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ABSTRACT

The locaI buckling of thin-walled fabricated steel cylin-
ders loaded in pure flexure is investigated. Analyses to
predict inelastic buckling of these shells are conducted

using the finite element Èechnique. The program used,

NISA80, includes both maLerial and geometric nonlinearities
in the predictíon of the limit load.

A rational technique is developed to incorporate initial
inperfections into the anaJ-yses. A previous experimental

investigation conducted at the University of Alberta in

1981, provided the initial data base for this investigation.

The investigation here in involved a series of nonlinear

anlaysis on various mesh configurations. Results from these

analyses are compared with the University of Alberta testing
of two flexurally loaded cylinders fabricated from 3.4-mm

and 5-mm plate and approximately 1525 mm in diameter.

On the basis of the Iimited amount of test evidence

available for the flexurally loaded fabricated cylinders,
the results of the nonlinear analysis are acceptable. The

nonlinear finite element technique incorporating initial
imperfections, is a reliable means of predicting the limit
point load of a flexurally loaded fabricated cylinder.
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Further experimental study is required to establísh a

larger data base for the flexural buckling strength of

fabricated steel tubes. Additional testing is required to

determine the effects of residual stresses on the buckling

strength of thin-watled tubes with large R/L ratios.
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Chapter I

T NTRODUCTI ON

1"1 THIN-WALLED TUBULAR MEMBERS

The use of Lhin-walled tubular members constructed from

steel sheets is growing in application in civil engineering

structures. The need f.or increased knowledge concerning the

complex structural stability of these shells is in direct
response to this growth. Exhaustive investigation by Yamaki

(1) has provided a complete solution to the problem of buck-

ling in cylindrical shells subjected to compression, tor-
sion, and pressure. However, to date only a few investiga-
tions have focussed attention on the interaction of pure

bending and the buckling phenomenon. In this investigation

an analysis is conducted into the stresses produced by pure

bending and their effect on the local buckling of thin-
waIled tubular members.

Thin-walled structures fabricated from cold-formed steel-

plates consist of stiffened and unstiffened cylinders with

small thickness-to-radius ratios t/R. Tubular steel struc-
tures, in most cases, are space-type structures. Cylindrical
forms of such structures with large diameter-to-thickness

ratios D/t are most often referred to as shells.

1
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Tubular shells offer several advantages,

Troirsky (2):
as explained by

1. StructuraIly, the sheII is very efficient:

- a conÈinuous medium which permits a high portion of

the material to be used to capacity;

- material is distributed along the perimeter provid-

ing a large radius of gyration;

- stability of a circular cylinder is optimum in all
directions compared to other available sections;

- substantial-Iy smaller aerodynamic and hydrodynamic

resistances;

minimal perimeter of contact leading to reduced

maintenance against corrosion compared to a section

of equal cross sectional area, such as a wide-

flange beam

The cylindrical shel1 has the capacity to perform

technological functions and simultaneously to serve

as a carrying structure:

- conveyor galleries and pipelines both act in this
manner.

3. Ease of Fabrication:

the advantages are numerous but the introduction of

sophisticated welding technigues provided a bench-

mark in their extensive use.

2
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The most difficult area in the design of tubular shells
is the assessment of stability requirements. Thin-walled

cylindrica] shells may fail either by the instability of the

shell as a whole, involving bending of the axis, or by the

local instability of the wall of the shell. This report

wiIl deal with the latter type of failure, commonly called

local buckling or wrinkling.

T.2 STÀTEMENT OF THE PROBLEM

Current North American code specifications (3), (4), (5).

base design recommendations on empirical local-buckling-
strength equations established from tests on sharp-yielding

mild steel cylinders. Recently, a distinction has been made

(¡aker et al. (6)) between local buckling strength of cyl-
indrical members subjected to uniform axial compression and

that of such members subjected to flexural loading. Unfor-

tunately these formulations do not predict the response of

the structure in the plastic range of analysis. Furthermore

these formulations are based on timited data available for
flexurally loaded tubular steel members. These data show a

large degree of scatter, and to date no unified theory

exists to explain the observed experimental behaviour (¡aker

et aI. (6)). Hence there exists a great deal of uncertain-

ty in the prediction of local buckling behaviour of thin-
walled cylindrical shells subjected to flexure.
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1.3 OBJECTIVES

The objective of this study is to predict analytically the

nonlinear response of cyJ-indrícaI sheIl specimens subjected

to pure bending, tested in a previous experimental investi-
gation at the University of Alberta (7). By comparing the

limit point load of the experimental investigation with the

analytical response, it is hoped that the analytical proce-

dure may be extended to predict the nonlinear response of

any cylinders subjected to bending with large R/L ratios,
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Chapter

REVIEW OF LOCAT

IÏ

I NSTABI LI TY

2.T INTRODUCTION

A structure subjected to a compressive load which, after
an infinitesimal increase in the load, undergoes a large

change in its equilibrium configuration is said to have

reached its buckling load. Àccording to linear theory, dis-
placements are proportional to the applied loads. However

the buckling phenomenon denotes a disproportionate increase

in displacement resuLting from a small increase in the load.

Therefore a nonlinear she1J. theory is required (rroitsky
(2)).

A thin-wa11ed cylindrical she11 subjected to compressive

forces may fail either due to the instability of the entire
shell, resulting in bending of the longitudinal axis, ot due

to local instability of the thin wall, which may or may not

involve lateral distortion of the axis. The former type of

failure, known as overal-I buckling, wâs investigated by

Eu1er and is directly related to the ratio of length to

radius of gyration (r,/r). The latter, known as local buck-

ling or wrinkling, is of primary concern in the design of

thin-walled cylindrical shel1s since it is often the govern-

5



6

ing consideration, Furthermore, since the criterion is one

of stabirity, fairure may initiate at load tevers corre-
sponding to nominal stresses well below the yield strength.

2"2 LOCÀL BUCKLING IN CYLTNDRTCAL SHELLS

LocaL instability is a function of the ratio of the

thickness to the radius of the shell warr (t/R). As impried

in its name, it is locar in nature and resurts in character-
istic burges or wrinkres. rnitiation of fairure depends on

the combined compressive stresses at the specific point in
question and is independent of the tength of the sheII.

Tn the case of corumns and flat plates it is possibre to
use the crassical small-deflection theory to predict the

buckring load. In general, however this method of analysis
may noL be used for shel-I structures. As early as 1940, Von

Karman (8) and his corraborators showed the significant dif-
ference in results between the buckling stress predicted by

linear theory and that predicted by nonrinear theory. This

was attributed to the fundamentar nonlinear nature of the

buckling process in thin-warled shelrs. Following these

findings and continuing to the present, numerous testing
programs have been conducted to verify the proposed nonli-
near shell theories that followed.

The buckling load for some

lower than the load predicted
types of she1l may be much

by classical small-deflection
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theory. In addition, the scatter of test data may be quite

large. For example, if a set of ten nominally identical
thin-walled cylinders of the same geometry were fabricated

from a particular metal, none of the cylinders would fail at

the same load. In fact, the scatter of results may range to

500 percent and the average buckling load may be one-eighth

of the theoretical buckling load (¡aker (6)). The depen-

dence of the cylindrical shell buckling load on smaIl devia-

tions from the perfect circular cylindrical shape, as well

as l-oca1 edge conditions, have resulted in severe discrep-

ancies between theoretical and experimental failure 1oads.

Current methods of establishing design data tend to treat
both initial imperfections and edge conditions as random

events. Available test results are Iumped together without

regard to specimen construction or method of testing.
Results are analyzed to yield lower bounds or statistical
correction factors to be applied to simplified versions of

theoretical results. When using a Iower-bound correction
factor, data which do not seem typical are left out.

Statistical correction factors are determined by calcu-

lating a best-fit curve for a given set of data (gaker (6)).

Àfter establishing the standard deviation of the test data,

smal-l-sample theory is used to formulate a design curve for
certa in probabi I i ty I imi ts. For a 902 probabi 1 i ty 1evel ,

the chances are about 9 out of 10 that a shell subject to
the critical buckling load will not buckle. The proposed

formulations are only approximate.
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2.3 BENDING STABTLTTY

A solution to l-ocal buckling induced by pure flexure was

first introduced in 1932 by Flugge (9). His method utilized
a linearly elastic stability theory which incorporated an

assumed buckle wavelength-to-radius ratio. À Iater paper by

Timoshenko (10) cited Flugge's calculation and the theory

stood for some time. Flugge's calculation predicted a buck-

ling stress that $¡as 1.3 times the corresponding axial com-

pressive buckting stress. Experimental work at that time

supported those findings.

Work by Seida and hreingarten (11) in 1961 pointed out

F1ugge's assumed critical wavelength vras incorrect. Their

results indicated that, âIthough the ratio of bending and

compressive stresses can vary widely with r^¡avelength, when

the wavelenqth is minimized, Lhe critical L¡ucklins stress
- - 

__ J

due to flexure is approximately the same as the compressive

buckling stress. At this point the smaIl-displacement theo-

ry was abandoned as ä basis for differentiating between

critical buckling stresses caused by bending and compres-

sion.

A fundamental difference between uniformly compressed

cylinders and flexurally loaded ones is the limit-point
buckling mode inherent to the latter. Compressed cylinders
display a distinct bifurcation-type buckling mode as dis-
cussed by Stephens et al . (7 ) . Bi furcat ion-type buckl ing



is chara-cterized by a load curve which

bifurcation point in which the load path

ble and unstable branches.

di splays

seperafes

9

a distint
into sta-

Flexurally roaded tubes display the so-calred "Brazier
Effect" in response to the app].ied load. First investigated
by Brazier (r2) in rg27, this ef)fect is characterized by the

cylinder assuming an oval- shape'due to the applied roaa.

Any member subjected to bending will assume a curvature.
This curvature results in components of the longitudinal
tensile and compressive forces that are directed toward the

neutral suriace of the tube. These forces in turn squeeze

the tube into an ovar shape, thereby decreasing the moment

of inertia. This results in a reduction of the stiffness
and, eventual-ry, a loss of stability. Based on the geometry

of the undeformed cross section, Brazier predicted the crit-
ical buckling stress as

oct 0.33 E E/R (2.t)

As reported by Troitsky (2) in a state-of-the-art trea-
tise, the current consensus among various investigators is
that bending tests of cylinders similar to those tested in
axial compression show t,hat buckling occurs over the com-

pression side of the cylinders in the same wave form, and

with approximately the. same vraverengths, âs in axiarry-load-
ed cylinders. Also similar to axially-roaded cylinders,



pure-bending test results show exactly
load with an increase of the ratio R/L.

cylinders Baker et aI. ( 6 ) reports,

stress is

10

the same decrease of

For moderately long

the critical buckling

o", = \l C E l/R (2.2')

where t thickness

mean radius of the shell
modulus of Elasticity

I
{i(T-=n\

correlation factor for unstiffened
unpressurized circular cyJ-inders

plast ic i ty correct ion term

The factor tt is incruded to account for the difference
between the theoretical and experimental resurts for cylin-
ders subjected to axiar compression. The crassical theoret-
ical value for the buckling coefficient is 7r=1. yr mây be

obtained from figure 2.r . For erastic buckring the varue

of n= I is used.

The critical buckling stress for cylinders subjected to
bending may be obtained from the above equation but y r is
replaced by the bending correlation factor t fz¡ as shown in
figure 2.2. The criticar buckì-ing stress wirl represent the
maximum stress due to the bending moment (i.e., the outer

R

E

cb

'l



fiber stress) " For inelastic buckling, the

o may be found by using the plasticity

suggested for axial compression.

11

criticaL stress

correlat ion term

2.4 TNELASTIC BUCKLING

r f the buckJ.ing stress is berow the proportional_ limit
then the compressive modulus of the material may be assumed

constant. However, if the stresses are in the inelastic
range the modulus of the material becomes a function of the

stresses. under inerastic stress conditions, the modurus of

the material decreases, resurting in a decrease of the
stiffness and a corresponding decrease of the buckling load.

The effect of pJ.asticity on the buckling of shelts can be

accounted for by the use of the plasticity correction term

. This reduction factor refrects the variation of the ma-

teriar stiffness with the stress l-ever and may be defined as

d", / o" (2.3)

actual inelastic buckling stress

elastic buckJ.ing stress

stability design guide (I2), for
recommended plasticity correc-

where acr

oe

n

According

inelast ic
tion term

to the NASA shell
Local buckling the

is;

n (E.8, ) / E (2.4)



t2
where E, Es and Et are the erastic, secant and tangent modu-

1us, respect ive1y. Equat ion (2.4) impr ies a homogeneous

malerial with gradual-yierding stress-strain curves. À more

general factor is suggested by Gerrard (14 ) for other
material behaviour. Nonhomogenous material behaviour can

result from residual- stresses introduced during fabrication
of most structurar steel. This behaviour causes rocalized
regions of the cyrinder to deform plastically before the

nominal stress reaches the yierd point. Theoreticarry-based

reduction factors do not account for this type of behaviour

and reduction factors must therefore be determined empiri-
caIly.

2.5 RESTDUAL STRESSES

Residual stresses are those

a body if all external loads

macro- and micro-scal-es, the

mÍcròscopic properties of the

formation. Concerns in this
residual stresses.

Residual stresses in metal

duced during the manufacturing

causing residual stresses are:

stresses that would exist in

were removed. Divided into
latter is concerned with the

metal at the time of crystal
report deal with macroscopic

structures

sfages.

are usually pro-

Common processes

ro1J.ing, casting, and forging;



forming and shaping of parts by such

cesses as bending, shearing, machining,

welding and riveting;
heat treatments during manufacture"

13

fabrication pro-

and grinding;

Residual stresses caused by welding are of special con-

cern to the study of Èhin-walled cylindrical shells. Due to

localized heating by the welding arc and subsequent rapid

cooling, welds always have residual stresses. Maximum val-
ues in regions near the weld can reach the yield strength of

the material being welded. These residual stresses also

cause distortion of the we1ds. The residual stresses and

distortion cause complex effects, which maybe harmful to the

structural integrity of the welded structure. High tensile
residual stresses in regions near the weld may promote brit-
t1e fracture, fatigue, or stress corrosion cracking. Com-

pressive residual stresses and initial distortion may reduce

the buckling strength.

To analyze residual stresses and distortion in welds

Masubuchi (15) suggests a four part procedure:

Step 1:

Step 2z

Step 3:

Analysis of heat flow

Analysis of lransient thermal stresses during

we ldi ng

Determination of incompatible displacements after
the weldment cools to the initial temperature

Determination of residual stresses and distortion
due to the enforcement of strain compatibilty.

Step 4:



T4

Step 3 of this process is the most importanÈ. If tran-
sient thermaL stresses were completely elastic, no incompat-

ible strain would be produced and the structure would remain

unchanged when it cooled to the initial temperature. How-

ever, in real materials incompatible strains are produced as

a combined effect. of strain due to plastic deformation, sol-
idification of the weld metal, and strain changes caused by

phase transformations. Once the distribution of incompatible

strains is determined, it is then possible to determine ana-

lytica1ly the residual stresses and distortion by an elastic
analys i s .

À unique characteristic of residual stresses in welds is
that incompatible strains are typicalJ-y confined to small

regions near the weld zone. Therefore, analyses based on

relatively simple distributions of incompatible strains
often provide results which are reasonably accurate.

Computer programs have been developed to analyze heat

fIow, transient thermal stresses, distortion and resulting
residual stresses in welded structures (Masubuchi (15)).

2.6 LARGE DTSPLACEMENT THEORY

Present developments of the large-displacement theory for
shell buckling have not advanced to include cylindrical
she1ls in bending Stephens et aI. (7). Contrary to the

classical small-displacement Lheory, which predicts compara-
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tively equal buckling stresses for compression and bending,

experimental results repeatedly indicate a higher buckling

stress for flexurally loaded members (16), (17). Although

not directly applicable to cylindrical sheIIs in bending,

the Iarge displacement theory for axial compression does

assist in understanding of the concepts of the theory.

An approximate numerical analysis, based on the elastic
nonlinear f.inite-displacement theory developed by Donnell

(18), provided important progress towards understanding non-

linear buckling behaviour. Von Karman and Tsien (19) showed

in 1941 that asymmetric or diamond-shaped buckling configu-

ration is unstable. These results indicated that equilibri-
um states involving large displacements can be maintained by

Ioads far smaller than the critical bifurcation Ioad

obtained from classical smal1 displacement theory. Thus the

appreciable difference of observed load values ranging from

I/2 to I/3 of those predicted by classical linear theory

were rationalized.

Considerable insight v¡as also gained into the effects of

transverse membrane stresses that develop after buckling

starts. For a thin cylinder, the inward buckling of the

asymmetric diamond shaped mode generates superimposed tran-

sverse compression membrane stresses, and the initial buck-

Ied form is therefore unstable. Consequently, buckling is
coincident with fail-ure and is followed by a considerable

drop in the load-carrying capacity of the cylinder.
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In 1945, Koiter (20) recognized the imperfection sensi-

tivity of shells and incorporated finite initial imperfec-

tions into a general nonlinear stability theory. Koiter's
theory related the maximum load to the size of the imperfec-

tion which causes premature buckling. In addition to pro-

viding a path for the transition from the unbuckled to buck-

Ied state at loads lower than the classical value, the

inclusion of initial imperfections serves as an additional
factor to explain the large amount of scatter observed in

test results.

Further studies into axisymmetric and asymmetric modes

were performed by Almroth (21), and Tennyson and Muggeridge

(22). The studies modified and extended the basic axisymme-

tric imperfection theory previously proposed by Koiter.
Later studies by Koiter (23) showed that the interaction
between various axisymmetric and asymmetric modes results in

a pronounced reduction in strength.

In the absence of a large-displacement theory for the

buckling of cylindrical sheIls subjected to pure flexure,
there is conjecture as to the possible reasons for the dif-
ference in behaviour. Observed buckle patterns for cylin-
ders in bending are similar to those found in axial compres-

sion. This suggests that the response of both loading cases

is similar and that initial imperfections are important to
both. A preferred region of buckling is characteristic for
cylinders in bending since the stress distribution varies
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circumferentially" Statistically this results in a Lower

probabiliLy of imperfections occurring within the critical
buckling region. Nevertheless it is expected that some

bend-buckling stresses would approach the corresponding com-

pression values. ExperimentaL results have not supported

this postulaÈe, as illustrated by Fig. 2.3. A ratio of the

flexural-buckling strength to the compression-buckling

strength is plotted against increasing values of the dimen-

sionless parameter a/t. Results indicate that the flexural-
buckting strength is significantly higher. There remain

unresolved questions as to vrhy this behaviour exists. Cur-

rently it is believed that the strain gradient resulting
from the circumferentially varying bending stress is respon-

sible for the increased buckling strength.

2.7 SUMMARY

The analysis of cylindrical shell buckling requires a

nonlinear shell theory. Local instability is often the gov-

erning criterion in the design of thin-walled tubular struc-

tures.

The classical small-deflection theory Ieads to inconsis-

tencies in shelI buckling theory. A rigorous large-deflec-

tion theory has not yet been developed for cylindrical
shells subjected to flexure. Important observations on lhe

behaviour of these members has led to the consensus among

investigators that edge effects, imperfections, and nonli-
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factors contributing

theories.

. 
During inelastic buckling the compressive modulus of the

material decreases resulting in a loss of stiffness and sub-

sequently a lower buckling load. Plasticity reduction fac-
tors may be incorporated to account for this effect.

Residual stresses are inherent in welded structures" Tn

thin-wa1led cylindrical she11s, bending fabrication and

welding are regarded as the major source of these stresses.

Residuar stresses and distortion cause complex effects which

result in a reduction of the buckling strength.
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Chapter I I I

NONLTNEAR FINITE ELEMENT ANALYSTS

3.1 IN CTI ON

The shell buckling probrem requires nonlinear sherr theo-
ry anarysis. rf a finite erement formulation ís to be used

in this analysis, the essence of the problem requires the

formulation to be nonrinear. The anarytical . criteria
require che system to include both material and geometric

nonlinearities. The objective of the nonrinear anarysis is
to estimate the maximum load that a structure can support
prior to structural instability or coIlapse.

