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Abstract

The main approach for the estimation of nonlinear mixed effects models fo-

cuses on the maximum likelihood method. Given the current computing

capacity, intensive numerical integratíon often makes exact maximum likeli-

hood estimation impractical. Wang (2005) proposed the second-order least

squares estimators for nonlinear mixed effects models based on the first two

conditional moments of the response variable given the observed predictor

variables.

In this thesis, we present numerical examples demonstrating that Wang's

(2005) second-order least squares estimators are computationally feasible and

practical. In particular, we show how Wang's (2005) algorithm can be imple-

mented in the statistical computing language R. Finally, we investigate the

flnite sample properties of the second-order least squares estimators through

simulation studies.
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Chapter 1

Introduction

1.1

1.1.1

Pharmacokinetics is the study of the bodily absorption, distribution, metabolism,

and excretion of drugs. The goal of pharmacokinetics modeling is to sum-

marize the concentration-time measurements using a model that relates drug

input to drug response, to relate the parameters of this model to patients'

characteristics, and to provide individual dose-response predictions for use

in optimizing individual doses.

The data are obtained during a pilot study to investigate the pharma-

cokinetics of the drug cefamandole (Davidian and Giltinan 1995). In the

experiment, a dose of 15 mg/kg body weight of cefamandole is administered

by ten-minute intravenous infusion to six healthy male volunteers. Plasma

concentration of the drug is measured on six volunteers at 14 time points,

Data and Examples

Example 1: Pharmacokinetics of Cefamandole

11
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and the data are shown in Table 1.1 and Figure 1.1.
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Figure 1.1; Plasma concentration-time of cefamandole versus time post in-
jection for six subjects

We can observe that the data are collected by observing a number of

subjects (units) repeatedly and responses are measured over time; all sub-

jects' concentration profiles have a similar shape; however, peak concentra-

tion achieved, decay and elimination vary substantially.
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Table 1.1: Plasma concentration-time of cefamandole versus time post injec-
tion for six subjects

Subject

Time

10 127.00

15 80.00

20 47.40

30 39.90

45 24.80

60 17.90

75 11.70

90 10.90

120 5.70

150 2.55

180 1.84

240 1.50

300 0.70

360 0.34

120.00 154.00

90.10 94.00

70.00 84.00

40.10 56.00

24.00 37.10

16.10 28.90

11.60 25.50

9.20 20.00

5.20 72.40

3.00 8.30

r.54 4.50

0.73 3.40

0.37 r.70

0.19 1.i9

181.00 253.00 140.00

119.00 176.00 120.00

84.30 i50.00 106.00

56.10 90.30 60.40

39.80 69.60 60.90

23.30 42.50 42.20

22.70 30.60 26.80

13.00 19.60 22.00

8.00 13.80 14.50

2.40 11.40 8.80

1.60 6.30 6.00

1.10 3.80 3.00

0.48 1.55 1.30

0.29 r.22 1.03
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L.L.z Example 2: Growth of Orange Trees

In a growth model studied by Draper and Smith (1981) and later by Lind-

strom and Bates (1990), the data consist of seven measurements of the trunk

circumference (in millimeters) on each of five orange trees, taken over a pe-

riod of 1600 days. The data is reported in Table 1.2.

Table 1.2: Measurements of trunk circumference for fi.ve orange trees

Age (Days)

30 33

58 69

87 111

115 156

I20 772

742 203

r45 203

Flom Table L2 and Figure L.2, we can see that the data are collected by

observing a number of trees (units) repeatedly and responses are measured

over time; all growth curves have a similar shape; however, the growth rate

of each curve is significantly different.

In both example 1 and 2, data are collected repeatedly and responses

are measured over different units. This type of data is called repeated mea-

118

484

664

1004

r23r

7372

1582

30 32 30

51 62 49

75 rL2 81

108 t67 r25

115 779 r42

139 209 L74

140 214 r77
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Figure 1.2: Measurements of trunk circumference for five orange trees
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surement data. In general, by "repeated measurement data", we mean data

are generated by observing a number of units repeatedly and responses are

measured under different experiment conditions. A common type of repeated

measurement data is longitudinal data. Many longitudinal studies are de-

signed to investigate changes over time in a characteristic which is mea-

sured repeatedly for each study subject (Laird and Ware 1982), such as the

cefamandole data in example 1 and the orange tree data in example 2. How-

ever, the models and methods we will discuss are more broadly applicable

to any kind of repeated measurement data which could be measured over

some other set of conditions, such as at different positions in space, or across

different concentrations and dosages.

L.2 Mixed Effects Models

By observing the cefamandole and orange tree data, we can find they share

some similar characteristics. AII repeated response measurements are taken

at different time for different groups. There is a nonlinear dependence of the

response on parameters of interest. All units have a similar shaped profile

but with noticeable intra-group and within-group variabilities .

For the pharmacokinetics study in example 1, the purpose is to study

what the drug does to the body and determine the appropriate regimen of

dosages for different individuals. As shown in Figure 1.1, although the con-

centration profiles have a similar shape for all individuals, peak concentra-
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tion achieved, rise and decay vary substantially. These substantial differences

among individuals are attributable to the intra-individual variations which

is associated with an individual's demographic, physiological and behavioral

characteristics. Fbom investigators' point, the use of population pharmacoki-

netics in the drug development process should help identify differences in

drug safety and efficacy among subgroups. For the growth study in exam-

ple 2, biologists are interested in the description of different growth patterns

and in trying to understand the underlying mechanisms. Fbom Figure 1.2,

all trees have similar growth curves, but the growth rate is different among

trees. It is critical for biologists to understand the variations to determine

how growth responds to different treatments or covariate ínformation.

Results of the pilot pharmacokinetics and growth studies are to be

used as a basis for subsequent investigation in a more heterogeneous group

population. The focus of these studies is not on population mean, but on

the group parameters in the population. Due to the similar profrles and

substantial variation among groups, each group may have the same model but

with different parameters. The use of simple nonlinear regression analysis,

which can only capture the profile of a homogenous group, is not informative

enough for these types of studies. Therefore, some hierarchical statistical

models and methods are needed to acknowledge these unique features in the

repeated measurement data.

Mixed effects models, in which the regression coefficients are allowed to
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vary across units, are commonly used to incorporate both variations within

and between units. They include a mixture of fixed effects, which are para-

meters associated with the entire population, and random effects which are

associated with individual experimental units. They can not only describe

the trend of data over time while taking account of the correlation that exists

between successive measurements, but also describe the different variation for

each unit over time. They provide a powerful technique for the analysis of

repeated measurement data that arise in many applied fields.

The linear mixed effects models are easy to handle, and well applied for

evaluating the performance of products, for determining sampling designs,

and quality-control procedures, and particularly for analyzing longitudinal

data (Lee and Xu 2004). However, the data sets, in many studies , such as

growth studies, clinical research or pharmacokinetic and pharmacodynamic

studies (Davidian and Giltinan 1995; Vonesh and Chinchilli 1997; Lindsey

1999), are nonlinear in nature with respect to a given response regression

function. Therefore, nonlinear mixed effects models are required to fit this

type of data. Many different nonlinear mixed effects models have been pro-

posed in recent years (Sheiner and Beal 1980; Mallet, Mentre, Steimer and

Lokiek 1988; Lindstrom and Bates 1990; Davidian and Gallant 1992; Vonesh

and Carter 1992).
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1.3 Statistical Inference

Nonlinear mixed effects models have been receiving increased attention in

recent years, because many quantitative relationships are nonlinear inher-

ently and can not be simply approximated by linear ones. Although they are

more realistic in many fields, the estimation always raises many theoretical

and computational challenges due to the fact that these models are typically

nonlinear with respect to the random effects.

1.3.1 Maximum Likelihood Estimation Approach

The main estimation approach for nonlinear mixed effects models is maxi-

mum likelihood approach. However, it requires complete specifrcations of dis-

tributions for all random variables. To facilitate the implementation of the

approach, normal distributions are always assumed. The major challenge

of the maximum likelihood method is that numerical computation is diffi-

cult or intractable because the likelihood function involves multiple integrals

and dose not have a closed-form expression. Given the current computing

capacity, intensive numerical integration often makes exact maximum likeli-

hood estimation impractical. Therefore, various approaches are proposed to

approximate the likelihood function based on the normality assumptions to

alleviate the computational burden and instability associated with complex

numerical integratíon.

Linearization of the likelihood function for nonlinear mixed effects mod-
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els is by far the most popular technique. It was first proposed by Sheiner and

Beal (1980). They linearized the nonlinear response function of the model

with a first order Taylor series expansion, and then fitted the resulting lin-

earized model by the maximum likelihood approach. Laird and Ware (1982)

viewed the data of nonlinear mixed effects models that could be modeled by

an expectation function that was linear in its parameters. Lindstrom and

Bates (1990) proposed a more accurate approximation to the nonlinear re-

sponse function of the model by expanding the nonlinear response function

of the model about the current estimates of the fixed effects and the random

effects. They used Newton-Raphson algorithm to carry out the maximum

likelihood fit of the linearized model. We will further introduce Lindstrom

and Bates (1990) linearization algorithm in the next chapter. Other liner-

ization methods include, Vonesh and Carter (1992), Liang andZeger (i986),

Goldstein (1991), and Longford (1994)

Some other approximate maximum approaches have also been inten-

sively studied in recent years. They include the EM algorithm (Walker 1996

and Yang 2001), Laplacian approximation (Wolfinger 1993 and Vonesh 1996),

"exact" likelihood algorithm (Pinherio and Bates 1995, Davidian and Gallant

1993 and Dempster 1997), and spline approximation (Ge, 2003). Pinherio

and Bates (1995) gave a comprehensive review on most of the parametric

approaches.

All these ìikelihood approaches are based on the approximated likeli-



27

hood function and rely on the normality assumptions of random effects.

t.3.2 Second-order Least Squares Estimation Approach

Wang (2003, 2004) has shown that the nonlinear Berkson measurement error

models are generally identifiable using the first two conditional moments of

the response variable given the observed predictor variables. Wang (2004)

proposes a minimum distance-type estimator and a simulation-based estima-

tor based on the first two conditional moments of the response variable. By

demonstrating the same identifiability property for nonlinear mixed effects

models, Wang (2005) proposes the second-order least squares (SLS) approach

by extending Wang's (2004) method to the estimation of nonlinear mixed ef-

fects models. The second-order least squares estimators (SLSE) are straight-

forward to compute, if the closed forms of the two conditional moments

are available; otherwise, Wang (2005) proposes a simulation-based estimator

(SBE) by approximating the two conditional moments using Monte Carlo

techniques. Wang (2005) has shown that both SLSE and SBE are consis-

tent and asymptotically normally distributed under fairly general regularity

conditions.

For the second-order least squares approach, it is computational feasible

and does not depend on the normality assumptions for random effects.
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1.3.3 Other Approaches

A semiparametric modeling approach rvas proposed by Gallant and Nychka

(1987), and further developed by Davidian and Gallant (1993). Some non-

parametric method r,¡/ere proposed by Mallet (1992), Mentre and Mallet

(1994), and Lai (2003). Steimer et al. (1984) proposed an iterative two-

stage method for estimating nonlinear random effects model. Lu and Meeker

(1993) proposed a two-stage estimation method which was similar to the

Steimer et al. (1984) method. Mentre and Gomeni (1995) proposed a two-

step iterative algorithm which could be viewed as an approximation to the

EM algorithm used by Walker (1996). Other approaches involve evalua-

tion of the integrals via numerical integration or using Markov chain Monte

Carlo simulation techniques, including Davidian and Gallant (1993), Pinheiro

and Bates (1995b), and Concordet and Nunez (2001). Several Bayesian ap-

proaches v/ere proposed by Berkey (1982), Racine-Poon (1985) and Gilks et.

al. (1ee6).

L.4 Scope of the Thesis

We conduct several simulation studies in this thesis to show how the numer-

ical computation of second-order least squares approach can be implemented

in the statistical computing language R. Based on the simulation results,

we investigate the finite sample properties of the second-order least squares

estimators. \Me also examine how the SLSE estimation approach performs
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for the non-normal distributions of random effects. Finallv, we apply this

method to two real data sets.

The thesís is organized as follows. In chapter 2, we introduce the Lind-

strom and Bates' (1990) linearized likelihood approach and Wang's (2005)

second-order least squares approach. Chapter 3, we briefly review some non-

linear numerical optimization methods and a concise comparison is given. In

chapter 4, simulation studies are conducted to investigate how well second-

order least squares method performs for finite samples. In chapter 5, we

perform several simulation studies based on the non-normal random effects.

Two real data applications are given in chapter 6. In chapter 7, we give

an overall summary about our simulation studies and discuss some further

extensions of the second-order least squares estimation method.



Chapter 2

Estimation of Nonlinear Mixed
Effects Models

In the first section of this chapter, we review one linear approximation

method proposed by Lindstrom and Bates (1990) to estimate nonlinear mixed

effects models. The reason we choose to review this particular method is due

to its popularity and availability of a variety of statistical softwares to im-

plement this method. In the second section, we introduce the second-order

least squares estimation method proposed by Wang (2005).

2.L Linear Approximation to the Likelihood
F\rnction

Lindstrom and Bates (1990) define nonlinear mixed effects model f.or the jth

observation on the ¿úå individual as

U¿¡ : f(Ó¿,r,¡) * eij,'i, : 1,. ", M, i : L,. - -,fli,
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where Uti is the júå response on the ¿úh individual, r¿¡ is the predictor vector,

þ¿ is a parameter vector, and e¿¡ is a normally distributed error term. The

parameter vector varies from individual to individual , so ó¿ can be written

AS

ó¿: A¿þ * B¿b¿, ð¿ - l/(0, o2D), (2.1)

where B isapx 1 vector offixed effects, b¿ is a qx 1 vector ofrandom effects

associated only with individual i, matrices A¿ and B¿ are r x p and r x q

design matrices for the fixed and random effects, respectively, arrd o2 D is the

variance-covariance matrix of the random effects.

The maximum likelihood estimation is based on the marginal density

ofa

p@lþ, D, o') : I n@Þ, P, D, oz)p(b)db (2.2)

Because the model function f (ó¡.r¿i) is nonlinear with respect to ran-

dom effects, the integration (2.2) generally does not have a closed form;

therefore, the numerical optimization of the likelihood function is burden-

some.

