
Private computation on genomic data

by

Mohammad Zahidul Hasan

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

December 2017

c© Copyright 2017 by Mohammad Zahidul Hasan

Thesis advisor Author

Noman Mohammed Mohammad Zahidul Hasan

Private computation on genomic data

Abstract

Capturing the vast amount of information encoded in the human genome is a fas-

cinating research problem. The outcomes of this research have significant influences

on a number of health-related fields, such as personalized medicine, paternity testing,

and disease susceptibility testing. To facilitate these types of large-scale biomedical

research projects, it oftentimes requires sharing genomic and clinical data collected

by disparate organizations among themselves. In that case, it is of utmost impor-

tance to ensure that sharing, managing, and analyzing the data does not reveal the

identity of the individuals who contribute their genomic samples. The task of storage

and computation on the shared data can be delegated to third-party cloud infras-

tructures, equipped with large storage and high-performance computation resources.

Outsourcing these sensitive genomic data to the third party cloud storage is asso-

ciated with the challenges of the potential loss, theft, or misuse of the data as the

server administrator cannot be completely trusted as well as there is no guarantee

that the security of the server will not be breached. In this thesis, I propose methods

for secure sharing and computation of three different functions on genomic data.

ii

Contents

Abstract . ii
Table of Contents . v
List of Figures . vi
List of Tables . viii
Acknowledgments . ix
Dedication . x

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 4
1.3 Thesis Organization . 6

2 Background 8
2.1 Cryptographic Background . 9

2.1.1 Secure Computation . 9
Oblivious Transfer . 11
Secure Multiparty Computation 11

2.1.2 Adversary Types . 13
Semi-honest adversary . 13
Malicious adversary . 14

2.1.3 Paillier Cryptosystem . 14
2.1.4 Advanced Encryption Standard (AES) 15
2.1.5 Bloom Filter . 16

2.2 Biology Background . 18
2.2.1 Genomic Data . 18
2.2.2 Genomic Data Security . 19

2.3 Security Requirement . 20

3 Related Work 22
3.1 Secure count query . 22

3.1.1 Using Homomorphic Encryption 23

iii

iv Contents

3.1.2 Using Cryptographic Hardware 25
3.2 Statistical analysis . 26
3.3 Secure sequence similarity search . 28
3.4 Other relevant works . 31

4 Secure Count Query on Encrypted Genomic Data 32
4.1 Count Query . 33
4.2 Genomic Data Representation . 34
4.3 System Design Overview . 36
4.4 Threat Model . 38
4.5 Basic System Design . 39

4.5.1 Genomic Data Without Phenotype 39
Generation of Index Tree . 39
Encrypting the Index Tree . 44
Encryption of Query . 45
Searching on Index Tree . 46

4.5.2 Genomic Data with Phenotype 49
Insertion into the Bloom filter. 50
Encryption of the Bloom Filter. 51
Encryption of the Query. 52
Search with Phenotypes in the Index Tree. 52

4.6 Experimental Results . 53
4.7 Security Analysis . 58
4.8 Summary. 59

5 Secure Sequence Similarity Search on Encrypted Genomic Data 61
5.1 Similar Patient Matching . 62
5.2 Hamming Distance . 62
5.3 Genomic Data Representation . 63
5.4 Query Types . 64
5.5 System Design Overview . 65
5.6 Threat Model . 65
5.7 Basic System Design . 66

5.7.1 Building Compressed Prefix Tree 67
5.7.2 Encrypting the Compressed Prefix Tree 71
5.7.3 Searching on Encrypted Prefix Tree 71

5.8 Experimental Results . 74
5.9 Security Analysis . 78
5.10 Summary . 79

Contents v

6 Identification of Similar Patients with Edit Distance Approximation 81
6.1 Edit Distance . 81
6.2 System Design Overview . 82
6.3 Threat Model . 83
6.4 Genomic Data Representation . 83
6.5 Basic System Design . 84

6.5.1 Edit Distance Approximation 85
6.5.2 Bloom Filter Representation 87
6.5.3 Construction of the BF-Tree 89
6.5.4 Encryption of the BF-Tree . 91
6.5.5 Construction of the Query . 91
6.5.6 Search on Encrypted BF-Tree 92
6.5.7 Runtime Complexity. 97

6.6 Experimental Result . 97
6.7 Security Analysis . 99
6.8 Summary . 100

7 Conclusion 101
7.1 Summary . 101
7.2 Looking ahead . 102

Bibliography 113

List of Figures

2.1 Garbled circuit for an AND gate. 10
2.2 Example of a Bloom filter for two strings x and y with three hash

functions . 17

4.1 Architecture of our proposed solution. 36
4.2 Different states during the generation of index tree. Figure 4.2a, 4.2b,

and 4.2c represents the tree after the insertion of the first, second, and
third record respectively. 40

4.3 Index tree for Table 4.2. 40
4.4 Sequence diagram of our proposed model. 48
4.5 Information stored in a single node. 49
4.6 Tree building time and tree encryption time for count queries on datasets

with different number of SNPs. 55

5.1 Different states during the generation of the prefix tree. Figure 5.1a,
5.1b, and 5.1c represents the tree after the insertion of the first, second,
and third record respectively. 66

5.2 Prefix tree and compressed prefix tree generated from the data repre-
sented in Table 5.1. 69

5.3 Sequence diagram of our proposed model. 75
5.4 Data read and prefix tree building time. 76
5.5 Figure 5.5a shows the query execution time on different datasets with

different number of records and a fixed hamming distance k = 10.
Figure 5.5b shows the query execution time on a dataset of 10000
records and different hamming distances k ∈ 1, 2, 3, 8, 10. 77

5.6 Figure 5.6a shows the communication overhead on different datasets
with different number of records and a fixed hamming distance k = 10.
Figure 5.5b shows the communication overhead on a dataset of 10000
records and different hamming distances k ∈ 1, 2, 3, 8, 10. 78

6.1 Calculation of edit distance using reference genome 87

vi

List of Figures vii

6.2 A sample BF-tree containing only 8 Bloom filters at child node. Each
node except the root node has two children and is the union of its left
and right child. Here, Bloom filter B12 is the union of Bloom filters B1
and B2. Similarly Bllom filter B1...4 denotes that it is the union of B12
and B34. 89

6.3 An example of traversing the tree. In each node, the Hamming distance
between the query Bloom filter q and the Bloom filters at the child
nodes are compared. The child node containing the more similar Bloom
filter to q is traversed next. 93

6.4 The overall protocol of our proposed solution. Both the CS and CI
have two common inputs, i) the public reference genome, Ref and ii)
the hash function of Bloom filter, H. The CI generates the tree T
offline. The CS also generates the query Bloom filter, Bq offline. Then
the server and the client engage in a secure computation protocol to
find the appropriate leaf node containing the similar patient in the tree,
T . 96

6.5 Average running time to execute a query. Note that, the reported time
does not include the amount of time required to generate end encrypt
the tree in the preprocessing stage. 98

List of Tables

2.1 Garbled truth table for an AND gate 10

4.1 Different properties of existing techniques for count query 33
4.2 Data representation in the Certified Institution (CI) 35
4.3 Configuration of the CS. 54
4.4 Query execution time. Times are measured in seconds. 56
4.5 Comparison of count query execution time on a dataset of 5000 records,

where each record contains 300 SNPs, for different query sizes. 57
4.6 Communication overhead in MB. 58
4.7 Size of original database, unencrypted tree and encrypted tree in MB. 58

5.1 Sample Genomic data representation 63

6.1 Configuration of the server. 98
6.2 The cost of garbled circuit per query. 99

viii

Acknowledgments

First of all, I would like to express my gratitude to the Almighty for granting me

the opportunity to complete this thesis.

My sincerest gratitude to my supervisor, Dr. Noman Mohammed for giving me the

opportunity to work under his supervision. I am grateful to him for his tremendous

support, care and encouragement towards my thesis. I have learned a lot from him

and without his guidance and suggestions, I would not have been able to finish this

thesis. I also extend my thanks to Drs. Carson Kai-Sang Leung and Ken Ferens

for being my thesis committee members. I appreciate the time they have spent for

reading my thesis and their thoughtful suggestions.

I am indebted to my collaborators Md Safiur Rahman and Md Nazmus Sadat for

their valuable insights and feedbacks. I also want to thank my colleagues at the Data

Security and Privacy Lab for their support, in the form of friendship and encourage-

ment: Md Momin Al Aziz, Kazi Wasif Ahmed, Md Waliullah, Reza Ghesemi, and

Toufique Morshed. I also would like to thank the faculty and staff members of the

Department of Computer Science who have helped me in various ways.

Finally, I would like to thank my wonderful family. I will forever be indebted to

my sisters and especially to my parents for everything I have achieved so far in my

life.

ix

This thesis is dedicated to my parents and sisters for their unconditional

love, endless supports and encouragements.

x

Chapter 1

Introduction

The rapid advancement of genome sequencing technologies produces newly se-

quenced genomes at a pace that the fully sequenced genomes have become widespread

and affordable. It has also opened up the opportunity to develop new applications

in the health-related fields. Paternity testing, personalized medicine, genetic com-

patibility testing, and disease susceptibility testing are some of the few applications.

All of the applications involve the analysis of human genome which can reveal essen-

tial information about an individual. For example, disease susceptibility testing can

determine an individual’s predisposition to a specific disease such as breast cancer,

diabetes, and Alzheimer’s [1]. This kind of analysis is usually done by checking if

the genome of an individual match with a list of already known variations and then

calculating and predicting the disease susceptibility [1]. Most of these analyses rely

on genome-wide association study (GWAS). GWAS helps to understand and identify

the associations between the genetic variations and traits like major human diseases

[2]. Also, in the personalized medicine, a physician can prescribe a safe and effective

1

2 Chapter 1: Introduction

medical treatment based on the patient’s genetic profile to minimize the side effects.

Needless to say, that to make all these applications effective, the analysis of the data

has to be accurate.

To guarantee significant accuracy in this type of analysis, a large number of ge-

nomic sequences are required, the collection of which are sometimes beyond the ca-

pability of a sole organization [3]. Allowing the access of the genomic data surpassing

the premise of the organization responsible for initial collection is a viable solution.

But, delegating the access of the data, be it owned by a government organization or a

private research institution, is not always very straightforward because of the nature

of the genomic data.

1.1 Motivation

Genomic data cannot be treated as any other data; it has some distinctive fea-

tures. Naveed et al. [4] identified six special features of genomic data. A person’s

DNA changes very little over time and it is unique – two individuals can easily be

distinguished from their data. Furthermore, information about the genotype, pheno-

type, and blood relatives of an individual can also be inferred from his or her genomic

profile. Due to this sensitive nature, disclosure of this data has significant privacy

risks. For instance, a person carrying the mutation of a specific gene which increases

the likelihood of developing a specific disease might be denied by an insurance com-

pany for his health coverage. Hence, while sharing genomic data among multiple

institutions, safety measures should be taken to uphold the privacy of the individu-

als who contribute the data. For this purpose, different privacy policies have been

Chapter 1: Introduction 3

developed, thus facilitating the task of analysis to be done in a broader range.

The volume of the aggregate shared data is enormous and requires a vast amount

of storage space. Due to the quality of services offered by the cloud infrastructures

at a considerably lower rate, especially having the characteristics of high availability

and scalability, cloud computing services can be adopted for this purpose. However,

cloud services are vulnerable to the security threats and an adversary capable of

breaching the security of the cloud server would be able to access the residing data.

One published news clearly demonstrated that privacy should not be expected to be

preserved from cloud service providers [5].

In this thesis, our aim is to design a secure framework for outsourcing genomic

data and executing three specific operations on it. These operations are count query,

Hamming distance and edit distance approximation. Count query determines the

number of records in the database that match the query predicate and it is very

useful for genetic association studies to compute several statistical algorithms (see

Chapter 4). Hamming distance and edit distance are the metrics used to identify

similar patients in a pool of patients which is known as similar patient matching and

is one of the prerequisite steps in personalized medicine.

While designing our frameworks for solving these three different problems, we

emphasized on providing the security of three parameters - i) the shared data on

which the analysis will be done, ii) the query to be executed on the shared data, and

iii) the output of the executed query. Providing the security of the data, query and

output are important in any data sharing and computation framework. The detailed

discussion on these three parameters are provided in Section 2.3.

4 Chapter 1: Introduction

Anonymization methods have been proved to be ineffective for protecting the

genomic data [6; 7; 8] as these techniques incur high utility loss. Recent advancement

of the cryptographic techniques makes it possible to compute a predefined function

on encrypted dataset from multiple parties and return the function’s result without

revealing any information about the data from different parties [9]. For this reason,

several privacy preserving techniques have been developed using cryptography to

achieve the goal of sharing and computation on encrypted genomic data. In this

thesis, to provide the security of our proposed models, we opt for some effective and

computationally efficient state of the art cryptographic schemes.

1.2 Contributions

Along with providing the security of the shared data, we also emphasize improving

the efficiency of our search algorithm. We have used a tree-based indexing to pre-filter

the search result in all the three models we propose which improves the performance

significantly. Our indexing techniques also provide an effective storage solution for

large genomic datasets. In addition, modification of the trees is very easy. New

records can easily be added, deleted or modified to or from the nodes of the tree.

Our proposed models also provide the security guarantee of all the three security

requirements: data privacy, query privacy, and output privacy (the query result is only

disclosed to the query initiator). We execute the queries in our models by traversing

the nodes of the tree. We have used secure function evaluation (SFE) to take the

decision which node to traverse. For SFE, we have used Yao’s garbled circuits [10].

Our proposed methods do not require the active participation of a trusted entity (e.g.

Chapter 1: Introduction 5

a proxy server) for secure evaluation of the query or decryption of the result of the

query.

Through experiments and evaluation, we demonstrate the effectiveness and supe-

riority of our approaches in comparison with the previous approaches. The Three

models we propose in this thesis can perform the following computations:

Secure Count Query. We present a secure method for executing count query

operation on the encrypted data. Genomic data is outsourced after encryption to a

third party cloud server. Execution of a query is done by traversing an encrypted

tree, called index tree where the decision of traversing each node is made by checking

whether a query predicate matches with a particular branch of the tree. Depending

on the query, branches of the tree are traversed to calculate the result from the

data stored in the nodes which match the query predicate. Our proposed method

can handle datasets containing both genotype and phenotype. We have used a data

structure called Bloom filter to process the phenotype attributes of the datasets in a

privacy-preserving way.

Secure Hamming Distance. We present a secure method for determining the

similar sequences in a database of genomic sequences. We have used a prefix tree

based indexing algorithm to pre-filter the search result. We used Hamming distance

as the metric of the similarity measure. During the execution of a query, each node

is traversed by checking whether a query sequence (or a subset of a query sequence)

matches with a particular branch of the tree within a certain threshold k.

Secure Edit Distance Approximation. We provide an alternative secure

method to find similar patients using edit distance as the similarity measure. We

6 Chapter 1: Introduction

represent each sequence as a Bloom filter and generate a BF-tree using all the Bloom

filters to pre-filter the search results. Each leaf node contains a Bloom filter generated

from a genomic sequence and each Bloom filter in the parent node is the union of

the Bloom filters of its left and right child. Traversal of this tree resembles a binary

search. During the search on this tree, the Bloom filters of the left and right child

of a particular node are compared with the query Bloom filter and the child node

containing the more similar Bloom filter is traversed.

1.3 Thesis Organization

The rest of this thesis is organized as follows.

• Chapter 2 provides the necessary cryptographic and biological background to

understand the techniques we have adopted in our frameworks to provide the

security of the genomic data.

• Chapter 3 presents a brief discussion on the related literature. Part of this

chapter appears in [11].

• Chapter 4 addressed the secure count query operation on the encrypted ge-

nomic data. The results of this chapter appear in [12] and [13].

• Chapter 5 presents a model to find similar patients in a database using Ham-

ming distance. The results of this chapter appear in [14].

• Chapter 6 describes an algorithm to find similar patients using a Bloom filter

search tree and calculating edit distance. The result of this chapter has been

Chapter 1: Introduction 7

submitted in [15].

• Chapter 7 concludes the thesis providing some future research directions.

Chapter 2

Background

Nowadays a large number of private information about individuals is being col-

lected and stored by both government and corporate organizations. This information

includes electronic medical records (EMR), location data, browsing histories, social

networks and much more. The sensitivity of these data may vary. Sometimes seem-

ingly an innocuous dataset can be combined with other publicly available datasets

which may result in disclosure of private information. That is why securing the dataset

containing the personal information of an individual is very important. In the case

of health records such as diagnosed diseases or usage of medicines, this sensitivity is

even more important.

Encryption of the data is a viable solution to this problem. It protects the data

from the adversaries who intend to infer private information. But the main reason

behind collecting this information is to use it in different applications and provide

a more personalized solution. Searching is arguably the most important database

operation. Encryption of the database makes it more complicated to search for a

8

Chapter 2: Background 9

particular record. The more strong the encryption scheme, the more difficult it is

to search in the encrypted database. To bridge the contradictory interests of data

security and efficient searching, a number of cryptographic techniques are developed.

Here we discuss some cryptographic techniques and biology background relevant to

this thesis.

2.1 Cryptographic Background

We have utilized some state of the art cryptographic techniques to provide the

security of our proposed models. So, we first provide some relevant background

information necessary to understand those techniques.