3.2 NONLINEAR F.E.M. FROM A LINEAR PERSPECTTVE

The fundamental linear finite el-ement equations may be

used as a basis for understanding the nonlinear finite ere-
ment formulation. A physical argument may be made as to v¡hy

the nonlinear response is appropriatery predicted using the

rinear formulation. This approach is instructive and yields
insight into the process. However, when considering a more

cornplex solution, a consistent continuum mechanics-based

approach should be employed

2t
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In a linear finite element formulation the displacements

of the finite element assemblage are infinitesimally smal1

and Èhe material is finearly elastic. under these condi-
tions the F"E.M. eguilibrium eguations for the static analy-
sis are

KU= R

where [f=

f,=

K=

The system of equations

linear function of R i.e
sult in an proportionate

displacement response

applied load vector

stiffness matrix

(3.1)

is said to be Linear since u is a

an increment of load qR will re-
increment of displacement aU.

The constraint t,hat the displacement must be small enters
into the evaluation of both the stiffness matrix K and the
load vector R. Both terms are integrated over the original
volume, which is assumed to be eonstant for infinitesimal
displacements. The strain-displacement matrix of each ele-
ment is assumed to be constant and independent of the ele-
ment displacements. Also, the use of a constant stress-
strain matrix impries a linearly ela.stic materiar.

From the above discussion, it can be seen that the basic
assumptions used in a linear analysis define what is meant

by a nonlinear analysis. It also suggests two main eatego*
ries of nonlinearity, material nonlinearity, and kinematic
nonlinearity.
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The most generar case is one in which the material is
subjected to large translations and rotations as well as

large strains" This results in, fibre extensions and angre

changes between fibres which are large, fibre translations
and rotations which may also be large, and a stress-strain
reLationship which may be rinear or nonlinear" Bathe (24)

states the Totar Lagrangian (r.1.) or updated Lagrangian

Jaumann (u.L.J.) formulation are typically used. In the To-

tal Lagrangian formufation alr static and kinematic vari-
ables are referred to the initial configuration at time 0.

The updated Lagrangian f ormurar-ion is based on the same pro-

cedures that are used in the T.L. formulation, but in the

soLution aII static and kinematic variables solved at time

t+¡t, are referred to the Ìast calcurated configuration at
time t . Bathe and Bolourchi (25) state, "the only advan-

tage of 'ris i ng one f ormulat i on rather than the other i s the

fact that it may yield a more effective numerical solution."
Consistent with the T.L. forrnulation the second piola-Kirch-

hoff stress (26) and Green-Lagrange (27) strain derivations
are used.

The basic probrem in a static analysis is to find the

state of equilibrium of a body corresponding to the applied
loads. The general equilibrium conditions of a system of

finite efements can be expressed as

t
FR 0 (3.2)
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vrhere

tR= extêrnally applied

at time t
tF = nodal point f orces

element stress in

nodal point forces

corresponding to the

this configuration"

In the generar case of large deformations, the volume of the
bodyr âs well as the stresses, are both unknown at time t.
Equation 3.2 must express equiribrium of the system in the
deformed shape, tâking account of al-l nonlinearities. In a

static analysis without time effects other than the defini-
tion of load level (i.e. no creep effects), time is only a

convient variable which denotes dif.ferent intensities of
load applications and correspondingly different configura-
tions. rf the interests of anarysis include path-dependent

nonlinear geometric or material conditions, the equilibrium
condition of equation 3.2 must be solved by a step-by-step
incremental analysis.

The basic approach in an incrementar step-by-step soru-
tion is to assume that the sorution of a di.screte point in
loading (time t) is known and that the solution for discrete
time t+¿t is required. Hence, the equiribrium conditions of
(3 "2 ) requi re

t+atR t tat¡
0

Knowing the solution step t we can write

to^tF- tF +F

(3.3)

(3.4)
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F increment in nodal point force corresponding

to the increment in el_ement displacements

and stresses from time t to time t+¡t

incrementaf vector F can be approximated using the tan-
stiffness matrix, t¡¡ ;

F= tKu

where

(3.s)

tK= tangent stiffness matrix for
known geometric and material
at time t

lJ= vector of incremental nodal

displacements.

the

conditions

pornt

Substituting (3.5) 6, (3.4) inro (3.3);

tKU= t+atR- tF (3.6)

solving (3.6) for an approximarion for the dispracements of
time t+¡t is obtained;

t+ôtu = tu, u (3.7)

The exact solution for the displacements at the time t+¿t
corresponds to the applied road ttotR but since t{^tK was

assumed approximately equal to ,K, equation (3.7) is only
an aBproximation.
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After evaluating the expression for t.he displacements at

time t+¡t, the corresponding eipressions for the stresses
(approximate) and their associated nodat point forces may be

found. Since the solution is only approximate and a func-

tion of the load step size, it will be necessary to iterate
until the soluti.on of (3.3) is obtained to sufficient accu-

racy.

Although the Modified Newton Iteration technique is most

often usedt a closer study of the so-called Modified Riks-

Wempner Method, with constant arc length (28) , is investi-
gated in the following section.

The previous discussion is valuable in identifying the

components that form the basis of the equilibrium iteration
method. The various nonlinearities which together form the

basic finite element equaLions used Lo prediet the nonlinear

response of a structural system have been reviewed. How-

ever, the governing finite element equation for a more com-

plex system should be developed from a consistent continuum

mechanics approach.

A displacement-based finite element solution developed

from the governing continuum mechanics eguations uses the

princ iple of vi rtual work. NonI inear analysi s requi res

equilibrium of the body being considered to be'established

in its current configuration. Considering the motion of a

general body in a stationary Cartesian Coordinate system,
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the possibility exists that the body may experience rarge

displacements, large strains and a nonlinear constitutive
response. The soLution Drocess evaruates equilibrium posi-
tions at discrete points repeatedry until the complete solu-
tion path has been solved for. The analysis forlows ar1

particles of a body in the.ir motion, from the original to
the final configuration of the body. Thus, a Lagrangian (or

material) formulation of the problem ís adopted.

3.3 NISASO PROGRAM

The NISA80 program is a nonlinear incrementaL structural
analysis murtipurpose program for geometrically and materi-
arly nonlinear systems. The program \,¡as written in Germany

at the rnstitut Fuer Baustatik universitaet stuttgart in
t977,

The anarysis of shel1 structures using the finite el-ement

method lead to the development of a number of different
finite elements. In these deveropments, basically tv¡o

approaches have been foIlowed. Firstly, a clas'sica1

approach and, secondly, âD approach in which displacemenl-/

rotation isoparametric elements are employed.

The NrsA80 shel-I elements are developed from the second

approach in whích independent rotational and dispracement

degrees of freedom are employed. This procedure was origi-
nally applied to the nonlinear analysis of shells by Ramm
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(29) and Krakeland (30). These elements differ from the
usual displacement isoparametric elements in two srays.

Firstry, it is assumed that the normal to the sherl middre

surface remains straight and that there is no change in
thickness. secondly, the normal stresses in the direction
of the shell thickness are ignored in the element formula-
tion, thus eliminaÈing erroneous sÉrain energl¡ corresponding
to these stresses¡ The first assumption reduces the number

of degrees of freedom per cross section from six to five.
The second compensates ior the increase in bending stiffness
by the factor I/ (l- u, ) .

This concept ls referred to as 'degeneration' of elb-
ments. The advantage of these displacement/rotation isopar-
ametric elements is their inherent generarity, permitting
ease of apprication to various ana]ysis. The geometry and

the displacement field of the structure are directly discre-
tized and interpolated as in the anarysis of continuum prob-
lems. The numerical analysis reads to the dispJ.acement so*

lution from which the stresses can be derived without using
the resultants. Impor¡-antly, the eLement provides high ac-
curacy without reduced integration.

The NrsÀ80 program employs the "constant*arc-rength meth-
od" of Riks (31)(32) and vlempner (33) tó Èrace the nonlinear
response from the pre-limit to the post-timit range. The

limit point may be defined as the maximum road observed on

the load deformation respoRse curve. Although postcritical
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states cannot be tolerated in a design, a prediction of the

response is varuable in understanding the complete structur-
ar behaviour. Typicalry, a static anarysis can trace the

postcritical range, âllowing for a better judgement of the

overarl structural response. The usual solution techniques

that are effective in the prebuckling range are not very

efficient in the post-critical stage and often diverge

before a solution is reached.

Recently the work of Ramm (29) and crisfierd (34) has

shown that a modified Riks/wempner method can be especialry
recommended for postcritical states. These modifications
permit an efficient iterative technique throughout the

entire range of loading and not only near the critical
point.

Riks and wempner independentry introduced the constant-

arc-length iterative technique. The basis of their model

$¡as to limit the load step size by satifying a constraint
equation. That is, the generalized arc length of the tan-
gent at the previous equilibrium position m of the load dis-
pracement response curve, is fixed to a prescribed varue as

shown in Figure 3.1. Then the iteration path follows a

plane normal- to the tangent. The constraint equations orig-
inally were added to the incremental stiffness expression

destroying symmetry and the banded nature of the stiffness
matrix.
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Ramm cited !.tessels work (35) and used his resurts as a

basis for further modification which permitted the removaL

of these difficulties. The modifications $rere based on geo-

metrical considerar.ions and required only two additional
steps. The modi f ied iterative technique vras f ound to be

very efficient in Lhe entire load range, pârticularly when

automatic load incrementation is used. The additional stor-
age requirements were only minor, and the extra computer

t ime vras negl igible.

Tn addition to constraining the arc length, Ramm (28)

suggests the load step size may also be scaled for each load

step. The program is modified to recall the number of iter-
ations n required for equilibrium in the previous step.

The load step is then adjusted in size by multiplying the

load increment by a factor h, / n , where Ai (a constant)
represents a value for the nurnber of desired iterations.

The use of this scaling technique reduces oscillations
near the rimit point. This procedure aids in the prevention

of divergence near the i irni t point .

3.4 SHELL MODELLING

Generally, the cost of analysis of a complete shell con-

figuration is prohibitive" Thus only a portion of the cyl-
inder is modelled. The principle of symmetry is used and

only one quarter of the experimental shelt is analyzed.
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This does however, restrict the analysis to

initiaÌ imperfections are also symmetrical,

is not the case.
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assume that the

which obviously

The geometry of the tube is referred to a polar coordi-
nate system x,R,Ø in which Lhe x-axis follows the centerline
of the undeformed tube. The NISA80 program immediately

transfers these coordinates to an orthogonal Cartesian sys-

tem x,ytz in which the x-axis follows the centerline of the

undeformed tube. The external loading is assumed to be sym-

metric about the x-z pIane, âs also are the geomeLric imper-

fections. Due to this symmetry only one quarter of the tube

need be considered (see figure 3.2). Further, ât end I
(midpoint of the shell) the plane y-z remains unwarped after
deformationsi at end 2 truss elements prevent deformation of

the shell at the point of load application. This simulated

the solid plates welded to the ends of the experimental

shells to prevent deformation at the the point of loading.

AlI boundary conditions are given in figure 3.2.

Figures 3.3 to 3.8 show the selected mesh patterns used

in this investigation. Rectangular shelI elements are used

both for the centraL test section and end regions. Sixteen-

node bicubic elements are used to model the shell with the

exception that the transition elements between the central
and end portions are reduced four-node bilinear elements. A

finer element mesh is used in the thinner central test
region. Figures 3.3 to 3.8 view the projected mesh pattern
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from the inside of the cylinder. Boundary conditions, ele-
ment and node numbering are shown in these figures. The

symbols XT, YT, ZT, XR, YR, ZR stand for translation in the

global x-direction, translation in the gIobal y-direction,

translation in the global z-direction, rotation about the

global x-axis, rotation about the global y-axis, and rota*
tion about the global z-axis respectively.

The different mesh configurations and analyses are iden-

tified by the following notation. uB* signifies bending in

conformance with the experimental shell specimen 81 or 82.
rrsrt identifies the particular mesh configuration performed

in a segment of the investigation. 'E* indicates that the

eigenvalue solution is being performed, and rtNrr identifies
the nonlinear solutions. A given analysis consists of a

particular "8" and uSu combination that is analyzed first by

the eigenvalue solution and then the nonlinear solution.
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Figure 3.L: constant-Arc-Length Method after Ramm (29)
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Chapter IV

INTTIAL IMPERFECTIONS

4.1 TNTRODUCTION

rnitial imperfections in thin-wa11ed cylindrical shells
are inevitable under normal fabrication. If the purpose of

engineering analysis is to predict the true behaviour of a

structure under normal conditions then these conditions must

be incorporated into the analysis.

À modern phase of investigation, beginning in 1940 with

the work of von Karman (8), has identified initial imperfec-

tions as one of the main factors leading to seríous disa-
greement between classical buckling anaJ.ysis and experimen-

tal data.

Subsequent investi.gations by Hutchinson ( 36) , Àlmroth

(2I), and Koiter(20) showed that thin-wa11ed circular cylin-
drical shells subjected to axial compression are very sensi-

tive to small deviations from the exact circular cylindrical
shape. Koiter's analysis indicated that initial imperfec-

tion amplitudes equal to the thickness of the shell, were

sufficient to reduce the critical buckling load to 20 per-

cent of the load corresponding to the perfect shel1.

40
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Therefore, not only is the inclusíon of an initial
imperfection pattern necessary, but the determination must

be both accurate and representative of the initial displace-
ment configuration at the time of loading.

4.2 AVATLABLE EXPERIMENTAL DATÄ

4.2.r Introd uction

Experimental procedures often provide initial imperfec-

tion vaLues only at discrete points and not a scan of the

total surface. In order to incorporate the imperfections of

the prototype into the theoretical analysis modeI, âD inter-
polation of the total surface must be established from the

discrete measurements. Development of the surface pattern
permits subsequent interpolation at any desired points, such

as the nodal points of a finite element approximation.

4.2.2 Experimental Data

An experimental program into thin-wa11ed cytinder behav-

iour was conducted at the the University of Alberta by M.J.

Stephens et al. in 1981. The program vras designed to
investigate the local buckling behaviour of large diameter

thin-wal-1ed fabricated cylinders loaded in either uniform

axial compression or pure flexure. The results from the

latter case were subsequently used in this investigation.
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The experimental proÈotype structures v¡ere made to
appro:(iately one-half of their commonly used fuÌ1 scal_e

diameter. Tests on the large diameter cylinders involved

two specimens, both fabricated from three subsections. A

complete tube consisted of a thin centra] test section 1s25

mm in diameter and 1830 mm long, and two thicker end sec-

tions each 1525 mm in diameter and 915 mm long. All subsec-

tions were welded together with a fult-penetration groove

weld along the circumference as shown in Figure 4.1. For

specimen 81, the central section r.ras f abricated f rom CSA

40.21 300W steel plate with a mean thickness of 5.13 mm and

end sections of sirnilar material with a mean thickness of

7 .93 mm. Specimen B2 vras f abricated f rom ASTM 436 steel
plate comprising a central section with a mean thickness of

3.43 mm and end sections with a mean thickness of G.50 mm.

The initial geometry of the large diameter specimens was

carefully measured to permit the determination of initial
imperfections in the cyrinder waI1s. The recorded observa-

tions of the Stephens et al. experiment were used as a data

base for the surface interpolation.

L' ? Mea srlrcmcnf Pr oc cdr r rc

Measurements (at

specimen radii were

radial measurements

axis. By rotating

discrete points on the cylinder waIl) of

obtained with a device that established

with respect to an assumed longitudinal
this device through 22.5 degree inter-
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vals' 16 radial measurements were taken at seven locations
on the l0ngitudinal generator. A total 0f 112 measurements

were taken for each cylinder. In addition, circumferentiaL
weld-seam depressions at the intersection of the central and

end shell connections were rneasured at the same 16 intervals
for both ends of the she11.

4.2.4 Adiustment to Define the perfect cylinder

Before approximating the true initial irnperfections it is
necessary to define the perfect cyrinder" In the stephens
et al. experiment radial deviations from an imaginary cyl-
indrical reference axis were measured. The "best,, location
and orientation of the perfect axis needed to be determined
analytica1ly. From this determination the measured values
could be adjusted to use the perfect cylinder as a datum.
This requires both a rigid body rotation of Èhe tero princi-
pal axis as werr as a rigid body transration to determine
the true axis centre. Referring to figure 4.2, the Lransra-
tion and the rotations may be calcurated as folrows;

Rotate about the z axis

xt

v

z

cos ß

-sin ß

0

sin p 0

cosß 0

01

X-X o

Y-I o

z

(4.1 )



Rotate about the y' axis

z sin d
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(4.2)

(¿.9)

xtt

ytt

z"

cog c

0

ln c

-sin c

0

cos a

0

1

0

x

v

z

Substitute (+.f) into (4.2) and multiply

x" = (x-xo)cos c cos ß + (y-yo)cos d sin ß

y" = -(x-xo )sin ß + (y-yo )cos ß

since the experimental imperfections were measured in
terms of the polar coordinates (R,ø) it is necessary to
transform these initiar observations into (x,y,z) coordi-
nates. Àssuming a reference cylinder aligned with a fixed
globaI frame:

z axis of cylinder
x,y axis of cross section

ø angle between observation arm and x-axis
r - measured observations

x=fslnø
y=rcosø (4.4)

To determine the "best" p"tfect cyrinder, a statistical
adjustment of data was performed on the measured observa-
tions based on the principle of least sguares.
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Examining the generar problem of least squares Derning

(37) states "that as a result of any experiment there wirl
be observations, and when the adjustment is completed, to
each observed value there wirr be a corresponding adjusted
vaLue." Repeating an experiment a large number of times
will produce a set of observed varues. Deming suggests tak-
ing the average of these random values resuLts in a ,,true

value." The statistical adjustment may be performed by ex-
amining the relationship between the observed, calculated
(or adjusted), and true coordinates. The method of reast
squares calculates the value of the residuals. From these
varues the error values may be calculated. The best results
are obtained when this error is minimized.

rn formulating the probJ-em of the forrowing quantities
are used:

Observed values

Ad j usted val"ues

(Calculated values)

We i ghts

True values

Res iduals

The principle of

the weighted squares

xi,Y¡
xi Yi

ic (r,2,...,n)
ie(r,2,...,n)

*r, tt,

vr, ' vYi vr, xi

vr, v.

least squares reguires that the sum of
of the residuals

xi

v.¿l

S = > w V2 (4.s)



shall be a minimum with respect to the "adjusted values.n

rn curve fitting the adjusted values are required to
isfy a set, of conditions. In the general case, suppose

the adjusted values x , y are subject to y conditions;

Fh (x ,y ;a,b,c) 0 he (I,2,."n.¡u) (4.6)
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sat-

that

where a,brc are estimates

rameters d, ß , -l . Equat ions

dition functions.

of the unknown c'urve

(4.6) are referred to
f itt ing pa-

as the con-

By the principle of least squares the equations are all
handled alike, namery by the minimizíng of s. The functions
must be chosen such that when equated to zero, they force
the conditions that are to be imposed on the adjusted coor-
dinates. This development is based on the fact that the
ntrue" coordinates wouLd exactry satisfy the conditions.

Using the notation;

âF
h

]- âx
I

F (4.7)

F

yÍ

-h¡=

et,c.

a

aFh

âv.'t_

âFh
ãa



) Making the condition eguations (4.6) ri.near in the resi-
duals by expanding in Tåy1or's series and neglecting higher
order terms, while noting

the derivatives
Numerical values

most purposes it
values Xi ,yi

âo rbo rCo.

V v..L

A

B

C

the so-called nreduced equations" then become

h
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of the condition functions may be evaLuated"

of these derrvatives are needed, and for
suffices to evaluate them with the observed

with the next available approximations

(4.8)

.1.
l"

h

= )(. - Vl_ x.
l_

l_
X

Y.
a

v
1

a=a

b=b

c=c

o

o

o

n

I
i

Ir V x.
1]-

+F h

YiY A + rhc =c'fuFh
a

v

râorborCo)Y

+ -t'

(4.9)

( 4.10 )

Fh =0
theand

o

where Fo = Fh(x

and is, in fact, the amount

fails to be satisfied by the

approximations âo rbo rco "

he(r,2,...,v)

by which the condition
observed values X¡ ,yi

Thus in the present case the condition eguation is

F(x¡ ,Y, tzt ,xo rYo rprcrR) (x")'+ (y")z R2 0 ( 4 .11)



To linearize, expand in the Taylor series;

F(x +Àx ,Y +ay tz +Lz ,xo*Âxo ryo+ay o rþ+Áp,a+lcrR+aR)

F(x R)
ðF
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( 4 "12)

Yí,

Ax+
o

x

o
o

+ 2y'!'l-

+2y

ðv.-t_"Li l_
, +cßYo' Ax

AF

dv-o
+ Ay. * S Lz.-l_ dz. ].

