
TIARMONIC DOMAINANÄLYSIS OF POWER SYSTEM
ELEMENTS

WITH

NON-LINEÀR OR REPETITIVE SWITCHING
COMPONENTS

by

Robert S Burton

A thesis
submitted to the Faculty ofcraduate Studies in

paÍial fulfilment of the requirements for the degree
of Doctor ofPhilosophy

af

The University of Manitoba,
Department of

Electrical and Computer Engineering

Winnipeg, Manitoba, Canada

@January, 2004



THE UNIVERSITY OF NIANITOBA

FACULTY OF GRADUATE STUDIES
*****

COPYRÌGHT PERN{ISSION

Harmonic Domain Analysis of Power System Elements
with Non-Linear or Repetitive Stt'itching Components

BY

Robert S. Burton

A Thesis/Practicum submitted to the Faculty ofGraduate Studies ol'The University of

Manitoba in pârtial fulfillment of the requireme nt of tlte degree

of

DOCTOR OF PHILOSOPHY

Robert S, Burton O 2004

Permission has been grânted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the Nâtional Library of Canada to microfilm this thesis and to lend or sell

copies of the film, and to University N{icrofilms Inc, to publish an abstract of this thesis/practicum,

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied

âs permitted by copyright larvs or with express written authorization from the copyright owner.



ABSTRACT

Harmonic domain analysis (HDA) is a convenient method of analyzing power systems to

determine the impact of harmonics as well as methods for their mitigation. HDA is more

than a simple extension of the traditional load flow power fiequency analysis tool to

include analyses of the system for dc and harmonic components. Some of the most

diffrcult aspects of HDA are the analysis of interactions that can occur between dc, power

frequency and harmonic components ofthe power system.

The major sources of harmonics in a power system are non-linear elements such as

saturation and power system electronic switching devices. HDA models of these devices

have undergone significant development from fixed magnitude equivalent harmonic

cunent sources used in early HDA models to detailed models where the magnitude and

relative phase angle of the harmonics produced by the components are a function of

voltage and current wave-forms at dc, power system and harmonic fiequencies. Many of

these mathematical models rely on information from the 'time domain' to establish

driving wave-forms, degree of saturation, or 'turn-on' and 'turn-ofÎ times for electronic

switching devices.

This thesis presents a novel approach to modeling these devices entirely in the harmonic

domain using a harmonic domain 'square root' function as a basic building block. The

mathematics and algorithms used in the models are described and the approach is

successfully demonstrated for several examples including diode applications, transformer

saturation applications, and non-linear elements in power system controls.

Limitations of the mathematics and the model are described along with suggestions for

future work to refine and improve the robustness of the model.



This Page is Intentionally Blank



ACKNOWLEDGEMENTS

The author wishes to thank the Faculty of Graduate studies and the Department of

Electrical and Computer Engineering for their patience and guidance throughout this

work. In particular the author expresses his sincere gratitude to his advisor,

Dr. A.M. Gole. Dr. Gole has provided encouragement, direction and sound advice on

every aspect ofthis project.

The author acknowledges the financial support provided by the Manitoba HVDC

Research Centre during the first three years of the project and the encouragement from

my employer, Teshmont Consultants LP who accommodated the "time-off' required to

fulfill the classroom requirements.

I am extremely grateful to my family for their contributions, including my sons Robert,

David and Andrew who would listen to my explanations and offer suggestions on

improving my models. A special thanks goes to my brother Rich (Dr. R.T. Burton) who

has reviewed my writings and offered suggestions on how to turn the documents into a

Thesis.

I would also like to thank my mother Louisa and acknowledge my late father

T.S.(Stan) Burton whose forethought, appreciation of education, and guidance 50 years

ago spawned my interest in mathematics and its applications.

I would especially like to thank my wife Jean. She has made many personal sacrifices

over the last nine and a halfyears while I was in the 'dungeon', working on the computer.

Without her love and suppof, all of this would be impossible.

R.S. (Bob) Burton

Ilinnipeg, January 2004

fll



This Page is Intentionally Blank



CONTENTS

List of Figures..