Lindstrom and Bates (1990) take a first-order Taylor expansion of the

model function / around the conditional modes of the random effects to

approximate the log-likelihood function. The estimation algorithm described

by Lindstrom and Bates (1990) proceeds in two alternating steps, a penalized

nonlinear least squares (PNLS) step, which updates the estimates of fixed

effects and conditional mode of random effects, and a linear mixed effects
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(LME) step, which updates the variance-covariance matrix of the random

effects. The algorithm alternates between PNLS and LME steps until a

certain convergence criterion is met.

This linearization approach is numerically simple and efficient. It

implemented in popular software packages such as nlme0 in S-PLUS and

and PROC NLMIXED in SAS.

2.2 Second-order Least Squares Estimation

Following Wang (2005), we define the general nonlinear mixed effects model

for the júh observation on the i,th individual as

a¡j : g(t¿j,€.,,l) + €ij) i : (2.3)

is

R,

where g¿¡ € IR. is the response variable, r¿¡ €

and Ç € iR- are unknown parameters, and e¿¡

assume that

IR¿ is the predictor variable,

is the random error. Further,

t¿: Z¿0 * õ¿, (2.4)

where Z¿ Ç Pmxa is a matrix of explanatory variables, 0 € Rq is the vector

of fixed effects and d¿ € IR- is the vector of random effects, which is inde-

pendent of. Z¿ and X¡: (n¡,rizt.. .,ràni)t. ô¿ is independent and identically

distributed with density fd(u,@), where d e IR' is an unknown parameter.

Wang (2005) has shown that the nonlinear mixed effects models are

generally identifiable using the first two conditional moments of the response



variable given the observed predictor variables.

2.2.L The Second-order Least Squares Estimators

Under the model assumptions, the conditional mean of g,;¡ is given by

E(uo¡lX,,Z¿): I n@u,,u,t)f¿@- Z¿\;þ)d,u (2.5)
J

and the second moments of g¿¡ given X¿, Z¿ are

E(a¿ia¿nlX¿, Zo) : I n@0,,u,'y)9(r¿x,u,l)f d(u - Z¿0; þ)d'u -f o¿¡¡, (2.6)

where o¿jk: o!, tt ¡ : k, and zero otherwise. Let ,þ:(0','y',ó',o?)', tto¡(rþ) :

E(ar¡lXu,Z¡) and u¿¡úrþ) : E(A¿¡A¿nlX¿,2¿). The SLSE for þ are defined as

the measurable function satisfying

q *(Ð : nig Q x(,þ) (2 7)

where ü is the parameter space)

N

QNlÐ: t p'¿(',þ)po(',þ) (2.s)
i:l

and

p¿(rþ): (Uo¡- t"¿¡(rþ), 7< j <n¿, U¿jA¿*-u¿¡n(tþ), I< j <k1n¿)'

2.2.2 The Simulation-based Estimators

If explicit forms of the integrals in (2.5) and (2.6) can not be obtained, a

simulation-based approach for estimation in which the integrals are simulated
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by Monte Carlo methods such as importance sampling \Mas proposed by Wang

(2005).

The simulation-based estimator is constructed by choosing a known

density function h(u) and generating ani,.i.d random sample u¡", i : I,2,. . . , N,

s : 1, 2, . . . ,2,S. Then p¿¡(rþ) and u¿¡(tþ) are approximated by the correspond-

ing Monte Carlo simulators

/ ,\ 1 3$ g("¿i, u¿",'y)f¿(u¡, - Z¿0;ó)lt¿i,t\!;):E+1T,
S:I

tt¿¡,2(tþ): + i g@¿¡'u¿"'t)f'¿@'¿" - z¿0;Ó)
,/ S^?,, h(uo,)

and

, t\ 1 S g("rr, u¿",'y)g(r¿x,u¿",'y)k(u¿" - Z¿0;ó)u¿jntw): 
s 4 h@") -t t¿jk,

- /-, \ 1 'ë' g(r¿j,u¿r,l)g@¿t,,u¿r,'Y)Í¿(u¿, - Z¿0; Ó)u¡j*,2\9t): S L -Taijk.

";",,*,,i;i:". esrimaror ,rJ;':,,/ is denned by

Q *,r(.,þ) : f.iÐ Q u,s(rþ) (2.e)

where

N

Qwsþþ): t p'¿t(rþ)po,r(rþ¡ (z.ro)
i:t

and

p+(tþ):(A4- p¿¡!tþ), I< j <n¿, A¿jU¿t -u¿¡t"t(tþ), t< j <lc<no)',
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p¿,2(tþ): (A4- Lr¿¡,2(tþ), I1j 1r¿¿, A¿¡U¿tc-u¿¡t,,2(tþ), L< j Skln¿)'.

It has been showed by Wang (2005) that Q¡¿,s(,r/) is an unbiased esti-

mator for Q¡¡(tþ).

In practice, the choice of h(u) will affect the frnite sample variances of

the Monte Carlo estimators such as p¿iltþ).Theoretically, the best choice

of h(u) is proportional to the absolute value of the integrand, which is

g(r¿j,u,l)fd(u - Z¿0;/) for p¿¡!tþ). Practically, however, a density close

or being proportional to the integrand is a good choice (Wang 2004).

In the minimization of our objective function Qw(rþ) or Q¡¡,s(r/), nu-

merical optimization methods are required because the moment functions

are usually nonlinear with respect to the parameters of interest. In the next

chapter, we introduce several general numerical optimization methods.



Chapter 3

Numerical Opt irnization
Methods

A general optimization problem is to find the value of a vector 0 e O that

maximize or minimize a given function Q"(0). The function Q"@) is called

the objective function which depends on given observations 11,12,'.. ,rn,

and O is the domain of allowable values for the vector 0. In statistics, the

nonlinear least squares estimation method and maximum likelihood estima-

tion method are two typical optimization problems.

3.1 Nonlinear Least Squares Estimation

A general nonlinear regression model can be written as:

A¿: f (x¿,0) + e¿, 'i:7,2,.. .,D (3.1)

where I is a p x 1 vector of unknown parameter, f is a nonlinear function

with respect to the parameter 0, r¿is a k x 1 vector of explanatory variables
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and e¿ is a random error term.

The nonlinear least squares estimator for d can be obtained by mini-

mizing the objective function Q"@), where

Q"@) : Ðlro - r @o, 
g))' (3.2)

i:t

Because / is nonlinear with respect to d, in general, it is not possible to solve

explicitly for the nonlinear least square estimates by minimizing Q"(d) in

(3.2). Therefore, numerical optimization methods must be implemented to

obtain the solution.

3.2 Maximum Likelihood Estimation

The method of maximum likelihood estimation is a general method of finding

estimators. Suppose y is a random variable with probability distribution

p(a;0), where 0 is a p x 1 vector of unknown parameters. Let Ut,Uz,.'. ,Un

be a random sample of n independent observations, the likelihood function

L(0;A) can be written as

L@;ù:npfuo;o)
i:t

The maximum likelihood estimator of I is the value of d that maximizes

the likelihood function L(0;y).Therefore, in our previous notation, L(0;y) is

our objective function Q"@). If the probability distribution of g¿ is nonlinear

with respect to the unknown parameter 0, it is usually troublesome to find

(3.3)
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the closed form of the maximum likelihood estimator. Therefore, numerical

optimization methods are required to obtain the numerical solution.

3.3 Numerical Optimization

As we have shown in section 3.1 and 3.2, for the estimation of nonlinear

models, numerical optimization methods are needed to obtain the estimates.

In this section, we review several common optimization methods. For the

sake of simplicity, we use the nonlinear least square estimation introduced in

section 3.1 as an example to illustrate these methods.

3.3.1 Gauss-Ne\l¡ton Method

A popular method used in computer algorithms for the numerical optimiza-

tion is the Gauss-Newton iteration method. The method is to use a lin-

ear approximation to the function f @¿,0) to iteratively improve an initial

g,r".r áo for d and keep improving the value of d until there is no change.

That is, we expand the function f (r¿,0) in a first order Taylor series about

r@o,o) = r(r¿,e,1 +É lu*?]" ^ 
(oi -ê¡o)

j:t r- ""J J 0¡:0io
(3.4)

If we define

¡9 : f(r¿,+s), ól : 0, - â¡0, ti, : lffilr:r.^J J A:Úio
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then the nonlinear regression model (3.1) can be approximately written as

p

a¿ - fl: t ólzl, + ro, i:7,2,.. . ,tu
j=r

or further as

Es: Zsþs*e (3.6)

where Uo : A - fo, Ío: [å0, f|,...,Íl]', Zo : [Zo0r, Zlr, , Z!r] and

óo : ló?, ó9,, ) df]' . fn.tefore, using the least square method, {6 is

computed as

óo : Ø'oZo)-, Z'oao : (Z,oZù-t Z,o@ - fo)

Now since Óo: 0 - 00, 0, could be defined as,

(3.7)

er:$o+0s (3 8)

which can be viewed as the updated value of d. The d1 is substituted for

áe in equation (3.4). This procedure is repeated to obtain the next updated

value.

In general, at the kth iteration

ât +t : (în + óu : 6n * ØLzù-I zL(a - fn)

where

(3 e)

zx: lzh, zfr, , z"!r), Í*: [ff, ft,..., f:]', â^: [ê,.r,ê*,...,0o*),

The iteration process continues until convergence, that is, until

(3 5)

le,,r*, - /.¡rl. d, i : L,2,.' .,p (3.10)
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where ô is some small positive number, say 10-6. The objective function

Q"@*) in equation (3.2) should be evaluated at each iteration to ensure that

a reduction in its value has been obtained.

3.3.2 Newton-Raphson Method

The basic idea of Newton-Raphson method is to approximate the objective

function in each iteration by a quadratic function and then move the current

point to the turning point of the quadratic curve. This method has the

advantage of potentialìy speeding up the convergence significantly, but has

the possible disadvantage of making the algorithm more unstable.

The objective function Q"(e) in (3.2) can be approximated as

Q*(0) = Q^(00) + GL@ - áo) + irt - oo¡'uole - oo¡ (3.11)

where go i. u starting value and

Go : *# : -zf{u¿ - f (,0,êrD9+P
i:I

Ho : W : 2fr*Pr*P - ziru, - r(,,,alryP
where 116 is the Hessian Matrix and Go is the gradient vector of Q"(0).

The next value á1 of the Newton-Raphson iteration is obtained by min-

imizing the right-hand side of the approximation(3.11), which yields

âr:âo-HltGo (3.12)
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This provides a natural basis for an iterative procedure for minimizing Q"@).

In general, we have at the kth iteration

êt"+t: o* - H;LGr. (3.13)

The iteration above is to be repeated until the sequence 0¡ is converged.

3.3.3 Steepest Descent Method

The method of steepest descent is one of the oldest optimization techniques.

It is based on the simple principle that from a starting value á6 the best

direction to go is the one that produces the largest local change in the steepest

descent. The direction is defined by the gradient vector at the given d. Hence

the algorithm becomes

ê*+t: e^ - *rQ#, k:0,1, "' , (3.14)

where k is the iteration count, 0¡ is the value of the kth iterate , and o¡ is the

step size which regulates how large a step the algorithm takes. Obviously,

too large or too small steps may prevent the algorithm to converge, even if

the steps are in the correct directions.

3.3.4 Grid Search Method

The direct grid search method relies only on evaluating Q"(0) at a sequence

of points âr,,âr,. . . and comparing values of Q*@), Q*@r), .. . , in order

to reach the optimal values of d (Walsh, 1975). The direct search method
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can commonly handle the cases that the derivatives of ôQ"(0)100 are not

continuous, or the Hessian Matrix is exact or near singular.

Grid search method is to construct a mess of grid points, and evaluate

the objective function Q"(0) at each of these points. If the permissible range

of I is limited by

l(9(u,

where I is a p x I vector of the lower bounds and u is a p x 7 vector of

the upper bounds. All the grid points would be generated from a uniform

distribution with lower bound I and upper bound u.

The value of the objective function Q"(e) is evaluated at each point,

and compared with the least value found before. If it is less than the least

value, it replaces it and is retained; if it is greater, it is rejected. By taking

the smallest value of Q"@) in the permissible range of 0, we can obtain the

optimal values of d.

3.3.5 Comparisons of the Methods

There are two major disadvantages associated with Gauss-Newton and Newton-

Raphson method. First, they all require starting values. In most of the

simulation studies for estimation of nonlinear mixed effects models, as the

true parameter values are known, they are used as starting values to avoid

potential numerical optimization problems. However, Ge, Bickel and Rice

(2003) mentioned that by starting at the true parameter values, a poor al-
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gorithm may be favored, if it tends to stop early. If some values that are

far away from true values are chosen as starting values instead, the iterative

estimation algorithms converge very slowly or may even fail to converge at

all. Moreover, by using the poor starting values, a local optimum may be ob-

tained over a global one. Therefore, without enough prior knowledge about

the possible true parameter values, it is extremely difficult to choose appro-

priate starting values. Second, they require the computation of gradients

or Hessian matrix. I1 Q"@) is not differentiable or not continuous, the

gradients of Q"(0) are impossible to be calculated or expensive to derive. For

the cases of high dimensions, the evaluation of gradients may be complicated,

and the Hessian Matrix may be exact or near singular.

For the steepest descent method, it is simple and usually works best

when the starting point is a long way from the optimum. Despite widespread

use and formal convergence of the steepest descent algorithm, it is relative

inefficient and seldom converges reliably.

For the random grid search method, there are several main advantages.

If the problem dimension is not too large, the algorithm can perform fairly

quickly. This approach does not require staring values, because the random

grid search process will find the optimum value from the grid points. It is a

derivative free method, and thus it greatly reduces the computing cost. Fur-

thermore, this algorithm has a great generality and basically can be applied

to any objective function. The grid search method is also associated with
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several \Meaknesses. It can only be used in a small region near the optimal

points, otherwise a large number of unwanted functions are calculated. If the

original mesh is large, it is possible to miss the global minimum and choose

a local minimum. In addition, information about Q"(0) obtained in the pre-

vious calculations is not being used to speed up the search for the optimal

point. There are some auxiÌiary algorithms which can facilitate and improve

the performance of the simple random grid search methods (Fu and Wang ,

2002).



Chapter 4

Finite Sample Properties of the
Second-order Least Squares
Estimators

In this chapter, we conduct some simulation studies to demonstrate how the

numerical computation can be done for the second-order least squares estima-

tors (SLSE) using the statistical programming language R, and to investigate

the finite sample properties of the SLSE.