]-
l- o

AF

dx
o

+

ôF
=-dx.

l_

âF
ôy

Ay *{$re* aa*j$anAF

d0

2x'!
l-

âx.
l_

dx.
]-

âyt.t-l_

E:
1

o!
ãn =2x

âx.
= 2x'! ;f + 2v'l

]. dx "l-

I

âx.
rrl
i dv..I

âx.
1

dz.
1

âvt.t'1
T:y.-1

ãv'l.L

(4.13)

âF

dz.
l-

AF

dx
o

àF-Ã-
dv'o

AF

ãE

AF

A"

ðF

E

= 2x".
1 iðz

]-

o

ãvt.t
'l_

ã"
o

b(.
= 2x'! -r-f + 2v'.'

ld\r 'l'o

âv'l

E-,o

âx.
=2xt.t#nZutt1 dÞ -1

ðx.=2*ï#.rrï ðvtt-I

E-

ây 'l].
aß

= -2R
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where

x" = (x - xo) cos o cosß + (f - fo) cosd.sinß - zsinq

y" = - (x - xo) sÍnß + (v - ro) cosß

êxtt
a--
cfx

Axtt

E-
â¡rt

ùxttã_
d¡

o

àxtt

-
dy-o

ax"
-ãõ--

âxtt

cose cosß

coso sínß

sine

cosc cos Ê

coso sÍnß

(x - xo) cos0 sinß + cosc cosß

(x - xo) sinc cosß - (f - fo ) Sina cosß = zcosu

- sinß

cos ß

=Q

sin ß

cosß '

("-ð)cosq-(r-¿)sinß

T

ãil

3d
ò(

ã¡atr._-
öy

âvrr
"tL-dX

id
'ò2

o

Axtt

Ð
äytt
äß

_u
ðo

=Q
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Equation (4.12) may be substituted into eguation (a.rr) and,

using the observed varues x¡,y¡, numericaL varues may be ob-

tained. A computer program, cyLINDER (Àppendix B) was writ-
ten to evaruate this expression. The output of the program

produced the ad j usted ( cal-culated ) values x , y

4.3 DEVELOPMENT OF THE INTERPOLATED SURFACE

I I ntroduct ion4 3

À precise interpoJ.ation model is reguired to map the ini-
tial imperfection configuration. The criteria dictate that
the model interpolate in two orthogonal directions, with one

direction having a function of periodicity 2zt.

Previous investigations have frequently used moders which

incorporate a Fourier series summation to approximate the
imperfect surface. using the measured discrete points as

input the coefficients of the Fourier series are carculated.
This method is restrictive since neither a sine series nor a

cosine series is capable of representing the imperfect shape

compretely. The sine series resurts in zero imperfections
along the upper and rower circumferences, whereas the cosine
series produces zero slopes at these positions.

rn this investigation bicubic sprines were used to ap-
proximate the imperfect surface.
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4.3.2 SBline Model

Given a set of discrete (x,y) values and their corre-
sponding function values, the objective of the spline model

is to interpolate a seL of xL & yL values anywhere on the
surface" xL,YL represent the coordinates of Fny. point on

the surfaee" A two-dimensional interpolation function using
bicubic splines. in orthogonal directions satisfies this ob-
jective" rn order to perform the sherl analysis, a mesh of
discrete function values continuing NxL by NyL nodal points
must be developed from an initial set of Nx by Ny function
values" The values in the x-direction (circumferential)
must be periodic with period 2r.

To accommodate these conditions the forlowing procedure
rrras USed:

A cubic spline interpolation function with periodic
end conditions was accessed from the university of
Manitoba IMSL Library (3g). rcspl,N was called Ny

times to interporate in the x-direction at the points

I

(xr,, ,v, ) i c (1 ,2, . .. ,NXL)

jc tr,2,...rNY)
2 " A cubic spline interpolation function rcsccu

ealled NXL times to interporate in the y direction
determine values of the naturar bicubic spline at
points

was

to

the

(XL, ,YLj ) i c (r,2,. ".,NXL)
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Note that in carculåting the initial cubic sprines with
periodic end conditions, spline functions are found at only
the original Ny intervars since the program has no function
values for the NyL points at this time.

Both the above procedures utilize a common routine ICSEVU

to calcurate the coefficients of the sprine and to evaluate
the cubic splines output

The routine rcspLN' creates a cubic spline with periodic
end conditions. That is, if s(x) is the approximating
spline then, S(X, ) = S(Xr.x ), S'(X, ) ='S'(XNX) and Su(X, ) =

s" (xNx ) , where the prime denotes differentiation. s(x) is
written as a linear combination of periodic basis splines.
The cubic sprine calcurated passes through each data point
producing FL(x, Y) = f (x, y), i.e. an exact f it. The sub-
routines used to calculate the sprine algorithm are based on

work done by de Boor (39).

4.4

4.4.I
END REG.ION IMPERFECTIONS

I nt roduc t i on

rn the stephens et al. experimental program, measure-

ments of radial imperfections were taken only for the thin-
ner central portion of the cylinder" At the circumferential
weld seams connecting the central portion to the end por-
tions the observed weld depressions were measured with re-
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respect to shelI surface. Therefore no reference vras provid-

ed of the overall shell imperfections with respect to the

assumed longitudinal axis. The theoretical analysis
requires that the surface be mapped to produce an initial
displacement configuration at the discrete nodal points.

4.4.2 End Region Extrapolation

Since there vrere no measured points for the end region of

the she11, extrapolated straight-1ine generators v¡ere used

to predict the initial configuration of these sections.
Better resul-ts are obtainable by extrapolating the genera-

iors to produce sample data points before the spline approx-

imation of the imperfect surface. Eliminating this extrapo-

lation tends to produce amplified imperfections in the end

regions due to the osciJ-latory nature of bicubic splines
between distant data points. The straight-Iine generators

v¡ere calculated from least-squares fits in the the central
section. Initially the "adjusted data points" (as derived

in section 4.2.4) vlere calculated to produce the adjusted

cylinder as shown in Figure 4.3. This procedure v¡as per-

formed in order to remove any bias from the original data

before extrapolating the generators. The generators were

then calculated to coincide with the "/8 measurement inter-
vals of the observed data points and vrere oriented parallel
to ihe longitudinal axis of the cylinder (rigure 4.4). A

total of sixteen generators were fitted, from which imper-



54

fections v¡ere estimated at the circumferential welds,

extreme ends, and two points arbitrarily chosen at the quar-

ter points- so as to prevent viorent oscilration of the bicu-
bic splines between the distant points. A program, GEN

(Appendix B), was written for these calculations.

4.4"3 Incorporation of the WeId Ðepressions

Since the measurements taken at the circumferential wel-ds

vrere not referred to the assumed longitudinat axis, the onry

remaining reference points were the straight line genera-

tors. Thus the initial imperfectíons at the circumferential
weld locations are represented by the generator-carcuLated

imperfection minus the measured circumferential weld depres-

sion (see Figure 4.5). The derivation of these imperfec-

tions was further compricated by the fact that the measured

depressions vrere only taken at "/4 intervals. This was

overcome by first fitting the eight observed varues with a

periodic bicubic spline and then interpolating the remaining

eight values. once all the depressions were calculated a

FORTRAN program, SEAM (Appendix B), r¡¡as written to incorpo-
rate their effects into the end-region imperfections.

combining the adjusted central-region imperfections and

t.he end-region imperfections produced a map of the total
cyrinder surface. This map of imperfection function varues,

consisting of 15 intervals in the rongitudinal direction
(assumed as y-values), containing 16 data points in the cir-
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cumferential direction (assumed x-direction), produces Z4O

function values F(x,Y). These values were used as input for
the deveropment of the interpolated surface. A FORTRÀN pro-
gram, GRAPH (Appendix B), performed the numerical computa-

tion of the surface interporation. The program yierded a

mesh of interpolated values at 50-mm intervars in the rongi-
tudinal direction and 5 degree intervals in the circumferen-
t ial di rect ion.

4.5 DEVELOPED PLOTS OF THL INTERPOLATED SURFACE

The output from GRAPH vras protted using the versatec
protting library. Although functionarly 2-dimensionar, the

resulting plot appears as a 3-dimensional image. This

effect is achieved by offsetting the coordinate axes after
each successive interval is plotted. The generators from

which the original data v¡ere measured are plotted pararrel
to the cyrinder axis. Figures 4.6 and 4.7 represent the the

finar interpolated surface map for specimen 81 and 82

respectively.
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Chapter V

GEOMETRIC IMPERFECTTONS

5.1 INTRODUCTTON

The incorporation of initial imperfections into a nonli-
near analysis is usually restrictive since it requires some

advance knowledge of the geometríc imperfections of the

structure being considered. In a prototype, the imperfec-

tions can be carefulJ.y measured experimentally and then

incorporated into an analysis. For she11s manufactured in

normal production, this approach is impractical. The opti-
mum procedure is to establish the characteristic initial
imperfection distribution which a given fabrication process

is Iikely to produce. All such available data would be com-

bined statistically to predict the most probable occurrence.

Other geometric irregularities introduced in the manufac-

turing process may cause additional localized stresses in
the loaded shell. For example, localized forces are intro-
duced at the junction of eccentric shells. The abrupt

change of the generator results in a discontinuous resultant
force at the junction.

61
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5"2 INCORPORATTON OF INITIAL IMPERTECTIONS

It is presumed thaÈ the smarlest initial imperfections
that wourd result in a lower bound for the urtimate road

wourd be those corresponding to the theoreticar first mode

(i"e., criticar mode) shape for a perfect sherr. since a

real sherl would not have precisely this initiar configura-
tion, it is necessary to estimate the first mode amplitude
that wourd predict the same urtimate load as the true ini-
tial configuration.

For the type of structure under consideration it was

decided that the most reriabre way to incorporate geometric

imperfections was to scale the corresponding eigenvector
components obtained from the theoreticar eigenvalue analy-
sis. For design purposes the scale factor would be derived
from a statistical procedure as a function of the fabrica-
tion process and the dimensions of the shell. However, where

there is availabre experimental data, a scare factor propor-
tional to the actual initiat imperfections may be extracted.
For the analysis of experimentar data, the given disprace-
ment pattern, discretized at the nodal points to give vector

{vJ, can be represented by superposition of the eigenvectors

lø\ of the same discretization. Hence we may write

Iv] = > a {ø} (5.1)

and, by orthogonarity, the contribution of the first mode to
the initial displacement pattern is
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{ø}, [v]
â¡

IØ]rt lØl , (5.2)

The eigenvector of expression (S.z) includes radial and

?*i:I transl-ations as well as rotations of each node, vrhere-
as only radial initial imperfections v¡ere measured. There-
fore the eigenvectors IØlt of equation (5.I) must be re-
stricted to comprise only the radial components of
displacement. The vectors obtained are not strictry orthog-
onal, resulting in only an approximate varue of the scaring
factor âr. Nevertheless, since the negrected terms are much

smalLer in magnitude, the approximation is crose. The re-
stricted eigenvectors IØl t of the radial displacements are
nos, of order equal to the number of nodes

The resulting imperfections incorporated into the nonli-
represented bynear anaJ-ysis are

{v} = â1 lØ}t (5.3)

å' computer program, MoDEI (Appendix B), rras written to per-
f orm the numerial calculation of the scaring f actor ,,a, .,,
The preliminary subroutines interpolate the initial radial
imperfections at the discrete nodal points using the surface
interpolation technique described in chapter q. subsequent
to this, the x-y components of t,hese imperfections are ex-
tracted, based on the orientation of the individuar node
with respect to the globar axis. The x-y eontributions of
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the chosen eigenvector previously stored from the eigenvalue
analysis are then carred from memory. substitution of the
above values into equation s"z then produces the scating
factor âr. The field of imperfections is measured for the
complete cylinder, but for cost effectiveness, the model
takes advantage of symmetry and only selects one quarter of
the cylinder. Therefore it was necessary to revorve the
shell about its longitudinal axis in n/g intervals and se_
rect one of the sixteen cases. In attempting to establish a

common basis for repeated investigation, the worst case was

selected.

Knowing the scale factor â¡r the value of the appried no-
dal imperfection may be determined. A program, ADDDIDP (ep-
pendix B), carls the x-y contribution of the eigenvecto.r and
using simple trigonometric relations calculates the radial
component at each corresponding node. The radial component
is then multiplied by the factor a, to produce the scaled
imperfection value. This varue is then added to the radial
coordinate of that specific node, thus incorporaLing the
scaled imperfections into the nonlinear anarysis.

5"3 ECCENTRTC JUNCTIONS OF THE SHELLS

sections having abrupt changes in geometry deverop addi-
tíonal forces, stresses and deformations which are commonly

termed edge effects. Due to the erastic resistance of the
adjoining parts, the edge effect does not spread far and
acts upon relatively narro$r zones.
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The physical cause of the edge effects are:

1. An absence of free deformation of the shell;
2. Sudden changes or eccentricity of the generator,

which lead to additional meridional forces or local
moments due to its eccentricity.

cytindrical sherl-s havíng different wall thicknesses and

eccentric junctions contribute two causes to the origin of

edge effects. rn the first case, arthough there is no break

of the generator the deformations are restricted due to the

different thicknesses of the warrs, as shown in figure 5.1.
This results in unequal values of the free deformations. rn

the second case, figure 5.2 illustrates that an eccentric
junction causes a break in the rongitudinal generator,

resulting in local moments and subsequent bending of the

sheI1. This bending results in shear forces and additional
meridional and circumferential forces. These additionar
forces produce Local deformations which, in the case of

shell buckling, courd be instrumental in initiating 1ocal

fa i lure.
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îl

Fígure 5.1: sherl Junctions of Different wall Thickness
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Figure 5.22 Eccentric Shell Intersections



Chapter VI

RESULTS OF THE NONLINEAR FINITE ELEMENT ANALYSTS

6.1 INTRODUCTTON

The anaryticar program attempted to isolate various fac-
tors affecting the ultimate buckring load predicted by the

NrsA80 program. consideration was given to the magnitude of

initiar imperfections, mesh refinement,, eccentric junctions,

and weld depressions. Each successive step led to a croser
idearization of the true structure. urtimately the analysis
re'finements should predict rimit roads close to the experi-
mental values of 2143 kN-m for specimen 81, and 1030 kN-m

for specimen 82.

6.2 EIGENVALUE SOLUTTONS

An eigenvarue sorution of the perfect configuration was

obtained for each of the mesh rayouts. In each analysis the

theoretical first mode ( i.e. , the critical mode) shape was

determined. The corresponding eigenvalues hrere carcurated

and are taburated in Table 6.1. critical moments are

obtained by multiplying the applied moment times the eigen-

vec tor .

67



It has been shown (Timoshenko and

critical uniform axial- stress for
fect,elastic, cicuLar thin cylinder

6B

Gere 1961 ( 10 )) thar tire
a geometrically per-

1S

EI
Oc, = r{3(1 "')

where o", = critical stress; E = young's modulus;

thickness; r = mean radiusi,V = poisson's ratio.
cal moment may be obtained from

ocr I

t
The

(6"1)

wa 1l

criti-

Mc,
r (6 "2)

where f = moment of inertia. From equatíons 6"1, 6.2 the
critical moments for the geometricarly perfect, erastic cyl-
inders are 7779 kN-m and 34gl kN-m for Bl and 82, respec-

tively. comparing this to the critical moments obtained in
the eigenvalue soLutions , 7946 kN-m and 354r kN-m for model

81s7 and 82s7, respectivery, a good correration is achieved.
This indicates that the modelling and mesh refinement chosen

are a good representation of the prototype.

The resurting indeterminate radial- components of mode

shape I were used in conjunction with the corresponding ini-
tial imperfections to determine the scale factor â¡ of equa-

tion 5"2" once determined, the first mode radiar components

could be extracted to produce the initiar displacement pat*
tern for the nonlinear anarysis" The mode shape I displace-
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tern for the nonlinear anaJ-ysis. The mode shape 1 displace-
ment patterns for all eigenvalue solutions may be found in
figures 6.1 through 6.8 It should be noted that all of the

displacement pattern figures are somewhat deceiving since

the plotting routine does not differentiate between inner

node links and the sherl erement boundaries. This resurts in

typical 16-node elements appearing as 9 4-node elements.

6.3 ECCENTRIC JUNCTIONS

It was discovered that, although original design specifi-
cations calred for the centerrine alignment of the central
and end shell sections, fabrication techniques resulted in a

1.6-mm. offset of the middle surfaces as shown in Figure

6.9. Physically, the magnitude of this offset seems very

smalI, but compared to a shell thickness of 5.13 mm for
specimen Bl (9.q3 mm for B2) the result is a significant
eccentricity. Introducing a small 4-node element at the
junction of the two shells permitted the incorporation of

this eccentricity into the analysis (model 54, Figure 6.3).
The resulting eigenvaJ-ue sorution for the eccentric junction

configuration of mesh 54 remained relatively unchanged, com-

pared to the original centerline alignment configuration of

mesh 53.

Interesting results v¡ere obtained for the S4 configura-
tion when a nonlinear analysis for the perfect shell was

performed. Figures 6.10 and 6.11 show that local buckling
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of the sherr took prace within close proximity to the cir-
cumferentiar we1d, a result consistent with the experimental
resurts. However, the limit load obtained, 3495 kN-m, was

on).y stightly different from the 3b34 kN-m resurt obtained
without incorporating the eccentric junction, and much high-
er than the experimental result of 2143 kN-m. Because of
the insignificant difference, it vras determined that a non-

linear analysis of s4 incorporating the initial imperfec-
tions wourd yield no further usefur information. Table Ä.5

and Figure 4.5 of Appendix A show the Moment vs curvature
relationship for the 54 analysis.

6.4 MESH REFINEMENTS

ln order to confirm the results of configurations s3 and

s4, a coarse, uni f ormLy spaced mesh s5 (rigure 6.2) vras ana-

Iyzed. Model s5 also incorporated an abrupt weld depression

at the junction of the end and central sections. The effect
of the l-atter adjustment v¡as to provide a sharp pinching of
the adjoining sections.

The eigenvalue solution for ss had a significant change

from that for the previous mesh. Figures 6.1 and 6.2 indi-
cate that, compared to s3, the general pattern of mode

shape I had extended across the central test section.
severe doubts rvere praced on the varidity of the previous

mesh. Although the technique l¡as valid, it was evident fur-
ther tuning of the model was necessary.
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rn order to determine what effects the mesh refinement

had on a typicar eigenvalue sorution a fourth rnesh pattern,
s6 vras introduced. The pattern of s6 $ras ident icar to that
of s4 except that the refinement was interchanged from the

centre-most section, to a section adjoining the circumferen-
tial weld.

Results of the eigenvalue sorution for s6 again reveaLed

a dramatic shift of the mode shape I pattern. Figures 6.3,
6.4 compare the new pattern s6, with s4. I t r,Ias concluded

that a nonuniform mesh was inappropriate to the loading con-

ditions and any further anarysis woul-d require a uniform
mesh configuration.

The s7 configuration used the finest mesh refinement in
the central test portion of the cylinder. The pattern of
small uniform elements yierded egual element stiffnesses
along the longitudinal axis. Two rovrs of 4-node erements

with coincident normaLs Ì.rere used to transfer forces from

the offset middre surfaces. The net effecL of the mesh

retinement and incorporation of the eccentric junction at
the circumferential weld produced a smooth eigenvalue dis-
placement pattern with a maximum peak at the centerrine sec-

tion damping to a minimum at the sherl junction. Figure 6.5

illustrates the smooth transition as the stiffer end por-

tions are approached.
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In a finar step, the thicker end shelr portion was

refined from 6 16-node elements to l0B 4-node erements. The

basic configuration of the s5 mesh was retained for tþ" cen-

tral portion. The eigenvarue solution of configuration sg

produced only minor dispracements in the end section, as

shown in Figure 6.6. It r.ras concluded that the coarse mesh

details of the previous patterns were not affecting the
resulting displacement patterns to any significant degree.

spec imen 82 r,ras anaryzed f or the s3 and s7 conf igura-
tions. Resurts show a pattern consistent with the results
of specimen 81. Figures 6.7, 6.8 disptay the eigenmode

shape 1 displacement patterns.

6.5 NONLINEAR TMPERFECT SHELL SOLUTION

Nonlinear sorutions were obtained for the s3, s4, s5, and

s7 configurations of specimen Br. similar solutions were

obtained for the s3, and s7 configurations of Bz. For spec-

imen 81, al1 nonlinear solutions except for the s4 configu-
ration incorporated scaled initiar imperfections. specimen

B2 was anaryzed under onry Lwo configurations since it was

assumed the resul-ts of testing Br would indicate which con-
figurations would yield the most varuabre information.

