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ABSTRACT

In this thesis we consider the exponential distribution involving
location: and scale parémeters both assumed unknown. The problem:.of
estimation of the parameters involved and the reliability function is
attempted in case of a full sample and also in case of single stage
right censored sample. The.methods employed are minimum variance un-
biased estimation, maximum likelihood and best linear unbiased estimates

based on components of order statistics.

Comparisons are made between the various estimates on the basis
of bias, variance and mean squared error and generalized méan squared
error in case of simultaneous estimation. On the basis of generalized
mean squared error we compare estimates based on full samples with those
based on single stage right censored samples. An‘interesting result
~is the rather appreciable increase in the generalized mean squared error

for even slight censoring.

Chapter I 1is intrqductory and gives a brief survey of literature.
In Chapter II and III we pfesent detailed derivation of estimators.
These chapters also contain generalizations of results due to Pugh (1963)
in case of known location but unknown scale parameters. In the last
chapter we consider application of these results to life testing ex-

periments,



CHAPTER 1

INTRODUCTION

A statistical énalyst is often confronted with the task of under-
standing the problem being presented, relating this to known theory and
sometimes developing appropriate theory to fit the problem. When the
problem is related to life testing experiments, the analyst now has at
his disposal a large amount of recently developed theory and expanding

industrial interest in 1ife testing offers yet more to come.

It is a characteristic feature of most life tests that they give
rise to ordered observations. For example should machine breakdown time
be analyzed, the time of breakdown for any x, item tested would occur in
such a way that =x < x <. o0 < %, where x,., is a random value
Y (D) =%2) = """ =% (1)
taken by any of n machines in the sample. We may consider any x(i) value

as the time to failure.

The choice of the distribution for the failure time is sometimes very
difficult and can include such distributions as thé 1og-norﬁal, normal,
uniform and exponential. For illustrative examples we refer to Herd (1956).
Estimating procedures for gamma and rectangular distributions have been

given by Patil and Wani (1966). The model following Weibull distribution

has recently been considered by such researchers as Harter and Moore (1965),

Cohen (1965) and Johns Jr. and Lieberman (1966).

In this thesis we will consider a model for 1ife testing based on

the exponential distribution with location and scale parameters. It is




our intention to estimate these parameters, as well as a useful function
of these parameters, the reliability function. The problem of estimation
from full and censored samples dates back as early as 1897 and for a

historical background the reader is referred to Herd (1956).

When working with a full sample case the individual failure times
are available for all observations, and consequently the analysis is
rather straightforward. However, censored samples may give rise to various

theoretical problems.

A random sample of size n is drawn from the exponential population,
where the data becomes available such that the smallest observation comes
first, the second smallest comes second, until the largest observation is
finally obtained. Clearly we can discontinue experimentation well before
all n items have failed. Such censoring is often essential in life testing
experiments due to limitations of time, item availability and economic
considerations. Suppose in our above experiment we continue to run the
experiment until only r (fixed) items out of n have failed. This is known
as type II right censored sample and the data here is.typically represented
by x(l), X(Z)""’X(r) where (n-r) items have survived beyond X(r).

Another type of censoring that naturally occurs is if instead of fixing the
number of items failed, we fix the time untilvwhich the experiment will last.
In this case the data is typically represented‘by X(l)’ X(Z)""’X(k)’ k of
the .items having failed before time T (fixed) and (n-k) items having sur-

vived beyond time T. This type of censoring is known as type I censoring.

Epstein (1960a) gives an excellent discussion and also a numerical example

of the two types of censoring mentioned above for the case of known location




parameter. Ina-later paper Epétein (1960 b) gives point and confidence

interval estimates from life test data involving both types of censoring
for known location parameter. Although theoretically distinct, the
differences in estimators for the two cases above are negligible if the

sample size is large (Plackett (1959)).

In the preceeding paragraph we have considered life testing experiments
where the total sample size n is known. This knowledge of the number of
censored observations, (n-r) where r is fixed and (n-k) where k is a random
variable distinguishes the notion of a censored sample from that of a
truncated sample in which for a sample of unknown overall size, all X, <T

are observed. The distinction between truncated and .censored samples is

well illustrated by Deemer and Votaw (1955) where these authors calculate the
maximum likelihood estimate (MLE) of the scale parameter for the exponential
case assuming the location parameter to be zero. In the truncated exponential

model Holla (1967) has obtained a minimum variance unbiased estimate (MVUE)

of Reliability when the point of truncation is known for the known location
parameter case. We shall obtain in chapter  three a uniform minimum variance
unbiased estimate (UMVUE) of Reliability when we have single stage type II

right censored sample for the two parameter exponential model.

Censoring where each X, has known different truncation point Ti has

been discussed by Bartholomew (1957). He obtains MLE of scale parameter

for known location amd also considers a numerical example. A much more
detailed discussion of this MLE and its asymptotic properties are dis-

cussed by Bartholomew (1963).




In many practical situations, the initial censoring results only

in withdrawal of a portion of survivors. Further censoring may then
occur at later stages and we speak of progressively censored samples.

This often results when a compromise between the need for more rapid

testing and desire to include some extreme 1life spans is made (Cohen (1963)).
Progressively censored samples where times of censoring and the number

of items removed are the result of random causes have been considered by . . .

Sampford (1952). Progressively cgnsored samples, when fixed number of ob-
servations ki are removed at random times, have been considered by Herd (1956)
who refers to them as multiple censéred samples. We consider a numerical
example in the last cﬁapter where data are results of response time studies
involving animals, aqd we resort to Herd's estimators for the two parameter

exponential model.

In this thesis we develop estimates for both full and single stagé
censored samples considering the two parameter exponential model. As a
first reduction of data, we determine sufficient statistics for the location

and scale parameter by using factorization criteria for sufficient statistics.

Since they are complete sufficient statistics lgggtein and Sobel (1954)]
we derive Uniformly Minimum Variance Unbiased Estimates (UMVUE) by using
well known Rao-Blackwell, Lehmann-Scheffé Theorem [Rao (1966)}. For Best
Linear Unbiased Estimation (BLUE) based on components of order statistics

[ Sarhan and Greenburg (1962)], we use the standard least squares theory

together with Gauss Markoff Theorem [Rao (1966)]. We also consider MLE
and an expression for bias of the MLE of reliability is obtained. This is

a slight generalization of results due to Pugh (1963) for unknown scale



and known location parameter. An appropriate list of references is
included. However for an extensive bibliography for two parameter ex-

ponential distribution in general we refer to Saleh (1964).

Feigl and Zelen (1965) have considered the applications of life testing

experiment techniques in some areas of cancer research. 1In the last chapter
we also consider some new applications of theory developed in previous

chapters to life testing experiments in the area of cancer research.




CHAPTER II

Estimating Reliability Functions from Full Sample

Let xl’XZ""’Xn be a random sample from a continuous distribution
whose p.d.f. is given by

1 exp [ - (x-a) ] x>a, >0
0 o =
f(x; 0,a) = (2.1)

0 otherwise

It is desired to estimate "a" the location parameter and "O" the
scale parameter which determine the underlying distribution. We will
be considering in this chapter various procedures for estimating "a"
and "9" as well as R(tlé', 0'), a function of a', ©', estimates for
"a" and "O" respectively, when a complete sample is available. In any
estimation procedure, we always use the sufficient statistic if one is
available. We will therefore first obtain a vector valued sufficient

statistic for the vector valued parameter

~/
0 =[a,0], acr, 0>0.

1’

Derivation of Sufficient Statistics:

We first consider the order statistics (X(l)’X(Z)""’X(n)) where
a < < x < e < < ®© , Th as i 11 known,{ Ho and
< X(l) S Xy S < X(n) en as is we Wi [ gg

Craig (1959ﬂ, the joint p.d.f. of X(l)’X(Z)""’x(n) is given by

nooy Xyy - @
g(x(l),...,x(n); a,8) = n! ;? (5) exp [ - —==——] (2.2)
i=1 0
for a < x < x < ® and zero elsewhere.

