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Abstract

The main objective of this research is the study of the magnetization of ferromagnetic
spheres in the presence of external magnetic fields. The exact analytical solutions
derived in this thesis are benchmark solutions, valuable in testing the correctness and

accuracy of various approximate models and numerical methods.

First, in this study, the total scalar magnetic potential outside the spheres, related to
the magnetic field intensity, is obtained by the superposition of the potentials due to
all spheres and the potential corresponding to the external field. The translational
addition theorems for scalar Laplacian functions in spherical coordinates are then
used to solve boundary value problems for the multi-sphere systems by imposing

exact boundary conditions.

On the other hand, the scalar magnetic potential inside each sphere, related to the
magnetic flux density, also satisfies the Laplace equation which is solved by imposing
the boundary conditions known from the solution of the outside field. Finally, the
expressions derived are used to generate numerical results of controllable accuracy
for various field quantities. These benchmark results are valuable as reference data
to determine the accuracy of numerical methods developed to solve magnetostatic

boundary value problems in real world applications.
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Chapter 1

Introduction

1.1 Background

The magnetostatic field is a solenoidal field, i.e., the divergence of the magnetic flux
density vector is always zero. A vector potential can be associated with this field. The
vector potential satisfies a vector Poisson equation, in the general case, or a vector

Laplace equation in the current free regions [1], [2].

A scalar magnetic potential can also be used in current-free regions since the curl of
the magnetic field intensity is zero. This potential is a multiple-valued function of
position if a net nonzero current is enclosed by at least one closed contour in the region
considered. The scalar magnetic potential is useful in the analysis of ferromagnetic
circuits in transformers, electric motors and generators, and in certain microwave
ferrite devices [1]. It can also be used in the solution of magnetostatic boundary

value problems when the current density is everywhere zero.
1
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The exact analytical solution of the Laplace equation can be derived by using the
method of separation of variables in spherical coordinates under both Dirichlet and
Neumann boundary conditions [3]. These boundary conditions must be satisfied at
the surface of each body in the system. To obtain an exact analytic solution, the

surfaces of the bodies involved have to be coordinates surfaces.

When the body boundaries do not coincide with coordinate surfaces, approximate
numerical methods have to be employed. The method of images [1] or the method
of separation of variables [4] can be applied to solve for the field in the presence of
spherical objects. In addition, for a system of only two spherical objects one can also

use the bispherical coordinates [5].

By using the translational addition theorems [6], we are able to impose the boundary
conditions at the surface of each sphere. To do that, it is necessary to express the
field produced by all other spheres in terms of the coordinates of the system attached
to one sphere. The resulting analytical expressions constitute benchmark solutions
for specified geometric arrangements which are beneficial for determining the validity

of numerous approximate numerical techniques.

1.2 Motivation for the Research

An exact analytical solution for the magnetic field both inside and outside the ferro-
magnetic spheres of many-sphere systems is not available in the literature [7], [8], [9]
,[10]. The analysis of the field outside the ferromagnetic spheres allows the evaluation

of the intensification of the field, while the field inside determines the magnetization
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of the spheres. The investigation of the behavior of such ferromagnetic systems is use-
ful for the construction of various models to be employed, for instances, in nano-scale

engineering applications [11] and in ferrohydrodynamic application [12].

In this thesis, the problem of the magnetization of ferromagnetic spheres in the pres-
ence of external magnetic fields is solved on the basis of exact field equations by
imposing the corresponding boundary conditions. The sphere system is placed in a
homogeneous medium and the applied external magnetic field is taken to be uniform.
The total scalar magnetic potential outside the spheres is obtained by the superpo-
sition of the potentials due to all spheres and of the potential corresponding to the
external field. In order to express the potential in the coordinate system attached to

a specific sphere, the translational addition theorems [13] is used.

The total scalar magnetic potential outside each sphere is considered to be constant
at the surfaces of all the spheres and the total magnetic flux through the surface of
each sphere is equal to zero. On the other hand, the magnetic potential inside each
sphere is determined by imposing the boundary condition that the normal component

of the total magnetic flux density is continuous across the surface of the sphere.

The results of the research undertaken in this thesis can be extended to the systems
of prolate and oblate spheroids, which are more appropriate to approximate the real
world objects in engineering applications. Numerical results generated based on the
exact analytical solutions are also important in testing the efficiency of various nu-

merical methods used for solving real world magnetostatic boundary value problems

8], [9]-
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1.3 Objectives of the Research

The main objective of this research is the study of the magnetization of ferromagnetic
spheres in the presence of external magnetic fields. This research goal is to be achieved

by accomplishing the following particular objectives:

e Derive exact analytical expressions for magnetic field quantities, both outside
and inside linear arrays of ferromagnetic spheres, when placed in uniform

magnetic fields;

e Derive exact analytical expressions for magnetic field quantities, both outside
and inside arbitrarily located ferromagnetic spheres, when placed in uniform

magnetic fields;

e Generate benchmark accurate numerical results in the above cases for various
values of the characteristic parameters such as the radii of the spheres and
the relative distance between the spheres, at points on the common axis of

the spheres.

1.4 Overview of the Thesis

Chapter 2 presents the solution of the scalar Laplace equation in spherical coordi-
nates. In addition, the translational addition theorems for the linear arrays and for
asymmetric geometries are expressed to be used in chapter 3 and chapter 4. Next,

the scalar magnetic potential for ideal ferromagnetic bodies is expressed. At the end,
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a solution for a single sphere in the presence of an external field along z axis is also

described.

In chapters 3 and 4, exact analytical expressions are derived for the field quantities
both outside and inside the ferromagnetic spheres in linear arrays and for asymmetric
geometries, respectively, in the presence of external magnetic fields. Exact expressions
are also derived for the field intensities in spherical coordinates, the main objective

of this study being to use these expressions for generating accurate numerical results.

Accurate numerical results for each case in chapter 3 and chapter 4 are presented in
chapter 5. Furthermore, discussions with some explanations of the generated results
are described in this chapter. Finally, the conclusions and some recommendations to

extend this research work are specified in chapter 6.



Chapter 2

Literature Review

The objective of this chapter is to briefly summarize the background theories used in
the research. First, the solution of the scalar Laplace equation in spherical coordinates
is given for asymmetric and for axisymmetric geometries. Then, the translational ad-
dition theorems for Laplacian fields used in asymmetric and axisymmetric geometries
are described. Next, the scalar magnetic potential for ideal ferromagnetic bodies is
expressed. Finally, a set of expressions for a single sphere system in the presence of

an external field are also presented.

2.1 Solution of the Laplace Equation in Spherical

Coordinates

In a homogeneous medium, both outside and inside of ferromagnetic bodies, the po-

tentials satisfy the scalar Laplace equation
6
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V2f(r,0,0) =0 (2.1.1)

which can be expressed in spherical coordinates as

0 1 1 9?
2 2
— — (2= 0 -9
v r20r (T 87‘> T 2sin26 r2sin2 6 00 (sm 89) * r2sin? 0 0p?

The general form of the solution of (2.1.1) can be expressed in the form [2], [3]

f(r,0,0) = Z Z (C/ -ty D/ ”)P,T(cose) e~ Ime (2.1.2)

n=0 m=—n

where C, and D,/ are constants of integration, and m and n are integers. P"(cos 0)

are the associated Legendre functions of first kind, of degree n and order m.

2.1.1 Case 1: Asymmetric Systems

In the case the region is extended to infinity, the outside potential due to the spheres

can be expressed as (with f — 0 for r — 00)

O(r,0, ) = Z Z C! () Pmcos ) e gme. (2.1.3)

n=0 m=—n

On the other hand, the potential inside is finite and can be expressed as

(r,0,¢p) = Z Z D, r"P"(cosf) e Jme. (2.1.4)

n=0 m=—n
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2.1.2 Case 2: Axisymmetric Systems

In the case of azimuthal symmetry (rotational symmetry about the z axis) [2], the
solution can be obtained from Equation (2.1.2) with the separation constant m = 0

as

i (C’ p=( ) 4 D7y )Pn(cose) (2.1.5)

n=0

where C|/ and D,/ are constants of integration and P, are Legendre polynomials.

Then, the outside potential can be expressed as

Z Clr= "I P (cos @) (2.1.6)
and the inside potential as
6) = Z D,r"P,(cos0) (2.1.7)
n=0

2.2 Translational Addition Theorems for Spherical

Laplacian Functions

In order to impose the boundary conditions at the surface of each sphere, we need
to express the functions written in the coordinates of one sphere in terms of the
coordinates associated to another sphere. For this we use the translational addition

theorems [6], [13].
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2.2.1 Case 1: Asymmetric System

F1GURE 2.1: Coordinate translation

Figure 2.1 shows two spherical coordinate systems, (7,6, ) and (1,6, ¢’) with the
centers at o and o', respectively. The translational addition theorems for spherical
scalar wave functions (corresponding to the terms in Equations (2.1.3 and 2.1.4)) can

be expressed in the form [13] as

5 e ittt ot
X e_j(m_ﬂ)@o Py‘u(COS 9/) e—jutp” ! <d
P~ (D P (cos 0) e ImY =
I/ZON—Z—V( Ly : 7:?)—:—(1”/1/;))' (r! )"*"le PT?:-VM(COSH/)
e~ J(m—p)¢’ P (cos ) e IO, > d
\

(2.2.1)
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i pm jme _ (n+m)! ()" Sy
P (cosf) e ZZ T T m—v = )|du+npnv(0059)
v=0 p=—v (2.2.2)
x e~ m=i)eo P*(cos@") eI r'<d

2.2.2 Case 2: Axisymmetric System

For m = 0, with no dependence on ¢, Equations (2.2.1) and (2.2.2) become

o0 v

SO (—1 )V+M(”+V+M)' ()" p—n (cos bp) ejlﬂpo

nl(v+p)! dvtntl = ntv

v=0 p=—v
X PH(cos 0') eij‘wl, r <d
,r_(n—"_l)Pn(COS 9) = (223)
Zo 32 (~1) T oy Pt (cos ) e7Heo
v=U u=—v
x P! (cos 6y) e_j“@é), r'>d
\
)y
r" P, (cos @) Z P (cos f)
— _ | Jv+n~ TV
g iy Wl =gt (2.2.4)
x elH$o P(cos@') e_j/“p/, r<d

For a common z-axis, with y = 0 or 7, and since P, £, (£1) =0 and P*(£1) = 0 for

all p # 0, we get

(
SO (—1)" et _CD% P (cos o) P (cos®), v’ <d

nlyl dv+ntl
v=0

r~ "D P (cos 0) = (2.2.5)

Z<_1)V(n+u)!(rl)¢yjﬁp (COSQO) n+y<6089/), > d

0 n!uv!
\ V=
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n

| IAYZ
r"P,(cos ) = Z n () P,_,(cos0y) P,(cos®), r'<d (2.2.6)

vin —uv)dvin "

2.3 Scalar Magnetic Potential

Ampere’s circuital law gives the curl of the magnetic field intensity H as [14]
VxH=1I] (2.3.1)

where J is the electric current density. Wherever the current density is zero Equation
(2.3.1) becomes
VxH=0

Since the curl of the gradient of any scalar function is identical zero, the magnetic

field intensity can be expressed as
H=-Vo (2.3.2)

where ® is the scalar magnetic potential.

For ideal ferromagnetic bodies, ie., with linear magnetic material and infinite perme-
ability, the field lines are perpendicular to the surface. Therefore the scalar magnetic

potential at the surface is constant.



Chapter 2. Literature Review 12

2.4 Solution for a Single Sphere

A ferromagnetic sphere of radius a and permeability p has been placed in a homoge-
neous medium of permeability jo. The external uniform magnetic field, Hg is oriented

along the z axis as shown in Figure 2.2.

Ho

FIGURE 2.2: A sphere placed in the presence of external field along z axis

The total scalar magnetic potential at an arbitrary point P outside the sphere can

be expressed in spherical coordinates as

(7,0, 0) = O(r,0,0) + D (7,0, ) (2.4.1)

where ® is the potential due to the sphere which satisfies Laplace’s equation and the

term ®,,; is the potential corresponding to the external field.
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Since the system has an axial symmetry, we use the Equation (2.1.6) written in the

form

+1

D (r, 0, p) ZC’ ( ) P,(cos) — Hyrcos b, r>a (2.4.2)

where (), are constants of integration.

Now impose the condition that the total magnetic flux through the surface of the

%Bndsrzo
S

is the normal component of the magnetic flux density

where B,, = —uoﬁ{fbt"t}
or s
on the surface S of the sphere with ds, = r*sin 6 df dp. Thus,

T 27
9 tot 2.
_MO//E{(I) }r stn 0 db dy

0=0 =0

sphere is equal to zero, i.e.,

= —4rpaCy =0 (2.4.3)
r=a

which yields, Cy = 0. Then, the Equation (2.4.2) becomes

+1

D (r, 0, p) ZC’ ( ) P,(cos0) — Hyrcos¥, r>a (2.4.4)

At the surface of the sphere

O (r, 0, p)

r=a

where V' is constant. This gives,

CH ::a}ﬂ% n=1
(2.4.5)

C,=0, n=23,...
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By substituting, we get the total scalar magnetic potential outside

3
O (r, 0, p) = Hy [(E) - 1] rcos#, r>a (2.4.6)
r
The magnetic field intensity outside can be calculated from H = —V @™ as [1]
H(r,0,9) = H,# + Hpf + H, (2.4.7)

where

cos ),

H, - _%{q)tot} — H, lz(g)gﬂ

10 a\®
tot ;
He___r_ﬁ{(p }_H(][(_r) llsmé’,

1
Hy——— 2 {qﬂof} ~0. r>a
rsind oy

On the other hand, the magnetic potential ¥ inside the sphere, defined by B = -V U,

can be expressed as

U(r6,0) =Y G, <£>nPn(cost9), r<a (2.4.8)

where G,, are constants of integration. Imposing the boundary condition that the
normal component of the total magnetic flux density is continuous across the surface

of the sphere, i.e.,

(2.4.9)
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we obtain
G1 - _SMO HO: n=1
(2.4.10)
G, =0, n =23,
and, thus,
U(r,0,¢) = —3uo Hy (C) cos 0, r<a (2.4.11)
a

Then, the magnetic flux density components inside the sphere are construct,

1 1
B, = 3uo Hy (—) cos 0, By = =3 HO( ) sin @, B, = 0. (2.4.12)
a

a

2.5 Chapter Summary

The main background concepts related to the thesis were described in this chapter.
This has included the solution of the scalar Laplace equation in spherical coordinates,
the expressions of translational addition theorems for the solution of field problems in
asymmetric and axisymmetric geometries, the scalar magnetic potential for ideal fer-
romagnetic bodies, and the solution for a single ferromagnetic sphere in the presence
of an uniform external field. These concepts and expressions will be used in chapters

3 and 4.



Chapter 3

Linear Arrays of Ferromagnetic

Spheres in External Magnetic

Fields

This chapter presents the study of the scalar magnetic potential outside and inside
of two-sphere and three-sphere systems. Here we limit the discussion to spheres
having a common axis and in the presence of external uniform magnetic fields. The
translational addition theorems [13] are used to obtain exact analytical expressions for
ideal ferromagnetic spheres. The infinite series expressions are truncated to generate
numerical results for some characteristic parameters, such as sphere radii, the relative
distance between the spheres, etc. Finally, the potential values are used to obtain the

magnetic field intensities outside and inside the spheres.

16
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3.1 Two-Sphere System

A system of two ferromagnetic spheres of radii a; and ay, with a distance d between
their centers have been placed in a homogeneous medium of permeability po. The
centers of the spheres are on the common 2z axis and the system is placed in an
uniform magnetic field Hy at an angle 6 with respect to the common axis, as shown
in Figure 3.1. Take (71,01, ¢1) and (r,0s, ¢2) as the spherical coordinates attached

to the sphere 1 and sphere 2, respectively.

A 4
N

Y1

<
)

FI1GURE 3.1: Two ferromagnetic spheres in an external magnetic field

3.1.1 Case I: The Magnetic Field along the Common Axis

Consider the external field to be oriented along the common axis (i.e., Ho = H(Zz) of

the spheres, as shown in Figure 3.2.
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FIGURE 3.2: Two ferromagnetic spheres in the presence of an external field along
z axis

The potentials outside the spheres (11 > a; and ry > as) :

The total scalar magnetic potential at an arbitrary point P outside the spheres can

be expressed as
P (ry, 01,01 | 12,02, 02) = P1(r1,01,01) + Pa(r2, 02, 02) + Pegi (71,01, 1) (3.1.1)

where ®; and ®, are the potentials due to sphere 1 and sphere 2, respectively, and .,
is the potential corresponding to the external field in spherical coordinates (rq, 01, ¢1)

attached to sphere 1.

The magnetic potential is related to the magnetic field intensity by H = —V® and
satisfies the Laplace equation. Since the system has an azimuthal symmetry, there is

no ¢ dependence of the potential. Using the Equation (2.1.6) with r = r1,6 = 6, for
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sphere 1 and r = ry, 6 = 05 for sphere 2, we have

n+1
Dy (71,601, 01) ZC <a1) P, (cos61), r1 > a1 (3.1.2a)
n=0 "
m—+1
(I) TQ,GQ,QOQ Z D < ) Pm(COS 92), T2 > a9 (3.1.2b)

where C), and D,, are constants of integration. The potential ®, is translated into the
coordinate (ry, 601, ¢1) as @ (7’1, 01, 1), and then the total scalar magnetic potential

at P can be expressed as
O (r1,01,01) = ®1(r1, 01, 01) + DY (11,01, 01) + et (71, 01, 1) (3.1.3)

In order to find <I>§”(r1, 01, 1), we use the translational addition theorem in Equation

(2.2.5), with r =1y, 0 =0, 7" =11, 0 = 61, 0y = 7, and we get

= — . m—+n) fa " ()"
q)gl)(rhghsﬁl):ZZ(—l) Dm%<§> <El> P,(cosby),

n=0 m=0

(3.1.4)

d>ry, d>(a;+as)

The external field is given by Hy = —V®,,; and, thus,

Dyt (11,01, 1) = —Hoz1 + K

Dyt (12,02, p2) = —Hoza + Ko

where the constants K; and K5 are used to fix the reference potential. We choose

®..s =0 at z; =0 and, then, K; = 0 and Ky = —Hyd which yields

Deat(r1,01,01) = —Hor1Pri(cos bh) (3.1.6a)

@wt(rg, 92, QOQ) = —HOT2P1(COS 92) — H()d (316b)
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where Pj(cosf;) and Pj(cos0s) are Legendre polynomials of degree 1 and arguments

cos 0y and cos 0y, respectively. Equation (3.1.3) becomes

n+1

O (ry, 01, 1) Z C, (al) P,(cos ) — Hyr1Pi(cos0;)

+§:Z %(%)mH(%)nPn(cos o), (17)

n=0 m=0

d>ry1>a;, d=>(a+ap)

We impose the condition that the total magnetic flux through the surface of each

%Bndsrzo
S

is the normal component of the magnetic flux density

where B, = —pyg % { oot }
s

on the surface S of the sphere with ds, = r*sin 6 df de and pq is the permeability of

sphere is equal to zero, i.e.,

the medium outside. Then, this condition for sphere 1 gives

0=— 27ru0af/ { Z n+1)Cpa; ' Py(cos 0y) — HyoPy(cos 6;)

D . (3.1.8)
+§Z:O %(%) (nc;i; 1>Pn(00391)}sz'n91 db,
Applying the orthogonality of Legendre polynomials (see B.6) we obtain
Arp0a1Co = 0 (3.1.9)

and, thus,

Co=0 (3.1.10)
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Similarly, for the sphere 2, we have
Dy =0 (3.1.11)

Thus, Equation (3.1.7) becomes

n+1
<I>t°t (11,61, 1) Z ( ) P,(cos0,) — HyriPi(cosby)

) m Al fa\" ()" 3.1.12
+;Z:1 W(E) — | Palcosty), ( )
dZﬁZal, dZ(CL1+a2)

The potential at the surface of each ferromagnetic sphere is constant and we have

=W

T = a1

®t0t(r17 01 ) 901)

where V] is the magnetic potential at the surface of the sphere 1. From 3.1.12,

f: CoPy(cos ) = Vi — f: i(—l)’”Dm% (%2) " (%) nPn(cos o)

n=1 n=1m=1
+Hyay Pi(cosbq)

(3.1.13)

To apply the orthogonality of Legendre polynomials (see B.6), we multiply this equa-

tion by P(cos ) sin 6, and integrate with respect to cosf; to obtain

1
/ {Vl + a1 Hyo Py (cos 01)}Pn(cos 61) d(cos 6)
= (3.1.14)

- e (mA+n)! as A\ " B

m=1

(2n+1)

Cn = 5
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This gives
00 a m—+1 a
Ci+ Y (=1)"Dp(m+1) (;) (dl> =aHy, n=1 (3.1.15a)
m=1
00 ! m—+1 n
C, + Z(_DmDmW(Cg) <‘;1> =0, n=23...  (3.1.15b)
m=1 T

Similar steps can be followed for the sphere 2. To translate the potential ®; (71,01, 1)
into <I>§2)(r2,92, ©2), we use Equation (2.2.5) with r =1y, 0 = 6;, 7" =1y, ¢ = 6, and

0o = 0. Then, the total potential at P can be written as

00 m+1
D (1, Oy, o) = Z Dy, <%) Pr(cos b2) — Ho [r2P1(cos 03) + d]
m=1 2

. (—1)’”071%(%)%1 (%)mpm(cos(%)’ (3.1.16)

m=1n=1

d>1ry>ay, d> (a1 +as)

Imposing the boundary condition at the surface of sphere 2 and using the orthogo-

nality of Legendre polynomials yields

0 n+1
ai 2
> n+1 m
(n+m)! (a1 as
D,, _1yme, TV (0L @2y, —2.3... 1.1
+;( )"e n!'m! d d 0 m 3 (3.1.17D)

The Equations (3.1.15 and 3.1.17) form an infinite system of linear algebraic equations
satisfied by the constants of integration C,, and D,,. To obtain numerical solutions,

this infinite set of equations is truncated to a finite number of terms N as follows.
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Denoting
S = (—1)" (m+n)! (as g\
e m! n! d d)’
(n + m), a n+1 as m
Tom=(—1)"— — — ], nm=1...N
’ (=1) n!m! d d
the finite system of equations can be written in a matrix form as
1 0 s 0 51,1 81,2 Sl,N Ch ay
0 1 s 0 5271 5272 SQ’N CQ 0
0 0 1 S S S C 0
N1 ON2 N,N N H, (3.1.18)
T1,1 T1,2 Tl,N 1 0 0 Dy ag
Ty:1 Tho Toy 0 1 0 D, 0
TN,l TN72 TN,N 0 0 cee 1 DN 0
The solution of this system gives 2N constants of integration, namely, Cy, Cs, ..., Cy,

Dy, Ds,...,Dy.

