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ABSTRACT

The work described in this thesis is motivated by the need to understand the behavior of

neural network models used as associative memories. Part of this work is devoted to the

study and design of a way of performance evaluation which can sufficiently evaluate the

main properties of associative memory, effectively be implemented in the experiment, and

achieve highly reliable results. The procedure developed for testing the memory

performances follows the black box strategy. This procedure has been uniformly applied to

investigating both unidirectional and bidirectional memories. The results of each

well-defined performance characteristics for the Hopfield network, bidirectional

associative memory, Ho-Kashyap encoded memory, and Bacþropagation network are

presented. These results show that the quality of accretive recall is affected by the dimension

of the input pattern. The bidirectional search can improve the accretive recall in some cases,

but it may also deteriorate the interpolative recall. The maximum capacity for the

Ho-Kashyap model, with the same dimension in its input and ouþut patterns, is

approximately equal to 1.4 times the dimension of input or ouþut pattern. Results also

indicate that the Ho-Kashyap model may be best-suited in performing accretive recall while

the bacþropagation model is very good at realizinginterpolative recall. The investigation

verifies that the capacity of bidirectional associative memory is much lower than Kosko's

original estimation. The value of nf2log2n, which was analytically derived by McEliece, et

al. to estimate the asymptotic capacity of a Hopfield network with nneurons [MPRV1987],

can be directly applied to estimating the capacity of the bidirectional associative memory.
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CHAPTER 1,

II\TRODUCTION

I .1 Motivation and Furpose

This thesis is motivated by the recent renewed interest in the artificial neural network

model of associative memories. Recent studies of neuroanatomical brain functions have

provided fertile ground for the development of neural network models of associative

memories (referred to as associative memories) [HiAnl989]. One possible reason for the

rapid growth in this area may be due to the factthat, although traditional digital computers

based on the localized principle have achieved considerable success in many areas, there still

exists a class of problems which seems to be very difficult for normal computers to solve.

An example of such a task is retrieving an item or an association when given an incorrect

or paftial descrþtion of its features. While this task does not appear to be difficult for humans

to perform, it is inappropriate for the conventional computer. The reason for the difficulty

is that the digital machine accesses items in its memory by using their addresses, and it is

hard to discover the location of an item from an arbitrary subset of its contents. Furthermore,

for some tasks such as identifying handwritten characters, understanding continuous speech,

and solving complex pattern recognition problems, it is very difficult to provide step by step

procedures for a conventional computer to follow, and, therefore, it is very impractical to

solve these problems through procedure-based systems.

The fact that biological memories are so effective in undertaking cefiain tasks suggests

that it may be possible to obtain similar capabilities in artificiat devices based on the design

- 1-



Chapter I Introducti.on

principles of biological neural systems. For many years, resea.rchers have developed many

types of associative memories. These memory models bear a resemblance to the human

brain in the sense that: (i) memory typically consists of densely interconnected processing

elements, (ii) knowledge is acquired through training (rather than programming) and is

retained in the strength of interconnections among processing elements, and (iii) knowledge

stored in the memory takes the form of a stable state (rather than in a particular location as

in normal computers)"

Although today there exist many associative memory models, their behavior has not

been adequately captured. One reason for being unable to obtain the behavior is the lack of

clear definitions of the performances. Another reason is the lack of a well-developed

methodology which can be used to extact the interesting properties in these artificial

devices. One purpose of this thesis is to present clear statements to describe memory

characteristics. These characteristics are not only defined literally but also formulated

mathematically. These definitions heþ one to arrive at quantitative descriptions of memory

performances. The other goal of this research is to provide a systematic sftategy of

investigation. This strategy is based on probabilistic and statistical theories. The uniform

treatment in the investigation of memory models makes comparison of memory

performance possible. This thesis will also provide the results from investigating four

different types of associative memories. These results can be regard as the complementary

source of the information that guide one towards the goal of understanding the behavior of

these newly born intelligent devices.

| .2 Localized and Distributed Memory Storage

Two contrasting ideas can be identified in the history of brain science concerning where

and how information is stored [Aqui1987]. One traditional view is on the localization and

-2-



Chapter I Introduction

determination concepts forcefully advocated by many neurobiologists and psychologists

[Hebb1960], [Kand1976]. In thei¡ view, the'brain system is made up of identifiable,

localized parts, and behavioral functions can be localized to particular components. Under

this assumption, "there seems to exist a coarse specialization of the brain areas according

io the various sensory modalities (visual, auditory somatosensory etc.) as well as different

levels of operations (speech, planning of actions, etc. )" lKoho1984]. (see Fig. 1.1).

Fig. 1.1 Brain areas. Koho1984l Copyright by Springer-Vertag Bertin
Heidelberg 1984.

This school of thoughtpersisted in the experimental work of P. P. Broca, A. R. Luria and L.

R. Aquire [Broc1960], [Lura1966], [Aqui1987] and was believed to be the theoretical

foundation for the invention oÏpowerful digital computers.

The other viewpoint arose in opposition to the traditional view and was developed out

of the localized principte. In this principie, the behavior and mental activity result from the

integrated activity of the entire brain [RuOrI977], [Aqui1987]. The idea is that memory

involves a constant change in the relationship among all neurons. This kind of change is

accomplished through either structural modificarions or biochemical events within neurons

in such a lvay thatneighboring neurons communicate. In this view, information is not located

- J-



Chapter I Introduction

in any particular place, but is stored in the relationship among neurons which participate in

the encoding of information.

I .3 The Role and the Structure of AssocÍative Memory

1.3.1 Associations

One of the basic elements of human memory is an association [Kohol977]. Essentially,

an association is a ruIe or a relationship between two stored memory fraces that map one into

the other. In a library card index, you can find the title of a book if given the author's name.

If you know a key word, you can use the subject index instead. In the same way by picturing

the face of a friend, you can remember his name. So there is an association between name

and the two stored pieces of information in a memory system. Mathematically, if two stored

pieces of information can be properly represented in a vector format as x = (xt, xz, .. ., xr)T and

!=(jrJz, -,!,r)r, where x G Rn and y GR*, and if T(.) is the function mapping

x into/onto y in the expression y = Z(x), thenT(.) is an association.

At a very general level, the role of associative memory in the information processing

account of cognitive behavior is that when a member of an associated pattern x, which is

considered as a "key", is entered into a memory system, the memory gives output y which

is related to the "key". The memory process which transforms the ordered set of input

patterns X into the other set of ouþut patterns Y can be schematically represented by Fig.

I.2 or Fig. 1.3 depending on what the type of memory storage method is employed (the

localized or distributed). The system depicted by the flow chart in Fig. 1.2 is obviously

dedicated to a localized memory model. This flow chart is to be read from left to right.

-4-



Chapter I Introduction

Probe Response y

Fig. 1.2 A simple flow chart representing the memory process performed in localized

memones.

The probe x stands for a search argument or a feature vector and the arrow leading from the

probe x into the box labeled memory indicates that the physical pattern is entered and

interrogated. The comprehensive and transforming process which is represented by the

memory-decision-response loop is actually the searching-matching process realized by

means of executing a pre-defined program. The stop rule which is not represented in this

simple flow chart is based on some similarity measures. An example of this device is the

conventional data base system designed to handle relational structwes by means of both

complex data structures and a pre-programmed search algorithm.

Memories based on localized information storage and refrieval mechanisms are

confrasted to distributed memories model in both structure and manner of processing. As

illusfrated in Fig. 1.3, the associative memory consists of a number of neurons. These

neurons are densely interconnected with each other through linear connections called

weights. The inpulouþut relationship is described by neuron's transform functions. One

of the conunon fansform functions is

-5-



Chapter I Introduction

w¡ixi-0¡) (1.1)

where w¡i is the weight from input neuron i to output neuron j, g, is the threshold in neuron

7 and f(.) is a nonlinear activation function. Typical activation functions are the hardlimiter,

unit step, and sigmoid which are shown in Fig. 1.4. In this type of memory model, all the

values in the universe of variables (weights and thresholds) which satisfy the condition of

associative mapping constitutepossible solutions. In general, the disfributed memory takes

the relationships of internal processing elements (or actually thefu strength) into account

statistically [Koho1984].

Fig. 1.3 A simplified artificial neural network model of associative memories.

v¡ =f (f
i=1.

.{

lt
Iz
Yg

Ìv
AM

L________*_,
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Chapter I Introduction

X1

X2

Xs

net¡nputl

hardlimiter

0¡

Y'^

1

0¡

Fig. 1.4 Artificial neuron

I .3 .2 Associatiye recall

A central operation in explaining the function of associative memories is called

associative recüll. The associative recall is defined as any process that when given an input,

the memory is able to evoke a specific response in a highly selective fashion associated with

that input [Koho 1 984]. Under this definition, the associative recall can be simply described

as an optimal mapping from a set of inputpatterns *(s), s=1, 2, ...,p,into/onto a set of output

pattems t(s), J:=1, 2, ...,p.The optimal mapping means when amemoryis evoked by an input

pattern, x', the recalled pattern y' has the properties that y' ultimately matches with y(¿)

(which is subset of 1y(") Ì, s=1, 2, ..., p) if x(¿), k e {r,2, - .,p},is the best pattern (in the

subset of x(") s=7,2,..., p) that represents the input pattern x,.

There are two alternative ways in performing associative recall. Components in the

network can either change their states one at a time, which is referred to as asynchronous

recall, or change all at once, which is called synchronous recall. The memory that utilizes

-7-



Chapter I Introduction

asynchronously recall strategy is usually called an asynchronous model. Similarly, the

memory that adopts synchronously recall strategy is referred to as a synchronous model. The

distinction between these two models lies in the fact that a particulil component in the

asynchronous model is modified to provide some shorterm effect on previous states which

may immediately affect other neurons, whereas the synchronous model only collects

previous states and generates new states as a whole.

1 .3 .3 The strucfure of associative memory

In terms of information processing, existing memory models can be categorized into two

different types. Oneisfeedfotward associative memory [HiAn1989], the other is dynamic

associative memory [Hassoun1989]. The broken lines in Fig. 1.3 are to indicate that for

associative memories, there may or may not be a signal feedback from their output to input.

If an associative memory has no feedback loop, the system is referred to as a feedforward

associative memory, otherwise it is named as a dynamic associative memory. Neurons in

feedforward memory only propagate information from input neurons to output neurons

through hidden neurons if they exist. The number of hidden layers and the number of

neruons in each layer in the memory are problem dependent. For dynamic memories,

neurons change their activation iteratively in the process of associative recall. Such a

dynamic process terminates only if the memory settles down in one of the stable states.

Further distinctions can be made according to the input and output dimensions. An

associative memory is defined as an autoassociatíve memory [Koho1984] if its input

dimension n equals the output dimension m ( n=m ). This type of memory is dedicated to

the reconstruction of the pattem stored in memory if the memory is evoked by noise

comrpted or partially absent inputs. Thus, both the input and outputpatterns being processed

-8-



Chapter I Introduction

in the autoassociative memory belong to the same vector space. The other type of associative

memory, called heteroassoc[attve memory [Koho1984], is designed to perform an

associative mapping from one space into/onto another. Two sets of patterns in the

heteroassociative memory can be selected freely and independently and they distribute in

two different vector spaces. Thus, the heteroassociative memory differing from the

autoassociative memory in terms of topological structure is that the dimensions of input and

output for heteroassociative memories are not identical, i.e. n I m .

I "4 Thesis Organization

This chapter serves as an introduction to the entire thesis. The purpose of this chapter

is to provide the fundamental concept of localized and distributed memory models as well

as to outline their major differences in encoding, storing and retrieving mechanisms.

Chapter 2 charucterizes the main features that reflect the behavior of associative memories.

The definition for each feature is given in the context followed by a discussion and

explanation. These features are mathematically formulated so that they are readily applied

to performance testing. The necessity, sufficiency and validity of the minimum distance

consüaint used in testing the memory performance is thoroughly discussed. Elements for

performance testing, such as the formation of training and testing patterns are provided. A

procedure used for testing memory performances is derived. Chapter 3 is divided into four

sections. Each section begins with the general review of the memory model being tested

followed by experimental results. Descriptions and analysis of these results are given at the

end of each section. Chapter 4 compares the performance of the models tested in chapter

3. The comparison is based on the following aspects: (i) information capacit¡ (ii) enor

correction capability, (iiÐ the effect of input and output pattern dimensions on accretive

recall, (iv) the probability of the memory getting into false states, and (v) the temporal

-9-



Chapter I Introduction

complexity of encoding and associative recall. Conclusions and recommendations are given

in Chapter 5.
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CHAPTER 2

METHOD FOR PERFORMANCE EVALUATION

2.1 Introduction

This chapter sets forth a procedure for performance evaluation for the purpose of

discovering the behavior of the neural network model of associative memory. The method,

as presented here, for testing memory performances is a general one in the sense that it is

not based on any particular task. Implementing performance evaluation requires two sets

of data: the training patterns/associations and the testing pattems. Training

patterns/associations represent the information to be stored in the memory. Testing patterns

serve as keys whích are used to stimulate the memory. To ensure generality, these data

should be randomly generated from a uniform distribution. The method used for testing

memory performances follows abløckbox approach. Based on the theory of the black box,

the entire memory is feated as a completely unknown system. Neither the internal structure

nor the internal activation of a memory is considered in the testing except for the memory

response to the environment.

The primary reasons for adopting the black box testing approach are that: firstly,

theoretical analysis of memory performance, such as, accuracy, capacíty and achievable

resolution still remains in a state of infancy, since it involves a lot of assumptions and

unrealistic simplifications. Secondly, although the hypothesis that simple networks behave

as if they minimized the quantity of the energy in a physical system has proved to be a very
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useful tool in expressing nonlinear cross-coupled networks, it is still very difficult to apply

to an arbitrary network model. This is because, firstly, for most associative memories, there

is no guarantee that memory will settle down in the nearest energy minimum and few

patterns can be stored without creating spudous local minima. Secondly, for some learning

algorithms, such as the trial-and--errorprocess, weights are not only the function of naining

patterns but also the function of weights themselves. As a result, it seems to be irnpossible

to write down the relationship between the memory response and the formation of weights

in either a closed or series form. These relationships, however, are indispensable in

obtaining exact memory performances analytically. For these reasons, treating a whole

system as a black box is an alternative approach to gain the behavior of associative memory.

Nonetheless, even using this behaviorist-functionalist approach, there still are questions

unanswered. V/hat are the characteristics that represent the performance of this type of

memory? What are the measurement criteria? How can the performance evaluation be

carried out? These critical questions must be properly formulated and discussed.

2.2 Main Features Affecting the Performance of Associative Memory

The key characteristics of the associative memory that affect the performance and need

to be analyzed arc the distributed information storage and collective computation. These

characteristics shared by nonlinear activities and parallel process enable associative

memories to solve problems that can hardly be acted on by conventional computers.

However, one of the consequences of such a significant change in the memory mechanism

is that the foregoing performance analyses and measrue strategies used in digital computers

are no longer appropriate to be applied to associative memories. As a result, developing an
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investigation strategy dedicated to associative memories is one of the demands in this study.

The theme of this section is to explore main features which are conceived as reflecting the

performance of an associative memory. These features are charactenzedin a mathem atical

way so that corresponding performance measure can be readily undertaken. The

relationships between these features are also addressed.

The following properties are considered in the evaluation of associative memory

performance:

Information capacity

Error correction capability

The effect of input and ouþut pattern dimensions on accretive recall

Spurious and oscillatory states

System complexity in terms of architecture, encoding and recall.

2.2 .l Information capacity

In general, the information in an associative memory can be expressed in the form of bits

or of vectors which are called patterns. But before giving a rigid definition of information

capacity, two distinct butrelated associativerecalls need to be clarified. The firsti s accretive

recall:

accretive recall: Let fx("),y(") , J=1, 2, ...p, be arbiraryp pairs of associations stored in the

memory, where x(o = (xÍ"),rf), .. .,#)), , y(")= OÍd,yf), .. .,yg)r , and T(.) be a nonlinear

ffansformation. For a noise componont, e , in xG) , a memory is said to be performing an

accretive recall if y(") satisfies
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t(s) - Z ( ¡(s) * e ), Vs, s=l ,2, ..., p. (2.r)

This definition implies that the accretive recall strictiy requires the stored pattern be

retrieved perfectly. This type of recall is schematically depicted in Fig. 2.1 of case I. Note

that the Frg.2.1 is very ideaiized and, in particular, the attraction regions (shaded areas in

X space) may not be circular.

space X

case l: accretive recall
y(s) = f 1¡(s) + e )

case ll: intepolative recall
y(") * r = f 1¡(s) ...¡

space Y

Fig. 2.1 Two dimensional representation of accretive and interpolative recall.

Another type of recall which seems to have been surprisingly neglected is the

interpolatíve recall. It is worthwhile to make clear that the function of associative memory

is by no means just a basic pattern association. The meaningful associations generated in

the interpolative recall makes associative memory more powerful in capturing the implicitly

defined relational structues. The definition of the interpolative recail is given in the

following statements:
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interpolative recalli Let x(") , y(") , s, €

and r be determined according to

component, e, in *(s) , â memory is

ô satisfies

, and Z(.) be defined as the same as those in the above,

the nearest neighbor rule [DuHal973]. For a noise

said to be performing an ínterpolatíve recall if yr"r unj

and

y(') + ò = T I y(') + e ) ,

0.llôlls'

Vs, s=1, 2,..., p
(2.2)

(2.3)

where ll.ll denotes some proper distance measure (see case tr in figure 2.1).

Eqn. (2.1) indicates that when given a stimulus, x(")+€ , the memory responds with an

output which is exactly the same as the stored pattern, y("), associated with the inpuq xG).

For this type of recall, the information capacity is defined as:

ínformatíon capücíty (I): The information capacity is the maximum number of

patterns/associations that can be stored in the memory under the condition that when evoked

by noiseless input, (e = 0 ), the memory can always perform accretive recall. Mathematically

speaking, c", is said to be a capacity of a memory if

Çop = maxþ)

such thatt(s) - Z (x(s)¡ , s=1,2,...,p, holds.