(1) S 0 S Xy




Define the indicator function c(a,b) such that

1 if a>b

c(a,b) = : (2.3)
0 otherwise

Then we can write the joint p.d.f. of X(i)’ i=1,2,...,n, as

B 2,0 = Bep (- » )™
x(l),...,x(n) s A, = gn exp 1o 5 1

n .
5 °(X<J)’ %(j1y) Ky @

and by factorization criteria it is clear that the order statistics

X(l)’X(Z)""’X(n) are sufficient. We consider further reduction and

show that

=

b4 , V. = 2 (x - X ),

(1) 1,V Fa
are jointly-  sufficient for [a,@]. The joint p.d.f. of the order statistics
can be written as

n n
H(X(l)""’x(n)’ a,0) = 5 exp { ol (X(l) - aﬂ c(x(l),a).

v n
(n-1): exp[_ 5 1 ) (2.4)

= - c“‘(j)”‘(j-n)

Hl(x(1)| a,0). H(X(Z)""’X(n)lx(l)’g
where Hl(x(l)’a,g) is the p.d.f. of X(l) and H(X(Z)""’X(n)‘x(l)’g)
is the conditional p.d.f. of X(2)""’X(n) given X(l)’




=2,...,0. Then

Define Z1 = X(l)’ Z(i) = X(i) - X(l) for i

18] < Z < ... < Z(n) < @ and the Jacobian of the transformation gives

(2)
‘Jl = 1. Then (2.4) can be written as

= I . - (n-1)",
H(X(l)’---’x(n)'agg) = ) eXP[ 0 (Zl a)] C(Zl’a) ————-gn_l
> Z)
- 1
exp i 0 C(Z(z),O)...C(Z(n), Z(n-l)) (2.5)

This shows that Z(Z)""’Z(n) given Z1 are order statlstlcs from a

sample of size (n-1) from a distribution as in (2.1) with’ a = 0, 0 = 8,

n
We now define v = ¥ Z, .., u =2 » and we have that joint p.d.f. of
2, L) ¢H)
(u,v) is given by
n n
g(u,v) =3 eXP[— 5 (u-a)] c(u,a)- gy (vlu) (2.6)
*
Since Z(i), i =2,...,n are order statistics from a Gamma distribution

with =1, B = 0, the unordered Z; for i =2,...,n are distributed as

Gamma r.v. with o =1, B = 0. Using moment-generating function technique,

then
_]_ .
MZ (t) = (1 - o7) for 1 =2,3,...,n. Then
i
n n
v= 2 Z,.,= 2 Z, has m.g.f. given by
i (D1

Mv(t) = (1 ~ GT)i(n-l) which is the m.g.f. of Gamma
distribution with ¢ = (n-1) and B = 0. Thus the conditional p.d.f. of

v given u is

glz ;a, B) = f%i) exp [-Z/ﬁ] z(a-l) éa , where 0< z<o0 .




and therefore the joint p.d.f.

s ) =gy e [- 3] ©™2 L ewo

of (u,v) is given by,

g(u,v) =% exp [' le)-—al]c.(u,a) g _—P—E[];_-Ij exp [- %J (

Referring to (2.4) we see that

H(x

The likelihood of the sample (x

(1),-'-’X(n) ’3,9) = g(u,v)

it can be written in the form

T'(n) T'(n-1)

n-2
i§2<X<i)'X<1>i

n

J.E; gy 7 *(3-1)29

(2.7)

v,n-2

)

(2.8)

n
C( g (X(i) - X(l))so)

.,xn) can be written as

12
n
1 x (xi-a) n
L(Xl""’xn'a’g) = EE exp |- —J;_Ts_———— izl c(xi,a)
= H(x(l),...,x(n)la,g) . Tl(x(l)""’x(n))
= g(u,v) ° TZ(X(I)’.'.’X(H))

(2.9)

2 o(v,0)

‘ ~
and by factorization criteria, u,v are jointly sufficient for 0 = [a,Q].

These joint sufficient statistics are known to be complete and for the

proof we refer to Epstein and Sobel (1954),
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We now consider three methods of estimation of parameters (a,9):
(1) The method of uniformly minimum variance unbiased estimation (UMVUE) ;
(ii) The method of best linear unbiased estimation using linear functions
of components of order statistics (BLUE); and (iii) The method of maximum

likelihood estimation (MLE).

(i) UMVUE for "a" and "O"

e
We have shown that a joint sufficient statistics for 9 exists and

from Epstein and Sobel (1953), we know that it is complete. We know,

Rao (1966), that if a complete sufficient statistic: T exists, then any
function g(T) is a UMVUE of its expected value W(ﬁ) = E[g(T)]. We thus
limit our search of estimators to functions of complete sufficient
statistics. This technique is a well known application of Rao-Blackwell,
Lehman-Séheffé theorem for which we fefer to Rao (1966). Thus given W(E)
UMVUE could be obtained by trial and errar method by searching for a
function g(T) such that E[g(T)] = W(g). Otherwise we start with any
unbiased estimator Ti(z) such that E[Ti(g)] = W(EB. Then we take its
conditional expectation, given the sufficient statistics u,v. By the
theorem this expectation E[E[Ti(g)]’u,v] is UMVUE. Since u,v are jointly
sufficient then a*, 0 the UMVUE of a,0 respectively will be functions

of u and v.

We wish to estimate ©. Define Ti (u,v) =v. Now we see that

Elv] = E[E[vlu]] where



o
1
Elviu] = 6(u) = | —L— exp [ %] (3 v = (n-1)0
T'(nfl)
-]
which is independent of u. Thus E[@(u)] = (n-1)0 = E(v) and by
Rao-Blackwell, Lehman>~Scheffd theorem, UMVUE of 9 is Tl(u,v) = —¥I .
Now define Té (u,v) = u. Again
o
n n . oy 0
Efu] = ju(a) exp [- 6(u-a)] du = 3 +—n .
a
Now,
u-T. (u,v)
1 1 v 0 )
E - ES - — = bl - =
[ n ] Elu] n E[ n~%. ] at n n a
Then, X(l) - A = T2(u,v) is UMVUE of -a.
n(n-1)
* = - v . n(;{-x ) - ;{
Now, a X(l) - X(l) _ ___~__Lll_ _ n x(l:
n(n~-1) n(n-1) n-1
n .
2(x, , .-
and o - v _ 2( (i) X(l)) -2z ) d UMVUE
= oI ) == X x(l) and are

for a and © respectively.

(ii) BLUE Based on Components of Order Statistics

Considering the order statistics x

defining

z _ (x(r) - a)
(r) 0

we have the p.d.f.

nl

(n~r)!(r-1)!

£(Z(py) =

(1) < X(2) < ... < X(n) and

[1 - exp(- Z(r))]r"-1 exp [-(n-r+1)Z

(2.10)
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for Z > 0. We wish to calculate E[Z 1. We define
(r) (r)

1l =w

Wiy =exp [ =241 =W,

r

n! _ I'(atb) ]
(n=r)! (r-1)! I'(a) T(b) B(a,b)
and we rewrite (2.10) as
| 1 a-1 b-1
g(W ) = W (1-w_) for 0< W
'y 8(a,b) T T r

zero elsewhere. Then Wr is clearly distributed as a beta variable. We want to . .

obtalq E[Z(r)] which is -Ef -~1n Wr] where

1
B(a,b) = I w1 (1-W )b'1 aw
r r r

(¢}

for a

<1

n-r+l,b =r

(2.11)

- and differentiation under the integral -sign being valid [Cramer (1946)], then

1
%Z B(a,b) = f In(W_) wj‘l (1-wr)b'1 aw_

(¢}

so that
E[ -1nW] =-8[ InW.] = - —_t &
r r B(a,b) a
= - é; ‘ In B(a,b)
= %; In T'(atb) - ‘g-; in I'(a)

B(a,b)

(2.12)
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which by the well known properties of digamma functions [Pairman (1919)]

reduces to the form

r
- _ . -1
(r)] = E[-1n wr] = iil (n-i+1) (2.13)

E[Z

which is the result stated by Sarhan (1954).

Similarly Sarham has stated that

H

- _ . -2
var(Z(r)) = rczvs(z(r),z(s)) = iil (n-i+1) (2.14)

This result can also be verified by differentiation under the integral

sign technique, then using properties of trigamma functions [Pairman (1919)].

Tables of numerical values of E[Z(r)] and var[Z(r)] for samples of size

1(1) 10 are available [Sarhan and Greenburg (1958)].

From the definition of Z(r) and using the results (2.13) and

(2.14) then

r -1
E[X(r)] = atd iil (n-i#$l)
2 T -2
V[X(r)] = 9 iil (n~i+1) © = rézvs(x(r),x(s))= v,

(2.15)

It is now possible, with the use of the observations from a r.s. of
size n, and the results of (2.15) to calculate the BLUE based on com-

ponents of o.s. for "a" and "O" if we make use of the powerful "Gauss-

Markoff Theorem".
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Theorem: Let x be a k x 1 vector of observations, D be a s X 1 vector
of unknown parameters (s < K); let A be a known K X s matrix of rank s,

and let W be a known positive definite K x K matrix. Assume that E[x] = A0

and V[x] = 02W where 62 is a known or unknown real number. Then

T =A% aw iy i the BLUE of § and V[T] = A'w 'a)=! _02

For the full sample case (K = n) we define. ’

. . -1
(1) | L »
x L3 (el
(2) 3 : n-i
X = ; ‘5 = s A =
3] , n -1
x(n) nxl 2x1 1 "% (n-i+1)
1
nx2
1 1 . .o 1
and A" =
- 2 - n -
n L 2 (n-i+1) 1 ¢ o 2 (n-it+l) 1
1 1

Note that we also can find variance of each x(i) term so that a n x n

positive definite matrix W can be found such that Vix] = W92 (where 92 = 02).

