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ABSTRACT

The work described in this thesis is motivated by the need to understand the behavior of
neural network models used as associative memories. Part of this work is devoted to the
study and design of a way of performance evaluation which can sufficiently evaluate the
main properties of associative memory, effectively be implemented in the experiment, and
achieve highly reliable results. The procedure developed for testing the memory
performances follows the black box strategy. This procedure has been uniformly applied to
investigating both unidirectional and bidirectional memories. The results of each
well-defined performance characteristics for the Hopfield network, bidirectional
associative memory, Ho-Kashyap encoded memory, and Backpropagation network are
presented. These results show that the quality of accretive recall is affected by the dimension
of the input pattern. The bidirectional search can improve the accretive recall in some cases,
but it may also deteriorate the interpolative recall. The maximum capacity for the
Ho-Kashyap model, with the same dimension in its input and output patterns, is
approximately equal to 1.4 times the dimension of input or output pattern. Results also
indicate that the Ho~Kashyap model may be best—suited in performing accretive recall while
the backpropagation model is very good at realizing interpolative recall. The investigation
verifies that the capacity of bidirectional associative memory is much lower than Kosko’s
original estimation. The value of n/2log,n , which was analytically derived by McEliece, et
al. to estimate the asymptotic capacity of a Hopfield network with # neurons [MPRV 1987],

can be directly applied to estimating the capacity of the bidirectional associative memory.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Purpose

This thesis is motivated by the recent renewed interest in the artificial neural network
model of associative memories. Recent studies of neuroanatomical brain functions have
provided fertile ground for the development of neural network models of associative
memories (referred to as associative memories) [HiAn1989]. One possible reason for the
rapid growth in this area may be due to the fact that, although traditional digital computers
based on the localized principle have achieved considerable success in many areas, there still
exists a class of problems which seems to be very difficult for normal computers to solve.

An example of such a task is retrieving an item or an association when given an incorrect
or partial description of its features. While this task does not appear to be difficult for humans
to perform, it is inappropriate for the conventional computer. The reason for the difficulty
is that the digital machine accesses items in its memory by using their addresses, and it is
hard to discover the location of an item from an arbitrary subset of its contents. Furthermore,
for some tasks such as identifying handwritten characters, understanding continuous speech,
and solving complex pattern recognition problems, it is very difficult to provide step by step
procedures for a conventional computer to follow, and, therefore, it is very impractical to

solve these problems through procedure-based systems.

The fact that biological memories are so effective in undertaking certain tasks suggests

that it may be possible to obtain similar capabilities in artificial devices based on the design

-1 -



Chapter 1 Introduction

principles of biological neural systems. For many years, researchers have developed many
types of associative memories. These memory models bear a resemblance to the human
brain in the sense that: (i) memory typically consists of densely interconnected processing
elements, (ii) knowledge is acquired through training (rather than programming) and is
retained in the strength of interconnections among processing elements, and (iii) knowledge
stored in the memory takes the form of a stable state (rather than in a particular location as

in normal computers).

Although today there exist many associative memory models, their behavior has not
been adequately captured. One reason for being unable to obtain the behavior is the lack of
clear definitions of the performances. Another reason is the lack of a well-developed
methodology which can be used to extract the interesting properties in these artificial
devices. One purpose of this thesis is to present clear statements to describe memory
characteristics. These characteristics are not only defined literally but also formulated
mathematically. These definitions help one to arrive at quantitative descriptions of memory
performances. The other goal of this research is to provide a systematic strategy of
investigation. This strategy is based on probabilistic and statistical theories. The uniform
treatment in the investigation of memory models makes comparison of memory
performance possible. This thesis will also provide the results from investigating four
different types of associative memories. These results can be regard as the complementary
source of the information that guide one towards the goal of understanding the behavior of

these newly born intelligent devices.

1.2 Localized and Distributed Memory Storage

Two contrasting ideas can be identified in the history of brain science concerning where

and how information is stored [Aquil987]. One traditional view is on the localization and

- 92—



Chapter 1 Introduction

determination concepts forcefully advocated by many neurobiologists and psychologists
[Hebb1960], [Kand1976]. In their view, the brain system is made up of identifiable,
localized parts, and behavioral functions can be localized to particular components. Under
this assumption, “there seems to exist a coarse specialization of the brain areas according
to the various sensory modalities (visual, auditory, somatosensory, etc.) as well as different

levels of operations (speech, planning of actions, etc. )” [Koho1984]. (See Fig. 1.1).

J\{ﬂ,n

Fig. 1.1 Brain areas. [Kohol984] Copyright by Springer-Verlag Berlin
Heidelberg 1984. ' '

This school of thought persisted in the experimental work of P. P. Broca, A. R. Luria and L.
R. Aquire [Broc1960], [Lural966], [Aquil987] and was believed to be the theoretical

foundation for the invention of powerful digital computers.

The other viewpoint arose in opposition to the traditional view and was developed out
of the localized principle. In this principle, the behavior and mental activity result from the
integrated activity of the entire brain [RuOr1977], [Aquil987]. The idea is that memory
involves a constant change in the relationship among all neurons. This kind of change is
accomplished through either structural modifications or biochemical events within neurons

in such a way that neighboring neurons communicate. In this view, information is not located
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Chapter 1 Introduction

in any particular place, but is stored in the relationship among neurons which participate in

the encoding of information.

1.3 The Role and the Structure of Associative Memory

1.3 .1 Associations

One of the basic elements of human memory is an association [Koho1977]. Essentially,
an association is a rule or arelationship between two stored memory traces that map one into
the other. In alibrary card index, you can find the title of a book if given the author’s name.
If youknow a key word, you can use the subject index instead. In the same way, by picturing
the face of a friend, you can remember his name. So there is an association between name

and the two stored pieces of information in a memory system. Mathematically, if two stored

pieces of information can be properly represented in a vector formatasx = (xi, x2, . ., x,) and

Y=0OLY2 -»¥m), where x € R* and y €ER™, and if T(.) is the function mapping

X into/onto y in the expression y = 7(x), then T{(.) is an association.

At a very general level, the role of associative memory in the information processing
account of cognitive behavior is that when a member of an associated pattern X, which is
considered as a “key”, is entered into a memory system, the memory gives output y which
is related to the “key”. The memory process which transforms the ordered set of input
patterns X into the other set of output patterns Y can be schematically represented by Fig.
1.2 or Fig. 1.3 depending on what the type of memory storage method is employed (the
localized or distributed). The system depicted by the flow chart in Fig. 1.2 is obviously

dedicated to a localized memory model. This flow chart is to be read from left to right.

— 4 -



Chapter 1 Introduction

— Memory
Probe x Response y

Fig. 1.2 A simple flow chart representing the memory process performed in localized

memories.

The probe X stands for a search argument or a feature vector and the arrow leading from the
probe X into the box labeled memory indicates that the physical pattern is entered and
interrogated. The comprehensive and transforming process which is represented by the
memory—decision-response loop is actually the searching-matching process realized by
means of executing a pre—defined program. The stop rule which is not represented in this
simple flow chart is based on some similarity measures. An example of this device is the
conventional data base system designed to handle relational structures by means of both

complex data structures and a pre—programmed search algorithm.

Memories based on localized information storage and retrieval mechanisms are
contrasted to distributed memories model in both structure and manner of processing. As
illustrated in Fig. 1.3, the associative memory consists of a number of neurons. These
neurons are densely interconnected with each other through linear connections called
weights. The input/output relationship is described by neuron’s transform functions. One

of the common transform functions is
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yi=f (; Wi X; — 6; ) (1.1)

where wj; is the weight from input neuron i to output neuron j, 6; is the threshold in neuron

jand f(.) is a nonlinear activation fuhction. Typical activation functions are the hardlimiter,
unit step, and sigmoid which are shown in Fig. 1.4. In this type of memory model, all the
values in the universe of variables (weights and thresholds) which satisfy the condition of
associative mapping constitute possible solutions. In general, the distributed memory takes

the relationships of internal processing elements (or actually their strength) into account

statistically [Koho1984].

]

Fig. 1.3 A simplified artificial neural network model of associative memories.
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output y;=f.)

X3 (O
Xn
y/"‘ input X y,-“ yl.A
e e
6; neti:put 7 6 neti:putj 8 I neti:put,-
hardlimiter unit step sigmoid

Fig. 1.4 Artificial neuron

1.3 .2 Associative recall

A central operation in explaining the function of associative memories is called
associative recall. The associative recall is defined as any process that when given an input,
the memory is able to evoke a specific response in a highly selective fashion associated with
that input [Koho1984]. Under this definition, the associative recall can be simply described
as an optimal mapping from a set of input patterns x*), s=1, 2, ..., p, into/onto a set of output

patterns y®, s=1,2, ..., p. The optimal mapping means when a memory is evoked by an input
pattern, X', the recalled pattern y' has the properties that y’ ultimately matches with y®
(which is subset of {y(s) Ls=1,2,..,p) if x® k € {1,2, .. ,p}, is the best pattern (in the

subset of X s=1, 2, ..., p) that represents the input pattern x’.

There are two alternative ways in performing associative recall. Components in the
network can either change their states one at a time, which is referred to as asynchronous

recall, or change all at once, which is called synchronous recall. The memory that utilizes

- 7 -



Chapter 1 Introduction

asynchronously recall strategy is usually called an asynchronous model. Similarly, the
memory thatadopts synchronously recall strategy is referred to as a synchronous model. The
distinction between these two models lies in the fact that a particular component in the
asynchronous model is modified to provide some shorterm effect on previous states which
may immediately affect other neurons, whereas the synchronous model only collects

previous states and generates new states as a whole.

1.3 .3 The structure of associative memory

In terms of information processin g, existing memory models can be categorized into two
different types. One is feedforward associative memory [HiAn1989], the other is dynamic
associative memory [Hassoun1989]. The broken lines in Fig. 1.3 are to indicate that for
associative memories, there may or may not be a signal feedback from their output to input.
If an associative memory has no feedback loop, the system is referred to as a feedforward
associative memory, otherwise it is named as a dynamic associative memory. Neurons in
feedforward memory only propagate information from input neurons to output neurons
through hidden neurons if they exist. The number of hidden layers and the number of
neurons in each layer in the memory are problem dependent. For dynamic memories,
neurons change their activation iteratively in the process of associative recall. Such a

dynamic process terminates only if the memory settles down in one of the stable states.

Further distinctions can be made according to the input and output dimensions. An
associative memory is defined as an autoassociative memory [Koho1984] if its input
dimension » equals the output dimension m ( n=m ). This type of memory is dedicated to
the reconstruction of the pattern stored in memory if the memory is evoked by noise

corrupted or partially absentinputs. Thus, both the input and output patterns being processed

— 8 —



Chapter 1 Introduction

in the autoassociative memory belong to the same vector space. The other type of associative
memory, called heteroassociative memory [Kohol984], is designed to perform an
associative mapping from one space into/onto another. Two sets of patterns in the
heteroassociative memory can be selected freely and independently and they distribute in
two different vector spaces. Thus, the heteroassociative memory differing from the
autoassociative memory in terms of topological structure is that the dimensions of input and

output for heteroassociative memories are not identical, i.e. n # m .

1.4 Thesis Organization

This chapter serves as an introduction to the entire thesis. The purpose of this chapter
is to provide the fundamental concept of localized and distributed memory models as well
as to outline their major differences in encoding, storing and retrieving mechanisms.
Chapter 2 characterizes the main features that reflect the behavior of associative memories.
The definition for each feature is given in the context followed by a discussion and
explanation. These features are mathematically formulated so that they are readily applied
to performance testing. The necessity, sufficiency and validity of the minimum distance
constraint used in testing the memory performance is thoroughly discussed. Elements for
performance testing, such as the formation of training and testing patterns are provided. A
procedure used for testing memory performances is derived. Chapter 3 is divided into four
sections. Each section begins with the general review of the memory model being tested
followed by experimental results. Descriptions and analysis of these results are given at the
end of each section. Chapter 4 compares the performance of the models tested in chapter
3. The comparison is based on the following aspects: (i) information capacity, (ii) error
correction capability, (iii) the effect of input and output pattern dimensions on accretive

recall, (iv) the probability of the memory getting into false states, and (v) the temporal

—_ 0 —
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complexity of encoding and associative recall. Conclusions and recommendations are given

in Chapter 5.
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CHAPTER 2

METHOD FOR PERFORMANCE EVALUATION

2.1 Introduction

This chapter sets forth a procedure for performance evaluation for the purpose of
discovering the behavior of the neural network model of associative memory. The method,
as presented here, for testing memory performances is a general one in the sense that it is
not based on any particular task. Implementing performance evaluation requires two sets
of data: the fraining patterns/associations and the testing patterns.  Training
patterns/associations represent the information to be stored in the memory. Testing patterns
serve as keys which are used to stimulate the memory. To ensure generality, these data
should be randomly generated from a uniform distribution. The method used for testing
memory performances follows a black box approach. Based on the theory of the black box,
the entire memory is treated as a completely unknown system. Neither the internal structure
nor the internal activation of a memory is considered in the testing except for the memory

response to the environment.

The primary reasons for adopting the black box testing approach are that: firstly,
theoretical analysis of memory performance, such as, accuracy, capacity and achievable
resolution still remains in a state of infancy, since it involves a lot of assumptions and
unrealistic simplifications. Secondly, although the hypothesis that simple networks behave

as if they minimized the quantity of the energy in a physical system has proved to be a very
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useful tool in expressing nonlinear cross—coupled networks, it is still very difficult to apply
to an arbitrary network model. This is because, firstly, for most associative memories, there
is no guarantee that memory will settle down in the nearest energy minimum and few
patterns can be stored without creating spurious local minima. Secondly, for some learning
algorithms, such as the trial-and—error process, weights are not only the function of training
patterns but also the function of weights themselves. As aresult, it seems to be impossible
to write down the relationship between the memory response and the formation of weights
in either a closed or series form. These relationships, however, are indispensable in
obtaining exact memory performances analytically. For these reasons, treating a whole
system as a black box is an alternative approach to gain the behavior of associative memory.
Nonetheless, even using this behaviorist—functionalist approach, there still are questions
unanswered. What are the characteristics that represent the performance of this type of
memory? What are the measurement criteria? How can the performance evaluation be

carried out? These critical questions must be properly formulated and discussed.

2.2 Main Features Affecting the Performance of Associative Memory

The key characteristics of the associative memory that affect the performance and need
to be analyzed are the distributed information storage and collective computation. These
characteristics shared by nonlinear activities and parallel process enable associative
memories to solve problems that can hardly be acted on by conventional computers.
However, one of the consequences of such a significant change in the memory mechanism
is that the foregoing performance analyses and measure strategies used in digital computers

are no longer appropriate to be applied to associative memories. As a result, developing an
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investigation strategy dedicated to associative memories is one of the demands in this study.
The theme of this section is to explore main features which are conceived as reflecting the
performance of an associative memory. These features are characterized in a mathematical
way so that corresponding performance measure can be readily undertaken. The

relationships between these features are also addressed.

The following properties are considered in the evaluation of associative memory

performance:

. Information capacity

. Error correction capability

. The effect of input and output pattern dimensions on accretive recall
. Spurious and oscillatory states

. System complexity in terms of architecture, encoding and recall.

2.2 .1 Information capacity

In general, the information in an associative memory can be expressed in the form of bits
or of vectors which are called patterns. But before giving a rigid definition of information
capacity, two distinct but related associative recalls need to be clarified. The firstis accretive

recall:

accretive recall: Let {x?,y?} , s=1, 2, ...p, be arbitrary p pairs of associations stored in the
memory, where x®= (1P, . A, yO=005%, ..y9)7, and T() be a nonlinear
transformation. For a noise component, €, in x®, a memory is said to be performing an

accretive recall if y© satisfies



Chapter 2 Method for Performance Evaluation

y(s) =T ( X(S) + 6), Vs, s=1,2, R/ (21)

This definition implies that the accretive recall strictly requires the stored pattern be
retrieved perfectly. This type of recall is schematically depicted in Fig. 2.1 of case I. Note
that the Fig. 2.1 is very idealized and, in particular, the attraction regions (shaded areas in

X space) may not be circular.

case I: accretive recall

space X g Yo = T(x19 +¢)

ﬁ space Y
case ll: intepolative recall

vy 4 = T(x9 +¢€)

Fig. 2.1 Two dimensional representation of accretive and interpolative recall.

Another type of recall which seems to have been surprisingly neglected is the
interpolative recall. 1tis worthwhile to make clear that the function of associative memory
is by no means just a basic pattern association. The meaningful associations generated in
the interpolative recall makes associative memory more powerful in capturing the implicitly
defined relational structures. The definition of the interpolative recall is given in the

following statements:
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interpolative recall: Let x© , y© | s, € , and T(.) be defined as the same as those in the above,
and r be determined according to the nearest neighbor rule [DuHal973]. For a noise
component, € , in x®, a memory is said to be performing an interpolative recall if y© and
o satisfies

YO +0 =T (x© +¢), Vs, s=1,2,..,p
(2.2)

and O<||o| =~
where IL.Il denotes some proper distance measure (see case II in figure 2.1).

Eqgn. (2.1) indicates that when given a stimulus, x¥ +¢ , the memory responds with an
output which is exactly the same as the stored pattern, y*), associated with the input, x.

For this type of recall, the information capacity is defined as:

information capacity (1): The information capacity is the maximum number of
patterns/associations that can be stored in the memory under the condition that when evoked
by noiseless input, (¢ = 0), the memory can always perform accretive recall. Mathematically

speaking, C,, is said to be a capacity of a memory if
Cop = max(p) (2.3)

such that y = T (x), s=1, 2, ..., p, holds.

