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Abstract 

Shape blending is the process of taking two existing shapes and finding in-between 

shapes that provide a smooth transition from the fmt shape to the second. Shape 

biending can be divided into two main sub-problerns: the vertex correspondence 

problem and the vertex path problem. This thesis looks at algorithms to solve these 

problems. and applies these algorithms to both polygons and Bdzier curves. 
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Chapter 1: Introduction 

1.1 Problem Statement and Background 

Shape bIending or shape interpolation is the process of taking two existing 

shapes or curves (known as key shapes or curves) and finding in-between 

shapes that provide a smooth transformation from one key shape to the other. 

Shape blending should not be confused with image morphing; shape blending 

changes the actuai outline of the shape, whereas image morphing warps digital 

images. 

Digital image morphing is comprised of two operations which take place at the 

same t h e :  dissolving, in which one image gradually fades out as another 

images fades in, and warping, which moves points of the initial image to 

corresponding points of the fmal image. Despite the difference between shape 

blending and image morphing, some of the same techniques of shape blending 

are applicable to the warping operation of image morphing (for example, 
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determining a correspondence between points of the images and determining the 

path the points should follow during the rnorph). 

Shape blending has application in areas such as animation, and cornputer-aided 

design and illustration. 

Volino, N. Thaiman, Jianhua, and D. Thaiman 119961 have described a method 

for simulating clothes on virtual actors [17] using physics-based modeling, in 

which the cloth is modeied as planar garment panels. Physics-based modeling 

can be costiy to compute for each frame; as a cost-cutting measure, physics- 

based models could be computed only for some of the frames, and shape 

blending of the panels could be used to compute the remainder of the frames. 

Blending two images to simulate realistic motion is often a dificult task. In the 

past, this animation has been done manually by artists, who must draw 

thousands of frames in order to sirnulate a short sequence of motion. Clearly, 

this is a very time consuming and costiy endeavour. Naturally, automation of the 

animation process is desirable. 

Shape blending can generally be divided into two primary sub-problerns: the 

vertex correspondence problem, and the vertex path problem. 

Vertex correspondence determines a matching of the vertices of one key shape 

with the vertices of the other. so that if vertex P, in shape L is maiched with 
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vertex P, in shape 2, then vertex P, wili follow a path to vertex P, during the 

blend (see Fig. 1.1). 

Fig. 1.1 - Correspondence of vertices 

Adding additional vertices to one or both of the key shapes is often desirable, if 

not necessary, in order to provide a more appealing blend. The probIem of 

where these additional vertices should be added is included in the vertex 

correspondence problem. 

Vertex correspondence is an important problem to consider, since an 

inappropnate correspondence can Iead to highly inaccurate and distorted in- 

between images. For example, consider the two shapes shown in Fig. 1.2a (and 

L.3a), and blended in Figs. 1.2b and 1.3b. In Fig. 1.2b, an inadequate vertex 

matching has distorted that which should have been a triviai blend (Fig. 1.3b). 
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The vertex path problem determines the path dong which a vertex of the fust key 

shape will travel to arrive at its conesponding vertex in the second key shape. 

For example, a linear path is a simple approach to this problem. but one that 

oRen leads to unappealing results, as will be shown in Chapter 3 (see Figs. 3.1 

and 3.2 for an example). 

Fig. 1.2a - Two images to be blended 

Fig. 1.2b - A distorted blend 

- 

Fig. 1.2 - Example of a blend with an inappropriate vertex correspondence 
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Fig. I .3a - Two images to be blended 

Fig. 1.3b - A good blend 

Fig. 1.3 - Exarnple of a blend with a more pleasing vertex correspondence 

The purpose of this thesis is to present a detaiied study of the vertex 

correspondence method known as "Least Work Matching" [ I l  and the vertex 

path method known as "intrinsic Interpolation" [2]. This includes 

implementaiions of both, and cornparisons with some simpler methods. These 

techniques will be applied- to closed polygons and Bézier curves [9]. 
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This work considers only 2-dimensional geometric blending. No consideration 

has been given to 3-d blending. or to blending of other properties of an object 

(e-g. Iighting, colour, etc.). 

Hughes [1992] presented a method for interpolating between two volumetric 

rnodels [18]. This method takes the Fourier transforms of the volumetric 

models, interpolates between the transformed models, and then transfom the 

results back. An interpolation scheme is used in which the high frequencies of 

the first mode1 are gradually removed, interpolation between the low frequencies 

is performed, and then the high frequencies of the second mode1 are gradually 

added back in. 

Kent, Carlson, and Parent 119921 developed an algorithm to compute 

transformations between two 3D objects, as opposed to 2D images of the 3D 

objects [16]. The technique involves merging the topologies of the two objects 

and mapping this rnerged topology back ont0 each of the original objects. 

Throughout this thesis, counter-ciockwise angles are considered to be positive 

angles, and angles are given in radians. 
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1.3 Overview 

This thesis begins by considering a solution, "Least Work Matching", to the 

vertex correspondence problem (Chapter 2). Section 2.2 and its subsections 

develop the algorithm and discuss the calculations required for the algorithm, 

and section 2.3 discusses the results of applying the algorith to various 

polygons. Chapter 3 presents "Intrinsic Interpolation", a method used to solve 

the vertex psth problem. This method is developed in section 3.2. A variation on 

the method, Edge Fueaking, is discussed in section 3.3, and section 3.4 gives a 

summary and results. Chapter 4 deals with the blending of Bézier curves. 

Section 4.2 discusses blending based on the control polygon of a curve, and 

section 4.3 discusses the Least Work Curve Matching algorithm. Section 4.5 

gives the results of applying these methods to some examples. Chapter 5 gives 

conclusions and looks at future work. Appendix A.2 introduces the cornputer 

program that was coded for the irnplementation portion of this thesis. Appendix 

A.3 discusses some of the noteworthy aspects of the implementations, and 

appendix A.4 gives a listing of the code. 
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2.1 Introduction 

Least Work Matching, presented in [l], is a method for smoothiy blending two 

2-dimensional shapes. The generai idea behind this solution is to consider the 

shapes to have edges made of bendable, stretchable wire, and then to bend and 

stretch these wires until the first shape is transformed into the second, while 

rninimizing a quantity analogous to work (energy) used in bending and 

stretching the wires. if the energy expended in bending and stretching the wires 

is minimized, then the arnount of bending and stretching is therefore minimized, 

resulting in a blend with minimal motion of the wires. Typicaily, minimal 

distortion of the wires is thought to be rnost visually pleasing. 

The goal of the aigorithm is to determine the vertex correspondence which 

results in the Ieast amount of work required to transform the first shape to the 

second. 'Work" refers to a measure of the effort expended in bending, 



stretching, and shortening the "wires" of the polygon 

thernselves from shape 1 to shape 2. Sections 2.2.2 

calculation of work for the wires of the polygons. 

Least Work Matching 

in order to transform 

uid 2.2.3 discuss the 

The algorithm finds the best vertex correspondence using only the existing 

vertices; that is, no additional distinct vertices are added to either of the polygons 

by the algorithm (although a user is certainly free to add vertices to the polygons 

dunng pre-processing). However, the algonthm will, at times, insert vertices at 

existing vertex locations, resulting in vertices with multiplicity greater than one. 

2.2 Development 

Since the algorithm must determine the amount of work required for all possible 

vertex correspondences, we must first determine which vertex correspondences 

are possible. Let the two polygons to be blended be designated PO and P I ,  with 

vertices PO, eO, ..., P:, and P,',q',..., 4". respectively, where 4' = P:, and 

4' = (that is, the polygons are closed). AU subscripts are defined modulo the 

number of vertices on the polygon in question (for exarnple, P:+, = 8'). 

The aigorithm depends on the vertices of both shapes king numbered in the 

sarne direction. In this thesis, the convention of numbering the vertices in a 

clockwise direction is used. 
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In order to determine the best possible correspondence of the vertices of PO and 

P' , a graph, in the form of an (n + 1) x (m + 1) rectangular gnd, is used. The 

vertices of PO and P' are represented by the colurnns and the rows of the graph, 

respectively (Figs. 2.1 and 2.2b). 

Fig. 2.1 - The grid used for a vertex conespondence graph 
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Fig. 2.2a 

Fig. 2.2b 

Fig. 2.2 - Example of a vertex correspondence graph 
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A correspondence between vertices c0 and q' is denoted on the gnd by a point 

at location [i, j ]  (see Fig. 2.2), where, contrary to the general mathematical 

convention, i refers to the column and j refers to the row. Note that henceforth, a 

point on the graph will be referred to by the complete phrase "gnph vertex" or 

"grid vertex", as the tem "vertex" refers to a vertex of a polygon. 

A vertex correspondence between two polygon; is considered possible if the 

following two vertex correspondence conditions apply: 

1. e0 may correspond to only if one of the following three 

conditions holds (see Figs. 2.3 and 2.4): 

a) col corresponds to q' , 

b) e0 corresponds to cl, or 

C) c!I corresponds to l$, . 

2. Each vertex of a polygon must correspond to at least one 

vertex in the other polygon, and vice versa. 

The first condition prevents the in-between polygons from breaking apart into 

pieces. The second condition is necessary since a i l  vertices must follow some 

path from one image to the other (Le. vertices cannot just vanish or appear out of 

now here). 
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Starting vertices are required for each polygon, and are labeled 4' and . 

These starting vertices correspond to one another. My implementation simply 

takes the first vertex in a file of poIygon venices (or the first vertex clicked if the 

user is drawing her own polygon) as the starting vertex. Therefore, pre- 

processing is necessary to ensure an appropriate first vertex matching. 

Every possible correspondence that adheres to the niles set above will create a 

continuous path through the graph, starting at the top left corner, [0.0], and 

proceeding to the bottom right corner, [m,n], and this path will move only to the 

right and down (or both), but never up or to the left. 

Now, the problem of finding the least work vertex correspondence becomes the 

problem of finding the least work path through the graph. 
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i - l  i i + l  i -  1 i i + l  

Fig. 2.3a Fig. 2.3b 

Fig. 2 . 3 ~  

Fig. 2.3 -The graph is not allowed to break into pieces 
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Fig. 2.4a - Corresponds with Fig. 2.3a 

Fig. 2.4b - Corresponds with Fig. 2.3b 

j - i  j + l  

Fig. 2 . 4 ~  - Corresponds with Fig. 2 . 3 ~  

Fig. 2.4 - The only three possible vertex cocre~pondences when vertex i 
corresponds to vertex j (vertex correspondence condition 1) 
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2.2.1 Finding the Least Work Path 

To determine the least work solution, we look at a piece, or fragment, of the 

polygon PO consisting of vertices PO, qO, ..., e0 and the edges of the polygon PO 

connecting hem, and at a corresponding fragment of the polygon P' . consisting 

of vertices el, e', . . ., f l  and the edges of the polygon P' connecting them. Cal1 

these fragments Po (i) and P' (j) , respectively . 

We define the work value of a graph vertex [i,jJ to be the arnount of work 

required to transform fragment pO(i) to fragment P1(j). This work value is 

denoted by W(i,  j). 

If one or both of fragments p0(i) and P' ( j )  were reduced in size by deleting the 

corresondence [i, j], then the three following correspondences are possible: 

[i - 1. j], [i, j - 11, and [i - 1. j - 11. In order to determine W(i, j), we must 

know the work values of these three graph vertices that could precede graph 

vertex [il j]. that is, W(i - 1, j), W(i, j - l), and W(i - 1, j - 1). W(i - 1, j )  

represents the arnount of work required to transform fragment PO ( i  - 1) to 

fragment ~ ' ( j ) .  An example of a situation in which p0(i - 1) must be 

transformed to ~ ' ( j )  is shown in Fig. 2.4a. Similarly, W(i, j - 1) represents the 

amount of work required to transform fragment pO(i) to fragment P' (j - 1) 
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(Fig. 2.4b). and W(i - 1, j - 1) represents the arnount of work required to 

transform fragment pO(i - 1) to fragment P' ( j  - L) (Fig. 2.4~). 

If these work values are known, W(i,  j )  is then equal to the work required to 

transform one of these preceding fragments plus the additional work required to 

transfomi the new part of the fragment. In terrns of the graph, W(i,  j) is equal to 

the work required to arrive at a preceding graph vertex plus the amount of work 

required to travel from the preceding graph vertex to graph vertex [i, j]. That is, 

one of the followicg three hmulae must hold (corresponding to the three 

possibilities in Fig. 2.4): 

W(i ,  j )  = W(i - 1, j) + the work to transform the edge between 
vertices F$ and e" to vertex c' , (2.1) 

W k j )  = W(i, j - 1) + the work to transfomi vertex 4' to the edge 
between vertices q!, and ql, (2.2) 

V j )  = W(i - 1, j - 1) + the work to transform the edge between 
vertices Ff , and 8' to the edge between vertices 

and q' . (2.3) 

Therefore, it is necessary that each of these three values of W(i, j) be calculated 

for each pair of fragments PO (i) and P' (j) . Denote the work of equation 2.1 as 

W,, (i, j), since the preceding graph vertex on the path is i - 1 j ]  (Le. is 
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directly West of graph vertex [i, 1 ) .  Similarly, the work of equation 2.2 is 

denoted by W,,, (i, j) , and the work of equation 2.3 by W,,,, (i, j). 

We make the requirement that if graph vertex [i, j ]  is preceded by graph vertex 

[i - 1, j ] ,  then graph vertex [i - 1, j] must be preceded either by [i - 2, j ]  or by 

[i - 2, j - Il, and not by [i  - 1, j - 11 (that is, we do not aliow right angles in the 

graph path). Similarly, if graph vertex [i, j ]  is preceded by graph vertex 

[i, j - 11, then [i, j - 11 must be preceded either by [i, j - 21 or by [i - 1, j - 21. 

An example illustrating the reasoning behind this requirement is outlined as 

follows: suppose we are given vertices a and b of PO, and the edge between 

them, z, and vertices c and d of P', and the edge betvieen them. 2. If a 

corresponds with c, and b corresponds with d, intuitively, less work w i l  be 

required to stretch or shorten edge àb into edge cd than would be required to 

stretch vertex a into edge a and then collapse edge ab into vertex d. 

2.2.2 Stretching Work 

Two quantities which are-used to measure the result of a force acting on a wire to 

stretch the wire are strain and stress. 
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Suain, denoted by E ,  is defined as the elongation, AL, of the wire, divided by 

the initial length, L, of the wire: 

AL' 
E = -. 

L 

Stress, denoted by a, is defined to be the deforming force, F, acting on the 

wire, per unit of the wire's cross-sectional area, A: 

When stress acts upon a wire, a strain is produced. Therefore, stress and strain 

can be plotted against one another to give a stress-strain diagram for a given 

material. Over the range of usefulness, stress and strain are proportional; over 

this range, the stress-strain diagram is iinear with constant slope. This slope 

depends solely on the properties of the material of the wire; it does not depend at 

al1 on the length or cross-sectional area of the wire. This constant slope is known 

as Young's modulus of elasticity, E: 
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A piece of wire that is k i n g  stretched will undergo either linear elastic stretching 

or plastic stretching, depending on the amount of stretching chat is occumng in 

the wire. The yield stress, c,,~, of a matenal is the elastic limit of the material. 

O,,, is defined to be the arnount of stress beyond which the matenal suffers 

permanent damage, and will not return to its original size or shape when the 

stress is removed (i.e. we say the material undergoes plastic deformation). For 

any amount of stress below the yield stress, the stretching wiil be a close 

approximation to linearly elastic. The rnodulus of elasticity given in equation 2.6 

applies to the elastic stretching of a wire. 

The amount of work done by a force F to displace a particle frorn point a to point 

b is defined to bz 

If we have a plot of force F vs. displacement fiom L = a to L = b ,  work is 

therefore the area under the curve. 

W 
Thus, the work per unit volume, - required to stretch a wire by an amount 

AL' 

W l  AL is the area under the stress-strain curve (Le. - = -O&). Therefore, for 
AL 2 

elastic stretching, 
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For a more comprehensive treatment of stress, strain and work, see [Il]. 

We will start by examining equation 2.7, and making several changes to render it 

suitable for use here. 

Since the "wire" polygon edges do not possess any real physical qualities, both 

A and E can be defined by the user to suit the specific needs of a particular 

blend. Replace A E  by the constant ks,,,ch, whose value represents the 

stretchiness of the wire. A lower value of k,,, indicates a stretchier wire (a wire 

requinng less work to stretch), and a higher value indicates a wire that is more 

difficult to stretch. 

In our application, we would like to require stretching of a wire to include both 

the lengthwise stretching and shrinkage of the wire. This condition is imposed to 

ensure that a blend betweb initial polygon O to fmd polygon 1 is the same blend 

(in reverse) as that between initial polygon 1 to fmal polygon O. Therefore, the 

work involved in stretching a wire of length L, into a wire of length L, should 

be the same as the work involved in shortening a wire of length L, into a wire of 
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length &. Equation 2.7 does not satisS this requirement. Furthemore. if a 

single vertex is stretched out to a line, its origind length is O, which results in an 

infinite arnount of stretching work. The solution to these problems is to use a 

combination of the two lengths, as will be shown shortly. 

In many situations, it is undesirable for an edge to coliapse to a point, or for a 

point to be stretched out into an edge. Thus, a user-defined constant cstrc,, 

O I cm,, I 1, is introduced to penalize this behaviour, if the user should so 

choose. Lower values of c,,, indicate p a t e r  penalty. Hence, for a polygon 

with an edge of length L, the quantity 2L is replaced by the quantity 

((1 -c,&)min(&*L,) + c s l d  max(&, L, 1). 

The exponent of 2 in equation 2.7 is changed to be a user-defined constant, 

e,,. The exponent in the equation wiU Vary, depending on how much 

stretching will occur in the blend. For example, if the wire does not stretch tw 

much, the stretching will be linearly elastic, and an exponent of 2 will be 

sufficient. However, if the wire stretches quite a bit and undergoes plastic 

deformation, less work is required to stretch the wire, and an exponent of L 

would represent the situation more accurately. An exponent of 1 in equation 2.7 

does not exactly represent the plastic deformation situation, but, rather, is an 

approximation. However, since the "wires" used for the polygons are not 

physical wires, this approximation is sufficient. Furthennore, also due to the fact 

that the wires are not real, the choice of e,, is very subjective. 
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segment of polygon O into a 

Chopter 2: L e m  Work Matching 

the equation for the work required to stretch a 

segment of polygon 1 is given by: 

where, again, 

b = length of the segment of polygon O, 

L, = length of the segment of polygon 1, 

k,,, is an elasticity constant of the "wire" polygon edge, 

c , , ,  is a constant that penalizes an edge if it collapses to a point, and 

est,, is a plastic deformation constant. 

2.2.3 Bending Work 

Bending work is the amount of work required to change an angte defmed by 

vertices i,, , i,, and i, of polygon O to the angle defmed by vertices j,, j,, and j, 

of polygon 1. The arnount of work required to change an angle is dependent on 

the change in the size of the angle, A e ,  from one polygon to the other. 

Many angles in a blend do not change monotonicaily from one shape to the 

other. Real elastic bending is unconcemed w ith non-monotonicity, since any 

work used to bend an angle an amount 0 wiil be released if the angle unbends. 
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However, Our application is concemed with the calculation of 

the purpose of minimiung the motion of the wires. Therefore, 

Work Mutching 

work solely for 

we will assume 

that any angle change, regardless of direction, is governed by the same work 

calcutation. Hence, in the cases in which angles do not change monotonically, 

knowing only the value of A 8  will give an inaccurate description of the amount 

of work taking place. It is important here to also calculate the amount that the 

angle deviates from monotonicity, denoted A$ *. - Hence, bending work can now 

be defined by: 

The calculations of A 0  and A 8  * are discusscd in sections 3.3.2.1 and 3.3 -2.2,  

respectively . 
Non-monotonicity in an angle change is ofteri not thought to be a pleasing or 

natural feature. Therefore, such behaviour, in some circurnstances, should be 

penalized. Penalty is imposed by way of a multiplicative constant, m,,,,, which 

c m  be chosen by the user. The choice of m,,, wiii depend on how undesirable 

non-monotonicity is in a particular blend. Higher values of m,, indicate greater 

difficulty in bending, while lower values indicate greater ease of bending. This 

yields a bending work equation of 
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Another problem that rnay arise when bending the angles is that of collapsing 

angles. In Fig. 2.5. the angles in the top right and bottom left corners become 

smaller and smaller until they collapse, afier which the edges essentially "cross 

ove? one another. 

Fig. 2.5 - Collapsing angles 

This son of behaviour creates the appearance of a polygon tuming inside out, or 

collapsing to a line and then reconstnicting itself. Collapsing angles, or angles 

which go to zero, are penalized with the use of the user-defined, additive 

constant, p,,: 

If an angle collapses. the quantity p,, is added to the work calculation. If an 

angle does not collapse, nothing is added. A discussion on how to determine 

which angles collapse is given in section 3.2.2.3. 
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As in stretching work, the user may choose the difficulty with which the angles 

can bend. This is done via a user-defined multiplicative constant k,,,. and a 

user-de fined exponential constant. eh,. 

Thus, the final work equation for calculating work due to bending is given by 

WW = k M ( A 8 + m h d A 0 * ) c ~ ,  ife(r) does not go to zero 

= k,, (A 9 + m,,A0*)'- + p,, , ifO(t) does go to zero (2-9) 

where, again, 

A 0  = change in angle from PO to P I ,  

A6 * = deviation from monotonicity of the angle change. 

m,, is a constant which penalizes non-monotonically changing angles, 

p,, is a constant which penalizes angles that go to zero, 

e,, is an exponential bending stiffness constant, and 

k,, is a multiplicative bending stiffness constant. 

2.2.3.1 Calculating the Change in Angle Size 

Denote the angle at vertex i, as it changes over time t E [O, 11 b y 9, ( r  ) . 8, (0) 

gives the angle at vertex i of the initial polygon, and 0,(1) gives the angle at the 

corresponding vertex in the final polygon. 
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If a. b, and c are three consecutive vertices of a polygon, and if ai; is the edge 

between vertices a and 6, and is the edge between vertices b and c. then we 

use the notation L[a, b.c] to denote the acute angle between ab and bC. 

If we let denote the vertex of Pl that corresponds with vertex i of PO, and if 

we assume that the vertices follow a linear path from PO to P' , then the path that 

vertex e0 follows during the blend is given by 

Therefore. the angle which initially is defined by the three vertices e!, , eO, and 

e:, is given by 

for time t E [O, 11. 

This angle can easily be translated to the origin, giving 
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Now the angles can be measured with respect to the positive x-mis; that is, as 

For example, the angle L[a.O, b] of Fig. 2.6 c m  be calculated as 

It would be convenient to determine the point c such that 

and then refer to the angle L[a,O, b] in terms of the point c. We will caii this 

point c the angledefming point of L[a,O, b].  
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- - - 

Fig. 2.6 - Measuring angles 

The y-coordinate of this angle-defining point of the angle given by equation 2.1 1 

is given by 
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and the x-coordinate by 

where the operator x is defined as 

where ek = (x i ,  yi) and qk = (x j ,  y,). and the operator ' is the usual dot- 

product. 

Disregarding the equal denominators of these equations, and expanding gives 

and 
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A quadratic Bézier curve is a curve guided by three control points, p,. pl,  and 

p,, and is given by 

Development of this formula can be found in any elementary cornputer graphics 

text (eg. [4], [SI, et ai.). 

These two equations together have the form of a quadratic Bézier curve: 

Q(t)  = Q,(i - r)' + Q,  2t(l- t )  + 4 , t2 ,  

w here 

and 
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As tirne changes, the coordinates (x ,  y) change (since ( x ,  y )  = Q(t) ) .  Therefore, 

as a line through the origin follows this curve, the angle that this line makes with 

the x-axis changes exactly as the corresponding angle in the blend changes. That 

is, 

The possibilities for extreme values of the angle are @(O), O(1) and angles O(tJ 

such that the line through the origin and Q(tJ is the tangent line to Q(t) at the 

point f = f,. This property c m  be expressed by the equation 

w here 

Q ( t )  = -2Q0 ( 1  - t )  + Q, ( 1  - 2t) + 2Q2t 

(that is, Q ( t )  is the first derivative of Q(t) with respect to t). 
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Expanding equation 2.19a and reducing gives 

which is a quadratic Bézier equation. 

If the angle 8 changes monotonically, then the only extreme values of 8 occur at 

r = O and t = 1. and there are no values of t E (0.1) such that equation 2.19b 

holds. 

If the angle does not change monotonically, then the extreme values need not 

occur at t = O and t = 1, so there are either one or two vaiues of r E (O, 1) which 

produce extreme values of 0 (Le. such that equation 2.19 holds). For an 

example, see Fig. 2.7. As the line from the origin to the curve follows the curve, 

it first swings counter-clockwise (which is a deviation from monotonicity) 

before moving in a clockwise direction toward Q,. 
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Fig. 2.7 - Deviation from monotonicity 

The net change in angle, A 0  , will be either: 

1 .  L[Q,,O,Q,], if the angle changes less than n radians, or 

2. 2x - L[Q,, O, Q,] , if the angle changes more than z radians (that is, 

if the angle that the line from Q(t) to (0.0) makes with the x-axis 

changes more than a radians as t changes from O to 1). 
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Assertion: The angle changes more than R radians if and only if the following 

two conditions hold: 

1. The triangle with vertices Q,, QI, and Q, contains the origin, and 

2. Equation 2.19 has no solutions t E (0,l) (i.e. 8 changes mono- 

tonicaUy)- 

Proof of Assertion; 

First. suppose A 0  > n. We will show that the triangle QoQIQ, must contain the 

origin, and that 8 must change monotonically. 

We fint show that the triangle QoQIQ, must contain the origin. If we extend the 

line between Q, and (0,0), then Q, must lie on one side of the iine and Q, on 

the other. This facilitates the rotation of more than ~c radians. (If both points lie 

on the same side of the line between Q, and (0,O). then the entire curve Q(t)  

would lie in the half plane defined by the üne between Q, and (0,O). This would 

mean that any line from the origin that follows the curve would lie entirely in that 

half plane, which would imply that the net change in angle was less than or equal 

to x: radians. See Fig. 2.8.) Similarly, if we extend the üne between Q, and 

(0.0), then Q, must lie on one side and Q, on the other. Therefore. QI must lie 

in the region A (shown in Fig. 2.9). This implies that the triangle Q,Q,Q, 

contains the point (0,O).  
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Secondly, we show that 0 must change monotonically. Since we have assumed 

that A 8  > A, Q(z) must, at some point, pass thmugh region A (Fig. 2.9). We 

will argue that Q(t) passing through region A implies that 0 must change 

monotonically. 

If Q(t )  passes through region A and 8 does not change monotonically, then one 

of the following two situations must occur: 

1. The line fromQ(t) to (0.0) would start traveling from Q, in the direction 

opposite of that which facilitates a rotation of more than IC radians (Le. in the 

direction of the smallest angle between the line from Q, (0,O) and the line 

from Q, to (40))  before changing directions and heading toward Q, in the 

direction facilitating a rotation of more than a radians (in te- of Fig. 2.7, 

the line fromQ(t) to (0,O) would have to travel clockwise from Q, and then 

change direction to travel counter-clockwise toward 43, or 

2. The line from Q(r) to (0,O) would have to travel in the direction facilitating a 

rotation of more than A radians pasi Q,, before turning back and traveling in 

the opposite direction to end up at Q,. (To correspond with Fig. 2.7, the line 

fromQ(t) to (0,O) would have to travel counter-clockwise past Q, and then 

clockwise back toward Q,.) 

(Note that these are the only two possibilities for deviation from monotonicity: if 

8 were to deviate, Say, part of the way through the angle change, the curve 
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Q(t) would have inflection points, which is not possible with quadratic Bézier 

curves.) 

Neither situation 1 nor 2 is possible here. Since at Q,, Q(t)  is tangent to the line 

between Q, and Qo (by the defmition of a BCzier curve), and since Q, is in 

region A, the line from Q(t) to @,O) starts out in the correct direction (that is, in 

the direction which facilitaces a rotation of more than ~t radians). Similady, the 

line from Q(t) to (0,O) must end its travels in the correct direction. Since we have 

determined that deviation from the correct direction is not possible except at the 

beginning or the end of the curve, 8 must change monotonically. 

Now we will suppose that the triangle Q,Q,Q, contains the origin, and that 0 

changes monotonically, and we will show that this implies that A 8  > K. 

Since the triangle QoQlQ2 contains the origin, the line from Q, to (0,O) has QI 

on one side and Q, on the other, and the line from Q, to (0,O) bas Qo on one 

side and Q, on the other. Draw a line through the origin that is parallel to the line 

through Q, and Q,, and define a region B to be the region on the opposite side 

of this line as the points Q, and Qo (see Fig. 2.1 1). The start and end of the 

curve wcur on the sarne side of this line. If the curve were to pass into region B 

(Le. to the opposite side of this line), then the angle would have to change by 

more than R radians (since the angle change in region B is IZ radians in itself). 

We will show that the curve must pass into this region B. 
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It is easy to see that region A is entirely contained by region B. We will 

therefore show that the curve must pass into region A, and thereby infer that the 

curve must pass through region B. 

Suppose that Q(t)  does not cross into region A. Since Q(t )  is a Bézier curve, 

Q(t )  (at t  = O) is tangent to the line between Q, and Q,. This Iuie between Q, 

and Q, is on the opposite side of the line between Q, and (0,O) as the line 

between Q, and (0.0). Therefore the angle must fmt travel away from Q, More 

traveling toward it, which means that 8 deviates h m  monotonicity (see Fig. 

2.10). However, our assumption States that 8 must change monotonicaily. 

Therefore, Q(t) must cross into region A. 

Since Q(t)  crosses into region A, it also crosses into region B. As we showed 

above, if Q(t)  crosses into region B, the angle changes more than x radians. 

This concludes the justification of the assertion. 
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Fig. 2.8 - A 6  is less than Ir radians 
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Fig. 2.9 - Q, must lie in region A 
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Fig. 2.10 - Q(t)  must start out dong line segment between Q, and Qo 

Fig. 2.1 1 - Q(t) must pass through region B 
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2.2.3.2 Deviation €rom Monotonicity 

If an angle does not change monotonically (Le. if we find values of  t E [O, i] 

such that equation 2.19 holds). then we must determine how far the angle 

deviates from monotonicity . 