Now since v, = V[X(r)] by definition then

1 1 1
W = vl v3 v2
1 Yo V3 Ya / nxn
and to find W-l we augment W with: the identity matrix Inxn then perform
row operations on [W:I]nxzn —until we have the form [I:Z]nX2n where

Z is our required W-1 matrix. Then we obtain the result
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2% +(n-1)2 ~(n-1)2
~(n-1)2 (n-1)%4(n-2)2
-1
WS 0 —(n-2)2
0
-1 n2 0 0
Then also’ A'' W =
1 1 1
n2 n
-1 _
A'W A, = = n
n n
1
@aw ™t - -
n(n-1) -1

and combining (2.16) and (2.17) we have,

- -1 -
[AIW 1A] Alw 1 = -—_1..._._
n(n-1)

From G.M. Theorem we obtain T = [A'W-lA]-1

-~
squares estimate of O = BLUE.

[A;‘W71 A]-l A'LW_1 we have
1 (a?-1) -1
T = ——=
n(n-1)
-n(n-1) n

~(n-2)°

(n-2)%+(n-3)2

(nz-l)

-n(n-1)

-1

n

-(n-3)2..

(2.16)

(2.17)

A'W-lx which is least

Then by premultiplying [X]

(1)
%(2)

(n)

by

nxn
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- 2 n -
(n"-1) x - 3 x -
) (L ;25 ") . nooxgy - %
= n = —
n(n-1) o2 + 5 n-1 -
n X(l) n 2 x(i)J n x nx(l)
Thus for sample size n, the BLUE are
(nx(l) - %) n(x-x 1))
“—“———;‘—“ and “——;—%—-—— for "a" and "o" respectively.
(n-1 -

The theorem also enables the calculation of variance covariance matrix

where we readily see that

k% Kk 1. K
via ] =—21 g2 ; vie ] = _(xlp_ﬁ 02 ; cov(a™™, 0"y
n(n-1)

Note here that BLUE and UMVUE noted in (i) are the same.

since both are functions of u,v each of which is a linear function of

components of order statistics.

(iii) MLE of "a" and "oV,

The MLE of (a,0) is that value of a,0 in the parameter space which

b

for given values of X, maximize the likelihood function. Then the

likelihood function is

L(x x | a,0) = (l)n ex -1
IR 0 P

This is not surprising
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Since MLE is a function of sufficient statistics u,v then from
(2.9) we can consider only the joint p.d.f. of u,v. The MLE of (a,®)
is that value of (a,0) in the parameter space which, given u,v maximizes
n g(u,v{a,8). We then have u,v fixed and maximize a function of two

variables 3,0 for a € R, and © > 0. Thus for u > a and u,v fixed

Zn g(u,vla,®) = -n 4n 0 - % - g'(u-a) + c
where c¢ does not depend on either 'a' or '9'., Now define

K=c¢c-ndn o - %

which is independent of 'a'. For fixed o = 00,'Zn g is maximized for

a = u, That is K - g- (u~a) 1is largest when (u~a) is smallest, or
o
when a =u = X(l) which is independent of 90. Therefore 3 = u = X(l)

for all @ > 0.

Consider -now 4n g(u,via,®) when a = 3 . Then

£n g(u,vl4,0) > 4n g(u,via,o)

A
for a ¢ Rl’ © > 0. To obtain © we need to maximize 4n g(u,v’Q,O).

Zn g(u,le,O) = - .ngnd - % + 4n ¢

Taking the derivative w.r.t. 0 and setting %5 in g(u,le,Q) to zero, we obtain

A
=-75 . " Clearly then 0 = % for we have

A
Zn g(u,le,Q) > 4n g(u,le,O).
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From our earlier definition of u,v we have that x ) and ¥ - x

(1 (1)

are MLE for 'a' and '0' respectively.

We can see that the MLE's are linear functions of the xi’s. Sarhan
(1954) indicates that BLUE's are in agreement with these MLE's., An intuitive
illustration of this agreement can be seen if we consider the expression

%= %-2. If we now replace 2 by a* we have

A n(x - %) % -
6 - § } (1) ) n(X X(l)) ] g* .
n-1 n-1

Mean Squared Error of Estimates in (1), (ii) and (iii).

Clearly, UMVUE and BLUE are unbiased with variances which can easily
be obtained from linearity property of E[ W(x(i))] using the results that

- 2 :
var (x) =-§- = var(x(l)) and cov(x X) = QE . Similarly, thé variances of

(L)
u,v can be obtained directly from the matrix [A'W-IA]“1 in (ii). These
respective variances, as Wellvas those of MLE's are reported in table 2,1.
Although the MLE's have smaller variances, they are biased and the extent

of bias is included in mean square error (MSE) terms., The bias is calculated

as

A A A A
Bias = |E[0] - 9| and |E[3] - a | for © and a respectively.

The extent of bias is negligeable for large sample size but on comparing

A
ratios of MSE we see that MSE for © will always be lower than that for ©°
although they tend to near equality as n - o ., On the other hand, MSE for

2 will be approximately double that of a*; i.e. Ratio of MSE,[Q:a*] = [ZH?T ]
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Table 2.1. Comparison of Bias, Variance, and Mean Squared Error

\\\\\\\ a Var bias| MSE 0 Var |biasl MsE
UMVUE nx, . .- % 2 02 n(x-x(l)) 92 02
and (}). — nil nil
BLUE (n-1) n(n-1) a(n-Df  (n-1) n-1 (n-1)
MLE x 1 o | o | 26 )y | @-ne’ o[ 6
(1) 2. n 2 2 n n
. n n n

In order to determine which set of estimators to use relative to

precision, we shall speak of the Generalized mean-squared error (GMSE)

* % A A . x % , ,
of (a”, ") and (a,®). Since (a”, @) are unbiased then MSE = Variance

and by Rao (1966), the GMSE is the value of the determinant

var {a*) cov (a* o%)

cov (a* 0%) varr(Q*) and

cov (a* 0*) can be evaluated linearly from E [W(X(l)""’x(n))]

Thus, by definition

cov(a® @) = E|2F@W)” ¥ _ n(x - *1))] - .0
n-1 n-1
+1 2 .
(n-1) (n-1) (n~1)

and it can easily be shown that E[x X(l)] = Qf +(é~ﬁé§Xa+9).




cov(a*,O*) =

g2

n

o
n(n-1)

92

n(n-1)

n(n-1)

Similarly, for GMSE of (3,8) we

E[(3-a)2]

E[(3-a) (8-0)]

E[(&-a) (8-90)]

-20-~

+ (a+(-))2 and E[x(l)ﬂf=(a+ o

n

+
(n-1)2

which can also be obtained from (A'"W_lA)-1

-9%

n(n-1)

92

(n-1)

E[(5-a) (8-0)]

E[(8-0)7]

- 2 - .
= E[x(l)x] - E[X(l) 1+ (a-9) E[x(l)]-aE(x) + a6

= (a+ g)(a- g) - a

nzag + a8 - 2na9 1

evaluate the determinante

E[(x1y- a) (i-x(l)- 9)]
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, & ¢
2 ) 4
A -
so that GMSE = n n = SQZFL)O__
n
¢ ¢
2 n
n

. A A
Comparing the values of GMSE (a*, 9*) and GMSE (a,0) then we see that

94 an-l}E)4 = n2 and
n2(n-1) n (n-1) (2n-1)
. for n =2, Ratio is > 1

for n

v

3, Ratio is < 1

On the basis of smaller mean square error (better precision), then for a

* ‘A A
sample of size 3 or greater we would prefer a*, 0 to 3,9 and for

o*.