4.L Design of Simulation Studies

Quadratic, exponential and logistic models given in Wang (2005), are used

in the simulation studies with different combinations of fixed and random

effects. Here is a list of the models in the simulation studies:

Model 1. Quadratic model with two independent random effects

39
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Model 2.

Model 3.

Model 4.

Model 5.

Model 6.

Model 7.

Quadratic model with two dependent random effects

Exponential model with one random effect

Exponential model with two independent random effects

Exponential model with two dependent random effects

Logistic model with one random effect

Logistic model with two independent random effects

All the random effects and random erÌors are generated from normal distri-

butions.

In the design of simulation studies, N, the number of units, and n, the

number of observations per unit, are taken as various values. For each of

the sample sizes ,R : 500 Monte Carlo replicates are carried out and the

Monte Carlo mean estimates and the simulation standard errors (SSE) for

the estimators are computed. All the computations are conducted in R 2.i.0

on an IBM Workstation with a 2.2MHz CPU and 4GB RAM with standard

hardware configuration.

As is frequently the case in fitting nonlinear mixed effects models by

using statistical softwares) convergence, numerical complaints and numeri-

cal discrepancies problems will be encountered, because most of the global

optimization procedures implemented ín statistical softwares are based on it-

erative methods. The disadvantages of iterative methods have been discussed
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in section 3.3.5. In practical programming, \Me have to flag out warning mes-

sages and treat false convergences as breakdowns to exclude those estimates.

Because the grid search optimization method does not require starting val-

ues or the computation of gradients, it is implemented in the programming

of our simulation studies to avoid those potential optimization problems in-

volved in the iterative methods. In our simulation studies, the bounds of grid

points for each parameter are set closed to the true parameter values, and a

large number of grid points rn : 5000 per parameter are used by considering

computing time, and computational cost.

4.2 Quadratic Models

A general quadratic model can be written as

U¿¡

€t¿

6i

i

D

tu*.(z;ri¡*e¿¡

0t * 6u, (2¿ : 02 * õ2¿

.n/(0, Ð6), e¿¡ - N(0,o?)

1,.. . ,N, j :7,... )n

(4.1)

where á1 and 02 are fixed effects; ô1¿ and õ2¿ are random effects; the variance-

covariance matrix of the random effects is given as

r-l
I o?, 0612 

Ix¿: I I

lou" 4' )
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The first two conditional moments are given in Wang (2005)

Po¡('þ) : h*1zr?¡ (4'2)

u¿¡n(tþ) : (h + 7zr?¡)(h + 0zr?¡) t o¿jn + o|, + o]rrl,r!¡, +

orr(r?¡ + ,?*) (4.3)

where o¿jk: o!, it ¡: k, and zero otherwise.

A set of simulated data for N : 7 units and n : 5 observations per unit

is plotted in Figure 4.1, where the profile of each unit has a similar shape

but with some noticeable within-unit and intra-unit variation. There is also

a nonlinear dependence of the response on some parameters of interest.

Ep

3

Time

Figure 4.1: A set of simulated quadratic model data with n:5, N :7

The model is simulated based on the normality assumptions of random
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effects. It is simulated in two different scenarios with (L) two independent

random effects; (2) two dependent random effects.



4.2.L Model 1: Two Independent Random Effects

A quadratic model with two independent random effects is considered. The

data are generated using the following parameter configuration:

l-l
01 : _'20,02:10, o?:I, ru:loït:6 "ut':Ol

L 
oort : O "?r:3 )

1'J;i : Ir"'rfr

Based on equations (a.2) and (4.3), the first two conditional moments of y¿¡

given r¿ are respectively

t¿¡(tþ) : il*,zr?¡

u¿ix(tþ) : (il + 1zr?¡)(il + 0zr\) + o], + olrrl,rlu * o¿jn

where oijk: o!, it ¡: ,k, and zero otherwise.

Simulation results are reported in Table 4.I, 4.2 and 4.3.
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Table 4.1: Quadratic model with 2 independent random effects, n:5
n:5 N:7 l/:15 1/:30 I/:50 N:100 .^/:200

sLSE -20.0659

(0.0410)

0t: -20

-19.9738

(0.0244)

0z: L0

9.9995

(0.0146)

o?t': 6

5.9555

(0.0522)

o?z: 3

3.0794

(o.o4e5)

o? :1

1.0325

(0.0263)

-19.9965

(0.0151)

-20.0354

(0.0328)

-20.0374

(0.0188)

-20.0108

(0.0117)

SLSE 10.0297 10.0110

(0.0300) (0.01e6)

SLSE 6.0352 6.0650

(0.0517) (0.0524)

SLSE 3.0615 2.9408

(0.0521) (0.0516)

SLSE 1.0018 0.9803

(0.0254) (0.0260)

9.9856

(0.010e)

10.0001

(o.oo87)

9.9955

(o.oo57)

6.Lr45

(0.04ee)

5.9971

(0.0517)

5.8652

(0.0507)

3.0538

(o.o503)

3.0372

(0.0512)

3.0019

(0.0507)

7.0273

(0.025e)

1.0005

(0.025e)

0.9990

(0.0254)
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Table 4.2: Qqadratic model with 2 independent random effects, n: !0

n:!0 N:7 l¡/:15 l/:30 l/:50 l/:100 I/:200

SLSE -20.0598

(0.0428)

h: -20

-20.0079

(0.0251)

0z: I0

9.9909

(0.013e)

t1t: 6

6.0003

(0.0503)

o3z: 3

3.0429

(0.0531)

o? :7

1.0325

(0.0254)

-19.9910

(0.0313)

-20.0181

(0.0210)

-20.0270

(0.0277)

-19.9656

(0.0264)

SLSE 9.9449 9.9895

(0.02e1) (0.01e3)

SLSE 5.9678 5.9403

(0.0522) (0.0518)

SLSE 2.9328 3.0322

(0.0511) (0.0521)

SLSE r.0428 1.0306

(0.0251) (0.0255)

10.0029

(0.0114)

10.0018

(o.oo7e)

9.9994

(0.0061)

5.9877

(o.o5o2)

5.9712

(0.0511)

5.9985

(o.o5o7)

2.9338

(0.0512)

3.0184

(0.0512)

2.9843

(0.0515)

1.0015

(0.0255)

1.0321

( 0.0251)

0.9970

(0.0255)
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Table 4.3: Quadratic model with 2 independent random effects, n: 15

n:15 N:7 I/:15 l/:30 l/:50 1/:100 I/:200

SLSE -20.0603 -20.0185

(0.0444) (0.03e8)

SLSE 9.9725 10.0009

(o.o2e7) (o.o2o2)

SLSE 5.9358 5.9823

(0.0511) (0.0523)

SLSE 2.9979 2.9522

(0.0521) (0.0516)

SLSE 7.0527 0.9767

(0.0264) (0.0258)

h: -20

-20.0272

(o.038e)

0z: I0

9.9925

(0.0141)

o2n:6

5.91853

(o.o5o5)

ozdz : 3

2.9797

(0.0512)

o?:I

0.9393

(0.026e)

-19.9989

(o.o35e)

-19.9933

( 0.0353)

-20.0051

(o.o34o)

9.9750

(0.0112)

10.0041

( o.oo8o)

9.9898

(o.oo65)

6.0329

(0.0535)

6.0815

(0.0520)

6.0027

(0.0511)

3.0853

(0.0518)

3.0226

(0.0531)

2.999L

(0.0512)

0.9868

(0.0258)

0.9899

( 0.0261)

1.0035

(0.0256)



4.2.2 Model 2: Two Dependent FÙandom Effects

A quadratic model with two dependent random effects is simulated. The

data are generated using the following parameter configuration:

t-t
er : -20, oz:10, o? :7 

", 
: I 

o\t:6 øarz : o'8 
|

I o521 : 0.8 o?z: 3 l
1'J;j : Ir"'rfl

Based on equations (4.2) and (4.3), the first two conditional moments

of E¿¡ given ï¿ àrê, respectively

t"¿¡('þ) : h*0zr?¡

u¿¡*(tþ) : (il + 1zr?¡)(h + 7zr?n) + o25, + olrrl,rl¡ +

o?r(*?¡+r?r)*o¿jn

where oàjtc: o!, it ¡: k, and zero otherwise.

Table 4.4, 4,5 and 4.6 display the simulation results.
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Table 4.4: Quadratic model with 2 dependent random effects, n:5
n:5 N :7 N: 15 l/:30 N:50 N: 100 l/:200

SLSE -79.9952 -19.9965

(0.0442) (0.0314)

SLSE 10.0208 10.0125

(0.0305) (0.0203)

SLSE 5.9866 6.0685

(0.0524) (0.0508)

SLSE 3.0677 2.9297

(o.o5oe) (0.0516)

SLSE 0.8076 0.7901

(0.0051) (0.0053)

SLSE 1.0171 1.0178

(0.0265) (0.0258)

0t: -20

-20.0051 -20.0067

(0.0230) (0.0213)

0z: I0

9.9792 9.9815

(0.0138) (0.0110)

a?t: 6

6.7445 5.9367

(0.0525) (0.0526)

-2 _.)u62- ¿

3.0660 2.967r

(0.0513) (0.0512)

orz : 0.8

0.8011 0.8050

(0.0051) (0.0052)

c-aí: r

0.9931 0.9647

(0.0262) (0.0254)

-20.0365

(0.01e8)

-20.0724

(0.0176)

9.9869

(o.oo82)

10.0034

(0.0060)

6.0171

(o.o5o8)

6.0661

(o.051o)

3.1011

(0.0516)

2.9772

(o.o5o6)

0.8035

(o.oo51)

0.7989

(0.0051)

1.0181

(0.0251)

0.9748

(0.251)
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Table 4.5: Quadratic model with 2 dependent random effects, n:70

n:t0 N:7 ,Ay':15 l/:30 ,^/:50 N:100 N:200

SLSE -19.9889 -20.0747

(0.0435) (0.0308)

SLSE 10.0295 9.9720

(0.02e3) (0.0203)

SLSE 5.9403 5.9665

(0.0518) (0.0511)

SLSE 2.9100 3.0195

(0.0512) (0.0510)

SLSE 0.7962 0.7960

(o.oo52) (o.oo52)

SLSE 1.0013 1.0368

(0.0257) (0.0265)

h: -20

-20.0672

(0.0233)

0z: I0

9.9841

(0.0145)

o\t: 6

6.0190

(0.0512)

ú32: 3

2.9772

(o.051e)

drz : 0.8

0.8007

(0.0052)

o? :7

0.9646

(0.0255)

-20.0234

(0.01ee)

19.9976

(0.01e0)

20.0031

( 0.0173)

9.9831

(0.0114)

9.9958

(0.0078)

10.0001

(o.oo56)

5.9931

(o.o5o8)

5.9703

(0.0513)

6.0151

(0.0512)

3.0690

(0.0521)

2.9681

(0.0511)

3.0343

(0.0512)

0.8000

(0.0052)

0.7969

(0.0051)

0.8005

(o.oo52)

0.9778

(0.0251)

0.9959

(0.0253)

1.0081

(0.0255)
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Table 4.6: Quadratic model with 2 dependent random effects, n: t5

n:15 N:7 l/:15 1/:30 l/:50 l/:100 1¡/:200

SLSE -20.0580

(0.0435)

0t: -20

-19.9958

(0.0271)

0z: I0

9.9973

(0.0i40)

oit: o

5.9651

(0.0504)

o3z: 3

2.9963

(o.o5o8)

drz : 0.8

0.8036

(0.0052)

o? :7

0.9870

(0.0257)

-20.0033

(0.0343)

20.0014

(0.0208)

79.992I

(0.01e7)

20.007t

(0.0181)

SLSE 10.0263 9.974t

(0.0283) (0.01e1)

SLSE 5.9820 5.9673

(0.0512) (0.0507)

SLSE 3.0691 2.9876

(0.0515) (0.05i2)

SLSE 0.8076 0.8043

(0.0051) (0.0052)

SLSE 0.9915 1.0668

(0.0257) (0.0251)

9.9854

(0.0116)

i0.0100

(o.oo73)

10.0102

(o.oo56)

5.9595

(0.0512)

5.9904

(o.o5o6)

5.9926

(o.o5o6)

3.0532

(0.0511)

2.9789

(0.0515)

2.9813

(0.0511)

0.7991

(o.oo52)

0.8034

(o.oo52)

0.7939

(o.oo52)

1.005 1

(0.253)

0.9893

(0.255)

0.992L

(0.0250)
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4.2.3 Summary of Simulation Results

Based on the simulation studies for these two quadratic models, the results

can be summarized as:

(1). For finite sample sizes, the SLSE performs reasonably well for the

quadratic models with two random effects.

(2). No apparent finite sample biases are noticed from the Monte Carlo mean

estimates.

(3). For fixed effects, there is a clear pattern of decreasing SSE as the in-

crease of sample sizes.

( ). The SSEs of random effects are fairly stable with the increase of sample

sizes.

(5). The relative variabilities of the estimates of fixed effects are smaller

than those of the random effects.



4.3 Exponential Models

An exponential model is considered here for the simulation. The model can

be written as

A¿¡ : {1¿exP({2¿rt¡) + e¿¡ (4.4)

(r¿ : 0t I õu, €z¿ : 0z t 6z¿

6¿ ru 1/(0, D5), e¿¡ - N(0,o?)

i - 1,'.',N, i:I,...,n

where d1 and 02 are fixed effects; ô1¿ and 62¿ are random effects; the variance-

covariance matrix of the random effects is given as

ftI o3, onz 
ID¿: I IL I

L 
oo" oi' 

)
The first two conditional moments are given in Wang (2005)

t"o¡(rþ) : (h I onzrr) exp(72r¿¡ + x2oto2urlz) (4 5)

u¿¡x(tþ) : lo3, + (il -l odn(ru * r¿¡,)21x

expf(z¿¡ * r¿¡")02 * (r¿¡ + riù2o26212] -l o¿¡¡ (4.6)

where o¿jrr: o!, it ¡: Æ, and zero otherwise.

A set of simulated data for l/ : 7 units and n : 5 observations per

unit is plotted in Figure 4.2. As we can see that all units have a similar

shape curve but with noticeable within-group and intra-group variation. The

response depends on parameters of interest nonlinearly.