The other way to define information capacity is on the interpolative recall basis. This

definition is mainly to characterize how densely the patternsþssociations can be packed in

the memory under the condition that most features of the stored patterns can still be

successfully retrieved.
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information capacity (2): lnformation capacity is the maximum number of

patterns/associations that can be stored in the memory under the condition that the memory

is free of performing either accretive recall or interpolative recall when the memory is

evokedbynoiselessinput. Mathematicallyspeakiîfl,copissaidtobeacapacityofamemory

if

Cop = max(p) (2.4)

suchthaty(")+ð=T(x(s)¡,s=l,2,...,p,holds.HereômustsatisfyO<ll ôll <r. Itis

important to point out that, in the measure of information capacity, only specifying the

number of patterns p is meaningless unless the mutual relationship between ¡xt"rr,ycr) and

{xczt,ycù¡ , st * s2, has been taken into account. This is because information capacity for

distributed memory is usually environment dependent. The selectivity is significantly

affected by the degree of mutual coupling among stored pattems. In order to get rid of such

an influence it may be better to characterize this essential feature by using a probabilistic

analysis approach, i.e., defining information capacity as the probability of memory being

able to retrieve stored patterns perfectly (accretive recall) or imperfectly where most original

features are preserved (interp olativ e recall).

In light of definitions of the information capacity given here, itis necessary to summarize

this important property: (i) The capacity for associative memory is characterized on the

probabilistic basis. This probability can be estimated using Çomputer simulation. (ii) The

information capacity is a functio n of p, the number of patterns stored in the memory. Thus,

the cuwe, the probability of associative recall vs. the number of stored pattems p, drectly

18-



Chapter 2 Method for Peformance Evaluation

manifests the memory capacity.

2.2 .2 Error correction capabitity

The most appealing feature in associative memory is its ability to suppress noise or to

recover most information correctly even when the memory is stimulated by an incomplete

or noise comrpted inputpattern. This propefty reflects memory's "thinking" capability. The

ability to correct noise is achieved by means of various techniques depending on the type

of architecture, encoding and retrieving algorithm used. Orthogonal projection [Koho 1972]

[Koho1984], lateral inhibition fl-ipp1987], [RuMc1986], steep descent irerarion

[HiAn1989] and bidirectional feedback search [Kosk1987], [Hass1989] are all well-known

and widely utilized techniques in building associative memories. The quality of associative

recall can be improved either by the activity of competition among neurons during therecall

or by performing signal feedback to force a memory to dynamically evolve until it reaches

a stable state. The capability of correcting noise is usually charactenzed by whether the

memory is able to give a high quality response despite variations, distortions and omissions

in the input pattern.

The distinction between information capacity and error correction capability lie in that

the information capacity is to exhibit how densely the information can be stored into a

msmory, whereas the error correction is to manifests the associative memory being able to

reconstruct stored patterns/associations when the memory is stimulated by degraded or

partially absent input patterns. Furthermore, the capacity is measured under the condition

that all input patterns are purely the training patterns themselves, whereas the error
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correction capability is characterizedby the relationship between the quality of associative

recall and the noise level in input pattems.

One thing that needs to be emphasized is that the criterion for judging whether memory

performs successful recall (either accretive or interpolative recall) is based on the nearest

neighbor rule [DuHa1973] . The nearest neighbor rule simply classifies a pattern x according

to the nearest point in the training set. Here the "nearest" is defîned on the norm based

computation; unless otherwise specified, it is the Hamming distance measure. For two

patterns x("t) = (xÍ"t),xf'), .. .,rft)) and x(') = (*\"",8,, .. .,xf\, the Hamming distance, D¡7(x(d),¡("2)¡,

is calculated according to

D¡¡(x(t1), ¡(t2)¡

t (recatt) 
= 11¡(È) +e ) is

if y ?ecatt¡ satisfies :

(1) 3y(r) such that y(k)

(2) ll y (,","u¡ -y (É) 
ll =

x!'1) - r{'zl¡

said to be recalled successfully

e ly("), ,r = /, 2, ...,p, end

rrú" ll t?ecatt) - yG) ll .

,t

=)r
¡

(2.s)

(2.6)

The nearest neighbor rule applied to judging whether or not an associative memory performs

successful recall is formulated by

Eqn. (2.6) indicates that, for a memory having stored p associations /x("),y(") , s=l,2, ..., p,

when given a stimulus, *(inù)=*('t) + e , the recalled pattern, yQ"*'D , is classified to yr*r ¡¡ r(rcørn ig

the nearest neighbor of y(o), ¿ e { 1, 2, ..., p}. Evidently, if ll ya"-ttr - y(*) ll = 0, it is an accretive
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recallbecausey(*)isoneofthestoredpatterns. Ifll t(rcøtr)-t(*) ll * o, itmustbeaninterpolative

recall.

2.2 .3 The effect of input and output pattern dimensions

on accretive recall.

Due to the distributive manner of information storage, the memory performance may be

sensitive to the input and output pattern dimensions. This is because it is only the input

pattern that is responsible for furnishing information to evoke the memory. Generally

speaking, the more redundant the information (the higher the dimension in the inputpattem)

with which the input pattern can be represented, the higher the probability the memory

performs correct recall. However, the degree of such an effect varies depending on clifferent

models, the number of associations stored in the memory, and the noise level in input

patterns. For this reason, any measurement of this effect of input and ouþut pattern

dimensions on accretive recall is not meaningful unless all required conditions are specified.

In order to quantitatively measure such an effect, the following definition is proposed:

Let the effect of input and oulput pattern dimensions on accretive recall between two

memory models A and B be denoted by Zas and nandmbethe dimension of the input and

output patterns, respectively. If the model A is constructed with m * n, while the modei

B is consffucted with m = n, then Z¡3 can be defined as:

z¿s = cr,,,, ( *ZØ:,t -,,r),)"'

- 2r-
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where I > 2 and C is a constant (in the investigation, C=10 is used). The function Si,u; in

Eqn. (2.7) is defined as

S6n¡ = sgn ( Aii - B'Å (2.8),)(*

and Afri, k=2,3, ..., l, is the probability of accretive recall measured under the following

conditions: (i) memory sfucture: m * n, (ii) input noise level; p", â.fld (iii) memory load:

Pt, P2,..., PI . Each p*,k=2,3,...,1, standsforthenumberof trainingpatternsstoredinthe

memory and p¡ < P¡ if i < j. Bf: is also the probability of accretive recall measured under

the same conditions as Afli except for the memoïy structue: m = n. The Eqn. (2.7) actaaLly

ffIeasures the performance differences (in the accretive recall aspect) between the model A

and model B. This difference measure is analogous to calculating the sample standarcl

deviation. In Eqn. (2.7) the number of observations is I, and the performance of model B

with the same dimension in its input and ouçut (m=n) is treated as a sample mean (used as

a reference). The function, S(¿¿) , used in Eqn. (2.7) is intended to show whether such an

effect improves or deteriorates the quality of accretive recall.

2.2 .4 Spurious and oscillatory states

False states can be divided into two categories: the spurious states and the oscillatory

states. Spurious memories are those stable states that do not belong to stored training

pattems. These states are generated during the encoding process. Thus, the energy surface

for some types of memory is not only determined by training patterns, but also shaped by
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spurious states. These states with relatively lower energy potential affect memory

performances by attracting input patterns or intermediate states into their local minima. The

property of this phenomenon in the process of associative recall is characterized by

(recal[\ (recal[\
J(r+t) ' = Yi,l ',

vÍ':î"' t vß),

Vt, t>ts

V,f, s=1, 2, ...,p

(2.e)
and

here / is the iteration number. It is worth noting that so far, there has been no method to

directly control the location and to minimize the number of spurious memories. Choosing

a proper encoding algorithm to solve a particular problem may be an alternative way to

reduce these unexpected stable states.

oscillatory state

initial state

oscillatory state

a
true state (stored pattern)

Fig.2.2Illusration of memory converging to oscillatory state.

That the associative memory converges to oscillatory memory is another phenomenon

which needs to be taken into account. This phenomenon only takes place in those memory

models in which iterative or dynamic bidirectional recall [Hass1989], [Kosk1988] is used.

For both a synchronous and an asynchronous adaptive recall, a memory may take several

iterations before reaching a stable state. Therefore, there exists a possibility that memory

- 23-



Chapter 2 Methad for Performance Evaluation

converges neither to a true state nor to a spurious state but to an oscillatory state. Fig.2.2

shows one possible convergence case thatmay occur in dynamic associative memories.

The activity of oscillation in a dynamic bidirectional associative memory can be

formulated by

x(ro) - Y(¿o) - x(¿,) *Y(¡,) * x(¡o) *Y(¿o) *x(¿o)

here k = t* - to denotes the oscillatory period.

(2.r0)

2.2 .5 System complexity

Specifically, the study of system complexity involves analyzing spatial complexity,

encoding and recalling temporal complexity. Spatial complexity usually refers to the

physical sffucture of a memory system. Primary factors that determine spatial complexity

are the physical structure, i.e., the number of layers in the memory, and the number of

neurons in each layers. The neurons in the memory may be fully connected or partialty

connected. These alternative choices in terms of the memory structue depend on the

application at hand.

The second aspect associated with the system complexity is the speed of encoding. The

ability of keeping pace with other machines and completing learning within a iimitecl time

period determines whether the memory can be applied to solving real-time problems. The

encoding process deals with teaching an associative memory how to behave or react when

the memory is stimulated. It is realized by forming or adjusting a numerical version of

synaptic weights in a software implementation or an electronic version in a VLSI hardware

impiementation. Thus, the amount of time for a memory to organize its own internal
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sfructure depends largely on the complexity of the encoding algorithm employed. Some

encoding algorithms simply look for similarity or correlation in a set of training patterns

[Hopf 1982] . Others adopt nial-and-error, a step by step error correcting approach to adjust

weights. The former algorithm requires extremely low computational time. The latter

algorithm allows memory for achieving higher performance but at the cost of substantially

longer execution time [RuMc1986].

The third issue with system complexity that needs to be discussed is the speed of recall.

This is concerned with the processing time used during the retrieval period. For a

feedforward memory, the computational time required in associative recall is simply

determined by the network architecture, the number of processing elements and the

connection fashion (full or partial). For a dynamic associative memory, however, the

number of iterations must be taken into account.

It is known that directly recording the execution time to measure the temporal

complexity may be inevitably affected by the computer characteristics. If two algorithms

are compared first on one machine and then another, the comparisons may lead to different

conclusions. To avoid this machine dependent measurement, it is preferable to use the

mathematical analysis.

All properties discussed above are critical to characterize the perforïnance of associative

memory. Howevet, only four of them: information capacity, error correction capability, the

probability of memory getting stuck at spurious states and the probability of memory

converging to oscillatory states have been thoroughly investigated in this study. These items

are chosen because they are exclusive from those of localized memories as well as because

they have seldom been considered sufficiently.
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2.3 Procedure for Performance Evaluation

The above descriptions in some sense still remain at the conceptual standpoint. To carry

out empirical performance evaluation, a specific procedure need to be developed. In this

section, an attempt is made to meet this requirement by providing every step in detail.

2.3 .l Testing pattern synthesis

The fundamentally active entities in associative memory are "state vectors". Elements

of vectors are generally considered to be the magnitude of activity in a particular neuron.

At the current stage of technology, most existing neural network models of associative

memory employ a hardlimiter or a unit step activation function to realize noise suppression

as well as to help systems to reach stable states in adaptive recall. For some encoding

algorithms lKohol972l, [RuMc1986], real value mapping is achievable bur the capability

of error correction is very limited. Instead of correcting error, generalization or interpolation

is the alternative property inherent in these systems. For associative memories, these

properties are deemed a drawback (in terms of accretive recall). For this reason, at the

current stage, one has to restrict his attention to a binary or a bipolar mode pattem. In the

following discussion, information entities are all assumed as binary or bipolar patterns

unless otherwise specified.

There are two groups of testing patterns needed to be generated: the taining patterns to

be stored in the memory and the testing patterns used to stimulate memories. In this

subsection only the first group of testing pattems is addressed. Generating the second group

of testing patterns will be discussed in the subsection 2.3.2.
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Obtaining the characteristics of information capacity by means of simulative testing

usually needs a large number of training sets. The maximum number of training

patterns/associations, p* , reeuired to estimate the capacity of associative memory depends

on the memory model being tested. One approach to the reduction of the computation burden

associated with the probabilistic method is to monitor the memory performance while testing

(instead of using fixed p* ). Such a heuristic testing approach usually starts from a smail

number p, and thenp is increased by a fixed step. The increment may be operated by the

program itself. The testing terminates if the memory performance drops down to a

predefined criterion.

The other aspect that needs to be considered is how to generate these patterns. In most

computer simulation, such as simulating a communication system, random variables with

desired size and distribution are usually specified [LaKe1982]. Instead of purely selecting

training patterns randomly, it is sometimes helpful to add a constraint primarily for the

purpose of reducing testing time and achieving high reliability in the test results. To achieve

this goal, a method called minímum distance constraint (MD) is developed. This approach

can be simply described as generating a set of n dimensional training patterns under the

following conditions:

. Training patterns are uniformly disfibuted in n dimensional hypersphere (for a

discrete pattern, this means that the chance for every pattern to be generated on any

corner of n dimensional hypercube is equally likely).

. Distancebetweenanytwoüainingpatternssatisfies:d (x("rr,¡czr¡ > MD inamemory

input space, and d ItGrr,yGzr) > MD in a memory output space. Here d 1¡cl, x{Ð) and

d (y("tr,ytrr) are the norm based distance measurements.
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The necessity and validity of employing the minimum distance approach are given in the

following explanations. First of all, think of an autoassociative memory to perform

self-reconstruction. The memory is first loaded with two patterns x(1) and r(2). ¡: x(1) and

x(2) are far from each other in terms of distance measure, the memory can readily retrieve

any one of the stored pattems with high probability. This is because the corresponding

energy wells for x(1) and x(2) in n dimensional vector space must be sufficiently distant from

each other. Moreover, the high energy potential between these two energy wells ideally

separates the entire energy space into two subregions (see Fig. 2.3).

Fig.2.3Representation of two uncorrelated training patterns in afwo dimensional energy

plane.

Howevet, if naining patterns are generated purely at random, there is a possibility that

two patterns are correlated or near--correlated, namely, two pattems are identical or only a

few components are different. A two dimensional energy curve corresponding to a memory

storing two such patterns is shown in Figure 2.4.
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Fig.2.4 Representation of two nea¡ correlated training patterns in a fwo dimensional

energy plane.

It is seen that energy wells associated with x(l) and xQ) arc close to each other. They may

even be mixed up in the worst case. It is very difficult for a memory to retrieve such highly

correlated pattems. Part of the reason for this is that neither synchronous nor asynchronous

recall can assure that every state movement can be exactly in the correct clirection, i.e., to

the memorized stable state in terms of nearest neighbor from the starting state. Therefore,

the memory may eventually converge to x(2) instead of x(l), even though the initial state is

closer to x(1) . Fig. 2.5 is the two dimensional illustration of this situation. A typical example

initialstate

x(2)

sPurious state correct state

Fig. 2.5 Illustration of memory converging to a spurious state.
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of this problem can be recall either of two patterns having stored in a memory. One is the

lowercase character "l", the other is the numerical number "1". One has to admit that even

for humans, this problem is not an easy task. One can not give a definite answer which of

the patterns have been recalled unless more information, such as background or context, has

been collected. However, obtaining additional information, such as context in our example,

can only be achieved by a dynamically sequential process, which is usually referred to as

Fig.2.6 hocedure of generating training patterns under the minimum distance constraint.

deftne MD and p let s =O

genera,te a bit information,
(each bit has O.5 probability
of becoming + I or -1)

fill in the full length of the
lraining patlern

save it and s=s+ I
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temporal recall. This leads to another type of associative memory, called Temporal

Assocíative Memory [HiAn 1989] fKoho I 984]. Since discussing this type of a memory falls

outside of this study, it will not be included in this thesis. The memory models addressed

here are restricted to those working on the similarity or correlation measurement basis.

It should be noted that using the minimum distance approach to generate training

pattems does not affect the uniform distribution form as long as the first pattern is selected

randomly with a probability equal to r/2". Procedure for generating discrete training patterns

with binary values {0, 1} or {-1, 1} is presented in Figure 2.6.

2.3 .2 Designing test strategy

Once faining patterns have been loaded into the memory by applying a learning

algorithm, the next step is to generate proper testing patterns which could ideally cover any

possible situation that the system may encounter in a real-world. For a sufficiently small

memory, i.e. n < 16, this may allow the use of an exhaustive testing approach which is

guaranteed to give complete information about perforrnance characteristics. This approach

is implemented by testing all possible states in n dimensional hypercube for each stored

pattern. Such a procedure used for exhaustively testing the property of error correction

capability is given in Figure 2.7.

Howevet, the exhaustive testing approach is not applicable for a large system.

Computation complexity for exhaustive testing is oçzp¡. It is easy to show that execution

time goes higher rapidly as n becomes larger. For instance, to simulate a system with n=l1}
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andp=lQ,totaltestingtrialswouldbe(cåæ +cl2o+cl"o+...+citrB) x t0= 2t2o x 70 - 101'r which

is obviously not practicable.

Fig 2.7 Exhaustive testing procedure for evaluating the error conection capabiliry. s is training pânern

indicator, tt?denotes thenumber of bitsbeing reversedand c is acounterused to check whetherall combinations

of ru bits from ¿ components have been exhaustively reversed.

reverse k bit(s) anong n bits
in s-th lraining pattern
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To derive an effective test strategy, define p(e lxt)), s=r,2, ..., p, à conditional error

probability of system ouþut in response to the input pattern x("). Because

. event ,(;) . *ú)=6 , if i * ¡;

. x(1) + x(2) + x(3)... + x(.a) = sample spaco

according to the theory of conditional probabitity (the Bayes' rule) [Triv1982], the sysrom

error probability can be defined as

p

P,(e) =zp,@ ¡ ¡(')¡p,1y('); (2.11)
s=1

where p,(x(")) denotes the probability of faining pattern *("), s=l, z, ..., p, being selected

during the testing. If the pattern in the training set is selected independently and each pattern

is tested 2n times (by reversing the all possible combination of ft bit(s) from it), the overall

testing time will be p x/. Since

Pr(x(l)¡ =prç1¡Q)¡ =... =pr1¡Þ)¡ = 2n== 
= 

1 
,pxr" = r' (2'I2)

Eqn. (2.11) can be simplified as

1P
P,(e) =:Zp,rt l x(")) . Q.l3)

P s=t

Actually P,(e lx(l)¡ - p,(e ¡*(z)¡ - p,(e l>¡@)¡. This is because
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. Thedistancebetweenanypafus6¡¡(sr) ¿¡d¡Gz) (sr ;¿ s2)hasbeensettoMD;hence,

nothing affects the nature of x(") except in the geometrical aspect. However, memory

performance influenced by this factor is very limited. Thus, it can be discounted.

