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Abstract

Shape blending is the process of taking two existing shapes and finding in-between
shapes that provide a smooth transition from the first shape to the second. Shape
blending can be divided into two main sub-problems: the vertex correspondence
problem and the vertex path problem. This thesis looks at algorithms to solve these

problems, and applies these algorithms to both polygons and Bézier curves.
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Chapter 1: Introduction

1.1 Problem Statement and Background

Shape blending or shape interpolation is the process of taking two existing
shapes or curves (known as key shapes or curves) and finding in-between
shapes that provide a smooth transformation from one key shape to the other.
Shape blending should not be confused with image morphing; shape blending
changes the actual outline of the shape, whereas image morphing warps digital

images.

Digital image morphing is comprised of two operations which take place at the
same time: dissolving, in which one image gradually fades out as another
images fades in, and w;zrping, which moves points of the initial image to
corresponding points of the final image. Despite the difference between shape
blending and image morphing, some of the same techniques of shape blending

are applicable to the warping operation of image morphing (for example,
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determining a correspondence between points of the images and determining the

path the points should follow during the morph).

Shape blending has application in areas such as animation, and computer-aided

design and illustration.

Volino, N. Thalman, Jianhua, and D. Thalman [1996] have described a method
for simulating clothes on virtual actors [17] using physics-based modeling, in
which the cloth is modeiled as planar garment panels. Physics-based modeling
can be costly to compute for each frame; as a cost-cutting measure, physics-
based models could be computed only for some of the frames, and shape

blending of the panels could be used to compute the remainder of the frames.

Blending two images to simulate realistic motion is often a difficult task. In the
past, this animation has been done manually by artists, who must draw
thousands of frames in order to simulate a short sequence of motion. Clearly,
this is a very time consuming and costly endeavour. Naturally, automation of the

animation process is desirable.

Shape blending can generally be divided into two primary sub-problems: the

vertex correspondence problem, and the vertex path problem.

Vertex correspondence determines a matching of the vertices of one key shape

with the vertices of the other, so that if vertex P

in shape 1 is matched with
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vertex B, in shape 2, then vertex P, will follow a path to vertex P, during the

blend (see Fig. 1.1).

|

\#;11'\}“,7
e A

Fig. 1.1 — Correspondence of vertices

Adding additional vertices to one or both of the key shapes is often desirable, if
not necessary, in order to provide a more appealing blend. The problem of
where these additional vertices should be added is included in the vertex

correspondence problem.

Vertex correspondence is an important problem to consider, since an
inappropriate correspondence can lead to highly inaccurate and distorted in-
between images. For example, consider the two shapes shown in Fig. 1.2a (and
1.3a), and blended in Figs. 1.2b and 1.3b. In Fig. 1.2b, an inadequate vertex
matching has distorted that which should have been a trivial blend (Fig. 1.3b).
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The vertex path problem determines the path along which a vertex of the first key
shape will travel to arrive at its corresponding vertex in the second key shape.
For example, a linear path is a simple approach to this problem, but one that
often leads to unappealing results, as will be shown in Chapter 3 (see Figs. 3.1

and 3.2 for an example).

0 3 i 2

Fig. 1.2a - Two images to be blended

o

1 1 3 3
> nb <t i< i,

Fig. 1.2b — A distorted blend

Fig. 1.2 — Example of a blend with an inappropriate vertex correspondence
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0 3 0 3

Fig. 1.3a - Two images to be blended

g It

[

—

Fig. 1.3b — A good blend

Fig. 1.3 — Example of a blend with a more pleasing vertex correspondence

The purpose of this thesis is to present a detailed study of the vertex
correspondence method known as “Least Work Matching” {1] and the vertex
path method known as “Intrinsic Interpolation” [2]. This includes
implementations of both, and comparisons with some simpler methods. These

techniques will be applied to closed polygons and Bézier curves [9].
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1.2 Preliminaries

This work considers only 2-dimensional geometric blending. No consideration
has been given to 3-d blending, or to blending of other properties of an object

(e.g. lighting, colour, etc.).

Hughes [1992] presented a method for interpoléting between two volumetric
models [18]. This method takes the Fourier transforms of the volumetric
models, interpolates between the transformed models, and then transforms the
results back. An interpolation scheme is used in which the high frequencies of
the first model are gradually removed, interpolation between the low frequencies
is performed, and then the high frequencies of the second model are gradually
added back in.

Kent, Carlson, and Parent [1992] developed an algorithm to compute
transformations between two 3D objects, as opposed to 2D images of the 3D
objects [16]. The technique involves merging the topologies of the two objects

and mapping this merged topology back onto each of the original objects.

Throughout this thesis, counter-clockwise angles are considered to be positive

angles, and angles are given in radians.
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1.3 Overview

This thesis begins by considering a solution, “Least Work Matching”, to the
vertex correspondence problem (Chapter 2). Section 2.2 and its subsections
develop the algorithm and discuss the calculations required for the algorithm,
and section 2.3 discusses the results of applying the algorithm to various
polygons. Chapter 3 presents “Intrinsic [nterpolétion”, a method used to solve
the vertex path problem. This method is developed in section 3.2. A variation on
the method, Edge Tweaking, is discussed in section 3.3, and section 3.4 gives a
summary and results. Chapter 4 deals with the blending of Bézier curves.
Section 4.2 discusses blending based on the control polygon of a curve, and
section 4.3 discusses the Least Work Curve Matching algorithm. Section 4.5
gives the results of applying these methods to some examples. Chapter S gives
conclusions and looks at future work. Appendix A.2 introduces the computer
program that was coded for the implementation portion of this thesis. Appendix
A.3 discusses some of the noteworthy aspects of the implementations, and

appendix A.4 gives a listing of the code.
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2.1 Introduction

Least Work Matching, presented in [1], is a method for smoothly blending two
2-dimensional shapes. The general idea behind this solution is to consider the
shapes to have edges made of bendable, stretchable wire, and then to bend and
stretch these wires until the first shape is transformed into the second, while
minimizing a quantity analogous to work (energy) used in bending and
stretching the wires. If the energy expended in bending and stretching the wires
is minimized, then the amount of bending and stretching is therefore minimized,
resulting in a blend with minimal motion of the wires. Typically, minimal

distortion of the wires is thought to be most visually pleasing.

The goal of the algorithm is to determine the vertex correspondence which
results in the least amount of work required to transform the first shape to the

second. “Work™ refers to a measure of the effort expended in bending,



Chapter 2: Least Work Matching

stretching, and shortening the “wires” of the polygon in order to transform
themselves from shape 1 to shape 2. Sections 2.2.2 and 2.2.3 discuss the

calculation of work for the wires of the polygons.

The algorithm finds the best vertex correspondence using only the existing
vertices; that is, no additional distinct vertices are added to either of the polygons
by the algorithm (although a user is certainly free to add vertices to the polygons
during pre-processing). However, the algorithm will, at times, insert vertices at

existing vertex locations, resulting in vertices with multiplicity greater than one.

2.2 Development

Since the algorithm must determine the amount of work required for all possible

vertex correspondences, we must first determine which vertex correspondences
are possible. Let the two polygons to be blended be designated P® and P', with
vertices P,P°,...PS, and B),P,...,P', respectively, where P’ =P°, and
B} = P/ (that is, the polygons are closed). All subscripts are defined modulo the
=P°).

number of vertices on the polygon in question (for example, P’

m+l

The algorithm depends on the vertices of both shapes being numbered in the
same direction. In this thesis, the convention of numbering the vertices in a

clockwise direction is used.
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In order to determine the best possible correspondence of the vertices of P° and
P', a graph, in the form of an (n+1)x(m+1) rectangular grid, is used. The

vertices of P° and P' are represented by the columns and the rows of the graph,

respectively (Figs. 2.1 and 2.2b).

1 2 3 - .- m-lm

W N - O

Fig. 2.1 — The grid used for a vertex correspondence graph

10
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Fig. 2.2a

Fig. 2.2b

Fig. 2.2 — Example of a vertex correspondence graph

Il
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A correspondence between vertices P° and 13.' is denoted on the grid by a point

at location [i,j] (see Fig. 2.2), where, contrary to the general mathematical
convention, { refers to the column and j refers to the row. Note that henceforth, a
point on the graph will be referred to by the complete phrase “graph vertex” or

“grid vertex”, as the term “vertex” refers to a vertex of a polygon.

A vertex correspondence between two polygons is considered possible if the

following two vertex correspondence conditions apply:

1. P’ may correspond to P! only if one of the following three
conditions holds (see Figs. 2.3 and 2.4):
a) P2, corresponds to P!,
b) P corresponds to P, or

c) P?, corresponds to Pj‘_[,

2. Each vertex of a polygon must correspond to at least one

vertex in the other polygon, and vice versa.

The first condition prevents the in-between polygons from breaking apart into
pieces. The second condition is necessary since all vertices must follow some
path from one image to the other (i.e. vertices cannot just vanish or appear out of

nowhere).

12
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Starting vertices are required for each polygon, and are labeled P and P).
These starting vertices correspond to one another. My implementation simply
takes the first vertex in a file of polygon vertices (or the first vertex clicked if the
user is drawing her own polygon) as the starting vertex. Therefore, pre-

processing is necessary to ensure an appropriate first vertex matching.

Every possible correspondence that adheres to the rules set above will create a
continuous path through the graph, starting at the top left corner, [0,0], and
proceeding to the bottom right comner, [m,n], and this path will move only to the

right and down (or both), but never up or to the left.

Now, the problem of finding the least work vertex correspondence becomes the

problem of finding the least work path through the graph.

13
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Fig. 2.3a Fig. 2.3b

j-1

j+1

Fig. 2.3c

Fig. 2.3 - The graph is not allowed to break into pieces

14
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1+1

Fig. 2.4a — Corresponds with Fig. 2.3a

i-1 j+1

i1 i+1

Fig. 2.4c — Corresponds with Fig. 2.3c

Fig. 2.4 — The only three possible vertex correspondences when vertex i
corresponds to vertex j (vertex correspondence condition 1)

15
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2.2.1 Finding the Least Work Path

To determine the least work solution, we look at a piece, or fragment, of the
polygon P° consisting of vertices P, P°,..., P° and the edges of the polygon P°
connecting them, and at a corresponding fragment of the polygon P', consisting

of vertices £, F,...,P! and the edges of the polygon P' connecting them. Call

these fragments P°(i) and P'(j), respectively.

We define the work value of a graph vertex [i,j] to be the amount of work

required to transform fragment P°(i) to fragment P'(j). This work value is

denoted by W(i, j).

If one or both of fragments P°(i) and P'(j) were reduced in size by deleting the

corresondence [i,j], then the three following correspondences are possible:
[(i-1j1, [i,j—1], and [i-1,j—1]. In order to determine W(i, ), we must
know the work values of these three graph vertices that could precede graph
vertex [i,j], that is, W(i-1,j), W(,j-1), and W(@u-1,j-1). W(-1,))
represents the amount of work required to transform fragment P°(i—1) to
fragment P'(j). An example of a situation in which P°(i—~1) must be
transformed to P'(j) is shown in Fig. 2.4a. Similarly, W(i,j—1) represents the

amount of work required to transform fragment P°(i) to fragment P'(j—1)

16
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(Fig. 2.4b), and W(i—1,j—1) represents the amount of work required to

transform fragment P°(i - 1) to fragment P'(j—1) (Fig. 2.4c).

If these work values are known, W(i, ) is then equal to the work required to
transform one of these preceding fragments plus the additional work required to
transform the new part of the fragment. In terms of the graph, W(i, ) is equal to
the work required to arrive at a preceding graph vertex plus the amount of work
required to travel from the preceding graph vertex to graph vertex [, j]. That is,
one of the following three formulae must hold (corresponding to the three

possibilities in Fig. 2.4):

W(i,j) = W(i-1,j) + the work to transform the edge between
vertices P.; and P° to vertex P, 2.1
W(i,j) = W(,j—1) + the work to transform vertex P° to the edge
. i 1 (2.2)
between vertices F;_, and P,
or
W(@,j) = W(@-1,j—1) +the work to transform the edge between
vertices P2, and P’ to the edge between vertices P}, 2.3)

and P'.

Therefore, it is necessary that each of these three values of W(i,j) be calculated

for each pair of fragments P°(i) and P'(j). Denote the work of equation 2.1 as

W...(i,)), since the preceding graph vertex on the path is [i—1,j] (i.e. is

17
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directly west of graph vertex [i,j]). Similarly, the work of equation 2.2 is

denoted by W, .(i, ), and the work of equation 2.3 by W__. (i, j).

We make the requirement that if graph vertex [/, j] is preceded by graph vertex
[i—1,/], then graph vertex [i —1, ;] must be preceded either by [i—2,j] or by
[i—2,j-1],and notby [i—1,j—1] (thatis, we do not allow right angles in the
graph path). Similarly, if graph vertex [i, /] -is preceded by graph vertex

[i,j — 1], then [i, j — 1] must be preceded either by [i,j —2] orby [i—1,j-2].

An example illustrating the reasoning behind this requirement is outlined as
follows: suppose we are given vertices a and b of P°, and the edge between

them, ab, and vertices ¢ and d of P', and the edge between them, cd. If a

corresponds with ¢, and b corresponds with d, intuitively, less work will be
required to stretch or shorten edge ab into edge cd than would be required to

stretch vertex a into edge cd and then collapse edge ab into vertex d.

2.2.2 Stretching Work

Two quantities which are-used to measure the result of a force acting on a wire to

stretch the wire are strain and stress.

18
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Strain, denoted by &, is defined as the elongation, AL, of the wire, divided by
the initial length, L, of the wire:

£ = & (2.4)
L

Stress, denoted by o, is defined to be the deforming force, F, acting on the

wire, per unit of the wire’s cross-sectional area, A:

o= E (2.5)
A

When stress acts upon a wire, a strain is produced. Therefore, stress and strain
can be plotted against one another to give a stress-strain diagram for a given
material. Over the range of usefulness, stress and strain are proportional; over
this range, the stress-strain diagram is linear with constant slope. This slope
depends solely on the properties of the material of the wire; it does not depend at
all on the length or cross-sectional area of the wire. This constant slope is known
as Young’s modulus of elasticity, E:

E= g_. (2.6)
£

19
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A piece of wire that is being stretched will undergo either linear elastic stretching
or plastic stretching, depending on the amount of stretching that is occurring in

the wire. The yield stress, 0 ,,,, of a material is the elastic limit of the material.

O, is defined to be the amount of stress beyond which the material suffers

permanent damage, and will not return to its original size or shape when the
stress is removed {i.e. we say the material undergoes plastic deformation). For
any amount of stress below the yield stress, the stretching will be a close
approximation to linearly elastic. The modulus of elasticity given in equation 2.6

applies to the elastic stretching of a wire.

The amount of work done by a force F to displace a particle from point a to point

b is defined to be
b
W= J’ F(L)dL.

If we have a plot of force F vs. displacement from L =a to L =b, work is

therefore the area under the curve.

Thus, the work per unit volume, % required to stretch a wire by an amount

oe). Therefore, for

AL is the area under the stress-strain curve (i.e. 1—“;— =-2l-

elastic stretching,

20
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W.\‘lrrl'ch =1084L
2
2
PNC)
2 eL
_(ALY’EA 2.7
2L

For a more comprehensive treatment of stress, strain and work, see [11].

We will start by examining equation 2.7, and making several changes to render it

suitable for use here.

Since the “wire” polygon edges do not possess any real physical qualities, both
A and E can be defined by the user to suit the specific needs of a particular

blend. Replace AE by the constant k

stretch?

whose value represents the

stretchiness of the wire. A lower value of k

stretch

indicates a stretchier wire (a wire
requiring less work to stretch), and a higher value indicates a wire that is more

difficult to stretch.

In our application, we would like to require stretching of a wire to include both
the lengthwise stretching and shrinkage of the wire. This condition is imposed to
ensure that a blend between initial polygon 0 to final polygon 1 is the same blend
(in reverse) as that between initial polygon 1 to final polygon 0. Therefore, the

work involved in stretching a wire of length L, into a wire of length L, should

be the same as the work involved in shortening a wire of length L, into a wire of

21
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length L;,. Equation 2.7 does not satisfy this requirement. Furthermore, if a
single vertex is stretched out to a line, its original length is 0, which results in an
infinite amount of stretching work. The solution to these problems is to use a

combination of the two lengths, as will be shown shortly.

In many situations, it is undesirable for an edge to collapse to a point, or for a
point to be stretched out into an edge. Thus, a user-defined constant ¢

stretch?

0 =c..u <1, is introduced to penalize this behaviour, if the user should so

Stref.

choose. Lower values of c_,,,., indicate greater penailty. Hence, for a polygon

with an edge of length L, the quantity 2L is replaced by the quantity
((l - C-‘”“‘-"')min(lﬁ’['l)*- Catrerch max(lﬂ’[‘l))

The exponent of 2 in equation 2.7 is changed to be a user-defined constant,
€,.,.cnr Ihe exponent in the equation will vary, depending on how much
stretching will occur in the blend. For example, if the wire does not stretch too
much, the stretching will be linearly elastic, and an exponent of 2 will be
sufficient. However, if the wire stretches quite a bit and undergoes plastic
deformation, less work is required to stretch the wire, and an exponent of 1
would represent the situation more accurately. An exponent of 1 in equation 2.7
does not exactly represent the plastic deformation situation, but, rather, is an
approximation. However, since the “wires” used for the polygons are not
physical wires, this approximation is sufficient. Furthermore, also due to the fact

that the wires are not real, the choice of e, is very subjective.

22
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Employing these changes, the equation for the work required to stretch a

segment of polygon O into a segment of polygon 1 is given by:

W ’
stresch a- Citrerch ) min(Lo ’ [1 )+ Cotrerch max(LD’ Ll ) (2.8)

stretch —

where, again,
L, = length of the segment of polygon O,
L, = length of the segment of polygon 1,
k..., 1S an elasticity constant of the “wire” polygon edge,

Carech IS @ CONstant that penalizes an edge if it collapses to a point, and

€....cn 1S @ plastic deformation constant.

£{

2.2.3 Bending Work

Bending work is the amount of work required to change an angle defined by
vertices iy, i, and i, of polygon O to the angle defined by vertices j,, j,, and j,
of polygon 1. The amount of work required to change an angle is dependent on

the change in the size of the angle, A@, from one polygon to the other.

Many angles in a blend do not change monotonically from one éhape to the
other. Real elastic bending is unconcerned with non-monotonicity, since any

work used to bend an angle an amount @ will be released if the angle unbends.
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However, our application is concerned with the calculation of work solely for
the purpose of minimizing the motion of the wires. Therefore, we will assume
that any angle change, regardless of direction, is governed by the same work
calculation. Hence, in the cases in which angles do not change monotonically,
knowing only the value of A8 will give an inaccurate description of the amount
of work taking place. It is important here to also calculate the amount that the
angle deviates from monotonicity, denoted A8 *. Hence, bending work can now

be defined by:

A+ AO*,

The calculations of A@ and A8 * are discussed in sections 3.3.2.1 and 3.3.2.2,
respectively.

Non-monotonicity in an angle change is often not thought to be a pleasing or
natural feature. Therefore, such behaviour, in some circumstances, should be
penalized. Penalty is imposed by way of a multiplicative constant, m,_.,, which
can be chosen by the user. The choice of m,_,, will depend on how undesirable
non-monotonicity is in a particular blend. Higher values of m,,,, indicate greater
difficulty in bending, while lower values indicate greater ease of bending. This

yields a bending work equation of

AB+m, A0 *.
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Another problem that may arise when bending the angles is that of collapsing
angles. In Fig. 2.5, the angles in the top right and bottom left corners become
smaller and smaller until they collapse, after which the edges essentially ‘‘cross

over” one another.

VAV AV

Fig. 2.5 — Collapsing angles

This sort of behaviour creates the appearance of a polygon turning inside out, or
collapsing to a line and then reconstructing itself. Collapsing angles, or angles
which go to zero, are penalized with the use of the user-defined, additive

constant, p, ..

AB+m,, AB*+p,. ..

If an angle collapses, the quantity p,.., is added to the work calculation. If an
angle does not collapse, nothing is added. A discussion on how to determine

which angles collapse is given in section 3.2.2.3.
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As in stretching work, the user may choose the difficulty with which the angles
can bend. This is done via a user-defined multiplicative constant k,_ ,, and a

user-defined exponential constant, e,__ .

Thus, the final work equation for calculating work due to bending is given by

Woest =k, (A8 +m,, AG*) if 8(¢) does not go to zero

= Kperg (AO + my, ,AG*)*~ + p, . if6(r) does go to zero 2.9)

where, again,
A@ =change in angle from P° to P',
A@* = deviation from monotonicity of the angle change,
m,,., is a constant which penalizes non-monotonically changing angles,
Phrera 15 @ constant which penalizes angles that go to zero,
€,..s 15 an exponential bending stiffness constant, and

k..., is a multiplicative bending stiffness constant.

2.2.3.1 Calculating the Change in Angle Size

Denote the angle at vertex i, as it changes over time ¢ €[0,1] by 6,(r). 6.(0)
gives the angle at vertex i of the initial polygon, and 6,(1) gives the angle at the

corresponding vertex in the final polygon.
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If a, b, and c are three consecutive vertices of a polygon, and if ab is the edge
between vertices a and b, and bc is the edge between vertices b and c, then we

use the notation Z[a,b,c] to denote the acute angle between ab and bc.

If we let ¢ denote the vertex of P' that corresponds with vertex i of P°, and if
we assume that the vertices follow a linear path from P° to P', then the path that

vertex P° follows during the blend is given by

(-0P°+:P', tel0,1].

Therefore, the angle which initially is defined by the three vertices £°,, P°, and

1

P, is given by

6,(t) = ZL[(1-1)P%, +1P5,(1- P’ +1P' ,(1-1)P3, +1PL], (2.10)
for time ¢ € [0,1].
This angle can easily be translated to the origin, giving
2 - (2.11)

6,(t) = ZI(L - 1) PO+ 1 P 0,(1— ) P® +1 Ly,

i+l
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0 _ po 0
R+|_Pi+l-P'
i _pl _ pl
m=F5-F,and
P pl
m=h R

Now the angles can be measured with respect to the positive x-axis; that is, as

Z1(1,0),0,(1— 1) P°

i-l

+1PL1= £[(,0),0,(1 - D B+t PL .

For example, the angle Z[a,0,b] of Fig. 2.6 can be calculated as

£[(1,0),0,a] - Z[(1,0),0,b].

It would be convenient to determine the point ¢ such that
é[(l,O),O,c] = é[(l,O),O,a] - é[(l,O),O,b],

and then refer to the angle Z[a,0,b] in terms of the point c. We will call this
point ¢ the angle-defining point of £[a,0,b].
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0,1)
-—

Fig. 2.6 — Measuring angles

The y-coordinate of this angle-defining point of the angle given by equation 2.11

is given by

sin(8,(8)) = sin(L[(1-1)P°+ 1P, 0,(1-1)P°,+1P.])

i+l i

_ =D+t PLIX[A~) P+ 1P (2.12)
“(1-1)19,.‘1,+:P,.'_.‘ -’(1—t)P,-‘l,+tP.-'+x
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and the x-coordinate by

cos(B.(8)) = cos(L(l-) PO+t P, 0,(1- 1) BS+t P!, ])

|[(1-:)p,'3,+:1’,7'_,1.[a ~1) Pf‘i.+tP.1,1| 2.13)

- N

“(l —1t) R'-‘—)l'*' tP:_‘.;” “(1 —-1) P.'-S-x'*' tPi-:-j

where the operator X is defined as
k k p— —
B x P =xy;,—X;¥;>

where P* = (x;,y;) and P =(x;,y,), and the operator * is the usual dot-

product.

Disregarding the equal denominators of these equations, and expanding gives

P2 x P.-'L.[ +|P§'.,x P,
+2e(1-1) ; e

P x P

[ i+l

P x P,

y(e) =(1-1)°

(2.14)

and
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o o 5. g o
x(6) = (L= P(P°,- P,y 4+ 21(1 - (e E*'; b by 2Bl P,

(2.15)

A quadratic Bézier curve is a curve guided by three control points, p,, p,, and

p,. and is given by

o(t) = (1-1)2p, + 2t(1 - 1)p, +°p,, t €{0,1].

Development of this formula can be found in any elementary computer graphics

text (eg. [4], [S], et al.).

These two equations together have the form of a quadratic Bézier curve:

0(1) = Qu(1 - 1) +Q, 21(1 — 1) + Q,¢2, (2.16)

where
- - - - (2.17a)

Qo =( iglx E‘gl '(P:'El' F. ),
R:.XR.';. +‘81.XE§. 0 i, pl po
QI =(! | , Pi-l' R‘-u"' B—l' P ), (2.17b)
2 2
and
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- = (2.17¢)

As time changes, the coordinates (x, y) change (since (x,y) = Q(¢)). Therefore,
as a line through the origin follows this curve, the angle that this line makes with
the x-axis changes exactly as the corresponding angle in the blend changes. That

is,

0(r) = £[(1,0),(0,0), Q(1)]. (2.18)

The possibilities for extreme values of the angle are 8(0), 6(1) and angles 6(¢,)
such that the line through the origin and Q(r,) is the tangent line to Q(¢) at the

point ¢ = t,. This property can be expressed by the equation

gyxg @) =0, (2.19a)

where

g (tj =-2Q,(1-0+Q,(1-26)+2Q,¢

(that is, Q' (¢)is the first derivative of Q(¢) with respect to ¢).
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Expanding equation 2.19a and reducing gives

|Q, xQ,(1-1)? +'QL:9—212«1- N+|Q, xQ,l* =0,
(2.19b)

which is a quadratic Bézier equation.

If the angle @ changes monotonically, then the only extreme values of  occur at
t=0 and ¢t =1, and there are no values of t € (0,1) such that equation 2.19b

holds.

If the angle does not change monotonically, then the extreme values need not
occur at £ = 0 and ¢ = 1, so there are either one or two values of r € (0,1) which
produce extreme values of @ (i.e. such that equation 2.19 holds). For an
example, see Fig. 2.7. As the line from the origin to the curve follows the curve,
it first swings counter-clockwise (which is a deviation from monotonicity)

before moving in a clockwise direction toward Q,.
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Q, QM

Fig. 2.7 — Deviation from monotonicity

The net change in angle, A@, will be either:

1. Z[Q,.0,Q,], if the angle changes less than 7 radians, or
2. 2m - Z£[Q,.0,Q,], if the angle changes more than 7 radians (that is,

if the angle that the line from QO(¢) to (0,0) makes with the x-axis

changes more than z radians as ¢ changes from Q to 1).
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Assertion: The angle changes more than 7 radians if and only if the following

two conditions hold:

1. The triangle with vertices Q,, Q,, and Q, contains the origin, and

2. Equation 2.19 has no solutions te(0,1) (i.e. @ changes mono-

tonically).

Proof of Assertion:

First, suppose A@ > 7. We will show that the triangle Q,Q,Q, must contain the

origin, and that 6 must change monotonically.

We first show that the triangle Q,Q,Q, must contain the origin. If we extend the
line between Q, and (0,0), then Q, must lie on one side of the line and Q, on
the other. This facilitates the rotation of more than & radians. (If both points lie
on the same side of the line between Q, and (0,0), then the entire curve Q(t)
would lie in the half plane defined by the line between Q, and (0,0). This would
mean that any line from the origin that follows the curve would lie entirely in that
half plane, which would imply that the net change in angle was less than or equal
to & radians. See Fig. 2.8.) Similarly, if we extend the line between Q, and
(0,0), then Q, must lie on one side and Q, on the other. Therefore, Q, must lie
in the region A (shown in Fig. 2.9). This implies that the triangle Q,Q,Q,

contains the point (0,0).
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Secondly, we show that € must change monotonically. Since we have assumed

that A@ > &, Q(t) must, at some point, pass through region A (Fig. 2.9). We

will argue that Q(¢) passing through region A implies that @ must change

monotonically.

If Q(¢) passes through region A and 6 does not change monotonically, then one

of the following two situations must occur:

1.

2.

The line fromQ(¢) to (0,0) would start traveling from Q, in the direction
opposite of that which facilitates a rotation of more than 7 radians (i.e. in the
direction of the smallest angle between the line from Q, (0,0) and the line
from Q, to (0,0)) before changing directions and heading toward Q, in the
direction facilitating a rotation of more than x radians (in terms of Fig. 2.7,
the line from Q(¢) to (0,0) would have to travel clockwise from Q, and then

change direction to travel counter-clockwise toward Q,), or

The line from Q(t) to (0,0) would have to travel in the direction facilitating a
rotation of more than £ radians past Q,, before turning back and traveling in
the opposite direction to end up at Q,. (To correspond with Fig. 2.7, the line
from Q(¢) to (0,0) would have to travel counter-clockwise past Q, and then

clockwise back toward Q,)

(Note that these are the only two possibilities for deviation from monotonicity: if

6 were to deviate, say, part of the way through the angle change, the curve
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Q(t) would have inflection points, which is not possible with quadratic Bézier

curves.)

Neither situation 1 nor 2 is possible here. Since at Q,, Q(¢) is tangent to the line
between Q, and Q, (by the definition of a Bézier curve), and since Q, is in
region A, the line from Q(¢) to (0,0) starts out in the correct direction (that is, in
the direction which facilitates a rotation of more than & radians). Similarly, the
line from Q(¢) to (0,0) must end its travels in the correct direction. Since we have
determined that deviation from the correct direction is not possible except at the

beginning or the end of the curve, 8 must change monotonically.

Now we will suppose that the triangle Q,Q,Q, contains the origin, and that 0

changes monotonically, and we will show that this implies that A8 > &.

