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II 

 

Abstract 

The purpose of this study is to find analytical solutions to Laplacian field problems rela-

tive to arbitrary configurations of spheres based on novel translational addition theorems 

derived specifically for scalar Laplacian functions. These theorems are used to express in 

analytic form the fields due to individual spheres in system of coordinates attached to 

other spheres, thus allowing for the exact boundary conditions to be imposed. 

In the literature, translational addition theorems are available for scalar cylindrical and 

spherical wave functions. Such theorems are not directly available for the general solu-

tion of the Laplace equation.  

This thesis presents the derivation of the required translational addition theorems for the 

general solution of Laplace equation in spherical coordinates and then the application of 

these theorems to find analytical solutions to some electrostatic and magnetostatic field 

problems relative to arbitrarily located spheres.  Computation results for electric and 

magnetic spheres have been generated and numerical results are compared with the re-

sults obtained by other methods available in the literature for two sphere systems. Such 

numerical data, of known accuracy, are also useful for validating various approximate 

numerical methods. 
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Chapter 1 

Introduction 

Analytical solutions for boundary value field problems relative to multi-object systems 

can be obtained only in some special cases. To derive solutions to static and stationary 

field problems, the Laplace equation must be solved subject to the boundary conditions at 

the surface of each body in the system and to obtain exact analytic solution the surfaces 

of all the bodies involved must be coordinate surfaces in orthogonal systems of coordi-

nates. 

The difficulties encountered when boundaries do not coincide with coordinate surfaces 

are overcome by applying various numerical methods. In this thesis, a new approach for 

finding analytical solutions to static and stationary field problems in the presence of 

many body systems is presented. Available classical methods for systems with one or at 

most two canonical objects, such as the method of separation variable and method of im-

ages cannot be employed for system of three or more objects.  

To be able to impose the boundary conditions at the surface of each body, the fields due 

to all other bodies have to be expressed in term of the coordinates of the system attached 

to each individual body. Appropriate translational or translational-rotational addition 

theorems are to be applied to “translate” the field produce by a particular body expressed 
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initially in the coordinate system attached to that body into the coordinate system at-

tached to another body. For particular geometric configurations, it is possible to derive 

exact analytical solutions which constitute benchmark solutions, useful for determining 

the accuracy of various approximate techniques.  

This thesis is dealing with static electric and magnetic field problems relative to many-

sphere systems, such as electrostatic field problems when spheres are kept at known po-

tentials or in an external electric field, while in the case of magnetic fields in the presence 

of perfect conductor spheres, for instance, the boundary condition at their surface requires 

that the normal derivative of the scalar potential be equal to zero.  

First, the necessary translational addition theorems are derived and, then, those theorems 

are applied to find the solution to some benchmark problems, relative to two sphere sys-

tems, with the results evaluated by comparison with the results obtained by other exact 

methods. Secondly, the method developed is applied to the analysis of electric and mag-

netic fields in the presence of a few new configurations of more than two spheres.  

In practical engineering applications multi-sphere models are useful for determination of 

forces on particles and field intensification in colloidal suspensions, computation of fields 

in material structures with embedded arrays of small bodies and to study the response of 

nanostructures to electromagnetic fields etc. 
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1.1 Solution to Laplace Equation 

In many electrostatic problems which involve a set of conducting bodies, the charge dis-

tributions over each of the metallic surfaces are to be determined when the potentials of 

all the conducting bodies are given. For homogeneous media outside the conducting bod-

ies, the electrostatic potential satisfies the Laplace equation.  The applications of the 

Laplace equation are not confined to electrostatics. It is widely used in many branches of 

science and engineering, notably for static and stationary magnetic fields, for direct cur-

rent fields in conducting media, in astronomy, fluid dynamics, etc.     

A general form of the solution of the Laplace equation  

2 0u                        (1.1.1)  

has the following expression in spherical coordinates ( , , )r   : 

(1) (2)

0

( , , ) ( )
n

nm nm nm nm

n m n

u r A u B u 


 

                 (1.1.2)  

where 
nm

A  and 
nm

B  are constants of integration, 

(1) ( , , ) (cos )exp(j ) ,n m

nm n
u r r P m                     (1.1.3) 

(2) ( 1)( , , ) (cos )exp(j )n m

nm n
u r r P m                     (1.1.4) 

 

n, m are integers, j 1  , and m

n
P  are associated Legendre functions of the first kind. 

The above general solution for the Laplace equation is uniquely determined if the value 

of the function is specified on all boundaries (Dirichlet boundary conditions) or the nor-

mal derivative of the function is specified on all boundaries (Neumann boundary condi-

tions). 
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1.2 Translational Addition Theorems for Spheri-

cal Scalar Wave Functions 

A first derivation of translational additions theorems for spherical scalar wave functions 

was presented by Friedman and Russek [1] and later in a more exact form, by Stein [2]. 

Translational addition theorems for spherical vector wave functions were derived by Cru-

zan [3]. 

The scalar Helmholtz equation used to describe time-harmonic scalar waves is 

2 2 0 ,u k u                         (1.2.1) 

where k is the wave number. Its solution in spherical coordinates can be written in the 

form [2] 

( , , ) ( ) (cos )exp(j )m

mn n n
u r z kr P m    , 0 n  , nmn  .                    (1.2.2)    

        

The symbol nz  stands for either the spherical Bessel function nj , the spherical Neumann 

function ny , or the spherical Hankel functions. Then, for the case of the translation of the 

original coordinate system ),,( r  to the system ),,(  r as illustrated in Fig.1, the ad-

dition theorems are [3] 

0

0 0 0 0

( ) (cos ) exp( ) ( 1) j (2 1) ( , | , | )

. ( ) ( ) (cos ) (cos ) exp[ j( ) ]exp( j ), ,

m p n

n n

p

m

p p

z kr P jm a m n p

j kr z kr P P m r r


 

  

 

 

    

    


  

 



   

       


     (1.2.3) 

 

0

0 0 0 0

( ) (cos ) exp( ) ( 1) j (2 1) ( , | , | )

. ( ) ( ) (cos ) (cos ) exp[ j( ) ]exp( j ), .

m p n

n n

p

m

p p

z kr P jm a m n p

j kr z kr P P m r r


 

  

 

 

    

    


  

 



   

      


      (1.2.4) 
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where 

1/ 2

( )!( )!( )!
( , | , | ) ( 1) (2 1) ,

0 0 0 ( )( )!( )!( )!

m
n p n pn m p m

a m n p p
m mn m p m


   

 
   


        

        
         

 (1.2.5) 

and  
1 2 3

1 2 3

J J J

  

 
 
 

 is the Wigner 3-J symbol [see Appendix A]. 

 

The 
p

  represents the sum over the following p values [2] 

,p n    2,n     4,n   6n   ,  , n  ,                      (1.2.6) 

 

with .n p n       The nz  and 
pz  functions in (1.2.3), (1.2.4) are of the same type [2]. 

When nz  is selected to be a spherical Bessel function nj , then either (1.2.3) or (1.2.4) can 

be used without restriction on the relative size of  r  and  0r  [3]. 

 

x

y

z

y

x

z

0


0


0
r r

 

 

r



 

O

O

Fig. 1: Translation of the coordinate system

P
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Chapter 2 

Translational Addition Theorems for 

Static and Stationary Fields 

To obtain analytical solutions to various static and stationary field problems, for instance 

problems involving system of arbitrarily located spheres, we need translational addition 

theorems relative to (1)

nm
u  and (2)

nm
u   in (1.1.2) - (1.1.4). To the best of our knowledge, such 

theorems are not directly available in the literature. Instead of deriving these theorems 

from scratch, we can particularize the existing translational addition theorems for spheri-

cal scalar waves functions [1]-[3] in the limiting case of a vanishing wave number.  

 

2.1 Limits for Spherical Bessel and Neumann 

Functions 

In the case when the wave number vanishes, 0k , the Helmholtz equation (1.2.1) be-

comes the Laplace equation (1.1.1). We derive the translational addition theorems for 
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(1.1.3) and (1.1.4) from (1.2.3)  and (1.2.4) by taking the limits, when 0k . The expres-

sion of spherical Bessel and Neumann functions for vanishing arguments are [4] 

( ) 0

( )
( ) ,

(2 1)!!

n

n
kr

kr
j kr

n

 


                   (2.1.1) 

( 1)
( ) 0

(2 1)!!
( )

( )
n n
kr

n
y kr

kr 



                     (2.1.2) 

where the double factorial notation is used, i.e., 

(2 1)!! 1 3 5 (2 1),

(2 1)!! 1 3 5 (2 1).

n n

n n

    

    
 

2.2 Derivation of the Translational Addition 

Theorem for 
(1)

nm
u  in (1.1.3) 

To obtain the required result, nz  and pz  in (1.2.3) need to be selected to be spherical Bes-

sel functions nj  and pj , respectively. Since nz  is selected to be a spherical Bessel func-

tion nj , then either (1.2.3) or (1.2.4) can be used without restriction on the relative size of 

r  and 0r  [3]. Therefore only (1.2.3) is used to derive the required theorem. Then, (1.2.3) 

can be written as 

 

0

0 0 0

( ) (cos ) exp( j ) ( 1) j (2 1) ( , | , | )

. ( ) ( ) (cos ) (cos ) exp[ j( ) ]exp( j ) .

m p n

n n

p

m

p p

j kr P m a m n p

j kr j kr P P m


 

  

 

 

    

    


  

 



   

    


      (2.2.1) 

 

For vanishing arguments, kr , kr  and 
0

kr , (2.2.1) can be written by using  (2.1.1) as 
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0

0

0 0

( )
(cos ) exp( ) ( 1) j (2 1) ( , | , | )

(2 1)!!

( )( )
(cos ) (cos ) exp[ j( ) ]exp( j ) .

(2 1)!! (2 1)!!

n

m p n

n

p

p

m

p

kr
P jm a m n p

n

krkr
P P m

p


 

  


 



    

    



  

 



   



   

 


 

 

This equation can be regrouped as 

0

0

0 0

(2 1)!!( )
(cos ) exp( ) ( 1) j ( , | , | )

(2 1)!!

( j )
(cos ) (cos ) exp[ j( ) ]exp( j ).

(2 1)!!

v n

n m n

n

p

p p

m

p

n r k
r P jm a m n p

k r
P P m

p


 

  

 



   


    


 

 




  



  



      (2.2.2) 

            

For the convenience of the rest of the derivation we can introduce the following notation: 

0

0

( j )
( , | , | ) ( , | , | ) (cos )

(2 1)!!

p

m

p

r
f m n p a m n p P

p

      


 .         (2.2.3) 

 

According to (1.2.6), the upper and lower limits of p are determined by   and n . Thus, 

the summation should be extended over all the possible values of  p before taking the lim-

its in  (2.2.2). Using (1.2.6) the summation can be written in an expanded form as 

 

0

2 4

0

(2 1)!!( )
(cos ) exp( j ) ( 1) j [ ( , | , | )

(2 1)!!

( , | , | 2) ( , | , | 4)

( , | , | ) ] (cos ) exp[ j( ) ]exp( j )

v n

n m n n

n

n n

n

n r k
r P m f m n n k

f m n n k f m n n k

f m n n k P m


  

  

 

 



    


     

      


  

 

   




   



       

     



 

 2

0

2 2 2 4

0

(2 1)!!( )
( 1) j ( , | , | )

(2 1)!!