2.1.1 Secure Computation

In the 1980s, Andrew Yao introduced the concept of secure computation. He

proposed a cryptographic protocol to solve a problem where two parties Alice and

Bob without disclosing their actual wealth wish to determine who is richer. This

problem is known as the Millionaires’ Problem and the protocol he proposed is known

as Yao’s protocol or Yao’s garbled circuit protocol [10]. Yao’s protocol can essentially

compute almost any mathematical function.

Let, two parties Alice (A) and Bob (B) wish to compute a function, f(x, y) where

x and y denote their respective inputs. The protocol evaluates the function f through

a Boolean circuit which is made of 2-input XOR and AND gates. The total number

and kind of gates necessary to calculate f(x, y) depends upon the function f . The

amount of work done by each party grows proportionally to the number of gates in

10 Chapter 2: Background

A B Output Encrypted output Garbled value

A0 B0 K0 EA0(EB0(K0)) EA1(EB1(K1))

A0 B1 K0 EA0(EB1(K0)) EA1(EB0(K0))

A1 B0 K0 EA1(EB0(K0)) EA0(EB1(K0))

A1 B1 K1 EA1(EB1(K1)) EA0(EB0(K0))

Table 2.1: Garbled truth table for an AND gate

the circuit evaluating function f . After running the protocol, both A and B learns the

output of f(x, y) but neither of them learn about the input or any other information

of the other party.

Construction and evaluation of Garbled Circuits involve two disparate entities

known as garbler (A) and evaluator (B). In each wire of the Boolean circuit, the

garbler generates six different keys (WA0 , WA1 , WB0 , WB1 , WK0 , WK1) where WA0 ,

WA1 are the input bits for A; WB0 , WB1 are the input bits for B and WK0 , WK1 are

the output bits. All input or output bits are associated with either wire 0 or wire

1. Then the garbler constructs a garbled version of the f(x, y) by shuffling the rows

of the computation truth table and sends the table to B (known as evaluator) along

with the input of A. Suppose the input of A is I(g). After receiving the circuit, the

evaluator evaluates the circuit. He runs a 1-out-of-2 oblivious transfer protocol [16]

to obliviously get the garbled-circuit input values to obtain its private input, I(e).

Therefore, from I(g) and I(e), the evaluator can calculate f(x, y).

Figure 2.1: Garbled circuit for an AND gate.

Chapter 2: Background 11

For example, figure 2.1 represents a garbled circuit for an AND gate and Table 2.1

represents the garbled values for that AND gate. If A sends garbled value (column

4 of Table II), with his input A1 and if B gets his input, B0 from the 1-out-of-2

oblivious transfer protocol [16], then B can evaluate the output by decrypting only

EA1(EB0(K0)). Evaluator can also decrypt the other rows but for those rows he will

only get the garbage values. The impressive property is that B receives the correct

output but does not have any idea about the computation he carried out or what

gate he has computed.

Oblivious Transfer

An oblivious transfer (OT) is a two-party (sender, receiver) cryptographic proto-

col which was introduced by Michael O. Rabin [16] in 1981 where the sender sends

a message to the receiver but remains oblivious whether the receiver receives the

message or not. Later, Even et al. [17] developed an improved and useful version

of it. In their protocol, the sender holds the values (W0, W1) and the receiver holds

the indexes r ∈ {0, 1}. The protocol is executed in a way that after the protocol

execution, the receiver only learns about the Wr, but not the other values held by

the sender. The sender also does not know anything about the indexes held by the

receiver.

Secure Multiparty Computation

Yao’s protocol [10] supports secure two-party computation. The subsequent re-

search tries to support computation involving multiple parties.

In the distributed computing environment, a number of independent, yet con-

12 Chapter 2: Background

nected devices wants to jointly compute a function. In a server with database envi-

ronment, this function might be a simple database operation like update or search.

The aim of secure multiparty computation is to ensure that all the tasks in the dis-

tributed computing can be done in a secured manner. Distributed computing handles

the issues like system failures, concurrency etc. during the computation, but it does

not address the problem where the computation itself is under attack by one of the

participating entities or an external entity. The adversary attacking the protocol

may want to learn private information or manipulate the computation in a way that

it yields an incorrect result.

So, the two most important requirements for a secure multiparty computation

protocol are correctness and privacy [18]. The correctness requirement states that at

the end of the computation, each party should receive the correct output. Producing

correct output means that no internal or external adversary could manipulate the

computation. So, the involved parties could successfully compute the function that

they have set out. The privacy requirement states that from the computation, the

engaged parties should only learn the output of the function. The input from each of

the parties is not revealed to other parties.

We can formally define secure multiparty computation as follows. Let, the parties

participated in the computation are P1, P2, . . . , Pn. These n parties agreed to compute

a function f which takes n inputs. To compute f , each party Pi gives his own

input xi. The computation is said to be secured if the computation of function

f = (x1, x2, . . . , xn) satisfies the correctness and privacy requirements.

As an example, we can consider the task of voting. Consider n parties participate

Chapter 2: Background 13

in the task of electronic voting with only yes/no decision. The input of party i is xi

which is 1 if he votes yes, otherwise xi = 0. The function f(x1, x2, . . . , xn) =
∑n

i=1 xi

reveals the number of votes. The correctness requirement ensures that the no party

can manipulate the the result of the voting. The privacy requirement ensures that

the individual votes of each of the parties are not revealed to other parties.

2.1.2 Adversary Types

Security in multiparty computation is discussed assuming that a subset of parties

involved in the computation are controlled by an adversarial entity. The aim of this

adversarial entity is to attack the protocol execution [18]. The subset of parties

who follows the instructions and thus controlled by the adversarial entity are called

corrupted. In the classic adversarial models there are the following two main types of

adversaries:

Semi-honest adversary

The parties in the semi-honest adversarial model correctly follow the protocol

specification and do not have the intention to behave maliciously to produce the

incorrect result. However, they may attempt to learn information that should remain

private during the protocol execution as they obtain the internal states of all other

parties. Although this is a comparatively weak adversarial model, it is useful in some

cases where only the leakage of the output to the parties is allowed. This type of

adversary is also sometimes called “honest-but-curious” or “passive” adversary.

14 Chapter 2: Background

Malicious adversary

The corrupted parties in the malicious adversarial model can deviate from the

specification of the protocol at will during the protocol execution to cheat. They can

adopt different strategies to carry out their attack or learn the information they are

not allowed to. Naturally, the protocols that guarantee security against malicious

adversaries are more secure as it defends all other adversarial attacks. Although, this

is the ideal security model, it generally makes the protocol less efficient.

2.1.3 Paillier Cryptosystem

Paillier cryptosystem [19] is a member of homomorphic cryptosystem family. Ho-

momorphic encryption allows to perform computation on the encrypted data without

decrypting it, and if we decrypt the result, it would be the same if we perform the

computation on the plaintext. Paillier cryptosystem [19] supports addition and it is

semantically secure: an adversary with the finite computational power and with the

possession of the ciphertext would not be able to extract any information about the

plaintext. To guarantee this security, this cryptosystem produces different ciphertexts

when a same message is encrypted multiple times. This randomness implies that this

cryptosystem is a probabilistic encryption scheme.

We use Paillier Cryptosystem [19] to encrypt the data and utilize its homomorphic

properties to execute count query. In the Paillier Cryptosystem [19], a key generation

algorithm produces a pair of keys: a secret key, sk and a public key, pk. The public

key and the secret key are used for encryption and decryption purposes respectively.

So after the encryption of a message m if we get two ciphertexts c1 = ξpk(m) and

Chapter 2: Background 15

c2 = ξpk(m), then c1 6= c2 and ξsk(c1) = ξsk(c2) = m. Here, ξpk(m) denotes encryption

of message m using the public key pk and ξsk(c1) and ξsk(c2) denotes decryption of

the ciphertexts c1 and c2 respectively using the secret key sk.

Homomorphic Properties: Assume that we encrypt two messages m1 and m2

using the same public key pk which produces ciphertexts c1 and c2 respectively, and

k is a constant number. Then, Paillier cryptosystem [19] guarantees the following

homomorphic properties which can be utilized to execute count query:

• If we multiply two ciphertexts, after decryption we will get the sum of their

corresponding plaintexts.

ξsk(ξpk(m1) · ξpk(m1) mod n
2) = m1 +m2 mod n

• If we raise a ciphertext to the power of a constant k, after decryption we will

get the product of the corresponding plaintext and the constant.

ξsk(ξpk(m1)
k mod n2) = km1 mod n

2.1.4 Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is an encryption technique which uses a

fixed length group of bits called block for encryption or decryption. We use a variation

of AES known as Counter Mode (AES CTR) [20] to encrypt the data. Counter mode

turns a block cipher into a stream cipher. It produces the next keystream block by

encrypting consecutive values of a counter. The counter is a n bit string which is

16 Chapter 2: Background

non-repeating. The same combination of initialization vector (IV) and key must not

be used more than once to ensure security. The encryption function is defined as:

yi = ξk(IV || CTRi)⊕ xi, i ≥ 1

and the decryption function is defined as

xi = ξk(IV || CTRi)⊕ yi, i ≥ 1

where xi is the plaintext, yi is the ciphertext, and IV is the initialization vector.

2.1.5 Bloom Filter

Bloom filter is a data structure designed to check whether an element is present

in a set with a small probability of reporting false positive. It was first proposed

by Burton H. Bloom [21]. It is implemented as a bit array of fixed length m. Let,

the Bloom filter, B represents a set X = {x1, x2, ..., xn} of n elements. There are k

independent hash functions H = {h1, h2, ..., hk} which are associated with the indexes

of the bloom filter. The range of each hash function is between 1 and m. Initially, all

the indexes {0, ...,m} of B are set to 0. To add an element x ∈ X in B, a hash result

is computed as follows:

H(x) = (h1(x), h2(x), ..., hk(x))

Chapter 2: Background 17

Figure 2.2: Example of a Bloom filter for two strings x and y with three hash

functions

Then these hash values are used as an offset into the bit array, B and the cor-

responding bits are set to 1. To check if a query, q is in B, similarly k hashes are

computed over that Bloom Filter:

H(q) = (h1(q), h2(q), ..., hk(q))

Then, the bit positions from H(q) are checked in B. If any corresponding bit is not

1, then that element is not present in B. In this way, Bloom filter determines whether

an element is definitely not in the set. Otherwise, we assume that the element is

present in the Bloom filter. Figure 2.2 shows an example of Bloom filter.

The probability of false positive is:

p =
(

1−
(

1− 1

m

)kn)k
(2.1)

≈
(

1− e−kn/m
)k

(2.2)

Where (1− 1
m

)kn indicates the probability that a single bit is still 0 in the Bloom

filter of length m after adding n elements using k hash functions. Equation 2.1 can

be transposed to calculate the length of the Bloom filter, B as:

18 Chapter 2: Background

m =
−1

(1− p1/k)1/kn − 1
(2.3)

Where m, p, and k are respectively the length, the false positive probability, and

the number of hash function of the Bloom filter.

The main advantage of Bloom filter is that it is very fast. A Bloom filter with

length m and k hash functions, the time required for both insertion and membership

testing is O(k). The more hash functions we have, it ensures better security but the

array quickly fills up and the Bloom Filter becomes slower. Less hash functions make

it faster but ultimately results in possibility of getting more false positive results.

2.2 Biology Background

This section provides some relevant biological background information and dis-

cusses why security is important while handling biological data.

2.2.1 Genomic Data

The genome contains the hereditary information of an organism. The human

genome is encoded in deoxyribonucleic acid molecules which we commonly know as

DNA. DNA molecules consist of two biopolymer chains each of which in turn con-

sists of nucleotides. These nucleotides are represented as A, C, G, T which are the

acronyms of Adenine, Cytosine, Guanine and Thymine respectively. In DNA, these

nucleotides form base pairs by making bonds with each other: A bonds with T and

C bonds with G. There are 3 billion base pairs in whole haploid human genome se-

Chapter 2: Background 19

quence, distributed across 23 chromosomes. The DNA of two different individuals are

almost identical (∼ 99%). In fact, Venter et al. [22] showed that DNA of two indi-

viduals differ no more than by 0.5%. This small amount of variations distinguish one

individual from another. Several types of genetic variations occur in human popula-

tion, such as single-nucleotide polymorphism (SNP), copy-number variations (CNVs),

rearrangement etc. Single Nucleotide Polymorphism (SNP) is the most common form

of DNA variation at a specific position in the genome, which represents a difference in

a single nucleotide. Most of the SNPs do not have any effect on human health. But

some SNPs are directly responsible for developing a particular disease in the human

body.

2.2.2 Genomic Data Security

As genomic data is widely used in a number of applications, its security issues are

well understood from their use cases. It is well established that change in the genomic

sequence of an individual due to mutation can affect their health. Some mutations

can affect immediately whereas some affect at some point in future. Also, some of

these mutations are acute, whereas some are not. So, individuals might want to learn

their genomic status for the sake of future planning or research. Sometimes these

variations affect an individual’s response to a specific treatment requiring the doctors

to prescribe the different amount of drugs.

While existing known mutations are helpful in the aforementioned cases, new

unknown mutations are being discovered regularly, thanks to the rapid advances in

the sequencing technologies. The amount of genomic data being collected, stored

20 Chapter 2: Background

and analyzed today is unprecedented, rapidly accelerating the rate of new mutation

discovery.

Nowadays a number of companies allow individuals to analyze their genomic data

to determine disease susceptibility risks and perform genomic compatibility testing

with their potential partners. DNA found at the crime scene is also analyzed to track

the potential criminal. To do so it is legally allowed in some countries to collect

and store the DNA of a suspect. The security issue is generated largely from these

collection and storage of genomic data for these purposes.

As mentioned earlier, Genome-wide association study (GWAS) helps to identify

the association between SNPs and human diseases. GWAS examines the SNPs from

the DNA collected from thousands of individuals and tries to pinpoint SNPs that

may be responsible for a particular disease [2]. Ensuring the security of the SNPs

in the GWAS is very important which has been clearly demonstrated by the work

of Lin et al. [23] who showed that only 75 SNPs are enough to uniquely identify

an individual. Besides, sensitive personal information can also be inferred from the

aggregate statistics in GWAS [24; 25; 26].

2.3 Security Requirement

Ensuring the security guarantee of the following three parameters are of paramount

importance while designing a secure genomic data outsourcing and computation

mechanism:

1. Data privacy. The data stored in the cloud server, as well as the computation,

should be secured and should not leak any information about the data. Even

Chapter 2: Background 21

if the cloud server gets compromised, the confidentiality of the data should be

ensured.

2. Query privacy. The institutions that contribute the data, the cloud service

provider or an adversary in the possession of a compromised server should not

learn anything about a query executed by a researcher or an institution.

3. Output privacy. The result of the query should not be disclosed to any party

except the researcher who initiated the query. Here, by the term output privacy,

we do not mean to prevent any inference attack that is possible using the results

of the query (see Section 7.2 for further discussion).

In this thesis, we focus only on these three security requirements while designing

our models. It is beyond the scope of this thesis to address other security requirements

such as authentication, audit, and data integrity. But, we acknowledge that these

issues are also essential to build a secure system and have been addressed extensively

in the literature.

Chapter 3

Related Work

In this chapter, we provide an overview of the existing secure solutions for out-

sourcing genomic data to the cloud and executing the three secure operations we

addressed in this thesis.

3.1 Secure count query

In recent years, several methods have been proposed addressing the problem of ex-

ecuting count query operation on the encrypted genomic data. These solutions differ

in the way of sharing the data as well as the methodologies utilized for the computa-

tion. In this section, we present an overview of the two proposed methods for secure

count query operation on outsourced genomic data. To the best of our knowledge,

these are the only two research that has particularly addressed this problem. We also

present some other relevant works that are closely related to this problem.

22

Chapter 3: Related Work 23

3.1.1 Using Homomorphic Encryption

In 2008, Kantarcioglu et al. [27] first addressed the problem of counting the num-

ber of records based on the genomic and clinical features on the encrypted genomic

data. Their proposed framework incorporates four different types of participants:

i. Data Holders. The hospitals and research institutions who wants to share

their data.

ii. Data Users. The individuals or organizations who might be biomedical re-

searchers and interested in executing queries on the data.

iii. Data Storage site (DS). It is essentially a third party cloud server used as a

repository of the shared data.

iv. Key Holder Site (KHS). It is a trusted third party responsible for the man-

agement of the keys and decryption of the result of the query.

So, their protocol involves two different third parties to provide the security of the

framework.

Security assumptions: The authors assumed the participants to be non-colluding

and semi-honest. The rationale behind using two third parties is to guarantee the

confidentiality of the data as well as to ensure that there is no single point of failure.

The distribution of the data and the key to only one party would enable an adversary

to get the access of the unencrypted data in the event that the server is compromised.

Overview of the model: The model they adopted to ensure the secure sharing

and computation of genomic data worked as follows: First, the KHS who possesses

24 Chapter 3: Related Work

both the public and private keys, gives the public key to the DS. The data holders,

willing to participate in the sharing process get the public key from the DS. The data

holders then use this public key to encrypt their data and send the encrypted data

to the DS. DS works as the repository of the data who has sufficient storage and

bandwidth capacity to manage large databases. The data users who are interested

in analyzing the data send their query to the DS. The DS executes this query on the

encrypted data and then sends the encrypted result to the KHS who uses the private

key to decrypt the result. Finally, the KHS sends the decrypted result to the data

users.

The authors evaluated their model using a database of SNP sequences. They

represented each nucleotide as a pair of bits, and each sequence as a series of binary

values. When the DS receives a query from a data user, it matches the query pred-

icates with the encrypted database and produces an intermediate encrypted result.