Deviation c m  occur in either direction; either the line from (0.0) to Q(t) travels 

frorn Q(0) (= QJ away from Q(1) (= Q,) before changing direction and heading 

back toward Q(L), or the line travels past the angle L[( l ,O) ,O,Q( l ) ]  before 

turning and heading back toward Q, (see Figs. 2.7 and 2.12). 

To calculate this deviation, solve equation 2.19 for t, and 2, . Then the deviation 

given by t , ,  and denoted by a, is 

and the deviation given by t2, and denoted by P. is 

P = 4Q(t2),O9Q,l- 
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-- - - - - - 

Fig. 2-12 - Values of t ,  and t, 

2.2.3.3 Collapsing Angles 

We Say an angle coliapses if it goes to zero at some point during the transition. 

That is, 0(t) = O for some t E (0.1). Clearly, this happens only when the curve 

Q(t) crosses the positive- x - a i s .  (Recall that in section 2.2.3.1 we manipulated 

the angles so that they are measured with respect to the positive x-axis.) 



Chapter 2: Least Work Matching 

2-2.3.4 Multiple Vertices 

Special problems arise when a polygon contains vertices of multiplicity greater 

than one (Le. two or more distinct vertices of one polygon ail map to a single 

vertex of the other polygon). Specifically, how does one calculate an angle 

defined by three points, when two, or perhaps d l  three, of the points are exactly 

the sarne? The solution to this problem is to pretend that the vertex of multiplicity 

n is actually n distinct vertices, spaced infinitely close together. These vertices Lie 

dong an infinitely short edge, inserted between the two edges incident to the 

vertex in question, in such a way that the angles between this new edge and each 

of the incident edges are equal to one another (each equal, in fact, to one half the 

angle between the two original edges, plus n/ 2 radians). Of course, the angles 

between any interior edges of this new infinitely short edge will be ~t radians. 

See Fig. 2.13. 
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Multiplicity 4 

Fig. 2.13 - Magnified view of a vertex of multiplicity 4 

2.2.4 The Least Work Path Revisited 

We denote the amount of work required to stretch (or shorten) an edge between 

vertices e0 and ?f of polygon PO into an edge be&een vertices <' and Pd of 

polygon P' (where vertex 4' corresponds to vertex c, and vertex 4' 

corresponds to vertex P,' ) by 
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Similady, the arnount of work required to change an angk defined by vertices 

e0 :O, Ph, and e0 of polygon PO into an angle defined by vertices P:, c, and 

P: of polygon P I  (where corresponds to Pd, corresponds to c, and 

corresonds to P: ) is denoted by 

Now that we have described how to calculate bending and stretciiing work 

(sections 2.2.3 and 2-24), the pseudo-equations 2.1, 2.2 and 2.3 can be written 

more concisely: 

and 



Chapter 2: Least Work Matching 

6 = . ( i - l , j - l ) + W ( i - 2 , j - 2 . i - , j - ] , [ , j ] ) ,  (2.22b) 

and 

W7= W (i-1 , j -1)+ Wkd([i-2,j-l],[i41,j-l],[i,j]). 

To better understand these equations. let us look a t  equation 2.20 (dong with the 

corresponding equations 2.20a and 2.20b). 

The first term of equation 2.20 is the lesser of the following: 

1. The work at the graph vertex [i - 1, j ] ) ,  arrived at from the 

vertex directly West of [i - 1, j ]  (that is, graph vertex 

[ i  - 2, j ] ) ,  plus the amount of work to bend the angle formed 

by these two edges of polygon O into the angle formed by the 

corresponding edges of polygon 1. 

2. The work at the graph vertex West of [i - 1, j], arrived at fhm 

the vertex direcùy northwest o f  [i - 1, j J (i.e. graph vertex 

[i - 2, j - l]), plus the amount of work to bend the angle 

formed by these two edges of polygon O into the angle 

formed by the corresponding edges of polygon 1. 
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The second terni, K,,([i - 1, j ] , [ i ,  j 1 ) .  of equation 2.20 is the arnount of work 

necessary to stretch the edge of polygon O defined by vertices eo, and e0 into 

the edge of polygon L defined by vertices 5' and 4' (i.e. the single vertex P.' ) . 

That is, it is the work involved in collapsing the edge of polygon O in question 

into a particular vertex of polygon 1.  

Figs. 2.14a and 2.14b give the graph theory representation of equation 2.20, 

and Figs. 2.1 Sa and 2.1 Sb give a corresponding polygon representation. 

Fig. 2.14a Fig. 2.14b 

-- -- - 

Fig. 2.14 - Work from the West vertex 
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Fig. 2.15a 

Fig. 2.15b 

Fig. 2.15 - Polygon vertex correspondence for graph of Fig. 2.14 

Once the work values have been calculated, the least work path through the 

graph m u t  be found. This is done by backtracking. as follows: 
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1. %art with vertex (i, j), where i = m and j = n .  

2. Chwse the smallest of the ihree work values for vertex (i, j) 

from equations (2.2 1), (2.22) and (2.23). 

3. If the smallest is W , ,  then let the next vertex in the 

backtrack list be the vertex West of (i, j), i.e. ( i  - 1, j). 

Similady, if the smallest is W,,,,, the next vertex in the list 

will be (i - 1, j - 1). and if the smallest is W A ,  then the next 

vertex will be (i, j - 1). 

4. Let this new vertex on the backtrack list be the new (i, j), and 

repeat from step 2 until i = j = 0 .  

In fact. our method does not guarantee the overall least work path, since 

backtracking to the previous vertex of minimum work is oniy a local 

rninimization. However, our approximation to the Ieast work path is quite 

satisfactory. as it produces results which are quite good. (See [7] for further 

details of the backtracking algorithm.) 
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The equations of the Least Work Matching algorithm requires quite a bit of user 

input. A user must decide on the fust vertex correspondence, set the seven 

constants associated with bending and stretching work, and pre-process the 

images to ensure an appropriate fmt vertex matching and a reasonable 

distribution of vertices around the polygons. 

Consider the "m" and "n" polygons shown in Fig. 2.16. The vertices occur only 

at the obvious places (there are no "hidden" vertices dong the intenor of a 

straight edge). The "mTT was blended into the "n" using the following parameters: 

kkd = 2, mknd = 100, eh, = 1. ph, = 10000, k,,, =0.1, c,,, =0.1. and 

es,, = 2, and starting vertices and are as shown in Fig . 2.16. 

First, consider the blend if we use a match-by-order approach (in which the 

vertices are matched up based on the order in which they occur, with left-over 

vertices of one polygon simply mapping to the last vertex of the polygon with 

fewer vertices). The resulting blend is given in Fig. 2.17. 

The result of using Least Work Matching on the polygons is shown in Fig. 

2.18. 
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Fig. 2.16 - "m" and "n" polygons 

Fig. 2.17 - Match-by-order without pre-processing 
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Fig. 2.18 - Least Work Matching without pre-processing 

Clearly, Least Work Matching gives an even less appealing blend (with global 

self-intersection) than the blend in Fig. 2.17. 

However, in the next blends, some pre-processing has been applied to the "n", 

in the form of adding two additional vertices, as shown in Fig. 2.19. 

Fig. 2.19 - Additional vertices added to "n" 
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The blend which used match-by-order is given in Fig. 2.20, and the blend which 

used Least Work Matching is given in Fig. 2.21. (Both use the same parameters 

as the blends in Figs. 2.17 and 2.18). Least Work Matching yields a very 

elegant blend, unlike that of Fig. 2.20. Clearly, pre-processing c m  be a very 

important step in shape blending. 

- - - 

Fig. 2.20 - Match-by-order with pre-processing 

Fig. 2.21 - Least Work Matching with pre-processing 



Chopter 2: Least Work Matching 

Ideally, one should be able to find a choice of parameters for which Least Work 

Matching would provide the sort of blend given in Fig. 2.20, but without pre- 

processing. I was unable to find such a parameter set. However, Fig. 2.23 gives 

a good blend of an " E  to an "F' (shown in Fig. 2.22), without any vertices 

added dong the straight edges. The general idea of the "E" to "F' blend (the 

extra "lirnb" shrinking away) is the sarne as that of the "m" to "n" biend. The 

parameters used here are k,, = 0.5, m,, = 1, e,, = 1, p,, = 10000, 

k,,, = 0.1, cm,, = 0.1, and e,,, = 2, with starting vertices and P,' as  

shown in Fig. 2.22. 

Fig. 2.22 - "E" and "F' polygons 
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Fig. 2.23 - Least Work Matching without pre-processing 

Clearly, choice of parameters is very important, and user intervention is 

necessary. A variety of good, but different, blends (as well as a variety of bad 

blends) can be achieved, depending on the choice of parameters. The choice of 

the first vertex correspondence is also extremely important; an example which 

demonstrates this is given in Chapter 4. Often o d y  a human k i n g  can decide 

how much relative bending or stretching is desired for a particular blend, or 

which vertices should be chosen as starting points on the polygons. 
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3.1 Introduction 

An important aspect of 2D shape interpolation concerns the path dong which 

each vertex must travel to arrive at its final destination. This is lcnown as the 

vertex path problem. 

One approach is to have each vertex follow a linear path. Although this method 

is simple to understand and to irnplement, it often leads to unappealing results. 

More often than not, in the physical world around us, points in motion do not 

follow a linear path. Linear interpolation causes ail points in the fmt key image 

to follow straight line paths to their corresponding points in the second key 

image, creating unredistic-looking approximations of motion. A classic example 

of the failure of the linear path is the withering limb. shown in Fig. 3.1 as a 

swinging pendulum. (A super-imposed version is given in Fig. 3.2. Here, it is 

much clearer that the pendulum is foilowing a linear path). A pendulum 
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outstretched horizontally in one key frame and vertically in the other key frame 

will not retain its length in the in-between frames if linear interpolation is used. 

Clearly, more realistic vertex path rnethods must be found. 

This "withenng limb" problem is but one of many that cm arise when 

perfomiing a blend between two shapes. Some otbers include self-intersection, 

the loss of similar features in the in-between stages, and non-monotonically 

changing angles. These problems can produce in-between images which are 

visually displeasing and physically inaccurate. 

W Initiai Image 
Final image 

In-betvcen Images 

Fig. 3.1 - Withering limb 
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- - 

Fig. 3.2 - Super-imposed withering limb 

An dternafive solution to the vertex path problem, Intrinsic Interpolation, is 

given in [2 ] .  In order to solve the vertex path problem, an appropriate vertex 

correspondence must first be found. The authors of 121 used the Least Work 

Matching solution to the vertex correspondence problem (given in [ I l ,  and 

discussed in Chapter 2 of this thesis). 

The general idea behind Intrinsic Interpolation is as follows: each of the two key 

polygons is described intrinsically (that is, in ternis of the edge lengths and the 

angIes formed by each pair of adjacent edges), and interpolation between the 

values of these intrinsic features is perfomed to calculate the in-between 

polygons. 
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3.2 Development 

Let the two key polygons be P O ,  and P' , each with m + l vertices (O through 

m). This assumption is valid, since, after Least Work Matching is performed, 

the two polygons can be considered to have the same nurnber of vertices. (For 

example, if two different vertices of Pu map to the same vertex of P I ,  then that 

vertex of P' is considered to be two different but coincident vertices.) Let the 

lengt hs of the edges of PO and P' be denoted by and respectively. where 

= le:, - ekI, for i = O ,..., m. 

Furthemore, we will define 0;. (k = O, 1) to be the angle formed by extending 

edge 41,4' and calculating the directional angle between edge t'y:, and this 

extension, as shown in Figs. 3.3a and 3.3b. 

If the angle v:, measured counter-clockwise from edge e', ek to edge c'et, is 
less than rr radians, then define 0; as 
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and otherwise, define 0; as 

k etk = -(x - y, ) . 

As will soon be evident. the etk values are necessary to calculate the reiative 

positions of the vertices of the in-between polygons. 

Note that if the vertices coincide (i.e. have multiplicity greater than 1)  they are 

handled in the same manner as described in Chapter 2 (see section 2.2.3.4). 

Fig. 3.3a Fig. 3.3b 

Fig. 3.3 - Definition of ei 
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Since we are using intrinsic definitions for the polygons, we do not have a 

description of the exact physical location of theu vertices and edges. Hence, 

when we interpolate between the shapes, we must have an anchor point in each 

key shape whose interpolated position can speciQ the shape's translation 

throughout the blend, and a baseline, defined in relation to the anchor point, that 

specifies the shape's rotation during the blend. The anchor point is taken ro be 

the first vertex of each polygon. These initial vertices must be chosen carefuliy; 

an inappropnate fmt-vertex correspondence can cause the polygon to follow a 

curious path through the blend. User-intervention may be required to ensure 

this. 

The baseline is defined as a horizontal line through the anchor point (x,,y,) (see 

- 
Fig. 3.4). The angle that edge eek makes with the angle line is denoted a,'. 

Each edge eket, makes some angle, a:, with the honzontal (the baseline). 

These a: values can be computed using the previous angle a,?, in conjunction 

with 0: (see Fig. 3.5): 

k a: = a,, - 6:. 
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Fig. 3.4 - Anchor point (x,, y,) and anchor angle a, 

We need to know these values, a:. in order to compute the position of each 

vertex. From the fust vertex, ek. of the ith edge, move a distance Li' at angle 

a: to the second vertex, e t , ,  of the ith edge, which is the f ~ s t  vertex of the next 

edge. 

Therefore, the x- and y-direction of the coordinates (x,,, ,y,+,) of vertex e t , ,  

relative to the coordinates ( x i ,  y,) of the previous vertex 4'. can be calcuiated as 

sin a,-, and cos a,_, , respectively. 
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Fig. 3.5 - Definition of 4 

The amount to proceed in each of the x- and y- directions is simpiy found by 

multiplying sin ai-, and cosa,, by the length of the edge 4-, between 4-, and 

ri. 

To determine the vertices. P,,e, ..., Pm of an intemediate polygon. the lengths of 

the edges and the angles fomed by each pair of adjacent edges will be 

in terplateci: 



for i = O, ..., m. 
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(3.4) 

To obtain the vertex P, of the interpolated polygons, linear interpolation between 

ff and &' is used. 

To calculate the position of coordinates (x,,y,) of vertex of an intermediate 

polygon, the coordinates (xi- ,  , y,-, ) o f  the previous vertex e-:._, , the interpolated 

edge length L,_, of the edge between %,e, and the interpolated angle O,-, 

between this edge and the previous edge (equation 3.2) must al1 be known. 

and 
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The Intrinsic Interpolation method offers a 

interpolation, as is shown in section 3.4. 

signi fican t improvement over linear 

In fact, the images would be quite 

satisfactory if not for the fact that the in-between polygons do not typicdly close 

(for an example, see Figs. 3.8 and 3.9 of section 3.4). Therefore, the problem 

now becomes one of forcing the intermediate images to close. 

Edge Tweaking 

One solution to this problem is to slightly change the lengths of the edges of the 

intermediate polygons. In order to do this, we change the edge length 

interpolation equation (equation 3.4) to: 

where Si is some sxnail amount added to edge i. Now the trouble lies in 

determining Si. 

Since it is generally desirable to have the lengths of a given edge change 

gradually from the first key polygon to the second, the values of should be 

fairly smail relative to the difference in edge length from PO to P' (i.e. small 

relative to Ic - CI). That is, we want to fit lengths Si into the polygon such that 
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the Si are as srnail as possible. but yet proportional to the length of edge i, and 

such that the polygon will close. Thus, using least squares, we want to find such 

values of such that 

In the event that and are the same length. the function f(So, S,, .. ., Sm) 

would contain some elements in which division by zero would occur. Therefore, 

define 

LmIl = 0.000 1 x max L: - 4 . 
(i.l..., 1) 

and then, to avoid division by zero, 

Hence, 
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To ensure that the values of Si will, in fact, cause the 1st  vertex of the polygon 

to be equai to the fmt vertex of the polygon, the following constraints are 

imposed: 

and 

TO find the values of Si that satisQ f, rp,, and ~ p 2  sirnultaneously, Lagrange 

multipliers are used. 

Let 

where A, and 4 are the multipliers, and Q is a function of  4. 4 , Som S , , . . . , 
and Sm. 

a 
Differentiating with respect to each Si and setting each - equal to O yields as; 

m + 1 equations of the form 



fori = O ,..., m, subject to cp, = O and cp, = 0. 

a 
Multiplying each - by (ci)*, and rearranging gives equations of the form ai 

2 A, ( ~ , 0 ' ) ~   COS^ + +(ci) sin a,. = -2s;. 

We can create two new sets of equations by multiplying the set of equations 3.16 

by sin ai and by multiplying the set of equations 3.16 by cos ai. Doing so, and 

then surnming each set of equations, gives 

and 

2 m m 

A, 2 (cl) cos ai sin ai + 4 C(G')~ sin2 ai = - 2 x  si sin a,. . 
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Reanünging the constraint equations cp, = O and cp, = O gives 

m m C[(I - t ) c  +tg]cosa,. = -ES,. cosa, . ,  
i = O  i=O 

and 

m m 

C [ ( I  - t)i$ + tc]sin ai = -C 4. sin ai . 
i=O ;=O 

Replacing the right-hand side of equations 3.17a and 3.17b with the left-hand 

side of equations 3.18a and 3.18b, respectively, yields two equations in two 

unknows, Â, and 4: 

and 

m 2 m m (3.19b) 
A., x(c') cosa,  sina, + Q(j$")' sinZ a,. = 2C[(1- t)L<O + tgls ina, .  

i=O i=O i-O 
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We c m  solve for A, and A, using Cramer's Rule: 

m 

î C [ ( l - t ) ~ + t ~ # o s a ~  C ( c l ) ' s i n q c o s a ,  
i=O i=O 

2g[(1- + t ~ # i n a ,  C(c1y sin2 a, 
1=0 i-O 

5 (c1)2 cos2 ai C(cl j~ sin a, cosai 
i-O i=O 

C (G')~ sin ai cos ai 5 sin2 a,. 
i=O i-O 

and 

I ~ ( L $  sin4 cosai z ~ [ ( L  - t ) ~  + t~#incq 

4 = ;=O 
i= O 1 T(C')I cosi ai Z(c1)l sinai c a s a , .  (3.20b) 

i -O i=O 

12 (L:,.')' sin a,. cos CL. 2 (e1)i sin2 ai 
i=O i-O 

given that 
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Once A, and 4 are found, the equations 3.16 can be used to solve for Si: 

for i = O, ..., m. 

Now that the values of Si are known, equation 3.8 can be used to cdculate the 

edge-lengths, Li, and, as before, equations 3.7a and 3.7b c m  be used to 

calculate the vertices of the in-between polygons. 

Intrinsic Interpolation was applied to the pendulum of Fig. 3. I , with results 

given in Fig. 3.6. Fig. 3.7 shows an image with the five in-between frarnes 

super-imposed on one another. The pendulum follows a circular path, as we 

would expect of a real pendulum. 

Edge tweakhg works well. Fig. 3.9 gives an example of the polygons of Fig. 

3.8, blended using intrinsic interpolation, in which the in-between polygons do 

not close. When edge tweaking is applied, the in-between polygons close nicely 

(Fig. 3.10). 
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. 

Fig. 3.6 - Intrinsic Interpolation applied to a pendulum 

Fig. 3.7 - Super-imposed pendulum 
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Fig. 3.8 - Polygons to be blended with Intrinsic Interpolation 

- 

Fig. 3.9 - Intrinsic Interpolation without Edge Tweaking 
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Fig. 3. IO - Intrinsic Interpolation with Edge Tweaking 

The following two examples use the Least Work Matching and Intrinsic 

Interpolation with Edge Tweaking algorithms. Fig. 3.1 1 is a blend of the "m" 

and "n" polygons of Fig. 2.12 (without pre-processing), and Fig. 3.12 blends 

the "m" polygon of Fig. 2.12 and the "n" polygon of Fig. 2.15 (the "n" is pre- 

processed). The same parameters were used here as were used in the "m" to "n" 

blends of Chapter 2. Fig. 3.11 is a Iittie odd, but Fig. 3.12 shrinks the extra 

"limb" even more elegantly than the blend of Fig. 2.17. 
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Fig. 3.1 1 - Intrinsic Interpolation with Edge Tweaking, no pre-processing 

Fig. 3.12 - Intrinsic Interpolation with Edge Tweaking, with pre-processing 

As an additional example, Intrinsic Interpolation with Edge Tweaking is applied 

to the "E" to "F' blend of Chapter 2 (Fig. 2.18), with good results (see Fig. 

3.13). The limb disappears more quickly than the blend given in Fig. 2.19. 
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Fig. 3.13 - " E  to "F' using Intrinsic Interpolation with Edge Tweaking 

Although in the examples here edge-tweaking produced good blends, the 

possibility may exist that the edge tweaking algorithm may produce some values 

Is;[ that are tw large to appear appealing in the blend. 
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4.1 Introduction 

So far, we have iooked only at the blending of polygons. We will now turn our 

attention to adapting the previously discussed methods for use in the blending of 

curves. 

Like the polygons described in Chapters 2 and 3, we will think of the curves as 

being made out of pieces of wire that can be bent or stretched, and we will 

atternpt to bend and siretch the wires of the fmt curve into the shape of the 

second curve. 

The curves used in the blending aigorithm will be constructed from cubic Bdzier 

curves. Cubic Bézier curves use polynomial curve segments which are guided 

by four control points q,, q,, q,, and Q, and are defmed by the equation 



The function associated with each control point is known as a blending function. 

The use of the word "blending" in the term "blending function" is unrelated to 

the blending of Zdimensional shapes. 

Bézier curves interpolate (pass through) the first and last control points (in the 

cubic case, q, at t = 0, and q, at t = 1), and have the property that the Line 

through q, and q, is the tangent line to the curve at the point q,. and the lhe 

through q, and is tangent to the curve at the point a. 

The curves to be blended are defined as a Iist of the control points of the Bézier 

curves, whereby the last control point of one Bézier curve is the fmt control 

point of the next Bézier curve. The whole curve will therefore pass through the 

fint control point, and every third control point thereafter. 

In the discussion that follows, the phrase " c w e  segment" wili refer to the 

portion of the Bézier curve defined by four control points, and the terni "curve" 

will refer to the continuous curve formed by joining these segments. Several 

restrictions are placed on the curves for Our purposes. 

First of dl, we restrict the curves to have no points of inflection in each segment. 

That is, the points of inflection must occur at the join points of the Bézier curves. 
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This restriction is introduced to aid in the calculation of bending work (section 

4.2.2). Should a Bézier curve segment contain an infïection point, it can easily 

be found by soiving 

for t. The curve segment in question can then be subdivided into two Bézier 

curve segments at the inflection point. 

Furthemore, although we allow repeated control points, they must be adjacent 

to one another in the ordered list of control points. That is, the curve cannot 

cross back through itself, nor c m  the fust and last control point of a segment be 

the same, unless the two interior control points are also the sarne as these fmt 

and last control points (see Fig. 4.1). Thus, we must also assume that there are 

at least two Bézier curve segments in our joined-together, closed curve. 

Lastly, assume that the curvature of each segment is small enough and the length 

of the segment short enough that the angle formed by the intersection of the 

outward pointing normal lines at the endpoints of each segment are less than z 

radians (see Fig. 4.2). 

For a more thorough treatrnent of Bézier curve, see [4], [5] ,  et al. 
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4.1 a - Allowed curves 

Po' P3 

4.1 b - Disallowed curves 

Fig. 4.1 - Bdzier curves that are and are not allowed 
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Disallowed 

- - - 

Fig. 4.2 - Curve segments that are and are not aliowed 

4.2 Curve Blending via the Control Polygon 

The simplest way to compute a blend between two curves is to look at the 

control polygon of the curve. (The control polygon is simply the polygon whose 

vertices are the control points of the stning-together Bézier curves.) The Least 

Work Matching algorithm discussed in Chapter 2 can be applied to the control 

polygon to find a contro! point correspondence, and then either linear 

interpolation or Intrinsic Interpolation may be applied. in-between BéWer curves 

are drawn based on these in-between control polygons. 

A simple example in which control polygon blending works well is given below, 

by the two leaves to be blended (given in Fig. 4.3, and blended in Fig. 4.4). In 
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fact, this blend by the simple controi polygon method produces an identical 

blend to one produced by the more compiicated method of Least Work Curve 

Matching, discussed in section 4.3. 

The parameters used for the controi polygon method are kW = 0.1, 

rn,,=lûû, e k d = l ,  p,,=10000, k,,,,=2, c,,,=0.1, and e,,,,=2. 

The parameters used for the Least Work Curve Matching method of section 4.3 

are Ch,,, = 1, Ch, = 0.1, E,, = 1, Kg,,, = 2, C , , ,  =OJ, and = 2. 

The starting vertices are as shown in the figure. 

Fig. 4.3 - Two leaves to be blended 
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Fig. 4.4 - Blend using the control polygon 

One obvious problem with the control polygon methoci is that entire Bézier curve 

segments of shape O may not be matched to entire Bézier curve segments of 

shape 1 (see Fig. 4.5). Tnserting the additional control points required by this 

scenario wiii cause changes to the original curves before any blending even 

begins (see Fig. 4.6). The dgonthm is oblivious to the changes it is causing in 

the curve, since it is dealing solely with the control pdygon. 

To deal with this problem, one could draw a pseudo-control polygon based only 

on the control points through which the curve passes (Le. the first point of the 

stmng-together curve, and every third point thereafter), and apply the Least 

Work Matching algorithm to this pared-down control polygon. However, the 

paring-down would provide only a very rough linear approximation to the curve, 

and would. in general, significandy reduce the accuracy of the work 

calculations. 



Chapter 4: Curves 

Fig. 4.6a - Original Bézier curve Fig. 4.6b - Bézier Cume when p, 
has multiplicity 2 

Fig. 4.6 - Inserted control points can cause unwanted changes in the curve 
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A better idea would be to use only the control p i n t s  through which the curve 

passes in the matching, but instead of approximating the curve segment by 

straight lines to calculate work, use the interior control points to determine the 

actual Bézier curve between the interpolated control points, and use these curves 

in the work caIcuIations. This method is discussed in section 4.3. 

4.3 Least Work Curve Matching 

As with polygon blending, we must find a correspondence between the two key 

curves, and then detemine the path dong which the corresponding points of the 

curve will follow. The correspondence between the two key curves will be based 

on the interpo!ated (end) control points of each Bézier curve segment. That is, 

instead of matching vertices of the key polygons (as in Chapter 2), we wili 

match the interpolated control points. The correspondence algorithm discussed 

here is similar in nature to the h a s t  Work Matching algorithm for vertex 

correspondence of [l], discussed in Chapter 2 of this thesis. 

Some quantity of work is required to transform one curve into another. The 

amount of work involved in blending a particular pair of curves will Vary 

depending on the control point correspondence. Since the blend requinng the 

Ieast amount of work is typically the most visuaily pleasing, we wish to find the 

control point correspondence that involves the l e s t  amount of work. 
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Before we can proceed with the control point correspondence, we first must 

describe the way in which work will be calculated. 

4.3.1 Work 

For two-dimensiond shape blending, we concern ourselves with three sorts of 

work: stretching work, bending work, and kinking work. 

4.3.1.1 Stretching Work 

As in Chapter 2 (equation 2.8), the work required to stretch a wire of length L, 

into a wire of length L, is 

where the length of the parametric Bézier curve segment is given by: 
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(For a discussion of the equation and a description of each of the constants 

k,,,,, e,,,,,, and cm,, , sec section 2.2.2.) 

4.3.1.2 Bending Work 

Bending work is the work required to elastic ally bend a curve segm .ent. Bending 

work for a segment of the curve is based on the change of interior angles. ïy,., 

formed by the intersection of the normal lines to the endpoints of the curve (see 

Fig. 4.7). 

The computation of this quantity is straightforward since the control points of 

Bézier curves, by definition, create tangent lines to the endpoints. Knowing 

these tangent lines allows for easy computation of the normal Iines. Since we 

assume that the degree of curvature of each curve segment is small, calculating 

y requires finding the point of intersection, pi,, of these IWO normal lines, and 

then computing the angle L[p , ,  pi,, , p, 1. 

Bending moment is a measure of the tesistance to bending of a wire. The 

bending moment applied to each end of the wire, MW, is defined by 
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where E is the modulus of elasticity of a material, I is the moment of inertia, and 

p is the radius of curvature. 

- --- - 

Fig. 4.7 - Caiculating angles for bending work 

Then the work required to bend a straight wire of length L hto a circular arc of 

1 
curvature K, where K = -, is 

P 
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where iy is as given in Fig. 4.7. 

To render this equation suitable for use, make the following substitutions: 

1y2 = (2 EI) - 
~ P Y '  

Since Our wires have no physical properties, the user c m  choose E and I to suit 

her needs. Therefore, let CM = SEI be a user-defined constant. 

Since we may be bending a curved wire into a curved wire (instead of bending a 

straight wire into a curved wire), we replace yl in equation 4.3 by the difference 

between p, and y, (where Y ,  and ry, are the angles from key curves 1 and 2, 

respectively ). 

For ease of computation (and since we do not, for Our purposes, require exact 

work value computations, but rather approximations of work values), we chwse  

to approximate the curve by a circular arç when computing bending work. The 

length, L, of a circular arc is simply the product of the radius of curvature and 

the angle y .  Therefore, the quantity 2pv is simpiy 2L. Since the initial and 

final lengths of the wire may not be equal, and since we wish Our work equation 
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to be represeniative of the arc lengths from both key curves, replace this quantity 

by ?,+LI- 

Thus, the work equation for bending is 

4.3.1.3 Kinking Work 

If the moment of the wire exceeds the elastic limit, plastic bending (kinking) 

occurs in the wire. 

We consider this sort of bending to occur only at the join points of the Bézier 

curve segments. If we define O to be the angle between the two normal lines to a 

join point (see Fig. 4.8), we can view kinking as similar in nature to the bending 

at polygon vertices discussed in Chapter 2 of this thesis. 

We therefore let kinking work be defined in a manner sixniiar to the work of 

equation 2.9: 

w, = K, le, - e, 1"- , 
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where 8, and 0, are the angles of key curves 1 and 2, respectively, K,,, is a 

user-defined kinking stiffness parameter, and E,,, , as p su al, is an elasticity 

constant. 