( , | , | 2) ( , | , | 4)

( , | , | ) (cos ) exp[ j( ) ]exp( j ) .

v

n

n n

n r
f m n n k

f m n n k f m n n k

f m n n k k P m


  

  

 

  



  


     

      


 

 

 

 


   



       

       




       (2.2.4) 
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Taking now the limit 0k  , (2.2.4) becomes 

0

0

(2 1)!!( )
(cos ) exp( j ) ( 1) j ( , | , | )

(2 1)!!

(cos ) exp[ j( ) ]exp( j ) .

n
n m n

n

n r
r P m f m n n

P m


 

  





    


   

 

 


    



   


          (2.2.5) 

 

Note that, when 0k , the 0
n nk k
     for all the values of   with n   and  

1
n nk k
     when n  . Hence p is replaced by ( )n v  in (2.2.3), (2.2.5) . Substituting  f  

from (2.2.3)  and regrouping, yields 

0

0 0 0

0

(2 1)!!
(cos ) exp( j ) ( 1) ( , | , | )

(2 1)!![2( ) 1]!!

(cos ) (cos ) exp[ j( ) ]exp( j ) .

n
n m

n

n m

n

n
r P m a m n n

n

r
r P P m

r




  



 

 

    
 

    

 






   

  

 
    

 


    (2.2.6) 

The (2.3.6) can be further simplified by substituting for the ( , | , | )a m n n      (see Ap-

pendix A-10) and after doing some algebraic manipulations as 

0

0 0

0 0 0

( )!
(cos ) exp( j )

( )!( )!

(cos ) (cos ) exp[ j( ) ] exp( j )      .

n
n m n

n

m

n

n m r
r P m r

n m r

P P m r r




  

 

 

 
   

    

 





 
  

     

      

        (2.2.7) 
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2.3 Derivation of the Translational Addition 

Theorem for 
(2)

nm
u  in (1.1.4) 

In this case, in order to obtain the required theorem, nz  and 
pz  in (1.2.3) and (1.2.4) have 

to be taken to be spherical Neumann functions ny  and 
py , respectively, with their limit-

ing values given by (2.1.2).  In the case of 
0

r r   , the  (1.2.3) can be written as  

0

0 0 0

( ) (cos ) exp( j ) ( 1) j (2 1) ( , | , | )

( ) ( ) (cos ) (cos ) exp[ j( ) ]exp( j ) .

m p n

n n

p

m

p p

y kr P m a m n p

j kr y kr P P m


 

  

 

 

    

    


  

 



   

    


        (2.3.1) 

 

For vanishing arguments ,kr kr  and 
0

kr by using (2.1.1) and (2.1.2), (2.3.1) becomes 

( 1)

0

0 0( 1)

0

(2 1)!!
(cos ) exp( j ) ( 1) j ( , | , | )

( )

( ) (2 1)!!
(cos ) (cos ) exp[ j( ) ]exp( j ) .

(2 1)!! ( )

m p n

nn

p

m

pp

n
P m a m n p

kr

kr p
P P m

kr


 

  


 



   

    



  



 






   

  
     

  


 

 

This equation can be regrouped as 

( 1)

( 1) ( )

0

0 0( 1)

0

( )
(cos ) exp( j ) ( 1) j

(2 1)!!(2 1)!!

(2 1)!!
j ( , | , | ) (cos ) (cos ) exp[ j( ) ]exp[ j ].

( )

n

n m n

n

p

p m

pp

r k
r P m

n

p
a m n p P P m

kr

 
 

  

 



 


      

 
   

 






 

 


    


    (2.3.2) 

 

For the convenience of the rest of the derivation let’s introduce the notation: 

0( 1)

0

(2 1)!!
( , | , | ) j ( , | , | ) (cos ) .

( )

p m

pp

p
g m n p a m n p P

r

    




                   (2.3.3) 
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Before taking the limit for 0k  , the summation in (2.3.2) is expanded over all possible 

values of  p  in (1.2.6), i.e., 

( 1) ( ) ( 1)

0

1 1 3

1

( )
(cos ) exp( j ) ( 1) j

(2 1)!!(2 1)!!

( , | , | ) ( , | , | 2) ( , | , | 4)

( , | , | )
(cos ) exp[ j(

n m n n

n

n n n

n

r
r P m k

n

g m n n g m n n g m n n

k k k

g m n n
P m

k


  

  

  





 


        

  



     

 

     

 


 

 

       
  


 
  





0
) ]exp[ j ]  

 

( )

0

2 4

11

0

( )
( 1) j

(2 1)!!(2 1)!!

( , | , | ) ( , | , | 2) ( , | , | 4)

1 1 1

( , | , | )
(cos ) exp[ j( ) ]exp[ j ].

1

n

nn

r

n

g m n n g m n n g m n n
k k

k k g m n n
P m


 

  









        

  
   


 

 

  


 

 

       
  


 
    





     (2.3.4)  

For  0k , (2.3.4) becomes  

( 1) ( )

0

0

( )
(cos ) exp( j ) ( 1) j

(2 1)!!(2 1)!!

( , | , | )
(cos ) exp[ j( ) ]exp[ j ].

1

n m n

n

r
r P m

n

g m n n
P m


 

  





 


  
   


   

 


 

 

 
   


          (2.3.5)  

 

Substituting  g from (2.3.3) and regrouping, yields 

 

( 1)

0

( 1)

0 0 0 0

0

[2( ) 1]!!
(cos ) exp( j ) ( 1) ( , | , | )

(2 1)!!(2 1)!!

(cos ) (cos ) exp[ j( ) ]exp[ j ], .

n m

n

n m

n

n
r P m a m n n

n

r
r P P m r r

r


 

  



 

 


    



    


  

 

  



 
     

 

 
       

 


    (2.3.6)   

 

The (2.3.6) can be further simplified by substituting for the ( , | , | )a m n n      (see Ap-

pendix A-6) and after doing some algebraic manipulations as 



  12 

 

  

( 1) ( 1)

0

0 0

0 0 0

( )!
(cos )exp( j ) ( 1)

( )!( )!

                        (cos ) (cos )exp[ j( ) ]exp[ j ],      .

n m n

n

m

n

n m v r
r P m r

n m v r

P P m r r




 

  

 

 


 



    


    

 





   
   

   

     


     (2.3.7) 

Equation (2.3.7) gives the required translational theorem corresponding to (1.1.4), for 

0
r r  .  

Now consider the case for  
0

r r  . Then,  (1.2.4) can be written as 

0

0 0 0

( ) (cos ) exp( j ) ( 1) j (2 1) ( , | , | )

( ) ( ) (cos ) (cos ) exp[ j( ) ]exp( j ) .

m p n

n n

p

m

p p

y kr P m a m n p

j kr y kr P P m


 

  

 

 

    

    


  

 



   

    


         (2.3.8) 

For vanishing arguments 
0

, and kr kr kr  , by using  (2.1.1) and (2.1.2), (2.3.8) becomes 

( 1) 10

0

0 0( 1)

(cos ) exp( j ) ( 1) j j
(2 1)!!(2 1)!!

(2 1)!!
( , | , | ) (cos ) (cos ) exp[ j( ) ]exp( j ) .

( )

n m n n p

n

p

m

pp

r
r P m k

n

p
a m n p P P m

kr


  

  

 



 


      


     

 





 
 


    




       (2.3.9) 

As in the previous cases, all the possible values of p  are considered and, then, the limit 

0k   is taken. Finally, we get after some algebraic manipulations the following transla-

tional addition theorem for (1.1.4), when 
0

r r  , as 

( 1) ( 1)0

0

0 0 0

( )!
(cos ) exp( j ) ( 1) ( )

( )!( )!

                                 (cos ) (cos ) exp[ j( ) ]exp[ j ], .

n m n

n

m

n

rn m v
r P m r

n m v r

P P m r r


 

  

 

 


 



    


    

 





    
      

     


       (2.3.10) 

2.4 Numerical Evaluation of Series Involved 

The convergence of the series in the translational addition theorems given in (2.2.6),  

(2.3.7) and (2.3.10) can be tested for  given n and m by using numerical values for various 
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variables in both sides of the respective equations. In this section, the numerical testing 

for (2.3.7) is presented since it is widely used in the next two chapters.     

2.4.1 Azimuthal Symmetric Case      

First, consider an azimuthal symmetric situation, where the z-axis of the coordinate sys-

tems ( , , )r    and ( , , )r      are on the same line. Then, (2.3.7) can be simplified as  

 

( 1) ( 1)

0 0 0

0 0

( )!
(cos ) ( 1) (cos ) (cos ),  .

( )!( )!

n n

n n

n v r
r P r P P r r

n v r




   

 
  


  




     



 

  
      

  
          (2.4.1) 

 

This equation can be normalized as 

1

0

0

0 0

( )!
(cos ) ( 1) (cos ) (cos ) .

( )!( )!

n

n n

r n v r
P P P

r n v r




   

 

  


  



 
 



 

   
    

   
       (2.4.2) 

 

Let’s denote the normalized left hand side of the (2.4.2) by  

1

0( , ) (cos ) ,

n

n

r
f r P

r
 



 
  
 

          

and its normalized right hand side by 

0 0

0 0

( )!
( , ) ( 1) (cos ) (cos ),     .

( )!( )!
n

n v r
g r P P r r

n v r




   

 

  


  




 



 

  
       

  
  

 

Consider Fig. 2 where the point P moves along a circle of radius r   constant. The nu-

merical values of the functions f and g are calculated at several discrete locations on this 

circle. Theoretically,  f and g should have the same results. In order to find numerical re-
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sults for g, the infinite series is truncated to a finite number of terms. Tables 1-6 show the 

errors when  is truncated to M.  

Fig. 2: Point P move along a circle of radius 

1
x

1
z

2
x

2
z

0r

r r a 


 

P

a
 

Now consider 
0

10 cmr  and 5 cma  , then r  and    are vary when P moves along the 

surface of the circle. Ten discrete test locations are taken by varying    from 0 to 180 de-

gree. In a first case,    is truncated to 30. 

 

Table 1. Truncation errors of  g   for 3n  , 30M  ,  
0

0  , 
0

0.5r r   

 

Test No 0r r  [deg]  [deg]  ( , )g r    ( , )f r   Error [%] 

1 0.6667 0.00 0 0.1975 0.1975 0.9116
0310  

2 0.6740 5.98 18 0.1997 0.1997 -0.2124
0310  

3 0.6969 11.82 36 0.2067 0.2067 0.1697
0310  

4 0.7377 17.36 54 0.2197 0.2197 -0.1379
0310  

5 0.8009 22.39 72 0.2425 0.2425 0.1019
0310  

6 0.8944 26.57 90 0.2862 0.2862 -0.0578
0310  

7 1.2289 29.81 126 0.7564 0.7564 0.0265
0310  

8 1.5059 26.27 144 2.3533 2.3533 -0.0268
0310  

9 1.8290 16.41 162 8.5908 8.5908 0.0161
0310  

10 2.0000 0.00 180 16.0000 16.0000 -0.0383
0310  
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By increasing the truncation of   up to the 50, the percentage errors can be reduced as 

given in Table 2. 

