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Abstract

The main approach for the estimation of nonlinear mixed effects models fo-
cuses on the maximum likelihood method. Given the current computing
capacity, intensive numerical integration often makes exact maximum likeli-
hood estimation impractical. Wang (2005) proposed the second-order least
squares estimators for nonlinear mixed effects models based on the first two
conditional moments of the response variable given the observed predictor

variables.

In this thesis, we present numerical examples demonstrating that Wang's
(2005) second-order least squares estimators are computationally feasible and
practical. In particular, we show how Wang’s (2005) algorithm can be imple-
mented in the statistical computing language R. Finally, we investigate the
finite sample properties of the second-order least squares estimators through

simulation studies.
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Chapter 1

Introduction

1.1 Data and Examples

1.1.1 Example 1: Pharmacokinetics of Cefamandole

Pharmacokinetics is the study of the bodily absorption, distribution, metabolism,
and excretion of drugs. The goal of pharmacokinetics modeling is to sum-
marize the concentration-time measurements using a model that relates drug
input to drug response, to relate the parameters of this model to patients’
characteristics, and to provide individual dose-response predictions for use

in optimizing individual doses.

The data are obtained during a pilot study to investigate the pharma-
cokinetics of the drug cefamandole (Davidian and Giltinan 1995). In the
experiment, a dose of 15 mg/kg body weight of cefamandole is administered
by ten-minute intravenous infusion to six healthy male volunteers. Plasma

concentration of the drug is measured on six volunteers at 14 time points,

11
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and the data are shown in Table 1.1 and Figure 1.1.

100 150 200 250
| | { 1

Cefamandole Concentration (mcg/ml)

50

T T 1 1 1 T 1 T
0 50 100 150 200 250 300 350

Time post-dose{min)

Figure 1.1: Plasma concentration-time of cefamandole versus time post in-
jection for six subjects

We can observe that the data are collected by observing a number of
subjects (units) repeatedly and responses are measured over time; all sub-
jects’ concentration profiles have a similar shape; however, peak concentra-

tion achieved, decay and elimination vary substantially.
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Table 1.1: Plasma concentration-time of cefamandole versus time post injec-
tion for six subjects

Subject
Time 1 2 3 4 5 6
10 127.00 120.00 154.00 181.00 253.00 140.00
15 80.00 90.10 94.00 119.00 176.00 120.00
20 47.40 70.00 84.00 84.30 150.00 106.00
30 39.90 40.10 56.00 56.10 90.30 60.40
45 2480 24.00 37.10 39.80 69.60 60.90
60 1790 16.10 28.90 23.30 42.50 42.20
75 11.70  11.60 25.50 22.70 30.60 26.80
90 1090 920 20.00 13.00 19.60 22.00
120 5.70 520 1240 800 13.80 14.50
150 2.55 3.00 8.30 240 1140 8.80
180 1.84 1.54 4.50 1.60 6.30 6.00
240 1.50 0.73 3.40 1.10 3.80 3.00
300 0.70 0.37 1.70 0.48 1.55 1.30
360 0.34 0.19 1.19 0.29 1.22 1.03
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1.1.2 Example 2: Growth of Orange Trees

In a growth model studied by Draper and Smith (1981) and later by Lind-
strom and Bates (1990), the data consist of seven measurements of the trunk
circumference (in millimeters) on each of five orange trees, taken over a pe-

riod of 1600 days. The data is reported in Table 1.2.

Table 1.2: Measurements of trunk circumference for five orange trees

Tree
Age (Days) 1 2 3 4 5
118 30 33 30 32 30
484 58 69 51 62 49
664 87 111 75 112 81

1004 115 156 108 167 125
1231 120 172 115 179 142
1372 142 203 139 209 174
1582 145 203 140 214 177

From Table 1.2 and Figure 1.2, we can see that the data are collected by
observing a number of trees (units) repeatedly and responses are measured
over time; all growth curves have a similar shape; however, the growth rate

of each curve is significantly different.

In both example 1 and 2, data are collected repeatedly and responses

are measured over different units. This type of data is called repeated mea-
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Figure 1.2: Measurements of trunk circumference for five orange trees

15
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surement data. In general, by "repeated measurement data”, we mean data
are generated by observing a number of units repeatedly and responses are
measured under different experiment conditions. A common type of repeated
measurement data is longitudinal data. Many longitudinal studies are de-
signed to investigate changes over time in a characteristic which is mea-
sured repeatedly for each study subject (Laird and Ware 1982), such as the
cefamandole data in example 1 and the orange tree data in example 2. How-
ever, the models and methods we will discuss are more broadly applicable
to any kind of repeated measurement data which could be measured over
some other set of conditions, such as at different positions in space, or across

different concentrations and dosages.

1.2 Mixed Effects Models

By observing the cefamandole and orange tree data, we can find they share
some similar characteristics. All repeated response measurements are taken
at different time for different groups. There is a nonlinear dependence of the
response on parameters of interest. All units have a similar shaped profile

but with noticeable intra-group and within-group variabilities .

For the pharmacokinetics study in example 1, the purpose is to study
what the drug does to the body and determine the appropriate regimen of
dosages for different individuals. As shown in Figure 1.1, although the con-

centration profiles have a similar shape for all individuals, peak concentra-
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tion achieved, rise and decay vary substantially. These substantial differences
among individuals are attributable to the intra-individual variations which
is associated with an individual’s demographic, physiological and behavioral
characteristics. From investigators’ point, the use of population pharmacoki-
netics in the drug development process should help identify differences in
drug safety and efficacy among subgroups. For the growth study in exam-
ple 2, biologists are interested in the description of different growth patterns
and in trying to understand the underlying mechanisms. From Figure 1.2,
all trees have similar growth curves, but the growth rate is different among
trees. It is critical for biologists to understand the variations to determine

how growth responds to different treatments or covariate information.

Results of the pilot pharmacokinetics and growth studies are to be
used as a basis for subsequent investigation in a more heterogeneous group
population. The focus of these studies is not on population mean, but on
the group parameters in the population. Due to the similar profiles and
substantial variation among groups, each group may have the same model but
with different parameters. The use of simple nonlinear regression analysis,
which can only capture the profile of a homogenous group, is not informative
enough for these types of studies. Therefore, some hierarchical statistical
models and methods are needed to acknowledge these unique features in the

repeated measurement data.

Mixed effects models, in which the regression coefficients are allowed to
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vary across units, are commonly used to incorporate both variations within
and between units. They include a mixture of fixed effects, which are para-
meters associated with the entire population, and random effects which are
associated with individual experimental units. They can not only describe
the trend of data over time while taking account of the correlation that exists
between successive measurements, but also describe the different variation for
each unit over time. They provide a powerful technique for the analysis of

repeated measurement data that arise in many applied fields.

The linear mixed effects models are easy to handle, and well applied for
evaluating the performance of products, for determining sampling designs,
and quality-control procedures, and particularly for analyzing longitudinal
data (Lee and Xu 2004). However, the data sets, in many studies , such as
growth studies, clinical research or pharmacokinetic and pharmacodynamic
studies (Davidian and Giltinan 1995; Vonesh and Chinchilli 1997; Lindsey
1999), are nonlinear in nature with respect to a given response regression
function. Therefore, nonlinear mixed effects models are required to fit this
type of data. Many different nonlinear mixed effects models have been pro-
posed in recent years (Sheiner and Beal 1980; Mallet, Mentre, Steimer and
Lokiek 1988; Lindstrom and Bates 1990; Davidian and Gallant 1992; Vonesh
and Carter 1992).
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1.3 Statistical Inference

Nonlinear mixed effects models have been receiving increased attention in
recent years, because many quantitative relationships are nonlinear inher-
ently and can not be simply approximated by linear ones. Although they are
more realistic in many fields, the estimation always raises many theoretical
and computational challenges due to the fact that these models are typically

nonlinear with respect to the random effects.

1.3.1 Maximum Likelihood Estimation Approach

The main estimation approach for nonlinear mixed effects models is maxi-
mum likelihood approach. However, it requires complete specifications of dis-
tributions for all random variables. To facilitate the implementation of the
approach, normal distributions are always assumed. The major challenge
of the maximum likelihood method is that numerical computation is diffi-
cult or intractable because the likelihood function involves multiple integrals
and dose not have a closed-form expression. Given the current computing
capacity, intensive numerical integration often makes exact maximum likeli-
hood estimation impractical. Therefore, various approaches are proposed to
approximate the likelihood function based on the normality assumptions to
alleviate the computational burden and instability associated with complex

numerical integration.

Linearization of the likelihood function for nonlinear mixed effects mod-
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els is by far the most popular technique. It was first proposed by Sheiner and
Beal (1980). They linearized the nonlinear response function of the model
with a first order Taylor series expansion, and then fitted the resulting lin-
earized model by the maximum likelihood approach. Laird and Ware (1982)
viewed the data of nonlinear mixed effects models that could be modeled by
an expectation function that was linear in its parameters. Lindstrom and
Bates (1990) proposed a more accurate approximation to the nonlinear re-
sponse function of the model by expanding the nonlinear response function
of the model about the current estimates of the fixed effects and the random
effects. They used Newton-Raphson algorithm to carry out the maximum
likelihood fit of the linearized model. We will further introduce Lindstrom
and Bates (1990) linearization algorithm in the next chapter. Other liner-
ization methods include, Vonesh and Carter (1992), Liang and Zeger (1986),
Goldstein (1991), and Longford (1994)

Some other approximate maximum approaches have also been inten-
sively studied in recent years. They include the EM algorithm (Walker 1996
and Yang 2001), Laplacian approximation (Wolfinger 1993 and Vonesh 1996),
"exact” likelihood algorithm (Pinherio and Bates 1995, Davidian and Gallant
1993 and Dempster 1997), and spline approximation (Ge, 2003). Pinherio
and Bates (1995) gave a comprehensive review on most of the parametric

approaches.

All these likelihood approaches are based on the approximated likeli-
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hood function and rely on the normality assumptions of random effects.

1.3.2 Second-order Least Squares Estimation Approach

Wang (2003, 2004) has shown that the nonlinear Berkson measurement error
models are generally identifiable using the first two conditional moments of
the response variable given the observed predictor variables. Wang (2004)
proposes a minimum distance-type estimator and a simulation-based estima-
tor based on the first two conditional moments of the response variable. By
demonstrating the same identifiability property for nonlinear mixed effects
models, Wang (2005) proposes the second-order least squares (SLS) approach
by extending Wang’s (2004) method to the estimation of nonlinear mixed ef-
fects models. The second-order least squares estimators (SLSE) are straight-
forward to compute, if the closed forms of the two conditional moments
are available; otherwise, Wang (2005) proposes a simulation-based estimator
(SBE) by approximating the two conditional moments using Monte Carlo
techniques. Wang (2005) has shown that both SLSE and SBE are consis-
tent and asymptotically normally distributed under fairly general regularity

conditions.

For the second-order least squares approach, it is computational feasible

and does not depend on the normality assumptions for random effects.
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1.3.3 Other Approaches

A semiparametric modeling approach was proposed by Gallant and Nychka
(1987), and further developed by Davidian and Gallant (1993). Some non-
parametric method were proposed by Mallet (1992), Mentre and Mallet
(1994), and Lai (2003). Steimer et al. (1984) proposed an iterative two-
stage method for estimating nonlinear random effects model. Lu and Meeker
(1993) proposed a two-stage estimation method which was similar to the
Steimer et al. (1984) method. Mentre and Gomeni (1995) proposed a two-
step iterative algorithm which could be viewed as an approximation to the
EM algorithm used by Walker (1996). Other approaches involve evalua-
tion of the integrals via numerical integration or using Markov chain Monte
Carlo simulation techniques, including Davidian and Gallant (1993), Pinheiro
and Bates (1995b), and Concordet and Nunez (2001). Several Bayesian ap-
proaches were proposed by Berkey (1982), Racine-Poon (1985) and Gilks et.
al. (1996).

1.4 Scope of the Thesis

We conduct several simulation studies in this thesis to show how the numer-
ical computation of second-order least squares approach can be implemented
in the statistical computing language R. Based on the simulation results,
we investigate the finite sample properties of the second-order least squares

estimators. We also examine how the SLSE estimation approach performs
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for the non-normal distributions of random effects. Finally, we apply this

method to two real data sets.

The thesis is organized as follows. In chapter 2, we introduce the Lind-
strom and Bates’ (1990) linearized likelihood approach and Wang’s (2005)
second-order least squares approach. Chapter 3, we briefly review some non-
linear numerical optimization methods and a concise comparison is given. In
chapter 4, simulation studies are conducted to investigate how well second-
order least squares method performs for finite samples. In chapter 5, we
perform several simulation studies based on the non-normal random effects.
Two real data applications are given in chapter 6. In chapter 7, we give
an overall summary about our simulation studies and discuss some further

extensions of the second-order least squares estimation method.



Chapter 2

Estimation of Nonlinear Mixed
Effects Models

In the first section of this chapter, we review one linear approximation
method proposed by Lindstrom and Bates (1990) to estimate nonlinear mixed
effects models. The reason we choose to review this particular method is due
to its popularity and availability of a variety of statistical softwares to im-
plement this method. In the second section, we introduce the second-order

least squares estimation method proposed by Wang (2005).

