
DEEP LEARNING-BASED ECG CLASSIFICATION

USING A TENSORFLOW LITE MODEL

by

Kushagra Sharma

A thesis submitted to
The Faculty of Graduate Studies of

The University of Manitoba
in partial fulfillment of the requirements

of the degree of

Master of Science

Graduate Program in Biomedical Engineering
The University of Manitoba

Winnipeg, Manitoba, Canada
December 2022

© Copyright 2022 by Kushagra Sharma

Thesis advisor Author
Dr. Rasit Eskicioglu Kushagra Sharma

DEEP LEARNING-BASED ECG CLASSIFICATION USING A

TENSORFLOW LITE MODEL

Abstract

The number of IoT devices in healthcare is expected to rise sharply due to significantly in-

creased demand since the COVID-19 pandemic. Deep learning and IoT devices are being em-

ployed to monitor body vitals and automate anomaly detection in clinical and non-clinical

settings. Most of the current technology requires the transmission of raw data to a remote

server, which is not efficient for resource-constrained IoT devices and embedded systems. In

this work, we have developed machine learning models to be deployed on Raspberry Pi. We

present an evaluation of our TensorFlow Model with various classification classes. We also

present the evaluation of the corresponding TensorFlow Lite FlatBuffers to demonstrate their

minimal run-time requirements while maintaining acceptable accuracy. Additionally, to ad-

dress the problem of sensor and data integration when using multiple devices, we propose a

unified server on our Edge Node.

ii

Contents

Abstract . ii
Table of Contents . v
List of Figures . vi
List of Tables . vii
Acknowledgments . ix
Dedication . 1

1 Introduction 2

2 Related Work 4

2.1 Methods for Conserving Power in IoT devices 4
2.1.1 Offloading . 4
2.1.2 Low Powered Transmission Protocols 6
2.1.3 Mobile-Edge/Edge Computing . 7
2.1.4 Use of AI for power conservation 8

2.2 Applications of Artificial Intelligence in IoT 8
2.2.1 Improving performance and Efficiency 8
2.2.2 TensorFlow and Raspberry Pi Deployment 9
2.2.3 Signal Classification and R-peak detection 9

3 Background 12

3.1 Human Heart and Electrocardiogram . 12
3.1.1 Human Heart and the Blood Circulation System 12
3.1.2 Conduction System of the Heart 13
3.1.3 Cardiac Cycle . 14
3.1.4 Einthoven’s Triangle and ECG Leads 15
3.1.5 ECG signal waveform and Heart Anomalies 17

3.2 Internet of Things . 24
3.3 Biomedical Applications of IoT . 24
3.4 IoT and Artificial Intelligence . 25
3.5 TensorFlow and Keras . 26
3.6 TensorFlow Lite and Raspberry Pi . 27

iii

Contents iv

3.7 Convolutional Neural Network . 28
3.7.1 Long Short-Term Memory . 32

3.8 Public ECG Databases . 35
3.9 Raspberry Pi CM4 by Seeed - reTerminal 35

4 Model and Prototype Design 37

4.1 Problem Overview . 37
4.2 Prototype Design . 38
4.3 Implementation Process . 39

4.3.1 Setting Up TensorFlow/Keras in Anaconda 39
4.3.2 Data Pre-Processing . 40

Powerline Noise Removal . 41
Baseline Wander Correction . 41
Rolling Mean . 44

4.3.3 Determining Training Labels . 44
4.3.4 TensorFlow/Keras Model for 2-Class Classification 46
4.3.5 TensorFlow/Keras Model for 5-Class Classification 47
4.3.6 Determining Training Labels for Classification in 5 Classes 49
4.3.7 Installing Raspbian OS . 49
4.3.8 Migrating TensorFlow model to Raspberry Pi 49
4.3.9 Setting up Data Storage and Rendering 50

5 Evaluation and Discussion 51

5.1 Evaluation Method . 51
5.1.1 Evaluation Metrics . 51
5.1.2 TensorFlow Lite Evaluation . 52

5.2 Results from 2-Class Classification Model 53
5.2.1 Confusion Matrix . 53
5.2.2 Model Evaluation . 53
5.2.3 TensorFlow Lite Evaluation . 54

5.3 Results from 5-Class Classification Model 54
5.3.1 Confusion Matrix . 54
5.3.2 Model Evaluation . 56
5.3.3 TensorFlow Lite Evaluation . 57
5.3.4 Edge Node/Raspberry Pi Web Interface 57

6 Conclusions and Future Work 59

6.1 Conclusions . 59
6.2 Future Work . 60

Bibliography 68

Contents v

Publication 69

List of Figures

3.1 Einthoven’s Triangle . 15
3.2 A Normal ECG Beat . 17
3.3 Signals for All Leads - ECG ID 9, PTB-XL Dataset 18
3.4 Atrial Fibrillation - ECG ID 351, Lead I, PTB-XL Dataset 19
3.5 Atrial Flutter - ECG ID 18, Lead I, PTB-XL Dataset 20
3.6 First Degree AV Block - ECG ID 2648, Lead II, PTB-XL Dataset 21
3.7 Second Degree AV Block - ECG ID 14009, Lead V2, PTB-XL Dataset 21
3.8 Third Degree AV Block - ECG ID 10505, Lead I, PTB-XL Dataset 22
3.9 Paced Signal - ECG ID 498, Lead I, PTB-XL Dataset 22
3.10 Complete Left Bundle Branch Block Lead V5 ECG ID 180, PTB-XL Dataset 23
3.11 Complete Right Bundle Branch Block Lead V1 ECG ID 621, PTB-XL Dataset 23
3.12 A Typical Convolutional Neural Network 28
3.13 Popular Activation Functions . 31
3.14 A LSTM Cell . 34
3.15 General Architecture . 36

4.1 Raw Signal and Spectrogram for ECG ID 1, Lead I, PTB-XL 40
4.2 Filtered Signal and Spectrogram for ECG ID 1, Lead I, PTB-XL 41
4.3 Baseline Correction for ECG ID 1, Lead I, PTB-XL 44
4.4 Distribution of Occurrences after Sorting and Merging Labels 45
4.5 Training, Validation and Testing Distribution 46
4.6 Binary Classification Model Architecture 47
4.7 5-Class Classification Model Architecture 48
4.8 Train, Test and Validation split - 5 Class . 49

5.1 2-Class Classification Confusion Matrix . 53
5.2 5-Class Classification Confusion Matrix . 56
5.3 Edge Node/Raspberry Pi Web Interface . 58

vi

List of Tables

3.1 Open Access ECG Databases . 35

5.1 2-Class TensorFlow Keras Model Evaluation 54
5.2 2-Class TensorFlow Lite Model Evaluation 54
5.3 Confusion Matrix for all Multi-Label Classification CNN-LSTM Models . . 55
5.4 5-Class TensorFlow/Keras Model Evaluation 56
5.5 5-Class TensorFlow Lite Model Evaluation 57

vii

Acronyms

AI Artifical Intelligence. 38

AVN Atrioventricular Node. 13

BLE Bluetooth Low Energy. 6

CAGR Compounded Annual Growth Rate. 2

CM Compute Module. 35

CNN Convolutional Neural Network. 3, 28, 29

ECG Electrocardiogram. 2

eMMC embedded Multi-Media Card. 35

FFT Fast Fourier Transform. 5

FN False Negatives. 52

FP False Positive. 52

GPIO General Purpose Input Output . 35, 38

IoT Internet of Things. 2, 24

LSTM Long Short-Term Memory. 3, 32, 38

RNN Recurrent Neural Network. 32, 38

SAN Sino-Atrial Node. 13

TN True Negatives. 52

TP True Positive. 52

viii

Acknowledgments

I want to express my cordial gratitude to Dr. Rasit Eskicioglu for being my mentor
throughout this research. The amount of time he has given to guide me in improving
my research skills is invaluable. I also want to thank Dr. Sherif Sherif and Dr. Cuneyt
Akcora for being a part of my committee and for their valuable suggestions and feedback.
Special thanks to my labmate Baha Rababah and Md Abdullah Al Mamun for their help
and advice. I also want to thank all the faculty members of the Graduate Program in
Biomedical Engineering, Rady Faculty of Health Sciences and Price Faculty of Engineering
who helped me to increase my skills while completing their courses and through valuable
seminars. Finally, I would like to acknowledge the support of the staff members at the
University of Manitoba for providing me with the support to fulfill my dream of getting
a Master’s degree in Biomedical Engineering.

ix

This work is dedicated to my mother and everyone who has supported me in all

my endeavours.

Chapter 1

Introduction

Over the past few years, there has been a tremendous increase in IoT devices such as
smartwatches, virtual assistants, smart plugs, smart switches, and healthcare devices like
intelligent insulin pumps, pulse-oximeter, and heart rate monitors. There were more than
26 billion connected devices in 2019. This number may reach 75 billion by 2025 and over
500 billion by 2030 [1] [2]. The applications of Internet of Things (IoT) devices in healthcare
have also risen sharply due to significantly increased demand since the COVID-19 pan-
demic. For many regions, the IoT-healthcare sector’s Compounded Annual Growth Rate
(CAGR) is above 20%. Rising awareness and AI-enabled IoT devices detecting real-time
anomalies are significant growth drivers [3]. Rapidly increasing 5G network coverage is
also contributing to the growth by enabling more connected devices as it offers a larger
spectrum, better speed, and lower latency [4].

An increasingly enormous amount of data is being generated and transmitted with
the addition of more devices in the house, and healthcare setting [5]. Since these devices
are often battery operated, optimizing them for increasing operational life is necessary
[6]. Higher power consumption in processing or transmitting the data leads to shorter
battery life and increased maintenance costs. Additionally, implantable medical devices
cannot be changed that often. Therefore having a longer battery life is more crucial for
implantable devices [1].

Electrocardiogram (ECG) signals need a high sampling rate for clinical use and for
higher precision applications [7]. Offloading such data to a server for computation re-

2

Chapter 1: Introduction 3

quires high transmission activity, negatively impacting energy efficiency. It leads to the
battery draining faster as the energy consumed in data transmission would exceed the
energy consumed in on-device processing [8]. Numerous models have been explored to
mitigate these issues - IoT-fog-cloud architecture [9][10][11], Mobile Edge Computing
[12], Distributed Mobile Edge Computing [10], and ‘Reinforcement Q-learning Model’
[13]. Therefore, computing ECG data on the IoT device using an efficient machine learn-
ing model appears ideal.

Machine learning is employed to capture variations in ECG signals. Numerous ma-
chine learning models were explored to classify ECG signals. However, they are often
not suitable for applications on new data due to their limited information based on their
smaller training dataset. PTB-XL [14] dataset provides 21,837 12-lead recording from
18885 patients. PTB-XL dataset covers a wide span of signals and diagnostic classes [15].
It exposes the machine learning model to various signals that could arise in real-life ap-
plication scenarios. Since the database has 12 leads, models can be developed for clinical
and non-clinical applications. Clinical applications often utilize all 12 leads, whereas home
users utilize 1 to 3 leads.

Recent literature suggests a drift towards using LSTM and CNN to classify ECG data
on wearable devices [16][17]. Since binary Long Short-Term Memory (LSTM) could run
on the limited memory of wearable devices [18], their application is increasingly be-
ing explored. Numerous other models are being explored and adapted for the use case
scenario. This research primarily focuses on leveraging One Dimensional-Convolutional
Neural Network (CNN) for modeling using TensorFlow/Keras.

This research proposes developing an expandable framework using Raspberry Pi 4
as our edge node, which is deployed with a trained neural network for classifying ECG
signals from a sensor using TensorFlow Lite. Along with the overall accuracy, the accuracy
of our deployed model on the edge node will be compared against the TensorFlow model
using the same data. Also, the results from our edge node will be transmitted to a server
for displaying the output.

Chapter 2

Related Work

New applications for IoT are being developed and adopted at an unprecedented pace.
The strategy for handling efficiency issue vary vastly due to the application needs, sce-
narios, and hardware constraints. Some applications may need computational efficiency,
while others may prefer lower latency. Some applications need prolonged battery life with
acceptable compromise on efficiency or vice versa. In this section, we will look at some
IoT applications and the strategies that are being implemented depending on the use case
scenario.

2.1 Methods for Conserving Power in IoT devices

Most of the time, IoT devices are not connected by a constant power supply. Therefore,
prolonging their battery life has always been one of the topmost priorities. Over the years,
various methods have been developed, adapted, and proposed for IoT devices, but we will
limit ourselves to today’s more widely available and practical ones.

2.1.1 Offloading

Offloading is transferring of compute-intensive tasks or applications from a resource-
constrained IoT device to a more capable computer. Offloading could take various forms
such as Cloud Computing, Edge Computing, Fog Computing, Distributed Edge Comput-
ing, etc. Over the years, mixed models have also been developed and tested. However, the

4

Chapter 2: Related Work 5

choice of the model vastly depends upon the use case scenario.
Many applications are computationally demanding and are not capable or efficient

enough to process the data themselves. Therefore they offload such data to the cloud, or
nearby node for processing [12] in order to conserve battery. It is often the case with
applications that need to transmit more extensive data frequently, such as real-time mon-
itoring of traffic, body vitals such as heart rate, etc. However, offloading such data comes
with some challenges as the transmission of information consumes energy and uses com-
putational resources.

