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Abstract

A new experimental technique is developed for measuring the instantaneous en-

tropy production using a non-intrusive laser based approach. The experimental proce-

dure combines the method of Planar Laser Induced Fluorescence (PLIF) and Particle

Image Velocimetry (PIV) for measured velocity and temperature fields in different

applications. Unlike pointwise methods which yield a measured velocity at a single

point in space, the method of PIV is used to derive velocity gradients over the entire

problem domain. When combined with local temperatures and thermal irreversibili

ties, these velocity results can be used to determine the energy availability loss due

to exergy destruction. The local entropy production data provides useful information

regarding the spatial distribution of mechanical energy loss, which can be used to

systematically optimize thermofluid systems. The measured data also provides val-

idation for previous predictive models. Local entropy production rates due to fluid

friction are determined from an experimental study of laminar and turbulent flow in

a channel, as well as natural convection in an enclosure.

An entropy-based conversion algorithm in the measurement procedure is devel-

oped and compared with numerical predictions of free convection in a square cavity.

The numerical predictions are obtained from a Control-Volume Based Finite Element

Method (CVFEM) for the conservation equations and the Second Law. Analytical

and direct numerical solutions are employed for a qualitative assessment of the exper-

imental procedure in the channel flow problem. The predicted and measured results

show close agreement. For the free convection problem, a measurement uncertainty

analysis suggests that the algorithm post-processes velocity (accurate within + 0.5%)

to successfully give entropy production data, which is accurate within i 9.34%. Ex-

tensions of the loss mapping technique to turbulent flow engendered a new model

III



for a turbulence correlation in the entropy transport equation of viscous, incompress-

ible flow. Additional terms were introduced into the entropy production relation in

the conversion algorithm, due to the dissipation of turbulent kinetic energy. Pre-

vious methods of measuring dissipation rate are outlined in the context of the PIV

technique.
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Chapter 1

Introduction

Considerable recent attention to energy efficiency has been motivated by an increased

a\vareness that the world's energy and environmental resources are limited. Major

efforts have focused on the design of highly efficient energy devices and more envi-

ronmentally friendly processes. Thermal and mechanical energy systems have been

thoroughly scrutinized for possible design improvements. Past conventional technol-

ogy has generally detected energy losses on a system-wide or global scale, such as

a single loss coefficient (i.e., valve loss coefficient). With the current state of this

technology, the margins of improving efficiency of existing devices can be relatively

small. However, recent advances in entropy-based design with local loss rnapping

offer a useful new way of reaching higher levels of system efficiency, thereby leading

to energy savings in various industrial applications.

1.1 Motivation

The fundamental principles governing the design of thermo - fluid systems are New-

ton's law of motion and the laws of thermodynamics. In fact, Newton's Second Law

of motion and the First Law of Thermodynamics are the cornerstones upon which

virtually all energy systems are built today. The other laws have a supporting role.



Unlike the First Law of Thermodynamics, which tracks only the quantity of energy,

the Second Law of Thermodynamics tracks quality of energy or its work-producing

potential. Thus, the Second Law has the unique advantage of offering an excellent

guideline in the pursuit of optimal energy usage and choice of technologies. The

unique capabilities of the Second Law in this thesis focus on measuring the flow ir-

reversibilities locally, rather than globally. In this way, the problem region(s) can be

clearly identified from the high entropy production rates, so designers could focus on

those regions for improvements. A useful analogy is a sick patient telling a doctor

that he / she is sick, without knowing the part of the body that is causing the ailment.

Similarly for a complex engineering system, large rates of entropy production within

a device would identify areas of concern, since a commonly desired goal of devices

is improving efficiency through reduced entropy production. This goal is generally

desired, regardless of application, flow conditions, system parameters, and so on.

Alternatively, local exergy or the work potential of a device can be more readily

interpreted physically, as it contains the same dimensional units as energy. It can

be related directly to economic indicators. For example, multiplying the local cost

of electricity (per kWhr) by exergy destroyed in moving fluid through a valve over

a year can indicate a yearly expense of wasted energy therein. This expense can be

interpreted in terms of lost revenue. Thus, an economic framework can be based on

the measurement of local entropy production.

Furthermore, there is a need for a standard metric, from which the energy effi-

ciency of all devices is characterized. For example, fuel efficiency in a car is defined

differently than a water heater's efficiency while still different than how a diffuser's ef-

ficiency is defined, and so on. As a result, it is difficult for regulatory and government

agencies to identify a standard way of identifying any device's energy wastefulness.

Entropy production provides a single, measurable quantity that is directly related to



the efficiency of any energy consuming device, since it characterizes degradation of

useful (mechanical) energy to less useful (internal) energy.

L.2 Literature Review

From engineering fluid mechanics, to information f coding theory, economics and

biology, the various applications of entropy are widespread. Exergy serves as a key

parameter in achieving the upper limits of performance and quality in many engi-

neering technologies. It can shed new light on various flow processes, ranging from

optimized flow configurations in an aircraft engine, to highly ordered crystal struc-

tures (low entropy) in a turbine blade, and other applications [1, 2]. It is likely nct

possible to find any other law of nature, whereby a proposed violation would bring

more skepticism than violation of the Second Law.

An important application of entropy is the optimized flow design of aircraft sub-

systems, involving work potential [3]. It appears that there is no systematic method

for tracking work potential usage in the design of aircraft sub-systems [4]. Exergy and

entropy calculations can identify the loss of work potential within each sub-system

and fluid flow process during an aircraft's operation. This would provide the designer

with a systematic way of identifying and targeting those areas incurring the most

significant losses. In this way, economic considerations could be directly linked to

work potential and flow irreversibilities. Moorhouse and Suchomel [5] suggest that

flow exergy provides a unifying framework and a set of metrics to more effectively

analyze aircraft sub-systems.

Another important application of flow irreversibilities arises with effective thermal

management of electronic devices. Optimized convective cooling of microelectronic

assemblies has received considerable past attention. The effects of component layout



on flow patterns in such assemblies were investigated in a water tunnel [6]. Eniropy

generation has been used to find the minimum power input for convective cooling of an

electronic package [7]. The minimization is carried out with respect to the coolant flow

rate and heat transfer contact area. Landauer [8] outlines how the ultimate physical

Iimitations on faster and more compact microelectronic circuits are considered to be

directly linked to the Second Law.

L.2.L Analytical Methods

The past decade has seen important progress towards the optimizat\on of fluid, ther-

mal and energy systems using the Second Law of Thermodynamics. This progress

includes an analytical approach, which has been performed previously with various

techniques, i.e., (i) estimation of the theoretical ideal operating conditions of a pro-

posed design (called EA; Exergy Analysis), (ii) minimization of the lost available

work or entropy generation by design modifications (called EGM; Entropy Gener-

ation Minimization) [9]. Exergy is a thermodynamic property that quantifies the

capacity of an energy source to perform useful work. It is a measure of the maximum

capacity of an energy system to perform useful work as it proceeds to a specified final

state in equilibrium with its surroundings. Exergy analysis focuses on closing the gap

between exergy and the actual work being delivered by a device through a careful

examination of the thermodynamic processes involved in a series of energy conversion

steps. Subsequently, the exergy values at each point are used to evaluate Second Law

efficiencies which quantify the magnitude of irreversibilities (or exergy destruction)

associated with the energy conversion process [9, 10, 11]. EGM may require the use of

fluid mechanics, heat transfer, material constraints and geometry in order to obtain

relationships between entropy generation and the optimal configuration. Typically, a

functional expression for the entropy production in a process is derived [2, 12, 13, 14].



Then, the turning point or extremum of the derived expression that guarantees a mln-

imum entropy production is determined by differentiation. Since analytical methods

are typically limited to simplified geometries, this thesis focuses on numerical and

experimental methods.

L.2.2 Nurnerical Methods

Additional opportunities for design optimization using the Second Law can be realized

by fully incorporating Computational Fluid Dynamics (CFD) as a design tool for

more complex problems. Entropy production is then obtained by post-processing

of the predicted flow fields [15]. Many industrial problems arising in metallurgy,

power generation, energy storage, aerodynamics and other applications have been

successfully solved by CFD. A designer can choose an optimum design from many

possible alternatives at a remarkable speed using CFD. Local EGM with numerical

methods provides extra flexibility, in terms of problem geometry.

For example, an application involving the design of air-cooled gas turbine blades

is presented by Natalini and Sciubba [16]. The full Navier-Stokes equations of motion

for turbulent viscous flow and the energy equations are solved with a finite element

approach and k-e closure. By identifying the entropy generation rates corresponding

to the fluid friction and heat transfer effects, the authors provided useful information

for the assessment of different blade configurations with minimal thermodynamic loss

in a turbine cascade. The computed flow field produced by pitched turbine blades

117] could be post-processed to identify regions of high local losses, thereby guiding

engineers in local re-design of the blade profile to reduce such losses. Predictions of

entropy production have also been applied to find the optimal inclination angle for an

application involving natural convection in inclined enclosures If8]. Other numerical

procedures predicted entropy generation for mixed convection in a vertical channel



with transverse fin arrays [19], laminar and turbulent flow through a smooth duct

120,2I,221, flow in concentric cylinder annuli with relative rotation [23] and diffuser

geometries [24]. These represent examples of how entropy production computations

can successfully complement standard CFD solvers.

t.2.3 Turbulent Flows

Turbulent flows are often more complex than applications mentioned previously. Nu-

merical predictions of entropy production in a turbulent boundary layer were pre-

sented by Moore and Moore [25]. Moores' work appears to be the first documented

effort to develop a numerical model for entropy production. The Moore model as-

sumes that turbulent fluctuations of the heat flux and viscous dissipation in the pos-

itive definite entropy equation can be modelled by adding a turbulent conductivity

and turbulent viscosity to the molecular conductivity and viscosity, respectively. The

Moore model has been applied for the mean entropy production in a turbulent flow.

In particular, the model has been used to predict the mean local entropy production

in a bent elbow [26], turbulent plane oscillating jet 1271, and a jet impinging on a

wall 128]. A finite volume method for predicting the mean viscous dissipation and

entropy production in turbulent flows, based on time-averaged turbulence equations

was described by Kramer-Bevan [29]. The closure of the entropy equations was based

on a small thermal turbulence model. Despite these advances, further work is needed

to develop a generally accepted model for entropy production in turbulent flows.

L.2.4 Mathematical Entropy Analysis

The traditional physical characteristics of entropy production can also be interpreted

alternatively in computational terms. In addition to physical processes of viscous

dissipation and heat transfer, recent advances in Second Law analysis have identified



that numerical procedures may also produce or destroy entropy due to discretization

errors, artificial dissipation and non-physical numerical results [30, 31]. Solutions of

differential equations which do not satisfy an 'entropy condition' may be character-

ized by a lack of uniqueness, oscillations, and other unusual behaviour [32]. Thue,

the Second Law offers a stability criterion in finite element methods [33]. Cox and

Argrow [31] computed local entropy production with a finite difference method for

compressible flow. Jansen [34] and Hauke [35] have extended entropy-based stability

analysis to turbulent flows. Jansen showed that the exact Navier-Stokes equations for

compressible flow couid lead to an entropy inequality, through a linear combination of

equations [3a]. The study determined what constraints the Second Law places on the

modeling of the averaged equations by linking entropy production to their solution

variables. A detailed review of past advances regarding entropy and the Second Law

in CFD has been presented by Naterer and Camberos [36].

L.2.5 Experimental Methods

For complex geometries, analytical results are generally not available, so numerical

and experimental methods are needed. A major difficulty with numerical predictions

can be the inability to ascertain error bounds. Solutions can be very sensitive to

various parameters associated with the numerical algorithm [30]. This can make

it difficult to judge the extent to which the computed results agree with reality.

Thus, experimental data is generally required to validate the numerical codes and to

ascertain that the physics of a problem has been modeled correctly.

In recent studies, Adeyinka and Naterer 132,371proposed that post-processing of

the spatial velocity gradients characterizes the flow irreversibilities, while establishing

entropy production as a derived experimental quantity. Past experimental Particle

Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) studies have



been reported for whole-field measurements of velocity and temperature of water in

free convection [38, 39]. Although PIV and PLIF techniques are conventional ex-

perimental techniques, their application to entropy production analysis has not been

developed previously (to my knowledge). Unlike velocity or temperature, the mea-

surement of entropy production cannot be performed directly) so new algorithms for

experimental post-processing of measured quantities are needed. This thesis develops

a new post-processing algorithm for these purposes.

1.3 Problem Definition and Objectives

The major results of the literature search that define the problems addressed in this

thesis are summarized as follows:

There i,s need for a component leuel local desi,gn methodology based on the Sec-

ond Law of Thermodynami,cs. Traditionally, energy system designers evaluate

performance and quality of a design by global loss parameters or efficiencies.

This approach accounts for losses computed over an entire system. However,

it is viewed that the information provided to the designer by local values of

entropy production or energy availability loss is more valuable than examining

the end-to-end loss, since the desired overall performance of engineering systems

can be improved by modifying design variables locally.

An erperi,mental techni,que for entropy product'ion rneasurernent has not been

preui,ously deueloped. For complex geometries, analytical results are not gener-

ally available and we rely on numerical or experimental methods. A few past

numerical studies have calculated entropy production for local loss predictions.

But a literature search identified no previous documented effort regarding ex-

perimental local losses and entropy production.



ø There is no generally accepted model for turbulent entropy production As dis-

cussed previously, the Moore model is widely used in CFD [25]. However,

Kramer-Bevan [29] has shown that the Moore model exhibits certain inconsis-

tencies for confined flows with small temperature gradients close to the wall,

where the production of turbulent kinetic energy is not equal to the dissipation

of turbulent kinetic energy. Furthermore, other assumptions lead to difficulties

when generalizing the formulation. For example, the model assumes that the

production of temperature fluctuations is equal to their dissipation. Also, the

viscous dissipation fluctuation is assumed to be equal to the production of tur-

bulent kinetic energy. In this thesis, these shortcomings are addressed through

revised modeling of the turbulence correlations in the entropy equations. The

viscous dissipation term may be neglected in the energy equation when com-

puting the mean entropy generation based on the Moore model [25], as the

evaluation depenfls on the velocity and temperature fields. Under certain flow

conditions, previous studies have shown that CFD codes can accurately pre-

dict velocity and temperature fields when viscous dissipation is neglected [1]

However, the viscous dissipation cannot be generally neglected when using the

STTAss (Small Thermal Turbulence Assumption; [29]). In the STTAss model,

it is assumed that the fluctuating component of temperature is small compared

to the mean temperature, so the fluctuating temperature in the entropy trans-

port equation can be simplified with Taylor series expansions. Those expansions

are truncated after the linear terms, thereby yielding a reduced form of mean

entropy production equation. But the spatial variation of fluctuating temper-

ature is required to accurately account for the convection of entropy in the

flow. It has been shown that the transport equation model becomes inaccurate

for laminar flow in the center of an adiabatic duct, where small temperature



gradients may cause a cancellation [2g].

Therefore, the objectives of this thesis are given as follows:

c Demonstrate a new erperimentaL techn'ique for entropy prod,uction with heat

transfer and, lami,nar fl,uid fl,ow. In order to validate the exper-imental tech-

nique, two test problems will be studied. The first case involves flow in a

parallel channel. A more complex flow involving internal flow in a cavity will

be studied in the second case. The primary aim of the experimental study is

to evaluate the feasibility of using PIV/PLIF for entropy production meâ,sure-

ment. It is remarkable that the technique will be shown to give reliable results

and an accurate distribution of flow losses throughout the range of test prob-

lems. In some cå,ses, the results are supported by numerical simulations which

compliment the experimental procedure. The numerical solution also serves as

a qualitative reference for the measured entropy production fields.

o Ertend the new rrLeasuren'Lent techni,que to turbulent flows. Application of the

measurement technique in the experiments was initially limited to laminar flows.

Many flows of interest to engineers contain regions where the effect of turbu-

lence is quite significant. This objective engendered the extension of classical

Reynolds averaging techniques for the momentum and scalar transport equa-

tions to the Second Law for turbulent flows. The extension of the measurement

technique to turbulent flows introduces additional terms into the entropy pro-

duction equation and conversion algorithm, due to the dissipation of turbulent

kinetic energy.

o Deuelop a working model of an entropy production conuers,ion algori,thm. A

working model of the conversion algorithm will be standardized by interactive

10



software incorporated into an existing industrial code (FlowManager; Dantec

Dynamics [47]). Application of the proposed technique will be demonstrated

for flows in ducts and cavities.

ø Ertend, past Reynolds aueraging techni,ques for the conseruation equat'ions to the

Second Law for turbulent fi,ows. The formulation requires instantaneous values

of the velocity and temperature fields. In order to express the mean entropy

generation explicitly in terms of other mean flow quantities, a closure problem is

encountered, similarly as the evaluation of Reynolds stresses in the momentum

equations. To my knowledge, there are no existing empirical / numerical Second

Law closure models based fully on mean quantities from the conservation equa-

tions. This thesis addresses this shortcoming, while developing an alternative

closure. In particular) a new entropy-temperature correlation will be developed

that incorporates the effect of temperature fluctuating stress interactions in the

modeling of the mean entropy production. New complete closure models will

be formulated based on the new correlation and the STTAss. Furthermore, this

thesis proposes an alternative interpretation and model for the dissipation of

turbulent kinetic energy, based on the Second Law.

The entropy production results will be compared with analytical and numerical

results where applicable. The uncertainty of measured data will be presented. The

final results represent the first documented study (to my knowledge) of measured

entropy production in fluid flow and heat transfer processes with non-intrusive laser

based techniques.

For all the analyses in this thesis, it shall be assumed that the continuum assump-

tion is valid, the mass of the system is conserved and does not change (no nuclear

reactions), and radiative and magnetic effects are negligible.
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L"4 Outline of Thesis

This thesis outlines new numerical and experimental methods for thermal design and

loss analysis using the Second Law of Thermodynamics. Detailed numerical simu-

lations of the fluid flow, energy and entropy transport equations will be performed

with a Control-Volume Finite Element Method (CVFEM). Also, a new experimen-

tal technique based on combined Particle Image Velocimetry (PIV) and Planar Laser

Induced Fluorescence (PLIF) will be presented for energy loss detection in energy sys-

tems. Applications to loss characterization in various applications will be presented,

i.e., flow in parallel ducts and free convective heat transfer. In these applications and

others, the technique will be shown to give promising performance, reliable new data

and an accurate new description offlow losses and energy conversion through entropy

production.

