e., the outer
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fiber stress). For inelastic buckling, the critical stress
c may be found by using the plasticity correlation term

suggested for axial compression.

2.4 INELASTIC BUCKLING

If the buckling stress is below the proportional limit
then the compressive modulus of the material may be assumed
constant. However, if the stresses are in the inelastic
range the modulus of the material becomes a function of the
stresses. Under inelastic stress conditions, the modulus of
the material decreases, resulting in a decrease of the

stiffness and a corresponding decrease of the buckling load.

The effect of plasticity on the buckling of shells can be
accounted for by the use of the plasticity correction term
This reduction factor reflects the variation of the ma-

terial stiffness with the stress level and may be defined as
= O, /0, (2.3)

where o, = actual inelastic buckling stress

]

Oe elastic buckling stress

According to the NASA shell stability design guide (12), for
inelastic local buckling the recommended plasticity correc-

tion term is;

n=\l(Es E,) / E (2.4)
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where E, E; and E, are the elastic, secant and tangent modu-
lus, respectively. Equation (2.4) implies a homogeneous
material with gradual-yielding stress-strain curves. A more
general factor is suggested by Gerrard (14) for other
material behaviour. Nonhomogenous material behaviour can
result from residual stresses introduced during fabrication
of most structural steel. This behaviour causes localized
regions of the cylinder to deform plastically before the
nominal stress reaches the yield point. Theoretically-based
reduction factors do not account for this type of behaviour
and reduction factors must thérefore be determined empiri-

cally.

2.5 RESIDUAL STRESSES

Residual stresses are those stresses that would exist in
a body 1if all external loads were removed. Divided into
macro- and micro-scales, the latter is concerned with the
micrbscopic properties of the metal at the time of crystal
formation. Concerns in this report deal with macroscopic

residual stresses.

Residual stresses in metal structures are usually pro-
duced during the manufacturing stages. Common processes

causing residual stresses are:

- rolling, casting, and forging;
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- forming and shaping of parts by such fabrication pro-
cesses as bending, shearing, machining, and grinding;
- welding and riveting; |

- heat treatments during manufacture.

Residual stresses caused by welding are of special con-
cern té the study of thin-walled cylindrical shells. Due to
localized heating by the welding arc and subsequent rapid
cooling, welds always have residual stresses. Maximum val-
ues in regions near the weld can reach the yield strength of
the material being welded. These residual stresses also
cause distortion of the welds. The residual stresses and
distortion cause complex effects, which maybe harmful to the
structural integrity of the welded structure. High tensile
residual stresses in regions near the weld may promote brit-
tle fracture, fatigue, or stress corrosion cracking. Com-
pressive residual stresses and initial distortion may reduce

the buckling strength.

To analyze residual stresses and distortion in welds

Masubuchi (15) suggests a four part procedure:

Step 1l: Analysis of heat flow

Step 2: Analysis of transient thermal stresses during
welding

Step 3: Determination of incompatible displacements after
the weldment cools to the initial temperature

Step 4: Determination of residual stresses and distortion

due to the enforcement of strain compatibilty.
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Step 3 of this process is the most important. If tran-
sient thermal stresses were completely elastic, no incompat-
ible strain would be produced and the structure would remain
unchanged when it cooled to the initial temperature. How-
ever, in real materials incompatible strains are produced as
a combined effect of strain due to plastic deformation, sol-
idification of the weld metal, and strain changes caused by
phase transformations. Once the distribution of incompatible
strains is determined, it is then possible to determine ana-
lytically the residual stresses and distortion by an elastic

analysis.

A unique characteristic of residual stresses in welds is
that incompatible strains are typically confined to small
regions near the weld zone. Therefpre, analyses based on
relatively simple distributions of incompatible strains

often provide results which are reasonably accurate.

Computer programs have been developed to analyze heat
flow, transient thermal stresses, distortion and resulting

residual stresses in welded structures (Masubuchi (15)).

2.6 LARGE DISPLACEMENT THEORY

Present developments of the large-displacement theory for
shell buckling have not advanced to include cylindrical
shells in bending Stephens et al. (7). Contrary to the

classical small-displacement theory, which predicts compara-
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tively equal buckling stresses for compression and bending,
experimental results repeatedly indicate a higher buckling
stress for flexurally loaded members (16),(17). Although
not directly applicable to cylindrical shells in bending,
the large displacement theory for axial compression does

assist in understanding of the concepts of the theory.

An approximate numerical analysis, based on the elastic
nonlinear finite-displacement theory developed by Donnell
(18), provided important progress towards understanding non-
linear buckling behaviour. Von Rarman and Tsien (19) showed
in 1941 that asymmetric or diamond-shaped buckling configu-
ration is unstable. These results indicated that equilibri-
um states involving large displacements can be maintained by
loads far smaller” thaﬁ the critical bifurcation 1load
obtained from classical small displacement theory. Thus the
‘appreciable difference of observed 1load values ranging from
1/2 to 1/3 of those predicted by classical linear theory

were rationalized.

Considerable insight was also gained into the effects of
transverse membrane stresses that develop after buckling
starts. For a thin cylinder, the inward buckling of the
asymmetric diamond shaped mode generates superimposed tran-
sverse compression membrane stresses, and the initial buck-
led form is therefore unstable. Consequently, buckling is
coincident with failure and is followed by a considerable

drop in the load-carrying capacity of the cylinder.
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In 1945, Koiter (20) recognized the imperfection sensi-
tivity of shells and incorporated finite initial imperfec-
tions into a general nonlinear stability theory. Koiter's
theory related the maximum load to the size of the imperfec-
tion which causes premature buckling. In addition to pro-
viding a path for the transition from the unbuckled to buck-
led state at 1loads lower than the classical value, the
inclusion of initial imperfections serves as an additional
factor to explain the large amount of scatter observed in

test results.

Further studies into axisymmetric and asymmetric modes
were performed by Almroth (21), and Tennyson and Muggeridge
(22). The studies modified and extended the basic axisymme-
tric 1imperfection theory previously proposed by Koiter.
Later studies by Koiter (23) showed that the interaction
between various axisfmmetric and asymmetric modes resﬁlts in

a pronounced reduction in strength.

In the absence of a large-displacement theory for the
buckling of c¢ylindrical shells subjected to pure flexure,
there is conjecture as to the possible reasons for the dif-
ference in behaviour. Observed Dbuckle patterns for cylin-
ders in bending are similar to those found in axial compres-
sion., This suggests that the response of both loading cases
is similar and that initial imperfections are important to
both. A preferred region of buckling is characteristic for

cylinders in bending since the stress distribution varies
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circumferentially. Statistically this results in a lower
probability of imperfections occurring within the critical
buckling region. Nevertheless it is expected that some
bend-buckling stresses would approach the corresponding com-
pression values. Experimental results have not supported
this postulate, as illustrated by Fig. 2.3. A ratio of the
flexural-buckling strength to the compression-buckling
strehgth is plotted against increasing values of the dimen-
sionless parameter R/t. Results indicate that the flexural-
buckling strength 1is significantly higher. There remain
unresolved questions as to why this behaviour exists. Cur-
rently it is believed that the strain gradient resulting
from the circumferentially varying bending stress is respon-

sible for the increased buckling strength.

2.7 SUMMARY

The analysis of c¢ylindrical shell buckling requires a
nonlinear shell theory. ULocal instability is often the gov-
erning criterion in the design of thin-walled tubular struc-

tures.

The classical small-deflection theory leads to inconsis-
tencies in shell buckling theory. A rigorous large-deflec-
tion theory has not yet been developed for <cylindrical
shells subjected to flexure. Important observations on the
behaviour of these members has 1led to the consensus among

investigators that edge effects, imperfections, and nonli-
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near response to loading are the major factors contributing

to the large discrepancy with classical theories.

During inelastic buckling the compressive modulus of the
material decreases resulting in a loss of stiffness and sub-
sequently a lower buckling load. Plasticity reduction fac-

tors may be incorporated to account for this effect.

Residual stresses are inherent in welded structures. In
thin-walled <cylindrical shells, bending fabrication and
welding are regarded as the major source of these stresses.
Residual stresses and distortion cause complex effects which

result in a reduction of the buckling strength.
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Chapter III

NONLINEAR FINITE ELEMENT ANALYSIS

3.1 INTRODUCTION

The shell buckling problem requires nonlinear shell theo-

ry analysis, If a finite element formulation is to be used
in this analysis, the essence of the problem requires the
formulation to be nonlinear. The analytical - criteria

require the system to include both material and geometric
nonlinearities. The objective of the nonlinear analysis is
to estimate the maximum load that a structure can support

prior to structural instability or collapse.

3.2 NONLINEAR F.E.,M. FROM A LINEAR PERSPECTIVE

The fundamental linear finite element equations may be
used as a basis for wunderstanding the nonlinear finite ele-
ment formulation. A physical argument may be made as to why
the nonlinear response is appropriately predicted using the
linear formulation. This approach is instructive and yields
insight into the process. However, when considering a more
complex solution, a consistent continuum mechanics-based

approach should be employed.

...21_.
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In a linear finite element formulation the displacements

of the finite element assemblage are infinitesimally small
and the material 1is linearly elastic. Under these condi-

tions the F.E.M. equilibrium equations for the static analy-

sis are
KU=R (3.1)
where U= displacement response

R= applied load vector

K= stiffness matrix

The system of equations is said to be linear since U is a
linear function of R i.e. an increment of load aR will re-

sult in an proportionate increment of displacement aU.

The constraint that the displacement must be small enters
into the evaluation of both the stiffness matrix K and the
load vector R. Both terms are integrated over the original
volume, which is assumed to be constant for infinitesimal
displacements. The strain-displacement matrix of each ele-
ment is assumed to be constant and independent of the ele-
ment displacements. Also, the use of a constant stress-

strain matrix implies a linearly elastic material.

From the above discussion, it can be seen that the basic
assumptions used in a linear analysis define what is meant
by a nonlinear analysis. It also suggests two main catego-
ries of nonlinearity, material nonlinearity, and kinematic

nonlinearity.
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The most general case 1is one in which the material is
subjected to large translations and rotations as well as
large strains. This results in, fibre extensions and angle
changes between fibres which are large, fibre translations
and rotations which may also be large, and a stress-strain
relationship which may be linear or nonlinear. Bathe (24)
states the Total tagrangian (T.L.) or Updated Lagrangian
Jaumann (U.L.J.) formulation are typically used. 1In the To-
tal Lagrangian formulation all static and kinematic vari-
ables are referred to the initial configuration at time 0.
The Updated Lagrangian formulation is based on the same pro-
cedures that are used in the T.L. formulatiom, but in the
solution all static and kinematic variables solved at time
t+at, are referred to the 1last calculated configuration at
time t . Bathe and Bolourchi (25) state, "the only advan-
tage of using one formulation rather than the other is the
fact that it may yield a more effective numerical solution."”
Consistent with the T.L. formulation the secénd.Piola—Kirch—
hoff stress (26) and Green-Lagrange (27) strain derivations

.are used.

The basic problem in a static analysis 1is to find the
state of equilibrium of a body corresponding to the applied
loads. The general equilibrium conditions of a system of

finite elements can be expressed as

F = 0 (3.2)
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where
'R= externally applied nodal point forces
at time t
' = nodal point forces cofresponding to the

element stress in this configuration.

In the general case of large deformations, the volume of the
body, as well as the stresses, are both unknown at time t.
Equation 3.2 must express equilibrium of the system in the
deformed shape, taking account of all nonlinearities. In a
static analysis without time effects other than the defini-
tion of load level (i.e. no creep effects), time is only a
convient variable which denotes different intensities of
load applications and correspondingly different configura-
4tions. If the interests of analysis include path-dependent
nonlinear geometric or material conditions, the equilibrium
condition of equation 3.2 must be solved by a step-by-step

incremental analysis.

The basic approach in an incremental step-by-step solu-
‘tion is to assume that the solution of a discrete point in
loading (time t) is known and that the solution for discrete
time t+at is required. Hence, the equilibrium conditions of

(3.2) require
AR -t o g (3.3)
Knowing the solution step t we can write

t+at

F= 'F +F (3.4)
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where
F = increment in nodal point force corresponding
to the increment in element displacements

and stresses from time t to time t+at

This incremental vector F can be approximated using the tan-

gent stiffness matrix, 'K :

F= KU | | (3.5)
where
K= tangent stiffness matrix for the
known geometric and material conditions
~at time t
U= vector of incremental nodal point

displacements.
Substituting (3.5) & (3.4) into (3.3):
tku= '*OR- \ (3.6)

Solving (3.6) for an approximation for the displacements of

time t+at is obtained;
oty =ty y (3.7)

The exact solution for the displacements at the time t+at

t+9% was

corresponds to the applied 1load ‘'"*'R but since
assumed approximately equal to ', equation (3.7) is only

an approximation.
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After evaluating the expression for the displacements at
time t+at, the corresponding expressions for the stresses
(apnroximate) and their associated nodal point forces may be
found. Since the solution is only approximate and a func-
tion of the load step size, it will be necessary to iterate
until the solution of (3.3) 1is obtained to sufficient accu-

racy.

Although the Modified Newton Iteration technique is most
often used, a closer study of the so-called Modified Riks-
Wempner Method, with constant arc length (28), 1is investi-

gated in the following section.

The previous discussion is valuable in identifying the
components that form the basis of the equilibrium iteration
method. The various nonlinearities which together form the
basic finite element eguations used to predict the nonlinear
response of a structural system have been reviewed. How~
ever, the governing finite element equation for a more com-
plex system should be developed from a consistent continuum

mechanics approach.

A displacement-based finite element solution developed
from the governing continuum mechanics equations wuses the
principle of virtual work. Nonlinear analysis requires
equilibrium of the body being considered to be established
in its current configuration. Considering the motion of a

general body in a stationary Cartesian Coordinate system,
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the possibility exists that the body may experience large
displacements, large strains and a nonlinear constitutive
response. The solution process evaluates equilibrium posi-
tions at discrete points repeatedly until the complete solu-
tion path has been solved for. The analysis follows all
particles of a body in their motion, from the original to
the final configuration of the body. Thus, a Lagrangian (or

material) formulation of the problem is adopted.

3.3 NISA80 PROGRAM

The NISAB80 program is a nonlinear incremental structural
analysis multipurpose program for geometrically and materi-
ally nonlinear systems. The program was written in Germany
at the Institut Fuer Baustatik Universitaet Stuttgart in

1977.

The analysis of shell structures using the finite element
method 1lead to the development of a number of different
finite elements. In these developments, basically tWo
approaches have been followed. Firstly, a classical
approaéh and, secondly, an approach in which displacement/

rotation isoparametric elements are employed.

The NISA80 shell elements are developed from the second
approach in which independent rotational and displacement
degrees of freedom are employed. This procedure was origi-

nally applied to the nonlinear analysis of shells by Ramm
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(29) and Krakeland (30). These elements differ from the
usual displacement isoparametric elements 1in two ways.
Firstly, it is assumed that the normal to the shell middle
surface remains straight and that there is no change 1in
thickness. Secondly, the normal stresses in the direction
of the shell thickness are ignored in the element formula-
tion, thus eliminating erroneous strain energy corresponding
to these stresses. The first assumption reduces the number
of degrees of freedom per cross section from six to five.
The second compensates for the increase in bending stiffness

by the factor 1/(1-v?).

This concept 1is referred to as "degeneration' of ele-
ments. The advantage of these displacement/rotation isopar-
ametric elements 1is their ‘inherent generality, permitting
ease of application to various analysis. The geometry and
the displacement field of the structure are directly discre-
tized and interpolated as in the analysis of continuum prob-
lems. The numerical analysis leads to the displacement so-
lution from which ﬁhe stresses can be derived without using
the resultants. Importantly, the element provides high ac-

curacy without reduced integration.

The NISA80 program employs the "constant-arc-length meth-
od" of Riks (31)(32) and Wempner (33) to trace the nonlinear
response from the pre-limit to the post-limit range. The
limit point may be defined as the maximum load observed on

the load deformation response curve. Although postcritical
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states cannot be tolerated in a design, a prediction of the
response is valuable in understanding the complete structur-
al behaviour. Typically, a static analysis can trace the
postcritical range, allowing for a better judgement of the
overall structural response. The usual solution techniques
that are effective in the prebuckling range are not very
efficient in the post-critical stage and often diverge

before a solution is reached.

Recently the work of Ramm (29) and Crisfield (34) has
shown that a modified Riks/Wempner method can be especially
recommended for postcritical states. These modifications
permit an efficient iterative technique throughout the
entire range of loading and not only near the critical

point.

Riks and Wempner independently introduced - the constant-
arc-length iterative technique. The basis of their model
was to limit the load step size by satifying a constraint
eqguation. That is, the generalized arc length of the tan-
gent at the previous equilibrium position m of the load dis-
placement response curve, 1is fixed to a prescribed value as
shown in Figure 3.1. Then the iteration path follows a
plane normal to the tangent. The constraint equations orig-
inally were added to the incremental stiffness expression
destroying symmetry and the banded nature of the stiffness

matrix,
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Ramm cited Wessels work (35) and used his results as a
basis for further modification which permitted the removal
of these difficulties. The modifications were based on geo-
metrical considerations and required only two additional
steps. The modified iterative technique was found to be
very efficient in the entire load range, particularly when
automatic load incrementation is used. The additional stor-
age reqguirements were only minor, and the extra computer

time was negligible.