For making offloading energy efficient for IoT devices following issues need to be ad-
dressed – traffic fluctuation, collision listening, over-hearing, idle listening, and protocol
overhead reduction [19]. These issues are more prevalent when data is being uploaded
to the cloud directly or to a distant node. Therefore, to provide a stable connection and
to avoid transmission losses, using edge nodes for local data gathering is preferred. This
also helps in reducing the latency for real-time applications. This edge node is often con-
nected to constant power and is capable enough to handle numerous IoT devices. This
setup ensures minimal transmission losses but often constricts the portability of the IoT
devices. For covering a wider area, multiple fog nodes may be used.

However, offloading everything is not the ideal choice as the power loss in transmis-
sion increases substantially [8]. Often A mixed approach is used for applications, where
some computational tasks are offloaded, and some are performed locally. Borja Martinez
et al. [20], in their research for analyzing the energy life cycle of an application, consid-
ered a system-level perspective for energy expenditures in communications, acquisitions,
and processing. Their simulation of sub GHz reporting type of sensor using the LoRa ap-
proach suggests that the overall energy consumption is reduced, with lower radioactivity.
In their experiment with the Time Slotted Channel Hopping scheme, no significant gain
was observed for sensors performing Fast Fourier Transform (FFT) by increasing times-
lots after a stage. It indicates that for achieving optimum efficiency, a balance needs to be
achieved between power loss in computation and transmission.

Additionally, offloading induces a delay or latency issue, which is not suitable for
applications like real-time positional monitoring in automated, traffic monitoring, etc.
Om-Kolsoom Shahryari et al. [9], in their IoT-fog-cloud architecture, which involves op-

Chapter 2: Related Work 6

timizing transmit power and offloading probability in a multi-user multi-fog environment,
demonstrates reduced delay and better power efficiency. It is due to their strategy of par-
tially offloading the data based on the computational availability of nearby nodes. They
also showed that the complete offloading strategy has the worst performance.

In terms of biomedical context, certain types of physiological signals, such as ECG,
EEG, etc., have a high sampling rate [7]. Direct offloading of such data to servers, espe-
cially in a mobile environment, requires more significant transmission activity for both
sending and receiving nodes, negatively impacting energy efficiency. It, in turn, leads to
batteries draining faster as energy consumption in the transmission is much greater than
in processing the data [8].

2.1.2 Low Powered Transmission Protocols

Sensor data is not usually massive in terms of size. However, transmission frequency
may vary vastly and affect operational life due to transmission losses. Low-powered pro-
tocols save power consumed in transiting the data and provide an additional layer of se-
curity with over-the-air encryption. Various proprietary and non-proprietary/open pro-
tocols have been developed to handle this issue, such as Bluetooth Low Energy (BLE),
z-wave, Zigbee, 6LoWPAN, etc. BLE and Zigbee are the most common protocols for com-
mercial applications.

Bluetooth Low Energy [21], an open protocol, is more prevalent among modern-day
intelligent devices such as virtual assistants, smart bulbs, and plugs. BLE is often used
in medical devices and personal healthcare intelligent products. Bluetooth Low Energy
provides a bandwidth of up to 2 Mb/s [21]. BLE uses a 2.4 GHz band with 40 channels, 3
for advertising and 37 for data.

Zigbee [22] is a proprietary low-power protocol that can deliver speeds up to 250
kbps. It operates between 868MHz to 2.4GHz and can deliver up to 100m. Although its
data transmission capability is inferior to BLE, it consumes less power than BLE. Zigbee
is used in automated homes, embedded sensors or industrial control systems.

Chapter 2: Related Work 7

2.1.3 Mobile-Edge/Edge Computing

More devices are being incorporated into making smart homes and intelligent build-
ings [5]. With the increase in the number of devices, more data is being generated and
transmitted, which creates a power efficiency challenge for sensor and edge/fog nodes.
IoT devices must be power-efficient as they maintain an extensive infrastructure of web-
enabled devices such as sensors, wireless communication hardware or processor. Since
nodes are usually battery-driven, conserving power is crucial to elongate their operational
life [6]. Higher power consumption leads to a shorter life span and increases the cost of
maintenance.

Offloading computation-intensive data to a conventional centralized cloud introduces
transmission delay back and forth. Time spent in computation also adds to the delay. This
latency in real-time data might be out of acceptable margins. Offloading data to edge or for
node increases efficiency by reducing the latency of service computing [13]. Offloading
methods involving fog nodes while maintaining acceptable delay are being explored in
IoT-fog-cloud architecture for multi-user multi-fog node scenarios [9].

A survey by Pavel Mach et al. [12] discusses an emerging technology - Mobile Edge
Computing (MEC). They studied various architectures such as distributed MEC or par-
tial offloading to the cloud. It was observed that different architectures seem to work
efficiently for specific use case scenarios. It suggests that applications need to be crafted
according to their use case scenario to improve efficiency. Another Survey by Ju Ren et al.

[10], reflects the rapid growth of interest in MEC among the research community, which
seems to be promising. Md. Golam Rabiul Alam et al. [13] used autonomic offloading to
ME/fog using the ‘Reinforcement Q-learning Model’.

A majority of research discussed so far indicates that full offloading is both energy
expenditure and increases delay, which might not suit many real-time applications.

Chapter 2: Related Work 8

2.1.4 Use of AI for power conservation

Different computational strategies are being developed and tested to increase the op-
erational life of IoT devices. These strategies include AI solutions, fast data analysis, and
prediction mechanisms that are rapidly being adopted for IoT devices according to the use
[2]. These strategies help conserve energy by optimizing computational, transmission, or
offloading efficiency. Energy-saving using deep learning autonomic management frame-
work is also being explored in IoT enabled buildings [23] and for offloading demands of
massive mobile networks in mobile edge/fog systems. Autonomic offloading [13] and Dis-
tributed intelligence models [24] to ME/fog using the ‘Reinforcement Q-learning Model’.
Transfer learning is also being employed to transfer pretrained models for on-device in-
ference of data [25].

2.2 Applications of Artificial Intelligence in IoT

Artificial Intelligence is increasingly being employed in every aspect of IoT devices,
from managing wireless transmission to performing on-device calculations more effi-
ciently. It is also being used to make automated decisions without manual intervention.
The combined effect is better operational costs and increased scalability. New applica-
tions are being developed with AI for devices incorporated into smart homes and intelli-
gent buildings [5]. In this section, we’ll have a look at some of the domains where AI is
actively being incorporated.

2.2.1 Improving performance and Efficiency

Strategies for optimizing efficiencies in real-time data, such as processing per-Task and
per-CPU operations on multi-core platforms, are being explored. C. Zhou et al. propose an
energy-aware mapping technique for real-time data to explore energy savings in multi-
core platforms. Research is done by Marius Laska et al. [11] provides an insight into
the importance of using mobile edge/fog deep learning automation for better real-time
vehicle localization. Far-end network solutions increase the network latency and impact
real-time performance negatively [11].

Chapter 2: Related Work 9

Borja Martinez et al. [20], in their research for analyzing the energy life cycle of an
application, considered a system-level perspective for energy expenditures in communica-
tions, acquisitions, and processing. Their simulation of sub GHz reporting type of sensor
using the LoRa approach suggests that the overall energy consumption is reduced with
lower radioactivity. In their experiment with the Time Slotted Channel Hopping scheme,
no significant gain was observed increasing timeslots after a stage for sensors performing
FFT. This indicates that for achieving optimum efficiency, a balance needs to be achieved
between power loss in computation and transmission. The model they developed helps
estimate energy consumption requirements by an IoT application.

2.2.2 TensorFlow and Raspberry Pi Deployment

In the past few years platforms such as TensorFlow Lite, for deploying trained neural
networks on low-powered devices such as Raspberry Pi 4 have emerged for real-time
applications. A similar framework was also developed by MatLab. This indicates that
more applications in the future will be centered around increasing the overall efficiency
and productivity of IoT devices using machine learning.

TensorFlow Lite [26] is an open-source deep learning framework for on-device in-
ference [27]. With the increase in wireless technology, more applications are being ex-
plored for IoT devices requiring sophisticated deep learning models on edge and embed-
ded devices [28][29][30]. TensorFlow Lite converts the TensorFlow/Keras saved model to
a FlatBuffer. A Flatbuffer is an serialization cross-platform library for C, C++, C#, Java or
Python. The Flatbuffer can be executed with much fewer resources. During the conver-
sion process, quantization optimizations are used to reduce the model’s size. Flatbuffers
are memory efficient, cross-platform compatible, and smaller in size. They do not need to
be parsed or unpacked; they are ideal for resource-constrained IoT devices [31].

2.2.3 Signal Classification and R-peak detection

There is plenty of literature regarding peak detection and ECG signal classification
using different machine learning algorithms. Survey papers by Hongzu Li et al. [32] and
David Menotti et al. [33] discuss numerous methods for heart anomaly detection. Some

Chapter 2: Related Work 10

methods rely on hardware enhancements, while others incorporate advanced software
processing. We will confine ourselves to the software segment only.

Guy J. J. Warmerdam et al.[34] developed a multi-channel hierarchical probabilistic
framework with predictive modeling for fetal ECG R-peak detection. Their method pre-
sented an overall efficiency of over 99%. H. B. Seidel et al. [35] proposed using Haar-DWT
hardware architecture for energy-efficient processing of ECG signals while maintaining
an R-peak detection accuracy of 99.68%. Jeong-Seon Park et al. [36] have used wavelet
transform and modified Shannon energy envelope for detection of R-peak. Their proposed
method reports an average accuracy of over 99% for detecting R peaks. Agostino Giorgio
et al. [37] discuss the detection of late ventricular potentials using wavelet denoising and
support vector machine classification. His experiment yields an accuracy of over 90%.

The literature suggests numerous ways for classifying ECG signals - CNN, RNN, SVN,
K-NN, and MLP [38][39] [40]. Using MATLAB simulation, Abdelhamid Daamouche et al.

[41] and Milad Nazarahari et al. [42] classified ECG signals using wavelets. The average
accuracy of both methods is over 80%, along with other similar methods[43][44][45][46].
Serkan Kiranyaz et al. [47] propose a fast and accurate method to classify ECG signals
using a trained, dedicated CNN for a patient. It helps in quick real-time classification
of long ECG data stream. Their model demonstrates great performance in classifying
ventricular ectopic beats and supraventricular ectopic beats.

Jia Li et al. [40] proposed a model that converts 1-D information vector to 2-D image
via one-hot encoding. ADADELTA optimizer increased their learning rate substantially.
Their method yields an accuracy of over 99%. Their method could be suitable for the
classification of arrhythmia in portable devices.

Seyed Ahmad Mirsalaria et al. [18] proposed using lightweight binary LSTMs to cope
with the limited memory and processing capabilities of wearable devices. They used 5-
level binarized input with 1 level of binarization for weights. The proposed method was
computationally inexpensive and provided accuracy almost equal (reduced by 0.004%) to
conventional LSTM methods.

Transfer learning is also being used to deploy pertained CNN models for on-device in-
ference of data [25]. Kuba Weimann et al. [25] used transfer learning using CNN to classify
heart rhythm from a short ECG recording. They explored unsupervised pre-training of

Chapter 2: Related Work 11

ECG data which yielded acceptable results. This approach is suited for applications where
large ECG annotation is not available.

Saeed Saadatnejad et al. [48] used wavelet transforms for feature extraction and RNN-
LSTM for the classification of heart-beats. It uses results from two different classification
model, which is then blended to form the final classification model.

Recent literature suggests a drift towards using LSTM and CNN to classify ECG data on
wearable devices. Although they present good accuracy, these models cannot be used for
real-time applications due to their limited information about anomaly classes.

Chapter 3

Background

3.1 Human Heart and Electrocardiogram

3.1.1 Human Heart and the Blood Circulation System

Section 3.1.1 to 3.1.6 has been adapted from [49] [32].
The human heart is the primary organ of the blood circulation system. It is made up of

strong cardiac muscles powered and coordinated by electrical impulses. The human heart
consists of four chambers - two atria and two ventricles. The atria and the ventricle are
separated by the atrial and ventricular septum, respectively. The atria and ventricle on the
left and the right side are separated by the Mitral and tricuspid valve, respectively. The
heart’s primary function is to move the blood through the body. The circulation system
consists of two circuits:

• Pulmonary Loop

The pulmonary loop transports the blood between the heart and the lungs. The de-
oxygenated blood is transported to the heart though vena-cava via a network of
veins and cavaliers. The blood enters the right atrium of the heart and is pumped
from right ventricle to the lungs via pulmonary artery. The lungs replenish the
blood with oxygen by respiration. The oxygenated blood from the lungs enters the
left atrium via the pulmonary vein. The aorta pumps blood from the left ventricle
to various body organs. This cycle is repeated 60-100 times per minute for a normal

12

Chapter 3: Background 13

human being in the resting state.