In Chapter 2, a generalized formulation for entropy production and its relation to

losses of mechanical energy will be presented. Chapter 3 outlines the experimental

technique and its underlying principle. Detailed information regarding the estimation

of the dissipation of turbulent kinetic energy will be presented for turbulent flow

applications. An application of the measurement technique to flow between parallel

plates will be discussed in Chapter 4. Free convective heat transfer is examined in

Chapter 5, with comparisons to previous numerical benchmark solutions, as well as

new numerical results. Chapter 6 presents a measurement uncertainty analysis for

the laminar flow cases. The last chapter concludes the thesis with a general discussion

and suggestions for further research.
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Chapter 2

Loss Characterization and Second
Law Modelling

In this chapter, the equations describing the Second Law and its modelling in both

laminar and turbulent flows will be discussed. The formulation specifically consid-

ers incompressible forced convection problems without a buoyancy term in the y-

momentum equation, as density variations are neglected. A newtonian fluid with

constant thermophysical properties is assumed in the modeling of the diffusion terms

in the momentum equations while the Fourier law will be applied in the energy equa-

tions. In formulating the final turbulence closure models, a small thermal turbulence

was assumption was used. This chapter will also present the numerical formulation

with the geometrical discretization and the local-global coordinate transformation,

which is required to apply the conservation laws to discrete control volumes and fi-

nite elements. The chapter concludes with an outline of the method used to express

the discrete form of the Second Law.

2.L General Scalar Conservation Equation

In tensor notation, the conservation form of the scalar equation in multi-dimensions

can be written as [f]

13
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where i : L,2, 3 and þ is a general scalar quantity or dependent variable, such as

concentration, temperature, velocity, etc., transported throughout the flow field by

diffusion or convection. The terms on the left-hand side of Eq. (2.1) represent the

transient storage term and the convective flux. The first term on the right hand

side is the diffusive flux. The last term represents internal or external production /
sources of / in the volume. In the modelling of Eq. (2.1), I and ^S4 are generalized

properties representing the diffusion coefficient and source terms, respectively. For

example, f may refer to conductivity, viscosity, eddy diffusivity, etc. depending on

the conserved quantity under consideration. Also, terms that cannot be expressed

through the convection and diffusion terms (such as the pressure gradient in the

momentum equations) can be lumped into the source term.

Assuming incompressibility and constant thermophysical properties, the corre-

sponding governing equations for the conservation of mass, momentum and energy

can be written in a form similar to Eq. (2.f ), i.e.

These conservation equations involve

upcoming sections involves an inequality.

(2 2)

the Second Law in the

ftro"s

*r", + 
ftØ,iuo): -#,.

ftøøt + ftØuiÐ:

-0

EV(H-
&(,#).
alities, whereas

H)l¡ su, (2 3)

só (2.4)

equ
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2.2 Formulation of Entropy Production

In tensor form, the entropy balance for an open system, subject to mass fluxes and

energy transfer across a fixed control surface, may be written as

where P" is the entropy production rate and S : ps represents the entropy per unit

volume. Also, the component of the entropy flux in the r¿ direction, .fl, may be

expressed in terms of the velocity component and heat flux in that direction, u¿ and

q¿, as follows,

F¿: puts + ff

AS ôþ" ]
at + aa= P" > o

As: I: ",# * Ioo.' åroo

(2.5)

(2 6)

(2.7)

Equation (2.5) represents the entropy transport equation. In this form, the rate of

entropy accumulation in the control volume is balanced by the net convection of

entropy, entropy transfer associated with heat flow and non-negative entropy pro-

duction. Unlike the conservation of energy equation, the entropy transport equation

involves an inequality, which stipulates that the rate of entropy generation must be

non-negative in all thermodynamic systems.

The specific entropy, s, in the flux term of Eq.

Gibbs equation as follows,

a,:|a"*åroo

(2.5) can be obtained from the

where e is the internal energy per unit mass, p represents density and p is pressure.

Integration of the Gibbs equation gives

(2 8)

where the subscripts r and s denote a specified initial (or reference) state and the

current state, respectively. The variable c, represents the specific heat at constant
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volume, which will be assumed to be constant. The impact of this constant specific

volume assumption implies that the formulation is limited to liquid flows or incom-

pressible gas flows over small to moderate temperature ranges 11]. This assumption

applies to explicit evaluation of entropy in the entropy equation of state, but not up-

coming transport equations for evaluating spatial variations of the entropy production

rate.

For an incompressible fluid, Eq. (2.8) becomes

As:s-sr:"rt"(l)

For an ideal gas,

Substituting the ideal gas law into Eq. (2.10),

,: "rtnffi + r,

s : catn (+) - nt" (.t) + ,,

(2.e)

(2 10)

(2 11)

(2.r2)

: culn(#).'.

where 7 is the ratio of specific heats.

When combined with the Gibbs equation, the entropy transport equation provides

a way of calculating the local entropy generation for an open system. Alternatively,

Þ" can be formulated as [2]

(#)'
Also, r¿¡

D- kts- 
Tz

T;; ôLt,+ ", " >0'T0r¡--

where k is the thermal conductivity.

gradients in the fluid motion, i.e.,

is the viscous stress arising from velocity

l(ãu¿_â,r¡\ _?ð"urfr¿i: tt 
L(,ãt 

* u") - iúuu] (2 13)

In Eq. (2.13), p, and d¿3 refer to dynamic viscosity and Kronecker delta, respec-

tively. The divergence terms in Eq. (2.13) will vanish due to the assumption of flow

incompressibility.
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In Eq. (2.I2), Fourier's Law has been used to represent heat conduction. Also,

a Newtonian fluid is assumed for the viscous stress term. Based on these models,

Eq. (2.12) becomes a positive definite expression for the entropy generation rate,

since it represents a sum of squared terms [1]. Temperature, T, is expressed in ab-

solute (Kelvin) units. The positive definite equation applies to both compressible

and incompressible Newtonian fluids. In Eq. (2.12), the first term on the right side

represents entropy generation due to heat transfer across a finite temperature differ-

ence, while the second term represents the local entropy generation due to viscous

dissipation (i.e., degradation of mechanical energy into internal energy due to shear

action).

2.3 Flow Loss Characterization and Exergy De-
struction

Conventional loss parameters, such as a global head loss or pressure recovery coef-

ficient, cannot identify specific locations and sources of flow losses in fluid systems.

This section presents a formulation thai allows local irreversibilities to be scrutinized

and converted to local distributions of loss coefiÊcient. In this way, a designer could

use local loss mapping to detect locations of high entropy production (or flow irre-

versibility), thereby allowing local design changes of geometrical or other parameters.

In this section, it will be shown that local rates of entropy production can be con-

verted to local loss parameters, while providing a more generalized approach to loss

analysis.

Consider incompressible viscous flow through a streamtube in the flow direction,

between an inlet (subscript 1) and outlet (subscript 2; see Fig 2.1). The well-known

Bernoulli's equation outlines the head loss along this flow path as follows,
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where lz¿ is the head loss. Also, p, g, z andV refer to pressure, gravitational accel-

eration, elevation and total velocity, respectively. It can be shown that Bernoulli's

equation represents an integrated form of the following differential mechanical energy

equation [1],

,#(iu') : -..'vp *{V''' v - r: Vv} * F6' v (2.15)

where DlDt, r, Fb and v refer to total (substantial) derivative, shear stress tensor,

body force and fluid velocity vector, respectively. The colon symbol (:) represents

matrix contraction between the shear stress and velociLy gradient matrices. The

temporal portion of the substantial derivative on the left side vanishes for steady

state conditions.

The previous equation requires that the net convection of kinetic energy (first

term) balances the sum of flow work (second term), net work of viscous stresses

(third term), plus the net work done by body forces to increase kinetic energy (fifth

term), minus the viscous dissipation (fourth term). Re-writing the gravitational body

force term, integrating over a streamtube control volume, V, and expressing the vector

gradient in the streamwise direction, s,

.v d,V - Ir, : Yv d,V (2.16)

The net viscous work term (first term on right side) is the work done by viscous

stresses in the fluid element against the surroundings to change the kinetic energy of

the fluid.

More specifically, consider a control volume, A(ds) of finite width in the cross-

stream direction and differential length in the streamwise direction (see Fig 2.1).

(2.r4)

l,o, * (i" *T* s,) av : I,v ,
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Figure 2.1: Loss in Fluid Flow

Integrating over this control volume and assuming a uniform mass flow rate through

the streamtube encompassing the control volume, it can be shown that

^ f ,(rrrr,P, ^-\- r lr-
mp lr * \ru' * ; * sz) *Vrv' r' v d'v - lr''v" av) Q'fi)

where m¡¿ is a reference global mass flow rate. The last term on the right hand side

refers to viscous dissipation within the control volume. It reduces mechanical energy

by dissipation of kinetic energy to internal energy. The viscous dissipation represents

a loss term in Eq. (2.I7), which can be directly related to the entropy generation,

based on Eq. (2.L2). Performing that substitution and comparing to Bernoulli's

equation, the head loss becomes

(2.1s)

Alternatively, this result can be expressed in terms of the local rate of exergy

destruction , X¿, due to friction irreversibilities of viscous dissipation at ambient tem-

H,:! [rÞ,¿v
TTÙp JV
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perature) ?0, i.e.,

(2.re)

This result represents a useful alternative to conventional loss characterization.

It can be seen that available energy loss is a local volumetric phenomenon involving

exergy destruction. In contrast to past methods characterizing flow losses through

global empirical coefficients, this approach allows local tracking of flow losses, since

V can be taken as an arbitrarily located discrete volume. Entropy production encom-

passes all flow irreversibilities (thermal and friction), unlike pressure, which may be

de-coupled from temperature under certain flow conditions. Reduced exergy destruc-

tion is a common objective, but changes of individual flow variables are generally

problem dependent. For example, higher pressure losses with added baffies may be

a desired way of increasing heat transfer rates in a heat exchanger. On the other

hand, reduced pressure losses are needed in pipe flows, as they entail lower pump-

ing input power. Thus, tracking local pressure changes does not generally identify

problem areas. On the other hand, lower entropy production rates are considerecl

to be a more robust and common objective. It can be more valuable than tracking

end-to-end pressure losses, since the desired overall performance can be improved by

re-designing locally.

In the next section, it will be shown that the previous results can be extended to

turbulent flows. In particular, for near-isothermal incompressible turbulent flow, it

will be shown that the mean turbulent entropy production reduces to an expression

involving mean viscous dissipation and the dissipation of turbulent kinetic energy,

i.e.,

ôu¿
--ðr¡

Hr: L [^r!¿v
rTLp JV 'l 

s

TÞ" : r^!.J
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Equation (2.20) connects the magnitude of turbulent dissipation rate to the quality

and efficiency of industrial processes [40]. Past studies have associated the dissipa-

tion of turbulent kinetic energy with othel physical processes, such as the degree of

segmentation, droplet and bubble breakdown, and chemical reaction [41]. A revised

interpretation based on entropy production and the Second Law may provide a gen-

eral framework for understanding the physical structures and processes leading to

such breakdown.

In the following section, an overview of the turbulence formulation of the Second

Law will be presented.

2.4 Reynolds Averaged Entropy Transport Equa-
tions

For turbulent flows, the Reynolds averaged entropy equation can be obtained after

combining the positive definite and entropy transport equations. The resulting com-

bined expression, called the Reynolds averaged Clausius-Duhem equality [34, 35] can

be written as follows,

ð,_, a l__ - k-ðr) k(r!Y_.Tiq!i
*Øs) * arlou;s + puls' - , d"l: ,, \ail * T u, (2.21)

were the overbar (i.e., 3) and prime (i.e., s') notations refer to mean and fluctuating

components associated with the Reynolds averaging, respectively.

Since 7 and u¿ (and consequently the viscous dissipation term) have mean and

fluctuating components appearing in the denominator and numerator, modeling of Eq.

(2.21) becomes highly complex. It becomes difiñcult to explicitly express the mean

entropy production in terms of other mean flow variables alone. Two established

approaches for expressing the mean entropy production are briefly addressed below.
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2.4.L Separate Time Averaging

In the first approach, the two sides of Eq. (2.21) âre âveraged seperately. For the

entropy transport equation, Reynolds averaging yields

6-9, A ^ t / 't-t\lr-": 
ar(pÐ + 

ar,þù¿s * pu'¿s') + nfr;tn 
Lf (t * T)l > o (2.22)

The first term in Eq. (2.72) can be simplified by substitutingð(lnT)l0rofor (ðTlôr¿)lT

before time averaging. The time averaged positive definite entropy equation becomes

E: nfirnntfirr,n*rffi*,

1."#H-rr.'#(+)'Y,
+ ,#(+)' #*,

#)l
+,[H((

(2.23)

A close examination of Eq. (2.23) reveals the physical processes leading to en-

tropy production in turbulent flow. The first two terms on the right side are entropy

production terms due to thermal fluctuations and transport. The terms in the first

squared brackets represent the entropy production due to mean viscous effects. The

terms in the second squared brackets represent entropy produced due to the dissipa-

tion of turbulent kinetic energy. The terms in the last squared brackets represent the

mechanism of entropy produced by the interaction of fluctuating viscous effects and

temperature fluctuations. The remaining terms represents the conversion of entropy

production, due to mean viscous effects, to entropy production due to fluctuating

viscous-temperature effects and back.

By defining the mean viscous stress and the fluctuating viscous stress, respectively,

7u'o , au't\ au'n

ô"t- ôr) a"t

(+)'((H.#) ô"Í \
6"t )
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T¿j: þ

T¿j: I'L

then Eq. (2.23) becomes

-ããP, : kl-(tnr)l-(tnr) + kl-(InT)' l-(tnT)' +Oï¿ Or¿ OI¿ OI¿
(+)-,'#.(å) ."H

+-,,-H-#*tu(:J"í-,*ffi îffi .o

rÞ, + r, Þ: : o*Oø#,. nftu"rl,ff * -,,# *,:,H

K#.*)l
K#.#)l

(2.24)

(2 25)

(2.26)

Modeling of this equation is considered to be more complicated than modeling of

the standard turbulent kinetic energy equation. No models exist at the present time

(to my knowledge) for the correlations involving the (IlT)'terms. Any such correla-

tions would be difficult to validate and/or meâsure with some degree of accuracy.

2.4.2 Combined Time Averaging

Modeling of the mean entropy generation can be simplified by the following approach,

whereby the Clausius-Duhem equality is averaged. The left side of Eq. (2.72) is

multiplied by temperature to give

Kramer-Bevan [29]

with the following

time averaged form of Eq.

(2.27)

(2.27),

0u¿
rij 

aq
rÞ,: +(#)' .

presented a derivation of the

result,

(2.28)

In Eq. (2.28), the physical processes of conversion of entropy production, arising

from mean viscous effects, to entropy production due to fluctuating viscous f tem-

perature effects have been captured in the TÈ'. 
"orr"lation. 

Other terms remain as
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previously described for Eq. (2.23). This equation seems to be more straightforward

than Eqs. (2.22) - (2.23), provided that suitable empirical models can be developed

fo, ff and thermal gradient correlations. Kramer-Bevan [29] proposed a closure

approximation for a subset of possible flow fields by using a Small Thermal Turbu-

lence Assumption (STTAss). A detailed discussion of the STTAss will be given in

an upcoming section. At this time, no model exists for the T" Þ1 ,orr"lation (to my

knowledge). The following section attempts to provide such modeling.

2.4.3 Fluctuating Temperature and Entropy Production Cor-
relation

In order to derive a general, combined time averaged equation for the mean entropy

generation , the T'Þ! correlation was modeled after multiplying both sides of the

entropy transport equation, Eq. (2.5), by 7. Then, time averaging is performed to

yield

.;#Ø"l-') .;Frr"r) .l#t",-l * rm e.zs)

By comparing Eq. (2.22) with Eq. (2.29), it can be shown that

lFi :;#r",,Ð .;#Ø*) .;Fr",Ð * om (2 30)

Using the chain rule of calculus,

14: *Z#,+ pE;#+ pTs-#+ oa,i *Er* *;#0",Ð (2 31)

*rm (2.32)

By assuming incompressibility, the mean and instantaneous velocity fields are

solenoidal and Eq. (2.32) reduces to

r' Þ; : rTq# + pú¿;l{a.;#*,Ð * rm (2 33)
(
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This equation for the T'Þ! correlation is a new result for turbulent incompressible

flow. It is considered that all terms in this equation can be more readily determined

than the past formulations. The following section considers modeling of individual

terms in Eq. (2.33).

2.5 Eddy Viscosity Models of Mean Entropy Pro-
duction

A few simplified models, based on the solution of the RANS equations and an eddy

viscosity for mean entropy generation, have been documented in past literature [25,25,

28,291. The linear eddy viscosity model assumes a Boussinesq relationship between

the turbulent stresses (or second-moments) and the mean strain rate tensor through

an isotropic eddy viscosity. Although these models attempt to minimize complexity,

it is difficult to ascertain if the essence of relevant irreversibilities has been captured

with sufficient accuracy, due to the lack of experimental data. It should be noted

that no relevant experimental data regarding these turbulence correlations of entropy

production has been measured or reported in the literature.

Moore and Moore [25] suggest the following correlations for mean entropy pro-

duction, thermal diffusion and viscous dissipation, respectively,

_-
TP, (2.34)

k::
T

rry:r,(#)'
\ö"¿

:ãú h - ðu¿
r¿¡ ar¡: rrroj arj

In Eqs. (2.35) and (2.36), k¿ and ¡r¿ denote turbulent molecular

and the turbulent molecular viscosity, respectively. This modei misses

(2.35)

(2.36)

conductivity

most of the
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correlation in Eq. (2.28), due to the assumption that the temperature fluctuations are

small compared to the mean temperature. Unfortunately, there is no experimental

or theoretical evidence to verify that the missing terms are sufficiently small for all

turbulent flows, over a range of flow conditions.