Fig. 4.8 - Calculating angles for kinking work 
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4.3.2 Changes to the Least Work Matching Algorithm 

Here, the changes to the Least Work Matching algorithm of Chapter 2 are 

o u  tlined. 

As in Chapter 2, a rectangular grid is used to determine the Least Work control 

point correspondence. Here, instead of assigning every control point a column 

or row in the grid, we allow only the end control points of each Bézier curve to 

be represented in the gnd. This is done to ensure that whole curve segments rnap 

to whole curve segments. 

We denote the amount of work required to stretch (or shorten) the curve segment 

between end control points c0 and 8' (where. of course, two additional control 

points exist in between e0 and lf) of the whole curve PO into a curve segment 

between control points fF and P,' of the whole curve P' (where control point 

corresponds to control point c, and control point !f corresponds to control 

point P:) by 

Similarly, the amount of work required for kinking at a join point of Bézier 

curve segments, where 4'. ff , and 4'' are the end control points of the two 
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adjoining segments of the whole curve PO, and P,', c, and P' are the end 

control points of the two adjoining segments of the whole curve P' (where e0 
corresponds to f $ ,  ff corresponds to c, and corresonds to P;). is 

denoted by 

The amount of work required for bending a curve segment between end control 

points e0 and ff of the whole curve PO into a curve segment between control 

points and of the whole curve P1 (where control point e0 corresponds to 

control point el:', and control point I f  corresponds to control point f$ ) by 

Like the Least Work Matching of Chapter 2, the algorithm here may insert 

additional control points. These control points may only be inserted at existing 

control points represented in the graph (that is. only at the cume segment's 

endpoints). In fact, when one control point is inserted, we must actually insert 

three points at that location; we are inserting an entire curve segment (which just 

so happens to be a point). 
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The same conditions for possible vertex correspondence apply to this graph as to 

the graph of Chapter 2. 

The work equations for each grid vertex must consider not only stretching work 

(which is analogous to stretching work for polygon edges) and kinking work 

(which is analogous to bending work for polygon angles), but also curve 

bendiiig work. Thus, analogous to equation. 2.20, the equation for W,, 

becomes 

Eacktracking through the graph is exactly like that of Chapter 2, with regard to 

the control points that are represented in the graph. However, once we have 

completed the Least Work Matching List, we must insert the interior control 

points into the list for use in the interpolation. 

Once the curves (and the& contml points) have been matched, linear interpolation 

can be used to calculate the in-btween frarnes. 
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One of the most significant problems with using a Bézier curve representation 

when blending curves is the possibility that continuity will not be preserved 

throughout the blend. For example, in Fig. 4.9, the two Bézier curve segments 

of frame 1 are joined with C' continuity, and are matched with the two Bézier 

curve segments of frame 2, which also have Ci continuity at their join point. 

However, throughout the blend, the continuity is decreased to CO at this join 

point (see Fig. 4.10), as the Iinear path followed by one of the control points 

causes a cusp in the in-between images. 

join point 

~ - 

Fig. 4.9 - Two Bezier curves joined with Ci continuity 



Fig. 4.10 - In-between images have reduced continuity 

Consider the "U" and the "J" of Fig. 4.1 1. Blending these letters using the Least 

Work Curve Matching algorithm coupled with iinear interpolation, and using 

parameters C,, = 5, C ,  = 5 ,  E,, = 2, K ,,, = 0.1, C,,, = 1, and 

E,,, = 1, gives a fairly good blend, as shown in Fig. 4.12. Each curve's 

starting control point for the blend of Fig. 4.12 is given by the dot on the images 

in Fig. 4.11. Contrary to Our usual convention, the control points of these 

images have k e n  labelcd in counter-clockwise order. 

To emphasize the importance of the starting control point correspondence, 

consider the blend given in Fig. 4.13. Here, the initial control point of the "U" is 

given in Fig. 4.11 by the square on the top left corner. The initial control point 

of the "J" is the same as in the previous blend. 



Fig. 4.1 1 - "U" and "J" to be blended 

--- - -  - 

Fig. 4.12 - Least Work Curve Matching, initial vertex correspondence 1 
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Fig. 4.13 - Least Work Curve Matching, initial vertex correspondence 2 

Applying the Least Work Matching algorithm (of Chapter 2) to the control 

polygons of the letters with the fmt initial vertex correspondence, and using 

parameters k,, = 2 ,  m,, = l m ,  e,, = 1 ,  ph, = 10000, km,, =0.1, 

c , ~ ~ ~ ,  = 0.1. and e,,, = 1 ,  yields a reasonably good blend (Fig. 4.14). 

although not as smooth a transition as the blend given in Fig. 4.12. Using the 

same parameters on the control polygon blend with second initial vertex 

correspondence give less appealing resul ts (Fig. 4.15). 



Fig. 4.14 - Control polygon blend. vertex correspondence 1 

Fig. 4.15 - Control polygon blend, vertex correspondence 2 
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5.1 Future Work 

There are several problerns associated with two-dimensional shape-blending that 

the methods discussed in this thesis do not address. Some of these have been 

discussed in the results sections of each chapter. Others are noted here. 

To begin with, the Least Work Matching algorithm deals with local self- 

intersections (caused by angles going to zero) by imposing a penalty. However, 

there is nothing in the algorithm which tests for or penalizes global seif- 

intersection. 

As stated previousiy, the algorithm also requires a great deal of user- 

intervention. Firstly, the user is required to select starting points for the vertex 

correspondence. One way to avoid this would be to subject the polygon images 
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to some automated sirnilar feature detection techniques of image processing. 

Secondly, the exponents e,,, and eh, are set by the user before the prograrn is 

mn. Therefore, every edge or angle will use the same exponent, regardless of 

how much or how Iittle a possible vertex correspondence will cause a particular 

edge or angle to stretch or bend. One suggestion is to use thresholding to allow 

die computer to select a value for e,,, and e,, for each proposed edge and 

angle, based on the amount of stretching and bending that will occur for that 

edge or angle in a given situation. A user would, however, be required to set 

threshold levels. 

The algorithms presented here ded only with images containing one polygon or 

closed curve. New methods would be required to deal with images containing 

several shapes (particularly if each image contained a different number of 

shapes), or with images of single shapes that contain one or more holes. Some 

problerns associated with blending shapes contairing holes include finding an 

appropriate matching of the inner shapes, and ensunng that al1 inner shapes 

remain completely inside the outer shape throughout the entire blend. If images 

contained different numbers of shapes, we would have to contend with problems 

such as deciding whether to split shapes apart to make new shapes or to create 

new shapes out of thin air, whether to join shapes together, or to make shapes 

vanish. Further, we would have to decide which of the shapes should be split, 

joined, deleted, or formed out of nothing. 

An obvious improvement to the Least Work Curve Matching algorithm is to 

improve the manner in which kinking work is calculated, by taking into account 



possible deviations from monotonicity 
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and collapsing angles, as was done in 

Chapter 2 for the polygon bending work calculations. 

Linear Interpolation was the only method used for the control point-path problem 

of curve blending. Intrinsic Interpolation could also be applied, either to the 

curves themselves, or to the control polygon. 

A possible method to improve the continuity of the in-between frames of curve 

blending is to convert the Bkzier curves to B-splines. B-splines aUow greater 

continuity at join points. A method of converting Bézier curves to B-splines is 

outlined in 191. 

Conclusion 

This thesis has presented several techniques for blending 2-dimensional 

polygon. The Least Work Matching method of vertex or control point 

correspondence generally provides a good matching between the polygons 

(curves), provided that the vertices (control points) of each polygon (curve) are 

fairly evenly distributed, that the first vertex correspondence is appropriate, and 

that the bending and -stretching (and kinking) parameters are chosen 

appropriately. htrinsic Interpolation with Edge Tweaking clearly produces the 

most elegant results of the vertex path methods discussed in this work. 

Obviously, the most significant drawback of these rnethods is the amount of user 
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intervention that is necessary to produce a good blend. Despite the amount of 

input required. however. the methods are still quite satisfactory and, in rnany 

cases, have produced beautiful blends. 



Appendix A: Implementation 

A.l Introduction 

This appendix provides a discussion of the implementation of the algorithms 

outlined in this thesis. 

A.2 Application 

To assist with my study of shape blending, an application was created using 

Microsoft Visual Basic. Although Visual Basic is not the most efficient language 

to use, it did allow for a quick and easy user-interface. The user-interface for this 

application is shown in Fig. A. 1. The application allows two key polygons or 

Bézier curves to be entered by a user. The polygons rnay be entered either by 

clicking points in the drawing windows, or by opening a fde containhg polygon 



vertices. Bézier curves may only be entered by opening files o f  Bkzier conuol 

points. To open a polygon, select either "Open Polygon in Key 1" or ''Open 

Polygon in Key 2" from the File menu, and choose an appropriate text file. Files 

of Bézier control are opened similady. 

Fig. A. 1 - User-interface of the application 



Polygon vertices and Bézier control points are stored in text files as a list of real 

numbea, one per Iine, giving, altemately, the x- and y-coordinates of the points 

of the polygon, in a clockwise fashion. 

Two list-boxes are given on the fom, one containing a list of vertex 

correspondence methods, and the other containing a list of vertex path 

techniques. The user rnay select, from each list, -the desired technique. Once the 

methods have been selected, the user c m  view the sequence of generated in- 

between frames by clicking the button labeled "Morph". 

Note that the user is responsible for selecting appropriate methods, based on 

whether polygons or curves are to be btended. Further, it is the user's 

responsibility to ensure that both key frarnes contain polygons or that both key 

frames contain curves. 

The number of in-between frarnes is hard-coded and may not be changed by the 

user at run-time. 

The parameters for the work calculation of Least Work Matching and Least 

Work Curve Matching are given in a box in the lower nght corner of the screen. 

The first two columns give the parameters for Least Work Matching. The first 

column contains parameters for bending work, and the second column gives 

parametea for stretching work. The parametea of the third column are for 

stretching, bending, and kinking work of the Least Work Curve Matching 

algorithm. The user can change these values as desired, but must click the 
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"Apply" button in order for the changes to take effect. One value of each 

pararneter may be chosen, and this pararneter is applied to the entire blend. 

A.3 Discussion of the Irnplementations 

This section gives a bnef discussion of how some of the ideas in the thesis were 

implemented. Intrinsic Interpolation is a very straightforward implementation, so 

no cornments are given. The h a s t  Work Matching algorithm has several items to 

be noted (section A.2.1). Least Work Curve Matching is very similar to Least 

Work Matching, so no special mention is made of its implementation. 

A.3.1 Least Work Matching 

For each polygon, the vertices are read into an array of coordinates. For aii 

possible graph vertices, W,,, W,,, and W,,,, are calculated by determinhg 

the appropriate stretching and bending work calculations. My implementation 

takes the fmt vertex in a file of polygon vertices (or the first vertex clicked if the 

user is drawing her own polygon) as the fmt vertex correspondence. 

Stretching work is a straight-forward calculation, requinng only edge length 

di fferences. 
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Bending work is somewhat more involved, and here we make a few notes on 

how bending work calculations were implemented. 

If a triangle contains the origin, then together, the edges of the triangle must 

cross the positive x -a i s ,  the negative x-axis. the positive y-a is .  and the 

negative y-axis. The program tests each triangle edge for intersection with each 

of the axes, and keeps track of which axes have been intersected. 

Monotonicity and deviation from monotonicity are caiculated in a brute-force 

manner. Instead of solving equaûon 2.20 for t E (0,1), we take t in smdl 

incrernents and detennine the angle that the vector from the origin to the point 

Q(t) makes with the x-axis. We keep track of these angles to detennine whether 

the angle changes monotonicdly. This list of angles aIso lets us detennine how 

far from monotonicity the angle deviates (if it does), and in which direction. 

Furthemore, since we are calculating a List of angles, we take the opportunity to 

figure out if Q(t) crosses the x-axis. 

To backtrack, find the previous graph vertex that requires the least arnount of 

work, and choose that one as the next vertex in the backtrack list. 
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A.4 Code 



Code 

Option Explicit 

Const MaxNum = 100 
Const NumInBetweens = 5 ' Nurnber of  in-between frames 
Const Epsilon = 0.00 1 
Const PI = 3.1415926535 

Dirn Key1 FirstClick As Boolean ' Used when the user d n w s  her own polygon by clicking 
Dim KeyZFirstClick As Boolean ' points. Keepstrack of whether o r  not the mouse click 

' represents the first point of the polygon. Needed 
' for drawing (no Line-To used for the first click 

Dirn Key 1 NumPts As lnteger ' Number of vertices (or control points) in each 
Dirn K e y 2 N u m b  As Integer ' key frame 
Dim MaxCPl As Integer ' Number of contml points in the B-Spline (convcrted 
Dim MaxCP2 As lnteger ' from a Bezier) 
Dim MaKVl As lnteger ' Nurnber of knots in the converted 8-Spline 
Dirn MaxKV2 As lnteger 
Dirn Key 1 Pts(MaxNum) As Coords ' Stores the coordinats  of thc veniccs (control points) 
Dim Key2Pts(MaxNurn) As Coords * in the order they are read in (or clicked) 
Dim Key 1 Knots(MaxNum + 4) As  Double ' Stores the knot vector for a spline 
Dirn Key2Knots(MaxNum + 4) As  Double 
Dirn CPi(MaxNum) As Coords ' Control Points of a 6-Spline of Key Frame 1 
Dirn CP2(MaxNum) As Coords ' after the conversion from a Bezier curve. 

Dirn DistinctKnotListI(MaxNum) As Double ' a list of the distinct knots of B-Spline 1 
Dirn DistinctKno~ListZ(MaxNurn) As Double ' 
Dim NumDistinctKnots1 As Integer ' the nurnber of distinct knots of a b-spline 
Dirn NumDistinctKnou2 As lnteger 
Dirn MorphPts(MaxNurn) As Coords 
Dirn NumPts As Inieger 

Dirn DrawPolyl As Boolean ' T m e  if the user draws the polygon by clicking points. 
Dim DrawPoly2 As BooIean ' False if we read from a file. False if we are drawing 

' a curvc. (N.B. This program does not allow the user 
' to  draw a curve by clicking control points. AI1 curves 
' must be read from a file. 

Dirn DrawBezier As Bwlean ' Tme if we are opening Bezier cuwes. False for polygons 
Dim KeyDifference(MaxNum) As  Coords 

' Bending panmeters 
Dim kb As Double ' bending stiffness 
Dirn mb As Double ' penalizes non-monotonie angles 
Dirn eb As lnteger ' either 1 or: 2 
Dim pb As Integer ' penalizes angles from going to O 

'Stretching parameters 
Dim ks As Double ' stretching stiffness constant 
Dim CS As  Double ' controls penalty for edge collapsing to a point 
Dim es As Integer * 1 or  2. depending on the stretchiness of the wire 



' Curve bcnding parameters 
Dirn CurvcCb As Double 
Dim CurveCk As Double 
Dim CurveEk As Double 
Dim CurveKs As Double 
Dim CurveCs As Double 
Dim CurveEs As Double 

Privace Sub cmdAppiy,CIick() 
kb = CDbl(txtkb.Text) 
mb = CDbl(txtmb.Tcxt) 
cb  = Val(txteb.Text) 
pb = Val(urtpb.Text) 

CurvcKs = CDbi(txtCurveKs.Text) 
CurveCb = CDbl(txtCurveCb.Text) 
CurveEk = CDbl(utCurvcEk.Text) 
CuweCk = CDbl(utCurveCk.Text) 
CurveCs = CDbl(urCurveCs.Text) 
CurveEs = CDbl(txtCurveEs.Text) 

End Sub 
'*****4***8**8*8*8S*8***8*8*8*8*88*88888**8*888*8*88**88**88***8** 

Private Sub crndClear-Click() 
' Clears al1 drawing from the picture windows and re-initializcd the data corresponding 
' to the pictures 

Dim 1 As lnteger 

Key 1 FirstCIick = True 
Kcy2FirstClick = T N ~  
Key ! NumPts = O 
Kcy2NumPts = O 
NumPts = O 
DrawPoly 1 = True 
DrawPoly2 = True 
DnwBezier = False 
picKey 1 .Cls 
picKey2.CIs 
picMorph 1 .Cls 
picMorph2.Cls 
picMorph3.Cls 
picMorph4.Cls 
picMorph5.Cls 

End Sub 
'*****8****888*8*8*8888*8.t . .888888888*88*8*8*8888*88** 
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Private Sub cmdMorph-Click() 
' Stans the selected vertex corrcspondence and vertex path methods 
' Note: All polygons are required to be closcd, For each polygon. d n w  a line 
' from the Imt vertex to the first vertex. Do not increment the number of 
' points. since the number of  points remains the samc. (We don't want 
' to count the first vertex twice). Add the coords of  the f in t  vcnex to the 
' end of the venex list (for simplicity in later code). 
' Notc: Only do  this if we are dnwing  polygons, NOT if we are dnwing  
' cuwes 

If DnwBezier = Fdse  Then 
' Ciose the polygons. This is only NECESSARY when the user is dnwing  
' her own polygonby clicking points. If a polygon file is opencd, the 
' "open" routine takcs carc of closing the poiygon 

picKey2Line (10 * KeyZPts(Kcy2NumPts - l).X,, 
picKey2.Height - (10 * Key2Pts(KeyZNurnPts - l).Y))- - 
( 10 KeyZPts(O).X. picKey2.Height - (IO * KeyZRs(O).Y)) 

picKey1.Line (10 * Key lPts(Key1NumPts - I).X. - 
picKey 1 .Height - (IO Key IPu(Key 1 NumPts - l).Y))- , 
(IO * Key! Pts(O).X. picKey1.Height - (10 KeyIPts(O).Y)) 

Key 1 &(Key 1 NumPts).X = Key 1 Pts(O).X 
Kcy 1 Pts(Key 1 NumPts).Y = Key t Pts(O).Y 
Key2Pts(Key2NumP~).X = KeyZPts(O).X 
Key2Pts(Key2NumPts).Y = KeyZPts(O).Y 

End I f  

' Choose a venex correspondence rnethod 
Select Case IstVertCorr.Listlndex 

Case O 
MatchByOrder 1 

Case 1 
LeastWorkMatching 

Case 2 
LeastWorkCurveMatching 

End Select 
' Choose a vertex path rnethod 
Select Case 1stVertPath.ListIndex 

Case O 
LinearInterpolation 

Case 1 
Intrinsiclnterpolation 

Case2 
EdgeTweaking 

Case 3 
LinearBezierMorph 

Case4 
IntrinsicBezierMorph 

End Select 

End Sub 



Code 

. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * w * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Private Sub Fonn-Load() 
Key 1 FirstCiick = Tme 
KcyZFirstClick = Tme 
Key 1 NumPts = O 
Key 2NumPts = O 
DnwPoly I = True 
DrawPoly2 = Tme 
DrawBetier = False 
' Initialize bending panmeters 
kb = 2 ' bending stiffness 
mb = 100 ' penalizes non-monotonie angles 

e b = i  ' 

pb = IOOOO ' penalizes angles from going to O 
' Initialize stretching parameters 
ks = 0.1 ' stretching stiffness constant 
CS = 0.1 ' controls penalty for edge collapsing to a point 
es=2  ' 

Initialize curve pmmeters 
CurveCb = 1 
CurveCk = 1 
CurveEk = 1 
CurveKs = 0.1 
curvecs = 1 
CurveEs = 1 

End Sub 

'***************************************************************** 
Private Sub rnnuExit-Click0 

End 
End Sub 

Private Sub rnnuOpenCurve1-Click() 
' Opens a Bezier Curve in Frame 1 
' Set CûncelError is Tme 

ComrnonDialog 1 .CancelError = True 
On Ermr GoTo ErrHandler 

Set flags 
ComrnonDialog 1 .Flags = cdIOFNHideReridOnly 
' Set filters 
CommonDialogl.Filter = "Al1 Files (*.*)18.*IText Files" & - 
"(*.txt)l*.txt" 

' Specify default filter 
CommonDialog l .Filterlndex = 2 
' Display the Open dialog box 
CornmonDialog 1 .Showopen 
' Display name of selected file 

DnwPoly1 = False 'If we commit ourseIves to opcning a file in 
' the frarne, wc cannot then decide to drow 
' our own polygon (by clicking points), 

Dim Fnurn As lnteger 
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Dim Temp As String 
Dim 1 As lntcger 
Dirn J As Boolean 
D n w  Bezier = Tme 
I = O  
J = True 
Fnum = FreeFi le 
Open CornrnonDialogl .filename For Input As #Fnum 

Do While Not EOF(Fnum) 
Line Input #Fnum. Temp 
If J =Truc Then 

Key IPts(0.X = CDblflémp) 
J = FaIse 

Else 
Key I Pts(I).Y = CDblflemp) 

J =Tme 
I = l + l  
Key 1 NumRs = I 

End If 
h o p  

Key 1 Pts(Key 1 NumPts).X = Key 1 Pts(O).X 
Key I Pts(Key 1 NumPis).Y = Key 1 Pts(O).Y 

I = l + l  
Dirn NurnExtraPts As lnteger 
NumExvaPts = O 

WhiIe (((Key1 NumPts) Mod 3) O O) ' we should have the right number of 
Key1 Prs(I).X = KeylPts(O).X ' control points in the file. but just 
KeyIPts(l).Y = Key IPts(O).Y ' in case we don't. we do this 
NurnExtnPts = NumExtraRs + 1 
Key I Nurnhs = Key 1 NumRs + 1 
I = I + I  

Wend 

For I = 1 To (Key INumPts - NumExtraPts) Step 1 
' mark the control points 
picKey1 .Circle (10 KeyIPts(1 - 1).X. picKey1-Height - 10 * Key lPts(1 - !).Y). - 

1, RGB(O.255.0) 
*picKeyl.Line (IO * KeylPts(1 - 1).X, , 

picKeyl.Height - (IO Key IPts(I - l).Y)) , 
-(IO Key1 Pts(t).X. picKey 1.Height - (10 KeylPu(l).Y)) 

Next i 

Dirn h O  As Coords 
Dim Pt1 As Coords 
Dirn Pt2 As Coords 
Dirn Pt3 As Coofds 
Dirn t 1 As tnteger 
Dirn t As Double 
Dirn NumCurves As integer 
Dirn TempX As Double 
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Dim TempY As Doublc 
NurnCurves = ((Key I NurnPts) / 3) 

For 1 = 0 To (NumCurves - 1 ) Step 1 
Pt0 = Key 1 Rs(3 1) 
PLI =KeylPts(3 1 + 1) 
Pt2 = KeylPts(3 1 + 2) 
Pt3 = Key 1 Pts(3 1 + 3) 
For t 1 = O To 200 Step 1 

'calculate and plot the point of the bezier curve 
t= t1 /200  
TempX=( l -c l*( ! - t )* ( l  - t ) *P t0 .X+3* t f (1 -L )* ( I  -t)*RL.X- 

+ 3 * t * t f ( t  - t ) 'R2.X+t*t*t*Pt3.X 
TempY=(I-t)*(L-t)*(1-t)*PtO.Y+3*t*(I-t)*(I-t)*Ptl.Y- 

+ 3 * t * t * ( I - t ) * P t 2 , Y + t * t * t * P r 3 . Y  
picKey 1-Circle (10 TempX. picKey1.Height - (10 TempY)). 0.2 

Next tl 
Next 1 
Exit Sub 

ErrHandler: 
'User prcssed the Cancel button 
Exit SubEnd Sub 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Private Sub mnuOpenCurve2,Click() 
' Opens a Bezier Curve in Fnme 2 
' Sct CanceIEnor is Fme 

CommonDiaIog 1 .CancelError = Truc 
On Enor GoTo ErrHandler 
' Set flags 
CommonDialog I .Fiags = cdIOFNHideReadOnly 
' Set filters 
CommonDialogl .Filter = "Al1 Files (*.*)l*.*iText Files" & , 
"(*.txt)l*.txtl' 

' Specify default filter 
CommonDialog 1 .FiIterhdex = 2 
' Display the Opcn dialog box 
CommonDialog 1 Showopen 
' Display name of seiected file 

DrawPoly2 = False 'If we commit outselves to opening a file in 
' t he  frame, we cannot then decide to draw 
' our own polygon (by clicking points). 

Dim Fnum As lnteger 
Dirn Temp As String 
Dim 1 As lnteger 
Dim J As Boolean 
I = O  
J = True 
Fnum = FfeeFile 

Open CommonDialogl .filename For lnput As #Fnum 
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Do W hile NOL EOF(Fnum) 
Line Input #Fnurn. Temp 
If l = T m e  Then 

Key2Pts(l).X = CDblflemp) 
l = F d s e  

Else 
Kcy2Prs(l).Y = CDblflernp) 

I =Truc 
I = I + I  
Kcy2NumRs = 1 

End If 
L ~ P  

Key2Pts(Kcy2NumPts)X = KeyZPts(O).X 
Key2Pts(Key2NurnPts).Y = KeyZPts(O).Y 

I = l + l  
Dirn NurnExtnPts A s  Integer 
NumExrraPts = O 
While (((Key2NumPts) Mod 3) o O) 

Kcy2Pts(l).X = Key2fts(O).X 
Key2Pts(I).Y = Key2Pts(O).Y 
NumExtraPts = NurnExtraPts + 1 
Key2NumPts = Key2NumPts + 1 
I = I + 1  

Wend 

For 1 = 1 T o  (Key2NurnPts - NumExtrahs) Step 1 
' mark the control points 
picKey2.Circle (10 Key2Pts(t - l).X, picKey2.Height - 10 * KeyZPts(1 - 

1. RGB(O,255.0) 
'picKey2.Line (IO KeyZPts(1- I).X,, 

picKey2.Height - (10 * Key2Pts(I - l).Y)) - 
-(!O Key2Pts(I).X. picKey2.Height - (10 Key2Pts(I).Y)) 

' note: uncomment the above line if you want the control polygon dnwn 
Next I 

Dirn Pt0 As Coords 
Dim P t 1  As Coords 
Dirn Pt2 As Coords 
Dirn R 3  As  Cwrds 
Dim tI As Integer 
Dirn t As Double 
Dirn NurnCurves As Integer 
Dirn TempX As Double . 
Dirn TempY As Double 
NumCurves = ((Key2NumRs) / 3) 
For 1 = O To (NumCurves - 1) Step 1 

Pt0 = Key2Pts(3 1) 
Pr1 = Kcy2Pts(3 1 + 1) 
Pt2 = Key2Pts(3 1 + 2) 
Pt3 = KeyZPts(3 * 1 + 3) 
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For t 1 = O To 200 Step 1 
'calculate and plot the points of the bezier curve 

t= t1 /200  
TempX=(I - t ) * ( I  - t ) * ( I  - t )*P tO ,X+3* t* ( I  - t ) * ( I  -t)*Pti.X- 

+ 3 * t * t 8 ( 1 - t ) * R 2 . X + t * t * t * P t 3 . X  
TcmpY=(1 - t ) * ( l  - t )*( l - t )*P1O.Y+3*r*( l  - i ) * ( I  -t)*PtI.Y- 

+ 3 * t * t L ( 1 - t ) * P t 2 . Y + t 8 t * t * P t 3 . Y  
picKey2.Circle (10 TempX. picKey2.Height - (10 * TempY)), 0.2 

Next t l 
Next 1 
Exit Sub 

ErrHandler: 
'User pressed the Cancel button 
Exit Sub 

End Sub 

CommonDialog 1 .CanceiError = True ' Set CancelError to True 
On b r  GoTo ErrHandler 
CommonDialog 1.Flags = cdlOFNHideReadOnly ' Set flags 
CommonDialogl.Filter = "Al1 Files (*.*)l*.*IText Files" & - 

"(*.txt)l*.txtW ' Set filters 
CommonDialogl.Filterlndex = 2 ' Specify default filter 
CommonDiaIogl .Showopen ' Display the Open dialog box 

DrawPolyl = False ' Once we have opened a file in the frame, we cannot 
' dnw our polygon 

DrawBezier = False ' We are drawing a polygon. not a curve 

Dirn Fnum As Integer 
Dim Ternp As String 
Dim 1 As Integer 
Dim J As Boolean 
I = O  
J = Tme 
Fnum = FreeFile 
Open CommonDialogl.filename For Input As #Fnum ' Display name of selccted file 

Do While Nor EOF(Fnum) 
Line Input #Fnum, Temp 
' Read in the points. The file contains point as one coordiriate per Iine. 
' Le. x on one line. corresponding y on the next; next x on the next line, etc. 

If J = Tme Then 
Key 1 Pcs(l).X = CDblCTernp) 
J = False 

EIsc 
Key 1 Pts(I).Y = CDblCTemp) 

J = T m  
I = l + l  
Key 1 NumRs = 1 
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Key I Pts(Key 1 NurnPts1.X = Key 1 Pts(O).X ' Repeat the first vertex as the Iast 
Key 1 Pts(Key 1 NumPts).Y = Key 1 Pts(O).Y * to force closure 

For 1 = 1 T o  Key 1 NurnPts Step 1 
' D n w  the vertices and edges in thc f n m e  
picKey1 .Circle (10 * KeylPts(1 - 1).X, picKey 1-Height - 10 KeylPts(1 - I).Y), - 

0.5. RGB(O.O. 255) 
picKey1 .Line (IO * KeylPts(1 - l) .X, - 

picKcy1.Height - (IO KeylPts(1- I).Y)) - 
-( 10 * Key1 Pts0.X. picKey 1-Height - f IO Key1 Pts(l).Y)) 

Next 1 
Exit Sub 

ErrHandler: 
'User pressed the Canccl button 
Exit Sub 

End Sub 

~*****************************************************************= 
Private Sub mnuOpenKey2_Click() 
' Lets the user choose a file of polygon vertices to be opened and d n w n  in 
' Key F n m e  2 

CommonDialogI .CancelError = Tnie ' Set CancelEnor is Tmc 
On Error GoTo ErrHandIer 
CommonDialog 1 .Flags = cdlOFNHideReadOnly ' Set flags 
CommonDialogl.Filter = "Al1 Files (*.*)l*.*iText Files" & - 

"(*.txt)I*.txt" ' Set filters 
CommonDialogI.Filter1ndex = 2 ' Specify default filter 
CommonDialog 1 .Showopen ' Display the Open dialog box 
DmwPoly2 = Faise ' Once we  have opened a file in the frarne, 

' we cannot drawn our own polygon 
DnwBezier = False 
Dim Fnum As integcr 
Dim Temp As String 
Dirn 1 As Integer 
Dim J As Boolean 
1 = O  
J =Tme 
Fnum = FreeFile 
Open CommonDialogl.filenarne For Input As #Fnum ' Display name o f  selected file 

Do While Not EOFFnum)  
' Read in the points. See rnnuOpenKey1 for file description. 

