
'IWO-DIMENSIONAL SHAPE BLENDING

by

Lorrita L. McKnight

A Thesis
Submitted to the Faculty of Graduate Studies

in Partial FulfiUment of the Requirements
for the Degree of

MASTER OF SCIENCE

Department of Mathematics
University of Manitoba

Winnipeg, Manitoba
01999

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue Weiiingtm
Otiawa ON K1A ON4 Otîawa ON K 1 A W
Canada CaMda

The author has granted a non-
exclusive Licence allowing the
National Library of Canada to
reproduce, loan, distribute or sel1
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownersbip of the
copyright in this thesis. Neither the
thesis nor substantid extracts fiom it
may be printed or othewise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfichelfilm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

TEE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
***+*

COPYRIGHT PERMISSION PAGE

Tw~DimensionaI Sbape Blending

A Prrcticum subdtted to the Facdty of Gnduate Studies of The University

of Manitoba in partial fuiAllment of the requirements of the dcgree

of

MASTER OF SCIENCE

LORRITA L. McKNIGHT01999

Permission has been granted to the Library of The University of Manitoba to lend or setl
copies of this thesis/pncticum, to the National Libnry of Canada to micronlm this thesis and
to lend or seii copies of the film, and to Dissertrtions Abstrrcts International to pubiish an
abstract of this thesis/practicum.

The autbor reserves other publication rights, and neittier this thesis/practicum nor extensive
extracts from it mry bc printed or otherwise reproduced witbout the ruthor's written
permission.

Abstract

Shape blending is the process of taking two existing shapes and finding in-between

shapes that provide a smooth transition from the fmt shape to the second. Shape

biending can be divided into two main sub-problerns: the vertex correspondence

problem and the vertex path problem. This thesis looks at algorithms to solve these

problems. and applies these algorithms to both polygons and Bdzier curves.

Table of Contents

List of Figures

Acknowledgernents

Chapter 1: Introduction

1 . 1 Problem Statement and Background

1.2 Preliminaries

1.3 Overview

Chapter 2: Least Work Matching

2.1 Introduction

2.2 Development

2.2.1 Finding the Least Work Path

2.2.2 Stretching Work

2.2.3 Bending Work

2.2.3.1 Calculating the Change in Angle Size

2.2.3.2 Deviation from Monotonicity

2.2.3.3 Coiiapsing Angles

2.2.3.4 Multiple Vertices

Table of Contents

2.2.4 The Least Work Path Revisited

2.3 Results

Chapter 3: Intrinsic Interpolation

3.1 Introduction

3.2 Development

3.3 Edge Tweaking

3.4 Results

Chapter 4: Curves

4.1 Introduction

4.2 Cuwe Blending via the Control Polygon

4.3 Least Work C u ~ e Matching

4.3.1 Work

4.3.1.1 Stretching Work

4.3.1.2 Bending Work

4.3.1.3 Kinking Work

4.3.2 Changes to the Least Work Matching Algorithm

4.4 Results

Chapter 5: Conclusion

5.1 Future Work

5.2 Conclusion

Table of Contents

Appendix: Implementation

A. 1 Introduction

A.2 Application

A.3 Discussion of Implernentations

A.3.1 Least Work Matching

A.4 Code

References

Fig. 1.1

Fig. 1.2

Fig. 1.3

Fig. 2.1

Fig. 2.2

Fig. 2.3

Fig. 2.4

Fig. 2.5

Fig. 2.6

Fig. 2.7

Fig. 2.8

Fig. 2.9

Fig. 2.10

Fig. 2.1 1

Fig. 2.12

Fig. 2.13

List of Figures

Correspondence of vertices

Example of a blend with an inappropnate vertex
correspondence

Example of a blend with a more pleasing vertex
correspondence

The grid used for a vertex correspondence graph

Example of a vertex correspondence graph

The graph is not allowed to break into pieces

The oniy three possible vertex correspondences when
vertex i corresonds to vertex j (vertex correspondence
condition 1).

Collapsing angles

Measunng angles

Deviation from monotonicity

A 8 is less than R radians

Q, must lie in region A

Q(r) must s t w out dong Iine segment between Q, and Q,

Q(I) must pass through region B

Values of r, and t,

Magnified view of a vertex of multiplicity 4

vii

Fig. 2.14

Fig. 2.15

Fig. 2.16

Fig. 2.17

Fig. 2.18

Fig. 2.19

Fig. 2.20

Fig. 2.21

Fig. 2.22

Fig. 2.23

Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4

Fig. 3.5

Fig. 3.6

Fig. 3.7

Fig. 3.8

Fig. 3.9

Fig. 3.10

Fig. 3.1 1

Fig. 3.12

Fig. 3.13

List of Figures

Work from the west vertex 48

Polygon vertex correspondence for the graph of Fig. 2.14 49

"m" and "n" polygons

Match-by-order without pre-processing

Least Work Matching without pre-processing

Additional vertices added to "n"

Match-by-order with pre-processing

Least Work Matching with pre-processing

"E" and 'F* polygons

Least Work Matching without pre-processing

Withering limb

Super-imposed withering limb

Definition of 8,

Anchor point (x, , y,) and anc hor angle a,

Definition of a:

Intrinsic Interpolation applied to a pendulum

Super-imposed pendulum

Polygons to be blended with Intrinsic Interpolation

Intrinsic interpolation without Edge Tweaking

Intrinsic Interpolation with Edge Tweaking

Intrinsic Interpolation with Edge Tweaking, no pre-
processing

Intrinsic Interpolation with Edge Tweaking, with pre-
processing

"E" to "F' using Intrinsic Interpolation with Edge
Tweaking

List of Figures

Fig. 4.1

Fig. 4.2

Fig. 4.3

Fig. 4.4

Fig. 4.5

Fig. 4.6

Fig. 4.7

Fig. 4.8

Fig. 4.9

Fig. 4.10

Fig. 4.1 1

Fig. 4.12

Fig. 4.13

Fig. 4.14

Fig. 4.15

Fig. A. 1

Bézier curves that are and are not allowed

Curve segments that are and are not allowed

Two leaves to be blended

Blend using the control plygon

Inserted control points c m cause unwanted changes in the
curve

Calculating angles for bending work

Calculating angles for kinking work

Two Bézier curves joined with C' continuity

In-between images have reduced continuity

"U" and "J" to be blended

Least Work Curve Matching, initial vertex correspond-
ence 1

L e s t Work Curve Matching, initial vertex correspond-
ence 2

Control polygon blend, vertex correspondence 1

Control polygon blend, vertex correspondence 2

User-interface of the application

Acknowledgments

I wouid first like to express rny appreciation to my advisor, Dr. W.D. Hoskins, for

his guidance, support and patience, and to the mernbers of my exarnining

committee, Dr. P-W. Aitchison and Dr. D. Walton.

1 owe a specid debt of gratitude to Dr. T.G. Berry for his generous interest in my

mathematical development, for dways making time to listen to me and for his

constant encouragement.

1 am grateful to rny parents, Ruth and Harry McKnight, for their support over the

years, and to my sister Melody, for those much-needed ski-trips.

Thanks dso go to Wiil Redekop, for the advice, the laughter and the tate-night

phone-calls.

Lastly, 1 would like to thank my fellow graduate students, especiaily Jackie S toren,

Allan Hildebrand, Tracy Ewen, and Stephanie Olafson, for brightening so many of

my otherwise long and tedious days at school.

Chapter 1: Introduction

1.1 Problem Statement and Background

Shape bIending or shape interpolation is the process of taking two existing

shapes or curves (known as key shapes or curves) and finding in-between

shapes that provide a smooth transformation from one key shape to the other.

Shape blending should not be confused with image morphing; shape blending

changes the actuai outline of the shape, whereas image morphing warps digital

images.

Digital image morphing is comprised of two operations which take place at the

same t h e : dissolving, in which one image gradually fades out as another

images fades in, and warping, which moves points of the initial image to

corresponding points of the fmal image. Despite the difference between shape

blending and image morphing, some of the same techniques of shape blending

are applicable to the warping operation of image morphing (for example,

Chapter I : Induct ion

determining a correspondence between points of the images and determining the

path the points should follow during the rnorph).

Shape blending has application in areas such as animation, and cornputer-aided

design and illustration.

Volino, N. Thaiman, Jianhua, and D. Thaiman 119961 have described a method

for simulating clothes on virtual actors [17] using physics-based modeling, in

which the cloth is modeied as planar garment panels. Physics-based modeling

can be costiy to compute for each frame; as a cost-cutting measure, physics-

based models could be computed only for some of the frames, and shape

blending of the panels could be used to compute the remainder of the frames.

Blending two images to simulate realistic motion is often a dificult task. In the

past, this animation has been done manually by artists, who must draw

thousands of frames in order to sirnulate a short sequence of motion. Clearly,

this is a very time consuming and costiy endeavour. Naturally, automation of the

animation process is desirable.

Shape blending can generally be divided into two primary sub-problerns: the

vertex correspondence problem, and the vertex path problem.

Vertex correspondence determines a matching of the vertices of one key shape

with the vertices of the other. so that if vertex P, in shape L is maiched with

Chapter 1: Introduction

vertex P, in shape 2, then vertex P, wili follow a path to vertex P, during the

blend (see Fig. 1.1).

Fig. 1.1 - Correspondence of vertices

Adding additional vertices to one or both of the key shapes is often desirable, if

not necessary, in order to provide a more appealing blend. The probIem of

where these additional vertices should be added is included in the vertex

correspondence problem.

Vertex correspondence is an important problem to consider, since an

inappropnate correspondence can Iead to highly inaccurate and distorted in-

between images. For example, consider the two shapes shown in Fig. 1.2a (and

L.3a), and blended in Figs. 1.2b and 1.3b. In Fig. 1.2b, an inadequate vertex

matching has distorted that which should have been a triviai blend (Fig. 1.3b).

Chapter 1: Introduction

The vertex path problem determines the path dong which a vertex of the fust key

shape will travel to arrive at its conesponding vertex in the second key shape.

For example, a linear path is a simple approach to this problem. but one that

oRen leads to unappealing results, as will be shown in Chapter 3 (see Figs. 3.1

and 3.2 for an example).

Fig. 1.2a - Two images to be blended

Fig. 1.2b - A distorted blend

-

Fig. 1.2 - Example of a blend with an inappropriate vertex correspondence

Chapter 1: Inrroducrion

Fig. I .3a - Two images to be blended

Fig. 1.3b - A good blend

Fig. 1.3 - Exarnple of a blend with a more pleasing vertex correspondence

The purpose of this thesis is to present a detaiied study of the vertex

correspondence method known as "Least Work Matching" [I l and the vertex

path method known as "intrinsic Interpolation" [2]. This includes

implementaiions of both, and cornparisons with some simpler methods. These

techniques will be applied- to closed polygons and Bézier curves [9].

Chapter 1: Introduction

This work considers only 2-dimensional geometric blending. No consideration

has been given to 3-d blending. or to blending of other properties of an object

(e-g. Iighting, colour, etc.).

Hughes [1992] presented a method for interpolating between two volumetric

rnodels [18]. This method takes the Fourier transforms of the volumetric

models, interpolates between the transformed models, and then transfom the

results back. An interpolation scheme is used in which the high frequencies of

the first mode1 are gradually removed, interpolation between the low frequencies

is performed, and then the high frequencies of the second mode1 are gradually

added back in.

Kent, Carlson, and Parent 119921 developed an algorithm to compute

transformations between two 3D objects, as opposed to 2D images of the 3D

objects [16]. The technique involves merging the topologies of the two objects

and mapping this rnerged topology back ont0 each of the original objects.

Throughout this thesis, counter-ciockwise angles are considered to be positive

angles, and angles are given in radians.

Chapter 1 : Introduction

1.3 Overview

This thesis begins by considering a solution, "Least Work Matching", to the

vertex correspondence problem (Chapter 2). Section 2.2 and its subsections

develop the algorithm and discuss the calculations required for the algorithm,

and section 2.3 discusses the results of applying the algorith to various

polygons. Chapter 3 presents "Intrinsic Interpolation", a method used to solve

the vertex psth problem. This method is developed in section 3.2. A variation on

the method, Edge Fueaking, is discussed in section 3.3, and section 3.4 gives a

summary and results. Chapter 4 deals with the blending of Bézier curves.

Section 4.2 discusses blending based on the control polygon of a curve, and

section 4.3 discusses the Least Work Curve Matching algorithm. Section 4.5

gives the results of applying these methods to some examples. Chapter 5 gives

conclusions and looks at future work. Appendix A.2 introduces the cornputer

program that was coded for the irnplementation portion of this thesis. Appendix

A.3 discusses some of the noteworthy aspects of the implementations, and

appendix A.4 gives a listing of the code.

Chapter 2: Least Work Matching

2.1 Introduction

Least Work Matching, presented in [l], is a method for smoothiy blending two

2-dimensional shapes. The generai idea behind this solution is to consider the

shapes to have edges made of bendable, stretchable wire, and then to bend and

stretch these wires until the first shape is transformed into the second, while

rninimizing a quantity analogous to work (energy) used in bending and

stretching the wires. if the energy expended in bending and stretching the wires

is minimized, then the arnount of bending and stretching is therefore minimized,

resulting in a blend with minimal motion of the wires. Typicaily, minimal

distortion of the wires is thought to be rnost visually pleasing.

The goal of the aigorithm is to determine the vertex correspondence which

results in the Ieast amount of work required to transform the first shape to the

second. 'Work" refers to a measure of the effort expended in bending,

stretching, and shortening the "wires" of the polygon

thernselves from shape 1 to shape 2. Sections 2.2.2

calculation of work for the wires of the polygons.

Least Work Matching

in order to transform

uid 2.2.3 discuss the

The algorithm finds the best vertex correspondence using only the existing

vertices; that is, no additional distinct vertices are added to either of the polygons

by the algorithm (although a user is certainly free to add vertices to the polygons

dunng pre-processing). However, the algonthm will, at times, insert vertices at

existing vertex locations, resulting in vertices with multiplicity greater than one.

2.2 Development

Since the algorithm must determine the amount of work required for all possible

vertex correspondences, we must first determine which vertex correspondences

are possible. Let the two polygons to be blended be designated PO and P I , with

vertices PO, eO, ..., P:, and P,',q',..., 4". respectively, where 4' = P:, and

4' = (that is, the polygons are closed). AU subscripts are defined modulo the

number of vertices on the polygon in question (for exarnple, P:+, = 8').

The aigorithm depends on the vertices of both shapes king numbered in the

sarne direction. In this thesis, the convention of numbering the vertices in a

clockwise direction is used.

Chapter 2: Least Work Matching

In order to determine the best possible correspondence of the vertices of PO and

P' , a graph, in the form of an (n + 1) x (m + 1) rectangular gnd, is used. The

vertices of PO and P' are represented by the colurnns and the rows of the graph,

respectively (Figs. 2.1 and 2.2b).

Fig. 2.1 - The grid used for a vertex conespondence graph

Chupter 2: k t Work Mutching

Fig. 2.2a

Fig. 2.2b

Fig. 2.2 - Example of a vertex correspondence graph

Chapter 2: Least Work Matching

A correspondence between vertices c0 and q' is denoted on the gnd by a point

at location [i, j] (see Fig. 2.2), where, contrary to the general mathematical

convention, i refers to the column and j refers to the row. Note that henceforth, a

point on the graph will be referred to by the complete phrase "gnph vertex" or

"grid vertex", as the tem "vertex" refers to a vertex of a polygon.

A vertex correspondence between two polygon; is considered possible if the

following two vertex correspondence conditions apply:

1. e0 may correspond to only if one of the following three

conditions holds (see Figs. 2.3 and 2.4):

a) col corresponds to q' ,

b) e0 corresponds to cl, or

C) c!I corresponds to l$, .

2. Each vertex of a polygon must correspond to at least one

vertex in the other polygon, and vice versa.

The first condition prevents the in-between polygons from breaking apart into

pieces. The second condition is necessary since a i l vertices must follow some

path from one image to the other (Le. vertices cannot just vanish or appear out of

now here).

Chnpter 2: Leasî Work Matching

Starting vertices are required for each polygon, and are labeled 4' and .

These starting vertices correspond to one another. My implementation simply

takes the first vertex in a file of poIygon venices (or the first vertex clicked if the

user is drawing her own polygon) as the starting vertex. Therefore, pre-

processing is necessary to ensure an appropriate first vertex matching.

Every possible correspondence that adheres to the niles set above will create a

continuous path through the graph, starting at the top left corner, [0.0], and

proceeding to the bottom right corner, [m,n], and this path will move only to the

right and down (or both), but never up or to the left.

Now, the problem of finding the least work vertex correspondence becomes the

problem of finding the least work path through the graph.

Chapter 2: Least Work Matching

i - l i i + l i - 1 i i + l

Fig. 2.3a Fig. 2.3b

Fig. 2 . 3 ~

Fig. 2.3 -The graph is not allowed to break into pieces

Chapter 2: Leart Work Matching

Fig. 2.4a - Corresponds with Fig. 2.3a

Fig. 2.4b - Corresponds with Fig. 2.3b

j - i j + l

Fig. 2 . 4 ~ - Corresponds with Fig. 2 . 3 ~

Fig. 2.4 - The only three possible vertex cocre~pondences when vertex i
corresponds to vertex j (vertex correspondence condition 1)

Chapter 2: Least Work Matching

2.2.1 Finding the Least Work Path

To determine the least work solution, we look at a piece, or fragment, of the

polygon PO consisting of vertices PO, qO, ..., e0 and the edges of the polygon PO

connecting hem, and at a corresponding fragment of the polygon P' . consisting

of vertices el, e', . . ., f l and the edges of the polygon P' connecting them. Cal1

these fragments Po (i) and P' (j) , respectively .

We define the work value of a graph vertex [i,jJ to be the arnount of work

required to transform fragment pO(i) to fragment P1(j). This work value is

denoted by W(i, j).

If one or both of fragments p0(i) and P' (j) were reduced in size by deleting the

corresondence [i, j], then the three following correspondences are possible:

[i - 1. j], [i, j - 11, and [i - 1. j - 11. In order to determine W(i, j), we must

know the work values of these three graph vertices that could precede graph

vertex [il j]. that is, W(i - 1, j), W(i, j - l), and W(i - 1, j - 1). W(i - 1, j)

represents the arnount of work required to transform fragment PO (i - 1) to

fragment ~ ' (j) . An example of a situation in which p0(i - 1) must be

transformed to ~ ' (j) is shown in Fig. 2.4a. Similarly, W(i, j - 1) represents the

amount of work required to transform fragment pO(i) to fragment P' (j - 1)

Chapter 2: Least Work Matching

(Fig. 2.4b). and W(i - 1, j - 1) represents the arnount of work required to

transform fragment pO(i - 1) to fragment P' (j - L) (Fig. 2.4~).

If these work values are known, W(i, j) is then equal to the work required to

transform one of these preceding fragments plus the additional work required to

transfomi the new part of the fragment. In terrns of the graph, W(i, j) is equal to

the work required to arrive at a preceding graph vertex plus the amount of work

required to travel from the preceding graph vertex to graph vertex [i, j]. That is,

one of the followicg three hmulae must hold (corresponding to the three

possibilities in Fig. 2.4):

W(i , j) = W(i - 1, j) + the work to transform the edge between
vertices F$ and e" to vertex c' , (2.1)

W k j) = W(i, j - 1) + the work to transfomi vertex 4' to the edge
between vertices q!, and ql, (2.2)

V j) = W(i - 1, j - 1) + the work to transform the edge between
vertices Ff , and 8' to the edge between vertices

and q' . (2.3)

Therefore, it is necessary that each of these three values of W(i, j) be calculated

for each pair of fragments PO (i) and P' (j) . Denote the work of equation 2.1 as

W,, (i, j), since the preceding graph vertex on the path is i - 1 j] (Le. is

Chapter 2: Least Work Matching

directly West of graph vertex [i, 1) . Similarly, the work of equation 2.2 is

denoted by W,,, (i, j) , and the work of equation 2.3 by W,,,, (i, j).

We make the requirement that if graph vertex [i, j] is preceded by graph vertex

[i - 1, j] , then graph vertex [i - 1, j] must be preceded either by [i - 2, j] or by

[i - 2, j - Il, and not by [i - 1, j - 11 (that is, we do not aliow right angles in the

graph path). Similarly, if graph vertex [i, j] is preceded by graph vertex

[i, j - 11, then [i, j - 11 must be preceded either by [i, j - 21 or by [i - 1, j - 21.

An example illustrating the reasoning behind this requirement is outlined as

follows: suppose we are given vertices a and b of PO, and the edge between

them, z, and vertices c and d of P', and the edge betvieen them. 2. If a

corresponds with c, and b corresponds with d, intuitively, less work w i l be

required to stretch or shorten edge àb into edge cd than would be required to

stretch vertex a into edge a and then collapse edge ab into vertex d.

2.2.2 Stretching Work

Two quantities which are-used to measure the result of a force acting on a wire to

stretch the wire are strain and stress.

Chapter 2: Least Work Matching

Suain, denoted by E , is defined as the elongation, AL, of the wire, divided by

the initial length, L, of the wire:

AL'
E = -.

L

Stress, denoted by a, is defined to be the deforming force, F, acting on the

wire, per unit of the wire's cross-sectional area, A:

When stress acts upon a wire, a strain is produced. Therefore, stress and strain

can be plotted against one another to give a stress-strain diagram for a given

material. Over the range of usefulness, stress and strain are proportional; over

this range, the stress-strain diagram is iinear with constant slope. This slope

depends solely on the properties of the material of the wire; it does not depend at

al1 on the length or cross-sectional area of the wire. This constant slope is known

as Young's modulus of elasticity, E:

Chapter 2: Least Work Matching

A piece of wire that is k i n g stretched will undergo either linear elastic stretching

or plastic stretching, depending on the amount of stretching chat is occumng in

the wire. The yield stress, c,,~, of a matenal is the elastic limit of the material.

O,,, is defined to be the arnount of stress beyond which the matenal suffers

permanent damage, and will not return to its original size or shape when the

stress is removed (i.e. we say the material undergoes plastic deformation). For

any amount of stress below the yield stress, the stretching wiil be a close

approximation to linearly elastic. The rnodulus of elasticity given in equation 2.6

applies to the elastic stretching of a wire.

The amount of work done by a force F to displace a particle frorn point a to point

b is defined to bz

If we have a plot of force F vs. displacement fiom L = a to L = b , work is

therefore the area under the curve.

W
Thus, the work per unit volume, - required to stretch a wire by an amount

AL'

W l AL is the area under the stress-strain curve (Le. - = -O&). Therefore, for
AL 2

elastic stretching,

Chapter 2: Least Work Matching

For a more comprehensive treatment of stress, strain and work, see [Il].

We will start by examining equation 2.7, and making several changes to render it

suitable for use here.

Since the "wire" polygon edges do not possess any real physical qualities, both

A and E can be defined by the user to suit the specific needs of a particular

blend. Replace A E by the constant ks,,,ch, whose value represents the

stretchiness of the wire. A lower value of k,,, indicates a stretchier wire (a wire

requinng less work to stretch), and a higher value indicates a wire that is more

difficult to stretch.

In our application, we would like to require stretching of a wire to include both

the lengthwise stretching and shrinkage of the wire. This condition is imposed to

ensure that a blend betweb initial polygon O to fmd polygon 1 is the same blend

(in reverse) as that between initial polygon 1 to fmal polygon O. Therefore, the

work involved in stretching a wire of length L, into a wire of length L, should

be the same as the work involved in shortening a wire of length L, into a wire of

Chuprer 2: Least Work Matching

length &. Equation 2.7 does not satisS this requirement. Furthemore. if a

single vertex is stretched out to a line, its origind length is O, which results in an

infinite arnount of stretching work. The solution to these problems is to use a

combination of the two lengths, as will be shown shortly.

In many situations, it is undesirable for an edge to coliapse to a point, or for a

point to be stretched out into an edge. Thus, a user-defined constant cstrc,,

O I cm,, I 1, is introduced to penalize this behaviour, if the user should so

choose. Lower values of c,,, indicate p a t e r penalty. Hence, for a polygon

with an edge of length L, the quantity 2L is replaced by the quantity

((1 -c,&)min(&*L,) + c s l d max(&, L, 1).

The exponent of 2 in equation 2.7 is changed to be a user-defined constant,

e,,. The exponent in the equation wiU Vary, depending on how much

stretching will occur in the blend. For example, if the wire does not stretch tw

much, the stretching will be linearly elastic, and an exponent of 2 will be

sufficient. However, if the wire stretches quite a bit and undergoes plastic

deformation, less work is required to stretch the wire, and an exponent of L

would represent the situation more accurately. An exponent of 1 in equation 2.7

does not exactly represent the plastic deformation situation, but, rather, is an

approximation. However, since the "wires" used for the polygons are not

physical wires, this approximation is sufficient. Furthennore, also due to the fact

that the wires are not real, the choice of e,, is very subjective.

Employing these changes,

segment of polygon O into a

Chopter 2: L e m Work Matching

the equation for the work required to stretch a

segment of polygon 1 is given by:

where, again,

b = length of the segment of polygon O,

L, = length of the segment of polygon 1,

k,,, is an elasticity constant of the "wire" polygon edge,

c , , , is a constant that penalizes an edge if it collapses to a point, and

est,, is a plastic deformation constant.

2.2.3 Bending Work

Bending work is the amount of work required to change an angte defmed by

vertices i,, , i,, and i, of polygon O to the angle defmed by vertices j,, j,, and j,

of polygon 1. The arnount of work required to change an angle is dependent on

the change in the size of the angle, A e , from one polygon to the other.

Many angles in a blend do not change monotonicaily from one shape to the

other. Real elastic bending is unconcemed w ith non-monotonicity, since any

work used to bend an angle an amount 0 wiil be released if the angle unbends.

Chapfer 2: kast

However, Our application is concemed with the calculation of

the purpose of minimiung the motion of the wires. Therefore,

Work Mutching

work solely for

we will assume

that any angle change, regardless of direction, is governed by the same work

calcutation. Hence, in the cases in which angles do not change monotonically,

knowing only the value of A 8 will give an inaccurate description of the amount

of work taking place. It is important here to also calculate the amount that the

angle deviates from monotonicity, denoted A$ *. - Hence, bending work can now

be defined by:

The calculations of A 0 and A 8 * are discusscd in sections 3.3.2.1 and 3.3 -2.2,

respectively .
Non-monotonicity in an angle change is ofteri not thought to be a pleasing or

natural feature. Therefore, such behaviour, in some circurnstances, should be

penalized. Penalty is imposed by way of a multiplicative constant, m,,,,, which

c m be chosen by the user. The choice of m,,, wiii depend on how undesirable

non-monotonicity is in a particular blend. Higher values of m,, indicate greater

difficulty in bending, while lower values indicate greater ease of bending. This

yields a bending work equation of

Chapter 2: Leml Work Matching

Another problem that rnay arise when bending the angles is that of collapsing

angles. In Fig. 2.5. the angles in the top right and bottom left corners become

smaller and smaller until they collapse, afier which the edges essentially "cross

ove? one another.

Fig. 2.5 - Collapsing angles

This son of behaviour creates the appearance of a polygon tuming inside out, or

collapsing to a line and then reconstnicting itself. Collapsing angles, or angles

which go to zero, are penalized with the use of the user-defined, additive

constant, p,,:

If an angle collapses. the quantity p,, is added to the work calculation. If an

angle does not collapse, nothing is added. A discussion on how to determine

which angles collapse is given in section 3.2.2.3.

Chapter 2: kas t Work Mafching

As in stretching work, the user may choose the difficulty with which the angles

can bend. This is done via a user-defined multiplicative constant k,,,. and a

user-de fined exponential constant. eh,.

Thus, the final work equation for calculating work due to bending is given by

WW = k M (A 8 + m h d A 0 *) c ~ , ife(r) does not go to zero

= k,, (A 9 + m,,A0*)'- + p,, , ifO(t) does go to zero (2-9)

where, again,

A 0 = change in angle from PO to P I ,

A6 * = deviation from monotonicity of the angle change.

m,, is a constant which penalizes non-monotonically changing angles,

p,, is a constant which penalizes angles that go to zero,

e,, is an exponential bending stiffness constant, and

k,, is a multiplicative bending stiffness constant.

2.2.3.1 Calculating the Change in Angle Size

Denote the angle at vertex i, as it changes over time t E [O, 11 b y 9, (r) . 8, (0)

gives the angle at vertex i of the initial polygon, and 0,(1) gives the angle at the

corresponding vertex in the final polygon.

Chapter 2: Least Work Matching

If a. b, and c are three consecutive vertices of a polygon, and if ai; is the edge

between vertices a and 6, and is the edge between vertices b and c. then we

use the notation L[a, b.c] to denote the acute angle between ab and bC.

If we let denote the vertex of Pl that corresponds with vertex i of PO, and if

we assume that the vertices follow a linear path from PO to P' , then the path that

vertex e0 follows during the blend is given by

Therefore. the angle which initially is defined by the three vertices e!, , eO, and

e:, is given by

for time t E [O, 11.

This angle can easily be translated to the origin, giving

Chapter 2: Leasf Work Mutching

Now the angles can be measured with respect to the positive x-mis; that is, as

For example, the angle L[a.O, b] of Fig. 2.6 c m be calculated as

It would be convenient to determine the point c such that

and then refer to the angle L[a,O, b] in terms of the point c. We will caii this

point c the angledefming point of L[a,O, b].

Cliapter 2: Least Work Matching

- - -

Fig. 2.6 - Measuring angles

The y-coordinate of this angle-defining point of the angle given by equation 2.1 1

is given by

Chapter 2: Least Work Matching

and the x-coordinate by

where the operator x is defined as

where ek = (x i , yi) and qk = (x j , y,). and the operator ' is the usual dot-

product.

