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ABSTRACT

Harmonic domain analysis (HDA) is a convenient method of analyzing power systems to
determine the impact of harmonics as well as methods for their mitigation. HDA is more
than a simple extension of the traditional load flow power frequency analysis tool to
include analyses of the system for dc¢ and harmonic components. Some of the most
difficult aspects of HDA are the analysis of interactions that can occur between dc, power

frequency and harmonic components of the power system.

The major sources of harmonics in a power system are non-linear elements such as
saturation and power system electronic switching devices. HDA models of these devices
have undergone significant development from fixed magnitude equivalent harmonic
current sources used in early HDA models to detailed models where the magnitude and
relative phase angle of the harmonics produced by the components are a function of
voltage and current wave-forms at dc, power system and harmonic frequencies. Many of
these mathematical models rely on information from the ‘time domain’ to establish
driving wave-forms, degree of saturation, or ‘turn-on’ and ‘turn-off” times for electronic

switching devices.

This thesis presents a novel approach to modeling these devices entirely in the harmonic
domain using a harmonic domain ‘square root’ function as a basic building block. The
mathematics and algorithms used in the models are described and the approach is
successfully demonstrated for several examples including diode applications, transformer

saturation applications, and non-linear elements in power system controls.

Limitations of the mathematics and the model are described along with suggestions for

future work to refine and improve the robustness of the model.
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GLOSSARY

Fundamental Frequency. The base frequency of a repetitive wave-form expressed in Hz,
equal to the inverse of the period (sec) of the wave-form. Most of the applications in this
document equate fundamental frequency to the power system frequency, either 50 or
60 Hz. The methodology could apply equally to other types of analysis, (e.g. sub-
synchronous analysis) in which fundamental frequency would be an integer divisor of the
power system frequency (e.g., 1,2,5,10 Hz), common to both nominal system frequencies
and 25 Hz (for a 50 Hz system).

Harmenic. A harmonic is an integer multiple of fundamental frequency. As used in this
document, harmonic can refer either to the harmonic number (e.g., 0,1,2...50.. ete.) or it
could refer indirectly to harmonic content of a wave-form, e.g., “harmonics (voltages,

current, power eic.) of the power system”.

Load Flow (also Power Flow). A numerical analysis tool which solves the linear and non-
linear simultaneous equations defining the fundamental frequency bus voltages and branch
power flows of an electrical power system. The “Power Flow” is the most frequently used
tool in the analysis, design, and operation of a power system network. Power Flow

programs can solve electrical power systems with in excess of 50,000 nodes (buses).

Node. A point of connection of two or more electrical components. In the power flow, a
node is the common point of connection of the positive sequence component of two or
more three-phase electrical elements as represented by the positive sequence fundamental
frequency impedance of each three-phase component. In HDA, a node is the point of

electrical connection of each phase at each frequency.

Branch. A connection between two nodes. In the power flow, a branch is the element
defining the positive sequence connection of two electrical nodes as represented by the

positive sequence fundamental frequency impedance of each three-phase component. In

xi



finssary

HDA, a branch is a connection between two physical nodes, but could represent the

interaction effects between two different harmonics.

Harmonic Domain Analysis (HDA). A numerical analysis methodology similar to that
used in the Power Flow, that can solve the linear and non-linear simultaneous equations
defining the dec, fundamental frequency and harmonic components of bus voltages and
branch power (current) flows of an electrical power system. Harmonic domain analysis
tools add another two dimensions to the Power Flow. Power Flow analysis has traditionally
been limited to positive sequence flows. Harmonics exhibit sequence component
characteristics, but unlike the power flow which is dominated by the behaviour of the
positive sequence component, magnitudes of each harmonic component are similar and
must be considered, either on a phase or sequence component basis. The second dimension
added to the analysis is the harmonic number. Using 50,000 nodes as an indicator of
current load flow technology, HDA would be literally limited to about 300 nodes. (300
nodes times 3 phases times typically 50 harmonics). The actual limit is many times larger
as the mathematical matrices involved are extremely sparse. HDA analysis of 10,000 nodes

is well within the capability of current hardware/software.

Sequence Components. A numerical algorithm that resolves the electrical characteristics
of the three phases of an electrical power system into a dominant component (the positive
sequence component) and two secondary components (the negative sequence and the zero
sequence components). For balanced operation, the latter two components are so small,

they are neglected for most power systems analysis.

Time Domain Analysis. A numerical analysis methodology in which the response of a
network is determined by direct simulation, i.e. determining its response as a function of
time. In this thesis time domain analysis often will refer to the 'steady state’ condition in
which the voltage and current waveforms repeat and are essential identical from one cycle
of fundamental frequency to the next. The harmonic component of a time domain

waveform can be determined mathematically.

xii



Glossany

Array, Matrix and Vector. In this document the term array is used to describe an
arrangement of elements in one or more dimensions. Matrix as used this thesis refers to a
two dimensional array. Vector will refer to a single dimension array with a single
column, to be compatible with matrix ~ vector operations. When an array with a single

row is used, it will be referenced as the transpose of a vector.

Identity Matrix. The identity matrix in this document is a square two dimensional array
where each diagonal element has a numerical value of one and each off-diagonal element is

ZCro.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Non-linear and electronic equipment in an electrical network can distort the voltage and
current waveforms throughout the system from their nominal sinusoidal waveshape.
Examples of a distorted and an undistorted waveform are given in Figure 1-1. The
distorted waveforms can cause unexpected overloading of system components as well as
producing electrical and electromagnetic interference. If the distortion is only of a
transient nature, the impacts can often be neglected. A more serious situation arises when
the distortion is continuous. The problem can occur for electrical networks consisting of a
few electrical components on a printed circuit board, to a power system network
extending across a continent. The concepts introduced in this thesis are equally applicable

to low and high power electrical networks.

3 | |
%30 N
S s \
§ of \ \ 4 \ /
E
o
S I I
0 1 2 0 1 2
Cycles Cycles
Distorted Undistorted
a b
Figure 1-1 Example of Distorted and Undistorted Waveforms

A convenient method to quantify the level of distortion and its effects is to define the

waveforms by a mathematical series consisting of a summation of purely sinusoidal
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waveforms of different frequencies plus a dc or offset component. For electrical power
systems, the major contributor to the waveform is a component at the power system
frequency (50 or 60 Hz). If the distortion is repetitive every cycle, a Fourier series in
which each frequency is a multiple or harmonic of the fundamental frequency component
can define the waveform. Chapter 2 will describe how the magnitude of the harmonic
components can be calculated from a mathematical description of the waveforms. The
harmonic components of the sample waveforms shown in Figure 1-1 are given in

Tabile 1-1.

Table 1-1 Harmonic Content of Waveforms Shown in Figure 1-1

Harmonic Content

Harmonic Distorted Undistorted
Waveform Waveform

DC 0.2 0.0

Fundamental Frequency 1.0 1.0

2" Harmonic 0.3 0.0

3" Harmonic 0.1 0.0

Once the magnitude of each harmonic is known, the impact of the distortion on the
network or network component is often determined by superposition of the harmonic
effects [ 1] ... [ 4 ]. To establish heating effect, for example, the harmonics are often
combined in an RMS (Root Mean Square) fashion by summing the squares of the
magnitudes of each of the harmonic components, then taking the square root of the sum.
If voltage rating is being considered, often the sum of the magnitude of the harmonic
voltages is used. In dealing with the impact of harmonics on communications, weighed
cumulation is often used, in which the magnitude of each harmonic is multiplied by a

weighting factor before the summation take place.

Harmonic analysis covers the broad subject of establishing the harmonic content of a
distorted waveform. In a 'traditional' harmonic analysis [ 5 ] ... [ 9 ], the waveform is first
defined as a periodic function of time, either numerically (by a time series with numerical
values for each time step) or mathematically (by a series of mathematical expressions).
The harmonic content can be established using a numerical Fourier analysis if the

function is described numerically. If the waveform can be defined by simple
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mathematical relationships, the numerical Fourier analysis approach can still be used but
this requires creation of a time series based on the mathematical expression before the
numerical Fourier analysis can be carried out. The more common approach for
mathematical expressions is to determine the harmonic content by symbolic evaluation of
the relationships, followed by simple numerical evaluation of the resultant mathematical

expressions to determine the harmonic content.

The ‘traditional' mathematical determination of the harmonic content is limited to the
analysis of relatively simple networks because of the increase in complexity of the
algebraic expressions as the extent of the network is increased. For larger networks,
however, a time domain simulation’ is required of the many non-linear and discontinuous
algebraic and differential equations that define the complex relationships between voltage
and currents in the network. The duration of the time domain solution must be sufficient
to allow all of the transients of the solution to decay. Once a repetitive time domain
waveform is established, a numerical Fourier analysis can determine the harmonic

content of the waveform.

Analysis of some existing or proposed electrical networks involving hundreds of
thousands of differential equations would require computational capability likely in
excess of even the latest and largest capacity ‘super computers’, waiting for the transients

to die down to establish the transients-free waveforms.

A more practical approach that has been developed [ 10 ] ... { 13 ], is harmonic domain
analysis. Frequency domain analysis has been used extensively in the analysis and design
of linear control systems [ 14 1, [ 15 ]. Frequency domain analysis has also been used
extensively in the analysis of interactions between elements of an electrical power system
at sub-synchronous and super-synchronous frequencies. Harmonic domain analysis is

simply a subset of frequency domain analysis.

! Using time domain simulation tools such as PSCAD/EMTDC™ and EMTP® or the simulation capability
of mathematical analysis tools such as Matlab®.
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The load flow solution of a power system is a harmonic domain analysis carried out at the
power system fundamental frequency. The linear portions of the network defined by
capacitors, inductors, resistors, mutually coupled elements are solved using complex
algebraic equations to define the steady state solution to the differential equations that
describe their behaviour. Repetitively switched elements such as power electronics are
modelied as equivalent harmonic current and voltage sources and non-linear elements are
treated as Norton or Thévenin equivalents. Iterative solution algorithms such as Gauss-
Seidel and/or Newton-Raphson techniques are used to solve the myriad of linear and non-
linear algebraic equations. Harmonic domain analysis is simply an extension of the power

flow to include the effects of dc and harmonics.

The same basic concepts used in the load flow solution can be (and have been) extended
to the solution of the network at dc and harmonic frequencies [ 16 ]. The method of
solution of the dc and harmonic flow on the transmission network itself is effectively the
same as the method of solution at the fundamental frequency. The relationships between
the currents and the voltages across the network are defined by an admittance matrix. The
admittance matrix is re-defined for each harmonic frequency under consideration. While
the structure of the dc admittance matrix may be different, the structure of each harmonic

admittance matrix is the same as the structure at fundamental frequency.

In frequency domain application software such as NIMSCAN®?,  V-Harm®,
CYMHARMO®*, the emphasis is placed on solving for the harmonic penetration in large
power systems, Each harmonic is evaluated individually, treating harmonic sources in the
power system as equivalent harmonic voltage or current sources, and using direct
superposition of harmonic contributions at any location in the network to establish the

harmonic content of any particular waveform.

Unfortunately non-linear elements in the network introduce a dependence of the solution

at one harmonic on the solutions at other harmonics. For example transformer saturation,

% Developed by Teshmont Consultants LP
* Developed by McGraw Edison
* Developed by CYME™ Power Engineering
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often ignored in the fundamental frequency solution, becomes a major factor in the
harmonic domain solution. The magnitude of the harmonics produced by saturation is a
function of the magnitude of the fundamental frequency voltage applied to the device. In
a similar vein, the magnitudes of harmonics produced by electronic switching devices are
also a function of the magnitudes of the fundamental frequency voltages and currents.
Not only are the magnitude of these harmonic sources dependent on the magnitude of the
fundamental frequency component, they are also dependent on the magnitude of currents
and voltages at other harmonic frequencies, creating in essence a three dimensional

analysis problem.

Much work has been carried out by others developing the inter-harmonic spatial
relationships for non-linear components such as saturation [ 17 ] ... [ 20 1 and complex
electronic switching circuits such as for High Voltage DC Schemes (HVDC)
[ 21 }..[ 27 ] and Flexible AC Transmission Systems (FACTS) devices [ 28 ] ... [ 32 ].
Much of the modelling involves transformation from frequency to time domain to solve
for the non-linear effects. The time domain solution is then re-transformed back to the

frequency domain for further analysis. This is the case for transformer saturation.

An extensive amount of development work has been carried out for the harmonic domain
type of analysis, most recently in the application of harmonic domain switching functions
[ 10}, [ 33 1. [ 34 ] to the modelling of harmonic domain models of power electronic
switching devices. However, for other than a few special conditions, a conversion from
frequency domain to time domain is required to determine the instants that conduction of
the devices begins and ends. The turn-on and turn-off times are then used in the harmonic
domain to analyse the impact of the device harmonics on the network. A diode is a good
example of this, where time domain information has been required to define the harmonic
domain response. Conduction of the diode begins when the instantaneous voltage across
it becomes positive and terminates when the instantaneous current through the device
attempts to become negative. The turn-on and turm-off times are based on time domain

information.
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1.2 OBJECTIVES

Much development work has been done by others in both time domain and harmonic
domain modelling. The time domain carries information about the frequency domain
which can be extracted using a fast Fourier transform. The harmonic domain houses
information about the steady state time domain that can be easily extracted using a
Fourier series. Each of the domains should be self sufficient. Once a time domain model
is built, it is self sufficient and all of its analysis can be done completely in the time
domain, yet many of the harmonic domain models rely on excursions into the time
domain to obtain information that intuitively should already exist in the harmonic

domain.

Fundamental mathematics shows that the principle of superposition is valid for the
summation and subtraction of harmonic waveforms. Muitiplication of harmonic
waveforms involves a shift in the harmonic spectra (i.e. in the harmonic order) but there
is a rigorous mathematical relationship between the magnitude and frequency of
harmonics in the product to the magnitude and frequency of the harmonics in the

multiplicands, i.e. direct multiplication in the harmonic domain.

Given that three basic operators, i.c. add, subtract, and multiply can be carried out
entirely in the harmonic domain, it was hypothesized that it should be possible, also, to
directly divide two waveforms in the harmonic domain. With these four harmonic
domain tools it should be possible, similar to the time domain, to develop more complex

mathematical functions such as the square root and absolute value functions.

Several time domain programs are in existence. These programs use Dommel's
Algorithm [ 35 ] to rapidly construct a set of algebraic equations from the given network
parameters and interconnection data (net list). In this thesis, a new approach to solving
electrical circuits with non-linear elements directly in the harmonic domain is developed.
This approach is amenable to being incorporated into a general purpose 'net list' based

solution package.
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At first glance it appears that using the frequency domain to solve non-linear circuits
should not be possible because the superposition principle only applies to linear circuits.
However with the addition of iterative calculations, this approach becomes rigorously

correct, as will be shown in the research chapters.

Given that the harmonic domain is also a very useful analytical tool with roots in the load
flow solution, the objective of this research was to develop a Harmonic Domain Analysis
(HDA) methodology given the hypothesis that the analysis can be done entirely in the
harmonic domain. This would require:
1) development and demonstration of algorithms for the direct evaluation of
advanced mathematical functions
2) application of the mathematical algorithms to typical source of harmonic
interactions such as non-linear elements and power electronic devices
3) an indication of how the algorithms can be incorporated into methodologies

for other types of power system analyses

The HDA would permit the utilisation of the vast data entry and analysis algorithms
developed for the power flow and stability solutions and would lend itself to data
mapping techniques developed for graphical simulation packages such as

PSCAD/EMTDC™,

The harmonic domain approach developed in this thesis is useful to the electrical
engineering community for the following reasons:
1) The rigorous mathematical treatment extends the art of network solution
theory.
2) The direct calculation of harmonics is an independent check for time domain
solutions followed by Fourier analysis.
3) Computationally, the harmonic method could be faster particularly for
systems with low damping in which time domain solutions could take a very

long time to converge to steady state.
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4) Systems excited with a large range of harmonics (e.g. dc and up to 1 MHz) or
systems with a large difference in their natural time constants, which could be
numerically unstable in a time domain solution, can be handled.

5) If the development of the proposed Harmonic Domain Analysis
methodologies continues, it could eventually be used to define initial

conditions for time domain transients selutions.

1.3 THESIS OUTLINE

Chapter 2 of this Thesis summarises the mathematical tools that were used and developed

for the proposed HDA methodology.

Chapter 3 summarises the modeliing of the basic power system elements in the HDA and

their compatibility with existing methodologies for power flow and time domain analysis.

Chapter 4 summarises the HDA modeliling of typical functions used in the development

of power system component controls.

Chapter 5 shows how the proposed HDA methodology can be applied to power electronic
switching circuits, such as diodes, thyristor controlled reactors and integrated power and

control systems associated with voltage sourced converter applications.

Chapter 6 shows how the proposed HDA methodology can be used for the direct
harmonic domain analysis of non-linear elements such as transformer saturation

characteristics.

Chapter 7 reviews the work that is presented and suggests topics for future research and

development into the proposed Harmonic Domain Analysis methodology.



CHAPTER 2

SUMMARY OF HARMONIC DOMAIN MATHEMATICS

2.1 INTRODUCTION

This chapter presents the development of several of the mathematical operations and
functions required to carry out the harmonic domain analysis described in other chapters.
Algorithms for the direct addition, subtraction and multiplication of the harmonic
component of waveforms are prerequisite for harmonic domain analyses. Algorithms for
direct addition and subtraction are trivial. However, algorithms for multiplication involve
a convolution of the harmonic vectors representing the waveform, and are described in
many of the papers on harmonic domain analysis of power systems [ 10 ], [ 12 ]. The
author was unable to locate any published reference material on the direct division of
waveforms in the harmonic domain and thus developed a unique algorithm to do this

task.

In this chapter, the fundamental mathematics of harmonic domain analysis are reviewed,
the notational conventions used by the author are described and the algorithms for the
four basic mathematical operations are presented. The procedure for the addition,
subtraction and multiplication of waveforms are included for completeness. A matrix
approach to multiplication of waveforms in the harmonic domain is introduced which

enables the direct division of two waveforms entirely in the harmonic domain.

This is followed by several original algorithms to compute the square root of a harmonic
waveform. The square root function is essential to the formation of higher order functions
such as absolute value. The square root function is also critical to the harmonic domain

modelling of many non-linear elements and is the fundamental building block to define
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the voltage and current waveforms in electronically switched circuits. This chapter does
represent one of the fundamental contributions that the author has made to this research

area.

It will be shown in this chapter that the square root function can be used as a building

block to define other functions such as the sign function and the comparison function.

2.2 DEFINITIONS

The Fourier series representation of a bounded periodic function is as follows’:

=20, 5 nnx in IX -
f(x)= > +§:[ancos 2 +b, sin 5 J {2-1}

n=1
where:

L is ¥ of the period of the repetitive waveform.

L
a, = [ f(x)cos ™dx, n=0,1,2,3,... {2-2}
L L
L
by =4 ] fO0sin "oy, n=12,3,... {23}
Ly L

In this document the period is always equal to one cycle of fundamental frequency of the
electrical system and the harmonic spectrum is limited to the highest harmonic under

consideration in the study. Le.:

nmﬂ){
F(x)=%0+ Y (an cc.sigx—+b11 sinn—zx} {2-4}

n=f

where npa is the highest harmonic of interest.

For convenience, the coefficients describing the Fourier series of a given waveform are
mathematically and/or numerically housed in a single dimension array for the waveform.

E.g.

T
F=[E§“ a4 b] a, bz anm bnmxi| { 2'5 }

% The Fourier series is defined in many documents. The specific reference used by the author is a summary
provided on pages 434-435 of the CRC Standard Mathematical Tables, 16™ Edition [ 37

10
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In this document, a capitalized variable name marked with an arrow header as (used
above) will refer to a single dimension array of length 2np,t+! that houses the harmonic
content of a given waveform. A capitalized variable name marked with a solid bar header
will refer to a transfer matrix (normally square of dimension 2nmact1, by 2nmat1) that
houses the harmonic response of an input to output transfer characteristic. E.g., the
variable Z as used in the following equation:

V=271 {2-6;
contains the harmonic transfer characteristic from the input variable 1to the output

variable V. In many of the expressions as used in this document, the transfer matrix Z is

constant, and sparse dependent only on the physical device that it is representing.

The majority of the analysis described in this document was carried out using Mathcad®
Version 6.0 and Excel® Version 7.0. One of the reasons that the Fourier series
representation as described above was chosen over the more frequently used® "Complex
Fourier Series/Exponential Fourier Series” is that only real quantities are involved and
therefore standard real vector/matrix tools (such as are available in mathematical

applications such as Mathcad® and Excel®” ) can be used.

In this document, presentations of Mathcad® calculation sheets, functions and expressions
are in line with the text or referenced as a figure or appendix, and are enclosed by a box.
Unfortunately, Mathcad® Version 6 does not have the word processing capability to
differentiate between scalar, vector and array variable names. The text preceding each

presentation should clarify the nature of the variable used.

2.3 ADDITION AND SUBTRACTIONS OF WAVEFORMS

The sum (and difference) of two periodic waveforms with the same fundamental

frequency is also a periodic waveform of the same fundamental frequency. The Fourier

¢ 1n load flow and stability programs, the fundamental frequency component is only analyzed using
complex Fourier series approach.

" Mathcad® 6.0 can easily handle both real and complex variables, however, dealing with complex variables
in Excel® Version 7.0 is cumbersome.

i1
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coefficients of the sum (and difference) can be determined by the direct addition
(subtraction) of the two arrays housing the coefficients for the two waveforms. Le.:
C=A+B {2-7}
or:

C=A-B {2-8}
For both operations the approximate time domain waveform of € can be regenerated

using Equation 2-1.