. A X
samples of size 2 we would prefer 5,9 to a’,

UMVUE of Reliability of Mission Time t

The exponential distribution is particularly useful when applied

to life testing procedures. _One such application is when one Wishes to
know the probability of an item surviving at least up to a given time 't!
which Basu (1964) calls the mission time. Then the'reliability at time 't'
of a system whose life follows the probability law £(xfa,®) given by

(2.1) is expressed as

R(t)

Pr[ x>t] =1 - Pr[ x< t ] (2.18)

f f(x‘a,@)dx
t
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Here it is assumed that t > a, for if ¢t < a, R(t) = 1. 1In

order to find a UMVUE for R(t) we shall follow the method of Patil and

Wani (1966) and more specifically Basu (1964).
Consider a sample of size 'n' made up of two subsamples of size (n-1)
and one. For subsample of size (n-1) we define

n-1
v® = 2 (x *

(5w T T

* ~
where v  and u* are jointly sufficient and complete for © as shown

earlier for sample of size n' = n-1. We can then write
(n-1) (o= a) x
86", v¥ 1 2,0) = S exp [ (n-1) 2D | o(u¥,a) g (vHl )
where o % 1 . * n-3 1
ey Ky AR TS 1 %
gl(v 'U. ) - exp [ g ] (g ) 9 C(V ’O )'

I'(n-2)

Therefore,

* % - e ] p X
g(u ,v |a,0) = (n—gl)eXP [-(%—f‘-z(u?fi-a)] c(u*,a) ————— o

I'(n-1)

* * n-3
exp [~ %—] (%—)' % c(v*,O) (2.19)

Let ¢ be an additional independent observation, then

g(t, ll*,V*'a,@) =% exp [ - ('5;62) ]C(E,ll*) ) g(u*av"‘,a’o)




so that, after

rewritten as

Therefore, . g(t,a,0 ) u,v)

. *
the situation in which € > u

(1) - ¥y T

transformation (v*,u®) - (v,u)

8(t,u,vla,0) = ¢ exp [- B2 ] o(t,u) - (2=1)

(E:llagglil] c(u,a) -

Expression (2.20) is in agreement with equation (8) of Laurent (1963) if

X(i) - (n-2)x(1) + E-X(l)

vi + & -~ x

then (2.19) can be

vet
(Z__XQP]. 3 <(v,0).

g(¢,u,vla,0)/g, (u,v,] a,0)

-2) ('\lj)n-'2 (.v+u-g)n"3 for u < & < utv

otherwise.
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We now define h(¢) 1 if £ belongs to interval (t,o )

0 .otherwise.

Then h(t) is an unbiased estimate of R(t). Thus UMVUE as given by Rao

Blackwell-Lehman Scheffé theorem is

E [H(¢)] g(t,2,0 |u,v)]

" where wu,v are jointly sufficient and complete for (a,0). Therefore

[ &(t,a,8] u,v)de
t

R¥(t)

il

[

1 when t < X(l)

vtu : : 5
= (n-1)(n-2) 1.B-
/ ) &
t

I

0 otherwise .

Then for t belonging to (x(l),u+v) we have

v

_ . -2 t-x 1 n-2
R() = () (HEHTT L] {1— ——-g-)]

v

If we now again write v = nY in (2.21) we have

R*(t)

1 if t< X(l)

nY

which is the same result obtained by Laurent in equation (10).

n
(vtu-£)

-3
dg

(2.21)

- -2
(1~ 'rlI) [1- ¢ X(1)]n if x(l)§t§x(1)+nY

(1) + nY

(2.22)
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BLUE and MLE of R(t) for Mission Time T

We now wish to obtain BLUE for R(t) if it exists. A linear estimate
of components of order statistics is of the form J Z(i)x(i) and linear

unbiased estimate would be one for which

> t-a
E[Lf, Fiy¥cyl = exe [- =5~ 1
but » n | 0 .
E[égzz(i)x(i)} = iil z(i) (at vO) # expl- 5 ]

so that R(t) ~is not estimable from linear function of components of order
statistics. Therefore it follows that the BLUE based on the components of
order statistics does not exist for R(t).

o0

We saw earlier (2.18) that R(t) = [ f(x | a,0)dx and that MLE is that
t .
estimator which maximizes the likelihood of f(xla,®) for given wu,v. Then

. o0
. A
since f(x 13,6) > (x}a,0) it is clear that MLE of R(t) will be f f(xIQ,O)dx

t
so that
A co _h' A
R(t) = f % exp [- Eﬁi 1dx given g,O,t
t
= 1 for t < x
' (1)
t-2
= exp [- T] ' for t > X(l)
which, if expressed in terms of u,v becomes
A
R(t) =1 , A for t<u

exp [~ 3 (t-u)] ~ for t>u (2.23)
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The comparison between MLE and UMVUE is rather difficult for the
reason that the bias and the mean squared error for MLE are very difficult

to obtain. Even though UMVUE has bias zero, its variance is also dif-

ficult to compute. We illustrate this for the bias of the MLE.

E [y(u,v)] = [ ¥(u,v) g(u,vla,0) dudv fse t > a (2.24)

1]

Il g(u,v]a,0) dudv + [[ exp [-g(t—u)]g(u,vla,e)dudv
w>t>a;v>0 asu<t;v>0

Pr [u> t] + IJ exp [-n(t-u)/v]g(u,vla,0)dudv
v>05a<ult

and Pr  [u > t¥

% exp [- % (u-a)] du

exp [- g (t-a)]

So (2.24) becomes

E[R(E)] - D (t-a)] + ff —B - Y &
= exp |- 7 (t-a exp - 7l (% .
0 0a 0°T(n-1) e e
n n
exp [- ? (u-a)] exp [- 5 (t-u)] dudv (2.25)
= exp [- g(t-a)] + @ where @ must be calculated.
n * v, ,V n-2 t n n

Now @ = 5 [ exp [- 5] (5) - [ exp [- 5(u-a) + ;(t-u)]dudv

%) F(n-l) o a




and for w

and for R

]

-27-

- - 7 -2 - [- Z-(ot - va)]
M(n-1) o 2t 9lQ) G oex [- 4 va)
o1
B : }Q L (X)n-1 exp[- 2] expl- 2(t-a)] dv
I'(n-1) 5 (v-0) © 0 v
- emp [ R (e v 1
I'(n-1) o o o exXp [-5]' ?;:5)
v/0 ,
1 * 1 n-1 n n
= W exp [-wl{exp [-——(t-a)] - exp[- Z(t-a) } dw
T'(n-1) g w-1 { ow | ) }

For w =

1 in (2.25).

exp [- (Eéi)

I, @ becomes

1 1
n-1 n/w n
. - R - R d 2.2

P(a-1) o w1l ¥ exp [-w] ( ) dw (2.26)

' R'n v
l, v=0 and ¢' = — (t-a) exp [-1} when = is set equal to

8]

I'(n-1)0

FaS
Since © > 0, then @ 1is defined at w = 1 and E[R(t)]

becomes

dv
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l-¢
A 1 1 -
E[R(E)} = R+ ——— 1im [ = ™! expl-w] RV - RY aw
I\(n-l) e >0 o w-1
1 . oy -
e o— 1 qin 10 1 expl-w] (Rn/w_ ~Rn) dw
T'(n-1) € >0 w~1l :
I4e
1 %1 1 /
= R®+ J W' exp [-w] RMY - R™) dw (2.27)
: I'(n-1) o w-1

When 'a' is known, say equal to zero, Pugh (1963) showed that the bias
P

R(t) can be expressed as a Bessel function. In the case where 'a'

a' is unknown

it appears that we cannot express bias in terms of Bessel or other known standard

functions. However, the actual evaluation of the bias could be carried out by

computer iteration.

It can be seen from (2.26) that as n increases, R decreases and bias

becomes assymptotically zero.




CHAPTER III

ESTIMATING RELIABILITY FUNCTIONS FROM CENSORED SAMPIES

Let Xl’XZ”"’Xn be a r.s. from the distribution (2.1) of previous
chapter. We define a condition where from this sample, only the "r'" smallest
values of x, are available (i = 1,...,n) where 1 <r < n. This is a single
point censored sample (from the right) where (n - r)xi's are not available.

It is desired to estimate "a'" and "9" the location and scale parameters res-
pectively which determine the underlying distribution. . We will consider in
this chapter various procedures for estimating "a'" and "@'" as well as R(tlaﬂ@')
from the censored sample defined above. We first wish to obtain.a vector

valued sufficient statistic for © = (a,8), a ¢ R, © > 0, if one exists.

Derivation of Sufficient Statistics

Consider the likelihood of the experiment which yields Xl""’xr’(n-r)xi‘z X

This is given by

S C a)} .