Table 2. Truncation errors of  g  for 3n  , 50M  , 
0

0  ,
0

0.5r r   

Test No 0
r r  [deg]  [deg]  ( , )g r    ( , )f r   Error [%] 

1 0.6667 0.00 0 0.1975 0.1975 0.9116
0810  

2 0.6740 5.98 18 0.1997 0.1997 -0.2124
0810  

3 0.6969 11.82 36 0.2067 0.2067 0.1697
0810  

4 0.7377 17.36 54 0.2197 0.2197 -0.1379
0810  

5 0.8009 22.39 72 0.2425 0.2425 0.1019
0810  

6 0.8944 26.57 90 0.2862 0.2862 -0.0578
0810  

7 1.2289 29.81 126 0.7564 0.7564 0.0265
0810  

8 1.5059 26.27 144 2.3533 2.3533 -0.0268
0810  

9 1.8290 16.41 162 8.5908 8.5908 0.0161
0810  

10 2.0000 0.00 180 16.0000 16.0000 -0.0383
0810  

In the third case, n  (2.4.2) is increased to 10 and   is truncated to 50. The results are 

given Table 3. 

 

Table 3. Truncation errors of  g  for  10n  , 50M  ,
0

0  ,
0

0.5r r   

Test No 0
r r  [deg]  [deg]  ( , )g r    ( , )f r   Error [%] 

1 0.6667 0.00 0 0.0116 0.0116 0.2169 

2 0.6740 5.98 18 0.0094 0.0094 -0.0489 

3 0.6969 11.82 36 0.0024 0.0024 0.1565 

4 0.7377 17.36 54 -0.0112 -0.0112 0.0297 

5 0.8009 22.39 72 -0.0342 -0.0342 -0.0081 

6 0.8944 26.57 90 -0.0654 -0.0654 0.0030 

7 1.2289 29.81 126 -0.1874 -0.1874 -0.0010 

8 1.5059 26.27 144 -21.664 -21.664 0.0000 

9 1.8290 16.41 162 -203.01 -203.01 0.0000 

10 2.0000 0.00 180 2047.9 2048.0 0.0000 

 

The Table 2 and Table 3 show that the percentage error increases with the increase of n, 

if truncation is unchanged. Table 4 further emphasizes the fact that by increasing the 

truncation, more accurate results can be obtained for higher values for n.  
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Table 4. Truncation errors of  g  for  15n  , 80M  ,  
0

0  ,
0

0.5r r   

Test No 0
r r  [deg]  [deg]  ( , )g r    ( , )f r   Error [%] 

1 0.6667 0.00 0 0.0015 0.0015 0.0022331110 

2 0.6740 5.98 18 0.0008 0.0008 0.0006443268 

3 0.6969 11.82 36 -0.0010 -0.0010 -0.0004170036 

4 0.7377 17.36 54 -0.0021 -0.0021 -0.0001741779 

5 0.8009 22.39 72 0.0048 0.0048 0.0000627303 

6 0.8944 26.57 90 0.0505 0.0505 0.0000040776 

7 1.2289 29.81 126 4.3182 4.3182 -0.0000000474 

8 1.5059 26.27 144 212.69 212.69 -0.0000000035 

9 1.8290 16.41 162 -5266.2 -5266.2 0.0000000003 

10 2.0000 0.00 180 65536 65536 -0.0000000002 

2.4.2 General Case 

1x

1y

1z

2x

2y

2z

r

r



 





P

Fig. 3: Point P move along a sphere of radius a

0r
0



0


 

Consider the situation where the azimuthal symmetry is not present in the system. Then f  

and  g  should be taken as 

1

0( , , ) (cos ) exp( j ) ,

n

m

n

r
f r P m

r
   



 
  
 

 

0 0

0 0 0

( )!
( , , ) ( 1)

( )!( )!

                       (cos ) (cos ) exp[ j( ) ]exp[ j ], .m

n

n m v r
g r

n m v r

P P m r r
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When point P moves along a sphere of radius a  as in Fig. 3, the numerical values of the 

function f and g is calculated at several discrete locations, where 10,n   7,m    60M  , 

0
10 cmr  , 

0
4  ,  

0
3  , 5 cmr a    and 5   .  The real and imaginary parts 

of  f  and g are given in Table 5 and Table 6, respectively. 

 

Table 5. Truncation errors of the real part of g, when 10,n   7,m    60M  , 
0

4  ,  

0
3  , 

0
0.5r r   and 5    

Test 

No 0
r r   [deg]  [deg]   [deg] Re[ ( , , )]g r      Re[ ( , , )]f r    Error [%] 

1 0.7148 30.36 60.00 0 9.7852
1110  9.7852

1110  0.1018
310  

2 0.6865 35.72 55.76 18 2.3855
1010  2.3855

1010  0.0061
310  

3 0.6739 41.48 53.01 36 3.9777
1010  3.9777

1010  0.3498
310  

4 0.6760 47.41 51.31 54 5.9050
1010  5.9050

1010  -0.2972
310  

5 0.6929 53.34 50.38 72 8.1792
1010  8.1792

1010  0.0633
310  

6 0.7262 59.10 50.09 90 1.0020
0910  1.0020

0910  -0.0317
310  

7 0.8584 69.22 51.31 126 -2.4397
0910  -2.4397

0910  0.0132
310  

8 0.9724 72.89 53.01 144 -2.0286
0810  -2.0286

0810  0.0016
310  

9 1.1344 74.77 55.76 162 -1.1559
0710  -1.1559

0710  0.0003
310  

10 1.3572 73.68 60.00 180 -4.4032
0710  -4.4032

0710  0.0000
310  

 

 

Table 6. Truncation errors of the imaginary part of g, when 10,n   7,m    60M  , 
0

4  ,  

0
3  , 

0
0.5r r   and 5    

Test 

No 0
r r   [deg]  [deg]   [deg] Im[ ( , , )]g r      Im[ ( , , )]f r    Error [%] 

1 0.7148 30.36 60.00 0 -1.6931
1010  -1.6931

1010  0.1018
310  

2 0.6865 35.72 55.76 18 -1.3962
1010  -1.3962

1010  -0.2775
310  

3 0.6739 41.48 53.01 36 -7.8050
1010  -7.8050

1010  0.3831
310  

4 0.6760 47.41 51.31 54 8.4463
1210  8.4463

1210  -0.1152
210  

5 0.6929 53.34 50.38 72 1.0502
1010  1.0502

1010  0.7431
310  

6 0.7262 59.10 50.09 90 1.6552
1010  1.6552

1010  0.2753
310  

7 0.8584 69.22 51.31 126 -3.4896
1110  -3.4896

1110  -0.2134
310  

8 0.9724 72.89 53.01 144 3.9806
0910  3.9806

0910  0.7863
610  

9 1.1344 74.77 55.76 162 6.7657
0810  6.7657

0810  0.7353
710  

10 1.3572 73.68 60.00 180 7.6265
0710  7.6265

0710  0.1216
710  
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Chapter 3 

Application of Translational Addition 

Theorems to the Solution of Field 

Problems with Axisymmetry 

3.1 Azimuthally Symmetric Geometries 

In the case of azimuthal symmetry, the solution of Laplace equation in spherical coordi-

nates considered in section 1.1  is obtained with 0m , as [5]  

( 1)

0

( , , ) [ ] (cos )n n

n n n

n

u r A r B r P  


 



   .                (3.1.1) 

For regions extended to infinity, with 0u   for r  , we have 

( 1)

0

( , , ) (cos )n

n n

n

u r B r P  


 



 .                      (3.1.2) 
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3.2 Point Charge in the Presence of a Conduct-

ing Sphere 

Fig. 4: Conducting sphere in the vicinity of a point charge

P
1x

1y

1z

2x

2z

2y

1r 2r



d

2
1

0 

a
q

O

 

Consider a metallic sphere of radius a  and a point charge q at a distance d  from its cen-

tre, as shown in Fig. 4. The sphere has a zero potential and the medium outside the sphere 

is homogeneous of permittivity . The potential due to the presence of the sphere is ex-

panded in 
1 1 1

( , , )r    coordinates as 

( 1)

1 1 1 1 1 1

0

( , , ) (cos )n

n n

n

r B r P  


 



    ,                             (3.2.1) 

while the potential of the point charge in 
2 2 2

( , , )r    coordinates is 

1

2 2 2 2 2

2 2

( , , )
4

q K
r Kr

r r
 



    ,  
4

q
K


 .                   (3.2.2) 
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2
  is translated into the coordinate system 

1 1 1
( , , )r    and the boundary condition is to be 

imposed to the total potential at the surface of the sphere. Since the points on the sphere 

have 
1
r a , we use equation (2.3.7), corresponding to 

2
r r , 

1
r r  , 

0
r d  and 

0
r r  . 

 

Due to the azimuthal symmetry we can use the simplified version of  (2.3.7) given in 

(2.4.1). For this particular translation of the 
2

 , 0n , 
0
  ,  

0
r d  and  (2.4.1) yields 

1 1

2 1

0

1
( 1) (cos ) (cos ).

r
r P P

d d


   

 

  

 


  

 

 
   

 
                 (3.2.3) 

 

Since ( 1) 0P 

   , when 0 , the (3.2.3) can be written in simplified from as 

1 1

2 1

0

1
(cos ) ,

n

n

n

r
r P

d d







 
   

 
                   (3.2.4) 

 

where   has been replaced by n . Now we get the expression for the potential 
2

  trans-

lated in 
1 1 1

( , , )r    in the form 

(1) 1

2 1 1 1 1

0

1
( , , ) (cos )

n

n

n

r
r K P

d d
  





 
   

 
 .                     (3.2.5) 

Note that, since  
1
r d , the series in this expression is always convergent for all 1r values.  

 

The total potential t at any point where 
1

a r d   is , thus, 

(1)

1 1 1 1 1 1 1 2 1 1 1
( , , ) ( , , ) ( , , )t r r r        .               (3.2.6)  
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This expression only contains the coordinates in the sphere system and, therefore, the 

boundary condition at the sphere surface can easily be imposed to determine all the con-

stants of integration 
n

B . At 1r a , 
1 1

( , , ) 0t a    . Thus, we have 

(1)

1 1 1 2 1 1

( 1)

1 1

0 0

( , , ) ( , , ) 0 ,

i.e.,

1
(cos ) (cos ) 0,

n

n

n n n

n n

a a

a
B a P K P

d d

   

 
 

 

 

   

 
  

 
 

 

( 1)

1 1

0 0

1
(cos ) (cos )

n

n

n n n

n n

a
B a P K P

d d
 

 
 

 

 
    

 
   

 

which yields 

( 1) 1
n

n

n

a
B a K

d d

   
    

 
 

(2 1)

1

1
.n

n n
B K a

d




                       (3.2.7) 

Substituting 
n

B  and  K  in (3.2.6)  yields 

2 1

1

1 1 1 11

0 1

( , , ) 1 (cos )
4

n
n

t

nn

n

rq a
r P

d r
  










  
      
   

 ,  
1

a r d  .          (3.2.8) 

 

Similarly, using (2.3.10) , we have 

(1) 1

2 1 1 1 2 11

0 1

( , , ) (cos )
n

nn

n

d
r K r P

r
  








       
1
r d , 

and the total potential  

2 1

1 1 1 11

0 1

( , , ) 1 (cos )
4

nn

t

nn

n

q d a
r P

r d
  









  
      

   
  , 

1
r d .                      (3.2.9)   
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On the other hand, the potential solution for this elementary problem can be obtained by 

using the image method. The image charge q  with respect to the grounded sphere is 

placed inside the sphere, as shown in Fig. 5, with   

a

1x

1y

1z

2x

2y

2z

d

1r 2r

1 2

qq

3r

c

0 

Fig. 5: Image of  a point charge with respect to a grounded sphere

P

2

2 2

3 1 1 1

2 2

2 1 1 1

,

,

2 cos ,

2 cos .

a
c

d

a
q q

d

r r c rc

r r d r d







  

  

  

 

The total potential t

im
 at any point outside the sphere, can be written as 

1 1 1

2 1

( , , ) ,
4 4

t

im

q q
r

r r
 

 


    

i.e.,  

1 1 1
2 2 2 2

1 1 1 1 1 1

1
( , , )

4 ( 2 cos ) ( 2 cos )

t

im

q a
r

r d r d d r c rc
 

  

 
   
     

.                  (3.2.10)  

 

It should be noticed that, using the expansion [7] 

112 2
01 11 1 1

1 1
(cos )

( 2 cos )

n

nn

n

c
P

r rr c rc











 

  

      
2

1 1

0 1 1

1
(cos ) ,

n

n

n

a
P r a

r d r






 
    

 
                 (3.2.11) 

and 

1

1 112 2
0

1 1 1

1
(cos ) , ,

( 2 cos )

n

nn

n

r
P a r d

dr d r d










     
 

                           (3.2.12) 
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1 112 2
0 11 1 1

1
(cos ) , ,

( 2 cos )

n

nn

n

d
P r d

rr d r d










   
 

                          (3.2.13) 

 

yields the same expansion (3.2.8) and (3.2.9) for the total potential in terms of Legendre 

polynomials.  