Since the triangle Q,Q,Q, contains the origin, the line from Q, to (0,0) has Q,
on one side and Q, on the other, and the line from Q, to (0,0) has Q, on one
side and Q, on the other. Draw a line through the origin that is parallel to the line
through Q, and Q,, and define a region B to be the region on the opposite side
of this line as the points Q, and Q, (see Fig. 2.11). The start and end of the
curve occur on the same side of this line. If the curve were to pass into region B
(i.e. to the opposite side of this line), then the angle would have to change by

more than 7 radians (since the angle change in region B is # radians in itself).

We will show that the curve must pass into this region B.
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It is easy to see that region A is entirely contained by region B. We will
therefore show that the curve must pass into region A, and thereby infer that the

curve must pass through region B.

Suppose that Q(r) does not cross into region A. Since Q(t) is a Bézier curve,
Q(t) (at r = 0) is tangent to the line between Q, and Q,. This line between Q,
and Q, is on the opposite side of the line between Q, and (0,0) as the line
between Q, and (0,0). Therefore the angle must first travel away from Q, before
traveling toward it, which means that 6 deviates from monotonicity (see Fig.
2.10). However, our assumption states that @ must change monotonically.

Therefore, Q(¢z) must cross into region A.

Since Q(r) crosses into region A, it also crosses into region B. As we showed

above, if Q(¢) crosses into region B, the angle changes more than x radians.

This concludes the justification of the assertion.
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Fig. 2.8 — A@ is less than 7 radians
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Q. |
- e .,
. . ’
. s
‘ U4
. -,
- 7
.. ’
R4
,
7

Fig. 2.9 — Q, must lie in region A
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Fig. 2.10 — Q(z) must start out along line segment between Q, and Q,

Qe | -7 .~
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Fig. 2.11 — Q(#) must pass through region B
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2.2.3.2 Deviation from Monotonicity

If an angle does not change monotonically (i.e. if we find values of ¢ e[0,1]
such that equation 2.19 holds), then we must determine how far the angle

deviates from monotonicity.

Deviation can occur in either direction; either the line from (0,0) to Q(f) travels
from Q(0) (= Q,) away from Q(1) (= Q;) before changing direction and heading
back toward Q(l), or the line travels past the angle Z£[(1,0},0,0(1)] before

turning and heading back toward Q, (see Figs. 2.7 and 2.12).

To calculate this deviation, solve equation 2.19 for ¢, and ¢, . Then the deviation

given by ¢,, and denoted by «, is

o = Z[0(1,),0,Q,],

and the deviation given by z,, and denoted by S, is

B = £10(1,),0.Q,].
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Fig. 2.12 ~ Values of 1, and ¢,

2.2.3.3 Collapsing Angles

We say an angle collapses if it goes to zero at some point during the transition.
That is, 8(¢) = 0 for some ¢ € (0,1). Clearly, this happens only when the curve
Q(t) crosses the positive x-axis. (Recall that in section 2.2.3.1 we manipulated

the angles so that they are measured with respect to the positive x-axis.)
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2.2.3.4 Multiple Vertices

Special problems arise when a polygon contains vertices of multiplicity greater
than one (i.e. two or more distinct vertices of one polygon all map to a single
vertex of the other polygon). Specifically, how does one calculate an angle
defined by three points, when two, or perhaps all three, of the points are exactly
the same? The solution to this problem is to pretend that the vertex of multiplicity
n is actually n distinct vertices, spaced infinitely close together. These vertices lie
along an infinitely short edge, inserted between the two edges incident to the
vertex in question, in such a way that the angles between this new edge and each
of the incident edges are equal to one another (each equal, in fact, to one half the
angle between the two original edges, plus 7/2 radians). Of course, the angles
between any interior edges of this new infinitely short edge will be n radians.

See Fig. 2.13.



Chapter 2: Least Work Matching

Multiplicity 4
x+ 1 n
2
«

IR

Fig. 2.13 — Magnified view of a vertex of multiplicity 4

2.2.4 The Least Work Path Revisited

We denote the amount of work required to stretch (or shorten) an edge between
vertices P° and P° of polygon P° into an edge between vertices P' and P, of
polygon P' (where vertex P° corresponds to vertex P', and vertex A

corresponds to vertex P;) by

wnrcrcll ([Rzo’ Pcl]'[Po'PdI]) .
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Similarly, the amount of work required to change an angle defined by vertices
P’, B, and P’ of polygon P° into an angle defined by vertices P;, P', and
P; of polygon P' (where P, corresponds to P/, P’ corresponds to P!, and

P? corresonds to P;) is denoted by
W,..([FP.PLIR P LIP. P ]).

Now that we have described how to calculate bending and stretching work
(sections 2.2.3 and 2.2.4), the pseudo-equations 2.1, 2.2 and 2.3 can be written

more concisely:

W, . (7)) =min(WLW2)+W___ ([i-1,jL[i ], (2.20)
vvnarrh(i'j) = Inin( W3‘ W4) + W:trtrch([i'j - 1]7[i1j])$ (2’21)
and
W""""‘“"(i'j) = min(WS, W6‘ W7) + Wrmrch ([‘ - Iv] - l]v[i-j]' (2-22)
where
Wi=W,_ (-1Lj)+W,_,[i-2jL.l-1jL[iJ0), (2.20a)
W2 = errhwesr(i - l'j) + Wbend([i - 2’j - I]a[i - l!j],[l’j])l (2'20b)
W3 =W, j—D+W,,(0ij-2L0j -1 ), (2.21a)
Wad =W, e =D+ W, ([ = 1,j =210, j — 1L D), (2.21b)
W5= WIanh(i - 1'] = 1) + Wbend([i - lij - 2]'[i - l,j - l],[l,j]), (2.223)
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W6 =W, e i —Lji=D+W,, ((i~2,j-2L[-1Lj-1L[ijD, (2.22b)

and

WT= Wwe:t(i - l'j - 1) + Wbend([i - 2!.’ - 1]’[1 - l,j - l],[l,j]) . (2-22C)

To better understand these equations, let us look at equation 2.20 (along with the

corresponding equations 2.20a and 2.20b).

The first term of equation 2.20 is the lesser of the following:

I. The work at the graph vertex [i—1,/]), arrived at from the
vertex directly west of [i—1,j] (that is, graph vertex
[i — 2, j1), plus the amount of work to bend the angle formed

by these two edges of polygon O into the angle formed by the
corresponding edges of polygon 1.

2. The work at the graph vertex west of [i — 1, j], arrived at from
the vertex directly northwest of [i—1,/] (i.e. graph vertex
[i—2,j-1]), plus the amount of work to bend the angle
formed by these two edges of polygon O into the angle
formed by the corresponding edges of polygon 1.

47



Chapter 2: Least Work Matching

The second term, W, . ([i -1, /L[, j]), of equation 2.20 is the amount of work
necessary to stretch the edge of polygon O defined by vertices P°, and P° into

the edge of polygon 1 defined by vertices F and P} (i.e. the single vertex P}).

That is, it is the work involved in collapsing the edge of polygon 0 in question

into a particular vertex of polygon 1.

Figs. 2.14a and 2.14b give the graph theory representation of equation 2.20,

and Figs. 2.15a and 2.15b give a corresponding polygon representation.

i-2 i-1 i i-2 i-1 i

-1 i-1

Fig. 2.14a Fig. 2.14b

Fig. 2.14 — Work from the west vertex
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Fig. 2.15a

Fig. 2.15b

Fig. 2.15 — Polygon vertex correspondence for graph of Fig. 2.14

Once the work values have been calculated, the least work path through the
graph must be found. This is done by backtracking, as follows:
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1. Start with vertex (i, j), where i=m and j=n.

2. Choose the smallest of the three work values for vertex (i, )
from equations (2.21), (2.22) and (2.23).

3. If the smallest is W then let the next vertex in the

west?

backtrack list be the vertex west of (i,j), ie. (i—1,)).

Similarly, if the smallest is W the next vertex in the list

northwest?®

will be (i —1,j—1), and if the smallest is W

narth?

then the next

vertex will be (i,j —1).

4. Let this new vertex on the backtrack list be the new (i,j), and

repeat from step 2 until i = j = 0.

In fact, our method does not guarantee the overall least work path, since
backtracking to the previous vertex of minimum work is only a local
minimization. However, our approximation to the least work path is quite
satisfactory, as it produces results which are quite good. (See [7] for further

details of the backtracking algorithm.)
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2.3 Results

The equations of the Least Work Matching algorithm requires quite a bit of user
input. A user must decide on the first vertex correspondence, set the seven
constants associated with bending and stretching work, and pre-process the
images to ensure an appropriate first vertex matching and a reasonable

distribution of vertices around the polygons.

Consider the “m” and “n” polygons shown in Fig. 2.16. The vertices occur only
at the obvious places (there are no “hidden” vertices along the interior of a
straight edge). The “m” was blended into the “n” using the following parameters:

k., =2, m,, =100, e, =1, p,., =10000, k., =0.1, c,.r =0.1, and

stret

e..... =2,and starting vertices P, and P, are as shown in Fig. 2.16.

stretch
First, consider the blend if we use a match-by-order approach (in which the
vertices are matched up based on the order in which they occur, with left-over
vertices of one polygon simply mapping to the last vertex of the polygon with

fewer vertices). The resulting blend is given in Fig. 2.17.

The result of using Least Work Matching on the polygons is shown in Fig.
2.18.
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2 1]

Fig. 2.16 -~ “m” and “n” polygons

T

il

T

Fig. 2.17 — Match-by-order without pre-processing
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Ik

Iii

[

lil

[T

Fig. 2.18 — Least Work Matching without pre-processing

Clearly, Least Work Matching gives an even less appealing blend (with global

self-intersection) than the blend in Fig. 2.17.

However, in the next blends, some pre-processing has been applied to the “n”,

in the form of adding two additional vertices, as shown in Fig. 2.19.

Il

Fig. 2.19 — Additional vertices added to “n”
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The blend which used match-by-order is given in Fig. 2.20, and the blend which
used Least Work Matching is given in Fig. 2.21. (Both use the same parameters
as the blends in Figs. 2.17 and 2.18). Least Work Matching yields a very
elegant blend, unlike that of Fig. 2.20. Clearly, pre-processing can be a very

important step in shape blending.

ot 1 1

2

Fig. 2.20 — Match-by-order with pre-processing

m m lm @ J;

Fig. 2.21 — Least Work Matching with pre-processing
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Ideally, one should be able to find a choice of parameters for which Least Work
Matching would provide the sort of blend given in Fig. 2.20, but without pre-
processing. I was unable to find such a parameter set. However, Fig. 2.23 gives
a good blend of an “E” to an “F’ (shown in Fig. 2.22), without any vertices
added along the straight edges. The general idea of the “E” to “F” blend (the
extra “limb” shrinking away) is the same as that of the “m” to “n” blend. The

parameters used here are k. ,=05, m,, =1, e, =1, p,., =10000,

Kypoon = 0.1, Copoen = 0.1, and e, =2, with starting vertices P’ and P, as
shown in Fig. 2.22.
0 1
Fo | Foll

Fig. 2.22 - “E” and “F” polygons
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E JE

E

E

F

Fig. 2.23 — Least Work Matching without pre-processing

Clearly, choice of parameters is very important, and user intervention is

necessary. A variety of good, but different, blends (as well as a variety of bad

blends) can be achieved, depending on the choice of parameters. The choice of

the first vertex correspondence is also extremely important; an example which

demonstrates this is given in Chapter 4. Often only a human being can decide

how much relative bending or stretching is desired for a particular blend, or

which vertices should be chosen as starting points on the polygons.
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3.1 Introduction

An important aspect of 2D shape interpolation concerns the path along which
each vertex must travel to arrive at its final destination. This is known as the

vertex path problem.

One approach is to have each vertex follow a linear path. Although this method
is simple to understand and to implement, it often leads to unappealing results.
More often than not, in the physical world around us, points in motion do not
follow a linear path. Linear interpolation causes all points in the first key image
to follow straight line paths to their corresponding points in the second key
image, creating unrealistic-looking approximations of motion. A classic example
of the failure of the linear path is the withering limb, shown in Fig. 3.1 as a
swinging pendulum. (A super-imposed version is given in Fig. 3.2. Here, it is

much clearer that the pendulum is foilowing a linear path). A pendulum
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outstretched horizontally in one key frame and vertically in the other key frame
will not retain its length in the in-between frames if linear interpolation is used.

Clearly, more realistic vertex path methods must be found.

This “withering limb” problem is but one of many that can arise when
performing a blend between two shapes. Some others include self-intersection,
the loss of similar features in the in-between stages, and non-monotonically
changing angles. These problems can produce in-between images which are

visually displeasing and physically tnaccurate.

Inidal Image Final Image

o -’ / / )

In-between Images

Fig. 3.1 — Withering limb
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Fig. 3.2 — Super-imposed withering limb

An alternative solution to the vertex path problem, Intrinsic Interpolation, is
given in {2]. In order to solve the vertex path problem, an appropriate vertex
correspondence must first be found. The authors of [2] used the Least Work
Matching solution to the vertex correspondence problem (given in {1], and

discussed in Chapter 2 of this thesis).

The general idea behind Intrinsic Interpolation is as follows: each of the two key
polygons is described intrinsically (that is, in terms of the edge lengths and the
angles formed by each pair of adjacent edges), and interpolation between the
values of these intrinsic features is performed to calculate the in-between

polygons.
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3.2 Development

Let the two key polygons be P°, and P', each with m+1 vertices (O through
m). This assumption is valid, since, after Least Work Matching is performed,

the two polygons can be considered to have the same number of vertices. (For
example, if two different vertices of P® map to the same vertex of P', then that
vertex of P' is considered to be two different but coincident vertices.) Let the

lengths of the edges of P° and P' be denoted by I° and L respectively, where
g ]

L; =|B - BY|. for i=0,...m. (3.1)

Furthermore, we will define 67, (k = 0, 1) to be the angle formed by extending

—— ———

edge P%P* and calculating the directional angle between edge PPt

i+l

and this

extension, as shown in Figs. 3.3a and 3.3b.

If the angle y;, measured counter-clockwise from edge P*,P* toedge P*P:, is

less than 7 radians, then define 6 as

0f =m—-vy, (3.2a)
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and otherwise, define 8 as

6 = ~(x-yl). (3.2b)

As will soon be evident, the 6! values are necessary to calculate the relative

positions of the vertices of the in-between polygons.

Note that if the vertices coincide (i.e. have multiplicity greater than 1) they are

handled in the same manner as described in Chapter 2 (see section 2.2.3.4).

i-1

Fig.33a Fig. 3.3b

Fig. 3.3 - Definition of 6,
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Since we are using intrinsic definitions for the polygons, we do not have a
description of the exact physical location of their vertices and edges. Hence,
when we interpolate between the shapes, we must have an anchor point in each
key shape whose interpolated position can specify the shape’s translation
throughout the blend, and a baseline, defined in relation to the anchor point, that
specifies the shape’s rotation during the blend. The anchor point is taken to be
the first vertex of each polygon. These initial vertices must be chosen carefully;
an inappropriate first-vertex correspondence can cause the polygon to follow a
curious path through the blend. User-intervention may be required to ensure

this.

The baseline is defined as a horizontal line through the anchor point (x,,y,) (see

Fig. 3.4). The angle that edge P,P* makes with the angle line is denoted aj.

Each edge P‘P:

% makes some angle, of, with the horizontal (the baseline).
These o values can be computed using the previous angle e, in conjunction
with 67 (see Fig. 3.5):

£ _ gt (3.3)

i-1 [

af =a
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Xy, )

Fig. 3.4 — Anchor point (x,,y,) and anchor angle a,

We need to know these values, ¢, in order to compute the position of each

vertex. From the first vertex, P*, of the ith edge, move a distance L; at angle

g

af to the second vertex, P%,, of the ith edge, which is the first vertex of the next
edge.

Therefore, the x- and y-direction of the coordinates (x,,,,y.,,) of vertex Pi,
relative to the coordinates (x;,y;) of the previous vertex P*, can be calculated as

sina,

i-1

and cosq,_,, respectively.
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Fig. 3.5 ~ Definition of &

The amount to proceed in each of the x- and y- directions is simply found by

multiplying sinea;_, and cosc;_, by the length of the edge L,

-1

between F_, and
P.
To determine the vertices, B, R,..., P, of an intermediate polygon, the lengths of

the edges and the angles formed by each pair of adjacent edges will be

interpolated:
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L=(-0L+:L (3.4)
a; =(1-nal +a) 3.5)
8, =(1-186’ +16; (3.6)

for i =0,...,m.

To obtain the vertex F, of the interpolated polygons, linear interpolation between

P and P is used.

To calculate the position of coordinates (x,,y;) of vertex P. of an intermediate

polygon, the coordinates (x,_,y; ;) of the previous vertex P_,, the interpolated

L3

edge length L., of the edge between P_,P, and the interpolated angle 6,

il

between this edge and the previous edge (equation 3.2) must all be known.

Therefore,

X; =X, (373)

+L_ cosa;

-1

and

Yi = Y + L sine_,. (3.7b)
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The Intrinsic Interpolation method offers a significant improvement over linear
interpolation, as is shown in section 3.4. In fact, the images would be quite
satisfactory if not for the fact that the in-between polygons do not typically close
(for an example, see Figs. 3.8 and 3.9 of section 3.4). Therefore, the problem

now becomes one of forcing the intermediate images to close.

3.3 Edge Tweaking

One solution to this problem is to slightly change the lengths of the edges of the
intermediate polygons. In order to do this, we change the edge length

interpolation equation (equation 3.4) to:

L=(1-DI+i+S,, i=0,.,m, (.8)

where §; is some small amount added to edge i. Now the trouble lies in

determining S,

Since it is generally desirable to have the lengths of a given edge change

gradually from the first key polygon to the second, the values of S; should be
fairly small relative to the difference in edge length from P° to P' (i.e. small

relative to |li,’ - L:I) That is, we want to fit lengths §; into the polygon such that
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the S, are as small as possible, but yet proportional to the length of edge /, and
such that the polygon will close. Thus, using least squares, we want to find such

values of S, such that

F(S, SpenS) =3
i=0

( ‘L—OS_:T,[ T (3.9)

is minimized.

In the event that [Jand L are the same length, the function f(S, S, .... S,)

1

would contain some elements in which division by zero would occur. Therefore,

define

3.10
L, = 0.0001 x(male? - L§|) (3.10)
i€(0.m]
and then, to avoid division by zero,
B = w2 - B L} i =0, G.11)
Hence,
m (g \ (3.12)
F(SgsSiaeenS,) = Z(FJ .
i=0 T

67



Chapter 3: Intrinsic Interpolation

To ensure that the values of S; will, in fact, cause the last vertex of the polygon
to be equal to the first vertex of the polygon, the following constraints are

imposed:

N (3.13a)
¢ = 2[(1—0[.? +1tL + S.Jcosa; = 0>

i=0

and

c 3.13b
@, = 3 [(1-0)L +1tL + S }sina; =0. ( )
i=0

To find the values of S; that satisfy f, ¢,, and ¢, simultaneously, Lagrange

multipliers are used.

D =f+3'1¢1+’1'2¢2' (3.14)

where A, and A, are the multipliers, and @ is a function of 4,, 4,, S, S,....,
and S,

Differentiating @ with respect to each S; and setting each %SB equal to O yields

[ 4

m + 1 equations of the form
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o d
oS,

t

. 3.1
=-(zq—‘?‘)2—+).|cosa,.+12$ina,.=0, (3.15)

fori =0,...,m, subjectto ¢, =0 and ¢, =0.

Multiplying each % by (lﬁ,’ ' )2. and rearranging gives equations of the form

1

/ll[L‘,?')2 cosat,,+;Ll([,“")2 sina, = ~25. (3.16)

We can create two new sets of equations by multiplying the set of equations 3.16
by sin¢; and by multiplying the set of equations 3.16 by cosc;. Doing so, and

then summing each set of equations, gives

- 2 m ) m (3.17a)
M (L) cos’a; + 4, Y (L)) cosa;sina; = -2 S, cose;,
i=0 i=0 i=0
and
m 2 (3.17b)

49 (1') cosasina, + kzi(li," )’sin® ez, = —Zis,. sing, .
. i=0 i=0

i=0
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Rearranging the constraint equations ¢, =0 and ¢, =0 gives

i[(l -0 +tL:]cosa,. = —iS,. cosa, ,

=0 i=0

(3.18a)

and

i[(l -nL; 'HZ}]Sina‘. = —i.g}ginai . (3.18b)
i=0 pary

Replacing the right-hand side of equations 3.17a and 3.17b with the left-hand

side of equations 3.18a and 3.18b, respectively, yields two equations in two

unknows, 4, and A,:

m 2 m m (3.19 )
4 (') cos’a; + LI (Y cosa;sine, = 2Y [(1- 0L +1L|cose;, :
i=0 i=0 =0
and
o, (3.19b)

A > (L) cosa;sine, + A.Zi(l,?')z sin‘@; = 2i[(1 -0 +L]sing;.
i i=0 i=0
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We can solve for 4, and A, using Cramer’s Rule:

2i[(l - 0L +tL Jcose, Zm:([,‘,")2 sina; cosa,

=0 i=0

2i[(1—t)L?+tL}]sina, i(lﬁ,")zsinza,.

A’l = =0 - - i-0 .
(2 ')2 cos’a, z’(lf‘,")2 sing; cosa, (3.20a)
i-0 i=0 )
i(‘gl)z sing; cosq, i(L?')z sin’ @,
i=0 i-0
and
i(lgn )2 cos’a; 2i[(l - L +tL]cosa,
i-0 i=0
i(L?l)z sina; cos Zi[(l—t)lg +tLsine,
4 =1 i
> (L )2 cos’er, Y (L )2 sina; cos ¢, (3.20b)
-0 i=0
i(L?')z sing; cos e, i(lf,")z sin’ ¢,
=0 i-0
given that

(£2'Y cos? a)(z(z, sin? a,.j . (z(z, Y cosersin a)
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Once A, and A, are found, the equations 3.16 can be used to solve for S

S = .--21.(12')2(/11 cosa; + A, sinq;),

(3.21)

fori=0,....m.

Now that the values of S, are known, equation 3.8 can be used to calculate the
edge-lengths, L, and, as before, equations 3.7a and 3.7b can be used to

calculate the vertices of the in-between polygons.

3.4 Results

Intrinsic Interpolation was applied to the pendulum of Fig. 3.1, with results
given in Fig. 3.6. Fig. 3.7 shows an image with the five in-between frames
super-imposed on one another. The pendulum follows a circular path, as we

would expect of a real pendulum.

Edge tweaking works well. Fig. 3.9 gives an example of the polygons of Fig.
3.8, blended using intrinsic interpolation, in which the in-between polygons do
not close. When edge tweaking is applied, the in-between polygons close nicely

(Fig. 3.10).
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a/l/

o

J

Fig. 3.6 — Intrinsic Interpolation applied to a pendulum

Fig. 3.7 — Super-imposed pendulum
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Fig. 3.8 — Polygons to be blended with Intrinsic Interpolation

pil (punl sl [

Fig. 3.9 — Intrinsic Interpolation without Edge Tweaking
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udig |l g

Fig. 3.10 — Intrinsic Interpolation with Edge Tweaking

The following two examples use the Least Work Matching and Intrinsic
Interpolation with Edge Tweaking algorithms. Fig. 3.11 is a blend of the “m”
and “n” polygons of Fig. 2.12 (without pre-processing), and Fig. 3.12 blends
the “m” polygon of Fig. 2.12 and the “n” polygon of Fig. 2.15 (the “n” is pre-
processed). The same parameters were used here as were used in the “m” to “n”
blends of Chapter 2. Fig. 3.11 is a little odd, but Fig. 3.12 shrinks the extra
“limb” even more elegantly than the blend of Fig. 2.17.

75



Chapter 3: Intrinsic Interpolation

[T (TR ISV I I [

Fig. 3.11 - Intrinsic Interpolation with Edge Tweaking, no pre-processing

o s O 1o O

Fig. 3.12 - Intrinsic Interpolation with Edge Tweaking, with pre-processing

As an additional example, Intrinsic Interpolation with Edge Tweaking is applied
to the “E” to “F’ blend of Chapter 2 (Fig. 2.18), with good results (see Fig.

3.13). The limb disappears more quickly than the blend given in Fig. 2.19.
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E lIE lE JF IF

e -

Fig. 3.13 — “E” to “F” using Intrinsic Interpolation with Edge Tweaking

Although in the examples here edge-tweaking produced good blends, the

possibility may exist that the edge tweaking algorithm may produce some values

|S;| that are too large to appear appealing in the blend.
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4.1 Introduction

So far, we have looked only at the blending of polygons. We will now tum our
attention to adapting the previously discussed methods for use in the blending of

curves.

Like the polygons described in Chapters 2 and 3, we will think of the curves as
being made out of pieces of wire that can be bent or stretched, and we will
attempt to bend and stretch the wires of the first curve into the shape of the

second curve.
The curves used in the blending algorithm will be constructed from cubic Bézier

curves. Cubic Bézier curves use polynomial curve segments which are guided

by four control points q,, q,, q,, and q,, and are defined by the equation
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O(t) = (1-1)°qq +3t(1 - 1)’ q, + 3% (1 - 1)q, + I°q,. (4.1)

The function associated with each control point is known as a blending function.
The use of the word “blending” in the term “blending function” is unrelated to

the blending of 2-dimensional shapes.

Bézier curves interpolate (pass through) the first and last control points (in the
cubic case, q, at £ =0, and q, at r=1), and have the property that the line
through q, and q, is the tangent line to the curve at the point q,, and the line

through q, and q; is tangent to the curve at the point q,.

The curves to be blended are defined as a list of the control points of the Bézier
curves, whereby the last control point of one Bézier curve is the first control
point of the next Bézier curve. The whole curve will therefore pass through the

first control point, and every third control point thereafter.

In the discussion that follows, the phrase “curve segment” will refer to the
portion of the Bézier curve defined by four control points, and the term “curve”
will refer to the continuous curve formed by joining these segments. Several

restrictions are placed on the curves for our purposes.

First of all, we restrict the curves to have no points of inflection in each segment.

That is, the points of inflection must occur at the join points of the Bézier curves.
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This restriction is introduced to aid in the calculation of bending work (section
4.2.2). Should a Bézier curve segment contain an inflection point, it can easily

be found by solving

g'@)y=6(1-nq,-6(2-3r)q, +6(1-3r)q, +61q, =0

for r. The curve segment in question can then be subdivided into two Bézier

curve segments at the inflection point.

Furthermore, although we allow repeated control points, they must be adjacent
to one another in the ordered list of control points. That is, the curve cannot
cross back through itself, nor can the first and last control point of a segment be
the same, unless the two interior control points are also the same as these first
and last control points (see Fig. 4.1). Thus, we must also assume that there are

at least two Bézier curve segments in our joined-together, closed curve.

Lastly, assume that the curvature of each segment is small enough and the length
of the segment short enough that the angle formed by the intersection of the
outward pointing normal lines at the endpoints of each segment are less than 7

radians (see Fig. 4.2).

For a more thorough treatment of Bézier curve, see [4], [5], et al.
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1 2°¢
Po=P, = P2= PS

®

P

0
p3
4.1a — Allowed curves
. Pz
P=p
[ ]
S _,_./:/ ° p') DZ
= P 0
PO P3 1

4.1b — Disallowed curves

Fig. 4.1 — Bézier curves that are and are not allowed
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Allowed - Disallowed

Fig. 4.2 — Curve segments that are and are not allowed

4.2 Curve Blending via the Control Polygon

The simplest way to compute a blend between two curves is to look at the
control polygon of the curve. (The control polygon is simply the polygon whose
vertices are the control points of the strung-together Bézier curves.) The Least
Work Matching algorithm discussed in Chapter 2 can be applied to the control
polygon to find a control point correspondence, and then either linear
interpolation or Intrinsic Interpolation may be applied. In-between Bézier curves

are drawn based on these in-between control polygons.

A simple example in which control polygon blending works well is given below,

by the two leaves to be blended (given in Fig. 4.3, and blended in Fig. 4.4). In
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fact, this blend by the simple control polygon method produces an identical
blend to one produced by the more complicated method of Least Work Curve

Matching, discussed in section 4.3.

The parameters used for the controi polygon method are k%, =0.1,
m,,., =100, e, ., =1, pp.. =10000, k..., =2, Cypyer =0.1, and e, =2.
The parameters used for the Least Work Curve Matching method of section 4.3
are C,_, =1, C,, =01, E, . =1, K_...=2, C,..=0.1, and E_, , =2.

The starting vertices are as shown in the figure.

Fig. 4.3 — Two leaves to be blended
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Fig. 4.4 — Blend using the control polygon

One obvious problem with the control polygon method is'that entire Bézier curve
segments of shape 0 may not be matched to entire Bézier curve segments of
shape 1 (see Fig. 4.5). Inserting the additional control points required by this
scenario will cause changes to the original curves before any blending even
begins (see Fig. 4.6). The algorithm is oblivious to the changes it is causing in

the curve, since it is dealing solely with the control polygon.

To deal with this problem, one could draw a pseudo-control polygon based only
on the control points through which the curve passes (i.e. the first point of the
strung-together curve, and every third point thereafter), and apply the Least
Work Matching algorithm to this pared-down control polygon. However, the
paring-down would provide only a very rough linear approximation to the curve,
and would, in general, significantly reduce the accuracy of the work

calculations.