= (LT -
L(xl,...,xr, (n-r)xi_z x(r)'a,O) = (O) exp [ . E

i

Pr [(n -r)xi > X ‘a,@] (3.1)
where
n °°l xi-a n-~-r
Pr [(n-r)xi > xrla,O] = (r) f —5 exP [- 5 1 dXi

BES)

= (:) exp | - (n-r) Siil;)_:j)
9

so 3.1 becomes

(r)°
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L(Xl""’xr’ (n-r)xi.E xrl a,0) = ()

(1)""’X(r)""’x(n) where

a< (1) < ... < X(r) < X (r41) < ... < X(n) < o ., Now from (2.2) it is

Consider now the order statistics x

known.[Epstein and Sobel (1954)] that from a sample of size n, given a,0,

l.r Tox - a
g(x sees X, }a,0) =n! (%) exp | - 3 i) .
m () 9 [ e }

exp - Zr Ef&il:—i)r dx dx
r+l 0 r+l

., (l T ex - ; X(l)- a
o O TS

exp[- (nér) (X(r)- a)} (3.3)

for a < X(l) <. .. <Z X(r) < © , zero elsewhere. Thus 3.2 can be expressed as

- = 1 _
L(Xl,...,Xr, (n r)xi<2 Xr[a,Q) g(x(l),...,x(r),l 2,0). r! and by fac

~
torization theorem, the order statistics X(l)""’x(r) are sufficient for 9 .

We now define indicator function c¢(a,b) as in (2.3) and u = X(l)’

. .
v = iiz(x(i)- X(l)) + (n-r) (X(r) - X(l))' We now can rewrite 3.3 as




B (1) o] 2:0) =G ew |- 2 1y a)J e(x1y,3) (@)
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1 r-1

r
exp |- § X(i)+ (n-t) X(r)- (n~1) X(l)
! e
(n-1)! T
e O Rk
1,771 -1)!
g(uw) (6) exp[; %] c(v,0) Ez—r;! (3.4)

We- wish to show that  u,v ~are jointly sufficient for (a,0) where g(u,v)

is defined as in 2.6.

Define X(i) - X(l) =z, for i =2,...,r and we see that z_,z

1°Z9 5005 B

become: the new order statistics. Let

r

v = 3 z, + (n-r)zr. Now we define Wi = (n-i+l) (zi - zi—l)’ for

i=2
i=2,...,r

such that

<
[
™M
=
il
NMB

+ (n- .
z; (n r)zr

If we make above transformation, where Jacobian is given by

lql =

g(x(l):---,X(r) [a,g) = g(u) (-Q]:)r-l exp {_

G-1

1

)

(————l;————) for Wi = V¥(z.) then 3.4 becomes
n-r+1 1

W,

_i (3.5)
o

™M

i=2
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and Wi are i.i.d.r.v. from exponential distribution, given x = u.

(L

Thus v is the sum of (x-1) i.i.d.r.v. and by m.g.f. technique,

1 r~1 v r-2
= exp [--al‘v c(v,0) (3.6)

g(v u,la,0) =3 exp [ g<u-a>] c(u,a)

exp [—

S0 we can express (3.5) as g(u,v| a,0)

I'(r~-1) 9r—l

]Vr-Z c(v,0). (3.7)

ol

{n-1) vr-2

(n-r)!

Thus the likelihood of Xl""’xr from a sample of size n can be

written as

L(xl,...,xr, (n—r)xilz x(r)‘a,g) = g(x(l),...,x(r),a,Q)T1 (X(l)""’x(r))

g(u,vla,Q)T2 (X(z),...,X(r))

~
and by factorization criterion, u,v are jointly sufficient for 6 .
Furthermore wu,v are known to be complete and for proof we refer to Epstein

and Sobel (1954).

(i) UMVUE _for "a'" and "@"

As in previous chapter we use the results of Rao (1966) and from the

R.B.L.S. Theorem we start with an unbiased estimator Ti(gi) such that
-~
E [Ti(gi)] u,v] = ¥(8) where X, = (XI’XZ""’Xr) and u,v are jointly

sufficient armd complete.
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We wish to estimate 0, Let Ti (u,v) = v. Then

@ 1 1.r-1
v @

1
E[Tl(u,v)l u,v] = T

|
0 —

which is independent of u;

Then by our theorem, unbiased estimate of 0 is Tl(u,v) = Ti(uizl//’
(xr-1)

and is UMVUE for 6.

Now define T;(u,v) = u where

2]

Elul = [ u g exp

v a
T.(u,v
and clearly u - _li_:_z
j: g

Tl(u,v)
E[U - =——— 1 = E[u] - E[

n I

- —X. = T,(u,v) is
(D n(r-1) 2

Thus x

r

X -

-2

[~ %(u—a)] du

has expectation given by

Tl(u,v)

UMVUE for "a'.

exp [- %]dv

E[lv] = E[E(vIuw)] = (z-1)6

thus @(u) = E[vljul, then E[@(u)] = 0(x-1).

a +-9
n

= a

Then

p Fy ~Egy) ) Gy -oxgg)

(L
n(r-1)

r

2E ) T X

and ¢ ) + (n-r) (x

@ " *’

(x-1)

are UMVUE for

a"

v

(x-1)

and

"e" respectively. These results are in agreement with those of Epstein (1960).



(ii) B.L.U.E. . based on components of order statistics
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Consider the r smallest x(i)'s from a sample of size n such that

a < xqy < ... < ey <

and (2.15) are still valid and we again use the Gauss-Markov"

where 1< r < n.

Thus from the censored sample above we define

(1)
%(2)

X = . .

.

(r)

X

- and

and we have an r x r positive definite matrix W

where .

: . -1 . . . .

Thus to find W we augment W with identity matrix Irxr

row operations on W:I
rx2r

-1
required W = matrix.

N

(n-i+1)_1 .o

= M

.o Vlr

until we have the form 1I:Z
rx2r

We then obtain

Then previous results (2.14)

theorem,
1/n
2 -1
S(n~i+1)
1
r -1
2 (n~i+l)
1
r x 2

then perform

where Z is the

r X 2
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n® + (n-1)2  -(a-1)2 0 0
~(n-1)° (n-1)%4(n-2)2 ~(n-2)2 0
1 0 - (n-2)* (n-2)%(n-3)>  -(n-3)*
W =
0 -(n-r+1)2
n? 0 0 0
aw =
1 1 1 ve (n-r+1)
2
n n
aw i =
n r
2
-1
11 L r/n /n
AW A=
L= -1/n 1
Therefore (A'w'lA)'1 awl - ?%T

[ (r-1/n), -1/n, -1/n ,..., =1/n, =-(n-r+l)/n

'(Iﬁ'].), ]-s K L ;~...' 5 1:\, (n-r+1)

Premultiplying X by (3.9) gives us T, the least squares estimate of

(n-r+1)2

(3.8)

(3.9)

~
0



which is BLUE

wk

and BLUE for

*%k
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[r-l/n, -1/n, -1/n ,..., -1/n

(1), 1, 1, cee s 1,

s -(n-r+1)/n‘

(n~r+1)

of [a] . Therefore BLUE of "a" is

9

[ ()

(r)

1 | 1 (n-r+1)
T [GHRRgy tn IRy - Ty X<r)}
- r
5 X + (n~-1)x
L - (
1 rx(l) 1 (i) r) }
N n
r
L 2By T E) e (xy - ox(gy)
(D)
n(xr-1)
IIOH iS

r-1

(1)

T
f X(i) + (n-r)x(r) - nx(l)

r~1

[y

(x ) + (n;r) (x

, ) T

—_— [-(n+1)x(l) + § x ..+ (n-r+1)x(r)J

(r) - X1y’

r-1
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. s % . .
Again we note that a" , © are identical to UMVUE for a,® .

respectively. These results are in agreement with Sarhan (1955).

From (3.8) we see also that

2 2 ' 2

Var (a**) - —I 9 5 Var(O**) = 9 ; Cov (a**,g**) -8 .
(r-l)n2 (r-1) n(r-1)

(iii) M.L.E, of "a" and "o"

Since M.L.E. is a function of the sufficient statistics wu,v, then
from (3.6) it is clear that maximizing L(Xl""’xr’ (n-r)xi > X(r)' a,9)

is equivalent to maximizing g(u,v'a,@).

The M.L.E. of (a,0) is that value of (a,9) in the parameter space

a e Rl’ © > 0 which, given u,v maximizes /n g. Then for u > a
fn g (u,v]a,0) = tn () - 3 (v-a) - (r-1) 41 0 - (§) + G

where C does not depend on 'a' or '0'. We defire

v n '
K=¢C - 5" (r-1) /n 0+ in (9) .
Then for fixed 6 = 90, Ke= = KO and we have
n
In g (u,vla,@o) = Ko - 9(u-a) .