In addition to constraining the arc length, Ramm (28)
suggests the load step size may also be scaled for each load
'step. The program is modified to recall the number of iter-
ations n required for equilibrium in the previous step.
The load step is then adjusted in size by multiplying the
load increment by a factor Vﬁ,/ n ; where ﬁi (a constant)

represents a value for the number of desired iterations.

The use of this scaling technique reduces oscillations
near the limit point. This procedure aids in the prevention

of divergence near the limit point.

3.4 SHELL MODELLING

Generally, the cost of analysis of a complete shell con-
figuration is prohibitive. Thus only a portion of the cyl-
inder is modelled. The principle of symmetry is used and

only one quarter of the experimental shell is analyzed.
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This does however, restrict the analysis to assume that the
initial imperfections are also symmetrical, which obviously

is not the case.

The geométry of the tube is referred to a polar coordi-
nate system x,R,¢ in which the x-axis follows the centerline
of the undeformed tube. The NISA80 program immediately
transfers these coordinates to an orthogonal Cartesian sys-
tem x,y,z in which the x-axis follows the centerline of the
undeformed tube. The external loading is assumed to be sym-
metric about the x-z plane, as also are the geometric imper-
fections. Due to this symmetry only one quarter of the tube
need be <considered (see figure 3.2). Further, at end 1
(midpoint of the shell) the plane y-z remains unwarped after
deformations; at end 2 truss elements prevent deformation of
the shell at the point of load application. This simulated
the solid plates welded to the ends of the experimental
shells to prevent deformation at the the poinﬁ of loading.

All boundary conditions are given in figure 3.2.

Figures 3.3 to 3.8 show the selected mesh patterns used
in this investigation, Rectangular shell elements are used
both for the central test section and end regions. Sixteen-
node bicubic elements are used to model the shell with the
exception that the transition elements between the central
and end portions are reduced four-node bilinear elements. A
finer element mesh 1is wused in the thinner central test

region. Figures 3.3 to 3.8 view the projected mesh pattern
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from the inside of the cylinder. Boundary conditions, ele-
ment and node numbering are shown in these figures. The
symbols XT, YT, ZT, XR, YR, ZR stand for translation in the
global x-direction, translation in the global y-direction,
translation in the global z-direction, rotation about the
global x-axis, rotation about the global y-axis, and rota-

tion about the global z-axis respectively.

The different mesh configurations and analyses are iden-
tified by the following notation. "B" signifies bending in
conformance with the experimental shell specimen Bl or B2.
"S" identifies the particular mesh configuration performed
in a segment of the investigation. "E" indicates that the
eigenvalue solution is being performed, and "N" identifies
the nonlinear solutions. A given analysis consists of a
particular "B" and "S" combination that is analyzed first by

the eigenvalue solution and then the nonlinear solution.
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Figure 3.2:

Shell Model
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Chapter 1V

INITIAL IMPERFECTIONS

4,1 INTRODUCTION

Initial imperfections in thin-walled cylindrical shells
are inevitable under normal fabrication. If the purpose of
engineering analysis is to predict the true behaviour of a
structure under normal conditions then these conditions must

be incorporated into the analysis.

A modern phase of investigation, beginning in 1940 with
the work of von Karman (8), has identified initial imperfec-
tions as one of the main factors leading to serious disa-
greement between classical buckling analysis and experimen-

tal data.

Subsequent investigations by Hutchinson (36), Almroth
(21), and Koiter(20) showed that thin-walled circular cylin-
drical shells subjected to axial compression are very sensi-
tive to small deviations from the exact circular cylindrical
shape. Koiter's analysis indicated that initial imperfec-
tion amplitudes equal to the thickness of the shell, were
sufficient to reduce the critical buckling load to 20 per-

cent of the load corresponding to the perfect shell.

_40...
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Therefore, not only 1is the inclusion of an initial
imperfection pattern necessary, but the determination must
be both accurate and representative of the initial displace-

ment configuration at the time of loading.

4.2 AVAILABLE EXPERIMENTAL DATA

4,2,1 Introduction

Experimental procedures often provide 1initial imperfec-
tion values only at discrete points and not a scan of the
total surface. 1In order to incorporate the imperfections of
the prototype ihto the theoretical analysis model, an inter-
polation of the total surface must be established from the
discfete measurements. Development of the surface pattern
permits subsequent interpolation at any desired points, such

as the nodal points of a finite element approximation.

4,2,2 Experimental Data

An experimental program into thin-walled cylinder behav-
iour was conducted at the the University of Alberta by M.J.
Stephens et al. in 1981. The program was designed to
investigate the 1local buckling behaviour of 1large diameter
thin-walled fabricated cylinders loaded in either uniform
axial compression or pure flexure. The results from the

latter case were subsequently used in this investigation.
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The experimental prototype structures were made to
approxiately one-half of their commonly used full scale
diameter. Tests on the large diameter cylinders involved
two specimens, both fabricated from three subsections. A
complete tubelconsisted of a thin central test section 1525
mm in diameter and 1830 mm long, and two thicker end sec-
tions each 1525 mm in diameter and 915 mm long. All subsec-
tions were welded together with a full-penetration groove
weld along the circumference as shown in Figqure 4.1. For
specimen Bl, the central section was fabricated from CSA
40.21 300W steel plate with a mean thickness of 5.13 mm and
end sections of similar material with a mean thickness of
7.93 mm, Specimen B2 was fabricated from ASTM A36 steel
plate comprising a central section with a mean thickness of

3.43 mm and end sections with a mean thickness of 6.50 mm.

The initial geometry of the large diameter specimens was
carefully measured to permit the determination of initial
imperfections in the cylinder walls. The recorded observa-
tions of the Stephens et al. experiment were used as a data

base for the surface interpolation.

4.,2.3 Measurement Procedure

Measurements (at discrete points on the cylinder wall) of
specimen radii were obtained with a device that established
radial measurements with respect to an assumed longitudinal

axis. By rotating this device through 22.5 degree inter-
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vals, 16 radial measurements were taken at seven locations
on the longitudinal generator. A total of 112 measurements
were taken for each cylinder. In addition, circumferential
weld-seam depressions at the intersection of thé central and
end shell connections were measured at the same 16 intervals

for both ends of the shell.

4,.2.4 Adjustment to Define the Perfect Cvlinder

Before approximating the true initial imperfections it is
necessary to define the perfect cylinder. In the Stephens
et al, experiment radial deviations from an imaginary cyl-
indrical reference axis were measured. The "best" location
and orientation of the perfect axis needed to be determined
analytically. From this determination the measured values
could be adjusted to use the perfect cylinder as a datum.
This requires both a rigid body rotation of the two princi-
pal axis as well as a rigid body translation to determine
the true axis centre. Referring to figure 4.2, the transla-

tion and the rotations may be calculated as follows;
Rotate about the z axis

x' cos B sin B 0 X=X,
y' )z |-sin B cos B 0 Y-Yo (4.1)
z' 0 0 1 z
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Rotate about the y' axis

x" cos « 0 -sin a X"
Y" - 0 1 0 y_' (4.2)
z" sin « 0 cos « z'
Substitute (4.1) into (4.2) and multiply
x" = (x-X,)cos « cos B + (y-y,)cos « sin 8 - z sin «
y" = -(x-x,)sin B8 + (y-y,)cos g8 (4.3)
Since the experimental imperfections were measured in
terms of the polar coordinates (R,¢) it is necessary to

transform these 1initial observations into (x,y,z) coordi-

nates.
global
z
X,y
@
r
X =r
Y =r

Assuming a reference cylinder aligned with a fixed
frame:
- axis of cylinder
- axis of cross section
- angle between observation arm and x-axis
- measured observétions
éin @
cos ¢ . ' ’ 7 C(4.4)

To determine the "best" perfect cylinder, a statistical

adjustment of data was performed on the measured observa-

tions based on the principle of least squares.
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Examining the general problem of least squares Deming
(37) states "that as a result of any experiment there will
be observations, and when the adjustment is completed, to
each observed value there will be a cérresponding adjusted
value." Repeating an experiment a large number of times
will produce a set of observed values. Deming suggests tak-
ing the average of these random values results in a "true
value." The statistical adjustment may be performed by ex-
amining the relationship between the observed, calculated
(or adjusted), and true coordinates. The method of least
squares calculates the value of the residuals. From these
values»the error values may be calculated. The best results

are obtained when this error is minimized. -

In formulating the problem of the following quantities

are used:

Observed values X, Y i€ (1,2,...,n)
Adjusted values X, Y i€ (1,2,...,n)
(Calculated values)

Weights L

True values

Residuals Vi Yy

The principle of least squares requires that the sum of

the weighted squares of the residuals

S =3 wV? (4.5)



46

shall be a minimum with respect to the "adjusted values."

In curve fitting the adjusted values are required to sat-
isfy a set of conditions. In the general case, suppose that

the adjusted values x , y are subject to » conditions;
F" (x ,y ;a,b,c) =0 h€ (1,2,....,v) (4.6)

where a,b,c are estimates of the unknown curve fitting pa-
rameters «a,B,y. Equations (4.6) are referred to as the con-

dition functions.

By the principle of least squares the equations are all
handled alike, namely by the minimizing of S. The functions
must be chosen such that when equated to =zero, they force
the conditions that are to be imposed on the adjusted coor-
dinates. This development is based on the fact that the

"true" coordinates would exactly satisfy the conditions.

Using the notation;

F = «-a—FEl
xi ox
h
o= X 4.7)
yi 3y,
i
h o aE?
F ' = —
a oa

etc.
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the derivatives of the condition functions may be evaluated.
Numerical values of these derivatives are needed, and for
most purposes it suffices to evaluate them with thé observed
values X; ,Y with the next available approximations

a,,be,c,.

Making the condition equations (4.6) 1linear in the resi-
duals by expanding in Téylor's series and neglecting higher

order terms, while noting

X, =X, -V
i i X,
i
Yl = Yi-V
Vi (4.8)
a=3a = A
o
b=b =-3B
o
¢c=c¢c =-C

n
Y ER v +Fth+ A + F'B + Flc = pP
X, X, y. V. a b c o
1 1 1 1 1 (4-9)
where F, = F"(Xx ,Y ,80,be,c0) he€ (1,2,...,v) (4.10)

and is, in fact, the amount by which the condition F'" = 0
fails to be satisfied by the observed values X; ,Y and the

approximations a,,b,,c,.
Thus in the present case the condition equation is

F(X; ,% +2 3%X0,¥0,B,a,R) = (x")? + (y")? = R? = 0 (4.11)
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To linearize, expand in the Taylor series;

F(x +Ax ,y +Ay ,z +az yXo*AXo,Y oAy, , B+aB, a*ra,R+AR) =

(4.12)
' oF JF JF
F(x;5 ¥;5 245 X5 v, » B 0, R) + Ty xy By, Wit E b2y
0 i i
oF 3F 3T 3F oF
+ 3}; AXO + —a—y—o AyO + 58 AB + 3a Ao + R AR
o
1"
oF oy .y
- = 2g" =1 4 (_yv 1
ox i ox i ox
i i
3 ) 3y"
w T,
% 1oy, 1%y, (4.13)
a 1"
w L, M
dz i 9z, yi 3z
i
9% ayv-v
aF — 11 i 114 1
x 2Xi % 2yi 9x
o o
a "
—B—E:. 3 2x" ;—gxi 4 2y" li
Byo i Byo i 3yo
9% ayl‘l
oF - " i m 1
36 T %% 38t 29 5B
3 3y"
_3_F = 2%" Xi " " yl ‘
30 i da Yi Ta
3 p



where

" __
"= (x - xo) cos 0 cosB + (y - yo) cos® sinB - zsino

- (x - xo) sinB + (y =~ yo) cosB

- (x - X ) cost - (y - ¥ ) sinB

y" =
x" _ cos® cosB
= =
ax" _ cosQ sinB
By o
x" _ sino
Oz -
" _ cosd cosB
= =
%
ox" _ cosd sinB
ayo
gx" - - (X
gxn - - (X
a
dy" = sinB
ﬁi_ =
ax " _ cosB
dy
a 11 = O
‘X‘az =
oy " _ sinB
%
ax" _ cosB -
Ey
a 1"
‘%a =
dy " _ =0

- xo) cos® sinB + cos® cosB

- xo) sin® cosB - (y - yo) sint cosB = zcosu
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Equation (4.12) may be substituted into equation (4.11) and,
using the observed values X; ,Yi , numerical values may be ob-
tained. A computer program, CYLINDER (Appendix B) was writ-
ten to evaluate this expression. The output of the program

produced the adjusted (calculated) values x ,y .

4.3 DEVELOPMENT OF THE INTERPOLATED SURFACE

4,3.1 Introduction

A precise interpolation model is required to map the ini-
tial imperfection configuration. The criteria dictate that
the model interpolate in two orthogonal directions, with one

direction having a function of periodicity 2w.

Previous investigations have frequently used models which
incorporate a Fourier Series summation to approximate the
imperfect surface. Using the measured discrete points as
input the coefficients of the Fourier Series are calculated.
This method is restrictive since neither a sine series nor a
cosine series is capable of representing the imperfect shape
completely. The sine series results in zero imperfections
along the upper and lower circumferences, whereas the cosine

series produces zero slopes at these positions.

In this investigation bicubic splines were used to ap-

proximate the imperfect surface.
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4.3.2 Spline Model

Given a set of-discrete (X,¥) values and their corre-
sponding function values, the objective of the spline model
is to interpolate a set of XL & YL values anywhere on the
surface. XL,YL represent the coordinates of any- point on
the surface. A two-dimensional interpolation function using
bicubic splines in orthogonal directions satisfies this ob-
jective. In order to perform the shell analysis, a mesh of
discrete function values continuing NXL by NYL nodal points
must be developed from an initial set of NX by NY function
values. The values in the X-direction (circumferential)

must be periodic with period 2u«.

To accommodate these conditions the following procedure

was used:

1. A cubic spline interpolation function with periodic
end conditions was accessed from the University of
Manitoba IMSL Library (38). ICSPLN was called NY

times to interpolate in the X-direction at the points

(XL ,Y ) i€ (1,2,...,NXL)
je€(1,2,...,NY)
2. A cubic spline interpolation function ICSCCU was
called NXL times to interpolate in the Y direction to
determine values of the natural bicubic spline at the

points

(XL ,YL; ) ic(1,2,...,NXL)
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je€(1,2,...,NYL)

Note that in calculating the initial cubic splines with
periodic end conditions, spline functions are found at only
the original NY intervals since the program has no function

values for the NYL points at this time.

Both the above procedures utilize a common routine ICSEVU
to calculate the coefficients of the spline and to evaluate

the cubic splines output.

The routine ICSPLN' creates a cubic spline with periodic
end conditions.. That is, if S(X) 1is the approximating
spline then, S(X,) = S(Xyx), S'(X,) = S'(Xy) and S"(X,) =
S"(Xyx ), where the prime denotes differentiation. S(X) 1is
written as a linear combination of periodic basis splines. -
The cubic spline calculated passes through each data point
producing FL(X, Y) = f(X, Y), i.e. an exact fit. The sub-
routines used to calculate the spline algorithm are based on

work done by de Boor (39).

4.4 END REGION IMPERFECTIONS

4.4.1 Introduction .

In the Stephens et al. experimental program, measure-
ments of radial imperfections were taken only for the thin-
ner central portion of the cylinder. At the circumferential
weld seams connecting the central portion to the end por-

tions the observed weld depressions were measured with re-
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respect to shell surface. Therefore no reference was provid-
ed of the overall shell 1imperfections with respect to the
assumed longitudinal axis. The theoretical analysis
requires that the surface be mapped to produce an initial

displacement configuration at the discrete nodal points.

4.,4,2 End Region Extrapolation

Since there were no measured points for the end region of
the shell, extrapolated straight-line generators were used
to predict the 1initial configuration of these sections.
Better results are obtainable by extrapolating the genera-
tors to produce sample data points before the spline approx-
imation of the imperfect surface. Eliminating this extrapo-
lation tends to produce amplified imperfections in the end
regions due to the oscillatory nature of bicubic splines
between distant data pbints. The straight-line generators
were calculated from least-squares fits in the the central
section. Initially the "adjusted data points" (as derived
in section 4.2.4) were calculated to produce the adjusted
cylinder as shown in Figure 4.3. This procedure was per-
formed in order to remove any bias from the original data
before extrapolating the generators. The generators were
then calculated to coincide with the #/8 measurement inter-
vals of the observed data points and were oriented parallel
to the longitudinal axis of the cylinder (Figure 4.4). A

total of sixteen generators were fitted, from which imper-
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fections were estimated at the circumferential welds,
extreme ends, and two points arbitrarily chosen at the quar-
ter points so as to prevent violent oscillatibn of the bicu-
bic splines between the distant points. A program, GEN

(Appendix B), was written for these calculations.