84



Chapter 4: Curves

Fig. 4.5 — p,, P;» P»» and p, may match to q,, q,, q,, and q,

P e
1 *P, Ppe Py
/—\. .
p P
0 p 3 0 P 3
Fig. 4.6a — Original Bézier curve Fig. 4.6b — Bézier Curve when p,
has multiplicity 2

Fig. 4.6 — Inserted control points can cause unwanted changes in the curve
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A better idea would be to use only the control points through which the curve
passes in the matching, but instead of approximating the curve segment by
straight lines to calculate work, use the interior control points to determine the
actual Bézier curve between the interpolated control points, and use these curves

in the work calculations. This method is discussed in section 4.3.

4.3 Least Work Curve Matching

As with polygon blending, we must find a correspondence between the two key
curves, and then determine the path along which the corresponding points of the
curve will follow. The correspondence between the two key curves will be based
on the interpolated (end) control points of each Bézier curve segment. That is,
instead of matching vertices of the key polygons (as in Chapter 2), we will
match the interpolated control points. The correspondence algorithm discussed
here is similar in nature to the Least Work Matching algorithm for vertex

correspondence of [1], discussed in Chapter 2 of this thesis.

Some quantity of work is required to transform one curve into another. The
amount of work involved in blending a particular pair of curves will vary
depending on the control point correspondence. Since the blend requiring the
least amount of work is typically the most visually pleasing, we wish to find the

control point correspondence that involves the least amount of work.
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Before we can proceed with the control point correspondence, we first must

describe the way in which work will be calculated.

4.3.1 Work

For two-dimensional shape blending, we concern ourselves with three sorts of

work: stretching work, bending work, and kinking work.

4.3.1.1 Stretching Work

As in Chapter 2 (equation 2.8), the work required to stretch a wire of length L,

into a wire of length L, is

— €areca 42
w (L~ Ly) 4.2)

=k
stretch stretch N ’
(1 = Crrerch ) mln(LO’ l’l ) + Catrerch max(l-o ’ Ll )

where the length of the parametric Bézier curve segment is given by:

&)%)«
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(For a discussion of the equation and a description of each of the constants

k

stretch?

€.rercn AN €., SEE SeCtion 2.2.2.)

4.3.1.2 Bending Work

Bending work is the work required to elastically bend a curve segment. Bending
work for a segment of the curve is based on the change of interior angles, y/,,
formed by the intersection of the normal lines to the endpoints of the curve (see

Fig. 4.7).

The computation of this quantity is straightforward since the control points of
Bézier curves, by definition, create tangent lines to the endpoints. Knowing
these tangent lines allows for easy computation of the normal lines. Since we
assume that the degree of curvature of each curve segment is small, calculating

v requires finding the point of intersection, p,,, of these two normal lines, and

then computing the angle Z[p,.p;..P,]-

Bending moment is a measure of the resistance to bending of a wire. The

bending moment applied to each end of the wire, M, is defined by

M, 6 =—,
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where E is the modulus of elasticity of a material, / is the moment of inertia, and

p is the radius of curvature.

Pt

Fig. 4.7 — Calculating angles for bending work

Then the work required to bend a straight wire of length L into a circular arc of

|
curvature K, wherex = —, 1s
Jo

Wora = IMuudW

(4.3)

= My¥,
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where y is as given in Fig. 4.7.

To render this equation suitable for use, make the following substitutions:

Woes =MW

_Ety
fo]

y? (4.4)

= (2El
2py

Since our wires have no physical properties, the user can choose E and [ to suit

her needs. Therefore, let C,,,, = 2ETI be a user-defined constant.

Since we may be bending a curved wire into a curved wire (instead of bending a
straight wire into a curved wire), we replace y in equation 4.3 by the difference
between y, and y, (where ¥, and y, are the angles from key curves 1 and 2,

respectively).

For ease of computation (and since we do not, for our purposes, require exact
work value computations, but rather approximations of work values), we choose
to approximate the curve by a circular arc when computing bending work. The
length, L, of a circular arc is simply the product of the radius of curvature and
the angle y. Therefore, the quantity 2py is simply 2L. Since the initial and

final lengths of the wire may not be equal, and since we wish our work equation
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to be representative of the arc lengths from both key curves, replace this quantity

by L, + L.

Thus, the work equation for bending is

(y, -~ Wo)z (4.5)
L+l

Wiced = Coena

4.3.1.3 Kinking Work

If the moment of the wire exceeds the elastic limit, plastic bending (kinking)

occurs in the wire.

We consider this sort of bending to occur only at the join points of the Bézier
curve segments. If we define 8 to be the angle between the two normal lines to a
join point (see Fig. 4.8), we can view kinking as similar in nature to the bending

at polygon vertices discussed in Chapter 2 of this thesis.

We therefore let kinking work be defined in a manner similar to the work of

equation 2.9:

Weine = Kkink‘el ‘ezlsu s (4.6)
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where 6, and 0, are the angles of key curves | and 2, respectively, K

kine 15 @
user-defined kinking stiffness parameter, and E,.,, as usual, is an elasticity

constant.

Fig. 4.8 — Calculating angles for kinking work
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4.3.2 Changes to the Least Work Matching Algorithm

Here, the changes to the Least Work Matching algorithm of Chapter 2 are

outlined.

As in Chapter 2, a rectangular grid is used to determine the Least Work control
point correspondence. Here, instead of assigning every control point a column
or row in the grid, we allow only the end control points of each Bézier curve to
be represented in the grid. This is done to ensure that whole curve segments map

to whole curve segments.

We denote the amount of work required to stretch (or shorten) the curve segment

between end control points R,o and P,,° (where, of course, two additional control
points exist in between P and P) of the whole curve P° into a curve segment
between control points P' and P; of the whole curve P' (where control point

P? corresponds to control point P!, and control point B’ corresponds to control

point P;) by

errzlch([l:,ao’ ’3:1 ]7[I)borpdl ]) .

Similarly, the amount of work required for kinking at a join point of Bézier

curve segments, where P’, P, and P° are the end control points of the two

93



Chapter 4: Curves

adjoining segments of the whole curve P°, and P;, P', and P} are the end
control points of the two adjoining segments of the whole curve P' (where P°

corresponds to P, B} corresponds to P', and P° corresonds to P), is

denoted by

WHA&([R;O’ de ]1[&0s }),l ],[R_.O-P;])

The amount of work required for bending a curve segment between end control
points P and P of the whole curve P° into a curve segment between control
points P’ and P, of the whole curve P' (where control point P’ corresponds to

control point P', and control point B’ corresponds to control point P') b
c b d y

W,...([P°,P'1,[P°, P}]).

Like the Least Work Matching of Chapter 2, the algorithm here may insert
additional control points. These control points may only be inserted at existing
control points represented in the graph (that is, only at the curve segment’s
endpoints). In fact, wher.l one control point is inserted, we must actually insert
three points at that location; we are inserting an entire curve segment (which just

so happens to be a point).
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The same conditions for possible vertex correspondence apply to this graph as to

the graph of Chapter 2.

The work equations for each grid vertex must consider not only stretching work
(which is analogous to stretching work for polygon edges) and kinking work
(which is analogous to bending work for polygon angles), but also curve
bending work. Thus, analogous to equation 2.20, the equation for W

wes?

becomes

VVweJl = ‘Vﬂrrlck([i - l’J]’[l'j]) + vvbend([i - l!j]s[i’j]) +
min [vvwe:x(i - l9j) + kak([i - 2’j]1[i - l,_]],[i,_]]),
W,oriwes (i = 1 )+ W (1 = 2, j = 1,0 = 1, jL.G DL, .7

and the equations for W, _,(i,j) and W__, .. (i, j) follow similarly.
Backtracking through the graph is exactly like that of Chapter 2, with regard to
the control points that are represented in the graph. However, once we have

completed the Least Work Matching list, we must insert the interior control

points into the list for use in the interpolation.

Once the curves (and their control points) have been matched, linear interpolation

can be used to calculate the in-between frames.
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One of the most significant problems with using a Bézier curve representation
when blending curves is the possibility that continuity will not be preserved
throughout the blend. For example, in Fig. 4.9, the two Bézier curve segments
of frame 1 are joined with C' continuity, and are matched with the two Bézier
curve segments of frame 2, which also have C' continuity at their join point.
However, throughout the blend, the continuity is decreased to C° at this join
point (see Fig. 4.10), as the linear path followed by one of the control points

causes a cusp in the in-between images.

join point

join point

Fig. 4.9 — Two Bézier curves joined with C' continuity
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|

Fig. 4.10 — In-between images have reduced continuity

4.4 Results

Consider the “U” and the “J” of Fig. 4.11. Blending these letters using the Least
Work Curve Matching algorithm coupled with linear interpolation, and using
=0.1, C

stretch T

parameters C,,., =5, Cuu. =35, E,x=2, K 1, and

stretch

E

waen = 1, gives a fairly good blend, as shown in Fig. 4.12. Each curve’s
starting control point for the blend of Fig. 4.12 is given by the dot on the images
in Fig. 4.11. Contrary to our usual convention, the control points of these

images have been labeled in counter-clockwise order.

To emphasize the importance of the starting control point correspondence,
consider the blend given in Fig. 4.13. Here, the initial control point of the “U™ is
given in Fig. 4.11 by the square on the top left corner. The initial control point

of the “J” is the same as in the previous blend.
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Fig. 4.11 — “U” and “J” to be blended

Fig. 4.12 — Least Work Curve Matching, initial vertex correspondence 1
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J |J

Fig. 4.13 — Least Work Curve Matching, initial vertex correspondence 2

Applying the Least Work Matching algorithm (of Chapter 2) to the control
polygons of the letters with the first initial vertex correspondence, and using
parameters k., =2, m,,, =100, e,,=1, p,.,=10000, k.., =0O.l,

C =1, yields a reasonably good blend (Fig. 4.14),

3t

retch = 01' and e:rrerch
although not as smooth a transition as the blend given in Fig. 4.12. Using the
same parameters on the control polygon blend with second initial vertex

correspondence give less appealing results (Fig. 4.15).
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Fig. 4.14 — Control polygon blend, vertex correspondence |

Fig. 4.15 — Control polygon blend, vertex correspondence 2
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5.1 Future Work

There are several problems associated with two-dimensional shape-blending that
the methods discussed in this thesis do not address. Some of these have been

discussed in the results sections of each chapter. Others are noted here.

To begin with, the Least Work Matching algorithm deals with local self-
intersections (caused by angles going to zero) by imposing a penalty. However,
there is nothing in the algorithm which tests for or penalizes global self-

intersection.
As stated previously, the algorithm also requires a great deal of user-

intervention. Firstly, the user is required to select starting points for the vertex

correspondence. One way to avoid this would be to subject the polygon images
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to some automated similar feature detection techniques of image processing.
Secondly, the exponents e, , and e,_,, are set by the user before the program is
run. Therefore, every edge or angle will use the same exponent, regardless of
how much or how little a possible vertex correspondence will cause a particular
edge or angle to stretch or bend. One suggestion is to use thresholding to allow

the computer to select a value for e and e,,,, for each proposed edge and

streich
angle, based on the amount of stretching and bending that will occur for that
edge or angle in a given situation. A user would, however, be required to set

threshold levels.

The algorithms presented here deal only with images containing one polygon or
closed curve. New methods would be required to deal with images containing
several shapes (particularly if each image contained a different number of
shapes), or with images of single shapes that contain one or more holes. Some
problems associated with blending shapes contairing holes include finding an
appropriate matching of the inner shapes, and ensuring that all inner shapes
remain completely inside the outer shape throughout the entire blend. If images
contained different numbers of shapes, we would have to contend with problems
such as deciding whether to split shapes apart to make new shapes or to create
new shapes out of thin air, whether to join shapes together, or to make shapes
vanish. Further, we would have to decide which of the shapes should be split,

joined, deleted, or formed out of nothing.

An obvious improvement to the Least Work Curve Matching algorithm is to

improve the manner in which kinking work is calculated, by taking into account
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possible deviations from monotonicity and collapsing angles, as was done in

Chapter 2 for the polygon bending work calculations.

Linear Interpolation was the only method used for the control point-path problem
of curve blending. Intrinsic Interpolation could also be applied, either to the

curves themselves, or to the control polygon.

A possible method to improve the continuity of the in-between frames of curve
blending is to convert the Bézier curves to B-splines. B-splines allow greater
continuity at join points. A method of converting Bézier curves to B-splines is

outlined in [9].

5.2 Conclusion

This thesis has presented several techniques for blending 2-dimensional
polygon. The Least Work Matching method of vertex or control point
correspondence generally provides a good matching between the polygons
(curves), provided that the vertices (control points) of each polygon (curve) are
fairly evenly distributed, that the first vertex correspondence is appropriate, and
that the bending and -stretching (and kinking) parameters are chosen
appropriately. Intrinsic Interpolation with Edge Tweaking clearly produces the
most elegant results of the vertex path methods discussed in this work.

Obviously, the most significant drawback of these methods is the amount of user
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intervention that is necessary to produce a good blend. Despite the amount of
input required, however, the methods are still quite satisfactory and, in many

cases, have produced beautiful blends.

104



Appendix A: Implementation

A.1 Introduction

This appendix provides a discussion of the implementation of the algorithms

outlined in this thesis.

A.2 Application

To assist with my study of shape blending, an application was created using
Microsoft Visual Basic. Although Visual Basic is not the most efficient language
to use, it did allow for a quick and easy user-interface. The user-interface for this
application is shown in Fig. A.1. The application allows two key polygoas or
Bézier curves to be entered by a user. The polygons may be entered either by

clicking points in the drawing windows, or by opening a file containing polygon
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Bézier curves may only be entered by opening files of Bézier control

vertices.

. To open a polygon, select either “Open Polygon in Key 1" or “Open

points

Polygon in Key 2” from the File menu, and choose an appropriate text file. Files

ilarly.

1mi

of Bézier control are opened s

Least Work Matching
Least Work Curve Matc!

Mald;ﬂy dldet 1

ication

Fig. A.1 — User-interface of the appl

B ittt st e i
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Polygon vertices and Bézier control points are stored in text files as a list of real
numbers, one per line, giving, alternately, the x- and y-coordinates of the points

of the polygon, in a clockwise fashion.

Two list-boxes are given on the form, one containing a list of vertex
correspondence methods, and the other containing a list of vertex path
techniques. The user may select, from each list, the desired technique. Once the
methods have been selected, the user can view the sequence of generated in-

between frames by clicking the button labeled “Morph™.

Note that the user is responsible for selecting appropriate methods, based on
whether polygons or curves are to be blended. Further, it is the user’s
responsibility to ensure that both key frames contain polygons or that both key

frames contain curves.

The number of in-between frames is hard-coded and may not be changed by the

user at run-time.

The parameters for the work calculation of Least Work Matching and Least
Work Curve Matching are given in a box in the lower right corner of the screen.
The first two columns give the parameters for Least Work Matching. The first
column contains paramet‘ers for bending work, and the second column gives
parameters for stretching work. The parameters of the third column are for
stretching, bending, and kinking work of the Least Work Curve Matching

algorithm. The user can change these values as desired, but must click the
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“Apply” button in order for the changes to take effect. One value of each

parameter may be chosen, and this parameter is applied to the entire blend.

A.3 Discussion of the Implementations

This section gives a brief discussion of how some of the ideas in the thesis were
implemented. Intrinsic Interpolation is a very straightforward implementation, so
no comments are given. The Least Work Matching algorithm has several items to
be noted (section A.2.1). Least Work Curve Matching is very similar to Least

Work Matching, so no special mention is made of its implementation.

A.3.1 Least Work Matching

For each polygon, the vertices are read into an array of coordinates. For all

possible graph vertices, W, ., W, ., and W are calculated by determining

west? nor northwest
the appropriate stretching and bending work calculations. My implementation
takes the first vertex in a file of polygon vertices (or the first vertex clicked if the

user is drawing her own polygon) as the first vertex correspondence.

Stretching work is a straight-forward calculation, requiring only edge length

differences.
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Bending work is somewhat more involved, and here we make a few notes on

how bending work calculations were implemented.

If a triangle contains the origin, then together, the edges of the triangle must
cross the positive x-axis, the negative x-axis, the positive y-axis, and the
negative y-axis. The program tests each triangle edge for intersection with each

of the axes, and keeps track of which axes have been intersected.

Monotonicity and deviation from monotonicity are calculated in a brute-force
manner. Instead of solving equation 2.20 for re(0,1), we take ¢ in small
increments and determine the angle that the vector from the origin to the point
QO(r) makes with the x-axis. We keep track of these angles to determine whether
the angle changes monotonically. This list of angles also lets us determine how
far from monotonicity the angle deviates (if it does), and in which direction.
Furthermore, since we are calculating a list of angles, we take the opportunity to

figure out if Q(¢) crosses the x-axis.

To backtrack, find the previous graph vertex that requires the least amount of

work, and choose that one as the next vertex in the backtrack list.
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A4 Code
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Option Explicit

Const MaxNum = 100

Const NumInBetweens = § * Number of in-between frames
Const Epsilon = 0.001

Const PI = 3.1415926535

Dim KeyIFirstClick As Boolean °‘ Used when the user draws her own polygon by clicking
Dim Key2FirstClick As Boolean ' points. Keepstrack of whether or not the mouse click

' represents the first point of the polygon. Needed

' for drawing (no Line_To used for the first click

Dim Key INumPts As Integer * Number of vertices {or control points) in each
Dim Key2NumPts As Integer  * key frame '

Dim MaxCPl As Integer ' Number of control points in the B-Spline (converted
Dim MaxCP2 As [nteger * from a Bezier)

Dim MaxKV1 As Integer * Number of knots in the converted B-Spline

Dim MaxKV2 As Integer _

Dim Key!Pts(MaxNum) As Coords ‘ Stores the coordinates of the vertices (control points)
Dim Key2Pts(MaxNum) As Coords ' in the order they are read in (or clicked)

Dim Key1Knots(MaxNum + 4) As Double ' Stores the knot vector for a spline

Dim Key2Knots(MaxNum + 4) As Double

Dim CPi{(MaxNum) As Coords * Control Points of a B-Spline of Key Frame |

Dim CP2(MaxNum) As Coords * after the conversion from a Bezier curve.

Dim DistinctKnotList1{(MaxNum) As Double ' a list of the distinct knots of B-Spline |
Dim DistinctKnotList2(MaxNum) As Double ’

Dim NumDistinctKnots! As Integer ‘' the number of distinct knots of a b-spline

Dim NumbDistinctKnots2 As Integer

Dim MorphPts(MaxNum) As Coords

Dim NumPts As Integer

Dim DrawPolyl As Boolean ' True if the user draws the polygon by clicking points.
Dim DrawPoly2 As Boolean ' False if we read from a file. False if we are drawing

'a curve. (N.B. This program does not allow the user

' to draw a curve by clicking control points. All curves

* must be read from a file.

Dim DrawBezier As Boolean ' True if we are opening Bezier curves. False for polygons
Dim KeyDifference(MaxNum) As Coords

' Bending parameters

Dim kb As Double ' bending stiffness

Dim mb As Double ' penalizes non-monotonic angles
Dim eb As Integer 'either 1 or2

Dim pb As Integer ' penalizes angles from going to 0

‘Stretching parameters

Dim ks As Double * stretching stiffness constant

Dim cs As Double ' controls penalty for edge collapsing to a point
Dim es As Integer " 1 or 2, depending on the stretchiness of the wire
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' Curve bending parameters
Dim CurveCb As Double
Dim CurveCk As Double
Dim CurveEk As Double
Dim CurveKs As Double
Dim CurveCs As Double
Dim CurveEs As Double
AKX R EEEEEEESSESEELREELEAEEEEEE SR SRR RS S SRS R EEESEETEESRREES
Private Sub cmdApply_Click()
kb = CDbl(txtkb.Text)
mb = CDbl(txtmb.Text)
cb = Val(txteb.Text)
pb = Val(txtpb.Text)

ks = CDbl(txtks.Text)
cs = CDbl(txtcs. Text)
es = Val(txtes.Text)

CurveKs = CDbi(txtCurveKs.Text)
CurveCb = CDbl(txtCurveCb.Text)
CurveEk = CDbl(txtCurveEk.Text)
CurveCk = CDbl(txtCurveCk.Text)
CurveCs = CDbl(txtCurveCs.Text)
CurveEs = CDbl(txtCurveEs.Text)

End Sub
SRR EE AR SE SRS LB ERS XSRS E AL S EELRE A EEEEEESEEEEESBEEEEE RS ESEE SRS N
Private Sub cmdClear_Click()

' Clears all drawing from the picture windows and re-initialized the data corresponding
' to the pictures

Dim [ As Integer

Key FirstClick = True
Key2FirstClick = True
Key !NumPts =0
Key2NumPts =0
NumPis =0
DrawPolyl = True
DrawPoly2 = True
DrawBezier = False
picKey1.Cls
picKey2.Cls
picMorphl.Cls
picMorph2.Cls
picMorph3.Cls
picMorph4.Cls
picMorph5.Cis
End Sub

IR 222 X R 22 2223 2222222 222 F 22222222232 2321 F 22222222222 222 222 222 L)
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Private Sub cmdMorph_Click()

" starts the selected vertex correspondence and vertex path methods

' Note: All polygons are required to be closed. For each polygon, draw a line

! from the last vertex to the first vertex. Do not increment the number of

points, since the number of points remains the same. (We don’t want

to count the first vertex twice). Add the coords of the first vertex to the

' end of the vertex list (for simplicity in later code).

' Note: Only do this if we are drawing polygons, NOT if we are drawing
curves

If DrawBezier = False Then
" Close the polygons. This is only NECESSARY when the user is drawing
' her own polygonby clicking points. If a polygon file is opened, the
' "open" routine takes care of closing the polygon

picKey2.Line (10 * Key2Pts(Key2NumPts - 1).X, _
picKey2.Height - (10 * Key2Pts(Key2NumPts - 1).Y))- _
(10 ® Key2Pts(0).X, picKey2.Height - (10 * Key2Pts(0).Y))

picKey!.Line (10 * Key1Pts(Key [ NumPts - 1).X, _
picKey 1.Height - (10 ® Keyi1Pts(Key INumPts - 1).Y))- _
(10 * Key{Pts(0).X, picKeyl.Height - (10 ¢ Key!Pts(0).Y))

Key 1Pts(Key INumPts). X = Key [ Pts(0).X

Key1Pts(Key I NumPts).Y = KeyPts(0).Y

Key2Pts(Key2NumPts). X = Key2Pts(0).X

Key2Pts(Key2NumPts).Y = Key2Pts(0).Y
End If

' Choose a vertex correspondence method
Select Case IstVertCorr.Listindex
Case 0
MatchByOrderl
Case |
LeastWorkMatching
Case 2
LeastWorkCurveMatching
End Select
' Choose a vertex path method
Select Case IstVertPath.Listindex
Case 0
Linearinterpolation
Case 1
Intrinsicinterpolation
Case 2
EdgeTweaking
Case 3
LinearBezierMorph
Case 4
IntrinsicBezierMorph
End Select

End Sub
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CESZERFEESEBESS S XX RS EEEELEERLELSASEEELSERELLASISBELEESESEESLEEXREEE

Private Sub Form_Load()
Key 1 FirstClick = True
Key2FirstClick = True
Key INumPis = 0
Key2NumPts =0
DrawPoly!l = True
DrawPoly2 = True
DrawBezier = False
' Initialize bending parameters
kb=2 'bending stiffness
mb = 100 ' penalizes non-monotonic angles
eb=1 °
pb = 10000 ° penalizes angles from going to 0
* Initialize stretching parameters

ks =0.1 * stretching stiffness constant
cs=0.1 ' controls penalty for edge collapsing to a point
es=2
" Initialize curve parameters
CurveCb =1
CurveCk =1
CurveEk =1
CurveKs = 0.1
CurveCs =1
CurveEs = |
End Sub

IAAEEEAEASEEE XS TSR EE XS EX S L SEESSEESEEECSE S EEX NSRS XX ZXX XL LAXXLESE5SS

Private Sub mnuExit_Click()
End
End Sub

Tt I s 2R3 s 222 22 23233222322 822222 E 22322 222222222 2 2 2 22

Private Sub mnuOpenCurvel_Click()
' Opens a Bezier Curve in Frame |
' Set CancelError is True
CommonDialog1.CancelError = True
On Error GoTo ErrHandler
* Set flags
CommonDialog!l.Flags = cdlOFNHideReadOnly
' Set filters
CommonDialogl.Filter = "All Files (*.*)I*.*IText Files" & _
"(*axt)i*.axt”
' Specify default filter
CommonDialogl .FilterIndex = 2
* Display the Open dialog box
CommonDialogl.ShowOpen
* Display name of selected file

DrawPolyl = False 'If we commit ourselves to opening a file in
' the frame, we cannot then decide to draw
' our own polygon (by clicking points).

Dim Fnum As Integer
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Dim Temp As String

Dim I As Integer

Dim J As Boolean

DrawBezier = True

[=0

J=True

Fnum = FreeFile

Open CommonDialog}.filename For Input As #Fnum

Do While Not EOF(Fnum)
Line Input #Fnum, Temp
[fJ = Truc Then
KeyiPts(f).X = CDbl(Temp)
J =False
Else
Key1Pts(l).Y = CDbl(Temp)
J=True
[=1+1
KeyINumPts =1
End If
Loop

Key ! Pts(Key I NumPts).X = Key1Pts(0).X
Key I Pts(Key INumP1s).Y = Key1Pts(0).Y
I=1+1

Dim NumExtraPts As Integer
NumExtraPts =0

While (((Key1NumPts) Mod 3) < 0) ' we should have the right number of
Key1Pi1s(I).X = KeylPts(0).X ' control points in the file, but just
KeylPis(1).Y = Key!Pts(0).Y 'in case we don't, we do this
NumExtraPts = NumExtraPts + |

Key INumPts = Key INumPts + |
I=I+1
Wend

For [ = | To (Key |NumPts - NumExtraPts) Step 1
' mark the control points
picKey1.Circle (10 ® Key!Pts(I - 1).X, picKeyl.Height - 10 * KeylPts(l - 1).Y), _
1, RGB(0, 255. 0)
‘picKeyl.Line (10 * Key!Pts(l - 1).X, _
picKeyl.Height - (10 ® KeylPts(1 - 1).Y))
-(10 ® Key1Pts(). X, picKeyl.Height - (10 ® Key1Pts(1).Y))
Next {

Dim P10 As Coords

Dim Ptl As Coords

Dim P12 As Coords

Dim Pt3 As Coords

Dim tl As Integer

Dim t As Double

Dim NumCurves As integer
Dim TempX As Double
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Dim TempY As Double
NumCurves = ((Key | NumPts) / 3)

For [ =0 To (NumCurves - 1) Step 1
P10 = KeylP1s(3 * I)
Pl =KeylPts(3®1+1)
P12 =KeylPis(3® 1 +2)
P13 =KeylPis(3* 1 +3)
For t] =0 To 200 Step 1
‘calculate and plot the point of the bezier curve
t=tl /200
TempX=(1-0*(-0*{-)*POX+3*t*(l-)*({-0*PtiL.X_
+3%t*r*(l-0*P2X+t*t*t*P3.X
TempY=(1-0*{-0*({-)*POY+3*t*({-0)*(I-0)*Pl.Y _
+3*t*t*(1-0)*P2Y +t*t*t*PlY
picKey1.Circle (10 ® TempX, picKey!l.Height - (10 ® TempY})), 0.2
Next t]
Next [
Exit Sub

ErrHandler:
‘User pressed the Cancel button
Exit SubEnd Sub

(XX EEEXESEEB AL XL XL ERANE R SRS L ELEEAE SIS B LB ESE LR ES S XX XS LR EEXSSEXES

Private Sub mnuOpenCurve2_Click()
' Opens a Bezier Curve in Frame 2
' Set CancelError is True
CommonDialogl.CancelError = True
On Error GoTo ErrHandler
* Set flags
CommonDialog!.Flags = cdIOFNHideReadOnly
* Set filters
CommonDialogl.Filter = "All Files (*.*)I* *[Text Files" & _
"(ex)!* xe”
' Specify default filter
CommonDialogl .Filterindex = 2
* Display the Open dialog box
CommonDialogl.ShowOpen
' Display name of sclected file

DrawPoly2 = False ‘If we commit ourselves to opening a file in
* the frame, we cannot then decide to draw
" our own polygon (by clicking points).
Dim Fnum As Integer
Dim Temp As String
Dim [ As Integer
Dim J As Boolean
[=0
) =True
Fnum = FreeFile

Open CommonDialog!.filename For Input As #Fnum

Code
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Do While Not EOF(Fnum)
Line Input #Fnum, Temp
IfJ = True Then
Key2Pts(1).X = CDbl(Temp)
J =False
Else
Key2Pts(I).Y = CDbl(Temp)
J=Tre
[=1+1
Key2NumPts = [
End If
Loop

Key2Pts(Key2NumPts). X = Key2Pts(0).X

Key2Pts(Key2NumPts).Y = Key2Pts(0).Y

I=1+1

Dim NumExtraPts As Integer

NumExtraPts =0

While (((Key2NumPts) Mod 3) < 0)
Key2Pis(1).X = Key2Pts(0).X
Key2Pts(I).Y = Key2Pts(0).Y
NumExtraPts = NumExtraPts + |
Key2NumPts = Key2NumPts + |
I=I+1

Wend

For [ = 1 To (Key2NumPts - NumExtraPts) Step |
' mark the control points
picKey2.Circle (10 ® Key2Pts(l - 1).X, picKey2.Height - 10 * Key2Pts(I - 1).Y), _
1, RGB(0, 255, 0)
‘picKey2.Line (10 ® Key2Pts(I - 1).X, _
picKey2.Height - (10 * Key2Pts(I - 1).Y)) _
-(10 * Key2Pts(I).X, picKey2.Height - (10 ® Key2Pts(I).Y))
' note: uncomment the above line if you want the control polygon drawn
Next I