The total scalar magnetic potential outside the spheres can be calculated from (see

Equation (3.1.1))

N a n+1 N a m—+1
(11, 01, 01 | 72,02, 09) = ZC” (r_l) P,(cos ) + Z D,, (—2) P,,(cos 6s)
n=1 1

m=1

— Hor1Pi(cosby), r > ap, T2 > a



Chapter 3. Linear Arrays of Ferromagnetic Spheres 24

The magnetic field intensity outside the spheres can be calculated with H = —V®%!

as

H(r,0, ) = H,# + Hyf + H,p (3.1.20)

where

Hr=- %{@tot}’ Ho == %%{@tot} He =~ rsin@%{q)m}'

By using the Equation (3.1.19) and the geometrical relations in Appendix (A.2), the

components of the magnetic field intensity can be expressed in (11,01, 1) as

1 [e%s} n+1
H, = EZ(n—i— 1) Cn(;?) P, (cos61) + HoPy(cos b6)
n=1

1 — as\ "
+ % Z D,, (é) {rg(m + 1)(r1 — dcos01) Py (cos 03)
m=1
— r1d sin®01 P! (cos (92)},
1 o n+1
Hy, = sin el{rl et <§fi> P!(cos6)) — HyP{(cos ;) (3.1.21)
n=1

e ¢ m—+1
+ % > Dn <ag> {rg d (m + 1) Pr(cos 69)
2

+ r1(r1 — dcos 01) P! (cos 92)}},

H, =0, r>ay, 7T2>az, d>(a1+ag)
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Similarly, it can be expressed in spherical coordinates (73, 02, ¢2) as

o] n+1
H,, = i Z C, (@> {rl(n + 1)(ro + dcos 02) P, (cos 01) + rad sin 92P (cos 91)}

1 > a2 m
- 0D, (%) P, (cosby) + HyPi(cosbs),
+7"2 mz_:l(m—l— ) <7"2> (cos 03) + HoPy(cos 6)

1 00 n+1
Hy, = sin 92{—3 Z C, <ﬂ> { —r1d (n + 1)Py(cos 6y) 4 (s + d cos 6;) P/ (cos 91)}
1
l & a\"" /
+— Z D, | — P (cosOy) — HyP, (cosby) »,

H,, =0, > ap, Tre>az, d>(a;+a)
(3.1.22)

where P/ and P! are the first derivatives of the Legendre polynomials (see (B.8))

with respect to the arguments cos 6; and cos 65, respectively.

The potentials inside the spheres (r1 < a; and ry < ay)

The potential U inside the spheres relates to the magnetic flux density B by B =
—VVU and satisfies the Laplace equation. By using the Equation (2.1.7), it can be

expressed as

\I/( (r1,61, 1) ZG < )P(cos@l), r < a (3.1.23a)

2) 2)( T2
\I/( (ro,02,p2) = ZG( <a2> Py, (cosBs), r9 < a3 (3.1.23b)

where G and G2 are constants of integration.
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The boundary condition is that the normal component of the total magnetic flux

density is continuous across the surface of the sphere, i.e.,

L 0
= Moa

ari{‘y(i)(%@i,%)} {@wt(meu%)}

r, = a; ? T, = a;

where 1o is the permeability of the medium outside the spheres.

For sphere 1, from Equations (3.1.23) and (3.1.12) we obtain

= nzll . ) (3.1.25)
+;;(_1)m m(”:n"{'n?) (%2) (E) Pn(cosel)}, n#0
Multiplying by P,(cos ;) and integrating with respect to cos 0, we have
1 1
/i G n P, (cos 01)Py(cos br) d(cos 01) = po / { i —(n+1)C, Py(cos ;)
=1 I e

— a1 Ho Py (cos 6) }Pl(cos 01) d(cos 0y)

Applying the orthogonality of Legendre polynomials (see B.6) yields

nGO =yl — a0, + 3 (C1yrp, () (o)
n = Ho " — " mln! d d

1
— alHO@ / Py (cos6,)P,(cosby)d(cos 91)}, n=123...

-1

(3.1.27)
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Taking into account (3.1.15) gives

Gt = 350 { i(—l)mDm(l +m) (?)mﬂ (2) - alﬂo}, n=1 (3.1.282)

m=1
2 1 0o ! m+1 n
qo_Lntl) Z m (‘3) <‘;1> . n=23... (3.1.28b)

Similarly, for sphere 2, from Equations (3.1.23), (3.1.16) and (3.1.24) we obtain

Z G'EYQL) um(COS 92) = ILLO { Z —(m —l— 1)Dm Pm(COS 02) — CLQHOPl(COS 92)
m=1 (3.1.29)

Sy, ek (%)nﬂm (%) Puteos 02>}, m#0

and, finally, taking into account (3.1.17),

oo n+1
a a
G = 34 { ;(_1) Cp(1 4 1) <d1> (;) - CLQH()}, m=1 (3.1.30a)
o) | n+1 m
G - 2m+l) Z ”W(ifl) (‘?) . m=23... (3.1.30b)

Once G4 and G are determined the Equations in (3.1.23), give the potential inside

each sphere.

The magnetic flux density B inside the sphere can be calculated from B = —VVU as

B(r,0,9) = B, + Byf + B,p (3.1.31)
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Thus, for sphere 1, use the Equation (3.1.23a) to obtain

n=1
By, = S ZGS) <T1> P/ (cos 6y), (3.1.32)
= ay
B<p1 = O, r < aj
Similarly, for sphere 2,
B,, = _L i": G2 <T2> Py, (cosb3),
r2 = a
5in Oy ra\" 7 3.1.33
By, = G2 (2) Pl(cost (3.1.33)
02 T mz:l m <a2> m(COS 2)?
BSO2 =0, o < a2

3.1.2 Case II: The Magnetic Field perpendicular on the Com-

mon Axis

Consider a two sphere system with an external field oriented along the x axis (i.e.

Hy, = HyZ), as shown in Figure 3.3.

The potentials outside the spheres, (r1 > a1 and ry > a)

As in the previous case, the total scalar magnetic potential at P due to the two

spheres and to the external field can be expressed in spherical coordinates as

CDtOt(ﬁ,el,(Pl | 7”2,92,@2) = q)l(rlaela()ol) +‘b2(7"2,927902)+q)emt(x)(7“1,917901) (3-1-34)
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1111111

Hy=Hy X

FIGURE 3.3: Two ferromagnetic spheres in the presence of an external field along
T axis

where ®; and ®, are the potentials due to sphere 1 and sphere 2, respectively, and
®.z1(2) 1s the potential corresponding to the external field in (71,61, ¢1). Then, as in

previous case, this expression is written in spherical coordinates (r1, 61, 1),
(I)wt(ﬁ, 01, 901) = (I)l(Tl, 01, 901> + ‘I)él)(rh 2 901) + (I)e:vt(a:)(rlv 01, 901) (3‘1'35)

where @él) is the potential due to the sphere 2 in spherical coordinates (71,61, ¢1).

Since the external field is along the x axis, the potential ®;(r1, 01, ¢1) can be written
by using the real part of the Equation (2.1.3), with » = r1, § = 6; and ¢ = 1, in the

form

nt1
Oy (11,01, 1) Z Z Cnm(a1> P(cos0y) cos (mp1), 11 >a;  (3.1.36)

n=0 m=—n
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Similarly, the potential due to the sphere 2 is expressed as

a
Dy (rg, by, o) = Z Z qu< 2) Pg(cos 0s) cos (pp2), ro > Qg (3.1.37)

q=0 p=—¢

To translate ®o(r9, 02, @) into coordinates (rq, 01, ¢1), we use the translational addi-
tion theorem by taking the real part of the Equation (2.2.1) with r = ry,0 = 05, p =

302771/ - T170/ = 617 SOI = ¥1 and 00 =T, i'e'7

_ v q ptv+p)
(Q+1)Pp(cos 92 COS pcpz E E th ) (1/ T M)' a1 P5+5(COS 71')
v=0p=—v

xcos((p — p)po + p1) Pt (cosb1), 1 <d

Since (see (B.5))
P2 (£L) =0 forall (p—p)#0

we remain with g = p, and with P, (—1) = (—1)7", the Equation (3.1.37) can be

translated to

o0 q

W00 =30 3 31D, (ZI(Z)ip)!(?)qH(E)V

q=0 p=—qv=0

(3.1.38)
x PP (cos 61) cos(pp1), d>r, d>(a1+a2)

The potential due to the external field can be expressed as

DPear(a) (11,01, 01) = —Ho w1 + K,

q)ext(a:)(r% 027 902) = _HO To + KQ

where K and K, are the constants of reference. At x; = 0 plane, we choose @y () =

0 as reference. Then, K; = 0 and Ky = 0, and with x; = r;sin#; cos p; and
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o = 1ro8in by cos po, we have

Devi(a) (11,01, 1) = —Hyr, P} (cos 0,) cos o,
(3.1.39)

Deyi(a) (T2, 02, 02) = —Hora Pl (cos 05) cos s

The total scalar magnetic potential in (3.1.35) is finally obtained as

n

n+1
' (rq, 01, 01) E Z Chm <a1> P™(cos 01) cos(mp1) — Hyr P} (cos 0y) cos o

n=0m=—n
00 q 0o

#3303y L () () st coston).

q=0 p=—q v=0

d>r >a1, d>(a1+a)
(3.1.40)

Imposing the condition that the total magnetic flux through the surface of each sphere

is equal to zero gives

CO() =0 and DOO =0 (3141)

Then, the Equation (3.1.40) becomes as

o0 n

n+l
' (r, 01, 1) Z Z Chm <a1> P™(cos 01) cos(mp1) — Hyr P} (cos 0y) cos o

n=1m=—n
00 q 0o

#3030 Sy () Y ey cost),

q=1 p=—qv=0

d>r >a1, d>(a1+as)
(3.1.42)

With

D (ry, 01, 1) =V

r = aq
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where V] is the scalar magnetic potential of the sphere 1, Equation (3.1.42) can be

written with form

+1
Z Z Crm <a1) PI"(cos 0y) cos(mpy) = Vi + Hyay P} (cos 0y) cos

n=1m=-n

303 Sy () () s st

q=1 p=—q v=0

To apply the orthogonality of spherical harmonics (see C.6), we multiply this equation

by P (cos 0y) sin 6, cos (my7) and integrate with respect to #; and 7 to obtain

DD IRHEED 3B 9 Wl Lot ) By E |

n=1m=-n g=1 m=—q n=1
™ 2
(2n+1) (n —m)!
+én Ar (n+m) Vi + Hya, P} (cos ;) (cos o)
0,0 o1 =0

X P™(cos 0) sin 6y cos(mpy)dbde;
(3.1.43)

1, if n=20

where Ep =
2, ifn=1,2,3,...

This gives for m =0

= (g+n)! a2\ (a1 \"
" E -1)4D —= — = =1,2,3,... .1.44
C 0+ - ( ) q0 q'n‘ d d 07 n ) 737 (3 a)
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form=1
Cn+ i(fl)qﬂpql Q(q;l) <(;2)q+1 <C;1> = a1 Hy, n=1 (3.1.44b)
n1+z D, (T)T(Zt - (32)“1@)” ~0, n=23.. (314dc)
form = —1
Cr 1+ i(_l)q_qu,—l (‘g)q“ (3) = —2aHy, n=1 (3.1.44d)
q=1

C +§:(—1)(HD (g +n)! e\ (a0 g (3.1.44e)
o g+ -1\ d a) ~ oS

and C,, =0 for all m # 0,41, —1.

Similar steps can be applied for the sphere 2, which gives

(I)tOt(rza 0, 802) = ‘1)2(7°27 0, 802> + cpgz)(r% 0, 902) + (I)eact(x)(r% 0, 902) (3-1'45)

with

) (2, 0, 02) = Z Z Z )" G n—?z;(z)im)!<ézil>n+l<7s>n

n=1m=-—nn=0

x P} (cos 02) cos(mps), d>ry, d> (a1 +a2)

Thus,

q+1
a2
D (19, 0o, o) z; ququ (TQ > P} (cos 02) cos(pyp2) — Ho 9P} (cos 03) cos py
=1 p—

Y Sy, n_(:;;(g)i m)!<‘§>n+1(’3)”13771(@392)@5(%2),

n=1m=-—nn=0

d>ry>az, d>(a1+a)
(3.1.46)



Chapter 3. Linear Arrays of Ferromagnetic Spheres 34

Imposing the condition ®'(ay, 65, 2) = V5 and the orthogonality properties of the

spherical harmonics yields, finally,

forp=0
00 (n+ (]) n+1 as q
D 0, i 2) o, —1,2,3,... 1.4
qo+nz::1( DO d y 0, ¢ 3 (3.1.47a)
forp=1
00 1 n+1
Dii+ Z Ch1 n(n;) (3) (?) =axHy, gq=1 (3.1.47b)

n+1 q
q+1 (n+Q)‘ ﬂ % — —
1+Z Cr1 — IS d 0, ¢=23,... (3.1.47¢)

for p=-—1
a n+1 as
Dy 1+ 5 Cn _1< y ) <d> = —2ayH,, g=1 (3.1.47d)
n+1 q
Z -1 (n+q)! ar\"" (a2\? B
Dq’_l—i- 71(—1)(1 Cn7_1 (n T 1)' (q _ 1)' <d> F = 0, q = 2,3, e (31476)

and Dg, =0 for all p # 0, +1, —1.

Equations (3.1.44 and 3.1.47) constitute an infinite system of linear algebraic equa-
tions. Numeric results for the constants of integration are derived by truncating this
system as in the previous case. The system 6/N x 6N matrix is shown in Equation

(3.1.48).
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where the entries S and 71" are defined as

S\ = (—1)q% (%>“1 <%)"
- (5) ()
s = et (5) (5)
1) = (Ot ()T ()]
AT —(2)T(Z)!+ 1) (%)nﬂ (%)q,

T = 0 e e (_) (_) A=t

=
I

Once the system in (3.1.48) is solved, the total potential outside the spheres can be

expressed (see Equation 3.1.34)) as

N 1 n+1
a
O (r1, 01,01 | 72,02, 2) = Z Z Onm<7‘_1> P (cos by) cos(mpr)
m=-—1 1

n=1 —

5 (2N e (3.1.49)
+2.2 Duly ) Prlcosty) cos(pea)

q=1 p=—1

— Hyr P} (cos 6,) cos o1, T2 Q1,72 2> A

The magnetic field intensity in the spherical coordinates attached to sphere 1 are

obtained from H = —V®™* and using the geometrical relation (A.2), i.e.,

H(Tl, 917 901) = H’r‘lfl + Helél + Hcplsél (3150)
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with
1 00 1 a1 n+1
H, = Z Z (n+1) Cpm (n) P™(cos 61) cos(mp1) + HoPj (cos 01) cos ¢y

r
1nzlm:—l

o 1 +1
1 as \?
+ o3 Z Z Dyp <r2> {Tz(q +1)(r1 — dcos ) P (cos 6)
q=1p=-—1

—rid sin201P§’/(cos 02)} cos(pp2),

» 1 [e'e] 1 a n+1
Hy, = sinb; { o Z Z Cnm <7"I> P (cos0y) cos(mpy) — HoPL (cos 01) cos o1

n=1m=-—1

1 as \ 9
+ ] Z Z Dgp (742> {Tzd (q+1)PP(cos ba)

q=1p=-1

+ r1(r1 — d cos 91)P§/(cos 02)} cos(papg)},

[e9) 1 n+1
1 ai m .
H, = rlsinﬂl{ E E anm<rl> P’ (cos 01) sin (mp1)

n=1m=-1

o 1 q+1
+ Z Z pDyp <> P} (cos 02) sin(ppa) — Hyr, Pl (cos 1) sin ¢, },

r>ai, r2>az, d>(a;+ag)

Similarly, we can find the magnetic field intensity in spherical coordinate (79,02, ©2)

attached to sphere 2.

The potentials inside the spheres (11 < a; and ry < as) :

The magnetic potential ¥ inside each sphere is related to the magnetic flux density,
B by B = —VVU and satisfies the Laplace equation. Using the symmetry with respect

to the plane z — x, we have
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\IJ( (r1,01, 1) Z Z G(1)< ) P (cos 1) cosmpy, 1 < ay (3.1.51a)
n=0m=-n

T2 (19,09, p3) = Z Z G < 2) PP(cosb2) cosppa, T2 < ag (3.1.51Db)
q=0p=—q

Imposing the boundary condition in (3.1.24),

0

0
——{\I/<1>(r1,91, 901)} = — o 8—{<I>t°f(r1, Hl,gpl)} (3.1.52)
" L= a1 " L=
Equations (3.1.51) and (3.1.42) give
00 n 00 1
Z Z G nP™(cos 01) cos mepy = Mo{z Z 1)Crm P (cos 61) cos (mp1)
n=0m=—n n=1m=-—1

3 S 1, S L (?)q“n <‘3)nps<co891>cos(pso1>

g=1p=—1n=1
—alHoPll(cos 01) cos gpl}7 n#0
(3.1.53)
Multiplying by P/ (cos 6y) sin 0y cos(my;) and integrating with respect to 6; and ¢,

yield

1 0 n+m)! [ !
55 a0 | [ S 5 aine

n=1m=-—n 6,=0 p1=0 n=1m=-—1

m q m (q+n)
X P'""(cos 61) cos(mpr) +Z Z Z " Dym (g —m)! (n+m)! (3.1.54)

=1 m=—1n=1

q+1 n
" <sz2> n <C;1> P (cos 01) cos(my1) — a1HoP11(cos 61)cos g&l}

X P (cos 01) sin 01 cos(mpr) dby der
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Taking into account the orthogonality of the spherical harmonics (see (C.6)) we obtain

for m =20
0 +1 n
w_ @2n+1) (a+n) (a\"" (a1 B
Q) = T’“’;(_l)mqow y -) . n=123. (3.1.55a)
form=1
= qlg+1) (a\"" [ a
Gy = 3#0{ ;(—1)“%17(5) j —aHyy,  n=1 (3.1.55b)
oo +1 n
v _ (2n+1) 1 (¢ +n)! a\ " (as
== ~1)71D =2 — —2,3,...
Cni n “OQZ;( S P T 11\ d a) T
(3.1.55¢)
for m = —1
(1) & 5] ot ay
Gl,fl = 3#0{ (—1)‘1_1Dq’_1 (E) (E) + 2@1]’]0}, n=1 (3155d)
q=1
o +1 n
y _ (@2n+1) -1 (¢ +n)! as\"" [
= -1 D, _ — =23
G n ,uoq;( ) g+ D) (n—11\d a) T
(3.1.55¢)

and G4, = 0 for all m #0,4+1,—1.

Similarly, the constants of integration for sphere 2 are obtained as
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for p=20

9 +1 %) n+ ' /a n+1 a q
Gt(]%)) _ ( Qq )MOZ(_I)C]CHO( - q) (El) (32) , q=1,2,3,...

(3.1.56a)

forp=1

0 n(n + 1 a n+1 a
Gﬁ) _ 3#0{ ZCM%<EI) (EZ) — QQFIO}7 qg=1 (3.1.56D)

n+1 q
@) 2q +1 o (” +9)! @ az _ 9
Gar = OZ o = D g+ 11\ d q) 4T3

forp=—1

00 n+1
G?, = 3%{ Z o (%) (%2) +2 aQHO}, g=1 (3.1.56d)

2q +1 (n+q)! aq il as\ !
a® B “u & =2.3,...
o1 OZ " n+1)!(q—1)! d d)’ 4 T

and GEI? =0 for all p #0,+1, —1.

The potential inside each sphere is computed with Equation (3.1.51).



Chapter 3. Linear Arrays of Ferromagnetic Spheres 41

As before, the magnetic flux density components inside the spheres can be calculated

from B = —VW¥. Equation (3.1.51a) gives

00 1

1 n
B,, = _T_Z Z nG) (—1) P (cos 0;) cos(mpy),
1

n=1m=-1

0 ) 1 n
By, = il Z Z G (—1) P (cos 0y) cos(mpy), (3.1.57)

n=1m=-1

1

B,, = Z Z m GV (—1> P (cos 0y) sin(mey), r < ay

181N 91 — .
—

Similarly, with (3.1.51b),

00 1

1
=T Z Z qG ( ) (003 02) cos(ppa),
T2 q=1 p=-1
9 00 1
By, = 21 Z pREr ( > P! (cos 02) cos(pgs), (3.1.58)
q= 1p——1
—_ Y
B, rosin 62 le_z_lpG ( ) P! (cos by) sin(pps), ry < Q9

3.2 Three-Sphere System

A system of three coaxial ferromagnetic spheres of radii a;, as and az with the sep-
aration distances dis, di3 and do3 between their centers have been placed in a homo-
geneous medium of permeability pg in the presence of a uniform magnetic field Hy.
Take (r1, 61, 1), (12,02, 92) and (73,03, p3) as the spherical coordinates attached to

sphere 1, sphere 2 and sphere 3, respectively.
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3.2.1 Case I: Hy along >z Axis

Consider the magnetic field oriented along the common axis, as shown in Figure 3.4.