Due to these inconsistencies, particularly close to the wall, Kramer-Bevan pro-

posed a different physically based model for the viscous dissipation correlation [29],

i.e.,

TÞ-:r*=r, (ô{!t, a,_,,," T \ar;) +îo¡ar+¿

(2.37)

where ã is the "true" dissipation of turbulent kinetic energy. The definition of õ differs

from the definition of dissipation of turbulent kinetic energy in the standard k - e

model (documented in Ref. [t]). The resulting model of entropy production becomes

(2.38)

In contrast to the Moore model, which uses the positive definite entropy equation,

the small thermal turbulence model (STTAss) is based on time averaging of the en-

tropy transport equation. It assumes that the fluctuating component of temperature

is small compared to the mean temperature. In formulating this model, the fluctu-

ating temperature in Eq. (2.22) is replaced by a Tayior series expansion of those

functions. The expansions are truncated after the linear terms, thereby yielding the

following equations for mean entropy production and mean specific entropy 129],

4:*øù**(,o,,-+W .*) #) -o (2.3e)

(2.40)
T

F:sr tcJn!-Rhbtr P,

The turbulent Prandtl number, Prr, arises in Eq. (2.39) because the entropy-

velocity correlation has been modeled with a Reynolds analogy. Under the STTAss,
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extra terms arise in the entropy transport equation, with an increase in the diffusion

term. This is equivalent to adding an effective diffusivity, c,¡1,¿f Pr¿, to the thermal

diffusivity in the laminar model.

2.6 Turbulence Modeling with the Second Law

The exact equation for the dissipation of turbulent kinetic energy (TI(E) is useful to

understand the meaning and importance of various terms, but usually it cannot be

rigorously modeled in its full detailed form [42]. Modeling of the exact equation is

traditionally carried out by drastic simplification and it usually involves a laborious

empirical determination of five or more closure coefficients. This section attempts

to obtain the dissipation of TKE using the Second Law under the STT Assumption.

In this approach, the local entropy production in convection dominated flow can be

computed based on mean quantities (velocity and temperature) obtained from the

solution of the RANS equations, using both the transport and positive definite forms

of the entropy equation. Since the dissipation of TKE (denoted by e) appears in

the positive definite mean entropy production equation, it is anticipated thai its local

value can be computed throughout the flow domain by the Clausius-Duhem equation,

Eq. (2.21). A formulation for the proposed model is presented for the eddy viscosity

and second moment turbulent closure.

Combining Eqs. (2.22), (2.28) and (2.33) we obtain the following combined en-

iropy equation for turbulent flow,

: r*aø#.r#ûH+-,,#* 'xJ ar j



The fourth term on the right side of Eq. Q.al) represents the dissipation of turbu-

lent kinetic energy. This term, called €, can be interpreted as a physical mechanism

by which exergy gP") is destroyed in turbulent flow. This view agrees with the

traditional interpretation that associates e with the rate at which turbulent kinetic

energy is converted to internal energy in the flow. The terms after the second equality

in Eq. (2.41) reveal the physical processes leading to exergy destruction in turbulent

flow. The total exergy desiroyed in turbulent flow is the sum of the exergy destroyed

due to irreversible heat transfer (terms 7,2 and 8), viscous dissipation (terms'3 and

4), turbulent enthalpy transfer (term 5), and the work done by fluctuating temper-

ature against turbulent entropy transfer by mass exchange (term 6 and 7). All of

these irreversible processes dissipate useful mechanical energy into less useful internal

energy.

It is important to note that Eq. (2.a1) re-emphasizes the importance of maintain-

ing the positivity of e in numerical simulations. The time-averaged entropy equation

does not shed much light, in regards to modeling of e, except when simplified by the

Small Thermal T\rrbulence Assumption. Complete modeling of the Clausius-Duhem

equation can only be achieved through experiments for calibrating closure coefficients,

when approximating the non-linear fluctuating terms. Two approaches (linear eddy

viscosity and DSM closures) will be described for modeling and simplification of Eq.

(2.4r).

2.6.L Linear Eddy Viscosity Closure

The terms in the time averaged entropy equation,Eq. (2.4L), can

a linear eddy viscosity model as follows (see appendix for derivat

ftr,a + fi1,o,, - +W. ù #): hl,*.,r,) (

be deter

ion),

#rl

mined from

T;; ()11,;
-J- "J "'Tôr¡

28
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+ ffil*(w)*o,fi(

The left side of Eq. (2.42) was developed from the entropy transport equation on

the left side of Eq. (2 5) That expression must equal the positive definite rate of

entropy production from the Second Law in Eq. (2.12), which becomes the right side

of Eq. (2.42). On the left side of Eq. (2.42), the terms represent the transient change

of mean entropy (first term) and the transport of entropy by mass and heat fl<.rw

(second term in square brackets). On the right side of Eq. (2.42), the terms refer

to entropy production associated with thermal molecular and turbulent diffusion of

the mean temperature field (first term in square brackets), viscous dissipation of the

mean velocity field (second term) and irreversibilities in dissipation of turbulent ki-

netic energy (third term). Within the braces, the terms represent entropy production

corresponding to irreversible temperature fluctuations (first and second terms) and

irreversible interactions between fluctuating velocity and temperature fields (remain-

ing terms). The individual terms in braces can be obtained through the following

correlation governing the dynamics of ?'2 (Tennekes, Lumley [43]), i.e.,

(2.43)

where a is the thermal diffusivity.

2.6.2 Differential Second Moment (DSM) Closure

The Differential Second Moment Closure directly solves the transport equations for

the Reynolds stresses in the momentum equation. This approach is used to obtain

(2 42)

(T)l

"')l )

a
1'u¿^

o:t¿

Pc,l A
: l-T l,ðrn

_a
u¿^

0t;
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the scalar fluxes in turbulent

computed turbulent heat flux,

flow, involving the transport

T'u' and Eq. (4.1) can then

of passive scalars. The

be used directly in Eq.

(2.41) to give

ftroa + + prúP +
OlX¿fi1,,,,*?w ##l:h(#)'

å.{ h(#)'*f;*(Ðfien

r¿¡ 0A¿

Ta%

(2.44)

This approach dispenses with the eddy viscosity to express the turbulent shear stress

in terms of mean flow quantities.

Similarities in turbulent irreversibilities can be observed in Eqs. (2.42) and (2.4\.

From left to right on the left side of Eq. (2.44), the terms represent the transient

change of mean entropy (first term) and the transport of entropy by mass and heat

flow (second term in square brackets). Unlike Eq. Q.a\, the heat flow is not modeled

with a turbulent conductivity in this case. On the right side of Eq. Q.aa), the terms

refer to entropy production corresponding to thermal molecular diffusion of the mean

temperature field (first term), diffusive entropy transport in the mean flow field due

to velocity fluctuations (second term), viscous dissipation of the mean velocity field

(tnira term) and dissipation of turbulent kinetic energy (fourth term). In a similar

way as previously described, the terms within braces represent entropy production

corresponding to irreversible temperature fluctuations (first and second terms) and ir-

reversible interactions between fluctuating velocity and temperature fields (remaining

terms).

In the following section, an overview of the numerical Second Law formulation

will be presented.
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2.7 Numerical Solution Procedure

The discrete equations for velocity, pressure, temperature and entropy production are

obtained by integration of the governing equations, Eqs. (2.2), (2.3), (2.4) and (2.12),

over finite control volumes and time intervals. The solution of the discrete equations

is obtained with a Control-Volume Finite Element Method (CVFEM). A schematic

of the finite element and control volume discretization is illustrated in Fig. 2.2. The

domain is subdivided into linear, quadrilateral finite elements. The grid is arranged in

a collocated manner, so that velocity components, pressure, temperature and entropy

production are obtained at nodes located at every element corner. The finite element

model uses a local (s, ú) coordinate system, when calculating shape functions and

other element properties (see Fig. 2.2). Each element is subdivided into four sub-

control volumes, with internal sub-control-volume (SCV) boundaries coincident with

the local coordinate surfaces defined by s : 0 and ú : 0. An 'effective' control

volume is defined by all sub-volumes from elements surrounding a particular node in

the mesh.

The global Cartesian coordinates and scalar values, þ, are related to local element

values using bilinear shape functions, ly',

4

ó(t,t): I l[(s, ú)Õt
i:7

1

¡rl,(s, t) : i(1 + s)(t + t)

1

¡/r(s,t) : ;(1- s)(i + t)

1

Älr(", t): ;(1 - r)(1 - ú)

1

ÄIn(r, t): ;(1 + s)(1 - ¿)

(2.45)

where

(2.46)

(2.47)

(2.48)

(2 4e)
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local node number

sub-volume

control volume

Figure 2.2: Ðlement and Control Volume

and Õ¿ refer to values of þ at local nodes z':1,2,3,4.

The spatial derivatives of the scalar are evaluated according to

r
ode

finite element

To obtain the shape

obtain

where "I is the determinant of the Jacobian of transformation given by

lrl:

aól :+ry| Õ¿ñlu,r- k at 11,,,¡ "
function derivatives in Eq.(2.50), we apply the chain

t#l 1f * =?lt#lL.+l:vtl* #lL+l

å a¡¿,
: ) 

-1D;-_ dsL=I

.).t
ùL

(2.50)
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(2.52)
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In order to enable the algebraic representation of transient and source

sub-element area bounded by a specific range of 0 ( s ( s' and 0 < t < t'

o: Io lo'' lrloro, = lJlr+,+t

(t, - tt)

(t, - tt)

(2.54)

(2.55)

(2 56)

terms, the

is given by

(2.57)

(2.5e)

(2.60)

The outward normal , Ñn, to any sub-control volume surface is evaluated at the

midpoint (or integration point, zp), between any point 1 and 2 on a sub-surface, and

it is expressed in the form

L,n:Lyi-Lrj (2 58)

where Î and j are unit vectors and

ðrl ðrlL,r: a"l (rr-rt) + 
a¿ltxp txp

^oul,\ayl^A: Arl. (t,-stl+ 
æltxp tzp

Integral conservation equations were obtained

ordinate - independent form of the conservation

volume, SCVI, in Figure 2.2, i.e.,

by integrating the differential co-

equations over â discrete control

(2.61)

where a- and in refer to the velocity and the unit normal vector at the surface,

respectively. The surface, ^9, represents a union of S"r,r, 5.2¡, SSI and,S^94 in Figure

2.2.
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Based on the definitions in Fig. 2.2, the diffusive and convective fluxes through

SS1, for example, were computed as follows,

t ev ó) d;t
J.ç.Sl ('"#|,,,La"' -t' Wlo", 

o"'"') *' (2 62)

frrr{rto) ' d'h : o (rn" a,trr, - uinr Lassr) ó0" (2 63)

The lower case variables, S'p and u,'P, denote the integration point value and

Ara and A,ya are respective changes in r and y, as the sub - surface is traversed

counter-clockwise. The Physical Influence Scheme (PINS) of convective upwinding

was employed in this study [30]. PINS obtains ihe integration point value of the

scalar by a local approximation of the governing equation at the integration point.

The procedure accounts for transient, pressure and source terms, when calculating the

convected variable at the integration point. A detailed procedure for the construction

of these integration point operators and equations and the closure of the mass -

momentum equations can be found in Ref. [30].

For the transient storage term, a lumped mâss approach is adopted over a time

interval A,t : t"+1 - ú', such that

* l,",,pg d'v : pr (oi*' - Õi)
A¿

(2.64)

where J is the area of SCV1.

The source term is relatively straightforward to evaluate. For a given source term,

which includes the pressure gradient, the body force and contribution from the viscous

stress terms in the momentum equations, the integral is evaluated as

l,*rtr d'v : s6l;,tJ

4

:Ð
j:r
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where a midpoint approximation has been used in evaluating P at (+,Ð.The above

relations will be used to derive the control volume conservation equations and entropy

production in the upcoming section.

A local numbering scheme (ranging from 1 to 4) within each element allows the

finite element equations to be developed locally and independently of the mesh config-

uration. The resulting element stiffness equations apply to all elements, irrespective

of distortion or skewing of the solution domain. Following a conventional assembly

procedure for the finite elements, the local node equations are assembled into the

global system of equations involving global nodes. This assembly procedure yields a

banded matrix of coefficients. A direct banded solver is used to solve this algebraic

set of equations.

The final step requires discretization of the Second Law, based on post-processing

of the computed temperature and velocity fields. Using Fourier's Law of Conduction

in Eq. (2.5),letting k denote the thermal conductivity, and expressing the absolute

entropy in terms of temperature using the Gibbs equation, we obtain

(2.66)

For the purpose of our analysis, we will discretize the terms in the entropy trans-

port equation with the same temporal and spatial approximations as adopted earlier

in the energy equation. Thus,

Þ,:?#.v (n", _lff)

P, : æ, (ry) + o"o''osiPLa - pcouiosi.Lr

+ å (* o, 
þ_Wr, - 

k La 
Ð_# 

r,) (2.67)

where -I refers to Jacobian of the transformation and it represents the area of the

sub-control volume (i.e. dashed sub-quadrant of element depicted in Fig. 2).
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For an incompressible substance in single-phase flow, the absolute entropy at the

integration points, s¿r, is obtained by a linear interpolation involving nodal values of

entropy and the shape functions. The absolute entropy is found at the node from a

piecewise logarithmic equation of state, based on integration of the Gibbs equation

(Eq.(Z.O)) for incompressible fluids.

We will assume a piecewise constant distribution for the temperature gradient

within a sub-control-volume. The local entropy generation at a node is then approx-

imated by the average local entropy generated in the control volume. The positive-

definite equation is discretized as follows,

(2.68)

where

Q¿ : 2l(*l'^. (H): . (X. #) _
and m refers to the discretized forms of the bracketed terms based on the local

derivatives for the bilinear element using Eqs. (2.46) - (2.49). In both cases, the

values of the scalar variables (velocity and temperature) are obtained directly fronr

the solution of the appropriate governing equation.

The boundary entropy production rate is calculated directly from Eq. (2.12) to

ensure non-negative values in conjuction with the specification of boundary condi-

tions. In this approach, only the spatial dcrivatives of the velocity and temperature

are computed at the boundaries for the corresponding boundary value of entropy

production. Alternativeiy, entropy fluxes across the control volume boundaries can

be computed through Eq. (2.5) to provide closure of the entropy production at the

boundaries.

P,:+[(å #',)'. (å #.')'f*",*,

(2.6e)
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Chapter 3

Experimental Techniques for
Entropy Production Mapping

In this chapter, new experimental techniques based on the combined use of Particle

Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) will be

developed. PIV measures the spatial distribution of fluid velocity, while PLIF is used

to acquire temperature data in a flow field. The PIV/PLIF method offers certain

advantages over standard methods of anemometry for entropy related experimental

analysis. Previous methods, limited by single-point measurement techniques, can only

focus on measuring single-point entropy production or an averaged entropy production

over a finite volume. On the other hand, PIV /PLIF methods provide a whole-

field method, while allowing non-intrusive and time-varying measurements of the

instantaneous velocity and temperature distribution at a specific cross-section of a

flow field. This thesis addresses a need to gain physical data regarding the detailed

structure of available energy losses throughout a flow field. Since the PIV and PLIF

techniques provide multi-point instantaneous data, these methods can address the

objective by measuring local variations of the entropy production rates. Thus, the

new experimental technique yields whole-field measurements of instantaneous entropy

production with a non-intrusive, optical method.

.) Fl
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3.1 Operating Frinciple of the P_fI/ /PLIF Systern

PIV is based on imaging light scattered by small particles in a flow illuminated by

two laser light pulses at very short intervals, which are characterized by the flow

velocity. The scattered light has the same frequency as the incident laser tight at

low wavelengths. On the other hand, Laser Induced Fluorescence (LIF) does not

result from a scattering process, but rather an absorption and wavelength conversion

process. The light emitted by molecules and atoms in a de-excitation process, induced

by absorption of a photon of higher energy (from a laser source), is red-shifted to

longer wavelength. These combined features of the PIV /PLIF allow synchronization

of the two measurement techniques without much duplication of the hardware system.

The optical configuration for the PIV I PLIF setup consists of a light source, light

sheet optics, fluorescent dye for PLIF, tracer particles for PIV and CCD / CMOS

cameras (see Figure 3.1). In conjunction with the experimental facility, a complete

Pry/PLIF system also consists of a processor unit and analysis software.

In Particle Image Velocimetry (PIV), the pulsed laser illuminates a planar cross-

section in the center of the flow region of interest, parallel to the flow and perpen-

dicular to the camera. The camera captures the image of the illuminated particles

in successive frames at each instant when the light sheet is pulsed. The two succes-

sive images were processed, subdivided into small interrogation regions, and matched

based on a correlation analysis to determine the displacement of a group of particles,

elapsed time and the local fluid velocity. When M is the magnification of the camera,

the velocity is given by a first order estimate, i.e.,

U- MLi
(3 1)

where Aíis a displacement vector in the image plane and Aú is the pulse time interval
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Figure 3.1: Experimental Setup of PIV/PLIF

In Planar Laser Induced Fluorescence, molecules and atoms of a fluorescent dye

are excited to a higher electronic energy state via a pulsed laser absorption and

subsequently fluoresce. The local fluorescence intensity, ,f, varies with intensity of

excitation light, 1", concentration of the fluorescent dye, C, quantum efficiency as a

function of temperature, /, and the molar absorptivity, €, i.e.,,

t : f I"ICþ(T) (3.2)

where / is a factor corresponding to the optical setup [39, 47]. For a known concentra-

tion and excitation energy, the quantum energy decreases with higher temperatures.

This dependence constitutes the basis for PLIF temperature measurements. The

temperature is determined from Eq. (3.2) as follows,

A1t-tr"l: 
f{¡CLó

39

direction

pulsed laser * optics

(3.3)



Thus, quantitative analysis is based on temperature calibration images that correlate

the variation of intensity of the image with the local temperature and laser energy.

3.2 PIV Interrogation Analysis and the Dynamic
Fl,ange of Velocity

Interrogation analysis is a major conceptual element in the PIV technique, whereby

the spatial velocity distribution is obtained over a regular grid of small subregions us-

ing statistical methods. In particular, the recorded image frame is divided into small

areas, called i,nterrogati,on areas. Correlation based techniques are used within each

interrogation region to produce a vector representing the average particle displace-

ment. Auto-correlation and cross correlation techniques are used for high particle

density image analysis, while other methods like particle tracking and particle pair-

ing are limited to relatively low density images. A high density image arises when

the number of particles is between 7 - 10 image pairs per interrogation area. In auto

correlation, an interrogation area is correlated with itself. Cross-correlation analy-

sis, used in this study, correlates an interrogation area with a second area, which is

offset in the mean flow direction. The cross-correlation employed within each inter-

rogation area allows an unambiguous determination of the direction of displacement

to give instantaneous values of boih components of fluid velocity (z and u) in two

dimensions. The hydrodynamic properties of the tracer particles are very important

in PIV because the particle velocity, and not the fluid velocity, is determined. The

particles used for PIV study should be neutrally buoyant (have approximately the

same density as water in the water tunnel) in the fluid to eliminate possible error in

the measurement due to particle settling as they transverse the flow field [32]. Other

details describing an interrogation analysis are available in the literature [45, 46, 47].