Dim Pt0 As Coords
Dim Pt1 As Coords
Dim Pt2 As Coords
Dim P13 As Coords
Dimtl As Integer
Dimt As Double
Dim NumCurves As [nteger
Dim TempX As Double
Dim TempY As Double
NumCurves = ((Key2NumPts) / 3)
For [ =0 To (NumCurves - 1) Step 1
P10 =Key2Pts(3 * I)
Ptl = Key2Pts(3®1+ 1)
P12 =Key2Pts(3° [ +2)
P13 = Key2Pts(3 * [ + 3)

Code
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Fortl =0 To 200 Step |
‘calculate and plot the points of the bezier curve
t=1t1/200
TempX=(-0*{(-)*(1-)*POX+3*t*(1-0*(l-t)*Pti. X _
+3*t*r*(l-D*P2X+t*t*t*P3.X
TempY=(1-0*(1-)*(1-)*POY+3*t*(1-0)*(1-)*Ptl.Y _
+3*(**(1-0)*PRY +t*t*t*Pl.Y
picKey2.Circle (10 ® TempX, picKey2.Height - (10 * TempY)), 0.2
Next tl
Next [
Exit Sub
ErrHandler:
'User pressed the Cancel button
Exit Sub
End Sub

2 222232 222 E RS2 S22 2222 RSS2 RSS2 S22 2222222 2 2 22 2 % 2

Private Sub mnuOpenKey1_Click()
* Lets the user choose a file of polygon vertices to be opened and drawn in Key frame 1

CommonDialogl.CancelError = True  * Set CancelError to True

On Error GoTo ErrHandler

CommonDialogl.Flags = cdlOFNHideReadOnly ' Set flags
CommonDialogl.Filter = "All Files (*.*)I*.*[Text Files" & _
“(*axe)l*xe” " Set filters

CommonDialog!1.FilterIndex = 2 ' Specify default filter
CommonDialogl.ShowOpen * Display the Open dialog box

DrawPoly! = False ‘ Once we have opened a file in the frame, we cannot
' draw our pelygon
DrawBezier = False ' We are drawing a polygon, not a curve

Dim Fnum As Integer

Dim Temp As String

Dim I As Integer

Dim J As Boolean

=0

J =True

Fnum = FreeFile

Open CommonDialogl.filename For Input As #Fnum ° Display name of selected file

Dc While Not EOF(Fnum)
Line Input #Fnum, Temp
' Read in the points. The file contains point as one coordinate per line.
' i.e. x on one line, corresponding y on the next; next x on the next line, etc.
If J = True Then
Key iPis(1).X = CDbI(Temp)
J =False
Else
Key!1Pis(1).Y = CDbl(Temp)
J=Tre
I=1+1
KeyINumPis =1
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End If
Loop

Key | Pts(KevINumPts).X = Key 1 Pts(0).X ‘ Repeat the first vertex as the fast
KeyiPts(Key INumPts).Y = Key 1Pts(0).Y * to force closure

For [ = 1 To Key INumPts Step |
' Draw the vertices and edges in the frame
picKey!.Circle (10 * KeyIPts(I - 1).X, picKeyl.Height - 10 ® KeylPts(I - 1).Y), _
0.5, RGB(0, 0, 255)
picKeyl.Line (10 * Key1Pts(I - 1).X, _
picKey1.Height - (10 ® Key!Pts(I - 1).Y)) _
-(10 * Key1Pis(T).X, picKeyl.Height - (10 ® Key!Pts(I}).Y))
Next I :
Exit Sub
ErrHandler:
‘User pressed the Cancel button
Exit Sub
End Sub

B 2 22 22 S S22 2R 22222 222222222 R 22222222 2222 2 RS R 22 2 2 2 2 PN

Private Sub mnuOpenKey2_Click()
* Lets the user choose a file of polygon vertices to be opened and drawn in
' Key Frame 2
CommonDialogl.CancelError = True ' Set CancelError is True
On Error GoTo ErrHandler
CommonDialog!.Flags = cdlOFNHideReadOnly ° Set flags
CommonDialogl.Filter = "All Files (*.*)I*.*{Text Files" & _
"(*axul* exe” ‘ Set filters
CommonDialog!.Filterindex = 2 ' Specify default filter
CommonDialogl.ShowOpen ' Display the Open dialog box
DrawPoly2 = False ' Once we have opened a file in the frame,
‘ we cannot drawn our own polygon
DrawBezier = False
Dim Fnum As Integer
Dim Temp As String
Dim [ As Integer
Dim J As Boolean
[=0
J=True
Fnum = FreeFile
Open CommonDialogl.filename For Input As #Fnum  * Display name of selected file

Do While Not EOF(Fnum)
' Read in the points. See mnuOpenKey|1 for file description.
Line Input #Fnum, Temp

If ] =True Then
Key2Pts(1).X = CDbl(Temp)
J =False
Else
Key2Pts(I).Y = CDbl(Temp)
J=True

I=1+1

Code
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Key2NumbPts =1
End If
Loop
Key2Pts(Key2NumPts).X = Key2Pts(0).X " Force polygon closure

Key2Pts(Key2NumPis).Y = Key2Pts(0).Y

For[ = | To Key2NumpPts Step |
' Draw
picKey2.Circle (10 * Key2Pts(I - 1).X, picKey2.Height - 10 * Key2Pts(I - 1).Y), _
0.5. RGB(0, 0, 255)
picKey2.Line (10 ® Key2Pts(I - 1).X, _
picKey2.Height - (10 ® Key2Pts(I - 1).Y)) _
-(10 * Key2Pts(I).X, picKey2.Height - (10 ® Key2Pts(1).Y)}
Next |
Exit Sub
ErrHandler:
‘User pressed the Cancel button
Exit Sub
End Sub
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Private Sub mnuOpenSplinel_Click()
' Opens a Bezier Curve in Frame | and converts it to a B-Spline
* Set CancelError is True
CommonDialogl.CancelError = True

On Error GoTo ErrHandler

' Set flags

CommonDialogl.Flags = cdlOFNHideReadOnly
* Set filters

CommonDialogl.Filter = "All Files (*.*)I*_.*IText Files" & _
"(*.xp)i*axt”

' Specify default filter

CommonDialogl.FilterIndex = 2

' Display the Open dialog box

CommonDialogl.ShowOpen

' Display name of selected file

DrawPoly! = False ‘If we commit ourselves ta opening a file in the frame, we
' cannot then decide to draw our own polygon by clicking pts
Dim Fnum As Integer
Dim Temp As String
Dim I As Integer
Dim ] As Boolean
DrawBezier = True
f=0
J=True
Fnum = FreeFile
Open CommonDialogl.filename For Input As #Fnum
Do While Not EOF(Fnum)
Line Input #Faum, Temp

If J = True Then
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KeyPis(l).X = CDbl(Temp)
J =False
Else
KeyiPis(l).Y = CDbl(Temp)
J=True
[=i+1
Key!NumPts =1
End If
Loop

Key1Pts(Key INumPts). X = Key1Pts(0).X
Key!Pts(Key INumPts).Y = KeylPts(0).Y
[=1+1

Dim NumExtraPts As Integer
NumExtraPts =0

While (((Key 1NumPts) Mod 3) << 0) ‘ we should have the right number of
Key1Pts(I).X = Key [ Pts{0).X * control points in the file, but just

Key 1Pts(l).Y = Key 1 Pts(0).Y ' in case we don't, we do this
NumExtraPts = NumExtraPts + 1
Key INumPts = Key INumPts + 1
I=1+1
Wend

‘ Now convert the Bezier to a B-Spline
' initialize the contro! point list and knot vector
For1=0To3 Step 1
CPL(I).X = Key I Pts(1).X
CPI(1).Y = Key I Pts(l).Y
KeylKnots(l) =0
Next |
ForI=4To7 Step |
KeylKnots(l) =1

Next [
MaxCPl =3
MaxKVIl =7

' Want to add the next Bezier curve control points
' to the list of control points
Dim Slopel As Double
Dim Slope2 As Double
Dim NewKnot As Double
Dim Continuity As Integer
Dim NumCurves As Integer
Dim NextIndex As Integer
NumCurves = ((Keyl NumPts) / 3)
' This will be in some kind of loop
NextIndex = MaxCP1 + 1
While Nextlndex < Key I NumPts
If Abs(CP1(MaxCP1).X - CP1{MaxCP1 - 1).X) < Epsilon Then
Slopel = 32000
Else
Slopel = (CP1(MaxCP1).Y - CP1(MaxCP1 - 1).Y)/ _

Code
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(CP1(MaxCP1).X - CP1(MaxCP!I - 1).X)
End I

If Abs(Key !Pts(NextIndex).X - CPl(MaxCPI).X) < Epsilon Then
Slope2 = 32000
Else
Slope2 = (Key 1 Pts(NextIndex).Y - CP1(MaxCP1).Y) / _
(Key 1Pts(Nextindex).X - CP1(MaxCP1).X)
End If

If (Abs(Slopel - Slope2) > Epsilon) Then ' curve have only CO continuity
NewKnot = Key! Knots(MaxKV1) + |
Continuity =0
Else ' the slope is the same, so curves have at least Cl continuity.
' Choose a knot value that reflects this continuity
NewKnot = ((Key I Pts(NextIndex).X - CP1(MaxCP1).X) ® _
(Key!'Knots(MaxKV1 - 3) - KeylKnots(MaxKV1 - 4))/ _
(CP1(MaxCP1).X - CP1(MaxCP1 - 1).X)) + _
KeylKnots(MaxKV1 - 3)
Continuity = 1

* Now test to see if the curves are actually C2 continuous
If Abs( _

(_
(CP1(MaxCP1 - 2).X - Key|Pts(NextIndex + {).X) ¢ _
(Key1Knots(MaxKV1 - 3) - KeylKnots(MaxKV1 - 5)) ¢ _
(KeyiKnots(MaxKV1 - 3) - NewKnot) _

)

+

(.
(CPI(MaxCPl1 - 1).X - CP2(MaxCP1 - 2).X) * _
(NewKnot - Key | Knots(MaxKV1 - §)) * _
(KeylKnots(MaxKV1 - 3) - NewKnot) _

)

+

(-
(Key | Pts(Nextindex + 1).X - KeyPts(NextIndex).X) * _
(KeylKnots(MaxKV1 - 4) - NewKnot) ® _
(KeylKnots(MaxKV1 - 3) - KeylKnots(MaxKV1 - 5)) _
)
) < Epsilon Then
" then we have C2 continuity
Continuity = 2
End If
* Now check for C3 continuity
Dim PAlpha As Coords
Dim PBeta As Coords
Dim PGamma As Coords
If (Abs(Key 1 Knots(MaxKV1 - 5) - KeylKnots(MaxKV1 - 6)) > Epsilon) Then
PAlpha.X = ((Key1Knots(MaxKV1 - 3) - KeylKnots(MaxKV1 - 4)) ® _
Key |Pts(NextIndex + 1).X + _
((NewKnot - KeylKnots(MaxKV1 - 3)) ® Key!Pts(NextIndex).X)) / _
(NewKnot - Key [Knots(MaxKV1 - 4))
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PAlpha.Y = ((KeylKnots(MaxKV1 - 3) - Key | Knots(MaxKV1 - 4)) * Key ! Pts(Nextindex +
DY+ _
((NewKnot - Key! Knots{MaxKV1 - 3)) ®*Key[Pts(NextIndex).Y)) / _
(NewKnot - Key { Knots(MaxKV1 - 4))

PBeta.X = ((NewKnot - Keyl Knois(MaxKV1 - 6)) * CP1(MaxCPl - 2).X + _
((KeylKnots(MaxKV1 - §) - NewKnot) ®*CPI1(MaxCP1 - 3).X))/ _
(KeylKnots(MaxKV1 - 5) - Keyl Knots(MaxKV1 - 6))

PBeta.Y = ((NewKnot - Key 1 Knots(MaxKV1 - 6)) ®*CPI(MaxCP1 - 2).Y + _
((Key IKnots(MaxKV1 - 5) - NewKnot) * CP1(MaxCP1 - 3).Y)}/ _
(KeyiKnots(MaxKV1 - 5) - Key[ Knots(MaxKV1 - 6))

PGamma.X = ((KeylKnots(MaxKV1 - 3) - Key!Knots(MaxKV1! - 4)) ®KeylPts(NextIndex +
2.X + _ )
((Keyl1Knots(MaxKV1 - 4) - NewKnot) * KeylPts(Nextlndex + 1).X)) / _
(Key1Knots(MaxKV1 - 3) - NewKnot)
PGamma.Y = ((KeylKnots(MaxKV1 - 3) - KeylKnots(MaxKV1 - 4)) * KeylPis(NextIndex +
2).Y +_
((Keyl Knots(MaxKV1 - 4) - NewKnot) * KeyiPts(NextIndex + 1).Y))/ _
(Key!Knots(MaxKV1 - 3) - NewKnot)

If Abs(PAlpha.X - ((({(NewKnot - Keyl Knots(MaxKV1 - 3)) * PBeta.X) + _
{(Key1Knots(MaxKV1 - 3) - Key!Knots(MaxKV1 - 5)) * PGamma.X))/ _
(NewKnot - Key!Knots(MaxKV1 - 5)))) < Epsilon Then

Continuity =3
End If

End If

End If

* Append the new knots and control points, depending on the
' continuity between the two curves
Select Case Continuity

Case 0
Key1Knots(MaxKV1) = NewKnot
KeylKnots(MaxKV1 + [) = NewKnot
Keyl Knots(MaxKV1 + 2) = NewKnot
KeylKnots(MaxKV1 + 3) = NewKnot
MaxKV1 =MaxKV1 +3
CP1(MaxCPl + 1).X = Key1Pts(MaxCP1 + 1).X
CP1(MaxCPl + 1).Y = Key1Pts(MaxCP1 + 1).Y
CP1(MaxCP! + 2).X = KeyIPts(MaxCP1 + 2).X
CP1(MaxCPl + 2).Y = Key1Pts(MaxCP1 + 2).Y
CPi(MaxCPI + 3).X = Key1Pts(MaxCP1 + 3).X
CP1(MaxCPI + 3).Y = Key IPts(MaxCP1 + 3).Y
MaxCP1 = MaxCP1 + 3

Case 1
Key1Knots(MaxKV1 - 1) = NewKnot
KeylKnots(MaxKV 1) = NewKnot
KeylKnots(MaxKV1 + 1) = NewKnot
Key1Knots(MaxKV1 + 2) = NewKnot
MaxKV1 =MaxKV1 +2
CP1(MaxCP1).X = Key I Pts(MaxCP1 + 1).X
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CP!(MaxCP1).Y = Key I Pts(MaxCP1 + 1).Y
CP1(MaxCP1 + 1).X = Key IPts(MaxCP| + 2).X
CP1(MaxCPI1 + 1).Y = Key1Pts(MaxCPI +2).Y
CP1(MaxCP1 + 2).X = Key I Pts(MaxCP1 + 3).X
CP!(MaxCP1 +2).Y = Key ! Pts(MaxCP! +3).Y
MaxCP! = MaxCPl1 +2
Case 2
Keyl1Knots(MaxKV1 - 2) = NewKnot
Key [ Knots(MaxKV1 - 1) = NewKnot
Key1Knots(MaxKV i) = NewKnot
KeylKnots(MaxKV1 + 1) = NewKnot
MaxKV1 =MaxKVI +1
CPI1(MaxCP! - 1).X = PAlpha.X
CP1(MaxCPl1 - 1).Y =PAlpha.Y
CP1(MaxCP1).X = Key [ Pts(MaxCP| + 2).X
CP1(MaxCP1).Y = KeylPts(MaxCPl +2).Y
CP1(MaxCP1 + 1).X = Key IPts(MaxCP1 + 3).X
CP1(MaxCP1 + 1).Y = Key[Pts(MaxCP1 + 3).Y
MaxCPl = MaxCPI + |
Case 3
Key1Knots(MaxKV1 - 3) = NewKnot
Key!Knots(MaxKV1 - 2) = NewKnot
Key1Knots(MaxKV1 - 1) = NewKnot
Key I Knots(MaxKV1) = NewKnot
MaxKV!] = MaxKV1
CP1(MaxCPlI - 2).X =PBeta.X
CPI(MaxCPl1 - 2).Y =PBeta.Y
CP1(MaxCP1 - 1).X = PGamma.X
CP1(MaxCP!I - 1).Y = PGamma.Y
CP1(MaxCP1).X = Key1Pts(MaxCP1{ + 3).X
CP1(MaxCP1).Y = Key | Pts(MaxCP1 +3).Y
MaxCPl = MaxCP1
End Select
Nextindex = Nextindex + 3
Wend Forl=1To (MaxCPl + 1) Step 1
" mark the control points
picKeyl.Circle (10 ® CPI(I - 1).X, picKeyl.Height - 10 ® CPI(I - 1).Y). _
1, RGB(0, 255, 0)
Next 1
Dimtl As Integer
Dim t As Double
Dim TempX As Double
Dim TempY As Double
' Draw the curve
=3
While I <= MaxCP1
For t1 = (200 ® KeyKnots(I)) To (200 ® Key1Knots(l + 1)) Step 1
If (Key ! Knots(l) < Key!Knots(I + 1)) Then
‘calculate and plot the points of the b-spline
t=t1/(200 * (KeylKnots(I + 1) - Key [ Knots(1}))
Dim Term|l As Double
Dim Term2 As Double
Dim Term3 As Double
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Dim Termd4 As Double
Terml = (Keyt{Knots(I + 1) - t) ®* (KeylKnots(! + 1) - t) ® (Key!Knots(I + 1) -t) _
*CPI(1-3).X/_
((KeylKnots(l + 1) - Keyl Knots(l - 2)) ® (Key I Knots(I + 1) - Keyl Knots(l - 1)) _
® (Key1Knots(i + 1) - Key!Knots(1)))

Term2 = (t - Key IKnots(l - 2)) ® (KeylKnots(I + 1) - t) * (KeylKnots{l + 1) -¢) _

*CPI(-2).X/_
((KeylKnots(I + 1) - Key!Knots(I - 2)) * (Key!Knots(I + 1) - KeytKnots(l - 1)) _
* (KeylKnots(l + 1) - KeylKnots(I))) + _
(KeyiKnots(I +2) - t) * (t - KeylKnots(l - 1)) ® (KeylKnots(l + 1) - t) _
*CPI(I-2).X7_
((KeyIKnots(l + 2) - KeyIKnots(l - 1)) ® (Key 1 Knots(l + 1) - KeylKnots(l - 1)) _
® (KeylKnots(I + 1) - KeylKnots(l))) + _
(Key!Knots(I + 2) - t) * (t - Key1Knots(I)) * (KeylKnots(l +2) -t) _
*CPI(I-2).X/_
((KeylKnots(I + 2) - KeyIKnots(l - 1)) ® (Key i Knots(I + 2) - Keyl Knots(1)} _
* (Key!Knots(l + 1) - KeyKnots(l)))

Term3 = (¢ - Key!Knots(I - 1)) ® (t - KeyKnots({ - 1)) * (KeylKnots(I + I) -t) _
*CPI(I- )X/ _
((Key!Knots(I + 2) - Key1Knots(I - 1)) * (Key!Knots(I + 1) - KeylKnots(l - 1)) _
* (Key1Knots(l + 1) - KeylKnots(1))) + _
(t - KeyKnots(I)) * (t - KeylKnots(l - 1)) ® (Key [Knots(l +2) - t) _

*CPI(I-1).X/_
((KeylKnots(I + 2) - KeylKnots(l - 1)) ® (Key 1 Knots(I + 2) - KeyKnots(l)) _

* (KeylKnots(l + ) - KeyiKnots())) + _

(KeyilKnots(} + 3) - 1) * (t - Key1Knots(1)) ® (t - KeylKnots(l)) _
*CPI(1-1).X/_

((KeylKnots(I + 3) - KeyiKnots(I)) ® (Key 1 Knots(I + 2) - Key ! Knots(I)) _
® (Key1Knots(I + 1) - Key1Knots(l)))

Termd = (1 - KeylKnots(I)) * (t - KeylKnots(l)) ® (t - KeylKnots(l)) ® _

CPI(M.X/ _
((Key!Knots(I + 3) - KeylKnots(I)) * (KeylKnots(I + 2) - Key1Knots(l)) _

* (KeyKnots(I + 1) - Key Knots(1)))
TempX = Term] + Term2 + Term3 + Term4

Term! = (KeylKnots(l + 1) - t) ®* (KeylKnots{(I + 1) - t) ® (KeyIKnots(f + 1) - t) _

*CPI(I-3).Y/_
((Key1Knots(I + 1) - Key[Knots(l - 2)} ® (Key 1 Knots(l + 1) - KeylKnots(l - 1)) _

® (KeylKnots(I + 1) - KeylKnots(l)))

Term2 = (1 - KeylKnots(I - 2)) * (KeyIKnots(I + 1) -t) ® (KeylKnots(I + 1)} - t) _

*CPI(1-2).Y/_

((Key1Knots(I + 1) - KeytKnots(I - 2)) * (Key IKnots(I + 1) - KeylKnots(I - 1)) _
* (KeylKnots(I + 1) - KeylKnots(I))) + _

(KeylKnots(I +2) - t) ® (¢t - KeylKnots(f - 1)) ® (KeylKnots(I + 1) -1) _

*CPI(I1-2).Y/_
((KeylKnots(I + 2) - Key1Knots(l - 1)) ® (Key1Knots(l + 1) - KeylKnots(I - 1)) _

* (Key I Knots(I + 1) - KeylKnots(l))) + _
(KeylKnots(I + 2) - t) ® (t - Key1Knots(I)) ® (KeyIKnots(I +2) - t) _

125



Code

*CPI(1-2).Y/_

((KeylKnots(I + 2) - KeylKnots(I - 1)) ® (Key!Knots(l + 2) - KeylKnots(I)) _
¢ (KeylKnots(I + 1} - Key ! Knots(l})))

Term3 = (t - KeylKnots(l - 1)) ® (t - KeylKnots(I - 1)) ® (KeylKnots(I + 1) -t) _
*CPI(1-1).Y/_

((KeylKnots(l + 2) - KeylKnots(I - 1)) * (KeylKnots(l + 1) - Key!Knots(l - 1)) _
* (Key [ Knots(I + 1) - KeylKnots(I))) + _

(t - KeylKnots{l)) * (t - KeylKnots(f - 1)) * (Key!Knots(I +2)-1t) _
*CPI(1-1).Y/_

((Key1Knots(l + 2) - Key!Knots(I - 1)) ®* (KeyKnots(f + 2) - Key1Knots(l)) _

* (KeylKnots(l + I) - KeylKnots(I))) + _

(Key! Knots(I + 3) -t) ® (t - KeylKnots(I)) ® (t - Key!Knots([)} _
*CPI(I-1).Y/_ :

((Key IKnots(I + 3) - KeylKnots(1)) ® (Key I Knots(l + 2) - Key!Knots(I)) _

* (Key!Knots(I + 1) - Key1Knots(I)))

Term4 = (t - KeylKnots(l)) ® (t - KeylKnots(l)) * (t - Key1Knots(I)) * _
CPI().Y/_ ’
((Key IKnots(I + 3) - Key [ Knots(I)) * (Key1Knots(I + 2) - Key1Knots(I)) _
* (KeylKnots(l + 1) - Key1Knots(l)))

TempY =Teml + Term2 + Term3 + Term4

picKey1.Circle (10 * TempX, picKeyl.Height - (10 * TempY)), 0.2
End If

Next tl
I=I[+1
Wend
Exit Sub
ErrHandler:
'User pressed the Cancel button
Exit Sub
End Sub

22 EES 2222222222223 2 S22 222222222222 22 22 22 2 2 X2 3
Private Sub mnuOpenSpline2_Click()
' Opens a Bezier Curve in Frame 2 and converts it to a B-Spline
' Set Cancel!Error is True

CommonDialogl.CancelError = True

On Error GoTo ErHandler

' Set flags

CommonDialog|.Flags = cdlOFNHideReadOnly

' Set filters

CommonDialog! .Filter = "All Files (*.*)I*.*IText Files" & _

"(*.axt)l®.xe”

* Specify default filter

CommonDialogl .Filterindex = 2

* Display the Open dialog box

CommonDialogl.ShowOpen

' Display name of selected file

DrawPoly2 = False ‘If we commit ourselves to opening a file in the frame, we can’t
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' then decide to draw our own polygon (by clicking points).

Dim Fnum As Integer
Dim Temp As String
Dim [ As Integer
Dim J As Boolean
DrawBezier = True
=0
J =True
Faum = FreeFile
Open CommonDialog!.filename For Input As #Fnum
Do While Not EOF(Fnum)
Line [nput #Fnum, Temp
If ] = True Then
Key2Pts(I).X = CDbli(Temp)
J =False
Else
Key2Pts(I).Y = CDbl(Temp)
J=True
=1+1
Key2NumPts =
End If
Loop

Key2Pis(Key2NumPts). X = Key2Pts(0).X
Key2Pts(Key2NumPis).Y = Key2Pts(0).Y
I=1+1

Dim NumExtraPts As Integer

NumExtraPts = 0

While (((Key2NumPts) Mod 3) <> 0) °* we should have the right number of
Key2Pts(1).X = Key2Pts(0).X * control points in the file. but just
Key2Pis(l).Y = Key2Pts(0).Y ' in case we don't, we do this

NumExtraPts = NumExtraPts + |
Key2NumPts = Key2NumPts + |
I=1+1
Wend
' Now convert the Bezier to a B-Spline
* initialize the control point list and knot vector
ForI=0To3 Step 1
CP2(1).X = Key2Pts(1).X
CP2(1).Y = Key2Pts(I).Y
Key2Knots(I) =0
Nextl

For[=4To 7 Step 1
Key2Knots(l) = 1
Next 1
MaxCP2 =3
MaxKV2=7
' Want to add the next Bezier curve control points
' to the list of control points
Dim Slopel As Double
Dim Slope2 As Double
Dim NewKnot As Double

Code
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Dim Continuity As Integer

Dim NumCurves As Intcger

Dim Nextindex As Integer
NumCurves = ((Key2NumPts) / 3)

* This will be in some kind of loop
Nextindex = MaxCP2 + |

While Nextlndex < Key2NumPts
If Abs(CP2(MaxCP2).X - CP2(MaxCP2 - 1).X) < Epsilon Then
Slopel = 32000
Else
Slopel = (CP2(MaxCP2).Y - CP2(MaxCP2 - 1).Y)/ _
(CP2(MaxCP2).X - CP2(MaxCP2 - 1).X)

End If

[f Abs(Key2Pts(Nextlndex).X - CP2(MaxCP2).X) < Epsilon Then
Slope2 = 32000
Else
Slope2 = (Key2Pts(NextIndex).Y - CP2(MaxCP2).Y)/ _
(Key2Pis(Nextlndex).X - CP2(MaxCP2).X)
End if

[f (Abs(Slopel - Slope2) > Epsilon) Then ' curve have only CO continuity
NewKnot = Key2Knots(MaxKV2) + |
Continuity =0
Else ' the slope is the same, so curves have at least Cl continuity.
* Choose a knot value that reflects this continuity
NewKnot = ((Key2Pts(NextIndex).X - CP2(MaxCP2).X) ¢ _
(Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 4))/ _
(CP2(MaxCP2).X - CP2(MaxCP2 - 1).X)) + _
Key2Knots(MaxKV2 - 3)
Continuity = 1

' Now test to see if the curves are actually C2 continuous
If Abs( _

(-
(CP2(MaxCP2 - 2).X - Key2Pts(NextIndex + [).X) * _
(Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKV2 - §)) * _
(Key2Knots(MaxKV2 - 3) - NewKnot) _
)
+

(-
(CP2(MaxCP2 - 1).X - CP2(MaxCP2 - 2).X) ® _
(NewKnot - Key2Knots(MaxKV2-5)) ® _
(Key2Knots(MaxKV2 - 3) - NewKnot) _
).
+

(-
(Key2Pts(NextIndex + 1).X - Key2Pts(Nextlndex).X) ® _

(Key2Knots(MaxKV2 - 4) - NewKnot) ® _
(Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 5)) _

)~
) <Epsilon Then
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' then we have C2 continuity
Continuity =2
End If

' Now check for C3 continuity
Dim PAlpha As Coords
Dim PBeta As Coords
Dim PGamma As Coords

PAlpha.X = ((Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 4)) * Key2Pis(Nextindex +
X + _
((NewKnot - Key2Knots(MaxKV2 - 3)) ® Key2Pts(Nextindex).X)) / _
(NewKnot - Key2Knots(MaxKV2 - 4))
PAlpha.Y = ((Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 4)) ® Key2Pts(NextIndex +
DY + _
(NewKnot - Key2Knots(MaxKV2 - 3)) ® Key2Pis(NextIndex).Y))/ _
(NewKnot - Key2Knots(MaxKV?2 - 4))

PBeta.X = ((NewKnot - Key2Knots(MaxKV2 - 6)) ® CP2(MaxCP2 - 2).X + _
((Key2Knots(MaxKV2 - 5) - NewKnot) ® CP2(MaxCP2 - 3).X)) / _
(Key2Knots(MaxKV2 - 5) - Key2Knots(MaxKV2 - 6))

PBeta.Y = ((NewKnot - Key2Knots(MaxKV2 - 6)) ® CP2(MaxCP2 - 2).Y + _
((Key2Knots(MaxKV2 - §) - NewKnot) ® CP2(MaxCP2 - 3).Y))/ _
(Key2Knots(MaxKV2 - 5) - Key2Knots(MaxKV2 - 6))