4.4.3 Incorporation of the Weld Depressions

Since the measurements taken at the circumferential welds
were not referred to the assumed longitudinal axis, the only
remaining reference points were the straight 1line genera-
tors. Thus the initial imperfectionS'at the circumferential
weld locations are represented by the generator-calculated
imperfection minus the measured circumferential weld depres-
sion (see Figure 4.5),. The derivation of these imperfec-
tions was further complicated by the fact that the measured
depressions were only taken at «/4 intervals. This was
overcome by first fitting the eight observed values with a
periodic bicubic spline and then interpolating the remaining
eight values. Once all the depressions were calculated a
FORTRAN program, SEAM (Appendix B), was written to incorpo-

rate their effects into the end-region imperfections.

Combining the adjusted central-region imperfections and
the end-region imperfections produced a map of the total
cylinder surface. This map of imperfection function values,
consisting of 15 intervals in the longitudinal direction

(assumed as y-values), containing 16 data points in the cir-
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cumferential direction (assumed x-direction), produces 240
function values F(X,Y). These values were used as input for
the development of the interpolated surface. A FORTRAN pro-
gram, GRAPH (Appendix B), performed the numerical computa-
tion of the surface interpolation. The program yielded a
mesh of interpolated values at 50-mm intervals in the longi-
tudinal direction and 5 degree intervals in the circumferen-

tial direction.

4.5 DEVELOPED PLOTS OF THE INTERPOLATED SURFACE

The output from GRAPH was plotted using the Versatec
plotting library. Although functionally 2-dimensional, the
resulting plot appears as a 3-dimensional image. This
effect is achieved by offsetting the coordinate axes after
each successive interval is plotted. The generators from
which the original data were measured are plotted parallel
to the ¢ylinder axis. Figures 4.6 and 4.7 represent the the
final interpolated surface map for specimen Bl and B2

respectively.
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Chapter V

GEOMETRIC IMPERFECTIONS

5.1 INTRODUCTION

The incorporation of initial imperfections into a nonli-
near analysis is usually restrictive since it requires some
advance knowledge of the geometric imperfections of the
structure being considered. In a prototype, the imperfec-
tions can be carefully measured experimentally and then
incorporated into an analysis. For shells manufactured in
normal production, this approach is impractical. The opti-
mum procedure is to establish the characteristic initial
imperfection distribution which a given fabrication process
is likely to produce. All such available data would be com-

bined statistically to predict the most probable occurrence.

Other geometric irregularities introduced in the manufac-
turing process may cause additional localized stresses in
the loaded shell. For example, localized forces are intro-
duced at the Jjunction of eccentric shells. The abrupt
change of the generator results in a discontinuous resultant

force at the junction.
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5.2 INCORPORATION OF INITIAL IMPERFECTIONS

It is presumed that the smallest initial imperfections
that would result in a lower bound for the ultimate load
would be those corresponding to the theoretical first mode
(i.e., critical mode) shape for a perfect shell. Since a
real shell would not have precisely this initial confiqura-
tion, it is necessary to estimate the first mode amplitude
that would predict the same ultimate load as the true ini-

tial configuration.

For the type of structure under consideration it was
decided that the most reliable way to incorporate geometric
imperfections was to scale the corresponding eigenvector
components obtained from the theoretical eigenvalue analy-
sis. For design purposes the scale factor would be derived
from a statistical procedure as a function of the fabrica-
tion process and the dimensions of the shell. However, where
there is available experimental data, a scale factor propor-
tional to the actual initial imperfections may be extracted.
For the analysis of experimental data, the given displace-
ment pattern, discretized at the nodal points to give vector
{v}, can be represented by superposition of the eigenvectors

{@} of the same discretization. Hence we may write
{vi = z a {@¢} ‘ (5.1)

and, by orthogonality, the contribution of the first mode to

the initial displacement pattern is
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{@}.1{v}

a, =
TIUIE (5.2)

The eigenvector of expression (5.2) includes radial and
axial translations as well as rotations of each node, where-
as énly radial initial imperfections were measufed. There-
fore the eigenvectors {g}, of equation (5,1) must be re-
stricted to comprise only the radial components of
displacement. The vectors obtained are not strictly orthog-
onal, resulting in only an approximate value of the scaling
factor a,. Nevertheless, since the neglected terms are much
smaller in magnitude, the approximation is close. The re-
stricted eigenvectors {g}, of the radial displacements are

now of order equal to the number of nodes.

The resulting imperfections incorporated into the nonli-

near analysis are represented by
{tvli = a, (g}, _ (5.3)

A computer program, MODEl (Appendix B), was written to per-
form the numerial calculation of the scaling factor "a,."
The preliminary subroutines interpolate the 1initial radial
imperfections at the discrete nodal points using the surface
interpolation technique described in chapter 4. Subsequent
to this, the x-y components of Ehese imperfections are ex-
tracted, based on the orientation of the individual node

with respect to the global axis. The x-y contributions of
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the chosen eigenvector previously stored from the eigenvalue
analysis are then called from memory. Substitution of the
above values into eqguation 5.2 then produces the scaling
factor a,. The field of imperfections is measuréd'for the
complete cylinder, but for cost effectiveness, the model
takes advantage of symmetry and only selects one quarter of
the cylinder. Therefore it was necessary to revolve the
shell about its 1longitudinal axis in /8 intervals and se-
lect one of the sixteen cases. 1In attempting to establish a
common basis for repeated investigation, the worst case was

selected.

Knowing the scale factor a,, the value of the appl;ed no-
dal imperfection may be determined. A program, ADDDIDP (Ap-
pendix B), calls the x-y contribution of the eigenvector and
using simple trigonometric relations calculates the radial
component at each corresponding node. The radial component
is then multiplied by the factor a8, to produce the scaled
imperfection value. This value is then added to the radial
coordinate of that specific node, thus 1incorporating the

scaled imperfections into the nonlinear analysis.

5.3 ECCENTRIC JUNCTIONS OF THE SHELLS

FSections having abrupt changes in geometry develop addi-
tional forces, stresses and deformations which are commonly
termed edge effects. Due to the elastic resistance of the
adjoining parts, the edge effect does not spread far and

acts upon relatively narrow zones.
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The physical cause of the edge effects are:

l. An absence of free deformation of the shell;
2. Sudden changes or eccentricity of the generator,
which lead to additional meridional forces or local

moments due to its eccentricity.

Cylindrical shells having different wall thicknesses and
eccentric junctions contribute two causes to the origin of
edge effects. In the first case, although there is no break
of the generator the deformations are restricted due to the
different thicknesses of the walls, as shown in figure 5.1.
This results in unequal values of the free deformations. 1In
the second case, figure 5.2 illustrates that an eccentric
junction causes a break in the longitudinal generator,
resulting in local moments and subsequent bending of the
shell. This bending results in shear forces and additional
meridional and circumferential forces. These additional
forces produce local deformations which, in the case of
shell buckling, could be instrumental in initiating local

failure.
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Chapter VI

RESULTS OF THE NONLINEAR FINITE ELEMENT ANALYSIS

6.1 INTRODUCTION

The analytical program attempted to isolate various fac-
tors affecting the wultimate buckling load predicted by the
NISAB80 program. Consideration was given to the magnitude of
initial imperfections, mesh refinement, eccentric junctions,
and weld depressions. Each successive step led to a closer
idealization of the true structure. Ultimately the analysis
refinements should predict limit loads close to the experi-
mental values of 2143 kN-m for specimen Bl, and 1030 kN-m

for specimen B2.

6.2 EIGENVALUE SOLUTIONS

An eigenvalue solution of the perfect configuration was
obtained for each of the mesh layouts. In each analysis the
theoretical first mode (i.e., the critical mode) shape was
determined. The corresponding eigenvalues were calculated
and are tabulated in Table 6.1. Critical moments are
obtained by multiplying the applied moment times the eigen-

vector.
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It has been shown (Timoshenko and Gere 1961 (10)) that the
critical wuniform axial stress for a geometrically per-

fect,elastic, cicular thin cylinder is

Et
OCcr =
ry3(1 - v?) ‘ (6.1)
where ¢, = critical stress; E = Young's modulus; t = wall
thickness; r = mean radius; ») = Poisson's ratio. The criti-

cal moment may be obtained from

r , (6.2)

where I = moment of inertia. From equations 6.1, 6.2 the
critical moments for the geometrically perfect, elastic cyl-
inders are 7779 kN-m and 3491 kN—m for Bl and B2, respec-
tively. Comparing this to the critical moments obtained in
the eigenvalue solutions, 7946 kN-m and 3541 kN-m for model
B1S7 and B2S7, respectively, a good correlation is achieved.
This indicates that the modelling and mesh refinement chosen

are a good representation of the prototype.

The resulting indeterminate radial components of mode
shape 1 were used in conjunction with the corresponding ini-
tial imperfections to determine the scale factor a, of equa-
tion 5.2. Once determined, the first mode radial components
could be extracted to produce the initial displacement pat-

tern for the nonlinear analysis. The mode shape 1 displace-
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tern for the nonlinear analysis. The mode shape 1 displace-
ment patterns for all eigenvalue solutions may be found in
figures 6.1 through 6.8 It should be noted that all of the
displacement pattern figures are somewhat deceiving since
the plotting routine does not differentiate between inner
node links and the shell element boundaries. This results in

typical 16-node elements appearing as 9 4-node elements.,

6.3 ECCENTRIC JUNCTIONS

It was discovered that, although original design specifi-
cations called for the centerline alignment of the central
and end shell sections, fabrication techniques resulted in a
l.6-mm. offset of the middle surfaces as shown 1in Figure
6.9. Physically, the magnitude of this offset seems very
small, but compared to a shell thickness of 5.13 mm for
specimen Bl (3.43 mm for B2) the result is a significant
eccentricity. Introducing a small 4-node element at the
junction of the two shells permitted the incorporation of
this eccentricity into the analysis (model S4, Figure 6.3).
The resulting eigenvalue solution for the eccentric junction
configuration of mesh S4 remained relatively unchanged, com-
pared to the original centerline alignment configuration of

mesh S3.

Interesting results were obtained for the S4 configura-
tion when a nonlinear analysis for the perfect shell was

performed. Figures 6.10 and 6.11 show that local buckling
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of the shell took place within close proximity to the cir-
cumferential weld, a result consistent with the experimental
results, However, the limit load obtained, 3485 kN-m, was
only slightly different from the 3534 kN-m result obtained
without incorporating the eccentric junction, and much high-
er than the experimental result of 2143 kN-m. Because of
the insignificant difference, it was determined that a non-
linear analysis of S4 incorporating the initial imperfec-
tions would yield no further useful information. Table A.5
and Figure A.5 of Appendix A show the Moment vs Curvature

relationship for the S4 analysis.

6.4 MESH REFINEMENTS

In order to confirm the results of configurations S3 and
S4, a coarse, uniformly spaced mesh S$5 (Figure 6.2) was ana-
lyzed. Model S5 also incorporated an abrupt weld depression
at the junction of the end and central sections. The effect
of the latter adjustment was to provide a sharp pinching of

the adjoining sections.

The eigenvalue solution for S5 had a significant change
from that for the previous mesh. - Fiqures 6.1 and 6.2 indi-
cate that, compared to S3, the general pattern of mode
shape 1 had extended across the central test section.
Severe doubts were placed on the validity of the previous
mesh., Although the technique was valid, it was evident fur-

ther tuning of the model was necessary.
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In order to determine what effects the mesh refinement
had on a typical eigenvalue solution a fourth mesh pattern,
S6 was introduced. The pattern of S6 was identical to that
of S4 except that the refinement was interchanged from the
centre-most section, to a section adjoining the circumferen-

tial weld.

Results of the eigenvalue solution for S6 again revealed
a dramatic shift of the mode shape 1 pattern. Figures 6.3,
6.4 compare the new pattern S6, with S4. It was concluded
that a nonuniform mesh was inappropriate to the loading con-
ditions and any further analysis would require a uniform

mesh configuration.

The S7 configuration used the finest mesh refinement in
the central test portion of the cylinder. The pattern of
small uniform elements yielded equal element stiffnesses
along the longitudinal axis. Two rows of 4-node elements
with coincident normals were used to transfer forces from
the offset middle surfaces. The net effect of the mesh
refinement and incorporation of the eccentric Jjunction at
the circumferential weld produced a smooth eigenvalue dis-
placement pattern with a maximum peak at the centerline sec-
tion damping to a minimum at the shell junction. Figure 6.5
illustrates the smooth transition as the stiffer end por-

tions are approached.



72

In a final step, the thicker end shell portion was
refined from 6 16-node elements to 108 4-node elements. The
basic configuration of the S5 mesh was retained for the cen-
tral portion. The eigenvalue solution of configuration S8
produced only minor displacements in the end section, as
- shown in Figure 6.6, It was concluded that the coarse mesh
details of the previous patterns were not affecting the

resulting displacement patterns to any significant degree.

Specimen B2 was analyzed for the 83 and §7 configura-
tions. Results show a pattern consistent with the results
of specimen Bl. Figures 6.7, 6.8 display the eigenmode

shape 1 displacement patterns.

6.5 NONLINEAR IMPERFECT SHELL SOLUTION

Nonlinear solutions were obtained for the S3, S4, S5, and
S7 configurations of specimen Bl,. Similar solutions were
obtained for the S3, and S7 configurations of B2. For spec-
imen Bl, all nonlinear solutions except for the S4 configu-
ration incorporated scaled initial imperfections. Specimen
B2 was analyzed under only two configurations since it was
assumed the results of testing Bl would indicate which con-

figurations would yield the most valuable information.

The B1S3.N1, B1S5.N1, and B1S7.N1 investigations were
analyzed under similar conditions by extracting a scaling

factor from their corresponding eigenvalue solution and
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using this factor to determine the initial imperfections of
the shell surface. This permitted a comparison of their
results as shown in Table 6.2. The most refined solution,
B1S7.N1, had a limit moment of 2545 kN-m, 18.7% higher than
that obtained experimentally. In the analysis of the B1S7
configuration two solutions, N2 and N3, were performed with
a scale factor egual in magnitude but opposite in sign. A
negligible difference in the limit load was observed, as

shown in Tables A.7 and A.8 of Appendix A.

The first analysis of specimen B2 (B2S3.Nl1) used an arbi-
trary scale factor which was 3.36 times larger than the
extracted scale factor. This analysis predicted a limit
moment very close to the experimental value. However, these
results can not be extended to a general case since the
scale factor was arbitrary. The B2S7.Nl1 analysis produced a
critical moment of 1201 kN-m, 16.6% higher than the maximum

experimental moment of 1030 kN-m.

Moment-curvature relationships for all Bl and B2 analyse
may be found in Appendix A. A considerable difference in
load path may be observed comparing specimen Bl and B2.
Specimen B2 displays a gradual failure pattern while Bl

indicates a sharp peaking at maximum load.

The deformed configuration of B1S7 and B2S7 are found in
the Figures 6.12, 6.13. Wrinkling of the cross section may

be observed for each specimen.
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6.6 MAGNITUDE OF INITIAL IMPERFECTIONS

A sefies of nonlinear analyses was performed to determine
the effect of arbitrarily increasing the extracted scale
factor and thus the corresponding first mode contributuions
to the initial displacement pattern. In the initial inves-
tigations four such analyses were conducted on model B1S3.
Increasing scale factors were applied until a lower bound
critical buckling load close to the experimental value was
determined. Table 6.3 compares the scale factors to the
critical buckling load. Figure 6.14 shows the reduction of
the limit load with increase in nodal imperfections. While
the general trend of these results was instructive, the
uncertain nature of the $3 mesh configuration precluded fur-
ther analysis to be performed on the final mesh configura-

tion, S7.

