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Abstract

An analysis of the electromagnetic characteristics of a loop antenna which is posi-
tioned coaxially on the surface of an infinitely long dielectric circular cylinder has
many applications in the areas of antenna design, fibre-optics, millimeter wave de-
vices, and bioelectromagnetics. Such an analysis, focussing primarily upon input
impedance, surface wave behaviour, and radiation characteristics, is the subject of
this thesis.

The antenna is modelled with the aid of the thin wire approximation as an
f(#)8(z) electric current distribution situated on the free space - dielectric interface.
A Debye potentials based formulation is employed to obtain formal exact expressions
for all electromagnetic field components which result from said current distribution.
The formulation for the fields is extended to obtain expressions for input impedance
and current distribution, surface wave characteristics, and vra,diation characteristics.
The input impedance is evaluated using numerical quadrature and residue theory.
The surface wave behaviour is studied with the aid of residue theory. The far
field, or radiation characteristics, are studied with the aid of the steepest descent
technique.

Numerical results are provided for the three main characteristics of interest and a
number of interesting features are shown from these results. In particular, the input

impedance of the antenna is shown to consist of two terms, a radiation term and a

viil



surface wave term. Extensive investigation into these terms illustrate the relative
impact of each term on the overall behaviour of the loop’s input impedance. The
field amplitudes of a selected number of surface wave modes are studied. Finally,
the radiation characteristics of the antenna are extensively investigated and the
extent to which the cylinder affects the radiation from the antenna is thoroughly

presented.
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Chapter 1

Introduction

Statement of Problem

The installation of a loop antenna coaxially upon a dielectric circular cylinder may
be motivated by many applications. For example, the cylinder may provide me-
chanical support for the loop antenna. Alternatively, the loop antenna may be
employed as a surface wave launcher on the cylinder, which is being used as a
millimeter-wave waveguide. Further, the cylinder and loop combination may be
employed specifically as a radiating element. All of these applications demand a
complete and accurate characterization of the current distribution on the loop an-
tenna and the electromagnetic fields resulting from this current distribution. Such a

demand establishes the motivation for the research effort represented by this thesis.



Contributions to Research

This thesis presents an analysis of the electromagnetic characteristics of a loop an-
tenna which is positioned coaxially on an infinitely long dielectric circular cylinder.
Specifically, the following characteristics are investigated; the input impedance of
the antenna and the associated current distribution, the radiation characteristics of
the antenna, the propagation velocities and electromagnetic field structure of the
hybrid mode surface waves which are excited on the cylinder by the antenna, and,
finally, the contributions made to the resistive component of the input impedance

by radiation and surface wave excitation.

The antenna is modelled as an f(¢)é(z) electric current distribution situated
on the free space - dielectric interface and is under the influence of a rectangular
voltage pulse function. A Debye potentials based formulation is employed to obtain
exact expressions for all electromagnetic field components resulting from the given
current distribution. The thin wire approximation is invoked to obtain the feedpoint
current resulting from a 1.0 volt rectangular pulse excitation. From this, the input
impedance and current distribution are determined. The radiation characteristics
of the loop antenna are obtained through a steepest descent approximation of the
tangential electric field expressions for the free space region. The surface wave
behaviour is investigated through an evaluation of residue terms which arise in the
calculation of the field expressions. Numerical results are presented which illustrate
thé characteristics of the various parameters of interest. For verification purposes,
special cases are compared with results found elsewhere in the literature.
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A general analysis of the loop antenna positioned coaxially on a dielectric circular
cylinder, to the author’s knowledge, has not appeared previously in the literature.
Therefore, the research effort presented here is considered to be a fundamental

contribution to the discipline of electrical engineering.

Summary of Presentation

The contents of this thesis have been organized into six main chapters, Chapter 2
Literature Review, Chapter 3 Analytical Formulation, Chapter 4 Input Impedance
and Current Distribution, Chapter 5 Surface Wave Characteristics, Chapter 6 Radi-
ation Characteristics, and, Chapter 7 Conclusions and Recommendations for Future
Work. As implied by its title, Chapter 2 provides a representative overview of the
literature pertaining to loop antennas in various environments. The first section
deals with the investigations of loop antennas located in free space. Included in this
section is an indication of the work performed in the area of transient analysis a,nd
the Singularity Expansion Method as applied to loop antennas. The second section
reports on the experimental and theoretical work involving loop antennas located
in lossy infinite media. The third section details the analysis of loop antennas in
the presence of various half spaces. The fourth section is of particular interest in
that it reviews the work concerning loop antennas mounted on various cylindrical
cores. The fifth section provides a representative overview of efforts directed to-
wards dielectric rod antennas, and the sixth section deals with the analysis of the
waveguiding properties of dielectric circular cylinders.

Chapter 3 presents the analytical formulation for this research. First, the devel-

3



opment of the formal solution for the electromagnetic field components is reviewed.
The general evaluation of the electromagnetic field expressions is then discussed. In
turn, and with supporting appendices, the evaluations of input impedance, current
distribution, radiation characteristics and surface wave characteristics are described.

Chapter 4 provides numerical results for the input impedance and current distri-
bution on the antenna for a variety of situations. Of special interest is the compar-
ison of input impedance results obtained from the present formulation with those
obtained elsewhere in the literature, for the case where the dielectric constant of
the cylinder is unity.

Chapter 5 provides numerical results for the propagation velocities and electro-
magnetic field structure of various hybrid mode surface waves which may be excited
by loop antennas in the given geometry.

Chapter 6 provides extensive numerical results for the radiation characteristics
of the antenna and illustrates the influence of the cylinder’s dielectric constant on
the shape of the radiation pattern.

Chapter 7 summarizes a number of conclusions which m?xy be taken from this
research effort and discusses future directions along which research in this area may

follow. Publications resulting from this research work are itemized here.



Chapter 2

Literature Review

Introduction

In analyzing the loop antenna mounted on an infinitely long dielectric circular cylin-
der, a number of perspectives may be taken. The loop may be considered as the
principle radiator of the system, with the rod providing only mechanical support.
The loop may be used as a surface wave launcher in applications related to dielectric
rod antennas. Or the loop may be employed as an array element in a linear array
driven by a dielectric rod waveguide.

To complement the many aspects of the stated problem, a fairly wide review of
the literature has been performed. This review highlights the many investigations
of loop antennas situated in or next to various media, reports on various efforts in
the analysis and design of dielectric rod antennas, and finally, examines the study
of surface wave excitation on a dielectric rod. In detail, this chapter begins with a
review of the more significant reports of investigations on loop antennas located in
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free space. Next, an extension of the free space case is made to investigations of
loop antennas located in dissipative media. This is followed by the analysis of loop
antennas in so-called half space probléms. Of significant importance is the review
of available literature on loop antennas mounted coaxially over various infinitely
long structures. A synopsis of the work conducted on dielectric rod antennas is pro-
vided. And finally, efforts to characterize the guiding properties of various cylinder

geometries are explored.

Loop Antennas in Free Space

It appears that Storer [1] was the first investigator to provide extensive numerical
data for the input impedance of a loop antenna. His analysis involved the Fourier
expansion of not only the current distribution on the loop itself, but also the free
space Green’s function which serves as the kernel in the integral equation which
describes the current distribution. The input impedance for the loop was then
described in terms of an infinite series. Storer reported in his paper that Hallen also
arrived at this infinite series for the impedance of the loop. A numerical difficulty,
however, prevented Hallen from providing useful results. The numerical difficulty
proved to be a term in the series which becomes very large. Hallen thought that this
term represented a singularity. Storer contended that the term was finite. From
this discussion, Storer decided to circumvent the problem by explicitly evaluating
the first four terms of the series and then represent the remaining summation as
an integral. An extensive collection of numerical data was developed from this

formulation for a variety of loop geometries and numerous graphs for the input
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impedance presented. A number of experimental observations were made to verify
the formulation.

T.T. Wu took exception to the techniques employed by Storer and published a
detailed account of the theory of the loop antenna [2]. From the exact integral equa-
tions for the current distribution on the wire loop, the simplified one-dimensional
integral equation was obtained. A Fourier transform for the current distribution was
then employed. The integrals were then simpiiﬁed with the aid of Bessel function
relations. Finally, an equation for the input impedance of the loop was presented
which involves taking the limit as the azimuthal co-ordinate approaches the origin.
Wau stated that his formulation would provide better results than those obtained by
Storer but, unfortunately, he did not provide any numerical results to substantiate
his claim.

Rao [3] investigated the radiation characteristics of a loop antenna which was
loaded with a terminating resistor located at a position diametrically opposite to
the feed point. The value of the terminating resistor was set equal to the feedpoint
impedance. The current on the loop was presumed to have travelling wave nature
where the propagation constant of the current wave was taken to be a free space
value. The far field electric field components were then determined from a standard
magnetic vector potential formulation. Experimental results were compared with
predicted results and, on a relative basis, there was good agreement.

Martins [4] presented'a short paper on the derivation of closed form expressions
for the vector potential functions and, hence, the field components, resulting from
sinusoidal, co-sinusoidal, and travelling wave current distributions on loop antennas
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of arbitrary size. Large distance approximations were made in the free space Green’s
function. These approximations allow the integrals for the vector components to be
cast in a form which may be represented by a Bessel function of the first kind. The
resulting closed form expressions are now very popular and may be found in many
textbooks.

In a subsequent paper, Martins [5] evaluated the integral expressions for the
magnetic vector potential without employing any approximations. The evaluation
of the integrals in this case involved an expansion of the free space Green’s function
into an infinite series of spherical Bessel functions. The resulting expressions for
the vector potential then consisted of this infinite series which must be evaluated
term by term.

Lindsay [6] followed Martin’s work with another analysis of the far field radiation
characteristics of a loop antenna located in free space. Again, the analysis followed
the standard magnetic vector potential formulation. An interesting aspect of this
paper was the method used to determine the current distribution on the loop.
Lindsay considered the loop to be a section of lossy open wire transmission line which
had been deformed from a straight line to a loop. Therefore, I(s) = I coshyR¢
where < is the propagation constant of the wave along the wire line and R¢ is
the circumferential distance. There was no discussion concerning the actual value
of v. However, Lindsay did present a theoretical-experimental comparison, which
indicated that the shape of the radiation pattern predicted was in good agreement
with the shape of the experimentally obtained pattern. It should be noted, however,

that only three cuts were taken in the measurement of the patterns, indicating that
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the experimental data may be insufficient to yield definitive conclusions.

Imrie [7] presented an interesting note on the evaluation of the vector potential
integrals for loop antennas which have sinusoidal current distributions. Instead of
using a Fourier series expansion for the integrand, which in turn will yield Bessel
function representations for the field patterns, he used a power series expansion for
the integrand. Equations for the radiation resistance of a loop antenna, developed
from this particular approach, are presented in the paper.

Redlich [8] presented a short paper on using numerical integration techniques to
evaluate vector potential expressions for the prediction of the radiation resistance
of a loop antenna of arbitrary radius. The expression for the radiation resistance
involved the integration of Bessel functions over a finite interval. Experimental and
numerical results were compared and good agreement was observed.

Shockley [9] reported an interesting analysis of the electric and magnetic fields
resulting from a loop antenna. In this analysis, the antenna was posed as a boundary
value problem in spherical co-ordinates with the radial components of the magnetic

vector potential described as follows:

Frr = anPy(cos OH® (kr)...... r>a
n=0
Frip =D b Pa(cos0)T(kr). .. ... r<a
n=0

The radial component of the magnetic vector potential, A, = 0 for both regions.
At r = a, the current distribution X = &4,%5(6 — 2). From these expressions, the
electric and magnetic fields were determined in the usual manner.

K.K. Mei [10] presented a discussion on the numerical evaluation of Hallen’s
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integral equation for wire antennas by what is now generally referred to as the
moment method. Hallen’s integral equation was cast into a form more suitable
for the evaluation of circular and helical wire geometries. Numericél results were
provided for loop antennas to illustrate the usefulness and accuracy of the numerical
techniques described.

Baghdasarian and Angelakos [11] reported on the numerical evaluation of an
integral equation for the current distribution on a circular loop antenna. The tech-
nique essentially replaced the integral operators with equivalent Riemann sum op-
erators which resulted in a set of linear equations. The equations could then be
solved to yield the current distribution on the loop. Again, the author presented
numerical and experimental results for loop antennas with C'/A ratios of 1.5 and
3.0.

Shockley, Glekas, and Mott [12] presented another short paper describing the
evaluation of current distributions on loop antennas which were driven at four
equally spaced points oﬂ their periphery. The motivation for this investigation
came from a need to establish a method which would improve the uniformity of the
current distribution on the loop. In this investigation, the current distribution was
measured by probing the magnetic field in the immediate vicinity of the loop.

Rao [13] presented a paper on the radiation characteristics of large loop antennas.
'The loops considered had an electrical circumference of 1.5, 2.0, and 2.5 wavelengths.
Numerical results, based upon Storer’s analysis, were provided along with some
experimental observations. The purpose of this investigation was to confirm that
Storer’s analysis was valid for large loop antennas.
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Conventionally, engineers presume that the standing wave current distribution
on a loop may be decomposed into two travelling wave components where the
propagation constant of the travelling waves is equal to the free space propaga-
tion constant. Realizing that this may not always be the case, Prasad and Das [14]
investigated the far field radiation characteristics of a loop antenna with a travelling
wave current distribution. The propagation constant of this travelling wave was, in
general, not equal to the free space value. The equations for the radiation charac-
teristics were developed from the standard magnetic vector potential formulation.
Numerical results were provided to illustrate the Eg, E4, and antenna directivity
dependance upon the current distribution’s propagation constant.

Iizuka [15] considered the analysis of a loop antenna which was multiply- loaded
with lumped circuit elements. He extended Storer’s analysis, through superposition,
to the case where this antenna was modelled as a loop antenna which was excited
by multiple generators. Multiple resistive loads were then included as an extension
to this model using the compensation theorem. The currents associated with each
load were determined by the solution of a system of linear equations. Various case
studies were presented where both theoretical and experimental values for the loop’s
input impedance were determined.

In a subsequent paper, lizuka, La Russa, and Dunne [16] presented the results of
an experimental analysis for the far field radiation characteristics of loop antennas
which were loaded at one point with an arbitrary lumped impedance. The results
were presented, in part, to verify the numerical results presented in a previous paper.
Additional experimental observations were made of the input impedance of these

11



antennas. The results of the experiments indicated that changes in the reactive
part of the lumped impedance had a more significant impact upon the current
distribution than would changes in the resistive part Qf the lumped impedance.

King [17] considered an interesting variation on the standard series fed loop an-
tenna. He proposed a shunt feed for the loop. His analysis of this feed arrangement
was based upon circuit concepts which transformed the shunt section into a folded
dipole, the ends of which were then connected to the rest of the antenna. From this
model, the current distribution was determined. King provided equations for the
current distribution, feedpoint impedance, and the far field radiation characteristics
for this antenna.

Lin [18] investigated the current distribution on a loop antenna which exhibits
an impedance boundary condition on the wire surface. He developed a second or-
der pé,rtial differential equation for the resulting current distribution on the loop,
based upon the internal impedance concepts employed previously in linear antenna
analysis. Current distributions predicted by Lin’s technique were compared to cur-
rent distributions obtained from a standard integral equation formulation which
employed this boundary condition. Good agreement between the two techniques
was observed.

Gonzalez and Huerta [19] presented simplified closed form expressions for the
near fields produced by a loop antenna. He considered the case of constant current
distribution and the case of the two-term current distribution. The expressions
were cast in terms of an integral which had been previously tabulated. Numerical
results for the evaluation of this integral were presented. However, results for the
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field distribution were not provided.

As a variation upon King’s report on the shunt fed loop antennas, Tsukiji [20] -
investigated the input impedance and radiation characteristics of a center line fed
circular loop antenna. His analysis employed a numerical solution to Hallen’s in-
tegral equation where the current distribution was expanded with Lagrangian in-
terpolation polynomials. Numerical and experimental results were presented for
the input impedance, far field radiation characteristics, and the power gain of the
antenna.

Richtscheid [21] presented a short paper on the evaluation of the radiation re-
‘sistance of a loop antenna which carries a sinusoidal current distribution. The ex-
pressions uséd for the evaluation were derived from the Poynting vector approach.
Electric field components were obtained from the magnetic vector potential. The
field quantities were then integrated over the Poincare sphere to obtain the real
power leaving the antenna. The radiation resistance was then computed from the
power leaving the antenna and the enférced current distribution. Numerical results
were provided for the radiation resistance of loop antennas with electrical circum-
ferences ranging from 1 to 10 wavelengths.

Chang [22] reported on an evaluation of field components resulting from a loop
antenna. He adopted the approach employed by Storer to obtain the original integral
equation for the current distribution. He did not expand the Green’s function in
a Fourier series as had been done previously. He simply evaluated the integral
equation numerically. He observed that acceptable results could be obtained by

using the first three terms of the current distribution.
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Adachi [23] considered the evaluation of the feedpoint impedance of a loop an-
tenna by the induced EMF method. A closed form expression was given for the
impedance of an n wavelength loop and it was verified by numerical example.

Adekola [24] presented a tutorial review paper on the analysis of the electro-
magnetic fields and power radiated from circular loop antennas which carry both
standing wave and travelling wave current distributions. The analysis follows the
standard magnetic vector potential formulation. An interesting feature of this paper
is that series representations for the Bessel functions, which are otherwise stated as
is in other papers, are employed directly in the final solutions for the field expres-
sions. From these series solutions, various simplifying approximations are directly
reported. The paper concludes with a discussion on the various practical applica-
tions of the loop antenna.