2.4 THE PRODUCT TRANSFORMATION MATRIX

The product of two periodic waveforms is also a periodic waveform where the Fourier
coefficients of the product can be derived directly from the Fourier coefficients of the

original waveforms. If the multiplicand and multiplier waveforms® are defined to be:

Alet) = Hf [Aa, cos(n-mt)+ Ab, sin(n - ot)] {29}
n=0

B{mt) = nfx [Ba,, cos(n - ot) + Bb,, sin(n - @t)} {2-10}%
n=0

The product can be determined from term by term multiplication of the two equations and
expanding the resultant trigonometric function products into their equivalent harmonic

form. l.e.:

Clot) = A(et)B(ot) = (nf‘ [Aa, cos(n-ot)+ Ab,, sin(n -mt)]](nf‘ [Ba, cos(n-t)+Bb, sin(n —mt)]J

n=0 n={0
...... {2-11}
or:
2 X
Clwt) = nZ [Ca, cos(n-wt)+ Ch, sin(n-wt)] {2-12}
n=0
where:

¥ In equations 2-9 and 2-10, the de components of the cosine series are equal to ¥; of the Fourier Series
coefficients and the dc components of the sine series are zero.

12



Chapser 2 - Supvmary of Ha

O S L,
it Miathemaiios

Cay =+[2AagBag + Aa;Bay + Ab;Bb) + AayBa, + AbyBby +...]

Ca = %[ZAa,BaO +{2Aag + Aa,)Ba; + AbyBby +(Aa; + Aaz)Ba, +(Ab; + Ab3)Bby +...]
Chb; = %[2Ab;BaG + Ab, *Ba; +(2Aag — Aa,y )Bbl+(—Ab; + Ab;)Ba, +{Aa) —Aaj)Bb, +...]
Ca, = %[ZAaz Ba, +(Aa; + Aay)Ba; + (—Ab| + Ab;)Bb; + (2Aa, + Aay)Ba, + AbyBb, +....]
Chy = %{ZAszaO +(Ab; + Aby)Bay +{Aa; ~ Aaz)Bby + Aby ¥ Bas +(2Aa; —Aay)Bby +...]
[ 2A8;Bag +(As;_| + Aa;,()Ba; + (—Ab;_; + Ab;,1)Bb, +(Aa; 5 + Aa; ,)Ba, +
(—Ab;_5 + Ab, 5 )Bb,...+(2Aag + Aa, }Ba; + Aby Bb, +(Aa) + Aay,)Baj,, +

| {Aby + Aby;, 1 )Bbi,y +(Aay + Ay y)Bagg +(Aby + Aboi, 1Bbjs +nns

| 2Ab,Baj +(Ab;_| + Ab,,;)Ba; +(Ab,_; — Ab;,;)Bb,; +(Ab;_, + Ab;,,)Ba, +
(Aa;_7 — Aaj,»)Bb;...+ Ab,; Ba; +(2Aa; — Aa,; )Ba; +(—Ab; + Aby;;)Ba; ) +

| (Afy — Aagi  )Bb;, ) +(-Aby + Aby;, 2 )Baj, 5 +(Aag — Ay )Bb; 5 o

{2-13}

The coefficients of Ccan be derived directly from the above expressions. The number of
harmonics in waveform C is twice the number in each of waveforms A and B as a result

of the frequency doubling introduced by the products of the n™ terms. E.g.:

A, cos(n-ot)- B, sin(n - ot) = A"‘—ZB“(sEn 2n-wt) {2-14}

Most references describe the multiplication of two waveforms mathematically as:
C=A®B {2-15}

where the symbol & is a convolution operator that carries out the term by term

multiplication of the waveform components. The author observed from Equation 2-13

that the “C” coefTicients can also be rewritten in matrix notation as follows:

C=TB {2-16}
where the matrix Tis a function of only the coefficients of variable A . Le.:
T="T,(A) {2-17}

13
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Tp(A) =
230 ay bl ay bz ay b3 ay b4 1
2&1 230 +an bz a) +dy b; +b3 @y +ay b2 +b4 a3 +4a; b3 + bs
2b1 bz 230 —as _bl + b3 a) —as —bz + b4 ay —dy "“b3 +b5 43 —ds
232 ) +1a;3 '—b] +b3 2ag+ay b4 a) +ag bg +b5 as +ag bz +b6

|

I 2b2 bl +b3 a4y —ajz b4 230 —ay _bl +b5 4; —4asg —bz +b6 a4y —dg
2&3 Ay t+ay —b2 + b4 ay+ag _bl + b5 230 +8g b6 da; +aq bl +b7
2b3 bz +b4 ay —ay b] +b5 a) —dg b(, 230 —dg "‘bl +b7 a; —ay
2&4 a3 +ag —b3 -+ bS ay +ag —bz +b6 a)+ay —bl +b7 230 +dg bs
2b4 b3 +b5 aj —ag b2 +b5 a4y —dg bl +b7 a —ay bs 230 —ag

'a' and 'b' as referenced in the above matrix are the 'a’ and 'b' coefficients of the vector 'A’.
The identification 'A' has been omitted from the above description of the matrix elements
as it is common to all elements of the matrix. The author has defined this matrix as a
“product transformation matrix™ as it transforms the single dimension array A into a two
dimensional array that can be used in the direct multiplication of the coefficients of the

two single dimension arrays.

The notation:

C=T,(A)B {2-19}
as used throughout the thesis, is effectively the same operation shown below:

C=A®B {2-20}

as used by others.

The number of columns of the product transformation matrix must match the length of
the second multiplicand array. The number of rows however can be set to reflect the
desired accuracy of the product. Saturation of the accuracy occurs when the number of
harmonics of the product is equal to the sum of the number of harmonics of the
multiplicand and the multiplier. Limiting the number of harmonics in the result

effectively produces numerical filtering of the product.

Unless otherwise indicated herein, the number of harmonics in the product is set equal to

nmax.

14
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2.5 THE INVERSE TRANSFORMATION MATRIX

An interesting property of a square product transformation matrix is that under certain

conditions (stated later), it can be inverted. The inverse of the waveform is simply:

InvA = Tp'] (A)One {2-21}
where:

One=[1 0 0 0 .J {222}

or simply the first column of the inverse of the transformation matrix representing A .

It is important to note that:

Ty (InvA )= 7,7 (A) {2-23}

The equality is approached only if the highest harmonic order included approaches

infinity.

Either method could be used to solve for the unknown vector B in the following
relationship where both € and A are known:

C=T,(A)B {2-24}

The solutions could be:
B=T, ' (A)C {225}
or alternatively:

B=T,[T,” (A)One] C {2-26}

The differences between the two methods have been confirmed by the author to be
minimal. As the first equation results in less computation effort and fewer operations, it is

used wherever possible.

If a waveform (in the time domain) has zero crossings, its inverse should have an infinite

value at these zero crossings. In the proposed harmoenic domain analysis, if the harmonic

13
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array is limited to a small number of terms, its transformation matrix may appear to be
non-singular and hence invertible. However, as more harmonics are added, the matrix
becomes more ill-conditioned and the corresponding time domain waveform evaluated
from the Fourier coefficients converges to infinite impulses at the zero crossings of the

original waveform.

The power of the inverse transformation matrix can be seen for a situation where the
harmonic content of the voltage V' and current ' ' are known at a given location in a

harmonic simulation (or power network). The apparent harmonic impedance 'Z,,," of the

network at the point would satisfy the expression:

=¥ {227}

— |

zapp '
If we consider the time varying impedance, equal to the division of the voltage waveform
by the current waveform, ie

Zog =T, (1) {2-28}
then the product of the time-varying impedance and current vectors should, by definition,
equal the voltage vector. Or,

Tp(Zg ) 1=V £2-29)

Comparing to Equation 2-27, the apparent impedance is given by:

Zagp = To {1, (1)}-9) {2-30}

The same relationships can be applied if 'AV' and 'Al" are used instead of 'V' and 'T'
respectively. The resultant impedance represents the harmonic Thévenin equivalent

impedance 'Z,,, " at the location. This in turn can be used to predict the behaviour of the

system voltage for other AT situations. Le.:

AView = ztht:v 'ATHEW { 2-31 }

16
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2.6 THE SQUARE ROOT FUNCTION

As will be shown in Chapters 5 and 6, the harmonic domain square root function can be
used for direct evaluation of saturation characteristics and is the basic building block for
the direct modelling of electronic switching functions in the harmonic domain. Three

algorithms have been set up and used to evaluate the square root of a waveform.

The objective of the each of the algorithms is to solve (in the harmonic domain), the

equivalent of the algebraic expression:
rP-x=0 {2-32}

for 'r' where "' is the root and X' is the argument

2.6.1 The 'Exact' Newton-Raphson Solution

The first algorithm considered is based on a Newton-Raphson solution [ 36 ] of the

algebraic equation:

fr)=12—x=0 {2-33}

The Newton-Raphson solution is given by:

-1
o
K (234}
since:
% —or {2-35)
p o fisd +5'x £2-36}

! 2

where i denotes the current iteration.

In the harmonic domain, Equation 2-33 becomes:

f(R)=T,(R)R-X=0 {2-37}

1t can be shown that:

17
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o oy = _
2 (1 {R)R)=T, (R) {238}
and therefore, in the harmonic domain, the iterative solution becomes
ﬁi-—l + Tp_i (Ri—l ) i

R, - - £2-39}

This is effectively the same algorithm as given by Equation 2-36°.

The Newton-Raphson method is known to be affected by the initial condition or “seed”.
Several choices for this seed were investigated, all of which appeared to work to a limited
degree as follows:

Method 1 R = One

Method 2 R = One, {|%}

Method 3 Ry =X

In Method 2 above {Iii} is the magnitude of the harmonic domain array expressed as the

root of the sum of the squared magnitudes of the elements (or Frobenius norm) in the

array'’. It is identical to the length of a vector equated to the single dimension array 'X'.

In order to [imit the time for computations, the number of harmonics was restricted to 20,
with a tolerance based on both the magnitude of the argument and the number of

harmonics in the vector.

The exit criterion was based on the magnitude of the error defined as:

err = {|inp(ﬁi)ﬁil} {2-40}
rr < tol

SLE 2-41
= x] {241}

® Information located at http://www2.sunysuffolk .edu/wrightj/MA28/squareroots | .pdf indicates that this
algorithm has ancient Egyptian origins. The reference identifies it as 'Method of the Means' and presents
several numerical examples.

19 The ynusual notation used here is to avoid confusion with the absolute function denoted }X] as used
elsewhere in this document

18
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Preliminary testing of the algorithm showed that the algorithm is relatively robust with
convergence to within the tolerance in about 3 to 4 iterations for positive“ arguments.
The algorithm could require up to 9 or 10 iterations to reach a solution for arguments
where the waveform represented by the argument reaches zero a few times during the
period. The number of iterations is dependant on the number of harmonics, with more

iteration required for an increased number of harmonics.

The algorithm is also relatively insensitive to the choices investigated for initial values.
The algorithm returns the positive root if the initial choice is positive and if the argument

is positive.

The algorithm was tested for arguments that are known to have solutions where the time
domain waveform could be negative. For example the time domain waveform cos*(wt),

which can also be expressed as its harmonic equivalent %(l-z-cos{Zcot)) has a root 'cos{wt)'

which has negative values in the time domain for 2 of the period. The algorithm does not
return the equivalent of cos(wt) but returns the coefficients of only the positive root

waveform as desired.

For example, in the harmonic domain the argument 'cos’(wt)' would be represented by its

harmonic equivalent '1(1+cos(2at))' in an array'’:

d0 1= e .
T_r2 K N
& TIBos 0 0 050 0 0

The coefficients of the returned solution are:

T B 48] "5:'71.;-'i:g;151‘:13f13553-f-f'ﬁf1:*’_: Bt EvEE
ot =g 06370 0 0424 0 0 -00850 0 .0 0030 0 0 -0020 0 0

" 1n this context, 'positive’ means that the time domain waveform represented by the variable is greater
than zero over the entire period.
12 The arrangement of data in this array follows the convention defined by Equation 2-5.

i9
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The time domain waveform corresponding to 'root' is compared to the time domain

waveform of the argument and the other possible solution 'cos(wt)' in Figure 2-1.
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cos(x)
Figure 2-1 ‘Root’ and ‘Cos(x)’ Solutions to /cos’ (wt)

The algorithm deteriorates if the argument waveform lies at or close to zero for any
extended period of the cycle. This is not surprising as the condition of the product
transformation matrix becomes more ill-conditioned and eventually the algorithm fails to
reach a solution within the 20 iterations, as the percentage of the time that the waveform

lies at zero increases.

For a periodic step function between a value of 1.0 and 0.0, the algorithm fails to
converge within 20 iterations. The time domain evaluation based on the non-converged

solution is shown in Figure 2-2.

20
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For this argument, the theoretical solution should be identical to the argument. Instead,

the algorithm produces an unsatisfactory solution.

The solution does not improve with increased iterations. In fact, the solution has less

visual error after the 10" iteration as depicted in the regenerated waveform of Figure 2-3.
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Figure 2-3 'Exact' Newton-Raphson Solution to ./step function after 10 Iterations
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As many applications using power switching devices result in voltage or current
waveforms similar to the step function above, the above algorithm is considered to have

only limited applications.

2.6.2 The Taylor Series Expansion

A second solution algorithm was developed based on the Taylor series expansion:
N n
fa+y)= ¥ £V (a)+Ry {242}

n=p It:

around a value of a=1.

The operating point of 1 was selected to be consistent with the Taylor series expansion of

the square root function given in [ 37 ]".

The Taylor series approximation of the square root function is:

f(1+y):..fl+y :J; {2'43}
where:

y=x-1

f'(a)=%a_%

f"(a)=—%a“3' =-1f'(a)a! {2-44}

Since, n'=n{n-1}! and since a=1, the change in the coefficient from the (11-1)‘h derivative to

the n™ derivative is the multiplying factor:

3.
5 h

where ¢ =1 {245}

Cyh =
n

Thus, the change in the Taylor series term is:

corr, = ¢,y y" ! {2-46 }

'* The series given in [ 37 ] only provides the first few coefficients of the expansion. The rest can be
derived using Equation 2-45

22
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With a sufficient number of terms in the series, the remainder term Ry can be neglected.

Applying the same algorithm to the harmonic domain analysis, the change in the Taylor

series term becomes:

Corty = o Ty (Y) ¥ {2-47}
where:
=T, (V) V7 ete {2-48}

As the algebraic algorithm converges only for values of y between +1.0 and -1.0, the

argument is first divided by a scalar constant:

factor = {|)_(” {2-49 }

where [15{‘} again denotes the magnitude of the vector equivalent to X .

The result is multiplied by /factor.

The exit criteria selected is based on a pre-selected maximum value of N' or if:

{|éonn } <tol §2-50}

or:

{|éonn|} > {iéonn_;l} {2-51}

The algorithm is efficient in terms of computing requirements in that the product

transposition matrix is created once and only matrix multiplication is involved.

An arbitrary limit of 500 corrections was used in the test algorithm. An exit tolerance of

107°}x| was chosen.

The algorithm again works well for waveforms which do not cross or touch zero. Test
systems not shown here with a maximum harmonic of 50 and with a waveform minimum

of about 50% of its maximum satisfies the exit criteria in about 10 steps. The ‘cos” ' test
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again solves to the positive root but over 360 corrections are required. The periodic step
function test exits prematurely after about 65 steps after which the magnitude of the

correction term starts to increase.

The evaluated waveform based on the Fourier coefficients on exit is compared to the

waveform of the argument in Figure 2-4:
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Figure 2-4 Taylor Series Solution to ,/step function after 65 Steps

The solution reproduces a satisfactory waveform for the positive portion of the cycle but

introduces a 'dc' offset error for the 'zero' portion of the waveform.

Similar to the Newton-Raphson solution, the above algorithm is considered to have only

limited applications.

2.6.3 The Minimum 'Best Fit' Newton-Raphson Solution

In the 'exact' Newton-Raphson solution, the algorithm sometimes diverges after a 'close’'
solution is reached. It was believed that truncation of the harmonic series during

harmonic multiplication was creating a situation where a solution to the basic equation:
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was not possible.

{2-52}

A ‘best fit' Newton-Raphson algorithm was proposed and developed. The algorithm is an

improvement over the 'exact' solutions in that it is more 'robust’ and as will be

demonstrated does not diverge for tested arguments including the step function. In this

'best fit' Newton-Raphson algorithm, the error defined by the scalar 'e’ is minimized in the

‘least squared’ sense where:

where:

e=F'F

F=X-Tp (R)R

At the minimum value of e;

%5
OR

where w{%’w is defined to be:

or.

e | e de 1% O il
R | 8Ray; ORa; &Rb; Rapmax  ORDp max

o )
s o[F F)_z &
fﬂiao Bﬁao 6&&0
% L
R R
. 20

— T ] —

—=-Tp®R)1 ¢ 0 ..] -Ljo 2 R
Rag p( )[ ] 2 :

=—R~[T]R =-2R or -2Tp (R}[ 0
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Similarly:

0
&F |1
Bﬁal = P(R]
Therefore:
or T .
L (R)
or:
oF -
== 21" (R)
Since:
L. ziT F
R R
then:
e ~4Tp" (R)F
aR

For minimum error, the algorithm must find R such that:

T, (R)F=0

Using Newton-Raphson solution
Q=T (R)F=Tp" (R)X-Tp" (R)Tp (R) R

@ o[ 1" (_ﬁ)i] i a[TPT(ﬁ):FP (R) R ]
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To' (R)X
[ JRagXa, + 2Ra; Xa, + 2Ry Xb) +2Ra,Xa, + 2RbyXb, +---
= % Ra,Xa, +(2Rag + Ra, }Xa, +2Rb, * Xb, +(Ra) +Ray )Xa; +(Rb; + Rby )Xby +--

(2Xa,  2Xa 2Xb, 2Xa, 2Xb, 23a, 2Xb; - Rag |
2Xa, Xag+Xa, 2Xb, Xa;+Xa; Xby+Xby Xap+Xay; Xby+Xb -} Ry
2%b,  2Xby Xag~Xas ~Xbj+Xb; Xa;—Xa; -Xb,+Xb, Xa,-Xay - [ Rb

-1 2Xa, Xay+Xa; ~Xb+Xby Xap+Xa, 2Xb, Xa;+Xas Xbj+Xbs -l Ras

212Xby Xby+Xby  Xay—Xa, 2Xby Xag—Xay —Xby+Xbs Xa;-Xas -~ Rby

2Xa; Xap+Xay, -Xb2+Xb, Xaj+Xag ~Xb+Xbs Xag+Xag 2Xbyg -+ if Rag

2Xb; Xby+Xb Xa;-Xay; Xbj+Xbs Xa; - Xas 2Xbyg Xag—Xag - {| Raz
o] 2-67 }

If we define:

then:

and:

or:

n (%)=
[2Xa,  2Xa 2Xb, 2Xa, 2Xb, 2Xa, 2Xb, :
2Xa; Xag+Xa, 2Xb, Xa;+Xa; Xbj+Xby Xaz+Xay Xbp+Xb

2Xb, 2Xb, Xag—Xa; -Xby+Xby Xa-Xa; ~Xby+Xby Xa;-Xay
2Xa; Xap+Xay; ~Xb+Xb; Xap+Xay 2Xb, Xay+Xas Xb +Xbs
2Xb, Xb+Xb; Xa; —Xa, 2Xb, Xap—Xa, -Xb +Xb; Xa;-Xag
2Xa; Xa;+Xa, -Xb2 +Xb,; Xa;+Xa; -Xb+Xb; Xap-tXag 2Xbg

2Xby Xb,+Xb  Xay-Xa, Xby+Xbs Xa;—-Xag 2Xbg Xag —Xag

T [

] 2-68 3

Tp' (R)X =T, (X)R {2-69}

a(Ti(R)i) a('r;(i{)ﬁ) eann (i))T
) AL
fﬁ%ﬂ’—ﬂ:@(x)f -1, (X) {271}

since T, (X) is symmetrical.
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It can be shown that:

AT R (R R] o[ (R)R] o[ Aito(R)Ra] o[ ] {272}
R R R R

and if we make the following substitutions:
R] = TP (ﬁ) ﬁ
o Tis
A= (7) (273

K2 == R

Ay =T ()7 ()

then:

AR AR e | )

. } =T, (Tp (R) R)+21p" (R) T (R) {2-75}

The Jacobian is given by:

(272 (0 )

= === 2-76
oR oR ¢ }

"
S
=
———

=~
S

and the iterative solution becomes:

{2-77}

The initial values for the solution and the exit tolerance were chosen to be the same as the

‘exact’ Newton-Raphson solution on the assumption that the algorithm would always

converge {0 a minimum error solution.
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Initial trials with the algorithm indicated some problems. The algorithm worked well for
positive waveforms and for waveforms that just 'touched' zero. For the step waveform
argument, however, the error 'e' would reduce logarithmically for initial iterations but
eventually the rate of reduction would decrease, the error would approach a minimum
value, and at a critical iteration the error would increase dramatically. The value of the
error '¢' at each iteration is shown in Figure 2-5. The error reaches a minimum at the gth

iteration, after which, numerical 'hunting' begins.
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1°10 ®
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i
Iteration

Figure 2-5 Variation of Error in 'Best Fit' Newton-Raphson Solution to ,/step function

The solution at the iteration with minimum error (iteration 9) is closer to the actual
solution as shown in Figure 2-6. There is still a slight dc offset in the 'zero' portion of the
time domain waveform. This can be explained by closer examination of the time domain
waveform of the argument to the square root function. High frequency Gibb's-like
oscillations are evident in the equivalent time domain representation of the original step
function'®. The consequence of the oscillations is that the argument to the square root
function is actually negative over some portions of the time domain. In the time domain
the solution at these locations would be imaginary, implying that in the frequency

domain, there should be a corresponding complex harmonic content in the solution.

"“This is a well known and documented phenomena, arising at discontinuities as a result of truncation of the
number of harmonics in the series representing the function.
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Figure 2-6 'Best Fit' Newton-Raphson Solution to ,/step function after 9 Iterations

The whole basis of the author's approach to harmonic domain analysis is the use of 'real’
variables. The minimum error solution of the 'best fit' algorithm is most likely the closest
solution that can be achieved within the 'real' variable constraint for the given step

waveform.