54

E
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Figure 4.2: A set of simulated exponential model data with TL : 5, N : 7

The model is simulated based on the normality assumption of random

effects. It is generated in three different cases with (1) one random effect;

(2) two independent random effects; (3) two dependent random effects.
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4.3.L Model 3: One Random Effect

An exponential model with one random effect is used to generate the data.

Based on equation (4.4), the model is given by

A¿¡ : lexP({ar¿¡)ie¿¡

€' : 0t*ôu

where 7 is the regression coefficient.

Based on equations (a.5) and (4.6), the first two conditional moments

of g¿¡ in an exponential model with one random effect can be obtained as

tto¡(rþ) : 7 exp(7p¿¡ + r!,o'z. lZ)

u¿¡n(tþ) : f erp(0{r4 * r¿¡) * (r¿¡ + r¿¡)2o2olZ) + oo¡o

where oijrr: o!, it ¡: k, and zero otherwise.

The data have been generated using the following parameter config-

uration:

The simulation results for the frxed and random effects are summarized

in Table 4.7, 4.8 and 4.9.

.y: 10, d:-0.b, o?:r,"r:loìt:o'5 o"':ol

Lour,:o o'or:o 
)

I¡ : 0.1,...,0.1n
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Table 4.7: Exponential model with one random effect, n: 5

n:5 N :7 l/: 15 I/:30 l/:50 l/: 100 I/: 200

SLSE 70.0743 10.0334

(0.0440) (0.02e8)

SLSE -5.0534 -5.0196

(0.0263) (o.o1e5)

SLSE 0.4875 0.4987

(o.oo53) (o.oo53)

SLSE 0.9863 0.9946

(o.oo53) (0.004e)

?:10

10.0299

(0.0224)

0t: -5

-5.0742

(0.0136)

o\t: o'5

0.4977

(o.oo52)

o?:L

0.9857

(0.0051)

10.0176

(0.017e)

10.0128

(0.0131)

9.9909

(o.ooe8)

-5.0009

(0.0113)

-5.0086

(o.oo87)

-4.9910

(0.0063)

0.5085

(o.oo52)

0.5078

(o.oo52)

0.5092

(o.oo53)

1.0035

(0.0051)

0.9968

(o.oo5o)

0.9965

(o.oo48)
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Table 4.8: Exponential model with one random effect, n:70

n:I0 N:7 l/:15 1/:30 N:50 l/:100 l¡/:200

SLSE 10.1139 10.0813

(0.03e7) (0.0305)

SLSE -5.0718 -5.0587

(0.0256) (0.0188)

SLSE 0.4913 0.4988

(o.oo54) (o.oo54)

SLSE 0.9846 0.9957

(o.oo5o) (o.oo4e)

7:10

10.0419

(0.0216)

0t:-5

-5.0170

(0.012e)

oït: o'5

0.4999

(o.oo52)

o? :7

0.9998

(0.0047)

I0.0275

(0.0164)

9.9869

(0.0i15)

10.0034

(o.ooe2)

-5.0113

(o.ooe8)

-4.9964

(o.oo73)

-5.004

(o.oo57)

0.4996

(o.oo52)

0.4935

(o.oo52)

0.5006

(o.oo51)

L.0044

(o.o046)

0.9861

(0.0048)

1.0020

(o.oo48)



58

Table 4.9: Exponential model with one random effect, n: I5

n:15 N:7 N:15 1/:30 l/:50 lr/:100 1/:200

SLSE 10.0375 9.9938

(0.0427) (0.02e7)

SLSE -5.0346 -5.0247

(0.0263) (0.0183)

SLSE 0.4980 0.494r

(0.0055) (o.oo54)

SLSE 0.9893 0.9996

(0.0047) (0.0047)

?:10

t0.022

(o.o2o2)

0t:-5

-5.0274

(0.012e)

oït: o'5

0.4989

(o.oo53)

o?:I

0.9949

(o.oo45)

r0.0072

(0.0166)

10.0119

(0.0118)

9.9989

(0.0083)

-5.0138

(0.0100)

-5.0053

(0.0076)

-4.9985

(0.0051)

0.5010

(o.oo52)

0.5004

(0.0051)

0.5006

(0.0052)

1.0021

(0.0044)

0.9962

(o.o045)

1.0008

(o.oo44)



4.3.2 Model 4: Two Independent Random Effects

An exponential model with two independent random effects is considered.

Based on equation (4.4), the model can be written as

A¿¡ : {çexP((2¿rr¡) + e¿¡

Ër : 01]_ 6y, €z¿: 0z * õz¿

The first two conditional moments of U4 in an exponential model with

two independent random effects can be obtained based on equations (4.5) and

(4 6)

where o¿ir": o!, it ¡: k, and zero otherwise.

The simulation results for the fixed and random effects are summarized

in Table 4.10,4.I7 and 4.72.

t"o¡(rþ) : 01 exp(I2r¿¡ + r!,o|rl Z)

u¿in(tþ) : (o3, + 0l) exp(02(r4 * r¿¡) * (r¿¡ + r¿¡,)2o|rl2) -t o¿¡¡,

where o¿jk: o!, if ¡: k, and zero otherwise.

The data are simulated using the following parameter configuration:

t-l
01 : 10, 0z:- 5, o?:I, 

"u: I 
o?t:1 oot':O 

I

L 
oor, : O o!r: O.S l

1: : 1 ..n*l'' ' J
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s

n:5 N:7 lü:15 N:30 l/:50 l/:100 I/:200

SLSE 10.0075 10.0139

(0.0431) (0.0340)

SLSE -5.0251 -5.0156

(0.0262) (0.0203)

SLSE 0.9961 1.0065

(0.0052) (0.0052)

0t: l0

10.0415

(0.0233)

oz: -5

-5.0146

(0.0140)

oït: I

0.9916

(0.0051)

o3z: o'5

0.4982

(o.oo51)

n.oi: r

0.997r

(o.oo4e)

9.9657

(o.o1e2)

i0.0311

(0.0103)

10.0180

(0.0103)

-4.9956

(0.0112)

-5.0236

(o.oo86)

-5.0121

(0.0060)

0.9972

(0.0053)

0.9958

(o.oo51)

1.0023

(0.0051)

SLSE 0.4938

(0.0051)

0.4982

( 0.0053)

0.4938

(0.0052)

0.5058

(o.oo51)

0.5041

(0.0050)

SLSE 0.9947 0.9963

(0.0050) (0.004e)

1.0013

(o.oo51)

1.0031

(0.004e)

1.0006

(o.o04e)
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n:10 N:7 l/:15 N:30 l/:50 ,¡'/:100 ,i\/:200

SLSE 70.0440 10.0189

(0.0451) (0.0303)

SLSE -5.0440 -5.0238

(0.0265) (0.017e)

SLSE 0.9965 1.0068

(o.oo50) (o.oo51)

0t: I0

10.0469

(0.0234)

oz: -5

-5.0331

(0.0137)

o\t: I

0.9974

(0.0052)

ozdz: o'5

0.4996

(o.oo5o)

o? :7

0.9938

(o.oo48)

9.9975

(o.o18e)

9.9989

(0.0135)

10.0157

(0.0100)

-4.9999

(0.0108)

-5.001 1

(o.oo78)

-5.0173

(o.oo62)

1.0032

(o.oo52)

0.9974

(o.oo5o)

1.0037

(o.oo5)

SLSE 0.4926

(o.oo55)

0.4972

( 0.0053)

0.4988

(o.oo52)

0.5008

(o.oo53)

0.5044

(o.oo53)

SLSE 0.9979 0.9924

(o.oo5o) (o.o050)

1.0009

(o.oo5o)

0.9968

(o.o046)

1.0010

(o.oo47)
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n:t5 N:7 //:15 Iü:30 l/:50 ,¡/:100 I/:200

SLSE 10.0704 10.1019

(0.0451) (0.031e)

SLSE -5.0700 -5.0444

(0.025i) (0.0181)

SLSE 0.9974 0.9928

(o.oo5o) (o.oo53)

0t: I0

10.0108

(0.0221)

0n:-5

-5.0151

(0.0125)

o2at : 7

1.0081

(o.oo53)

o2¿z: o'5

0.4990

(0.0054)

o? :7

1.0061

(0.0045)

9.9966

(0.0182)

10.0305

(0.0133)

9.9980

(0.0086)

-5.0048

(0.0104)

-5.0117

(o.oo77)

-5.0038

(o.oo58)

0.9972

(o.oo51)

0.9894

(0.0051)

1.00i 2

(o.oo51)

SLSE 0.4905

(o.oo55)

0.5038

( 0.0055)

0.5047

(0.0053)

0.5036

(0.0052)

0.4983

(o.oo52)

SLSE 0.9949 0.9974

(0.0050) (0.0048)

0.9948

(o.oo48)

1.00i7

(o.o046)

1.0008

(0.0045)



4.3.3 Model 5: Two Dependent Random Effects

An exponential model with two dependent random effects is used for simu-

lation. The model is given by

U¿¡ : {i¿ exP((2¿rq) + e¿¡

6r¿ : 01* 6y, €z¿: 0z I 6z¿

Based on equations (4.5) and (4.6), the first two conditional moments

of. y¿¡ in an exponential model with two dependent random effects can be

obtained as

t"oi(rþ) : (il * on) exp(72ra¡ + rltolrlz)

u¿¡n(tþ) : (o\t + (h -f on(rø -l r¿¡,))2) exp(72(r¿¡ + rik) +

(r¿¡ + r¿¡,)2 o], I z) * o¿jt

The simulation results for the fixed and random effects are summarized

in Table 4.I3, 4.I4 and 4.15.

The data are simulated using the following parameter configuration:

" I oz¿t:r o¿tr:0.41
0r : 10, 0z: -5, o! :7, ÐA : I I

I oor, : o.+ o3, : O.S )
r¡ : L, "'rfr
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Table 4.13: Exponential model with two dependent random effects, n: 5

n:5 N:7 I'/:15 N:30 .l/:50 N:100 l/:200

SLSE IO,TI27

(0.0460)

0r:10

70.0474

(0.0244)

0z: -5

-5.0238

(0.013e)

o2at: I

1.0084

(o.oo52)

o3z: 0'5

0.5002

(o.oo52)

o!r2: 0'4

0.4088

(0.0051)

02:r

0.9973

(0.oo5o)

10.0486

(o.o32e)

9.9697

(0.01e1)

r0.0273

(0.0142)

10.0030

(o.o104)

SLSE -5.1088

(0.0280)

-5.0406

(0.01e7)

-4.9930

(0.0112)

-5.0151

(o.oo84)

-4.9999

(0.0063)

SLSE 1.OO3O

(o.oo52)

0.9920

(o.oo52)

0.9990

(o.oo53)

1.0057

(o.oo5o)

0.9962

(0.0051)

SLSE 0.4935

(o.oo54)

0.5011

( o.oo53)

0.4937

( 0.0051)

0.5014

(o.oo5o)

0.4906

(o.oo52)

SLSE 0.3966 0.4009

( 0.0051) (0.0050)

0.4049

(0.0051)

0.4077

(o.oo5o)

0.3937

(0.0052)

SLSE 0.9935

(0.0051)

0.9976

(0.0051)

0.9996

(o.oo48)

0.9922

(o.oo4e)

1.0011

(0.0050)
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Table 4.14: Exponential model with two dependent random effects, n: 10

n:10 N:7 l/:15 l/:30 lvr:50 I/:100 N:200

SLSE

SLSE

SLSE

SLSE

SLSE

SLSE

10.0658

(0.0427)

10.0656

(0.02e8)

h: I0

9.9940

(0.0231)

oz: -5

-5.016

(o.o13i)

o\t: 7

1.0032

(o.oo51)

o3z: 0'5

0.4978

(o.oo52)

olp: o'4

0.4074

(o.oo5o)

o?:t

1.0073

(o.oo48)

10.0369

(0.0186)

10.0009

(0.0131)

10.0117

(0.0100)

-5.0559

(0.0251)

-5.0719

(o.o180)

-5.0253

(o.o104)

-5.0002

(o.oo81)

-5.0023

(o.oo6o)

1.0073

(o.o04e)

0.9974

(o.oo53)

0.9909

(o.oo52)

1.0071

(o.oo53)

0.9942

(o.oo52)

0.4837

(0.0054)

0.4979

( o.oo53)

0.4977

( o.oo51)

0.4981

(o.oo5o)

0.4977

(o.oo53)

0.4057

( 0.0051)

0.3991

(o.oo52)

0.3997

(0.0052)

0.3919

(o.oo5o)

0.4007

(o.o05o)

0.9935

(0.0051)

0.9976

(0.0051)

1.0040

(o.o048)

1.0007

(o.oo48)

1.0002

(o.o047)
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Table 4.15: Exponential model with two dependent random effects, n: 15

n:75 N:7 I/:15 1/:30 l¡r:50 l/:100 l/:200

SLSE 10.0851 10.0287

(0.0435) (0.0312)

SLSE -5.0742 -5.0236

(0.0246) (0.0184)

SLSE 1.0009 0.9992

(o.oo53) (o.oo52)

SLSE 0.4897 0.5056

(o.oo54) ( o.oo54)

SLSE 0.4102 0.3991

( o.oo51) (o.oo52)

SLSE 0.9977 1.0037

(0.0051) (0.0047)

10.0255 10.0111 9.9989

(0.0184) (0.0128) (0.008e)

-5.0037 -5.0026 -5.0009

(0.0104) (0.0078) (0.0058)

0.9985 7.0047 0.9988

(0.0050) (0.0052) (0.0050)

0t: l0

9.9951

(0.0232)

0z: -5

-5.0346

(0.0135)

oït: 7

1.0097

(0.0052)

o2dz: o'5

0.4992

(o.oo53)

o25r2 : o'4

0.4074

(o.oo5o)

a?:L

1.0064

(o.o046)

0.5037

( o.oo55)

0.5038

(0.0051)

0.4997

(o.oo53)

0.3974

(o.oo52)

0.4030

(o.oo53)

0.4002

(o.oo5o)

0.9942

(0.0045)

0.9983

(o.oo44)

1.0015

(0.0044)
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4.3.4 Summary of Simulation Results

Based on the simulation studies for these three exponential models, we have

similar findings:

(1"). For finite sample sizes, the SLSE performs reasonably well for the

quadratic models with two random effects.

(2). No apparent flnite sample biases are noticed from the Monte Carlo mean

estimates.

(3). For fixed effects, there is a clear pattern of decreasing SSE as the in-

crease of sample sizes.