Awadella and Sharshar [25] present simplified closed form expressions for the
input impedance of a loop antenna. These expressions appear to be valid for thin
wire loops of radius up to 0.5 wavelengths. The equation for the resistive part of
the inbut impedance is actually obtained by fitting an empirical equation to data
obtained from a moment method solution. The equation obtained for the reactive
portion of the input impedance is obtained from a transmission line model for the
loop. Awadella presented numerical results which indicated that the simplified
equations would yield reasonably accurate results for the resistive portion of the
input impedance for loops of radius up to 0.5 wavelength, and for the reactive
portion of the input impedance for loops of radius up to 0.8 wavelengths.

The time dependant characteristics of loop antennas have also been of some in-
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terest to investigators. Langenburg [26] presented a short discussion on the analysis
of the transient field response of the loop antenna. Essentially, the determination
of the field quantities resulting from a time dependant current distribution on the
loop is reported. The solution to the problem involves the Laplace transformation
of the wave equation for the magnetic vector potential, solving for the field variables
resulting from the transformed current distributions in the s domain, and finally
obtaining the desired results through Fast Fourier Transform techniques. A discus-
sion on the transformability of the current distribution function and its effect on
the numerical convergence of the solution was presented. Finally, numerical results
were provided to illustrate the transient response of a small loop (radius 0.1 meters)
antenna to a step input function.

The Singularity Expansion Method has seen application to the transient re-
sponse of loop antennas and the modelling of such antennas by lumped element
circuits. Blackburn and Wilton [27] presented an analysis of an impedance loaded
loop antenna based upon the singularity expansion method. This technique casts
the solutions for the field components into a sum of residues in the Laplace s do-
main. The required results are obtained by performing an inverse Laplace transform
on the series. Numerical results were provided in this paper which illustrated the
effects of impedance loading on the locations of the poles in the s plane.

Streable and Pearson [28] presented a novel paper on the modelling of thin dipole
and circular loop antennas by lumped element passive circuits. These circuits aided
in the evaluation of the transient input response of the loop under a variety of
conditions. The synthesis procedure for the equivalent circuits is based upon the
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characterization of the loop using the singularity expansion method. Various ap-
proximations regarding the number of poles employed in the series were discussed.
Also, reference was made to the requirement that the residues obtained from the
SEM analysis must be positive real in order to obtain a physically realizable equiv-
alent circuit. Equivalent circuits were constructed for two different antennas. The
transient input impedance response of those two circuits was measured and the
results were compared to results obtained from a time domain thin wire antenna
analysis package. The comparisons validated the equivalent circuit method.

King and Schmidt [29] presented theoretical and experimental results for the
transient input response of a linear and a circular loop antenna. The main con-
tribution to this response was reported to be the input impedance of an infinitely
long wire antenna fed against an infinite ground plane for an excitation frequency
which corresponded to the highest spectral component of the input pulse. Simple
relations for the input response were obtained which indicated that the reactive
component of the response was essentially independant of the pulse width, but that
the resistive component of the response was a slowly varying function of the pulse
width. Experimental investigations of the transient response of a linear antenna
and a loop antenna were performed using a time domain reflectometry technique
and these investigations confirmed the theoretical expectations.

Clark and Tauritz [30] presented a short paper containing numerical results for
the radar cross section of a loop antenna which is loaded with a single lumped
impedance element. The numerical results were based upon an analysis performed
by Harrington. Their paper indicated that the radar cross section of the loop

16



could be optimized by adjusting the reactive portion of the lumped element. He
introduced this as the optimum susceptance load.

Abo-Zena and Beam [31] presented a short paper detailing the numerical results
for the current distribution and radiation fields of a loop antenna which is excited by
a band-limited rectangular voltage pulse. The current distributions were determined
* using a moment method solution and were taken to be a superposition of responses
to the spectral components of a periodic pulse train. The travelling wave nature of
the current distribution was explored by adjusting the voltage generator’s internal
impedance. A change in this impedance was seen to have a significant impact upon
the radiated fields.

Thiele [32] presented a short paper on the radar cross section of open circular
loop antennas. The RCS of the loop was first predicted using two different moment
method techniques, the first employing a subsection expansion and the second em-
ploying a modal expansion. The numerical results were compared to experimental
observations to verify the approach. The investigation illustrated an interesting
resonance condition which occurs as the radius of the loop decreases, bringing the
ends of the open loop closer together.

Landt and Miller [33] presented numerical results for the current distribution on
a large loop antenna which results from a Gaussian type input voltage pulse. The
results were obtained from a time domain moment method program for thin wire
structures. The numerical results were experimentally verified by comparing the
inductance of the loop to the steady state numerical result.

Michalski and Pearson [34] reported on a technique for the evaluation of a loop
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antenna’s response to a time dependant incident plane wave. The technique, again
based upon the singularity expansion method, involved the synthesis of an equiv-
alent circuit model for the loop under the given excitation conditions. Numerical
results were given to illustrate the effects of truncating the residue series, obtained
from the SEM analysis, upon the input impedance and the short circuit current for
a loop antenna which was excited by an incident plane wave which had a Gaussian
time history. The data obtained from evaluating the equivalent circuit’s response
was compared to data obtained from a traditional frequency domain - Fourier trans-
form moment method solution. The results re-affirmed the benefits of using the

SEM technique to analyze problems of this nature.

In concluding this section, attention is drawn to an interesting paper presented
by Whiteside and King [35] on an application of the circular loop antenna. They
discussed using a small loop antenna as a probe element for the measurement of
magnetic field strength. Their analysis of the loop for this application emphasized
the fact that induced currents on the antenna result from both electric and magnetic
fields and that, if caution is not exercised, extreme errors in field measurement will
be obtained. Probe sensitivity parameters K; and K, (magnetic and electric )
were derived from circuit concepts. The authors employed Storer’s results for the
input impedance of certain loop antennas in evaluating the sensitivity parameters.
Additionally, it was shown that greater accuracy in magnetic field measurement
could be obtained by a single or double loading of the loop. Greater accuracy
implied a reduced sensitivity to the electric field. Experimental results confirmed

that the loaded loops of radius less than 0.001 wavelengths were suitable as probes
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for a magnetic field.

The sensitivity of the probe current to the electric field will also create problems
in the application of radio direction finding. In this area, thé undesired response is
referred to as the ’antenna effect’. The electric field in the plane of the loop is the
cause of error. Experimentally, the antenna effect may be evaluated by observing
the current induced on the loop, possibly with the aid of a radio receiver, and
then rotating the loop in its own plane. If the current changes, then the loop is
responding to the electric field also and, under these conditions, corrective action

must be taken.

Loop Antennas in Lossy Media

There has been considerable interest in the electromagnetic characteristics of loop
antennas which are immersed in lossy materials. This interest appears to be mainly
motivated by applications in the areas of submarine communications, mining com-
munications, and geophysical exploration. Originally, experimental investigations
were dominant in the literature. These were closely followed by analytical investi-
gations by Wait and others.

Smith [36] presented a description of an experimental investigation of the radi-
ation characteristics of bare and insulated loop antennas situated in a dissipative
medium, in this case, tap water. Tests were performed on a bare loop, a loop insu-
lated in a toroidal shell, and a loop insulated in a spherical shell. The experiments
indicated that, while the shape of the insulating shell had little impact upon the re-
sults, if the loop was electrically small in the insulating medium but not electrically
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small in the dissipative medium, its radiation characteristics would be significantly
different from a similar loop positioned in the same medium but without insulation.

King, Harrison, and Tingley [37] appear to be the first investigators to report a
theoretical analysis of the characteristics of loop antennas located in lossy media.
Their paper, which numerically evaluated the admittance of the loop, was based
upon T.T. Wu’s analysis for the loop in free space. For the problem at hand, the
intrinsic impedance and wavenumber for the lossy medium were substituted into the
previous formulation. The results obtained indicated that accurate predictions for
the loop’s admittance could be computed when using twenty terms in the Fourier
series. The twenty term criteria appeared valid for loops of electrical circumference
ranging up to 2.5 wavelengths. Supplementary comparisons were also made with
results obtained from Storer’s formulation, where an appropriate substitution of
the medium’s parameters had been made. The supplementary results showed that,
while there was excellent agreement between the two formulations for conductance
computations, there was significant disagreement for the susceptance.

In a subsequent paper, King et al [38] present further numerical results from the
evaluation of the current distribution on a loop antenna under these conditions. Of
particular interest were the results provided for the evaluation of nine terms in the
Fourier series. As expected, an increase in the number of evaluated terms provided
a significant improvement for the prediction of the imaginary component of the
current distribution. This improvement was observed for loops with radii ranging
from 0.5 to 2.5 wavelengths.

Tizuka [39] reported experimental results for the input impedance, current dis-
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tribution, and near field characteristics of a loop antenna which is located in a lossy
medium. In this case, the medium was a tank filled with an electrolytic solution.
Measurements were performed on a number of loop antennas where the loop radius
was changed in each trial. Each antenna was subsequently tested in a variety of
solutions where the dielectric constant and loss tangent of the solution was changed
for each test. The current distributions were measured using a small magnetic
probe while the near field characteristics were obtained with the aid of a monopole
antenna. The experimental results were in good agreement with theoretical results
presented by King and others.

Galejs [40] presented a theoretical analysis for the admittance of a loop antenna
situated in a lossy medium. The loop was modelled as a flat ring in a cylindrical re-
gion with the tangential field components positioned along the p and ¢ co-ordinates.
The field expressions were derived in a manner similar to that of a loop antenna
positioned co-planar to an infinite half space. The outermost cylindrical region
was assumed to be perfectly conducting and of very large radius so as to create a
denumerably infinite set of transverse eigenvalues for the wave equation solutions.
The admittance was obtained using a variational expression with the current dis-
tribution on the loop represented by the first two terms of a Fourier cosine series.
Numerical results from this formulation agree well with those alreading reported in
the literature for the small loop case. However, as the loop radius was increased,
deviations in the susceptance became significant. The author suggested that the
inclusion of more terms in the current distribution expansion would remedy this
difficulty.
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Chen and King [41] presented an analysis of the input impedance of a small
circular loop antenna located in a dissipative medium. The approach taken in this
paper was a modified Storer forrﬁulation. In considering a small loop, only the first
three terms of the Fourier expansion were computed. A comparison of numerical
values for the first term and the second term indicated that, for this problem, the
uniform current distribution assumption was valid for loops of electrical circumfer-
ence less than 0.3 wavelengths. Further, it was observed from the computations
that the input susceptance of the small loop was virtually independant of the loop
circumference.

Benning [42] presented simple closed form expressions for the input impedance
of a loop antenna located in a lossy medium and carrying a constant current dis-
tribution. These equations were cast in terms of tabulated elliptic integrals and,
because of the assumed current distribution, would be valid for only small loop
antennas.

Lee and Smith [43] reported on the experimental investigation of the input ad-
mittance of both bare and insulated linear and circular loop antennas which were
immersed in moist sand. The investigation was motivated by the need to charac-
terize insulated antennas located in lossy media where the dielectric constant of
the lossy media was approximately equal to that of the insulation. Measurements
were made for a variety of dielectric conditions. The experimental results were com-
pared to numerical results obtained from a modified Wu analysis for the bare loop
antenna and to numerical results obtained from Smith’s analysis for the insulated
loop antenna. All comparisons yielded satisfactory results.
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Finally, Smith [44] presented an accurate closed form expression for the input
admittance of a small loop antenna located in a lossy medium. Previously reported
expressions for the input admittance, in which the current distribution was ap-
proximated by the first two terms of a Fourier series expansion and where certain
approximations had been made in the computation of these terms, yielded poor
results for the loop’s input conductance, especially for the case of high loss in the
medium. The present equation provides a more accurate prediction for the loop in-
put conductance and is verified by comparison with results obtained from a twenty

term computation.

Loop Antennas in the Presence of a Half Space

Thé analysis of loop antennas in the presence of both lossy and perfectly conducting
half spaces has been of considerable interest both from thé perspectives mentioned
in the previous section and from the perspective of the high frequency or short
wave communications system. At communications frequencies in the 3 to 30 MHz
range, all practical antennas are electrically close to the earth. In the analysis of
such communications antennas, the earth is modelled as a lossy infinite lower half
space. For antennas which are operated a,ga,jmst a large ground screen, this screen
is modelled as a perfectly conducting lower half space.

Row [45] appears to be one of the first investigators to consider the loop antenna
in such an environment. He presented an analysis of the receiving properties of a
small loop antenna which is buried in a lossy half space. His analysis begins from

the work presented by Chen and King and is essentially an investigation into the
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relative amplitudes of the first and second terms in the Fourier representation for
the current distribution. The second term contributes the so-called antenna effect
observed in radio direction finding applications. The author extends the previous
formulation to the problem involving half space geometry by simply determining
how deep the loop must be buried before the extension becomes valid. This depth
is determined through comparison to work performed by Galejs. Effective heights
are then computed to relate the open circuit voltages at the terminals of the loop to
the applied incident electric fields. Space factor equations are derived to illustrate
the azimuthal dependance of the open circuit voltage to the incident field location.
Finally, the paper ends with a discussion on the significance of the higher order
terms in the current distribution.

Galejs [46] investigated the input resistance of a small loop antenna placed co-
planar to a lossy ground plane. The analysis follows the Sommerfeld approach.
Small argument approximations are applied to the integrands of the field equations
to obtéin numerical results for the input resistance. Computations are performed
for both an assumed current distribution and for an assumed two term current
distribution. The results presented in this paper agree favourably with results
obtained from a variational approach to the problem considered earlier by Galejs.

Wait has shown considerable involvement with this problem. In his first paper
on the subject [47], he presented a rigorous analysis of a loop antenna mounted
co-planar at a short distance above the conducting earth. The analysis followed the
classical Sommerfeld approach. The radiation resistance was determined through
the Poynting vector formulation. The integrals involved in computing the power
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flow were subjected to a series of approximations which yielded simple closed form
expressions for the radiation resistance. Further approximations were made for loops
which are located directly above the interface. Numerical results were provided to
illustrate the ratio of the loop’s radiation resistance over the earth to that of free
space as a function of antenna height above ground.

Wait [48] then presented a short paper on the radiation from a small loop buried
in the earth. The loop was modelled as a vertical magnetic dipole and the field ex-
pressions were obtained using the classical Sommerfeld formulation. In conclusion,
a simple expression was provided for the additional attenuation imposed upon the
dipole’s far field due to immersion in the conducting medium.

An analysis of the input impedance of a small loop antenna positioned over
a lossy half space was considered by Wait and Spies [49]. Again the formulation
followed the classical Sommerfeld approach. Of interest in this paper is the use of
Bessel function small argument approximations to reduce the Sommerfeld integrals
to closed form expressions involving complete elliptic integrals. Graphical results
illustrated the dependance of the loop impedance upon the loop height above the
interface.

Following this, Wait and Spies [50] presented a short paper on the evaluation of
sub-surface electromagnetic fields resulting from an electrically small loop antenna
located on or slightly above the interface. Again the analysis was based upon the
classical Sommerfeld formulation. The resulting integrals were evaluated numeri-
cally, employing interval division and twelve point Gaussian quadrature techniques,
and results for the radial and vertical components of the magnetic field were pre-
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sented in graphical form.

Finally, Wait and Spies [51] reported on the investigation of the electromagnetic
fields resulting from a small loop antenna which is buried in the lower layer of a two
layer dissipative half space. The analysis provided Sommerfeld type integral repre-
sentations for the electric and magnetic field components for the upper half space
region. The integrals for the magnetic field components were evaluated numerically
and graphical results for the ratio between the radial and vertical components of
the magnetic field were presented.

Shvarts and Kaganskiy [52],[53] reported on a theoretical analysis of a loop
antenna placed horizontally above a lossy half space. The application of this analysis
was to a communications system employing inductively coupled loops operating
at very low frequencies. The analysis again employed the classical Sommerfeld
technique. The fields were determined from numerically integrating the expressions
for By, H,, and H, around the branch cuts. Although the authors indicated the
existance of singularities in the integrand, there was no mention of surface wave
excitation or coupling. The numerical results were compared to an empirical relation
which had been determined from experimental observation and good agreement was
obtained.

An and Smith [54] presented a detailed theoretical and experimental investiga-
tion of a loop antenna p‘ositioned near a planar interface. The analysis was based
upon solutions to the wave equation in spherical co-ordinates. Extensive mathemat-
ical detail was provided to show how the general spherical co-ordinate solutions may

be approximated to provide the more well-known Sommerfeld type solutions. Both
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the transmitting and receiving characteristics of the antenna were studied. For the
transmitting case, the current distribution, input impedance, and radiation char-
acteristics of the antenna were numerically evaluated. For the receiving case, the
terminal voltage of the loop was evaluated for various polarizations of plane wave
incidence. Experimental results were obtained for the near field characteristics and "
input impedance of the loop by a time domain admittance technique.

Chang [55] provided an analysis of the admittance of a loop antenna, positioned
co-planar above a multiply-layered dissipative half space. The analysis employed
image theory and an integral equation was formulated for the modal components of
the current distribution on the loop. The primary contribution was evaluated via the
Wu approach and the secondary contribution, which was represented in Sommerfeld
form, was evaluated numerically. Twenty terms were again considered in the Fourier
expansion for the current distribution. Numerical results were presented which
indicated an oscillatory dependance of the loop’s input impedance upon its height
above the interface.

Moorthy [56] reported on the analysis of a loop antenna of arbitrary radius lo-
cated over an infinite lossy half space. The analysis employed the primary and
secondary contributions obtained through plane wave reflection co-efficents. Aside
from this feature, the analysis followed the classical Sommerfeld formulation. Spe-
cial limiting cases for a perfectly conducting lower half space and a, free space lower
half space were considered. Graphical results presented illustrate the dependance
of the loop’s input admittance on both the conductivity of the lower half space and
the loop’s separation from the interface.
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Vogler [57] presented a short paper outlining some approximate expressions for
the input impedances of small loop and dipole antennas located near the ground.
Graphical results are presented to illustrate the dependance of the antenna’s input
impedance upon different ground parameters.