FIGURE 3.4: Three coaxial ferromagnetic spheres placed in the presence of an
external magnetic field oriented along z axis

The potentials outside the spheres (r; > a1, 19 > ay and r3 > a3)

The total scalar magnetic potential at outside the spheres due to the three spheres
and to the potential corresponding to the external field can be expressed as

(11, 01,01 | 7o, 0o, 02 | 73,03, 03) = P1(r1, 01, 1) + Pa(r2, 02, 2) (3.2.1)

+ P3(rs, 0, 03) + Pege(r1, 61, 01)

where ¢, Py and P53 are the potentials due to the three spheres expressed in terms
of their attached spherical coordinates. ®..;(r1, 601, ¢1) is the potential corresponding

to the external field in spherical coordinates (r1, 01, ¢1) attached to sphere 1.
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We have (see Equation (2.1.6))

ni1+1
Dy (r1,61,01) Z Ch, <a1> P, (cos6y), T > ay (3.2.2a)
r1
n1=0
as no+1
Do (rg, 02, 92) = Z D,, <> P,,(cos ), To > ag (3.2.2b)
no=0 r
nz+1
Dy(r3, 03, 03) = Z E,, <> P, (cos03), r3 > a3 (3.2.2¢)
n3=0

where C,,,, D, and E,, are constants of integration.

The coordinate translations are performed using the translational addition theorems

in Equation (2.2.5) as follows.

In spherical coordinates (rq,01, 1), with ' = ry, 0 = 6;, and with r = ry, 0 =

0y, 0y = 7, d = dy5 for sphere 2 and with r = r3, 6 = 05, 8y = 7, d = d;3 for sphere 3,

oo o0

a ) n2 n2+n1)! as na+1 - ni
05 (r1,01,01) = > Y (= D2W dia . Pn, (cos 1),

n1=0n9=0
[eS) )

yn ng +n)! (Caz \" o \™ 2.
‘I’()Tlael,Sﬁ Z Z 3En3ng‘nl'<d13> d713 Pm(COS@l), (323)

n1=0n3=0

dy2, di3 > 11

In spherical coordinates (rq,0s,@s), with ' = ry, 8 = 6, and with r = ry, 0 =

01, 0y = 0, d = dy5 for sphere 1 and with » = r3, 0§ = 03, 6y = 7w, d = da3 for sphere 3,

oo o0

<I>() 9 1y2c, (n1 +n2)! [ ay mtl s, nQP 9
7’2, 2,902 Z Z 1W d712 d712 ng(COS 2)7

no=0n1=0
o0 o

2 n ns +n2)' as na+l 79 "2 9.
‘I)( ) (12,02, 02) = Z Z *E 5713'712'(6123) d723 P, (cos ), (3.2.4)

n2=0n3=0

dy2, dag > 12
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In spherical coordinates (rs, 03, p3), with ' = r3, 0 = 603, and with r = r, § =

01, 0y = 0, d = dq3 for sphere 1 and with r = 79, 8 = 65, 0y = 0, d = da3 for sphere 2,

oo 0

(b() ; ngc n1+n3)! ay ni+1 3 n3P .
7“3a 37803 Z Z ITH?)! dilg dT?, ng(COS 3)7

n3=0n1=0
oo oo

na+1 ns
3 -3 S (n2 +ng)! (ag \7 (73 3.2.5
) T3a 03, ¢3) QW d723 digg P, (COS 93), ( )

n3=0n9=0

dig, da3 > 13
The potential corresponding to the external field can be obtained as
Dyt (i, 05, i) = —Hozi + K, 1=1,2,3

where K; are constants of reference corresponding to the coordinates attached to
sphere 7. As before, at z; = 0 plane, we choose ®.,; = 0 as reference. Then,

K1 = 07 KQ = —H0d12 and Kg = —Hodlg. With Zi = T’Z‘Pl(COS ‘91)7 we have

eyt (11,01, 01) = —Hor1 Pi(cos t) (3.2.6a)
Dyt (12,02, p2) = —Hora Pi(cos 03) — Hodo (3.2.6b)
(I)ea;t(T‘g, 93, (pg) = —H()T3P1 (COS 03) — H()d13 (3.2.6C)

where Py (z) is the Legendre polynomial of the first kind. Substituting the correspond-
ing potentials into the Equation (3.2.1), we can express the potential in spherical

coordinates (r1, 01, 1) as

ni1+1
<I>t°t (r1,01, 1) Z Ch, (> Py, (cos 1) — Hyr1Pi(cos )

n1=0
o o

(ng+mn1)! [ as netl s \N™
S Y (1D, 2Tl (42 ") B, (cost
+ — (=1) ® nalng! \dia di2 1(cos6)

oo 0

£33 (caypg,, st (@ NN s
s n3!ny! di3 di3 " 15 1="

n1=0mn3=0



Chapter 3. Linear Arrays of Ferromagnetic Spheres

45

By imposing the condition of zero magnetic flux through the surface of each sphere,

we have

Co=0, Dyp=0, Ey=0
Thus, Equation (3.2.7) becomes

ni+1
' (ry, 01, 01) = Z Cm< ) Py (cos01) — Hor1Py(cos 01)

ni=1
0o o) no+1 ni
(ng +n1)! [ ag \™? 1
—1)m2D,, 2 (22 L) rp 0
+nz:1nzl( ) n2 nolng! dio d1s nl(cos 1)
1=1no=
o oo

(n3 + 711)! as na+l 1 ™
NS () B, e (0 ML) B, (cos ),
* (=1) * nglng! \dis di3 1(cos6)

Similarly, in (rq, 62, ©2)

na+1
(I)tOt T’Q, 05, QDQ Z Dng ( > Pn2 (COS 92) — Hy [T‘QPl (COS 91) + dlg]

no=1

— (n1 +n2)! < ai )”1+1< T )nz
i B e vyl e — | Pp,(cosf
T;I n?l( ) bonglng! di2 dis a 2)

e (n3 + ng)! ( as >n3+1< ro >n2
+ 1B, — == — ] Pp,(cosba),
7;1 n;,zz:l( ) ° nzlng! das dos o 2)

and in (rs, 03, ¢3)

0 n3+1
(I)tot (3,03, 03) Z En, ( > P, (cosf3) — Hy[r3Pi(cosb) + di3 ]

nz=1

n ZOO ZOO )™ C, (n1+ng)! (an \™ (g n3P (cos 03)
— | - Ccos
el =1 " nl!ngl d13 d13 s 3
3=1ln1=
oo oo

713 no + ng)' a2 n2t+l T3 "3
+D > (=1)™D zn2,n3,<d23> <d25> Py (cos b3),

n3=1no=1

With

~V, i=123
Ty = a;

(I)wt(ri, 0;, ‘Pz’)

(3.2.8)

r > ay

(3.2.9)
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where V; is the magnetic potential of sphere i, and applying the orthogonality of

Legendre polynomials (see B.6) we obtain the following results. For sphere 1,

na+1
1+ Z(—1)"2Dn2(n2+1)<a2> o <al)
d12 d12
ns+1
+ Z (_1)n3En3 (ng 4 1) <a3> 3+ <a1> = a1 Hy,
di3 di3
(n2 +n1)! [ az netl g\ ™
C, 1) p,, 2T (42 L
¥ Z( ) > nalng! \dio di2

o] na+1 ni
(ng+ni)! a3\ ai
1Y E ALVAN el i -0
+ Z( )" Eng n3!ny! \dis ’

13

- ar \" "/ a
D1+ -1DHCh, (g +1)| — —
e Enoamen(5) T (52)
az \"™ ([ as
—1)"E (=2 2 ) = aH,
Jr7221( Bl )<d23> <d23> e
(n1—|—n2)! aq ml as 2
D, _qynzg, LT (01 a2
2+Z( ) Cl n1!n2! d12 d12
£ (1, )t (o e\
" nglng! \das da3 -
and for sphere 3,
B+ i(—uc (n +1)(‘”>m+l<a3>
! mA di3 di3
= as \"** [ as
+ —1) Dpy(na + 1) —— —— | = azHo,
> 0Dt + )(2) () =t
(ny+n3)! ag N\ a3 \™
E, _1)mC,, AT (AL 45
3+Z( ) Yonglng! \dig di3

(n2 +n3)! (a2 nat ag \"*
_qynsp,, 28N (92 B o,
* Z( ) * nolng! \dos da3

ny =1
n1:2,3...
n2:1
n2:2,3...
n3—1
ng=23...

(3.2.12a)

(3.2.12b)

(3.2.13a)

(3.2.13b)

(3.2.14a)

(3.2.14D)
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To obtain the numerical solutions, we truncate the infinite system of equations (3.2.12)

to (3.2.14) to a finite number N of terms in each of the intervening series.

Let us use the following notation:

Slnyno
5201 ns
Tl 0,
T2, ns
Ul m,

U2n3 ;12

~(-1)

= (-1
= (-1
= (-1

= (-1)

no (ng +ny)!

no!ng!

ns (ng + nz)!

_(—1ym (n3 +mn)!

ng!ny!

(n1 + nz)!
n1! ng!

n3!n2!

ns (nz + n3)!

(n1 + n3)'
m!ng!

TZQ!n,g!

Then, the constants of integration

Equation (3.2.15).

Tl])]
Tl

Tlna
Ul
Uly,

UlN"l

T1112
T1s

Tlno
U1172

U1272

Ulny

T1 N
T1y N

Tly N
Ull’N

U12’N

UlN,N

511'1
512'1

Sln

U21,1
U2y,

U2y,

311’2
312’2

Sy

U2172
U259

U232

as ) no+1
da3

do3

satisfy the 3N x 3N matrix equation

Sl N
Sly N

Slnn

UQLN
U227N

U2N,N

S21,1
522,1

S2n,1
T2,

T2,

T2n1

521’2
522’2

S2n.2
T2,

T2,

T2n2

521 N
529

S2n N
T2, n

T2 N

T2n N

Ci
Cy

Cy
Dy
D,

Dy

E,

E,

Ey

az \"
<> y nl,ng,ngzl...N

as shown in

ay

a2

as

(3.2.15)
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Once the solution of this equation is obtained, the total potential outside the spheres
can be calculated in spherical coordinates as (see (3.2.2) and (3.2.6a))

ni1+1
O (r1, 01,01 | 72,02, 00 | 73,03, 03) = Z Chn, <> Py, (cosbh) — Hor1Pi(cos bh)

ni=1

no+1 as n3+1
+ Z Dn2< > nz COS 02 Z En3< > PnB(COS 03),

nz=1

T > ai, r2 = az, 13 > a3
(3.2.16)

The magnetic field intensity components in (rq, 601, ¢1) are derived in the form

a ni+1 as ng+1
— Z ny+1)Chp, () P, (cosbty) + —3 Z Dn2< > {TQ(TLQ +1)
73

77«11 no=1

n3+1
X (r1 — d12 cos 01) Py, (cos 02) — r1di2 sin 91P ,(cos 6) } + = Z En3< )

n31

X {T‘g(ng + 1)(r1 — di3 cos 01) Py, (cos 03) — ridig sin 91P ,(cos 93)} + HyPi(cosby),

a1 ni+1 o0 na+1
Hy, = sin b, Z Cm< ) P/ (cosb1) + Z ( ) {TQ(TLQ +1)

no

nz+1
X d12 Py, (cos02) + r1(r1 — d12 cos01) P, (cos 03) } Z En, < )

X {T‘gdlg(ng + 1)P,,(cosO3) + ri(r1 — digcos01)P, (cos 03)} — HoP/(cos 6y) },

H, =0, T > a1, ro>az, r3>az, diz > (a1 +a2), diz > (a1 + a3)
(3.2.17)

Similarly, we can find the components of the magnetic field intensity in spherical

coordinates attached to the sphere 2 and sphere 3.
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The potentials inside the spheres, (1 < a1,y < ay and r3 < az)

As in the previous sections, the potential ¥ inside each sphere can be expressed in

the coordinate attached to the respective sphere as

1
\IJ( (r1,01,01) = Z G(1)< > P, (cosb6y), r < ay (3.2.18a)
n1=0
\11(2 (re,02,p2) = Z G(2)< > P,,(cosbs), ro < Qg (3.2.18b)
no=0
ng
U3 (73,05, 03) = Z G%) <23> P, (cosbs3), rs < as (3.2.18¢)
3
n3=0

where G1(111)’ G%) and GS’S) are constants of integration.

To determine these constants we impose the boundary conditions

- 887*1- {\I’(i)(ri, 0;, 901)}

. i=1,23

r, = a;

T, = Q; i

(3.2.19)

For sphere 1, Equations (3.2.18a) and (3.2.9) yield

Z Ggl) ny P, (cos 0h) = pio { Z —(ny + 1)Cy, Py, (cos 01) — a1 Hy Py (cos 01)

ni=1

n n2 + 711)' a9 2t aq "
S S () ()

ni=1ns2=1

n1=0

> > n ng + nl)' as natl aq "
+Z Z sE BW(d_m) ny d_13 P, (costy) ¢, ny #0

ni=1n3=1
(3.2.20)
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Multiplying by Pj(cosf;) and integrating with respect to cos 6, we have

1 oo
Z G(1 ny P, (cos01)P;(cosb1)d(cos b)) = ,uo/{ Z —(n1 4+ 1)Cy, Py, (cos 67)
= 1 1 ni=1
ni=1 na=1 2 77,2!711! d12 ! d12 e L
EaR S n3+n1)! as na+l a1 e
1)1 g, 8 T )T (A8 DB, (cosh
- Z Z " nglng! (d13> = dys 1(cos 61)

ni=1n3=1

— a1 Ho Py (cos 61) }Pl(cos 01) d(cos 0y)

(3.2.21)
Applying the orthogonality of Legendre polynomials (see B.6) we obtain
2 1
n1 ngll) = o { —(n1+1)Cp, — alHO(n12+) /Pl (cos01) Py, (cosBy)d(cosb)
-1
(ng +n1)! [ ag \" ™ ap \™
+n§:1 " nglmy! <d12> " dy2
(ns +n1)! [ az \"™"! ap \™
D™ By = ot \ s - =1,2,3...
+7;1 " n3!n1! (d13) " d13 ’ m [
(3.2.22)
This gives
> no+1
Ggl) = 3#0 Z (_1)n2Dn2( + 7”L2)< a ) 2 <al>
na=1 di2 di2
+Z 1) Eny (14 ) ( 2> T n=1 (3223)
n3=1 n3 ’ d13 d13 L0 s 1= 2.
° n: Jrl ny

nl + ng)! as na+l ai "
§ 1) By —— 2 [ == - =2,3... 3.2.23b
+ " nilng! <d13> di3 7 " ( )

nzy=1
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Similarly, for sphere 2

Gg2>:3m{ i(q)c (1+m ( )MH(;)

ni=1
+g:1 1) Epy (1 4 n3) < >n3+1<d23> —azHo}, ng =1 (3.2.24a)
ao — @7‘2;%0 { gl(—l)"QCmm (;i)"l“ (;;)"
+n321 1) B 5m<§;)n3ﬂ(§;>n2}, na=2,3... (3.2.24b)

and for sphere 3 as

G — 3u0{ i(—l)C’ (1 —|—n1)<§113>"1+1<;33>

ni=1
as \"* [ a3
- n221 Dy, (1 + 1) (dzg) (d%) —~ CL3H0}, ng =1 (3.2.25a)
00 | ni+1 ns
GY) = (zni: Do { 7;1(—1)"30”1(”73;”?)‘ <;113) (;;)
+ Z 1)"D 2W<a2>n2+1<“3>n3}, ng=2,3... (3.2.25b)
i n3lna!  \ da3 do3

The magnetic flux density inside the spheres is calculated with B = —V WU for example

inside the sphere 1 as (see (3.2.18a))

1
= —— Z ny G(1)< > P, (cosby),

nl 1
0 1
By = sin 0y Z Gm <7’1> Pn/1(60891), (3.2.26)
ni=1 a1
Bg01 =0, r < ap

Similarly, the magnetic flux density inside the sphere 2 and sphere 3 is calculated

from (3.2.18b) and (3.2.18c), respectively.
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3.2.2 Case II: Hy perpendicular on the Common Axis

Consider the coaxial three-sphere system shown in Figure 3.5 in the presence of an

external field oriented along the = axis (i.e. Ho = HoZ).

FIGURE 3.5: Three coaxial ferromagnetic spheres placed in an external field ori-
ented along x axis

The potentials outside the spheres, (r1 > a,19 > as and r3 > a3)

The total scalar magnetic potential outside spheres can be expressed as

' (ry, 01,01 | 72,02, 02, | 13,05, 03) = P1(r1,01, 01) + Pa(r2, 02, 2)
(3.2.27)
+ @3(7’37 037 903) + (:Eemt(a:) (r17 017 @1)
where @, @y, &3 are due to the three spheres, respectively, and @emt(m)(rl,el,%) is

the potential corresponding to the external field in spherical coordinates (r1, 01, ¢1).
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This can be written in spherical coordinates (ry, 61, ;1) attached to sphere 1 as

(11,01, 01) = 1(r1, 01, 1) + B3 (11,01, 01) + B (11, 01, 01) + Doy (11, 01, 1)
(3.2.28)
where QD ) and <I> ) are the potentials due to the sphere 2 and sphere 3, respectively,
in spherical coordinates (rq, 01, ¢1). The potential due to each sphere can be written
by using the real part of the Equation (2.1.3) corresponding to the respective coordi-

nate system as

ni1+1
Dy (11,01, 1) = Z Z Cn1m1<> P (cosbh) cos(mipr), 11> ax

n1=0mi=—n1

as no—+1
Do)=Y Dnm() P (cos 6s) cos(maga), T2 >0z (3.2.20)

no=0ma=—n2

na+1
®3(r3, 03, p3) = Z Z En3m3< ) P13 (cos 63) cos(msps), 13> as

n3=0ms3=—n3

In order to translate ®q(r2, 0o, o) and P3(r3, 05, 3) into coordinates (rq, 01, ¢1), we
use the translational addition theorem (see Section 2.2.1) by taking the real part of
the Equation (2.2.1), with ' = r, 0 = 01, ¢’ = ¢1, and with r = 19, 0 = 0, p =
9, Bp = m, d = dqo for sphere 2 and with r =r3, 0 = 03, p = 3, 0y = 7, d = dy3 for
sphere 3. This gives

0 ) yn N (ng + 1)!
O (11,01, ¢1) Z Z Z 22 Dy (ng — m2)!(v2 + mo)!

no=0mao=—ng voy=0

as no—+1 r 12}
. <) () P2 (cosbh) cos(mapr), 11 <diz  (3.2.30a)
di2 di2

(1 ) n +m (7”L3 + V3)!
Q. 0 E E E 3T Dham
(1,601, 1) ¥ (ng — m3)!(v3 + ma3)!

n3=0msz=—n3 v3=0

as na+1 r v3
d13 d13
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The potential due to the external field can be expressed as
‘I)ext(a;)(ﬁ,@ia%) = —Hyw;, 1=1,2,3

With z; = ;P! (cos 6;) cos ¢;, we get
Peyi(a) (125 05, 0) = —Hori Pl (cosb;) cosp; i =1,2,3 (3.2.31)
Thus,

ni+1
O (ry, 01, 1) Z Z Cm,m( ) P (cos 01) cos(mypr) — Ho 7‘1P11(cos 61)cos(p1)

np= 0 mi=—ni

nao+1 123
n2+m2 n2m2 (nQ + VQ) 2 Til pme 0
+ Z Z Z — ma)!(v + my)! (d12> <d12> V2 (cos b) cos(map)
(n3
m3)

no= Omszfu v2=0
+ v as \" T e\
3)! < 3 > R Pl (cos 1) cos(mapr),

+Z Z Z n5+m3 Dinsms ™

n3=0mz=—n3 v3=0

'(Vg + mg) d13

ri>ay, dig >y, diz >
(3.2.32)
The condition of zero magnetic flux through the surface of each sphere yields, as

before,

000 = O, D()() = 0, E()o =0 (3233)
The constants of integration satisfy the following equations:

For sphere 1 we have
when m; =0

no+1 n

‘|‘Z 12D n2+n1)!<a2>2 <a1>1
nO no0— v v | 7 -
! 27 nglng! di2 d12

n21

] n3+1 ni
+ Z 1) B0 n3+”1)<a3> (al) =0, ni=123,... (3234a)

3!711!
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when m; =1

00 na+1
_1\n2t+1 (n2 + 1 ’ ar
C’114> Z ( 1) D 2 <d12> d

no=1

= +1) mstl /g,
g, M3 )~ o H, -1 3.2.34b
+n§:1( ) A5 d13 dis a1 Hy, ny ( )
no+1
ng=1 (d12>

+ny)! az \ ™!
_1n3+1En (n3 - :O =2.3...
+ Z ( ) 31 (TL — 1) n1 +1 d d13 ) n )

> +n1 az
-~ -1 7L2+1Dn (TLQ et

nzy=1
(3.2.34c)
when mj = —1
o) —+1
_ a2 ? ai
Cy_ n™-ip, _(-—= —
1, 1+n2221( ) 2 1<d12> <d12)
+ i( 1) E a3\ _ o m ny =1 (3.2.34d)
= ngz,—1 d13 d13 = 1410, 1=

nz=1
(3.2.34e)
Similarly, for sphere 2 we have
for my =0
(n1 4+ n2)! [ aq mtl /g \ ™
Draot nz:l MO g (d12> di2
1
n3 +n2)! as na+l ao n2
1) B~ 22 [ 22 22) =o, =1,2,3,... (3.2.35
+ Z ns0 nz! na! <d23> das "2 ( 8)



Chapter 3. Linear Arrays of Ferromagnetic Spheres 56

for mg =1
0 ni+1
nl(nl =+ 1) ai ! as
D Coj1—— — —
11+ Tgl nil 5 <d12> s
o0 na+1
n3(ng +1) (az \"*" [ a2
+ —1)=tlE <> — ) = axHy, ng=1 (3.2.35b
g:l( ) gl s i 2Hy 2 ( )
- 11 (n1 + ng)! ar \" T ax \™
D —1)" : L =2
n21+7§::1( J O (n1 — 1! (ng + 1)! <d12> <d12>
0 nz+1 n2
ns + na)! as as
ngz—l( ) nal (713 — 1)‘ (TLQ + 1)' d23 d23 2
(3.2.35¢)
for mg = —1
ni+1
al ! a9
Dy _ Chy — =
1, 1+n21 ni, 1<d12> <d12>
1
o0 n3 . as na+1 as B B
+ ) (1) By T 4 ) = 2, ng =1 (3.2.35d)
n;*l
J-1c (n1 + no)! a \"(ag \™
Dy 1+ Z Cry,—1 —— —=
(n1 + 1)l (n2 — !\ d12 di2

n11

n3+1 n2
a1 g (n3 + n9)! as D2\ g =23
+ Z nS’_l (n3+1)!(n2 — 1)! do3 » T2 T

= 23
(3.2.35¢)
and for sphere 3
for mg =0
(n1+n3)! a1 N\ az \™
ngC N - e _ -
n30+ nzl 10 nl! ng! <d13> d13
1
1) Dyy0—m—— [ — — =0, =1,2,3,... (3.2.36
+ Z n20 2! ng! <d23> d23 s ( a)

na=1
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formg=1
00 ni1+1
nl(nl + 1) al ! as
E Cpj1——2| — -
11+ nz_:l nil 5 <d13> -
1
1 no+1
+ Z Dy 2210 n2 1) < ) <a3> = azHo, ng =1 (3.2.36b)
] d23 23
o) ni+1 ns
+ ’rlg)' al !
Bt S (<1410 — () o
it 2 0 G i) (g
00 na+1 n3
ng + TL3>' as as
+ )™+ip ( <> <> =0, n3=203...
,;1( ) " (ny — 1)l (ng + 1!\ das da3 ’
(3.2.36¢)
for mg = —1
+1
a; " as
By Chy — —
1, 1+;1 n1, 1<d13> <d13>
na+1 as B B
+ Z D,y 1 d23 dos ) = —2azHoy, ng =1 (3.2.36d)
no=1
+ Z ng 1 (m +n3)! ((“)m-&-l ((13,>n3
(ng + ng3)! < a9 )"2+1< as >"3
+ )™ Dy, — —= SBY) =0, ng=2,3
7;1 ng, ! (TLQ + 1)' (77,3 — 1)' d23 23 3
(3.2.36e)

For my, ma, ms # 0,41, —1, we have Cy, 1, = 0, Dyym, = 0 and E,,.p,, = 0.

