
Semilinear Elliptic Problems involving a Parameter

by

Lubana Yasmin

A thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Mathematics

University of Manitoba

Winnipeg

Copyright c© 2020 by Lubana Yasmin



Abstract

We consider 
−∆u = λf(u) in Ω

u = 0 on ∂Ω,
(1)

in a bounded domain Ω ⊂ RN . The nonlinear term f is smooth, positive, increasing,

convex, superlinear at ∞, and λ > 0 a parameter. We also consider (1) in case of

nonlinearity 1
(1−u)2 (MEMS nonlinearity), and with a divergence free advection term,

a(x) (−∆u + a(x) · ∇u = λf(u) in Ω and u = 0 on ∂Ω). In this thesis, we are

interested in talking about the existence of stable minimal solutions to these partial

differential equations (pde’s). We show, when λ < λ∗ (a critical parameter), there is

a minimal stable solution and when λ > λ∗, there exists no solution. Here, stability

of solution means nonnegativeness of the first eigenvalue of the linearized operator

associated with the pde. This nonnegative inequality can also be viewed as the

second variation of energy functional associated with the pde at u. At λ∗, we obtain

a unique weak solution which is the limit of minimal solutions (limλ↗λ∗ uλ ↗ u∗), we

call it extremal solution. Properties of extremal solution depend strongly on Ω, f, N .

For (1), the extremal solution is smooth in N ≤ 9 with f(u) = eu while it

is singular for N ≥ 10, Ω = B1. The best result is by Nedev, which says u∗ is

bounded for any f and Ω when N ≤ 3. We discuss the radial case which shows

the optimal regularity result for u∗ in N ≤ 9. For the MEMS model, all stable

solutions are smooth iff the dimension is N ≤ 7. For the pde with advection, there

is no suitable variational characterization for the stability assumption. To overcome

this difficulty, we use a general version of Hardy’s inequality to show smoothness of

extremal solution in dimension N ≤ 9 with exponential nonlinearity.
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Introduction

Motivation

We consider the problem


−∆u = λf(u) in Ω

u = 0 on ∂Ω.
(2)

Such problem arises in a variety of situations, in the theory of nonlinear diffusion gen-

erated by nonlinear sources, in the theory of thermal ignition of gases (see [14],[20]),

in quantum field theory and mechanical statistics (see [29],[6]), and in the theory of

gravitational equilibrium of stars (see [22],[20]). Depending on the nonlinear term

f(u), this equation plays important roles in different fields. The equation


−∆u = λeu in B1

u = 0 on ∂B1,
(3)

known as Gelfand problem (bears many names: Barrenblatt, Bratu, Emden, Fowler,

Frank-Kamenetskii, and Liouville are some of the famous scientists to whom the

equation (3) has been attributed). Here λ > 0 a parameter, B1 unit ball in RN .

In dimension N = 1, 2, 3, equation (3) can be derived from the thermal self-ignition

model. The full model describes the reaction process in a combustible material

during the ignition period. On the left side, −∆ is a diffusion operator, accounting
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for the diffusion of heat from the hot reactant to cold boundary and on the right

eu is the reaction term. A solution u represents the temperature inside a cylindrical

vessel whose walls are ideally conducting. The solution u is dimensionless when

the system has reached an intermediate-asymptotic steady state and the underlying

space variable x ∈ B1 should be thought of as dimensionless (the vessel’s size has been

normalized). The term eu models the production of heat induced by the chemical

reaction. The diffusion operator and the reaction term compete. In one kind of

reaction, the produced heat does not have time to be carried away through the walls

of the vessel: either the combustible rarifies and the reaction dies out, or there is so

much combustible that a thermal explosion happens. Both way no solution of (3)

should be expected. On the opposite, a solution exists in another kind of reaction

with a quick occurrence of an equilibrium between produced and diffused heat. The

balance between diffusion and reaction is quantified by the parameter λ > 0: we

should expect no solution when λ is large and solution exists when λ small. The

original motivation of studying pde (2) is also to understand what happens when a

advection term is present (−∆u + a(x) · ∇u = λf(u) in Ω ). Of particular interest

is to undertsand how the presence of an advection term and its features affect on λ∗

(extremal value of λ).

We also discuss the pde (2) with the nonlinear term f(u) = 1
(1−u)2 ,


−∆u = λ

(1−u)2 in Ω

u = 0 on ∂Ω.
(4)

This equation is used to model a simple Micro-Electro-Mechanical device. The upper

part of this device consists of a thin and deformable elastic membrane that is held

fixed along its boundary and which lies above a parallel rigid grounded plate. This

elastic membrane is modeled as a dielectric with a small but finite thickness. The

upper surface of the membrane is coated with a negligibly thin metallic conducting

2



film. When a voltage applied to the conducting film, the thin dielectric membrane

deflects towards the bottom plate. At present, the variety of MEMS devices and

applications are continually increasing, and the advent of MEMS has revolutionized

numerous branches of science and industry.

Literature Review

We consider the following semilinear elliptic problem


−∆u = λf(u) in Ω

u = 0 on ∂Ω,
(5)

in a domain Ω ⊂ RN . The nonlinearity f(u) is smooth, positive, convex, increasing

and superlinear at ∞.

It is Haïm Brezis who stresses, since mid-nineties, the significance of this problem. It

has been shown in the pioneering works of Keener and H.Keller (1974) [21] , Joseph

and Lundgren (1972/73) [20], and Crandall and Rabinowitz (1975) [9] that there

exists a critical parameter λ∗ > 0, so that (5) admits positive solutions for 0 < λ <

λ∗, while no positive solution exists for λ > λ∗. Crandal and Rabinowitz proved the

boundedness of solution at λ = λ∗ not only for exponential nonlinearities but also for

others when N ≤ 9. Nonexistence of weak solution of (5) for λ > λ∗ was established

in a seminal paper by Brezis, Cazenave, Martel, and Ramiandrisoa [2] and Martel’s

result showed the uniqueness of weak solution at λ = λ∗ in 1996. The linearized

problem was studied by Brezis and Vázquez in [3] in great detail. In particular,

when the domain is a ball, and for the exponential and power nonlinearities (typical

examples: f(u) = eu, f(u) = (1+u)p where p > 1), the solutions at the critical value

are uniformly bounded in dimensions less or equal to N = 9 and N = 10 respectively,

while in higher dimensions they are unbounded. For more general nonlinearities and
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domain Ω, Nedev [25] established the regularity of solutions at λ = λ∗ in dimensions

N = 2, 3 in 2000, and in dimension N = 4 is established by Cabré [4] in 2010. The

radial case, Ω = B1, was settled by Cabré and Capella in 2006 [5]. Finally, the

semilinear equation (5) has also been studied for f blowing up at u = 1. This is

connected with Micro-Electro-Mechanical devices (MEMS). Experimental work in

this area, dates back to 1967 and the work of Nathanson et.el. [24], and in 1968, G.I

Taylor [30] . The elliptic problem


−∆u = λf(x)

(1−u)2 in Ω

u = 0 on ∂Ω,
(6)

where λ > 0 denotes the applied voltage and the nonnegative continuous function

f(x) characterizes the varying dielectric permittivity of the elastic membrane. In

dimension N = 2, this equation models a simple MEMS device. The problem was

first studied by Pelesko [27] in (2001/02), where the author focused on lower dimen-

sions N = 1 or N = 2 and he considered the profile f(x) ≥ C > 0 or f(x) = |x|α.

The study of (6) was then extended by Guo, Pan and Ward [17] in 2005, where the

authors considered (6) for a more general profile f(x) which can vanish at some-

where. After that time within 2 years this elliptic problem was further extended and

sharpened in [12], [19], [18], [16], [11] and the references therein.

Outline of the thesis

In this thesis, we discuss three different semilinear elliptic pde’s. This thesis is divided

into 4 chapters. Chapter 1 summarizes the concepts that are required to understand

this thesis. Some spaces of functions, weak derivatives, weak solutions, very weak

solutions, ultra weak solutions, Sobolev spaces, Sobolev embeddings, regularity re-

sults for the weak solutions and ultra weak solutions, and stability of solutions have
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been discussed here.

In chapter 2, we explore the semilinear pde, −∆u = λf(u) in Ω and u = 0 on

∂Ω, where f is positive, increasing, convex, superlinear at ∞. We show that for

all 0 < λ < λ∗, there exists a minimal stable solution and for λ > λ∗, there is no

solution, not even in a weak sense. Uniqueness of extremal solution (defined to be

the limit of minimal solution) is discussed here. We also discuss the regularity of

extremal solution depending on Ω, f, N . This chapter also includes the discussion of

the singular extremal solution.

Chapter 3 outlines the same result (when λ < λ∗ there is a stable minimal solution

and when λ > λ∗ no solution exists) in case of MEMS type nonlinearity 1
(1−u)2 . Here

we discuss the regularity of extremal solution in N ≤ 7.

Chapter 4 deals with the mentioned result (when λ < λ∗ there is a stable minimal

solution and when λ > λ∗ no solution exists) for the pde with advection, −∆u +

a(x) · ∇u = λf(u) in Ω and u = 0 on ∂Ω, where a(x) is a smooth divergence free

vector field. Here we discuss the proof of this result with a slight modification. In

this chapter, we also discuss the regularity of extremal solution in dimension N ≤ 9

with the help of general Hardy’s inequality.
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1

Mathematical Background

1.1 Some Function Spaces and some basic Defini-

tions

We begin with some functions spaces. Let Ω denote an open, bounded domain in

RN with smooth boundary.

1. (Continuous functions). We let C(Ω) denote the set of continuous functions

on Ω.

Example 1.1. Let Ω = (0, 1) ⊂ R. Let u(x) = |x|, v(x) := 1
|x| . Then

u, v ∈ C(Ω).

2. (Uniformly continuous functions) Let C(Ω) denote the set of uniformly con-

tinuous functions on Ω. It can be shown that (C(Ω), ‖ · ‖) is a Banach space

where

‖u‖ := sup
x∈Ω
|u(x)| = max

x∈Ω
|u(x)|.

Example 1.2. Ω := (0, 1). Note that u(x) = |x| ∈ C(Ω) but v(x) = 1
|x| /∈

C(Ω).
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3. (Lp spaces) For 1 ≤ p <∞ set

‖u‖Lp(Ω) := ‖u‖Lp = ‖u‖p =
(∫

Ω
|u(x)|pdx

) 1
p

.

We define

Lp(Ω) := {u : u is a function defined on Ω with ‖u‖Lp(Ω) <∞ }.

Then Lp(Ω) is a Banach space.

4. L∞(Ω) is space of bounded functions with sup norm.

5. (Smooth compactly supported functions) We let C∞c (Ω) denote the set of

smooth functions u : Ω→ R which are compactly supported in Ω.

6. C∞c (Ω \ {k}) means infinitely differentiable with compact support take away

set {k} in Ω means any function belonging to this space is zero near the set

{k}.

Definition 1.3. (Hilbert space) we call (X, ‖·‖) is a real normed linear space provided

• X is a vector space over R.

• ‖ · ‖ : X → R is a norm on X means

– ‖u+ v‖ ≤ ‖u‖+ ‖v‖ ∀u, v ∈ X

– ‖λu‖ = |λ|‖u‖ ∀λ ∈ R , u ∈ X

– ‖u‖ ≥ 0 ∀u ∈ X

– ‖u‖ = 0 if and only if u = 0.

The real normed linear space X is called Banach space if X is a complete normed

linear space. By complete we mean if every Cauchy sequence in X converges to an
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element in X. By this we mean if {un}n ⊂ X such that ∀ε > 0 there is some Nε

such that ∀n,m ≥ Nε we have ‖un − um‖ < ε, then there is some u ∈ X such that

‖un − u‖ → 0 as n→∞. A real Hilbert space (H, ‖ · ‖) is a Banach space endowed

with an inner product which generates the norm. The mapping (, ) : H ×H → R is

called an inner product if

• (u, v) = (v, u) ∀u, v ∈ H

• For all v ∈ H , u→ (u, v) is a linear mapping from H to R

• (u, u) ≥ 0 ∀u ∈ H

• (u, u) = 0 if and only if u = 0.

If (, ) is an inner product then the norm is given by

(u, u) = ‖u‖2 (1.1)

By using Cauchy-Schwarz inequality (|(u, v)| ≤ ‖u‖‖v‖) we can easily verify (1.1)

satisfies all the properties of normed linear space.

Example 1.4. The space L2(Ω) is a Hilbert space with the inner product given by

(u, v) =
∫

Ω
uv dx.

The Sobolev space H1 is a Hilbert space with inner product

(u, v) =
∫

Ω
(uv +∇u∇v) dx.

Definition 1.5. (Hölder space) Suppose Ω ⊂ RN and 0 < γ ≤ 1. Suppose u : Ω→ R

be a Lipschitz continuous function which by definition satisfies the estimate

|u(x)− u(y)| ≤ l|x− y|, (1.2)
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∀x, y ∈ Ω and for any constant l. So the function is continuous and provides a

uniform modulus of continuity over a closed and bounded interval in real line. Let

us consider also a function u satisfying variant of (1.2) namely

|u(x)− u(y)| ≤ l|x− y|γ,

for some constant l. Such a function is said to be Hölder continuous with exponent

γ. The Hölder space Ck,γ(Ω) consists of functions u ∈ Ck(Ω) for which the norm

‖u‖Ck,γ =
∑
|α|≤k
‖∂αu‖C(Ω) +

∑
|α|=k

[∂αu]C0,γ(Ω) is finite, (1.3)

where ∑
|α|=k

[∂αu]C0,γ(Ω) =
∑
|α|=k

sup
x,y∈Ω,x 6=y

|∂αu(x)− ∂αu(y)|
|x− y|γ

,

is known as γth Hölder seminorm of order k. If k = 0, 1, 2 we have

‖u‖C0,γ = ‖u‖C(Ω) + sup
x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|γ

,

‖u‖C1,γ = ‖u‖C(Ω) + ‖∇u‖C(Ω) +
N∑
k=1

sup
x,y∈Ω,x 6=y

|uxk(x)− uyk(y)|
|x− y|γ

,

‖u‖C2,γ = ‖u‖C(Ω) + ‖∇u‖C(Ω) + ‖∂2u‖C(Ω) +
N∑

i,j=1
sup

x,y∈Ω,x 6=y

|uxixj(x)− uyiyj(y)|
|x− y|γ

,

respectively. So the space Ck,γ(Ω) consists of those functions that are k times con-

tinuously differentiable and whose kth partial derivatives are Hölder continuous with

exponent γ.

Properties of Hölder space

• For k = 0, 1, 2 and 0 < γ < 1 the space of functions Ck,γ(Ω) is a Banach

space. That means the norm ‖ ·‖Ck,γ defined in (1.3) satisfies all the properties

of normed linear space and in addition each Cauchy sequence converges with
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respect to this norm.

• For k = 0, 1, 2 and 0 < γ < β one has Ck,β(Ω) ⊂⊂ Ck,γ(Ω).

• For i, j = 0, 1, 2 with i < j one has Cj,β(Ω) ⊂⊂ Ci,γ(Ω), where γ, β ∈ (0, 1).

Definition 1.6. (Young’s inequality) Let p > 1, q <∞, 1
p

+ 1
q

= 1. Then for a, b > 0

ab ≤ ap

p
+ bq

q
.

Definition 1.7. (Young’s inequality with ε) For a, b > 0 and ε > 0,

ab ≤ εap + C(ε)bq,

where C(ε) = (εp)−
q
p q−1.

Definition 1.8. (Hölder’s inequality) Let p, q ∈ [0,∞] are conjugate exponents (1
p

+
1
q

= 1) and f, w are two measurable functions then

‖fw‖1 ≤ ‖f‖p‖w‖q.

Definition 1.9. (Minkowski’s inequality) Assume 1 ≤ p ≤ ∞ and u, v ∈ Lp(Ω) then

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω).

Definition 1.10. (Bounded linear operator) Suppose X and Y are Banach spaces.

A mapping A : X → Y is bounded linear operator if ∀u ∈ X there exists some

M ≥ 0 such that
‖Au‖
‖u‖

≤M.

The smallest such M is called the operator norm ‖A‖op of A. A linear operator

between normed space is bounded iff it is continuous.

Example 1.11. The Laplace operator ∆ : H2(RN)→ L2(RN) is bounded.
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Definition 1.12. (Adjoint operator) Suppose A : H → H is a bounded linear op-

erator. The operator A∗ : H → H is said to be adjoint of the operator A if for all

x, y ∈ H it satisfies

(Ax, y) = (x,A∗y).

Definition 1.13. (Self adjoint operator) A bounded linear operator defined on H is

self adjoint if A = A∗. Then ∀x, y ∈ H

(Ax, y) = (x,Ay).

We also have a result that says if A is a bounded linear operator on H then it

is self adjoint iff (Ax, x) is real ∀x ∈ H. The eigenvalues of a bounded self adjoint

linear operator on H are real.

Definition 1.14. (Rayleigh’s quotient) The Rayleigh’s quotient of a bounded self

adjoint operator is defined as

R(x) := (Ax, x)
(x, x) .