To conclude this section, Shoamenesh and Shafai [58] presented graphical results
for the gain and input impedance of a loop antenna located over a perfectly conduct-
ing ground plane. Although no analytical details were provided in the discussion,
the authors concluded from the graphical data that optimum spacings between loop

and ground plane may be determined for gain enhancement.

Loop Antennas Mounted on Cylindrical Cores

Of particular interest to the present problem of a loop antenna situated over an
infinitely long dielectric circular cylinder is the work reported on the topic of loop
antennas mounted on cylindrical cores. It appears that Pavlov [59] was the first
investigator to examine a loop antenna mounted in such a fashion. He reported
on an investigation of a small loop antenna situated coaxially on the surface of an
infinitely long circular ferrite rod. The entire structure was then immersed in a
conducting medium. A uniform current distribution on the loop was assumed. The
approach taken in the analysis was to formulate equations for the magnetic vector
potential components separately for the loop without the core and then the core
without the loop. The equations were then combined for the total magnetic vector
potential resulting from a loop and core with loop radius set equal to core radius.

In the discussion on the evaluation of the field expressions, it was noted that there
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would be contributions to the resulting fields from both a space wave, which may
be obtained through an integral operation with a deformed contour, and a surface
wave which could be obtained by evaluating the residues of the integ‘rand at the
appropriate singularities.

Numerical results were provided for the propagation velocities of surface waves
for a number of physical parameters. Graphical results were presented for the
radiation characteristics for the structure under similar physical parameters. In
concluding the paper, a discussion on the input impedance of the loop was presented.
This parameter was obtained by integrating the resulting magnetic field in the
permeable core to obtain the voltage induced at the loop terminals. This voltage
was divided by the magnitude of the assumed current distribution to obtain the
input impedance. It was interesting to note that this impedance was essentially
dependant upon the surface wave characteristics, under the conditions cited, and
that the space wave presented only a negligible contribution to the real part of this
impedance.

Islam [60] presented an analysis of a loop antenna mounted coaxially over an
infinitely long circular cylinder. The radius of the loop was larger than the radius
of the cylinder so that the geometry presented a three region problem. Further, the
current distribution on the loop was considered uniform thereby permitting consid-
eration of only the first term in the Fourier series expansion for the distribution.
The analysis, employing components of the magnetic vector potential, followed the
standard Fourier integral transform approach with fhe transformation taken with
respect to the axial co-ordinate. Simplified closed form expressions were obtained
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by using, first the small argument approximations for the Bessel functions found in
the integrand, and second Weyrich’s formula for the Hankel function integral. The
expressions obtained through the simplification of the analysis were similar to those
obtained by simplifying the magnetic vector potential formulation for loops in free
space. The field analysis was followed by an examination of the radiation resistance
of the loop as situated above. This parameter was obtained through a numerical
evaluation of the Poynting integral for the fields over a cylindrical boundary. The
numerical results presented indicate that the radiation resistance for the loop sit-
uated coaxially above the cylinder as discussed, is almost linearly dependant upon
the permeability of the cylinder.

The appendix of this paper provided a brief analysis of a circular loop antenna
positioned coaxially over a prolate spheroid. An expression was provided for the ¢
component of the magnetic vector potential. Of interest here is the assumption made
by Islam that the wave functions are orthogonal in this geometry. In a subsequent
communication, Wait [61] discussed this point with Islam. Islam, in turn, suggested
that the mode cross coupling term could be considered negligible for loops of small
radius when situated in this geometry.

Burton, King, and Wu [62] reported on the analysis of a loop antenna mounted
over a circular core. The analysis presented in this paper was essentially an ex-
tension of Islam’s earlier work. The electric fields produced by loops situated over
cores of varying permittivity and conductivity were investigated. A number of
experiments were performed to validate the numerical results. The results of the
experimental investigation were further employed through scaling so that they could
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be used in the investigation of large loop antennas operating at very low frequen-
cies. The results of this last analysis were considered applicable to the area of

surface-subsurface communications.

Dielectric Rod Antennas

The dielectric rod antenna has received considerable attention over the past thirty
years. It has many advantages, cost and weight being just two of many. Conven-
tionally, the dielectric rod is excited by a circular waveguide. However, there have
been reports of dielectric rods being excited by small loop and annular slot anten-
nas. There have also been reports of using small wire segments as elements in a
linear array which is excited by a dielectric rod waveguide. With these reports as
motivation, a review of the literature pertaining to significant developments in the
area of dielectric rod antennas has been undertaken.

Horton, Karal, and McKinney appear to be the first to investigate the radiation
characteristics of a dielectric rod antenna. In their first paper [63], they reported
on a theoretical and experimental investigation of the radiation from a dielectric
rod excited with the TMg; surface wave. Surface equivalent currents were obtained
from the presumed field distribution along the cylinder. These equivalent currents
were taken over the surface of the rod only and no consideration was given to
the waveguide feed. Predicted radiation patterns were compared to experimental
results. Horton et al claimed that the experimental and theoretical results agreed
only under one special condition. This condition was that the radius of the surface
over which they assumed the equivalent currents to exist had to be approximately
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65 percent less than the radius of the rod under investigation.

In a subsequent paper, Horton and McKinney [64] reported on the results of an
experimental investigation of the radiation and gain characteristics of a dielectric
rod antenna. A series of rods were constructed with variations in the dielectric
constant, length, radius, and taper. The salient observation of this study was that,
while the length of the rod controlled the number of sidelobes observed in the radi-
ation pattern, the diameter of the rod dictated the sidelobe amplitudes. The rods
were fed with a circular waveguide in which either the TMy; or TE;; waveguide
mode would be established. It was found that both waveguide modes would excite
the HE;; surface wave mode on the cylinder. Experiments were conducted to com-
pare the patterns of antennas which were excited in the two modes and there were
no differences observed.

McKinney [65] extended the work reported in the previous paper by performing
an experimental investigation of the radiation characteristics of a series of dielectric
rod antennas which would operate under the TEy, and TMy; surface wave condi-
tions. The patterns obtained in this investigation were similar to results reported
in the first paper by Horton and McKinney. McKinney indicated the existance of
the TEqg; and TMy, surface waves also but these waves did not have any significant
impact upon the results obtained.

Brown and Spector [66] discussed the radiation characteristics of end fire an-
tennas, specifically the yagi and circular dielectric rod. The primary radiation
mechanism for the dielectric rod was conjectured to be the aperture plane field
distribution at the end of the rod. Secondary radiation occured from the rod feed
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if the transfer of waveguide incident power to rod surface wave was not complete.
A numerical evaluation of the radiation characteristics for a dielectric rod was per-
formed with an aperture distribution derived from the surface wave field structure.
From this evaluation, it was noted t.hat the beamwidth of the radiation pattern
decreased as the rod radius decreased. Secondary radiation from the feed was then
also included in the computations. The results obtained from these subsequent
computations compared favourably with results obtained from other investigators.

Duncan and DuHamel [67] reported on the development of a linear array antenna
which consisted of a set of small wire elements excited by a dielectric rod waveguide,
HEH mode. This antenna and its design technique are similar to a slotted waveguide
array. A novel experimental method for determining the element admittance was
reported. In this method, the wire element was positioned on a dielectric image line.
The standing wave pattern was then probed through a slot in the image line’s ground
plane. After the element admittance was determined and the propagation velocity
for the surface wave computed, standard array design techniques were employed to
determine the element locations along the structure for a given desired radiation
pattern. The paper concluded with remarks on the construction of three of these
arrays and the radiation patterns of each were discussed.

DuHamel and Duncan [68] formulated a launching efficiency parameter for var-
ious loops and slots which might be used to excite surface waves along a dielectric
cylinder. The formulation, which was based upon the reciprocity theorem, related
the launching efficiency of the loop or slot to its impedance as a scatterer on the

cylinder. The scattering impedance was obtained experimentally by a method sim-
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ilar to the one used by Duncan as indicated above. Numerical results were provided
for the launching efficiencies of a straight wire, loop, straight slot and annular slot
as a function of surface wave propagation velocity and launcher physical dimen-
sions. It was interesting to note that, in the experiments performed on the loop
launcher, the optimum radius of the loop was approximately one half the radius of
the cylinder.

Angulo and Chang presented two papers on their work in the area of dielectric
rod antennas. In their first paper [69], they reported on an analysis of an infinitely
long dielectric cylinder covered by a semi-infinitely long circular waveguide. This
model was employed to study the radiation characteristics of a dielectric rod an-
tenna. The objective of this investigation was to predict the reflected power sent
back down the circular waveguide, the transmitted power carried by surface waves
along the dielectric rod, and the power radiated as a space wave. The radiation
occurs because of the discontinuity along the structure. Final expressions for these
quantities were presented and numerical results provided from evaluations for cer-
tain physical parameters.

In their second paper [70], Angulo and Chang employed a variational expression
for the surface wave terminal admittance located at the end of a semi-infinite di-
electric rod. The investigation was motivated by an interest in the amount of power
reflected as surface wave from an abrupt junction on a dielectric cylinder. The for-
mulation proceeded by obtain?ng field expressions for regions on both sides of the
junction. The continuity of the electric and magnetic fields at the junction was em-

ployed in a variational expression. One trial field was explored, the field of a TMpo;
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surface wave, and graphical results were provided for the terminal admittance.

Duncan [71] presented a comprehensive investigation of TMy; surface wave exci-
tation on an infinitely long dielectric circular cylinder. Specifically, he investigated
the efficiency with which this surface wave could be excited when using a mag-
netic current ring as a launcher. The radius of the current ring was set to a value
less than the radius of the rod so that the current ring appears imbedded within
the dielectric rod. The author providea a complete account of the solution for the
¢ component of the magnetic field including a discussion on the inclusion of the
launcher as a boundary condition in the problem. The inverse Fourier transform
operator, which is a required step in the solution, was cast in terms of a contour
integral. The evaluation of this integral in the complex plane was reviewed. The
residues from the singularities of the integrand were identified as the surface wave
contributions to the total field. It was indicated that the evaluation of the in-
tegral around the branch cut, which is seen in solutions to problems of this type,
would yield the so-called radiation field. The branch cut integration was further ap-
proximated by the technique of steepest descent to provide closed form expressions
for the far field radiation characteristics of the structure. Poynting integrals were
employed to calculate the power in the radiation field and the surface wave. A com-
parison of the two provided an excitation efficiency factor for the magnetic current
ring. An extensive experimental program was conducted to verify the theoretical
results. In the experiments, a dielectric rod was mounted against an annular slot
antenna on one end and a short circuiting plate on the other end. The annular slot
was fed with a coaxial transition so that the ¢ independance could be maintained.
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Additionally, a small polystyrene ring was positioned in the transition so that the
susceptance of the slot could be tuned out. The magnitude of the surface wave
was then determined by measuring the reflected wave on the coaxial line connected
to the transition. The experimental and theoretical results consistently agreed to
Wi.thin ten percent. Additional experimental investigations were conducted where
the size of the terminating ground plane and the slot ground plane were varied.
These parameters had no effect on the final results.

Chu and Kilcoyne [72] presented a short note on the excitation of a dielectric
rod antenna with a helix. It was observed that the field configuration for two HE;;
surface wave modes in time quadrature was similar to the field configuration of a
helical antenna operating in axial mode. Preliminary experimental results for the
axial ratio and beamwidth for this type of antenna were presented.

McLean and Williams [73] reported on an experimental investigation of the
radiation characteristics of dielectric rod antennas of different lengths and radius.
The objective of this investigation was to identify the antenna’s bandwidth with
respect to power gain. Additionally, a new type of feed was introduced which,
the authors contend, produces a wider bandwidth than the conventional cup and
probe feed originally introduced by Kiely [74]. The two significant conclusions that
arise from this study are that, first, the new feed essentially doubles the bandwidth
of the dielectric rod antenna and, second, as the radius of the rod decreases, the
radiation characteristics of the structure, that is, rod plus feed, take on the radiation
characteristics of the feed alone.

James [75] provided a detailed discussion on the radiation mechanism of the
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dielectric rod antenna. His analysis supports the work reported by Brown and
Spector who postulated the dielectric rod antenna as a two element end fire radiator,
the first element being the surface wave launcher and the second element being the
aperture plane at the free end of the rod. Subsequently, the appproaches taken
by Horton and McKinney, Bouix, and Fradin, which modelled the antenna as a
leaky wave structure, were discounted. James developed equations for the radiated
electric field components based upon the vector Kirchoff integral. It is important to
note that the equivalent sources employed in the radiation integrals are located at
the two elements indicated above. The alleged failure of the previous theories lies
in the fact that the vector nature of the fields was not included in the analysis, thus
leading the previous investigators to the incorrent conclusion that energy radiates
from the sides of the cylinder. James then presented an extensive comparison of
numerical results obtained from his analysis to previously reported experimental
results. The paper concludes with some practical considerations concerning the

tapered dielectric rod antenna.

In a subsequent short paper, Andersen [76] disputed the claim made by James
that the radiation integrals involved in his analysis of the dielectric rod antenné,
should be taken only over carefully selected surfaces, those surfaces being ones over
which appropriate equivalent current distributions are found. Andersen suggested
that the radiation integrals should be taken over all surfaces of the antenna. Those
surfaces which do not hold appropriate equivalent current distributions would not
contribute to the radiation pattern. In response to this, James [77] showed that the
formal evaluation of the radiation integral over certain surfaces would not yield a
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zero result. The integral over these particular surfaces would in fact be improper.
James then re-stated his original contention and the matter was dropped.

James also received criticism from Kleinburg [78] for remarks made in the orig-
inal paper on the dielectric rod. Kleinburg brought forward two points for consid-
eration. First, the fleld expressions presented by James for the surface wave may
be extended to the case of general azimuthal dependance. Second, he suggested
that the method employed by Duncan could be used to evaluate the launching effi-
ciency for the feed and thus incorporate this into the analysis of the dielectric rod.
This second suggestion would alleviate the requirement to guess at the percentage
amount of power which is being radiated by the feed and provide for a more accurate
estimate of the interaction between the feed and aperture plane radiation patterns.
James accepted the first suggestion without hesitation but was somewhat sceptical
of the accuracy with which measurements could be made.

In concluding this interesting exchange in the literature, James presented a final
note on the analysis of the dielectric rod [79]. He re-emphasized his ideas presented
in the original analysis. However, of special interest, he alluded to a new item which,
until this time, had not been considered. He postulated the existance of a leaky
wave field structure in the vicinity of the feed. Although not discussed in detail, his
remarks concerning such a field structure are significant.

In previous reports on the analysis of radiation characteristics for dielectric rod
antennas, the feed radiation pattern was taken to be an amplitude reduced version
of the pattern resulting from the feed antenna located by itself in free space. The

inclusion of the rod was considered to have negligible impact upon the feed’s radi-
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ation pattern. Blakey [80] provided a refinement to this approach. He developed
an amplitude and phase correction factor which accommodated the presence of the
dielectric rod. This correction was based upon a geometrical optics interpretation
of the plane wave spectral representation for the field components. Numerical re-
sults were presented for the correction factors but no experimental validation was
provided.

Hastings [81] presented a short paper describing how a dielectric rod may be
loaded with an axially loc.ated wire to reduce its scattering cross section. The
technique described has been applied to antenna structures where scattering off
the dielectric support rods negatively affected the radiation characteristics of the
antenna itself. Desigﬁ equations were given, based upon static circuit parameters,
and preliminary numerical results, confirmed by experimental observations, were
presented.

Smits [82] provided a short application note which outlined the use of a choke
at the feed of a dielectric rod antenna to reduce far out sidelobes in the radiation
pattern. Experimental results were reported which indicated that the choke provides
greater than 20 dB far out sidelobe suppression for an aluminum oxide dielectric
rod antenna employed as a seeker in a missle application.

Neumann [83] reported on the development of simplified design equations for a
dielectric rod antenna which are derived from Brown and Spector’s results. Equa-
tions for the transverse field extent, directive gain, and half power beamwidth were
provided. Numerical results, obtained from these equations, were compared to ex-
perimental results. An interesting point was found in the experimental procedure.
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The radiation from the feed was blocked by irises so that the radiation pattern from
the terminal end only could be observed.

Yaghjian and Kornhauser [84] adopted an interesting perspective in their anal-
ysis of the dielectric rod antenna. Their investigation was concerned with the near
and far field structure associated with a dielectric rod excited by the HE;; surface
wave. Their analysis is interesting because the antenna is modelled inside a large
circular waveguide. This approach leads to a denumerably infinite set of transverse
eigenvalues instead of the normal continuous spectra. To attain free space condi-
tions, the radius of the waveguide is set to infinity. Modal solutions for fields on
both sides of the discontinuity, the free end of the dielectric rod, were formulated.
The associated expansion co-efficients were evaluated through a power orthogonal-
ity relation and a numerical procedure. The evaluation of the co-efficients for the
fields in the forward half space then led to computation of the far field character-
istics and radiation efficiency. The analysis presented in this paper was validated
through comparisons with previously published results.

In a second paper on the subject, Blakey [85] reported on the experimental
evaluation of the radiation characteristics of a composite dielectric rod antenna.
This cylindrical dielectric structure was constructed from polystyrene with embed-
ded teflon annular segments. Under certain conditions, this new antenna displayed
narrower main beam lobe and sidelobe structure that did a uniform dielectric rod
under the same conditions. Blakey suggested that the improved performance might
arise from the annular segment structure’s affect upon the direct radiation from the

feed.
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Blakey [86] subsequently proposed a scattering theory approach for the eval-
uation of the radiation characteristics of certain dielectric rod antennas which are
excited by TMo; surface waves. An integral equation relating incident and scattered
fields on a dielectric structure was specialized to the geometry involved. An angular
spectra representation for the scattered field was then introduced into the integral
equation. The integration over the surface of the cylinder was performed through
a change in the order of integration with respect to the spectral variable, resulting
in spectral representations for the scattered fields. These spectral representations
were numerically evaluated to obtain the desired results. The numerical data was
then compared to previously published results for validation.