 

3.2.1 Calculation of the Total Charge on the Sphere 

The total charge on the sphere can be found by integrating the charge density over the 

surface of the sphere, i.e., 

t

s

s

Q ds  .                     

The surface charge density on the conducting sphere can be obtained by 









ar
r

t

s

1
1

11 ),(                      

Due to the azimuthal symmetry, the surface charge density does not depend on  . There-

fore s  for this case can be expressed as 

1

1 11

0

(2 1)
( ) (cos ).

4

n

s nn

n

q n a
P

d
  









 
   

 
        

The total charge can be calculated as 

2

1 1 1

0

1

2

1 11
0 0

2 ( ) sin

(2 1)
(cos ) sin .

2

t

s

n

nn
n

Q a d

q n a
a P d

d





    

  







 
   

 



 

                             (3.2.14) 

The integral of the Legendre polynomials is [see Appendix B] 
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1

1 1 1 1

0 1

2, 0,
(cos )sin ( ) with cos .

0, 0,
n n

n
P d P x dx x

n



   


 
    

 
                               (3.2.15) 

Thus, 
1

2 2
2

t q a a
Q a q

d d



    . 

This is just the image charge q  given by image method.  

3.3 Two Sphere System 

Fig. 6: System of two conducting spheres
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Consider now two metallic spheres of radii 1a  and 2a  with a distance d  between their 

centers, as shown in Fig. 6. The spheres are kept at the potentials 
1

V  and 
2

V , respectively. 

The medium outside the spheres is homogeneous of permittivity . 

The potential produced by the each of the two spheres is first expressed in the coordinate 

system attached to the respective sphere as [see (3.1.2)]  

( 1)

1 1 1 1 1 1

0

( , , ) (cos ) ,n

n n

n

r A r P  


 



     
1 1

,r a               (3.3.1) 

( 1)

2 2 2 2 2 2

0

( , , ) (cos ) ,m

m m

m

r B r P  


 



    
2 2

.r a              (3.3.2) 
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Then, 
2

  is translated into the coordinate system 
1 1 1

( , , )r   . To impose boundary condi-

tion at 
1 1
r a , we have to use  (2.3.7) corresponding to 

2
r r , 

1
r r a   , 

0
r d  and 

0
  . 

Thus, 

( 1) ( 1)1

2 2 1

0

( )!
(cos ) ( 1) (cos ) (cos )

( )!( )!

m m

m m

rm v
r P d P P

m v d


   

 

  


  




     



 

   
   

  
      (3.3.3) 

 

Since ( 1) 0
m

P 






   for all 0 , we obtain 

( 1) ( 1)1

2 2 1

0

( )!
(cos ) ( 1) (cos )

( )!( )!

m m m

m

rm v
r P d P

m v d







 


   



  
   

 
           (3.3.4) 

 

The potential (1)

2
  translated in coordinates 

1 1 1
( , , )r    in the form 

(1) ( 1)1

2 1 1 1 1

0 0

( )!
( , , ) ( 1) (cos )

( )!( )!

n

m m

m n

m n

rm n
r B d P

m n d
  

 
 

 

  
    

 
           (3.3.5) 

where   has been replaced by n . 

 

The total potential at P is 

(1)

1 1 1 1 1 1 1 2 1 1 1

( 1) ( 1)1

1 1 1

0 0 0

( , , ) ( , , ) ( , , )

( )!
(cos ) ( 1) (cos )

( )!( )!

t

n

n m m

n n m n

n m n

r r r

rm n
A r P B d P

m n d

     

 
  

   

  

  

  
    

 
 

    (3.3.6) 

Now let’s apply boundary condition at 
1 1
r a , i.e., 

1 1 1 1
( , , )t a V    . We get 

( 1) ( 1)1

1 1 1 1

0 0 0

( )!
(cos ) ( 1) (cos )

( )!( )!

n

n m m

n n m n

n m n

am n
V A a P B d P

m n d
 

  
   

  

  
    

 
   

( 1) ( 1)1

1 1 1 1

0 0 0

( )!
(cos ) ( 1) (cos ) .

( )!( )!

n

n m m

n n m n

n m n

am n
A a P V B d P

m n d
 

  
   

  

  
    

 
   

 

Applying the orthogonality properties of the Legendre polynomials [Appendix B] yields 
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1

( 1) ( 1)1

1 1 1 1 1

0 01

(2 1) ( )!
( 1) ( ) ( ) ,

2 ( )!( )!

n

n m m

n m n n

m n

an m n
A a V B d P x P x dx

m n d

 
   

 

   
     

  
      (3.3.7) 

1

0 1 11

0

( 1) , 0,m

m m

m

a
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                              (3.3.8) 

2 1
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( )!
( 1) 0, 1, 2,3, .

( )!( )!

n

m

n m n m

m

am n
A B n

m n d



 




                  (3.3.9) 

 

In the same way, 
1

  is translated into the coordinate system 
2 2 2

( , , )r   and the boundary 

condition is applied at the surface of sphere 2 to obtain the following equations: 

2

0 2 21

0

( 1) , 0,m

n n

n

a
B A V a m

d







                                         (3.3.10) 

2 1

2

1

0

( )!
( 1) 0, 1, 2,3, .

( )!( )!

m

m

m n m n

n

am n
B A m

m n d



 




                          (3.3.11) 

 

Equations (3.3.8) to (3.3.11) constitute an infinite set of liner algebraic equations and that 

is to be solved simultaneously in order to find the unknown constants of integrations. To 

obtain numerical results, the infinite series must be truncated to a finite number of terms 

n m M  . 

 

Let’s denote   

2 1

1

1 1

( )!
( , ) ( 1)

( )!( )!

n
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n m

am n
n m

m n d
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m n
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The truncated system can be written in a matrix form as 

1 1 1

1 1 1

1 1 1

2 2 2

2 2 2

2 2 2

1 0 0 (0, 0) (0,1) (0, )

0 1 (1, 0) (1,1) (1, )

0 0

0

0 1 ( , 0) ( ,1) ( , )

(0, 0) (0,1) (0, ) 1 0 0

(1, 0) (1,1) (1, ) 0 1

0 0

0

( , 0) ( ,1) ( , ) 0 1

M

M

M M M M

M

M

M M M M

  

  

  

  

  

  















0 1 1

1

0 2 2

1

0

0

0

0

M

M

A V a

A

A

B V a

B

B

   
   
   
   
   
   
   
   
   
   
   
    
    
    
       

, 

 

Once the constants of integrations 
0 1
,

M
A A A  and 

0 1
,

M
B B B  are found, the total 

potential t at any point outside the spheres (
1 1
r a , 

2 2
r a ) can be computed as 

( 1) ( 1)

1 1 1 2 2 2 1 1 2 2

0 0

( , , | , , ) (cos ) (cos ) .
M M

t n m

n n m m

n m

r r A r P B r P        

 

                           (3.3.12)    
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3.3.1 Solution to the Two Sphere Problem in Bispherical Coordi-

nates 

Fig. 7: Two spheres in bispherical coordinate system

d
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On the other hand, in the case of two spheres, an exact analytical solution can be found 

by using the bispherical coordinate system [13]. For 
1 0

V V   and 
2 0

V V , for example, (see 

Fig.7), the total potential outside the spheres is obtained in the bispherical coordinates 

( , , )    defined in Fig.7 as [6] 

 

 

1/ 2

0

( +1 2)( ) ( +1 2)( )

0

( , , ) 2 (cosh cosh )

cosh[( +1 2) ] cosh[( +1 2) ]
(cos )

sinh[( +1 2)( )]

2 1

t

bi

- n - - n -

1 2

n

n 2 1

V

n e n e
P

n -

   

    

 


 





  

 
  
  


          (3.3.13) 

 

where   1

1 1
sinh ,c a       1

2 2
sinh ,c a    2 2 2 2

1 2
c a c a d    , c  being the semi 

focal distance (as shown in Fig. 7). The potential at various points is computed by using  
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(3.3.12)  and the numerical results are compared with those given by (3.3.13) as shown in 

Table 7 & 8. 

 

Table 7. Accuracy of the numerical results obtained for the potential t in (3.3.12) truncated to 

20M   with respect to values given by (3.3.13) when 
1

1VV   , 
2

1VV  , 1 3cma   , 2 5 cma   , 

10 cmd    

 
Test 

Point 

w.r.t the coordinates 

system at Sphere-1 

w.r.t the coordinates 

system at Sphere-2 V]t

tr
   

 

V]t

bi
   

 

Error [%] 

 
1
[ ]r cm


 
1
[deg]


 
2
[ ]r cm


 
2
[deg]  

1 4.2001 0.00 5.7999 180.00 0.238961 0.240836 -0.778497 

2 4.2065 3.15 5.8045 177.71 0.239190 0.240981 -0.743204 

3 4.2258 6.33 5.8186 175.41 0.239866 0.241418 -0.642602 

4 4.2590 9.54 5.8427 173.06 0.240952 0.242143 -0.491836 

5 4.3073 12.81 5.8780 170.65 0.242386 0.243149 -0.313858 

6 4.3730 16.17 5.9263 168.15 0.244086 0.244419 -0.135980 

7 5.4301 39.33 6.7442 149.31 0.251773 0.251637 0.054054 

8 5.8318 43.93 7.0716 145.10 0.249734 0.249698 0.014518 

9 6.3758 48.79 7.5265 140.41 0.244761 0.244765 -0.001521 

10 7.1360 53.94 8.1805 135.15 0.235300 0.235302 -0.000893 

 

 

Table 8. Accuracy of the numerical results obtained for the potential 
t in (3.3.12) truncated to 

40M   with respect to values given by (3.3.13) when 
1

1VV   , 
2

1VV  , 1 3cma   , 2 5 cma   , 

10 cmd    

 
Test 

Point 

w.r.t the coordinates sys-

tem at Sphere-1 

w.r.t the coordinates 

system at Sphere-2 V]t

tr
   

 

V]t

bi
   

 

Error [%] 
 

1
[ ]r cm


 
1
[deg]


 
2
[ ]r cm


 
2
[deg]  