• Systemic Loop

The oxygenated blood is pumped from the left ventricle to different body parts via
various branches of aorta. The descending thoracic aorta takes the blood to the
lower parts of the body, while the carotid artery provides blood to the head and the
brain. The left and the right subclavian artery provides blood to the pectoral limbs.

3.1.2 Conduction System of the Heart

A heartbeat is generated by electrical signals which travel through conduction path-
ways. The heart has a complex conduction system with varying velocities in different
fibers. The difference in conduction velocities helps achieve a prolonged action poten-
tial for a strong and well-timed contraction of heart muscles, forming a heartbeat as we
know. Unlike nerve cell action potential, which peaks for about 1-2ms, cardiac action po-
tential has a prolonged plateau lasting about 250ms. The absolute refractory period lasts
about 200ms and the relative refractory period lasts about 50ms. The extended refractory
periods prevent the heart from undergoing premature contractions.

The electrical signals start in the Sino-Atrial Node (SAN), which is located at the upper
wall of the right atrium, close to the opening of the superior vena cava. The Sino-Atrial
node is also known as the heart’s pacemaker, as it primarily governs the heart rate. The
action potential from the SA node causes atrial depolarization leading to atrial contraction.
The action potential from the SA node travels to the right atrium via Bachmann’s Bundle.
Simultaneously, the Action potential from the SA node reaches Atrioventricular Node
(AVN) via the Internodal Pathway. The AV node is situated at the base of the right atrium
near the interventricular septum. The Action potential continues from the AV node to the
Bundle of His, which is located within the interventricular septum. The Left and Right
Bundle Branches follow the Bundle of His. The action potential from the Left and Right
Bundle branches reaches Purkinje fibers, which causes ventricular depolarization, leading
to ventricular muscle contraction. Purkinje fibers are in the subendocardial surface of the
ventricle wall.

Chapter 3: Background 14

Each node is capable of generating independent action potential and functions inde-
pendently. SA Node provides a resting heart rate of 60-100 bpm. In the absence of an SA
node, the AV node may provide a heart rate of 40-60bpm. In the absence of both SA and
AV nodes, a Bundle of His and Purkinje Fibre may provide a heart rate of 20-40 bpm. This
step ladder fashion prevents the heart from failing altogether if a node fails.

3.1.3 Cardiac Cycle

The cardiac cycle refers to all the events that occur from the beginning of one heart-
beat to the beginning of the next. It can be divided into two parts:
Systole – a period of contraction due to rapid depolarization.
Diastole – a period of repolarization and relaxation.

The cardiac cycle can be divided into four stages:

1. Atrial systole – Atrial contraction forces an additional small amount of blood into
relaxed ventricles. Atrial systole lasts about 0.1 seconds. Heart sound atrial gallop
or S4 is heard during this phase.

2. Atrial Diastole - overlaps with Ventricular systole and lasts about 0.7 seconds.

3. Ventricular systole – Both the ventricles contract. The entire phase lasts about 0.3
seconds.

• First phase – As the contraction beings, the pressure inside the heart rises,
which leads to the closing of AV valves, which produces heart sound S1, also
known as ‘lub.’

• Second phase – The pressure further increases, which leads to the opening of
semilunar valves, and the blood is ejected out.

4. Ventricular diastole - The entire phase lasts about 0.5 seconds. It can further be
classified into early and late phases.

Chapter 3: Background 15

• Early - As the pressure in the ventricle drops, the backward flow of blood forces
the closure of semilunar valves (aortic and pulmonary valves), which produces
heart sound S2, also known as ‘dub.’

• Late - all four heart chambers are in diastole, and blood flows passively into
the ventricles.

3.1.4 Einthoven’s Triangle and ECG Leads

The heart acts as an electrical dipole. The strength and orientation of this dipole change
with each beat. This change is measured and recorded by an ECG. Einthoven’s triangle
is an imaginary triangle composed of leads I, II, and III. These leads are formed by three
bi-polar electrodes on the Left Arm (LA), Right Arm (RA), and Left Leg (LL).

Figure 3.1: Einthoven’s Triangle

1. Standard Limb Leads

The voltage difference between the three electrodes provides us with lead I, III, and
III.

Chapter 3: Background 16

Lead I = RA - LA

Lead II = RA – LL

Lead III = LA -LL

2. Augmented Limb Leads

These are unipolar and are referenced against a combination of other limb elec-
trodes.

aVL = LA – (RA + LL)/2

aVF = LL – (LA + RA)/2

aVR = RA – (LA + LL)/2

3. Precordial Leads

There are six precordial leads. These are composed of 6 electrodes on the surface of
the chest, from the sternum to the posterior directions. These are labeled as V1, V2,
V3, V4, V5, and V6.

The left ventricle can be divided into four sections. The following chest leads are
used to observe these sections –

• Lateral Wall – I, aVL, aVR

• Anterior Wall – V3, V4

• Interventricular septum – V1, V2

• Inferior wall – II, III and aVF

• Anterolateral wall – V5, V6

4. Right Leg Electrode(RL/N)

Neutral electrode. Removes the artifact

A 12 lead ECG setup has 10 electrodes.

Chapter 3: Background 17

3.1.5 ECG signal waveform and Heart Anomalies

All these leads are used to analyze the performance of the heart and detect possible
anomalies. An abnormal graph may indicate the presence of anomalies. Since different
leads represent different directions and axis, they are used to locate the possible location
of abnormal conduction in the heart. The ECG is of great clinical significance for detecting
and diagnosing an issue.

The figure represents a normal heartbeat. A heartbeat on ECG has three major deflec-
tions. Firstly, the P wave, which is generated by atrial depolarization, causes contraction
of the atrial. The QRS complex is generated by ventricular depolarization, causing ven-
tricular contraction. The T waves indicate ventricular repolarization. A slight elevation
immediately after the T wave represents U waves. U waves are more dominantly seen
in precordial leads V2 and V3. There may be numerous reasons for upright or inverted
U waves. Upright U waves may be due to Hypokalemia, Sinus bradycardia, Hyperthy-
roidism, etc. Inverted U waves may be present with myocardial infarction or ischemia. U
waves are often ischemic.

Figure 3.2: A Normal ECG Beat

1. Normal sinus rhythm

Regular Rhythm with an atrial rate between 60-100bpm. Prominent P waves, QRS
complex, and T waves. The interval between complexes is regular and easily dis-
cernable. Figure 3.1 shows normal signals from ECG ID 9, PTB-XL Dataset.

Chapter 3: Background 18

Figure 3.3: Signals for All Leads - ECG ID 9, PTB-XL Dataset

Chapter 3: Background 19

2. Atrial Fibrillation

Irregular rhythm with atrial rate 350-600bpm and ventricular rate 120-200bpm. P
waves are absent or irregular. Have normal QRS complex but, PR interval may not
be measurable.

Common Causes: Chronic obstructive pulmonary disease, heart failure, ischemia or
hypertension [50].

Figure 3.4: Atrial Fibrillation - ECG ID 351, Lead I, PTB-XL Dataset

3. Atrial Flutter

Regular rhythm with fluttery and undefinable or coarse P waves forming a sawtooth
pattern. Atrial rate 250-350bpm.It is characterized by several atrial contractions one
ventricular contraction.

Common Causes: Idiopathic, heart failure, pulmonary embolism, inferior wall my-
ocardial infraction or certain drugs [51].

4. Sinus Tachycardia

Normal Rhythm with normal shape and size of R, QRS and T waves. P waves may
merge with T waves at faster atrial rates. Atrial rate between 100 to 200. Common
Causes: Exercise, anxiety or response to pain [52].

5. Sinus Bradycardia

Normal rhythm with normal shape and size of R, QRS and T waves. Atrial rate is
lower than 60bpm. Common Causes: Aging, increased vagal tone after vomiting,

Chapter 3: Background 20

Figure 3.5: Atrial Flutter - ECG ID 18, Lead I, PTB-XL Dataset

emotional stress, extreme fatigue, defecation, etc. Physiological Response: fatigue,
shortness of breath, dizziness or fainting if bpm is too low [53]

6. Ventricular tachycardia

Regular rhythm with Ventricular rate 100-250bpm. Wide QRS complex with over-
lapping P wave. It is characterized by irregular electrical signals to ventricles. RSR
or bunny ear pattern in V1 or V2.

Common Causes: Idiopathic, myocardial infraction, myocardial ischemia, hypercal-
cemia or hyperkalemia or coronary artery diseases [54].

7. Ventricular Fibrillation

Irregular rhythm with no visible P waves and wide QRS complex, and ventricular
rate over 400 bpm.

Common Causes: Myocardial infraction, myocardial ischemia, alkalosis, aortic steno-
sis, hypercalcemia, or hyperkalemia or drugs affecting QT duration [55].

8. First Degree AV blocks

Possible Causes: Regular atrial and ventricular rhythm. Normal QRS complex. PR
interval greater than 0.20 seconds. First Degree AV blocks are often asymptomatic,
but detectable on ECG.

Common Causes: Natural aging, low thyroid levels, inferior myocardial infraction,
hypercalcemia or hyperkalemia, ischemia or increased vagal tone [56].

Chapter 3: Background 21

Figure 3.6: First Degree AV Block - ECG ID 2648, Lead II, PTB-XL Dataset

9. Second Degree AV block Mobitz I (Wenckeback)

Regular atrial rhythm with irregular ventricular rhythm. Some P waves may not
be followed by a QRS complex. Caused due to supression of AV condution. Some
impulses are completely blocked.

Common Causes: Natural aging, increased vagal tone, anterior wall myocardial in-
fraction, acute myocarditis, coronary artery disease, beta-blockers or digoxin [57][58].

Figure 3.7: Second Degree AV Block - ECG ID 14009, Lead V2, PTB-XL Dataset

10. Third Degree AV Block

Also known as complete heart block. This occurs when the action potentials are
completely blocked at AV node. Correlation between P wave and the QRS complex
is lost. Cardiac output is diminished.

Common Causes: Idiopathic, drug toxicity - digoxin, acute ischmic heart disease,
fibrosis, electrolyte imbalance or post-operative heart block [59].

Chapter 3: Background 22

Figure 3.8: Third Degree AV Block - ECG ID 10505, Lead I, PTB-XL Dataset

11. Paced Beats

Paced beats are characterized by spikes. In atrial pacing, sharp spike of about 2ms
is followed by a P wave. In ventricular pacing, sharp spike of about 2ms is followed
by a QRS complex. Pacing could be either or both.

Figure 3.9: Paced Signal - ECG ID 498, Lead I, PTB-XL Dataset

12. Complete Left Bundle Branch Block

Left ventricle contracts a little later than normal. QRS duration is greater than
120ms. Percordial Lead V5/V6 has notched R wave and Q wave us absent. Lead
V1 have large S wave and small QS wave. A left bundle branch block is usually
associated with underlying heart disease.

Common causes: aging, myocardial infraction, myocardium, cardiomyopathy, hy-
pertension or coronary artery disease [60] [61].

Chapter 3: Background 23

Figure 3.10: Complete Left Bundle Branch Block Lead V5 ECG ID 180, PTB-XL Dataset

13. Complete Right Bundle Branch Block

Precordial Lead V1 and V2 present RSR′ (bunny ear) pattern. QRS duration is
greater than 120 ms. Wide S wave in lead I, with duration more than 40 ms. Bundle
branch blocks are more common in older adults.

Common Causes: aging, chronic obstructive pulmonary disease, pulmonary em-
bolism, myocarditis, Lenegre’s or Lev’s disease [62].

Figure 3.11: Complete Right Bundle Branch Block Lead V1 ECG ID 621, PTB-XL Dataset

Chapter 3: Background 24

3.2 Internet of Things

Over the years, the IoT has been described in numerous ways, but the concept remains
more or less the same. The IoT describes a low-powered device that has sensors, process-
ing ability, and technology to communicate with other devices. The IoT devices are often
powered by a battery. Common IoT devices include smart bulbs, smart home assistant
devices, single board computers, embedded devices or sensors.

The architecture of IoT varies depending upon the use case scenarios, but their archi-
tecture can broadly be classified into three layers, from highest to lowest level as:

1. Application Layer - comprises software and interface that drives the sensors, user
interface, and data processing or forwarding features. This layer can be customized
to suit various applications and services.

2. Network Layer - sits under the application layer and governs the communication
and transmission activities. It handles the information packets and protocols such
as BLE, Ethernet or WiFi.

3. Physical or Perception layer - is responsible for gathering the information about
the surrounding using different sensors such as - light sensor, RFID, humidity sensor
or Near Field Communication.

3.3 Biomedical Applications of IoT

In the past few years, there has been a tremendous increase in the number of IoT
devices such as smartwatches, virtual assistants, smart plugs/switches, and healthcare
devices like smart insulin pumps. With LTE and older technologies, IoT devices were
bottlenecked by finite spectrum and data capabilities. 5G offers a larger spectrum, better
speed, and lower latency [1]. This is believed to provide an impetus for the rapid growth
of IoT devices. There were more than 26 billion connected devices in 2019. The number is
expected to reach 75 billion by 2025 and over 500 billion by 2030 [2] [3].