The PIV resolution becomes very important for high Reynolds number experi-
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ments that attempt to resolve small-scale variations embedded in large-scale motion.

Such scenarios exist in turbulence measurements and cases where it is necessary to re-

solve small-scale flow structures around large objects. Two velocity resolution issues

I /-1
arlse) 1.e., l4ll

c the dynamic velocity rânge, which relates to the ability to resolve very small

velocity displacements between particle image pairs, and

ø the dynamic spatial range, which relates to the size of the smallest velocity

structure that can be resolved in the flow field.

The dynamic spatial range is defined as "the field of view in the object space di-

vided by the smallest resolvable spatial variation" [48]. This range coincides with

the number of independent vectors obtained from the interrogation analysis (without

overlapping). The smallest length scale that can be resolved is given by

, Ntdo Lo
Àm¿n: --ff : l*, (3 4)

where -Lo is the physical dimension of the field of view in the lr1 direction, tr¡ is the

corresponding pixel dimension of the camera) l/¡ is the number of interrogation areas,

and d, is the pixel pitch of the CCD array (9p- for the Kodak 851.0)

For all cases tested in this thesis, the 32 x 32 pixel interrogation gives vector

maps with the lowest noise. For this interrogation areâ, each flow field is resolved to

a factor of approximately 32 in the field of view with the Kodak 851.0 CCD camera

(L, = 1024). This dynamic spatial range is rather low for turbulence measurements.

Equation (t.+) sirows that a decrease in the resolved length scale, À-¿,r, will require

the reduction of the view area size at a fixed number of interrogation cells. Thus,

higher resolution (dynamic spatial range of approximately 76) can be achieved by

a higher magnification of the measurement area with extension rings between the
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lens and the camera. However, higher magnification of the image may lead to higher

velocity bias errors. Better modifications include higher resolution CCD (e.g. 2k x

2k pixel) or higher format recording mediums with physical dimensions in the order

of 1cm.

The dynamic range is the ratio of the maximum velocity to the minimum velocity

resolvable by a particular PIV system. The minimum resolvable velocity occurs in the

order of the rms error, when determining the displacement of the particle image. The

accuracy of the velocity measurement is approximately I% of the full scale velocity

for the PIV system (DANTEC) used in this thesis, giving a dynamic velocity range

of at least 100 for the 32 x 32 pixel interrogation. This value applies to both positive

and negative ranges of velocities. It is viewed that this dynamic range is suitable for

fluid mechanics phenomenâ investigated in this thesis and other applications.

3.3 PLIF Calibration and Signal Processing

The first step in the PLIF calibration procedure is to find the optimum concentration

resulting in the maximum temperature resolution with low absorption phenomena.

The corresponding absorption , A, is calculated from

A - e-In'u"oc (3 5)

where '1nno¿ is the extinction coefficient of Rhodamine B in water and I is the optical

path length. A general procedure involves running a series of trials at a fixed energy

level to determine the optimum concentration at which the temperature resolution is

maximum, while maintaining linearity between the gray level and temperature. The

measurement precision at a concentration value is indicated by the slope of the curve

obtained in the preliminary experiment. Typically, the temperature resolution ap-
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proaches an asymptotic minimum ab an optimum concentration and then it increases

thereafter.

Signal processing consists of a final translation of the recorded images to temper-

atures via the calibration maps. The final calibration relates the response of every

pixel of the CCD camera to varying temperature, lâ,ser energy levels and concentra-

tion. A precise analysis of the instant temperature at discrete locations in an actual

measurement region is determined from

T -Tr"¡:
¡ - Ir"Í

(3 6)

where 1,"¡ is the intensity of the fluorescent signal at the reference temperature,T,"¡.

The denominator is statistically determined during calibration.

3.4 Combined PIV / PLIF Measurement

The wavelength of the fluorescence emitted from PLIF is longer than the wavelength of

the reflected laser light, thereby making simultaneous measurements of both velocity

and temperature possible. An orange optical filter is attached to the front of the

camera for the fluorescent image to cut off reflected light from the PIV particles.

A green (narrow band) optical filter allows a second camera to detect laser light

scattered by the particles.

In this thesis, the camera and image capturing systems detect particle images and

fluorescent images successively at two different instants. Combining velocity and tem-

perature measurements allows the estimation of entropy production. In addition, the

temperatures can be re-sampled with spatial resolution of the PIV vectors, ensuring

maximum correlation between the heat transfer irreversibility and the fluid friction

irreversibility in every interrogation area. Experimental correlations between veloc-

ity and temperature will provide useful information to address unresolved modelling
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issues regarding fluctuating velocity / temperature terms in the turbulent entropy

production equation (Eq. 2.I2) in heat transfer applications.

3.5 Conversion Algorithm and fmplementation

3.5.1 Entropy Production with FlowManager

Unlike velocity or temperature, the measurement of entropy cannot be performed

directly. However, Eq. (2.I2) can be used in an indirect way to characterize ihe flow

irreversibility. The measured velocities and temperatures are displayed over a discrete

grid by the PIV software. The velocity and temperature components at grid position

(i, j) are denoted by u(i, j),u(i,j), and T(i., j).Thus, Eq. (2.t2) yields the following

expression for the entropy production rate for 2-D, laminar flows.

ul'P,

1)
21

j (3?)

where Az and Agr refer to the grid spacing in the z and y directions.

The entropy production and loss coefficient algorithms are implemented through

Matlab scripts and other externally developed C++ functions linked to Dantec Dy-

namics' FlowManager software. The user could select the data input (i.e., vector

map) and choose the newly developed scripts to determine the output (entropy pro-

duction and loss coefficient contours). FlowManager would transfer data to Matlab

and receive results back from the computed entropy production results. Firstly, the

acquired image would be selected. Then, a new calculation based on the selection

is added, and the Matlab command window is started. The selected data can now
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be accessed inside the command window. The calculations defined by the Matlab

script may be executed. Upon return to FlowManager, the results of the calculations

may be stored in the database as data sets and/or graphical displays. The numerical

entropy analysis requires a gateway to C++ functions developed externally, which

v/ere accessed through the Matlab environment in FlowManager. Since the entropy

analysis is computationally intensive, an add-on to Matlab can allow compilation of

the scripts into executable codes, which could improve the calculation speeds.

3.5.2 Data Post-Processing for Spatial Derivatives

Errors in spatial derivatives of velocity can be decomposed into two components: (i)

bias error associated with the displacement measurement and (ii) the propagated un-

certainty due to the spatial differentiaiion of the velocity field. For a smaller grid size,

the bias error decreases. The bias error associated with the Fast Fourier transform-

based cross correlation algorithm in the commercial software (FlowManager; Dantec

Dynamics) has been minimized by a sub-pixel resolution of the PIV images. As stateC

earlier, the displacement error is approximately 0.1pixels over 8 pixels for our present

configuration, based on a 32 x 32 interrogation size.

The entropy production algorithm contains multiple products of velocity deriva-

tives. Hence, it is imperative to reduce the error associated with the determination

of spatial derivatives. Two approaches are suggested. A twice differentiable empirical

function could be fitted to the data. The spatial derivative is then obtained directly

by the differential of the empirical function. This approach requires an elaborate,

often difficult interpolation routine for multi-dimensional output of PIV. A better

approach is a local piecewise smoothing of the experimental data followed by the ap-

plication of forward differences, central differences or a Richardson central difference

scheme over an adaptive window to calculate the derivatives.
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Smoothing or filtering the experimental data discards the noise in terms of exper-

imental scatter and it performs a least-squares approximation through a path that

minimizes error for all data points in the field. In FlowManager, an average filter

on a 2-D field is implemented in the f'orm of a top-hat Gaussian filter with uniform

weighting. The size of vectors in the neighborhood of a position (e,7) is specified by

odd numbers, z7z and n. The filter calculates an average of vectors in a rectangular

domain of size rn x n surrounding a vector. The average value is substituted for all

entries in the initial matrix. The average is calculated by the following formula,

, n-l , n-l
tr'fz-Yf2u(r,a):+ t t u(i,,i)

ltltL n_l a_lz=r__n_ J=g_ 2

(3.8)

In addition to the average filter, a spline fit based on a second order polynomial

least squares algorithm was also used in this thesis for data smoothing. The cubic

spline was applied in commercial software (Originlab), while the average filter was

implemented in Matlab. The derivatives of velocity and the entropy analysis were

implemented using Matlab scripts and other DLLs based on C++.

Smoothing algorithms mitigate against error in the calculation of derivatives and

they provide better approximations to an actual flow distribution. However, the

interpretation of smooth curves or surfaces must be limited to flow structures present

in the raw data from which they were obtained.

3.5.3 Loss Mapping in Turbulent Flows

Untike near-isothermal laminar flows (such as unheated pipe flows) where the only

physical process producing entropy is the mean viscous dissipation, the rate of dissipa-

tion of turbulent kinetic energy is needed to compute entropy production in turbulent

flows. Also, it is desirable to determine the relationship between entropy production

and fundamental turbulence, such as the kinetic energy. Thus, a segment for ex-
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tracting mean and turbulent quantities from the velocity data was incorporated in

the conversion algorithm. Since entropy production in turbulent flows involves the

turbulent kinetic energy dissipation rate, a segment of the conversion algorithm was

devoted to its estimation. Details regarding the estimation method for e will be

discussed in Section 3.6

3.5.4 Temperature Field Post-Processing

The average temperature map obtained from PLIF can show scattering in the data

from pixel to pixel. Normally, a validation technique will be applied to the acquired

image in a fashion similar to PIV images before translation to temperature. However,

the commercial software does not allow such flexibility. Therefore, a surface smooth-

ing filter was applied to the final temperature map in the conversion algorithm to

enhance the quality of the data.

3.6 On the Estimation of the Dissipation Rate, e

The general expression for the balance of mechanical energy in fluid flow is given by

Eq. (2.t5). The effect of the meân and fluctuating quantities on the total mechanical

energy of a turbulent flow can be separated by the Reynolds averaging procedure. By

subtracting the balance equation for the kinetic energy of the mean motion from Eq.

(2.15), an expression for the balance of kinetic energy of turbulence is obtained, i.e.,

DF õ
- 

-o,l
Dt 2 A:xi*i G.T) -¡ú*+.fiu',(#.H)

(3 e)

Equation (3.9) requires that the net convection of turbulent kinetic energy (term

1) balances the flow work or work done by the total dynamic pressure of turbulence
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(term 2), net work of turbulent stresses (term 3 - term 4), minus the dissipation of

turbulent kinetic energy (last term). In the absence of periodic oscillation in the flow,

the total dissipation in turbulent flows is a sum of a mean (viscous shear stress) and

a random (dissipation of turbulent kinetic energy) part. It should be noted that the

viscous shear stress performs deformation work, which increases the internal energy

of the fluid ai the expense of the turbulent kinetic energy [43]. Since turbulence

consists of a continuous spectrum of scales ranging from more energetic large scales

to essentially dissipative small scales, a continuous supply of energy from the large

scales or 'eddies' is required to maintain turbulence. Otherwise, turbulence decays

rapidly and loss analysis of the fluid system reduces to an analysis involving only the

mean viscous dissipation, as in laminar flows.

By expansion, the l2-term dissipation of turbulent kinetic energy tensor, e, in

equation (3.9) can be expressed as

(3.10)

Measurement of all terms in trq. (3.10) is difficult. A simplified form is as-

sumed based on the theory of homogenous turbulence and isotropy [a9]. In homoge-

neous turbulence, the first term in Eq. (3.10) vanishes due to incompressibility, i.e,

u'r}2u'uf 0ru0r¡ - 0, resulting in a 9-term tensor for e, as in

^ _ ãúþ4 , ãu! Aui
" -'ôr¡ aa- ahaa

0u| 0u',
e : U=J--f

ör¿ ðr¿
(3. 1 1)

The essence of homogeneous turbulence, namely that the mean properties of tur-

bulence including the mean velocity are independent of translations of the coordinate

axis, is idealized. However, it provides a reasonable basis for estimating experimental

turbulence quantities [50]. The assumption of homogeneous turbulence also implies a

relationship between the viscosity and the mean square vorticity through Eq. (3.11),
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e: uukak Q-Lz)

where ø¿ is the vorticity. Equation (3.12) is the enstrophy - based dissipation de-

scribed by Tennekes and Lumley [43].

Isotropic turbulence is based on the premise that small turbulent scales are statis-

tically independent of rotation and reflection of the coordinate axis at sufficiently high

Reynolds numbers. A further simplification with the isotropic turbulence assumption

can be obtained from Eq. (3.11) in the following two-dimensional form,

(3.13)

The Kolmogorov length scale represents the smallest length scale of turbulence,

7¡: (usfe)'ln VZl. Another length scale associated with the energy dissipated by

turbulent eddies is the Taylor micro-scale, À, i.e.,

,r- iJ
@"\la.T

Rearranging Eq. (3.13) in terms of Taylor micro scale leads to

u,!'2
e :15u*_

,:o+

(3.14)

A similar dimensional analysis based on the integral length scale, l, and a premise of

mechanical equilibrium gives [43, 50]

(3.15)

(3 16)

where ,4 is a proportionality constant of the order of unity. Equation (3.16) can be

used for the estimation of the dissipation rate when only one integral length scale

characterizes the flow region. Also, it does not require the dissipation of turbulent ki-

netic energy to be equal to the production of turbulent kinetic energy, as its derivation

is independent of the presence of turbulence production.



Another class of dissipation estimation methods (common with LDA practition-

ers) uses a time series analysis and the turbulence energy spectrum. The following

homogeneous turbulence relation applies

€ :2u 
lon 

n'ø{tr,t)an

with a corresponding isotropic version given by

e : rlu lo* r?ur(k,)dkl

(3.17)

(3.18)

where E refers to the power spectrum, k is the wavenumber, and the subscripts '1'

denote the one-dimensional values.

There are similarities between the correlation analysis of PiV and Large Eddy

Simulation (LES). LES computes the dynamics of the large energy containing scales

of motion, up to a certain cut-off wavelength, while modelling only the effect of

the small, unresolved flow structures on the larger resolved scales. The underlying

principle is that the large-scale motions are affected by the geometry and they are

not universal. The small-scale motions have a weaker influence on the Reynolds

stress and they have a somewhat universal character represented by simple sub-grid

scale (SGS) models. The approach in LES requires the solution of the Navier-Stokes

equations for the filtered velocity field on a computational grid, with the objective

of resolving the actual flow field with fewer discrete volumes. In the same way, the

correlation techniques in PIV give velocities which are results of a spatial average

over a discrete volume or interrogation area. In LES, the filter size is proportional

to a cut-off wavelength in the inertial subr:ange of the turbulence energy spectrum,

whereas the size of the interrogation area determines the filter width, which averages

the smalle¡ scales of motion in PIV. Since the spatial filtering properties of PIV are

similar to LES, it is veiwed that benefits of the theory of sub-grid scale modelling in
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LES will be helpful in the estimation of small-scale turbulence characteristics from

PIV data.

With the filter in the inertia subrange, the turbulence dissipation rate in LES can

be approximated by the SGS dissipation rate,

(3.le)

where Sl3 is the filtered rate of strain tensor and r¿¡ is the SGS stress. Several SGS

stress models have been applied in previous LES studies at high Reynolds numbers.

The first sub-grid model to be widely used was reported by Smagorinsky [51]. Other

models that have been developed with the goal of improving the Smagorinsky model

include the dynamic model of Germano et al. [52, 53, 54], Bardina scale similarity

model [55], Clark Gradient Model [56], siructure function model of Métais et al.[57]

and the transport equation model [58,59]. The relevant expressions are provided for

the Smagorinky model and the Gradient model in an upcoming section.

The experimental determination of the dissipation rate has depended on the sim-

plified expression outlined previously, or their variants with associated limitations.

The following section provides a brief review of the measuring techniques in past

studies.

3.6.1 Total Dissipation Measurement

This approach considers all terms of the velocity gradient tensor in the total dissipa-

tion equation (Eq. 3.10) from measured values. Since the PIV technique permits the

measurement of instantaneous velocity data in a whole-field space, the possibility ex-

ists for the direct calculation of the turbulence dissipation rate by spatial derivatives

of velocity. However, the spatial range of PIV cannot usually be extended up to the

required resolution for exact measurements, due to limitations imposed by the hard-

e = €sçs : -2r¿jS¿j, Snj :; (# . *)
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ware, such as the size of the recording medium and the maximum allowable sampling

speed [48, 60]. Therefore, spatial limitations in LDA based dissipation measurements

apply to PIV [a0]. Generally, the wire separation in multi-point probes measuring

all three velociiy components and their derivatives at a point, should not exceed

A,r = 0.34 in LDA, in order to keep the error in velocity derivatives for isotropic

flow below 5% 161). Also, a wire length of L < 54 keeps the error in the turbulence

dissipation rate below 10 - 20 % 
.621. 

Saarenrinne et al. [40] proposed an analogous

restrictive requirement in PIV, where (depending on the flow) the size of the PIV

interrogation window and the laser light thickness do not exceed 30% of the lateral

Taylor's micro scale and 5 times the Kolmogorov length scales, respectively. Only

a few papers have reported e using the total dissipation method, e. g. Piirto et al.

[63](Pry), Browne et al. [61] (LDA) and Kit et al. [64](LDA).

As stated earlier, the spatial resolution of the Kodak ES1.0 camera in this thesis

is at least an order of magnitude higher than the Kolmogorov length scale in the

turbulent flow, so that simplified expressions for e are needed. Furthermore, only two

components of velocity are available. Therefore, the computed dissipation rate will

be reported with other methods described in an upcoming section-

3.6.2 Dimensional Analysis Based on Equilibrium Turbulence

This approach assumes local isotropy and it has been used to estimate the turbulence

energy dissipation in stirred vessels [17, 65]. The method uses Eq. (3.16) and it has

been shown to give reaso!able qualitative results, despite implementation difficulties

regarding the variation of length scales in certain flows. In flows where the Taylor

micro scale can be estimated, dimensional analysis based on Eq. (3.15) has been used

[a0]. Estimates of e based on Eq. (3.16) are reported in this thesis.
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3.6.3 Turbulent Kinetic Energy Balance (TKEB)

The dissipation rate in the turbulent kinetic equation has been obtained as a closing

term by measuring te¡ms represented by mean flow convection, diffusion and produc-

tion of turbulent energy and neglected terms of viscous diffusion. The applicability

of this method is limited by an appropriate model for the pressure diffusion term,

ð(u'¡fl1ôr¡, which is difficult to measure experimentally [66]. Although all other

terms in the turbulent kinetic energy equation involve large-scale quantities, the lim-

itation imposed by spatial resolution has limited the application of the method to

simple geometries.