(a). The SSEs of random effects are fairly stable with the increase of sample

sizes.

(5). The relative variabilities of the estimates of fixed effects are smaller

than those of the random effects.
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4.4 Logistic Models

Logistic models are studied in this section. A general logistic model can be

written as

a¿¡

tt¿

õ¿

i

€u --...
i + exp(-(q¡ - €z¡)ll)' "t
01* 6y, {2¿: 021 62¿

l/(0, Ð6), e¿¡ - N(0,o!)

1,...,N, j:1r...,n

(4.7)

where 7 is the regression coefficient; 91 and 02 are fixed effects; ô1¿ and ô2¿

are random effects; the variance-covariance matrix of the random effects is

given as

Dd:
oh o6n

u621 o3z

A set of simulated data for l/ : 15 units and n : I0 observations per

unit is plotted in Figure 4.3. As \Me can see that all units have a similar shape

curve but with noticeable within-group and intra-group variation. We can

also observed that the response depend on parameters of interest nonlinearly.

The model is simulated based on the normality assumption of random

effects. It is simulated in two different scenarios with (1) one random effect;

(2) two independent random effects.
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100

Time

Figure 4.3: A set of simulated logistic model data with n: I0,l/ : 15



4.4.L Model 6: One Random Effect

A logistic model with one random effect given in Wang (2005) is used to

generate data. The model is given by

a¿i : l-|exp(-(u¡-tt)ltz) *eu

ú : 0t-16¿

The calculation of the first two conditional moments of 2,,

is straightforward and given in Wang (2005) as

t"¿¡(rþ) :

"¿¡n(rþ) 
:

1+ exp(-(r¿¡ - tt)ln)
e2, + ol

$lven u¿3'

(4 8)

* o¿jt"

(4.e)

(1 + exp(- (rn¡ -'yr)l'y2))0 * exp(-(r¿n - tùltz))

where oijk: o!, it ¡: ,k, and zero otherwise.

The data are simulated using the following parameter configuration:

ftI o7r:9 o¿n: 0 I

01 : 20, 'n :70, 'yz: 34, D¿ : I I

Lo"':o "3':o )
r¡ : 20, 40, ...) 20n

The simulation results for the fixed and random effects are summarized

in Table 4.16,4.I7 and 4.18.
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Table 4.16: Logistic model with one random effect, n:5

n:5 N:7 l/:15 l/:30 l/:50 ,^/:100 l/:200

SLSE 19.8818 19.9647

(0.0510) (0.03ee)

SLSE 69.9058 69.9359

(0.0720) (0.0715)

SLSE 34.0462 34.0434

(0.05e2) (0.0511)

SLSE 9.0167 8.9831

(0.0542) (0.0517)

SLSE 1.0140 0.9602

(0.0215) (0.01e8)

0t':20

20.0466

(0.0317)

'ft:70

70.2055

(o.o6e8)

'Yz:34

34.0556

(0.0432)

o?: e

8.9477

(0.0537)

oi: r

1.0091

(0.0180)

20.004t

(0.0270)

20.0372

(0.0212)

19.9853

(0.0181)

69.9968

(0.0672)

70.0738

(o.o570)

69.9569

(0.0540)

33.9966

(o.0404)

34.0279

(0.0338)

33.9866

(0.028e)

8.9891

(o.o5o6)

9.0272

(o.o5o8)

9.0286

( 0.0517)

0.9772

(0.0171)

0.9766

(0.022e)

0.9786

(0.0216)
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Table 4.17: Logistic model with one random effect, n:70

n:I0 N:7 N:15 /\ú:30 N:50 1/:100 l/:200

SLSE 19.8781 19.9772

(0.04e3) (0.0352)

SLSE 69.9632 70.0966

(0.0614) (0.0508)

SLSE 33.9186 34.0490

(o.05ee) (o.o4e3)

SLSE 8.9293 9.0004

(0.0508) (0.051e)

SLSE 0.9529 0.9961

(0.0236) (0.0234)

h :20

20.0318

(0.0258)

þt:70

70.0203

(o.o3e8)

þz: 34

34.0303

(o.o3e5)

o?:e

8.9625

(0.0528)

o?:L

1.0016

(0.024e)

79.9662

(0.01e6)

19.9898

(0.0145)

20.0007

(0.0103)

69.9680

(0.0334)

70.0151

(0.0306)

69.9839

(0.0216)

33.9557

(0.0315)

33.9968

(0.0278)

34.0t25

(0.021e)

8.9999

(o.o53i)

9.0556

(0.0516)

9.0223

(0.0525)

1.0196

(0.0236)

1.0166

(0.0252)

1.0401

(0.0250)
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Table 4.18: Logistic model with one random effect, n: L5

n: I5 N :7 l/ : 15 l/ : 30 ll: 50 l/: 100 I/ : 200

SLSE 20.0t57

(0.0475)

SLSE 70.0038

(0.0538)

SLSE 34.0299

(0.0556)

SLSE 8.9889

(0.0544)

SLSE 0.9835

(0.0247)

h:20

20.0452 19.9844 79.9844

(0.0355) (0.024e) (0.01e1)

þt:70

70.0106 69.9938 70.0546

(0.0427) (0.0324) (0.02e4)

þz: 34

33.9601 33.9862 33.9768

(0.0426) (0.0320) (0.0283)

-2-ovl 
- 

¿

9.0158 9.0072 9.0178

(0.0506) (0.0523) (o.o5o4)

)-ot: L

t.0202 0.9934 0.9814

(0.0240) (0.0244) (0.0253)

20.0116 79.9842

(0.0138) (0.00e6)

69.9948

(0.0232)

70.0084

(0.0164)

34.0503

(0.0238)

34.0094

(0.0151)

9.0281

(0.0518)

9.0762

(0.0525)

0.9687

(0.0253)

0.9952

(0.0245)
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4.4.2 Model 7: Two Independent Random Effects

A logistic model with two random effects is used to generate data. The same

model is also used by Pinherio and Bates (1995) for comparing different

approximation maximum likelihood approaches. The model is given by

t
a¿¡: ffi+€u (4'10)

€o : 01*õy, (2¿:02*ö2¿

where 7 is the regression coefiÊcient; 01 and 02 are fixed effects; ô1¿ and ô2¿

are random effects; the variance-covariance matrix of the random effects is

given as r-l
| "'u, a6n 

IÐ;: I 
I

I oo" "?' l
For this model, the first two conditional moments are difficult to derive;

therefore, we use the simulation-based estimation (SBE) method to approx-

imate the first two conditional moments.

The first two conditional moments are derived as

1 ,5r,Sz å lti,.,
l.t¿¡,t\!t) : 

S "rr"r 
2_, 1* 

""O11r, 
_ *;6 x

*(-w.fu w.h)
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-. / i.\ 1 ^91S¿S "I"u¿¡t',t9) : Srrrr*þ "

^--^ ( -(unr" - Ér)' - u\r, 
- 

(unr" - É,r)' -, '4" \
""p \---tã- * ,q- --T4, * ,g)

,',,.n(tt:\:1S'S' $ "7'"-zrñ'¿\Yr 
S o¡o52 

"?_urll* 
cxp(-(r¿¡ - u¿,)l'y)][t + exp(-(z¿¡ - uo)lù]

( _(uor, - 0r)' _ u\r, _ (u0"" - 0r)' -' ,4" \*p\--;;?-*# -æ*rg)

,7." \
2s3 )

The data are simulated using the following parameter configuration:

0t : 200, 0z:700, 7 : 350, Ðô :
ozn: 700 o61z: 0

o6zt:0 o3r:625
r¡ : 20, 40, ...) 20n

irs N ¡/(200, 92), uizs - ¡{(700, 92), ,9 : 500

Because of the implementation of high dimensional matrix in the pro-

gramming, this program runs relatively slow. Therefore, only two sample size

conflgurations n : 5 .ðy' : 7, and n : t0 l/ : 30 are considered. -B : 500
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runs are carried out. With the increased RAM of computer, the running

time of the program will be significantly reduced.

Table 4.19: Logistic model with two independent random effects Tt : 5,

N :7 and runs Ã : 500

0t :200 0z:700 0 :350 o2n: 100 o2¿z: 625 o? :25

sBE i99.3850

(0.5e84)

699.3057

(0.56201)

349.8222 104.8866

(0.58e6) (0.0088)

634.3594 25.3303

(0.0533) (0.2605)

Table 4.20: Logistic model with two independent random effects n : I0,
l/ : 30 and runs -R : 500

h:200 0z:700 þ :350 a1t:700 aïz:625 o? :25

sBE 199.1341 701.0309 350.3208 704.8797

(0.5775) (0.5e33) (0.6065) (0.0106)

634.3097 25.3549

(0.0517) (0.2e5e)

The simulation-based estimators should be generally less efifrcient than

the second-order least squares estimators. As it is proved by Wang (2005),

the efficiency loss caused by simulation decreases at rate O(llS). Therefore,

wiih the increase of 5, it will become more efficient.



4.4.3 Summary of Simulation Results

Here is a summary of the simulation results.

(L). For the finite sample sizes, both SLSE and SBE perform reasonably

well for the logistic models.

(2). No apparent finite sample biases are noticed from the Monte Carlo mean

estimates.

(3). For fixed effects, there is a clear pattern of decreasing SSE as the in-

crease of sample sizes in Model 6.

(a). The SSEs of random effects are fairly stable with the increase of sample

sizes in Model 6.
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4.5 Conclustons

Through these simulation studies, we have demonstrated how the numeri-

cal computation can be done for the second-order least squares estimation

method. Based on the simulation results for these seven different models, we

can conclude that for finite sample sizes, the second-order least squares esti-

mation approach performs reasonably well. All Monte Carlo mean estimates

are close to the true parameter values. No apparent biases are noticed from

the estimates. The simulation standard errors of fixed effects are decreasing

with the increase of sample sizes. For example in Table 4.17, when n : 70

and l/ :7,I5,30,50,100,200, the estimates of fixed effects 01 are 19.8781,

t9.9772,20.0318, 19.9662,19.9898, and 20.0007, and are all very closed to the

true value 0t : 20; with the increase of N, the simulation standard error is

decreasing from (0.0493), (0.0352), (0.0258), (0.0196), (0.0145), to (0.0103).

Thus, the estimates are becoming more precise.

The simulation standard errors of random effects are fairly stable with

the increase of sample sizes. For example in Table 4.8, the simulation stan-

dard errors of the estimates for the random effect are (0.0055), (0.0054),

(0.0053), (0.0052), (0.0051), and (0.0052). W" also notice that the relative

variabilities of the fixed effects estimates are smaller than those of the ran-

dom effects. These are not surprising because the estimates of random effects

are usually more difficult to estimate and known to have fairly large standard

deviations, especially when the sample sizes are relatively small.



Chapter 5

Non-normal Random effects

As introduced in chapter 1 and 2, the likelihood approach relies on the nor-

mality assumption of random effects. However, this assumption may not be

realistic. Because the random effects are not observed, it may be difficult to

verify this normality assumption (Mallet 1986; Davidian and Gallant 7992,

1993; Fattinger et al. 1995; Hartford and Davidian 1999). It is thus nat-

ural to be concerned whether these methods yield reliable results when the

normality assumption is not appropriate. The consequences of misspecifying

the distributions of random effects have been discussed for linear mixed ef-

fects models (Butler and Louis 1992; Verbeke and Lesaffre 7997 ; Tao et. al.

1999) and for nonlinear mixed effects models (Hartford and Davidian 1999).

However, Wang's (2005) second-order least squares approach does not rely

on the normal assumptions of the random effects, It can produce reliable

estimates under non-normal random effects. Moreover, it is computational

feasible.

79
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In o¡der to verify how well the second-order least squares estimation

approach performs with non-normal random effects, three simulation studies

are conducted; thereby, we also demonstrate how the numerical computation

can be done generally. The second-order least squares estimates are compared

with the ones obtained from Lindstrom and Bates' (1990) nlmeO.

5.1 Design of Simulation Studies

In the simulation studies, an exponential model with one random effect is

used. The random effect is generated from three non-normal distributions.

Due to the effects of small sample sizes on estimation results, three relative

large sample sizes are investigated at here, where the number of units, n : 70

and the number of observations per unit, l/ - 15,30,50. Ã : 500 Monte

Carlo replicates are carried out. The Monte Carlo mean estimates and the

corresponding simulation standard errors are reported. All computations are

conducted in R 2.1.0 on an IBM Workstation with a 2.2MHz CPU and 4GB

RAM with standard hardware configurations.

A direct random grid search method is applied for the minimization

involved in the second-order least squares estimation algorithm. A reasonably

large number of grid points r¿ : 5000 per parameter are used by considering

computing time and computational cost. The nlmeO library of functions in

R 2.1.0 implementing Lindstrom and Bates' (1990) Iinearization algorithm

introduced in section 2.1 is used to generate likelihood estimation results.
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Detailed description of the nlne O library can be found in Pinheiro and

Bates (2000). For model fitting with nlneO, starting values are needed.

Because Lindstrom and Bates' (1990) linearization algorithm has been well

validated, the starting values are chosen as the true parameter values.

The random effect ô is generated from three different non-normal dis-

tributions.

