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Abstract

The purpose of this study is to find analytical solutions to Laplacian field problems rela-
tive to arbitrary configurations of spheres based on novel translational addition theorems
derived specifically for scalar Laplacian functions. These theorems are used to express in
analytic form the fields due to individual spheres in system of coordinates attached to
other spheres, thus allowing for the exact boundary conditions to be imposed.

In the literature, translational addition theorems are available for scalar cylindrical and
spherical wave functions. Such theorems are not directly available for the general solu-
tion of the Laplace equation.

This thesis presents the derivation of the required translational addition theorems for the
general solution of Laplace equation in spherical coordinates and then the application of
these theorems to find analytical solutions to some electrostatic and magnetostatic field
problems relative to arbitrarily located spheres. Computation results for electric and
magnetic spheres have been generated and numerical results are compared with the re-
sults obtained by other methods available in the literature for two sphere systems. Such
numerical data, of known accuracy, are also useful for validating various approximate

numerical methods.
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Chapter 1

Introduction

Analytical solutions for boundary value field problems relative to multi-object systems
can be obtained only in some special cases. To derive solutions to static and stationary
field problems, the Laplace equation must be solved subject to the boundary conditions at
the surface of each body in the system and to obtain exact analytic solution the surfaces
of all the bodies involved must be coordinate surfaces in orthogonal systems of coordi-
nates.

The difficulties encountered when boundaries do not coincide with coordinate surfaces
are overcome by applying various numerical methods. In this thesis, a new approach for
finding analytical solutions to static and stationary field problems in the presence of
many body systems is presented. Available classical methods for systems with one or at
most two canonical objects, such as the method of separation variable and method of im-
ages cannot be employed for system of three or more objects.

To be able to impose the boundary conditions at the surface of each body, the fields due
to all other bodies have to be expressed in term of the coordinates of the system attached
to each individual body. Appropriate translational or translational-rotational addition

theorems are to be applied to “translate” the field produce by a particular body expressed



initially in the coordinate system attached to that body into the coordinate system at-
tached to another body. For particular geometric configurations, it is possible to derive
exact analytical solutions which constitute benchmark solutions, useful for determining
the accuracy of various approximate techniques.

This thesis is dealing with static electric and magnetic field problems relative to many-
sphere systems, such as electrostatic field problems when spheres are kept at known po-
tentials or in an external electric field, while in the case of magnetic fields in the presence
of perfect conductor spheres, for instance, the boundary condition at their surface requires
that the normal derivative of the scalar potential be equal to zero.

First, the necessary translational addition theorems are derived and, then, those theorems
are applied to find the solution to some benchmark problems, relative to two sphere sys-
tems, with the results evaluated by comparison with the results obtained by other exact
methods. Secondly, the method developed is applied to the analysis of electric and mag-
netic fields in the presence of a few new configurations of more than two spheres.

In practical engineering applications multi-sphere models are useful for determination of
forces on particles and field intensification in colloidal suspensions, computation of fields
in material structures with embedded arrays of small bodies and to study the response of

nanostructures to electromagnetic fields etc.



1.1 Solution to Laplace Equation

In many electrostatic problems which involve a set of conducting bodies, the charge dis-
tributions over each of the metallic surfaces are to be determined when the potentials of
all the conducting bodies are given. For homogeneous media outside the conducting bod-
ies, the electrostatic potential satisfies the Laplace equation. The applications of the
Laplace equation are not confined to electrostatics. It is widely used in many branches of
science and engineering, notably for static and stationary magnetic fields, for direct cur-
rent fields in conducting media, in astronomy, fluid dynamics, etc.

A general form of the solution of the Laplace equation

V=0 (1.1.1)

has the following expression in spherical coordinates (r,&,¢):

o) =3 (AU +8,u2) (112)

n=0 m=-n

where A and B, are constants of integration,

Ui (r,6,¢) = r"P"(cos 0) exp(jmg) , (1.1.3)
u@(r,6,¢) =r "P"(cos 6) exp(jmg). (1.1.4)
n, m are integers, j=+/~1, and P" are associated Legendre functions of the first kind.

The above general solution for the Laplace equation is uniquely determined if the value
of the function is specified on all boundaries (Dirichlet boundary conditions) or the nor-
mal derivative of the function is specified on all boundaries (Neumann boundary condi-

tions).



1.2  Translational Addition Theorems for Spheri-

cal Scalar Wave Functions

A first derivation of translational additions theorems for spherical scalar wave functions
was presented by Friedman and Russek [1] and later in a more exact form, by Stein [2].
Translational addition theorems for spherical vector wave functions were derived by Cru-
zan [3].

The scalar Helmholtz equation used to describe time-harmonic scalar waves is
Viu+kiu=0, (1.2.1)
where Kk is the wave number. Its solution in spherical coordinates can be written in the
form [2]

U, (r,8,9)=z,(kr)P"(cos 8) exp(jmg) 0<n<oo, —n<m<n. (1.2.2)

The symbol z, stands for either the spherical Bessel function j, the spherical Neumann
function vy, , or the spherical Hankel functions. Then, for the case of the translation of the

original coordinate system (r,&,¢) to the system (r’,8',¢")as illustrated in Fig.1, the ad-

dition theorems are [3]

z,(kr)P" (cos 8) exp( jmg) = i Z Z(—l)“j””"” (2v+Da(m,n|—g,v|p) 12.3)

J, (kr')z, (k)P (cos 0')P* (cos 6,) expli(m — k) lexp(jug), 1<,

z,(kr)P" (cos 0) exp(jmg) = i 2 Z(—l ATt v+Da(m,n|—u,v| p) (1.2.4)

J, (kt,)z, (k)P (cos 6, )P (cos ) expli(m — k)@ lexp(iuh), 1’2 1,.



where

(n+m)!(V+#)!(p—m—ﬂ)!Tz{”"p}[nV P }(1.2-5)

a(m,nlﬂ,VIIO)=(—1)"1”'(2'0+1){(n—m)!(v—u)!(p+m+ﬂ)! 000 Jimu—~(m-+z)

J J,J, . . .
and { Lol 3} is the Wigner 3-J symbol [see Appendix A].

o, a, ay

The > represents the sum over the following p values [2]
p=v+n, v+n—-2, v+n—4 v+n—6, --eee n—y), (1.2.6)
with [n—v|<p<n+v. The z, and z, functions in (1.2.3), (1.2.4) are of the same type [2].

When z, is selected to be a spherical Bessel function j,, then either (1.2.3) or (1.2.4) can

be used without restriction on the relative size of r’ and r, [3].

Fig. 1: Translation of the coordinate system



Chapter 2

Translational Addition Theorems for

Static and Stationary Fields

To obtain analytical solutions to various static and stationary field problems, for instance
problems involving system of arbitrarily located spheres, we need translational addition
theorems relative to u® and u® in (1.1.2) - (1.1.4). To the best of our knowledge, such
theorems are not directly available in the literature. Instead of deriving these theorems
from scratch, we can particularize the existing translational addition theorems for spheri-

cal scalar waves functions [1]-[3] in the limiting case of a vanishing wave number.

2.1  Limits for Spherical Bessel and Neumann

Functions

In the case when the wave number vanishes, k — 0, the Helmholtz equation (1.2.1) be-

comes the Laplace equation (1.1.1). We derive the translational addition theorems for



(1.1.3) and (1.1.4) from (1.2.3) and (1.2.4) by taking the limits, when k — 0. The expres-

sion of spherical Bessel and Neumann functions for vanishing arguments are [4]

. (kr)"
k , 2.1.1
’(”kr()fo) ~en+)n @11
(2n-1n!
kr) — — o2 2.1.2
X”kr()%o) T k)™ (21.2)

where the double factorial notation is used, i.e.,

(2n+1N=1-3-5...(2n +1),
(2n-1)11=1-3-5...(2n-1).

2.2 Derivation of the Translational Addition

Theorem for u® in (1.1.3)

To obtain the required result, z, and z, in (1.2.3) need to be selected to be spherical Bes-
sel functions j, and j,, respectively. Since z, is selected to be a spherical Bessel func-
tion j., then either (1.2.3) or (1.2.4) can be used without restriction on the relative size of
r' and r, [3]. Therefore only (1.2.3) is used to derive the required theorem. Then, (1.2.3)

can be written as

i, (k)P (cos ) exp(img) = > > S (1) (2v +Da(m,n| —,v | p) 021

3, (kr') j, (kr, )P (cos )P (cos 6, ) exp[j(m — z) ¢, 1exp(isg’) -

For vanishing arguments, kr, kr" and kr,, (2.2.1) can be written by using (2.1.1) as



(2(nk:); P (cosO)exp(jmg) = i Z D> (=D P 2v +Da(m,n|—u,v | p)

| (2(5?13" (z(gr+)1)n PY (05 ,)P/" (cos &) expLi(m — 1) exp(isug).

This equation can be regrouped as

r"P"(cos 8) exp(jmg) = i ZV: Z(—l)”jv’” 2n+2)N(r") k"

a(m,n|—u,
v=0 u=-v p (2v-pn ( |=w.v1p)

. (2.2.2)
@ IOJ+_1_)|| PI* (cos 6, )P (cos 8') expLi(m — 1), 1 exp(jsag).

For the convenience of the rest of the derivation we can introduce the following notation:

£(mon] v ] p) =a(mn|—uv| p) UL prr(cosq,) .

TS (2.2.3)

According to (1.2.6), the upper and lower limits of p are determined by v and n. Thus,
the summation should be extended over all the possible values of p before taking the lim-

its in (2.2.2). Using (1.2.6) the summation can be written in an expanded form as

. P (Cosg)exp(1m¢) ZZ( 1)y v-n (2n‘|('1) (;-))”k‘/ n

+ f(mn|—u,v|v+n=2)k""? + f(m,n|—g,v|v+n-4)k"*
ot £ (0] v || = v)K"IP/ (cos &) expLi(m — ), Texp(i)

—ZZ( “j VnM[f(m n|—u,v|v+n)k?

v=0 pu=-v )“

+ f(m,n|—,u,v|v+n—2)k2v 2 f(mn|—gv|v+n—4)k>*

+..ot F(mn|—g,v]|n —v|)k‘"*”‘kv-”] P (cos 8") exp[j(m — z)¢,]exp(jug’) .