Gupta and Bahl [87] presented an overview of the design considerations for leaky
wave antennas of arbitrary geometry. Of particular interest were the two methods
used for the evaluation of the leaky wave radiation characteristics of such antenna,
the steepest descent method and the Kirchoff integral method. The steepest descent
method employs wave equation solutions in transformed space, solves the expansion
co-efficients through the boundary conditions, and then applies the steepest descent
approximation to the Fourier integrals to obtain the far field radiation characteris-
tics for the antenna. The Kirchoff integral method establishes an equivalent current
distribution on the surface of the cylinder and computes the radiation characteris-
tics with the appropriate integral expression. The Kirchoff integral method requires
a priori knowledge of the leaky wave pole location, this pole describes the propa-
gation constants for the leaky wave, whereas the steepest descent technique does
not. Additionally, the Kirchoff integral technique may handle only one propagating
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mode at a time where the steepest descent technique can handle all modes simulta-
neously. This discussion is of particular significance to the investigation of the loop
antenna on a dielectric cylinder because, as will be seen later, there is debate in the
literature on the significance of the leaky wave pole locations on the steepest descent
approximations to the field equations. Gupta and Bahl infer that the steepest de-
scent technique is the method of choice. They provide closed form equations for the
leaky wave radiation patterns, beamwidths, sidelobe levels, radiation efficiency, and
pattern - scan frequency dependance for the general class of leaky wave structures.

Ittipiboon, Shafai, and Bridges [88] present an experimental investigation of a
short dielectric rod antenna which is intended to be used as a feed for a paraboloidal
reflector. Results were presented for the E and H plane radiation characteristics,
from which the pattern beamwidth was determined. Associated cross-polarization
patterns were also provided. Ittipiboon et al suggest that an experimental opti-
mization of this antenna would make its performance comparable to a corrugated
conical horn for thbe intended applications and that it may be manufactured at a
fraction of the cost.

Vasil’yev, Sedel’nikova, and Seregina [89] considered the non-symmetrical exci-
tation of a dielectric rod by an electric dipole source positioned perpendicular to the
rod axis. An integral equation approach was employed to determine the equivalent
magnetic current distribution on the rod surface, and from these distributions, the
radiation characteristics were obtained. Through this analysis, Vasil’yev et al were
able to identify the currents associated with the incident and reflected surface waves
and the currents associated with radiation at the discontinuities. From the vari-
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ous currents, partial radiation patterns were computed. The currents which most
significantly affect the radiation pattern were identified. The partial patterns were
then superposed to obtain the final results.

Finally, Kishk and Shafai [90] reported on a numerical investigation of the radi-
ation characteristics of a short dielectric rod antenna. The analysis was performed
with the aid of a moment method solution to a set of integral equations. Results for
co- and cross- polar radiation characteristics for a number of antenna parameters

were presented.

Guiding Properties of Circular Dielectric Rods

An important aspect in the analysis of the loop antenna situated coaxially on a
dielectric cylinder is the generation of surface waves. These waves will have a
significant impact upon the input impedance of the loop, and to a lesser extent, upon
the low angle radiation characteristics of the loop. Because of their significance to
the stated problem, a review of the literature relevant to the topic of surface waves
on dielectric cylinders is appropriate.

Elsasser [91] and Chandler [92] appear to be the first investigators to consider
the circular dielectric cylinder as a device for guiding electromagntic energy. El-
sasser developed the by now well known transcendental eigenvalue equation for the

propagation constant of the guided wave:
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where p = 1/k? — B2 a; q = /B2 — k2 a; k; is the wavenumber in the dielectric
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material, k, is the free space wavenumber, § is the propagation constant of the
guided wave, a is the radius of the dielectric cylinder, J,,(e) and K,,(e) are Bessel
functions of the first and modified second kind respectively, and the prime denotes
differentiation with respect to the argument of the function.

Elsasser obtained this equation by enforcing the appropriate boundary condi-
tions and the wave equation solution separability conditions on the eigenfunction
solutions for the geometry involved. Such eigenfunction solutions may be found, for
example, in Schelkenoff [93]. From this equation, Elsasser computed propagation
constants for the TEqy, TMy;, and HE;; waves travelling on cylinders of various
radii. These numerical results indicated two things. First, that the TEy; and TMg;
waves could not propagate on rods which had a radius smaller than a certain crit-
ical value, a cutoff radius. Second, the HE11 wave, or dipole surface wave would
propagate on rods of arbitrarily small radius. There appeared to be no cutoff ra-
dius for the HE;; wave. These results have found many applications in the areas
of fibre-optic cables and dielectric rod antennas. Elsasser’s numerical results have
since been published in graphical form [94],[95].

Elsasser also derived an equation to predict the attenuation of a surface wave as
it propagates along a cylinder where the attenuation is due to dielectric loss. This
equation was derived from the Poynting vector components which describe power
flow in the axial direction.

Chandler performed a number of experiments to verify Elsasser’s computations.
He deployed a section of dielectric rod in an open frame and configured the appa-
ratus as a resonant cavity. The determination of resonant frequency and cavity Q
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provided the required information to evaluate the propagation constant and the at-
tenuation of the wave on the dielectric rod. It was interesting to note that Chandler
used a rectangular waveguide operating in TEgy; mode to launch the surface wave
onto the dielectric rod.

Clarricoats [96] and Gillespie [97] considered the propagation of energy along a
dielectric cylinder using a slightly different formulation. Clarricoats extended the
analysis by including the non free space permeability of the dielectric material. He
also employed the Hankel function, second kind, with imaginary argument, to de-
scribe the field’s radial distribution in the external region. In previous formulations,
the modified Bessel function, second kind, real argument, had been employed. He
presented a graphical solution for the propagation constants of the HE;; surface
wave under various conditions and he evaluated the relative difference in power
flow between the interior and exterior regions of the guide. This last investigation
was based upon a Poynting vector approach and the results indicated that the ratio
of power flow inside the rod to power flow outside the rod decreased to zero as the
rod radius decreased to zero, for the HE;; wave. For other guided waves, the ratio
was found to be finite for all values of rod radius. Gillespie added an interesting
point to the discussion by indicating that in some situations, at certain radial dis-
tances from the guide axis, the power flow would be negative, or backwards. He
contended, however, that the total power flow would be positive, as expected.

Many investigators have evaluated the eigenvalue equation for particular ap-
plications. However, it appears that a complete study of this equation has not

been undertaken, especially for the case of a dielectric cylinder with high dielectric
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constant.

Biernson and Kinsley [98] employed the dielectric waveguide as a model for
the retinal cone of the human eye. They reported that previous investigators had
employed this model to explain the phenomenon of colour blindness. It had been
suggested that certain optical frequencies are below the cut-off frequency for sur-
face wave propagation along the retinal cones. Thus, the colours associated with
these frequencies are not perceived by the human mechanism. In their investigation,
Biernson and Kinsley determined the propagation velocities for the twelve lowest
order surface wave modes for conditions of low dielectric constant. Although origi-
nally intended for biomedical applications, they suggested that the results may be
of some value to the antenna community. These results were presented in terms of
a normalized frequency parameter which could, in general, be useful. However, the
highest dielectric constant considered was 1.5. The numerical data was obtained
frong Elsasser’s eigenvalue equation. This equation was also simplified to yield ex-
pressions for the cut-off frequency for certain rod dimensions. These simplified
equations came under the scrutiny of Diament and Schlesinger [99], who claimed
that the equations were not valid for cases where the dielectric constant was a real-
istic value. Biernson and Kinsley responded to these comments by indicating that
their data had been obtained from the exact equations and that, although there
may have been a sfnall error in the text, the final results were valid.

Layburn [100] provided graphical results for the propagation velocity and group
delay for low order modes on a dielectric waveguide. The application in this instance
was to fibre-optic cable. Layburn employed a slightly different formulation for the
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problem which yielded results in an argument which was normalized with respect
to the dielectric constant of the rod. Unfortunately, again results were provided
for only low dielectric constant materials. The equation for the group delay was
obtained by simply differentiating both sides of the eigenvalue equation with respect
to the free space wavenumber. Although no numerical data was reported, Layburn
indicated that the present results could be used to predict group delay due to multi-
mode propagation.

From the analysis of surface wave propagation on a dielectric rod, attention
turned to the more general problem of the continuous mode spectrum for the dielec-
tric rod. This principle incorporates both radiation and surface wave propagation
into one general formulation. Specifically, any radiation which occurs from the rod
is said to be the result of a continuum of radiation modes which propagate with
a velocity greater than the free space propagation velocity. They are said to be
so-called fast waves. The trapped waves which travel along the rod are said to be
characterized by a discrete set of surface wave modes which propagate with a veloc-
ity less than the free space propagation velocity. These are said to be the so-called
slow waves.

Snyder [101] provided a detailed discussion on the continuous mode spectrum
of the circular dielectric rod. His analysis dealt with the scattering of oblique
incidence plane waves from such a rod. His formulation provided wave equation
solutions for both the internal and external regions of the rod. The external region
solution contained both the incident and scattered field as a combination of standing
and outward travelling wave solutions. He carefully delineated the various spectral
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regions where discrete surface modes, propagating continuous modes and cut-off
continuous modes could exist. He further suggested that individual radiating modes
could be excited by controlling the angle of oblique incidence of the plane wave
excitation. He concluded his discussion by providing some approximate equations,
intended for fibre-optic applications, which would facilitate the computation of the
field quantities.

Yip [102] provided an extensive report on the launching of the HE;; surface
wave mode by a point electric dipole transversely oriented on the cylinder axis of
an infinitely long dielectric cylinder. The utility of this paper lies in the detailed and
explicit statement of the method of solution for problems of this nature. The non-
homogeneous wave equations were solved by first obtaining a Fourier transform
along the axial co-ordinate and a Fourier series along the azimuthal co-ordinate.
Evaluation of the fields involved an integration around the branch cut and evaluation
of the residues at the surface wave poles. Yip made reference to the saddle point
technique as a means to evaluate the branch cut integral. However, the saddle
point technique was not used in this paper. Yip evaluated the radiation resistance
through a determination of the space wave power. The space wave power was
determined through a Poynting vector integration over the infinitely long radial
surface. By including the Fourier transformed field expressions in the Poynting
~ integral, Yip was then able to obtain a simplified expression for the radiated power
through Parseval’s theorem. The integrand of this simplified expression provided an
indication of the power per unit solid angle which is radiated through the Poynting
surface. Thus, it was this integrand which was numerically evaluated by Yip to
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obtain the radiation characteristics of the structure under consideration. From this
investigation, the amplitude and power of the surface wave was determined, and
an evaluation of the radiation characteristics of the structure was obtained. In
conclusion, Yip computed the launching efficiency of the surface wave by relating
the power in the surface wave to the power in the space wave plus surface wave.

In a subsequent paper, Yip [103] determined the launching efficiency of the HEq;
mode on a dielectric tube. The formulation employed in this paper was identical to
that of the previous paper except for the accommodation of three regions instead
of two. Of particular interest in this paper, however, was the detailed discussion
concerning the evaluation of the residues of the surface wave poles. In the previous
paper, it was simply stated that the residues were obtained. In this paper, the
residues were obtained analytically by L’Hopital’s rule and the eigenvalue equation
for the surface wave modes.

Further to the discussion on the continuous mode spectrum for the dielectric
rod, reports on the developments in the search for the so-called leaky wave poles
have appeared. While many investigators have employed the modal representations
reviewed so far, concern has been raised regarding the possibility of complex solu-
tions, that is, solutions involving a complex variable, for the eigenvalue equation.
The concern is raised because of the fact that these poles may be crossed when sim-
plifying field expressions in the far fleld region with the steepest descent technique.
Originally the idea of a leaky wave pole or single leaky wave mode was used in the
analysis of so-called leaky wave antennas. Such antennas were essentially closed
wave guiding structures which were perturbed with perforated boundaries. The ax-
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ial propagation velocity for the waveguide mode was presented as a complex number
so that both the phase constant and the attenuation of the wave as it leaked from
the guide could be characterized in the axial direction. It has been suggested that
the leaky wave solutions for open waveguide systems may provide additional contri-
butions to the radiation pattern over limited angular sectors. Although it appears
that no evaluation of the leaky wave pole contribution for a particular geometry
has been reported, there has been some success in locating the pole locations in the
complex plane.

Arnbak [104] and James [105] appear to be the first investigators to report nu-
merical results for complex solutions to the eigenvalue equation for the dielectric
cylinder. Arnbak considered the zero order surface wave mode only. For this con-
dition, he examined the split dispersion equations in the region of small argument
for the Hankel functions involved. This was the region of greatest interest. He
employed small argument approximations for the cylinder functions and obtained a
simplified expression from which the leaky wave pole locations could be identified.
He briefly considered also the influence of losses on the positions of the ;->oles in the
complex plane. Arnbak suggested that a surface wave would be transformed into a
leaky wave as the excitation frequency of the field was decreased.

James further considered complex solutions to the eigenvalue equation. Of sig-
nificance was his investigation of the symmetry involved in the complex solutions.
In summary, he reported that pairs of complex solutions could be found to the
eigenvalue equation where the individual solutions were in adjacent quadrants of
the complex plane. He further indicated that the eigenvalue equation would take
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on a form containing first and second order Hankel functions, a form which is also
seen in the integration of the branch cut integral. This work may suggest that the
residues from the individual leaky wave poles may eliminate each other, leaving the
original steepest descent contribution as the only term which will yield the radiation
field.

Additional work on the location of complex solutions has been reported by
Veselov and Rayevskiy [106],[107]. In their first paper, a mathematical theorem is
provided by which the existance of a complex solution to the wave equation may
be proven. Of greater interest is the method by which they obtained the complex
solutions, which was the subject of the second paper. The eigenvalue equation was

recast in the form of a quadratic equation in terms of:

J (e, )

Pla,a) = To(er a)

Solutions for P(a, a) were determined by solving the resultant quadratic equations
and then determining « from P(a,a). Numerical results were provided which in-
dicated the trajectory of « in the complex plane under the influence of various
factors.

To conclude this section, attention is drawn to the work of King and Schlesinger
on a structure referred to as the dielectric image line. A dielectric image line is
an open guiding structure which consists of a half round dielectric rod mounted on
a ground plane. The electromagnetic field structure of the HEy; surface wave is
observed to be the same for both conventional dielectric rods and image lines. The
image line provides some experimental advantage in the observation of such field
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structures and, therefore, deserves mention in this discussion.

King and Schlesinger [108] and Schlesinger and King [109] appear to be the first
inveétigators to consider the propagation of surface waves along a dielectric image
line. They employed Elsasser’s eigenvalue equation to determine the propagation
velocity for the HE;; surface wave. Of particular interest was the attenuation per
unit length observed on this type of line. King and Schlesinger investigated loss
due to the dielectric material, ohmic loss due to the ground plane, and radiation
loss. Theoretical evaluations for the dielectric and ohmic loss were performed using
a technique similar to that reported by Elsasser, while the radiation loss due to
perturbations on the line was evaluated experimentally.

The outstanding result of these investigations was that the ohmic loss was in-
significant compared to the dielectric loss, even for the case of when the ground

plane was composed of nichrome plate.



Chapter 3

Analytical Formulation

Introduction

The electromagnetic characteristics of a loop antenna positioned coaxially on the
surface of an infinitely long dielectric circular cylinder may be divided into three
main categories: radiation, surface wave, and input impedance. The evaluation of
these characteristics requires an analysis of the electromagnetic fields which result
from the current distribution on the loop. This chapter outlines the formulation
employed for the analysis of these fields and the various extensions required to

evaluate the characteristics of interest.

Formulation and Solution of Equations for the Fields

Figure 3.01 illustrates the loop antenna positioned coaxially on the infinitely long
dielectric circular cylinder. The cylinder is denoted as Region I, with radius p = a,
dielectric constant €;, extending from —oo to co along the z axis. Region II is free
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space. The antenna’s current distribution, f(¢)é(z), is shown at p = a, z = 0,
in the cylindrical co-ordinate system (p, @, z). Superimposed upon the cylindrical
co-ordinate system is the spherical co-ordinate system (r, 8, ¢) which is used in the
evaluation of the loop’s radiation characteristics. A harmonic time dependance of
the form e’“* is assumed.

The antenna itself is modelled using the thin wire approximation [110]. This
approximation presumes that the antenna current exists only along the axis of the
conductor. The radius of the conductor, therefore, becomes an important parameter
in evaluating antenna characteristics. A common technique for specifying loop
conductor radius is thé loop antenna parameter . Q = 2In(2wa/b). The loop
antenna radius a and conductor radius b are shown in Figure 3.01

The loop antenna is éxcited by a rectangular pulse function, 1.0 volt amplitude.
The angular extent of this function is 5 degrees from -2.5 to 2.5 along the circumfer-
ence of the loop. The length of the function is obtained by translating the angular
extent along the circle at p = a. From the applied voltage and pulse function length,
the ¢ component of the electric field which excites the antenna, is determined. The
feedpoint details are also shown in Figure 3.01.

As indicated previously, the first step required in the evaluation of the antenna’s
various characteristics is the determination of the electromagnetic fields resulting
from the current distribution on the loop. There are many different approaches
to the formulation of equations for this type of problem. All of them, in general,
lead to the formulation of a wave equation for functions which describe the actual

fields under consideration or potential functions from which the field expressions
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may be obtained. Illustrative examples of three different approaches found in the
literature are .Yip [102], who formulated scalar wave equations directly in terms of
the axial components of the electric and magnetic field vectors E and H, Harrington
[111], who formulated scalar wave equations in terms of the axial components of the
electric and magnetic vector potentials A and F, and Wait [95], who formulated
scalar wave equations in terms of the axial components of the Hertz electric and
magnetic vector potentials IT and IT*. In this last case, the axial components are
known as the scalar Debye potentials U and V. The formulation approach employed

for this research effort follows Wait.