The B2S7 configuration was analyzed with scale factors
magnified 4,8, and 16 times as large as the extracted mode-1
contribution. Table 6.4 compares the scale factors to the
critical buckling load. Figure 6.15 indicates the reduced
buckling load with increasing nodal imperfections. It can
be seen that initially an increase in the scale factor
results in a significant decrease of the critical 1load.
However, further increases in the scale factor result in a
smaller decrease of the the limit load. This suggests that
the imperfection sensitivity of thin-walled tubes is not

linear, i.e. an incremental increase in the initial imper-
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fections results in a disproportionate reduction in the 1im-
it load. The B1S3 results suggest that at some value, fur-
ther incremental increases result in no significant decrease
of the limit load, a limit to imperfection sensitivity is
indicated. Moment vs curvature tables and corresponding
graphs of the series B1S3, and B2S7 tests may be found in
Tables A.1 to A.4, A.,12 to A.l4 and Figures A.1 to A.4,

A.12 to A.14 of Appendix A.
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TABLE 6.1

Eigenvalue Solutions

Analysis Eigenvalues Critical Moment
(kN-m)
B1S3.E1 8.04959 x106 8050
B1S4.E1 8.03930 X108 8039
B1S5.ET 8.09969 X108 8100
B1S5.E1 8.09969 x106°6 8100
B1S7.E1 7.94626 X106 7946
B1S8.E1 8.19115 X106 8191
B2S3.E1 3.59704 X106 3597
B2S7.E1 3.54069 X106 3541
TABLE 6.2

Nonlinear Solutions of Specimen BT

Analysis

B1S3.N1
B1S5.N1
B1S7.N1

Experimental

Limit Moment
(kN-m)

3057
2950
2761
2143
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Figure 6.2: Mode Shape 1 B1S5.El
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Figure 6.6:

Mode Shape 1

B1S8.E1
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END REGION

- CENTRAL REGION

T —— p
Fi///n /// (// A

y T 4 any )

DESIGNED CENTERLINE ALIGNMENT

END REGION

<]
% \\ \\ \ CENTRAL REGION

B ” - A
/ > o / s e s ‘ o a .
: ya A A Y
o v L e /‘/ } / 7 /’
{ A// e 7 // e . S ke p”
N N . // ,,—/ 7 . - . -
s - 4
/ / )
R, = Rz—' |6
« —
o (e