[f(m,n]|—g,v|v+n)k™"

(2.2.4)



Taking now the limit k — 0, (2.2.4) becomes

P cos @) exp(mg) = > Y (~1yjr ZOHDU)

v=0 pu=-v

-P (cos &) exp[j(m - 1), 1exp(jug’) .

@ mnlaviney) (2.2.5)

Note that, when k =0, the k""k*"=0 for all the values of v with v>n and
k""k*" =1 when v<n. Hence p is replaced by (n—v) in (2.2.3), (2.2.5) . Substituting f

from (2.2.3) and regrouping, yields

@n+1!
v -DN[2(n—v) +1]!

a(mn|—u,v|in-v)

r"P"(cos 8) exp(jmg) = Zn: Z (-1)”

N (2.2.6)
o (:_] P “(cos 6,)P (cos 0") exp[j(m — ), ]exp(jus’)

0

The (2.3.6) can be further simplified by substituting for the a(m,n|—z,v|n—v) (see Ap-

pendix A-10) and after doing some algebraic manipulations as

. Y (n+m)! r)
r"PI"(cos O) exp(jmg) = > " (V+ﬂ)!(n+m—v—,u)!(EJ fo (2.2.7)

v=0 pu=-v

-R"(cos 6,)P/ (cos &) explj(m — )¢ 1 exp(jug),  r'<r,.
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2.3 Derivation of the Translational Addition

Theorem for u'? in (1.1.4)

In this case, in order to obtain the required theorem, z, and z in (1.2.3) and (1.2.4) have
to be taken to be spherical Neumann functions y, and y , respectively, with their limit-

ing values given by (2.1.2). In the case of r'<r, , the (1.2.3) can be written as

y, (k)P (cos ) exp(img) = > S 3 (<17 20 + a(m,n| | p) .

-], (kr)y, (kr, )R (cos )P (cos 6, ) exp[j(m — 1), 1 exp(jsg') -

For vanishing arguments kr, kr" and kr, by using (2.1.1) and (2.1.2), (2.3.1) becomes

_(@2n-]
(k )(n+l)

(kr)” ] @p-pN
@v-ni  (kr)t

R (cos 8) exp(jmg) = ZZZ( -7 "a(m,n| -, v| p)

v=0 u=-v p

} P (cos &")P;" (cos 6, ) exp[i(m — )4, Jexp(jug)

This equation can be regrouped as
(r!)v k(v+n+l)

~(n+1) pm . . N _7)" i
RN CosDexp(imd) =3, 3 3 I B T (232)

((ip)(pl) P (c0s 6, )P (cos @) expLi(m — ) ]explLid .

-JPa(m,n|—x,v|p)

For the convenience of the rest of the derivation let’s introduce the notation:

ol s 9= Famnl savl p) C2 I e (cos). (233)
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Before taking the limit for k — 0, the summation in (2.3.2) is expanded over all possible

values of p in(1.2.6), i.e.,

r—(n+1)Pm COSH ex -m — N C _1;1 (—n+v) (rr)v k(v+n+l)
" (cos ) exp(jmg) Z;Z( ) j PRI

.[g(m,n|—,u,v|n+v)+g(m,n|—,u,v|n+v—2)+g(m,n|—,u,v|n+v—4)

kn+v+l kn+v—1 kn+v—3

_gmnl-mvin=v)
k\n—v\ﬂ

} P/ (cos &) exp[[j(m — w2, Jexplizg']

N\ e ) (r')
=2 2.0 (2n-1NRv-n

v=0 pu=-v

.{g(m,n|—,u,v|n+v) +k2 g(m,n|—u,v|n+v—2) +k4 g(m,n|—y,v|n+v—4) (234)
1 1 1
k™K g(m,n| =, v||n=v|) . _
+oot 1 In-v P/ (cos 8" exp[j(m — ), 1exp[jug'].

For k — 0, (2.3.4) becomes

(r)”
(2n—-1)N1(2v -1

IR (cos ) exp(img) = Y Y (-1

V=0 p=y (2.3.5)
g(m,n|—p,v|[n+v)

1

P (cos &) exp[i(m — u)¢, 1expljug].

Substituting g from (2.3.3) and regrouping, yields

[2(n+v)—1]!

2n-pli2v -l a(m,n|—x,vin+v)

r "R (cos O) exp(jmg) = > > (-1)*
v=0 pu=-v

- (2.3.6)
(r_] r, YR (cos §,) P/ (cos @) exp[j(m — w) g, 1expliug], r' <.

0

The (2.3.6) can be further simplified by substituting for the a(m,n|—z,v|n+v) (see Ap-

pendix A-6) and after doing some algebraic manipulations as
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~(n) pm : N N [y (N—m+V+ u)! I'_' ’ ~(n+1)
R (COSH)EXp(Jm¢)_;ﬂ;V( D (n—m)!(V-{-,u)!(roj fo (2.3.7)

P! “(cos6,)P* (cos &) exp[j(m — ) Jexpliug’]l,  r' <,
Equation (2.3.7) gives the required translational theorem corresponding to (1.1.4), for

’
r's<r,.

Now consider the case for r'>r,. Then, (1.2.4) can be written as

y, (k)P (cos ) exp(imd) = > S (<17 " (2v + a(m,n| 1, v p) 039

*J, (ki) y, (kr')R (cos 6,) P, (cos 6") exp[j(m — w)p'l exp(jud,) -
For vanishing arguments kr, kr"and kr,, by using (2.1.1) and (2.1.2), (2.3.8) becomes

ry
@n-plv-ni

n+v+l:p

J

() an (COS 9) exp(jm¢) - i 2 Z (_1)uj v-n

v=0 u=—v p

e PGSR (cos ) xplilm - g Texpi)

(2.3.9)

-a(m,n|—u,v|p)

As in the previous cases, all the possible values of p are considered and, then, the limit

k — 0 is taken. Finally, we get after some algebraic manipulations the following transla-

tional addition theorem for (1.1.4), when r'>r,, as

-(n+) pm H _ RN _\VHH (n—m+V+lLl)! r_o ’ 1 \—(n+1)
r "R (cos O) exp(jmg) = > " (1) —(r’] (r)

v=0 p=-v (n_m)l(v+ﬂ)|
B (cos )R/ (cos 6, ) exp[i(m — )¢ Texplj ], >,

(2.3.10)

2.4 Numerical Evaluation of Series Involved

The convergence of the series in the translational addition theorems given in (2.2.6),

(2.3.7) and (2.3.10) can be tested for given n and m by using numerical values for various
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variables in both sides of the respective equations. In this section, the numerical testing

for (2.3.7) is presented since it is widely used in the next two chapters.

2.4.1 Azimuthal Symmetric Case

First, consider an azimuthal symmetric situation, where the z-axis of the coordinate sys-

tems (r,0,4) and (r',&',¢') are on the same line. Then, (2.3.7) can be simplified as

00 \4 ! r/ 4
r"P (cosd) = (—1)””w — | i, ™YP #(cos@,)P* (cos®’), r' <r,. (2.4.1)
%2 M+, ) ° °

This equation can be normalized as

A N gy (V) o
(?) P,(cos®)=>_>" (-1) [ ] P *(cosd,)P*(cosd'). (2.4.2)

v=0 pu=-v (n) I(V + /Ll) l ro
Let’s denote the normalized left hand side of the (2.4.2) by

£(r,0) =(r?°j P (cosd),

and its normalized right hand side by

o0 Vv ' ! v
9(r,0)=>_> (=" M[r_] P “(cosd,)P*(cos®), r'<r, .

V=0 p=—v (MU + )

Consider Fig. 2 where the point P moves along a circle of radius r’'= constant. The nu-
merical values of the functions f and g are calculated at several discrete locations on this

circle. Theoretically, fand g should have the same results. In order to find numerical re-
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sults for g, the infinite series is truncated to a finite number of terms. Tables 1-6 show the

errors whenv is truncated to M.

A

Fig. 2: Point P move along a circle of radius a

Now consider r,=10cmand a=5cm, then r and ' are vary when P moves along the

surface of the circle. Ten discrete test locations are taken by varying 6’ from 0 to 180 de-

gree. In a first case, v is truncated to 30.

Table 1. Truncation errors of g for n=3, M =30, 6,=0, r'’/r,=05

Test No /r O[deg] | ¢Tdeg] | 9(r',0) f(r,0) Error [%]
1 0.6667 0.00 0 0.1975 0.1975 0.9116x10™
2 0.6740 5.98 18 0.1997 0.1997 -0.2124x10
3 0.6969 11.82 36 0.2067 0.2067 0.1697x10
4 0.7377 17.36 54 0.2197 0.2197 -0.1379x10
5 0.8009 22.39 72 0.2425 0.2425 0.1019x10®
6 0.8944 26.57 90 0.2862 0.2862 -0.0578x10
7 1.2289 29.81 126 0.7564 0.7564 0.0265x10
8 1.5059 26.27 144 2.3533 2.3533 -0.0268x10
9 1.8290 16.41 162 8.5908 8.5908 0.0161x10
10 2.0000 0.00 180 16.0000 | 16.0000 -0.0383x10
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By increasing the truncation of v up to the 50, the percentage errors can be reduced as
given in Table 2.

Table 2. Truncation errors of g for n=3, M =50, §,=0,r'/r,=0.5

Test No /T Oldeg] | O'[deq] | g(r'.0) f(r,0) Error [%]
1 0.6667 0.00 0 0.1975 0.1975 0.9116x10™®
2 0.6740 5.98 18 0.1997 0.1997 -0.2124x10™%
3 0.6969 11.82 36 0.2067 0.2067 0.1697x10™®
4 0.7377 17.36 54 0.2197 0.2197 -0.1379x10™%
5 0.8009 22.39 72 0.2425 0.2425 0.1019x10™®
6 0.8944 26.57 90 0.2862 0.2862 -0.0578x10™%
7 1.2289 29.81 126 0.7564 0.7564 0.0265x107%
8 1.5059 26.27 144 2.3533 2.3533 -0.0268x10°%
9 1.8290 16.41 162 8.5908 8.5908 0.0161x10™®
10 2.0000 0.00 180 | 16.0000 16.0000 -0.0383x10°%

In the third case, n (2.4.2) is increased to 10 and v is truncated to 50. The results are

given Table 3.