. Testing procedure applied to derive p,(e lx{'ì¡is identical to those being applied to

P,(e lx@), where s=I,2, ..., p and s I s1 .

The forgoing approximation yields a simplified form of system error probability

Pr(e) P¡(e lx(s)¡ = Prç¿ ¡*(s)¡ (2.r4)

where s can be any one of { 1, 2, ..., p}.

Equation (2.14) implies that system error probability can validly be obtained by testing

any one of the stored patterns. This approach allows for the reduction in execution time

which is equal to (p - L)2:, (p > 2). Clearly, significant computation time can be saved as p

grows. However, this approach can not compete with the exhaustive testing approach in

terms of coverage. The result can be no more than an estimator of true performances.

However, the complexity function O(2") is evidently not a small cost. The significant

growth of the complexity as n increases unavoidably results in inability to terminate

evaluation in an acceptable period of time. The method used to generate noisy input in this

work is starting from a stored pattern and then adding noise into it. For a binary pattern,

adding noise can be implemented by randomly reversing bits in an input pattern according

to a certain probability, i.e., chance for each bit to be reversed is equally tikely with a

specified probability, P" . According to the theory of Binomial distribution [Ross1987],the

characteristic of a noisy pattern can be described in a probabilistic way. The probability for

1-- p
p
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fr bit(s), I < k = n,beíngreversed in n dimensional pattern can be calculated by Eqn. (2.I5)

provided the probability for each bit being reversed p" is known.

Pr{x = k} ef ç-e"¡"-k=(;) (2.rs)

Throughout the testing, the probability of each bit being reversed, p" , is set to 0.0 I , 0.07, 0. 1 ,

0.2,0.3,0.4and0.5. Theircorrespondingprobabilityoffrbit(s)beingreversedfromaninput

pattem with z=16 are given in Table 2.1 .

Table 2.1 The Probability of /< Bit(s) to Be Reversed from a set of 16 Bits

The number of bit(s) being reversed

Pe

0.01

0.07

0.1

0.2

0.3

0.4

0.5

0.85146 0.13761

0.31313 0.37711

0.18530 0.32943

0.0281 5 0.11259

0.00332 0.02279

0.00028 0.00301

0.00015 0.00024

0.01043 0.00049

0.21288 0.07478

0.27452 0.14234

0.21111 0.24629

0.07325 0.14650

0.01505 0.0468'l

0.00183 0.00855

0.00000 0.00000

0.00330 0.00046

0.01371 0.00279

o.12007 0.05503

0.20988 0.16490

0j6227 0.19833

0.06666 0.12219

0.00000 0.00000

0.00005 0.00000

0.00044 0.00006

0.01966 0.00553

0.1 0096 0.04868

0.18889 0.14167

0.17456 0.19638

0.00002

0.01829

0.05140

0.20011

0.20405

0.10142

0.02777

The nextparameter that needs to be determined is the number of trials required for each

P" in order to ensure reliability. Throughout the testing, the number of trials, cr, for

particular defined noise probability, P, , is calculated according to fJeru1984], [HeNo1988]
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70
CP= (2.16)Pr( err lPn )

where P, (err I Pe) is the error probability of associative recall under the condition that the

probability for each bit being reversed is p".

The lastparameter to be specified is the number of trials for each case, i.e., for a memory

loaded with p stored patterns/associations, how many groups of training sets (with p

patterns/associations each) are needed so that reliable information about memory

characteristics can be obtained. This parameter determines the terminating time for the

testing. A usual approach to select this parameter is based on the fixed-sample-size

procedure lLaKe1982l. This procedure is described as in the following: a simulation run

of an arbitrary fixed length is performed, and then one of the sample sizes that satisfies the

desired confidence interval is finatly selected lLaKel982l. In this work, the above

fixed-sample-size procedure is adopted to determine the terminating time. Since this

parameter is task dependent, the detailed discussion about this issue witt be given in section

3.2 in chapter 3.

2.3 .3 Procedure used to test the performance of associative memory

This subsection presents complete procedure used for testing the perforrnance of

associative memories. The results of executing the procedure are the performance statistics

including the probability of memory successfully performing accretive and/or interpolative

recall, the probability of memory converging to spurious states, and the probability of

memory converging to oscillatory states. These results reflect the overall performances of
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the memory being tested. Some of the performance characteristics, such as information

capacity and error correction capability, may be considered as the extreme-performance if
the maximum value of the minimum distance is used. The rule of classifying a memory

response into a proper feature category is based on the definitions given in section

2.2.1-2.2.4. The summarized classification strategy is described in the following

statements:

(l) Accretive recall stands for the stored pattem/association that is completely recalled,

namely,

x(e)+e +, y(recall) = y(e) (2.r7)

where (x(o),y(o)), (x(*),ytrr¡ € lxc),y() , s=1, 2, ...,p,is the naining pair stored in the memory and

e refers to the noise component contained in input pattern. The term l")+ e is the testing

pattern used to stimulate the memory. The recalled pattern atthememory output is denoted

by y'**'' .

(ä) Interpolatíve recallisdefined as a mapping such that the desired pattern, y(Á), is the nearest

neighbor of a recalled pattern yQ"-'D , i.e.,

x(¿)+e -> y(recall)

llt(recatt)-y 
(,t) 

ll = 
ï ll ,Uecatt)-y(') ll

are the stable states but they are exclusively from the training

Whenever Eqn. (2.19) holds, the spurious states should be claimed.

(2.18)
and

(li) Spurious states

patterns/as sociations.

x(e)+e + y(recall) * y(s) ,
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Spurious states can futher be categorized into two different categories. Spurious states in

one of the categories constitute successful mapping (in interpolative recall case only. Refer

section 2.2.1 for more details). Spurious states in the other category cause false mapping.

A false spurious state is detected if the recalled pattern, ,tccar) , satisfies the following

conditions:

(2.20)
and ll t (recatt) 

- y (k) ll *

(ív) Oscitlatoty states can be detected whenever a memory fails to converge to a stable state.

This is done by checking if yt**to satisfies

x(k)+e + y(recatt) t yG) ,

(recal[\ (recal[\
Y(r+l)'#Jitt ',

(recalù (recal[\
Yþuo)'=Yi¡) ',

min
,ç

Vs, s=1,2,-.p

llt(recatt) -y(") ll .

Vt, ¡>0

û€N andh>2
(2.2t)

and

If Eqn. (2.21) holds, it means the memory becomes oscillation.

The procedure designed to estimate the true performance characteristics of associative

memories is presented below. It should be pointed out that the maximum number of training

patterns/associations, p-* , used in the testing is determined by the performance of the

memory being tested. The performance criterion, P",it,,¡on, used to terminate the testing is

specified before the testing begin. The number of training patterns/associations starts from

a small number, and then it keeps increasing by a fixed step. The testing terminates if the

memory performance drops down to po¡,",,o,.
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Special Notations for the Procedure of Testing the
Performance of Associative Memory

.Symbol

. cilraJ

.Cy

.C2

. fsp

.CP

.os

.sp

. trials

.e

. Te The number of trials under the condition that memory

is loaded with p pairs of associations, fx(")' y("),

s=1 , 2, ..., p).

. int Stored pattern is partially retrieved (interpolative recall).

. p The umber of training patterns attempted to be stored in

the memory.

. p-io The minimum value of p.

. P.,ito,ion The performance criterion for terminating testing.

. P " The probability of each bit (in input pattern) being reversed.

(P" is set to 0, 0.01 , 0.07,0.1, 0.2,0.3, 0.4 and 0.5).

Denotes

Stored pattern is completely retrieved (accretive recall).

Counter for T, .

Counter lor Cp

False spurious states.

Number of trials for each P".

Oscillatory states.

Spurious states.

Totaltrials.

Noise component in an input pattern.
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Procedure for Testing the Performances of Associative Memory

Step ( 1) Set up To, and value of MDfor each p.

Step (2) Specify r. .

Step ( 3) Set up the performance criterion for terminating testing, pcitcrion (the probability of

associative recall)

Step ( 4) Set p = p,* , the number of patterns to be stored in the memory.

Step ( 5) While the probability of associative recall (either accretive or interpotative) is higher
than criteriofr p",¡t",¡on execute following loop:

Step ( 5.1 ) Estimate Cp according to equation (2.16).

Step ( 5.2 ) Set counter c1=0.

Step ( 5.3 ) Set trials = 0.

Step ( 5.a ) Set âcc = 0, int= 0, sp0, /sp=Q, os=Q.

Step (5.5 ) Generale p pairs training associations {xc),yG) s:l,2,..., p based upon
minimum distance rule described in Section 2.3.1.

step ( 5.6 ) store information into the memory using encoding algorithm.

Step ( 5.7 ) Randomly select one of the associations, (x(É), y(*)), f rom p training pairs, i.e.,

(xt*),tt*r¡ € f*ß),y("), s=1, 2,..., p. The chance for each pair being selected
is equally likely.

Step ( 5.8 ) Set counter c2= O.

step (5.9 ) Add noise, e , into input pattern, x(o), by means of randomly reversing each

bit in x(t) according to defined probability p" .

Step ( 5.10 ) Apply testing pattern, x(É) + € , to the memory input.
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Step ( 5.11 )

Step (5.12)

Step (5.13 )

Step ( 5.14 )

Step (5.15 )

Step ( 5.16 )

Step ( 5.17 )

Step (5.18 )

Recall.

check intermediate state in each iteration. lf satisfy Eqn. (2.21) increase os.

collect response at the output. it yuo-tD =r<*) increase acc, othen¡uise
increase sp.

lf ll y r--'o - y @ 
¡¡ = min ll yt'"-to - y(') ll increase rnf, othen¡rise increase fsp.

s

lncrease frals.

lf cz < C, increase c2, ãnd then go to step (S.g ).

lf c1 < T, go to step ( 5.3 ), othen¡¡ise, next step.

Calculate performance statistics under the condition that the probability of

each bit being reversed is p" : (i) the probability of accretive recall: accl triats,

(i¡) the probability interrogative recall: int I trials, (äi) the probability of memory

converging to spurious states: sp ltrials, (iv) the probability of memory
converging to false spurious states: f sp I triats. (v) the probability of memory
converging to oscillatory states: os / trails.

increase p if the probability of associative recall (either accretive or
interpolative) is higher than performance criterio f p 

",it",ion.

until the probability of associative recall is lower than the performance

criterion P.,¡t",¡o,.

Step (5.19 )

Step (5.20 )

Step ( 6) Choose anotherP" and then restart procedure f rom step ( 4) until all defined p" has

been tested.

Step ( 7) End of procedure.

Note: This procedure test the information capacity, spurious states and oscillatory states.
Because the error correction capability is concerned with the relationship between the
quality of associative recall and input noise, this feature can be shown by plotting the
probability of associative recall against the noise level (the probability of each bit being
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reversed in input paüerns) used in the testing. All data required will be available after
executing the above procedure.
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CHAPTER 3

TESTED MODELS AND EXPERIMENTAL RESULTS

3. 1. fntroduction

This chapter describes a series of experiments investigating major properties of

information capacity, elror correction capabitity, the effect of input and output pattern

dimensions on accretive recall, and the probability of memory converging to false states.

Altogether, four different models were involved in the experiments. They were the Hopfield

networks [Hopf1982], [Hopfl984], bidirectional associative memories (BAMs)

[Kosk1987], [Kosk1988], dynamic associative memories implemented by the

Ho-Kashyap's algorithm (HK Models) [Hass1989], and bacþtopagarion networks (Bp

networks) [RuMc1986]. It is necessary to point out that choosing these fundamental

memory models does not mean that testing procedure derived in chapter 2 is only suitable

for these systems. They are networks typically designed for associative memories except for

the bacþropagation network which has more applications in other areas.

Although several performance investigations were carried out previously, most of them

merely involved one or two benchmark data set(s) to demonstrate the robustness of newly

developed memory sysrems [Lipp19s7], [Koskl987], [Koskl9gg]. since these

investigations were undertaken independently by different individuals, it was very difficult
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to judge which one was superior to others based on these fragmented results. Valid

comparison can only be carried out under the same environment and by using the same

evaluation scheme. To establish the superior performance characteristics of the HK model,

M. H. Hasson performed a number of simulations [Hass 1 98 9] . His work successfully arrived

at quantitative descriptions of desired characteristics of tested models. However, due to the

fact that few groups of training sets were used in the simulations, relatively wider confidence

intervals were unavoidably produced.

In order to provide more reliable results with regard to the desired characteristics of

models being tested, the minimum distance constraint (see section 2.3.1 inchapter 2) was

employed. This consfraint was not only the important seed that helped to derive very

efficient procedure as described in chapter 2,butalso the essential factor that enabled one

to characterize memory performances in a real application aspect.

3. 2. Confidence Interval

To estimate the number of fials /p (defined in section 2.3.3 in chapter 2), a number of

preliminary tests were carried out before the actual investigation began. Results of these

preliminary tests sho\Ã/ that 400 training groups are sufficie ntfor Þ, to achieve approximately

95Vo confidence within the interval ¡Ér-{.05, Ér+0.051. Here É, denotes the estimatecl

probability of the tested item calculated according to Êr= thetotal number of occurrences

/ total trials. One of these preliminary tests is described in the following example. In this

example, the performance of accretive recall of the Hopfield nefwork was tested. The

network was configured as n=76, and the P"s, the probability of each bit being reversed in
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input patterns, were set to 0 and 0. 1. The number of test groups /o was 400. Each test was

repeated five times. Figure 3.1 shows that, for the testing procedure given in chapter Z,

-¡<<)
LL¡
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lJ-¡
EÊ,<)
c>
4
L¡-o
EEio
cE,o-

1.O
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o. €l

o.4

o.2

o.o
46

NIJMBEFI OF
B lo 12 1

STOFIED PATTEFINS

Fig.3.l Results of accretive recall from testing the Hopfield network. The network is tested 5 times, and

each time has 400 randomly generated haining patterns (with minimum distance constraint).

with tp set to 400, the maximum interval among all tested points (p = 8 and pe = 0 in this case)

with95Vo confidence is approximately lPr4.024.Pr+0.0241. P-, which is equal to 0.268

is the probability of recalling stored patterns averaged over five independent tests. The

confidence interval was calculated according to [Ross1987]

lPr-Ë, Pr+Ë I

where
(3.1)

Ë = t o.os/z,r-t
,s

-E
UL

where P-, is sample mean of Prs, / denotes the r distribution with z-l degrees of freedom

lRoss1987] , zis asample size, and s refers to the sample standard deviation. For the purpose

of estimating whether 400 groups of naining sets were sufficient, additionai test was
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performed at the point which yielded maximum interval in the test described above, i.e., p=g

and P"-0. This time, the number of groups of training patterns, /o s, were from25 to 400,

withspecificvaluesbeing:2550,100,200,300,and400. Foreachto,thenetworkwastested

five times. The result of each performance was averaged over five tests and the upper and

lower bound of confidence intervals were plotted in figure 3 .2. Itis shown that as þ becomes

larger than 200, the 95Vo confidence interval for this tested point has already narrowed to

approximately [P'-{.032.Pr+O.032]. lnorder to assure that allresults fall within the desirecl

confidence interval, the number of groups of training sets, /o , was set to 400 throughout the

following experiments. It is necessary to point out that Eqn. (3.1) is derived under the

J
J<
<>
LL¡
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t¡J
CE<)<)<
ILo
.r¡o
cÉ.o-

o-36

o.3l
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It4ODEL: HOPFIELD

PATTERN: BIPOLAR_A_ LOWER BOUND_. _ UPPER BoUND
-l- Mr¡ru

too 15() 200 25lJ 3()0

NL'ME}EFI OF TRIALS

Fig. 3.2 Confidence interval of accretive recall. Tested model Hopfield nefwork. Nefwork

configuration: n=I6. The number of stored patterns: p=9. Input noise: the probability of each bit

being reversed in input pattern, P,, is set to 0.

assumption that z is sufficiently large and the Prs should be normal random variables. In

practice, however, it is very difficult to produce alargez as well as to verify whether or not

P-, is normal. For this reason, the confidence interval, ¡Ér-o.05, Fr+0.051, is only
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approximate in terms of coverage.

3. 3. Hopfield Network - an Autoassociative Memory

In 1982, Hopfield introduced a vigorous kind of associative memory based on his srudies

of collective computation. The network is composed of a single layer of neurons which are

fully interconnected with each other. The strength of connections set during the encoding

process provides the global comrnunication of information. The strong nonlinearity of

logical function implanted in each neuron enables the network to accomplish many

sophisticated tasks such as making choices, producing categories, regenerating information,

and performing nearest neighbor searches. Thus, in spite of the simplicity of the highly

formalized neural sffucture, considerable network computation capability is intrinsic in the

system IMPRVl987].

3. 3. 1 Network structure

A fundamental Hopfield network is a set of simple bistable elements, each of which is

capable of assuring two values: +1 (firing) and -1 (nonfluing). The state of each neuron, +1

or-1, thenrepresents a bitof information, and states of network delineated by n-tuple bipolar

patterns (provided there are tx neurons in the network) represent the entire information stored

in the memory. It is necessary to note that the network is also able to handle a unipolar mode,

{0, 1}, but a bipolat mode, {-1, 1}, must be used to encode information. Furthermore, the

nonlinear transform function must be replaced by the unit step function (see Fig. 1.4 in

chapter 1) if unipolar patterns are used to recall stored information. Because the unipolar
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mode only participates in the recall phase, only the bipotar mode is discussed in this section.

Further, the network addressed here is assumed as fully interconnected through linear

Wsn

aao
i = 1,2, .,., n

W¡i = Wi¡

w¡=0 Y i=¡

Fig. 3.3 Structure of Hopfield network.

synaptic connections wr; fransmitting a bit of information from neuron i to another neuron

7. The weight matrix is symmetric, i.e., wji =wij,and with zero in its diagonal. The structure

of Hopfield network is depicted in Fig. 3.3.