2.1 Linear Approximation to the Likelihood
Function

Lindstrom and Bates (1990) define nonlinear mixed effects model for the jth

observation on the ¢th individual as

yijzf((bi,:cij)—i-eij, ’izl,...,M, j=1,...,ni,

24
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where y;; is the jth response on the ith individual, z;; is the predictor vector,
¢; is a parameter vector, and e;; is a normally distributed error term. The
parameter vector varies from individual to individual , so ¢; can be written

as

¢ = Aif + B;b;, by ~ N(O,UQD), (2.1)

where 3 is a p x 1 vector of fixed effects, b; is a g X 1 vector of random effects
associated only with individual ¢, matrices A; and B; are r X p and r X ¢
design matrices for the fixed and random effects, respectively, and 02D is the

variance-covariance matrix of the random effects.

The maximum likelihood estimation is based on the marginal density
of y
(618, D,0%) = [ p(ylb 5, D,0)p(8)db (22)

Because the model function f(¢;,;;) is nonlinear with respect to ran-
dom effects, the integration (2.2) generally does not have a closed form;
therefore, the numerical optimization of the likelihood function is burden-

some.

Lindstrom and Bates (1990) take a first-order Taylor expansion of the
model function f around the conditional modes of the random effects to
approximate the log-likelihood function. The estimation algorithm described
by Lindstrom and Bates (1990) proceeds in two alternating steps, a penalized
nonlinear least squares (PNLS) step, which updates the estimates of fixed

effects and conditional mode of random effects, and a linear mixed effects
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(LME) step, which updates the variance-covariance matrix of the random
effects. The algorithm alternates between PNLS and LME steps until a

certain convergence criterion is met.

This linearization approach is numerically simple and efficient. It is

implemented in popular software packages such as nlme() in S-PLUS and R,

and PROC NLMIXED in SAS.

2.2 Second-order Least Squares Estimation

Following Wang (2005), we define the general nonlinear mixed effects model

for the jth observation on the ith individual as
vij = 9(xi,&,7) €5, 1=1,2,...,N, j=1,2,...,n; (2.3)

where y;; € R is the response variable, z;; € R! is the predictor variable,
and & € R™ are unknown parameters, and ¢;; is the random error. Further,

assume that

& = Z0 + 6, (2.4)

where Z; € R™*? is a matrix of explanatory variables, 8§ € R? is the vector
of fixed effects and §; € R™ is the vector of random effects, which is inde-
pendent of Z; and X; = (24, Zi2, ..., Zin,)’- § is independent and identically

distributed with density f5(u, ¢), where ¢ € R" is an unknown parameter.

Wang (2005) has shown that the nonlinear mixed effects models are

generally identifiable using the first two conditional moments of the response
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variable given the observed predictor variables.

2.2.1 The Second-order Least Squares Estimators

Under the model assumptions, the conditional mean of y;; is given by
Byl 2) = [ 9o, folu — 205 ) (25)
and the second moments of y;; given X;, Z; are
E(yiiyiel Xz, Zs) = /g(xijaua7)g($ik,ua7)f5(u — Z0;¢)du+ oy, (2.6)

where 05, = 02, if j = k, and zero otherwise. Let v=(8',7/, ¢', 02)’, ui;(¥) =
E(y:;1Xs, Z;) and vy () = E(yiYik|Xi, Z;). The SLSE for 1) are defined as

the measurable function satisfying

Qn () = min Qn (¥) (2.7)

Ppev

where VU is the parameter space,

Qn(¥p) = Z Pi() pi (%) (2.8)

and
pi(¥) = (ys5 — mij(¥), 1 <7 <nyy yyyin — vie(¥), 1<j<k<n)
2.2.2 The Simulation-based Estimators

If explicit forms of the integrals in (2.5) and (2.6) can not be obtained, a

simulation-based approach for estimation in which the integrals are simulated
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by Monte Carlo methods such as importance sampling was proposed by Wang

(2005).

The simulation-based estimator is constructed by choosing a known
density function h{u) and generating an ¢.7.d random sample u;5, 7 =1,2,..., N,
s=1,2,...,25. Then p;;(¢) and v;;(¢) are approximated by the correspond-

ing Monte Carlo simulators

S
) xz];uzsy"y fﬁ(uzs Zzgy(:b)
/J“l], g h(uzs) bl
1 S gla, wie, V) fs(is — Zi; 6)
pa(¥) =5 >, T h(u; )zs —
s=85+1 s
and
S
1 (L‘z y Uisy Y g(‘rzkauzs: )fé(uis - Z’ie; (b)
Vijk,1 (¥) = 3 Z ’ 70 + Oujk;
28
1 Tij, Uisy Y )G\ Tk, Ugs, 7Y f5 Uj _Z’L@)(:b
Vijk,2(¢)=§ Z 9( j1 Wis ) ( kh(us. )) ( is )+Uz'jk.
s=S+1 s

The simulation-based estimator (SBE) for ¢ is defined by

Qn.s(¥) = mm Qn,s(¥) (2.9)

where

Qn,s(¥ szl )Pi2(¥) (2.10)

and

P (V) = (Wij — pija(¥), 1< 7 < gy Yiyae — Vigea(¥), 1 <j <k <ny),



29
pi2(V) = (yij — mij2(¥), 1< 7 < gy Yigyie — vigra(®), 1<j<k<n).

It has been showed by Wang (2005) that Qy s(¢) is an unbiased esti-

mator for Quy ().

In practice, the choice of h(u) will affect the finite sample variances of
the Monte Carlo estimators such as p;;1(%). Theoretically, the best choice
of h(u) is proportional to the absolute value of the integrand, which is
g(zij,u,v) fs(u — Z;0; ¢) for p;1(v). Practically, however, a density close

or being proportional to the integrand is a good choice (Wang 2004).

In the minimization of our objective function Qn (%) or @y s(¢), nu-
merical optimization methods are required because the moment functions
are usually nonlinear with respect to the parameters of interest. In the next

chapter, we introduce several general numerical optimization methods.



Chapter 3

Numerical Optimization
Methods

A general optimization problem is to find the value of a vector § € © that
maximize or minimize a given function Q,(6). The function Q,(9) is called
the objective function which depends on given observations zp,zs, - - , Ty,
and © is the domain of allowable values for the vector §. In statistics, the
nonlinear least squares estimation method and maximum likelihood estima-

tion method are two typical optimization problems.

3.1 Nonlinear Least Squares Estimation

A general nonlinear regression model can be written as:
vi= flz;,0) +e, i=1,2,...,n (3.1)

where @ is a p x 1 vector of unknown parameter, f is a nonlinear function

with respect to the parameter 8, z; is a k x 1 vector of explanatory variables
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and ¢; is a random error term.

The nonlinear least squares estimator for 8 can be obtained by mini-

mizing the objective function @, (), where

n

Qn(6) = D _lys — f(@:, ) (3.2)

i=1
Because f is nonlinear with respect to 6, in general, it is not possible to solve
explicitly for the nonlinear least square estimates by minimizing @,(6) in
(3.2). Therefore, numerical optimization methods must be implemented to

obtain the solution.

3.2 Maximum Likelihood Estimation

The method of maximum likelihood estimation is a general method of finding
estimators. Suppose y is a random variable with probability distribution
p(y;0), where 6 is a p X 1 vector of unknown parameters. Let y1,%2, - ,¥n
be a random sample of n independent observations, the likelihood function

L(#;y) can be written as

n

L(6;y) = [ [ p(w;0) (3.3)

=1

The maximum likelihood estimator of 6 is the value of 6 that maximizes
the likelihood function L(6;y). Therefore, in our previous notation, L(f;y) is
our objective function @, (6). If the probability distribution of y; is nonlinear

with respect to the unknown parameter 6, it is usually troublesome to find
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the closed form of the maximum likelihood estimator. Therefore, numerical

optimization methods are required to obtain the numerical solution.

3.3 Numerical Optimization

As we have shown in section 3.1 and 3.2, for the estimation of nonlinear
models, numerical optimization methods are needed to obtain the estimates.
In this section, we review several common optimization methods. For the
sake of simplicity, we use the nonlinear least square estimation introduced in

section 3.1 as an example to illustrate these methods.

3.3.1 Gauss-Newton Method

A popular method used in computer algorithms for the numerical optimiza-
tion is the Gauss-Newton iteration method. The method is to use a lin-
ear approximation to the function f(z;,0) to iteratively improve an initial
guess gy for 6 and keep improving the value of  until there is no change.
That is, we expand the function f(z;,8) in a first order Taylor series about

éO = [é107 92()) e >ép0], as

flzi,0) = f(z:,00) + {%L S (85 — 650 (34)

j=1

If we define

) R 1o} T, 0;
fio = f(xi’ 90)’ ¢.(7) = 9‘7 - gj()a Zg - [L(a_@—-—l)‘] ]
| j 0=00
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then the nonlinear regression model (3.1) can be approximately written as

p
yi— 2= §Z%+e, i=12,...,n (3.5)
j=1
or further as
Yo = Zogo + € (3.6)
where Yo = Y — an fO = [f?)fg)"'vfg]li ZO = [Zzola Zz%) T Z?p] and
do = [¢9, #9,, ---, @9’ . Therefore, using the least square method, @ is
computed as
b0 = (2020) ™ Zyyo = (Z620) ™ Zo(y = fo)- (3.7)

Now since ¢g = 6 — 90, él could be defined as,
b, = do + o (3.8)

which can be viewed as the updated value of . The 91 is substituted for
0o in equation (3.4). This procedure is repeated to obtain the next updated

value.
In general, at the kth iteration
Ors1r = Ok + b1 = 0 + (Z,20) 7 Zi(y — fi) (3.9)

where

/

Zk = [Z«ﬁ: sz2, Y Z;;)]) fk = [f{c’féc, . "frlf],a ek = [glk)92k; e 79;016]
The iteration process continues until convergence, that is, until

‘é',k+1 - éjk' < 5, i=12,...,p (3.10)
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where § is some small positive number, say 107, The objective function
Qn(ék) in equation (3.2) should be evaluated at each iteration to ensure that

a reduction in its value has been obtained.

3.3.2 Newton-Raphson Method

The basic idea of Newton-Raphson method is to approximate the objective
function in each iteration by a quadratic function and then move the current
point to the turning point of the quadratic curve. This method has the
advantage of potentially speeding up the convergence significantly, but has

the possible disadvantage of making the algorithm more unstable.

The objective function Q,(6) in (3.2) can be approximated as
. ) . 1 . .
Qn(0) ~ QnlBo) +Gol6 — o) + 56— boY Hol6 — ) (3.11)

where 6, is a starting value and

5Qn

GO — — _22 l"“ 60 af(‘r“ 00)

06

o Qn(90 . af( 331,90 8f (3, o) 0 f (z:, o)
Hy = 9006 22 By 22(% xz,HO

where Hj is the Hessian Matrix and Gy is the gradient vector of @Q,(6).

The next value 6; of the N ewton-Raphson iteration is obtained by min-

imizing the right-hand side of the approximation(3.11), which yields

0, =6 — Hy'Go (3.12)
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This provides a natural basis for an iterative procedure for minimizing @, (6).

In general, we have at the kth iteration
Ops1 =0 — HT'G,. (3.13)

The iteration above is to be repeated until the sequence 6 is converged.

3.3.3 Steepest Descent Method

The method of steepest descent is one of the oldest optimization techniques.
It is based on the simple principle that from a starting value 90 the best
direction to go is the one that produces the largest local change in the steepest
descent. The direction is defined by the gradient vector at the given 6. Hence

the algorithm becomes

\ A o (B
6k+1 = 6k - ak%ék), k= 0, 1, trt (314)

where k is the iteration count, 6, is the value of the kth iterate , and «y is the
step size which regulates how large a step the algorithm takes. Obviously,
too large or too small steps may prevent the algorithm to converge, even if

the steps are in the correct directions.

3.3.4 Grid Search Method

The direct grid search method relies only on evaluating @,(0) at a sequence
of points 01,6, --- and comparing values of Qn(él), Qn(ég), -+, in order

to reach the optimal values of 6§ (Walsh, 1975). The direct search method
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can commonly handle the cases that the derivatives of 8Q,(6)/96 are not

continuous, or the Hessian Matrix is exact or near singular.

Grid search method is to construct a mess of grid points, and evaluate
the objective function Q,(6) at each of these points. If the permissible range

of 4 is limited by
1<6 < u,

where 1 is a p x 1 vector of the lower bounds and u is a p x 1 vector of
the upper bounds. All the grid points would be generated from a uniform

distribution with lower bound 1 and upper bound u.

The value of the objective function @,(6) is evaluated at each point,
and compared with the least value found before. If it is less than the least
value, it replaces it and is retained; if it is greater, it is rejected. By taking
the smallest value of @,(#) in the permissible range of ¢, we can obtain the

optimal values of 8.

3.3.5 Comparisons of the Methods

There are two major disadvantages associated with Gauss-Newton and Newton-
Raphson method. First, they all require starting values. In most of the
simulation studies for estimation of nonlinear mixed effects models, as the
true parameter values are known, they are used as starting values to avoid
potential numerical optimization problems. However, Ge, Bickel and Rice

(2003) mentioned that by starting at the true parameter values, a poor al-
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gorithm may be favored, if it tends to stop early. If some values that are
far away from true values are chosen as starting values instead, the iterative
estimation algorithms converge very slowly or may even fail to converge at
all. Moreover, by using the poor starting values, a local optimum may be ob-
tained over a global one. Therefore, without enough prior knowledge about
the possible true parameter values, it is extremely difficult to choose appro-
priate starting values. Second, they require the computation of gradients
or Hessian matrix. If Q,(0) is not differentiable or not continuous, the
gradients of ),,(8) are impossible to be calculated or expensive to derive. For
the cases of high dimensions, the evaluation of gradients may be complicated,

and the Hessian Matrix may be exact or near singular.