Disregarding the equal denominators of these equations, and expanding gives

and

Chapter 2: Laut Work Matching

A quadratic Bézier curve is a curve guided by three control points, p,. pl, and

p,, and is given by

Development of this formula can be found in any elementary cornputer graphics

text (eg. [4], [SI, et ai.).

These two equations together have the form of a quadratic Bézier curve:

Q(t) = Q,(i - r)' + Q, 2t(l- t) + 4 , t2 ,

w here

and

Chapter 2: Least Work Matchîng

As tirne changes, the coordinates (x , y) change (since (x , y) = Q(t)) . Therefore,

as a line through the origin follows this curve, the angle that this line makes with

the x-axis changes exactly as the corresponding angle in the blend changes. That

is,

The possibilities for extreme values of the angle are @(O), O(1) and angles O(tJ

such that the line through the origin and Q(tJ is the tangent line to Q(t) at the

point f = f,. This property c m be expressed by the equation

w here

Q (t) = -2Q0 (1 - t) + Q, (1 - 2t) + 2Q2t

(that is, Q (t) is the first derivative of Q(t) with respect to t).

Chapter 2: Least Work Matching

Expanding equation 2.19a and reducing gives

which is a quadratic Bézier equation.

If the angle 8 changes monotonically, then the only extreme values of 8 occur at

r = O and t = 1. and there are no values of t E (0.1) such that equation 2.19b

holds.

If the angle does not change monotonically, then the extreme values need not

occur at t = O and t = 1, so there are either one or two vaiues of r E (O, 1) which

produce extreme values of 0 (Le. such that equation 2.19 holds). For an

example, see Fig. 2.7. As the line from the origin to the curve follows the curve,

it first swings counter-clockwise (which is a deviation from monotonicity)

before moving in a clockwise direction toward Q,.

Chapter 2: Least Work Matching

Fig. 2.7 - Deviation from monotonicity

The net change in angle, A 0 , will be either:

1 . L[Q,,O,Q,], if the angle changes less than n radians, or

2. 2x - L[Q,, O, Q,] , if the angle changes more than z radians (that is,

if the angle that the line from Q(t) to (0.0) makes with the x-axis

changes more than a radians as t changes from O to 1).

Chuprer 2: Least Work Matching

Assertion: The angle changes more than R radians if and only if the following

two conditions hold:

1. The triangle with vertices Q,, QI, and Q, contains the origin, and

2. Equation 2.19 has no solutions t E (0,l) (i.e. 8 changes mono-

tonicaUy)-

Proof of Assertion;

First. suppose A 0 > n. We will show that the triangle QoQIQ, must contain the

origin, and that 8 must change monotonically.

We fint show that the triangle QoQIQ, must contain the origin. If we extend the

line between Q, and (0,0), then Q, must lie on one side of the iine and Q, on

the other. This facilitates the rotation of more than ~c radians. (If both points lie

on the same side of the line between Q, and (0,O). then the entire curve Q(t)

would lie in the half plane defined by the üne between Q, and (0,O). This would

mean that any line from the origin that follows the curve would lie entirely in that

half plane, which would imply that the net change in angle was less than or equal

to x: radians. See Fig. 2.8.) Similarly, if we extend the üne between Q, and

(0.0), then Q, must lie on one side and Q, on the other. Therefore. QI must lie

in the region A (shown in Fig. 2.9). This implies that the triangle Q,Q,Q,

contains the point (0,O).

Chapter 2: Leart Work Matching

Secondly, we show that 0 must change monotonically. Since we have assumed

that A 8 > A, Q(z) must, at some point, pass thmugh region A (Fig. 2.9). We

will argue that Q(t) passing through region A implies that 0 must change

monotonically.

If Q(t) passes through region A and 8 does not change monotonically, then one

of the following two situations must occur:

1. The line fromQ(t) to (0.0) would start traveling from Q, in the direction

opposite of that which facilitates a rotation of more than IC radians (Le. in the

direction of the smallest angle between the line from Q, (0,O) and the line

from Q, to (40)) before changing directions and heading toward Q, in the

direction facilitating a rotation of more than a radians (in te- of Fig. 2.7,

the line fromQ(t) to (0,O) would have to travel clockwise from Q, and then

change direction to travel counter-clockwise toward 43, or

2. The line from Q(r) to (0,O) would have to travel in the direction facilitating a

rotation of more than A radians pasi Q,, before turning back and traveling in

the opposite direction to end up at Q,. (To correspond with Fig. 2.7, the line

fromQ(t) to (0,O) would have to travel counter-clockwise past Q, and then

clockwise back toward Q,.)

(Note that these are the only two possibilities for deviation from monotonicity: if

8 were to deviate, Say, part of the way through the angle change, the curve

Chapter 2: Least Work Matching

Q(t) would have inflection points, which is not possible with quadratic Bézier

curves.)

Neither situation 1 nor 2 is possible here. Since at Q,, Q(t) is tangent to the line

between Q, and Qo (by the defmition of a BCzier curve), and since Q, is in

region A, the line from Q(t) to @,O) starts out in the correct direction (that is, in

the direction which facilitaces a rotation of more than ~t radians). Similady, the

line from Q(t) to (0,O) must end its travels in the correct direction. Since we have

determined that deviation from the correct direction is not possible except at the

beginning or the end of the curve, 8 must change monotonically.

Now we will suppose that the triangle Q,Q,Q, contains the origin, and that 0

changes monotonically, and we will show that this implies that A 8 > K.

Since the triangle QoQlQ2 contains the origin, the line from Q, to (0,O) has QI

on one side and Q, on the other, and the line from Q, to (0,O) bas Qo on one

side and Q, on the other. Draw a line through the origin that is parallel to the line

through Q, and Q,, and define a region B to be the region on the opposite side

of this line as the points Q, and Qo (see Fig. 2.1 1). The start and end of the

curve wcur on the sarne side of this line. If the curve were to pass into region B

(Le. to the opposite side of this line), then the angle would have to change by

more than R radians (since the angle change in region B is IZ radians in itself).

We will show that the curve must pass into this region B.

Chapfer 2: Least Work Matching

It is easy to see that region A is entirely contained by region B. We will

therefore show that the curve must pass into region A, and thereby infer that the

curve must pass through region B.

Suppose that Q(t) does not cross into region A. Since Q(t) is a Bézier curve,

Q(t) (at t = O) is tangent to the line between Q, and Q,. This Iuie between Q,

and Q, is on the opposite side of the line between Q, and (0,O) as the line

between Q, and (0.0). Therefore the angle must fmt travel away from Q, More

traveling toward it, which means that 8 deviates h m monotonicity (see Fig.

2.10). However, our assumption States that 8 must change monotonicaily.

Therefore, Q(t) must cross into region A.

Since Q(t) crosses into region A, it also crosses into region B. As we showed

above, if Q(t) crosses into region B, the angle changes more than x radians.

This concludes the justification of the assertion.

Chupter 2: Least Work Matching

Fig. 2.8 - A 6 is less than Ir radians

Chapter 2: Least Work Matching

Fig. 2.9 - Q, must lie in region A

Chaprer 2: Least Work Matching

Fig. 2.10 - Q(t) must start out dong line segment between Q, and Qo

Fig. 2.1 1 - Q(t) must pass through region B

Chapter 2: Least Work Matching

2.2.3.2 Deviation €rom Monotonicity

If an angle does not change monotonically (Le. if we find values of t E [O, i]

such that equation 2.19 holds). then we must determine how far the angle

deviates from monotonicity .

Deviation c m occur in either direction; either the line from (0.0) to Q(t) travels

frorn Q(0) (= QJ away from Q(1) (= Q,) before changing direction and heading

back toward Q(L), or the line travels past the angle L[(l ,O) ,O,Q(l)] before

turning and heading back toward Q, (see Figs. 2.7 and 2.12).

To calculate this deviation, solve equation 2.19 for t, and 2, . Then the deviation

given by t , , and denoted by a, is

and the deviation given by t2, and denoted by P. is

P = 4Q(t2),O9Q,l-

Chapter 2: ieust Work Matching

-- - - - - -

Fig. 2-12 - Values of t , and t,

2.2.3.3 Collapsing Angles

We Say an angle coliapses if it goes to zero at some point during the transition.

That is, 0(t) = O for some t E (0.1). Clearly, this happens only when the curve

Q(t) crosses the positive- x - a i s . (Recall that in section 2.2.3.1 we manipulated

the angles so that they are measured with respect to the positive x-axis.)

Chapter 2: Least Work Matching

2-2.3.4 Multiple Vertices

Special problems arise when a polygon contains vertices of multiplicity greater

than one (Le. two or more distinct vertices of one polygon ail map to a single

vertex of the other polygon). Specifically, how does one calculate an angle

defined by three points, when two, or perhaps d l three, of the points are exactly

the sarne? The solution to this problem is to pretend that the vertex of multiplicity

n is actually n distinct vertices, spaced infinitely close together. These vertices Lie

dong an infinitely short edge, inserted between the two edges incident to the

vertex in question, in such a way that the angles between this new edge and each

of the incident edges are equal to one another (each equal, in fact, to one half the

angle between the two original edges, plus n/ 2 radians). Of course, the angles

between any interior edges of this new infinitely short edge will be ~t radians.

See Fig. 2.13.

Chapter 2: Lean Work Matching

Multiplicity 4

Fig. 2.13 - Magnified view of a vertex of multiplicity 4

2.2.4 The Least Work Path Revisited

We denote the amount of work required to stretch (or shorten) an edge between

vertices e0 and ?f of polygon PO into an edge be&een vertices <' and Pd of

polygon P' (where vertex 4' corresponds to vertex c, and vertex 4'

corresponds to vertex P,') by

Chapter 2: Least Work Matching

Similady, the arnount of work required to change an angk defined by vertices

e0 :O, Ph, and e0 of polygon PO into an angle defined by vertices P:, c, and

P: of polygon P I (where corresponds to Pd, corresponds to c, and

corresonds to P:) is denoted by

Now that we have described how to calculate bending and stretciiing work

(sections 2.2.3 and 2-24), the pseudo-equations 2.1, 2.2 and 2.3 can be written

more concisely:

and

Chapter 2: Least Work Matching

6 = . (i - l , j - l) + W (i - 2 , j - 2 . i - , j -] , [, j]) , (2.22b)

and

W7= W (i-1 , j -1)+ Wkd([i-2,j-l],[i41,j-l],[i,j]).

To better understand these equations. let us look a t equation 2.20 (dong with the

corresponding equations 2.20a and 2.20b).

The first term of equation 2.20 is the lesser of the following:

1. The work at the graph vertex [i - 1, j]) , arrived at from the

vertex directly West of [i - 1, j] (that is, graph vertex

[i - 2, j]) , plus the amount of work to bend the angle formed

by these two edges of polygon O into the angle formed by the

corresponding edges of polygon 1.

2. The work at the graph vertex West of [i - 1, j], arrived at fhm

the vertex direcùy northwest o f [i - 1, j J (i.e. graph vertex

[i - 2, j - l]), plus the amount of work to bend the angle

formed by these two edges of polygon O into the angle

formed by the corresponding edges of polygon 1.

Chaprer 2: Least Work Matching

The second terni, K,,([i - 1, j] , [i , j 1) . of equation 2.20 is the arnount of work

necessary to stretch the edge of polygon O defined by vertices eo, and e0 into

the edge of polygon L defined by vertices 5' and 4' (i.e. the single vertex P.') .

That is, it is the work involved in collapsing the edge of polygon O in question

into a particular vertex of polygon 1.

Figs. 2.14a and 2.14b give the graph theory representation of equation 2.20,

and Figs. 2.1 Sa and 2.1 Sb give a corresponding polygon representation.

Fig. 2.14a Fig. 2.14b

-- -- -

Fig. 2.14 - Work from the West vertex

Chapter 2: Least Work Matching

Fig. 2.15a

Fig. 2.15b

Fig. 2.15 - Polygon vertex correspondence for graph of Fig. 2.14

Once the work values have been calculated, the least work path through the

graph m u t be found. This is done by backtracking. as follows:

Chapter 2: Least Work Matching

1. %art with vertex (i, j), where i = m and j = n .

2. Chwse the smallest of the ihree work values for vertex (i, j)

from equations (2.2 1), (2.22) and (2.23).

3. If the smallest is W , , then let the next vertex in the

backtrack list be the vertex West of (i, j), i.e. (i - 1, j).

Similady, if the smallest is W,,,,, the next vertex in the list

will be (i - 1, j - 1). and if the smallest is W A , then the next

vertex will be (i, j - 1).

4. Let this new vertex on the backtrack list be the new (i, j), and

repeat from step 2 until i = j = 0 .

In fact. our method does not guarantee the overall least work path, since

backtracking to the previous vertex of minimum work is oniy a local

rninimization. However, our approximation to the Ieast work path is quite

satisfactory. as it produces results which are quite good. (See [7] for further

details of the backtracking algorithm.)

Chapter 2: kast Work Matching

The equations of the Least Work Matching algorithm requires quite a bit of user

input. A user must decide on the fust vertex correspondence, set the seven

constants associated with bending and stretching work, and pre-process the

images to ensure an appropriate fmt vertex matching and a reasonable

distribution of vertices around the polygons.

Consider the "m" and "n" polygons shown in Fig. 2.16. The vertices occur only

at the obvious places (there are no "hidden" vertices dong the intenor of a

straight edge). The "mTT was blended into the "n" using the following parameters:

kkd = 2, mknd = 100, eh, = 1. ph, = 10000, k,,, =0.1, c,,, =0.1. and

es,, = 2, and starting vertices and are as shown in Fig . 2.16.

First, consider the blend if we use a match-by-order approach (in which the

vertices are matched up based on the order in which they occur, with left-over

vertices of one polygon simply mapping to the last vertex of the polygon with

fewer vertices). The resulting blend is given in Fig. 2.17.

The result of using Least Work Matching on the polygons is shown in Fig.

2.18.

Chapter 2: Least Work Matching

Fig. 2.16 - "m" and "n" polygons

Fig. 2.17 - Match-by-order without pre-processing

Chapter 2: Least Work Matching

Fig. 2.18 - Least Work Matching without pre-processing

Clearly, Least Work Matching gives an even less appealing blend (with global

self-intersection) than the blend in Fig. 2.17.

However, in the next blends, some pre-processing has been applied to the "n",

in the form of adding two additional vertices, as shown in Fig. 2.19.

Fig. 2.19 - Additional vertices added to "n"

Chapter 2: Least Work Matching

The blend which used match-by-order is given in Fig. 2.20, and the blend which

used Least Work Matching is given in Fig. 2.21. (Both use the same parameters

as the blends in Figs. 2.17 and 2.18). Least Work Matching yields a very

elegant blend, unlike that of Fig. 2.20. Clearly, pre-processing c m be a very

important step in shape blending.

- - -

Fig. 2.20 - Match-by-order with pre-processing

Fig. 2.21 - Least Work Matching with pre-processing

Chopter 2: Least Work Matching

Ideally, one should be able to find a choice of parameters for which Least Work

Matching would provide the sort of blend given in Fig. 2.20, but without pre-

processing. I was unable to find such a parameter set. However, Fig. 2.23 gives

a good blend of an " E to an "F' (shown in Fig. 2.22), without any vertices

added dong the straight edges. The general idea of the "E" to "F' blend (the

extra "lirnb" shrinking away) is the sarne as that of the "m" to "n" biend. The

parameters used here are k,, = 0.5, m,, = 1, e,, = 1, p,, = 10000,

k,,, = 0.1, cm,, = 0.1, and e,,, = 2, with starting vertices and P,' as

shown in Fig. 2.22.

Fig. 2.22 - "E" and "F' polygons

Chapter 2: k t Work Matching

Fig. 2.23 - Least Work Matching without pre-processing

Clearly, choice of parameters is very important, and user intervention is

necessary. A variety of good, but different, blends (as well as a variety of bad

blends) can be achieved, depending on the choice of parameters. The choice of

the first vertex correspondence is also extremely important; an example which

demonstrates this is given in Chapter 4. Often o d y a human k i n g can decide

how much relative bending or stretching is desired for a particular blend, or

which vertices should be chosen as starting points on the polygons.

Chapter 3: Intrinsic Interpolation

3.1 Introduction

An important aspect of 2D shape interpolation concerns the path dong which

each vertex must travel to arrive at its final destination. This is lcnown as the

vertex path problem.

One approach is to have each vertex follow a linear path. Although this method

is simple to understand and to irnplement, it often leads to unappealing results.

More often than not, in the physical world around us, points in motion do not

follow a linear path. Linear interpolation causes ail points in the fmt key image

to follow straight line paths to their corresponding points in the second key

image, creating unredistic-looking approximations of motion. A classic example

of the failure of the linear path is the withering limb. shown in Fig. 3.1 as a

swinging pendulum. (A super-imposed version is given in Fig. 3.2. Here, it is

much clearer that the pendulum is foilowing a linear path). A pendulum

Chapter 3: Intrïnsic Interpolation

outstretched horizontally in one key frame and vertically in the other key frame

will not retain its length in the in-between frames if linear interpolation is used.

Clearly, more realistic vertex path rnethods must be found.

This "withenng limb" problem is but one of many that cm arise when

perfomiing a blend between two shapes. Some otbers include self-intersection,

the loss of similar features in the in-between stages, and non-monotonically

changing angles. These problems can produce in-between images which are

visually displeasing and physically inaccurate.

W Initiai Image
Final image

In-betvcen Images

Fig. 3.1 - Withering limb

Chapter 3: intrimic Interpolation

- -

Fig. 3.2 - Super-imposed withering limb

An dternafive solution to the vertex path problem, Intrinsic Interpolation, is

given in [2] . In order to solve the vertex path problem, an appropriate vertex

correspondence must first be found. The authors of 121 used the Least Work

Matching solution to the vertex correspondence problem (given in [I l , and

discussed in Chapter 2 of this thesis).

The general idea behind Intrinsic Interpolation is as follows: each of the two key

polygons is described intrinsically (that is, in ternis of the edge lengths and the

angIes formed by each pair of adjacent edges), and interpolation between the

values of these intrinsic features is perfomed to calculate the in-between

polygons.

Chapter 3: Intrinsic Interpolation

3.2 Development

Let the two key polygons be P O , and P' , each with m + l vertices (O through

m). This assumption is valid, since, after Least Work Matching is performed,

the two polygons can be considered to have the same nurnber of vertices. (For

example, if two different vertices of Pu map to the same vertex of P I , then that

vertex of P' is considered to be two different but coincident vertices.) Let the

lengt hs of the edges of PO and P' be denoted by and respectively. where

= le:, - ekI, for i = O ,..., m.

Furthemore, we will define 0;. (k = O, 1) to be the angle formed by extending

edge 41,4' and calculating the directional angle between edge t'y:, and this

extension, as shown in Figs. 3.3a and 3.3b.

If the angle v:, measured counter-clockwise from edge e', ek to edge c'et, is
less than rr radians, then define 0; as

Chapter 3: I~~trinsic Interpolation

and otherwise, define 0; as

k etk = -(x - y,) .

As will soon be evident. the etk values are necessary to calculate the reiative

positions of the vertices of the in-between polygons.

Note that if the vertices coincide (i.e. have multiplicity greater than 1) they are

handled in the same manner as described in Chapter 2 (see section 2.2.3.4).

Fig. 3.3a Fig. 3.3b

Fig. 3.3 - Definition of ei

Chapter 3: Intrinsic Interpolation

Since we are using intrinsic definitions for the polygons, we do not have a

description of the exact physical location of theu vertices and edges. Hence,

when we interpolate between the shapes, we must have an anchor point in each

key shape whose interpolated position can speciQ the shape's translation

throughout the blend, and a baseline, defined in relation to the anchor point, that

specifies the shape's rotation during the blend. The anchor point is taken ro be

the first vertex of each polygon. These initial vertices must be chosen carefuliy;

an inappropnate fmt-vertex correspondence can cause the polygon to follow a

curious path through the blend. User-intervention may be required to ensure

this.

The baseline is defined as a horizontal line through the anchor point (x,,y,) (see

-
Fig. 3.4). The angle that edge eek makes with the angle line is denoted a,'.

Each edge eket, makes some angle, a:, with the honzontal (the baseline).

These a: values can be computed using the previous angle a,?, in conjunction

with 0: (see Fig. 3.5):

k a: = a,, - 6:.

Chapter 3: lntrinsic Interpolation

Fig. 3.4 - Anchor point (x,, y,) and anchor angle a,

We need to know these values, a:. in order to compute the position of each

vertex. From the fust vertex, ek. of the ith edge, move a distance Li' at angle

a: to the second vertex, e t , , of the ith edge, which is the f ~ s t vertex of the next

edge.

Therefore, the x- and y-direction of the coordinates (x,,, ,y,+,) of vertex e t , ,

relative to the coordinates (x i , y,) of the previous vertex 4'. can be calcuiated as

sin a,-, and cos a,_, , respectively.

Chapter 3: ïntrinsic Interpolation

Fig. 3.5 - Definition of 4

The amount to proceed in each of the x- and y- directions is simpiy found by

multiplying sin ai-, and cosa,, by the length of the edge 4-, between 4-, and

ri.

To determine the vertices. P,,e, ..., Pm of an intemediate polygon. the lengths of

the edges and the angles fomed by each pair of adjacent edges will be

in terplateci:

for i = O, ..., m.

Chupter 3: Intnnsic Interpolation

(3.4)

To obtain the vertex P, of the interpolated polygons, linear interpolation between

ff and &' is used.

To calculate the position of coordinates (x,,y,) of vertex of an intermediate

polygon, the coordinates (xi- , , y,-,) o f the previous vertex e-:._, , the interpolated

edge length L,_, of the edge between %,e, and the interpolated angle O,-,

between this edge and the previous edge (equation 3.2) must al1 be known.

and

Chapter 3: lntrinsic Interpolation

The Intrinsic Interpolation method offers a

interpolation, as is shown in section 3.4.

signi fican t improvement over linear

In fact, the images would be quite

satisfactory if not for the fact that the in-between polygons do not typicdly close

(for an example, see Figs. 3.8 and 3.9 of section 3.4). Therefore, the problem

now becomes one of forcing the intermediate images to close.

Edge Tweaking

One solution to this problem is to slightly change the lengths of the edges of the

intermediate polygons. In order to do this, we change the edge length

interpolation equation (equation 3.4) to:

where Si is some sxnail amount added to edge i. Now the trouble lies in

determining Si.

Since it is generally desirable to have the lengths of a given edge change

gradually from the first key polygon to the second, the values of should be

fairly smail relative to the difference in edge length from PO to P' (i.e. small

relative to Ic - CI). That is, we want to fit lengths Si into the polygon such that

Chapter 3: Intrinsic Interpolation

the Si are as srnail as possible. but yet proportional to the length of edge i, and

such that the polygon will close. Thus, using least squares, we want to find such

values of such that

In the event that and are the same length. the function f(So, S,, .. ., Sm)

would contain some elements in which division by zero would occur. Therefore,

define

LmIl = 0.000 1 x max L: - 4 .
(i.l..., 1)

and then, to avoid division by zero,

Hence,

Chapter 3: Intrinsic Interpolation

To ensure that the values of Si will, in fact, cause the 1st vertex of the polygon

to be equai to the fmt vertex of the polygon, the following constraints are

imposed:

and

TO find the values of Si that satisQ f, rp,, and ~ p 2 sirnultaneously, Lagrange

multipliers are used.

Let

where A, and 4 are the multipliers, and Q is a function of 4. 4 , Som S , , . . . ,
and Sm.

a
Differentiating with respect to each Si and setting each - equal to O yields as;

m + 1 equations of the form

fori = O ,..., m, subject to cp, = O and cp, = 0.

a
Multiplying each - by (ci)*, and rearranging gives equations of the form ai

2 A, (~ , 0 ') ~ COS^ + +(ci) sin a,. = -2s;.

We can create two new sets of equations by multiplying the set of equations 3.16

by sin ai and by multiplying the set of equations 3.16 by cos ai. Doing so, and

then surnming each set of equations, gives

and

2 m m

A, 2 (cl) cos ai sin ai + 4 C(G')~ sin2 ai = - 2 x si sin a,. .

Chapter 3: Intrinîic Inrerpolation

Reanünging the constraint equations cp, = O and cp, = O gives

m m C[(I - t) c +tg]cosa,. = -ES,. cosa, . ,
i = O i=O

and

m m

C [(I - t)i$ + tc]sin ai = -C 4. sin ai .
i=O ;=O

Replacing the right-hand side of equations 3.17a and 3.17b with the left-hand

side of equations 3.18a and 3.18b, respectively, yields two equations in two

unknows, Â, and 4:

and

m 2 m m (3.19b)
A., x(c') cosa, sina, + Q(j$")' sinZ a,. = 2C[(1- t)L<O + tgls ina, .

i=O i=O i-O

Chapter 3: Intrinsic Interpolation

We c m solve for A, and A, using Cramer's Rule:

m

î C [(l - t) ~ + t ~ # o s a ~ C (c l) ' s i n q c o s a ,
i=O i=O

2g[(1- + t ~ # i n a , C(c1y sin2 a,
1=0 i-O

5 (c1)2 cos2 ai C(cl j~ sin a, cosai
i-O i=O

C (G')~ sin ai cos ai 5 sin2 a,.
i=O i-O

and

I ~ (L $ sin4 cosai z ~ [(L - t) ~ + t~#incq

4 = ;=O
i= O 1 T(C')I cosi ai Z(c1)l sinai c a s a , . (3.20b)

i -O i=O

12 (L:,.')' sin a,. cos CL. 2 (e1)i sin2 ai
i=O i-O

given that

Chapter 3: Intrinsic Interpolation

Once A, and 4 are found, the equations 3.16 can be used to solve for Si:

for i = O, ..., m.

Now that the values of Si are known, equation 3.8 can be used to cdculate the

edge-lengths, Li, and, as before, equations 3.7a and 3.7b c m be used to

calculate the vertices of the in-between polygons.

Intrinsic Interpolation was applied to the pendulum of Fig. 3. I , with results

given in Fig. 3.6. Fig. 3.7 shows an image with the five in-between frarnes

super-imposed on one another. The pendulum follows a circular path, as we

would expect of a real pendulum.

Edge tweakhg works well. Fig. 3.9 gives an example of the polygons of Fig.

3.8, blended using intrinsic interpolation, in which the in-between polygons do

not close. When edge tweaking is applied, the in-between polygons close nicely

(Fig. 3.10).

Chapter 3: Intrinsic Inte'polation

.

Fig. 3.6 - Intrinsic Interpolation applied to a pendulum

Fig. 3.7 - Super-imposed pendulum

Chapter 3: Intrinsic Interpolation

Fig. 3.8 - Polygons to be blended with Intrinsic Interpolation

-

Fig. 3.9 - Intrinsic Interpolation without Edge Tweaking

Chapter 3: Intrinsc Interpolation

Fig. 3. IO - Intrinsic Interpolation with Edge Tweaking

The following two examples use the Least Work Matching and Intrinsic

Interpolation with Edge Tweaking algorithms. Fig. 3.1 1 is a blend of the "m"

and "n" polygons of Fig. 2.12 (without pre-processing), and Fig. 3.12 blends

the "m" polygon of Fig. 2.12 and the "n" polygon of Fig. 2.15 (the "n" is pre-

processed). The same parameters were used here as were used in the "m" to "n"

blends of Chapter 2. Fig. 3.11 is a Iittie odd, but Fig. 3.12 shrinks the extra

"limb" even more elegantly than the blend of Fig. 2.17.

Chapter 3: IntrUtsic Interpo fution

Fig. 3.1 1 - Intrinsic Interpolation with Edge Tweaking, no pre-processing

Fig. 3.12 - Intrinsic Interpolation with Edge Tweaking, with pre-processing

As an additional example, Intrinsic Interpolation with Edge Tweaking is applied

to the "E" to "F' blend of Chapter 2 (Fig. 2.18), with good results (see Fig.

3.13). The limb disappears more quickly than the blend given in Fig. 2.19.

Chapter 3: Intrinsic Inrerpolarion

Fig. 3.13 - " E to "F' using Intrinsic Interpolation with Edge Tweaking

Although in the examples here edge-tweaking produced good blends, the

possibility may exist that the edge tweaking algorithm may produce some values

Is;[that are tw large to appear appealing in the blend.

Chapter 4: Curves

4.1 Introduction

So far, we have iooked only at the blending of polygons. We will now turn our

attention to adapting the previously discussed methods for use in the blending of

curves.

Like the polygons described in Chapters 2 and 3, we will think of the curves as

being made out of pieces of wire that can be bent or stretched, and we will

atternpt to bend and siretch the wires of the fmt curve into the shape of the

second curve.

The curves used in the blending aigorithm will be constructed from cubic Bdzier

curves. Cubic Bézier curves use polynomial curve segments which are guided

by four control points q,, q,, q,, and Q, and are defmed by the equation

The function associated with each control point is known as a blending function.

The use of the word "blending" in the term "blending function" is unrelated to

the blending of Zdimensional shapes.

Bézier curves interpolate (pass through) the first and last control points (in the

cubic case, q, at t = 0, and q, at t = 1), and have the property that the Line

through q, and q, is the tangent line to the curve at the point q,. and the lhe

through q, and is tangent to the curve at the point a.

The curves to be blended are defined as a Iist of the control points of the Bézier

curves, whereby the last control point of one Bézier curve is the fmt control

point of the next Bézier curve. The whole curve will therefore pass through the

fint control point, and every third control point thereafter.

In the discussion that follows, the phrase " c w e segment" wili refer to the

portion of the Bézier curve defined by four control points, and the terni "curve"

will refer to the continuous curve formed by joining these segments. Several

restrictions are placed on the curves for Our purposes.

First of dl, we restrict the curves to have no points of inflection in each segment.

That is, the points of inflection must occur at the join points of the Bézier curves.