The DS then sends this encrypted intermediate result to the KHS to calculate the

final result.

Limitations: Though this model provided the first solution for the addressed

problem, it is not free from flaws. This approach has several drawbacks. First,

colluding third parties might result in the exposure of sensitive information. Second,

huge bandwidth is required for the communication between the DS and KHS. Also,

the KHS needs to be online during the query execution for decrypting the final result.

Third, the searching process during the query execution is linear to the number of

records and the homomorphic encryption scheme used is very expensive. This resulted

in a system that is not practical for a large database (see Section 4.6 for experimental

Chapter 3: Related Work 25

results). Fourth, all data owners use the same key for encrypting their data. In

the event that the key is stolen, it may lead to the disclosure of the whole dataset.

Finally, this method reveals the data access pattern to the cloud server.

3.1.2 Using Cryptographic Hardware

In the subsequent work, Canim et al. [28] opted to use a tamper-resistant cryp-

tographic hardware to facilitate secure storage and processing of clinical data at a

single third-party by abandoning the trusted entity, KHS incorporated in [27]. Thus,

this model overcomes the limitations of [27]. In reality, the task of the trusted entity

was realized by a trusted hardware.

Security assumptions: The authors assume that the tamper-resistant hard-

ware is co-located with the DS. This inclusion of cryptographic hardware enables

their model to withstand untrusted adversary. They used IBM 4764 PCI-X secure

coprocessors (SCPs) as the cryptographic hardware and it offers some advantages in

terms of security. It completely hides the computation from the server and as soon

as it detects any tampering, it clears the internal memory. In addition, the secure

coprocessor fetches only the required attributes from all the records in the database

each time a query is executed. As all the records are accessed for executing each

of the queries, this model ensures that it does not reveal the access pattern to the

untrusted DS.

Overview of the model: The workflow of this model is as follows. Each data

holder generates it’s own symmetric encryption key using AES in counter (CTR)

mode and uses it to encrypt their genomic and clinical records. The SCP provides a

26 Chapter 3: Related Work

public key to each data holder through a secure Ethernet channel. The data holder use

this public key to encrypt their symmetric key and then transfer it to the SCP using

the same Ethernet channel. They also send their encrypted records to the DS. SCP

uses the sovereign join algorithm introduced in [29] to eliminate duplicate records and

stores the encrypted records in the DS. The data users send their queries to the DS.

The DS fetches the encrypted attributes required to execute the query based on the

query predicates and forwards these attributes along with the data user’s query to the

SCP. SCP then decrypts these attributes and executes the data user’s query. Finally,

SCP sends the result to the data user using a secure socket layer (SSL) channel.

Limitations: The most notable limitation of this model is the cryptographic

hardware itself. This model assumes the existence of a tamper-resistant hardware

with the DS. This assumption may not be feasible as to guarantee the presence of

cryptographic hardware by a cloud service provider might not be always possible. In

addition, cryptographic hardware has very small memory capacities and computa-

tional power [4] which impedes the processing of larger queries.

3.2 Statistical analysis

To protect the privacy of the genome database, Lauter et al. [30] proposed a

method where a contingency table is generated first from the genomic data and then

this table is encrypted using a leveled homomorphic encryption to store on a single

cloud server. Their method enables the cloud server to compute several statistical al-

gorithms: Pearson Goodness-of-Fit or Chi-Squared Test, Linkage Disequilibrium, Es-

timation Maximization (EM) and Cochran-Armitage Test for Trend (CATT). These

Chapter 3: Related Work 27

are commonly used algorithms in genetic association studies. However, their pro-

posed method is not particularly designed to execute count query based on arbitrary

predicates.

Kamm et al. [31] employed secret sharing technique to guarantee the security of

shared data and used secure multi-party computation to compute the value of different

tests like χ2 test, Cochran-Armitage Test for Trend and Transmission Disequilibrium

Test. However, secret sharing based techniques require at least three non-colluding

parties and demand significant multi-way communication among these parties. Hence,

these techniques may not be practical as the cloud-based applications are designed

following the architecture of client-server model.

Feng et al. [32] recently proposed a distributed framework, PRINCESS, using the

Intel Software Guard Extensions (SGX). They proposed a secure Transmission Dis-

equilibrium Test algorithm for rare disease analysis (in particular Kawasaki Disease

(KD) [33]). Their framework facilitates cross-institutional collaborations and enables

multiple parties to compute functions over the distributed data securely (i.e., each

institution holds data locally in clear text).

Huang et al. [34] proposed a method based on distribution-transforming encoder

(DTE) scheme to protect genomic data from any brute-force attack. They only con-

sidered to solve two algorithms, Pearson Goodness-of-Fit and Linkage Disequilibrium

using this model. Zhang et al. [35] used homomorphic encryption to compute Chi-

Squared Test in untrusted public cloud.

Choi et al. [36] proposed a framework to execute queries on genomic data using a

leveled homomorphic encryption technique. The proposed system is built on the i2b2

28 Chapter 3: Related Work

framework and is able to compute a number of functions such as reference/alternate

allele frequencies, and frequency of genotypes.

Xie et al. [37] proposed a scheme for securely performing meta-analysis for genetic

association study. Instead of storing data to multiple cloud storage (like Kamm et

al. [31] and Zhang et al. [38]), they kept the data in the corresponding data

owner’s premises. Wang et al. [39] designed a somewhat homomorphic encryption

based technique to compute exact logistic regression to discover rare disease variants

to analyze disease susceptibility in an untrusted cloud environment.

3.3 Secure sequence similarity search

In sequence analysis, new features or structures of DNA, RNA or peptide se-

quences are discovered or understood by sequence alignment. With the rapid advance-

ment of sequencing technologies, the number of sequenced genomes is also growing.

So it can easily be anticipated that the task of finding similar patients from a large

number of genomic sequence will increase day by day. Up to date, many researchers

worked on sequence similarity search using different approaches. Dugan et al. [40]

presented a survey of secure multiparty computation for privacy-preserving genetic

tests. The survey paper presents that researchers mostly use Edit distance to measure

the similarity between genomic sequences.

In 2015, Cheon et al. [41] proposed a technique to compute Edit distance on

encrypted data. They implemented the Edit distance algorithm suggested by Wagner

and Fischer [42] on two encrypted sequences. To ensure the security, they used

somewhat homomorphic encryption scheme (SWHE). Security wise this scheme is

Chapter 3: Related Work 29

very solid, but runtime wise is not very efficient.

In 2013, Beck and Kerschbaum [43] proposed a secure protocol for approximate

string matching. Their protocol does not involve any third party, non-interactive, and

the computation and communication complexity is linear. It also only reveals whether

there is a match between two strings or not. They used Bloom filter to represent the

strings, and the distance between the strings was calculated by measuring the distance

between the Bloom filters. As the length of the Bloom filter can be adjusted to an

appropriate size, their protocol can hide the size of the actual strings.

First, the input strings from each of the parties are divided into q-grams. Then

each party inserts all the q-grams generated from a string S into a Bloom filter.

They used only a single hash function for both of the Bloom filters influenced by the

work of Papapetrou et al. [44] who concluded the optimal number of hash functions to

determine the cardinality of a Bloom filter is 1. Then they calculated the approximate

edit distance between the two strings by calculating the Hamming distance between

the bit vectors of two Bloom filters B1 and B2 as:

d = |B1 ∪ B2| − |B1 ∩ B2|

Thus d = 0 means both of the strings are identical. The similarity among the

Bloom filters is calculated by checking the indices of both of the bit vectors from the

two parties. The privacy is ensured by using an additively homomorphic encryption

scheme. This protocol provides security under a semi-honest model.

Zhang et al. [38] used secret sharing and secure multi-party computation for com-

puting Edit distance between two sequences. Wang et al. [45] also used the secure

30 Chapter 3: Related Work

multi-party computation scheme to compute edit distance to find similar patients

based on the inputs from two different parties.

Perl et al. [46] proposed a method for searching on a biomedical database to

identify similar sequence. They generated a binary tree of Bloom filters using all the

data from a database. If A is a database, then each biomedical sequence from A is

divided into Q-grams and those Q-grams are inserted into the Bloom filter. A similar

Bloom filter is generated the same way for the searched sequence, s. The search

operation on this tree is similar to the binary search algorithm. Their algorithm

ensured the security of the results through homomorphic encryption and Obfuscated

Bloom Filter (OBF). They completely outsourced the task of searching in a third-

party cloud server. The runtime and communication complexity of their scheme are

O(log |A| + |s| + |R|) and O(|s|), where A, R, and s are the database, results set,

and search term respectively.

In 2008, Jha et al. [47] presented a secured method for calculating Edit distance

and Smith-Waterman similarity score [48] (used for sequence alignment) between two

sequences. They used Yao’s garbled circuit [10] based protocols to ensure the security

of the computation. They proposed three different protocols with a variation of circuit

representation for two party computation on genomic data.

In 2010, Rheinländer et al. [49] presented prefix tree indexing for similarity search

based on edit distance and hamming distance. The authors used various filterings such

as length filtering, frequency distance filtering, and Q-gram filtering. Without any

filtering, using an ESTs dataset of 10000 records, it takes approximately 11, 20, 100,

1200 milliseconds for the threshold value k ∈ 1, 2, 3, 8 respectively. As the authors

Chapter 3: Related Work 31

do not encrypt the query or the dataset, their method is unable to provide any of

the aforementioned security requirements: data privacy, query privacy and output

privacy. Wang et al. [50] applied a prefix tree based searching index for secure

similarity search using edit distance as the similarity metric.

3.4 Other relevant works

There are several other solutions that have been proposed to protect the privacy of

both the outsourced data and the analysis. Although these works do not address the

problems of secure count query, statistical analysis or secure similarity search, they

target closely related problems and use different cryptographic techniques to ensure

the security of the genomic data. Here, we mention some of these works.

Ayday et al. [51] proposed a method for storing genomic data at a storage and

processing unit and then processing it for medical tests and personalized medicine

operations. The computation on this shared data are conducted using homomorphic

encryption and proxy re-encryption. Yang et al. [52] proposed a hybrid method by

combining the ideas of privacy by statistics and privacy by cryptography for secure

clinical data sharing and computation in cloud environment. Their hybrid search

operation is conducted across both plaintext and ciphertext.

Chapter 4

Secure Count Query on Encrypted

Genomic Data

In the count query operation, the aim is to know how many records in the database

match a given query predicate (i.e., a certain combination of genotype and phenotype

values). In the genetic association studies, the researchers try to identify the genes

that are responsible for developing a particular disease in the human body. This as-

sociation is determined by computing several statistical tests, like Pearson Goodness-

of-Fit or Chi-Squared Test, Linkage Disequilibrium, Estimation Maximization (EM)

and Cochran-Armitage Test for Trend (CATT) [30]. One of the prerequisites to com-

pute the value of these statistical tests is to know how many records in the database

matches with the genotypes and phenotypes specified in the query predicates. It has

been shown in the literature that simple count queries can be used to compute various

statistical tests. For example, doctors are interested in mining the potential biomark-

ers for Kawasaki disease [32] and it is accomplished by a statistical test (transmission

32

Chapter 4: Secure Count Query on Encrypted Genomic Data 33

Algorithms Method Trusted Entity Privacy

Data Query Output

Kantarcioglu et al. [27] Paillier Online X

Canim et al. [28] Cryptographic Hardware, AES N/A X X

Our method Paillier, GC, AES Offline X X X

Table 4.1: Different properties of existing techniques for count query

disequilibrium test). This statistical test is performed by computing a series of count

queries.

In this chapter, we propose a secure framework that enables outsourcing genomic

data in a cloud server and then execute count query on it. As we have mentioned

earlier, to the best of our knowledge, [27] and [28] are the only two works that have

addressed the problem of secure count query operation on encrypted genomic data.

However, none of these techniques can overcome the three challenges mentioned in

Section 2.3 simultaneously or scalable for real-life applications. Table 4.1 presents a

brief comparison of our method with these two existing solutions. This table summa-

rizes different aspects of the proposed solutions such as cryptographic methodology,

involvement of trusted entity during query execution and different types of security

requirements satisfied by those methods.

4.1 Count Query

We can formally define count query operation as follow:

Definition 4.1.1. Given a database D and a query q, count query can be defined as

34 Chapter 4: Secure Count Query on Encrypted Genomic Data

finding the number of tuples in D which satisfies the predicate θ in q. If di denotes one

database tuple, the total count can be represented as: | {∀i, di ∈ D | di satisfies θ} |.

For example, let’s consider the following query submitted by a researcher :

SELECT COUNT (*) FROM Sequences WHERE

SNP2 = CC AND SNP3 = TT AND SNP5 = CC AND

AND Diagnoses = High blood pressure

Query 4.1: A sample query executed by the researchers

If we execute the above query on the data represented in Table 4.2, the answer

will be 2 because only Case # 6 and 8 match the query predicates. We call the total

number of SNPs specified in the query predicates as the query size. In the above

query, the query size is 3.

Count query is a simple and straightforward operation if the data is stored as

plaintext. Traditional database management systems (DBMS) support a built in

operation for executing count queries. However, these DBMSs are not designed to

execute count query operation on the encrypted data.

4.2 Genomic Data Representation

In this section, we present the format of the data used in this research. The

database contains both genomic and clinical information including the DNA se-

quences, patients’ response to a specific treatment, results of genetic testing, di-

agnoses, and prescribed medications. In this thesis, we use two types of datasets -

datasets with phenotype and genotype information and datasets with genotype but

Chapter 4: Secure Count Query on Encrypted Genomic Data 35

Sequence

Case SNP1 SNP2 SNP3 SNP4 SNP5 . . . Diagnoses

1 AG CC TT AG CT . . . Headache, High cholesterol

2 AA CC CT AG CT . . . Arthritis

3 AG CT CC AA TT . . . Hair Loss, Mumps

4 AG CC TT AG CT . . . Nausea, Asthma, Cold

5 GG CT TT GG CC . . . Acid reflux

6 AA CC TT GG CC . . . High blood pressure

7 AG CT CT AG CT . . . Migraine

8 AA CC TT GG CC . . . High blood pressure

9 GG CT CT AG CT . . . Obesity

10 AG CT CT AG CT . . . Hypertension

Table 4.2: Data representation in the Certified Institution (CI)

without phenotype information. In real-life applications, we see examples of both

kinds of datasets. In the dataset which contains only genotypes, all the patients are

already separated into a case-control group based on their medical condition (e.g.,

individuals with or without a particular disease). On the other hand, some clinical

datasets contain both the patients’ genomic sequences and the genomic conditions.

The genomic conditions are the diagnoses associated with the SNPs.

We assume that a sequence S consists of multiple SNPs, and we represent such a

sequence as S = {a1, a2, ..., an} where ai represents an SNP. Table 4.2 represents an

example of the format of the data that data owners send to Certified Institution (see

more in Section 4.3). Here, each row represents genomic sequences and diagnoses for

one single patient. Each of the SNPs a1, a2, ..., an are represented in a single column.

A SNP, ai can be represented as a pair of nucleotides and it is common in genomic

data analysis [28; 53]. The last column in Table 4.2 represents the diagnoses as

genomic conditions.

36 Chapter 4: Secure Count Query on Encrypted Genomic Data

Figure 4.1: Architecture of our proposed solution.

4.3 System Design Overview

Figure 4.1 presents a general architecture of our proposed framework. As de-

picted in the figure, it incorporates four main participants: Data Owners, Certified

Institution (CI), Cloud Server (CS) and Researchers. Each entity is responsible for

performing different specific tasks to make the overall system secure and functional.

The roles performed by each of the entities are discussed below –

1. Data owners. Data owners consists of the institutions who agreed to share

the genomic data they possess. These institutions might be any academic in-

stitutions, non-academic research organizations, government research agencies

or health departments such as the main contributors of data samples to dbGap

[54]. They send the genomic data to the CI in plaintext. Prior to sending the

data to the CI, data owners process their data in a formerly agreed format.

2. Certified Institution (CI). The data shared by different data owners reside

Chapter 4: Secure Count Query on Encrypted Genomic Data 37

in a database owned by a trusted entity which we call the CI. Any government

institution such as National Institute of Health (NIH) in United States can play

this role. The main responsibilities performed by CI are two:

(a) Generation of index tree. Upon receiving the data from the contribut-

ing data owners, CI builds an encrypted searchable version of the aggre-

gate shared data and sends it to the CS. The search operation is basically

performed on an encrypted index tree. In our proposed system, the CI

builds only a single index tree that contains all the records from aggregate

shared data and sends the encrypted version of the tree to the CS. For any

addition and deletion of records, CI can update the tree accordingly.

(b) Management of the keys. Another responsibility of CI is to manage

the keys used for encryption and decryption. It provides the key that the

researchers use to decrypt the result of their query returned by the CS.

The sensitive data stored at each node of the index tree are encrypted. CI

supplies the necessary keys to the CS so that it can execute queries on

encrypted data.

3. Cloud Server (CS). CS gets the encrypted version of the index tree and all

the queries are executed on this tree. CS is responsible for handling all the

communications with the researchers. The researchers send their encrypted

query to CS, CS then executes this query and sends back the encrypted result

to the researchers.

4. Researchers. Researchers might be any individual or organization who is

38 Chapter 4: Secure Count Query on Encrypted Genomic Data

interested in executing query on the aggregate shared data residing in the CS.