(i). An asymmetric distribution for ô is attained by a mixture of two

normal distributions, where ô - (1 - a)N(p,02) + oN(-p,o2), with

mixing proportion a : 0.3 and specified value of p. The mean and

variance of ô are respectively

t-t¿ : (1- 2a)¡t:0.411

o! : o2 + 4a(l - a)p' : 02 *0.84¡1,2

A plot of the asymmetric distribution is shown in Figure 5.1

.2-r0r2

Figure 5.1: Asymmetric random effect
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(ii). A bimodal distribution of ô is obtained by a mixture of two normal

distributions, where ô - (1 - a)N(p,o2) + aN(-p,o2), with mixing

proportion a : 0.5 and specified value of ¡1. The mean and variance of

ô are respectively

tt¿ : (7-2a)p,:g

o! : o2 + 4a(L - a)p2 : o2 + tt2

A plot of the bimodal distribution is shown in Figure 5.2

-2-t2

Figure 5.2: Bimodal random effect

,.,'e
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(iii). A highly skewed garnma distribution with specified values of a : 1

and B : t/0.5 is used to simulate the random effect, where õ - G(a, þ)

. The mean and variance of ô are respectively

Lø: a0, o? : aþ2

A plot of the gamma distribution is shown in Figure 5.3

o5r0152025s

Figure 5.3: Gamma random effect

5.2 Exponential Model

Based on equation (4.4), an exponential model with one random effect is

given by

U;¡ : lexP({¿r¿¡)+e¿i

€¿ : 0116¿
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5.2.1 Asymmetric Random Effect

In the first scenario, the random effect is generated from an asymmetric

distribution, where ô - (1 -cr)N(p,o2)+aw(-p,,e2) and a:0.3. The first

two conditional moments of U4 are easy to derive

t¿¡(rþ) : lexp(?p¿¡)l(1 - a)exp(p,r¿¡ + r2o,o'zulz) * aexp(-pr¿¡ + r?¡o312)l

u¿¡n(tþ) : ferp(?lrq + r¿¡,))l(7- a) exp(p(r¿¡ +r¿r) * (r¿¡ + r¿¡)2ollz) +

aexp(-¡-t(xr¡ * r¿¡) * (r¿¡ + r¿¡)2ollz)) + on¡* (5.1)

The data have been generated using the following parameter config-

uration:

.y : 10, 0 : -0.5, o? :0.5, o? : I, þ: 0.6

ri : 0.1,...,O.In

The Monte Carlo mean estimation results and the simuìation standard

errors are reported in Table 5.1 and 5.2



Table 5.1:

.ò/ : 30

Table 5.2:

-l/ : 50

SLSE 10.0102

(0.4748)

nlme ( ) 9.7846

(o.5oe8)
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Exponential model with one asymmetric random effect n - 10,

7:10 0:-5 a3:0.5 o?:7

-4.7678

(0.37e7)

-4.7982

(0.34i2)

0.4976

(0.1161)

0.4720

(0.2156)

0.9956

(0.1072)

0.9976

(0.0847)

Exponential model with one asymmetric random effect n - 10,

?:10 0:-5 03:0.5 o?:7

SLSE 10.0261

(0.37e6)

nlmeO 9.8324

(0.3717)

-4.7754

(0.322t)

-4.8234

(0.2712)

0.4963

(0.1154)

0.5075

(0.1624)

0.9969

(0.1062)

0.9996

(0.0655)



5.2.2 Bimodal Random Effect

In the second scenario, the random effect is generated from a bimodal distri-

bution, where d - (1 - a)N(p,o2) + aN(-p,r2) and a : 0.5. The first two

conditional moments of !¿¡ a.te the same as equations in (5.1)

The data have been generated using the following parameter config-

uration:

.y : 10, 0 : -0.5, o3 :0.5, o? : !, þ: 0

r¡ : 0.1,...,0.1n

The Monte Carlo mean estimation results and the simulation standard

errors are reported in Table 5.3 and 5.4

Table 5.3: Exponential model with one bimodal random effect n: 10, ly' :
30

7:10 0:-5 ozd:0.5 o?:7

SLSE 10.0399 -5.0210 0.5103 0.9968

(0.47e3) (0.2831) (0.1188) (0.1110)

nlrne O 9.8395 -4.8185 0.4521 0.9963

(0.4e54) (0.3211) (0.2147) (0.0832)
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Table 5.4: Exponential model with one bimodaÌ random efrect n: 10, //:
50

7:10 0:-5 o?:0.5 o?:7

SLSE 10.0548 -5.0219 0.5028 0.9983

(0.3804) (0.22ee) (0.11e5) (0.1073)

nlne O 9.8226 -4.8108 0.4477 L.0022

(0.3e58) (0.2805) (0.16e6) ( 0.0708)

5.2.3 Gamma Random Effect

In the third scenario, the random effect is generated from a gamma distribu-

tion, where 6 - G(o,B). The first two conditional moments of !¿¡ are derived

based on the moment generating function of a gamma distribution.

tto¡(rþ) : E¿(1 exp(0 + 6)r¿¡) : 1 exp(?rq) l0 - þ*n¡)'

u¿¡ *(tþ) 

: :::;,',::,: :' :,':;'i: u,'ïji', 
^-,

The data have been generated using the following parameter config-

uration:

.y : 10, 0 : -0.5, o3 :0.b, o? : I, e.: !, þ :0.51/2

r¡: 0.1,...rj.In

The Monte Carlo mean estimation results and the simulation standard



errors are reported in Table 5.5 and 5.6

Table 5.5: Exponential model with one gamma random effect n : 10, l/ : 30

7:10 0:-5 o?:0.5 o?:L

SLSE 10.0361 -5.0477 0.4984 r.0024

(0.52ee) (0.4381) (0.i258) (0.114e)

nlme O 9.8478 -4.8395 0.6343 0.9984

(0.5437) (0.4311) (0.4086) (0.083e)

Table 5.6: Exponential model with one gamma random effect n : 10, ly' : 50

?:10 0:-5 t?:0.5 o?:I

SLSE 9.9936 -5.0060 0.4940 1.0067

(0.5143) (0.4280) (0.1243) (0.1135)

nlne O 9.8463 -4.8289 0.6678 0.9894

(0.538e) (0.4721) (0.3544) (0.0068)
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5.2.4 Summary of Simulation Results

Flom Table 5.1,5.2,5.3,5.4,5.5 and 5.6, some general simulation results are

summarized.

(i). The regression coefficient and fixed effect

(a) Both methods are doing almost equally well for the estimation of

the regression coefficient and flxed effect.

(b) For both methods, no apparent finite sample biases are noticed.

(ii). The random effect

(a) The SLS estimation method consistently generates estimates with-

out any significant bias. All the SSEs are relative smaller than

nlmeO.

(b) There are some noticeable biases in estimates from nlme O method,

except in the asymmetric case where n : t0 and l/ : 50. With

increased deviations from the normality assumption, the SSE is

increasing for the same sample size. For example, for n : 10 and

ly':50, the SSE is equal to0.1624 in the asymmetric case which

is the smallest and the SSE is equal to 0.4086 in the gamma case

which is the largest.

(iii). Random error

(a) For both methods, no apparent finite sample biases are noticed.
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(b) The SSEs of the nl-ne O estimates are slightly smaller than the

corresponding ones of SLSE.

5.3 Conclusions

From the simulation studies, we show how the numerical computation can

be done for the second-order least squares estimators under the non-normal

random effects.

Numerical findings from our limited simulation studies suggest that

second-order least squares estimation algorithm gives consistent accurate es-

timates for both random and fixed effects when the random effect is not

normal. Thus, we demonstrate the second-order least squares estimation

algorithm does not rely on the normal assumptions of the random effects.

The n1me O method seems to give accurate and consistent estimates

for the regression coefficient and fixed effect. Intuitively, this is not surpris-

ing because estimation of fixed effects is relatively robust to underlying as-

sumptions (Hartford and Davidian, 1999). For the estimation of the random

effect, the ntmeO method seems to give increased bias with the increasing

deviations from normal dístributions (from asymmetric to bimodal to gamma

distribution).



Chapter 6

Applications

In this section, the second-order least squares estimation approach will be

applied to some real problems which have been extensively studied in the

recent literature.

6.1 Orange Tree

In chapter 1, the growth model of orange tree is introduced. The data consist

of seven measurements of the trunk circumference on each of five orange trees,

taken over a period of 1600 days, originally presented by Draper and Smith

(1981, p.524), and then used by Lindstrom and Bates (1990) as an illustration

for estimation of nonlinear mixed effects models.

According to Lindstrom and Bates (1990), a logistic model is appropri-

ate to fit the data. To account for the tree to tree variation, Lindstrom and

Bates (1990) concluded in their analysis that only the asymptotic circumfer-

9i



ence needs a random effect.

model was suggested

u¿j :

wherc'i: I,"',5, i
r¡ : 118,484,664,1004,

92

Therefore, the following nonlinear mixed effects

0tl6¿
1 * exp(-(r¿¡ -
:7r'.. ,7, 6i

1237,1372,7582

- 

-L ¿..

l)/lù ' wxl

- l/(0, ø?), e¿r' - N(0, o2r), and

The first two moments of this model are the same as equations in (a.B).

Because true parameter values for the model are unknown, the estimates

from second-order least squares method are compiled with those from the

maximum likelihood and the restricted maximum likelihood methods pre-

sented in Pinheiro and Bates (1995). The nlmeO library of functions is used

here to estimate the orange data.

Flom Table 6.1, we can see that the second-order least squares estimates

are close to the ones obtained by the other two methods. The estimates for

the random effect variance o! look quite different, which is not surprising

because its estimator is known to have a fairly large standard deviation.
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Table 6.1: Estimation of the orange tree growth model

Parameters 0t 'Yt 'Yz o2,
t(Í'-€

SLSE

MLE

LME

729.92 350.13 192.50 7002.4t 61.00

727.9t 348.07 192.05 1001.25 61.50

722.56 344.16 191.05 990.29 61.56

6.2 A Pharmacodynamic Model

This nonlinear population pharmacodynamic model

- 9crr,
|J¡;:0't;- ^2*e¿¡ùþr 

0s¿ i r¿¡
(6.1)

was used by Walker (1996), for comparing the MLEs obtained with EM algo-

rithm to approximate MLEs, and also used by Kuhn and Lavielle (2004) to

compare the stochastic version of approximate EM (SAEM) algorithm with

EM algorithm, first-order conditional estimation and Laplacian algorithms.

According to Sheiner et al. (1991) and Walker (1996), the common applica-

tion for this model is the analysis of blood pressure (aoi) as a function of the

dose (r¿¡) of an antihypertensive drug from a longitudinal study. d1¿ repre-

sents a baseline response in the absence of treatment, 02¿ is the maximum

effect of the drug, and d3¿ represents the dose which gives 50 percent of the

maximum effect. The calculation of the first two moments for this pharma-

codynamic model is fairly straightforward because all the random effects are

independent. The frrst two conditional moments are given as
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czr¿j
P¿¡(tþ): 0t-;"- Aslr¿¡

.. t^t.\ -2 0102fu(r¿¡ + r¿x) 120102r¿¡r¿¡ o22r¿ir¿¡uijk\v) : ur- -W*o¿jx

Because this example was used by way of a simulation study based on

'i:I,'.',30 and j - 1,. .,6, theparameterswerepre-set as

0t¿ -¿.¿.d,. 1(105, 64), 0z¿ -¿.¿.¿. 
^(12, 

36)

0s¡ -¿.¿.d. N(10, 12.25), €¿j -i.¿.d. 
^/(0, 

4)

and r¿1 : 0, ri2 : 5, ris : !0, r¿+ : 20, r¿s : 40, r¿o : 80

The second-order least squares estimates for the parameters are calcu-

lated based on A: 1000 replications and 10000 grid values. The correspond-

ing parameter estimations and simulation standard errors are given in table

6.2. We can see that all the estimates are very close to the real values and

with relative small simulation standard errors.

Table 6.2: Estimation of the pharmadynamic model

dr:105 0z:12 0s:70 t?:64 03:36 o3:72.25 o?:4
SLSE 104.1089 12.2708 t0.327r 64.2630 35.8369 11.9032 4.0072

(0.0553) (0.0056) (0.018e) (0.0725) (0.0731) (0.0542) (0.0360)



Chapter 7

Summary and Further Research

In statistical literature, the most popular estimation approach for nonlinear

mixed effects models is the likelihood method. However, it is usually diffi-

cult to obtain a closed-form expression for the likelihood function, especially

when the random effects are multi-dimensional. Moreover, most existing

approximate likelihood approaches rely on the normality assumption of ran-

dom effects. Wang (2005) proposed the second-order least squares estimation

method which produces consistent estimators and does not rely on any para-

metric assumptions for the distributions of random effects. The potential

computational issue of deriving the moment equations with multiple inte-

grals has been addressed using the method of simulated moments.

We have performed several simulation studies for the second-order least

squares estimation method proposed by Wang (2005), and applied it in two

real data sets. From both the simulation studies and the real applications,

we have demonstrated that how the second-order least squares estimators

95
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can be numerical calculated, and how it can be implemented in a statistical

computing ìanguage R. We have reported the results of our simulation stud-

ies undertaken to gain insight into the performance of the second-order least

squares estimators. Although it is not appropriate to draw general conclu-

sions from such limited simulation studies, the results suggest second-order

least squares estimation method performs reasonably well for finite sample

sizes when the random effects follow normal or even non-normal distributions.

F\rrther research is required for the second-order least squares estima-

tion method to find a more efficient estimator by involving a nonnegative

definite weighting matrix in the objective function. It is natural to extend

the second-order least squares estimation approach to the case where e¿¡ and

6¿¡ âr€ correlated. Moreover, the approach can be extended to the situation

where the individuals have unbalanced observations.