Chnpter 4: Curves

This restriction is introduced to aid in the calculation of bending work (section

4.2.2). Should a Bézier curve segment contain an infïection point, it can easily

be found by soiving

for t. The curve segment in question can then be subdivided into two Bézier

curve segments at the inflection point.

Furthemore, although we allow repeated control points, they must be adjacent

to one another in the ordered list of control points. That is, the curve cannot

cross back through itself, nor c m the fust and last control point of a segment be

the same, unless the two interior control points are also the sarne as these fmt

and last control points (see Fig. 4.1). Thus, we must also assume that there are

at least two Bézier curve segments in our joined-together, closed curve.

Lastly, assume that the curvature of each segment is small enough and the length

of the segment short enough that the angle formed by the intersection of the

outward pointing normal lines at the endpoints of each segment are less than z

radians (see Fig. 4.2).

For a more thorough treatrnent of Bézier curve, see [4], [5] , et al.

Chapter 4: Curves

4.1 a - Allowed curves

Po' P3

4.1 b - Disallowed curves

Fig. 4.1 - Bdzier curves that are and are not allowed

Chapter 4: Cumes

Disallowed

- - -

Fig. 4.2 - Curve segments that are and are not aliowed

4.2 Curve Blending via the Control Polygon

The simplest way to compute a blend between two curves is to look at the

control polygon of the curve. (The control polygon is simply the polygon whose

vertices are the control points of the stning-together Bézier curves.) The Least

Work Matching algorithm discussed in Chapter 2 can be applied to the control

polygon to find a contro! point correspondence, and then either linear

interpolation or Intrinsic Interpolation may be applied. in-between BéWer curves

are drawn based on these in-between control polygons.

A simple example in which control polygon blending works well is given below,

by the two leaves to be blended (given in Fig. 4.3, and blended in Fig. 4.4). In

Chapter 4: Cumes

fact, this blend by the simple controi polygon method produces an identical

blend to one produced by the more compiicated method of Least Work Curve

Matching, discussed in section 4.3.

The parameters used for the controi polygon method are kW = 0.1,

rn,,=lûû, e k d = l , p,,=10000, k,,,,=2, c,,,=0.1, and e,,,,=2.

The parameters used for the Least Work Curve Matching method of section 4.3

are Ch,,, = 1, Ch, = 0.1, E,, = 1, Kg,,, = 2, C , , , =OJ, and = 2.

The starting vertices are as shown in the figure.

Fig. 4.3 - Two leaves to be blended

Chapter 4: Cumes

Fig. 4.4 - Blend using the control polygon

One obvious problem with the control polygon methoci is that entire Bézier curve

segments of shape O may not be matched to entire Bézier curve segments of

shape 1 (see Fig. 4.5). Tnserting the additional control points required by this

scenario wiii cause changes to the original curves before any blending even

begins (see Fig. 4.6). The dgonthm is oblivious to the changes it is causing in

the curve, since it is dealing solely with the control pdygon.

To deal with this problem, one could draw a pseudo-control polygon based only

on the control points through which the curve passes (Le. the first point of the

stmng-together curve, and every third point thereafter), and apply the Least

Work Matching algorithm to this pared-down control polygon. However, the

paring-down would provide only a very rough linear approximation to the curve,

and would. in general, significandy reduce the accuracy of the work

calculations.

Chapter 4: Curves

Fig. 4.6a - Original Bézier curve Fig. 4.6b - Bézier Cume when p,
has multiplicity 2

Fig. 4.6 - Inserted control points can cause unwanted changes in the curve

Chapter 4: Curves

A better idea would be to use only the control p i n t s through which the curve

passes in the matching, but instead of approximating the curve segment by

straight lines to calculate work, use the interior control points to determine the

actual Bézier curve between the interpolated control points, and use these curves

in the work caIcuIations. This method is discussed in section 4.3.

4.3 Least Work Curve Matching

As with polygon blending, we must find a correspondence between the two key

curves, and then detemine the path dong which the corresponding points of the

curve will follow. The correspondence between the two key curves will be based

on the interpo!ated (end) control points of each Bézier curve segment. That is,

instead of matching vertices of the key polygons (as in Chapter 2), we wili

match the interpolated control points. The correspondence algorithm discussed

here is similar in nature to the h a s t Work Matching algorithm for vertex

correspondence of [l], discussed in Chapter 2 of this thesis.

Some quantity of work is required to transform one curve into another. The

amount of work involved in blending a particular pair of curves will Vary

depending on the control point correspondence. Since the blend requinng the

Ieast amount of work is typically the most visuaily pleasing, we wish to find the

control point correspondence that involves the l e s t amount of work.

Chapter 4: Curves

Before we can proceed with the control point correspondence, we first must

describe the way in which work will be calculated.

4.3.1 Work

For two-dimensiond shape blending, we concern ourselves with three sorts of

work: stretching work, bending work, and kinking work.

4.3.1.1 Stretching Work

As in Chapter 2 (equation 2.8), the work required to stretch a wire of length L,

into a wire of length L, is

where the length of the parametric Bézier curve segment is given by:

Chapter 4: Curves

(For a discussion of the equation and a description of each of the constants

k,,,,, e,,,,,, and cm,, , sec section 2.2.2.)

4.3.1.2 Bending Work

Bending work is the work required to elastic ally bend a curve segm .ent. Bending

work for a segment of the curve is based on the change of interior angles. ïy,.,

formed by the intersection of the normal lines to the endpoints of the curve (see

Fig. 4.7).

The computation of this quantity is straightforward since the control points of

Bézier curves, by definition, create tangent lines to the endpoints. Knowing

these tangent lines allows for easy computation of the normal Iines. Since we

assume that the degree of curvature of each curve segment is small, calculating

y requires finding the point of intersection, pi,, of these IWO normal lines, and

then computing the angle L[p , , pi,, , p, 1.

Bending moment is a measure of the tesistance to bending of a wire. The

bending moment applied to each end of the wire, MW, is defined by

Chapter 4: Cumes

where E is the modulus of elasticity of a material, I is the moment of inertia, and

p is the radius of curvature.

- --- -

Fig. 4.7 - Caiculating angles for bending work

Then the work required to bend a straight wire of length L hto a circular arc of

1
curvature K, where K = -, is

P

Chapter 4: Curves

where iy is as given in Fig. 4.7.

To render this equation suitable for use, make the following substitutions:

1y2 = (2 EI) -
~ P Y '

Since Our wires have no physical properties, the user c m choose E and I to suit

her needs. Therefore, let CM = SEI be a user-defined constant.

Since we may be bending a curved wire into a curved wire (instead of bending a

straight wire into a curved wire), we replace yl in equation 4.3 by the difference

between p, and y, (where Y , and ry, are the angles from key curves 1 and 2,

respectively).

For ease of computation (and since we do not, for Our purposes, require exact

work value computations, but rather approximations of work values), we chwse

to approximate the curve by a circular arç when computing bending work. The

length, L, of a circular arc is simply the product of the radius of curvature and

the angle y . Therefore, the quantity 2pv is simpiy 2L. Since the initial and

final lengths of the wire may not be equal, and since we wish Our work equation

Chopter 4: Curves

to be represeniative of the arc lengths from both key curves, replace this quantity

by ?,+LI-

Thus, the work equation for bending is

4.3.1.3 Kinking Work

If the moment of the wire exceeds the elastic limit, plastic bending (kinking)

occurs in the wire.

We consider this sort of bending to occur only at the join points of the Bézier

curve segments. If we define O to be the angle between the two normal lines to a

join point (see Fig. 4.8), we can view kinking as similar in nature to the bending

at polygon vertices discussed in Chapter 2 of this thesis.

We therefore let kinking work be defined in a manner sixniiar to the work of

equation 2.9:

w, = K, le, - e, 1"- ,

Chapter 4: Cumes

where 8, and 0, are the angles of key curves 1 and 2, respectively, K,,, is a

user-defined kinking stiffness parameter, and E,,, , as p su al, is an elasticity

constant.

Fig. 4.8 - Calculating angles for kinking work

Chapter 4: Cumes

4.3.2 Changes to the Least Work Matching Algorithm

Here, the changes to the Least Work Matching algorithm of Chapter 2 are

o u tlined.

As in Chapter 2, a rectangular grid is used to determine the Least Work control

point correspondence. Here, instead of assigning every control point a column

or row in the grid, we allow only the end control points of each Bézier curve to

be represented in the gnd. This is done to ensure that whole curve segments rnap

to whole curve segments.

We denote the amount of work required to stretch (or shorten) the curve segment

between end control points c0 and 8' (where. of course, two additional control

points exist in between e0 and lf) of the whole curve PO into a curve segment

between control points fF and P,' of the whole curve P' (where control point

corresponds to control point c, and control point !f corresponds to control

point P:) by

Similarly, the amount of work required for kinking at a join point of Bézier

curve segments, where 4'. ff , and 4'' are the end control points of the two

Chapter 4: Curves

adjoining segments of the whole curve PO, and P,', c, and P' are the end

control points of the two adjoining segments of the whole curve P' (where e0
corresponds to f $, ff corresponds to c, and corresonds to P;). is

denoted by

The amount of work required for bending a curve segment between end control

points e0 and ff of the whole curve PO into a curve segment between control

points and of the whole curve P1 (where control point e0 corresponds to

control point el:', and control point I f corresponds to control point f$) by

Like the Least Work Matching of Chapter 2, the algorithm here may insert

additional control points. These control points may only be inserted at existing

control points represented in the graph (that is. only at the cume segment's

endpoints). In fact, when one control point is inserted, we must actually insert

three points at that location; we are inserting an entire curve segment (which just

so happens to be a point).

Chapter 4: Cumes

The same conditions for possible vertex correspondence apply to this graph as to

the graph of Chapter 2.

The work equations for each grid vertex must consider not only stretching work

(which is analogous to stretching work for polygon edges) and kinking work

(which is analogous to bending work for polygon angles), but also curve

bendiiig work. Thus, analogous to equation. 2.20, the equation for W,,

becomes

Eacktracking through the graph is exactly like that of Chapter 2, with regard to

the control points that are represented in the graph. However, once we have

completed the Least Work Matching List, we must insert the interior control

points into the list for use in the interpolation.

Once the curves (and the& contml points) have been matched, linear interpolation

can be used to calculate the in-btween frarnes.

Chapter 4: Curves

One of the most significant problems with using a Bézier curve representation

when blending curves is the possibility that continuity will not be preserved

throughout the blend. For example, in Fig. 4.9, the two Bézier curve segments

of frame 1 are joined with C' continuity, and are matched with the two Bézier

curve segments of frame 2, which also have Ci continuity at their join point.

However, throughout the blend, the continuity is decreased to CO at this join

point (see Fig. 4.10), as the Iinear path followed by one of the control points

causes a cusp in the in-between images.

join point

~ -

Fig. 4.9 - Two Bezier curves joined with Ci continuity

Fig. 4.10 - In-between images have reduced continuity

Consider the "U" and the "J" of Fig. 4.1 1. Blending these letters using the Least

Work Curve Matching algorithm coupled with iinear interpolation, and using

parameters C,, = 5, C , = 5 , E,, = 2, K ,,, = 0.1, C,,, = 1, and

E,,, = 1, gives a fairly good blend, as shown in Fig. 4.12. Each curve's

starting control point for the blend of Fig. 4.12 is given by the dot on the images

in Fig. 4.11. Contrary to Our usual convention, the control points of these

images have k e n labelcd in counter-clockwise order.

To emphasize the importance of the starting control point correspondence,

consider the blend given in Fig. 4.13. Here, the initial control point of the "U" is

given in Fig. 4.11 by the square on the top left corner. The initial control point

of the "J" is the same as in the previous blend.

Fig. 4.1 1 - "U" and "J" to be blended

--- - - -

Fig. 4.12 - Least Work Curve Matching, initial vertex correspondence 1

Chapter 4: Cumes

Fig. 4.13 - Least Work Curve Matching, initial vertex correspondence 2

Applying the Least Work Matching algorithm (of Chapter 2) to the control

polygons of the letters with the fmt initial vertex correspondence, and using

parameters k,, = 2 , m,, = l m , e,, = 1 , ph, = 10000, km,, =0.1,

c , ~ ~ ~ , = 0.1. and e,,, = 1 , yields a reasonably good blend (Fig. 4.14).

although not as smooth a transition as the blend given in Fig. 4.12. Using the

same parameters on the control polygon blend with second initial vertex

correspondence give less appealing resul ts (Fig. 4.15).

Fig. 4.14 - Control polygon blend. vertex correspondence 1

Fig. 4.15 - Control polygon blend, vertex correspondence 2

Chapter 5: Conclusion

5.1 Future Work

There are several problerns associated with two-dimensional shape-blending that

the methods discussed in this thesis do not address. Some of these have been

discussed in the results sections of each chapter. Others are noted here.

To begin with, the Least Work Matching algorithm deals with local self-

intersections (caused by angles going to zero) by imposing a penalty. However,

there is nothing in the algorithm which tests for or penalizes global seif-

intersection.

As stated previousiy, the algorithm also requires a great deal of user-

intervention. Firstly, the user is required to select starting points for the vertex

correspondence. One way to avoid this would be to subject the polygon images

Chapter 5: Conclusion

to some automated sirnilar feature detection techniques of image processing.

Secondly, the exponents e,,, and eh, are set by the user before the prograrn is

mn. Therefore, every edge or angle will use the same exponent, regardless of

how much or how Iittle a possible vertex correspondence will cause a particular

edge or angle to stretch or bend. One suggestion is to use thresholding to allow

die computer to select a value for e,,, and e,, for each proposed edge and

angle, based on the amount of stretching and bending that will occur for that

edge or angle in a given situation. A user would, however, be required to set

threshold levels.

The algorithms presented here ded only with images containing one polygon or

closed curve. New methods would be required to deal with images containing

several shapes (particularly if each image contained a different number of

shapes), or with images of single shapes that contain one or more holes. Some

problerns associated with blending shapes contairing holes include finding an

appropriate matching of the inner shapes, and ensunng that al1 inner shapes

remain completely inside the outer shape throughout the entire blend. If images

contained different numbers of shapes, we would have to contend with problems

such as deciding whether to split shapes apart to make new shapes or to create

new shapes out of thin air, whether to join shapes together, or to make shapes

vanish. Further, we would have to decide which of the shapes should be split,

joined, deleted, or formed out of nothing.

An obvious improvement to the Least Work Curve Matching algorithm is to

improve the manner in which kinking work is calculated, by taking into account

possible deviations from monotonicity

Chapter 5: Conclusion

and collapsing angles, as was done in

Chapter 2 for the polygon bending work calculations.

Linear Interpolation was the only method used for the control point-path problem

of curve blending. Intrinsic Interpolation could also be applied, either to the

curves themselves, or to the control polygon.

A possible method to improve the continuity of the in-between frames of curve

blending is to convert the Bkzier curves to B-splines. B-splines aUow greater

continuity at join points. A method of converting Bézier curves to B-splines is

outlined in 191.

Conclusion

This thesis has presented several techniques for blending 2-dimensional

polygon. The Least Work Matching method of vertex or control point

correspondence generally provides a good matching between the polygons

(curves), provided that the vertices (control points) of each polygon (curve) are

fairly evenly distributed, that the first vertex correspondence is appropriate, and

that the bending and -stretching (and kinking) parameters are chosen

appropriately. htrinsic Interpolation with Edge Tweaking clearly produces the

most elegant results of the vertex path methods discussed in this work.

Obviously, the most significant drawback of these rnethods is the amount of user

Chaprer 5: Conclusion

intervention that is necessary to produce a good blend. Despite the amount of

input required. however. the methods are still quite satisfactory and, in rnany

cases, have produced beautiful blends.

Appendix A: Implementation

A.l Introduction

This appendix provides a discussion of the implementation of the algorithms

outlined in this thesis.

A.2 Application

To assist with my study of shape blending, an application was created using

Microsoft Visual Basic. Although Visual Basic is not the most efficient language

to use, it did allow for a quick and easy user-interface. The user-interface for this

application is shown in Fig. A. 1. The application allows two key polygons or

Bézier curves to be entered by a user. The polygons rnay be entered either by

clicking points in the drawing windows, or by opening a fde containhg polygon

vertices. Bézier curves may only be entered by opening files o f Bkzier conuol

points. To open a polygon, select either "Open Polygon in Key 1" or ''Open

Polygon in Key 2" from the File menu, and choose an appropriate text file. Files

of Bézier control are opened similady.

Fig. A. 1 - User-interface of the application

Polygon vertices and Bézier control points are stored in text files as a list of real

numbea, one per Iine, giving, altemately, the x- and y-coordinates of the points

of the polygon, in a clockwise fashion.

Two list-boxes are given on the fom, one containing a list of vertex

correspondence methods, and the other containing a list of vertex path

techniques. The user rnay select, from each list, -the desired technique. Once the

methods have been selected, the user c m view the sequence of generated in-

between frames by clicking the button labeled "Morph".

Note that the user is responsible for selecting appropriate methods, based on

whether polygons or curves are to be btended. Further, it is the user's

responsibility to ensure that both key frarnes contain polygons or that both key

frames contain curves.

The number of in-between frarnes is hard-coded and may not be changed by the

user at run-time.

The parameters for the work calculation of Least Work Matching and Least

Work Curve Matching are given in a box in the lower nght corner of the screen.

The first two columns give the parameters for Least Work Matching. The first

column contains parameters for bending work, and the second column gives

parametea for stretching work. The parametea of the third column are for

stretching, bending, and kinking work of the Least Work Curve Matching

algorithm. The user can change these values as desired, but must click the

Appendix

"Apply" button in order for the changes to take effect. One value of each

pararneter may be chosen, and this pararneter is applied to the entire blend.

A.3 Discussion of the Irnplementations

This section gives a bnef discussion of how some of the ideas in the thesis were

implemented. Intrinsic Interpolation is a very straightforward implementation, so

no cornments are given. The h a s t Work Matching algorithm has several items to

be noted (section A.2.1). Least Work Curve Matching is very similar to Least

Work Matching, so no special mention is made of its implementation.

A.3.1 Least Work Matching

For each polygon, the vertices are read into an array of coordinates. For aii

possible graph vertices, W,,, W,,, and W,,,, are calculated by determinhg

the appropriate stretching and bending work calculations. My implementation

takes the fmt vertex in a file of polygon vertices (or the first vertex clicked if the

user is drawing her own polygon) as the fmt vertex correspondence.

Stretching work is a straight-forward calculation, requinng only edge length

di fferences.

Appendix

Bending work is somewhat more involved, and here we make a few notes on

how bending work calculations were implemented.

If a triangle contains the origin, then together, the edges of the triangle must

cross the positive x -a i s , the negative x-axis. the positive y-a is . and the

negative y-axis. The program tests each triangle edge for intersection with each

of the axes, and keeps track of which axes have been intersected.

Monotonicity and deviation from monotonicity are caiculated in a brute-force

manner. Instead of solving equaûon 2.20 for t E (0,1), we take t in smdl

incrernents and detennine the angle that the vector from the origin to the point

Q(t) makes with the x-axis. We keep track of these angles to detennine whether

the angle changes monotonicdly. This list of angles aIso lets us detennine how

far from monotonicity the angle deviates (if it does), and in which direction.

Furthemore, since we are calculating a List of angles, we take the opportunity to

figure out if Q(t) crosses the x-axis.

To backtrack, find the previous graph vertex that requires the least arnount of

work, and choose that one as the next vertex in the backtrack list.

Appendix

A.4 Code

Code

Option Explicit

Const MaxNum = 100
Const NumInBetweens = 5 ' Nurnber of in-between frames
Const Epsilon = 0.00 1
Const PI = 3.1415926535

Dirn Key1 FirstClick As Boolean ' Used when the user d n w s her own polygon by clicking
Dim KeyZFirstClick As Boolean ' points. Keepstrack of whether o r not the mouse click

' represents the first point of the polygon. Needed
' for drawing (no Line-To used for the first click

Dirn Key 1 NumPts As lnteger ' Number of vertices (or control points) in each
Dirn K e y 2 N u m b As Integer ' key frame
Dim MaxCPl As Integer ' Number of contml points in the B-Spline (convcrted
Dim MaxCP2 As lnteger ' from a Bezier)
Dim MaKVl As lnteger ' Nurnber of knots in the converted 8-Spline
Dirn MaxKV2 As lnteger
Dirn Key 1 Pts(MaxNum) As Coords ' Stores the coordinats of thc veniccs (control points)
Dim Key2Pts(MaxNurn) As Coords * in the order they are read in (or clicked)
Dim Key 1 Knots(MaxNum + 4) As Double ' Stores the knot vector for a spline
Dirn Key2Knots(MaxNum + 4) As Double
Dirn CPi(MaxNum) As Coords ' Control Points of a 6-Spline of Key Frame 1
Dirn CP2(MaxNum) As Coords ' after the conversion from a Bezier curve.

Dirn DistinctKnotListI(MaxNum) As Double ' a list of the distinct knots of B-Spline 1
Dirn DistinctKno~ListZ(MaxNurn) As Double '
Dim NumDistinctKnots1 As Integer ' the nurnber of distinct knots of a b-spline
Dirn NumDistinctKnou2 As lnteger
Dirn MorphPts(MaxNurn) As Coords
Dirn NumPts As Inieger

Dirn DrawPolyl As Boolean ' T m e if the user draws the polygon by clicking points.
Dim DrawPoly2 As BooIean ' False if we read from a file. False if we are drawing

' a curvc. (N.B. This program does not allow the user
' to draw a curve by clicking control points. AI1 curves
' must be read from a file.

Dirn DrawBezier As Bwlean ' Tme if we are opening Bezier cuwes. False for polygons
Dim KeyDifference(MaxNum) As Coords

' Bending panmeters
Dim kb As Double ' bending stiffness
Dirn mb As Double ' penalizes non-monotonie angles
Dirn eb As lnteger ' either 1 or: 2
Dim pb As Integer ' penalizes angles from going to O

'Stretching parameters
Dim ks As Double ' stretching stiffness constant
Dim CS As Double ' controls penalty for edge collapsing to a point
Dim es As Integer * 1 or 2. depending on the stretchiness of the wire

' Curve bcnding parameters
Dirn CurvcCb As Double
Dim CurveCk As Double
Dim CurveEk As Double
Dim CurveKs As Double
Dim CurveCs As Double
Dim CurveEs As Double

Privace Sub cmdAppiy,CIick()
kb = CDbl(txtkb.Text)
mb = CDbl(txtmb.Tcxt)
cb = Val(txteb.Text)
pb = Val(urtpb.Text)

CurvcKs = CDbi(txtCurveKs.Text)
CurveCb = CDbl(txtCurveCb.Text)
CurveEk = CDbl(utCurvcEk.Text)
CuweCk = CDbl(utCurveCk.Text)
CurveCs = CDbl(urCurveCs.Text)
CurveEs = CDbl(txtCurveEs.Text)

End Sub
'*****4***8**8*8*8S*8***8*8*8*8*88*88888**8*888*8*88**88**88***8**

Private Sub crndClear-Click()
' Clears al1 drawing from the picture windows and re-initializcd the data corresponding
' to the pictures

Dim 1 As lnteger

Key 1 FirstCIick = True
Kcy2FirstClick = T N ~
Key ! NumPts = O
Kcy2NumPts = O
NumPts = O
DrawPoly 1 = True
DrawPoly2 = True
DnwBezier = False
picKey 1 .Cls
picKey2.CIs
picMorph 1 .Cls
picMorph2.Cls
picMorph3.Cls
picMorph4.Cls
picMorph5.Cls

End Sub
'*****8****888*8*8*8888*8.t . .888888888*88*8*8*8888*88**

Code

Private Sub cmdMorph-Click()
' Stans the selected vertex corrcspondence and vertex path methods
' Note: All polygons are required to be closcd, For each polygon. d n w a line
' from the Imt vertex to the first vertex. Do not increment the number of
' points. since the number of points remains the samc. (We don't want
' to count the first vertex twice). Add the coords of the f in t vcnex to the
' end of the venex list (for simplicity in later code).
' Notc: Only do this if we are dnwing polygons, NOT if we are dnwing
' cuwes

If DnwBezier = Fdse Then
' Ciose the polygons. This is only NECESSARY when the user is dnwing
' her own polygonby clicking points. If a polygon file is opencd, the
' "open" routine takcs carc of closing the poiygon

picKey2Line (10 * KeyZPts(Kcy2NumPts - l).X,,
picKey2.Height - (10 * Key2Pts(KeyZNurnPts - l).Y))- -
(10 KeyZPts(O).X. picKey2.Height - (IO * KeyZRs(O).Y))

picKey1.Line (10 * Key lPts(Key1NumPts - I).X. -
picKey 1 .Height - (IO Key IPu(Key 1 NumPts - l).Y))- ,
(IO * Key! Pts(O).X. picKey1.Height - (10 KeyIPts(O).Y))

Key 1 &(Key 1 NumPts).X = Key 1 Pts(O).X
Kcy 1 Pts(Key 1 NumPts).Y = Key t Pts(O).Y
Key2Pts(Key2NumP~).X = KeyZPts(O).X
Key2Pts(Key2NumPts).Y = KeyZPts(O).Y

End I f

' Choose a venex correspondence rnethod
Select Case IstVertCorr.Listlndex

Case O
MatchByOrder 1

Case 1
LeastWorkMatching

Case 2
LeastWorkCurveMatching

End Select
' Choose a vertex path rnethod
Select Case 1stVertPath.ListIndex

Case O
LinearInterpolation

Case 1
Intrinsiclnterpolation

Case2
EdgeTweaking

Case 3
LinearBezierMorph

Case4
IntrinsicBezierMorph

End Select

End Sub

Code

. * w *

Private Sub Fonn-Load()
Key 1 FirstCiick = Tme
KcyZFirstClick = Tme
Key 1 NumPts = O
Key 2NumPts = O
DnwPoly I = True
DrawPoly2 = Tme
DrawBetier = False
' Initialize bending panmeters
kb = 2 ' bending stiffness
mb = 100 ' penalizes non-monotonie angles

e b = i '

pb = IOOOO ' penalizes angles from going to O
' Initialize stretching parameters
ks = 0.1 ' stretching stiffness constant
CS = 0.1 ' controls penalty for edge collapsing to a point
es=2 '

Initialize curve pmmeters
CurveCb = 1
CurveCk = 1
CurveEk = 1
CurveKs = 0.1
curvecs = 1
CurveEs = 1

End Sub

'***
Private Sub rnnuExit-Click0

End
End Sub

Private Sub rnnuOpenCurve1-Click()
' Opens a Bezier Curve in Frame 1
' Set CûncelError is Tme

ComrnonDialog 1 .CancelError = True
On Ermr GoTo ErrHandler

Set flags
ComrnonDialog 1 .Flags = cdIOFNHideReridOnly
' Set filters
CommonDialogl.Filter = "Al1 Files (*.*)18.*IText Files" & -
"(*.txt)l*.txt"

' Specify default filter
CommonDialog l .Filterlndex = 2
' Display the Open dialog box
CornmonDialog 1 .Showopen
' Display name of selected file

DnwPoly1 = False 'If we commit ourseIves to opcning a file in
' the frarne, wc cannot then decide to drow
' our own polygon (by clicking points),

Dim Fnurn As lnteger

Code

Dim Temp As String
Dim 1 As lntcger
Dirn J As Boolean
D n w Bezier = Tme
I = O
J = True
Fnum = FreeFi le
Open CornrnonDialogl .filename For Input As #Fnum

Do While Not EOF(Fnum)
Line Input #Fnum. Temp
If J =Truc Then

Key IPts(0.X = CDblflémp)
J = FaIse

Else
Key I Pts(I).Y = CDblflemp)

J =Tme
I = l + l
Key 1 NumRs = I

End If
h o p

Key 1 Pts(Key 1 NumPts).X = Key 1 Pts(O).X
Key I Pts(Key 1 NumPis).Y = Key 1 Pts(O).Y

I = l + l
Dirn NurnExtraPts As lnteger
NumExvaPts = O

WhiIe (((Key1 NumPts) Mod 3) O O) ' we should have the right number of
Key1 Prs(I).X = KeylPts(O).X ' control points in the file. but just
KeyIPts(l).Y = Key IPts(O).Y ' in case we don't. we do this
NurnExtnPts = NumExtraRs + 1
Key I Nurnhs = Key 1 NumRs + 1
I = I + I

Wend

For I = 1 To (Key INumPts - NumExtraPts) Step 1
' mark the control points
picKey1 .Circle (10 KeyIPts(1 - 1).X. picKey1-Height - 10 * Key lPts(1 - !).Y). -

1, RGB(O.255.0)
*picKeyl.Line (IO * KeylPts(1 - 1).X, ,

picKeyl.Height - (IO Key IPts(I - l).Y)) ,
-(IO Key1 Pts(t).X. picKey 1.Height - (10 KeylPu(l).Y))

Next i

Dirn h O As Coords
Dim Pt1 As Coords
Dirn Pt2 As Coords
Dirn Pt3 As Coofds
Dirn t 1 As tnteger
Dirn t As Double
Dirn NumCurves As integer
Dirn TempX As Double

Code

Dim TempY As Doublc
NurnCurves = ((Key I NurnPts) / 3)

For 1 = 0 To (NumCurves - 1) Step 1
Pt0 = Key 1 Rs(3 1)
PLI =KeylPts(3 1 + 1)
Pt2 = KeylPts(3 1 + 2)
Pt3 = Key 1 Pts(3 1 + 3)
For t 1 = O To 200 Step 1

'calculate and plot the point of the bezier curve
t= t1 /200
TempX=(l -c l*(! - t)* (l - t) *P t0 .X+3* t f (1 -L)* (I -t)*RL.X-

+ 3 * t * t f (t - t) 'R2.X+t*t*t*Pt3.X
TempY=(I-t)*(L-t)*(1-t)*PtO.Y+3*t*(I-t)*(I-t)*Ptl.Y-

+ 3 * t * t * (I - t) * P t 2 , Y + t * t * t * P r 3 . Y
picKey 1-Circle (10 TempX. picKey1.Height - (10 TempY)). 0.2

Next tl
Next 1
Exit Sub

ErrHandler:
'User prcssed the Cancel button
Exit SubEnd Sub

.
Private Sub mnuOpenCurve2,Click()
' Opens a Bezier Curve in Fnme 2
' Sct CanceIEnor is Fme

CommonDiaIog 1 .CancelError = Truc
On Enor GoTo ErrHandler
' Set flags
CommonDialog I .Fiags = cdIOFNHideReadOnly
' Set filters
CommonDialogl .Filter = "Al1 Files (*.*)l*.*iText Files" & ,
"(*.txt)l*.txtl'

' Specify default filter
CommonDialog 1 .FiIterhdex = 2
' Display the Opcn dialog box
CommonDialog 1 Showopen
' Display name of seiected file

DrawPoly2 = False 'If we commit outselves to opening a file in
' t he frame, we cannot then decide to draw
' our own polygon (by clicking points).