The vector wave equation for the Hertz vector potentials may be obtained di-

rectly from Maxwell’s equations. By defining the electric Hertz vector as follows:
H = (0 + jwe) curl II (3.1)
the following homogeneous vector wave equation may be obtained:

curl curl TI — grad div IT + +*T1 = 0 (3.2)

where ¥* = jwpu (0 + jwe). Similar equations are available for TT*.

The scalar Debye potentials are defined as follows:

II = (0,0,U) (3.3)

IT" = (0,0,V)

From this definition, it may be seen that the scalar potential functions U and
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Figure 3.01 Problem Geometry

56



Re>0 Re >0
~
fle <0 Re <0
k2,Im >0
Re>0 Re>0
Re<0 Re <0

JZ()dA = —2mj Res|f, zi] — [5(-)dA

A2, lower sheet

Re <0 Re <0
Re >0 Re>0 %
k2, Im <0
Re <0 Re <0
Re>0 Re >0
A

sur face wave poles

Figure 3.02 Contour mapping for Integral Evaluation



V satisfy the following scalar homogeneous wave equation for a lossless medium:

U
(V2+52) =0 (3.4)
1%4
where
2 106 ( 0\ 18 &
V= 095 \"3p) T o5 T B2

and k? = w?pe.

From the above definitions and the following;:
E= (—72 + grad div ) IT — jwu curl IT* (8.5)

H= (~72 + grad div ) IT* + (o + jwe) curl I1 (3.6)

a set of equations may be obtained which relate the electric and magnetic field

components to the Debye potentials:

*U  jwudVv

E, = dpdz  p 04 (3.7)
8V jwedU
=508 T 5 99
_1ov L0V
* = 50g02 1,
10V . 9U

* = ;&baz TJwe dp

82
E, = <k2 + 5;) U

62
H. —= 1,2 — |V
z = (]» -+ 2)

From these relations, the potential U may be referred to as the transverse magnetic

potential and V' may be referred to as the transverse electric potential.
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Solutions for the potential functions are obtained for Region I and Region II,
shown in Figure 3.01, by Fourier transforming the wave equations with respect to
the axial and azimuthal co-ordinates z and ¢. The transform with respect to z
produces a continuum of eigenvalues. The transform with respect to ¢ produces a
denumerably infinite set of eigenvalues because of the periodicity of the structure.
This procedure of transforming wave equations with respect to co-ordinates which
describe surfaces of separation is very general and may be seen in the solution of

many wave equation problems involving open geometries.

A general two dimensional transform pair [112] may be introduced which facili-
tates the solution of the problem:

f= 3 e [T g (e ar (3.8)

m=-—-00

1 2r oo L
gm(X) = ﬁ/o /_oo f(gb,z)e”\ze’m‘bdzdé

The resulting transformed wave equations for the scalar potentials will be in the
form of Bessel’s differential equation. Appropriate cylinder functions must be chosen
to meet the boundary conditions imposed upon the radial co-ordinate solution. The
boundary conditions are, in Region I, the field should appear to be of é standing
wave nature and must be finite at p = 0. In Region II, the field should appear to

be of an outward travelling wave nature and must tend to zero as p — co.

From these considerations, general solutions for the Debye potentials in Region
I and Region II may be written as follows:
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U= 3 eim / 7 AL (O)Tm(y/B2 = N2p)em e dx (3.9)

m—=—0o0

Vi= 3 emime / T AR VT (R = X2p)e oA (3.10)

m=-—0d

U= Y. e [ BLOVH@ (k2 = X2p)ed (3.11)

m=—00

Vir= 3 emimd / * BE(HO(/E2 — A2p)e=¥dA (3.12)

m=—o0

where Ur and Uy are the transverse magnetic potential functions for Region I and
Region II respectively. V7 and Vi are the transverse electric potential functions for
Region I and Region II respectively. The expansion co-efficients A%,(\), AX())
B¢ (X), and B% () are determined from appropriate boundary conditions at p = a.
The superscripts e and & on the co-efficients re-emphasize the connection between
each co-efficient and its corresponding potential function. The co-efficients asso-
ciated with the transverse magnetic potential function U are identified with the
superscript e indicating that they are related to the axial component of the electric
field. Similarly, the co-efficients associated with the transverse electric potential
function V are identified with the superscript h indicating that they are related to
the axial component of the magnetic field. J,,(e) represents Bessel function first
kind, H?)(e) represents Hankel function second kind, k; and k, are the wavenum-
bers for Region I and Region II respectively, and m and X are the transformation
variables associated with the ¢ and z co-ordinates respectively.

Further to the discussion concerning the selection of appropriate cylinder func-
tions to meet the required boundary conditions on the radial co-ordinate, attention
must be drawn to the arguments of the Hankel functions which appear in the ex-
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pressions for the potential functions, and therefore the expressions for the electro-
magnetic fields, for Region II. The term (/k2 — A? establishes these arguments as
multiple branch complex valued functions of A where ) itself is also considered to
be a complex variable. The radiation boundary condition on the radial co-ordinate
is maintained when the Hankel function argument remains on the lower half of its
complex plane. A transformation of this restriction to the integration variable X
readily shows that the contour for the integrals in the potential functions must lie on
the lower sheet of the double sheet Riemann surface which represents the complex
plane for the variable A. Singularities will be observed along the real axis in the
interval defined by k; > |A| > k,. The nature of these singularities is the subject
of the investigation of surface wave behaviour. They are mentioned here, however,
because of their role in establishing the integration contour.

A recognition of the singularities and branch cuts for the Riemann surfaces in
the A domain leads to two approaches for the evaluation of the Fourier integrals
associated with the potential functions and field expressions. The first approach is
to integrate along the real A axis from —oo to co. This involves the determination
of the Cauchy Principle Value CPV of the integral and the residue contributions
arising from the surface wave singularities. Since the evaluation of the CPV is
performed, in general, through numerical quadrature, an estimate of the tail contri-
bution, the value of the integral from some large value to infinity, is also required.
The second approach involves the transformation of the integration contour along
the real A axis to an integration contour around the branch cuts plus a summation
of residues occuring from the singularities. This transformation is accomplished
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under Jordan’s lemma. The contour is closed in the lower half of the A complex
plane, for z > 0, to ensure convergence of the integral as A\ approaches infinity.
Tamir and Oliner [113],[114] refer to the evaluation of such integrals by this tech-
nique as the spectral represegtation approach. Note that in the second approach
a calculation of the integral’s CPV is not required. However, a tail contribution
estimatbe is still needed. Figure 3.02 provides a graphical step-by-step development
of the integration contour, starting with the restricted Hankel argument domain
and leading through to the two approaches discussed here.

For this research effort, the first approach proved to be of greater advantage.
As will be seen, the cylinder functions become exponential in behaviour, for |A| >
k; along the real X axis. This leads to easier calculation and tail contribution
estimation. In the second approach, the cylinder functions remain oscillating for
large argument values. This leads to greater difficulties in calculating the integrals.

From the solutions for the potential functions, and the foregoing discussion con-
cerning the selection of appropriate integration contour, equations may be obtained

for all field components in Region I and Region II:

B, = 3 e | " 45,0000 — 45, (\) Q0] e (3.13)

m=—oo

B, = Y cims / " [B2(N)S0s — BA(A)Q04] e

[ AR (V)05 + A%, (V)06] €A

oo

bt .
Hy = Z e~imé

Hy,= Y eim# /_ Bl + B5(\)820s] =

/
By = Y, e / )

m=—00

[ AL (NS00 — A% (X) 0] e~ dA

-0
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Byp= 3 eimé [ [Bh)@u = Bo ()] e7ax

mM=—00

H¢I = Z 6—-Jm¢/ ()\)ng - Avl}n()‘)‘Q‘l4] e"j}‘zd)\

m=-—0co

H¢II = Z e‘jm‘ﬁ /Oo [B;(A)le - B,’;()\)le] e_jAsz

; e=im / A% (N)SureP=d)
E., = Z emimd / B2 (\)hge— 2 d)
i e=imd /_ Z AR (\)Qu7e=2dA
H,= 3 eim /_ B (\)hse~*dA

m=—0cQ

As indicated earlier, the expansion co-efficients are determined from the bound-
ary conditions at p = a. Specifically, the tangential components of the electric field
are continuous across the boundary. The axial component of the magnetic field is
discontinuous across the boundary by an amount equal to the ¢ component of the
surface current distribution on the boundary, which, in this investigation, is the

current distribution on the loop antenna.

Es, = E,, (3.14)
By = Eyyy
Hy, = Hy,,

H,, —H, =J4

The vector nature of Jy, the current distribution on the loop, is indicated in Figure

3.01.
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To facilitate the solution of the expansion co-eficients, a transformed represen-

tation for the surface current is introduced:

To(d2)= 3 emims /_o;fcm()\)e"j’\sz (3.15)

1 2T poo . .
- jm¢ iz
Em(A) = o /0 /—oo Jo(d,2)e’™* e’ dzde

For the boundary conditions to hold for all values of ¢ and z, the following equations

must be satisfield at p = a.
Al (N0 — AZ (M) Q10 = BE(M)Qy1 — BE(M)42 (3.16)

A5 (M7 = By (M)Ss
AL (N)Quz — AL (N = BE(M\)Q1s — BE (M6
AR (N7 — BE(N) s = km())

As indicated earlier, the current distribution is presumed to be of the form f(¢)é(z).
This removes the A dependance from the variable «,,.
From this set of simultaneous equations, solutions for the expansion co-efficients

may be found as follows:

JWhoKm¥g [‘1’3‘1’6 - kI’4‘1’5]

An(A) = A (3.17)
Ah (/\) _ Km {\Ife (\:[12\1;4 - ‘I’l‘l"s) — kz\lls (ET\IJZIIIS —_ \111\115)]
" A |
Jwpotim ¥y [¥3We — Uy U]
B (M) =
n(Y) X
Bh ()\) . Km [@4 (QI2\I/4 — \IJI\I’(;) — kg\IIB (ET\II.Z\IJS — ‘1’1\115)]
T A
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where
A = Lf 6,003 — Uy U] [UyUg — U1 Ws] + [Uoly — U U] [T g — T Ty)

For k, > A\

Ty = (k= A)Ia(\/kE - X2a)

U, = (k2= \)HP(/k2 - X2a)

Py = %\/m[*}m—l(\/ﬂ@—Jmﬂ(\/ﬂa)]

v, = ——Jm(\/ma)

T, = %\/—— [H(” (k2 — X2a) Hﬁfil(\/kg——va)]
%::%ﬂ%ﬁ@j%

Qoy = Qos:“_]i - [m 1(\/"92 A2p) — m+1(\/k?—>\zp)]

Q%:§m_;A MWHMFTM mg@@:@ﬂ
i = =LHD( /6 0%)

Qoo = ZZ5,.(/k2 —22p)

Qo5 = “—%—Hi,%)(Wp)

o9 = JWQMO\/—_[ me1(y/B2 = 22p) - m+1(\/ki2—:/\~20)}
szsmz—ﬂ&ﬁ_ﬁ

= 2 i [~ ) ()
Qm:§mz—ﬂ%ﬁ§j%

s = *"j'g'e—z\/—‘{ me1 (/B2 = N2p) — m+1(\/7:i2"—)‘2/))]
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915

7

s

L2t i3 (B (B = Nop) — Hsa (/B2 — o)
(8 = XY/ = )
8 = XDk = 3p)

For A > k,, terms which contain Hankel functions, second kind, are modified as

follows:

¥,

s

e

g

For A > k;,

T =

\113 =

— 208 — KK (/3 — Ra)

—lj \/W[ m—ﬂ\/ﬂa) +Km+1(\/ma)]
jm+1Z K (/X2 = k2a)

Qo = _Ajm\/m [Knes (2 = 120) + Ko (32— )]

meﬂo

———Kn(\/A? = kZp)

m+12m“’6° Kon(y/A% — k2p)

w—jmm [Kna (0 = R2p) + K/~ k20|
Qe = m+12m/\K (\/ﬁl))

_w;ojm \/m [Km_l(\/p__;{gp) + Km+1(\//\—2—_k§p)]
252 — 2)Kon(/N7 = R20)

terms which contain Bessel functions, first kind, are modified as follows:

51O = )L (3% = k)
% Fm(=1)™ /a2 — k2 [Im_l(\//\Q — £2a) + Ly (/A2 — kga)]
mA
_lsme  1\m 2 _ L2
—J (=1)" I/ A? — kZa)
A
o5 = 57 L™/ N = 12 [Lnca (Y3 = B20) + Tnia (VN0 — 420)
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Qoz = m‘;“"jm(—l)ﬂm(\/v—kzp)

Qos = T;‘}ﬁjm<—1>m1m<\/xﬁ—k3p>

Quy = %jmﬂ(—l)m\/m [Im_l(m;)) + Im+1(mp)]
Qo = Qu= mT/\jm(—l)mIm(V AZ — kzzp)

Qs = L—‘g—éj’"“(——1)’”“\/Aszi2 [Im—l(\/mp) + Im+1(mp)]

Qir = J™(=1)"P (N = kD)L (/A2 — k2p)

Ln(e) and Ky(e) are modified Bessel functions, first and second kind, respectively.

Input Impedance and Current Distribution

The calculation of input impedance and current distribution for the loop antenna
follows a general integral equation procedure. An equation is formulated which
relates the ¢ component of the electric field to the ¢ directed current distribution
on the antenna. The equation for Ey,, from (3.13), at z = 0, is employed:

Byp= > e [~ [BA(\)Qn — B (M) d (3.18)

m=-0co

As may be seen in (3.17), the ) independant variable k,, appears in both terms
Bl (X) and Bg,(\). This term may be taken outside the integral to obtain a gener-

alized expression:

Byy= S eimb / ~ I(n)d (3.19)

m=-—00 -
This expression may now be employed to relate the electric field on the surface of the

antenna’s conductor to the current on the central axis of the antenna’s conductor.
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Further, the electric field may be represented as a Fourier series:

Ey(¢) = f_o“, Xme I (3.20)

1 2m .
— Jmé
xm == [ Ey(#)emds

Equation (3.20) then becomes:
Yo xme T = Y kpZme ™ (3.21)

The well known orthogonality of these functions in ¢ allows the introduction of the
modal parameters x,, as modal voltage, x, as modal current, and Z,, as modal

impedance. These parameters are related as follows:
PR— (3.22)

where Z,, = [% T(\)d\ as shown in (3.19). For the present investigation, a 1.0

volt rectangular pulse function was taken as the antenna’s excitation. Therefore:

By(4) = Trect(s) (3.23)

where V is the 1.0 volt excitation, [ is the length of the rectangular function, and
the rectangular function itself is taken from ¢ = —2.5° to +2.5°, as shown in Figure
3.01. The modal voltage for the present investigation may be defined as follows:

— T —
Xm_27rl m =0

(3.24)

o = 228 20
where 7 is the angular extent of the function, 0.0873 radians.
From the preceeding discussion, the modal current amplitudes, «,,, as deter-

mined in (3.22), may now be used to compute the current distribution on the loop
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through (3.15). The input impedance for the antenna is determined simply:

YV

Zin - =
J‘Zs $=0

(3.25)

The evaluation of the modal impedance terms Z,, requires careful consideration.
As indicated previously, singularities exist along the integration contour between
[A| =k, and |A| = k;. These singularities result from the excitation of hybrid mode

surface waves. The integral may be written in the form:
Zn=PYV. [ TIOdA £ jrRes[T(\), ] (3.26)

where the plus sign on the residue term is taken for A < 0 and the minus sign
for A > 0. T is defined in (3.19). The selection of the plus/minus sign results
from the sense in which the pole is circled on the integration contour. This detail is
shown in Figure 3.02. A, represents the singularity due to the surface wave and P.V.
represents Cauchy Principle Value. The locations of the singularities between k,
and k; may be obtained through the solution of the eigenvalue equation represented
by the term A in (3.17). By setting A = 0, an equation, originally presented by
Elsasser [91], may be obtained. Solutions for this equation represent the propagation
velocities of the various hybrid mode surface waves. Cutoff conditions for these
waves have been studied by Biernson and Kinsley [98]. The cutoff conditions are as

follows:

TEom/TMOm Jo(C\{m) =0

EH,.. Julam) =0 am >0

(3.27)
HElm Jl(am) =0
HE,.. Jo2(an)=0 n>2, ap >0
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where the a,, are the eigenvalues of the associated Bessel functions. Note that the
HE,;; surface wave is presumed to have a zero cutoff condition implying that it may
be excited on an infinitely small dielectric cylinder.

The evaluation of the residue term is easily accomplished with the aid of L’Hopital’s
rule and may be written as follows:

Res[Z(N), Xo] = %%\X))— = (3.28)

where N(A) and D()) are the numerator and denominator of the modal impedance
kernal. The prime indicates differentiation with respect to A

The denominator of the modal impedance kernal is the term A described above.
Its derivative with respect to A may be obtained through successive applications of

the chain rule.