IoT has numerous healthcare applications in a clinical and non-clinical settings. With
the increase in operational efficiency of sensors and decrease in manufacturing cost of

Chapter 3: Background 25

sensors, IoT has begun transforming the healthcare industry. The use of IoT has helped
in saving costs in healthcare. Tests, which required hospital and pathology visits a few
years back, can now be done conveniently at home. Some common applications are:

1. Connected inhalers

2. Ingestible sensors

3. Heart-rate monitoring

4. Glucose monitoring

5. Blood oxygen monitoring

6. Remote patient monitoring

7. Air quality sensors

8. Biometrics scanners

9. Thermal detection

10. Pathogen detection

11. Contact tracing

12. Bluetooth Blood Coagulation Testing

3.4 IoT and Artificial Intelligence

More IoT devices are being incorporated into our lives. This has to lead to new chal-
lenges, the solution to which often lies in AI. AI provides a range of features in handling
the collected data. The AI models are tailored to suit the application and user needs. Some
advantages of using AI are -

1. Enhanced operational efficiency - Conventional methods and manual analysis may
not be able to detect underlying patterns and features which could otherwise be

Chapter 3: Background 26

tuned for optimal efficiency. AI helps in detecting those patterns and tuning the
parameters for efficiency.

2. Eliminates Costly Unplanned Downtime - Automation of several processes could be
accomplished with AI. This helps in both avoiding and handling unplanned service
interruptions.

3. Improving Precision Cost - use of AI can help with the evaluation of data and various
parameters, some of which would not have been possible by conventional methods.
This ensures that an appreciable level of performance and precision is maintained.
AI can also filter out the relevant data for further analysis on edge or cloud nodes.

4. Maintenance and automation - AI could be trained to look for parameters indicating
failing components or devices like a dimming or flickering LED. In such cases, de-
vices could be marked for maintenance before it actually fails. This helps in saving
downtime and maintenance costs.

5. Increased Scalability - In terms of computational power requirements, AI has the
capacity to bring down the computational needs to accomplish a task. Combined
with the advantages discussed above, AI helps in overall greater scalability of device
infrastructure and framework.

3.5 TensorFlow and Keras

TensorFlow[63] is a free and open-source software library for machine learning. It
was developed by the Google Brain team and initially released in 2015. Since then, it has
come a long way, adding features and even expanding support to embedded devices.

Tensor - A tensor is a vector or a matrix that represents the data - input, output, and
intermediate. In simple words, a tensor is a data container. Using Tensor for operations
like multiplication or addition in a large data is computationally less demanding than
conventional ‘for’ loops.

Graph - In TensorFlow, all the operations are computed inside a graph. Connected
tensors do the computations inside a graph. It uses a graph to represent a function’s

Chapter 3: Background 27

computations. Using the graphs provides the advantage of running the model on multiple
platforms - CPU, GPU, TPU, embedded, etc. The graphs could also be saved for later use.
The graphs could be optimized and transformed to suit the platform. They also support
distribution execution.

Keras[64] is a deep learning API written in Python, running on top of the machine
learning platform TensorFlow.

3.6 TensorFlow Lite and Raspberry Pi

TensorFlow Lite is an open-source deep learning framework for on-device inference[35].
With the increase in wireless technology, more applications are being explored for IoT de-
vices requiring sophisticated deep learning models on edge and embedded devices.

TensorFlow Lite converts the TensorFlow/Keras saved model to a Flatbuffer. A Flat-
buffer is an serialization cross-platform library for C, C++, C, Java or Python. The Flat-
buffer could be executed with much fewer resources. During the conversion process,
quantization optimizations could be used to reduce the model’s size. Following are the
significant advantages of using Tensorflow Lite or FlatBuffer:

1. Memory efficiency - requires little to no additional memory allocations apart from
the buffer. This increases the speed and efficiency and decreases the latency of the
system.

2. Cross-Platform Code - The flat buffer could be run on any platform without changes.
This helps greatly in coding for embedded devices as a flat buffer generated on a
powerful machine could be transferred to the embedded device.

3. Parsing/unpacking not required - The flat buffers are ready to be used. The only piece
of code they need is an interpreter. This schematic is great for embedded devices
often constrained by memory and cannot have multiple libraries.

4. Small code size - Since it is free from dependencies, the code size is significantly
smaller. A 16-bit or int8 flat buffer could also be generated to reduce the size further
to fit a constrained memory.

Chapter 3: Background 28

3.7 Convolutional Neural Network

A convolution is a mathematical operation on two functions that produces a third
function. The convolutions expression 3.1 is an integral expression that expresses the
amount of overlap of one function g, as it is shifted over another function f. Convolution
has applications in probability, image processing, signal processing or statistics.

(f ∗g) (t) ≜
∫ ∞

−∞
f(τ)g(t− τ)τ ′ (3.1)

τ ′ = first derivative of g(τ)
(f ∗g) (t) = convoluted functions
g(τ) = convolution of f(τ)
t = real number variable of functions f and g

Although multiple variants of CNN are available - one dimensional, two dimensional,
three dimensional, CNN coupled with LSTM, etc., we will discuss the one relevant to this
project, which is 1D CNN.

Figure 3.12: A Typical Convolutional Neural Network

One Dimensional Convolutional Neural Network (CNN) is extensively used for time
series classification and prediction problems. Convolutional Neural Networks are regu-

Chapter 3: Background 29

larized variants of multi-layer perception. A CNN has an input layer, an output layer, and
several hidden layers and parameters, enabling it to learn complicated patterns. A CNN
was first created by Professor Yann LeCunn of Bell Labs in the 1990s. Mathematically,
convolution is the way of combining two signals to form a third signal. The inputs of
a CNN are convoluted to generate a feature map. The CNN uses the same weights and
biases for all neurons. Different filters could be created for each layer to capture different
aspects of the signal. The kernel is multiplied with the input data (dot product) to enhance
the desired features, such as edges.

BasicArchitectureofConvolutionalNeuralNetwork (CNN)

1. Convolutional layers

This is the layer where primary computation occurs. A convolutional layer has
specific input parameters which could be tuned for efficiency or performance. Some
of the commonly used parameters are:

Kernel - The kernel is used to extract the features from the data. The kernel matrix
is usually much smaller than the input data. It is traversed and multiplied with the
input data to enhance the desired features. Although the size of the kernel could be
set to anything, the majority of deep-learning practitioners commonly use sizes 3
or 5 to ensure that local features are extracted.

Filter - Multiple kernels stacked together to form a 3D structure are termed filters.
Although the term filter or kernel is often used invariably from an application point
of view, they are not the same theoretically.

Strides - The kernel moves over the input data by stride value. Stride is the distance
by which the kernel moves over the input matrix.

Padding - Padding is used when the input image fails to fit precisely in the kernel.
Padding can be done in a few ways:

Full Padding - The zeros are added to the borders or edge of the signal/in-
put data. It increases the dimension of the output data. This type of

Chapter 3: Background 30

padding is often used in image processing to center the image.

Valid Padding - No padding is done. The areas of input that the specified
kernel and stride cannot cover are dropped out.

Same Padding - This padding is used to ensure that input and output di-
mensions are the same. The kernel and the stride can cover the input
fully. For stride 1, the output is the same as that of the input.

Input shape - This parameter tells the shape of the input. For example, a time-
series signal with 1000 data points and 12 similar channels will have an input shape
of (1000,12).

2. Activation Layers

Each layer in the neural network has many nodes/neurons which compute the
weighted average of its inputs, and these weighted averages are passed through
a non-linear activation function. There is a variety of activation functions available
to choose from. Some popularly used functions are:

(a) Leaky ReLu

(b) Softmax

(c) Tanh

(d) Sigmoid

(e) ReLu

(f) Linear

Over the past few years, the use of ReLu has seen a substantial increase in the ma-
chine learning community. A ReLu activation function produces a zero output for
negative inputs, whereas the output of positive inputs is preserved. A leaky ReLu,
on the other hand, accommodates outputs for negative values within the set thresh-
old. Compared with many other complex activation functions, ReLu is computa-
tionally less demanding, which is probably a significant contributor to its success.
It also makes ReLu approximately six times faster than tanh and sigmoid.

Chapter 3: Background 31

Figure 3.13: Popular Activation Functions

3. Pooling Layers

The pooling layers use the downsize of the output received from the convolutional
layer. Say the output of the convolutional layer was (1000,1), and the pooling layer
is set with parameter in Keras (2,1) or to half the dimension, it will reduce and pro-
duce the output with dimension (500,1). Pooling could be done in numerous ways
depending upon the features we are trying to extract. Pooling helps in reducing the
computational cost for further layers. The most popular pooling methods are -

Average Pooling - the average value is calculated from the feature map, which is
used to create the downsized output.

Max Pooling - the maximum value is calculated from the feature map used to create
the downsized output.

Global Max Pooling - Gives the maximum value among all the pooling layers. As,
they don’t have learnable parameters, they are less prone to overfitting.

Global Average Pooling It takes the feature map of the last convolutional layer.

Chapter 3: Background 32

It is used to substitute fully connected layers or flatten layer, as it generates one
feature map for each category. Therefore, it forces feature map to categories

4. Dense layers or fully connected layers

The features generated using the convolutional layers are passed to the Dense or
fully connected layers. The fully connected layer is connected to all the features
generated in the preceding layer. Each node has a distinct weight and bias. These
dense layers are used to classify based on the input received from the convolutions
layers.

5. Flatten

A flattened layer reshapes the tensors to have a shape equal to the total number of
elements contained in the tenors. Flatten helps in converting the multi-dimensional
arrays to one-dimensional arrays. Flatten is often used right before the dense layers.

6. Dropout Layers

The dropout layer is used to handle the issue of over-fitting, which is a pervasive
issue with training data with relatively limited samples. Dropout randomly sets the
outgoing edges of the hidden neurons to zero while updating each training phase. In
other words, it nullifies the contribution of some neurons to the next training iter-
ation. If dropout is not applied, the samples in the first training batch influence the
entire learning process in a biased and disproportionately high manner. It prevents
the model from learning features that come up in later samples.

3.7.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a type of RNN (Recurrent Neural
Networks) capable of learning long-term dependencies in sequence/time-series prediction
problems. They are often used in classification and prediction problems.

Conventional Recurrent Neural Network (RNN) cannot remember long-term depen-
dencies and are prone to vanishing/exploding gradient problems. LSTMs were designed
to overcome these issues.

Chapter 3: Background 33

LSTM Architecture

An LSTM unit consists of an input gate, an output gate, and a forget gate.

1. Input Gate The input receives the input and determines its importance. The previ-
ous hidden state and the current input are passed into a sigmoid function to decide
which values need to be updated based on their importance. The current state and
the hidden input are passed through the tanh function. The dot product of tanh and
the sigmoid outputs is determined to decide whether the information needs to be
stored or not.

2. Forget Gate The forget gate decides on the information that needs to be kept and
thrown. The current and previous state information is passed through a sigmoid
function. Based on the output of the sigmoid function, the information is kept if the
output is closer to 1 or discarded when it’s closer to 0.

3. Cell State Unlike the hidden units, the cell state provides the ability to store long-
term memory. This memory may not be from the immediately previous event. The
cell state is calculated by multiplication with forget vector. The input gate’s output
is multiplied to obtain/update the cell state.

4. Output Gate The information from the previous hidden state and the current in-
put is passed into a sigmoid function. The sigmoid function generates an output
between 0 and 1. Meanwhile, the modified cell state is passed through the tanh,
multiplied with the sigmoid output to decide on the hidden state information.

The output gate provides an output based on the current and previously stored in-
formation.

Chapter 3: Background 34

Mathematicall LSTM could be represented as -

it = σ (Wiht−1 + Uixt + bi)

ft = σ (Wfht−1 + Ufxt + bf)

ot = σ (Woht−1 + Uoxt + bo)

c̃t = tanh (Wht−1 + Uxt + b)

ct = ft ∗ ct−1 + it ∗ c̃t
ht = ot ∗ tanh (ct)

yt = ht

(3.2)

ft = forget gate
it= input gate
ct=cell state
ot = output gate
ht= hidden state

Figure 3.14: A LSTM Cell

Chapter 3: Background 35

3.8 Public ECG Databases

There are numerous public ECG databases available for analysis. However, most of
them are not sufficiently large for developing efficient training models. PTB-XL [15] [14]
turns out to be a viable choice for this project due to a large number of records and pa-
tients, which provides sufficiently large variations in time series for the model to learn
the patterns. Although attempts have been made to pool the data from all the databases,
that adds more variations due to different sensors, bit-rate, sampling rate, etc. Therefore,
PTB-XL seems to be the ideal choice among some of the databases mentioned in the table
below.