The failure to converge to a minimum is likely due to numerical issues. The Jacobian of
the algorithm involves transformation matrices that are a function of the both the
harmonic content of the argument and the latest estimate of the root. The transformation
matrices for the argument are poorly conditioned due to the proportion of the time
domain that the step waveform is at zero. As the estimate of the root gets closer to the
actual solution, the condition of the root matrix will also reduce. At the minimum
solution the condition of the resultant Jacobian likely deteriorates to a situation where it is
almost singular and although the error is small, the product of the inverse of the Jacobian
and the error array is numerically incorrect, resulting in over-correction of the root. Once
the latest estimate of the root is sufficiently separated from the actual solution, the

conditions of its matrices improve and hunting in the solution occurs.
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The convergence/numerical issue was overcome by exiting the algorithm when the
absolute value of the error '¢' increased over the previous iteration. The modified
algorithm, 'robust' in its solutions for the step wave as well as for non-zero positive
waveforms is likely the 'best' that can be achieved within the constraint of real harmonic
domain coefficients. The resultant solution, though not precisely accurate, is acceptable

for the analysis of most situations covered in this thesis.

2.6.4 Other Possible Solutions.

Although an 'acceptable' solution is obtained with the 'best fit' algorithm discussed in the
above section, the author believes there may be other solutions that would improve the
accuracy of the square root evaluation for the step function, but he leaves this problem for

future investigators. These ideas are discussed in Chapter 7.

While other solutions may be available, the 'best fit’ algorithm does provide good results
when applied to direct evaluation of saturation effects as described in Chapter 6 and for

basic diode switching operations as described in Chapter 5.

2.7 THE ABSOLUTE FUNCTION

In many control and measuring circuits, the absolute function '|x|' where x is a time
varying quantity, is frequently used to simulate the behaviour of a full wave rectifier
circuit. It can also be used to obtain an estimate of the state of a sinusoidal waveform. If
the input waveform is dominated by a single frequency, the peak and RMS quantities can
be determined to a very good approximation by appropriate scalar muitiplication of the
average of the absolute or fully rectified signal. The accuracy of the approximation

reduces in the presence of harmonics in the signal.

With a robust harmonic domain square root function, a very good approximation of the
'absolute’ function can be developed based on the algorithm:

Abs(X) = Sqrt(Tp (X)X} {2-78}
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This harmonic domain algorithm was tested on many different waveforms as part of this
work. Provided that the corresponding time domain waveform to the argument has only
transitions through zero, not sustained operation at close to zero, all three square root
algorithms described in Section 2.6 of this chapter perform well as part of the harmonic
domain absolute function. The harmonic domain absolute function, of course, suffers

from the same limitations as each of the square root functions.

As the algebraic function can be used to simulate fully rectified control signals, it was
believed that the corresponding harmonic domain function could be used to simulate the
behaviour of power system rectifier circuits. The use of the harmonic domain application

of the absolute function to the harmonic analysis of power systems is given in Chapter 5.

2.8 THE SIGN FUNCTION

The time domain sign function [f(x) =1 for positive x, 0 for x=0 and -1 for negative x] is
useful in the analysis of many power electronic circuits, for example in a comparator
which compares a ramp with a level for issuing firing pulses. As it is also the derivative
of the absolute value function it (in harmonic domain form) could prove useful in
developing Newton-Raphson algorithms for the solution of systems using the absolute

function.

The sign function can be generated from the absolute function in one of several ways:

Sign(X) = (T, (X)) Abs(X) (279}
Sign(X) = (Ty(Abs(R)) ™' (X)

Both functions are subject to the limitations of the underlying square root function.

The sign function is used in the Newton-Raphson solution of the test circuit described in

Section 5.4 of Chapter 5.

32



Chapier 7 - Sumnary of Harmonic Domaly Mathemaios

29 THE DERIVATIVE OPERATOR

Development of harmonic domain models of inductors of the electrical system and many
of the transfer function block diagrams of control systems require the ability to
differentiate a waveform with respect to time. In this section a sparse harmonic domain
transformation matrix is developed that provides the harmonic content of the time
derivative of the original waveform. Since some form of this technique is used in almost
all harmonic domain analysis tools methods, it is presented here to contribute to the

documentation of the author's harmonic domain analysis methodology.

Given the function:

f(wt) = fa70+ Eil [fan cos(n - @t) + by, sin(n - wt)] {2-80}

%f(mt) = ;:oj [—nco-fa“ sin(n - ot} +ne- by, -cos(n - wt)] §2-81}

n=}

In the harmonic domain:

d = — -
—F=D-F 2-82
dot {2-82}

where D is a matrix representing a derivative operator:

o 0 0 - 0 0
0 0 1 0 ¢

0o -1 0 6 ¢

]|
I

{2-83}

Use of the derivative function to set up the characteristic of an electrical network is
described in Chapter 4. Use of the derivative function to mode! several contro! function

block diagrams is described in Chapter 3.

2.16 OTHER MATHEMATICAL FUNCTIONS

This chapter has described the development of what the author believes are the

fundamental mathematical harmonic domain models that are essential to the development
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of a direct harmonic domain analysis tool. The operations and functions can be used to
develop more complete models by the users of the HDA methodology proposed by the

author.
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CHAPTER33

LINEAR POWER SYSTEM ELEMENTS IN THE HARMONIC

DOMAIN

3.1 INTRODUCTION

This chapter describes how power system passive electrical elements are modelled in the
proposed HDA model. The same principles have been used in almost all HDA models
considered in this thesis. They are presented here, however, to complete the description

of the propose HDA methodology and to highlight some of the limitations.

3.2 THE ADMITTANCE MATRIX

One of the most common equations used to model electrical elements in the power

system is the admittance matrix equation, i.e.:

oy o Y| v
Pl {31}
ki Yo o Ve Lk
where:
vk corresponds to the voltage at node 'k' in the network

iy corresponds to the current injections into the network at node 'k’

¥+« corresponds to the elements of the admittance matrix

The off-diagonal elements of the matrix correspond to the negative of the admittance of
the branch interconnecting the two nodes The diagonal of the matrix (e.g. yw)
corresponds to the sum of the admittances of all branches connected to node 'k' including

admittance of all shunt connected devices.
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One of the advantages of the admittance matrix is that the mathematical model of the
network can be built up component by component. As each new branch is encountered in
the data, its corresponding locations in the admittance matrix are identified, creating a
new node if the node does not exist. A new node is often added at the end of the array for

convenience along (with its corresponding row and column in the matrix).

In a similar fashion, the location for information associated with any shunt connected

element is determined directly from its node number.

The admittance matrix itself is created from an initially empty matrix by sequentially
adding the admittance (or negative admittance for off-diagonal elements) of each branch

or shunt to the admittance(s) already present in the matrix at the appropriate locations.

In a power system network, there are generally only a few branches emanating from any
given node, possibly only 3 to 4 times as many branches as there are nodes for the
network. Hence, the admittance matrix above is very sparse. In addition, for most
conditions the admittance matrix is symmetrical (i.e. y; is equal to y;;). Most applications
take advantage of the matrix sparcity and symmetry in the storage of the definition of the

network structure and admittances.

In power system load flow and stability analysis tools, the voltage v, and the current iy
are complex variables (real and imaginary components), representing the fundamental
frequency component of the power system voltage waveform by its positive sequence
equivalent voltage. The magnitude of the voltage is equal to the magnitude of its complex
variable. The phase displacement of the voltage relative to other buses in the system is
contained in the angle of the polar presentation of the complex variable. Therefore, in the
load flow and stability tools, the admittance matrix houses the admittances expressed in

complex form.

Most time domain solution algorithms of a network use Dommel's approach [ 35 ] in
which inductive and capacitive elements are treated as a Norton equivalent with only real

time-independent admittances (i.e. conductances) and real time-dependent current
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injections at the node. Therefore, the admittance matrix as used in the time domain house

only real variables.

Most harmonic domain algorithms known to the author use a formulation of an
admittance matrix with a similar structure to Equation 3-1, except that in the harmonic
domain each element in the admittance matrix of Equation 3-1 represents a complete
matrix defining the harmonic relationships of the branch and each element in the voltage
and current vectors is an array housing all of the harmonic content of the current and

voltage.

In the methodology proposed by the author, each element of the current and voltage
arrays of Equation 3-1 consists of a real array of dimension (2 nyt1, by 1) containing
the harmonic content of the current or voltage waveform for its corresponding node in

accordance with the layout described in Section 2.2 of Chapter 2.

In some other HDA schemes [ 10 ], the complex Fourier series has been adopted', and as
a result, the equivalent arrays (now of dimension only nma+t1) would house complex
variables. Other HDA schemes [ 29 ] could have slightly different structures for the

arrays, but in general, the basic form of Equation 3-1 will likely be used.

The remaining sections in this chapter document the treatment of the main power system

passive elements in the authors HDA model.

3.3 RESISTORS

A resistor whose resistance is independent of frequency is very simply modelled in the
harmonic domain by the array 'R ' where 'R ' satisfies the ohmic equation:

Vg =R Iy {32}

'* as opposed to the cosine, sine series expansion used by the author
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'Vg' and 'T;' are arrays housing the harmonic component of the voltage across the

resistor and the current through the resistor. The resistance is given by:

R=r1 {33}

Here 'r' is a scalar variable and is equal to the resistance of the resistor and 'T' is the

identity matrix.

Resistance of a transmission element can be a function of frequency. This is common in a
power system where skin effect plays an important role at higher order harmonics. The
resistance of transmission lines and other inductive devices such as transformers and

reactors is known to increase with frequency.

Although frequency dependent resistance models have not been specifically addressed
elsewhere in this thesis, they can be incorporated very easily into the proposed HDA
model. A frequency dependent resistor can be modelled by the diagonal array:

() -

r(1) 0

r{l)

R(n) = {3-4}

0 r(n)

t(n) |

In this matrix, the resistance is assumed to vary according to harmonic in accordance to
the function 'r(n). The dual entries for the harmonic components are used on the
assumption that resistance is independent of the phase relationship at each harmonic

between voltage across the resistor and the current through the resistor.

If the resistance is non-zero at every frequency, the matrix 'R' can be inverted into its

'admittance' (in this case conductance) matrix form, i.e.;

G-R {35}

As the resistance matrix is diagonal, its inverse is also diagonal.
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3.4 INDUCTORS

In the time domain the relationship between the voltage 'v' across an inductor 'L and the

current 'i' through the inductor is given by:

d.
v(ot) =L d—ti(mt)

d {3-6}
= ZEfOLai(mt)
The equivalent harmonic domain expression is given by:
V=71 {37}
where:
Z, =2nf,-L-D {3-8}
and:

Dis the derivative matrix described in Section 2.9
V is the harmonic domain voltage array

1 is the harmonic domain current array

The zero impedance of the inductor at a frequency of zero creates a singularity in the
harmonic impedance matrix. All elements of the first row and first column of the
impedance matrix are zero. As a result it cannot be included directly into the complete

harmonic domain matrix of the system.

The problem disappears if there is resistance in series with the inductor. In a typical
power system application, this is almost always the case. The resultant impedance of the
inductor would be:

ZL Zz?’[fo L]_)“F!'T
or: {39}
7y =2afy-1.-D+R(n)

The latter equation would be used if the resistance is dependent on frequency as

described in Section 3.3 of this chapter.
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With resistance and inductance based on typical power system elements, the matrix 'Z; '

is well conditioned and bounded'®

The admittance matrix formed by the inverse of the impedance matrix, i.e.:
Y. =7 {3-10}

is also bounded and hence sparse.

An alternative way to handle an ideal inductor (i.e. no resistance) would be to treat the dc
and harmonic components differently. This is discussed in Chapter 7 along with other

ideas for future research in this area.

3.5 CAPACITORS

The harmonic admittance (mhos) of a capacitor can be calculated directly and
incorporated into the admittance matrix of:
?CZZTCfO'C'ﬁ {3'11 }

where Y is the capacitance (F).

While the admittance can be readily calculated, the singularity in the derivative matrix
precludes the creation of an impedance matrix. Similar to the treatment of the inductor
(as described in the previous section), if a resistance (or in this case conductance) is

included in parallel with the capacitor, the resuitant matrix can be inverted.

Unfortunately, capacitors themselves are low loss devices and inclusion of a parallel
resistor may not be appropriate. Use of a resistance, consistent with a typical capacitor,
would not significantly improve the condition of the resultant admittance matrix.
Fortunately, only the admittance matrix, and not its inverse, is required to represent the
capacitor using the admittance matrix formulation. The overall admittance matrix can be

inverted, provided that there are resistance elements elsewhere in the network,

'® The matrix is diagonal with a single adjacent element
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In Chapter 3, it is suggested that a capacitor could be treated as an impedance to assist in
the solution of numerical interaction between capacitor and switching devices. If so, the

capacitor impedance issues will have to be addressed at that time.

3.6 OTHERSYSTEM ELEMENTS

The above approach of including Rs and Ls into a Harmonic Domain admittance matrix
can be readily extended to other passive elements, although this analysis is not explicitly
included in the thesis, for brevity. Step-up and step-down transformers can be
incorporated using treatment similar to the model of an off-nominal tap transformer in the
load flow and stability model. While directly equating transformer voltage ratios to the
tap position(s) of the Edith Clark equations [ 38 ] is mathematically exact, large
differences in voltage ratios may introduce numerical issues, and in a fashion similar to
the power flow, voltage scaling of the system model will likely be required to avoid these

problems.
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CHAPTER 4

LINEAR CONTROL SYSTEM FUNCTIONS

4.1 INTRODUCTION

Frequency domain analysis has long been one of the favoured tools in the analysis and
design of linear control systems [ 14 ], [ 15 ]. The proposed Harmonic Domain Analysis
of control system functions turns out to be a subset of frequency domain analysis. Control
systems are comprised of individual control functions, where the dependence of the
output response on the characteristics of the input is defined by a frequency dependent

transfer function, often expressed in a Laplace transform form [ 39 1.

This chapter describes how simple control functions such as first order lag and
proportional-integral-derivative type controllers can be transcribed into the non-linear
HDA model proposed. It proceeds to describe the development of a harmonic domain
model of a time domain function that compares a repetitive ramp signal with another time
varying (but also repetitive) input signal. This time domain function is fundamental to
most phase-locked loop controls used to derive firing pulses for thyristors or other gate

driven electronic switching devices.

4.2 FIRST ORDER LAG FUNCTION

The first order lag function can be described by the Laplace transform form:

O6)_ !
i(s) T l+tes

{4-1}

where:
O(s) is the Laplace transform of the output response

I(s) is the Laplace transform of the input response
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s is the Laplace operator

1 is the time constant of the response.

In the proposed harmonic domain model, the relationship between the harmonic content

of the output waveform O and the input waveform I can be defined by:
0=K-I

where:
0O1is a an array housing the harmonics of O(wt)
1 is a an array housing the harmonics of H(wt)

K is matrix defining the harmonic relationship between 1 and O

The Laplace Transform domain response can be re-written in the form:

(1+1-5)-O(s) = Ks)

In the harmonic domain model, the equation becomes:
(T +T ﬁ) O=1

where:
1 is the identify matrix

D is the derivative operator described in Chapter 3

from which:

K =(T+1-f))_1

(42}

(43}

(44}

{45}

It can be shown that the matrix K is very sparse and can be developed directly without

having to carry out the inversion.

4.3 THE PROPORTIONAL INTEGRAL DERIVATIVE FUNCTION

The Proportion Integral Derivative (PID) controller and the Proportional Integral (PI)

controller are used in many control system functions. The PI controller (i.e. the PID

controller without the derivative term), is simply a subset of the PID controller.
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The Laplace Transform of the PID controller is:

o) _, , L ,
) _gp+tgs+tds {4-6}

where:
g, 18 the controller gain
t; is the integrator time constant

14 1s the derivative time constant

Again in the harmonic domain the input to output response can be given in the form:
O=Kpp -1 {4-7}
where:
O is the HDA equivalent of the output
T is the HDA equivalent of the input

Kpyp is a transfer matrix defining the harmonic relationship between T and O

The transfer matrix is constrained however due to the presence of the integrator. Each
component of the Laplace Transform form the PID controller has its corresponding
component in the harmonic domain. Le.:

KP;D=KP+I—<I+KD {4‘8 }

The gain component as it applies equally to all frequencies (hence harmonics) is simply:
Kp=g, T {49}

where 'T' is the identity matrix.

The derivative component contains a frequency dependent component based on the
derivative of the input. le.:
}_(D =Td'5 {4-10}

Similar to a treatment of a capacitor in the electrical network (as discussed in Chapter 3),
the dc input to the integrator by definition is zero, which in turn means that the input to

the whole PID controller must also be zero. The harmonic domain implies no change in
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time domain waveform from one period to the next. As the output of the integrator in the
time domain would continue to build-up for a constant 'd¢' input, the average input in the

time domain must be zero, implying a zero value of dc input in the harmonic domain.

The harmonic component of the integral term can be expressed as:

R, =1p," {411}

lh 1:1_
In the proposed harmonic domain methodology, the de component of the matrix is

arbitrarily set to zero and the resultant total harmonic domain gain is given by:

GT

g = 4-12
Ki:ﬁf{ih {" }

When combined with the proportional and derivative component, the total harmonic
domain representation of the PID Controller is given by:
KP!D = Kp +K| +KD

=g, 1474 Dt
T

110 oF {4-13}
0 D!

with the added constraint that the dc component of the input to the PID controller '1'
must be set elsewhere in the model to zero, i.e.:

Ty =0 {414}

From the equation it can be seen that if the proportional and derivative components are

not present, the respective scalars g, and 4 can be set to zero, leaving just the integrator

term.
Use of the PID Controller is described in Section 5.4 of Chapter 5.

4.4 THE COMPARE RAMP FUNCTION

The firing pulses for controlled power electronic switching devices are often derived by

control circuits that compare a periodic ramp function with a reference signal [ 40 ] as
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shown in Figure 4-1. The controller generates a pulse signal that has a value of zero for
the interval when the value of the ramp is less than the reference value and a value of one
if the value of the ramp exceeds the reference. The reference signal would normally
consist of a constant 'dc' value, but harmonics could be present in the control system

giving the reference signal a periodic time dependent characteristic.

’,:T: —— it ;
& ~C
0 = 2 —
| | | | | | |
0 50 100 150 200 250 300 350 400
Time (degrees)
~ Reference
-~ Ramp
Step
Figure 4-1 Typical Method of Determining Firing Instances (in Time Domain)

The intersection of a ramp signal and a reference signal can be directly handled in the
frequency domain by subtracting the harmonic content of the reference signal from the
harmonic content of the ramp. The HDA sign function applied to the difference will
generate the harmonic content of a waveform that has a value of 1 if the difference is

positive and a value of -1 if the value is negative.

Unfortunately, this method is somewhat flawed. Truncation of the harmonic series
representing the ramp function introduces Gibb's-like oscillations that could result in

multiple crossings of the difference waveform.
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This effect is illustrated in the following example where a ramp function is compared to a
'dc' reference signal. The harmonic content of a periodic ramp that varies between the

values of 0 and 1 is given by:

liT{.s L e | }

With a reference value of 80 degrees (% of the ramp), the difference waveform would

have the harmonic content:

édiHT={277s o Lo 2L }
b 2n

In the time domain, the difference waveform is shown in Figure 4-2. An expanded view

at the zero crossing is shown in Figure 4-3.

1 | | | | | | |
\/‘/‘/\1
0.5 - -
(6 gigpoT) //ﬁf,#
05 | | | | | | |
o 50 100 150 200 250 300 350 400
oT
Figure 4-2 Time Domain Presentation of Difference Between HDA Ramp and Reference
0.01 T T T T 71
'
///
f///
/
£
~0.01 | / | | | |
y 76 78 80 82 84
oT
Figure 4-3 Time Domain Presentation of Difference Between HDA Ramp and Reference
(Expanded View)
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In the above example, there are three zero crossings at the reference angle of 80 degrees,

within a range of about 78.5 to 81 degrees.

If the reference signal were closer to zero or closer to 360 degrees (a signal of 1.0) the
Gibb's-like effect is larger possibly creating additional zero crossings over a larger time
interval. With a truncation to 50 harmonics, the range of 'error' in the representation of

the crossover could be as high as 15 degrees.

An error of 15 degrees in the calculated firing circuit of a valve would have a significant
impact on its estimated behaviour. A Lanczos filter could be applied to the difference
waveform eliminating the multiple crossovers at reference signals in the middle of the
range; however, reference signals close to zero or 360 degrees could still cause

difficulties.

An alternative solution is to numerically solve for the intersection of the reference
waveform with a ramp, and generate the harmonic response of the output based on the
calculated point of intersection. Using a Newton-Raphson algorithm, the equation to be

solved is:

f=mt-B. —ﬁfx (Bap - cos(nat) + By, -sin(nat)) = 0 {4-15}
n=1

The variable [} in the above represents the harmonic coefficients of the reference signal.

The derivative of the equation is given by:

M I-n- nfx (Bgy - sin(nat) + By, -cos(nat) } {4-16
dot n=1

As the reference signal will typically be dominated by the 'd¢' component, a reasonable
initial guess for the solution ‘¢’ is:

Ujgep=g = O = Bap {4-17 }
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and successive correction terms are given by:

B =~ el {418}

Lo
daot iter-1

The solution 'o' is subsequently used to define the harmonic coefficients of the resultant

pulse signal. Le.:
Pl ()= (1—2} [—sin(a)] (cos(a)—lJ (—sin(Za}} (cos(Za)—l] 1419}
2n B T 2% 2r

A numerical HDA function named 'CompRamp' was developed based on the preceding

equations. The Mathcad® implementation of the algorithm is shown in Appendix A. It is
demonstrated for a reference signal with a significant harmonic component in the

following example:

The components of the sample reference signal and resultant pulse are:

I§T=[192 20 -5 25 0 ..]
360
cOmpRamp(E)T=[.457 085 625 -082 -023 077 -179 ..]

The reference signal [} and resultant pulse P are shown along with the intermediate ramp

in the time domain representation shown in Figure 4-4.

Normalized Response

03 50 100 150 200 250 300 350 400
(03}
Figure 4-4 HDA Analysis of Firing Pulse Determination with HDA CompRamp Function
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The solution is relatively robust and rapidly converges if the reference signal is

dominated by a dc component.

The Partial derivatives of the 'CompRamp' function with respect to each of the harmonic
components in the reference signal can be used in the analysis of non-linear systems that

incorporate the '‘CompRamp' function.