D'(X) = E2(Exba + £aba) + Esto + Ens (3.29)

where

& = 6U,Ts— U,
& = U0+ 0T, — 0,0, — UL,

& = U0+ 6 U0, — U, ) — T,
£ = Upls— T, T

& = U0, — U, T

bo = U0, + U T — U, 0, — T,

& = U0, 4+ U0, — U0, — U0

£ = T 06— T,0,
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where the prime indicates differentiation with respect to \. Theterms ¥;, 1 =1...6
may be found in (3.17). The derivatives of these terms with respect to A are required

only for the region k, < |A| < k; and may be written as follows:

T = M k2 v[m (k2 = X2a) — ] m+1(\/'z;3_—,\2a)]—2AJm(\/X~§——,\2a)

T, = m+1A \/'_? [Km_l(ma)—}—KmH(ma)]
-——Km(ma)

T, = % [2Jm(\/1cz——va) —Jm_z(ma)—.]m+2(\/lc,?——/\2a)]
_ﬁ; [Jm_1<\/k?—~ﬁa> - JmH(Wa)]

2+/k2

U, o= — { m(\ k2 — X2a) — \/——7 [ m—-1(\/k? = A2a) — T s (1/ K2 — /\za)]}
T, = ;jm“ {923 [2Km(,/A2 — k2a) + Kmz(1/ A2 = £20) + Kpmya(1/ A2 — kfa)]
“Tj__kz. [Km_l(« /A2 — k2a) + Ky (1/ A2 — kEa)H

v = jm+1_27{_;_7’_ [Km( /\2 kga)
2
S [Km_l(\/A2 — k2a) + K1 (1/ A2 — kia)}
24/A% — k2

The convergence of the modal impedance integral is verified by obtaining a large
argument approximation, or tail contribution, for the P.V. ( See Appendix A ). The

tail contribution may be seen to take the form

[e) e“/\(P“a)
Zm,tail — T/ I\ dX (330)

where

iy -
T Wl 74 + im
veal 2 (e +1)k2p
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This is the well known exponential integral. Tabulated values for this function
appear in the literature [115]. It is interesting to note the location of the term
(p — a) in the above equation. The thickness of the loop conductor establishes the
rate of convergence of the modal impedance kernel as A — oo.

The contribution made by surface wave excitation and space wave radiation to
the real component of the loop’s input impedance is of interest in this research. The
real component of the P.V. result represents the contribution made by the space
wave radiation and the residue result represents the contribution made by surface
wave excitation.

In discussing surface wave excitation, it is interesting to note that an expansion
of the modal impedance kernel, for m = 0, verifies that the antenna is not capable
of exciting the zero order transverse magnetic modes TMy,,. For arbitrary m, the

modal impedance kernel may be expanded as follows:

j('_‘)ll'o [Cl [‘1’4(‘1’2‘1’4 - lI’1‘1’6) - kﬁll’s(er%% - ‘1’1‘1’5)] “ Cz‘l’l [‘1’3‘1’6 - ‘1’4‘115]]
A

OV
(3.31)

where

G = —;—ﬁ [ @ (k2 = 22p) — H”H(\/ﬂp)]
G = %’Hﬁf)(\/kﬁ—/\zp)

and the other terms are defined in (3.17). For m = 0, the terms ¥4, Tg and (9 are

equal to zero. Therefore, (3.31) becomes:

_jw#oC1k3‘I’3<€r‘I’2‘I’3 - lI’1‘1’5)

I(A\) =
) k2 (e, Uy ¥3 — Uy U ) (W05 — W, Us)

(3.32)
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which may be further reduced to

_jw/-LOCﬂI[B

(M) = U, Uy — U, s

(3.33)

The denominator of (3.33) may be readily cast into the eigenvalue equation for the
transverse electric TEq,, modes, as seen in [95]. This result may be verified by
examining the zero order field structure in the vicinity of the antenna. The z and p
components of the magnetic field and the ¢ component of the electric field will exist
due to the given current distribution. These field components comprise a transverse
electric propagating wave. The existance of the z component of the magnetic field
eliminates a transverse magnetic travelling wave.

For the special case of determining the input impedance of the antenna when the
cylinder’s dielectric constant ¢, = 1.0, the free space condition, a simplification of
the modal impedance kernel provides a slightly improved algorithm with respect to
computation time. This simplification again comes from the expansion of the modal
impedance kernel and the invocation of a Wronskian relation in its denominator.
When ¢, = 1.0, (3.31) becomes:

Jwpte [ [Ua( WUy — U1 Tg) — k2U3( 0,03 — U, T5)] — Cz_kl’l (T3P — U, T5)]
A

I(\) =
(3.34)

where A is modified as follows:
A =E[T0; — U, 05]% — [To0, — O, Tg)?

Through the use of the Wronskian [115]:

Tr1(YHO)(6) — T,u(e)HE (o) = L2

P4
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the following reductions are obtained:

[@2\1’4 — \IlllIJG] = 0
J32(k5 — %)

Ta
72mA

ma?

(U5 — 0, 0;5] =

[\113\116 — \114@5] -

A substitution of the above reductions into (3.34) yields a free space modal impedance

kernel:
—~T AW Lo [kg(l\lfg(kf —A?) + mT'\Cz‘IH]

2F2(K2 — N0 (3.35)

I()\)free space —

Surface Wave Characteristics

The electromagnetic fields resulting from the current distribution on the antenna
consist of two major components. The first component is related to radiation and
its associated near field structure. The second component is related to surface wave
excitation. As with the modal impedance calculations, which essentially considered
the ¢ vector component of the electric field in Region II, these two components are
readily identified in the calculation of the fields. The first component arises from
a calculation of the C.P.V. of the field expression and the second component arises
from the evaluation of the residues from the field expressions when A = 0.

The surface wave fields may be evaluated from a generalized expression for the

residue term:
P NXY

M
Fuurjuce = =2 3, ™3 1S
p=0

m=—M

(3.36)

A=Am,p

where Fiy,ace represents the total electromagnetic surface wave field vector com-
ponent under consideration. Fyurfece 1 the sum of the fields resulting from the
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excitation of all m x p surface waves which can exist for the given geometry. N(A)
and D()) are the associated numerator and denominator of the field expression.
The prime denotes differentiation with respect to A. A, denotes the particular
surface wave pole at which the residue is calculated. Cutoff conditions for sur-
face waves under given geometries are provided in (3.27). These cutoff conditions
establish values for M and P.

Surface wave power may be determined through an evaluation of the Poynting

vector over a cross-sectional plane at z = z,.

1 2 ra " "
Psu'rfa,ce = §R€ [./(; /{; (EPIH¢I - E¢I'Hp1)pdpd¢ + (337)

2w roo
/0 /a (EPIIH;II - E¢HH;”)pdpd¢]
where E,,, E,,,, Eq,, Ey,,, H,, H,,,, Hy,, and Hy,, are the surface wave field

components for Region I and Region II, obtained from (3.36). Re denotes real part

of a complex variable and the asterisk denotes complex conjugate.

Radiation Characteristics

The radiation characteristics of a loop antenna mounted on an infinitely long dielec-
tric circular cylinder are determined from the Region II field components. Further,
since E,, Fy, H,, and Hy contribute to radial power propagation, they are the only
components which require consideration.

Far field equations are obtained using a technique commonly referred to as the
method of steepest descent or saddle point method. This technique is employed in
an approximate sense to determine the 6 and ¢ spherical co-ordinate components of
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the radiated electric and magnetic fields from the cylindrical co-ordinate tangential

field expressions.

Appendix B contains a full development for the far field equations. The equa-

tions themselves are presented here:

97 k2 gin fe—ikeR . ]
EeII = J R, S]-.;zl e Z Bfn(ko cos 9)6—]111(45——2—) (3.38)
—924ik2sin 6 —jkoR o0 - i
Hg,, = J 081; e Z B,’;(ko cos H)G_Jm(¢_5) (3.39)
2 ko —jkoR o0 . | ]
J ; > {w/ian;(ko cos §)sin 6 — n};;:;)ng;(ko cos 5)] o—im(#=%)
(3.40)
—2jk,e kR 22 m cos 0 o
=— 5 > {weoBfn(ko cos @) sin§ — Rond B! (k, cos g):l e—im(¢=%)
(3.41)
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Chapter 4

Input Impedance and Current

Distribution

The input impedance and current distribution characteristics for a number of loop
antenna geometries have been evaluated from the formulation presented in Chapter
3. For each case of cylinder dielectric constant, €, = 1.0, 2.56, 5.6, and 9.0, two sets
of input impedance data were computed. The first data set was for loop parameter
{0 = 10 and the second data set was for loop parameter Q = 12. Because of
the extensive computer time required for the modal impedance calculations, only
twenty values of input impedance were obtained for each data set, over a range of
normalized loop circumference C/)\, from 0.1 to 2.0.

The evaluation of the loop antenna’s input impedance involved a four stage
process. First, all eigenvalues for fhe surface wave modes were determined from
(3.17) A = 0 through a direct search technique. Next, for a given geometry, modal
impedance terms were calculated from (3.21). Twenty terms of the Fourier series
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expansion in ¢, —19 < m < 19, were calculated for each data point in order to
verify convergence. Twenty terms proved to be more than satisfactory as will be
seen in the following results. As indicated by (3.36), the modal impedance terms
were calculated in two parts. The Cauchy Principle Value was evaluated using
Simpson’s rule numerical quadrature. The upper limit for the numerical evaluation
of the CPV was determined with the aid of (3.30). An arbitrarily large value of A
was selected which would yield a negligible tail contribution. This value was then
used in an evaluation of the integrand for confirmation. After confirmation, the
upper limit was employed in the actual calculation of the modal impedance term.
An approximation to the value of the CPV integral in the vicinity of a singularity
was obtained by first finding values of A\ which effectively straddled the singularity
and then using these values of A in a trapezoidal rule numerical quadrature. Note
that these values of A did not, in general, correspond to the sample points generated
by the Simpson’s rule procedure. Therefore, this small modification was employed.
Other numerical quadrature techniques were tested for the evaluation of the CPV.
However, these alternate methods, such as the Gauss method, did not prove to be
of any great advantage. Because of this, the well proven Simpson technique was

employed for all calculations.

Appropriate eigenvalue results were then employed to calculate residue contribu-
tions to the modal impedance terms, through (3.28). Complete modal impedance
values were then employed in (3.22), along with (3.24), to obtain modal current
amplitudes. The current distribution on the antenna was obtained through (3.15)
and the input impedance through (3.25).
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Figure 4.01 illustrates the input impedance of a loop antenna in free space €, =
1.0. Twenty data points are provided for each of the two cases = 10 and Q = 12,
over a range of normalized circumference C//A, of 0.1 to 2.0. The impedance results
are displayed as separate resistive and reactive components following a convention
employed by Smith. The results from the present formulation are compared to
results published by Smith [116]. Excellent agreement is observed between the
two cases. The dashed lines on both the resistance and reactance curves indicate
the presumed general behaviour of the input impedance for the given geometries.
This presumed behaviour has been interpolated from the present data and the
previously available results. Note that the plus and minus signs on the reactance
curves indicate the inductive and capacitive nature of the input impedance reactive
component. One anti-resonant point is observed at approximately C/\, = 0.5.

Figures 4.02, 4.03, and 4.04 illustrate the input impedance of loop antennas
situated on dielectric cylinders where the dielectric constant €, = 2.56, 5.6, and 9.0,
respectively. Again, for each figure, twenty data points are provided for each of
the two cases 2 = 10 and = 12 over a range of normalized circumference C//),
of 0.1 to 2.0. The dashed lines on the resistance and reactance curves indicate
‘the presumed behaviour of the input impedance for the geometries presented. This
general behaviour is interpolated from the given data points and the results observed
in Figure 4.01. The plus and minus signs on the reactance curves indicate the
inductive and capacitive nature of the input impedance reactive component over
the specified regions. Note that two anti-resonant points are observed in Figures
4.02 and 4.03, while three anti-resonant points are observed in F igure 4.04.
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Figures 4.01, 4.02, 4.03, and 4.04 exhibit some interesting features which should
be noted. First, the increase in dielectric constant obviously increases the electrical
size of the loop antenna. This can be inferred from the increase in the number of
anti-resonant points observed for a given geometry. Secondly, an impact upon the
resistive component of the input impedance is observed as the dielectric constant
increases. In Figure 4.01, the variation in resistance, excluding the anti-resonant
point, is relatively small. However, as the dielectric constant is increased, larger
variations in the resistance are observed. This increased variation in resistance is
assumed to be the combined result of cylinder influence upon the radiation charac-

teristics of the antenna and surface wave excitation.

The impact of surface wave excitation on the resistive component of the input
impedance is an item of interest which arises from the present results. To observe
this clearly, comparisons are made between the contribution to the resistive part of
the modal impedance term made by radiation, the real part of the CPV, and by
surface wave excitation, the residue. These comparisons are illustrated in Figures
4.05, 4.06, 4.07, and 4.08. The data for these figures was extracted from the input
impedance results presented earlier. Figure 4.05 illustrates the radiation contri-
bution made when ¢, = 1.0. Obviously, no surface wave activity is present under
these conditions so this figure provides a baseline for the subsequent results. It is
interesting to note the shape of the curve in this figure and the degree to which each
modal term contributes to the final imput impedance result. These results may be
related to the small variation in the resistance of the loop antenna as seen in Figure

4.01. Figure 4.06 illustrates the radiation contribution made when € = 2.56 and
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the surface wave contribution made by the HE{; mode. The HE;; mode is the only
mode which may be excited under these conditions. Cut-off condition verification
may be performed through (3.27).

The behaviour of the HE; mc;de contribution is interesting in that it exhibits
behaviour similar to behaviour seen in results obtained by Duncan [97]. Specifi-
cally, the shape of the curve for the HE;; mode is identical to a curve obtained by
Duncan which illustrated the excitation of the HE;; mode on a dielectric cylinder,
as a function of rod radius. The variability in the radiation contribution may be
associated with behaviour, shown in Figure 4.02, for the resistance of the loop an-
tenna under this geometry.. Figure 4.07 illustrates the radiation contribution made
when ¢, = 5.6 and the surface wave contributions provided by the TEq;, HE;,
EHy1, HEq2, and HE,; modes. Equation (3.33) verifies that the TEo,m'modes can
not be excited by the loop antenna. Again, the variability of the radiation con-
tribution may be associated with the resistance behaviour shown in Figure 4.03.
The surface wave contributions exhibit behaviour discussed earlier. Finally, Figure
4.08 illustrates the radiation contribution made when €, = 9.0 and the surface wave
contributions provided by the TEq;, TEqy, HEqq, EH11, HEy5, HEy;, EHy, and HE5,
modes. Again, the highly variable radiation contribution may be associated with
resistance behaviour seen in Figure 4.04. Note that only the first four terms 0,1, 2,
and 3, were employed in the analysis of the radiation contribution. Only four terms
were necessary because the highest surface wave mode which can be excited is the
HE3; mode, and the objective of Figures 4.05 to 4.‘()8 i1s to compare the radiation

contribution and surface wave contribution to the real part of the modal impedance
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term.

The identification of all surface wave modes which may be excited under a given
geometry is very important to the determination of the antenna’s input impedance.
As indicated above, surface wave data is required for both the CPV calculation and
the residue calculation. Tables 4.01 to 4.08 identify all surface wave modes which
may exist under the conditions discussed in Figures 4.01 to 4.08. Each table provides
specific information on the dielectricv constant of the cylinder ¢,, the azimuthal mode
number m, the normalized loop circumference C/ ), at which the surface wave mode
is observed, the normalized propagation velocity B/, for the particular observation,
and on the identity of the particular surface wave observed S/W MODE . Table
4.01 provides the necessary information for the fourteen occurrences of surface wave
excitation which appear for €, = 2.56, m = 1. Note that, although theoretically the
HE1: mode exhibits zero cutoff characteristic, the impact of this mode upon the
input impedance calculations does not become significant until C/), reaches 0.7.
For C'/X, > 0.7, the only surface wave mode observed for the conditions associated
with Table 4.01 is the HE;; mode. Table 4.02 provides the necessary information for
the nine occurrences of surface wave excitation which appear for ¢, = 5.6, m = 0.
Under these conditions, the TEy; mode is the only mode which may be excited.
Cutoff for this mode occurs for C /Ao < 1.2. Table 4.03 provides the necessary
information for the twenty-one occurrences of surface wave excitation which appear
for ¢, = 5.6, m = 1. Again, note that the impact of the HE;; mode becomes
significant for C/A, = 0.5. At C’/)\o = 1.8, the EH;; mode begins to propagate and at
C/Xo = 2.0, the HEy; mode begins to propagate. Table 4.04 provides the necessary
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information for the five occurrences of surface wave excitation which appear for e,
= 5.6, m = 2. Note that the HE,; mode is the only mode which may be excited
under these conditions and it exhibits a cutoff at C /Ao = 1.6. Table 4.05 provides
the necessary information for the thirteen occurrences of surface wave excitation
which appear for ¢, = 9.0, m = 0. The TEo; mode begins to propagate at C/), =
0.9 and the TEp; mode begins to propagate at C/)\, = 2.0. Table 4.06 provides the
necessary information for the thirty occurrences of surface wave excitation which
appear for ¢, = 9.0, m = 1. Note that the impact of the HE;; mode becomes
significant at C/A, = 0.4. Cutoff for the EHy; and HE;5; modes is shown to be in
the vicinity of C/A, = 1.4. The modes HEy;, EHyq, and HEy, are the only modes
which may be excited under these conditions. Table 4.07 provides the necessary
information for the ten occurrences of surface wave excitation which appear for e,
= 9.0, m = 2. The HEy mode exhibits a cutoff at C/\, = 1.9. Finally, Table
4.08 provides the necessary information for the three occurrences of surface wave
excitation which appear for ¢, = 9.0, m = 3. Under these conditions, the HE3; mode
is the only mode which can be excited. It exhibits a cutoff at C/A, = 1.8. For the
input impedance calculations presented in Figures 4.01 to 4.04, one hundred and five
occurrences of surface wave excitation were observed. The residue calculations for
the surface wave modes provides a significant contribution to the input impedance
results.