Theorem 1. (Lebesgue’s Monotone Convergence Theorem) Suppose that {fn(x)}∞n=1

be a sequence of monotonically increasing nonnegative measurable functions on a

measurable set X, and let f(x) = limn→∞ fn(x) almost everywhere on X. Then∫
X
f = lim

n→∞

∫
X
fn.

Theorem 2. (Lebesgue’s Dominated Convergence Theorem) Let {fn(x)}∞n=1 be a

sequence of Lebesgue integrable functions that converge pointwise to a limit function

f almost everywhere on X. Suppose there exists a Lebesgue integrable function g such

that |fn(x)| ≤ g(x) almost everywhere on X for each n ∈ N and for all points x ∈ X.

Then f is Lebesgue integrable on X and limn→∞

∫
X
fn(x) dx =

∫
X

lim
n→∞

fn(x) dx =∫
X
f(x) dx.
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Theorem 3. (Fatou’s Lemma) Let {fn(x)}∞n=1 be a sequence of nonnegative Lebesgue

integrable functions on an interval X that converges to a function f almost every-

where on X, and suppose there exists an L ∈ R, L > 0 such that
∫
X
fn(x) dx ≤ L

forall n ∈ N. Then f is Lebesgue integrable on X and
∫
X
f(x) dx ≤ L

Theorem 4. (Riesz representation theorem) Let H be a Hilbert space with inner

product (, ). Suppose H∗ is the dual of H and H∗ := {f : H → R, f is linear and continuous }.

Given f ∈ H∗,∃ !xf ∈ H such that

(f, y) = (xf , y) ∀y ∈ H.

Definition 1.15. (Weak derivatives) Let u be a function in Lebesgue space L1(Ω).

We say v ∈ L1(Ω) is a weak derivative of u if for φ ∈ C∞c (Ω) we have

∫
Ω
u(x)φxi(x)dx = −

∫
Ω
v(x)φ(x)dx.

Here we have used integration by parts technique and φ = 0 on ∂Ω. Generalizing

to N dimensions, if both u and v are in the space L1,loc(Ω) of locally integrable

functions of some open subset Ω ⊆ RN and if α is a multi-index then we say v is αth

weak derivative of u if

∫
Ω
u(x)Dαφ(x)dx = (−1)|α|

∫
Ω
v(x)φ(x)dx. (1.4)

Here Dαφ is defined as Dαφ = ∂|α|φ
∂
α1
x1 ,∂

α2
x2 ,∂

α3
x3 ,......,∂

αN
xN

. The relation (1.4) eliminates the

need of u to be differentiable. In other words, if we are given a function u and if there

happens to exist a function v which verifies (1.4), we say Dαu = v in the weak sense.

If there does not exist such v then u does not posses a weak αth partial derivative. A

weak αth partial derivative, if it exists, is uniquely defined up to a set of measure 0.
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Example 1.16. Define l ∈ C(R) by

l(x) =


x x > 0

0 x ≤ 0.

Then l is weakly differentiable with l′(x) = 1(0,∞),

l′(x) =


1 x > 0

0 x ≤ 0.

The choice of l′(x) at x = 0 is irrelevent since the weak derivative is only defined

up to a set of pointwise almost everywhere equivalence. To check it, for any test

function φ ∈ C∞c (R) integration by parts formula gives

∫
l(x)φ′(x)dx =

∫ ∞
0

xφ′(x)dx = −
∫ ∞

0
1(0,∞)φ(x)dx.

Some formulas

• Let u : RN → RN and φ : RN → R then

div[φu] = ∇φ · u+ φdiv(u).

• (Green’s identities)

∫
Ω
uxiv = −

∫
Ω
uvxi +

∫
∂Ω
uvνi, (1.5)

where u, v ∈ C1(Ω) and νi = (ν1ν2...νN) is the outward pointing normal on

∂Ω. ∫
Ω
∇u∇v =

∫
Ω

(−∆u)v +
∫
∂Ω
v∂νu, (1.6)
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where ∂νu = ∇u · ν. Here u ∈ C2(Ω) and v ∈ C1(Ω). And finally we have

∫
Ω
u∆v =

∫
Ω
v∆u+

∫
∂Ω
u∂νv − v∂νu. (1.7)

• (Radial formula) Assume BR open ball in RN centered at the origin and f(x)

is radial (f(x) = f(|x|) = f(r)). Then

∫
BR
f(x)dx = CN

∫ R

0
f(r)rN−1dr.

Maximum principle

Theorem 5. (The weak maximum principle) Let Ω ⊂⊂ RN , u ∈ C2(Ω)∩C(Ω) and

−∆u(x) = f(x) ≥ 0. Then

min
Ω
u = min

∂Ω
u.

If −∆u(x) = f(x) ≤ 0 then

max
Ω

u = max
∂Ω

u.

The weak maximum principal states that the extreme values muct occur on ∂Ω

but it does not exclude the possibility of occuring those values inside Ω .

Maximum principle for more general elliptic equation. Assume Ω is bounded

in RN , u ∈ C2(Ω) ∩ C(Ω) and −∆u(x) + a(x) · ∇u = f(x) ≥ 0. Then

min
Ω
u = min

∂Ω
u.

If −∆u(x) + a(x) · ∇u = f(x) ≤ 0 then

max
Ω

u = max
∂Ω

u.
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Theorem 6. (The strong maximum principle) Suppose Ω ⊂ RN connected, bounded

and u ∈ C2(Ω) ∩ C(Ω) and ∆u = 0 in Ω. Then if u attains its max /min over Ω at

some point x0 ∈ Ω, then u(x) = constant.

Strong maximum principle states every non-constant harmonic function must

achieve its maximum or minimum value on the boundary. It does not allow the

minimum or maximum value inside Ω. If it occurs then it is flat. That is why we

need Ω to be connected. Here connected means path connected that connects any

two points by finite at overlapping balls in Ω.

Mean value formula. Suppose Ω ⊂ RN open, bounded. Let u ∈ C2(Ω) and

∆u = 0 in Ω. Mean value formula declares that, provided B(x, r) ⊂ Ω, u(x) is equal

to both the average of u over the sphere ∂B(x, r) and average of u over the entire

ball B(x, r). That is

u(x) =
∫
B(x,r)

udy =
∫
∂B(x,r)

uds.

If u ∈ C(Ω) and satisfies mean value formula then u ∈ C∞(Ω) and ∆u = 0 in Ω.

1.2 Distributions

The utility of distribution arises from the fact that they are generalized functions

which allows for operations such as differentiation and convolution on objects that

fails to be function. A distribution is a linear form on the space of smooth function

with compact support satisfying some continuity property.

Definition 1.17. (Convergence in C∞c (Ω)) For smooth compactly supported func-

tions the notion for convergence is that of uniform convergence since the uniform

limit of a sequence of continuous functions is continuous. First we define the uni-

form norm on Ω ⊂ RN by |f |u = |f |L∞ = supx∈Ω |f(x)|. For norm on C∞c (Ω) we

apply the uniform norm on all partial derivatives with respect to multi-index α i.e.

‖φ‖[α] = ‖∂αφ‖u = ‖∂αφ‖L∞ = supx∈Ω |∂αφ(x)|.
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Suppose φj be a sequence in C∞c (Ω) and φ ∈ C∞c (Ω) and we say φj converges to

φ in C∞c (Ω) provided

• There exists a compact set K ⊂ Ω such that for all j, supp(φj), supp(φ) ⊂ K.

• For all k ∈ N, ||φ(k)
j − φ(k)||L∞(K) = sup |φ(k)

j − φ(k)| → 0 as j →∞ .

Thus we say φj converges to φ in C∞c if and only if ∂αφj converges uniformly to

∂αφ in the compact set for all α. This notion of convergence is extremely strong.

Definition 1.18. (Distributions) A linear form T : C∞c (Ω)→ R (i.e. T (au+ bv) =

aT (u) + bT (v) for all a, b ∈ R and u, v ∈ C∞c (Ω)) is said to be a distribution on

Ω, in notation T ∈ D′(Ω) if T is continuous with respect to the above notion of

convergence i.e.

φj → φ in C∞c (Ω) =⇒ T (φj)→ T (φ).

It is conventional to write 〈T, φ〉 = T (φ).

Example 1.19. (Distribution associated with a function or signed measure)

• For Ω ⊂ RN , let us define a real valued function in Ω. If f is integrable on

every compact subset K ⊂ Ω then Tf : φ →
∫

Ω
f(x)φ(x)dx is a distribution.

Clearly Tf is linear in C∞c (Ω). So for Tf to be a distribution it is sufficient

that f ∈ L1
loc(Ω). Let φj → φ in C∞c (Ω) then

|T (φj)− T (φ)| ≤
∫

Ω
|f ||φj − φ| =

∫
K
|f ||φj − φ| ≤ ‖f‖L1(K)‖φ(k)

j − φ(k)‖L∞(K),

where last inequality is coming from Hölder’s inequality and is 0 since ‖φ(k)
j −

φ(k)‖L∞(K) → 0 and we also have
∫
K
|f | = CK <∞. Hence T (φj)→ T (φ) and

T is a distribution. This is called regular distribution.
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• If µ is a signed measure with finite total variation on each compact set K ⊂ Ω

we associate the distribution

〈µ, φ〉 := 〈Tµ, φ〉 :=
∫

Ω
φ(x)dµ(x).

We can show that µ is continuous with respect to uniform convergence.

Definition 1.20. (Derivative of a distribution) T ∈ D′(Ω) and α is a multi-index,

we define the distributional derivative ∂αT by

〈∂αT, φ〉 := (−1)|α| 〈T, ∂αφ〉 .

Example 1.21. A distribution does not see the boundary ∂Ω. Let f ∈ C∞(Ω) and

set

f̃(x) :=


f(x) x ∈ Ω

h(x) x ∈ ∂Ω.

Then f and f̃ are the equal as distributions (i.e. 〈Tf , φ〉 =
〈
Tf̃ , φ

〉
for all φ ∈

C∞c (Ω).) This is clear since the test functions φ are zero near the boundary of Ω.

Definition 1.22. • We say distribution T is zero on an open set G ⊂ Ω provided

〈T, φ〉 = 0 for all φ ∈ C∞c (G). Let G denote the maximal open set in Ω with

T = 0 on G and define the support of T by Ω\G (which is compact provided Ω

is bounded).

• Given T ∈ D′ (Ω) we say T ≥ 0 provided 〈T, φ〉 ≥ 0 for all 0 ≤ φ ∈ C∞c (Ω).

Example 1.23. A distribution which is not given by a signed measure. Consider

Ω = (−1, 1) and set T := δ0 the Dirac mass at the origin (so T is a measure). Now

consider Tx ∈ D′ (Ω) and consider the linear operator

〈Tx, φ〉 = −〈T, φx〉 = −φ′(0)

17



and note that we can find a sequence of φm → 0 uniformly on [−1, 1] but φ′m(0) = 1.

So this would show that the mapping φ 7→ 〈Tx, φ〉 is not continuous with respect to

uniform convergence. So we must have that the distribution Tx is not given by a

signed measure.

Theorem 7. Suppose 0 ≤ T ∈ D′ (Ω). Then T is given by a measure with local

finite total variation.

1.3 Sobolev space

Let 1 ≤ p ≤ ∞ and k is a nonnegative integer. We define Sobolev space to be the

set of functions whose members have derivatives of different orders lying in different

Lp spaces. We denote Sobolev space byW k,p which consists of functions u ∈ Lp with

∂αu ∈ Lp (distributional derivative) for all multi-indices α i.e.

W k,p = {u ∈ Lp : ∂αu ∈ Lp for all multi-indices α, |α| ≤ k}.

The norm of the Sobolev space is defined by

‖u‖Wk,p(Ω) :=


∑
|α|≤k ‖∂αu‖Lp 1 ≤ p <∞∑

|α|≤k ess supΩ |∂αu| p =∞,
(1.8)

where the sum is over all multi-indices of order less than or equal k including when

|α| = 0.

Note in the case where k = 1 we have

‖u‖W 1,p(Ω) := ‖u‖Lp +
N∑
i=1
‖uxi‖Lp ,

where, of course, the derivatives are in the distributional sense.

Special case. When p = 2 we use a special notation Hk(Ω) = W k,2(Ω) ( k =
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0, 1, 2, ...). Then the space Hk(Ω) turns out to be a Hilbert space endowed with the

inner product

(u, v) :=
∑
|α|≤k

∫
Ω
∂αu∂αv,

which generates the norm (1.8). Note that when k = 0 then H0 = L2 is a Hilbert

space with the inner product (u, v) =
∫

Ω
uvdx and when k = 1 then H1 is a Hilbert

space with the inner product (u, v) =
∫

Ω
uv + ∂αu · ∂αv.

Remark 1.24. (The completion method) (W k,p(Ω)) Let 1 ≤ k an integer, 1 ≤ p <∞

and let ‖u‖Wk,p(Ω) for u ∈ C∞(Ω) be as defined above. We then let W k,p(Ω) denotes

the completion of C∞(Ω) with respect to this norm.

Definition 1.25. Let un be a sequence of functions in W k,p(Ω) and u ∈ W k,p(Ω).

We say un converges to u in W k,p(Ω) if

lim
n→∞

‖un − u‖Wk,p(Ω) = 0.

Definition 1.26. (Sobolev space W k,p
0 (Ω)) Let 1 ≤ k is an integer, 1 ≤ p <∞ and

let ‖u‖Wk,p(Ω) for u ∈ C∞c (Ω) be as defined above. We then define W k,p
0 (Ω) to be the

completion of C∞c (Ω) with respect to this norm. Thus u ∈ W k,p
0 (Ω) iff there exists a

sequence of functions un ∈ C∞c (Ω) such that limn→∞ ‖un− u‖Wk,p(Ω) = 0. So we can

interpret W k,p
0 (Ω) consisting of those functions u in W k,p(Ω) such that

∂αu = 0 on ∂Ω ∀|α| ≤ k − 1.

When p = 2 we denote Hk
0 (Ω) = W k,2

0 (Ω).

Theorem 1.27. (Sobolev spaces as function spaces) For each k ≥ 1 and 1 ≤ p ≤ ∞,

the Sobolev space W k,p(Ω) is a Banach space with respect to the above norm.
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1.3.1 Sobolev embeddings

There is a class of Sobolev inequalities relating norms including those of Sobolev

spaces. These inequalities are used to prove Sobolev embedding theorem. Sobolev

embedding theorem establishes the relation between different Sobolev spaces. In this

section we will discuss embeddings of various Sobolev spaces into others. See Evans

book (chapter 5 of [13]) for details and proof of the Theorems below.

Theorem 8. (The classical Poincaré inequality) Suppose 1 ≤ p < ∞ and Ω ⊂ RN

is bounded in one direction. Then there exists a constant C(Ω, p) such that

‖u‖Lp ≤ C‖∇u‖Lp ∀u ∈ H1
0 (Ω).

Gagliardo-Nirenberg-Sobolev inequality

Definition 1.28. If 1 ≤ p < N then Sobolev conjugate of p is

p∗ = Np

N − p
.

Also note that
1
p∗

= 1
p
− 1
N
, p∗ > p.

Theorem 9. (Gagliardo-Nirenberg-Sobolev inequality) Suppose u is continuously dif-

ferentiable function with compact support. Assume 1 ≤ p < N . There exists a

constant C, depending only on p and N such that

‖u‖Lp∗ (RN ) ≤ C‖Du‖Lp(RN ) ∀u ∈ C1
c (RN).

Theorem 10. (Estimate for W 1,p, 1 ≤ p < N) Suppose Ω ⊂ RN open, bounded.

Suppose ∂Ω is C1. Assume 1 ≤ p < N and u ∈ W 1,p(Ω). Then u ∈ Lp∗(Ω) with the
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estimate

‖u‖Lp∗ (Ω) ≤ C‖u‖W 1,p(Ω),

C depends only on p,N,Ω.

Theorem 11. (Estimate for W 1,p
0 , 1 ≤ p < N) Ω ⊂ RN open, bounded. Suppose

u ∈ W 1,p
0 then

‖u‖Lq(Ω) ≤ C‖Du‖Lp(Ω),

for each q ∈ [1, p∗]. The constant C depends on p, q,N,Ω.

This inequality is sometimes called Poincaré inequality.

Remark 1.29. • If we consider the borderline case N = 1, then W 1,N ⊆ L∞.

However, when N > 1 this fails.

• The difference between Theorem 10 and 11 is that on Theorem 11 first deriva-

tive of u appears on right hand side. In view of Theorem 11 on W 1,p
0 , ‖Du‖Lp

is equivalent to ‖u‖W 1,p if Ω is bounded. The theorem below shows this for the

case p = 2.

Theorem 12. Suppose Ω is bounded in one direction. Then ‖u‖H1 := ‖u‖L2 +

‖∇u‖L2 (the usual norm on H1
0) and ‖u‖H1

0
:= ‖∇u‖L2 are equivalent norms.

