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ABSTRACT

Current industrial autoclave cure cycles used to process composites in the aerospace

industry are conservative and costly. It is therefore desirable to optimize cure cycles

based on industrial quality requirements to reduce costs. Process optimization requires

several key components including a process model, an optimizing scheme, and an

objective function. To address this problem, the University of Manitoba and its industrial

partners have set out to develop the Advanced Process Control System (ApCS). As a

portion of this project, the primary objective of this thesis was to develop an objective

function and interface with a genetic algorithm based path generator and a process model

COMPRO, developed at The University of British Columbia, to develop the optimizer for

autoclave process cycle optimization. Models run by the process model used Cytec-

Fiberite 934 with Toray T300 fibres. As a secondary objective for the thesis, material

characterization was performed for Hexcel F155 resin with Toho T300 car-bon fibres for

use in future work with APCS. Heat transfer and warpage predictions made by the

process model were validated by experiments performed at Boeing Technology Canada -
'Winnipeg Division. This thesis discusses the effects of various versions of the objective

function and the inputs required by the genetic algorithm. Based on the optimization

results for various optimizer settings used in the study, the thesis concludes by providing

the best optimizer configuration.
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CHAPTER 1

Introduction and Background

1.0 Introduction

Composite materials have proven to be attractive for use primarily in secondary

structures within the aerospace industry. h certain applications, composites offer

superior mechanical properties when compared to traditional metallic components. In

general, a composite is def,rned to be a material that is comprised of two or more

dissimilar components. In the case of aerospace composites, these dissimilar components

are the fibers and the matrix. Composites used in aircrafts, outside of engine

components, typically use polymer resins as the matrix and are referred to as Polyrner

Matrix Composites (PMC).

Composite parts used in aircraft, vary greatly in size and shape and are typically

cured in batch loads in autoclaves. The cure cycles differ depending on the matrix resin.

However, in order to accommodate components made with different materials with

similar cure cycles, within the same batch load, manufacturers use very conservative cure

cycles. The conservative cycles ensure that parts are completely cured regardless of

location within an autoclave and therefore have the required properties. It is therefore

desirable to reduce cure cycle time, while maintaining part quality in order to improve

efficiency, production flow and reduce production costs and the capital investment



required for large equipment such as autoclaves. As well as cycle time reduction, other

factors such as the reduction of warpage and stress in a component could be important to

industry as it could lead to better tool design and reduce parts dimensional variation from

batch to batch.

ln order to achieve a reduction of cure cycle time, walpage and residual stress , a

software optimizer based upon sound understanding of the entire curing process rs

required. Much of the work to date use simple control systems or simple one

dimensional process models (1-6). There is still a need for a more advanced optimizer

and control system. For this reason, the University of Manitoba, the National Research

Council, Bristol Aerospace Ltd., and Boeing Technology Canada Ltd, have started

research on the Advanced Process Control System (APCS) of which this thesis is a

oortion of.

1.1 Advanced Process Control System (APCS)

The APCS optimizes cycles offline and then controls the autoclave online while

monitoring sensors to ensure that the part is following the cure cycle. If the measured

parameters deviate from the off-line optimized path, the APCS will re-optimize the

process cycle such that final product quality is within specifications. The APCS requires

several key modules and technologies in order to work. These components are as

follows.

a) Reliable Process Model



o Material Property Data

SIMCLAVE and ARS (Autoclave Respose Simulator)

Optimizer

o Path Generation Module

o Objective Function Module

d) Sensor Module (Advanced Sensors)

e) Control Module

Ð Storage Module

g) On-line Process Window

Components "a" through"c" are required for off-line optimization while component

"d" through "g" are additionally required for on-line optimization.

1.1.1 OfflineOptimization

A flow chart describing the function of the optimizer is given in Figure 1.1. The

first step in ofÊline optimization is to setup the finite element model of the part using the

process model by setting the mesh, material type, material lay-up, etc. Following this,

SIMCLAVE is run to predict thermal boundary conditions based on orientation and

location of the part within the autoclave. Subsequently, the actual optimization program

begins.

The path generation module generates possible cure cycles and sends the cycles

one at a time to the Objective Function Module (OFM). ARS (Autoclave Response

b)

c)



Simulator) predicts the actual air temperature in the autoclave using these cycles and

outputs the air temperature in a format readable by the process model. The process

model is run with this modified cure cycle and the results are transferred back to the

OFM. The Objective Function Module uses selected data from the process model results

to evaluate an objective function equation and assign a fitness for that cure cycle. This

fitness value is evaluated against user-defined criterion to verify if that cure cycle is the

optimal cycle. If the cycle is not optimal, the path generator then passes the next cure

cycle to the Objective Function Module and the cycle continues until an optimal cycle is

found.

1.1.2 On-line Optimization and Process Control

A functional flow chart is given in Figure 1.2. The off-line optimized cure cycle

will be used to manufacture the composite part. The cure will be monitored on-line via

sensors to ensure that the cure takes place as predicted. Sensing any deviation from the

on-line process window, discussed in a section l.2.7,the remaining portion of the cycle

will be re-optimized on-line.
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1.2 APCS Program Components

ln the following sections, various modules of the APCS are discussed briefly.

1.2.1 Process Model

The purpose of the process model is to predict parameters such as part

temperature, degree of cure, warpage, etc. in a part during the curing process. An

accurate process model is of paramount importance for the proper and efficient operatio¡

of the APCS. Such a process model is available at the University of Manitoba.

However, this model is ANSYS based and not portable at this time. Another process

model, COMPRO developed at The University of British Columbia was used in this

thesis. Details of CoMPRo can be found in work published by Johnson (7).

Process models, such as coMPRo, have three main modules. The

thermochemical module predicts the temperature and cure within the part, which are

subsequently used by the other two modules. The second module is the flow module that

predicts the resin flow, fiber volume fraction and final part thickness within the part. The

last module is the stress module that calculates the build-up of residual stresses and part

deformation during processing. This module is also capable of simulating tool removal

from the part and therefore can predict final warpage of the part.



Accurate prediction by the process model requiies reliable inputs to the process

model. Inputs can be divided into two general areas - thermal boundary conditions and

material property data.

1.2.1.1 Material Module

Each of the three modules in a process model, mentioned in section 1.2. l, require

different material information. The thermochemical module requires material themral

properties such as thermal conductivity, specific heat capacity and resin cure kinetics

data. The flow modules requires data such as viscosity as a function of cure. The third

module requires material information such as coefficient of thermal expansion and

modulus data.

Typically, the material properties mentioned above are detennined experimentally

or are taken from literature. This material data is then used to predict variables such as

the degree of cure within the part, the temperature distribution, the build up of residual

stresses, the warping of the part, etc.

1.2.2 SIMCLAVE and ARS

Heat transferred into the part determines the part temperature, which influences

the rate of cure and the cure-dependent composite properties. Accurate prediction of

temperature within the part is therefore paramount. ln order to achieve this, accurate



heat transfer boundary conditions are required to be entered into the process model for

use by the thermochemical module that was discussed above. It has been shown that

there are many factors that influence thermal boundary conditions such as position and

orientation of the part within the autoclave (8). [n order to input accurate heat transfer

boundary conditions to the process model, a program called SIMCLAVE has bee¡

developed by Michael Hudek at the University of Manitoba (9). SIMCLAVE is able to

apply accurate heat transfer boundary conditions based on user ir-rputs of position and

location within the autoclave. The heat transfer boundary conditions are based on

mathematical models developed from extensive experimentation. It is hoped that such a

program will reduce the chances that a part will deviate from the predicted cure path.

This will reduce the need for on-line optimization. More details are available in Master's

Thesis by Michael Hudek at The University of Manitoba (9).

Air temperature is as important the heat transfer coefficient as the heat transfer

into the part is dependant on the air temperature and the part temperature. As seen in

Figure 1.3, autoclaves require time to reach the desired set points. Therefore using set

points to determine actual air temperature can introduce error into a model. ARS

(Autoclave Response Simulator), is being developed to translate the autoclave control set

points into the actual response of the autoclave. This delivers more accurate air

temperature predictions and therefore better simulates the heat transfer into the part.
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1.2.3 Optimizer

The optimizer consists of two components, a path generator module (PGM) and

an Objective Function Module (OFM). These are discussed in the followine sections.

1.2.3.1 Path Generator

Various methods used in the past include quadratic programming, heuristic

techniques and neural networks. Each of these systems are discussed in Chapter 2 in the

literature review. A Genetic Algorithm (GA) approach has been chosen for use in APCS

and in this thesis.

The GA simulates natural selection by generating a population of cycles that are

each assigned a fitness value via the Objective Function Module (OFM). The GA selecrs

cycles with the highest fitness and rejects those with poor frtness. Chosen cycles from

the first population are crossed-over and mutated into a new generation of cycles. The

GA continues through this cycle until an optimal cycle is reached based on a criterion.

1.2.3.2 Objective Function

A general objective equation is of the form:

fitness = A* f (x)+ B* f (y)+C* f (z)+..... (1.1)

Where x,y, z are quality parameters and A, B, C are all weighting factors.
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Tlle quality parameters can be defined according to the desired quality to be

optimized such as temperature, cure, etc. The objective function module collects values

for the quality parameters from the output files of the process model and uses that data in

equation 1.1 to determine the fitness for a given cure cycle. This fitness value is

subsequently used by the path generation module (PGM) to rank cure cycles in order to

generate the next set of population members. The objective function is setup so that tþe

genetic algorithm drives towards the optimal solutions.

1.2.4 Sensor Module

Advanced sensors for properties such as cure and resin modulus will be used on-

line to ensure that the process is following the optimal path predicted by the process

model. Sensing deviation from the predicted path, this module will activate the on-line

optimizer. The optimizer will re-optimize based on the sensor information and current

autoclave conditions. This ensures that a part has the best opportunity to meet all the

quality parameters.

1.2.5 Control Module

The Control Module oversees the process by collecting the sensor information

and comparing it to the predicted information. The control module will also send

commands to control the autoclave. If the sensor data shows deviation from the predicted
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path, this module \till activate the on-line optimizer and will send commands to the

autoclave controller based on a re-optimized cure cycle.

1.2.6 Storage Module

The Storage Module stores sensor data during the cure as well as any re-

optimized cure cycle. The purpose of the tracking is not only for trouble-shootin.q a¡d

inspection but validation and quality control purposes.

1.2.7 On-Line Process Window

Current manufacturer's cure cycles provide a range or window within which the

composite will fully cure. For example, the manufacturer's recommended cure cycle for

Hexcel Fl55 resin is as follows (10):

1. ramp to 127 "C at l-4.C/min

2. hold at 127 "C (*l- 6 'C) for 90 minutes (+15min -0 min)

3. ramp down to 30'C at 3.C/minute (maximum).

This cure cycle provides a range or window in which the composite can be

processed so that certain properties can be expected from the cycle. However, the

optimizer will provide a single rigid cure cycle. For example, the optimizer could

describe the cycle above as:
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1. ramp to I27 "C at2 "C/min

2. hold at 727'C for 90 minutes

3. ramp down to 30'C at 3'Clmin.

An autoclave is not capable of following such a rigid setup and so a process

window needs to be developed. The window is setup such that the part meets all the

quality criteria no matter where in the window the cure takes place. If the cycle deviates

from that window, then the on-line optimizer must be activated. The window must also

account for the variability of material properties from batch to batch and the inability of

the autoclave to follow a cure cvcle exactlv.

1.3 Scope of This Thesis

The scope of this thesis is to a) develop the optimizer module for the APCS, b)

integrate the optimizer module with the other modules, c) demonstrate successfully the

optimization capability of the optimizer and APCS, and d) characterization material

property data for Hexcel Fl55 resin reinforced with Toho T300 carbon fiber.

i.

Thesis Outline

A brief outline of the APCS and scope of this thesis has been provided in Chapter

Chapter 2 is a literature review of published literature on current control and

1.4
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optimization systems. Chapter 3 provides a detailed discussion on the optimizer

developed in this thesis as well as details on experiments and simulations. Chapter 4

presents and discusses experimental and simulation results. Finally, conclusions drawn

from this work along with recommendations for future work are provided in Chapter 5.
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CHAPTER 2

Literature Review

2.0 Introduction

ln the past, several systems have been developed to control the curing of

composite materials. These systems have met with varied success but have helped to lay

the foundation for a project such as APCS (Advanced Process Control System). APCS

has been developed based on the knowledge gained through intelligent control systems

developed in the past. In addition, industrial input has also been sought and assimilated

to create a practical control system.

Process Control Systems (PCS) developed in the past can be classified as expert-

based (referred to as "expert systems" in this thesis) and model-based systems (refened

to as "model systems" in this thesis). Expert systems use rules, derived from

experiments and experience, to control the process. These rules speciff the values and

tolerances for the process parameters which cannot be violated during processing.

Parameters usually include maximum temperature and minimum degree of cure which

are monitored on-line to ensure that the cure takes place within the set of rules.

Model systems use a process model to predict parameters during a cure. The

model systems use models that are based on scientific understanding of the relationship
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- between process parameters and quality indicators. The process models can be as sirnple

as olte dimensional which only taken into account a few pararneters to multi-dimensional

models that predict a much wider range of parameters. While there is a myriad of

process control systems published in the literature, only those process systems used for

controlling the composite curing are reviewed in subsequent sections.

A brief review of published research work on optirnizers used in various process

control systems is presented below. Objectives of this thesis, formulated based on this

review, are presented subsequently.

2.1. Optimizers

Various types of optimizers used in the past include:

r Expert based systems

¡ Heuristic approach

o Non-linearoptimization

o Neural Network

. Genetic algorithms

Each one ofthese are discussed below
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2.2 Expert Based Optimizers

Ciriscioli, et al. (3) developed a rule based expert system program called

SECLJRE. Expert systems rely on rules or cases developed based on an "expert's"

experience and knowledge of important parameters. Rules for SECIIRE were developed

to take into account: surface, midpoint, and autoclave temperatures, ionic conductivity to

measure viscosity, autoclave pressure and part thickness to measure consolidation. The

following is a list of conditions used to develop rules for SECTIRE (3):

1. The temperature at every point in the cure assembly must remain below

a maximum value.

2. The temperature distribution across the laminate must remain below a

maximum value.

3. Complete cure should be achieved in the shortest time period

4. Viscosity is low enough and for long enough for full compaction before

the resin sels.

5. Void content should be a minimum

6. The residual stresses are small

From this list of criteria, it was decided that three parameters would be used to

control the cure (3):

1. Midpoint temperature (T*)
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2. Temperature difference between midpoint and average surface

temperature (aT : Tn, - Tr), where Tr, average surface temperature is

the average of the top and bottom surface.

3. The rate of change of the midpoint temperaturs, Trare

The rules developed from the criteria and the list of parameters mentioned above

are (3):

IF

l¡fl . lAZl,".. arra T,ntu s0 and 7,, lTnu* and 4 < 4,u*

THEN heat autoclave

IF

l^-t t,^l
lA1 l> lA1 |ru^ and T^,")0 and 7,,, à4,0^ and { à4,0^

THEN cool autoclave

The cure starts with an initial ramp rate. Following this, sensor data is taken and

the controller takes over based upon the rules shown above. Results showed the

controlled cure cycle was approximately 30 minutes shorter than the manufacturers cycle

when curing a200 ply laminate. However, the system required a large number of sensors

to deliver the required information on the quality parameters to the control system which

can make it impractical for a production environment.
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Another example of an expert system was developed by Lee and Abrams (11).

The system was called Qualitative Process Automation (QPA). The system used three

thennocouples and one dielectric sensor for the input information used by the controller.

Temperature data was used by the control system while dielectric data was used to

detemrine when the part is fully cured. Rules were developed to control maximum

temperature, temperature gradient and the rate of increase of temperature at the midpoint.

It was reported that limiting the temperature gradient for thick composites (200 or more

plies in the laminate) had the largest effect on controlling the exotherm. The control

strategy seems to be effective for the given case studies. However, there was no mention

of time savings in the report which is an important factor in an industrial context.

Trivisano et al. (12) presented a hybrid system. In this method, the optimal cure

cycle was found while the initial ramp of the autoclave temperature was taking place.

Using the heat transfer conditions recorded during the first 10 minutes of the heat up, the

system optimized the cycle within next five minutes. Before the completion of the heat

up of the autoclave was finished, the optimization routine provided the controller with the

optimal cure cycle. Neither the process model nor the optimization method was

discussed in detail in this paper. Based on this author's experience with the APCS, it can

be concluded that the model and the optimizer must be extremely simple in order to

operate in such a short period of time. Without sensors to confirm that full cure has taken

place, this method is not reliable since the process model was too simple. It is also

mentioned in the paper that the control system did not work well with thick parts.
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The expert systems such as the ones mentioned above have inherent inflexibility.