EXPERIMENTAL ALIGNMENT

Figure 6.9: Shell Alignment



— ég§§<§}§§‘\\\\\\\\\

~~~~~~
AR

Figure 6.10: Local Buckling of B1S4.N1

==
= e
z 7 7 7 5
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TABLE 6.3

Effect of Increased Nodal Imperfections on the
Buckling Moment

Figure 6.14:

Applied Scale Factor

Scale Factor vs Moment B1S3

Analysis Extracted Applied Magni- Limit
: Scale Scaling fication Moment
Factor a;, Factor (kn~m)
B1S3.N1 0.00397 0.00397 1.00 3050
B1S3.N2 0.00397 0.01000 2.52 2540
B1S3.N3 0.00397 0.01500 3.78 2304
B1S3.N4 0.00397 0.02500 6.30 2110
EXPER. nil nil nil 2143
20 40 60 80
4 } ! } } } }
Magnitude of Imperfections mm.
3.5
3 - &
E
2 2.5
X (n
2e
C
1S
[e o]
£ .
E 1.5
o
1 pus
0.5
e T 1 i I [ i 1 { 1 T i T 1 1 4
0 0.004 0.008 0.012 0.016 0.02 0.024  0.028
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TABLE 6.4

Effect of Increased Nodal Imperfections on the
Buckling Moment

Analysis Extracted Applied Magni- Limit
Scale Scaling fication Moment
Factor a; Factor (kn-m)
B2S7 .N1 0.01302 0.01302 1.00 1201
B2S7.N2 0.01302 0.05208 4.00 1012
B2S7.N3 0.01302 0.10416 8.00 520
B2S7.N4 0.01302 0.20832 16.00 850
EXPER. nil nil nil 1030
lo) 20 30 40
2 } } } + t } t —
1.9 4 Magnitude of Imperfections mm. ’
1.8
1.7
1.6 A
1.5
1.4
. 1.3
CoN 1.2 o
EE 1.1 4
23 1 -
.*:g 0.9 —
EE 0.8
0.7
0.6 -
0.5
0.4
0.3 ~
0.2 -
0.1 o '
O 1 i 1 i ! ¥ | i 1 T 1 li 1 j'
0 0.04 0.08 0.12 0.16 0.2 0.24 0.28

Applied Scale Factor

Figurev6,15: Scale Factor vs Moment B2S7



Chapter VII

DISCUSSION

7.1  INTRODUCTION

In this chapter the results of the F.E.M. analysis are
discussed with reference to the experimental program of Ste-
phens et al (7). The effect of geometric imperfections is
assessed with respect to the method of incorporation and
magnitude. The effectiveness of the NISA80 program is
reviewed. Finally, reasons are suggested why the analytical

program failed to reach the experimental limit point load.

7.2 INITIAL IMPERFECTIONS

The experimental cylindrical shells possessed a given
displacement pattern of initial impeffections. The analyt-
ical procedure used those initial imperfections in order to
determine a scale factor, which in turn was applied to the
mode-shape 1 eigenvector displacements. Although small, the
actual imposed pattern was severe since the initial shell
configuration already followed the worst configuration pos-
sible. Since it 1is unlikely the real shell would possess
this configuration, this introduces a biased failure pat-

tern. The imposed nodal imperfections were as much as an

_86_
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order of magnitude smaller than the observed quantities, but
this did not outweigh the sensitivity of the eigenvalue dis-
placement pattern. The scaling technique chosen was justi-
fied by its ease in repeated application to other shells of
similar nature. It permits a consistent analysis procedure
once a scale factor has been selected from a data bank of

values.

The scaling method displayed consistency in similar anal-
yses. In the four B2S7 series analyses an increased scale
factor was employed for each successive analysis. As shown
in figure 6.15, an increase in the scale factor led to a
decrease in the limit point load obtained. This curve seems
to imply that, after a certain magnitude of nodal imperfec-
tions are incorporated, only a very small decrease in the
limit point load would be achieved with a further increase

in the imperfections.

A shortcoming of the scaling method 1is related to the
preferred failure pattern achieved with this method. In the
experimental program failure was observed in a region close
to the circumferential weld. For a cylindrical shell sub-
jected to pure flexure, the eigenvalue solution consistently
produced a mode-shape 1 displacement pattern with a concen-
trated region of maximum values located near the centerline
section. This resulted in only very minor initial imperfec-
tions in the circumferential weld area. In the B1S4.N1

analysis, no 1initial imperfections were incorporated and
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failure was observed in a region near the circumferential
weld, possibly due to the eccentric junction of the end and
central shell region. Although the eigenvalue solution of
BlS4 again yielded the typical preferred configuration men-
tioned above, the results of the nonlinear solution suggest

a bias may be introduced here.

7.3 ACHIEVING THE LIMIT POINT LOAD

The wultimate objective of this analysis was to test
whether nonlinear finite element methods can successfully
predict the experimental limit point 1load of a given cylin-
drical shell. Although, the results of this investigation
suggest this is possible, certain modifications to the mod-

elling system must first be made.

For cylindrical shells subjected to pure flexure, there
is no stress gradient along the 1length of the shell. This
suggests that a uniform mesh configuration should ‘be used

for all analysis.

The analytical modelling of large-scale experimental pro-
grams is restrictive because of the heavy demand placed on
resources. The average nonlinear analysis required 12 time
steps with approximately 2 to 3 iterations required per
step. The average total CPU time required ranged between
6.5 and 7.5 hours. The above data is based on using the

University of Manitoba Amdahl 670 computer., Eigenvalue
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solutions were not as dependent on CPU time, but very high
Input/Output counts were needed for a single solution of the
S7 mesh configuration. Additional mesh refinement is usual-
ly limited by the available system resources and cost. Sur-
prisingly though, an increase from the 494 nodes correspond-
ing to the 83 configuration to the 703 node mesh
corresponding to S7 resulted in only a slight increase in
the overall cost of the nonlinear solution. The refined
mesh pattern S7 required 26% more CPU per iteration, but the
number of time steps and iterations per step decreased,

resulting in a total cost comparable with the S3 analysis.

Throughout the analysis the NISA80 program provided con-
sistent results. Refined mesh patterns repeatedly yielded
better solutions. 1Increased nodal imperfections led to low-
er limit point loads. The program was easily restarted at
any given time step. The load path traced was smooth and

void of fluctuations near the limit point load.

The.limit point loads predicted by NISA80 were higher
than the experimental values. It is felt the major discrep-
ancy between results is linked to the omission of residual
stresses. As discussed previously, the calculation of resi-
dual stresses is extremely complex. It is dependent on the
material type, fabrication technique, and size of specimen.
It is certain that forming and welding processes used in the
fabrication of the experimental specimen induced residual

stress concentrations in the vicinity of the junction
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between central and end section of the shell. An estimation
of the magnitude of these stresses is needed to obtain accu-
rate results, Once determined, a system must be developed
to -incorporate these initial stresses into the nonlinear

finite element program.



8.1

Chapter VIII

CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

Cylindrical shells subjected to pure bending are not
as imperfection sensitive as the same cylindrical
shells subjected to pure axial load.

Very large increases in initial imperfections cause
only very moderate reductions in the limit moment.
The NISA80 program can effectively analyze the buck-
ling behaviour of thin-walled cylindrical shells sub-
jected to pure bending.

The eigenmode scaling technique for incorporating
initial imperfections 1into the analysis resulted in
predicted limit moments some 15-20% larger than were
found experimentally.

Uniform mesh patterns should be employed for all all
pure flexure analysis.

The discrepancies between analytical and experimental
limit moments may be due to the presence of residual

stresses which were not considered in the analyses.
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RECOMMENDATIONS

Future investigations should study the lower imper-
fection sensitivity displayed by cylindrical shells
subjected to pure bending.

Future analytical studies should seek a means of
incorporating residual stresses into the nonlinear
finite element analysis.

An investigation of plasticity reduction factors for
nonhomogenous material behaviour caused by residual
stresses should be conducted.

Further analytical study is needed to investigate the
buckling of thin-walled cylindrical shells subjected

to pure bending.
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TABLE A.1l

Moment wvs Curvature BI1S3.

Node 400 Node
kN-m u x10° w x10°3 u x10°¢
359 ~173.4 -271.6 172.3
717 -346.8 =547,2 343.4

1073 -520.1 -827.0 513.2
1428 -693.3 -1111.6 681.7
1780 ~-866.4 =-1401.5 848.8

2130 -1039.4
2478 -1211.9
2637 -1291.4
2792 . -1370.5
2878 -1415.1
2952 -1457.0
2984 -1476.4
3009 -1493.3
3029 -1506.1
3043 -1520.9
3057 -1550.9
3051 -1563.3
3012 -1569.9

-1697.4 1014.4
-2000.4 1178.1
-2144.1 1252.7
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-2382.5 1366.1
-2479.8 1401.2
-2529.7 1416.4
-2679.6 1428.2
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TABLE A.2

Moment vs Curvature B1S3.N2

Step Moment Node 400 Node 418 Curvature
kN=-m u x10° w x10°3 u x10° w x10° dg/dsx10¢

1 359 -176.3 -293.6 172.0 -265.3 0.2491

2 714 ~352.3 -594.7 342.0 -525.4 0.4967

3 1066 -527.9 -904.4 509.7 -780.1 0.7422

4 1411 -702.8 -1233.8 674.4 -1028.9 0.9852

5 1751 -876.3 -1154.6 835.5 -1274.2 1.2232

6 2077 ~-1045.9 -1902.0 889.7 -1503.8 1.4563

7 2358 -1205.8 -2281.0 1123.0 -1709.6 1.6661

8 2479 -1297.7 -2591.4 1181.2 -1812.3 1.7739

9. 2526 -1358.8 -2869.7 1204.4 -1860.8 1.8345
10 2539 -1415.5 -3187.6 1212.3 -1907.3 1.8810
11 4 1.9134

2530 -1463.3 -3493.0 1209.2 -1932,

Moment kN—m
(Thousands)
- N u
0 N n w o N
i i | ] !

-
§

o
4]
i

=]

T T T T T T T T
0.4 o.8 1.2 1.6 2 2.4
1

o

Curvature x1F mm’

Figure A.2: Moment vs Curvature B1S3.N2
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TABLE A.3

Moment vs Curvature B1S3.N3

Step Moment Node 400 Node 418 Curvature
kN-m u x103 w x10° u x10° w x10° dg/dsx10°¢
1 359 -180.3 -323.8 171.5 ~266.8 0.2516
2 708 -359.5 -658.4 339.3 ~-526.4 0.4992
3 1049 -536.8 -1004.8 502.3 -777.7 0.7433
4 1379 -711.2 -1363.6 659.5 -1019.6 0.9806
5 1691 -880.7 -1736.4 807.8 ~-1248.7 1.2086
6 1962 -1038.2 -2125.1 937.1 -1452.5 1.4134
7 2116 -1143.6 =-2444.9 1010.9 -1577.2 1.5418
8 2206 -1224.4 -2746.7 1054.3 -1661.4 1.6310
9 2257 -1290.3 -3033.0 1079.8 =-1721.6 1.6970
10 2291 -1359.8 =-3370.7 1097.5 =1777.2 1.7594
11 2306 -1423.3 -3700.7 1106.4 -1821.6 1.8110
12 2304 -1481.1 =-4025.3 1106.8 -1854.7 1.8536
13 2290 -1535.7 -4344.8 1102.2 ~-1881.3 1.8897
14 2276 -1590.4 -4661.7 1097.1 ~1907.4 1.9257
4
3.5 4
3
E.. 2.5
2
8 24
2
§"’ 1.5 -
‘| -
0.5 -
O 1 T 1 1 T 1 1 ¥ T T T T
Q .4 0.8 7.2 1.6 2 2.4

Curvature x10° mm”’

Figure A.3: Moment vs Curvature B1S3.N3
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TABLE A.4
Moment vs Curvature B1S3.N4
Moment Node 400 Node 418 Curvature
kN-m u x103 w x10° u x10° w x10° dg/dsxl0s
352 -191.7 -403.1 169.5 -270.9 0.2584
687 -378.3 -817.3 330.1 -527.7 0.5067
1000 -558.6 -1240.7 480.4 -769.1 0.7428
1289 -731.1 =-1670.7 619.0 -993.6 0.9960
1543 -891.7 -2103.8 740.4 -1194.6 1.1680
1743 -1033.8 =~-2532.5 836.5 -1361.7 1.3387
1850 -1129.6 -2867.8 888.5 -1462.9 1.4447
1946 -1234.3 -3267.7 935.5 -1564.9 1.5540
2011 -1328.9 -3657.3 968.6 -1648.6 1.6454
2054 ~1416.9 -4039.5 990.3 -1717.5 1.7244
2074 -1482.9 =-4347.4 1001.8 =-1765.4 1.7801
2096 ~-1564.5 -4722.6 1014.0 -1822.0 1.8478
2110 -1644.7 -5098.2 1022.6 -1874.2 1.9118
2109 -1707.0 -5409.2 1023.7 -1908.5 1.9576
2106 -1783.8 =-5792.0 1024.3 -1949.9 2.0135
2101 -1861.3 -6176.2 1024.2 -1990.7 - 2.0694
2095 -1939.1 -6564.3 1023.1 -2030.1 2.1250
2083 -2016.4 -6958.1 1019.7 -2066.2 2.1785
4
3.5
3
E.. 2.5+
z?
8 24
£
£~ 154
1 4
0.5 -
O 1 T 1 1] T T T T T T
(0] 0.4 Q.8 1.2 1.6 2 2.4
Curvature x10% mm”
Figure A.4: Moment vs Curvature B1S3.N4
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TABLE A.5

Moment vs Curvature B1S4.N1

Step Moment Node 419 Node 437 Curvature
kKN-m u x10° w x10° u x10° w x10° de¢/dsx10¢
1 359 -172.8 -270.1 171.9 -268.3 0.2465
2 718 -345.7 -543.6 342.6 -532.0 0.4923
3 1074 -518.5 -820.7 512.2 -791.3 0.7372
4 1430 -691.2 -1101.7 680.6 -1046.3 0.9812
5 1784 -863.9 -1386.6 847.8 -1297.2 1.2243
6 2136 -1036.4 -1676.6 1013.7 -1544.,1 1.4664
7 2486 -1208.7 -1971.8 1178.3 -1787.3 1.7074
8 2832 -1380.4 -2273.4 1340.5 -2033.1 1.9464
S 3071 -1501.3 -2499.3 1452.1 -2216.7 2.1128
10 3372 -1679.2 -2947.0 1609.5 -2500.9 2.3530
11 3475 -1805.2 -3565.3 1706.8 -2739.0 2.5133
12 3485 -1887.1 -4133.9 1719.8 -2800.5 2.5820
13 3467 -1981.8 -4895.8 1714.1 -2838.3 2.6470
14 3435 -2069.4 -5672.7 1701.8 -2866.7 2.7023
15 3389 =2172.3 -6641.0 1683.7 -2896.2 2.7648
4
3.5
3
£ 2.5
3t
8 2+
i
£ a5 4
B 1
0.5 -
O ! 1 i 1 T | 1 T T 1 3 T
[o] 0.4 0.8 1.2 1.6 2 2.4

Curvature x10% mm!

Figure A.5: Moment vs Curvature B1S4.N1
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TABLE A.6
Moment vs Curvature B1S5.N1

Moment Node 419 Node 437
kN-m u x10° w x10°3 u x10° w x10°
359 -175.5 -311.7 172.5 -282.4
716 -350.9 -631.1 343.3  =-559.3
1071 -526.1 -959.3 512.4 -830.9
1421 -701.1 -1297.7 679.4 -1079.1
1767 -875.7 -1648.4 844.1 -1357.7
2108 -1049.0 -2018.5 1005.4 -1612.4