Table 3. Truncation errors of g for n=10, M =50,6,=0,r'/r, =0.5

TestNo | I,/r Oldeg] | O'Tdeg] | o(r'.0) f(r.0) Error [%]
1 0.6667 0.00 0 0.0116 0.0116 0.2169
2 0.6740 5.98 18 0.0094 0.0094 -0.0489
3 0.6969 11.82 36 0.0024 0.0024 0.1565
4 0.7377 17.36 54 -0.0112 -0.0112 0.0297
5 0.8009 22.39 72 -0.0342 -0.0342 -0.0081
6 0.8944 26.57 90 -0.0654 -0.0654 0.0030
7 1.2289 29.81 126 -0.1874 -0.1874 -0.0010
8 1.5059 26.27 144 -21.664 -21.664 0.0000
9 1.8290 16.41 162 -203.01 -203.01 0.0000
10 2.0000 0.00 180 2047.9 2048.0 0.0000

The Table 2 and Table 3 show that the percentage error increases with the increase of n,
if truncation is unchanged. Table 4 further emphasizes the fact that by increasing the

truncation, more accurate results can be obtained for higher values for n.



Table 4. Truncation errors of g for n=15, M =80, 6,=0,r'/r,=0.5

TestNo | I,/r O[deg] | OTdeg] | o(r.0) f(r,0) Error [%]
1 0.6667 0.00 0| 0.0015 0.0015 0.0022331110
2 0.6740 5.98 18 | 0.0008 0.0008 0.0006443268
3 0.6969 11.82 36 | -0.0010 -0.0010 -0.0004170036
4 0.7377 17.36 54 | -0.0021 -0.0021 -0.0001741779
5 0.8009 22.39 72 | 0.0048 0.0048 0.0000627303
6 0.8944 26.57 90 | 0.0505 0.0505 0.0000040776
7 1.2289 29.81 126 | 4.3182 4.3182 -0.0000000474
8 1.5059 26.27 144 | 212.69 212.69 -0.0000000035
9 1.8290 16.41 162 | -5266.2 5266.2 0.0000000003
10 2.0000 0.00 180 | 65536 65536 -0.0000000002
2.4.2  General Case

Fig. 3: Point P move along a sphere of radius a

Consider the situation where the azimuthal symmetry is not present in the system. Then f

and g should be taken as

f(r,0,¢)= (r?ojm P (cos &) exp(jmg) ,

g0, ¢) =3 3 (- NZMEVE R (LJ

(n—m)I(v+ ) 1,
P (cos 6,) P/ (cos &") exp[j(m — w) 4, 1 exp[jud'],

v=0 pu=-v

r<r.
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When point P moves along a sphere of radiusa as in Fig. 3, the numerical values of the

function f and g is calculated at several discrete locations, where n=10, m=-7, M =60,

r,=10cm, 6, =x/4, ¢ =nx/3, r'=a=5cm and ¢'=x/5. The real and imaginary parts

of f and g are given in Table 5 and Table 6, respectively.

Table 5. Truncation errors of the real part of g, when n=10, m=-7, M =60, 6, =x/4,

¢ =r/3, r'/r,=05and ¢'=r/5
Nl | n/r | Ordeg] | dldeg] | ¢'[deg) | Relg(r0'¢)) | Relf(r.0.4] | Error %]
1 0.7148 30.36 60.00 0 9.7852x10™" 9.7852x10™" 0.1018x10°
2 0.6865 35.72 55.76 18 2.3855x107" 2.3855x107" 0.0061x10°
3 0.6739 41.48 53.01 36 3.9777x10™" 3.9777x10™" 0.3498x10°
4 0.6760 47.41 51.31 54 5.9050x107" 5.9050x10" -0.2972x10°
5 0.6929 53.34 50.38 72 8.1792x10™" 8.1792x10™" 0.0633x10°°
6 0.7262 59.10 50.09 90 1.0020x10™ 1.0020x10™" -0.0317x10°
7 0.8584 69.22 51.31 126 -2.4397x10% | -2.4397x10* 0.0132x10°°
8 0.9724 72.89 53.01 144 -2.0286x10” | -2.0286x10* 0.0016x10°°
9 1.1344 74.77 55.76 162 -1.1559x10™ | -1.1559x10™ 0.0003x10°
10 1.3572 73.68 60.00 180 -4.4032x10” | -4.4032x10” 0.0000x10°°

Table 6. Truncation errors of the imaginary part of g, when n=10, m=-7, M =60, 6, =7z/4,
¢ =x/3, r'/r,=05 and ¢'=7/5

T,\‘f;t r,/r O[deg] | ¢[deg] | O'[deg] | Imlg(r',',¢)] Im[f(r, 0, ¢)] Error [%]
1 0.7148 30.36 |  60.00 0| -1.6931x10™ | -1.6931x10™ | 0.1018x10°
2 0.6865 35.72 | 55.76 18 | -1.3962x10™ | -1.3962x10™ | -0.2775x10°
3 0.6739 4148 | 53.01 36| -7.8050x10" | -7.8050x107%° | 0.3831x10°
4 0.6760 4741 | 51.31 54 |  8.4463x107 8.4463x10™ | -0.1152x1072
5 0.6929 53.34 | 50.38 72 1.0502x107" 1.0502x10™% | 0.7431x10°
6 0.7262 59.10 |  50.09 90 1.6552 %10 1.6552x10% | 0.2753x10°
7 0.8584 69.22 | 51.31 126 | -3.4896x10" | -3.4896x10™ | -0.2134x10°
8 0.9724 7289 | 53.01 144 | 3.9806x10™ 3.9806x10% | 0.7863x10°°
9 1.1344 7477 | 55.76 162 6.7657x10™ 6.7657x10% | 0.7353x10”
10 1.3572 73.68 |  60.00 180 7.6265x10°" 7.6265x10” | 0.1216x10”
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Chapter 3

Application of Translational Addition
Theorems to the Solution of Field

Problems with Axisymmetry

3.1 Azimuthally Symmetric Geometries

In the case of azimuthal symmetry, the solution of Laplace equation in spherical coordi-

nates considered in section 1.1 is obtained with m =0, as [5]

u(r,0,¢)= > [Ar"+B,r "IP,(cosd) . (3.1.1)
n=0

For regions extended to infinity, with u —0 for r -, we have

u(r, 6, 9) =iBnr‘(”*”Pn(cose). (3.1.2)
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3.2  Point Charge in the Presence of a Conduct-

ing Sphere

Y, d

Fig. 4: Conducting sphere in the vicinity of a point charge

Consider a metallic sphere of radius a and a point charge g at a distance d from its cen-
tre, as shown in Fig. 4. The sphere has a zero potential and the medium outside the sphere
is homogeneous of permittivity . The potential due to the presence of the sphere is ex-

panded in (r,8,4) coordinates as
@,(5.6,.4)=> B, 1, "R (cosq) , (3.2.1)
n=0

while the potential of the point charge in (r,,8,,4,) coordinates is

q K 4
D.(r,,0,,¢)= =—=Kr,", K=—. 3.2.2
2 (1,6, 4,) yr— ) - (3.2.2)
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@, is translated into the coordinate system (r,,4,,¢) and the boundary condition is to be

2

imposed to the total potential at the surface of the sphere. Since the points on the sphere

have r, =a, we use equation (2.3.7), corresponding to r=r,, r'=r,, r,=d and r'<r,.

Due to the azimuthal symmetry we can use the simplified version of (2.3.7) given in

(2.4.1). For this particular translation of the ®,, n=0, §,=x, r,=d and (2.4.1) yields

= i Z (1) [%) % P (cos ) P*(cos 6,). (3.2.3)

v=0 pu=-v
Since P#(+1)=0, when x =0, the (3.23) can be written in simplified from as

Lo ()1
rzl:Z; (Elj S R(cosd), (3.2.4)

where v has been replaced by n. Now we get the expression for the potential @, trans-

lated in (r,8,4) in the form

= (r\'1
OO(1,6,4) =KD &j EPn(cosel). (3.2.5)
n=0

Note that, since r, <d, the series in this expression is always convergent for all r, values.

The total potential ®'at any point where a<r, <d is, thus,

D'(r, 6, ) =D,(r, 6, 4) + P (5,6, 4) . (3.2.6)
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This expression only contains the coordinates in the sphere system and, therefore, the

boundary condition at the sphere surface can easily be imposed to determine all the con-

stants of integration B,. At r,=a, ®'(a,4,4)=0. Thus, we have

(Dl(a! 911 ¢1) + (I)(Zl) (al 91’ ¢1) = 0 1
ie.,

o0 0 nl
Ba™p (cos®)+KS [ 2| 2P (cosa =0,
>8R osa)+ k3 2] 2pcost)

0

Ba P (cosd)=-KS (2] 2P (coso ,
>8R e0s0) =K Y[ 4] LPcose)

n=0

which yields

Ba=—k|2| L
d)d

1
_ (2n+l)
B, =- Tz a
d

Substituting B, and K in (3.2.6) yields

n=0 1

2n+1
(1,0, _%Z [ [FJ }Pﬂ(cos@l), asrn<d.

Similarly, using (2.3.10) , we have

d"
A

5 (n, 6, 4)=Kr," =

P (cosé), r>d

Ms

n+l

|
o

n

and the total potential

®'(r., 6, _%2 { (_jm}Pn(cosHl) ,  r>d.