Proof. Normally one introduces H1
0 (Ω) as the closure of C∞c (Ω) with the norm of

H1(Ω). Thus H1
0 inherits the topology of H1 i.e. it is a Hilbert space with the scalar

product given by

(u, u)H1 =
∫

Ω
u · u+

∫
Ω
∇u · ∇u.

So it is indeed make sense to have this scalar product in H1
0 and this one also

canonical one in H1
0 . Now by Poincaré inequality there exists some C > 0 such that

‖∇u‖2
L2 ≤ ‖u‖2

H1 = ‖u‖2
L2 + ‖∇u‖2

L2 ≤ (C + 1)‖∇u‖2
L2 ∀u ∈ H1

0 .
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Hence we define ‖u‖H1
0

:= ‖∇u‖L2 which is equivalent to ‖u‖H1 on H1
0 (Ω). Further

it induces the inner product

(u, u)H1
0

=
∫

Ω
∇u · ∇u ∀u ∈ H1

0 .

Morrey’s inequality

Morrey’s inequality shows that every function in W 1,p(Ω) for p > N has a 1 − N
p

Hölder continuous representative up to a set of measure zero.

Theorem 13. (Morrey’s inequality) Assume N < p ≤ ∞. Then there exists a

constant C(p,N) such that

‖u‖C0,γ(RN ) ≤ C‖u‖W 1,p(RN ) ∀u ∈ C1(RN),

where γ := 1− N
p
.

Definition 1.30. We say u∗ is a version of a given function u provided

u = u∗ a.e.

Theorem 14. (Estimate for W 1,p, N < p ≤ ∞). Ω ⊂ RN open, bounded and

N < p ≤ ∞. Assume ∂Ω is C1 and u ∈ W 1,p(Ω). Then u has a version u∗ ∈ C0,γ(Ω),

for γ = 1− N
p
, with the estimate

‖u∗‖C0,γ(Ω) ≤ C‖u‖W 1,p(Ω),

where the constant C depends on p,N and Ω.

This version of inequality follows from Theorem 13 by applying norm preserving
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extension of W k,p(Ω) to W k,p(RN).

Theorem 15. (General Sobolev inequality) Let Ω ⊂ RN open, bounded with a C1

boundary. Assume u ∈ W k,p then we consider two cases.

• If k < N
p
then u ∈ Lq, where 1

p
− 1

q
= k

N
and we have in addition the estimate

‖u‖Lq ≤ C(k, p,N,Ω)‖u‖Wk,p .

• If k > N
p
then u ∈ Ck−[N

p
]−1,γ(Ω), where

γ =


[N
p

] + 1− N
p

if N
p
is not an integer

any positive number < 1 if N
p
is an integer.

We have in addition the estimate

‖u‖
C
k−[Np ]−1,γ(Ω)

≤ C‖u‖Wk,p(Ω),

the constant C depends on k, p,N,Ω, γ.

Sobolev embedding theorem. Let W k,p(RN) denotes the Sobolev space and

k ≥ 0 an integer, 1 ≤ p < ∞. The first part of the Sobolev embedding theorem

states that if k > l and 1 ≤ p <∞ , 1 ≤ q <∞ are two real numbers such that

1
p
− k

N
= 1
q
− l

N
.

Then

W k,p(RN) ⊆ W l,q(RN).

This embedding is continuous. In the special case k = 1, l = 0 we have W 1,p(RN) ⊆

Lp
∗(RN)(embeddings in other orders on RN are obtained by suitable iteration) which
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is the consequence of Gagliardo-Nirenberg-Sobolev inequality.

The second part of the Sobolev embedding theorem establishes the embedding of

Sobolev space into the Hölder space Cr,γ(RN). If N
p
< k and N

p
− k = −(r+ γ) with

γ ∈ (0, 1] then

W k,p(RN) ⊂ Cr,γ(RN).

This embedding is direct consequence of Morrey’s inequality. This inclusion ex-

presses the fact that the existance of sufficiently many weak derivatives implies some

continuity of the classical derivatives.

Scaling argument

Here we use scaling argument to see these are the best results (at least for the case

p = 2) one can hope for: for N ≥ 3, H1(Ω) ⊂⊂ Lq(Ω) ∀1 ≤ q < 2∗ (compact

embedding) and H1(Ω) ⊆ L2∗(Ω) (continuous but not compact).

Theorem 16. Ω ⊂ RN open, bounded. When q > 2∗, then H1(Ω) is not continuously

embedded into Lq(Ω).

Proof. Assume B1 ⊂ Ω. Fix u ≥ 0 and u ∈ C∞c (B1), u 6≡ 0. For λ > 0 define the

rescaled function

uλ(x) = u(x
λ

).

Then ∇uλ(x) = 1
λ
∇u(x

λ
) . Also uλ ∈ C∞c (Bλ), |xλ | < 1. uλ = 0 when |x| ≥ λ.

Suppose there exists C > 0 such that

‖φ‖Lq(Ω) ≤ C‖∇φ‖L2(Ω) ∀φ ∈ C∞c (Ω). (1.9)

Also we take ∇φ = 0 on ∂B1. Set φ(x) = u(x
λ
). Then ∀ 0 < λ < 1 (we can’t take

λ > 1 since then φ 6= 0 on ∂B1) we have

‖uλ‖Lq(Ω) ≤ C‖∇uλ‖L2(Ω). (1.10)

24



We now estimate both right and left hand side terms of (1.10).

‖uλ‖qLq(Ω) =
∫

Ω
|u(x

λ
)|qdx

= λN
∫
|y|<1
|u(y)|qdy

= λN‖u‖qLq(B1),

and

‖∇uλ‖2
L2(Ω) =

∫
Ω
|1
λ
∇u(x

λ
)|2dx

= λN−2
∫
|y|<1
|∇u(y)|2dy

= λN−2‖∇u(y)‖2
L2(B1),

Writing out (1.10) gives

‖u‖Lq(B1) ≤ Cλ
N−2

2 −
N
q ‖∇u‖L2(B1). (1.11)

Now we can send λ to 0 or 1. By sending λ to 0, inequality (1.9) to hold we must

need N−2
2 −

N
q
≤ 0. That is q ≤ 2N

N−2 = p∗.

The same proof works when domain is RN until we get inequality (1.11) and then

since we are considering the whole region we can think of u in a large ball and we can

send λ to 0 or ∞. So in this case to hold the inequality (1.9), forall u ∈ C∞c (RN),

we must need q = p∗.

Scaling to see feasibility of Hölder embedding

Suppose Ω ⊂ RN open, bounded and N < p <∞. Then W 1,p(Ω) ⊂ C0,1−N
p (Ω). We

use scaling to see the exponent γ := 1− N
p
is the correct exponent.

Assume W 1,p(Ω) ⊂ C0,γ(Ω) for some 0 < γ < 1. Let B1 ⊂ Ω and 0 ≤ u ∈ C∞c (B1).
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Put

uλ(x) = u(x
λ

),

for 0 < λ < 1. Suppose there exists a constant C > 0 such that

‖φ‖C0,γ ≤ C‖∇φ‖Lp ∀φ ∈ C∞c (Ω).

Then for all 0 < λ < 1 we have

‖uλ‖C0,γ ≤ C‖∇uλ‖Lp . (1.12)

Now using the similar way we did before we get from the right side term

‖∇uλ‖Lp(Ω) = λ
N−p
p ‖∇u‖Lp(Ω).

and the left term gives

‖uλ‖C0,γ = ‖uλ‖L∞ + sup
x,y∈Ω

|u(x)− u(y)|
|x− y|γ

= ‖uλ‖L∞ + sup
x,y∈Ω

|u(x
λ
)− u( y

λ
)|

|x− y|γ

= ‖uλ‖L∞ + sup
x,y∈Bλ

|u(x
λ
)− u( y

λ
)|

|x− y|γ

= ‖uλ‖L∞ + sup
x̂,ŷ∈B1

|u(x̂)− u(ŷ)|
λγ|x̂− ŷ|γ

= 1
λγ

[uλ]γ.

So we are assuming there exists C > 0 such that

1
λγ

[φ]γ ≤ C‖∇φ‖Lp ∀φ ∈ C∞c (Ω)
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and
1
λγ

[u]γ ≤ C‖∇u‖Lp .

So writting out (1.12) gives

sup
x,y∈Ω

|u(x)− u(y)|
λγ|x− y|γ

≤ Cλ
N−p
p ‖∇u‖Lp(Ω),

which implies we must need γ ≤ p−N
p
.

1.3.2 Dual space of Sobolev space

Consider the Hilbert space H1
0 (Ω) with inner product

(u, v) :=
∫

Ω
∇u · ∇vdx.

Now suppose f is some smooth function which is zero on ∂Ω. We want to view f as

an element in the dual of H1
0 and so we need to specify how it acts on φ ∈ H1

0 , i.e.

we need to define (f, φ). There are two obvious ways to do this:

1.

(f, φ) :=
∫

Ω
∇f · ∇φdx = (f, φ) = (f, φ)H1

0

which is the way one would do it if they are thinking of Riesz representation

in H1
0 .

2. The other option would be to define

(f, φ) :=
∫

Ω
f(x)φ(x)dx

i.e. using Riesz on L2 and not on H1
0 .

27



What functions are in (H1
0 (Ω))∗ := H−1(Ω)?

To be more precise, let f(x) be a function defined on Ω and define Tf (the distribu-

tion) by (Tf , φ) :=
∫

Ω
f(x)φ(x)dx. When is Tf ∈ H−1. We give a partial answer in

terms of Lp spaces.

|(Tf , φ)| = |
∫

Ω
f(x)φ(x)dx| ≤ ‖f‖

L2∗′ ‖φ‖L2∗ ≤ ‖f‖
L2∗′C(Ω)‖∇φ‖L2 ,

after using Hölders inequality and the Sobolev imbedding theorem. So we need

f ∈ L2∗′ for Tf ∈ H−1; and doing the computation shows we need f ∈ L
2N
N+2 . So we

can write this in symbols by

L
2N
N+2 ⊂ H−1.

Another way to see this is to recall that H1
0 ⊂ L2∗ and hence, symbolically we have

(L2∗)∗ ⊂ (H1
0 )∗ := H−1.

1.3.3 Weak solution of Dirichlet problem

Consider the Dirichlet problem


−∆u = f(x) Ω

u = 0 ∂Ω.
(1.13)

f(x) is some function and Ω ⊂ RN is a smooth bounded domain.

Suppose u(x) is a smooth solution of (1.13). Multiply (1.13) by smooth test function

φ which is zero on the boundary we get

∫
Ω
∇u · ∇φ =

∫
Ω
fφ,
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after considering the fact that φ = 0 on ∂Ω.

Definition 1.31. (Weak solution; H1
0 (Ω)) We say u ∈ H1

0 is weak solution of (1.13)

provided ∫
Ω
∇u · ∇φ =

∫
Ω
fφ ∀φ ∈ H1

0 (Ω).

Remark 1.32. (Boundary condition) Note that in the Dirichlet problem that the

boundary u = 0 is obtained from the fact that u ∈ H1
0 (i.e. the boundary condition

is imposed by the function space).

Theorem 17. (Existance of weak solution of (1.13)) Suppose Ω is a bounded domain

in RN . Let f(x) be a function with f ∈ H−1 (i.e. Tf ∈ H−1). Then there is a unique

u ∈ H1
0 (Ω) which satisfies (1.13).

Proof. Consider the pde (1.13). Since f ∈ H−1 there exists a unique u ∈ H1
0 (by

Riesz) such that (u, φ) = (f, φ) for all φ ∈ H1
0 (as above (u, φ) is the inner product

on H1
0 ). But this is precisely the definition of a weak solution.

Weak solution of more general symmetric Dirichlet problems

Here we consider the more general versions of the Dirichlet problems given by


−∆u+ a(x)u = f(x) Ω

u = 0 ∂Ω,
(1.14)

where f(x) is some function, Ω ⊂ RN is a smooth bounded set. We assume a(x) ≥ 0

is smooth and bounded.

Definition 1.33. u ∈ H1
0 is a weak solution of (1.14) provided

∫
Ω
∇u · ∇φ+

∫
Ω
a(x)uφ =

∫
Ω
fφ ∀φ ∈ H1

0 (Ω).

Theorem 18. (Existence of weak solutions of (1.14) .
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Proof. One uses the exact same proof but instead of using the inner product (u, φ) =∫
Ω
∇u · ∇φ on H1

0 one uses the inner product

(u, φ)a(x) :=
∫

Ω
∇u · ∇φ+

∫
Ω
a(x)uφ.

H1
0 is infact a complete space under this inner product and we want to show that

the norm induced by a is equivalent to H1
0 norm. So we show there is some C > 0

such that

C‖∇φ‖L2 ≤ ‖φ‖a ≤
1
C
‖∇φ‖L2 ∀φ ∈ H1

0 (Ω).

It’s enough to prove it for φ ∈ C∞c (Ω). Clearly ‖∇φ‖L2 ≤ ‖φ‖a since a(x) ≥ 0. For

the other direction

‖φ‖2
a =

∫
Ω
|∇φ|2dx+

∫
Ω
a(x)φ2dx

≤
∫

Ω
|∇φ|2dx+ ‖a‖L∞

∫
Ω
φ2dx

≤
∫

Ω
|∇φ|2dx+ ‖a‖L

∞

λ1

∫
Ω
|∇φ|2dx

=
(

1 + ‖a‖L
∞

λ1

)
‖∇φ‖2

L2 ,

where λ1 = λ1(−∆,Ω) is the first eigenvalue of −∆ in H1
0 (Ω).

1.4 Regularity and Weak solution

Some specific partial differential equation (Laplace equation) can be solved in a

classical sense but most of the pde cannot be solved in a classical way. For those

kind of pde’s it’s wise to first try to find a weak or generalized solution. Because

at the outset if we require our solution is classical or smooth enough then we would

have very hard time finding them as our proof must then necessarily include possibly

intricate demonstrations that the function we are building are infact smooth enough.

30



So it is often convenient to aim at proving well-posedness (well posedness of a pde

means the problem has infact a solution, the solution is unique and the solution

depends continuously on the data given in the problem) in some appropriate class

of weak solution. For various pde’s this is the best can be done. For other equations

we can hope that our weak solutions may turn out afterall to be smooth enough

to qualify as a classical solution. This leads to the question of regularity of weak

solution.

Regularity Theory

Consider the Dirichlet problem


−∆u = f(x) Ω

u = 0 ∂Ω,
(1.15)

where Ω is a smooth bounded domain in RN and where f ∈ H−1. Then we know

there exists a unique solution u ∈ H1
0 .

Theorem 19. (Regularity results)

1. (L2 regularity theory) If f ∈ Hk(Ω) (k ≥ 0 an integer; H0 := L2) then u ∈

Hk+2(Ω). In particular if f ∈ L2 then u ∈ H2 and one has the estimate

‖u‖Hk+2 ≤ C(Ω, k)‖f‖Hk .

2. (Lp regularity theory). If f ∈ Lp(Ω) where 1 < p < ∞ then u ∈ W 2,p(Ω).

Moreover there is some C = C(p,Ω) such that

‖u‖W 2,p ≤ C(p,Ω)‖f‖Lp .

Remark 1.34. This result still holds if Lp is not a subset of H−1 (i.e. if p to
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close to 1), but then u is not an H1
0 solution and one uses a weaker notion of

a solution.

3. (Hölder space regularity) If f ∈ C0,α(Ω) where 0 < α < 1 then u ∈ C2,α(Ω).

More over there is some C(α,Ω) such that

‖u‖C2,α ≤ C(α,Ω)‖f‖C0,α .

4. Suppose u ∈ H1
0 (Ω) is a weak solution of −∆u+C(x)u = f(x) in Ω, and u = 0

on ∂Ω. If f, C ∈ Lp(Ω) where p > N
2 then u ∈ L∞(Ω). If p = N

2 the result

fails.

The above regularity results are referred to as “boundary regularity results” since

we are obtaining regularity results on the solution u over the full space Ω (i.e. all

the way to the boundary). These results are much harder to prove than “interior

regularity results”. See chapter 6 of [13]. An example of an interior regularity L2

result would be an apriori estimates where we assume u, f sufficiently smooth to

perform calculations and we obtain some estimates.

Apriori estimates 
−∆u = f(x) Ω,

u = 0 ∂Ω,
(1.16)

where Ω a smooth bounded domain in RN .

Theorem 20. (Interior H2 estimate) Suppose u is a smooth solution of (1.16) and

Ω0 ⊂⊂ Ω. Then there is some C = C(Ω0) such that

‖u‖H2(Ω0) ≤ C(Ω0)‖f‖L2(Ω).
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Proof. Let Ω0 ⊂⊂ Ω and let 0 ≤ φ ≤ 1 be a smooth cut-off function which is

supported in Ω and which is 1 on Ω0. Take a derivative of (1.15) to obtain −∆uxk =

fxk . Now multiply this by uxkφ2 and integrate by parts to obtain

∫
|∇uxk |2φ2 =

∫
fxkuxkφ

2 − 2
∫
∇uxkuxkφ∇φ (1.17)

and then note we have

∫
fxkuxkφ

2 = −
∫
fuxkxkφ

2 − 2
∫
fuxkφφxk

and then by Young’s inequality we obtain

∫
fxkuxkφ

2 ≤ −
∫
fuxkxkφ

2 + 2ε
∫
u2
xk
φ2 + 1

2ε

∫
f 2φ2

xk

and summing in k from 1 to N gives

N∑
k=1

∫
fxkuxkφ

2 ≤
∫
f 2φ2 + 2ε

∫
|∇u|2φ2 + 1

2ε

∫
f 2|∇φ|2.