The derivative is determined by evaluating the influence of the components of the
reference signal on the intersection point. The impact of variations in intersection point
on the harmonic content of the resultant pulse is calculated and combined with the first

set of derivatives to obtain the overall derivative.

The derivative of the intersection point with respect to each harmonic component in the

reference signal is as follows:

Since at the intersection point «,

o =fag + nf Ba, -cos(na) + Pb,, -sin{na) {4-20}
n

n=|

then differentiating both sides of the equation with respect to fay gives:

d Dings . d
dBZO =14n n_E:]] {-Ba, -sin(no) + b, -cos(na))&mﬁzg
or:
d““ — ! {4-21}
Pag l+n fx(ﬁa,, -sin(ne) - Bby, - cos(na) )
n=]
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Similarly:
o 1 g . da
Gl cos(at) + 1 nél (-Bay, -sin(na)+ Bb,, -cos(na))—d—B—a—i—
do - cos(a)
dpay I+ nnfx (Ba, -sin(nat} - Bby, - cos(na))
n=l
do. _ sin{cL)
dpby 1+nnf“ (Bay -sin(nat) - Bby, - cos(not))
n=]
do _ cos(2a)
dpa; 1+ nnfx {PBa, -sin(nc) - Bby, -cos(nat))
n=i
do. - sin(2at)
dpb, 1+nn§a (Ba,, -sin(na) —Bby, -cos(na))
n=i
or:
(;_(} _ [I cosia) sin(et) cos{2a) sin(2a) ] {4-22}
p 1+n ¥ (Bay, -sin(na)—pb, -cos(na))
n=i

The derivative of each of the harmonic components of the pulse waveform P as defined

above (Equation 4-22) with respect to the intercept angle o are as follows:

sy |1 cos{a} sin(a) cos(Ze) sin(2a) -
(ﬁ] s ] (423}

do oo

The derivative of the pulse waveform P with respect to each harmonic component of the

reference signal by chain rule is the product of the two derivatives:

T
“B cos(a) sin{a) cos(2a) sin(2a) ] [1 cos(a) sin(e) cos(2o} sin(2ot) -+

T 1+ nnfx (Bay, -sin(no} - Bby, - cos(na))
n=!

52



The derivative is a matrix but it can be easily constructed from two almost identical
vectors. It was used in the development of the Jacobian for the iterative solution of the

voltage chopping circuit described in Section 5.4 of Chapter 5.

4.5 OVERVIEW

This chapter has shown the development of three typical control system models as
required for the proposed HDA model. The use of these functions is demonstrated in

Chapter 5.

The modelling of the first order lag and PID controller characteristics would be similar in
most HDA models. Modelling of the valve firing pulse system by a conventional
algebraic sign function (or its logical equivalent) is likely to be common in most time
domain implementations. Its implementation in the harmonic domain as an HDA sign

function appears to be novel.
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CHAPTER 5

APPLICATION TO POWER ELECTRONICS SWITCHING

DEVICES

5.1 INTRODUCTION

In this chapter, application of the author's proposed HDA methodology to power
electronic switching devices and circuits is investigated. Section 5.2 discusses and
demonstrates the application to diodes and how the simple harmonic domain model can
be incorporated into a typical admittance model of an electrical network. Section 5.3
discusses and demonstrates the compatibility of harmonic domain switching functions
with the proposed HDA methodology with a demonstration using a thyristor controlled
reactor circuit. Section 5.4 presents an example of the application to models comprising
both electrical circuits as well as non-linear control systems, where the electrical circuit

consists of basic network components along with a voltage chopping circuit.

5.2 APPLICATION TO ANAILYSIS OF A DIODE CIRCUIT

5.2.1 Introduction

The harmonic domain methodology can be applied to either direct or iterative analysis of
simple diode circuits. It is the objective of this chapter to illustrate how the harmonic
domain methodology developed in Chapters 3 and 4 can be applied to a practical
example. The analysis presented is carried out entirely in the harmonic domain and is
based entirely on a solution of simuitaneous equations. Turn-on and turn-off times of the

diode are not required.
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Consider the simple diode resistor circuit shown in Figure 5-1. The voltage 'v is the
input to the device. In this example the voltage waveform is repetitive and therefore can
be considered in both the time domain and the harmonic domain. Its waveform can take
on any shape as long as it is repetitive and does not contain more than a few
discontinuities'’. The objective is to determine the output diode current iy for a specified
input waveform. The voltage across the diode and resistor can be determined given 'vy'

and 'y

Vr
R g
YA VAVAV =

vl NS

Figure 5-1 Simple Diode Resistor Test Circuit

This chapter presents several harmonic domain analysis examples starting with a direct
approach to solving for the output current in the above example, and progresses to show
how the direct approach can be extended to an iterative analysis of more complex

circuits.

5.2.2 Example 1 Direct HDA Analysis of a Simple Resistor Diode Circuit

The relationship between the applied voltage in this circuit 'v¢' and the current through the

diode 'ig' can be described in the time domain by the following equation:

. 1

1d(mt)=ﬁv(vs(mt)+|vs (at)) {51}
and the voltage across the diode by the equation:

vy (ot) = vg (ot)-R-ig (ot) {52}

'7 Satisfying the Fourier series requirement.
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The above equations have direct one-to-one equivalents in the harmonic domain
including the absolute function developed by the author and described in Chapter 2. In

the proposed harmonic domain, the equations would be:
Ty =—(1 Vs 1+¥,) {53}

¥y =¥, -R-I, {54}

Consider a severely distorted source voltage with a Harmonic Domain content'® of:

R R R R
Vs “Mo4 1 0315020 .0 :0

and a circuit resistance of 0.01Q2.

The time domain waveform corresponding to this content is shown in Figure 5-2.

4 T
e
2 T §
o
>
A
|
0 200 400
Angle (degrees)
Figure 5-2 Distorted Source Voltage Waveform used in Resistor-Diode Circuit

Equations 5-3 and 5-4 can be solved directly in the harmonic domain for this condition.
The lower order harmonic content of the diode current and voltage arrays calculated

directly in the harmonic domain are:

SN T T O T T T R
0 74.75 86.06 -4.353 98.873 6.033 24.129 -7.066 19.461 8.078

B i
Vd ~[0-0.348 0.139 -0.256 0.511 0.14 -0.241 0.071 -0.195 -0.081

'8 The array houses the Fourier series representing the waveform. The contents of the array are described in
Section 2.2 of Chapter 2.
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To demonstrate that the harmonic content is actually correct, the corresponding time

domain waveforms, as generated from the harmonic content, are shown in Figure 5-3.

By inspection of the simple circuit:
1. The time domain waveform of diode current should be proportional to the source
voltage when the source voltage is positive.
2. It should be zero when the source voltage is negative.
3. The peak of the diode current should have a magnitude equal to the peak of the
source voltage divided by the resistance of the resistor.
4. The diode voltage should match the source voltage when the diode is not

conducting

Points 1, 2 and 4 above can be confirmed to demonstrate accuracy by inspection of the

waveforms.
400 T
<
E 2001 =i
5
O
o
g o - e
A
—200 l
0 200 400
1 1
2
g ﬂ /“ )
o
>
o
R 7]
[a)
|
0 200 400
Angle(degrees)
Figure 5-3 Diode Current and Voltage using Direct HDA Solution

To confirm point 3, the peak source voltage occurs at the start of the cycle so the

equivalent time domain magnitude is equal to the sum of the 'a' coefficients' of the

19 as defined in Section 2.2 of Chapter 2.
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harmonic domain, i.e., 2.9 V. With a resistance of 0.01 Q the peak current should
therefore be 290 A. The sum of the 'a' coefficients of the current array is 289.999 A, In

this example a maximum of 50 harmonics was considered.

A direct solution of diode current is a convenient mechanism to demonstrate that
harmonic domain analysis can be carried out without excursions into the time domain to
determine turn-on and turn-off times of the diode. As Equations 5.1 and 5.3 are only valid
for a resistor located between the voltage source and the diode, an alternative approach
was developed (described next), that could be expanded into a resistive network approach
(described in Section 5.2.3 of this chapter) and eventually into an impedance network

approach (described in Section 5.2.4 of this chapter).

5.2.3 Example 2 Iterative HDA Analysis of a Simple Resistor Diode Circuit

While the first example shows that the harmonic content of the diode can be computed
effectively in a single step, this approach is generally not possible when the diode forms
part of a larger network. [t may be more efficient to incorporate the iterations associated
with the computation of the absolute function into the iteration process of the whole

scheme, i.e. putting the diode as part of the overall Jacobian for the network.

In this example, the equations leading to the absolute value of the applied voltage in the
first example are restructured into a format that lends itself to inclusion in the Jacobian.

The test circuit of Figure 5-1 will be used again in the validation of the revised algorithm.

Here, we will define the variable 'Vssqwe 4 to be the product of the source voltage by

itself using the harmonic domain product transformation matrix described in Section 2.4

of Chapter 2, i.e.:

=T(Vs)- Vs {55}

VSsquared -

59



Chapier 5 - Ap o 1o Power Elecyonios Switching Devices

The product is then used again to solve for the absolute value of ' V," herein denoted 'V,
e

T(Qabs)'vabs = { 5-6 }

Vssquared

An initial guess at the vector 'V,,.' is to set the 'dc’ component of 'V, ' equal to the
abs p abs q

square root of the dc component of ' \"fssqum "and all of the harmonic components to zero.

d

Correction terms at each iteration are selected based on the Newton-Raphson iterative

solution, i.e.:

-1
~ d . . - — -
AVgps = 'I:d\? (T(Vabs) “Vabs _Vssqua:cd )} '(T(Vabs) *Vabs — Vssquared ) { 5-7 }

abs

It can be shown that:

d . - ~
= (T(Vabs )+ Vabs = VSsc:]uarf:d
abs

=2 T(Ve) {58}

th[

Therefore, the value of 'V,,.' at the 'n™ iteration is given by:

- - -1 — - -
Vabsn = Vabsn_1 ‘(2T(Vabsn__1 )) '(T(Vabsnml )'Vabsn_] 7V55quarec§) { 5-9 }

which simplifies to:

- 1/~ e -
Vot =5 { Tabsns + T Va1 Vo) {510}

1f 'V, " at the 'n™ iteration is considered to be close enough to the final solution, then:

V:abs,-l = Vabsn_m; = Vabs
or:

R -

Vaps = T (Vabs)'vssquared

or:

Vabs = T_l(vabs)‘T(\?s)'vs { 5-11 }
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Substituting for 'V, " into the equation for current,

- 1 o= o e
Iy = 5 (77 V) T U+ ¥y )

or collecting terms:

I, = L.(T“(\”/abs)rr(i'fs)fl‘)-\?s

_— 1 . T -—] ¥ - ¥ -~
Vo | T+ Vi) TVy) | {512}

[3*]

where 'T' is the identity matrix. This result is significant as 'Y"' is in the form of an
admittance matrix. This is conducive to including the model of the diode directly into a

full network admittance array.

The voltage across the resistor can be determined from the product of the current array

"1y ' and the value of the circuit resistance 'R'. i.e.:

¥, =R, [5-13}

The exit criteria selected for the algorithm is based on the cumulative solution error:

kmﬂx - — 2
Error,, = J\/ k§0 ((Vssquare g )k ~(Vapgy )2] < tolerance {5-14}

where 'k’ denotes the harmonic number.

The algorithm is demonstrated for a test case where the source voltage contains a dc¢
offset, a fundamental frequency and a second harmonic component The circuit resistance
is assumed to be .01 €. The largest harmonic of interest 'kmax' is 50. The voltage source in
this example is the same as used in the first example with the time domain response

shown in Figure 5-2.
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After five steps (iteration 6) of the above algorithm, the calculated values for the
harmonic compoment20 of the absolute value of diode voltage and circuit’’ current are

given in Table 5-1.

Table 5-1 Harmeonic Content of Voltage and Current for Dicde Exampie Number 2
Harmonic Content of Waveforms
|vd| (V) Ir (A)

n series Jvd| n series iIr

0 a 1.095 0 a 74.7
1 a 0.721 1 a B86.1
1 b 0.213 1 b 4.3
2 a 0.477 2 a 98.9
2 b 0,079 2 b 6.0
3 a 0.483 3 a 241
3 b -0.141 3 b 7.1
4 a 0.389 4 a 19.5
4 b 0.161 4 b 8.1
5 a -0.208 5 a -10.4
5 b -0.062 5 b 3.2
& a -0.089 B a 4.5
& b 0.055 [+ b 2.8
7 a -0.036 7 a -1.8
7 b -0.002 7 b 0.1

The progression of the algorithm at each iteration is demonstrated pictorially with the
reconstruction of the absolute value of the diode voltage waveform from the harmonic
content. The waveform is compared to the source voltage (solid curve), which is constant

for this example, in Figure 5-4,

13" and 'b' correspond to the cosine and sin coefficients of the Fourier series as described in Section 2.2 of
Chapter 2
! In this case, the circuit current 'i;’ is identical to the diode current 'i,

62



Chapter 5 - Application to Power Electroni

4 T 47 I
i /
e S -
O ECEEEE TR SS T  Ta  age o N
d L4 2 F
ol
» A
\/ !
— | |
0 200 0 200
Angle (Degress) Angle (Degress)
T Vs Vs
T |V T Vs
Iteration = 1 Iteration = 2
4 T 4 I
= g .
2 H
S S .
> >
- l
0 200
‘i Angle (Degress) Angle (Degress)
i Vs Vs
| T vl A
Iteration = 3 Iteration = 4
4 T 4 I
3 K e .
o N o .
E 1 = LAY ."§D N ‘
S | i ) S \ ‘
] = \ / | & . /
— | |
0 200 0 200
Angle (Degress) Angle (Degress)
Vs Vs
[Vs| =T sl
Iteration = 5 Iteration = 6
Figure 5-4 Progression of Iterative Solution of Diode Resistor Circuit
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The variation in solution error with iteration is shown in Figure 5-5.

10
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0 2 4 6
Iteration
Figure 5-5 Variation of Iterative Solution Error for Diode Resistor Circuit

The current waveform on termination is shown in Figure 5-6.

4 |
g 2f .
H h
5 or S— ._.// ‘\,, —— -
5 |
Angle (Degrees)
Figure 5-6 Diode Current for Iterative Solution of Resistor Diode Circuit

5.2.4 Example 3 Iterative HDA Analysis of a Simple Resistor Network Diode
Circuit

A third example is now considered in which an intermediate bus has been introduced into

the circuit of Example 2, to allow admittance matrix equations to be formulated for the

circuit introduced. The modified circuit is shown in Figure 5-7. For this example the

series resistor diode (R4) combination is taken to be a base element of the HDA

methodology.
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Figure 5-7 Diode Resistor Circuit for Simple Network Analysis

At the midpoint bus, the current into the diode is calculated in the same manner as the
first example. Le.:

Ty =Yg (1 Ve | +V4) {5-15}

The current error equation (to be solved using Newton-Raphson solution technigues) at

the midpoint bus becomes:

f](vd,Ed)zﬁ?S‘{{5+(\_’5+\_’d}'vd+‘?d'ﬁd :6 {5-16}
where:

¥ = Eh.f

51 {5-17}

\_fd = T

2-Ry
and by definition:

Eq = Vel {518}
which can be also be defined by the Newton-Raphson form of the harmonic domain
equation:

fZ(Vd’Ed):T(\?d)‘{}d_T(Ed)'ﬁd :6 { 5'19 }
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The Jacobian for the Newton-Raphson solution of the two sets of simultaneous equations

can be expressed by the following partitioned matrix:

o o
Lo Vg OBy
Jac(Vy,Eq) = 5-20
ac(Vy,Eq) o o { !
oVy OBy
or:
. Y, £, Y,
Jac(Vy,Bg)=| 5 @ d {5-21}
2-T(Vg) -2-T(Eg)
The correction term at each iteration is given by:
A\?d &_’S +?d ?d ! “?s '\75 +(?s +\_,d)'\?cl ""?d 'Ed
= L4 BN {5-22}
AE, 2.T(Vy) —2-T(Ey) T(Vy) Vg -T(Eq) Bq

For this example, 18 iterations were carried out. The error measured in terms of the sum
of the norms of the vector equivalent of the arrays representing two error functions f; and
f; is shown in Figure 5-8. The solution is within acceptable tolerance after five or six
iterations, similar to the second example. The number of iterations was increased to
examine numerical issues. The error reduces rapidly but after the 10" iteration the
magnitude of the error is essentially unchanged. There is some hunting of the solution but

the numerical error remains extremely small, and is well within acceptable tolerances.
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Figure 5-8 Variation of Iterative Solution Error for Diode Resistor Network Circuit

The solution obtained for diode current is almost identical to the current calculated in

Example 1. The diode current is shown in Table 5-2.

Table 5-2 Harmonic Content of Current for Diode Example Number 3

Harmonic Content
Current Waveform (A)

series Ir

74.8
86.1
4.4
98.9
6.0
241
-71
19.5
8.1
-10.4
-3.1
4.5
2.8
-1.8]

NNOOUANARWWNN-=-= J
TOOCODOTOOTOODNOTOTDOTDOD

This calculation method involves more computation than the first method. However, it

does lend itself to inclusion of a more extensive ac system as demonstrated in Example 4.
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5.2.5 Example 4 Tterative HDA Analysis of a Simple Resistor Inductor Diode
Circuit

The fourth example is based on the simple diode resistor-inductor test circuit shown in

Figure 5-9. The objective here is to show that the basic network solution algorithm for a

diode circuit, as developed through the first three examples, can be extended to include

frequency dependent components in the transmission network®,

The inclusion of the inductance in the network will introduce discontinuities in the diode
voltage. The current through an inductor cannot be suddenly interrupted. It must be
forced to zero by a reverse voltage. While the source voltage may become negative while
the diode is conducting the diode will continue to conduct maintaining zero voltage until

the inductor current is extinguished.

L R
R, L R,
AN Y Y Y A AN
. ~ J/ 1 L
Source
impedance Vy
Figure 5-9 Simpie Diode Resistor Inductor Test Circuit

The presence of discontinuities increases the magnitude of the higher order harmonics,
and therefore provides a less favourable environment for numerical solution involving

iterative techniques.

The basic algorithm presented in Example 3 can also be used to solve for the harmonic
content the resistor-inductor circuit shown in Figure 5-9. To use the algorithm, the source

admittance must be modified to include the frequency dependent characteristic

“The series Ry and L, components of the circuit represent transmission from the source to the diode.
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introduced by the additional inductor. In the harmonic domain, the source impedance as
discussed in Chapter 3 is given by:

ZS=RL'T+I_)'LL {5'23}

The matrix Z is sparse and bounded. Its inverse ¥ is also sparse and is given by:

Y, =71 {5-24}
It can be readily shown through theoretical analysis using elementary circuit theory that
inclusion of an inductor with an impedance of 0.1 Q at its fundamental frequency when
inserted in series with the source and resistor of Figure 5-7 results in a solution where the
diode is continuously turned on. The algorithm converged to a solution where the diode
voltage was zero at all harmonics. When the de component of the source voltage was
reduced to -0.3 V (originally +0.4 V), the diode cycled through blocking and conducting

states in agreement with the analytical solution.

The step changes in diode voltage resulting from turn-off of the diode and their
associated high frequency in the waveform are accompanied by Gibb's-like oscillations
creating a situation where potentially many solutions may exist to the set of harmonic
simultaneous equations. With careful selection of initial conditions for the voltage across

the diode, the algorithm does converge to a solution.

For this example, the norm of the voltage correction vector is used as an indicator of
proximity to a solution. The convergence rate as shown in Figure 5-10 is initially slow

but after about 16 iterations, the algorithm rapidly converges to a solution.
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Figure 5-10 Variation of Iterative Solution Error for Diode Resistor Inductor Circuit

The resultant harmonic content of the diode voltage and current is given in Table 5-3.

Table 5-3 Harmonic Content of Voltage and Current in Diode Resistor-Inductor Test Circuit

Harmonic Content of Waveforms

Ivd| (V) Id (A)
n series |vd| n series Ir
0 a -0.409 0 a 5.467
1 a 0.267 1 a 6.612
1 b 0.241 1 b 6.006]
2 a 0.397 2 a 0.558,
2 b 0.202 2 b 5.457|
3 a -0.293 3 a -1.343
3 b -0.424 3 b 1.067 Harmonic Content of
4 a 0.066 4 a 0.081 Source Voltage (V)
4 b 0.036 4 b -0.169 .
5 a -0.039 5 a 0.405 n series Vs
5 b 0.201 5 b 0.061 0 a -0.300
6 a -0.076 6 a -0.192 1 a 1.000]
6 b -0.118 6 b 0.133 1 b -0.300
7 a 0.132 7 a 0.042 2 a 1.500]
7 b 0.033 7 b -0.190 2 b 0.200

Waveforms generated from the harmonic content are shown in Figure 5-11.
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Figure 5-11 Voltage and Current Waveforms from Harmonic Content of HDA Solution to

Example 4

5.2.6 Independent Validation of HDA Model

In order to validate the proposed method of harmonic domain analysis as in Example 4
above, a completely independent time domain solution as well its Fourier series
representation was carried out analytically as discussed below. The result, as will be

shown agrees well with the proposed approach.

For example, the current in the diode at the start of its conduction at about an angle of

170° can be defined in Laplace Transform notation as:

14(9) = V() {5-25)

R+s-L

where R is the total circuit resistance.

The Laplace Transform of the source voltage is given by the Laplace Transform of its

individual harmonic components, i.e.:
Vs (s) = £(vs(ot)) {5-26}

L(vg(wt)) = L(vg)+ Zﬁ((vszn_l -cos(n - ot +7v))+ £( gy, -sin(n - ot + y))) {5-27}

where 'y' is the angle where conduction starts.
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The Laplace Transform of the source voltage becomes:

v s-cos(y}—n-m-sin s-sin(v)+n-o-cos
Vo(s) _%0@( () (0, - ssiny) @) _VS(Z'H_U)
n

s(2:n-1
s 4nl. el ( } 2 inl.-wl

The equation representing the time response of the current for the conduction interval is
the inverse Laplace Transform of Equation 5-25 with V(s) defined by Equation 5-28. The
time domain expression for the current was derived from the two equations using the

d®* Both Equation 5-28 and its Inverse Laplace Transform

symbolic functions in Mathca
can be applied to both conduction intervals with suitable selection of 'y'. For the interval

when the diode is not conducting, the diode voltage is zero in the time domain.