Linc Input UFnum. Ternp 
If J = True Then 

Key2Ptsfl).X = CDblflemp) 
.J = False 

Else 
Key2Pts(I).Y = CDbl(Temp) 

J =Tme 
i = I + l  



Key2NumRs = 1 
End If 

b o p  

Key2Pts(Key2NumPts).X = Key2Pts(O).X ' Force polygon closure 
Key2Pts(Key2NumPts).Y = Kcy2Pts(O).Y 

For 1 = I To  KeyZNumPts Step 1 
' Dnw 

picKey2.Circie ( IO * Key2Pts(l - 1 ).X, picKey2.Height - 10 * Key2Pts(l - I ).Y). - 
0.5. RGB (O. 0.255) 

picKey2.Line (10 Key2Pts(I - l).X, - 
picKey2.Height - (IO Key2Pts(I - l).Y)) , 
-(IO Key2Pts(I).X. picKey2.Height - (10 Key2Pts(I).Y)) 

Ncxt 1 
Exit Sub 

ErrHandler: 
'User pressed the Cancel button 

Exit Sub 
End Sub 

Private Sub rnnuOpenSplinel-Click() 
' Opens a Bezier Curve in Frame 1 and converts it to a B-Spline 
' Set CancelError is True 

CommonDialog 1 CancelError = True 
Or! Error GoTo ErrHandler 
' Set flags 
CommonDialog 1 .Flags = cdlOFNHideReadOnly 
' Set filters 
CommonDialogl.Fiiter = "Al1 Files (*.*)I*.*IText Files" & , 
"(*.txt)t*.U<t" 

' Specify default filter 
CommonDialog 1 .FiIterIndex = 2 
' Display the Open dialog box 
CommonDialog 1 .Showopen 
' Display name of selected file 

DnwPoIyl = False 'If we commit ourselves to opening a file in the frarne, we 
' cannot then decide io draw our own polygon by clicking pts 

Dim Fnum As lnteger 
Dim Temp As String 
Dim 1 As Integer 
Dim J As Bootean 
Dnw Bezier = True 
! = O  
J =Tme 
Fnurn = FreeFile 
Open CommonDialogl.filename For Input As #Fnum 
Do While Not EOF(Fnum) 

Line Input #Fnum, Temp 

If J = True Then 
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Key 1 Prs(l).X = CDbl(Temp) 
J = Fabe 

EIse 
Key 1 Pls(I).Y = CDbl(Ternp) 

J =Tme 
1 = 1 +  1 
Key 1 NurnRs = 1 

End If 
b o p  

Key 1 Pts(Key I NumPts).X = Key l Pts(O).X 
Kcy 1 Pts(Key 1 NumPts).Y = Key 1 Pls(O).Y 

I = I + I  
Dim NumExvaPts As Integer 
NurnExtraP& = O 

WhiIe (((Key1 NumPu) Mod 3) o O) ' we should have the nght number o f  
Key lPts(I).X = Key 1 Pts(O).X * control points in the file. but just 
Key 1 Pts(I).Y = Key 1 &(O).Y ' in case we donet, we d o  this 
NumExtraPts = NumExtraRs + 1 
Key1 N u m b  = Key INumPts + 1 
I = l + l  

Wend 

* Now conven thc Bezier to a B-Spline 
' initialize the control point list and knot vector 

For1 = O T o  3 Step 1 
CP 1 (I).X = Key l Pts(l).X 
CP I ([).Y = Key 1 Pts(I).Y 
Key 1 Knots(l) = O 

Next 1 
F o r I = 4 T o 7 S t e p  1 

Key 1 Knots(1) = 1 
Next 1 
MaxCPI = 3  
MaxKVI = 7  

' Want to add the next Bezier curve control points 
' to the Iist of control points 
Dirn Slopel As Double 
Dim SlopeZ As Double 
Dim NewKnot As Double 
Dim Continuity A s  Integer 
Dim NumCurves As lnteger 
Dim NextIndex As Integer - 
NumCurves = ((Key 1 NumRs) / 3) 
' This will be in some kind of loop 
Nextlndex = MaxCP 1 + 1 
While Nextlndex < Key1 NumPts 

If Abs(CPl(MaxCPl).X - CPI(MaxCP1 - 1).X) < Epsilon Thcn 
Slopel = 32000 

Else 
Slopel = (CPI (MaxCP 1 ).Y - CPI  (MaxCP1 - 1 ).Y) / , 



Code 

(CPl(MaxCP1 ).X - CPl(MaxCP1 - 1).X) 
End If 

If Abs(Key 1 Pts(Nextlndex).X - CPI (MaxCPI ).X) < Epsilon Then 
Slope2 = 32000 

Else 
Slow2  = (KeylPts(NextIndex).Y - CPl(MaxCPl).Y) / - 

(Key 1 fts(Nextindex).X - CPI (MaxCP I).X) 
End If 

If (Abs(S1ope I - Slope2) > Epsilon) Thcn ' curve have only CO continuity 
New Knot = Key 1 Knots(MaxKV 1 ) + i 
Continuity = O 

Else ' the d o p e  is the sarne. so  curvcs have at least CI continuity. 
' Choose a knot value that rcflects this continuity 

New Knot = ((Key 1 Pts(Nextlndex).X - CP l(MaxCPl).X) - 
(Key 1 Knois(MaxKV 1 - 3) - Key l Knots(MaxKV1 - 4)) / - 
(CPI(MXKCPI).X - CPI(MWCPL - I).X)) + - 
Key l Knots(MaxKV 1 - 3) 

Continuity = I 

' Now test to  see if the curves are actually C 2  continuous 
If Abs( - 

(-  
(CP1 (MaxCPI - 2).X - Key l Pts(Next1ndex + !).X) , 
(Key I Knots(MaxKV 1 - 3) - Key l Knots(MaxKV 1 - 5)) - 
(Key I Knots(MaxKV I - 3) - NewKnot) - 

1 - 
+- 

(&  
(CP 1 (MaxCP1 - 1 ).X - CPZ(MaxCP1 - 2).X) * - 
(NewKnot - Key 1 Knois(MaxKV 1 - 5)) * , 
(Key 1 Knots(MaxKV 1 - 3) - NewKnoi) - 

1- 
+- 

( -  
(Key 1 Pts(Ncxt1ndex + 1).X - Key 1 Pts(NextIndex).X) * , 
(Key 1 Knots(MaxKV 1 - 4) - NewKnot) - 
(Key 1 Knots(MaxKV 1 - 3) - Key l Knots(MaxKV 1 - 5)) , 

1- 
) < Epsilon Then 
' then we have C2 continuity 
Continuity = 2 

End If 
' Now check for r? continuity 

Dim PAIpha As Cwrds 
Dim PBeta As Coords 
Dim PGamma As Coords 
If (Abs(Key 1 Knots(MaxKV 1 - 5) - Key 1 Knots(MaxKV 1 - 6)) > Epsilon) Then 

PAlphâX = ((Key1 Knots(MaxKV 1 - 3) - Key1 Knots(MaxKV 1 - 4)) - 
Key l Pis(Nextindex + I ).X + - 

((NewKnot - Key l Knots(MaxKV 1 - 3)) Key IPu(Nurtindex).X)) / , 
(New Knot - Key 1 Knols(MaxKV 1 - 4)) 



PA1pha.Y = ((Key 1 Knots(MaxKV 1 - 3) - Kcy 1 Knots(MaxKV 1 - 4)) * Key I Pts(Next Index + 
I ) .Y  +, 

((NewKnot - Key1 Knots(MaxKV 1 - 3)) KeylPts(Nextlndex).Y)) / - 
(NewKnot - Key 1 Knots(MrixKV 1 - 4)) 

PBct3.X = ((New Knot - Key 1 Knors(MaxKV I - 6)) * CPI (MaxCP 1 - 2).X + - 
((Key 1 Knots(MaxKV l - 5) - NewKnot) CPI (MaxCP I - 3).X)) / - 
(Key 1 Knots(MaxKV I - 5) - Key 1 Knots(MaxKV 1 - 6)) 

PBe1a.Y = ((NewKnot - Key 1 Knots(MaxKV1 - 6)) CPI(MaxCP1 - 21.Y + - 
((Key 1 Knors(MaxKV I - 5 )  - NewKnot) * CPl(MaxCP1 - 3).Y)) / - 
(Key I Knots(MaxKV 1 - 5) - Key 1 Knots(MaxKV 1 - 6)) 

PGamma.X = ((Key 1 Knots(MaxKV 1 - 3) - Key 1 Knots(MaxKV l - 4)) Key 1 PWNextIndex + 
2).X + - 

((Key 1 Knots(MaxKV 1 - 4) - NewKnot) Key 1 Pts(Nextlndex + 1 ).X)) / - 
(Key 1 Knots(MaxKV1 - 3) - NewKnot) 

PGammaY = ((Key1 Knots(MaxKV 1 - 3) - Key1 Knots(MaxKV 1 - 4)) * Key 1 P!u(Nextlndex + 
2).Y + _ 

((Key1 Knots(MaxKV 1 - 4) - NewKnot) * Keylhs(Next1ndex + 1 ).Y)) / - 
(Key I Knots(MaxKV 1 - 3) - NewKnot) 

If Abs(PA1pha.X - ((((NewKnot - Keyl Knots(MaxKV 1 - 3)) * PBeta.X) +, 
((Key 1 Knots(MaxKV 1 - 3) - Key 1 Knots(MaxKV 1 - 5)) * PC3arnma.X)) / , 
(NewKnot - Key 1 Knots(MaxKV 1 - 5)))) < Epsilon Then 

Continuity = 3 
End If 

End If 
End If 

' Append the new knots and conuol points, depending on the 
' continuity between the two curves 

Select Case Continuity 
Case O 

Key 1 Knots(MaxKV 1 ) = NewKnot 
Key 1 Knots(MaxKV 1 + 1) = NewKnot 
Key 1 Knots(MaxKV 1 + 2) = NewKnot 
Keyl Knots(MaxKV 1 + 3) = NewKnot 
MaxKV1 =MaxKVI + 3  
C P  1 (MaxCP 1 + 1 ).X = Key 1 Pts(MaxCP 1 + 1).X 
C P  I (MaxCP1 + 1).Y = Key lPts(MaxCP1 + I).Y 
C P  1 (MaxCP 1 + 2).X = Key lPts(MaxCP1 + 2).X 
CPI (MaxCPI + 2).Y = KeylPts(MaxCP1 + 2).Y 
CPI(MaxCP1 + 3).X = KeylPts(MaxCP1 + 3).X 
CPI (MaxCP 1 + 3).Y = Key lPts(MaxCP1 + 3.Y 
MaxCP 1 = MaxCP l + 3 

Case 1 
Key 1 Knots(MaxKV 1 - 1 ) = NewKnot 
Kcy 1 Knots(MaxKV 1 ) = NewKnot 
Key 1 Knots(MaxKV 1 + 1) = NewKnot 
Key 1 Knots(MaxKV 1 + 2) = New Knot 
MaxKV 1 = MaxKV 1 + 2 
C P  1 (MaxCPI).X = Key 1 Pts(MaxCP1 + 1).X 
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CP! (MaxCPI).Y = Key 1 Pts(MaxCP1 + l).Y 
CPI (MaxCP1 + l).X = Key I Pts(MaxCP1 + 2).X 
CPI  (MaxCPl + l).Y = KeyIPts(MaxCP1 + 2).Y 
CP! (MaxCPI + 2)-X = Key I Pts(MaxCP1 + 3).X 
CP! (MaxCP1 + 2).Y = Key IPts(MaxCP1 + 3).Y 
MaxCPl = MaxCPl + 2 

Case2 
Key 1 Knots(MaxKV 1 - 2) = NcwKnot 
Key 1 Knois(MâxKV 1 - 1) = New Knot 
Key 1 Knots(MaxKV1) = New Knot 
Key 1 Knots(MaxKV 1 + 1 ) = New Knot 
MaxKV 1 = MaxKV 1 + 1 
CPI  (MaxCPl - l).X = PA1pha.X 
CP 1 (MaxCPI - I).Y = PAlpha.Y 
C P l  (MaxCPl).X = KeyiAs(MaxCP1 + 2).X 
C P  I (MaxCP 1).Y = Key i Pts(MaxCP 1 + 2).Y 
CPI (MaxCPl + 1).X = KeylPts(MaxCP1 + 3).X 
C P l  (MaxCPI + !).Y = KcyIPts(MaxCPl+ 3 .Y  
MaxCP 1 = MaxCPI + 1 

Case 3 
Key 1 Knots(MaxKV 1 - 3) = NewKnot 
Key I Knots(MaxKV 1 - 2) = NewKnot 
Key1 Knois(MaxKV 1 - 1) = NewKnot 
Key 1 Knots(MaxKV 1 ) = New Knot 
MaxKVI = MaxKV1 
CPl(MaxCP1 - 2).X = PBeta-X 
CPI(MaxCP1 - 2).Y = PBetaY 
C P  1 (MaxCPI - 1 ).X = PGamma.X 
CP 1 (MaxCPI - 1).Y = PGamma-Y 
CP 1 (MaxCPI).X = Key 1 Pts(MaxCP1 + 3).X 
C P  1 (MaxCP l).Y = Key l Pts(MaxCP 1 + 3).Y 
MaxCPl = MaxCPl 

End Select 
Ncxtlndex = NextIndex + 3 

Wend For 1 = 1 T o  (MaxCPl+ 1) Step 1 
' mark the control points 
picKey 1-Circle (10 CPI(1 - 1).X, picKey1.Height - IO CPI(1 - I).Y). , 

1. RGB(O.255. O) 
Next 1 
Dirn t 1 As Integer 
Dirn t As Double 
Dirn TempX As Double 
Dirn TernpY As Double 
' D n w  the curve 
I = 3  
Whi le I <= MaxCP 1 

For t 1 = (200 Key 1 Knots(1)) T o  (200 Key 1 Knots(1 + 1)) Step 1 
If (Key 1 Knocs(1) o Key 1 Knots(1 + 1)) Then 
'calculate and plot the points of the b-spline 

t = t l / (200 * (Key 1 Knots(1 + 1) - Key 1 Knots(1))) 
Dirn TennI As Double 
Dirn Terml As Double 
Dirn Tenn3 As Double 
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Dim Tcm4 As Double 
Term I = (Key 1 Knots(1 + 1 ) - t) (Key1 Knots(1 + 1) - t) (Key 1 Knots(1 + 1) - t) - 

*CPI(I  - 3).X/, 
((Key 1 Knots(l + 1 ) - Key l Knots(1- 2)) (Key l Knots(l+ 1) - Key 1 Knots(l - I )) - 

(Key 1 K n o M  + 1 ) - Key 1 Knots(1))) 

Tcrm2 = (t - Key 1 Knoü(1-  2)) (Key l Knou(l + 1) - t) * (Key 1 Knots(l + 1) - t) - 
* CPI(1- 2).X 1- 
((Key 1 Knots(1 + 1 ) - Key I Knots(1 - 2)) * (Key 1 Knots(1 + I ) - Key 1 Knots(1- I )) - 

* (Key 1 Knols(i + I ) - Key 1 Knots(1))) + - 
(Key1 Knots(1 + 2) - t) * (t - Key 1 Knots(l - 1)) (Key 1 Knots(l + 1) - t) - 
* CPl(1 - 2).X /, 
((Key i Knots(I+ 2) - Key I Knots(1- 1 )) (Key I Knols(1 + 1 ) - Key 1 Knois(1 - 1 )) - 

(Key 1 Knots(1 + 1 ) - Key 1 luiots(1))) + - 
(Key1 Knots(1 + 2) - t) * (t - Key 1 Knots(1)) * (Key I Knots(l+ 2) - t) - 
* CPI(1 - 2).X / -  
((Keyl Knots(1 + 2) - Keyl  Knots(l - 1)) (Key 1 Knots(1 + 2) - Key 1 Knots(1)) - 
* (Key 1 Knots(l + 1 ) - Key 1 Knots(1))) 

Tem3 = (t - Key 1 Knots(1- 1 )) (t - Keyl Knots(! - 1)) * (Keyl  Knots(l + 1) - t) - 
CPI(1 - I).X / - 

((Key 1 Knots(1 + 2) - Key 1 Knots(1- 1)) * (Key 1 Knots(1 + 1) - Key 1 Knots(1 - 1)) - 
(Key 1 Knots(l + 1) - Key 1 Knots(1))) + - 

(t - Key 1 Knots(1)) * (t - Key l Knots(1- 1)) (Key 1 Knots(1 + 2) - t) - 
* CPI(I - I).X/, 
((Key 1 Knots(1 + 2) - Key l Knots(1- 1)) (Key 1 Knots(1 + 2) - Key 1 Knots(1)) - 

(Key 1 Knou(I + 1 ) - Key 1 Knots(1))) + - 
(Key 1 Knots(1 + 3) - t) * (t - Key l Knots(1)) (t - Key 1 Knots(l)) - 
* CPI(1- l).X/, 
((Key 1 Knots(1 + 3) - Key 1 Knots(1)) (Key 1 Knots(1 + 2) - Key 1 Knots(1)) - 

(Keyl Knots(1 + 1) - Key l Knots(1))) 

T e m 4  = (t - Key 1 Knots(1)) * (t - Keyl Knots(1)) (t - Key I Knots(1)) - 
CPl(l).X /, 

((Key 1 Knots(I+ 3) - Key 1 Knots(1)) * (Key 1 Knots( l+ 2) - Key 1 Knotso)) - 
(Key 1 Knots(1 + 5 )  - Key 1 Knots(1))) 

TempX = Terrn 1 + T e n n 2  + Term3 +Te& 

T e m l  =(KeyIKnots(I + 1) - t) (KeyIKnocs(1 + 1) - t) (KeyIKnots(I+ 1) - t) _ 
*CPI(I-3) .Y/-  
((Key 1 Knots(1 + 1) - Key 1 Knots(1- 2)) (Key 1 Knots(f + 1) - Key 1 Knots(1- 1 )) - 

(Key I Knots(1 + 1) - Key 1 Knots(1))) 

T e m 2  = (t - Keyl  Knots(1- 2)) * (Key 1 Knots(1 + 1) - t) (Key 1 Knots(1 + 1) - 0 - 
CPI(1- 2).Y /, 

((Key 1 Knots(I+ 1) - Key 1 Knots(1- 2)) * (Key 1 Knots(1 + 1) - Key l Knots(1- 1)) - 
* (Key l Knots(1 + 1 ) - Key 1 KnotsO)) + - 
(Key I Knots(1 + 2) - t) (t - Key 1 Knots(1- 1)) (Key 1 Knots(1 + 1 ) - t) - 
CPI(I - 2).Y /, 

((Key 1 Knots(1 + 2) - Key 1 Knots(l - 1)) (Key 1 Knots(1 + 1) - Keyl  Knots(1- 1)) - 
* (Key l Knots(I+ 1) - Key 1 Knots(1))) + - 
(Key 1 Knots(I+ 2) - t) (t - Key 1 Knots(1)) (Key 1 Knots(1 + 2) - t) - 



CPI(I - 2).Y I- 
((Key I Knots(1 + 2) - Key l Knots(l - I)) (Key 1 Knots(1 + 2) - Key l Knots(1)) - 

(Key 1 Knots(1 + 1 ) - Key 1 Knots(1))) 

Tem3 = (t - Keyl KnoWl- 1)) (t - KeylKnots(1- 1)) (Keyl Knots(1 + 1) - t) - 
*CPI(I- I).Y/- 
((Key 1 Knots(l + 2) - Key 1 Knots(l - 1 )) (Key I Knots(l + I ) - Key 1 Knots(1- 1)) - 
* (Key 1 Knou(l + 1 ) - Key 1 Knots(1))) + - 
(t - Key 1 Knots(1)) * (t - Key I Knots(1 - 1)) * (Key 1 Knois(1 .t 2) - t) - 
* CPI(1- I).Y 1- 
((Key I Knots(I+ 2) - Key 1 Knocs(1- 1 )) (Key l Knots(1 + 2) - Key 1 Knots(1)) - 
* (Key 1 Knots(l + 1 ) - Keyl Knots(1))) + - 
(Key 1 Knots(l+ 3) - t) (t - Key1 Knots(i)) (t - Keyl Knots(1)) - 
* CPI(1 - !).Y / -  
((Key 1 Knots(1 + 3) - Key l Knots(1)) (Key 1 Knots(1 + 2) - Key 1 Knots(1)) - 
* (Key 1 Knou(1 + 1) - Key 1 Knots(1))) 

Tem4 = (t - Key 1 Knots(1)) (t - Key 1 Knots(1)) * (t - Keyl Knots(1)) * - 
CP 1 (I).Y 1 - 
((Key 1 Knots(1 + 3) - Key 1 Knots(1)) * (Key l Knots(1 + 2) - Key 1 Knots(1)) - 
* (Key1 Knots(1 + 1) - Key 1 Knots(1))) 

Tem pY = Tem 1 + Term2 + Tem3 + Tem4 

picKey1.Circle (IO * TempX, picKeyl.Hcight - (10 * TempY)). 0.2 
End If 
Next t 1 
I = I + l  

Wend 
Exit Sub 

Err Handler: 
'User pressed the Cancel button 
Exit Sub 

End Sub 

b * * 8 * * t * * * * 1 * * t * * * C * 8 * * * 8 * * I * 3 * * * + * t * * * * * * 8 * * * * * * 8 8 * * * * 8 * 8 * * * *  

Private Sub rnnuOpenSpline2-Click() 
' Opens a Bezier Curve in Frame 2 and converts it to a B-Spline 
' Set CancelError is True 

ComrnonDialogl .CancelEmr = T N ~  
On Error GoTo ErHandler 
' Set flags 
CommonDialog 1 .Flags = cdlOFNHideReadOnly 
' Set filten 
CommonDialogl.Filter = "Al1 Files (*.*)l*.*néxt Files" & - 
"(*.txt)l*.txt" 

' Speci fy default filter 
CommonDialogI .FiIterlndex = 2 
' Display the Open dialog box 
CommonDiaIog 1 .Showopen 
' Display name of selected file 

DrawPoly2 = Fûlst 'If we commit ounelva Co opening a file in the frame. we can't 
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' then decide to d n w  our own polygon (by clicking points). 
Dirn Fnum As lnteger 
Dim Temp As String 
Dim 1 As Intcger 
Dirn J As Boolean 
DnwBezicr = True 
1 = O  
J = True 
Fnum = FreeFile 
Open CommonDialogl.fiIename For Input As #Fnum 
Do WhiIe Not EOF(Fnum) 
tinc Input #Fnum, Temp 
If J = Tme Then 

Key2Pts(I).X = CDblVemp) 
J = False 

Else 
KeySPts(I).Y = CDbl(Temp) 

J =Truc 
I = I + I  
Key2NumPis = 1 

End If 
t o o p  

Key2Pts(Key2NumPts).X = Key2Pts(O).X 
Key2Fts(Key2NumPts).Y = KeyZPts(O).Y 

1 = 1 + 1  
Dirn NurnExuaPts As Integer 
NurnExtnRs = O 
While (((Key2NumPts) Mod 3) O O) ' we should have the right number of  

Key?Pts(l).X = Key2Prs(O).X ' control points in the file. but just 
Key2Pts(l).Y = KeyZhs(O).Y ' in w e  we don't, we do this 
NumExuaPts = NumExtraPts + 1 
KeyîNumPts = Key2NumPts + 1 
I = i + I  

Wend 
' Now convert the Bezier to a B-Spline 
' initialize the control point list and knot vector 

For I = O T o 3  Step 1 
CP2(I).X = Key2Pts(l).X 
CP20).Y = KeyZPts(l).Y 
Key2Knots(I) = O 

Ncxt I 

F o r I = 4 T o 7 S t e p  1 
KeyZKnots(1) = 1 

Next l 
MaxCP2 = 3 
MaxKV2 = 7 
' Want to add the next Betier curve control points 
' to the list of contml points 
Dirn Slopel As Double 
Dirn Slope2 As Double 
Dirn NewKnot As Double 
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Dim Continuity As lnteger 
Dim NumCurves As lntcger 
Dim Nextlndex As Integer 
NumCurves = ((KeyZNumPts) 1 3) 
' T h i s  will be in some kind of loop 
NextIndex = MaxCP2 + I 

WhiIc Nextlndcx c KeyZNumPts 
if  Abs(CF'2(MaxCP2).X - CP2(MaxCP2 - 1 ).X) < Epsilon Then 

Slopel = 32000 
Else 

Slope 1 = (CP2(MaxCP2).Y - CP2(MaxCP2 - I ).Y) 1 - 
(CPZ(MaxCPt).X - CPt(MaxCP2 - 1).X) 

End If 

If Abs(Key2Pts(Nextlndex).X - CP2(MaxCPZ).X) < Epsilon Then 
Siope2 = 32000 

Else 
S lope2 = (Key2Pts(NextIndex).Y - CPZ(MaxCP2).Y) / , 

(Key2Pts(Nexilndex).X - CP2(MaxCP2)-X) 
End If 

If (Abs(Slope 1 - Slope2) > Epsilon) Then ' curve have only CO continuity 
NewKnot = Key2Knots(MaxKV2) + 1 
Continuity = O 

Else ' the slope is the same. so curves have at least C l  continuity. 
' Choose a knot value that reflects this continuity 

NcwKnot = ((Key2Pts(NextIndex).X - CPî(MaxCP2).X) - 
(KeyZKnots(MaxKV2 - 3) - KeyZKnots(MaxKV2 - 4)) 1 - 
(CP2(MaxCP2).X - CPZ(MaxCP2 - l).X)) + - 
Key2Knots(MaxKV2 - 3) 

Continuity = 1 

' Now test to see if the curves are actually C 2  continuous 
If Abs( - 

( -  
(CP2(MaxCP2 - 2).X - KeySPts(Nsxt1ndex + I).X) * - 
(Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 5)) * - 
(Key2Knots(MaxKVZ - 3) - NewKnot) - 

1- 
+- 

( -  
(CPî(MaxCP2 - I).X - CP2(MaxCP2 - 2).X) , 
(NewKnot - Key2Knots(MaxKV2 - 5)) , 
(Key2Knots(MaxKV2 - 3) - NewKnot) , 

1- 
+- 

( -  
(Key2Pts(Nextlndex + 1 ).X - Key2Pts(Nextlndex).X) , 
(Key2Knots(MaxKV2 - 4) - NewKna) - 
(Key2Knois(MaxKV2 - 3) - Key2Knots(MaxKV2 - 5) ) -  

1- 
) c Epsilon Then 
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* then we have C2 continuity 
Continuity = 2 

End If 

' Now check for C3 continuity 
Dim PAlpha As Coor& 
Dim PReta As Coords 
Dirn PGarnrna As Coords 

PA1pha.X = ((KeyZKnots(MaxKV2 - 3) - KeylKnoMMaxKVZ - 4)) Key2Rs(NextIndex + 
i).X + - 

((NewKnot - Key2Knots(MaxKV2 - 3)) Key2Pis(Nextlndex).X)) / - 
(NcwKnot - Key2Knots(MaxKV2 - 4)) 

PA1pha.Y = ((Key2Knots(MaxKVZ - 3) - Key2Knots(MnKV2 - 4)) Key2Pts(Nextlndex + 
1).Y + - 

((NewKnot - KeyZKnots(MaxKV2 - 3)) Key2Rs(NextIndex).Y)) / - 
(NewKnot - KeyZKnots(MaxKV2 - 4)) 

PBeta-X = ((NewKnot - Kcy2Knots(MaxKV2 - 6)) CP2(MaxCP2 - 2).X + - 
((Key2Knots(MûxKV2 - 5) - NewKnot) CPZ(MaxCF2 - 3).X)) / - 
(Key2Knots(MaxKV2 - 5) - KeyZKnots(MaxKV2 - 6)) 

PE3eia.Y = ((NewKnot - Key2Knots(MaxKV2 - 6)) CP2(MaxCP2 - 2).Y + - 
((Key2Knots(MaxKV2 - 5) - NewKnot) CPXMaxCPZ - 3).Y)) / , 
(Key2Knots(MaxKVZ - 5) - Key2Knots(MaxKV2 - 6)) 

PGarnma.X = ((KeyZKnots(MaxKV2 - 3) - Key2Knots(MaxKV2 - 4)) * KeyZPts(Next1ndex + 
2).X + - 

((KeyZKnots(MaxKV2 - 4) - NewKnot) Key2Pts(NextIndex + l).X)) / - 
(Key2Knots(MaxKVZ - 3) - New Knot) 

PGarnrna.Y = ((Key2Knots(MaxKV2 - 3) - Key2Knots(MaxKVZ - 4)) Key2Pts(NextIndex + 
2).Y -4- - 

((Key2Knots(MaxKV2 - 4) - NewKnot) * Key2Rs(NextIndex + l).Y)) 1 - 
(Key2Knots(MaxKV2 - 3) - NewKnot) 

If Abs(PA1pha.X - ((((NcwKnot - Key2Knots(MaxKV2 - 3)) PBeta-X) + , 
((Key2Knots(MaxKV2 - 3) - KeyZKnots(MaxKV2 - 5)) * PGamma-X)) 1 - 
(NewKnot - Key2Knots(MaxKV2 - 5)))) < Epsilon Then 

Continuity = 3 
End If 

End If 
' Append the new knots and controi points. depending on the 
' continuity between the two curves 

Select Case Continuity 
Case O 

KeyZKnots(MaxKV2) = New Knot 
Key2Knots(MaxKV2 + 1) = NewKnot 
Key2Knots(MaxKV2 : 2) = New Knot 
Key2Knots(MaxKV2 + 3) = NewKnof 
MaxKV2 = MaxKV2 + 3 
CP2(MaxCP2 + 1).X = KeyZPts(MaxCP2 + 1).X 
CPZ(MaxCP2 + I).Y = Key2Rs(MsxCP2 + I).Y 
CP2(MaxCP2 + 2).X = Key2Pts(MaxCP2 + 2).X 
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CP2(MaxCP2 + 2).Y = KeyZPts(MaxCP2 + 2).Y 
CP2(MaxCP2 + 3).X = Key2Pts(MaxCP2 + 3).X 
CP2(MaxCP2 + 3).Y = Kcy2Pts(M;ixCP2 + 31.Y 
MaxCP2 = MaxCP2 + 3 

c a s e  l 
Kcy2Knots(MaxKV2 - 1)  = NewKnot 
KcyZKno~s(~MaxKV2) = NewKnot 
KeyZKnots(MaxKV2 + 1) = NewKnot 
Key2Knots(MaxKV2 + 2) = NewKnot 
MaxKV2 = MaxKV2 + 2 
CP2(MaxCP2).X = Key2Rs(MaxCP2 + l).X 
CP2(MaxCPZ).Y = Key2Pts(MaxCP2 + I).Y 
CP2(tMaxCP2 + I).X = KeyZPts(MaxCP2 + 2).X 
CP2(?vlaxCP2 + I ).Y = Kcy2Pcs(MaxCP2 + 2).Y 
C n ( M a x C P 2  + 2).X = Key2Pts(MaCP2 + 3).X 
CPZ(MaxCP2 + 2).Y = Key2Pts(MaxCP2 + 3).Y 
iMaxCP2 = MaxCP2 + 2 

Case 2 
Key2Knors(MaxKV2 - 2) = NewKnot 
Kcy2Knots(MaxKV2 - 1) = New Knot 
Kcy2Knots(MaxKV2) = NewKnot 
Key2Knots(MaxKV2 + 1 ) = NewKnot 
MrutKV2 = MaxKV2 + 1 
CPZ(MaxCP2 - 1 ).X = PA1pha.X 
CP2(MaxCP2 - [).Y = PA1pha.Y 
CE(MaxCP2).X = Key2Rs(MaxCP2 + 2).X 
CPZ(MaxCPZ).Y = KeyZPts(MaxCPî + 2).Y 
CPZ(MaxCP2 + 1).X = KeylPts(MaxCPî + 3).X 
CP2(MaxCP2 + 1).Y = Key2Pts(MaxCP2 + 3).Y 
MaxCPî = MaxCF2 + 1 

Case 3 
Key2Knots(MaxKV2 - 3) = NewKnot 
Key2KnotsCMaxKV2 - 2) = New Knot 
Key2Knots(MaxKV2 - 1) = NewKnot 
Key2Knots(MaxKV2) = NewKnot 
MaxKV2 = MaxKV2 
CP2(MaxCP2 - 2).X = PBeta.X 
CP2(MaxCP2 - 2).Y = PBeta-Y 
CP2(MaxCP2 - 1 ).X = PGamrna-X 
CPî(MaxCP2 - I).Y = PGarnrna-Y 
CPZ(MaxCPZ),X = Key2Pts(MaxCP2 + 3).X 
CP2(MaxCP2).Y = Key2hs(MaxCP2 + 3).Y 
MaxCP2 = MaxCPZ 

End Select 
NextIndex = NextIndex + 3 . 