Dim Fnum As lnteger
Dirn Temp As String
Dim 1 As lnteger
Dim J As Boolean
I = O
J = True
Fnum = FfeeFile

Open CommonDialogl .filename For lnput As #Fnum

Code

Do W hile NOL EOF(Fnum)
Line Input #Fnurn. Temp
If l = T m e Then

Key2Pts(l).X = CDblflemp)
l = F d s e

Else
Kcy2Prs(l).Y = CDblflernp)

I =Truc
I = I + I
Kcy2NumRs = 1

End If
L ~ P

Key2Pts(Kcy2NumPts)X = KeyZPts(O).X
Key2Pts(Key2NurnPts).Y = KeyZPts(O).Y

I = l + l
Dirn NurnExtnPts A s Integer
NumExrraPts = O
While (((Key2NumPts) Mod 3) o O)

Kcy2Pts(l).X = Key2fts(O).X
Key2Pts(I).Y = Key2Pts(O).Y
NumExtraPts = NurnExtraPts + 1
Key2NumPts = Key2NumPts + 1
I = I + 1

Wend

For 1 = 1 T o (Key2NurnPts - NumExtrahs) Step 1
' mark the control points
picKey2.Circle (10 Key2Pts(t - l).X, picKey2.Height - 10 * KeyZPts(1 -

1. RGB(O,255.0)
'picKey2.Line (IO KeyZPts(1- I).X,,

picKey2.Height - (10 * Key2Pts(I - l).Y)) -
-(!O Key2Pts(I).X. picKey2.Height - (10 Key2Pts(I).Y))

' note: uncomment the above line if you want the control polygon dnwn
Next I

Dirn Pt0 As Coords
Dim P t 1 As Coords
Dirn Pt2 As Coords
Dirn R 3 As Cwrds
Dim tI As Integer
Dirn t As Double
Dirn NurnCurves As Integer
Dirn TempX As Double .
Dirn TempY As Double
NumCurves = ((Key2NumRs) / 3)
For 1 = O To (NumCurves - 1) Step 1

Pt0 = Key2Pts(3 1)
Pr1 = Kcy2Pts(3 1 + 1)
Pt2 = Key2Pts(3 1 + 2)
Pt3 = KeyZPts(3 * 1 + 3)

Code

For t 1 = O To 200 Step 1
'calculate and plot the points of the bezier curve

t= t1 /200
TempX=(I - t) * (I - t) * (I - t)*P tO ,X+3* t* (I - t) * (I -t)*Pti.X-

+ 3 * t * t 8 (1 - t) * R 2 . X + t * t * t * P t 3 . X
TcmpY=(1 - t) * (l - t)*(l - t)*P1O.Y+3*r*(l - i) * (I -t)*PtI.Y-

+ 3 * t * t L (1 - t) * P t 2 . Y + t 8 t * t * P t 3 . Y
picKey2.Circle (10 TempX. picKey2.Height - (10 * TempY)), 0.2

Next t l
Next 1
Exit Sub

ErrHandler:
'User pressed the Cancel button
Exit Sub

End Sub

CommonDialog 1 .CanceiError = True ' Set CancelError to True
On b r GoTo ErrHandler
CommonDialog 1.Flags = cdlOFNHideReadOnly ' Set flags
CommonDialogl.Filter = "Al1 Files (*.*)l*.*IText Files" & -

"(*.txt)l*.txtW ' Set filters
CommonDialogl.Filterlndex = 2 ' Specify default filter
CommonDiaIogl .Showopen ' Display the Open dialog box

DrawPolyl = False ' Once we have opened a file in the frame, we cannot
' dnw our polygon

DrawBezier = False ' We are drawing a polygon. not a curve

Dirn Fnum As Integer
Dim Ternp As String
Dim 1 As Integer
Dim J As Boolean
I = O
J = Tme
Fnum = FreeFile
Open CommonDialogl.filename For Input As #Fnum ' Display name of selccted file

Do While Nor EOF(Fnum)
Line Input #Fnum, Temp
' Read in the points. The file contains point as one coordiriate per Iine.
' Le. x on one line. corresponding y on the next; next x on the next line, etc.

If J = Tme Then
Key 1 Pcs(l).X = CDblCTernp)
J = False

EIsc
Key 1 Pts(I).Y = CDblCTemp)

J = T m
I = l + l
Key 1 NumRs = 1

Code

Key I Pts(Key 1 NurnPts1.X = Key 1 Pts(O).X ' Repeat the first vertex as the Iast
Key 1 Pts(Key 1 NumPts).Y = Key 1 Pts(O).Y * to force closure

For 1 = 1 T o Key 1 NurnPts Step 1
' D n w the vertices and edges in thc f n m e
picKey1 .Circle (10 * KeylPts(1 - 1).X, picKey 1-Height - 10 KeylPts(1 - I).Y), -

0.5. RGB(O.O. 255)
picKey1 .Line (IO * KeylPts(1 - l) .X, -

picKcy1.Height - (IO KeylPts(1- I).Y)) -
-(10 * Key1 Pts0.X. picKey 1-Height - f IO Key1 Pts(l).Y))

Next 1
Exit Sub

ErrHandler:
'User pressed the Canccl button
Exit Sub

End Sub

~***=
Private Sub mnuOpenKey2_Click()
' Lets the user choose a file of polygon vertices to be opened and d n w n in
' Key F n m e 2

CommonDialogI .CancelError = Tnie ' Set CancelEnor is Tmc
On Error GoTo ErrHandIer
CommonDialog 1 .Flags = cdlOFNHideReadOnly ' Set flags
CommonDialogl.Filter = "Al1 Files (*.*)l*.*iText Files" & -

"(*.txt)I*.txt" ' Set filters
CommonDialogI.Filter1ndex = 2 ' Specify default filter
CommonDialog 1 .Showopen ' Display the Open dialog box
DmwPoly2 = Faise ' Once we have opened a file in the frarne,

' we cannot drawn our own polygon
DnwBezier = False
Dim Fnum As integcr
Dim Temp As String
Dirn 1 As Integer
Dim J As Boolean
1 = O
J =Tme
Fnum = FreeFile
Open CommonDialogl.filenarne For Input As #Fnum ' Display name o f selected file

Do While Not EOFFnum)
' Read in the points. See rnnuOpenKey1 for file description.

Linc Input UFnum. Ternp
If J = True Then

Key2Ptsfl).X = CDblflemp)
.J = False

Else
Key2Pts(I).Y = CDbl(Temp)

J =Tme
i = I + l

Key2NumRs = 1
End If

b o p

Key2Pts(Key2NumPts).X = Key2Pts(O).X ' Force polygon closure
Key2Pts(Key2NumPts).Y = Kcy2Pts(O).Y

For 1 = I To KeyZNumPts Step 1
' Dnw

picKey2.Circie (IO * Key2Pts(l - 1).X, picKey2.Height - 10 * Key2Pts(l - I).Y). -
0.5. RGB (O. 0.255)

picKey2.Line (10 Key2Pts(I - l).X, -
picKey2.Height - (IO Key2Pts(I - l).Y)) ,
-(IO Key2Pts(I).X. picKey2.Height - (10 Key2Pts(I).Y))

Ncxt 1
Exit Sub

ErrHandler:
'User pressed the Cancel button

Exit Sub
End Sub

Private Sub rnnuOpenSplinel-Click()
' Opens a Bezier Curve in Frame 1 and converts it to a B-Spline
' Set CancelError is True

CommonDialog 1 CancelError = True
Or! Error GoTo ErrHandler
' Set flags
CommonDialog 1 .Flags = cdlOFNHideReadOnly
' Set filters
CommonDialogl.Fiiter = "Al1 Files (*.*)I*.*IText Files" & ,
"(*.txt)t*.U<t"

' Specify default filter
CommonDialog 1 .FiIterIndex = 2
' Display the Open dialog box
CommonDialog 1 .Showopen
' Display name of selected file

DnwPoIyl = False 'If we commit ourselves to opening a file in the frarne, we
' cannot then decide io draw our own polygon by clicking pts

Dim Fnum As lnteger
Dim Temp As String
Dim 1 As Integer
Dim J As Bootean
Dnw Bezier = True
! = O
J =Tme
Fnurn = FreeFile
Open CommonDialogl.filename For Input As #Fnum
Do While Not EOF(Fnum)

Line Input #Fnum, Temp

If J = True Then

Code

Key 1 Prs(l).X = CDbl(Temp)
J = Fabe

EIse
Key 1 Pls(I).Y = CDbl(Ternp)

J =Tme
1 = 1 + 1
Key 1 NurnRs = 1

End If
b o p

Key 1 Pts(Key I NumPts).X = Key l Pts(O).X
Kcy 1 Pts(Key 1 NumPts).Y = Key 1 Pls(O).Y

I = I + I
Dim NumExvaPts As Integer
NurnExtraP& = O

WhiIe (((Key1 NumPu) Mod 3) o O) ' we should have the nght number o f
Key lPts(I).X = Key 1 Pts(O).X * control points in the file. but just
Key 1 Pts(I).Y = Key 1 &(O).Y ' in case we donet, we d o this
NumExtraPts = NumExtraRs + 1
Key1 N u m b = Key INumPts + 1
I = l + l

Wend

* Now conven thc Bezier to a B-Spline
' initialize the control point list and knot vector

For1 = O T o 3 Step 1
CP 1 (I).X = Key l Pts(l).X
CP I ([).Y = Key 1 Pts(I).Y
Key 1 Knots(l) = O

Next 1
F o r I = 4 T o 7 S t e p 1

Key 1 Knots(1) = 1
Next 1
MaxCPI = 3
MaxKVI = 7

' Want to add the next Bezier curve control points
' to the Iist of control points
Dirn Slopel As Double
Dim SlopeZ As Double
Dim NewKnot As Double
Dim Continuity A s Integer
Dim NumCurves As lnteger
Dim NextIndex As Integer -
NumCurves = ((Key 1 NumRs) / 3)
' This will be in some kind of loop
Nextlndex = MaxCP 1 + 1
While Nextlndex < Key1 NumPts

If Abs(CPl(MaxCPl).X - CPI(MaxCP1 - 1).X) < Epsilon Thcn
Slopel = 32000

Else
Slopel = (CPI (MaxCP 1).Y - CPI (MaxCP1 - 1).Y) / ,

Code

(CPl(MaxCP1).X - CPl(MaxCP1 - 1).X)
End If

If Abs(Key 1 Pts(Nextlndex).X - CPI (MaxCPI).X) < Epsilon Then
Slope2 = 32000

Else
Slow2 = (KeylPts(NextIndex).Y - CPl(MaxCPl).Y) / -

(Key 1 fts(Nextindex).X - CPI (MaxCP I).X)
End If

If (Abs(S1ope I - Slope2) > Epsilon) Thcn ' curve have only CO continuity
New Knot = Key 1 Knots(MaxKV 1) + i
Continuity = O

Else ' the d o p e is the sarne. so curvcs have at least CI continuity.
' Choose a knot value that rcflects this continuity

New Knot = ((Key 1 Pts(Nextlndex).X - CP l(MaxCPl).X) -
(Key 1 Knois(MaxKV 1 - 3) - Key l Knots(MaxKV1 - 4)) / -
(CPI(MXKCPI).X - CPI(MWCPL - I).X)) + -
Key l Knots(MaxKV 1 - 3)

Continuity = I

' Now test to see if the curves are actually C 2 continuous
If Abs(-

(-
(CP1 (MaxCPI - 2).X - Key l Pts(Next1ndex + !).X) ,
(Key I Knots(MaxKV 1 - 3) - Key l Knots(MaxKV 1 - 5)) -
(Key I Knots(MaxKV I - 3) - NewKnot) -

1 -
+-

(&
(CP 1 (MaxCP1 - 1).X - CPZ(MaxCP1 - 2).X) * -
(NewKnot - Key 1 Knois(MaxKV 1 - 5)) * ,
(Key 1 Knots(MaxKV 1 - 3) - NewKnoi) -

1-
+-

(-
(Key 1 Pts(Ncxt1ndex + 1).X - Key 1 Pts(NextIndex).X) * ,
(Key 1 Knots(MaxKV 1 - 4) - NewKnot) -
(Key 1 Knots(MaxKV 1 - 3) - Key l Knots(MaxKV 1 - 5)) ,

1-
) < Epsilon Then
' then we have C2 continuity
Continuity = 2

End If
' Now check for r? continuity

Dim PAIpha As Cwrds
Dim PBeta As Coords
Dim PGamma As Coords
If (Abs(Key 1 Knots(MaxKV 1 - 5) - Key 1 Knots(MaxKV 1 - 6)) > Epsilon) Then

PAlphâX = ((Key1 Knots(MaxKV 1 - 3) - Key1 Knots(MaxKV 1 - 4)) -
Key l Pis(Nextindex + I).X + -

((NewKnot - Key l Knots(MaxKV 1 - 3)) Key IPu(Nurtindex).X)) / ,
(New Knot - Key 1 Knols(MaxKV 1 - 4))

PA1pha.Y = ((Key 1 Knots(MaxKV 1 - 3) - Kcy 1 Knots(MaxKV 1 - 4)) * Key I Pts(Next Index +
I) .Y +,

((NewKnot - Key1 Knots(MaxKV 1 - 3)) KeylPts(Nextlndex).Y)) / -
(NewKnot - Key 1 Knots(MrixKV 1 - 4))

PBct3.X = ((New Knot - Key 1 Knors(MaxKV I - 6)) * CPI (MaxCP 1 - 2).X + -
((Key 1 Knots(MaxKV l - 5) - NewKnot) CPI (MaxCP I - 3).X)) / -
(Key 1 Knots(MaxKV I - 5) - Key 1 Knots(MaxKV 1 - 6))

PBe1a.Y = ((NewKnot - Key 1 Knots(MaxKV1 - 6)) CPI(MaxCP1 - 21.Y + -
((Key 1 Knors(MaxKV I - 5) - NewKnot) * CPl(MaxCP1 - 3).Y)) / -
(Key I Knots(MaxKV 1 - 5) - Key 1 Knots(MaxKV 1 - 6))

PGamma.X = ((Key 1 Knots(MaxKV 1 - 3) - Key 1 Knots(MaxKV l - 4)) Key 1 PWNextIndex +
2).X + -

((Key 1 Knots(MaxKV 1 - 4) - NewKnot) Key 1 Pts(Nextlndex + 1).X)) / -
(Key 1 Knots(MaxKV1 - 3) - NewKnot)

PGammaY = ((Key1 Knots(MaxKV 1 - 3) - Key1 Knots(MaxKV 1 - 4)) * Key 1 P!u(Nextlndex +
2).Y + _

((Key1 Knots(MaxKV 1 - 4) - NewKnot) * Keylhs(Next1ndex + 1).Y)) / -
(Key I Knots(MaxKV 1 - 3) - NewKnot)

If Abs(PA1pha.X - ((((NewKnot - Keyl Knots(MaxKV 1 - 3)) * PBeta.X) +,
((Key 1 Knots(MaxKV 1 - 3) - Key 1 Knots(MaxKV 1 - 5)) * PC3arnma.X)) / ,
(NewKnot - Key 1 Knots(MaxKV 1 - 5)))) < Epsilon Then

Continuity = 3
End If

End If
End If

' Append the new knots and conuol points, depending on the
' continuity between the two curves

Select Case Continuity
Case O

Key 1 Knots(MaxKV 1) = NewKnot
Key 1 Knots(MaxKV 1 + 1) = NewKnot
Key 1 Knots(MaxKV 1 + 2) = NewKnot
Keyl Knots(MaxKV 1 + 3) = NewKnot
MaxKV1 =MaxKVI + 3
C P 1 (MaxCP 1 + 1).X = Key 1 Pts(MaxCP 1 + 1).X
C P I (MaxCP1 + 1).Y = Key lPts(MaxCP1 + I).Y
C P 1 (MaxCP 1 + 2).X = Key lPts(MaxCP1 + 2).X
CPI (MaxCPI + 2).Y = KeylPts(MaxCP1 + 2).Y
CPI(MaxCP1 + 3).X = KeylPts(MaxCP1 + 3).X
CPI (MaxCP 1 + 3).Y = Key lPts(MaxCP1 + 3.Y
MaxCP 1 = MaxCP l + 3

Case 1
Key 1 Knots(MaxKV 1 - 1) = NewKnot
Kcy 1 Knots(MaxKV 1) = NewKnot
Key 1 Knots(MaxKV 1 + 1) = NewKnot
Key 1 Knots(MaxKV 1 + 2) = New Knot
MaxKV 1 = MaxKV 1 + 2
C P 1 (MaxCPI).X = Key 1 Pts(MaxCP1 + 1).X

Code

CP! (MaxCPI).Y = Key 1 Pts(MaxCP1 + l).Y
CPI (MaxCP1 + l).X = Key I Pts(MaxCP1 + 2).X
CPI (MaxCPl + l).Y = KeyIPts(MaxCP1 + 2).Y
CP! (MaxCPI + 2)-X = Key I Pts(MaxCP1 + 3).X
CP! (MaxCP1 + 2).Y = Key IPts(MaxCP1 + 3).Y
MaxCPl = MaxCPl + 2

Case2
Key 1 Knots(MaxKV 1 - 2) = NcwKnot
Key 1 Knois(MâxKV 1 - 1) = New Knot
Key 1 Knots(MaxKV1) = New Knot
Key 1 Knots(MaxKV 1 + 1) = New Knot
MaxKV 1 = MaxKV 1 + 1
CPI (MaxCPl - l).X = PA1pha.X
CP 1 (MaxCPI - I).Y = PAlpha.Y
C P l (MaxCPl).X = KeyiAs(MaxCP1 + 2).X
C P I (MaxCP 1).Y = Key i Pts(MaxCP 1 + 2).Y
CPI (MaxCPl + 1).X = KeylPts(MaxCP1 + 3).X
C P l (MaxCPI + !).Y = KcyIPts(MaxCPl+ 3 .Y
MaxCP 1 = MaxCPI + 1

Case 3
Key 1 Knots(MaxKV 1 - 3) = NewKnot
Key I Knots(MaxKV 1 - 2) = NewKnot
Key1 Knois(MaxKV 1 - 1) = NewKnot
Key 1 Knots(MaxKV 1) = New Knot
MaxKVI = MaxKV1
CPl(MaxCP1 - 2).X = PBeta-X
CPI(MaxCP1 - 2).Y = PBetaY
C P 1 (MaxCPI - 1).X = PGamma.X
CP 1 (MaxCPI - 1).Y = PGamma-Y
CP 1 (MaxCPI).X = Key 1 Pts(MaxCP1 + 3).X
C P 1 (MaxCP l).Y = Key l Pts(MaxCP 1 + 3).Y
MaxCPl = MaxCPl

End Select
Ncxtlndex = NextIndex + 3

Wend For 1 = 1 T o (MaxCPl+ 1) Step 1
' mark the control points
picKey 1-Circle (10 CPI(1 - 1).X, picKey1.Height - IO CPI(1 - I).Y). ,

1. RGB(O.255. O)
Next 1
Dirn t 1 As Integer
Dirn t As Double
Dirn TempX As Double
Dirn TernpY As Double
' D n w the curve
I = 3
Whi le I <= MaxCP 1

For t 1 = (200 Key 1 Knots(1)) T o (200 Key 1 Knots(1 + 1)) Step 1
If (Key 1 Knocs(1) o Key 1 Knots(1 + 1)) Then
'calculate and plot the points of the b-spline

t = t l / (200 * (Key 1 Knots(1 + 1) - Key 1 Knots(1)))
Dirn TennI As Double
Dirn Terml As Double
Dirn Tenn3 As Double

Code

Dim Tcm4 As Double
Term I = (Key 1 Knots(1 + 1) - t) (Key1 Knots(1 + 1) - t) (Key 1 Knots(1 + 1) - t) -

*CPI(I - 3).X/,
((Key 1 Knots(l + 1) - Key l Knots(1- 2)) (Key l Knots(l+ 1) - Key 1 Knots(l - I)) -

(Key 1 K n o M + 1) - Key 1 Knots(1)))

Tcrm2 = (t - Key 1 Knoü(1- 2)) (Key l Knou(l + 1) - t) * (Key 1 Knots(l + 1) - t) -
* CPI(1- 2).X 1-
((Key 1 Knots(1 + 1) - Key I Knots(1 - 2)) * (Key 1 Knots(1 + I) - Key 1 Knots(1- I)) -

* (Key 1 Knols(i + I) - Key 1 Knots(1))) + -
(Key1 Knots(1 + 2) - t) * (t - Key 1 Knots(l - 1)) (Key 1 Knots(l + 1) - t) -
* CPl(1 - 2).X /,
((Key i Knots(I+ 2) - Key I Knots(1- 1)) (Key I Knols(1 + 1) - Key 1 Knois(1 - 1)) -

(Key 1 Knots(1 + 1) - Key 1 luiots(1))) + -
(Key1 Knots(1 + 2) - t) * (t - Key 1 Knots(1)) * (Key I Knots(l+ 2) - t) -
* CPI(1 - 2).X / -
((Keyl Knots(1 + 2) - Keyl Knots(l - 1)) (Key 1 Knots(1 + 2) - Key 1 Knots(1)) -
* (Key 1 Knots(l + 1) - Key 1 Knots(1)))

Tem3 = (t - Key 1 Knots(1- 1)) (t - Keyl Knots(! - 1)) * (Keyl Knots(l + 1) - t) -
CPI(1 - I).X / -

((Key 1 Knots(1 + 2) - Key 1 Knots(1- 1)) * (Key 1 Knots(1 + 1) - Key 1 Knots(1 - 1)) -
(Key 1 Knots(l + 1) - Key 1 Knots(1))) + -

(t - Key 1 Knots(1)) * (t - Key l Knots(1- 1)) (Key 1 Knots(1 + 2) - t) -
* CPI(I - I).X/,
((Key 1 Knots(1 + 2) - Key l Knots(1- 1)) (Key 1 Knots(1 + 2) - Key 1 Knots(1)) -

(Key 1 Knou(I + 1) - Key 1 Knots(1))) + -
(Key 1 Knots(1 + 3) - t) * (t - Key l Knots(1)) (t - Key 1 Knots(l)) -
* CPI(1- l).X/,
((Key 1 Knots(1 + 3) - Key 1 Knots(1)) (Key 1 Knots(1 + 2) - Key 1 Knots(1)) -

(Keyl Knots(1 + 1) - Key l Knots(1)))

T e m 4 = (t - Key 1 Knots(1)) * (t - Keyl Knots(1)) (t - Key I Knots(1)) -
CPl(l).X /,

((Key 1 Knots(I+ 3) - Key 1 Knots(1)) * (Key 1 Knots(l+ 2) - Key 1 Knotso)) -
(Key 1 Knots(1 + 5) - Key 1 Knots(1)))

TempX = Terrn 1 + T e n n 2 + Term3 +Te&

T e m l =(KeyIKnots(I + 1) - t) (KeyIKnocs(1 + 1) - t) (KeyIKnots(I+ 1) - t) _
*CPI(I-3) .Y/-
((Key 1 Knots(1 + 1) - Key 1 Knots(1- 2)) (Key 1 Knots(f + 1) - Key 1 Knots(1- 1)) -

(Key I Knots(1 + 1) - Key 1 Knots(1)))

T e m 2 = (t - Keyl Knots(1- 2)) * (Key 1 Knots(1 + 1) - t) (Key 1 Knots(1 + 1) - 0 -
CPI(1- 2).Y /,

((Key 1 Knots(I+ 1) - Key 1 Knots(1- 2)) * (Key 1 Knots(1 + 1) - Key l Knots(1- 1)) -
* (Key l Knots(1 + 1) - Key 1 KnotsO)) + -
(Key I Knots(1 + 2) - t) (t - Key 1 Knots(1- 1)) (Key 1 Knots(1 + 1) - t) -
CPI(I - 2).Y /,

((Key 1 Knots(1 + 2) - Key 1 Knots(l - 1)) (Key 1 Knots(1 + 1) - Keyl Knots(1- 1)) -
* (Key l Knots(I+ 1) - Key 1 Knots(1))) + -
(Key 1 Knots(I+ 2) - t) (t - Key 1 Knots(1)) (Key 1 Knots(1 + 2) - t) -

CPI(I - 2).Y I-
((Key I Knots(1 + 2) - Key l Knots(l - I)) (Key 1 Knots(1 + 2) - Key l Knots(1)) -

(Key 1 Knots(1 + 1) - Key 1 Knots(1)))

Tem3 = (t - Keyl KnoWl- 1)) (t - KeylKnots(1- 1)) (Keyl Knots(1 + 1) - t) -
*CPI(I- I).Y/-
((Key 1 Knots(l + 2) - Key 1 Knots(l - 1)) (Key I Knots(l + I) - Key 1 Knots(1- 1)) -
* (Key 1 Knou(l + 1) - Key 1 Knots(1))) + -
(t - Key 1 Knots(1)) * (t - Key I Knots(1 - 1)) * (Key 1 Knois(1 .t 2) - t) -
* CPI(1- I).Y 1-
((Key I Knots(I+ 2) - Key 1 Knocs(1- 1)) (Key l Knots(1 + 2) - Key 1 Knots(1)) -
* (Key 1 Knots(l + 1) - Keyl Knots(1))) + -
(Key 1 Knots(l+ 3) - t) (t - Key1 Knots(i)) (t - Keyl Knots(1)) -
* CPI(1 - !).Y / -
((Key 1 Knots(1 + 3) - Key l Knots(1)) (Key 1 Knots(1 + 2) - Key 1 Knots(1)) -
* (Key 1 Knou(1 + 1) - Key 1 Knots(1)))

Tem4 = (t - Key 1 Knots(1)) (t - Key 1 Knots(1)) * (t - Keyl Knots(1)) * -
CP 1 (I).Y 1 -
((Key 1 Knots(1 + 3) - Key 1 Knots(1)) * (Key l Knots(1 + 2) - Key 1 Knots(1)) -
* (Key1 Knots(1 + 1) - Key 1 Knots(1)))

Tem pY = Tem 1 + Term2 + Tem3 + Tem4

picKey1.Circle (IO * TempX, picKeyl.Hcight - (10 * TempY)). 0.2
End If
Next t 1
I = I + l

Wend
Exit Sub

Err Handler:
'User pressed the Cancel button
Exit Sub

End Sub

b * * 8 * * t * * * * 1 * * t * * * C * 8 * * * 8 * * I * 3 * * * + * t * * * * * * 8 * * * * * * 8 8 * * * * 8 * 8 * * * *

Private Sub rnnuOpenSpline2-Click()
' Opens a Bezier Curve in Frame 2 and converts it to a B-Spline
' Set CancelError is True

ComrnonDialogl .CancelEmr = T N ~
On Error GoTo ErHandler
' Set flags
CommonDialog 1 .Flags = cdlOFNHideReadOnly
' Set filten
CommonDialogl.Filter = "Al1 Files (*.*)l*.*néxt Files" & -
"(*.txt)l*.txt"

' Speci fy default filter
CommonDialogI .FiIterlndex = 2
' Display the Open dialog box
CommonDiaIog 1 .Showopen
' Display name of selected file

DrawPoly2 = Fûlst 'If we commit ounelva Co opening a file in the frame. we can't

Code

' then decide to d n w our own polygon (by clicking points).
Dirn Fnum As lnteger
Dim Temp As String
Dim 1 As Intcger
Dirn J As Boolean
DnwBezicr = True
1 = O
J = True
Fnum = FreeFile
Open CommonDialogl.fiIename For Input As #Fnum
Do WhiIe Not EOF(Fnum)
tinc Input #Fnum, Temp
If J = Tme Then

Key2Pts(I).X = CDblVemp)
J = False

Else
KeySPts(I).Y = CDbl(Temp)

J =Truc
I = I + I
Key2NumPis = 1

End If
t o o p

Key2Pts(Key2NumPts).X = Key2Pts(O).X
Key2Fts(Key2NumPts).Y = KeyZPts(O).Y

1 = 1 + 1
Dirn NurnExuaPts As Integer
NurnExtnRs = O
While (((Key2NumPts) Mod 3) O O) ' we should have the right number of

Key?Pts(l).X = Key2Prs(O).X ' control points in the file. but just
Key2Pts(l).Y = KeyZhs(O).Y ' in w e we don't, we do this
NumExuaPts = NumExtraPts + 1
KeyîNumPts = Key2NumPts + 1
I = i + I

Wend
' Now convert the Bezier to a B-Spline
' initialize the control point list and knot vector

For I = O T o 3 Step 1
CP2(I).X = Key2Pts(l).X
CP20).Y = KeyZPts(l).Y
Key2Knots(I) = O