The turn on times of the diode can be determined by solving the time domain equations
for the zero crossovers at the angles corresponding to the start and end of diode
conduction. The start of each conduction period can be determined from the positive
transition, zero crossing of source voltage. The end of conduction can be determined
from the negative transition, zero crossing of the current waveform. The Mathcad®
symbolic equations were incorporated into time domain functions and iterated to
establish the solutions for the zero crossings for the test circuit. The resultant zero

crossings are shown in Table 5-4:

Table 5-4 Zero Crossings of the Diode Resistor Inductor Circuit
Angle
Condition {Degrees)
Current Crossing 115.8
Voltage Crossing 169.8
Current Crossing 225.4
Voitage Crossing 308.1

A symbolic Fourier analysis of the contribution of each of the continuous components of
the diode voltage and current waveforms was determined in accordance with the

definitions given in Section 2.2 of Chapter 2. The resultant harmonic spectra is compared

 The equations are not included here because of their complexity and since they are only being used to
validate the answers from the Harmonic Domain Analysis.
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to the spectra calculated using the Harmonic Domain Analysis in Figure 5-12 and
Figure 5-13. Figure 5-12 (the comparison of the harmonic content of the current) shows
good agreement between the Harmonic Domain Analysis and the theoretical harmonic

component. The error, expressed as a percentage of the fundamental frequency

component is less than 0.3% for all 50 harmonics.
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Figure 5-12 Comparison of HDA Harmonic Content of Diode Current with Theoretical Content
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Figure 5-13 Comparison of HDA Harmonic Content of Diode Voltage with Theoretical Content

The comparison of the harmonic content of the diode voltage (Figure 5-13) above about

the 25" harmonic deteriorates. The percent error in the magnitude of the harmonic
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voltage across the diode again expressed as a percentage of the fundamental frequency

component is as high as 4% at the high order harmonics.

This is also evident in the reconstruction of the voltage waveforms over one cycle. The
waveform recreated from the reconstruction using the first 50 harmonics of the
theoretical harmonic content is compared to the actual waveform in the upper graph of
Figure 5-14. The waveform created from the reconstruction using the harmonics from the
harmonic domain analysis are compared to the actual voltage waveform in the lower

graph.

From the figures, it is evident that the impact of the Gibb's-like oscillations that occur at
the discontinuity of the waveform is less in the Harmonic domain analysis method.
However, additional oscillations are introduced into the harmonic domain analysis results
at the start of the diode conduction. It can be concluded that the harmonic domain
algorithm has converged to a solution that is slightly different from the theoretical
solution. These differences are attributed to truncation of the harmonic series while

equating the square of the absolute value of bus voltage to the square of the bus voltage.
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Figure 5-14 Impact of Harmonic Domain and Theoretical Harmonics on Regenerated
Waveforms
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5.2.7 Summary

The examples with the diode-resistor and diode inductor networks demonstrate that the
proposed Harmonic Domain Analysis model of the Diode can be incorporated into a
typical Newton-Raphson Jacobian. This will facilitate a sequential build-up of the
proposed Harmonic Domain Model that includes a diode, which is analysed entirely in

the harmonic domain.

The accuracy of the harmonic content in the current is well within the accuracy that can
be expected for an electrical power system. While there are some numerical differences
in the harmonic content of the diode voltage waveform, their effects would be limited to
the diode itself. At locations more remote from the diode, the impact of any errors in the

harmonic content of the diode voltage itself will be attenuated by system inductance.

5.3 APPLICATION TO ANALYSIS OF A THYRISTOR CONTROLLED
REACTOR

5.3.1 Introduction

In this chapter, the use of harmonic domain switching functions { 33 1, [ 34 ], [ 13 ] and
their compatibility with the proposed HDA methodology will be examined. A thyristor
controlled reactor will be used in the examples presented herein, but the switching
function approach can be applied to the harmonic domain analysis of almost all
‘controlled’ power electronic devices. It is well adapted for circuits where the start of
conduction and end of conduction is defined by controls such as in the voltage chopping

circuit example in Section 5.4.

This section identifies some of its limitations, particularly where end of conduction is
determined by the system to which the power electronic device is connected. An example
is power electronic circuits where end of conduction is established by end of the

commutation process from one power electronic device to another®,

* This is the case with the TCR circuit analysed in this chapter.
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In the set of examples to follow, the harmonic domain and switching function
methodology is applied to a simple thyristor controlled reactor circuit such as shown in
Figure 5-15. The circuit consists of a voltage source ‘vy’ applied across a series
arrangement of an ideal reactor ‘L’, resistor ‘R’ and a parallel thyristor switch. For this
example, it is assumed that the thyristor firing angles ‘o’ and ‘o’ are controlled to
achieve a reference conduction angle ‘c’. The set point may be varying over a cycle in
response to ac system requirements and as a result, conduction angles for the positive and

negative current cycles could be different. Voltages and currents are as defined in the

figure.
A
r ™
Vi VR
L R i

L 1

Figure 5-15 Simple Thyristor Contrelled Reactor Circuit

The conduction intervals, angles, ‘cy’ and ‘c,’ respectively, for each thyristor switch
define a cyclic time dependent switching function, which is dependent on the
characteristics of the applied voltage. Rico et al [ 13 ] suggested a ‘simple’ harmonic
domain switching function based only on the conduction intervals could be used to
describe the behaviour of the TCR. They consider only the TCR inductor (i.e. no
resistance) and determine a voltage 'V,' which is calculated based on the harmonic
convolution (harmonic multiplication) of the switching function *S' and the source voltage
'Vs'. The voltage "V,' is applied to the inductor to determine the circuit current 'T;". As will
be shown in the following section, their method when used in conjunction with heavily
distorted source voltage will give erroneous results. The proposed HDA methodology as

presented in this section overcomes the limitations in their method.
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5.3.2 Mathematical Development of Harmonic Domain Model

In the following mathematical development, the concepts presented by Rico et al are
transformed into a form that is compatible and consistent with the direct harmonic

domain model that is being proposed.

With reference to an applied fundamental frequency voltage waveform consisting of only
a cosine component, the midpoint of the first conduction interval is assumed to occur at a
phase delay of 90 degrees from the peak of the applied voltage. The midpoint of the
second conduction interval is assumed to occur after a further 180 degree phase
displacement. Figure 5-16 shows the relationship of the assumed switching function to
the applied voltage. Relatively large unbalanced conduction intervals have been assumed

to demonstrate the application, i.e.:

c) =60deg
G, =30deg

1.5 | I [ [ | | I

Vs(ot) ' o,
e oF—----- ! \ _______________ 8 F e ddas e
(ol

\Q P A
‘ (& \‘\\ ~ (o))
-1 — -
-15 | | | | | | |
0 50 100 150 200 250 300 350
0 ot 360
Figure 5-16 Thyristor Controlled Reactor Conduction Interval for Switching Function
Demonstration

The switching function can be defined mathematically in the time domain [ 13 ] using the
following algorithm, where ot is in degrees and the conduction intervals ‘c’ are in

radians:
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This switching function does not take into account the effect of phase shift or harmonics
present in the source voltage. The author has modified this algorithm towards a more
general switching function and is used herein. It takes into account overall phase shift as

well as a relative shift in firing of each thyristor by introducing the actual thyristor firing

angle.

The Fourier coefficients of the switching function can be determined using the following

algorithm where ‘nma’ represents the maximum number of harmonics to be assumed in

Fievet vy Frovinesr Tl fes Sasimbe i Mhas fame
ion 10 Power Blecthonics SO [0 ieTs

s mt, G, 02\‘ = wi- wt-deg

S—1
/ . .
S0 if |wi< - 1|
L2 2
foag o)
S0 if wiso T, 2
22
.‘; G . o "";i
(S—0) if |we>T o L lw<3T . 2
L2 2 2 2

Algorithm 5-1

tf k S
3 kmt,a 1,0’1,(1 2,02;

wi- wt-deg
81
S—-0 if {wi<a )

S0 if

wi> {'a2+ o9

L

S0 if wix{oq+oqi | wi<{on) |
1 17 2

the approximation:

Algorithm 5-2
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Algorithm 5-3

During conduction, the voltage across the thyristors is zero; hence, the voltage across the
reactor and resistor is equal to the applied voltage. At other times, the current through the
reactor-resistor is constant at a value of zero; hence, the voltage across the reactor-resistor
is zero. The voltage (V) across the reactor-resistor at any point in time is therefore equal
to the product of the switching function at that time and the source voltage at the

corresponding point in time.

In the harmonic domain:

v, =T(8}- ¥, {5-29}

Here, T(S) is the matrix representation of the switching function described by

Algorithm 5-1 earlier in this section.

This equation is used in this analysis in partitioned (dc and harmonics) form. l.e.:

?30 =l:?0,0 Tﬂ,h}_ \:[50 {5_‘30}
Vo | 1Tho Thaf |V
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The reactor current I(wt) as given in the time domain is related to applied voltage by the

first order differential equation:

2-n.fo-L-ilr(mt)m-lr(m):va(cot) {5-31}
deot

The corresponding relationship in the harmonic domain (see Chapters 2 and 3) is given
by:

(R-1+2-xf,-L-D)-T. =V, {5-32}
where the ‘1 is an identity matrix of order (2-n,,, +1) and ‘D’ houses the harmonic

domain derivative matrix. Equation 5-32 can be rewritten as:

Z-Tr=va {533}
where:

Z=R-T+2.n-f,-L-D {5-34}

The direct solution of 1, (in Equation 5-33) in terms of V, is not possible if the resistance

is zero since the first row and column of Z become zero, as forced by the harmonic
domain derivative operator. This is not a limitation to the HDA methodology as will be

explained herein.
The matrix Equation (5-33) can be partitioned as follows:
5.7 1T, v,
F (’_"}-_’(M_O {5-35)
O Zn )| T | | Vay

In this equation, the subscript 'h' denotes the harmonic component of the matrix or array.

The harmonic component of I, can be determined from:

I, =71V {5-36)
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As current can only flow through the reactor during conduction, then the relationship
between the de component and the harmonic component of the current can be determined

directly from the switching matrix:

Fro } _ Fo,o To,h }_FO } {5-37}
L o LThe Taa |,
from which:

Iy (1-To oy =Toy -, {5-38}

or since 'Ty, ' is a scalar:

” 1 .
I = T - I '39
) (1- TO,O) 0h "y { 5 }

Substituting in the earlier relationship for the harmonic component frh (from
Equation 5-36),and 'V, ' (from Equation 5-30):

i _ 1
0 1-Ty)

Ty Zi' Ty Vs {5-40}

where 'T, ' is a matrix housing all but the first row of the matrix T(§), i.e.:

To=[To Tup] {541}

The dc component can therefore be defined to be:

AR {5-42}
where:
- 1 = = =
Yy =——a—— Ty - Zr T, 5-43
0 0-Tyo) oh Zh Th { }

which is a row array including both dc and harmonic elements.

In a similar fashion, the expression for fq, can be expanded:

{5-44}
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Substituting for V,, from (Equation 5-30):

L =7Z' T, {5-45]
or:

Iy, =YV, {5-46]
where:

Y, = Z;' T, {5-47}

The equations can be combined to give the harmonic domain admittance matrix

representation of the circuit:

=Y.V {5-48}
where:
- (Y,
Y =) _ -49
[Yh] 1549}

The following algorithm can be used to generate the elements of the admittance matrix:

Y{'n’a l’c ],(1 2,0’2,f0,L,R?I = T S"’" T"‘Sl‘ln,a ]10 lsa 2102‘1 :
dim+- 2:n

T g submatrix(iT 5+0.0,1,dim}
T ,— submatrix{ T (. 1, dim, 0, dim}

Z - submatrix{jZA:rr-fO-L'D(n) + identity (2-n + 1)-R, 1,dim, I,dim:}

] P
Yoo Ty Zai Ty
. 0,0/
E 1
Yool Ty

Y~ stack {'Y 0 Yn

Algorithm 5-4

The foliowing section will show numerical solutions of the circuit considered in this

section.
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5.3.3 Sample Applications of the Harmonic Domain Model

Knowing the equivalent admittance, the circuit can be solved directly using basic analysis
techniques. A Mathcad® calculation sheet was used to solve the circuit for the condition

with a purely sinusoidal applied voltage and no series resistance. The solution method is

as foliows:

Test Case |1 Fundamental Frequency Only, No Resistance
fg:=50 L:=.01 R:=0.0 n .. =50

o 1:=60-deg o =60-deg o, =255deg o, =30-deg

¢, =0-deg Vs =1.0 VSl .:Vsl-cos<¢l> Vsz::7Vsl~sin<¢l> =320 00 VSii =0

Equivalent Admittance Matrix of the Circuit
qu I:Y<n max,(l 1,('5 1,(X, 2,0’2,f0,L,R>
Circuit Current
Iq=YeqVs
Voltage across Switch
V=V~ (identity <2-n max™ 1>-R+ 2-n'f0-L-D<n max))'l d
Voltage across Inductor
Vy=2mf o LD(n a1 g
Voltage across Resistor
V. = identity <2-n fict 1>~R~I d

The first non-zero harmonic coefficients of the calculated currents and voltages are

shown in Table 5-5.

Table 5-5 Harmonic Content of Waveforms for TCR Case 1
Harmonic Content of Waveforms
Circuit Current (kA) Thyristor Switch Voltage (kV) Inductor Voltage (kV)

n series lg n series Vy n series Vi

0 a 0.00411 1 a 0.96741 1 a 0.03259
1 a 0.01037 2 b -0.04569 2 b 0.04569|
2 b -0.00727 3 a 0.07958 3 a -0.07958
3 a -0.00844 4 b 0.06074 4 b -0.06074
4 b 0.00483 5 a -0.08478 5 a 0.08478|
5 a 0.00540 6 b -0.03700 6 b 0.03700|
6 b -0.00196 T a 0.05305 7 a -0.05305
7 a -0.00241 8 b -0.00628 8 b 0.00628|
8 b -0.00025 9 a -0.01165 9 a 0.01165|
9 a 0.00041 10 b 0.03842 10 b -0.03842
10 b 0.00122 1 a -0.01165 14 a 0.01165]
1 a 0.00034 12 b -0.04054 12 b 0.04054
12 b -0.00108 13 a 0.00832 13 a -0.00832
13 a -0.00020 14 b 0.01765 14 b -0.01765
14 b 0.00040 15 a 0.00832 15 a -0.00832
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Time domain waveforms can be generated from the harmonic content. The following
Mathcad® function calculates the value of the waveform at time ‘@I’ where the

waveform is defined by the Fourier coefficients housed in the array ‘v’.

f(v,oT) = | dim—rows(v) - 1
(f—v) if dim<0
otherwise
fe— A
for ie 1..dim

i+1

n« floor

<fe f+ vi-cos(n-(nT~deg)> if mod(i,2)70

(fe f+ v‘.-sin(n-mT-deg )) otherwise

Algorithm 5-5

The circuit current waveform is computed as follows:

ot :=0..360
Idv ::f<1d,0)t>
ot
and is shown in Figure 5-17.
0.06 T T T T T T T
0.04 [~ -
Ta gy 002 =
0 - \ / 7
- | I I I I I I
0.02 0 50 100 150 200 250 300 350 400
ot

Figure 5-17 Thyristor Controlled Reactor Circuit Current for Case 1
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The voltage waveforms are computed as follows:

Ve =f(Vg,0t)
Va =f(Vg,ot)
Vl.m = f(V],mt>
Vr.wt :if(Vr,mt>
Vr.mt ::f<Vr,mt>

and their time domain response is given in Figure 5-18.

] S
Vg B /s
Sot | | /(
Sk e e i e e i i i i A s e s

—

Voltage (kV)
(=]

ot |- . SO —
- | | | | | | |
0 50 100 150 200 250 300 350 400
ot
Angle (Degrees)

Figure 5-18 Thyristor Controller Reactor Voltage Waveforms for Case 1

Both the voltage and current waveforms are as expected and have been visually validated
using a time domain simulation. The same model was implemented in
PSCAD/EMTDC™ and the EMTDC™ waveforms were of the same shape and

magnitude as the waveforms shown in Figure 5-17 and Figure 5-18.
The methodology can be applied to the condition where there is harmonic content in the
applied voltage waveform, as follows, where a third harmonic with a magnitude equal to

20% of the fundamental component is applied.

The harmonic content of the waveforms, calculated in the same manner, is shown in

Table 5-6 and the circuit current and voltage waveforms, regenerated from the calculated
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harmonic content are shown in Figure 5-19 and Figure 5-20. Again, both the voltage and
current waveforms are as expected and have been visually validated using a

PSCAD/EMTDC™ simulation with the same large 3™ harmonic component in the source

waveform.
Table 5-6 Harmonic Content of Waveforms for TCR Case 2
Source Voltage (kV)
n series Vg
1 a 1.00000
3 a 0.20000
Circuit Current (kA) T_hyristor Switch Voltage (kV) Inductor Voltage (kV)
n series lg n series Vy n series v,
0 a 0.00220 1 a 0.98333 1 a 0.01667|
1 b 0.00531 2 b -0.02441 2 b 0.02441
2 a -0.00388 3 a 0.24019 3 a -0.04019
3 b -0.00426 4 b 0.03205 4 b -0.03205
4 a 0.00255 5 a -0.04130 5 a 0.04130
5 b 0.00263 6 b -0.01871 6 b 0.01871
6 a -0.00099 7 a 0.02316 7 a -0.02316
T b -0.00105 8 b -0.00474 8 b 0.00474
8 a -0.00019 9 a -0.00104 9 a 0.00104
9 b 0.00004 10 b 0.02137 10 b -0.02137
10 a 0.00068 1 a -0.00999 1 a 0.00999
11 b 0.00029 12 b -0.02122 12 b 0.02122
12 a -0.00056 13 a 0.00599 13 a -0.00599
13 b -0.00015 14 b 0.00776 14 b -0.00776
14 a 0.00018 15 a 0.00479 15 a -0.00479
0.03 T T T T T 1 1
0.02 [~ -
2
g La 001 ~
E o
O
ol—— WS RPN AT NS —
A4
~001 | | | | | | |
i) 50 100 150 200 250 300 350 400
ot
Angle (Degrees)

Figure 5-19 Thyristor Controlled Reactor Circuit Current for Case 2
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Figure 5-20 Thyristor Controller Reactor Voltage Waveforms for Case 2

At this stage of development of the Harmonic Domain model for the thyristor controlled
reactor, it is represented as a fixed harmonic domain admittance that is as function of
essentially only its conduction angles. The fixed admittance model is certainly useful for
obtaining a picture of the impact of variations in fundamental frequency voltage and :

harmonic voltage magnitude on the harmonics in the network.

The first two cases above indicate that unbalanced conduction intervals introduce a dc
component into the TCR current along with both odd and even harmonics. Also, a third
harmonic in the source voltage waveform significantly reduces the fundamental
component of the TCR current, hence its output for any given set of conduction angles. A

third harmonic distortion of 20% will reduce the TCR output by almost 50%.

While all of this information could be extracted from time domain simulations, followed
by Fourier analysis, they are immediately available in the harmonic domain with a single
calculation. For example, the reduction in output can be quantified by comparing the
fundamental frequency component of the circuit current in Example 1 (0.01 kA from
Table 5-5) to the corresponding current in Example 2 (.005 kA from Table 5-6). The dc
component of the network current, which is extremely important in the design of power

systems, can be extracted directly from the solutions in the two tables as 4 A and 2 A
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(4.11 A from first column, first row of Table 5-5, 2.2 A from first column, first row of

Table 5-6) respectively.

However, the switching function as defined by Rico et al [ 13 ], without adjustment to the
firing angles, is only valid for the conditions where there is:

¢ no phase shift in applied fundamental frequency voltage,

* no even order harmonic voltages, and

¢ 1o phase shift in odd order harmonics.

Although not indicated in the reference [ 13 ], the switching function must be locked to
the phase of the source voltage, or incorrect results will be obtained. This is a problem
with Rico's algorithm as presented in his paper. In order to overcome this, the proposed

HDA algorithm implementation adds a phase shift into the switching function.

The phase shift can also compensate for the effects of odd order harmonics if the positive
and negative conduction intervals are the same”™, The switching function, without
adjustment to the firing angles, will provide incorrect harmonic content if the above
conditions are not satisfied, possibly indicating a weakness in the model proposed by

Rico et al [ 13 ] if it is used in conjunction with operating conditions outside of the norm.

Any TCR control system that uses conduction angle for closed-loop feedback control will
automatically adjust the firing angle until the target conduction angle(s) is(are) achieved.
This includes automatically (in the time domain) compensating for harmonics and phase

shift in the source voltage waveform.

In the following case (Case‘3’), the voltage source is assumed to include significant 2™

and 3" harmonic components (not in phase with the fundamental frequency). The circuit

% 1n a 'normal' mode of operation, conduction angles would indeed be similar, but to be general, the model
should be able to handle serious distortion in the firing angle circuit resulting in unequal conduction angles.
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is also assumed to display some resistance?®. The following Mathcad® calculation sheet
play g

summarises the test case.