To obtain numerical results for the constants of integration, the infinite system of
equations in (3.2.34), (3.2.35) and (3.2.36) is truncated to retain N terms in each
of the infinite series. The 9N x 9N matrix of this truncated system is presented in

Equation (3.2.37).



0
(0)
Tl(“)
(0)
Liv
0

0

0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0
ne o
Ty 0
o mY
o 7Y

0
1)

ng)

o Ty, 11y,

0 0
0 0
0 0

v’y o

o o1

0o v

[&Y) rq(1)
0o vy, v,

0 0
0 0
0 0

0

0

0
v1)

vig)

0

0

0
0
Tl

0
T1i5n

)
71y

0

0

0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0

—1) (-1
Ty 115

1Y Ty

—1) -1
Ty 1155

0 0
0 0
0 0
0 0
0 0

1) vy

v1g vigy

iy U

0o 51 51 0 0
0o s19 .. 51V 0 0
0 0o - o sy sy
0 0 - 0 s} s1f)
0 0 0o sy, s1y),
0 0 - 0 0 0
0 0 - 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
Ty 0 - 0 0 0
TISY 0 0 0 0
TINN 0 - 0 0 0
0o v v2’ 0 0
0 U2,
0 0
0 0
0 0 0
Uiy 0 0 0 0
Ully 0 o0 0 0
vy o 0 0 0

0

0

0 0
0 0
0 0
0 0
0 0

g1 (=1) -1
s150 51"

v (=1) 1
s150 S8,

S5y S5,

0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0

v vz

v v

0
sy

1
51&..w')

o (-1
51 ‘\x)

0

(0;
s21)

(0]
52.\')1

0

0

(0)
T2

0(0)
20,

(0)
S22 n

520y
0

0

720,

0

0
s}

525

0

(1
T2{")

)

T2
0

0

(
s2f)

o)

524
0

0

0
T2{')

0
T2{!)

T2y,
0

0

(1]
T2

0

0

(1) gol=1)
82177 825,

s250 52y

0

o(—1
T2,

(1, 5
T2 T2,

0

0

T2,

0
sy

S24

0

R

D T

-1
72N

0

Cio

Cni

(e}

Dy
Dy

Dy

Dy

Ey

—2ay

—2ay

§9.49YdQ 219oUbDULOLLI,] [0 ShivsLy 4pIULT ¢ 1YdRY))

8¢



Chapter 3. Linear Arrays of Ferromagnetic Spheres 59

where 51,52, 71,7T2,U1 and U2 denote

s1im), = (b2t ) (C@)”QH ( a )”
e (ng —m)! (ng +mq)! \di2 12)
satm) _ (gt () (a3>n3+1 (al)nl
s (n3 —mi)! (n1 +mq)! \ di3 13)
Tis) — (~pywtma (0¥ B2) (Cﬂ)“()
nz,ni ] 5
(n1 — ma)! (ng + ma)! \ di2 d12
rom) _ (_pywema___ (12 (%)“(@)
e (n3 — ma)! (ng + meo)! \ da3 des)
1) _ (pyaima (ot na) <a1>m+l (%)
e (n1 —mg3)! (ng +ms3)! \ dis diz)
s _ (pynaima (2t m) ( a2 )”2“ <a3>
e (n2 — m3)! (ng +m3)! \ das dos)

mi,mo,m3 =0,41,—1 and ni,ng,ng=1...N

The total potential at any point outside the spheres can be calculated with (see

Equation (3.2.27))

a ni1+1
O (11,01, 01 | 72,02, 09 | 73,03, 03) = Z Z Chym, <—> Pt (cos 0r)cos (mapr)
1

ni=1lmi=—ng

na+1
+ Z Z Dy, (—) P2 (cos ) cos (maps)

na2=1mao=—ng

n3+1
+Z Z En3m3< ) P73 (cos 05)cos (msps)

n3=1msz=—ns3

Q

— Hor1 P} (cos ) cos o1, 11> ay, ra > as, 13> as

(3.2.38)

The magnetic field intensity components outside the spheres can be calculated from
H = —V®® In the system attached to the sphere 1, for instance, these components

are
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1 & 1 a1 ni+1
= Z Z (n1+1) n1m1< 1) P (cos 01) cos(mipr1) + Ho Py (cos 01) cos 1

ni=1mi=-1

lgig n2m2<a >nz+1{r2(n2+l)( — dyz cos 0y) P (cos 0)

— r1di2 sz’n201PfL’;2 ’(cos 02)} cos(map2)

a3 Z Z Enamg( )n3+1{7‘3(n3+1)( — dy3 cos 01) P (cos 03)

nz3=1maz=-—1

—r1di3 sin2c91Pflg3 /(cos 03)} cos(msps),

1 00 1 ni+1
Hy, = sinb; { — Z Z Chnim, ((“) P;L’lll /(cos 01) cos(mip1) — Hoplll(cos 01) cos p1
1 ni=lm;=—1 e}
1 [e'e) 1 as na+1
+@ z Z l)n2m2 (742) {T2d12(712 + 1)P77g2 (COS 92)

-1

1meo

3

2

+71(r1 — di2 cos 1) Py? /(cos 92)} cos(map2)

1 oo 1 a3 n3+1
+r373 Z Z Ensms (7”3> {7“3d13(n3 + 1) P (cos 03)
n3=1ms=

+71(r1 — di3 cos 01) P22 /(cos 93)} cos(m3<p3)},

ni+1
oL = { Z Z m1Cnym, ( > P (cos by) sin (myp1) — Hory Pl (cos 0y) sin ¢,

r1sin 0y = mli_l

no+1
+Z Z mQDanz( > P2 (cos 62) sin(maps2)

no= 1m2_71
as nz—+1
+ Z Z ngn3m3< > P (cos 03) sin(mgapg)},
n3= 17)’7,3——1

T >ai, ToZ>a, T3>a3
(3.2.39)
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The potentials inside the spheres (r1 < aj;,m9 < as and r3 < as)

As in the previous cases, the potential inside each sphere can be expressed

T (r;,0;, 5 G() i P (cos 0;) cos(m;p;),
90 nim; n; 4

=0m;=—

(3.2.40)

r<a;, t=1,23

where foi)mi are constants of integration. To determine these constants we impose

the boundary conditions at the surface of each sphere as

_ aa/ri{\lj(i)} = 11 8ii{¢tot}

where 9 is the permeability of the medium outside the spheres. This yields the

, 1=1,2,3 (3.2.41)
ry = a;

Ty = a4

following expressions.

2ny +1) = (ng +ni)! ((ag \"* ™ [ ar \™
av _ 1D, a2 @
mo = T Mo 2 (~1)"Dng nalng! \dio dr

no=1
(n3+n1)! (az \"* T [ an \™
1) Ep,0——— | =— — , =1,2,3,... 3.2.42
+ n;l 30 713! nl! <d13> d13 " ( a)
Gl =3 i (1yatip,, 22t D) (e \" o
11 = 2HO e n2l 2 dq2 d12
n Z 1)stlg 1"3(”3+1)<‘13>n3+1<al>_a1[{0 ny =1 (3.2.42b)
= " 2 di3 di3 ’
2nq + 1) > (n2 + nl)' a2 n2+l a1 e
o _ ( —1r2tlp, it it
n1l np Ho g::l( ) g — 1)l (g + 1)! \dy2 dis
> (723—1—711)! <a3)”3+1(a1 )nl
+ —1)m=tiE, = — , ny=23,...
ngz::1( ) sl (n3 — 1)' (n1 + 1)' d13 d13 !

(3.2.42¢)



Chapter 3. Linear Arrays of Ferromagnetic Spheres 62

¢V, =3 i( 1)"~'D @\ (an
1,-1 7 °Ho "2 dpy di2

no=1
00 as n3+1 ai
i Z (—1)™ 1B, (d13> (d13> + 2ay Hy np =1 (3.2.42d)
nz=1
2ny + 1) e B (ng +nq)! as natl ap \"
G(l) — (7 —1)"™2 1Dn - N N
ni,—1 1 Ho n;l( ) 2,1 (ng + 1) (n1 — 1) \ di2 di2
(n3 +ny)! az \" " a \™
+ n3 1 _ 2 —_— , = 2, 3, .
7;1 " ng + D! (na — D! \dis dis "
(3.2.42e)

00 ni+1 ng
@ _  (2n2t1) e (A m2)t e NPT an
Gn20 — Ko n Z ( 1) Cn10 nl! n2! d12 d12

2

ni=1
713 + 712)! as 3+l a9 n2
1)™E, - = , =1,2,3,...
+ ngzl 30 TL3! 712! <d23> d23 "2
(3.2.43&)
n1 + 1) ni+l as
=3 Ch —
e =am{ 35 e () (3
> + 1) as a3+l ao
—1)mtlp, n3(ns +1) (as —= ) — asH, =1
+ n32:1( ) 51 5 s s azHy o, n2
(3.2.43b)
2n9 + 1) > (n1 + TLQ)! al mitl as 2
a?® _ ( —)mtlo, it c
nal no Ho n12:1( ) il (n1 — 1)! (712 + 1)! d12 d12
= f ng + na)! az \"* ! [ag \™
+ —1)=HE, ( <> —= , =2.3,...
7;1( ) *(ng — 1)1 (ng + 1)! \ das ds "

(3.2.43¢)
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G( ) _ 3“0 Z C _1<CL1 >n1+1 (CLQ)
bt "\ dao di2

ni=1
az \ as
+ Z )8~ 1En3,1(d233> <d23> +2asHy ng =1 (3.2.43d)
nz=1
2n9 + 1) > _ (n1 + TLQ)! ai mtl as 2
a® i, @ a2
n2,~1 no Ho nlz—l( ) Ll (n1 + 1)! (TLQ — 1)! d12 d12
(ng + ng)! <CL3 >n3+1(a2 )"2
+ N, - — =), ny=23,...
ndzl 3,1 (ng + 1)' (ng — 1)' do3 do3 2
(3.2.43e)

00 n1+1 ns3
3) (2713 + 1) _1\n3 (’I’L1 + ng)' al ! as
Cngo = o n3 Z (=1 Cro ni!nzg! \di3 di3

ni=1
+n2zl "3Dmom<z>m+l <§;)”3}’ ny3=1,2,3,...
(3.2.44a)
o 3#0{ 5 enin el (o) ()
N 7;1 D™ n;—i— 1) <d23>n2+1 (5233> B agHO}, nsg =1 (3.2.44b)
G = %jl)uo{ 721(—1)”3“07”1 (n1 f"if@fl 1)! (5113)%1 (ﬁ,)ns
* n;i;f-”““D (i) (di)} R
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ni+1
(3) 3 a \"(as
Gim = 3%{ Ot <d13> (d13>

ni=1
no+1 as
+ D, _ + 2 a3H ng =1 3.2.44d
mz:l 2, 1(d23) (d23> sHo 3 ( )
2ng +1) > _ (n1 4+ n3)! ar \" T az \™
G(3) _ ( 3 —1)"s 1Cn B L 9
ng,—1 ns Ho nlz—l( ) L1 (n1 + 1)! (ng — 1)! d13 d13
. _ (n2 + ng3)! ( az >n2+1( as )nS
+ —1)=-ip,, _ —= — =23,...
n;( ) >~ (ng + 1)l (ng — 1)! \ das das "

Crimi = Dnymy = Fngms = 0 for mq, mg, ms # 0,+1, —1.

The components of the magnetic flux density inside each sphere are calculated from
BY = —vw® j = 1,2 3, using the corresponding Equation (3.2.40). Inside the

sphere 1, for instance,

1 o) 1

ni
B, = —— Z Z anSLll)ml (E) P (cos 0y) cos(mypy),

n1 1m1 —1

9, &
B91 = snf Z Z Gnlml( 1) P$1/(00591)003<m1g01),

ni=1mp=-1

By, = r1sin s Z:lmzlﬂquml( ) P (cos 0y) sin(mqp1), r < a;

(3.2.45)

3.3 Chapter Summary

In this chapter, analytical expressions were derived for the magnetic scalar potential

and the field quantities both inside and outside coaxial ideal ferromagnetic spheres,
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placed in the presence of uniform magnetic fields. The total scalar magnetic poten-
tial outside the spheres was obtained by the superposition of the potentials due to
each sphere and the potential corresponding to the external field. The translational
addition theorems were used in order to express the total potential in the coordinate
system attached to a specific sphere. The corresponding boundary conditions were

imposed to derive the constants of integration.



Chapter 4

Arbitrarily Located Ferromagnetic

Spheres in External Magnetic

Fields

In this chapter, the scalar magnetic potential is employed to determine the field both
outside and inside two-sphere and three-sphere systems placed in arbitrary locations
in the presence of external magnetic fields. The procedures in chapter 3 is extended

to the analysis of these more general geometries.

4.1 Two-Sphere System

A system of two ferromagnetic spheres of radii a; and ay with a distance d between

their centers are placed in a homogeneous medium of permeability pg, as shown in

66
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Figure 4.1. (71,01, ¢1) and (79,60, p2) are the spherical coordinates attached to the

sphere 1 and sphere 2, respectively.

Xz

NV
IN)

Xy

Y2

FIGURE 4.1: Two ferromagnetic spheres with common z — x planes placed in an
arbitrary position in the presence of external magnetic field

4.1.1 Case I: The Magnetic Field along z Axis

Consider the external field to be oriented parallel to the z axis (i.e. Ho = Hy2) of

the spheres as shown in Figure 4.2.

The potentials outside the spheres (r1 > a1 and ry > a3)

Take P to be an arbitrary point with (a; < r; < d) and (as < 75 < d). The total scalar
magnetic potential at P due to the two spheres and to the potential corresponding

to the external field can be expressed as
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FIGURE 4.2: The two-sphere system with same z — x planes placed in an arbitrary
positions in the presence of external field along z axis

' (r1,01, 01 | 12,02, 02) = ®1(r1,01, 1) + Pa(r2, 02, 02) + Pegy(z)(r1,01,01)  (4.1.1)

where ®4(ry,601,¢1) and Py(rq, 02, o) are the potentials produced by sphere 1 and
sphere 2, respectively. ®eu(2) (71,61, 1) is the potential corresponding to the external

field in spherical coordinate (r1, 01, ¢1) attached to sphere 1.

By using the Equation (2.1.3) with = ry,0 = 6; and ¢ = ¢, for sphere 1, we have

ni+1
rla 91: 901 Z Z Cn1m1 <> Pnnf1 (COS (91) €7jml<’01, r1 > a1 (4.1.2)

ni=0mi=—nq
For sphere 2 with r = 15,0 = 6, and ¢ = @5, we have

no+1
CI) 7’2, 0, (pg Z Z Dy () PnT;L2 (cOS 92) e_jm2<P27 T9 2> a9 (4.1.3)
no=0mao=—n2

where C),,m, and D, are constants of integration. We translate ®o(r9, 02, ¢2) into

the coordinate (ry,6;,¢1) and, then, the total scalar magnetic potential at P in
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spherical coordinates (ry, 61, p1) can be expressed as
O (11, 01, p1) = B1(r1, 01, 1) + B (11, 01, 1) + Dear()(r1, 01, 1) (4.1.4)

In order to find (IDS), we use the translational addition theorem in Equation (2.2.1),

with 77/ =11,0" = 01, ¢ = 1,00 = (7 — 012) = 091 and @y = @1, which gives

no+1
. ) . (ng —mo + 11 + /1«1) as\'"?
oM (11,0 D Davgm d
(1,61, ¢1) Z Z Z Z 22 (ng — mg)! (v 4+ ) \ d

ne=0mo=—n2 r1=0 pu1=—11
2
1 _ o _ .
X <) pma “1(005921)6 J(ma—p1)p21 Py‘l“(cosﬁ)e jmer r<d

d na+vi
(4.1.5)

The potential corresponding to the external field is expressed as

(Demt(z) (7"1, 01, QDI) = —Hoz + Ky

(I)ext(z) <T27 0o, @2) = —Hopz + Ko

where K; and K, are constants of references. At z; = 0, we choose @4y = 0
as reference. Then Ky = 0 and Ky = —Hydcosb5, are substituting with z; =

r1Pi(cos6y) and zy = 19 Pi(cos by), we have

Degi(z) (11,01, 1) = —Hor1P1(cos 01) (4.1.7a)

(bext(z) (7“2, 92, 902) = —Hg 7“2P1 (COS 92) — H(] d COS 912 (4.1.7b)

Thus,

ni+1 )
(I)tot (r1,01, 1) Z Z Crymy <a1> PnTl(COS 0:) e~ Imie

ni=0mi=—n1

+ Z Z Z Z Dn2m2 (21) m?)”? ‘ M1, V1 | d, 921,@21) (418)

ng=0mo=—n2 v1=0 p1=—11

V1 .
X <2> Pl (cosfy) e "¥ — Hyr Py(cosby), a1 <1 <d
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where

no+1
C(zl)(m2vn2 | g, o1 | d, 1, oo1) = (_1)#14_,,1 (ng —mo 4+ 11 + p1)! (a2>

(n2 — mg)!(ljl + ,ul)' E
X P2 M (cos Oy ) eI M2 mr)en

To determine the series of coefficients in (4.1.8) we first impose the condition that the

total magnetic flux through the surface of each sphere is equal to zero. This yields
Coo = 0, Dgp=0 (4.1.9)

Secondly, we impose the condition that the surfaces of the two spheres have constant

potentials, V; and V5, respectively, ®'(r;, 6;, @;) =V, 1=12.
ry = a;

Employing the orthoganility properties of the spherical harmonics leads to

o0
a (1)
C10+ Y Dnyo <d1> 2 (0,n2]0,1[d,021,9021) =a1Ho, n1=1 (4.1.10a)
no=1
> a\" o
Cn10 + Z Dn20 <d> 2 (0, n9 ‘ 0, ni | d, 921, @21) = 0, ny = 2,3, . (4.1.10b)
no=1

for sphere 1 and, similarly, for sphere 2

oo
a )
Dio+ > Cuo <c12) €y (0,m1 0,1 | d, 615, 12) = azHo, o =1 (4.1.11a)
ni=1
> az\"? @
DnQO + Z Cnlo <d> 1 (Oanl ‘ OvnQ ‘ d? 912’9012) = 0’ n2 = 2’3’ e <4111b)
ny=1
where
(2) (n1 — my 4 ng + ma)! (a\"
d. 0 =(—1 mo+n2 _—

1 (m1,ma [ me,ng | d, b2, 012) = (—1) (n1 — m1)!(ng + mo)! (d)

X P (cos frp) e T Tl
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For my,my # 0, we obtain Cy,,m, = 0 and D,,,,, = 0. In order to obtain numerical
results, this infinite set of equations is truncated to N terms in their series, nq,n, =

1...N. Denoting

n 1 ap\™
5221) =, (0,n2 | 0,n1 | d, 61, 021) (dl> ;

n (2) as\ ™
T7(7«12) = 12 (Ovnl | 0,”2 ’ Cl7 912,@12) <d2> ,

the unknown coefficients in (4.1.10) and (4.1.11) are obtained by solving the matrix

equation
10 - 0 SU oW o sV\ (o ay
o 1 - 0 s® g» ... 5P Cho 0
o 0 - 1 SM gm sMf]c 0
Lo N AR H,y (4.1.13)
™ ™ ..o 1 0 0 Dy as
@ 7 ... o 1 .. 0 Do 0
™ ™ o™ 0 0 1 Do 0

The total scalar magnetic potential outside the spheres can be calculated in spherical

coordinates using the Equation (4.1.1) as

N ni1+1
a
@tOt(T‘l, 01,01 | 12,02, 02) = E Chio (7‘_1> Py, (costh) — Hor1Pi(cos 0:)
1

ni=1

N a no+1
2
+;Dn20(r—2) P, (cos ), TLZ> a1, Ty > ap
(4.1.14)
From this equation, with the geometrical relations in A.2, the components of the

magnetic field intensity in the system in (r1, 61, 1) are derived in the form
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ni+1
— Z (n1+1) n10< > Py, (cos61) + HoPy(cos b))

nll

Z Do <a2>"2+1{7~2(n2 1) (m — dcos(f) — 012))Pn2 (cos B2)

ngl

+ { (rld cos(01 — 012) — d2> cos 01 — (rl —dcos(0 — 012)) d cos 912} P/ ,(cos 92)}

sin 01 a\" /
Hy, = Z Cmo( ) P, (cos 1) — Hy sin 01 Py (cos b)

ni=1
as na+1
Z DnzO ( ) T2 d (NQ + 1) Sin(el — 912) Png (COS 62)
ng 1
+ {T% sin 01 + d sin(6y — 012) <’I“1 cos 1 — dcos 912) }Pn/2 (cos 92)},
Hy,, =0, ry>a1, re>az, d>(a;+az)

(4.1.15)

The potentials inside the spheres (1, < a; and ry < ay)

The magnetic potential ¥ inside the sphere (B = —V W), satisfies the Laplace equation

and can be expressed as

ny
W (1,01, 1) Z Z gll)ml <ﬁ> P, (cos bh) (4.1.16a)

n1=0mi=—nq

ro\ "
T3 (19,65, 09) Z Z G%)mQ <2> P72 (cos 6) (4.1.16b)

no=0mao=—n2

where G%ll)ml and G%)mz are constants of integration.