Ncxt I

F o r I = 4 T o 7 S t e p 1
KeyZKnots(1) = 1

Next l
MaxCP2 = 3
MaxKV2 = 7
' Want to add the next Betier curve control points
' to the list of contml points
Dirn Slopel As Double
Dirn Slope2 As Double
Dirn NewKnot As Double

Code

Dim Continuity As lnteger
Dim NumCurves As lntcger
Dim Nextlndex As Integer
NumCurves = ((KeyZNumPts) 1 3)
' T h i s will be in some kind of loop
NextIndex = MaxCP2 + I

WhiIc Nextlndcx c KeyZNumPts
if Abs(CF'2(MaxCP2).X - CP2(MaxCP2 - 1).X) < Epsilon Then

Slopel = 32000
Else

Slope 1 = (CP2(MaxCP2).Y - CP2(MaxCP2 - I).Y) 1 -
(CPZ(MaxCPt).X - CPt(MaxCP2 - 1).X)

End If

If Abs(Key2Pts(Nextlndex).X - CP2(MaxCPZ).X) < Epsilon Then
Siope2 = 32000

Else
S lope2 = (Key2Pts(NextIndex).Y - CPZ(MaxCP2).Y) / ,

(Key2Pts(Nexilndex).X - CP2(MaxCP2)-X)
End If

If (Abs(Slope 1 - Slope2) > Epsilon) Then ' curve have only CO continuity
NewKnot = Key2Knots(MaxKV2) + 1
Continuity = O

Else ' the slope is the same. so curves have at least C l continuity.
' Choose a knot value that reflects this continuity

NcwKnot = ((Key2Pts(NextIndex).X - CPî(MaxCP2).X) -
(KeyZKnots(MaxKV2 - 3) - KeyZKnots(MaxKV2 - 4)) 1 -
(CP2(MaxCP2).X - CPZ(MaxCP2 - l).X)) + -
Key2Knots(MaxKV2 - 3)

Continuity = 1

' Now test to see if the curves are actually C 2 continuous
If Abs(-

(-
(CP2(MaxCP2 - 2).X - KeySPts(Nsxt1ndex + I).X) * -
(Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 5)) * -
(Key2Knots(MaxKVZ - 3) - NewKnot) -

1-
+-

(-
(CPî(MaxCP2 - I).X - CP2(MaxCP2 - 2).X) ,
(NewKnot - Key2Knots(MaxKV2 - 5)) ,
(Key2Knots(MaxKV2 - 3) - NewKnot) ,

1-
+-

(-
(Key2Pts(Nextlndex + 1).X - Key2Pts(Nextlndex).X) ,
(Key2Knots(MaxKV2 - 4) - NewKna) -
(Key2Knois(MaxKV2 - 3) - Key2Knots(MaxKV2 - 5)) -

1-
) c Epsilon Then

Code

* then we have C2 continuity
Continuity = 2

End If

' Now check for C3 continuity
Dim PAlpha As Coor&
Dim PReta As Coords
Dirn PGarnrna As Coords

PA1pha.X = ((KeyZKnots(MaxKV2 - 3) - KeylKnoMMaxKVZ - 4)) Key2Rs(NextIndex +
i).X + -

((NewKnot - Key2Knots(MaxKV2 - 3)) Key2Pis(Nextlndex).X)) / -
(NcwKnot - Key2Knots(MaxKV2 - 4))

PA1pha.Y = ((Key2Knots(MaxKVZ - 3) - Key2Knots(MnKV2 - 4)) Key2Pts(Nextlndex +
1).Y + -

((NewKnot - KeyZKnots(MaxKV2 - 3)) Key2Rs(NextIndex).Y)) / -
(NewKnot - KeyZKnots(MaxKV2 - 4))

PBeta-X = ((NewKnot - Kcy2Knots(MaxKV2 - 6)) CP2(MaxCP2 - 2).X + -
((Key2Knots(MûxKV2 - 5) - NewKnot) CPZ(MaxCF2 - 3).X)) / -
(Key2Knots(MaxKV2 - 5) - KeyZKnots(MaxKV2 - 6))

PE3eia.Y = ((NewKnot - Key2Knots(MaxKV2 - 6)) CP2(MaxCP2 - 2).Y + -
((Key2Knots(MaxKV2 - 5) - NewKnot) CPXMaxCPZ - 3).Y)) / ,
(Key2Knots(MaxKVZ - 5) - Key2Knots(MaxKV2 - 6))

PGarnma.X = ((KeyZKnots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 4)) * KeyZPts(Next1ndex +
2).X + -

((KeyZKnots(MaxKV2 - 4) - NewKnot) Key2Pts(NextIndex + l).X)) / -
(Key2Knots(MaxKVZ - 3) - New Knot)

PGarnrna.Y = ((Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKVZ - 4)) Key2Pts(NextIndex +
2).Y -4- -

((Key2Knots(MaxKV2 - 4) - NewKnot) * Key2Rs(NextIndex + l).Y)) 1 -
(Key2Knots(MaxKV2 - 3) - NewKnot)

If Abs(PA1pha.X - ((((NcwKnot - Key2Knots(MaxKV2 - 3)) PBeta-X) + ,
((Key2Knots(MaxKV2 - 3) - KeyZKnots(MaxKV2 - 5)) * PGamma-X)) 1 -
(NewKnot - Key2Knots(MaxKV2 - 5)))) < Epsilon Then

Continuity = 3
End If

End If
' Append the new knots and controi points. depending on the
' continuity between the two curves

Select Case Continuity
Case O

KeyZKnots(MaxKV2) = New Knot
Key2Knots(MaxKV2 + 1) = NewKnot
Key2Knots(MaxKV2 : 2) = New Knot
Key2Knots(MaxKV2 + 3) = NewKnof
MaxKV2 = MaxKV2 + 3
CP2(MaxCP2 + 1).X = KeyZPts(MaxCP2 + 1).X
CPZ(MaxCP2 + I).Y = Key2Rs(MsxCP2 + I).Y
CP2(MaxCP2 + 2).X = Key2Pts(MaxCP2 + 2).X

Code

CP2(MaxCP2 + 2).Y = KeyZPts(MaxCP2 + 2).Y
CP2(MaxCP2 + 3).X = Key2Pts(MaxCP2 + 3).X
CP2(MaxCP2 + 3).Y = Kcy2Pts(M;ixCP2 + 31.Y
MaxCP2 = MaxCP2 + 3

c a s e l
Kcy2Knots(MaxKV2 - 1) = NewKnot
KcyZKno~s(~MaxKV2) = NewKnot
KeyZKnots(MaxKV2 + 1) = NewKnot
Key2Knots(MaxKV2 + 2) = NewKnot
MaxKV2 = MaxKV2 + 2
CP2(MaxCP2).X = Key2Rs(MaxCP2 + l).X
CP2(MaxCPZ).Y = Key2Pts(MaxCP2 + I).Y
CP2(tMaxCP2 + I).X = KeyZPts(MaxCP2 + 2).X
CP2(?vlaxCP2 + I).Y = Kcy2Pcs(MaxCP2 + 2).Y
C n (M a x C P 2 + 2).X = Key2Pts(MaCP2 + 3).X
CPZ(MaxCP2 + 2).Y = Key2Pts(MaxCP2 + 3).Y
iMaxCP2 = MaxCP2 + 2

Case 2
Key2Knors(MaxKV2 - 2) = NewKnot
Kcy2Knots(MaxKV2 - 1) = New Knot
Kcy2Knots(MaxKV2) = NewKnot
Key2Knots(MaxKV2 + 1) = NewKnot
MrutKV2 = MaxKV2 + 1
CPZ(MaxCP2 - 1).X = PA1pha.X
CP2(MaxCP2 - [).Y = PA1pha.Y
CE(MaxCP2).X = Key2Rs(MaxCP2 + 2).X
CPZ(MaxCPZ).Y = KeyZPts(MaxCPî + 2).Y
CPZ(MaxCP2 + 1).X = KeylPts(MaxCPî + 3).X
CP2(MaxCP2 + 1).Y = Key2Pts(MaxCP2 + 3).Y
MaxCPî = MaxCF2 + 1

Case 3
Key2Knots(MaxKV2 - 3) = NewKnot
Key2KnotsCMaxKV2 - 2) = New Knot
Key2Knots(MaxKV2 - 1) = NewKnot
Key2Knots(MaxKV2) = NewKnot
MaxKV2 = MaxKV2
CP2(MaxCP2 - 2).X = PBeta.X
CP2(MaxCP2 - 2).Y = PBeta-Y
CP2(MaxCP2 - 1).X = PGamrna-X
CPî(MaxCP2 - I).Y = PGarnrna-Y
CPZ(MaxCPZ),X = Key2Pts(MaxCP2 + 3).X
CP2(MaxCP2).Y = Key2hs(MaxCP2 + 3).Y
MaxCP2 = MaxCPZ

End Select
NextIndex = NextIndex + 3 .

Wend

For 1 = 1 To (MaxCPZ + 1) Step 1
' mark the control points
picKey2.Circle (10 CP2(I - I).X, picKcy2.Height - 10 CP2(1 - l).Y). ,

1, RGB(O.255.0)
Next 1

C'de

Di m t 1 As lnteger
Dirn t As Double
Dirn TempX As Double
Dirn TempY As Double

' Draw the curve
I = 3
Whilc 1 c= MaxCP2

For tl = (200 * KeySKnots(1)) T o (200 * Key2Knots(I + 1)) Stcp I
If (Key?Knots(I) O Key2Knots(I + 1)) Then
'calculate and plot the points of the 6-spline

t = t 1 1 (200 * (KeyZKnors(1 + I) - Key2Knots(l)))
Dirn T e m l As Double
Dirn Term2 As Double
Dirn Tenn3 As Double
Dim T e d As Double
Term I = (Key2Knots(l+ 1) - t) * (Key2Knots(l+ 1) - t) (Kcy2Knors(t + 1) - t) ,

* CPZ(I - 3).X 1 -
((KeyZKnots(1 + 1) - KeyZKnots(1- 2)) * (KeyZKnots(I+ 1) - Key2Knots(l - 1)) -
* (Key2Knots(l + 1) - Key2Knots(I)))

Code

TcrnpX = Term I + T e m 2 + T e d + T e m 4

Tem2 = (t - KeyZKnots(1 - 2)) (Key2Knots(l+ 1) - t) * (Key2Knots(I+ 1) - t) -
* C m ([- 2).Y /,
((Key2Knots(l + 1) - Kcy2Knots(I - 2)) (KeyZKnots(I+ 1) - Key2Knois(l- 1)) -

(Key2Knots(I + 1) - Key2Knots(I))) + -
(KeyZKnots(l+ 2) - t) (t - KtyZKnots(1- 1)) (Key2Knots(i + 1) - t) -
* CPZ(1 - 2).Y / -
((Key2Knots(i+ 2) - Key2Knots(l- t)) * (Key2Knots(I + 1) - Key2Knots(I - 1)) -
* (Key2Knots(I + 1) - Key2Knots(I))) + -
(Key2Knots(I + 2) - t) (i - Key2Knots(l)) (KeylKnots(I+ 2) - t) -
* c m (I - 2).Y / ,
((Key2Knots(l+ 2) - Key2Knots(I- 1)) (Key2Knots(I + 2) - KeyZKnots(1))-

(Key2Knots(I + 1) - Kcy2Knots(i)))

TernpY = Term 1 + T e m 2 + Tenn3 + Terrn4
picKey2.Circle (10 TernpX, picKcy2.Height - (10 TempY)), 0.2

End If
Next i 1
I = I + I

Wend
Exit Sub

En HandIer:
'User prcssed the Cancel buiton
Exit SubEnd Sub

Code

Private Sub mnuSet 1-Click()
' Panmeter Tcst Set 1

' Set the values in the text boxes
txtkb.Text = "2" * bending stiffness
txtrnb.Text = "100" ' penalizes non-rnonotonic angles

txtcb.Text = " 1" '
txtpb.Text = "10000" ' pcnalizes angles from going to O
txtks.Text = "0.1" ' stretching stiffness constant
~xtcs.Text = "0.1" ' controls penalty for edge collapsing to a point

txtcs.Text = "2" '

' Gct the values from thc text boxes
kb = CDbl(txtkb.Text)
mb = CDbl(txtrnb.Text)
eb = Val(txteb.Text)
pb = Val(txtpb.Text)
k s = CDbl(txtks.Text)
CS = CDbl(txtcs.Text)
e s = Val(txtes.Text)

End Sub

.
Private Sub mnuSet2-Click0
' Parameter Tcst Set 2 ' Set the values in the text boxes

txtkb.Text = "0.1" ' bending stiffness
txtrnb-Text = " 1" ' penaiizes non-monotonic angles
txteb.Text = " 1 " '

txtpb.Text = "10000" ' pendizes angles from going to O
txtks.Text = " 1 " ' stretching stiffness constant
txtcs.Text = "0.1" ' controls penalty for edge collapsing to a point
txtes.Text = " 1 " I

' Get the value from the text boxes
kb = CDbl(txtkb.Text)
mb = CDbl(txtrnb.Text)
eb = Val(txteb.Text)
pb = Val(txtpb.Text)
k s = CDbl(u<tks.Text)
CS = CDbl(txtcs.Text)
es = Val(txtes.Text)

End Sub

' * * f * & * * * * * * + * * * * L 1 * t * * * * * * * * * * * * * 8 8 * * * * * * * * * * * * 8 * 8 * * * * * 8 * * * * * * * * 8 * 8

Private Sub rnnuSet3Çlick()
' Parametcr Test Set 3 'Set the values in the text boxes

tx:kb.Text = "0.1" ' bending stiffness
txtmb.Text = " I " ' penalizq non-monotonic angles

fxteb.Tcxt = " 1"
txtpb.Text = " 10000" ' penalizes angles from going to O
txtks.Text = "0.1" ' stretching stiffness constant
txtcs.Text = "0.1" ' controls penalty for edge collapsing to a point
txtes.Text = "2" '
' Gct the values fmm thc text boxes
kb = CDbl(utkb.Text)
mb = CDbl(txtrnb.Text)

Code

e b = Val(txteb.Text)
pb = Val(txtpb.Text)
ks = CDbl(txtks.Tcxt)
CS = CDbl(txtcs.Text)
e s = Val(txtes.Text)

End Sub

.*******88**********8*88**8888888**8**********88*8********88*************

Private Sub picKey1-MouseDown(Button A s lnieger. Shift A s Integer. X As Single. Y As Single)
' Draws a line from the previous clicked point to the current clicked point.

If DrawPoly 1 = T m e Then ' Only allowed to draw a polygon if we haven't already
' opened a polygon in the f n m e

Y = picKey1 .Height - Y ' Switch the coordimte system so that
' y increases up

(f Key 1 FirstClick = True Then
Key 1 FirstClick = False
Key 1 Pts(Key 1 NumPts).X = X / 10 ' Decrease the values CO avoid overflow error.
KeyIPts(KeyINumPts).Y = Y / 10 ' They will r>e increascd back when we draw (in

' the vertex path routines).
Key1 N u m h s = Keyl NumPts + 1
picKey I .Circle (X. picKey I .Height - Y). 1. RGB(0, 0. 255)

Else
' When the point is drawn. must switch the coordinate
' system back so that the point is d n w n in the correct place
picKey1 L i n e (IO * Keyl Pts(Key1 NumPts - 1).X. ,

picKey1 .Height - (IO Key I Pts(Key1 N u m h s - l).Y)) -
-(X. picKey 1 .Height - Y)

Key 1 Pts(Key 1 NumPts).X = X / 10
Key 1 Pts(Key 1 NumPis).Y = Y / 10
Key I NumPts = Key 1 NumPts + 1

picKey 1 .Circle (X. picKey1 .Height - Y). 1. RGB(O.0. 255)
End If

End If
End Sub

..
Pnvate Sub picKey2-MouseDown(Button As Integer. Shift As Integer. X As Single. Y As Single)

If DrawPnly2 = Tme Then ' Only allowed to draw a polygon if we haven't already
' opened a polygon in the frame

Y = picKey2.Height - Y ' Switch the coordinate system so that
' y increases up

If Kcy2FirstClick = True Then
Key2FirstClick = False
Key2Pis(Key2NurnPts).X = X / 10 ' Decrease the values to avoid overflow. Increase
Key2Pts(Key2NumPts).Y =-Y 1 10 ' thcm back when we draw (in vertex path

' routines).
Key2NumPls = KeyZNumRs + 1
picKey2.Circle (X. picKey2.Height - Y). 1, RGB(O.O. 255)

Else
' When the point is drawn. must switch the coordinaie
' system back su that the point is drawn in the correct place
picKey2.Line (10 Key2Prs(Key2NumPts - l).X.,

picKey2.Height - (IO Key2Pts(KeyZNumPu - I).Y))- ,

Code

(X. picKcy2.Height - Y)
Kcy2Pts(Key2NumPts).X = X / 10
Key2Pts(Key2NumPts).Y = Y / 10
Key2NumPts = Key2NumRs + I
picKey2.Circle (X, picKey2.Height - Y). 1. RGB(O.0.255)

End If
End If

End Sub

~***
Public Sub MatchByOrderll)
A vertex correspondence method. Matches the venices based on the order in which they
arc clicked If one polygon has more vertices than the other. the additional venices in the
polygon wirh more venices are a11 mapped to the final venex of the polygon with fewer
verficcs.
N.B. Dcfinitely not the spiffiest vertex correspondence plan. but cenainly one

of the simpIest. 1 just coded this for testing purposes.
Dim 1 As Integer
NumPs = Key2NumPts
If Key 1 NumPts > Key2NumPts Then ' if polygon 1 has more vcnices than poIygon

' 2. then map the extra points of polygon I
' to the last vertex of pofygon 2

NumPts = Key 1 NumPLs
For I = Key2NumPts T o (Key 1 Numhs) Step 1

Key2Pts(l).X = Key2Pts(Key2NurnPts).X
Key2Pts(I).Y = Key2Pis(Key2NumPts).Y

Next 1
End If
If Key2NumPts > Key 1 NumPts Then

NumPts = Key2NumPts
For 1 = Key 1 NumPts To (Key2NumPts) Step 1

Key 1 Pts(l).X = Key 1 %(Key 1 NumPts).X
Key 1 Pts(I).Y = Key 1 Pts(Key 1 NumPts).Y

Next 1
End If

End Sub

..
Public Sub Linearlnterpolation()
' A Vertex Path Method. Takes a pair of corresponding vertices and uses linear
' interpolation to calculate the path travelled by a vertex 3s it morphs from one polygon
' into the other.

Dim 1 As Integer
Dim J As Integer
Dim Draw As Boolean
Dirn TernpPic As PictureBox
Dmw = False ' we only draw the in-between frames. We don? want

' to redraw the key frarnes.
' Calculate the step size to increment each of the x- and y- coords
' for each successive in-between image
For 1 = O To (NumPts) Step 1

KeyDifference(l).X = (Key2Pts(I).X - Key 1 Pts(I).X) I (NumInBetwecns + 1)

Code

KeyDifference(f).Y = (Key2h(l).Y - Key 1 Pts(l).Y) / (NumInBetweens + 1)
Next I

For 1 = O To (NumInBctwecns + 1) Step 1
' Determine the vertices for in-ktween f n m e I
For J = O T o (N u m h) Step 1

MorphPts(J).X = Key I Pts(J).X + ((KeyDiffercncc(J;.X) I)
MorphPts(J).Y = Key 1 Pts(J)-Y + ((KeyDifference(J).Y) * 1)

Ncxt J

' Draw the Iines in the appropriate picturc box
' Note chat the coord systcm is switchcd back for drawing

Select Case 1
Case I

Set TempPic = picMorph 1
Dnw = Tnie

Case 2
Set TempPic = picMorph2

Dnw = Tme
Case 3

Set TernpPic = picMorph3
Dnw = True

Case 4
Set TempPic = picMorph4

D n w = T N ~
Case 5

Set TernpPic = picMorph5
Dnw = Tme

End Select
If Draw Then

For J = 1 To (NurnPts) Step 1
TernpPic.Line (1 O MorphPts(J).X.,

TempPic.Height - (10 MorphRs(J).Y)) -
-(IO MorphPts($ - 1)-X. -
TernpPic-Height - (10 * MorphPts(J - l).Y))

Ncxt J
End If
Draw = Fdse

Next 1
End Sub

b * * * L * * * * 8 * t * * * * # * t 8 * * * * + t * t l * 8 * * I * * * 8 t O * L t * 1 * * 8 * * * * * * 8 * * * * * * * * * * * * * * * *

Public Sub LeastWorkMatching()
' Determines the venex correspondence between the two key frames chat will result in
' the least amount of work to morph from one image to the other.
' This method considcn the polygon edges to be made of bendable. streichable wire.
' and determines the work need to stretçh and bend the wire edges of polygon 1 into
' polygon 2.
' Uses a graph theory solution to determine the least work "path" and then does a
' back track through this "graph" to find the least work matching.

* BackTrackList keep track of the graph venices (IJ) that correspond to one

Code

' another o n the Ieast work path. BackTnckList is defined as type "Coords".
' but is not resilly made of polygon vertex coordinates. Rathcr. the (X.Y)
' coordinates arc actually the (1.J) vertices of the least work gnph-
Dirn BackTmckList() As Coords
if Kcy2NumPts > Key 1 NumPts Then

NumPts = Key2NumPts
Else

NumPts = Key 1 NumPts
End I f
ReDim BackTnckList(Key 1 NumPts + Key2NumPts) As Coords

' WBack keeps tmck of the amount of work rcquired to get to
' graph venex (1 J) from the graph venex (1-1J)
Dim WBack() As Integer
RcDim WBack(Key 1 NumPts. Key2NumPts) As lnteger

' WUp kecps crack of the amount of work required CO get
' to gnph venex (IJ) from the graph vertex (IJ-1)
Dirn WUp() As Integer
ReDim WUp(Key 1 NurnPts. Key2NumPts) As Integer

' WDiag keeps t n c k of the amount of work required to gct
' to graph venex (IJ) from the g n p h venex (1- 1 J- 1)

Dim WDiagO As Integer
ReDim WDiag(Key 1 NumPts. Key2NumPts) As Integer

Dirn 1 As Integer
Dirn J As lnteger
' The polygon files should be stored carefully. since the program
' automatically matches the first vertices to each other.

WBack(O.0) = 0
WUp(0. O) = 0
WDiag(O.O) = 0

For 1 = 0 To (Key 1 NumPts) Step 1
For J = O To (Key2NumPts) Step 1
'Notc: If I=0 and J o O then we can only cdculate WUp

I f l = O A n d J = l Then
WUp(1, J) = Stretch(KeyIPts(1). Key2Pts(J - 1). ,

Key1 PM). KeyZRsU)) + ,
Minimurn(WUp(1. J - 1) + Bend(Key IPts(1). -

Key2Pts(Key2NumRs - 1). ,
Key 1 PtsO). Key2P~s(J - 1). -
Key 1 PW). Key2PWJN. -

WDiag(1. J - 1) + -
Bend(Key 1 Pts(Key 1 NumPts - 1). -
Key2PLs(KeyZNurnPts - 1). -
Key 1 Pt$[), Key2Rs(J - 1). ,
Key 1 PMI). Key'LRs(l)))

WBack(1. J) = 15000 ' Initialize WBack and WDiag to some
WDiag(1.J) = 15000 ' large number so that we don't think

Code

Key2Pts(KeyZNumPts - 1). ,
Key I Pts(1 - 1). KeyZh(J), ,
Key 1 hs(1). Kcy2Pts(JN)

WUp(1. J) = 15ûûû
WDiag(1. J) = 15000

End If
t f I = 1 A n d J = 1Then

WBack(i. J) = Stretch(KeylPts(1 - 1). Key2Pts(J). ,
Key 1 Rs(l), Key2Rs(J)) + -

Minimum(-
WBack(1- 1. J) +,

Bend(Key 1 PIS{ Key 1 NumRs - 1). -
Key2frs(J), Key i k (l - 1). -
Key2PMJ). Key I Pts(T). -
Key2Prs(J)). ,

WDiag(1- 1. J) + ,
Bend(Key 1 Prs(Key 1 N u m k - 1). ,

KeyZPLs(J - 1). Key 1 Pts(1 - 1). -
Key2Pts(J). Key 1 Pts(1). -

KeyZRs(J)) ,
) ' end of Minimum parameters

Minimum(-
WUp(1.J- l)+ ,
Bend(Key IPts(l), ,

Key2Pts(KeyZNumPts - 1). ,
Key 1 h o) , Key2Prs(J- I). -
Key 1 R N) , KeyZPts(l)), -

WDiagO. J - 1) + ,
Bend(Key 1 Pts(1- I), -

Key2Prs(Key2NumPts - 1). -
Key 1 h (1) . Key2Pts(J - 1). -
Key 1 Pts(1). KeyZPts(l)) ,

) ' end of Minimum Panmeters

WDiag(1. J) = Stretch(KeylPts(1 - 1). Key2Pts(l- 1).
Key 1 RsO), Key2WJ)) + -

MinOO(,
WUp(i-1.J- l) + ,
Bend(Key 1 hs(1- 1). ,

Key?Fts(KeyZNumPts - 1). ,
KeylPts(1- 1). KeylPts(J - 1). -
Key I Rs(h Key2Pts(l)). ,

Code

KeyZPts(Key2NumRs - 1). -
Key 1 Pts(1- 1). Key2Prs(J - 1), ,
Key 1 Pts(1). KeyZPts(l)). -

WBack(1- 1.J - I)+ -
Bend(Key 1 Rs(Key 1 NumRs - 1), -

Key2Pts(J - l), Key lRs (l - 1), ,
Key2Pts(J - 1). Key 1 Pts(1). -

KeyîPts(J)),
) ' end of MinOf3 Parerneters

End [f
I f I > L A n d l > 1 Then

WBack(1. J) = Strctch(Key 1 Pts(1 - t). Key2Pts(O. ,
Key 1 Pts(1). KeyZPls(J)) + -

Minimum(,
WBack(1- 1. J) + -

Bend(Key I Rs(I - 2). -
KeyZPts(J). Key I Pts(1- 1). -
Key2Rs(J). Key 1 Pts(l). -

Key2Pts(J)). ,

WDiag(1- 1. J) + -
Bend(Key 1 Pts(1- 2). -

Key2Pts(J - 1), Key 1 Pts(1- 1). ,
Key2FWJ1, Key 1 R N) , _

Key2Rs(J))-
) ' end of Minimum parameters

WUp(1. J) = Suetch(Key 1 Pts(1). Key2Rs(J - 1). -
Key 1 Prs(1). Key2RNl)) + -

Minimum(,
WUp(1.J- l) + -
Bcnd(Key 1 PMI). -

KeyZRs(J - 2). -
Key 1 FWI), Key2FWJ - 1). -
Key 1 Key2Wl)) , -

WDiag(1. J - 1) + -
Bend(Key 1 Pts(l- 1). ,

Key2Rs(J - 2). -
Key I Prs(l). K e y 2 P W - 11, -
Key 1 RsO, Key2PWH ,

) ' end of Minimum Parameters
WDiag(1. J) = Strctch(Key 1 Rs(1- 1). Key2Rs(J - 1). -

Key 1 Rs(0, Key2WJ)) + -

Code

WDiag(1- 1.J- I I + -
Bend(Key 1 Rs(I - 2). ,

Key2Rs(J - 2). -
KeylFb(1- 1). Key2Pts(J - l), -
Kcy 1 Pts(1). Key2FWJ)). ,

WBack(1- 1.J - l) + ,
Bend(Key1 Pts(I - 2). ,

Key2PtN - 1). Key 1 Pts(l - I). -
Kcy2Rs(J - 1). Key 1 Pts(l), ,

Key2mJ)) -
) ' end of Minof3 Paremeters

End If
Next J

Next 1

' now backtnck to find the path.
' The first point of BacKTnckList is the final graph vcnex
' i.e. [Key 1 NumPts- 1. Key2NumPts- l] (note that the very Irist vertices
' (the duplicate first points that close up the polygons) are automatically
' matchcd to each other
BackTrackList(O).X = Key INumPts - 1
BackTrackList(O).Y = Key2NurnPts - 1
Dim TempX As Integer
Dim TempY As lnteger
Dim CurrKey 1 Pt As Integer
Dim CurrKey2Pt As Integer
Dim NümBackTrackPts As lnteger
NumBackTnckPts = 1
CurrKcy 1 Pt = BackTnckList(O).X
CurrKey2Pt = BackTrackList(O).Y
I = I
' Find the previous graph vertex that require. the l e s t amount of work, and
' choose that one as the next vertcx in the backtrack Iist.