Rules are based upon an expert's knowledge are inherently limited to the systems for

which the expert has experience. Therefore, these rules can usually be applied only to a

limited number of cases and so many sets of rules would have to be developed and tested

so that an expert system can have a wide enough range of application for use with the

APCS.

Model based systems attempt to address problems inherent in expert systerns by

adding a rtore scientific approach to optimizations. Model systems discussed in the next

sections include - non-linear programming, neural network, heuristics and genetic

algorithms.

2.3 Non-linear Programming Technique

Non-linear programming is a group of mathematically based optimization

algorithms. These algorithms consist of several modules that form the base of the

algorithms. The three main modules are described in the following sections:

1. Solution Module

This module provides a search direction to follow that will hopefully lead to an

optimal objective equation value and thus an optimized system. The objective equation is

a relationship between the variables that are required to be optimized. When the equation

value is minimized or maximized, as the case may be, the problem is said to be
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optimized. The objective equation is userdefined to describe the desired properties of an

optimal system. The solution of the non-linear programming problem is iterative and

thus what is seen as the correct search direction for one iteration may not be at a later

point in the optimization. Therefore, at each iteration, the search direction must be

reestablished by solving the quadratic programming problem (Biegler, 13). A sarnple

quadratic programming problem equation is:

Q(xr,B): Minimize V$(xr¡rx¿ + 7 ¿rxg*¿

Such that: g(xt) + Vg(xr;r*¿ < g

for all:

h(xr¡ + Vh(xr¡rx¿: g

xr(xl+d<xu

(2.1)

(2.2)

(2.3)

(2.4)

Where x' is the Ith iteration x value, Q is the objective function, d is the search

direction, B is the Hessian matrix, g is the inequality constraints, h is the equality

constraints, x¡ is the x value lower limit and xu is the x value upper limit (Biegler, 13).

2. The Line Search Algorithm

The line search algorithm determines the appropriate step size in the search

direction for a given iteration. Excessively large step sizes result in the optimizer

oscillating around the function minimum and therefore never converge on an optimal

solution. Solution steps that are too small may result in excessively long solution times.

For these reasons, the line search algorithm is important in determining the efficiency of

the optimizer. Usually, penalty functions are used to determine the optimal length of the
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step based on the objective function value and through perturbation of the objective

function to calculate the function eradients.

3. Scaling of the Algorithms

The quadratic programming problem must be scaled to fit the current iteration.

The scale set can be very important to the success of the solution of the optimization

problem because of the following reasons (Biegler, 13):

A. The initial Hessian matrix, B, in equation 2.i, should be based on the second

derivative information of the $, g and h. However, the second derivative of a

function can be difficult to determine numerically. Therefore, the initial Hessian

is usually set to an identity matrix and the scaling of the problem transforms the

matrix into a reasonable approximation of the second derivative.

B. lnaccuracies in the gradients, round off error in the computer and the use of

bad pivoting sequences in the matrices of the problem can disrupt the accuracy of

the program.

For these reasons, the selection of a scaling algorithm for a optimization is

problem dependent and experiments are often required to determine the appropriate

values (Biegler, 13). The problem dependant nature of this part of non-linear

programming makes it unattractive for the APCS just as this property makes expert

systems unattractive.
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Some authors report that the non-linear programming optimizers do not converge

and get stuck in a loop (Beigler,13). Other authors, such as Vasantharajan (14), have

reported successful optimization on a variety of programs. It should be noted that

Vasantharajan used a large number of equality constraints as opposed to inequality

constraints. Equality constraints help to decrease the search space and could be one

explanation for Vasantharajan's success.

In ten¡s of composite processing, non-linear programming techniques have been

utilized in cure cycle optimization by Rai and Pitchumani (15). A simple process model

was used to simulate the curing. This process model included a thermal module, a

kinetics module and a void module. Parts were 0.5 inches and 1 inch thick and were

constructed using 4 different prepregs. Little information is provided about the setup of

the problem in term of the non-linear programming technique. However, the constraints

used in the programs were described and are outlined below:

1. Criscioli et. al.(l6), found that the stress in a composite was mostly dependant or.r

the maximum temperature in the composite and therefore the temperature, T-"*

was not to exceed a critical value, Tcriticat. This critical value is material

dependent property and can be expressed in the following inequality:
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T.u* - Tcritical (0 (2.s)

2. Another method of controlling excessive stresses is to limit the temperature

gradient in the autoclave, dT/dt. This constraint can be written as:

In their study, the authors (15) set dr/dt.a* to be from 4C/minto 15'C/min.

3. ln order to have a uniform cure, the thermal gradient in a cross-section of the part.

aT,,.,u* was limited to a critical value, ÂT.rit. This is represented mathematicallv as:

dt 
max-T <0

LT^u* -LTcrit

The ÂT"¡6.¿1 wâs set from 10'C to 20oC for the case studies

(2.6)

(2.7)

4. To complete the cure, the minimum degree of cure in the component, cx,¡1¡¡ rflust

be greater than a critical value, cr..¡¡ therefore:

ücrit -Ø66 S0 (2 8)

Results of Rai and Pitchumani's (15) work claim up to a 57%o decrease in

processing time compared to the optimal cure cycle provided by heuristics (to be

discussed in the next section). Unfortunately, there is no mention of the quality of the

part after such a short cure cycle. The case studies considered by Rai and Pitchumani

(15) took two to four hours of CPU time, while running on a Sparc 20 station, to provide

a full cure cycle optimization. This solution time seems relatively quick when compared
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to other possible methods. However, the quick solution could be attributed to the

sirnplicity of the model being used. More complex models that include parameters such

as flow, compaction, and warpage could be used. The inclusion of more parameters

would increase solution time but could result in a more "oÞtimal" cvcle.

Non-linear programming techniques appear to be attractive in optimization due to

the significant reduction in processing time. Unfortunately, non-linear optimization

ploblems do not always converge. The study performed by Rai and Pitchumani (15) may

work effectively if a more detailed model and restrictions are added to the optimizer.

That said, the optimizer may not converge with the increased complexity of the model.

Unfortunately, the unreliability and problem dependant nature of the optimizer makes

non-linear programming unattractive for the APCS.

2.4 Neural Networks

Neural networks act essentially as simplified models. As seen in Figure 2.1, a

neural network builds connections between input variables and the variables to be

predicted. Intermediate connections in the hidden layers do not have to be known by the

user as the neural network attempts to find a relationship for these connections. For

composite processing, a neural network must be trained using a process model on the

specific case for which the neural network is to be used. As an example, input variables

might be sensor data such as temperature, pressure and viscosity while outputs could

include temperature, compaction and degree of cure. After running a series of scenarios
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in a process model, the input and output data is fed into the neural network which

attempts to make connections between the two.

Once properly trained, neural networks are extremely fast and can operate in two

possible modes -forward or inverse. ln "forward" mode, input information is used to

predict a future outcome. h "inverse" mode, the final desired values are used as input

and the neural network determines what the present input conditions must be to achieve

the desired effects.

An example of a neural network used in cornposite processing is

NELIROCLAVE, developed at Lehigh University by Albin and Coulter (17) and trained

by a model by Telikcherla (18). NEUROCLAVE was designed to operate both forward

and inverse modes. The "forward" mode uses the neural network as a process model in

an iterative process to determine the optimal autoclave setting for the next time step. The

iterative process begins when a possible control action is sent to the neural network

which predicts the f,rnal process parameters such as degree of cure and viscosity. These

predicted parameters are compared to the desired output and an error is assigned to that

possible path. Given the current time step is not complete, another possible control path

is sent to the neural network and again a prediction is made. This continues until the end

of the time step at which point the path with the lowest error is used as the control action

in the next time step. One major drawback of the forward mode is in the error calculation

which requires the relative importance of one process parameter over another throughout

the cure, thereby making the optimization case specific (17).
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The inverse control mode is effectively a model that runs backward (17). It works

faster than the "forward" mode as there is no iterative process. The controller works by

taking the desired result and the current state of the cure to predict what the next action

should be.

Albin and Coulter (17) found that the inverse mode worked the best. The for-ward

mode was reported to be too heavily dependant on the weights assigned to various

parameters in the error function. This makes the "forward" mode similar to an expert

system in which the optimization is only as good as the information provided by the

expert.

Neural networks do not appear to be flexible and reliable enough to meet the

requirements of APCS. A major disadvantage to the neural networks is that accuracy is

highly dependent on the training routine. Such training routines can be very time

consuming and material dependant. Considering these factors, neural networks do not

satisfy the requirements of APCS.

2.5 Heuristic Approach

Heuristic systems use a path generating program in order to assemble a large

number of reasonable paths. Each of these paths are then evaluated with a

heuristic/objective equation in an attempt to find the optimum within the set of paths.
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Typically, the optimal cycle can be described as the one that results in the highesf value

for the objective equation.

Heuristics can be time prohibitive depending on complexity of the process model

that the heuristic optimization program is tinked with. It also depends on the number of

paths that are to be evaluated. This can be demonstrated using an example. Assume that

a cure cycle is 300 minutes long and is broken into four sections that each have certain

requirements:

1. Ramp up - heat part to hold temperature isothermally (3 branches/interval.

100 minutes, i0 intervals)

2. Exotherm - minimize exotherm within part (5 branches/interval, 30

minutes, 7 intervals)

3. Hold - ensure the part is fully cured (3 branches/interval, 100 minutes,

intervals)

4. Ramp down - cool part to room temperature (2 branches/interval, 80

minutes,5 intervals)

A branch would be a reasonable ramp rate such as 1 'Clmin, 2'Clmin etc.

Depending on the section of the cycle a branch could be positive or negative. Dividing

the ramp up rate in 1 degree increments for analysis would generate 137,449 possible

paths for evaluation. If the process model takes one minute to run a cure cycle, a solution

will require approximately 2300 hours of computational time. This example is slightly
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exaggerated as the number of iterations could be shortened by having less intervals or by

creatively guiding the optimizer.

Once a path generation method is complete, an objective equation must be

developed in order to evaluate each possible cycle. Pillai, et al. (i9) have developed a

heuristic program for cure cycle optimization. The objective equation is setup to assign

higher values to cycles that produce parts with desirable properties. The objective

equation can contain only parameters that are provided by the process model. Pillai, et

al. describe the general form of a heuristic equation as (19):

h: fr(A) + f2(B)+...+f;(N) (2 e)

Where:

A, B, N are all properties

Typically, the functions are written as power laws:

fr: pr*(A)'

f, : pr*(B)o

fn : pn*(N)n

(2.10)

(2.rr)

(2.r2)

The function p and exponents a, b, and n in equations 2.l0 to 2.I2 are user

defined to deliver the desired properties. This process to determine the optimal

conf,rguration is an iterative process.
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In order to reduce the number of possible paths, Pillai divided thè cure cycle into

two sections, each with their own objective function (19). In section one, the objective

was to get an isothermal steady-state part in the minimum process time. The her-rristic

parameters used in the first section were:

t: process time required

Teqlb : temperature at which the part reaches the isothermal state, i.e. Tru.¡'.": T..nt.r.

Trate: rate of temperature increase just prior to the part reaching an isothermal state.

Based on these parameters the general heuristic equation was defined as:

h: fr(t) + fz(T.qru) + f:(T*t")

where:

fr : pr *(t)u

fz : pz*(T.qru)b

fi : p:*(Tru,")"

(2.13)

(2.r4)

(2.rs)

(2.r6)

It is important to note that the p functions and exponents a, b, and c in equations

2.I4 to 2.16 were adjusted to obtain optimal cycle but were not given in the report (19).

The first section of the cure was complete when the set dwell temperature was reached.

ln sejðtion two, the objective was to complete a uniform cure with the smallest

possible residual stress. The parameters used in the evaluation were:
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. texo : the time at which the exotherm occurs.

. AT: the difference between the maximum temperature in part and the maximum

autoclave temperature.

t õT : the difference between the surface temperature and the centerline temperature of

the part.

o H (ü. - 0.5) where a. is the point at which cure at the cure at the center surpasses the

cure at the surface. The intent of this function is to ensure that inside-out cure occurs

and to indicate when the internal temperature is rising due to the exothermic curing

reaction.

Therefore the general heuristic equation was:

h: t(t"*o) + f2(ÀT) + f3(ôT) + t(a.) (2.17)

where:

fi: pr*(t.*o;^

g: pr*(ÁT)b

f3 : p3*(ôT)c

f¿:H(cr.-0.5)

(2.18)

(2.re)

(2.20)

(2.2r)

It is important to note that the p functions and exponents , à, b, and c found in

equations 2.18 to 2.20 were adjusted to obtain an optimal cycle but were not given in the

report (19). It is also important to note that the f+ function, in equation 2.21 is different

than the other components. Pillai, et al. (19) set f¿ to be a step function to ensure inside-
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out cure. This heavily penalized cycles that do not meet this requirement. This portion

of the curing process was deemed to complete when the part was fully cured.

Heuristics are attractive in optimizafion because of the flexibility of the objective

equation as well as the simplicity of setting one up. Results presented by Pillai, et al. (19)

show that the optimizer reduced the cure from 300 minutes to 170 minutes. As well, the

exotherm and residual stresses were shown to have decreased as well. However, the

brute force method of searching through such a large group of cure cycles is time

consumins and ineffi cient.

2.6 Genetic Algorithm

A genetic algorithm (GA) uses an objective equation in a manner similar to

heuristics but applies a more intelligent searching method. Genetic algorithms work on

the premise of "the survival of the fittest". As can be seen in Figure 2.2, a GA generates

an initial, random population of cure cycles (first generation) and evaluates the fitness of

each member of the population, one cycle at a time using the objective equation.

Carrying over the top two f,rttest member of the previous generation(s), a new population

(generation) is created. The first member of the new generation is the fittest member

from the previous generation(s), the remaining members in the population are created by

crossing over and mutating the top two members that were carried over from the previous

generation(s). When a cross-over occurs, segments of one cure cycle are switched with

segments from the other cycle. When a mutation occurs, the x and y coordinates of the
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Randomly Generate First Population

Evaluate Fitness of First Pooulation

Take best 2 members from previous generation(s) and
crossover and mutate to make next population

Evaluate Fitness of New Population

Figure 2.2: Flow Chart of a Genetic Algorithm
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set points of a cure cycle (the time and temperature points) are randomly moved.

At each carry over, the best members of each population are compared to see if a

convergence criteria is met. ln general, a convergence criteria is either a set number of

populations (generations) or when the improvement of the average fitness from one

population to another is less than a set limit. If the convergence criteria is not met then

the cycle continues until the criteria is met. Initial population sizes, objective equation,

and convergence criteria must be carefully selected in order to ensure the proper

operation of a genetic algorithm.

A modified version of a GA is a micro-GA. The micro-GA optimizes small

groups of populations and then brings the best of these groups together to fomr the next

set of populations. Tse and Chan (20), while optimizing airfoils, had shown thar

optimization times were 33Yo faster to achieve the same fitness using a micro-GA versus

a regular GA. The operation of micro-GAs are described in more detail in Chapter 3.

Genetic algorithms require a fitness equation to evaluate each cure cycles

generated by it. Fitness equation is just another term used for "objective equation" and

"heuristics equation". The fitness equation used for the APCS was setup to meet a

number of requirements as discussed in the next section. The general form of the fitness

equation is similar to the heuristic equation in equation 2.9 as discussed in Section 2.4.
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2.7 Summary of Literature Review and Thesis Approach

Initial process control systems were expert systems due to the limited

computation power available at that time. ln addition, composite processing science and

hence process models were not well-developed. Although typically effrcient in terms of

implementation and computational requirements, expert systems are only as good as the

expert knowledge used to develop the rules. Expert systems can be well suited for

specif,rc cases, say for a given lay-up and material type, but lack the flexibility required

for APCS.

To take a more scientif,rc approach to optimization and due to the availability of

increased knowledge in processing science and in computational power, many model

systems have been developed during the past two decades. Model systems typically

require a large data base of empirical information such as material properties and heat

transfer characteristics of the processing environment. The complexity of process models

are dictated by the available mathematical representations used to simulate the process

and the assumptions made with respect to the geometry (i.e. one, two or three

dimensional representation of the composite part). The speed of the model systems

increased with decreasing model complexity while the accuracy of the model systems

increased with increasing complexity. Hence, model systems have to find a balance

between accuracy and speed. The inherent inflexibility of expert based system is deemed

to be too restrictive to be put into practical use. Hence, the APCS project has chosen a

model based approach by choosing to use a genetic algorithm (GA). Similar to other

model based optimizations, the APCS has attempted to strike a balance between speed,



taking into account the current state of-computer technology and processing science

accuracv.