For the steepest descent method, it is simple and usually works best
when the starting point is a long way from the optimum. Despite widespread
use and formal convergence of the steepest descent algorithm, it is relative

inefficient and seldom converges reliably.

For the random grid search method, there are several main advantages.
If the problem dimension is not too large, the algorithm can perform fairly
quickly. This approach does not require staring values, because the random
grid search process will find the optimum value from the grid points. It is a
derivative free method, and thus it greatly reduces the computing cost. Fur-
thermore, this algorithm has a great generality and basically can be applied

to any objective function. The grid search method is also associated with
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several weaknesses. It can only be used in a small region near the optimal
points, otherwise a large number of unwanted functions are calculated. If the
original mesh is large, it is possible to miss the global minimum and choose
a local minimum. In addition, information about @,(6) obtained in the pre-
vious calculations is not being used to speed up the search for the optimal
point. There are some auxiliary algorithms which can facilitate and improve
the performance of the simple random grid search methods (Fu and Wang ,

2002).



Chapter 4

Finite Sample Properties of the
Second-order Least Squares
Estimators

In this chapter, we conduct some simulation studies to demonstrate how the
numerical computation can be done for the second-order least squares estima-
tors (SLSE) using the statistical programming language R, and to investigate

the finite sample properties of the SLSE.

4.1 Design of Simulation Studies

Quadratic, exponential and logistic models given in Wang (2005), are used
in the simulation studies with different combinations of fixed and random

effects. Here is a list of the models in the simulation studies:

Model 1. Quadratic model with two independent random effects

39
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Model 2. Quadratic model with two dependent random effects
Model 3. Exponential model with one random effect
Model 4. Exponential model with two independent random effects
Model 5. Exponential model with two dependent random effects
Model 6. Logistic model with one random effect

Model 7. Logistic model with two independent random effects

All the random effects and random errors are generated from normal distri-

butions.

In the design of simulation studies, N, the number of units, and n, the
number of observations per unit, are taken as various values. For each of
the sample sizes R = 500 Monte Carlo replicates are carried out and the
Monte Carlo mean estimates and the simulation standard errors (SSE) for
the estimators are computed. All the computations are conducted in R 2.1.0
on an IBM Workstation with a 2.2MHz CPU and 4GB RAM with standard

hardware configuration.

As is frequently the case in fitting nonlinear mixed effects models by
using statistical softwares, convergence, numerical complaints and numeri-
cal discrepancies problems will be encountered, because most of the global
optimization procedures implemented in statistical softwares are based on it-

erative methods. The disadvantages of iterative methods have been discussed
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in section 3.3.5. In practical programming, we have to flag out warning mes-
sages and treat false convergences as breakdowns to exclude those estimates.
Because the grid search optimization method does not require starting val-
ues or the computation of gradients, it is implemented in the programming
of our simulation studies to avoid those potential optimization problems in-
volved in the iterative methods. In our simulation studies, the bounds of grid
points for each parameter are set closed to the true parameter values, and a
large number of grid points m = 5000 per parameter are used by considering

computing time, and computational cost.

4.2 Quadratic Models

A general quadratic model can be written as

¥y = Eu+ fzﬁ?j + €5 (4.1)
&i = 01+ 0u, =03+ 0y
6 ~ N(0,Zs), €5~ N(0,02)

i = 1,...,N, j=1,...,n

where 0; and 6, are fixed effects; d1; and d9; are random effects; the variance-

covariance matrix of the random effects is given as

2
051 0812
Y5 =

2
Os21 Og9
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The first two conditional moments are given in Wang (2005)

pii(Y) = 601+ 9233% (4.2)
vige(¥) = (01 + 9290?]')(91 + 9253?]-) + ok + U§1 + Cfgszjl'?k -+

0']_2(1;?]' + m?k) (4.3)
where 0.5 = 02, if j = k, and zero otherwise.

A set of simulated data for N = 7 units and n = 5 observations per unit
is plotted in Figure 4.1, where the profile of each unit has a similar shape
but with some noticeable within-unit and intra-unit variation. There is also

a nonlinear dependence of the response on some parameters of interest.

80
I

60

Measurements

20
!

Figure 4.1: A set of simulated quadratic model data withn=5 N =7

The model is simulated based on the normality assumptions of random
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effects. It is simulated in two different scenarios with (1) two independent

random effects; (2) two dependent random effects.
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4.2.1 Model 1: Two Independent Random Effects

A quadratic model with two independent random effects is considered. The

data are generated using the following parameter configuration:

9 0'31:6 0'512:0
91 = —20, 92=10, O'E:—l, 252—'

2
0'52]_:0 0'52:3

z; = 1,...,’]’L

Based on equations (4.2) and (4.3), the first two conditional moments of y;;

given z; are respectively

pii(9) = 61+ 9233?]-
_ 2 2 2 2,2,2
vigk(¥) = (01 + 0223;) (01 + Oazy) + 05 + 05 Tixh, + Ouji
where o5, = 02, if j = k, and zero otherwise.

Simulation results are reported in Table 4.1, 4.2 and 4.3.



Table 4.1: Quadratic model with 2 independent random effects, n = 5

n=5 N=7 N=15 N=30 N=50 N=100 N =200
6 =—-20
SLSE  -20.0659 -20.0354 -19.9738 -20.0374 -19.9965 -20.0108
(0.0410) (0.0328) (0.0244) (0.0188) (0.0151) (0.0117)
6, =10
SLSE  10.0297 10.0110 9.9995  9.9856  10.0001  9.9955
(0.0300) (0.0196) (0.0146) (0.0109) (0.0087) (0.0057)
0 =6
SLSE  6.03562  6.0650  5.9555  6.1145 5.9971 5.8652
(0.0517) (0.0524) (0.0522) (0.0499) (0.0517) (0.0507)
0%, =3
SLSE  3.0615  2.9408  3.0794  3.0538 3.0372 3.0019
(0.0521) (0.0516) (0.0495) (0.0503) (0.0512) (0.0507)
oZ=1
SLSE  1.0018  0.9803 1.0325 1.0273 1.0005 0.9990
(0.0254) (0.0260) (0.0263) (0.0259) (0.0259) (0.0254)
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Table 4.2: Quadratic model with 2 independent random effects, n = 10

n=10 N=7 N=15 N=30 N=50 N=100 N =200

6, =—-20
SLSE  -20.0598 -19.9910 -20.0079 -20.0181 -20.0270 -19.9656
(0.0428) (0.0313) (0.0251) (0.0210) (0.0277) (0.0264)
fy = 10
SLSE ~ 9.9449  9.9895  9.9909 10.0029 10.0018  9.9994
(0.0291) (0.0193) (0.0139) (0.0114) (0.0079) (0.0061)
0% =6
SLSE  5.9678  5.9403  6.0003  5.9877 5.9712 5.9985

(0.0522) (0.0518) (0.0503) (0.0502) (0.0511) (0.0507)

SLSE 29328  3.0322  3.0429  2.9338 3.0184 2.9843
(0.0511) (0.0521) (0.0531) (0.0512) (0.0512) (0.0515)
o2=1
SLSE  1.0428  1.0306 1.0325  1.0015 1.0321 0.9970

(0.0251) (0.0255) (0.0254) (0.0255) (0.0251) (0.0255)
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Table 4.3: Quadratic model with 2 independent random effects, n = 15

n=15 N=7 N=15 N=30 N=50 N=100 N =200

6, = —20
SLSE  -20.0603 -20.0185 -20.0272 -19.9989 -19.9933 -20.0051
(0.0444) (0.0398) (0.0389) (0.0359) ( 0.0353) (0.0340)
6, = 10
SLSE  9.9725 10.0009 9.9925  9.9750  10.0041  9.9808

(0.0297) (0.0202) (0.0141) (0.0112) (0.0080) (0.0065)

SLSE  5.9358  5.9823 591853 6.0329 6.0815 6.0027

(0.0511) (0.0523) (0.0505) (0.0535) (0.0520) (0.0511)

SLSE 2.9979 2.9522 2.9791 3.0853 3.0226 2.9991

(0.0521) (0.0516) (0.0512) (0.0518) (0.0531) (0.0512)

SLSE 1.0521 0.9767  0.9393  0.9868 0.9899 1.0035

(0.0264) (0.0258) (0.0269) (0.0258) (0.0261) (0.0256)
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4.2.2 Model 2: Two Dependent Random Effects

A quadratic model with two dependent random effects is simulated. The

data are generated using the following parameter configuration:

9 0'31 =6 gs12 = 0.8
91 - —20, 02=10, Je:]“ Z(j:

0§21 — 0.8 0'32 =3

z; = 1,...,n

Based on equations (4.2) and (4.3), the first two conditional moments

of y;; given z; are respectively

pij(¥) = 01+ bz,
vige(¥) = (61 + 9233?]')(91 + 623) + 05 + U?zl'?jm?k +

2 /.2 2
o12(7i; + T31) + ok

where oy, = 02, if j = k, and zero otherwise.

Table 4.4, 4.5 and 4.6 display the simulation results.



Table 4.4: Quadratic model with 2 dependent random effects, n = 5

n=5%5 N=7 N=15 N=30 N=50 N=100 N =200
6, = —20
SLSE  -19.9952 -19.9965 -20.0051 -20.0067 -20.0365 -20.0124
(0.0442) (0.0314) (0.0230) (0.0213) (0.0198) (0.0176)
0y =10
SLSE 10.0208 10.0125 9.9792  9.9815 9.9869  10.0034
(0.0305) (0.0203) (0.0138) (0.0110) (0.0082) (0.0060)
o4 =6
SLSE  5.9866  6.0685 6.1445 5.9367 6.0171 6.0661
(0.0524) (0.0508) (0.0525) (0.0526) (0.0508) (0.0510)
02, =3
SLSE  3.0677  2.9201 3.0660  2.9671 3.1011 2.9772
(0.0509) (0.0516) (0.0513) (0.0512) (0.0516) (0.0506)
o120 = 0.8
SLSE  0.8076  0.7901 0.8011 0.8050 0.8035 0.7989
(0.0051) (0.0053) (0.0051) (0.0052) (0.0051) (0.0051)
o?=1
SLSE  1.0171 1.0178  0.9931 0.9647 1.0181 0.9748
(0.0265) (0.0258) (0.0262) (0.0254) (0.0251)  (0.251)
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Table 4.5: Quadratic model with 2 dependent random effects, n = 10

n=10 N=7 N=15 N=30 N=50 N=100 N =200
6, = —20
SLSE  -19.9889 -20.0147 -20.0672 -20.0234 19.9976  20.0031
(0.0435) (0.0308) (0.0233) (0.0199) (0.0190) ( 0.0173)
6, = 10
SLSE  10.0295 9.9720  9.9841 9.9831 9.9958  10.0001
(0.0293) (0.0203) (0.0145) (0.0114) (0.0078) (0.0056)
0%, =6
SLSE  5.9403 59665  6.0190 5.9931 5.9703 6.0151
(0.0518) (0.0511) (0.0512) (0.0508) (0.0513) (0.0512)
02, =3
SLSE  2.9100  3.0195 29772  3.0690 2.9681 3.0343
(0.0512) (0.0510) (0.0519) (0.0521) (0.0511) (0.0512)
o9 = 0.8
SLSE  0.7962  0.7960  0.8007  0.8000 0.7969 0.8005
(0.0052) (0.0052) (0.0052) (0.0052) (0.0051) (0.0052)
ol=1
SLSE 1.0013 1.0368  0.9646  0.9778 0.9959 1.0081
(0.0257) (0.0265) (0.0255) (0.0251) (0.0253) (0.0255)




Table 4.6: Quadratic model with 2 dependent random effects, n = 15
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n=15 N=7 N=15 N=30 N=50 N=100 N =200

61 = —20
SLSE  -20.0580 -20.0033 -19.9958 20.0014 19.9921  20.0071
(0.0435) (0.0343) (0.0271) (0.0208) (0.0197) (0.0181)
6, =10
SLSE  10.0263  9.9741 9.9973  9.9854  10.0100 10.0102
(0.0283) (0.0191) (0.0140) (0.0116) (0.0073) (0.0056)
Ugl =6
SLSE 5.9820 5.9673 5.9651 5.9595 5.9904 5.9926
(0.0512) (0.0507) (0.0504) (0.0512) (0.0506) (0.0506)
0%,=3
SLSE 3.0691 2.9876 2.9963  3.0532 2.9789 2.9813
(0.0515) (0.0512) (0.0508) (0.0511) (0.0515) (0.0511)
o1p = 0.8
SLSE  0.8076  0.8043 0.8036  0.7991 0.8034 0.7939
(0.0051) (0.0052) (0.0052) (0.0052) (0.0052) (0.0052)
o2 =1
SLSE  0.9915 1.0668 0.9870 1.0051 0.9893 0.9921

(0.0257) (0.0251) (0.0257) (0.253)  (0.255)  (0.0250)
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4.2.3 Summary of Simulation Results

Based on the simulation studies for these two quadratic models, the results

can be summarized as:

(1). For finite sample sizes, the SLSE performs reasonably well for the

quadratic models with two random effects.

(2). No apparent finite sample biases are noticed from the Monte Carlo mean

estimates.

(3). For fixed effects, there is a clear pattern of decreasing SSE as the in-

crease of sample sizes.

(4). The SSEs of random effects are fairly stable with the increase of sample

sizes.