List of Tables

Glossary

l.l Background
1.2 Objectives ..........6

................................ 8

..........9
.... 10

11

12

t5

2.7 TheAbsoluteFunction.............
2.8 The Sign Function............. ............'....'... ..32
2.9 The Derivative Operator............ ..'.... ........ 33

2.10 Other Mathematical Functions...... "...".... 33

Chapter 3 Linear Power System Elements in the llarmonic Domain.....'."."'..... 35

3.1 Introduction

Itl

vlI

lx

1.3 Thesis Outline

Chapter 2 Summary of Harmonic Domain Mathematics ..................'.".".............. 9

2.1 lntroduction.......
2.2 Definitions.........
2.3 Addition and Subtractions Of Waveforms.....
2.4 The Product Transformation Matrix............-...........
2.5 ThelnverseTransformationMatrix.........................
2.6 The Square Root Function ............ ........'..... 17

2.6.1 The 'Exact' Newton-Raphson Solution............. .............17
2.6.2 The Taylor Series Expansion

31

22

3.2 The Admittance Matrix
3.3 Resistors.....
3.4 Induclors



! 1.11:lai-ti!

Chapter 4 Linear Control System Functions....,,,'..
4.1 Introduction.......
4.2 First Order Lag Function
4.3 The Proportional Integral Derivative Function...............
4.4 The Compare Ramp Function..
4.5 Overview....-......

43
44

.......................... 46
..........__........ 53

Chapter 5 Application to Power Electronics Switching Devices .......................... 55

5.1 Introduction...... 55

5.2 Application to Analysis of a Diode Circuit.............. ..............55
5.2.1 ìntroduclion....... .......... 55

5.2.2 Example 1 Direct HDA Analysis of a Simple Resistor Diode Circuit '. 56

5.2.3 Example 2lferative HDA Analysis of a Simple Resistor Diode Circuit..59
5.2.4 Example 3 Iterative HDA Analysis of a Simple Resistor Network Diode

...............64Circuit
Example 4 Iterative HDA Analysis of a Simple Resistor Inductor Diodes.2.5

5.2.6
5.2.7

5.3

5.3.1
5.3.2
5.3.3
5.3.4

5.4

Circuit
Independent Validation of HDA Model

Introduction ............75
Mathematical Development of Harmonic Domain Model .......................77
Sample Applications of the Harmonic Domain Model............................. 83

Summary........... .................................. 92

Application to Voltage Chopping Circuit with Controls ............................. ""' 93

5.5 Limitations of HDA .107

Chapter 6 Application to Transformer Saturation ......... 111

6.1 Introduction....... tll
6.2 Harmonic Domain Model of Transformer Saturation lll
6.3 Harmonic Domain Analysis of lndustrial Filter Commissioning Problems... 119

6.4 Use of HDA for Time Domain Analysis ............................. 136

Chapter7 ConcludingRemarks,,.........
7.1 General....-......... ............l4l
7.2 Conclusions....... ............142
7.3 Principal Original Contributions................... ....................... 143

7.4 Limiøtions of HDA and Further Work ............. .................. 144

REFEREN.ES """"""""""""""' l5r

Appendices....... ...................."..."'. 155

Appendix A Mathcad@ Implementation of the HDA CompRamp Function .............. 157

Appendix B Mathcad@ Data and Set-up for Sample System Described in Chapter 6 159

141

vl



Figure 1-l

Figure 2-i

Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5

Figure 2-6

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 5-l
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-l I

Figure 5- l3

Figure 5-14

Figure 5- l5
Figure 5- l6

Figure 5- 1 7

Figure 5- 18

Figure 5- I 9

LIST OF FIGURES

Example of Distorted and Undistorted Waveforms.......-......................'.".. I

'Root' and 'Cos(x)' Solutionr to ,f,*'1-¡ ..................20

'Exact' Newton-Raphson Solution to $æp n *tio" after 20 Iterations..... 2l

'Exact' Ne\¡/ton-Raphson Solution to Jrt.a tr*,tl* after 10 lterations..... 2l

Taylor Series Solution to $t"p tur"ti"" after 65 Steps .....24

Variation of Error in 'Best Fit' Newton-Raphson Solution to.fi.p r,,,'"ri- ..

Comparison of HDA Harmonic Content of Diode Voltage with
Theoretical Content............... .............73
Impact of Harmonic Domain and Theoretical Harmonics on Regenerated

Waveforms..... ....................... 74

Simple Thyristor Controlled Reactor Circuit... ............"76
Thyristor Controlled Reactor Conduction Interval for Switching Function
Demonstration ... ............................'.."' 77
Thyristor Controlled Reactor Circuit Current for Case L........................ 84

Thyristor Controller Reactor Voltage Waveforms for Case I .................. 85

Thyristor Controlled Reactor Circuit Current for Case 2.........................86

29

'Best Fit' Newton-Raphson Solution to li;tep fir*t." after 9 Iterations... 30

Typical Method of Determining Firing Instances (in Time Domain)....... 47
Time Domain Presentation of Difference Between HDA Ramp and