3. 3. 2 Encoding algorithm

There are two questions which may be raised naturally: First, how can the network store

information so densely in weights? Second, how can the network recall the most similar

pattern thereafter? A brief answer to these questions can be only one word: "learning". One

simple but quite efficient learning algorithm is the Hebbian learning rule [Hebb1960]. This

idea first came out of the similarity between, and the hypothesis about, the way that synaptic

strength in the brain changes in response to experience [HeKP1991]. It says that the

information in the human brain is stored by changing the strength of synapses and such a
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change must be propoÍional to the connection between firing of the pre- and post-synaptic

neurons [Hebb1960]. This hypothesis can be formulated as

Lw¡i =, *jÐ *(Ð (3.2)

which means that synaptic weights are updated based on the multiplication of information

taking on neuron í and j. In the learning process, Eqn. (3.2) actually identifies how much

attention needs to bepaid to particular neurons i andj. If neuron i and neuronT are both firing

(or nonfluing) the connection strength between them should be increased, otherwise it ought

to be decreased. An alternative way to express equation (3.2) is using an adaptive form which

seems to be more applicable for a software implementation:

wji?) = wji!_l,)

wji = rl

which is identical to the form of

*, ,Í') (s)xi' (3.3)

(3.4)

(3.5)

here / is an iteration number. Further, if, a special case is considered where each pattern is

presented only once, then

Ë'j"'Í"'
s=1

nr
wii = )t(" "Í".ç1

provided the learning rate 4 is set to 1.

Technically however, Eqn. (3.2) goes beyond Hebbian's original hypothesis because

firstly, it changes the weightpositively when neither of the neruons is firing. This isprobably

- 52-



not physiologically reasonable. Secondly, Eqn. (3.2) caneven cause a particular weight to

change from excitatory to inhibitory or vice versa as more patterns are added. This

phenomenon is hard to believe to occur atreal synapses [HeKp1991].

3. 3. 3 Associative recall

For a neuronT in the system, the activation x¡ at one particular moment is defined as

*, =*r(ir, -,-rr) (3.6)

(3.7)

Eqn. (3.6) describes the evolution sftategy of the network dynamics. The threshold decision

rule (the sign function or hardlimiter) which is illustrared in Fig. (1.4) in chapter 1 furnishes

two operation values, +1 and -1. The computation is quite simple: first of all, a neuron

evaluates the weighted sum of the bipolar states of all other neurons asynchronously (or

synchronously) in the network. The new state of the neuron is -l if the sum is less than the

threshold, and +1 if the sum exceeds the threshold. The neruon keeps its old value if the

weighted sum is equal to the threshold. Such a nonlinear decision rule is expressed as

'={

I

unchange

-1

tf I w¡i x¡> Tj
í=l

othetwise
n-^rtf /w¡ix¡<Tj

i=l

The Hopfield network is also an example of a feedback system. If input in the initial state

is, for instance, an incomplete or noise comrpted picture, the network will search for a stable
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state though several feedback cycles. A final state is the item which best matches the pattem

according to what has been stored (though there is no guarantee in all cases for a system to

converge to a correct state especially when memory is overloaded). The question remaining

is what force enables the initial state in the memory to move to the desired point in the system

configuration space and then stay there firrnty? The energy function infroduced by Hopfietd

in 1982 [Hopfl982] makes this question extremely clear.

For the network described above, the energy function, E, has the following form:

P=-!
2

n

xi xj+}yt *,
:_1t-L

ii*,,
i=Ij=I

(3.8)

where w;; is the strength of connection between neuron i and j (w¡i=w¡), x¡ stands for a bit

of information in neuron i, and 7i refers to a threshold in the transfer function. Note that

nothingiscontributed to energyEwhen i- j,because wji = 0 for aII í= j.Eqn. (3.8) shows

that the energy of a given state is a function of the weights. This helps to explain why

information can be stored in the Hopfietd network through proper selection of synaptic

weights. Ontheotherhand,Eqn.(3.8)suggeststhattheenergyfunctionalsodependsonwhat

kind of information is represented. Therefore, one can imagine the surface of Eqn. (3.8) as

an energy landscape in the corners ofa hypercube. Fig. (3.3) is an illustration ofan energy

landscape in a three dimensional perspective.

In Fig. (3.3), the x-y plane represents the 2n corners of the hypercube and the z axis

measures the energy potential. It can be seen that the landscape contains rich hills and

valleys. If memorized patterns are assumed to be in the location of energy wells which have
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Fig.3.4. Represenration of the en-

ergy function in a three dimension-

al perspective. The lower Z value

in the figure denotes the energy

well where stå.ble states a¡e lo-

cated. Source: Hertz, etaI., Copy-

right by Addison-Wesley, Red-

wood Ciry, CA, 1991.

relatively lower gravity potential, and the evolution strategy of the network dynamics can

always ensure all kinds of initial patterns moving down the hill in the direction that decreases

their potential, then the system is guaranteed to reach local energy minimum where full or

complete information is located

The cenfral properry of the energy function is that the energy potential either decreases

or remains constant as the system evolves according to its dynamic adaptation rule given in

Eqn. (3.6). To understand how the Hopfield network accomplishes associative recall, one

canconsiderthecasethattheactivalionofneuronx¿,I<ksn,hasjustbeenadaptedfrom

xf;tÐ to xt"*). Then, substituting into the energy function given in Eqn. (3.g) yields

tþY') = -*t'*'2,r r, - + É É wji xj xi+vk xYù * fr, *,i=t - fitr'i'n j1'o

(3.e)

,þf^) = -,f^t** ,, - + å å 
w¡i x¡ x¡+yt, xfØ * 

|ri *i
i=l 

j*ki#k Fk
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The changed energy M(xo)

LE(xr) = t(*y"*') - E(xftÒ)

@fn*' - ,f\2*0, xi + (xy"*) - *Íi\ ,o
i=L

(3.11)

(3.t2)

\rot x¡ + Lx¡ y¡,

i=l

{2,r, *, - r- }Lo' )

(3.13)

(3.r4)

(3.15)

(3.16)

Because

hence

,Y"*) =-, 
{å 

w*¡ x¡ - * 
} 

,

LE(xù - - Lxp *f*) co

where cr represents the absolute value of the weighted sum of neuron È. Evidently, Âx¿ must

be either -2 or +2 because x¿ is bipolar. There are three cases that need to be discussed:

case 7: Lxt = 0. The energy is obviously unchanged.

case z: Lw - -2 . By Eqn. (3.15) *f*, - - 1, thus AE(-r¿) < 0.

case 3: Lx¡r= + 2. This is equivalentto xf;*) = l. hence, LE(x¡) <0.
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It is easy to show that energy is lower bounded at a specific value. This is because each

component in the network has only two possible states + 1 and -l and the threshold, Ti , must

be within the range -tlw¡t, I <T¡< l. Therefore, the lower boundary for Eqn. (3.8),f*,*,
í='l i=t

equals

- f,t t*,, =
j=l i=l (3.t7)

c { 1, 2, ..., ft }, changes,Thus the energy decreases every time or remains constant ãs x¡, i

as claimed.

3. 3. 4 Experimenfal results

The performance of the Hopfield network was tested using the procedure described in

chapterZ. Tested models contained 16 neurons. Each neuron was connected to other neurons

through weights wji,wherei, j =1,2,...,16. Theneurons werenotconnectedto themselves,

i.e., w¡i = 0 for all i =i. In order to test the information capacity, the number of training

patterns, p, stored in memories followed the sequence, 2, 4, g, lZ, 16, ..., until the

performance, characterized by the probability of associative recall, drops down to the

specified criterion, P",¡,",¡on:0.0L For each fixed p,there were 400 groups of training sets.

Patterns in the training sets were randomly generated under the minimum distance constraint

(see section 2.3.linchapter 2). Thevalueof minimumdistance, MD,,isafunction of p,the

number of patterns to be stored in the memories. MD' was calculated according to

-+i2w¡t
" j=l i=l

-+i2w,,r
' j=t ¡=t

,Edls. >tHd L,
i=1

MD,=
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whe¡e/'1d denotes the maximum mutual Hamming distance in the patterns subject to that the

specified number of patterns, p',thatcanbe generated. Therelationship between Hd and,the

number of patterns, p' ,thatcanbe generated is shown in Table 3.1 and Table 3.3. Two aspects

must be clarified in order to calculate uo : (1) Because of the discontinuous nature in the

relationship between Hd andp', a further decision for the choice of un must be made. For

instance, there are two groups of p'=J2rutterns having mutual Hamming distance , Hd=7 and

Table 3.1 The Relationship Between Hd and p^u Table 3.2 The Values of Minimum Distance MD

Hd The number of patterns p'
MDMD'

7

8

I
10

11

Hd The number of patterns p'

3

4
5

þ

16

16

4

4

Note: Hd is the maximum mutual Hamming
distance in the patterns sujebct to that the number
of patterns , p', can be generated. n = 8.

Note: MD' is calculated according to
Eqn. (3.18). n= 16.

Table 3.4 The Values of Minimum Distance MD

32

32

4

4

2

16

12

I
4

2

4

4.5

5

5.5

o

4

14,51

5

[5,6]
6

Note: Hd is the maximum mulual Hamming
distance in the patterns sujebct to that the number
of patterns , p', can be generated. n = 16.

Table 3.3 The Relationship Between Hd and p^u

MDMD'

16

12

I
4

2

2

2.5

2.5

3

3.5

2

12,31

[2,3]
3

[3,4]

Note: MD' is calculated according to
Eqn. (3.18). rc8.

Hd=S, respectively. 'Whenever 
this situation occurs, the lower value of Hd is selected for

larger p inthe calculation of MD'. (ii) Since the gap between two p,s may be wide, it is

sometimes very difficult to select ø¡ if the number of training patterns is set between them.
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In order to overcome this problem, the actual ¡,lo used,in testing may be composed of two

values. These two values determining the upper and lower bounds of Hamming distance are

calculated according to truncating androunding the MD' ,where MD, iscalculated according

to Eqn. (3.18)). Another reason for introducing this two-value uD isto partiatly avoid tøo

exactly equaling to |, ,which results in all training pafferns being mutually orrhogonal (in

bipolar case only). The minimum distance constraint can be thought of as a filter. Randomly

generated vectors have to be bypassed through this interval (checking their mutual Hamming

distance) before being selected as training patterns. Table 3.2 and,Table 3.4 givethe values

of ¡'tos used throughout the testing. One more case which has not been discussed in

determining MD is that MD' is an integer and p' is exactly equal to the number of training

patterns, p. In this case, whether to use single-va\ue MD or to use two-value up is

determined by if mn'is exactly equal to |, . If ¡tn,= *n ,the two-vahte.MD is deemed

necessary and the lower boundary is given by MD'-l provided it is permissible. It is worth

noting that mentioning this special case is mainly for the completeness of discussing how to

determine tøo; however, it, has not occurred in this experiment.

The performance of the Hopfield network was tested with respect to the following

aspects:

(I) I nformatio n c øp acity:

According to the definition given in chapter 2, the information capacity can be shown

by plotting the probability of memory successfully retrieving stored pattems (either

accretively or interpolatively) against the memory load,p. The maximump observed under

the condition that the probability of associative recall reaches the specified criterion will be

considered as the capacity of thatmemory model. In the analysis of the inform ationcapacity,
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the performance criterion, the probability of memory successfully retrieving stored pattems,

is set to 0.95 unless otherwise specified,. Fig. 3.5 illusftates the result of the Hopfield

network in performing accretive recall.

MODEL: HOPFIELD
PATTERN: BIPOLAH

-A- n=16Pe=O

4e

NTJMBEFI OF STOREÞ PATTÊFìNS

Fig.3.5 InformationcapacityoftheHopfieldnetwork(accretiverecall). Thenumberofneurons:n=16.

Pe, the probability of each bit being reversed in input patterns, equats 0.

MODEL: HOPFIELD
PATTERN: BIPOLAR

-A- n=16Pe=o

46

NIJMBEFI OF S-T-ORED PA-T-TEFlNS

Fig. 3.6 Information capacity of the Hopfield network (interpolative recatl). The number of neurons:

n=I6. Pe, the probability of each bit being reversed in input pattems, equals 0.

It is seen that the maximum pattern that can be stored in the tested Hopfield network is

approximately 3. As to interpolative recall, the capacity remains at the same level as that of
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accretive recall but the memory is guaranteed to recall all stored patterns with approximately

0.99 probability (Fig. 3.6). It is worth noting that the above experimental results do agree

with the solution theoretically derived by McEliece et al. [MPRV1987]. According to the

formula given by McEliece et al., an asymptotic capacity of the Hopfield network containing

n neruons to get accretive recall (with absolutely no noise in input pattern) is less than

P t zrocrn

Substituting 16 into Eqn. (3.19) yields

(3.1e)

(3.20)t6
<- -.,2log2t6

Both (experimental and theoretical) results indicate that for the Hopfield network, the

network configured ãs n=16 can store no more than four patterns.

(2) Error correct¡on capabilíty

Error correction capability was tested by varying noise level controlled by Pu but fixing

storod patternp. Because of the low capacity, the memory was unable to perform accretive

recall perfectly if p > 2. The worst conditions under which the memory could still work well

were p=) and P"=Q.2. Under this condition, the memory was able to retrieve all stored

patterns accretively with 0.95 probability. Thanks to the spüious states around the stored

pattems (see Fig. 3.9 for details), the capability of correcting error was increased especially

as many patterns are stored. The results of each kind of recall are shown in Figure 3.1 and

in Fig 3.8.
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J
J<
C>
IJJ
CE,
rlJ
¡-
LL¡É,<)c)¿
ll-o
rio
CE
Ét-

1.O

o.a

o.6

o.4

o.2

o-o

Fig. 3.7 Error correction capability of the Hopfield nenvork (accretive recall). The number of

nerlons: n=16. Memory load: p = 2, 4, 8 and 12.

o-o

o.o

o.'r o-2 (¡.3 0_4

PFIOB- OF E^A'CH EI¡-I- ETEING FIEVEFISEtr)

o-1 0_2 0.3 0-4

PROB. OF EACH BIT BEING FIEVEFTSEtr'

o.E

o.5

J
J

<)
LL¡
CE
l¿¡

=oct-
CE
Lr¡t-
-,¡J-o
Erio
cÉ,o-

1.O

o.g

o.6

o.4

o.2

o.o

Fig. 3.8 Error correction capability of the Hopfield network (interpolative recall). The number of

neurons: ¡¿=L6. Memory load: p =2,4,8, and 12.

(3) Spurious and oscillatory states

As stated in chapter 2,false states are composed of two disjointed sets: the spurious set

and the oscillatory set. Spurious states were detected whenever memory performed neither

accretive nor interpolative recall but converged to one of the stable states. Furthermore, these

stable states should not be a member of the training sets. Test results show that the

MODEL: HOPFIELD
PATTERN: BIPOLAR

-A- n=16Pæ2
-f- n=16Pæ4
-O- n=16PeB
-l- n=16P€=12

-A- n=16PÈ2
- | - n=16Pe4
-O- n=16Pæ8
-l- n=16Pe=12

MODEL: HOPFIELD
PATTERN: BIPOLAR
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probability for memories converging to spurious states (PCSS) is the function of the number

of stored pattems. In general, the larger the number of patterns being stored, the higher the

probability for a memory getting stuck at the spurious states. The results of pCSS are

depicted in Fig. 3.9. Itis necessary to point out that the value of PCSS varies if different Prs

are chosen. For large P 
",thetesting 

pattern may be far from the training pattern (in the terms

of Hamming distance). As a result, the initial state has more chance being trapped into the

spurious states. It has been shown that the spurious states in the Hopfield network are

composed of the reversed version of training patterns and the Boolean combinations of

training patterns [HaYo1989]. Fig. 3.9 also reveals that a large number of spurious states

constitute false states. Few of them help the memory to increase the quality of interpolative

recall.

o)
.t,

I 0.6

Ø
U'o o.4(L

24812
NUMBER OF STORED PAfiERNS

2481216
NUMBER OF STORED PATTERNS

Fig. 3.9 (a): The probability of the Hopfield network converging to spurious srates. (b): The

probability of Hopfield network converge to false spurious states. Memory configuration: ¿=16.

Inputnoise,theprobabilityofeachbitbeingreversedininputpanerns,p" issetto:E P"=0.01,
I P, =0.1,and@d P"=9.2.

(4) Oscíllatoty states

Because an asynchronous recall strategy was employed throughout this experiment,

812
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none of the oscillatory states was detected in the testing the Hopfield networks. The networks

always converged to one of the stable states in the network confîguration space.

3.3. 5 Summary

Results presented here demonstrate that the Hopfield network can be used as

autoassociative memory, but it only works well in storing a few patterns. The capability for

a nefwork to retrieve a stored pattern perfectly seems to be extremely difficult even when the

network is evoked by noiseless inputs. Although the Hopfield network is inherent in some

serious problems which seem to be very difficult to overcome, its simple structure and the

suitability for vLSI implementation win it favor in many applications.

3. 4. Bidirectional Associative Memory (BAM)

Hopfield's seminal idea of simple neurons with symmetric connections behaving as if
they minimi ze Íhe energy in a physical system gives a firm analytical foundation for network

computation [HiAn1989]. Since then, there has been much interest in developing

associative memory by using neural network approaches. V/ith the expansion of the single

layer model, Kosko [Kosk1987], [Kosk1988] introduced a two-layer network called

bidirectional associative memory (BAM) which was capable of performing both

autoassociative and heteroassociative mapping tasks. Compared to the Hopfield network,

BAM can achieve autoassociation with fewer weights. For instance, the Hopfield network

needs n x n weights to store n-dimensional patterns while BAM only requires n X m(m <

n) weights. On the other hand, BAM autoassociative mapping is accomplished by backwarcl

and forward mapping between two layers, thus the patterns chosen in the second layer are

trivial. This allows for choosing the suitable training patterns in the second layer (i.e. as
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sparse as possible, or to satisfy

[Kosk1988]) in order to achieve

the continuous conditi on I f n t1(#d), 1"2)) = | / m ÉI(y{"r), yt"zr;

higher performances.