Database Year Subjects Records Sampling Rate No. of Leads

AHA [65] 1980 155 155 250 12
MIT-BIH [66] 1990 48 48 360 12

PTB [67] 1995 290 549 10,000 12+3
INCART [68] 2007 32 75 257 12

THEW(AMI) [69] 2012 93 160 200 3
PhysioBC [70] 2016 91 182 1000 12+3
PTB-XL [15] 2020 18885 21837 100/500 12

Table 3.1: Open Access ECG Databases

3.9 Raspberry Pi CM4 by Seeed - reTerminal

Raspberry Pi Compute Module (CM) 4 is a compact form factor for deeply embedded
applications. It has an ARM Cortex-A72 quad-core processor with 4GB of RAM and 32GB
of embedded Multi-Media Card (eMMC) onboard memory. The eMMC memory provides
faster startup times and better read-write performance. It has a built-in accelerometer and
light sensor. The reTerminal from Seeed comes with an expanded IO interface and 5-inch
IPS capacitive touch display, which makes it great for prototyping projects like ours. The
reTerminal comes with a full 40-Pin General Purpose Input Output (GPIO) interface which
could be used to connect various sensors in the future expansion of this project. It also
has an ethernet port and dual-band WiFi which clients can use to access the prediction
data. Though reTerminal doesn’t have a battery, it could be operated using a power bank,
which adds to its portability.

Chapter 3: Background 36

Raspberry Pi is capable of running a Linux-based operating system called Raspbian,
which provides leverage for executing existing Linux programs and libraries. Therefore,
machine learning programs, database management systems like SQL could easily be de-
ployed on raspberry pi.

In this project, we have hosted an Apache web server along with a few PHP pages to
display the predictions from our TensorFlow Lite model.

Figure 3.15: General Architecture

Chapter 4

Model and Prototype Design

4.1 Problem Overview

The number of IoT devices and their applications is increasing rapidly. Some credit
for this rapid growth goes to the advent of 5G networks which are designed to support
IoT devices with their lower latency, larger frequency spectrum, and better data transfer
speeds. This has paved the way for better real-time applications of IoT devices. Despite
the improvements in communications technology, the core design issue of IoT devices
remains the same i.e., small battery size and limited processing power. Some sensors have
high sampling rates like ECG, EEG, and nerve activity sensors. Computing such data
locally could be inefficient and power-intensive for IoT devices. Therefore many devices
such as ‘ECG Recorder with AI Analysis’ prefer to record the data and process it later on a
much powerful machine. Such an approach is not suitable for real-time applications. This
gave rise to the concept of offloading computationally demanding data to nearby node/s,
where data could be stored, processed, and analysed in real-time.

In a multi-user multi-sensory home and hospital environment, there is constant mon-
itoring of different body vitals. These sensors record a huge amount of data that needs to
be interpreted by physicians. In order to provide some assistance for reliably interpreting
the data by users/physicians, artificial intelligence is increasingly being explored. This
calls for the development of new technologies and methods for optimizing the current
health monitoring system for greater reliability, increased portability, and longer battery
life. This has provided impetus towards more research in biomedical applications of mo-
bile computing, edge computing, edge-cloud computing, distributed computing, etc. But,

37

Chapter 4: Model and Prototype Design 38

the majority of these require transmitting large data to a much powerful system either
physically or over wifi, which is a time and power-consuming process.

A survey paper published by O. Shahryari[9] compares the different architectures for
offloading and data processing. Many of such architectures managed to attain the goal of
acceptable delay and computational needs, but most of them were expensive to implement
and not suitable for small-scale personal, home, or hospital use. Also, the majority of the
frameworks are not easily expandable and might not be suited for future needs.

Additionally, implications of emerging technology like TensorFlow Lite have not yet
been explored much in this regard. The efficiency of TensorFlow Lite models could vary
and needs to be studied according to our use case scenario.

4.2 Prototype Design

From our problem statement, we know that reliability, portability, power, and cost-
efficiency are the key issues for IoT devices. To handle large computational and processing
requirements we developed an expandable framework that employs Artifical Intelligence
(AI) on Raspberry Pi 4, for analysis and is capable of rendering the results to a web server
for storage, display, and future analysis.

Firstly, we used Raspberry Pi 4 in our test bench. Raspberry Pi is a low-cost, credit-
card-sized computer. It is one of the most widely used platforms for IoT devices due to
its versatility. Raspberry Pi 4 comes with onboard Bluetooth/BLE 5.0, which can be used
for communication with various other sensors. For now the raw data was read from the
device memory but, it may also be acquired via wired connection using General Purpose
Input Output (GPIO) pins. We coded for the Raspberry Pi to be able to receive the raw
data and process it. We also programmed the Raspberry Pi 4 for sending the processed
data to a web server.

Secondly, we primarily used TensorFlow and Keras for creating and training a neural
network along with some supporting libraries like MatPlotLib, Pandas, Numpy, etc. In
this project, we used both 1D -CNN and Long Short-Term Memory (LSTM) which is a
type of Recurrent Neural Network (RNN). 1D-CNN and LSTM are used for the classifica-
tion of time-series data. LSTM is a kind of RNN which are capable of learning long-term

Chapter 4: Model and Prototype Design 39

dependencies. For ECG signals PTB-XL database was used. All the ECG recordings used
are publicly available.

Thirdly, to train the network on a computer, ECG data from PTB-XL was processed
and segmented. The data was then scaled and balanced as necessary. This would make
our training data. This training data was then used to train the 1D-CNN and LSTM model.
The trained TensorFlow model was deployed as a TensorFlow Lite model on Raspberry
Pi 4. The TensorFlow Lite model is expected to have a similar or marginally reduced effi-
ciency, but the exact effect needs to be studied accordingly. The TensorFlow model could
be tweaked a bit in order to attain better results on the model deployed on Raspberry Pi
4. The optimum methods for modeling our network and implementing still need to be
studied and experimented with. The Raspberry Pi 4, will independently classify the data
and forward the results to a web page on a server.

Fourthly, The server is responsible for displaying the results. This server have the
ability to connect to multiple sensors and devices, which would be advantageous for future
expansions of this framework.

4.3 Implementation Process

4.3.1 Setting Up TensorFlow/Keras in Anaconda

As we have already discussed that TensorFlow/Keras are open source machine learn-
ing libraries. The process to set up the development environment is:

1. Downloading and installing Anaconda Navigator 3 from the website
https://www.anaconda.com/

2. Creating a new development environment with Python 3.9.11

3. Installing TensorFlow 2.6, matplotlib, numpy, scikit-learn, wfdb and other depen-
dencies.

4. Since, we are using a GPU for training we need to install Keras and TensorFlow
GPU as well.

Chapter 4: Model and Prototype Design 40

5. During the course of implementation we have found that version mismatch could
break things, due to some features being deprecated or migrated.

4.3.2 Data Pre-Processing

The PTB-XL dataset has 21837 records from 18885 patients. Each record is 10 seconds
long and has 12 channels [15]. Meta-data such as sex, weight, height, and diagnostic class
is also available. Statements about the signal category are present in ‘scp codes.’ The
dataset contains more information about the signal labels, which is out of the scope of
this work. Although most signals are high quality [54], some signals occasionally contain
powerline noise, baseline drift, burst noise, and static noise. Therefore, removing these
artifacts is crucial before implementing the machine learning model.

Figure 4.1: Raw Signal and Spectrogram for ECG ID 1, Lead I, PTB-XL

Chapter 4: Model and Prototype Design 41

Powerline Noise Removal

Occasionally, some channels present a powerline noise of 50-150 Hz. It is important
to note that powerline noise may be present in some channels while absent in others for a
given patient. For removing powerline noise, we have used a low pass filter with a cutoff
at 45Hz with order 15, as the most significant frequencies for the machine learning model
are under that. Using order 15th order ensures firm damping at the cutoff frequency.

Figure 4.2: Filtered Signal and Spectrogram for ECG ID 1, Lead I, PTB-XL

Baseline Wander Correction

Wavelets are mathematical functions specifically tailored for a specific application.
Wavelet analysis helps in the simultaneous representation of a signal in frequency and
time domains. It makes wavelets a powerful tool to describe the local behaviour of a signal.
In recent years, wavelets have had profound applications in signal analysis, denoising,
and compression [71][72]. Although conventional methods like sliding window Fourier

Chapter 4: Model and Prototype Design 42

transform provide insight into local signal changes, wavelets are more suitable for shorter
signals. Fourier transforms are computationally more intensive. Therefore, wavelets are
emerging as a preferred tool for complex signal analysis.

There are numerous types of wavelets which could be tailored to suit the application.
A wavelet has two properties: dilation and location. The parameter dilation determines
the range of frequencies that could be captured, whereas the parameter location defines
the position of the wavelet with respect to time.

Some popularly used wavelets are:

1. Haar

2. Daubechies

3. Symmlet

4. Morlet

A wavelet transform is a mathematical tool that can extract local spectral and temporal
information from a signal simultaneously. It decomposes a signal into its components.

There are two types of wavelet transforms:

1. Continuous Wavelet Transform - is ideal for analyzing non-stationary signals. Ev-
ery possible wavelet is traversed over a range of dilation and location. This helps
capture a large range of frequency, whether it is rapidly changing, transient or have
slow variations.

2. Discrete Wavelet Transform - uses a finite set of wavelets with specific dilation
and locations. This finite subset helps in reducing the computational resource by
analyzing within a specific domain. They are extensively used in image compression
and signal denoising.

A significant amount of baseline wander is present in many signals. Although some
baseline wanders could be corrected using a high pass filter, this method causes a sub-
stantial reduction in the frequency domain, which negatively impacts the machine learn-
ing model’s performance. Therefore, we have used multi-resolution decomposition based

Chapter 4: Model and Prototype Design 43

method as demonstrated by A. Sargolzaei [73]. We determine the baseline for reconstruct-
ing the correcting signals. This method corrects the baseline while preserving important
frequency information. The equation below represents a discrete wavelet transform where
n and m control translation and dilation.

φm,n(t) =
1√
am

φ

(
t− nb0a

m
0

am0

)
(4.1)

The equation 4.2 represents the DWT of a continuous signal, which returns the detail
coefficients. Discrete dyadic wavelets with a0 and b0 as 2 and 1 respectively ensure that
wavelet coefficient Tm,n isn’t repeated and allows complete signal regeneration.

Tm,n =

∫ +∞

−∞
x(t)

1

a
m/2
0

φ
(
a−m
0 t− nb0

)
dt (4.2)

Sm,n =

∫ +∞

−∞
x(t)φm,n(t)dt (4.3)

Equations 4.4 and 4.5 are responsible for high and low pass filtering, respectively, provid-
ing multi-resolution decomposition.

Sm+1,n =
1√
2

∑
k

ckSm,2n+k =
1√
2

∑
k

ck−2nSm,k (4.4)

Tm+1,n =
1√
2

∑
k

bkSm,2n+k =
1√
2

∑
k

bk−2nSm,k (4.5)

∫
|f(t)|2dt =

∞∑
l=−∞

|cl|2 +
∞∑
j=0

∞∑
k=−∞

|djk|2 (4.6)

The baseline is determined based on the equations mentioned above, which is subtracted
from the original signal to obtain the wander-free time series.

Chapter 4: Model and Prototype Design 44

Figure 4.3: Baseline Correction for ECG ID 1, Lead I, PTB-XL

Rolling Mean

Rough peaks were present in some signals while absent in others belonging to the
same classification. It would impact the model’s learning performance. As a method of
standardizing signals to some extent, the rolling mean was determined with a window
size of 100 samples.

4.3.3 Determining Training Labels

The dataset lists SCP labels used in the scp statements.csv file, which describes diag-
nostic class, form, and rhythm. The dataset mentions multiple SCP labels and their per-
centages of likelihood corresponding to each record. Although most of them are sorted
and easy to interpret as they belong to a single superclass with high confidence, some are
unsorted or have low confidence. ECG ID 39 and 63 are such example with labels [‘IMI’:
15.0, ‘LNGQT’: 100.0, ‘NST ’: 100.0, ‘DIG’: 100.0, ‘ABQRS’: 0.0, ‘SR’: 0.0] and [‘ASMI’: 15.0,
‘ABQRS’: 0.0, ‘SR’: 0.0] respectively. This work selected labels with the highest confi-
dence for the training process. Fifty unique labels were identified and merged with their
respective five superclasses. The superclasses as represented as Normal—NORM, ST/T

Chapter 4: Model and Prototype Design 45

change—STTC, Myocardial Infarction—MI, Hypertrophy—HYP, and Conduction Distur-
bance—CD. A new label ‘OTHER’ was created for signals not falling within the five su-
perclasses. Following categorization was used to mere the labels:

NORM — [’NORM’]

STTC — [‘NDT’, ‘NST ’, ‘DIG’, ‘LNGQT’, ‘ISC ’, ‘ISCAL’, ‘ISCIN’, ‘ISCIL’, ‘ISCAS’, ‘ISCLA’, ‘ANEUR’, ‘EL’, ‘ISCAN’]

MI — [‘IMI’, ‘ASMI’, ‘ILMI’, ‘AMI’, ‘ALMI’, ‘INJAS’, ‘LMI’, ‘INJAL’, ‘IPLMI’, ‘IPMI’, ‘INJIN’, ‘INJLA’, ‘PMI’, ‘INJIL’]

HYP — [‘LVH’, ‘LAO/LAE’, ‘RVH’, ‘RAO/RAE’, ‘SEHYP’]

CD — [‘LAFB’, ‘IRBBB’, ‘1AVB’, ‘IVCD’, ‘CRBBB’, ‘CLBBB’, ‘LPFB’, ‘WPW’, ‘ILBBB’, ‘3AVB’, ‘2AVB’]

OTHER — [‘AFLT’, ‘AFIB’, ‘PSVT’, ‘STACH’, ‘PVC’, ‘PACE’, ‘PAC’]

Figure 4.4: Distribution of Occurrences after Sorting and Merging Labels

In binary classification, we will classify signals between normal and abnormal. As of
now, we have six labels, namely - NORM, MI, STTC, CD, HYP, and OTHER. To create
training data for binary classification, we will merge the abnormal labels into a single label
- “ABNORMAL”. NORM forms are “NORMAL” class. Although ‘OTHER’ is an imbalanced
minority class, it is still used to estimate real-life implementation scenarios better. Since
the data is imbalanced, class weights will be used in the training process.