Clearly /4n g(for O = 90) as a function of 'a' alone is maximized for
3 =u = d 4 is independent of O so that 7 = for any © = 8 > 0
u = x(l), and a 1is independent o o S a a = X(l) or any =0 .
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Consider now 4n g(u,v]a,®) when a = 2. Then

In g(u,v1&,0) > fn g(u,vla,9)
A
for a e Rl’ © > 0. We shall now obtain © by maximizing #n g(u,v|&,0)
b g(u,vi2,0) =C -1 fn O - %

whete C does not depend on 9, and 4n g(u,v[g,g) is continuous for 8, so

8 . A v r
0 In g(u,v)s,0) = EE -3

. . . v ..
and setting the above derivative to zero, then clearly ~ maximizes

fn g(u,le,Q).

That is, -
A
in g(u,v]g,g) > 4n g(u,vlg,g)

A
for all ©> 0 and 0 = % is the MLE of 0. From our previous definition
of u,v we have X(l) and

r

>y T E@y) ) Gy oxggy)

r

as the MLE for 'a' and '®' respectively.

Mean Squared Error of Estimates in (i), (4i) and (iii).

Since both UMVUE and BLUE are unbiased estimates then the precision
is expressed in terms of their associated variances. However the MLE are
not unbiased and precision must be expressed in terms of variance and bias.
The bias tends to zero for large n, and the actual values are summarized

in Table 3.1.
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Table 3.1

Comparison of Bias, Variance, Mean Square Error

a Var bias| MSE .| . © Var |bias| MSE
BVUEC) [ x - Ve r 0 |nit | re® |V o> | .1 |0
or n(r-1) | p?(r-1) n’(z-1) [T (r-1) (x-1)
BLUE
. & o | 2 | Y |anefe |
(1) 2 n 2 T 2 I r T
n n r
MLE() .
2<r<n; Vc g (x(i) - x(l))+ (n-r) (x(r) - X(l))
‘ ~ A
We calculate Generalized Mean Square Error (GMSE) for 0* and ©
respectively. By definition
2 2
Var (a*) Cov (a*,o™) _reo e
e - 2 -1
GMSE (87) = . (r-1)n n(r-1)
Cov (a*,0") var (0”) 0’ o2
n(r-1) (r-1)
- o* r . L - ____ff;__
- 2 ) 2 N 9 (3.10)
(r-1) n n n (r-1)

When we compare

(3.10) with that of full sample case, then defin

efficiency of censored to full sample as

e




Eff.

and as r = n,
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*
G.M.S.E. (a , 0%) full ©.100%
G.M.S.E. (a*,O*) censored
ot nZ(r-1) (x-1) .
5 . —z = TI-I—:].—)- 100%
n (n-1) e

efficiency approaches 100%. Efficiency is quite sensitive

to number of available observations.

A
Similarly we now calculate G.M.S.E. (5) given by

2
G.M.S.EZ(0) =

E[(5-a) (8-9)]

]

A 2 ~ A
E [(a-a)7] E[(a-a) (0-90)]
where
E [(3-a) (0-03]  E[(8-0)2]
E[(u-a) (e - 0)] = E[Wc ] - 6E[u] - 2 E[v] + a0
r - r r
% E[uvc] -9 (at®/n) - ab(r-1)/r + ab
- 2
(r-1) © (a+2)-a0-8 4 28
r n n r
.9
2n
20 _ o
n’ Ty 4
9 (2r-1)
= n2r2 (3.11)
& o
rn r
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We compare (3.11) with the G.M.S.E. in full sample case and define

efficiency of censored to full sample for M.L.E, estimates as

I

EFF. {G.M.S.E. (3,9) full/ }.100%
A
G.M.S.E. (3,9) censored

_ (2n-1) 94 n2 r2 _ (2n-1) rzr 1007,
- . 4 = 2 . o
n 07 (2r-1) (2r-1) n

A

and as r — n, efficiency approaches 100%. Althoughlaﬂis sensitive to
¥
censoring it is not as sensitive as ﬁ‘with respect to G,M.S.E. (see table 3.2)

Table 3.2

Comparison of Efficiencies,w.r.t. Censoring

N =10; r = 2 5 8 10
AN
EFF.% (a,®) 25.3 52.7 81.2 100
o * A%
Eff.% (a™,08") 11.1 44.5 78.0 100
r-1

We denote the level of efficiency by «. Then using o =

ot

n-

ke
for 0< g < 1 relative to GMSE of UMVUE © we can use the formula

r = [((n-1x+1] + 1 (3.12)

where [u] implies the greatest integer contained in u . From (3.12) we
see that for o = .90 and n = 20, we need at least r = [19(.9) + 1]+ 1 = 19
observations. If only 15 observations be available, then our estimating

procedure would at most be 73.6% as efficient as if we had all 20 observations.
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A
If we define @ relative to GMSE of MLE Er then
2
o = igﬂlll_Ei for 0<g<1 and
(2r-1) n
2 2 2
ng +v¥nog (n - (2n-1
r = = (ng - ( ) 5 for nza > 2n-1
(2n-1)
2 2 2
r = ng +tdng (na - 2n + 1) + 1 (3.13)
(2n-1)
.90, n = 20, we require

From (3.13) it can be shown that for g =

at least 18 observations.

. * e AN
We now compare GMSE (censored) for (a%, %) w.r.t. (a,0).

) 4 2 2 2
Therefdpe: G.M‘S'E.ﬁjglfr A = _5_9___ . _2______ = ———t
G.M.S.E.ce n (r-1) 0 (2r-1) (2r-1)(r-1)
and for r =2, ratio > 1
r >3, ratio <1

>

*
and we prefer (8) for 3 < r and choose 9 when r

e
smaller G.M.S.E.) even though bias of @ is largest at r =

A .
that bias of a 1is not affected by r when censoring is
¥

It is interesting to note that preference between 6

on r, the number of observations available.

= 2, (on basis df

2. We note

to the right.
A

and § depends only
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Calculation of Reliability for Mission Time t

Calculation of U.M.V.U.E. of R(t)

As in previous chapter, we wish to estimate the probability of

any item in our sample surviving up to some time t. However we now

have a sample where only the first "r" of n items are available to us.

o0
We define R(t) = Pr[X > t] = [ f(x,la,0)dx
t

and to find UMVUE of R(t) we consider the ordered sample x

(1),...,X(r)

as a part of a random sample of size n. Now consider two independent
sub samples of size n-1 and one. We wish to obtain the conditional
pdf-of-t;giventhe joint sufficient statigtics u,v. We consider the &

range to be composed of three possibilities.

3=

E = x and then f(&Ju,v) =

(1

Consider the other possibilities:

) . . . 1 P
(a) £ is one of the available x;'s; i.e. X(l) <t< X(r)
(b) ¢ is one of the surviving xi's; i.e. X(l) <E <
Then for X1 <t < Xpy We have that
-2 1 yr=3
' 1 ' — n,-l - (___n_l) [ 1‘. r v
g(u') g(v'lu',a,0) = 5= exp [- 5 (u'- )] (g exp [- g-lv
1

c(ui,a) c(v',0)

T'(r-2)




bl

where
r-1
“Fay VT 2 Uy T X

1

u ) + (n-r) (x )

X

(r) = (D)

and g(v'lu', a,0) is a direct consequence of (r-1) available observations

r~2
from (n-1) sample size and results (3.5) and (3.6). That is v' = 3 W;
i=1
is a gamma distribution with parameters (r-2), 9, and
gtla,0) =+ exp [- 5227 c(r,x,, )0(x,_,6) L
’ o o >7(1) (r)’
Pr[x(1)<§ < x(r) ]

| .

Now u' =u if £ > x(l) and v' =v - ( g-u) if x(l) <t < X(r) and so

(u',v') transforms into (u,v) if ¢ lies in the range defined above. Thew

clearly

g( £,u,v) a,0) = g( Y(u') | a,0) gy(v') | v(u")a,o).

.g(t }a,0).Pr[ u',v' 5 u,v] (3.14)

(n-1)

- (ol exp ~-[ L
0 p

9r-2

(n-1
e

e

)(u-a)] C(u,a).

expl - T (vt w™ Lo

C(v,0)-

=

exp [~ 52 ] 8, x )
Prlx, . < & < x

(1) (ry!

Pr [u',v'> u,v] (3.15)
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and from (3.7)

g, (Elu,v,a;0) = g(u,v,¢ la,e)/
g(u,v'a,@)

r-3

(1 - é:-E) (r-2) for

n-1
v (1)

n

<E<x (3.16)

< fi=

(r)

Considering the possibility that & > X(r) we define

Wi = (n-1) (x )

(1) 7 G-

T
for i =2,...,r and then v' = 3 wi = sum of (r-1) exponentially distri-
2
buted random variables. Given X(l) = u' then by m.g.F. technique
1 v -
g(v'lu',a,0) = L —1 T exp [- %— ]v'r 2 c(v',0).
: T(r-1)  of
Now
- - '-
g(u'fa,0) = Bl exp [- L22Lllza)y ey o
and _ 1 _E-a
g(tla,0) =5 exp [- 55 ] C(g,x(ry
Pr[ ¢ > X(r) 1
Now
u' =u for &t > x

(r)>*(1)

=v - (x(r) - u) for & > X(r)

so that (u',v') transforms into (u,v) if ¢ lies in the range £ > x(r).