To execute query on the outsourced data, researchers need to obtain keys (both

public and secret) from the CI. Researchers use the public key to encrypt their

query and then send it to the CS. CS evaluates this query on the encrypted

tree and sends back the encrypted result to the researchers. After decrypting

this result using the secret key, the researchers get the final output.

4.4 Threat Model

Our goal is that the CS does not learn anything about the shared genomic data

and both the CI and CS learn nothing about the query performed by the researchers.

Furthermore, we want to ensure that the researchers do not infer any information from

the data. We assume the CI to be trusted entity as it is responsible for the generation

and encryption of the index tree. The CI can verify the identity of the individuals or

organizations who apply for the access of the data before handovering them the keys.

This role of verification performed by CI can be considered as the same as the Data

Access Committee (DAC) of NIH [54].

In our proposed system architecture, we assume that the CS to be semi-honest,

also known as honest but curious adversary [18]. This adversary correctly follows

the protocol and does not have the intention to behave maliciously to produce the

incorrect result. However, they may try to gather more information than necessary

during or after the protocol execution. Therefore, we require the view of each party

during protocol execution not to disclose any information. Thus, we assume that

none of the parties data owner, CI, or the CS has any intention to behave maliciously

Chapter 4: Secure Count Query on Encrypted Genomic Data 39

in the wish of generating incorrect output.

Our method is also designed based on the the following assumptions:

• We assume that the CI does not collude with the CS and CS also does not

collude with the researchers. This is an essential requirement for guaranteeing

data and query privacy.

• We assume that the keys received by the researchers from the CI are correct.

4.5 Basic System Design

In this section, we present our proposed model. At first, the CI creates an index

tree from the datasets it receives from the data owners, encrypts it and then sends it

to the CS. The CS uses this encrypted index tree to execute queries on behalf of a

researcher.

We first present our model for data without phenotype and then we discuss how

to integrate the phenotype information into our index tree.

4.5.1 Genomic Data Without Phenotype

We will first discuss how to build the index tree without the phenotype and then

the search procedure on this tree.

Generation of Index Tree

When the CI receives the data from the data owners, it first creates a search tree,

T which we call the index tree, using the SNPs from the database D. There is only

40 Chapter 4: Secure Count Query on Encrypted Genomic Data

(a) (b) (c)

Figure 4.2: Different states during the generation of index tree. Figure 4.2a, 4.2b,

and 4.2c represents the tree after the insertion of the first, second, and third record

respectively.

Figure 4.3: Index tree for Table 4.2.

one such tree in our system. After the creation of this tree, for each of the records

from additional data owners, the CI only needs to create or update the nodes in T .

For each record di in database D, the CI encodes each SNP as:

Chapter 4: Secure Count Query on Encrypted Genomic Data 41

dji = k : 1 ≤i ≤|D|; 1 ≤j ≤|di |; 1 ≤k ≤16

Here, |D| = number of records in the database and |di| = number of columns in

each record. Then, CI checks if a node containing that SNP and SNP identifier

is already in the tree or not. If not, then the CI creates a new node for that SNP.

Otherwise CI just updates the corresponding existing node. Each node of T contains:

a) sid: the unique identifier for a SNP, which occurs at a particular position in the

genome.

b) val: the actual SNP, which is encoded as {1, 2, ..., 16} for each of the 16 possible

sequences. In Figure 4.2 and 4.3, we have shown the actual SNP only for

understanding purpose.

c) count: the number of times a SNP occur in that position.

d) list: the list of children (not shown in Figure 4.2 and 4.3).

We denote a node as σ and represent as, σ(sid, val, count, list). The tree T is

generated in the following way:

At first there is only one node in the tree which is the root node. Beginning from

this root node, for each of the records in the database we start creating new nodes in

T . We denote a record as dji ∈ D where i indicates the record number and j indicates

the column number. For each dji , the child of the root node is the corresponding

first column d1i , the child of the node containing d1i is the second column d2i and we

continue to create the tree in this way. So, in the index tree the data from the first

column is always on level 1, data from the second column is on level 2 and so on.

42 Chapter 4: Secure Count Query on Encrypted Genomic Data

Example 1: The generated tree, T after the insertion of first record d1 from Table

4.2 is shown in figure 4.2a. Here, the first column, d11 = AG is inserted as the child

of the root node. The second column, d21 = CC is inserted as the child of the node

containing d11 and so on. Each SNP occur only once in the first record. So, each node

contains the count value 1. We can represent node # 2 as σ2(SNP1, AG, 1, 〈CC〉).

Now while inserting the second record, d2 for each of the columns we first check

whether the current column has already been inserted into a node in the corresponding

level of T . If it has been inserted, we just increment the count value. Otherwise, we

create a new node in that level to store dj2.

Example 2: Continuing from Example 1. The tree, T after the insertion of

second record d2 is shown in Figure 4.2b. The first column for the second node d12 is

AA. We check if any existing node in T already contains this SNP at level 1. Here,

root node has only one child AG. So, we create a new node and insert AA as the child

of the root node at level 1 and the following columns are added in the above mentioned

way. For the third record, the first column d13 = AG has already been inserted at level

1. So, we increment the value of count at node 2. Now for second column, d23 there

is no child node of node # 2 which contains CT . So, we create a new child node of

node # 2 at level 2 and then add the remaining columns similarly.

Figure 4.3 represents the index tree containing all the records from Table 4.2.

All the nodes belonging to the same level represent a SNP all of which occur at a

particular position of a genome which are actually represented as columns in Table

4.2. Each node in the tree T except the root node contains a value from a column. If

there are θn number of columns in the database D, then the height of the index tree

Chapter 4: Secure Count Query on Encrypted Genomic Data 43

T will be θn.

The building cost of the tree is O(mn) where, m = number of records in the

database and n = number of different SNPs in the sequence. The features of this

index tree can be listed as:

• If we traverse the tree starting from the root node to the leaf nodes, we get

different SNP sequences belonging to the same record in the database. For

example, if we consider first record of Table 4.2, the SNPs of this record are

represented in the nodes 1, 2, 3, 4, 5 and 6. At each level, along with the SNP

sequence, we also store the number of times that SNP sequence appears in that

particular position of a genome. For example, in Figure 4.3, for SNP1, AG

occurs 5 times, AA occurs 3 times, and GG occurs 2 times. Considering AG

as parent node for level 2, CC occurs 2 times — in this way all the nodes are

created in T with each SNP and the number of their occurrence.

• We can reconstruct the original database record by traversing the corresponding

nodes of T .

• For the addition or removal of records, we do not need to regenerate the tree,

we can simply update or delete the data stored at each node.

• Unique SNP values at a particular level create new nodes and the following

SNPs are added as the children of that node.

• One noticeable characteristic of this tree is that if multiple predicates are in-

volved, i.e. more than one SNP sequences are present in the query, then the

resulting count value is equal to the value of the count stored at the node which

44 Chapter 4: Secure Count Query on Encrypted Genomic Data

matches the predicate located at the deepest level of the tree. So, if the re-

searcher is interested in SNP positions x, y and z, and the position of x, y and

z are such that x < y < z, then the count value is the value stored at node that

represents the SNP sequence at position z. For example, consider the following

query:

SELECT COUNT (*) FROM Sequences WHERE

SNP1 = GG AND SNP3 = TT AND SNP5 = CC AND

AND Diagnoses = Acid reflux

Query 4.2: A sample query executed by the researchers

Here, the value of count is 1 and it is the value that is stored at node that

represents SNP5 as this node is actually located at the deepest level of the tree

among the nodes that matches the query.

Encrypting the Index Tree

After building the index tree T from the database, CI encrypts the index tree and

then sends encrypted version of T to the CS. The detailed process can be elaborated

as:

• Key Generation: The CI generates a key pair (pk, sk) for a semantically secure

additively homomorphic encryption scheme (Paillier Cryptosystem [19]) which

consists of the following algorithms:

– KeyGen: a key generation algorithm, which generates a key pair (pk, sk)

where pk is the public key and sk is the secret key.

Chapter 4: Secure Count Query on Encrypted Genomic Data 45

– Enc: an encryption algorithm, which takes as input a message m and

encrypts it using the public key pk. This is denoted as ξpk(m).

– Dec: a decryption algorithm, which takes as input a ciphertext, c and

decrypts it using the secret key, sk. This is denoted as ξsk(c). Note that

these encrypted records are not used in the search operation.

• Encrypting the Index Tree: CI uses the public key, pk to encrypt all the nodes

in T. To make the overall search process fast enough while maintaining the

security of the system, it only encrypts the sensitive attributes in each node.

For each node σ in T, it does ξpk(σ). After the encryption, each node is like

σ(sid, ξpk(val), ξpk(count), list). We represent the encrypted tree as T̃ .

• Key Distribution: Finally, CI sends (pk, T̃) to the CS. CI also shares the key

pair (pk, sk) with the researchers.

Encryption of Query

The researchers know about the format of the query they are allowed to perform.

Once CI sends (pk, T̃) to the CS, the researchers can execute their query on T̃ stored

in CS. A researcher encrypts her query q as ξpk(q). Here, for the computation purpose,

only val is encrypted and sid is kept in plaintext. So, we can represent the encrypted

query as φ(sid, ξ(val)). For example, after encryption, Query 4.1 will actually look

like:

SELECT COUNT (*) FROM Sequences WHERE

SNP2 = +a=#?h AND SNP3 = z@0x* AND SNP5 = !?[h} AND

AND Diagnoses = #ir*q!

46 Chapter 4: Secure Count Query on Encrypted Genomic Data

Query 4.3: A sample encrypted query executed by the researchers

Searching on Index Tree

Our system supports the count operation. The search process starts with the

researcher sending the encrypted query φ to the CS. The CS needs to execute φ on

T̃ and find the number of records, which matches the SNPs in the query predicate.

For this, it requires to perform search operation on T̃ and find the intended nodes

which contain the count values for corresponding sids.

The main idea is to match the value of val stored in the indented nodes (the

sid of these nodes matches with the sid of φ) which we denote as valn with the

corresponding value of val in the researcher’s query which we denote as valq. If they

match, CS traverses the children of that node. This process continues until CS finds

all the nodes for the corresponding query or CS finished searching all the nodes of

T̃ . As both the valq and valn are encrypted and the encryption scheme we use is

probabilistic, CS cannot determine whether those values match or not. The CS can

send the encrypted value of valn to the researcher and as they have the secret key,

they can decrypt valn and check the equality. But the problem of this approach

is that the researchers would be able to determine the structure of the tree using

multiple query operations.

To enable search in this scenario while ensuring less information leakage to the

researcher and the CS, we execute an interactive protocol between them to check this

equality. This equality checking is basically done using garbled circuit. The CS and

Chapter 4: Secure Count Query on Encrypted Genomic Data 47

researchers compute this circuit via secure computation for each of the node which

matches the value of sid in the φ. Here the researcher is the garbler and CS is the

evaluator. Only the evaluator will know the output of the computation. As the valn

is encrypted, this value can be decrypted into the circuit before checking the equality,

but this process is computationally expensive [55].

We choose to use random mask to avoid this decryption inside the garbled circuit.

The idea is to use the additive mask to obscure the input of CS as the homomorphic

property allows addition over encrypted data. We refer the additive mask we use as

noise and denote it as µ. After the addition of the noise, the encrypted masked value

of valn is:

δ̃ = ξpk(valn) + ξpk(µ) (4.1)

Here, µ ∈M whereM is the message space and µ is random. CS then sends the

resulting obscure value δ̃ to the researcher. Researcher get the masked value after

the decryption as:

δ = ξsk(δ̃) = valn + µ (4.2)

Researchers then subtract the corresponding value of valq from δ and get the noise

as:

µ′ = δ − valq (4.3)

48 Chapter 4: Secure Count Query on Encrypted Genomic Data

Figure 4.4: Sequence diagram of our proposed model.

As µ is random, the researchers will get random values for δ after decryption from

Equation 4.2. As a result, though µ′ is revealed to the researchers from Equation 4.3,

they will not be able to infer useful information from it.

The researcher is the garbler of the circuit through which we check the equality.

The input of the researcher is µ′. The input from CS (evaluator) to this circuit is the

actual noise it added, µ. If the output of the circuit is true, then µ′ == µ, which

actually implies valn == valq. That means the SNP sequence in the researcher’s

query matches with the SNP sequence in the database. Only CS knows this output

and CS then continues traversing the children of that node. This process continues

until CS finds all the matched nodes for the corresponding query or CS searched all

the nodes of T̃ .

Let q be the query consisting of the SNPs the researchers are interested in and r

Chapter 4: Secure Count Query on Encrypted Genomic Data 49

Figure 4.5: Information stored in a single node.

be the root node of T . Let sid be the SNP identifiers in q. Our search algorithm takes

r and sid as input and returns the number of SNP sequences (count) that match the

records in the database. Figure 4.4 summarizes each of the steps of our proposed

method as sequence diagram.

4.5.2 Genomic Data with Phenotype

The tree described above is only capable of counting the number of genotypes

at a particular position of the genome. To determine the effect of genotypes on the

phenotypes, we need to incorporate the phenotype information at each node of the

tree.

As we have mentioned earlier, Bloom filter can be used to check the membership

of an element in a set. This property can be utilized to facilitate search operation

over the index tree. For this, we have added a Bloom filter as the fifth component

of each of the node in the tree to incorporate the phenotype information. The basic

idea is to use a similar data structure like Bloom filter search tree [56].

50 Chapter 4: Secure Count Query on Encrypted Genomic Data

Insertion into the Bloom filter.

The CI sets the domain of the hash functions H and common alphabet
∑

used

in the Bloom filters. The domain of the common alphabet is the set of all possible

phenotypes. For each of the SNPs in the genomic sequence, there will be one insertion

of the corresponding phenotypes in the Bloom filter. Each phenotype from
∑

is

mapped to a unique number and that number will be inserted into the Bloom filter.

Each node i in tree T except the root node and the leaf nodes contains a Bloom

filter Bi. While generating the index tree, all the phenotypes of the corresponding

patient are inserted into the bloom filter at each of the nodes which represents the

patients genomic sequences. So, Bi contains all the phenotypes associated with that

node or its descendants. Figure 4.5 represents all the information stored in a single

node.

Example 3. Figure 4.2a represents the tree after the insertion of the first record

from Table 4.2. All the nodes except the root node will contain a Bloom filter where

the mapped phenotype values for record #1 (Headache, High cholesterol) will be

inserted. So, all the Bloom filters at node 2 to 6 will contain the same phenotype

information.

Now, while inserting record # 3 (see Figure 4.2c), node 2 will contain the all the

phenotypes of record # 1 and 3. But, the Bloom filter between node 3 and 6 will

contain only the phenotype information of record # 1 (Headache, High cholesterol).

Similarly, node 12 to 15 will contain only the phenotype information of record # 3

(Hair loss, Mumps).

The overall procedure to generate the index tree including the genotype and phe-

Chapter 4: Secure Count Query on Encrypted Genomic Data 51

Algorithm 1 Algorithm for building index tree

Input: Root node, r and a database, D

Output: This algorithm will return an index tree, T

1: function buildTree(r,Dj
i)

2: for each Di do

3: parent ← r

4: a← π(Dj
i) . create new node for each Di,j

5: for each n ∈ T do

6: if a.sid = n.sid and a.val = n.val then

7: n.count++

8: parent ← n

9: else

10: a.count ← 1

11: parent.addChildren(a)

12: parent ← a

13: end if

14: parent.bloomFilter ← ρ[j]

15: end for

16: end for

17: return T

18: end function

notype is described in Algorithm 1.

Encryption of the Bloom Filter.

The length of each of the Bloom Filter at each node of the tree are the same. To

encrypt the Bloom filter, we have used AES in CTR mode with a key size of 128

bits. This key, s is also generated by the CI. The CI encrypts each Bloom filter Bi

as B̃i = Bi ⊕ s. This encryption is done at the same time when other data at each

node are encrypted as discussed in Section 4.5.1. After the encryption of the index

52 Chapter 4: Secure Count Query on Encrypted Genomic Data

tree, the tree is sent to the CS.

Encryption of the Query.

Besides providing the Researchers the secret key sk, the CI also provides the

keystream s, and the hash functions H for Bloom filter. The phenotypes from the

researcher’s query are also mapped to the same unique numbers and then inserted

into the Bloom filter. The generated Bloom filter has the same length as each of the

Bloom filters at each node of the tree. We denote this Bloom filter generated at the

researcher’s end as Bq.

Search with Phenotypes in the Index Tree.

To match the phenotypes at node i during the search we need to match the Bloom

filter Bi at that node with the Bloom filter Bq which is generated from the researcher’s

query. For this purpose, we need to match the positions of Bq those hash to 1 with Bi.

If all the same positions of Bi are also hashed to 1, it means the phenotypes from the

query match with the phenotypes stored in the tree node. Let, for the query Bloom

filter Bq, Z denotes all the positions to be checked. The researcher generates this Z

and gives it as input to the circuit.

As the Bloom filter represented at each node of the tree are encrypted, to check

the positions of any of these Bloom Filter, the CS first needs to decrypt it. The CI

provides the decryption key s to CS. The CS decrypts the encrypted Bloom filter B̃i

as Bi = B̃i ⊕ s. Then each of the positions from Z will be checked inside the circuit.

The procedure for searching the index tree is described in Algorithm 2.