ABNORMAL — [‘MI’, ‘STTC’, ‘CD’, ‘HYP’, ‘OTHER’]

NORMAL — [‘NORM’]

Chapter 4: Model and Prototype Design 46

Figure 4.5: Training, Validation and Testing Distribution

4.3.4 TensorFlow/Keras Model for 2-Class Classification

We have used multiple convolutional layers for extracting the features from the train-
ing data. We modeled with 1D CNN as they are more resource-efficient for our Lite Model.
The model was designed with the view that it is lightweight and convertible to Tensor-
Flow Lite Flatbuffer. Although some quantizations for this model are not well supported
yet we chose to balance between performance and resource constraints.

The input data is passed through successive convolutional layers. A Batch Normaliza-
tion layer and a max-pooling layer with pool size 2 follow each convolution layer. The
variations in filter and kernel sizes help capture significant features from the input sig-
nal. The result of the convolutional layer is converted to a 1-D vector by passing them
through a Flatten layer. Finally, the 1-D vector is processed by the two fully-connected
layers. The final fully connected layer has one unit. The output of this dense layer pro-
vides the probability of a signal belonging to the class ‘Normal’ or ‘Abnormal.’ Multiple
batch-normalization layers were used to prevent initial random weight bias. Although we
have tested numerous activation functions, ‘LeakyReLu’ yielded better results. Loss func-
tion ‘binary crossentropy’ and ‘adam’ optimizer were used. DataGenerator with batch
size 32 was used for training on GPU. Inputs were shuffled with each batch to prevent the
overfitting of data.

Chapter 4: Model and Prototype Design 47

Figure 4.6: Binary Classification Model Architecture

4.3.5 TensorFlow/Keras Model for 5-Class Classification

We have used multiple convolutional layers for extracting the features from the train-
ing data. We modeled with 1D-CNN as they are more resource-efficient for our Lite Model.
The model was designed with the view that it is lightweight and convertible to Tensor-
Flow Lite Flatbuffer. Although some quantizations for this model are not well supported
yet we chose to balance between performance and resource constraints. The input data
is passed through successive convolutional layers with varying kernels and filter sizes.
The variations in filter and kernel sizes help capture significant features from the input
signal. A Batch Normalization layer and a max-pooling layer with pool size 2 follow each
convolution layer. The convolutional layers learn local spatial coherence, i.e., the local
information present in one dimensional patches. This information is then used to identify

Chapter 4: Model and Prototype Design 48

similar patterns occurrences at other positions and signals. The convolutional layers serve
as a pre-processor for our LSTM layer. The convolutional layer helps in downsampling
the data that LSTM processes for better application in resource-constrained platforms.

Long Short-Term Memory (LSTM) layers follow the convolutional layers. LSTM is
a Recurrent Neural Network (RNN) that can learn long-term dependencies. LSTMs can
learn and store information from arbitrary duration, giving our model an advantage for
learning distinct features in time series. Unlike conventional RNN, LSTMs are not prone
to vanishing gradient problems. The result of the LSTM layer is converted to a 1-D vector
by passing them through a Flatten layer. Finally, the 1-D vector is processed by fully-
connected layers. The final fully connected layer has one unit. The output of this dense
layer provides the probability of a signal belonging to the class “Normal” or “Abnormal.”
Multiple batch-normalization layers were used to prevent initial random weight bias. Al-
though we have tested numerous activation functions, ‘LeakyReLu’ yielded better results.
Loss function ‘catagorical crossentropy’ and ‘adam’ optimizer were used. Each model is
run for ten epochs. DataGenerator with batch size 32 was used for training on GPU. Inputs
were shuffled with each batch to prevent the overfitting of data.

Figure 4.7: 5-Class Classification Model Architecture

Chapter 4: Model and Prototype Design 49

4.3.6 Determining Training Labels for Classification in 5 Classes

As suggested by the database authors, the data has been split into training, validation,
and test sets [15]. Fold 1-8 forms the training data, fold nine forms the validation set, and
fold ten to make the testing data. Since folds 9 and 10 were verified by a human, it would
help determine the model’s actual performance. Other methods that randomly split the
data were not used. The abnormal class was formed by merging MI, STTC, CD and HYP.
‘NORM’ created our ‘normal’ class. Labels not belonging to any diagnostic class were
removed.

Figure 4.8: Train, Test and Validation split - 5 Class

4.3.7 Installing Raspbian OS

ReTerminal by Seeed comes with preinstalled Raspbian OS but, it’s always a great
idea to give things a fresh start if the installation was faulty or device was being used
with another project. Installation process for eMMC based Raspberry Pi is a bit different
that the ones which use SD card. To write the data on the eMMC chip, the jumper pin
on the compute module need to be switched from boot mode to write mode. At this
point, Compute module could be connected to any system and it should show up the
eMMC storage. The eMMC storage needs to be written with Raspbian OS files. Finally,
Raspbian OS could be used after changing the jumper back to boot mode. A detailed guide
is available at [74].

4.3.8 Migrating TensorFlow model to Raspberry Pi

As we have already discussed in the previous sections, we’ll be using TensorFlow
Lite Flatbuffer to execute our trained model on the Raspberry Pi. Here we have coded

Chapter 4: Model and Prototype Design 50

for the conversion of our trained model to TensorFlow Lite. We have converted multiple
TensorFlow Lite versions withfloat32,float16 andint8 to compare their relative
accuracy.

4.3.9 Setting up Data Storage and Rendering

To store the data and to provide easy integration with other devices we are using
MYSQL server on raspberry pi. We are using MariaDB with ‘phpmyadmin’.

To make things functional we have two broad objective:

1. Storing results from TensorFlow Lite on MYSQL server

2. Retrieving stored results from MYSQL and displaying on a dynamic web page

Steps involved in setting up MYSQL Server:

1. Installing Apache server
sudo apt install apache2 -y

2. Installing PHP
sudo apt install php -y

3. Installing MariaDB MYSQL
sudo apt install mariadb-server php-mysql
sudo mysql secure installation

4. PHP my admin
sudo apt install phpmyadmin -y

5. Coding for the Web Pages
We have created a very simple web page that updates when it sees new data using
AJAX, HTML and PHP.

Chapter 5

Evaluation and Discussion

5.1 Evaluation Method

We have trained the model using different leads to determine the best model for Rasp-
berry Pi implementation. In our first model, we have used only lead I. We have used leads
I, II, and III in our second model. In our third model, we have used leads I, II, III, aVL,
aVR, and aVF. We have also used Lead I, II and III in combination with chest lead V1 and
V6. Since V1 is easiest to locate, it could easily be used by anyone for home applications.
Finally, we have used all the leads for our model. This series of experiments will help us
evaluate the usefullness of each combination.

5.1.1 Evaluation Metrics

To evaluate the model’s performance we will use four widely used metrics - Accuracy,
Precision, Recall and F1 Score. These metrics help us to determine the overall performance
of our models in various domains.

1. Accuracy - It is the ratio of correctly predicted results to the total number of results.
Although accuracy proves a general idea about model’s performance when data is
symmetric, but fails with asymmetric data.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

2. Precision - Precision helps in overcoming the disadvantage of accuracy with asym-

51

Chapter 5: Evaluation and Discussion 52

metric dataset.High precision coorelates to low false positive rate. Precision is pre-
ferred when focus is on minimizing false prositives.

Precision =
TP

TP + FP
(5.2)

3. Recall - Recall indicates information about the missed positive predictions. Preci-
sion is preferred when focus is on minimizing false negatives.

Recall =
TP

TP + FN
(5.3)

4. F1 Score - F1 leverages both Precision and Recall. It is the weighted average of Pre-
cision and Recall. F1 Score provides a better estimate than accuracy in imbalanced
dataset. It provides a better measure for multi-class dataset as the distribution is
taken into account.

F1 score =
2× Precision × Recall

Precision + Recall
(5.4)

• True Positive (TP) - Correctly predicted positive values

• True Negatives (TN) - Correctly predicted negative values

• False Positive (FP) - incorrectly predicted positives

• False Negatives (FN) - incorrectly predicted negatives

5.1.2 TensorFlow Lite Evaluation

Each model was saved and converted to TensorFlow Lite Flat buffer. The TensorFlow
Lite model was run on Raspberry Pi 4.0 to evaluate its performance on the test dataset.
Two TensorFlow Lite FlatBuffers were generated using each model, each quantized as
float32 and float16. The models were deployed and tested on Raspberry Pi CM
4. The raw data was read from the stored memory and processed results were stored in
MYSQL database. Dynamic pages were created to display the results in real-time. The data
could be accessed and displayed on any system on the same network using a web browser,
providing a unified storage and monitoring framework. The size and performance of each
model was determined and recorded.

Chapter 5: Evaluation and Discussion 53

5.2 Results from 2-Class Classification Model

5.2.1 Confusion Matrix

Figure 5.1: 2-Class Classification Confusion Matrix

5.2.2 Model Evaluation

The F1 score suggests that using single lead configuration gives the worst performance.
As the number of leads increases beyond three, no significant gain in F1-score is observed.
When one chest lead is used along with six limb leads, the performance is slightly better
and comparable to twelve lead configuration.

Chapter 5: Evaluation and Discussion 54

Channels

Used

Accuracy

(%)
Precision

(%)
Recall

(%)
F1 Score

(%)
1 73.55 ± 0.28 85.63 ± 0.27 62.55 ± 0.29 72.29 ± 0.22
3 80.24 ± 0.22 88.17 ± 0.21 75.90 ± 0.30 81.57 ± 0.21
6 79.50 ± 0.19 90.64 ± 0.30 71.30 ± 0.22 79.82 ± 0.21
12 81.03 ± 0.16 93.50 ± 0.23 71.77 ± 0.15 81.06 ± 0.17

6+V1 81.20 ± 0.15 89.11 ± 0.16 76.50 ± 0.19 82.32 ± 0.14
Table 5.1: 2-Class TensorFlow Keras Model Evaluation

5.2.3 TensorFlow Lite Evaluation

For all the models, we observe significant size reduction when converted to Tensor-
Flow lite. The accuracy of the TensorFlow lite models is comparable to the accuracy of
the original model. These model sizes are suitable for implementing a cheap 512KB mi-
crocontroller.

Channels

Used

TF Lite

Float32

TF Lite

Float16

Original

Model

Size(KB) Accuracy(%) Size(KB) Accuracy(%) Size(MB)
1 196 ± 0.90 73.54 ± 0.28 111 ± 0.50 73.56 ± 0.28 1.37 ± 0.01
3 202 ± 1.10 80.20 ± 0.21 115 ± 0.50 80.28 ± 0.22 1.41 ± 0.01
6 213 ± 1.05 79.52 ± 0.20 119 ± 0.70 79.51 ± 0.18 1.43 ± 0.01
12 229 ± 2.30 81.05 ± 0.18 127 ± 1.10 81.03 ± 0.20 1.49 ± 0.02

6+V1 217 ± 1.20 80.10 ± 0.11 121 ± 0.60 79.98 ± 0.16 1.44 ± 0.01
Table 5.2: 2-Class TensorFlow Lite Model Evaluation

5.3 Results from 5-Class Classification Model

5.3.1 Confusion Matrix

A total of six models with different lead configurations were trained and evaluated.
The confusion matrix for all the models has been recorded in table 5.3. Figure 5.2 shows
the confusion matrix corresponding to five different classes for the model using all 12
leads.