(5). The relative variabilities of the estimates of fixed effects are smaller

than those of the random effects.
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4.3 Exponential Models

An exponential model is considered here for the simulation. The model can

be written as

Vij = &uexp(&aitiy) + € (4.4)
€ = 01 +0u, &u=0+0y
6 ~ N(0,%), €5~ N(0,02)
i = 1,...,N, 7=1,...,n
where 6, and 6, are fixed effects; d1; and dy; are random effects; the variance-

covariance matrix of the random effects is given as

2
051 0612

s =
2
0821 Og9

The first two conditional moments are given in Wang (2005)
pi(¥) = (61 + 0s1azis) exp(bazi; + 23;05,/2) (4.5)
vie($) = [0 + (1 + os12(@i; + zir)?] X
exp((zij + Tix)02 + (Tij + Tir) 200/ 2] + Oijk (4.6)
where oy, = 02, if j = k, and zero otherwise.
A set of simulated data for N = 7 units and n = 5 observations per
unit is plotted in Figure 4.2. As we can see that all units have a similar

shape curve but with noticeable within-group and intra-group variation. The

response depends on parameters of interest nonlinearly.
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Figure 4.2: A set of simulated exponential model data withn =5, N =7

The model is simulated based on the normality assumption of random
effects. It is generated in three different cases with (1) one random effect;

(2) two independent random effects; (3) two dependent random effects.
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4.3.1 Model 3: One Random Effect

An exponential model with one random effect is used to generate the data.

Based on equation (4.4), the model is given by

yij = vexp(&izy) + €
& = 01+
where 7 is the regression coefficient.

Based on equations (4.5) and (4.6), the first two conditional moments

of y;; in an exponential model with one random effect can be obtained as
pii(Y) = vexp(fizy + :v?jo:?/Z)
Vijk(w) = ’)’2633p(91($ij -+ l‘ik) -+ (:cij —+ xik)2a§/2) + Oijk

where 05, = o2, if j = k, and zero otherwise.

The data have been generated using the following parameter config-

uration:

9 0’(%1 =0.5 Js512 =— 0
v = 10, §=—-05, o2=1, T5=

z; = 01,...,0.1n

The simulation results for the fixed and random effects are summarized

in Table 4.7, 4.8 and 4.9.



Table 4.7: Exponential model with one random effect, n = 5
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n=5 N=7 N=15 N=30 N=50 N=100 N =200
v =10
SLSE  10.0743 10.0334 10.0299 10.0176 10.0128  9.9909
(0.0440) (0.0298) (0.0224) (0.0179) (0.0131) (0.0098)
6, =-5
SLSE -5.0534 -5.0196 -5.0142 -5.0009 -5.0086  -4.9910
(0.0263) (0.0195) (0.0136) (0.0113) (0.0087) (0.0063)
023, =05
SLSE  0.4875  0.4987  0.4977  0.5085  0.5078 0.5092
(0.0053) (0.0053) (0.0052) (0.0052) (0.0052) (0.0053)
02=1
SLSE  0.9863  0.9946  0.9857  1.0035  0.9968 0.9965
(0.0053) (0.0049) (0.0051) (0.0051) (0.0050) (0.0048)




Table 4.8: Exponential model with one random effect, n = 10

n=10 N=7 N=15 N=30 N=50 N=100 N =200
v=10
SLSE  10.1139 10.0813 10.0419 10.0275 9.9869  10.0034
(0.0397) (0.0305) (0.0216) (0.0164) (0.0115) (0.0092)
6y =—5
SLSE ~ -5.0718 -5.0587 -5.0170 -5.0113 -4.9964  -5.004
(0.0256) (0.0188) (0.0129) (0.0098) (0.0073) (0.0057)
0% = 0.5
SLSE  0.4913 04988 0.4999 0.4996  0.4935  0.5006
(0.0054) (0.0054) (0.0052) (0.0052) (0.0052) (0.0051)
o2=1
SLSE  0.9846  0.9957  0.9998  1.0044  0.9861 1.0020
(0.0050) (0.0049) (0.0047) (0.0046) (0.0048) (0.0048)




Table 4.9: Exponential model with one random effect, n = 15

98

n=15 N=7 N=15 N=30 N=50 N=100 N =200
v =10
SLSE  10.0375 9.9938  10.022 10.0072 10.0119  9.9989
(0.0427) (0.0297) (0.0202) (0.0166) (0.0118) (0.0083)
6, =-5
SLSE  -5.0346  -5.0247 -5.0274 -5.0138 -5.0053  -4.9985
(0.0263) (0.0183) (0.0129) (0.0100) (0.0076) (0.0051)
0% =05
SLSE  0.4980 0.4941  0.4989  0.5010  0.5004 0.5006
(0.0055) (0.0054) (0.0053) (0.0052) (0.0051) (0.0052)
o2=1
SLSE  0.9893  0.9996  0.9949  1.0021 0.9962 1.0008
(0.0047) (0.0047) (0.0045) (0.0044) (0.0045) (0.0044)
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4.3.2 Model 4: Two Independent Random Effects

An exponential model with two independent random effects is considered.

Based on equation (4.4), the model can be written as

Yi; = Enexp(€uTi) + €5

€

01+ 01, o =02+ 0y

The first two conditional moments of y;; in an exponential model with
two independent random effects can be obtained based on equations (4.5) and

(4.6)

pii(¥) = 01exp(0ami; + 2503,/2)
vig(®) = (031 + 62) exp(82(is + za) + (245 + Tar) 055/2) + 0ugi
where 05, = 02, if j = k, and zero otherwise.

The data are simulated using the following parameter configuration:

9 0‘?1:1 0512=0
91 = 10, 922——5, 0'521, 25:

gso1 = 0 O'§2 =0.5
z; = 1,...,n
where o5, = o2, if j = k, and zero otherwise.

The simulation results for the fixed and random effects are summarized

in Table 4.10, 4.11 and 4.12.
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Table 4.10: Exponential model with two independent random effects, n = 5

n=5 N=7 N=15 N=30 N=50 N=100 N =200
6, =10
SLSE  10.0075 10.0139 10.0415 9.9657  10.0311  10.0180
(0.0431) (0.0340) (0.0233) (0.0192) (0.0103) (0.0103)
By = =5
SLSE  -5.0251  -5.0156  -5.0146 -4.9956 -5.0236 -5.0121
(0.0262) (0.0203) (0.0140) (0.0112) (0.0086) (0.0060)
o3 =1
SLSE  0.9961 1.0065 0.9916  0.9972  0.9958 1.0023
(0.0052) (0.0052) (0.0051) (0.0053) (0.0051) (0.0051)
02, =05
SLSE  0.4938 0.4982 0.4982  0.4938  0.5058 0.5041
(0.0051) ( 0.0053) (0.0051) (0.0052) (0.0051) (0.0050)
o2=1
SLSE  0.9947 0.9963 0.9971  1.0013 1.0031 1.0006
(0.0050) (0.0049) (0.0049) (0.0051) (0.0049) (0.0049)
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Table 4.11: Exponential model with two independent random effects, n = 10
n=10 N=7 N=15 N=30 N=50 N=100 N =200
6, =10
SLSE  10.0440 10.0189  10.0469  9.9975 9.9989  10.0157

(0.0451) (0.0303) (0.0234) (0.0189) (0.0135) (0.0100)

0y = =5
SLSE  -5.0440 -5.0238 -5.0331 -4.9999 -5.0011 -5.0173
(0.0265) (0.0179) (0.0137) (0.0108) (0.0078) (0.0062)

o =1
SLSE  0.9965 1.0068 0.9974  1.0032 0.9974 1.0037
(0.0050) (0.0051) (0.0052) (0.0052) (0.0050) (0.005)

02, =05
SLSE  0.4926 0.4912 0.4996  0.4988 0.5008 0.5044
(0.0055) ( 0.0053) (0.0050) (0.0052) (0.0053) (0.0053)

o2=1
SLSE  0.9979 0.9924 0.9938 1.0009 0.9968 1.0010
(0.0050) (0.0050) (0.0048) (0.0050) (0.0046) (0.0047)
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Table 4.12: Exponential model with two independent random effects, n = 15
n=15 N=7 N=15 N=30 N=50 N=100 N =200
6, =10
SLSE  10.0704 10.1019 10.0108 9.9966  10.0305  9.9980

(0.0451) (0.0319) (0.0221) (0.0182) (0.0133) (0.0086)

0y = =5
SLSE  -5.0700  -5.0444  -5.0151 -5.0048 -5.0117  -5.0038
(0.0251) (0.0181) (0.0125) (0.0104) (0.0077) (0.0058)

0% =1
SLSE  0.9974 0.9928 1.0081  0.9972 0.9894 1.0012
(0.0050) (0.0053) (0.0053) (0.0051) (0.0051) (0.0051)

050 = 0.5
SLSE  0.4905 0.5038 0.4990  0.5047  0.5036 0.4983
(0.0055) ( 0.0055) (0.0054) (0.0053) (0.0052) (0.0052)

o2=1

SLSE  0.9949 0.9974 1.0061  0.9948 1.0017 1.0008

(0.0050)  (0.0048) (0.0045) (0.0048) (0.0046) (0.0045)
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4.3.3 Model 5: Two Dependent Random Effects

An exponential model with two dependent random effects is used for simu-

lation. The model is given by

vij = &uexp(&auty) + €

€14 O+ 615, & =02+ 02

[l

Based on equations (4.5) and (4.6), the first two conditional moments
of y;; in an exponential model with two dependent random effects can be

obtained as

pis(9) = (614 o12) exp(bazi; + z305,/2)
vir() = (031 + (61 + o12(zi; + l“uc))2) exp(f2(zi; + zu) +

(zij + Tit)?033/2) + oiji
The data are simulated using the following parameter configuration:

9 0'%1 =1 gs512 = 0.4
60 = 10, 6 =-5, o, =1, X5 =

J521 = 0.4 0'322 =0.5

5 = 1,...,7’L

The simulation results for the fixed and random effects are summarized

in Table 4.13, 4.14 and 4.15.
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Table 4.13: Exponential model with two dependent random effects, n =5

n=5 N=7 N=15 N=30 N=50 N=100 N =200
6, =10
SLSE  10.1127  10.0486 10.0474  9.9697  10.0273  10.0030
(0.0460) (0.0329) (0.0244) (0.0191) (0.0142) (0.0104)
0y = -5
SLSE ~ -5.1088  -5.0406  -5.0238 -4.9930  -5.0151  -4.9999
(0.0280) (0.0197) (0.0139) (0.0112) (0.0084) (0.0063)
o2 =1
SLSE  1.0030 0.9920 1.0084 0.9990 1.0057 0.9962
(0.0052) (0.0052) (0.0052) (0.0053) (0.0050) (0.0051)
02, =05
SLSE  0.4935 0.5011 0.5002 0.4937 0.5014 0.4906
(0.0054) ( 0.0053) (0.0052) ( 0.0051) (0.0050) (0.0052)
02,=04
SLSE  0.3966 0.4009 0.4088 0.4049 0.4017 0.3937
( 0.0051) (0.0050) (0.0051) (0.0051) (0.0050) (0.0052)
o2=1
SLSE  0.9935 0.9976 0.9973 0.9996 0.9922 1.0011
(0.0051) (0.0051) (0.0050) (0.0048) (0.0049) (0.0050)
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Table 4.14: Exponential model with two dependent random effects, n = 10

n=10 N=7 N=15 N=30 N=50 N=100 N =200
6; =10
SLSE  10.0658  10.0656  9.9940  10.0369 10.0009  10.0117
(0.0427) (0.0298) (0.0231) (0.0186) (0.0131) (0.0100)
0y = —5
SLSE  -5.0559  -5.0719 -5.016 -5.0253  -5.0002  -5.0023
(0.0251) (0.0180) (0.0131) (0.0104) (0.0081) (0.0060)
agl =1
SLSE 1.0073 0.9974 1.0032 0.9909 1.0071 0.9942
(0.0049) (0.0053) (0.0051) (0.0052) (0.0053) (0.0052)
02, =05
SLSE 0.4837 0.4979 0.4978 0.4977 0.4981 0.4977
(0.0054) (0.0053) (0.0052) (0.0051) (0.0050) (0.0053)
02, =104
SLSE 0.4057 0.3991 0.4014 0.3997 0.3919 0.4007
( 0.0051) (0.0052) (0.0050) (0.0052) (0.0050) (0.0050)
o2=1
SLSE 0.9935 0.9976 1.0073 1.0040 1.0007 1.0002
(0.0051) (0.0051) (0.0048) (0.0048) (0.0048) (0.0047)
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Table 4.15: Exponential model with two dependent random effects, n = 15

n=15 N=7 N=15 N=30 N=50 N=100 N =200
6, =10
SLSE  10.0851  10.0287  9.9951  10.0255 10.0111  9.9989
(0.0435) (0.0312) (0.0232) (0.0184) (0.0128) (0.0089)
0y = =5
SLSE  -5.0742  -5.0236  -5.0346  -5.0037  -5.0026  -5.0009
(0.0246)  (0.0184) (0.0135) (0.0104) (0.0078) (0.0058)
o2 =1
SLSE 1.0009 0.9992 1.0097 0.9985 1.0047 0.9988
(0.0053)  (0.0052) (0.0052) (0.0050) (0.0052) (0.0050)
02, =05
SLSE 0.4897 0.5056 0.4992 0.5037 0.5038 0.4997
(0.0054) ( 0.0054) (0.0053) (0.0055) (0.0051) (0.0053)
02,=04
SLSE 0.4102 0.3991 0.4014 0.3974 0.4030 0.4002
(0.0051) (0.0052) (0.0050) (0.0052) (0.0053) (0.0050)
o?2=1
SLSE 0.9977 1.0037 1.0064 0.9942 0.9983 1.0015
(0.0051) (0.0047) (0.0046) (0.0045) (0.0044) (0.0044)
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4.3.4 Summary of Simulation Results

Based on the simulation studies for these three exponential models, we have

similar findings:

(1). For finite sample sizes, the SLSE performs reasonably well for the

quadratic models with two random effects.