Wend 

For 1 = 1 To (MaxCPZ + 1) Step 1 
' mark the control points 
picKey2.Circle (10 CP2(I - I).X, picKcy2.Height - 10 CP2(1 - l).Y). , 

1, RGB(O.255.0) 
Next 1 



C'de 

Di m t 1 As lnteger 
Dirn t As Double 
Dirn TempX As Double 
Dirn TempY As Double 

' Draw the curve 
I = 3  
Whilc 1 c= MaxCP2 

For tl  = (200 * KeySKnots(1)) T o  (200 * Key2Knots(I + 1)) Stcp I 
If (Key?Knots(I) O Key2Knots(I + 1)) Then 
'calculate and plot the points of the 6-spline 

t = t 1 1 (200 * (KeyZKnors(1 + I )  - Key2Knots(l))) 
Dirn T e m l  As Double 
Dirn Term2 As Double 
Dirn Tenn3 As Double 
Dim T e d  As Double 
Term I = (Key2Knots(l+ 1) - t) * (Key2Knots(l+ 1) - t) (Kcy2Knors(t + 1) - t) , 

* CPZ(I - 3).X 1 - 
((KeyZKnots(1 + 1) - KeyZKnots(1- 2)) * (KeyZKnots(I+ 1) - Key2Knots(l - 1)) - 
* (Key2Knots(l + 1) - Key2Knots(I))) 
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TcrnpX = Term I + T e m 2  + T e d  + T e m 4  

Tem2 = (t - KeyZKnots(1 - 2)) (Key2Knots(l+ 1) - t) * (Key2Knots(I+ 1) - t) - 
* C m ( [  - 2).Y /, 
((Key2Knots(l + 1) - Kcy2Knots(I - 2)) (KeyZKnots(I+ 1) - Key2Knois(l-  1)) - 

(Key2Knots(I + 1)  - Key2Knots(I))) + - 
(KeyZKnots(l+ 2) - t) (t - KtyZKnots(1- 1)) (Key2Knots(i + 1) - t) - 
* CPZ(1 - 2).Y / - 
((Key2Knots(i+ 2)  - Key2Knots(l-  t)) * (Key2Knots(I + 1) - Key2Knots(I - 1)) - 
* (Key2Knots(I + 1) - Key2Knots(I))) + - 
(Key2Knots(I + 2) - t) (i - Key2Knots(l)) (KeylKnots(I+ 2) - t )  - 
* c m ( I  - 2).Y / , 
((Key2Knots(l+ 2)  - Key2Knots(I- 1)) (Key2Knots(I + 2) - KeyZKnots(1))- 

(Key2Knots(I + 1) - Kcy2Knots(i))) 

TernpY = Term 1 + T e m 2  + Tenn3  + Terrn4 
picKey2.Circle (10 TernpX, picKcy2.Height - (10 TempY)), 0.2 

End If 
Next i 1 
I = I + I  

Wend 
Exit Sub 

En HandIer: 
'User prcssed the Cancel buiton 
Exit SubEnd Sub 
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Private Sub mnuSet 1-Click() 
' Panmeter Tcst Set 1 

' Set the values in the text boxes 
txtkb.Text = "2" * bending stiffness 
txtrnb.Text = "100" ' penalizes non-rnonotonic angles 

txtcb.Text = " 1" ' 
txtpb.Text = "10000" ' pcnalizes angles from going to O 
txtks.Text = "0.1" ' stretching stiffness constant 
~xtcs.Text = "0.1" ' controls penalty for edge collapsing to a point 

txtcs.Text = "2" ' 

' Gct the values from thc text boxes 
kb = CDbl(txtkb.Text) 
mb = CDbl(txtrnb.Text) 
eb = Val(txteb.Text) 
pb = Val(txtpb.Text) 
k s  = CDbl(txtks.Text) 
CS = CDbl(txtcs.Text) 
e s  = Val(txtes.Text) 

End Sub 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Private Sub mnuSet2-Click0 
' Parameter Tcst Set 2 ' Set the values in the text boxes 

txtkb.Text = "0.1" ' bending stiffness 
txtrnb-Text = " 1" ' penaiizes non-monotonic angles 
txteb.Text = " 1 " ' 

txtpb.Text = "10000" ' pendizes angles from going to O 
txtks.Text = " 1 " ' stretching stiffness constant 
txtcs.Text = "0.1" ' controls penalty for edge collapsing to a point 
txtes.Text = " 1 " I 

' Get the value from the text boxes 
kb = CDbl(txtkb.Text) 
mb = CDbl(txtrnb.Text) 
eb = Val(txteb.Text) 
pb = Val(txtpb.Text) 
k s  = CDbl(u<tks.Text) 
CS = CDbl(txtcs.Text) 
es  = Val(txtes.Text) 

End Sub 

' * * f * & * * * * * * + * * * * L 1 * t * * * * * * * * * * * * * 8 8 * * * * * * * * * * * * 8 * 8 * * * * * 8 * * * * * * * * 8 * 8  

Private Sub rnnuSet3Çlick() 
' Parametcr Test Set 3 'Set  the values in the text boxes 

tx:kb.Text = "0.1" ' bending stiffness 
txtmb.Text = " I " ' penalizq non-monotonic angles 

fxteb.Tcxt = " 1" 
txtpb.Text = " 10000" ' penalizes angles from going to O 
txtks.Text = "0.1" ' stretching stiffness constant 
txtcs.Text = "0.1" ' controls penalty for edge collapsing to a point 
txtes.Text = "2" ' 
' Gct the values fmm thc text boxes 
kb = CDbl(utkb.Text) 
mb = CDbl(txtrnb.Text) 
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e b  = Val(txteb.Text) 
pb = Val(txtpb.Text) 
ks = CDbl(txtks.Tcxt) 
CS = CDbl(txtcs.Text) 
e s  = Val(txtes.Text) 

End Sub 

.*******88**********8*88**8888888**8**********88*8********88************* 

Private Sub picKey1-MouseDown(Button A s  lnieger. Shift A s  Integer. X As Single. Y As Single) 
' Draws a line from the previous clicked point to the current clicked point. 

If DrawPoly 1 = T m e  Then ' Only allowed to draw a polygon if we haven't already 
' opened a polygon in the f n m e  

Y = picKey1 .Height - Y ' Switch the coordimte system so that 
' y increases up 

(f Key 1 FirstClick = True Then 
Key 1 FirstClick = False 
Key 1 Pts(Key 1 NumPts).X = X / 10 ' Decrease the values CO avoid overflow error. 
KeyIPts(KeyINumPts).Y = Y / 10 ' They will r>e increascd back when we  draw (in 

' the vertex path routines). 
Key1 N u m h s  = Keyl NumPts + 1 
picKey I .Circle (X. picKey I .Height - Y). 1. RGB(0, 0. 255) 

Else 
' When the point is drawn. must switch the coordinate 
' system back so that the point is d n w n  in the correct place 
picKey1 L i n e  ( IO * Keyl Pts(Key1 NumPts - 1 ).X. , 

picKey1 .Height - (IO Key I Pts(Key1 N u m h s  - l).Y)) - 
-(X. picKey 1 .Height - Y) 

Key 1 Pts(Key 1 NumPts).X = X / 10 
Key 1 Pts(Key 1 NumPis).Y = Y / 10 
Key I NumPts = Key 1 NumPts + 1 

picKey 1 .Circle (X. picKey1 .Height - Y). 1. RGB(O.0. 255) 
End If 

End If 
End Sub 

.................................................................. 
Pnvate Sub picKey2-MouseDown(Button As Integer. Shift As  Integer. X As Single. Y As Single) 

If DrawPnly2 = Tme Then ' Only allowed to draw a polygon if we haven't already 
' opened a polygon in the frame 

Y = picKey2.Height - Y ' Switch the coordinate system so that 
' y increases up 

If Kcy2FirstClick = True Then 
Key2FirstClick = False 
Key2Pis(Key2NurnPts).X = X / 10 ' Decrease the values to avoid overflow. Increase 
Key2Pts(Key2NumPts).Y =-Y 1 10 ' thcm back when we  draw (in vertex path 

' routines). 
Key2NumPls = KeyZNumRs + 1 
picKey2.Circle (X. picKey2.Height - Y). 1, RGB(O.O. 255) 

Else 
' When the point is drawn. must switch the coordinaie 
' system back su that the point is  drawn in the correct place 
picKey2.Line (10 Key2Prs(Key2NumPts - l).X., 

picKey2.Height - (IO Key2Pts(KeyZNumPu - I).Y))- , 
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(X. picKcy2.Height - Y) 
Kcy2Pts(Key2NumPts).X = X / 10 
Key2Pts(Key2NumPts).Y = Y / 10 
Key2NumPts = Key2NumRs + I 
picKey2.Circle (X, picKey2.Height - Y). 1. RGB(O.0.255) 

End If 
End If 

End Sub 

~*****************************************************************  
Public Sub MatchByOrderll) 
A vertex correspondence method. Matches the venices based on the order in which they 
arc clicked If one polygon has more vertices than the other. the additional venices in the 
polygon wirh more venices are a11 mapped to the final venex of  the polygon with fewer 
verficcs. 
N.B. Dcfinitely not the spiffiest vertex correspondence plan. but cenainly one 

of the simpIest. 1 just coded this for testing purposes. 
Dim 1 As Integer 
NumPs = Key2NumPts 
If Key 1 NumPts > Key2NumPts Then ' if polygon 1 has more vcnices than poIygon 

' 2. then map the extra points of polygon I 
' to the last vertex of pofygon 2 

NumPts = Key 1 NumPLs 
For I = Key2NumPts T o  (Key 1 Numhs) Step 1 

Key2Pts(l).X = Key2Pts(Key2NurnPts).X 
Key2Pts(I).Y = Key2Pis(Key2NumPts).Y 

Next 1 
End If 
If Key2NumPts > Key 1 NumPts Then 

NumPts = Key2NumPts 
For 1 = Key 1 NumPts To  (Key2NumPts) Step 1 

Key 1 Pts(l).X = Key 1 %(Key 1 NumPts).X 
Key 1 Pts(I).Y = Key 1 Pts(Key 1 NumPts).Y 

Next 1 
End If 

End Sub 

.................................................................. 
Public Sub Linearlnterpolation() 
' A Vertex Path Method. Takes a pair of corresponding vertices and uses linear 
' interpolation to calculate the path travelled by a vertex 3s it morphs from one polygon 
' into the other. 

Dim 1 As Integer 
Dim J As Integer 
Dim Draw As Boolean 
Dirn TernpPic As PictureBox 
Dmw = False ' we only draw the in-between frames. We don? want 

' to redraw the key frarnes. 
' Calculate the step size to increment each of  the x- and y- coords 
' for each successive in-between image 
For 1 = O To (NumPts) Step 1 

KeyDifference(l).X = (Key2Pts(I).X - Key 1 Pts(I).X) I (NumInBetwecns + 1) 



Code 

KeyDifference(f).Y = (Key2h(l).Y - Key 1 Pts(l).Y) / (NumInBetweens + 1) 
Next I 

For 1 = O To (NumInBctwecns + 1) Step 1 
' Determine the vertices for in-ktween f n m e  I 
For J = O  T o  ( N u m h )  Step 1 

MorphPts(J).X = Key I Pts(J).X + ((KeyDiffercncc(J;.X) I) 
MorphPts(J).Y = Key 1 Pts(J)-Y + ((KeyDifference(J).Y) * 1) 

Ncxt J 

' Draw the Iines in the appropriate picturc box 
' Note chat the coord systcm is switchcd back for drawing 

Select Case 1 
Case I 

Set TempPic = picMorph 1 
Dnw = Tnie 

Case 2 
Set TempPic = picMorph2 

Dnw = Tme 
Case 3 

Set TernpPic = picMorph3 
Dnw = True 

Case 4 
Set TempPic = picMorph4 

D n w  = T N ~  
Case 5 

Set TernpPic = picMorph5 
Dnw = Tme 

End Select 
If Draw Then 

For J = 1 To (NurnPts) Step 1 
TernpPic.Line ( 1 O MorphPts(J).X., 

TempPic.Height - (10 MorphRs(J).Y)) - 
-(IO MorphPts($ - 1 )-X. - 
TernpPic-Height - (10 * MorphPts(J - l).Y)) 

Ncxt J 
End If 
Draw = Fdse 

Next 1 
End Sub 

b * * * L * * * * 8 * t * * * * # * t 8 * * * * + t * t l * 8 * * I * * * 8 t O * L t * 1 * * 8 * * * * * * 8 * * * * * * * * * * * * * * * *  

Public Sub LeastWorkMatching() 
' Determines the venex correspondence between the two key frames chat will result in 
' the least amount of work to morph from one image to the other. 
' This method considcn the polygon edges to be made of bendable. streichable wire. 
' and determines the work need to stretçh and bend the wire edges of  polygon 1 into 
' polygon 2. 
' Uses a graph theory solution to determine the least work "path" and then does a 
' back track through this "graph" to find the least work matching. 

* BackTrackList keep track of the graph venices (IJ) that correspond to one 



Code 

' another o n  the Ieast work path. BackTnckList is defined as type "Coords". 
' but is not resilly made of polygon vertex coordinates. Rathcr. the (X.Y) 
' coordinates arc actually the (1.J) vertices of the least work gnph-  
Dirn BackTmckList() As Coords 
if Kcy2NumPts > Key 1 NumPts Then 

NumPts = Key2NumPts 
Else 

NumPts = Key 1 NumPts 
End I f  
ReDim BackTnckList(Key 1 NumPts + Key2NumPts) As Coords 

' WBack keeps tmck of the amount of work rcquired to get to 
' graph venex (1 J) from the graph venex (1-1J) 
Dim WBack() As Integer 
RcDim WBack(Key 1 NumPts. Key2NumPts) As lnteger 

' WUp kecps crack of the amount of work required CO get 
' to gnph venex (IJ) from the graph vertex (IJ-1) 
Dirn WUp() As Integer 
ReDim WUp(Key 1 NurnPts. Key2NumPts) As Integer 

' WDiag keeps t n c k  of  the amount of work required to gct 
' to graph venex (IJ) from the g n p h  venex (1- 1 J- 1 ) 

Dim WDiagO As Integer 
ReDim WDiag(Key 1 NumPts. Key2NumPts) As Integer 

Dirn 1 As Integer 
Dirn J As lnteger 
' The polygon files should be stored carefully. since the program 
' automatically matches the first vertices to each other. 

WBack(O.0) = 0 
WUp(0. O) = 0 
WDiag(O.O) = 0 

For 1 = 0 To (Key 1 NumPts) Step 1 
For J = O To (Key2NumPts) Step 1 
'Notc: If I=0 and J o O  then we can only cdculate WUp 

I f l = O A n d J = l  Then 
WUp(1, J) = Stretch(KeyIPts(1). Key2Pts(J - 1). , 

Key1 PM). KeyZRsU)) + , 
Minimurn(WUp(1. J - 1) + Bend(Key IPts(1). - 

Key2Pts(Key2NumRs - 1). , 
Key 1 PtsO). Key2P~s(J - 1). - 
Key 1 PW). Key2PWJN. - 

WDiag(1. J - 1) + - 
Bend(Key 1 Pts(Key 1 NumPts - 1). - 
Key2PLs(KeyZNurnPts - 1). - 
Key 1 Pt$[), Key2Rs(J - 1 ). , 
Key 1 PMI). Key'LRs(l))) 

WBack(1. J) = 15000 ' Initialize WBack and WDiag to some 
WDiag(1.J) = 15000 ' large number so that we don't think 
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Key2Pts(KeyZNumPts - 1). , 
Key I Pts(1 - 1 ). KeyZh(J), , 
Key 1 hs(1). Kcy2Pts(JN) 

WUp(1. J)  = 15ûûû 
WDiag(1. J) = 15000 

End If 
t f I =  1 A n d J =  1Then 

WBack(i. J) = Stretch(KeylPts(1 - 1). Key2Pts(J). , 
Key 1 Rs(l), Key2Rs(J)) + - 

Minimum( - 
WBack(1- 1. J) +, 

Bend(Key 1 PIS{ Key 1 NumRs - 1). - 
Key2frs(J), Key i k ( l -  1 ). - 
Key2PMJ). Key I Pts(T). - 
Key2Prs(J)). , 

WDiag(1- 1. J) + , 
Bend(Key 1 Prs(Key 1 N u m k  - 1). , 

KeyZPLs(J - 1). Key 1 Pts(1 - 1). - 
Key2Pts(J). Key 1 Pts(1). - 

KeyZRs(J)) , 
) ' end of Minimum parameters 

Minimum( - 
WUp(1.J- l )+ ,  
Bend(Key IPts(l), , 

Key2Pts(KeyZNumPts - 1 ). , 
Key 1 h o ) ,  Key2Prs(J- I ). - 
Key 1 R N ) ,  KeyZPts(l)), - 

WDiagO. J - 1) + , 
Bend(Key 1 Pts(1- I ), - 

Key2Prs(Key2NumPts - 1). - 
Key 1 h ( 1 ) .  Key2Pts(J - 1). - 
Key 1 Pts(1). KeyZPts(l)) , 

) ' end of Minimum Panmeters 

WDiag(1. J) = Stretch(KeylPts(1 - 1). Key2Pts(l- 1). 
Key 1 RsO), Key2WJ))  + - 

MinOO(, 
WUp(i-1.J-  l ) + ,  
Bend(Key 1 hs(1-  1). , 

Key?Fts(KeyZNumPts - 1). , 
KeylPts(1- 1). KeylPts(J - 1). - 
Key I Rs(h Key2Pts(l)). , 
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KeyZPts(Key2NumRs - 1). - 
Key 1 Pts(1- 1). Key2Prs(J - 1 ), , 
Key 1 Pts(1). KeyZPts(l)). - 

WBack(1- 1.J - I )+ -  
Bend(Key 1 Rs(Key 1 NumRs - 1 ), - 

Key2Pts(J - l ), Key lRs ( l -  1 ), , 
Key2Pts(J - 1 ). Key 1 Pts(1). - 

KeyîPts(J)), 
) ' end of MinOf3 Parerneters 

End [f 
I f I >  L A n d l >  1 Then 

WBack(1. J) = Strctch(Key 1 Pts(1 - t ). Key2Pts(O. , 
Key 1 Pts(1). KeyZPls(J)) + - 

Minimum(, 
WBack(1- 1. J) + - 

Bend(Key I Rs(I - 2). - 
KeyZPts(J). Key I Pts(1- 1). - 
Key2Rs(J). Key 1 Pts(l). - 

Key2Pts(J)). , 

WDiag(1- 1. J) + - 
Bend(Key 1 Pts(1- 2). - 

Key2Pts(J - 1 ), Key 1 Pts(1- 1). , 
Key2FWJ1, Key 1 R N ) ,  _ 

Key2Rs(J))- 
) ' end of Minimum parameters 

WUp(1. J) = Suetch(Key 1 Pts(1). Key2Rs(J - 1). - 
Key 1 Prs(1). Key2RNl)) + - 

Minimum(, 
WUp(1.J- l ) + -  
Bcnd(Key 1 PMI). - 

KeyZRs(J - 2). - 
Key 1 FWI), Key2FWJ - 1 ). - 
Key 1 Key2Wl)) ,  - 

WDiag(1. J - 1 ) + - 
Bend(Key 1 Pts(l- 1). , 

Key2Rs(J - 2). - 
Key I Prs(l). K e y 2 P W  - 11, - 
Key 1 RsO, Key2PWH , 

) ' end of Minimum Parameters 
WDiag(1. J) = Strctch(Key 1 Rs(1- 1). Key2Rs(J - 1). - 

Key 1 Rs(0, Key2WJ))  + - 
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WDiag(1- 1.J-  I I + -  
Bend(Key 1 Rs(I - 2). , 

Key2Rs(J - 2). - 
KeylFb(1- 1). Key2Pts(J - l), - 
Kcy 1 Pts(1). Key2FWJ)). , 

WBack(1- 1.J  - l ) + ,  
Bend(Key1 Pts(I - 2). , 

Key2PtN - 1 ). Key 1 Pts(l - I ). - 
Kcy2Rs(J - 1). Key 1 Pts(l), , 

Key2mJ)) - 
) ' end of Minof3 Paremeters 

End If 
Next J 

Next 1 

' now backtnck to find the path. 
' The first point of BacKTnckList is the final graph vcnex 
' i.e. [Key 1 NumPts- 1. Key2NumPts- l ] (note that the very Irist vertices 
' (the duplicate first points that close up the polygons) are automatically 
' matchcd to each other 
BackTrackList(O).X = Key INumPts - 1 
BackTrackList(O).Y = Key2NurnPts - 1 
Dim TempX As Integer 
Dim TempY As lnteger 
Dim CurrKey 1 Pt As Integer 
Dim CurrKey2Pt As Integer 
Dim NümBackTrackPts As lnteger 
NumBackTnckPts = 1 
CurrKcy 1 Pt = BackTnckList(O).X 
CurrKey2Pt = BackTrackList(O).Y 
I = I  
' Find the previous graph vertex that require. the l e s t  amount of work, and 
' choose that one as the next vertcx in the backtrack Iist. 

Do While (CurrKeyl Pt >= O) And (CurrKeyZPt >= O) 
TempX = BackTnckList(1- 1).X 
TempY = BackTrackList(1- I).Y 
If WBack(TempX. TempY) <= WUpflempX. TempY) And, 

WBack(TempX, TempY) <= WDiagflempX. TempY) n ien  
CurrKey 1 Pt = BackTrackList(1- 11.X - 1 
CurrKcy2Pt = BackTrackList(1- 1).Y 

End If 
If WUpflempX. TempY) < WBackTernpX, TempY) And, 

WUp(TcmpX. TernpY) c= WDiag(TempX. TcmpY Then 
CurrKey 1 Pt = BackTrackList(1- 1).X 
CurrKey2Pt = BackTrackList(1- I).Y - 1 

End If 
If WDiag(TempX, TempY) < WBackflempX. TernpY) And, 

WDiagflempX. TernpY) < WUpCTempX. TcmpY) Then 
CurrKey1 Pt = BackTrackList(1 - I).X - 1 
CurrKeyZPt = BackTrackList(1- 1).Y - 1 

End If 
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BackTrackList(I).X = CurrKey 1 Pt 
BackTnckList(I).Y = CurrKey2R 
NumBackTnckPts = NumBackTnckPLs + 1 
I = I +  1 
If CurrKey 1 Pt = O  And CurrKey2Pt = O n i e n  

Exit Do 
End If 

ho?' 
Dim TempKey l Pts() As Coords 
ReDim TempKey 1 Pts(Key 1 NumPts + Key2NumPu) As Coords 
Dim TernpKey2PtsO As Coords 
ReDim TempKey2Pts(Kcy1 NurnPts + Key2NurnR.s) As Coords 
' copy the points in reverse order into a new iist 
For 1 = 0 To (NumBackTrackPu - 1) Step 1 

TempKey 1 Pts(NumBackTrackPts - 1 - I).X = Key l Pts(BackTrackList(I).X).X 
TempKey 1 Pts(NumBackTnckPts - I - I).Y = Key 1 Pt.s(BackTrackList(I).X).Y 
TempKey2Pts(NumBackTrackPts - 1 - I).X = Key2Pts(BackTnckList(I).Y).X 
TempKey2Pts(NumBackTrackPts - 1 - [).Y = Key2Pts(BackTnckList(I).Y).Y 

Next 1 
' And reassign these points to the old list of vertices. 
' Now. Key 1 Pts(k) corresponds to KeyZPts(k). 
' Note that Key lPts and KeyZPts now contain the samc number of 
' vertices 
For 1 = O T o  (NumBackTrackPts - 1) Step 1 

Key 1 Pts(I).X = TempKey 1 Rs(I).X 
Key 1 hs(I).Y = TempKey 1 Pls(I).Y 
Key2Pts(I).X = TempKeyZPis(I).X 
Key2Pts(I).Y = TempKeyZRs(I).Y 

Next 1 

' Make sure the polygon is closed 
Key 1 Pts(NumBackTrackPts).X = Key 1 Pts(O).X 
Key i Pts(NumBackTrackPts).Y = Key 1 Pts(O).Y 
Key2Pts(NumBackTrackPts).X = Key2Pts(O).X 
Key2Pts(NumBackTrackPts).Y = KeyZPts(O).Y 
' Need a new NumPts. since now many vertices may have b e n  
' duplicated. so we now may have more vertices than before 
NumPts = NumBackTnckPts 

End Sub 

'********8**88**8*8***888**88*88***8+*8**8888*8**8*8*88888*~8~*8priv~t~  

Function Length(P0 As Coords. Pl  As Coords) As Double 
' Accepts two 2D points as input. 
' Calculates and returns the Euclidean distance between the two points 

Length = Sqr(((P1.X - Pû.X) *.(PI .X - P0.X)) + ((PI .Y - F0.Y) (PI .Y - P0.Y))) 
End Function 

Function Bend(I0 As Coords. JO As Coords. 11 As Coords, JI As Coords, 12 As Coords, 12 As 
Coords) 
' AccepCs six 2D points. Calculates and rtturns the amount of bending work required to 
' convcrt the line segments 10-11-12 IO the line segments JO-JI-J2 



Code 

Dirn FO As Coords ' Vector from II to 12 
Dirn FI As Coords ' Vector from J 1 to 12  
Dirn BO As Coords ' Vecior from 10 to II 
Dirn B 1 As Coords ' Vector from JO to J I  
Dirn XO As Double ' determincd from the above vectors. 
Dirn X 1 As Double ' and used as coordinates of  the conlrol 
Dirn X2 As Double * points of a Bezier curve of  degree 2. 
Dirn Y0 As Double 
Dirn YI As Double 
Dirn Y2 As Double 
Dirn QO As Coords ' Control pinCs of a Bezier curve of 
Di rnQlAsCoords  'degree2. 
Dirn 4 2  As Coords 
Dirn DO As Double 
Dirn Dl As Doublc 
Dirn D2 As Double 
Dim DeltaTheta As Double ' Change in angle from polygon 1 Co 

' polygon 2, in radians 
Dirn DclraThetaStar As Double ' Deviation from monotonicity. in ndians 
Dirn Ongin As Coords 
Dirn PosXAxis As Coords 
Dim NegXAxis As Coords 
Dirn PosYAxis As Coords 
Dirn NegYAxis As Coords 
Dim AIpha As Double ' the angle of deviation (if any) of Q2 
Dim Beta As Double ' the angle of deviation (if any) of QO 

F0.X = 12.X - I1.X 
F0.Y = 12.Y - II .Y 
FI .X = J2.X - J 1 .X 
F1.Y = J2.Y - I1.Y 
B0.X = 1O.X - I l  .X 
B0.Y = 1O.Y - I I  .Y 
B1.X = J0.X - J1.X 
B1.Y = J0.Y - J1.Y 
XO = Dot2DFO. BO) 
X 1 = (Dot2D(Fl. BO) + DodD(F0. B 1)) / 2 
X2 = DoQD(F1, B 1) 
Y0 = Cross2D(FO, BO) 
Y 1 = (Cross2D(Fl. BO) + CrossZD(F0. B 1)) / 2 
Y 2 = Cross2D(F1, B 1 ) 
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If (D 1 Di  - DO * D2) c O And TriangleContainsOrigin(Qû. QI .  4 2 )  Thcn 
DeltaTheta = 2 * PI - Abs(AngIeFromXAxis(Q0) - AngleFrornXAxis(Q2)) 

Else 
DeltaTheta = Abs(AngleFromXAxis(Q0) - AngieFromXAxis(Q2)) 

End If 

Alpha = O ' If the angle changes non-monotonically, we musc 
Beta = O ' determine how far away we are from non-monotonicity. 