" 3.6.4 Space -Time Covariance and Energy Spectra

Taylor's Frozen Turbulence hypothesis allows Eq. (3.13) to be recast in terms of a

time series differential of the velocity fluctuation, i.e.,

t : t;r(Au'tlõrj : Ur(Au'JAtf la' (3.20)

In order to obtain a reliable value of e, a calibration of the time derivative is necessary

and it can be based on the energy spectrum function in Eq. (3.17). Turan and

Ãzad 166] developed a 'zero-wire-length dissipation method', which defined the one-

dimensional spectrum of the longitudinal velocity fluctuation by an integral,

(3.21)

The sampling rate of the PIV system in this thesis is not high enough to allow this

spectra analysis.

3.6.5 Large Eddy PIV Method

Sheng et al. 141] viewed the resolution of finite scales by the PIV method, much

like the LES approach and they have devised a method to use full-field velocity data

/êôo 
-oI Er(kr)dh - u','

JO
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to estimate dissipation rates. The large eddy PIV estimation method is based on a

dynamic equilibrium assumption between the spatial scale that can be resolved by PIV

and the sub-grid length scales. When the interrogation or filter size is much smaller

than the integral length scale of the flow (LtlN ( l), the turbulence dissipation rate

can be approximated by Eq. (3.19). In the current study, the Clark Gradient model

and the Smagorinsky model were used for the SGS stress. For the Gradient model,

(3.22)

where A is the width of the interrogation area. The Smagorinsky model is given by

r¿j - -(C,L)zlSlSü (3 23)

where l^91 is the characteristic filtered rate of strain, ,t'ffi, and c, is the smagorin-

sky coefficient (proportional to A), taken to be 0.07 in the present study.

The large eddy PIV method, as well as other simplified models based on the

isotropic assumption in this thesis, do not preclude the possibility of obtaining high

resolution measurements, where detailed turbulent structures are captured [67]. How-

ever, it provides a useful estimate of turbulence dissipation in whole-field regions

where the dynamic range of the velocity measurernents captured by PIV is limited

by spatial resolution.

In the following chapters, three application problems are considered: (i) laminar

channel flow between parallel plates, (ii) turbulent channel flow and (iii) free con-

vection in a differentially heated cavity. In the first case, validation of the newly

developed technique of flow irreversibility measurement is performed through com-

parisons with analytical solutions. The second problem outlines additional modelling

issues that arise in turbulent flows. The experimental results are compared with DNS

data for validation purposes. The third problem has a numerical complement, based

on the CVFEM, for additional validation.

L ^ôu' ðu,A¿"" 12 dun öun



Chapter 4

Case Study 1: Flow frreversibility
in a Parallel Channel

Wall bounded turbulent flows have been extensively investigated because of their

technological importance. Viscous dissipation is the main frictional irreversibility in

laminar flows but other less understood irreversibilities arise with fluid turbulence.

For example, energy costs to deliver oil through a pipeline or accelerate airplanes are

considerably higher when the flow becomes turbulent.

4.L Overview

Extensive past research effort has been devoted to the understanding of the physics of

wall-bounded flows using single-point velocity measurement techniques. The earliest

measurements by Nikuradse were limited to the mean velocity field [68]. Similar data

acquired with rough walls provided information for the correlation of friction factors

in the design formula for turbulent friction and head loss in circular ducts 169] and

the Moody Chart [t]. Since that time, numerous studies have been conducted with

data including the turbulent intensities, near-wall turbulence [70], and low to high

order turbulent statistics for a wide range of Reynolds numbers [77,72]. Particle Im-

age Velocimetry, like other whole-field turbulence diagnostic methods such as Direct
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Numerical Simulation (DNS), presents additional insight to address other less un-

derstood aspects of wall-bounded turbulent flows, regarding the nature of (coherent)

structures in turbulent flows [73]. Turbulent structures play a significant role in the

energy transfer and dynamics of turbulent flows.

This chapter describes PIV measurements and predictions of fully developed lami-

nar and turbulent flows in a water channel. The study extends previous measurements

to mapping the local distribution of irreversibilities in a channel at different Reynolds

numbers. The principal objective is to document entropy production in a turbulent

channel flow, which allows the examination of the new loss mapping technique with

PIV. The long-term objective is a new design optimization technology based on local

mapping of entropy production in internal and external fìow engineering devices.

Consider incompressible flow in a parallel channel of length , tr, width, D and

spaced h apart. It is assumed that the width is much greater that the height. The

head loss due to friciional effects in the channel is related to the Darcy's friction

factor, /, as follows,

where u, h¿ a'nd g are the mean velocity, head loss, and acceleration due to gravity,

respectively. As shown in section 2.3, the loss term due to viscous dissipation in the

mechanical energy equation can be related to entropy production and head loss by

H¿: htg: f #

H,: ! [ r:vúN: ! [TÞ,Nrn JV rn Jv

(4 L)

(4 2)

where m' and V refer to the mass flow rate through the channel and differential control

volume, respectively. By combining Eqs. (a.1) and @.2) and substituting dV :
DLdy and m: puDh in the resulting equation, the integral value of mean entropy

production in an adiabatic channel can be related to Darcy's friction factor, i.e.,

56



where p, T, and P" a.e the density) mean temperature and entropy production rate

per unit volume, respectively. The integral value of the entropy production rate

is obtained from the positive definite entropy equation, based on spatial gradients

of velocity, dissipation of turbulent kinetic energy and temperature. The Reynolds

number based on the friction velocity, Re,, ís computed with the friction velocity,

u,, half channel height, u.,, and the kinematic viscosity, u. Similarly, the Reynolds

number based on the bulk velocity, Re, is computed with the mean velocity, hydraulic

diameter and the kinematic viscosity. Fluid properties are obtained at a temperature

of 295 K. A useful observation is that Eq. (4.3) suggests that entropy production can

be used as a standardized metric for loss characterization in duct flows. By using

entropy production in this way, the equivalent friction factor becomes a product of

the local exergy destruction integrated over the flow domain and a constant based on

averaged values of the flow variables.

Darcy's friction factor is a dimensionless group defined as follows,

Lr-r:ùJTr'au

" 8'.
pu"

(4 3)

(4 4)

The following computations with DNS data will show close agreement between friction

factors calculated by Eqs. (4.3) and (a.a) with the Colebrook friction factor for

channel flow. This close agreement will provide useful validation of the newly derived

entropy production model for turbulent flows and the positive definite equation, which

can be used for optimization studies.
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4.2 Experimental Set-up and Procedure

Experimental studies of channel flow were performed in a water tunnel with PIV and

5 micron diameter polyamide seeding particles (see Figure 4.1). The test section of

the water tunnel was 0.76m high, 0.7m wide and 1.82m long. An enclosed rectangular

channel made from 18mm thick plexiglass, was set with a spacing of 30mm from the

lower wall of the test section, in order to avoid flow interference with the boundary

layer developing on the bottom wall. The test section and rectangular channels were

made of plexiglass to permit illumination trom all sides. For this particular set-up,

the laser and its reflecting optics were placed such that the laser light sheet penetrates

the plane of the flow from the bottom of the tunnel. The contraction section of the

water tunnel was preceded by a honeycomb arrangement to reduce any large-scale

turbulence in the flow so that the velocity in the test section is uniform. The laminar

flow measurements were carried out in a channel (12.6 mm high, 60 cm wide and

1.6 m long). The height was increased to 18mm for turbulent flow measurements.

The leading edge of the top and bottom plates of the channel were tapered. Also,

2mm high square rod trips were placed 2cm downstream of the leading edge for

turbulent flow measurements. Measurements were recorded sufficiently downstream

of the channel inlet, so that fully developed conditions were obtained.

A planar cross-section in the center ofthe channel, parallel to the flow and perpen-

dicular to the wall, was illuminated by reflecting optics and a two-chamber Gemini

PIN Nd:Yag pulsed laser. The interrogation region of the FlowMap software and

camera is centered about the channel flow region within the water tunnel. The PIV

images were recorded with a Dantec HiSence CCD camera for the laminar case and a

Kodak 851.0 for turbulent flows. The camera was placed on a traversing mechanism

to facilitate repeatability of the measurements. Two measurement sets were taken
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Figure 4.1: Channel Schematic

in a preliminary experiment at two locations downstream of the channel entrance to

find the location where the flow is fully developed. The final velocity measurements

were taken at a downstream position, r x 160h for the turbulent flow and r x 200h

for the laminar flow case. The final measurement at each Reynolds number consist

of full-field view (0 { y 1- h) image maps of the channel and another view where

the camera is focused to a region closer to the wall. In the latter case, the camera

was focused on a smaller image area (0 1 y 1- 0.5h) to obtain a higher resolution,

which is required in turbulence measurements. The full-field measurement confirmed

symmetry of the mean velocity fields about the channel centerline, so half-channel

measurements are reported.

The vector fields were validated with a moving average procedure. In the full field

view, the velocity data exhibited very little noise. In fact, less than 0.4% of the vec-

tors were rejected by an average of surrounding vectors. The number of particles per

interrogation area was reduced in the half-channel image maps, but higher magnifica-
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tions are needed to achieve a higher spatial dynamic range. Increased magnification

will reduce the depth of camera focus. The /-number of the camera was also reduced

to enlarge the camera aperture. Coupled with the increased magnification, the lower

/-number leads to an even smaller depth of camera focus. Hence, the light thickness

was set to the minimum, to enhance the quality of the image mâps and correlated

velocity field. A tighter tolerance in the moving average validation resulted in a cor-

related vector map with more spurious vectors. In all cases tested, about 10-12% of

vectors were rejected and they were randomly located in the resolved velocity field.

A process for establishing the time between laser pulses was needed to optimize

the seeding density. In these studies, the peak height ratio was set to 1 and the veloc-

itylengthsliderwasset to25%. Thismeansthatanyvectorslonger than25% of the

length of the interrogation area were highlighted in red and considered to be inaccu-

rate. Starting with a very low time between pulses and gradually increasing the time

for successive image captures, the velocities in the vector map become smoother and

more continuous. The optimum time between pulses was selected. This time inter-

val between pulses was kept constant, so consistent results were gathered throughout

tests involving a particular flow configuration. In all cases tested, a32 x 32 interroga-

tion was used with 50% overlap in the horizontal and vertical directions. A Gaussian

window function and a filter function were employed to suppress the error introduced

by the FFT.

4.3 Results and Discussion

4.3.L Laminar Flow

A total of 1500 statistically independent image maps was interrogated to generate the

velocity vectors. The post-processed velocity results are used to find local rates of
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entropy production. The conversion algorithm for measured entropy production and

flow irreversibilities was validated against analytical entropy production results for

laminar water flow between two parallel plates. The measured velocity and entropy

production results are compared with the corresponding analytical solutions, a,t Re¡ :
518, in Figures a.2 @) - (b), respectively.

The analytical solution for laminar flow between parallel plates is a well-kno\¡/n

quadratic profile, which is analogous to the Pouiseille velocity profile in pipe flows.

In Figure 4.2 (a), the deviations of measured velocities are within 1.2% of the an-

alytical values. It can be observed in Fig. 4.2, that the entropy production rises

in the cross-stream (V) direction to its peak value at the wall, but does not change

noticeably in the streamwise (x) direction, due to fully developed conditions. The

maximum difference between the measured entropy production and the analyiical

result is 6.6%. These results provide useful validation of the post-processing and

conversion algorithm for entropy production due to friction irreversibilities. For this

problem, thermal irreversibilities are neglected, since the flow is effectively isother-

mal. In Figure  .2 @) - (b), a reference point, r(ref), designates a location where

analytical solutions of laminar boundary layer development suggest fully developed

conditions within the parallel plates. Measurements at two different locations down-

stream of this point (0.65 mm and15.22 mm from the reference point) are taken, in

order to confirm that both profile shape and magnitude are preserved. The measured

results show close agreement between both downstream points, thereby providing

evidence of fully developed conditions.

In many wall-bounded flows, including this channel flow problem, the highest en-

tropy production is located at the wall, where the largest spatial gradients of velocity

and temperature are encountered. Unfortunately, near-wall measurements of velocity

and temperature are often most difficult. In particular, limitations of camera reso-
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Figure 4.2: Laminar Channel Flow at Re¡": 518: (a) Velocity (b) Entropy production
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lution and particle tracking near the wall arise with PIV technology. Attempts were

made to focus the particle tracking and image processing as close to the wall as possi-

ble. In Figure 4.3(a), measured velocities were obtained within a distance of 0.60 mm

from the wall. It can be observed that close agreement between measured velocities

and the analytical solution is obtained close to the wall. Both places at different

stream-wise locations (i.e., 0.6 mm and 5.0 mm from the reference point) yielded

close agreement, so near-wall measurements were considered to be independent of the

x-position under fully developed conditions.

The PIV validation method rejected velocity vectors at locations 0 < y ( 0.6mm,

thereby leaving a 'data hole' of a few interrogation cells wide in the near-wall region.

Local data extrapolation, based on the previously mentioned second order polynomial

fit, measured values in the vicinity of the data hole and the known velocities at the

wall were applied and illustrated in Fig. 4.3. The regressed data was only substituted

in the matrix location where invalid vectors had been located. The data extrapolation

is justified in our near-wall laminar flow measurements because they are typically less

than four interrogation sizes wide in the large scale flow fields. Issues involving the

range of length scales resolved with the PIV technique arise in such turbulent flows.

In regards to entropy production, Figure 4.3(b) shows close agreement between

the analytical solution and measured data. Closer agreement is observed than results

predicted by a detailed measurement uncertainty analysis (see chapter 6). However,

the error increases closer to the wall, so the reported experimental uncertainties give

a maximum bound on expected errors of the measured entropy production close to

the wall.

After multiplying entropy production by temperature in Figure 4.3(b), those re-

sults give the destruction of exergy (or energy availability in the flow stream). This

conversion allows units to be expressed directly in terms of lost power per unit volume
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of fluid, which can be more practically interpreted than units of lost power per degree

Kelvin (units of entropy production). The local head loss coefficient can be derived

from these results, after multiptying the ìocal entropy production rate by the bulk

temperature and volume size corresponding to the discrete PIV grid points, as well

as dividing by the channel mass flow rate. This result represents the local exergy

destruction per unit mass flow.

It is useful to verify that this loss coefficient yields the same result as the standard

loss coefficient for channel flows. For incompressible, fully developed flow between

parallel plates spaced 2w apart, the velocity profile can be expressed as

u(a) : ".1, (#) - efl
where z" is the centerline velocity. Using Eqs. (2.12) and (a.5) to evaluate the entropy

production rate, multiplying by temperature and integrating across the channel yields

the following result,

(4.5)

(4.6)

(4.7)

Substituting Eq. (4.6) into Eq.

l-_rÞ,au:W
(4.3) gives the analytical result of

t- 96
J-Re"

Thus, the entropy formulation of Eq. (4.3) for channel flow reduces to f :g6f Rep,

which is the expected friction factor in undergraduate textbooks for viscous flow

between two wide flat plates [69].

Additional laminar flow measurements were performed at Re¡:314 and 402 and,

the exergy based local friction factor is summed over the entire domain. Extrapolated

data was used close to the wall. Computed friction factors from the experimental re-

sults based on Eq. (a.3) at all Reynolds numbers are illustrated in Fig. 4.4. The

experimental results show excellent agreement with analytical friction factors com-

puted from Eq. (4.7).



More generally, the exergy based loss coefficient becomes equivalent to the cor-

responding global loss parameter currently used in industry. For example, the loss

coefficient for a tee junction in undergraduate textbooks would be equivalent to the

summed exergy destruction per unit mass flow over the spatial domain encompâss-

ing the tee junction. A surface plot of measured entropy production in the channel

is depicted in Fig. 4.5 (Re¡, : 518) to show the quality of the experimental data.

Clearly, the Second Law based loss mapping is feasible except close to the wall, where

limitations imposed by the PIV system necessitates the use of extrapolation schemes

to fill possible data holes.
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4.3.2 Turbulent Flow

I. Validation Problem

The newly derived formulation for mean turbulent entropy production will be

validated against past DNS data. The DNS solution assumes negligible viscous dissi-

pation in the energy equation. Therefore, attention is focused on the positive definite

model involving the dissipation of turbulent kinetic energy (right side of Eq. Q. Q),

since the entropy transport equation requires inclusion of the viscous dissipation in

the energy equation for accurate modeling. The continuity, momentum and energy

equations, with Eqs. (2.42) - (2.44), provide a complete set of relations required for

a Second Law model of the dissipation of turbulent kinetic energy provided the tem-

perature variation due to the viscous dissipation is included in the energy equation.

Turbulent flow between two parallel plates at four different Reynolds numbers,

based on the friction velocity, is considered. Computations of f at Re, : 180, 3gb,

and 590 were based on direct numerical simulation (DNS) data of Moser et. al. [7Q.

The data of Kuroda et. al. [75] was used to compute f at Re,: 100. The computed

friction factors based on Eqs. (a.3) and (4.4) are compared in Table 4.1. The present

results show excellent agreement with Darcy's friction factor computed from the Cole-

brook equation and Eqs. (a.3) and (a.a). The Colebrook equation is documented in

Ref. [69]. The results are illustrated at various Reynolds numbers based on the bulk

velocity in Figure 4.6. The results suggest that the present turbulence modeling of

entropy production (particularly in terms of e) has been accurately formulated.

Another useful validation of the new formulation is outlined in Fig. 4.7. A com-

parison with the Moore model is presented, in regards to the spatial distribution of

entropy production in the channel. It is useful to observe that the integral value of

entropy production computed from Moore's model in Eqs. (2.J4) and (2.36), based
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Table 4.1: Friction Factors at Different Re,

Re,

100 180

/ (based

/ (based

on

on

r.)
present modeling)

0.0383 0.0325 0.0260 0.0232

0.0388 0.0324 0.0252 0.0225

on the production of turbulent kinetic energy, is within I% of the newly formulated

model. Although close agreement is achieved, the newly derived formulation of Eq.