Chapter 5: Evaluation and Discussion 55

Channels

Used

Classes True Positive True Negative False Positive False Negative

1

CD 0.40 ± 0.02 0.95 ± 0.01 0.60 ± 0.02 0.05 ± 0.01
HYP 0.25 ± 0.02 0.96 ± 0.01 0.75 ± 0.02 0.04 ± 0.01
MI 0.31 ± 0.03 0.92 ± 0.02 0.69 ± 0.03 0.08 ± 0.02

NORM 0.78 ± 0.04 0.76 ± 0.03 0.22 ± 0.04 0.24 ± 0.03
STTC 0.46 ± 0.01 0.93 ± 0.02 0.54 ± 0.01 0.07 ± 0.02

3

CD 0.55 ± 0.02 0.93 ± 0.02 0.45 ± 0.02 0.07 ± 0.02
HYP 0.35 ± 0.02 0.95 ± 0.01 0.65 ± 0.02 0.05 ± 0.01
MI 0.49 ± 0.02 0.90 ± 0.01 0.51 ± 0.02 0.10 ± 0.01

NORM 0.81 ± 0.03 0.79 ± 0.02 0.19 ± 0.03 0.21 ± 0.02
STTC 0.64 ± 0.02 0.89 ± 0.01 0.36 ± 0.02 0.11 ± 0.01

6

CD 0.54 ± 0.02 0.94 ± 0.02 0.46 ± 0.02 0.06 ± 0.02
HYP 0.40 ± 0.03 0.95 ± 0.02 0.60 ± 0.03 0.05 ± 0.02
MI 0.55 ± 0.01 0.91 ± 0.02 0.45 ± 0.01 0.09 ± 0.02

NORM 0.87 ± 0.03 0.79 ± 0.02 0.13 ± 0.03 0.21 ± 0.02
STTC 0.54 ± 0.02 0.95 ± 0.01 0.46 ± 0.02 0.05 ± 0.01

12

CD 0.71 ± 0.02 0.89 ± 0.02 0.29 ± 0.02 0.11 ± 0.02
HYP 0.38 ± 0.02 0.97 ± 0.01 0.62 ± 0.02 0.03 ± 0.01
MI 0.65 ± 0.03 0.89 ± 0.02 0.35 ± 0.03 0.11 ± 0.02

NORM 0.86 ± 0.01 0.83 ± 0.02 0.14 ± 0.01 0.17 ± 0.02
STTC 0.65 ± 0.03 0.94 ± 0.01 0.35 ± 0.03 0.06 ± 0.01

6+V1

CD 0.64 ± 0.02 0.95 ± 0.01 0.36 ± 0.02 0.05 ± 0.01
HYP 0.33 ± 0.01 0.96 ± 0.01 0.67 ± 0.01 0.04 ± 0.01
MI 0.60 ± 0.01 0.88 ± 0.02 0.40 ± 0.01 0.12 ± 0.02

NORM 0.93 ± 0.02 0.74 ± 0.03 0.07 ± 0.02 0.26 ± 0.03
STTC 0.58 ± 0.02 0.94 ± 0.01 0.42 ± 0.02 0.06 ± 0.01

Table 5.3: Confusion Matrix for all Multi-Label Classification CNN-LSTM Models

Chapter 5: Evaluation and Discussion 56

Figure 5.2: 5-Class Classification Confusion Matrix

5.3.2 Model Evaluation

Channels

Used

Accuracy

(%)
Precision

(%)
Recall

(%)
F1 Score

(%)
1 55.80 ± 0.17 68.83 ± 0.15 51.01 ± 0.19 58.59 ± 0.14
3 61.69 ± 0.11 73.42 ± 0.09 64.16 ± 0.12 68.59 ± 0.10
6 63.48 ± 0.14 73.46 ± 0.09 65.44 ± 0.11 69.22 ± 0.08
12 70.42 ± 0.13 77.48 ± 0.12 73.23 ± 0.13 75.29 ± 0.10

6+V1 66.25 ± 0.10 75.19 ± 0.14 69.51 ± 0.08 72.24 ± 0.09
Table 5.4: 5-Class TensorFlow/Keras Model Evaluation

The F1 score suggests that using a single lead configuration gives the worst perfor-
mance. The F1 score improves when the number of leads increases. No significant gain is
observed when more than three limb leads are used. The best performance was observed
when all twelve leads were used. When one chest lead was used along with six limb leads,

Chapter 5: Evaluation and Discussion 57

the performance was significantly better, making it a better choice for implementation in
non-clinical in-home applications.

5.3.3 TensorFlow Lite Evaluation

Although a significant reduction in model size was achieved when converted to Ten-
sorFlow lite model, the model’s accuracy was significantly reduced. Twelve lead configu-
ration still performs the best, followed by limb leads with one chest lead. The reason for
this loss of accuracy will be explored in our future work.

Channels

Used

TF Lite

Float32

TF Lite

Float 16

Original

Model

Size(KB) Accuracy(%) Size(KB) Accuracy(%) Size(MB)
1 611 ± 1.95 43.70 ± 0.15 337 ± 0.94 43.70 ± 0.14 6.85 ± 0.01
3 637 ± 2.15 53.21 ± 0.13 347 ± 0.07 53.31 ± 0.71 6.89 ± 0.01
6 673 ± 2.20 54.42 ± 0.09 365 ± 1.10 54.33 ± 0.08 7.01 ± 0.03
12 748 ± 3.59 58.31 ± 0.14 405 ± 1.15 58.31 ± 0.10 7.25 ± 0.04

6+V1 682 ± 2.34 56.21 ± 0.08 371 ± 0.06 56.17 ± 0.12 7.10 ± 0.03
Table 5.5: 5-Class TensorFlow Lite Model Evaluation

5.3.4 Edge Node/Raspberry Pi Web Interface

The models were deployed and tested on Raspberry Pi CM 4. The raw data was read
from the stored memory, and processed results were stored in the MYSQL database. Dy-
namic pages were created to display the results in real time. The data could be accessed by
any system on the same network using Raspberry Pi’s local IP address in a web browser. A
static domain name or a Dynamic DNS service could be used to access data over the web.
Such a method would require port forwarding enabled on the external gateway router,
providing a means for the external traffic to reach our server.

Chapter 5: Evaluation and Discussion 58

Figure 5.3: Edge Node/Raspberry Pi Web Interface

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Both 2-class and 5-class classifications present unique and exciting results. For 2-
class classification, this work demonstrated that using all twelve leads for classification
yields the best accuracy. We can also observe that using at least three ‘leads’ over just
one increases the classification accuracy by about 7%. However, precision increases when
more than three ‘leads’ are used, with a minor increase in accuracy. We also demonstrated
the use of TensorFlow Lite for implementing machine learning models while maintaining
accuracy. The accuracy of all the TensorFlow lite models was about the same as that of the
original models. The ‘float32’ model presented about 86% decrease in model size, whereas
the ‘float16’ model presented about 94% decrease.

For 5-class classification, we aimed to develop an efficient deep learning model for
multi-label classification, which could be deployed on a resource constrained platform
with TensorFlow Lite Flatbuffer. We demonstrated that using all twelve leads for clas-
sification yields the best accuracy. We can also observe that using at least three ‘leads’
over just one increases the classification accuracy by around 6%. Using all twelve leads
provides maximum accuracy and precision. We evaluated TensorFlow Lite’s implementa-
tion of the models. The accuracy of TensorFlow lite models drops by about 12% compared
to the accuracy of original models. The ‘float32’ model presented about 90% decrease in
model size, whereas the ‘float16’ model presented about 94.5% decrease.

59

Chapter 6: Conclusions and Future Work 60

6.2 Future Work

One of the goals of this work was to develop an efficient deep learning model that could
easily be deployed on resource-constrained IoT devices for ECG signal classification into
‘Normal’ and ‘Abnormal’ classes. Since PTB-XL is one of the largest open public databases
available, our second goal was to evaluate its performance with our models.

Although the PTB-XL dataset is quite large, we still need to explore ways to tackle
the small number of samples for numerous minority classes. One way could be merging
samples from other datasets to expand this scope.

To improve the model’s performance, more complex and elaborate models need to
be explored and tested with TensorFlow Lite conversion. Since TensorFlow lite is still
expanding its support for conventionally used features in modeling, it is vital to explore
more convertible models yielding higher accuracy. Additionally, we would focus on int8
and int16 quantizations for microcontroller implementations. This would help make way
for more resource-efficient ECG-IoT devices, which could be deployed in clinical and non-
clinical settings.

Once we have high-performing models, we will try to scale sensor-specific real-time
ECG data for the models. We intend to test the model on larger samples and run small-
scale trials to estimate the real-time performance in anomaly detection alongside conven-
tional clinical equipment.

The effect of other body vitals and meta-data such as sex, age, height, or body oxygen
saturation level needs to be studied to help get better ECG estimates.

Bibliography

[1] W. Lardier, Q. Varo, and J. Yan, “Dynamic Reduced-Round Cryptography for Energy-
Efficient Wireless Communication of Smart IoT Devices,” ICC 2020 - 2020 IEEE In-
ternational Conference on Communications (ICC), 2020.
DOI: 10.1109/icc40277.2020.9149305.

[2] Y. B. Zikria, R. Ali, M. K. Afzal, and S. W. Kim, “Next-Generation Internet of Things
(IoT): Opportunities, Challenges, and Solutions,” Sensors, vol. 21, no. 4, p. 1174, 2021.
DOI: 10.3390/s21041174.

[3] F. B. Insights, Internet of things (iot) in healthcare market worth usd 446.52 billion at
25.9% cagr by 2028 owing to presence of large population in asia-pacific, 2021. [On-
line]. Available:https://www.globenewswire.com/news-release/
2021/10/12/2312160/0/en/Internet-of-things-IoT-in-
Healthcare-Market-Worth-USD-446-52-Billion-at-25-9-
CAGR-by-2028-Owing-to-Presence-of-Large-Population-
in-Asia-Pacific.html.

[4] X. Liu and X. Zhang, “Rate and Energy Efficiency Improvements for 5G-Based IoT
with Simultaneous Transfer,” IEEE Internet ofThings Journal, vol. 6, no. 4, 5971–5980,
2019. DOI: 10.1109/jiot.2018.2863267.

[5] A. P. Plageras, K. E. Psannis, C. Stergiou, H. Wang, and B. B. Gupta, “Efficient IoT-
based sensor BIG Data collection–processing and analysis in smart buildings,” Fu-
ture Generation Computer Systems, vol. 82, pp. 349–357, 2018.

[6] H. Elahi, K. Munir, M. Eugeni, S. Atek, and P. Gaudenzi, “Energy Harvesting to-
wards Self-Powered IoT Devices,” Energies, vol. 13, no. 21, p. 5528, 2020.

61

Bibliography 62

[7] J Li, M Bhuiyan, X Huang, B McDonald, T. Farrell, and E. Clancy, “Reducing Electric
Power Consumption when Transmitting ECG/EMG/EEG using a Bluetooth Low
Energy Microcontroller,” in 2018 IEEE Signal Processing inMedicine and Biology Sym-
posium (SPMB), IEEE, 2018, pp. 1–3.

[8] M. Jia, Z. Yin, D. Li, Q. Guo, and X. Gu, “Toward Improved Offloading Efficiency of
Data Transmission in the IoT-cloud by Leveraging Secure Truncating OFDM,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4252–4261, 2018.

[9] O.-K. Shahryari, H. Pedram, V. Khajehvand, and M. D. TakhtFooladi, “Energy-Efficient
and delay-guaranteed computation offloading for fog-based IoT networks,” Com-
puter Networks, vol. 182, p. 107 511, 2020.

[10] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A Survey on End-Edge-Cloud Orches-
trated Network Computing Paradigms: Transparent Computing, Mobile Edge Com-
puting, Fog Computing, and Cloudlet,” ACM Computing Surveys (CSUR), vol. 52,
no. 6, pp. 1–36, 2019.

[11] M. Laska, S. Herle, R. Klamma, and J. Blankenbach, “A Scalable Architecture for
Real-Time Stream Processing of Spatiotemporal IoT stream Data—Performance anal-
ysis on the Example of Map Matching,” ISPRS International Journal of Geo-Information,
vol. 7, no. 7, p. 238, 2018.

[12] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture and
Computation Offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
pp. 1628–1656, 2017.

[13] M. G. R. Alam, M. M. Hassan, M. Z. Uddin, A. Almogren, and G. Fortino, “Auto-
nomic computation offloading in mobile edge for IoT applications,” Future Genera-
tion Computer Systems, vol. 90, pp. 149–157, 2019.

[14] P. Wagner, N. Strodthoff, R.-D. Bousseljot, W. Samek, and T. Schaeffter, Ptb-xl, a large
publicly available electrocardiography dataset, 2022. DOI: 10.13026/KFZX-
AW45. [Online]. Available: https://physionet.org/content/ptb-
xl/1.0.3/.

[15] P. Wagner et al., “PTB-XL, a large publicly available electrocardiography dataset,”
Scientific Data, vol. 7, no. 1, 2020. DOI: 10.1038/s41597-020-0495-6.

Bibliography 63

[16] J. Zhang, A. Liu, D. Liang, X. Chen, and M. Gao, “Interpatient ECG Heartbeat Classi-
fication with an Adversarial Convolutional Neural Network,” Journal of Healthcare
Engineering, vol. 2021, 2021.