The 81s3.Nl, 81s5.Nl, and BrsT.Nl investigations were

anaryzed under similar conditions by extracting a scaling
factor from their corresponding eigenvaj_ue solution and
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using this factor to determine the initial imperfections of
the shell- surface. This permitted a comparison of their
results as shown in Table 6.2. The most refined solution,
Bls7.NI, had a rimit moment of 2545 kN-m, rg.7z higher than

that obtained experimentally. In the anarysis of the B1s7

configuration two solutions, N2 and N3, rrere performed with
a scale factor equal in magnitude but opposite in sign. A

negligibre difference in the limit l-oad was observedr âs

shown in Tables A"7 and 4.8 of Appendix A.

The first analysis of specimen 82 (nZSg.¡lf) used an arbi-
trary scale factor which was 3.36 times rarger than the

extracted scale factor. This analysis predicted a limit
moment very close to the experimental va1ue. However, these

results can not be extended to a general case since the

scale factor hras arbitrary. The B2s7.Nr analysis produced a
critical moment of r20r kN-m, 16.6e" higher than the maximum

experimental moment of 1030 kN-m.

Moment-curväture relationships for all Br and Bz anaryse

may be found in Appendix A. A considerable difference in
road path may be observed comparing specimen Bl and Bz.

specimen B2 disprays a graduar failure pattern while 81

indicates a sharp peaking at maximum load.

The deformed configuration of B1S7

the Figure s 6.I2, 6.13. Wrinkling of

be observed for each spec imen.

and B2S7 are found in

the cross section may
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6.6 MAGNITUDE OF TNITIAL TMPERFECTIONS

A series of nonlinear analyses was performed to determine
the effect of arbitrarily increasing the extracted scaÌe
factor and thus the corresponding first mode contributuions
to the initial dispracement pattern. In the initiar inves-
tigations four such anaryses were conducted on model 81s3.

Increasing scare factors were appried untir a rower bound

critical buckring load close to the experimentaL value lras

determined. Tabre 6.3 compares the scare factors to the
critical buckling road. Figure 6,r4 shows the reduction of
the limit load with increase in nodal imperfections. while
the general trend of these results was instructíve, the
uncertain nature of the s3 mesh configuration precluded fur-
ther analysis to be performed on the final mesh configura-
tion , 57.

The B2s7 configuration was analyzed with scare factors
magnified 4,8, and 16 times as targe as the extracted mode-l
contribution. Tabl-e 6.4 compares the scale factors to the
critical buckling load. Figure 6.15 indicates the reduced

buckling load with increasing nodal imperfections. rt can

be seen that initially an increase in the scare factor
results in a significant decrease of the crilicar road.
However, further increases in the scare factor result in a

smaller decrease of the the limit load. This suggests that
the imperfection sensitivity of thin-walred tubes is not
linear, i.e. an incrementar increase in the initiar imper-
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fections resurts in a disproportionate reduction in the lim-
it load. The B1s3 resuLts suggest that at some varue, fur-
ther incremental increases resuLt in no significant decrease
of the rimit load, a limit to imperfection sensitivity is
indicated. Moment vs curvature tables and corresponding
graphs of the series Bls3, and B2s7 tests may be found in
Tables 4.1 to 4.4, A.rz to A.r4 and Figures À,1 to A.4,
A.I2 to 4.14 of Appendix A.
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TÀBLE 6" 1

Eigenvalue Solutions

Eigenvalues Critical Moment

( nH-m )

Ànalys i s

x106
x.l06
x106
x106
x106
x106

80s0
8039
81 00
81 00
7946
81 91

3597
3541

B1S3.E1
B1S4.E1
8.1S5. E1
B1 S5. E1
B1S7.E1
B1S8.E1

8253. E1
B2S7 . E1

8.04959
I " 03930
8.09969
8.0gg6g
7 .94626
8.19115

3"59704 x106
3.54069 x1 0 6

TABLE 6 "2

Nonlinear Solutions of Specimen Bj

Analys i s Limit Moment
( kN-m)

B1S3.N1
B1S5.N1
B1S7.N1
Exper imental

3057
2950
27 61
21 43
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Figure 6.l-: Mode Shape I B1S3.EI
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Figure 6.2: Mode Shape I B1SS.El
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Figure 6.3: Mode Shape I B1S4.EI

Figure 6.4: Mode Shape I 8156.El
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Figure 6.5: Mode Shape 1 B1S7.EI

t1{

Figure 6.6: Mode Shape 1 BIS8.EI
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Figure 6.7t Mode Shape 1 B2S3.El

6.8 :F i gure Mode Shape I B2SZ.El
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END REGION

CENTRAL REGION

Rr =Rz

DESIGNED CENTERLINE ALIGNMENT

END REGION

CENTRAL REGION

R, = R2- 1.6

e(\¡
æ

trô¡É

ALIGNMENTEXPERIMENTAL

Figure 6.9: Shell Alignment
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Figure 6.10: Loca1 Buckting of B1S4.NI

Figure 6"11: Buckled Region of B1S4"Nl
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Figure 6.12: Failure Deformations of BISZ"NI

1/ït{

ti{

Figure 6.13: Failure Deformations of B2SZ"Nl
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TABLE 6.3

ïncreased Nodal Imperfections on theBuckling Moment
Effect of

Ànalysis Extracted
Scale

Factor â 1

Appl ied
Scal i ng
Factor

Magn i -
f icat ion

Limi t
Moment
( kn-m )

B1S3.N'1
B1S3.N2
8.1S3.N3
B1S3.N4
EXPER.

0.00397
0.00397
0.00397
0.00397

nil

0 " 00397
0.01000
0.01s00
0.02500

nl"l_

1 .00
2 "523.78
6"30
nil

3050
2540
2304
2110
21 43

5"5

2"5

1.5

o"5

+

3

E
Iz^

Júa
_E;-c
Þ3t:oo>st-g-
E:

2

o
o o"oo4 0.oo8 o"o12 0.o16 0.o2

Applied Scole Foctor
o.o24 0.o28

Mognitude of lmperfeci¡ons mm.

FÍgure 6"14: Scale Factor vs Moment 8153
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TABLE 6.4

of Increased Nodal Imperfections on theBuckling Moment
Effect

Analysis Extracted
Scale

Factor â I

Àppl i ed
Scal i ng
Factor

Magn i -
f icat i on

Limi t
Moment
( kn-m )

B2S7 . N1
82S7.N2
B2S7 . N3
82S7 . N4
EXPER.

0.01302
0.01 302
0.01302
0.0.1302

nil

0.01302
0.05209
0.10416
0.20832

nil

1 " 00
4.00
8.00
16.00
nil

1 201
1012
920
850

1030

o"o4 0.o8

20

Mognitude of lmperfeclions mm.

o.12 0.1 6 0.2
Appiied Scole Foctor

40

Q.24 0.2A

ro
2

10

r.8
1"7
'1.6

1"5
1.4
1"3
1"2
1.1

1

o.9
o"8
Q.7
o"6
o.5
o"4
o.J
o.2
o"1

o

30

E9Ècoo's øt-:
Ë.3CF:-

o

Figure 6,15; Scale Factor vs Moment B2S7



Chapter VI I

DI SCUSSION

7.I TNTRODUCTION

rn this chapter the resurts of the F.E.M. anarysis are
discussed with reference to the experimentar program of ste-
phens et al (7). The effect of geometric imperfections is
assessed with respect to the method of incorporation and

magnitude. The effectiveness of the NrsAg0 program is
reviewed. Final1y, reasons are suggested why the anarytical
program failed to reach the experimentar limit point load.

7.2 INITIAL TMPERFECT]ONS

The experimentar cylindrical shelrs possessed a given
dispracement pattern of initial irnperfections. The analyt-
icar procedure used those initial imperfections in order to
determine a scale factor, which in turn was applied to the
mode-shape 1 eigenvector dispracements. Arthough small, the
actual imposed pattern vras severe since the initiar shetl
configuration arready followed the worst configuration pos-
sibIe. since it is unlikely the real sherl would possess

this configuration, thís introduces a biased failure pat-
tern. The imposed nodal imperfections were as much as an

86
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order of magnitude smalrer than the observed quantities, but
this did not outweigh the sensitivity of the eigenvalue dis-
pracement pattern. The scaring technique chosen $ras justi-
fied by its ease in repeated application to other shelrs of
simirar nature. It permits a consisLent analysis procedure
once a scale factor has been selected from a data bank of
values.

The scaling method displayed consistency in simirar anal_-
yses. In the four B2s7 series analyses an increased scale
factor r.ras employed f or each successive anarysis. Às shown

in figure 6.Is, âD increase in the scale factor red to a

decrease in the timit point road obtained. This curve seems

to imply that, after a certain magnitude of nodal imperfec-
tions are incorporated, only a very smai-r decrease in the
limit point load wourd be achieved with a further increase
in the imperfections.

A shortcoming of the scaLing method is rerated to the
preferred fairure pattern achieved with this method. In the
experimental program failure was observed in a region close
to the circumferentiar weld. For a cylindricar sherl sub-
jected to pure flexure, the eigenvalue solution consistentJ.y
produced a mode-shape I displacement pattern with a concen-
trated region of maximum values located near the centerline
section. This resulted in onry very minor initial imperfec-
tions in the circumferential werd area. In the Bls4.Nl
analysis, no initial imperfections v¡ere incorporated and
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failure was observed in a region near the circumferential
weld, possibly due to the eccentric junction of the end and
central shel1 region. Àlthough the eigenvalue solution of
Bls4 again yierded the typical preferred configuration men-

tioned above, the results of the nonrinear sorution suggest
a bias may be introduced here.

7.3 ÀCHIEVING THE LIMIT POINT IOAD

The urtimate objective of this analysis was to test
whether nonl-inear finite element methods can successfurly
predict the experimental limit point load of a given cylin-
drical shel1. Although, the resurts of this investigation
suggesl this is possible, certain modifications to the mod-

el1ing system must first be made.

For cyrindricar shells subjected to pure flexure,
is no stress gradient along the rength of the sheIr.
suggests that a uniform mesh configuration shourd
for all analysis.

the re

Thi s

be used

The analytical moderling of large-scare experimental pro-
grams is restrictive because of the heavy demand placed on

resources. The average nonrinear analysis required 12 time
steps with approximately 2 to 3 iterations required per
step. The average total cpu time required ranged between
6.5 and 7.5 hours. The above data is based on using the
university of Manitoba Amdahr 670 computer. Eigenvalue
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solutions were not as dependent on cpu time, but very high
Input/output counts were needed f or a singJ-e sol_ution of the
s7 mesh configuration. Additional mesh refinement is usual-
Iy limited by the available system resources and cost. sur-
prisingry though, ân increase from the 4g4 nodes correspond-
ing to the s3 conf iguratíon to the 703 node mesh

corresponding to s7 resurted in only a sright increase in
the overall- cost of Lhe nonrinear solution. The refined
mesh pattern s7 reguired 262 more cpu per iteration, but the
number of time steps and iterations per step decreased,
resulting in a toLal cost comparable with the s3 analysis.

Throughout the analysis the NIsAg0 program provided con-
sistent results. Refined mesh patterns repeatedry yielded
better solutions, rncreased nodal imperfections i_ed to Lor,¡-

er limit point loads. The program þras easiry restarted at
any given time step. The road path traced v¡as smooth and

void of fluctuations near the limit point 1oad.

The limit point loads predicted by NrsAg0 were higher
than the experimentar values. rt is felt the major discrep-
ancy beLween results is linked to the omission of residual
stresses. As discussed previousry, the carculation of resi-
dual stresses is extremely complex. It is dependent on the
materiar type, fabrication technique, and size of specimen.
It is certain that forming and welding processes used in the
fabrication of the experimental specimen induced residual
stress concentrations in the vicinity of the junction
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between central
of the magnitude

rate results.
to .incorporate

finite element

90

and end section of the shell. Àn estimation
of these stresses is needed to obtain accu-

Once determined, a system must be developed

these initial stresses into the nonLinear
program.



Chapter VI I I

CONCLUSIONS ANÐ RECOMMENDATIONS

8.1 CONCLUSIONS

5

cylindrical shells subjected to pure bending are not
as imperfection sensitive as the same cylindrical
shells subjected to pure axial 1oad.

very large increases in initial imperfections cause

only very moderate reductions in the rimit moment.

The NrsA80 program can effectivery analyze the buck-
ring behaviour of thin-warred cylindrical shells sub-
jected to pure bendíng.

The eigenmode scaling technigue for incorporating
initial imperfections into the analysis resulted in
predicted limit moments some rs-zoz larger than were

found experimentally.

uniform mesh patterns shourd be emproyed for all arl
pure flexure analysis.
The discrepancies between anarytical and experimental
Limit moments may be due to the presence of residual
stresses which $¡ere not considered in the analyses.

6.

I

2

3

4

91
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8.2 RECOMMENDATIONS

1. Future investigations should study the lower imper-
fection sensitivity disprayed by cylindrical sherrs
subjected to pure bending.

2. Future anarytical studies should seek a means of
incorporating residuar stresses into the nonlinear
finite element analysis.

3. An investigation of prasticity reduction factors for
nonhomogenous material behaviour caused by residual
stresses should be conducted.

4. Further analytical study is needed to investigate the
buckring of thin-warred cyrindricar shelrs subjected
to pure bending.



Appendix A

MOMENT-CURVÀTURE

v3



Step Moment
kN-m

Node 400
u xl03 w

Node 418
u x103 w xI03

94

Curva t ure
døldsx10'

TABLE A"1

Moment vs Curvature 81S3.Nl

x10 3

1
2
3
4
5
6
7
8
9

10
11
T2
13
L4
15
16
I7
18

359
7L7

1073
I428
1780
2130
247 I
2637
27 92
287 I
2952
2984
3009
3029
3043
3057
3051
3 012

*L73 
"4-346"8

-520"1
-693.3
-866 .4

-1039.4
-1211.9
-I29I .4
-1370.5
-1415"1
-1457.0
-L47 6 .4
-1493.3
-1506"1
-1520.9
-1550.9
-1563 " 3-1s69.9

^27I 
" 6*547.2

-827.0
-1111.6
-1401.5
-I697.4
-2000.4
-2t44 "r
-2293 "0
-2382 "5
-2479 "8
-2529 "7
-2679 .6
-2628.5
-2675.9
-2827 .I
-2932 .0
-3Q27.0

L72.3
343"4
513.2
681"7
848.8

1014 . 4
1178.1
1252.7
1325.9
1366.1
t40L "2
1416 .4
1428.2
1437.6
I444 " 61451.8
1445.0
1431.8

-264 "I-523.8
-779 "3-1030.7

-I278.0
-1521.3
-1760.5
-1869.1
-1976 " 0-2035.2
-2088.6
-2II2.5
-2132 "t-2L48 " 6-2163.8
-2!85.7
-2t87 .8
-2182.2

0 "2472
0.4935
0"7391
0.9835
1 .227 0
1.4690
L.7097
r "8207
1.9290
1.9896
2.0448
2".0696
2 .0902
2.1061
2.r2I8
2.1486
2.1527
2.1481_

4

5

5.5

2.5

f.5

2

Ê
lø2þ

o
c:ooçr
o5

o.5

o

2o o.4 o.a 1-2 1_6 2.4

Curvoturc x106 mm-l

Figure 4"1: Moment vs Curvature BlS3.NI



Step Moment
kN-m

Node 400
u x103 w x103

Node 418
u x103 w x103

9s

Curvature
døldsx10,

0 .249r
0 .4967
0 .7 422
0"9852
t.2232
1.4563
1.6661
r .77 39
1.8345
1.8810
1.9134

TABLE A"2

Moment vs CurvaLure B1S3.N2

1
2
3
4
5
6
7
I
q

10
11

359
7L4

1066
1411
17 51
207 7
2358
247 9
2526
2539
2530

3.5

o.5

*176.3
-352.3
-527 "9
-7 02 "8-676.3

-1045,9
-1205.8
-1297 .7
-1358"8
-1415.5
-1463.3

-293 .6
-594.7
*904 

" 4-1233.8
-1154.6
-1902 " 0-228t "0-259r .4
-2869.7
-3187.6
-3493.0

172"0
342.0
509.7
674"4
835.5
989 "7

1123 .0
1181 " 2
L204 .4
I2I2 .3
1209.2
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Figure A"2t Moment vs Curvature 81S3.N2



Step Moment
kN-m

Node 400
u x103 w

Node 418
u x103 vJ x103

96

Curva t ure
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TABLE A"3

Moment vs Curvature B1S3.N3

I
2
3
4
5
6
7
I
9

10
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L2
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708

1049
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16 91
t962
2TT6
2206
2257
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2290
227 6

-180.3
-359.5
-536"8
-7LI .2
-880 " 7*1038.2

-1143.6
-ï224 .4
-1290.3
-13s9 " 8-1423 " 3-1481.1
-1535.7
-1590.4

x10 3

-323 " 8-658.4
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-1736"4
-2t25.I
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-27 46.7
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Figure 4"3: Moment vs Curvature BlS3.N3



TABLE A.4

Moment vs Curvature B1S3.N4

Node 418
u x103 w x103

97

Curva t ure
døldsx10'

Step Moment
kN-m

Node
u x103

400
hr xl0 3

I
2
3
4
5
6
7
I
9

10
11
L2
13
14
15
16
L7
18

?tr,)
JJ¿

687
1000
1289
154 3
17 43
1850
194 6
2 011
2054
207 4
2096
211 0
2109
210 6
21 01
2095
2083

-191.7
-378.3*558.6
-731.1
-891.7

-1033.8
-Lt29.6
-1234.3
-1328.9
-1416.9
-1482.9
-1564.5
-1644 "7-1707.0
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-2016 .4

o.4
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968.6
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1022 .6
ï023 "7
1024 "31024.2
1023.1
1019.7

*270.9
-527 .7
-7 69 .I
-993.6

-1194.6
-1361.7
-t462.9
-1564.9
-1648.6
-I7t7 .5
-I765"4
-1822 " 0-I87 4 .2
-1908.5
-r949 "9-1990.7
-2030.1
-2066.2

0.2584
0.5067
0 .7 428
0.9960
1.1680
1.3387
r .4447
1.5540
1.6454
I.7244
1.7801
1.8478
1.9118
r .957 6
2.0135
2.0694
2.1250
2.r785

o.5

o

4

J

c rr
lØ

ozg 2
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CÉ

35 1.s

o o.a '1.2 1.6
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Figure 4.4: Moment vs Curvature BlS3.N4



Moment
kN-m

Node
u x103

4I9
w x10 3

Node
u x103

437
w x10,

98

Curvature
dø /dsx:-}'

TABLE A.5

Moment vs Curvature B1S4.Nl

Step

I
2
3
4
5
6
7
I
9

10
11
T2
13
14
15

359
718

I07 4
1430
1784
2736
2486
2832
3071
337 2
3475
3485
3467
3435
3389

-172 "8-345.7
-518 " 5-69r.2
-863.9

-1036.4
-1208.7
-1380"4
-1501.3
-1679.2
-1805.2
-1887. I
-1981.8
-2069 .4
-2I72"3

-27 0 "I-543.6
-820.7

-1101.7
-1386.6
-I67 6 .6
-1971 " I-2273"4
-2499 .3
-2947 "0-3s65.3
-4133.9
-4895.8
-5672.7
-6641.0

171" 9
342 .6
5I2.2
680.6
847 "8

1013 . 7
1178.3
1340.5
1452 " I1609.5
1706.8
1719 " I
1 714.1
1701.8
1683.7

-268 " 3-532.0
-79r.3

-1046.3
-1297 .2
-1544. t
-1787.3
-2033.1
-22L6.7
-2500.9
-2739.0
-2800.5
-2838,3
-2866.7
-2896.2

0.2465
0 .4923
0.7372
0.9812
I.2243
I .4664
I.7074
r.9464
2.Ir28
2.3530
2"5133
2.5820
? .647 0
2 .7 023
2.7 648

2.5

'1 .5

o.5

o
o.4 o.8 1.2 1.6 2.4

Curuoture x 106 mm-l

4

3

F
lø
=n
lL o
lØ
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oJo
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Figure 4.5: Moment vs Curvature BIS4.Nt