(3.2.7)

(3.2.8)

(3.2.9)
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On the other hand, the potential solution for this elementary problem can be obtained by

using the image method. The image charge g’ with respect to the grounded sphere is

placed inside the sphere, as shown in Fig. 5, with

£
X
®=0 h ,
X c=2
I3 d’
q'=-24q
a 2 d_
P4 'q, Z Lo, :\/rl2 +c” —2rccosd,,
c r2=\/r12+d2—2r1dc0501.
Y, d

Fig. 5: Image of a point charge with respect to a grounded sphere

The total potential ®; at any point outside the sphere, can be written as
@ (r,0,4)= g +q_"
n (0.6 4) Arer,  Arer,

i.e.,

q):m ('1’911¢1) = d

[ ! a (3.2.10)
dre

J(r? +d? —2rd cos4) - dy/(r2 +¢* —2rccosg) '

It should be noticed that, using the expansion [7]

1 1& ¢
J(F7 +¢? —2rccos 6) :FZFMP"(COS@)
1 1 1 10n=07

o0 2 n
=§:£EJ-EH@%@), r>a (3.2.11)
olnd ) o
and
1 LS
= —P (cosd), a<r<d, (3.2.12)
J(57 +d? —2rd cos 6)) nZ:O:d ' ' '
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= = O:ﬂ P.(cosd), r>d, (3.2.13)
\/(rf +d*-2rdcosd) "N

yields the same expansion (3.2.8) and (3.2.9) for the total potential in terms of Legendre

polynomials.

3.2.1  Calculation of the Total Charge on the Sphere

The total charge on the sphere can be found by integrating the charge density over the

surface of the sphere, i.e.,

Q' =Ipsds.

The surface charge density on the conducting sphere can be obtained by

o'
or,

ps(61,4,) =—¢

rn=a
Due to the azimuthal symmetry, the surface charge density does not depend on ¢. There-

fore p, for this case can be expressed as

p.(6)= Z[(Z”;i)la" }P (c0s).

The total charge can be calculated as

Q' =2za’ j 2.(6)sin6,do,
g (3.2.14)
=-a %Z[%}I P (cos8,)sin 6,d6.

The integral of the Legendre polynomials is [see Appendix B]
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2, n=0,

T 1
P (cos@)sin@dé = | P (x)dx = with x =cos é.. 3.2.15
J Po(cosg)sinadd, = [ 7, (9 {O, he0 1 (3.2.15)
Thus,
. ga’ a
= aZ__ = ——
Q d

This is just the image charge g’ given by image method.

3.3  Two Sphere System

Y>
Fig. 6: System of two conducting spheres

Consider now two metallic spheres of radii a, and a, with a distance d between their

centers, as shown in Fig. 6. The spheres are kept at the potentials V, and V,, respectively.

The medium outside the spheres is homogeneous of permittivity ¢ .

The potential produced by the each of the two spheres is first expressed in the coordinate

system attached to the respective sphere as [see (3.1.2)]

O,(r,6,4)=) AL "R (cosq).  rza, (331
n=0

D,(1,,0,,4,) =Y B, "P (c0s,), 1,>a,. (3.3.2)
m=0
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Then, @, is translated into the coordinate system (r,8,4). To impose boundary condi-

tion at r, =a , we have to use (2.3.7) correspondingto r=r,, r'=r,=a, r,=d and 6, =r.

Thus,

—(m+ N C +v m+v+ ! h —(m+: L
r 1>pm(cosg2):Z(;Z(_1)ﬂ W(j) d-™YPp,“ (cos r)P*(cos b,) .

Since P % (+1) =0 for all =0, we obtain

R 0s0) =3 (R 0 R s,

The potential ®Y translated in coordinates (r,,4,,4) in the form

(1,6, ¢,) 22 ((2;(:;'( j d™YP (cos b)),

where v has been replaced by n.

The total potential at P is

' (1,0, ) =D,(r, 6, ¢) + DY (1,6, 4)

=S AL P c0sg) + 3 Y (1B, (IED)! (%) d-™IP (cos ).
n=0

m=0 n=0 (m) l(n)l

Now let’s apply boundary condition at r, =a,, i.e., ®'(a,6,4)=V, . We get

V, = i Aa "P (cosd,) + ii ((m)T(n))l( j d™P (cosd,),

> AR R E0s0) <V~ 3 Y (e, (e (& j d-"P (c08).

m=0 n=0 (m) '(n)|

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

Applying the orthogonality properties of the Legendre polynomials [Appendix B] yields
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| {Vl -3 e, DL & T g o <x1)] P, (X, (637)
A)+Z( )"B, dmﬂ— 2, n=0, (3.3.8)

2n+1

A+ e, MEMA o 13 (3.3.9)

o (m)!(n)td™m

In the same way, ®, is translated into the coordinate system (r,,6,,4,) and the boundary

condition is applied at the surface of sphere 2 to obtain the following equations:

B, +Z( DA, d”*l V,a,, m=0, (3.3.10)

(m+n)! a2

(m) |(n) | d m+n+1

B, +i(-1)m/s,1 =0, m=123"--. (3.3.11)

Equations (3.3.8) to (3.3.11) constitute an infinite set of liner algebraic equations and that
IS to be solved simultaneously in order to find the unknown constants of integrations. To
obtain numerical results, the infinite series must be truncated to a finite number of terms

n=m=M.

Let’s denote

2n+l

(m+n)! a
(m)Y(n)tdmm

&(n,m) ="

2m+1

n (M+n)! a,
(m)Y(n)rdmn

& (m,n)=(-1)
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The truncated system can be written in a matrix form as

1 0 0 £(00) £(09
0 1 . L EL0) EWLD
0 0 : : :
: 0 : :
o - L a0 &M,
£00 £01 - £OM) 1 0
5@0)  &£@1 &AL M) 0 1
: : : 0 0
 &M0) MDY e S (MM) 0

Once the constants of integrations A, A ...... A, and B,

SOM) AT [Via
a@LM) |1 A 0

&M, M) A, 0

0 B, V,a,
B, 0
1 B 0

ST B,, are found, the total

potential ®'at any point outside the spheres (r,>a,, r,>a,) can be computed as

M M
(5.0, 411,.6,.4,)~ > AL VP (cosg)+ > B,r, "P, (cosd,). (3.3.12)
n=0 m=0
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3.3.1 Solution to the Two Sphere Problem in Bispherical Coordi-

nates

sin o cos ¢
X X=C—0n Y
cosh f—cosa
. y=c_Sinasing
a = const P(a'ﬂ’(,))"/ ﬁzcon?'F cosh f—cos o
/[ cosh B—cosa
a=0

Fig. 7: Two spheres in bispherical coordinate system

On the other hand, in the case of two spheres, an exact analytical solution can be found
by using the bispherical coordinate system [13]. For v, =-V, and Vv, =V,, for example, (see
Fig.7), the total potential outside the spheres is obtained in the bispherical coordinates

(o, B,¢) defined in Fig.7 as [6]

(Déi (a,B,¢)= \/§VO (cosh g —cosh a)llz

= | (cosh[(n+1/2),]e ™" —cosh[(n+1/2)3,]e ™+2) o (3.3.13)
2 Sinh[(n+12)(7, - A)] (05

where g =sinh™(—c/a,), p,=sinh*(c/a,), \/cz +a} +\,/c2 +a,> =d, ¢ being the semi

focal distance (as shown in Fig. 7). The potential at various points is computed by using
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(3.3.12) and the numerical results are compared with those given by (3.3.13) as shown in

Table 7 & 8.

Table 7. Accuracy of the numerical results obtained for the potential ®'in (3.3.12) truncated to
M =20 with respect to values given by (3.3.13) when v, =-1v, V, =1v, a, =3cm, a, =5cm,

d=10cm

Test | w.r.tthe coordinates | w.r.tthe coordinates . . 0
Point | system at Sphere-1 | systemat Sphere2 | P« [Vl | @y [V] | Error [%]
rfem] | 6 [deg] r,[cm] | &,[deg]

1 4.2001 0.00 5.7999 180.00 0.238961 | 0.240836 -0.778497
2 4.2065 3.15 5.8045 177.71 0.239190 | 0.240981 -0.743204
3 4.2258 6.33 5.8186 175.41 0.239866 | 0.241418 -0.642602
4 4.2590 9.54 5.8427 173.06 0.240952 | 0.242143 -0.491836
5 4.3073 12.81 5.8780 170.65 0.242386 | 0.243149 -0.313858
6 4.3730 16.17 5.9263 168.15 0.244086 | 0.244419 -0.135980
7 5.4301 39.33 6.7442 149.31 0.251773 | 0.251637 0.054054
8 5.8318 43.93 7.0716 145.10 0.249734 | 0.249698 0.014518
9 |6.3758 48.79 | 7.5265 14041 | 0.244761 | 0.244765 | -0.001521
10 7.1360 53.94 8.1805 135.15 0.235300 | 0.235302 -0.000893

Table 8. Accuracy of the numerical results obtained for the potential ®'in (3.3.12) truncated to
M =40 with respect to values given by (3.3.13) when v, =-1Vv, Vv, =1v, a =3cm, a, =5cm,

d =10cm

Test | w.r.tthe coordinates sys- | w.r.t the coordinates ) )
Point tem at Sphere-1 system at Sphere-2 @, [V] @, [V] Error [%]
nfem] | 6fdeg] | r[em] | 6;[deg]

1 |4.2001 0.00 5.7999 180.00 0.240906 | 0.240836 0.029052
2 4.2065 3.15 5.8045 177.71 0.241052 | 0.240981 0.029391
3 | 4.2258 6.33 5.8186 175.41 0.241491 | 0.241418 0.030181
4 | 4.2590 9.54 5.8427 173.06 0.242218 | 0.242143 0.030846
5 43073 12.81 5.8780 170.65 0.243224 | 0.243149 0.030745
6 |4.3730 16.17 5.9263 168.15 0.244491 | 0.244419 0.029488
7 154301 39.33 6.7442 149.31 0.251670 | 0.251637 0.013239
8 |5.8318 43.93 7.0716 145.10 0.249725 | 0.249698 0.010839
9 |6.3758 48.79 7.5265 140.41 0.244763 | 0.244765 | -0.001521
10 | 7.1360 53.94 8.1805 135.15 0.235301 | 0.235302 | -0.000893
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3.3.2  Total Charge on the Spheres and Capacitances

As shown in section 3.2.1, the total charge on sphere 1 can be found as

T

Q =] p,ds, =272 [ p, (6)sin6,de,,
0

0

t
where ps,l(el)z—gag ,
Ml =a,
ie.,
- o 2\ & no (M+n)! nal™®
p51 (81):_8|:;_A1 (n+1)a1( Z)H(Cosel)_‘_;;(_l) Bm (m)|(n)| d(m+n+l) Pn(cosel) .