Chapter 4: Secure Count Query on Encrypted Genomic Data 53

Algorithm 2 Algorithm for searching in the index tree

Input: Root node r of encrypted index tree, list of SNP identifiers in query ρ, indices of Bloom

filter

Output: Resulting count value of the query

1: function SearchTree(node, index)

2: count ← 0

3: s← ρ[index]

4: if node.sid = s then

5: c ← Rand()

6: d← ξpk(c)

7: if ξsk(d) - i = c then . The equality checking is done using garbled circuit

8: count ← b.getCount()

9: end if

10: end if

11: children ← node.getChildren()

12: for each child in children do

13: count = SearchTree(child, index)

14: end for

15: return count

16: end function

4.6 Experimental Results

We have built a prototype of our privacy preserving system to evaluate its prac-

ticality and tested its performance on real datasets. The CS and the CI run on

two different machines. The configuration of the CS is described in Table 4.3. The

source code is written in JAVA programming language. For the simulation purpose,

we considered the users separately.

We estimate the efficiency of our proposed method using the following parameters:

1. Tree building time: Time required to read the genomic data from mySQL

54 Chapter 4: Secure Count Query on Encrypted Genomic Data

Cloud Server

Operating System Ubuntu 16.04

Processor Intel Core i5-4590

Memory 8 GB

Database MySQL

Table 4.3: Configuration of the CS.

database and build the index tree.

2. Tree encryption time: Time needed to encrypt the tree.

3. Query execution time: Time needed to execute a query submitted by a re-

searcher.

4. Communication overhead: Bandwidth requirement between the evaluator (CS)

and the garbler (researcher) in order to execute a count query.

We have implemented the cryptography building blocks that were described in

Section 4. We investigated different garbled circuit libraries such as FastGC [57],

ObliVM-GC [58], JustGarble [59] and used the FlexSC [60] library to implement

the garbled circuits. We also used the Paillier Cryptosystem [19] to implement the

homomorphic encryption.

We evaluated our system on real life dataset with 500 and 1000 SNPs. We ex-

perimented with three different query sizes that involved 10, 50 and 100 randomly

selected SNP sequences. We also experimented with different number of records (10K

to 50K) and found that the tree building time increases linearly with the increase of

the number of records, while increasing the number of records does not directly in-

fluence the tree encryption time, query execution time and communication overhead.

Chapter 4: Secure Count Query on Encrypted Genomic Data 55

0.53

0.750.69
0.82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

500 1000

T
im

e
 (

s)

Number of SNPs

Tree Building Time

Without Phenotype With Phenotype

(a) Tree Building Time.

22.56

47.01

22.83

47.6

0

10

20

30

40

50

500 1000

T
im

e
 (

m
in

)

Number of SNPs

Tree Encryption Time

Without Phenotype With Phenotype

(b) Tree Encryption Time

Figure 4.6: Tree building time and tree encryption time for count queries on

datasets with different number of SNPs.

The is because the structure of the index tree remains same for a fixed number of

SNPs. Due to the space limitation, we do not report the result of those experiments

in this paper. For each experiment, we executed 10 runs and averaged the result over

the runs.

A. Tree Building Time. We analyzed the time required to build the index tree

for different datasets containing different number of SNPs. In this experiment, the

number of records was the same and the number of SNPs we used in our experiment

was 500 and 1000. Figure 4.6a plots the time required for building the tree with

and without the phenotypes. As expected, the time increases with the number of

SNPs. Also, we can notice from the graph that the additional time required to insert

phenotype data into the Bloom filter is not very significant (< 0.2 seconds in both

case).

B. Tree Encryption Time. Figure 4.6b plots the time required to encrypt the

tree for datasets with 500 and 1000 SNPs. This majority of the time spent in this

step is due to the encryption of the count values at each node. It is also evident

56 Chapter 4: Secure Count Query on Encrypted Genomic Data

from the figure that encrypting the Bloom filter using the AES CTR scheme does not

take very long. Our experiments show that the increase in number of records do not

significantly impact the encryption time. This is due to the fact that the encryption

time depends on the depth of index tree and depth of the tree in turn depends on the

total number of SNP sequences in the dataset.

C. Query Execution Time. To calculate the query execution time, we executed

a number of query of different sizes on the encrypted tree. The queries we used were

determined by randomly selecting 10, 50 and 100 SNP sequences. The execution

times of these queries on the tree are listed in Table 4.4. If we increase the query

size on the tree without the phenotype, the execution time decreases. This is because

the increase in query size also increases the probability of finding a matched node

adjacent to the root. In the case of the tree with phenotype, we need to traverse all

the nodes to get the exact count value. The query execution time is almost similar

in this tree as only the leaf nodes contain the exact information.

of SNPs 500 1000

Query size 10 50 100 10 50 100

Without Phenotype 9.8 5.1 4.2 9.3 6.9 5.9

With Phenotype 77.8 69.7 67.1 130.8 128.7 130.1

Table 4.4: Query execution time. Times are measured in seconds.

Table 4.5 presents the comparison of the query execution time of our method with

[27] and [28]. We report the times of [27] and [28] directly from the original articles.

However, we have estimated the running time of [27] using the same platform as our

Chapter 4: Secure Count Query on Encrypted Genomic Data 57

model. The query execution time for [27] is approximately 2.56 minutes for query

size 10 (instead of 25 mins as reported in the original article). In this estimation, we

have considered only the cost of cryptographic operations since they are much more

expensive relative to other operations. The solution of [28] uses a specific hardware

(IBM 4764 PCI-X SCPs) and most of the operations take place inside this trusted

hardware. Hence, we expect the execution time to remain the same. However, the

query execution time of our method is linear to the number of SNPs whereas it is

linear to the number of records for both [27] and [28].

Query size 10 20 30 40

Kantarcioglu et al. [27] 25 min 27 min 28 min 30 min

Canim et al. [28] 20 sec 40 sec 60 sec 80 sec

Our method 2.4 sec 2.7 sec 1.5 sec 1.4 sec

Table 4.5: Comparison of count query execution time on a dataset of 5000 records,

where each record contains 300 SNPs, for different query sizes.

D. Communication Overhead. The amount of data transferred between the

CS and the researcher to execute the query with different query size is listed in

Table 4.6. This overhead generally increases if the query execution time increases

and decreases if the query execution time decreases. Both the query execution time

and communication overhead generally depends on the number of nodes need to be

accessed to execute a query. In the case of the tree with the phenotypes, we always

need to find the corresponding leaf node to get the count value. So, the communication

overhead is almost the same for different query sizes.

58 Chapter 4: Secure Count Query on Encrypted Genomic Data

of SNPs 500 1000

Query size 10 50 100 10 50 100

Without Phenotype 0.09 0.05 0.04 0.08 0.05 0.05

With Phenotype 5.6 6.3 5.2 11.6 12.0 10.5

Table 4.6: Communication overhead in MB.

5. Storage Analysis. Table 4.7 lists the amount of spaces required to represent

the original data, unencrypted tree and the encrypted tree. We stored the original

data in the MySQL. The expansion in the encrypted tree size is due to the encrypting

the data using the Paillier cryptosystem [19].

of SNPs 500 1000

Database Original Unencrypted Tree Encrypted Tree Original Unencrypted Tree Encrypted Tree

Without Phenotype 0.45 13.98 64.7 0.89 25.9 129.8

With Phenotype 0.61 16.13 95.94 1.1 31.11 188.2

Table 4.7: Size of original database, unencrypted tree and encrypted tree in MB.

4.7 Security Analysis

We assume that the security of our proposed system is compromised if the SNP

sequences are revealed to any of the participants except the CI as it is the trusted

entity. We also consider the participants’ ability to infer information in different

stages of the system. The leakage profiles of different participants in our proposed

model are given below –

Leakage during the tree building and tree encryption phase: CI is only

responsible for the generation and encryption of the index tree and is considered as a

trusted entity. So the leakage to the CI is none in this phase. The CS cannot infer

Chapter 4: Secure Count Query on Encrypted Genomic Data 59

any information during this phase as it only gets the encrypted index tree, T̃ .

Leakage to CI. The CI is not involved at all during the query execution, it’s

only responsibility is to provide the key pair (pk, sk) to the researchers. So, there is

no information leakage to CI during the query execution.

Leakage to researchers. The leakage to the researchers is the final output which

is the result of the query. Researchers also know the noise value, µ′ from Equation 4.3

but µ′ is a random number and uniformly distributed. Hence, the researchers cannot

infer anything from the value of µ′. Note that we do not consider here any privacy

leakage through the output. Such inference attack can be avoided using differential

privacy and has been studied extensively in the literature [61].

Leakage to CS. The CS can know all the nodes in T̃ which are accessed during

the query execution, that means the tree traversal path is revealed to the CS. The

traversal pattern depends on the query and it includes the path that either reaches

the leaf or stops at an internal node. CS can learn about the SNP identifiers from

a query but not the SNP sequences, because the SNP sequences are encrypted but

the SNP identifiers are not. As the output of the circuit computation is only known

to the CS, it can know which node actually contains which SNP identifier. But as

the SNP sequences and all other information stored in that node are encrypted, CS

cannot learn about any other values from that node.

4.8 Summary.

Our experimental results on different datasets by varying the number of records,

SNPs and query sizes can be summarized as:

60 Chapter 4: Secure Count Query on Encrypted Genomic Data

• Our method can effectively preserve both data privacy and data utility support-

ing large datasets by building an index tree. We observe that the time required

to read the data from the database and build index tree using this data is lin-

ear. Also the tree encryption time does not have direct impact on the number

of records.

• We have used a data structure similar to Bloom filter search tree to incorporate

phenotype information and count the number of records.

• Our proposed model is also scalable for large datasets.

These characteristics make our proposed method a promising one for executing count

query securely on encrypted genomic data.

Chapter 5

Secure Sequence Similarity Search

on Encrypted Genomic Data

In personalized medicine, a medical unit (company or hospital) needs to check

the medicine compatibility, that is to determine how suitable a particular medication

would be for a patient. For this, it requires the user to share their genome with

the medical unit. Also, the medical units (i.e. pharmaceutical companies) require

checking the compatibility of their newly developed drugs by conducting medical

tests on the user’s genomic data. Due to the privacy concerns, the users do not

want to share their genomic data with the medical units. The medical units also are

reluctant to reveal the properties of their drugs under development.

To bridge the gap between the contradictory goals of the users and the pharma-

ceutical companies, a secured personalized medical solution is required. One of the

steps to provide the personalized medical solution is to identify similar patients from

a database of genome [62]. This is called similar patient matching. In this chapter,

61

62 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

we provide a secured method for the similar patient matching operation.

5.1 Similar Patient Matching

Similar Patient Matching (SPM) is the identification of similar patients from a

large number of Electronic Medical Records (EMRs). The major focus of SPM is to

implement a distance metric which can be used to measure the numerical similarity

of attributes of patients from their medical and personal records. Many countries

have recently emphasized the research on identifying similar patients in a number

of healthcare projects, some countries has even already implemented it [63]. But,

as these records contain highly sensitive personal and medical information of the

patients, storage and computation on this data have significant privacy concerns.

That is why, in SPM it is required to execute a query on the encrypted data which

preserves the privacy of the patients

5.2 Hamming Distance

Definition 5.2.1. Let u = {u1, u2, . . . , un} and v = {v1, v2, . . . , vn} be two strings

over an alphabet Σ where |u| = |v|. The Hamming distance d(u, v) between them can

be defined as the number of positions where u and v have mismatched characters.

Mathematically it can be expressed as:

d(u, v) =
i=n∑
i=1

ui 6= vi

Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data 63

Case Genomic Sequence Diagnosis

1 AGCCTTA. . . Negative

2 CACCCTA. . . Negative

3 AGCTCCA. . . Negative

4 AGCCTTA. . . Negative

5 GGCTTTG. . . Positive

6 AACCTTG. . . Positive

7 AGCTCTG. . . Positive

8 AACCTTG. . . Positive

9 GGCTCTA. . . Negative

10 AGCTCTG. . . Positive

Table 5.1: Sample Genomic data representation

The Hamming distance between two sequences u and v satisfies the following

conditions:

i. d(u, v) ≥ 0 and d(u, v) = 0 if and only if u = v

ii. d(u, v) = d(v, u)

iii. d(u,w) ≤ d(u, v) + d(v, w) for any u, v, w ∈ Σ

5.3 Genomic Data Representation

Table 5.1 represents an example of the format of the data. Here, each row repre-

sents genomic sequences for one single patient. The last column indicates whether a

genomic sequence is associated with cancer (positive) or not (negative). The dataset

might contain other information about the phenotypes, but for keeping the structure

of the data simple, we do not show those in Table 5.1.

64 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

5.4 Query Types

Our objective is to securely execute similar sequence search query operation in a

database containing a large number of sequences. The researchers provide a refer-

ence sequence which is used to retrieve other sequences whose similarity against the

reference sequence is less than or equal to a predetermined threshold k. Note that

researchers can search for exact match by setting k = 0. We can formally define

similar sequence query operation as follow:

Definition 5.4.1. Given a query of string s and a threshold k, a database representing

collection of strings S, sequence similarity search returns all s′ ∈ S for which the

difference, d(s, s′) ≤ k.

For example, let’s consider the following query submitted by a researcher :

SELECT (*) FROM Sequences

WHERE s = AGCCTGT AND k = 2

Query 5.1: A sample query executed by the researchers

If we execute the above query on Table 5.1, researchers will receive AGCCTTA

and AGCCTTA as the answer of the query because only Case # 1 and 4 have

hamming distance ≤ 2 with the query sequence AGCCTGT (d = 2 in both case).

Receiving these similar sequences based on a threshold value helps the researchers to

determine the similar patient and predict phenotype.

Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data 65

5.5 System Design Overview

The architecture of our proposed system is the same as presented in Figure 4.1 in

Chapter 4. So, again there are four entities: Data Owners, Certified Institution (CI),

Cloud Server (CS) and Researchers.

The Data Owners shares the genomic data with the CI. The CI builds an en-

crypted searchable version of the aggregated shared data which we call prefix tree

and sends it to the CS. The search operation is basically performed on this encrypted

prefix tree. CI also manages the encryption keys. It shares keys with the CS and

researchers to facilitate secure search on the prefix tree. All the queries submitted

by the researchers are evaluated against the nodes of this encrypted tree at CS. CS

sends the encrypted result of the query to the researchers who can decrypt the result

using the private keys from the CI.

5.6 Threat Model

The threat mode for this problem is also the same as the threat mode described

in Section 4.4. Our objective is to provide the privacy of the data, query and output.

We assume that the CI to be a trusted entity as it is responsible for the generation

and encryption of prefix tree. The CS and researchers in our system are semi-honest.

Our security of our proposed system also require that the view of each entity

during the protocol execution not to disclose any information or collaborate with one

another. So, our method is designed based on the the following assumptions:

• We assume that the CI do not collude with the CS and CS also do not collude

66 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

(a) (b) (c)

Figure 5.1: Different states during the generation of the prefix tree. Figure 5.1a, 5.1b,

and 5.1c represents the tree after the insertion of the first, second, and third record

respectively.

with the researchers. This is an essential requirement for guaranteeing query

privacy.

• We assume that the keys received by the researchers from the CI are correct.

5.7 Basic System Design

In this section, we present our proposed model. At first, CI creates a compressed

prefix tree from the aggregated datasets of data owners, then encrypts it, and finally

sends it to CS. The CS uses this encrypted compressed prefix tree to execute queries.

Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data 67

5.7.1 Building Compressed Prefix Tree

When CI receives the data from the data owners, it first creates a search tree,

T which we call prefix tree, using the SNP sequences from the database D. There is

only one such tree in our system. After the creation of the tree, for the records from

each additional data owner, CI only needs to create or update the nodes in the T .

As discussed in Section 2.2.1, there are four nucleotides {A, C, G, T}. We can

represent each nucleotide as a pair of bits. For example, we map {A, C, G, T} to

{00, 01, 10, 11}. Then each genomic sequences will be represented as a series of

binary values. CI checks if a node containing a nucleotide is already in the tree or

not. If not, then the CI creates a new node for that nucleotide. Otherwise CI just

updates the corresponding existing node. Each node of T contains:

a) val: the actual nucleotide, which is encoded as {00, 01, 10, 11} for each of the 4

possible sequences. In Figure 5.1 and 5.2, we have shown the actual nucleotide

only for understanding purpose.

b) list: the list of children (not shown in Figure 5.1 and 5.2).

Each record di ∈ D maps to a leaf node such that if we concatenate all nodes

along a path from root to leaf, we will get di. Each leaf node of T contains:

a) val: the actual nucleotide, which is encoded as {00, 01, 10, 11} for each of the 4

possible sequences.

b) id: we keep a unique identifier to each record inserted in tree T so that we can

reference the original record using this identifier later. If several records in the

68 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

database D contain the same sequence, the corresponding leaf node will contain

multiple ids.

We denote a node as σ and represent all the nodes as σ(val, list) except the leaf

node. The leaf node can be denoted as σ(val, list). The tree T is generated in the

following way:

At first, there is only one node in the tree which is the root node. Beginning from

this root node, for each of the records in the database we start creating new nodes in

T . We denote a record as dji ∈ D where i indicates the record number and j indicates

the nucleotide position. For each dji , the child of the root node is the corresponding

first nucleotide d1i , the child of the node containing d1i is the second nucleotide d2i and

we continue to create the tree in this way.

Example 1: The generated tree, T after the insertion of the first record d1 from

Table 5.1 is shown in figure 5.1a. Here, the first nucleotide, d11 = A is inserted as the

child of the root node. The second nucleotide, d21 = G is inserted as the child of the

node containing d11 and so on. We can represent this node as σ2(A, 〈G〉).