Test Case 3 Fundamental Frequency 2nd & 3rd Harmonic, with Resistance
f:=50 L:=.01 R:=0.5 n . 1=50

c
G =60deg oy :=95.78deg - L2 o 1 =65.78-deg o and oy selected based
1 1 2 1 1 2
c
Gy =30-deg o =261.6deg - i oy =246.6"deg on trial and error
2
ii:=0..2n gy
Vs” =0
1
V. =Vsqcos(d Vg =-Vsysin(¢
Vsq:=10 ¢ 1 :=0-deg 51 ) < 1> Sy < >
V. =Vsycos(d Vg =~ Vsysin(¢
Vsgyi=.2 ¢, =-125deg 53 2 < 2> Sy ( 2>
V. =Vsa-cos(d V. =-Vsasin(d
Vsyi=.1 ¢ 3= 30-deg 85 3 < 3) Se 3 ( 3)

Equivalent Admittance Matrix of the Circuit

qu = Y<I‘1 max,(l 1,0' 1,(1 2,02,f0,L,R>

Circuit Current

Iqg=YeqVs

Voltage across Switch

Vg 1=Vg - (identity (21 yyp 1) R+ 278 - LD(n o) 1 g
Voltage across Inductor

Vy=2mf o LD(n a1y

Voltage across Resistor

V. i=identity (20 o 1R g

The choice of o and o, involved a ‘trial and error’ process. The circuit was first solved
for a single thyristor switch and an assumed value of a,;. Waveforms were generated from
the harmonic content and examined. The firing angle was adjusted until the thyristor
voltage at the start, end and during conduction was zero on average. At the same time the
circuit current was monitored to ensure that the current remained at approximately zero
from end of conduction until start of conduction. Turning on the second thyristor at an
‘incorrect’ firing angle again introduced errors into the voltage and current waveforms.
The 'incorrect' harmonic current waveform generated with o, = 250 degrees is shown in

Figure 5-21. However, after adjustment to only the second firing angle, reasonable

%8 This is not a requirement of the proposed HDA. In fact inclusion of resistance creates a more onerous test
condition.
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waveforms were restored. After adjustment to the firing angle (o, = 261.6 degrees), the
harmonic content of the current waveform is as shown in Figure 5-22. The corresponding

voltage waveforms are given in Figure 5-23.

0.06 T T T T T T T
0.04 [~ —
= Iy [ i
5 dg¢ 0.02
5
Q
0= / —
~0.02 | | | | | l l
0 50 100 150 200 250 300 350 400
ot
Angle (Degrees)
Figure 5-21 Incorrect TCR Current Waveform
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ot
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Figure 5-22 TCR Current Waveform after Adjustment to Second Firing Angle

The harmonic content used to generate the waveforms is given in Table 5-7 below.

This demonstration shows that the proposed HDA methodology can be applied to
conditions outside of its current implementation. In theory, with a more robust harmonic
domain square root function, the HDA treatment of the thyristor controlled reactor would

be completely flexible.
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Figure 5-23 TCR Voltage Waveforms after Adjustment to Second Firing Angle
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Table 5-7 Harmonic Content of Waveforms after Adjustment to Firing Angle
Source Voltage {kV) 7 Circuit Current {kA)

n sarias Iy n “saeries 1y
1 a 1.00000 0 .a 0.00525
2 a ~0.11472 1 a - -D00109
2 b '0.16383 1 b - 0.01125
3 a - D.08660 2 ..a -0.00914
3 b -0,05000 2 b -0.00232

3 A 0.00256

3 b =D.00858,

4 - 0.00584

4 b . 0.00327

5 - a . ~0.00243

5 b - 0.00469;

6 a -0.00236

8 b =0.00250

7 a - 0.00103

7 b -0.00142

__Thyristor Switch Voltage {(kV) Inductor Voltage (kV) Rasistor Voltage (kV)

n series Va n series Vi n sories v
0 a -0.00262 1 a 0.03533 [ a 0.00100
1 a 0.96522 1 b 0.00343 1 a 0.00100
1 b -0.009{15] 2 a -B.O1455I 1 b 0.00200
2 a -0,09559; 2 b 0.05743 2 a 0.00100
2 b 0.10756 3 a -0.08085 2 b 0.00200
3 a 0.16817 3 b -0.02417 3 a 0.00100
3 b -0.02155 4 a 0.04106 3 b 0.00200
4 a -0.04389 4 b -0.07342 4 a 0.00100
4 b 0.07178! 5 a 0.07370 4 b 0.00200
5 a -0.07249 5 b 0.03810 5 a 0.00100
5 b -0.04044 3] a -D.04710 E b 0.00200
6 a 0.04828 6 b 0.04443 6 a 0.00100
4] b -0.04318 7 a -0.03133 6 b 0.00200
7 a 0.03082 7 b -0.02262 7 a 0.00100
7 b 0.02334 8 a 0.02193 7 b 0.00200

5.3.4 Summary

The switching function methodology provides a method for preliminary harmonic
calculations. It is not a ‘purely’ frequency domain method. It carries time domain
information indirectly through the harmonic content of the switching waveform, i.e., the
characteristics of the switching function are dependent on the firing angles and

conduction angles which are in fact time domain quantities.

The admittance matrix methodology described in Section 5.3.3 above could be used for

small signal analysis. It provides a convenient means to quickly determine the

dependence of harmonics in the circuit current on harmonics in the source voltage.

Its primary weakness is that it requires a reasonably accurate estimate of firing angles and

conduction angles to give correct results for operating conditions outside the norm. These
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angles could come from time domain analysis. Alternatively, an algorithm could be
developed to emulate the trial and error process described for test case 3 above, possibly
based on a neural net solution. Again, with a more robust harmonic domain square root
function the HDA treatment of the thyristor controlled reactor would be completely
flexible.

In the form described above, and when used with circuits where commutation is
involved, the harmonic domain switching function would have only limited application in
the overall HDA methodology as proposed by the author. It could be used, though, for

small signal harmonic analysis of most power electronic switching devices.

When the harmonic domain switching function is used to model the switching of non-
commutating circuits, it is very compatible with the author’s methodology. Its use
together with HDA simulation of controls is shown in the next section where it is applied

to the modelling of a voltage chopping circuit.

5.4 APPLICATION TO VOLTAGE CHOPPING CIRCUIT WITH CONTROLS

A 50 Hz voltage chopping circuit (VCC) was developed to demonstrate that the proposed
harmonic domain solution methodology can be applied to the analysis of circuits
involving a combination of power system linear elements, electronic switching elements
and controls with non-linear elements. The VCC is a fundamental element of most
three-phase voltage sourced converter (VSC) circuits. The VCC assumed is a single pulse
(per cycle) 50 Hz device, operating off a 1 kV ideal dc voltage bus. It is represented as
shown in Figure 5-24 as an ideal voltage source that generates no output for 'o’ degrees of
the power frequency cycle and a constant output for the remaining portion of the cycle.
The VCC supplies a resistive load 'Ryg,¢' through a 2™ harmonic lossless series blocking
filter as shown in Figure 5-24(a). The load current is monitored and a signal representing
the dc component is generated from the measured current by passing the absolute value
of the measured current through a first order lag control circuit filter to reduce the

harmonic content as indicated in Figure 5-24(b). The equivalent dc component is
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compared to a signal proportional to the reference current. A proportional-integral (PI)
controller is used to establish the reference angle 'o. ' that minimizes the error between the

reference current and measured signal.

Lﬁlter
YT TY T
Y
i} 1loeuzl
Rsrce filter Rload
oo
vV

source

a) VCC Power Circuit

loib 1 1 wmiﬁ!t
[+T,s X +Tys

b) Current Monitoring Circuit

Iref"Q Pl o L.... A
A>B—»V

I B source

filt PU% K __r"

¢} VCC Controls

Figure 5-24 Circait Diagram of Test YCC and Centrols

The simulation of the VCC itself and its low level firing angle controls is based on its
equivalent behaviour in the time domain. In the time domain, the reference angle 'a ' is
compared to a ramp with a period of 1 cycle and a magnitude of 360 degrees. If the ramp
has a greater magnitude than the reference angle 'a ', the VCC is turned on, creating a
1 kV voltage at the output. When the ramp is less than 'o. ', the output of the VCC is set to

ZEero.

The parallel L-C circuit forming the blocking filter in practice has a net impedance of

zero for the dc component, due to the presence of the inductor. Standard admittance
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matrix definition of the network for the complete harmonic domain is therefore precluded

due to the resultant singularity in the dc component of the admittance.

The blocking filter also creates a very high impedance and corresponding low admittance
at the second harmonic. This exposes the solution of the network to potential numerical

issues.

The PI controller also creates a numerical anomaly in the dc component as the effective
gain of the integral component of the controller is infinite. The de component of the input
to the controller must be set to zero numerically, affecting the output of downstream
calculations and at the same time the dc component of the output becomes independent of
the input vector making it a function of upstream calculations. 1t is not possible to define
a single matrix that represents the harmonic relation between the input and the output of

the PI controller. Therefore, the harmonic and dc components must be treated differently.

The relationship between the harmonic voltage produced by the voltage chopping circuit
itself to the firing angle 'a' can be defined by a switching function matrix. For this
demonstration, a fixed dc voltage input to the converter has been assumed, i.e., with no
superimposed harmonics on the converter supply voltage. The product of the switching
function matrix and the dc voltage source supply vector (with no harmonic components)
becomes a simple harmonic voltage vector that is a function of ‘o', If the firing angle
contains a harmonic component (i.e. it is time varying, which is the case in this
demonstration), the switching function matrix concept has to be adjusted to take into

account the harmonic content of 'a'.

The controller to the hypothetical VCC contains the control block function “x['. In the
time domain, this function would simply invert the input signal if it became negative. The
harmonic domain equivalent of this function as described in Section 2.7 is nonlinear, with
the characteristics of the transfer function dependent on the characteristics of the input.
The use of this element was included to demonstrate how the HDA methodology

proposed can readily handle this type of non-linearity.
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While many of the mathematical techniques to model the electrical network linear
components and the linear control system components are similar, the relative
magnitudes of the data in the resultant matrices could vary by orders of magnitude
introducing numerical problems when the matrix-matrix and matrix-vector numerical
operations are carried out. In a conventional power flow analysis, use of the per unit
system normalizes the data such that the admittance matrix or Jacobian matrix contain
numerical entries of similar orders of magnitude. For this demonstration, no scaling has
been introduced and as a result introduces numerical issues in the iterative solution of the

network.

The harmonic domain equations defining the power circuit (determined from the

representation of basic electrical components given in Chapter 3) can be shown to be:

" — 1 =

lipag = Zequiv “Virce { 3-50 }
where:

~
_ (R stce T Rload) O
Zequiv = . - — -1 _
0y, {(Rgrce + Rygag)- I + (27‘:fo “Liiter - Dy ) +2nfy - Ciyer - Dy, J
enf 5511}

and 'fy' is the nominal system frequency.

In the above partitioned expression for 'Z,,,. ', the subscripts 'h' denote the harmonic

components only of the identity 'T' and derivative 'D' operator matrices and the zero
vector §. The limitations introduced by the zero net dc impedance of the 2™ harmonic

filter are eliminated by combining the filter with the resistance of the source and load.

The harmonic domain equations describing the transfer characteristics of the measuring
circuit are:

Tneas = Kay * Tioad {5-52}
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where K, is a sparse harmonic domain matrix representing the characteristics of a first
order lag function. It is determined using the HDA function FOL as described in
Chapter 4. l.e.:

K,; =FOL(2xf, - t4)) {5-53}

Similarly, the filtered current is:

Yabs = Abs(lmeas )

A o {5-54}
Iege = Ko - Lips

where:

K. =FOL(2nf, -105) {5-55}

The Abs function returns a harmonic vector housing the harmonics included in the

absolute value of the measured current ',

In the control block diagram, the harmonic response of the control angle o is given by:

ler = flt ~ Lt {5-56
=Kl

where:
K = PID(G;,2nf, - 1,1,0) {5-57}

and Gp; and 1, are the proportional gain and integral time constant of the PI controlier.

The function PID generates a sparse harmonic domain matrix representing the
characteristics of a proportional, integral, derivative contro} circuit. For this application,
the derivative time constant is zero. Because of the integral term, the net dc transfer
characteristic of the PID function, although infinite, is set to zero. As the output of the
integrator is finite, the dc component of the error signal must be zero, i.e.:

Loy =0.0 {5-58}
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The reference voltage is derived using the integrated harmonic domain function
CompRamp that returns a vector housing the harmonics of a pulse waveform depending

on the harmonic content of vector 'a". Le.,

Vier = CompRamp(&,f, ) {5-59}

The source voltage is assumed equal to the reference voltage, i.e.:

Vsree = Vier { 5-60 }

The equations can be combined into three simultaneous harmonic expressions:
Viree —CompRamp (&) =0

- - — - - R -
L + Ler —Kpp 'Abs(Krl ’ Zequiv “Vsrce ) =0 { 5-61 }
[

oy - Ky Lo, =0y

Initial attempts to solve the above set of simultaneous equations entirely in the frequency
domain were unsuccessful. As discussed in Chapter 4, Gibb's-like oscillations associated
with the ramp function created multiple intersections of the fixed ramp and the reference
signal. This translates into multiple solutions in the frequency domain creating numerical

stability issues.

Even after slipping into the time domain to solve these problems, numerical issues were

still present associated with forcing the dc component of the current error vector Tergy ' 10

Zer0.

The author believed that it was essential to demonstrate that the model could be applied
to combined electrical and non-linear control systems, to add credibility to the proposed
HDA model. To this end, an alternative algorithm was developed to solve the above set

of equations, { 5-61 }, that does involve a slight digression into the time domain.

The solution for this example was divided into two separate components.
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The HDA method was used to establish the scalar or time domain value of 'a' that would
be required to force the dc component of the current error vector to zero. This required a

modification to the CompRamp function to accept a scalar value as an input.

The modified Mathcad® implementation of the algorithm is as follows:

CompRamp, B, n maxl = L1~ 2[3
' -7

for ie ]"nmax
| -sin{i-B)
i fz'i -1 i‘ﬂ_
. cos(ip) - 1

-

f

Algorithm 5-6

The resultant algorithm is a very minor calculation and is the same as the algorithm that
would be used to define the harmonic content of a switching function with the same

characteristics.

The harmonic domain equations can be re-arranged to define the relationship between the

dc¢ component of the current error and the scalar ‘o’ as follows:

)
ax) !/ 0

LK 2 abs {'KIY-CompRampCa o m

1 -1000- Irefe =()

K1Y above is a sparse matrix defined to be:

1

K1Y =K _+Z

1l equivi
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The derivative of the modified CompRamp function with respect to 'a’ in Mathcad®

implementation format can be shown to be:

o 1
dbyda a,n ax .t"(F‘:2
for iel.n .
£, cos(ia)
£, —sin(i-a)
f
T

Algorithm 5-7

This permits a Newton-Raphson solution algorithm as follows:

iter =0 o, “0-deg

iter =iter + 1  iter = 1.000

Jac = {:Ktz-’f‘p{;sign {LKlY-CompRamp{i max Klebydoua “max s - 1004
1 L 1

Ao =- E(_: ‘_KTZ abs | KlYCompRampa 0 max, | 3}0-1000 ----- Irefej

Gy 70+ Aa

Algorithm 5-§

Note that the Jacobian and firing angle are both scalar quantities in the above

expressions.

Having solved the dc component of the current error, the harmonic content can also be

directly calculated. Le.:

Virce -~ CompRamp o, max

KYV K1YV .
AbSKYV - abs(KYV)

log =K ;- ABSKYV-1000

Terr * leq Lref]

Algorithm 5-9
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The product of the matrix K,;(defining the characteristics of the PI controller) and the
current error vector contains only harmonic content since the dc component of K _, was

originally set to zero. Here we will introduce a new variable 0 equal to the product:

87K 31 gppdeg

The de component of 8 must be defined such that the time domain evaluation at 'ot=c,' is

correct, i.e.;

g = sum-—o

for ie 1"nmax

sum:- sum - 6, . -cos/i Uyl 8, ;sin{i-a o

- sum

Algorithm 5-10

The circuit was solved using the data shown in Figure 5-25

The harmonic content of the individual voltages, currents and the reference angle 'a

‘were calculated as follows:

v

sree © CompRamp{:a

0" may/
N -1
Hoad 72 equiv "V sree 1000

Teie =K1l 10ag

[ ahs = abs ‘ilﬁit}
Tmeas “ K12 labs
Yerr "Umeas = Tref

By 0, 0 =K.yl deg -6, o=0

err’
Rioad ! load

\Y i
load 1000

3 v load_

\Y st
load o

Algorithm 5-11
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The solution algorithm solved in less than 6 iterations. The correction to the firing angle
at the end of the 6% iteration was in the order of 107 degrees. With the modified
algorithm, there was no evidence of numerical instability for the adverse conditions
selected. The magnitude of the harmonic content of the voltage and currents is shown in
Figure 5-26. The lack of 2™ harmonic in the load voltage and current confirms that the
2" harmonic blocking filter is performing correctly. The absolute function results in the

generation of 2™ harmonic in the control signal I,but is again reduced in the control

signal lg, by the first-order lag circuit,

fU = 50’HZ n =1 [41] :Z'R‘fo 10]6]‘ = 0000000] lt

max =20

max

Rgre =002  Lpgpor = 100mH  Cgpor =250F  Rygyg - 99.99Q

T 001-sec T - 2-sec G_: =200

pi T pi” L0001 sec

4

= = 0
ref0

1
refy., max

Figure 5-25 Data used in HDA Analysis of VCC

The potential singularity introduced by the zero impedance dc component of the blocking
filter was avoided in the example by combining the impedance of the filter in series with
the source and load resistance. This allowed the use of the standard admittance matrix
definition for the cquivalent circuit of the network. The equivalent sparse matrix

Zequyused is poorly conditioned as a result of the high impedance at the second

harmonic, but it is non-singular for the condition studied and did not result in numerical

problems where its inverse was used in the calculation of system currents.

The numerical anomaly introduced by the dc component of the PI controller was solved

by solving the dec and frequency dependent components of the network separately.
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3
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Figure 5-26 Harmonic Content of Voltages and Currents

The example shows that non-linear functions such as the 'Abs' harmonic domain function
can be readily included in a network solution. As the function and for this example its
input is continuous, its harmonic derivative (the sign function) is available which allows

for its symbolic inclusion in the Jacobian for the Newton-Raphson solution.

Although no magnitude scaling was used in the development of the equivalent matrices

for this example, there were no numerical issues evident.

103



Chagier § - Application o Power Elecwonics Switching Devices

Waveforms for each of the major currents and voltages were re-generated from the
harmonic content and are shown in Figure 5-27 for time domain validation of results. The
circuit was analyzed in the time domain using PSCAD/EMTDC™ (Version 2) to validate
the harmonic domain analysis. The EMTDC™ waveforms shown in Figure 5-28 are

PN

virtually identical to the onic dommﬁé'lysig waveforms, validating the HDA

\

With the/ proposed HDA methodology,, it i ively straight for@ﬁl\:d to include
it. In Algorithm g‘-%the voltage

from the QompRamp function and the harmonic content of‘the oltage on the ddibus. The

result when\20% 3™ harmonic is present is sh

depnonstration, time

would start to conduct. The author believes however that it should be possible to carry

out the analysisﬂﬂﬁaphe harmonic domain, given the appropriate algorithm. This is
one area M&H}ﬁe | research
ﬁ]er in ChW.\

| p

o
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Harmonic Content of Vioad
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Figure 5-29 Influence of the Presence of 3" Harmonic on the DC Bus

5.5 LIMITATIONS OF HDA

In order to see if circuits with capacitive elements could be handled, the simple circuit
shown in Figure 5-30 was studied. The basic iterative algorithms described for the
resistance and resistance-inductor networks when used with the resistor-capacitor circuit

frequently failed to converge.
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Figure 5-30 Simple Diode Resistor Capacitor Test Circuit

The failure to converge is attributed to the incorporation of the capacitor directly into the
admittance matrix formulation of the network equations, i.e.: 'T=Y-E' and its direct
inclusion in the Jacobian. In the admittance matrix formulation, the capacitor creates
large admittance matrix entries at high frequencies. Any numerical corrections to the
diode bus voltage will make large numerical corrections to the current through the
capacitor. The large numerical corrections to the current cause large corrections to the

diode voltage at the next iteration; and, the solution diverges.

In a passive network, the Jacobian consists of only the admittance matrix, and the
inclusion of a capacitor introduces only numerical concerns at high frequencies. The
admittance matrix equation is solvable. However, the large off-diagonal elements in the
admittance matrix at high frequencies reduce the condition of the matrix, increasing the

likelihood of numerical errors in the solution.

The author believes, but has not shown that there is an entirely harmonic domain solution

to the divergence problem. This is discussed further in Chapter 7.

5.6 OVERVIEW

The proposed HDA is a useful approach for solving power electronic circuits consisting
of diodes, thyristors and IGBT's. Generally, the implementation worked well for the cases
examined. Some weaknesses were identified in the numerical solution, particularly for
the R-C diode circuit described in Section 5.5. In principle, the approach is self contained

and does not need recourse to the time domain. However, the author has been so far only
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able to improve the accuracy of the HDA square root function to a certain limit, which
proved to be insufficient for some of the problems discussed here. Hence a small but

elementary time domain solution was required for the solution of the TCR circuit.

109



S A

pplication w Power Electronics Swaiching

This Page is Intentionally Blank

110



CHAPTER 6

APPLICATION TO TRANSFORMER SATURATION

6.1 INTRODUCTION

Much work has been carried out modelling transformer saturation in the harmonic
domain. All of the reviewed published effort has involved some excursion into the time
domain to establish the magnetizing current waveform. Harmonic components of the flux
are used to generate a time domain representation of the flux. The magnetizing current is
determined at each point in time using some defined relationship between flux and
magnetizing current. The harmonic components of the waveform are then determined and
brought back into the harmonic domain in the form of pure harmonic current injections,
Norton equivalent, or equivalent switching functions. This approach, while successful,

still involves the time domain to establish harmonic domain quantities.

In the harmonic domain approach proposed by the author, this is not necessary.
Transformer saturation can be modelled entirely in the harmonic domain with a one-to-
one correspondence between the equations used in the time domain and the equations

used in the harmonic domain.

6.2 HARMONIC DOMAIN MODEL OF TRANSFORMER SATURATION

The time domain analysis package PSCAD/EMTDC™ uses a continuous function to
describe the direct relationship between transformer magnetizing current and flux as
shown in Figure 6-1. The equation results in a curve which is asymptotic to two straight
lines on the flux-current diagram. One line passes through the origin and is proportional

to the transformer magnetizing impedance. The second line intercepts the flux axis at a

111



Chapter 6 - Application 10 Transiormer Saration

‘cut-off' flux level and at a slope that is proportional to the saturated impedance of the

transformer.

The parameters used to define the saturation characteristics of Figure 6-1 are:

bo =1.2

where:
my; is the saturated reactance(p.u.)
m; is the magnetizing reactance (p.u.)

be is the 'cut-off flux

The scalar algorithms defining the relationship between transformer flux and magnetizing
current®’ can be expressed two ways.