2437 -1220~-2 -2415.9 1161.1 -1861.7
2732 -1384.5 -2889.2 1300.0 -2094.8
2895 -1495.0 -3300.0 1377.1 -2239.5
2950 -1565.4 -3637.3 1407.5 =-2315.1
-3908.1 1401.8 -2333.7

2943 -1601.3
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TABLE A.7
Moment vs Curvature B1S7.Nl1
Moment Node 590 Node 608 Curvature
kN-m u x10° w x10°3 u x10°3 w x10° de¢/dsxl0¢
357 -183.4 ~344,0 172.1 -279.6 0.2543
708 -366.1 ~-701.0 340.7 -551.7 0.5056
1051 -547.,5 -1070.2 505.0 -815.8 0.7529
1385 -727.1 -1458.7 664.4 -1071.2 0.9955
1706 -903.8 -1861.4 817.6 -1316.8 1.2317
2001 -1074.3 =-2285.5 958.3 -1545.4 1.4545
2333 -1226.9 =-2732.5 1069.4 -1735.9 1.6435
2367 ~1332.1 -3094.5 1133.8 -1856.3 1.7652
2472 -1439.4 -3520.3 1185.3 -1966.8 1.8792
2522 -1513.0 -3845.,7 1210.5 -=-2034.2 1.9503
2545 -1575,0 -4149.5 1222.7 -2083.3 2.0037
2538 -1625.8 =-4432.6 1221.1 -2113.1 2.0393
4
3.5
3 -
£ 2.5
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1 -
0.5
O T T T T 1 1 T { 1 { T
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Figure A.7:
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TABLE A.8

Moment vs Curvature B1S7.N2
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Step Moment Node 590 Node 608 Curvature
kN-m u x10°3 w x10° u x103 w x10°% dg/dsxl0Qs
358 -176.5 ~317.8 172.4 -283.,2 0.2495
714 -352.8 -644.5 342.8 -560.7 0.4975

1067 -529.0 -981.2 511.1 -832.4 0.7438
1415 -704.6 -1329.5 677.0 -1098.1 0.9880
1758 -879.5 -1691.7 839.8 -1357.5 1.2294
2092 -1052.6 -2074.9 998.4 -1609.9 1.4594
2409 -1221.9 -2490.5 1148.1 -1852.6 1.6944
2615 -1346.6 -2878.3 1245.6 -2021.8 1.8530
2752 -1440.4 -3247.2 1301.7 -2133.4 1.8598
2761 -1495.2 -3539.,7 1316.6 -2184.3 2.0101
2717 -1517.9 =-3765.1 1297.4 -2182-1 2.0115
2640 -1523.6 -3952.4 1262.2 -2155.6 1.9901
4
3.8 4
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£ . 2.5
3
28 2
Es
s~ 1.5 4
1 .,
0.5
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TABLE A.9
Moment vs Curvature B1S7.N3
Node 590 Node 6908 Curvature
kN-m u x103 w x10°3 u x10° w x10° dg/dsx10¢
359 -172.8 -313.3 172.4 -283.1 0.2469
715 -352.,7 -634.9 342.9 -560.4 0.4975
1068 -528.7 -966.1 511.4 ~-832.0 0.7440
1416 -704.4 -1308.3 667.4 -1097.7 0.9813
1760 -879-3 -1663-6 840.4 -1357-3 1.2303
2095 -1052.7 -2038.2 993.4 -1609.8 1.4639
2413 -1222.6 -2441.9 1150.1 ~1853.5 1.6976
2629 -1350.5 -2816.8 1252.3 =2029.0 1.8626
2744 -1443.9 -3180.9 1307.7 -=-2140.0 1.9694
2773 -1500.3 -3479.3 1321.9 -2190.3 2.0203
2755 -1536.9 -3745.0 1315.1 =-2208.2 2.0419
4
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TABLE A.10
Moment vs Curvature B2S3.N1
Node 400 Node 418 Curvature
kN-m u x10° w x10° u-x103 w x10° dg/dsxl0s
191 -164.5 -402.,1 137.3 -211.0 0.2167
363 -318.7 -810.2 260.7 -401.9 0.4160
515 -461.9 -1220.0 370.0 -572.9 0.5974
648 -594.1 -1628.1 465,7 -725.1 0.7613
759 -712.9 -2030.0 545,0 -855.1 0.9037
843 -816.8 -2420.8 605.8 -960.9 1.0220
803 -907.1 -2798.9 649.9 -1045.1 1.1190
949 -989.4 -3167.7 683.9 -1116.6 1.2030
984 -1065.9 -3528.5 710.3 -1178.8 1.2770
1008 -1137.2 -3883.4 728.9 -1231.8 1.3420
1020 -1202.5 -4232.6 738.4 -1273.7 1.3960
1028 -1267.1 -4578.8 746.1 -1314.0 1.4483
1033 -1319.7 -4860.0 751.5 =1346.2 1.4903
1040 -1384.4 -5203.8 757.5 -1385.5 1.5414
1044 -1449.,5 =-5552,2 762.4 -1423.8 1.5921
1043 -1501.7 -5846.3 763.2 =-1451.4 1.6306
1042 -1566.8 -6210.4 764.5 -1486.1 1.6788
1040 -1632.4 -6577.8 767.3 -1520.6 1.7284
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Figure A.10:

Curvature x10% mm
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TABLE A.11
Moment vs Curvature B2S7.N1
Node 590 Node 608 Curvature
kN-m u x10° w x10°3 u x10° w x10°® dg/dsxl0°¢
197 -153.0 -306.7 141.7 -220.2 0.2115
387 -303.6 -630.7 278.0 -431.1 0.4176
568 -450.2 —972§6 407.1 -630.9 0.6156
735 -591.1 -1331.2 527.0 -816.7 0.8029
886 -723.6 -1705.7 635.2 -985.7 0.9759
1011 -841.9 -2088.4 724.6 -1128.5 1.1253
1086 -922.5 -2396.3 778.0 -1218.3 1.2217
1144 -1001.5 -2754.8 820.3 -1296.9 1.3091
1175 ~-1055.8 -3034.7 843.4 -1345.4 1.3649
1194 -1110.2 -3352.9 858.2 -1386.5 1.4149
1201 -1148.8 -3599.3 863.6 -1411.6 1.4467
1198 -1189.7 -3882.5 862.8 -1432.5 1.4758
1189 -1220.0 -4105.2 858.1 -1444.6 1.4944
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Figure A.11l: Moment vs Curvature B2S7.N1
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TABLE A.12

Moment wvs Curvature B2S7.N2

Step Moment Node 590 Node 608 Curvature
kN-m u x10°3 w x103 u x10° w x10° dg/dsxl0¢
1 190 -241.0 -867.1 139.6 -263.3 0.2733
2 363 -471.5 -1732.3 266.0 -507.6 0.5298
3 520 -692.7 -2595.,7 381.5 -736.0 0.7721
4 663 -905,0 -3456.8 486.4 -949,7 1.0005
5 786 -1105.7 -4309.3 577.2 -1144.0 1.2106
6 882 -1292,0 -5150.9 649.2 -1313.7 1.3971
7 954 -1465.1 -5979.,1 704.2 -1460.6 1.5619
8 994 -1623.0 -6786.1 735.8 -1576.7 1.6991
9 1010 -1744.5 -7427.3 750.9 -1656.7 1.7982
10 1012 -1858.8 -8067.4 754.7 -1720.0 1.8840
11 998 -1952.4 -8635.2 747.1 -1758.1 1.9467
4
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Figure A.12: Moment vs Curvature B2S7.N2
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TABLE A.13
Moment vs Curvature B2S7.N3

Node 590 Node 608 Curvature
kN-m u x10° w x10°3 u x10° w x10° dg/dsxl0¢
192 -309.6 -1111.1 143.1 -311.0 0.3252
370 -608.5 -2227.0 275.2 -604.5 0.6351
53% -896.8 -3347.6 396.6 -881.3 0.9300
676 -1170.9 -4465.5 503.7 -1136.4 1.2048
789 -1425.7 -5569.2 589.3 -1360.3 1.4505
864 -1660.0 -6648.4 648.0 -1545.8 1.6624
904 -1839.7 ~-7511.4 680.4 -1674.1 1.8160
920 -2005.1 -8336.8 696.1 -1774.4 1.9475
907 -2156.7 -9127.5 690.2 -1839.6 2.0535
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TABLE A.1l4

Moment vs Curvature B2S7.N4

Step Moment Node 590 Node 608 Curvature
kN-m u x10° w x10° u x10° w x10° de/dsx10°¢
1 192 -367.0 -1259.,1 144.9 ~350.0 0.3677
2 370 -722.1 -2523.6 278.9 -681.7 0.7195
3 533 -1065.4 -3793.6 402.5 -996.2 1.0557
24 675 -1393.6 -5065.3 510.7 -1286.8 1.3705
5 770 -1692.7 -6314.1 584,9 -1526.0 1.6402
6 812 -1915.8 -7304.7 620,2 -1682.0 1.8273
7 840 -2177.8 -8501.7 646.6 -1842.8 2.0365
8 849 -2383.6 -9447.3 658.0 -1953.5 2.1943
9 845 -2584.2 -10353.,2 659.7 -2043.6 2.3415
10 840 -2787.0 -11247.5 660.6 -2129.7 2.4899
11 836 -2994.,.,3 -12135.6 662.2 =-2215.5 2.6421
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Figure A.14: Moment vs Curvature B2S7.N4
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FILE CYLINDER FILE

PROGRAM TO FIND THE LEAST SQUARES FIT OF A CYLINDRICAL SURFACE.

EXTERNAL CYLNDR
REAL*8 TITLE
COMMON /HDR/ TITLE(10)
COMMON /CNTRL/ MX
READ 50, TITLE
50 FORMAT (10A8)
READ *, MX
PRINT 100, TITLE, MX
100 FORMAT ('1'///' %%x**LEAST-SQUARES FIT OF A CYLINDER**xxx'//
& 1X, 10a8/
& ' NUMBER OF SAMPLE POINTS . . « . « v . . . . .', I5)
NPOOL=18%MX
CALL GETCOR (CYLNDR, 8%NPOOL)
STOP
END
SUBROUTINE CYLNDR (A, NBYTES)
COMMON /CNTRL/ MX
REAL*8 A(1)
NA=NBYTES /8

STORAGE MAP

N1 X(MX)

N2 Y (MX)

N3 Z(MX)

N4 FP(MX,5)
N5 FO(MX)
N6 LI (MX)
N7 G(MX)

N8 H(MX,5)
N9 C(MX)
N10 CT(MX)

PARTITION THE STORAGE

N1=1
N2=N1+MX
N3=N2+MX
N4=N3+MX
N5=N4+5%MX
N6=N5+MX
N7=N6+MX
N8=N7+MX
N9=N8+5%MX
N10=N9+Mx
N99=N10+MX
IF (N99-1.GT.NA) GO TO 9000
CALL CYL (MX, A(N1), A(N2), A(N3), A(N4), A(N5), A(N6), A(N7),
& A(N8), A(N9), A(N10))
1000 STOP
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9000 N99=8%(N99-1)
NA=8%NA
DRINT 9100, N99, NA

9100 FORMAT('-**x**STORAGE REQUEST OF', I8, ' BYTES EXCEEDS AVAILABLE',
& ' STORAGE OF', I8, ' BYTES.')
GO TO 1000
END
SUBROUTINE CYL (MX, X, Y, Z, FP, FO, LI, G, H, C, CT)
FPFORM
FOFORM
LIFORM
DUPL
TRNMLT
SUB
MULT
DAMULT
SYMTRI
SYMSLV
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 TITLE
COMMON /HDR/ TITLE(10)
DIMENSION X(MX), Y(MX), z(MX), FP(MX,5), FO(MX,1), LI(1,MX),
& G(MX,1), H(MX,5), c(Mx,1), CcT(1,MX)
DIMENSION P(5), A(5,5), B(5), DP(5)
DATA LFP, LH, KP, KA, LA, KB, KDP, Mp /8%5/
DATA LFO, KLI, LG, LC, KCT, NP, LP, LB, LDP /9%1/
REAL*8 LI
EQUIVALENCE (X0,P(1)), (Y0,P(2)), (PHI,P(3)), (THETA,P(4)),
& (R,P(5))
LOGICAL DEBUG
REAL*8 DBUG/'DEBUG'/
DEBUG=.FALSE.
IF (TITLE(1).EQ.DBUG) DEBUG=.TRUE.
PI=ACOS(-1.)
KFP=MX
KFO=MX
LLI=MX
KG=MX
KH=MX
KC=MX
LCT=MX

READ PSI, ZI, R AS MEASURED

READ *, (X(1), ¥(1), Z(MX-1+1), I=1,MX)
PRINT 100, (1, X(1), ¥(1), 2(1), I=1,MX)
100 FORMAT ('~POINT', 5X, 'ANGLE', 7X, 'Z', 7X, 'RADIUS'//

& (1%, 14, F11.2, F10.2, F11.3))
REVERSE CYLINDER

XMAX=X(1)
YMAX=Y(1)
KMIN=XMAX
YMIN=YMAX
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DO 110 I=1,MX
XMAX=AMAX1(XMAX,X(I))
XMIN=AMINT(XMIN,X(1))
YMAX=AMAX1(YMAX,Y(I))
YMIN=AMINT(YMIN,Y(I))
110 CONTINUE
DO 120 I=1,MX
X(I)=XMAX-X(I)
Y(I)=YMAX-Y(I)
120 CONTINUE

COMPUTE X, Y AND Z COORDINATES

DO 200 1=1,MX
R=Z (1)
PSI=PI*X(1)/180.
Z(1)=¥(1)
X(I)=R*SIN(PSI)
Y(1)=R*COS(PSI)
200 CONTINUE ‘
PRINT 300, (1, X(1), ¥(1), 2(1), I=1,MX)
300 FORMAT ('-POINT', 7%, 'X', 9%, 'Y', 9%, '1'//
& (1X, 14, 3F11.3))
PRINT 5
5 FORMAT('-',37X,'ITERATES'//16X, 'X0', 16X, 'v0', 16X, 'PHI', 15X,
& '"THETA', 14X, 'RADIUS', 13X, 'SUM ERRORS**2'/1X)
NI=0
SELECT INITIAL VALUES OF PARAMETERS

X0=0.0

¥0=0.0

PHI=0,1

THETA=0.0

R IS AS LEFT ABOVE

ITERATE PARAMETERS
3 IF(NI.GT.0)S0=S

CAL% FPFORM (FP, KFP, LFP, MFP, NFP, X, Y, Z, MX, P, KP, LP, MP,

& NP

IF (DEBUG) CALL DPRINT(FP,KFP,LFP,MFP,NFP,'G11.4/',11,0,'FP/',"'0")
CAL? FOFORM (FO, KFO, LFO, MFO, NFO, X, Y, Z, MX, P, KP, LP, MP,
& NP

IF (DEBUG) CALL DPRINT(FO,KFO,LFO,MFO,NFO,"'G11.4/',11,0,'F0/','0")
CAL% LIFORM (LI, KLI, LLI, MLI, NLI, X, Y, Z, MX, P, KP, LP, MP,

& NP

IF (DEBUG) CALL DPRINT(LI,KLI,LLI,MLI,NLI, 'G11.4/",11,0,'L1/",'0")
CALL DAMULT(LI,KLI,LLI,MLI,NLI,FO,KFO,LFO,MFO,NFO,G,KG,LG,MG,NG)
IF (DEBUG) CALL DPRINT (G,KG,LG,MG,NG, 'G11.4/',11,0,'G/",'0")
CALL DAMULT(LI,KLI,LLI,MLI,NLI,FP,KFP,LFP,MFP,NFP,H,KH,LH,MH,NH)
IF (DEBUG) CALL DPRINT (H,KH,LH,MH,NH,’'G11.4/',11,0,'H/','0")
CALL TRNMLT(FP,KFP,LFP,MFP,NFP,H,KH,LH,MH,NH,A,KA,LA,MA,NA)

IF (DEBUG) CALL DPRINT (A,KA,LA,MA,NA,'G11.4/',11,0,'A/','0")

CALL TRNMLT(FP,KFP,LFP,MFP,NFP,G,KG,LG,MG,NG,B,KB,LB,MB,NB)

IF (DEBUG) CALL DPRINT (B,KB,LB,MB,NB,'G11.4/',11,0,'B/','0")

CALL SYMSLV(A,KA,LA,MA,NA,DP,KDP,LDP,MDP,NDP,B,KB,LB,MB,NB)
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IF (DEBUG) CALL DPRINT (A,KA,LA,MA,NA,'G11.4/',11,0,'a/','0")
IF (DEBUG) CALL DPRINT (B,KB,LB,MB,NB,'G11.4/',11,0,'B/','0")
CALL SUB(P,KP,LP,MP,NP,DP,KDP,LDP,MDP,NDP,P,KP,LP,MP,NP)
CALL MULT(H,KH,LH,MH,NH,DP,KDP,LDP,MDP,NDP,C,KC,LC,MC,NC)
CALL SUB(G,KG,LG,MG,NG,C,KC,LC,MC,NC,C,KC,LC,MC,NC)
CALL TRNMLT(C,KC,LC,MC,NC,G,KG,LG,MG,NG,S,1,1,MS,NS)
PHI=AMOD(PHI,2,*PI)
NI=NI+1
PRINT 400, NI, X0, YO, PHI, THETA, R, S
400 FORMAT(I4,2X,6(3%X,G615.8))
IF(NI.EQ.1)GO TO 3
IF(DABS(S0-S)/5.GT.1.E-8)GO TO 3
C END OF ITERATIVE PROCEDURE
PHID=180.*PHI /PI
THETAD=180.*THETA /PI
PRINT 4, X0, Y0, PHI, PHID, THETA, THETAD, R
4 FORMAT('-X0 . . . . . . .', G15.8/

& YO ... ... .' G15.8/
& "PHI . ... ..', G15.8, 2X, '(', F6.1, ' DEGREES)'/
& " THETA . . . . .', G15.8, 2%, '(', F6.1, ' DEGREES)'/
& ' RADIUS . . . . .', G15.8)

14
CALL DPRINT (FO,MX,1,MX,1,'G11.4/',11,0,
& "ADJUSTED INITIAL DEFLECTIONS/','1')
RETURN
END
SUBROUTINE FPFORM (FP, KFP, LFP, MFP, NFP, X, Y, Z, MX, P,
& KP, LP, MP, NP)
DIMENSION FP(KFP,LFP), X(MX), Y(MX), Z(MX), P(KP)
X0=p(1)
Y0=P(2)
PHI=P(3)
THETA=P(4)
R=P(5)
CT=COS (THETA )
ST=SIN(THETA)
CP=COS(PHI)
SP=SIN(PHI)
DO 100 I=1,MX
DX=X(I)-X0
DY=Y(I)-Y0
A=2,* (DX*CT*CP+DY*CT*SP-Z (I )*ST)
B=2.* (-DX*SP+DY*CP)
C=SQRT(A*A+B*B)
FP(I,1)=(-A%CT*CP+B*SP)/C
FP(I,2)=(~A*CT*SP-B*CP)/C
FP(I,3)=(A%(-DX*CT*SP+DY*CT*CP)-B* (DX*CP+DY*SP))/C
FP(I,4)=(-aA%(DX*ST*CP+DY*ST*SP+Z(1)*CT))/C
FP(1,5)=-1.
100 CONTINUE
MFP=MX
NFP=MP
RETURN
END
SUBROUTINE FOFORM (FO, KFO, LFO, MFO, NFO, X, Y, Z, MX, P, KP,
& LP, MP, NP)
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DIMENSION FO{KFO), X(MX), Y(MX), Z(MX), P(KP)

X0=P(1)

Y0=P(2)

PHI=P(3)

THETA=P(4)

R=P(5)

CT=COS(THETA)

CP=COS(PHI)

ST=SIN(THETA)

SP=SIN(PHI)

DO 100 I=1,MX

DX=X(1)-X0

DY=Y(1)-Y0

A=DX*CT*CP+DY*CT*SP-Z(I)*ST

B=-DX*SP+DY*CP

FO(I)=SQRT(A*A+B*B)-R
100 CONTINUE

MFO=MX

NFO=1

RETURN

END

SUBROUTINE LIFORM (LI, KLI, LLI, MLI, NLI, X, Y, Z, MX, P, KP,

& LP, MP, NP)

REAL LI(KLI), P(KP), X(MX), Y(MKX), Z(MX)

X0=P(1)

Y0=P(2)

PHI=P(3)

THETA=P(4)

R=P(5)

CT=COS ( THETA)

CP=COS(PHI)

ST=SIN(THETA)

SP=SIN(PHI)

DO 100 1=1,MX

DX=X(I)-X0

DY=Y(1)-Y0

A=2,*% (DX*CT*CP+DY*CT*SP-Z(I)*ST)

B=2.*(-DX*SP+DY*CP)

C2=A*A+B*B

LI(1)=C2/((A%CT*CP-B*SP)**2 + (A*CT*SP+B*CP)*%2 + (A%ST)%%2)
100 CONTINUE

MLI=1

NLI=MX

RETURN

END

SUBROUTINE DAMULT(D,KD,LD,MD,ND,A,KA,LA,MA,NA,B,KB,LB,MB,NB)

C FORM THE PRODUCT OF DIAGONAL MATRIX D WITH ANY COMPATIBLE MATRIX A.
C D MAY BE STORED AS A ROW OR AS A DIAGONAL.

IMPLICIT REAL*8 (A-H,0-Z) :

DIMENSION D(KD,LD),A(KA,LA),B(KB,LB)

MB=ND

NB=NA

IF(MD.EQ.1)GO TO 25

DO 21 I=1,MA

DO 21 J=1,NA
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21 B(1,J)=D(1,1)*A(1,J)
GO TO 27
25 DO 26 I=1,MA
DO 26 J=1,NA
26 B(1,J)=D(1,1)*aA(1,J)
27 RETURN
END
SUBROUTINE DUPL(A,KA,LA,MA,NA,B,KB,LB,MB,NB)
C MATRIX B IS SET EQUAL TO MATRIX A.
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(KA,LA),B(KB,LB)
MB=MA
NB=NA
DO 1 1I=1,MA
DO 1 J=1,NA
1 B(1,J)=A(1,J)
RETURN
END
SUBROUTINE SYMSLV(A,KA,LA,MA,NA,X, KX,LX,MX,NX,B,KB,LB,MB,NB)
C THE SYSTEM AX=B IS SOLVED FOR X, WHERE A IS SYMMETRIC AND POSITIVE
C DEFINITE.
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(KA,LA), X(KX,LX), B(KB,LB)
CALL SYMTRI (A, KA, LA, MA, Na)
CALL DUPL (B, KB, LB, MB, NB, X, KX, LX, MX, NX)
IF(MA.EQ.1)GO TO 4
NN=MA-1
DO 1 J=1,NN
K=J+1
DO 1 I=K,MA
DO 1 L=1,NB
1 X(1,L)=x(1,L)-A(1,J)*x(J,L)
C BACK-SUBSTITUTION
4 DO 2 K=1,NX
DO 2 I1=1,MA
I=MA-II+1
IP1=1+1