1 4.2001 0.00 5.7999 180.00 0.240906 0.240836 0.029052 

2 4.2065 3.15 5.8045 177.71 0.241052 0.240981 0.029391 

3 4.2258 6.33 5.8186 175.41 0.241491 0.241418 0.030181 

4 4.2590 9.54 5.8427 173.06 0.242218 0.242143 0.030846 

5 4.3073 12.81 5.8780 170.65 0.243224 0.243149 0.030745 

6 4.3730 16.17 5.9263 168.15 0.244491 0.244419 0.029488 

7 5.4301 39.33 6.7442 149.31 0.251670 0.251637 0.013239 

8 5.8318 43.93 7.0716 145.10 0.249725 0.249698 0.010839 

9 6.3758 48.79 7.5265 140.41 0.244763 0.244765 -0.001521 

10 7.1360 53.94 8.1805 135.15 0.235301 0.235302 -0.000893 
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3.3.2 Total Charge on the Spheres and Capacitances 

As shown in section 3.2.1, the total charge on sphere 1 can be found as  

1 1

2

1 1 1 1 1 1

0 0

2 ( )sin ,t

s s
Q ds a d

 

          

where
1 1

1
1 1

( ) ,
t

s
r

r a

  


  




 

i.e., 

1

( 1)

( 2) 1

1 1 1 1( 1)

0 0 0

( )!
( ) ( 1) (cos ) ( 1) (cos )

( )!( )!

n

n m

s n n m nm n

n m n

nam n
A n a P B P

m n d
    

  
 

 

  

 
      

 
   

 

Therefore the total charged becomes 

( 1)

1

1 1 1 1 1 1( 1)

0 0 00

( )!
2 ( 1) (cos ) ( 1) (cos ) sin

( )!( )!

n

t n m

n n m nm n

n m n

nam n
Q A n a P B P d

m n d



    
  



 

  

 
     

 
   

Using the property (B.2) of Legendre polynomials give [see Appendix B] yields 

1 0
4 .tQ A                                      (3.3.14) 

 

Similarly the charge on sphere 2 is obtained as 

2 0
4tQ B .    (3.3.15) 

The self and mutual capacitances of system of the conductors are defined by [7] 

1 11 1 21 2
,tQ c V c V                 (3.3.16) 

2 12 1 22 2

tQ c V c V                 (3.3.17) 

where  
12 21

.c c    The 11c  and 22c  are called the coefficients of capacitance or self capaci-

tance, 21c  and 12c  are called the coefficients of induction or the mutual capacitance. If we 

know the potentials and the total charges of the each sphere, then we can calculate the 

values of capacitances by using (3.3.16) and (3.3.17). 
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Normally capacitances are computed by making the potential of one sphere at a time is 

non zero and making potential of all other spheres are zero.  Then we can find the capaci-

tances as 

 

2 2 1 1

0 01 1

11 21

1 1 2 20 0 0 0

4 4
, ,

t t

V V V V

A AQ Q
c c

V V V V

 

   

         

1 1

02

22

2 20 0

4
.

t

V V

BQ
c

V V



 

   

 

In Table 9  the results for a two spheres system are given where 1 3cma   , 2 5 cma   and 

10 cm.d    For the comparison, the capacitance values of the same system are calculated 

by using the  method of  successive images, as presented in [8], where 

 

1

11 1 2 2 1

1

4 sinh sinh( ) sin[( 1) ] ,
n

c a a a n a n   






                        (3.3.18) 

1
1 2

12 21

1

4 sinh sinh( ) ,
n

a a
c c n

d
  






                            (3.3.19) 

with 
2 2 2

1 2

1 2

( )
cosh( ) .

2

d a a

a a


 
   

Table 9. Comparison of numerical results obtained for self and mutual capacitances by transla-

tional addition method (with 20M  ) and method of successive images (with 300n  ), when 

1
3cma   , 

2
5 cma   and 10 cmd    

 
Symbols of 

Coefficients 

 

Capacitance [pF] 

(by translational 

method) 

Capacitance [pF] 

(by method of suc-

cessive images) 

Error [%] 

 

11c    4.2089  4.2089 -1.5247
0710  

12c  -2.1650 -2.1650 -3.4058
0710  

22c   6.7559  6.7559 -1.3219
0710  

21c  -2.1650 -2.1650 -3.4058
0710  
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3.4  Two Sphere System in External Electric 

Field 

The two spheres system in section 3.3 is placed in an external electric field oriented along 

the common axis of symmetry of the spheres 
0
ˆE zE  (see Fig.8). The potential due to the 

external field in the coordinate system of each is, respectively, 

1 0 1 0 1 1 1 1
(cos ) Cex

m
E z E r P       ,               (3.4.1) 

2 0 2 0 2 2 2 2
(cos ) Cex

m
E z E r P       ,               (3.4.2) 

where  C1 and C2  are constants of reference. Let’s consider the potential produced by ex-

ternal field at 1 0z   is zero, then 
1

C 0 . Thus (3.4.1) and (3.4.2) become 

1 0 1 0 1 1 1
(cos )ex

m
E z E r P      ,                (3.4.3) 

2 0 2 2 2 0
(cos ) .ex

m
E r P E d                     (3.4.4) 

Fig. 8: System of two conducting spheres placed in 

initially uniform electric field
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The Laplacian potential outside the spheres due to the presence of each of them is ex-

pressed by (3.3.1) and (3.3.2).  
2

  is translated into the coordinate system 
1 1 1

( , , )r   , then 

the total potential at P becomes 

 
(1)

1 1 2

t ex                       (3.4.5) 

(1)

1 1 1 1 1 1 1 1 1 1 1 2 1 1 1

( 1) 1

0 1 1 1 1 1

0 0 0

( 1)

1

( , , ) ( , , ) ( , , ) ( , , )

( )!
(cos ) (cos ) ( 1)

( )!( )!

(cos )

t ex

n

n m

n n m

n m n

m

n

r r r r

rm n
E r P A r P B

m n d

d P

       

 



  
 

  

 

   

  
      

 

 

   

As before, we can apply the boundary condition at surface of sphere 1 at 1 1r a  and then 

use orthogonality properties of the Legendre polynomials to obtain 

1

( 1) ( 1)1

1 1 0 1 1 1 1 1 1

0 01

(2 1) ( )!
( ) ( 1) ( ) ( )

2 ( )!( )!

n

n m m

n m n n

m n

an m n
A a V E a P x B d P x P x dx

m n d

 
   

 

   
      

  
   

                             (3.4.6)  

( 1)

0 1 1 1

0

( 1) , 0,m m

m

m

A B a d V a n


 



                             (3.4.7) 

3 ( 2) 3

1 1 0 1

0

( 1) ( 1) , 1,m m

m

m

A B m a d E a n


 



                    (3.4.8) 

2 1

1

1

0

( )!
( 1) 0, 1, 2,3, .

( )!( )!

n

m

n m n m

m

am n
A B n

m n d



 




                      (3.4.9) 

 

In the same way, 
1

  is translated into the coordinate system 
2 2 2

( , , )r   and the boundary 

condition is applied at the surface of sphere 2 to obtain the following equations: 

2

0 2 2 0 21

0

( 1) , 0,m

n n

n

a
B A V a E a d m

d







                                       (3.4.10) 

3 ( 2) 3

1 2 0 2

0

( 1) ( 1) , 1,m n

n

n

B A n a d E a m


 



                                                     (3.4.11) 
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2 1

2

1

0

( )!
( 1) 0, 1, 2,3, .

( )!( )!

m

m

m n m n

n

am n
B A m

m n d



 




                       (3.4.12) 

 

Unknown constants of integrations are to be found by solving equations (3.4.7) to (3.4.12) 

simultaneously after infinite series are truncated to a finite number of terms n m M  . 

For the comparison, the potential values of the same system is calculated by using the  

bispherical coordinates system, as presented in [15], where 

 1/ 2 ( 1 2) ( 1 2)

0

0

( , , ) (cosh cosh ) (cos )t n n

bi n n n

n

A e B e P E z      


  



     
  ,        (3.4.13) 

with 
2 2

(2 +1) (2 +1)

0 2 1

(2 +1)( )

2 (2 1)[ 1] [ ]

1

1 1- n - n

n n

cE n e V e V
A

e

 

 

     



, 

        
2 2

2 2

(2 +1) (2 +1)

0 1 2

(2 +1)( )

2 (2 1)[ 1] [ ]

1

- n - n

n n

cE n e V e V
B

e

 

 

      



. 

 

The symbols in (3.4.13) are same as the symbols in (3.3.13) for the bispherical coordinates 

system and external electric field is parallel to the  z-axis as in Fig. 8. 

 

Table 10. Accuracy of numerical results obtained for the potential 
t in (3.4.5) after  truncated to 

20M   with respect to values given by (3.4.13) when 
1

1VV   , 
2

1VV  , 
0

10 V/mE   , 

1 3cma   , 2 5 cma   , 10 cmd    

Test 

Point 

w.r.t the coordinates 

system at Sphere-1 

w.r.t the coordinates 

system at Sphere-2 V]t

tr
   

 

V]t

bi
   

 

Error [%] 
 

1
[ ]r cm


 
1
[deg]


 
2
[ ]r cm


 
2
[deg]  

1 4.2001 0.00 5.7999 180.00 0.247870 0.247883 -0.005241 

2 4.2065 3.15 5.8045 177.71 0.248217 0.248229 -0.004652 

3 4.2258 6.33 5.8186 175.41 0.249271 0.249279 -0.003136 

4 4.2590 9.54 5.8427 173.06 0.251074 0.251077 -0.001314 

5 4.3073 12.81 5.8780 170.65 0.253696 0.253695 0.000127 

6 4.3730 16.17 5.9263 168.15 0.257231 0.257229 0.000765 

7 5.4301 39.33 6.7442 149.31 0.302689 0.302689 0.000202 

8 5.8318 43.93 7.0716 145.10 0.312997 0.312996 0.000349 

9 6.3758 48.79 7.5265 140.41 0.321583 0.321582 0.000426 

10 7.1360 53.94 8.1805 135.15 0.235300 0.235302 -0.000893 
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3.5 Three Sphere System 

Fig. 9: System of three conducting spheres
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Consider three metallic spheres of radii 1a , 2a  and 3a  with the separation distances be-

tween their centers, as shown in Fig. 9. The spheres are kept at the potentials
1

V , 
2

V  and 

3
V  respectively. The medium outside the spheres is homogeneous of permittivity . 

The potential produce by the each of three spheres is first expressed in coordinate system 

attached to the respective sphere as  

( 1)

1 1 1 1 1 1

0

( , , ) (cos ) ,n

n n

n

r A r P  


 



     
1 1

,r a                    (3.5.1) 

( 1)

2 2 2 2 2 2

0

( , , ) (cos ) ,m

m m

m

r B r P  


 



    
2 2

r a                   (3.5.2) 

( 1)

3 3 3 3 3 3

0

( , , ) (cos ) ,l

l l

l

r C r P  


 



    
3 3

.r a                    (3.5.3)  

 

As already done in the section 3.3 for two spheres, the required coupled set of linier alge-

braic equations for three sphere case can be written directly by looking at (3.3.8), (3.3.9), 

(3.3.10) and (3.3.11) as 
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1 1

0 1 11 1

0 021 31
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d d

 

 

 

                           (3.5.4)  
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             (3.5.5) 
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                      (3.5.6)      
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                    (3.5.7)  
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                      (3.5.8)             
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                    (3.5.9)  

 

Equations (3.5.4)  to (3.5.9), constitute an infinite set of liner algebraic equations and that 

is to be solved simultaneously in order to find the unknown constants of integrations. To 

obtain numerical results, the infinite series must be truncated to finite number of terms 

n m l M   . Then the total charge on each sphere are found as 

 

1 0 2 0 3 0
4 , 4 , 4 .t t tQ A Q B Q C          

 

For this three spheres system the self and mutual capacitances are can be defied as 

1 11 1 12 2 13 3
,tQ c V c V c V      

2 21 1 22 2 23 3
,tQ c V c V c V      

3 31 1 32 2 33 3
.tQ c V c V c V     

 

Numerical results for a three spheres system are given where 
1

3cma   , 
2

5 cma   , 

3 7cma  , 
12

10 cm,d    
13

25cm,d    
23

15cmd   and 25M  .  
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Table 11. Numerical results obtained for capacitances, when 
1

3cma   , 
2

5 cma   , 

3
7 cma   , 

12
10 cm,d    

13
25 cm,d     

23
15 cmd     

 

 Coefficients 

Symbols 
Capacitance [pF] 

1 
11c  4.2261 

2 
12 21c c  -2.0367 

3 
31 13c c  -4.0188 

4 
22c  8.0936 

5 
23 32c c  -3.2090 

6 
33c  9.6151 

 

Since the solution for three sphere system is not found in literature the method is verified 

indirectly by taking the limit  03 a  where capacitances values should approach to the 

values obtained in two spheres case. 