Therefore the total charged becomes

C e . S, amg (MDY na™? :
Q = 2;;5![;& (n+1)a,"P,(cos b)) —mZ:;nZ:(;(—l) B, ()1 4O P, (cos @)}sm 6,d6, -
Using the property (B.2) of Legendre polynomials give [see Appendix B] yields

Q =4meh, . (3.3.14)

Similarly the charge on sphere 2 is obtained as

Q. =4zB,. (3.3.15)
The self and mutual capacitances of system of the conductors are defined by [7]

Q =C,V, +C,V,, (3.3.16)
Q =C,V, +C,V,, (3.3.17)
where c¢,=c,,. The ¢, and c,, are called the coefficients of capacitance or self capaci-
tance, c,, and c,, are called the coefficients of induction or the mutual capacitance. If we

know the potentials and the total charges of the each sphere, then we can calculate the

values of capacitances by using (3.3.16) and (3.3.17).
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Normally capacitances are computed by making the potential of one sphere at a time is

non zero and making potential of all other spheres are zero. Then we can find the capaci-

tances as
. _Q Ameh . _Q 4, . 9 47eB,
117\, =7 ! 217\, REEVEE J 2 =\, DRV
V1 V,=0 Vl IV, =0 V2 V=0 V2 V=0 V2 V=0 VZ V=0

In Table 9 the results for a two spheres system are given where a, =3cm, a, =5cmand

d =10cm. For the comparison, the capacitance values of the same system are calculated

by using the method of successive images, as presented in [8], where

¢, =4re aa,sinh ai“az sinh(ne) +a, sin[(n —1)a]|]_1, (3.3.18)
a, . e -1
¢, =C,, = —4ne aiTsmh a%lﬂsmh(na)” , (3.3.19)
(d* -a’ -a7)

with cosh(a) = 24
2

Table 9. Comparison of numerical results obtained for self and mutual capacitances by transla-
tional addition method (with M =20) and method of successive images (with n=300), when
a =3cm, a,=5cmand d =10cm

Symbols of Capacitance [pF] Capacitance [pF] Error [%]
Coefficients (by translational (by method of suc-
method) cessive images)
Cy 4.2089 4.2089 -1.5247x10™
Cp -2.1650 -2.1650 -3.4058x107”
Cy 6.7559 6.7559 -1.3219x10”
Cy -2.1650 -2.1650 -3.4058x107”
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3.4 Two Sphere System in External Electric

Field

The two spheres system in section 3.3 is placed in an external electric field oriented along
the common axis of symmetry of the spheres E=E,? (see Fig.8). The potential due to the
external field in the coordinate system of each is, respectively,

@) =-E,z, =—E,,R(cosb)+C,, (3.4.1)

o, =-E,z, =—-E,r,P,(cosg,)+C,, (3.4.2)

where C;and C, are constants of reference. Let’s consider the potential produced by ex-
ternal field at z, =0 is zero, then C, =0. Thus (3.4.1) and (3.4.2) become

@) =-E,z, =—-E,r,R,(cosd), (3.4.3)

®, =-E,r,P,(cosd,)-E,d. (3.4.4)

Y,

Fig. 8: System of two conducting spheres placed in
initially uniform electric field
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The Laplacian potential outside the spheres due to the presence of each of them is ex-
pressed by (3.3.1) and (3.3.2). @, is translated into the coordinate system (r,6,,4), then

the total potential at P becomes

D' =0 + D, + DY (3.4.5)

D'(r,0,¢4) =D (r,,6,8)+D,(r,0,4) + PP (r,6,4)

- (m+n)!(rY
-E rlF’l(COSH)—i-ZAJ‘ P(cose)+ZZ( )"B (d]

=0 1= " (m)}(n)!

-d"™YP (cosd).
As before, we can apply the boundary condition at surface of sphere 1 at r, =a, and then

use orthogonality properties of the Legendre polynomials to obtain

m=0 n=0 (m)l(n)'

pa s - 1D I{V+Ea1P(X1) 33 (e, 2 jd(mmP(xl)}P(xl)dxl,

(3.4.6)

A+ i (-)"B,ad ™ =V,a, n=0, (3.4.7)

Al+2( "B, (m+la‘d™? =Ea’, n=1, (3.4.8)
0 ~ m (m+n)| 2n+1 B B

AHH;( "B " m )!(n)!d”*”‘*l_o’ n=1,23,.... (3.4.9)

In the same way, @, is translated into the coordinate system (r,,4,,4,) and the boundary

condition is applied at the surface of sphere 2 to obtain the following equations:

0

B+ > (-)"A —2 =V, +Ead, m=0, (3.4.10)

n+l
n=0 d

B, +Z( DA (n+l)ald ™ =Ea, m=1, (3.4.11)
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2m+1

(m+n)! a,

=0, m=12,3,.... (3.4.12)
()t d"

B+Z()A1

Unknown constants of integrations are to be found by solving equations (3.4.7) to (3.4.12)
simultaneously after infinite series are truncated to a finite number of terms n=m=M.
For the comparison, the potential values of the same system is calculated by using the

bispherical coordinates system, as presented in [15], where

@}, (a, B, $) = (cosh B —cosh a)l’ZZ[( A"’ 1 B e 7P (cos a)} ~-E,z, (3.4.13)
n=0

V2] cE, (2n +1)[e ™% +1] + [V,e @ —V,]
0 2 1
e(zn’fl)(ﬁz—ﬂz) -1 !

with A =

J2[CE,(2n +[e @™ +1] + [V,e ¢ v]]
B = @B 5) _q

The symbols in (3.4.13) are same as the symbols in (3.3.13) for the bispherical coordinates

system and external electric field is parallel to the z-axis as in Fig. 8.

Table 10. Accuracy of numerical results obtained for the potential ®'in (3.4.5) after truncated to
M =20 with respect to values given by (3.4.13) when V,=-1V, V,=1V, E,=10V/m,

a =3cm, a,=5cm, d =10cm

Test w.r.t the coordinates w.r.t the coordinates . .
Point system at Sphere-1 system at Sphere-2 @, [V] @, [V] | Error [%]
nfem] | Gf[deg] | rlem] | 6;[deg]

1 |4.2001 0.00 5.7999 180.00 0.247870 | 0.247883 | -0.005241
2 | 4.2065 3.15 5.8045 177.71 0.248217 | 0.248229 | -0.004652
3 | 4.2258 6.33 5.8186 175.41 0.249271 | 0.249279 | -0.003136
4 |4.2590 9.54 5.8427 173.06 0.251074 | 0.251077 | -0.001314
5 43073 12.81 5.8780 170.65 0.253696 | 0.253695 0.000127
6 |43730 16.17 5.9263 168.15 0.257231 | 0.257229 0.000765
7 5.4301 39.33 6.7442 149.31 0.302689 | 0.302689 0.000202
8 5.8318 43.93 7.0716 145.10 0.312997 | 0.312996 0.000349
9 6.3758 48.79 7.5265 140.41 0.321583 | 0.321582 0.000426
10 | 7.1360 53.94 8.1805 135.15 0.235300 | 0.235302 | -0.000893
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3.5 Three Sphere System

dys
Fig. 9: System of three conducting spheres

Consider three metallic spheres of radii a,,a, and a, with the separation distances be-
tween their centers, as shown in Fig. 9. The spheres are kept at the potentialsv,, Vv, and
V, respectively. The medium outside the spheres is homogeneous of permittivity ¢ .

The potential produce by the each of three spheres is first expressed in coordinate system

attached to the respective sphere as

O,(r.0,4)=> AL P (c0sq), r>a, (3.5.1)
n=0
D,(r,,0,,4,) =D B, r, P (c0sh,), 1,>a,, (3.5.2)
m=0
®,(r,, 0, ¢,)=> Cr, “"R(c0sh,), r,>a,. (3.5.3)
1=0

As already done in the section 3.3 for two spheres, the required coupled set of linier alge-
braic equations for three sphere case can be written directly by looking at (3.3.8), (3.3.9),

(3.3.10) and (3.3.11) as
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A]+Z( "B, dm+1+2( 1)'C, d'“ Va,, n=0, (3.5.4)
Aﬁg(—l)mBm% da;“l Z:: E:)J!r(”))'!d;i:o, n=123.., (35.5)
BﬁgAdlﬂ;ﬁ;( n'c =% d.ﬂ =V,a,, m=0, (3.5.6)
B, +(-1)" ZAM E:)T(’r‘:;'d:mll 2 ((:)Jlr(rr:))'ldgzi —0, m=123..., (35.7)
CwﬂZ:‘A d?;ﬁgBm%: 48, , | =0, (3.5.8)
C +(- )Z A E“)T('I))'d:: a )Z Em)T(:))'ld";jl ~0,  1=123... (35.9)

Equations (3.5.4) to (3.5.9), constitute an infinite set of liner algebraic equations and that
IS to be solved simultaneously in order to find the unknown constants of integrations. To
obtain numerical results, the infinite series must be truncated to finite number of terms

n=m=1=M . Then the total charge on each sphere are found as

=4zeh,, Q =4mB,, Q,=4zC,.

For this three spheres system the self and mutual capacitances are can be defied as

Qlt =C,V, +C,V, +C,Vs,

Q; =CyV, +C,V, +CpiVs,

Q; =CyV; +C3,V, +CyVs.

Numerical results for a three spheres system are given where a =3cm, a,=5cm,

a,=7cm, d, =10cm, d, =25cm, d,, =15cm and M =25.
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Table 11. Numerical results obtained for capacitances, when a =3cm, a,=5cm,
a=7cm, d,=10cm, d,=25cm, d,,=15cm

g;;fkf):;'sents Capacitance [pF]
1 ]c, 4.2261
2 | ¢,=Cy -2.0367
3 | cy=Cq -4.0188
4 ¢, 8.0936
5 | cu=C,y -3.2090
6 | c, 9.6151

Since the solution for three sphere system is not found in literature the method is verified

indirectly by taking the limit a, — 0 where capacitances values should approach to the

values obtained in two spheres case.