PGamma.X = ((Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 4)) * Key2Pts(Nextindex +
2).X + _
((Key2Knots(MaxKV2 - 4) - NewKnot) ® Key2Pis(Nextindex + 1).X)) / _
(Key2Knots(MaxKV?2 - 3) - NewKnot)
PGamma.Y = ((Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 4)) ® Key2Pts(NextIndex +
2).Y + _
((Key2Knots(MaxKV2 - 4) - NewKnot) * Key2Pis(NextIndex + 1).Y))/ _
(Key2Knots(MaxKV2 - 3) - NewKnot)

If Abs(PAlpha.X - ({((NewKnot - Key2Knots(MaxKV2 - 3)) ® PBeta.X) + _
((Key2Knots(MaxK V2 - 3) - Key2Knots(MaxKV2 - 5)) * PGamma.X))/ _
(NewKnot - Key2Knots(MaxKV2 - 5)))) < Epsilon Then
Continuity =3
End If
End If
* Append the new knots and controi points, depending on the
' continuity between the two curves
Select Case Continuity
Case 0 .
Key2Knots(MaxKV?2) = NewKnot
Key2Knots(MaxKV2 + I) = NewKnot
Key2Knots(MaxKV2 = 2) = NewKnot
Key2Knots(MaxKV2 + 3) = NewKnot
MaxKV2 =MaxKV2 +3
CP2(MaxCP2 + 1).X = Key2Pts(MaxCP2 + 1).X
CP2(MaxCP2 + 1).Y = Key2Pts(MaxCP2 + I).Y
CP2(MaxCP2 + 2).X = Key2Pts(MaxCP2 + 2).X
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CP2(MaxCP2 + 2).Y = Key2Pts(MaxCP2 + 2).Y
CP2(MaxCP2 + 3).X = Key2Pis(MaxCP2 + 3).X
CP2(MaxCP2 + 3).Y = Key2Pts(MaxCP2 + 3).Y
MaxCP2 = MaxCP2 + 3

Case |
Key2Knots(MaxKV2 - 1) = NewKnot
Key2Knots(MaxKV2) = NewKnot
Key2Knots(MaxKV2 + 1) = NewKnot
Key2Knots(MaxKV2 + 2) = NewKnot
MaxKV2 =MaxKV2 +2
CP2(MaxCP2).X = Key2Pts(MaxCP2 + 1).X
CP2(MaxCP2).Y = Key2Pts(MaxCP2 + 1).Y
CP2(MaxCP2 + 1).X = Key2Pts(MaxCP2 + 2).X
CP2(MaxCP2 + 1).Y = Kcy2Pts(MaxCP2 +2).Y
CP2(MaxCP2 + 2).X = Key2Pts(MaxCP2 + 3).X
CP2(MaxCP2 +2).Y = Key2Pts(MaxCP2 + 3).Y
MaxCP2 = MaxCP2 + 2

Case 2
Key2Knots(MaxKV2 - 2) = NewKnot
Key2Knots(MaxKV2 - 1) = NewKnot
Key2Knots(MaxKV2) = NewKnot
Key2Knots(tMaxKV2 + 1) = NewKnot
MaxKV2 = MaxKV2 +1
CP2(MaxCP2 - 1).X = PAlpha.X
CP2(MaxCP2 - 1).Y =PAlphaY
CP2(MaxCP2).X = Key2Pis(MaxCP2 + 2).X
CP2(MaxCP2).Y = Key2Pts(MaxCP2 +2).Y
CP2(MaxCP2 + 1).X = Key2Pts(MaxCP2 + 3).X
CP2(MaxCP2 + 1).Y = Key2Pts(MaxCP2 + 3).Y
MaxCP2 = MaxCP2 + 1

Case 3
Key2Knots(MaxKV2 - 3) = NewKnot
Key2Knots(MaxKV?2 - 2) = NewKnot
Key2Knots(MaxKV?2 - 1) = NewKnot
Key2Knots(MaxKV?2) = NewKnot
MaxKV2 = MaxKVv2
CP2(MaxCP2 - 2).X = PBeta. X
CP2(MaxCP2 - 2).Y = PBeta.Y
CP2(MaxCP2 - 1).X = PGamma.X
CP2(MaxCP2 - 1).Y = PGamma.Y
CP2(MaxCP2).X = Key2Pts(MaxCP2 + 3).X
CP2(MaxCP2).Y = Key2P1s(MaxCP2 + 3).Y
MaxCP2 = MaxCP2

End Select

Nextindex = Nextindex +3

Wend

Forl =1 To (MaxCP2 + 1) Step |
' mark the control points
picKey2.Circle (10 ® CP2(I - 1).X, picKey2.Height - 10 ® CP2(1 - 1).Y). _
1, RGB(0, 255, 0)
Next 1
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Dim tl As Integer
Dim t As Double

Dim TempX As Double
Dim TempY As Double

* Draw the curve

While | <= MaxCP2
For t] = (200 * Key2Knots(l)) To (200 * Key2Knots(I + 1)) Step |

If (Key2Knots(l) © Key2Knots(f + 1)) Then
‘calculate and plot the points of the b-spline
t=tl /(200 * (Key2Knots(f + 1) - Key2Knots(l)))
Dim Terml As Double
Dim Term2 As Double
Dim Term3 As Double
Dim Term4 As Double
Terml = (Key2Knots(l + 1) - t) * (Key2Knots(l + 1) - t) ®* (Key2Knots(I + 1) - t) _
*CP2(I- 3).X/_
((Key2Knots(l + 1) - Key2Knots(l - 2)) * (Key2Knots(I + ) - Key2Knots(1 - 1)) _
* (Key2Knots(l + 1) - Key2Knots(I)))

Term?2 = (1 - Key2Knots(l - 2)) * (Key2Knots(l + 1) -t) * (Key2Knots(l + 1) -t) _
*CP2(1-2).X/7_
((Key2Knots(I + 1) - Key2Knots(I - 2)) * (Key2Knots(I + 1) - Key2Knots(l - 1)) _
* (Key2Knots(I + 1) - Key2Knots(1))) + _
(Key2Knots(l +2) - 1) * (t - Key2Knots(l - 1)) * (Key2Knots(I + 1} -t) _
*CP2(1-2).X/_
((Key2Knots(I + 2) - Key2Knots(I - 1)) * (Key2Knots(I + 1) - Key2Knots(I - 1)) _
* (Key2Knots(I + 1) - Key2Knots(I))) + _
(Key2Knots(l + 2) - t) * (t - Key2Knots(I)) * (Key2Knots(I + 2) - ¢} _
*CP2(-2).X/_
((Key2Knots(l + 2) - Key2Knots(I - 1)) * (Key2Knots(l + 2) - Key2Knots(l)) _
* (Key2Knots(I + 1) - Key2Knots(l)))

Term3 = (1 - Key2Knots(I - 1)) * (t - Key2Knots(I - 1)} * (Key2Knots(I + 1) - 1) _

*CP2(1-1).X/_

((Key2Knots(I + 2) - Key2Knots(I - 1)) * (Key2Knots(l + 1) - Key2Knots{l - 1)) _
* (Key2Knots(I + 1} - Key2Knots(I))) + _

(t - Key2Knots(l)) * (t - Key2Knots(l - 1)) * (Key2Knots(I + 2) - t) _
*CP2(1- 1).X/_

((Key2Knots(l + 2) - Key2Knots(1 - 1)) * (Key2Knots(l + 2) - Key2Knots(l)) _
* (Key2Knots(I + 1) - Key2Knots())) + _

{Key2Knots(I + 3) - t) * (1 - Key2Knots(l)) * (t - Key2Knots(I)) _
*CP2(-1).X/_ .

((Key2Knots(I + 3) - Key2Knots(I)) * (Key2Knots(I + 2) - Key2Knots(l)) _

* (Key2Knots(I + 1) - Key2Knots(I)))

Termd = (1 - Key2Knots(I)) * (t - Key2Knots(l)) * (t - Key2Knots(I)) * _
CP2(I).X/ _
((Key2Knots(l + 3) - Key2Knots(1)) * (Key2Knots(l + 2) - Key2Knots(l)) _
* (Key2Knots(I + 1) - Key2Knots(1)))
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TempX = Terml + Term2 + Term3 + Termd4

Term! = (Key2Knots(I + 1) - 1) * (Key2Knots(I + 1) - t) * (Key2Knots(I + 1) - t) _
*CP2(1-3).Y/_
((Key2Knots(I + 1) - Key2Knots(l - 2)) * (Key2Knots(I + [) - Key2Knots(l - 1)) _
* (Key2Knots(l + 1) - Key2Knots(1)))

Term2 = (t - Key2Knots(l - 2)) ® (Key2Knots(l + 1) - t) * (Key2Knots(I + 1) - t) _

*CP2(1-2).Y/_

((Key2Knots(l + 1) - Key2Knots(I - 2)) ® (Key2Knots(I + 1) - Key2Knots(l - 1)) _
® (Key2Knots(I + 1) - Key2Knots(I))) + _

(Key2Knots(I + 2) - t) ® (t - Key2Knots(l - 1)) ® (Key2Knois(l + 1) -t) _
*CP21-2).Y/_ .

((Key2Knots(I + 2) - Key2Knots(l - 1)) * (Key2Knots(I + 1) - Key2Knots( - 1)) _
* (Key2Knots(I + 1) - Key2Knots())) + _

(Key2Knots(I + 2) - t) ® (1 - Key2Knots(I)) ®* (Key2Knots(l +2) - t) _
*CP2(1-2).Y/_

((Key2Knots(I + 2) - Key2Knots(l - 1)) ® (Key2Knots(I + 2) - Key2Knots(l)) _
* (Key2Knots(I + 1) - Key2Knots(l)))

Term3 = (t - Key2Knots(I - 1)) * (1 - Key2Knots(I - 1)) * (Key2Knots(I + 1) - t) _

*CP2(I1-1).Y/_

((Key2Knots(I + 2) - Key2Knots(i - 1)) * (Key2Knots(l + 1) - Key2Knots(l - 1)) _
* (Key2Knots(l + 1) - Key2Knots(l))) + _

(t - Key2Knots(I)) * (t - Key2Knots(I - 1)) * (Key2Knots(I + 2) - t) _
*CP2(1-1).Y/_

{((Key2Knots(I + 2) - Key2Knots(l - 1)) * (Key2Knots(I + 2) - Key2Knots(l)) _

* (Key2Knots(I + 1) - Key2Knots(I))) + _

(Key2Knots(i + 3) - t) * (t - Key2Knots(l)) * (t - Key2Knots(1)) _
*CPXI-1).Y/_

((Key2Knots(I + 3) - Key2Knots(I}) * (Key2Knots(I + 2} - Key2Knots(l)) _
* (Key2Knots(! + 1) - Key2Knots(1))}

Term4 = (t - Key2Knots(I)) * (t - Key2Knots(I)) * (t - Key2Knots(l)} * _
CP2(I).Y/ _
((Key2Knots(I + 3) - Key2Knots(l)) * (Key2Knots(l + 2) - Key2Knots(1)) _
* (Key2Knots(I + I) - Key2Knots(l)))

TempY = Terml + Term2 + Term3 + Term4

picKey2.Circle (10 ® TempX, picKey2.Height - (10 ® TempY)), 0.2
End If

Next tl
I=1+1
Wend
Exit Sub
ErrHandler:
‘User pressed the Cancel button
Exit SubEnd Sub
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Private Sub mnuSetl_Click()
* Parameter Test Set |
* Set the values in the text boxes
txtkb.Text = "2" ‘ bending stiffness
txtmb.Text = 100" ' penalizes non-monotonic angles
txteb.Text="1" °*
txtpb.Text = "10000" ‘ penalizes angles from going to 0
txtks.Text = "0.1" * stretching stiffness constant
txtcs.Text = "0.1" * controls penalty for edge collapsing to a point
txtes. Text = "2" )
* Get the values from the text boxes
kb = CDbl(txtkb.Text)
mb = CDbl(txtmb.Text)
eb = Val(txteb.Text)
pb = Val(txtpb.Text)
ks = CDbl(txtks.Text)
cs = CDbl(txtcs.Text)
es = Val(txtes.Text)
End Sub
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Private Sub mnuSet2_Click()
' Parameter Test Set 2 ' Set the values in the text boxes
txtkb.Text = "0.1" ' bending stiffness
txtimb.Text = "1” ' penalizes non-monotonic angles
txteb. Text ="1" !
txtpb.Text = “10000" ' penalizes angles from going to 0
txtks. Text = 1" ' stretching stiffness constant
txtcs. Text = "0.1" * controls penalty for edge collapsing to a point
txtes. Text="1" '
' Get the value from the text boxes
kb = CDbl(txtkb.Text)
mb = CDbl(txtmb.Text)
eb = Val(txteb.Text)
pb = Val(txtpb.Text)
ks = CDbl(txtks.Text)
cs = CDbl(txtcs. Text)
es = Val(txtes. Text)
End Sub
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Private Sub mnuSet3_Click()

' Parameter Test Set 3 ' Set the values in the text boxes
txtkb.Text = "0.1" ‘' bending stiffness
txtmb.Text = "I" ' penalizes non-monotonic angles
ixteb.Text="1" '
txtpb.Text = "10000" ' penalizes angles from going to 0
txtks.Text = "0.1" * stretching stiffness constant
txtes. Text = "0.1" * controls penalty for edge collapsing to a point
txtes. Text = "2" '
' Get the values from the text boxes
kb = CDbl(txtkb.Text)
mb = CDbl(txtmb.Text)
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eb = Val(ixteb.Text)

pb = Val(txtpb.Text)

ks = CDbl(txtks.Text)

cs = CDbl(txtcs. Text)

es = Val(ixtes. Text)
End Sub
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Private Sub picKeyl_MouseDown{Bution As Integer, Shift As Integer. X As Single, Y As Single)
* Draws a line from the previous clicked point to the current clicked point.
If DrawPoly| = True Then * Only allowed to draw a polygon if we haven't already
' opened a polygon in the frame
Y =picKeyl.Height - Y ' Switch the coordinate system so that
'y increases up .
ff KeyFirstClick = True Then

Key LFirstClick = False
KeyIPts(KeyINumPts).X = X/ 10 ' Decrease the values to avoid overflow error.

KeylPts(KeyINumPts).Y = Y/ 10 ' They will Se increased back when we draw (in
' the vertex path routines). ’
KeyINumPts = KeyINumPs + |
picKey 1.Circle (X, picKeyl.Height - Y), 1, RGB(O, 0, 255)
Else
' When the point is drawn, must switch the coordinate
' system back so that the point is drawn in the correct place
picKeyl.Line (10 * KeylPts(Key!NumPts - 1).X, _
picKeyl.Height - (10 ® Key | Pts(Key! NumPts - 1).Y)) _
-(X., picKey1.Height - Y}
KeylPts(Key|NumPts).X = X/ 10
KeylPts(Key INumPts).Y =Y / 10
KeyiNumPts = Key INumPts + |
picKey!.Circle (X, picKeyl.Height - Y). 1, RGB(O0, 0, 255)
End If
End If
End Sub
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Private Sub picKey2_MouseDown(Button As Integer, Shift As Integer, X As Single, Y As Single)
[f DrawPoly2 = True Then ' Only allowed to draw a polygon if we haven't already
* opened a polygon in the frame
Y = picKey2.Height - Y ' Switch the coordinate system so that
'y increases up
If Key2FirstClick = True Then

Key2FirstClick = False
Key2Pts(Key2NumPis).X = X/ 10 ' Decrease the values to aveoid overflow. Increase

Key2Pts(Key2NumPts).Y =Y/ 10 ‘them back when we draw (in vertex path
' routines).
Key2NumPts = Key2NumPts + 1
picKey2.Circle (X, picKey2.Height - Y). 1, RGB(0, 0, 255)
Else
* When the point is drawn, must switch the coordinate
' system back so that the point is drawn in the correct place
picKey2.Line (10 ® Key2Pts(Key2NumPts - 1).X, _
picKey2.Height - (10 ® Key2Pts(Key2NumPts - 1).Y))- _
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(X. picKey2.Height - Y)
Key2Pts(Key2NumPts).X = X/ 10
Key2Pts(Key2NumPts).Y = Y / 10
Key2NumPts = Key2NumPts + |
picKey2.Circle (X, picKey2.Height - Y), 1. RGB(0, 0, 255)
End If
End If
End Sub
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Public Sub MatchByOrderi()
" A vertex correspondence method. Matches the vertices based on the order in which they
* are clicked If one polygon has more vertices than the other, the additional vertices in the
" polygon with more vertices are all mapped to the final vertex of the polygon with fewer
' vertices.
* N.B. Definitely not the spiffiest vertex correspondence plan, but certainly one
of the simplest. | just coded this for testing purposes.
Dim I As Integer
NumPis = Key2NumPts
If Key INumPts > Key2NumPts Then 'if polygon 1 has more vertices than polygon
' 2, then map the extra points of polygon 1|
' to the last vertex of polygon 2
NumPts = Keyl NumPts
For | = Key2NumPts To (Key INumPts) Step |
Key2Pis(I).X = Key2Pis(Key2NumPts). X
Key2Pis(I).Y = Key2Pts(Key2NumPts). Y
Next I
End If
If Key2NumPts > Keyl NumPts Then
NumPts = Key2NumPts
For I = KeyINumPts To (Key2NumPts) Step 1
Key1Pts(I).X = Key | Pts(Key | NumPts). X
KeylPis(I).Y = Key | Pts(Key | NumPts).Y
Next [
End If
End Sub
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Public Sub Linearinterpolation()

' A Vertex Path Method. Takes a pair of corresponding vertices and uses linear

* interpolation to calculate the path travelled by a vertex as it morphs from one polygon
' into the other.

Dim I As Integer
Dim J As Integer
Dim Draw As Boolean
Dim TempPic As PictureBox
Draw = False ‘' we only draw the in-between frames. We don't want
' to redraw the key frames.

' Calculate the step size to increment each of the x- and y- coords
* for each successive in-between image
For [ = 0 To (NumPts) Step |

KeyDifference(I). X = (Key2Pts(I).X - Key1Pts(I).X) / (NumInBetweens + 1)
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KeyDifference(l).Y = (Key2Pts(l).Y - KeylPts(l).Y) / (NumInBetweens + 1)
Nextl

For I = 0 To (NumInBetweens + 1) Step |
' Determine the vertices for in-tetween frame |
For J =0 To (NumPts) Step |
MorphPts(J).X = Key IPts(J).X + ((KeyDifference(J;.X) * I)
MorphPts(J).Y = Key IPts(J).Y + ((KeyDifference(J).Y) * I)
Next J

' Draw the lines in the appropriate picture box
" Note that the coord system is switched back for drawing
Select Case |
Case |
Set TempPic = picMorphl
Draw = True
Case 2
Set TempPic = picMorph2
Draw = True
Case 3
Set TempPic = picMorph3
Draw = True
Case 4
Set TempPic = picMorph4
Draw =True
Case 5
Set TempPic = picMorphS
Draw =True
End Select
If Draw Then
ForJ =1 To (NumPts) Step 1
TempPic.Line (10 ® MorphPts{J).X, _
TempPic.Height - (10 ®* MorphPts(J).Y)) _
-(10 ®* MorphPts(J - 1).X, _
TempPic.Height - (10 * MorphPts(J - 1).Y))
Next J
End If
Draw = False
Next |
End Sub
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Public Sub LeastWorkMatching()

‘ Determines the vertex correspondence between the two key frames that will result in
' the least amount of work to morph from one image to the other.

' This method considers the polygon edges to be made of bendable, stretchable wire,
' and determines the work need to stretch and bend the wire edges of polygon 1 into

' polygon 2.

' Uses a graph theory solution to determine the least work “path” and then does a

* back track through this "graph” to find the least work matching.

' BackTrackList keep track of the graph vertices (1,J) that correspond to one
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' another on the least work path. BackTrackList is defined as type "Coords”,
' but is not really made of polygon vertex coordinates. Rather, the (X.Y)

" coordinates arc actually the (1.J) vertices of the least work graph.
Dim BackTrackList() As Coords
if Key2NumPts > Key t NumPts Then
NumPts = Key2NumPis
Else
NumPts = Key I NumPts
End If
ReDim BackTrackList(Key INumPts + Key2NumPis) As Coords

' WBack keeps track of the amount of work required to get to
* graph vertex (I.J) from the graph vertex (f-1.1)

Dim WBack() As Integer

ReDim WBack(Key INumPts, Key2NumPts) As Integer

' WUp keeps track of the amount of work required to get
' to graph vertex (1,J) from the graph vertex (LJ-1)
Dim WUp() As Integer

ReDim WUp(Key INumPts, Key2NumPts) As Integer

' WDiag keeps track of the amount of work required to get
' to graph vertex (1.J) from the graph vertex (I-1.J-1)
Dim WDiag() As Integer

ReDim WDiag(Keyl NumPts, Key2NumP1s) As Integer

Dim [ As Integer

Dim J As Integer

' The polygon files should be stored carefully, since the program
‘ automatically matches the first vertices to each other.
WBack(0.0) =0

wWUp(0,0)=0

WDiag(0,0) =0

For I = 0 To (Key | NumPts) Step |
For J =0 To (Key2NumPts) Step 1
‘Note: If I=0 and J<>0 then we can only calculate WUp
If1=0AndJ=1 Then
WUp(l, J) = Stretch(Key 1 Pts(l), Key2Pts(J - 1), _
Key1Pts(), Key2Pts(J)) + _
Minimum(WUp(L, J - 1) + Bend(Key I Pts(I), _

Key2Pts(Key2NumPts - [), _
Key1Pts(l), Key2Pts(J - 1), _
Key 1Pts(I), Key2Pts(J)), _

WhDiag(1.J- 1)+ _
Bend(Key | Pts(Key INumPts - 1), _
Key2Pis(Key2NumPts - 1), _
Key1Pis(l), Key2Ps(J - 1), _
Key1Pis(l), Key2Pts(1)))

WBack(, J) = 15000 ‘' Initialize WBack and WDiag to some
WDiag(l, J} = 15000 ° large number so that we don't think
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' that a vertex matching that doesn't

" exist is actually the least work matching
End If

[fl=0AndJ> 1 Then
WUp(l, J) = Stretch(Key 1 Pts(I), Key2Pts(J - 1), _
Key!Pts(l), Key2Pts(J)) + _
Minimum(WUp(l, J - 1) + Bend(Key1Pts(l), _
Key2Pts(J - 2), _
Key [Pts(l), Key2Pts(J - 1), _
Key1Pts(l), Key2Pts(J)). _

WDiag(l,J- 1)+ _

Bend(KeyIPts(Key I NumPts - 1), _

Key2Pts(J - 2), _

Key!Pis(l), Key2Pis(J - 1), _

Keyl Pts(l), Key2Pts(J)))
WBack(l, J) = 15000 ' Init WBack and WDiag to some large
WDiag(l, J) = 15000 ' number so we don't think that a non-

* existent vertex matching is the least

' work matching
End If

Also, if I<>0 and J=0 then we can only calculate WBack
Ifl=1AndJ=0Then
WBack(l, J) = Stretch(Key 1 Pts(I - 1), Key2Pis(J), _.
KeyPts(I), Key2Pis(J)) + _
Minimum(WBack(I -1, ) + _
Bend(Key!Pts(Key INumPts - 1), _
Key2Pts(J), Key1Pis(I- 1), _
Key2Pts(J), Key1Pis(I), _
Key2Pis(l)), _

WDiag(I-1,1) + _

Bend(Key | Pts(Key INumPts - 1), _
Key2Pts(Key2NumPts - 1), _
KeyiPts(I - 1), Key2Pts(J), _
KeyPis(I), Key2Pts(J)))

wUp(l, J) = 15000
WnDiag(l, J) = 15000
End If
IfI1>1 AndJ =0 Then
WBack(l, J) = Stretch(Key 1Pts(1 - 1), Key2Pts(J), _
KeylPis(1), Key2Pts(F)) + _
Minimum(WBack(d - 1,J) + _
Bend(Key!Pts(l - 2), _
Key2Pts(J), Key1Pis(f - 1), _
Key2Pis(J), Key 1Pis(l), _
Key2Pis(])), _

WDiag(l-1, D)+ _
Bend(Key1Pts(l - 2), _
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Key2Pts(Key2NumPts - 1), _
KeyPis( - 1), Key2Pis{J), _
Key 1Pis(l), Key2Pts(J)))
WuUp(l, J) = 15000
Whbhiag(l. J) = 15000
End If
Ifi=1AndJ=1Then
WBack(i, J) = Stretch(Key [ Pts(1 - 1), Key2Pts(J), _
Key1Pts(l), Key2Pis())) + _

Minimum( _
WBack(l-1,]) + _
Bend(Key 1 Pts(Key iNumPts - 1), _
Key2Pis(J), KeyiPs(l - 1), _
Key2Pis(J). Key [ Prs(D). _
Key2Pts(J)). _

WDiag(f- [, J) + _
Bend(Key [ Pis(Key INumPts - 1), _
Key2Pis(J - 1), KeylPs(l - 1), _
Key2Pts(J). Key 1 Pts(l), _
Key2Pis(J)) _
} " end of Minimum parameters

Wup(l, J) = Stretch(Key I Pts(l), Key2Pis(J - 1), _
Key!1Pts(l). Key2Pis(h) + _

Minimum( _
WUp(LJ-D+_
Bend(KeyPis(l), _
Key2Pts(Key2NumPts - 1), _
Key 1Pts(T). Key2Pis(J - 1), _
Key 1Prs(I), Key2Pts())), _

WDiag(1,J- 1)+ _
Bend(KeyPts(I - 1), _
Key2Pts(Key2NumPts - 1), _
KeylPis(I), Key2Pts(J - 1), _
Key1Ps(l), Key2Pis(J)) _
) * end of Minimum Parameters

WDiag(l, J) = Stretch(Key [ Pts(I - 1), Key2Pts(J - 1), _
Key!Pts(1), Key2Pts(J)) + _

MinOf3( _ -
WUp(1-1,3-1}+_
Bend(Key!lPts(I - 1), _

Key2Pis(Key2NumPts - 1), _
KeylPs(I - 1), Key2Pts(J - 1), _
KeyPis(), Key2Pis()), _

WDiag(I- 1, J-1)+_
Bend(Key 1Pts(Key INumPts - 1), _

Code

139



Key2Pts(Key2NumPts - 1), _
Key1Pts(l - 1), Key2Pts{J - 1), _
Key1Pws(I), Key2Pis(h)), _

WBack(I-1,J-1)+ _
Bend(Key 1 Pis(Key INumPts - 1), _
Key2Pts(J - 1), KeylPts(1- 1), _
Key2Pts(J - 1), Key!Pis(l), _
Key2Pis(J)) _
) ‘end of MinOf3 Paremeters
End If
Ifl>1 AndJ> 1 Then

WBack(i, J) = Stretch(Key [ Pts(I - 1), Key2Pts(J), _

Key 1 Pts(I), Key2Pts(J)) + _

Minimum( _
WBack(l - 1. 1) + _
Bend(Key1Pts(I - 2), _
Key2Pis(J), Key!Pts(I - 1), _
Key2Pis(J), Key1Pus(l), _
Key2Pis(J)). _

WDiag(1-1.J) + _
Bend(Key!Pts(l - 2), _
Key2Pis( - 1), KeylPts(1 - 1), _
Key2Pts()), Key1Pis(l), _
Key2Pts(h)) _
) ' end of Minimum parameters
wUp(l, §) = Stretch(Key 1 Pis(l), Key2Pts(J - 1), _
Key!Pis(I), Key2Pts())) + _

Minimum( _
WUp(L.J- 1)+ _
Bend(Key 1Pts(l), _
Key2Pts(J - 2), _
KeyPis(I), Key2Pis(J - 1), _
Key1Pis(I), Key2Pus(J)), _

WDiag(l,J- 1) + _
Bend(Key1Pts(I - 1), __
Key2Pws(J - 2), _
Key!Pts(1), Key2Pts(J - 1), _
KeyPis(l), Key2Pis(J)) _
)} * end of Minimum Parameters

WDiag(l, J) = Stretch(Key 1 Pts(l - 1), Key2Pts(J - 1), _

KeyPts(l), Key2Pis())) + _

MinOf3( _
WUp(I-1,J-1)+_
Bend(Key 1Pts{ - 1), _
Key2Pts(J - 2), _
Key!1Pis(l - 1), Key2Pts(J - 1), _
Key1Pis(T), Key2Pts(J)), _

Code
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WhDiag(l-1.J-1)+ _
Bend(KeyiPus(l -2), _
Key2Pts(J - 2). _
KeyliPts(I - 1), Key2Pis(J - 1), _
Key 1 Pis(I), Key2Pts(J)). _

WBack(i-1,J- 1)+ _
Bend(Key!Pis(l - 2), _
Key2Pts(J - 1), Key IPts(l - ). _
Key2Pis(J - 1), KeyiPus(l), _
Key2Pts(J)) _
) ‘"end of MinOf3 Paremeters
End If
Next }
Next |

' now backtrack to find the path.
* The first point of BackTrackList is the final graph vertex
‘i.e. [KeyINumPts-1, Key2NumPts-1] (note that the very last vertices
* the duplicate first points that close up the polygons) are automatically
' matched to each other
BackTrackList(0).X = Key INumpPts - ¢
BackTrackList(0).Y = Key2NumPts - [
Dim TempX As [nteger
Dim TempY As Integer
Dim CurrKey 1Pt As Integer
Dim CurrKey2Pt As Integer
Dim NumBackTrackPts As Integer
NumBackTrackPts = |
CurrKey 1Pt = BackTrackList(0).X
CurrKey2Pt = BackTrackList(0).Y
I=1
' Find the previous graph vertex that requires the least amount of work, and
* choose that one as the next vertex in the backtrack list.
Do While (CurrKey 1Pt >= 0) And (CurrKey2Pt >= 0)
TempX = BackTrackList(I - 1}.X
TempY = BackTrackList(l - 1).Y
If WBack(TempX, TempY) <= WUp(TempX, TempY) And _
WBack(TempX, TempY) <= WDiag(TempX, TempY) Then
CurrKey | Pt = BackTrackList(f - 1).X - 1
CurrKey2Pt = BackTrackList(1 - 1).Y
End If
If WUp(TempX, TempY) < WBack(TempX, TempY) And _
WUp(TempX, TempY) <= WDiag(TempX, TempY) Then
CurrKey | Pt = BackTrackList(I - 1).X
CurrKey2Pt = BackTrackList(l - 1).Y - 1
End If
If WDiag(TempX, TempY) < WBack(TempX, TempY) And _
WDiag(TempX, TempY) < WUp(TempX, TempY) Then
CurrKey 1Pt = BackTrackList(I1 - 1).X - 1
CurrKey2Pt = BackTrackList(l - 1).Y - 1
End If
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BackTrackList(l).X = CurrKey 1 Pt
BackTrackList(l).Y = CurrKey2Pt
NumBackTrackPts = NumBackTrackPis + |
I=1+1
[f CurrKey1Pt = 0 And CurrKey2Pt = 0 Then
Exit Do
End If
Loop
Dim TempKey!Pts() As Coords
ReDim TempKey IPts(Key | NumPts + Key2NumPts) As Coords
Dim TempKey2Pts() As Coords
ReDim TempKey2Pts(Key | NumPts + Key2NumPts) As Coords
' copy the points in reverse order into a new list
For I =0 To (NumBackTrackPts - 1) Step 1
TempKey IPts(NumBackTrackPts - 1 - [).X = KcylPts(BackTmckLlst(l) X).X
TempKey | Pts(NumBackTrackPts - 1 - 1).Y = Key!Pts(BackTrackList(I).X).Y
TempKey2Pts(NumBackTrackPts - 1 - I).X = Key2Pts(BackTrackList(I).Y).X
TempKey2Pts(NumBackTrackPts - | - I).Y = Key2Pts(BackTrackList(I).Y).Y
Next I
' And reassign these points to the old list of vertices.
' Now, Key1Pts(k) corresponds to Key2Pts(k).
' Nate that KeyiPts and Key2Pts now contain the same number of
' vertices
For 1 =0 To (NumBackTrackPts - 1) Step 1
KeyPts(1).X = TempKey | Pts(1).X
KeyIPts(1).Y = TempKey 1 Pts(l).Y
Key2Pts(1).X = TempKey2Pis(l).X
Key2Pts(1).Y = TempKey2Pis(I).Y
Next [

' Make sure the polygon is closed
Key1Pts(NumBackTrackPts).X = Key1Pts(0).X
Key iPts(NumBackTrackPts).Y = Key!Pts(0).Y
Key2Pts(NumBackTrackPts).X = Key2Pts(0).X
Key2Pts(NumBackTrackPts).Y = Key2Pts(0).Y
* Need a new NumPts, since now many vertices may have been
" duplicated, so we now may have more vertices than before
NumPts = NumBackTrackPts

End Sub

'tttt*"‘l“t"t!t.‘.tl‘.‘.t‘tltt.t‘t“‘.“l"lC.t‘t’t.‘ttt‘t‘tlt‘Private

Function Length(PO As Coords, P1 As Coords) As Double
* Accepts two 2D points as input.
' Calculates and returns the Euclidean distance between the two points
Length = Sqr(((P1.X - PO.X) *.(P1.X - P0.X)) + ((P1.Y - PO.Y) ®* (PLY - PO.Y)))
End Function

‘tttttttt‘t'tltt"t‘.“.‘tl‘.tt‘t“"‘.“U“‘.“““.l‘.‘tl..“.‘.Priva[e
Function Bend(I0 As Coords, JO As Coords, [1 As Coords, J1 As Coords, I2 As Coords, J2 As
Coords)

' Accepts six 2D points. Calculates and returns the amount of bending work required to

" convert the line segments 10-11-12 to the line segments JO-J1-J2
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Dim FO As Coords ' Vector from 11 to [2

Dim Fl As Coords *Vector from J1 to J2

Dim BO As Coords ' Vector from 10 to 11

Dim Bl As Coords ' Vector from JO to J1

Dim X0 As Double ‘ determined from the above vectors,
Dim X! As Double * and used as coordinates of the control
Dim X2 As Double ' points of a Bezier curve of degree 2.