Imposing the boundary conditions

0
8ri

;=12 (4.1.17)

Ty = Qg

{‘I’(i) (74, 03, %’)}

= —Ho 88”{@'5 t(rQOZ7S‘7z)}

Ty = Qg
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where g is the permeability of the medium outside the spheres, yields finally

> a (1)
G%)) = 3,&0{ Z DnQO (d1> ' (0 n9 | 0 1 | d 921,@21) - alH[)} ny = 1 (4118&)

no=1
(2n1 +1) > a ey
1 1 1
Gfu)o— ZDn20< > 5 (0,n2]0,m1 | d,021,021), m1=2,3,...
no=1

(4.1.18b)

(2)
G(O) = 3#0{ Z Cn10 < d) ’ (0 ni ’ O 1 | d 912,(,012) - CLQH()} ng = 1 (4119&)

ni=1
GSZ)O = 2n2 +1) i Ch,0 <a2> (2)(0 ny | 0,n2 | d,012,012), m2=2,3,...
ni=1
- (4.1.19b)
The magnetic flux density has the components
B, =—— Z ny Gn10<r1> 1Pm(cos 01),
Lni=1
By — sz';ll@l Z G;ll)()(al)"lprfl (cos01), (4.1.20)
ni=1
B, =0, r1 < ai
for sphere 1, and
B,, = —T—Q Zl N9 Gn20<TZ) 2Pm(cos 02),
no
By, — szn92 Z Gﬁ?o( ) P! (cosbs), (4.1.21)
no=1
B,, =0, ro < a2

for sphere 2.
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4.1.2 Case II: The External Magnetic Field along r Axis

Figure 4.3 shows the two spheres in the presence of a uniform external field directed

along the z axis.

Y1

tretttt

FIGURE 4.3: Two ferromagnetic spheres with same z — x planes placed in an
arbitrary positions in the presence of external field oriented along z axis

The potentials outside the spheres, (r1 > a; and ry > as)

Again, the total scalar magnetic potential can be expressed in spherical coordinates

as

D1y, 01, 01 | 72,02, 02) = D1 (11,01, 1) +Pa(r2, 02, 02) + Pear(a) (11,01, 1), (4.1.22)
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Taking the real part in the Equation (2.1.3), with » = 7,0 = 6; and ¢ = ¢, for

sphere 1, we have

(n1+1)
Dy (ry, 01, 1) Z Z Cn1m1< ) PnTl(COSQJCOSTTLl(Ph Ty 2> ay

n1=0mij=—ny

For sphere 2 with r = 15,0 = 6, and ¢ = o, we have

(n2+1)
2(72, b2, ©2) Z Z Dy, ( ) P, (cos 03) cos maps, ro > Qo

n2=0 mgo=—na2

The potential corresponding to the external field is
(I)ea:t(x)<7ﬂi79i7§0i> - _HO xz‘i_Kz 1= 1,2 (4125)

where K; is a constant choosing ®..¢;) = 0 at ;1 = 0 as reference, K; = 0 and
Ky = —Hyd sin 615 cos o192, and with 1 = r1sin 6y cos 1 and xo = 19510 05 cos o We

have

D@pi(z) (11,01, 01) = —Ho 1 Pl (cos 0,) cos ¢, (4.1.26a)

D@ pi(2) (12, 02, 02) = —Ho 72 Pl (cos 0y) cos s — Hyd sin 615 cos p1a (4.1.26D)

Applying the translational addition theorems in Section (2.2.1), the Equation (4.1.22)

can be expressed in spherical coordinate (11,61, 1) as

q)tOt(rh 817 wl) - q) (7"1, 817 (;Dl> + @ (Th 017 @1) + ®6xt(x (Tl, 817 901) (4127)
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where

(I)( ) r1,91,<,01 Z Z Z Z 1+V1Dn2m2 ((7’L _m2+V1+M1)

no=0mo=—n9 v1=0 p1=—11 n2 — m2) (1/1 + Nl)

(4.1.28)

a no+1 r 141
X <d2> (dl> Pnzliyl‘“ (cos 021) P}*(cos b) cos((m2 — p1)p21 + ,u,lgol),

Tlﬁd

Then, the total scalar magnetic potential at P in spherical coordinate (71,61, 1) can

be expressed as

ni1+1
(I)tot (r1, 61, 01) Z Z Chim, (—) PnTl<COS 01) cos(mypq)

ni=0mi=—n1

T Z Z Z Z Dn2m2 2 m27n2 | Hi, V1 | d 921’@21) <%) 1 (4129)

nog=0 mo=—n2 11=0 p1=—11

x P! (cos01) — Hor1 P/ (cos 01) cos o1, ay <1 <d

where

&
Cy (ma,ng | p, v | d, 091, 001) = (—1)FH

(n2 —ma +v1 + ) (CL2>”2+1
(n2 *mg)!(ljl +,U,1)' d

x P33 (cos 091) cos((ma — i )par + paer)

The same condition of zero magnetic flux for each sphere and the same boundary

conditions yield in this case

Co(] = 0, Doo =0 (4130)

and

a;\™
n10+z Z Drgmy €y (mzynz | 0,1 | d, 61, 21) <d1> =0,

=1mo=—no

ni=1,2,3,... (4.1.31a)
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a 1
C’11+Z Z Drym, 2 m2an2|11!d921,<ﬁ21)<;>——2a1[{0, ny=1

no=1mao=—ng

(4.1.31b)

o no ni
(1) ay
Chy1 + Z Z Drym, CQ (m2,na | 1,01 | d, 021, p21) (d> =0,
no=1mao=—ng
ng=2,3,... (4.1.31c)

a
Ci-1+ Z Z Dy, 2 (ma,n2 | —1,1]d, 021, p21) <d1> =a1Hy, ni=1

no=1mao=—ng

(4.1.31d)
(1 aq m
Oy 1+ Z Z Dryms Go (ma,na | =1,n1 | d, 021, p21) <d> =0,
no=1ma=—nsg
ni=2,3,... (413le)
Do + Z Z Chrim 1 (m1,n1 | 0,n2 | d,bh2, p12) ( d) =0,
ni=1mi=—ny
ne=1,2,3,... (4.1.32a)

) ni
2) a 1
Dui + Z Z Crymi G1 (ma,n | 1,1]d, 612, 12) < d2> = —iazﬂo, ng =1

ni=1mi=—ni

(4.1.32b)
(9] ni © a5 no
D1 + Z Z Crymy G (ma,m1 | 1,n2 | d, 612, 012) (d) =0,
ni=1mi=—ny
ng=23,...  (41.32)

0o n1
@ a
Dy 1+ Z Z Crim, 1 (ma,ni | —1,114d,012,12) (;) =ayHy, mnp=1

ni=1mi=—ny

(4.1.32d)
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n2
(2) a2
Dpy—1+ Z Z Crymi G1 (ma,n1 | =1,m2 | d, 012, ¢12) <d> =0,

ni=1mij=—ny

ny=2,3,... (4.1.32¢)

where

(—1)metn (n1 —m + ng + my)! (a1>m+1

& —
d,0 =
Cl (m1,m1 [ me,ng | d, 012, 012) (n1 —mq)!(ng +ma)! \ d

X Poting ™ (cos O12) cos((m1 — ma)p12)

Chnym, = 0 and D,,,p,, = 0 for all my, ms # 0,41, —1.

For numerical calculations, the infinite system (4.1.31) and (4.1.32) is truncated and

the corresponding matrix equation is shown in (4.1.33), with

a1

(1) "
57(17;%21) = (o (ma,ny | my,ny | d, 051, 09) <E> ’

as

(2) n2
T%??£I2) = Cl (mhnl | Mo, No | d, 8127 @12) <E> ,

where my,my =0,+1,—1 and ny,ny =1...N.



1 0 - 0 0 0 - 0 0 0 - 0SB gy gto g 0 - 0 0 0 - 0 Cho 0
0 1 .. 0 0 0 - 0 0 0 0 SEO SN L G2 g 0 -~ 0 0 0 0 Cao 0
0 0 - 1 0 0 - 0 0 0 0 SYO s s o 0 - 0 0 0 -~ 0 Cho 0
0 0 - 0 1 0 - 0 0 0 - 0 0 0 - 0 sHY sl st o 0 -~ 0 Ch ~1q,
0 0 - 0 0 1 0 0 0 - 0 0 0 - 0 SEY SEY . s% 0 0 -~ 0 Coy 0
0 0 - 0 0 0 - 1 0 0 - 0 0 0 -0 SYY s S0 o 0 -~ 0 Cni 0
0 0 - 0 0 0 - 0 1 0 - 0 0 0 - 0 0 0 -0 SEY s sty Ci, a
0 0 - 0 0 0 - 0 0 1 0 0 0 - 0 0 0 -0 SEYosEY o sBeY Cyy 0
0 0 - 0 0 0 - 0 0 0 1 0 0 - 0 0 0 - 0 SYY sy Cya 0
— H,
T 1Y o T o 0 - 0 0 0 - 0 1 0 - 0 0 0 - 0 0 0 - 0 Dio 0
o TSY - T o 0 - 0 0 0 - 0 0 1 - 0 0 0 - 0 0 0 - 0 Dy 0
T8O PO 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Do 0
0 o - o TH T TR 0 0 - 0 0 0 - 0 1 0 - 0 0 0 - 0 Dy —la,
0 0 - 0 TEY TS .TE 0 0 - 0 0 0 - 0 0 1 0 0 0 - 0 Dy 0
0 0 0 0 0 - 0 0 0 - 0 0 0 - 1 0 0 - 0 D 0
0 0 - 0 0 0 0 T Ty T o 0 - 0 0 0 - 0 1 0 - 0 Dy, as
0 0 - 0 0 0 0 TV TEY o1& o 0 - 0 0 0 - 0 0 1 0 Dy, 0
0 [ 0 0 0 TEY T T o 0 - 0 0 0 - 0 0 0 .. 1 Dyt 0

§2.42YdG 0139UbDULO0LLD,] PIIDIOT fipruDaiqLy “F Iojder))

6.
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Then, use the Equation (4.1.22) to find the total potential outside as

N 1 (n141)
a
(11, 01,1 | 72,02, 02) = Z Z Chrymy <7’1) P, (cos th) cos(mip1)

ni=1lmy=—1

N 1 (n2+1)
m 4.1.34
+ Z Z Dy, <a2> P72 (cos 62) cos(maps) (4.1.39)

— Hory Pl (cosb) cos 1, Ty 241,72 2 a2
The components of the magnetic field intensity in the system of coordinates (ry, 01, ¢1)

are derived in the form

2=— n1 1m17—1

o) 1 00 1
+ Z Z Z Z Dy, (21) (ma, 2 [ my,ny | d, 021, Po1)

ng= 1 mgf—l nyi= 1 mlf—l

X (Tl) P,Z“/(cos 01) cos(mig1) — Hori P (cos 0y) cos o },

ni1+1
—) B (cos by) sin (mypr)

+Z Z Z Z M1 Drymy (2)<m2a”2’m1>n1|d921,8021)

no=— 1 mg——l ni= 1 ml_—l

ri\" . |
X (j) P (cos 0y) sin(mypr) — H r1 P} (cos 6,) sin gpl}, d>r > a
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The potentials inside the spheres (r1 < a; and ry < ay)

The magnetic potential inside the spheres (B = —V W) is expressed in the form

ni
D (1,01, 01) = Z Z %11)7”1(7"1) P (cosby) cos(mip1), r1<ar (4.1.36a)

n1=0mi=—nq

n2
TP (1rg, 05, o) = Z Z %22),”2<T2> P,"*(cos B2) cos(mapz), ro <az (4.1.36b)

=0mo=—ng

where the coefficients Gmm1 and G%)m are determined by imposing the boundary

conditions at the surfaces of the two spheres,

1
(2n1 +1) a )
G&)O = pio~——— Z Z Diym, <1> o (m2,n2 | 0,n1 | d,b1,p01),

no=1mo=-—1

ni=1,2,3,... (4.1.37a)

00 1
a ) 1
G%) = 3M0{ Z Z Dy, <dl) o (ma2,na | 1,1]d,021,p21) + 2a1H0},

ny =1 (4.1.37b)
(2n; +1 > ! a (1)
1 (2n1 +1) 1
Ggu)l = Z Z Dhyms <> o (ma,n2 | 1,n1 | d, 021, p01),
na=1mo=-—1
ng=2,3,... (4.1.37c)

oo 1
a (1)
G —1 = 3M0{ > > Duyms (1> o (ma,ma | —1,1|d, 021, 021) — a1Ho}

no=1mo=-—1

ny =1 (4.1.37d)

(1) 2m+1) & ¢ "o
g1 = Ho = > D Dums 5 (ma,n2 | —1,m1 [ d, 021, 02),

no=1mo=-—1

ny=2,3,... (4.1.37¢)
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2no +1 > a n2 )
G7(122)0 = Ho ( 22 ) Z Z Cnymy <d2) Cy (ma,n1 | 0,ng | d, 012, 012),

ni=1mi=—1

ny=1,2,3, ... (4.1.38a)
00 1 @) 1
G11 3H0{ Z Z Crymy ( ) 1 (mi,ni [ 1,1]d,012,¢12) + 202H0}7
ni=1mi=-—1
e =1 (4.1.38b)
1
2ng + 1) > 2 (@
Gi)l =po———— (Zn2 1) Z Z Crnyma ( > 1 (m1,n | 1ng | d, 012, ¢12),
ni=1lmi=—
ny —=2.3, ... (4.1.38¢)
o) 1 @
1_1 = 3#0{ Z Z Crymy ( > 1 (ma,na | =1,1 | d, 012, 12) —azHo},
ni=1m;=-—1
e =1 (4.1.384)
1
Mo + 1) — "2 (9
G,(i)ﬁl = Ho (Zn211) Y Cum < > 1 (ma,na [ —1,ng | d, 012, 012),
2 ni=1mi=—1
Ny =2,3,. .. (4.1.38¢)

with C,m, = 0 and D,,,p,, = 0 for my, mg # 0, +1, —1.

The components flux density inside the spheres has the following components

o) 1

1 1 " m
By= =3 32 30 m il () Riens ) ostms),

ni=1mp=-—1

sin 6 ri\"
o =SS S 6 (1) ot st

ni=1 mlf—l

ny
B, = Y me m( ) P (cos ) sin(mig), <
1

r1Sin 91 =
(4.1.39)
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o) 1

1 (] " m
B,, = - Z Z na G2 (—2) P2 (cos 03) cos(mawps),

no=1meo=-—1

sin 6 ry\ "
By, = 2 Z Z Gg)mg( 2) Pg"’,(cong)COS(mggpg),

no=1 mg——l

ni
By, = m 2) P (cos6,) sin(m re < a
P2 T2$Z7’L 92 Zl m222_1 2 n2m2< 2) na ( 2) ( 2902)7 2 2

(4.1.40)

4.2 Three-Sphere System

A system of three ferromagnetic spheres of radii a;, as and a3 with the separation
distances dyo, di3 and dsz between their centers are placed in a homogeneous medium
of permeability po. The spheres are in arbitrary positions with the planes of the
centers of the spheres chosen to be the common 2z — x plane, and are in the presence

of a uniform magnetic field Hyq.

4.2.1 Case I: The Magnetic Field along z Axis

Consider an external field oriented along the z axis (i.e. Ho = HpZ) as shown in

Figure 4.4.
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X3 A

Hy=H,2 ry

Wi

FIGURE 4.4: Three ferromagnetic spheres with same z — x planes placed in an
arbitrary positions in the presence of external magnetic field along z axis

The potentials outside the spheres (11 > ay,r9 > as and r3 > a3)

The total scalar magnetic potential at outside the spheres due to three spheres and

to the potential corresponding to the external field can be expressed as

(11, 01,01 | T2, 02,09 | 73,03, 03) = P1(r1, 01, 1) + Pa(ra, 02, o) (42,1

+ (1)3(7"37 03, 803) + q)e:r:t(z) (Th 01, 901)

where

ni1+1 )
Q1(r1,01, 1) = Z Z Crima <) PM™(cosfy) e ™ py>a;  (4.2.2a)

n1=0mi=—n1

no+1 )
Dy (g, 02, p2) = Z Z Dn2m2< ) P, (cos 2) e MM rg >ay  (4.2.2b)

no=0mo=—n2

na+1 )
$3(r3, 03, p3) Z Z En3m3< ) P, (cos 03) e IMIPs e > g (4.2.2¢)

n3=0maz=—n3
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and Ch my, Dnym, and By, are constants of integration.

Applying the translational addition theorem (see 2.2.1), the Equation (4.2.1) can be

expressed in spherical coordinate (71,61, 1) as

CDtOt(Tlvelagpl) @1(7“1,01,901)“—@ (7"1,01,@1)"—@ (r1701a¢1)+®6xt (7“1791,901)
(4.2.3)

where

—my+ v+ m)! [\
(I)( T 79 7 /,L1+l/1 Dn m ('I’LQ mo ( >
1,01,01) Z Z Z Z 22 (ng — ma)!(v1 + m)! \ di2

no=0mo=—n2 v1=0 p1=—11

1% . ]
x (d> P2 (cos y) €92 1PN PI (cos 0y) e, (424a)

q)( o Z Z M1+V1E <n3 —m3+ v+ //Ll) ( as >n3+1
(r1,01,91) § : E: rems
n3=0m3=—n3 v1=0 p1=—1r1 (n3 B m3) (Vl i 'ul) s
vy . ]
X (6;113> P (cos O31) €I THISSL PI (o 6y) ¢TI (4.2.4b)

r1 <di2, 11 <di3

The potential corresponding to the external field can be expressed as

(I)ext(z)(ria 0;, %) = —H, 7“¢P1(005 9i) + K, 1=1,2,3

As in previous cases, choose ®...) = 0 at z; = 0, as reference. Then the constants

K1 = 07 K2 = _HO d12 008(912) and Kg = —H() d13 COS(€13)7 1.e

(I)ext(z) (7"1, 91» 801) =—Hy TlPl(COS 01)
Det(z) (T2, 02, p2) = —Hor2P1(cos 02) — Ho di2 cos(012) (4.2.5)

Dei(2) (3,03, p3) = —Hor3P1(cos 03) — Ho di3 cos(013)
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Thus,

ni1+1 )
O (ry, 01, 1) = Z Z Crymy () P (cos 1) e "™ — HyryPi(cos )

ni=0mi=—nq

1%1 X
+ Z Z Z Z Dmm2 CQ mQ,ng | M1, V1 | d12,021,5021) (d ) Pylfl(COS 91)67]'“1‘/’1

ng= Omgffnzl/] Oulffz/l

V1 .
Y Y Y Y B O ms,ngm,m|d13,egl,¢31>( ) I (cos y) e e,

n3=0mgz=—n3 v1=0 u1=—r1

r1 2> ay
(4.2.6)

where

1
Cy (ma,na | pr, v | diz, 021, p01) = (—1)M+1

(n2 —ma +v1 + p)! (a2>n2+1
(n2 — ma)!(v1 4+ p)! \di2

mo—p1 —j(ma—p1)p21
x P, 0 (cos o) e ,

(n3 —mg +v1 + pr)! < >n3+1
(ng —m3)!(v1 + p1)! \ diz

(1)
Cs (ma,ng | p1,vn | dig, 031, 031) = (—1)

mz—p1 —j(ma—p1)e31
x P, 4 (cosf31) e

To determine the series coefficients in (4.2.6) we impose the same conditions as before.
This gives
Co(] = O, Doo = 0, E(]o =0 (427)

and the following infinite system of linear equations

o
Cho + Z Do <d 2) 9 (0,n2 0,1 di2,021,021)

nQO

+ Z En30

n3=0

Chyo + Z D0 <a1> C(l)(o na | 0,n1 | di2, 621, ¢21)

1)
Cg (0,n3]0,1|di3,031,931) =a1Hy, ni=1 (4.2.8a)

(1)
C3 (0, ns | 0,1’L1 | d13, (931, (pgl) = O, ny = 2, 3, e (428b)
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o0
a @)
Dy + Z Chny0 =2 ¢y (0,n1]0,1 | dia, 612, p12)
= 12
> a @)
2
+ Z Eng0 dos Cy (0,m3 | 0,1 das, 052, 32) = azHo, ng =1 (4.2.92)
n3=0

"2 (2
¢y (0,n1 | 0,n9 | di2, 012, p12)

= 12
- az \"* @
+ Z Enso | =) Q3 (0,n3|0,n2 | da3,032,32) =0, no =2,3,... (4.2.9b)

®)
Cy (0,m1 0,1 | dis, 013, ¢13)

33
¢y (0,m1 | 0,n3 | di, 013, 013)

n3

where
1
) (ng — mo +n1 +my)! [ ax \™F
ma,n2 | M1,M1 d12,921’ 21) = —1 mi1+ni <>
2 | e ]
X Py, (cos 021) ed(mammi)ea
5 (ng —ms +n1 +m)! [ az ™
m3,n3 | mi,ni dlg, 9317 31) = -1 mi+ni as
3 ( | p31) = (—1) CETAICEETACT

ms—m —j(ms—mi)p31
XPns-?—ru 1(605 931) € it D ’

(3)
€2 (0,?12 | 0, 1 ‘ d23,923,g023) = agH(), ng = 1 (4.2.10&)

®)
Cy (0,n2 | 0,n3 | dag, O23, pa3) = 0, ng =2,3,... (4.2.10b)
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. (n1 —my +ng +mo)! [ag \™ T
mi,ny | ma,ny | dig, 012, 012) = (—1)™27" dis
1 ( | | ¢12) = (—1) (n1 —m1)!(n2 +mo)! \ dio