Also

−2
∫
∇uxkuxkφ∇φ ≤ 2

∫
|∇uxk |φ|uxk ||∇φ|

≤ 2ε
∫
|∇uxk |2φ2 + 1

2ε

∫
|uxk |2|∇φ|2

and then we sum in k in (1.17) to see

(1− 2ε)
∫
|D2u|2φ2 ≤

∫
f 2φ2 + 1

2ε

∫
f 2|∇φ|2

+2ε
∫
|∇u|2φ2 + 1

2ε

∫
|∇u|2|∇φ|2.
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Fix 0 < ε < 1
4 and then there is some C = C(Ω0) such that

∫
Ω0
|D2u|2 ≤ C

∫
Ω
f 2 + C

∫
Ω
|∇u|2.

Using the pde we get

‖∇u‖L2 ≤ C1(Ω)‖f‖L2 over Ω. (1.18)

By combining with the previous estimate we get

∫
Ω0
|D2u|2 ≤ C3

∫
Ω
f 2.

Weaker notions of solution

Definition 1.35. (Distance function δ(x) := dist(x, ∂Ω).) For Ω a bounded open

set in RN we define

δ(x) := inf
y∈∂Ω
|y − x| = min

y∈∂Ω
|y − x|.

Consider a smooth solution u of (1.13) and multiply the pde by φ ∈ C∞(Ω) with

φ = 0 on ∂Ω. So we have

∫
Ω
fφ =

∫
Ω

(−∆u)φ

=
∫

Ω
∇u · ∇φ−

∫
∂Ω
φ∂νu

=
∫

Ω
∇u · ∇φ

=
∫

Ω
(−∆φ)u+

∫
∂Ω
u∂νφ

=
∫

Ω
(−∆φ)u.
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Definition 1.36. Set X := {φ ∈ C∞(Ω) : φ = 0 ∂Ω}. We say u ∈ L1(Ω) is a very

weak solution of (1.13) provided

∫
Ω

(−∆φ)u =
∫

Ω
fφ ∀φ ∈ X.

Remark 1.37. • Note this definition of a very weak solution is almost the distri-

butional definition other than the fact that out test functions are not compactly

supported. It should be noted that this definition actually encodes u = 0 on ∂Ω

into the definition. For instance suppose u ∈ C2(Ω) and satisfies the above no-

tion of a weak solution (No assumtions on the value of u on ∂Ω) then actually

u = 0 on ∂Ω.

Definition 1.38. (Weaker than L1 solution) We call u an ultra weak solution of

(1.13) if δu, δf ∈ L1(Ω) and

∫
Ω

(−∆φ)u =
∫

Ω
fφ ∀φ ∈ X,

where δ(x) := dist(x, ∂Ω) and X := {φ ∈ C∞(Ω) : φ = 0 ∂Ω}.

Theorem 21. (Existence and regularity of very weak solutions; f ∈ L1(Ω)). Let

f ∈ L1(Ω). Then there exists a very weak solution u of (1.13) and u ∈ Lp for all

1 ≤ p < N
N−2 .

1.5 Stability and variation of Energy

A system is in a stable state if it recovers from perturbations, a small change will

not affect the system to return to equilibrium. Energy of a system is a quantity that

the system tends to minimize that varies with respect to a physical parameter. The

energy that lies inside the neighbourhood of a local minimum of energy unable to
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convert to another type of energy and this state is called stable state of the system.

For elaborate discussion in stability analysis of solution see [10].

Definition 1.39. Suppose g : R → R is a smooth energy function of class C2. A

point t0 ∈ R is called a stable critical point of g if g′(t0) = 0 and g′′(t0) ≥ 0.

Here we are going to discuss stable state of a pde by looking at the variation of

energy associated to it.

Theorem 22. Consider


−∆u = f(u) Ω

u = 0 ∂Ω.
(1.19)

Consider the energy given by

E(u) = 1
2

∫
Ω
|∇u|2dx−

∫
Ω
F (u)dx ∀u ∈ X,

where X = {u ∈ C2(Ω)|u = 0 on ∂Ω} and F : R→ R is a class of C2 function which

is antiderivative of the given function f ∈ C1. Suppose there is some u ∈ X such

that

E(u) = minv∈XE(v).

Then the minimizer u satisfies (1.19).

Proof. Fix u ∈ X. We study the variation of the energy E along a given direction

φ ∈ X \ {0}, that is, we consider the function g : R→ R defined for t ∈ R by

g(t) := E(u+ tφ),

where u + tφ ∈ X. Since E is minimized at u so g′(0) = 0 i.e. 0 is a stable critical

point of g. So first we calculate the difference quotient of g at 0 and then we will
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pass to the limit as t→ 0.

g(t)− g(0)
t

=
∫

Ω
∇u∇φdx+ t

2

∫
Ω
|∇φ|2dx−

∫
Ω

F (u+ tφ)− F (u)
t

dx. (1.20)

Taking |t| ≤ 1 and writting b = ‖u‖L∞ + ‖φ‖L∞ , from the mean value theorem we

get F (u+tφ)−F (u)
tφ

= F ′(c) = f(c), where c ∈ (u, u+ tφ) which implies

|F (u+ tφ)− F (u)
tφ

| = |f(c)| ≤ ‖f‖L∞[−b,b].

Now by Dominated Convergence Theorem we can pass to the limit in (1.20) as t→ 0

such that g′(0) = E ′(u) = 0 if and only if

∫
Ω
∇u∇φdx =

∫
Ω
F ′(u)φdx =

∫
Ω
f(u)φdx.

Integration by parts gives

∫
Ω

(−∆u− f(u))φdx = 0.

Since this is true for arbitrary φ ∈ X so we can conclude u solves


−∆u = f(u) Ω

u = 0 ∂Ω.

u = 0 on ∂Ω is coming from function space.

We have shown minimizer u solves the pde. This holds in particular if u is a

critical point of E(u) and the condition for the solution u to be stable we require
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g′′(0) ≥ 0. So first we compute the difference quotient,

g′(t)− g′(0)
t

= DE(u+ tφ) · φ
t

= 1
t

∫
Ω
∇u∇φdx+

∫
Ω
|∇φ|2dx−

∫
Ω

f(u+ tφ)
t

φdx

=
∫

Ω
|∇φ|2dx−

∫
Ω

f(u+ tφ)− f(u)
t

φdx.

By Dominated Convergence Theorem g′′(0) =
∫

Ω
|∇φ|2dx −

∫
Ω
f ′(u)φ2dx. So we

deduce the following definition:

Definition 1.40. Let f ∈ C1(R) and Ω ∈ RN is open, bounded. A solution u ∈

C2(Ω) of (1.19) is stable if

∫
Ω
|∇φ|2dx ≥

∫
Ω
f ′(u)φ2dx ∀φ ∈ C1

c (Ω). (1.21)

Equation (1.21) is called the second variation of the energy functional associated

with the pde at u.

Remark 1.41. By using density argument and Levi’s theorem the above inequality

holds for all φ ∈ H1
0 (Ω) i.e.

∫
Ω
|∇φ|2dx ≥

∫
Ω
f ′(u)φ2dx ∀φ ∈ H1

0 (Ω).

Linearized stability

Suppose Ω is a smooth bounded domain. Consider


−∆u = f(u) Ω

u = 0 ∂Ω.
(1.22)
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Suppose u is a classical solution of (1.22). Consider the linearized operator

L(φ) := −∆φ− f ′(u)φ.

Since L is self adjoint there is variational characterization of the eigenvalues.

Assume the linearized operator has eigenvalues which are ordered 0 < λ1 < λ2 ≤

.... ≤ λk and λk →∞ as k →∞. The first eigenvalue λ1 is simple and occurs at say

0 < φ1 ∈ H1
0 such that L(φ1) = λ1φ1 and

λ1 = min


∫

Ω
|∇φ|2 − f ′(u)φ2dx∫

Ω
φ2dx

: φ ∈ H1
0 (Ω)\{0}

 .

The 2nd eigenvalue λ2 will occur let say at φ2 and this φ2 will minimize the Rayleigh’s

quotient such that

λ2 = min


∫

Ω
|∇φ|2 − f ′(u)φ2dx∫

Ω
φ2dx

: φ ∈ H1
0 (Ω)\{0},

∫
Ω
φφ1 = 0

 ,

and L(φ2) = λ2φ2. The kth eigenvalue λk will occur let say at φk and

λk = min
φ∈Hk−1


∫

Ω
|∇φ|2 − f ′(u)φ2dx∫

Ω
φ2dx

: φ ∈ H1
0 (Ω)\{0}

 ,

where Hk−1 = {φ ∈ H1
0 : (φ, φj) =

∫
Ω
φφj = 0, j = 1, ...., k − 1}. Then L(φk) =

λkφk. We define the Morse index of u as the number of negative eigenvalues of L. If

λk ≥ 0 then we say u is semistable and if λk > 0 we say u is a stable solution.

We call λ1 the principal eigenvalue of L. The theorem below shows the variational

principal for the principal eigenvalue.
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Theorem 23. (Principal eigenvalue) Define

E(φ) :=

∫
Ω
|∇φ|2 − f ′(u)φ2dx∫

Ω
φ2dx

.

The smallest eigenvalue λ1 is simple and

λ1 = min
φ∈H1

0\{0}
E(φ).

This minimum is obtained at say φ1 > 0 and φ1 satisfies


L(φ1) = λ1φ1 Ω

φ1 = 0 ∂Ω.

Proof. Suppose φ1 ∈ H1
0 is the minimizer of E(φ) that is

E(φ1) = min
φ∈H1

0

E(φ).

Fix ψ ∈ H1
0 and note φ + tψ ∈ H1

0 for all t > 0. We consider a function g : R → R

such that

g(t) = E(φ1 + tψ).

Since φ1 minimizes E(φ), so g must satisfy g′(0) = 0. By taking the derivative of

g(t) and by setting g′(t)|t=0 we get

g′(0) =

∫
Ω
φ2

1dx ·
[∫

Ω
2|∇φ1||∇ψ|dx−

∫
Ω

2φ1ψf
′(u)dx

]
−
[∫

Ω
|∇φ1|2 − f ′(u)φ2

1dx
]
·
∫

Ω
2φ1ψdx

[
∫

Ω
φ2

1dx]2
.

Now g′(0) = 0 implies

[∫
Ω

(−∆φ1)−
∫

Ω
φ1f

′(u)−
∫

Ω
λ1φ1

]
ψdx = 0.
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Since this is true forall ψ ∈ H1
0 , so we conclude that


L(φ1) = λ1φ1 Ω

φ1 = 0 ∂Ω.

The boundary condition is coming from the function space.
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2

A Nonlinear Eigenvalue problem

2.1 Existence of Stable Minimal solution

Consider

(P )λ


−∆u = λf(u) in Ω

u = 0 on ∂Ω,
(2.1)

where f satisfies

(A) smooth, increasing, convex, f(0) = 1 and superlinear at ∞, (i.e. lim
t→∞

f(t)
t

=∞).

Here Ω a bounded domain in RN and λ > 0 is a parameter.

Definition 2.1. We say a solution u of (P )λ is minimal provided any other solution

v of (P )λ satisfies u ≤ v a.e. in Ω.

Lemma 2.2. (Sub/Supersolution approach to (1.22)) Suppose there is some u, u

smooth such that u ≤ 0, u ≥ 0 on ∂Ω and

−∆u ≤ f(u) Ω,

−∆u ≥ f(u) Ω.
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In addition, assume f is smooth and increasing on R and u ≤ u in Ω. Then there

is some smooth u such that u ≤ u ≤ u in Ω and u is a solution of (1.22).

Proof. One uses an iteration argument to find an increasing sequence of functions.

Define u0 := u and define un+1 by


−∆un+1 = f(un) in Ω

un+1 = 0 on ∂Ω,
(2.2)

for n ≥ 0 (note that at each stage we are solving a linear equation). f is increasing

so note that 
−∆u1 = f(u) in Ω

u1 = 0 on ∂Ω,

and 
−∆(u1 − u) ≥ f(u)− f(u) = 0 in Ω

u1 − u ≥ 0 on ∂Ω,

and so by maximum principle 0 ≤ u1 − u = u1 − u0. Now note that


−∆(u2 − u1) = f(u1)− f(u0) in Ω

u2 − u1 = 0 on ∂Ω,

and since u1 ≥ u0 and since f increasing we have f(u1) − f(u0) ≥ 0 in Ω. So by

maximum principle we have u2 ≥ u1. One can continue on like this to show that

u0 ≤ u1 ≤ u2 ≤ u3 ≤ ...... in Ω.

We now show these are all bounded above by u. First note that


−∆(u− u1) ≥ f(u)− f(u0) in Ω

u− u1 ≥ 0 on ∂Ω,

and since f is increasing and by assumption we have f(u)−f(u0) = f(u)−f(u) ≥ 0

in Ω. So the maximum principle shows that u1 ≤ u. We continue on with the
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iteration to show that uk ≤ u for all k. So uk is an increasing sequence bounded

above by u. So it has a pointwise limit, say u(x) := limn→∞ un+1(x). So we just

need to pass to the limit in the equation. There are various ways we can try and do

that. The easiest will be to show that u is a ‘very weak solution’ of the associated

pde. Multiply (2.2) by φ ∈ C2(Ω), φ = 0 on ∂Ω and by using Green’s formula we

get ∫
Ω
−∆φun+1 =

∫
Ω
f(un)φ.

Then by Dominated Convergence Theorem

∫
Ω
−∆φu =

∫
Ω
f(u)φ.

Instead lets try for a bit more. Recall that un+1 is a classical solution of−∆un+1 =

f(un) in Ω with zero Dirichlet boundary conditions and uk(x)↗ u(x) pointwise. We

first show that un+1 ∈ C1,α for some fixed 0 < α < 1. Fix N < p < ∞ big enough

such that W 2,p ⊂ C1,α. Then for n > m we have

−∆(un+1 − um+1) = f(un)− f(um).

But we have f(uk) is Cauchy in Lp by dominated convergence. Hence {un+1}n is

Cauchy inW 2,p and hence Cauchy in C1,α. But then {f(un)}n is Cauchy in C0,α and

hence un+1 is Cauchy in C2,α. This is enough to pass to the limit in the equation.

Note if f wasn’t smooth we couldn’t do the last step but we could still pass to the

limit in the definition of a weak solution.

Theorem 24. Let f,Ω be as above.

1. There exists some λ∗ ∈ (0,∞) (the extremal parameter) such that for all 0 <

λ < λ∗ there exists a smooth solution u of (P )λ. For all λ > λ∗ there are no
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smooth solutions of (P )λ.

2. For all 0 < λ < λ∗ there exists a smooth minimal solution uλ of (P )λ. For all

x ∈ Ω, one has that uλ(x) is increasing in λ on (0, λ∗).

3. For all 0 < λ < λ∗ the minimal solution is stable.

4. Define u∗(x) := limλ↗λ∗ uλ(x) (well defined by monotonicity except possibly

infinite). Then u∗ (which we call the extremal solution) is a weak solution of

(P )λ∗ and is the unique ultra weak solution of (P )λ∗.

Proof. 1. Define

λ∗ := sup {0 ≤ λ : (P )λ has a smooth solution} .

First we will prove λ∗ is finite. Let λ1 is the first eigenvalue of the operator

−∆ that occurs at say 0 < φ ∈ H1
0 i.e. −∆φ = λ1φ . Let u be smooth solution

of (P )λ. Multiply (P )λ by φ and integrate by parts to get

∫
Ω

(λf(u)− λ1u)φ(x)dx = 0.

Now since φ > 0 there exists x ∈ Ω such that

λf(u(x))− λ1u(x) ≤ 0 =⇒ λ ≤ λ1u(x)
f(u(x)) . (2.3)

Since λf(u(x)) ≥ 0 in Ω, so from (2.1) by maximum principle u(x) ≥ 0 in Ω.

So there exists some x̂ ∈ Ω such that u(x̂) ≥ 0 such that λf(u(x̂))−λ1u(x̂) = 0.

So by using (2.3) we get

λ = λ1u(x̂)
f(u(x̂)) ≤ λ1

u(x)
f(u(x)) ≤ λ1 sup

x∈Ω

u(x)
f(u(x)) ≤ λ1 sup

t≥0

t

f(t) .
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Hence λ∗ ≤ λ1 ∗ Cf < ∞ by considering the fact that the upper bound of λ

depends on f (f is superlinear at ∞).