Do While (CurrKeyl Pt >= O) And (CurrKeyZPt >= O)
TempX = BackTnckList(1- 1).X
TempY = BackTrackList(1- I).Y
If WBack(TempX. TempY) <= WUpflempX. TempY) And,

WBack(TempX, TempY) <= WDiagflempX. TempY) n ien
CurrKey 1 Pt = BackTrackList(1- 11.X - 1
CurrKcy2Pt = BackTrackList(1- 1).Y

End If
If WUpflempX. TempY) < WBackTernpX, TempY) And,

WUp(TcmpX. TernpY) c= WDiag(TempX. TcmpY Then
CurrKey 1 Pt = BackTrackList(1- 1).X
CurrKey2Pt = BackTrackList(1- I).Y - 1

End If
If WDiag(TempX, TempY) < WBackflempX. TernpY) And,

WDiagflempX. TernpY) < WUpCTempX. TcmpY) Then
CurrKey1 Pt = BackTrackList(1 - I).X - 1
CurrKeyZPt = BackTrackList(1- 1).Y - 1

End If

Code

BackTrackList(I).X = CurrKey 1 Pt
BackTnckList(I).Y = CurrKey2R
NumBackTnckPts = NumBackTnckPLs + 1
I = I + 1
If CurrKey 1 Pt = O And CurrKey2Pt = O n i e n

Exit Do
End If

ho?'
Dim TempKey l Pts() As Coords
ReDim TempKey 1 Pts(Key 1 NumPts + Key2NumPu) As Coords
Dim TernpKey2PtsO As Coords
ReDim TempKey2Pts(Kcy1 NurnPts + Key2NurnR.s) As Coords
' copy the points in reverse order into a new iist
For 1 = 0 To (NumBackTrackPu - 1) Step 1

TempKey 1 Pts(NumBackTrackPts - 1 - I).X = Key l Pts(BackTrackList(I).X).X
TempKey 1 Pts(NumBackTnckPts - I - I).Y = Key 1 Pt.s(BackTrackList(I).X).Y
TempKey2Pts(NumBackTrackPts - 1 - I).X = Key2Pts(BackTnckList(I).Y).X
TempKey2Pts(NumBackTrackPts - 1 - [).Y = Key2Pts(BackTnckList(I).Y).Y

Next 1
' And reassign these points to the old list of vertices.
' Now. Key 1 Pts(k) corresponds to KeyZPts(k).
' Note that Key lPts and KeyZPts now contain the samc number of
' vertices
For 1 = O T o (NumBackTrackPts - 1) Step 1

Key 1 Pts(I).X = TempKey 1 Rs(I).X
Key 1 hs(I).Y = TempKey 1 Pls(I).Y
Key2Pts(I).X = TempKeyZPis(I).X
Key2Pts(I).Y = TempKeyZRs(I).Y

Next 1

' Make sure the polygon is closed
Key 1 Pts(NumBackTrackPts).X = Key 1 Pts(O).X
Key i Pts(NumBackTrackPts).Y = Key 1 Pts(O).Y
Key2Pts(NumBackTrackPts).X = Key2Pts(O).X
Key2Pts(NumBackTrackPts).Y = KeyZPts(O).Y
' Need a new NumPts. since now many vertices may have b e n
' duplicated. so we now may have more vertices than before
NumPts = NumBackTnckPts

End Sub

'********8**88**8*8***888**88*88***8+*8**8888*8**8*8*88888*~8~*8priv~t~

Function Length(P0 As Coords. Pl As Coords) As Double
' Accepts two 2D points as input.
' Calculates and returns the Euclidean distance between the two points

Length = Sqr(((P1.X - Pû.X) *.(PI .X - P0.X)) + ((PI .Y - F0.Y) (PI .Y - P0.Y)))
End Function

Function Bend(I0 As Coords. JO As Coords. 11 As Coords, JI As Coords, 12 As Coords, 12 As
Coords)
' AccepCs six 2D points. Calculates and rtturns the amount of bending work required to
' convcrt the line segments 10-11-12 IO the line segments JO-JI-J2

Code

Dirn FO As Coords ' Vector from II to 12
Dirn FI As Coords ' Vector from J 1 to 12
Dirn BO As Coords ' Vecior from 10 to II
Dirn B 1 As Coords ' Vector from JO to J I
Dirn XO As Double ' determincd from the above vectors.
Dirn X 1 As Double ' and used as coordinates of the conlrol
Dirn X2 As Double * points of a Bezier curve of degree 2.
Dirn Y0 As Double
Dirn YI As Double
Dirn Y2 As Double
Dirn QO As Coords ' Control pinCs of a Bezier curve of
Di rnQlAsCoords 'degree2.
Dirn 4 2 As Coords
Dirn DO As Double
Dirn Dl As Doublc
Dirn D2 As Double
Dim DeltaTheta As Double ' Change in angle from polygon 1 Co

' polygon 2, in radians
Dirn DclraThetaStar As Double ' Deviation from monotonicity. in ndians
Dirn Ongin As Coords
Dirn PosXAxis As Coords
Dim NegXAxis As Coords
Dirn PosYAxis As Coords
Dirn NegYAxis As Coords
Dim AIpha As Double ' the angle of deviation (if any) of Q2
Dim Beta As Double ' the angle of deviation (if any) of QO

F0.X = 12.X - I1.X
F0.Y = 12.Y - II .Y
FI .X = J2.X - J 1 .X
F1.Y = J2.Y - I1.Y
B0.X = 1O.X - I l .X
B0.Y = 1O.Y - I I .Y
B1.X = J0.X - J1.X
B1.Y = J0.Y - J1.Y
XO = Dot2DFO. BO)
X 1 = (Dot2D(Fl. BO) + DodD(F0. B 1)) / 2
X2 = DoQD(F1, B 1)
Y0 = Cross2D(FO, BO)
Y 1 = (Cross2D(Fl. BO) + CrossZD(F0. B 1)) / 2
Y 2 = Cross2D(F1, B 1)

Code

If (D 1 Di - DO * D2) c O And TriangleContainsOrigin(Qû. QI . 4 2) Thcn
DeltaTheta = 2 * PI - Abs(AngIeFromXAxis(Q0) - AngleFrornXAxis(Q2))

Else
DeltaTheta = Abs(AngleFromXAxis(Q0) - AngieFromXAxis(Q2))

End If

Alpha = O ' If the angle changes non-monotonically, we musc
Beta = O ' determine how far away we are from non-monotonicity.

' Alpha represents the angle of deviation (if any) of 42 and Beta
' represent the angle of deviation (if any) of QO. Alpha + Bcta
' gives the total amount O fdeviation. and is called DeltaThetastar

Dirn t 1 As lnteger
Dirn t As Double
Dirn QtX As Double
Dirn QtY As Double

' Below. we find the amount of deviation (if any) from the rnoriotonicity.
' Also, Theta goes to zero if and only if Q(t) crosses the positive x-axis. so we
' take the opponunity to figure this out at the same t h e .

Di rn ThetaGoesToZero As Boolean
Dirn OneSide As Boolean
Dirn OtherSide As Boolean
Dirn ListOfAngles(100) As Double ' in rads
Dirn Qt(100) As Coords
Dirn TCross As Integer
Thetd3esToZero = False
OneSide = False
OtherSide = False
For t 1 = O To 100 Step 1

t = t 1 / 1 0 0
QtX=QO.X*(l-t)*(l-t)+Q1.X8(I-t)*2*t+QZX*t*t
QtY=QO.Y8(I - t) * (l - t)+Q1.Y8(1 - t) * 2 * t + Q 2 . Y * t 8 t
Qt(t 1).X = QtX
Qt(t 1).Y = @Y
ListOfAngles(t 1) = AngleFromXAxis(Qt(t 1)) If t l > O Then

If Qt(tl).X > O And Qt(t1 - I).X > O Then
If SignOf(Qt(t l).Y) O SignOf(Qt(t1 - 1).Y) Then

TCross=t1
End If

End If
End If

Code

If QtX > O And QtY c O Then
Ondide = Tme

End If
If QtX > O And QtY >= O Thcn

OtherSide = True
End f f

Next t 1

If OncSide = Tme And OtherSide =Truc Then
ThetaGocsToZero = True

End If

Dim TMinAngfe As Double
Dirn TMaxAngle As Double
TMinAngle = O
TMixAngle = O
1 f ThctaGoesToZero Then

If ListOfAngles(100) > ListOfAngIesiO) Then
For t 1 = O To TCross Step 1

If ListOfAngles(t1) > ListOfAngles(TMaxAngle) Then
TMaxAngle = t 1

End If
Next t 1
For t 1 = TCross To 100 Srep 1

If ListOfAngles(t1) < ListOfAngles(TMinAng1e) Then
TM inAngIe = t 1

End If
Next t l
Alpha = L i s t O f A n g l e s ~ a x A n g l e) - ListOfAngles(0)
Beta = ListOfAngles(100) - ListOfAnglesfJMinAngle)

Else ' if ListOfAngles(100) c ListOfAngles(0)
For t 1 = O To TCross Step 1

If ListOfAngles(t1) < ListOfAngles(TMinAng1e) Then
TMinAngle = t 1

End If
Ncxt t 1
For r 1 = TCross T o 100 Step 1

If ListOfAngles(t 1) > ListOfAngles(TMaxAng1e) Then
TMaxAngle = t 1

End If
Next t 1
Alpha = ListOfAnglesCfUaxAngle) - ListOfAngles(100)
Beta = ListOfAngles(0) - ListOfAngles(TMinAngle)

End If
Elsc

For t l = O T o 100 Step 1
If ListOfAngles(t1) > ListOfAngles(TMaxAng1e) Then

TMaxAngle = t 1
End If

If ListOfAngles(t1) < L i s t O f A n g l c s ~ i n A n g l e) Then
TMinAngle = t 1

End If
Kext t 1

Code

1 f ListOfAngles(100) > ListOfAngles(0) Then
Alpha = ListOfAngles(TMaxAng1c) - ListOfAngles(l00)
Beta = ListOfAngles(0) - ListOfAngles(TMinAng1e)

EIse
Alpha = ListOfAngles(100) - ListOfAngles(TMinAng1e)
Beta = ListOfAngles(TMaxAngie) - ListOfAngles(0)

End If
End If
DeltaThetastar = Alpha + Beta If TheiaGoesToZero = False Thcn

If Abs(De1taTheta + rnb * DeluThetaStar) c Epsilon Then
Bend = O

Elsc
Bcnd = kb * Exp(eb Log(De1taTheta + mb + DeltaThetaSras))

End If
Else

If Abs(DeltaTheta + mb DeltaThetastar) < Epsilon Then
Bend = pb

EIse
Bend = (kb (Exp(eb * (Log(DeltaTheta + mb * DeltaThetaStâr))))) + pb

End If
End If

End Function

.***
Private Function Streich(l0 As Coords, JO As Coords. Il As Coords. J I As Coords)
' Accepts four 2D points. Calculates the stretching work used in morphing
' t h e line segment 10-1 1 to Iine segment 10-1 1.

Dim LO As Double ' length of segment from vertex II to vertex 10
in the first fmme

Dim L1 As Double ' Iength o f segment from vertex J 1 to vertex JO
' in the second f n m e

LO = Length(l1, IO)
LI = Length(J 1. JO)
If Abs((l - CS) Minirnurn(L0. L1) + CS Maximum(L0. LI)) < Epsilon Then

Stretch = 15000
Else

If Abs(L1 - LO) < Epsilon Then
Stretch = O

Else
Stretch = (ks Exp(es (Log((Abs(L1 - LO)))))) / ((1 -CS) * Minimum(L0. LI) -

+ CS Maxirnum(L0. LI))
End If

End I f
End Function

Code

Private Function Cross2D(A As Coords. B As Coords)
' Accepts two 2D points and returns the determinant

Cross2D = A.X B.Y - A-Y * B.X
End Function

* f * ~ i * * 8 8 * * * 8 * 8 8 8 8 * 8 * 8 + * * * * * 8 * * * 8 ~ 8 8 * 8 * 8 8 * * * 8 8 * 8 ~ * * * * 8 * * * * * ~ ~

Private Function TfiangleContainsOngin(Q0 As Coords, Q1 As Coords. 42 As Coords)
' Accepts three points Lo be vertices of a triangle. Retums Txr if this triangle contains
' the origin and False othenvise.

Dirn AX 1 As Boolean
Dirn AX2 As Boolean
Dirn AX3 As Boolean
Dirn AX4 As Boolean
Dirn B As Integer
Dirn XInt As Integer
' scgmcnt 1 of the triangle
If Abs(Q 1 .X - Q0.X) c Epsilon Then

B=O
Else

B sQ1.Y -Ql .X *((QI.Y -QO.Y)/(QI.X-Q0.X))
End If
If Abs(Q 1 .Y - @.Y) < Epsilon Then

XInt = O
Else

XInt = QI-X - Q1.Y * ((Q1.X - Q0.X) / (Q1.Y - QO-Y))
End If
f f B > O And (SignOf(Q1 .X) o SignOf(Q0.X)) Thcn

AX L =Tme
End If
If B < O And (SignOf(Q1 .X) O SignOf(Q0.X)) Then

AX3 = True
End If
If XInt > O And (SignOf(Q

AX2 = Tme
End If
If Xlnt c O And (SignOf(Q

AX4 = Tme
End If
' segment 2
If ~ b s (~ 2 . x - Q I .X) c Epsilon Then

B=O
EIse

B = Q2.Y - Q2.X * ((Q2.Y - Q 1 .Y) / (Q2.X - Q1 .X))
End If
If Abs(Q2.Y - Q1.Y) < Epsilon Then

Xlnt = O
Else

XInt = Q2.X - Q2.Y ((Q2.X - Q I .X) / (Q2.Y - Q1 .Y))
End If
If B > O And (SignOf(Q2.X) O SignOf(Q 1 .X)) Then

AXI = Tme
End If

Code

I f B c O And (SignOf(Q2.X) O SignOf(Q 1 .X)) Then
AX3 = Tme

End If
If XInt > O And (SignOf(Q2Y) O SignOf(Q1 .Y)) Then

AX2 = Tme
End If
If XInt c O And (SignOf(QZ9i') O SignOf(Q1 .Y)) Then

AX4 = Truc
End 1 f
' segment 3
I f Abs(Q0.X - Q2.X) c Epsilon Then

B = O
Elsc

B = @.Y - Q0.X ((@.Y - Q2.Y) / (Q0.X - Q2.X))
End If
If Abs(Q0.Y - Q2.Y) c Epsilon Then

XInt =O
Else

XInt = QO-X - Q0.Y * ((Q0.X - Q2.X) / (@.Y - Q2.Y))
End If
1 f B > O And (SignOf(Q0.X) O SignOf(Q2.X)) Then

AX 1 =Tme
End If
If B c O And (SignOf(Q0.X) O SignOf(Q2.X)) Then
AX3 = True

End If
If XInt > O And (SignOf(Q0.Y) O SignOf(Q2.Y)) Then

AX2 = True
End 1 f
If Xlnt c O And (SignOf(Q0.Y) O SignOf(Q2.Y)) Then

AX4 = Tme
End If
If AX 1 = True And AX2 = True And AX3 = True And AXJ = True Then

TriangleContainsOrigin = True
EIse

TriangleContainsOrigin = False
End If

End Function

'*******8******8*8************+l*8*88****8********88***8**

Public Function SignOf(X As Double)
' Accepts a number and returns uuc if ihe number is positive and false if the number is negaiive.

If X >=OThcn
SignOf = True

Else
SignOf = False

End If
End Function

Private Function AngIeFromXAxis(Q As Coords)

Code

' Calculrites the positive angle in rads h m the positive x-axis to the point Q
' I f Q = Origin o r Q lies on the positive x-axis. then definc the angle to be PI
If (Q.X >= O And Q.Y =O) Thcn

AngleFromXAxis = PI
Else

Dirn C As Double
Dirn A As Double
Dirn B As Double
Dirn Origin As Coords
Dirn PosXAxis As Coords
Dim QuadQ As lntcger
0rigin.X = O
0ngin.Y = O
PosXAxis-X = 1
PosXAxis-Y = O
C = Length(0rigin. Q)
A = kngth(Q, PosXAxis)
B = l
QuadQ = Quadrant(Q)
If Abs(2 * C * B) < Epsilon Then

AngleFromXAxis = O
Else

If QuadQ = I Or QuadQ = 2 Then
AngleFromXAxis = ArcCos((B B + C C - A * A) / (2 * C * B))

Else 'if QuadQ = 3 or Quad! = 4
AngleFromXAxis = 2 * PI - ArcCos((B * B + C C - A * A) / (2 * C B))

End If
End If

End If
End Function

. * * * * & * * * * S * * 8 8 t * * % * * * * * 8 8 L 8 8 * * * 8 8 * 8 8 * 8 * * * 8 8 * * * * * * * 8 *

PubIic Function ArcCos(X As Double)
' Takes a number and retums the ArcCos of that number.

If Abs(X) < 1 + Epsilon And Abs(X) > 1 - Epsilon Then
ArcCos = O

Else
ArcCos = Am(-X / Sqr(-X X + 1)) + 2 Atn(1)

End If
End Function

Public Function Minirnum(A As Double. B As Double)
' Takes two numbers (doublc) and retums the minimum of the two.

I f A > B T h e n
Minimum = B

Else
Minimum = A

End If
End Function

Code

Private Function Quadnnt(Q As Coords)
' Tnkes a point (&y) and retums the quadrant in which the point lies,

If Q.X >= O And Q.Y >=O Then
Quâdran: = 1

End If
If Q.X >= O And Q.Y < O Then

Quadnnt = 4
End If
If Q.X c O And Q.Y >= O Then

Quadnnt = 2
End If
If Q.X <O And Q.Y < O Then

Quadrant = 3
End If

End Funcrion

Public Function MinOf3(A As Double, B As Double. C As Double)
' Takcs three numkrs (double) and returns the minimum of the three

I fAc=BAndA<=CThen
MinOf3 = A

End If
I f B c A A n d B c - C T h e n

MinOD = B
End If
I f C c A A n d C < B T h e n

MinOf3 = C
End If

End Function

Public Sub EdgeLengthInterpolation()
' Does the same thing as linear interpolation

Dirn 1 As Integer
Dirn t As lnteger
Dirn E 1 (100) As Coords ' the x and y coords to get frorn the
Dirn E Z (l 0) As Coords ' previous point to the next point
Dirn E(100) As Coords
Dim TernpPic As PictureBox
Dim Draw As Boofean
D n w = False
For 1 = 0 To (NumPts) Step 1

E 1 (I).X = Key 1 PrsO + 1).X - Key l Pts(I).X
El ([).Y = Key 1 hs(1 + 1).Y .- Key 1 Pts(I).Y
E2(I).X = Key2Pts(I + l).X - Key2Rs(I).X
EZ(I).Y = Key2Pts(I + I).Y - Key2hs(I).Y

Next 1
Dirn t 1 As Double
For t = O To (NumInBetwccns + 1) Step 1

t 1 = t / (NudnBetweens + 1)
For 1 = 0 To (NumPts) Step 1

Code

E(l).X = (1 - t 1) * El (I).X + t 1 E2(I).X
E(I).Y = (I - t 1) EI(l).Y + t 1 E2(I).Y

Next 1
For 1 = 0 To (NumRs) Step 1

If 1 = OThen
MorphPts(l).X = Key l Pts(O).X
MorphPts(l).Y = Key I Pts(O).Y

Else
MorphPts(I).X = MorphPts(1 - I).X + E(1 - I).X
MorphPts(I).Y = MorphPts(1 - I).Y + E(I - I).Y

End If
Next 1

Select Case f
Case1

Sct TempPic = picMorph1
Draw = True

Case 2
Set TernpPic = picMorph2

D n w = True
Case 3

Set TempPic = picMoph3
Draw = True

Case 4
Set TempPic = pichlorph4

D n w =True
Case 5

Set TempPic = picMorph5
Draw = True

End Select

If Draw Then
For 1 = 1 T o (NurnPts) Srep I

TempPic-Line (IO * MorphPts(l).X, -
TempPic-Height - (10 * MorphPts(I).Y)) -

-(1 0 * MorphRs(1- 1).X, -
TempPic-Height - (IO * MorphRs(1- !).Y))

N a t 1
End If
Draw = False

Next t
End Sub

. . . - . - . - . .

Public Sub IntrinsicInterpolati~nO
Dirn 1 As lnteger
Dirn cl As Integer
Dim t As Double
Dirn Thetal(100) As Double ' Angles between edges of polygon 1
Dirn ThetaZ(100) As Double ' Angles between edgcs of polygon 2
Dirn LI (100) As Double ' Lengck of the edges of polygon 1
Dirn L2(100) As Double ' Lcngth of the cdgcs of polygon 2

Code

Dirn Alpha 1 As Double * Alpha for polygon 1
Dim Alpha2 As Double ' Alpha for polygon 2
Dirn AIpha(100) As Double 'This is the Alpha for the in-between frarnes
Dirn Theta(100) As Double ' Thcta for the in-between trames
Dim L(100) As Double ' Edge Lengths for the in-between frames
Dim v l As Coords
Dirn v2 As Cootds
Dirn vCrossProd As Double
Dirn TempPic As PictureBox
Dirn Draw P.s Boolean
Draw = False
' Detennine the angle Thcta between an cxtcnded cdge and the next edge.
' We find the cross product t o see if the edges fonn a convex or concave
' pan of the polygon (This affects the way in wnich theta is calcuIated
Dirn Done As Boolean
Dirn Templnt As lnteger
For 1 = 1 T o (NumPts - 1) Step 1

If ((Key 1 Rs(I).X = Key 1 Pts(1 + 1).X) And -
(Key 1 Pts(I).Y = Key 1 Pts(1 + 1).Y)) And ((Key l Pts(I).X O Key 1 Pis([- l).X) ,

Or (Key 1 Pts(l).Y o Key 1 Pts(1 - 1).Y)) Thcn
Donc = Falsc
Tcmplnt = 1 + 2
Whilc Not Done

If (Key lPts(TempInt).X O Key l Rs(I).X) O r (Key l Pts(Templni).Y O Key 1 Pts(l).Y) Then
Do ne = Tme

€Ise
TempInt = TempInt + 1

End If
Wend

v 1 .X = Key 1 Pts(TempInt).X - Key IPts(l).X
VI .Y = Keyl Pts(TempInt).Y - Key lPts(I).Y
v2.X = KeylPts(I).X - KeylRs(1- 1).X
v2.Y = KeylPts(I).Y - KeylPts(1 - 1).Y
vCrossProd = Cross2D(vl. v2)
If vCrossProd > Epsilon Then

Thetal (1) = PI - 0.5 Angle(Key1 k (l - 1). Keyl Rs(I), Key lPts(Temp1nt)) - (PI / 2)
Else

If vCrossProd < -Epsilon Then
ThetalO) = -(PI - 0.5 Angle(Key IPls(1- 1). KeyLPts(1). Kcy 1 k(Temp1nt)) - (PI / 2))

Else
Thetal(1) = O ' this should never occur

End If
End If

Else
If (Key IPts(1- I).X = ~ e i 1 P&(I).x) And (Key lPu(1- 1).Y = Key l&(I).Y) -
And (Key l Rs(I).X = Key 1 k (1 + l).X) And (Key 1 Pts(1j.Y = Key 1 k (l + 1).Y) ,

Then
Theta l(1) = 0

Else
If (KeylPuO - 1).X = KeylPts(l).X) And (K e y l h O - I).Y = Keyl Pts(I).Y),
And ((Key lPts(I).X O KeylPts(I+ I).X) Or (KeylPls(l).Y o KeyIPts(I+ !).Y)) Then

Done = False

Code

TempInt = 1 - i
Whiie Not Done

If (Key1 Pts(Templnt).X O KeyIPts(1- I).X O r -
Key IPts(Templnt).Y o KeylPts(1- I).Y) Then

Donc = TNe
Else

TcrnpInt = Tcmplnt - 1
If TempInt = O Thcn

Done = Tnie
End If

End If
Wend
Theta l(1) = Theta I (Ternpint + 1)

Elsc ' al1 points are distinct
v 1 .X = Key 1 Pi41 + 1).X - Key 1 Pis(I).X
v1.Y = KeylPts(1 + l).Y - KeyIPis(I).Y
v2.X = KeylPts(I).X - KeylRs(1- 1).X
v2.Y = Key lPts(l).Y - KeyIRs(1- 1).Y
vCrossProd = Cross2D(v 1. v2)
If vCrossProd > Epsilon Then

ThetaI(1) = PI - Angle(Key1 Rs(1 - 1). Key 1 Pts(1). Key IPts(1 + 1))
Eise

If vCrossProd c -Epsilon Then
Theta l(1) = -(PI - Angle(Key 1 Pts(1- 1). Key 1 Pts(1). Key 1 h s (1 + 1)))

Else
Theta 1 (1) = O

End If
End If

End If
End If

End If
If (Key2Pts(I).X = Key3Pts(I + I).X) And (Key2Pts(I).Y = KeyZPts(1 + I).Y) ,

And ((KeyLPts(I).X O Key2Pis(l - l).X) O r (Key2Pts(I).Y O Key2Pts(I - {).Y)) Then
Done = FaIse
TempInt = 1 + 2
WhiIe Not Done

If (Key2Pts(TernpInt).X o Key2Pts(I).X) O r (KeyZPts(Tcmplnt).Y O KeySPts(I).Y) Then
Done = TNe

EIse
Ternplnt = TempInt + 1

End If
Wend

V I .X = Key2PtsflempInt).X - Kcy2Prs(I).X
VI .Y = Key2Pts(TempInt).Y - KeyZRs(l).Y
v2.X = KcyZPts(l).X - Key2Pts(l- I).X
v2.Y = KeyZPts(I).Y - KeyZRs(1- I).Y
vCrossProd = Cross2D(v 1, v2)
If vCrossProd > Epsilon Then

Theta2(I) = PI - 0.5 Angle(KeyZPts(1 - 1). Key2Rs(i). KeyZRs(Temp1nt)) - (PI / 2)
Else

If vCrossProd < -Epsilon Then

ThetaZ(1) = -(PI - 0.5 Angle(Key2Pts(I - 1) . KeyZPts(1). KeyZRs(Temp1nt)) - (PI / 2))

Code

Else
nieta2(1) = O ' this occurs whcn pts lie dong a straight Iine

End If
End If

Else
If (KeyZPts(1 - 1).X = Key2Pts(l).X) And (Key2Rs(I - l).Y = Key2Pts(I).Y),

And (Key2Pts(I).X = Key2Pts(I + 1).XI And (KeyZPis(I).Y = K c y 2 h (I + !).Y) Then
Theta2(1) = O

Else
If (Key2Pts(I - I).X = Key2Pts(l).X) And iKey2Pts(l- I).Y = KeyZPts(I).Y) -

And ((Key2Rs(l).X o Key2Pts(I + I).X) Or (Key2Pts(I).Y O Key2Pts(I + l).Y)) -
ï h c n

Done = Fdse
Templnt = I - 1
While Not Done

If (Key2Rs(Templnt).X O Key2Pts(l- I).X Or -
Key2Pts(Tempht).Y O Key2As(l- 1).Y) Then

Dont = True
Else

Templnt = Templnt - 1
If Templnt = O Then

Done = Tme
End If

End If
Wend
Theta2(I) = Thetal(Temp1nt + 1)

Else ' a11 points are distinct
v 1 .X = KeySPts(1 + 1).X - Key2Pts(l).X
v1.Y = Key2Prs(I + 1).Y - Key2Pts(l).Y
v2.X = KeyZPts(I),X - KeyZPts(1 - I).X
v2.Y = Key2Pts(I).Y - Key2Pts(I - l).Y
vCrossProd = CrossZD(v 1. v2)
If vCrossProd > Epsilon Then

Theta2(1) = PI - Angle(KeyZPts(1 - 1). Key2Pts(I), KeyZPts(1 + 1))
Else

If vCrossProd c -Epsilon Then
ThetaS(1) = -(PI - Angle(Key2Pts(I - 1). Key2Pts(l). Key2Prs(I + 1)))

E k
Thefaî(1) = O

End If
End If

End If
End If

End If
Next 1
For 1 = 0 T o (NurnPts - 1) step'l

a Find the lengths of al1 edges of the polygon
L l(1) = Length(Key 1 Pts(1 + 1). Key 1 PM))
L2(1) = Length(KeyZPts(1 + 1). Key2PWi))

Next l
Dim AxisPt As Coords

' Calculate the angle between the horizontal line thmugh the anchor point

Code

' and the first edge of the polygon
AxisPt-X = Key l Pts(O).X + 1
AxisPt-Y = Key l Pts(O).Y

' find the next distince venex following the initial venex - - = False
TcmpInt = 1
While Not Done

If (Key 1 Pts(O).X = Key lPts(TempInt).X) And (Key 1 Pts(O1.Y = Key I PWTempInt).Y) Then
Templnt = Templnt + 1

Else
Done = Tme

End t f
Wcnd
Alpha 1 = Angle(Key l Pts(Temp1nt). Key l Pts(0). AxisPt)
AxisPt-X = Key2Pts(O).X + I
AxisPt-Y = Key2Pts(O).Y
Done = False
Ternplnt = 1
While Nor Done

If (Key2Pts(O).X = Key2Pts(TernpInt).X) And (Key2Pts(O).Y = Key2Pts(Templnt).Y) Then
Templnt = TernpInt + 1

Else
Done = Truc

End If
Wend
Alpha2 = Angle(Key2PtsflempInt). Key2Pts(O). AxisPt)
For t 1 = 1 To (NumlnBetweens) Step I

t = t 1 / (NumlnBetweens + 1)
For i = O To (NumPts - 1) Stcp 1

L(1) = (1 - 1) ' LI (1) + t L2(1)
If 1 O (NumPts - 1) Then

Theta(1 + 1) = (1 - t) * Thetal(1 + 1) + t Thetalu + 1)
End If

Next 1
Alpha(0) = (1 - t) Alphal + t * Alpha2 ' "anchor" angle

' anchor point gets linearly interpolated
MorphPts(O).X = (1 - t) Key lPts(O).X + t * KcyZh(O).X
MorphPLs(O).Y = (1 - t) KeylPu(O).Y + t Key2Pts(O).Y
MorphPts(l).X = Cos(Alpha(0)) L(0) + MorphPts(O).X
MorphPts(1)-Y = Sin(Alpha(0)) L(0) + MorphPts(O).Y
AIpha(1) = Alpha(0) - Theta(1)
For 1 = 2 To (N u m h) Step 1

Alpha(1) = Alpha(1- 1) - Theta(1)
MorphPts(l).X = ~ o r ~ h h s (1 - 1).X + ,

Cos(Alpha(i - 1)) LO - 1)
MorphPts(l).Y = MorphPts(1- 1).Y + -

Sin(Alpha(1- 1)) L(l- 1)
Next 1

Select Case t l

Code

Case 1
Set TempPic = picMorph l

Diaw = True
Case 2

Set TempPic = picMorph2
D n w = Tnic

Case 3
Set TempPic = picMorph3
Dnw = True

Casc 4
Sct TempPic = picMorph4

D n w = T N ~
case5

Set TempPic = picMorph5
Dmw = Tme

End Select

If Draw Then
For 1 = 1 T o NumPts Step 1
TernpPic-Line (IO MorphPts(I).X.,

TempPic-Height - (IO MorphPts(I).Y)) -
-(IO MorphPts(1 - 1).Xe -

TempPic-Height - (1 O MorphPts(1- 1).Y))
Next l

End If
D n w = FaIse

Next t l
End Sub

Private Function Angle(Q0 As Coords. Ql As Coords. 4 2 As Coords)
' Takes three points, QO, Q I and 42. and Calculates the angle at Q1.