Moment
kN-m

359
7t6

10 71
L42I
17 67
2108
2437
27 32
2895
2950
2943

-175.5
-350.9
-526.r
-701" I
-875.7

-1049"0
-r220-2
-1384.5
-1495 " 0-1565.4
-1601.3

-311.7
-631.1
-959.3

-1297 .7
-1648 .4
-2018. s
-2415.9
-2889.2
-3300.0
-3637.3
-3 908 .1

172 "5343.3
5t2"4
679.4
844.r

1005.4
1161.1
1300.0
t377 .t
1407 " 51401.8

-282 " 4-559.3
-830.9

-1079.1
-1357 .7
-1612.4
-1861.7
-2094.8
-2239.5
-2315.1
-2333,7

99

Curvature
ðø/dsx1,0,

0 "2488
0.4965
0 .7 428
0 " 9876
r.2302
1"4689
I "7 026
1.9190
2 .0529
2.L244
2.t457

TABLE A.6

Moment vs Curvature BlS5.N1

Step Node 4L9
u x103 w x103

Node 437
u x103 w x103

l"
2
3
4
5
6
7
I
9

10
11

o.5

ô

o.4 o.a 1.2 1.6 2 2.4 2.4

Curuoturc xldmm-r

4

3

c r<

)ü
-9 .
rf
Oo
F!
¡s 1.s

o

Figure 4"6: Moment vs Curvature BlS5.Nl



Step Moment
kN-m

Node 590
u x10' w x103

Node 608
u x103 w x10,

100

Curvature
døldsx10,

0 "2543
0.5056
0.7529
0 " 99s5
t.2317
1.4545
1.6435
1.7 652
r.8792
1.9503
2 " 0037
2 .0393

TABLE A.7

Moment vs Curvature B1S7"NI

I
2
3
4
5
6
7
I
9

10
11
L2"

357
708

I 051
1385
L7 06
2001
2333
2367
247 2
2522
2545
2538

-183.4
*366"1
-547 " 5
-7 27 "I-903.8

-1074 " 3-t2?6.9
-1332.1
-1439 .4
-1513.0
-1575.0
-1625.8

-344.0
-701.0

-I07 0 "2-1458.7
-1861 " 4-2285.5
-27 32 .5
-3094.5
-3520 " 3-3845.7
-4149.5
-4432 .6

T72.7
340 .7
50s.0
664 .4
817 " 6
958.3

1069.4
1133.8
1r85.3
1210 . 5
1222.7
L22L "L

-279.6
-551.7
-815.8

-I07I.2
-1316.8
-1545 " 4-1735.9
-1856.3
-1966.8
-2034.2
-2083.3
-2113.1

F
lØ

=EJå

Caoo

3.5

t4

1.5

o.5

o.4 o.a 1.2 1.6 2.4
Curvoture x 106 mm-l

J

2

o

2o

Figure A"7: Moment vs Curvature BIST.Nl



Step MomenL
kN-m

Node 590
u x10 3 r,J x10 3

Node 608
u x103 w xI03

101

Curva t ure
dø/dsx1}'

"2495
"4975
.7 438
.9880
.2294
" 4594
,6944
.8530
.9598
.0101
" 0115
.9901

TÀBLE A.8

Moment vs Curvature B1S7.N2

1
2
3
4
5
6
7
I
9

10
11
L2

358
714

1067
141 5
17 58
2092
2409
26L5
27 52
27 6I
27 t7
2640

3.5

2.5

1.5

o.5

-176.5
-352.8
-529.0
-704 "6-879.5

-1052.6:I22I.9
-1346.6
-1440 .4
-L495 "2-1517.9
-1523.6

o.4

-317.8*644.5
-98r "2-1329.5

-I69L.7
-207 4 .9
-2490.5
-2878 "3-3247 .2
-3s39.7
-3765.1
-3952 .4

o.8

172.4
342 "8
511"1
677 "0
839.8
998 .4

1148.1
1245.6
1301.7
1316 " 6L297.4
1262.2

-283 "2-560.7
-832 " 4-1098.1

-1357.5
-1609 " 9
-18s2 " 6-202r.8
-2133 .4
-2184 .3
-2t82-I
-2155.6

0
0

?
0
1
I
I
I
I
'2

2
1

4

u

cg^

lø

ã

7-

o

0O

o
o 1.2 1.6

Curuoture x106 mm-l

2

Figure À.8: Moment vs Curvature BlS7.N2



Step Moment
kN-m

359
715

10 68
1416
17 60
2095
24I3
2629
27 44
277 3
27 55

t4

r.5

o.5

o

Node 590
u x103 vJ

Node 6C8
u x103 w x103

102

Curvat ure
dø/dsxl-}'

0.2469
a .4975
0 .7 440
0.9813
1"2303
1.4639
1 .697 6
1.8626
1 . 9694
2 "0203
2 .0 4L9

TABLE A" 9

Moment vs Curvature BlS7"N3

1
2
3
4
5
6
7
I
I

10
11

*L72.8
-352 "7-528.7
-704 "4
-87 9-3

-1052.7
-L222 " 6-1350.5
-t443.9
-1500.3
-1536.9

x10 3

-313.3
-634 "9*966.1

-1308.3
-1663*6
-2038.2
-244r.9
-2816.8
-3180.9
-3479.3
-3745.0

172.4
342.9
511 .4
667 "4840.4
993 .4

1150.1
1252 .3
1307 .7
1321.9
1315 . I

-283"1
-560 " 4
-83,2"0

-1097 .7
-1357-3
-1609.8
-1853 " 5
'2029 "0-2140.0
-2190.3
-2208 "2

2.8

2

E

zpJc
o

¡l
õo
.EcÊov

o o"4 o.a 1.2 1.6 2

Curuoturc xlOG mm-l

Figure 4"9: Moment vs Curvature BlS7.N3



TABLE A.10

Moment vs Curvature B2S3.NI

Node 418
u x103 w x10l

103

Curvat ure
dø/osxl 0 '

0 "21670.4160
0 .597 4
0.7613
0.9037
r.0220
1" 1190
1"2030
I .277 0
I.3420
1.3960
1 " 4483
1.4903
1.5414
1.5921
1.6306
1.6788
r.7284

Step Moment
kN-m

Node
u x10 3

-164.5
-318.7
-461.9
-Eq¿. l
-712 "9-816.8
-907.1
-989.4

*1065"9
-Lt37 .2*t202.5
-1267 .I
-1319 " 7-1384.4*1449.5
-1501.7
-1566.8
-1632 .4

400
w x10 3

-402.r
-810.2

-1220.0
-1628.1
-2030.0
-2420.8
-2798.9
-3t67 .7
-3528.5
-3883.4
-4232.6
-4578.8
-4860.0
-5203.8
-5552.2
-5846.3
-6210 .4
-6577.8

I
2
3
4
5
6
7
I
9

10
11
\2
13
14
15
16
T7
18

191
363
515
648
759
843
903
949
984

1008
1020
10 28
1033
104 0
1 044
104 3
I042
104 0

137.3
260.7
37.0 " 0465.7
545.0
605.8
649 "9
683.9
710 " 3
728"9
738.4
746"L
751. 5
757 "5762"4
763.2
764.5
767.3

-211.0
-401.9
-572.9
-725.I
-855.1
-960 " 9-1045.1*1116.6

-r178.8
-1231" I
-r27 3 .7
-1314.0*L346.2
-1385.5
-r423.8
-1451.4
-1486.1
-1520.6

2.5

1.5

o.5

o
o o.4 o.a 1.2 1.6

Curvoture x106 mm-l

4

J

2

Ø
E
c
o
6
J
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E
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Figure 4"10; Moment vs Curvature B2S3.NI



Moment
kN-m

r97
387
568
735
886

1 011
108 6
11 44
117 5
1194
12 01
1198
118 9

2.5

1.5

o.5

o

Node
u x10 3

-153.0
-303.6
-450.2
-591.1
-723 "6-841.9
-922.5

-1001.5
-1055.8
-1110.2
-1148.8
-1189.7*1220.0

590
w x10 3

-306.7
-630.7
-972..6

- t33l/.2
-I7 05 .7
-2088.4
-2396.3
-27 54 "8-3034.7
-3352.9
-3599.3
-3882"5
-4105.2

Node
u x10 3

141.7
278.0
407 "I527.0
635.2
724.6
778.0
820.3
843.4
858.2
863 " 6
862 "8858.1

1.6

608
l.¡ xl0 3

-220 "2
-431" I
-630.9
-816.7
-985.7

-1128 " 5-1218.3
-1296.9
-1345.4
-1386.5
-1411.6
-1432 " 5
-1444 .6

2

104

Curva ture
dø,/dsx10 '

0 " 2115
0"4176
0.6156
0 " 8029
o.97s9
1.1253
r.2217
1.3091
1.3649
1.4149
I " 4467
1.4758
I.4944

TABLE A.11

Moment vs Curvature B2S7.NI

Step

l"
2
3
4
5
6
7
I
9

10
11
L2
13

c
lø

2Erb
Cfqro

4

J

2

o.4 o.8 1.2

Curvoture x106 mm-l

o 2.4

Figure 4.11: Moment vs Curvature BZSZ"NI



MomenL
kN-m

190
363
520
863
786
882
954
994

1010
1012

998

-241" 0
-47t.5
- 692,.7
-905ì 0

-1105.7
-1292 "0-1465.1
-1623.0
-11â.¿. q

-1858 " I-1952.4

-867 "r
-L732 "3
-2595 "7-34s6.8
-4309.3
-5150.9
-5979 " 1-6786.1
-7427.3
-8067 "4
-8635 "2

Node
u x103

139"6
266.0
381" 5
486 .4
577 .2
649 "2704.2
735.8
750.9
754.7
7 47 .r

608
tr x10 3

-263 " 3
-507 " 6-736"0
*949.7

-1144.0
-1313.7
-1460.6
*L57 6 "7-1656.7
-t720.0
-1758 " I

105

Curvature
døldsx10,

0 "27 33
0.5298
0 "7721
1.0005
1.2106
1.3971
1.5619
r . 6991
I "7982
1.8840
I.9467

TABLE A.I2

Moment vs Curvature B2S7.N2

Step

I
2
3
4
5
6
7
I
9

10
11

Node 590
u x103 w x103

3.5

2.5

1.5

o
o.4 o.8 1.2 1"6 2

Curvoture x106 mm-l

2.4 2.4

4

3

2

E
løza

lC
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õoeEcF-
ov
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o

Figure 4.12: Moment vs Curvature B2S7"N2



Moment
kN-m

L92
370
533
67 s'
789
864
9C4
920
907

3.5

-309.6
-608.5
-896.8

-1170.9
-1425.7
-1660.0
-1839.7
-2005.1
-2156.7

s90
tr xl-0 t

-1111 .1
-2227 .0
-3347 "6
-4465 "5
-5569 "2
-6648 .4
-7511.4
-8336.8
-9127 .5

Node
u x103

143.1
275.2
396.6
503 " 7
589.3
648.0
680.4
696.1
690.2

608
r.¡ xl0 3

-311.0
-604.5
-881 " 3-1136.4

-1360.3
-1545 " I
-1674.1
-L77 4 .4*1839.6

106

Curvat ure
dø/dsx]_}'

0 .3252
0.6351
0.9300
1.2048
1.4505
1 " 6624
1.8160
L.9475
2"0535

TABLE A"13

Moment vs Curvature B2S7.N3

Step Node
xl0 3u

1
2
3
4
5
6
7
B

9

4

E z.s

JC

-6 
¿¿)

õo
c+ov
> ¡-J

o.5

o
o.4 o.a 1.2 1.6 2.4 2.4

Cun¡cture x106 mm-l

o

Figure 4.13: Moment vs Curvature B2S7.N3



-367 "0-722.r
-1065.4
*1393 

" 6-1692.7
-1915.8
-2r77 .8
-2383.6
-2584.2
-2787.0
-2994.3

-1259 " 1
-2523 .6
-3793.6
-5065.3
-6314.1
-7 304 "7-8501.7
-9447.3

-10353.2
-tI247 "5-r2r35.6

Node
u x103

r44 "9
278 "9
402.5
510.7
584.9
620.2
646.6
658.0
659.7
660.6
662 "2

608
w x103

*350.0
-681 " 7*996 

"2-1286 " I
-1526 " 0-1682.0
-1842.8
-1953.5
-2043 .6
-2t29.7
-2215.5

107

Curvature
døldsx10,

0 "36770.7195
1.0557
1" 3705
I " 6402
r .827 3
2.0365
2.1943
2 "34152.4899
2 .642I

TABLE A"14

Moment vs Curvature B2S7.Na

Step Moment
kN-m

L92
370
533
675
770
812
840
849
845
840
836

Node 590
u x103 w x103

I
2
3

)4
5
6
7
8
9

r"0
11

3.5

o.5

o
o.4 o.a 1.2 1.6 2 2.4 2,4

Curvoturc xl06 mm-l

F 2.5i?
zP
-3' 2
Cl
OO
çEj5 1.s

o

Figure 4.14: Moment vs Curvature BZS7"N4
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8.1 CYtiNDER



c
c
c
c
c

1'10

FÏLE CYLINDER FiLE

PROGRAM ?O FIND THE TEAST SQUÀRES FIT OF A CYLiNDRICÀI SURFACE"

EXTERNÀI CYTNDR
REÀL*8 TITTE
coMMoN /nnn/ rrrrn(io)
coMMoN ,/cnrnlr/ r'lx
REÀD 50, TITLE

50 FoRMÀT (10À8)
pg¡¡ *, MX

PRINT 100, TITLE, MX
100 FORMÀT ('1'///t *****LEÀST-SQUÀRES FiT OF A CyLINDER*xx*x,//

& 1x, 1OA8//
& ' NUMBER OF SAMPLE POINTS .,, 15)

NPOOL=1 8*MX
cÀLL GETCoR (CYTNDR, gx¡¡pool)
STOP
END

suBRouTrNE CYTNDR (n, nnvtns)
coMMoN /cwrw/ ux
REAI*8 A( 1 )
NA=NByTES,/8

STORAGE MÀP
c
c
c
C

c
c
c
c
c
c
c
C

c
c
c
L

N'1

N2
N3
N4
N5
N6
N7
N8
N9
N10

x(MX)
Y (Mx)
z (Mx)
FP(MX,5)
F0 (Mx )
tI (MX)

G(Mx)
H(MX,5)
c (MX)

cr (Mx )

PÀRTITION THE STORÀGE

N1='1

N2=N1+l,tx
N3=N2+MX
N4=N3+MX
N5=N4+5l,MX
N6=N5+MX
N7=N6+MX
N8=N7+MX
N9=N8+5xMX
N1 0=N9+HX
N99=N1 0+MX
rF (N99-1.cr"NÀ) eo ro gooo
cAtt cyt (l¿x, a(b[1),.4(llz), ¡(N3), ¡(Ha), R(rus), a(lq6), R(rqz),

& A(NB), ¿(¡¡g), À(N1o))
1000 sroP
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9000 N99=8* (N99-'1 )

llA=8*NA
?RrNT 9100, N99, NA

91OO FORMAT('_**IT**STORAGE REQUEST OF', I8, ' BYTES EXCEEDS AvAILABLEI,
& ' SToRÀGE 0F" I8, ' BYTES.')
c0 T0 1 000
END

SUBRoUTINE Cyt (MX, X, y, 7,t Fp, FO, LI, G, H, C, CT)
C FPFORM

C FOFORM

C LIFORM
C DUPL
C TRNMTT
C SUB
C MUIT
C DÀMULT
C SYMTRI
C SYMSLV

iMPLiCIT REAL*8 (À-H,O_Z)
REAI*8 TITLE
coMMoN /unn/ rrrrE(10)
ÐIMENSION X(MX), Y(MX),

& c(MXf1), H(MX,5), C(MX,
DTMENST0N P(5), À(5,5),
DATA tFP, LH, KP, KÀ, LA
DATÀ LFO, KtI, LG, tC, K

REA[*8 LI
EQUrvÀrENcE (x0,p( 1 ) ), (

& (R,P(5))
LOGiCAt DEBUG
REÀL'I8 DBUG/'DEBUG 

"/DEBUG= 
" 
FALSE.

IF (rttr,n( 1 ) "n0.DBUG) nn¡Uc=,TRUE.
PI=ACOS(-1. )

KFP=MX
KF0=MX
LtI =MX
KG=MX
KH=MX

KC=MX

LCT=MX

REÀD PSI, Z, R ÀS MEÀSURED

z
1

B

,

MX), FP(t'tX,5), FO(MX,1), [I(1,MX),
, cr( 1 ,MX)
5), DP(b)
KB, KDP, MP /8x5/
, NP, LP, LB, LDP /Sxl/

,P(2)), (nHr,P(3)), (rHnr¡,P(4)),

(t
j'

c
c
c

c
c
c

READ *, (X(I ) , Y

PRrNT 100, (i, X
1 OO FORMÀT ('-POINT'

I=1 ,MX)
I =1 ,MX)

x, 'z' , 7x, tRADraS'//5X,

CT

YO

z(Mx-r+1)
Y(r ), zß

'ÀNGIE"
,
7

& ( 1x, 14, Fl1 "2, F10.2, F11 .3 ) )

REVERSE CYTINDER

XMAX=X( 1 )

YMAX=Y(1 )

XMIN=XMÀX
YMIN=YMAX
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D0 110 I=1,MX
XMÀX=AMAX1 (xu¡x
XMIN=AMIN1 (XI'II¡¡
YMAX=ÀMAX1 (YMAX

YMIN=ÀMIN1 (YMIN
1 1O CONTINUE

D0 120 I=1,MX
X(I )=XM¡x-X(I )

Y(I)=yMex-v(l)
120 CONTINUE

X(I
x(r
Y(I
Y(I

,
I

,
¡

c
c
c

CoMPUTE X, Y AND Z CoORDINATES

D0 200 I=1,MX
R=z(I)
pSI =pI *X (I )r/1 g0 .
z(l )=y(r )

X(I )=RxSIN(PsI )
Y(I)=R*COS(PsI)

2OO CONTINUE
PRiNT 300, (t, x(l ),

300 FoRMÀT ('-POINT" 7X,
& (1x, 14,3F11.3))
PRINT 5

X0=0.0
Y0=0 " 0
PHI =0. 1

THETÀ=0.0
R IS ÀS LEFT ÀBOVE

zfi) , I=1,MX)
9x, tyt , 9x, , z, //

Y(I),
txt,

5 FoRMAT('-"37X,' irERÀTES' /fiAX,'X0
& TTHETÀ" 14Nt'RADIUS" 13x,'suM
NI =0

SELECT INITIAI VÀLUES OF PARÀMETERS

' , i6x, 'Y0" 16x
ERRORS**2' /lx)

'PHI' , ',l 5x,

c
c

c
c
c ITERATE PÀRAMETERS

3 IF(NI "GT.O)SO=ScÀtt FPFORM (Fp, KFp, LFp, MFp, NFp, X, yr z, Mx, p, Kp, Lp, Mp,
& NP)
IF (un¡uc) c¡lr, DPRINT(Fp,KFp,LFp,MFprNFp,'G1 1.4/,,11,0,, Fp/,,, 0, )cÀtl FOFORM (FOr KFO, LFO, MFO, NFO, X, y, zì MN, È, ltn, rn', ue,

& NP)
IF (Dnsuc) cerr DPRINT(r'o,ltpo,LFo,MFo,NFo,'G11 . 4/,,11,0,, Fo/,,, 0, )
cÀLL IIFoRM (tI, KtI, LLI, MLI, NLI, X, '!, 7,t MNt pt tte, ln', un,

& NP)
IF (onnuc) c¡il DPRINT(tI,KLI,LLI,MLI,NtI,'G1 1 " 4/, ,j1 ,0,'Lr/, ,,0, )cAtt DÀMUtT ( tI, KLI, LtI, MLI, NLI, FO, KFO, r,rO, UrO, NFO I G, KG, LG . l¡C, ñg )IF (ngnuc) c¡rr DeRINT (c,nc,Lc,Mc,¡¡ó,'ci 1.4i,,ji-,a,;c7;'ì-õí i-cÀtl DÀMULT ( tI, KLI, LLI, MLI, NLI, Fp, KFp, irp, MFp, NFp, H, KH, LH, MH, NH )IF (pn¡uc) c¡r.r DeRINT (H,KH,LH,MH,NH, 'Gi1 . q/' , ji ,'0,;íj7;,i ôí I
cÀt,L TRNMIT ( Fp, KFp, LFp, MFp ¿ NFp, H, KH, rU, UH, NH,.À, lt¡, íe, uÀ, ¡¡Á IIF (nn¡uc) cerl DnRINT (e,xe,LÀ¿MA,ñÀ,iG11.4i,',11',0,i n/í ,, o, )cÀtl TRNMTT ( Fp, KFp, LFp, MFp, NFp, G, Kò, r,ó, l¿c, ¡¡c, n, na, rn, þr'n, Ñg iIF (pn¡uc) catt DnRIHT (n,KB,LÈ,M8,ñ8,ic11"4i,',14',0,i87i ;i), 