' Alpha represents the angle of deviation (if any) of 42 and Beta 
' represent the angle of deviation (if any) of QO.  Alpha + Bcta 
' gives the total amount O fdeviation. and is called DeltaThetastar 

Dirn t 1 As lnteger 
Dirn t As Double 
Dirn QtX As Double 
Dirn QtY As Double 

' Below. we find the amount of deviation (if any) from the rnoriotonicity. 
' Also, Theta goes to zero if and only if Q(t) crosses the positive x-axis. so we 
' take the opponunity to figure this out at the same t h e .  

Di rn ThetaGoesToZero As Boolean 
Dirn OneSide As Boolean 
Dirn OtherSide As Boolean 
Dirn ListOfAngles(100) As Double ' in rads 
Dirn Qt( 100) As Coords 
Dirn TCross As Integer 
Thetd3esToZero = False 
OneSide = False 
OtherSide = False 
For t 1 = O To 100 Step 1 

t = t 1 / 1 0 0  
QtX=QO.X*(l-t)*(l-t)+Q1.X8(I-t)*2*t+QZX*t*t 
QtY=QO.Y8(I - t ) * ( l  - t )+Q1.Y8(1  - t ) * 2 * t + Q 2 . Y * t 8 t  
Qt(t 1 ).X = QtX 
Qt(t 1 ).Y = @Y 
ListOfAngles(t 1) = AngleFromXAxis(Qt(t 1)) If t l  > O Then 

If Qt(tl).X > O And Qt(t1 - I).X > O Then 
If SignOf(Qt(t l).Y) O SignOf(Qt(t1 - 1 ).Y) Then 

TCross=t1 
End If 

End If 
End If 
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If QtX > O And QtY c O Then 
Ondide  = Tme  

End If 
If QtX > O And QtY >= O Thcn 

OtherSide = True 
End f f 

Next t 1 

If OncSide = Tme And OtherSide =Truc Then 
ThetaGocsToZero = True 

End If 

Dim TMinAngfe As Double 
Dirn TMaxAngle As Double 
TMinAngle = O 
TMixAngle = O 
1 f ThctaGoesToZero Then 

If ListOfAngles(100) > ListOfAngIesiO) Then 
For t 1 = O To TCross Step 1 

If ListOfAngles(t1) > ListOfAngles(TMaxAngle) Then 
TMaxAngle = t 1 

End If 
Next t 1 
For t 1 = TCross To 100 Srep 1 

If ListOfAngles(t1) < ListOfAngles(TMinAng1e) Then 
TM inAngIe = t 1 

End If 
Next t l  
Alpha = L i s t O f A n g l e s ~ a x A n g l e )  - ListOfAngles(0) 
Beta = ListOfAngles( 100) - ListOfAnglesfJMinAngle) 

Else ' if ListOfAngles(100) c ListOfAngles(0) 
For t 1 = O To TCross Step 1 

If ListOfAngles(t1) < ListOfAngles(TMinAng1e) Then 
TMinAngle = t 1 

End If 
Ncxt t 1 
For r 1 = TCross T o  100 Step 1 

If ListOfAngles(t 1) > ListOfAngles(TMaxAng1e) Then 
TMaxAngle = t 1 

End If 
Next t 1 
Alpha = ListOfAnglesCfUaxAngle) - ListOfAngles(100) 
Beta = ListOfAngles(0) - ListOfAngles(TMinAngle) 

End If 
Elsc 

For t l  = O T o  100 Step 1 
If ListOfAngles(t1) > ListOfAngles(TMaxAng1e) Then 

TMaxAngle = t 1 
End If 

If ListOfAngles(t1) < L i s t O f A n g l c s ~ i n A n g l e )  Then 
TMinAngle = t 1 

End If 
Kext t 1 
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1 f ListOfAngles( 100) > ListOfAngles(0) Then 
Alpha = ListOfAngles(TMaxAng1c) - ListOfAngles(l00) 
Beta = ListOfAngles(0) - ListOfAngles(TMinAng1e) 

EIse 
Alpha = ListOfAngles( 100) - ListOfAngles(TMinAng1e) 
Beta = ListOfAngles(TMaxAngie) - ListOfAngles(0) 

End If 
End If 
DeltaThetastar = Alpha + Beta If TheiaGoesToZero = False Thcn 

If Abs(De1taTheta + rnb * DeluThetaStar) c Epsilon Then 
Bend = O 

Elsc 
Bcnd = kb * Exp(eb Log(De1taTheta + mb + DeltaThetaSras)) 

End If 
Else 

If Abs(DeltaTheta + mb DeltaThetastar) < Epsilon Then 
Bend = pb 

EIse 
Bend = (kb (Exp(eb * (Log(DeltaTheta + mb * DeltaThetaStâr))))) + pb 

End If 
End If 

End Function 

.***************************************************************** 
Private Function Streich(l0 As Coords, JO As Coords. Il  As Coords. J I  As Coords) 
' Accepts four 2D points. Calculates the stretching work used in morphing 
' t h e  line segment 10-1 1 to Iine segment 10-1 1. 

Dim LO As Double ' length of segment from vertex II to vertex 10 
in the first fmme 

Dim L1 As Double ' Iength o f  segment from vertex J 1 to vertex JO 
' in the second f n m e  

LO = Length(l1, IO) 
LI = Length(J 1. JO) 
If Abs((l - CS) Minirnurn(L0. L1) + CS Maximum(L0. LI))  < Epsilon Then 

Stretch = 15000 
Else 

If Abs(L1 - LO) < Epsilon Then 
Stretch = O 

Else 
Stretch = (ks Exp(es (Log((Abs(L1 - LO)))))) / ((1 -CS) * Minimum(L0. LI )  - 

+ CS Maxirnum(L0. LI)) 
End If 

End I f  
End Function 
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Private Function Cross2D(A As Coords. B As Coords) 
' Accepts two 2D points and returns the determinant 

Cross2D = A.X B.Y - A-Y * B.X 
End Function 

* f * ~ i * * 8 8 * * * 8 * 8 8 8 8 * 8 * 8 + * * * * * 8 * * * 8 ~ 8 8 * 8 * 8 8 * * * 8 8 * 8 ~ * * * * 8 * * * * * ~ ~  

Private Function TfiangleContainsOngin(Q0 As Coords, Q1 As Coords. 42 As  Coords) 
' Accepts three points Lo be vertices of a triangle. Retums Txr if this triangle contains 
' the origin and False othenvise. 

Dirn AX 1 As Boolean 
Dirn AX2 As Boolean 
Dirn AX3 As Boolean 
Dirn AX4 As Boolean 
Dirn B As Integer 
Dirn XInt As Integer 
' scgmcnt 1 of the triangle 
If Abs(Q 1 .X - Q0.X) c Epsilon Then 

B=O 
Else 

B sQ1.Y -Ql .X *((QI.Y -QO.Y)/(QI.X-Q0.X)) 
End If 
If Abs(Q 1 .Y - @.Y) < Epsilon Then 

XInt = O 
Else 

XInt = QI-X - Q1.Y * ((Q1.X - Q0.X) / (Q1.Y - QO-Y)) 
End If 
f f B > O And (SignOf(Q1 .X) o SignOf(Q0.X)) Thcn 

AX L =Tme 
End If 
If B < O And (SignOf(Q1 .X) O SignOf(Q0.X)) Then 

AX3 = True 
End If 
If XInt > O And (SignOf(Q 

AX2 = Tme 
End If 
If Xlnt c O And (SignOf(Q 

AX4 = Tme 
End If 
' segment 2 
If ~ b s ( ~ 2 . x  - Q I  .X) c Epsilon Then 

B=O 
EIse 

B = Q2.Y - Q2.X * ((Q2.Y - Q 1 .Y) / (Q2.X - Q1 .X)) 
End If 
If Abs(Q2.Y - Q1.Y) < Epsilon Then 

Xlnt = O 
Else 

XInt = Q2.X - Q2.Y ((Q2.X - Q I  .X) / (Q2.Y - Q1 .Y)) 
End If 
If B > O And (SignOf(Q2.X) O SignOf(Q 1 .X))  Then 

AXI = Tme 
End If 
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I f  B c O And (SignOf(Q2.X) O SignOf(Q 1 .X)) Then 
AX3 = Tme 

End If 
If XInt > O And (SignOf(Q2Y) O SignOf(Q1 .Y)) Then 

AX2 = Tme 
End If 
If XInt c O And (SignOf(QZ9i') O SignOf(Q1 .Y)) Then 

AX4 = Truc 
End 1 f 
' segment 3 
I f  Abs(Q0.X - Q2.X) c Epsilon Then 

B = O  
Elsc 

B = @.Y - Q0.X ((@.Y - Q2.Y) / (Q0.X - Q2.X)) 
End If 
If Abs(Q0.Y - Q2.Y) c Epsilon Then 

XInt =O 
Else 

XInt = QO-X - Q0.Y * ((Q0.X - Q2.X) / (@.Y - Q2.Y)) 
End If 
1 f B > O And (SignOf(Q0.X) O SignOf(Q2.X)) Then 

AX 1 =Tme 
End If 
If B c O And (SignOf(Q0.X) O SignOf(Q2.X)) Then 
AX3 = True 

End If 
If XInt > O And (SignOf(Q0.Y) O SignOf(Q2.Y)) Then 

AX2 = True 
End 1 f 
If Xlnt c O And (SignOf(Q0.Y) O SignOf(Q2.Y)) Then 

AX4 = Tme 
End If 
If AX 1 = True And AX2 = True And AX3 = True And AXJ = True Then 

TriangleContainsOrigin = True 
EIse 

TriangleContainsOrigin = False 
End If 

End Function 

'*******8******8*8************+l*8*88****8********88***8** 

Public Function SignOf(X As Double) 
' Accepts a number and returns uuc if ihe number is positive and false if the number is negaiive. 

If X >=OThcn 
SignOf = True 

Else 
SignOf = False 

End If 
End Function 

Private Function AngIeFromXAxis(Q As Coords) 
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' Calculrites the positive angle in rads h m  the positive x-axis to  the point Q 
' I f  Q = Origin o r  Q lies on the positive x-axis. then definc the angle to be PI 
If (Q.X >= O And Q.Y =O) Thcn 

AngleFromXAxis = PI 
Else 

Dirn C As Double 
Dirn A As Double 
Dirn B As Double 
Dirn Origin As Coords 
Dirn PosXAxis As Coords 
Dim QuadQ As lntcger 
0rigin.X = O 
0ngin.Y = O 
PosXAxis-X = 1 
PosXAxis-Y = O 
C = Length(0rigin. Q) 
A = kngth(Q,  PosXAxis) 
B = l  
QuadQ = Quadrant(Q) 
If  Abs(2 * C * B) < Epsilon Then 

AngleFromXAxis = O 
Else 

If QuadQ = I Or QuadQ = 2 Then 
AngleFromXAxis = ArcCos((B B + C C - A * A) / (2 * C * B)) 

Else 'if QuadQ = 3 or  Quad! = 4 
AngleFromXAxis = 2 * PI - ArcCos((B * B + C C - A * A) / (2 * C B)) 

End If 
End If 

End If 
End Function 

. * * * * & * * * * S * * 8 8 t * * % * * * * * 8 8 L 8 8 * * * 8 8 * 8 8 * 8 * * * 8 8 * * * * * * * 8 *  

PubIic Function ArcCos(X As Double) 
' Takes a number and retums the ArcCos of that number. 

If Abs(X) < 1 + Epsilon And Abs(X) > 1 - Epsilon Then 
ArcCos = O 

Else 
ArcCos = Am(-X / Sqr(-X X + 1)) + 2 Atn(1) 

End If 
End Function 

Public Function Minirnum(A As Double. B As Double) 
' Takes two numbers (doublc) and retums the minimum of the two. 

I f A > B T h e n  
Minimum = B 

Else 
Minimum = A 

End If  
End Function 
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Private Function Quadnnt(Q As Coords) 
' Tnkes a point (&y) and retums the quadrant in which the point lies, 

If Q.X >= O And Q.Y >=O Then 
Quâdran: = 1 

End If 
If Q.X >= O And Q.Y < O Then 

Quadnnt = 4 
End If 
If Q.X c O And Q.Y >= O Then 

Quadnnt = 2 
End If 
If Q.X <O And Q.Y < O Then 

Quadrant = 3 
End If 

End Funcrion 

Public Function MinOf3(A As Double, B As Double. C As Double) 
' Takcs three numkrs  (double) and returns the minimum of the three 

I fAc=BAndA<=CThen  
MinOf3 = A 

End If 
I f B c A A n d B c - C T h e n  

MinOD = B 
End If 
I f C c A A n d C < B T h e n  

MinOf3 = C 
End If 

End Function 

Public Sub EdgeLengthInterpolation() 
' Does the same thing as linear interpolation 

Dirn 1 As Integer 
Dirn t As lnteger 
Dirn E 1 ( 100) As Coords ' the x and y coords to get frorn the 
Dirn E Z ( l 0 )  As Coords ' previous point to the next point 
Dirn E( 100) As Coords 
Dim TernpPic As PictureBox 
Dim Draw As Boofean 
D n w  = False 
For 1 = 0 To (NumPts) Step 1 

E 1 (I).X = Key 1 PrsO + 1 ).X - Key l Pts(I).X 
El ([).Y = Key 1 hs(1 + 1 ).Y .- Key 1 Pts(I).Y 
E2(I).X = Key2Pts(I + l).X - Key2Rs(I).X 
EZ(I).Y = Key2Pts(I + I).Y - Key2hs(I).Y 

Next 1 
Dirn t 1 As Double 
For t = O To (NumInBetwccns + 1) Step 1 

t 1 = t / (NudnBetweens + 1) 
For 1 = 0 To (NumPts) Step 1 
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E(l).X = ( 1 - t 1) * El (I).X + t 1 E2(I).X 
E(I).Y = ( I - t 1) EI(l).Y + t 1 E2(I).Y 

Next 1 
For 1 = 0 To (NumRs) Step 1 

If 1 = OThen 
MorphPts(l).X = Key l Pts(O).X 
MorphPts(l).Y = Key I Pts(O).Y 

Else 
MorphPts(I).X = MorphPts(1 - I).X + E(1 - I).X 
MorphPts(I).Y = MorphPts(1 - I).Y + E(I - I).Y 

End If 
Next 1 

Select Case f 
Case1 

Sct TempPic = picMorph1 
Draw = True 

Case 2 
Set TernpPic = picMorph2 

D n w  = True 
Case 3 

Set TempPic = picMoph3 
Draw = True 

Case 4 
Set TempPic = pichlorph4 

D n w  =True 
Case 5 

Set TempPic = picMorph5 
Draw = True 

End Select 

If Draw Then 
For 1 = 1 T o  (NurnPts) Srep I 

TempPic-Line (IO * MorphPts(l).X, - 
TempPic-Height - (10 * MorphPts(I).Y)) - 

-( 1 0 * MorphRs(1- 1 ).X, - 
TempPic-Height - (IO * MorphRs(1- !).Y)) 

N a t  1 
End If 
Draw = False 

Next t 
End Sub 

. . . - . - . - . . 

Public Sub IntrinsicInterpolati~nO 
Dirn 1 As lnteger 
Dirn cl As Integer 
Dim t As Double 
Dirn Thetal(100) As Double ' Angles between edges of polygon 1 
Dirn ThetaZ(100) As Double ' Angles between edgcs of polygon 2 
Dirn LI  (100) As Double ' Lengck of the edges of  polygon 1 
Dirn L2(100) As Double ' Lcngth of the cdgcs of polygon 2 
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Dirn Alpha 1 As Double * Alpha for polygon 1 
Dim Alpha2 As Double ' Alpha for polygon 2 
Dirn AIpha(100) As Double 'This  is  the Alpha for the in-between frarnes 
Dirn Theta(100) As Double ' Thcta for the in-between trames 
Dim L(100) As Double ' Edge Lengths for the in-between frames 
Dim v l As Coords 
Dirn v2 As Cootds 
Dirn vCrossProd As Double 
Dirn TempPic As PictureBox 
Dirn Draw P.s Boolean 
Draw = False 
' Detennine the angle Thcta between an cxtcnded cdge and the next edge. 
' We find the cross product t o  see if the edges fonn a convex or concave 
' pan of  the polygon (This affects the way in wnich theta is calcuIated 
Dirn Done As Boolean 
Dirn Templnt As lnteger 
For 1 = 1 T o  (NumPts - 1) Step 1 

If ((Key 1 Rs(I).X = Key 1 Pts(1 + 1 ).X) And - 
(Key 1 Pts(I).Y = Key 1 Pts(1 + 1 ).Y)) And ((Key l Pts(I).X O Key 1 Pis([ - l).X) , 

Or (Key 1 Pts(l).Y o Key 1 Pts(1 - 1 ).Y)) Thcn 
Donc = Falsc 
Tcmplnt = 1 + 2 
Whilc Not Done 

If (Key lPts(TempInt).X O Key l Rs(I).X) O r  (Key l Pts(Templni).Y O Key 1 Pts(l).Y) Then 
Do ne = Tme 

€Ise 
TempInt = TempInt + 1 

End If 
Wend 

v 1 .X = Key 1 Pts(TempInt).X - Key IPts(l).X 
VI .Y = Keyl Pts(TempInt).Y - Key lPts(I).Y 
v2.X = KeylPts(I).X - KeylRs(1-  1).X 
v2.Y = KeylPts(I).Y - KeylPts(1 - 1).Y 
vCrossProd = Cross2D(vl. v2) 
If vCrossProd > Epsilon Then 

Thetal (1) = PI - 0.5 Angle(Key1 k ( l  - 1). Keyl Rs(I), Key lPts(Temp1nt)) - (PI / 2) 
Else 

If vCrossProd < -Epsilon Then 
ThetalO) = -(PI - 0.5 Angle(Key IPls(1- 1). KeyLPts(1). Kcy 1 k(Temp1nt))  - (PI / 2)) 

Else 
Thetal(1) = O ' this should never occur 

End If 
End If 

Else 
If (Key IPts(1- I).X = ~ e i  1 P&(I).x) And (Key lPu(1-  1).Y = Key l&(I).Y) - 
And (Key l Rs(I).X = Key 1 k ( 1  + l).X) And (Key 1 Pts(1j.Y = Key 1 k ( l +  1).Y) , 

Then 
Theta l(1) = 0 

Else 
If (KeylPuO - 1).X = KeylPts(l).X) And ( K e y l h O -  I).Y = Keyl Pts(I).Y), 
And ((Key lPts(I).X O KeylPts(I+ I).X) Or (KeylPls(l).Y o KeyIPts(I+ !).Y)) Then 

Done = False 
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TempInt = 1 - i 
Whiie Not Done 

If (Key1 Pts(Templnt).X O KeyIPts(1- I).X O r  - 
Key IPts(Templnt).Y o KeylPts(1- I ).Y) Then 

Donc = TNe 
Else 

TcrnpInt = Tcmplnt - 1 
If TempInt = O Thcn 

Done = Tnie 
End If 

End If 
Wend 
Theta l(1) = Theta I (Ternpint + 1) 

Elsc ' al1 points are distinct 
v 1 .X = Key 1 Pi41 + 1 ).X - Key 1 Pis(I).X 
v1.Y = KeylPts(1 + l).Y - KeyIPis(I).Y 
v2.X = KeylPts(I).X - KeylRs(1- 1).X 
v2.Y = Key lPts(l).Y - KeyIRs(1- 1).Y 
vCrossProd = Cross2D(v 1. v2) 
If vCrossProd > Epsilon Then 

ThetaI(1) = PI - Angle(Key1 Rs(1 - 1). Key 1 Pts(1). Key IPts(1 + 1)) 
Eise 

If vCrossProd c -Epsilon Then 
Theta l(1) = -(PI - Angle(Key 1 Pts(1- 1). Key 1 Pts(1). Key 1 h s ( 1  + 1 ))) 

Else 
Theta 1 (1) = O 

End If 
End If 

End If 
End If 

End If 
If (Key2Pts(I).X = Key3Pts(I + I).X) And (Key2Pts(I).Y = KeyZPts(1 + I).Y) , 

And ((KeyLPts(I).X O Key2Pis(l - l).X) O r  (Key2Pts(I).Y O Key2Pts(I - {).Y)) Then 
Done = FaIse 
TempInt = 1 + 2 
WhiIe Not Done 

If (Key2Pts(TernpInt).X o Key2Pts(I).X) O r  (KeyZPts(Tcmplnt).Y O KeySPts(I).Y) Then 
Done = TNe 

EIse 
Ternplnt = TempInt + 1 

End If 
Wend 

V I  .X = Key2PtsflempInt).X - Kcy2Prs(I).X 
VI .Y = Key2Pts(TempInt).Y - KeyZRs(l).Y 
v2.X = KcyZPts(l).X - Key2Pts(l- I).X 
v2.Y = KeyZPts(I).Y - KeyZRs(1- I).Y 
vCrossProd = Cross2D(v 1, v2) 
If vCrossProd > Epsilon Then 

Theta2(I) = PI - 0.5 Angle(KeyZPts(1 - 1). Key2Rs(i). KeyZRs(Temp1nt)) - (PI / 2) 
Else 

If vCrossProd < -Epsilon Then 

ThetaZ(1) = -(PI - 0.5 Angle(Key2Pts(I - 1 ) .  KeyZPts(1). KeyZRs(Temp1nt)) - (PI / 2)) 
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Else 
nieta2(1) = O ' this occurs whcn pts lie dong  a straight Iine 

End If 
End If 

Else 
If (KeyZPts(1 - 1).X = Key2Pts(l).X) And (Key2Rs(I - l).Y = Key2Pts(I).Y), 

And (Key2Pts(I).X = Key2Pts(I + 1 ).XI And (KeyZPis(I).Y = K c y 2 h ( I +  !).Y) Then 
Theta2(1) = O 

Else 
If (Key2Pts(I - I).X = Key2Pts(l).X) And iKey2Pts(l- I).Y = KeyZPts(I).Y) - 

And ((Key2Rs(l).X o Key2Pts(I + I).X) Or (Key2Pts(I).Y O Key2Pts(I + l).Y)) - 
ï h c n  

Done = Fdse 
Templnt = I - 1 
While Not Done 

If (Key2Rs(Templnt).X O Key2Pts(l- I ).X Or  - 
Key2Pts(Tempht).Y O Key2As(l- 1).Y) Then 

Dont = True 
Else 

Templnt = Templnt - 1 
If Templnt = O Then 

Done = Tme 
End If 

End If 
Wend 
Theta2(I) = Thetal(Temp1nt + 1) 

Else ' a11 points are distinct 
v 1 .X = KeySPts(1 + 1 ).X - Key2Pts(l).X 
v1.Y = Key2Prs(I + 1).Y - Key2Pts(l).Y 
v2.X = KeyZPts(I),X - KeyZPts(1 - I).X 
v2.Y = Key2Pts(I).Y - Key2Pts(I - l).Y 
vCrossProd = CrossZD(v 1. v2) 
If vCrossProd > Epsilon Then 

Theta2(1) = PI - Angle(KeyZPts(1 - 1). Key2Pts(I), KeyZPts(1 + 1)) 
Else 

If vCrossProd c -Epsilon Then 
ThetaS(1) = -(PI - Angle(Key2Pts(I - 1). Key2Pts(l). Key2Prs(I + 1 ))) 

E k  
Thefaî(1) = O 

End If 
End If 

End If 
End If 

End If 
Next 1 
For 1 = 0 T o  (NurnPts - 1) step'l  

a Find the lengths of  al1 edges of the polygon 
L l(1) = Length(Key 1 Pts(1 + 1 ). Key 1 PM)) 
L2(1) = Length(KeyZPts(1 + 1). Key2PWi)) 

Next l 
Dim AxisPt As Coords 

' Calculate the angle between the horizontal line thmugh the anchor point 
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' and the first edge of the polygon 
AxisPt-X = Key l Pts(O).X + 1 
AxisPt-Y = Key l Pts(O).Y 

' find the next distince venex following the initial venex - -  = False 
TcmpInt = 1 
While Not Done 

If (Key 1 Pts(O).X = Key lPts(TempInt).X) And (Key 1 Pts(O1.Y = Key I PWTempInt).Y) Then 
Templnt = Templnt + 1 

Else 
Done = Tme 

End t f 
Wcnd 
Alpha 1 = Angle(Key l Pts(Temp1nt). Key l Pts(0). AxisPt) 
AxisPt-X = Key2Pts(O).X + I 
AxisPt-Y = Key2Pts(O).Y 
Done = False 
Ternplnt = 1 
While Nor Done 

If (Key2Pts(O).X = Key2Pts(TernpInt).X) And (Key2Pts(O).Y = Key2Pts(Templnt).Y) Then 
Templnt = TernpInt + 1 

Else 
Done = Truc 

End If 
Wend 
Alpha2 = Angle(Key2PtsflempInt). Key2Pts(O). AxisPt) 
For t 1 = 1 To (NumlnBetweens) Step I 

t = t 1 / (NumlnBetweens + 1 ) 
For i = O To (NumPts - 1) Stcp 1 

L(1) = (1 - 1) ' LI (1) + t L2(1) 
If 1 O (NumPts - 1) Then 

Theta(1 + 1) = (1 - t )  * Thetal(1 + 1) + t Thetalu + 1) 
End If 

Next 1 
Alpha(0) = (1 - t) Alphal + t * Alpha2 ' "anchor" angle 

' anchor point gets linearly interpolated 
MorphPts(O).X = (1  - t) Key lPts(O).X + t * KcyZh(O).X 
MorphPLs(O).Y = (1 - t) KeylPu(O).Y + t Key2Pts(O).Y 
MorphPts( l).X = Cos(Alpha(0)) L(0) + MorphPts(O).X 
MorphPts(1)-Y = Sin(Alpha(0)) L(0) + MorphPts(O).Y 
AIpha(1) = Alpha(0) - Theta(1) 
For 1 = 2 To ( N u m h )  Step 1 

Alpha(1) = Alpha(1- 1) - Theta(1) 
MorphPts(l).X = ~ o r ~ h h s ( 1 -  1).X + , 

Cos(Alpha(i - 1)) LO - 1) 
MorphPts(l).Y = MorphPts(1- 1).Y + - 

Sin(Alpha(1- 1)) L(l- 1) 
Next 1 

Select Case t l  
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Case 1 
Set TempPic = picMorph l 

Diaw = True 
Case 2 

Set TempPic = picMorph2 
D n w  = Tnic 

Case 3 
Set TempPic = picMorph3 
Dnw = True 

Casc 4 
Sct TempPic = picMorph4 

D n w  = T N ~  
case5 

Set TempPic = picMorph5 
Dmw = Tme 

End Select 

If Draw Then 
For 1 = 1 T o  NumPts Step 1 
TernpPic-Line (IO MorphPts(I).X., 

TempPic-Height - (IO MorphPts(I).Y)) - 
-(IO MorphPts(1 - 1 ).Xe - 

TempPic-Height - ( 1 O MorphPts(1- 1 ).Y)) 
Next l 

End If 
D n w  = FaIse 

Next t l  
End Sub 

Private Function Angle(Q0 As Coords. Ql As Coords. 4 2  As Coords) 
' Takes three points, QO, Q I  and 42. and Calculates the angle at Q1. 

If (Q0.X =Ql .X And @.Y =Ql.Y) Or(Q1.X =Q2.X AndQ1.Y =Q2.Y)- 
O r  (Q0.X = Q2.X And @.Y = Q2.Y) Then 
Angle = PI 

Elsc 
Dim C As Double 
Dirn A As Double 
Dirn B As Double 
C = Length(Q 1 .42)  
A = LengUQ2, QO) 
B = Length(Q0. Q 1 ) 
If Abs(2 C * B) < EpsiIon Then 

Angle = O 
Else 

~ n ~ l e = ~ r c ~ o s ( ( ~  * B + c * c - A *  A ) / ( ~ * c *  B)) 
End If 
If Angle = O Then 

Angle = PI 
End If 

End If 
End Function 
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'******8P*8*8+**888**t8**8*t*L*L**L*8****~**8*8~8~****8888***8**** 

Public Function Maximum(A As Oouble. B As Double) 
' Takes two numbers (double) and returns the maximum of the two. 