Now while inserting the second record, d2 for each of the nucleotides we first check

whether the current nucleotide has already been inserted into a node in the corre-

sponding level of T . If it has been inserted, we just traverse its children. Otherwise,

we create a new node in that level to store dj2.

Example 2: Continuing from Example 1. The tree, T after the insertion of

second record d2 is shown in Figure 5.1b. The first nucleotide for the second node

d12 is C. We check if any existing node in T already contains this nucleotide at level

1. Here, root node has only one child A. So, we create a new node and insert C as

Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data 69

(a) Prefix tree. (b) Compressed Prefix tree.

Figure 5.2: Prefix tree and compressed prefix tree generated from the data represented

in Table 5.1.

the child of the root node at level 1 and the following nucleotides are added in the

above mentioned way. For the third record, the first nucleotide d13 = A has already

been inserted at level 1. So, we traverse the next node (d23) and find the same node

value G. Similarly, the next node (d33) also matches the value C. Now for the fourth

nucleotide (d43), C does not have any child which contains T . So, we create a new

child node of C at level 4 with the value T and then add the remaining nucleotides

similarly. Figure 5.2a represents the prefix tree containing all the records from Table

5.1.

Algorithm 3 provides pseudocode for building the prefix tree. The building cost

of the tree is O(mn) where, m = number of records in the database and n = length

of each sequence. The features of this prefix tree can be listed as:

• If we traverse one node at each level starting from the root node to a leaf node,

we get different SNP sequences belonging to the same record in the database.

70 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

Algorithm 3 Algorithm for building prefix tree

Input: Root node and the database (r,Dj
i)

Output: This algorithm will return an index tree, T

1: for each Di do

2: parent ← r

3: a← π(Dj
i) . create new node for each Di,j

4: for each n ∈ T do

5: if a.val 6= n.val then

6: parent.addChildren(a)

7: parent ← a

8: end if

9: end for

10: end for

11: return T . The generated tree

• We can again reconstruct the original database record by traversing the corre-

sponding nodes of T .

• For the addition or removal of records, we do not need to regenerate the tree,

we can simply update or delete the data stored at each node.

• Unique SNP values at a particular level create new nodes and the following

SNPs are added as the children of that node.

After building the prefix tree, we compress the suffixes and infixes of the prefix

tree. Figure 5.2b represents the compressed prefix tree. For example, ACCTTG is a

suffix compression and GGCT is an infix compression in figure 5.2b.

Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data 71

5.7.2 Encrypting the Compressed Prefix Tree

After building the prefix tree T from the database, CI encrypts the prefix tree and

then sends encrypted version of T to the CS. The detailed process can be elaborated

as:

• Key generation: The CI generates a key, an IV and a counter CTR value

for each node. The encryption key ξk remain same for all the nodes of the

compressed prefix tree.

• Encrypt the compressed prefix Tree: CI uses the key, IV and CTR value to

build a keystream by executing ξk(IV || CTRi). CI build a unique keystream

to encrypt all the nodes in T. For each node σ in T, CI encrypts the node by

keystream⊕ (σ). We represent the encrypted tree as T̃ .

• Share: Finally, CI sends T̃ to the CS. CI also shares the secret key with the

researchers.

5.7.3 Searching on Encrypted Prefix Tree

Once CI sends T̃ to the CS, the researchers can execute his query on T̃ stored in

CS. The researcher encodes his query q by mapping {A, C, G, T} to {00, 01, 10, 11}.

The query also includes the threshold value k. The search process starts with re-

searchers sending the encoded query φ to the CS. The CS needs to execute φ on T̃

and find the similar sequences within the threshold k.

The main idea is to measure the length of the value stored in the indented nodes

(denoted as lenn) and use the same length to prepare corresponding researcher’s

72 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

query (denoted as lenq). We denote the indented node’s value as valn and query

value (up to lenq) as valq. If the hamming distance between valn and valq is less than

or equal to the given threshold k, CS traverses the children of that node. This process

continues until CS finds all the nodes for the corresponding query that satisfies the

hamming distance k.

Example 3: CS and researchers execute a secure interactive protocol via garbled

circuit. Query processing starts with the researcher sending keystream (derived from

secret key), and threshold value k to the garbled circuit. CS performs a pre-order

traversal of the encrypted tree and sends encrypted node value δ to garbled circuit.

Inside the garbled circuit, at first we achieve the original node value valn by computing

δ ⊕ keystream. Suppose from Figure 5.2b, we achieve 00 after the decryption. Now,

if the query is AGCCTGT (φ = 00100101111011), only the corresponding length of

the decrypted value (length of 00 = 2) will be considered as the query length. The

hamming distance between the updated query (00) and decrypted value (00) will be

calculated inside the garbled circuit. Then the calculated hamming distance (dist = 0)

is compared inside the garbled circuit whether dist ≤ k (suppose k = 2). As dist < k,

we traverse the children of the current node. Similarly, we traverse the children of the

next node with the updated query q (100101111011) and updated threshold k (2−0 = 2)

if Dhd(q, valn) ≤ k. This process will continue until the leaf node. If dist > k at any

iteration, we stop traversing children of the current node and start the similar process

traversing the next child of the root.

To calculate Hamming distance while ensuring less information leakage to the re-

searcher and the CS, we execute a secure interactive protocol between the parties.

Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data 73

The Hamming distance calculation is done using the garbled circuit. Here the re-

searcher is the garbler and CS is the evaluator. Only the evaluator will know the

output of the computation. As the valn is encrypted, it will be decrypted inside the

garbled circuit before calculating the hamming distance.

To decrypt inside the garbled circuit using CTR method, we choose to use XOR

operation between the valn and keystream. The detailed process can be elaborated

as –

• Hamming distance is calculated between the decrypted node value (valn) and

the query with equal length. This hamming distance calculation is done using

the garbled circuit. We denote this distance as dist.

• To ensure CS does not know any knowledge about the calculated Hamming

distance, we add a random mask µ with the calculated dist. We denote this as

k′ = dist+ µ.

• If k′ ≤ k+ µ, then only the children of that node will be traversed. We need to

save the old distance by old dist = k′ − µ. All the operations such as addition,

subtraction are done by the garbled circuit.

• Again by traversing the child node, new distance is calculated with the child

node and the remaining query and it needs to satisfy dist + old distance ≤ k.

This process continues until CS finds all the matched nodes for the correspond-

ing query and k or CS searched all the nodes of T̃ .

Algorithm 4 provides the pseudocode for the similar sequence search operation on

T . Let q be the query, r be the root node of T , k be the threshold value, and s be

74 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

Algorithm 4 Searching similar sequence in the tree

Input: Root of encrypted compressed prefix tree, query, and threshold value (r, q, k)

Output: Resulting similar sequences (S)

1: a← r.getChildren()

2: while a 6= {φ} do

3: b← a.pop()

4: if b.getChildren() 6= φ then

5: buildTree(node.l,B, id)

6: Update query (q′) up to length of b.val

7: if Dhd(q′, b.val) <= k then

8: Update k′ = k −Dhd(q′, b.val)

9: Algorithm 2 (r, q′, k′)

10: end if

11: else if b.getChildren() = φ and Dhd(q, b.val) ≤ k then

12: S ← S + b.val

13: end if

14: end while

15: return S

the database sequences. Our search algorithm takes r, q, k as input and returns the

similar sequences (S) that satisfy Dhd(q, s) ≤ k. Figure 5.3 summarises each of the

steps of our proposed method as sequence diagram.

5.8 Experimental Results

We have implemented our proposed method for secure similar sequence search

problem and evaluated its performance on both real and synthetic datasets. The CS

and the CI run on two different machines. Both of them were Intel Core i5 3.3 GHz

processors with 8 GB RAM, running Ubuntu Linux 16.04. The source code is written

in JAVA programming language. For the simulation purpose, we considered the users

Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data 75

Figure 5.3: Sequence diagram of our proposed model.

separately.

We estimate the efficiency of our proposed method using the following parameters:

1. Data read and tree building time: Time required to read the genomic data from

mySQL database and build prefix tree.

2. Tree encryption time: Time needed to encrypt the prefix tree.

3. Query execution time: Time needed to execute a query submitted by th re-

searchers.

4. Communication overhead: Bandwidth requirement between the evaluator (CS)

and garbler (researchers) in order to process a query.

76 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

Figure 5.4: Data read and prefix tree building time.

We have implemented the cryptography building blocks of garbled circuit and

AES in CTR mode described in Chapter 2. We investigated different garbled circuit

libraries and used the FlexSC [60] library to implement the garbled circuits.

To evaluate the performance of our method on real life dataset, we used the

dataset available from the iDash competition 2015 [64] where there are 400 different

participants divided into case and control groups. As the real-life dataset was not

large enough to evaluate the scalability of our proposed model, we generated different

synthetic datasets varying the number of records (between 2K to 10K) by randomly

adding records to the iDash competition 2015 [64] dataset. For each experiment, we

executed 10 runs and averaged the result over the runs.

Data read, tree building and encryption time. To determine the scalability

of our proposed system, we analyzed the time required for different datasets contain-

ing a different number of records. Figure 5.4 plots the time required for reading the

data from the database, building prefix tree using this data, and encrypting the prefix

tree. Here we vary the number of records from 2K to 10K, where each record contains

Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data 77

(a) (b)

Figure 5.5: Figure 5.5a shows the query execution time on different datasets with

different number of records and a fixed hamming distance k = 10. Figure 5.5b

shows the query execution time on a dataset of 10000 records and different

hamming distances k ∈ 1, 2, 3, 8, 10.

500 nucleotides. As expected, the time increases linearly with the increase of number

of records. Thus, when we increase our number of records to 10000, the data read,

compressed prefix tree building time, and tree encryption time increases to approx-

imately 0.5 seconds, 12 seconds, and 1 second respectively. Note that, compressed

prefix tree building takes significant time than the data read and tree encryption time.

Query Execution Time. Figure 5.5 shows the query execution time based on

two different parameters. These parameters are: a) number of records in the dataset

and b) number of hamming distances (k). The size of the datasets and the value of k

have an effect on the query execution time. As expected, the time increases linearly

with the increase of number of records and the value of the hamming distance (k).

Communication overhead. Figure 5.6 shows the amount of data transferred

between the researchers and the CS during the evaluation of the garbled circuits.

78 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

(a) (b)

Figure 5.6: Figure 5.6a shows the communication overhead on different datasets

with different number of records and a fixed hamming distance k = 10. Figure 5.5b

shows the communication overhead on a dataset of 10000 records and different

hamming distances k ∈ 1, 2, 3, 8, 10.

In these experiments, we similarly considered two different parameters as mentioned

earlier. As expected, the overhead increases linearly with the increase of number of

records and increasing number of hamming distance (k).

5.9 Security Analysis

The security of the system is compromised if any sequence is revealed to the CS.

On the other hand, researchers are only allowed to know the final result of their query.

Following we discuss various leakages of our proposed model.

Leakage during the tree building and tree encryption phase: CI is only

responsible for the generation and encryption of the BF-tree tree and is considered as

a trusted entity. So the leakage to the CI is none. The CS and researchers cannot

Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data 79

infer any information during this phase.

Leakage to CI. The leakage to the CI is none as it is not involved during the

query execution. The only responsibility of CI is to provide the secret key to the

researchers.

Leakage to researchers. The leakage to researchers is the final output which

is the result of the query. Note that we do not consider here any privacy leakage

through the output. Such inference attack can be avoided using differential privacy

and has been studied extensively in the literature [61].

Leakage to CS. The CS can know all the nodes in T̃ which are accessed dur-

ing the query execution, that means the tree traversal path is revealed to the CS.

Depending on the result of the query, the tree traversal pattern includes either the

paths reaching the leaves or the paths stopping at some internal nodes. CS can learn

about the researchers’ interested hamming distance k from a query. As the output of

the circuit computation is only known to the CS, it can know which node is actually

accessed during the query execution. But as the sequences and all other information

stored in that node are encrypted, CS cannot learn about any other values from that

node.

5.10 Summary

In this chapter, we have presented a secure and efficient method for similar se-

quence search on encrypted data. The proposed method constructs a compressed

prefix tree from the aggregated genomic data and then outsources it to the third

party cloud server. By employing a secure interactive protocol, the cloud server can

80 Chapter 5: Secure Sequence Similarity Search on Encrypted Genomic Data

traverse the nodes of the tree and execute Hamming distance. We have demonstrated

that our model does not reveal any sensitive genomic data during the data processing

as well as query execution phase.

Chapter 6

Identification of Similar Patients

with Edit Distance Approximation

In this section, we propose a model for secure outsourcing of genomic data and

then execute query to find similar sequence on this outsourced data. We pre-filter

the search result using a Bloom filter tree. The similarity between two sequences is

measured by calculating the edit distance.

6.1 Edit Distance

In this current era, genomic sequence analysis can reveal a lot of private infor-

mation of an individual. Sequence analysis is used to understand and discover the

relationships between sequences by aligning them appropriately. Edit distance (also

known as Levenshtein distance) algorithm is one of the most frequently used meth-

ods in genomic sequence analysis and to preserve the privacy of the individuals, this

81

82 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

operation is performed on the encrypted data.

Definition 6.1.1. Let S1 and S2 be two strings over an alphabet Σ. Let the lengths of

S1 and S2 be n and m, respectively. The edit distance between S1 and S2 (denoted

by d(S1, S2)) is the minimum number of edit operations (insertions, deletions and

substitutions) required to convert S1 into S2.

Typically, the cost of insertion and deletion operations is 1 and substitution is 2.

Calculate the edit distance between the genomic sequences is one of the major steps

in the SPM.

6.2 System Design Overview

The architecture of our proposed system is the same as presented in Figure 4.1 in

Chapter 4. So, again there are four entities: Data Owners, Certified Institution (CI),

Cloud Server (CS) and Researchers.

The CI is responsible for the collection of the data from the data owners. Using

all the collected data it builds a Bloom filter tree (see details in Section 6.5). The

encrypted version of this tree is made available to the researchers by hosting it in

a third party cloud server. All the query will be executed on this encrypted tree.

This tree is very easy to update or delete new records. Each query submitted by

the researchers are executed using secured function evaluation facilitated by garbled

circuit.

Chapter 6: Identification of Similar Patients with Edit Distance Approximation 83

6.3 Threat Model

In this model our objective is to protect the privacy of the data, query and the

output as described in Chapter 1. In our model we assume that the both the CS

and researchers are semi-honest. The CI is the trusted entity responsible for data

collection, tree generation and the management of the encryption keys.

So, our method is designed based on the the following assumptions:

• We assume that the CI do not collude with the CS and CS also do not collude

with the researchers. This is an essential requirement for guaranteeing both

data and query privacy.

• We assume that the keys received by the researchers from the CI are correct.

6.4 Genomic Data Representation

The heredity information of an organism is encoded in a genome which contains

both the gene and the non-coding sequences of DNA or RNA. Each DNA molecule in

human genome contains 2 biopolymer chains called a double helix which is formed by

the spiral arrangement of nucleotides. These nucleotides are represented as A, C, G,

T which are the acronyms of Adenine, Cytosine, Guanine, and Thymine respectively.

Each DNA molecule in the human genome contains 3 billion nucleotides and most of

them (∼ 99%) are the same in all people.

Storing such a large amount of data requires a large amount of storage. As most of

the (∼ 99%) DNA sequences between two individuals are identical, storing all of the

genetic data is redundant. That is why a specific format named Variant Call Format

84 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

(VCF) is used for storing the gene sequence variations. The variations are determined

by aligning a human genome with a reference genome. Information stored in the VCF

file includes the type of variations (insertions, deletions or substitutions), the change

in nucleotide(s) and the genetic position where variation occurs. The whole sequence

can be reproduced again by aligning the short sequences from the VCF file with the

reference genome.

In our model, all the genomic sequences are aligned using a reference genome and

then stored in VCF files.

6.5 Basic System Design

A simple solution to find similar patients from a large data set is to compare the

genomic sequence with each genomic sequence of the large data set. Dynamic pro-

gramming algorithm can compute the edit distance between two sequences S1 and S2

in time O(mn) where m and n are the lengths of the strings. Though this ap-

proach guarantees to find the exact edit distancee, this process is inefficient and

time-consuming for a number of reasons. First, The length of the genomic sequences

to be compared are enormous. Also, to find a similar sequence on a database con-

taining n number of records, it requires n number of comparisons. Second, to ensure

the security of the genomic data, this computation has to be performed using crypto-

graphic techniques which tend to be expensive and requires more time than the same

computation on the plaintext.

We pre-filter the search result by using an indexing data structure called Bloom

filter tree (BF-tree). The bloom filters represent each of the genomic sequences of the

Chapter 6: Identification of Similar Patients with Edit Distance Approximation 85

patients. This approach enables us to identify similar patients from large datasets

efficiently, without significant loss of accuracy.

6.5.1 Edit Distance Approximation

Computing edit distance between two individuals over the whole genomes which

consist of 3 billion DNA bases are very expensive. As mentioned earlier, the dy-

namic programming algorithm computes the distance between two sequences in time

O(mn). Focusing only on the variations between two genomes, we can approximate

the edit distance between two sequences. Again, the reason being most of the ge-

nomic sequences (∼ 99%) are similar and most of the edits (> 95%) recorded in

the VCF file with respect to the reference genome occur at the non-adjacent regions.

This information can be utilized to design an efficient approximation of edit distance

scheme between two human genome. Wang et al. [45] adopted the same approach to

determine the edit distance.