When a, -0

c, >4.2089pF, c,, —>6.7559pF, c, —>-2.1650pF.

3.5.1 Three Spheres in External Electric Field
Consider the three sphere system in Fig. 9 is placed in an external electric field oriented
along the common axis of symmetry of the spheres E=E,Z and the potentials on the sur-

faces of spheres are unknown. But the total charge on each of spheres are considered as

zero, i.e., Q =Q,=Q;=0.

As before the Laplacian potentials can be expressed by (3.5.1)-(3.5.3) and are translated

into the coordinate system (r,,4,,4) as
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(Dt(r11011¢1) zq):x(qvgl’¢1)+q)1(qvg1’¢1) +d>‘21)(r1,91,¢1)+(D§’(r,01,¢1)

Pl(cose)+ZAJ ‘”“’P(cos¢9)+ii ((nT)T(:))'( )

2z I
-le’(”‘”’Pn(cosHl)+ZZ(—1)'C, (I+n).[ h ] d,, ""YP (cosd,).

L M dy,

The total charge on the sphere 1 can be found as

v oD
Ql_ gqasl or. r_aldsl
f N 2 & (n+1)
_ii(_l) ((:)T(n))ll r;al(ull) n(0086’)}sm 6,d6,
=4nsh, .

The boundary condition at sphere 1, i.e., Q =0, yield A =0. Then, using the orthogonal-

ity properties of the Legendre polynomials we can obtain

Al+2( "B (m+1)a1d21’(m*2)+2( 1)'C,(I+1)a’d, P =Ea}, n=1, (3.5.10)

2n+1

O (m+n)! (I+n)!
A+;(DB()KydWM Z() UN)MJM

2n+1

=0, n=23.... (3.5.11)

Similarly by applying the boundary condition at the surface of sphere 2 and 3, we can

show B, =C, =0 and can obtain

B, - i A (n+1)ad, ™ + i:(—l)I C (1+1a%d,, " =E,a’, m=1, (3.5.12)
B +(-1)" ZAh (n+m)! a,™" +3 (g, drm)! A" o m=23 (3.5.13)
(n)'(m)' d n+m+1 — (I)I(m)l d32I+m+l PRy =
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C, qu(n +1)aid,, "2 - ZB (m+1aid,, ™ =E,al, =1,

C +(-1 )ZAUHD R )Z Mt & oy 53

OISR

(m) |(|)| d m+|+l

VZ,Q;=O Vs’Q;ZO
J l

},,, ,,,,,
~ gt ~ gt
Fig. 10: System of three conducting spheres placed in
uniform electric field

(3.5.14)

(3.5.15)

Numerical results are generated for the three spheres system in Fig.10 with

a, =a,=a,=5cm, E,=1V/m and for the various g/a, ratios, the electric filed at points

A, B and C are calculated and given in Table 12 with 5 digits accuracy.

Table 12. . Relative values of field components at selected points on the sphere in Fig. 10 for

various gaps g/a, when E; =E X(y =0)

Point ) 9/a, 1.00 0.50 0.10 0.05 0.02 0.01 0.005
Fields

E,/E, 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

A E,/E, 3.1513 3.2701 | 3.5946 | 3.7270 | 3.8832 | 3.9862 | 4.0771

E,/E, 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

B E,/E, 3.8067 5.2258 | 16.111 | 28.391 | 62.076 | 113.92 | 210.91

E,/E, 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000

c E,/E, 3.8549 5.2568 | 16.111 | 28.391 | 62.076 | 113.92 | 210.91
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Chapter 4

Application of Translational Addition
Theorems to the Solution of Field

Problems with Arbitrarily Located

Spheres

4.1  General Solution for Spherical Bodies

In previous chapter, the applications of transitional additional theorems to solve azi-
muthal symmetric electrostatic problems are discussed. In this section we are going to ex-
tend the applications of those theorems to solve problems which do not have azimuthal
symmetry. In presence of non azimuthal symmetric geometries the solution of Laplace

equation in spherical coordinates considered in (1.1.2) is obtained as [5]

u(r,0,4) = i i [A,r"+B, . r™P"(cosd) exp(jmg) (4.1.1)

n=0 m=-n
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For regions extended to infinity, with u—0 for r -, we have

u(r,8,¢) = i Zn: B,.r "P"(cos #) exp(jmg) (4.1.2)

n=0 m=-n

4,2  Two Spheres at Arbitrary Locations

Consider the two spheres case discussed in section 3.3 is changed to a non azimuthal
symmetry problem by moving the center of the sphere 2 away from z-axis of sphere 1 as
given in Fig. 11.

Let’s take the potential produced by two spheres at P as

O,(5.6,4)=Y. > AL "R (cos6,) exp(jmg), ,>a, (4.2.1)
n=0 m=-n
o q
@,(r,,0,,4,) = z Z B, PP (cos6,)exp(jpg,), T, >a,. (4.2.2)
4=0 p=—q

Top View

Fig. 11: Two conducting spheres with arbitrary translation
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The ®, can be translated into the coordinate system (r,,8,,¢) and then the total potential
when d,, >r, >a, can be denoted as

© q

(5,6, 4) =3 D Al "R (cosB)exp(imd) + 3 D1 > > B,
n=0 m=-n q=0 p=—q v=0 u=-v (4'2'3)

: 2(1)(p’ qlwv| d21' 0,1, ¢21)r1vpvﬂ (cos ‘91) exp(j,u¢1) )

where

L~ @=-p+v+)! 1 _ .
2(1) (p.qlwv|d,, 0,,6,)=(-D" ((;] _ E) I(v _,_IZ;' et Pvgqﬂ (cos 6,,) exp[i(p — 1), ] -
: =Uy

Boundary conditions on the surface of sphere 1, i.e,
q)t(rl’gl’¢1) :V1

5 n e e
Vi=2 D Anay "R (cosg)exp(imd) + - > > )" Byay

)
n=0 m=-n q=0 p=—-q v=0 u=-v

B2 (.0l v | dyy, 0,4, R/ (COS6,) exp(juegs)

i Zn: A a "PP"(cos,)exp(jmg) =V, — i > i ZV: B,a,"

n=0 m=-n q=0 p=—q v=0 u=-v (4.2.4)
B (Al v | dyy, 0y, 6,) P (COS 0,) eXp(jpidh) -

Now (4.2.4) can be expressed by using spherical harmonics as [see Appendix C]

) n . Ynm 01, ] 0 q ) v
Z Z Ahmaf(m) 6. 4) =Vi _Z Z Z qu

n=0 m=-n (2n +1) (n - m)' 4=0 p=-q v=0 u=—v
4z (n+m)! 2
SR ACH) ”
B (Pl v 1, 0y, 6)3, (2v+(1) (\quﬂ)"
\/ 4z (V+u)!

Spherical harmonics expansion [Appendix C] yield
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\

~(n+1)
S =V (@ )T O >3,

4=0 p=—q v=0 pu=-v

4z (n+m)!

(4.2.6)
(1)
(P q| v |dy, 0, 85,) (2V+1) ( TR J.Y”(01’¢1)[Y (01’¢1)] dQ
Az (V+ p)!
Above integration of (4.2.6) can be solved as
© 9
+ Z Z qu 2(1)(pv a/0,0(d,,0,,¢,)a =Via,, n=0, (4.2.7)
q=0 p=—q
o q
An+ D D B.AY (p.almn|d,,6,,4,)a" =0, n=123,.., (4.2.8)
9=0 p=-q
Same way by imposing boundary condition at sphere 2 we can obtained
BOO+ZZ A, B%(mn|0,0|d,,6,.4,)a =V,a,, q=0, (4.2.9)
n=0 m=-n
By + D > AnB (MM p,aldyy, 6, ,)8,% 7 =0, 4=1,23,..., (42.10)

n=0 m=-n

Above (4.2.7)-(4.2.10) are coupled set of linier algebraic equations and we can solve it

numerically as before by taking n=q=M.

Exact numerical results are generated for the case in Fig. 11, where a, =3cm, a, =5cm,
d=10cm, 6,=7r/3, 6,=2x/3, ¢,=x/3, ¢, =4r/3. The potentials of the spheres are
taken as V, =-1vand V, =1V. The infinite series are truncated as M =10. Six arbitrary
points P,...P, are selected along the line between the centers of spheres. The potentials at

these points are first calculated by using translational approach discussed above. The po-
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tential at the very same points were also calculated by using the bispherical coordinates

(see Section 3.31).
According to the Fig. 11 and Fig. 12, the electrostatic potential at P, and P/ should be
identical as long as distance between spheres and radii are same and P, and P’ are located

same distance from the centers of spheres. The potentials values at the points P,P,...P,

are tabulated in Table 13.

Fig. 12: Two conducting spheres at arbitrary position

Table 13. Comparison between numerical results obtained for potential by translational method (
@ ) and bispherical method (@), when V,=-1V, V, =1V, a =3cm, a,=5cm, d=10cm,
6,=r/3, 6,=27/3,¢4,=r/3, ¢, =47/3 and M =10 for translational method

w.r.t the coordinate sys-
Test tem of Sphere-1 . . Error
Point | . o, g | WM | PulVl) g
[cm] [rad] | [rad]
P1 3.2113 | /3 /3 -0.7368 -0.7368 -0.0043
P2 3.6199 | n/3 /3 -0.3001 -0.3000 0.0234
P3 42001 | w/3 /3 0.2405 0.2408 -0.1491
P4 43469 | /3 /3 0.3731 0.3736 -0.1370
P5 17484 | n/3 /3 0.6290 0.6290 -0.0040
P6 45387 | 2m/3 4 /3 -0.5526 -0.5526 -0.0000
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4.2.1 Total Charge on the Spheres and Capacitances

P.(a,0,¢) = 8[2 > A, @ 7R Cosg)exp(ing) -1 > > > B,

n=0 m=-n q=0 p=-q v=0 p=-v

BP(p,alm,n|d,,, 6,,, $,)Va" P (cos6) exp(jud,) |,

Q! =27 [Z Ao+ma; "R (cos8) - > > Bva  57(0,q10,v|dy, 0, 0)
o Ln=0

q=0 v=0

-P(cos 4,) ]sin(6,)dé, ,

Q =4reh,. (4.2.11)
Same way the total charge on sphere 2 can be found as

Q, =47eBy, . (4.2.12)

4,3  Three Spheres at Arbitrary Locations

Consider three metallic spheres with radii a,,a, and a, with the separation distances are
d,, d, and d,, have been kept at potentials V,, Vv, and V, as in Fig. 13. The medium out-

side the spheres is homogeneous of permittivity ¢ .