The other way to define information capacity is on the interpolative recall basis. This
definition is mainly to characterize how densely the patterns/associations can be packed in
the memory under the condition that most features of the stored patterns can still be

successfully retrieved.
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information capacity (2): Information capacity is the maximum number of
patterns/associations that can be stored in the memory under the condition that the memory
is free of performing either accretive recall or interpolative recall when the memory is

evoked by noiseless input. Mathematically speaking, C,, is said to be a capacity of amemory

if

Cgp = max(p) 2.4)

such that y + & = T (x), s=1,2, ..., p, holds. Here 8 must satisfy 0 < |6 || = r. Itis
important to point out that, in the measure of information capacity, only specifying the
number of patterns p is meaningless unless the mutual relationship between {xv,y“?} and
{x2,y“2}, §1 # 57, has been taken into account. This is because information capacity for
distributed memory is usually environment dependent. The selectivity is significantly
affected by the degree of mutual coupling among stored patterns. In order to getrid of such
an influence it may be better to characterize this essential feature by using a probabilistic
analysis approach, i.e., defining information capacity as the probability of memory being
able toretrieve stored patterns perfectly (accretive recall) or imperfectly where most original

features are preserved (interpolative recall).

Inlight of definitions of the information capacity given here, itis necessary to summarize
this important property: (i) The capacity for associative memory is characterized on the
probabilistic basis. This probability can be estimated using computer simulation. (ii) The
information capacity is a function of p, the number of patterns stored in the memory. Thus,

the curve, the probability of associative recall vs. the number of stored patterns p, directly
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manifests the memory capacity.

2.2 .2 Error correction capability

The most appealing feature in associative memory is its ability to suppress noise or to
recover most information correctly even when the memory is stimulated by an incomplete
or noise corrupted input pattern. This property reflects memory’s “thinking” capability. The
ability to correct noise is achieved by means of various techniques depending on the type
of architecture, encoding and retrieving algorithmused. Orthogonal projection [Koho1972]
[Koho1984], lateral inhibition [Lipp1987], [RuMc1986], steep descent iteration
[HiAn1989] and bidirectional feedback search [Kosk1987], [Hass1989] are all well-known
and widely utilized techniques in building associative memories. The quality of associative
recall can be improved either by the activity of competition among neurons during the recall
or by performing signal feedback to force a memory to dynamically evolve until it reaches
a stable state. The capability of correcting noise is usually characterized by whether the
memory is able to give a high quality response despite variations, distortions and omissions

in the input pattern.

The distinction between information capacity and error correction capability lie in that
the information capacity is to exhibit how densely the information can be stored into a
memory, whereas the error correction is to manifests the associative memory being able to
reconstruct stored patterns/associations when the memory is stimulated by degraded or
partially absent input patterns. Furthermore, the capacity is measured under the condition

that all input patterns are purely the training patterns themselves, whereas the error
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correction capability is characterized by the relationship between the quality of associative

recall and the noise level in input patterns.

One thing that needs to be emphasized is that the criterion for judging whether memory
performs successful recall (either accretive or interpolative recall) is based on the nearest
neighbor rule [DuHa1973]. The nearest neighbor rule simply classifies a pattern x according
to the nearest point in the training set. Here the “nearest” is defined on the norm based
computation; unless otherwise specified, it is the Hamming distance measure. For two

s2) (s2)

patterns x“V = (x{™, x5, . ,x&") and x99 = (47, 52, .. ,x$?), the Hamming distance, D,(x¢",x?),

1s calculated according to
n
i

The nearest neighbor rule applied to judging whether or not an associative memory performs

successful recall is formulated by

y el = T(x® + ¢ ) is said to be recalled successfully

if y (recald satisfies
(2.6)
(1) y® such thar y® € {y9), s=1,2, .o D, and
(2) “ y (recall)_y (k) ” = min “ y(recall)_y(s) ” .
s

Eqn. (2.6) indicates that, for a memory having stored p associations {x?,y¥} , s=1, 2, ..., p,

when given a stimulus, x™"=x® + ¢ , the recalled pattern, y"=”, is classified to y® if yoe ig

the nearest neighbor of y®, k € {1, 2, ..., p}. Evidently, if || y*="-y® | =0, it is an accretive
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recall because y® is one of the stored patterns. If|| y<"-y® | = 0, it must be an interpolative

recall.

2. 2.3 The effect of input and output pattern dimensions

on accretive recall.

Due to the distributive manner of information storage, the memory performance may be
sensitive to the input and output pattern dimensions. This is because it is only the input
pattern that is responsible for furnishing information to evoke the memory. Generally
speaking, the more redundant the information (the higher the dimension in the input pattern)
with which the input pattern can be represented, the higher the probability the memory
performs correctrecall. However, the degree of such an effect varies depending on different
models, the number of associations stored in the memory, and the noise level in input
patterns. For this reason, any measurement of this effect of input and output pattern
dimensions on accretive recall is not meaningful unless all required conditions are specified.

In order to quantitatively measure such an effect, the following definition is proposed:

Let the effect of input and output pattern dimensions on accretive recall between two

memory models A and B be denoted by Z4p and » and m be the dimension of the input and
output patterns, respectively. If the model A is constructed with m = n , while the model

B is constructed with m = n, then Z4p can be defined as:

1/2

(4 - BR) @2.7)

MN

1
Ziyz = C S(AB —
AB S(4B) 1

T

1
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where [ = 2 and C is a constant (in the investigation, C=10 is used). The function Sp) 1n

Eqn. (2.7) is defined as

il
S4By = sgn Z ( APk - BEE) (2.3)

k=1

and Aﬁﬁ , k=2, 3, ..., [, is the probability of accretive recall measured under the following
conditions: (i) memory structure: m # n, (ii) input noise level: P, and (iii) memory load:
P1, P2, ..., pi. Bach p, k=2,3, ..., I, stands for the number of training patterns stored in the
memory and pi < pj ifi<j. Bb is also the probability of accretive recall measured under
the same conditions as A except for the memory structure: m = n. The Eqn. (2.7) actually

measures the performance differences (in the accretive recall aspect) between the model A
and model B. This difference measure is analogous to calculating the sample standard
deviation. In Eqn. (2.7) the number of observations is /, and the performance of model B
with the same dimension in its input and output (m=n) is treated as a sample mean (used as

a reference). The function, S(4p), used in Eqn. (2.7) is intended to show whether such an

effect improves or deteriorates the quality of accretive recall.

2.2 .4 Spurious and oscillatory states

False states can be divided into two categories: the spurious states and the oscillatory
states. Spurious memories are those stable states that do not belong to stored training
patterns. These states are generated during the encoding process. Thus, the energy surface

for some types of memory is not only determined by training patterns, but also shaped by
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spurious states. These states with relatively lower energy potential affect memory
performances by attracting input patterns or intermediate states into their local minima. The

property of this phenomenon in the process of associative recall is characterized by

(recall) _ _(recall)

Yoy =Y Ve, t>1
(2.9)
and yEf.ic)"”) = yo, Vs, s=1,2, ...,p

here ¢ is the iteration number. It is worth noting that so far, there has been no method to
directly control the location and to minimize the number of spurious memories. Choosing
a proper encoding algorithm to solve a particular problem may be an alternative way to

reduce these unexpected stable states.

oscillatory state

&
=

oscillatory state

initial state o
true state (stored pattern)

Fig. 2.2 Illustration of memory converging to oscillatory state.

That the associative memory converges to oscillatory memory is another phenomenon
which needs to be taken into account. This phenomenon only takes place in those memory
models in which iterative or dynamic bidirectional recall [Hass1989], [Kosk1988] is used.
For both a synchronous and an asynchronous adaptive recall, a memory may take several

iterations before reaching a stable state. Therefore, there exists a possibility that memory



Chapter 2 Method for Performance Evaluation

converges neither to a true state nor to a spurious state but to an oscillatory state. Fig. 2.2

shows one possible convergence case that may occur in dynamic associative memories.

The activity of oscillation in a dynamic bidirectional associative memory can be

formulated by
X)) = Yoo X)) V@) > - - X0 > Y~ X(p) (2.10)

here k =1, - 1, denotes the oscillatory period.

2.2.5 System complexity

Specifically, the study of system complexity involves analyzing spatial complexity,
encoding and recalling temporal complexity. Spatial complexity usually refers to the
physical structure of a memory system. Primary factors that determine spatial complexity
are the physical structure, i.e., the number of layers in the memory, and the number of
neurons in each layers. The neurons in the memory may be fully connected or partially
connected. These alternative choices in terms of the memory structure depend on the

application at hand.

The second aspect associated with the system complexity is the speed of encoding. The
ability of keeping pace with other machines and completing learning within a limited time
period determines whether the memory can be applied to solving real—time problems. The
encoding process deals with teaching an associative memory how to behave or react when
the memory is stimulated. It is realized by forming or adjusting a numerical version of
synaptic weights in a software implementation or an electronic version in a VLSI hardware

implementation. Thus, the amount of time for a memory to organize its own internal



Chapter 2 Method for Performance Evaluation

structure depends largely on the complexity of the encoding algorithm employed. Some
encoding algorithms simply look for similarity or correlation in a set of training patterns
[Hopf1982]. Others adopt trial-and—error, a step by step error correcting approach to adjust
weights. The former algorithm requires extremely low computational time. The latter
algorithm allows memory for achieving higher performance but at the cost of substantially

longer execution time [RuMc1986].

The third issue with system complexity that needs to be discussed is the speed of recall.
This is concerned with the processing time used during the retrieval period. For a
feedforward memory, the computational time required in associative recall is simply
determined by the network architecture, the number of processing elements and the
connection fashion (full or partial). For a dynamic associative memory, however, the

number of iterations must be taken into account.

It is known that directly recording the execution time to measure the temporal
complexity may be inevitably affected by the computer characteristics. If two algorithms
are compared first on one machine and then another, the comparisons may lead to different
conclusions. To avoid this machine dependent measurement, it is preferable to use the

mathematical analysis.

All properties discussed above are critical to characterize the performance of associative
memory. However, only four of them: information capacity, error correction capability, the
probability of memory getting stuck at spurious states and the probability of memory
converging to oscillatory states have been thoroughly investigated in this study. These items
are chosen because they are exclusive from those of localized memories as well as because

they have seldom been considered sufficiently.
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2.3 Procedure for Performance Evaluation

The above descriptions in some sense still remain at the conceptual standpoint. To carry
out empirical performance evaluation, a specific procedure need to be developed. In this

section, an attempt is made to meet this requirement by providing every step in detail.

2. 3.1 Testing pattern synthesis

The fundamentally active entities in associative memory are “state vectors”. Elements
of vectors are generally considered to be the magnitude of activity in a particular neuron.
At the current stage of technology, most existing neural network models of associative
memory employ a hardlimiter or a unit step activation function to realize noise suppression
as well as to help systems to reach stable states in adaptive recall. For some encoding
algorithms [Koho1972], [RuMc1986], real value mapping is achievable but the capability
of error correction is very limited. Instead of correcting error, generalization or interpolation
is the alternative property inherent in these systems. For associative memories, these
properties are deemed a drawback (in terms of accretive recall). For this reason, at the
current stage, one has to restrict his attention to a binary or a bipolar mode pattern. In the
following discussion, information entities are all assumed as binary or bipolar patterns

unless otherwise specified.

There are two groups of testing patterns needed to be generated: the training patterns to
be stored in the memory and the testing patterns used to stimulate memories. In this
subsection only the first group of testing patterns is addressed. Generating the second group

of testing patterns will be discussed in the subsection 2.3.2.
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Obtaining the characteristics of information capacity by means of simulative testing
usually needs a large number of training sets. The maximum number of training
patterns/associations, p... , required to estimate the capacity of associative memory depends
on the memory model being tested. One approach to the reduction of the computation burden
associated with the probabilistic method is to monitor the memory performance while testing
(instead of using fixed p... ). Such a heuristic testing approach usually starts from a small
number p, and then p is increased by a fixed step. The increment may be operated by the
program itself. The testing terminates if the memory performance drops down to a

predefined criterion.

The other aspect that needs to be considered is how to generate these patterns. In most
computer simulation, such as simulating a communication system, random variables with
desired size and distribution are usually specified [LaKe1982]. Instead of purely selecting
training patterns randomly, it is sometimes helpful to add a constraint primarily for the
purpose of reducing testing time and achieving high reliability in the test results. To achieve
this goal, a method called minimum distance constraint (MD) is developed. This approach
can be simply described as generating a set of » dimensional training patterns under the

following conditions:

. Training patterns are uniformly distributed in n dimensional hypersphere (for a
discrete pattern, this means that the chance for every pattern to be generated on any

corner of n dimensional hypercube is equally likely).

. Distance between any two training patterns satisfies: d (x*,x¢?) = MD in a memory
input space, and d (y*9,y*?) = MD in a memory output space. Here 4 (x*v,x¢?) and

d (y*v,y“?) are the norm based distance measurements.
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The necessity and validity of employing the minimum distance approach are given in the

following explanations. First of all, think of an autoassociative memory to perform
self-reconstruction. The memory is first loaded with two patterns x and x®. If x® and

x@ are far from each other in terms of distance measure, the memory can readily retrieve

any one of the stored patterns with high probability. This is because the corresponding

energy wells for ™ and x® in »n dimensional vector space must be sufficiently distant from
each other. Moreover, the high energy potential between these two energy wells ideally

separates the entire energy space into two subregions (see Fig. 2.3).

X & o

Fig. 2.3Representation of two uncorrelated training patterns in a two dimensional energy

plane.

However, if training patterns are generated purely at random, there is a possibility that
two patterns are correlated or near—correlated, namely, two patterns are identical or only a
few components are different. A two dimensional energy curve corresponding to a memory

storing two such patterns is shown in Figure 2.4.
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x( X

Fig. 2.4 Representation of two near correlated training patterns in a two dimensional

energy plane.

It is seen that energy wells associated with x( and x@ are close to each other. They may
even be mixed up in the worst case. Itis very difficult for a memory to retrieve such highly
correlated patterns. Part of the reason for this is that neither synchronous nor asynchronous
recall can assure that every state movement can be exactly in the correct direction, i.e., to

the memorized stable state in terms of nearest neighbor from the starting state. Therefore,
the memory may eventually converge to x@ instead of x(', even though the initial state is

closer to xD. Fig. 2.5 is the two dimensional illustration of this situation. A typical example

initial state

2,
x( ) X"

spurious state correct state

Fig. 2.5 Ilustration of memory converging to a spurious state.
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of this problem can be recall either of two patterns having stored in a memory. One is the
lowercase character “1”, the other is the numerical number “1”. One has to admit that even
for humans, this problem is not an easy task. One can not give a definite answer which of
the patterns have been recalled unless more information, such as background or context, has
been collected. However, obtaining additional information, such as context in our example,

can only be achieved by a dynamically sequential process, which is usually referred to as

define MD and p let s =0

Y

generale a bit information,
(each bit has 0.5 probability
of becoming + 1 or —1)

Y

fill in the full length of the
training pattern

s=0?
the first pattern?

yes

' yes no
save it and s=s+1

calculate Hamming distance d

Fig. 2.6 Procedure of generating training patterns under the minimum distance constraint.
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temporal recall. This leads to another type of associative memory, called Temporal
Associative Memory [HiAn1989] [Koho1984]. Since discussing this type of a memory falls
outside of this study, it will not be included in this thesis. The memory models addressed

here are restricted to those working on the similarity or correlation measurement basis.

It should be noted that using the minimum distance approach to generate training
patterns does not affect the uniform distribution form as long as the first pattern is selected
randomly with a probability equal to 1/2". Procedure for generating discrete training patterns

with binary values {0, 1} or {1, 1} is presented in Figure 2.6.

2. 3 .2 Designing test strategy

Once training patterns have been loaded into the memory by applying a learning
algorithm, the next step is to generate proper testing patterns which could ideally cover any
possible situation that the system may encounter in a real-world. For a sufficiently small
memory, i.e. n < 16, this may allow the use of an exhaustive testing approach which is
guaranteed to give complete information about performance characteristics. This approach
is implemented by testing all possible states in n dimensional hypercube for each stored
pattern. Such a procedure used for exhaustively testing the property of error correction

capability is given in Figure 2.7.

However, the exhaustive testing approach is not applicable for a large system.
Computation complexity for exhaustive testing is 0(2p). It is easy to show that execution

time goes higher rapidly as » becomes larger. For instance, to simulate a system with n=120
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and p=10, total testing trials would be (C}* + C!° + C1® 4 ... + C1B

is obviously not practicable.

set s=0, trail=0
and success=0

]
il |

set number of bits to be
reversed k=0

120

) X 10=2'" x 10 = 10" which

|
Vv

set counter c=0

=Cc+1

L s=s+1

>y

reverse K bit(s) among n bits
in s—th training pattern

¥

apply test pattern to stimulate
memory

converge to
s—th pattern?

success=success+1

m=m+1

Fig 2.7 Exhaustive testing procedure for evaluating the error correction capability. s is training pattern

indicator, m denotes the number of bits being reversed and ¢ is a counter used to check whether all combinations

of m bits from n components have been exhaustively reversed.
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To derive an effective test strategy, define P(e Ix), s=1, 2, ..., p, a conditional error

probability of system output in response to the input pattern x®. Because

. event xV . x0=0, if ; = j;
o xD 4+ x@ 4 x® 4 x®) = sample space

according to the theory of conditional probability (the Bayes’ rule) [Triv1982], the system

error probability can be defined as

14
Pi(e)= > Pyle | x9)P,(x) (2.11)

s=1
where P,(x”) denotes the probability of training pattern x, s=1, 2, ..., p, being selected
during the testing. If the patternin the training set is selected independently and each pattern

is tested 2" times (by reversing the all possible combination of  bit(s) from it), the overall

testing time will be p x 2", Since

2" 1
P,xDy = P,xP) = | = P,x®) “oXT S5 (2.12)
Eqn. (2.11) can be simplified as
1 p
Pie)==> Pye | x) . (2.13)
P

Actually P(e x1) = P e Ix®) = ... = P(e Ix¥)). This is because
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. Thedistance between any pairs of x* andx¢? (s; # s,) has been set to MD ; hence,

nothing affects the nature of x except in the geometrical aspect. However, memory

performance influenced by this factor is very limited. Thus, it can be discounted.