By sub/supersolution approach we now show that λ∗ > 0. Clearly u = 0 is

a subsolution. We just need to find a supersolution u ≥ 0. Let −∆u = 1 in

Ω with u = 0 on ∂Ω. Then u > 0 in Ω and let M := maxΩ u. Then u a

supersolution provided 1 ≥ λf(u) in Ω and it is sufficient that 1 ≥ λf(M).

But taking λ > 0 small enough ensures this.

Now we will show for all λ ∈ (0, λ∗) there exists a smooth solution. Fix

0 < λ < λ∗ and let λ ≤ t ≤ λ∗ such that v is a smooth solution of (P )t (this

exists by the definition of λ∗ and supremum). Then to solve (P )λ we apply

the sub/supersolution lemma with u = 0 and u = v to find a smooth solution

0 ≤ u ≤ v in Ω of (P )λ. Let’s check that smooth solution u := v of (P )t is

indeed a supersolution for (P )λ. Its nonnegative on ∂Ω and


−∆v = tf(v) ≥ λf(u) Ω

v ≥ 0 ∂Ω.

So it is a supersolution. For λ > λ∗ there is no smooth solution by definition.

2. To construct the minimal solution uλ we basically did this in the previous part

when showing existence. Let 0 < λ < λ∗ and set u = 0. As before there is

some λ < γ ≤ λ∗ and some smooth solution v of (P )λ. So we use the iteration

procedure from Lemma 1 with u = 0 and u = v. Define uλ(x) := limn un+1(x),

where we are using the notation from Lemma 1. We now show that uλ is

minimal. The first thing to note is that we used the existence of a supersolution

u to prove the limit uλ exists. But the limit does not depend on u. So suppose

v is a solution of (P )λ. Then v ≥ 0 by the maximum principle and so we can

apply the iteration procedure again with u = v to see that uk ≤ v,∀k ≥ 0 and
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hence we will have uk ≤ uk+1 in Ω and by passing to the limit uλ ≤ v in Ω.

We now show the minimal solutions are increasing in λ. Let 0 < λ < λ∗ and

let ε > 0 be small enough such that λ + ε < λ∗. Then uλ+ε is a supersolution

of (P )λ. To check that first we write out the pde for uλ+ε,


−∆uλ+ε = (λ+ ε)f(uλ+ε) in Ω

uλ+ε = 0 on ∂Ω.

Since f is positive and ε > 0 we get


−∆uλ+ε ≥ λf(uλ+ε) in Ω

uλ+ε = 0 on ∂Ω.

So uλ+ε is supersolution. Now we do the induction procedure by taking u = 0

and u = uλ+ε to have uλ ≤ uλ+ε. To see that it is increasing (and not just

non-decreasing) note that

−∆(uλ+ε−uλ) = (λ+ε)f(uλ+ε)−λf(uλ) = λ[f(uλ+ε−f(uλ)]+εf(uλ+ε) > 0 in Ω,

since uλ+ε ≥ uλ, f is increasing, positive on [0,∞) and f(0) = 1. By strong

maximum principle uλ+ε > uλ. This means if ∂λuλ(x) exists then ∂λuλ(x) > 0.

To show ∂λuλ(x) > 0 note first that the minimal solution uλ satisfies (2.1) and

taking a derivative in λ gives


−∆∂λuλ − λf ′(uλ)∂λuλ = f(uλ) Ω

∂λuλ = 0 ∂Ω.
(2.4)

Put ∂λuλ = v. f is positive and increasing, we get −∆v − λf ′(uλ)v > 0. By

maximum principle v ≥ 0 and by strong maximum principle v > 0.
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3. To prove minimal solution is stable we need to prove the first eigenvalue of

the linearized operator L := −∆− λf ′(uλ) is positive. We can prove it in two

different ways:

• (First approach) Recall ∂λuλ = v > 0 in Ω. For any ψ ∈ C∞c (Ω) (test

function) multiply both sides of (2.4) by ψ2

v
and integrate on both sides

we get

∫
Ω
f(uλ)

ψ2

v
=
∫

Ω
−∆vψ

2

v
−
∫

Ω
λf ′(uλ)v

ψ2

v

=
∫

Ω
(−∆v)ψ2v−1 −

∫
Ω
λf ′(uλ)ψ2

=
∫

Ω
∇v · ∇(ψ2v−1)−

∫
Ω
λf ′(uλ)ψ2

=
∫

Ω
∇v ·

[
2ψ∇ψ
v
− ψ2∇v

v2

]
−
∫

Ω
λf ′(uλ)ψ2

≤ 2
∫

Ω

|∇v| |ψ|
v

|∇ψ| −
∫

Ω

ψ2 |∇v|2

v2 −
∫

Ω
λf ′(uλ)ψ2

≤ 2
[

1
2

∫
Ω

ψ2 |∇v|2

v2 + 1
2

∫
Ω

∣∣∣∇ψ2
∣∣∣]− ∫

Ω

ψ2 |∇v|2

v2 −
∫

Ω
λf ′(uλ)ψ2

=
∫

Ω
|∇ψ|2 −

∫
Ω
λf ′(uλ)ψ2,

which implies
∫

Ω
|∇ψ|2−

∫
Ω
λf ′(uλ)ψ2 ≥ 0. Hence minimal solution uλ is

stable ∀λ ∈ (0, λ∗).

• (Second approach) Let φ > 0 be the first eigenfunction and µ is the first

eigenvalue such that L(φ) = µφ and φ satisfies


−∆φ− λf ′(uλ)φ = µφ Ω

φ = 0 ∂Ω.
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Multiply both sides of L(v) = f by φ and integrate by parts,

∫
Ω
fφ =

∫
Ω
L(v)φ

=
∫

Ω
vL(φ)

=
∫

Ω
v[µφ]

= µ
∫

Ω
vφ.

Hence µ > 0.

4. For the regularity of extremal solution see Theorem 26 and for the uniqueness

see Section 2.3.

2.2 Regularity of Extremal solution

Extremal solution is so called the limit of minimal solution (limλ↗λ∗ uλ = u∗). The

extremal solution can be either classical or singular. It’s regularity strongly depends

on domain Ω, nonlinearity f and dimension N .

Theorem 25. (Crandall and Rabinowitz) Assume f(u) = eu and N ≤ 9 then the

extremal solution associated with (P )λ is smooth.

Idea: To obtain the regularity of u∗ we first establish an uniform W 2,p bound

on uλ that is independent of λ. Then we want to pass to the limit to the minimal

solution as λ↗ λ∗ to obtain the same regularity of u∗.

Proof. Let λ∗

2 ≤ λ < λ∗ and u = uλ denotes the minimal solution for (P )λ. By

stability u must satisfies the condition,

∫
Ω
|∇φ|2 ≥ λ

∫
Ω
euφ2 ∀φ ∈ H1

0 . (2.5)
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Take φ = etu − 1 (t > 0 we can choose later) which is a smooth function and 0 on

the boundary. Substitute φ in (2.5) we get

λ
∫
eu(etu − 1)2 ≤ t2

∫
e2tu|∇u|2. (2.6)

Now the idea is to multiply the equation by an appropriate function and integrate

by parts so we get exactly the right hand side of the above inequality; this procedure

we call “closing the estimate”. Multiply (P )λ by e2tu − 1 and integrate by parts to

get

∫
λeu(e2tu − 1) =

∫
(−∆u)(e2tu − 1)

=
∫

Ω
∇u · ∇(e2tu − 1)−

∫
∂Ω

(e2tu − 1)∂νu

=
∫

Ω
∇u · 2te2tu · ∇u− 0

= 2t
∫
e2tu|∇u|2. (2.7)

The right hand side of (2.7) almost same as the right hand side of (2.6). By combining

(2.6) and (2.7) we get

λ
∫
eu(etu − 1)2 ≤ λt

2

∫
eu(e2tu − 1).

By expanding, regrouping and dropping a positive term we get

(1− t

2)
∫

Ω
e(2t+1)udx ≤ 2

∫
Ω
e(t+1)udx

= 2
∫

Ω
1 · e(t+1)udx

≤ 2
(∫

Ω
eτ(t+1)udx

) 1
τ
(∫

Ω
1τ ′dx

) 1
τ ′

= 2
(∫

Ω
e(2t+1)udx

) 1
τ

|Ω| 1
τ ′ .

50



Here we used Hölder inequality on the right side. we took τ such that τ(t+1) = 2t+1

and τ ′ denotes its conjugate. We now fix t < 2 but close and we get

∫
e(2t+1)u ≤ (1− t

2)−τ ′2τ ′ |Ω|,

where τ ′ − τ ′

τ
= 1. So for all 0 < t < 2 there is some Ct > 0 (independent of λ) such

that for all λ∗2 ≤ λ < λ∗ we have the bound,

∫
Ω
e(2t+1)uλdx ≤ Ct.

Now note that since we can take any t < 2 and since −∆uλ = λeuλ we obtain a

uniform (in λ) W 2,p bound on uλ for any p < 5. This shows that (independent

on the dimension N) that u∗ ∈ W 2,p for all p < 5 (we are omitting the limiting

procedure here). Now note that if N ≤ 9 that W 2,p ⊂ L∞ provided p is chosen close

enough to 5. So we see that for N ≤ 9 that u∗ is bounded and hence smooth.

Regularity of the Extremal solution on general domains

Lemma 2.3. Let f satisfies (A). Then there is some C > 0 such that

∫
Ω
f(u∗)f ′(u∗)dx ≤ C. (2.8)

Proof. We start the proof by defining H(t) :=
∫ t

0
[f(τ)− 1]f ′′(τ) dτ for any number

t > 0. Then

H ′(t) = [f(t)− 1]f ′′(t). (2.9)

Fix 0 < T < ∞ large such that we can get an estimate H(t) ≥ 2f ′(t) forall t > T .

51



To see that,

H(t) =
∫ t

0
[f(τ)− 1]f ′′(τ)dτ =

∫ T

0
[f(τ)− 1]f ′′(τ)dτ +

∫ t

T
[f(τ)− 1]f ′′(τ)dτ

≥
∫ t

T
[f(τ)− 1]f ′′(τ)dτ

≥ [f(T )− 1][f ′(t)− f ′(T )],

which implies
H(t)
f ′(t) ≥ [f(T )− 1][1− f ′(T )

f ′(t) ].

Since limt→∞ f
′(t) ≥ limt→∞

f(t)−1
t

= ∞ (by convexity of f on [0, t]), we have

limt→∞
f ′(T )
f ′(t) = 0. Hence limt→∞

H(t)
f ′(t) ≥ [f(T ) − 1]. T is fixed so f(T ) − 1 is some

number and we can conclude that H(t) ≥ 2f ′(t).

Assume λ∗

2 < λ < λ∗. By stability of u = uλ we have

λ
∫

Ω
f ′(u)φ2 ≤

∫
Ω
|∇φ|2 ∀φ ∈ H1

0 (Ω)

=
∫

Ω
∇φ · ∇φ

=
∫

Ω
(−∆φ)φ. (2.10)

Put φ = f(u)− 1 in (2.10) we get

λ
∫

Ω
f ′(u)[f(u)− 1]2 ≤

∫
Ω

[−∆f(u)|∇u|2 +∇f(u)(−∆u)][f(u)− 1]

=
∫

Ω
[−∆f(u)|∇u|2 +∇f(u)(λf(u))][f(u)− 1].

By expanding, regrouping, cancelling and dropping a positive term we get

∫
Ω

[[f(u)− 1]f ′′(u)|∇u|] · ∇u ≤ λ
∫

Ω
f ′(u)f(u). (2.11)
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By using (2.9) and the fact ∇H(u(x)) = H ′(u(x)) · ∇u(x) we get from (2.11)

∫
Ω
∇H(u) · ∇u ≤ λ

∫
Ω
f ′(u)f(u).

Which follows

∫
Ω
f(u)H(u) ≤

∫
Ω
f(u)f ′(u). (2.12)

We are going to split the domain because we want to know the bound for
∫
f(u)f ′(u)

when u > T (much bigger). So we write (2.12) as

∫
u>T

f(u)H(u) ≤
∫
u<T

f(u)f ′(u) +
∫
u≥T

f(u)f ′(u)

≤ f(T )f ′(T )|Ω|+
∫
u≥T

f(u)f ′(u).

Now using the fact limt→∞H(t) ≥ 2f ′(t) we get

∫
u≥T

f(u)f ′(u) ≤ f(T )f ′(T )|Ω|. (2.13)

So for all u > T (fixed large number) we have from (2.13)

∫
u≥T

f(u)f ′(u) ≤ C.

So we got
∫
uλ≥T

f(uλ)f ′(uλ) is bounded by a constant that is independent of λ. Now

we can pass to the limit. By Monotone Convergence Theorem as λ ↗ λ∗ we get

uλ ↗ u∗. Hence

∫
u≥T

f(u∗)f ′(u∗) ≤ C

=⇒
∫

Ω
f(u∗)f ′(u∗) ≤ C2.
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Theorem 26. Let f satisfies (A). Then the extremal solution u∗ associated with

(P )λ∗ satisfies u∗ ∈ W 2,p(Ω) for all p < N
N−2 . In particular by elliptic regularity

this proves that u∗ ∈ L∞(Ω) for N ≤ 3, which is a result of [25]; but our proof is

different.

Proof. Let λ∗

2 < λ < λ∗ and u = uλ. We are trying to obtain the regularity of u∗.

Set vλ(x) := f(u)− 1 and then vλ(x) satisfies


−∆vλ = λf ′(u)f(u)− f ′′(u)|∇u|2 Ω

vλ = 0 ∂Ω.
(2.14)

Consider the pde 
−∆wλ = λf ′(u)f(u) Ω

wλ = 0 ∂Ω.
(2.15)

Also we have 
−∆(wλ − vλ) = f ′′(u)|∇u|2 ≥ 0 Ω

wλ − vλ = 0 ∂Ω.
(2.16)

Since f ′′(u)|∇u|2 ≥ 0, by maximum principle wλ ≥ vλ ≥ 0 in Ω. wλ ∈ L1(Ω) is an

ultra weak solution of (2.15) with λf(u)f ′(u) ∈ L1(Ω) (by Lemma 2.3) in the sense

of

∫
Ω

(−∆φ)wλ =
∫

Ω
λf(u)f ′(u)φ φ ∈ H1

0 .

Now by applying L1 regularity theory on (2.15) we get ∀1 < p < N
N−2 ,

‖wλ‖Lp ≤ Cpλ‖f(u)f ′(u)‖L1 ≤ C.
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Which follows

‖f(u)− 1‖Lp = ‖vλ‖Lp ≤ ‖wλ‖Lp ≤ C.

By applying Lp regularity on (2.1) we can conclude ∀1 < p < N
N−2 and ∀λ∗2 < λ < λ∗,

‖uλ‖W 2,p ≤ Cp‖f(uλ)‖Lp ≤ C1,

where C1 is independent of λ. By Monotone Convergence Theorem we pass to the

limit as λ↗ λ∗, uλ ↗ u∗ . Hence

‖u∗‖W 2,p ≤ Cp‖f(u∗)‖Lp ≤ C1.

By Sobolev imbedding W 2,p ⊂ L∞ provided p < N
N−2 . Hence u∗ smooth. N ≤ 3 is

coming from the fact that by elliptic regularity u∗ ∈ L∞ provided p > N
2 and N

2 is

the dual exponent of N
N−2 .

Singular Extremal solution

The following Proposition is important since it allows one to recognize when some

singular solution is in fact the extremal solution.

Proposition 2.4. (Brezis and Vasquez; 1997) Consider the problem (P )λ. Suppose

v ∈ H1
0 (Ω) is a singular weak solution of (P )λ. Then the following are equivalent

1. f(v)δ ∈ L1(Ω) and ∫
Ω
|∇φ|2 − λ

∫
Ω
f ′(v)φ2 ≥ 0, (2.17)

holds for all φ ∈ C1
c (Ω).

2. λ = λ∗, v = u∗.
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Proof. • (2 =⇒ 1). The extremal solution u∗ is in the increasing limit of

minimal solution uλ as λ ↗ λ∗ and uλ satisfies
∫

Ω
|∇φ|2 − λ

∫
Ω
f ′(uλ)φ2 ≥ 0

∀φ ∈ C1
c (Ω), which in the limit gives (2.17) (by Fatou’s lemma).

• (1 =⇒ 2) Since no solution exists for λ > λ∗ so we have λ ≤ λ∗. Assume the

contrary that λ < λ∗. By the density argument and the fact that v, uλ ∈ H1
0 ,

we can take the test function φ = v − uλ ∈ H1
0 . By the minimality of uλ, we

see v− uλ ≥ 0 in Ω, and the assumption v /∈ L∞ implies that v− uλ 6= 0, since

uλ bounded for λ < λ∗. Combining the equation satisfied by (2.17) we obtain

λ
∫

(v − uλ)[f(v)− f(uλ)− f ′(v)(v − uλ)] ≥ 0 ∀φ ∈ H1
0 (Ω).

Since f is convex the integrand is nonpositive. So the inequality is only possible

if

f(v)− f(uλ)− f ′(v)(v − uλ) = 0 a.e. in Ω.