Y1

Fig.13: Three conducting spheres in the proximity of each other
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The Laplacian potential outside the spheres due to the presence of each of them is first

expressed in the spherical coordinate system attached to the respective sphere in the form

o N

D,(0,6,6)=D > Al IR (cos6) exp(jmig), h>a, (43.1)
m=0m=-n

D,(1,.6,.4,) Z}E}AM , IR (cos 60,) exp(jm,g,), r,>a, (43.2)
Ny =0 my=—ny

D, 0, ) =D D At R (cos 6,) exp(jmy,), r,>a, (4.3.3)
ng=0 mg=—ng

Now without starting from beginning we can write required equation by looking at (4.2.7)

- (4.2.10) as

'%01"'2 Z Afzmz (1)(m2-n |00|d211 21’¢21)a1+z Z A13m3 (434)
Ny, =0 my=—n, n3=0 mg=—ng tdl

3(1) (m31 n, | 0,0 | dSl’ ‘9311 ¢31)a1 :V1a’ n = 0,

0 ny © N3
A];lml_{_z Z Aﬁzzmz (l)(mZ’n |m1’n |d21’021’¢21) 2“1+1+z Z Awsgmg,

N, =0 my=—n, =0 my=-ng (435)
O (m,, 0 m,n, |, 60,.4,)a =0, n,=123,...,

o m © n3
A)ZO—FZ Z Alhml 1(2)(m1’n1|0’O|d12’912’¢12)az+Z z A\?gmg

my =0 my=—ny M3=0 my=ng (4.3.6)
352)(m3'n3 |0,0] d32' 32!¢3z)a =V,a,, n,=0,

o M
A?zmz +Z z Alhml (2)(m1’n |m2’n |d12’912’¢12)a2n2+1+z Z A“smS (437)

=0 my=-n Ng=0 mg=—ng
2
3(2)(m3'n3|n2'm2 |d32' 32’¢32)a = =0, n, =123,...,

A?O‘FZOC: Z A:ml (3)(m11n 10,0|d,, 13’¢13)a3+z Z A‘Zmz (4.3.8)

=0 my=—ny Ny =0 my=—ny

2(3)(m21n2 |010|d231 23’¢23)as n, =0,
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L]

A+ 20 A (Mun imy,ny [ dyy, O, )™ + D D0 AL
M =0 my=—ny ny =0 my=—n, (439)

B2 (m,,n, | n,m|d,,,0,,,4,)a%" =0, n,=123,....

where g is defined as

w(m=n+v+)! 1 _— .
BY(m,,n, | wv|d,,6,.4,)=(-1)" ((mz—nz)'(v+i3l s P (cos 6,,) exp[i(m, — 1)¢,,] -
2 2/ = My

Above (4.3.4)-(4.3.9) are a linearly coupled set of equations and we can solve it numeri-

cally by truncatingn, =n,=n,=M.

The total charge on each sphere can be found as
Q =4rehA,, Q, =4rcA, Q, =4rc A,
and the capacitances can be defined as before i.e. for instance

dre A,
C, = T

1 V=0
V=0

Table 14. Numerical results obtained for capacitances, when 6,=0, 6, =7, ¢,=0, ¢, =0,

‘913:7[/3’ 931:47[/31 ¢33=0’ ¢031=7Z’ 923:2”/3’ 932:57z/31 ¢23:0’ ¢32:7Z’ a1=3cm,
a,=5cm, a,=4cm, d,=d,=d,, =10cmand M =10

Parameter Capacitance [pF]
1 |, 4.4710
2 Cyy =Cp -1.7474
3 Cy =Cpg -1.0902
4 C,y 8.4680
5 Csp =Cys -3.0661
6 Cyy 6.6793




48

Chapter 5

Application of Translational Addition
Theorems to the Solution of Magnetic

Field Problems

5.1  Magnetic Scalar Potential

The magnetic scalar potential @ is defined in a region where J =0 and satisfies Laplace
equation just as electrostatic potentials. Hence,

Vo =0, (J=0),

and magnetic scalar potentials is related to magnetic field intensity H according to

H=-Vo,.
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5.2  Two Perfect Conductor Spheres in Uniform

Magnetic Field

-, \

Y,

Fig. 14: System of two perfect conductor spheres
placed in uniform magnetic field along z -axis

Consider two metallic spheres of radii a, and a, with a distance d between their centers,
as shown in Fig. 14. The spheres are located in an external magnetic field oriented along
the common axis of symmetry of the spheres, H, = ZH,. The medium outside the spheres
is homogeneous of permeability . The magnetic scalar potential outside the spheres sat-

isfies the Laplace equation.

The Laplacian potential outside the spheres due to the presence of each of them is first
expressed in the spherical coordinate system attached to the respective sphere in the form

(see Fig.14)

@ (r,0,¢)= ZAJJ(M)P" (cosd) , r>a, (5.1.1)
n=0
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qnmz(rz,gz,¢2):ngr{(mﬂ)pm(cosé’z), r,>a,. (5.1.2)

m=0

The potential due to the external field H, =H,Z in the coordinate system of each is, re-

spectively,
(DreTTl:_Hozl=_HOG_F?[(COSH;L)+C11 (513)
O}, =—H,z, =—H,1,P,(cosb,) +C,, (5.1.4)

where C;and C, are constants of reference. To impose the boundary condition at r, =a,,
we have to use translational addition theorem (2.3.7) corresponding to r=r,, r'=r,=a,

r,=d and g, =~, in order to translate @_, into the coordinate system (r,,6,,4) . Thus,

@ (r,0,4)= > r,"P (cosé, 'S g, (Mm*n)! ( j d™YP (cos 4,
nE AR =ZACTIRESD 22 I8 ol R R
_HOr;I.Pl(COSHl)_‘_Cl’

Its derivative with respect to r, is
opv - o 2 & (m+n) nr"”
a =—ZA1(n+1)r( 2P (cos b)) + Z;Z:; demﬂ P (cosé,) — H P (cos §)).

, . . ooV .
Applying the boundary condition at r, =a , i.e., —™ =0, yields

1

Z:Aq(n+l)a1 2P (cos 6,) :ii ém)T(n;|;n+m+l P (cos®)—-H,P,(cosd).  (5.1.6)
n=0 m=0 n=0

Applying the orthogonality properties of the Legendre polynomials [Appendix B] gives

Aq(n+1)a1‘(”*2):@j.[ii( p, (MEmtna ooy (x)}Pn(x)dx. (5.1.7)

L " (m)!(n )'Oln+rn+1 '

We obtain A =0 for n=0,
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N gy a
A Z( D"B,(M+D)

A-S (1B

In the same way, ®

(m+n)!

na,

2n+1

ml

™ (m)}(n)! (n+1)d""

=—%H0a13 for n=1,

=0 for n=2,3...

condition is applied at the surface of sphere 2 to obtain the following equations:

B,=0 for n=0,

B, - (1)"A (n+1)

B, - DA,

(m+n)!

3,
2d n+2 =

- H,a;, for m=1,
2

ma22m+1

(m) '(n) | (m +1)d m+n+1

=0, for m=2,3....

(5.1.8)

(5.1.9)

iIs translated into the coordinate system (r,,d,,#,) and the boundary

(5.1.10)

(5.1.11)

As before, equations (5.1.8) to (5.1.11) are solved after truncating n=m=M to find un-

known constants of integrations A, and B .

Table 15. Numerical results obtained for the magnetic field intensity with a after truncation to
M =20 for translational addition method and to M =200when using bispherical coordinates
[16], for system with respect to values given by when, H =1A/m, a =3cm, a,=5cm,

d =10 cmand S =0.1 (for bispherical coordinates)

Test a (rad) w.r.t. the coordinate Translational Addition Bispherical Coordi-
Point |  for system of sphere2 Method nates
Qispherical | [em] | 6,[deg] | Hz[A/m] | HX[A/m] | Hx[A/m] | Hz[A/m]
1 2.8560 5.6658 | 175.7332 0.1550 0.0270 0.1550 0.0270
2 2.0944 5.8540 | 163.2060 0.3266 0.1214 0.3266 0.1214
3 1.5708 6.2355 | 152.0275 0.5812 0.1953 0.5812 0.1953
4 1.0472 7.2544 | 135.9844 0.8912 0.1846 0.8912 0.1846
5 0.6283 9.8073 | 115.9900 1.0272 0.0632 1.0272 0.0632
6 0.3491 15.4470 94.7976 1.0168 0.0016 1.0168 0.0016
7 0.2618 | 19.5449 84.9091 1.0082 -0.0034 1.0082 -0.0034
8 0.1571 | 28.8216 67.1253 1.0014 -0.0032 1.0014 -0.0032
9 0.0628 | 44.9940 | 36.0078 0.9993 -0.0011 0.9993 | -0.0011
10 0.0157 | 52.4006 9.8946 0.9991 -0.0002 0.9991 | -0.0002
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5.2.1  The External Magnetic Field along X Axis

Y1
Y2

TETTTTT T,

Fig. 15: System of two perfect conductor spheres
placed in a uniform magnetic field along x -axis

The potential produce by the each of the two spheres is first expressed in the coordinate

system attached to the respective sphere as

O .(r.6,4)= ZZ A, 1 "P"(cos8,) cos md, (5.1.12)
n=0 m=0
w g
@ ,(r,0,¢)= ZZ B,.r, PP (cos 6,) cos pg,. (5.1.13)
q=0 p=0

The (5.1.12) and (5.1.13) are written considering only the real part of (1.1.4) since the ex-

ternal magnetic field is along x axis.