- Testing procedure applied to derive P (e Ix“") is identical to those being applied to

P(e 1x9), where s=1,2, ...,pand s # s1.

The forgoing approximation yields a simplified form of system error probability

P.(e) =£— p Pe X)) = P,(e X)) (2.14)

where s can be any one of {1, 2, ..., p}.

Equation (2.14) implies that system error probability can validly be obtained by testing
any one of the stored patterns. This approach allows for the reduction in execution time
which is equal to (p- 1)2", (p = 2). Clearly, significant computation time can be saved as p
grows. However, this approach can not compete with the exhaustive testing approach in

terms of coverage. The result can be no more than an estimator of true performances.

However, the complexity function 0(2") is evidently not a small cost. The significant
growth of the complexity as n increases unavoidably results in inability to terminate
evaluation in an acceptable period of time. The method used to generate noisy input in this
work is starting from a stored pattern and then adding noise into it. For a binary pattern,
adding noise can be implemented by randomly reversing bits in an input pattern according
to a certain probability, i.e., chance for each bit to be reversed is equally likely with a

specified probability, P, . According to the theory of Binomial distribution [Ross1987], the

characteristic of a noisy pattern can be described in a probabilistic way. The probability for
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kbit(s), 1 < k = n, being reversed in n dimensional pattern can be calculated by Eqn. (2.15)

provided the probability for each bit being reversed P, is known.

n

. P/ec (1-P, )n—k (215)

Prx=k} =

Throughout the testing, the probability of each bit beingreversed, P, ,is setto 0.01, 0.07, 0.1,

0.2,0.3,0.4and 0.5. Their corresponding probability of k bit(s) being reversed from an input

pattern with n=16 are given in Table 2.1 .

Table 2.1 The Probability of k Bit(s) to Be Reversed from a Set of 16 Bits

The number of bit(s) being reversed

Pe 0 1 2 3 4 5 6 7 8

0.01 0.85146 0.13761 0.01043 0.00049 0.00002 0.00000 0.00000 0.00000 0.00000
0.07 031313 0.37711 0.21288 0.07478 0.01829 0.00330 0.00046 0.00005 0.00000
0.1 0.18530 0.32943 0.27452 0.14234 0.05140 0.01371 0.00279 0.00044 0.00006
0.2 0.02815 0.11259 0.21111 0.24629 0.20011 0.12007 0.05503 0.01966 0.00553
0.3 0.00332 0.02279 0.07325 0.14650 0.20405 0.20988 0.16490 0.10096 0.04868
0.4 0.00028 0.00301 0.01505 0.04681 0.10142 0.16227 0.19833 0.18889 0.14167
0.5 0.00015 0.00024 0.00183 0.00855 0.02777 0.06666 0.12219 0.17456 0.19638

The next parameter that needs to be determined is the number of trials required for each

P, in order to ensure reliability. Throughout the testing, the number of trials, C,, for

particular defined noise probability, P, , is calculated accordin gto [Jerul984], [HeNo1988]
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Cp=—m—
P, err P, )

(2.16)

where P, (err | Pe) is the error probability of associative recall under the condition that the

probability for each bit being reversed is P,.

The last parameter to be specified is the number of trials for each case, i.e., for a memory
loaded with p stored patterns/associations, how many groups of training sets (with p
patterns/associations each) are needed so that reliable information about memory
characteristics can be obtained. This parameter determines the terminating time for the
testing. A usual approach to select this parameter is based on the fixed—sample—size
procedure [LaKe1982]. This procedure is described as in the following: a simulation run
of an arbitrary fixed length is performed, and then one of the sample sizes that satisfies the
desired confidence interval is finally selected [LaKel982]. In this work, the above
fixed—sample-size procedure is adopted to determine the terminating time. Since this
parameter is task dependent, the detailed discussion about this issue will be given in section

3.2 in chapter 3.

2.3 .3 Procedure used to test the performance of associative memory

This subsection presents complete procedure used for testing the performance of
associative memories. The results of executing the procedure are the performance statistics
including the probability of memory successfully performing accretive and/or interpolative
recall, the probability of memory converging to spurious states, and the probability of

memory converging to oscillatory states. These results reflect the overall performances of
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the memory being tested. Some of the performance characteristics, such as information
capacity and error correction capability, may be considered as the extreme—performance if
the maximum value of the minimum distance is used. The rule of classifying a memory
response into a proper feature category is based on the definitions given in section
2.2.1-2.2.4. The summarized classification strategy is described in the following

statements:

(1) Accretive recall stands for the stored pattern/association that is completely recalled,

namely,
0t e - y(recall) = y(k) (2.17)

where (x®,y®), x®,y®) € x9,y9),s=1, 2, ..., p, is the training pair stored in the memory and
e refers to the noise component contained in input pattern. The term x© +¢ is the testing
pattern used to stimulate the memory. The recalled pattern at the memory output is denoted

by y(recall) .

(1) Interpolative recallis defined as a mapping such that the desired pattern, y®, is the nearest

neighbor of a recalled pattern y*=® | i.e.,

X(k) +€ — y(recall)
(2.18)
and ” y (reczzll)_y (k) ” = min ” y(recall) _y(s) ” .
A}

(i) Spurious states are the stable states but they are exclusively from the training

patterns/associations. Whenever Eqn. (2.19) holds, the spurious states should be claimed.

X0 e — ylecdd 2 y(s) Vss=1,2,..p. (2.19)
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Spurious states can further be categorized into two different categories. Spurious states in
one of the categories constitute successful mapping (in interpolative recall case only. Refer
section 2.2.1 for more details). Spurious states in the other category cause false mapping.

A false spurious state is detected if the recalled pattern, y“=, satisfies the following

conditions:
X(k) +€ — y(recall) Z y(k) s VS, s = 1, 2, w oD
(2.20)
and " y (recall)_y (%) ” # min " y(recall) _y(s) ” )
S

(iv) Oscillatory states can be detected whenever a memory fails to converge to a stable state.

This is done by checking if y™= satisfies

Yo =y, Vi, (>0
(2.21)
and yﬁiffj”) = yEff cal) » LEN andy = 2 .

If Eqn. (2.21) holds, it means the memory becomes oscillation.

The procedure designed to estimate the true performance characteristics of associative
memories is presented below. It should be pointed out that the maximum number of training
patterns/associations, p.. , used in the testing is determined by the performance of the
memory being tested. The performance criterion, P,.,.,, used to terminate the testing is
specified before the testing begin. The number of training patterns/associations starts from
a small number, and then it keeps increasing by a fixed step. The testing terminates if the

memory performance drops down to P .
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Special Notations for the Procedure of Testing the
Performance of Associative Memory

.Symbol
« dcc

« C1

« C)

. int

- pmm
« P criterion

P,

« 0S

. Sp

. trials

Denotes

Stored pattern is completely retrieved (accretive recall).
Counter for T, .

Counter for Cp .

False spurious states.

Number of trials for each P,.

The number of trials under the condition that memory

is loaded with p pairs of associations, {x*" y“},

s=1,2,..,p).
Stored pattern is partially retrieved (interpolative recall).

The umber of training patterns attempted to be stored in

the memory.
The minimum value of p.
The performance criterion for terminating testing.

The probability of each bit (in input pattern) being reversed.
(P, issetto 0,0.01,0.07,0.1,0.2, 0.3, 0.4 and 0.5).

Oscillatory states.
Spurious states.
Total trials.

Noise component in an input pattern.
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Procedure for Testing the Performances of Associative Memory

Step (1) SetupT,, and value of MD for each p.

Step (2) Specifyp,.

Step (3)

Set up the performance criterion for terminating testing, 2., (the probability of

associative recall)

Step (4) Set p = p.. , the number of patterns to be stored in the memory.

Step (5) While the probability of associative recall (either accretive or interpolative) is higher

Step

Step

Step

Step

Step

Step

Step

Step

Step

Step

than criterion P, execute following loop:

(5.1) Estimate C, according to equation (2.16).
(5.2) Setcounter c1=0.

(5.3) Settrials = 0.

(5.4) Setacc=0, int=0, sp=0, fsp=0, 0s=0.

(5.5) Generate p pairs training associations {x®,y*} s=1, 2, .., p based upon
minimum distance rule described in Section 2.3.1.

(5.6) Store information into the memory using encoding algorithm.

(5.7 ) Randomly select one of the associations, x®,y®), from p training pairs, i.e.,
x®,y®) € (x9,y9}, s=1, 2, ..., p. The chance for each pair being selected
is equally likely.

(5.8) Setcountercy=0.

(5.9) Add noise, € , into input pattern, x®, by means of randomly reversing each
bit in x® according to defined probability P, .

(5.10) Apply testing pattern, x® + €, to the memory input.
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T AT

Step (5.11) Recall.

Step (5.12) Checkintermediate state in each iteration. If satisfy Egn. (2.21) increase os.

Step (5.13) Collect response at the output. if y ™= =y® increase acc, otherwise

Step (5.14)

Step (5.15)

Step (5.16)

Step (5.17)

Step (5.18)

Step (5.19)

Step (5.20)

increase sp.

If |y ™=~y ®| = min [ y*=®_y || increase int, otherwise increase fsp.
A

Increase trials.

If c2 < Cp increase ¢, and then go to step (5.9).

Ifc; = T, gotostep (5.3 ), otherwise, next step.

Calculate performance statistics under the condition that the probability of

each bit being reversed s P, : (i) the probability of accretive recall: acc/ trials,

(if) the probability interrogative recall: int/ trials, (iii) the probability of memory
converging to spurious states: sp /trials, (iv) the probability of memory
converging to false spurious states: fsp / trials. (v) the probability of memory
converging to oscillatory states: os / trails.

increase p if the probability of associative recall (either accretive or
interpolative) is higher than performance criterion P riserion -

Until the probability of associative recall is lower than the performance
criterion P.,...ion-

Step (6) Choose another P, and then restart procedure from step ( 4) until all defined P, has

been tested.

Step (7) Endof procedure.

Note: This procedure test the information capacity, spurious states and oscillatory states.
Because the error correction capability is concerned with the relationship between the
quality of associative recall and input noise, this feature can be shown by plotting the
probability of associative recall against the noise level (the probability of each bit being
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reversed in input patterns) used in the testing. All data required will be available after
executing the above procedure.
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CHAPTER 3

TESTED MODELS AND EXPERIMENTAL RESULTS

3.1. Introduction

This chapter describes a series of experiments investigating major properties of
information capacity, error correction capability, the effect of input and output pattern
dimensions on accretive recall, and the probability of memory converging to false states.
Altogether, four different models were involved in the experiments. They were the Hopfield
networks [Hopf1982], [Hopfl1984], bidirectional associative memories (BAMs)
[Kosk1987], [Kosk1988], dynamic associative memories implemented by the
Ho-Kashyap’s algorithm (HK Models) [Hass1989], and backpropagation networks (BP
networks) [RuMc1986]. It is necessary to point out that choosing these fundamental
memory models does not mean that testing procedure derived in chapter 2 is only suitable
for these systems. They are networks typically designed for associative memories except for

the backpropagation network which has more applications in other areas.

Although several performance investigations were carried out previously, most of them
merely involved one or two benchmark data set(s) to demonstrate the robustness of newly
developed memory systems [Lipp1987], [Kosk1987], [Kosk1988]. Since these

investigations were undertaken independently by different individuals, it was very difficult

— 46 —



Chapter 3 Tested Models and Experimental Results

to judge which one was superior to others based on these fragmented results. Valid
comparison can only be carried out under the same environment and by using the same
evaluation scheme. To establish the superior performance characteristics of the HK model,
M. H. Hasson performed a number of simulations [Hass 1989]. His work successfully arrived
at quantitative descriptions of desired characteristics of tested models. However, due to the
fact that few groups of training sets were used in the simulations, relatively wider confidence

intervals were unavoidably produced.

In order to provide more reliable results with regard to the desired characteristics of
models being tested, the minimum distance constraint (see section 2.3.1 in chapter 2) was
employed. This constraint was not only the important seed that helped to derive very
efficient procedure as described in chapter 2, but also the essential factor that enabled one

to characterize memory performances in a real application aspect.

3. 2. Confidence Interval

To estimate the number of trials 7, (defined in section 2.3.3 in chapter 2), a number of
preliminary tests were carried out before the actual investigation began. Results of these
preliminary tests show that 400 training groups are sufficient for 13, to achieve approximately
95% confidence within the interval [19',—0.05, ]3,+0.05]. Here }A), denotes the estimated

probability of the tested item calculated according to ﬁ, = the total number of occurrences
/ total trials. One of these preliminary tests is described in the following example. In this
example, the performance of accretive recall of the Hopfield network was tested. The

network was configured as n=16, and the P.s, the probability of each bit being reversed in

_ 47 —
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input patterns, were set to O and 0.1. The number of test groups t, was 400. Each test was

repeated five times. Figure 3.1 shows that, for the testing procedure given in chapter 2,

—t MODEL: HOPFIELD

=< PATTERN: BIPOLAR

2 — A — n-16Pe=0

o — ® — n=16Pe=0.1

L1

=

jo—

(S0

o

[

(&1

<

Li.

(=]

o

(&)

o=

o . , . . )
2 a [-3 8 10 12 14 16

NUMBER OF STORED PATTERNS

Fig. 3.1 Results of accretive recall from testing the Hopfield network. The network is tested 5 times, and

each time has 400 randomly generated training patterns (with minimum distance constraint).

with 7p set to 400, the maximum interval among all tested points (p = 8 and Pe =0 in this case)

with 95% confidence is approximately [P,—~0.024. P,+0.024]. P, which is equal to 0.268
is the probability of recalling stored patterns averaged over five independent tests. The

confidence interval was calculated according to [Ross1987]

[}Tr“g, Fr"‘&]

(3.1
where Eet s
=10.05/2,2-1 7

where P, is sample mean of ﬁ,s, t denotes the ¢ distribution with z—1 degrees of freedom
[Ross1987], zis a sample size, and s refers to the sample standard deviation. For the purpose

of estimating whether 400 groups of training sets were sufficient, additional test was

_ 48 —
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performed at the point which yielded maximum interval in the test described above, i.e., p=8

and P.=0. This time, the number of groups of training patterns, Ip s, were from 25 to 400,
with specific values being: 25 50, 100, 200, 300, and 400. For each Iy, the network was tested

five times. The result of each performance was averaged over five tests and the upper and

lower bound of confidence intervals were plotted in figure 3.2. Itis shown thatas ¢, becomes
larger than 200, the 95% confidence interval for this tested point has already narrowed to

approximately [P,—0.032. P,+0.032]. In order to assure that all results fall within the desired

confidence interval, the number of groups of training sets, tp , was set to 400 throughout the

following experiments. It is necessary to point out that Eqn. (3.1) is derived under the

0.38
—t
— -
S
LLE 0.31
o= L
1T r
—
= o.27 |
0 -/.-/./
= 3
<>
(b ] 0.23
~< MODEL: HOPFIELD
S i PATTERN: BIPOLAR
P 0.18 |- — A — LOWER BOUND
S — @ — UPPER BOUND
o B — @ — MEAN
[ » 8

0.186 . . . . . .

o 50 100 150 200 250 300 aso 400

NUMBER OF TRIALS

Fig. 3.2 Confidence interval of accretive recall. Tested model: Hopfield network. Network
configuration: n=16. The number of stored patterns: p=8. Input noise: the probability of each bit

being reversed in input pattern, P, , is set to 0.

assumption that z is sufficiently large and the ﬁ,s should be normal random variables. In

practice, however, it is very difficult to produce a large z as well as to verify whether or not

P, is normal.  For this reason, the confidence interval, [£,—0.05, P,+0.05], is only
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approximate in terms of coverage.

3. 3. Hopfield Network — an Autoassociative Memory

In 1982, Hopfield introduced a vigorous kind of associative memory based on his studies
of collective computation. The network is composed of a single layer of neurons which are
fully interconnected with each other. The strength of connections set during the encoding
process provides the global communication of information. The strong nonlinearity of
logical function implanted in each neuron enables the network to accomplish many
sophisticated tasks such as making choices, producing categories, regenerating information,
and performing nearest neighbor searches. Thus, in spite of the simplicity of the highly
formalized neural structure, considerable network computation capability is intrinsic in the

system [MPRV1987].