3. 4. I BAM's evolution scheme

The primary goal of BAM is to retieve a memory pair (x(s), tG)¡ given any ono of initial

input x'or y'. Here x(') and tr'r are in the vector form x(")=1rt"),"f),...,rf;);r and

y(") = 0Í"),yf), ... ,yÍi\' , s=I,2,...,p, respectively. The elements in x(") and y(") are assumed in

a bipolar mode {-1, 1 }. Relativety higher performance of associative processing in BAM

is credited to the dynamic bidirectional process approach. It has been mentioned that one

of the most appealing features of associative memory is its ability to tolerate noise and/or

partial input patterns, i.e., given an input pattern x' which is somewhat similar to the stored

patterns x("), s=l, 2, ...,p, the memory will respond to its association y(") according to the

transformation function

Y(") = T1(lV, *(t)) , s=1,2, ..., p. (3.2t)

In the feedforward network model, the fransfer function T' in Eqn. (3.zl)takes on the whole

responsibility to correct error. However, it is unusual for function Tr being able to fully

accomplish this task, especially when the memory is loaded with a relatively larger number

of associations or the input pattern is contaminated with serious noise. The evolution scheme

utilized in BAM is analogous to that used in the Hopfield network except that neurons

participating in the evolution are situated in different layers. In the Hopfield network, the

next state of neuron -r¡ is determined by
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Xi = Sgn (3.22)

or simply expressed in a vector form

*[l,r = r g,x[!) (3.23)

where / is an iteration number. If x[|ì on the right hand of Eqn. (a.3) is replaced wirh y(s)

and suppress /+1 in x[Ìr; on the left hand term then

*(s) - T (W,y(")) . e.Z4)

Assigning number 2 to transform function T and W in Eqn. (3.24) respectively and

combining Eqn. (3.24) with Eqn. (3.21) gives

(?,-"t-vr)

OI

v8ì,1 = T1 (W1, r, Wr, v[il))

*[,tJrl = Tz (Wz,ft çWr,*[f))

(3.2s)

(3.26)

Eqn. (3.25) and (3.26) exhibit the evolution straregy of BAM.

3. 4.2 The nature of bidirectional search process

Topologically, BAMs are composed of two unidirectional heteroassociative memories.

These fwo memories are connected in a closed loop so that short term memory can pass

through one memory and then feedback through the other memory. Unlike unidirectional

associative memories the concept of input and ouþut neuron is blurred. Neurons which are
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responsible for sending and receiving information are all neated as visible neurons though

they work in two different vector spaces. However, one may still refer to those neurons

which are responsible for receiving initial pattern as input neurons and neurons in the other

layer as output neurons. The basic structure of BAM is illustrated in Figure 3.10.

T1(W,,x(")) = y{')

AM

x(") = Tz (Wr, y("))

AM

Fig.3.10 Basic structure of BAM.

Figure 3.11 shows that BAM performs bidirectional mapping between two state spaces:

the X space and Y space. The nature of a bidirectional operation can be captured by placing

oneself between two state spaces and observing state transition simultaneously. To see how

the dynamic bidirectional memory works, consider the case that BAM is loaded with p

associationS 1x("), y(")J , s=1, 2, ..., p. A dynamic bidirectional process begins as soon as the

BAM is activated by a noise input pattern in X domain. First of all, initial state x evokes y,

according to Eqn. (3.2I). Though transform function, T,, does show some aptitude for

correcting noise, it is unable to suppress the noise completely. Therefore, y' is unstable

-67-



Chapter 3 Tested Models ønd Experimental Results

Fig. 3.11 Illustration of bidirectional recall in BAM.

and is forced to feedback to the X space through the other transform function, Tr, generating

x'. Such back and forth transition continues until, ideally, BAM reaches ¡xØ),t(+)¡, one of

theclosesttrainingpairsin/xG),t("¡,s=l,2,...,p,fromitsstartingstate. Inviewof this

example, the nature of dynamic bidirectional recall is merely a nonlinear feedback searching

process. The recall always ends with memory converging to a stable súate. The bidirectional

process is readily formulated by

!¡ = sgn (3.27)

and

(7'-"''-'')

(¿*"'' - ,,)Xi = Sgn
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where sgn(.) is the ha¡dlimiter activation function given in chapter 1. Combining Eqn. (3.2j)

and (3.28) yields

!¡ç+t¡ = sgn 
[å,, 

-.. ssn (ä-, ,'r-r,) -]

such a chain of bidirectional search can be visualry described as

*' WL y' W"- *" JL ,,, . o o --------+ ¡(r) J{5 ,,0, -\ x(*)

(3.2e)

(3.30)

Unfortunately, there is no guarantee that BAM can always arrive at the desired point, the

nearest stored association x(k) and y(*), from its starting point in the state space. The BAM

is more likely to get stuck in spurious states.

3. 4. 3 Network stability

In order to get a better understanding of how the bidirectional associative memory works,

it is necessary to review the property of convergence of BAM. This property was proposed

and proved by Kosko [Kosk1988]. BAM's energy for a particular state, (* , y) is defined

AS

E(x, y) = - É ir,, x¡ lj + ir, ,, * fr, *, .

i=r j=t j=r i=t

Partitioning x¡, ,o\aof the activationinneuronft, k e {r,2, .. .,nJ,fromterms on therighthand

of Eqn. (3.30) will give
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(3.31)E(x,y)

If a similar method is applied to yt , t e {i,,2, .. .,m}, then

E(x,y) (3.32)

According to Eqn. (3.32) the changed energy, tn = Et"'il -É,i:r^,,caused by the state change in

yt , Lyt - yÍ**' -yl''ù, is

(3.33)

ln this case,

(3.34)

must hold since according to equation (3.27), the left hand of Eqn. (3.34) is the netinput of

yfno') . If Ay¿ < 0 then yÍ'o') can only be -1 and the inequality

\-r
),li xi + Yk xk +
i=1
itk

i,,,,= 
[à t'"'']¡*xoä'"',|.

= - I i f,,, *, r¡ + !ti,,, ",1 
*

L '" j;l '='1 )

2r,,x¡-o¡>0
i=1

\rtt x¡ - o¡ <O
j=1

nm

lr,*,+otJt*24y,.
i=l i='tjtt

'(new) - ,t"^¡ (>w¡i xi -r, ) .\ã' I
Because ]¿ is in bipolarmode {-1, +1 }, ifay; > 0 then yÍ"o') must beequal to 1.

the inequality

(3.35)
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holds. The above two cases result n LE < 0. From equation (3.33) it is seen that ÂE = 0

if and only if Ay¿ = 0. This must be the final situation that BAM encounters. A similar

situation would happen in the eqn. (3.31) if x¡, changes state. Note that the energy value of

BAM is bounded at

Thisisbecause -,tr,l<0¡<t}*,rand - tiw,,t<r¡<tt*,, Fromrheabovediscussion,

it can be deduced that starting from any initial condition, BAM always converges to a local

minimum. It should be noted that the necessary and sufficient condition for BAM to

converge to stable states is that the weight matrix is symmetric, i,e., wij = wji, i=|,2, ..., n,

and j=1,2,...,ffi.

3.4.4 BAM's encoding algorithm

A fundamental BAM encoding is based on correlation mamix summation. Suppose there

are p pairs of associations ¡x("),y("), s=1,2,...p, where x(") and y(") are column vectors

respectively, then the weight matrix w1 is formed according to

nm
Min (E(x,y)) = -3>>tw¡it.

i=\ j=t

Wr = (x(r)ry(l) + (x4)¡ryØ +...+(x@)ry{r) = f{*u¡.ru,.

(3.36)

(3.37)
s=1

It can be seen that the encoding algorithm is still based on the hypothesis proposed by D. O.

Hebb fHebb1960] because the form of Eqn. (3.37) can readily be changed to
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W;; = (3.38)

where )tjr is the weight between neuronj and i, and it is the element in i¡¡ Íow and j¡¡ column

in the weight matrix, w1, given in equation (3.37). Eqn (3.37) or (3.38) provides only one

of the algorithms to synthesize weights and w, performs ftansformation from the state in X

space to the state in Y space only. For BAM, it needs another group of weights torealizethe

backward transformation from Y space to X space. A similar Hebbian encoding scheme is

applied to the formation of wr.

p

>tru'rr("'
s=l

É,ru),*u, = (åo','r')

Wz = 1r(r)¡rr(r) + ea)¡\¡Ø + ...+lyrr)r¡{r) = É,ru)*u, .

s=1

Because

Wz= = WT , (3.40)

the connection matrix W, can easily be derived by simply transposing W,.

3. 4. 5 Experimental results

The preceding subsection shows how Kosko's BAM model performs associative recall

by using bidirectional search. The analysis of the encoding algorithm indicates that the

encoding algorithm used in BAM still follows the Hebbian rule. Kosko esrimates that

BAM's capacity is Coo< min (n, m) [Kosko1988], but K. R. Hasins, et al. indicate that the

n f ( Zlog2n ) the asymptotic capacity for Hopfield network, can also be applied to BAM

(3.3e)

1n_



[HaYo1989]. This capacity is substantially lower then Kosko's original estimation

especially if n and m is large. One of the objects of this subsection is to clarify these

afguments.

Three different BAM models were involved in the testing. These systems were

configured asmodels I; n=76,m=I6,model II: n=16, n=8, andmodel III: n=8, m=l6in order

to verify whether the capacity was bounded at input and output dimensions. The number of

pairs of associations stored in BAM followed the sequence,2,4,g, 12, 16,..., until the

memory performances, charactenzed by the probability of associative recall, met the

terminating criterion, Po,,",,on=0.0L Each training pair was generated separately under the

MD constaint (see section 2.3.I in chapter 2). The noise patterns which were determined

by P us, the probability of each bit being reversed, were set to 0, 0.01, 0.07, 0.1, 0.2,0.3,0.4,

and 0.5. In the testing, training patterns were firstly encoded by using Eqn. (3.38) generating

W1 and then Wl was used to synthesizeWzby simply transposing W1. Each model was

tested individually using the procedure given in chapter 2. The number of naining groups

was fixed at 400. The results are as follows:

(I ) Information capacity:

The performance of information capacity was tested in both accretive recall and

interpolative recall cases. Fig. 3.12 illustrates the results of accretive recall for all three tested

models. The flrst two models (models I andmodels II) successfully achieved high probability

of accretive recall for p=4. Compared to the Hopfield network (configured as n=16), the

probability of accretive recall when a memory stored four associations was approximately

identical. Howevet, for BAM f n < m, (n=8 and m=l6 in this case), the performance of
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Fig. 3.12 Information capacity of BAM (accretive recatl) for Model I (n=16, m=I6.), Model II
(n=I6, m=8) and Model III (n=8, nt=I6). Pe, theprobability of each bit being reversed in input

patterns, equals 0.

accretive recall was degraded rapidly as the number of stored patterns increased. These

results roveal that the information capacity of BAM is substantially lower than Kosko's

estimation. The maximum pafus of associations that can be stored in this BAM is

approximately 3. Results also show that the BAM constructed as n=I6 and m=8 achieves

relatively high performance, especially when the number of stored patterns exceeded the

capacity limit.

The results of interpolative recall forthemodel I, n=16 andm=l6,is depicted in Fig. 3.13.

Itisseenthatthecapacityisabout4. Unlikeaccretiverecall,theperformanceofinterpolativo

recall is less affected by input and ouçutpattern dimensions. It almost¡emains at the same

level even for n < m. For this reason their corresponding performances are omitted here.

MODEL: BAM
PATTERN: BIPOLAH

-A- n=16m=16

-l- n=f6m=8
-O- n=8m=16
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Fig. 3.13 Information capacity of BAM (interpolative recall) for Model I. Memory configuration:

n=t$, ¡n=l$. Pe, the probability of each bit being reversed in input panerns, equals 0.
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Fig. 3.14 The error correction capability of BAM (accretive recall). Memory configuration: n=16

md m=1.6. Memory load: p = 2, 4, 8, a¡td IZ.

(2) enor correction capability:

The results of error correction capability of BAM is shown in Fig. 3.14 and Fig. 3.15.

These results demonstrate that when storing two pairs of associations, the BAM is able to

MODEL: BAM
PATTERN: BIPOLAR

-A- n=n=l6p=2
- | - n=m=16 o= 4
-Ô- n=m=leb=e
- | - n=m=16p=12
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get 0.92 probability of accretive recall even when P"=0.2. BAM's error correction

performance did not show much difference in both accretive and interpolative recall cases

compared with the Hopfield network.

-t-¡<)u,fîE
u-¡
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C¡.
EE
LL¡t-
-.¡Ão
cÉio
cË.
Ét-

1.O

o.a

o.e

o.4
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o.o
o.o o.1 .'-2 (¡.3 0-4

PFIOE¡. OF EACH EIIT E¡EING RE\./EFISED

Fig. 3.15 The error correction capabiliry of BAM (interpolative recall). Memory configuration:

n=l$ 2¡¡f, ¡n;16. Memory load: p = 2, 4, 8, and 12.

(3) The effect of ínput and output pattern dimensions on accretíve recall

In order to test this property, one more BAM model was added. This model contained

eight neurons in both input/output ports. Test results show that the input and ouqlut pattern

dimensions only affects accretive recall. The effect of input and output pattern dimensions

on other aspects is not obvious. Those results are omitted here. The effect on accretive recall

was quantitatively calculated according to Eqn. (2.7) (refer to section 2.2.3 n chapter 2 for

details) and the coresponding results are shown in Fig. 3.16.

o.E;

PATTERN: BIPOLAR

-A- n=Ê16p=2
-a- n-G16o=4
-O- n.ælsb=e
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Fig. 3.16 The effect of input and ouçut pattern dimensions on accretive recall. Positive value

suggests the increase in the performance, and the negative value denotes the decrease in the

performance . Here n and marethedimensions of input and ouq)ut patterns respectively. p" stands

for the probability of each bit being reversed in input pattems.

The test results indicate that if BAM is constructed as k ) ffi,relatively higher performance

can always be achieved in accretive recall.
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Fig.3.17 (a): Theprobability of BAMconverging to spurious states. (b): Theprobabiliry of BAM

converge to false spurious states. Memory configuration: n=1,6 and, m=16. Input noise: the

probability of each bitbeingreversedininputpatterns,p" is setto: E P"=0.01,1 p"=9.1,2¡¡¡

W P"=9.2.

Pe = O.O7 Ps = O'2

n=8 m=8 n=8 m=16

812 812
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(4) Spuríous and oscíllatory states

No oscillatory case was detected in the testing of BAM. This result is consistent with

the result of stability analysis proposed by Kosko [Kosk1988]. The performance of BAM

converging to spurious states was also investigated. The probability for BAM being tapped

into spurious states grows rapidly if the number of stored patterns exceeds the capacity limit,

nf ( Zlog2n ¡. These results, as shown in Fig. 3.17, demonstrate that BAM, like the Hopfield

network, suffers from large numbers of spurious states. Approximately 75Vo of spurious

states constitute the false states.

3.4.6 Summary

This subsection presents quantitative descriptions aboutBAM's performance affected by

different loads (the number of pairs of associations stored in the memory), the noise in input

patterns, and network structures. In general, all performances remain at the same level as

those of the Hopfield networks. Test results manifest that the information capacity for BAM

is much lower than min(n, m). The upper bound for Hopfield network, nf ( ztog2n ) , can be

directly applied to estimating BAM's capacity. Although BAM is bidirectional, and the

neurons in either layer can be used as input or ouq)ut, the performance is by no means

identical. Test results show that relatively higher performance can be obtained tf n> m (here

n is assumed as the same dimension as that of the input pattern). Another finding is that

BAM's capacity is mainly determined by the dimension of inputpattern. The dimension of

output pattem is less important.
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3. 5. Ho-Kashyap Associative Memory

In general, once the network architecture and training patten is given, overall memory

performance will be determined by the encoding algorithm that is used [Hass1989]. In the

previous chapter, two types of dynamic associative memories have been investigated. These

memories simply use the Hebbian rule. Although this simple "one shot" encoding rule

allows very large associative memory to be implemented in a simple chip and makes storage

and removal of the contents of memory relatively easy, it suffers from low storage capacity

and a large number of unwanted false states. In an attempt to avoid using a correlation type

of the encoding scheme which had proved many inherent shortcomings, M. H. Flassoun

proposed a dynamic bidirectional memory (HK model) [Hass1989]. Unlike BAM, rhe HK

model utilizes nonsyrrunetric weights formalized individually during the encoding process.

These weights are constructed by employing the Ho-Kashyap algorithm which optimally

disfributes the association process ofeach neural layer over groups ofindividual neurons and

activation functions [Hass1989]. The high performance is contributed to the Ho-Kashyap

learning algorithm being capable of making optimal use of a nonlinear activation function

as a part of the recall process. However, in the Hopfield network and BAM, the similarity

measure (the weighted sum of all other neurons' activations) is realized in the

interconnection layers. The advantage of nonlinear thresholding, which is beyond in heþing

the stabilization of the memory, is not fully utilized. Thresholds used in these memories are

obviously not the optimal choice. Consequently, they are not as essential as those in other

memories such as encoding of information based on the Ho-Kashyap algorithm.

Nevertheless, the superior performance of the HK model comes at the cost of both the

increased temporal computation complexity and the doubled size of weights.
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3.5. 1 Mathematical background of Ho-Kashyap learning algorithrn

For the purpose of capturing key points of the Ho-Kashyap associative memory

encoding algorithm, it is necessary to review the fundamental Ho-Kashyap algorithm

[HoKa1965], [SkV/al981]. Consider the problem of designing a classifier to generate a

hyperplane that optimally separates two groups of linear separable feature vectors in the

training set. To do this one may define a cost function that numerically summarizes the error

of the performance:

p

E (w,n) = I ( wr ¡(s) - 6@ ',2
s=0

(3.4r)

', *t']t (3.42)

(3.43)., b@f'

where x(") = 1"f),.xf), .. ., rf))r stands for a feature vector, w = (wt,wz, .. .w,r)T and scalar å(") are

controllable parameters that need to be adjusted. The object is to find a vector w as well as

å(")such that the sum-of-square-€rror E(w,b ) is minimum. Equation (3.41) is readily

changed in the matrix form. First of all, define X as ap by n matrix:

X=l¡(1),¡(2),

and b as ap dimensional vector:

r
b=Lb$),bØ,

then the equation (3.4L) can be modified as

E (w,b ) = ll x * - b llt
=(xw_b)r(xw_b)
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It is known that the Ho-Kashyap algorithm achieves the minimum sum-square--error

solution of E1w, b ) by iteratively adjusting both w and b according to gradient descent.