The first step of our algorithm is to generate the edit sequences which are essen-

tially the variations between genomes. Both parties (CI and researcher) use the same

reference genome to generate the edit sequences. In practice, all the edit sequences

derived from an individual’s genome are stored in a single VCF file. The input to

the Bloom filter is all the single-character edits recorded in the VCF file. If an edit

sequence contains multiple characters, we convert it to multiple single-character edits

the same way it was done by Wang et al. [45]. In brief, conversion of each multi-

character edit to multiple to single character edits for the insertions and deletions are

done in the following way:

86 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

Insertion of a string, S = {s1, s2, . . . , sn} of length n at position, pos is converted

as (pos, ins, 1, s1), (pos, ins, 2, s2), . . . , (pos, ins, n, sn). Also, deletion of a string S at

position, pos is converted as (pos, del, s1), (pos+ 1, del, s2), . . . , (pos+ n− 1, del, sn).

Here, ins and del are the short forms of the operations insertion and deletion respec-

tively. We do not need any conversion for substitutions as they are already defined

with respect to a single character.

Let, A = ACCAGT and B = ACCAAT be two genomic sequences and Ref = AC-

TAAGT be a reference genome. The minimum edits that require to convert Ref to A

are A′ = {(3, sub, C), (4, del, A)} and Ref to B are B′ = {(3, sub, C), (6, del, G)}.

We use the formula to calculate the edit distance is d(A′, B′) = |A′ ∪B′| − |A′ ∩B′|.

For this example, A′ ∪ B′ = {(3, sub, C), (4, del, A), (6, del, G)} and A′ ∩ B′ =

{(3, sub, C)}. Therefore, d(A′, B′) = 3− 1 = 2, which coincides with the Leven-

shtein distance between A and B. Figure 6.1 depicts the calculation of edit distance

for this example. The procedure to insert the single-character edits to a Bloom filter

is discussed in Section 6.5.2.

But, this approach does not work for some sequences. For example, if A =

GTATCAGT, B = GCATCAGT and Ref = GCAACTGT. Then the minimum ed-

its to convert Ref to A are A′ = {(2, sub, C), (4, sub, T)} and Ref to B are

B′ = {(4, sub, T), (6, sub, A)}. Therefore, d(A′, B′) = 4 in our method whereas

theoretically it is actually 1. This error is due to converting A to B through the ref-

erence sequence as both of them are derived from the reference sequence in different

ways.

Wang et al. [45] specifies that scenarios like this occur very rarely due to the

Chapter 6: Identification of Similar Patients with Edit Distance Approximation 87

Figure 6.1: Calculation of edit distance using reference genome

fact that almost 90% of the edits are short edits. The problematic edits due to

overlapping insertion and deletions almost never happen in practice. Also, most of

the edits (80 ∼ 99%) occurred are substitutions.

6.5.2 Bloom Filter Representation

We insert each of the single character edit operations generated in the previous step

in a Bloom filter. To find the similar patients, we compare the similarity of the Bloom

filters. The similarity is measured by computing the Hamming distance between two

Bloom filters. The less the distance is, the more similar the Bloom filters are. As

the Bloom filter is a probabilistic data structure, the calculated distance measure will

give an approximate value. We calculate the distance between the query Bloom filter

and the most similar Bloom filter among a set of patients using the following formula

to get an approximate value of edit distance:

88 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

d = |B1 ∪ B2| − |B1 ∩ B2| (6.1)

Where B1 and B2 are two Bloom filters. Here, our approximate distance measure

is the difference of the cardinality of the union Bloom filter and the cardinality of

the intersected Bloom filter. We have used only one hash function for the cardinality

estimation as Papapetrou et. al [44] determined that one is the optimal number of

the hash function while estimating the cardinality using Bloom filter. Beck and Ker-

schbaum [43] also used only one hash function to calculate the cardinality estimation

of Bloom filters.

Each edit operation from a VCF file is inserted into a Bloom filter. A single

Bloom filter is used to insert all the single character edits of a single patient. Like

the number of hash function H, the length of the Bloom filter l is also fixed and we

calculated this length the same way it was calculated by Beck and Kerschbaum [43],

which is:

m =
−1

(1− p)1/n − 1
(6.2)

This equation is the simplified form of Equation 2.3 where the number of hash

functions, k = 1. If H, m, and k are identical in Bloom filters B1 and B2, we

can perform set union and intersection operations between them in Equation 6.1 to

calculate edit distance. The less the distance is, the more similar the Bloom filters

are. d = 0 indicates that the Bloom filters B1 and B2 are identical.

Chapter 6: Identification of Similar Patients with Edit Distance Approximation 89

B1...8

B1...4

B12

B1 B2

B34

B3 B4

B5...8

B56

B5 B6

B78

B7 B8

Figure 6.2: A sample BF-tree containing only 8 Bloom filters at child

node. Each node except the root node has two children and is the union

of its left and right child. Here, Bloom filter B12 is the union of Bloom

filters B1 and B2. Similarly Bllom filter B1...4 denotes that it is the union

of B12 and B34.

6.5.3 Construction of the BF-Tree

We use a BF-tree to identify similar patients from large datasets. A BF-tree

resembles a binary tree that can be generated by repeated insertion of bloom filters

as nodes containing genomic data. Every node of this tree contains a tuple (B, d, l, r),

where B is the Bloom filter associated with that node, l and r are respectively the

references of the left and right child of that node and if the associated node is the leaf

node then d holds the reference to the corresponding database entry. So, the original

record can be referenced from the leaf node.

Given a BF-tree T and a new sequence s, then s can be inserted into T by first

computing a Bloom filter B(s) and then finding the appropriate node, n in the tree

by traversing it starting from the root node. If n has no children, then a new node

90 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

Algorithm 5 Algorithm for constructing BF-tree

Input: Root node (node), Bloom filter B(s), and id

Output: BF-Tree, T

1: function buildTree(node,B(s), id)

2: if node.l = null then

3: newNode.bf ← B

4: newNode.d← id

5: node.l = newNode

6: else

7: if d(node.l.B,B(s)) ≤ d(node.r.B,B(s)) then

8: buildTree(node.l,B(s), id)

9: else

10: buildTree(node.r,B(s), id)

11: end if

12: end if

13: return T

14: end function

containing B(s) is created as the left child of n. If n has only one child, then the

new node representing B(s) is inserted as the right child of n. But, if n contains

two children, then the Bloom filter to be inserted is compared against the Bloom

filters of both left and right child of node n which are n(l) and n(r). The node with

the more similar Bloom filter becomes the current node and this step is repeated.

The similarity between two Bloom filters is measured by calculating the Hamming

distance between them. The leaf node contains the Bloom filter and the reference to

the corresponding database entry. The l and r references of the leaf node are set to

null.

When a new node is inserted as the child node of a node n, then the Bloom filter of

node n (parent node) is updated as the union of the Bloom filters of its children. So,

Chapter 6: Identification of Similar Patients with Edit Distance Approximation 91

if a new node is added as the left child of n, then the Bloom filter of node n is updated

as l(B) ∪ r(B). Figure 6.2 shows an example of sample BF-tree. The procedure for

building a BF-Tree is presented in Algorithm 5. The step of constructing the tree is

independent of any queries and therefore can be constructed beforehand and used to

execute multiple queries.

6.5.4 Encryption of the BF-Tree

After constructing this BF-tree T , the Bloom filters at each of the nodes of T are

encrypted and then kept in a cloud server (CS) and available to the researchers to

execute queries.

To encrypt the tree T , the CI chooses a random key k for a pseudorandom function

(PRF) F . The Bloom filter Bi at node i is encrypted as:

B̃i = Bi ⊕ Fk (6.3)

This encrypted Bloom filter can be decrypted inside secure function evaluation

(SFE) by garbled circuit (GC) during the search on the tree. After the encryption of

all the nodes of T , CI sends the encrypted BF-Tree, T̃ to CS.

6.5.5 Construction of the Query

Here we show how a query is constructed that is to be executed on the encrypted

BF-tree. Researcher U has a genomic sequence q and he wants to find the patient

with the most similar genomic sequence using the tree T̃ resided in the CS. But, U

92 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

does not want to reveal the query or the result to CS. First, U will use the public

reference genome, Ref to generate the edit sequences and then convert each multi-

character edit into multiple single character edits the same way described in Section

6.5.1.

U and CS agree on the domain of each hash function (Σ) used in the Bloom

filters. U inserts each of the single character edits into the query Bloom filter, Bq.

This Bloom filter will then be evaluated against the encrypted Bloom filters stored

in the nodes of Tree T̃ using SFE.

6.5.6 Search on Encrypted BF-Tree

Given a query Bloom filter Bq generated from the query sequence q and an en-

crypted BF-tree T̃ . The search process starts with the researchers transforming Bq

into corresponding Boolean circuit, Q. Then the server and the client engage in a

secure computation protocol to evaluate Q through which starting from the root node

of T̃ to find a similar node containing the Bloom filter which matches Bq.

Let, l and r be the children of a node n of tree T̃ . The next node to be traversed is

decided by calculating the Hamming distance between Bq and Bloom filters at node

l and r which are B̃l and B̃r respectively. The child with more similar Bloom filter

becomes the current node and its children are again compared with the query Bloom

filter and this process continues until we reach the leaf node. Figure 6.3 shows how

the tree is traversed during the query execution. Here q is the query Bloom filter.

This Bloom filter will be compared with the left and right child at each node and the

child with a Bloom filter with less distance is traversed next.

Chapter 6: Identification of Similar Patients with Edit Distance Approximation 93

d(q,2)≤d(q,3) 1

1 0 1 1 1 0 1 1 1

1 1 0 0 1 0 0 0 1

2

1 0 0 1 0 0 1 1 1

3

1 0 1 1 1 0 1 1 0

4

1 0 0 1 0 0 0 0 1

5

1 0 0 1 0 0 1 1 1

q

d(q,4)≤d(q,5) d(q,2)≤d(q,3)

q

q

d(q,..)≤d(q,..) d(q,..)≤d(q,..)

Figure 6.3: An example of traversing the tree. In each node, the Hamming distance

between the query Bloom filter q and the Bloom filters at the child nodes are com-

pared. The child node containing the more similar Bloom filter to q is traversed next.

The computation of Hamming distance and comparison of the values are done

via very efficient secure function evaluation by a garbled circuit. Recall that, the

Bloom filters at node i is encrypted using a PRF as specified in Equation 6.3. Before

comparing and calculating the Hamming distance we have to decrypt the Bloom filter

at node i. The client provides the key k for PRF to decrypt the encrypted Bloom

filter inside the circuit. The client gets this key k from CI. The required circuit to

decrypt the Bloom filter is :

94 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

DEC((b1, b2, . . . , bn), (r1, r2, . . . , rn))

= bi ⊕ ri for all i ∈ n
(6.4)

Here, (b1, b2, . . . , bn) is from encrypted Bloom filter and (r1, r2, . . . , rn) is from the

PRF. In the circuit, the client will provide the PRF and the server will provide the

encrypted Bloom filter. Both of the Bloom filters from the left child and right child

will be decrypted in the same way. Let, b̃1n and b̃2n be the decrypted Bloom filters from

the left and right child respectively. After decrypting the Bloom filter, the Hamming

distance between the query Bloom filter and the decrypted Bloom filter is calculated,

which is equivalent to xoring the decrypted Bloom filters from the left and right child

and then calculating the number of ones from the xored value inside the circuit. The

circuit to calculate the Hamming distance can be represented as:

HDj((̃bj1, b̃
j
2, . . . , b̃

j
n),

(q1, q2, . . . , qn)) =

i=n,j=2∑
i=1,j=1

(qi ⊕ b̃ji)
(6.5)

Here, (̃bj1, b̃
j
2, . . . , b̃

j
n) are the unencrypted Bloom filters. j = 1 and j = 2 denotes

the Bloom filters from the left and right child respectively and (q1, q2, . . . , qn) is from

the query Bloom filter. Let HD1 denotes the distance between the Bloom filter at

the left child and the query Bloom filter and HD2 denote the distance between the

Bloom filter at the right child and the query Bloom filter. The final circuit will

compare the values of HD1 and HD2. If the value of HD1 is less than or equal to

HD2, the output of the circuit will be “true”, otherwise the output will be “false”.

Chapter 6: Identification of Similar Patients with Edit Distance Approximation 95

Algorithm 6 Algorithm for searching on a BF tree, T

Input: Root node of T (node), and query Bloom filter, Bq
Output: This algorithm will return the Edit Distance

1: function searchTree(node, Bq)

2: if node.l = null then

3: result = d(Bq,Bn) . The final edit distance

4: else

5: if d(Bq, B̃l) ≤ d(Bq, B̃r) then

6: searchTree(node.l,Bq)

7: else

8: searchTree(node.r,Bq)

9: end if

10: end if

11: return result

12: end function

If the output is true, then the search process proceeds to the left child. So, the left

child becomes the parent node and the process of comparing the Hamming distance

continues the same way described earlier.

So, the final comparison program produces output which child to be traversed,

left or right:

if d(Bq, B̃l) ≤ d(Bq, B̃r) then

traverse ‘left’

else

traverse ‘right’

end if

When we reach the leaf node through traversing, it means that we have found the

Bloom filter which represents the genomic sequence of the matched patient. The edit

distance between the query Bloom filter and the Bloom filter at the leaf node can

96 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

Figure 6.4: The overall protocol of our proposed solution. Both the CS and CI have

two common inputs, i) the public reference genome, Ref and ii) the hash function

of Bloom filter, H. The CI generates the tree T offline. The CS also generates the

query Bloom filter, Bq offline. Then the server and the client engage in a secure

computation protocol to find the appropriate leaf node containing the similar patient

in the tree, T .

also be calculated the same way described above. Algorithm 6 describes the process

of searching on tree T̃ .

Figure 6.4 describes all the steps involved in our model, including the protocol for

query execution.

Chapter 6: Identification of Similar Patients with Edit Distance Approximation 97

6.5.7 Runtime Complexity.

The search algorithm of the BF-tree resembles a binary search algorithm. If A is

the database containing the records, then the worst-case and average case runtime

complexity is O(|A|) and O(log |A|) respectively. Computation and comparison of

Hamming distance between two Bloom filters in line 5 of Algorithm 6 has the com-

plexity O(m). So, the overall average runtime complexity of our search algorithm

described in Algorithm 6 is O(m · log |A|)

6.6 Experimental Result

We have implemented the BF-Tree in Java programming language as a binary

tree. Each patients information was represented in a VCF file. All single character

edits generated from a VCF file were inserted into a single Bloom filter. Each leaf

node in the BF-Tree contains a Bloom filter. All nodes in the tree except the leaf

node contains pointers to the left and right child. The tree is constructed recursively

and the search algorithm is also recursive.

Calculating the edit distance using Equation 6.1 is approximated by calculating

the Hamming distance between the Bloom filters [43]. So, in our method, we calcu-

lated Hamming distance instead of performing union and intersection operations of

the Bloom filters.

The configuration of the computer where the tree is built and hosted is described

in Table 6.1. For secure function evaluation we have used the garbled circuit imple-

mentation of FlexSC [60] library which is written in java.

98 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

12.93

30.14

50.77

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000

T
im

e
 (

s)

Number of single character edits

Query Execution Time

Figure 6.5: Average running time to execute a query. Note that, the reported time

does not include the amount of time required to generate end encrypt the tree in the

preprocessing stage.

Cloud Server

Operating System Ubuntu 16.04

Processor Intel Core i5-4590

Memory 8 GB

Table 6.1: Configuration of the server.

We evaluated our system on a real life dataset from the Personal Genome Project

(PGP) [65]. The dataset contains genomic sequences of 110 individuals. We ran three

different experiments where we inserted 1000, 3000, and 5000 single-character edits

into the Bloom filter. If we increase the length of the sequence, it will produce more

single-character edits. To produce 5000 single-character edits, we had to consider the

length of the sequence upto 15,102,400. The average time required to find a similar

patient from tree T̃ is shown in Figure 6.5. We can see that the running time increases

linearly with the increase of single-character edits which means the run time increases

Chapter 6: Identification of Similar Patients with Edit Distance Approximation 99

with the increase in the length of the sequence.

Table 6.2 lists the cost of using the garbled circuit for query execution for different

number of single-character edits. It shows the amount of data transferred between

the researcher and the CS, and the amount of time the garbled circuit runs in each

end.

of single character edits Communication Cost (MB) GC runtime (researcher)(s) GC runtime (CS)(s)

1000 57.32 12.13 12.53

3000 112.2 28.94 29.55

5000 162.09 49.24 50.11

Table 6.2: The cost of garbled circuit per query.

6.7 Security Analysis

The security of the system is compromised if any part of the genomic sequence is

revealed to the CS. On the other hand, researchers are only allowed to know the final

result of their query. Following we discuss various leakages of our proposed model.

Leakage during the tree building and tree encryption phase. CI is only

responsible for the generation and encryption of the BF-Tree and is considered as a

trusted entity. So the leakage to the CI is none in this phase. As the CS and the

researchers are not involved during this phase, the leakage to them is zero. The tree

is encrypted using a non malleable encryption scheme. So, the CS cannot also infer

any information from the encrypted BF-Tree, T̃ it receives from CI.

Leakage to CI. The CI is not involved at all during the query execution, it’s

only responsibility is to provide the secret key to the researchers. The leakage to CI

during the query execution is none.

100 Chapter 6: Identification of Similar Patients with Edit Distance Approximation

Leakage to researchers. The researchers only knows the result of the query.