When 03 a  

11
4.2089 pFc   ,    

22
6.7559 pFc   ,     

12
-2.1650 pFc   . 

3.5.1 Three Spheres in External Electric Field 

Consider the three sphere system in Fig. 9 is placed in an external electric field oriented 

along the common axis of symmetry of the spheres 
0
ˆE zE  and the potentials on the sur-

faces of spheres are unknown. But the total charge on each of spheres are considered as 

zero, i.e., 
1 2 3

0t t tQ Q Q   .   

 

As before the Laplacian potentials can be expressed by (3.5.1)-(3.5.3) and are translated 

into the coordinate system 
1 1 1

( , , )r    as 
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The total charge on the sphere 1 can be found as 

1
1 1

1
1 1

t

t

s
Q ds

r
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The boundary condition at sphere 1, i.e., 
1

0tQ  , yield 
0

0A  . Then, using the orthogonal-

ity properties of the Legendre polynomials we can obtain 

3 ( 2) 3 ( 2) 3

1 1 21 1 31 0 1

1 1

( 1) ( 1) ( 1) ( 1) , 1,m m l l

m l

m l

A B m a d C l a d E a n
 

   

 

              (3.5.10) 

2 1 2 1

1 1

1 1

1 112 32
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( 1) ( 1) 0, 2,3, .

( )!( )! ( )!( )!

n n

m l

n m lm n l n

m l

a am n l n
A B C n

m n d l n d

  

   

 

 
          (3.5.11) 

 

Similarly by applying the boundary condition at the surface of sphere 2 and 3, we can 

show
0 0

0B C   and can obtain  

3 ( 2) 3 ( 2) 3

1 2 12 1 32 0 2

1 1

( 1) ( 1) ( 1) , 1,n l l

n l

n l

B A n a d C l a d E a m
 

   

 

                   (3.5.12)   

2 1 2 1

2 1
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m m

m l

m n ln m l m

n l

a an m l m
B A C m

n m d l m d

  

   

 

 
                 (3.5.13)                     



  39 

 

  

3 ( 2) 3 ( 2) 3

1 3 13 3 23 0 3

1 1

( 1) ( 1) , 1,n m

n m
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C A n a d B m a d E a l
 

   

 

                        (3.5.14)                      
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                           (3.5.15) 

 

0E

1 1
, 0tV Q 

2 2
, 0tV Q 

3 3
, 0tV Q 

A B C

g g

z

Fig. 10: System of three conducting spheres placed  in 

uniform electric field

1a
2a 3a

 

Numerical results are generated for the three spheres system in Fig.10 with 

1 2 3
5cma a a    , 

0
1 V/mE   and for the various 

1
/g a  ratios,  the electric filed at points 

A, B and C are calculated and given in Table 12 with 5 digits accuracy. 

 

Table 12. . Relative values of field components at selected points on the sphere in Fig. 10 for 

various gaps 
1

/g a  when 
0
ˆ( 0)

0
E E x    

Point 
         1

g a  

Fields 
1.00 0.50 0.10 0.05 0.02 0.01 0.005 

A 
0

/
x

E E  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0
/

z
E E  3.1513 3.2701 3.5946 3.7270 3.8832 3.9862 4.0771 

B 
0

/
x

E E  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0
/

z
E E  3.8067 5.2258 16.111 28.391 62.076 113.92 210.91 

C 
0

/
x

E E  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0
/

z
E E  3.8549 5.2568 16.111 28.391 62.076 113.92 210.91 
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Chapter 4 

Application of Translational Addition 

Theorems to the Solution of Field 

Problems with Arbitrarily Located 

Spheres 

4.1 General Solution for Spherical Bodies 

In previous chapter, the applications of transitional additional theorems to solve azi-

muthal symmetric electrostatic problems are discussed. In this section we are going to ex-

tend the applications of those theorems to solve problems which do not have azimuthal 

symmetry.  In presence of non azimuthal symmetric geometries the solution of Laplace 

equation in spherical coordinates considered in (1.1.2) is obtained as [5]  

( 1)

0

( , , ) [ ] (cos )exp( j )
n

n n m

nm nm n

n m n

u r A r B r P m   


 

 

              (4.1.1)  



  41 

 

  

For regions extended to infinity, with 0u   for r  , we have 

( 1)

0

( , , ) (cos )exp( j )
n

n m

nm n

n m n

u r B r P m   


 

 

                    (4.1.2) 

 

4.2 Two Spheres at Arbitrary Locations  

Consider the two spheres case discussed in section 3.3 is changed to a non azimuthal 

symmetry problem by moving the center of the sphere 2 away from z-axis of sphere 1 as 

given in Fig. 11.  

Let’s take the potential produced by two spheres at P as 

( 1)

1 1 1 1 1 1 1

0

( , , ) (cos )exp( j ) ,
n

n m

nm n

n m n

r A r P m   


 

 

     
1 1

,r a           (4.2.1) 

( 1)

2 2 2 2 2 2 2

0

( , , ) (cos )exp( j )
q

q p

qp q

q p q

r B r P p   


 

 

     
2 2

.r a          (4.2.2) 

Fig. 11: Two conducting spheres with arbitrary translation

1
x

1
y

1
z

2
x

2
y

2
z

d

1r

2r

1
a

2
a

1V 

P

1
x

1
y

1
z

2
x

2
y

2
z12

21
12

21

2V 
1V 

2V 

Top View





P

21 12d d d 

 



  42 

 

  

The 
2

  can be translated into the coordinate system 
1 1 1

( , , )r    and then the total potential 

when 
12 1 1

d r a   can be denoted as  

( 1)

1 1 1 1 1 1

0 0 0

(1)

2 21 21 21 1 1 1

( , , ) (cos ) exp( j )

 ( , | , | , , ) (cos ) exp( j ) ,

qn v
t n m

nm n qp

n m n q p q v v

v

v

r A r P m B

p q d r P





   

      

  
 

     

  

 

 
       (4.2.3) 

where  

(1)

2 21 21 21 21 211

21

( )! 1
( , | , | , , ) ( 1) (cos )exp[ j( ) ] .

( )!( )!

v p

v qq

q p v
p q d P p

q p v d

 




       



 

 

  
   

 
 

Boundary conditions on the surface of sphere 1, i.e, 

1 1 1 1

( 1)

1 1 1 1 1

0 0 0

(1)

2 21 21 21 1 1

( , , )

(cos ) exp( j )

  ( , | , | , , ) (cos ) exp( j )

t

qn v
n m v

nm n qp

n m n q p q v v

v

r V

V A a P m B a

p q d P





 

 

      

  
 

     

  

 

 

    

( 1)

1 1 1 1 1

0 0 0

(1)

2 21 21 21 1 1

(cos ) exp( j )

 ( , | , | , , ) (cos ) exp( j ) .

qn v
n m v

nm n qp

n m n q p q v v

v

A a P m V B a

p q d P





 

      

  
 

     

 

 

 
         (4.2.4) 

Now (4.2.4) can be expressed by using spherical harmonics as [see Appendix C] 

 

( 1) 1 1

1 1
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          (4.2.5)  

 

Spherical harmonics expansion [Appendix C] yield  
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( 1)
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             (4.2.6) 

Above integration of (4.2.6) can be solved as  

(1)

00 2 21 21 21 1 1 1

0

( , | 0,0 | , , ) , 0,
q

qp

q p q

A B p q d a V a n  


 

                (4.2.7)  

(1) 2 1

2 21 21 21 1

0

( , | , | , , ) , 1, 2,3, ,
q

n

nm qp

q p q

A B p q m n d a n  




 

                (4.2.8) 

Same way by imposing boundary condition at sphere 2 we can obtained 

(2)

00 1 12 12 12 2 2 2

0

( , | 0,0 | , , ) , 0,
n

nm

n m n

B A m n d a V a q  


 

                       (4.2.9)  

(2) (2 1)

1 12 12 12 2

0

( , | , | , , ) , 1, 2,3, ,
n

q

qp nm

n m n

B A n m p q d a q  




 

                              (4.2.10)  

 

Above (4.2.7)-(4.2.10) are coupled set of linier algebraic equations and we can solve it 

numerically as before by taking n q M  .  

Exact numerical results are generated for the case in Fig. 11, where 1 3cma   , 2 5 cma   , 

10 cmd   , 
12

3  , 
21

2 3  , 
12

3  , 
21

4 3  . The potentials of the spheres are 

taken as 
1

1VV   and 
2

1VV  . The infinite series are truncated as 10M  .  Six arbitrary 

points 
1 6

P P  are selected along the line between the centers of spheres. The potentials at 

these points are first calculated by using translational approach discussed above. The po-



  44 

 

  

tential at the very same points were also calculated by using the bispherical coordinates 

(see Section 3.31). 

According to the Fig. 11 and Fig. 12, the electrostatic potential at 
1

P  and
1

P  should be 

identical as long as distance between spheres and radii are same and 
1

P  and
1

P  are located 

same distance from the centers of spheres. The potentials values at the points 
1 2 6
,P P P  

are tabulated in Table 13. 

12

21

2 1V 

1
P 2

P 3
P 4

P

5
P

6
P

Fig. 12: Two conducting spheres at arbitrary position

1x

1y

1z

2x

2y

2z

2 1V  



 

Table 13. Comparison between numerical results obtained for potential by translational method (
t

tr
 ) and bispherical method ( t

bi
 ), when 

1
1VV   , 

2
1VV  , 

1
3cma  , 

2
5cma  , 10 cmd   , 

12
3  , 

21
2 3  ,

12
3  , 

21
4 3   and 10M   for translational method 

Test 

Point 

w.r.t the coordinate sys-

tem of Sphere-1 
t

tr
 [V] 

t

bi [V] 
Error 

[%] 
1r  

[cm] 
1  

[rad] 
1  

[rad] 
P1 3.2113 π/3 π/3 -0.7368 -0.7368 -0.0043 

P2 3.6199 π/3 π/3 -0.3001 -0.3000 0.0234 

P3 4.2001 π/3 π/3 0.2405 0.2408 -0.1491 

P4 4.3469 π/3 π/3 0.3731 0.3736 -0.1370 

P5 17.484 π/3 π/3 0.6290 0.6290 -0.0040 

P6 4.5387 2 π/3 4 π/3 -0.5526 -0.5526 -0.0000 
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4.2.1 Total Charge on the Spheres and Capacitances 

( 2)

1 1 1 1 1 1

0 0 0

(1)

2 21 21 21 1 1 1

( , , ) (1 ) (cos ) exp( j )

 ( , | , | , , ) (cos ) exp( j ) ,

qn v
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s nm n qp

n m n q p q v v

v
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a A n a P m B

p q m n d va P





     

    

  
 

     


  



 

 
 

0 1 (1)

1 0 1 1 0 1 2 21 21 21
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1 1 1

2 (1 ) (cos ) (0, | 0, | , , )

 (cos ) sin( ) ,

t n v

n n q

n q v

v
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P d



     

  

  
 

  


  



 

 
 

1 00
4 .tQ A                                 (4.2.11) 

Same way the total charge on sphere 2 can be found as 

2 00
4 .tQ B                                   (4.2.12) 

4.3 Three Spheres at Arbitrary Locations  

Consider three metallic spheres with radii 1a , 2a  and 3a  with the separation distances are 

12
d , 

13
d  and 

32
d  have been kept at potentials 

1
V , 

2
V  and 

3
V  as in Fig. 13. The medium out-

side the spheres is homogeneous of permittivity  .  