Although, genetic algorithms have never been used directly to optimize cure

cycles, GAs have been shown to be practical for optimizing other batch processes such as

those found in the chemical processing industry (21). These algorithms have also been

used in composite processing for optimizing gate and vent locations for resin transfer

molding (22). Similar type optimizations have been performed for airfoil optimization

(20). Although airfoils are quite different from cure cycles, both problems are

represented by line segments. In the case of the airfoil, a closed section of line segments

are used to define an airfoil shape and in the case of a cure cycle, the cycle is represented

by a number of line segments that define a time-temperature curve. The genetic

algorithm in both cases simply moves the connecting points around. In the case of airfoil

optimizations, the points represent x and y coordinates while in cure cycles, points

represent time and temperature. The GA moves the points until an optimal solution is

found.

Genetic algorithms rely less upon expert knowledge and therefore are less case

specific. Genetic algorithms also tend to solve faster versus a heuristic approach as the

search path is more intelligent. Work on airfoil optimization using GA required I x l0a

iterations, a factor of 10 less than the sample heuristic approach outlined above (20).

Non-linear programming techniques appear to be case specific and unreliable in terms of

convergence as compared to GAs.
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ln order to find an optimal cycle, a GA requires a fitness equation. The fitness

equation used in APCS has been set up based on two criterion. The first criterion is that

the fitness equation should incorporate current industrial quality measures. The seco¡d

criterion is that the fitness equation should reflect current limitations of process model

and sensors (i.e. the fitness equation should not require information that can not be

supplied due to model and sensor limitations). The form of the objective equation will be

similar to that used for heuristics as seen in equation 2.9.

Table 2.1 shows typical measures of quality found in the aerospace industry, the

method by which the quality indicators are measured and the pass/fail criteria for each

measure. The table also highlights equivalent measures for APCS system, viftual

measurements and a possible fitness criteria for each measure.

Based on this table, the quality measures for the objective equation were chosen

based on limitations of sensors and the process model. Several quality measures cannot

be directly measured or modeled and so cannot be included in the objective equation until

suitable sensors or models are developed. The objective equation and each component's

shape are discussed in detail in chapter three.

The primary objectives of this thesis can be itemized as:

a) develop the optimizer module for the APCS
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b) lntegrate the optimization module with the other modules of ApcS

c) Demonstrate successfully the optimization capability of the optimizer and

APCS

A secondary objective is:

d) Material characterization for Hexcel F155 resin reinforced with Toho T300

carbon fiber for its physical, thermal, rheological and mechanical properties.
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Industry
Measure

Material Prooerties

Resin degradation
(typically not a

common problem in
aerospace)

Method of
Measurement

lndirect - Cure
cycle conforms to a
specified cure
cycle*.

Poor fit-up þart out
of geometrical
tolerance)**

Visual / C-scan.
Also, indirectly
through measured
part / tool
temperatures.

Pass / Fail
Criteria

Cure cycle
conforms to pre-
specified standard

lmperfect
compaction / resin
flow.

Various, especially
directly during
assembly and via
dimensional
measurement.

Excessive measured
temperatures.
Appearance of any
resin damage

APCS Equivalent
Measure

Excessive
delamination

Resin desree of cure

Visual -observe
areas with excessive
resin or dry patches.

C-scan

Various - from "can
we make it fit
together?" to
measurement of
dimensions
conformance to
specifications.

Resin temperature

APCS "Virtual
Measurement"

C-scan

Direct prediction of
resin degree ofcure,
a, at all composite
material nodes.

Various - typically
based on relative
ultrasonic signal
attenuation

Predict final part
dimensions and,
with a some
modifications to
COMPRO, fitup
loads.

Either via maximum
temp or an as-yet-
undeveloped model.
Based degradation
orediction.

Fitness Criteria

Various - typically
based on ultrasonic
sisnal attenuation

Predicted cr must
reach a minimum
specified value
throughout the part

Resin content or
thickness

Virtually "measure"
distance between a
set of points on a
part or calculate fit-
up loads or use an
"excessive residual
stress measure".

Maximum temp
exceeded or
"excessive"
degradation as

predicted.

None at present

Direct prediction of
resin content.

Measured
dimensions or fit-up
loads out ofspec or
excessive residual
stress.
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Fiber bridging

Excessive void
content

lnspection

Core crush

C-scan

Marcelling (fiber
waviness)

Various - typically
based on relative
ultrasonic signal
attenuation

Visual only

* - This process cycle is developed to ensure that adequate levels of resin cure are obtained throughout the structure with an

"acceptable" margin of safety. One common way of reducing the length of the cycle that would be required to provide this assurance

is to employ a lead / lag control system. This ensures via direct measurement that all areas of a component are subjected to an

adequate time / temperature cycle.
** - The meaning of this and how it is measured will vary befween organizations and with component type. For some components the
standard may be as simple as "can components be fitted together using a load of X lbs force". For others, tolerances may be defined
between given "hard points".

Table 2.1 : Relationship Between Aerospace Industry Standard Composite Quality Measures and APCS

Based on relative
ultrasonic signal
attenuation

Visual only

Various from "Not
acceptable" to
"areas ofspecif,red
maximum size
allowed"

None at present.

None at present.

Various from "Not
acceptable" to
"areas of specified
maximum size
allowed"

None at present.

None at present.
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CHAPTER 3

Optimization Program

3.0 Introduction

This chapter details the various components in the optimizer including the genetic

algorithm, objective function and other interfacing modules such as the process model,

SIMCLAVE and ARS (Autoclave Response Simulator). Following a description of the

components, required inputs to the components and the component outputs are discussed.

Finally, the overall function of the APCS is described.

An optimization problem has three essential components - design variables,

objectives and constraints. The design variables are those for which the optimal values

are sought. Since the program optimizes cure cycles, the design variables in this case are

time and temperature. The objectives of the optimizer is to cure the part to a minimum

degree of cure without causing the resin to degrade in the shortest possible time. The

parameters that make of the objective function include time, temperature and degree of

cure. Finally, the constraints used by the optimizer are a maximum time restriction and a

maximum temoerature restriction.
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3.1 Structure of the Optimizer

As seen in Figure 3.1, the optimizer consists of two main modules, the path

generator (genetic algorithm) and the Objective Function Module (OFM). In order for

the optimizer to run, it requires several other interfacing modules. These include the

process model, SIMCLAVE, and ARS (Autoclave Response Simulator). This section

discusses each of the components and the manner in which they were assembled to make

a working optimization program.

3.1.1 GeneticAlgorithm

The genetic algorithm can operate in one of two modes. The first being the

regular GA mode as discussed in Section2.5. The second being the micro-GA mode as

shown in Figure 3.2. The premise behind the micro-GA is that random cycles are

injected continuously through each micro-cycle. This is unlike a regular GA where the

only random population members are generated during the initial population (generation).

The micro-GA begins just as a regular GA does by generating a random population of

cycles which are evaluated, one at a time as they are made, by the fitness function. For

the remainder of this micro-cycle, the GA behaves as a regular GA. Once the micro-

cycle is complete, the best member from the previous micro-cycle is carried forward to

the first population of the next cycle. The remainder of this first population is then

generated randomly and this micro-cycle again proceeds like a regular GA. These micro-

cycles are repeated until the optimal cure cycle is found.
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Generate First Micro Population (all members are random)

Evaluate Fitness of First Population

Take best 2 members from previous generation(s) and
generate next population by mutation and crossover

Evaluate Fitness of New Population

Micro Cycle
Finished?

Take the best member of the previous micro cycle and
randomly generate the remainder of the population.

Evaluate Fitness of New Population

Take best 2 members from previous generation(s) and
generate next population by Mutation and Crossover

Evaluate Fitness of New Population

Finished?

Converged?

Figure 3.2: Flow Chart of a Micro-GA
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Convergence for a micro-GA is similar to that of a GA in that convergence occurs

at a set number of iterations or when the average fitness of two successive cycles is below

a set value. In all cases for this thesis, a set number of iterations was used to determine

the end point of the optimization. This was used for simplicity and to prevent the GA

from getting stuck in a local minimum.

3.1.2 Objective Function Module

As mentioned previously, the fitness equation is required to evaluate the quality

of a composite part processed using a given cure cycle. Hence, its form should reflect

measures of quality used by the aerospace industry. Based on Table 2.1, quality

parameters chosen for the equation are:

. Final degree of cure (c¿nnur)

. maximum temperature (T,n*)

. Cycle Time (t)

. Warpage (w)

¡ Temperature gradient (aT)

o Degree of cure gradient (lcr)

The fìtness equation involving all these quality factors is:

fitness - f(a¡,ar)+ fQ)+ f(warpage)+.f(t)+ f(LT)+ f(Lø) (3.1)

where f is the function of a given parameter.
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The shape of each function will be described in the following sections. These

components were chosen primarily based on sensor and process model limitations and are

similar to objective functions used by other researchers as discussed in Chapter2. The

APCS program has the flexibility to switch on or off, one or more of these functions,

depending on the problem that is being optimized.

All of the functions are designed to have a maximum value of 1 (FitnessPerfect)

and a minimum of 0. Each of the functions are broken up into an "acceptable" region and

an "unacceptable" region. A parameter is within the acceptable region when it nleets or

exceeds minimum requirements and is then assigned a f,rtness between FitnessAcceptable

and FitnessPerfect. Parameters in the unacceptable region are assigned a fitness between

0 and FitnessAcceptable. Both FitnessPerfect and FitnessAcceptable are user definable

parameters and are discussed in more detail in the next sections.

The shape of a function in the unacceptable region is typically exponential in

order to drive the optimizer towards the acceptable region. Fitness functions in the

acceptable region tend to be linear as there is no need to rapidly drive the solution

towards the optimal condition as that may adversely effect the optimization of other

parameters.
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3.1.2.1 Shape of Degree of Cure Function - f(crnn"r)

In industry, it is imperative that a composite part be processed to a specified cure

cycle. This ensures that all parts in the batch load have been fully cured legardless of

their size and location in the autoclave which guarantees certain mechanical properties.

The objective function accomplishes this by taking into account the minimum degree of

cure within the part after a cure cycle is run. The shape of this function is shorvr1

schematically in Figure 3.3.

Mathematical form of this shape function is given in the following equations

For cx.n,,¡', < c¿ < 1

f(o¡nol): â cx,¡n¿¡ -b (3.2)

where a and b are constants. The bounds for this relation are:

f(c¿nnul) : FitnessPerfect for c¿ : 1

f(crnn.r) : FitnessAcceptable for c{,: cx,-¡n

For cr ( Gnlin

f(onnul) : c exp (d cr¡nur) (3.3)

where c and d are constants. The bounds for this equation are:

f(cr¡nul) : FitnessAcceptable for cx,: cr,,,¡n

f(o¡nor) : 0.0001 for c¿: 0
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Figure 3.3: Shape of f(cr¡n"¡) versus Final Degree of Cure

T.ur. T,nu* T¿.g

Temperature ('C)

Figure: 3.4: Fitness versus Temperature in Part During Cure
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With these assigned bounds, the values of constants a, b, c, and d are:

a : (FitnessPerfect - FitnessAcceptable) / (1 - c¿,n¡n)

b:a-FitnessPerfect

c: 0.0001

d: (1 / cr-¡n) * ln (FitnessAcceptable / c)

Minimum degree of cure (c¿-¡n), FitnessAcceptable and FitnessPerfect are user

inputs. FitnessAcceptable and FitnessPerfect are the same for all fitness functions. This

is so that the acceptable regions for all the functions have the same range of possible

values. This prevents biasing of one function over the other. Typically, FitnessPerfect is

set to I and FitnessAcceptable is set between 0 and L

At this time, the minimum degree of cure is taken to be the minimum degree of cure

when the manufacturer's recommended cure cycle is run through the process model. The

primary goal of this quality function is to ensure that the optimal cycle results in a

minimum degree of cure in composite parts.

3.1.2.2 Shape of Maximum Temperature Function - f(T)

ln a manner similar to degree of cure, maximum temperature can be used to

represent resin degradation. A maximum temperature function is important because

shorter cycles will tend to have higher cure temperatures and it must be ensured that the

temperature is not too high. By including this function, the optimizer will tend towards

an optimal cycle that will not cause the resin to degrade while ensuring a high cure
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temperature and short cycle time. The shape of this functioir is shown schematically in

Fisure 3.4.

Mathematical form of this shape function is given in the following equations.

For T.u,. . T ( T-u* the objective function will be linear and assigned bounds of:

f(T) : FitnessPerfect for T: Tn,'u*

f(T) : FitnessAcceptable for T: T"u,.

The form of the equation will be:

f(T):aT-b (3.4)

where a and b are constants

For T ( T"ur" then the equation will be exponential and assigned bounds of:

f(T) : FitnessAcceptable for T: T"u,.

f(T) : 0.0001 for T: room temperature

The form of the equation will be:

f(T): c exp (dT)
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where c and d are constants

For T ) T*u* then the equation will be exponential and assigned bounds of:

f(Tn.u*) : FitnessPerfect for T : T''u*

f(T.u*) :0.0001 for T >> T.u*

The form of the equation will be:

(c¿) : e exp (f T)

where e and f are constants

With these assigned bounds, the values of constants a through f are:

a: (FitnessPerfect - FitnessAcceptable) / (T.u* - T"ur")

b : a+ T*u* - FitnessPerfect

d: [1 / (T,oo* - T"u..)] * ln (0.0001 / FitnessAcceptable)

c : FitnessAcceptable * e*p (-1 * d * T"ur")

ç: ll / (T¿"e - T*u*)l * ln (0.0001 / FitnessPerfect)

e : FitnessPerfect * 
"*p 

(-1 * f * Tn'u*)

(3.6)
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The maximum allowable temperãture (Tn,.u*) is a user definable parameter and

should be set below the resin degradation temperature (T¿.e). This degradation

temperature can be determined through differential scanning calorimeter tests or

thermogravimetric analysis. The primary purpose of this function of the fitness equation

is to ensure that cure takes place between the manufactures recommended dwell

temperature (T"u,.) cure and maximum temperatures (Tn'o*). This will ensure a quick cure

without causing resin degradation. The function is chosen as exponentiai in the

unacceptable regions (T < T.u," and T >T.u*) so that the optimizer drives towards the

acceptable region. The function in the acceptable region (between T.r,. and Tn**) is linear

so that higher temperatures are not too heavily biased as to effect the optimization of

other parameters once they are in the acceptable region.

3.1.2.3 Shape of Warpage Function - f(warpage)

Warpage can be defined as the change in dimension between two key points on

the finite element model of the part. This is shown in Figure 3.5 for angle laminates.

which is chosen as the case study for this thesis. This critical dimension L is an quality

parameter. As a part warps, the distance between the nodes would increase or decrease.

Other dimensional changes could include thickness changes.

Given coordinates (a1, b1) and (a2, b2) are the key points. The distance, x,

between them is:

x: sqrt [(az-ar)2 + (bz-br)2 ] (3.7)

The shape of the fitness function involving x is shown in Figure 3.6.
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This is mathematica-llv represented as:

For x : L, the objective function will be linear and assigned bounds of:

f(w) : FitnessPerfect for x : L

f(*) : FitnessAcceptable for x : L + tolerance

The form of the equation will be:

f(*): a exp (b x) (3.8)

where a and b are constants

With these assigned bounds, the values of constants a and b are:

b : (1 / tol) * ln (FitnessAcceptable / FitnessPerfect)

a = FitnessPerfect * 
"*p 

(-i*b*L)

The equation above is designed to have a symmetrical tolerance (tol) i.e. one that

has the same value for the positive and negative tolerance. The equation could be

designed such that the positive tolerance is different than the negative tolerance.

As another measure of quality, warpage has been included in the objective

function. By including warpage, cure cycles with excessive warpage will be assigned
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lower finesseS so that the genetic algorithm will tend towards cycles that deliver lower

warpage. Exponential functions are chosen as it helps to drive the optimizer towards the

acceptable region. The exponential function is extended into the acceptable range as the

tolerance is usually small and this part of the exponential function will act effectively as a

linear functions.

Unfortunately, the warpage predictions of the process model used in this study

were not satisfactory and so this component of the fitness function was turned off during

optimization but is included for future versions of the APCS when a more suitable model

for warpage prediction is found.

3.L.2.4 Shape of Time Function - f (t)

As a component of the objective function, time is included as it is extremely

important to industry to reduce cycle time and therefore costs. The shape of this function

is shown schematicalty in Figure 3.7.

Mathematical form of this shape function is given in the following equations.

For t < tmanuracrurer, the function will be represented by a linear function and have the

bounds:
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- f (t): FitnessPerfect for t:0

f (Ð : FitnessAcceptable for t : tmanuracrurer

The form of the equation will be:

f(t):at+b

where a and b are constants

For t > tmanuracturer, the function will be exponential and have the following bounds:

f (Ð : FitnessAcceptable for t : tmanuracturer

f (t):0.0001 for t >> tmanuracrurer

The form of the equation will be:

f(t): c exp (d t)

where c and d are constants

With these assigned bounds, the values of constants a, b, c, and d are:

(3.e)

(3.10)

b : FitnessPerfect
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a: (FitnessAcceptable - b) / tMunuru.

d: [1/(t¡¡n.,it - tuunruc)] * ln (0.0001 / FitnessAcceptable)

c: FitnessAcceptable * exp (-1* d *tuunr..)