Note that, it is also possible to extract information about the data by observing the

output which is known as inference attack [26]. One way to avoid this attack is to

use differential privacy [61] which adds noise to the output. Preventing inference

attack is completely the different domain of research and studied extensively in the

literature.

Leakage to CS. The CS will be able to know the tree traversal pattern. It

knows which nodes are being traversed from the root to the leaf while executing the

query. As T̃ is encrypted and CS does not receive the query from the researchers,

the CS does not reveal any information about the data or the query. The output to

the circuit we used in our method is a boolean value (either ”left” or “right”). So,

the CS will know only which nodes are traversed during query execution.

6.8 Summary

• We have developed a method for similar patient matching which is able to

preserve the data, query and output privacy.

• We have pre-filtered the searched result using a data structure called BF-Tree.

• Our experiment and analysis show that our method achieves reasonable accu-

racy to find similar sequence using the genomic data.

Chapter 7

Conclusion

In this thesis, we have presented three different algorithms for secure outsourcing

of genomic data in a central repository (cloud server) and performed three different

computations (i.e., count query, hamming distance, and edit distance).

7.1 Summary

Firstly, in Chapter 4, we have presented a secure and efficient method for out-

sourcing genomic data. The proposed method constructs an index tree from the

aggregate genomic data and then outsources it to the third party cloud server. By

employing a secure interactive protocol, the cloud server can traverse the nodes of the

tree and execute count query operation. We have demonstrated that our model does

not reveal any sensitive genomic data during the data processing as well as query

execution phase. We have also taken into account the phenotype information using

a data structure similar to Bloom filter search tree.

101

102 Chapter 7: Conclusion

In the next chapter (Chapter 5), we propose another model for similar sequence

search on encrypted data. We incorporate a prefix tree-based indexing technique in

our proposed model which not only provides an effective storage solution for large

genomic datasets but also facilitates efficient query execution by traversing the nodes

of the tree. In this model, we have used Hamming distance to calculate the similarity

measure.

Finally, in Chapter 6, we introduce another method for similar patient match-

ing (SPM) operation. We generated a BF-tree using all the available data and all

the computation for SPM is done on this tree. To calculate the similarity between

two sequences we have used edit distance. Experimental results on real life dataset

demonstrates the efficiency of our model.

7.2 Looking ahead

We have used garbled circuit to provide the security of the computation which

require the interaction between the cloud server and the researcher. It would be

interesting to see the performance of a non-interactive solution leveraging the recent

development of fully homomorphic encryption schemes [66]. Recently, Intel has in-

troduced Software Guard Extensions (Intel SGX) [67] architecture for secure compu-

tation. SGX provides a protected area in the memory called enclaves which protects

the code and data during the computation. Though the previous research using cryp-

tographic hardware [28] had some limitations, the performance of SGX is expected

to be better. Designing a cloud-based database management system using the SGX

is an interesting research challenge. Another promising area of improvement could

Chapter 7: Conclusion 103

be the use of differential privacy techniques which provides the privacy of the output

by adding noise to answers of the queries [61], thus preventing the inference attack.

Secure query execution on encrypted data is an active area of research. In the next

few years, we expect that existing open problems will be addressed and new innova-

tive technologies will be introduced to reduce the computational and communication

overhead. However, the problems of genomic data privacy cannot be solved only by

technology. There is an urgent need to bridge the gap between privacy technologies

and current policies. We believe that cross-disciplinary research among computer

science, biomedical and public policy community is needed to bring social and legal

regulations that will complement the best practices of privacy-preserving technology.

Bibliography

[1] M. Akgün, A. O. Bayrak, B. Ozer, and M. Ş. Sağıroğlu, “Privacy preserving pro-

cessing of genomic data: A survey,” Journal of Biomedical Informatics, vol. 56,

pp. 103–111, 2015. 1

[2] F. Yu, S. E. Fienberg, A. B. Slavković, and C. Uhler, “Scalable privacy-preserving

data sharing methodology for genome-wide association studies,” Journal of

biomedical informatics, vol. 50, pp. 133–141, 2014. 1, 20

[3] P. R. Burton et al., “Size matters: just how big is big?: Quantifying realistic sam-

ple size requirements for human genome epidemiology,” International Journal of

Epidemiology, vol. 38, no. 1, pp. 263–273, 2009. 2

[4] M. Naveed et al., “Privacy in the genomic era,” ACM Computing Surveys

(CSUR), vol. 48, no. 1, 2015. 2, 26

[5] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy, “Make new friends, but

keep the old: recommending people on social networking sites,” in Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. ACM,

2009, pp. 201–210. 3

104

Bibliography 105

[6] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich, “Identifying

personal genomes by surname inference,” Science, vol. 339, no. 6117, pp. 321–

324, 2013. 4

[7] X. Zhou, B. Peng, Y. F. Li, Y. Chen, H. Tang, and X. Wang, “To release or not

to release: Evaluating information leaks in aggregate human-genome data,” in

Proceedings of the 16th European Conference on Research in Computer Security.

Springer-Verlag, 2011, pp. 607–627. 4

[8] B. Malin and L. Sweeney, “How (not) to protect genomic data privacy in a dis-

tributed network: Using trail re-identification to evaluate and design anonymity

protection systems,” Journal of Biomedical Informatics, vol. 37, no. 3, pp. 179–

192, 2004. 4

[9] Y. Erlich et al., “Redefining genomic privacy: Trust and empowerment,” PLoS

Biol, vol. 12, 11 2014. 4

[10] A. Yao, “How to generate and exchange secrets,” in Foundations of Computer

Science, 1986., 27th Annual Symposium on. IEEE, 1986, pp. 162–167. 4, 9, 11,

30

[11] Z. Hasan, M. S. R. Mahdi, and N. Mohammed, “Secure count query on encrypted

genomic data: A survey,” IEEE Internet Computing, to appear. 6

[12] M. Z. Hasan, M. S. R. Mahdi, and N. Mohammed, “Secure count query on en-

crypted genomic data,” in Proceedings 3rd International Workshop on Genome

106 Bibliography

Privacy and Security (GenoPri) in conjunction with the AMIA Annual Sympo-

sium, 2016. 6

[13] Z. Hasan, M. S. R. Mahdi, M. N. Sadat, and N. Mohammed, “Secure count

query on encrypted genomic data,” Journal of Biomedical Informatics (JBI),

under minor review. 6

[14] M. S. R. Mahdi, M. Z. Hasan, and N. Mohammed, “Secure sequence similar-

ity search on encrypted genomic data,” in IEEE/ACM International Confer-

ence on Connected Health: Applications, Systems and Engineering Technologies

(CHASE), 2017, pp. 205–213. 6

[15] Z. Hasan and N. Mohammed, “Identification of similar patients with edit distance

approximation,” Submitted. 7

[16] M. O. Rabin, “How To Exchange Secrets with Oblivious Transfer.” IACR Cryp-

tology ePrint Archive, vol. 2005, p. 187, 2005. 10, 11

[17] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing con-

tracts,” Communications of the ACM, vol. 28, no. 6, pp. 637–647, 1985. 11

[18] C. Hazay and Y. Lindell, Efficient secure two-party protocols: Techniques and

constructions. Springer Science & Business Media, 2010. 12, 13, 38

[19] P. Paillier, “Public-key cryptosystems based on composite degree residuosity

classes,” in Proceedings of the 17th International Conference on Theory and Ap-

plication of Cryptographic Techniques, 1999, pp. 223–238. 14, 15, 44, 54, 58

Bibliography 107

[20] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and

practitioners. Springer Science & Business Media, 2009. 15

[21] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-

mun. ACM, vol. 13, no. 7, pp. 422–426, 1970. 16

[22] J. C. Venter et al., “The sequence of the human genome,” Science, vol. 291, no.

5507, pp. 1304–1351, 2001. 19

[23] Z. Lin, A. B. Owen, and R. B. Altman, “Genomic research and human subject

privacy,” Science, vol. 305, no. 5681, pp. 183–183, 2004. 20

[24] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V.

Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig, “Resolving individuals

contributing trace amounts of dna to highly complex mixtures using high-density

snp genotyping microarrays,” PLoS Genet, vol. 4, no. 8, pp. 1–9, 2008. 20

[25] R. Wang, Y. F. Li, X. Wang, H. Tang, and X. Zhou, “Learning your identity

and disease from research papers: Information leaks in genome wide association

study,” in Proceedings of the 16th ACM Conference on Computer and Commu-

nications Security. ACM, 2009, pp. 534–544. 20

[26] N. A. Erlich, Yaniv, “Routes for breaching and protecting genetic privacy,” Nat

Rev Genet, vol. 15, no. 6, pp. 409–421, 2014. 20, 100

[27] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin, “A cryptographic approach to

securely share and query genomic sequences,” IEEE Transactions on information

technology in biomedicine, vol. 12, no. 5, pp. 606–617, 2008. 23, 25, 33, 56, 57

108 Bibliography

[28] M. Canim, M. Kantarcioglu, and B. Malin, “Secure management of biomedical

data with cryptographic hardware,” IEEE Transactions on Information Tech-

nology in Biomedicine, vol. 16, no. 1, pp. 166–175, 2012. 25, 33, 35, 56, 57,

102

[29] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li, “Sovereign joins,” in 22nd

International Conference on Data Engineering (ICDE’06), April 2006, pp. 26–26.

26

[30] K. Lauter, A. López-Alt, and M. Naehrig, “Private computation on encrypted

genomic data,” in International Conference on Cryptology and Information Se-

curity in Latin America. Springer, 2014, pp. 3–27. 26, 32

[31] L. Kamm, D. Bogdanov, S. Laur, and J. Vilo, “A new way to protect privacy in

large-scale genome-wide association studies,” Bioinformatics, vol. 29, no. 7, pp.

886–893, 2013. 27, 28

[32] F. Chen, S. Wang, X. Jiang, S. Ding, Y. Lu, J. Kim, S. C. Sahinalp, C. Shimizu,

J. C. Burns, V. J. Wright et al., “PRINCESS: Privacy-protecting rare disease

international network collaboration via encryption through software guard ex-

tensions,” Bioinformatics, 2017. 27, 32

[33] C. C. Khor et al., “Genome-wide association study identifies FCGR2A as a

susceptibility locus for kawasaki disease,” Nat Genet, vol. 43, no. 12, pp. 1241–

1246, Dec 2011. 27

[34] H. Zhicong, A. Erman, F. Jacques, H. Jean-Pierre, and J. Ari, “Genoguard:

Bibliography 109

Protecting genomic data against brute-force attacks,” in 2015 IEEE Symposium

on Security and Privacy, May 2015, pp. 447–462. 27

[35] Y. Zhang, W. Dai, X. Jiang, H. Xiong, and S. Wang, “FORESEE: Fully Out-

sourced secuRe gEnome Study basEd on homomorphic Encryption,” BMC med-

ical informatics and decision making, vol. 15, no. 5, pp. 1–11, 2015. 27

[36] G. Choi, J. L. Raisaro, S. Pradervand, R. Colsenet, N. Jacquemont, N. Rosat,

and J.-P. Hubaux, “Privacy-preserving exploration of genetic cohorts with i2b2 at

lausanne university hospital,” in Proceedings of the 3rd International Workshop

on Genome Privacy and Security (GenoPri’16), 2016. 27

[37] W. Xie et al., “SecureMA: Protecting participant privacy in genetic association

meta-analysis,” Bioinformatics, pp. 3334–3341, 2014. 28

[38] Y. Zhang, M. Blanton, and G. Almashaqbeh, “Secure distributed genome analy-

sis for GWAS and sequence comparison computation,” BMC Medical Informatics

and Decision Making, 2015. 28, 29

[39] S. Wang et al., “HEALER: Homomorphic computation of ExAct Logistic rE-

gRession for secure rare disease variants analysis in GWAS,” Bioinformatics,

vol. 32, no. 2, pp. 211–218, 2016. 28

[40] T. Dugan and X. Zou, “A Survey of Secure Multiparty Computation Protocols

for Privacy Preserving Genetic Tests,” in Connected Health: Applications, Sys-

tems and Engineering Technologies (CHASE), 2016 IEEE First International

Conference on. IEEE, 2016, pp. 173–182. 28

110 Bibliography

[41] J. H. Cheon, M. Kim, and K. Lauter, “Homomorphic computation of edit dis-

tance,” in Financial Cryptography and Data Security. Springer Berlin Heidel-

berg, 2015, pp. 194–212. 28

[42] R. A. Wagner and M. J. Fischer, “The String-to-String Correction Problem,”

Journal of the ACM (JACM), vol. 21, no. 1, pp. 168–173, Jan. 1974. 28

[43] M. Beck and F. Kerschbaum, “Approximate two-party privacy-preserving string

matching with linear complexity,” in 2013 IEEE International Congress on Big

Data, June 2013, pp. 31–37. 29, 88, 97

[44] O. Papapetrou, W. Siberski, and W. Nejdl, “Cardinality estimation and dynamic

length adaptation for bloom filters,” Distrib. Parallel Databases, vol. 28, no. 2-3,

pp. 119–156, Dec. 2010. 29, 88

[45] X. S. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and D. Bu, “Efficient

genome-wide, privacy-preserving similar patient query based on private edit dis-

tance,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. ACM, 2015, pp. 492–503. 29, 85, 86

[46] H. Perl, Y. Mohammed, M. Brenner, and M. Smith, “Fast confidential search

for bio-medical data using bloom filters and homomorphic cryptography,” in E-

Science (e-Science), 2012 IEEE 8th International Conference on, 2012, pp. 1–8.

30

[47] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for genomic

Bibliography 111

computation,” in 2008 IEEE Symposium on Security and Privacy (SP 2008),

2008, pp. 216–230. 30

[48] T. Smith and M. Waterman, “Identification of common molecular subsequences,”

Journal of Molecular Biology, vol. 147, no. 1, pp. 195 – 197, 1981. 30

[49] A. Rheinländer, M. Knobloch, N. Hochmuth, and U. Leser, “Prefix tree indexing

for similarity search and similarity joins on genomic data,” in Scientific and

Statistical Database Management. Springer, 2010, pp. 519–536. 30

[50] C. Wang, K. Ren, S. Yu, and K. M. R. Urs, “Achieving usable and privacy-

assured similarity search over outsourced cloud data,” in INFOCOM, 2012 Pro-

ceedings IEEE. IEEE, 2012, pp. 451–459. 31

[51] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rougemont, “Protecting and Eval-

uating Genomic Privacy in Medical Tests and Personalized Medicine,” in Pro-

ceedings of the 12th ACM Workshop on Workshop on Privacy in the Electronic

Society. ACM, 2013, pp. 95–106. 31

[52] J.-J. Yang, J.-Q. Li, and Y. Niu, “A hybrid solution for privacy preserving med-

ical data sharing in the cloud environment,” Future Generation Computer Sys-

tems, vol. 43, pp. 74–86, 2015. 31

[53] S. Purcell et al., “PLINK: a tool set for whole-genome association and

population-based linkage analyses,” The American Journal of Human Genetics,

vol. 81, no. 3, pp. 559–575, 2007. 35

112 Bibliography

[54] D. N. Paltoo et al., “Data use under the NIH GWAS Data Sharing Policy and

future directions,” Nature genetics, vol. 46, no. 9, pp. 934–938, 2014. 36, 38

[55] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and N. Taft,

“Privacy-preserving ridge regression on hundreds of millions of records,” in Se-

curity and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 334–348.

47

[56] V. Pappas et al., “Blind seer: A scalable private dbms,” in Security and Privacy

(SP), 2014 IEEE Symposium on, May 2014, pp. 359–374. 49

[57] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party computa-

tion using garbled circuits.” in USENIX Security Symposium, 2011. 54

[58] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A programming

framework for secure computation,” in 2015 IEEE Symposium on Security and

Privacy. IEEE, 2015, pp. 359–376. 54

[59] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling from

a fixed-key blockcipher,” in Security and Privacy (SP), 2013 IEEE Symposium

on. IEEE, 2013, pp. 478–492. 54

[60] X. Wang, H. Chan, and E. Shi, “Circuit oram: On tightness of the goldreich-

ostrovsky lower bound,” in Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security. ACM, 2015, pp. 850–861. 54, 76,

97

[61] C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,”

Bibliography 113

Foundations and Trends in Theoretical Computer Science, vol. 9, no. 3-4, pp.

211–407, 2014. 59, 79, 100, 103

[62] N. V. Chawla and D. A. Davis, “Bringing big data to personalized healthcare: a

patient-centered framework,” Journal of general internal medicine, vol. 28, no. 3,

pp. 660–665, 2013. 61

[63] D. Vatsalan and P. Christen, “Privacy-preserving matching of similar patients,”

J. of Biomedical Informatics, vol. 59, no. C, pp. 285–298, Feb. 2016. 62

[64] “Idash-privacy and security workshop on genomic data.” http://www.

humangenomeprivacy.org/2015/competition-tasks.html, 2015. 76

[65] G. M. Church, “The personal genome project,” Molecular Systems Biology, vol. 1,

no. 1, 2005. 98

[66] C. Gentry, A fully homomorphic encryption scheme. Stanford University, 2009.

102

[67] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo, “Using

innovative instructions to create trustworthy software solutions,” in Proceedings

of the 2Nd International Workshop on Hardware and Architectural Support for

Security and Privacy, ser. HASP ’13. ACM, 2013, pp. 11:1–11:1. 102

http://www.humangenomeprivacy.org/2015/competition-tasks.html
http://www.humangenomeprivacy.org/2015/competition-tasks.html