Gradient descent means that each adaptation step taken on w and b should be in the direction

against the gradient of E(w, b ) (with respect to w and n ). Partially differentiating E(w, b )

with respect to w and n yields:

and

ðE(w'b) =2xr(Xw-b) Q'45)
ðw

ðE (w,b ) . t---------:- =-¿ (Xw-b). Q.46)
ðb

The Ho-Kashyap algorithm is described in the following statements:

Ho-Kashyap algorithm [HoKa7965]

Step ( 1 ) At time f=0 set arbitrary vector b1,¡ > 0.

Step ( 2 ) For a fixed w allows b1,¡ to change in the direction of steep descent subject to

b1,¡)0, i.e.,, b¡r+r¡ = b(r) + rt @ftl - | afO I ) ,wheretheerrorel,¡ isdefinedas

€1¿+l) = X *(,1 - b(rl.

Step ( 3 ) For a fixed b bring w to the least-square solution of for the matrix equation

X w = b > 0 . This is achieved by computing the generalized inverse matrix X+

and calculatÍng w1¡¡ - X* bf,l.

Step ( 4 ) Go to step (2) until b6+r) = b1¡¡, no further change takes place.
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3. 5" 2 Cornplete Ho-Kashyap associative memory encoding algorithm

To apply Ho-Kashyap algorithm to encoding pairs of associations, several

modifications need to be caried out. These modifications are included in the algorithm

given below.

Special notat¡ons

W : A mby nweight matrix

wi , A /-th row vector in the weight matrix but augmented by the threshold, d;, in the

output neuron i.

w; = [ -T¡w¡, wp. . .r,l' =l*,,1

i = 0,1,2, .. .,n j = 0,1,2, ,, .,ftr w¡o = -0¡

x Apby n matrix x =[x(r))x(s)) ...xþt]t tormeo by rdimensional input

patterns *t"r, ;¡(s) = 6t"),-rf), .. .,*f)),, s=1,2, ... , p.

Y Apbymmâtrixy= y(1)) y(s)) . . . y@) ]t tormeo by m-dimensional output

patterns ,t"r, y(s) = Oflyf), .. .,yf))r, s=1,2, ... , p.

X' A p by n+1 matrix whose s-th row *rt"r giverì by the augmented input pattern, x(") ,

according to the rule:

if yr(") = 1,I tr *(s)!
x'(s) - l

L 
'- ' '(")l

To be more specific:
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iryr(") = 1

= fctos a\s a^, - ., a^] i = o, l, 2, ..., fr
= [a¡]

*,(s) = t _r _rf) _*g), ..., _*lpl ,grr(',= _r or 0

= [- 40" - aLs - a2s, .. , - drr]

= [-o¡] i=0, 1,2,...,n

Note: (i) yj") is the ¡th element in the output pattern yG), (i¡) Ho-Kashyap encoding algorithm

needs to compute m X's for diff erent elements in the output pattern y("), s = 1 , 2, ..., p.

b7 apby l columnvector,n = [ bo) bß)...b@)] = ¡ru,],r=t,2,...,p.

Ho-Kashyap encoding algorithm [Hasst9B9]

step (1) lnitialize vector b1,¡ > 0.

step (2) Compute X" , the generalized inverse of matrix X' ( note that X' is p by n+1 matrix,

thus X'* is n+1 byp).

step (3) Compute ¡th row in the weight matrix, W1, namel!, *iø 
"t 

time f=0,

*,,10 - X'* b(,)

p .. p

-0j = ) rA, u[il and wji =2 oi,,uÍi], v ¡, i=r,2,...,n.
.ç1 s=1

It should be noted that (i) the weight matrix w is used to produce memory

response, V, = [ /" rf' . . .r,9] wnena memoryis evoked byaparticularpattern,

x,(s) _ ¡ t x[Ð xf), ..., 
"f;ì
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x("), during the associative recall, (ii) the augmented weight veclor (the ¡th row
vector in weight matrix) is only used in an encoding process. The numericalvalue

of an element, yj"),in the vector, yi (!'¡ =[-t, yj, yjr, ,,r, ]which is resutted

fromthemultiplicationof yr' = X' wj) isabitinformationgeneratedby the output

neuron i when a memory is evoked bythe input pattern x("), except forthe first

element, -0, , which is the threshold in the neuron 7.

step (4) Calculate error: e = X' wi¡) - b Ol . if a symbot tåliìl ¡s used, then

ls)ei,i = (¿
*

a¡s wjì(t) - bÍil , s= 1,2,...,p.

step (5) Modify the vector b 14 to minimize the error

b1r+1) = b(,1 + q @Q) - I eq,¡ I )

step (7) Compute new weights again

wjqr+r) = X'* bç*r¡ .

step (8) Compare

b ç+r¡ = b(r) .

lf it is false go to step (4), otherwise, it means wj is trained. ln this case, select the

next output neuron, i.e.,7i1, followed by calculating new x' based on the

information given by yj9t , s=1 ,2,... , p, and then, go to the very beginning, step (1),

to train wir.

continue to do this untilallweight (row) vectors in matrix wr are trained.

Note: The other weight matr¡x, w2, can be obtained by interchanging matrix X and y in

the above formulas.
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The Ho-Kashyap encoding algorithm outlined above is based on the original idea

proposed by Hassoun [Hass1989]. The initial vector blo¡ is based on the amount of

knowledge one has about the asymptotic value of b1*¡. To ensure the convergence, the

choice of learning rate rt must be within the interval (0, 11, [skv/a1981].

3. 5.3 Experimental results

Similar testing procedure and the network structure used in investigating BAM were

applied to HK models. However, because of the different encoding algorithms that were

utilized, some changes in the experiment must be specified. First of all, unipolar patterns

were used in both the encoding and recall processes. Thus, the transfer function in each

neuron was replaced by the unit step function (see Fig. (1.4) in chapter 1). Secondly, since

the HK model uses nonsymmefic weights, the weight size for the network is doubled

compared with BAM. Finally, the HK encoding algorithm differs from the Hebbian rule in

adaptively modifying the weightvector Ìv and margin vector b, alternatively. To capture this

property, the number of iterations was recorded and the average iterations for the HK model

to converge to a global minimum is calculated. The perforrnances of HK models were tested

for their ability to store the maximum number of associations and to correct noise. The effect

ofinputandoutputpatterndimensionsonaccretiverecallwasalsotested. Thememorybeing

trapped into spurious and oscillatory states during the associative recall was also

investigated.

(I) I nfo rmati o n c ap acíty

The maximum associationp that can be stored in the HK model was individually tested

on three different networks. These networks differed in their dimensions either in input or
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in ouþut. The first network was n=m=76, the second was n=16, m=8, andthe third was n =8,

m=I6. The purpose of testing these different models was to see if the number of stored

patterns in the HK model could exceed the number of neurons in either layer. The test

environment ìñ/as identical to that of testing BAM. The probability of HK models

successfully recalling stored associations accretively against the number of stored patterns

is plotted in Fig. 3.18. These results show that the upper bound of the information

4A121e2l'242f'32
NUME¡EFI OF STOFÌED PAT-|-EFINS

Fig. 3.18 Information capacity of the HK model (accretive recalt) for Model I (n=16, m=I6.), Model

II (n=16, m=8) and Model III (n=8, m=I6). Pe, the probability of each bit being reversed in input

patterns, equals 0.

capacity fortheHKmodelcanbeapproximatelyestimatedbycalculating min(n,m)tf n * m.

It should be noted ttrat this upper bound can only be reached if the memory is evoked by

noiseless input. The result also demonstrates that if a memory is configured as n = m, the

capacity is able to exceed its dimension. The capacity for the HK model configured as

n=m=76 is approximately 23 which is approximately 1.4 times of the dimension of input or

ouq)ut pattern. This interesting phenomenon suggests that the dimension of input or ouq)ut
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-l- n=16m=8
- O- n= I m=16
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pattem may not constitute the upper bound of the memory capacity. The actual limit of the

information capacity largely depends on the encodingllearning algorithm used.

The performance of interpolative recall was also investigated. The results do not show

much improvement in this respect. One conclusion made in accordance with this

phenomenon is thatfew spurious statesexistnearthe storedpatterns; as aresult, thememory

either performs accretive recall or slips to the state far from the correct point.

MODEL: HK
PAfiEHN: UNIPOLAR

-A- n=16n=16

4ø121€20242932
NIJMEIEFI OF STOFIED P.A'TTEFìNS

Fig. 3.19 Information capacity of the HK modet (interpolative recalÐ. Memory configuration:

n-1'6, m;1,6. Pe, the probability of each bit being reversed in input patterns, equals 0.

(2) error correction capability

The ability of the HK model to recover distorted inputs was tested. Results for both

accretive recall and interpolative recall are illusfrated in Fig. 3.20 and 3.21. From these

figures, one can see that the maximum noise level (determined by p") that the HK model

(n=I6,m:I6) cantolerate for storing two associations is approximately 0.2. Thisresultdoes

not show any improvement compared to BAM. However, due to the increased information

capacity, the HK model demonstates relatively higher performance in storing four as well

as eight associations.
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Fig.3.20TheerrorcolrectioncapabilityoftheHKmodel(accretiverecall). Memoryconfiguration:

n=l$ 2¡¡f,¡ç16. Memory load: p =2,4,8,and12.
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Fig. 3.21 The enor colrection capability of the HK model (interpolative recall). Memory

configuration 2 n=tg ¿1¡fl ¡n=l 6. Memory load: p = 2, 4, B, and, lZ.

(3) The effect of input and output pattern dímensions on accretive recall

The effect of input and ouÞut pattern dimensions on accretive recall was tested on three

differentHKmodels. Besides n=16,m=8andn=8,m=16, thenetworkconfigtrIed asn=m-B

was also involved in the testing. This additional network was used as a reference model.

o.5

PATTERN: UNIPOLAR

-A- n=ml6p=2
-a- n=Þ16;=4
-O- n=mlob=g
-l- n=m16p=12

MODEL: HK
PATTERN: UNIPOLAR

-A- n=Gl6o=2
-O- n=m16b=¿
-<l- n=ælob=B
-¡- n=G16o=12
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Results of two other models we¡e compared to this reference model. This was done by

calculating sum-square-root between the performance datameasured under the following

two differentconditions: n * m andn = m (referto section 2.2.3 nchapter 3 fordetails). The

positive histogram shown in Fig. 3.22. means an increase in perforïnance, whereas, the

negative histogram stands for a decrease in performance. The degree of effect is represented

by the height of the histogram. Although such an effect seemed to be not significant when

ßig.3.22(a): Theeffectofinputandoutputpattempatterndimensionsonaccretiverecall. positive

value suggests the increase in the performance, and the negative value denotes the decrease in the

performance. Here n andma¡e the dimensions of input and outputpattens respectively. p, stands

for the probability of each bit being reversed in input pattems.

the number of associations stored in the memory is small, the effect became larger and larger

asp increased. The overall effect (calculated according to Eqn. (2.7) inchapter 2) was less

significant compared with BAM.

P" = o.oz-P-1'2

n=8 m=8 n=8 m=f6

n=16 m=8 
Po = o.oz p. = 0.2
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Fig.3.23 Theprobabiliry of HKmodel converges to oscillatory states. Memory configuration: n=16

and m=r6. Noise: (the probabitity of each bit being reversed) p, , is set to: 0.01, 0.1, and 0.2.

(4) Spuríous and oscillatory states

Because the HK model utilizes nonsymmenic weights, the network can not guarantee

that it will converge to stable states. However, the results presented in Fig. 3.23 ndicate that

oscillatory states rarely take place if the noise level (specifi edby P 
") 

is weak and the number

of stored patterns, p, satisfies p << min( n, m). The probability of memory converging to

oscillatory states (PCOS) is as low as 0.078 even when p 
e = 0.2 and, p - 12. Compared with

spurious states, (depicted in Fig. 3.24) theproblem of oscillatory states may be discounted

if the number of stored patterns is small. Two other interesting phenomenons found in the

testing a¡e that (i) the oscillatory states become the major factor that deteriorates the memory

performance if the number of stored pattens exceeds 12, and (ü) approxim ately 90Vo of

spurious states in the HK model constitute false states. As a result, the HK model is not able

to demonstrate its power in performing interpolative ¡ecall.
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(b)
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Fi9.3.24 (a):TheprobabilityoftheHKmodelconvergingtospuriousstates. (b):Theprobability

of the HK model converge to false spurious states. Memory configuration: n=16 and m= 16. Input

noise: the probability of each bit being reversed in input patterns, p" is set to:E P"=0.01,

I Pr=0.1,andW P"=9.2.

(4) Le ar ní n g íter ati o ns

Although the Ho-Kashyap algorithmencodes information by optimal choice of aweight

vector w and a margin vector b iterativel5 the latter adjustable parameter b seems to be less

important if training patterns are linearly independent. Test results show that if the number

of stored associationsp << rrin(n,m),therequired number of iterations is approximately 1.

This is because whenp <<win(n,m), randomly generated training patterns may be mutually

linearly independent. Consequently, the error given in step (5) (in a Ho-Kashyap encoding

algorithm) is brought to zero by one step through computing wiu = X,* b,,,. This

phenomenon reveals that the cost function for a linear independent training set may have a

wide flat global minimum. The value of global minimum may not depend on the margin

vector b. In the cases of p << min(n, m), thegradient j_rJl.!f 
= z xr(X w - u ¡ in Eqn.

(3. s)takeswholeresponsibilityinfindingsolutionweights. Experimentalresults showthat
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thenumber of iterations isiargerthan one onlyif thenumber of storedpattetns,p,approaches

or exceeds min(n, m). The number of iterations averaged over 400 trials for each tested

model is listed in Table 3.5.

Table 3.5 Average Convergence Rate in the HK Encoding

Dimensions The number of training pairs

nm 8121620 24

16 16

16 8

I 16

88

'l.00 1.00

1.00 1.00

1.00 1.00

1.00 1.00

1.00 1.00 28.15 31.23 4423.64

2.16 22.58 79.25 103.74 2846.54

2.2e 22.51 72.45 115.43 2958.07

2.28 50.66 NiA N/A N/A

Note:Alldata are averaged over 400 trials.

3.5. 4 Summary

The HK model demonstrated relatively higherperformance. The maximum capacity for

the HK model configured as n=16, m=16 is approximately 23. Test results show that the

capacity was bounded at the minimum dimension of an input or oufput pattern. This upper

bound, however, can only be reached under the condition p, = Q. The performance of

correcting error in the HK model is superior to that in BAM especially when the number of

pattems is larger than 4. For storing two associations, the ability to tolerate noise remains

at the same level as that of BAM. The results also indicate that if the input pattern dimension

is lower than the outputpattern dimension, the effect of input and outputpattern dimensions

on accretive recall is not as significant as in BAM. The oscillatory states may be neglected

if the number of stored patterns is small. It is necessary to point out that the higher

performances of the HK model are achieved at the price of using nonsymmeric weights
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which require a doubled space to store them. The other price that the HK model has to pay

is the learning time. Compared to the Hopfield network and BAM (assumed as n: m), the

HK model takes approximately ntp (8p - i) x the number of iterations more encoding time.

3" 6. Backpropagation network for associative memory

Although the bacþropagation algorithm (BP) [RuMc1986] is deemed as rhe mosr

popular training paradigm and it has been widely investigated during the past few yoars, very

little is known about the performance of the networks used as associative memories. What

is the potential information capacity and error correction capability for this model whose

weights are formed by the error adaptive correction algorithm? Is it superior to other models?

Answers to these questions will be provided in this section.

3. 6.1 Error backpropagation training algorithm

Bacþropagation is a supervised learning rule for networks with hidden neurons. It is

the generation of percepfron [MiPa1969l which is only comprised of input layer and output

layer. For a multilayer network, the cenfral problem is in obtaining the internal

representation in hidden neurons. If the internal representation is known, weights associated

with these neurons can be generated or adaptively modified by using the Hebbian or

Ho-Kashyap encoding algorithm. The major practical limitation of perceptron approach is

that the learning algorithm only can be applied to networks with a single layer of modifiable

weights. This probtem has been the bottle neck for quite a long time. The Bp training

algorithm [RuMc1986] successfully circumvents this problem by applying a chain of

derivatives from the network ouþut layer down to the input layer. The error information
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collected at the output neurons is back propagated through the weights to form pseudo--er¡ors

for the neurons in the hidden layer. This allows hidden neurons to know what desired states

are expected. Based on these pseudo-errors, weights associated with these hidden neurons

are adjusted in a way that minimize these pseudo-errors. To give a specific example of this

computing sÍategy, consider the network in Fig. 3.25.

output layer y

hidden layer h

W¡

i = 1,2, ..., m

k=1r2r..., I

i = 1,2, ..., ninput layer x

Fig. 3.25 The typical structure of multilayer perceptron.

The error function in the network ou@ut is defined as

E_ g@ - r(ù¡z (3.47)

where 0ru' - yj\' it the square error of element j between actual activation lj.") and the

desired ouq)ut rr(4. luring the taining, this error is back propagated to the hidden layer.

Weights are changed according to

tPtn

;>>
s=l J:l
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ôE

and

where

and

and

The derivation of Eqn. (3.a8)-(3.51) is the chain rule starting from the ouþur neluon to the

input neuron. The generalized deltarule for adjusting the weights associated with the hidden

neuron is formulated by

Lwy = = -ôj ht
ôw¡*

ðE
Lwt¡ =-- =-EtX¡

dwk¡

ôj = yj (I - y¡) ftj', -rjr>

m

Ë* = hp (l - hù\ ô¡ w¡r
j=t

Lw¡rG + 1) = n, Lw¡rG) - a1 Lw¡*(/- 1)

Lw¡r¡(t + 1) = nz Lw¡r¡(t) - a2 Lw¡¡¡(/- 1)

(3.48)

(3.4e)

(3.s0)

(3.51)

(3.s2)

(3.s3)

where / is the iteration number, Lwrkç) and Lwo,1t¡ are calculated according to Eqn. (3.48) and

(3.49) respectivelyi n andrz âîa learning rates. The second term in Eqn. (3.52) and (3.53)

is called a momentum term. It is introduced to increase the adaptive step if weight moves

along a gently sloping floor and to decreases the adaptive step when it meets a sharp curvat1¡e

which may lead to oscillation. Coefficients, ø1 anda2, are constants which determine the

degree of effect of past weight changes on the correct direction of movement in weight space

[RuMc1986]. It is noted that the er¡or information utilized for modifying weights is derived

from the gradient, thus, a continuous differentiable nonlinear activation function is required.
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Such a nonlinear activation function used in each neuron (except in input neurons) is in a

sigmoid form:

F(x) =Th (3.s4)

The trained network has the property that the error function defined in Eqn. (3.a7) is

minimized.