3. 3.1 Network structure

A fundamental Hopfield network is a set of simple bistable elements, each of which is
capable of assuring two values: +1 (firing) and —1 (nonfiring). The state of each neuron, +1
or—1, thenrepresents a bit of information, and states of network delineated by n—tuple bipolar
patterns (provided there are » neurons in the network) represent the entire information stored
in the memory. Itis necessary to note that the network is also able to handle a unipolar mode,
{0, 1}, but a bipolar mode, {1, 1}, must be used to encode information. Furthermore, the
nonlinear transform function must be replaced by the unit step function (see Fig. 1.4 in

chapter 1) if unipolar patterns are used to recall stored information. Because the unipolar

— 50 -



Chapter 3 Tested Models and Experimenial Results

mode only participates in the recall phase, only the bipolar mode is discussed in this section.

Further, the network addressed here is assumed as fully interconnected through linear

Fig. 3.3 Structure of Hopfield network.

synaptic connections wy; transmitting a bit of information from neuron i to another neuron
J. The weight matrix is symmetric, i.e., Wji =wj;, and with zero in its diagonal. The structure

of Hopfield network is depicted in Fig. 3.3.

3. 3.2 Encoding algorithm

There are two questions which may be raised naturally: First, how can the network store
information so densely in weights? Second, how can the network recall the most similar
pattern thereafter? A brief answer to these questions can be only one word: “learning”. One
simple but quite efficient learning algorithm is the Hebbian learning rule [Hebb1960]. This
idea first came out of the similarity between, and the hypothesis about, the way that synaptic
strength in the brain changes in response to experience [HeKP1991]. It says that the

information in the human brain is stored by changing the strength of synapses and such a
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change must be proportional to the connection between firing of the pre—and post—synaptic

neurons [Hebb1960]. This hypothesis can be formulated as
AWJ’[ =n xj(-s) x,(s) (3.2)

which means that synaptic weights are updated based on the multiplication of information
taking on neuron i and j. In the learning process, Eqn. (3.2) actually identifies how much
attention needs to be paid to particular neurons i andj. If neuron i and neuron  are both firin g
(or nonfiring) the connection strength between them should be increased, otherwise it ought
to bedecreased. Analternative way to express equation (3.2) is using an adaptive form which

seems to be more applicable for a software implementation:

Wiy = Wii=1) + 1 x](s) % (3.3)
here ¢ is an iteration number. Further, if, a special case is considered where each pattern is
presented only once, then

SO0
Wi =1 ij X; (3.4)
s=1

which is identical to the form of

P
wii = > 1 1 (3.5)

s=1

provided the learning rate 5 is set to 1.

Technically however, Eqn. (3.2) goes beyond Hebbian’s original hypothesis because

firstly, it changes the weight positively when neither of the neurons is firing. This is probably
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not physiologically reasonable. Secondly, Eqn. (3.2) can even cause a particular weight to
change from excitatory to inhibitory or vice versa as more patterns are added. This

phenomenon is hard to believe to occur at real synapses [HeKP1991].

3. 3. 3 Associative recall

For a neuron j in the system, the activation X; at one particular moment is defined as

n
X = sgn(z wii Xi — 7 | . (3.6)

i=1

Eqn. (3.6) describes the evolution strategy of the network dynamics. The threshold decision
rule (the sign function or hardlimiter) which is illustrated in Fig. (1.4) in chapter 1 furnishes
two operation values, +1 and —1. The computation is quite simple: first of all, a neuron
evaluates the weighted sum of the bipolar states of all other neurons asynchronously (or
synchronously) in the network. The new state of the neuron is —1 if the sum is less than the
threshold, and +1 if the sum exceeds the threshold. The neuron keeps its old value if the

weighted sum is equal to the threshold. Such a nonlinear decision rule is expressed as

n
1 if Z Wi X; > Vi
=1
Xj = unchange otherwise (3.7)
n
-1 iwaj,-x,-<yj.

i=1

The Hopfield network is also an example of a feedback system. If inputin the initial state

is, for instance, an incomplete or noise corrupted picture, the network will search for a stable
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state through several feedback cycles. A final state is the item which best matches the pattern
according to what has been stored (though there is no guarantee in all cases for a system to
converge to a correct state especially when memory is overloaded). The question remaining
1s what force enables the initial state in the memory to move to the desired pointin the system
configuration space and then stay there firmly? The energy function introduced by Hopfield

in 1982 [Hopf1982] makes this question extremely clear.

For the network described above, the energy function, E, has the following form:

1 n n n
E=~—2— ggwﬁ X; xj+21:y,~ X; (3.8)
= j: 1=

where wj; is the strength of connection between neuron i and j (wji=wj;), x; stands for a bit
of information in neuron i, and ¥ refers to a threshold in the transfer function. Note that
nothing is contributed to energy E when i =, because wj; =0 forall i=j. Eqn. (3.8) shows
that the energy of a given state is a function of the weights. This helps to explain why
information can be stored in the Hopfield network through proper selection of synaptic
weights. On the other hand, Eqn. (3.8) suggests that the energy function also depends on what
kind of information is represented. Therefore, one can imagine the surface of Eqn. (3.8) as
an energy landscape in the corners of a hypercube. Fig. (3.3) is an illustration of an energy

landscape in a three dimensional perspective.

In Fig. (3.3), the x—y plane represents the 2" corners of the hypercube and the z axis
measures the energy potential. It can be seen that the landscape contains rich hills and

valleys. If memorized patterns are assumed to be in the location of energy wells which have
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relatively lower gravity potential, and the evolution strategy of the network dynamics can
always ensure all kinds of initial patterns moving down the hill in the direction that decreases
their potential, then the system is guaranteed to reach local energy minimum where full or

complete information is located.

The central property of the energy function is that the energy potential either decreases
or remains constant as the system evolves according to its dynamic adaptation rule given in
Eqn. (3.6). To understand how the Hopfield network accomplishes associative recall, one

can consider the case that the activation of neuronx;,1 < k < n, has just been adapted from

(new)

x,(fld) tox; . Then, substituting into the energy function given in Eqn. (3.8) yields

n non n
o)) _ _men L i s ) .
= = = =
JRkizk j=k
( ld) n 1 n n ( [d) n
(old)) _ o Sy T % s
E(xk ) =X ;Wkt Xi — ) ]Zl ; Wii Xj Xi+yr X+ jzl'}’/ Xj (3.10)
i= =1 = =
JRkizk J=k
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The changed energy AE(x,)

AE(x) = E(x,ﬁ”"w’) - E(x,(j’ld’) 3.11)

= — (e KDy z Wi X + (0 = oy (3.12)
i=1

=—Ax > wg % + Ay (3.13)

i=1

= Axk{iwki Xi — Vk} : (3.14)

=1

Because
W =sgn 4 > waxi— e} (3.15)
i=1
hence
AE() =— Axg 5™ ¢y (3.16)

where C, represents the absolute value of the weighted sum of neuron k. Evidently, Ax; must

be either —2 or +2 because x; is bipolar. There are three cases that need to be discussed:

case 1: Axg=0. The energy is obviously unchanged.
case 2: Axg=-2_ By Eqn. (3.15) 2" = _ 1, thus AE(x) < 0.

case 3: Axg=+2 This is equivalent to x,(cnew) = 1. hence, AE(xy) < 0.
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It is easy to show that energy is lower bounded at a specific value. This is because each

component in the network has only two possible states +1 and —1 and the threshold, y: , must

be within the range - | Z wix; <y <1 z wx; 1. Therefore, the lower boundary for Eqn. (3.8)

i=] i=1

equals

n n n n
1

n n 3
—3 2 2wl = X Sl = =23 i (3.17)

Jj=1 =1 Jj=1 i=1 Jj=1 =1

Thus the energy decreases every time or remains constant as x;,i € { 1,2,..,n }, changes,

as claimed.

3. 3. 4 Experimental results

The performance of the Hopfield network was tested using the procedure described in
chapter 2. Tested models contained 16 neurons. Each neuron was connected to other neurons

through weights wj;, where i, j=1, 2, ..., 16. The neurons were not connected to themselves,

ie., wji=0 forall i =j. In order to test the information capacity, the number of training
patterns, p, stored in memories followed the sequence, 2, 4, 8, 12, 16, ..., until the
performance, characterized by the probability of associative recall, drops down to the
specified criterion, P...,,=0.01. For each fixed p, there were 400 groups of training sets.
Patterns in the training sets were randomly generated under the minimum distance constraint
(see section 2.3.1 in chapter 2). The value of minimum distance, MD', is a function of p, the

number of patterns to be stored in the memories. MD’ was calculated according to

MD' =— %" | (3.18)
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where H#d denotes the maximum mutual Hamming distance in the patterns subject to that the
specified number of patterns, p’, that can be generated. The relationship between Ha and the
number of patterns, p’, that can be generated is shown in Table 3.1 and Table 3.3. Two aspects
must be clarified in order to calculate MD : (i) Because of the discontinuous nature in the
relationship between Hd and p’, a further decision for the choice of MD must be made. For

instance, there are two groups of p'=32 patterns having mutual Hammin gdistance, Hd =7 and

Table 3.1 The Relationship Between Hd and Prax

Hd The number of patterns p’
7 32

8 32

9 4

10 4

11 2

Note: Hd is the maximum mutual Hamming
distance in the patterns sujebct to that the number
of patterns, p', can be generated. n=16.

Table 3.3 The Relationship Between Hd and Pmax

Hd The number of patterns p’
3 16
4 16
5 4
6 4

Note: Hd is the maximum mutual Hamming
distance in the patterns sujebct to that the number
of patterns , p’, can be generated. n= 8.

Table 3.2 The Values of Minimum Distance MD

p MD’ MD
16 4 4
12 4.5 [4,5]
8 5 5
4 5.5 [5,6]
2 6 6

Note: MD' is calculated according to
Eqn. (3.18). n=16.

Table 3.4 The Values of Minimum Distance MD

p MD’ MD
16 2 2
12 2.5 [2,3]
8 25 [2,3]
4 3 3
2 3.5 13,4]

Note: MD' is calculated according to
Egn. (3.18). n=8.

Hd =38, respectively. Whenever this situation occurs, the lower value of Hd is selected for

larger p in the calculation of mMD’. (ii) Since the gap between two p’s may be wide, it is

sometimes very difficult to select MD if the number of training patterns is set between them.
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In order to overcome this problem, the actual MD used in testing may be composed of two
values. These two values determining the upper and lower bounds of Hamming distance are
calculated according to truncating and rounding the MD', where MD’ is calculated accordin g

to Eqn. (3.18)). Another reason for introducing this two—value MD is to partially avoid MD
exactly equaling to %n , which results in all training patterns being mutually orthogonal (in

bipolar case only). The minimum distance constraint can be thought of as a filter. Randomly
generated vectors have to be bypassed through this interval (checking their mutual Hammin g
distance) before being selected as training patterns. Table 3.2 and Table 3.4 give the values
of MDs used throughout the testing. One more case which has not been discussed in
determining MD is that MD’ is an integer and p' is exactly equal to the number of training

patterns, p. In this case, whether to use single-value MD or to use two—value MD is
. . . 1 .
determined by if MD' is exactly equal to —;—n . IfmD' = 71 the two—value MD is deemed

necessary and the lower boundary is given by MD’~1 provided it is permissible. It is worth
noting that mentioning this special case is mainly for the completeness of discussing how to

determine MD ; however, it, has not occurred in this experiment.

The performance of the Hopfield network was tested with respect to the following

aspects:

(1) Information capacity:

According to the definition given in chapter 2, the information capacity can be shown
by plotting the probability of memory successfully retrieving stored patterns (either
accretively or interpolatively) against the memory load p. The maximum p observed under
the condition that the probability of associative recall reaches the specified criterion will be

considered as the capacity of that memory model. In the analysis of the information capacity,
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the performance criterion, the probability of memory successfully retrieving stored patterns,

is set to 0.95 unless otherwise specified,. Fig. 3.5 illustrates the result of the Hopfield

network in performing accretive recall.

PROB. OF ACCRETIVE RECALL

MODEL: HOPFIELD
PATTERN: BIPOLAR
— A — n=16Pe=0

1 L L L
a4 (-] 8 10 12 14 16

NUMBER OF STORED PATTERNS

Fig. 3.5 Information capacity of the Hopfield network (accretive recall). The number of neurons: n=16.

Pe, the probability of each bit being reversed in input patterns, equals 0.

PROB. OF INTERPOLATIVE RECALL

MODEL: HOPFIELD
PATTERN: BIPOLAR
— & — n=16 Pe=0

4 =3 8 10 12 14 16

NUMBER OF STORED PATTERNS

Fig. 3.6 Information capacity of the Hopfield network (interpolative recall). The number of neurons:

n=16. Pe, the probability of each bit being reversed in input patterns, equals 0.

It is seen that the maximum pattern that can be stored in the tested Hopfield network is

approximately 3. As to interpolative recall, the capacity remains at the same level as that of
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accretive recall but the memory is guaranteed to recall all stored patterns with approximately
0.99 probability (Fig. 3.6). It is worth noting that the above experimental results do agree
with the solution theoretically derived by McEliece et al. [MPRV1987]. According to the
formula given by McEliece et al., an asymptotic capacity of the Hopfield network containing

n neurons to get accretive recall (with absolutely no noise in input pattern) is less than

n

p < ogn (3.19)
Substituting 16 into Eqn. (3.19) yields
16

Both (experimental and theoretical) results indicate that for the Hopfield network, the

network configured as n=16 can store no more than four patterns.

(2) Error correction capability

Error correction capability was tested by varying noise level controlled by P, but fixing

stored pattern p. Because of the low capacity, the memory was unable to perform accretive
recall perfectly if p > 2. The worst conditions under which the memory could still work well

were p=2 and P,=0.2. Under this condition, the memory was able to retrieve all stored

patterns accretively with 0.95 probability. Thanks to the spurious states around the stored
patterns (see Fig. 3.9 for details), the capability of correcting error was increased especially
as many patterns are stored. The results of each kind of recall are shown in Figure 3.7 and

in Fig 3.8.
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PROB. OF ACCRETIVE RECALL

Fig. 3.7 Error correction capability of the Hopfield network (accretive recall). The number of

MODEL: HOPFIELD
PATTERN: BIPOLAR
— & — n=16Pe=2

—@— n=16Pe=8
— B — n=16 Pe=i2

o.0 0.1 0.2 0.3 0.4 0.5

PROB. OF EACH BIT BEING REVERSED

neurons: n=16. Memory load: p =2, 4, 8 and 12.

PROB. OF INTERPOLATIVE RECALL

Fig. 3.8 Error correction capability of the Hopfield network (interpolative recall). The number of

— A — n=16Pe=2
— @ — n=16Pe=4
—@®— n=16Pe=8
n=16 Pe=12

MODEL: HOPFIELD
" PATTERN: BIPOLAR

0.0 o.1 o.2 0.3 0.4 0.5

PROB. OF EACH BIT BEING REVERSED

neurons: n=16. Memory load: p =2, 4, 8, and 12.

(3) Spurious and oscillatory states

As stated in chapter 2, false states are composed of two disjointed sets: the spurious set
and the oscillatory set. Spurious states were detected whenever memory performed neither
accretive nor interpolative recall but converged to one of the stable states. Furthermore, these

stable states should not be a member of the training sets.

Test results show that the
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probability for memories converging to spurious states (PCSS) is the function of the number
of stored patterns. In general, the larger the number of patterns being stored, the higher the
probability for a memory getting stuck at the spurious states. The results of PCSS are
depicted in Fig. 3.9. Itis necessary to point out that the value of PCSS varies if different P,s
are chosen. For large P, the testing pattern may be far from the training pattern (in the terms
of Hamming distance). As a result, the initial state has more chance being trapped into the
spurious states. It has been shown that the spurious states in the Hopfield network are
composed of the reversed version of training patterns and the Boolean combinations of
training patterns [HaYo1989]. Fig. 3.9 also reveals that a large number of spurious states

constitute false states. Few of them help the memory to increase the quality of interpolative

recall.
1
(b)
&
2
; :
g 2
[&]
o
2 4 8 12 16
NUMBER OF STORED PATTERNS NUMBER OF STORED PATTERNS

Fig. 3.9 (a): The probability of the Hopfield network converging to spurious states. (b): The
probability of Hopfield network converge to false spurious states. Memory configuration: n=16.
Input noise, the probability of each bit being reversed in input patterns, P, is set to: [J P,=001,
M P,=0.1,and B P, =02.

(4) Oscillatory states

Because an asynchronous recall strategy was employed throughout this experiment,
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none of the oscillatory states was detected in the testing the Hopfield networks. The networks

always converged to one of the stable states in the network configuration space.

3. 3.5 Summary

Results presented here demonstrate that the Hopfield network can be used as
autoassociative memory, but it only works well in storing a few patterns. The capability for
anetwork to retrieve a stored pattern perfectly seems to be extremely difficult even when the
network is evoked by noiseless inputs. Although the Hopfield network is inherent in some
serious problems which seem to be very difficult to overcome, its simple structure and the

suitability for VLSI implementation win it favor in many applications.

3. 4. Bidirectional Associative Memory (BAM)

Hopfield’s seminal idea of simple neurons with symmetric connections behaving as if
they minimize the energy in a physical system gives a firm analytical foundation for network
computation [HiAn1989].  Since then, there has been much interest in developing
associative memory by using neural network approaches. With the expansion of the sin gle
layer model, Kosko [Kosk1987], [Kosk1988] introduced a two—layer network called
bidirectional associative memory (BAM) which was capable of performing both
autoassociative and heteroassociative mapping tasks. Compared to the Hopfield network,
BAM can achieve autoassociation with fewer weights. For instance, the Hopfield network
needs n X n weights to store n-dimensional patterns while BAM only requires n X m (m <
n) weights. On the other hand, BAM autoassociative mapping is accomplished by backward
and forward mapping between two layers, thus the patterns chosen in the second layer are

trivial. This allows for choosing the suitable training patterns in the second layer (i.e. as
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sparse as possible, or to satisfy the continuous condition 1/n H(X),x9) = 1/m H(y*", y*?)