Again the strict convexity of f implies v = uλ a.e. in Ω, which is a contradic-

tion. Thus we must have λ = λ∗. Since uλ ≤ v ∀λ < λ∗ and uλ ∈ H1
0 , then

in the limit we have u∗ ≤ v and u∗ ∈ H1
0 . Now v = u∗ follows from Martel

result [23] which we will discuss in Section 2.3.

The inequality (2.17) is the version of Hardy inequality with weight, which says

that for a certain weight function W (x) ∈ L1
loc(Ω), w ≥ 0 we have

∫
Ω
Wφ2dx ≤

∫
Ω
|∇φ|2dx ∀φ ∈ C1

c (Ω).

We have the classical Hardy inequality which occurs for a weight function of the

form W (x) = C
|x|2 when N ≥ 3.

Theorem 27. [26](Classical Hardy inequality) Suppose 0 ∈ Ω ⊂ RN with N ≥ 3.
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Then
(N − 2)2

4

∫
Ω

φ2

|x|2
dx ≤

∫
Ω
|∇φ|2dx ∀φ ∈ H1

0 (Ω). (2.18)

Proof. Let φ ∈ C∞c (Ω) and Ωε = Ω \ Bε. We are going to use div( x
|x|t ) = N−t

|x|t to

prove the inequality. So then

(N − 2)
∫

Ωε

φ2

|x|2
dx =

∫
Ωε
div( x

|x|2
)φ2dx

= −
∫

Ωε

x

|x|2
2φ∇φ+

∫
∂Ωε

φ2 (x · ν)
|x|2

= −
∫

Ωε

x

|x|2
2φ∇φ+ Iε

≤
∫

Ωε

2|φ|
|x|
|∇φ|+ Iε. (2.19)

We compute the last term Iε to see

Iε =
∫
∂Ωε

φ2 (x · ν)
|x|2

dx

=
∫
∂Ω
φ2 (x · ν)
|x|2

dx+
∫
|x|=ε

x · −x
ε
φ2

|x|2
dx

= 0 +
∫
|x|=ε

x · −x
ε
φ2

|x|2
dx

≤ 1
ε

∫
|x|=ε

φ2dx

≤ supφ2

ε

∫
|x|=ε

ds(x)

≤ supφ2DNε
N−2 → 0 ifN ≥ 3.

From (2.19) we get

(N − 2)
∫

Ωε

φ2

|x|2
dx ≤

∫
Ωε

2|φ|
|x|
|∇φ|dx

≤ 2
(∫

Ω

φ2

|x|2
dx

) 1
2 (∫

Ω
|∇φ|2dx

) 1
2
.
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Thus for N ≥ 3,

(N − 2)2

4

∫
Ω

φ2

|x|2
dx ≤

∫
Ω
|∇φ|2dx ∀φ ∈ C∞c (Ω).

Theorem 28. (Joseph and Lundgren) For N ≥ 10 the extremal solution associated

with (P )λ in the case of f(u) = eu and Ω = B1 is singular.

Remark 2.5. For 1 ≤ N ≤ 9 the solution curve turns around λ∗ where we have

λ1(−∆ − λ∗f ′(u), B1) = 0. All solutions lying above the stable brunch are unstable,

so their Morse index is at least equal to one. For 3 ≤ N ≤ 9 the solution curve

exhibits infinitely many turning points accumulating towards λN := 2(N−2), v(x) :=

−2ln(|x|). At each of these points, the Morse index of solutions increases by one unit.

When N ≥ 10 then λ∗ = λN and for each λ ∈ (0, λ∗) there is unique solution and v

stays at the end of curve of stable solution. Note that v(x) is a solution to (2.1)(in

the sense of distribution) only for N ≥ 3. The picture below makes the idea clear.

Figure 2.1: Bifurcation diagrams for the Gelfand problem
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Proof of Theorem 28. v and λN are defined above. For N ≥ 3, v ∈ H1
0 (B1).

We want to show v is a distributional solution of −∆v = λNe
v in B1, means ∀ψ ∈

C∞c (B1) we will have

∫
B1
−∆ψv =

∫
B1
λNe

vψ. (2.20)

A computation shows that

−∆v = 2∇ · xi
|x|2

= λNe
v B1 \ {0},

where λN > 0 and clearly v = 0 on ∂B1. So v is a classical solution of the pde away

from the origin. This v would be a distributional solution provided the test function

is compactly supported away from the origin. So for ε > 0 small, let ψ = ψγε, where

γε is a smooth cut-off function (γε = 0 inside Bε and γε = 1 outside B2ε). Replace

ψ in (2.20) by ψγε we get

∫
B1
−∆ψγεv − 2∇ψ · ∇γεv + ψ(−∆γε)v =

∫
B1
λNe

vψγεv. (2.21)

Note that γε = 0 if |x
ε
| < 1 and γε = 1 if |x

ε
| > 2 and we have ∇γε(x) = ∇γ(x

ε
)

ε
. Also

sup
ε<|x|<2ε

|∇γε(x)| = 1
ε

sup
ε<|x|<2ε

|∇γ(x
ε

)|

= 1
ε

sup
1<|x

ε
|<2
|∇γ(x

ε
)|

= 1
ε

sup
1<|y|<2

|∇γ(y)|

= c

ε
,

where c is independent of ε. Now we estimate the last two terms of left side of (2.21)

59



to see

∫
B1
|∇ψ||∇γε||v| = c1

∫
ε<|x|<2ε

|∇γε||v|

≤ c1c

ε

∫
ε<|x|<2ε

| − 2ln(|x|)| dx

= d1

ε
CN

∫
ε<r<2ε

| − lnr|rN−1 dr

≤ d1

ε
CN | − lnε|εN−1ε

= dN | − lnε|εN−1

< dNε
−1
2 εN−1, N ≥ 3 (2.22)

and

∫
B1
|ψ||∆γε||v| ≤

c2c

ε2

∫
ε<|x|<2ε

|v|

= d2

ε2CN

∫
ε<r<2ε

| − lnr|rN−1 dr

≤ d2

ε2CN | − lnε|ε
N−1ε

= eN | − lnε|εN−2

< eNε
−1
2 εN−2, N ≥ 3. (2.23)

Here we used | − lnε| < ε
−1
2 for ε sufficiently small which follows from the fact

that limε→0(−lnε)ε
1

2p = 0 ( by L’Hospital’s rule). Now we see that when ε → 0

both terms on (2.22) and (2.23) go to zero. Also γε → 1 in B1. Hence from (2.21)

we obtain (2.20). This proves v ∈ H1
0 (B1) is a distributional solution of the pde

−∆v = λNe
v in B1 and v = 0 on ∂B1 for N ≥ 3.

Since v is singular, if we can show that v is a stable solution then we’d have that

(λN , v) = (λ∗, u∗) and hence we’d have u∗ singular. So to show that v is stable we

need to show that ∫
λNe

vφ2 ≤
∫
|∇φ|2 ∀φ ∈ H1

0 (B).
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Putting in the values λN and v shows that we need

2(N − 2)
∫
B

φ2

|x|2
≤
∫
B
|∇φ|2 ∀φ ∈ H1

0 (B). (2.24)

Now we have the Hardy inequality

(N − 2)2

4

∫
Ω

φ2

|x|2
dx ≤

∫
Ω
|∇φ|2dx, ∀φ ∈ H1

0 (Ω).

So if (N−2)2

4 ≥ 2(N − 2) (which is exactly N ≥ 10) then (2.24) holds and hence v is

a stable solution of (P )λN . �

2.3 Uniqueness of Extremal solution

Theorem 29. Let λ = λ∗. Suppose there exists a weak super solution z ∈ L1, z ≥ 0

of


−∆z = λf(z) in Ω

z = 0 on ∂Ω,
(2.25)

in the following sense

f(z)δ ∈ L1,

and

−
∫

Ω
z∆φ ≥ λ

∫
Ω
f(z)φ,

for all φ ∈ C∞(Ω) with φ = 0 on ∂Ω. Then z = u∗ is the extremal solution.

Corollary 2.6. (Yvan Martel) Under the assumption of Theorem 29 there is atmost

one weak solution of (2.25) at λ = λ∗.

We need a lemma dealing with some ode results.
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Lemma 2.7. Let f satisfies (A), let λ > 0 and ε > 0 and consider the ode given by

y′(t) =
λf(y(t)) + ε

2
λf(t) + ε

, t ∈ (0, Tmax) (2.26)

where Tmax is the maximal time of existence. Then Tmax =∞, and for t ∈ (0, Tmax)

we have y′′(t) < 0, 0 < y(t) < t and supt>0 y(t) <∞.

Proof. Since ∫ ∞
0

1
λf(s) + ε

ds <
∫ ∞

0

1
λf(s) + ε

2
ds, (2.27)

we see for all t > 0 there is some y(t) > 0 such that

∫ t

0

1
λf(s) + ε

ds =
∫ y(t)

0

1
λf(s) + ε

2
ds, (2.28)

and so y(t) solves (2.26). From this we see that Tmax = ∞ and also we see that

supt≥0 y(t) < ∞. For t > 0, y(t) is the unique real number such that (2.28) holds.

Now when t goes to∞, y(t) goes to∞ as well since y(t) is increasing. So from (2.28)

we have ∫ ∞
0

1
λf(s) + ε

ds =
∫ ∞

0

1
λf(s) + ε

2
ds,

which contradicts (2.27). So (2.28) to hold we must need sup(y(t)) <∞ when t→∞.

We now claim that y(t) < t for all t > 0. To see this we can use last point

argument or we can get this directly from the formula for y(t). Note that

1
λf(s) + ε

<
1

λf(s) + ε
2
,

for all s ≥ 0 and hence we must have y(t) < t. Also y′′(t) = y′(t)[λf ′(y(t))−λf ′(t)]
λf(t)+ε < 0

since f is convex and y(t) < t. So y(t) concave. In particular, 0 < y′(t) ≤ y′(0) ∀t ≥

0, that is y′(t) bounded.
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.

Lemma 2.8. Suppose w(x) is a weak solution of


−∆w = f(w) + ε in Ω

w = 0 on ∂Ω,
(2.29)

for ε > 0. Then there exists a classical solution u ∈ C2(Ω) of


−∆u = (1 + α)f(u) in Ω

u = 0 on ∂Ω,
(2.30)

for some α > 0.

Proof. Suppose y(w(x)) satisfies the pde


−∆y(w) ≥ f(y(w)) + ε

2 in Ω

y(w) ≥ 0 on ∂Ω,
(2.31)

where y(w) satisfies properties of Lemma 2.7. Then by sub/supersolution ap-

proach there is a classical solution 0 ≤ l ≤ y(w) <∞ of


−∆l = f(l) + ε

2 in Ω

l = 0 on ∂Ω.

Consider the function χ satisfying the pde


−∆χ = 1 in Ω

χ = 0 on ∂Ω.
(2.32)

Note that χ ≤ l by maximum principle and there exists α > 0 small such that

α[f(l) + ε
2 ]− ε

2 ≥ 0 holds, which implies 2αl ≤ εχ. Now we are going to construct a
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supersolution of (2.30) using l and χ. Set

z = l + αl − ε

2χ.

By maximum principle v, χ ≥ 0. Hence its clear 0 < z ≤ l and z satisfies


−∆z = (1 + α)f(l) + ε

2(α + 2) ≥ (1 + α)f(z) in Ω

z = 0 on ∂Ω.

Hence z is a bounded supersolution of (2.30). By taking 0 as subsolution we can

show by iteration argument there exists a classical solution u of (2.30) between sub

and supersolution.

Proof of Theorem 29. Suppose λ∗ = 1. u∗ denotes the extremal solution of (P )∗λ

which is the minimal weak solution at λ∗. Suppose v is also a weak solution of (P )λ∗

and v 6= u∗. We will show v = u∗.

Set Ω0 := {x ∈ Ω|u∗(x) 6= v(x), u∗(x) < v(x) <∞}.

Note that |Ω0| > 0. Define

h(x) :=


f(u∗)+f(v)

2 − f(u
∗(x)+v(x)

2 ) x ∈ Ω0

0 otherwise.

By strict convexity of f (by hypothesis), we have h(x) ≥ 0 in Ω and h(x) > 0 in Ω0.

Also note that h(x) ∈ L1(Ω). Define z := u∗+v
2 . Since u∗ and v are weak solutions

of (S)λ∗ so z is a weak solution of


−∆z = f(z) + h(x) in Ω

z = 0 on ∂Ω.
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Consider 
−∆ψ = h(x) in Ω

ψ = 0 on ∂Ω,

where ψ ∈ L1(Ω) verifies h(x)δ ∈ L1(Ω). Such solution exists and unique in the

sense that

−
∫

Ω
∆φψdx =

∫
Ω
h(x)φdx ∀φ ∈ C∞c (Ω).

Also consider the function χ satisfies the pde


−∆χ = 1 in Ω

χ = 0 on ∂Ω.

By maximum principle ψ, χ ≥ 0 in Ω. For ε > 0 it follows from the properties of

laplace equation that εχ ≤ ψ. Set τ = z + εχ− ψ. It is clear that 0 < τ ≤ z and τ

is a weak solution of 
−∆τ = f(z) + ε in Ω

τ = 0 on ∂Ω.

By maximum principle τ ≥ 0 in Ω. But from the fact that τ ≤ z we get −∆τ =

f(z) + ε ≥ f(τ) + ε in Ω and τ ≥ 0 on ∂Ω. By iteration procedure there is an ultra

weak solution w(x) of


−∆w = f(w) + ε in Ω

w = 0 on ∂Ω,

in the sense that

−
∫

Ω
∆φwm+1 =

∫
Ω

(f(wm) + ε)φ ∀m ≥ 0,

and by pointwise convergence
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−
∫

Ω
∆φw =

∫
Ω

(f(w) + ε)φ ∀m ≥ 0,

where 0 ≤ w1 ≤ w2..... ≤ wm ≤ wm+1 ≤ τ and limm→∞wm+1 = w(x).

Now by Lemma 2.8 we get a contradiction at λ∗ = 1. This completes the proof.

�

2.4 Radial solution in a Ball

Theorem 30. (Positive solutions on ball are radial) Suppose f satisfies (A) and

0 ≤ u is a solution of (P )λ where Ω is a ball centered at the origin. Then u is a

radial solution and u′(r) < 0.

Consider

(P ′)λ


−∆u = λf(u) B1

u = 0 ∂B1,
(2.33)

where B1 is the unit ball in RN .

Theorem 31. [5] Suppose f satisfies (A) and N ≤ 9. Then the extremal solution

associated with (P ′)λ is smooth.

Note: λ is skipped throughout the whole proof. It will not affect on the bound-

edness of u. The constant that will bound u is independent of λ.

Proof. Consider 
−∆u = f(u) B1

u = 0 ∂B1.
(2.34)

Assume λ∗

2 < λ < λ∗. We consider u ∈ H1
0 (B1 \ {0}) is a radial solution of (P ′λ). Let

say uλ = u. By stability of u we have

∫
B1
f ′(u)φ2 ≤

∫
B1
|∇φ|2 ∀φ ∈ H1

0 (B1 \ {0}).

66



Take φ = urψ where ψ ∈ H1
0 (B1) is a smooth cut-off function which has compact

support in B1 \ {0} and we get

∫
B1
f ′(u)u2

rψ
2 ≤

∫
B1
|∇(urψ)|2

=
∫
B1
|∇urψ + ur∇ψ|2

=
∫
B1
|∇ur|2ψ2 + 2∇urur∇ψψ + u2

r|∇ψ|2. (2.35)

We are going to estimate the middle term say I,

I =
∫
B1

2∇urur∇ψψdx

=
∫
B1

(∇ur)ur∇(ψ2)dx

= −
∫
B1
div[(∇ur)ur]ψ2 +

∫
∂B1

ψ2[(∇ur)ur] · ν

= −
∫
B1
div[(∇ur)ur]ψ2 + 0

= −
∫
B1
div(∇ur)urψ2 −

∫
B1
|∇ur|2ψ2

=
∫
B1

(−∆ur)urψ2 −
∫
B1
|∇ur|2ψ2.

Differentiating (2.34) with respect to r to get

−∆ur = f ′(u)ur −
N − 1
r2 ur,

where ur ∈ (H2
loc ∩ L∞loc)(B1 \ {0})(by local elliptic regularity) which is supported in

B1 \ {0}. Thus I =
∫
B1
ψ2ur

(
f ′(u)ur −

N − 1
r2 ur

)
−
∫
B1
|∇ur|2ψ2. By substituting

this in (2.35) and after cancellation of some terms we get

∫
B1
ψ2u2

r

N − 1
r2 ≤

∫
B1
|∇ψ|2u2

r. (2.36)

Now we are going to build an estimate for the L2 norm of urr−1−α for certain positive
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exponent α which depends on the dimension N . This is the key ingredient to prove

u bounded.

For ε > 0 small we define the cut-off function

ψε(x) :=


1
|x|α − 1 if ε < |x| < 1

1
εα
− 1 if |x| < ε.