The user is required to enter three times:

1. The manufacturer's recommended cycle time (t.unuracturer). This is the maximurn

reasonable time as a cycle that takes longer than this is no use to industry.

2. The limit time (t1¡-¡¡). This is a time past the manufacturer's time so that equation

3.10 can be calculated. This is required to make the fitness function continuous over

the range of all possible values

3. The final input is the minimum time (t.in), used for version 2 of the time function as

described in chapter 4, which is the shortest possible time for complete curing given

the part was instantaneously brought up to the maximum temperature (T..*). This is

determined via the use of the cure kinetics model of the material.

The objective of this fitness function is to drive the GA towards shorter cure

cvcles.
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3.1.2.5 Shape of Temperature and Cure Gradient Functions - f(AT), (Acr )

The purpose of these two components is to indirectly reduce the stress and

watpage. From other studies, as discussed in chapter 2, it was seen that setting a

maximum acceptable AT and maximum acceptable Acr was an effective way to control

the exotherm and to reduce stress. ln order to cure the part as fast as possible, the fitness

function for this component is designed so that the maximum acceptable cure and

temperature gradients deliver the highest fitness. If the equation was designed to

minimize the gradients then the optimizer would tend towards a very long cycle, which is

undesirable. Figure 3.8 depicts the shape for the temperature and degree of cure gradient

component of the fitness function.

Mathematical form of this shape function is given in the following equations.

Note that X represents both "T" or "cf," as the shape of the functions are identical

For AX ( AX..* then the function will be linear and have the bounds:

f(AX) : FitnessAcceptable when ÂX :0

f(AX) : FitnessPerfect when ÅX : AXr"*

The form of the equation will be:

f(AX): a*AX t- b

6T

(3.11)



where a and b are constants

For AX ) AXn,.* then the function will be exponential and have the bounds:

f(AX) : 0.0001 when ÀX : AXri.it

f(AX) : FitnessPerfect when AX : AX.u*

The form of the equation will be:

f(AX): e exp (f+AX) (3.r2)

where c and d are constants

With these assigned bounds, the values of constants a, b, c, and d are:

b : FitnessAcceptable

a : (FitnessPerfect -FitnessAcceptable) / AX.u*

f : ln(FitnessPerfect / 0.0001) / (AX,nr* - ÂXli,ni,)

e:0.0001 /(f*ÄX¡¡-¡1)

The user is required to input the maximum allowable gradient (AX,.nu*) and a limit

value (AXri,ni,) that is far from AX-u* so that a continuous function is available to

accommodate all possible values. This f,rtness function was not used for the thin angle

laminate case that is tested for this thesis. As the part was thin enough, temperature and
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cure gradients were small enough without having to take them into consideration. It has

been programmed into the optimizer for future work with thick laminates.

3.1.3 InterfacingModules

Several other modules are required for the optimizer to function. As seen in

Figure 3.1, a process model, SiMCLAVE and ARS are all required to make the optimizer

work well.

3.1.3.1 Process Model

As APCS is taking a model based approach to optimization, a reliable process

model is crucial. The first process models to be developed were capable of only

predicting one or two curing parameters, namely temperature and cure (23, 24).

Typically these models were only one-dimensional due to computational restriction

during the model development. As computer power began to grow, so did the complexity

and dimensionality of the process models. Even with current desktop computer

technology, most models remain two-dimensional but prove effective for a much broader

scope of problem as compared to one dimensional models.

More sophisticated models use a sub-model approach such as those developed by

Bogetti and Gillespie (25,26), and White and Hahn (27,28). Building upon previous

models, The University of British Columbia developed COMPRO (7). COMPRO, uses a
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two dimensional mesh of the composite part. COMPRO was the process model used for

this thesis but in the future a University of Manitoba model will be used by the ApCS.

COMPRO has three main modules - thermochemical, flow, and stress. Each of the

modules are briefiy discussed in the next three sections but a more detailed descriptio¡ of

each module please refer to Johnston (7).

1. Thermochemical Module

The thermochemical module is used to determine the temperature and degree of

cure within the part. It takes into account the energy exchanged through convection

between the autoclave and the part, as well as, energy generated from the kinetic reaction

in the resin. This module is heavily dependant on the heat transfer in the autoclave and

so characterization of the heat transfer within the autoclave is important. SIMCLAVE

has been developed to predict heat transfer into the part. This program is discussed in

more detail in Section 3.1.3.2.

2. Flow Module

The role of the flow module is to predict resin flow and compaction. The flow

module requires temperature and cure data from the thermochemical module to calculate

the viscosity of the resin which in turn is used to predict resin flow. It has been shown

that both resin shrinkage and resin modulus development have an effect on residual stress

in a part (27). Other problems can arise when there is too much or too little resin flow.
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Variations in resin content can cause thickness differences at a various locations in á

component which can lead to residual stress or poor fit with another part (7). Resirr poor

areas may not have desired mechanical properties as a composite requires both the fìbers

and matrix to function properly. Porosity can occur in resin poor areas which could be

detrimental in a honeycomb structure in which fluids could be absorbed.

3. Stress Module

The stress module is used to determine residual forces and defonnation in a Dart.

Process models such as COMPRO are able to simulate part removal from a tool (7). This

is important as residual stresses can build up in a part because of the mismatch in

coefficient of thermal expansion (CTE) between the tool and parl and the tool-par1

surface interaction. The tool-part interaction was initially simulated in COMPRO via a

shear layer in this thesis. Such a technique has been tried in the past (7). However, this

is not a reliable method and warpage predictions for initial runs of the angle laminate

used in this thesis were poor. The understanding of tool-part interaction is not fully

developed and research at various universities are working on this problem. It is hoped

that a reliable warpage prediction model will be incorporated into APCS in the future.

Until such time as a more suitable model is found, the stress module is tumed off in the

process model during optimization mns for this thesis. This also means that there was no

need to run the flow module either as only cure and temperature were required for the

final form of the fitness equation.
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3.1.3.2 Heat Transfer Predictions - SIMCLAVE and ARS

As mentioned previously, heat transfer predictions are crucial to the effective

operation of the process model. Accurate heat transfer predictions rely on two main

factors - heat transfer coefficient and air temperature. SIMCLAVE is being developed to

accurately predict the heat transfer within the autoclave, while another program ARS

(Autoclave Response Simulator) is being developed to predict the actual air temperature

given control commands sent to the autoclave.

In the past, some research into autoclave heat transfer predictions has been purely

computational in nature such as studies by Telikicherla, et al. (29). The curing process

was simulated assuming the autoclave was a straight channel with an obstruction and that

the cure assembly was a near-flat plate geometry. The model required 8 hours of CPU

time on a CRAY YMP computer. Such a method is too computationally intense for use

with the APCS and is the main reason for the experimentation which lead to the empirical

models used in SIMCLAVE.

Otherresearchers such as Ghariban, et al. studied airflow in a 10:1 scale model of

an unpressurized autoclave (30). Unfortunately, the model was not pressurized and

therefore did not fully simulate the actual autoclave environment. Pressure has been

shown to be an important factor in heat transfer. In fact, it was found that heat transfer

was dependant on pressure and an empirical constant, C, that was unique to each

autoclave (7 , 3l). This relation is shown in equation 3 . I 3 .
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This model for the heat transfer coefficient was used in the Drocess rnodel for the

optimization runs. Angle laminates that were built to validate the heat transfer

predictions of the process model were cured in the same autoclave as was used for

experiments to characterize the heat transfer in the autoclave (Hudek, 9). It was from

Hudek's models that the coeff,rcient "C" was taken from for the process model.

As mentioned earlier, the second important factor in predicting heat transfer into a

part is the accurate prediction of the autoclaves response to control commands and

therefore the accurate prediction of air temperature. At the beginning of a cure cycle, a

control command such as "ramp at 3'Clmin" cannot be followed exactly. It takes time

for the heaters to warm up and it is only after a period of time that the autoclave can

achieve a ramp rate of 3'Clmin. This is depicted in Figure 1.3. Therefore, the ARS

program is being written to take the "hard" control points generated by the optimizer and

turn them in to the actual air temperature that apart will be subjected to. This program

was not finished at the time that this thesis was completed and so air temperature is

predicted by a crude model that is built into the process model.
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3.2 Operation of the Optimizer

Now that each of the components have been described, this section details how all

components were linked to optimize a cycle.

3.2.1 Program Flow

Optirnization progresses through components as shown in Figure 3.9. The first

step is to complete the pre-processing before the optimization routine is begun. The pre-

processing steps are as follows:

1. Setup process model - finite element mesh, boundary conditions, material

properties, etc.

2. Setup APCS inputs required for optimization via APCS interface (cunently

options are changed via a text file)

3. Run SMCLAVE to set boundary conditions on process model

4. Start Optimizer

Once the optimizer is started, the following steps are taken:

1. Generate a cure cycle

2. Output cycle to a text file

3. Call objective function module

4. Run Autoclave Response Simulator (ARS)
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5. Run process model - (in thè case of this thesis - COMPRO)

6. Run process model output sorter

7. Calculate fitness and write fitness value to a text file

8. Return to GA which reads in fitness value

How the program loops depends on the options set in the optimizer in tenns of

whether the optimizer is running in GA or micro-GA mode.

3.2.2 Program Data FIow

Please refer to Figure 3.10 for a schematic of the data flow. As mentioned

previously, the first step in the pre-processor is to set-up the process model, in this case,

COMPRO. The files required to be setup for COMPRO are:

o .MAT file (COMPRO material data file)

o .CTL f,rle (COMPRO control file)

o .PRJ (COMPRO project file for a given model)

. .LAY (COMPRO material lay-up sequence f,rle)

o .BCH (COMPRO batch file - i.e. the project to be run)

. .BCI (COMPRO boundary conditions file)

o .PAT (COMPRO finite element mesh file)
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These files will be used without modification except the .BCI and .PAT files

which are modified via SIMCLAVE to accurately represent the heat transfer boundaries

within the autoclave.

Once the frnite element model of the part is made. all the options for the

optimization must be set in the following files:

Scset.dat (sets the options required for SIMCLAVE)

ARSset.dat (sets the options for ARS)

ARSPress.inp (sets the pressure cycle for the cure cycles)

ARSVac.inp (sets the vacuum cycle for the cure cycles)

Gainp.dat (sets the options for the genetic algorithm)

QAMeas.dat (sets the parameters for the fitness function, these are the user

defined parameters as detailed in section 3.L2.x)

Following the setup, SMCLAVE is run in order to properly setup the .PAT files

and .BCi files, which completes pre-processing. Once the optimizer is started, by starting

GAMAiN.EXE, an initial cycle is generated which can be either random or a user

defined cure cycle. This cycle is tested against a set of absolute constraints of time and

maximum temperature as set in Gainp.dat. If a cycle exceeds the maximum time or a

maximum temperature at any time, then there is no need to run the cycle through the

process model and that cycle is assigned a low fitness value by the GA. Only after a

cycle passes this test is it written out as ARSTemp.inp file. At this point the Objective
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functionModule (OFM) is called by the GA. The fitness function calls the ARS program

to combine the ARSTemp.inp and the other ARS associated files into a .CYC file format

for use by COMPRO. For more information on ARS, please refer to Michael Hudek's

thesis (9). Once the new .CYC file is written, the COMPRO engine is started which runs

COMPRO for the part model listed in the .BCH file.

Upon completion, the output sorter is started to sort through the COMPRO output

files for the data that is required to calculate the fitness value for the cycle. Parameters

extracted from the COMPRO outputs include degree of cure, temperature and nodal

displacements. This data, as well as the information in QAMeas.dat, which contains the

user deftned parameters for the fitness functions, are used by the f,itness functions to

calculate the fitness value for the current cure cycle. A single fitness value is output as a

text file and control returns to the GA which reads the fitness value from the text file.

Depending on the stage of optimization, the GA either continues to generate the next cure

cycle and continue the loop or it stops and writes out the optimal cure cycle to a text file.

All optimization runs used in this thesis used a fixed number of iterations as the end point

for the optimization.

3.2.3 ProgrammingNotes

The programs listed above have been written by several programmers in several

different computer languages. The following is a list of programs and the languages in

which they were programmed.



COMPRO - Visual Fortran

APCS Editor - to be programmed in Visual Basic

SIMCLAVE - Visual C++

Genetic Algorithm - Visual Fortran

Objective Function - Visual C++

With all the different languages, it was decided that communication between

programs would be via text files. All files mentioned previously are simple text files that

are read and interpreted by each program..
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CHAPTER 4

Experimental and Simulation Details

4.0 Introduction

This chapter describes the tests that were required to characterize a composite

material. As well, details of process model and optimization settings are given.

4.1 Material

Material characterization was done for Hexcel F155 resin with Toho T300 carbon

fiber. However, material data for this composite was not complete early enough for use

with the process model. Instead, the process model used material data for Cytec-Fiberite

934 resin with Torrav T300 fibers. Details on this material are available in the MSc.

thesis of Koteshwara (32). Both materials are commonly used in aerospace industry.

4.2 ExperimentalDetails

Material characterization was performed to determine the following material

properties:

. Cure Kinetics narameters

. Resin Degradation Temperature (T¿"r)

. Cure Sh¡inkaee

. Coefficient of Thermal Expansion (CTE)
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. Specif,rc Heat Capacity

o Viscosity

. Gel point

Each of the testing procedures are described in the following sections.

4.2.1 Cure Kinetics

Cure kinetics parameters are used by a process model to determine the degree of

cure as well as the heat evolved from the exothermic reaction when the resin cures. A

TA lnstruments 2910 MDSC (Modulated Differential Scanning Calorimeter) was used to

perform cure kinetics experiments. The heat flow measurements from the MDSC are

used to determine the degree of cure (o) which is defined to be:

H (r)a- (4.1)
H (tot)

where:

H(r) : heat evolved over a given time period

H(tot) : Total possible heat that could be evolved

Samples were made from woven pre-impregnated composite (prepreg). Samples

were removed from the freezer and warmed to room temperature in a vacuum chamber at

which point they were cut into 10-15 mg samples. Specimens were then weighed and
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crimped into a non-hermetic aluminum pan. At the same time, a reference aluminum pan

without composite and of approximately the same weight as the sample pan was

prepared.

Two types of "runs" were performed - isothermal and dlmamic. For an

isothermal experiment, the test cell was first preheated to the isothermal temperature.

Once preheated, the test cell was opened and the reference and sample pans were placed

inside the cell. Once the pans were in place, the cell was closed rapidly and the test was

allowed to continue. For a dynamic scan experiment, the sample and reference pans were

placed into the cell before heating or cooling began. Once the samples were inside, the

cell would then be closed and the experiment would begin. Experiments on the samples

fell under four possible test groups:

Test 1 (Test for Total Heat of Reaction):

Dynamic scans were performed on three samples at 2"C/min in order to determine the

total heat of reaction. Information from this test was used to determine the total heat of

reaction, H(tot), in equation 4.1. This information is required to determine the degree of

cure in subsequent isothermal tests.

Test 2 (Isothermal Curing):

Initial isothermal runs with uncured samples were performed at 90, 100, 110, 120 and

130'C. Two samples were run at each temperature. Data from test 2 is required to
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determine the degree of cure versus time for a given isothermal temperature. Samples

run through this test were also run through tests 3 and 4.

Test 3 (Completely Cure Sample from Test 2):

After initial isothermal runs, the samples were subjected to a dynamic run at 5oC/min

from room temperature to 200'C to ensure the sample had completed curing before

moving on to the next test. The sample was finished curing when the heat flow curve

returned to the baseline which indicates that the reaction was complete.

Test 4 (Re-run Sample from Test 3 Through Isothermal Cycle):

Fully cured samples from test 3 were re-run through their respective isothermal run as

performed in test 2. It was found that when the test cell was pre-heated and then opened

to place the samples inside, several minutes lapsed before the cell equilibrated. This

shifted the baseline during testing which was compensated for by this test. .

Data from the MDSC was output as a curve of heat flow (W/g) versus time (rnin).

The total heat evolved from test I was measured by integrating the area under the heat

flow versus time curve. The result is the total heat evolved H(tot) in J/g (see Figure 4.1).