(2). No apparent finite sample biases are noticed from the Monte Carlo mean

estimates.

(8). For fixed effects, there is a clear pattern of decreasing SSE as the in-

crease of sample sizes.

(4). The SSEs of random effects are fairly stable with the increase of sample

sizes.

(5). The relative variabilities of the estimates of fixed effects are smaller

than those of the random effects.
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4.4 Logistic Models

Logistic models are studied in this section. A general logistic model can be

written as

P ST )
Yij 1+ exp(—(zs5 — &21)/7) e (47)

§1i = 01401, & =0+ 0y

5i ~ N(O,ZJ), Ei]'NN(O’O-?)

i = 1,...,N, j=1,...,n

where v is the regression coefficient; 8; and 6, are fixed effects; d;; and dy;
are random effects; the variance-covariance matrix of the random effects is
given as

2
051 0612
25 =

521 032
A set of simulated data for N = 15 units and n = 10 observations per
unit is plotted in Figure 4.3. As we can see that all units have a similar shape
curve but with noticeable within-group and intra-group variation. We can

also observed that the response depend on parameters of interest nonlinearly.

The model is simulated based on the normality assumption of random
effects. It is simulated in two different scenarios with (1) one random effect;

(2) two independent random effects.
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Figure 4.3: A set of simulated logistic model data with n = 10, N = 15
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4.4.1 Model 6: One Random Effect

A logistic model with one random effect given in Wang (2005) is used to

generate data. The model is given by

. 6 o
! 1+exp(—(z5 —m)/v)

& = 01+

The calculation of the first two conditional moments of y;; given z;

is straightforward and given in Wang (2005) as

61
#i5(¥) 14 exp(—(zi; — 11)/72) (48)
vise () 6% + o? +ou
ok (1 + exp(—(@i; — 11)/72)) (1 + exp(— (@ — M)/ 72)) ~ °
(4.9)

where 0y = o2, if j = k, and zero otherwise.

The data are simulated using the following parameter configuration:

U§1=9 os12 =0
91 = 207 71:707 ’)/22347 25:

2
0'521—_—0 0'52——-0

z; = 20, 40, ..., 20n

The simulation results for the fixed and random effects are summarized

in Table 4.16, 4.17 and 4.18.



Table 4.16: Logistic model with one random effect, n =5
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n=5 N=7 N=15 N=30 N=50 N=100 N =200
6, =20
SLSE  19.8818 19.9647 20.0466 20.0041 20.0372  19.9853
(0.0510) (0.0399) (0.0317) (0.0270) (0.0212) (0.0181)
m =710
SLSE  69.9058 69.9359 70.2055 69.9968 70.0738  69.9569
(0.0720) (0.0715) (0.0698) (0.0672) (0.0570) (0.0540)
Y2 = 34
SLSE  34.0462 34.0434 34.0556 33.9966 34.0279  33.9866
(0.0592) (0.0511) (0.0432) (0.0404) (0.0338) (0.0289)
02=9
SLSE  9.0167 89831 89477 89891  9.0272 9.0286
(0.0542) (0.0517) (0.0537) (0.0506) (0.0508) ( 0.0517)
o?=1
SLSE  1.0140 0.9602  1.0091 0.9772  0.9766 0.9786
(0.0215) (0.0198) (0.0180) (0.0171) (0.0229) (0.0216)




Table 4.17: Logistic model with one random effect, n = 10
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n=10 N=7 N=15 N=30 N=50 N=100 N =200
6, =20
SLSE  19.8781 19.9772 20.0318 19.9662 19.9898  20.0007
(0.0493) (0.0352) (0.0258) (0.0196) (0.0145) (0.0103)
B =170
SLSE  69.9632 70.0966 70.0203 69.9680 70.0151  69.9839
(0.0614) (0.0508) (0.0398) (0.0334) (0.0306)  (0.0216)
Ba = 34
SLSE  33.9186 34.0490 34.0303 33.9557 33.9968 34.0125
(0.0599) (0.0493) (0.0395) (0.0315) (0.0278) (0.0219)
02=9
SLSE  8.9293  9.0004 89625  8.9999  9.0556 9.0223
(0.0508) (0.0519) (0.0528) (0.0531) (0.0516) (0.0525)
o?2=1
SLSE 0.9529 0.9961 1.0016 1.0196 1.0166 1.0401
(0.0236) (0.0234) (0.0249) (0.0236) (0.0252)  (0.0250)




Table 4.18: Logistic model with one random effect, n = 15
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n=15 N=7 N=15 N=30 N=50 N=100 N =200
6, =20
SLSE  20.0157 20.0452 19.9844 19.9844 20.0116  19.9842
(0.0475) (0.0355) (0.0249) (0.0191) (0.0138) (0.0096)
Br =170
SLSE ~ 70.0038 70.0106 69.9938 70.0546 69.9948  70.0084
(0.0538) (0.0427) (0.0324) (0.0294) (0.0232) (0.0164)
B2 =34
SLSE  34.0299 33.9601 33.9862 33.9768 34.0503  34.0094
(0.0556) (0.0426) (0.0320) (0.0283) (0.0238) (0.0151)
o?=9
SLSE  8.9889  9.0158  9.0072  9.0178  9.0281 9.0762
(0.0544) (0.0506) (0.0523) (0.0504) (0.0518) (0.0525)
o2=1
SLSE  0.9835  1.0202 0.9934 0.9814  0.9687  0.9952
(0.0247) (0.0240) (0.0244) (0.0253) (0.0253) (0.0245)
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4.4.2 Model 7: Two Independent Random Effects

A logistic model with two random effects is used to generate data. The same
model is also used by Pinherio and Bates (1995) for comparing different
approximation maximum likelihood approaches. The model is given by

B & )
LI e ey (4.10)

Or + 615, & =02+ 0y

Il

&

where v is the regression coefficient; 8; and 6, are fixed effects; d;; and Jy;

are random effects; the variance-covariance matrix of the random effects is

given as

2
051 0512
Y5 =

2
0§21 Og9

For this model, the first two conditional moments are difficult to derive;
therefore, we use the simulation-based estimation (SBE) method to approx-

imate the first two conditional moments.

The first two conditional moments are derived as
1 515 < u
192 i1s
i) = = X
Han () S 051052 ; 1+ exp(—(@ij — iys)/7)

exp ( (uiys — 61)° izzﬁ (Usys — 02)° T Uis)

2% 252 203, 252
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S

1 8152 2 Uiy s

g2(¥) = < - X
M]2( ) 5'0'510'52 S:ZS;_l 14+ exp(—(acij - ’LL22S)/’)’)

exp _(uiw - 61)2 u?ls _ (uizs - 62)2 + %

203, 252 202, 252
S 2
1 5,8 Uss
Vige1 (%) = =2 Z - X

S 051052 2 [L+ oxp(= (@5 — o) [)][L + exp(— (@it — izs) /7)]

exp [ — (ui1s - 01)2 + u’zzls _ (uigs - ‘92)2 + %
20}, 252 20%, 252

(1,[)) 1 3152 i 'LL?IS %
Viik = ——"
e Sonosy S5 [L+exp(—(ij — wips) [V][1 + exp(—(Tak — Usys)/7)]

eXp _(uils - 01)2 + uzzls _ (U‘izs - 02)2 + ui;
252

20% 252 20%,

The data are simulated using the following parameter configuration:

0'31 = 100 gs512 = 0
61 = 200, 6,="700, v=350, ¥5=

Jg21 = 0 0';2 = 625

z; = 20, 40, ..., 20n

usys ~ N(200,9%), wuss ~ N(700,9%), S =500

Because of the implementation of high dimensional matrix in the pro-
gramming, this program runs relatively slow. Therefore, only two sample size

configurations n = 5 N = 7, and n = 10 N = 30 are considered. R = 500
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runs are carried out. With the increased RAM of computer, the running

time of the program will be significantly reduced.

Table 4.19: Logistic model with two independent random effects n = 5,
N =7 and runs R = 500

;=200 6,=700 B=350 o} =100 o2 =625 o2=25

SBE 199.3850 699.3057 349.8222 104.8866 634.3594  25.3303

(0.5984) (0.56201) (0.5896)  (0.0088)  (0.0533)  (0.2605)

Table 4.20: Logistic model with two independent random effects n = 10,
N = 30 and runs R = 500

=200 0,=700 B=350 o% =100 0% =625 o2=25

SBE 199.1341 701.0309 350.3208 104.8797 634.3097 25.3549

(0.5775)  (0.5933) (0.6065)  (0.0106)  (0.0517)  (0.2959)

The simulation-based estimators should be generally less efficient than
the second-order least squares estimators. As it is proved by Wang (2005),
the efficiency loss caused by simulation decreases at rate O(1/S). Therefore,

with the increase of S, it will become more efficient.
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4.4.3 Summary of Simulation Results

Here is a summary of the simulation results.

(1). For the finite sample sizes, both SLSE and SBE perform reasonably

well for the logistic models.

(2). No apparent finite sample biases are noticed from the Monte Carlo mean

estimates.

(3). For fixed effects, there is a clear pattern of decreasing SSE as the in-

crease of sample sizes in Model 6.

(4). The SSEs of random effects are fairly stable with the increase of sample

sizes in Model 6.
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4.5 Conclusions

Through these simulation studies, we have demonstrated how the numeri-
cal computation can be done for the second-order least squares estimation
method. Based on the simulation results for these seven different models, we
can conclude that for finite sample sizes, the second-order least squares esti-
mation approach performs reasonably well. All Monte Carlo mean estimates
are close to the true parameter values. No apparent biases are noticed from
the estimates. The simulation standard errors of fixed effects are decreasing
with the increase of sample sizes. For example in Table 4.17, when n = 10
and N = 7,15, 30,50, 100, 200, the estimates of fixed effects 8; are 19.8781,
19.9772, 20.0318, 19.9662, 19.9898, and 20.0007, and are all very closed to the
true value ¢y = 20; with the increase of N, the simulation standard error is
decreasing from (0.0493), (0.0352), (0.0258), (0.0196), (0.0145), to (0.0103).

Thus, the estimates are becoming more precise.

The simulation standard errors of random effects are fairly stable with
the increase of sample sizes. For example in Table 4.8, the simulation stan-
dard errors of the estimates for the random effect are (0.0055), (0.0054),
(0.0053), (0.0052), (0.0051), and (0.0052). We also notice that the relative
variabilities of the fixed effects estimates are smaller than those of the ran-
dom effects. These are not surprising because the estimates of random effects
are usually more difficult to estimate and known to have fairly large standard

deviations, especially when the sample sizes are relatively small.



Chapter 5

Non-normal Random effects

As introduced in chapter 1 and 2, the likelihood approach relies on the nor-
mality assumption of random effects. However, this assumption may not be
realistic. Because the random effects are not observed, it may be difficult to
verify this normality assumption (Mallet 1986; Davidian and Gallant 1992,
1993; Fattinger et al. 1995; Hartford and Davidian 1999). It is thus nat-
ural to be concerned whether these methods yield reliable results when the
normality assumption is not appropriate. The consequences of misspecifying
the distributions of random effects have been discussed for linear mixed ef-
fects models (Butler and Louis 1992; Verbeke and Lesaffre 1997 ; Tao et. al.
1999) and for nonlinear mixed effects models (Hartford and Davidian 1999).
However, Wang’s (2005) second-order least squares approach does not rely
on the normal assumptions of the random effects. It can produce reliable
estimates under non-normal random effects. Moreover, it is computational

feasible.
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In order to verify how well the second-order least squares estimation
approach performs with non-normal random effects, three simulation studies
are conducted; thereby, we also demonstrate how the numerical computation
can be done generally. The second-order least squares estimates are compared

with the ones obtained from Lindstrom and Bates’ (1990) nlme().

5.1 Design of Simulation Studies

In the simulation studies, an exponential model with one random effect is
used. The random effect is generated from three non-normal distributions.
Due to the effects of small sample sizes on estimation results, three relative
large sample sizes are investigated at here, where the number of units, n = 10
and the number of observations per unit, N = 15,30,50. R = 500 Monte
Carlo replicates are carried out. The Monte Carlo mean estimates and the
corresponding simulation standard errors are reported. All computations are
conducted in R 2.1.0 on an IBM Workstation with a 2.2MHz CPU and 4GB

RAM with standard hardware configurations.

A direct random grid search method is applied for the minimization
involved in the second-order least squares estimation algorithm. A reasonably
large number of grid points m = 5000 per parameter are used by considering
computing time and computational cost. The nlme() library of functions in
R 2.1.0 implementing Lindstrom and Bates’ (1990) linearization algorithm

introduced in section 2.1 is used to generate likelihood estimation results.
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Detailed description of the nlme() library can be found in Pinheiro and
Bates (2000). For model fitting with nlme (), starting values are needed.
Because Lindstrom and Bates’ (1990) linearization algorithm has been well

validated, the starting values are chosen as the true parameter values.

The random effect § is generated from three different non-normal dis-

tributions.