1 1,V Q

12d

2x

2y

2z

1y

1x

1z

3y

3z

13d
23d

2a

1a

3a

2 2,V Q

3 3,V Q

Fig.13:  Three conducting spheres in the proximity of each other
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The Laplacian potential outside the spheres due to the presence of each of them is first 

expressed in the spherical coordinate system attached to the respective sphere in the form 

1

1 1

1 1 1

1 1 1

( 1)1

1 1 1 1 1 1 1 1

0

( , , ) (cos ) exp( j ),

n

n m

n m n

n m n

r A r P m   


 

 

      
1 1

,r a        (4.3.1) 

2
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2 2 2

2 2 2

( 1)2

1 2 2 2 2 2 2 2

0

( , , ) (cos ) exp( j ),

n

n m

n m n

n m n

r A r P m   


 

 

     
2 2

,r a        (4.3.2) 

3

3 3

3 3 3

3 3 3

( 1)3

1 3 3 3 3 3 3 3

0

( , , ) (cos ) exp( j ),

n

n m

n m n

n m n

r A r P m   


 

 

     
3 3

.r a        (4.3.3) 

Now without starting from beginning we can write required equation by looking at (4.2.7) 

- (4.2.10) as 

32

2 2 3 3

2 2 2 3 3 3

1 2 (1) 3
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0 0
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         (4.3.4)  
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        (4.3.9)  

where ( )y

x
  is defined as 

2

22

( ) 2 2

2 2 21

2 2

( )! 1
( , | , | , , ) ( 1) (cos )exp[ j( ) ] .

( )!( )!

my v

x xy xy xy v n xy xyn

xy
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Above (4.3.4)-(4.3.9) are a linearly coupled set of equations and we can solve it numeri-

cally by truncating
1 2 3

n n n M   .  

 

The total charge on each sphere can be found as  

1

1 00
4tQ A ,  2

2 00
4tQ A ,  3

3 00
4tQ A , 

and the capacitances can be defined as before i.e. for instance 

2

3

1

00

11

01
0

4

V
V

A
c

V






 . 

 

Table 14. Numerical results obtained for capacitances, when 
12

0  , 
21
  , 

12
0  , 

21
0  , 

13
3  , 

31
4 3  , 

13

0
0  , 

31

0
  , 

23
2 3  , 

32
5 3  , 

23
0  , 

32
  , 

1
3cma   , 

2
5 cma   , 

3
4 cma   , 

12 13 23
10 cmd d d    and  10M   

 

 Parameter Capacitance [pF] 

1 
11c  4.4710 

2 
21 12c c  -1.7474 

3 
31 13c c  -1.0902 

4 
22c  8.4680 

5 
32 23c c  -3.0661 

6 
33c  6.6793 
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Chapter 5 

Application of Translational Addition 

Theorems to the Solution of Magnetic 

Field Problems  

5.1 Magnetic Scalar Potential 

The magnetic scalar potential 
m

  is defined in a region where 0J  and satisfies Laplace 

equation just as electrostatic potentials. Hence, 

2 0, ( )
m

    J = 0 , 

and magnetic scalar potentials is related to magnetic field intensity H according to  

m
 H . 
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5.2 Two Perfect Conductor Spheres in Uniform 

Magnetic Field 

Fig. 14: System of two perfect conductor spheres 

placed in  uniform magnetic field along  z -axis

1x

1y

1z

2x

2y

2z

d

1r
2r

1
2

1a

2a

P

0H

 

Consider two metallic spheres of radii 
1

a  and 
2

a  with a distance d  between their centers, 

as shown in Fig. 14. The spheres are located in an external magnetic field oriented along 

the common axis of symmetry of the spheres, 
0

ẑH
0

H . The medium outside the spheres 

is homogeneous of permeability  . The magnetic scalar potential outside the spheres sat-

isfies the Laplace equation.  

 

The Laplacian potential outside the spheres due to the presence of each of them is first 

expressed in the spherical coordinate system attached to the respective sphere in the form 

(see Fig.14) 

( 1)

1 1 1 1 1 1

0

( , , ) (cos ) ,n

m n n

n

r A r P  


 



       
1 1

,r a           (5.1.1) 
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( 1)

2 2 2 2 2 2

0

( , , ) (cos )m

m m m

m

r B r P  


 



       
2 2

.r a                (5.1.2) 

The potential due to the external field 
0
ˆH z

0
H  in the coordinate system of each is, re-

spectively,   

1 0 1 0 1 1 1 1
(cos ) C ,ex

m
H z H r P                       (5.1.3) 

2 0 2 0 2 2 2 2
(cos ) C ,ex

m
H z H r P                      (5.1.4) 

 

where  C1 and C2  are constants of reference. To impose the boundary condition at 
1 1
r a , 

we have to use translational addition theorem  (2.3.7) corresponding to 
2

r r , 
1

r r a   , 

0
r d  and 

0
  , in order to translate 

2m
  into the coordinate system 

1 1 1
( , , )r   . Thus, 

 

( 1) ( 1)1

1 1 1 1 1 1 1

0 0 0

0 1 1 1 1

( )!
( , , ) (cos ) ( 1) (cos )

( )!( )!

(cos )

n

t n m m

m n n m n

n m n

rm n
r A r P B d P

m n d

H r P C

   



  
   

  

  
     

 

  

       (5.1.5) 

 

Its derivative with respect to 1r  is  

(1) 1

( 2) 1

1 1 1 0 1 11

0 0 01

( )!
( 1) (cos ) ( 1) (cos ) (cos ).

( )!( )!

n

n mm

n n m nn m

n m n

nrm n
A n r P B P H P

r m n d
  

  
 

 

  

 
     


   

 

Applying the boundary condition at 
1 1
r a , i.e., 

(1)

1

0m

r


 


, yields 

1

( 2) 1

1 1 1 0 1 11

0 0 0

( )!
( 1) (cos ) ( 1) (cos ) (cos ).

( )!( )!

n

n m

n n m nn m

n m n

nam n
A n a P B P H P

m n d
  

  
 

 

  


        (5.1.6) 

Applying the orthogonality properties of the Legendre polynomials [Appendix B] gives 

1 1

( 2) 1

1 0 11

0 01

(2 1) ( )!
( 1) ( 1) ( ) ( ) ( ) .

2 ( )!( )!

n

n m

n m n nn m

m n

nan m n
A n a B P x H P x P x dx

m n d

 
 

 

 

 
    

 
      (5.1.7) 

We obtain 
0

0A   for 0,n   
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3

31

1 0 12

1

1
( 1) ( 1)

2 2

m

m m

m

a
A B m H a

d







      for 1,n               (5.1.8) 

2 1

1

1

1

( )!
( 1) 0

( )!( )! ( 1)

n

m

n m n m

m

nam n
A B

m n n d



 




  


   for 2,3n                (5.1.9) 

In the same way, 
1m

  is translated into the coordinate system 
2 2 2

( , , )r   and the boundary 

condition is applied at the surface of sphere 2 to obtain the following equations: 

0
0B   for 0n  , 

3

32

0 22

1

1
( 1) ( 1) ,

2 2

m

m n n

n

a
B A n H a

d







       for 1,m                (5.1.10)

2 1

2

1

1

( )!
( 1) 0,

( )!( )! ( 1)

m

m

m n m n

n

mam n
B A

m n m d



 




  


  for 2,3 .m                              (5.1.11) 

As before, equations (5.1.8) to (5.1.11)  are solved after truncating n m M   to find un-

known constants of integrations 
n

A  and 
m

B . 

Table 15. Numerical results obtained for the magnetic field intensity with a after truncation to 

20M   for translational addition method and to 200M  when using bispherical coordinates 

[16], for system with respect to values given by when, 
0

1 A/mH  , 
1

3 cma  , 
2

5 cma  , 

10 cmd  and 0.1   (for bispherical coordinates) 

Test 

Point 

 (rad) 
for 

bispherical 

Coordinates 

w.r.t. the coordinate 

system of sphere2 

Translational Addition 

Method 

Bispherical Coordi-

nates 

2
[ ]r cm


 
2
[deg]  Hz [A/m] Hx[A/m] Hx[A/m] Hz[A/m] 

1 2.8560 5.6658 175.7332 0.1550 0.0270 0.1550 0.0270 

2 2.0944 5.8540 163.2060 0.3266 0.1214 0.3266 0.1214 

3 1.5708 6.2355 152.0275 0.5812 0.1953 0.5812 0.1953 

4 1.0472 7.2544 135.9844 0.8912 0.1846 0.8912 0.1846 

5 0.6283 9.8073 115.9900 1.0272 0.0632 1.0272 0.0632 

6 0.3491 15.4470 94.7976 1.0168 0.0016 1.0168 0.0016 

7 0.2618 19.5449 84.9091 1.0082 -0.0034 1.0082 -0.0034 

8 0.1571 28.8216 67.1253 1.0014 -0.0032 1.0014 -0.0032 

9 0.0628 44.9940 36.0078 0.9993 -0.0011 0.9993 -0.0011 

10 0.0157 52.4006 9.8946 0.9991 -0.0002 0.9991 -0.0002 
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5.2.1 The External Magnetic Field along x  Axis 

Fig. 15: System of two perfect conductor spheres 

placed in a uniform magnetic field along x -axis

1x

1y

1z

2x

2y

2z

d

1r
2r

1
2

1a

2a

P


0
ˆ

0H xH

 

The potential produce by the each of the two spheres is first expressed in the coordinate 

system attached to the respective sphere as 

( 1)

1 1 1 1 1 1 1

0 0

( , , ) (cos )cos ,
n

n m

m nm n

n m

r A r P m   


 

 

                 (5.1.12) 

( 1)

2 2 2 2 2 2 2

0 0

( , , ) (cos )cos .
q

q p

m qp q

q p

r B r P p   


 

 

                 (5.1.13) 

The (5.1.12) and (5.1.13) are written considering only the real part of (1.1.4) since the ex-

ternal magnetic field is along x  axis.  