(2.44) includes additional mechanisms of turbulent entropy production, particularly

involving dissipation terms. Figure 4.7 illustrates that past turbulence predictions

with Moore's model give certain erroneous distributions of the mean entropy produc-

tion. Moore's model under-predicts the entropy production closer to the wall and

over-predicts entropy production away from the wall, before it decreases to zero in

the middle of the channel. The additional curve in Fig. 4.7 shows that the viscous

meân dissipation is the main component of entropy production near the wall, but

other components become most significant at further distances away from the wall.

In particular, the mean viscous dissipation accounts for more than 80% of the total

entropy production at approximately A+ < 9, where Ar : Au,lu.This percentage

decreases to zero in the center of the channel.
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II. Measurement Results

(i) Mean Velocities

In Fig. 4.8, the mean velocity profile obtained from 4000 instantaneous vectors at

a cross section of the flow in the fully developed turbulent flow region is presented

at Re,:187,295 and 399. The velocity profiles (shown in the inset) at different

transverse locations in the measurement region collapse on each another, due to fully

developed conditions. The mean velocities are normalized with the centerline velocity

in Fig' 4.8 and the y-coordinate was normalized with the half-channel height. Figure

4'9 shows the distribution of the mean velocity profiles in terms of wall variables.

The wall shear stress was determined by the Clauser plot technique, which assumes a

universal logarithmic profile in the overlap region. The experimental data confirms a

stretch in the extent of the logarithmic layer, as the Reynolds number increases. The

mean profiles in the Re,:295 and 399 cases agree out to y+ =250. At Re,:1g7,
the standard constants (È : 0.4 and 6 : 5.0) give a logarithmic slope with a slight

offset from a best fii (k:0.4 and B : b.b), in agreement with DNS data. These

results are consistent with previous experimental measurements, which associate such

flow behaviour with low Reynolds number effects. The spatial resolution of pIV is

limiied by the size of the interrogation area so measurements could not be made any

closer to the wall than g+ :8.18. The data compâres well with DNS results.

(ii) T\rrbulent Intensities

The turbulent fluctuating velocities are normalized by the friction velocity and they

are plotted in Fig. 4.10 at three different cross-sections of the flow region. No system-

atic deviations among these profiles are observed. Figure 4.11 compares the distribu-

tions of z+ and a+ obtainedat Re,:IBT with the pIV results of Lui et at. [67] and



the DNS results of Kim et al. [63]. Good qualitative agreement is noted among the

results. Compared with the DNS results, the peak value for the fluctuating stream-

wise velocity is under-predicted for the present results as 2.5 at a+ : 13. The peak

shows close agreement with previous PIV results of Lui et al. The present data also

shows higher values thai the DNS results in the channel core. This is attributed to

the high background turbulence level in the wate¡ tunnel.

The fluctuating velocities are plotted against g lh in Fig. 4.I2 at all Reynolds

numbers investigated. Remarkably, the z+ profiles collapse onto the Re, - Bgg curve

away from the wall, at approximately Alh > 0.36 for Re, :1g7 and ylh > 0.2

for Re, : 295. Essentially, all profiles vary linearly in Fig 4.L2 for z+ between

0-4 < alh < 0.9 at the three Reynolds numbers tested here and 0.2 < ylh < 0.g

folu+. The linear range for r+ at Re, : 182 is not immediately obvious. This

observation is consistent with studies of Moser et al. that suggested that the collapse

of the z+ profiles to a high Reynolds number outer-layer limit appears to occur at

y+ > 80 [74]. No such collapse is observed when the inner variables are employed

as the normalizing quantities. The qualitative trends of fluctuating velocities also

compare well with ihe DNS data shown in the inset.

(iii) T\rrbulent Dissipation Rate and Entropy production

The Kolmogorov length scale, 4, estimated from its definitions and DNS data

is between 6¡l'm - I\p'm at the highest Reynolds number measured and between

l4¡L'm - 33p'm at Re, : 187. The camera with extension rings captures an image

approximately 9mm high. With the 32 x 32 interrogation, the spatial resolution

of the PIV measurements is approximately 280 ¡lrn. Thus, the spatial resolution is

about 16 times the Kolmogorov length scale at the channel core and 48 times close

to the wall. The resolution of the velocity field is too small to accurately describe
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spatial derivatives of the fluctuating velocity field and dissipation rate using the total

dissipation method. Nevertheless, simplified expressions for e and isotropic conditions

can be used to estimate e, while appreciating the effect of spatial resolution on the

results. In this study, the dissipation rate has been estimated using the dimensional

analysis relation (Eq. (3.16)) and the large eddy PIV approach. The SGS stress is

obtained from the Smagorinsky and Gradient models. The accuracy of the estimation

methods was assessed by comparisons with the DNS data of Moser et al. [74].

The measured dissipation rates are compared with the corresponding DNS solution

aI Re, - 787, in Fig. 4.13. The dissipation rate in Fig. 4.13 and all subsequent figures

is normalized by (P")o: uXl".The estimation methods show close agreement with

the numerical data and they give correct distributions of the turbulent kinetic energy

in the channel. A high dissipation region is concentrated near the wall. The DNS

data reveals an inflection point, not captured by PIV closer to the wall at U+ : 12.

The dissipation rate is minimum in the center of the channel and it becomes the

only mechanism for energy loss in the channel centerline for turbulent flows. Greater

deviation from the DNS result is noticed for all estimation methods closer to the wall,

due to the anisotropic nature of the flow and smaller dissipation length scales in this

region.

Dissipation rates computed from the DNS results of Kuroda et. al. [75] at Re, -
100 and Moser et. al. lTal at Re, : 180, 395 and b90 are plotted in Fig. 4.14.

In Fig. 4.15, the dissipation rate has been estimated using the dimensional analysis

relation at all Reynolds numbers investigated. The integral length scale, /, is defined

as the distance from the wall to a point where the streamwise velocity isgg% of the

centerline velocity. Also, A is taken to be 1.2. The DNS results suggest lower values of

e in the middle, with higher values at the wall and steeper gradients as the Reynolds

number increases. The dissipation rate shows similar trends in the wall layer in Fig.
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4.15. On the contrary, the core region shows higher dissipation rates with increasing

Reynolds numbers. The dissipation rate is under-predicted closer to the wall at all

Reynolds numbers.

The large eddy PIV dissipation estimates in Figs. 4.16 and 4.L7 have a more

regular distribution with values predicted by DNS as Re increases. The filter size for

the correlation analysis is A : 280p"m while the integral length scale, I x 8mm at

Re, : 187. As stated earlier, the Kolmogorov length scale is q : I8p,m at the channel

centerline. Thus A ( I and the filter size is sufficiently larger than the Kolmogorov

length scale to warrant the use of the large eddy PIV method. The dissipation ra.te

closely agrees with the DNS result at low Reynolds numbers, but it is under-predicted

at higher Reynolds numbers.

One would expect better performance with increasing Reynolds numbers, since the

flow shows higher tendencies towards local isotropy as the Reynolds number increases.

This discrepancy is partly due to the overall accuracy of the PIV measurement at

high Reynolds numbers. At high Reynolds numbers, the PIV dynamic range required

to accurately resolve the smaller Kolmogorov length scales becomes very high and

the spatial resolution of the PIV fails to capture certain aspects of the flow structure.

Better performance of all estimation methods at Re, : 187 can be attributed to larger

Kolmogorov length scales and a consequent higher flow resolution. The dissipation

rate cannot be measured closer to the wall than Alh = 0.2, due to reflections and

poor accuracy of the velocity close to the wall at high Reynolds numbers. The two

SGS models show similar predictions, suggesting a weak dependence of the large eddy

PIV method on the SGS stress model.

Measured oscillations are effectively reduced through filtering of velocity data. In

FiS. 4.18, a 3 x 3 average filter was used for smoothing of the validated velocity

vectors, before calculating the viscous dissipation. The viscous dissipation has been
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normalized bv (P,)0. A comparison of the experimental data with DNS results is

presented in Fig. 4.19, in regards to the spatial distribution of the mean viscous

dissipation and the total entropy production at Re, - 187 ' Al1 three estimation

methods agree closely. The entropy production has been scale d by pulT lu ' A high

entropy production region is evident close to the wall'

The distribution of turbulent kinetic energy dissipation is plotted as a percentage

of the total mechanical energy loss in Fig- 4-20 to provide a second Law insight

into the energy requirement of turbulence in wall bounded flows' The measured

results show close agreement with the DNS results at Re" : L87 ' The percentage

of turbulent kinetic energy decreases from a maximum at the channel centerline to

approxima tely 14% of the total mechanical energy loss just outside of the logarithmic

region, towards the wall. The percentage of e+ is fairly constant in the outer region

and logarithmic layers. This distribution implies that the viscous stress due to the

molecular viscosity dominates at the wall. Unlike laminar flow, where the viscous

shear stress increases linearly âcross the fluid layer from the channel center to the

wall and entropy production is distributed evenly over the entire channel, the viscous

stress is concentrated to a region between the buffer layer and the wall in turbulent

flows, thereby leading to a much higher mean shear and entropy production at the

wall. Thus, this expiains the need for higher pumping power in turbulent flows to

drive fluid through a duct for the same laminar flow rate'

The equivalence of the local loss accounting approach with the traditional global

loss characterization can also be demonstrated for turbulent flows, as with laminar

flows. However, data extrapolation at the wall is avoided in this turbulent flow case,

as the data holes at the wall consist of more than six interrogation areas and several

Kolmogorov length scales apart. such synthetic treatment of a complex turbulent

structure may iead to an erroneous interpretation of data and dubious estimation



of the energy loss. It suffices to show that the PIV based loss mapping gives cor-

rect quantitative and qualitative trends of the energy losses in wall-bounded flow, as

illustrated in Fig 4.19.
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Chapter 5

Case Study 2z Entropy Production
with Ftree Convective l{eat
Transfer

Free convection heat transfer in enclosures occurs in various engineering systems. For

example, cooling of microelectronic assemblies involves natural convection. Heat-

ing/ventilation in buildings, heat transfer between panes of glass in double-pane win-

dows, solar collectors and gas-filled cavities surrounding a nuclear reactor core are

other examples. Although the physical processes of free convection have been widely

documented in the literature, fewer studies have considered the related importance of

irreversibilities in such applications. A specified rate of heat transfer can be achieved,

but with varying levels of fluid irreversibilities, depending on the surface area and

temperature difference across which heat transfer occurs. For example, convective

cooling of a microelectronic assembly entails free convection from the heat sink, but

pressure losses occur with forced convection of air past internal components. In this

instance, each unit of entropy produced (or exergy destroyed) leads to a correspond-

ing unit of heat flow which is desired to be removed, but cannot be removed due

to entropy production. This entropy production leads to pressure losses and kinetic

energy dissipated to internal energ¡ which works against the desired objective of



component cooling.

5.1 Problem Formulation

Kinetic energy
dissipated and
entropy produced

Insulated horizontal
boundary

re-circulation
cell

Figure 5.1: Problem Schematic

Consider free convection within a square enclosure, as depicted in Fig. b.1. It is

assumed that the cavity is sufficiently wide in the direction perpendicular to the plane

of Fig. 5.1, so the buoyancy-induced fluid motion is considered to be two-dimensional.

For steady-state free convection problems, Eqs. (Z.Z) - (2.4) become

ftØù:o (5 1)
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where p is the density and u¿ and r¿ are the Cartesian velocity components and coor-

dinate directions, respectively. Also, g¿ is the component of the gravity acceleration

vector in the z¿-direction. The last term in Eq. (5.2) represents the buoyancy force,

according to the Boussinesq approximation. The temperatures of the hot and cold

vertical walls are T¡ and [, respectively. The top and bottom walls are insulated.

The thermophysical properties are assumed to be isotropic and independent of tem-

perature.

Previous studies have shown that numerical solutions involving free convection

in an enclosure can be successfully obtained by finite differences, finite volumes or

finite elements 176,77,78, 79]. The buoyancy term depends on the local temperature,

thereby requiring coupled flow solutions with the energy equation. Past benchmark

solutions provide useful data regarding validation of predictive models for variations

of flow patterns and heat transfer 176, 771. Entropy based models have also been

applied to optimization in applications involving natural convection in an inclined

enclosure [80], irreversibiliiies at the onset of natural convection in a rectangular

cavity [81] and laminar natural convection over a heated rotating cylinder [82]. In

contrast to these past studies, this chapter develops a new procedure for measuring

such local production rates, thereby providing a new useful tool for validating past

numerical predictions and designing free convective systems.

(*#)
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Figure 5.2: Test Cell (B : H : 3gmm; D : bgmm)

5.2 Experimental Design and Measurement pro-
cedure

(i) Experimental Setup

The experimental setup involves Planar Laser Induced Fluorescence (PLIF) for

measuring temperatures within the test cell, as well as Particle Image Velocimetry

(Pry) for velocity measurements (see Figs 5.2 - 5.3). The test cell in Figure 5.2

was constructed with two aluminum multi-pass heat exchangers at the side walls,

connected to temperature control units (NESLAB RTE140 Bath/Circulator). Also,

17.5mm plexiglass windows were assembled on the bottom, top, back and front faces.

The test cell cross-section (39 x 39 mm) was designed for laminar free convectiorr.

The test cell depth is 59 mm. Heat losses from front and back sides of the cavity may

lead to velocity variations in the z3-direction. However, the depth was designed to



Processor

Figure 5.3: Experimental Setup

minimize these three-dimensional variations of thermal and flow fields along the plane

of symmetry [83]. Two holes on the top walls were needed to fill and drain the tiquid

during experiments. Water at a known temperature was circulated between each

aluminum heat exchanger from two NESLAB temperature baths. The temperature

difference between ihe inlet and outlet of the aluminum cross-flow exchanger was

approximately 0.3'C. In the flow loop, the cooling water was circulated by a pump

between the water and heat exchangers. The temperature of the outer surface of

the aluminum heat exchanger was approximately equal to the temperature of the

circulating water.

(ii) PLIF Calibration

Calibration experiments for the PLIF method were performed in the cavity. Dis-
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tilled water was circulated and seeded with a solution of Rhodamine B at a known

concentration and temperature. Preliminary calibrations were carried out at a fixerl

energy levels to determine the optimum concentratîor, C*or, at which the resolution

of the temperature field is maximum, while maintaining linearity between intensity

and temperature. The variations of gray values in the preliminary experiments at

various concentration levels are shown in Fig. 5.4. As expected, the calibration indi-

cates that the intensity of the fluorescence decreases monotonically with temperature

at a fixed rate. The spatial gradient of gray value with temperature represents the

PLIF resolution.

In Figure 5.4, the temperature resolution is maximum for a concentration of

I\p'glL. In the final calibration shown in Fig. 5.5, the concentration was fixed

at approximately 89% of the concentration at which the slope of the temperature

vs. intensity resolution graph is maximum, i.e., Co : 0.89 X C-"* : u.ípgll. Two

energy levels were considered to account for the response of the camera to varying

Iaser energy levels.

Values of temperature at discrete locations in the measurement domain are ob-

tained using the final calibration map. The PLIF software (Dantec Dynamics) used

in this thesis includes several methods for advanced analysis of the PLIF results.

Statistical averages are available to establish whole-field statistics on ihe LIF data

acquired. Optimization methods are used to enhance the signal to noise ratio and

precision, thereby giving an absolute theoretical temperature accuracy of + 0.6 , C.

(iii) Data Reduction and Processing

The cavity was illuminated from above at the vertical plane of symmetry by a Nd:Yag

pulsed laser. A Dantec Hisense CCD camera captured the sequence of image maps.
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The camera operated at 30H2, while permitting measurements of about 20 frames per
second' The temperatures were recorded after steady-state conditions were reached in
both velocity and temperature fields. Temporal uncertainties were considered to have

unnoticeable effects on the measurements. The Rayleigh number was controlled by
adjusting fluid temperatures into the aluminum heat exchanger side walls. A single
CCD camera was used to capture both PLIF and PIV images. The optical filters
for each measurement were switched to permit sequential measurements. The pIV
images were post-processed by a fast Fourier transform based cross-correlation scheme

(FiowManager, Dantec Dynamics). The 1280 x 1024 pixel pIV image plane of the
camera was divided into 32 x 32 pixel subregions with 50 % overlap, in order to give

a spatial resolution of 0.7 mm, based on the whole cavity. The pIV processor was

operated in a single frame mode with 100 ms delay time between successive frames to

Energy Level

Energy Level

Linear Fit
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yield optimal raw velocity data. The PLIF images were re-sampled by a calibration

map with a spatial resolution corresponding to the velocity map. The measured

velocity vectors are displayed by the PIV software over a discrete grid. Based on

the velocity measurements and the PLIF temperature measurements, the conversion

algorithm (described previously in Chapter 3) for functional eniropy production was

applied.

The PLIF measurements were performed to determine temperatures in the de-

nominator of the entropy production in Eq. (3.7). For this buoyancy driven problem,

the temperature field varies spatially, thereby affecting the frictional entropy pro-

duction in Eq. (3.7). The non-intrusive technique of pulsed laser PIV was used for

whole-field measurements of velocity, which were post-processed by spatial differenc-

ing in the frictional entropy generation. Thus, a similar whole-field non-intrusive

technique (Planar Laser Induced Fluorescence) was used for the temperature mea-

surements, rather than thermocouple or other intrusive probes. Constructing a grid

with probe locations that match all (i, j) coordinates corresponding to the discrete

PIV grid in Eq. "(1) would be infeasible and it would lack flexibility over a useful

range of applications

5.3 Results and Discussion

Accuracy of the numerical formulation for predicting entropy production has been

tested previously with problems involving both heat transfer and fluid flow ,32, JT,841.

In this section, the algorithm is applied to a natural convection problem and compared

with benchmark data [76] and measured data. Water was used as the working fluid

in the experiments, while air was used in the numerical simulations for benchmarking

purposes. The CVFEM formulation was validated against velocity and temperature
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daia of de Vahl Davies [76] and the entropy production results obtained for the natur.al

convection of air are compâred with previous studies.

(i) Case 1: Air (Pr - 0.71)

Figure 5.6 shows predicted velocity and isotherm patterns for Rayleigh numbers of

103, 104, 105 and 106. The velocity vectors are shown on a 40 x 40 grid for easy

visualization. The flow structure shows close agreement with contour maps obtained

in previous studies 176,771. At low Rayleigh numbers in Fig. b.6, the flow is nearly

symmetrical about the center point. As the Rayleigh number increases, the recircu-

lation becomes more elliptical and eventually separates into two zones at Ra:105.