The current distribution on the loop antenna is of interest in determining the
antenna’s radiation characteristics. Further, an examination of its Fourier compo-
nents provides information on the convergence of the current distribution solution,
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the input impedance solution, and the dominant radiation mode. To examine the
Fourier components of the current distribution, the current on the antenna is defined

in a slightly modified form as follows:

Jo(¢) = ap +2 i y, COS NG

n==1

Figures 4.09 to 4.12 illustrate the magnitudes and phases of the input modal
currents for the four cases ¢, = 1.0, 2.56, 5.6, and 9.0. The input modal currents
IMC, are simply defined as the values of the co-efficients a,, in the above expression.
The antenna excitation is a 1.0 volt rectangular pulse function. Therefore, the input
modal currents are directly related to the modal input admittances. For each case
of dielectric constant, the IMC are presented for two sets of data = 10, and =
12. Since these results are obtained as an intermediate step in the calculation of the
input impedance, the discussions associated with the input impedance calculation
are relevant here also. The magnitudes of the IM C are presented in unit of dBmA,
dB with respect to 1.0 mA, and the phases are presented in degrees.

Figure 4.09 illustrates the JIMC for the case e, = 1.0. The zero order term is
predominant for the small loop sizes. Then the first order term begins to dominant.
This is completely consistant with the established behaviour of loop antennas in
free space. The phase for the zero order term for small loop sizes is 270 degrees.
This again is verified by established loop antenna behaviour in free space. The
admittance of a small loop antenna in free space is capacitive in nature. The
convergence of the Fourier series solution is evident from this figure. The higher

order terms increasingly diminish and their phases are at 90 degrees as expected.

84



Very little difference is observed between Q = 10 and = 12 data as expected. A
resonance in the first order term is observed at C/\, = 1.0. Again, this is supported
by established loop behaviour in free space conditions.

Figure 4.10 illustrates the IMC for the case ¢, = 2.56. In this situation, the
zero, first, and second order terms successively dominate the current distribution.
The increase in antenna electrical size is readily apparent from the downward shift
in C/), observed for the current peaks. Resonances in the first and second order
terms are noted. Figures 4.11 and 4.12 illustrate the IMC for the cases ¢, = 5.6 and
9.0, respectively. In both situations, solution convergence is observed. However,
there appears to be oscillatory behaviour in the zero order magnitude which is also
reflected in the phase characteristic.

General conclusions may be drawn from the results presented in this chapter.
First, the formulation employed in this research has been verified through a number
of comparisons with results which appear elsewhere in the literature. The mmpact of
surface wave excitation on the input impedance of the antenna has been analyzed.

And, the convergence of the current distribution solution has been observed.
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Table 4.01 Surface Wave Data ¢, = 2.56 m =1

E,= 2.56 = 1
e | 88 | ook
0.7 1.000 | HE,,
0.8 1.002 | HEq
0.9 1.007 | HEq
1.0 1.019 | HEqq
1.1 1.037 | HEq
1.2 1.062 HE 44
1.3 1.091 HE ¢4
1.4 1.124 | HEq
1.5 1.158 | HEq4
1.6 1.191 HEq4;
1.7 1.222 HE 44
1.8 1.251 HE 44
1.9 1.278 | HEq
2.0 1.302 HE 44
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Table 4.02 Surface Wave Data ¢, = 5.6 m =0

e.= 5.60 m= 0
/e | B8 | I
1.2 | 1.091 | TEg
1.3 | 1.227 | TEg
1.4 | 1.351 | TEq
1.5 | 1.459 | TEq,
1.6 | 1.551 | TEq
1.7 1.631 TEoq
1.8 | 1.700 | TEq
1.9 | 1.759 | TEq
2.0 1.811 TEgq

99



Table 4.03 Surface Wa\}e Data e, =56m =1

e,= 5.60 m= 1
/e | B8 | ook
0.5 | 1.000 | HEq
0.6 | 1.004 | HE,
0.7 | 1.026 | HEq
0.8 | 1.094 | HEq
0.9 | 1.229 | HEq
1.0 | 1.395 | HEy
1.1 | 1.547 | HEy
1.2 | 1.671 | HEy
1.3 | 1.771 | HEq
1.4 | 1.850 | HEq
1.5 | 1.915 | HEq
1.6 | 1.968 | HE;
1.7 | 2.012 | HEq
1.8 | 1.014 | EHy
1.8 | 2.049 | HEq
1.9 | 1.000 | HEy,
1.9 | 1.123 | EHy
1.9 | 2.080 | HEy
2.0 | 1.007 | HEy
2.0 | 1.229 | EHy
2.0 | 2.107 | HEy
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Table 4.04 Surface Wave Data ¢, = 5.6 m = 2

£.= 5.60 m= 2
e | BB | ook
1.6 1. 109 ' HEz1
1.7 1.270 HE 54
1.8 1.408 HE o4
1.9 1.520 HE 24
2.0 1.613 HE 54
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Table 4.05 Surface Wave Data e, =9.0m =0

e.= 9.00 m= 0
C/ho | BB | e
0.9 | 1.125 | TEq
1.0 | 1.409 | TEq
1.1 | 1.645 | TEoy
1.2 | 1.834 | TEo
1.3 | 1.987 | TEq
1.4 | 2.111 | TEq
1.5 | 2.213 | TEq
1.6 | 2.208 | TEq
1.7 | 2.370 | TEq
1.8 | 2.431 | TEq
1.9 | 2.484 | TEq
2.0 | 1.069 | TEq
2.0 | 2.529 | TEo
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Table 4.06 Surface Wave Data ¢, = 9.0m = 1

£.= 9.00 m= 1
S/W

C/rg | B8 | oW
0.4 1.000 HE 14
0.5 1.002 HE 4
0.6 1.034 HE ¢4
0.7 1.230 HE 14
0.8 1.615 | HEq,
0.9 1.927 HE {4
1.0 2.144 HE ¢
1.1 2.299 HE 4
1.2 2.413 HE ¢
1.3 2.501 HE 44
1.4 1. 105 EHqq
1.4 2.570 HE 4
1.5 1.001 HE 15
1.5 1.335 EHqq
1.5 2.625 HE 44
1.6 1.016 HE 5
1.6 1.532 EHqq
1.6 2.670 HE ¢
1.7 1.069 HE ¢,
1.7 1.697 EHqq
1.7 2.707 HE ¢
1.8 1. 186 HE ¢,
1.8 1.835 EHqq
1.8 2.738 HE ¢
1.9 1.358 HE 4,
1.9 1.951 EHqq
1.9 2.764 HE 4
2.0 1.538 HE ¢,
2.0 2.051 EHqq
2.0 2.786 HE ¢
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Table 4.07 Surface Wave Data ¢, = 9.0 m = 2

e.= 9.00 m= 2
C/e | 86 | ok
1.3 | 1.320 | HEa
1.4 | 1.640 | HE,
1.5 | 1.862 | HE,
1.6 | 2.027 | HE,
1.7 | 2.155 | HE,
1.8 | 2.257 | HEg
1.9 | 1.187 | EHy,
1.9 | 2.340 | HE,
2.0 | 1.378 | EHy,
2.0 | 2.409 | HE,
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Table 4.08 Surface Wave Data ¢, = 9.0 m = 3

£,.= 9.00

m= 3
1.8 1.310 HEg,
1.9 1.573 HE 54
2.0 1.764 HE 3,
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Chapter 5

Surface Wave Characteristics

The formulation of surface wave behaviour, as outlined in Chapter 3, was employed
to calculate propagation velocities and electromagnetic field structure for a number
of surface wave modes. This type of information is particularly useful to engineers
involved in fibre-optics, certain areas of bioelectromagnetics, and polyrod antenna
design.

Elsasser’s eigenvalue equation, which may be obtained by setting A = 0 (3.17),
was employed to calculate normalized propagation velocities 8 = 8 /Boy Bo = 27/ A,
for all hybrid mode surface waves which can be excited on dielectric cylinders of
radius up to 2.0 \,, ¢, = 2.56, 9.6, 9.0, and n = 1, 2, 3. The eigenvalues were
obtained through a direct search technique. Note that the higher order modes
n 2 4 will, in general, exist, as indicated by the cutoff conditions (3.27). However,
the first three orders were considered sufficient to illustrate the characteristics of
interest. Attention is also drawn to the slight variation in notation between the
field expressions and surface wave mode identification. In the field expressions,
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(3.13), the azimuthal mode index is denoted by m. In the surface wave designations
HE, »/EH, m, the azimuthal mode index is denoted by n and the successive zeros
of the associated cylinder functions are denoted by m. In an attempt to bridge
the two notations, (3.36) denotes azimuthal mode index by m and successive zero
index by p. Hopefully, (3.36) will resolve any ambiguity which might arise due to
modification of notation.

Figure 5.01 illustrates normalized propagation velocities for hybrid mode surface
waves which may be excited on a dielectric cylinder ¢, = 2.56, radius a < 2),, and
n = 1,2,3. Note that the maximum propagation velocity is 1.6 (1/2.56). For
n = 1, the solid line illustrates the normalized propagation velocity for the HE,;
mode. Note the way in which the line curves as a — 0. "This is significant in that,
theoretically, the HE;; mode has no cut-off. This is verified by the present result.
For n =1, m = 1,the dotted line ilh;strates the normaliéed propagation velocity for
the EH;; mode and the dashed line illustrates the normalized propagation velocity
for the HE;; surface wave mode. Similarly, for n = 1, m = 2, the dotted line
illustrates the EH; mode and the dashed line represents the HE;3 mode. For
n = 1, m = 3, the dotted line represents the EH;3 mode and the dashed line
represents the HEy4; mode. For n = 1, m = 4, the dotted line represents the
EH;4 mode and the dashed line represents the HE;5 mode. As can be seen from
the cutoff conditions, for n = 1, EH,,» and HE; ,,,; surface wave modes exhibit
identical cutoff characteristics. This is verified by the present calculation.

Figure 5.01, n = 2 results illustrate definite cutoff conditions for all surface
waves under consideration here. The solid line represents the HE,; mode while
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the subsequent dotted and dashed lines illustrate the behaviour of the EH,,, and
HE, m+1 modes respectively. Note that for n = 1 and n = 2, the highest surface
wave mode which may be excited is the HE;5 mode. The n = 3 results illustrate the
behaviour of the HE3y, EHyy, HE3y, EHag, HEs3, EHss, and HE3, modes. In this
situation, obviously the HEs4 mode is the highest surface wave mode which may be
excited. It is interesting to note that, while for n = 1, the EH; . and HE; ;41 modes
exhibit the same cutoff condition, this is not the case for n > 1. This behaviour
can be predicted by (3.27) and is verified by the present calculation.

Figure 5.02 illustrates normalized propagation velocities for hybrid mode surface
waves which may be excited on a dielectric cylinder e, = 5.6, radius a < 2Xo, n =
1, 2, and 3. Note that the maximum propagation velocity is 2.37 (\/5—6) The same
convention for identifying the results in Figure 5.01 is used here. For n = 1, results
are provided for surface wave modes HE;; to HEq. Again note the knee at the
lower end of the HE;; curve, indicating zero cutoff behaviour. For n = 2, results
are provided for modes HEy; to HE,5 and for n = 3, results are provided for modes
HEj3; to HE3s.

Figure 5.03 illustrates normalized propagation velocities for hybrid mode surface
waves which may be excited on a dielectric cylinder ¢, = 9.0, radius a < 2X,, and n =
1,2, and 3. Note that the maximum propagation velocity is 3.0 (M) Employing
the same convention as used in Figures 5.01 and 5.02, in this figure n = 1 illustrates
the results for HEq; to HE;11. Once again, the zero cut-off behaviour of the HE{;
mode is noted. For n = 2, results are provided for modes HE,; to HE» 41, and for
n = 3, results are provided for modes HE3; to HEj3 10.
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Surface wave propagation velocities for higher dielectric constant cylinders are
presented here in order to illustrate the importance of careful analysis of such phe-
nomena in such applications as fibre-optics systems design. Under certain éondi—
tions, a fairly large number of modes may be excited. These modes all transport
energy, signals, at different velocities. In digital communications systems, the group
delay introduced by multiple mode excitation can lead to severe waveform distortion
and intersymbol interference. These conditions simply cannot be tolerated in com-
mercial high speed communications systems. Therefore, careful analysis is required
to prevent such problems from occuring.

The analysis and design of dielectric rod antennas has conventionally been based
upon viewing this type of antenna as a two element radiator. The first radiating
element is the waveguide - dielectric rod interface. The second radiating element
is the end of the dielectric rod where the transition from dielectric to free space
perturbs the propagating surface wave, resulting in radiation. The phase shift
in fields between the two sources is controlled by the length of the rod and the
propagation velocity of the surface wave. The radiation from the free end of the
rod is often predicted by modelling the end region as an aperture plane transverse to
the z axis, where the z axis is the axis of the rod. A knowledge of the electromagnetic
field structure at the end of the rod thus establishes the aperture field distribution
from which the radiation characteristics may be obtained. A knowledge of the
surface wave electromagnetic field structure inside the rod is also useful in deéigning
such items as dielectric waveguide components. In addition, it is interesting to
evaluate the magnitudes of the surface wave electromagnetic field components and
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compare them to the field components observed in other waveguiding structures,
such as a dielectric rod inside a metallic cylindrical waveguide. This last comparison
is the method by which Clarricoats [96] established his hybrid mode surface wave
identification convention.

"The above considerations led to the evaluation of the magnitudes of the surface

wave electromagnetic field components in Region I. The magnitudes of E,,, Ey,,

E

21y Hppy Hypy and H,, were calculated using (3.36), as a function of p, for selected

modes under the given geometry €& = 2.56,a =3A/2andn =1, 2, and 3. A cosné
current distribution was presumed to exist on the loop. The z dependance of the
fields was removed and theﬁ calculated results were normalized to the maximum
value of the HE;; mode seen in each field component.

Figures 5.04 and 5.05 illustrate the magnitude of the surface wave electromag-
netic field components, Region I, for ¢, = 2.56, a = 31/2, n = 1. The fields are
plotted as a function of p, where 0 < p < a, and normalized with repsect to the
maximum value of the HEy; field components. In these figures, results are provided
for the HEyy, EHy1, HE 5, EHyy, HEq3, EH;3, and HE14 modes. An analysis of these
results provides information on nulls in the field components, which can be related
to the zeros of the cylinder functions which describe the field behaviour.

Additionally, it is interesting to observe the relative magnitude of the various
modes. This information may indicate the degree to which a particular mode is
excited. A comparison of field magnitudes for HE and EH type modes also indicates
the predominance of a transverse magnetic or transverse electric behaviour. Figure

9.06 illustrates the magnitude of the surface wave electromagnetic field components,
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Region I, for €, = 2.56, a = 3\/2, and n = 2. In this figure, results are provided
for the HEy;, EH,,, HEy,, EHy, and HE,; modes. The comments directed towards
Figures 5.04 and 5.05 are also appropriate here. Finally, Figure 5.07, illustrates the
magnitudes of the surface wave electromagnetic field components, Region I, for e,
= 2.56, a = 31/2, n = 3. In this last figure, results are provided for the HEs;, EHj;,,

HE32, Eng, and HE33 modes.
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Figure 5.02 Surface Wave Propagation Velocities ¢, = 5.6
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Figure 5.03 Surface Wave Propagation Velocities ¢, = 9.0
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Chapter 6

Radiation Characteristics

Numerical results have been obtained for the radiation characteristics of loop anten-
nas positioned coaxially on a variety of dielectric cylinders. The current distribution
on the antenna is presumed to exhibit a cosn¢ azimuthal dependance. Under this
assumption, only two terms in the Fourier series expansion in ¢ exist, m = +n.
These terms combine to produce the same azimuthal dependance as seen in the
surface wave fields. A knowledge of this dependance assists the presentation of the
present results in that it defines the principle planes in which the radiation charac-
teristics are calculated. For the present case, Ey4 exhibits a cosn¢é dependance and
Ej exhibits a sin né dependance.

Figures 6.01 to 6.24 present the amplitude of the E4 and Ej electromagnetic
field components in the far field region. In each figure, eight radiation patterns are
included which illustrate the effect of increasing the cylinder’s dielectric constant.
The upper semi-circle of each patterh is graduated in the polar angle §. Figure
3.01 illustrates the relation of § to the physical geometry of the structure. The
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four semi-circles of decreasing radius indicate the 0, -10, -20, and -30 dB contour |
lines of the radiation pattern. At the bottom of each pattern, the relative dielectric
constant, ¢,, of the cylinder is recorded. The maximum value of the field amplitude
to which the logarithmic plot is normalized, is also recorded. Both the shape of the
radiation pattern and its maximum field amplitude provides information relevant
to the analysis of the structure’s radiation characteristics.

The top left pattern, e, = 1.001, is included in each figure to illustrate the loop’s
radiation characteristics in free space and to emphasize the affect that the dielectric
cylinder has upon the loop’s radiation pattern. Although computed by solution of a
cylindrical boundary value problem, this free space pattern, by way of’ verification,
may also be computed using a radiation integral approach.

Each figure caption contains information regarding the field components ob-
served, the loop radius a, and the azimuthal mode number 7. Patterns are presented
for the appropriate principle plane as defined above.

By way of brief review, Figure 6.01 to 6.04 illustrate the amplitude of E; for a
cos ¢ 1.0 ampere current distribution. The loop radii considered are ) /8, A4, ,3)/8,

’and A/2, respectively. Increases in directivity are observed in the patterns of Figure
6.01 for the cases €, = 1.5, 2.0, and 2.5. The patterns are slightly modified for these
cases. These perturbations may be attributed to the influence of the cylinder. The
cases of €, = 3.0, 3.5, 4.0, and 4.5 show a steady decrease in the maximum field
amplitude observed. It is evident that power is being transported away from the
loop via surface waves. Obviously, as the dielectric constant increases above 3.0,

additional surface waves are excited.



A slightly different behaviour is observed in Figure 6.02. Although the pattern
modification is attributable to radiation from the cylinder, the significant observa-
tion is the initial rapid reduction in maximum field amplitude. Again, this may
be attributed to surface wave action. The further modification of the pattern and
gradual increase in maximum field amplitude as the dielectric constant is increased
to 4.5 is the result of the cylinder’s influence.