)cAtt syMslv(A,KÀrLÀrMÀ,NÀ,Dp,KDp,LDprMDp,NDp, ¡,¡t¡,rn,u¡,Ñn j
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IF (nnguc) c¡n DPRINT (¡,K¡,tA,MA,NÀ,' G11,4/,,11,0,, A/,,'0' )IF (unsuc) cerr, DPRINT (¡,xs,LB,MB,NB,' Gjj,4/,,jj,o',,g¡,,'0' )cAtt suB ( p, np, Lp, Mp, Np, Dp, KDp, LDp, MDp, NDp, p, i{p, l,p, ¡¡p, Nþ )'
cÀtt MUtr (H, nH, LH, MH, NH, Dp, KDp, LDp, MDp, NDp , c , Kc , rc ,l¡ó , ¡¡c )
cAtt suB ( G, nG, LG, MG, NG, c, Kc, Lc, Mc, Nc, c, Kc, rc, ¡lc, t{c )
CALL TRNMr,r ( c, Kc, Lc, Mc, Nc, G, KG, LG,MG, NG, s, 1, 1,Ms, Ns )
PHI=AMOD(NHI,2.*PI )

¡1=¡rf l + 1

PRINT 400, NI, X0, Y0, PHi, THETA, R, S
400 FoRMÀT( I4, zx,6(3x,c1 s.g ) )

rF(Nr.EQ.1 )co ro ¡
rn(n¡¡s(so-s)/s.cr. 1.8-B)co ro g

C END OF ITERATIVE PROCEDURE
PHrD=180. *pr¡l/pr
THETÀD= 1 I 0 . *fHnf¡r/pt
PRINT 4, X0, Y0, PHI,
FORMAT ( ' -xO

'y0
'PHI.. F6.1,

F6.1,
DEGREES ) 

"/nncnnns ) ',/

PHID,
I

t

t

THETA
G1 5.8
G',l 5.8
c1 5.8

THET

2X,

AD R
4 i&

&

&

&

t THETA . . " 
" 

G1 5.9, 2x, r

' RADIUS " ' , G1 5.9 )
cAtL DPRI¡tr (no,MX,1,Mx,'1 ,'G11.4/,,11 ,0,

&'ÀDJUSTED INITIAL DEFtEcrIoNs/',' 1' )
RETURN
END

suBRourINE FPFoRM (nn, nrn, LFp, MFp, NFp, x, y, z, MNt p,
& KP, LP, MP, NP)
DIMENSI0N pp(¡t¡.p,LFp) , x(l,tx), v(¡¡x) , z (Mx) , n(ne)
xO=p( 1 )
YO=P(2)
PHI=P(3)
THETA=P( 4 )
R=P(5)
CT=CoS ( rHst¡ )
ST=SIN(IHNT¡)
CP=COS ( PHI )

SP=SIN(puI )

D0 100 I=1,MX
DX=x( I ) -x0
DY=Y(T )-YO
A=2.x ( ox*cr*cp+Dy*cT*sp-z ( I ) *st )
B=2.*(-UX*Sp+Oy'rCp)
C=SQRT (¡*A+B*B )

Fp( I, 1 ) = ( -¡*cr*cp+B*sp)/c
FP( I, 2 )= (-¡xct*sp-B*cp)/c
Fp( I, 3 ) =(¡* ( -¡x*cr*sp+Dy*crxcp) -B,k (ox*cp+ny*sp) )/c
FP( I, 4 )= (-¡x (nx*St*Cp+Dy*ST*Sp +2fi) *CTl ) /c
FP(I,5)=-'1 .

-1OO 
CONTINUE
MFP=MX
NFP=MP
RETURN
END

SUBRoUTINE FoFoRM (r.0, ¡tpo, LFO, MFO, NFO, X, y, Zì MX, p, Kp,
& LP, MP, NP)



c
c

114

DIMENST0N F0(KFo), x(ux), y(ux) , z(Mx), p(np)
X0=P( 1 )
y0=p(2)
PHI=P(3)
THETA=P ( 4 )

R=P(5)
CT=COS ( rHNr¡ )

CP=COS ( pHT )

ST=SIN(runr¡)
SP=SIN(PHI )

D0 100 I=1,MX
DX=X(I )_XO
DY=Y(i )-Y0
A=DX*CT*Cp+Dy*CT*Sp-Z ( I ) *ST
B=-ÐX*SP+Dy*CP
Fo ( i ) =sQRT (¡*¡+g*g ) -n

1OO CONTINUE
MF0=MX
NFO=1
RETURN
END

suBRouTiNE LIFoRM (LI, KLI, LLI, MLI, NLI, X, y, Z, MNt p, Kp,
& tP, MP, NP)
REAL tI (nrt ), p(Kp), x(ux), y(Mx), z(MX)
X0=P( 1 )

YO=P(2)
PHI=P(3)
THETÀ=P ( 4 )
R=P(5)
CT=COS (THNT¡)
CP=CoS ( pur )

ST=SIN(THNT¡)
SP=SIN(PHI )

D0 100 I=1,MX
DX=X( I ) _XO

DY=Y(I )_YO
À=2. * (ox*ct'rcp+DY*cT*sp-z ( I ) *sr )

B=2.*(-¡X*Sp+Oy*Cp)
c2=A*À+B*B
LI (I ) =C2/((¡xCf*Cp-B'kSp) x*Z + (À*CT*Sp+B*Cp)**2 + (¡*Sf)**Z)

1OO CONTINUE
MLI=1
NLI =MX
RETURN
END

suBRouTI NE DÀMUIT ( O, nO, LD, MD, ND, A, KA, LÀ, MÀ, NA, B, KB, LB, MB, NB )
FORM THE PRODUCT OF DIAGONÀt MATRIX D WITH ANY COMPÀTIBLE MATRIX À.
D MÀY BE STORED AS A ROW OR ÀS À DTÀGONÀt.

IMPTICIT REÀL*8 (À-H,O-7.)
DIMENSI0N D(KD,LD),À(n¡,1¡), n(nn,ln)
MB=ND
NB=NÀ
IF(MD.EQ"1)CO rO eS
DO 21 I=1,MÀ
D0 21 J=1,NÀ
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21 B(I,J)=n(l,I )*A(t,¡)
G0 T0 27

25 D0 26 I=1,MA
DO 26 J=1,NA

Zø s(I,J)=D( 1, I )*À(I,J)
27 RETURN

END

suBRouTI NE DUpt ( ¡, X¡, LÀ, MA, NÀ, B, KB r LB, MB, NB )
c MATRTX B IS SET EQUAL T0 MÀTRrX À.

IMPLICIT REAL*8 (À-H,O_Z)
DIMENSIoN A(KÀ,LÀ), B(nn, r,¡)
MB=MA

NB=NA
D0 1 I=1,MÀ
DO 1 J=1,NÀ

1 B(i,J)=A(I,,¡)
RETURN
END

suBROuTI NE SyMStV ( À, KA, LA, MA, NÀ, X, KX, LX ¡ MX, NX, B, KB, LB, MB, NB )C THE SYSTEM AX=B IS SOLVED FoR X, WHERE A IS SYMMETRIC ÀND POSITIVE
C DEFINITE.

iMPLICIT REAL*8 (À_H,O-7.)
DIMENSI0N A(KÀ,LÀ), X(nX,lX), g(ng,LB)
CALL SYMTRI (¡, n¡, tA, MÀ, NÀ)
CALL DUPL (8, KB, LB, MB, NB, X, KX, LX, MX, NX)
rF(MA.EQ.1)eO rO ¿

NN=MA-1
DO 1 J=1,NN
K-J+1
D0 1 I=K,MA
D0 1 L=1,NB

'1 x( i,L)=x(I ,L)-À(r ,¡)*x(J,t)
C BACK_SUBSTITUTION

4 DO 2 K=1 ,NX
DO 2 II=1,M4
I =MA-I I +'1

IP1=I+1
Ir(IP1 "cT"NÀ)CO rO e
DO 3 J=IP1,NÀ

3 x(i,K)=x(r,K)-À(1,¡)*x(J,K)
2 x(r,K)=x( r,R) /A(r,r )

RETURN
END

SUBRoUTINE SYMTRI (e, n¡, LA,MA f NÀ )
C TRIANGUTARIZÀTI0N 0F A SYMMETRIC, POSITIVE DEFINITE MATRIX"

iMPtICIT REÀ[*8 (A-H,O-Z)
DIMENST0N A(KÀ,tÀ)
rF(MA"EQ.1 )RnrUnH
N=NA-1
DO 1 J=1,N
6=J+1
D0 1 I=K,NA
A(r,J)= (e(,:, tl /nß,a)l
D0 5 L=I rNA

5 A(I,L)=À(l,r)-À(I,,:)*¡(¡,t )
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CONTINUE
RETURN
END

suBRourl NE suB ( n, nA , LA , MA, NÀ, B , KB, LB, Mts, NB , c , Kc , Lc, Mc , Nc )
IMPLICIT REÀL*8 (¡-H,O_Z)
DrMENsi0N R(ne,le), n(nn,ln), c(nc,i,c)
MC=MÀ

NC=NA
D0 100 I=1,MÀ
D0 100 J=i,NA
c(t,,t)=¡(t,J)-g(1,¡)
RETURN
END

suBRouTI NE MUIT ( ¡, n¡, LÀ, MÀ, NA, B, KB, LB, MB, NB, C, KC, LC,MC, NC )
IMPLICIT REÀt*8 (¡-H,O_Z)
DIMENSI0N À(KÀ,LA), B(KB,tB), C(KC,tC)
D0 200 I=1,M4
D0 200 J=.1,NB
S=0.0
D0 100 K=1,NÀ
S=S+À(I,n)'rB(K,J)
c(t,J)=s
MC=MA

NC=NB
RETURN
END

SUBROUTINE TRNMTT (E,N¡,tÀ,MÀ,NÀ,B,KB,LB,MB,NB,C,KC,LC,MC,NC)
TMPLICIT REAL*8 (À-H,O_Z)
DTMENSi0N À(KÀ,LÀ), B(KB,LB), C(nC,rC)
D0 200 I=1,N4
D0 200 J='1 ,NB
S=0.0
D0 100 K=1,M8
S=S+À(n,I )*B(K,J)
c(i,J)=s
MC=NÀ

NC=NB
RETURN
END

100
200

100
200



117

8.2 GEN



c
c
c
c
c
c
c
c
c
c
c
c

'1 18

FILE GEN FILE

************************rk*********************************

FIIE IS USED TO FIND THE LEÀST SQUARES
FIT OF THE GENERÀTORS ÀIONG THE AXIS OF THE
CYLINDER.

************:r(*********************************************

IMPTICIT REAL*8 (À-H,O_Z)
INTEGER I,J,M,N
DTMENSI0N F(17 ,7),FF (17 ,7 ),x1 (z),e(2,2) ,x(2,1

't g¡('17),R1,ü{( 17),y(17,9),xx(g),xF(.15),trti,n(1
)

0

n(2 ,1) ,

REÀD 70
707 FORMAT

PRINT 7

zo9 ¡'oRrq¡r (

&1 x, 1 0Ag
READ*,

N=7
M=17
x1(1)=1143.0
D0 10 I=2 ,7
x1 (t )=x1 (t-1 ) + 228.6-10 
CONTINUE
D0 60 I=1,M

D0 61 J=1,N
61 FF(I,¡)=r(I,.:)
50 CONTINUE

D0 100 J=1,N "NOTE" INPUT DÀTA IS 1Z X Z HERE
100 FF(1t,l)=r'(1 ,,1) THIS TWO STEPS NOT NEEDED

PRINT 201
201 FORMAT(' '///' ** INpUT DATA ADJUSTED FOR ÀXIS TrtT xx, ///lD0 101 I=1,M

PRINT 77 ,(ff (1,,:),J=1 ,N)
101 CONTINUE

PRINT 202
202 FORMAT(' './/./' ** INpUT DATÀ AXIAT COORDINÀTES **, ///)

PRINT 78, (X'1 (I ),i=1,N)
PRINT 40

40 FORMÀT(' 

"///,T20,9H 
SUM X ,5X,12H SUM X*xz ,6X,* 7H SUM yB ,sX,gH SUM Xy u12N,6H B ,7X,6H M

D0 20 I=1,M
SSUMX=0,0
X2SUM=0.0
SSUMY=0. 0

XYSSUM=0.0
D0 30 J=1,N
SSUMY=SSTJMY + FF(I,.¡)
X2SLJM=X2SUM + x1 (J )**2 " 

0
SSIJMX=SSUMX + X.1 (J)
XYSSUM=XYSSUM + (X1 (,:) * Nr(I ,¿) )

7,
(l
09
'1
)

F

TITLE
0À8 )
, TI TLE
'///' pGM= GEN pRoDUeEs END REGIoN DATÀ porvrs,///

c
c
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3O CONTINUE
À(1,1)=N

) =SSUMX
=SSUMX
=X2SUM
=SSUMY
=XYSSUM

KA=2
LA=2
MA=2
NA=2
KX=2
LX=1
MX=2
NX=1
KB=2
LB=1
MB=2
NB=1
cÀtt sYMsLV ( A, KÀ, LA, MA, NÀ, X, KX, LX, MX, NX, B, KB, tB, MB, NB )
PRINT 50,SSUI'ÍX¿X2SUM,SSUMY,XYSSUM,X( 1, 1 ),N(2,1)

50 FORMÀT( ", //,T1 0, 5F1 5.3,5x,F12.7)
BB(i)=x(1,1)
RMM(I)=x(2,'1 )

2O CONTINUE

À(1
A(2
AQ
B(1
BQ

2

1

2
1

1

XX
XX
xx
XX
XX
XX
XX
XX
DO

XF
DO

XF
DO

XF

32

33

1)=0.0
2)=228,6
3 ) =685.8
4) =91 4 ,4
5) =27 43 .
6) =297 1

7 ) =3429
I ) =3657
31 I=1,

0

6

0

6

31 (t )=xx(l
32 T.=5, 1

(I)=x'1 (t-¿)
33 T=12,15

(I )=xx(I-z)
PRINT 203

203 FoRMAT(' ,///
PRINT 78, (XX(

78 FoRMÀT(' ',gF
D0 250 I=1,8

D0 300 J=1,M
y(J,i )=RMM(,r)*xx(l ) + ss(J)

3OO CONTINUE
250 CONTINUE

PRINT 708,TITtE
708 FORMAT('1'///' *****GENERATORS EXTRÀPOËÀTED TO pROÐUCE END DÀTÀr//
1x,1OA8//',) ' '

Ð0 400 I=1,M
PRINT 77, (Y(1,¿),J=1,8)

4OO CONTINUE
77 FoRMÀT(' ' ,8F8"3)

t*

I)
12

* INTERPOLATEÐ DATÀ TEVELS **'///I
,I =1 , B )

.3////)

&



c
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STOP

END

suBROurI NE syMslv ( A, KÀ, LA, MA, NÀ, x, KX, LX, Mz, :tx, B, KB, LB, MB, NB )C THE SYSTEM AX=B ]S SOLVED FOR X, WHERE A IS SYMMETRIC AND POSITIVE
C DEFINiTE.

IMPLIcIT REÀL*B (¡-n,o-z)
DIMENSI0N e(ne,l¡), x(xx,Lx), n(nn,lt)
PRINT 909
FORMAT( ' 1 ' ,1 0X,1 2H @@@@@@@@@@ )
PRI NT* , À
PRI NT* , B
cÀLt SYMTRI (¡, K¡, LA, Ua, He)
cÀLL DUPL (n, nn, tB, MB, NB, X, KX, LX, MX, NX)
rr'(u¡.8Q.1)co ro ¿

NN=MA-1
DO 1 J=1,NN
6=J+ i
D0 1 I=KrMÀ
D0 1 L=1,NB

1 x(I,L)=x(l,r)-A(r,¡)*x(,:,r)
C BACK-SUBSTITUTION

4 D0 2 K=1,NX
Ð0 2 iI=1,M4
I=MA-Ii+'1
¡p1=1+1
IF(IP1 .GT.NA)CO rO Z

D0 3 J=IP1,NA
3 x(I,K)=x(I,K)-À(t,,:)*x(J,K)
2 x(r,K)=x(r,K) /A(r,r )

RETURN
END

SUBRoUTINE SYMTRI (R, Xa, LÀ,MA,NA )
C TRIANGUTÀRIZATI0N 0F A SYMMETRIC' POSITIVE DEFINITE MATRIX"

IMPLICIT REÀL*8 (A-H,O_Z)
DIMENSIoN e(n¡,le)
rF(MA,EQ" 1 )nnrUn¡l
N=NÀ-1
D0 1 J='1 ,N
¡=J+ 1

D0 1 I=K,NÀ
A(r,J)= (¡(¡,r )/n(t,,:) )
D0 5 L=I ¡NA

5 A(I,L)=À(l,r)-A(I,,:)*¡(;,1)
1 CONTINUE

RETURN
END

SUBRoUTINE DUpt(a,na,LÀ,MA,NA, B,KB,LB,MB,l,tB)
c MATRIX B rS SET EQUÀL T0 MATRIX A"

IMPTICIT REÀL:T8 (¡*U,O-Z)
DIMENSION A(KÀ,tA), B(nn,r,n)
MB=MÀ

NB=NÀ
D0 1 I=1,MA
DO 1 J=1,NÀ

1 B(I,J)=A(I,,:)
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RETURN
END
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8.3 SEÀM



c
c
c
c
c
c
c
c
c
c
c
c
c
c
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FILE SEÀM FILE

***********.À**********************************************

FILE SEÀM IS USED TO INCORPORATE THE CIRCUMFERENTIÀL WELD
DEPRESSTONS AFTER THE CYTINDER HAS BEEN ÀDJUSTED FOR ÀXIS
TIIT ÀND THE GENERÀTORS HAVE BEEN EXTENDED TO THE END SHELL
REGIONS.