 

The potential due to the external field 
0
ˆH x

0
H  in the coordinate system of each is, re-

spectively,   

1

1 0 1 0 1 1 1 0 1 1 1 1 1
sin cos (cos )cos C ,ex

m
H x H r H r P                 1 1,r a           (5.1.14) 

1

2 0 2 0 2 2 2 0 2 1 2 2 2
sin cos (cos )cos C ,ex

m
H x H r H r P              2 2 ,r a                (5.1.15) 
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where  C1 and C2  are constants of reference. To impose the boundary condition at 
1 1
r a , 

we have to use real part of translational addition theorem  (2.3.7)  corresponding to 
2

r r , 

1
r r a   , 

0
r d  and 

0
  , in order to translate 

2m
  into the coordinate system 

1 1 1
( , , )r   . Thus, 

 

( 1) 1

1 1 1 1 1 1 1 0 1 1 1 1 1

0 0

1

1

1 11

0 0 0

( , , ) (cos ) cos (cos ) cos C

( )!
( 1) (cos ) cos( ).

( )!( )!

n
t n m

m nm n

n m

q

p q p

qp q

q p

r A r P m H r P

rq
B P p

q p p d






     


 




 

 

 


 

  

   


 

 




          (5.1.16) 

As in previous case, the boundary condition at 
1 1
r a  is applied to the derivative of 

(5.1.16)  with respect to 1r . Then orthogonality properties of spherical harmonics yields 

[see Appendix C]. 

2

( 2) 1

1 0 1 1 1 1 1

00 0

1

1

1 1 1 1 1 11

0 0

(2 1) ( )!
( 1) (cos ) cos (cos ) cos

2 ( )!

( )!
( 1) (cos ) cos( ) (cos ) cos .

( )!( )!

n m

nm n

q

q

p q p m

qp nq

p

n n m
A n a H P P m

n m

rq
B P p P m d d

q p p d

 






   



     




 






 

 

 
   


    

 



     (5.1.17)       

For 1m   we get 

3

31

11 1 0 12

1

1
( 1) ( 1)

4 2

q

q q

q

a
A B q H a

d







     ,  1,n                     (5.1.18) 

2 1

1

1 1 ( 1)

1

( )!
( 1) 0,

( 1)!( 1)! ( 1)

n

q

n q q n

q

naq n
A B

q n n d



 




  

  
  2.3...n                   (5.1.19) 

In the same way, the boundary condition is applied at the surface of sphere 2 to obtain the 

following equations (for 1p  ) :  

3

32

11 1 0 22

1

1
( 1) ( 1)

4 2
n n

n

a
B A n H a

d







      ,   1q  ,                                        (5.1.20) 
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2 1

2

1 1 ( 1)

1

( )!
( 1) 0,

( 1)!( 1)! ( 1)

q

q

q n n q

n

qaq n
B A

n q q d



 




  

  
   2.3q  .                (5.1.21) 

 

In the case of 1m   and 1p   we obtain homogeneous set of linear equations whose solu-

tion is the trivial solution, i.e., 0
nm qp

A B   for all 1m   and 1p  . 

Table 16. Numerical results obtained for the magnetic field intensity with a after truncation to 

20M   for translational addition method and to 200M   when using bispherical coordinates 

[16], for system with respect to values given by when, 
0

1A/mH  , 
1

3cma   , 
2

5 cma   , 

10 cmd   and 0.1   (for bispherical coordinates) 

 

Test 

Point 

 (rad) 
for 

bispherical 

Coordinates 

w.r.t. the coordinate 

system of Sphere2 

Translational Addition 

Method 

Bispherical Coordi-

nates 

2
[ ]r cm


 
2
[deg]  Hz [A/m] Hx[A/m] Hx[A/m] Hz[A/m] 

1 2.8560 5.6658 175.7332 0.0382 1.5600 0.0382 1.5600 

2 2.0944 5.8540 163.2060 0.1463 1.3264 0.1463 1.3264 

3 1.5708 6.2355 152.0275 0.2105 1.0837 0.2105 1.0837 

4 1.0472 7.2544 135.9844 0.1867 0.8906 0.1867 0.8906 

5 0.6283 9.8073 115.9900 0.0617 0.8887 0.0617 0.8887 

6 0.3491 15.4470 94.7976 0.0008 0.9626 0.0008 0.9626 

7 0.2618 19.5449 84.9091 -0.0039 0.9818 -0.0039 0.9818 

8 0.1571 28.8216 67.1253 -0.0034 0.9956 -0.0034 0.9956 

9 0.0628 44.9940 36.0078 -0.0011 1.0000 -0.0011 1.0000 

10 0.0157 52.4006 9.8946 -0.0002 1.0005 -0.0002 1.0005 
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Chapter 6 

Conclusions and Suggestions for  

Future Works 

6.1 Summary and Conclusions  

In order to get a physical insight and quantitative relationships for engineering problems, 

various real world shapes can mathematically be modeled at a very first approximation 

by using systems of spheres. 

The translational addition theorems for static and stationary fields in spherical coordi-

nates presented in this thesis can be used to solve boundary value field problems relative 

to many-sphere structures. In the case of axisymmetric geometries, the general expres-

sions (2.2.7, 2.3.7 and 2.3.10) can be further simplified, leading to much simpler matri-

ces. When dealing with arbitrarily located systems of spheres, spherical harmonics need 

to be employed. 
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The formulations presented in this thesis particularized for a system of two spheres constitute an 

alternative to the classical formulations using the method of images in the case of Dirichlet 

boundary conditions [7] or employing the bispherical coordinates [13-16]. 

Translational addition theorems presented in this thesis are also applicable to multi sphere 

systems involving scalar Laplacian fields such as in fluid dynamics, heat flow studies etc.  

6.2 Future Research Direction 

The research presented in this thesis is confined to field problems involving systems of 

conducting spherical bodies. This work can be extended to field-penetrable spheres, di-

electric or magnetic, where the boundary conditions are more complex. Obviously, the 

extension to systems of prolate or oblate spheroids yields results of more practical impor-

tance, since the spheroidal shapes approximates much better real world shapes. 
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Appendices 
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Appendix A 

Wigner  3-J Symbols 

1) Some specialized formulas for Wigner 3-J symbol [9] are given below. 

i) 1 2 3

1 2 3

J J J
0,            if  J +J +J   is odd.

0 0 0

 
 

 
                                 A-1  

ii) 

1/ 2

1 2 3 J / 2 1 2 3
J J J (J 2J )!(J 2J )!(J 2J )

( 1)
0 0 0 (J 1)

     
    

   
               A-2 

1 2 3

1 3 3

(J / 2)!
            ,               If  J=J +J +J   is even.

(J / 2 J )!(J / 2 J )!(J / 2 J )!


  
 

iii) 1 21 2 1 2 (J J M) 1 2 1 2 1 2

1 2 1 2 1 1 1 1 2 2 2 2

J       J      (J J ) (2J )!(2J )!(J J M)!(J J M)!
( 1)

       M (2J +2J +1)!(J + )!(J )!(J )!(J )!m m m m m m

 
     

  
    

 A-3 

A-2 gives 

     ( ) ( )! (2 )!(2 )!
(-1)

0    0 0 ! ! (2 2 1)!

n vn n n n

n n

   

 

  
 

  
           A-4 

A-3 gives 

( )           ( ) (2 )!(2 )!( )!( )!
( 1)

   ( ) (2 2 1)!( )!( )!( )!( )!

n mn n n n m n m

m m n n m n m

       

      

         
  

         
  A-5 

 

The A-4 and A-3 yields to write simplified version of (1.2.5) when p n    as          

2( ) ( )! (2 )!(2 )! ( )!
( , | , | ) ( 1) [2( ) 1]

( )!( )! (2 2 1)! ! !

n m n m n n
a m n n n

n m n n

     
   

   

      
     

   
        A-6 
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Similarly when 0p n    , we obtain 

1/ 2
           ( )!( )!(2 )![2( )]!

( 1)
   (2 1)!( )!( )!( )!( )!

n mn n n m n m n

m m n n m n m

   

         

      
    

              
(A-7) 

and, for 0,m    

1/ 2
     ! (2 )![2( )]!

( 1) .
0    0 0 !( )! (2 1)!

nn n n n

n n

   

 

    
    

    
             (A-9) 

 

Thus, 

!( )!(2 )![2( ) 1]!
( , | , | ) ( 1) , .

(2 1)! !( )!( )!( )!
   

n n m n
a m n n m n

n n n m

  
    

     

  
       

     
   (A-10) 
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Appendix B 

Associate Legendre Functions 

 
1) Some useful properties of Associate Legendre function [10] 

i) Orthogonality property of the associate Legendre Function  

1

1

2 ( )!
( ) ( ) ,

(2 1) ( )!

m m

n n nn

n m
P x P x dx

n n m
 




 

    for x ,           B-1 

where    
0,1, 2,3,

integers
0, 1, 2, 3,

n

m

 


    
 and nn  is the Kronecker delta. 

For 0m  , 0n   we have 

1

0 0

1

2
( ) ( ) ,

(2 1)
n n

P x P x dx
n





   

1

1

2, 0,
( )

0, 0.
n

n
P x dx

n


 
 

 
                 B-2 

 

ii)  0 ( ) ( )
n n

P x P x                    B-3 

iii) ( ) 0, ifm

n
P x m n                      B-4 

iv) 
( )!

( ) ( 1) ( )
( )!

m m m

n n

n m
P x P x

n m

 
 


               B-5 

 

2) Legendre series expansion [6] 

For any ( )f x  defined in [-1,1] and satisfying the Dirichlet conditions can be expand as 

0

( ) ( )m

n n

n

f x a P x




  with  
1

1

(2 1) ( )!
( ) ( )

2 ( )!

m

n n

n n m
a f P d

n m
  



 


  .       B-6 
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Appendix C 

Spherical Harmonics 

 

1) The spherical harmonics is defined as [10] 

(2 1) ( )!
( , ) (cos ) exp( ).

4 ( )!

m m

n n

n n m
Y P jm

n m
   



 



                C-1 

 

2) Orthogonality property of the spherical harmonics [10] 

2

* *

0 0

( , ) ( , ) ( , ) ( , ) sin

,

m k m k

n l n l

mk nl

Y Y d Y Y d d

 

          

 



 

 

            C-2 

where  *( , ) ( 1) ( , )k k k

l l
Y Y      and d  is an element of solid angle. 

 

3) Spherical harmonics expansion [11] 

For any square integrable function ( , )f    can be expanded as, 

   
0

( , ) ( , ) ,
n

m

nm n

n m n

f f Y   


 

          

with 

2

* *

0 0

( , ) ( , ) ( , ) ( , ) sinm m

nm n n
f f Y d f Y d d

 

          


     .                  C-3 

4) Another form of spherical harmonics can be defined as [13] odd and even functions: 

(cos )cos( )e m

nm n
Y P m  ,  (cos )sin( )o m

nm n
Y P m  ,  0 m n  , 0,1,2n  .                C-4 

These harmonics functions form a complete system of orthogonal functions on the sur-

face of a sphere, thus 
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2

2

0 0

4 ( )!
( , ) sin

(2 1) ( )!
nm

m

n m
Y d d

n n m

 


    





    ,           C-5 

where the superscript of the 
nm

Y  can be either e (even) or o (odd) (except that 
0

o

n
Y  does not 

exist) and where 
0

1  , 2
m
   ( 1.2n  ). 

 

Any function ( , )f   , specified over the surface of a sphere, may be expressed in terms of 

the series 

 0

0 0

( , ) ( , ) ( , ) ,
n n

e

nm nm nm nm

n m

f A Y B Y     
 

             

where  
2

0 0

(2 1) ( )!
( , ) ( , ) sin

4 ( )!

em

nm nm

n n m
A f Y d d

n m

 


      


 


   ,        C-6 

with the integral for 
nm

B  similar to that for 
nm

A , except that o

nm
Y  is substitute for e

nm
Y  and 

the terms for 0m   are omitted. 
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