1) Flux expressed as a function of magnetizing current is:

i 1
“’sat‘-\‘savml’m}bo." = B=
my
b
D .2
my
E-- bi
m I-m 2
v , Eisati +D
sal™ “sat L T
Brligg + B

Algorithm 6-1%

*7 The equations presented here are a slightly more mathematically rigorous model of the saturation curve
used in PSCAD™ in that no simplifying approximations are made.
B, D, and E are constants used to simplify the ultimate expression for flux 'y’
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Figure 6-1 PSCAD/EMTDC™ Model of Transformer Saturation Characteristic

2) The magnetizing current can also be expressed as a continuous function of flux.

This is the more 'useful' presentation. In most mathematical analyses, the flux is

established by external sources and the saturated current is an unknown quantity.

Isat <\|1,m 1’m2’bo> =

Bl
m
b
D2
m
b
Be—©
e
. (D+ |y B JD B)’ 4|y E .
gDt W B+ (;lw! V-4 B G

The real power of the propos

Algorithm 6-2

ed harmonic domain analysis technique is demonstrated with

modelling of the same transformer saturation characteristic but in the harmonic domain.

All of the functions and operators used in the scalar algorithm have direct equivalents in

the proposed HDA methodology. These include the absolute value, square root and sign

functions. Each of the mathematical operations was described in Chapter 2.
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As a result, the calculation of the magnetizing current harmonic spectrum given the
fundamental frequency and harmonic components of the applied flux can be carried out
entirely in the harmonic domain. The algorithm for the harmonic domain analysis is
essentially the same as the scalar algorithm, except that it uses the corresponding
harmonic domain functions and operators. The flux 'y is now an array housing the
fundamental frequency and harmonic components of the flux. The current 'iy is a also
array housing the fundamental frequency and harmonic components of the magnetizing

current.

‘The harmonic domain algorithm is:

i sat ‘i’sm 1:mg,b 0 =B

Iy

B2

mym,

Jo-rows(y) - 1
Oneﬂ---- 1.0

: Onej— 0

Abwy- abs(y)
F—D-One + B-Abw
root« T(F}-F - 4-T:Aby

’ {-F+sqrt(root)’} .
i sat ™ T| ﬁ%__) ; 'Slgﬂ( ‘P)

\

Algorithm 6-3

The use of the harmonic domain analysis method for calculating harmoenics due to

transformer saturation is demonstrated in the following examples.

Consider first the case of a non-linear inductor connected across a sinusoidal voltage
source of magnitude 1.2 p.u. The saturation characteristic is shown in Figure 6-1. This
applied voltage results in a purely sinusoidal flux of peak magnitude 1.2 p.u. (equal to the

cut off flux). A Mathcad® calculation sheet was used to calculate the harmonic content for
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this condition. In the example, flux is represented by the array 'Eis' magnetizing current

is represented by the array 'Is,'.

Test Case 1 Fundamental Frequency Only
m1=02 m2=50 bO =1.2

Biegt <0849 Bioy =0.849

g =igap <Etest’ml’““2’b o>

The harmonic content of the applied flux and resultant magnetizing current is shown in

Table 6-1

Table 6-1 Transformer Magnetizing Harmonics for Sinusoidal Flux, Determined using
Direct HDA
Flux (p.u.) Magnetizing Current (p.u.)

n series Iy n series la

1 a 0.849 1 a 0.149

1 b -0.849 1 b -0.149
3 a -0.076
3 b -0.076
5 a -0.030
5 b 0.030]
7 a 0.011
it b 0.011
9 a 0.003
9 b -0.003

The current and flux waveforms were generated from the harmonic content to visually
validate the harmonic calculations. The current waveform was also calculated in the time
domain from the flux waveform using the algebraic flux current relationship. The
waveforms are shown in Figure 6-2. The current calculated using harmonic domain

analysis is virtually identical to the time domain analysis results.

115



0.5~ / ]

Flux and current (p.u.)
(=]
I
P~

—15
0

100 200 300 400
Angle (Degrees)
— flux
- Current (harmonic domain)
Current (time domain)
Figure 6-2 Transformer Magnetizing Current Waveforms for Sinusoidal Flux

In test case 2, the effect of single-sided saturation effects can be easily demonstrated by
simply adding a dc component to the flux, to represent the remnance in a magnetic

circuit. Le.:

Test Case 2 Fundamental Frequency Plus dc Component
m;=02 my=50 b =12

Biest, ~0-5 Brest <0849 Biogp = 0.849

g ~iggy (Etest’ml’mZ’b o>

The harmonic content of the two waveforms is shown in Table 6-2.
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Table 6-2 Transformer Magnetizing Harmonics for Sinusoidal Flux with DC Offset,
Determined using Direct HDA

Flux (p.u.) Magnetizing Current (p.u.)
series la series la

a 0.500 0.547
a 0.849 0.704
b -0.849 -0.704]
-0.673
-0.251
-0.251
-0.101

0.018{
-0.018
-0.056
-0.022
-0.022

0.011
-0.011
-0.012

aaso 3

SOONNOUAPRWWN 220 3
TCOUDOTDOUDDOODTOD

The visual validation of the harmonic content for this condition is shown in Figure 6-3.

Again, the complete agreement with time domain should be noted.

SR
a
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|
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flux
Current (harmonic domain)
Current (time domain)

Figure 6-3 Transformer Magnetizing Current Waveforms for Sinusoidal Flux with DC Offset

In test case 3, the effect of flux distortion on magnetizing current is demonstrated. The

applied flux contains a dc component along with significant 2" and 3™ harmonic
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components. The harmonic content of the flux and magnetizing current is shown in

Table 6-3.

Table 6-3 Transformer Magnetizing Harmonics for Flux with DC Offset and Harmonics,
Determined using Direct HDA

Flux (p.u.) Magnetizing Current (p.u.)

n series lq n series lg

0 a -0.200 0 a 0.092

1 a 1.182 1 a 0.693

1 b -0.208 1 b -0.069

2 a 0.283 2 a 0.177

2 b -0.283| 2 b -0.191

3 a 0.295| 3 a 0.477|

3 b -0.052 3 b -0.146
4 a 0.088
4 b -0.245
5 a 0.232]
5 b -0.150
6 mia 0.015
6 b -0.185
7 a 0.072
T b -0.089

The waveforms are shown in Figure 6-4.
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Figure 6-4 Transformer Magnetizing Current Waveforms for Flux with DC Offset and

Harmonics
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For each of the above three cases, the HDA results can be supported by time domain
simulations, validating the proposed HDA saturation algorithm. This result is extremely
satisfying, given the ultimate objective of developing a harmonic domain analysis tool
that would be one-to-one compatible with time domain modelling applications such as
PSCAD/EMTDCT™™,

After preliminary validation using the simple test cases, the developed model is used in

the following example to solve an actual industrial filter problem.

6.3 HARMONIC DOMAIN ANALYSIS OF INDUSTRIAL FILTER
COMMISSIONING PROBLEMS

This section provides a practical example of the application of HDA to ac filter analysis.
During the course of validating the HDA transformer saturation model, the author was
also involved in the replacement of an ac filter bank at an industrial plant where the major
load consists of four six-pulse star-connected rectifiers with interphase transformers.
Each six-pulse group produces 5™, 7%, 11%®, 13" etc. harmonics. Two of the rectifier
transformers are equipped with ungrounded star-star transformers and the other two have
ungrounded star-delta connections. The rectifier transformers are supplied from the main
63 kV switchyard over two 63 kV feeders. A star connected and a delta connected
transformer are normally paired on each of the feeders to provide effective 12-pulse
operation of each feeder (i.e. with approximate cancellation of the 5 and 7™ harmonics).
Each rectifier however is operated independently so 6-pulse operation can occur,

particularly during start-up and shut down of the process.

The single filter bank that was originally in service consisted of two single-tuned filters
(5" harmonic and 7™ harmonic) and two high-pass filters (12% and 24 harmonic). The
filter has been redesigned into two smaller but identical filter banks. Each filter consists
of two single-tuned filters and one 12™ harmonic high pass filter arm. Each filter is rated
for the condition with one complete filter out of service to provide operating flexibility in
terms of system voltage and reactive power control. Each bank is designed for full load

operation of the plant in either one by six-pulse, or up to two times twelve-pulse modes.
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The plant was originally supplied by an extensive 63 kV network. In parallel with the
replacement of the ac filters, the supply to the system was upgraded. A simplified single-

line diagram of the final network is shown in Figure 6-5.

To
—» B3 kV

63 kY — Network
T5 T6
230kV |\
I 1
i |
L, : To To |
! Rectifiers Other Plant Load |
230 kV : A A A A A i
|35 35 |
I MVA MVA :
T, T, : Filter Filter i
- = |
63 kV T h 75 |
i
- i 63 kv }
To E._,_____________ ____________ 4
Local Load
Ly L, Ly L,
63 kv
l 230kV
To
230kV
Network
Figure 6-5 Single Line Diagram of Supply te Industrial Plant
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During commissioning of the new filters, problems were encountered from the moment
the filters were first energized. Modifications were required to the filter protection to
energize the filter banks even without the rectifiers in service. Once the filters were in
service, almost all switching events close to the station would result in loss of both filters.
Tripping of the second filter would occur within cycles of the loss of the first bank. As
changes to the ac system were being made at the same time as the replacement of the
filters, there were many switching operations including switching of transformers
(637230 kV, rectifiers, station service and local load) and transmission lines (63 kV and

230 kV). The filters even tripped as load was ramped-up on the rectifiers.

An urgent solution was required. The cost of lost production at the plant as a result of

filter outages was a major concern.

To gather as much information as possible on the cause of the filter trips, all of the relays
at the 63 kV filter and switching station were reconfigured to record a time slice of about
500 ms of the waveforms as used by the protection, for any activity by the relay, not just
the trip signal to the breaker. Depending on the event, the recorded waveform available
could be total current into the filter or current into any one of the three individual

branches.

While a complete set of waveforms was not available for any given event, it was apparent
that there were very high levels of 4™ and 6™ harmonics flowing into the filters and that
the magnitude of the harmonics in the waveforms were approaching continuous design
values for the filter components. This was not a good situation as both filters were in

service, but the filters were originally designed for single filter operation.

Design conditions for the filters took into account resonances between the filters and the
ac system at these harmonics, but only considering the rectifier to be the major source of
these harmonics, typicaily in the range of a few amperes. Harmonic currents in the filter
branches were as high as 50 to 60 amperes at the 4" or the 6% harmonics. Some

conditions indicated lower levels with both harmonics present. The amount of harmonic

121



Wy Pransfornwer Sauraion

content was dependent on the filter branch monitored and the nature of the initiating

disturbance.

Energizing one of the 63/230 kV transformers (*Ts’ or “Ty’) close to the plant almost
always resulted in a trip of the filters. One event was captured when the plant was being
supplied by only the four 63 kV circuits to the nearby generating station (generators ‘G;’
to ‘G4’) of Figure 6-5. One of the transformers was in the process of being energized
from the 63 kV bus as the first stage of connecting to additional generation via the new
single 230 kV circuit identified as ‘Ls” in the figure. The rectifiers were not operating at
the time. The 7" harmonic filter arm protection resulted in many of the resulting trips,
including the energization case. In almost all conditions, there was evidence of extremely

high levels of 6™ harmonic current in the 7" harmonic filter branch.

The author’s HDA toolbox was used to assist in determining the nature of the problem,
which in turn led to a method for solving it. The high levels of 4" and 6™ harmonics in
the filters could result from
1) Magnitudes of harmonic current sources in the system being much larger than
design values.
2) Amplification of current in the AC filters due to resonance with the rest of the

system being greater than design conditions.

The network was simplified to the equivalent circuit shown in Figure 6-6, and an
equivalent HDA model of the circuit was developed. Appendix B gives the Mathcad®
implementation of the set-up and initialisation of the HDA model. Filters are represented
explicitly, the ac system is modeled as an equivalent, and, the transformer is modeled as
an impedance in series with non-linear saturation characteristics. The HDA model
permitted the direct analysis of harmonic current in the voltages (to ground) at any

location as well as the harmonic current in any of the branches.

Selection of models and parameters was, in general, made to minimise the damping
exhibited by the modelled network and hence amplify any resonances that may occur.

The selection of conservative parameters is based on two objectives, namely:
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¢ to provide an indication of the minimum level of harmonic current sources
required to excite the levels of current observed in the field

e to provide a severe test for the proposed HDA method

The filters were represented by fixed inductors, resistors and capacitors. The parameters
for the capacitors and the inductors and the resistor of the high-pass filter were based on
design specifications for each of the components, The resistors modelled in each of the
5" and 7% harmonic single-tuned filters were selected to provide a filter ‘QQ’ of 100 at the
tuned frequency. The net impedance-frequency characteristics of both banks are shown in
Figure 6-7(a). The impedance of each individual filter branch was validated against field
measurements. The validation showed that the total calculated impedance of each filter is
likely within several percent of actual impedance at all but a narrow range of frequencies
between the 5% and 6™ harmonics. The net impedance of the filter at the 6™ harmonic is
heavily influenced by the sharply tuned parallel resonance that occurs between the 5™ and
7™ harmonic filters. Slight variations in the filter component parameters will affect the
exact frequency at which the resonance occurs. Variations in damping from the ‘Q’
values assumed will also have an impact. Both effects introduce uncertainties into the

total filter impedance at the 6™ harmonic.
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Figure 6-6 Energization Circuit and Equivalent Circuit

The ac system is modelled as a resistor and inductor in series and represents the variable
with the largest possible range of values in the analysis. The impedance of the ac system
at any given frequency will vary significantly with time as a result of changes to system
operating conditions and changes in network configuration. Short circuit studies of the
network carried out by others estimated the range of short circuit levels to be within 1600
to 2000 MVA. The inductance of the system was arbitrarily selected for this analysis to
create a resonance between the ac filters and the ac system at exactly the 6™ harmonic.
The inductance corresponds roughly to a short circuit level of about 2200 MV A at 60 Hz.
This is slightly outside the estimated range but the author was more interested in the
harmonic analysis than the behaviour at fundamental frequency. The ac system resistance
was selected to provide an X to R damping ratio of 15 at 60 Hz. This is consistent with

the damping ratio of 15 used in the design of the ac filters.
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The impedance of the ac system is compared to the impedance of the ac filter in
Figure 6-7(b). Intersections of the system impedance characteristic (primarily inductive)
with the negatively sloped (primarily capacitive) characteristics of the filter indicate

potential resonance conditions (about n = 4.2, 6, and 7.8).
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Figure 6-7 Variation of AC Filter, System and Net Harmonic Impedance

An initial analysis of the network reveals the following potential interaction.

The net filter and ac system impedance is shown in Figure 6-7. This figure shows that the
filter and system are in resonance at the 6™ harmonic. It also shows that there is a severe
resonance very close to the 4™ harmonic and a resonance of lesser severity close to the gt

harmonic.

The leakage path of the transformer is also modelled as a series resistor inductor circuit.

The transformer saturation characteristic and impedances used are based on 60 Hz test
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results for an identical unit. The non-linear magnetizing circuit is represented by the

Harmonic Domain Saturation characteristic described in Section 6.2.

In the HDA model, the harmonic impedance for the ac system is calculated only once and

stored in the sparse impedance matrix Z . Although a constant resistance - constant

inductance system model is used in this analysis to facilitate the set-up of the impedance
matrix, the matrix could have been based on full system network reduction analysis with
no increase in complexity. It could have also been set-up arbitrarily to create

simultaneous resonances at more than one harmonic.

In a similar manner the harmonic impedance of each filter branch and the total harmonic
impedance of both filters is calculated only once based on the filter parameters,
configuration and harmonic number and stored in sparse matrices for each of the

components. The total admittance of both filters is stored in a matrix Y;. The harmonic

impedance of the transformer leakage reactance and resistance is stored in the matrix Z_ .

While both the ac system and transformer were modelled as constant resistance devices,
factors such as skin effect and transformer eddy currents will tend to increase the
resistance with frequency. The more conservative approach adopted (i.e. less damping at

harmonic frequencies) is consistent with the two stated objectives of this demonstration.

A harmonic Thévenin equivalent of the ac network was developed that included the ac
system, the ac filters and the series impedance of the energized transformer. The
harmonic equivalent is determined using the same numerical algorithm that would be
used for the formation of a single frequency equivalent except matrix operations are
involved rather that scalar operations. The Mathcad® implementation of the Thévenin

equivalent impedance calculation is:

sys}' Oy {6-1}

where:

sys < sys {621}
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and the Thévenin equivalent voltage is given by:

Vin :Vfact'vsrc'vo'_x‘}%
! {6-3}
where:
Vfact = {Yfi Ysys ;3'71'Ysys {6-4}
v, =63 (651
and:
Ve = VO—O
Vl'.— 1.0
20 0
v {6-6}

For this example, the source voltage V. was assumed to consist of only a fundamental

compatibility with the saturation characteristics. These were adjusted to RMS quantities

for output of individual harmonic content.

The only source for harmonic excitation of the system-filter configuration shown in
Figure 6-6 is the harmonic content of the magnetizing current of the open-circuit but

energized transformer.

In linear single frequency HDA models, flux at 60 Hz with a dc offset would be applied
to the transformer saturation characteristic in the time domain. The waveform of the
magnetizing current would be analysed and the harmonic content determined. The fixed
impedance network would be analysed with harmonic current injections to determine the
harmonic flow in the filters. This process, however, does not take into account the impact

that the magnetizing current will have on the flux.

Later HDA models as described by Semlyen [ 18 ] and Dommel [ 17 ] calculate the

harmonics of the excitation voltage based on the fundamental frequency and harmonic
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response of the initial current calculations. The time domain waveform of the flux is re-
generated by summing the Fourier coefficients at each time step. The waveform is
applied to the saturation characteristics to obtain a new magnetizing current waveform
and the new currents, based on a Fourier analysis of the waveform, are injected into the
network. The process is repeated until there is no refinement to the magnitudes of the

currents,

Although the HDA saturation model developed by the author lends itself to other iterative
network solution techniques such as Newton-Raphson, the author has for this example
used a Gauss-Seidel iterative process similar to the repetitive methodology described
above. The most significant difference is that in the author’s methodology, the harmonic
currents in the magnetizing current are determined directly from the harmonic content of

the flux. No flux and current waveforms are required.

The Mathcad® implementation of the algorithm used is shown in Figure 6-8. It is simply
a Gauss-Seidel iterative solution with an acceleration factor of 0.2. New values of voltage

“ Ve~ across the saturated element are computed at the start of each iteration based on the

differences between the harmonic voltages at the previous iteration and the new voltages

3

Veanew - calculated based on the previous set of harmonic current injections. The change

to the voltage is limited by the acceleration factor ‘accel’. Flux is set equal to the integral

of the voltage * V,,* by the operator ‘OneByD)’. This matrix is simply the inverse of the

harmonic component of the derivative operator matrix with the dc component arbitrarily
set to zero. The calculation of Zy, is not visible in Figure 6-8, but it is readily calculable

per equations 6-1, 6-2, and is shown in Appendix B.

Here, a Gauss-Seidel iterative approach (popular in load flow programs) is used as the
engine instead of the Newton-Raphson solution that was used in earlier chapters. The
solution converges within about 20 iterations to an acceptable level of correction. For this
application, a maximum change of 1% of the 6™ current harmonic injection was used as a
guide. The iterations were increased to over 50 to insure numerical stability of the

solution.
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Figure 6-8 Segment of Mathcad® Implementation of HDA Gauss-Seidel Solution

The calculated magnitude of the harmonic content of the magnetizing current is plotted
for each harmonic in Figure 6-9 as a function of iteration count. The author was
particularly interested in the convergence characteristics at the 6" harmonic, given the
known resonance condition and the lack of damping in the system. The figure indicates
that each harmonic converges at approximately the same rate, including the 6™ harmonic.
The magnitude of the harmonics produced by the transformer at convergence is in excess

of 1 A peak for all but the 17" and 19" harmonics.
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Bar charts depicting the harmonic components of the solution for flux and magnetizing
current are shown in Figure 6-10 and Figure 6-11 respectively. The current and flux is
dominated by dc, 60 Hz and low order harmonic component. The harmonic content
reduces rapidly with harmonic number. The harmonic content of the magnetizing current

has reduced by several orders of magnitude by the 20™ harmonic. The harmonic content
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of the flux is reduced by three to four orders of magnitude.
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The harmonic content of the voltage at the 63 kV filter bus is shown in Figure 6-12. The

harmonic content at frequencies greater than the 10™ harmonic are all less than 1% of the
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nominal bus voltage. Harmonic voltage at the oM. g 4th, and 6™ harmonics are very

high.
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Figure 6-12 Harmonic Component of the AC Filter 63 kV Bus Voltage

Figure 6-13 shows the ultimate distribution of the magnetizing current between the ac
system and the ac filters. Most of the low order harmonic current (2nd and 3'd) flow into

the ac system.

Although the ac system 60 Hz voltage source is the driving force behind the magnetizing
current, the fundamental current from the system is less than the magnetizing current. At
60 Hz the transformer magnetizing circuit behaves like a large shunt reactor whose
effects are reduced by the ac filters that are effectively in parallel. This is a well known
phenomena but this does demonstrate that the HDA model proposed can reproduce this

type of interaction.

The resonances expected at the 4™ and 6™ harmonics are evident in Figure 6-13. The

harmonic current in both the ac system and ac filter at the 4™ and 6™ harmonics are
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considerably greater than the harmonics produced by the sole harmonic source in the

system, (i.e. transformer magnetizing current).
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Figure 6-13 Distribution of Transformer Magnetizing Current

Figure 6-14 shows the harmonic current flow in each of the filter branches. The harmonic
content of the currents in all three branches are dominated by the 4™ and 6™ harmonics.
The harmonic content in the high-pass filter is much less than the 60 Hz component and

is therefore not of immediate concern.
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Figure 6-14 AC Filter Branch Harmonic Current

The 4™ and 6™ harmonic currents into the 5™ and 7™ filters however exceed the
fundamental frequency component, and in fact, the magnitudes are comparable to the
design values of the filters for the 5™ and 7™ harmonics respectively. The high levels of
4™ and 6™ harmonic current in the filter determined using the HDA analysis is consistent

with the field observations.