***********************************************************

IMPIIcIT REÀL*B (¡-H,o-z )

DIMENSI0N pp( 17,8),À (1i,9),¡(1 7,2\,trrrn(10)
M=17
N=8
REÀD 707,TITLE

707 FoRMAT (10À8)
PRINT 709,TITLE

709 FORMÀT('1' ///r xx* PGM=SEÀM
& 1x,1 0À8 )

D0 99 I=1,M
REÀD *,(R(I,J),J=1,N)

99 CONTiNUE
27 FORMAT(8F8.3)

REÀD*, B

PRINT 1

1 FoRMÀT(' ',///,33H rNrriÀL vÀLUES ll/o sEAM ADJUST
D0 10 I=1,M

PRINT 2, (¡(I,J),J=1,N)
1O CONTINUE
2 FoRMAT(' 

"8F8.3)PRINT 3

3 FORMÀT(' ' ,/////,18H SEÀM DEPRESSTONS )
D0 15 I=1 ,M

PRINT 2,(g(I,J), J=1 ,2)
15 CONTINUE

D0 20 I=1,M
D0 25 J=1 ,3
PP(I,.1)=¡(t,;)
K=J+5

25 pp(I,¡<)=e(l,n)
PP(I,4)=¡(¡,4)
PP(I,5)=¡(I,5)

20 CONTINUE
PRINT 4

4 FoRMAT(' ',/////,32H FINAL ÀDJUSTED END coNDrrroNs
D0 30 I=1,M

PRINT 2, (pp(1,¿) ,J='1 ,N)
30 CONTTNUE

STOP
END

iNCoRPoRATES I,IELD DEPRESSIO¡15 **x' ///

_B
-B

(t,'1 )

ß,2)
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8.4 GRAPH
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8.5 PLOTSUR



c
c
a
c
c
c
c
c
c
c
c
c
c
c

*****
**:k**
*****
*****
*:t***
*rk***
*****
***x*

D0 10 J='1
REÀD(5,*)
CALI LINE
CALI PLOT

1 O CONTINUE
cÀtr PtoT(-4. 5625,-4. 5625, -3 )

D0 200 J=l,17
I=1

D0 201 L=1 ,73
DO 202 K=1 , 

.17

READ(8,* ) TEMPX(X),rnUpy(n)
202 CONTINUE

xARRÀy ( r )=tnupx (.r )

YARRÀY ( ¡ )=tnUpy (,: )
I=I + 1

201 CONTINUE
PRINT* , XÀRRAY, YÀRRÀY
D0 210 JJ=1,73
xARRAy(JJ)=xARRAy(JJ) + (,:.t-l )*O.OeeS
YÀRRAY(JJ) =YARRAY(JJ) + (JJ-1 )*Z " S210 CONTINUE
cAtt tINE(x¡Rn¡y,YÀRRAY,7 3,1, 0, 0 )
REWIND 8

2OO CONTINUE
cÀtt PtoT u2,0,0 " 

0, 999 )
STOP

END

125

FILE PTSUR FILE
**************************t(****************************

*****
*****
*****
*****
* * *:t*
** ***
*****
** ***

*******************************************************

FILE PTSUR ADDRESSES THE VERSÀTIC PLOTTER
IT IS USED TO DRÀW GRÀPH SURFACE
x 0-180 BY(s) Y 0-3600 BY(50 MM)
REFINED END CONDITION INCLUDED

@@@@ ALSo ptoTs TRUE GENERÀToR LINES @@@

BY USING A SECOND DÀTA SET "READ(8,*¡

12
((x¡nn¡v(r ),v¡RRev(r )) ,r=1 ,73)
(x¡nn¡y,YARRÀY ,73 ,1,0,0 )
( 0.0625, 0.0625, -3 )

DTMENSI0N iBUF ( 1 ),XannaV( 75),yARRAy(75),TEMPX (17 ),TEMpy( 1 7 )
CALL PLoTS(rBUF,1 )

cÀtt PtoT(0.0,0.5,-3)
XARRAY(Z¿) = O

XÀRRAY(75) = ]
YARRAY(74) = -40
YÀRRÀY(75) = 40
cAtt ÀxIs(0.0,0.0, 'THETA VALUES, ,-12,10.0,0.0,XÀRRAY 

,74) 
,* XARRÀY(75) )

cÀËL Àxis(0.0, 0.0,' IMPERFECTIONS,,13,g.0, g0.O,yÀRRAy (7 4),* YÀRRAY(75) )
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8.5 MODE'1



c
c
c
U

c
c
c
c
c
c
c
c
c
c
c
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FILE MODE1 FItE

******************************************rt***************
***** *****
***** FIIE MODE1 IS USED TO EXTRACT THE SCÄIE FACTOR *****
***X* A1 FROM THE INTERPOLÀTED NODAL IMPERFECTIONS ********** AND THE CoRRESPoNDING RÀDIAI CoMPoNENTS 0F THE *x***
***** M0DE-1 SHAPE ÀSSoCIÀTED t^¡iTH THE EIGENVÀIUE ********** soLUTioN 0F THE PERFECT SHELT *****
**********************************************************

INTEGER IFD,NX,NY,NXL,NYL, IFLD, IER, IC, I , I I INIMI IX' IJ'JI 
'JK'NUMNP* TNUMN2,KTJKI

REALXS TTTTE
REAL F (17, 15 ),X( 1 7 ), y ('1 5 ), Fr ('1 9, 36),xt ( .1 

9 ), yr, ( 36 ),I^lwK (48, 57 ),* c( 1 6, 3),t.IK (102),BB( 1 6, 1 5),FF( 1 6,7), MF( 1 6,7),ÀA (1t,1),tr( 17,15)* ,xl'l (19),PP(',17,9),DE( 17 ,15) ,* Ecc( 684,4),rncc(1368),v( 1358),THETÀ(19),Xr (19),A1 ( 16)
DIMENSION TITTE('10 )

IFD=17
NX=1 7
NY='15
PI=3.141592654
IC=16
M=1 6
N=15
M1=M + 1

N'1=8
NUMNP=684
D0 10 I=1¡NX
x(r )=(r-t ) *Pr/B

1O CONTINUE
Y(1)=0"0
Y(2)=228 "6
Y(3)=685"8
Y(4)=914.4
D0 81 JK=S,12
y(JK)=y(Jx_1 ) + 228"6

81 CONTINUE
Y( 1 3) =2971 .6
Y(14)=3429"0
Y(15)=3657.6
READ 707,TITLE

707 FORMÀT (10A8)
PRINT 709,TITLE

709 FOÌMÀy1',1',.///'. pGM= cRApH PRODUCES À 2-D TNTERPOTÀTED SURFÀCE'/
e /1x,1 0À8 )
PRINT 101

101 FORMAT(' ' ,/// 8H X(r) = )
PRINT*,X
PRINT 1 02
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102 FORMAT('
PRI NT* , Y

',///, BH Y(r)

ORIGINÀL DATA SHOWN FOR DISPTAY
MIDDLE SECTION ADJUSTED DÀTA POINTS
END REGIONS & SEAMS

col 1:3 nu¡'1 col 4&5 sEÀMs cot 6:g END2

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MATRIX FF
MATRIX ÀA
MATRIX PP

*******************************************
N O T E MUST USE THIS DO LOOP TO REÀD IN THE

ORIGINÀI DÀTA FOR SPECIMEN 82

D0 7'13 I=
READ*, (FF

71 3 CONTINUE

I,
(l

'16

,J),J=1 ,7)

**************************************************************:k
pg¡¡* , FF
p6¡p* 

, ÀÀ
D0 4'1 I=1,M1

REÀD*, (pp(I,J),J=1,N',1 )
41 CONTINUE

DO 42 I=l,NUMNP
REÀD*, (nCC(I,,r) ,J=1 ,4)

42 CONTINUE
NUMN2=NUMNP*2
D0 43 I=.1 ,NUMNP

JI=(HUMNP +

TEGG(I )=EGG(
TEGG(Ji )=EGG

43 CONTINUE
c
C**:t ** *X ************** ****:È*****!k** * **** **** * ****** **** *** *****:k
c
C CÀLCUIATE THE SUMMÀTION OF THE EIGENVECTOR DISPACEMENT
c MATRTX SQUÀRED
c

ZSUM=O " 0

D0 44 I=1 , NUMN2

ZSUM=ZSUM+(TEGG(I )*rgCE(I ) )44
c
c

cÀtl D1TÀ( BBf FF,MF, TF,ÀÀ, pp,FrM,N,DE)
c
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * it * * * * * :k** * * * * * * * * **** * * * * *

****** ***

I)
I,3)
(r,¿)

c
c
c
c
c
c
c
c

THESE RECORDS ARE FOR INTERPOTÀTING
THE MESH NODAT POTNTS

***
***
***
***
***
***
***
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c **********
NXL=1 9
NYL=36
I FLD=.1 9

c
c*x**************************************************************
c
C THIS IOOP WItt ÀttOW ONE HALF
C OF THE CYTINDER LENGTH TO BE MODETLED
C (JKI=,l DEFÀULT To oNLY Do FIRsT HAIT')
c
c
C SET THE DESIRED CYLINDER PORTION
C JKI=1 - FIRST HÀLF
C JKI=2 - SECOND HÀtF
c

D0 1 1 JKI=1,2

IF(JKI .GT. 1) GO TO 5

DDDDDDDDDDDDDDDDDDDDDDÐDDDDDDDDÐDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

FIRST HALF

c
c

c
c
c
e
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C

c
cc
c
c
c
c
c
c
c
c
c
c

TY=1828.8.1
Yt(1)=1828.81
D0 97 JI=2,16
TY=TY-30 .48

97 YL(JI )=ry
D0 96 I=17,19
TY=TY-9'1 . 44

96 Yt(I )=ty
DO 17 4 I=20 ,22
TY=TY-56.96

17 4 VL(I )=TY
TY=91 4.4055
YL ( 23 )=9'14 

" 
4055

D0 175 I=24,26
TY=TY-304 

" 
I

1 75 Yt(I )=Ty
GOTO6

5 CONTINUE

SECOND HAIF

TY=1 828 .8
YL(1)='1828"8
D0 400 Jr--z,16
TY=TY+30 

" 
48

400 Yt (,:l )=ry
D0 401 r=17,19
TY=TY+91 "44401 Yt(I )=ry
DA 402 I=20,22

9o9o9o%9o%9o9o%%9o9o9o9o%9o9o9o9o9o9o%%%9oyo9o%9o9o9oyo

%%% eo%%

9O9O9O THESE RECORDS ÀRE THE %%9O

eoeoeo c00RD, FoR THE 54 MESH voeoeo

Youogo gogogo

9o9o>o%9o9ù9o9o%9oyo%yo9o9o9o%9o%%%9o9o%9ogo9o9o9o9o%9o
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

402

4 03

TY=TY+56.96
YL(I )=TY
TY=27 43. '1 995
YLQ3)=27 43. 1 995
D0 403 I=24,26
TY=TY+304.8
YL(I )=TY

6 CONTINUE

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDÐDDDDDDDDDÐDDDDDDDDDDDDDD

9o9o9o96 s5 MESH %9o9o%

FIRST HALF

TY='1 828 .81
Yt(1 )=TY
D0 97 JL=2,31
TY=TY-30 

" 08
97 YL (,:t )=ry

TY=TY-'1 2 . 0
Yt(32)=TY
TY=TY-12"0
YL(33)=TY
D0 175 I=34,36
TY=TY-300 

" 
I

175 yL(I )=ry
GOTO6

c
5 CONTINUE

c
C SECOND HÀtF
c

TY=1828,8
Yt(1 )=TY
D0 400 JI=2,31
TY=TY+30 " 08

400 Yr(Jr )=Ty
,¡y=1y+.1 2.0
YL(32)=TY
TY=TY+i2.0
Yt(33)=TY
D0 403 I=34,36
TY=TY+300.8

403 Yt(I )=ry
6 CONTINUE

c
c*** **:t****** ** **** ****** * ***** *** * * ******** * *** **** ************ ***** **
c
c

D0 63 K=1 ,1 6
xJ=(n-1 )xzz,s
XI(1)=XJ

D0 99 II=2,10
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99 xt(Ir)=xI
D0 98 IJ=

98 Xi (IJ)=XI
IF(K .GT.
DQ 62 I=1 t

52 THETA(l)=x
PRINT 751

(l
11
(i
1)
'19

I(

r-1)
,19
J-1 )

+

+

TO

5

15.
67GO

r ) *Pr/1 80.

751 FORMAT(' 

"///,1X,' 
THETÀ VÀLUES'/)

PRINTx , THETÀ
67 D0 64 I=1,19

IF(XI(I) .LT. 360.) GO TO 68
xI(I)=xl(I) - 360.

68 xr ( r )=xr ( r )*pr,/l eo .

64 CONTINUE
C*****X*****************tr********************************rr**************
c***********************************************************************
c
c
c ****** THESE RECoRDS ÀRE USED T0 OBTAIN
C ** À PLOT OF THE ORIGINÀI TOTÀI SURFACE
C ** IMPERFECTIONS. INTERVATS ÀRE SMÀLI TO
C *X PERMITT À BETTER GRAPHICAL INTERPERTÀTION
C *****t(
c
c
C NXL=1 7
C NYt=73
C I FtD='1 7

C XI =0.0
C TY=0.0
C D0 99 II=1,17
c xL(r¡ )=xr xil/180.
C XI=XI + 22.5
C 99 CONTINUE
C D0 97 JI=l ,73
c Yt(;t )=ry
C TY=TY + 50.0
C 97 CONTINUE
C** ********* ****** ********* *dr***************** ************ *** ** *** **rr ***
C******** ** **rr* *** * * **:t* **** ******** ** * ********** *:t************** ***** **

rF(K "cr. 1) c0 To 151
PRINT 201

201 FORMAT('1' ,/i/ 8H Xr(r) = )

tp1¡1:t , xL
PRINT 202

202 FORMAT(' 

"///, 
8H Yr(r ) = )

tp¡¡1* , YL
PRINT 603

603 FORMAT( ",//,15X,' YSUM"10X,' ZSTJIL"/'
15'1 D0 150 I=1,NXt
1 50 xt1 (l )=xr,( I )*180 ",/pI

c
cAtt I Bcxxx ( Bn, I pn, x, NX, y 

r b[y, xL, NxL, yt, NyL, Ft, I FLD r þil.lK, I{K,* IER)
IF(K .NE. 2) GO TO 301



c
c
c
e
L
c
c
c
c
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PRINT 29
29 FORMAT(',1', ,///,38H AXrAL DTRECTION yt THETÀ DIRECTTON ,* 14H THETÀ ÐEGREES I¡ 5X,48H INTERPOLÀTED IMPERFECTIONS (UNESUNNO RADIÀttY) )

301 CONTINUE
D0 300 J=1,NYL

JK= (,']-1 ) *Hxr,
D0 305 I=.1 ,NXL
JI=JK + I
II=NUMNP+JK+I
v( JI ) =FL( I, J ) *srN(rsnre( r ) )
v(r r )=FL( r, J)*cos(runr¡( r ) )

IF(K .NE. 2) GO TO 305
pRINT 306,yL(,:),Xr(i ),Xr'1 (I ),pr(I,J) ,v(JI ),V(rr ),K305 CONTINUE

3OO CONTINUE
306 FoRMAT( 'i ' ,T5,r1 5.4,,5X,F1 0.7,5X,F1 0,3,1 0X,F1 5.4,x 10x,F15.4,5x,F15.4,5x,I3)
65 FORMAT( ",///,T5, 19F6.3)

rF (n .Hn. 2) co ro 635
I{Rr rE (6 ,632')

632 FORMAT( ''1 ' ,1X,'NODAI DISp COMPONENTS'//)
D0 67.1 J=.1 , 1 90
¡]=;+ 1 90
¿l=J+390
¡4=,1+57 0

J5=J+7 60
67i I^tRrTE(6,633)

*
2,v (J2), J3,V(J3 ),U4,V(,:4 ),

633 FORMÀT(' 2x,
2x

4x, I 3 ,2N,F7 "3 ,* F7
635 CONTINUE

*** ** ****** * **** **:t***** * ***** *** * **** ** ** * ****** ******** *

CÀtCULATE THE PRODUCT OF THE EIGENVECTOR TIMES THE
INTERPOTÀTED NODÀL IMPERFECTIONS

YSUM=0 " 0

DO 5OO J=1,NUMN2
YSUM=YSUM+ (TEGG(.: ) *v(.I ) )

5OO CONTINUE

*** ********* ****** * * ******* *** ********** ****** ********** **

PRINT 604,ySUM,ZSUM
504 FoRMAT(',,10X,F15"4,5X,F15.4)

A1 (K)=YSUM/ZSUM
63 CONTINUE

PRINT 505
505 FORMAT(' 

"///,1X,' 
CONTRIBUTION OF THE FTRST MODE'/)

D0 507 KI=1 ,1 6
PRINT 506,A1 (KI )

507 CONTINUE
506 FoRMAT( ", 15x,3F1 0"5)

,F7'7 ,3,4x,r3,
7 .3,4Nt13,

' ,2X
4x

J,V(J),J
J5, V( J5 )
,r3,2x,F
,r3 t2N,F

3

3

c
c
c
c
c
c

c
c
c



c
c
c
c
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.11 
CONTINUE
STOP
END

suBRouTI NE D 1 TÀ ( BB, FF, MF, TF r ÀÀ, pp, F, M, N, DE )
INTEGER I IJ'M'N'I.IN
REÀL F(17,15), FF( 16,7),BB(16, 1 5),MF('1 6,7),TF( 17, 15),ÀA (17,7),

*PP(17,9),DE(17,15)
Ml=M + '1

NN=N-8
D0 51 K=1,NN

D0 52 L=1,M
MF (L, K ) =FF (r,, n) *25. 4

52 CONTINUE
51 CONTINUE

'100 I=1,M1
)=pp(1,1)
)=PP(i,2)
)=pP(I,3)
)=pp(i,4)
)=pp(t,5)
)=pp(t,6)
)=pp(I,7)
)=PP(I,8)

D0 200 J=1,NN
TF(I, (J+¿ ) )=¡¡(I,,1)
CONTINUE

DO

TF
TF
TF
TF
TF
TF
TF'

TF

Irl
r,2
Ir3
rr4
Ir1
Irl
T11
r,1

2

3

4

5

200
100

75
70

c@@@

c@@@9

c@@@

c@@@

c@@@

co@@

CONTINUE
D0 70 KL=1,N

D0 75 Jt=1,M1
DE(Jt,KL)=TF(¡r,nl)
CONTINUE

CONTINUE
PRINT 9

D0 4 I=1 ,M1
PRINT 77, (nn(1,,:),J=1,N)

4 CONTINUE
6 FoRMAT(' ' ,1 1F12"3)

77 FoRMÀT( ' ' ,1 5F8.3 )

RETURN
END
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8,7 ADDDI SP
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c
C * FILE ADDDISP T'ItE *
c
C *****************:t*************************X***:r(*****:t****
c
C FIIE ADDDISP PERFORMS THE FOTTOVIING FUNCTiONS:
C 1) I'Iur,rIPLIEs THE EXTRÀCTED scÀLE FAcToR TIMES
C THE CORRESPONDING RADIAI COMPONENT OT' THE
C EIGENVECTOR
C 2) EOOS THE CÀICULATED NODÀt DISPLÀCEMENTS
C TO THE NODÀL COORDINATES
c
C **************tt************:t*************************tr****
c
c

REAL*g FiEtD(90) ,W( 475,4) ,V(¿25),Xl (19) ,rHnre('19) ,R(475)
INTEGER FMT',l (6)/',(5À8" 

"A5," 
'F10." ' 

" "3Àgi, "A1)'/INTEGER SETFMT
NUMNP=475
PI=ÀCOS(-1.0)

c
C * * * * * x * x * * * * * * * * * * * * * * * * * * * * * * * * * :t * * * * * * * * * * * * * * * * * :t * * * * * * * * * :ir

c
e scÀtE FACToR "À1 "
c
C****tr******tr***********rr****************tr****:È****************

A1 =-0.00397
c
C********* * ** *tr*** **** *** * **** ** ** ***** * ** ***** ****tr ************
c
C REÀD IN THE EIGENVECTOR
c
c w(Hul¿Hp,¿)
C COL r'1 : N0DE NUMBER
C r2 : X-DISPIACEMENT (NOT USED)
C r3 : Y-DISPLACEMENT
C r4 : Z-DISPLACEMENT
c
C****Xtr * ** ****** *itr.* * * *** ************* ****** ** ****** * ********* **
c

DO 5OO I=1,NUMNP
READX, (W(I,J), J=1 ,4)

5OO CONTINUE
c
C* ******** *** **************** ** * **** * * * ******* *ìt**** ** ********
c
C SCÀLE THE EiGENVECTOR & CONVERT TO POTAR COORD
c
C**r(******* ** ****:t** **** * ***** *** **** ***** ** ** **** **** ****** **
c

PRINT 4OOO

xI(1)=90"0
D0 99 II=2,10

99 xI (rr )=xr (ir*1 ) - 5"
D0 98 IJ='11 ,'19
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98 xr(rJ)=xr(rJ-'1 ) -'15.
Ð0 62 I=1 ,19

62 THETÀ(r )=xr (r )xpl/leo.
I CNT=NUMNP/1 9
D0 600 I=1,ICttT
D0 625 J=l,19
Jl=(I-1)*'19 + J
TEMP1 =W(JI, 3 ) *COS (rgnr¡(; ) )
TEMF2=W( JI, 4 ) *SIN(THETA(J ) )
N(.:T )=TEMP1 +TEMP2

v(JI )=n(.lI )*¡1
pRINT 5000,JI,XI (J),tnl¡p1 ,TEMP2,R(JI ),V(;t )

625 CONTINUE
60O CONTINUE

4000 FORMAT (' 1,, / /,1 X,' NODE 

" 
5X,' THETA'.,.gX,' y-COMp 

" 
gX,' Z-COMP 

" 
gX,

* 'RADIAI DISP, ,4X, 'SCALED DTSP' ,//J
5000 FoRMAT( '', 1X, I 3, 5X,F5. 1, 5X,F1 0. 5, 5X,F',l 0. 5, 5X,F1 0. 5, 5X,F1 0. 5 )
c
c*************************************************************
c
C READ IN POLÀR COORDINÀTE I'RII

C ADD THE COMPUTED DISPLACEMENT V(I )
c
C* * * * * X * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * t( * * * * * * rr( * * * * * * * * * * * * * * *
c

D0 1000 I=1,NUMNF
REÀÐ (5,900) (r'lnro(J),J=1 ,6), y, (¡'tnrn(J),J=7,10)