Assume 0 < α <
√
N − 1. By applying ψ = ψε in (2.36) we get

∫
B1\Bε

(
1
|x|α
− 1

)2

u2
r

N − 1
r2 ≤

∫
B1\Bε

|∇
(

1
|x|α
− 1

)
|2u2

r + 0. (2.37)

Here we have cancelled a term from the left and we have used the fact |∇ψ| = 0 on Bε.

By expanding, regrouping, cancelling some terms and substituting r = |x| we get

from (2.37)

(N − 1− α2)
∫
B1\Bε

u2
r

|x|2α+2 ≤
∫
B1\Bε

2 u2
r

|x|α+2 (N − 1).

We use Hölder on the right side,

(N − 1− α2)
∫
B1\Bε

u2
r

|x|2α+2 ≤ 2(N − 1)
∫
B1\Bε

(
u2
r

|x|2α+2

) 1
2
(
u2
r

|x|2

) 1
2

,

which in turns implies

∫
B1\Bε

u2
r

|x|2+2α ≤
4(N − 1)2

(N − 1− α2)2

∫
B1\Bε

u2
r

|x|2

= Cα,N

∫
B1\Bε

u2
r

|x|2
,

where Cα,N := 4(N−1)2

(N−1−α2)2 (independent of ε). We need to show
∫
B1\Bε

u2
r

|x|2+2α is

bounded. First we need to estimate
∫
B1\Bε

u2
r

|x|2
. For this we choose an explicit
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ψ(x) = 1 inside B 1
2
and ψ(x) = 0 outside of B 3

4
and from (2.36) we get

∫
B 1

2

ψ2u2
r

N − 1
r2 +

∫
1
2<|x|<

3
4

ψ2u2
r

N − 1
r2 ≤

∫
B 1

2

|∇ψ|2u2
r +

∫
1
2<|x|<

3
4

|∇ψ|2u2
r.

Dropping a term from left side and using the fact∇ψ = 0 on B 1
2
and |∇ψ| is bounded

on B 3
4
\B 1

2
we get

∫
B 1

2

u2
r

|x|2
≤ c

∫
1
2<|x|<

3
4

u2
r. (2.38)

Now we need a bound on
∫

1
2<|x|<

3
4

u2
r. For 0 < R1 < R2 ≤ 1 we will find a bound on

ur(|x|). By using (2.34) we get

∫ R2

R1

d

dr
(rN−1)ur(r) = −

∫
rN−1f(u),

which implies RN−1
2 ur(R2) − RN−1

1 ur(R1) ≤ 0. Now put R1 = R and R2 = 1 and

∀R ∈ (1
4 , 1) ∃D > 0 such that −ur(R) ≤ D(−1)ur(1). Here D := 1

RN−1 . Since u(r)

is a decreasing function for all r ∈ (0, 1), so ∀R ∈ (1
4 , 1) we have 0 ≤ −ur(R) ≤

D(−1)ur(1). By integrating the pde −∆u = f(u) over the unit ball we get

−
∫
∂B1

∂νu =
∫
B1
f(u).

For x0 ∈ ∂B1, ∂νu(x0) = ∇u(x0) · ν(x0) = ur(1) x0
|x0| ·

x0
|x0| = ur(1). Hence

−ur(1)|∂B1| =
∫
B1
f(u) = ‖f(u)‖L1(B1). So for all 1

4 < R < 1 we got

0 ≤ −ur(R) ≤ D1‖f(u)‖L1(B1). (2.39)
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Now

∫
B1\Bε

u2
r

|x|2
≤
∫
B 1

2
\Bε

u2
r

|x|2
+
∫
B1\B 1

2

u2
r

|x|2

≤ c
∫
B 3

4
\B 1

2

u2
r + c

∫
B1\B 1

2

u2
r by(2.38)

≤ c1

∫
1
2<|x|<1

u2
r

≤ D2‖f(u)‖2
L1(B1).

We have shown that for all 0 < α <
√
N − 1 and λ∗

2 < λ < λ∗ there exists C ′α,N > 0

such that

∫
B1\Bε

u2
r

|x|2+2α ≤ C ′α,N‖f(u)‖2
L1(B1). (2.40)

We need to estimate the right hand side term in a ball. Our goal is to show

f(u) is bounded by a constant independent of λ. Fix γ > 0 (big) ∃Tγ > 0 such

that ∀u ≥ Tγ we have f(u)
u
≥ γ (by superlinearity of f(u)). Suppose λ1 is the first

eigenvalue of the linearized operator −∆ and ζ > 0 is the associated eigenfunction.

supB1 ζ = 1 and ζ satisfies


−∆ζ = λ1ζ in B1

ζ = 0 on ∂B1,
(2.41)

Multiply (2.34) by ζ and integrate by parts to get

∫
B1
f(u)ζ =

∫
B1
ζ(−∆u)

=
∫
B1
λ1ζu. (2.42)
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Fix γ � 1 such that 1− λ1
γ

= 1
2 and Tγ as above and we have from (2.42)

∫
u>Tγ

f(u)ζ dx ≤
∫
u<Tγ

λ1ζu dx+
∫
u>Tγ

λ1ζu dx

≤ λ1 max
B1

ζ
∫
u<Tγ

Tγ dx+
∫
u>Tγ

λ1ζu dx

≤ λ1Tγ|B1|+
∫
u>Tγ

λ1ζ
f(u)
γ

dx

≤ C2 +
∫
u>Tγ

λ1ζ
f(u)
γ

dx.

Hence we get
1
2

∫
u>Tγ

f(u)ζ dx ≤ C2 implies

∫
{x∈B 1

2
:u(x)>Tγ}

f(u)ζ dx ≤ 2C2.

So

∫
B 1

2

f(u)ζ dx =
∫
{x∈B 1

2
:u(x)>Tγ}

f(u)ζ dx+
∫
{x∈B 1

2
:u(x)<Tγ}

f(u)ζ dx

≤ 2C2 + C3,

where C3 := f(Tγ)·1·|B 1
2
| and we get

∫
B 1

2

f(u) ≤ C4 ∀λ ∈ (λ
∗

2 , λ
∗). But ur(|x|) < 0

and f ′(u(|x|)) > 0. Hence we can write the average value of f(u(r)) in a full ball is

less than the average value of f(u(r)) in half ball,

-
∫
B1
f(u) dx ≤ -

∫
B 1

2

f(u) dx.

Which implies
∫
B1
f(u) dx ≤ |B1|C4

|B 1
2
|

:= C5 (uniform in λ∗

2 < λ < λ∗). Hence we get

from (2.40)

∫
B1\Bε

u2
r

|x|2+2α ≤ Dα,N . (2.43)
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Finally we are about to show for N ≤ 9, the minimal solution (uλ = u) is bounded.

We start with

u(R) =u(1) +
∫ 1

R
−urr

−2α−2+N−1
2 r

2α+2−N+1
2 dr

≤ u(1) + cN

(∫
B1\Bε

u2
r|x|−2α−2 dx

) 1
2 (∫ 1

R
r2α+2−N+1 dr

) 1
2

≤ u(1) + cND
′
α,N

(∫ 1

R
r2α+2−N+1 dr

) 1
2
. (2.44)

Here u(1) = 0 and the integral on the right is finite with R = 0 if we take

2α + 3−N > −1 i.e.

α >
N − 4

2 . (2.45)

Since N ≤ 9, then N−4
2 <

√
N − 1 and we can choose α satisfying (2.45) and

α <
√
N − 1 such that (2.40) holds. Since u is radially decreasing, (2.44) is the

desired L∞ estimate and passing to the limit as λ ↗ λ∗ gives u∗ ∈ L∞ provided

N ≤ 9. Hence smooth.
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3

MEMS model

Consider

(M)λ


−∆u = λ

(1−u)2 Ω

u = 0 ∂Ω,
(3.1)

where Ω is a smooth bounded domain in RN . The above equation is often been

used to model electronic MEMS device which roughly consists of a dielectric elas-

tic membrane that is attached to the boundary of Ω, whose upper surface has a

thin conducting film. At a distance of 1 above the undeflected membrane sits on a

grounded plate, i.e. a plate held at zero voltage. When a voltage v > 0 is applied

to the thin film of the membrane, it deflects towards the ground plate. There is

a maximum voltage v∗ beyond which, there is a snap through at a finite time, the

steady state of the elastic membrane is lost. Here λ > 0 is proportional to applied

voltage and 0 < u(x) < 1 is the dynamic deflection of the membrane. See [27],[28]

in regards to the model and [15],[17],[12] for mathematical aspects of (M)λ.

Theorem 32. 1. There exists some λ∗ ∈ (0,∞) (finite pull in voltage) such that

for all 0 < λ < λ∗ there exists a smooth solution u of (M)λ. For all λ > λ∗

there are no smooth solutions of (M)λ.
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2. For all 0 < λ < λ∗ there exists a smooth minimal solution uλ of (S)λ. For all

x ∈ Ω, one has that uλ(x) is increasing in λ on (0, λ∗).

3. For all 0 < λ < λ∗ the minimal solution is stable.

4. u∗ = limλ↗λ∗ uλ is called the extremal solution is the unique weak solution of

(M)λ.

Proof. 1. Define

λ∗ := sup {0 ≤ λ : (M)λ has a smooth solution} .

Suppose 0 < u(x) < 1 be a solution of (M)λ. To show finiteness of λ we

multiply (3.1) by the first eigenfunction of −∆ and integrate by parts as the

same way we did for (2.1) (just we replace f(u) by 1
(1−u)2 ) and at last we deduce

the following upper bound,

λ ≤ λ1
u
1

(1−u)2
≤ λ1 sup u

1
(1−u)2

.

Since 0 < u(x) < 1 we conclude that λ∗ < ∞. We now show λ∗ > 0. Clearly

u = 0 is a strict subsolution since −∆u = 0 ≤ λ
(1−u) in Ω and u ≤ 0 in ∂Ω.

Consider −∆u = 1 in Ω and u = 0 in ∂Ω . Then by strong maximum principle

u > 0 in Ω. Suppose m := max{u(x)} ∀x ∈ Ω. For u to be supersolution

of (M)λ we need 1 ≥ λ
(1−u)2 . So it is sufficient that λ ≤ (1 − m)2 for all

0 < u(x) < 1. But λ > 0 small enough ensures this.

We now show ∀λ ∈ (0, λ∗) there is a smooth solution of (M)λ. By using the

definition of λ∗ pick λ̂ ∈ (λ, λ∗) such that (M)λ̂ has a smooth solution uλ̂(x) = v

which satisfies

−∆v = λ̂

(1− v)2 in Ω, 0 < v < 1 in Ω, v = 0 on ∂Ω.
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But in particular, −∆v = λ̂
(1−v)2 ≥ λ

(1−v)2 . It implies v is a supersolution of

(M)λ. Since u = 0 is subsolution then by sub/supersolution approach there is

a smooth solution u of (M)λ for every λ ∈ (0, λ∗). There is no smooth solution

of (M)λ for λ > λ∗ (by definition).

2. For any 0 < λ < λ∗ there exists a minimal positive smooth solution. It is

obtained as the limit of increasing sequence {un(x)}n≥0 that is constructed

recursively as follows: subsolution u = u0(x) = 0 in Ω and for n ≥ 1 we define

the linear equation


−∆un+1 = λ

(1−un)2 Ω

0 ≤ un < 1 Ω

un+1 = 0 ∂Ω.

(3.2)

Suppose u(x) is a smooth solution of (M)λ (we proved in previous part for

all 0 < λ < λ∗ there will be a smooth solution). To construct the minimal

solution we start with u0(x) = 0 in (3.2) and by using maximum principle

several times (as in Lemma (1)) we can obtain a sequence un(x)n≥0 such that

0 ≤ un(x) ≤ u(x) < 1 ∀n ≥ 0. So here we can see un(x) is constructed

by using subsolution so its independent of u(x). We consider u(x) here just

to show un(x) is bounded. Since un(x) is bounded it converges to a positive

solution uλ(x) which satisfies uλ(x) ≤ u(x) in Ω. Since this inequality holds

for any solution u of (M)λ, so uλ is a minimal positive solution of (M)λ.

To show the minimal solution is increasing in λ we follow the same procedure

as we did for (2.1) and we conclude δλuλ > 0 by strong maximum principle.

3. To show uλ stable for 0 < λ < λ∗, we require first eigenvalue of −∆ − 2λ
(1−uλ)3
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is positive. This property can be expressed variationally as follows

∫
Ω
|∇ψ|2 ≥

∫
Ω

2λ
(1− uλ)3ψ

2 ∀ψ ∈ H1
0 . (3.3)

We follow the same procedure of stability part of (2.1) to obtain this inequality,

which can be viewed as nonnegativeness of second variation of energy functional

associated with (M)λ at uλ.

4. See Theorem 29 and [8]

Lemma 3.1. For λ∗

2 < λ < λ∗ and for t < 2 +
√

6 we have the following estimate:

∫
Ω

1
(1− uλ)3+2t ≤ Ct,

where Ct a constant independent of λ.

Proof. Fix λ∗

2 < λ < λ∗. Let t > 0 and u = uλ denote the minimal solution of (M)λ.

We shall use inequality (3.3) with ψ = (1− u)−t − 1 for t > 0 to obtain

∫
Ω

|∇u|2

(1− u)2t+2 ≥
2λ
t2

∫
Ω

1
(1− u)2t+3 −

4λ
t2

∫
Ω

1
(1− u)t+3 . (3.4)

Multiply (M)λ by an appropriate test function φ = (1 − u)−2t−1 and integrate by

parts to get ∫
Ω

|∇u|2

(1− u)2t+2 ≈
1

2t+ 1

∫
Ω

λ

(1− u)2t+3 . (3.5)

By using (3.5) and (3.4) we get

( 2
t2
− 1

2t+ 1)
∫

Ω

1
(1− u)2t+3 ≤

4
t2

∫
Ω

1
(1− u)t+3 . (3.6)

Now by applying Hölder on the right and by taking τ = 2t+3
t+3 ( its conjugate τ ′ = 2t+3

t
)
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we obtain the following inequality

(1
2 −

t2

4(2t+ 1))τ ′
∫

Ω

1
(1− u)2t+3 ≤ |Ω|.

By ensuring (1
2 −

t2

4(2t+1)) > 0 we get our required estimate.

Theorem 33. Suppose N ≤ 7. Then the extremal solution u∗ associated with (M)λ,

satisfies supΩ u
∗ < 1.

Proof. Suppose for τ, ε > 0 small and for some t < 2 +
√

6 the estimate

(τ + 3)(N2 + ε) < 3 + 2t holds. (3.7)

Define vλ := (1− uλ)−τ − 1 and vλ satisfies


−∆vλ = λτ

(1−uλ)τ+3 − τ(τ+1)|∇uλ|2
(1−uλ)τ+2 Ω

vλ = 0 ∂Ω.

Consider


−∆wλ = λτ

(1−uλ)τ+3 Ω

wλ = 0 ∂Ω.
(3.8)

Then 
−∆(wλ − vλ) = τ(τ+1)|∇uλ|2

(1−uλ)τ+2 Ω

vλ = 0 ∂Ω.
(3.9)

Since τ > 0 and 0 < uλ < 1, by maximum principle wλ ≥ vλ in Ω.

By applying elliptic regularity to (3.8) (and the Sobolev imbedding theorem)

there is some C > 0 such that

sup
Ω
wλ ≤ C

∥∥∥ λτ

(1− uλ)τ+3

∥∥∥
L
N
2 +ε ,
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for all λ∗

2 < λ < λ∗. Now vλ ≤ wλ and ‖wλ‖L∞ ≤ D(a constant). Hence vλ is

bounded by a constant independent of λ. Therefore we can pass to the limit in vλ

and we conclude supΩ u
∗ < 1.

Now by using the estimate in Lemma 3.1 and (3.7) we get

∫
Ω

λ

(1− uλ)2( 3
2 +t)
≤
∫

Ω

λτ

(1− uλ)(τ+3)(N2 +ε)
≤ C.

∫
Ω

1
(1− uλ)2 is bounded in Lp and by elliptic regularity we get uniform W 2,p bound

on uλ provided P < 7
2 +
√

6. After passing to the limit we get the same uniform

W 2,p bound on u∗ and for N ≤ 7, u∗ doesn’t touch 1 provided p close to 7
2 +
√

6.

Now note that if N ≤ 7, W 2,p ⊂ L∞ provided p is chosen close enough to 5.94. So

we see that for N ≤ 7 that u∗ is bounded and hence smooth iff supΩ u
∗ < 1.
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4

Nonlinear Eigenvalue problem

with Advection term

In this chapter, we consider more general Dirichlet problem given by

(S)λ


−∆u+ a(x) · ∇u = λf(u) in Ω

u = 0 on ∂Ω,
(4.1)

where f satisfies

(A1) is smooth, increasing, convex, f(0) = 1 and f is superlinear at ∞.

Here Ω is a bounded domain in RN , λ > 0 is a parameter and a is a smooth and

bounded mapping from Ω to RN which we assume is divergence free.