Chapter 8

Appendix

8.1 Programs for Quadratic Models

8.1.1 Model 1: Two Independent Random Effects

"q2nde" <-

function(R, D, N, n0)

Ít
print (Sys . time O )

cat("Simu1ating Quadratic Model- with 2 Independent Ra¡don Effectsrr,"\n",

"Number of iterations:" ,R, "\r¿",

"Number of obs/group : " ,[, "\?¿",

"Number of groups:" ,N, "\r¿",

"Number of grid points:" ,[0, "\n\n")
results (- matrix(O, R, 5)

x <- c(l:n)

97
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xl <- x*x

for (i in 1: (n-1)){r1 <- c(x1,x[i]+x[(i+1):n])]

# setting parameters#

fixed <- c(-20, 10)

rand <- 0.3xabs(fixed)

parameters <- c(fixed, rand, 1)

pa <- parameters

cov <- c(pa[3J, 0, 0,pa[4J )

#varia¡.ce-covaria¡ce matrix#

Signa (- matrix (cov ,2,2)

for (j in 1:R)

Ít
#generate multivariate normal data#

ff <- mvrnorm(n=N, rep(O, 2), Sigma)

bb <- matrix(rep(ff, each=n1), nxN,2)

y <- (pa[1] + bb[,1]) + (pat2J+bb[,2f)xnz + rnorm(n*N, O, sqrt(patsJ))

yy <- matrix(y, N, n, byrow=TRUE)

a <- matrix(c(runif (r'0,-22,-18), runif (n0,8,12), runif(n0,4,8),

runif (n0,1,5),runif (n0,0.5, 1.5)), n0, 5)

n11 <- c(a[, IJ)"/o*"/ot(rep(1,n1) ) + c(a[, 2))'/,*"/"t(r2)

m1 (- matrix(rep(n11,n2),n0, nxN)

Ql <- apply((y-t(n1))x(y-t(m1)), 2, sum)

x2 1- rn11xn1l
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for (i in 1: (n-1)) { *2 <- cbind(x2,m11[,i]*n11[, (i+t):n1])]

m2 1- c(a[,3] )7.x%t(c(rep(1, (n1+1) +nt/2) )) + xZ + c(al,4l)T,x'/,t(rL2)

m2 [,1:nl] 1- m2[,1:nl] + a[,5]

y2 <- yy*yy

for (i in 1: (n-1)) {y2 <- cbind(y2, yy[,i]yy[, (i+1):n]) ]
y2 <- c (t (y2) )

m2 1- natrix(rep(n2,n2), n0, N(n+t)a72¡

Q2 <- apply((y2-t(n2))*(y2-t(m2)), 2, sum)

Q3<-Q1 +Q2

k (- r"rhich(Q3==min(Q3))

resul-ts [j , ] <- a [k, ]

Ì

nde (- apply(results, 2,mean)

ssd (- sqrt (apply(resul-ts, 2,var) /N)

#forrnat the output#

q. tabl(-data. f rame (pararneters ,mde, ssd)

dinnames (q. tabl) (-l-ist (c ( "Theata1" , r'Theata2" 
, "Rardom. ef f ect1" ,

"Ra¡dom. effect2",'Randon. error" ),

c ( "True Va1ue" , "MDE" , "SSD") )

print (q. tabl)

Sys . tine o

Ì
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8.1.2 Model 2: Two Dependent Random Effects

"q2rmde" (-

function(R, [, N, n0)

{

print (Sys . time O )

cat("Sinulating Quadratic Model- riith 2 Dependent Randon Effects","\??",

"Number of iterations:" ,R, "\r¿",

"Number of obs/group : " ,[, "\z¿",

"Number of groups: " ,N, "\7¿",

I'Number of grid points : " ,D0, "\n \ n " )

results (- natrix(0,N,6)

x <- c(1:n1)

x1 (- x*x

for (i in 1:(n1-1)){xl <- c(xl,x[i]xx[(i+1):n1]) ]
x3 (- x*x+x*x

for (i in 1: (n1-1)){x3 <- c(x3,x[i]xx[i]+x[(i+f):n1]*x[(i+f ):n1])]

fixed <- c(-20, 10)

rand (- 0.3xabs(fixed)

parameters <- c(fixed, rand, 1, 0.8)

pa <- parameters

cov <- c(pa[3J, pa[6J , pa[6J ,pa[4J )

Sigrna (- matrix(cov,2,2) #variance-covariance rnatrix#
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for (j in 1:N)

{

ff <- nvrnorn(n=n2, rep(0, 2), Sigrna) #generate nultivariate normal

data#

bb <- matrix(rep(ff , each=n1) ,n7+n2,2)

y <- (pa [1] +bb [, 1] ) + (pa t2l +bb [, 2] ) x (x*x) + rnorm(n7*n2,0, sqrt (pa tsJ ) )

yy <- natrix(y,L2,nI,byrow=TRUE)

a (- matrix (c (runif (n0, -22,-I8) , runif (n0,8, 12) , runif (n0, 4,8) ,

runif (n0, 1,5),runif (n0,0,2),runif (n0,0.6, 1.0)), n0, 6)

n11 (- c(a[, If)"/"*"/"t(rep(1,n1) ) + c(a[, 2])"/,*"/"t,(xxx)

n1 <- matrix(rep(n11,n2),n0,n1xn2)

Q1 <- apply((y-t(m1) (y-t(n1), sum)

x2 1- m11xn11

f or (i in 1: (n1-1)){ x2 <-cbind(x2,IIII,i]*n11[, (i+t):n1] ) ]
m2 1- c(a[,3))"/,*"/,t(c(rep(1,(n1+1)*n7/2))) + x2 + c(al,4f)'/"*'/"t(x1xx1)

+c (a [, 6] ) 7.*7.t (x3)

m2[,1:n1] 1- m2[,1:n1] + a[,5]

y2 <- yy*yy

for (i in 1: (n1-1)) { yz <- cbind(y2,yy [,i]*yy[, (l+t):n1]) ]
y2 <- c (t (y2) )

m2 1- matrix(rep(n2,n2),n0, n2x(n1+1) xnI/2)

Q2 <- apply( (y2-t(n2)) $2-t (n2) ) ,2, sum)

Q3<-Q1 +Q2
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k (- which(Q3==min(Q3))

results [j , ] <- a [k, ]

) rnde <- apply (results , 2 , mean)

ssd <-sqrt (appLy(results, 2,var)/N)

q. tabl(-data. f ra¡e (pararneters, mde , ssd)

dirnnames (q. taUf) (-list (c ( "Theatal " , "Theata2r' , "Randon. effect1 " ,

"Ra¡dom. effect2", "Random. error", "Covirancet'),

c("True Valuetr, rrMDErr, "SSD") )

print (q. tabl)

Sys.timeo

)
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8.2 Programs for Exponential Models

8.2.L Model 3: One Random Effect

"emde" (-

function(N,n1 ,n2,n0)

{

print (Sys . time O )

cat("sinutating Exponential Model i"¡ith one Ra¡dom Ef fect", "\ n",

"Number of iterations:" ,N, "\ n",

"Number of obs/group :" ,[1, "\ n",

"Nnmber of groups:" ,î2, rr\ nrr, "Number of grid points:" ,[0, " \
n\n")

resul-ts (- rnatrix (0, N,4)

parameters <- c(10,-5,0.5, 1)

pa <- parameters

x (- 0.1*c(1:n1)

x1 (- x+x

for (i in 1:(n1-1)) { xl (- c(x1,x[i]+x[(i+1):n1]) ]
for (j in 1:N)

Jt

rand (- rep(rnorm(n2,pa[2],sqrt (pat3J ) ),each=nl)

y <- pa[1] xexp(rand*x)+rnorrn(n1*n2, 0,sqrt (patal ))

yy <- natrix(y,n2,n!,byrow=TRUE)
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a <- matrix (c (runif (n0, 8, 12), runif (n0, -7, -3), runif (n0, 0. 1, O. 9),

runif (n0,0.1,1.5)), n0, 4)

n1 (- c(a[, Lf)"/"*"/,t (c(rep(1,n1))) *exp(c (al,2))%*7.t(x)+

c (a [, 3) )"/"*"/,t (x+x¡ ¡ 27

m1 (- matrix(rep(m1,n2),n0,n1*n2)

Ql <- apply( (y-t (m1) ) (y-t (n1) ) , 2, sum)

m2 1- c (a [, 1] xa [, tf )"fo*"fot( c (rep ( 1, (n1+1 ) *nI / 2) ) ) xexp (c (a [,2) )"/,*"/,t (xI)

+c (a [,3] ) 7.*7.t (xt*xt) /2)

m2[,1:n1] 1- m2[,1:n1] + a[,4]

y2 <- yy*yy

for (i in 1 : (n1-1) ) y2 <- cbind(y2,yy [, i] xyy [, (i+1) : n1] )

y2 <- c (t (y2) )

m2 <- natrix(rep(n2,n2) ,n0, n2r.(n1+1) xnl/2)

Q2 <- apply( (y2-t (m2) ) (y2-t (n2) ) ,2, sum)

Q3<-Q1+Q2

k (_ whicþ(QJ==nin(Q3))

resutts [j , ] <- a [k, ]

Ì
mde (- apply(results,2,roean)

ssd (- sqrt (apply(results,2,var)/N)

q. tabl<-data. frame (parameters , nde , ssd)

dimnames (q. tabl) (-Iist (c ( "Theatal ", "Fixed ", "Randon. ef f ect ",

"Random.error"), c("True Val-ue", "MDE", "SSD"))
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print (q.tabI) Sys.timeO )
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8.2.2 Model 4: Two Independent Random Effects

"e2nde" (-

f unction(N,n1 ,n2,n0)

{

print(Sys.tíneO) cat("Simulating Exponential ModeL r¿ith 2 Independent

Ra¡dom Effects", "\ n",

"Number of iterations:" ,N, "\ n",

"Number of obs/group :" ,[1, "\ n",

"Number of groups:" ,î2, "\ r",

"Number of grid points:" ,r0, "\ n \ tt")

resul-ts (- rnatrix(0,N,5)

x (- 0.1xc(1:n1)

x1 <- x+x

for (i in 1: (n1-1)) { x1 <- c(x1,x[i]+x[(i+1):nl] ) ]
parameters <- c(10,-5, 1,0.5, 1)

pa <- parameters

Sigrna (- rnatrix(c(pa[3],0,0,pâ14)),2,2)

for (j in 1:N)

{

ff <- mvrnorm(n=n2, rep(O, 2), Signa)

bb <- matr j-x (rep (f f , each=nl) ,n!*n2 ,2)

y <- (pa [1] +bb ¡, 1l ) +exp ( (pa i2J +bb [, 2] ) x;r) +rnorn (n1xn2, 0, sqrt (pa tsJ ) )
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yy <- matrix (y ,n2,n1,byrow=TRUE)

a <- natrix (c (runif (n0, 8, 72), runif (n0, -7, -3), runif (n0, 0. 1, 1 . 5),

runif (n0,0.1,1.5),runif(n0,0.1,1.5)), n0, 5)

m1 ( - c (a [, l) ) "/,*"/"t ( c (rep ( 1, n1 ) ) ) *exp ( c (a [,2] )'/,x"/"¡, (y) +

c (a [, 4f )"/"x'/"t(xxx) /2)

nl (- matrix(rep(n1,n2),n0,n1*n2)

Q1 <- appty( (y-t (n1) ) (y-t (m1) ) , 2, sum)

m2 <- c (a [, 1] *a [, 1] +a [, 3] a [,3f )"/,+"1^t(c (rep ( 1, (n1+1) *nt / 2) ) ) *

exp ( c (aL, 2f ) "/"*"/"t (x 1 ) + c ( a [, 4] ) "/,*"/ot (xt*xI) / 2)

m2[,1:n1] 1- m2[,1:n1] + a[,5]

y2 <- yy*yy for (i in 1:(n1-1))

{ y2 <- cbind(y2,yy[,i] *yy[, (i+1) :n1] ) ]
y2 <- c (t (y2) )

m2 1- natrix(rep(n2,n2),n0, n2*(n1+1) xnI/2)

Q2 <- apply( (y2-t(m2)) (y2-t(n2)),2,surn)

Q3<-Ql +Q2

k (- r,rhicþ(Q$==min(Q3) )

results [j , ] (- a [k, ]

Ì
mde (- apply(resuLts,2,nean)

ssd (- sqrt (apply (results ,2 ,var) /N)

q. tabl (-data. frame (paraneters,nde, ssd)

dirnnames (q. tabl) (-list ( c ( "Fixedl'r, " Fixed2 ", "Ra:ldom. ef f ect 1 ",
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"Random. effect2", "Random. error" ), c ("True Va1ue", "MDE",,'SSD" ) )

print (q. tabl)

Sys . tirne o

Ì
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8.2.3 Model 5: Two Dependent Random Effects

t'e2rmde" (-

function(N,n1 ,n2,n0)

{

print (Sys . time O )

cat("Simulating Exponential Model r¿ith 2 Correlated

Randorn Effects", "\ n",

"Number of iterations:" ,N, "\ n",

"Number of obs/group :" ,[1, "\ n",

"Number of groups: " ,î2, "\ n",

I'Number of grid points: " ,[0, "\ n \ n")

resul-ts (- matrix(0,N,6)

x <- 0.l*c(1:n1)

x1 (- x+x for (Í in 1: (n1-1)) { x1 (- c(x1,x[i]+x[(Í+1):n1]) ]
parameters <- c(10,-5, 1,0.5, 1,0.4)

pa <- parareters

Signa (- matrix(c(pa[3J ,pa[6J ,pa[6J ,pal4]) ,2,2)

for (j in 1:N)

ft

ff <- mvrnorm(n=n2, rep(O, 2), Sigma)

bb <- matrix(rep(ff , each=n1) ,nlxn2,2)

y <- (pa [1] +bb [, 1] ) xexp ( (pa [2] +bb [, 2] ) *,x) +rnorm(n1xn2, 0, sqrt (pa t5J ) )
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yy <- matrix (y,n2,n1,byrow=TRUE)

a <- matrix (c (runif (n0, 8 ,72) , runif (n0, -7, -3) , runif (n0,0 .8, 1 .2) ,

runif (n0,0.3,0.7),runif (n0,0.8,I.2),runif (n0,0 .2,0.6) ), n0, 6)

m1 (- (c(a[,LJ)"/,*'AI(c(rep(1,n1)))+c(a[,6] )%*%t(x)) *

exp(c(a[,2] )"/o*o/"t (x)+ c(a[,4] )"/"*'/,t(x*x) /2)

m1 (- matrÍx(rep(n1,n2),n0,n1*n2)

Q1 <- apply((y-t(n1)) (y-t(n1)), 2, sun)

m2 1- (c(a[,3] *a[,3] )7.*7.t(rep(1, (n1+1) xnt/2))+

(a [, 1] %x%t (rep (1, (n1+1) *nt / 2) ) +

c(a[,6])"1"x'/,t(x1xx1)))xexp(c(a[,2] )"/o*"/ot (x1) +c(a[,4] )'/o*"/ot(xt*xI) /2)

n2[,1:n1] 1- m2[,1:n1] + a[,5]

y2 <- yyxyy

for (i in 1: (n1-1)) { yZ <- cbind(y2,yy [,i]*yy[, (i+t):n1]) ]
y2 <- c (t (y2) )

m2 1- rnatrix(rep(m2,n2) ,n0 , n2* (n1+1) *nt/2)

Q2 <- apply ( (y2-t (:r'2)) $2-t (m2) ) ,2, sum)

Q3<-Q1 +Q2

k (_ r,ihic¡çq3==min(Q3) )

resul-ts [j,] <- a[k,]

Ì
mde (- apply(results, 2,mean)

ssd (- sqrt(apply(results,2,var)/N)

q. tabl (-data. f ra¡e (parameters , mde , ssd)
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dimnanes (q. taUf ) (-1 ist (c ( "Fixedl ", "Fixed2 ", "Random. ef f ect 1 ",

"Randon. ef f ect2" , "Randon. error" , "Coviraacê'r) ,

c ("True Val-ue", "MDE", "SSD") )

print (q. tabl)

Sys.timeO ]
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8.3 Programs for Logistic Models