[Kosk1988]) in order to achieve higher performances.

3. 4.1 BAM’s evolution scheme

The primary goal of BAM is to retrieve a memory pair (x, y®) given any one of initial
input x’or y’. Here x® and y® are in the vector form x© = o, 250, T and
¥y =09 99 I s=1,2, ..., p, respectively. The elements in x® and y© are assumed in
a bipolar mode {1, 1 }. Relatively higher performance of associative processing in BAM
is credited to the dynamic bidirectional process approach. It has been mentioned that one
of the most appealing features of associative memory is its ability to tolerate noise and/or
partial input patterns, i.e., given an input pattern x’ which is somewhat similar to the stored
patterns x¥, s=1, 2, ..., p, the memory will respond to its association y® according to the

transformation function

¥ = Ty (W, xO) | s=1,2, ., p. (3.21)

In the feedforward network model, the transfer function T, in Eqgn. (3.21) takes on the whole
responsibility to correct error.  However, it is unusual for function T; being able to fully
accomplish this task, especially when the memory is loaded with a relatively larger number
of associations or the input pattern is contaminated with serious noise. The evolution scheme
utilized in BAM is analogous to that used in the Hopfield network except that neurons
participating in the evolution are situated in different layers. In the Hopfield network, the

next state of neuron x; is determined by
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X; = sgn (z Wi]' Xj — 'yj ) (322}

=1

or simply expressed in a vector form
ngsll) =T (W,x{)) (3.23)

where ¢ is an iteration number. If xg)) on the right hand of Eqn. (4.3) is replaced with y®

and suppress #+1 in xgll) on the left hand term then

x®) =T (W,y®) . (3.24)

Assigning number 2 to transform function T and W in Egn. (3.24) respectively and

combining Eqn. (3.24) with Eqn. (3.21) gives

S
Yoy = Tt (Wi, Ty (Wa, y)) (3.25)
or
Oy =T T & (3.26)
X1y = To (Wa, Ty (W, x(5) .

Eqn. (3.25) and (3.26) exhibit the evolution strategy of BAM.

3. 4. 2 The nature of bidirectional search process

Topologically, BAMs are composed of two unidirectional heteroassociative memories.
These two memories are connected in a closed loop so that short term memory can pass
through one memory and then feedback through the other memory. Unlike unidirectional

associative memories the concept of input and output neuron is blurred. Neurons which are
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responsible for sending and receiving information are all treated as visible neurons though
they work in two different vector spaces. However, one may still refer to those neurons
which are responsible for receiving initial pattern as input neurons and neurons in the other

layer as output neurons. The basic structure of BAM is illustrated in Figure 3.10.

Xin Ti(W;,x¥) = y© Yout
AM
Xout x® = T, (W, ) Yin
AM

Fig. 3.10 Basic structure of BAM.

Figure 3.11 shows that BAM performs bidirectional mapping between two state spaces:
the X space and Y space. The nature of a bidirectional operation can be captured by placing
oneself between two state spaces and observing state transition simultaneously. To see how
the dynamic bidirectional memory works, consider the case that BAM is loaded with p
associations {x9,y“} ,s=1,2, ...,p. A dynamic bidirectional process begins as soon as the

BAM is activated by a noise input pattern in X domain. First of all, initial state x evokes y’

according to Eqn. (3.21). Though transform function, T,, does show some aptitude for

correcting noise, it is unable to suppress the noise completely. Therefore, y’ is unstable
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Y space

X space

Fig. 3.11 Illustration of bidirectional recall in BAM.

and is forced to feedback to the X space through the other transform function, T,, generating

x'. Such back and forth transition continues until, ideally, BAM reaches {x, y™}, one of
the closest training pairs in {x®),y®}, s=1, 2, ..., p, from its starting state. In view of this

example, the nature of dynamic bidirectional recall is merely a nonlinear feedback searching
process. Therecall always ends with memory converging to a stable state. The bidirectional

process 1s readily formulated by

yj = sgn iji X; — 0; (3.27)
i=1

and

X; = sgn zwji Yi—vi (3.28)
J=1
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where sgn(.) is the hardlimiter activation function given in chapter 1. Combining Eqn. (3.27)

and (3.28) yields

n m
Yier1y = Sgh iji eee sgn iji Yio—vi ) —6i . (3.29)
i=1 =

Such a chain of bidirectional search can be visually described as

Wl ] W2 w‘l W] 13) w2

X — §— % — iy 000 a0 My vy —

Unfortunately, there is no guarantee that BAM can always arrive at the desired point, the
nearest stored association x¥ and y®, from its starting point in the state space. The BAM

is more likely to get stuck in spurious states.

3. 4. 3 Network stability

In order to get a better understanding of how the bidirectional associative memory works,
it is necessary to review the property of convergence of BAM. This property was proposed

and proved by Kosko [Kosk1988]. BAM’s energy for a particular state, (x , y) is defined

as

n m m n

EXY) == > wixy+ D63+ Dk (3.30)
j=1 i=1

i=l j=1

Partitioning x; , one of the activationin neuronk, k € (1,2, ..., n}, from terms on the right hand

of Egn. (3.30) will give



Chapter 3 Tested Models and Experimental Results

E(x,y) = - izm:wﬁ Xy +x zm:wﬁ yil+ iyi X + ye X + iej Y- (331)
=1

=l e i=1 =1
J; J;
ik ik

If a similar method is applied to y; , I € (1,2, .., m}, then

Ex,y) = - iiwﬁ XY+ iwji X )+ i?’i X+ 6,y + igj Y; - (3.32)

i=1 =1 i=1 i=1 =1
jol jl

According to Eqn. (3.32) the changed energy, AE = E5) - ES%, caused by the state change in

new) _

Y5 Ayi= 3" =52, is

n
AE = B — B = 0" -y | Swixi-6 | . (3.33)
i=1

Because ¥ isin bipolar mode {1, +1}, if Ay, > 0 then y}”“’w) must be equal to 1. In this case,

the inequality

> Wi xi— 8, >0 (3.34)
i=1

must hold since according to equation (3.27), the left hand of Eqn. (3.34) is the netinput of

3. If Ay, < 0 then y"™" can only be —1 and the inequality

ZWﬁ x — 6 <0 (335)

=1
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holds. The above two cases result in AE < 0. From equation (3.33) it is seen that AE = 0

if and only if Ay;=0. This must be the final situation that BAM encounters. A similar
situation would happen in the eqn. (3.31) if x; changes state. Note that the energy value of

BAM is bounded at

Min (Ex,y)) =-3> > tw; | . (3.36)

i=1 j=1

Thisis because -1 Z wil <6< Z wiland -1 z wil <y <1 z w;l. From the above discussion,
i=1

i=1 J=1 J=1

it can be deduced that starting from any initial condition, BAM always converges to a local
minimum. It should be noted that the necessary and sufficient condition for BAM to

converge to stable states is that the weight matrix is symmetric, i,e., wij = wj, i=1, 2, ..., n,

and j=1, 2, ..., m.

3. 4. 4 BAM’s encoding algorithm

A fundamental BAM encoding is based on correlation matrix summation. Suppose there
are p pairs of associations {x®),y®)}, s=1,2,...p, where x® and y® are column vectors

respectively, then the weight matrix wy is formed according to

p
W, = (X(l))Ty(l) + (X(Z))Ty(Z) + .+ (X(P))Ty(P) = z(x(S))Ty(S) . (3.37)

s=1
It can be seen that the encoding algorithm is still based on the hypothesis proposed by D. O.

Hebb [Hebb1960] because the form of Eqn. (3.37) can readily be changed to
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P
Wi = legs)yj(-s) (3.38)
s=1

where wj; is the weight between neuron j and i, and it is the element in iy, row and Jin column
in the weight matrix, w, given in equation (3.37). Eqn (3.37) or (3.38) provides only one
of the algorithms to synthesize weights and W, performs transformation from the state in X
space to the state in Y space only. For BAM, it needs another group of weights to realize the
backward transformation from Y space to X space. A similar Hebbian encoding scheme is

applied to the formation of W,.

p
W, = (3OO 4+ yOTx@ 1 | 4 y@)Tx® = Z(y(s))Tx(s) ) (3.39)
s=1
Because
p p T
W, = z(y(S))TX(S) = z(X(S))Ty(S) = wT, (3.40)
s=1 s=1

the connection matrix W, can easily be derived by simply transposing W, .

3. 4. 5 Experimental results

The preceding subsection shows how Kosko’s BAM model performs associative recall
by using bidirectional search. The analysis of the encoding algorithm indicates that the
encoding algorithm used in BAM still follows the Hebbian rule. Kosko estimates that

BAM’s capacity is C,, < min (1, m) [Kosko1988], but K. R. Hasins, et al. indicate that the

n [ ( 2log,n ), the asymptotic capacity for Hopfield network, can also be applied to BAM
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[HaYo1989]. This capacity is substantially lower then Kosko’s original estimation
especially if n and m is large. One of the objects of this subsection is to clarify these

arguments.

Three different BAM models were involved in the testing. These systems were
configured as models I: n=16, m=16, model II: n=16, n=8, and model III: n=8, m=16in order
to verify whether the capacity was bounded at input and output dimensions. The number of
pairs of associations stored in BAM followed the sequence, 2, 4, 8, 12, 16, ..., until the
memory performances, characterized by the probability of associative recall, met the
terminating criterion, P...,=0.01. Each training pair was generated separately under the
MD constraint (see section 2.3.1 in chapter 2). The noise patterns which were determined
by P.s, the probability of each bit being reversed, were set to 0, 0.01,0.07,0.1,0.2,0.3, 0.4,
and 0.5. In the testing, training patterns were firstly encoded by using Eqn. (3.38) generating
W, and then Wy was used to synthesize W, by simply transposing W;. Each model was
tested individually using the procedure given in chapter 2. The number of training groups

was fixed at 400. The results are as follows:

(1) Information capacity:

The performance of information capacity was tested in both accretive recall and
interpolative recall cases. Fig. 3.12 illustrates the results of accretive recall for all three tested
models. The firsttwo models (models I and models IT) successfully achieved high probability
of accretive recall for p=4. Compared to the Hopfield network (configured as n=16), the
probability of accretive recall when a memory stored four associations was approximately

identical. However, for BAM if n < m, (n=8 and m=16 in this case), the performance of
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Fig. 3.12 Information capacity of BAM (accretive recall) for Model I (n=16, m=16.), Model Il
(n=16, m=8) and Model IlI (n=8, m=16). Pe, the probability of each bit being reversed in input
patterns, equals 0.

accretive recall was degraded rapidly as the number of stored patterns increased. These
results reveal that the information capacity of BAM is substantially lower than Kosko’s
estimation. The maximum pairs of associations that can be stored in this BAM is
approximately 3. Results also show that the BAM constructed as #=16 and m=8 achieves
relatively high performance, especially when the number of stored patterns exceeded the

capacity limit.

Theresults of interpolative recall for the model I, n=16 and m=16, is depicted in Fig.3.13.
Itis seen that the capacity is about4. Unlike accretive recall, the performance of interpolative
recall is less affected by input and output pattern dimensions. It almost remains at the same

level even for n <m. For this reason their corresponding performances are omitted here.
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Fig. 3.13 Information capacity of BAM (interpolative recall) for Model I. Memory configuration:
n=16, m=16. Pe, the probability of each bit being reversed in input patterns, equals 0.

MODEL: BAM
PATTERN: BIPOLAR
— A — n=n=16p=2
— @ — n=m=16p=4
—®— n=m-16 p=8
— @ — n=m=16p=12

PROB. OF ACCRETIVE RECALL

0.0 0.1 0.2 0.3 0.4 0.5

PROB. OF EACH BIT BEING REVERSED
Fig. 3.14 The error correction capability of BAM (accretive recall). Memory configuration: n=16
and m=16. Memory load: p=2,4, 8, and 12.
(2) error correction capability:

The results of error correction capability of BAM is shown in Fig. 3.14 and Fig. 3.15.

These results demonstrate that when storing two pairs of associations, the BAM is able to
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get 0.92 probability of accretive recall even when P,=0.2. BAM’s error correction

performance did not show much difference in both accretive and interpolative recall cases

compared with the Hopfield network.

| MODEL: BAM
- PATTERN: BIPOLAR
— & — n=m=16p=2

PROB. OF INTERPOLATIVE RECALL

0.2 _¢— na=m=16 p=4 L
L —®— n=m=16p=8 L
— 8= n=m=16p=12
0.0 / L . .
0.0 0.1 0.2 0.3 0.4 0.5

PROB. OF EACH BIT BEING REVERSED

Fig. 3.15 The error correction capability of BAM (interpolative recall). Memory configuration:
n=16 and m=16. Memory load: p =2,4, 8, and 12.

(3) The effect of input and output pattern dimensions on accretive recall

In order to test this property, one more BAM model was added. This model contained
eight neurons in both input/output ports. Test results show that the input and output pattern
dimensions only affects accretive recall. The effect of input and output pattern dimensions
on other aspectsis not obvious. Those results are omitted here. The effect on accretive recall
was quantitatively calculated according to Eqn. (2.7) (refer to section 2.2.3 in chapter 2 for

details) and the corresponding results are shown in Fig. 3.16.
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Fig. 3.16 The effect of input and output pattern dimensions on accretive recall. Positive value
suggests the increase in the performance, and the negative value denotes the decrease in the
performance. Here n and m are the dimensions of input and output patterns respectively. P, stands

for the probability of each bit being reversed in input patterns.

The test results indicate that if BAM is constructed as n > m, relatively higher performance

can always be achieved in accretive recall.

1
(b)
7
ki
@ &
g 2
[&)
o.
2 4 8 12 16
NUMBER OF STORED PATTERNS NUMBER OF STORED PATTERNS

Fig. 3.17 (a): The probability of BAM converging to spurious states. (b): The probability of BAM
converge to false spurious states. Memory configuration: n=16 and m=16. Input noise: the

probability of each bit being reversed in input patterns, P, is set to: [J P.=001,1 P,=0.1,and
8 P, =02
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(4) Spurious and oscillatory states

No oscillatory case was detected in the testing of BAM. This result is consistent with
the result of stability analysis proposed by Kosko [Kosk1988]. The performance of BAM
converging to spurious states was also investigated. The probability for BAM being trapped
into spurious states grows rapidly if the number of stored patterns exceeds the capacity limit,

nf( 2logyn ). These results, as shown in Fig. 3.17, demonstrate that BAM, like the Hopfield

network, suffers from large numbers of spurious states. Approximately 75% of spurious

states constitute the false states.

3.4. 6 Summary

This subsection presents quantitative descriptions about BAM’s performance affected by
different loads (the number of pairs of associations stored in the memory), the noise in input
patterns, and network structures. In general, all performances remain at the same level as
those of the Hopfield networks. Test results manifest that the information capacity for BAM

is much lower than min(z, m). The upper bound for Hopfield network, n/( 2log,n ) , can be

directly applied to estimating BAM’s capacity. Although BAM is bidirectional, and the
neurons in either layer can be used as input or output, the performance is by no means
identical. Testresults show that relatively higher performance can be obtained if # > m (here
n is assumed as the same dimension as that of the input pattern). Another finding is that
BAM'’s capacity is mainly determined by the dimension of input pattern. The dimension of

output pattern is less important.
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3. 5. Ho-Kashyap Associative Memory

In general, once the network architecture and training patten is given, overall memory
performance will be determined by the encoding algorithm that is used [Hass1989]. In the
previous chapter, two types of dynamic associative memories have been investigated. These
memories simply use the Hebbian rule. Although this simple “one shot” encoding rule
allows very large associative memory to be implemented in a simple chip and makes storage
and removal of the contents of memory relatively easy, it suffers from low storage capacity
and a large number of unwanted false states. In an attempt to avoid using a correlation type
of the encoding scheme which had proved many inherent shortcomings, M. H. Hassoun
proposed a dynamic bidirectional memory (HK model) [Hass1989]. Unlike BAM, the HK
model utilizes nonsymmetric weights formalized individually during the encoding process.
These weights are constructed by employing the Ho—Kashyap algorithm which optimally
distributes the association process of each neural layer over groups of individual neurons and
activation functions [Hass1989]. The high performance is contributed to the Ho-Kashyap
learning algorithm being capable of making optimal use of a nonlinear activation function
as a part of the recall process. However, in the Hopfield network and BAM, the similarity
measure (the weighted sum of all other neurons’ activations) is realized in the
interconnection layers. The advantage of nonlinear thresholding, which is beyond in helping
the stabilization of the memory, is not fully utilized. Thresholds used in these memories are
obviously not the optimal choice. Consequently, they are not as essential as those in other
memories such as encoding of information based on the Ho—Kashyap algorithm.
Nevertheless, the superior performance of the HK model comes at the cost of both the

increased temporal computation complexity and the doubled size of weights.
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3. 5.1 Mathematical background of Ho-Kashyap learning algorithm

For the purpose of capturing key points of the Ho—Kashyap associative memory
encoding algorithm, it is necessary to review the fundamental Ho—Kashyap algorithm
[HoKal965], [SkWal981]. Consider the problem of designing a classifier to generate a
hyperplane that optimally separates two groups of linear separable feature vectors in the
training set. To do this one may define a cost function that numerically summarizes the error

of the performance:

P
Ewb) =Y (wl x® _ 5Oy (3.41)
s=0

where x® = (17, %8, .. L X7 stands for a feature vector, w = (Wiwa, ... w)T and scalar »° are
controllable parameters that need to be adjusted. The object is to find a vector w as well as
b such that the sum—of-square—error E(w,b ) is minimum. Equation (3.41) is readily

changed in the matrix form. First of all, define X as a p by » matrix:

X = [ D x@ . x® ] T (3.42)
and b as a p dimensional vector:

b=| 0,00 ., 50T (3.43)

then the equation (3.41) can be modified as

E(wb)=|]Xw-b|?
(3.44)
=Xw-b)Y Xw-b)
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It is known that the Ho—Kashyap algorithm achieves the minimum sum-square—error
solution of E(w,b ) by iteratively adjusting both w and b according to gradient descent.
Gradient descent means that each adaptation step taken onw and b should be in the direction
against the gradient of E(w,b ) (with respect to w and b ). Partially differentiating E(w,b )

with respect to w and b yields:

oE (w,b ) X Xw_b) (3.45)
ow
and EE—%YVb’b—) =-2Xw-b). (3.46)

The Ho—Kashyap algorithm is described in the following statements:

Ho-Kashyap algorithm [HoKa1965]

Step (1) Attime =0 set arbitrary vector b, > 0.