By (3.14) clearly
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_ n-1 (n-1)(u-a 1 1
g( g,u,vla,O) 0 €Xp [ o 1 C(u,a) T(r-1) Or-l
(v-x + u) -
exp [ (r) - r-2 1
P 5 v x(r) + u) C(v,0) )
exp [ Eéa C(é,xr) Pr [u'v - uv ] (3.17)
Pr[g > x( )]
From (3.7)
- - -2
gy(Elu,v,e,0) = 2L 1L X Uy T L g { X<r>]c<g %))
n v (¢} ] ’ (r)
(3.18)
for E.> x(r)
Now define H(E) =1 if &€ lies in interval (t, o)
=0 otherwise
and H(E) 1is unbiased estimate of R(t).
The UMVUE, by R.B.L.S. theorem is
R(t) = E[H(&)lg(e\u,v,a,m]
= fg(glusvza’g) dg
t .
. x(r) )
- f gl(glu,v,a,g)dg + f gz(glu,v,a,(-))dg
X
t (r)

r

where X < utv, since (xr ~u)<vw

and

g (xi - X(l))+ (n-r)(x

)" *(1)’
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0
T
r-2
n-1 t-u
= ( - ) (1 - 3 ) for (1) <t =
Then the UMVUE of R(t) is
RY(t) =1 if t<x
(L)
) (3.19)
= (E:l) (1 - t-u )r ? if x <t<u+tvw
n v (1) = " = .
=0 if t utv

and (3.19) is in agreement with equation (14) of Basu (1964).

Calculation of MLE and BLUE for R(t)

We see that

r r
E [ f 2 x4y 1= f 2, (a+V0) # exp [- 533 ]

s0 that R(t) is not estimable from any linear function of order statistics.

Since no linear unbiased estimate exists, no BLUE exists for R(t).
(o]

Now R(t) = [ f(x}a,0)dx and MLE is one which maximizes the
t

likelihood of £(x}a,0) for wu,v given. We know f(xlg,ﬁ) > f(x|a,0)

and then MLE of R(t) will be
A (o8]
A
R(t) = [ £(x|a,8)dx
t

and for fixed t
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if t < x

i
H

R(t) (1)

exp [~ %"i ] if ot > %1 ) (3.20)

Expressed in térms of u,v the sufficient statistics this becomes

A

R(t) if t<u

it
'—-I

splew), e

v

(3.21)

v
=]

exp |

As in Chapter I1, the comparison between MLE and UMVUE is dif-

ficult for the reason that bias of MLE is very difficult to obtain.

Even though UMVUE has no bias, its variance is also difficult to computev.

We shall illustrate this for the bias of the MLE.

A A A
Since R(t) can be expressed as y(u,v), E [ Y(u,v)] = zero if

t < a so we consider the case for t > a. By definition

E [$(u,v)] [/ ¥(u,v) g(u,vla,®)dudv for t > a

]

Pr[ u> t] + [] exp[ - % (t-u)] g(u,v}a,0)dudv

for v>0, a<u<t.

= R+ }oft @) e [ E <u-§)]—1——— &
o a: o -8 I'(r-1) 0
oxp [ - % ]vr_2 exp [- r(Eig)] dudv
= R" + ¢ (3.22)

where @ must be evaluated
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o]

¢ = X —= A4 A r-2 ¢ n r
- 92 [ exp [- 9] (g) [ exp [- a(u-a) - ;(t-u)]dudv

F'(e-1) o a

){eXP [- = (t a)l

(3.23)

% ® r-1
, -
[, av = -—— [ exp[--]<
o I'(r-1) o
Y
- exp [~ p (t-a)]} dv
‘and for W = '%, then we have
9 =— r-1 BV Ryaw
¢ I(r-1) g W exp [ w](nw -r) ( )
where R = exp [- ] = a constant for given t,a,f.

r =n, (3.23) becomes identical to (2.26).

-0 '

We note that for

For mw =1, v = and ¢c at v is
n r-2
! n R r
b, = 5—— ()  ex [- ] (t-a)
8] (r-1) ' ;
and since 0> 0, ¢C is defined at W = E (for r =n, "= ¢; )
Therefore A N n r/n-¢ -1
E[R(t)] = R + lim W r/W n
T'(r-1) e - o o (;;:;) exp[-W](R -R 7 )dw
r/w _n
+ lim f el exp[-W] (? )R ) dw
I‘(r ].) e-—)o r/n+€ ow-r
® _r-1
.n -
= g® + - L1 exp [W] (R - ®Maw  (3.24)

I'(r-1) o (nw-r)

As in (2.27), no standard functional form of (3.24) appears to exists.




CHAPTER IV

ANALYSIS OF LIFE TEST EXPERIMENTS IN CANCER RESEARCH

A common type of experiment in cancer research is response time
studies made on samples of white mice. We analyze three different samples
where the data is similar in the three cases, but amount of data available
varies in each sample. 1In these experiments, all the sample mice are in-
jected with a common drug and the elapsed positive reaction time for each

mouse is recorded.

It is sometimes difficult to ascertain a positive reaction. In the

above experiments, three criteria are required—beforea reaction 1§ termed
positive but only one yields accurate time estimates. However, this one
criteria , a positive myeloma protein count (PMP) is known to suggest
85-90% 1ikélihood that a positive reaction has occured. With this know-
ledge we then consider elapsed times from injection to PMP. From these
times (ti) we then calculate, from estimates developed in the previous

chapters, the proportion of-mice that develop PMP by some fixed time T.

We wish to note that in the past, reliability estimates have been
calculated by counting the number of mice with known positive reactions
(all necessary criterion established) by some time (t). A proportion has

then been calculated 1 - Rp (t), such that

. . . pa . b .
1 - Rp(t) = Number of mice with positive reaction by time t .

Total mice in sample at time zero

1 - Rp(t) is then the probability of having a positive reaction by time t.

This estimate of the probability has severe limitations, a few of which are
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a) Censoring during the experiment often makes the 'n' undefinable.

b) All ‘experimental data is not used for estimation.

c) Estimates are easily affected by adverse experimental conditions,
rendering such estimates.inconsistent and unreliable for practical
comparisons.

Our estimates have not these limitations but depend on some assumptions

which we now describe.

The random variable ti has an underlying negative exponential distri-
bution with location parameter 'a' # zero. The first part of this assump-
tion is not new to biological experimentation [Baileyl, 1967]. 1In fact,

since our experiments are biologically similar to stochastic epidemics and

our estimates are based on duration times, then like Bailey2 (1967), we

may claim that 'the time interval ti before the new infection occurs has the
negative-exponential distribution...'. Furthermore, when one considers
length of patient-stay as duration between stimulus (patient admission) to
response (patient discharge) then it has been demonstrated Saunders, M.G.,
Hamelin, D.G. and Martin, D. (1966) that such duration follows the negative
exponential distribution. As to the second part of our assumption, re-
searchers in this area of cancer research indicate that a dormant period
after injection varies between 5 and 7 time units (t.u) (months). 1In

our experiments any deaths (censoring) prior to 5 t.u. will be excluded

from samples for purposes of estimation. Censoring is the result of

deaths, before incidence of PMP has been detected. These deaths may be
the results of random causes (epizbotics, canibalism, etc.) or as a result

of their inherent stochastic life process. Normal life expectancies of
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these mice are over twenty-two t.u. and we assume that for periods
of less than eighteen t.u., the individual death expectancy is quite
small. We then consider censoring as due to random causes for under

eighteen t.u. .

- With the above assumptions, we now consider three different samples
and we estimate probability of any mouse developint PMP beyond some
fixed time T. Such an estimator, when used in conjunction with our
earlier remark of 85-907 indication of positive response, can prove quite

meaningful and consistent from experiment to experiment.

Sample 1.