Although the BP algorithm circumvents many problems in the real world, using such an

algorithm is usually frusfrating. One of the major drawbacks of this method is its slow

convergence rate [HiAn1989]. Starting from a random initial state, the path to the global

minimum is often strewn with local minima [WeMa1991]. Another problem is the network

architecture. Choosing the optimal number of hidden neurons and the number of hidden

layers is not an easy task. Because the neurons in a hidden layer correspond to separated

decision regions into which the training patterns are mapped tlipp1987l, too few hidden

neurons cause networks to be unable to capture the essential features in naining pattems,

whereas too many hidden neurons may create the redundant hyperspace which causes the

networks overreact in response to small (insignificant) changes in input patterns [Burr1986],

lWeMal991l.

3. 6. 2 Tbaining experiments

Because the performance of the BP network is significantly affected by the network

topology, the task of performance evaluation is far more diff,cu1t. In order to meet the goal

of comparability with other models as described in the previous sections, the topology for

the BP network is carefully selected. The rule for determining if hidden neurons should be
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infroduced is based on whether networks are ablo to converge to a global minimum. Such

a heuristic approach in determining the network sfructtue begins with the network not

containing hidden neurons. If the network fails to converge to a global minimum after twenty

fials, hidden neurons with the same size of output arranged in one layer are added, otherwise,

the structure remains unchanged.

All initial nefworks used in the testing contained only two layers: the input layer and the

outputlayer. The dimensions ofinputand ouÞutlayer were setto (nxm): 16x16, 16x8, 8x16,

and 8x8. The first three models had the same dimension as Model I, Model II, and, Model

111used in testing the performance of BAM and the HK model. Each network was firstly

trained by two and four associations; and then the number of training pairs was increased by

four. Because the performance of the BP network depends on data representation, the

taining experiments were undertaken on four groups of taining sets. Each set had a fixed

number of associations p. These training associations were randomly generated under the

MD constraint.

The network naining was carried out by using PDP software [McRu1988]. The choice

of learning mode was set to "set model fast 1" [Dole1991]. In this mode, the Bp program

updates its weights and thresholds according to the delta-bar-delta weight update rule

[Robe1988], fDolel991]. The default parametors mentioned in [Robe1988] were selected.

All networks were trained by using a batch adapting mode (weight and threshold error

derivatives were accumulated over an entire processing epoch and then the weights and the

thresholds were modified) [McRu198S]. The error criteria were set to 0.01 for all models.

The experimental results showed that the BP algorithm was easily to converge to a global

minimum if the input dimension was higher than the output dimension. In the case of p =

min(n, m),this was no guarantee for BP to find solution weights. The local minimum as well
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as oscillatory problems occurred frequently. In this case, the fraining mode was changed

tomomentum,withafixedlearningrateofq =0.Sandmomentumcoefficient a =0.2. These

parameters were chosen because they provided a fast convergence rate and a high possibility

in finding solution weights. The convergence rates averaging over 4 trials for each network's

configuration are listed in Table 3.6.

Table 3.6 Average Convergence Rate in the Bp Training

Dimensions The number of training pairs

nm 16

16

16

I
I

't6

I
16

I

20.25

18.33

30.1 2

25.34

39.22

45.65

112.24

64.34

96.34

63.87

236.50

145.34

202.03

162.65

9126.50.

N/A

Note: alldata are averaged over 4 trials. symbol ( x ) means the network

contains hidden neurons with the same dimension as the output neuron.

3. 6. 3 Experimental results

The tests were mainly designed to investigate how the quality of associativerecall in Bp

networks is affected by (i) the number of stored associations, (ii) noise in input patterns, and

(iii) the spurious states. Because the BP network is a feed forward network the oscillation

case need not to be considered. It should be emphasized thatthe results presented here are

Iess reliable compared with those of the BAM and HK models. The inability to provide

highly reliable results is due to the slow convergence rate in the training process. Another

reason is that the standard PDP software does not provide automatic uphill movement. In

a practical work this automatic uphill movement can be very helpful if a network is often
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tapped in local minima. The need to manually control the learnin grate and the momentum

parameters is another problem that prohibits the faining of large groups of associations

within a limited time.

(I) i nfo rm at i o n c ap a c íty

The capacity of the BP network was tested on three different models varied in their

sfructures. The topological structures of tested networks were the same as those used in

testing the performance of the BAM and HK models (Model I model II and, Model IIl.
However, there was one exception. This exception occurred in Model II (n=8, m=I6, and

p>8) where 16 hidden neurons arrange in one layer were introduced. The performance of

information capacity is illustrated in Fig. 3.26. Theresult shows that (i) the Bp network is

-¡-¡(>
tJ-¡
cÉ,
¡r¡
t-
t-Ll
cÉ,(J
<)
l!o
æ¡o
CEc!-

1.O

o,B

o.6

o.4

o.2

o.o
48121A2l'?428g2

NUMBEFì OF STOFIED PATTEFTNS¡

Fig. 3.26 Information capacity of the BP nenvork (accretive recall). Model I (n=I6, m=16.), Model II
(n=16,m=8) urd Modellll (n=$,7n;l$). Pe, ttreprobabilityofeachbitbeingreversedin input patterns,

equals 0.

guaranteed to recall all training patterns if the number of stored associations, p, satisfies

min(n+I, m+l ), and (ii) for three tested BP networks, the capacity gaps in terms of accretive

MODEL: BP
PATTERN: UNIPOLAR

-A- n=16m=16

-a- n=16m=8
- i- n= I m=16
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MODEL: BP
PATTERN: UNIPOLAR

-A- n=16n=16

4 I 12 1é¡ 20 24 2B 92
NIJMBER OF STOFIED PATTEFINS

Fþ.3.2TlnformationcapacityoftheBPnefwork(interpolativerecall). ModelL Memoryconfiguation:

n=l$,a=t$. Pe, theprobability of each bitbeing reversed in input patterns, equals 0.
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PROB- OF EACH E¡IT EIEING FIEVEFISED

Fig. 3.28 The erro¡ corection capability of the BP network (accretive recall). Memory

confi guration 1 n=lg s¡1f, ¡n=l 6. Memory load: p = 2, 4, B, and 12.

recall are not obvious. Fig3.27 illustates the performance of interpolative recall of model

1. The capacity for this model is about 17. Itremains at the same level as that of accretive

recall.
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(2) error correction capøbility

The results of error correction for BP networks is presented in Fig. 3.28 and3.29. The

results indicate that although the capacity of the BP network is substantially higher than the

Hopfield network and BAM, the maximum noise level (deno tedby P 
" 

) that the BP network

is able to tolerate approximately equals 0.2 (tested under the condition ofp = 2). However,

the situation is changed as the number of stored associations increases. The BP network

outperforms both the Hopfield and BAM models if the number of stored

patterns/associations is larger than 2. In terms of accretive recall, the performance remained

at the same level compared to that of the HK model.

1.O

o.e

o.o
o.o o.1 o,-2 0.3 lJ-4

PFìOB. OF EACH EIIT BEING REVERSED

Big, 3.29 The enor correction capability of the BP network (interpolative recall). Memory

confi guration 1 n=lg 2¡1d ¡y¡;16. Memory load: p = 2, 4, B, and, 12.

(3) The effect of ínput and output pattern dímensions on acuetive recall

In order to measure the effect of input and oulputpattem dimensions on accretive recall,

an additional BP netwotk, which was configured as n=8, m=8, was infroduced. The

measurement of this effect was based on the performance statistics collected during the

o.a

J

<)
II¡
cE
LL¡
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CE¡rtt-

=ILo
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CE
ct-
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testing" The effect of input and output pattern dimensions on accretive recall was calculated

according to the Eqn. (2.7) defined in section 2.2.3 inchapter 2. To meet the requirement

of comparability with the results from other tests, similar test points were selected, i.e.,

P 
" 

=0.07 and 0.2. The resulr of the effecr is illustrared in Fig. 3.30.

Fig. 3.30 The effect of input and output patterns dimensions on accretive recall. positive value

suggests the increase in the performance, and the negative value denotes the decrease in the

performance. Here nandmdenotethedimensionsof inputandoulputpatternsrespectively. p"

stands for the probability of each bit being reversed in input patterns.

(4) Spurious states

The performance of accretive recall shows that the trained BP network is guaranteed to

recall all stored patterns, namely, if the input pattern is not contaminated with noise, the

probability for BP network mapping into spurious memory will be zero. Furthermore, the

high capacity also prevents from the BP net'uvork mapping into spurious states. Fig. 3.31

depicts the results of PCSS testing. The tested model is configured as n=16 m=I6. The most

interesting phenomenon found in this testing is that although there are alarge number of

spurious states, quite a few of them belong to the category of false states. This phenomenon

c0

N
t--o
IJJ
tl.
l¡-
]¡,t

n=8 m=8 n=8 m=16

n=16 m=8

Fu=o'07P"=0.2
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helps to explain the reason why the BP network is able to achieve a high probability of

interpolative recall.

0.8

g 0'6
o
o-

2481216
NUMBER OF STORED PATTERNS

24812
NUMBER OF STORED PATTERNS

o
s)
6l¡.
U'
1to
o-

Fig.3.3l (a): The probability of the BP network converging to spurious søtes. (b): The probability

oftheBPnetworkconvergetofalsespuriousstates. Memoryconfiguration: n-l6arrrdm=16. Input

noise: the probability of each bit being reversed in input pattems, p" is set to: E Pr=0.01,
I P"=0.1,andFd P"=9.2.

3.6.4 Summary

The performances of the two-layer and three-layer feed forward BP network used for

associative memories were investigated. The investigation was undertaken on 12 different

BP networks varied with their input and output dimensions. Those tested models had the

same structure as BAM and HK models except for model Iil (n=8, m=76, andp=16) which

contained 16 hidden neurons arranged in one hidden layer. The results of the experiments

show that if p > min(n, m) theBP network fails to converge (sum-square--enor is larger than

1) unless hidden neurons are introduced (the number of layers and the number of neurons

need to be added into the network depending on the number of pairs of training patterns and

the mutual coupling among training patterns). The results also show that the nained

ÆÆÆÆ
812
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networks are guaranteed to recall all stored associations if the network is evoked by noiseless

inputs. The effect of input and output pattern dimensions on accretive recall is relatively

significant compared with both BAM and HK models. The probability for the Bp nerwork

mapping into spurious states (false) was significantly lower than other models.
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CHAPTER 4

COMPARISONS

4. 1. Introduction

The preceding chapter has shown how the proposed testing procedure was applied to

investigating four different models of associative memories. In this chapter, an attempt is

made to compare their performances. The discussions as well as additional findings from

the comparison will also be presented. Because the performance gap between certain types

of models may not be wide for some properties, the histogram chart plotted at each test point

is adopted in order to make these gaps more obvious. The comparisons focus on

. information capacity

. the ability to correct noise in input patterns,

. the effect of input and output pattern dimensions on accretive recall,

. spurious states, and

. the computational complexities in encoding and associative recall.

4. 2. Information Capacity

Experimental results presented in chapter 3 have shown that the difference of capacity

between any two tested models become appreciable if the number of stored

patterns/associations is larger than two. For this reason, the comparison begins with storing
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four patterns/associations and than increasing the load by four. The capacrty comparison

taken on four different memory models is divided into two major categories. One is

concerned with the quality of recall stored patterns/associations perfectly (accretive recall);

the other is the performance of interpolative recall. It will be seen that these two different

types of recall lead to two different 'ways in appraising the performance of associative

memory. In this section, the performance comparison will be extended to the situation that

the memory input is corrupted with noise. Although this situation is beyond the scope of

analyzing the memory capacity, some properties behind the test condition that the memory

is evoked by training patterns will be discovered. This situation is somewhat different from

the error correction since this comparison mainly focuses on how the quality of associative

recall is affected by different memory loads.

The first comparison was t¿ken on the accretive recall. Plotting all results from four

tested models as well as taking into account the noise in input pattems made comparison

much easier. From Table 4. 1 and Fig.4.1, one may immediately deduce that the HK model

Table 4. 1 Summary of lnformation Capacity

Model Criterion Accretive lnterpolative

HOP

BAM

HK

BP

P, = 0.95

P,= 0.95

P, = 0.95

P,= 0'95

3

3

23

17

4

4

23

17

Me mo ry confîguration: Hopfield network: ¿= 1 6, BAM, HK, and
BP: n=16, m;16. Test condition: no noise in input pattems.
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Fig. 4.1 Performance comparison: information capacity (accretive recall). Tested rnodels are

configued as: (i) BP, HK, BAM models: n-16,m=L6, (ii) Hopfield network: r=16. E Bp

network, f ru< model, ñ BAM, @l Hopfield network.

and BP network are able to achieve higher probability of accretive recall which leads to the

higher information çapacity. The Hopfield networks and BAM never pe¡¡orm

competitively. Furthermore, the HK model appears to be able to achieve higher quality of

accretive recall than BP if p is small (see Fig. 4.lb and 4.1c). However as p increases, the

degradation in performance in the HK model is more significant than in the BP network.
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One property which may not be immediately apparent in Fig. 4.1 is that BAM seems to

have more difficult in performing accretive recall than the Hopfield network if the noise levei

in the input pattern is low. The essence behind this superficial phenomenon is that BAM can

only recall re-stored association if and only if this association is a local minimum in an

energy surface [Kosk1987], [Kosk1988]. The problem, however, lies in the fact that the

encoding algorithm proposed by Kosko can not guarantee that any stored association is a

local minimum. This issue has been investigated by Y.-F. Wang in his recently published

paper [WaGM1991]. Another reason which results in BAM being unable to recall stored

association is the reversed version of raining patterns as well as the bidirectional search

process. Because the fundamental Hebbian rule can not guarantee that the energy of any

training association is a local minimum, the bidirectional search may not always help BAM

to converge to a correct state. This hypothesis has been proved experimentally in this work.

The result is presente d in Appendix I . This result manifests that the bidirectional recall is

sometimes detrimental for the quality of associative recall.

Of the interpolative recall, the BP network constantly performs best. The HK model is

unable to compete with the BP network if the input pattorn is corrupted with noise (see Fig.

4.2). From these results, it can be conjectured that the HK model may be best-suited to

perform accretive recall especially when a few associations are stored, while the BP network

may win favor in the area where interpolative recall is essential.
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4.3. The Ability to Tolerate Noise

Similar investigation was carried out in order to capfiue the performance of error

correction capability. As before, the HK model demonstrates superiority in accretive recall

if the number of stored patterns is less than eight; while the BP network demonstrates the

lt2 -



Chapter 4 Comparisons

best performance in inte¡polative recall. These results are shown in Fig. 4.3 and, Fig. 4.4.

Some intrinsic behavior captured in the investigation is that (i) the relative performance of

the Hopfield networks and BAM are approximately at the same level in the error correction
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Fig. 4.3 Performance comparison: error correction capability (accretive recall). Tested

modelsareconfiguredas: (i)BP,HK,BAMmodels: n=l6,rn=r6,(ü) Hopfieldnerwork:n=16.
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aspect, (ü) none of the models are able to peform an acceptable level of associative recall

if noise level, Po, is higher than 0.2 (tested under the condition of storing more than four

patterns/associations), and (iii) for both accretive recall and interpolative recall the

performance of the HK model appears to be approximately identical. This phenomenon

implies that the bidirectional HK model behaves less "flexibly" than other models. It either

successfully converges to correct states or slips to false states.

Pel¡.07 PÈ0.1 Pê=0.2 Pe=o Pe=0.07 Pê:0.1 pø4.2

PRO. oF EACH BIT BEING REVERSED (p=16)
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4.4. The Effect of Input and Output Pattern Dimensions
on Accretive Recall

Experimental results provided in Chapter 3 have verified that the quality of accretive

recall is somewhat affected by the input and ouþut pattem dimensions. In view of the

results, one may conjecture that improvement in the performance of accretive recall is

achievable if the input pattern dimension is higher than that of the ouþut pattern dimension

(n> m),and the performance decreases if the inputpattern dimension is lower than the ouþut

pattem dimension (n < m). It ought to be noticed that the effect of input and ouþut pattem

dimensions on accretive recall is measured under the condition that random errors occur in

the input patterns. In general, the selectivity of associative mapping is better if the input

patterns are further distant from each other.

Fig. 4.5 Performance comparison: the effect of input and ouçut pattern dimensions on

information capaciry (accretive recall). Tested models are conf,rgured as: (i) Bp, HK, BAM
models: n-I6, m=8, n-8, m=9, and n=8, m=L6.E Bp network, I ru< model, N SAM.

Thepositive valuesindicatetheincrease in theperformance, whereas thenegative values stand

for the decreases in the performance.
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The experimental results aiso demonstrate that the degree of the effect of input and

output pattern dimension on accretive recall is encoding algorithm dependent. These effects

measured by means of simulation of BAM, HK and BP memories ate depicted in Fig. 4.5.

It should be pointed out that throughout the comparison, the performance of the memory

model configured as n=8 and m=8 provided a baseline reference. The results given in the

Fig. 4.5 show that the HK model exhibits the least effect, especially when n < m.

4. 5. The Spurious States

This section is only concerned with the comparison of the probability of tested memories

converging to spurious states (false) during the associative recall. The discussion of another

type of false states, oscillatory states, is omitted here because they were only detected in the

HK model. The probability of associative memories converging to (false) spurious states

is depicted in Fig. 4.6. These figures suggest that both Hopfield and BAM suffer a serious

spurious state problem. It has been shown [HaYo1989] that these spurious states aïe

composed of two different classes: one is, of course, the reversed version of naining patterns,

the other is the Boolean combination of training patterns. Substantial differences can be

found by comparing the performance of Hopfield and BAM models with HK and Bp

networks. The unidirectional BP network demonstrates the lowest PCSS for most cases.