Data from tests 2 and 4 were used to calculated dcr/dt as a function cr. The model

used to fit the data is:

+ - k* q,^ *(a¡*r -u,)'
dt
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Where:

k: Z exp (-EIRT)

. -ì¿lsrnsec'

E has units of kJ/mol

T is temperature in Kelvin

R is the universal gas constant

cx: degree ofcure

m is constant and dimensionless

n: A exp (B*T)

A is dimensionless

B is in Kelvin-r

T is temperature in Kelvin

crfìnal: C exp (D*T)

C is dimensionless

D is in Kelvin-r

T is temperature in Kelvin

The steps to determine the coefficients for equation 4.2 are as follows:

1. The initial isothermal run file was open (from test 2) in TA Instruments Universal

Analysis Software and was shifted such that the section where the baseline ends

(cure is finished) was set to 0. The re-isothermal run (test 4) file was then opened

and shifted such that the curve was 0 at the same point in time as the initial
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isothermal run. The re-isothermal curve was used to compensate for the thérmal

lag in the equipment and was subtracted from the initial isothermal run. The new

curve 's heat flow (mW), temperature (Celsius) and time (minutes) data was

output in a tab delimited text file so it could be read by other programs. The trne

at which the reaction started and stopped was noted as it is required for step 2.

Refer to Fieure 4.2 to view all 3 curves.

2. The data set for the new curve was then opened in Excel so that:

. Time could be chansed from minutes to seconds

o Data before and after the reaction was removed

. The time was reset so that the beginning of the reaction started at time:0.

3. The data was again saved as tab delimited and opened in Kaleidagraph software

Here the followins was done:

r Heat flow was converted from m'W to W

A check was performed to make sure all heat flow values were positive, if not

then the heat flow curve was shifted so that all values were positive (negative

values mean negative energy flow which is not possible for an exothermic

reaction)

Integrate heat flow (W) with time (sec) to get energy (J)

Divide "running" energy value at each time step by total energy possible (as

found by test 1) in order to calculate degree of cure (cr) versus time.

Differentiate a with respect to time to get dc/dt
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o Plot do,ldt vs. cx, and then fit equation 4.2 to the data using the curve fitting

routine in kaliedagraph. Refer to Figure 4.3 for an example of a curve fit.

4. After steps 1-3 were repeated for all the data, Excel was again opened and plots

were made for k, n, cx,¡nur (from equation 4.2 and found in step 3) versLrs

temperature. The trendline function in Excel was used to fit exponential curves to

each of those parameters. An average value was found for "m".

5. Again, another Excel spreadsheet was opened and time, crand dc.,/dt data for all

isothermal runs were copied into one sheet. Excel was then used to predict c¿ and

dc¿/dt using equation 4.2 and the necessary coefficients as found via steps 3 and 4.

Next, elTor was calculated between the measured and predicted cr values. A final

fitting of equation 4.2 was required as curve fitting in steps 3 and 4 were for

individual curves and therefore did not consider everything together. Global

minimization of elror was performed using the Excel Solver routine. Final results

of this analysis are presented in Chapter 5.

4.2.2 Resin Degradation Temperature

Resin degradation temperature is an important input to the optimizer. This

parameter was used to prevent the optimizer from choosing cure cycles that resulted in

degradation of the composite during curing. Resin degradation tests were performed
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using the same equipment and sample set-uþ as was used for cure kinetics

measurements. Th¡ee samples were subjected to dynamic scans at Z"Clmin. This scan

rate was chosen as faster dynamic rates delay the degradation point to higher

temperatures. A low scan rate was used to obtain the lowest possible T¿"n.

4.2.3 Cure Shrinkage

Cure shrinkage was used by the process model while calculating residual stresses

and warpage. Cure shrinkage was measured through-the-thickness of the composite.

Two samples were prepared which were 8 plies thick of uncured plain weave prepreg and

approximately 7mm x 7 mm in size. Tests were preformed at Boeing Canada

Technology - winnipeg Division using a TA lnstruments 2940 rMA (Thermal

Mechanical Analyzer). Tests were performed at an isothermal temperature of 130'C for

t hour. The macro expansion probe of 0.25" diameter with a static force of 5gm was

used for the test. The test was performed by preheating the cell to 130'C at which time

the cell was opened to insert the sample. After insertion, the cell was closed and allowed

to re-equilibrated for 5 minutes.

Data from the TMA was in the form of dimensional change versus time as seen in

Figure 4.4. To analyze the data, the dimensional change was converted into percent

shrinkage by dividing the dimensional change by the original thickness. Next, the rirne

and temperature data was applied to the kinetics model in order to plot the percent
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shrinkage versus degree of cure. Finally, the data was modeled using a fifth order

polynomial curve.

4.2.4 Coefficient of Thermal Expansion (CTE)

The process model requires CTE while calculating residual stresses and warpage.

These testes were performed using fully cured samples that were approximately Tmrr-r x

7mm in size and approximately 4mm thick. Tests were performed for the through-the-

thickness direction at a dynamic scan rate of Z"Clmin from room temÞerature to

13O"C/min. Tests were performed on the TMA used for cure shrinkage measurements. A

normal expansion probe of 0.1" diameter with 5gm static force was used for-the

experiments. Data from the TMA included dimensional change, temperature and time.

Analysis was performed with the following srens:

i. The raw text data files were open using Excel. Temperature, dimensional change

and original sample thickness were extracted for all runs and input into another

Excel sheet.

2. Strain was calculated by dividing the change in thickness by the original

thickness. The strain was then plotted versus temperature. From this plot, it was

found that CTE was not linear and so a further step was required.
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3. A third order polynomial curve was fit to the strain versus temperature data. This

third order function was then differentiated to provide CTE as a function of

temperature.

4.2.5 Specific Heat Capacity

Specific heat capacity was required for the thermochemical module of the process

model. Specific heat capacity tests were performed in a similar manner to the cure

kinetics tests. Tests were performed using a TA Instruments 2910 MDSC (Modulated

Differential Scanning Calorimeter). Samples were fully cured and were prepared in the

same maIÌner as the cure kinetics samples i.e. i0-15mg in a non-hermetic aluminum pan.

Three tests were performed using a dlmamic scan rate of 2"C/min with a modulated

signal of 0.l'C/min. Data from the MDSC was provided as Cp versus temperature.

Therefore, the only analysis that was required was to fit a linear cltrve to the data.

4.2.6 Viscosity

Viscosity data was required by the process model to predict resin flow in the flow

module. Tests were performed using a Bohlin CVO 120 Rheometer. Tests were

performed on neat resin using 25mm parallel plates with a shear stress of 1 Pa and a

frequency of lHz. The uncured resin samples were subjected to a variety of dynamic

scanning rates (2, 3 and 5'C/min). Three tests were performed for Z"Clmin while 2

samples were subjected to 3'Clmin and 2 more to 5'C/min. Tests were performed from
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room temperature until the þoint at which the resin gelled. The viscosity data was then

modeled to equation 4.3:

,1, - A, * "r(*). (r=)'*.' (4.3)

Au is in Pas

R is the universal gas constant

T is temperature in Kelvin \

Eu is in kJ/mol

cr6 is dimensionless

A is dimensionless

B is dimensionless

c¿ is calculated from cure kinetics

Analysis to fit the data to the model required the following steps:

i. Time, temperature, and viscosity data from all runs were extracted from the data

files and imported into one Excel spreadsheet. Using the time and temperature

data and the cure kinetics model, the degree of cure was predicted for each point

in time. This data was then plotted as viscosity versus degree of cure.
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2. Initial vistosity predictions were

parameters in equation 4.3. Error

values and error was summed.

made based on initial

was calculated between

guesses of the various

the actual and predicted

3. The Excel Solver routine was then used to determine the parameters in equation

4.3 such that the error was minimized.

4.2.7 Gel Point

Gel point tests were performed using a Bohlin CVO 120 Rheometer. Samples

were 4 plies of unidirectional uncured prepreg. Tests were performed at Z"Clmin using

25mm parallel plates. The shear stress was set for 800 Pa at a rate of 1Hz. The gel time

was defined as the time at which the elastic modulus and viscous modulus intersect.

lnformation from the rheometer was in the form of elastic and viscous moduli versus

time. Since the process model requires the degree of cure corresponding to the gel point,

the temperature at which gelation occurred was compared to a MDSC run of 2"C/mjn.

4.3 Manufacturing of Angle Laminates

Along with experiments for material properties, experiments were performed to

determine the temperature profile within an actual part as it cured in an autoclave. These

experiments were used to confirm the heat transfer boundary conditions used in the

process model.
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To ensure proper heat transfer predictions, angle laminates were prepared at

Boeing Canada Technology - Winnipeg Division as part of another study. The

thermocouple data from these experiments was used to ensure the process model

accurately predicted the temperature profile within the part. The tool/part configuration,

called "Tool C" is shown in Figure 4.5 and Figure 4.6. Thermocouples were placed at

the midplane of the laminate at the locations indicated in Figure 4.7. The tool was made

of solid aluminum while the part was made of Cytec-Fiberite 934 resin with plain weave

carbon fiber. The lay-up sequence for the laminate was 10190145/-4510/90145/-451,.

4.4 Simulation Details

The following sections discusses all the inputs required to run the process model and

optimizer.

4.4.1 Process Model Inputs

There are three main inputs required for the process model. They are:

Finite element Mesh

Material Properties

Boundary Conditions

Figure 4.8 shows the symmetric finite element mesh of Tool C. The syn-rmetry of

the part was exploited in order to speed up the computational time. The large blue area is
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the tool made of 6061 aluminum. Material properties for the aluminurn wére supplied by

the process model but could be taken from any materials handbook. The green area is the

composite. Composite used in this study was Cytec-Fiberite 934 resin with plain weave

carbon fiber. Material properties for this material are summarized in Table 4.1. The

model simulated each layer of carbon fiber with 4 "quarter" plies of unidirectional

material that were laid up as [0/90],. The overall lay-up sequence for the laminate

10190/45/-45/0/90/45/-451s. Red areas of the mesh represent the shear layer as was

described in chapter 3. When the stress and flow modules were tumed off, this material

type was changed to 6061 Aluminum as the shear layer is only required for stress

calculations.

Figure 4.8 gives the boundary numbers on the finite element mesh while Table

4.2 shows the boundary conditions associated with each boundary. A warpage study was

performed before running the optimizer in order to validate the process model. The study

used "Tool C" and was run for 4 different cure cycles with two different thermal cycles

(cycles "1" and'02") as shown in Figure 4.9 and 4.I0. For the study, the process model

was used to predict springback angles by using a shear layer with a modulus of 1x10ó Pa.

A springback angle is defined to be the angle by which the right angle laminated (Tool C)

deforms after it is removed from the tool. A schematic of this type of deformation is

pictured in Figure 3.5 The results from the models were compared to measured angles on

laminates made at Boeing Canada Technology-Wiruripeg Division.
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Classification Properties Measured Values
Physical Density

Fiber Volume Fraction
Resin: 1300, Fiber: 1760

57.3 %
Cure Kinetics
(general nth
order model)

Total heat of reaction (kJikg oÇ)

Activation Energy (kJimol)

LogZ (1/min)

Reaction order
(n)

Hr : 483.1

E: 34.88

3.1 1

n: no + A/(1+exp(-(T-To)/B))

no: 14.953, A: -13.244,
To : 139.218, and B : 9.95 I

Thermo-Physical Specif,rc heat capacity (J/kg oe¡

Thermal conductiviry(Wm2 K)

Cure Shrinkage

CTE of Composite x 10-6 / oC

Resin: Cp:2.7 T+200.0
Fiber: Cp: l.1T+ 1560.0

Ku : 5.27 + 0.0399 T
Kzz: K¡¡:2.567+ 0.0123 T

csc22: csc33 : -4.1882*c¿ +
1.3005

csc11 : -6.924x10-4*a*
9.122x10-6

a.at: a-zz : 36.5

cr,, : 3.5

Rheological Viscosity

Gel Point

Glass Transition Temperature (Tr)

F: F- exp(kcr) exp(U/RT)

p-: 8.858E-16 Pas, k:28.264
U: 103.309 kJ/mol

T : 177.4 
oC, 

cr : 0.4

T, : 1 9.538 exp(2.46l7 u\
Mechanical Modulus of Composite

GPa
8,, : 38.571a+87.963

Err:2.448u + 3.624

Grz:0.1125a-0.0126,
0.32<c¿<0.86

GI2:31.7a-27 .1, 0.86<aSl .0

Table 4.1: Material Properties for Cytec-Fiberite934 Resin and Torray T 300 Fibers
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Bndry Ht Tans Flow BC Flow Mech
BC

Stress BC Tool
Removal BC

II Convection mpermeable Free Free Free
2 adiabatic moermeable Free Free Free
a adiabatic moermeable Slidine Free Free
/1
I Convection imoermeable Prescribed

pressure
Pressurized Free

5 convection moermeable Free Free Free
6 Convection mpermeable Free Free Free

7 Convection Prescribed
OfESS

Prescribed
Þressure

Pressurized Free

8 adiabatic moermeable Slidine Slidins S id ng

9 ad abatic mnermeable Slidine S dine S id rlg

10 ad abatic mpermeable Slidine S dine S id no

1l adiabatic mpermeable Free Fixed S idine
1aIL adiabatic mpermeable fixed Slidine Fixed

Table 4.2: Boundarv Conditions on Tool C

400

350

300
Ê
ã zso
L

þ zoo
0)

E 150
oF

100

50

0

30010050 150

Time (min)

250

Figure 4.9: Cycle I Used for Warpage Study

94



400

350

Gsoo
o
E 250
(l

å zoo
EoF 150
o
L

õ roo

50

0

40010050 150 200 250

Time (min)
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Results of the warpage study are shown in Table 4.3. These results show that the

process model fails to accurately predict the angles. It was for this reason that the stress

and flow modules were turned off during optimization runs.

4.4.2 SIMCLAVE Input Details

Heat transfer "C" values, as required for Equation 3.13 and shown in Table 4.3,

were taken from Hudek (9). These heat transfer values were used as the same autoclave

that was used for the heat transfer modelling, was also used to make real parts from "Tool

C". Note that the "C" values for the plain aluminum face (boundaries 1, 5 and 6) are

higher than those for the sides covered with composite (boundaries 4 and 7). This was

because the breather cloth and bagging material that is typically placed over prepreg

during curing was insulating the composite.

4.4.3 Optimizer Input Details

Two input files, QAMeas.txt and GAINPT.dat are required to run the optimizer.

QAMeas.txt is used by the Objective Function Module (OFM) for evaluating the fitness

equation and GAINPT.dat is used to set-up GA options. A representative QAMeas.dat

file is given in Table 4.5. Note that all the parameters are user definable. Parameters that

are in bold and italics are the only ones used for the optimization runs by the OFM. All

other parameters apply to parts of the frtness equation that were tumed off (warpage,

temperature gradient and cure gradient). Again, this was because warpage predictions of

warpage by the process model that was being used were not satisfactory. Gradient
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Pressure in

Autoclave
Cycle Measured Angle Predicted Angle

B5 A
I 1.38 1.844

45 1 1.69 1.8445

B5 2 1.94 1 .8819

45 2 1.26 1.8284

Table 4.3: Measured and Predicted Springback Angles for,,Tool C"

Boundary
Number

Effective (6C" Values as
found in Equation 3.13

I 0.318

4 0.119

f, 0.318

6 0.318

7 0.119

Table 4.42 Effective "C" Values for Convective Boundaries

for Finite Element Model of r'Tool C"
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FitnessPerfect
FitnessAcceptabTe
AIphaMín
TempCure
TempDeg
TempMax
TempRoom
Nodel
Node2
Node3
Node4
Postol
Negt.oI
tManfac
tOver
Thetaldeal-
ThetaMax
ThetaMin
ThetaExtra
Choice
ttê t t êmnlvtâv

I)ê I l êmnl.ì mr l-
ñ^'l l 'l ^1^ ^Àr^--uErä,rIJIld.IYlct¡.
llê | a lnnâ l.ì mì |

FTime
FTemp
FWarpage
FATpha
FDeItATpha
FDeltTemp

7

0 .7s
0.92
s55
390
370
70
LIOT
l-77
5
I
0.01
0.01
31- 0

20

92
B8

1

10
0 .07
0.05
7

L

0

t_

0

Table 4.5: Sample of QAMeas.txt file
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componènts (cure and temperature), as will be discussed in chapter 5, were turned off as

it was found that cure and thermal gradients were within an acceptable limit for all

optimization runs. The values in QAMeas.dat are material dependant and since there was

only one rnaterial used during optimization runs, none of the values were changed. Note

that temperature is in degrees F, time is in minutes, and for the fitness functions (Ftirne,

Ftemp, Fwatpage, Falpha, FdeltaAlpha, and FdeltaTemp) a value of 1 corresponds to

"on" position and 0 conesponds to "off'position.

A representative GAiNPT.dat file is given in Table 4.6. All options in

GAINPT.dat are required for optimization unlike the QAMeas.txt file where the options

are dependant on which fitness functions are "on". Parameters that are in bold and italics

were changed during optimization runs and are the focus of the next section. It should be

noted that the GA operates in regular GA mode when the number of micro-GA cycles

(NMGA) is i.