In Figure 6.03, again the initial decrease in the maximum field amplitude may
be associated with surface wave excitation. The cylinder’s influence plays an in-
creasingly significant role up to ¢, = 3.5 where a very narrow beamwidth pattern
occurs. Narrow beamwidth patterns of this nature are normally seen in travelling
or leaky wave wire antennas. The influence of the cylinder appears to be cut off
for €, = 4.0. The further decrease in the maximum field amplitude suggests that
higher order surface wave modes are being excited and, as such, transport more
power away from the loop in a non-radiative manner.

Similar results are seen in Figure 6.04. Of particular interest is the radiation
pattern seen at €, = 2.0 . Similar results to those seen in the € = 2.0 case have
been observed by Pavlov [59] for a loop antenna situated on a cylinder composed
of permeable material.

Figures 6.05 to 6.08 illustrate the amplitude of Ey for a cos 2¢ 1.0 ampere current
distribution. The loop radii considered are ) /8, A/4, 3X/8 and A\/2, respectively.
Again, the ¢, = 1.001 patterns are patterns which would normally be observed from
the respective loops radiating in free space.

A very interesting result is observed in Figure 6.05. Through the entire range
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of dielectric constants, there is virtually no observable change in the shape of the
field pattern. However, the maximum field amplitude decreases exponentially. This
clearly illustrates the increasing excitation of a low order surface wave mode with
a resultant increase in power transported away from the loop. It is evident that,
aside from surface wave action, the cylinder exhibits negligible influence under these
conditions.

In Figure 6.06, the increased excitation of the surface wave is again observed.
A gradual modification of the pattern illustrates the increasing influence of the
cylinder. As the beamwidth of the pattern narrows, a corresponding increase in
maximum field amplitude is observed.

The cylinder’s influence is very predominant in the patterns of Figure 6.07. The
variation of maximum field amplitude with pattern shape is readily apparent for all
cases. The introduction of small sidelobes for €, = 4.0 and 4.5 is also observed.

Behaviour similar to that of Figure 6.03 is again noted in Figure 6.08. Of
particular interest is the extremely high directivity condition observed for € = 3.5.
The shift in cylinder radius observed between F igures 6.03 and 6.08 appears to be
connected with the root locations of the first and second order Bessel functions.
Once again, the influence of the cylinder appears to be cut off above €, = 4.0.

Figures 6.09 to 6.12 illustrate the amplitude of E; for a cos 3¢ 1.0 ampere current
distribution. The loop radii considered are ) /8, A/4, 3\/8, and A/2, respectively.
Again, the €, = 1.001 patterns reflect free space radiation patterns.

The behaviour observed in Figﬁre 6.05 is repeated in both Figure 6.09 and 6.10.
In comparing these figures, it ibs noted that the largest maximum field amplitudes
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are observed in Figure 6.10, followed by 6.05, and then 6.09. However, the largest 3
dB beamwidth is observed in the patterns of Figure 6.05, followed by 6.10, and then
6.09. In all cases, an exponential decrease in maximum field amplitude is observed,
indicating the increased excitation of electromagnetic surface waves.

In Figure 6.11, the predominant action of surface wave excitation is observed for
the cases of ¢, = 1.5 and 2.5. Contributions to the pattern from cylinder influence
are in evidence for the cases of ¢, = 3.0 to 4.5. Although the patterns change
significantly over this region, the gradual increase in maximum field amplitude up
to the free space value indicates that there will be significant power transport away
from the loop via the surface wave.

The radiation patterns presented in Figure 6.12 appear to be similar to those of
Figure 6.08. In particular, the ¢, = 2.0, 2.5, 3.0, and 3.5 patterns of Figure 6.08 are
very close in appearance to the ¢, = 3.0, 3.5, 4.0, and 4.5 patterns of Figure 6.12.
The various mechanisms involvéd in the two geometries are presumed to be similar.

Figures 6.13 to 6.16 illustrate the amplitude of Ej for a cos ¢ 1.0 ampere current
distribution. Once again, loop radii A/8, A\/4, 3)\/8, and A/2 are considered and
the €, = 1.001 results provide the free space patterns.

Figures 6.17 to 6.20 illustrate the amplitudes of E; for a cds 2¢ 1.0 ampere
current distribution and Figures 6.21 to 6.24 illustrate the amplitude of Fy for a
cos 3¢ 1.0 ampere current distribution. The Ey characteristics exhibit trends similar
to those seen in the E, patterns. The results of Figures 6.17, 6.21, and 6.22 exhibit
trends which are identical to those of Figures 6.05, 6.09, and 6.10.

Radiation characteristics for loop antennas with current distributions calculated
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from the present formulation have also been determined. Figures 6.25 to 6.28 display
the radiation characteristics of loop antennas, C/A, = 0.5, 1.0, 1.5, and 2.0, which
are positioned on a dielectric cylinder, €, = 2.56. The first five Fourier components
of each current distribution are used to calculate these radiation results.

Some general conclusions may be drawn from the results presented in this chap-
ter. First, the influence of the dielectric cylinder is significant in a large number of
cases. This influence is presumed to be the phase shift introduced by the cylinder
to the radiation emanating from the various point sources which comprise the loop
antenna. The antenna may be considered as a circular array of point sources. Each
point source exhibits a different amplitude and phase characteristic. The phase
characteristic of each point source is further modified by the presence of the cylin-
der. In a few instances, the dielectric cylinder exhibits no influence on the antenna’s
radiation pattern. This may occur when the phase shifts introduced by the cylinder
are on the order of 27. In general, there will be a complex relationship with respect
to power balance between radiation from the antenna and the excitation of hybrid
mode surface waves. It is possible to employ a dielectric support which will not af-
fect the shape of the pattern; the only compromise is a reduction in radiated power.
Conversely, it is possible to vary the cylinder geometry and dielectric constant to
design a variety of shaped beam antennas. Finally, the implementation of highly

directive antennas is also possible under suitably selected parameters.
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Chapter 7

Conclusions and

Recommendations for Future

Work

This thesis has presented an analysis of the electromagnetic characteristics of a loop
antenna which is positioned on an infinitely long dielectric circular cylinder. The
problem has been formulated as a cylindrical boundary value problem in which the
wave equation for the Debye potential functions is solved. Extensions to the basic
formulation are performed in order to evaluate input impedance and current dis-
tribution, surface wave behaviour, and radiation characteristics for the antenna. A
comparison of results from the present formulation with results presented elsewhere
in the literature verify the present results most satisfactorily.

A number of conclusions may be drawn from the numerical results obtained in
this work for various antenna characteristics. With respect to input impedance,
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the dielectric cylinder does exert considerable influence on the input impedance of
the antenna. This influence is exerted in two ways. First, the excitation of surface
waves on the cylinder adds to the resistive component of the input impedance.
Second, the higher dielectric constant of the cylinder increases the electrical size of
the antenna, which in turn influences both the resistive and reactive components
of the input impedance. In comparing the contributions to the resistive part of
the input impedance by radiation and surface wave excitation, the surface wave
contribution appears to have a stabilizing influence on the resistance while the
radiation contribution has a perturbing influence. Specifically, as C/)\, increases,
the surface wave contribution stabilizes after an initial transition while the radiation
contribution varies widely. The significance of the surface wave excitation upon the
general input impedance characteristics is shown by the large number of surface
wave modes which can be excited under the geometries studied. The loop antenna
wire radius exerts an influence upon the input impedance also. This influence
appears to be consistant for all values of dielectric constant and is verified by results
published elsewhere in the literature.

The c‘alculations associated with surface wave behaviour, in large part, confirm
and extend results which are already available. To date, an emphasis on the first and
second order terms appears to dominate the literature. Therefore, the information
presented here for the higher order modes in particular, is of interest. Certainly,
the results of Chapter 5 emphasize the significance of surface wave analysis in en-
gineering applications.

The information presented in Chapter 6 illustrates the impact of the cylinder
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upon the radiation characteristics of the antenna. Such information is useful in
various antenna design activities. In certain situations, the physical dimensions
of a loop antenna and its support structure cannot be altered but the support
structure’s material can be altered. The change in dielectric constant then permits
a certain degree of pattern control for the radiating system. Loop antennas with
high directivity may be designed in a straightforward manner.

Numerous extensions to the present work would prove useful. As noted in Chap-
ters 5 and 6, arbitrary current distributions on the antenna were presumed for the
calculation of surface wave and radiation behaviour. The next step is to take the
results of Chapter 4 and actually determine the surface wave and radiation char-
acteristics for the current distribution calculated. An array of loop antennas on
a dielectric cylinder would be the next obvious major step in this work. It would
be particularly interesting to separate the mutual coupling into that part which is
created by the near field struéture and that part which is created by surface wave
activity. The radiation characteristics of the loop antenna array would be of inter-
est. In particular, the possibility of backward wave action should be explored. The
whole area of surface wave and leaky wave antenna design requires an analysis of
the loop antenna on a lossy dielectric cylinder. The complexities associated with
analyzing leaky wave structures would establish this project as a major undertak-
ing. Finally, of personal interest to the author, is the possibility of obtaining series
solutions for the field expressions presented in this work. The evaluation of these
expressions by numerical quadrature is a lengthy process which could possibly be
alleviated if a suitable technique were employed to find all leaky wave poles in the
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domain of the integration variable A.

Additional numerical results which arise from this work have been presented in
the literature. Radiation characteristics for certain geometries have been published
in [117]. The characteristics of certain hybrid mode surface waves appear in [118].
Although not reported in this thesis but of interest to the author is the near field
electromagnetic field structure in the vicinity of the loop antenna for presumed
current distributions. An evaluation of such a field structure permits the definition
of the well known Fresnel and Fraunhoffer zones around the antenna. Numerical
results for such a field structure appear in {119]. The calculation of input impedance
and current distribution are considered by the author to be the most significant
aspect of this work. To that end, a number of publications have appeared [120],
(121}, [122],. A detailed discussion of the intermediate results obtained during the

input impedance calculations appears in [123].
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APPENDIX A

Large Argument Approzimation for the Modal Impedance Integral

From (3.21), the modal impedance integral is as follows:

Zp == [ [BAO)R — BN A

Km J—00
where, for [A| > k;, the terms which make up BE,()), B:()\), Qu1, and Qy, contain
modified Bessel functions I,,,(e) and K,,(e). Note that the term - which appears in
front of the integral sign in the above expression cancels the &, term which appears

| in the expressions for B} (\) and B¢ ().
Large argument approximations for the modified Bessel functions are now sub-
stituted into the equation for Z,,. These approximations are as follows and may be

found in the literature [115].

T

e
IL(z) =~ Jors
Kpn(z) = g—;e_x

After extensive reduction, a general large argument approximation for the integrand

may be obtained as follows:

= gt | e
vea | 2 (e + 1)k2p A
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The tail contribution may now be written:

e—Mo—a)

A

Zm, tail — T/OO

where

T = Wiko _ja jmz
- Jpal| 2 (e + 1)k2p

and z is some arbitrarily large value of A. The integral involved in the tail contri-
bution is the well known exponential integral. Tabulated values for this function

appear in the literature [115].

174



APPENDIX B

Development of Far Field Fquations

' The tangential field components for the external region, Region II, are as follows:

B,= Y eim / " B (\)Qusge ¥ dA

m=—00

Hy = Y e [ BhO)Quse )

m=—oQ

Bo = > ™ [~ [BA()Qu — By (N)s] e dx

Hy = 3 eimé /_ Z B2 (05 — BA(N) Q] 7d

m=—co
where By (A), BE(A), Qu1, Qua, Q1s, Qu6, and Qus are given in (3.17).

From these equations, the far field equations are developed using the method
of steepest descent. In using this technique, it is advantageous to substitute the
variable A = k,cosa. This substitution maps the two sheeted Riemann surface
domain for A into strips of width 27 in the o domain. Figure B.01 illustrates the
mapping of A into « and shows the transformed integration contour.

To illustrate the application of the steepest descent technique method, the de-
velopment of the far field equation for Fjy,, will be reviewed in detail.
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Substituting A = k,cosa into E,,,, dA = —k,sinada, and 1/k2 — A2 = k,sina:

E,, = i e~ imé /W_Hoo(ko sin @)’ B, (k, cos &) x
m=—0c0 I
HO(k, sin ap)e %<5 L sin ada
The large argument approximation for the Hankel function [115] is substituted into
the above equation:
E.,, = i e~Ime /_7::00(190 sin &)?BS, (k, cos ) x

m=—o0

p 2 e—j(ko[sinap-{—cos az]—[m+ %]%)ko sin ado
\ 7k, sin ap

Next, the cylindrical co-ordinates are transformed to spherical co-ordinates on the

right hand side; p = Rsinf and z = Rcosf. The exponential term becomes:

—j(koR[sin asin 6 + cos a cos §] — [m + %]g)

then

. 1
—j(koRcos(a — 6) — [m + -—]z)
2°2
Substituting the spherical co-ordinates into the right hand side, and also moving

the last &, sin o, which appears next to de, under the square root sign yields:

oo ) +ico
E, = > e_]mqsv/. ’ (ko sin @)?BE,(k, cos ) X

s
m=—00 I

|2k SILQ —ikoRcos(e—b) o ilm+315 1.,
TRsind

At this point, the only approximation invoked has been the large argument ap-
proximation for the Hankel function. The steepest descent technique will now be
employed.
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Reos(a=0) ' o being the integration variable.

Consider the exponential term e~7%e
R is taken to be a very large number. As « varies along the integration contour,
the exponential term will change rapidly except in the region o = 6, the saddle
point. Under the method of steepest descent [124], the exponent —j cos(a — ) is

expanded in a Taylor series about 8. Let the complex variable o — § = se??, a =

s’ + 8, da = e?7ds. Using the first three terms of the Taylor series:

df s d*f
f(S) B f(O) + SE s=0 + 2 d32 5=0
. 8% .
—jcos(se?) = —j —}—j;eﬂ”

2
. .S ..
= —J +]—2—(cos2fy+ysm2fy)

s? s?
= —3 sin2y — j(1 — —2-0052')/)

The steepest descent contour is taken along a line in the complex plane where the

imaginary part of this series representation is constant. In this instance, Im[—j cos(se/)]

is constant along the line v = +% in accordance with the direction of the con-

tour taken above. Therefore, —j cos(se!?)| yez = —J % This substitution for

—jcos(a — ) is applied to the equation for F,,,. Additionally, all parts of the
integrand except this exponential term indicated are considered slowly varying and
are simply evaluated at a = §. Therefore:

e , 2k,sinf r o.x [ 2
B, = Y. e7™(k,sin6)?Be (k, cosb) —jl}——ej(w"%)?e]?/ erRl=i=%) s

wRsind oo

M=—00

= Z e_jm¢k3 sin® 9B, (k,cos6) 2%6j[(m+1)§—ko}2] /
T

—OoQ

kR
e "t ds

m=-0c

Note that the limits are now +oco for s, the magnitude of the complex variable.
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Next consider:

00 2
/ e Flr ds
—00

Make the substitution s = Eo%—{-, kfR% =12, ds = W/E,zﬁdt' the integral becomes:

\/kOTR./—O; e P dt

This is Laplace’s integral and it has a tabulated value of /7. After some algebraic

simplifications:
b 2 . =
E,,= > kZsin®6B(k, cos&)ﬁej[(mﬂ)?_mqs_k"m

To present this equation in terms of spherical co-ordinate field components:

~

~ . N R —a,
az:_SHleae, ag = —
sin 6
Therefore:
oo 5 _
Eg,; = — Z k?sin B¢ (k, cos 9)—1%-6][(m+1)'2‘-—m¢—k0R]

Removing the terms not dependant upon m from underneath the summation, the

final result is obtained:

—j2k2 sin fe ko R 0

e S0 B (ks cos 6)eim-D)

Similarly:
—j2k? sin feikoR 22 (b
Hy,, = J "81; c > Bl (k,cosf)ei™¢-3)

For the azimuthal co-ordinates, after substitution of A = k, cos @ and the large

argument approximation for the Hankel function:

T4joo

+7 A
[Bm(ko cos a)=; — By (k, cos a)Eg] X
joo

Eyy = ) e‘jm(ﬁ/-

m=-—-o0

2 Cn e .
: e Jko(sincptcosap) ko sin ado
7wk, sinap
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where:

B o= ]wﬂokosina{ej(m_%)g—ej(m*'%)ﬂ

m : 1
By, = —k,cosae!™3)3

Substitute p = Rsin 6, z = R cos @ to obtain the exponent —jk,R cos(a—6) . Follow
the operations indicated in the development for E,,, upon e /*efcos(a=0) t5 ohtain

the following:

S j Qko Y. A oo o2
Ey = Z e™ime [Bgz(ko COSvQ)ES — Bfn(ko cos 9)54} V ﬂ-ReJ(?""L"R)/ e~ *RT ds

m=—co

where

Ty = JWHo k, siné [ej(m“%)g _ ej(m+%)§]
34 — mko COSOej(m+%)%
Rsiné

Employing Laplace’s integral:

Eyp= 3 [Bh(kocos0)Es — BS,(k, cos )5, %eﬂ%—koa—m)

The term [ej(m—;-)g - ej(m+%)g} , which is found in =3, may be simplified to 2e/(m3~%).
The term e/(™+2)%  which is found in Ej, may be simplified to e/(m3+%),

A re-arrangement of terms yields:

Eyy= >, [jw/ioB,};(ko cos 0)k, sin §—
jmko,cosd 2 i(mT—koR-mg)
Rand By (k, cos 6)] 7

Removing terms which are independant of m from under the summation yields:

2k e ikoR 22
Ey,, = j———j—{——— > {w,uoB:;(ko cos @) sin 6 —

m=—00

mk, cos 8

B¢ (L —im(¢=5)
Tend r(kocosf) e 2
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Similarly:

9k kR o .
Hy,, = TR T Z we,BE (ko cos ) sin 8 + M
Rsin@

= B! (k, cos 6)| e ™(#-%)

m=—00
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