[17] T. D. Pham, “Time—frequency time—space LSTM for robust classification of phys-
iological signals,” Scientific reports, vol. 11, no. 1, pp. 1–11, 2021.

[18] S. A. Mirsalari, N. Nazari, S. A. Ansarmohammadi, S. Sinaei, M. E. Salehi, and M.
Daneshtalab, “ELC-ECG: Efficient LSTM Cell for ECG Classification based on Quan-
tized Architecture,” in 2021 IEEE International Symposium on Circuits and Systems
(ISCAS), IEEE, 2021, pp. 1–5.

[19] M. Mittal, S. Tanwar, B. Agarwal, and L. M. Goyal, “Energy conservation for iot
devices,” Concepts, Paradigms and Solutions, Studies in Systems, Decision and Control,
In Preparation. Springer Nature Singapore Pte Ltd., Singapore, pp. 1–356, 2019.

[20] B. Martinez, M. Monton, I. Vilajosana, and J. D. Prades, “The Power of Models: Mod-
eling Power Consumption for IoT Devices,” IEEE Sensors Journal, vol. 15, no. 10,
pp. 5777–5789, 2015.

[21] Bluetooth, Bluetooth technology overview. [Online]. Available: https://www.
bluetooth.com/learn-about-bluetooth/tech-overview/.

[22] Zigbee, Zigbee: Complete iot solution, 2022. [Online]. Available: https://csa-
iot.org/all-solutions/zigbee/.

[23] P. Paudel, S. Kim, S. Park, and K.-H. Choi, “A Context-Aware IoT and Deep-Learning-
Based Smart Classroom for Controlling Demand and Supply of Power Load,” Elec-
tronics, vol. 9, no. 6, p. 1039, 2020.

[24] B. Rababah and R. Eskicioglu, “Distributed Intelligence Model for IoT Applications
Based on Neural Networks,” International Journal of Computer Network & Informa-
tion Security, vol. 13, no. 3, 2021.

[25] K. Weimann and T. O. Conrad, “Transfer learning for ECG classification,” Scientific
reports, vol. 11, no. 1, pp. 1–12, 2021.

[26] Tensorflow lite: Ml for mobile and edge devices. [Online]. Available: https://
www.tensorflow.org/lite.

Bibliography 64

[27] A. B. Rad et al., “ECG-Based Classification of Resuscitation Cardiac Rhythms for
Retrospective Data Analysis,” IEEE Transactions on Biomedical Engineering, vol. 64,
no. 10, pp. 2411–2418, 2017.

[28] F. Funk, T. Bucksch, and D. Mueller-Gritschneder, “ML Training on a Tiny Micro-
controller for a Self-adaptive Neural Network-Based DC Motor Speed Controller,”
in IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for
Embedded Machine Learning, Springer, 2020, pp. 268–279.

[29] R. David et al., “TensorFlow Lite Micro: Embedded Machine Learning for TinyML
Systems,” Proceedings of Machine Learning and Systems, vol. 3, pp. 800–811, 2021.

[30] G. Demosthenous and V. Vassiliades, “Continual Learning on the Edge with Ten-
sorFlow Lite,” arXiv preprint arXiv:2105.01946, 2021.

[31] Overview. [Online]. Available:https://google.github.io/flatbuffers/.

[32] H. Li and P. Boulanger, “A Survey of Heart Anomaly Detection Using Ambulatory
Electrocardiogram (ECG),” Sensors, vol. 20, no. 5, p. 1461, 2020.
DOI: 10.3390/s20051461.

[33] E. J. d. S. Luz, W. R. Schwartz, G. Cámara-Chávez, and D. Menotti, “ECG-based
heartbeat classification for arrhythmia detection: A survey,” Computer methods and
programs in biomedicine, vol. 127, pp. 144–164, 2016.

[34] G. J. Warmerdam, R. Vullings, L. Schmitt, J. O. Van Laar, and J. W. Bergmans, “Hier-
archical Probabilistic Framework for Fetal R-Peak Detection, Using ECG Waveform
and Heart Rate Information,” IEEE Transactions on Signal Processing, vol. 66, no. 16,
pp. 4388–4397, 2018.

[35] H. B. Seidel, M. M. A. da Rosa, G. Paim, E. A. C. da Costa, S. J. Almeida, and S. Bampi,
“Approximate Pruned and Truncated Haar Discrete Wavelet Transform VLSI Hard-
ware for Energy-Efficient ECG Signal Processing,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 68, no. 5, pp. 1814–1826, 2021.

[36] J.-S. Park, S.-W. Lee, and U. Park, “R Peak Detection Method Using Wavelet Trans-
form and Modified Shannon Energy Envelope,” Journal of healthcare engineering,
vol. 2017, 2017.

Bibliography 65

[37] A. Giorgio, M. Rizzi, and C. Guaragnella, “Efficient Detection of Ventricular Late
Potentials on ECG Signals Based on Wavelet Denoising and SVM Classification,”
Information, vol. 10, no. 11, p. 328, 2019.

[38] M. R. Fikri, I. Soesanti, and H. A. Nugroho, “ECG Signal Classification Review,”
IJITEE (International Journal of Information Technology and Electrical Engineering),
vol. 5, no. 1, p. 15, 2021. DOI: 10.22146/ijitee.60295.

[39] V. Leon, S. Mouselinos, K. Koliogeorgi, S. Xydis, D. Soudris, and K. Pekmestzi, “A
Tensorflow Extension Framework for Optimized Generation of Hardware CNN In-
ference Engines,” Technologies, vol. 8, no. 1, p. 6, 2020.
DOI: 10.3390/technologies8010006.

[40] J. Li, Y. Si, T. Xu, and S. Jiang, “Deep convolutional Neural Network Based ECG Clas-
sification System Using Information Fusion and One-Hot Encoding Techniques,”
Mathematical Problems in Engineering, vol. 2018, 1–10, 2018.
DOI: 10.1155/2018/7354081.

[41] A. Daamouche, L. Hamami, N. Alajlan, and F. Melgani, “A wavelet optimization
approach for ECG Signal Classification,” Biomedical Signal Processing and Control,
vol. 7, no. 4, 342–349, 2012. DOI: 10.1016/j.bspc.2011.07.001.

[42] M. Nazarahari, S. Ghorbanpour Namin, A. H. Davaie Markazi, and A. Kabir Anaraki,
“A multi-wavelet optimization approach using similarity measures for electrocar-
diogram signal classification,” Biomedical Signal Processing and Control, vol. 20, 142–151,
2015. DOI: 10.1016/j.bspc.2015.04.010.

[43] D. Zhang et al., “An ECG Signal De-Noising Approach Based on Wavelet Energy
and Sub-Band Smoothing Filter,” Applied Sciences, vol. 9, no. 22, p. 4968, 2019.
DOI: 10.3390/app9224968.

[44] P. Bakucz, S. Willems, and B. Hoffmann, “Fast detection of Atrial Fibrillation using
wavelet transform,” in World Congress on Medical Physics and Biomedical Engineer-
ing, September 7-12, 2009, Munich, Germany, Springer, 2009, pp. 81–84.

[45] P. S. Addison, “Wavelet transforms and the ECG: a review,” Physiological Measure-
ment, vol. 26, no. 5, 2005. DOI: 10.1088/0967-3334/26/5/r01.

[46] I. M. Dremin, O. V. Ivanov, and V. A. Nechitailo, “Wavelets and their uses,” Physics-
Uspekhi, vol. 44, no. 5, 447–478, 2001.
DOI: 10.1070/pu2001v044n05abeh000918.

Bibliography 66

[47] S. Kiranyaz, T. Ince, and M. Gabbouj, “Real-Time Patient-Specific ECG Classification
by 1-D Convolutional Neural Networks,” IEEE Transactions on Biomedical Engineer-
ing, vol. 63, no. 3, pp. 664–675, 2015.

[48] S. Saadatnejad, M. Oveisi, and M. Hashemi, “LSTM-Based ECG Classification for
Continuous Monitoring on Personal Wearable Devices,” IEEE journal of biomedical
and health informatics, vol. 24, no. 2, pp. 515–523, 2019.

[49] Chruścik and et al., “Chapter VI Cardiovascular System,” in Fundamentals of Anatomy
and Physiology. Australian Edition. University of Southern Queensland, 2021.

[50] Z. Nesheiwat, A. Goyal, and M. Jagtap, Atrial fibrillation, 2022. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK526072/.

[51] M. Ziccardi, A. Goyal, and C. Maani,Atrial flutter, 2022. [Online]. Available:https:
//www.ncbi.nlm.nih.gov/books/NBK540985/.

[52] A. Henning and C. Krawiec, Sinus tachycardia, 2022. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/books/NBK553128/.

[53] Y. Hafeez and S. Grossman, Sinus bradycardia, 2022. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/books/NBK493201/.

[54] C. Foth, M. Gangwani, and H. Alvey, Ventricular tachycardia, 2022. [Online]. Avail-
able: https://www.ncbi.nlm.nih.gov/books/NBK532954/.

[55] D. Ludhwani, A. Goyal, and M. Jagtap, Ventricular fibrillation, 2022. [Online]. Avail-
able: https://www.ncbi.nlm.nih.gov/books/NBK537120/.

[56] S. Oldroyd, B. Rodriguez, and A. Makaryus, First degree heart block, 2022. [Online].
Available: https://www.ncbi.nlm.nih.gov/books/NBK448164/
#::text=First“%2Ddegree“%20atrioventricular“%20(AV)
,discovered“%20only“%20on“%20routine“%20ECG..

[57] A. Kashou, A. Goyal, T. Nguyen, and L. Chhabra, Atrioventricular block, 2022. [On-
line]. Available:https://www.ncbi.nlm.nih.gov/books/NBK459147/.

[58] M. Mangi, W. Jones, M. Mansour, and L. Napier,Atrioventricular block second-degree,
2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/
NBK482359/.

[59] K. V, C. L, and S. M, Third-degree atrioventricular block, 2022. [Online]. Available:
https://pubmed.ncbi.nlm.nih.gov/31424783/.

Bibliography 67

[60] D. Scherbak and G. Hicks, Left bundle branch block, 2022. [Online]. Available:https:
//www.ncbi.nlm.nih.gov/books/NBK482167/#::text=Left“
%20bundle“%20branch“%20block“%20(LBBB,His“%2DPurkinje“
%20system“%20is“%20compromised..

[61] S. D and H. GJ, Left bundle branch block, 2022. [Online]. Available: https://
pubmed.ncbi.nlm.nih.gov/29489192/.

[62] W. Harkness and M. Hicks, Right bundle branch block, 2022. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK507872/#: :
text=The“%20characteristic“%20ECG“%20findings“%20for,
is“%20greater“%20than“%2040“%20milliseconds.

[63] Tensorflow, Tensorflow. [Online]. Available: https://www.tensorflow.
org/.

[64] T. Keras, Simple. flexible. powerful. [Online]. Available: https://keras.io/.

[65] AHA, Aha database sample excluded record, 2003. [Online]. Available: https:
//physionet.org/content/ahadb/1.0.0/.

[66] G. Moody and R. Mark, Mit-bih arrhythmia database, 2005. [Online]. Available:
https://physionet.org/content/mitdb/1.0.0/.

[67] R.-D. Bousseljot, Ptb diagnostic ecg database, 2004. [Online]. Available: https:
//www.physionet.org/content/ptbdb/1.0.0/.

[68] E. Yakushenko, St petersburg incart 12-lead arrhythmia database, 2008. [Online].
Available: https://physionet.org/content/incartdb/1.0.0/.

[69] Telemetric and holter ecg warehouse. [Online]. Available: http://www.thew-
project.org/.

[70] Physiobc. [Online]. Available: http://www.physiobc.org/.

[71] C. C. FR; Comparing different wavelet transforms on removing electrocardiogram
baseline wanders and special trends. [Online]. Available: https://pubmed.
ncbi.nlm.nih.gov/33380333/.

[72] Y. Xu, M. Luo, T. Li, and G. Song, “Ecg signal de-noising and baseline wander cor-
rection based on ceemdan and wavelet threshold,” Sensors, vol. 17, no. 12, p. 2754,
2017. DOI: 10.3390/s17122754.

Bibliography 68

[73] A. Sargolzaei, K. Faez, and S. Sargolzaei, “A new robust wavelet based algorithm for
baseline wandering cancellation in ECG signals,” in 2009 IEEE International Confer-
ence on Signal and Image Processing Applications, IEEE, 2009, pp. 33–38.

[74] B. Zuo, Getting started with reterminal. [Online]. Available: https://wiki.
seeedstudio.com/reTerminal/.

Publication

Sharma, K., Eskicioglu, R. (2022). Deep learning-based ECG classification on Raspberry Pi
using a TensorFlow lite Model based on PTB-XL Dataset. International Journal of Artificial
Intelligence Applications, 13(4), 55–66.
https://doi.org/10.5121/ijaia.2022.13404

69