4.4.4 Optimization Test Matrix

Optimization runs were designed based on two criteria. The first criterion was to

determine the best settings for the optimizer to be used for future work. The second

criteria was to understand the effects of the following on the optimizer:

Convergence - number of iterations until the solution converges

GA mode versus micro-GA mode

o Effects of changing inputs in GAINPT.dat
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'Number of members in a population NPOP ' ,

'Number of generatjon NG-EN , ,

'lrIu¡nlrer of micro-GA cycles IMGA . , ,

'Apply f itness normal-ization? (y/n)

10

40

70

'n'

0.8

na

15.

15.

rDral-r:ì-ri l i l-r¡ nf ôr^^ô ^a,^e nñr!vvalrrfLy v! u!uÞÞ-uvç! ru

'ProbabiJíty of mutation PMLIT

'Aflowable X-variations (minu

'All-owabl-e Y-variations (deg

TeS) XLIM

F) YL]M

t

I

'Random number seed . ,, 3

'Number of segments in a curing process NSEG . ,, 7

'Maximum time for curing (minutes) TIMEMAX ,, 310.

'Min al-l-ow temp. where process terminates TMIN (deg F) , , 80.

'Max autoclave air temperature TM.AX (deg ¡') , 430.

t Tn i f ì âl l. êmnêrâl- ìrrê Tô lrlaa F'l I Qr\\seY !t ...

'Maximum heating rate (posítive,

'Maximum cooling rat.e (negative,

'Location of t.he fitness outpuL

rr-.\ÀÞaq\ôTtTÞTITq\f if l-^i- â'l ôrrt-rlvv\vv\À¿usvus¿!vue

'Location of the fqen module.

" C : \APCS\ fgen\whoì-eproj ect . exe rl

deg F per mínute) ', J-B

deg r per minute) ', -18.

fil-e from Fgen C++ routine ',

Table 4.6: Sample GAINPT.dat File
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Effects of "injecting" input cycles

Effects of changing shapes of the fitness functions

The following sections discuss the optimization runs that were performed to study

the above mentioned parameters. Please refer to Table 4.7, located at the end of the

chapter, for a summary description of all optimization runs.

4.4.4.1 Convergence

There is a point during optimization at which time the fitness slows or ceases to

increase. This is the point when the optimizer converges on the "optimal" solution. Runs

1, 3 and 4 looked at the time required to converge. Run 1 used the regular GA for a total

of 2000 populations. Run 1 was sufficiently long to make a first estimate of the number

of populations required for convergence. Runs 3 and 4 were used to verify that the

number of populations chosen from run number I would work for both the regular and

micro GA modes.

4.4.4.2 GA versus Micro-GA

It has been shown in other studies that micro-GAs optimize towards more optimal

solutions (20). In order to study the differences between running a particular

configuration in regular GA mode and micro-GA modes, several of the runs as described

in these sections were run in both modes. Runs 3, 5,7,9, and 11 (regular GA mode)

were all duplicated in micro-GA mode (Runs 4,6,8,10, and 12).
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4.4.4.3 Effect of Inputs in GAINPT.dat File

The settings of the GA have a large impact on the quality of an optimization run.

These settings are found in the GAINPT.dat file. Only options in the file that have been

changed during at least one test are shown in Table 4.6. All other values were kept

constant and were held at the values as seen in Tables 4.3 and 4.4. The list of variables in

GAINPT.dat that were studied directlv or indirectlv are:

o NGEN (Number of Generations)

o NMGA (Number of Micro-Generations)

. PMUT (Probability of Mutation)

. Random Seed Number

. Max HR (Maximum Heating rate - positive ramp rate)

Runs 2, 16 and 17 were used to directly study the random seed number, PMUT,

and NMGA respectively. Run 2 studied the effects of the random seed number on the

quality of the solution. Runs 16 and17 were variations of Run 12 which is discussed in

the following section. Runs i6 used the same settings as Run 12 except the probability of

mutation (PMUT) was changed from 0.9 to 0.1. Run 17 was again similar to Run 12

except the number of micro-cycles to be nm was changed. Other GAINPT.dat

parameters such as maximum heating rate and number of total populations were studied

indirectly in other studies in sections 4.4.3.1, and 4.4.3.4 respectively.
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4.4.4.4 Influence of Input Cycles

Initial optimization runs (Runs l-4) all exceeded the maximum allowable

temperature (TempMax) as set in QAMeas.dat. Cycles were required to be input or

"injected" because it was found that the random cycle generator could not produce an

acceptable cycle given maximum heating ramp rates above 7.9oFlmtn. This is believed

to be caused by the way in which the f,rrst set of random cycles are created. Initial cycles

are created by taking the maximum allowable time and dividing it by the number of

segments. Therefore, in the case of the current settings, maximum allowable time of 310

minutes and 7 segments, each segment is approximately 44 minutes. Once the cycle is

divided up, a ramp rate is assigned to a segment by taking the maximum ramp rate, say

l8'F/min (the maximum the autoclave can produce) and multiplying it by a random

number between 0 and 1. This is done for each of the first 6 segments (the rarnp up

segments, the 7th segment is the cool down segment). If the temperature at the end of the

6'h segment exceeds the maximum allowable temperature then the cycle fails and is

assigned a very low fitness. It requires 6 small random numbers in a row to achieve this.

For example, assume the first 6 ramp up segments had equal ramp rates. All 6 segments

would require a ramp rate of less than 1.6oF/min in order to not exceed the maximum

temperature restriction. ln order to get a ramp rate of 1.6F/min or less, the random

numbers would all have to be less than 0.09 (l8F/min * 0.09 is approximately 1.6).

Unfortunately, the random number generator would not come up with such a string of

small numbers and so a high ramp rate cycle had to be injected.
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The input cycles were inserted so that they replaced the first one or two random

cycles (depending on the settings) that are usually generated by the GA. Both input

cycles are shown in Figure 4.11. The first cycle to be injected was the manufacturer's

recommended cure cycle and the second was a cure cycle with the maximum possibie

autoclave heating rate (18F/min). After initial Runs 1 through 4, Runs 5 and 6 were used

to study the effects of injecting only the manufacturer cycle while Runs 7 and 8 had both

cycles injected.

4.4.4.5Influence of Shape of Fitness Functions

The next major area that was explored was the effect of the fitness functions.

Three versions of the cure function and two versions of the time function were

developed. Runs 1-8 use the first versions of both the cure and time fitness functions.

The remaining runs (Runs 9-I7) all use different combinations of these f,rtness functions

as described below. The numbers in brackets are the function version number which are

depicted in Figures 4.lI to 4.14.

Run 9: Cure (2), Time (1)

Run 10: Cure (2), Time (1)

Run 11: Cure (2), Time (1)

Run i2: Cure (2), Time (1)

Run 13: Cure (3), Time (1)

Run 14: Cure (2), Time (2)

Run 15: Cure (3), Time (2)
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Figure 4.11: Plot of Manufacturer's Recommended Cure Cycle

(for Cytec-Fiberite 934 Resin) and High Ramp Rate Cycle
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The following gives the shape and equations for the various versions of the cure

and time functions. Version 1 of the cure function has already been given in Section

3.1.2.I and version 1 of the time function is in Section 3.I.2.4.

Cure fitness function version 2, as seen in Figure 4.l2,was designed to favour the

minimum degree of cure. The mathematical form for this version. is siven in the

following equations.

For o*¡n < cr < 1:

f(c¿¡nur):âcx,¡¡¿¡-b

where a and b are constants.

(4.4)

The bounds for this relation are:

(c[¡n"l) : FitnessPerfect for c[: c[min

f(c¿¡nur) : FitnessAcceptable for cr: 1

For cr ( c[*in

f(c¿¡nur) : c exp (d cr¡n.r)

where c and d are constants.

The bounds for this equation are:

f(crnnur) : FitnessPerfect for cf, : crmin

f(crnnur) :0.0001 for o: 0

(4.s)
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With these assigned bounds, the values of constants a, b, c, and d are:

a: (FitnessAcceptable - FitnessPerfect) / (1 - o-¡n)

b:a-FitnessPerfect

c :0.0001

d : (l / crn,tn) x ln (FitnessPerfect / c)

Cure fitness function version 3, as seen in Figure 4.13, was designed so that all

degrees of cure over the minimum would have the same fitness. The mathematical fonn

for this version is given in the following equations.

Forü,.¡n<a<1

f(a¡n"1) : 1

For c¿ ( c[-in

f(clnn^r) : a exp (b a¡n"r)

where a and b are constants

The bounds for this equation are:

(cr¡nul) : FitnessPerfect for c[: c[min

f(cx¡nul) : 0.0001 for cr: 0

(4 6)

(4.7)

707



Fitness Perfect

FitnessAcceptable

f(c¿¡nur)

C[final

Figure 4.12: shape of f(cr¡n"r) versus Final Degree of cure - version 2

Fitness Perfect

f(crnnur)

Figure 4.13: Shape of f(a¡nr¡) versus Final Degree of Cure - Version 3
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With these assigned bounds, the values of constants a and b aie:

a: 0.0001

b : (1 / c¿-in) * ln (FitnessPerfect / a)

Time htness function version 2, as seen in Figure 4.14, was designed to drive the

optirnizer towards cycles with shorter times by increasing the slope of the functio¡ as

compared to the linear function used in version 1. The mathematical form for this

version is given in the following equations.

For t < tmanufacrurer,

(t) : a exp (b t)

where a and b are constants

(4.8)

The bounds for this equation are:

f (Ð : FitnessPerfect for t : t.in

f (Ð : FitnessAcceptable for t : tmanuracturer

For t)t,nunu¡r.¡ur.,

(t) : c exp (d t)

where c and d are constants

(4.e)

The bounds for this equation are:

f (Ð : FitnessAcceptable for t : tmanuracru.e.
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FitnessPerfect

FitnessAcceptable

iLmtn f ^ +..Lmanlac Lllt.tìlt

Cycle Time (min)

Figure 4.14: Shape of f(t) versus Cycle Time - Version 2
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f (Ð : 0.000 I for t >> tmanuracrurer

with these assigned bounds, the values of constants a, b, c, and d are:

b : [1/(t.unrac - tMin)] t In (FitnessAcceptableÆitnessperfect)

a : FitnessPerfect *exp(-1*b* tvrin)

d : [l/(t¡¡*it - tvunru")] * ln (0.0001 / FitnessAcceptable)

c : FitnessAcceptable * exp (-l* d *tvunrr.)

4.4.4.6 Summary

The previous sections described the optimization runs used to study the following

areas:

o Convergence - number of iterations until the solution converges

. GA mode versus micro-GA mode

o Effects of changing inputs in GAINpT.dat

o Effects of "injecting,'input cycles

. Effects of changing shapes of the fitness functions

Table 4.7 is provided as a master summary list of all optimization mns. Results

are discussed in Section 5.
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rate cycle witli new cure fitness function (version 2)

(Reg GA)

T2 Effects of injecting manufacturer cycle and high ramp

rate cycle with new cure fitness function (version 2)

(Micro GA)

r3 Effects of injecting manufacturer cycle and high ramp

rate cycle with new cure fitness function (version 3)

(Micro GA)

14 Effects of new time function (version 2) and 2 injected

cycles with new cure function (version 2) (Micro GA)

15 Effects of new time function (version 2) and2 injected

cycles with new cure function (version 3) (Micro GA)

16

l7

18

Effects of PMUT on setup as used in Run 12

Effect of changing NMGA on setup used in Run12

Optimal Settings - Cure

Function (Version 2),

NMGA in the

t0 40

10

10

function (Version 2), Time

inject 2 cycles, with high

Micro-GA mode

40

0.9

10

10

a
J

40

0.9

10

r8

Table 4.7: Settings and Objectives for Optimization Runs
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CHAPTER 5

Results and Discussion

5.0 Introduction

This chapter presents and discusses the results of material testing and cure cycle

optimization runs as described in chapter 4. While representative graphs are provided

here, the rest can be found in Appendices A and B.

5.1 Material Characterization Results

Test results for the following material properties are presented in this section.

. Cure Kinetics parameters

. Resin Degradation Temperature (T¿.r)

o Cure Shrinkage

o Coefficient of Thermal Expansion (CTE)

. Specific Heat Capacity

o Viscosity

. Gel point

5.1.1 Cure Kinetics

Figure 5.1 shows the data from a dynamic scan of 2C lmtn. By integrating the

area under this curve and taking the average of three trials, the total heat of reaction of the

composite was found tobe l2B J/g.

tr4



Following an analysis of the isothermal runs, as described in Section 4.2.1, the

cure kinetics model (Equation 5.1) and model constants are listed below. Figure 5.2 plots

experimental and predicted results of c¿versus dcr/dt for an isothermal run at 110.C.

Graphs for isothermal runs of 90, 100, 110, 120 and 130'C can be found in Figures A.l

to 4.5 respectively.

)^.
+ - k* d^ * (ø¡,,r - d)' (5.r)
dt

where:

k: Z exp (-EIRT)

Z: I.5028+08 sec-r

E: 78.809 kJ/mol

T is temperature in Kelvin

R is the universal gas constant

m:0.63722

n: A exp (B*T)

A:0.0013366

B : 0.0175435 K-l

T is temperature in Kelvin

Alphafinal: C exp (D*T)

C : 0.0011557

D : 0.017402K'l

T is temperature in Kelvin
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Figures 4.1 to 4.5 show a run-to-run variation in the dcr/dt vs. cx,curves. The

frgures also show that the cure kinetics model tends to slightly underpredict the cure rate

(do/dt). Run-to-run variation was caused primarily by the opening of the test cell to

insert the test sample at a given isothermal temperature as described in Sectiori 4.2.1.

The time that the cell was opened varied from run to run and so caused a slight difference

in the time it took for the cell to re-equilibration back to the isothermal temperature.

5.1.2 Resin Degradation Temperature

Figure 5.3 shows heat flow versus time for 3 dynamic scans at 2"C/min. The

peaks on the left are caused by the kinetic reaction and are similar to the curve in Figure

5.1. The second set of peaks, on the right, are caused by the degradation of the resin.

The resin degradation temperature is taken as the temperature at which the resin begins to

degrade which corresponds to 250'C. Notice that the curyes do not all line up on a

horizontal plane. This was due to the difference in mass from sample to sample which

causes the heat flow baseline to be different for each case.

5.1.3 Cure Shrinkage

Following analysis as described in Section 4.2.3, Figure 5.4 shows

experimental and predicted values of percent cure shrinkage versus degree

Predictions were made using the model shown in Equation 5.2.

% shrinkage: 18.0635 as - 40.6545 c[a + 25.026o.3 -2.50645 a2 -2.6g13c-

a plot of

of cure.
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Notice in Figure 5.4 that the percent cure shrinkage starts only after a degree of

cure of 0.2. This was caused by the 5 minutes the cell took to equilibrate after it had been

opened to put the sample inside. The model used in equation 5.2 was fit to the data such

that it accounted for this "gap" in the empirical data. The model was f,rt such that the

percent shrinkage would be zero when the degree of cure was zero.

5.1.4 Coefficient of Thermal Expansion (CTE)

Data provided by the TMA, as plotted in Figure 4.4, was in the form of

dimensional change (¡rm) versus time (min). As discussed in Section4.2.1.4, strain (Eps

in m/m) was calculated and potted versus temperature as shown in Figure 5.5. For some

materials, the slope for such a plot is constant which means CTE is constant. However,

as is seen in this plot, the slope is not constant. Therefore, Equation 5.3, was fit to the

data which provided strain as a function of temperature. Equation 5.3 was then

differentiated into Equation 5.4 to provide an equation that related CTE to temperature.

Strain: 5.590E-9*T3 - 6.5708-7*T, + g.43gE-5*T - 2.148-3

Where: strain is in (m/m)

(5.3 )

TisinoC

cTE: 1.6778-g*T' - 1.314E-6xT +g.43gE-5

Where: CTE is in (m/m.C)

TisinoC
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5.1.5 Specific Heat Capacity (Cp)

The MDSC proved to be an efficient tool for determining specific heat capacity as

data was supplied as specific heat capacity versus temperature. Therefore, only a li¡ear

curve had to be fit to the data as seen in Figure 5.6. The average fit of these curves gives

Equation 5.5:

Cp:0.6589 + 0.0025*T (5.s)

Tisin"C

Cp is J/g K

5.1.6 Viscosity

Viscosity data from the rheometer was in the form of viscosity versus

temperature. All dynamic scan data is plotted in Figure 5.7. As per analysis discussed in

Section 4.2.6, the data was fit to Equation 5.6. Figures 4.6 to 4.8 show plots of

experimental and predicted values of viscosity vs. alpha for dynamic scan rates of 2, 3.

and 5 
oClmin respectively.