IF(IP1.GT.NA)GO TO 2
DO 3 J=IP1,NA
%(I,K)=X(I,K)-A(1,J)*X(J,K)
X(I,K)=x(1,K)/a(1,1)
RETURN
END
SUBROUTINE SYMTRI (A,KA,LA,MA,NA)
C TRIANGULARIZATION OF A SYMMETRIC, POSITIVE DEFINITE MATRIX.
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(KA,LA)
IF(MA.EQ.1)RETURN
N=NA-1
Do 1 J=1,N
K=J+1
DO 1 I=K,NA
A(1,3)= (a(J,1)/a(J,3))
DO 5 L=I,NA
5 A(1,L)=A(1,L)-A(1,J)*A(J,L)

N w
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1 CONTINUE
RETURN
END ,
SUBROUTINE SUB (A,KA,LA,MA,NA,B,KB,LB,MB,NB,C,KC,LC,MC,NC)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(KA,LA), B(KB,LB), C(KC,LC)
MC=MA
NC=NA
DO 100 I=1,MA
DO 100 J=1,NA
100 c¢(1,3)=A(1,J3)-B(1,J)
RETURN
END
SUBROUTINE MULT (A,KA,LA,MA,NA,B,KB,LB,MB,NB,C,KC,LC,MC,NC)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(KA,LA), B(KB,LB), C(KC,LC)
DO 200 I1=1,MA
DO 200 J=1,NB
5=0.0
DO 100 K=1,NA
100 S=S+A(I,K)*B(K,J)
200 c(1,J)=S
MC=MA
NC=NB
RETURN
END
SUBROUTINE TRNMLT (A,KA,LA,MA,NA,B,KB,LB,MB,NB,C,KC,LC,MC,NC)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(KA,LA), B(KB,LB), C(KC,LC)
DO 200 I=1,NA
DO 200 J=1,NB
S=0,0
DO 100 K=1,MB
100 S=S+A(K,I)*B(K,J)
200 c(1,J)=8
MC=NA
NC=NB
RETURN
END
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FILE GEN FILE

L e Y R T T

FILE IS USED TO FIND THE LEAST SQUARES
FIT OF THE GENERATORS ALONG THE AXIS OF THE
CYLINDER.

R R Y I R R I T T

QOO0 0n

IMPLICIT REAL*8 (A-H,0-Z)
INTEGER I,J,M,N
DIMENSION F(17,7),FF(17,7),X1(7),A(2,2),X(2,1),8(2,1),
* BB(17) ,RMM(17),Y(17,8),Xx(8),XF(15) ,TITLE(10)
READ 707, TITLE
707 FORMAT (10A8)
PRINT 709, TITLE
709 FORMAT('1'///'PGM= GEN PRODUCES END REGION DATA POINTS'///
&1X,10A8)
READ*,F
N=7
M=17
X1(1)=1143,0
DO 10 1=2,7
X1(1)=X1(1-1) + 228.6
10 CONTINUE
DO 60 I=1,M
DO 61 J=1,N
61 FF(1,J)=F(1,J)
60 CONTINUE
o DO 100 J=1,N "NOTE" INPUT DATA IS 17 X 7 HERE
C 100 FF(17,3)=F(1,J) THIS TWO STEPS NOT NEEDED
PRINT 201
201 FORMAT(' '///'#x INPUT DATA ADJUSTED FOR AXIS TILT *%'///)
Do 101 1=1,M
PRINT 77,(FF(1,J),3=1,N)
101 CONTINUE
PRINT 202
202 FORMAT(' '///'*x INPUT DATA AXIAL COORDINATES **'///)
PRINT 78, (X1(1),1=1,N) :
PRINT 40
40 FORMAT(' ',///,T20,8H SUM X ,5%,12H SUM X*%2 , 6%,
* 7H SUM ¥YB ,5X,9H SUM XY ,12X,6H B ,7X,6H M )
DO 20 I=1,M
SSUMK=0.0
X2SUM=0.0
SSUMY=0.0
XYSSUM=0.0
DO 30 J=1,N
SSUMY=SSUMY + FF(I,J)
X2SUM=X2SUM + X1(J)*%2.0
SSUMX=SSUMX + X1(J)
XYSSUM=XYSSUM + (X1(J) * FF(1,J))
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30 CONTINUE
A(1,1)=N
A(1,2)=SSUMX
A(2,1)=SSUMX
A(2,2)=x25UM
B(1,1)=SSUMY
B(2,1)=XYSSUM
KA=2
LA=2
MA=2
NA=2
KX=2
LX=1
MX=2
NX=1
KB=2
LB=1
MB=2
NB=1 .
CALL SYMSLV(A,KA,LA,MA,NA,X,KX,LX,MX,NX,B,KB,LB,MB,NB)
PRINT 50,SSUMX,X2SUM,SSUMY,XYSSUM,X(1,1),%(2,1)
50 FORMAT(' ',//,T710,5F16.3,5%,F12.7)
BB(I)=X(1,1)
RMM(1)=X(2,1)
20 CONTINUE
Xx(1)=0.0
XX(2)=228.6
XX(3)=685.8
XX(4)=914.4
XX(5)=2743.0
X%(6)=2971.6
XX(7)=3429,0
XX(8)=3657.6
DO 31 1=1,4
31 XF(I1)=Xx(1)
DO 32 1=5,11
32 XF(1)=x1(1-4)
DO 33 1=12,15
33 XF(1)=XX(1-7)
PRINT 203
203 FORMAT(' '///'** INTERPOLATED DATA LEVELS **'///)
PRINT 78, (XX(1),1=1,8)
78 FORMAT(' ',8F12.3////)
DO 250 1=1,8
DO 300 J=1,M
Y(J,1)=RMM(J)*XX(1) + BB(J)
300 CONTINUE
250 CONTINUE
PRINT 708, TITLE
708 FORMAT('1'///' x****GENERATORS EXTRAPOLATED TO PRODUCE END DATA'//
& 1X,1088//)
DO 400 1=1,M
PRINT 77,(¥(1,J),J=1,8)
400 CONTINUE
77 FORMAT(' ',8F8.3)
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STOP
END
SUBROUTINE SYMSLV(A,KA,LA,MA,NA,X, KX,LX,M¥,X,B,KB,LB,MB,NB)
C THE SYSTEM AX=B IS SOLVED FOR X, WHERE A IS SYMMETRIC AND POSITIVE
C DEFINITE.
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(KA,LA), X(KX,LX), B(KB,LB)

C PRINT 909

€909 FORMAT('1',10X,12H ©0eee00006 )
C PRINT* , A

C PRINT*, B

CALL SYMTRI (A, KA, LA, MA, NA)
CALL DUPL (B, KB, LB, MB, NB, X, KX, LX, MX, NX)
IF(MA.EQ.1)GO TO 4
NN=MA-1
DO 1 J=1,NN
K=J+1
DO 1 I=K,MA
DO 1 L=1,NB
1 %(1,L)=X(1,L)-A(1,J)*x(J,L)
C BACK-SUBSTITUTION
4 DO 2 K=1,NX
DO 2 II1=1,MA
I=MA-II+1
IP1=I+1
IF(IP1.GT.NA)GO TO 2
DO 3 J=IP1,NA
K(1,K)=X(I,K)-A(1,J)*X(J,K)
X(1,K)=X(1,K)/a(1,1)
RETURN
END
SUBROUTINE SYMTRI(A,KA,LA,MA,NA)
C TRIANGULARIZATION OF A SYMMETRIC POSITIVE DEFINITE MATRIX;
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(KA,LA)
IF(MA.EQ.1)RETURN
N=NA-1
Do 1 J=1,N
K=J+1
DO 1 I=K,NA
a(1,3)= (a(J,1)/a(3,3))
DO 5 L=1,NA
5 A(1,L)=A(1,L)-A(1,J)*A(J,L)
1 CONTINUE
RETURN
END
SUBROUTINE DUPL(A,KA,LA,MA,NA,B,KB,LB,MB,NB)
C MATRIX B IS SET EQUAL TO MATRIX A.
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(KA,LA),B(KB,LB)
MB=MA
NB=NA
DO 1 I=1,MA
DO 1 J=1,NA
1 B(1,3)=A(1,J)

N w
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RETURN
END
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B.3 SEAM



eNoNoReoNeoRoRoNeoNoNeoNoRoNe Ne!

707
709

99
27

15

25

20

30

123

FILE SEAM FILE

LR R R SR R R R R s L Y R Y P P P X ]

FILE SEAM IS USED TO INCORPORATE THE CIRCUMFERENTIAL WELD
DEPRESSIONS AFTER THE CYLINDER HAS BEEN ADJUSTED FOR AXIS
TILT AND THE GENERATORS HAVE BEEN EXTENDED TO THE END SHELL
REGIONS.

LR R R R R e L Y Y R R R R R R R R ]

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION PP(17,8),A(17,8),B(17,2),TITLE(10)
M=17
N=8
READ 707, TITLE
FORMAT (10A8)
PRINT 709,TITLE
FORMAT('1'///'*%* PGM=SEAM INCORPORATES WELD DEPRESSIONS **x'///
& 1X,10A8)
DO 99 1=1,M
READ *,(A(I,J),J=1,N)
CONTINUE
FORMAT (8F8.3)
READ*, B
PRINT 1
FORMAT(' ',///,33H INITIAL VALUES W/O SEAM ADJUST )
DO 10 I=1,M
PRINT 2,(A(1,J),J=1,N)

CONTINUE
FORMAT(' ',8F8.3)
PRINT 3
FORMAT(' ',/////,18H SEAM DEPRESSIONS )
DO 15 1=1,M
PRINT 2,(B(1,J),J=1,2)
CONTINUE
DO 20 I=1,M
DO 25 J=1,3
PP(1,J)=A(1,J)
K=J+5
PP(I,K)=A(1,K)
PP(1,4)=A(1,4) - B(1,1)
PP(1,5)=A(1,5) - B(1,2)
CONTINUE
PRINT 4
FORMAT(' ',/////,32H FINAL ADJUSTED END CONDITIONS )
DO 30 1=1,M
PRINT 2,(PP(1,J),J=1,N)
CONTINUE
STOP

END



124

B.4  GRAPH
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B.5 PLOTSUR
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FILE PLSUR FILE
32 SR 2 SRS E ST SR TR T EL TR LT PR L DXL T E R R PP PR FUSTPU PP
KX kkk kkkkk
**%%* FILE PLSUR ADDRESSES THE VERSATIC PLOTTER  *%%%%
**x%x% IT IS USED TO DRAW GRAPH SURFACE *kk Kk
*%x%%x X 0-180 BY(5) Y 0-3600 BY(50 MM) Kk Kk K
*%%%% REFINED END CONDITION INCLUDED KX*XK
*kk%k% @000 ALSO PLOTS TRUE GENERATOR LINES ®0®  s¥xxx
ke kkk BY USING A SECOND DATA SET "READ(8,%) *%%%%
% % k%% kkdkd

RS R R R R s T X T

DIMENSION IBUF(1),XARRAY(75),YARRAY(75),TEMPX(17),TEMPY(17)
CALL PLOTS(IBUF,1)
CALL PLOT(0.0,0.5,-3)

XARRAY(74) = 0
XARRAY(75) = 1
YARRAY(74) = -40
YARRAY(75) = 40

CALL AXI1S(0.0,0.0,'THETA VALUES',-12,10.0,0.0,XARRAY(74),
* XARRAY(75))
CALL AX1S(0.0,0.0,' IMPERFECTIONS',13,9.0,90.0,YARRAY(74),
* YARRAY(75))
Do 10 J=1,73
READ(5,*) ( (XARRAY(I),YARRAY(I)),1=1,73)
CALL LINE(XARRAY,YARRAY,73,1,0,0)
CALL PLOT(0.0625,0.0625,-3)
10 CONTINUE
CALL PLOT(-4.5625,-4,5625,-3)
DO 200 J=1,17
I=1
DO 201 L=1,73
DO 202 K=1,17
READ(8,*) TEMPX(K), TEMPY(K)
202 CONTINUE
XARRAY(I)=TEMPX(J)
YARRAY(I)=TEMPY(J)
I=1 + 1
201 CONTINUE
PRINT*, XARRAY, YARRAY
DO 210 JJ=1,73
XARRAY (JJ)=XARRAY(JJ) + (JJ-1)%0,0625
YARRAY(JJ)=YARRAY(JJ) + (JJ-1)%2.5
210 CONTINUE
CALL LINE(XARRAY,YARRAY,73,1,0,0)
REWIND 8
200 CONTINUE
CALL PLOT(12.0,0.0,999)
STOP
END



127

B.6  MODE1
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FILE MODE1 FILE

LR R T Y Y R R R R R R )
khkkkk khkkk

**%%% FILE MODE1 IS USED TO EXTRACT THE SCALE FACTOR *%x%x
*%%%%x A1 FROM THE INTERPOLATED NODAL IMPERFECTIONS  *%%x#
*¥*%*%* AND THE CORRESPONDING RADIAL COMPONENTS OF THE %%%%%
*%x%* MODE-1 SHAPE ASSOCIATED WITH THE EIGENVALUE Rkkkk

*%%%% SOLUTION OF THE PERFECT SHELL kkkkk
R T T e T Y S

INTEGER IFD,NX,NY,NXL,NYL,IFLD,IER,IC,I,II,N,M,IX,1J,J1,JK, NUMNP
* ,NUMN2,K,JKI
REAL*8 TITLE
REAL F(17,15),X(17),Y(15),FL(19,36),XL(1
* C(16,3),wKk(102),BB(16,15) ,FF(16,7), MF
* ,XL1(19),pP(17,8),DE(17,15),
* EGG(684,4),TEGG(1368),v(1368),THETA(19),X1{19),A1(16)
DIMENSION TITLE(10)
IFD=17
NX=17
NY=15
PI=3,141592654
1C=16
M=16
N=15
Mi=M + 1
N1=8
NUMNP=684
DO 10 I1=1,NX
X(1)=(1-1)*p1/8
10 CONTINUE
¥(1)=0.0
¥(2)=228.6
Y(3)=685.8
v{(4)=914.4
DO 81 JK=5,12
Y(JK)=Y(JK-1) + 228.6
81 CONTINUE
¥(13)=2971.6
v(14)=3429.0
¥(15)=3657.6
READ 707,TITLE
707 FORMAT (10A8)
PRINT 709, TITLE
709 FORMAT('1'///' PGM= GRAPH PRODUCES A 2-D INTERPOLATED SURFACE'/
& /1X,10A8)
PRINT 101
101 FORMAT(' ',/// 8H X(1) =)
PRINT*,X
PRINT 102

,YL(36),WWK(48,57),

9)
(16,7),AA(17,7),TF(17,15)
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102 FORMAT(' ',///, 8H Y(1) = )
PRINT®, Y

MATRIX FF : ORIGINAL DATA SHOWN FOR DISPLAY
MATRIX AA : MIDDLE SECTION ADJUSTED DATA POINTS
MATRIX PP : END REGIONS & SEAMS
COL 1:3 END1 COL 4&5 SEAMS COL 6:8 END2

°

N OTE MUST USE THIS DO LOOP TO READ IN THE
ORIGINAL DATA FOR SPECIMEN B2

DO 713 1=1,16
READ*, (FF(1,J),3=1,7)

C

C

C

C

C

C

C

C

CrRAKAIII KK KKK R I RERRRRR IR IR R I AR AR KR A AR RR
C

C

C

C

C

C 713 CONTINUE
C

C

e Y e R R R R R

READ* ,FF
READ*, AA
DO 41 I=1,MT
READ*, (PP(I,J),J=1,N1)
41 CONTINUE
DO 42 I=1,NUMNP
READ*, (EGG(I,J),J=1,4)
42 CONTINUE
NUMN2=NUMNP*2
DO 43 I=1,NUMNP
JI=(NUMNP + 1)
TEGG(I)=EGG(I,3)
TEGG(JI)=EGG(I,4)
43 CONTINUE

LR R s R R P R R,

CALCULATE THE SUMMATION OF THE EIGENVECTOR DISPACEMENT
MATRIX SQUARED

OO an

Z2SUM=0.0
DO 44 I=1,NUMN2
44 ZSUM=ZSUM+(TEGG (I ) *TEGG(I))

o Ne]

CALL D1TA(BB,FF,MF,TF,AA,PP,F,M,N,DE)

L T e S T T R i
XTI T TS :
*%k
*%% THESE RECORDS ARE FOR INTERPOLATING

*%% THE MESH NODAL POQINTS
* %%k

k k%
k%%
kkk

QOO0 00n
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C XXk kkkkkkk
NXL=19
NYL=36
IFLD=19

o

C****************************************************************

C

C THIS LOOP WILL ALLOW ONE HALF

o OF THE CYLINDER LENGTH TO BE MODELLED

C (JKI=1 DEFAULT TO ONLY DO FIRST HALF)

C

o

C SET THE DESIRED CYLINDER PORTION

C JKI=1 - FIRST HALF

C JKI=2 - SECOND HALF

o
DO 11 JKI=1,2

C

C
IF(JKI .GT. 1) GO TO 5

c

o DDDDDDDDBDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

C FIRST HALF

o

o TY=1828,81

C YL(1)=1828.81

C DO 97 JI=2,16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
TY=TY-30.48 %%% %%%

97 YL(JI)=TY %%% THESE RECORDS ARE THE  %%%
DO 96 1=17,19 %%% COORD. FOR THE S4 MESH %%%
TY=TY-91,44 %%% ' %%%
96 YL(I)=TY %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

DO 174 1=20,22
TY=TY-56.96

174 YL(1)=TY
TY=914.4055
YL(23)=914.4055
DO 175 1=24,26
TY=TY-304.8

175 YL(I)=TY
GO TO 6

5 CONTINUE
C SECOND HALF

TY=1828.8

YL(1)=1828.8

DO 400 JI=2,16

TY=TY+30.48
400 YL(JI)=TY

DO 401 1=17,19

TY=TY+91,44
401 YL(1)=TY

DO 402 1=20,22

QOO0 QOO0000000000NN00O0AN
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TY=TY+56.96

402 YL(1I)=TY
TY=2743,1995
YL(23)=2743.1995
DO 403 1=24,26
TY=TY+304.8

403 YL(I)=TY
CONTINUE

DDDDDDDDDDDBDDDDBDDDDDDDDDDDDDDDDDDDDDDBDDDDDDDEDRDDDDDDDDDDDDDD
%%%% S5 MESH  %%%%

FIRST HALF

sNeoNoNoNoNoNoNeoRoNeoReNoReXeRe Ko
o

TY=1828,81
YL(1)=TY
DO 97 Ji=2,31
TY=TY-30.08
97 YL(JI)=TY
TY=TY-12,0
YL(32)=TY
TY=TY-12,0
YL(33)=TY
DO 175 1=34,36
TY=TY-300.8
175 YL(I)=TY
GO TO 6

5 CONTINUE

SECOND HALF

eNeoNe]

TY=1828.8
YL(1)=TY
DO 400 JI=2,31
TY=TY+30.08
400 YL(JI)=TY
TY=TY+12,0
YL(32)=TY
TY=T¥+12.0
YL(33)=TY
DO 403 1=34,36
TY=TY+300.8
403 YL(I)=TY
6 CONTINUE
C
C**********************************************************************
C
C
DO 63 K=1,16
XJ=(K-1)%22,5
XI1(1)=xJ
DO 99 11=2,10
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99 XI(11)=xI1(I11-1) + 5,

DO 98 1J=11,19

98 XI(1J)=x1(1J-1) + 15,

62
751

67

68

IF(K .GT. 1) GO TO 67

DO 62 I=1,19

THETA(I)=XI1(I1)*PI1/180.

PRINT 751

FORMAT(' ',///,1X,' THETA VALUES'/)
PRINT#* , THETA

DO 64 I=1,19

IF(X1(1) .LT. 360.) GO TO 68
XI(1)=XI(1) - 360.
XL(1)=X1(1)*P1/180.

64 CONTINUE
L e e T R I I I

(R L R g L B g g T B R g g TR RO A PR AV A A Y

99

eNeNoNoRoNoNoRoReNo oo Ne ke No Ko Ro ke o X KO

*%%%%% THESE RECORDS ARE USED TO OBTAIN

* A PLOT OF THE ORIGINAL TOTAL SURFACE

*x IMPERFECTIONS. INTERVALS ARE SMALL TO

*% PERMITT A BETTER GRAPHICAL INTERPERTATION
khkdhkkk

NXL=17

NYL=73

IFLD=17

X1=0.0

TY=0.0

DO 99 11=1,17
XL(11)=XI1*PI/180.
XI=XI + 22.5
CONTINUE

DO 97 JI1=1,73
YL(JI)=TY

TY=TY + 50.0

C 97 CONTINUE
T L T T Y e P e S S R T

R T R R R R R L T,

201

202

603
151
150

*

IF(K .GT. 1) GO TO 151

PRINT 201

FORMAT('1',/// 8H XL(1) = )
PRINT* , XL

PRINT 202

FORMAT(' ',///, 8H YL(I) = )
PRINT*, YL

PRINT 603

FORMAT(' ',//,15%," YSUM',10X,' zSUM',/)
DO 150 I=1,NXL
XL1(1)=XL(1)*180./PI

CALL IBCXXX (DE,IFD,X,NX,Y,NY,XL,6NXL,YL,NYL,FL,IFLD,WWK,WK,
1ER)
IF(K .NE. 2) GO TO 301
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PRINT 29
29 FORMAT('1',///,38H AXIAL DIRECTION YL  THETA DIRECTION |,
* 14H THETA DEGREES |,
* 5X,48H INTERPOLATED IMPERFECTIONS (MEASURED RADIALLY) )
301 CONTINUE
DO 300 J=1,NYL
JK=(J-1)*NXL
DO 305 I=1,NXL
JI=JK + I
II=NUMNP + JK + I
V(JI)=FL(I,J)*SIN(THETA(I))
V(I1)=FL(I,J)*COS(THETA(I))
IF(K .NE. 2) GO TO 305
PRINT 306,YL(J),XL(I),XL1(1),FL(1,J),V(JI),V(I1),K
305 CONTINUE
300 CONTINUE
306 FORMAT(' ',T5,F15.4,,5%X,F10.7,5X,F10.3,10X%,F15.4,
* 10X,F15.4,5X,F15.4,5%X,13)
65 FORMAT(' ',///,T5,19F6.3)
IF (K .NE. 2) GO TO 635
WRITE(6,632)
632 FORMAT('1',1X, 'NODAL DISP COMPONENTS'//)
DO 671 J=1,190
J2=J+190
J3=J+380
J4=J+570
J5=J+760
671 WRITE(6,633) J,V(J),J2,v(J2),33,v(J3),J4,v(J4),
* J5,v(J5)
633 FORMAT(' ',2X,13,2X,F7.3,4X,13,2X,F7.3,4X%,13,2X%,F7.3,
* 4X,13,2X,F7.3,4%X,13,2X,F7.3)
635 CONTINUE

IR SRS R R R R RS R L e T Y Y Y P R R

CALCULATE THE PRODUCT OF THE EIGENVECTOR TIMES THE
INTERPOLATED NODAL IMPERFECTIONS

YSUM=0.0
DO 500 J=1,NUMN2
YSUM=YSUM+ (TEGG(J)*v(J))
500 CONTINUE

3R R R s s Y Y Y R R R R L A

PRINT 604,YSUM, ZSUM
604 FORMAT(' ',10X,F15.4,5%,F15.4)