The potential due to the external field H, =H % in the coordinate system of each is, re-
spectively,

®% =—H x =—H,I, sin g, cos¢ =—H,r,P*(cos ) cos ¢, +C,, rn=a, (5.1.14)

@ =—H X, =—H,r, sin g, cosg, =—H,r,P*(cos,) cos ¢, +C,, T,>a,, (5.1.15)



53

where Cjand C, are constants of reference. To impose the boundary condition at r, =a,,
we have to use real part of translational addition theorem (2.3.7) correspondingto r=r,,

r'sr=a, r,=d and @,=x, Iin order to translate @ _, into the coordinate system

m2

(r.,0,4). Thus,

DL (0,6, 4) =D > AL "R (cos ;) cosmg, — H,rP'(cos 6,) cos ¢ +C,
n=0.m=0 (5.1.16)

e . +v)! vr'
=0 p=0 v= : :

As in previous case, the boundary condition at r,=a, is applied to the derivative of
(5.1.16) with respect to r,. Then orthogonality properties of spherical harmonics yields

[see Appendix C].

A (n+1)a " = (2;+1) (n—m) : ]i f[—Hoﬂl(cos 6,) cos ¢,P" (cos 6,) cos mg, + Zw:
7 (M T (5.117)

P?(cos4,) cos( p¢1)J P"(cosé,)cosmgdadg,.

v-1

D T R LI
= T @-p)lv+p)td

For m=1 we get

o0 3 1
A+ Y (DB s =~ Hal, n=1 (5.1.18)
q=1
A+ (1B (gt "5 n-23. (5.1.19)
& T (q-!(n+D! (n+1)d @Y

In the same way, the boundary condition is applied at the surface of sphere 2 to obtain the

following equations (for p=1) :

0 3
Bn““zll(—l)%(””) 432n+2 =—>Ha,  g=1, (5.1.20)
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- (q+n)! ga,” "
B -1)7A 2 =0, =23.... 5.1.21
ql+nzz:‘( ) A (n=D(q+D! (q+1)d q ( )

In the case of m=1 and p =1 we obtain homogeneous set of linear equations whose solu-
tion is the trivial solution, i.e., A =B, =0 forall m=1and p=1.

Table 16. Numerical results obtained for the magnetic field intensity with a after truncation to
M =20 for translational addition method and to M =200 when using bispherical coordinates
[16], for system with respect to values given by when, H,=1A/m, a =3cm, a,=5cm,

d =10cmand B =0.1 (for bispherical coordinates)

Test a (rad) w.r.t. the coordinate Translational Addition Bispherical Coordi-
Point | for system of Sphere2 Method nates
Qispherical | [em] | 6,[deg] | Hz[A/m] | HX[A/m] | Hx[A/m] | Hz[A/m]
1 2.8560 5.6658 | 175.7332 0.0382 1.5600 0.0382 1.5600
2 2.0944 5.8540 | 163.2060 0.1463 1.3264 0.1463 1.3264
3 1.5708 6.2355 | 152.0275 0.2105 1.0837 0.2105 1.0837
4 1.0472 7.2544 | 135.9844 0.1867 0.8906 0.1867 0.8906
5 0.6283 9.8073 | 115.9900 0.0617 0.8887 0.0617 0.8887
6 0.3491 | 154470 | 94.7976 0.0008 0.9626 0.0008 0.9626
7 0.2618 | 19.5449 | 84.9091 -0.0039 0.9818 -0.0039 0.9818
8 0.1571 | 28.8216 | 67.1253 -0.0034 0.9956 -0.0034 0.9956
9 0.0628 | 44.9940 | 36.0078 -0.0011 1.0000 -0.0011 1.0000
10 0.0157 | 52.4006 9.8946 -0.0002 1.0005 -0.0002 1.0005
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Chapter 6

Conclusions and Suggestions for

Future Works

6.1 Summary and Conclusions

In order to get a physical insight and quantitative relationships for engineering problems,
various real world shapes can mathematically be modeled at a very first approximation
by using systems of spheres.

The translational addition theorems for static and stationary fields in spherical coordi-
nates presented in this thesis can be used to solve boundary value field problems relative
to many-sphere structures. In the case of axisymmetric geometries, the general expres-
sions (2.2.7, 2.3.7 and 2.3.10) can be further simplified, leading to much simpler matri-
ces. When dealing with arbitrarily located systems of spheres, spherical harmonics need

to be employed.
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The formulations presented in this thesis particularized for a system of two spheres constitute an
alternative to the classical formulations using the method of images in the case of Dirichlet
boundary conditions [7] or employing the bispherical coordinates [13-16].

Translational addition theorems presented in this thesis are also applicable to multi sphere

systems involving scalar Laplacian fields such as in fluid dynamics, heat flow studies etc.

6.2 Future Research Direction

The research presented in this thesis is confined to field problems involving systems of
conducting spherical bodies. This work can be extended to field-penetrable spheres, di-
electric or magnetic, where the boundary conditions are more complex. Obviously, the
extension to systems of prolate or oblate spheroids yields results of more practical impor-

tance, since the spheroidal shapes approximates much better real world shapes.
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Appendices
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Appendix A
Wigner 3-J Symbols

1) Some specialized formulas for Wigner 3-J symbol [9] are given below.

i) [Jljz J3}:0, if J,+J,+J, isodd. A-1
000
”) |:‘]1 ‘]2 ‘]3:| _ (_l)J/z |:(J — 2‘]1)!(‘] — ZJz)!(‘] _2‘]3):| A-2
000 (J+1)
. J/72)! , If J=J,+J,+J, iseven.
3/2-3)1Q0/2-3)13/2-3,)!
m)rl J, (J1+J2)}:(_1)(31+J2M) \/ (1)), + 3, + MG+, -
m, m, -M (2‘]1+2‘]2+1)!(J1+ml)!(‘]1 _m1)!(‘]2 _mz)!(Jz + mz)!
A-2 gives
{n % (n+v)}:(_1)nv (n+v)! [ (2n)12v)! A
00 O niy! xf(2n+2v+1)!
A-3 gives
n v (n+v) _ (cqy(nemv-n) enl@v)iin+v+m—-)In+v—-m+ u)! AS
m —u —(m-—y) @n+2v+D)(n+m)i(n—m)!(v— ) (v + w)!
The A-4 and A-3 yields to write simplified version of (1.2.5) when p=n+v as
a(m,n |- v|n+v) =(—1)2("“"’V"’)[2(n+v)+1] (n+v—m+wu)! (2n)!2v)! (n+v)! A6

(n—m)!(v+)!'(2n+2v+)! nly!
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Similarly when p=n—-v >0, we obtain

n v  n-v — (cpy™m (n+m)I(n—m)!(2v)![2(n—v)]! 1/2(A-7)
m —u —-M+u @n+)'(v+ w) (v — @) (n+m—v— ) (n—m—v+ u)!

and, for m= =0,

{8 g no—v}:(_l)n | n! {(Zv)![Z(n—v)]!T/zl A9)
vi(n-v)! 2n+1)!
Thus,

ni(n+m)!I(2v)1[2(n—v) +1]!
N+ + @) -+ m—-v — )V’

a(mn|—u,v|n-v) =(-1)* Im—g<n-v. (A-10)
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Appendix B

Associate Legendre Functions

1) Some useful properties of Associate Legendre function [10]

i) Orthogonality property of the associate Legendre Function

1
1
IF’;“ (X)P" (x)dx = 2 (n+mt -y for xe[-1,+1] , B-1
% (2n+1) (n—m)!
n=0,123--- . .
where integers and &, is the Kronecker delta.
m=0,+1, 42,43, ---

For m=0,n"=0 we have

[POOR0OK=—2—5

(2n+1) "
% 0, n=0.
i) P(x)=P,(x) B-3
iii) P"(x)=0, if |m/>n B-4
iv) P00 = ()" L= g B-5
(n+m)!

2) Legendre series expansion [6]

Forany f(x) defined in [-1,1] and satisfying the Dirichlet conditions can be expand as

. pn : _(@2n+1) (n-m)! ¢ " ]
f(x)—;ana(x)wnth 8, == (n+m)!_lf(§)P”(§)d§' B-6
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Appendix C

Spherical Harmonics

1) The spherical harmonics is defined as [10]

Y. (O,9)= \/(2n+1) (n- m) P (cos @) exp( jmag). C-1
A7

2) Orthogonality property of the spherical harmonics [10]

27 @

j Y™ (0, )Y (0,0) dQ = j anm (0, )Y (0, 4)" sinOdod¢

C-2
:5mk5nl ’
where Y(0,4) =(-1)"Y,(0,¢) and dQ is an element of solid angle.
3) Spherical harmonics expansion [11]
For any square integrable function f(@,4) can be expanded as,
(O.H=3 1.Y70.9),
n=0 m=-n

with

= J' £(60,$)Y"(0,4)dQ = j J' f(0,4)Y"(0,4) sin0dodg . c-3

4) Another form of spherical harmonics can be defined as [13] odd and even functions:
Y: =P"(cos&)cos(mg), Y. =Pr(cosd)sin(mg), 0<m<n, n=0,12.... C-4
These harmonics functions form a complete system of orthogonal functions on the sur-

face of a sphere, thus
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4z (n+m)!

[Y,.(6,9)] Sin9d9d¢:/1m(2n+1) (n—m)!

) C-5

o'—.g’
O e

where the superscript of the Y can be either e (even) or o (odd) (except that Y does not

exist) and where 4, =1, 4, =2 (n=1.2...).

Any function f (9, ¢), specified over the surface of a sphere, may be expressed in terms of

the series
10.0)=3 Y (ALY (0.0)+B.YS(0.9))
2n+1)A (n—m)!% .
where A, == — o )IHf(e PYE (0, 4)sin 0dOdg, C-6

with the integral for B similar to that for A, except that Y is substitute for Y: and

the terms for m=0 are omitted.
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