Definition 4.1. (Adjoint operator) Consider an operator L(u) := −∆u+ a(x) · ∇u

associated with the pde (4.1). We say L∗(u) is adjoint operator of L(u) if ∀φ, ψ ∈

C2(Ω) and φ, ψ = 0 on ∂Ω it satisfies

∫
Ω
L(φ)ψ =

∫
Ω
φL∗(ψ).
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Theorem 34. Let f,Ω be as above.

1. There exists some λ∗ ∈ (0,∞) (the extremal parameter) such that for all 0 <

λ < λ∗ there exists a smooth solution u of (S)λ. For all λ > λ∗ there are no

smooth solutions of (S)λ.

2. For all 0 < λ < λ∗ there exists a smooth minimal solution uλ of (S)λ. For all

x ∈ Ω, one has that uλ(x) is increasing in λ on (0, λ∗).

3. For all 0 < λ < λ∗ the minimal solution is stable.

4. Define u∗(x) := limλ↗λ∗ uλ(x). Then u∗ (which we call the extremal solution)

is a weak solution of (S)λ∗.

Proof. 1. Define

λ∗ := sup {0 ≤ λ : (S)λ has a smooth solution} .

First we will prove λ∗ is finite. Consider the operator L := −∆+a(x) ·∇. Here

we are looking for first eigenvalue and eigenfunction of the adjoint operator L∗

because first eigenpair of L does not help us to show λ∗ finite. First we use the

definition (4.1) to get

∫
Ω
−∆φψ +

∫
Ω

(a(x) · ∇φ)ψ =
∫

Ω
φL∗(ψ),

which turns into (use Green’s formula)

∫
Ω
−∆ψφ−

∫
Ω
∇ψ · (φa(x)) +

∫
∂Ω
ψ((φa(x)) · ν)−

∫
Ω
φdiv(a(x))ψ =

∫
Ω
φL∗(ψ).

Hence L∗(ψ) = −∆ψ −∇ψ · a(x).

Now let λ1 is the first eigenvalue of the operator L∗(ψ) and 0 < φ1 ∈ H1
0 is the
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first eigenfunction and φ1 satisfies


L∗(φ1) = λ1φ1 in Ω

φ1 = 0 on ∂Ω.
(4.2)

Let u be smooth solution of (S)λ. Multiply (S)λ by φ1

∫
Ω
λf(u)φ1 =

∫
Ω
L(u)φ1

=
∫

Ω
uL∗(φ1)

=
∫

Ω
uλ1φ1.

Therefore
∫

Ω
(λf(u)− λ1u)φ1(x)dx = 0. Now we follow the same procedure as

we did for the pde (P )λ to obtain λ∗ finite, and λ∗ > 0.

2. See proof of Theorem 24 part 2.

3. Since minimal solution is increasing in λ (we get it from Theorem 24 part 2),

for ε > 0 we get uλ+ε > uλ. So we are assuming if ∂λuλ exists then ∂λuλ ≥ 0.

Take a derivative of uλ in λ in (S)λ we get


−∆v + a(x) · ∇v = λf ′(uλ)v + f(uλ) in Ω

v = 0 on ∂Ω,
(4.3)

where we put v = ∂λuλ. By strong maximum principle ∂λuλ > 0. To prove

minimal solution is stable we show the first eigenvalue of the linearized operator

Lu := −∆ + a(x)∇− λf ′(uλ) of the Dirichlet problem (4.3) is positive. Take

div(a) = 0, then L∗u := −∆ − ∇ · a(x) − λf ′(uλ). Suppose φ̂1 and ψ̂1 are the

first eigenfunctions and µ1 and µ2 are the eigenvalues of Lu and L∗u respectively

such that
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Lu(φ̂1) = µ1φ̂1 in Ω

φ̂1 = 0 on ∂Ω

φ̂1 > 0 on Ω.

(4.4)


L∗u(ψ̂1) = µ2ψ̂1 in Ω

ψ̂1 = 0 on ∂Ω

ψ̂1 > 0 on Ω.

(4.5)

Multiply (4.4) by ψ̂1 and integrate by parts to see

∫
Ω
µ1φ̂1ψ̂1 =

∫
Ω
Lu(φ̂1)ψ̂1

=
∫

Ω
φ̂1L

∗
u(ψ̂1)

=
∫

Ω
φ̂1µ2ψ̂1.

Both ψ̂1, φ̂1 > 0 so we can conclude µ1 = µ2. We need this result for our proof.

Now we return to our goal to show µ1 > 0. We multiply Lu(v) = f(uλ) by φ̂1

and integrate by parts to get

∫
Ω
fφ̂1 =

∫
Ω
Lu(v)φ̂1

=
∫

Ω
vL∗u(φ̂1)

=
∫

Ω
φ̂1µ1ψ̂1.

Here f > 0 and φ̂1, ψ̂1 > 0. Hence uλ stable.

For more details see [1].

Lemma 4.2. (A general Hardy’s inequality)[7] Suppose E is a smooth positive func-

tion on Ω and fix a constant α with 0 < α < 2. Then for all ψ ∈ H1
0 we have
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∫
Ω
|∇ψ|2 ≥ α(2− α)

4

∫
Ω

|∇E|2

E2 ψ2 + α

2

∫
Ω

−∆E
E

ψ2. (4.6)

Proof. Let E0 denote a smooth positive function defined in Ω and let ψ ∈ C∞c . set

v := ψ√
E0
. Then

|∇ψ|2 = E0|∇v|2 + v2|∇
√
E0|2 + 2

√
E0∇v · v∇

√
E0

= E0|∇v|2 + ψ2 |∇E0|2

4E2
0

+ ψ

E0
∇v · ∇E0

= E0|∇v|2 + ψ2 |∇E0|2

4E2
0

+ v∇v · ∇E0. (4.7)

Integrating the last term by parts

∫
Ω
v∇v · ∇E0 = 1

2

∫
Ω
∇ψ

2

E0
· ∇E0

= 1
2

∫
Ω

−∆E0

E0
ψ2.

From (4.7) we have

∫
Ω
|∇ψ|2 =

∫
Ω
E0|∇v|2 +

∫
Ω
ψ2 |∇E0|2

4E2
0

+ 1
2

∫
Ω

−∆E0

E0
ψ2

≥
∫

Ω
ψ2 |∇E0|2

4E2
0

+ 1
2

∫
Ω

−∆E0

E0
ψ2. (4.8)

By setting α = 1 in (4.6) we can get the above inequality. In the case where
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α 6= 1, we put E0 = Eα in (4.8) to get

∫
Ω
|∇ψ|2 ≥

∫
Ω
ψ2 |∇Eα|2

4E2α + 1
2

∫
Ω

−div(∇Eα)
Eα

ψ2

= α2

4

∫
Ω

|∇E|2

E2 ψ2 − α

2

∫
Ω

div(Eα−1∇E)
Eα

ψ2

= α2

4

∫
Ω

|∇E|2

E2 ψ2 − α

2

∫
Ω

∇(Eα−1) · ∇E + Eα−1div(∇E)
Eα

ψ2

= α2

4

∫
Ω

|∇E|2

E2 ψ2 − α

2

∫
Ω

(α− 1) |∇E|
2

E2 ψ2 + ∆E
E

ψ2

= α(2− α)
4

∫
Ω

|∇E|2

E2 ψ2 + α

2

∫
Ω

−∆E
E

ψ2.

Theorem 35. If N ≤ 9 and f(u) = eu then u∗ the extremal solution associated with

(S)λ is bounded.

Remark 4.3. Recall we used inequality (2.5) (which is second variation of the en-

ergy functional associated with (P )λ) in conjunction with (P )λ to obtain uniform Lp

estimates on euλ when uλ is minimal. Unlike the previous advection free (a = 0)

model here we are not getting any energy inequality since our linearized operator as-

sociated with (S)λ is not self adjoint. For u∗ associated with (S)λ to be bounded we

need the Hardy inequality to overcome this difficulty.

Proof of Theorem 35. Let u = uλ be the minimal solution. Suppose E = Eλ > 0

∃µλ > 0 such that


−∆E + a(x) · ∇E = λeuE + µλE in Ω

E = 0 on ∂Ω.
(4.9)

Divide (4.9) by E and integrate by parts to get

∫
Ω

−∆E
E

+
∫

Ω
a(x) · ∇E

E
= λ

∫
Ω
eu +

∫
Ω
µλ. (4.10)
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Use equation (4.10) along with (4.6) we have for ψ ∈ H1
0 ,

∫
Ω
|∇ψ|2 ≥ α(2− α)

4

∫
Ω

|∇E|2

E2 ψ2 + α

2

∫
Ω
λeuψ2 − α

2

∫
Ω
a(x) · ∇E

E
ψ2. (4.11)

Here we have dropped a nonnegative term involving µλ. Fix 0 < α < 2, let t > 0.

Let u denote the minimal solution associated with (S)λ. Put ψ = etu − 1 in (4.11)

to get

∫
Ω
t2e2tu|∇u|2 ≥ α

2

∫
Ω
λeu(etu − 1)2

+α2

∫
Ω

(
(2− α)

2
|∇E|2

E2 − a(x) · ∇E
E

)
(etu − 1)2. (4.12)

Now we are going to use the procedure "closing the estimate". Multiply (S)λ by

e2tu − 1 and integrate by parts to obtain

∫
Ω
λeu(e2tu − 1) =

∫
Ω
∇u · ∇(e2tu − 1) +

∫
Ω
a · ∇u(e2tu − 1). (4.13)

The last term is zero after considering the fact that for an appropriately chosen

function F with F (0) = 0 we have
∫

Ω
a · ∇u(e2tu− 1) =

∫
Ω
a · ∇F (u) = 0. So we get

from (4.13) ∫
Ω
λeu(e2tu − 1) = 2t

∫
Ω
e2tu|∇u|2. (4.14)

Now by combining (4.12) and (4.14) and then by expanding, regrouping and

dropping some positive terms we get the inequality

λ(α− t)
∫

Ω
e(2t+1)u ≤ 2αλ

∫
Ω
e(t+1)u

+α
∫

Ω

(
(2− α)

2
|∇E|2

E2 + a(x) · ∇E
E

)
(etu − 1)2. (4.15)

We now estimate the term (2−α)
2
|∇E|2
E2 +a(x) · ∇E

E
. By using Cauchy’s inequality with

85



ε > 0 small we get

(α− 2)
2

[
4

2(α− 2)a(x) · ∇E
E
− |∇E|

2

E2

]
≤ 2(α− 2)

[
ε

a2

4(α− 2)2 + 1
4ε
|∇E|2

E2 − 1
4
|∇E|2

E2

]

≤ ε
|a|2

2(α− 2)

≤ ε
||a||2L∞

2(α− 2) .

(4.15) becomes

λ(α− t)
∫

Ω
e(2t+1)u ≤ 2αλ

∫
Ω
e(t+1)u + α

∫
Ω
ε
||a||2L∞

2(α− 2)e
2tu + α

∫
Ω
ε
||a||2L∞

2(α− 2)

≤ 2αλ∗
∫

Ω
e(t+1)u + α

∫
Ω
ε
||a||2L∞

2(α− 2)e
2tu + α

∫
Ω
ε
||a||2L∞

2(α− 2) .

We now apply Hölder for each of the terms on right hand side. Take τ such that

τ(t+ 1) = 2t+ 1 and 2tτ = 2t+ 1 we get

λ(α− t)
∫

Ω
e(2t+1)u ≤ 2αλ∗

(∫
Ω
e(2t+1)u

) t+1
2t+1
|Ω|

2t+1
t+1

+Cα
(∫

Ω
e(2t+1)u

) 2t
2t+1
|Ω|

2t+1
2t + Cα|Ω|

(∫
Ω
e(2t+1)u

)0
,

where Cα = αε
||a||2

L∞
2(α−2) . For t > 0 we may assume

∫
Ω
e(2t+1)u > 1, because on the

opposite, we have
∫

Ω
e(2t+1)u ≤ 1 and the estimate is independent of λ ∈ (0, λ∗) and

we are done. In this case if (α− t) > 0 and 2t
2t+1 >

t+1
2t+1 that is if 2 > α > t > 1 then

we have

λ(α− t)
∫

Ω
e(2t+1)u ≤ 2αλ∗

(∫
Ω
e(2t+1)u

) 2t
2t+1
|Ω|

2t+1
t+1

+Cα
(∫

Ω
e(2t+1)u

) 2t
2t+1
|Ω|

2t+1
2t + Cα|Ω|

(∫
Ω
e(2t+1)u

) 2t
2t+1

.
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Which in turns implies

λ
∫

Ω
e(2t+1)u ≤ (α− t)−2t−1

(
2αλ∗|Ω|

2t+1
t+1 + Cα|Ω|

2t+1
2t + Cα|Ω|

)2t+1

=: C(t, |Ω|).

Now we can conclude that
∫

Ω
(euλ)2t+1 is uniformly bounded above by C which is

independent of λ ∈ (λ∗2 , λ
∗). Now standard elliptic estimates and sobolev embedding

imply that ‖uλ‖L∞(Ω) ≤ C is uniform in λ if 2t+ 1 > N
2 . Since we took t ∈ (0, 2) so

we obtain uniform L∞ bound on uλ when N ≤ 9. Now we pass to the limit and get

our desired estimate for the extremal solution. �

Lemma 4.4. Suppose f satisfies (A1) and there is some ε > 0 and T > 0 such that

f ′(t)t ≥ (1 + ε)f(t), (4.16)

for all t ≥ T . Then there is some C > 0 such that
∫

Ω
f ′(uλ)u2

λdx ≤ C and∫
Ω
f(uλ)uλ ≤ C ∀λ∗2 < λ < λ∗.

Proof. Let u = uλ. Suppose ε > 0 and T > 0 fixed. Let 0 < α < 2 (close) and

0 < δ << 1 such that (1 − δ)α2 −
1

1+ε > 0. Define C1 := α‖a‖2
L∞

8δ1
> 0, then note by

taking T larger if necessary we can assume that

[
(1− δ)α2 −

1
1 + ε

]
f ′(t)− C1 ≥

(1− δ)α2 −
1

1+ε
2 f ′(t), (4.17)

for all t ≥ T . Now by substituting ψ = u in (4.11) and considering general nonlin-

earity f and div(a) = 0 we obtain

Cα

∫
Ω

|∇E|2

E2 u2 + α

2

∫
Ω
λf ′(u)u2 ≤ α

2

∫
Ω
a(x) · ∇E

E
u2 +

∫
Ω
λf(u)u, (4.18)

where Cα := α(2−α)
4 . By applying Cauchy’s inequality on the first term on right side
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we get

Cα

∫
Ω

|∇E|2

E2 u2 + α

2

∫
Ω
λf ′(u)u2 ≤ α

2

∫
Ω

|a(x)|2u2

4δ1
+ αδ1

2

∫
Ω

|∇E|2

E2 u2 +
∫

Ω
λf(u)u,

which can be rewritten as

δα

2

∫
u>T

λf ′(u)u2 +(1−δ)α2

∫
u>T

λf ′(u)u2 ≤ C1

∫
u>T

u2 + 1
1 + ε

∫
u>T

λf ′(u)u2 +DT ,

where

DT := C1

∫
u≤T

u2 dx+
∫
u≤T

λf(u)u dx ≤ |Ω|
(
C1T

2 + λf(T )T
)
.

Here we dropped some positive terms on the left side and D is a constant which is

coming from the terms involving the integral when u ≤ T . By regrouping we get

δα

2

∫
u>T

λf ′(u)u2 +
∫
u>T

[
[(1− δ)α2 −

1
1 + ε

]λf ′(u)− C1

]
u2 ≤ D. (4.19)

We use the fact in (4.17) and we can get rid of C1 in (4.19) to obtain

δα

2

∫
u>T

λf ′(u)u2 +
∫
u>T1

[(1− δ)α2 −
1

1 + ε
]λf ′(u)u2 ≤ D.

Which in turns implies

∫
Ω
f ′(u)u2 ≤ C.

So for λ∗

2 < λ < λ∗ there exists a C such that

∫
Ω
f ′(uλ)u2

λ ≤ C.
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Also from the assumption on f (4.16) we get the estimate

∫
Ω
f(uλ)uλ ≤ C.

Proof of Theorem 34 part 4 (under extra hypothesis). Here we prove u∗ ∈

H1
0 (Ω) under the additional hypothesis (4.16).

Multiply the pde (4.1) by u = uλ and integrate by parts to get

∫
Ω
|∇uλ|2dx = λ

∫
Ω
f(uλ)uλ

≤ C,

where div(a) = 0. Hence uλ ∈ H1
0 and C is independent of λ. consequently u∗ ∈ H1

0

after passing to the limit as u∗(x) = limλ↗λ∗ uλ(x). u∗ is pointwise limit of minimal

solution of ( 4.1), is also an ultra weak solution of ( 4.1) since ∀φ ∈ C∞ (test function)

and φ = 0 on ∂Ω we have

∫
Ω

(−∆φ)uλ +
∫

Ω
∇φ · uλa = λ

∫
Ω
f(uλ)φ.

Which allows us to pass to the limit as λ↗ λ∗.
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