A1(K)=YSUM/ZSUM
63 CONTINUE
PRINT 505
505 FORMAT(' ',///,1X,' CONTRIBUTION OF THE FIRST MODE'/)
DO 507 Ki=1,16
PRINT 506,A1(KI)
507 CONTINUE
506 FORMAT(' ',15X,3F10.5)
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11 CONTINUE
STOP
END

oNeoNeNe]

SUBROUTINE D1TA(BB,FF,MF,TF,AA,PP,F,M,N,DE)
INTEGER 1,J,M,N,NN
REAL F(17,15) , FF(16,7),BB(16,15) ,MF(16,7),TF(17,15),AA(17,7),
*Pp(17,8),DE(17,15)
M1=M + 1
NN=N-8
DO 51 K=1,NN
DO 52 L=1,M
MF(L,K)=FF(L,K)*25,4
52 CONTINUE
51 CONTINUE
DO 100 1=1,M1
TF(1,1)=pPP(1,1)
TF(1,2)=PP(1,2)
TF(1,3)=PP(I,3)
TF(I,4)=PP(I,4)
TF(1,12)=PP(I,5)
TF(1,13)=PP(1,6)
TF(1,14)=PP(1,7)
TF(1,15)=pP(1,8)
DO 200 J=1,NN
TF(I,(J+4))=AA(1,J)
200 CONTINUE
100 CONTINUE
DO 70 KL=1,N
DO 75 JL=1,M1
DE(JL,KL)=TF(JL,KL)
75 CONTINUE
70 CONTINUE
oclele PRINT 9

C®®09 FORMAT(' ',/7;;/,T20,50H ®000® INITIAL ADJUSTED DEFLECTION VALUES
)

occlc) *0OOOO , /
ofclele DO 4 I=1,M1
ceoe PRINT 77,(DE(I,J),J=1,N)
C®®® 4 CONTINUE
6 FORMAT(' ',11F12.3)
77 FORMAT(' ',15F8.3)
RETURN
END
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B.7  ADDDISP
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* FILE ADDDISP FILE *

KEE KK I K KRR A AR R A AR KRR IR AR A AR R AR AR AR AR AR A Ak ke kkhkhk k%

FILE ADDDISP PERFORMS THE FOLLOWING FUNCTIONS:
1) MULTIPLIES THE EXTRACTED SCALE FACTOR TIMES
THE CORRESPONDING RADIAL COMPONENT OF THE
EIGENVECTOR
2) ADDS THE CALCULATED NODAL DISPLACEMENTS
TO THE NODAL COORDINATES

LR R R Rt R T T R Y Y Y R R R R R

oo EoNoNsNeoNsRoNoNoNo NN Ne e

REAL*8 FIELD(80),Vv(475,4),v(475),X1(19),THETA(19),R(475)
INTEGER FMT1(6)/' (5A8', ',A5,', '"F10.', ' ', ',3a8', ',a1)'/
INTEGER SETFMT
NUMNP=475
PI=ACOS(-1.0)

o

R X R Y R R R R R R I

C

C SCALE FACTOR "A1"

C

C**************************************************************
A1=-0.00397

o

C***************************************************************

o

o READ IN THE EIGENVECTOR

C

C VV(NUMNP, 4)

o COL 11 : NODE NUMBER

o 12 ¢ X-DISPLACEMENT (NOT USED)

o 13 : Y-DISPLACEMENT

C 14 : Z-DISPLACEMENT

C

C***************************************************************

o

DO 500 I=1,NUMNP
READ*, (Vv(1,J),J=1,4)
500 CONTINUE
C
C*************************************************************
C
C SCALE THE EIGENVECTOR & CONVERT TO POLAR COORD
o
C*************************************************************
C
PRINT 4000
X1(1)=90.0
DO 99 11=2,10
99 XI1(II)=XI(II-1) - 5,
DO 98 1J=11,19
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98 XI(1J)=XI1(1J-1) - 15,
DO 62 I=1,19
62 THETA(I)=XI(I)*PI/180.
ICNT=NUMNP/19
DO 600 I=1,ICNT
DO 625 J=1,19
JI=(I-1)*19 + J
TEMP1=VV(JI,3)*COS(THETA(J))
TEMP2=VV(JI,4)*SIN(THETA(J))
R(JI)=TEMP1 +TEMP2
V{(JI)=R(JI)*A1
PRINT 5000,J1,XI1(J),TEMP1,TEMP2,R(JI),V(JI)
625 CONTINUE
600 CONTINUE
4000 FORMAT('1',//,1X, 'NODE',5X,'THETA',8X,'Y-COMP',8X,'Z-COMP',8X,
* 'RADIAL DISP',4X,'SCALED DISP',//)
5000 FORMAT(' ',1X,13,5X,F5.1,5%,F10.5,5%,F10.5,5%X,F10.5,5%X,F10.5)
C

R T L e Y Y s e R )

C

C READ IN POLAR COORDINATE "R"
C ADD THE COMPUTED DISPLACEMENT V(1)
C

C*************************************************************
C
DO 1000 I=1,NUMNP
READ (5,900) (FIELD(J),J=1,6), Y, (FIELD(J),J=7,10)
900 FORMAT(5A8, A5, F10.0, 3a8, A1)
Y=Y + V(1)
FMT1(4)=SETFMT (10,Y,1)
WRITE (6,FMT1) (FIELD(J),J=1,6), ¥, (FIELD(J),J=7,10)
1000 CONTINUE
STOP
END
C
o
C********************************************************************
c
C FUNCTION SETFMT
C .
C********************************************************************
c
INTEGER FUNCTION SETFMT (KF, X, N)
DIMENSION X(N)
XMIN=0.0
XMAX=0.0
DO 100 1=1,N
XMAX=AMAX1(XMAX,X(I))
XMIN=AMINT(XMIN,X(1))
100 CONTINUE
IMAX=XMAX
IMIN=ABS (XMIN)
IMIN=IMIN%10
I1=KF-1
300 IMAX=IMAX/10
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IMIN=IMIN/10

1=I-1

IF (IMAX.NE.D® ,OR. IMIN.NE.O) GO TO 300
SETFMT=ITOA(I)

RETURN

END
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B.8  LOADS
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100

140

L FILE LOADS FILE kkk

EE SRS RS SRS SRS AL R RS RS L3

FILE LOADS IS USED TO CALCULATE THE CONSISTANT LOAD VECTOR
SCALE FACTORS FOR THE GIVEN SHELL GEOMETRY

LR R SRS SRR E R R R R R LSS S T T R T T

REAL S(19), Q(19), PSI(4,4) _
REAL PHI(19)/90., 85., 80., 75., 70., 65., 60., 55., 50.,
& 45 ., 30., 15., 0., -15.,
& -30., -45., -60., -75., -90./

INTEGER NODE(19), IDIRN, NCUR

NLOADS=19

NELS=6

NODINC=1

NODE1=666

PI=ARCOS(-1.)

RAD=PI/180.

R=763.3/1000.

PIR=PI*R

DO 100 I=1,NLOADS

NODE (I )=NODINC*I-1+NODE1
S(1)=SIN(RAD*PHI(I))

0(1)=0.0

CONTINUE

CALL DPRINT (PHI,NLOADS,1,NLOADS,1,'F5.0/',0,'PHI/',"1")
CALL DPRINT (S,NLOADS,1,NLOADS,1,'F10.6/',0,'S/',"'~")
PSI(1,1)=128./1680.

PS1(2,1)=99,/1680.

pPs1(1,2)=PSI(2,1)

PSI(3,1)=-36./1680.

pPs1(1,3)=PSI(3,1)

PSI(4,1)=19./1680.

PSI1(1,4)=PSI(4,1)

PSI(2,2)=648./1680,

PSI(3,2)=-81./1680.

PSI1(2,3)=PSI(3,2)

PS1(4,2)=PSI(3,1)

PSI1(2,4)=PSI(4,2)

PSI(3,3)=PSI(2,2)

PSI(4,3)=PSI(2,1)

PSI1(3,4)=PSI1(4,3)

PS1(4,4)=pSI(1,1)

CALL DPRINT (PSI,4,4,4,4,'F9.6/',9,1,'PSI/","-")
N=-3

DO 500 M=1,NELS

N=N+3

DPHI=(PHI (N+1)-PHI (N+4) ) *RAD

PRINT 250, M, DPHI

250 FORMAT ('0OM =', 12, 5%, 'DPHI =', E14.6)
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DO 400 1=1,4
SuM=0.0
DO 300 J=1,4
SUM=SUM+PSI(I,J)*S(N+J)
300 CONTINUE
Q(N+I)=Q(N+I)-DPHI*SUM/PIR
400 CONTINUE
500 CONTINUE
PRINT 600, (NODE(I), Q(1), I=1,NLOADS)

600 FORMAT ('-NODE FORCE' /(1X, 14, E15.6))
C
C COMPUTE RESULTANT MOMENT AS A CHECK
C
SUM=0. 0
DO 1000 I=1,NLOADS

=1,
SUM=SUM-Q(1)*S(1)
1000 CONTINUE
SUM=R*SUM
PRINT 1200, SUM
1200 FORMAT ('-RESULTANT MOMENT = ', E22,15)
FACTOR=0.5/SUM
DO 1300 I=1,NLOADS
1300 Q(I)=Q(1)*FACTOR

IDIRN=1
NCUR=1
PRINT 1400, (NODE(I),IDIRN,NCUR, Q(I), I=1,NLOADS)
1400 FORMAT ('-NODE CORRECTED FORCE'/(1X, 14, 215, F10.8))
STOP

END
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B.9  NISAPLOT
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NIsSaAaPLOT (U OF M VERSION)

C
C
C
C LAST UPDATE: JUNE 1/84 BY DJP
C
C

LA AR R R TR TSR R RS IR R TR R R L R R X X R T T X T T TR R R R ORI RO e

EXTERNAL PARTN
COMMON /CNTL/ NUMNP, MXFIGS, MXNODS, MXLINK, NUMEL, NUMFIG
COMMON /10/ NT1, NT2

NT1=1

NT2=2
C
C*********************************************************************
o
C REQUIRED INPUT
o
C
C FIRST INPUT CARD
C * NUMNP - NUMBER OF NODAL POINTS
o * NTPYPE1 - NUMBER OF TRUSS ELEMENTS
C * NTYPE7 - NUMBER OF SHELL ELEMENTS
C
C SECOND INPUT CARD
o * NUMNP  -NUMBER OF NODAL POINTS
o
C THIRD INPUT CARD
C * EMBED ELEMENT COORDS DIRECT FROM NISA DATA FILE
C
C FORTH INPUT CARD
o * NTYPE - ELEMENT TYPE (NPAR(1))
C * NEL - NUMBER OF THESE ELEMENTS TO BE PLOTTED
C * IEL - NUMBER OF NODES PER ELEMENT
o
C FIFTH INPUT CARD
C * EMBED ELEMENT INFO BLOCK DIRECT FROM NISA INPUT(2*NEL)
o
C SIXTH INPUT CARD
C * REPEAT 4TH & 5TH CARDS FOR OTHER TWO ELEMENT GROUGS
C
C*********************************************************************
o

READ (NT1,*,END=9000) NUMNP, NTYPE1, NTYPE7
NUMEL=NTYPE1+NTYPE7
MXFIGS=NTYPE1+3*NTYPE7

C
C MXFIGS IS THE NUMBER OF CLOSED FIGURES TO BE PLOTTED
o
MXNODS=12
o
C STORAGE MAP
C
C N1 X(NUMNP) R8
o N2  Y(NUMNP) R8
C N3  Z(NUMNP) R8



144

N3A DX(NUMNP) R8  X-TRANSLATION

N3B DY (NUMNP) R8  Y-TRANSLATION

N3C DZ(NUMNP) R8  Z-TRANSLATION

N4  IELS{MXFIGS) I4 NUMBER OF NODES PER ELEMENT
N5  NOD(MXNODS,MXFIGS) 14 INCIDENCE TABLE

N6  LINKS(MXLINK,2) 14

OO0 0n

MXLINK=2*NTYPE1+28%NTYPE7
NA=8*6*NUMNP + 4% (MXFIGS+1) + 4*MXNODS* (MXFIGS+1) +
& 4%2*MXLINK
CALL GETCOR (PARTN,NA)
9000 STOP
END
SUBROUTINE PARTN (A,NNA)
REAL*8 A(1)
COMMON//CNTL/ NUMNP, MXFIGS, MXNODS, MXLINK, NUMEL, NUMFIG
NA=NNA/8

C PARTITION STORAGE

Ni=1

N2=N1+NUMNP
N3=N2+NUMNP
N3A=N3+NUMNP
N3B=N3A+NUMNP
N3C=N3B+NUMNP
N4=N3C+NUMNP
N5=N4+(MXFI1GS+1) /2
N6=N5+(MXNODS*MXFIGS+1) /2
N7=N6+(2*MXLINK+1) /2
N50=N7

CALL FEMPLT (A(N1), A(N2), A(N3), A(N3A), A(N3B), a(N3C),
& A(N4), A(N5), A(N6))
RETURN
END
SUBROUTINE FEMPLT (X, Y, Z, DX, DY, DZ, IELS, NOD, LINKS)
COMMON /CNTL/ NUMNP, MXFIGS, MXNODS, MXLINK, NUMEL, NUMFIG
DIMENSION X{(NUMNP), Y(NUMNP), Z(NUMNP), IELS(MXFIGS),
& NOD(MXNODS,MXFIGS), LINKS(MXLINK,2)
DIMENSION DX(NUMNP), DY(NUMNP), DZ(NUMNP)
C
C*********************************************************************
C
o NEXT LINE ADDED BY DJP MARCH 15/84
o
REAL*8 DUMMY(10),DUMX(1)
C
C*********************************************************************
C
CALL INPUTM (X, Y, Z, IELS, NOD)
CALL INPUTD (DX, DY, DZ)
CALL LINK (IELS, NOD, LINKS, NLINKS)
CALL OUTPUT (X, ¥, Z, NLINKS, LINKS, DX, DY, DZ)
RETURN
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END
SUBROUTINE INPUTM (X, Y, Z, IELS, NOD)

COMMON /CNTL/ NUMNP, MXFIGS, MXNODS, MXLINK, NUMEL, NUMFIG
COMMON /10/ NT1, NT2

DIMENSION X(NUMNP), Y(NUMNP), Z(NUMNP), IELS(MXFIGS),

& NOD(MXNODS,MXFIGS), INOD(16), INOD1(4)

*****************************************************************
NEXT LINE ADDED BY DJP MARCH 15/84
REAL*8 DUMMY(10),DUMX(1)
*****************************************************************
RAD=ARCOS(-1.)/180.
INPUT NODAL COORDINATES
READ (NT1,*) NNP

DO 300 I=1,NUMNP
READ (NT1,200) X(1), ¥(1), 2(I), KODE

FORMAT (35X, 3F10.0, 5%, I2)
IF (KODE.EQ.0) GO TO 300
R=Y(I)

PHI=RAD*Z(1)

Y(1)=R*COS{PHI)
Z(1)=R*SIN(PHI)
CONTINUE

INPUT AND REORGANIZE INCIDENCE TABLE

12=0

NUMFIG=0

IF (NUMEL.LE.0) GO TO 9000

I1=12+1

READ (NT1,*,END=9000) NTYPE, NEL, IEL
NUMEL=NUMEL-NEL

GO TO (1000,2000,3000,4000,5000,6000,7000), NTYPE

TRUSS ELEMENTS (2 NODES PER ELEMENT)

12=11+NEL~1

DO 1500 I=I1,12

NUMFIG=NUMF1G+1

IELS(I)=IEL

READ (NT1,1100) (NOD(J,1), J=1,IEL)
FORMAT (5%, 215)

CONTINUE

GO TO 400

ELEMENT TYPE 2

GO TO 9900
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7200

7860
7300
7830

ELEMENT TYPE 3

GO TO 9900

ELEMENT TYPE 4

GO TO 9900

ELEMENT TYPE 5

GO TO 9900

ELEMENT TYPE 6

GO TO 9900

ELEMENT TYPE 7 (PLATE/SHELL ELEMENT)

K=IEL/4 + IEL - 4*%(IEL/4)
GO TO (7200,7400,7600,7800), K

4-NODE ELEMENT

4 NODE ELEMENT ADDED BY DJP APR/84

I12=11+NEL-1

DO 7300 I=I11,12
NUMFIG=NUMFI1G+1

READ (NT1,7830) DUMX
READ (NT1,7860) INOD1
IELS(1)=4
NOD(1,1)=INOD1(1)
NOD(2,1)=INOD1(2)
NOD(3,1)=INOD1(3)
NOD(4,1)=INOD1(4)
FORMAT (414)
CONTINUE

FORMAT(A8)

GO TO 400

8-NODE ELEMENT
GO TO 9900
9-NODE ELEMENT
GO TO 9900
16-NODE ELEMENT

12=11+3*NEL-1
DO 7900 1=11,12,3
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NUMFIG=NUMFIG+3
C
C************************************************************* Tk kkkkkk
C
C NEXT LINE ADDED BY DJP MARCH 15/84
c
READ (NT1,7825) DUMMY
7825 FORMAT (10a8)
C
C*****************************************************************‘k***
C
READ (NT1,7850) INOD
IELS(I)=12
IELS(1+1)=8
IELS(I+2)=8
NOD(1,I)=INOD(1)
NOD(2,1)=INOD(5)
NOD(3,1)=INOD(6)
NOD(4,1)=INOD(2)
NOD(5,1)=INOD(7)
NOD(6,I) INOD(8)
NOD(7,1)=INOD(3)
NOD(8,I) INOD(9)
NOD(9,1)=INOD(10)
NOD(10,1)=INOD(4)
NOD(11,1)=INOD(11)
NOD(12,1)=INOD(12)
NOD(1,I+1)=INOD(12)
NOD(2,1+1)=INOD(13)
NOD(3,1+1)=INOD(14)
NOD(4,1+1)=INOD(7)
NOD(5,1+1)=INOD(8)
NOD(6,1+1)=INOD(15)
NOD(7,1+1)=INOD(16)
NOD(8,1+1)=INOD(11)
NOD(1,1+2)=INOD(6)
NOD(2,I+2)=INOD(14)
NOD(3,1+2)=INOD(15)
NOD(4,1+2)=INOD(9)
NOD(5,1+2)=INOD(10)
NOD(6,1+2)=INOD(16)
'NOD(7,1+2)=INOD(13)
NOD(8,1+2)=INOD(5)
7850 FORMAT (1614)
7900 CONTINUE

GO TO 400
C
9000 RETURN
C :
c DESTINATION FOR CURRENTLY UNSUPPORTED OPTIONS
C

9900 PRINT 9910

9910 FORMAT (' OPTION NOT CURRENTLY SUPPORTED')
STOP
END
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SUBROUTINE LINK (IELS, NOD, LINKS, NLINKS)

COMMON /CNTL/ NUMNP, MXFIGS, MXNODS, MXLINK, NUMEL, NUMFIG
DIMENSION IELS(MXFIGS), NOD(MXNODS MXFIGS) LINES (MXLINK 2)
L=0

DO 1000 I=1,NUMFIG

IEL=IELS(I)

DO 200 J=1,IEL

L=L+1

K=MOD(J,IEL)+1

NJ=NOD(J,1)

NK=NOD(K, 1)
LINKS(L,1)=MINO(NJ,NK)
LINKS(L,2)=MAX0(NJ,NK)

CONTINUE

CONTINUE

CALL PRINT4 (LINKS,MXLINK,2,L,2,
CALL SORT (LINKS(1,2), LINKS(

'14/',1,'BEFORE SORTING/','1
),
CALL PRINT4 (LINKS,MXLINK,2,L,2,'I
;2

)

/ ,'FIRST SORT/','1
CALL SORT (LINKS(1,1), LINKS( L)
CALL PRINT4 (LINKS,MXLINK,2,L,2,'I4/',1,'SECOND SORT/','1')
NOW ELIMINATE DUPLICATE LINKS

I=1
J=1+1
IF (J.GT.L) GO TO 3000
IF (LINKS(I,1).NE.LINKS(J,1) .OR. LINKS(I,2).NE.LINKS(J,2))
GO TO 2600
DO 2400 K=J,L
LINKS(K-1,1)=LINKS(K,1)
LINKS(K-1,2)=LINKS(K,2)
CONTINUE
L=L-1
GO TO 2200
I=I+1
GO TO 2000
CONTINUE
CALL PRINT4 (LINKS,6MXLINK,2,L,2,'14/',1,'AFTER COMPRESSING/','1")
NLINKS=L
RETURN
END
SUBROUTINE SORT (LINK1, LINK2, L)
DIMENSION LINK1(L), LINK2(L)
LM1=L-1
DO 800 I1=1,LMT
K=LINK1(1)
IP1=1+1
DO 700 J=1P1,L
IF (LINK1(J).GT.K) GO TO 700
LINK1(I)=LINK1(J)
LINK1(J)=K
K=LINK1(I)
M=LINK2(I)
LINK2(I)=L
LINK2(J)=M

INK2(J)
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700
800

100

200

300
400

CONTINUE
CONTINUE

RETURN

END

SUBROUTINE OQUTPUT (X, Y, Z, NLINKS, LINKS, DX, DY, DZ)
COMMON /CNTL/ NUMNP, MXFIGS, MXNODS, MXLINK, NUMEL, NUMFIG
COMMON /10/ NT1, NT2

LOGICAL FLAGT

COMMON /FLAGS,/ FLAGT

DIMENSION X(NUMNP), Y(NUMNP), Z(NUMNP), LINKS(MXLINK,2)
DIMENSION DX(NUMNP), DY(NUMNP), DZ(NUMNP)

REWIND NT2

WRITE (NT2) NUMNP, NLINKS

DO 100 I=1,NUMNP

WRITE (NT2) X(1), ¥(1), z(1)

CONTINUE

DO 200 I=1,NLINKS

WRITE (NT2) LINKS(I,1), LINKS(I,2)

CONTINUE

IF (.NOT.FLAG1) GO TO 400

DO 300 I=1,NUMNP

WRITE (NT2) DX(1), DY(I), Dz(I)

CONTINUE

RETURN

END

SUBROUTINE INPUTD (DX, DY, DZ)

C INPUT THE CARTESIAN COMPONENTS OFVTHE NODAL DISPLACEMENTS

C

100

COMMON /CNTL/ NUMNP, MXFIGS, MXNODS, MXLINK, NUMEL, NUMFIG
COMMON /10/ NT1, NT2

LOGICAL FLAGT

COMMON /FLAGS/ FLAGI

DIMENSION DX(NUMNP), DY(NUMNP), DZ{NUMNP)

FLAG1=,FALSE.

READ (NT1,*,END=100) (DX(I), DY(I), DZ(I), I=1,NUMNP)
FLAG1=.TRUE.

RETURN

END
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