/, = A,- ..0[* 
).(*)'* 

* 
^

Where:

Au: 6.54528-12Pas

Eu:90477.8 J/mol

(s.6)
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R is the universal gas constant

T is in Kelvin

cr6: 0.533

A: 3.185

B:2.359

c¿ is calculated from cure kinetics

From Figure 5.7, it can be seen that the viscosity decreases as the resin warms

until such time that the resin cures enough that the viscosity begins to rise. Higher ramp

rates appear to delay the increase of viscosity as seen in Figure 5.7. However, when the

data is plotted versus degree of cure, as in Figures 4.6 to 4.8, it is shown that the

increase in viscosity occurs at approximately the same degree of cure.

Figure 5.8 shows the experimental and predicted values for viscosity versus

degree of cure for a ramp rate of 2oClmín. From this plot, it can be seen that the model

predicts the value within the error of the experiments. However, the model does over

predict for a ramp rate to 5oC/min, as shown in Figure 4.8. This could be attributed to

the method in which the rheometer heats the sample. The sample, which is between two

plates, is contained within a test chamber that blows air across one side of the sample in a

direction parallel to the plates. At higher ramp rates, the sample may not be heated

uniformly which could cause the error between the model and experimental data in the

SoC/min dvnamic scan.
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5.1.7 Gel Point

Figure 5.9 plots the viscous and elastic modulus versus temperature for a dynamic

scan of 2"C /min. This graph shows gelation occurs at I28J"C at this particular sca¡

rate. This temperature was then correlated with data from an MDSC run at the same scan

rate as shown in Figure 5.10. By correlating the two graphs, geiation was found to occur

at a degree of cure of 0.35.

5.1.8 Summary of Material Properties

Data from the above material characterization tests are summarized in Table 5.1

5.2 Simulations Results

At the onset, process model predictions are validated using experimental part

temperature measurements. Subsequently, the results from cure cycle optimization runs

that were performed as outlined in Section 4.4.4, are presented and discussed. Individual

results of each optimization run are given in Appendix B.

5.2.1 Validation of Process Model

Data from thermocouples 5 and 6, as shown in Figure 4.7, were used to verify the

thermal boundary conditions and therefore the thermal predictions made by the process
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Classification Properties Measured Values

Physical

(from

manufacturer

data sheets)

Density

Fiber Volume Fraction

Resin: 759.7, Fiber: 1760

57 %" (unidirecrional)

50% (woven)

Cure Kinetics

(model from

Equation 5.1)

Total heat of reaction (kJlkg oç¡

Model constants for Eouation 5.1

Hr: 128

k: Z exp (-E/RT)

Z: I.5028+08 sec-l

E:78.809 kJ/mol

m:0.63722

n: A exp (B*T)

A: 0.0013366

B : 0.0175435 K-l

Alphafinal :Cexp(D*T)

C: 0.001i557

D:0.017402 K-r

Thermo-Phvsical Specific heat capacity (Ykg oC)

Cure Shrinkage

CTE of Composite x 10-6 / oC

Resin Degradation Temperature

Cp :0.6589 + 0.0025*T

csc22: csc33 : -18.0635 cr5

40.6545 ua + 25.026 a3 -
2.50645 a2 - 2.6gt3c-

cTE: r.6778-g*T, - 13rup.-

6*T +9.4398-5

250 0C
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Rheological Viscosity (From Equation 5.6)

Gel Point

Au:6.5452E-12 Pas

Er,:90477.8 J K/mol

Ctcet : 0.533

A:3.185

B:2.359

cr: 0.35

Table 5.1: Summary of Material Properties for F155 Resin with Toho T300 Fibers
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rnodel. The process model was run for Cycles t aná 2, as shown in Figure 4.9 and,4.10,

with pressures of 45 and 85 psi. Figures 5.11 and Figure 5.12, show plots of

experimental and predicted temperature data for Cycle 1 at 45 psi and Cycle 2 at 85 psi

respectively.

Figure 5.11 and 5.12 show the cure cycle used to model the actual autoclave air

temperature. The process model cycle does not completely capture the slight overshoot

that occurs as the autoclave reaches the hold temperature. Regardless, the model predicts

the lag in part temperature during heating and cooling. This proves that the heat transfer

boundary conditions were modeled correctly. The maximum error between experimental

and model data was only 10'F (5.5'C). This error occuned due to the imperfect

modeling of the actual cure cycle but is not enough to adversely affect the predictio¡s

made by the thermochemical module.

5.2.2 OptimizationResults

This section provides the results from the series of optimization runs that are

described in Section 4.4.4 and summarized in Table 4.7. A summary of results for all

optimization runs can be found in Appendix B. As mentioned previously, all runs have

been done with the temperature, degree of cure and time fitness functions turned on.

Temperature and cure gradient functions were tumed off based upon initial results as

summarized in Table 8.3. From this table, the maximum temperature gradient for any

run was 8.89"F (5"C) while the maximum cure gradient was 0.02. This temperaure
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gradient is less than thoie used by Rai and Pitchumani (15) who deemed acceptable

temperature gradients to be in the range of 10"C to 20'C for various optimization runs.

Since each of the fitness functions (cure, temperature, and time) has a maximum

value of l, the maximum possible total fitness is 3. It should be noted that no checks are

performed to ensure that parameters meet the minimum requirements although all runs

after Run 4 meet the minimum requirements. Two important values are referred to in the

following sections - total number of populations and total number of cycles (iterations).

The total number of populations, as shown in Equation 5.7, is the product of the number

of generations (NGEN) and the number of micro-cycles (NMGA).

Number of populations: NGEN * NMGA (s.7)

Where: NGEN - Number of Generations

NMGA - Number of micro-cvcles

NGEN and NMGA values are inputs in GAINPT.dat. Table 4.7 summarizes the

settings for these parameters for each optimization run. The total number of populations

is the value shown on the x-axis of the fitness graphs that are presented in the following

sections. All optimization runs used populations that each had 10 members, therefore the

total number of cycles (iterations) in a given optimization run is:

# of cycles (iterations) : NPOP * NGEN x NMGA (5.8)

Vy'here: NPOP - number of members in a population (set to 10 for all runs)
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NGEN - Number of Generations

NMGA - Number of micro-cvcles

It should also be mentioned that all graphs of the optimal cure cycles are for the

air temperature in the autoclave and include the manufacturer cycle as a reference point.

5.2.2.L Convergence

Initial runs of the optimizer were performed to determine the number of iterations

to be used for subsequent runs. Tse and Chan (20), have shown that populations sizes of

10 member were optimal. Therefore, all optimization runs were performed with

populations with 10 members QIPOP).

Figure 5.13 shows the fitness for runs 1, 3 and 4. Runs 1 and 3 had the same settings

(Regular GA) except Run 1 was for 2000 populations and Run 3 stopped at 400

populations. As shown in Figure 5.13, fitness for Run 1 increased until approximately

800 populations. However, the fitness only increased by 0.04 between 400 populations

and 800 populations. The extra 400 populations typically translated into 24 hours of time

on a Pentium III 933MHz computer. Therefore, the initial decision was to run all

remaining runs at 400 populations. Before this decision was finalized, Run 4 was used to

verify that the micro-GA mode would also converge in the same number of populations.

As Figure 5.13 shows, both the regular GA and micro-GA modes converged around 400

populations. Therefore, the decision was finalized that 400 populations would be used

for the remainder of optimization runs unless another run proved otherwise.
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Figure 5.14 shows the optimal cycles generated by Runs 1, 3 and 4 as compared

to the manufacturer's recommended cycle. Optimal cycles for Runs 1 and 3 are almost

identical because the settings are essentially the same. The important quality to note

about the cycles is that the maximum frtness temperature of 370oF (TempMax in

QAMeas.txt - Figure 4.4) was exceeded. However, the cycles does not exceed the

tnaximum autoclave air temperature of 430'F (Figure 4.5). The difference between the

maximum autoclave air temperature and the maximum fitness temperature (part

temperature) is that the GA uses the maximum curing temperature to set an absolute

temperature that any given cycle cannot exceed. If the cycle exceeds this temperature,

then the cycle is assigned a low fitness value and the cycle is therefore not run through

the process model. The maximum fitness temperature is used by the f,rtness function to

calculate the temperature fitness function for a given cycle after a cycle passes through

the absolute limit set by the maximum curing temperature.

There were 2 reasons for setting the maximum autoclave temperature above the

maximum fitness temperature. The first reason was that the autoclave air temperature

should be able to exceed the maximum part temperature in order to speed up a cure as

long as the part does not exceed the degradation temperature. The second reason stems

from the problem that was discussed in Section 4.4.4.4 with regards to the maximum

heating rate. The autoclave air temperature limit was increased in the GAINPT.dat cycle

so as to increase the probability that the GA could generate a random cycle that passed

this absolute limit. It was speculated that these settings would permit the GA to pass

more cycles through the absolute limit of 430"F at which point the GA would optimize
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towards cycles that were below the maximum part temperature of 370'F. Unfortunately,

this was not the case and it was decided that injecting cycles could help alleviate this

problem. The effects of input cycles on the optimizer is discussed further in Section

5.2.2.3.

Another interesting feature shown in Figure 5.13 is the sharp jump in fitness that

occurred at approximately 250 populations. This sharp jump was caused by one of the

parameters (cure, time or temperature) moving from the unacceptable region of the

fitness function to the acceptable region of the function. The exponential functions

within the unacceptable region were designed to the cause a sharp increase as a parameter

moves towards the acceptable region.

The final feature to note in Figure 5.13 is that all the optimal cycles have a hold in

them. This is a unique feature that has not been seen in many of the other optimizafion

work performed by others. Many other optimizers generate functions that have the

maximum ramp rate followed by an immediate cool down ramp.

5.2.2.2 GA versus Micro-GA

Tse and Chan (20) have shown that micro-GAs can converge to a higher fitness

than regular GAs. As setting were changed to study various effects in the optimizer, runs

that were set to operate in regular GA mode (Runs 3,5,7,9 and 11) were later set to

operate using the micro-GA mode to compare the effects (Runs 4,6,8, 10 and l2).

Figures 5.15 to 5.18 show the fitness plots for the following pairs of regular GA and
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micro-GA runs (Run 3-4, Run 7-8, Run 9-10 and Run 1l-I2). Results from Runs 5 and 6

were not plotted as the curves were too close to distinguish although the optimizer output

files show that the micro-GA provides a slightly higher fitness value.

Figures 5.15 to 5.18 show that in each case, the fitness of the optimal cycle

generated in micro-GA mode is moderately better than the regular GA result. This result

is also evident from Table 5.2 which summarizes the optimal cycle times for each pair of

runs. Each pair of runs shows that the cycle times are shorter for micro-GAs when

compared to the regular GAs. An improvement of 19 minutes is seen in the pairing of

runs 7 and 8. The better performance of the micro-GA versus a regular GA lead to the

decision to perform all subsequent optimizations in micro-GA mode after Run 1 1. As

well, the results presented in subsequent sections of this chapter will only show the

micro-GA result of the pairs listed in Table 5.2

5.2.2.3 Influence of Input Cycle

Figure 5.19 shows the optimized cycles for Runs 4, 6, and 8 while Table 5.3

shows the optimization data from each run. Each cycle had the same settings (micro-GA)

except Run 4 had no injected cycle, Run 6 had the manufacturer cycle injected and Run 8

had both the manufacturer and high ramp rate cycles injected. Figure 5.19 illustrates that

optimization runs that had injected cycles (Run 6 and 8), all had times shorter than the

manufacturer cycle achieved because of time savings during ramp up. Run 4, without an
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Run Description
(Settings are the same for a given pair)

Optimal
Cycle Time

(min)
Manufacturer

Cycle

280

3 (Regular GA)

4 (Micro GA)

Baseline settings - no injected cycles or

changes in fitness functions

242

230

5 (Reg GA)

6 (Micro GA)

Manufacturer cycle inj ected 279

277

7 (Reg GA)

8 (Micro GA)

2 cycles injected 284

26s

9 (Reg GA)

10 (Micro GA)

Manufacturer cycle injected and cure

function changed to version 2

265

258

11 (Reg GA)

12 (Micro GA)

2 cycles injected and cure function

changed to version 2

244

236

- denotes cycle that caused resin to degrade

Table 5.2: Optimal Cycle Times for Runs 5 to lZ

Table 5.3: Optimization Data for Runs 4,6 and 8

q)

F

o
x

F
x

3agE
5é)
EEr

U) $Y

¡:

(t)u)() q)ã3

4 230 NA NA NA NA NA NA

6 277 370 0.960 I 0.876 0.782 2.6s8

8 265 370 0.9s8 I 0.069 0.782 2.6s
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injected cycle, was shorter than the manufacturer cycle but was hot enough to cause the

resin to degrade.

Another interesting feature in Figure 5.19, is that the air temperature cycle for

Run 6 (manufacture cycle injected) slightly exceeds the maximum paft temperature.

Although, the air temperature exceeds the maximum part temperature, Table 5.3 shows

that the part temperature only reaches the maximum temperature of 370'F and therefore

the cycle is acceptable. As mentioned in Section 5.2.2.1, by setting the maximum

autoclave air temperature higher than that of the maximum part temperature, it was

speculated that air temperature cycles above the maximum part temperature could be

generated without causing the resin to degrade.

An advantage of the injection of the high ramp rate cycle is that the heating rate

could be increased to 18oF/min from 7.9oFlmin. Previous optimization mns were limited

to heating rates of 7.9"Flmin due to the problem discussed in Section 4.4.4. Even

optimization runs with the manufacturer cycle were limited to ramp rates of 7.9'F/min

because the heating rate for that particular cycle was 4"F/min. Such low ramp rates do

not exploit the capabilities of the autoclave thereby reducing the potential to optimize a

cycle. One area in which time savings can be made is in the cool down segment. Notice

in Figure 5.19 that the cool down segment is not very steep. This is because the

optimizer is trying achieve a degree of cure oî exactly 0.92. The optimizer does this by

completing the cure as the cycle begins to cool down. One possible way to create a faster
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cooling would be to add a segment in the cool down stage. Regardless, there

time savings when injecting the high ramp rate.

still a

Figure 5.20 shows the fitness plot for Runs 4, 6, 8. From this figure, it can be

seen that optimization nms with input cycles experience a sharp increase in fitness much

sooner and to a higher level of fitness than optimization mns without cycle injection. The

earlier increase in fitness values was achieved because the probability of generating good

cycles in future generations, via cross-over and mutation, increases substantially when

good cycles are injected in the first population. If the optimizer is allowed to start at

random, then the chances of f,rnding a good cycle is random and so convergence requires

more populations.

5.2.2.4 Effect of Inputs in GAINPT.dat File

Several options can be changed in the GAINPT.dat file. This section will provide

the results from optimizations in which the random seed, PMUT þrobability of mutation)

and NMGA (number of micro generations) were changed.

The random seed value in GAINPT.dat is the starting point for the random

number generator. By changing this value, the place in which the random number

generator starts changes with it. Run 2 was performed to study the effect. It was found

that the fitness development for Run 2 and Run 3 (identical settings except random seed

value) were nearly identical and so are not plotted together. However, fitness plots and

lò
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optimal cycles are shown in Figures 8.5 to Figure 
-8.8. 

Tse and Chan (20) found that

after 100 trials with different seeds that the results were all very similar. For-this reason.

the random seed number was not changed for all optirnization runs after Run ?.

The next GAINPT.dat variables that was looked at were PMUT (probability of

nrutation) ar-rd NMGA (number of micro-cycles). Figures 5.2I and 5.22 show the frhress

plots and optimal cycles generated for runs 12,16 and 17. Runs 16 and 17 used the same

settings as Run 12 except PMUT was changed to 0.1 in Run 16 and NMGA was changed

from 10 to 40 in Run 17. NGEN was adjusted to 10 from 40 so that the run had the same

number of populations (400) as all the other runs. Figure 5.21 illustrates that PMUT

slows the convergence rate of the optimizer as the probability for mutation is decreased

which reduces the amount of randomness into the optimizer. Unfortunately, Run 16 was

cut short but it is evident that if the trend continues. the optimizer will not be able to

achieve the f,rtness levels as seen in Run 12 and 17.

Figure 5.22 shows that by increasing the number of micro-cycles (lrtrMGA), as

was done with Run 17, the optimal cycle is much shorter than the similar setup in Run

12. Run 17 provides an optimal cycle time o1203 minutes which is the second best and

33 minutes shorter than Run 12. This decrease in time can be attributed to the added

randotnness provided by the increased number of randomly generated cycles from the

micro-GA. As discussed in Section 3.1.1, everytime a micro-cycle starts, the micro-GA
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develops a new random set ofcycles.

optirnization run that has "stalled".

continues to increase in fitness.

These cycles help to inject new possibilities into an

Figure 5.21 shows Run 12 as stalled while Run 17

5.2.2.5 Influence of the Shape of Fitness Functions

The fitness functions in the fitness equation have an important role in leading the

GA towards the optimal solution. This section describes the effects of changing f,rtness

functions individually and in combination. The various versions of the cure and time

fitness functions that are referred to in this section are described in Chapter 4.