(i). An asymmetric distribution for ¢ is attained by a mixture of two
normal distributions, where § ~ (1 — a)N(u, 0%) + aN(—pu,o?), with
mixing proportion o = 0.3 and specified value of p. The mean and

variance of ¢ are respectively

ps = (1=20)u=04p

o = o*+4a(l - a)u? = o? +0.84p°

A plot of the asymmetric distribution is shown in Figure 5.1

[X3

o5

02

0.1

00

Figure 5.1: Asymmetric random effect
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(ii). A bimodal distribution of § is obtained by a mixture of two normal
distributions, where § ~ (1 — a)N(y, 0?) + aN(—u,0?), with mixing
proportion o = 0.5 and specified value of u. The mean and variance of

6 are respectively

ps = (1—=20)p=0

02 = o +4da(l —a)u? =0+ 2

A plot of the bimodal distribution is shown in Figure 5.2

Figure 5.2: Bimodal random effect

5%
frd
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(iii). A highly skewed gamma distribution with specified values of oo = 1
and B = /0.5 is used to simulate the random effect, where § ~ G(a, §)

. The mean and variance of § are respectively
Hs = OZ,B, O-g = 05,82

A plot of the gamma distribution is shown in Figure 5.3

alphast,beta=sqri(0.5)

000 005 010 035 020 025 @30 035

Figure 5.3: Gamma random effect

5.2 Exponential Model

Based on equation (4.4), an exponential model with one random effect is

given by

yi; = vexp(&izij) + €

& = 01+6;
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5.2.1 Asymmetric Random Effect

In the first scenario, the random effect is generated from an asymmetric
distribution, where § ~ (1—a)N(u, 0?)+aN(—p,0?) and o = 0.3. The first

two conditional moments of y;; are easy to derive
pi() = yexp(6izi)[(1 — @) exp(ues; + £2,03/2) + o exp(—pmi; + 3,05 /2)]

vigg(®) = Yeap(01(zi; + za))[(1 — @) exp(u(zy + Ti) + (Ts; + Ta)?03/2) +

aexp(—p(zy + ) + (ziy + Iik)20§/2)] + Ok (5.1)

The data have been generated using the following parameter config-
uration:
v = 10, §=-05, 05=05 o°=1, u=06

T; = 01, . ,Oln

The Monte Carlo mean estimation results and the simulation standard

errors are reported in Table 5.1 and 5.2
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Table 5.1: Exponential model with one asymmetric random effect n = 10,
N =30

y=10 6=-5 0;=05 o2=1

SLSE  10.0102 -4.7618  0.4976  0.9956
(0.4748) (0.3797) (0.1161) (0.1072)
nlme() 9.7846 -4.7982 0.4720  0.9976

(0.5098) (0.3412) (0.2156) (0.0847)

Table 5.2: Exponential model with one asymmetric random effect n = 10,
N =50

SLSE  10.0261 -4.7754  0.4963  0.9969
(0.3796) (0.3221) (0.1154) (0.1062)
nlme() 9.8324 -4.8234 05075  0.9996

(0.3717) (0.2712) (0.1624) (0.0655)
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5.2.2 Bimodal Random Effect

In the second scenario, the random effect is generated from a bimodal distri-
bution, where § ~ (1 — a@)N(u, 0%) + aN(—p,0?) and o = 0.5. The first two

conditional moments of y;; are the same as equations in (5.1)
The data have been generated using the following parameter config-
uration:
v = 10, 6 =—-05, 0:=05, o2=1, pu=0

z; = 0.1,...,0.In

The Monte Carlo mean estimation results and the simulation standard

errors are reported in Table 5.3 and 5.4

Table 5.3: Exponential model with one bimodal random effect n = 10, N =
30

y=10 6=-5 ¢}=05 o2=1

SLSE  10.0399 -5.0210 0.5103  0.9968
(0.4793) (0.2831) (0.1188) (0.1110)
nlme() 9.8395 -4.8185 0.4521  0.9963

(0.4954) (0.3211) (0.2147) (0.0832)
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Table 5.4: Exponential model with one bimodal random effect n = 10, N =
50

y=10 6=-5 a§=0.5 af———l

SLSE  10.0548 -5.0219  0.5028  0.9983
(0.3804) (0.2299) (0.1195) (0.1073)
nlme() 9.8226 -4.8108 04477  1.0022

(0.3958) (0.2805) (0.1696) ( 0.0708)

5.2.3 Gamma Random Effect

In the third scenario, the random effect is generated from a gamma distribu-
tion, where 6 ~ G(a, ). The first two conditional moments of y;; are derived

based on the moment generating function of a gamma distribution.

pij(¥) = Ei(yexp(0+ 6)xzi;) = vexp(0zy)/(1 — Bryy)*
vige(¥) = E(vexp(0 + 8)zijvexp(f + 0)zir)

= Yexp(O(zi; + zir))/(1 — B(zij + Tax)*)

The data have been generated using the following parameter config-

uration:

vy = 10, §=-05, 02=05, o?=1, a=1, f=05Y2

z; = 0.1,...,0.1n

The Monte Carlo mean estimation results and the simulation standard
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errors are reported in Table 5.5 and 5.6

Table 5.5: Exponential model with one gamma random effect n = 10, N = 30

y=10 6=-5 02=05 o2=1

€

SLSE  10.0361 -5.0471 04984  1.0024
(0.5299) (0.4381) (0.1258) (0.1149)
nlme() 9.8478 -4.8395 0.6343  0.9984

(0.5437) (0.4311) (0.4086) (0.0839)

Table 5.6: Exponential model with one gamma random effect n = 10, N = 50

y=10 6=-5 02=05 o2=1

€

SLSE  9.9936  -5.0060 0.4940  1.0067
(0.5143) (0.4280) (0.1243) (0.1135)
nlme() 9.8463 -4.8289  0.6678  0.9894

(0.5389) (0.4721) (0.3544) (0.0068)
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5.2.4 Summary of Simulation Results

From Table 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6, some general simulation results are

summarized.

(i). The regression coefficient and fixed effect

(a) Both methods are doing almost equally well for the estimation of

the regression coefficient and fixed effect.

(b) For both methods, no apparent finite sample biases are noticed.
(ii). The random effect

(a) The SLS estimation method consistently generates estimates with-
out any significant bias. All the SSEs are relative smaller than

nlme().

(b) There are some noticeable biases in estimates from nlme () method,
except in the asymmetric case where n = 10 and N = 50. With
increased deviations from the normality assumption, the SSE is
increasing for the same sample size. For example, for n = 10 and
N = 50, the SSE is equal to 0.1624 in the asymmetric case which
is the smallest and the SSE is equal to 0.4086 in the gamma case

which is the largest.
(iii). Random error

(a) For both methods, no apparent finite sample biases are noticed.
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(b) The SSEs of the nlme() estimates are slightly smaller than the

corresponding ones of SLSE.

5.3 Conclusions

From the simulation studies, we show how the numerical computation can
be done for the second-order least squares estimators under the non-normal

random effects.

Numerical findings from our limited simulation studies suggest that
second-order least squares estimation algorithm gives consistent accurate es-
timates for both random and fixed effects when the random effect is not
normal. Thus, we demonstrate the second-order least squares estimation

algorithm does not rely on the normal assumptions of the random effects.

The nlme() method seems to give accurate and consistent estimates
for the regression coeflicient and fixed effect. Intuitively, this is not surpris-
ing because estimation of fixed effects is relatively robust to underlying as-
sumptions (Hartford and Davidian, 1999). For the estimation of the random
effect, the nlme () method seems to give increased bias with the increasing
deviations from normal distributions (from asymmetric to bimodal to gamma

distribution).



Chapter 6

Applications

In this section, the second-order least squares estimation approach will be
applied to some real problems which have been extensively studied in the

recent literature.

6.1 Orange Tree

In chapter 1, the growth model of orange tree is introduced. The data consist
of seven measurements of the trunk circumference on each of five orange trees,
taken over a period of 1600 days, originally presented by Draper and Smith
(1981, p.524), and then used by Lindstrom and Bates (1990) as an illustration

for estimation of nonlinear mixed effects models.

According to Lindstrom and Bates (1990), a logistic model is appropri-
ate to fit the data. To account for the tree to tree variation, Lindstrom and

Bates (1990) concluded in their analysis that only the asymptotic circumfer-

91
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ence needs a random effect. Therefore, the following nonlinear mixed effects

model was suggested

~ 61 + 6,
L+ exp(—(zi — 1)/72)

Yij T €y

where i = 1,---,5, j=1,---,7, & ~ N(0,0%), €; ~ N(0,02), and
z; = 118,484,664, 1004, 1231, 1372, 1582

The first two moments of this model are the same as equations in (4.8).
Because true parameter values for the model are unknown, the estimates
from second-order least squares method are compared with those from the
maximum likelihood and the restricted maximum likelihood methods pre-
sented in Pinheiro and Bates (1995). The nlme() library of functions is used

here to estimate the orange data.

From Table 6.1, we can see that the second-order least squares estimates
are close to the ones obtained by the other two methods. The estimates for
the random effect variance o? look quite different, which is not surprising

because its estimator is known to have a fairly large standard deviation.
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Table 6.1: Estimation of the orange tree growth model

Parameters 6 T Y2 o? o2

SLSE 729.92 350.13 192.50 1002.41 61.00
MLE 727.91 348.07 192.05 1001.25 61.50
LME 722.56 344.16 191.05 990.29 61.56

6.2 A Pharmacodynamic Model

This nonlinear population pharmacodynamic model

922‘-’%‘

Yij = b1 — + €5 (6.1)

Os; + x5
was used by Walker (1996), for comparing the MLEs obtained with EM algo-
rithm to approximate MLEs, and also used by Kuhn and Lavielle (2004) to
compare the stochastic version of approximate EM (SAEM) algorithm with
EM algorithm, first-order conditional estimation and Laplacian algorithms.
According to Sheiner et al. (1991) and Walker (1996), the common applica-
tion for this model is the analysis of blood pressure (y;;) as a function of the
dose (z;;) of an antihypertensive drug from a longitudinal study. 6;; repre-
sents a baseline response in the absence of treatment, 6o; is the maximum
effect of the drug, and 8s; represents the dose which gives 50 percent of the
maximum effect. The calculation of the first two moments for this pharma-
codynamic model is fairly straightforward because all the random effects are

independent. The first two conditional moments are given as
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921‘1"
iy = f§, — =
Hij (®) 1 B3+ z5;
V(@) = of— 016203 (xi; + Ti) + 201000557 O34Tk + o
“ 1 0% + 93(117@' + CL'ik) + Ti5Tik Ug + 93(.’L’ij -+ xik) + TijTik ik

Because this example was used by way of a simulation study based on
1=1,---,30and j=1,---,6, the parameters were pre-set as
Ori ~ia. N(105,64), 0 ~;54. N(12,36)
O3; ~i44. N(10,12.25), €55 ~i4.4. N(0,4)
and Tyl = 0,3)1'2 = 5,.’L’1‘3 = 10,.’131'4 = 20;371'5 = 40, Tig = 80

The second-order least squares estimates for the parameters are calcu-
lated based on R = 1000 replications and 10000 grid values. The correspond-
ing parameter estimations and simulation standard errors are given in table
6.2. We can see that all the estimates are very close to the real values and

with relative small simulation standard errors.

Table 6.2: Estimation of the pharmadynamic model

0,=105 6,=12 03=10 o02=64 o02=236 02=1225 o2=4

SLSE 104.1089 122108 10.3271 64.2630 35.8369  11.9032  4.0012
(0.0553)  (0.0056) (0.0189) (0.0725) (0.0731)  (0.0542)  (0.0360)




Chapter 7

Summary and Further Research

In statistical literature, the most popular estimation approach for nonlinear
mixed effects models is the likelihood method. However, it is usually diffi-
cult to obtain a closed-form expression for the likelihood function, especially
when the random effects are multi-dimensional. Moreover, most existing
approximate likelihood approaches rely on the normality assumption of ran-
dom effects. Wang (2005) proposed the second-order least squares estimation
method which produces consistent estimators and does not rely on any para-
metric assumptions for the distributions of random effects. The potential
computational issue of deriving the moment equations with multiple inte-

grals has been addressed using the method of simulated moments.

We have performed several simulation studies for the second-order least
squares estimation method proposed by Wang (2005), and applied it in two
real data sets. From both the simulation studies and the real applications,

we have demonstrated that how the second-order least squares estimators
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can be numerical calculated, and how it can be implemented in a statistical
computing language R. We have reported the results of our simulation stud-
ies undertaken to gain insight into the performance of the second-order least
squares estimators. Although it is not appropriate to draw general conclu-
sions from such limited simulation studies, the results suggest second-order
least squares estimation method performs reasonably well for finite sample

sizes when the random effects follow normal or even non-normal distributions.

Further research is required for the second-order least squares estima-
tion method to find a more efficient estimator by involving a nonnegative
definite weighting matrix in the objective function. It is natural to extend
the second-order least squares estimation approach to the case where ¢;; and
€;; are correlated. Moreover, the approach can be extended to the situation

where the individuals have unbalanced observations.