The boundary layer becomes thinner, with the recirculation zones moving closer to

the wall at Ra:106. The temperature profile is nearly linear at the lowest Rayleigh

number (10'). As the Rayleigh number increases, convection becomes increasingly

significant and the profiles show a progressive departure from linearity. The contours

flatten as Ra increâses, with the highest temperature gradients closer to the wall.

This characteristic arises due to increasing vertical buoyancy-induced motion of the

fluid.

Predictions of the average Nusselt number, maximum horizontal velocity on the

vertical mid-plane, U*o*, and the maximum vertical velocity in the horizontal mid-

plane of the cavit¡ V^o,, and their locations are given in Table 5.3 for Rayleigh

numbers of 103, 104, 105 and 106 with the 80 x 80 grid. The z and y coordinates are

normalized with respect to the cavity width, tr. Also, the velocities are normalized

by a diffusion velocity, i.€., k/(crL).

As illustrated in Fig 5.7, convergence towards the same grid independent value

with the present numerical formulation and the finite difference formulation of de
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Table 5.1: comparison with Benchmark sorution of de vahl Davis

Urno, y-position V*o, x-position Nu
Ra: I03

Predicted 3.63068 0.8125 3.69075 0.175 L.L24T7
Benchmark 3.649 0.813 3.697 0.178 1.118

Ra:704
Predicted t6.2295 0.825 19.616 0.725 2.2527
Benchmark i6.178 0.823 19.617 0.119 2.243

Ra:105
Predicted 35.1589 0.85 68.6567 0.0625 4.52037
Benchmark 34.73 0.855 68.59 0.066 4.519

Ra: 106
Predicted 64.805 0.85 220.0L6 0.0375 8.8312
Benchmark 64.63 0.85 219.36 0.0379 8.8

Vahl Davies [76] can be observed when the mesh is refined. The grid size has been

normalized by the width of the cavity. The Nusselt number represents the ratio of the

heat flux across the cavity to the heat flux that would result from pure conduction.

Since the formulation is conservative, the heat flux across the cavity was determined

as the average heat flux at the hot and cold walls of the cavity. The calculation of Nu

is performed by finding temperature gradients at the sub-control volume level fbr all

boundary elements. In order to ascertain the accuracy of the numerical formulation,

velocity components and temperatures are monitored at a reference location (r : 0.2,

a : 0.4) and recorded for different grid sizes at Rayleigh numbers of 103, 10a and 105.

The velocities and temperatures converge towards the grid independent values as the

mesh is refined. A Richardson extrapolation for second order schemes was used, i.e.,

ó:ó¿+tr(óo-ó¿-r) (5.4)

Based on this extrapolation, the grid independent value and the percentage error

associated with each grid size were determined. When these errors are plotted against
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the grid spacing on a logarithmic scale in Figure 5.8, all curves indicate a slope of

2, thereby suggesting second order accuracy of the numerical formulation. The flow

field behavior as Ra increases shows close agreement with the benchmark solution of

de Vahl Davis [76]. The results presented tbr comparison purposes in the remaining

figures were obtained with the finest grid.

The predicted entropy generation due to friction irreversibilities at Rayleigh num-

bers of 103 and 106 (laminar regime; Pr:0.71) is shown in Figs. b.9 (a) and (b),

respectively. The predicted results show close agreement with previous studies of

Baytas [S0]. At the low Rayleigh number (Ra:103), the entire flow field contributes

to entropy production. But at Ra - 106, these irreversibilities occur predominantly

near the side walls. Also, the maximum values occur near the center points along

the side walls. At these locations, the near-wall velocities and their spatial gradients

are highest, while adverse pressure gradients contribute to flow deceleration when

the fluid approaches the corners of the cavity. At the low Rayleigh number (103),

comparable entropy production rates are observed along both horizontal and verti-

cal walls, since comparable fluid accelerations are observed at those locations. But

higher buoyancy along the side walls leads to greater differences of fluid acceleration

and entropy production at the higher Rayleigh number (10u). Entropy production

depends on both temperature difference (between wall and fluid) and heat transfer

rate. Thus, higher entropy production is often undesirable in free convection prob-

lems, since a higher temperature difference (i.e., additional input power to maintain

this difference) is needed to maintain a fixed rate of heat transfer between the fluid

and wall.

(ii) Case 2: Water (Pr - 8.06)
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In the remaining figures, a second case of free convection is considered with a working

fluid of water (Pr :8.06). The hot and cold walls are maintained at 20 oC and 10

oC, respectively, thereby yielding a Rayleigh number of 5.35 x 106. As shown in

Fig. 5.10, the measured velocities indicate that a single clockwise re-circulation cell

developed with highest velocities near the side walls. The fluid velocities diminish

rapidly at locations further from the wall, so that velocities become too small for PIV

vectors to be displayed in the central regiorr of the cavity. In Figs. 5.11 - 5.12, the U-

velocity and V-velocity along the vertical and horizontal mid-planes, respectively, are

illustrated. In each case, the velocities are non-dimensionalized with respect to the

maximum velocity, while the spatial coordinate is non-dimensionalized with respect

to the cavity width.

Close agreement between predicted and measured results is achieved in Figs. 5.11

- 5.I2. The measured velocity field is slightly skewed to the right side of the cavity,

so some discrepancy between predicted and measured results is observed near the

right wall. The numerical simulation assumes a perfectly insulated boundary on both

horizontal walls of the cavity, which leads to complete symmetry without skewing of

the velocity field. The experimental apparatus closely approaches ihis idealization,

but any slight heat gains through the horizontal boundaries could potentially lead to

asymmetry of the buoyancy-driven flow. Experimental uncertainties are considered

to have contributed to the slight skewing of the measured velocity to the right in Fig.

5.11. In Fig. 5.12, very close agreement between measured and predicted results is

obtained. Velocity measurements were obtained within 1 mm from the wall. However,

due to their importance in subsequent spatial differencing for entropy production ab

the wall, additional measurements, obtained by resolving the velocity field closer to

the wall, are presented below. Both Figs. 5.11 and 5.12 exhibit nearly symmetrical

profiles of velocity along the mid-planes of the cavity.
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(b) Measured

Figure 5.10: Comparison between Predicted ând Meâsured Velocity Field
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Surface plots of U-velocity values across the entire cavity are shown in Fig. 5.13.

These results also show close agreement between predicted and measured results.

The maximum horizontal velocity occurs near the top corner of the cold wall. Unlike

fluid flow of air at Pr - 0.71, where the maximum U-velocity is closer to the hot

wall in the top corner of the cavity, the predicted and measured results in Fig. 5.13

(Pr : 8.06; water) exhibit a maximum magnitude closer to the top corner of the

cold wall. Buoyancy induced acceleration of fluid up the hot wall leads to an adverse

pressure gradient and velocity change, when the fluid is re-directed horizontallv near

that corner. This momentum exchange involves a balance between fluid inertia and

forces imparted by pressure, friction and fluid buoyancy. The frictional resistance

of the fluid along the wall increases, when the momentum diffusion rate exceeds

the energy diffusion rate (Pr > i). This affects the overall momentum balance on

the fluid, thereby altering pressure gradients near the top corners of the cavity and

changing the trends of maximum fluid velocity for air (P, < 1) and water (Pr > 1).

Also, the distance of this maximum velocity point from the wall changes at different

Prandtl numbers. Past similarity solutions of free convection along a vertical wall

have confirmed that the point of maximum velocity moves closer to the wall at higher

Prandtl numbers (see Ref. [i]).

In Fig. 5.I4 at higher Rayleigh numbers, the temperature field is skewed about the

center of the cavity with hot fluid drifting closer to the cold wall. The temperature

field is flattened with the hottest fluid at the top left region of the cavity. This

temperature distribution suggests an increasing magnitude of buoyancy effects along

the vertical cold surface of the enclosure. Stronger convection closer to this wall leads

to higher velocities. This observation is consistent with results obtained previously

by Hamady and Lloyd [S5]. Comparisons show similar temperature stratification in

both numerical and experimental data.
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Post-processing of the measured velocity results yields the spatial variation of

entropy production throughout the cavity. Figure 5.15 shows the predicted and mea-

sured entropy production along the horizontal mid-plane. The peak values occur at

the vertical walls, corresponding to the locations of largest spatial gradients of veloc-

ity. Away from these points, entropy production decreases sharply to approximately

zero close to the wall, which corresponds to the local maximum and zero gradient of

V-velocity near the wall in Fig. 5.12. Beyond this local maximum of velocity entropy

production increases to a local maximum and decreases back to neariy zero in the

central region of the enclosure. The result presented in Fig. 5.15 has been normalized

with a reference entropy production, Pr(ref) at this local maximum. The entropy

production reaches a minimum value in the center of the cavity, where the stagna-

tion point of the re-circulation cell is observed. Close agreement between qualitative

trends of predicted results and measured entropy production is observed in Fig. 5.15.

But greater oscillations of measured entropy production are observed closer to the

wall, when the whole cavity is captured, due to limitations of camera resolution. Due

to the importance of these near-wall irreversibilities, additional velocity and entropy

production measurements, obtained by resolving the velocity field closer to the wall,

are shown in Fig. 5.16.

Figures 5.16 - 5.19 show near-wall measurements of v-velocity and entropy pro-

duction in the mid-region of the cavity at the cold wall. In Fig. 5.16, the measured

maximum U and V components of velocity are 0.611 mm/s and 1.69 mm/s, respec-

tively. The predicted maximum U and V components of velocity are 0.632 mm/s and

1.89 mm/s, respectively. Although efforts were taken to minimize heat losses from the

top, bottom, front and back walls, any losses may have affected thermal buoyancy,

thereby yielding lower measured velocities, as compared with the numerical predic-

tions. Close agreement between predicted and measured velocities near the wall are
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important, since near-wall spatial gradients of velocity are needed for the entropy pro-

duction calculations. Although PIV technology is limited by camera resolution and

particle tracing of small-scale structures near the wall, the experiments successfully

measured velocity and derived entropy production at very close proximity to the wall

(see Figures 5.16 (a) and (b)). In particular, a resolution of 0.2mm was achieved in

the wall region between 0.65 < xx ( 1 and 0.35 ( yx ( 0.7 . Such near-wall accuracy

becomes particularly significant for turbulent flows.

Measured oscillations of entropy production can be effectively reduced through

filtering of velocity data. In Fig. 5.17, a 3 x 3 average filter was used for smoothing

of the raw velocity vectors, before calculating entropy production. Previous pIV

studies [86] have shown that filtering does not introduce additional error into the

measured velocity, but it serves to mitigate uncertainty by averaging velocities at

surrounding grid points. Figure 5.17 shows the measured velocity distribution with

the corresponding filtered profile at the horizontal mid-plane. The results illustrate

the benefit of filtering, particularly for the near-wall raw data points and removing

random uncertainty in the measured velocity gradients.

Figures 5-18 and 5.19 illustrate the quality of the experimental data in a represen-

tative sub-region of the cavity. These figures confirm the capability of local mapping

of entropy production, and consequently, exergy losses in fluid systems for design

optimization purposes. This measurement procedure is considered to be a useful di-

agnostic tool for identifying local flow losses, so that energy conversion devices can

be re-designed locally around regions of highesi entropy production. It is viewed that

the current developments provide a useful basis, from which future advances can ex-

tend the method to more complex flows, such as turbomachinery, heat exchangers or

microelectronics cooling problems.
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Figure 5.19: Measurements in the iop right corner (Ra: b.3b x L06, pr: g.06) for
Non-dimensional Entropy Production
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Chapter 6

LJncertainty Analysis

6.1 Bias and Precision Errors

Uncertainty analysis involves systematic procedures for calculating error estimates fcr

experimental data. When estimating errors in heat transfer experiments, it is usually

assumed that data is gathered under fixed (known) conditions and detailed knowledge

of all system components is available. Measurement errors arise from various sources,

but they can be broadly classified as bias errors and precision (or random) errors.

Bias errors remain constant during a set of measurements. They are often estimated

from calibration procedures or past experience. Alternatively, different methods of

estimating the same variable can be used, so that comparisons between those results

would indicate the bias error.

Elemental bias errors arise from calibration procedures or curve-fitting of cali-

brated data. Also, "fossilized" bias errors arise when measuring and tabulating ther-

mophysical properties. Although such errors are usually less than 1 %, Coleman

and Steele [87] describe cases involving much higher levels of fossilized bias errors.

Moffat [88] outlines a "conceptual bias", which includes a residual uncertainty due

to variability arising in the true definition of the measured variable. For example,

if point measurements are used to approximate bulk temperatures at the inlet and
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exit of a duct, then the difference between these temperatures and the bulk mean

temperature contributes to a conceptual bias error, since point measurements cannot

fully capture the spatially averaged bulk value.

In contrast to bias errors, precision errors appear through scattering of measured

data. Such errors are affected by the measurement system (i.e., repeatability, resolu-

tion) or spatial / temporal variations of the measured quantity. Also, the procedure

itself may lead to precision errors arising from variations in operating conditions. If
an error can be estimated statistically, then it is usually considered to be a precision

error. Otherwise, it is generally assumed to be a bias error. Anticipated precision er-

rors are often used to guide experimental designs and procedures, in view of collecting

data within a desired range of measurement uncertainty. Gui et al. [Sg] outline pre-

cision errors and other PIV measurement uncertainties in a towing tank experiment.

Precision errors are reduced by increasing the number of measurement samples.

Alekseeva and Navon [90] found temperature uncertainties based on first and

second order adjoint equations. An adjoint formulation of an inverse heat transfer

problem leads to uncertainty indicators for the corresponding direct problem. Hes-

sian maximum eigenvalues from the second order adjoint equations can be used to

evaluate the uncertainty indicators [90]. Pelletie¡ et al. [91] show how sensitivity equa-

tions provide useful information regarding which parameters affect the flow response.

Uncertainties are estimated with flow sensitivities, which are used to propagate pa-

rameter uncertainties throughout the domain. Applications to turbulent flow in an

annular duct and conjugate free convection were considered [g1].

Measurement uncertainties of flow parameters depending on input data errors

(such as initial and boundary conditions) can be effectively calculated with adjoint

equations. Alekseeva and Navon [92] use adjoint temperatures to calculate the trans-

fer of uncertainties from such input data. Spatial propagation of errors affects the
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overall experimental uncertainties. An individual error within an experiment com-

bines with other errors, thereby leading to added uncertainty. Contributions can be

evaluated separately with sensitivity coefficients involving the measured quantities

and post-processed results, based on propagation equations [93]. Propagated uncer-

tainties are often classified according to zero-order or higher-order uncertainties. In

the former case, all parameters affecting the measurements are assumed to be fixed,

except for the procedure of the experiment. Thus, data scattering arises from in-

strumentation resolution alone. In the latter case (higher-order uncertainty), control

of the experimental operating conditions is considered, so factors such as time are

included. The degree of variability of operating conditions can be expressed by the

standard deviation. The standard error of the mean describes how much variation of

operating conditions is expected, when repeated samples from the same experiment

are taken. It is the standard deviation of the mean) divided by a number characteriz-

ing the size of the sample. If this value is small, then there is large confidence in the

measurement. But if the standard error of the mean is large, then either significant

variations arise in the measurements, or the sample size was too small.

6.2 IJncertainty of Measured Entropy production

Measurement uncertainties of primary variables (such as fluid velocity) with various

experimental techniques have been widely reported previously, i.e., Lassahn [94], Mof-

fat [95], Kline [96] and others. Post-processing of measured data, such as measured

vorticity from post-processed PIV data [86], entails additional uncertainties in the

conversion algorithm. Unlike the primary variables with their governing conservation

equations (equalities), entropy cannot be measured directly and it is governed by

an inequality (Second Law of Thermodynamics). The purpose of this section is to
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determine how accurately entropy production can be measured with whole-field laser

techniques involving PIV and PLIF. In pariicular, conventional error indicators [92]

are extended to the scalar variable of entropy production. Bias errors are related to

sensitivity coefficients of the measured entropy production.

The friction irreversibility of entropy production can be expressed bv the viscous

dissipation divided by temperature. In the previous chapters, the local entropy pro-

duction ra|e, Þr, was determined from

tL /

"(i,i) \
t,n)

A^y

L, j) - u(i -

u(i.,j*7)-u(i,,j-t) u(i+1,j)-r(i-
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where Az and Agr refer to twice the grid spacing in the r and gr directions, respectively.

This procedure was presented previously for whole-field measurements of velocity.

In the following sections, an uncertainty assessment of entropy production will be

presented for laminar channel flow and the free convective heat transfer problems.

6.3 Case 1: Laminar Channel Flow

Since measured entropy production is a post-processed variable, the first step is assess-

ing the experimental uncertainties of measured velocities. Pulsed laser illumination

and PIV incur certain errors from statistical correlations of the interrogation areas,

when determining the fluid velocities. For the problem of laminar channel flow (see

Fig. 4.1), the average fluid velocity for an interrogation area at any instant is reduced

by ihe following equation,

U- A,sLo

LtLr
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where ú is the time interval between laser pulses, As is the particle displacement from

the correlation algorithm, .Lo is the width of the camera view in the object plane and

Z¡ is the width of the digital image. The total error, e , in a measured quantity is

a sum of the bias component, B, and a precision component, P. The bias error of

the measured velocity is related to the elementary bias errors based on the sensitivity

coefficients, i.e.,

a2r: rt2'rB'o, + rlTrB,o, + rl?"8?" + rlZ,B?,

where the sensitivity coefficients are defined as

(6.3)

Tx: ãulðX (6.4)

The manufacturer's specifications of the elementary bias limits (t, As) are shown

in Table 6-1. The width of the camera view in the object plane, -Lo, depends on

distances and configurations related to the experimental setup, so the bias limit for

-Lo is determined from calibration procedures, not manufacturer's specifications. In

this calibration, the physical dimensions and spatial resolution of the camera view

in the measurement plane are determined. Then the width of the digitat image

is determined by the number of pixels corresponding to these dimensions. In this

problem, the width of the camera view in the object plane and bias limit for Lo are

0.0126 m and 0.0001, respectively. The uncertainty associated with this bias limit

can be reduced with a more refined procedure for measurement of Lo. As mentioned

in Chapter 3, the PIV image pairs are cross-correlated with a 32 x 32 interrogation

window and 50% overlap. This yielded a As value of 6.4 pixels in the centerline. The

meâsurement plane is 12.9 mm x 1b.g mm. Therefore, L¡ and Lo are 1024 pixels

and 12'9 mm, respectively. By combining the contributions of each bias error and

the sensitivity coefficient, a velocity error of 0.76% is obtained for the full scale. The

major source of velocity uncertainty occurs from locating the image displacement
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Table 6.1: Bias Errors (case 1)

Variable, X Magnitude Bx Tx Brq, #h @"rtrY
L"(*)
L7(pirel)

Ai(s)

A,s(pireI)

D BxIlx: 7.03E-04 B(¡ :0.0005

Bias Error : 0.0645 + 0.7586%

peak, s.