Figure 5.23 and 5.24 shows the fitness plots and optimal cycles for Runs 8, 12,

and 13. These runs have the same setup (micro-GA with 2 input cycles) with the

exception that Run 8 has cure function version 1, Run 12has cure function version 2, and

Run 13 has cure function version 3. These figures illustrates that version2 of the cure

function gives the shortest cure cycle as well as the highest f,rtness. The cycle time for

version 2 is L9 minutes shorter as compared to version 1 while version 3 provides only a

1 minute savings.

Cure function version I resulted in the longest cycle time because the optimizer

was trying to optimize towards higher degrees of cure as seen in Table 5.4. This was

because the rate of fitness increase for cycles with higher degrees of cure was faster than

the decrease in fitness from the time function due to the resulting longer cures. In other
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words, for optimization runs with cure function version 1, a cure cycle that had a

minimum degree of cure 0.92 received a cure fitness of 0.75 while a degree of cure of I

received a cure fitness of 1 . Therefore, fitness increases by 0.25 when the degree of cure

rises from 0.92 to I whereas the time function increases by 0.25 in 310 minutes. This

difference in the rate of fitness change is the reason for the long length of the cycle

provided by cure function version 1.

Cure function version 2 shortens the cure cycle by preventing the optimizer from

optimizing to a higher degree of cure than 0.92. Since degree of cure is time-dependant,

given the temperature is the same, lower degrees of cure will require shorter cure cycles.

As shown in Table 5.4, cure function version 3 provides similar results as cure cycle

version 1 in that the optimizer produces a cure cycle where the degree of cure is higher

than 0.92. This naturally makes the cure cycle longer.

The next function studied was the time function. As was mentioned above. there

appeared to be a deficiency in the rate of increase in fitness for the time function. A

second version of the time function was created to study this problem. Figure 5.25 and,

5.26 show the fitness plot and optimal cycles for Runs 12to 15. All of these runs were

setup in micro-GA mode using time function version 2 and 2 input cure cycles. The

difference between runs was that Run 12 and 14 use version 2 of the cure function and

Runs 13 and 15 use version 3 of the cure function. As shown inFigures 5.25 and.5.26,

optimization runs with time function version 2 (Runs 14 and 15) have higher fitnesses

and shorter cure cycles as compared to the corresponding optimization runs with time
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function version I (Runs i2 and 13). This suggests that the slope of the line within the

acceptable range of the time function is important.

5.2.2.6 Summary

It was found that the optimizer ran the best in the micro-GA mode. This mode

injected random cycles throughout the run which aided in solutions that had moderately

higher fitnesses and shorter cure cycle times. The micro-GA did not seem to have an

effect on the number of populations required for convergence. Both the regular GA and

micro-GA modes required 400 populations for convergence.

Some of the options found in GAINPT.dat were found to have an effect on the

final solution. The option, PMUT (Probability of Mutation), had an effect on the rate ar

which the optimizer converged. A lower setting, as was used in Run 16, dramatically

slowed the rate of convergence of the optimizer as well as lower the final fitness value.

The GAINPT.dat option that was found to have the largest impact was the number of

micro-cycles (NMGA). By changing this value from 10 to 40, the optimizer developed

the second shortest cycle when used with cure function version 2 and the 2 input cycles.

The increased number of micro-cycles increases the amount of random cycles generated

during an optimization run. These random cycles appear to delay the "stalling" of the

optimizer which results in better solutions. The final option, the random seed, appeared

to have no bearing on the f,rnal solution and so was changed for only one run (Run 2)
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lnjected cycles have been shown to have an influence on shortening cycle times.

Runs that injected both the manufacturer cycle and the high ramp rate cycle were shown

to produce shorter cycles than runs that injected the manufacture cycle alone. The high

ramp rate cycle was required to increase the maximum heating rate from 7.9"F/rnin to

l8oF/min. This allowed for the optimizer to better utilize the potential of the autoclave

thereby reducing optimal cure cycle times.

The shape of the fitness function was shown to help improve the results provided

by the optimizer. Cure function version 2 shortened the optimal cure cycle times by

driving the optimizer towards a cycle that produced the minimum required degree of cure

of 0.92. Cure cycles that produce lower degrees of cure are naturally faster than cycles

that produce higher degrees of cure given heating and cooling rates are approximately the

same.

It was also shown that time function version 2 was very effective in shortening the

optimal cure cycle times. Run 14 proved that time function version 2 when used with

cure function 2 produces the best optimal cure cycle by producing time savings of 80

minutes. This example shows that the slope of the time function within the "acceptable"

region has an effect on the final solution.

When the best components are brought together in Run 18, the shortest cycle time

was found. Figure 5.27 shows that run 18 is i34 minutes which is less than half the

manufacturer cycle (280 minutes) and 67 minutes shorter than the previous best (Run 14).
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CHAPTER 6

Conclusions

6.0 Introduction

This chapter outlines the conclusions drawn during this report. Thesis objectives

as shown below have been achieved in full.

The primary objectives of this thesis can be itemized as:

a) develop the optimizer module for the APCS

b) Integrate the optimization module with the other modules of APCS

c) Demonstrate successfully the optimization capability of the optimizer and

APCS

A secondary objective is:

d) Material charactenzation for Hexcel F155 resin reinforced with Toho

T300 carbon fiber for its physical, thermal, rheological and mechanical

properties.
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6.1 Material Data

The material characterization of the material data for Hexcel F155 resin with

Toho T300 carbon fiber was completed for the following list of properties. A summary

of this can be found in Table 6.1.

o Cure Kinetics parameters

. Resin Degradation Temperature (T6rr)

. Cure Shrinkage

. Coefficient of Thermal Expansion (CTE)

. Specific Heat Capacity

. Viscosity

. Gel point

The above list of material properties provides enough information to run the

thermochemical module of the process model but not enough to run the flow and stress

modules. When sufficient models are developed for flow and stress, the following is a

list of parameters that would need to be charactenzed:

o Composite modulus versus degree of cure (EII,E22, and Gl2)

o Cure shrinkage in the fiber direction

o CTE in the fiber direction
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Classification Properties Measured Values

Physical

(from

manufacturer

data sheets)

Density

Fiber Volume Fraction

Resin: 7 59.1,Fiber: i760

57 % (unidirectional)

50% (woven)

Cure Kinetics

(model from

Equation 5.1)

Total heat of reaction (kJ/kg oç¡

Model constants for Equation 5.1

Hr: 128

k: Z exp (-EIRT)

Z: 1.502F+08 sec

E: 78.809 kJ/mol

m:0.63722

n: A exp (B*T)

A:0.0013366

B :0.017543s K-l

Alphafinal: C exp (D*T)

C : 0.0011557

D:0.017402K-1

-l

Thermo-Physical Specific heat capacity (Jlkg oÇ)

Cure Shrinkaee

CTE of Composite x 10-6 / oC

Resin Degradation Temperature

Cp:0.6589 + 0.0025*T

csc22: csc33 : -18.0635

40.6545 aa + 25.026 a3

2.50645 a'-2.68r3c-

crt -

CTE: 1.6778-8*T' - l.3l4E-

6*T +9.439E-5

250 0C
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Rheolosical Viscosity (From Equation 5.6)

Gel Point

Au: ó.54528-12 Pas

Eu:90477.8 J K/mol

C[cet: 0.533

A:3.185

B :2.359

cr:0.35

Table 6.1: Summary Table of Material Properties for Hexcel F155 with Toho T300

Fibers
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6.2 Cure Cycle Optimization

In general, the optimization runs have proved that the optimizer is capable of

optimizing cure cycles for a composite part, which is representative of a geometry found

in composite parts produced in industry. The results of all the optimization runs were

presented and discussed in Chapter 5 and summarized in Table 8.2 and 8.3.

6.2.1 Recommended ConfTguration for the Optimizer

From the summary in Section 5.2.2.6, the following is the recommend settings for

the optimizer:

In terms of general configuration, the optimizer should be run

. Using Micro-GA mode

. Using both the manufacturer and high ramp rate cycles

. Using cure fitness function version 2

. Using time fitness function version 3

In terms of inputs that are specific to GAINPT.dat, the following options should

be set to the suggested values:

. Maximum heatine rate - 18oF/min

o lJses a hieh value for PMUT - 0.9

o Number of micro-cycles (NIMGA) - 40 while NPOP and NGEN are each

set at 10 to give 400 populations

Table 6.2 shows these suggested settings in GAINPT.dat.
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'Number of members in a population NpOp .....:... ,, t0

'Num-ber of generaËjon IVG.EN , , 70

tNumber of micro-GA cycles NMGA . ,, 40

'Appfy fitness normal-izatlon? (y/n) ....... ,, ,n,

'Probability of cross-over pCROSS

'ProbabiTity of mutat,iorl àMUT

'A.1 lowabl-e X-variations (minutes) XLIM

'Al-l-owable Y-variations (deg F) yT,fM

'Random number seed . ,,

'Number of segments in a curing process NSEG

'Maximum time for curing (minutes) TIMEMAX

'Min al-l-ow temp. where process t.erminat.es TMIN (deg F) , 
,

rMax autoclave air temperature TMÄX (deg f.) ,,

'Tn i| i el f êmnprâl. tìrÊ Tô lrìan E \ |\uu:J r J . . .

'Maximum heat.íng rate (positíve, deg F per minute) ,,

'Maximum cooling rate (negative, deg F per minute)

'Location of the fitness output file from Fgen C++ routine

" C : \APCS\OUTPUTS\ f ittot,al_ . out''

'Location of the fgen module...

rr C : \APCS\ fgen\wholeproj ect. . exe,'

Table 6.2: Suggested Configuration for GAINPT.dat

0.8

0.9

15.

15.

J

'7

310 .

80.

430.

80.

1A

-18.
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ó.3 Recommendations

The following is a list of suggestions for possible improvements for the optinrizer:

. Complete material characterization of Hexcel F155 with Toho T300 fibers for

use with the process model when a suitable warpage model is developed.

Optimize cycles for thicker parts so that the cure and temperature gradient

components of the fitness equations can be used and better understood. The

composite part used in this thesis was too thin to cause significant gradients.

Re-work the fitness function code in order to make it run faster. The source

code was written by inexperienced programmers and this is reflected in the

run time. Currently, the fitness function generator requires more time to run

than the process model if only the thermochemical module is turned on.

lnclude in COMPRO, or other process models, the ability to output into a f,rle

the maximum cure and temperature gradients so that the fitness function does

not have to do long searches through all the output data. This will

significantly speed up optimization.

Develop models for residual stress and warpage. The optimizer will be more

useful if these modules are included.

Reprogram the GA so that 2 cool down segments can be used - this should

result in faster cool down rates and therefore shorten cure cycle times.

Remove the seed value used by the random number generator and use the

system clock to get a seed number as required. This will ensure true

randomness from run to run.
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The fitness function, as recommend in Section 6:2.1, is an excellent start towards on-line

optimization. Fitness of optimal cycles does improve over the manufacturer's

recommended cycle and all cycles achieve minimum requirements in a shorter period of

time.

It is expected that the optimizer and material data provided in this thesis, along

with SMCLAVE developed by Michael Hudek (9), will be an excellent starting point for

the APCS. It is hoped that one day the entire APCS will become a reality and that this

worked helped to lay a useful foundation for the project.
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APPEI\DIX A

Material Ch aracterization Data

4.0 Introduction

This appendix contains various plots from the material characterization experiments.
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Appendix B

Optimi zation Run Results

8.0 Introduction

This appendix contains results from individual optimization runs. The run

numbers and various settings are shown in Table 8.1. Tables 8.2 and 8.3 summarize

various aspects of the optimization runs. Figures 8.1 shows the manufacturer's

recommended cycle while Figure 8.2 shows the high ramp rate cycle. Figures 8.3 and

up provide fitness plots and optimal cycles for each of the optimization runs.

The following describes each of the parameters in the Tables 8.2 and 8.3

Total time -the total cycle time provided in minutes for an optimized cycle

T-u* - The maximum temperature at any node in the composite at any time during the

cure.

cf,min- The minumum degree of cure in the composite at the end of the cure cycle

Fitness Temperature - The fitness assigned by the temperature fitness function (a

value between 0 and 1)

Fitness alpha - The f,rtness assigned by the degree of cure f rtness function (a value

between 0 and 1)

Fitness time - The fitness assigned by the time fitness function (a value between 0 and 1)
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FitnessTotal - The total f,rtnessãssigned to the cure cycle (summation of fitness alpha,

fitness temperature, fitness time as shown above -
value between 0 and 3)

Cure Gradient - The maximum degree of cure gradient in the part at any given time

during the cure.

Temperature Gradient - The maximum temperature gradient in the parl at any given

time during the cure.
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rate cycle with new cure frtness function (version 2)

(Reg GA)

t2 Effects of injecting manufacturer cycle and high ramp

rate cycle with new cure fitness function (version 2)

(Micro GA)

l3 Effects of injecting manufacturer cycle and high ramp

rate cycle with new cure fitness function (version 3)

(Micro GA)

T4 Effects of new time function (version 2) and 2 injected

cycles with new cure function (version 2) (Micro GA)

15 Effects of new time function (version 2) and 2 injected

cycles with new cure function (version 3) (Micro GA)

16

t7

18

Effects of PMUT on setuo as used in Run 12

Effect of changing NMGA on setup used in Run12

Optimal Settings - Cure function (Version 2),Time

Function (Version 2),inject2 cycles, with high

NMGA in the Micro-GA mode

10 40

10

10

40

0.9

10

10

5

40

0.9

10

18

Table 8.1: Summary of Inputs used for Optimization Runs
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L7 203 370 0.92 I t 0.83 2.830

18 t34 370 0.92 I 1 0.83 2.890

Table 8.2: Summary of Optimization Results

q€
lix

q)

rl

.9

Ëj/
q.)

F

I NA NA

2 NA NA

J NA NA

4 NA NA

5 0.015 6.61

6 0.016 6.81

7 0.018 8.62

8 0.018 8.91

9 0.015 7.07

10 0.015 7.s9

11 0.020 8.89

72 0.019 8.89

13 0.018 8.89

l4 0.017 7.61

15 0.016 7.66

16 0.015 7.84

t7 0.018 7.52

Table 8.3 - Summary of Results - Temperature and Cure Gradients
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Figure 8.2: Plot of High Ramp Rate Cycle
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Figure 8.3: PIot of Optimal Cycle from Run 1
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Figure 8.4: Plot of Fitness versus Number of Populations from Run I
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Figure 8.7: Plot of Optimal Cycle from Run 3
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Figure 8.9: Plot of Optimal Cycle from Run 4
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Figure 8.10: Plot of Fitness versus Number of Populations for Run 4
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Figure 8.11: Plot of Optimal Cycle from Run 5
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Figure 8.13: Plot of Optimal Cycle from Run 6
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Figure 8.14: Plot of Fitness versus Number of Populations for Run 6
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gure 8.16: Plot of Fitness versus Number of Populations for Run 7

Ø
v,o

=¡l-

2.6

2.5

2.4

2.3

2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

I

50 100 150 200 250 300 350

Number of Populations (10 Members Each)

t84

400



400

350

300

Ê
; 250

Ë zoo
0)

I tso
t-

r00

50

0

250 300100 150

Time (min)

Figure 8.17: Plot of Optimal Cycle from Run 8
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Figure 8.18: Plot of Fitness versus Number of Populations for Run 8
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Figure 8.19: Plot of Optimal Cycle from Run 9
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Figure 8.20: Plot of Fitness versus Number of Populations for Run 9
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Figure B.2lz Plot of Optimal Cycle from Run 10
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Figure 8.232 Plot of Optimal Cycle from Run 11
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Figure 8.242 Plot of Fitness versus Number of Populations for Run 11
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Figure 8.252 Plot of Optimal Cycle from Run 12
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Figure 8.26: Plot of Fitness versus Number of Populations for Run 12
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Figure 8.272 Plot of Optimal Cycle from Run 13
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Figure 8.28: Plot of Fitness versus Number of Populations for Run 13
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Figure 8.31: Plot of Optimal Cycle from Run 15
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Figure 8.32: Plot of Fitness versus Number of Populations for Run 15
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Figure 8.33: Plot of Optimal Cycle from Run 16

3

z9
z8
27
26
z5

,24
E23
F- zzn21

2
1.9

1.8

1.7

1.6

1.5

50 100 150 n0 zfl 300 350 ¿100

lfunúer of Populations (10lvlenbers Eacfi)

Figure 8.34: Plot of Fitness versus Number of Populations for Run 16
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Figure 8.35: Plot of Optimal Cycle from Run 17
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Figure 8.36: Plot of Fitness versus Number of Populations for Run 17
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Figure 8.37: Plot of Optimal Cycle from Run l8
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Figure 8.38: Plot of Fitness versus Number of Populations for Run 18
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