Chapter 8

Appendix

8.1 Programs for Quadratic Models

8.1.1 Model 1: Two Independent Random Effects

"q2mde" <-

function(R, n, N, n0)

{

print(Sys.time())

cat("Simulating Quadratic Model with 2 Independent Random Effects","\n",
"Number of iterations:" ,R, "\n",

"Number of obs/group :" ,n, "\n",

“"Number of groups:" ,N, "\n",

"Number of grid points:" ,n0, "\n\n")

results <- matrix(0, R, 5)

x <- c(1:n)

97
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xl <- x*x

for (i in 1:(n-1)){x1 <- c(x1,x[il*x[(i+1):n])}
# setting parameters#

fixed <- ¢(-20, 10)

rand <- 0.3%abs(fixed)

parameters <- c(fixed, rand, 1)

pa <- parameters

cov <- c(pal3], 0, 0,paldl)

#variance-covariance matrix#

Sigma <- matrix(cov,2,2)

for (j in 1:R)

{

#generate multivariate normal data#

ff <- mvrnorm{(n=N, rep(0, 2), Sigma)

bb <~ matrix(rep(ff, each=nl), n*N,2)

y <- (pali]l + bb[,1]) + (pa[2]+bb[,2})*:v2 + rnorm(n*N, O, sqrt(pal5]))
yy <- matrix(y, N, n, byrow=TRUE)

a <- matrix(c(runif(n0,-22,-18), runif(n0,8,12), runif(no,4,8),
runif (n0,1,5),runif(n0,0.5,1.5)), no, 5)

mll <- c(al,11)%*%t(rep(1,n1)) + c(al,2])%*%t(z?)
ml <- matrix(rep(mil,n2),n0, n*N)

Q1 <- apply ((y-t(m1))*(y-t(ml1)), 2, sum)

x2 <- mlil*mli
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for (i in 1:(n-1)) { %2 <- cbind(x2,m11[,il*mi1[, (i+1):n1])}
m2 <- c(al,3D)%*%t(c(rep(l, (n1+1)*n1/2))) + x2 + c(al,4])%*%t (21?)
m2[,1:n1] <- m2[,1:n1] + a[,5]

¥2 <= yy*yy

for (i in 1:(n-1)) {y2 <- cbind(y2, yy[,ilyyL[, (i+1):n]) }

y2 <= c(t(y2)

m2 <- matrix(rep(m2,n2), n0, N(n+1)n/2)

Q2 <- apply((y2-t(m2))*(y2-t(m2)), 2, sum)

Q3 <- Q1 + Q2

k <~ which(Q3==min(Q3))

results([j,] <- alk,]

}

mde <- apply(results,2,mean)

ssd <~ sqrt(apply(results,2,var)/N)

#format the output#

q.tabl<-data.frame(parameters,mde, ssd)

dimnames(q.tabl) <-list(c("Theatal","Theata2","Random.effectl",
"Random.effect2","Random.error"),

c("True Value","MDE","SSD"))

print(q.tabl)

Sys.time()

}
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8.1.2 Model 2: Two Dependent Random Effects

"g2rmde" <-

function(R, n, N, n0)

{

print(Sys.time())

cat("Simulating Quadratic Model with 2 Dependent Random Effects","\n",
"Number of iterations:" ,R, "\n",

"Number of obs/group :" ,n, "\n",

"Number of groups:" ,N, "\n",

"Number of grid points:" ,n0, "\n\n")

results <- matrix(0O,N,6)

x <= c(1:n1)

xl <- x*x

for (i in 1:(n1-1)){x1 <- c(x1,x[il*x[(i+1):n1]) }

x3 <- x*x+X*X

for (i in 1:(n1-1)){x3 <- c(x3,x[il*x[i]+x[(i+1):n1]*x[(i+1):n1])}
fixed <- c(-20, 10)

rand <- 0.3*abs(fixed)

parameters <~ c(fixed, rand, 1, 0.8)

pa <- parameters

cov <- c(pal3], pal6], pal6],pal4l)

Sigma <- matrix(cov,2,2) #variance-covariance matrix#

NS
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for (j in 1:N)

{

ff <- mvrnorm(n=n2, rep(0, 2), Sigma) #generate multivariate normal
data#

bb <- matrix(rep(ff, each=nl),nl*n2,2)

y <- (pal1]l+bb[,11) + (pal2]+bb[,2])*(x*x) + rnorm(nl*n2,0,sqrt(pal5]))
yy <- matrix(y,n2,nl,byrow=TRUE)

a <- matrix(c(runif(n0,-22,-18), runif(n0,8,12), runif(n0,4,8),
runif (n0,1,5) ,runif (n0,0,2) ,runif(n0,0.6,1.0)), nld, 6)

nll <- c(al,11)%*%t(rep(1,n1)) + c(al,2])%*%t (x*x)

ml <~ matrix(rep(mil,n2),n0,nl*n2)

Q1 <- apply((y-t(mi1) (y-t(ml), sum)

x2 <- mllxmil

for (i in 1:(n1-1)){ x2 <-cbind(x2,m11[,i]*m11[, (i+1):n1]) }

m2 <- c(al,3])%x%t(c(rep(l,(n1+1)*n1/2))) + x2 + c(al,4])%*ht(x1*x1)
+c(al,6])%*t (x3)

m2[,1:n1] <- m2[,1:n1] + al,5]

y2 <= yy*yy

for (i in 1:(n1-1)) { y2 <- cbind(y2,yy[,il*yy[, (i+1):n1]) }

y2 <- c(t(y2))

m2 <- matrix(rep(m2,n2),n0, n2*(nl+1)*nl/2)

Q2 <- apply((y2-t(m2)) (y2-t(m2)),2,sum)

Q3 <- Q1 + Q2
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k <- which(Q3==min(Q3))

results[j,] <- alk,]

} mde <- apply(results,2,mean)

ssd <-sqrt(apply(results,2,var)/N)
q.tabl<-data.frame(parameters,mde,ssd)

dimnames(q.tabl) <-list(c("Theatal","Theata2","Random.effectl",
"Random.effect2", "Random.error","Covirance"),

c("True Value","MDE","SSD"))

print(q.tabl)

Sys.time()

}
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8.2 Programs for Exponential Models

8.2.1 Model 3: One Random Effect

"emde" <-

function(N,n1,n2,n0)

{

print(Sys.time())

cat("Simulating Exponential Model with one Random Effect","\ n",
"Number of iteratioms:" ,N, “\ n'",

"Number of obs/group :" ,nl, "\ n",

"Number of groups:" ,n2, "\ n", "Number of grid points:" ,n0, " \
n\ a")

results <- matrix(0,N,4)

parameters <- c¢(10,-5,0.5,1)

pa <- parameters

x <- 0.1i%c(1:n1)

xl <- xt+x

for (i in 1:(n1-1)) { x1 <- c(x1,x[il+x[(i+1):n1]) }

for (j in 1:N)

{

rand <- rep(rnorm(n2,pal2],sqrt(pal3])),each=nl)

y <- palll*exp(rand*x)+rnorm(ni*n2,0,sqrt(pal4]))

yy <= matrix(y,n2,nl,byrow=TRUE)
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a <- matrix(c(runif(n0,8,12), runif(n0,-7,-3), runif(n0,0.1,0.9),
runif(n0,0.1,1.5)), no0, 4)

ml <- c(al,11)%*%t(c(rep(1,n1))) *exp(c(al,2]) %%t (x)+
c(al,31)%*ht (xxx)/2)

ml <- matrix(rep(ml,n2),n0,ni*n2)

Q1 <- apply((y-t(m1)) (y-t(m1)), 2, sum)

m2 <- c(al,1]1*al,11)%*%t(c(rep(1l, (n1+1)*n1/2)) ) *exp(c(al,2])%*%t (x1)
+c(al,31) %+t (x1*x1) /2)

m2[,1:n1] <- m2[,1:n1] + al,4]

y2 <- yy*yy

for (i in 1:(n1-1)) y2 <- cbind(y2,yyl,il*yy[, (i+1):nl])
y2 <- c(t(y2))

m2 <- matrix(rep(m2,n2),n0, n2*(nl+1)*n1/2)

Q2 <- apply((y2-t(m2)) (y2-t(m2)),2,sum)

Q3 <= Q1 + Q2

k <- which(Q3==min(Q3))

results[j,] <- aflk,]

}

mde <- apply(results,2,mean)

ssd <- sqrt(apply(results,2,var)/N)
q.tabl<-data.frame(parameters,mde,ssd)

dimnames(q.tabl) <-list(c("Theatal","Fixed","Random.effect",

"Random.error"), c("True Value'","MDE","SSD"))



105

print(q.tabl) Sys.time() }
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8.2.2 Model 4: Two Independent Random Effects

"e2mde" <-

function(N,ni,n2,n0)

{

print(Sys.time()) cat("Simulating Exponential Model with 2 Independent
Random Effects","\ n",

"Number of iteratioms:" ,N, "\ n",

"Number of obs/group :" ,n1, "\ n",

"Number of groups:" ,n2, "\ n",

"Number of grid points:" ,n0, "\ n \ n")

results <- matrix(O,N,5)

X <- 0.1xc(1:nl1)

xl <- x+x

for (i in 1:(n1-1)) { x1 <- c(x1,x[il+x[(i+1):n1]) }
parameters <- ¢(10,-5,1,0.5,1)

pa <- parameters

Sigma <- matrix(c(pal3],0,0,pal4]),2,2)

for (j in 1:N)

{

ff <~ mvrnorm(n=n2, rep(0, 2), Sigma)

bb <- matrix(rep(ff, each=nl),nl*n2,2)

y <-(pa[1]+bb[,1])*exp((pal2]+bb[,2])*x)+rnorm(ni*n2,0,sqrt(pals]))
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yy <- matrix(y,n2,ni,byrow=TRUE)

a <- matrix(c(runif(n0,8,12), runif(n0,-7,-3), runif(n0,0.1,1.5),
runif (n0,0.1,1.5) ,runif(n0,0.1,1.5)), nod, 5)

ml <- c(al,11)%*%t (c(rep(1,n1)))*exp(c(al,2]) %%t (x)+
c(al,4])%x%t (x*x) /2)

ml <- matrix(rep(ml,n2),n0,nl*n2)

Q1 <- apply((y-t(m1)) (y-t(m1)), 2, sum)

m2 <- c(al,11*al,1]+al,3]al,3])%*%t(c(rep(l, (n1+1)*n1/2)))*
exp(c(al,21)%*%t (x1)+c(al,41) %*ht (x1*x1) /2)

m2[,1:n1] <- m2[,1:n1] + a[,5]

y2 <- yy*yy for (i in 1:(n1-1))

{ y2 <~ cbind(y2,yy[,il*yy[, (i+1):n1l) }

y2 <- c(t(y2))

m2 <- matrix(rep(m2,n2),n0, n2%(ni+1)*n1/2)

Q2 <- apply((y2-t(m2)) (y2-t(m2)),2,sum)

Q3 <- Q1 + Q2

k <- which(Q3==min(Q3))

results[j,] <- alk,]

}

mde <- apply(results,2,mean)

ssd <- sqrt(apply(results,2,var)/N)

q.tabl <-data.frame(parameters,mde,ssd)

dimnames(q.tabl) <-list(c("Fixedl","Fixed2","Random.effectl",
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"Random.effect2", "Random.error"), c("True Value","MDE","SSD"))
print(q.tabl)

Sys.time()

}
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8.2.3 Model 5: Two Dependent Random Effects

"e2rmde" <-

function(N,n1,n2,n0)

{

print (Sys.time())

cat("Simulating Exponential Model with 2 Correlated
Random Effects","\ n",

"Number of iteratioms:" ,N, "\ n",

"Number of obs/group :" ,nl, "\ n",

"Number of groups:" ,n2, "\ n",

"Number of grid points:" ,n0, "\ n \ n")

results <- matrix(O,N,6)

X <= 0.1*xc(1l:n1)

x1 <= x+x for (i in 1:(n1-1)) { x1 <- c(x1,x[i]+x[(i+1):n1]) }
parameters <- ¢(10,-5,1,0.5,1,0.4)

pa <- parameters

Sigma <- matrix(c(pal3],pal6],pal6],pal4]l),2,2)
for (j in 1:N)

{

ff <- mvrnorm(n=n2, rep(0, 2), Sigma)

bb <~ matrix(rep(ff, each=nl),ni*n2,2)

y <-(pal1l+bb[,1])*exp((pal2]+bb[,2])*x)+rnorm(ni*n2,0,sqrt(pals]))
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yy <- matrix(y,n2,ni,byrow=TRUE)

a <- matrix(c(runif(n0,8,12), runif(n0,-7,-3), runif(n0,0.8,1.2),
runif (n0,0.3,0.7) ,runif(n0,0.8,1.2) ,runif(n0,0.2,0.6)), n0, 6)
mi <- (c(al,1)%*%t(c(rep(1,n1)))+c(al,61)%*%t(x)) *
exp(c(al,2])%*%t (x)+ c(al,4]) %t (xxx)/2)

ml <- matrix(rep(ml,n2),n0,ni*n2)

Q1 <- apply((y-t(m1)) (y-t(m1)), 2, sum)

m2 <- (c(al,3]*al,3])%*%t(rep(1, (n1+1)*n1/2))+
(al,11%*%t (rep(1, (n1+1)*n1/2))+

c(al,6]) %%t (x1*xx1))) *exp(c(al,2])%*%t (x1) +c(al,4]) %%t (x1*x1)/2)
m2[,1:n1] <- m2[,1:n1] + a[,5]

y2 <- yy*yy

for (i in 1:(n1-1)) { y2 <- cbind(y2,yy[,il*yy[, (i+1):n1]) }
y2 <= c(t(y2))

m2 <- matrix(rep(m2,n2),n0, n2x(ni+1)*nl/2)

Q2 <- apply((y2-t(m2)) (y2-t(m2)),2,sum)

Q3 <- Q1 + Q2

k <- which(Q3==min(Q3))

results(j,] <- alk,]