I f A > B T h e n  
~Maxirnum = A 

Else 
Maximum = €3 

End If 
End Function 

.***************************************************************** 
Public Sub EdgeTweaking() 

Dirn f As Integer 
Dim t 1 As Integer 
Dirn t As Double 
Dirn Thetal(100) As Doubfc ' Angles between edges of polygon 1 
Dirn ThetaZ(100) As Double ' Angles between edges of polygon 2 
Dim L l ( I 0 )  As Double ' Length of the edges of polygon I 
Dirn L2(100) As Double ' Length of the edges of polygon 2 
Dirn Alphal As Double ' Alpha for polygon 1 
Dirn Alpha2 As Double ' Alpha for polygon 2 
Dirn Alpha(100) As Double ' This is the Alpha for the in-between frames 
Dim Theta(100) As Double ' Theta for the in-between frames 
Dirn L(100) As Double ' Edge Lengths for the in-betwecn framcs 
Dirn v l  As Coords 
Dirn v2 As Coords 
Dirn vCrossProd As Double 
Dirn S(100) As Double @ thc tweaking amounrs 
Dirn L12(100) As Double 
Dim LSmall As Double 
Dirn E As Double 
Dirn f As Double 
Dirn G As Double 
Dirn U As Double 
Dirn V As Double 
Dirn Lambda 1 As Double 
Dirn lambda2 As Double 
Dim TempPic As PiciureBox 
Dirn Draw As Boolean 
Draw = False 
Dirn Done As Boolean 
Dirn TempInt As lnteger 
' Determine the angle Theta between an extended edge and the next edge. 
' We find the cross product to sec if the edges f o m  a convcx or concave 
' part of the polygon (This affects the way in which theta is calculated 

For 1 = 1 To  (NurnPts - 1) Step 1 
1 f ((Key 1 Pts(l).X = Key 1 Pts(I + 1 ).X) And , 

(Key 1 Pts(l).Y = Keyl Pts(l + 1 ).Y)) And ((Keyl Pts(I).X o KeylPts(1 - I).X) - 
Or (Key 1 Rs(I).Y O Key 1 h ( 1 -  1).Y)) ïhen 

Done = False 
Templnt = 1 + 2 
While Not Done 
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If (Key 1 Pu(TempInt).X O Key 1 Pts(i).X) Or (Key 1 Pts(TempInt1.Y 0 Key 1 Pts(l).Y) Then 
Donc = True 

EIse 
Templnt = TempInt + 1 

End !f 
Wend 

v l .X = Key 1 Pts(TempInt).X - Key lPts(l).X 
v I .Y = Key 1 Pts(TernpInt).Y - Key 1 Pts(l).Y 
v2.X = Key 1 Pts(l).X - Key 1 h s ( l  - 1).X 
v2.Y = Key lPts(l).Y - Keyl Pts(1 - 1).Y 
vCrossProd = Cross2D(v 1. v2) 
If vCrossPrixl> Epsilon Then 

Thetal (1) = PI - 0.5 * Angle(Kcy t Pu(1 - 1). Key 1 Pts(l). Key 1 hsf lcmplnt))  - (PI / 2) 
Else 

If vCrossProd c -Epsilon Then 
Theta 1(I) = -(PI - 0.5 * Angle(Key 1 Prs(1 - 1 ). Key 1 Pts(I). Key 1 Pts(Temp1nt)) - !Pl / 2)) 

Else 
ThetaI(1) = O  ' 

End If 
End If 

Else 
If (Key 1 Pts(1 - 1 ).X = Key 1 Pts(I).X) And (KeyIPts(1- l).Y = KcylPts(I).Y) , 
And (Kcy lPts(l).X = Key 1 Pts(I+ 1 ).X) And (Key 1 Pls(l).Y = Key 1 Pts(1 + 1 ).Y) - 

Then 
Theta 1 (1) = 0 

Else 
If (KeyIPts(1- I).X = Key lPts(I).X) And (KeylPts(1- 1).Y = Keyl Pts(I).Y) - 
And ((Key LPts(I).X O Key1 Pts(1 + l).X) Or (Key 1 h ( I ) . Y  O Key 1 PtdI  + [).Y)) Thrn 

Done = False 
TempInt = 1 - 1 
While Not Done 

If (Key 1 Pts(TempInt).X O Key 1 Pts(1- 1).X Or, 
Key1 Pts(TempInt).Y o Key 1 Pts(1- 1 ).Y) Then 

Done = T'me 
EIse 

Templnt = Templnt - 1 
If Templnt = O 'Rien 

ûone = True 
End If 

End If 
Wend 
Thetal(1) = Thetal(Temp1nt + 1) 

Else ' al1 points are distinct 
v1.X = KeylPts(1 + I).X - KeyIPts(l).X 
v 1 .Y = Key 1 Pts(1 + 1 ).Y - Key 1 Rs(i).Y 
v2.X = KeylPts(i).X - Key lPts(1- 1).X 
v2.Y = Key 1 Pis(l).Y - Key lRs(i - l).Y 
vCrossProd = CrossZD(v 1, v2) 
If vCrossProd > Epsilon Then 

Thetal(1) = PI - Angle(Key 1 Pts(l - 1). KeylPts(1). Key lPts(1 + 1)) 
Else 
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1 f vCrossProd < -Epsilon Then 
ThetaI (1) = -(PI - Angle(Key I P I N  - I ), Key I Prs(l), Key 1 Pts(1 + 1 ))) 

Else 
Thetal (1) = O 'NOTE USED TO BE O 

End If 
End If 

End If 
End If 

End If 

If ( K e y 2 h ( l ) . X  = KeyZPts(1 + l).X) And (Key2Pts(l).Y = KeyZPts(1 + 1).Y) - 
And ((Key2Pts(l).X O Key2Pts(l - I).X) O r  (Key2Pts(I).Y O KeyLPts(1 - I ).Y)) Thcn 
Done = False 
Tempint = 1 + 2 
While Not Done 

If (Key2PtsCTempInt).X O KeyZPts(I).X) O r  (Key2Pts(TempInt).Y O Key2Pts(I).Y) Then 
DOne = True 

Else 
Templnt = TempInt + 1 

End If 
Wend 

v l  .X = Key2Pts(Temp[nt).X - Key2Pts(I).X 
v l  .Y = Key2Prs(Templnt).Y - KeyZPts(l).Y 
v2.X = Key2Pts(l).X - Key2Pts(I - 1).X 
v2.Y = Key2Pts(l).Y - KeyZPts(1 - 1).Y 
vCrossProd = Cmss2D(v 1. v2) 
If vCrossProd > Epsilon Then 

Them2(1) = PI - 0.5 * Angle(KeyZPts(1 - 1). Key2Pts(I), Key2Pts(Ternplnt)) - (PI / 2) 
Else 

If vCrossProd c -Epsilon Then 
ThetaZ(1) = -(PI - 0.5 Angle(Key2Pts(I - l), Key2Prs(I). Key2PtsCïempInt)) - (PI 1 2 ) )  

EIse 
Theta2(I) = O  ' 

End If 
End If 

Else 
If (Key2Pts(I - 1).X = KeyZPis(I).X) And (Key2Prs(I - l).Y = Key2Pts(l).Y) , 

And (Key2Pts(l).X = Key2Pts(I + I).X) And (Key2Pts(I).Y = KeyZPts(I+ 1 ).Y) Then 
Theta2fl) = O 

Else 
If (KeyZPts(1- l).X = Key2hs(I).X) And (KeyZPts(1- 1).Y = Key2Pts(I).Y), 

And ((Key2Pts(l).X O KeyîPts(l+ 1).X) Or (Key2Rs(I).Y O KeyZPts(I+ 1 ).Y)) - 
Then 

Done = FaIse 
TcrnpInt = 1 - 1 
While Not Done - 

If (KeyZPts(Ternpfnt).X o KeyZPts(1 - I).X Or, 
Key2Pts(Templnt).Y O Key2Pts(I - I).Y) Then 

Done = True 
Else 

Templnt = TernpInt - 1 
If Templnt = O Then 

Donc = True 



End If 
End If 

Wend 
Theta2(I) = ThctdCïemplnt + 1) 

EIse ' al1 points are distinct 
v l .X = Key2Pts(l+ I ).X - Key2Rs(I).X 
v 1 .Y = Key2Pts(l + I).Y - Key2Rs(I).Y 
v2.X = Key2Pts(l).X - KeyZPts(1- I).X 
v3.Y = KeyZPts(l).Y - Key2Pts(l - !).Y 
vCrossProd = CrossZD(v 1. v2) 
If vCrossProd > Epsilon Then 

Theta2(I) = PI - Angle(Key2Pts(l - 1). Key2Pts(l), KeyZRs(1 + 1)) 
Else 

If vCrossProd < -Epsilon Then 
Theta2(1) = -(PI - Angle(Key2Pts(I - I ) ,  ~ e ~ 2 P k ( l ) .  Key2Pts(l + I ))) 

Elsc 
Theta2(1) = O 

End If 
End If 

End If 
End If 

End If 
Ncxt 1 
For 1 = 0 To (NurnPts - 1) Step I 

' Find the lengths of al1 edgcs of the polygon 
L 1 (1) = Length(Key l Pîs(l+ 1). Key l Pts(1)) 
L20) = Length(Key2Pts(I+ 1), KeyZPts(1)) 

Next 1 
Dim AxisPt As Coords 
' Calculate the angle between thc horizontal line through the anchor point 
' and the first edge of the polygon 
AxisPt-X = KeylPu(O).X + 1 
AxisPt-Y = Key 1 Pis(O).Y 
Templnl= 1 
Donc = False 
While Not Done 

If (KeylPts(O).X = KeylPts(TempInt).X) And (KeylPts(O).Y = KeylPts(TempInt).Y) Then 
TempInt = TempInt + 1 

Else 
Done = True 

End If 
Wend 
Alpha 1 = Angle(Key 1 Pts(Temp1nt). Key 1 Pts(O), A x i s h )  
AxisPt-X = Key2Pts(O).X + 1 
AxisPLY = KeyZPts(O).Y 
TernpInt = 1 
Done = False 
While Not Done 

If (Key2Pts(O).X = Key2Pts(Templnt).X) And (KeyZPts(O).Y = KeyZf'U(TempInt).Y) Then 
TempInt = Templnt + 1 

Else 
Done = True 

End If 
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Wend 
Alpha2 = Angle(Key2Prs(TempIni), Key2Pts(O), AxisR) 
' Hcre insen tweaking siuff 
Dim MaxEdgeLenghDiff As Double 
Dim Tempiength As Ooublc 
MaxEdgeLengthDiff = 0. I 
For 1 = O To  (NumPts - 1) Step 1 

TempLength = Abs(Ll(1) - L2(1)) 
If Tempiength > MaxEdgeLengthDiff Then 

MaxEdgeLengthDiff = TempLength 
End If 

Next l 
LSmall = 0.0001 * MaxEdgeLengthDiff 
For I = 0 To (NumPts - 1) Step I 

LI 2(1) = Maximum(Abs(L I(1) - L2(1)). LSrnall) 
Next l 
For t l  = I To (NumlnBetweens) Step 1 

t = t l / (NumInBetwecns + 1) 
Alpha@) = (1  - t) Alphal + t Alpha2 
For 1 = 0 T o  (NurnPts - 1) Step 1 

Theta(1 + 1) = (1 - t) * Thctal(1 + 1) + t * ThetaZ(1 + 1) 
If1 >OThen 

Alpha(;) = Alpha([ - 1) - Theta(i) 
End If 

Next 1 

E = O  
f = O  
G = O  
For i = O T o  (NumPts - 1) Step 1 

E = E + L12(1) L12(1) * Cos(Alpha(1)) Cos(Alpha(1)) 
f = f + L 12(1) L12(I) Sin(Alpha(1)) Cos(Alpha(1)) 
G = C + L12(I) * L12(I) * Sin(Alpha(1)) Sin(Alpha(1)) 

Ncxt 1 
u = o  
v=o  
For 1 = O To (NumRs - 1) Sicp 1 

U = U c (((1 - t) LI(1) + t L2(1)) Cos(Alpha(1))) 
V = V + (((1 - t) Ll(1) + t L2(1)) Sin(Alpha(1))) 

Next 1 

U = U * 2  
v = v * 2  
Lambdal = ( U * C - f e V ) / ( E * G - f * f )  
L a m b d a 2 = E * V - U * f ) / ( E * G - f * f )  

For 1 = 0 T o  (NumPts) Step 1 
S(1) = -0.5 L12(1) * L12(1) (Lambda1 * Cos(Alpha(1)) + Lambda2 Sin(Alpha(1))) 
L(I) = (1 - t) LI  (0 + t L2(I) + S(O 

Next 1 

MorphPts(O).X = (1 - t) * KeylPts(O).X + t KeyZPts(O).X 
MorphPts(O).Y = ( 1 - t) Key 1 Pts(O).Y + t * KeyZPLs(O).Y 
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For i = 2 To (NumP&) Step 1 
MorphPrs(l).X = Morphhs(1 - I).X + - 

Cos(Alpha0 - 1)) L{I - I ) 
MorphPts(I).Y = MorphPts(1 - 1).Y + - 

Sin(Alpha(1 - 1)) L(I - 1)  
Next 1 
Select Case t 1 
case 1 

Set TempPic = picMorph 1 
Dnw = Tnie 

Case2 
Set TempPic = picMorph2 

Draw = Tnie 
case3 

Set TempPic = picMorph3 
Draw = Tnie 

Case 4 
Set TempPic = picMorph4 

Draw = Tme 
Casc 5 

Set TempPic = picMorph5 
Draw = Truc 

End Selcct 
If D n w  Then 

For 1 = I To NumPis Stcp 1 
TernpPic.Line ( 1 O MorphPts(I).X. , 

TempPic-Height - (10 MorphPts(I).Y)) - 
-(IO * MorphPtsfl - I).X. - 

TempPic.Height - (10 MorphPts0 - l).Y)) 
Next 1 

End If 
Draw = False 

Next t 1 
End Sub 

Public Sub LinearBezierMorphO 
' A Vertex Path Method. Uses Iinear interpolation to calculate the path mvelled by a vertex 
' as it rnorphs from one polygon into the other. 

Dim 1 As lnteger 
Dirn J As Integer 
Dim Draw As Boolean 
Dim TempPic As PicrureBox 
Draw = False 
' Calculate the step size to increment each of the x- and y- coords 
' for each successive in-between image 

While ((NumPts - 4) Mod 3) O O 



Code 

Key 1 Pts(NumRs) = Key 1 Pts(0) 
Key2Pts(NumPis) = Key2Pts(O) 
NumPts = NumPrs + 1 

Wend 

For 1 = OTo (NumPts) Step 1 
KeyDifference(I).X = (Key2Pts(I).X - Key 1 Pts(l).X) / (NumInBetweens + 1) 
KeyDifference(I).Y = (Key2Pts(I).Y - Key IPts(l).Y) / (NumInBetwecns + 1)  

Next 1 

For 1 = O T o  (NumInBetweens + 1) Step 1 
' Calculare the in-between points 

For J = O T o  (Nurnhs) Step 1 
MorphPts(J).X = Key IPts(J).X + ((KeyDifference(i).X) * 1) 
MorphPts(J).Y = Key l Pts(J).Y + ((KeyDi ffercnce(J).Y)' * 1) 

Next J 
' Draw the Iines in the appropriate picture box 
' Note chat the coord systern is switched back for dnwing  

Select Case 1 
Case l 

Set TernpPic = picMorph 1 
D n w  = TNe 

case 2 
Set TernpPic = picMorph2 

Draw = Tme 
Case 3 

Set TernpPic = picMorph3 
Dmw = Tme 

case 4 
Set TempPic = picMorph4 
Draw = Tme 

Case 5 
Set TernpPic = picMorph5 

Draw = Tme 
End Select 

Dirn Pt0 As Coords 
Dirn Pt1 As Coords 
Dirn Pt2 As Coords 
Dirn Pt3 As Coords 
Dirn t 1 As Integer 
Dirn t As Double 
Dirn NurnCurves As lnteger 
Dirn TernpX As Double 
Dirn TempY As Double 
Dim 11 As Integer 
NumCurves = ((NurnPts - 4) / 3) 

If Draw Then 
For J = 1 To (NumRs) Step 1 

' mark the control points 
TempPic.Circle (IO MorphPts(J - 1).X, TempPic.Height - 1 0  MorphAs(J - l).Y), - 

1, RGB(O,S55,0) 
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' TcmpPic-Line ( 10 MorphPts(J).X, - 
TempPic-Height - (IO MorphRs(J).Y)) - 
-( i O * MorphPMJ - 1 ).X. - 
TcmpPic-Height - (10 MorphPts(J - [).Y)) 

Next J 
For l1 = O To NumCurvrs Step 1 

R0.X = MorphPis(3 II).X 
R0.Y = MorphPts(3 * II).Y 
Pt1.X = MorphPts(3 I I  + I).X 
Pt1.Y = MorphPts(3 II + I).Y 
Pt2.X = MorphPts(3 I I  + 2).X 
Pt2.Y = MorphPts(3 * 11 + 2).Y 
Pt3.X = MorphPts(3 II + 3).X 
Pt3.Y = M o r p h h ( 3  II + 3).Y 
For t1 =OTo 200 Step 1 
'calculate and plot the point of the bezier curve 

t = t 1 / 2 0 0  
TempX=(1-t)*(I-t)*(I-t)*PtO.X+3*t*(l-t)*(I-t)*Ptl.X- 

+ 3 *  t * t 8 ( l  - t ) * P Q . X + t * t * t * P t 3 . X  
TernpY=(I  - t ) * ( I  - t ) * ( I - t ) * P t O . Y + 3 * t * ( l - t ) * ( I - t ) * P t l . Y -  

+ 3 * t * t * ( I - t ) * P 1 2 . Y + t * t * t * R 3 . Y  
TempPic-Circie (10 * TempX. TempPic.Height - (10 TempY)). 0.2 

Next t 1 
Next II 

End If 
D n w  = False 

Next 1 
End Sub 

. * * * * * * S * * * * L * * * t S * * * * * * * * * * * * I * * 8 t Z * 8 * * 8 * * * * * * * * * * * * * * * * * * * * * * * *  

Public Sub LeastWorkCurveMatching() 
' Determines the control point correspondence between the rwo Bezier curves 
' that will result in the least amount of work CO rnorph from one curve to the other. 

Dirn BackTrackListO As Coords 
If KeyZNumPts > Key 1 NumPts Then 

NurnPrs = Key2NumPts 
Else 

Nu* = Key 1 NumPts 
End If 

ReDirn BackTrackList(Key 1 NumPts + Key2NumPts) As Coofds 
Dirn WBack() As Integer 
ReDirn WBack(Key 1 NumPts. KeyZNumPts) As Integer 
Dirn WUp() As lnteger 
ReDim WUp(Key1NumR.s. KéyZNumPts) As Integer 
Dirn WDiagO As lnteger 
ReDim WDiag(Key 1 Numfts, Key2NumPts) As Integer 
Dirn 1 As Integer 
Dirn J As lnteger 
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For 1 = O To (Key 1 NumPts) Stcp 3 
For J = O To (Key2NumRs) Step 3 
'Note: If I=û and J o O  then we can only calculate WUp 

If 1 = O  And J = 3  Then 
WUp(1, J)  = StretchCurve(1. J - 3.1. J) +, 

BendCurve(1,J- 3.1. J) +, 
Minimum(WUp(1, I - 3) + KinkCurve(1, Key2NumRs - 3, - 

1. J - 3.1. J). - 

WBack(I.1) = 15000 
WDiag(1, J) = 15000 

End If 
I f I=OAndJ>3Then  

WUp(I. J) = StretchCurve(1. J - 3.1. J) + , 
BendCurve(l. J - 3.1. 1) + - 

Minimum(WUp(1, J - 3) i KinkCurvefl. J - 6,- 
1. J - 3, 1. o. - 
WDiagO, J - 3) + , 

KinkCurve(Key 1 NumPts - 3. J - 6.- 
1, J-3. LJ)) 

WBack(1. J) = 15000 
WDiag(1. J) = 15000 

End If 
@ Also. if I d  and J=0 chen we can only calculate WBack 

I f I = 3  AndI=OTben 
WBack(1, J) = StretchCurve(1 - 3, J, 1, J) + - 

BendCurve(1- 3, J, 1. J) +, 
Minirnum(WBack(l- 3, J) + , 

KinkCurvc(Key 1 NumRs - 3. J. 1 - 3, - 
J. 1. O* - 

WDiag(1- 3. J) +- 
KinkCurve(Key1NumPts - 3. Key2NumPrs - 3,- 
I - 3. J, 1.n) 

WUp(I.1) = 15000 
WDiag(1, J) = 15000 

End If 
If1>3AndJ=O"lhen ' 

WBack(1. I) = StretchCurve(I - 3. J, 1, J) +, 
BendCurve(I - 3, J, 1, J) +, 

Minimum(WBack(l- 3.9 + , 
KinkCurve(i - 6,J. 1 - 3, J, 1, J), , 



M i n W ,  
WUp(1-3.J-3)+, 

KinkCune(l- 3. KcytNurnPts - 3.1 - 3. J - 3.1, J). , 

-1 - 3.J) +, 
K i & C ~ - 6 . J - 3 . 1 - 3 . J . I . J ) ,  
) ' end of Minimum pirrnctar 



- 
WBlClr(l- 3. J -3 )+ ,  
~inlrCUM(I-6.J-3.1-3.1-3.1.I), 
) 'endofMirn)f3Prmrrnr 

Eiid If 
Next J 

Next I 

' now backuack to find the p u b  
BackTrackiist(O).X r Key l NumRs 
BackTrsrkList(O).Y = KeyWumPu 
Dim TernpX As Intqcr 
Dim TcmpY As lntcger 
Dim CunKcy 1 Pt As In!eger 
Dirn CurrKeyZR As lntcgcr 
Dim NurnBackT~~~kRs As lncegcr 
NumBackTacltPu = 1 
CurrKey IR = BackTnckLis(O).X 
CurrKey2Pt = BackTrackiist(O).Y 
I = l  

Do Whi le (CunKey i Pt >= O) And (CumKcy2R - 0) 
TempX = BackTraclttist(1- 1 ).X 
TempY = BackTrackLiu(l- I ).Y 
If WBackflempX. TcmpY) .r= WUpCTempX. TempY) And, 

WBxkflempX. TempY) <= WDiag(TempX. TempY) Thcn 
CunKeylR = BackTmckIist(1- I).X - 3 
CunKeyZR s BackTrackList(I - 1 ).Y 

Else 
If WUpCTempX. TempY) < WBrckCrcmpX. TmipY) A d ,  

WUpCTémpX. TempY) c= WDiagCTcmpX. TmipY) Then 
CunKey 1 Pt = BackTraclrLisfl - 1 ).X 
CunKcy2R r BrtkTndtList(l0 I).Y - 3 
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Else 
If WDiagCïcmpX, TempY) < WBackflempX. TernpY) And, 

WDiagflempX, TempY) < WUpCTempX, TempY) Then 
CurrKeylR = BackTrackList(1- 1).X - 3 
CurrKey2R = BackTrackList(1- I).Y - 3 

End If 
End If 

End If 
BackTrackList(l).X = CurrKey 1 R 
BackTrackList(l),Y = CurrKey2R 
NumBackTrackPts = NumBackTrackPts + 1 
1 = 1 + 1  
If CurrKey IR = O  And CurrKey2R = O Then 

Exit Do 
End If 

LOOP 
Dirn TempKeyI IntcrpPtsO As Coords 
ReDim TempKey 1 lnterpPu(Key 1 NumPts + Key2NumPts) As Coords 
Dirn TempKcy2lnterpPtsQ As Coords 
ReDim TempKey2InterpPts(KeyI NumRs + Key2NumRs) As Coords 
For 1 = 0 To (NumBackTrack~ - 1 )  Step 1 

TempKcy 1 InterpRs(NumBackTrackPts - I - I).X = Key lPts(BackTrackList(l).X).X 
TempKeylInterpPts(NumBackTrackPts - 1 - [).Y = Key IRs(BackTrackList(l).X).Y 
TempKey2InterpRs(NumBackTrackPts - 1 - I).X = Key2Pts(BackTrackList(l).Y).X 
TempKey2lnterpPts(NumBackTrackPts - 1 - I).Y = Key2Pts(BackTrackList(I).y).Y 

Next 1 

Dirn OldLisrMarker As Integer 
Dirn NewListMarker As Integer 
Dirn InterpListMarker As lnteger 
Dirn NewListl(MaxNum) As Coords 
Dirn NewListî(MaxNum) As Coords 
OldListMaricer = O 
NewListMarker = O 
l nterpLisMarker = O 
Dirn Done As Boolean 
Done = False 
While Not Done 

If (TempKeyIInterpPu(InterpListMarker).X = TempKeyllnterpPts(InterpListMarkcr + 1 ) X )  , 
And (TempKey 1 InterpPrs(InterpListMar)rer).Y = TempKey lIntcrpPts(lnterpListMariser + 1).Y) 

Then 
ForI= 1 T o 3  Step 1 

NewListI (NewListMarker).X = TernpKcy 1 InterpPrs(lnterpListMarkcr).X 
NewList 1 (NewListMarktr).Y = TempKey 1 InterpPrs(lnterptistMarker).Y 

NewListMarkcr = NewListMarkd + 1 
Next 1 
InterpListMarlcer = IntcrpListMarker + 1 

Else 
if the intcrp points am not the sarnc. record the next 

' ones in the old list 
For 1 = 1 T o 3  Step 1 

NewList 1 (NewListMarlter).X = Key 1 PLs(OldListMarker).X 
NewList 1 (NewListMarker).Y = Key l Pts(OldListMarkcr).Y 
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NewListMarker = NewListMIuker + I 
OldListMmicer = OldListMarker + 1 

Next 1 
InterpListMarker = InterpLisMarker + 1 

End If 
If InterpListMarlter = NurnBackTrackPts Then 

Done = Tm 
End If 

Wend 

OldListMarker = O 
NewListMarker = O 
InttrpListMarker = O 
Done = False 
While Not Done 

If flempKey2InterpPts(InterpListMarker).X = TempKey2InterpPts(lnterptistMarker + I).X) , 
And (TempKeyZInterpPts(InterpListMarker).Y = TempKey2InterpPts(lnterpListMarker + 1 ).Y) 

Then 
F o r I = l T o 3 S t e p l  

NewList2(NewListMarker).X = TernpKey21nterpRs(InterpListMarker).X 
NewList2(NewLisrMarker).Y = TernpKey2InterpPrs(InterpListMarker).Y 

NewListMYker = NewListMarker + 1 
Next 1 
InterpListMarker = InterpListMarker + 1 

Else 
' if the interp points are not the same. record the next 
' ones in the old Iist 

For 1 = 1 To 3 Step 1 
NewList2(NcwListMarker).X = Key2Rs(OldListMarker).X 
NewList2(NewListMarker).Y = Key2Rs(OldListMarker).Y 
NewListMarker = NewListMarker + 1 
OldListMarker = OIdListMarker + 1 

Next 1 
InterpListMarker = InterplisMarker + 1 

End If 
If interpListMarker = NumBackTrackPts Then 

Done = T m  
End If 

Wend 
For I = O To (((NumBackTrackPts - 1) * 3) - 1) Step 1 

Key lPts(I).X = NewList l(l).X 
Key 1 Pts(l).Y = NewList 1 (I).Y 
Key2Pts(I).X = NcwListZO).X 
Key2Pts(l).Y = NewList2(I).Y 

Next 1 
Key I?ts((NumBackTrackPts - '1) 3).X = KeylPts(O).X 
Key 1 Pts((NumB;ickTrackPts - 1) * 3).Y = Key1 Pts(O).Y 
Key2Pts((NumBackTrackPts - 1 ) * 3).X = Key2Pts(O).X 
Key2hs((NumBackTrackhs - I ) 3).Y = KeyZRs(O).Y 
N u m m  = (NumSackTrackRs - 1) 3 

End Sub 
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' * * * * * * * * t * * * * ~ t ~ t + i I * i i t ~ * * t t 8 t t 1 S * 8 t * 8 * * * * * ~ * * t * * ~ * B ~ * ~ ~ * ~ ~ ~ ~ ~ * *  

Pubiic Function CurvcLength(I0 As Integer. I l  As Integer. Num As Inreger) 
Dim W As Coords 
Dim Pl As Coords 
Dim P2 As Coords 
Dirn P3 As Coords 
Dirn f(1 1 ) As Double 
Dirn t As lnteger 
Dirn N As lnteger 
Dirn t l  As Double 
Dirn dxdt As Double 
Dirn dydt As Double 
Dirn CL As Double 
Dirn h As Double 
N =  10 
If Num = 1 Then 

PO.X = Key l Rs(tO).X 
P0.Y = Key 1 Rs(lO).Y 
If (IO = I I )  Then 

PI .X = Key lRs(IO).X 
f l .Y = Key 1 Pts(lO).Y 
P2.X = Key 1 Rs(IO).X 
P2.Y = Key 1 Rs(IO).Y 
P3 .X = Key 1 Rs(IO).X 
P3.Y = KeylPts(IO).Y 

Else 
P1.X = KeylPts(10 + l).X 
P 1 .Y = Key lRs(i0 + 1).Y 
P2.X = Key1 Rs(I0 + 2).X 
P2.Y = Koyl Pts(I0 + 2)-Y 
P3.X = Key 1 Pts(I0 + 3).X 
P3.Y = KeylPts(l0 + 3).Y 

End If 
Else 

P0.X = Key2Rs(lO).X 
P0.Y = Key2Rs(tO).Y 
If (IO= I1)Then 

P 1 .X = Key2Pts(lO).X 
PI .Y = Key2h(lO).Y 
P2.X = KeyZRs(lO).X 
P2.Y = Key2Pis(iO).Y 
P3.X = Key2Rs(IO).X 
P3.Y = Kcy2Rs(IO).Y 

Else 
P l  .X = Key2Rs(iO + 1).X. 
PI .Y = Key2Rs(lO + 1).Y 
P2.X = KcyZRs(l0 + 2).X 
P2.Y = Key2Rs(lO + 2).Y 
P3.X = Kcy2Rs(tO + 3).X 
P3.Y = Kcy2Pts(IO + 3).Y 

End If 
End If 
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' use the trapezoid mle, with n=10, h d . 1  to integrate to find curve length 
' t always goes from O to 1 

I f  (P0.X = P3.X) And (Pû.Y = P3.Y) Then 
CurveLength = O 

Else 
For : = O To 10 Step 1 

tl = r / N  
dxdt = CoeffA(t1) * PO-X + CoeffB(t1) * P1.X +CoeffC(tI) * P2.X +CoeffD(tI) * P3.X 
dydt = CoeffA(t 1)  W-Y + CoeffB(t 1) * P1.Y + CoeffC(t 1 ) * P2.Y + CoeffD(t 1) P3.Y 
f(t) = Sqr(kdt dxdt + dydt dydt) 

Next t 
h = l / N  
CL = (f(0) + f(10)) / 2  
For t  = 1 To O Step 1 
CL = CL + f(t) 

Next t 
Curvekngth = CL * h 

End If 
End Function 

Public Function CoeffB(t As Double) 
CoeffJ3=3*(1- t )*( l -3*t )  

End Function 

b * * + * * t * 8 * 8 8 * * 8 * 8 * 8 . * . . * 8 8 8 * * 8 8 8 * 8 8 8 8 8 8 8 * 8 * * 8 8 8 8 8 ~ 8 8 ~ 8 8 8 8 * * 8 8 * * 8 8 8 * 8 8 8  

Private Function BendCurve(l0 As Integer, JO As Intcger, 1 L As [nteger, J L As Integer) 
' again. pass the index of the array.and calculate a11 other points from that 