Dim YO As Double
Dim Y1 As Double
Dim Y2 As Double

Dim QO As Coords * Control points of a Bezier curve of
Dim Q1 As Coords * degree 2.

Dim Q2 As Coords
Dim DO As Double
Dim D1 As Double
Dim D2 As Double

Dim DeltaTheta As Double

‘ Change in angle from polygon ! to

' polygon 2, in radians
Dim DeltaThetaStar As Double ' Deviation from monotonicity, in radians

Dim Origin As Coords
Dim PosXAxis As Coords
Dim NegXAxis As Coords
Dim PosY Axis As Coords
Dim NegYAxis As Coords
Dim Alpha As Double
Dim Beta As Double

Origin.X =0
Origin.Y =0
PosXAxis.X =1
PosXAxis.Y =0
NegXAxis.X = -1
NegXAxis.Y =0
PosYAxis.X=0
PosYAxis.Y = |
NegYAxis.X =0
NegYAxis.Y =-1

FO.X=12X-11L.X
FO.Y =12.Y - [LY
FI.X=J2X-J1.X
FlL.Y=J2.Y-JLY
BO.X=10.X-[1.X
BO.Y =10.Y - IL.Y
B1.X=J0.X-J1.X
BLY=J0.Y-JLY
X0 = Dot2D(F0, B0)

' the angle of deviation (if any) of Q2
' the angle of deviation (if any) of QO

X1 = (Dot2D(F!, BO) + Dot2D(F0, B1)) / 2

X2 = Dot2D(F1, Bl)
YO = Cross2D(FO0, BO)

Y1 = (Cross2D(F1, B0) + Cross2D(F0, B1)} /2

Y2 = Cross2D(F1, Bl)

Code
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Q0.X=X0

Q0.Y=Y0

Ql.X =Xl

QlLY=YI

QR2.X=X2

QY =Y2

DO = Cross2D(Q0. Q1)
D1 =Cross2D(Q0.Q2) /2
D2 = Cross2D(QI, Q2)

If (DI ®*Dt - DO * D2) < 0 And TriangleContainsOrigin(QO0, Ql. Q2) Then
DeltaTheta = 2 * PI - Abs(AngleFromXAxis(QO) - AngleFromXAxis(Q2))

Else

DeltaTheta = Abs(AngleFromXAxis(QO) - AngleFromXAxis(Q2))
End If
Alpha=0 ' If the angle changes non-monotonically, we must
Beta=0 ‘ determine how far away we are from non-monotonicity.

* Alpha represents the angle of deviation (if any) of Q2 and Beta
' represent the angle of deviation (if any) of Q0. Alpha + Beta
" gives the total amount o fdeviation, and is called DeltaThetaStar

Dim tl As Integer
Dim t As Double
Dim QtX As Double
Dim QtY As Double

' Below, we find the amount of deviation (if any) from the monotonicity.
" Also, Theta goes to zero if and only if Q(t) crosses the positive x-axis, so we
* take the opportunity to figure this out at the same time.

Dim ThetaGoesToZero As Boolean
Dim OneSide As Boolean
Dim OtherSide As Boolean
Dim ListOfAngles(100) As Double ‘in rads
Dim Qt(100) As Coords
Dim TCross As Integer
ThetaGoesToZero = False
OneSide = False
OtherSide = False
Fortl =0 To 100 Step |
t=tl/100
QOX=Q0X*(1-)*(1-0)+QL.X*(1-0)*2*1t+Q2X*1*t
QY=Q0Y*(1-0*(1-D+QLY*(1-0)*2*t+Q2Y*1*t
Qu(t!).X=QX
Q.Y =QtY
ListOfAngles(tl) = AngleFromXAxis(Qt(t1)) Iftl >0 Then
IfQt(t1).X >0 And Qt(tl - 1).X > G Then
If SignOf(Qt(t]).Y) < SignOf(Qu(tl - 1).Y) Then
TCross=1tl
End If
End If
EndIf
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[fQuX>0And QtY <0 Then
OneSide = True
End If
If QtX >0 And QtY >=0 Then
OtherSide = True
End If
Next t1

If OneSide = True And OtherSide = True Then
ThetaGoesToZero = True
End If

Dim TMinAngie As Double
Dim TMaxAngle As Double
TMinAngle =0
TMaxAngle=0
If ThetaGoesToZero Then
If ListOfAngles(100) > ListOfAngles(Q) Then
Fortl =0 To TCross Step 1
If ListOfAngles(tl) > ListOfAngles(TMaxAngle) Then
TMaxAngle =tl
End If
Next tl
For tl = TCross To 100 Step |
If ListOfAngles(tl) < ListOfAngles(TMinAngle) Then
TMinAngle =tl
End If
Next t!
Alpha = ListOfAngles(TMaxAngle) - ListOfAngles(0}
Beta = ListOfAngles(100) - ListOfAngles(TMinAngle)
Else 'if ListOfAngles(100) < ListOfAngles(0)
For tl =0 To TCross Step |
If ListOfAngles(tl) < ListOfAngles(TMinAngle) Then
TMinAngle =tl
End If
Nexttl
For tl = TCross To 100 Step 1
If ListOfAngles(tl) > ListOfAngles(TMaxAngle) Then
TMaxAngle =tl
End If
Next t1
Alpha = ListOfAngles(TMaxAngle) - ListOfAngles(100)
Beta = ListOfAngles(0) - ListOfAngles(TMinAngle)
End If
Else
Fortl =0 To 100 Step 1
If ListOfAngles(tl) > ListOfAngles(TMaxAngle) Then
TMaxAngle =tl
End If
If ListOfAngles(t]) < ListOfAngles(TMinAngle) Then
TMinAngle =tl
End If
Next tl
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{f ListOfAngles(100) > ListOfAngles(0) Then
Alpha = ListOfAngles(TMaxAngle) - ListOfAngles(100)
Beta = ListOfAngles(0) - ListOfAngles(TMinAngle)
Else
Alpha = ListOfAngles(100) - ListOfAngles(TMinAngle)
Beta = ListOfAngles(TMaxAngle) - ListOfAngles(0)
End If
End If
DeltaThetaStar = Alpha + Beta If ThetaGoesToZero = False Then
[f Abs(DeltaTheta + mb * DeltaThetaStar) < Epsilon Then

Bend =0
Else
Bend = kb * Exp(eb ®Log(DeltaTheta + mb * DeltaThetaStar))
EndIf .
Else
If Abs(DeltaTheta + mb ® DeltaThetaStar) < Epsilon Then
Bend = pb
Else

Bend = (kb ® (Exp(eb * (Log(DeltaTheta + mb * DeitaThetaStar))))) + pb
End If
End If
End Function

EEXAEEEEEREEEEEXEEEE XXX XREIEEELEESEZL LS XL BLBLEEX XL XXX XS XEXEEAERES

Private Function Stretch(I0 As Coords, JO As Coords, I1 As Coords, J1 As Coords)
* Accepts four 2D points. Calculates the stretching work used in morphing
* the line segment 10-11 to line segment JO-J1.

Dim L0 As Double °length of segment from vertex [1 to vertex [0
'in the first frame
Dim L1 As Double ' length of segment from vertex J! to vertex JO
' in the second frame
LO = Length(l1, 10)
L1 = Length(J1, JO)
If Abs((! - cs) ® Minimum(LQ, L1) + cs ® Maximum(LO, L1)) < Epsilon Then
Stretch = 15000
Else
If Abs(L1 - LO) < Epsilon Then
Stretch=0
Else
Stretch = (ks ® Exp(es ® (Log((Abs(L1 - L0)))))) / ((1 - cs) * Minimum(LO, L1) _
+ ¢s ®* Maximum(LO, L1))
End If
End If
End Function

CEEEEREEBA AT RS EEELLT RS EERX RS AEEEEHL R LA SRS S ASEXL XSS AR EEREES

Private Function Dot2D(A As Coords, B As Coords) As Double

* Accepts two 2D points and returns their dot product
Do2D=AX*BX+AY*BY

End Function

EESAEEELEESESESESRLE S LSRR AT EECESSE R LSS AU SXBESEERL R LTSS R EEEEES
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Private Function Cross2D(A As Coords. B As Coords)

* Accepts two 2D points and returns the determinant
Cross2D=A.X*B.Y-AY *B.X

End Function

LEXBASEERE XS T EEE LB EER XS EEE RS ERNEEEXASEEXEE L LB LS LEREXFEELBEREE SRS

Private Function TriangleContainsOrigin{(QO0 As Coords, Q1 As Coords. Q2 As Coords)
" Accepts three points to be vertices of a triangle. Returns True if this triangle contains
" the origin and False otherwise.

Dim AX1 As Boolean

Dim AX2 As Boolean

Dim AX3 As Boolean

Dim AX4 As Boolean

Dim B As Integer

Dim XInt As Integer

' segment | of the triangle

If Abs(Q1.X - Q0.X) < Epsilon Then
B=0

Else
B=QLY-QLX*{(QLY-Q0.Y)/(QI1.X-Q0.X))

End If

If Abs(QL.Y - QO0.Y) < Epsilon Then
XInt=0

Else
Xint=QI.X - QLY * ((QL.X - Q0.X)/ (QL.Y - Q0.Y))

End If

If B > 0 And (SignOf(Q!.X) < SignOf(Q0.X)) Then
AX1 =True

End If

If B < 0 And (SignOf(Q1.X) < SignOf(Q0.X)) Then
AX3 =True

End If

If XInt > 0 And (SignOf(Q1.Y) < SignOf(Q0.Y)) Then
AX2=True

End If

If XInt < 0 And (SignOf(Q1.Y) < SignOf(QO0.Y)) Then
AX4=True

End If

' segment 2

If Abs(Q2.X - Q1.X) < Epsilon Then
B=0

Else
B=QY -Q2.X *{((Q2.Y -Q1.Y)/(Q2.X - Q1L.X))

End If .

If Abs(Q2.Y - QI.Y) <Epsilon Then
Xlnt=0

Else
Xint=Q2.X - Q2.Y *((Q2.X - Q1.X)/ (Q2.Y - QL.Y))

EndIf

If B > 0 And (SignOf(Q2.X) < SignOf(Q1.X)) Then
AX1 =Twe

End If
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If B <0 And (SignOf(Q2.X) < SignOf(Q!.X)) Then
AX3 =True

End If

If XInt > 0 And (SignOf(Q2.Y) < SignOf(Q1.Y)) Then
AX2=True

End I¥

If XInt <0 And (SignOf(Q2.Y) < SignOf(Q1.Y)) Then
AX4 =True

End If

‘segment 3

If Abs(QO0.X - Q2.X) < Epsilon Then
B=0

Else
B =Q0.Y - Q0.X * ((QQ.Y - Q2.Y)/ (Q0.X - Q2.X))

End If

If Abs(QO.Y - Q2.Y) < Epsilon Then
Xint=0

Else
Xint = Q0.X - Q.Y * (Q0.X - Q2.X)/ (Q0.Y - Q2.Y))

End If

If B > 0 And (SignOf(Q0.X) < SignOf(Q2.X)) Then
AX1 =True

End If

If B <0 And (SignOf(Q0.X) < SignOf(Q2.X)) Then
AX3 =True

End If

If XInt > 0 And (SignOf(QO0.Y) < SignOf(Q2.Y)) Then
AX2=True

Eng If

[f XInt <0 And (SignOf(Q0.Y) < SignOf(Q2.Y)) Then
AX4=True

EndIf

If AX] = True And AX2 =True And AX3 = True And AX4 = True Then
TriangleContainsOrigin = True

Else

TriangleContainsOrigin = False
End If
End Function
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Public Function SignOf(X As Double)
' Accepts a number and returns true if the number is positive and false if the number is negative.
If X >=0Then
SignOf = True
Else
SignOf = False
End If
End Function
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Private Function AngleFromXAxis(Q As Coords)
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' Calculates the positive angle in rads from the positive x-axis to the point Q
*If Q = Origin or Q lies on the positive x-axis, then define the angle to be PL
If (Q.X>=0And Q.Y =0) Then

AngleFromXAxis = PI

Else

Dim C As Double

Dim A As Double

Dim B As Double

Dim Origin As Coords
Dim PosXAxis As Coords
Dim QuadQ As Integer

Origin.X =0
Origin.Y =0
PosXAxis.X = 1|
PosXAxis.Y =0

C = Length(Origin, Q)
A = Length(Q, PosXAxis)
B=1
QuadQ = Quadrant(Q)
If Abs(2 * C * B) < Epsilon Then
AngleFromXAxis =0
Else
If QuadQ = | Or QuadQ =2 Then
AngleFromXAxis = ArcCos((B*B +C®*C-A*A)/(2*C*B))
Else 'if QuadQ = 3 orQuad! =4
AngleFromXAxis=2*Pl- ArcCos((B*B+C°®*C-A*A)/(2*C*B)
End If
End If
End If
End Function

S EEEEELSERELEE BTN EE LS ESEEXEEL LI E LS ER LSS EL L LS L XS EEEEXEXEREE XXX XS
Public Function ArcCos(X As Double)
* Takes a number and retuns the ArcCos of that number.

If Abs(X) < | + Epsilon And Abs(X) > | - Epsilon Then

ArcCos=0
Else

ArcCos = Atn(-X / Sgr(-X ®* X + 1)) + 2 ® Am(])
End If

End Function

‘XS EEEBEEEREXEBEEL R SRS EEFELELSETINRESESEESELESSEEEREEFEEET SR ETRE RSN

Public Function Minimum(A As Double, B As Double)
" Takes two numbers (double) and returns the minimum of the two.

If A>B Then
Minimum =B
Else
Minimum = A
End If

End Function
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Private Function Quadrant(Q As Coords)
' Takes a point (x,y) and returns the quadrant in which the point lies.
IfQ.X>=0And Q.Y >=0Then
Quadrant = 1
End If
IfQ.X>=0And Q.Y <0 Then
Quadrant =4
End If
If Q. X <0 And Q.Y >=0 Then
Quadrant =2
End If
IfQ.X<0And QY <0 Then
Quadrant =3
End If
End Function
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Public Function MinOf3(A As Double, B As Double, C As Double)
' Takes three numbers (double) and returns the minimum of the three
If A <=B And A <=C Then

MinOf3=A

End If

If B<A And B <=CThen
MinOf3 =B

End If

If C<A And C <B Then
MinOf3=C

End If

End Function

XXX EXEELEIRESE RS AR XSRS LR AXNER RN SR SRS EEELEXXEE XXX XXX RERESE R XD

Public Sub EdgeLengthinterpolation()
' Does the same thing as linear interpolation
Dim [ As Integer
Dim t As Integer
Dim E1(100) As Coords ' the x and y coords to get from the
Dim E2(100) As Coords ' previous point to the next point
Dim E(100) As Coords
Dim TempPic As PictureBox
Dim Draw As Boolean
Draw = False
For [ = 0 To (NumPts) Step |
EI(I).X =KeylPis(1 + 1).X - Key | Pts(I).X
EI(I).Y =KeylPts(1 + 1).Y - Key!Pts(I).Y
E2(I).X = Key2Pis(I + 1).X - Key2Pts(1).X
E2([).Y = Key2Pis(I + 1).Y - Key2Pts(1).Y
Next [
Dimtl As Double
For t = 0 To (NuminBetweens + 1) Step |
tl =t/ (NuminBetweens + 1)
For I =0 To (NumPxs) Step 1
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E(D.X=(l-t) *EI(DN.X +t! *E2I).X
E(D.Y =(1 -t]) *EI(I).Y +tl * E2(I).Y

Next [
For [ =0 To (NumPts) Step |
IfI=0Then

MorphPts(1).X = Key 1 Pts(0).X
MorphPts(1).Y = Key ! Pts(0).Y

Else

MorphPts(1).X = MorphPts(l - 1).X + E(I - 1).X
MorphPts(l).Y = MorphPts(I - 1).Y + E(I - 1).Y

End If
Next [

Select Case t
Case |
Set TempPic = picMorph!
Draw =True
Case 2
Set TempPic = picMorph2
Draw = True
Case 3
Set TempPic = picMorph3
Draw = True
Case 4
Set TempPic = picMorph4
Draw =True
Case 5
Set TempPic = picMorph$
Draw =True
End Select

[f Draw Then
For [ = 1 To (NumPts) Step |

TempPic.Line (10 * MorphPis(1).X, _
TempPic.Height - (10 * MorphPts(I).Y)) _
-(10 * MorphPis(l - 1).X, _
TempPic.Height - (10 * MorphPis(l - 1).Y))

Next I
End If
Draw = False
Next t
End Sub
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Public Sub Intrinsicinterpolation()
Dim I As Integer
Dim tl As Integer
Dimt As Double

Dim Thetal(100) As Double ' Angles between edges of polygon 1
Dim Theta2(100) As Double ' Angles between edges of polygon 2
Dim L1(100) As Double ' Length of the edges of polygon 1
Dim L2(100) As Double ' Length of the edges of polygon 2

Code
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Dim Alphal As Double ° Alpha for polygon 1
Dim Alpha2 As Double ' Alpha for polygon 2
Dim Alpha(100) As Double ' This is the Alpha for the in-between frames
Dim Theta(100) As Double ' Theta for the in-between frames
Dim L(100) As Double ‘' Edge Lengths for the in-between frames
Dim v1 As Coords
Dim v2 As Coords
Dim vCrossProd As Double
Dim TempPic As PictureBox
Dim Draw As Boolean
Draw = False
' Determine the angle Theta between an extended edge and the next edge.
' We find the cross product to see if the edges form a convex or concave
' part of the polygon (This affects the way in which theta is calculated
Dim Done As Boolean :
Dim Templnt As Integer
For I =1 To (NumPts - 1) Step 1
If (KeylPws(l).X = KeyIPts(I + 1).X) And _
(Key I1Pts(l).Y = Key1Pts(I + 1).Y)) And ((Keyl Pts(I).X < KeylPws(I - 1).X) _
Or (Key!1Pis(I).Y < Key!Pts(I - 1).Y)) Then
Done = False
Templnt=1+2
While Not Done
If (Key!Pts(Templnt).X < Key ! Pts(I).X) Or (KeyPts(Tempint).Y < Key!Pts(1).Y) Then
Done =True
Else
Templnt = Templnt + 1
End If
Wend

vl.X = Key!Pts(Templnt).X - Key 1Pts(1).X
v1.Y = KeylPts(Templnt).Y - KeylPts(I).Y
v2.X = Key!Pis(I).X - KeylPts(1 - 1).X
v2.Y = KeylPis(I).Y - KeylPis(I - 1).Y
vCrossProd = Cross2D(v!, v2)
If vCrossProd > Epsilon Then
Thetal(l) = PI - 0.5 ® Angle(KeylPts(I - 1), Key1Pts(I), Key I Pts(Templnt)) - (P1/ 2)
Else
If vCrossProd < -Epsilon Then
Thetal(I) = -(PI - 0.5 ®* Angle(KeyIPis(l - 1), Key1Pts(l), Key |Pts(Templnt)) - (P1/ 2))
Else
Thetal(l) =0 ' this should never occur
End If
End If
Else .
If (KeyiPts(l - 1).X = Key | Pts(1).X) And (Key1Pts(l - 1).Y = Key I Pts(l).Y) _
And (KeylPis(I).X = Key | Pts(I + 1).X) And (Key1Pts(1).Y = KeyIPts(l + 1).Y) _
Then
Thetal([)=0
Else
If (KeylPts(I - 1).X = Key1Pts(I).X) And (KeylPis(I - 1).Y = KeylPis(I).Y) _
And ((KeyPis([).X < KeylPis(I + 1).X) Or (KeyIPts(}).Y <> KeyIPts(I + 1).Y)) Then
Done =False
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TemplInt=§-1
While Not Done
If (Key I Pts(Tempint).X < KeylPts(l - 1).X Or _
Key!Pis(Tempint).Y < KeylPts(I - 1).Y) Then
Done = True
Else
Tempint = Templnt - |
[f Templnt =0 Then
Done =True
End If
End If
Wend
Thetal(l) = Thetal (Tempint + 1)
Elsc * all points are distinct
vl.X = KeylPts(l + 1).X - KeylPis().X
v0l.Y = Keyl1Pts(I + 1).Y - Key[P1s(l).Y
v2.X = Key1Pts(1).X - KeyIPts(I - 1).X
v2.Y = Key1Pts(1).Y - KeylPts(I- 1).Y
vCrossProd = Cross2D(v], v2)
If vCrossProd > Epsilon Then
Thetal(l) = PI - Angle(KeylPis(l - 1), Key!Pis(l), Key!Pts(I + 1))
Else
If vCrossProd < -Epsilon Then
Thetal(l) = -(PI - Angle(Key1Pts(I - 1), Key1Pts(I), Key1Pts(I + 1)))
Else
Thetal(I)=0
End If
End If
End If
End If
End If
If (Key2Pts([).X = Key2Pts(l + 1).X) And (Key2Pts(l).Y = Key2Pts(I + 1).Y) _
And ((Key2Pts(1).X < Key2Pus(l - 1).X) Or (Key2Pis(I).Y < Key2Ps([ - 1).Y)) Then
Done = False
Templnt=1+2
While Not Done
If (Key2Pis(Templnt).X < Key2Pis(1).X) Or (Key2Pts(Templnt).Y < Key2Pts(l).Y) Then
Done =True
Else
TFemplnt = Templnt + |
End If
Wend
v1.X = Key2Pts(Templnt).X - Key2Pts(1).X
v1.Y = Key2Pts(Templnt).Y - Key2Pts(l).Y
v2.X = Key2Pts(1). X - Key2Pts(1 - 1).X
v2.Y = Key2Pts(l).Y - Key2Pis(I - 1).Y
vCrossProd = Cross2D(vl, v2)
If vCrossProd > Epsilon Then
Theta2(l) = PI - 0.5 ® Angle(Key2Pts(l - 1), Key2Pis(I), Key2Pis(Templint)) - (P1/ 2)
Else
If vCrossProd < -Epsilon Then

Theta2(l) = -(P1 - 0.5 ® Angle(Key2Pts(l - 1), Key2Pts(l), Key2Pis(Templnt)) - (P1/ 2))

153



Else
Theta2(I) =0 ° this occurs when pts lie along a straight line
End If
EndIf
Else
If (Key2Pts(l - 1).X = Key2Pts(1).X) And (Key2Ps(I - 1).Y = Key2Pts().Y) _
And (Key2Pts(I).X = Key2Pts(l + 1).X) And (Key2Pts(I).Y = Key2Pis(I + 1).Y) Then
Theta2(l)=0
Else
If (Key2Pts(I - 1).X = Key2Pts(1).X) And (Key2Pts(l - 1).Y = Key2Pts(1).Y) _
And ((Key2Pts(1).X < Key2Pts(I + 1).X) Or (Key2Pts(l).Y < Key2Pts(I + 1).Y)) _
Then
Done = False
Tempint=1-1
While Not Done
If (Key2Pts(Templnt).X <> Key2Pts(I - 1).X Or _
Key2Pis(Templint).Y < Key2Pts(l - 1).Y) Then
Done =True
Else
Templnt = Templnt - 1
If Templnt =0 Then
Done = True
End If
End If
Wend
Theta2(l) = Theta2(Templnt + 1)
Else * all points are distinct
vl.X = Key2Pts(I + 1).X - Key2Pts(I).X
vi.Y = Key2Pts(I + 1).Y - Key2Pts(l).Y
v2.X = Key2Pts(I).X - Key2Pts(I - 1).X
v2.Y = Key2Pts(I).Y - Key2Pts(I - 1).Y
vCrossProd = Cross2D(vl, v2)
If vCrossProd > Epsilon Then
Theta2(l) = PI - Angle(Key2Pts(l - 1), Key2Pis(I), Key2Pts(I + 1))
Else
If vCrossProd < -Epsilon Then
Theta2(I) = -(PI - Angle(Key2Pts(l - 1), Key2Pts(l), Key2Pts(l + 1)))
Else
Theta2(l) =0
End If
End If
End If
End If
End If
Next [ .
For 1 =0 To (NumPts - 1) Step |
* Find the lengths of all edges of the polygon
L1(I) = Length(Key1Pts(I + 1), KeyPts(I)}
L2(I) = Length(Key2Pis(I + 1), Key2Pts(1))
Next [
Dim AxisPt As Coords

' Calculate the angle between the horizontal line through the anchor point
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* and the first edge of the polygon
AxisPt.X = Key I Pts(0).X + |
AxisPLY = Key1Pts(0).Y

' find the next distince vertex following the initiai vertex
Pane = False
Templnt =1
While Not Done
If (KeylPts(0).X = KeyiPts(Templnt).X) And (Key[Pts(0).Y = Key{Pts(Templnt).Y) Then
Templnt = Templint + |
Else
Done = True
End If
Wend
Alphal = Angle(KeylPts(Templnt), Key!Pts(0), AxisPt)
AxisPt.X = Key2Pts(0).X + |
AxisPt.Y = Key2Pts(0).Y
Done = False
Templnt =1
While Not Done
If (Key2Pt1s(0).X = Key2Pts(Templnt).X) And (Key2Pts(0).Y = Key2Pts(Templnt).Y) Then
Templnt = Templnt + 1
Else
Done = Truc
End If
Wend
Alpha2 = Angle(Key2Pts(Templnt), Key2Pts(0), AxisPt)
For tl = | To (NumlInBetweens) Step |
t=tl /(NuminBetweens + )
For 1 =0To (NumPts- 1) Step |
Ly=Q-t)y* L1+t L2()
If I < (NumPts - 1) Then
Theta(l + 1) =(1 -t) * Thetal(I + 1) + t ® Theta2(1 + 1)
End If

Next I
Alpha(0) = (1 - 1) ® Alphal +t* Alpha2 ‘' “anchor” angle

" anchor point gets linearly interpolated
MorphPts(0).X = (1 - t) ® Key1Pts(0).X + t * Key2P1s(0).X
MorphPts(0).Y = (1 - t) ® KeylPts(0).Y +t ® Key2Pts(0).Y
MorphPts(1).X = Cos(Alpha(0)) ® L(0) + MorphPis(0).X
MorphPts(1).Y = Sin(Alpha{0)) ® L(0) + MorphPts(0).Y
Alpha(1) = Alpha(0) - Theta(l)
For [ =2 To (NumPts) Step 1
Alpha(l) = Alpha(l - {) - Theta(l)
MorphPts(1).X = MorphPis(I - 1).X + _
Cos(Alpha(i- 1)) *Ld-1)
MorphPis(I).Y = MorphPts(l - 1).Y + _
Sin(Alpha(I- 1)) ¢ L(- 1)
Next I

Select Case tl
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Case |
Set TempPic = picMorphl
Draw =True
Case2
Set TempPic = picMorph2
Draw =True
Case 3
Set TempPic = picMorph3
Draw =True
Casc 4
Sect TempPic = picMorph4
Draw =True
Case 5
Set TempPic = picMorph5
Draw = True
End Select

If Draw Then
For[ =1 To NumPts Step |
TempPic.Line (10 ® MorphPts(I).X, _
TempPic.Height - (10 ® MorphPts(1).Y)) _
-(10 ®* MorphPts(l - 1).X, _
TempPic.Height - (10 ® MorphPts(1 - 1).Y))
Next 1
End If
Draw = False
Next tl
End Sub
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Private Function Angle(QO0 As Coords, Q1 As Coords, Q2 As Coords)
* Takes three points, Q0, QI and Q2, and Calculates the angle at Q1.
If (Q0.X =Q1.X And Q0.Y =QL.Y) Or (Q1.X =Q2.X And QLY =Q2.Y) _
Or (Q0.X =Q2.X And Q0.Y =Q2.Y) Then
Angle =PI
Else
Dim C As Double
Dim A As Double
Dim B As Double
C = Length(Ql, Q2)
A = Length(Q2, Q0)
B = Length(QO, Q1)
If Abs(2 ® C * B) < Epsilon Then
Angle=0
Else .
Angle =ArcCos((B*B+C*C-A*A)/(2*C*B))
End If
If Angle = 0 Then
Angle =PI
End If
End If
End Function
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Public Function Maximum(A As Double, B As Double)
' Takes two numbers (double) and returns the maximum of the two.