The lowest PCSS may be contributed to the BP training algorithm which is capable of

generating highly precise weights and thresholds through minimizing the

sum--of-square-error between actual responses and the desired outputs iteratively. The HK
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Fig. 4.6 Performance comparison: the probability of memory converging to false spüious

states, PCSS (false). Tesæd models are configured as: (i) BP, HK, BAM model s n=lg, ¡n=lg,
(ü) Hopfield network n=I6. 8 BP network, l IIK modet, Sl BAM, @ Hopfield network.

algorithm, however, can only produce least-square solution and provide less flexible

connecting weights. Because the Hebbian rule is unable to generate the weights and

thresholds with the same dynamic range as those generated by Ho-Kashyap and Bp

algorithms (see appendix tr), the performances of Hopfield and BAM models, therefore, can

not compare with those of the HK and Bp networks.
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In conjunction with the high performance in interpolative recall, it is concluded that for

the BP network, there must exist a large number of (nonfalse) spurious states located around

the stored training pairs. These states improve the quality of interpolative recall. The HK

model, however, tends either to converge to true states or to slip to the false states.

4. 6. The Analysis of Computational Complexity in Encoding and Recall

Perhaps the most difficult work is to compare the computational requirement. This

difficulty is attributed to the fact rhat both HK and BP encoding algorithms include steps

which are executed only when certain conditions are met by the data atthe given iteration.

This phenomenon implies that the actual computation time on every iteration is not a

constant. Another difficulty is due to the factthatthe computation requirement is sensitive

to the fraining pattern that is selected, the learning parameters that are used, and the error

criteria (for BP) which is chosen. For these reasons, the computational complexity measure

is not meaningful unless all optional conditions are specified and statistical analysis is used.

Even though one is able to meet the conditions which are described above, the results may

still not be reliable because the BP algorithm frequently suffers from local minimum

problem, especially as p approaches the dimension of min(n, m) or hidden neurons are

introduced. For all the reasons addressed above, the results presented in Table 4. 2 should

be taken to be no more than an approximate guide to the relative complexities except those

of the Hopfield and BAM models.

(I) Temporøl complexity of encoding algortthm

In the measure of the computational complexity, a cost function, o(c1n,c2m,cap), is

adopted, where ct, cz, and ca are constants, n and m refer to input and ou@ut pattern

dimensions and p denotes the number of patterns/associations stored in a memory. This
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computer independent measure is used to expross the order of the time required to execute

the algorithm on the problem size n and m and p. Accordingly, if the algorithm is said to

execute o(2n2m) time, it is equivalent to be expressed as follows: the amount of work required

by the algorithm is proportional to 2n2mlKtonl987J. Table 4.1 presents the results of the

computational complexity measure of the algorithms used in implementating Hopfield,

BAM, and HK models of associative memories. The complexity analysis of the Bp

algorithm is exclusive because the computational requirement is extremely sensitive to

many conditions. It should be pointed out that the number of iterations has not been taken

intoaccountintheanalysisofcomputationalcomplexities. Forthisreason,theresultsshown

in Table 4.2 can only be treated as a unit complexity. The actual computational requirement

for the Ho-Kashyap encoding algorithm is the number of iterations (see Chapter 3, section

3.73) times the unit complexity.

Table 4. 2 Computational Complexity

Model Complexity

HOP

BAM

HK

o(¡f p)

O(nmp)

Ogrf f + 4r'É)

(2) Temporal complexíty of assocíative recall

For a dynamic associative memory, the computational requirement depends on both the

size of the memory and the number of iterations. A unit execution time (one iteration) will

be a constant if the size of memory is fixed. For this reason, the analysis of computational

complexity can be focused on the number of iterations that is required in an associative

recall. Tables 4.34.5 give the averaging results of the Hopfield network, BAM, and the

HK model. Since the number of iterations is affected by both the noise level in the input
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pattern and the number of stored patterns in the memory, the parameters, p" and, p, are

specified.

Table 4. 3 Average Number of Recall lterations (Hopfield)

Pe=0.01 Pe=0.07 Pe=o.1 Pe=o.z

4

I
12

16

1.15

1.22

1.23

1.52

1.69

1.76

2.48

2.69

1.81

1.90

2.56

2.72

1.97

2.14

2.72

2.83

Table 4. 4 Average Number of Recall lterations (BAM)

Pe=0.01 Pe=o.07 Pe=0.1 Pe=o.2

4

I
12

16

1.15

1.71

2.25

2.61

1.68

1.71

2.46

2.68

1.81

1.85

2.53

2.77

1.97

2.95

2.70

2.88

Table 4. 5 Average Number of Recall lterations (HK)

p

4

I
12

16

Pe=0.01 Pe=0.o7 Pe=0.1 Pe=o.z

1.15

1.53

1.38

1.95

1.69

1.69

1.82

5.42

1.82

2.04

3.45

6.27

1.97

2.04

4.24

7.25
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CHAPTER 5

CONCLUSIONS AI\D RECOMMENDATIONS

5. 1. Conclusions

The testing procedure that was developed for this study have been used to investigate the

performance of associative memory. The procedure follows the black box test strategy.

Although such a test strategy is based on the probabilistic and statistical analysis, reliable

test results were obtained with low computation cost. The high reliability and the low

computational requirement contribute to the minimum distance approach proposed in this

thesis. This approach also allows for estimating the extreme-performance characteristics

of associative memories.

The performance investigation has focused on four major properties: information

capacity, error correction capability, the effect of input and output dimensions on accretive

recall, and the probability of memory converging to false states. The computational

complexity of encoding and associative recall were also investigated. Conclusions drawn

from this investigation are as follows:

The error correction performance of associative memories based on the Hebbian

learning rule, such as the Hopfield network and BAM, is affected by the reversed version

of the training pattems unavoidably stored in the memory during the encoding. However,

if the reversed version of naining pattorns are permitted to represent the same information

as the original patterns, improvement in interpolative recall can be obtained, especially when

a few patterns/associations are stored in the memory (see Appendix trI).
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The BAM'S capacity is much lower than Kosko's original estimation, min(n, m). The

actual capacity can not exceed nf2log2n, which was analytically derived by McEli ece, et al.

to estimate the asymptotic capacity of a Hopfield nerwork with n neurons tMpRvl9g7l.

This value can be directly applied to estimating the capacity of the bidirectional associative

memory.

Experimental results reveal that the bidirectional search strategy used in BAM and HK

models does not provide significant improvement in accretive recall. It sometimes

deteriorates the performance of interpolative recall.

The Ho-Kashyap encoding algorithm provides a significant improvement in accretive

recall. The maximum associations that can be storod in the HK model are approximately

nin(n, m) if n * m. However, if the memory is constructed as n = rL, the capacity is able to

reach approximately I.4n (tested at n=m=B and n:m=!6).

The HK encoding algorithm allows for the highest performance in accretive recall if the

number of stored pattern p is small with respect to the input and output pattern dimensions.

The memory implemented by the bacþropagation algorithm is guaranteed to recall all

stored training pairs if the memory is evoked by noiseress inputs.

The BP network seems to be best-suited to the situation where interpolative recall is

more important than accretive recall. The superiority in this respect becomes more

pronounced as many associations are stored.

All heteroassociative memory show improvement in performance when n ) m, and,

degradation in performance when n < m. Among these, the HK model is least affected by

the dimension of input and ouþut patterns.
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Of all tested models, the HK model demonstrates the lowest probability of converging

to spurious states. In contrast, the BP network shows the highest probability in this respect.

ForHKmodeI,95Vo spurious states constitutefalse st¿tes. FortheBPnetwork, however,

only 35Vo spurious states belong to the false states category.

For the Ho-Kashyap encoding algorithm, the average number of iterations required for

encoding is approximately 1 if the number of stored patterns is much less than min(n, m).

The summanzed investigation results are shown in Table 5.1.

Table 5.1 Summary of lnvestigation Results

Memory Capacity Capacity Err-corre Err-+one Spurious Spurious oscillatory SystemModel (accretive) (interpolative) (accretive) (interpolative) states states (false) states *i'pl"iity

Hopfield o
Network 4 Pe-0.02 Pe=9.19 Pr=0.93 Pr=0.61 pr=0.00

Weights: n x n

Encoding:O(Ép)
Recall: less then 3
iterations

BAM Pe=6.92 Pe:..12 Pr=0.91 Pr=0.54

Weights: n x m

Pr=o oo E:iilî:;,i3iå,
iterations

HK
rt¡o¿"1 23 23 Pe-9.12 Pe='.15 Pr=0.00 Pr=0.00

Weights: n x m
Encoding:O(4ÊÉ
+arÊf¡
Recall: less then I
iterations

BP
Ñetwork 17 17 Pe=9.99 Pe:..2 Pr=0.00 Pr=0.00 N/A

Weights: n x m

Encoding: N/A
Recall: feedfon¡vard

Note: (i) Memory configuration:Hopfield network: n=16. BAM, HK, and BP (no hidden layer):n=16, m=16, (ii)
"Err--corre" is an abbreviation for error correction, (iii) both information capacity and error correction capability
is measured under the minimum distance constraint (see section 2.3.2 and section 3.S.4) and the performance
criterion - the probability of memory converging to stored patterns/associations is set to 0.9S and (iv) the
performance of correcting error is measured under the condition: p=4 while the spurious and oscillatory states
are measured under lhe condition: p=16 and Pe=O.

5. 2. Recommendations
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Extending this work to other memory models and using a relatively larger size of network

may constitute an important subject for further research. This work may focus on estimating

the asymptotic information capacity for each tested model. Other research required to

extend this work is to investigate how the quality of associative recall in the BP network is

affected by the number of hidden neurons. The behavior of continuous value mapping within

the interval [0, 1] for the BP network may be also worth investigating. Finally, the

performance of adopting polynomial expansions of the input vector in higher order

associative memory can be an interesting issue for future study.
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APPENDIX I

AN EXAMPLE OF BIDIRECTIONAL RECALL IN BAM

The bidirectional search strategy used in BAM can not ensrue improving the quality of

associative recall. trt is, sometimes, even detrimental to the performance, especially in the

case of interpolative recall. One reason for this is that the Hebbian learning rule can not

guarantee that all fraining pairs are at local energy minima. On the other hand, the fact that

the bidirectional search process always seeks the state which has a lower energy potential

also results in the training pair with relative higher energy potential seldom being recalled.

The following example shows that BAM fails to recall the second training pair even if the

memory is evoked by the training pair itself. Here, the BAM contains four input ne1rrons

and three ouq)ut nerrons. The number of stored patterns is three.

Table I BAM Training Patterns

No. lnput patterns Oouput patterns Energy

1

2"

3

-1 -1 -1 -1

-1 -'l -1 1

1-1 1-1

-1 1 -1 -14
1 -1 1 -'t0
1 -1 -1 -12

Note: BAM fails to recall the second training pair (marked by -).
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Table ll BAM Weight Matrix { w¡, }

jr2s4e
1-1-31-10
213-1 1o
3-3-1-110

Note: weight matrix { w¡ } is the transposed

form of {w;i }

Table lll lntermediate States in Bidirectional Recall

Iteratgns X space Vgry,ng y space Energy

1 -1 -1 -1 1 --+ 1-1 1 -10
-1 -'t 1-1 <_ 1_1 1 _14

2 -1 -1 1 -1 -) 1 -1 1 -14 (srabte)

Figure I depicts the results of the investigation taken on two different types of recall, i.e.,

the unidirectional and bidirectional recall. As it is shown, in most cases, the probability of

bidirectional recall is lower than that of unidirectionar recarl.
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Fig. I Performânce comparison between unidi¡ectional recall and bidirectional recall. Tested

models were configuref, ss n=l$, ¡n=lg. tr ff¡feU (Jnidirectional heteroassociative

associativememoryimplemenredbyHebbianrule),8 gAM.Fig.(a)andFig.(b):accretive

recall, Fig. (c) andFig. (d): interpolative recall.
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APPEI\DIX II

WEIGHTS - TTIEIR. FLEXIBII,ITY

Weights in BAM, HK, and BP memories are presented in this appendix. Table (IV) is

the set of (bipolar) training pairs attempted to be stored in BAM. BAM contains eight inputs

netuons and eight output neuons. The number of patterns stored in BAM is four. The

weights in BAM are listed in Table V. Simitar fraining pairs were applied to encoding HK

and BP networks, but all "-1" were replaced by "0" (see Table VI). The real-value weights

for the HK and BP networks are listed in Table Vtr- IX. From this typical example, one

can see that the BP algorithm provides the most flexible weights and thresholds. These

weights take 69 different real values within the range l-3.79,3.331. The next is the

Ho-Kashyap algorithm. It generates 30 and 22 different values for { w¡, } and { wu } within

the range 14.57,0.461 and [-O.38, 0.43] respectively. The least flexible weights are

generated by the BAM encoding algorithm. The integer weights take only 5 different values

within the range 14,41.

Table lV BAM Training Patterns

No. lnput patterns Output patterns

1

2

3

4

-1
1

1

-1

-1

-1
'l

1

-1 11't -1
11111

-1 -1 1 't 
1

1 1-1-1 1

1

-1
1

-1

1

-1
1

-1

-1 -1-1-1 1 1 1

1 1-1 1 11 1

1 1-1-1-1 1-1
1 1 1 -1 -1-1 1
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Table V BAM Weight Matrix { w;, }

j

1

2

3

4

5

6

7

I

4

-2
-2
-2
-¿

0

2

-2

-2
4

4
0

0

-2
0

0

2

0

0

-4
0

2

4

0

2

0

0

-4
0

2

4

0

-2
0

0

0

0

2

0

4

-4
2

2

2

2

0

-2
2

0

2

2

2

-z
4
-¿
-2

0

2

2

-2
2

0

2

-2

0

0

0

0

0

0

0

0

Note: weight matrix { w¡ } is the transposed form of { pri 
J

Table Vl HK and BP Training Patterns

lnput patterns Output patternsNo.

10000111
01101111
1 1 10 0 010
0 1 110 001

00011101
10111110
11001111
01110010

1

2

3

4

J

1

2

3

4

5

6

7

I

Table Vll HK Model Weight Matrix X * y { w;, }

-0.11 0.11 -0.37 -0.16 0.11 0.11 _0.16 o.g7 o.o5
0.22 0.28 0.16 -0.04 o.o3 o.o3 0.46 _0.16 0.26
0.22 0.28 0.16 -0.04 o.o3 o.o3 0.46 _0.16 0.26

-0.18 0.18 0.11 -0.03 -0.32 _0.32 _0.03 _0.11 _0.16

0.45 -0.45 0.32 -0.08 o.o5 o.o5 _0.08 _0.92 _0.47

0.07 -0.57 0.1'l 0.22 0.18 0.18 _0.28 _0.11 _0..t6

0.1 8 -0.'1 8 -0. 1 1 0.03 0.32 0.32 o.o3 0.1 1 0. 1 6
4.28 -0.22 0.26 0.46 o.o3 o.o3 _0.04 _0.16 0.26
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Table Vlll HK ModelWeight Matrix y--- x { w,; }

1

2

3

4

5

6

7

I

0.00 0.29 0.29

0.08 0.17 0.17

4.42 0.17 0.17

4.25 -0.07 -0.07
0.17 0.05 0.05

0.17 0.05 0.05

4.17 0.38 0.38

0.42 -0j7 -0.17

-0.29 0.43 -0.00
0.17 -0.25 -0.42
0.17 0.25 0.08

o.o7 -0.11 0.25

-0.38 0.07 0.17

-0.38 0.07 0.17

-0.05 0.07 -0.17
-0.17 -0.25 -0.08

0.29 -0.43 -0.14
-0.17 -0.25 -0.00
-0.17 0.25 0.00

-0.07 0.61 0.29

0.38 -0.07 0.14

0.38 -0.07 0.14

0.05 -0.07 0.14

0.17 -0.25 0.00

Table lX BP network Weight Matrix x * | { w;, }

I

1

2

3

4

5

6

7

I

4.57 0.20 -3.34
2.34 1.89 1.72

2.11 1.91 2.08

-1.37 1.59 1.49

1.63 -3.79 1.18

0.20 -4.73 0.53

1.66 -1.61 -1.46

-1.37 -1.62 2.62

-1.15 1.25 0.65

-0.90 -0.77 -1.03
-1.25 -0.52 -0.61
0.35 -2.86 -3.25

-0.33 0.55 0.52

1.82 1.69 0.92

-0.72 3.38 2.41

4.66 0.'15 -0.65

-1.19 3.38 0.28

3.23 -1.24 -0.21
3.27 -1.70 -0.37
0.36 -1.26 0.91

0.25 -3.41 -0.86

-1.36 -0.44 -0.04
-0.73 1.14 -0.43
-0.73 -0.49 0.45
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APPENDIX III

PERFORMANCE OF TTIE HOPFIELD
MODBL RECALLING BOTH ORIGINAL AND

REVERSEÐ TRAINING PATTBRNS

The er¡or correctionperformance of the Hopfield network testedunderthe condition that

the reversed version of taining patterns are allowed for representing the original training

patterns is presented. This performance is then compared with the results presented in

section 3.3.4 in chapter 3. As illustrated in Fig. II, the probability of interpolative recall
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Pe=0.1 Pe=0.2 Pê=0.3 Pê=0.4 po=0.5

PRO. oF EAGH BIT BEING REVERSED (p=2)

Pê=0,1 Pe:o.Z Pe=0,3 pe{),4 pê=o.s

PRo. oF EAGH BIT BEING REVERSED (p=4)

Fig. tr Performance of Hopfield nefwork recalling both original and reversed Eaining

patterns. E ¡,todel t: the reversed version of raining patterns are allowed for representing

tlre original training patterns. @ ¡,todel lt: only training pattems are permitted to represent

the correct information stored in the memory. Network structure: n=16. Testing patterns:

bipolarmode.

tested under this newly defined condition is higher compared with the results presented in

section 3.3.4. These differences become more pronounced as the noise level increases. It
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should be pointed out that the maximum pattern with which the n neurons can represent is

narrowed tolz" if thenewdefinitionisadopted. Inthisexperiment, therandomlygenerated

training patterns strictly follow this definition, i.e., the pattern was not allowed to participate
in the fraining pair if its reversed version had arready been generated.
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