Dirn W As Coords 
Dirn Pl As Coards 
Dirn P2 As Coords 
Dim P3 As Coords 
Dirn ml As Double 
Dirn m2 As Double 
Dirn R As Coords 
Dim xlntersection As Double 
Dirn ylntersection As Double 
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Dim Phi 1 As Double 
Dim Phi2 As Double 
Dim LI As Double 
Dim L2 As Double 
if IO= II Then 

P0.X = Key 1 Rs(IO).X 
P0.Y = Key 1 Pts(IO).Y 
P 1 .X = Key 1 Pts(lO).X 
P 1 .Y = Key l Rs(lO).Y 
P2.X = Key 1 Rs(lO).X 
P2.Y = Key 1 Pts(IO).Y 
P3.X = Key l Pts(IO).X 
P3.Y = KeyIRs(IO).Y 

Elsc 
P0.x = Key IRs(lO).X 
P0.Y = Key 1 Pts(iO).Y 
P1.X = KeylPts(i0 + I).X 
P1.Y = KeylPis(l0 + [).Y 
P2.X = Key 1 Pts(1O + 2).X 
P2.Y = Key 1 FU00 + 2).Y 
P3.X = Key 1 Pts(I0 + 3).X 
P3.Y = KeylPts(I0 + 3).Y 

End If 

' calculate the slope of the nomaï lines ai pO and p3 
If A b s 0 . Y  - P1.Y) c Epsilon Then 
ml = 1500û 

Else 
m l  =(Pû.X-PI.X)/(PO.Y -PI.Y) 

End If 
If Abs(P3.Y - F2.Y) < Epsilon Then 
m2 = 15000 

Else 
m2=(P2.X- P3.X)/(P3.Y -P2.Y) 

End If 
If Abs(m1 - m2) < Epsilon Thcn 

Phi1 = O  
Else 

xlntenection = (P3.Y - P0.Y + ml * PO.X - m2 P3.X) / (ml - m2) 
yIntersection = (xlntersection - P0.X) * mi + PO.Y 
Pt.X = xhtcrsection 
PLY = yIntersection 
If Length(P2. P l )  c Length(P3, PO) Then 

Phi 1 = Anglem.  Pt, F3) 
Else 

Phi 1 = 2 PI - AngleW. Pt. P3) 
End If 

End If 
If JO = II Then 

PO.X = KeyZPts(JO).X 
P0.Y = Key2Rs(JO).Y 
P 1 .X = Key2Pts(JO).X 
P 1 .Y = Key2Pts(lO).Y 
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P2.X = Key2Pts(JO).X 
P2.Y = KeyZRs(JO).Y 
P3.X = Key2Pîs(JO).X 
P3.Y = Key2Pts(JO).Y 

Else 
W.X = KeyZPts(JO).X 
W.Y = KeyZPts(JO).Y 
P 1 .X = Key2Rs(JO + I ).X 
P 1 .Y = Key2Prs(lO + 1 ).Y 
P2-X = Key2Pts(lO + 2).X 
P2.Y = Key2Rs(JO + 2).Y 
P3.X = KcyZRs(J0 + 3).X 
P3.Y = KeyZPts(J0 + 3).Y 

End If 
* calculate the siope of the normal liner at  pO and p3 
If  Abs(P0.Y - P1.Y) < Epsilon Then 

m l  = 15000 
Else 

m i  = (P0.X - P1.X) /(PO.Y - P1.Y) 
End 1 f 
If Abs(P3.Y - F2.Y) c Epsilon Then 
m2 = 15000 

E Ise 
m2 = (P2.X - P3.X) / (P3.Y - P2.Y)'- 

End If 
If Abs(m 1 - m2) c EpsiIon Then 

Phi2 = O 
E lse 

xlntenection = (P3.Y - P0.Y + m 1 P0.X - m2 * P3.X) / (m 1 - m2) 
ylntersection =  intersection - P0.X) ml + P0.Y 
h X  = xlntersection 
PLY = yIntersection 
If Length(P2. P 1 ) < Length(P3, PO) n i e n  

Phi2 = AngleUW, Pt. P3) 
Else 

Phi2 = 2 PI - Angle(PO. Pt. P3) 
End If 

End If 
LI = C ~ ~ e h I g t h ( 1 o . f  1. 1 ) 
L2 = CurveLength(J0, J 1.2) 
If (L 1 + L2) c Epsilon n i e n  

Bendcuwe = 15000 
Else 

BendCurve = CurveCb (Phi2 - Phi 1) (Phi2 - Phi 1) 1 (L1 + L2) 
End If 

End Function 

Pnvate Function KinkCuwc(i0 As Integer. JO As Integer. I l  As Integer, J1 As Integer, - 
12 As Intcgct, 1 2  As Intcgcr) 

' accept the indices o f  the join points. as wcll as the indices of the end convol 
' points of the curves that mect at the join point. II (JI) is the join point. 
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' We assume rhat the curve segments have only a small degree of curvature 
Di m P2 As Cwrds 
Dirn P3 As Coords 
Di m P4 As Cwrds 
Dirn m l  As Double 
Dirn m2 As Double 
Dim Pt As Coords 
Dirn xlntersection As Double 
Dirn ylntersection As Double 
Dirn Phi1 As Double 
Dirn Phi2 As Double 
Dim LI As Doubk 
Dirn L2 As Doubk 
Dirn Done As Boulean 
Dim TempInt As Integer 
Dirn v 1 As Coords 
Dirn v2 As Coords 
Dirn vCmssProd As Double 
Dirn DivAndAdd As Boolean 
P3.X = KeylPts(ll).X 
P3.Y = Key l Pts(1 l).Y 
If (IO = II)  Then 

P2.X = Key 1 Rs(I I).X 
P2.Y = Key 1 RsO 1)-Y 

Else 
If I l  =OThen 

P2.X = Key lRs(Key l NumRs - 1 ).X 
P2.Y = Key lRs(Key 1 NumPts - 1 ).Y 

EIse 
P2.X = Key 1 h ( 1 l  - t ).X 
P2.Y = KcylPts(I1 - l).Y 

End 1 f 
End If 
If 11 = 12 Then 

P4.X = Key l Rs(1 l).X 
P4.Y = Key 1 PtsO )).Y 

Else 
P4.X = KeylPis(1l + 1).X 
P4.Y = Key l  Pts(I1 + I).Y 

End If 
DivAndAdd = False 
' if but P30P4 
If ((P2.X = P3.X) And (F2.Y = P3.Y)) And ((P3.X O P4.X) Or (P3.Y O P4.Y)) Then 

if I l  = O n e n  
Templnt = Key 1 NumRs ' 

Else 
Templnt = I l  - 1 

End If 
Done = False 
While Not Donc 

If (Key 1 Rs(Tempht).X O F2.X) Or (Key 1 Pts(TempInt).Y o P2.Y) Then 
Done =Tm 

E k  
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Templnt = Templnt - 1 
If Templnt < O Then 

TempInt = KeylNumRs 
End If 

End If 
Wend 
P2.X = Key l Pb(Templnt).X 
P2.Y = Key lPts(TcrnpInt).Y 

DivAndAdd = True 
Else @ if P3=P4 but P 2 e P 3  

If ((P3.X = P4.X) And (P3.Y = P4.Y)) And ((P2.X O P3.X) Or (P2.Y o P3.Y)) Then 
If II = KeylNumRsThen 

TempInt = 1 
E k  

TempInt = I l  + 1 
End If 
Done = False 
While Not Done 

If (Key1 Rs(TempInt).X O P4.X) Or (Key lPts(TempInt).Y o P4.Y) Thcn 
Done = True 

Else 
TempInt = TempInt + 1 
If TempInt > Key 1 NumPts Then 

TempInt = O 
End If 

Eld If 
Wend 
P4.X = Key lPts(Templnt).X 
P3.Y = Key 1 Rs(TempInt).Y 

DivAndAdd = T m  
End If 

End If 
If (P2.X = P3.X) And (P2.Y = P3.Y) And (P3.X = P4.X) And (P3.Y = P4.Y) Then 

Phi 1 = P I  
Else 

v1.x = P4.X - P3.X 
v l  .Y = P4.Y - P3.Y 
v2.X = P3.X - P2.X 
v2.Y = P3.Y - P2.Y 
vCrossProd = Cross2D(v 1, v2) 
If vCrossProd > Epsilon n i e n  

If DivAndAdd = False Then 
Phi 1 = AngleW. P3. P4) 

Else 
Phi 1 = 0.5 Angk(F2.'P3. P4) + (PI / 2) 

End If 
Else 

If vCrossProd c -Epsilon Then 
If DivAndAdd = False Then 

Phi 1 = PI - Angle(P2, P3, P4) 
Elsc 

Phi 1 = PI - (0.5 Angle(P2, P3. P4) + (PI 12))  
End If 
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Else @ the points are collincar 
Phi1 = PI 

End If 
End If 

End If 
P3.X = KeyZRs(JO).X 
P3.Y = Key2Pw(JO).Y 
If JI  = JOThen 

P2. X = Key2Pts(J 1 ) .X 
P2.Y = Key2Pts(J 1 ).Y 

Else 
If J 1 = O Thcn ' keep in mind thar key2pts(k3y2numpts- 1) may be the same as the init pt 
P2X = Key2Pts(Key 2NumRs - 1 ).X 
P2.Y = Key2Rs(Key2NumPts - 1).Y 

EIse 
P2.X = Key2Rs(J 1 - 1).X 
P2.Y = Key2Pis(J 1 - 1).Y 

End I f  
End If 
I f  JI  = J2Then 

f4.X = KeyZPts(l l1.X 
P4.Y = Key2fts(J l).Y 

Else 
P4.X = Key2PW 1 + 1).X 
P4.Y = Key2Rs(J 1 + 1).Y 

End If 
DivAndAdd = False 
' if P2=P3 but P 3 o P 4  
If ((P2.X = P3.X) And (PZY = P3.Y)) And ((P3.X O P4.X) Or (P3.Y O P4.Y)) Then 

I fJ l  =OThen 
TempInt = KeyZNumPts 

Else 
TcmpInt = J 1 - 1 

End If 
Done = False 
W hile Not Done 

If (Key2RsCTempInt).X O P2.X) Or (Key2Pts(TempInt).Y O P2.Y) Then 
Done = Tme 

Else 
Templnt = Templnt - 1 
If TempInt < O Then 

Tempint = Key2NumRs 
End If 

End If 
Wend 
P2.X = KeylRsO'emplnt).X 
P2.Y = Key2Pis(TempInt).Y 

DivAndAdd = T m  
Else 

If ((P3.X = P4.X) And (P3.Y = P4.Y)) And ((P2.X O P3.X) Or (P2.Y O P3.Y)) Then 
If J 1 = Key2NumPts Then 

Tempint = 1 
Else 
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Templnt = JI + I 
End If 
DOne = False 
While Nat Done 

If (Key2Pts(TempInt).X o P4.X) Or (Key2Prs(TcmpInt).Y O P4.Y) Then 
h n e  =Truc 

Else 
TempInt = TempInt + 1 
1 f Templnt > Key 2NumPts Then 

Templnt = O 
End If 

End I f  
Wend 
P4.X = Key2Pts(TempInt).X 
P4.Y = Kcy2Pts(TempInt).Y 

DivAndAdd = Tme 
End If 

End If 
IF (P2.X = P3.X) And (l'2.Y - P3.Y) And (P3.X = P4.X) And (P3.Y = P4.Y) Then 

' al1 points are equal 
Phi2 = Pl 

Else 
VI .X = P4.X - P3.X 
v1.Y =P4.Y - P3.Y 
v2.X = P3.X - P2.X 
v2.Y = P3.Y - P2.Y 
vCrossProd = Cross2D(v 1, v2) 
If vCrossProd > Epsilon Then 

If DivAndAdd = Fdse Then 
Phi2 = AngleW. P3, P4) 

Else 
Phi2 = 0.5 Angle(P2, P3, P4) + (PI 1 2) 

End If 
Else 

If vCrossRod < -Epsilon Then 
If DivAndAdd = False Then 

Phi2 = PI - Angle(P2, P3, P4) 
Else 

Phi2 = PI - (0.5 Angle(P2, P3, P4) + (PI / 2)) 
End If 

Else 'the points are collinear 
Phi2 = PI 

End If 
End If 

End If 
If Abs(Phi2 - Phil)  < Epsilon Then 

KinkCurve = O 
Else 

KinkCurve = CurvcCk Exp(CumeEk * Log(Abs(Phi2 - Phil))) 
End If 

End Function 
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Public Function StreichCurve(l0 As Integer, JO As Integer, II As Integer. J 1 As Integer) 
' Accepts the index of the starting point of each curve, Calculates the stretching work 
' used in morphing the curve segment staning at Key IPts(10) and ending at Key lPts(l1) 
' to curve segment starting at Key2Pts(JO) and ending at Key2Pts(JI). 

Dirn LO As Double ' length of segment from vertex I l  CO vertex IO in the 1 st frame 
Dirn LI As Double ' Iength of segment from venex J 1 to venex JO in the second fnmc  

LO = Curveiength(I0. 1 1. 1) 
L 1 = CurvçLength(J0. J 1. 2) 
I f  Abs((l - CurveCs) * Minimum(L0, LI) + CuweCs Maximum(L0. L 1)) É Epsilon Then 

StretchCurve = 15000 
Eke 

If Abs(L 1 - LO) c Epsilon Then 
StretchCurve = O 

Else 
SmtchCurve = (CurveKs Exp(CurveEs * Log(Abs(L1- M)))) / ((1 - CurveCs) Minimum(L0, 

Li) - 
+ CurveCs Maximum(M. LI)) 

End If 
End If 

End Function 

' * * * * * * * * * * * * * * * * * * * * * * * * * I * * * 8 8 8 * * t * t * * * * * * * * * * * * * * * * * * * * = * * * * * * *  

Public Sub intrinsicBezierMorph() 
Dim 1 As Integer 
Dim t1 As Integer 
Dim t As Double 
Dirn Thetal(100) As Double ' Angles between edges of polygon 1 
Dirn Theta2(100) As Double ' Angles between edges of polygon 2 
Dirn L I(100) As Double ' Length of the edges of polygon 1 
Dirn L2(100) As Double ' Length of the edges of polygon 2 
Dirn Alphal As Double ' Alpha for polygon 1 
Dim Alpha2 As Double ' Alpha for poiygon 2 
Dirn AIpha(100) As Double ' This is the Alpha for the in-between frarnes 
Dirn Theta(100) As Double ' Theta for the in-between frarncs 
Dirn L(100) As Double ' Edge Lengths for the in-between framcs 
Dirn v l As Coords 
Dim v2 As Coords 
Dim vCrossProd As Double 
Dirn S(IO0) As Double ' the tweaking amounts 
Dim L12(100) As Double 
Dim LSmall As Double 
Dirn E As Double 
Dirn f As Double 
Dim G As Double 
Dirn U As Double 
Dirn V As Double 
Dim Lambda1 As Double 
Dirn Lambda2 As Double 
Dirn TempPic As PicnrrcBox 
Dirn Draw As Boolean 
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Draw = False 
Dim Done As Boolean 
Dim Templnt As lnteger 

' Determine the angle Theta between an extended edge and the next edge. 
' We find the cross product to see if the edges form a convex or  concave 
' part of the polygon (This affects the way in which theta is calculated 
For 1 = 1 To (NumPts - 1) Step 1 

If ((Key 1 PtsiI).X = Key 1 Pts(1 + I).X) And , 
(Key 1 Pis(I).Y = Key 1 Pts(1 + 1 ).Y)) And ((Key 1 Pts(I).X O Key 1 Pts(1- 1).X) - 

Or (Key 1 Rs(I).Y O Key 1 Pts(l - 1 ).Y)) Then 
Done = Faise 
TempInt = I + 2 
White Not Done 

If (Key 1 Pts(Tempht).X O Key 1 Pts(I).X) Or (Key 1 Pts(TempInt).Y O Key 1 Pts(I).Y) Then 
Done =Tme 

Else 
Templnt = Templnt + t 

End If 
Wend 

v 1 .X = Key l PtsflempInt).X - Key l Pts(I).X 
VI .Y = KeylPts(TempInt).Y - KeylPts(I).ï 
v2.X = Key lPts(l).X - Key lRs(1- 1 ).X 
v2.Y = KeylPts(I).Y - Key lPts(1 - 1).Y 
vCrossProd = CrossZD(v 1. v2) 
If vCrossProd > Epsilon Then 

Theta I(1) = PI - 0.5 Angte(KeylPts(1 - 1). Key 1 Pts(I), Key 1 Pts(Ternp1nt)) - (PI / 2) 
Else 

If vCrossProd c -Epsilon Then 
nietai(1) = -(PI - 0.5 Angle(Key l h ( I  - 1). Key 1 Pts(I), Key 1 RsflempInt)) - (PI / 2)) 

Else 
nietal(I) = 0 ' 

End If 
End If 

Et se 
If (Key 1Ptsfl- l).X = Keyl Pîs(l).X) And (KeylRs(1- ]).Y = Keyl Prs(I)-Y) - 
And (Key 1 Pts(l).X = Key 1 Pts(l+ 1 ).X) And (Key 1 Pts(I).Y = Key 1 Pts(I+ 1 ).Y) - 

Then 
Theta 1 (1) = O 

Else 
If (KeylPts(1- I).X = Key lRs(I).X) And (KeylPts(i - I).Y = Key 1 Prs(l).Y) - 
And ((Keyl Rs(I).X O KeylPts(l+ 1 ).X) Or (KeylPts(l).Y O Key t h ( I +  1 ).Y)) Then 

Done = False 
Templnt = 1 - 1 - 
White Not Done 

If (Key 1 Pts(TernpInt).X O Key lPts(1- 1).X Or, 
KeylPtsflcrnpInt).Y O KeylRsfl - l).Y) Thcn 

Dom = True 
Else 

Templnt = Templnt - 1 
If Templnt = O n i e n  

Done = True 



Code 

End If 
End If 

Wend 
Thetal (1) = n i e u 1  (Ternplnt + I ) 

Else ' al1 points are distinct 
v 1 .X = Key 1 Pts(l+ I ).X - Key 1 Rs(l).X 
v1.Y = KeylPts( l+ 1).Y - KeylRs(l).Y 
v2.X = Key l Prs(I).X - Key 1 h ( l  - I).X 
v2.Y = Key I Pts(I).Y - Key 1 Pts(1- 1 ).Y 
vCrossProd = Cross2D(v 1, v2) 
If vCrossProd > Epsilon Then 

Thetal(I) = PI - Angle(KcylRs(l- 1), KeylRs(i). Key lPts(l+ 1)) 
Wse 

If vCrossProd c -Epsilon Then 
Thetal(1) = -(PI - Angle(Key 1 Pts(1- 1). Key 1 Pts(T), Key 1 P M I  + 1))) 

Else 
Thetal(T)=O 'NCYEUSEDTOBEO 

End If 
End If 

End If 
End If 

End If 

If (Key2Rs(l).X = KeyZPts(l+ 1).X) And (Key2PtsO.Y = KeyZPu(I+ t).Y), 
And ((Key2Pts(I).X o KeyZPtsO - I).X) Or (KeyZRs(I).Y O Key2Pts(I - l).Y)) Then 
Done = FaIse 
Templnt = 1 + 2 
While Not Done 

If (Key2Pts(Ternplnt).X O Kzy2Rs(I).X) Or (Key2Pts(TempInt).Y O KeyZPts(I).Y) Then 
Done = T m e  

Else 
TempInt = Templnt + 1 

End if 
Wend 
VI .X = Key2PtsCemplnt).X - KeyZPts(I).X 
vl .Y = Key2Pts(Templnt).Y - KeyZPts(l).Y 
v2.X = Key2Pts(I).X - Key2Pts(I - 1 ) X  
v2.Y = Key2Pts(I).Y - KeyZRsfl- l).Y 
vCrossProd = CrossZD(v 1. v2) 
If vCrossPmd > Epsilon n i c n  

Theta2(1) = PI - 0.5 Angle(KeyZPts(I - 1). KeyZRs(I), Key2Rs(TempInt)) - (PI / 2) 
Else 

If vCmssProd < -Epsilon Then 
TheiaZ(1) = - P I  - 0.5 Angle(Key2Pts(I - l), Key2Ptsfl). Key2PtsCTemplnt)) - (Pl / 2)) 

Else 
Theta20 = O ' 

End If 
End If 

Else 
If (Key2Pts(I - l).X = Key2Pts(l).X) And (KeyZRs(1- 1).Y = Key2RsO.Y)-  

And (KeyZRs(i).X = KeyZPtsU + I).X) And (KeyZRs(I).Y = Key2Pts(I+ l).Y) nien 
nieca2(I) = O 

EIse 



Code 

If (Key2Pts(I - 1 ).X = Key2Pts(I).X) And (Key2Rs(l- l ).Y = Key2Pts(l).Y), 
And ((Key2Rs(l).X O Key2Pts(I + 1).X) Or (KeyZPcs(I).Y o KeyZPts(I+ 1 ).Y)) - 

Then 
Done = Falx 
Templnt = 1 - 1 
WhiIe Not Done 

If (Kcy2Rs(Templnt).X o Key2Rs(I - l).X Or - 
Key2Pts(Templnt).Y O KeyZRs(1- I).Y) Then 

Done = Truc 
Else 

Templnt = TempInt - 1 
If TempInt =O Thcn 
DO= = T N ~  

End If 
End If 

Wend 
Theta20 = ïheta2(Templnc + 1) 

Else ' al1 points are distinct 
v1.X = KeyZRs(I+ 1).X - Key2Rs(l).X 
v1.Y = Key2&(1+ l).Y - Key2Rs(l).Y 
v2.X = KeyZRs(I).X - KeyZPts(1- 1).X 
v2.Y = KeyZPts(I).Y - KeyZRs(1- I).Y 
vCrossPtod = CrossZD(v1. v2) 
If vCrossProd > Epsilon Then 

Theta2(1) = PI - Angle(KeyZRs(1- 1). Key2Pts(I), KeyZRs(I+ 1)) 
Else 

If vCrossProd < -Epsilon Then 
Theta2fl) = -(PI - Angle(Key2PW- 1). KeyZPtsO, Key2FW + 1))) 

Wse 
Theta20) = O 

End If 
End If 

End If 
End If 

End If 
Next 1 
For 1 =O Tr, (NumPts - 1) Step 1 

' Find the lcngths of al1 edges of the polygon 
L 1 (1) = Length(Key 1 Pts(l+ 1). Key 1 Pts(1)) 
L2(1) = Length(KeyZRs(I + 1)- KcyZPtsCI)) 

Next 1 
Dim AxisR As Coords 
' Calcuiate the angle ktween the horizontal line through the anchor point 
' and the first edge of the polygon 
AxisPt.X = Key 1 Rs(O).X + 1 - 
AxiskY = Key l Pts(O).Y 
Templnt = 1 
Donc = Falst 
While Not Done 

If (KcylPu(O).X = KcylPtsflempInt).X) And (KeylRs(O).Y = KeylRsflemplnt).Y) Then 
Templnt = Templnt + 1 

Else 
Done=Truc 



End If 
Wend 

Alpha l = Angle(Key l Ptsflernplnt), Key lPts(O), AxisPt) 
AxisPt-X = Key2Pts(O).X + I 
AxisPt-Y = Key2Rs(O).Y 
TempInt = 1 
Done = False 
WhiIe Not Done 

If (KeyZPrs(O).X = Key2Rs(TempInt).X) And (Key2Pts(O).Y = Key2ks(Templnt).Y) Then 
Ternplnt = TcmpInt + I 

Else 
Done = Tm 

End If 
Wend 
Alpha2 = Angle(Key2Pts(TempInt). Key2Pts(O). AxisPt) 
' Here insert tweaking stuff 
Dirn MaxEdgeLengthDiff As Double 
Dirn TernpLength As Double 
MaxEdgeLengthDi ff = 0.1 
For 1 = O To (NumPts - 1) Step 1 

TernpLength = Abs(L 1(I) - L2(1)) 
If  TempLength > MaxEdgeLcngthDiff Then 

MaxEdgeLengthDiff = TempLength 
End If  

Next 1 
LSmalI = 0 . 0 0 1  MaxEdgeLengthDiff 
For 1 = 0 To (FJumPts - 1) Step 1 

L 12(I) = Maximum(Abs(L.10 - L2(I)), LSmall) 
Next 1 
For t l  = 1 To (NumlnBetwems) Step 1 

t = t 1 / (NumInBerweens + 1) 
Alpha(0) = (1 - t) Alphal + t Alpha2 
For 1 = O To (NumRs - 1) Step 1 

Theta(1 + 1) = (1 - t) * Thetal0 + 1) + t Theta2(I + 1) 
If 1 >CiThen 

Alpha(I) =Alpha([ - 1) - Thetao) 
End If 

Next 1 
E=O 
f=O 
G = O  
For 1 = O To (NumPts - 1) Step 1 

E = E + L12(1) L12(1) Cos(Alpha(1)) Cos(Alpha0)) 
f = f + L12(I) LI201 Sin(Alpha(1)) Cos(Alpha(1)) 
G = G + LIZ(1) L12(l) Sin(Alpha(l)) Sin(Alpha0)) 

Next 1 

u=o 
v = o  
For 1 = O To (NumRs - 1) Step 1 



Code 

V = V + (((1 - t) Ll(1) + t L2(I)) Sin(Alpha(1))) 
Next 1 

For I = 0 T o  (NumRs) Step 1 
S(1) = -0.5 L12(1) L12(1) * (Lambda1 * Cos(Alpha(1)) + Lambda2 * Sin(Alpha(1))) 
L(1) = (1 - t) * LI([) + t * L2(0 + S(1) 

Next I 

For 1 = 2 T o  (NumPts) Step 1 
MorphRs(I).X = MorphPts(1 - l).X + - 

Cos(Alpha(1- 1)) L(I - 1) 
MorphPts(l).Y = MorphPts(1- ]).Y + , 

Sin(Alpha(1- 1)) L(i - 1) 
Next 1 
Select Chse t l 

Case1 
Set TempPic = picMorph 1 

Draw = True 
Case2 

Set TempPic = picMorph2 
Draw = Twe 

Case3 
Set TempPic = picMorph3 
Draw =Truc 

Case4 
Set TempPic = picMorph4 
Draw=T~t 

Case5 
Set TempPic = picMorph5 

Draw = TCUC 
End Select 
Dim Pt0 As Coords 
Dim Pt 1 As Coords 
Dim Pt2 As Coords 
Dim Pt3 As Coords 
Dim t2 As lnteger 
Dim Tempt As Double 
Dim NurnCurvts As lnteger 
Dim TcmpX As Double 
Dim TempY As Double 
Dim II As lnteger 



If Draw Then 
For II = O To NumCurves Step 1 

R0.X = MorphPts(3 1I).X 
Pt0.Y = MorphPts(3 * II).Y 
R1.X = MorphPis(3 * II + I).X 
R I  .Y = MorphRs(3 * II + I).Y 
Pt2.X = MorphPts(3 II + 2).X 
Pt2.Y = MorphPts(3 II + 2).Y 
Pt3.X = Morphh(3  11 + 3).X 
Pt3.Y = MorphPts(3 11 + 3).Y 
ForQ=OTo200Step  1 
'calculate and plot the point of the bezier curvc 

Tempt = t2 / 200 
TempX = (1 - Tempt) (1 - Tempt) (1 - Tempt) R0.X + - 

3 Tempt (1 - Tempt) (1 - Tempt) * Pt1.X- 
+ 3 Tempt Tempt (1 - Tempt) Pt2.X + , 
Tempc Tempt Tempt * R3.X 

TempY = (1 - Tempt) * (1 - Tempt) (1 - Tempt) * Pt0.Y + , 
3 *Tempt (1 -Tempo (1 -Tempt) R1.Y - 
+ 3 Tempt Ternpt (1 - Tempt) Pt2.Y + , 
Tempt Tempt Tempt * R3.Y 

TempPic-Circle (10 TempX. TempPic.Hcight - (10 * TempY)), 0.2 
Next 12 

Next II 
End If 
Draw = False 

Next t 1 
End Sub 



References 

Thomas W. Sederkrg and Eugene ~reenwood. A physically based 

approach to 2D shape blending. Computer Graphics (Proc. 

SIGGRAPH), 26(2):25-34, 1992. 

Thomas W. Sederberg, Peisbeng Gao, Guojin Wang, and Hong Mu. 2D 

shape blending: an intrinsic solution to the vertex path problem. 

Computer Graphics (Proc. SIGGRAPH), 27: 15- 1 8, 1993. 

Shmuel Cohen, Gershon Elber and Reuven Bar-Yehuda. Matching of 

freeform curves. Cornputer A ided Design, 29(5): 369-378, 1997. 

James Foley, Andries van Dam, Steven Feiner and John Hughes. 

Computer Graphics - Priociples and Practce, 2nd ed. Addison Wesley 

Publishing Company, Reading, Massachusetts. 1987. 

Francis S. Hill, Jr. Computer Graphics. Prentice-Hali, Inc., Englewood 

Cliffs, New Jersey. 1990. 



References 

[6] Josef Hoschek and Dieter Lasser. Fundamentals of Cornputer Aided 

Geometric Design. A K Peters, Wellesley, Massachusetts. 1993. 

[7] H. Fuchs, A.M. Kedem, and S.P. Uselton. Optimal surface 

reconstruction from planar contours. Cornunications of the ACM, 

20(10):693-702, 1977, 

[8] Thaddeus Beier and Shawn Neely. Feature-based image metamorphosis. 

Cornputer Graphics (Proc. SIGGRAPH), 26(2): 35- 42, 1 992. 

[9] Thomas W. Sederberg and Eugene Greenwood. Shape Blending of 2-D 

Piecewise Curves. Mathematical Methods for Curves and Sutfaces, 497- 

506, 1995. 

[IO] Moms G. Cox. Numencal methods for the interpolation and 

approximation of data by spline functions. Ph.D. thesis, Department of 

Mathematics, City University, St. John Street, London. 1975. 

[Il] Hans C. Ohanian. Physics, 2nd ed. W.W. Norton and Company, New 

York. 1989. 

[12] Stephen H. Crandall, Norman C. Dahl, and Thomas J. Lardner. An 

Introduction to the Mechanics of Solids, 2nd ed. McGraw-Hiil Book 

Company, New York. 1978. 