X P (cos B19) eI (mi—ma)erz

1

@ (n3 —m3 +na +ma)! ((ag \™7"
m3,n3 | ma,ny | daz, O3, p30) = (—1)"2 " o
3 ( | 2) = (1) (ng —m3)!(n2 +ma2)! \ das

X P12 (005 fg,) e*j(1713*m2)<,0327

n3+no
1
®3) (n1 —mi1+ng+ms)! ((aq e
mi,n1 | ms,ng | dis,0 = (—1)mstns N
1 (ma,na [ mg,ng | dis, bhs, 013) = (—1) (n1 — m1) (3 + ma)! \dus
X P (cos 0y) €7 (M m)es,
@) vins (N2 — Mo+ ng +ma)! [ ag \™H!
ma,no | m3, n3 | das, 0 = (—1)"mstns o
2 ( 245102 35 103 ’ 23, Y23, 9023) ( ) (TLQ o m2)!<n3 + m3)| d23

X P25 (cos fgg) e (M2 ms) e

Cnimi = Dnomy, = Epgms = 0 for my,ma,m3 # 0. In order to obtain numerical
solutions, these infinite set of Equations (4.2.8 - 4.2.10) is truncated as in the previous

cases. Using the notation

Q
i

(1)
Sl(nl) = 2 (O’HQ ‘ 0777/1 ’ d1279217(1021)

n2

QU
=
o

s}
i

(1)
SQ(m) — (0,n3 | 0,m1 | di3,031, p31)

ns

QL
=
w

S~ N 7~ N 7 N -7 N -7 N /7 N
QL
no

N A U A U

Q
)

2
Tl(nz) =(; (O,m \ 0, no ] d12,91279012)

1

)
)

(2)
T27(722) = C3 (O,TL3 | 0,”2 | d23703279032)

QU
%)
ox}

)
w

. (3)
U1 = €y (0.1 0,m3 | dus, 13, 013)

(3)
U27(123) = C2 (0,n2 | 0,13 | dag, Oa3, P23)

where ny,ngo,ng =1,..., N
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we obtain the following 3N x 3N matrix equation
1
1 0 0o stV sV 510 52V galh 520 Cho a
0 1 0o s1P 51 519 52 g2 528 Cao 0
0 0 1 s1M 51V 5107 92N go(V) 52071 | Cwo 0
1" 1) 1§ 1 0 0o 12V T2V 720 | | Do as
T1? 11 T1¥ 0 1 0 12 T2 720 | | Dao o1,
0
1™ 11V 71" o 0 1 12" 1ol T2 | | Do 0
vl o) vy vV g2V vy 1 0 0 Exo as
v1? 1l vl v 2l v 0 1 0 Ex 0
v1™ 1V vl g™ g™ v2 o 0 1 Eno 0
(4.2.11)

The solution of this equation allows the calculation of the total scalar magnetic po-

tential at any point outside the spheres using the Equation (4.2.1) as

N n1+1
a
@t‘)t(h,gh@l | 12,02, 02 | 7‘37937903) = E Chio <T—I> Pnl(COS 91)
1

Qs no+1
(—) P,,(cos 6s)
T2

as na+1
(—) P,.(cos03)
T3

ni=1

N
+ Z DngO

na=1

N
+ Z EngO

nz=1

— HQ T1P1(00891),

12> ap, Iy > ag, '3 > as

(4.2.12)
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The magnetic field intensity components in (7,01, ¢1) are obtained in the form

1 N al nitl
Z ny+1) nlo(r > Py, (cosby) + HoPy(cos 61)
1
n1:1

i\f: n20< )n2+1{7’2(n2 +1) (7’1 — di2 cos(6h — 012)) s (COS 02)

1

3

2
{ Tldlg COS 91 912) - d%Q) Ccos 91 — (7”1 — d12 008(91 — 912)) d12 coSs 912} / (COS 92)
1

3

T3

N

Z E,.0 (a >n3+1{r3(n3 +1) (7’1 — diz cos(bh — 913)) P, (cos0s)

TL31

+ {(7“1(113 008(91 - 913) - d%3) CcoSs 91 - (T‘l - d13 008(91 - 913)) d13 CcoS 913} , (COS 93)}

. N 1
H _ sint; ZC ay mr P! (cos6,) — Hy sin 1P/ (cos 6;)
b, = - mo| - A 1 0 147 1

ni=1
1 N no+1
+ 3 Z Dng()( ) {TQ dia (TLQ + 1) sin(91 912) n2(608 92)

712 1
+ {7’% sin 61 + dig sin(6y — 612) (7’1 cos 01 — dyig cos 912> }Pn/2 (cos 62)

N

n3+1
Z n30< ) {7‘3 d13 (n3 + 1) sm(91 — 913) N3 (COS 93)

+ {r% sin 0y + dyg sin(0; — 613) <r1 cos 01 — di3 cos 913) }Pn/3 (cosB3) },

H, =0, Ty a1, T2=az, T3> as,
(4.2.13)
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The potentials inside the spheres (r1 < aj;,m9 < as and r3 < as)

The potential inside the spheres can be expressed by using the Equation (2.1.4) as

T (71,01, 01) = Z Z nlmlrmPnTl(cos 1) e M < a4y (4.2.14a)

n1=0mi=—nq

U@ (19, 0y, p9) = Z Z Gn2m27"”2Pn";2(cos fy) €722 py <y (4.2.14b)

no=0ma=—n2

TO) (13,03, p9) = Z Z Gn?)m3 3° P, (cos 03) e I s < ag (4.2.14c¢)

n3=0m3z=—n3

where GSRmI, G%)m and GS;)W are constants of integration. To determine these con-

stants we have imposed the boundary condition as in the previous cases. IL.e.,

-2 {‘I’(i)(ri,ei,%)}

— 9 tot(o.. 0. . -
97, =~ 7= { @ (ri, 05, 03) } . i=1,2,3

TP = a; v T = a;
(4.2.15)

where i is the permeability of the medium outside.

This gives the following results for my, ms, mg = 0:

a (1)
Gl = 3M0{ > Do (dlz) > (0.m2 | 0.1 daz, bon. p21) — ar Ho

no=1

a (1)
+ Z EngO ( ! > 3 (0,713 | 0, 1 ’ d13,931,9031)}, ny = 1 (4.2.16&)

nz=1

(2n1 +1 a 1)
ngll)o = - { Z D, ( : ) 9 (0,n2 10,11 | di2,621,21)

no=1

a (1)
+2En30< 1> 3 (0, n3|0n1]d13,931,g031)} ny=2,3,...

nz=1

(4.2.16b)
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a (2)
G2 — 3%{ S Curo (d;) 1 (0,n1 10,1 | dia, 012, ¢12) — azHy

ni=1

a o)
+ Z Ens0 ( : > 3 (0,n310,1] d23,932>8032)}, ng =1 (4.2.17a)

nz=1

(2n2 + 1) a )
(;7(122)0 _ 2 { Z Chio ( 2 > ’ 1 (0,n1 | 0,n2 | di2, 012, ¢12),

ni=1

a (2)
+ZEn50( 2> 5 (0, n3|0n2|d23793279032)} ny=2,3,...

nz=1

(4.2.17b)

3)
Gy = 3u0{ > Cuo (d 3) T (0,71 10,1 | das, B13, 013) — a3 Ho

ni=1

a (3)
+ Z DngO ( 3 > ’ (0 n9 | 0 1 ’ d23,923,g023)} ng = 1 (4.2.18&)

no=1

(2n3 +1 a 3)
GS;)O = - { Z Cny0 ( ’ > 1 (0,n1]0,n3 | di3,013, ©13),

ni=1

a (3)
+2Dn20< 3) 5 (0, n2|0n3|d23,923,g023)} nz =2,3,...

no=1

(4.2.18D)

For my, my, m3 # 0, we have G%ll)ml = G%)m = G%)mg = 0. The components of B

inside the spheres are determined from B = —VU.

4.2.2 Case II: Hy along =z Axis

Figure 4.5 shows three-sphere system in the presence of external field along x axis.
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FIGURE 4.5: Three ferromagnetic spheres with same z — x planes placed in an

arbitrary positions in the presence of external field along x axis

The potentials outside the spheres, (11 > a1,19 > as and r3 > a3)

The total scalar magnetic potential outside can be expressed as
(11,01, 01 | T2, 02,09 | 73,03, 03) = 1(r1, 01, 1) + Pa(r2, 02, p2)

+ P3 (T37 03, (/73) + (I)ecct(x) (7’1, 01, 901)

where

1 .
(7"1,91,%01 Z Z n1m1 1 (TL1+ )Pml(COS 91)6 ]m1<P1’ 1 2 al

n1=0mi=—n1

L iy
Do (ra, 02, p2) = Z Z namaTy 2 )sz(coseg)e IMAL2 o > gy

no=0mao=—n2

+1 —q
(I) T3703a¢3 Z Z En3m3 3 n3 )PmB(COS 93)6 Jm3<,03’ T3 Z as

n3=0m3z=—n3

(4.2.19)
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and

Degi(z) (11,01, 1) = —Hyr, P} (cos 6,) cos ¢, (4.2.21a)
Degi(z) (T2, 02, 02) = —Hyry P} (cos 0y) cos o1 — Hodyg sin(612) cos(p12)  (4.2.21b)

Deri(z) (T3, 05, 03) = —Hyrs P} (cos ) cos 1 — Hydys sin(013) cos(p13) (4.2.21c¢)

where Cyymy, Dinym, and E,,.,,, are constants of integration.

The Equation (4.2.19) can be expressed in spherical coordinate (rq, 0y, ¢1) as

(11,01, 1) = Py(ry, b1, 901)+(I) (7’1,91 <P1)+q) (7”1,91 ©1)
(4.2.22)

+(I)ezt (7”1, 61 (;01)

where Cbgl) and Cbgl) are, respectively, the potentials of the sphere 2 and sphere 3 in
spherical coordinate (r1, 61, ¢1). Imposing again the condition of zero flux density for
each sphere, we obtain

Co = 0, Dyp=0, Eyp=0 (4223)
Then, the Equation (4.2.22) becomes

ni+1
q)tot (r1,01, 1) = Z Z Cn1m1< ) PnTl(cosﬁl)cos(mlgol)

ni=1mi=—ny

0 n2 0 )
+{ Z Z Z Z Dz C;)(mZ’n2 | pas 1 | dao, 01, 21) (c;_l) |

n= mam s 1n=0 = P (4.2.24)

+Z Z Z Z En3m3 3 m37n3|'u1’l/1|d137931,g031) ((;_113) 1}

n3=1maz=—n3 v1=0 u1=—11

x P} (cos 0y) — Hy 1P} (cos 0,) cos 1, a <r <d
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where

1)
2 (mg,ny | my,ny | diz, 021, 021) = (—1)m1+m

Ng — Mo + N1+ My ! as n2tl
( )

(ng — ma)!(ny +my)! dyy

X P2 (cos 0a1) cos((ma — ma)par + pagr ),

na+mni

(1) (ng —mg+ny +mq)! [ as mot
ms, N | My, d 70 7 = (—1)mtm —
3 (ms,n3 1, | diz, 01, 031) = (—1) (ng —ms)!(ny +my)! \dis

w P ms—m1 (COS 931> COS((mZS — m1)<7031 + ,Ulgpl)a

n3+ni

Now consider the potential on its surface and simplify using the normalization of the

spherical harmonics (see C.6) to obtain as

00 ny Cnlml B
Z Z (2n1+1) (n1—m1)! N

n=0m=-mn, dr (nit+mq)!

[e’e) n9 o0 ni Dn - (1) al ni
NS S el |t ()
4 (n1+m1)!

TLQIO ma2=—ng2 ni =0 mi=—ni

n3:0 m3=—n3 ni =0 mij=—ni

oo ns3 o ni En m (1) al ni
TS e o e ()
47 (n1 +m1)!

T 2w
+/ /(Vl—i-HoalPll(cosQl)cosgol)Y:I(Gl,gol)sin%d@ldgpl
61=0 ¢1=0

(4.2.25)
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This gives for m; = 0,

ni
(1> a
Cmo ¥ Z Z Diyms Go (ma,n2 | 0,m1 | dia, fa1, p21) <d112>

no=0mao=—n2

n1
(1) a
+ Z Z Enyms G3 (M3, n3 | 0,m1 [ dis, 031, p31) (d113> =0,

n3=0ms3=—n3

m1:1,

ni=1,2,3,... (4.2.26a)

a
Cu + Z Z Diyyms 2 (ma,n2 | 1,1 | di2, 621, ¢21) <d112>

no=0mao=—n2

al 1
+ Z Z Ernms 3 (ms3,ns [ 1,1 dis, 031, 31) <d13) = §a1H0,

n3=0ms3z=—n3

no=0mao=—n2

£ Y B

n3=0ms=—ng

mi = —1,

Cl ,—1 + Z Z Dngmg

no=0ma2=—n2

[e'S) n9
2. 2. Bum

n3=0m3z=—n3

ny =1 (4.2.26b)
al m
Crar + Z Z Drnym, 2 (m2,n2 [ 1,m1 | di2, 021, 021) (dm)
aq m
3 (ms,ng | 1,n1 | dis, 051, ¢31) (dlg) =0,
ny = 25 37 . e (4 226C)
a
2 (ma,ng | —1,1 | d12, 6021, p21) (d;)
¢h) a
3 (m3,n3 ’ —17 1 ‘ d13,931,g031) d—llg = CL1H0,
np =1 (4.2.26d)

ni
(1) aj
Chni—1+ g g Dy, (ma,n2 | —1,n1 | di2,621, 921) <d12)

=0mo=—ngy

ni
(l) a
T Z Z Engms Gz (m3,n3 | —1,n1 | dis, 031, 031) (dllg) =0,

=0mg=—ng

n1:2,3,...
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Similarly for sphere 2, my = 0,

[e's) ni
DnQO + Z Z Cnlml

ni=0mi=—n1

[e's) n3
+ 2. 2. Bum

n3=0ms=—ng

mgzl,

a
Dy + Z Z Coymn €t (mayny | 1,1 ] dia, 012, 012) <d2>

n1=0mi=—nq

a2

na
@)
1 (m1,n1 | 0,02 | dig, 012, ¢12) <>

di2

a2

na
@
3 (mg,n3 | 0,n2 | dag, 032, p32) (> =0,

do3

ne=1,2,3,... (4.2.27a)

12

a9 1
+ Z Z Ernms 3 (ms3,ns [ 1,1 das, 032, p32) <d23> = §a2H0,

n3=0ms3z=—n3

) ny
Dn21 =+ Z Z Cn1m1

nlfo mi=—ni

n3=0ms=—ng

mo = —1,

Dl ,—1 + Z Z Cnlml

ni=0mi=—n1

[e'S) n3
2. 2. Bum

n3=0m3z=—n3

e =1 (4.2.27)
@) as \"?
L (mi,na | 1,09 | di2, 612, ¢12) <d12)
a9 2
+ Z Z Engmy Cs (ms,ns | 1,0z | das, 032, 32) (d%) =0,
Ny =2.3,. .. (4.2.27¢)
a
1 (mi,n1 | =1,1] di2, 612, ¢12) <d122>
(2) a
3 (mg,n3 | —1,1]das, 032, p32) T; = azHy,
ng =1 (4.2.27d)

n2
(2) ag
Dy, 1+ g g Chnimi (m1,n1 | =1,n9 | di2, 612, ¢12) ()

=0mi=—n1

d12

n2
(2) Qa
T Z Z Engms Gz (m3,n3 | —1,n2 | das, 032, ¢32) (d;) =0,

=0mg=—ng

n2:2,3,...
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For sphere 3, mg = 0,
) as 3
(m1,n1 | 0,n3 | di3, 013, ¢13) Tin

13

n3
) a
(ma,ng | 0,n3 | da3, 623, p23) <d?’> =0,
23

[e's) ni
En30 + Z Z Cnlml

ni=0mi=—n1

[e's) n9
+2. 2. Dum

no=0ma=—n2

ng=1,2,3,... (4.2.28a)

m3 = 17
as
B+ Z Z Cmml 1 ml,nl ‘ 1,1 | d13791379013) <d>
~ 13
ni= 0m1— ni
1
< a3 > = — 7G3H0,

+ Z Z Diym, 2 (ma2,n2 | 1,1 ] das, 023, 23) 1 2
no=0ma=—n2
ng =1 (4.2.28b)
o0 ni ) a3 ns3
Ena1 + Z Z Chnymy my,n1 | 1,n3 | dis, 013, p13) d)
= 13
ni=0mi=—nq
oo n2 3 as ng
+ Z Z Diymy G (ma,na | 1,ng | das, 023, pa3) 7 ) =0,
no=0ma=—n2 23
ng=2,3,... (4.2.28¢)
m3 = _17
a
By 1+ Z Z Cramy €1 (maym1 | =1,1 | duz, 013, o13) (d3>
n1=0mi=—m 13
Q,
+ Z Z Digmy Cy (mayna | 1,1 dag, O3, 023) 3) = a3 Ho,
na=0ma=—n2 23
ns = 1 (4.2.284)

n3
(3> a
Epg 1+ Z Z Crumi G1 (ma,na | =1, ng | dus, 013, ¢13) (13>

=0mi=—n1
n3
as

(3)
+ Z Z Dyymsy Gy (ma,ng | —1,n3 | dag, 023, 023)

=0mo=—n2
ng=2,3,... (4.2.28¢)
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where

(_1)m2+n2 (nl mi + n2 + m2 ( ai >n1+1

C(f) (m1,n1 | ma,ng | di2, 012, p12) =
(n1 —mq)!(n2 + ma)! \ di2

B (cos B42) cos((m1 — ma)pa).
5 (ng — mg + ng + mo)! ng+1
mz, ng | ma,ng | daz, 032, pa2) = (—1)M2F"2 ( >
3 ( | p32) = (1) s~ e % )T \
Xpn?ingm (cos O32) COS((m3 —ma)ps ),
. - (nl mi1 + N3+ m3 n1+l1
my,ny | M3, N3 d137 0137 13) = —1 m3+n3 ( >
Cl ( | e13) = (=1) (n1 —m1)!(n3 +m3)! \ di3
PnT-l&-n;% (COS 013) COS(( mg)(p ),

(3) (nz mo + N3 + m3 nztl
ma,na | ma,n3 | daz, Oas, pa3) = (—1)™3F"s ( >
5 ( ! pa3) = (—1) (s — )1 + 113)] \ ng

X P12 " (cos Oa3) cos((mg — ms3)pas3)

In the case of my, mg,m3 # 0, £1, we have Chimy = Digmy = Engms = 0.

Let’s denote

=9
=

S

@ w
3

w

@)
UZ%Z%’;?” = (, (ma,ng | mg,n3 | daz, 623, v23)

S8
%)
w

ni
& ap
S1mm) = (o (ma, o | my,n | diz, 021, 021) (d) ,
12
@ a; \™
52%7’%1) = (5 (m3,ng | my,ni | diz, 031, 931) <d13> )
(na,ma) _ (2) as 2
T =Gy (ma,na [ ma,na | diz, bha, p12) 7.
12
(n2,mz) _ ~2) as 2
T2, s = Gs (ms,ng [ ma,ny | das, 032, 032) )
’ 23
(ns,ms) _ 3 as s
U303 =Gy (ma,ny | mg,ng | dis, 613, 013) (| — |

where mq, mg, mg = 0,41 and ny,ny,n3 =1,..., N.