Step (2) For afixed w allows b, to change in the direction of steep descent subject to
by >0,i.e., be1y = by + 5 (ey — 1 ey | ), wherethe errore ,, is defined as

ewn = X W — by

Step (3) For afixed b bring w to the least-square solution of for the matrix equation
X w=Db >0 . Thisis achieved by computing the generalized inverse matrix X*

and calculating wgy = X* b, .

Step (4) Gotostep (2) until b,y = b, no further change takes place.
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3. 5. 2 Complete Ho—Kashyap associative memory encoding algorithm

To apply Ho—Kashyap algorithm to encoding pairs of associations, several
muodifications need to be carried out. These modifications are included in the algorithm

given below.

Special notations

w: A mby n weight matrix

W A fthrow vector in the weight matrix but augmented by the threshold, 8;, in the

output neuron j.

* T
Wj =[—T}le Wiz .« . .Wj,.] =[Wj,']

i=0,1,2, w ol j=0,1,2, I /(4 Wjo=—9j

X A pby n matrix X = [ xM) x@y | .x"’)]T formed by n—dimensional input

patterns x, x® = ({”, x5, . xNT s=1,2, .., p.

Y A p by m matrix y = [ ¥y ¥y L. y‘P)]T formed by m—dimensional output

patterns y, y© = 19,3, YT so1,2, . p.

X' A pby n+1 matrix whose s-th row x' given by the augmented input pattern, x®
according to the rule:

1 x©7 if y¥ = 1,

X6 =

-1 x¥] if ¥ = —1 0r 0

To be more specific:
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X6 =711 xis) x(zs), - xgzs)] if y](s) =1
= laos a1s azss - Gyl i=0,1,2 ..,n

= [ai]

O = -1 2, ., - P =—10r0
= [~aos —a1s — a2, .., —aps)

= [-ay) i=0,1,2,..,n

Note: (i) ¥ is the j-th element in the output pattern y*, (i} Ho—Kashyap encoding algorithm

needs to compute m X's for different elements in the output pattern y©, s=1, 2, ..., p.
y

b; apby 1 columnvector:b = [ b e b‘P)] = [ b“’],s=1, 2,..p.

Ho-Kashyap encoding algorithm [Hass1989]

step (1) Initialize vector by, > 0.

step (2) Compute X'+, the generalized inverse of matrix X’ (notethat X' is p by n+1 matrix,

thus X'+ is n+1 by p).

step (3) Compute j~th row in the weight matrix, Wy, namely, W;(t) at time {=0,

Wi =X b
p © p
or ~6; = Z ag b(f) and  wj = z a;, bg)) , Vi, i=12,..n
s=1 s=1

It should be noted that (i) the weight matrix W is used to produce memory

response, y; = [ %y ... yP | whenamemory is evoked by a particular pattern,
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step (4)

step (5)

step (7)

step (8)

x9, during the associative recall, (ii) the augmented weight vector (the j~th row
vector in weight matrix) is only used in an encoding process. The numerical value

of an element, 5, in the vector, y/ (¥’ = [ -6; »” 5 .. . |which is resulted
fromthe multiplication of y]'- = X' w}‘) is abitinformation generated by the output

neuron jwhen a memory is evoked by the input pattern x©, except for the first

element, -6; , which is the threshold in the neuron j.

Calculate error: e = X’ W;(t) — b . ifa symbol [5{] is used, then

n
eg)) = 2 Qis W;i(t) - bg)) s s=1,2,..,p.
=0

Modify the vector b (, to minimize the error

by =bgy +n (e —ley!).

Compute new weights again

Wigs1) = X' by -
Compare

b1 = by .

Ifitis false go to step (4), otherwise, it means wf is trained. Inthis case, selectthe

next output neuron, i.e., j+1, followed by calculating new X’ based on the

information given by yj(-i)l ,8=1,2, ..., p,and then, go to the very beginning, step (1),

to train wj,;.

Continue to do this until all weight (row) vectors in matrix W, are trained.

Note: The other weight matrix, W,, can be obtained by interchanging matrix X and Y in

the above formulas.
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The Ho—Kashyap encoding algorithm outlined above is based on the original idea

proposed by Hassoun [Hass1989]. The initial vector by is based on the amount of
knowledge one has about the asymptotic value of b(). To ensure the convergence, the

choice of learning rate 7 must be within the interval (0, 1], [SkWa1981].

3. 5. 3 Experimental results

Similar testing procedure and the network structure used in investigating BAM were
applied to HK models. However, because of the different encoding algorithms that were
utilized, some changes in the experiment must be specified. First of all, unipolar patterns
were used in both the encoding and recall processes. Thus, the transfer function in each
neuron was replaced by the unit step function (see Fig. (1.4) in chapter 1). Secondly, since
the HK model uses nonsymmetric weights, the weight size for the network is doubled
compared with BAM. Finally, the HK encoding algorithm differs from the Hebbian rule in
adaptively modifying the weight vector w and margin vector b, alternatively. To capture this
property, the number of iterations was recorded and the average iterations for the HK model
to converge to a global minimum is calculated. The performances of HK models were tested
for their ability to store the maximum number of associations and to correct noise. The effect
of input and output pattern dimensions on accretive recall was also tested. The memory being
trapped into spurious and oscillatory states during the associative recall was also

investigated.

(1) Information capacity
The maximum association p that can be stored in the HK model was individually tested

on three different networks. These networks differed in their dimensions either in input or
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in output. The first network was n=m=16, the second was n=16, m=8, and the third was n=8,
m=16. The purpose of testing these different models was to see if the number of stored
patterns in the HK model could exceed the number of neurons in either layer. The test
environment was identical to that of testing BAM. The probability of HK models
successfully recalling stored associations accretively against the number of stored patterns

is plotted in Fig. 3.18. These results show that the upper bound of the information

1.0
=
S
Ll o.8
[ =
=
o 0.8
Ly
&
2 o.4
™ | MODEL: HK
o PATTERN: UNIPOLAR
e 0.2 - —A— n=16m=16
[«] | —-z— n=16 m= 8
[o=i —®— n=8m=
= ' n=8m: 16‘ , ) . |
0.0
2 4 8 12 18 20 24 28 a2 3e

NUMBER OF STORED PATTERNS

Fig. 3.18 Information capacity of the HK model (accretive recall) for Model I (n=16, m=16.), Model
11 (n=16, m=8) and Model Il (n=8, m=16). Pe, the probability of each bit being reversed in input
patterns, equals 0.

capacity for the HK model can be approximately estimated by calculating min(n, m) if n # m.
It should be noted that this upper bound can only be reached if the memory is evoked by
noiseless input. The result also demonstrates that if a memory is configured as n=m, the
capacity is able to exceed its dimension. The capacity for the HK model configured as
n=m=16 is approximately 23 which is approximately 1.4 times of the dimension of input or

output pattern. This interesting phenomenon suggests that the dimension of input or output
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pattern may not constitute the upper bound of the memory capacity. The actual limit of the

information capacity largely depends on the encoding/learning algorithm used.

The performance of interpolative recall was also investigated. The results do not show
much improvement in this respect. One conclusion made in accordance with this
phenomenon is that few spurious states exist near the stored patterns; as a result, the memory

either performs accretive recall or slips to the state far from the correct point.
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o 0.0 . 1 1 L . 1 1 L o
o 2 a ) 12 1e 20 24 28 az 3ss

NUMBER OF STORED PATTERNS

Fig. 3.19 Information capacity of the HK model (interpolative recall). Memory configuration:
n=16, m=16. Pe, the probability of each bit being reversed in input patterns, equals 0.

(2) error correction capability

The ability of the HK model to recover distorted inputs was tested. Results for both
accretive recall and interpolative recall are illustrated in Fig. 3.20 and 3.21. From these
figures, one can see that the maximum noise level (determined by P,) that the HK model
(n=16, m=16) can tolerate for storing two associations is approximately 0.2. This result does
not show any improvement compared to BAM. However, due to the increased information
capacity, the HK model demonstrates relatively higher performance in storing four as well

as eight associations.
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Fig. 3.20 The error correction capability of the HK model (accretive recall). Memory configuration:

n=16 and m=16. Memory load: p =2, 4, 8, and 12.
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Fig. 3.21 The error correction capability of the HK model (interpolative recall). Memory
configuration: n=16 and m=16. Memory load: p =2, 4, 8, and 12.

(3) The effect of input and output pattern dimensions on accretive recall
The effect of input and output pattern dimensions on accretive recall was tested on three
different HK models. Besides n=16, m=8 and n=8, m=16, the network configured as n=m=8

was also involved in the testing. This additional network was used as a reference model.

— 88 —



Chapter 3 Tested Models and Experimental Results

Results of two other models were compared to this reference model. This was done by
calculating sum—square-root between the performance data measured under the following
two different conditions: n # mandn=m (referto section 2.2.3 in chapter 3 for details). The
positive histogram shown in Fig. 3.22. means an increase in performance, whereas, the
negative histogram stands for a decrease in performance. The degree of effect is represented

by the height of the histogram. Although such an effect seemed to be not significant when

2
1_.
o
<
N
N
8 n=8 m=8 n=8 m=16
0 ' Siniid
& o =
we n=16 m=8 Pe=007 Py=02
—14
MODEL: HK
-2

Fig. 3.22 (a): The effect of inputand output pattern pattern dimensions on accretive recall. Positive
value suggests the increase in the performance, and the negative value denotes the decrease in the
performance. Here n and m are the dimensions of input and output pattens respectively. P, stands

for the probability of each bit being reversed in input patterns.

the number of associations stored in the memory is small, the effect became larger and larger
as p increased. The overall effect (calculated according to Eqn. (2.7) in chapter 2) was less

significant compared with BAM.
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Fig. 3.23 The probability of HK model converges to oscillatory states. Memory configuration: n=16
and m=16. Noise: (the probability of each bit being reversed) P, , is set to: 0.01, 0.1, and 0.2.

(4) Spurious and oscillatory states
Because the HK model utilizes nonsymmetric weights, the network can not guarantee
thatit will converge to stable states. However, the results presented in Fig. 3.23 indicate that

oscillatory states rarely take place if the noise level (specified by P,) is weak and the number

of stored patterns, p, satisfies p << min( n, m). The probability of mMEemory converging to

oscillatory states (PCOS) is as low as 0.078 even when P, = 0.2 and p=12. Compared with

spurious étates, (depicted in Fig. 3.24) the problem of oscillatory states may be discounted
if the number of stored patterns is small. Two other interesting phenomenons found in the
testin g are that (i) the oscillatory states become the major factor that deteriorates the memofy
performance if the number of stored pattens exceeds 12, and (ii) approximately 90% of
spurious states in the HK model constitute false states. Asa result, the HK model is not able

to demonstrate its power in performing interpolative recall.
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Fig. 3.24 (a): The probability of the HK model converging to spurious states. (b): The probability
of the HK model converge to false spurious states. Memory configuration: n=16 and m=16. Input
noise: the probability of each bit being reversed in input patterns, P, is set to: [J P, =001,
B P, =0.1,andE P, =02.

(4) Learning iterations

Although the Ho—Kashyap algorithm encodes information by optimal choice of a weight
vector w and a margin vector b iteratively, the latter adjustable parameter b seems to be less
important if training patterns are linearly independent. Test results show that if the number
of stored associations p << min(x, m), the required number of iterations is approximately 1.
This is because whenp <<min(n, m), randomly generated training patterns may be mutually
linearly independent. Consequently, the error given in step (5) (in a Ho—Kashyap encoding
algorithm) is brought to zero by one step through computing wj, = X'* b,. This
phenomenon reveals that the cost function for a linear independent training set may have a

wide flat global minimum. The value of global minimum may not depend on the margin

vector b. In the cases of p << min(n, m), the gradient E—E%—b—) =2X"(Xw-b) in Eqn.

(3.45) takes whole responsibility in finding solution weights. Experimental results show that
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the number of iterations is larger than one only if the number of stored patterns, p, approaches
or exceeds min(xn, m). The number of iterations averaged over 400 trials for each tested

model is listed in Table 3.5.

Table 3.5 Average Convergence Rate in the HK Encoding

Dimensions The number of training pairs
n m 2 4 8 12 16 20 24
16 16 1.00 1.00 1.00 1.00 28.16  31.23 442364
16 8 1.00 1.00 2.16  22.58 79.25 103.74 2846.54
8 16 1.00 1.00 228 2251 72.45 115.43 2958.07
8 8 1.00 1.00 2.28 50.66 N/A N/A  N/A

Note: All data are averaged over 400 trials.

3. 5. 4 Summary

The HK model demonstrated relatively higher performance. The maximum capacity for
the HK model configured as n=16, m=16 is approximately 23. Test results show that the
capacity was bounded at the minimum dimension of an input or output pattern. This upper

bound, however, can only be reached under the condition P, = 0. The performance of

correcting error in the HK model is superior to that in BAM especially when the number of
patterns is larger than 4. For storing two associations, the ability to tolerate noise remains
at the same level as that of BAM. The results also indicate that if the input pattern dimension
is lower than the output pattern dimension, the effect of input and output pattern dimensions
on accretive recall is not as significant as in BAM. The oscillatory states may be neglected
if the number of stored patterns is small. It is necessary to point out that the higher

performances of the HK model are achieved at the price of using nonsymmetric weights

— 02 —



Chapter 3 Tested Models and Experimental Results

which require a doubled space to store them. The other price that the HK model has to pay
is the learning time. Compared to the Hopfield network and BAM (assumed as n = m), the

HK model takes approximately n%p (8p—1) X the number of iterations more encoding time.

3. 6. Backpropagation network for associative memory

Although the backpropagation algorithm (BP) [RuMc1986] is deemed as the most
popular training paradigm and it has been widely investigated during the past few years, very
little is known about the performance of the networks used as associative memories. What
is the potential information capacity and error correction capability for this model whose
weights are formed by the error adaptive correction algorithm? Is it superior to other models?

Answers to these questions will be provided in this section.

3. 6. 1 Error backpropagation training algorithm

Backpropagation is a supervised learning rule for networks with hidden neurons. It is
the generation of perceptron [MiPa1969] which is only comprised of input layer and output
layer. For a multilayer network, the central problem is in obtaining the internal
representation in hidden neurons. If the internal representation is known, weights associated
with these neurons can be generated or adaptively modified by using the Hebbian or
Ho—Kashyap encoding algorithm. The major practical limitation of perceptron approach is
that the learning algorithm only can be applied to networks with a single layer of modifiable
weights. This problem has been the bottle neck for quite a long time. The BP training
algorithm [RuMc1986] successfully circumvents this problem by applying a chain of

derivatives from the network output layer down to the input layer. The error information
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collected at the output neurons is back propagated through the weights to form pseudo—errors
for the neurons in the hidden layer. This allows hidden neurons to know what desired states
are expected. Based on these pseudo-errors, weights associated with these hidden neurons
are adjusted in a way that minimize these pseudo—errors. To give a specific example of this

computing strategy, consider the network in Fig. 3.25.

output layer y

hidden layer h

input layer x

Fig. 3.25 The typical structure of multilayer perceptron.

The error function in the network output is defined as

1 &5 i
E=2 23 07 - 5% (3.47)
s=1j=1

where (yj@ - y](-d))2 is the square error of element j between actual activation y](-s) and the

desired output yj(-d). During the training, this error is back propagated to the hidden layer.