If A>B Then
Maximum= A
Else
Maximum =B
End If

End Function
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Public Sub EdgeTweaking()
Dim I As Integer
Dim tl As Integer
Dim t As Double
Dim Thetal(100) As Double ' Angles between edges of polygon 1
Dim Theta2(100) As Double ' Angles between edges of polygon 2
Dim L1(100) As Double ‘ Length of the edges of polygon |
Dim L2(100) As Double ' Length of the edges of polygon 2
Dim Alphal As Double ‘' Alpha for polygon |
Dim Alpha2 As Double ' Alpha for polygon 2
Dim Alpha(100} As Double * This is the Alpha for the in-between frames
Dim Theta(100) As Double ' Theta for the in-between frames
Dim L(100) As Double ' Edge Lengths for the in-between frames
Dim v1 As Coords
Dim v2 As Coords
Dim vCrossProd As Double
Dim S{100) As Double ' the tweaking amounts
Dim L12(100) As Double
Dim LSmall As Double
Dim E As Double
Dim f As Doubie
Dim G As Double
Dim U As Double
Dim V As Double
Dim Lambdal As Double
Dim Lambda2 As Double
Dim TempPic As PictureBox
Dim Draw As Boolean
Draw = False
Dim Done As Boolean
Dim Templnt As Integer
' Determine the angle Theta between an extended edge and the next edge.
* We find the cross product to see if the edges form a convex or concave
* part of the polygon (This affects the way in which theta is calculated

Fori=1 To (NumPts- 1) Step |
If (Key1Pts(1).X = Key 1l Pts(I + 1).X) And _
(KeyIP1s(1).Y = KeyPts(1 + 1).Y)) And ((KeylPis(1).X < Key!Pts(I - 1).X) .
Or (Key 1 Pis(1).Y < Key!Pis(I - 1).Y)) Then
Done = False
Templnt=1+2
While Not Done
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If (Key I Pts(Templnt). X <> Key1Pts(l).X) Or (Key | Pts(Templnt).Y <> Key{Pts(l).Y) Then
Done =True
Else
Templat = Templnt + |
End If
Wend

vi.X = Key | Pts(Templnt).X - Key!Pts(I).X
vi.Y = Key!lPis(Tempint).Y - KeyiPts(I).Y
v2.X = KeylPts(1).X - KeylPis(1 - 1).X
v2.Y = KeylPts(1).Y - KeylPis(l - 1).Y
vCrossProd = Cross2D(v1, v2)
If vCrossProd > Epsilon Then
Thetal(l) = Pl - 0.5 * Angle(Key 1 Pts(l - 1), Key ! Pts(1), KeylPts(Templnt)) - (P1/ 2)
Else
If vCrossProd < -Epsilon Then
Thetal(l) = -(PI - 0.5 * Angle(KeylPts(I - 1), Key1Pts(l), Keyl Pts(Templnt)) - (Pt/ 2))
Else
Thetal(I)=0 °
End If
End If
Else
If (Key!Pts(I - 1).X = KeyPts(I).X) And (Key[Pis( - 1).Y = KeyPts(I).Y) _
And (Key1Pis(I).X = Key IPts(I + 1).X) And (Key |Pts(I).Y = KeyiPws(l + 1).Y) _
Then
Thetal(f)=0
Else
If (Key1Ps(I - 1).X = Key1Pts(I).X) And (KeylPts(l - 1).Y = Key1Pis().Y) _
And ((KeyPts(I).X < KeylPts(I + 1).X) Or (Key 1 Pts(I).Y < Key!Pts(f + 1).Y)) Then
Done = False
Templnt=1-1
While Not Done
If (Key 1 Pts(Templnt).X < Key1Pis(I- 1).X Or _
KeyPis(Templnt).Y < KeylPts(I - 1).Y) Then
Done =True
Else
Templnt = Templnt - 1
If Templnt =0 Then
Done = True
End If
End If
Wend
Thetal(l) = Thetal(Tempint + 1)

Else * all points are distinct

vl.X =KeylPts(l + 1).X - Keyl Pts(I).X

vl.Y = KeylPis(l + 1).Y - Keyl Pts(I).Y

v2. X = KeylPts(I).X - KeyIPts(I - 1).X

v2.Y = KeylPts(I).Y - KeylPis(i - 1).Y

vCrossProd = Cross2D(vl1, v2)

If vCrossProd > Epsilon Then

Thetal(I) = PI - Angle(KeyIPts(I - 1), KeylPts(I), Key 1Pts(1 + 1))
Else
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If vCrossProd < -Epsilon Then
Thetal(l) = -(PI - Angle(KeyIPts(I - 1), Key I Pis(l), Key [ Pis(I + 1)))
Else
Thetal(l) =0 'NOTE USED TO BE 0

End If

End If

End If
End If
End If

If (Key2Pts(1).X = Key2Pts(I + 1).X) And (Key2Pts(I).Y = Key2Pts(I + 1).Y) _
And ((Key2Pts().X < Key2Pts(I - 1).X) Or (Key2Pts(I).Y < Key2Pts(l - 1).Y)) Then
Done = False
Tempint=1+2
While Not Done
If (Key2Pts(Templnt).X < Key2Pts(I).X) Or (Key2Pts(Templnt).Y <> Key2Pis(I).Y) Then
Done =True
Else
Templnt = Templint + 1
End If
Wend
v1.X = Key2Pts(Templnt).X - Key2Pts([).X
v1.Y = Key2Pts(Templnt).Y - Key2Pis(l).Y
v2.X = Key2Pts(I).X - Key2Pts(I - 1).X
v2.Y = Key2Pis(I).Y - Key2Pts(1 - 1).Y
vCrossProd = Cross2D(vl, v2)
If vCrossProd > Epsilon Then
Theta2(l) = PI - 0.5 * Angle(Key2Pts(l - 1), Key2Pis(l), Key2Pts(Templnt)) - (P1/ 2)
Else
iIf vCrossProd < -Epsilon Then
Theta2(l) = -(PI - 0.5 ® Angle(Key2Pts(I - 1), Key2Pis(l), Key2Pts(Templnt)) - (P1/ 2))
Else
Theta2(l})=0 °
End If
End If
Else
If (Key2Pts(I - 1).X = Key2Pts(I).X) And (Key2Pts(l - 1).Y = Key2Pts(1).Y) _
And (Key2Pts(1).X = Key2Pts(I + 1).X) And (Key2Pts(I).Y = Key2Pts(I + 1).Y) Then
Theta2(I)=0
Else
If (Key2Pts( - 1).X = Key2Pts(I).X) And (Key2Pts(I - 1).Y = Key2Pis(I).Y) _
And ((Key2Pis(I1).X < Key2Pts(1 + 1).X) Or (Key2Pts(I).Y < Key2Pts(I + 1).Y)) _
Thea
Done = False
Templint=1-1
While Not Done
If (Key2Pts(Templnt).X < Key2Pts(I - 1).X Or _
Key2Pts(Tempint).Y <> Key2Pts(l - 1).Y) Then
Done =True
Else
Templnt = Templnt - |
if Templnt =0 Then
Done = True

159



Code

End If
End If
Wend
Theta2(l) = Theta2(Templnt + 1)
Else * all points are distinct
vl.X = Key2Pis(l + 1).X - Key2Pts(I).X
vl.Y = Key2Pis(l + 1).Y - Key2Pus(l).Y
v2.X = Key2Pts(1).X - Key2Pws(I - 1).X
v2.Y = Key2Pts(I).Y - Key2Pis(f - 1).Y
vCrossProd = Cross2D(v1, v2)
If vCrossProd > Epsilon Then
Theta2(I) = PI - Angle(Key2Pts(l - 1), Key2Pus(I), Key2Pts(l + 1))
Else
[f vCrossProd < -Epsilon Then )
Theta2(l) = -(PI - Angle(Key2Pts(! - 1), Key2Pis(l), Key2Pts(l + 1)))
Else
Theta2(1)=0
End If
End If
End If
End If
End If
Next [
For [ =0 To (NumPts - 1) Step 1
* Find the lengths of all edges of the polygon
L1(I) = Length(Key1Pts(l + 1), Key1Pts(l))
L2(I) = Length(Key2Pts(I + 1), Key2Pts(l))
Next |
Dim AxisPt As Coords
' Calculate the angle between the horizontal line through the anchor point
' and the first edge of the polygon
AxisPt.X = KeylPis(0).X + 1
AxisPrY = KeylPts(0).Y
Tempint =1
Done = False
While Not Done
If (Key1Pts(0).X = Key 1Pts(Templint).X) And (KeylPts(0).Y = KeyIPts(Templnt).Y) Then
Templint = Templnt + 1
Else
Done = True
End If
Wend
Alphal = Angle(Key 1Pts(Templnt), KeyPts(0), AxisPt)
AxisPt.X = Key2Pts(0).X + [
AxisPLY = Key2Pts(0).Y
Templnt = 1
Done = False
While Not Done
If (Key2Pts(0).X = Key2Pts(Templnt).X) And (Key2Pts(0).Y = Key2Pts(Tempint).Y) Then
Templnt = Templint + 1
Else
Done = True
End If
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Wend
Alpha2 = Angle(Key2Pis(Templnt), Key2Pts(0), AxisPt)
' Here insert tweaking stuff
Dim MaxEdgeLengthDiff As Double
Dim TempLength As Double
MaxEdgeLengthDiff = 0.1
For 1 =0 To (NumPts - 1) Step |
TempLength = Abs(L1(1) - L2(I))
If TempLength > MaxEdgeLengthDiff Then
MaxEdgeLengthDiff = TempLength
End If
Next |
LSmail = 0.0001 * MaxEdgeLengthDiff
For [ =0 To (NumPts - 1) Step 1
L12(1) = Maximum(Abs(L I(l) - L2(1)), LSmall)
Next [
Fortl = | To (NumiInBetweens) Step 1
t =tl / (NumInBetweens + 1)
Alpha(0) = (1 - t) ® Alphal +t ® Aipha2
For [ =0 To (NumPts - 1) Step |
Theta(l + 1)=(l -t) * Thetal{d + 1) + t * Theta2(l + 1)
If >0 Then
Alpha(i) = Alpha(l - 1) - Theta(l)
End If
Next [

0
0

Q" m
I
-0

ori=0To (NumPts- 1) Step 1
E =E + L12(I) ®L12(1) * Cos(Alpha(l)) *®Cos(Alpha(l))
f=f+ LI12(I) ®*L12(I) ®Sin(Alpha(l)) ®*Cos(Alpha(l})
G =G + L12(I) ®* L12(I) * Sin(Alpha(l)) * Sin(Alpha(l))
Next [
U=0
V=0
For 1 =0To (NumPts- 1) Step 1
U=U+(((1-t)®2LII) +t*L2(1)) * Cos(Alpha(l)))
V=V +(((1-t) ®LI{I) +t *L2(I)) ® Sin(Alpha(D)))
Next I

U=U®*2
V=V=*2
Lambdal =(U*G-f*V)/(E*G-f*1)
Lambda2=(E*V-U*N/(E*G-f*f)

For I =0 To (NumPts) Step 1

S(I) =-0.5 *L12(1) * L12(I) ®* (Lambdal * Cos(Alpha(l)) + Lambda2 *® Sin(Alpha(l)))

LM=1-t)*LID) +t*L20) +SO)
Next |

MorphPts(0).X = (1 - t) * Key1Pts(0).X +t ® Key2Pts(0).X
MorphPts(0).Y = (1 - t) ® Key!Pts(0).Y +t * Key2Pts(0).Y
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MorphPts(1).X = Cos(Alpha(0)) * L(0) + MorphPts(0).X
MorphPts(1).Y = Sin(Alpha(0)) * L(0) + MorphPts(0).Y

For [ =2 To (NumPis) Step 1
MorphPis(1).X = MorphPts(l - 1).X + _
Cos(Alpha(l - 1)) *L{ - 1)
MorphPts(I).Y = MorphPts(1 - 1).Y + _
Sin(Alpha(1 - 1)) *L(1 - 1)
Next [
Select Case tl
Case 1
Set TempPic = picMorphl
Draw = True
Case 2
Set TempPic = picMorph2
Draw = True
Case 3
Set TempPic = picMorph3
Draw = True
Case 4
Set TempPic = picMorph4
Draw = True
Case S
Set TempPic = picMorphS
Draw = True
End Select
{f Draw Then
For I =1 To NumPts Step 1
TempPic.Line (10 *MorphPis().X, _
TempPic.Height - (10 *MorphPis().Y)) _
-(10 * MorphPes(1 - 1).X, _
TempPic.Height - (10 * MorphPts(I - 1).Y))
Next [
End If
Draw = False
Next tl
End Sub

‘*‘tt“tttttt‘tt‘t‘ttt.“"..".tt“‘tt"tt“ttttttt.tt‘ttt’t..“t
Public Sub LinearBezierMorph()

' A Vertex Path Method. Uses linear interpolation to calculate the path travelled by a vertex
" as it morphs from one polygon into the other.

Dim [ As Integer

Dim J As Integer

Dim Draw As Boolean

Dim TempPic As PictureBox

Draw = False

* Calculate the step size to increment each of the x- and y- coords
’ for each successive in-between image

While ((NumPts - 4) Mod 3) < 0
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Key 1Pts(NumPts) = Key | Pts(0)
Key2Pis(NumPts) = Key2Pts(0)
NumPts = NumPts + |

Wend

For [ =0 To (NumPts) Step !
KeyDifference(l).X = (Key2Pts([).X - Key1Pts(l).X) / (NuminBetweens + 1)
KeyDifference(l).Y = (Key2Pts(I).Y - KeyIPts(1).Y) / (NuminBetweens + 1)
Next1

For I =0 To (NuminBetweens + 1) Step |
* Calculate the in-between points
For J =0 To (NumPts) Step |
MorphPts(J).X = Key IPts(7).X + ((KeyDifference(J).X) * I)
MorphPts()).Y = Key IPts(J).Y + ((KeyDifference(J).Y) * I)
NextJ
' Draw the lines in the appropriate picture box
' Note that the coord system is switched back for drawing
Sclect Case |
Case |
Set TempPic = picMorphl
Draw =True
Case 2
Set TempPic = picMorph2
Draw =True
Case 3
Set TempPic = picMorph3
Draw = True
Case 4
Set TempPic = picMorph4
Draw =True
Case 5
Set TempPic = picMorph3
Draw = True
End Select

Dim Pt0 As Coords

Dim Ptl As Coords

Dim P12 As Coords

Dim Pt3 As Coords

Dim tl As Integer

Dim t As Double

Dim NumCurves As Integer
Dim TempX As Double
Dim TempY As Double
Dim I As Integer ;
NumCurves = (NumPts - 4) / 3)

If Draw Then
For J = | To (NumPts) Step |
* mark the control points
TempPic.Circle (10 ® MorphPts(J - 1).X, TempPic.Height - 10 ® MorphPis(J - 1).Y), _
1,RGB(0, 255,0)
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' TempPic.Line (16 ® MorphPis(J). X, _
TempPic.Height - (10 ® MorphPts(J).Y)) _
-(10 * MorphPts(J - 1).X, _
TempPic.Height - (10 ® MorphPts{J - 1).Y))
NextJ
For [I =0 To NumCurves Step |
P10.X = MorphP1s(3 ¢ 11).X
Pt0.Y = MorphPis(3 * II).Y
Pti.X =MorphPis(3 * 11 + 1).X
Ptl.Y =MorphPts(3® 11 + 1).Y
P12.X =MorphP1s(3 * H + 2).X
Pr2.Y = MorphPts(3 * I +2).Y
P13.X = MorphPts(3 ® Il + 3).X
P3.Y =MorphPis(3 * 11 +3).Y
Fortl =0 To 200 Step |
‘calculate and plot the point of the bezier curve
t=tl/200
TempX=(1-0*(1-0*{-)*POX+3*t*(1-0)*(l-0)*Ptl.X _
+3*ts*(l-Dp*PR2X+t*t*1*P3.X
TempY=(1-)*(I-0)*(1-)*PtO.Y+3*t*(l -t)‘(l-t)'Ptl Y _
+3*t*1*(l-0)*PRY +t*t*t*P3.Y
TempPic.Circle (10 * TempX, TempPic.Height - (10 ® TempY)), 0.2
Next tl
Next I
End If
Draw = False
Next |
End Sub
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Public Sub LeastWorkCurveMatching()
' Determines the control point correspondence between the two Bezier curves
" that will result in the least amount of work to morph from one curve to the other.

Dim BackTrackList() As Coords

[f Key2NumPts > Key 1 NumPts Then
NumPrs = Key2NumPts

Else
NumpPts = Key INumPts

End If

ReDim BackTrackList(Key 1 NumPts + Key2NumPts) As Coords
Dim WBack() As Integer

ReDim WBack(Key INumPts, Key2NumPts) As Integer

Dim WUp() As Integer

ReDim WUp{Key INumPts, Kéy2NumPts) As Integer

Dim WDiag() As Integer

ReDim WDiag(Key | NumPts, Key2NumPts) As Integer

Dim I As Integer

DimJ As Integer

WBack(0,0)=0
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WUp(0,0) =0
WDiag(0, 0) =0

For I = 0 To (KeyINumPts) Step 3
For J = 0 To (Key2NumbPts) Step 3
‘Note: If [=0 and J<>0 then we can only calculate WUp
If =0 AndJ =3 Then
wuUp(l, J) = StretchCurve(l, J - 3, 1, J) + _
BendCurve(l, J -3, 1, 5) + _
Minimum(WUp(], J - 3) + KinkCurve(l, Key2NumPts - 3, _
LI-3.L0,

WDiag(1,J-3) + _
KinkCurve(Key INumPts - 3, Key2NumPts - 3. _
LI-3,L0) )

WBack(l, J) = 15000
Whiag(l, J) = 15000
End If
If1=0AndJ>3 Then
wup(l, J) = StretchCurve(1, J -3, 1, ) + _
BendCurve(I.J -3, LD+ _
Minimum(WUp(l, J - 3) + KinkCurve(l,J - 6, _
LI-3,L)),_

WDiag(lo J - 3) + -
KinkCurve(KeyINumPts - 3,J -6, _
LI-3, L))
WBack(, J) = 15000
WhDiag(l, J) = 15000
End If
' Also, if I<>0 and J=0 then we can only calculate WBack
IfI1=3 And J =0 Then
WBack(l, J) = StretchCurve(I1 -3, J, I, J) + _
BendCurve(I-3,J,1,1) +_
Minimum(WBack(1 -3, +_
KinkCurve(Key INumPts - 3, J,1-3, _
LLD, _

WDiag(I-3,D+_
KinkCurve(Key INumPts - 3, Key2NumPts - 3, _
1-3,1,L1LD)
wUp(l, J) = 15000
WhDiag(l, J) = 15000
End If
[f1>3 And J=0Then
WBack(, J) = StretchCurve(1 - 3,1, L 1) + _
BendCurve(I-3,.J, LD+ _
Minimum(WBack({ -3, ) + _
KinkCurve(1-6,J,1-3,J, 1)), _

WDiag(I-3,D) + _
KinkCurve( - 6, Key2NumbPts - 3, _
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wuUp(l. J) = 15000
WDiag(l, J) = 15000
EndIf
Ifi=3 AndJ =3 Then
WBack(l, J) = StretchCurve(1 -3, 1. L)) + _
BendCurve(l - 3.5, 1. D+ _

Minimum( _
M'3|n’- .
KinkCurve(KeyINumPs - 3,J,1-3,J,1.0), _

WDiag(1-3. 1)+ _
KinkCurve(KeyiNumPts - 3,5 -3,1-3,J,LJ) _
) * end of Minimum parsmeters
wUp(L, J) = StretchCurve(l, J -3, L) + _
BendCurve(l,J-3,1.D) + _

Minimum( _
WUp(LJ-3)+_
KinkCurve(l, Key2NumPts - 3,1, J-3,1.0). _

WDiag(l.J-3)+_
KinkCurve(l - 3, Key2NumPts - 3, 1.J-3,L.J) _
) * end of Minimum Parameters
WDiag(l. J) = StretchCurve(1 - 3. J -3, LD + _
BendCurve(1-3,31-3.1.0)+_

MinOf3( _
WUpI-3,J-3)+_
KinkCurve(! - 3, Key2NumPts - 3,1-3.J-3,1.J), _

WDiag(1-3.J-3)+ _
KinkCurve{Key INumPts - 3. Key2NumPs - 3, _
1-3,1-3,1.0) _

WBack(1-3.J-3)+_
KinkCurve(KeyINumpts - 3,J-3,1-3,J-3. L)) _
) ‘end of MinOf3 Paremeters
EndIf
if1>3AndJ>3Then
WBack(l. J) = StretchCurve(l -3, J, 1. J) + _
BendCurve(1-3. 1, [.D) « _

Minimum( _
WBack(I-3. D +_
KinkCurve(1-6,1,1-3, 3. L) _

WDiag(l-3. D)+ _
KinkCurved -6.J-3.1-3, L. L1) _
) ' end of Minimum parameters

WUp(l. J) = StretchCurve(l.J - 3, 1. J) + _
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BendCurve(l.J -3..0) + _

Minimum( _
WUp(l,§-3)+_
KinkCurve(l,J-6,1,J-3, L)), _

WDiag(1.J-3)+ _
KinkCurve(l-3,J-6,1,J-3,L0) _
) ' end of Minimum Perameters

WDiag(l. J) = StretchCurve(1 -3,§ -3, LN + _
BendCurve(1- 3,J-3,L D +_

MinOf3( _
WUp(1-3.J-3)+_
KiM'a.j’6vl'3OJ’3oan-

Whisg(1-3.J-3)+_
KinkCurve(I - 6,7 - 6,8-3,J-3,1.0). _

WBack(1-3.J-3)+_
KinkCurve(1-6,J-3,1-3,1-3,1.)) _
) 'end of MinOf3 Paremeters
End If
NextJ
Next{

* now backtrack to find the path.
BackTrackList(0).X = Keyl NumPts
BackTrackList(0).Y = Key2NumPrs
Dim TempX As Integer

Dim TempY As Integer

Dim CurrKeyIPt As Integer

Dim CurrKey2Pt As Integer

Dim NumBackTrackPts As Integer
NumBackTrackPts = |

CurrKey 1Pt = BackTrackList(0).X
CurrKey2Pt = BackTrackList(0).Y
I=1

Do While (CurrKey 1Pt >= 0) And (CurrKey2Pt >= 0)
TempX = BackTrackList(l - 1).X
TempY = BackTrackList(l - 1).Y
If WBack(TempX, TempY) <= WUp(TempX, TempY) And _
WBack(TempX. TempY) <= WDiag(TempX, TempY) Then
CurrKey 1Pt = BackTrackList(I - 1).X - 3
CurrKey2Pt = BackTrackListl - 1).Y
Else
If WUp(TempX. TempY) < WBack(TempX, TempY) And _
WUp(TempX, TempY) <= WDiag(TempX. TempY) Then
CurrKey 1Pt = BackTrackLisi(l - 1).X
CurrKey2Pt = BackTrackList(I - 1).Y - 3

Code
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Else
If WDiag(TempX, TempY) < WBack(TempX, TempY) And _
WDiag(TempX, TempY) < WUp(TempX, TempY) Then
CurrKey 1Pt = BackTrackList(l - 1).X -3
CurrKey2Pt = BackTrackList(l - 1).Y - 3
End If
End If
End If
BackTrackList(I).X = CurrKey [Pt
BackTrackList(l).Y = CurrKey2Pt
NumBackTrackPts = NumBackTrackPts + |
I=1+1
If CurrKey Pt = 0 And CurrKey2Pt = 0 Then
Exit Do
End If
Loop
Dim TempKey!InterpPts() As Coords
ReDim TempKey ! InterpPts(Key [NumPts + Key2NumPts) As Coords
Dim TempKey2InterpPts() As Coords
ReDim TempKey2InterpPis(Key | NumPts + Key2NumPts) As Coords
For I =0 To (NumBackTrackPts - 1) Step |
TempKey1InterpPts(NumBackTrackPts - | - I).X = Key | Pts(BackTrackList(1).X).X
TempKey lnterpPts(NumBackTrackPts - 1 - I).Y = Key I|Pts(BackTrackList(I).X).Y
TempKey2InterpPts(NumBackTrackPts - 1 - 1).X = Key2Pts(BackTrackList(I).Y).X
TempKey2InterpPts(NumBackTrackPts - 1 - I).Y = Key2Pts(BackTrackList(I).Y).Y
Next |

Dim OldListMarker As Integer
Dim NewListMarker As Integer
Dim InterpListMarker As Integer
Dim NewListl(MaxNum) As Coords
Dim NewList2(MaxNum) As Coords
OldListMarker =0
NewListMarker =0
InterpListMarker = 0
Dim Done As Boolean
Done = False
While Not Done
If (TempKey [InterpPts(InterpListMarker). X = TempKey I InterpPis(InterpListMarker + 1).X) _
And (TempKeyInterpPts(InterpListMarker).Y = TempKey lInterpPts(InterpListMarker + 1).Y)
Then
ForI=1To3 Step |
NewListl(NewListMarker).X = TempKey  InterpPts(InterpListMarker). X
NewListl(NewListMarker).Y = TempKey | InterpPts(InterpListMarker).Y
NewListMarker = NchnslMarkcr +1
Next [
InterpListMarker = InterpL.istMarker + 1
Else
* if the interp points are not the same, record the next
' ones in the old list
ForI=1To3Step 1
NewList1(NewListMarker).X = Key1Pts(OldListMarker).X
NewListl(NewListMarker).Y = Key1Pts(OldListMarker).Y
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NewListMarker = NewListMarker + |
OldListMarker = OldListMarker + 1
Next I
InterpListMarker = [nterpListMarker + 1
End If
If InterpListMarker = NumBackTrackPts Then
Done = True
End If
Wend

OldListMarker=0
NewListMarker =0
InterpListMarker = 0
Done = False

While Not Done

If (TempKey2InterpPts(InterpListMarker).X = TempKey2InterpPts(InterpListMarker + 1).X) _

And (TempKey2InterpPts(InterpListMarker).Y = TempKey2InterpPts(InterpListMarker + 1).Y)
Then

ForI=1To3 Step 1 .