Reference ..........."." 48
Time Domain Presentation of Difference Between HDA Ramp and

Reference (Expanded View) ................. ......................... 48

HDA Analysis of Firing Pulse Determination with HDA CompRamp
Function ..................50
Simple Diode Resistor Test Circuit ......................................................'... 56

Distorted Source Voltage Waveform used in Resistor-Diode Circuit...... 57

Diode Current and Voltage using Direct HDA SoIution.........................' 58

Progression oflterative Solution of Diode Resistor Circuit..................... 63

Variation of Iterative Solution Error for Diode Resistor Circuit.............. 64

Diode Current for Iterative Solution of Resistor Diode Circuit................64
Diode Resistor Circuit for Simple Network Analysis............................. '. 65

Variation of Iterative Solution Error for Diode Resistor Network Circuit6T
Simple Diode Resistor Inductor Test Circuit.....-.. ......... 68

Variation oflterative Solution Error for Diode Resistor Inductor Circuit 70

Voltage and Current Waveforms from Harmonic Content of HDA
Solution to Example 4 ...7t

Figure 5-12 Comparison of HDA Harmonic Content of Diode Current with Theoretical
73

vlt



Figure 5-20
Figure 5-21
Figure 5-22
Figure 5-23
Figure 5-24
Figure 5-25
Figure 5-26
Figure 5-27
Figure 5-28
Figure 5-29
Figure 5-30
Figure 6-l
Figure 6-2
Figure 6-3

Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9

Figure 6- 10

Figure 6-l I
Figure 6-12
Figure 6- l3
Figure 6- l4
Figure 6- 15

Figure 6- 16

Figure 6-17

P1ant.............................

ì.Íii , ); I tetì¡c:

Thyristor Controller Reactor Voltage Waveforms for Case 2.................. 87

Incorrect TCR Current Waveform 90

TCR Cunent Waveform after Adjustment to Second Firing Angle......... 90

TCR Voltage Waveforms after Adjustment to Second Firing Angle....... 9l
Circuit Diagram of Test VCC and Controls ...........'."" 94
Data used in HDA Analysis of VCC -............. ............. 102

Harmonic Content of Voltages and Currents....... ....... 103

Re-generated from Harmonic Content of HDA Results......................... 105

PSCAD/EMTDCTM Time Domain Simulation of the VCC................... 106

Influence of the Presence of 3'd Harmonic on the DC Bus..................... 107

Simple Diode Resistor Capacitor Test Circuit...... ....... 108

PSCAD/EMTDCTM Model of Transformer Saturation Characteristic .... i 13

Transformer Magnetizing Current Waveforms for Sinusoidal Flux....... 116

Transformer Magnetizing Current Waveforms for Sinusoidal Flux with
DC Offset........... .......... tt7

Figure 6-4 Transformer Magnetizing Current Waveforms for Flux with DC Ofßet
and Harmonics ....

Single Line Diagram of Supply to Industrial
Energization Circuit and Equivalent Circuit,
Variation of AC Filter, System and Net Harmonic Impedance..... ......... 125

Segment of Mathcad@ [mplementation of HDA Gauss-seidel Solution 129

Convergence of HDA Solution ofTransformer Filter Interaction
Investigation...... ............................... 130

Harmonic Component of the Transformer Magnetizing Cunent ........... l3 I
Harmonic Component of the Transformer Flux ......... 131

Harmonic Component of the AC Filter 63 kV Bus Voltage................... 132

Distribution of Transformer Magnetizing Cunent ................................. 133

AC Filter Branch Harmonic Current............... .............134
Measured Burst of Distorted Current in Rectifier 63 kV Feeder............ 138

HDA Analvsis of Three Phase Transformer Saturation ......................... 138

Mathcad* Implementation of HDA of Transformer Saturation .........'.'. 140

118

120
t24

vllt



LIST OF TABLES

Table l-l Harmonic Content of Waveforms Shown in Figure 1-l ....................'..."""'.'2
Table 5-l Harmonic Content of Voltage and Current for Diode Example Number 2.. 62

Table 5-2 Harmonic Content of Current for Diode Example Number 3.......................67
Table 5-3 Harmonic Content of Voltage and Current in Diode Resistor-lnductor Test

.70
Table 5-4 Zero Crossings ofthe Diode Resistor Inductor Circuit
Table 5-5 Harmonic Content of Waveforms for TCR Case I
Table 5-6 Harmonic Content of Waveforms for TCR Case 2

Table 5-7 Harmonic Content of Waveforms after Adjustment to Firing Angle .'......... 92

Table 6-l Transformer Magnetizing Harmonics for Sinusoidal Flux, Determined using
Direct HD4.......