The unknown series coefficients satisfy the 9N x 9N matrix equation
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0 - 0 1 0 0 0 0 e 0 0o - 0 sy sy o sy 0 0 e 0 0o 0 s sy sy 0 0 0 Cn ~La
0 - 0 0 10 0 0 . 0 0 - 0o s sy sy 0 0 . 0 0o 0 S8 s . s 0 0 0 Coy 0
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Then, the scalar magnetic potential outside the spheres can be calculated by using

the Equation (4.2.19) as
N 1 a1 n1+1
(11, 01,01 | T2, 02, 09 | 3,03, p3) = Z Z Crymy (ﬁ) P, (cos 01) cos(mipr)
N 1 a9 na+1
+ Z Z Diome (7“2> P,*(cos 63) cos(mayps)

N 1 as n3+1
+ Z Z Ergms () P73 (cos 03) cos(m3ps)
: 1

—Hyr Pl (cos 1) cos 1, T2 Q1,72 2 az,73 2> a3

(4.2.30)

The magnetic field intensity components in the system (r;, 6;, ;) are

1 ni+1
Z (n1+1) Crymy (%) P (cos 6y) cos(mypr) + Ho Py (cos 61) cos ¢

1

ni=1m;=-—1
o) 1 00 1
1 (1) i\
- — E E n1 E E Dryms G o (m2;n2 | my,m | d12,921;<f721) T
rn = — — — 12
nl—l ml——l TLQ—I mz——l

00 1 ni
) r
+ Z Z Enymy G (ma,ng | ma,na | dis, 031, 31) (d—;) }

n3=1ms=—1

X P (cos 0y) cos(mypr),

. o) 1 ni+1
sin 6 a\
Hy, = 1{ Z Z Chim, (—i) Pnﬂlh/(cos 61) cos (myp1)
1
g ) i\
1
S S S S D €8 s s | s B, o) (d—)
(1) 8] "

+ Z Z Ernyms, 3 (m3,n3 | my, | d137931;<P31) T

‘ 13

X Pn’?ll(cos 61) cos(mig1) — Hor1 P (cos 61) cos ¢ }7

>
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ni1+1
Hy = risin 61{ Z Z m1 Crym, () P (cos 01) sin (my¢1)

ni= 1 mili=—

[e's) 1 ni
+ Z Z ml{ Z Z Dyyms 2 (ma,ng | my,n | diz, 021, 021) <£112)

ni=1mp;=-—1 no= 1m2 —1

ri\"
+ Z Z Epyms, 3 (ms3, ns \ my,ny | dis, 031, @31) <d113> }

n3= 1m5——1
x P (cos 01) sin(mypr) — H r1 Pl (cos 0) sin @1} dio,d13 > 11 > a1

(4.2.31)

The potentials inside the spheres (r1 < aj,m9 < as and r3 < a3)

The potential inside the spheres can be expressed by taking the real part of the
Equation (2.1.4) as

\IJ()rl,Hl,cpl Z Z Gmm1 1P (cosbr) cos(mipr), 11 <aa (4.2.32a)

=0mi=—n1

\11(2) (rg,02,p2) = Z Z Gmm2 2Pn72n2(00592)cos(m2302), 9 < a9 (4.2.32Db)

no=0ma=—n2

TO) (15,03, p3) = Z Z nsmg 32 P13 (cos 03) cos(mzps), 13 < as (4.2.32¢)

n3=0ms3=—n3

where Ggl)ml, G%)m and Gq(f;)m?, are the constants of integration. To determine these
constants we impose the boundary condition that the normal component of the total

magnetic flux density is continuous across the surface of each sphere, i.e.,

)(7’1,91,901)} = _,Uo {CDtOt 70179@7801)} ) 1=1,2,3
r, = a; Ty = Qg
(4.2.33)

where 1o is the permeability of the medium outside the spheres.
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This yields for sphere 1

o) ny 0o 1
Z Z G%ll)ml n1 Pt (cos 01) cos(mipr) = po {{ Z Z —(n1+1) Chymy

ni=0mi=—nq ni=1mi=-—1

N - - S (1) aj ny
+ Z Z Z Z niy Dngmg 2 (mQ,nQ ‘ mi,ny ’ d1270217@21) (d12>

ng=1mao=—ngs n1=1mi=—nq

3 . S S (1) ai ny
+Z Z Z Z 11 Engms Qg (ms,ng | my,n | dis, 031, 031) <d13> }

n3:]_ m3=—n3ni=1mi=—n1

x P (cos 1) e ™% — ay HoP}(cos 61) cos ‘Pl}’ n # 0

Using the orthogonality of the spherical harmonics (see C.6) we obtain

2n1 4+ 1) (n1 —mq)!
n1G7(111)m1 = Ho { a (nl + 1) Cn1m1 A HO\/( 4 ) Enl + ml;‘

s 27
X / / Pll(cos 01) cos p1 7:11 (01, 1) sin 6y dby dp;
61=0 ¢1=0 (4.2.34)

o no o al ni
+ 3 > mDnym, Gy (ma,na | ma, | dig, 021, g21) <d>
12

no=1mao=—ns9

oo ns -
& a
+ Z Z 1 Engmg G5 (M3, ng | ma,n | dig, 031, 31) <d13> }

ng=1mgz=—ng

and, finally, we have the following results for m; = 0,41, —1 as
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1 2n1 +1) (1) ar \™
ngl)o = o { Z Z Diymy Gy (m2,na | 0,n1 | di2, 021, 21) (d12>

no=1ma=—n2

ni
ai
+ Z Z Enams 3 (m3,n3 | 0,n1 | di3, 031, 031) <d13> },

nz=1ms3=—n3

ni=1,2,3,... (4.2.35a)

no a
G(l) = 3#0{ Z Z Dryims CQ (ma,na | 1,1 | di2, 691, ¢21) <d112>

no=1mao=—n2

o) n3
(1) al 1
+ Z Z Engms Gz (ma,ng | 1,1 dus, 031, 031) <d13> + QGlHo},

nz=1ms3=—n3

n =1 (4.2.35b)

1 21’L1 -+ 1 a1 ni
Giﬂ = Jio { Z Z D ym, 2 (ma2,n2 | 1,n1 | di2, 001, p21) (d12>

na=1mo=—n2

o0 ns al ni
+ Z Z Engms Cg (m3,n3 | 1,n1 | di3, 031, p31) <d13> },

ny=1ms3=—n3

n =2,3,... (4.2.35¢)

00 n9
) a
all 11 = 3#0{ Z Z Digms Gy (ma2,n2 | —1,1 dia, 021, 21) <d112>

no=1mao=—n2

a
+ Z Z Engms 3 (m3,n3 | —=1,n1 | di13, 031, 031) (d113> — alHo},

ny=1ms3=—n3
ny =1 (4.2.35d)

2n + 1 a ni
Ggl)v_l =, { Z Z Drymy 2 (ma2,n2 | =1,n1 | di2, 021, 21) <d112>

no=1ma=—ng2

[e%¢} ns ni
(1) ai
+ Z Z Engms G3 (m3,ng | 1,01 | di3, 031, 31) <d13> },

n3=1mg=-—ng3

ny=23,... (4.2.35¢)
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Similar equations are derived for sphere 2 and sphere 3. As before, for my, my, mg #

0,+£1, we obtain C,;m, = Dyymy = Fngms = 0.

The magnetic flux density components inside the spheres are determined from B =

—VV¥ and Equation (4.2.32) as follows.

ri\"
BTI:_EZ Z n lel)ml(—l) P (cos 0y) cos(mypr),

ni=1 mlf—l

sin 0 i\
By, = ! Z Z Ggl)ml (—1) ngl’(cosQl)cos(mlgol),

ni=1 mlf—l

ny
By, = risin 91 Z Z my G n1m1 <—1> P (cos 01) sin(myp1), r < a
(4.2.36)

ni=1m;=-—1

o] 1

1 "
B,, = —— Z Z Ny G%m (TQ) P2 (cos 02) cos(mayps),

n2 1mo=-—1

sin 6 r2 )"
By, = : Z Z G, (_2) P! (cos 0;) cos(magps),

no=1meo=-—1

B‘” - Z Z m2 ”2m2< Z) P:LZQ(COS 02) Sin(m%@)a ro < Q2

981N 02

no=1meo=-—1

(4.2.37)

0o 1

1 3\
B,, = —— Z Z ns3 Ggmd (—3) P2 (cos 03) cos(msps),

n3 1 mg——l

5m93 @ (73 R
By, = Z Z Gn3m3 — | P? (cos O3) cos(msps),

n3=1msz=-—1

ny
Bm - Z Z ms n3m3< z> PT:ZS (COS 93) Sin(mi’»@S)v r3 < as

r3sin 93

nz=1m3z=—1

(4.2.38)
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4.3 Chapter Summary

In this chapter, analytical expressions were derived for the magnetic scalar potential
and the field quantities for systems of arbitrarily located ideal ferromagnetic spheres,
both inside and outside the spheres, in the presence of uniform magnetic fields. The
total scalar magnetic potential outside the spheres was obtained by the superposition
of the potentials due to all spheres and the potential corresponding to the external
field. The translational addition theorems were employed in order to express the
potential in the coordinate system attached to a specific sphere. The exact analytical
expressions derived can be used to generate numerical results for a large range of

values for sphere radii and for the relative distances between the spheres.



Chapter 5

Numerical Results and Discussions

This chapter presents numerical computations for the cases in chapter 3 and chapter
4 using the respective analytical expressions. Some discussions and explanations
regarding the tabulated results are also given. Numerical results are generated by

employing the mathematical tool Matlab.

5.1 Computations for Coaxial Spheres

Two-sphere system in the presence of external field along z axis

The infinite systems of linear equations in (3.1.15) and (3.1.17) have been truncated
by retaining the first 20 coefficients of each C,, and D,, (excluding Cy = Dy = 0),
which is found to be sufficient in order to obtain at least a 5-digit accuracy. The
40 x 40 matrix in (3.1.18) was used to compute the series coefficients and, then,

the magnetic potentials and field intensities in spherical coordinate (71, 01, ¢1), using
107



Chapter 5. Numerical Results and Discussions

108

the Equations (3.1.19) and (3.1.21), respectively. Some of the numerical values are

tabulated in Table 5.1.

Ho

F1GURE 5.1: Two ferromagnetic spheres in an external field along z axis

TABLE 5.1: Numerical results for the magnetic potential and the field intensity in
coordinates (r, 61) at some points outside a two-sphere system with a; = 3 cm, a
=5 cm, d = 10 cm, in the presence of external field Hy = 1 A/m along z axis.

poi Spherical coordinate (r;, 6;) Potential | Field intensity (A/m), H, =/H? +H3,

e | oden | nem | 6do | 6@ H, Ho H,

1 3.0000 0.0000 7.0000 180.0000 -0.0139 5.2874 0.0000 5.2874
2 4.0000 0.0000 6.0000 180.0000 -0.0567 3.7792 0.0000 3.7792
3 5.0000 0.0000 5.0000 180.0000 -0.0964 4.4934 0.0000 4.4934
4 5.0000 -90.0000 | 11.1803 | -153.4349 -0.0102 -0.1463 0.8659 0.8781
5 4.5000 -60.0000 8.6747 | -153.3043 -0.0306 0.7704 0.8931 1.1795
6 4.0000 -30.0000 6.8351 | -162.9858 -0.0437 2.3819 0.8975 2.5453
7 7.1517 36.3868 6.0000 135.0000 -0.0783 0.6004 -1.4568 1.5756
8 11.9269 33.0239 6.5000 90.0000 -0.0974 0.4860 -0.2548 0.5487
9 14.7986 24.1825 7.0000 60.0000 -0.1199 1.0578 0.0855 1.0613
10 | 18.0000 0.0000 8.0000 0.0000 -0.1584 1.5203 0.0000 1.5203

On the other hand, the Table 5.2 shows numerical values for the magnetic potentials

and flux densities inside of each sphere obtained by using the Equations (3.1.23),
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(3.1.32) and (3.1.33). 20 coefficients G and G (excluding Gél) = GéQ) = 0) have

been used, with 20 terms in their respective series in (3.1.28) and (3.1.30). The value

for the permeability of the medium outside has been taken to be pug = 47 x 1077

TABLE 5.2: Numerical results for the potential and flux density at selected points
inside of each sphere of the two-sphere system in the presence of external field along
zaxis: a1 =3 cm, a3 =5cm, d=10cm, Hy =1 A/m

Inside Sphere 1 Potential Flux Inside Sphere 2 Potential Flux

point | ¢ (cm) 9, (deg) W@ (Tm) 8D (T) point | r (cm) 9, (deg) V@ (Tm) 8@ (T)
1 | 0.2000 90.0000 | 2.7849E-11 | 4.8470E-06 1 | 0.2000 0.0000 | -8.0787E-09 | 4.0321E-06
2 1.5000 90.0000 | 1.2266E-09 | 4.6991E-06 2 | 2.5000 0.0000 | -9.7991E-08 | 3.7070E-06
3 | 2.9000 90.0000 | 1.8630E-09 | 4.0197E-06 3 | 4.9000 0.0000 | -1.2796E-07 | 1.0136E-05
4 | 2.5000 120.0000 | 5.9697E-08 | 4.6092E-06 4 | 4.5000 30.0000 | -1.5503E-07 | 3.9134E-06
5 | 2.0000 150.0000 | 8.1829E-08 | 4.6496E-06 5 | 4.0000 60.0000 | -8.2408E-08 | 4.0049E-06
6 1.5000 180.0000 | 7.0952E-08 | 4.6666E-06 6 | 3.5000 90.0000 | -1.7536E-09 | 4.0657E-06
7 1.2500 | -135.0000 | 4.2263E-08 | 4.6826E-06 7 | 3.0000 120.0000 | 6.0347E-08 | 4.1285E-06
8 1.0000 -90.0000 | 6.2357E-10 | 4.7717E-06 8 | 2.0000 180.0000 | 8.2304E-08 | 4.1881E-06
9 | 0.7500 -45.0000 |-2.5839E-08 | 5.0141E-06 9 | 1.0000 | -135.0000 | 2.8701E-08 | 4.0944E-06
10 | 0.5000 0.0000 |-2.4696E-08 | 5.0508E-06 10 | 0.5000 -90.0000 | -4.3900E-11 | 4.0473E-06

Two-sphere system in the presence of external field along x axis

Numerical results for the potential in (3.1.49) and the field intensity in (3.1.50) at

some points outside the spheres are given in Table 5.3. The infinite systems of linear

equations in (3.1.44) and (3.1.47) have been truncated by retaining the coefficients

Chm and D, in (3.1.48) for N = 20, which is found to be sufficient in order to obtain

at least a 5-digit accuracy. The matrix equation (3.1.48) has 120 unknowns. The

results are generated in spherical coordinate (rq, 601, ¢1) attached to sphere 1.
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TABLE 5.3: Numerical results for the magnetic potential and field intensity in
spherical coordinate (71,61, 1) outside of a two-sphere system in the presence of
external field along x axis: a; = 3 ¢cm, ag =5 cm, d = 10 cm, Hy = 1 A/m

Point Spherical coordinate (r;, 0; @; ) Potential | Field intensity
rem | 0@ | o) | nem | 6w | edew) | ¢%a) | H (Am)
1 5.0000 | -90.0000 | 150.0000 | 11.1803 | -153.4349 | 150.0000 -0.0193 1.7279
2 4.5000 | -60.0000 [ 120.0000 8.6747 | -153.3043 | 120.0000 -0.0026 1.1686
3 4.0000 | -30.0000 0.0000 6.8351 | -162.9858 0.0000 -0.0077 2.6242
4 5.9150 27.7050 | -30.0000 5.5000 150.0000 -30.0000 -0.0618 2.6623
5 7.1517 36.3868 | -45.0000 6.0000 135.0000 -45.0000 -0.0667 2.0386
6 |11.9269 33.0239 | -60.0000 6.5000 90.0000 -60.0000 -0.0624 1.4160
7 | 14.7986 24.1825 | -70.0000 7.0000 60.0000 -70.0000 -0.0360 0.8256
8 [16.9161 12.8079 | -85.0000 7.5000 30.0000 -85.0000 -0.0052 0.4308

In Table 5.4 we tabulate the magnetic flux density inside each sphere computed by
using (3.1.57) and (3.1.58). The infinite system of linear equations in (3.1.55) and
(3.1.56) has been truncated each by the same number of coefficients as for Table 5.3.
Numerical values of associated Legendre functions, P" have been computed using a
Matlab built-in subroutine and the derivatives of P* have been calculated by using

the recurrence formula (see B.7) for the associated Legendre functions.

TABLE 5.4: Magnetic flux density values at selected points inside each sphere for
a two-sphere system in the presence of external field along = axis: a; = 3 cm, ao
=5cm,d=10cm, Hy=1A/m

Inside Sphere-1 Flux Inside Sphere-2 Flux
point | v, (cm) | 6, (deg) | o1 (deg) | 8" (T) point| r, (cm) | 8, (deg) | v, (deg) | 8P (T)
0.2000 90.0000 0.0000 | 9.4047E-06 1 | 4.9000 5.0000 0.0000 | 2.3424E-05
2.9000 90.0000 0.0000 | 1.1684E-05 4.5000 30.0000 0.0000 | 5.7529E-06
2.5000 120.0000 0.0000 | 8.4720E-06 4.0000 60.0000 0.0000 | 9.1076E-06
2.0000 150.0000 0.0000 | 4.8288E-06 3.5000 90.0000 0.0000 | 1.0406E-05
1.5000 | -150.0000 0.0000 | 4.8246E-06 3.0000 120.0000 0.0000 | 8.9313E-06
1.2500 | -135.0000 0.0000 | 6.8092E-06 2.0000 150.0000 0.0000 | 5.1347E-06
1.0000 -90.0000 0.0000 | 9.4865E-06 1.0000 -135.0000 0.0000 | 7.3258E-06
0.7500 -45.0000 0.0000 | 6.4122E-06 0.5000 -90.0000 0.0000 | 1.0419E-05

O |IN|[oo|jO|RlW[IN|F-
O |IN|[oo|job~lwWN
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Three-sphere system in the presence of external field along z axis

Table 5.5 shows numerical values for the field intensity (by 3.2.17) in (ry,601,¢1) at
the points Py, P2 and P3 shown in Figure 5.2. The three spheres are coaxial and
of the same radius a, with the same gap g between consecutive spheres. Results are
given for six different ratios g/a. It is seen that the field values increase substantially

in the gaps when the spheres are closed to each other.

Hy=Hy2 Ho

FIGURE 5.2: Three ferromagnetic spheres in an external field along z axis

TABLE 5.5: Numerical results for the magnetic field intensity at some points in
the three-sphere system shown in Figure 5.2 in the presence of external field along
z axis for different ratios g/a: a1 = a2 =az3=a=2cm, Hy=1A/m, N =20 in

(3.2.15)
. . g/a
Point | Field
1.000 0.500 0.100 0.050 0.010 0.005
P, 3.1514 | 3.2701 3.5894 3.6913 3.6000 3.4595
P, H, 3.8068 | 5.2259 | 16.0682 | 27.8256 | 80.7905 | 106.2011
P, 3.8550 | 5.2568 | 16.0640 | 27.8041 | 80.7262 | 106.1484

In Table 5.6 numerical values are tabulated for the magnetic flux density inside each

sphere in their attached coordinate system.
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TABLE 5.6: Numerical results for the magnetic flux density at some points inside
of each sphere of a three-sphere system in the presence of external field along z
axis: ag = a2 =az3 =a=2cm, g =2cm, H)=1A/m, N =20 in (3.2.23) -

(3.2.25)

Inside Sphere-i Flux density, B © (T) for Sphere i

point | 1 (cm) 0; (deg) | Sphere 1, B"” | Sphere 2, B? Sphere 3, B
1 0.2000 | -90.0000 | 4.1341E-06 4.3971E-06 4.1381E-06
2 0.7500 [ -90.0000 | 4.1029E-06 4.3792E-06 4.1506E-06
3 1.0000 | -30.0000 | 4.3688E-06 4.4553E-06 3.9703E-06
4 1.0000 | 60.0000 4.1394E-06 4.3609E-06 4.0963E-06
5 1.5000 | 90.0000 4.0478E-06 4.3479E-06 4.1723E-06
6 1.9000 | 150.0000 | 4.2626E-06 4.6192E-06 4.2446E-06

Three-sphere system in the presence of external field along x axis

Generated numerical values for the potential and for the field intensity outside the

spheres in the spherical coordinate system (r1, 61, 1) have been tabulated in Table

5.7.

TABLE 5.7: Numerical results for various points outside the three-sphere system
in the presence of external field along = axis: a1 = a2 = a3 =a =2 cm, g = 2 cm,
Hy=1A/m, N =20in (3.2.37)

Point Spherical coordinate (r,,0,,¢;) Potential | Field intensity (A/m), H, =/H} +H{, + H?,

om

r; (cm) 0, (deg) ¢, (deg) o (A) H, Hy, Ho, H, (A/m)
1 40000 | -90.0000 | 150.0000 | -0.0247 | 14474 | -0.0213 | -0.3561 1.4907
2 3.5000 [ -60.0000 | 120.0000 -0.0080 0.9028 -0.4038 | -0.4577 1.0897
3 3.0000 [ -30.0000 0.0000 0.0022 -1.3329 1.7100 0.0000 2.1681
4 3.7179 23.7940 -30.0000 -0.0241 -0.8218 -1.6624 -0.0716 1.8558
5 5.2202 24.5036 -45.0000 -0.0320 -0.8993 -1.9323 0.0654 2.1323
6 6.3246 18.4349 -60.0000 -0.0300 -1.1036 -2.3374 0.8660 2.7261
7 12.3693 14.0362 -45.0000 -0.0345 -0.4029 -1.5119 | -0.2628 1.5866
8 13.7477 10.8934 -30.0000 -0.0363 3.0190 -1.6984 -0.1941 3.4694
9 14.6749 5.8667 0.0000 -0.0241 3.4553 -1.7161 0.0000 3.8580
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Numerical values for the magnetic flux density inside each sphere, in their attached
coordinate system, are given in Table 5.8. The points inside were selected to be on

the z — x plane of each sphere.

TABLE 5.8: Numerical results for the magnetic flux density at selected points inside
of each sphere of the three-sphere system in the presence of external field along x
axis: a1 =ay=az3=a=2cm, g =2cm, Hy =1 A/m with N = 20 in (3.2.42) -

(3.2.44)

Inside| Spherical coordinate (r;,0;,¢;) Flux density, B"’ (T) for Sphere i

pomt | r; (cm) 0; (deg) i (deg) | Sphere 1, B" Sphere 2, B® Sphere 3, B®
1 0.2000 90.0000 | 0.0000 1.0254E-05 9.9176E-06 1.0249E-05
2 2.9000 90.0000 | 0.0000 1.8142E-03 8.8781E-04 9.0780E-04
3 2.5000 120.0000 | 0.0000 1.3367E-04 6.8306E-05 5.8232E-05
4 2.0000 150.0000 | 0.0000 3.9858E-06 4.1974E-06 5.6704E-06
5 1.5000 [ -150.0000 [ 0.0000 5.1638E-06 4.8700E-06 4.9980E-06
6 1.2500 | -135.0000 [ 0.0000 7.3106E-06 6.9558E-06 7.1296E-06
7 1.0000 -90.0000 | 0.0000 1.0308E-05 9.9506E-06 1.0229E-05
8 0.7500 -45.0000 | 0.0000 7.1138E-06 6.9854E-06 7.3567E-06

The computer program and the numerical results generated have been validated by
considering some limiting geometric configurations and also the symmetry of the

structures involved.

For instance, by increasing the distance between the spheres to large values, the field
about each sphere is practically the same as in the case of only one sphere in the
presence of the external field, the numerical results being approximately those given

by the expressions in Section 2.4.

As well, the field quantities at some points are equal due to symmetry of the corre-
sponding system. For example, the magnetic flux densities are the same at the points

P; and P4, and Py and P3 shown in Figure 5.3. Both the magnetic field intensities
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and magnetic flux densities are identical at P5 and Pg, and Pg and Py, respectively.

Ho

FIGURE 5.3: Symmetrical points for a three-sphere system

Another check of the numerical results has been performed by computing the field
quantities at various points outside the spheres using coordinates attached to only

one sphere.