NewList2(NewListMarker).X = TempKey2InterpPts(InterpListMarker).X
NewList2(NewListMarker).Y = TempKey2InterpPts(InterpListMarker).Y
NewListMarker = NewListMarker + 1
Next I
InterpListMarker = InterpListMarker + 1
Else
' if the interp points are not the same, record the next
' ones in the old list
ForI=1To 3 Step |
NewList2(NewListMarker).X = Key2Pts(OldListMarker).X
NewList2(NewListMarker).Y = Key2Pts(OldListMarker).Y
NewListMarker = NewListMarker + ]
OldListMarker = OldListMarker + 1
Next1
InterpListMarker = InterpListMarker + 1
End If
If [nterpListMarker = NumBackTrackPts Then
Done = True
End If
Wend
For [ =0 To ((NumBackTrackPts - 1) *3)- 1) Step 1
Key!Pts(I).X = NewList1(I).X
Key1Pis(I).Y = NewListi(I).Y
Key2Pts(I).X = NewList2(I).X
Key2Pts(I).Y = NewList2(I).Y
Next I
Key 1Pts((NumBackTrackPts -°1) ® 3).X = Key1Pts(0).X
Key 1Pts((NumBackTrackPts - 1) * 3).Y = Key1Pts(0).Y
Key2Pts((NumBackTrackPts - 1) * 3).X = Key2Pts(0).X
Key2Pts((NumBackTrackPts - 1) ® 3).Y = Key2Pts(0).Y
NumPts = (NumBackTrackPts - 1) ® 3

End Sub
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Public Function Curvelength(I0 As Integer, 11 As Integer, Num As Integer)
Dim PO As Coords
Dim P1 As Coords
Dim P2 As Coords
Dim P3 As Coords
Dim f(11) As Double
Dimt As Integer
Dim N As Integer
Dimtl As Double
Dim dxdt As Double
Dim dydt As Double
Dim CL As Double
Dim h As Double
N=10
If Num =1 Then
PO.X = Key 1 Pts(10).X
PO.Y = KeylPts(I0).Y
If (10 =11) Then
P1.X = Key1Pis(10).X
PL.Y = Key!Pts(10).Y
P2.X = Key1P1s(10).X
P2.Y = Key! P1s(10).Y
P3.X = KeylP1s(10).X
P3.Y = KeylPts(10).Y
Else
P1.X = Key!Pts(10 + 1).X
PLY = KeyiIPis(10 + 1).Y
P2.X = KeylPts(I0 + 2).X
P2.Y = KeylPts(10 + 2).Y
P3.X = Key!Pis(10 + 3).X
P3.Y = KeyIPts(J0 + 3).Y
End If
Else
P0.X = Key2Pis(10).X
PO.Y = Key2Pis(10).Y
If (10 =11) Then
P1.X = Key2Pts(10).X
P1.Y = Key2Pis(10).Y
P2.X = Key2Pts(10).X
P2.Y = Key2Pis(10).Y
P3.X = Key2Pis(10).X
P3.Y = Key2Pts(10).Y
Else
PL.X = Key2Pts(10 + 1).X..
PLY = Key2P15(10 + 1).Y
P2.X = Key2Pts(I0 + 2).X
P2.Y = Key2Pts(I0 + 2).Y
P3.X = Key2Pis(10 + 3).X
P3.Y = Key2Pts(10 + 3).Y
End If
End If
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* use the trapezoid rule, with n=10, h=0.1 to integrate to find curve length
't always goes from O to |

If (PO.X = P3.X) And (PO.Y = P3.Y) Then

CurveLength =0
Else
Fort=0To 10 Step |
tl=t/N

dxdt = CoeffA(tl) * PO.X + CoeffB(tl) * P1.X + CoeffC(t1) * P2.X + CoeffD(t]) * P3.X
dydt = CoeffA(t]) ® PO.Y + CoeffB(tl) * PL.Y + CoeffC(t1) * P2.Y + CoeffD(tl) ® P3.Y

f(t) = Sqr{dxdt ® dxdt + dydt ® dydt)
Next t
h=1/N
CL =(f(0) + £f(10)) /2
Fort=1To O Step !

CL=CL +1(t)
Nextt
Curvelength=CL *h

End If

End Function
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Public Function CoeffA(t As Double)
CoeffA=-3%(1-t)*(1-0)
End Function
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Public Function CoeffB(t As Double)
CoeffB=3*(1-1)*(1-3%*1)
End Function
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Public Function CoeffC(t As Double)
CoeffC=3*t*(2-3*1)
End Function
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Public Function CoeffD(t As Double)
CoeffD=3*t*t
End Function
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Private Function BendCurve(10 As Integer, JO As Integer, [l As Integer, J1 As Integer)
' again, pass the index of the array and calculate all other points from that

Dim PO As Coords

Dim P1 As Coords

Dim P2 As Coords

Dim P3 As Coords

Dim m1 As Double

Dim m2 As Double

Dim Pt As Coords

Dim xIntersection As Double

Dim ylntersection As Double

Code
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Dim Phil As Double

Dim Phi2 As Double

Dim L1 As Double

Dim L2 As Double

IfI0=11 Then
PO.X = Key 1Pts(10).X
PO.Y = Key1Pts(10).Y
P1.X = Key!Pts(10).X
PLY =KeylPts(10).Y
P2.X = Key I Pts(10).X
P2.Y = Key | Pts(10).Y
P3.X = Key 1 Pts(10).X
P3.Y = KeylIPts(10).Y

Elsc
P0.X = Key1Pts(10).X
PO.Y = KeyPts(10).Y
P1.X =KeylPts(10 + 1).X
PLY = KeylIPts(10 + 1).Y
P2.X = KeyIPts(10 + 2).X
P2.Y = KeylPts(10 + 2).Y
P3.X = Key1Pts(10 + 3).X
P3.Y =KeylPts(I0 + 3).Y

End If

* calculate the slope of the normal lines at p0 and p3
If Abs(P0O.Y - P1.Y) < Epsilon Then
ml = 15000
Else
ml = (P0.X - P1.X) / (PO.Y - PL.Y)
EndIf
If Abs(P3.Y - P2.Y) < Epsilon Then
m2 = 15000
Else
m2=P2.X-P3.X)/(P3.Y-PLY)
End If
If Abs(ml - m2) < Epsilon Then
Phil =0
Else
xIntersection = (P3.Y - PO.Y + ml1 * PO.X - m2 ® P3.X)/ (ml - m2)
yIntersection = (xIntersection - P0.X) * mi + PO.Y
Pt.X = xIntersection
PLY = yIntersection
If Length(P2, P1) < Length(P3, PO) Then
Phil = Angle(PO, Pt, P3)
Else .
Phil = 2 ® PI - Angle(PO, P, P3)
End If
End If
I JO=J1 Then
P0.X = Key2Pts(J0).X
PO.Y = Key2Pts(J0).Y
P1.X = Key2Pts(10).X
P1.Y = Key2P1s(10).Y
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P2.X = Key2Pts(J0).X

P2.Y = Key2Pts(J0).Y

P3.X = Key2Pts(J0).X

P3.Y = Key2Pts(J0).Y
Else

P0.X = Key2Pts(J0).X

PO.Y = Key2Pts(J0).Y

P1.X = Key2Pis(JO + 1).X

PLY = Key2Pts(JO + 1).Y

P2.X = Key2Pts(JO + 2).X

P2.Y = Key2P1s(JO + 2).Y

P3.X = Key2Pts(JO + 3).X

P3.Y = Key2Pts(J0 + 3).Y
End If )
' calculate the slope of the normal lines at p0 and p3
If Abs(PO.Y - P1.Y) < Epsilon Then

ml = 15000
Else
ml = (P0.X - PL.X) / (PO.Y - PLY)
End If
If Abs(P3.Y - P2.Y) < Epsilon Then
m2 = 15000
Else
m2=P2.X -P3.X)/(P3.Y - PLY)~
End If
If Abs(ml - m2) < Epsilon Then
Phi2=0
Else

xIntersection = (P3.Y - PO.Y + ml * PO.X - m2 * P3.X) / (m] - m2)
ylntersection = (xIntersection - P0O.X) ® ml + P0.Y
Pt. X = xIntersection
PtY = yIntersection
If Length(P2, P1) < Length(P3, PO) Then
Phi2 = Angle(PO, Pt, P3)
Else
Phi2 = 2 ® PI - Angle(PO, Pt, P3)
End If
End If
L1 = CurveLength(10, I1, 1)
L2 = CurvelLength(J0, J1. 2)
If L1 +L2) <Epsilon Then
BendCurve = 15000
Else
BendCurve = CurveCb ® (Phi2 - Phil) ® (Phi2 - Phil)/ (L} + L2)
End If :
End Function
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Private Function KinkCurve(I0 As Integer, JO As Integer, [1 As Integer, J1 As Integer, _
12 As Integer, J2 As Integer)

' accept the indices of the join points, as well as the indices of the end coatrol

* points of tke curves that meet at the join point. I1 (J1) is the join point.
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' We assume that the curve segments have only a small degree of curvature
Dim P2 As Coords
Dim P3 As Coords
Dim P4 As Coords
Dim m1 As Double
Dim m2 As Double
Dim Pt As Coords
Dim xIntersection As Double
Dim ylntersection As Double
Dim Phil As Double
Dim Phi2 As Double
Dim L1 As Double
Dim L2 As Double
Dim Done As Boolean
Dim Templnt As Integer
Dim v1 As Coords
Dim v2 As Coords
Dim vCrossProd As Double
Dim DivAndAdd As Boolean
P3.X = Key1Pts(11).X
P3.Y = Key!Pts(11).Y
If (1I0=11) Then
P2.X =KeylPis(11).X
P2.Y = KeylPis(11).Y
Else
IfI1 =0 Then
P2.X = KeyIPis(KeyINumPts - 1).X
P2.Y = Key!Pts(Key INumPts - 1).Y
Else
P2.X = KeylPts(Il - 1).X
P2.Y = KeylIPts(Il - ).Y
End If
End If
If Il =12 Then
P4.X = KeylPts(I1).X
P4.Y = KeylPts(11).Y
Else
P4.X = Key1Pts(11 + 1).X
P4.Y = KeylPts(I1 + 1).Y
End If
DivAndAdd = False
' if P2=P3 but P3cP4

If ((P2.X = P3.X) And (P2.Y = P3.Y)) And ((P3.X < P4.X) Or (P3.Y < P4.Y)) Then

If[1 =0 Then
Tempint = Key INumPts *
Else
Templnt =11 -1
End If
Done = False
While Not Done

If (Key 1 Pts(Templnt).X < P2.X) Or (Key1Pts(Templint).Y < P2.Y) Then

Done =True
Else

Code
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Templint = Templnt - |
If Templnt <O Then
Templnt = Key 1 NumPts
End If
End If
Wend
P2.X = Key1Pts(Templnt).X
P2.Y = Key IPts(Templnt).Y
DivAndAdd = True
Else ' if P3=P4 but P2<>P3
If (P3.X = P4.X) And (P3.Y = P4.Y)) And ((P2.X < P3.X) Or (P2.Y < P3.Y)) Then
If [l = Key!NumPts Then
Templint=1
Else
Templint=11 +1
End If
Done = False
While Not Done .
If (Key 1Pts(Templnt).X < P4.X) Or (Key1Pts(Templint).Y <> P4.Y) Then
Done =True
Else
Templint = Templint + 1
If Templnt > Key INumPts Then
Templnt=0
End If
End If
Wend
P4.X = Key | Pts(Templnt).X
P4.Y = Key | Pts(Tempint).Y
DivAndAdd = True
End If
End If
If (P2.X = P3.X) And (P2.Y = P3.Y) And (P3.X = P4.X) And (P3.Y = P4.Y) Then
Phil =PI
Else
vi.X=P4X-P3.X
viY =P4Y -P3.Y
v2X=P3.X-P2X
v2Y=P3Y-P2Y
vCrossProd = Cross2D(v1, v2)
If vCrossProd > Epsilon Then
If DivAndAdd = False Then
Phil = Angle(P2, P3, P4)
Else
Phil = 0.5 ® Angie(P2,'P3, P4) + (Pl / 2)
End If
Else
If vCrossProd < -Epsilon Then
If DivAndAdd = False Then
Phil =PI - Angle(P2, P3, P4)
Else
Phil =PI - (0.5 ® Angle(P2, P3,P4) + (P1/ 2))
End If
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Else ' the points are collinear
Phil =PI
End If
End If
End If
P3.X = Key2Pt5(J0).X
P3.Y = Key2Pts(JO).Y
IfJ1 =30 Then
P2.X = Key2Pis(J1).X
P2.Y = Key2Pts(J1).Y
Else
[f J1 =0 Then ' keep in mind that key2pts(k3y2numpts-1) may be the same as the init pt
P2.X = Key2Pts(Key2NumPts - 1).X
P2.Y = Key2Pts(Key2NumPts - 1).Y
Else
P2.X = Key2Pis(J1 - 1).X
P2.Y = Key2Pts(J1 - 1).Y
End If
End If
[fJ1 =J2 Then
P4.X = Key2Pts(J1).X
P4.Y = Key2Pts(J1).Y
Else
P4.X = Key2Pts(J1 + 1).X
P4.Y = Key2Pis(J1 + 1).Y
End If
DivAndAdd = False
' if P2=P3 but P3<P4
If (P2.X = P3.X) And (P2.Y = P3.Y)) And ((P3.X < P4.X) Or (P3.Y < P4.Y)) Then
IfJ1 =0 Then
Templnt = Key2NumPts
Else
TempInt=JI -1
End If
Done = False
While Not Done
If (Key2Pts(TemplInt).X < P2.X) Or (Key2Pts(Templnt).Y <> P2.Y) Then
Done = True
Else
Tempint = Templnt - 1
If Tempint <0 Then
Templnt = Key2NumPts
End If
End If
Wend :
P2.X = Key2Pts(Templint).X
P2.Y = Key2Pis(Templnt).Y
DivAndAdd = True
Else
If ((P3.X = P4.X) And (P3.Y = P4.Y)) And (P2.X < P3.X) Or (P2.Y < P3.Y)) Then
If J1 = Key2NumPts Then
Tempint=1
Else
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Tempint=J1 + 1
End If
Done = False
While Not Done
If (Key2Pis(Templnt).X < P4.X) Or (Key2Pts(Tempint).Y <> P4.Y) Then
Done =True
Else
Templnt = Templnt + |
If Templnt > Key2NumPts Then
Templnt=0
End If
End If
Wend
P4.X = Key2Pts(Templnt). X
P4.Y = Key2Pts(Templnt).Y
DivAndAdd =True
End If
End If .
If (P2.X =P3.X) And (P2.Y - P3.Y) And (P3.X = P4.X) And (P3.Y = P4.Y) Then
* all points are equal
Phi2 =Pl
Else
vi.X=P4.X-P3.X
vli.Y=P4Y -P3Y
v2X=P3X-P2X
v2.Y=PlY-P2Y
vCrossProd = Cross2D(vl, v2)
If vCrossProd > Epsilon Then
If DivAndAdd = False Then
Phi2 = Angle(P2, P3, P4)
Else
Phi2 = 0.5 ® Angle(P2, P3, P4) + (PI/ 2)
End If
Else
If vCrossProd < -Epsilon Then
If DivAndAdd = False Then
Phi2 =PI - Angle(P2, P3, P4)
Else
Phi2 =PI - (0.5 ®* Angle(P2, P3,P4) + (PL/2))
End If
Else ‘the points are collinear
Phi2=PI.
End If
End If
End If )
If Abs(Phi2 - Phil) < Epsilon Then
KinkCurve =0
Else
KinkCurve = CurveCk ® Exp(CurveEk * Log(Abs(Phi2 - Phil)))
End If
End Function
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Public Function StretchCurve(I0 As Integer, JO As Integer, 1 As Integer, J1 As Integer)
' Accepts the index of the starting point of each curve. Calculates the stretching work

' used in morphing the curve segment starting at Key1Pts(I0) and ending at KeyIPts(11)
* to curve segment starting at Key2Pts(JO) and ending at Key2Pts(J1).

Dim L0 As Double ' length of segment from vertex Il to vertex I0 in the Ist frame
Dim L1 As Double ' length of segment from vertex J1 to vertex JO in the second frame

L0 = CurveLength(I0, I, 1)
L1 = CurveLength(JO, J1, 2)
iIf Abs((1 - CurveCs) * Minimum(LO, L1) + CurveCs ® Maximum(LO, L1)) < Epsilon Then
StretchCurve = 15000
Else
If Abs(L! - LO) < Epsilon Then
StretchCurve =0
Else
StretchCurve = (CurveKs ® Exp(CurveEs * Log(Abs(L1 - L0)))) / ((1 - CurveCs) ® Minimum(LO,
L) _ .
+ CurveCs ® Maximum(LO, L1))
EndIf
End If
End Function
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Public Sub IntrinsicBezierMorph()
Dim I As Integer
Dim tl As Integer
Dim t As Double
Dim Thetal(100) As Double ' Angles between edges of polygon 1
Dim Theta2(100) As Double °‘ Angles between edges of polygon 2
Dim L1(100) As Double ' Length of the edges of polygon |
Dim L2(i00) As Double ' Length of the edges of polygon 2
Dim Alphal As Double ' Alpha for polygon 1
Dim Alpha2 As Double ' Alpha for poiygon 2
Dim Alpha(100) As Double ' This is the Alpha for the in-between frames
Dim Theta(100) As Double ° Theta for the in-between frames
Dim L(100) As Double ‘' Edge Lengths for the in-between frames
Dim v! As Coords
Dim v2 As Coords
Dim vCrossProd As Double
Dim S(100) As Double ' the tweaking amounts
Dim L12(100) As Double
Dim LSmall As Double
Dim E As Double
Dim f As Double
Dim G As Double
Dim U As Double
Dim V As Double
Dim Lambdal As Double
Dim Lambda2 As Double
Dim TempPic As PictureBox
Dim Draw As Boolean
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Draw = False
Dim Done As Boolean
Dim Templnt As Integer

' Determine the angle Theta between an extended edge and the next edge.
' We find the cross product to see if the edges form a convex or concave
' part of the polygon (This affects the way in which theta is calculated
Forl=1 To (NumPts - 1) Step |
If (Key!Pts(I).X = KeyIlPts(I + 1).X) And _
(Key1Pts(I).Y = KeyPts(I + 1).Y)) And ((Key1Pts(I).X < KeyIPts(I - 1).X) _
Or (Key 1 Pts(1).Y < KeylPts(l - 1).Y)) Then
Done = Faise
Tempint=1+2
While Not Done )
If (Key IPts(Tempint). X < Key[Pts(I).X) Or (Key1Pts(Templnt).Y <> KeylPts(I).Y) Then
Done =True
Else
Templnt = Templint + [
End If
Wend

vl.X = KeylPts(Templnt).X - Key1Pts(I).X
vl.Y = KeyPts(Templint).Y - Key1Pts(l).Y
v2.X = Key!Pts(1).X - Key!1Ps(l - 1).X
v2.Y = KeylPts(l).Y - KeylPts(I - 1).Y
vCrossProd = Cross2D(vl, v2)
If vCrossProd > Epsilon Then
Thetal(I) = PI - 0.5 ® Angle(Key1Ps(I - 1), Key1Pis(I), Key 1 Pts(Templint)) - (P17 2)
Else
If vCrossProd < -Epsilon Then
Thetal(l) = -(PI - 0.5 * Angle(Key1Pts(l - 1), Key 1Pts(I), Key 1Pts(Templnt)) - (P1/ 2))
Else
Thetal(T)=0
End If
End If
Else
If (Key1Pts(I - 1).X = Key1Pis(I).X) And (KeylPis(I - 1).Y = Key1Pts(l).Y) _
And (Key1Pts(I).X = Key [ Pts(I + 1).X) And (Key1Pis(l).Y = Key1Pts( + 1).Y) _
Then
Thetal(I)=0
Else
If (Key1Pts(l - 1).X = Key1Pis(I).X) And (KeyiPis(l - 1).Y = Key1Pis(1).Y) _
And ((Key1Pis(1).X < Key1Pts(I + 1).X) Or (Key1Pis(l).Y < Key!Pts(l + 1).Y)) Then
Done = False
Tempint=1-1
While Not Done
If (Key | Prs(Templnt).X < Key1Pis(I - 1).X Or _
Key1Pts(Templint).Y < Key1Pts(I - 1).Y) Then
Done = True
Else
Templnt = Templint - 1
If Tempint = 0 Then
Done = True

179



Code

End If
End If
Wend
Thetal(I) = Thetal (Templnt + 1)
Else ' all points are distinct
vi.X =KeylPts(l + 1).X - KeylPts(1).X
vL.Y = KeylPts(l + 1).Y - KeylPtis(l).Y
v2.X = Key IPts(1).X - Key I Pts(l - 1).X
v2.Y = Key | Pts(1).Y - KeylPts(I - 1).Y
vCrossProd = Cross2D(vl, v2)
If vCrossProd > Epsilon Then
Thetal(I) =PI - Angle(Key1Pis(l - 1), Key i Pts(l), Key1Pts(l + 1))
Else
If vCrossProd < -Epsilon Then } ’
Thetal(I) = -(PI - Angle(Key1Pts(I - 1), Key IPts(l), KeylPts(I + 1))
Else
Thetal(l) =0 'NOTE USED TO BE 0
End If
End If
End If
End If
End If

If (Key2P1s([).X = Key2Pts(I + 1).X) And (Key2Pts(I).Y = Key2Pts(I + 1).Y) _
And ((Key2Pis(I).X < Key2Pis(I - 1).X) Or (Key2Pts(I).Y < Key2Pts(I - 1).Y)) Then
Done = False
Templnt=1+2
While Not Done
If (Key2Pts(Templnt). X < Key2Pis(I).X) Or (Key2Pts(Templnt).Y < Key2Pts(I).Y) Then
Done = True
Else
Templnt = Tempint + |
End If
Wend
vl.X = Key2Pts(Templnt).X - Key2Pts(I).X
vl.Y = Key2Pts(Tempint).Y - Key2Pts(l).Y
v2.X = Key2Pts(1).X - Key2Pts(I - 1).X
v2.Y = Key2Pis(1).Y - Key2Pis(l - 1).Y
vCrossProd = Cross2D(v1, v2)
If vCrossProd > Epsilon Then
Theta2(l) = PI - 0.5 ® Angle(Key2Pts(l - 1), Key2Pts(I), Key2Pts(Templnt)) - (Pl / 2)
Else .
If vCrossProd < -Epsilon Then
Theta2(l) = -(PI - 0.5 ® Angle(Key2Pts(l - 1), Key2Pis(I), Key2Pts(Templnt)) - (P1/ 2))
Else .
Theta2(I) =0 '
End If
End If
Else
If (Key2Pts(I - 1).X = Key2Pts(1).X) And (Key2Pts(I - 1).Y = Key2Pts(1).Y) _
And (Key2Pis(1).X = Key2Pts(I + 1).X) And (Key2Pis(1).Y = Key2Pts(I + 1).Y) Then
Theta2() =0
Else
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If (Key2Pis(l - 1).X = Key2Pis(I).X) And (Key2Pts(I - 1).Y = Key2Pts(l).Y) _
And ((Key2Pis(I).X < Key2Pts(I + 1).X) Or (Key2Pts(l).Y < Key2Pts(I + 1).Y)) _
Then
Done =False
Templnt=1-1
While Not Done
If (Key2Pts(Templnt).X < Key2Pts(I - 1).X Or _
Key2Pis(Templnt).Y < Key2Pis(I - 1).Y) Then
Done = True
Else
Templnt = Templnt - |
If Tempint = Q Then
Done = True
End If
End If
Wend
Theta2(T) = Theta2(Templnt + 1)
Else ' all points are distinct
vl.X =Key2Pis(I + 1).X - Key2Pts(I).X
vL.Y = Key2Pts(I + 1).Y - Key2Pis().Y
v2.X = Key2Pis(I).X - Key2Pts(I - 1).X
v2.Y = Key2Pis(I).Y - Key2Pts(l - 1).Y
vCrossProd = Cross2D(vl, v2)
If vCrossProd > Epsilon Then
Theta2(l) = PI - Angle(Key2Prs(I - 1), Key2Pts(I), Key2Pts(1 + 1))
Else
If vCrossProd < -Epsilon Then
Theta2(I) = -(PI - Angle(Key2Pts(I - 1), Key2Pis(l), Key2Pts(l + 1)))
Else
Theta2(1)=0
End If
End If
End If
End If
End If
Next |
For 1 =0 To (NumPts - 1) Step 1
" Find the lengths of all edges of the polygon
L1(I) = Length(Key1Pts(l + 1), Key1Pts(I))
L2(I) = Length(Key2Pis(1 + 1), Key2Pts(I))
Next 1
Dim AxisPt As Coords
* Calculate the angle between the horizontal line through the anchor point
* and the first edge of the polygon
AxisPt.X = KeylPis(0).X + I
AxisPLY = Key1Pts(0).Y
Templint =1
Done = False
While Not Done
If (Key1Pts(0).X = Key | Pts(Templint).X) And (Key1Pis(0).Y = KeyPts(Templnt).Y) Then
Templint = Templint + |
Else
Done = True
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End If
Wend

Alphal = Angle(Key |Pts(Templnt), Key IPts(0), AxisPt)
AxisPt.X = Key2Pts(0).X + |
AxisPLY = Key2Pts(0).Y
Tempint=1
Done = False
While Not Daone
If (Key2Pts(0).X = Key2Pts(Templnt).X) And (Key2Pts(0).Y = Key2Pts(Tempint).Y) Then
Tempint = Templnt + 1
Else
Done =True
End If
Wend
Alpha2 = Angle(Key2Pts(Templnt), Key2Pts(0), AxisPt)
' Here insert tweaking stuff
Dim MaxEdgeLengthDiff As Double
Dim TempLength As Double
MaxEdgeLengthDiff = 0.1
For [ =0 To (NumPts - 1) Step |
TempLength = Abs(L1(I) - L2(I))
If TempLength > MaxEdgeLengthDiff Then
MaxEdgeLengthDiff = TempLength
End If
Next |
LSmall = 0.0001 ®* MaxEdgeLengthDiff
For1 =0 To (NumPts - 1) Step 1
L12(I) = Maximum(Abs(L1(T) - L2(I)), LSmall)
Next I
Fortl =1 To (NumInBetweens) Step 1
t=tl / (NuminBetweens + 1)
Alpha(0) = (1 - t) ® Alphal +t ® Alpha2
For I =0 To (NumPts - 1) Step 1
Theta(l + 1) =(1 -t) * Thetal(l + 1) +t ® Theta2(I + 1)
IfI>0Then
Alpha(l) = Alpha(l - 1) - Theta(l)
End If
Next I
E=0
f=0
G=0
For [ =0 To (NumPts - 1) Step 1
E=E +L12(I) ® L12(I) ® Cos(Alpha(I)) ® Cos(Alpha(l))
f=f+L12(1) ® Li2() * Sin(Alpha(l)) ® Cos(Alpha(l))
G =G + L12(1) ®* L12(1) ® Sin(Alpha(l)) ® Sin(Alpha(l))
Next I

U=0
v=0
For I =0 To (NumPts - 1) Step |

U=U+(((1-t)* L1(I) +t* L2®)) * Cos(Alpha(l)))
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V=V +(((1-t)*LI() +t*L2(I)) ®Sin(Alpha(l)))
Next I

U=U=*2
V=V=*2
Lambdal =(U*G-f*V)/(E*G-f*f)
Lambda2=(E*V-U*)/(E*G-f*f)

For I =0 To (NumPs) Step 1
S(1) =-0.5 ®L12(I) ®L12(I) * (Lambdal * Cos(Alpha(l)) + Lambda2 * Sin(Alpha(l)))
L= -0 * LKD) +t*L2AND + SO

Next [

MorphPis(0).X = (1 - 1) * Key!Pts(0).X + t * Key2P1s(0).X
MorphPts(0).Y = (1 - t) * Key1Pts(0).Y +t * Key2Pts(0).Y
MorphPts(1).X = Cos(Alpha(0)) * L(0) + MorphPts(0).X
MorphPts(1).Y = Sin(Alpha(0)) * L(0) + MorphPts(0).Y

For | =2 To (NumPts) Step |
MorphPts(1).X = MorpbPts(f - 1).X + _
Cos(Alpha(l - 1)) ®*L(1- 1)
MorphPts(@).Y = MorphPts(l - 1).Y + _
Sin(Alpha(I - 1)) ®*L{d- )
Next |
Select Case tl
Case |
Set TempPic = picMorphl
Draw =True
Case 2
Set TempPic = picMorph2
Draw = True
Case 3
Set TempPic = picMorph3
Draw =True
Case 4
Set TempPic = picMorph4
Draw =True
Case 5
Set TempPic = picMorphS
Draw = True
End Select
Dim PtQ As Coords
Dim Pt1 As Coords
Dim P12 As Coords
Dim Pt3 As Coords
Dim t2 As Integer
Dim Tempt As Double
Dim NumCurves As Integer
Dim TempX As Double
Dim TempY As Double
Dim II As Integer

NumCurves = (NumPts - 4) / 3)

Code
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If Draw Then
For I = 0 To NumCurves Step |
P10.X = MorphPts(3 *1I).X
P10.Y = MorphPts(3 * II).Y
Pil.X =MorphPts(3 * Il + 1).X
Ptl.Y = MorphPts(3 * II + 1).Y
P12.X = MorphPts(3 **11 + 2).X
P12.Y = MorphPts(3 *11 + 2).Y
P13.X = MorphPis(3 **1l + 3).X
P13.Y = MorphPis(3 *II + 3).Y
For 12=0To 200 Step |
‘calculate and plot the point of the bezier curve
Tempt =12 /200
TempX = (I - Tempt) *X1 - Tempt) *%(1 - Tempt) **P10.X + _
3 **Tempt *%1 - Tempt) *X1 - Tempt) * Pt1.X _
+ 3 **Tempt **Tempt *%1 - Tempt) **P12.X + _
Tempt **Tempt **Tempt * Pt3.X
TempY = (1 - Tempt) * (1 - Tempt) **(1 - Tempt) * P10.Y + _
3 * Tempt *(1 - Tempt) *&(1 - Tempt) **Prl.Y _
+ 3 **Tempt **Tempt *X1 - Tempt) **Pr2.Y + _
Tempt *Tempt *Tempt * Pt3.Y
TempPic.Circle (10 *TempX, TempPic.Height - (10 * TempY)), 0.2
Next t2
Next II
End If
Draw = False
Next tl
End Sub
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