Weights are changed according to
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oE
Awyp = ——— =_6: h 3.48
Wik owi i Nk (3.48)
oF
and Awy = — = -8 X; (3.49)
Iwy;
where
& =y (1-y) 05" -3 (3:50)
m
and Ge =l (1 — ) > 8 wi (3.51)

J=1
The derivation of Eqn. (3.48)—(3.51) is the chain rule starting from the output neuron to the

input neuron. The generalized delta rule for adjusting the weights associated with the hidden

neuron is formulated by
Aij(t'*' 1) =n Aij(f) - aq Aij(t— 1) (3.52)
and Awgi(t+1) = 7, Awg(®) — @y Awgi(t—1) (3.53)

where ¢ is the iteration number, Aw,() and Aw,() are calculated according to Eqn. (3.48) and
(3.49) respectively; , and 7, are learning rates. The second term in Eqn. (3.52) and (3.53)
is called a momentum term. It is introduced to increase the adaptive step if weight moves
along a gently sloping floor and to decreases the adaptive step when it meets a sharp curvature
which may lead to oscillation. Coefficients, @; and a,, are constants which determine the

degree of effect of past weight changes on the correct direction of movement in weight space
[RuMc1986]. Itis noted that the error information utilized for modifyin g weights is derived

from the gradient, thus, a continuous differentiable nonlinear activation function is required.
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Such a nonlinear activation function used in each neuron (except in input neurons) is in a
sigmoid form:

1

Ty

(3.54)

The trained network has the property that the error function defined in Eqn. (3.47) is

minimized.

Although the BP algorithm circumvents many problems in the real world, using such an
algorithm is usually frustrating. One of the major drawbacks of this method is its slow
convergence rate [HiAn1989]. Starting from a random initial state, the path to the global
minimum is often strewn with local minima [WeMa1991]. Another problem is the network
architecture. Choosing the optimal number of hidden neurons and the number of hidden
layers is not an easy task. Because the neurons in a hidden layer correspond to separated
decision regions into which the training patterns are mapped [Lipp1987], too few hidden
neurons cause networks to be unable to capture the essential features in training patterns,
whereas too many hidden neurons may create the redundant hyperspace which causes the
networks overreact inresponse to small (insignificant) changes in input patterns [Burr1986],

[WeMa1991].

3. 6. 2 Training experiments

Because the performance of the BP network is significantly affected by the network
topology, the task of performance evaluation is far more difficult. In order to meet the goal
of comparability with other models as described in the previous sections, the topology for

the BP network is carefully selected. The rule for determining if hidden neurons should be
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introduced is based on whether networks are able to converge to a global minimum. Such
a heuristic approach in determining the network structure begins with the network not
containing hidden neurons. If the network fails to converge to a global minimum after twenty
trials, hidden neurons with the same size of output arranged in one layer are added, otherwise,

the structure remains unchanged.

All initial networks used in the testing contained only two layers: the input layer and the
outputlayer. The dimensions of input and outputlayer were setto (nx m): 16x16, 16x8, 8x16,
and 8x8. The first three models had the same dimension as Model I, Model Il , and Model
IIT used in testing the performance of BAM and the HK model. Each network was firstly
trained by two and four associations; and then the number of training pairs was increased by
four. Because the performance of the BP network depends on data representation, the
training experiments were undertaken on four groups of training sets. Each set had a fixed
number of associations p. These training associations were randomly generated under the

MD constraint.

The network training was carried out by using PDP software [McRu1988]. The choice
of learning mode was set to “set model fast 1” [Dole1991]. In this mode, the BP program
updates its weights and thresholds according to the delta—bar—delta weight update rule
[Robe1988], [Dole1991]. The default parameters mentioned in [Robe1988] were selected.
All networks were trained by using a batch adapting mode (weight and threshold error
derivatives were accumulated over an entire processing epoch and then the weights and the
thresholds were modified) [McRu1988]. The error criteria were set to 0.01 for all models.
The experimental results showed that the BP algorithm was easily to converge to a global
minimum if the input dimension was higher than the output dimension. In the case of p=

min(zn, m), this was no guarantee for BP to find solution weights. The local minimum as well
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as oscillatory problems occurred frequently. In this case, the training mode was changed
to momentum, with a fixed learning rate of y =0.8 and momentum coefficiente =0.2. These
parameters were chosen because they provided a fast convergence rate and a high possibility
infinding solution weights. The convergence rates averaging over 4 trials for each network’s

configuration are listed in Table 3.6.

Table 3.6 Average Convergence Rate in the BP Training

Dimensions The number of training pairs
n m 2 4 8 16
16 16 20.25 390.22 96.34 202.03
16 8 18.33 45.65 63.87 162.65
8 16 30.12 112.24 236.50 9126.50"
8 8 25.34 64.34 145.34 N/A

Note: all data are averaged over 4 trials. Symbol ( « ) means the network

contains hidden neurons with the same dimension as the output neuron.

3. 6. 3 Experimental results

The tests were mainly designed to investigate how the quality of associative recall in BP
networks is affected by (i) the number of stored associations, (ii) noise in input patterns, and
(iii) the spurious states. Because the BP network is a feed forward network the oscillation
case need not to be considered. It should be emphasized that the results presented here are
less reliable compared with those of the BAM and HK models. The inability to provide
highly reliable results is due to the slow convergence rate in the training process. Another
reason is that the standard PDP software does not provide automatic uphill movement. In

a practical work this automatic uphill movement can be very helpful if a network is often
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trapped in local minima. The need to manually control the learning rate and the momentum
parameters is another problem that prohibits the training of large groups of associations

within a limited time.

(1) information capacity

The capacity of the BP network was tested on three different models varied in their
structures. The topological structures of tested networks were the same as those used in
testing the performance of the BAM and HK models (Model I model I and Model III).
However, there was one exception. This exception occurred in Model II (n=8, m=16, and
p>8) where 16 hidden neurons arrange in one layer were introduced. The performance of

information capacity is illustrated in Fig. 3.26. The result shows that (i) the BP network is
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Fig. 3.26 Information capacity of the BP network (accretive recall). Model I (n=16, m=16.), Model IT

(n=16,m=8) and Modellll (n=8,m=16). Pe, the probability of each bit being reversed in input patterns,
equals 0.

guaranteed to recall all training patterns if the number of stored associations, p, satisfies

min(n+1, m+1), and (ii) for three tested BP networks, the capacity gaps in terms of accretive
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Fig. 3.28 The error correction capability of the BP network (accretive recall). Memory
configuration: n=16 and m=16. Memory load: p = 2, 4, 8, and 12.

recall are not obvious. Fig 3.27 illustrates the performance of interpolative recall of model
I. The capacity for this model is about 17. It remains at the same level as that of accretive

recall.
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(2) error correction capability

The results of error correction for BP networks is presented in Fig. 3.28 and 3.29. The
results indicate that although the capacity of the BP network is substantially higher than the
Hopfield network and BAM, the maximum noise level (denoted by P, ) that the BP network
is able to tolerate approximately equals 0.2 (tested under the condition of p =2). However,
the situation is changed as the number of stored associations increases. The BP network
outperforms both the Hopfield and BAM models if the number of stored
patterns/associations is larger than 2. In terms of accretive recall, the performance remained

at the same level compared to that of the HK model.

0.4 " MODEL:BP
I PATTERN: UNIPOALR
— & — n=m=16 p=2
0.2 I~ —@— n=m=16p=4
| —&— n=m=16p=8
— B~ n=m=16p=12

PROB. OF INTERPOLATIVE RECALL

L s 1
c.0 0.1 o.2 0.3 0.4 0.5

PROB. OF EACH BIT BEING REVERSED

Fig. 3.29 The error correction capability of the BP network (interpolative recall). Memory
configuration: n=16 and m=16. Memory load: p =2, 4, 8, and 12.

(3) The effect of input and output pattern dimensions on accretive recall
In order to measure the effect of input and output pattern dimensions on accretive recall,
an additional BP network, which was configured as n=8, m=8, was introduced. The

measurement of this effect was based on the performance statistics collected during the
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testing. The effect of input and output pattern dimensions on accretive recall was calculated
according to the Eqn. (2.7) defined in section 2.2.3 in chapter 2. To meet the requirement
of comparability with the results from other tests, similar test points were selected, i.e.,

P.=0.07 and 0.2. The result of the effect is illustrated in Fig. 3.30.

2

a 17

<T

N

- ]

8 n=8 m=8 n=8 m=16
0

LL

th n=16 m=8
-1

MODEL: BP

-2

Fig. 3.30 The effect of input and output patterns dimensions on accretive recall. Positive value
suggests the increase in the performance, and the negative value denotes the decrease in the
performance. Here n and m denote the dimensions of input and output patterns respectively. P,

stands for the probability of each bit being reversed in input patterns.

(4) Spurious states

The performance of accretive recall shows that the trained BP network is guaranteed to
recall all stored patterns, namely, if the input pattern is not contaminated with noise, the
probability for BP network mapping into spurious memory will be zero. Furthermore, the
high capacity also prevents from the BP network mapping into spurious states. Fig. 3.31
depicts the results of PCSS testing. The tested modelis configured as n=16 m=16. The most
interesting phenomenon found in this testing is that although there are a large number of

spurious states, quite a few of them belong to the category of false states. This phenomenon
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helps to explain the reason why the BP network is able to achieve a high probability of

interpolative recall.

1 1
0.8
0
2
2 s 08
o 2
[8)
a.
2 4 8 12 16 2 4 8 12 16
NUMBER OF STORED PATTERNS NUMBER OF STORED PATTERNS

Fig. 3.31 (a): The probability of the BP network converging to spurious states. (b): The probability
of the BP network converge to false spurious states. Memory configuration: =16 and m=16. Input
noise: the probability of each bit being reversed in input patterns, P, is set to: O P, =0.01,
W P, =0.1,and @ P,=02.

3. 6. 4 Summary

The performances of the two-layer and three—layer feed forward BP network used for
associative memories were investigated. The investigation was undertaken on 12 different
BP networks varied with their input and output dimensions. Those tested models had the
same structure as BAM and HK models except for model IIl (n=8, m=16, and p=16) which
contained 16 hidden neurons arranged in one hidden layer. The results of the experiments
show that if p > min(, m) the BP network fails to converge (sum—square—error is larger than
1) unless hidden neurons are introduced (the number of layers and the number of neurons
need to be added into the network depending on the number of pairs of training patterns and

the mutual coupling among training patterns). The results also show that the trained
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networks are guaranteed to recall all stored associations if the network is evoked by noiseless
inputs. The effect of input and output pattern dimensions on accretive recall is relatively
significant compared with both BAM and HK models. The probability for the BP network

mapping into spurious states (false) was significantly lower than other models.
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CHAPTER 4

COMPARISONS

4. 1. Introduction

The preceding chapter has shown how the proposed testing procedure was applied to
investigating four different models of associative memories. In this chapter, an attempt is
made to compare their performances. The discussions as well as additional findings from
the comparison will also be presented. Because the performance gap between certain types
of models may not be wide for some properties, the histogram chart plotted at each test point

is adopted in order to make these gaps more obvious. The comparisons focus on
. information capacity,
. the ability to correct noise in input patterns,
. the effect of input and output pattern dimensions on accretive recall,
. spurious states, and

. the computational complexities in encoding and associative recall.

4. 2. Information Capacity

Experimental results presented in chapter 3 have shown that the difference of capacity
between any two tested models become appreciable if the number of stored

patterns/associations is larger than two. For this reason, the comparison begins with storing

— 108 —



Chapter 4 Comparisons

four patterns/associations and than increasing the load by four. The capacity comparison
taken on four different memory models is divided into two major categories. One is
concerned with the quality of recall stored patterns/associations perfectly (accretive recall);
the other is the performance of interpolative recall. It will be seen that these two different
types of recall lead to two different ways in appraising the performance of associative
memory. In this section, the performance comparison will be extended to the situation that
the memory input is corrupted with noise. Although this situation is beyond the scope of
analyzing the memory capacity, some properties behind the test condition that the memory
is evoked by training patterns will be discovered. This situation is somewhat different from
the error correction since this comparison mainly focuses on how the quality of associative

recall 1s affected by different memory loads.

The first comparison was taken on the accretive recall. Plotting all results from four
tested models as well as taking into account the noise in input patterns made comparison

much easier. From Table 4. 1 and Fig. 4.1, one may immediately deduce that the HK model

Table 4. 1 Summary of Information Capacity

Model Criterion Accretive  Interpolative

HOP P.=095 3 4
BAM P,=0.95 3 4
HK P, =095 23 23
BP P, =095 17 17

Memory configuration: Hopfield network: n=16, BAM, HK, and
BP: n=16, m=16. Test condition: no noise in input patterns.
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Fig. 4.1 Performance comparison: information capacity (accretive recall). Tested models are
configured as: (i) BP, HK, BAM models: n=16, m=16, (ii) Hopfield network: n=16. ] BP
network, Il HK model, & BAM, B3

Hopfield network.

and BP network are able to achieve higher probability of accretive recall which leads to the
higher information capacity. = The Hopfield networks and BAM never perform
competitively. Furthermore, the HK model appears to be able to achieve higher quality of
accretive recall than BP if p is small (see Fig. 4.1b and 4.1c). However as p increases, the

degradation in performance in the HK model is more significant than in the BP network.

- 110 —



Chapter 4 Comparisons

One property which may not be immediately apparent in Fig. 4.1 is that BAM seems to
have more difficult in performing accretive recall than the Hopfield network if the noise level
in the input pattern is low. The essence behind this superficial phenomenon is that BAM can
only recall re—stored association if and only if this association is a local minimum in an
energy surface [Kosk1987], [Kosk1988]. The problem, however, lies in the fact that the
encoding algorithm proposed by Kosko can not guarantee that any stored association is a
local minimum. This issue has been investigated by Y.—F. Wang in his recently published
paper [WaGM1991]. Another reason which results in BAM being unable to recall stored
association is the reversed version of training patterns as well as the bidirectional search
process. Because the fundamental Hebbian rule can not guarantee that the energy of any
training association is a local minimum, the bidirectional search may not always help BAM
to converge to a correct state. This hypothesis has been proved experimentally in this work.
The result is presented in Appendix I. This result manifests that the bidirectional recall is

sometimes detrimental for the quality of associative recall.

Of the interpolative recall, the BP network constantly performs best. The HK model is
unable to compete with the BP network if the input pattern is corrupted with noise (see Fig.
4.2). From these results, it can be conjectured that the HK model may be best-suited to
perform accretive recall especially when a few associations are stored, while the BP network

may win favor in the area where interpolative recall is essential.
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Fig. 4.2 Performance comparison: information capacity (interpolative recall). Tested models
are configured as: (i) BP, HK, BAM models: n=16, m=186, (ii) Hopfield network: n=16. [J BP
network, ll HK model, ¥ BAM, B Hopfield network.

4. 3. The Ability to Tolerate Noise

Similar investigation was carried out in order to capture the performance of error
correction capability. As before, the HK model demonstrates superiority in accretive recall

if the number of stored patterns is less than eight; while the BP network demonstrates the
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best performance in interpolative recall. These results are shown in Fig. 4.3 and Fig. 4.4.
Some intrinsic behavior captured in the investigation is that (i) the relative performance of

the Hopfield networks and BAM are approximately at the same level in the error correction
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Fig. 4.3 Performance comparison: error correction capability (accretive recall). Tested
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aspect, (i) none of the models are able to perform an acceptable level of associative recall
if noise level, P,, is higher than 0.2 (tested under the condition of storing more than four
patterns/associations), and (iii) for both accretive recall and interpolative recall the
performance of the HK model appears to be approximately identical. This phenomenon
implies that the bidirectional HK model behaves less “flexibly” than other models. It either

successfully converges to correct states or slips to false states.
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4. 4. The Effect of Input and Output Pattern Dimensions
on Accretive Recall

Experimental results provided in Chapter 3 have verified that the quality of accretive
recall is somewhat affected by the input and output pattern dimensions. In view of the
results, one may conjecture that improvement in the performance of accretive recall is
achievable if the input pattern dimension is higher than that of the output pattern dimension
(n>m), and the performance decreases if the input pattern dimension is lower than the output
pattern dimension (n <m). It ought to be noticed that the effect of input and output pattern
dimensions on accretive recall is measured under the condition that random errors occur in
the input patterns. In general, the selectivity of associative mapping is better if thé input

patterns are further distant from each other.
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Fig. 4.5 Performance comparison: the effect of input and output pattern dimensions on
information capacity (accretive recall). Tested models are configured as: (i) BP, HK, BAM
models: n=16, m=8, n=8, m=8, and n=8, m=16. (0 BP network, ll HK model, ¥ BAM.
The positive values indicate the increase in the performance, whereas the negative valuesstand

for the decreases in the performance.

- 115 —



Chapter 4 Comparisons

The experimental results also demonstrate that the degree of the effect of input and
output pattern dimension on accretive recall is encoding algorithm dependent. These effects
measured by means of simulation of BAM, HK and BP memories are depicted in Fig. 4.5.
It should be pointed out that throughout the comparison, the performance of the memory
model configured as n=8 and m=8 provided a baseline reference. The results given in the

Fig. 4.5 show that the HK model exhibits the least effect, especially when n < m.

4. 5. The Spurious States

This section is only concerned with the comparison of the probability of tested memories
converging to spurious states (false) during the associative recall. The discussion of another
type of false states, oscillatory states, is omitted here because they were only detected in the
HK model. The probability of associative memories converging to (false) spurious states
is depicted in Fig. 4.6. These figures suggest that both Hopfield and BAM suffer a serious
spurious state problem. It has been shown [HaYo1989] that these spurious states are
composed of two different classes: one is, of course, the reversed version of training patterns,
the other is the Boolean combination of training patterns. Substantial differences can be
found by comparing the performance of Hopfield and BAM models with HK and BP
networks. The unidirectional BP network demonstrates the lowest PCSS for most cases.
The lowest PCSS may be contributed to the BP training algorithm which is capable of
generating  highly precise weights and thresholds through minimizing ~the

sum-—of—square—error between actual responses and the desired outputs iteratively. The HK
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Fig. 4.6 Performance comparison: the probability of memory converging to false spurious
states, PCSS (false). Tested models are configured as: (i) BP, HK, BAM models: n=16,m=16,
(if) Hopfield network: n=16. [J BP network, M HK model,[N BAM, B Hopfield network.

algorithm, however, can only produce least-square solution and provide less flexible
connecting weights. Because the Hebbian rule is unable to generate the weights and
thresholds with the same dynamic range as those generated by Ho-Kashyap and BP

algorithms (see appendix II), the performances of Hopfield and BAM models, therefore, can

not compare with those of the HK and BP networks.
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In conjunction with the high performance in interpolative recall, it is concluded that for
the BP network, there must exist a large number of (nonfalse) spurious states located around
the stored training pairs. These states improve the quality of interpolative recall. The HK

model, however, tends either to converge to true states or to slip to the false states.