A comparison of the HDA calculated magnetizing current to the currents in the 5™ and 7™

filters is as follows:

134



Chapler & - AppHostion o Transfonmer Saination

Current (A RMS)

4™ harmonic 6™ harmonic
Magnetizing Circuit 80 24
5" Harmonic Filter 65 54
7" Harmonic Filter 16 55

These currents are in agreement with the 50-60 A filter currents at the 4™ and 6%

harmonics observed in the field!

Based on the table it can be seen that even with a very sharply tuned resonance at the 6
harmonic, the amplification from source (magnetizing circuit) to the 7% harmonic filter is
only about a factor of about two. The amplification factors are less at the 4™ harmonic.
The amplification at the 4™ harmonic would have been larger if the filter and system were

also tuned to a 4™ harmonic resonance.

The fact that the amplification at the 6™ harmonic, as established by HDA, was only a
factor of two was a key factor leading to the ultimate solution to the problem. (i.e.:
simply an adjustment to the protection.) A change was made initially to the time dial
setting on the basis that transformer saturation inrush currents are temporary (possibly
lasting up to 20 seconds). The manufacturer adjusted the protection to be closer to the

short time capability of the equipment.

Had the amplification factor as determined by HDA been larger, the consequences could
have been much more serious. It may have been necessary to redesign the filter. Lower
values of 4™ and 6™ harmonic currents in the system (possibly from other sources) could

have also caused the filters to trip.
The conclusions that can be drawn from the above demonstration are that:

* The HDA methodology proposed by the author has been tested and used in the
analysis and was instrumental in establishing a solution of an actual system problem.
The methodology was able to reproduce levels of harmonic currents similar to those

obtained by system measurement,
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¢ The HDA methodology has worked well in an environment that appeared to pose

difficulty from a numerical viewpoint.

The author's proposed HDA in general provides a very powerful tool for the design and
analysis of systems where ac filtering is an integral component. HDA provides answers
directly in a form that can be used in design or compared to design parameters of

equipment.

The HDA methodology proposed by the author provides additional flexibility in that the
HDA model is extremely simple, can be setup quickly and provides the type of

immediate answers that are required in the practical solution of field problems.

6.4 USE OF HDA FOR TIME DOMAIN ANALYSIS

In this section it is shown how the proposed HDA methodology can be quickly used to

solve a problem that traditionally would have been dealt with only in the time domain.

In this example, HDA is used to confirm the likely cause of bursts of severe current
distortion from the same rectifier system described in Section 6.3 of this chapter. During
one of the filter tripping incidents, protection on one of the 63 kV feeders to the plant also
picked-up but reset and did not trip the rectifier feeder. The plant advised that no
switching operations occurred at the time, ruling out rectifier transformer energization as

a cause of the filter trip.

Because the feeder protection picked-up, waveforms of the feeder three phase currents
were automatically recorded by the relay at the time of the incident. These were
downloaded for analysis. It was apparent that the waveform included a rectifier load
component both prior to and during the burst of distortion. This component was removed
from the waveforms by simply subtracting the waveforms prior to the burst from the

waveforms during the burst. The resultant waveforms are shown in Figure 6-15.
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As two of the resultant waveforms exhibit a sustained zero component over a portion of
each cycle, it was deduced that subtracting the rectifier load component from the
waveform was reasonable, and that the disturbance originated from the second rectifier

where the transformer had been energized but the valves were not initially conducting.

Several possible explanations of the phenomena were proposed, all related to some form
of disturbance on the dc¢ side of the rectifier transformer. The waveforms are similar to

those that might be expected as a result of transformer saturation.

To demonstrate that rectifier transformer saturation could be the source of the problems,
the author’'s HDA saturation routine was used to calculate the harmonics in the
magnetizing current of a three phase ungrounded star-delta transformer energized at 63
kV, but with varying levels of dc flux offset in each winding. The results are shown in
Figure 6-16.
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The waveforms shown in Figure 6-16 were generated from the harmonic content in the
three current vectors I,,i, and I,. The process involved a 'trial and error' approach,
adjusting the dc component of the flux (ABo, BCo and CAp) in each of the delta windings
until the HDA waveforms were similar to the adjusted field measurement waveforms.
The Mathcad® implementation of the HDA calculations is shown in Figure 6-17. The

current vectors 1,,%, and T, house the harmonics of the magnetizing currents supplied by

each phase of the 63 kV bus.

Comparing Figure 6-16 to Figure 6-15, the waveforms show a remarkable similarity to
the modified field measurements, The HDA analysis indicates that the burst of current
distortion could occur as a result of single sided saturation of the rectifier transformer. 1t
is suspected that during start-up of the second rectifier, a control system malfunction can
occur that results in unequal current pulses through the valve windings of the rectifier
transformer. Unequal current pulses result in de components of the currents also flowing
through the valve windings of the rectifier transformers resulting in saturation type

currents flowing in the primary windings.

This type of analysis is a traditional time domain problem. The author’s HDA
methodology, however, does offer an alternate, simple and convenient mechanism for

carrying out the same analysis.
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CHAPTER 7

CONCLUDING REMARKS

7.1  GENERAL

The harmonic domain approach developed in this thesis is useful to the electrical
engineering community. The rigorous mathematical treatment extends the art of network
solution theory. The direct calculation of harmonics is an independent check for time
domain solutions followed by Fourier analysis. Computationally, the HDA method could
be more efficient than the time domain, particularly for systems with low damping and
systems excited with a large range of harmonics (e.g. dc and up to 1 MHz) or with a large
difference in their natural time constants. If the development of the proposed Harmonic
Domain Analysis methodologies continues, it could eventually be used to define initial

conditions for time domain transients solutions.

Chapter 1 of this thesis has provided background to harmonic domain analysis, provided
the motivation for this work and explained why the author believed that the HDA
methodology could be developed. Chapter 2 has described the development of the basic
harmonic domain mathematical tools (harmonic domain addition, subtraction,
multiplication, division, square root, absolute value and sign functions). Their use in the
development of harmonic domain models for basic electrical and control system

components has been described in Chapters 3 and 4.

Chapter 5 has shown that the HDA methodology can be directly applied to the modelling
of basic power electronic switching elements, while Chapter 6 has shown that the

proposed HDA methodology can be applied to the solution of electrical networks with
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non-linear elements such as transformer saturation, and has successfully demonstrated the

methodology by its application to the solution of a real harmonic domain problem.

7.2 CONCLUSIONS

The prime objective of this research was to develop a Harmonic Domain Analysis (HDA)
methodology given the hypothesis that the harmonic analysis can be done entirely in the
harmenic domain. The HDA methodology presented in the thesis achieves this objective
and includes:
1) development and demonstration of algorithms for the direct evaluation of
advanced mathematical functions,
2) application of the mathematical algorithms to typical sources of harmonic
interactions such as non-linear elements and power electronic devices,
3) an indication of how the algorithms can be incorporated into methodologies for

other types of power system analyses.

Based on these objectives, it was concluded that the hypothesis given in Chapter 1, j.e.:

That given three basic harmonic domain operators, i.e. add, subtract, and multiply
can be carried out entirely in the harmonic domain, it should be possible, also, to
directly divide two waveforms in the harmonic domain. With these four harmonic
domain tools it should be possible, similar to the time domain, to develop more
complex mathematical functions such as the square root absolute value and sign

functions.

Given the availability of robust mathematical functions, it should be possible to
model nonlinear elements such as power electronic switching equipment and

transformer saturation directly in the harmonic domain.

Given basic mathematical tools and the ability to model non-linear elements
directly in the harmonic domain, it should be possible to develop a methodology

where these non-linear elements can be incorporated into existing data structures
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and algorithms to permit the solution of large electrical power networks entirely

in the harmonic domain.

has been verified and that it is indeed possible to apply the Harmonic Domain Analysis

methodology to practical problems.

7.3

PRINCIPAL ORIGINAL CONTRIBUTIONS

The principle original contributions made in this thesis include:

1)

2)

3)

4

3)

6)

7)
8)

development of mathematical tools to do a number of time domain operations
{multiply, divide, square root, absolute value and sign) directly in the harmonic
domain. These tools allow the direct computation of the harmonic content
(frequencies, magnitudes and angles) of a waveform without recourse to Fourier
series transformations of the corresponding time domain values. The original
contribution to the multiplication operator is its treatment as a transformation
matrix.

development of derivatives of the advanced harmonic domain functions,
permitting the use of the these functions in the Newton-Raphson or other
predictive type solution of non-linear harmonic domain simultaneous equations.
combining the above tools into a circuit analysis algorithm that uses admittance
matrix solutions. This allows for the direct harmonic domain calculation of
arbitrarily large circuits with non-linear elements.

inclusion of basic power electronic circuits, and non-linear control function
blocks in the above HDA procedure.

development of a composite environment that permits mixing controls, circuit
elements and switching functions for direct use in the harmonic domain.
validation of the approach taken with detailed time domain simulation.
development of a harmonic domain model for non-linear magnetising branches.
application of the saturation model to an actual filter-transformer interaction
example, including validation with measured waveforms and current values. This

shows that the approach is a valid design tool in real applications.
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9) demonstration that the proposed HDA methodology is compatible with both
Newton-Raphson and Gauss-Seidel algorithms for the solution of non-linear
equations, and as such would be compatible with the large network solution

algorithms developed for load flow fundamental frequency analysis.
7.4  LIMITATIONS OF HDA AND FURTHER WORK

The approach developed so far is very effective and clearly establishes the feasibility of
the methodology. Angles of attack for some remaining limitations and suggestions for
potential improvements are now outlined below. These issues could be addressed by

future researchers in this field.

The Square Root Function

The HDA square root function described in Section 2.6 could be improved to
allow a better approximation for the harmonic content of waveforms that have
time domain step function equivalents with a significant length of time where the

waveform is close to a value of zero.

Much work has been done in the transformation from frequency domain (entire
spectrum, not just harmonics) to time domain and the author understands that a
Lanczos filter is often used in these transformations to reduce the Gibb's-like
oscillation effect as a result of frequency truncation. Application of a Lanczos
filter in the harmonic domain to the waveform prior to using the 'best fit' square
root algorithms may reduce the dc offset effect and could be examined as part of

further development of the authors proposed methodology.

In algebraic evaluations of the square root, the argument can be scaled by a factor
with a known root™ into a range where the product of a large and small number
does not occur during the square root calculations. The author believes that it may

be possible to divide the time slice (in the harmonic domain) into periods where

* For example a scaling factor 100 could be used as the known root is 10,
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the argument lies within a given range, apply a scaling factor to this range and
evaluate the square root in the harmonic domain only over the range.
Superposition of harmonics should apply to evaluate the harmonic content of the
complete waveform. Again this could be investigated as part of further research in

this area to improve the HDA square root function.

Ongoing development of HDA mathematical operators and functions

The author has developed the appropriate mathematical tools as was required to
achieve the objectives of the research. Additional mathematical tools can be
developed as required by future HDA developers. An example of this is to expand
the HDA mathematical tool box to include logical functions. The sign function
discussed in Section 2.8 of Chapter 2 can be adapted to a primitive analogue-to-

digital converter,

As a first step the sign function can be used to develop an HDA equivalent of a
time domain comparison function that compares two harmonic domain inputs, say
Aand B returning one level of output if A is greater than B(in the time domain)
and a second level if Ais less than B. In this case the argument to the sign

function would be A-B.

The magnitude of the swing in the output of the resultant sign function (either +1
or -1) can be scaled by scalar multiplication, and shifted by increasing or
decreasing the dc component of the output to correspond to the desired output
levels. If the output levels are selected to be say 1 and O for the positive and
negative inputs respectively, the sign function is the first step in the modelling of

logical functions in the harmonic domain.

The ability to model logical functions in the harmonic domain would create many

more possible avenues for future investigations, entirely in the harmonic domain.
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The square root function provided satisfactory results for many of the applications
tested but as noted earlier, there is room for improvement. Even with the
somewhat limited functionality of the square root function, however, other
mathematical models dependent on the square root function were developed and

successfully demonstrated.

The author believes that with additional research and development, a complete
library of 'robust’ mathematical and logical harmonic domain operators and
functions could be developed. These higher level functions would be required if
complete compatibility with time domain system modelling tools such as

PSCAD™ ig to be achieved.

HDA models of Thyristors

Sections 5.2 and 5.4 of Chapter 5 demonstrate that circuits including diodes and
gate turnoff devices (IGBT, MOSFET, GTO etc.) as used in several modern
topologies such as voltage sourced converter circuits can be readily modelled in
the harmonic domain. As a thyristor is simply a diode with conduction intervals
determined by logic, the author believes that it should be possible to also model a
thyristor circuit directly in the harmonic domain. This could be subject of ongoing

research into direct harmonic domain modelling of components.

HDA Modelling of Ideal Inductors and Capacitors

The treatment of capacitors and inductors in the proposed HDA could be
improved. The HDA admittance matrix representing an inductor and the HDA
impedance matrix representing a capacitor are both singular. The singularity
associated with the inductor is eliminated if a small resistance is inserted in series

with the inductor.

An ideal capacitor can be introduced into the HDA admittance matrix

representing the network, but it de-couples the two connected nodes for dc
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phenomena. Successful solution of the network is dependent on the presence of a
resistive type connection to ground at each of the terminating nodes, (which could

be sufficiently large so as to not influence the results)

The author's proposed HDA methodology is based on an admittance matrix
formulation with both the dc and harmonic components integrated into the same
matrix. A refinement to this methodology to treat the dc differently from the
harmonic component may eliminate the limitations imposed on the modelling of

ideal inductors and capacitors.

HDA Modelling of Ideal Derivative and Integrator Control Functions

Modelling ideal derivative and integrator functions in the HDA have the same
limitations as ideal inductors and capacitors. Derivative functions can be
incorporated provided there is a proportional term as well. Integrators can be
incorporated provided there is some additional means to define the d¢ conditions
of the input (must be zero) and output, (completely independent of input,

dependent only on output of other control system functions).

Similar to the ideal inductor and capacitor, a refinement to the HDA methodology
to treat the dc differently from the harmonic component may eliminate the

limitations imposed on the modelling of these components.

Derivative of the CompRamp Function

The derivative of the non-linear CompRamp function is a matrix that is easy to
define and can be readily incorporated into a Newton-Raphson iterative solution
of its non-linear effects. The demonstration of its use in Section 5.4 of Chapter 5
is based on a full matrix model. Its implementation in production software would
likely take advantage of the fact that the two single dimension arrays that define

the contents of the matrix are almost identical.
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The Time Domain Ramp Function

The time domain ramp function is a common mathematical and control system
modelling function. It is not only just used in conjunction with a comparator
function (as demonstrated in Section 5.4). It could be used in conjunction with
many other types of circuits such as input to sweep circuits, harmonic generator
circuits, etc. In some applications, for example, if the output of the ramp was used
as input to an integrator or first order lag filter, it may be possible to neglect the
Gibb's-like oscillation effects. In other applications, however, the oscillations
could cause solution difficulties similar to those experienced with the

development of the 'CompRamp' function as described above.

The Gibb's-like oscillation effects could aiso introduce numerical issues
associated with the output of the sign function or with other discontinuous
functions. To provide the greatest flexibility for future development of HDA
models, it would be very beneficial to be able to model any function, independent

of its ultimate use in the control circuit.

The author believes that there should be a solution to the Gibb's-like oscillation
effects. The Lanczos filter appears to offer some direction for the solution, and
additional research and development along this path would improve the flexibility

of the proposed HDA methodology.
Other control Block Functions

Chapter 4 described the modelling of first order lag and PID type of controllers in
the proposed HDA. It is suggested that with additional research and development,
the same procedures described in that Chapter can be applied to the development
of other control function block diagrams such as lead lag functions and 2™ order

filtering functions.
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Methodologies similar to that used in the development of the HDA CompRamp
function could be used to develop more complex non-linear models and their

analytical derivatives.

Capacitor Diode Circuits

Although the author has explored (unsuccessfully) other treatments of the
capacitor-diode configuration discussed in Section 5.6, it is still believed that
there is an entirely harmonic domain solution to the divergence problem. This
may involve restructuring the Jacobian to include an impedance model of
capacitor elements, solving for voltages instead of currents associated with

capacitor elements. This should improve the condition of the Jacobian.

The solution of the diode-capacitor combination would make a very interesting

topic for future research.

Norton Equivalents

As the algebraic saturation function described in Section 6.2 of Chapter 2 is
continuous, it is possible to symbolically differentiate the flux-current expression
with respect to flux, establishing an equivalent small signal admittance at any
operating point on the waveform. In a similar fashion, it should also be possible to
differentiate the harmonic domain expression with respect to each component of
the flux, building up a small signal admittance matrix for each set of harmonic
operating conditions. The small signal admittance matrix would aid in the
development of a harmonic Norton equivalent of the saturation characteristics. As
well it would assist in the direct incorporation of saturation characteristics into the
Jacobian of a Newton-Raphson solution. Both would be useful for the iterative
analysis required for the harmonic domain analysis of very large systems. This
could be a subject for future research and development into proposed HDA

methodology.
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With resolution of the above limitations, the author's proposed HDA methodology could
be integrated into an admittance based harmonic domain analysis tool with graphic
interface (GHDA), capable of examining harmonic impacts between devices across an
entire power system network. The tool would be able to link with conventional power
flow and stability data (such as PSS/E™ or PSLF®) to define the fundamental frequency
component of the network admittance matrix and generator dynamic data, link with
frequency domain programs (such as NIMSCAN®) to establish the harmonic effect in the
electrical network and with compatibility in network configuration and data with time
domain software such as PSCAD/EMTDC™ for cross-validation of harmonic domain
and time domain analysis results and for defining the initial conditions for the transients

solution, avoiding time domain initialization.
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APPENDIX A MATHCAD® IMPLEMENTATION OF THE HDA

COMPRAMP FUNCTION

CompRamp, 8, it

ma;eto}e"?f* = B9,

..

floos| 1NER(8)

! iter... 0 |

e 107

while {'iteriit max! (£ »toler)
num... GU

den_ .1
for iel.n
Pk, 2
ljk, 1
‘ num... UM ::Bj'cos(i'ﬁ) . 9k'5in(i-[i)':|

\den_den , i(. 6.5in(i-B) . 0,-cos(ip))

num
den

iter, .. iter 1

f..1 B

for iel..n

-sin(i-B)

Mathcad%ol.ution Algorithm - HDA CompRamp Function

157



Appendix A - Mathcad

implementation of the HDA CompRamp function

B =20 oT :=0..360 toler :=.00000001 it e = 20
0, =192 92'nmax::0 6, :=20 8,:=-5 0,:=25 0 = 06-deg
Voief = CompRamp(G, 1 rioe toler)
Disp(V) = | n— length(V)
for oT € 0..360
Dismeﬁ \A
for ie 1..floor| "
2
Disme% Disme + V(2<if 1)-cos(i-coT-deg) o+ Vzii-sin(i-mT-deg)
Disp
_ Disp(0) T o [
0 E— Ramp . i=— P =Disp(V
oT deg oT 360 < ref>
._Disp(6)
360-deg
Put
RampmT
PmT
05 | | | | | | |
: 50 100 150 200 250 300 350 400
oT
S v G P W ERP T E |
Vief =fo 0.457 0.085 -0.625 -0.082 -0.023 0.077 -0.179 -0.07 -0.042

Testing of the CompRamp Function:
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* implementation of the HDA CompRamp function

APPENDIXB MATHCAD® DATA AND SET-UP FOR SAMPLE

SYSTEM DESCRIBED IN CHAPTER 6

Parameters

fo 1=60-Hz o A 0:=0.0 g, Di=identity (20 poyt 1)
V=63 MVAsys :=2193 Qsys =15

MVAx =120 zy=.1 byi=11 my :=.20C m, =200 Qx:=60

Rg:=.5287Q Lg5:=5724mH Cg =5.12pF
R7:=25028Q L5:=57.73mH Cr:=2.56uF
Ry =36:Q th '=3.18mH Chp '=15.36 uF

p
Calculation of Filter Admittance and Impedance
1 -1
Y.5:=0,CsD(n Y5 =— Z =Y Z =0-Q
5 ( max> 00 O c5 c5 CSO’O
Rgl+® LsD(n +Z,
ZSZ 2) < ax> ZS =1 YS::ZSV1 YS =0
Q 0,0 0,0
1 -1
Y. =0, Cy+D(n Y = Z.7 =Y Z =0-Q
c7 07 < max> c70 o 0 c7 c7 c70’0
R7I+ @ ,-L7D(n +Z 7 )
Z7: L < aX) Z7 =1 Y73:Z71 Y7 =0
Q 0,0 0,0
Zihp =@ oL -D(n ax) / S0 Yo =i X =0 =
Lhp o ~hp m tho,o Lhp Lhp tho’ 0 0 tho, 0
Y o 150 G oD Y =1z =y ! =00 Y -
Chp ~®o“hp’ <nmax> Chpy o " o Chp " Ychp Zchp, O Chp, .~
000 0,0 0,0
1 -1
;o p . " -1 "
VAT Z =1 Y., =Z Y =0
hp 0 hpO’0 hp hp hpo,0
Yg=2(Ys+ Yq+ Ypp) Yg =1 Zpi=¥ g Zg = Ye =0

0,0 0,0 0,0

0-Q

i)
Q
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Appendix A - Ma

icad” implementation of the HDA CompRamp function

System Impedance
2

Z e s +
b MVAsys ( < max>
Transformer Impedance
v 2
Z,= 9 . D(nmax>+i-ldentity<n max> Zy
MVAx Qx

Zgy = (Yo Ysys>"1+zx

sts

Vfact <YfJr Ysys> Yys
Source Voltage
o o 2
Ve = | Vo 0 Vin ‘Vfact‘vsrc'vo'/ﬁ
VI% 1.0
V2-n maxHO
\'%

-Identity (n ( max))

=Z .. ' Constant system R

<----Note: Vth is a peak voltage

Mathcad® Data and Set-up for Sample System Described in Section 6.4 of Chapter 6
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