From a sample of size 15, the recorded times as they become avail-
able are 6,6,7,8,8,8,8,9,10,12,13,15,15,17,17 time units. From this
sample we see that u = t(l) =6, v = n(?—t(l))= 69. Since we have a

full sample (no censoring) we use results of chapter two. Then

UMVUE and BLUE for a = (1) - 5.67 = g%
n-1
UMVUE and BLUE for 0 = —r;‘_’—l = 4,93 = ¢

Also, 95% confidence intervals for a" and 0F respectively

[Epstein, 1960c] are

- Wy o* & 1 = [6 - (3.34) (4.93) ,
n. 15

6] = (4.90,6)

for Wv at 95% confidence from F-table at (2,2n - 2) degrees of freedom, and
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_2._.(.n_'.1..)__9* 2 (n-1) 0 } _1-2669) 2(69) | _ (3.11,9.01)
%2, 0252 7 2 575(20-2) Lh.bh6  15.31 T

A measure of R(t) can be obtained if we consider a function of

*
(a, 9*), biased,which we define as Rf(t) such that

t-a* -
Rf(t) = exp { - —_i_} = exp| - t_w
1] 4,93

and a measure of 95% confidence bands about Rf(t) is obtained as

t-4.9 |. - . _t-6
Rf(lower)(t) = exXp ["’ ————3.11 J, Rf(upper)(t) exp { 9.01}

the lower and upper bounds respectively. These bounds are not exact as they
downot allow for bias on one side, yet tend to give wider bands considering

dual extreme values of simultaneous estimated values a*, 0 on the other.

They do serve however, to illustrate estimators based on censored and

non-censored samples as we shall later point out.

A A
Other estimates of (a,9) are MLE's a and © given by

~

A
=U-=6 g V/n=.6

|

We thén have the MLE of R(t) as

S5
[o2} [o)}
| S ]

A
R?E) = exp [- E%ﬁ} = exp {-

We have shown in chapter two that the UMVUE of R(t) is

* _ n-1 t-u n-2 14
R(t) = —/— (1 -—") = T

£-6,13

(L -235)
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and is best with respect to minimum variance estimation.

We also previously defined fot) so that

Number of t,'s lar er or equal to T .

Total number of ti's larger than 5 15

Table 4.1 gives some values for the different estimates used and
we point out the small differences between Rf(t) and the best estimate
*
R (t). The location of these estimates with respect to confidence bands

of Rf(t) are well illustrated in Appendix 1.

Table 4.1

Estimates of R (t) given r =n = 15, t = 6(2)14

A~ *
t Rp?(t) Rf(t) Rf(lower)(t) Rf(upper)(t) R (t) | R (t)
6 1.000 0.935 -0.703 1.000 1.000 0.934
8 0.800 0.625 0.372 0.802 0.648 0.636
10 0.467 0.417 0.196 0.642 0.421 0.429
12 0.400 0.279 0.104 0.515 0.273 0.285
14 0.266 0.186 0.060 0.413 0.177 0.190

Sample 2

We have data as in Sample 1 egcept that t(ll) and t(14) are not

available because of deaths (censoring). If we choose to discard in-
formation beyond t(lO) we can consider the data as a right single stage

censored sample and make use of theory of Chapter III. Then u = t =6,

(L)

and
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T
v = % (t(i) - t(l)) + (n-r) (t(r) - t(l)) =52 for r =-10, n =15
UMVUE and BLUE for a = u - ki = 5.61 = a*
n(r-1) B
UMVUE and BLUE for 0 = r—‘_’I =5.78 = oF
and 95% confidence intervals for a° and ©% are given by
W ooF 3.55 (5.78
n
for Wv at 95% confidence from F-table at (2,2r-2) degrees of freedom;
and
f 2 (r-1) oF 2 (r-1) 9*] f18(5.78) 18(5 78\]
2 (2r-2) ’_2 (2r-2) h s ————— | = (3.3,12.62)
[x2. 025 x2.97525=D) | | 31053 8.23

We define

and

, o t-4.63] . _ t -6
Rf(lower)(t) = exp [' 3.3 } ’ Rf(upper)(t) I [- 12.62}

MLE of (a,0) are

. A t-2 t -6
Therefore ' R (t) = exp |- 5 | = exp |- 55

and from chapter three

- -y r-2
RE(e) = 2L (- B2,y _ 14
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and is best estimate of R (t) with respect to minimum variance.

t'
Rf(t)= #* isET

15

as before but is restricted to T < t Table 4.2 gives some values

(10)°

for estimates of R (t) and we again point out the small differences bet-

ween Rf(t) and R*(t). From Appendix II we see'thé wider confidence

bands about Rf(t) for censored case. This loss in confidence is directly
attributable to the loss of sample points and thus, decreased sample space,
used in calculating our estimates. 1In fact, the purﬁose of calculatiné
confidence bands about Rf(t) has been primarily to illustrate graphically

the sensitivity of simultaneous estimation with respect to censoring.

Table 4.2

Estimates of R (t) given r = 10, n = 15,t = 6(2)14

- R(E) IR (t) |R (t) IR (t) R/?E) R#(t)
£ f(lower) ™ f(upper)

1.000 ] 0.935 0.662 1.000 1.000 | 0.934

| 0.8007 [ 0.663 0.362 0.854 0.682 | 0.682

10 0.467 | 0.470 0.197 0.729 0.464 | 0.491

12 0.400 | 0.333 0.108 0.623 0.317 | 0.351

14 ? 7 0.236 0.059 0.532 0.216 | 0.244

Sample 3

Suppose that instead of sample 2 we have one ~mouse die at t = 4,

8,8,11 and 16, at t,., values recorded are 6,6,7,8,8,9,10,13,15,17.
(1)

We arrange data as in Table 4.3 where Z(i) are death (censored)

times.
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Table 4.3

Data from multi censored experiment

Times (Xi) Frequencies
£(4) “(4) 4 i U 74 gy @
6 - 2 - 2
7 - 1 - 2
8 8 2 2 12
9 - 1 - 4
10 - 1 -
11 - 1 6
13 1 - 8
15 1 = 10
16 - 1 11
17 ' 1 - 12

Then we are dealing here with a multi censored sample,

known =5 and if we define

d, = number of PMP at time t, .
i (1)

Z. = number of deaths at time Z .
i (1)

%x,..= time unit (either t,., or Z,.
(1) ( (1) (1))

= X - a for 'a' known
V(1)

(1)

We assume 'a

. + .
then we may estimate © , the Scale parameter by referring to the best

estimator [Herd (1956)] for known location.

t

(Ki + di)y(i)

(]
il
[ =]

2 d i=1




-58-

where n' =n - ¥z less than 'a'

(1)

Thus for t(l) = 4 in our present sample, t(l) is discarded and

O+ - %6 [2(1) + (2) + 4(3) + (&) + (5) +...+ (12)] = 1.

N

|

We define R%(t) as

R%(t) = exp [- Eég] = exp ['

Nt
K
N [
——d

and for t =6(2)14 we have R%(t) = 0.871, 0.661, 0.500, 0.380 and 0.288

respectively,

Should we wish to estimate "a'", we recommend the statistic

v' 2
u = u - ——— v! = >

n(Zdi-l) i

X, .
i
e
*
which is a compromise estimate of a for the single stage cemsored sample.

In our example we have

142
T2 - —* - 49
" 14(9) =

(o)

To estimate R%(t) , we then use

R%(t) = exp.[j tii’] =  exp [- E%%égé] = R%(t) .
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Conclusion

The similarity of data in the three samples previously discussed
enable us to compare estimates of Reliability for the three samples.

Appendices 1 and II illustrates both the decrease of precision as

censoring occurs and the close approximation of Rf(t) to R*(t). Further
this allows for approximate comparisons between R%(t) and Rf(t) as illustrated

in Appendix IIT. This latter illustration al’so indicates a tendency of

Rf(t) to over estimate R(t) for more complex censoring to the right.

The last sample discussed indicates the difficulty one would have

in order to calculate R_(t)
P

Finally, we compare the estimate of probability of any mouse having
a PMP response by time T for the three types of samples. For our‘comparisons
to include the multi censored éample we define this probability estimate
as

P[ dev. PMP by time T] =1 - Rf(t)

which is 0.814, 0.764,vand 0.712 for t 14 in samples one, two and three

respectively. From Appendix III we note that sample estimates 2 and 3

tend to under-estimate this probability.

A question occurs when the theory of the preceeding chapters is
applied to such experimental analysis as that found in the last cﬁapter.
Can any adjustment factors be derived which, when applied to estimators
derived from censored samples, will tend to improve these estimators without

greatly reducing the confidence of these same estimators?
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To attempt to answer such a question would require the derivation’
of biases associated with practical estimators, and the cummulative
affects of such biases dependent on the number of observations and range
of elapsed times analyzed. Such an investigation is not without difficulty
but the évailability of data from such experimental work as done in Cancer
Research would warrant that quaptitative analysis in this area be done.
It is only through such research that sound yet practicai 'rule of thumb'

ad justment factors could be defined for application by the non-statistician.
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