900 FoRMAT(5A8, À5, F10.0, 3À9, À1 )

Y=Y+V(I)
FMTl (4 )=SETFMT ( 1 0,y, 1 )
l,¡RrrE (6,r'ur1 ) (rrELD(J),J=1,6), y, (rrern(;),t=7,10)

-1OOO 
CONTINUE
STOP
END

c
c
C*****X ** **** *it******* * ***** * *****?È************* **** *ìt* ** ** **** **** **
c
C FUNCTION SETFMT
c
CC.** **:t*** ************** * *** * ** ****** **** *** * * ***** * ******** ¡k ***rr****
c

INTEGER FUNCTIoN SETFMT (KF, X, H)
DIMENSION X(N)
XMI N=0 . 0
XMAX=O.0
D0 100 I=1,N
XMAX=AMAXI (XUEX,X(I ) )
xMrN=ÀMrN't (XUrH,X( r ) )

1 OO CONTINUE
IMÀX=XMÀX
IMIN=ÀBS (XUTH )
IMIN=IMIN*10
I =KF-1

3OO IMÀX=IMAX/'10
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IMIN=IMIN/1 O

I=I-.i
IF (IU¡X.NE.O .OR. IMIN.NE.O) GO TO 3OO

SETFMT=ITOA(I)
RETURN

END
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8.8 LoÀDS



c
c
c

c
c
c
c
c
c
c
c
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*** FILE TOADS FILE ***

**********************************************************

FILE LOÀDS IS USED TO CÀLCUtATE THE CONSISTANT tOAD VECTOR
SCÀLE FÀCTORS FOR THE GIVEN SHETL GEOMETRY

****************************************************:t*****

REÀL S(19), Q(19), PSr (+,+)
REÀt pHI /1|9)/90., 85., 80., 75,, 70", 65", 60., 55., 50",

& 45 ., 30., 15., 0., -15.,
& -30., -45., -60., -75,, -90./

INTEGER NOÐE(19), IDIRN, NCUR
NL0ADS= 1 9
NELS=6
NODINC=1
NODE'l=666
PI=ARCOS(-1. )

RAD=PI/1 80.
R=763 .3/1000.
PI R=PI *R
D0 100 I=1,NLOÀDS
NODE ( I ) =NODINCII I -,1 +NODE1

s(i )=SiN(nen*pHr (r ) )
0(I)=0.0

1OO CONTINUE
cÀLt DPRINT (pHi,NLOADS,l,NLOÀDS, 1,'F5"
cAtL DPRINT (S,NLoADS, 1,NLOADS, 1,'F10.6

o/

1 ,1 )=1 28./1680.
2 ,1) --99 

" /l AAO .
1,2)=PSI Q,1)
3,1 )=-36 "/1680,
1 ,3 )=PSI ( 3,1 )

4,1)=19./1680 
"

1,4)=PSI(
2,2)=648.
3,2)=-81

,0,
0r'

'PHr/' ,'1
s/' ,'-')

)

PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI

2,3)
4,2')
2,4)
3r3)
4,3)
3,4)
4,4)

=PSI
=PSI
=PSI
=PSI
=PSI
=PSI
=PSI

,1)
1 680.
1 680.
,2)
,1)
,2)
,2')
,1)
,3)
,1)

4

3

3

4
2

2

4
1

CÀtt DPRINT PSI,4,4,4,4r'F9,6/"9,1,' Pffi/"' -' )
N=-3
DO 5OO M=1 INELS
N=N+3
DPHI = (pttI (H+1 ) -pul (r.l+¿ ) )onan
PRINT 250, M, DPHI

250 FoRMÀT ('0M =" 12, 5X, 'DPHI = 814"6)
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c
c
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D0 400 L=1,4
SUM=O .0
D0 300 J--1 ,4
SUM=SUM+PSI ( I,; ) *S (H+.: )

3OO CONTINUE
Q (N+r ) =Q (n+r ) -ppur xsuM/pr R

4OO CONTINUE
5OO CONTINUE

PRINT 600, (HOon(l ), Q(t ), r='1 ,NLOADS)
600 FoRMAT ('-NODE FORCE'/(1X, r4, 815.6))

COMPUTE RESULTANT MOMENT ÀS À CHECK

SUM=0 " 0
Do 1000 I=1,NLoÀDS
SUM=SUM_Q(i )XS(I )

CONTINUE
SUM=R*SUM
PRrNT 1200, SUM

FORMAT ('-RNSUITANT MOMENT = 'O F,22'15)
FACTOR=0. SrlSUt-l
DO 13OO I=1,NLOÀDS
Q(t )=Q(t )*recton
IDIRN=1
NCUR=1
pRINT '1400, (Honn(r ),tptRN,NcuR, Q(I ), I=1 ,NLoADS)
FoRMÀT ('-HOnn CORRECTED FORCE'/(X, 14,2I5, F10"9))
STOP
END

1 000

1 200

1 300

1 400
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B.9 Ni SÀPLOT
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CX******X******************************************************:t******
c
C NISAPTOT (U OF M VERSION)
c
c IAST UPDATE: JUNE 1/84 BY DJP
c
C*************************************tr*******************************

EXTERNÀL PÀRTN
coMMoN /gwr/ NUMNP, MXFrcS, MXNODS, MXLiNK, NUMEL, NUMFIG
CoMMoN /ro/ N,rl, NT2
NTl =1
NT2=2

c
C**********************************************************:È**********
c
C REQUiRED INPUT
c
c
C FIRST INPUT CARD
C * NUMNP - NUMBER OF NODÀL POINTS
C * NTPYPEI _ NUMBER OF TRUSS ETEMENTS
C * NTYPET - NUMBER OF SHETL ELEMENTS
c
C SECOND INPUT CARD
C * NUMNP -NUMBER OF NODAT POINTS
c
C THIRD INPUT CÀRD
C * EMBED ELEMENT COORDS DIRECT FROM NISA DATA FItE
c
C FORTH INPUT CARD
C * NTYPE - ETEMENT TYPE (WP¡N(1))
C * NEL _ NUMBER OF THESE ELEMENTS TO BE PTOTTED
C * IEL _ NUMBER OF NODES PER ELEMENT
c
C FIFTH INPUT CÀRD
C * EMBED ETEMENT INFO BTOCK DIRECT FROM NISA INPUT(2*HnT)
c
C SIXTH INPUT CÀRD
C * REPEÀT 4TH & sTH CARÐS FOR OTHER TWO ETEMENT GROUGS
c
C*** * **** * ***ìt*:È** ***:t*********** *****tr* ************ ********* ******** *
c

REÀD (Hr'1 ,rt,END=9000) NUMNP, NTypEl , NTypET
NUMET=NTYPE'f +NTYPET
MXFI GS=NTYPE 1 +3*NTYPET

MXFIGS IS THE NUMBER OF CTOSED FIGURES TO BE PTOTTED

MXNODS=1 2

STORÀGE MÀP

c
c
c

c
(-

c
c
c
c

I.I1 X (NUMNP )

N2 y (¡luMNp )
N3 Z(NUMNP)

R8
RB

RB



U

c
c
c
c
c
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N3À Dx(NUMNP) nE
N3B ny(uul'r¡lp) ng
N3c uz (Hul'lnp ) ng
N4 rers (Mxnrcs ) 14
N5 Hon(uxnoos,MXFIcs) r¿
N6 tI NKs (t¿xrI ¡¡lt , 2 ) r 4

X_TRANSLÄTION
Y-TRANSTATION
Z-TRANStÀTION
NUMBER OF NODES PER ELEMENT
INCIDENCE TÀBLE

MXLI NK=2*NTYPE 1 +28 *NTYPET

NÀ=8*6*NUMNp + ¿*(UXT.ICS+1) + 4*MXNODS*(t"lXntGS+1) +
& 4*2*MXLINK
c¡tt cgTcon (p¡nrn,H¡)

9000 sroP
END

suBRourrNE .PARTN (e,H¡¡¡)
REÀt*8 A( 1 )

coMMoN /cnrr,/ NUMNn, MXFIcs, MxNoDs, MXLINK, NUMEL, NUMFIG
NÀ=NNÀ,/B

c
C PÀRTITION STORAGE
c

N1 =1
N2=N1 +NUMNP

N3=N2+NUMNP
N3À=N3+NUMNP
N3B=N3A+NUMNP
N3C=N3B+NUMNP
N4=N3C+NUMNP
N5=N4+(UXrtOS+1 )/2
N6=N 5+ ( ì¿XNOOS*l¡XF IcS+ 1,1 /2
N7=N6+ (2*l¿xrrHx +11 /2
N50=N7

c
cALr FEMprr (A(nl ), À(N2), A(N3), ¡(H3¡), ¡(H3s), A(N3C),

c ¡(}{¿), ¡(H5), ¡(we ))
RETURN
END

SUBROUTINE FEI'ÍPIT (X, Y ì ZI DN' DY, DZ' TELS, NOD' LINKS)
coMMoN /clwr,/ NUMNP, MXFIGS, MXNODS, MXLINK, NUMEL, NUMFIG
DIMENSI0N x(Hutøtqp), y(Hu¡¡Hp), z(NUMNp), IErs(MxFIcs),

6. NoD(uxHous,MxFrcs), TINKS(uxrtnn,z)
DIMENST0N DX(NUMNp), Dy(Hur'll¡p\, oz(¡lul¿r{p)

c
C** ****** ** *** * * ******* *:t **** * **** ***** * ****** * * ****** ** *** **** *******
c
c NEXT rrNE ADDED BY DJP MÀRCH 15/84
c

REAr,rS DUMMY( 1 0 ),DUUX( 1 )
c
C**** ******** ***rr* ** ** *** ************** ** ******* **** ********** *** * ?k** *
r

cAtt INPUTM (X, Y, Z, IELS, NOD)
c¡tt INPUTo (ux, DY, Dz)
cÀtt LINK (tnrs, NoD, tINKs, NIINKS)
cALt ourpur (x, y, z, N[iNKs, IINKS, DX, Dy, Dz)
RETURN
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END

suBRourINE IN.purM (N, y, z, inrs, ¡loo)
coMMoN /gw¡./ NUMNP, MXFrcs, MXNoDS, MXLINK, NUMEL, NUMFIG
coMMoN /rc/ wt, NT2
DIMENSI0N x(nul¿¡lp) , y(nul¿Hp) , z (¡luM¡¡p) , rnls (uxFrcs) ,

& NoD(t"txNons,MxnIGs), l¡lop(16), tHool (¿)
c
C***************************************Jr*******:k:k********************

NEXT LrNE ADDED By DJp MÀRcH tS/A+

REAL*8 DUMMy(,1 O ),DUMX( 1 )
c
C*********************iÈ*************tr**********************ir(*******!r.**
c

RAD=ÀRCOS G1 ,) /180.
c
C INPUT NODAT COORDINATES
c

READ (Ht1,*) ¡lHP
D0 300 I=1,NUMNP
REÀD (nr1,200) x(r ), y(r ), zfi) , KoDE

200 FoRMAT (35X, 3F10"0, 5X, t2)
rF (noon.ng"o) co ro 3oo
n=y(r )

PHI=RAD*z(I )

Y(i)=R*COS(PHI)
Z ( I )=R*Si¡¡ (pHt )

3OO CONTINUE
c
C INPUT AND REORGÀNIZE INCIDENCE TÀBIE
c

I2=0
NUMFIG=0

4OO IF (NUMEL.IE"O) GO TO 9OOO
I1=I2+1
nneD (Hr1,*,END=9000) NTypE, NEL, IEL
NUMET=NUMEI-NEt
c0 T0 ( 1 000,2000, 3000,4000,5000, 6000, 7000 ) , NTypE

TRUSS ETEMENTS (2 NODES PER ETEMENT)

1000 I2=r1+NEt-1
D0 1500 Í.=I1 ,I2
NUMFI G=NUMF'IG+ 1

IEtS(I )=IEL
READ (NT1,1 100)

1100 FoRMÀT (5X, 2r5)
1 5OO CONTINUE

G0 T0 400

(Nop(.1,t), J=1,IEt)

ETEMENT TYPE 2

c
c
c

c
c
c

c
2000 c0 r0 9900
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c
c

c
c
c

c
c
c

c
c
c

c
c
c

3000

4000

s00 0

600 0

7000

ELEMENT TYPE 3

c0 T0 9900

ELEMENT TYPE 4

c0 10 9900

ETEMENT TYPE 5

c0 T0 9900

ELEMENT TYPE 6

c0 r0 9900

ELEMENT TypE 7 (erAre/SUnrr ereMnHr)

K=TEL/4 + IEL - 4x(TEL/4)
co ro (7200,7400,7600,7900), K

4-NODE ELEMENT

4r4)
CONTINUE
FORMAT ( À8 )

c0 T0 400

8-NODE ETEMENT

7400 c0 T0 9900

g-NODE ETEMENT

7600 G0 r0 9900

16-NODE EIEMENT

7800 I2=I 1+3*NEL-1
D0 7900 t=I1 ,Í2,3

C******************************************Jr************************
c
c 4 NoDE ETEMENT ÀDDED BY DJP APR/84
L
c

7200 I2=Ii+NEL-1
D0 7300 I=11,T2
NUMFIG=NUMFIG+.1
READ (NT1,7830) DUUX
REÀD (NT
InlS(r )=

7850) rNoD1

NOD(1
NOD(2
NOD(3
NOD(4
FORMA

c
c
c

c
c
c

c
c
c

c
L
c

1,
4

=l
=l
=[
=f

,I
,I
,I
,I
T

N0D1(1)
N0D1 (2)
N0Ð1(3)
N0D1(4)

78 60
73 00
7830
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NUMFI G=NUMFI G+3
c
c****x******************************************************** k*******
c
c NEXT LINE ADDED BY DJP MÀRCH 15/84
c

REÀD (NT1 ,7825) OUm¡y
7825 FoRMAT ( 1 0A8 )

c
C*********************************************t(***********************
c

REÀD (NT1,7850) rHOn
I EtS
i ELS
I EtS

)=INOD(1 )

)=INOD(5)
)=rNoD(6)
)=INOD(2)
)=iNoD(7)
)=INOD(8)
)=INOD(3)
)=INOD(9)
)=INOD(10)
t )=iHoP(4)
I)=INOD(11)
i)=INOD(12)

)=INOD(12)
)=iNOD(13)
)=IHOo(14)
) =INoD( 7 )
)=INOD(8)
)=INOD(15)
)=INOD(16)
)=INOD('11 )

)=INOD(6)
)=INOD(14)
)=rNoD(15)
)=INOD(9)
)=INOD(10)
)=INOD(16)
)=INOD(13)

(I
(I
(I
t,
2,
3,
4,
5,
6,
7,
8,
q

10
11

12

) =12
+1)=g
+2) =8

NOD

NOD

NOD

NOD

NOD

NOD

NOD

NOD

NOD

NOD

NOD

NOD

I
I
i
I
I
I
I
I
I

I+1
I+1
I+1
I+1
I +.1

I +'1

I+1
I +.1

I+2
I+2
I+2
L+2
T+2
T+2
I+2

NOD('1 ,
NOD(2,
NOD(3,
NOD(4,
NOD ( 5,
NOD 6,
NOD 7,
NOD 8,
NOD 1,
NOD 2,
NOD 3,
NOD 4,
NOD 5,
NOD 6,
NOD 7,

9000

NOD 8,I+2)=INOD(5)
7850 FoRMAT ('1 61 4 )
790O CONTINUE

G0 T0 400

RETURN

DESTI}JÀTION FOR CURRENTTY UNSUPPORTED OPTIONS

9900 PRrNr 9910
9910 FORMÀT (' OPTION NoT cURRENTty SUPPoRTED,)

STOP
END

u

c
c
c



148

suBROurINE LiNK (lnrs, NoD, LINKS, lw,tttns)
coMMON /cwr,/ NUMNP, MXFIcs, MXNoDs, MXLINK, NUMEL, NUMFIG
DIMENSI 0N i els ( uxFl cs ), HOo ( t"tx¡¡ons, MXFI GS ), LI IMs (t"txll ¡¡lt, 2 )
L=0
D0 1000 I=1,NUMF'IG
iEI,=IEtS(I )
D0 200 J=1,IEL
L=L+ 1

K=MgD(¡,tnl)+1
NJ=NOD(¡, T )

NK=NOD(K,I )

tI NKS (f , I ) =MI N0 (¡¡¡ , ¡¡n )

tI NKS Í, ,Z) =MAXo ( H¡ , H¡t )
2OO CONTINUE

lOOO CONTINUE
c

c

c
c
c
c

cÀtr
CALL
cÀLt
CÀLL
cÀtr

PRINT4 (rt¡UtS,MXLINK,2,L,2,
soRT (trNKS(1,2), lr¡lns(1,1
PRINT4 (rlnnS,MXLINK,2,L,2,
soRT (rrNKS(1,1), LINKS(.1 ,2
PRINT4 (ilHltS,MXLINK,2,L,2,

r4/','1,'BEFoRE SoRTING/',' 1' )

,L)
r4/"1,'FIRST SORT/"' 1' )

,L)
r4/' ,1 ,'sEcoND soRT/' ,'1')

c

NOW ELIMINÀTE DUPLICÀTE LINKS

I=1
2000 J=I +.1

2200 rF (J.cr"L) co ro 3000
IF (ri¡uts(r,l ).NE.tiNKs(J,1 ) .oR. LrNKS(r,2).l¡n.LrNKS (¡,2))

& c0 T0 2600
D0 2400 K=J,L
TINKS (tt-1,.1 )=tINKS(n, I )
LINKS (n-'1, 2 ) =LINKS (x,2)

24OO CONTINUE
L=L-1
c0 T0 2200

2600 I=I+1
c0 r0 2000

3OOO CONTINUE
cÀtt pRINT4 (r,tHlts,MXLINK,2,L,2,' r4/" 1,'AFTER COMPRESSING/"' 1' )
NLI NKS=t
RETURN
END

suBROuTrNE soRT (rtNXl, LINK2, L)
DTMENSION tINKl (t), IINK2(t)
LM1 =L-1
D0 800 I=1,LM1
K=tINKl ( I )

IP1=I+1
D0 700 J=IP1,L
rF (uH¡t1 (;).cr"K) co ro 700
LINKl (r )=rr}{n1 (¡)
tI NK1 (,: ) =X
li=tlNK1 ( I )

¡,t=ttNK2 (I )
tINK2(l)=rrHx2(¡)
LI NK2 (,: ) =l¿
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7OO CONTiNUE
8OO CONTiNUE

RETURN
END

SUBRoUTINE oU.TPUT (X, y, Z, NLINKS, LINKS, DX, Dy, DZ)
coMMoN /gYtp¡ NUMNP, MXFIGS, MXt¡oDs, MXLINK, NUMEL, NUMFIG
CoMMoN /ro/ NTl, NT2
LOGICAL FtAGl
coMMoN /vr,acs/ FLAGI
DIMENST0N x(¡¡u¡lrqp), y(¡¡ul¿¡lp), z(Huu¡lp), tINKs(tqxrrnn, 2)
DIMENSI0N nx(¡lut'l¡tp), py(nuu¡¡p), Dz(¡¡uu¡lp)
REI^IIND NT2
wRITE (Htz) NUMNp, NLINKs
D0 100 I=1,NUMNP
l.rRrrE (Hrz) x(r ), y(r ), zfi)

1OO CONTINUE
DO 2OO I=1,NLINKS
l¡RirE (wrz) LrNKS(l , I ), LrNKs fi,2)

2OO CONTINUE
rF (.Hor.FrÀci ) eo ro ¿oo
DO 3OO I=l,NUMNP
t¿RrrE (¡qrz) ox(r ), Dy(r ), nz(i )

3OO CONTINUE
4OO RETURN

END

suBRourINE iNpurD (nx, ny, az)

INPUT THE CÀRTESIÀN COMPONENTS OF THE NODAT DISPTACEMENTS

coMMoN /gm,r,¡ NUMNP, MXFIGS, MXNoDS, MXLINK, NUMEL, NUMFIG
CoMMoN /ro/ Nr1, NT2
TOGICÀt FtAGl
coMMoN /rr,nas/ FLAcI
DTMENST0N nx(Hu¡¡¡lp), py(nur,lHp), Dz(nuunp)
FLAGl="FALSE.
REÀD (Ht1,:r,END=100) (nx(l ), py(r ), oz(i ), i=1 ,NUMNp)
FtÀG1 = " TRUE.

1 OO RETURN
END
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