4. 6. The Analysis of Computational Complexity in Encoding and Recall

Perhaps the most difficult work is to compare the computational requirement. This
difficulty is attributed to the fact that both HK and BP encoding algorithms include steps
which are executed only when certain conditions are met by the data at the given iteration.
This phenomenon implies that the actual computation time on every iteration is not a
constant. Another difficulty is due to the fact that the computation requirement is sensitive
to the training pattern that is selected, the learning parameters that are used, and the error
criteria (for BP) which s chosen. For these reasons, the computational complexity measure
is not meaningful unless all optional conditions are specified and statistical analysis is used.
Even though one is able to meet the conditions which are described above, the results may
still not be reliable because the BP algorithm frequently suffers from local minimum
problem, especially as p approaches the dimension of min(n, m) or hidden neurons are
introduced. For all the reasons addressed above, the results presented in Table 4. 2 should
be taken to be no more than an approximate guide to the relative complexities except those

of the Hopfield and BAM models.

(1) Temporal complexity of encoding algorithm
In the measure of the computational complexity, a cost function, O(cin, com, csp), 1S
adopted, where ¢y, 2, and c3 are constants, n and m refer to input and output pattern

dimensions and p denotes the number of patterns/associations stored in a memory. This
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computer independent measure is used to express the order of the time required to execute
the algorithm on the problem size # and m and p. Accordingly, if the algorithm is said to
execute O(2n’m) time, itis equivalent to be expressed as follows: the amount of work required
by the algorithm is proportional to 2n%n [Kron1987]. Table 4.1 presents the results of the
computational complexity measure of the algorithms used in implementating Hopfield,
BAM, and HK models of associative memories. The complexity analysis of the BP
algorithm is exclusive because the computational requirement is extremely sensitive to
many conditions. It should be pointed out that the number of iterations has not been taken
into accountin the analysis of computational complexities. For this reason, the results shown
in Table 4. 2 can only be treated as a unit complexity. The actual computational requirement
for the Ho~Kashyap encoding algorithm is the number of iterations (see Chapter 3, section

3.73) times the unit complexity.

Table 4.2 Computational Complexity

Model Complexity
HOP O(rPp)
BAM O(nmp)
HK O(4rPp? + 4mPp?)

(2) Temporal complexity of associative recall

For a dynamic associative memory, the computational requirement depends on both the
size of the memory and the number of iterations. A unit execution time (one iteration) will
be a constant if the size of memory is fixed. For this reason, the analysis of computational
complexity can be focused on the number of iterations that is required in an associative
recall. Tables 4. 3—4. 5 give the averaging results of the Hopfield network, BAM, and the

HK model. Since the number of iterations is affected by both the noise level in the input
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pattern and the number of stored patterns in the memory, the parameters, p, and D, are

specified.

Table 4. 3 Average Number of Recall lterations (Hopfield)

P Pe=0.01 Pa=0.07 Peo.1 Peo.2
4 1.15 1.69 1.81 1.97
8 1.22 1.76 1.90 2.14

12 1.23 2.48 256 2.72

16 1.52 2.69 2,72 2.83

Table 4. 4 Average Number of Recall lterations (BAM)

P Pe=0.01 Pe0.07 Pa-0.1 Pe02
4 1.15 1.68 1.81 1.97
8 1.71 1.71 1.85 2.95

12 2,25 2.46 253 2.70

16 2.61 2,68 2.77 2.88

Table 4. 5 Average Number of Recall lterations (HK)

p Pe-0.01 Po=0.07 Poo.1 Pe-02
4 1.15 1.69 1.82 1.97
8 1.53 1.69 2.04 2.04

12 1.38 1.82 3.45 4.24

16 1.95 5.42 6.7 7.29
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5. 1. Conclusions

The testing procedure that was developed for this study have been used to investigate the
performance of associative memory. The procedure follows the black box test strategy.
Although such a test strategy is based on the probabilistic and statistical analysis, reliable
test results were obtained with low computation cost. The high reliability and the low
computational requirement contribute to the minimum distance approach proposed in this
thesis. This approach also allows for estimating the extreme—performance characteristics

of associative memories.

The performance investigation has focused on four major properties: information
capacity, error correction capability, the effect of input and output dimensions on accretive
recall, and the probability of memory converging to false states. The computational
complexity of encoding and associative recall were also investigated. Conclusions drawn

from this investigation are as follows:

The error correction performance of associative memories based on the Hebbian
learning rule, such as the Hopfield network and BAM, is affected by the reversed version
of the training patterns unavoidably stored in the memory during the encoding. However,
if the reversed version of training patterns are permitted to represent the same information
as the original patterns, improvement in interpolative recall can be obtained, especially when

a few patterns/associations are stored in the memory (see Appendix IIT).
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The BAM’s capacity is much lower than Kosko’s original estimation, min(n, m). The
actual capacity can not exceed n/2log, n, which was analytically derived by McEliece, et al.
to estimate the asymptotic capacity of a Hopfield network with » neurons [MPRV1987].
This value can be directly applied to estimating the capacity of the bidirectional associative

memory.

Experimental results reveal that the bidirectional search strategy used in BAM and HK
models does not provide significant improvement in accretive recall. It sometimes

deteriorates the performance of interpolative recall.

The Ho—Kashyap encoding algorithm provides a significant improvement in accretive
recall. The maximum associations that can be stored in the HK model are approximately
min(n, m) if n # m. However, if the memory is constructed as n = m, the capacity is able to

reach approximately 1.4n (tested at n=m=8 and n=m=16).

The HK encoding algorithm allows for the highest performance in accretive recall if the

number of stored pattern p is small with respect to the input and output pattern dimensions.

The memory implemented by the backpropagation algorithm is guaranteed to recall all

stored training pairs if the memory is evoked by noiseless inputs.

The BP network seems to be best-suited to the situation where interpolative recall is
more important than accretive recall. The superiority in this respect becomes more

pronounced as many associations are stored.

All heteroassociative memory show improvement in performance when n > m, and
degradation in performance when n < m. Among these, the HK model is least affected by

the dimension of input and output patterns.
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Of all tested models, the HK model demonstrates the lowest probability of converging

to spurious states. In contrast, the BP network shows the highest probability in this respect.

For HK model, 95% spurious states constitute false states. For the BP network, however,

only 35% spurious states belong to the false states category.

For the Ho—Kashyap encoding algorithm, the average number of iterations required for

encoding is approximately 1 if the number of stored patterns is much less than min(z, ).

The summarized investigation results are shown in Table 5.1.

Table 5.1 Summary of Investigation Results

Memory Capacity Capacity Err—corre  Err—corre  Spurious  Spurious oscillatory System
Model (accretive) (interpolative) (accretive) (interpolative)  states  states (false) states complexity
Weights: nxn
Hopfield _ ~ Encoding: O(rPp)
Network 8 4 Pe~002  Pe~0.10 Pr=0.93 Pr=0.61 Pr=0.00 Recall: less then 3
iterations
Weights:n xm
BAM 3 4 Pe~002 Pe=012 Pr=091  Pr=054  prggo Cnoeding: O(nmp)
Recall: less then 3
iterations
Weights: n xm
Encoding: O(4r2p?
HK del 23 23 Pe~0.12 Pe=0.15 Pr=0.00  Pr=0.00 Pr=0.00  +4m?p?)
ode Recall: less then 8
iterations
Weights:n xm
BP Encoding: N/A
Pe=0. Pe=0. =0, =0. N/A
Network 17 7 e~0.08 0.2 Pr=0.00 Pr=0.00 Recall: feedforward

Note: (i) Memory configuration: Hopfield network: n=16. BAM, HK, and BP (no hidden layer): n=16, m=18, (ii)
“Err—corre” is an abbreviation for error correction, (iii) both information capacity and error correction capability
is measured under the minimum distance constraint (see section 2.3.2 and section 3.3.4) and the performance
criterion — the probability of memory converging to stored patterns/associations is set to 0.95 and (iv) the
performance of correcting error is measured under the condition: p=4 while the spurious and oscillatory states
are measured under the condition: p=16 and Pe=0.

5. 2. Recommendations



Chapter 5 Conclusions and Recommendations

Extending this work to other memory models and using arelatively larger size of network
may constitute an important subject for further research. This work may focus on estimatin g
the asymptotic information capacity for each tested model. Other research required to
extend this work is to investigate how the quality of associative recall in the BP network is
affected by the number of hidden neurons. The behavior of continuous value mapping within
the interval [0, 1] for the BP network may be also worth investigating. Finally, the
performance of adopting polynomial expansions of the input vector in higher order

associative memory can be an interesting issue for future study.
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APPENDIX I

AN EXAMPLE OF BIDIRECTIONAL RECALL IN BAM

The bidirectional search strategy used in BAM can not ensure improving the quality of
associative recall. It is, sometimes, even detrimental to the performance, especially in the
case of interpolative recall. One reason for this is that the Hebbian learning rule can not
guarantee that all training pairs are at local energy minima. On the other hand, the fact that
the bidirectional search process always seeks the state which has a lower energy potential
also results in the training pair with relative higher energy potential seldom being recalled.
The following example shows that BAM fails to recall the second training pair even if the
memory is evoked by the training pair itself. Here, the BAM contains four input neurons

and three output neurons. The number of stored patterns is three.

Table | BAM Training Patterns

No. Input patterns Oouput patterns  Energy

1 -1 =1 =1 — -1 1 - -14
2* -1 -1 -1 1 1 -1 1 -10
3 1 -1 1 - 1 -1 -1 -12

Note: BAM fails to recall the second training pair (marked by *).
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Table Il BAM Weight Matrix { w; }

\S]
—
w

|
-
-
o

Note: weight matrix { w;; } is the transposed

formof { w; }

Table Il Intermediate States in Bidirectional Recall

lterations X space Mapping Y space Energy
1 -1 -1 -1 1 - 1 -1 1 —-10
-1 -1 1 - - 1 -1 1 -14
2 -1 -1 1+ - 1 -1 1 ~14 (stable)

Figure I depicts the results of the investigation taken on two different types of recall, i.e.,
the unidirectional and bidirectional recall. As it is shown, in most cases, the probability of

bidirectional recall is lower than that of unidirectional recall.
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PRO. OF ACCRETIVE RECALL

PRO. OF INTERPOLATIVE RECALL
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Fig. 1 Performance comparison between unidirectional recall and bidirectional recall. Tested
models were configured as: n=16, m=16. [0 UHAM (Unidirectional heteroassociative
associative memory implemented by Hebbian rule), B BAM. Fig. (a) and Fig. (b): accretive

recall, Fig. (c) and Fig. (d): interpolative recall.
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APPENDIX I

WEIGHTS - THEIR FLEXIBILITY

Weights in BAM, HK, and BP memories are presented in this appendix. Table (IV) is
the set of (bipolar) training pairs attempted to be stored in BAM. BAM contains eight inputs
neurons and eight output neurons. The number of patterns stored in BAM is four. The
weights in BAM are listed in Table V. Similar training pairs were applied to encoding HK
and BP networks, but all “~1” were replaced by “0” (see Table VI). The real—value weights
for the HK and BP networks are listed in Table VII-IX. From this typical example, one
can see that the BP algorithm provides the most flexible weights and thresholds. These
weights take 69 different real values within the range [-3.79, 3.38]. The next is the
Ho—Kashyap algorithm. It generates 30 and 22 different values for { w; } and { w, } within
the range [-0.57, 0.46] and [-0.38, 0.43] respectively.  The least flexible weights are
generated by the BAM encoding algorithm. The integer weights take only 5 different values

within the range [4, 4].

Table IV BAM Training Patterns

No. Input patterns Output patterns

-1 -1 -1 1 1 1 -1 A1 1 =1 -1 1 1 1 1 1
T-1t 1 1 1 1 1 - -1 14 1 1 1 1
1T 1 -1 -1 1 1 1 1 i 1 14 -1 -1 1
-1 1 1 1 -1 -1 1+ -t 1 1 1 -1 -1 -1 1

H W NN
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Table V BAM Weight Matrix { w; }

j 1 2 3 4 5 6 7 8 @
1 0 0 -4 -2 2 2 -2 4 0
2 2 2 2 0 0 0 4 -2 0
3 2 2 2 0 0 0 4 2 0
4 -2 2 2 0 -4 -4 0 -2 o0
5 2 2 2 0 0 0 0 -2 0
6 0 -4 0 2 2 2 -2 0 o0
7 2 2 =2 0 4 4 0 2 0
8 -2 2 2 4 0 0 0 -2 0
Note: weight matrix { w;; } is the transposed form of { w;i '}
Table VI HK and BP Training Patterns
No. Input patterns Output patterns
1 00 0 1 1 1 0 A 10 0 0 0 1 1 1
2 10 1 1 1 1 1 o0 o 1 1 0 1 1 1 {1
3 i1 0 0 1 1 1 1 11 1 0 0 01 0
4 01t 1 1 0 0 1 0 o 1 1 1 0 00 {1
Table VIl HK Model Weight Matrix x -y {w; }
i
j 1 2 3 4 5 6 7 8 6
1 -0.11 011 -037 -0.16 0.11 011 -0.16 037 0.05
2 022 028 016 -0.04 0.03 0.03 046 -0.16 0.26
3 022 028 016 -0.04 0.03 0.03 046 -0.16 0.26
4 -0.18 0.18 0.11 -0.03 -032 -0.32 -0.03 -0.11 -0.16
5 045 -045 032 -0.08 0.05 0.05 -0.08 -0.32 -047
6 0.07 -057 011 022 0.18 0.18 -0.28 -0.11 -0.16
7 0.18 -0.18 -0.11 0.03 0.32 032 003 0.11 0.16
8 —0.28 -0.22 026 046 0.03 0.03 -0.04 -0.16 0.26
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Table VIl HK Model Weight Matrix y — x { w; }

j

i 1 2 3 4 5 6 7 8 6

1 000 029 029 -029 043 -0.00 029 -043 -0.14
2 0.08 0.17 017 017 -025 -0.42 =017 -025 —0.00
3 -042 017 017 017 025 0.08 -017 0.5 0.00
4 -0.25 -0.07 -0.07 0.07 -0.11 025 -0.07 0.61 0.29
5 017 0.05 005 -038 0.07 017 038 -0.07 0.14
6 017 0.05 0.05 -038 0.07 0.17 038 -0.07 0.14
7 -0.17 038 038 -0.05 0.07 -0.17 0.05 -0.07 0.14
8 042 -017 -0.17 -0.17 -025 -0.08 0.17 -0.25 0.00

Table IX BP network Weight Matrix x —y {w; }
i

J 1 2 3 4 5 6 7 8 6

1 -0.57 0.20 -334 -115 125 065 -1.19 3.38 0.28
2 234 189 172 -080 -0.77 -1.03 323 -~124 -0.21
3 211 191 208 -125 -052 -0.61 327 -1.70 -0.37
4 -1.37 159 149 035 -2.86 -325 0.36 -1.26 0.91
5 163 -379 118 -033 055 052 025 -3.41 —0.86
6 020 -473 053 182 1.69 092 -1.36 -044 —004
7 1.66 -161 -146 -072 338 241 -073 1.14 -0.43
8 -1.37 -1.62 262 466 0.15 -0.65 -0.73 -0.49 0.45
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APPENDIX III

PERFORMANCE OF THE HOPFIELD
MODEL RECALLING BOTH ORIGINAL AND
REVERSED TRAINING PATTERNS

The error correction performance of the Hopfield network tested under the condition that
the reversed version of training patterns are allowed for representing the original training
patterns is presented. This performance is then compared with the results presented in

section 3.3.4 in chapter 3. As illustrated in Fig. II, the probability of interpolative recall

-
1

] (B)

PRO. OF INTERPOLATIVE RECALL

PRO. OF INTERPOLATIVE RECALL

Pe=0.1 Pe=0.2 Pe=0.3 Pe=0.4 Pez0.5 Pe=0.1 Pe=0.2 Pe=0.3 Pe=0.4 Pe=0.5

PRO. OF EACH BIT BEING REVERSED (p=2) PRO. OF EACH BIT BEING REVERSED (p=4)

Fig. IT Performance of Hopfield network recalling both original and reversed training
patterns. [J Model I: the reversed version of training patterns are allowed for representing
the original training patterns. B Model II: only training patterns are permitted to represent
the correct information stored in the memory. Network structure: n=16. Testing patterns:

bipolar mode.

tested under this newly defined condition is higher compared with the results presented in

section 3.3.4. These differences become more pronounced as the noise level increases. It
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should be pointed out that the maximum pattern with which the 5 neurons can represent is
narrowed to %2" if the new definition is adopted. Inthisexperiment, the randomly generated

training patterns strictly follow this definition, i.e., the pattern was not allowed to participate

in the training pair if its reversed version had already been generated.
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