If (Q0.X =Ql .X And @.Y =Ql.Y) Or(Q1.X =Q2.X AndQ1.Y =Q2.Y)-
O r (Q0.X = Q2.X And @.Y = Q2.Y) Then
Angle = PI

Elsc
Dim C As Double
Dirn A As Double
Dirn B As Double
C = Length(Q 1 .42)
A = LengUQ2, QO)
B = Length(Q0. Q 1)
If Abs(2 C * B) < EpsiIon Then

Angle = O
Else

~ n ~ l e = ~ r c ~ o s ((~ * B + c * c - A * A) / (~ * c * B))
End If
If Angle = O Then

Angle = PI
End If

End If
End Function

Code

'******8P*8*8+**888**t8**8*t*L*L**L*8****~**8*8~8~****8888***8****

Public Function Maximum(A As Oouble. B As Double)
' Takes two numbers (double) and returns the maximum of the two.

I f A > B T h e n
~Maxirnum = A

Else
Maximum = €3

End If
End Function

.***
Public Sub EdgeTweaking()

Dirn f As Integer
Dim t 1 As Integer
Dirn t As Double
Dirn Thetal(100) As Doubfc ' Angles between edges of polygon 1
Dirn ThetaZ(100) As Double ' Angles between edges of polygon 2
Dim L l (I 0) As Double ' Length of the edges of polygon I
Dirn L2(100) As Double ' Length of the edges of polygon 2
Dirn Alphal As Double ' Alpha for polygon 1
Dirn Alpha2 As Double ' Alpha for polygon 2
Dirn Alpha(100) As Double ' This is the Alpha for the in-between frames
Dim Theta(100) As Double ' Theta for the in-between frames
Dirn L(100) As Double ' Edge Lengths for the in-betwecn framcs
Dirn v l As Coords
Dirn v2 As Coords
Dirn vCrossProd As Double
Dirn S(100) As Double @ thc tweaking amounrs
Dirn L12(100) As Double
Dim LSmall As Double
Dirn E As Double
Dirn f As Double
Dirn G As Double
Dirn U As Double
Dirn V As Double
Dirn Lambda 1 As Double
Dirn lambda2 As Double
Dim TempPic As PiciureBox
Dirn Draw As Boolean
Draw = False
Dirn Done As Boolean
Dirn TempInt As lnteger
' Determine the angle Theta between an extended edge and the next edge.
' We find the cross product to sec if the edges f o m a convcx or concave
' part of the polygon (This affects the way in which theta is calculated

For 1 = 1 To (NurnPts - 1) Step 1
1 f ((Key 1 Pts(l).X = Key 1 Pts(I + 1).X) And ,

(Key 1 Pts(l).Y = Keyl Pts(l + 1).Y)) And ((Keyl Pts(I).X o KeylPts(1 - I).X) -
Or (Key 1 Rs(I).Y O Key 1 h (1 - 1).Y)) ïhen

Done = False
Templnt = 1 + 2
While Not Done

Code

If (Key 1 Pu(TempInt).X O Key 1 Pts(i).X) Or (Key 1 Pts(TempInt1.Y 0 Key 1 Pts(l).Y) Then
Donc = True

EIse
Templnt = TempInt + 1

End !f
Wend

v l .X = Key 1 Pts(TempInt).X - Key lPts(l).X
v I .Y = Key 1 Pts(TernpInt).Y - Key 1 Pts(l).Y
v2.X = Key 1 Pts(l).X - Key 1 h s (l - 1).X
v2.Y = Key lPts(l).Y - Keyl Pts(1 - 1).Y
vCrossProd = Cross2D(v 1. v2)
If vCrossPrixl> Epsilon Then

Thetal (1) = PI - 0.5 * Angle(Kcy t Pu(1 - 1). Key 1 Pts(l). Key 1 hsf lcmplnt)) - (PI / 2)
Else

If vCrossProd c -Epsilon Then
Theta 1(I) = -(PI - 0.5 * Angle(Key 1 Prs(1 - 1). Key 1 Pts(I). Key 1 Pts(Temp1nt)) - !Pl / 2))

Else
ThetaI(1) = O '

End If
End If

Else
If (Key 1 Pts(1 - 1).X = Key 1 Pts(I).X) And (KeyIPts(1- l).Y = KcylPts(I).Y) ,
And (Kcy lPts(l).X = Key 1 Pts(I+ 1).X) And (Key 1 Pls(l).Y = Key 1 Pts(1 + 1).Y) -

Then
Theta 1 (1) = 0

Else
If (KeyIPts(1- I).X = Key lPts(I).X) And (KeylPts(1- 1).Y = Keyl Pts(I).Y) -
And ((Key LPts(I).X O Key1 Pts(1 + l).X) Or (Key 1 h (I) . Y O Key 1 PtdI + [).Y)) Thrn

Done = False
TempInt = 1 - 1
While Not Done

If (Key 1 Pts(TempInt).X O Key 1 Pts(1- 1).X Or,
Key1 Pts(TempInt).Y o Key 1 Pts(1- 1).Y) Then

Done = T'me
EIse

Templnt = Templnt - 1
If Templnt = O 'Rien

ûone = True
End If

End If
Wend
Thetal(1) = Thetal(Temp1nt + 1)

Else ' al1 points are distinct
v1.X = KeylPts(1 + I).X - KeyIPts(l).X
v 1 .Y = Key 1 Pts(1 + 1).Y - Key 1 Rs(i).Y
v2.X = KeylPts(i).X - Key lPts(1- 1).X
v2.Y = Key 1 Pis(l).Y - Key lRs(i - l).Y
vCrossProd = CrossZD(v 1, v2)
If vCrossProd > Epsilon Then

Thetal(1) = PI - Angle(Key 1 Pts(l - 1). KeylPts(1). Key lPts(1 + 1))
Else

Code

1 f vCrossProd < -Epsilon Then
ThetaI (1) = -(PI - Angle(Key I P I N - I), Key I Prs(l), Key 1 Pts(1 + 1)))

Else
Thetal (1) = O 'NOTE USED TO BE O

End If
End If

End If
End If

End If

If (K e y 2 h (l) . X = KeyZPts(1 + l).X) And (Key2Pts(l).Y = KeyZPts(1 + 1).Y) -
And ((Key2Pts(l).X O Key2Pts(l - I).X) O r (Key2Pts(I).Y O KeyLPts(1 - I).Y)) Thcn
Done = False
Tempint = 1 + 2
While Not Done

If (Key2PtsCTempInt).X O KeyZPts(I).X) O r (Key2Pts(TempInt).Y O Key2Pts(I).Y) Then
DOne = True

Else
Templnt = TempInt + 1

End If
Wend

v l .X = Key2Pts(Temp[nt).X - Key2Pts(I).X
v l .Y = Key2Prs(Templnt).Y - KeyZPts(l).Y
v2.X = Key2Pts(l).X - Key2Pts(I - 1).X
v2.Y = Key2Pts(l).Y - KeyZPts(1 - 1).Y
vCrossProd = Cmss2D(v 1. v2)
If vCrossProd > Epsilon Then

Them2(1) = PI - 0.5 * Angle(KeyZPts(1 - 1). Key2Pts(I), Key2Pts(Ternplnt)) - (PI / 2)
Else

If vCrossProd c -Epsilon Then
ThetaZ(1) = -(PI - 0.5 Angle(Key2Pts(I - l), Key2Prs(I). Key2PtsCïempInt)) - (PI 1 2))

EIse
Theta2(I) = O '

End If
End If

Else
If (Key2Pts(I - 1).X = KeyZPis(I).X) And (Key2Prs(I - l).Y = Key2Pts(l).Y) ,

And (Key2Pts(l).X = Key2Pts(I + I).X) And (Key2Pts(I).Y = KeyZPts(I+ 1).Y) Then
Theta2fl) = O

Else
If (KeyZPts(1- l).X = Key2hs(I).X) And (KeyZPts(1- 1).Y = Key2Pts(I).Y),

And ((Key2Pts(l).X O KeyîPts(l+ 1).X) Or (Key2Rs(I).Y O KeyZPts(I+ 1).Y)) -
Then

Done = FaIse
TcrnpInt = 1 - 1
While Not Done -

If (KeyZPts(Ternpfnt).X o KeyZPts(1 - I).X Or,
Key2Pts(Templnt).Y O Key2Pts(I - I).Y) Then

Done = True
Else

Templnt = TernpInt - 1
If Templnt = O Then

Donc = True

End If
End If

Wend
Theta2(I) = ThctdCïemplnt + 1)

EIse ' al1 points are distinct
v l .X = Key2Pts(l+ I).X - Key2Rs(I).X
v 1 .Y = Key2Pts(l + I).Y - Key2Rs(I).Y
v2.X = Key2Pts(l).X - KeyZPts(1- I).X
v3.Y = KeyZPts(l).Y - Key2Pts(l - !).Y
vCrossProd = CrossZD(v 1. v2)
If vCrossProd > Epsilon Then

Theta2(I) = PI - Angle(Key2Pts(l - 1). Key2Pts(l), KeyZRs(1 + 1))
Else

If vCrossProd < -Epsilon Then
Theta2(1) = -(PI - Angle(Key2Pts(I - I) , ~ e ~ 2 P k (l) . Key2Pts(l + I)))

Elsc
Theta2(1) = O

End If
End If

End If
End If

End If
Ncxt 1
For 1 = 0 To (NurnPts - 1) Step I

' Find the lengths of al1 edgcs of the polygon
L 1 (1) = Length(Key l Pîs(l+ 1). Key l Pts(1))
L20) = Length(Key2Pts(I+ 1), KeyZPts(1))

Next 1
Dim AxisPt As Coords
' Calculate the angle between thc horizontal line through the anchor point
' and the first edge of the polygon
AxisPt-X = KeylPu(O).X + 1
AxisPt-Y = Key 1 Pis(O).Y
Templnl= 1
Donc = False
While Not Done

If (KeylPts(O).X = KeylPts(TempInt).X) And (KeylPts(O).Y = KeylPts(TempInt).Y) Then
TempInt = TempInt + 1

Else
Done = True

End If
Wend
Alpha 1 = Angle(Key 1 Pts(Temp1nt). Key 1 Pts(O), A x i s h)
AxisPt-X = Key2Pts(O).X + 1
AxisPLY = KeyZPts(O).Y
TernpInt = 1
Done = False
While Not Done

If (Key2Pts(O).X = Key2Pts(Templnt).X) And (KeyZPts(O).Y = KeyZf'U(TempInt).Y) Then
TempInt = Templnt + 1

Else
Done = True

End If

Code

Wend
Alpha2 = Angle(Key2Prs(TempIni), Key2Pts(O), AxisR)
' Hcre insen tweaking siuff
Dim MaxEdgeLenghDiff As Double
Dim Tempiength As Ooublc
MaxEdgeLengthDiff = 0. I
For 1 = O To (NumPts - 1) Step 1

TempLength = Abs(Ll(1) - L2(1))
If Tempiength > MaxEdgeLengthDiff Then

MaxEdgeLengthDiff = TempLength
End If

Next l
LSmall = 0.0001 * MaxEdgeLengthDiff
For I = 0 To (NumPts - 1) Step I

LI 2(1) = Maximum(Abs(L I(1) - L2(1)). LSrnall)
Next l
For t l = I To (NumlnBetweens) Step 1

t = t l / (NumInBetwecns + 1)
Alpha@) = (1 - t) Alphal + t Alpha2
For 1 = 0 T o (NurnPts - 1) Step 1

Theta(1 + 1) = (1 - t) * Thctal(1 + 1) + t * ThetaZ(1 + 1)
If1 >OThen

Alpha(;) = Alpha([- 1) - Theta(i)
End If

Next 1

E = O
f = O
G = O
For i = O T o (NumPts - 1) Step 1

E = E + L12(1) L12(1) * Cos(Alpha(1)) Cos(Alpha(1))
f = f + L 12(1) L12(I) Sin(Alpha(1)) Cos(Alpha(1))
G = C + L12(I) * L12(I) * Sin(Alpha(1)) Sin(Alpha(1))

Ncxt 1
u = o
v=o
For 1 = O To (NumRs - 1) Sicp 1

U = U c (((1 - t) LI(1) + t L2(1)) Cos(Alpha(1)))
V = V + (((1 - t) Ll(1) + t L2(1)) Sin(Alpha(1)))

Next 1

U = U * 2
v = v * 2
Lambdal = (U * C - f e V) / (E * G - f * f)
L a m b d a 2 = E * V - U * f) / (E * G - f * f)

For 1 = 0 T o (NumPts) Step 1
S(1) = -0.5 L12(1) * L12(1) (Lambda1 * Cos(Alpha(1)) + Lambda2 Sin(Alpha(1)))
L(I) = (1 - t) LI (0 + t L2(I) + S(O

Next 1

MorphPts(O).X = (1 - t) * KeylPts(O).X + t KeyZPts(O).X
MorphPts(O).Y = (1 - t) Key 1 Pts(O).Y + t * KeyZPLs(O).Y

Code

For i = 2 To (NumP&) Step 1
MorphPrs(l).X = Morphhs(1 - I).X + -

Cos(Alpha0 - 1)) L{I - I)
MorphPts(I).Y = MorphPts(1 - 1).Y + -

Sin(Alpha(1 - 1)) L(I - 1)
Next 1
Select Case t 1
case 1

Set TempPic = picMorph 1
Dnw = Tnie

Case2
Set TempPic = picMorph2

Draw = Tnie
case3

Set TempPic = picMorph3
Draw = Tnie

Case 4
Set TempPic = picMorph4

Draw = Tme
Casc 5

Set TempPic = picMorph5
Draw = Truc

End Selcct
If D n w Then

For 1 = I To NumPis Stcp 1
TernpPic.Line (1 O MorphPts(I).X. ,

TempPic-Height - (10 MorphPts(I).Y)) -
-(IO * MorphPtsfl - I).X. -

TempPic.Height - (10 MorphPts0 - l).Y))
Next 1

End If
Draw = False

Next t 1
End Sub

Public Sub LinearBezierMorphO
' A Vertex Path Method. Uses Iinear interpolation to calculate the path mvelled by a vertex
' as it rnorphs from one polygon into the other.

Dim 1 As lnteger
Dirn J As Integer
Dim Draw As Boolean
Dim TempPic As PicrureBox
Draw = False
' Calculate the step size to increment each of the x- and y- coords
' for each successive in-between image

While ((NumPts - 4) Mod 3) O O

Code

Key 1 Pts(NumRs) = Key 1 Pts(0)
Key2Pts(NumPis) = Key2Pts(O)
NumPts = NumPrs + 1

Wend

For 1 = OTo (NumPts) Step 1
KeyDifference(I).X = (Key2Pts(I).X - Key 1 Pts(l).X) / (NumInBetweens + 1)
KeyDifference(I).Y = (Key2Pts(I).Y - Key IPts(l).Y) / (NumInBetwecns + 1)

Next 1

For 1 = O T o (NumInBetweens + 1) Step 1
' Calculare the in-between points

For J = O T o (Nurnhs) Step 1
MorphPts(J).X = Key IPts(J).X + ((KeyDifference(i).X) * 1)
MorphPts(J).Y = Key l Pts(J).Y + ((KeyDi ffercnce(J).Y)' * 1)

Next J
' Draw the Iines in the appropriate picture box
' Note chat the coord systern is switched back for dnwing

Select Case 1
Case l

Set TernpPic = picMorph 1
D n w = TNe

case 2
Set TernpPic = picMorph2

Draw = Tme
Case 3

Set TernpPic = picMorph3
Dmw = Tme

case 4
Set TempPic = picMorph4
Draw = Tme

Case 5
Set TernpPic = picMorph5

Draw = Tme
End Select

Dirn Pt0 As Coords
Dirn Pt1 As Coords
Dirn Pt2 As Coords
Dirn Pt3 As Coords
Dirn t 1 As Integer
Dirn t As Double
Dirn NurnCurves As lnteger
Dirn TernpX As Double
Dirn TempY As Double
Dim 11 As Integer
NumCurves = ((NurnPts - 4) / 3)

If Draw Then
For J = 1 To (NumRs) Step 1

' mark the control points
TempPic.Circle (IO MorphPts(J - 1).X, TempPic.Height - 1 0 MorphAs(J - l).Y), -

1, RGB(O,S55,0)

Code

' TcmpPic-Line (10 MorphPts(J).X, -
TempPic-Height - (IO MorphRs(J).Y)) -
-(i O * MorphPMJ - 1).X. -
TcmpPic-Height - (10 MorphPts(J - [).Y))

Next J
For l1 = O To NumCurvrs Step 1

R0.X = MorphPis(3 II).X
R0.Y = MorphPts(3 * II).Y
Pt1.X = MorphPts(3 I I + I).X
Pt1.Y = MorphPts(3 II + I).Y
Pt2.X = MorphPts(3 I I + 2).X
Pt2.Y = MorphPts(3 * 11 + 2).Y
Pt3.X = MorphPts(3 II + 3).X
Pt3.Y = M o r p h h (3 II + 3).Y
For t1 =OTo 200 Step 1
'calculate and plot the point of the bezier curve

t = t 1 / 2 0 0
TempX=(1-t)*(I-t)*(I-t)*PtO.X+3*t*(l-t)*(I-t)*Ptl.X-

+ 3 * t * t 8 (l - t) * P Q . X + t * t * t * P t 3 . X
TernpY=(I - t) * (I - t) * (I - t) * P t O . Y + 3 * t * (l - t) * (I - t) * P t l . Y -

+ 3 * t * t * (I - t) * P 1 2 . Y + t * t * t * R 3 . Y
TempPic-Circie (10 * TempX. TempPic.Height - (10 TempY)). 0.2

Next t 1
Next II

End If
D n w = False

Next 1
End Sub

. * * * * * * S * * * * L * * * t S * * * * * * * * * * * * I * * 8 t Z * 8 * * 8 *

Public Sub LeastWorkCurveMatching()
' Determines the control point correspondence between the rwo Bezier curves
' that will result in the least amount of work CO rnorph from one curve to the other.

Dirn BackTrackListO As Coords
If KeyZNumPts > Key 1 NumPts Then

NurnPrs = Key2NumPts
Else

Nu* = Key 1 NumPts
End If

ReDirn BackTrackList(Key 1 NumPts + Key2NumPts) As Coofds
Dirn WBack() As Integer
ReDirn WBack(Key 1 NumPts. KeyZNumPts) As Integer
Dirn WUp() As lnteger
ReDim WUp(Key1NumR.s. KéyZNumPts) As Integer
Dirn WDiagO As lnteger
ReDim WDiag(Key 1 Numfts, Key2NumPts) As Integer
Dirn 1 As Integer
Dirn J As lnteger

Code

For 1 = O To (Key 1 NumPts) Stcp 3
For J = O To (Key2NumRs) Step 3
'Note: If I=û and J o O then we can only calculate WUp

If 1 = O And J = 3 Then
WUp(1, J) = StretchCurve(1. J - 3.1. J) +,

BendCurve(1,J- 3.1. J) +,
Minimum(WUp(1, I - 3) + KinkCurve(1, Key2NumRs - 3, -

1. J - 3.1. J). -

WBack(I.1) = 15000
WDiag(1, J) = 15000

End If
I f I=OAndJ>3Then

WUp(I. J) = StretchCurve(1. J - 3.1. J) + ,
BendCurve(l. J - 3.1. 1) + -

Minimum(WUp(1, J - 3) i KinkCurvefl. J - 6,-
1. J - 3, 1. o. -
WDiagO, J - 3) + ,

KinkCurve(Key 1 NumPts - 3. J - 6.-
1, J-3. LJ))

WBack(1. J) = 15000
WDiag(1. J) = 15000

End If
@ Also. if I d and J=0 chen we can only calculate WBack

I f I = 3 AndI=OTben
WBack(1, J) = StretchCurve(1 - 3, J, 1, J) + -

BendCurve(1- 3, J, 1. J) +,
Minirnum(WBack(l- 3, J) + ,

KinkCurvc(Key 1 NumRs - 3. J. 1 - 3, -
J. 1. O* -

WDiag(1- 3. J) +-
KinkCurve(Key1NumPts - 3. Key2NumPrs - 3,-
I - 3. J, 1.n)

WUp(I.1) = 15000
WDiag(1, J) = 15000

End If
If1>3AndJ=O"lhen '

WBack(1. I) = StretchCurve(I - 3. J, 1, J) +,
BendCurve(I - 3, J, 1, J) +,

Minimum(WBack(l- 3.9 + ,
KinkCurve(i - 6,J. 1 - 3, J, 1, J), ,

M i n W ,
WUp(1-3.J-3)+,

KinkCune(l- 3. KcytNurnPts - 3.1 - 3. J - 3.1, J). ,

-1 - 3.J) +,
K i & C ~ - 6 . J - 3 . 1 - 3 . J . I . J) ,
) ' end of Minimum pirrnctar

-
WBlClr(l- 3. J -3)+ ,
~inlrCUM(I-6.J-3.1-3.1-3.1.I),
) 'endofMirn)f3Prmrrnr

Eiid If
Next J

Next I

' now backuack to find the p u b
BackTrackiist(O).X r Key l NumRs
BackTrsrkList(O).Y = KeyWumPu
Dim TernpX As Intqcr
Dim TcmpY As lntcger
Dim CunKcy 1 Pt As In!eger
Dirn CurrKeyZR As lntcgcr
Dim NurnBackT~~~kRs As lncegcr
NumBackTacltPu = 1
CurrKey IR = BackTnckLis(O).X
CurrKey2Pt = BackTrackiist(O).Y
I = l

Do Whi le (CunKey i Pt >= O) And (CumKcy2R - 0)
TempX = BackTraclttist(1- 1).X
TempY = BackTrackLiu(l- I).Y
If WBackflempX. TcmpY) .r= WUpCTempX. TempY) And,

WBxkflempX. TempY) <= WDiag(TempX. TempY) Thcn
CunKeylR = BackTmckIist(1- I).X - 3
CunKeyZR s BackTrackList(I - 1).Y

Else
If WUpCTempX. TempY) < WBrckCrcmpX. TmipY) A d ,

WUpCTémpX. TempY) c= WDiagCTcmpX. TmipY) Then
CunKey 1 Pt = BackTraclrLisfl - 1).X
CunKcy2R r BrtkTndtList(l0 I).Y - 3

Code

Else
If WDiagCïcmpX, TempY) < WBackflempX. TernpY) And,

WDiagflempX, TempY) < WUpCTempX, TempY) Then
CurrKeylR = BackTrackList(1- 1).X - 3
CurrKey2R = BackTrackList(1- I).Y - 3

End If
End If

End If
BackTrackList(l).X = CurrKey 1 R
BackTrackList(l),Y = CurrKey2R
NumBackTrackPts = NumBackTrackPts + 1
1 = 1 + 1
If CurrKey IR = O And CurrKey2R = O Then

Exit Do
End If

LOOP
Dirn TempKeyI IntcrpPtsO As Coords
ReDim TempKey 1 lnterpPu(Key 1 NumPts + Key2NumPts) As Coords
Dirn TempKcy2lnterpPtsQ As Coords
ReDim TempKey2InterpPts(KeyI NumRs + Key2NumRs) As Coords
For 1 = 0 To (NumBackTrack~ - 1) Step 1

TempKcy 1 InterpRs(NumBackTrackPts - I - I).X = Key lPts(BackTrackList(l).X).X
TempKeylInterpPts(NumBackTrackPts - 1 - [).Y = Key IRs(BackTrackList(l).X).Y
TempKey2InterpRs(NumBackTrackPts - 1 - I).X = Key2Pts(BackTrackList(l).Y).X
TempKey2lnterpPts(NumBackTrackPts - 1 - I).Y = Key2Pts(BackTrackList(I).y).Y

Next 1

Dirn OldLisrMarker As Integer
Dirn NewListMarker As Integer
Dirn InterpListMarker As lnteger
Dirn NewListl(MaxNum) As Coords
Dirn NewListî(MaxNum) As Coords
OldListMaricer = O
NewListMarker = O
l nterpLisMarker = O
Dirn Done As Boolean
Done = False
While Not Done

If (TempKeyIInterpPu(InterpListMarker).X = TempKeyllnterpPts(InterpListMarkcr + 1) X) ,
And (TempKey 1 InterpPrs(InterpListMar)rer).Y = TempKey lIntcrpPts(lnterpListMariser + 1).Y)

Then
ForI= 1 T o 3 Step 1

NewListI (NewListMarker).X = TernpKcy 1 InterpPrs(lnterpListMarkcr).X
NewList 1 (NewListMarktr).Y = TempKey 1 InterpPrs(lnterptistMarker).Y

NewListMarkcr = NewListMarkd + 1
Next 1
InterpListMarlcer = IntcrpListMarker + 1

Else
if the intcrp points am not the sarnc. record the next

' ones in the old list
For 1 = 1 T o 3 Step 1

NewList 1 (NewListMarlter).X = Key 1 PLs(OldListMarker).X
NewList 1 (NewListMarker).Y = Key l Pts(OldListMarkcr).Y

Code

NewListMarker = NewListMIuker + I
OldListMmicer = OldListMarker + 1

Next 1
InterpListMarker = InterpLisMarker + 1

End If
If InterpListMarlter = NurnBackTrackPts Then

Done = Tm
End If

Wend

OldListMarker = O
NewListMarker = O
InttrpListMarker = O
Done = False
While Not Done

If flempKey2InterpPts(InterpListMarker).X = TempKey2InterpPts(lnterptistMarker + I).X) ,
And (TempKeyZInterpPts(InterpListMarker).Y = TempKey2InterpPts(lnterpListMarker + 1).Y)

Then
F o r I = l T o 3 S t e p l

NewList2(NewListMarker).X = TernpKey21nterpRs(InterpListMarker).X
NewList2(NewLisrMarker).Y = TernpKey2InterpPrs(InterpListMarker).Y

NewListMYker = NewListMarker + 1
Next 1
InterpListMarker = InterpListMarker + 1

Else
' if the interp points are not the same. record the next
' ones in the old Iist

For 1 = 1 To 3 Step 1
NewList2(NcwListMarker).X = Key2Rs(OldListMarker).X
NewList2(NewListMarker).Y = Key2Rs(OldListMarker).Y
NewListMarker = NewListMarker + 1
OldListMarker = OIdListMarker + 1

Next 1
InterpListMarker = InterplisMarker + 1

End If
If interpListMarker = NumBackTrackPts Then

Done = T m
End If

Wend
For I = O To (((NumBackTrackPts - 1) * 3) - 1) Step 1

Key lPts(I).X = NewList l(l).X
Key 1 Pts(l).Y = NewList 1 (I).Y
Key2Pts(I).X = NcwListZO).X
Key2Pts(l).Y = NewList2(I).Y

Next 1
Key I?ts((NumBackTrackPts - '1) 3).X = KeylPts(O).X
Key 1 Pts((NumB;ickTrackPts - 1) * 3).Y = Key1 Pts(O).Y
Key2Pts((NumBackTrackPts - 1) * 3).X = Key2Pts(O).X
Key2hs((NumBackTrackhs - I) 3).Y = KeyZRs(O).Y
N u m m = (NumSackTrackRs - 1) 3

End Sub

Code

' * * * * * * * * t * * * * ~ t ~ t + i I * i i t ~ * * t t 8 t t 1 S * 8 t * 8 * * * * * ~ * * t * * ~ * B ~ * ~ ~ * ~ ~ ~ ~ ~ * *

Pubiic Function CurvcLength(I0 As Integer. I l As Integer. Num As Inreger)
Dim W As Coords
Dim Pl As Coords
Dim P2 As Coords
Dirn P3 As Coords
Dirn f(1 1) As Double
Dirn t As lnteger
Dirn N As lnteger
Dirn t l As Double
Dirn dxdt As Double
Dirn dydt As Double
Dirn CL As Double
Dirn h As Double
N = 10
If Num = 1 Then

PO.X = Key l Rs(tO).X
P0.Y = Key 1 Rs(lO).Y
If (IO = I I) Then

PI .X = Key lRs(IO).X
f l .Y = Key 1 Pts(lO).Y
P2.X = Key 1 Rs(IO).X
P2.Y = Key 1 Rs(IO).Y
P3 .X = Key 1 Rs(IO).X
P3.Y = KeylPts(IO).Y

Else
P1.X = KeylPts(10 + l).X
P 1 .Y = Key lRs(i0 + 1).Y
P2.X = Key1 Rs(I0 + 2).X
P2.Y = Koyl Pts(I0 + 2)-Y
P3.X = Key 1 Pts(I0 + 3).X
P3.Y = KeylPts(l0 + 3).Y

End If
Else

P0.X = Key2Rs(lO).X
P0.Y = Key2Rs(tO).Y
If (IO= I1)Then

P 1 .X = Key2Pts(lO).X
PI .Y = Key2h(lO).Y
P2.X = KeyZRs(lO).X
P2.Y = Key2Pis(iO).Y
P3.X = Key2Rs(IO).X
P3.Y = Kcy2Rs(IO).Y

Else
P l .X = Key2Rs(iO + 1).X.
PI .Y = Key2Rs(lO + 1).Y
P2.X = KcyZRs(l0 + 2).X
P2.Y = Key2Rs(lO + 2).Y
P3.X = Kcy2Rs(tO + 3).X
P3.Y = Kcy2Pts(IO + 3).Y