8.3.1 Model 6: One Random Effect

" lmde " (-

function(N, n1, n2, n0)

{

print (Sys . time O )

cat("Simulating Logistic Model- r"rith 1 Random Effect", "\ o",

"Number of iterations:" ,N, "\ r",
I'Number of obs/group : " ,D1 , "\ o",

"Number of groups:" ,î2, "\ n",

"Number of grid points:" ,trO, "\ n \n")

x <- c (seq(f rom=20 ,to=20*n1 ,by=20) )

xx (- rep(seq(fron=2O,to=20*n1,by=20),n2)

pa <- c(20 ,70 ,34,9 ,I)
results (- matrix(0,N,5)

for (j in 1:N)

{

a <- natrix(c(runif (n0, 18,22), runif (n0,pa[2)-2,paL2J+2),

runif (n0,32,36) , runif (n0,7 ,It), runif (n0,0 . 5, 1 . 5) ) , n0, 5)

rr1 (- rep(rnorm(n2,pa[1J ,sqrt(pa[a] )) ,each=n1)

y <- rrl/ (1+exp( (pa[2J -x)/pa[3J ) )+rnorm(nIxn2,0,sqrt (patsJ ) )

yy <- rnatrix(y,rt2,nI,byrow=TRUE)
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deno (-(1+exp((c(a[,2)/al,3])7.x%t(c(rep(1,n1))))-c(r/a[,3])7.*%t(x)))

n1 (- c(a[, tf)"/"+"/"t(c(rep(1,n1)))/deno

n1 (- natrix(rep(m1,n2),n0,n1*n2)

Q1 <- apply( (y-t (n1) ) (y-t (n1) ) ,2, sum)

denol (- deno*deno for (i in 1:(n1-1))

ft

denol <- cbind(denol,deno [, i] +deno [, (i+1) :n1] )

)

m2 1- (c(a[,1] *a[ ,lf )"fo+'/ot (c(rep(1, (n1+1) *nL/2)))+

c (a [, 41)"1"*"/"t(c (rep (1, (n1+1) *n1/2)) ) ) /denor

rn2[,1:n1] 1- m2[,1:n1] + a[,5]

y2 <- yytyy

for (i in 1: (n1-1)) { yZ <- cbind(y2,yy [,i]*yy[, (i+1):n1]) ]
y2 <- c (t (y2) )

m2 1- natrix(rep(n2,n2) ,n0 , n2* (n1+1) xnl/2)

n2[,1:nl] 1- m2[,1:n1] + a[,5]

Q2 <- apply( (y2-t(n2)) (y2-t(m2)),2,sum)

Q3<-Q1 +Q2

k (_ r,¡hich(Q3==nin(Q3) )

results [j ,J <- a[k,]

Ì
mde (- apply(results,2,mean)

ssd (- sqrt(apply(results,2,var)/N)
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q. tabl<-data . frare (pa, nde , ssd)

dirnna¡es (q.tabl) (-1ist (c ("Theatalr', "Theata2",,,Fixed",

"Randon. ef f ect", ,'Rardon. error") , c(,,True Val_uer', "MDE", "SSD") )

print (q. tabl)

Sys . tine o

)
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8.3.2 Model 7: Two Independent Random Effects

r'1ogsmde2" <-

function (N,n1,n2, S,n0)

Ít
print (Sys . tine O )

cat("SinuJ-ating Logistic Modet with 2 Randon Effect","\ n",

"Number of iterations:" ,N, "\ n",

"Number of obs/group :" ,D1, "\ r",

"Number of groups:" ,î2, "\ n",

"Size of random sample:" ,n2*S, "\ n",

"Number of grid points:" ,[0, "\ o\ o")

result (- matrix(0,N,6)

x<-seq(f ron=200, to=200+n1, by=200)

pa <- c (200,700,350 ,100 ,625 ,25)

s0 <- 50 #for simulate monents#

SS <-2*S

one (- rep(1,n1)

for (I in 1:N)

{

Q (- matrix(0,n0,1)

b (- rnatrix (c (runif (n0, 195, 215) , runif (n0,695 ,7I5) , runif (n0,345,355) ,

runif (n0,95, 105) , runif (n0,620,630) , runif (n0,20,30) ) , n0, 6)
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rr1 <-rep(rnorm(n2,pa[1J,sqrt (pa [ l ) ), each=nl)

rr2 1- rep (rnorrn (n2 ,pal2J , sqrt (pa ISJ ) ) , each=n1)

y <- rrl/ (l+exp( (rr2-x)/pa[3J ) )+rnorm(nI*n2,0,sqrt (pat6J ) )

yy <- natrix(y,n2,nl,byrow=TRUE)

u1 (- natrix(rnorm(n2x(SS),200,s0),n2,SS)

u2 (- matrix(rnorn(n2*(SS),200,s0),n2,SS)

zI 1- outer(u2,x, FUN="-"¡

tlcol <- (n1+1) *n7/2

ones <- rep(1,tlcol)

for (J in 1:n0)

{

cons <- sqrt (s0al (b [3xno+.1] *,b [4xn0+J] ) )

vl (-outer(ul*exp(-(u1-b[J] ) (u1-b lJl) / (2xb[3xn0+J] )+

ulxu1/ (2xsOxs0) - (u2-b [nO+Jl ) (u2-b [nO+J] ) / (ZxU [4*,nO+J] ) +

.¿2+tt2 / ( 2*s0x s0 ) ), one)

vv1 (- t+exp(2|/b [2*n0+J] )

mn1 (- vL/vvl

M1 <- t(rbind(c(t(apply(mnl[,1:S,], c(1,3), sum))),

c(t(app1y(rnn1[, (S+1) :SS,], c(1,3), sum)))))

m1 <- y-M1

Q1 <- t(nl[ ,7f )"/"+"/"mIl,2]

N1=n1

v2 (-outer (ul*ulxexp (- (u1-b [J] ) (u1-b lJ)) / (2*b [3*n0+-i] ) +ut+.utl (2*,s0+s0)
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- (u2-b [nO+J] ) (u2-b [nO+J] ) / (Z*a [4+n0+J] )+u2xu2/ (2+s0+s0) ) , ones)

vv2 1- vvlxvvl

for (i in 1: (n1-1))

{ I'it <- N1+(¡¡1-1¡

vv2 1- array(c(vv2,array(vv1 [, , i] , c(SS,SS,n1-i) )x

array(vv1[,, (i+1) :n1], c(SS,SS,nl-i))),c(n2,SS,N1)) ]
mn2 (- v2/vv2

M2 <- t(rbind(c(t(apply(nn2[,1:S,], c(1,3), sun))),

c(t(apply(mn2[, (S+1) :SS,], c(1,3), sun)))))

y2 <-yyxyy-b[4*n0+Jl

for (i in 1: (n1-1)) { VZ <- cbind(y2,yy [,i]*yy[, (i+1):n1]) ]
m2 1- c(y2)-142

Q2 <- t (m2 [,I))"/"*"/,m21,21

QtJl <_ cons*1qr+qZ)

Ì
posit <- (Q>0)

Q <- Q [positl

b <- b [posit, J

K (- which(Q==nin(Q))

result [I, ] <- b [K, ]

ì.
J

rode (- apply (result , 2 , mean)

ssd (- sqrt (apply (resuJ-t ,2 ,var) /N)
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1og.tabl (- data. frame(pa,mde,ssd)

dimnames (1og. tabl) <- list (c ( "Fixed. 1,,, "Fixed. 2,',,'Fixed. 3",

"Ra¡rdom. effect. 1r', rrRandom. effect. 2", "Random. error',),

c(t'True Value", "MDE", "SSD"))

print (1og. tabl)

Sys . tine o
I
J
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8.4 Programs for Non-normal Random Ef-
fects Models

8.4.L Maximum Likelihood Estimation

"emle . asy" (-

function(n,n1 ,n2)

{

print (Sys . time O )

cat("SinulatÍng Exponential Mode1 r¡ith 1 Random Effects From bimodal

symmetric Distribution", "\ r",

"Number of j-terations: " ,D, "\ n",

"Number of obs/group :" ,D1, "\ n",

"Number of groups: " ,L2, "\ r\ tt")

options (digits=6)

resul-t1 (- matrix(0,n,4)

n1 (- 0 options(warn = 2)

parameters <- c(10,-5,0.5, 1)

pa <- parameters p1 <- pa[1:2J #starting v]-aue for nlmeO#

x (- 0. lxrep (c (1 : n1) ,n2)

muO <- -0.6

rv (- pa[3J

w0 (- 0.3

rmu <- (1-2+r,r0)xmuO
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mixv <- rv -4xH0*(1-r,r0)+nuOxrnuO

obj <- norMix(mu=ç(mu0,-muO), sig2 = ç(mixv, rnixv), w=c(1-r"r0,i¿0))

for (j in 1:n)

{

b2 <- rep(rnorMix(n2,obj), each=nl)-rmu+pa[2]

y <- pa[1] xexp(b2*x)+rnorrn(n!*n2,0,sqrt (patal ) )

z <- Tep(L:n2,each=nl)

o < - data.frame(cbind(z,x,y))

oo <- groupedData(y xlz,data=o)

fn.exp (- try(n1me(y Rl*exp(R2+x),

data=oo,

f ixed=R1+È2 I,randorn=R2 1,

control=nlmeControl(maxlter=200, tolerance = 1e-06),

start=pl,method="l"ll" ), TRUE)

if (inherits(fn.exp, "nlme")) # onty for successful- fits

resultl [j, J <-matrix(c (fn. exp$coef$f ixed,

as . numeric (VarCorr (fn. exp) [, 1] ) ) , 1 ,4)

Ì
resultll (- matrix(pa, 1,4)

for(jin1:n)
Ít
if (result1[j,1] !=0) { m1 = m1+1

resul-t 11 <- rbind (result 11 , resuJ-t 1 tj , I ) Ì Ì
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result11 <-result11 [2: (m1+1) , ]

print (m1)

nle (- apply(result11,2,nean)

ssd<-sqrt (apply (result 11 ,2 ,var) /n)

truePa (- natrix(pa,n1,4,byrow=TRUE)

srrrnmse <- (result11-truepa) * (result1l-truepa)

rmse <- sqrt (apply(sumnse,2,nean) )

exp.tabl <- data.fra¡e(pa,mle,ssd,rmse)

dimn¿¡ss (exp . tabl) (-l-ist (c ( " Fixed. 1 ", "Fixed . 2 ", " Raadon. ef f ect'r,

"Raldom.error"), c("True Value,', "MLE", "SSD",,'RMSE,,))

print (exp . tabl)

Sys. tine o

Ì
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8.4.2 Second-order Least Squares Estimation

"eslse.bio" <-

function(N,n1 ,n2,n0)

{
print (Sys. tine O )

cat("Sinulating Exponential ModeL tiith 1 Randon Effects",,'\ n",

"Number of iterations:" ,N, "\ n",

"Number of obs/group : " ,D1, "\ o",

"Number of groups:" ,D2, "\ o",

"Number of grid points:" ,D0, "\ o \ tt")

results (- natrix(0,N,4)

parameters <- c(10,-5,0.5,1)

pa <- parameters

x (- 0.l*c(1:nl)

x1 (- x+x for (i i-n 1:(n1-1)) { x1 (- c(x1,x[i]+x[(i+1):n1]) ]
nuO <- -0.6

rv <- pa[3J

r¡0 (- 0.5

rmu <- (1-2+i,¡0)xnuO

mixv (- rv -4xvi0*(1-w0)xnuO*muO

obj (- norMix(rnu=c(nuO,-muO), sig2 = c(mixv, rnixv), w=c(1-w0,1¡0))

for (j in 1:N)
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{

rand <- rep(rnorMlx(n2,obj),each=nl)-rnu+pa[2J

y <- pa [1] +exp (ra¡dxx) +rnorm(n1*n2, 0, sqrt (pa tal ) )

yy <- matrix(y,tt2,nI,byrow=TRUE)

a <- matrix(c(runif (n0,8,72), runif (n0,-7,-3),

runif (n0,0.3,0.7), runif (n0,0.8,-12) ), n0, 4)

rv1 (- a [,3] -4*w0+ (1-r,r0) *nuO*mu0

n1 (- ( 1-w0) xc (a [, If )"/"x'/,t(c (rep (1, n1) ) ) xexp (c (a [, 2] +nuO) %x7.t (x) +

c(rv!)"/,*"/"t (xxx) /2)+ w0*c (a [, 1] )"/o*"/ot (c (rep (1,n1) ) ) *

exp ( c (a [, 2] -muO ) "/.*'/.¡ (x) + c (rv1 ) 7.*7.t (x*x) / 2)

n1 (- natrix(rep(m1,n2),n0,n1*n2)

Q1 <- appJ-y((y-t(m1)) (y-t(n1)), 2, sum)

m2 1- (1-w0)*c(a[,1] xa[ ,I])"f"*'f"t(c(rep(1, (n1+1) xnt/2)))x

exp(c(a[,2]+nuO)7.x7.t(x1) +c (rvl)'/o*"/ot(x1*x1) /2)+v)xc(a[,1] xa[,1] )%x

7.t (c (rep (1, (n1+1) xr-t / 2) ) ) x

exp (c (a[, 2] -muO)%+%t (x1) +c (rv1)%*%t (xI*xI) /2)

m2[,1:n1] 1- m2[,1:n1] + a[,4]

y2 <- yy*yy for (i in 1:(n1-1))

{y2 <- cbind(y2,yy[, iJ tyy[, (i+1) :n1] ) ]
y2 <- c (t (y2) )

m2 1- matrix(rep(n2,n2),n0, n2* (n1+1)+nt/2)

Q2 <- apply( (y2-t(n2)) (y2-t (n2) ) ,2, sum)

Q3<-Q1 +Q2
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k (_ whic¡(QJ==nin(Q3))

results [j , ] <- a [k, ]

Ì
mde (- apply(results,2,mean)

ssd (- sqrt (appJ-y (results , 2 , var) /N)

truepa (- matrix(pa,N,4,byrow=TRUE)

summse <- (resul-ts-truepa) (results-truepa)

rmse <- sqrt (apply(surnrnse,2,nean) )

q. tabl ( -data. f rame (parameters, mde, s sd, rmse )

dimnames (q.tabl) (-tist (c ("Theata1", "Fixed", "Random. effect",

"Random. error") , c("True Value" , "MDE", "SSD" , "RMSE") )

print (q. taUf)

Sys . time o

)
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