The precision error (P) of an average value, X , measured from ly' samples is given

by

toP:F (6b)

where ú is the confidence coefficient and ø is the standard deviation of the sample of

l/ images. Also, ú equals 2 f.or a 95% confidence level [98]. The standard deviation is

defined as follows,

r.268-02 0.0001 4.L3 4.13e-04 58.8 L.7LE-07

1024 0.5 -5.09E-05 2.54E-05 3.6 6.478_10

1.50E-03 1.0E-07 -3.478+01 3.47F,-06 0.5 1.21F,-11

6.35 0.03175 8.20E-03 2.608-04 37.t 6.78E-08

1 å, --\2
^r ' )-\Xn-x)rv -rÈ_1

(6 6)

where the average quantity is defined by the following equation,

lJLX: ñ )-xr (6 7)
" fr=l

Typical values of the standard deviation along the centerline and the near-wall

region arc lSTo and 33Y0, respectively. These values give precision limits of 0.67% and

I.55% for those regions. Therefore, the total uncertainty of measured velocity in the

middle of the channel and the near-wall region become L.4% and.2.2T0, respectively.
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Based on these results, the errors

mated. A data reduction equation for

of measured entropy production

entropy production is given by

can be esti-

(6.8)

(6 e)

,":#(#) *+(ff)'
* P) for the U, T and y variabThe total uncertainties (B les are

t^
- EU;

_J- -__L C11.

-Lc

The uncertainty in AU is obtained as fr;llows,

€/,'u: +

where

U¿: U¿

T¿:Ti

U¿ : tl¿

(6.10)

Note that ?'u,¿_t : -1 and ?L,n*r: 1 or vice versa. The uncertainty of AT is

calculated in the same manner as Eqs. (6.9) and (6.10), except that the velocity com-

ponent, U, is replaced by temperature, T. In the upcoming results, the analytical

solution of entropy production is derived from differentiation of the Poiseuille veloc-

ity profile for laminar channel flows, thereby leading to the frictional irreversibility

in the first term on the right side of Eq. (6.8). This solution neglects temperature

variations, since the experiment was conducted between unheated plexiglass plates

in an essentially isothermal water tunnel. However, the frictional irreversibility dissi-

pates kinetic energy to internal energy, which produces a small temperature change in

the boundary layer near the walls. The uncertainty corresponding to this measured

At _ ô@u)
"u,i-I - ðUo
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Table 6.2: Bias and Precision Error of Entropy production at y:1.7-m (case 1)

Variable, X Magnitude ex Tx ,rrl, #h Grrt*),
u(mls)

y(m)

r6)

0.0345 0.00013453

0.0126 0.000001

000.00
000.00

295 2 -3.3466E-06 6.78_06 5.3 4.47998_17

¡1,(ks /ms) 0.001003 0 3.1459E-03 00.00
k(WlmK) 0.5ee6 0 000.00
LU(mls) 0.00336544 0.00019026 b.86z0E-01 0.00011 89.0 1.2468-08

La(^) 0.0001975 7.4142F'-06 -4.9982E+00 z.1E-06 5.6 4.gg1l4-tr

^r@)
0 2.828427 000.00

Dex?x:1.25E-04 e:0.000112

Error : 0.00095269 + LI.76%

temperature change is reported in Table 6.2, based on the procedure outlined in Eqs.

(6.e) and (6.10).

Similarly,

(6.11)

where

o'o,t-t : a@a)
(6.r2)

Neglecting the error in reported thermophysical properties,

€2p" :,freT + rlTre'au * rl2are2ao + rt?nreLr

ôao

(6.13)

Based on this equation and the previous procedure of individual uncertainties, it

was determined that the experimental uncertainty of entropy production was ll.67%
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at a point of 3mm from the bottom wall. But less error was observed when analytical

results were compared with measured data (agreement within + 6.6 % close to the

wall). The measurement uncertainties represent a maximum error bound within the

95% confidence interval. Detailed calculations of the experimental uncertainties are

summarized in Tables 6.1 - 6.2.

The accuracy of the entropy production algorithm was validated by comparing

the measured values of velocity and entropy production to an analytical solution for

laminar channel flow. The differences between analytical and measured results are

generally less than I.2 %. A maximum difference of 6.6 % between the measured

entropy production and the analytical result occurs close to the wall. The location

of this maximum error is not unexpected. in view of PIV limitations due to parti-

cle tracking, camera resolution and a reduced number of seeding particles in each

interrogation region near the waÌl.

6.4 Case 2: Fbee Convective Heat Transfer

A similar procedure for free convection in an enclosure (as section 6.3; near-isothermal

channel flow) was adopted for the bias and precision errors) but with certain differ-

ences due to variations of temperaturewithin the enclosure (see Fig. 5.1). Unlike the

previous channel flow problem, friction irreversibilities in this problem vary spatially

due to both velocity and temperature variations âcross the flow field. For this prob-

lem, the bias error of the measured velocity is related to the elementary bias errors

and sensitivity coefficients as follows,

B?": ,t'o,Bl, + rt"ora|, + n?"8?" + nzL,B?, (6.14)

where the same definition of sensitivity coefficients is used, i.e. rÌx: \ulôx. By
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combining the contributions from each source of bias and the sensitivity coefficient, a

full-scale velocity bias error of 0.45% is obtained. Similarly as previously described,

the precision error (P) of an average value, [ , measured from l/ samples and the

standard deviation are given by Eqs. (6.b) and (6.6), respectively.

Typical values of the standard deviation at the points of maximum velocity and

near the wall are 0.5% and t.2%, respectively. These values yield precision limits

of 0.005% and 0.012%, respectively. Therefore, the total uncertainties of measured

velocity at these points are 0.45% and 0.5ot'o, respectively.

For this free convection problem, the data reduction equation for friction irre-

versibility of entropv production becomes

(6.15)

The same definitions are applied from the previous problem, including the total

uncertainties for theU,T, y, AU and Agr variables. Then, the total uncertainty of

entropy production becomes

e2p" :,t"rtT + nlueLu + rl'^reL, * rtTr€'ao (6.16)

For this problem of free convection, the total uncertainty of measured entropy

production was estimated to I>e 9.34% at, r : 0.985¿ and g : 0.46L, where tr

refers to the cavity height. This estimate represents a maximum error bound within

the 95% confidence interval. Tables 6.3 - 6.4 show the summarized calculations of

the experimental uncertainties for this problem of free convection in an enclosure.

The uncertainty of temperature measurements is included in the overall uncertainty

of entropy production. This total uncertainty is represented in terms of precision

and bias components, with sensitivity coefficients involving the PLIF temperature

measurements (see Table 6.4).

P, : #{ (#)' . (*)' . (*)'. (ff)'}
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Table 6.3: Bias Error (case 2)

Variable, ¡ Magnitude BX Bxrtx :#î (Br,t*),

L"(*)
L¡(pi,rel)

At(s)

L,s(pirel)

7.00E-03 0.0001 6.51E-02 6.51E-06 6i.8 4.248-LI

L024 0.5 -4.45F-07 2.238-07 2.r 4.958-14

9.00E-02 1.0E-07 -5.06E-03 5.068-10 0.0 2.56E-19

6.00 0.05 7.60E-05 3.808-06 36.1 L.44E'-11

D Bxrtx: 1.05E-05 Bu : 7.54048-06

Bias Error : 1.678-03 + 0.4515%

Although the total entropy production includes friction and thermal irreversibil-

ities, this study focuses on the friction irreversibility component. This component

includes velocity gradients and measured temperatures in the denominator, while the

thermal component involves temperature gradients in the flow field. Since the un-

certainties of measured temperatures are small compared to the magnitude of the

absolute temperature in the denominator, the sensitivity coefficient of temperature

in the uncertainty analysis is small. Based on parameters outlined in Table 6.4, the

sensitivity coefficient for temperature is 5.0 x10-e. The maximum error in the PLIF

temperature measurements (e7 ) becomes f5oC. This error is combined with others

in the total uncertainty of entropy production, including measured velocity gradients

in the flow field. The dynamic viscosity has been evaluated at a uniform temperature

(288 K). Variations of the dynamic viscosity, due to changes or errors in the measured

temperatures, have been neglected in the uncertainty analysis.

In summary, this section has presented an uncertainty assessment of entropy pro-

duction. Measurement uncertainties involve total bias, elementary bias contributions
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Table 6.4: Bias and precision Error for Case 2 (Entropy production; z :0.9g5 L,u:
0.46L)

Variable, ¡ Magnitude €y n- €^.n.. 3^xrx ( c_ n. \2€xrtx #k Grqr)'
U(m/s) -4.568-05 -2.068-07 0

V (m/s) -1.32E-03 -6.20E_06 o

r(m)

a@)

T(K) 288 5 -5.008_09 2.50168_08 0.0 6.26F,_16

¡1,(ks /ms) 1.14E-03 0 L.27F-03

k(w/mK) 0.5911 0 0

A,U"(mls) -2.60338-06 2.909058-02 0.12365 b.05158-08 0.1 2.b5E-1b

LV"(mls) 0.00191341 8.768728-06 6.38156 b.59b8E-0b Tg.6 J.13E-09

LUr(mls) -1.3016E-06 2.90905E-02 0.04J4r 1.26298-08 0.0 r.bgE-16

Lvo(mls) -5.20658-06 8.768728-06 -0.34230 B.045BE-06 4.J g.zT\-tz

0.0000154 r.414218-07 -79.37843 1.1217E-05 16.0 1.268-10

0-0000154 1.414218-07 0.12109 L.7L24E-08 0.0 2.938-16

Dexqx: 7.03E-05 e : 0.000057

Error : 6.1168E-04 + g.J4%

7.00E-03 0.0000001 0

6.808-03 0.0000001 0

00.00
00.00
00.00
00.00

00.00
00.00

Lr(m)

La(*)
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and precision errors. For laminar channel flow between parallel plates, the values

of standard deviation along the centerline and near-wall region are LSTo and,33To,

respectively. Near the wall, a precision limit of 1.55% and total uncertainty of 7.55%

are reported. For the problem of free convection in an enclosure, the measurement

uncertainty of entropy production is 9.34%, based on a maximum error bound within

the 95% confidence interval.
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Chapter 7

Closure

7.L Summary and Conclusions

In this thesis, a new entropy based approach for flow loss characterization was devel-

oped with a non-intrusive experimental technique and computational fluid dynamics.

Unlike past methods of global loss characterization, this thesis outlined a new ap-

proach of predicting local losses of available energy. The entropy production distri-

bution can be effectively found for any geometry representing a physical application,

either numerically or experimentally. The numerical analysis used a hybrid finite

element / volume method for discretization of the conservation laws as well as the

Second Law of Thermodynamics. The experimental procedure combines methods

of Particle Image Velocimetry and Planar Laser Induced Fluorescence for measured

velocity and temperature fields.

New modelling of turbulence correlations for the entropy transport equation was

outlined in this thesis. Closure of the correlations involving fluctuating temperature

and entropy production was accomplished through Reynolds averaging. An alterna-

tive model, which used the Small Thermal Turbulence Assumption, was proposed

for calculating the mean entropy production. With an eddy viscosity closure, the

model resembles the corresponding laminar flow formulation, except for the eddy dif-
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fusivity added to the effective diffusivity in the diffusion component of the entropy

transport equation. Also, 7k¿ appears in the effective diffusivity of the positive defi-

nite entropy equation, as well as T'2 terms. In contrast to conventional modeling of

the dissipation rate equation, an alternative algebraic balance method was suggested,

which involves both transport and positive definite forms of the turbulent entropy

production equation.

The equivalence ofthe proposed local flow characterization based on flow exergy to

conventional loss analysis is demonstrated in an analvtical relation between head loss

and exergy destruction. Available energy losses were found to be volumetric phenom-

ena involving exergy destruction. This assertion and the formulation for mean turbu-

lent entropy production was validated against DNS data and Darcy's friction factor.

Close agreement between the two approaches suggested that the present turbulence

modelling of entropy production has been formulated correctly for near-isothermal

flows.

The entropy production algorithm was implemented through Matlab scripts and

other externally developed C++ functions linked to a commercial software (Dantec

Dynamics, FlowManager). Smoothing algorithms were applied to the mean velocity

and temperature fields to mitigate against error in spatial derivatives. The rate of

dissipation of turbulent kinetic energy was needed to compute losses in turbulent

flows. The dissipation rate was estimated in the conversion algorithm with dimen-

sional analysis based on equilibrium turbulence and a large eddy PIV method. The

Clark gradient model and the Smagorinsky model were employed for the SGS stress.

The newly developed procedures were applied for whole-field measurements of flow

irreversibility in a parallel channel and free convective heat transfer in a cavity. The

channel flow experiments were carried out in a water tunnel seeded with polyamide

particles. Measurements were recorded sufficiently downstream of the channel inlet
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so that fully developed conditions were obtained. Measured entropy production and

resulting exergy based friction factors in laminar flow showed close agreement with

analytical solutions. Measured dissipation of turbulent kinetic energy in the turbulent

channel flow problem also compared well with DNS solutions at Re, :1g7, but some

deviation at higher Reynolds numbers were observed, due to limitations imposed by

the spatial resolution of the CCD camera. Overall, the PIV based loss mapping gives

correct qualitative and qualitative trends of losses in wall-bounded flows.

An experimental apparatus for free convection was constructed with water con-

tained between differentially heated walls of a square cavity. A pulsed laser light sheet

illuminates a cross-sectional plane of the cavity, so that two-dimensional profiles of

velocity and temperature can be obtained. The peak value of entropy production

occurs at the wall. A local maximum is measured close to the wall, due to a local

velocity peak and zero spatial gradient of the streamwise velocity component. The

measurement procedure and data are considered to be the first documented studies

of whole-field entropy production measurement. Measurement uncertainties involve

total bias, elementary bias contributions and precision errors. For laminar channel

flow between parallel plates, the values of standard deviation along the centerline and

near-wall region are 75%o and 33T0, respectively. Near the wall, a precision limit of

I.55% and total uncertainty of 7.55% were reported. For the problem of free convec-

tion in an enclosure, the measurement uncertainty of entropy production is g.J To,

based on a maximum error bound within the g5% confidence interval.

Measured entropy production is considered to have considerable practical utility

as a diagnostic tool. The designer can use the entropy production map to detect

Iocations in which entropy production is higher that its integrated value over the

entire flow field, and thus assess the effect of a design change on the local and global

distribution of losses. Since the local entropy production can be converted to local
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loss parameters, its calculation can open the door to improved thermal and fluids

system design.

7.2 Recommendations for Future Research

The following areas should be researched further.

Multi-disciplinary Design optimization (MDo) with the Second Law. The pos-

sibility of a systematic optimization is implied in this thesis. Since the newly

developed technique can provide measured data for tracking spatial variations

of friction irreversibility and local exergy losses, a numerical design procedure

can be developed to find an optimal configuration. Iterative changes to a given

profile, using an objective function based on entropy production, can be utilized

until the optimum is achieved.

Heat transfer irreversibitity measurement. Attention was focussed on entropy

production due to fluid friction in this thesis. The measurement procedure could

be developed in a general context to fully include heat transfer irreversibilities.

This will require an optimized PLIF or a more precise interferometric measure-

ment technique.

Entropy based loss prediction in turbulent and external flows. Local losses have

been successfully characterized in a wall-bounded laminar flow (channel flow).

The implementation of the conversion algorithm to loss prediction in turbulent

internal flows and drag prediction in external flows will further demonstrate the

applicability of the Second Law tool for loss analysis.

Numerical turbulent dissipation modeling using the Second Law. In contrast to

conventional dissipation of turbulent kinetic energy modeling, this thesis sug-
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gested an alternative method based on combined transport and positive definite

forms of the entropy production equation. Additional validation studies would

yield useful benefits in subsequent modeling of turbulent entropy transport.
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Appendix A

Derivation of Linear Eddy
Viscosity Closure

The fluctuating component of the specific entropy is given by

,'=ro!-^4 (A1)tp

By the Reynolds analogy,

Tu, : - r' 2' (A.2)
p%ð*,

Also, based on the STT Assumption,

0s c, ðT
ú:;d" 

(A 3)

Using Eqs. (4.1) - (A..3) in the first term on the right side of Eq. (2.33) gives

,r4#:-"vn,(#)' (on)

where 'Y : co /cp : 1 for incompressible fluids.

The second term in Eq. (2.33), under the STT Assumption, becomes

r'#=r'*(".i): c.(r')'*(Ð .?V#l ro rl

After time averaging,
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The third term in Eq. (2.33), under the STT Assumption, becomes

r'{-r{ou|,) = r'*(oþr'",) : pc,'tL'¿(r)' *(å) . o}r'fi;{r'u'u) (4.7)

The last term in Eq. (A'.7) can be written as

r' fir{r' u|) : T' 
l, #, * rr#)

where T@WãíJ: 0 due to the continuity equation' The time

Eq. (A.s) becomes 
;#,")::#@n

t, Þ; : -rr, (#)" * *.* (ry) + o".aofr, (T)

Substituting this result back into Eq. (4.7) gives

,'" rfl*l.l = p",41rf #,(+) + ffiWrl (A 10)

The final form of thelQ correlation, under the Small Thermal Turbulence As-

sumption, becomes

(A 8)

averaged form of

(A e)

(A i1)

Equations (2.28), (2.39) and (A.f t) can be combined under the STT Assumption.

After several algebraic manipulations,

**o + ft1,,,, - + W, . r) #l : hft* .,r,) (#)'). ?#, .

+ + 
{r (Ð' * f;*, (+) fien - ? l*, w) ***(T) 

]

+ #,1*"þ-F,)*r,*(r9] )
(A.12)

This result represents the turbulent entropy transport equation, based on a linear

eddy viscosity closure.

p",yoa (F)
2T ðrt
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