End If
End If

Code

' use the trapezoid mle, with n=10, h d . 1 to integrate to find curve length
' t always goes from O to 1

I f (P0.X = P3.X) And (Pû.Y = P3.Y) Then
CurveLength = O

Else
For : = O To 10 Step 1

tl = r / N
dxdt = CoeffA(t1) * PO-X + CoeffB(t1) * P1.X +CoeffC(tI) * P2.X +CoeffD(tI) * P3.X
dydt = CoeffA(t 1) W-Y + CoeffB(t 1) * P1.Y + CoeffC(t 1) * P2.Y + CoeffD(t 1) P3.Y
f(t) = Sqr(kdt dxdt + dydt dydt)

Next t
h = l / N
CL = (f(0) + f(10)) / 2
For t = 1 To O Step 1
CL = CL + f(t)

Next t
Curvekngth = CL * h

End If
End Function

Public Function CoeffB(t As Double)
CoeffJ3=3*(1- t)*(l -3*t)

End Function

b * * + * * t * 8 * 8 8 * * 8 * 8 * 8 . * . . * 8 8 8 * * 8 8 8 * 8 8 8 8 8 8 8 * 8 * * 8 8 8 8 8 ~ 8 8 ~ 8 8 8 8 * * 8 8 * * 8 8 8 * 8 8 8

Private Function BendCurve(l0 As Integer, JO As Intcger, 1 L As [nteger, J L As Integer)
' again. pass the index of the array.and calculate a11 other points from that

Dirn W As Coords
Dirn Pl As Coards
Dirn P2 As Coords
Dim P3 As Coords
Dirn ml As Double
Dirn m2 As Double
Dirn R As Coords
Dim xlntersection As Double
Dirn ylntersection As Double

Code

Dim Phi 1 As Double
Dim Phi2 As Double
Dim LI As Double
Dim L2 As Double
if IO= II Then

P0.X = Key 1 Rs(IO).X
P0.Y = Key 1 Pts(IO).Y
P 1 .X = Key 1 Pts(lO).X
P 1 .Y = Key l Rs(lO).Y
P2.X = Key 1 Rs(lO).X
P2.Y = Key 1 Pts(IO).Y
P3.X = Key l Pts(IO).X
P3.Y = KeyIRs(IO).Y

Elsc
P0.x = Key IRs(lO).X
P0.Y = Key 1 Pts(iO).Y
P1.X = KeylPts(i0 + I).X
P1.Y = KeylPis(l0 + [).Y
P2.X = Key 1 Pts(1O + 2).X
P2.Y = Key 1 FU00 + 2).Y
P3.X = Key 1 Pts(I0 + 3).X
P3.Y = KeylPts(I0 + 3).Y

End If

' calculate the slope of the nomaï lines ai pO and p3
If A b s 0 . Y - P1.Y) c Epsilon Then
ml = 1500û

Else
m l =(Pû.X-PI.X)/(PO.Y -PI.Y)

End If
If Abs(P3.Y - F2.Y) < Epsilon Then
m2 = 15000

Else
m2=(P2.X- P3.X)/(P3.Y -P2.Y)

End If
If Abs(m1 - m2) < Epsilon Thcn

Phi1 = O
Else

xlntenection = (P3.Y - P0.Y + ml * PO.X - m2 P3.X) / (ml - m2)
yIntersection = (xlntersection - P0.X) * mi + PO.Y
Pt.X = xhtcrsection
PLY = yIntersection
If Length(P2. P l) c Length(P3, PO) Then

Phi 1 = Anglem. Pt, F3)
Else

Phi 1 = 2 PI - AngleW. Pt. P3)
End If

End If
If JO = II Then

PO.X = KeyZPts(JO).X
P0.Y = Key2Rs(JO).Y
P 1 .X = Key2Pts(JO).X
P 1 .Y = Key2Pts(lO).Y

Code

P2.X = Key2Pts(JO).X
P2.Y = KeyZRs(JO).Y
P3.X = Key2Pîs(JO).X
P3.Y = Key2Pts(JO).Y

Else
W.X = KeyZPts(JO).X
W.Y = KeyZPts(JO).Y
P 1 .X = Key2Rs(JO + I).X
P 1 .Y = Key2Prs(lO + 1).Y
P2-X = Key2Pts(lO + 2).X
P2.Y = Key2Rs(JO + 2).Y
P3.X = KcyZRs(J0 + 3).X
P3.Y = KeyZPts(J0 + 3).Y

End If
* calculate the siope of the normal liner at pO and p3
If Abs(P0.Y - P1.Y) < Epsilon Then

m l = 15000
Else

m i = (P0.X - P1.X) /(PO.Y - P1.Y)
End 1 f
If Abs(P3.Y - F2.Y) c Epsilon Then
m2 = 15000

E Ise
m2 = (P2.X - P3.X) / (P3.Y - P2.Y)'-

End If
If Abs(m 1 - m2) c EpsiIon Then

Phi2 = O
E lse

xlntenection = (P3.Y - P0.Y + m 1 P0.X - m2 * P3.X) / (m 1 - m2)
ylntersection = intersection - P0.X) ml + P0.Y
h X = xlntersection
PLY = yIntersection
If Length(P2. P 1) < Length(P3, PO) n i e n

Phi2 = AngleUW, Pt. P3)
Else

Phi2 = 2 PI - Angle(PO. Pt. P3)
End If

End If
LI = C ~ ~ e h I g t h (1 o . f 1. 1)
L2 = CurveLength(J0, J 1.2)
If (L 1 + L2) c Epsilon n i e n

Bendcuwe = 15000
Else

BendCurve = CurveCb (Phi2 - Phi 1) (Phi2 - Phi 1) 1 (L1 + L2)
End If

End Function

Pnvate Function KinkCuwc(i0 As Integer. JO As Integer. I l As Integer, J1 As Integer, -
12 As Intcgct, 1 2 As Intcgcr)

' accept the indices o f the join points. as wcll as the indices of the end convol
' points of the curves that mect at the join point. II (JI) is the join point.

Code

' We assume rhat the curve segments have only a small degree of curvature
Di m P2 As Cwrds
Dirn P3 As Coords
Di m P4 As Cwrds
Dirn m l As Double
Dirn m2 As Double
Dim Pt As Coords
Dirn xlntersection As Double
Dirn ylntersection As Double
Dirn Phi1 As Double
Dirn Phi2 As Double
Dim LI As Doubk
Dirn L2 As Doubk
Dirn Done As Boulean
Dim TempInt As Integer
Dirn v 1 As Coords
Dirn v2 As Coords
Dirn vCmssProd As Double
Dirn DivAndAdd As Boolean
P3.X = KeylPts(ll).X
P3.Y = Key l Pts(1 l).Y
If (IO = II) Then

P2.X = Key 1 Rs(I I).X
P2.Y = Key 1 RsO 1)-Y

Else
If I l =OThen

P2.X = Key lRs(Key l NumRs - 1).X
P2.Y = Key lRs(Key 1 NumPts - 1).Y

EIse
P2.X = Key 1 h (1 l - t).X
P2.Y = KcylPts(I1 - l).Y

End 1 f
End If
If 11 = 12 Then

P4.X = Key l Rs(1 l).X
P4.Y = Key 1 PtsO)).Y

Else
P4.X = KeylPis(1l + 1).X
P4.Y = Key l Pts(I1 + I).Y

End If
DivAndAdd = False
' if but P30P4
If ((P2.X = P3.X) And (F2.Y = P3.Y)) And ((P3.X O P4.X) Or (P3.Y O P4.Y)) Then

if I l = O n e n
Templnt = Key 1 NumRs '

Else
Templnt = I l - 1

End If
Done = False
While Not Donc

If (Key 1 Rs(Tempht).X O F2.X) Or (Key 1 Pts(TempInt).Y o P2.Y) Then
Done =Tm

E k

Code

Templnt = Templnt - 1
If Templnt < O Then

TempInt = KeylNumRs
End If

End If
Wend
P2.X = Key l Pb(Templnt).X
P2.Y = Key lPts(TcrnpInt).Y

DivAndAdd = True
Else @ if P3=P4 but P 2 e P 3

If ((P3.X = P4.X) And (P3.Y = P4.Y)) And ((P2.X O P3.X) Or (P2.Y o P3.Y)) Then
If II = KeylNumRsThen

TempInt = 1
E k

TempInt = I l + 1
End If
Done = False
While Not Done

If (Key1 Rs(TempInt).X O P4.X) Or (Key lPts(TempInt).Y o P4.Y) Thcn
Done = True

Else
TempInt = TempInt + 1
If TempInt > Key 1 NumPts Then

TempInt = O
End If

Eld If
Wend
P4.X = Key lPts(Templnt).X
P3.Y = Key 1 Rs(TempInt).Y

DivAndAdd = T m
End If

End If
If (P2.X = P3.X) And (P2.Y = P3.Y) And (P3.X = P4.X) And (P3.Y = P4.Y) Then

Phi 1 = P I
Else

v1.x = P4.X - P3.X
v l .Y = P4.Y - P3.Y
v2.X = P3.X - P2.X
v2.Y = P3.Y - P2.Y
vCrossProd = Cross2D(v 1, v2)
If vCrossProd > Epsilon n i e n

If DivAndAdd = False Then
Phi 1 = AngleW. P3. P4)

Else
Phi 1 = 0.5 Angk(F2.'P3. P4) + (PI / 2)

End If
Else

If vCrossProd c -Epsilon Then
If DivAndAdd = False Then

Phi 1 = PI - Angle(P2, P3, P4)
Elsc

Phi 1 = PI - (0.5 Angle(P2, P3. P4) + (PI 12))
End If

Code

Else @ the points are collincar
Phi1 = PI

End If
End If

End If
P3.X = KeyZRs(JO).X
P3.Y = Key2Pw(JO).Y
If JI = JOThen

P2. X = Key2Pts(J 1) .X
P2.Y = Key2Pts(J 1).Y

Else
If J 1 = O Thcn ' keep in mind thar key2pts(k3y2numpts- 1) may be the same as the init pt
P2X = Key2Pts(Key 2NumRs - 1).X
P2.Y = Key2Rs(Key2NumPts - 1).Y

EIse
P2.X = Key2Rs(J 1 - 1).X
P2.Y = Key2Pis(J 1 - 1).Y

End I f
End If
I f JI = J2Then

f4.X = KeyZPts(l l1.X
P4.Y = Key2fts(J l).Y

Else
P4.X = Key2PW 1 + 1).X
P4.Y = Key2Rs(J 1 + 1).Y

End If
DivAndAdd = False
' if P2=P3 but P 3 o P 4
If ((P2.X = P3.X) And (PZY = P3.Y)) And ((P3.X O P4.X) Or (P3.Y O P4.Y)) Then

I fJ l =OThen
TempInt = KeyZNumPts

Else
TcmpInt = J 1 - 1

End If
Done = False
W hile Not Done

If (Key2RsCTempInt).X O P2.X) Or (Key2Pts(TempInt).Y O P2.Y) Then
Done = Tme

Else
Templnt = Templnt - 1
If TempInt < O Then

Tempint = Key2NumRs
End If

End If
Wend
P2.X = KeylRsO'emplnt).X
P2.Y = Key2Pis(TempInt).Y

DivAndAdd = T m
Else

If ((P3.X = P4.X) And (P3.Y = P4.Y)) And ((P2.X O P3.X) Or (P2.Y O P3.Y)) Then
If J 1 = Key2NumPts Then

Tempint = 1
Else

Code

Templnt = JI + I
End If
DOne = False
While Nat Done

If (Key2Pts(TempInt).X o P4.X) Or (Key2Prs(TcmpInt).Y O P4.Y) Then
h n e =Truc

Else
TempInt = TempInt + 1
1 f Templnt > Key 2NumPts Then

Templnt = O
End If

End I f
Wend
P4.X = Key2Pts(TempInt).X
P4.Y = Kcy2Pts(TempInt).Y

DivAndAdd = Tme
End If

End If
IF (P2.X = P3.X) And (l'2.Y - P3.Y) And (P3.X = P4.X) And (P3.Y = P4.Y) Then

' al1 points are equal
Phi2 = Pl

Else
VI .X = P4.X - P3.X
v1.Y =P4.Y - P3.Y
v2.X = P3.X - P2.X
v2.Y = P3.Y - P2.Y
vCrossProd = Cross2D(v 1, v2)
If vCrossProd > Epsilon Then

If DivAndAdd = Fdse Then
Phi2 = AngleW. P3, P4)

Else
Phi2 = 0.5 Angle(P2, P3, P4) + (PI 1 2)

End If
Else

If vCrossRod < -Epsilon Then
If DivAndAdd = False Then

Phi2 = PI - Angle(P2, P3, P4)
Else

Phi2 = PI - (0.5 Angle(P2, P3, P4) + (PI / 2))
End If

Else 'the points are collinear
Phi2 = PI

End If
End If

End If
If Abs(Phi2 - Phil) < Epsilon Then

KinkCurve = O
Else

KinkCurve = CurvcCk Exp(CumeEk * Log(Abs(Phi2 - Phil)))
End If

End Function

Code

Public Function StreichCurve(l0 As Integer, JO As Integer, II As Integer. J 1 As Integer)
' Accepts the index of the starting point of each curve, Calculates the stretching work
' used in morphing the curve segment staning at Key IPts(10) and ending at Key lPts(l1)
' to curve segment starting at Key2Pts(JO) and ending at Key2Pts(JI).

Dirn LO As Double ' length of segment from vertex I l CO vertex IO in the 1 st frame
Dirn LI As Double ' Iength of segment from venex J 1 to venex JO in the second fnmc

LO = Curveiength(I0. 1 1. 1)
L 1 = CurvçLength(J0. J 1. 2)
I f Abs((l - CurveCs) * Minimum(L0, LI) + CuweCs Maximum(L0. L 1)) É Epsilon Then

StretchCurve = 15000
Eke

If Abs(L 1 - LO) c Epsilon Then
StretchCurve = O

Else
SmtchCurve = (CurveKs Exp(CurveEs * Log(Abs(L1- M)))) / ((1 - CurveCs) Minimum(L0,

Li) -
+ CurveCs Maximum(M. LI))

End If
End If

End Function

' * I * * * 8 8 8 * * t * t * = * * * * * * *

Public Sub intrinsicBezierMorph()
Dim 1 As Integer
Dim t1 As Integer
Dim t As Double
Dirn Thetal(100) As Double ' Angles between edges of polygon 1
Dirn Theta2(100) As Double ' Angles between edges of polygon 2
Dirn L I(100) As Double ' Length of the edges of polygon 1
Dirn L2(100) As Double ' Length of the edges of polygon 2
Dirn Alphal As Double ' Alpha for polygon 1
Dim Alpha2 As Double ' Alpha for poiygon 2
Dirn AIpha(100) As Double ' This is the Alpha for the in-between frarnes
Dirn Theta(100) As Double ' Theta for the in-between frarncs
Dirn L(100) As Double ' Edge Lengths for the in-between framcs
Dirn v l As Coords
Dim v2 As Coords
Dim vCrossProd As Double
Dirn S(IO0) As Double ' the tweaking amounts
Dim L12(100) As Double
Dim LSmall As Double
Dirn E As Double
Dirn f As Double
Dim G As Double
Dirn U As Double
Dirn V As Double
Dim Lambda1 As Double
Dirn Lambda2 As Double
Dirn TempPic As PicnrrcBox
Dirn Draw As Boolean

Code

Draw = False
Dim Done As Boolean
Dim Templnt As lnteger

' Determine the angle Theta between an extended edge and the next edge.
' We find the cross product to see if the edges form a convex or concave
' part of the polygon (This affects the way in which theta is calculated
For 1 = 1 To (NumPts - 1) Step 1

If ((Key 1 PtsiI).X = Key 1 Pts(1 + I).X) And ,
(Key 1 Pis(I).Y = Key 1 Pts(1 + 1).Y)) And ((Key 1 Pts(I).X O Key 1 Pts(1- 1).X) -

Or (Key 1 Rs(I).Y O Key 1 Pts(l - 1).Y)) Then
Done = Faise
TempInt = I + 2
White Not Done

If (Key 1 Pts(Tempht).X O Key 1 Pts(I).X) Or (Key 1 Pts(TempInt).Y O Key 1 Pts(I).Y) Then
Done =Tme

Else
Templnt = Templnt + t

End If
Wend

v 1 .X = Key l PtsflempInt).X - Key l Pts(I).X
VI .Y = KeylPts(TempInt).Y - KeylPts(I).ï
v2.X = Key lPts(l).X - Key lRs(1- 1).X
v2.Y = KeylPts(I).Y - Key lPts(1 - 1).Y
vCrossProd = CrossZD(v 1. v2)
If vCrossProd > Epsilon Then

Theta I(1) = PI - 0.5 Angte(KeylPts(1 - 1). Key 1 Pts(I), Key 1 Pts(Ternp1nt)) - (PI / 2)
Else

If vCrossProd c -Epsilon Then
nietai(1) = -(PI - 0.5 Angle(Key l h (I - 1). Key 1 Pts(I), Key 1 RsflempInt)) - (PI / 2))

Else
nietal(I) = 0 '

End If
End If

Et se
If (Key 1Ptsfl- l).X = Keyl Pîs(l).X) And (KeylRs(1-]).Y = Keyl Prs(I)-Y) -
And (Key 1 Pts(l).X = Key 1 Pts(l+ 1).X) And (Key 1 Pts(I).Y = Key 1 Pts(I+ 1).Y) -

Then
Theta 1 (1) = O

Else
If (KeylPts(1- I).X = Key lRs(I).X) And (KeylPts(i - I).Y = Key 1 Prs(l).Y) -
And ((Keyl Rs(I).X O KeylPts(l+ 1).X) Or (KeylPts(l).Y O Key t h (I + 1).Y)) Then

Done = False
Templnt = 1 - 1 -
White Not Done

If (Key 1 Pts(TernpInt).X O Key lPts(1- 1).X Or,
KeylPtsflcrnpInt).Y O KeylRsfl - l).Y) Thcn

Dom = True
Else

Templnt = Templnt - 1
If Templnt = O n i e n

Done = True

Code

End If
End If

Wend
Thetal (1) = n i e u 1 (Ternplnt + I)

Else ' al1 points are distinct
v 1 .X = Key 1 Pts(l+ I).X - Key 1 Rs(l).X
v1.Y = KeylPts(l+ 1).Y - KeylRs(l).Y
v2.X = Key l Prs(I).X - Key 1 h (l - I).X
v2.Y = Key I Pts(I).Y - Key 1 Pts(1- 1).Y
vCrossProd = Cross2D(v 1, v2)
If vCrossProd > Epsilon Then

Thetal(I) = PI - Angle(KcylRs(l- 1), KeylRs(i). Key lPts(l+ 1))
Wse

If vCrossProd c -Epsilon Then
Thetal(1) = -(PI - Angle(Key 1 Pts(1- 1). Key 1 Pts(T), Key 1 P M I + 1)))

Else
Thetal(T)=O 'NCYEUSEDTOBEO

End If
End If

End If
End If

End If

If (Key2Rs(l).X = KeyZPts(l+ 1).X) And (Key2PtsO.Y = KeyZPu(I+ t).Y),
And ((Key2Pts(I).X o KeyZPtsO - I).X) Or (KeyZRs(I).Y O Key2Pts(I - l).Y)) Then
Done = FaIse
Templnt = 1 + 2
While Not Done

If (Key2Pts(Ternplnt).X O Kzy2Rs(I).X) Or (Key2Pts(TempInt).Y O KeyZPts(I).Y) Then
Done = T m e

Else
TempInt = Templnt + 1

End if
Wend
VI .X = Key2PtsCemplnt).X - KeyZPts(I).X
vl .Y = Key2Pts(Templnt).Y - KeyZPts(l).Y
v2.X = Key2Pts(I).X - Key2Pts(I - 1) X
v2.Y = Key2Pts(I).Y - KeyZRsfl- l).Y
vCrossProd = CrossZD(v 1. v2)
If vCrossPmd > Epsilon n i c n

Theta2(1) = PI - 0.5 Angle(KeyZPts(I - 1). KeyZRs(I), Key2Rs(TempInt)) - (PI / 2)
Else

If vCmssProd < -Epsilon Then
TheiaZ(1) = - P I - 0.5 Angle(Key2Pts(I - l), Key2Ptsfl). Key2PtsCTemplnt)) - (Pl / 2))

Else
Theta20 = O '

End If
End If

Else
If (Key2Pts(I - l).X = Key2Pts(l).X) And (KeyZRs(1- 1).Y = Key2RsO.Y)-

And (KeyZRs(i).X = KeyZPtsU + I).X) And (KeyZRs(I).Y = Key2Pts(I+ l).Y) nien
nieca2(I) = O

EIse

Code

If (Key2Pts(I - 1).X = Key2Pts(I).X) And (Key2Rs(l- l).Y = Key2Pts(l).Y),
And ((Key2Rs(l).X O Key2Pts(I + 1).X) Or (KeyZPcs(I).Y o KeyZPts(I+ 1).Y)) -

Then
Done = Falx
Templnt = 1 - 1
WhiIe Not Done

If (Kcy2Rs(Templnt).X o Key2Rs(I - l).X Or -
Key2Pts(Templnt).Y O KeyZRs(1- I).Y) Then

Done = Truc
Else

Templnt = TempInt - 1
If TempInt =O Thcn
DO= = T N ~

End If
End If

Wend
Theta20 = ïheta2(Templnc + 1)

Else ' al1 points are distinct
v1.X = KeyZRs(I+ 1).X - Key2Rs(l).X
v1.Y = Key2&(1+ l).Y - Key2Rs(l).Y
v2.X = KeyZRs(I).X - KeyZPts(1- 1).X
v2.Y = KeyZPts(I).Y - KeyZRs(1- I).Y
vCrossPtod = CrossZD(v1. v2)
If vCrossProd > Epsilon Then

Theta2(1) = PI - Angle(KeyZRs(1- 1). Key2Pts(I), KeyZRs(I+ 1))
Else

If vCrossProd < -Epsilon Then
Theta2fl) = -(PI - Angle(Key2PW- 1). KeyZPtsO, Key2FW + 1)))

Wse
Theta20) = O

End If
End If

End If
End If

End If
Next 1
For 1 =O Tr, (NumPts - 1) Step 1

' Find the lcngths of al1 edges of the polygon
L 1 (1) = Length(Key 1 Pts(l+ 1). Key 1 Pts(1))
L2(1) = Length(KeyZRs(I + 1)- KcyZPtsCI))

Next 1
Dim AxisR As Coords
' Calcuiate the angle ktween the horizontal line through the anchor point
' and the first edge of the polygon
AxisPt.X = Key 1 Rs(O).X + 1 -
AxiskY = Key l Pts(O).Y
Templnt = 1
Donc = Falst
While Not Done

If (KcylPu(O).X = KcylPtsflempInt).X) And (KeylRs(O).Y = KeylRsflemplnt).Y) Then
Templnt = Templnt + 1

Else
Done=Truc

End If
Wend

Alpha l = Angle(Key l Ptsflernplnt), Key lPts(O), AxisPt)
AxisPt-X = Key2Pts(O).X + I
AxisPt-Y = Key2Rs(O).Y
TempInt = 1
Done = False
WhiIe Not Done

If (KeyZPrs(O).X = Key2Rs(TempInt).X) And (Key2Pts(O).Y = Key2ks(Templnt).Y) Then
Ternplnt = TcmpInt + I

Else
Done = Tm

End If
Wend
Alpha2 = Angle(Key2Pts(TempInt). Key2Pts(O). AxisPt)
' Here insert tweaking stuff
Dirn MaxEdgeLengthDiff As Double
Dirn TernpLength As Double
MaxEdgeLengthDi ff = 0.1
For 1 = O To (NumPts - 1) Step 1

TernpLength = Abs(L 1(I) - L2(1))
If TempLength > MaxEdgeLcngthDiff Then

MaxEdgeLengthDiff = TempLength
End If

Next 1
LSmalI = 0 . 0 0 1 MaxEdgeLengthDiff
For 1 = 0 To (FJumPts - 1) Step 1

L 12(I) = Maximum(Abs(L.10 - L2(I)), LSmall)
Next 1
For t l = 1 To (NumlnBetwems) Step 1

t = t 1 / (NumInBerweens + 1)
Alpha(0) = (1 - t) Alphal + t Alpha2
For 1 = O To (NumRs - 1) Step 1

Theta(1 + 1) = (1 - t) * Thetal0 + 1) + t Theta2(I + 1)
If 1 >CiThen

Alpha(I) =Alpha([- 1) - Thetao)
End If

Next 1
E=O
f=O
G = O
For 1 = O To (NumPts - 1) Step 1

E = E + L12(1) L12(1) Cos(Alpha(1)) Cos(Alpha0))
f = f + L12(I) LI201 Sin(Alpha(1)) Cos(Alpha(1))
G = G + LIZ(1) L12(l) Sin(Alpha(l)) Sin(Alpha0))

Next 1

u=o
v = o
For 1 = O To (NumRs - 1) Step 1

Code

V = V + (((1 - t) Ll(1) + t L2(I)) Sin(Alpha(1)))
Next 1

For I = 0 T o (NumRs) Step 1
S(1) = -0.5 L12(1) L12(1) * (Lambda1 * Cos(Alpha(1)) + Lambda2 * Sin(Alpha(1)))
L(1) = (1 - t) * LI([) + t * L2(0 + S(1)

Next I

For 1 = 2 T o (NumPts) Step 1
MorphRs(I).X = MorphPts(1 - l).X + -

Cos(Alpha(1- 1)) L(I - 1)
MorphPts(l).Y = MorphPts(1-]).Y + ,

Sin(Alpha(1- 1)) L(i - 1)
Next 1
Select Chse t l

Case1
Set TempPic = picMorph 1

Draw = True
Case2

Set TempPic = picMorph2
Draw = Twe

Case3
Set TempPic = picMorph3
Draw =Truc

Case4
Set TempPic = picMorph4
Draw=T~t

Case5
Set TempPic = picMorph5

Draw = TCUC
End Select
Dim Pt0 As Coords
Dim Pt 1 As Coords
Dim Pt2 As Coords
Dim Pt3 As Coords
Dim t2 As lnteger
Dim Tempt As Double
Dim NurnCurvts As lnteger
Dim TcmpX As Double
Dim TempY As Double
Dim II As lnteger

If Draw Then
For II = O To NumCurves Step 1

R0.X = MorphPts(3 1I).X
Pt0.Y = MorphPts(3 * II).Y
R1.X = MorphPis(3 * II + I).X
R I .Y = MorphRs(3 * II + I).Y
Pt2.X = MorphPts(3 II + 2).X
Pt2.Y = MorphPts(3 II + 2).Y
Pt3.X = Morphh(3 11 + 3).X
Pt3.Y = MorphPts(3 11 + 3).Y
ForQ=OTo200Step 1
'calculate and plot the point of the bezier curvc

Tempt = t2 / 200
TempX = (1 - Tempt) (1 - Tempt) (1 - Tempt) R0.X + -

3 Tempt (1 - Tempt) (1 - Tempt) * Pt1.X-
+ 3 Tempt Tempt (1 - Tempt) Pt2.X + ,
Tempc Tempt Tempt * R3.X

TempY = (1 - Tempt) * (1 - Tempt) (1 - Tempt) * Pt0.Y + ,
3 *Tempt (1 -Tempo (1 -Tempt) R1.Y -
+ 3 Tempt Ternpt (1 - Tempt) Pt2.Y + ,
Tempt Tempt Tempt * R3.Y

TempPic-Circle (10 TempX. TempPic.Hcight - (10 * TempY)), 0.2
Next 12

Next II
End If
Draw = False

Next t 1
End Sub

References

Thomas W. Sederkrg and Eugene ~reenwood. A physically based

approach to 2D shape blending. Computer Graphics (Proc.

SIGGRAPH), 26(2):25-34, 1992.

Thomas W. Sederberg, Peisbeng Gao, Guojin Wang, and Hong Mu. 2D

shape blending: an intrinsic solution to the vertex path problem.

Computer Graphics (Proc. SIGGRAPH), 27: 15- 1 8, 1993.

Shmuel Cohen, Gershon Elber and Reuven Bar-Yehuda. Matching of

freeform curves. Cornputer A ided Design, 29(5): 369-378, 1997.

James Foley, Andries van Dam, Steven Feiner and John Hughes.

Computer Graphics - Priociples and Practce, 2nd ed. Addison Wesley

Publishing Company, Reading, Massachusetts. 1987.

Francis S. Hill, Jr. Computer Graphics. Prentice-Hali, Inc., Englewood

Cliffs, New Jersey. 1990.

References

[6] Josef Hoschek and Dieter Lasser. Fundamentals of Cornputer Aided

Geometric Design. A K Peters, Wellesley, Massachusetts. 1993.

[7] H. Fuchs, A.M. Kedem, and S.P. Uselton. Optimal surface

reconstruction from planar contours. Cornunications of the ACM,

20(10):693-702, 1977,

[8] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis.

Cornputer Graphics (Proc. SIGGRAPH), 26(2): 35- 42, 1 992.

[9] Thomas W. Sederberg and Eugene Greenwood. Shape Blending of 2-D

Piecewise Curves. Mathematical Methods for Curves and Sutfaces, 497-

506, 1995.

[IO] Moms G. Cox. Numencal methods for the interpolation and

approximation of data by spline functions. Ph.D. thesis, Department of

Mathematics, City University, St. John Street, London. 1975.

[Il] Hans C. Ohanian. Physics, 2nd ed. W.W. Norton and Company, New

York. 1989.

[12] Stephen H. Crandall, Norman C. Dahl, and Thomas J. Lardner. An

Introduction to the Mechanics of Solids, 2nd ed. McGraw-Hiil Book

Company, New York. 1978.