5.2 Computations for Arbitrarily Located Spheres

Two-sphere system in the presence of external field along z axis

Using (4.1.15), numerical values for field intensity in spherical coordinate (ry, 61, ¢1)
were generated at the points Py, -+ P4 shown in Figure 5.4 for different ratios g/a.
The results are presented in Table 5.9. The infinite system of linear equations in
(4.1.10) and (4.1.11) has been truncated by retaining the first 20 coefficients of each
Cho and D, (excluding Cyp = Doy = 0), and these coefficients were computed using

the matrix in (4.1.13), with N = 20.
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FIGURE 5.4: Two ferromagnetic spheres with same z — x planes placed in an
external field along z axis

TABLE 5.9: Magnetic field intensity values in coordinates (11,61, ¢1) at Py, -+ , Py
for a two-sphere system in the presence of external field along z axis for different
ratios g/a: a1 = ag = a = 2 cm, 612 = 30 deg, p12 = 0 deg, Hy =1 A/m, N = 20

in (4.1.13)
. . g/a
Point | Field
1.000 0.500 0.100 0.050 0.010 0.005
P, 2.8694 2.9246 3.0158 3.0334 3.0490 3.0511
P, Y 2.9400 3.3926 4.7061 5.0747 5.4516 5.5056
P, ‘ 2.9400 3.3926 4,7061 5.0747 5.4516 5.5056
P, 2.6886 2.7472 2.8442 2.8628 2.8794 2.8816

Table 5.10 shows the numerical values of magnetic flux density inside each sphere com-

puted with (4.1.20) and (4.1.21). The infinite system of linear equations in (4.1.18)

and (4.1.19) has been truncated by the same number of coefficients, i.e., N = 20, for

GSO) and G (excluding Gét) — G(()%) =0).

q0 >
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TABLE 5.10: Numerical results for flux density inside each sphere for the two-

sphere system in the presence of external field along z axis: a1 = a0 = a = 2 cm,
012 = 30 deg, 12 =0deg, g =2cm, Hy=1A/m, N =20 in (4.1.18) and (4.1.19)

Inside Sphere 1 Flux Inside Sphere 2 Flux

point | r; (cm) | 8, (deg) | B (T) point | rp(cm) | 8, (deg) | B@(T)
1 0.2000 | -90.0000 | 4.4830E-06 1 0.2000 | -90.0000 | 4.4895E-06
2 0.7500 | -90.0000 | 4.4424E-06 2 0.7500 |-90.0000 | 4.5245E-06
3 1.0000 | -30.0000 | 4.8199E-06 3 1.0000 | -30.0000 | 4.1882E-06
4 1.0000 | 60.0000 | 4.5445E-06 4 1.0000 | 60.0000 | 4.4305E-06
5 1.5000 | 90.0000 | 4.3417E-06 5 1.5000 | 90.0000 | 4.5897E-06
6 1.9000 | 150.0000 | 4.3581E-06 6 1.9000 |150.0000 | 4.4966E-06

Two-sphere system in the presence of external field along x axis

Table 5.11 presents numerical values of field intensity at the points Py, Po, P3 outside
the spheres for different ratios g/a in spherical coordinate (ri, 6, ¢1). The infinite
system of linear equations in (4.1.31) and (4.1.32) has been truncated by retaining
60 coefficients of each C,,, and D,, (excluding Cypy = Doy = 0), which are computed

using the matrix equation in (4.1.33), with 120 unknown constants.

TABLE 5.11: Field intensity values at the points P;i,P2,P3 in coordinate

(1,01, 1) of the two-sphere system in the presence of external field along x axis

for different ratios g/a: a1 = ag = a = 2 cm, 612 = 30 deg, 12 = 0 deg, Hy = 1
A/m, N =20 in (4.1.33)

. . g/a
Point| Field
1.000 0.500 0.100 0.050 0.010 0.005
P, 1.6757 1.6628 1.6777 1.6796 1.6823 1.6827
P, H, 3.5509 5.7204 | 10.2037 | 11.2895 | 12.2300 | 12.3544
Ps 7.7284 9.8172 | 11.6563 | 12.0964 | 12.4040 | 12.4422
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Numerical values of magnetic flux density inside the spheres are given in Table 5.12.
The expressions in (4.1.37) and (4.1.38) have been truncated each to the same number

of coefficients, i.e., 60, for G4y and for Gg? (excluding G(()%)) = G(()%) =0).
TABLE 5.12: Flux density at selected points inside each sphere of a two-sphere
system in the presence of external field along x axis: a1 = a3 = a = 2 cm, 019 =
30 deg, w12 = 0 deg, p; = 0deg, Hy =1 A/m, N = 20 in (4.1.37) and (4.1.38)

Inside Sphere-1 Flux Inside Sphere-2 Flux

point | ry(cm) | 6 (deg) 8% (T) point | r, (cm) | 8, (deg) B? (T)
1 0.2000 | -90.0000 | 4.9315E-06 1 0.2000 | -90.0000 | 4.9210E-06
2 0.7500 | -90.0000 | 4.9759E-06 2 0.7500 | -90.0000 | 4.8896E-06
3 1.0000 | -30.0000 | 2.0306E-06 3 1.0000 | -30.0000 | 2.7907E-06
4 1.0000 | 60.0000 | 4.2409E-06 4 1.0000 | 60.0000 | 4.3266E-06
5 1.5000 | 90.0000 | 5.0653E-06 5 1.5000 | 90.0000 | 4.8305E-06
6 1.9000 | 150.0000 | 1.6913E-06 6 1.9000 | 150.0000 | 3.4233E-06

Three-sphere system in the presence of external field along z axis

Table 5.13 shows the numerical values of the potential (see (4.2.12)) and field intensity
(see (4.2.13)) at the points Py, Pa,- -+, P1g shown in Figure 5.5. The infinite system
of linear equations in (4.2.8) - (4.2.10) have been truncated by retaining the first 20
coefficients of each Cyg, Dy and Eyy (excluding Cog = Doy = Ego = 0), which is found
to be sufficient in order to obtain at least a 5-digit accuracy for the numerical results.

The numerical values for the required coefficients are computed using the matrix in

(4.2.11), which has 60 unknowns.
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X3

Z3
/ Ho

Ho=Ho2

T

FIGURE 5.5: Three ferromagnetic spheres in arbitrary positions with the common
z — x plane in the presence of external magnetic field along 2 axis

TABLE 5.13: Numerical results for the potential and the field intensity outside of

a three-sphere system in coordinates (r1,67) in the presence of external field along

z axis: a1 = 3 cm, ay = 5 cm, ag = 4 cm, dio = 10 cm, di3 = 20 cm, #12 = 30°,
(913 = 600, Y12 = Y13 = 0, Ho =1 A/m, N = 20 in (4.2.11)

Poi Spherical coordinate (r;, 6;) Potential | Field (A/m), H, =H? +H},
oint
ry(cm) | 0y (deg) | r,(cm) | 6,(deg) | r3(cm) | B8;(deg) | ¢"'(A) H, Hy, H,

P, 3.0000 | 30.0000 | 7.0000 | 210.0000 | 17.4665 | 244.9266 | -0.0188 | 3.6195 0.3008 [ 3.6319
P, 3.5000 | 30.0000 | 6.5000 | 210.0000 | 17.0589 | 245.8881 | -0.0351 3.0060 0.1211 | 3.0084
P 4.0000 | 30.0000 [ 6.0000 [ 210.0000 | 16.6564 | 246.8964 | -0.0494 | 2.7991 0.0573 | 2.7997
P, 4.5000 | 30.0000 | 5.5000 | 210.0000 | 16.2593 | 247.9542 | -0.0634 | 2.8578 0.0687 [ 2.8586
Ps 5.0000 | 30.0000 | 5.0000 | 210.0000 | 15.8680 | 249.0647 | -0.0782 | 3.1568 0.1447 | 3.1602
Pg 3.0000 | 60.0000 | 7.5524 | 198.5441 | 17.0000 [ 240.0000 | -0.0202 | 2.0231 -0.1008 | 2.0256
P, 6.0000 [ 60.0000 | 5.6637 | 178.0152 | 14.0000 | 240.0000 | -0.0674 1.3496 | -1.9766 | 2.3934
Py 9.0000 | 60.0000 | 5.0115 | 146.1128 | 11.0000 | 240.0000 | -0.0885 1.0530 | -2.4914 | 2.7048
Py 12.0000 | 60.0000 | 6.0128 | 116.2591 | 8.0000 | 240.0000 | -0.0791 0.8021 -0.8730 | 1.1855
Py | 16.0000 | 60.0000 | 8.8810 | 94.2636 | 4.0000 | 240.0000 | -0.0991 1.5092 0.0740 1.5110

Flux density values inside in spherical coordinates (7;, 6;, ;) are given in Table 5.14.
The expressions in (4.2.16) - (4.2.18) are truncated to the same number N = 20

coefficients for each of G'{) G(%) and GES’) (excluding G(%) = Gé%) = Gé%) =0).

n0 "
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TABLE 5.14: Numerical results for the flux density inside the spheres of a three-

sphere system in the presence of external field along z axis: a; = 3 cm, a2 = 5 cm,

az = 4 cm, d12 =10 cm, d13 =20 cm, 012 = 3007 913 = 600, Y12 = Y13 = O, H() =
1 A/m, N =20 in (4.2.16) - (4.2.18)

Inside Sphere-1 Flux Sphere-2 Flux Sphere-3 Flux

point | v, (cm) | 6, (deg) BY(T) | ra(em) | 6, (deg) BO(T) | ra(cm) | 6, (deg) 89 ()
1 0.2000 90.0000 | 4.3697E-06 | 0.2000 0.0000 | 3.7990E-06 | 0.2000 0.0000 | 3.5273E-06
2 | 1.5000 | 90.0000 | 4.3378E-06 | 2.5000 0.0000 | 3.6708E-06 | 2.5000 0.0000 | 3.8201E-06
3 | 29000 | 90.0000 | 4.2165E-06 | 4.9000 0.0000 | 1.2135E-06 | 3.9000 0.0000 | 1.0669E-05
4 | 25000 | 120.0000 | 4.2923E-06 | 45000 | 30.0000 | 3.7266E-06 | 3.5000 | 30.0000 | 3.5765E-06
5 2.0000 | 150.0000 | 4.3006E-06 | 4.0000 60.0000 | 3.7781E-06 | 3.0000 60.0000 | 3.5030E-06
6 | 1.5000 | 180.0000 | 4.3082E-06 | 3.5000 | 90.0000 | 3.8243E-06 | 2.5000 | 90.0000 | 3.4971E-06
7 | 1.2500 | -135.0000 | 4.3190E-06 | 3.0000 | 120.0000 | 3.8486E-06 | 2.0000 | 120.0000 | 3.5064E-06
8 1.0000 | -90.0000 | 4.3542E-06 | 2.0000 | 180.0000 | 3.8405E-06 | 1.5000 | 180.0000 | 3.5134E-06
9 | 0.7500 | -45.0000 | 4.4138E-06 | 1.0000 | -135.0000 | 3.8224E-06 | 1.0000 | -135.0000 | 3.5133E-06
10 | 0.5000 0.0000 | 4.4194E-06 | 0.5000 | -90.0000 | 3.8052E-06 | 0.5000 | -90.0000 | 3.5217E-06

Three-sphere system in the presence of external field along x axis

Numerical values of the potential calculated from (4.2.24) and of the field intensity
from (4.2.31) at the same points Py, Pa,...P1o have been tabulated in Table 5.15.
The infinite system of linear equations in (4.2.26) - (4.2.28) has been truncated by
retaining the first 60 coeflicients of each of Cy,,, Dy, and Eys (excluding Cog = Doy =
Eogy = 0). These coefficients were computed using the matrix in (4.2.29), which has

now 180 unknowns.

Numerical values of the magnetic flux density at some points inside the spheres are
shown in Table 5.16. The series expressions in (4.2.35) have been truncated each
by the same number N = 60 of coefficients of each of ng)l, Géf,) and Gg’) (excluding
Gl = Gl = G = 0).
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TABLE 5.15: Potential and field intensity in coordinates (71, 61, ¢1) outside a three-

sphere system in the presence of external field along x axis: a; = 3 cm, as = 5 cm,

az = 4 c1m, d12 =10 cin, d13 =20 c1m, 012 = 300, 013 = 600, Y12 = Y13 = 0, Ho =
1 A/m, N =20 in (4.2.29)

Spherical coordinate (r;, 6,) Potential Field intensity (A/m), H, = m
1y (cm) 0, (deg) | @, (deg) ohe (A) Hy Hg, Hep, H,
P, 3.0000 30.0000 0.0000 0.0116 0.6932 -1.8939 0.0000 2.0167
P, 3.5000 30.0000 0.0000 0.0079 0.4215 -1.6351 0.0000 1.6885
P, 4.0000 30.0000 0.0000 0.0058 0.2740 -1.4952 0.0000 1.5201
Py 4.5000 30.0000 0.0000 0.0051 0.1910 -1.4162 0.0000 1.4291
P 5.0000 30.0000 0.0000 0.0058 0.1442 -1.3710 0.0000 1.3786
P, 3.0000 60.0000 0.0000 0.0051 0.7449 -1.3926 0.0000 1.5793
P, 6.0000 60.0000 0.0000 -0.0423 -0.5363 -1.0594 0.0000 1.1874
Pg 9.0000 60.0000 0.0000 -0.0446 -0.6649 -1.1184 0.0000 1.3011
Py 12.0000 | 60.0000 0.0000 -0.0646 -0.6927 -1.2094 0.0000 1.3937
Py 16.0000 | 60.0000 0.0000 -0.0906 -0.7000 -1.3399 0.0000 1.5117

Point

TABLE 5.16: Magnetic flux density inside each sphere of the three-sphere system

in the presence of external field along x axis: a1 = 3 cm, as = 5 cm, ag = 4 cm,

diz = 10 cm, diz3 = 20 cm, 2 = 30°, 613 = 60°, p12 = @13 = 0, 1 = P2 = Y3 =
0, Hp=1A/m, N =20 in (4.2.36) - (4.2.38)

Inside Sphere-1 Flux Sphere-2 Flux Sphere-3 Flux

point | r, (cm) | 6, (deg) BY(T) | ra(cm) | 6, (deg) B (T) | ra(cm) | 65(deg) B® (T)
1 | 0.2000 90.0000 | 4.7703E-06 | 0.2000 90.0000 | 5.0398E-06 | 0.2000 90.0000 | 4.9007E-06
2 | 1.5000 90.0000 | 4.7703E-06 | 2.5000 90.0000 | 5.0398E-06 | 2.5000 90.0000 | 4.9007E-06
3 | 2.9000 90.0000 | 4.7703E-06 | 4.9000 90.0000 | 5.0398E-06 | 3.9000 90.0000 | 4.9007E-06
4 | 25000 | 120.0000 | 4.3196E-06 | 4.5000 | 120.0000 | 4.3384E-06 | 3.5000 | 120.0000 | 4.1790E-06
5 |2.0000 | 150.0000 | 2.5360E-06 | 4.0000 | 150.0000 | 2.4966E-06 | 3.0000 | 150.0000 | 2.3945E-06
6 | 1.2500 | -135.0000 | 3.4818E-06 | 3.0000 |-135.0000 | 3.5435E-06 | 2.0000 |-135.0000 | 3.4223E-06
7 | 1.0000 | -90.0000 | 4.7703E-06 | 2.0000 | -90.0000 | 5.0398E-06 | 1.5000 | -90.0000 | 4.9007E-06
8 |0.7500 | -45.0000 | 3.3080E-06 | 1.0000 | -45.0000 | 3.5704E-06 | 1.0000 | -45.0000 | 3.4869E-06
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5.3 Chapter Summary

Numerical results for the magnetic scalar potential and for the field quantities both
outside and inside ferromagnetic spheres in various configurations in the presence of
a uniform external magnetic field have been presented. The results were obtained by
using exact analytical expressions derived in chapter 3 and chapter 4 for linear arrays
of and also for arbitrarily located spheres. A large range of values for the sphere radii

and for the relative distance between the spheres have been considered.

For the quantities outside the spheres the infinite systems of linear equations satisfied
by the constants of integration were truncated such that are imposed accuracy of the
numerical results was achieved. Then the solution of the corresponding matrix equa-
tions were solved employing the mathematical tool Matlab. Next, these constants of

integration were used to obtain the magnetic scalar potential and the field quantities.

The constants of integration from the field quantities for the region outside were,
then, used to obtain the field quantities inside the spheres by imposing the boundary
conditions. Numerical values of associated Legendre functions [4], were computed
using a Matlab built-in subroutine and their derivatives were calculated by using the
recurrence formulas, as shown in (B.7). For all numerical calculations, the perme-
ability of the medium outside was taken to be that of free space, i.e., pg = 47 x 1077



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, exact analytical expressions were derived regarding the magnetization
of ferromagnetic spheres in the presence of external magnetic fields on the basis of
the exact field equations and by imposing the boundary conditions. Translational
addition theorems for Laplacian fields in spherical coordinates are used to solve vari-
ous boundary value problems for multi-sphere systems in linear arrays or of arbitrary
geometries. In the case of axisymmetric geometries, the general expressions for the
translational addition theorems are simplified as shown in Section 2.2.2. The field
quantities are now independent of the coordinate ¢, which considerably reduces the
complexity of the equations. As a result, the generated matrices for such geometries
are relatively simple which facilitates the computation of the numerical results. Leg-
endre polynomials are used when dealing with systems of linear arrays of spheres,

while spherical harmonics are needed for systems with arbitrarily located spheres.
122
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Then, these expressions were applied to generate numerical results of sufficient ac-
curacy for the field quantities. When computing the field quantities for the whole
system, the superposition of the field quantities due to all spheres and to the external
field can be performed using either the attached coordinate systems (with sets of
single series) or a single coordinate system (with sets of multiple series, after using
the translational addition theorems). In the former case, the coordinate relations in

A .2 are needed.

It should be noted that numerical values of the field quantities were not exactly the
same when using the two procedures. This is due to the summation of the terms
in the respective series. For example, let’s consider NV terms in the truncated single
series. Then, when using the translation to only one coordinate system, the number
of terms in the translated portion of each expression is N2, which increases usually
the computational errors. Thus, it is expected that the expressions containing single
series yield more accurate numerical results than the expressions containing multiple

series.

As shown in Tables: 5.5, 5.9 and 5.11 the magnetic field intensity increases when the
spheres are close to each other. The high field intensities determine high values for
the interaction forces. As a result, the magnetization of the spheres increases now

considerably.

The benchmark numerical results generated in this thesis are valuable as reference
data to inspect the accuracy of different numerical methods developed to solve mag-
netostatic boundary value problems in the presence of external magnetic fields for

real world applications.
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6.2 Future Work

The research regarding the magnetization of ferromagnetic systems of spheres was
conducted considering uniform magnetic fields and homogeneous materials. This

work can be extended to nonuniform fields and to non homogeneous media.

On the other hand, it is of more generality if the methodology herein could be adopted
to the systems of prolate and oblate spheroids, which better approximate real world
ferromagnetic objects. Translational addition theorems for spheroidal Laplacian func-
tions are now needed in order to derive exact analytical expressions for the magneto-

static field quantities.



Appendix A

Geometric Relations

A.1 Spherical Coordinates

The spherical coordinate (r, 0, ¢) are related to the Cartesian coordinates as
z 0
X =rsin @ cos ¢
y=rsin@sin ¢

Z=rcosé

______ \_\_»\ r:,[xz_l_yz +z2
0 = cos "X(z/r)

X o = tan 1(y/x)

FIGURE A.1: Spherical coordinates

125
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A.2 Coordinates Relations

The relation of two coordinate systems with common z — x planes as

T, = \/r12 —2r,dcos(6,—8,,) + d?
r = Jrzz + 2 1,d cos(6,— 6,,) + d?

T, cos 91 —d cos 912

T, cosg2 +d cos 912

cos @, = Jrlz—z r,d cos(6,— 0,,)+d?

PR
\/r22+2 r,dcos(8,— 6,)+d? )/

Z

FIGURE A.2: Geometrical relations for point P on the common z — x planes



Appendix B

Legendre Functions

The associated Legendre differential equation is given by [4]

2

o=+ pwrn - 2 o (B.1)

where x = cosf, (—1 < x < 1) and the solution of Equation (B.1) can be written as

(B.2)

n=20,1,2,... and m=0,+1,£2,...,4n

where A,,,, and B,,, are arbitrary constants. P™(z) and Q,"*(x) are associated Leg-
endre functions of degree n, order m, of the first and the second kind, respectively,

defined by

(z) (B.3)

n

PM(x) = (1 —x?)? TPn(a;) and Q™(x) = (1 —x?)

127
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Legendre polynomials are

Explicit expressions: (—l<z<1)
Py(z)=1, Pi(z)=ux,
1 (B.4)
Pl(z) = (1—-2*)'%,  Py(x) = FB3°=1), ..

Special values [4]: n=123,... and m=0,1,2,...

P™(z) =0, if |m| >n

(n—m)! m(g),

0, if (n 4+ m) odd (B.5)

if (n +m) even
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Orthogonality property:

1
2 (n+m)!

P™(x)P™(2) d = 5., 0<m<
[ Pr@rr@ = g At 0<m<n
1
(B.6)
0, if Il#n
where 6,,; = = Kronecker delta
1, if I=n
Recurrence formulas [4]:
(m—-—n—-1PFP"% +2n+1)zP" — (m+n)P", =0, 0<m<n
P+ P"
Pgn/ _ +nrly, (n_'_m) n—1 (B?a)
1—22
d” m m-+r
_P"(x) = P"(0), n=123,... (B.7b)
du z=0
n+1)P,y1— 2n+ 1)xP, +nk,_1 =0, m =0
/ —n(mPn — Pn—l)
L (B.8a)
Pl(0) = — (n+ 1) Py 1(0), (B.3b)

n

1
P%Uzénm+1L n=1,23,... (B.8c)



Appendix C

Laplace’s Spherical Harmonics

The spherical harmonic differential equation is given by [4]

1 0/ . Ou 1 0%

sin

and its solutions are called spherical harmonics which can be written as

Vi6.0) = \/ T B cost) e

n=20,1,2,... and —n<m<n

where P" is the associated Legendre function of the first kind, of degree n and order

m. Y."(0, ) is the spherical harmonics of the arguments 6 and .

130
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The first few spherical harmonics:

-1 /3
}/11(07()0) =5 _Singejwa
2 m
Some properties:
2 1
v(0,0) = | 2D b (cos),
47
- 1 /@2n+1) n
y—n _ n Jjny C4
G, ) Sl s de , (C.4)
Yn_m(ea 90) = (_1)m?:(9’ 90)7
where P, is the Legendre polynomial and Y denotes the complex conjugate.
Normalization:
T 27
/ /Ym(e VY (0, 0) sin0d0dip — — 5, 5
n P n U, ) 51N SO_(Q?’L—F:[) nn/ Umm/ ( )
0=0¢p=0
where 0;; is the Kronecker delta.
T 27 A ( >'
2 us n+m)!
Vi (0,¢)| sin0dodp =
/ / w0 )] sin 4 en(2n+1) (n—m)!
0=0¢p=0
(C.6)

where ¢, =
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