}

mde <- apply(results,2,mean)

ssd <- sqrt(apply(results,2,var)/N)

g.tabl <-data.frame(parameters,mde,ssd)
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dimnames(q.tabl)<-list(c("Fixedl","Fixed2","Random.effectl",
"Random.effect2","Random.error", "Covirance"),

c("True Value","MDE","SSD"))

print(q.tabl)

Sys.time() }



8.3 Programs for Logistic Models

8.3.1 Model 6: One Random Effect

"lmde" <-

function(N, nl, n2, n0)
{

print (Sys.time())

cat("Simulating Logistic Model with 1 Random Effect","\ n",

"Number of iteratioms:" ,N, "\ n",
"Number of obs/group :" ,n1, "\ n",
"Number of groups:" ,n2, “\ n",

"Number of grid points:" ,n0, "\ n \n")

x <- c(seq(from=20,t0=20*n1,by=20))

xx <- rep(seq(from=20,to=20*n1,by=20),n2)

pa <- ¢(20,70,34,9,1)

results <- matrix(O,N,5)

for (j in 1:N)

{

a <- matrix(c(runif(n0,18,22), runif(nl,pal2]-2,pal2]+2),
runif (n0,32,36), runif(n0,7,11), runif(n0,0.5,1.5)), n0, 5)
rrl1 <- rep(rnorm(n2,pall],sqrt(pal4])),each=nl)

y <- rri/(1+exp((pal2]-x)/pal3]))+rnorm(ni*n2,0,sqrt(palsl))

yy <- matrix(y,n2,nl,byrow=TRUE)
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deno <-(1+exp((c(al,2]/al,3])%*%t(c(rep(1,n1))))-c(1/al,31)%x%t(x)))
ml <- c(al,1])%*%t(c(rep(l,nl1)))/deno

ml <- matrix(rep(ml,n2),n0,ni*n2)

Q1 <- apply((y-t(m1)) (y-t(m1)),2,sum)

denol <~ deno*deno for (i in 1:(mnl-1))

{

denol <- cbind(denol,deno[,il*denol, (i+1):n1])

}

m2 <- (c(al,1]=*al,1])%*%t(c(rep(l, (ni+1)*n1/2)))+
c(al,4)%*%t(c(rep(l, (n1+1)*n1/2))))/denol
m2[,1:n1] <- m2[,1:n1] + al,5]

y2 <= yy*yy

for (i in 1:(n1-1)) { y2 <- cbind(y2,yy[,il*yy[, (i+1):n1]1) }
y2 <- c(t(y2))

m2 <- matrix(rep(m2,n2),n0, n2x(nil+1)*n1/2)
m2[,1:n1] <- m2[,1:n1] + a[,5]

Q2 <- apply((y2-t(m2)) (y2-t(m2)),2,sum)

Q3 <- Q1 + Q2

k <- which(Q3==min(Q3))

results[j,] <- alk,]

¥

mde <- apply(results,2,mean)

ssd <- sqrt(apply(results,2,var)/N)
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q.tabl<-data.frame(pa,mde,ssd)
dimnames(q.tabl)<-list(c("Theata1",“Theata2","Fixed",
"Random.effect","Random.error"), c("True Value","MDE","SSD"))
print(q.tabl)

Sys.time()

}
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8.3.2 Model 7: Two Independent Random Effects

"logsmde2" <-

function (N,n1,n2, S,n0)
{

print(Sys.time())

cat("Simulating Logistic Model with 2 Random Effect","\ n",

"Number of iteratiomns:" ,N, "\ n",
"Number of obs/group :" ,ni, "\ n",
"Number of groups:" ,n2, "\ n",

"Size of random sample:" ,n2xS, "\ n",

"Number of grid points:" ,n0, "\ n\ a")
result <- matrix(O,N,6)
x<-seq(from=200, t0o=200%n1,by=200)

pa <- ¢(200,700,350,100,625,25)

s0 <- 50 #for simulate moments#

SS <-2%8

one <- rep(1,ni)

for (I in 1:N)

{

§ <- matrix(0,n0,1)

b <- matrix(c(runif (n0,195,215), runif(n0,695,715), runif(n0,345,355),

runif (n0,95,105), runif(n0,620,630), runif(n0,20,30)), n0, 6)
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rrl <-rep(rnorm(n2,pall],sqrt(pal4])),each=n1)

rr2 <- rep(rnorm(n2,pal2],sqrt(pal5])),each=n1)

y <- rr1l/(1+exp((rr2-x)/pal3]))+rnorm(ni*n2,0,sqrt(pal6l))
yy <- matrix(y,n2,nl,byrow=TRUE)

ul <- matrix(rnorm(n2*(SS),200,s0),n2,SS)

u2 <- matrix(rnorm(n2+(S8S),200,s0),n2,SS)

z1l <- outer(u2,x,FUN="-")

tlcol <- (nl+1)#*n1/2

ones <- rep(l,tlcol)

for (J in 1:n0)

{

cons <- sqrt(s0*/(b[3*n0+J]%b[4%n0+J]))

vl <-outer(ulxexp(-(ul-b[J]) (ul-b[J]1)/(2%b[3*%n0+J])+
ul*ul/(2xs0%s0) - (u2-b[n0+J]) (u2-b[n0+J]) / (2%b[4*n0+J] ) +
u2xu2/ (2+%s0%s0)) ,one)

vvl <- 1l+exp(z1/b[2*n0+J])

mml <- vi/vvi

M1 <- t(rbind(c(t(apply(mmi[,1:S,], c(1,3), sum))),
c(t(apply(mmi[, (S+1):88,]1, c(1,3), sum)))))

mi <- y-M1

Ql <= t(mi[,1]1)%*%m1[,2]

Ni1=ni

v2 <-outer(uil*ul*exp(-(ul-b[J]) (ul-b[J])/(2%b[3*n0+J])+ul*ul/(2*s0%s0)
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-(u2-b[n0+J]) (u2-b[n0+J]) / (2%b [4*n0+J] ) +u2*u2/ (2xs0%s0) ) , ones)
vv2 <- vvixvvi

for (i in 1:(n1-1))

{ N1 <- Ni+(n1-i)

vv2 <- array(c(vv2,array(vvi[,,i],c(SS,8S8,n1-i))*
array(vvi[,, (i+1):n1], <(8S,8S,n1-i))),c(n2,SS,N1)) }
mm2 <- v2/vv2

M2 <- t(rbind(c(t(apply (mm2[,1:8,], <c(1,3), sum))),
c(t(apply (mm2[, (8+1):8S,], c(1,3), sum)))))

y2 <-yy*yy-b[4*n0+J]

for (i in 1:(n1-1)) { y2 <- cbind(y2,yy[,il*yy[, (i+1):n1]) }
m2 <- c(y2)-M2

Q2 <- tm2[,11)%*%m2[,2]

QL1 <- cons*(Q1+Q2)

t

posit <- (Q>0)

Q <- Qlposit]

b <- b[posit,]

K <- which(Q==min(Q))

result[I,] <- blK,]

}

mde <- apply(result,2,mean)

ssd <- sqrt(apply(result,2,var)/N)
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log.tabl <- data.frame(pa,mde,ssd)

dimnames (log.tabl) <- list(c("Fixed.1","Fixed.2","Fixed.3",
"Random.effect.1","Random.effect.2","Random.error"),
c("True Value","MDE","SSD"))

print(log.tabl)

Sys.time()

}
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8.4 Programs for Non-normal Random Ef-
fects Models

8.4.1 Maximum Likelihood Estimation

"emle.asy" <-

function(n,nl,n2)

{

print(Sys.time())

cat("Simulating Exponential Model with 1 Random Effects From bimodal
symmetric Distribution","\ n",

"Number of iterations:" ,n, "\ n",

"Number of obs/group :" ,nl, "\ n",

"Number of groups:" ,n2, "\ n\ n")

options(digits=6)

resultl <- matrix(O,n,4)

ml <- O options(warn = 2)

parameters <- ¢(10,-5,0.5,1)

pa <- parameters pl <- pa[l:2] #starting vlaue for nlme()#

x <- 0.1*rep(c(1:n1),n2)

mul <- -0.6
rv <- pal3]
w0 <- 0.3

rmu <~ (1-2%w0)*mu0
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mixv <- rv —4xw0* (1-w0)*muO*mul

obj <- norMix(mu=c(mu0,-mul), sig2 = c(mixv, mixv), w=c(1-w0,w0))
for (j in 1:n)

{

b2 <- rep(rnorMix(n2,obj),each=nl)-rmu+pal2]

y <- pali]l*exp(b2*x)+rnorm(ni*n2,0,sqrt(pal4]))

z <- rep(l:n2,each=ni)

0 < — data.frame(cbind(z,x,y))

oo <- groupedData(y x|z,data=o)

fn.exp <- try(nlme(y Rixexp(R2*x),

data=o0o0,

fixed=R1+R2 1,random=R2 1,

control=nlmeControl (maxIter=200, tolerance = 1le-06),
start=pl,method="ML"), TRUE)

if (inherits(fn.exp, "nlme")) # only for successful fits
resultl[j,] <-matrix(c(fn.exp$coef$fixed,
as.numeric(VarCorr(fn.exp)[,11)),1,4)

}

resultll <- matrix(pa,1,4)

for ( j in 1i:n)

{

if (resulti[j,1]1!=0) { ml = mi+1

resultll <- rbind(resultll,resultilj,1)} }
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resultll <-resulti1i[2:(mi+1),]

print(ml)

mle <- apply(resultll,2,mean)
ssd<-sqrt(apply(resultil,2,var)/n)

truepa <- matrix(pa,ml,4,byrow=TRUE)

summse <- (resultll-truepa)*(resultil-truepa)

rmse <- sqrt(apply(summse,2,mean))

exp.tabl <- data.frame(pa,mle,ssd,rmse)
dimnames(exp.tabl) <-list(c("Fixed.1","Fixed.2","Random.effect",
"Random.error"), c("True Value","MLE","SSD","RMSE"))
print(exp.tabl)

Sys.time()

}
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8.4.2 Second-order Least Squares Estimation

"eslse.bio" <-

function(N,nl1,n2,n0)

{

print(Sys.time())

cat("Simulating Exponential Model with 1 Random Effects","\ n",
"Number of iteratioms:" ,N, "\ n",
"Number of obs/group :" ,ni, "\ n",
"Number of groups:" ,n2, "\ n",

"Number of grid points:" ,n0, "\ n \ n")
results <- matrix(0,N,4)

parameters <- ¢(10,-5,0.5,1)

pa <- parameters

X <= 0.1%c(1:n1)

x1 <= x+x for (i in 1:(n1-1)) { x1 <- c(x1,x[il+x[(i+1):n1]) }

mu0 <- -0.6
rv <- pal3]
w0 <- 0.5

rmu <- (1-2*%w0)*mul
mixv <= rv -4*xw0* (1-w0)*mulO*mu0
obj <- norMix(mu=c(mu0,-mu0), sig2 = c(mixv, mixv), w=c(1-w0,w0))

for (j in 1:N)
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{

rand <- rep(rnorMix(n2,obj),each=nl)-rmu+pa[2]

y <- pal1l*exp(rand*x)+rnorm(nl*n2,0,sqrt(paldl))

yy <- matrix(y,n2,nl,byrow=TRUE)

a <- matrix(c(runif(n0,8,12), runif(n0,-7,-3),
runif(n0,0.3,0.7), runif(n0,0.8,1.2)), n0, 4)

rvl <- a[,3] -4*w0*(1-w0)*mu0*muo

ml <- (1-wO)*c(al,11)%*%t(c(xrep(1,n1))) *exp(c(al,2]+mul) %%t (x)+
c(rv1)%*%t (x*x) /2)+ woxc(al,11)%*%t (c(rep(1,n1))) *
exp(c(al,2]-mu0) %*%t (x)+ c(rvi)%*%t (x*x)/2)

ml <- matrix(rep(ml,n2),n0,nl*n2)

Q1 <- apply((y-t(m1)) (y-t(ml)), 2, sum)

m2 <- (1-w0)*c(al,1]*al,11)%*%t(c(rep(l, (n1+1)*n1/2)))*
exp(c(al,2]+mu0) %*%t (x1) +c(xrvl) %%t (x1*x1)/2)+wO*c(al,1]*al,1])%*
%t (c(rep(1, (n1+1)*n1/2)))*

exp (c(al,2]-mu0) %*%t (x1) +c (xvl) %*%t (x1%x1) /2)

m2[,1:01] <- m2[,1:n1] + al,4]

y2 <- yy*yy for (i in 1:(nl-1))

{y2 <- cbind(y2,yyl,ilxyy[, (i+1):n1]) }

y2 <- c(t(y2))

m2 <- matrix(rep(m2,n2),n0, n2*(nl+1)*n1/2)

Q2 <- apply((y2-t(m2)) (y2-t(m2)),2,sum)

Q3 <- Q1 + Q2
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k <- which(Q3==min(}3))

results[j,] <- alk,]

}

mde <- apply(results,2,mean)

ssd <- sqrt(apply(results,2,var)/N)

truepa <- matrix(pa,N,4,byrow=TRUE)

summse <- (results-truepa) (results-truepa)

rmse <- sqrt(apply(summse,2,mean))
q.tabl<-data.frame(parameters,mde,ssd,rmse)
dimnames(q.tabl) <-list(c("Theatal","Fixed","Random.effect",
"Random.error"), c("True Value","MDE","SSD","RMSE"))
print(q.tabl)

Sys.time()

}
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