72
83
86

Table 6-2

Table 6-3

Transformer Magnetizing Harmonics for Sinusoidal Flux with DC Offset,
Determined using Direct HDA
Transformer Magnetizing Harmonics for Flux with DC Offset and

Harmonics, Determined using Direct HDA................

1X

115

117

118



Ì iii t,j !rìlìì.'

This Page is Intentionally Blank



GLOSSARY

Fundamental Frequency. The base frequency of a repetitive wave-form expressed in FIz,

equal to the inverse of the period (sec) ofthe wave-form. Most ofthe applications in this

document equate fundamental frequency to the power system frequency, either 50 or

60 Hz. The methodology could apply equally to other types of analysis, (e.g. sub-

synchronous analysis) in which fundamental frequency would be an integer divisor of the

po\¡r'er system frequency (e.g., Ì,2,5,10 Hz), common to both nominal system frequencies

and 25 Hz (for a 50 Ilz system).

Harmonic. A harmonic is an integer multiple of fundamental fiequency. As used in this

document, harmonic can refer either to the harmonic number (e.g., 0,1,2...50.. etc.) or it

could refer indirectly to harmonic content of a wave-form, e.g., "harmonics (voltages,

current, power etc.) ofthe po\¡ier system".

Load Flow (also Power Flow). A numerical analysis tool which solves the linear and non-

linear simultaneous equations defining the fundamental frequency bus voltages and branch

power flows of an electrical power system. The "Power Floü' is the most fiequently used

tool in the analysis, design, and operation of a power system network. Power Flow

programs can solve electrical power systems with in excess of50,000 nodes (buses).

Node. A point of connection of two or more electrical components. In the power flow, a

node is the common point of connection of the positive sequence component of two or

more three-phase electrical elements as represented by the positive sequence fundamental

fiequency impedance of each three-phase component. In HDA, a node is the point of

electrical connection ofeach phase at each fiequency.

Branch, A connection between two nodes. In the power flow, a branch is the element

defining the positive sequence connection of two electrical nodes as represented by the

positive sequence fundamental frequency impedance of each three-phase component. In



HDA, a branch is a connection between two physical nodes, but could represent the

interaction effects between two different harmonics.

Harmonic Domain Analysis (HDA). A numerical analysis methodology similar to that

used in the Power Flow, that can solve the linear and non-linear simultaneous equations

defining the dc, fundamental frequency and harmonic components of bus voltages and

branch power (current) flows of an electrical power system. Harmonic domain analysis

tools add another two dimensions to the Power Flow. Power Flow analysis has traditionally

been limited to positive sequence flows. Harmonics exlibit sequence component

characteristics, but unlike the power flow which is dominated by the behaviour of the

positive sequence component, magnitudes of each harmonic component are similar and

must be considered, either on a phase or sequence component basis. The second dimension

added to the analysis is the harmonic number. Using 50,000 nodes as an indicator of

current load flow technology, HDA would be literally limited to about 300 nodes. (300

nodes times 3 phases times typically 50 harmonics). The actual limit is many times larger

as the mathematical matrices involved are extremely sparse. HDA analysis of 10,000 nodes

is well within the capability of current hardware/software.

Sequence Components. A numerical algorithm that resolves the electrical characteristics

ofthe three phases ofan electrical power system into a dominant component (the positive

sequence component) and two secondary components (the negative sequence and the zero

sequence components). For balanced operation, the latter two components are so small,

they are neglected for most power systems analysis.

Time Domain Analysis. A numerical analysis methodology in which the response of a

network is determined by direct simulation, i.e. determining its response as a function of

time. In this thesis time domain analysis often will refer to the 'steady state' condition in

which the voltage and cunent waveforms repeat and are essential identical flom one cycle

of fundamental frequency to the next. The harmonic component of a time domain

waveform can be determined mathematically.

xlt
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Array, Matrix and Vector. In this document the term array is used to describe an

arrangement of elements in one or more dimensions. Matrix as used this thesis refers to a

two dimensional array. Vector will refer to a single dimension array with a single

column, to be compatible with matrix vector operations. When an array with a single

row is used, it will be referenced as the transpose ofa vector.

Identity Matrix. The identity matrix in this document is a square two dimensional array

where each diagonal element has a numerical value ofone and each off-diagonal element is

zero,

xlll
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wavefonns of different frequencies plus a dc or offset component. For electrical power

systems, the major contributor to the waveform is a component at the po\¡r'er system

frequency (50 or 60 FIz). If the distortion is repetitive every cycle, a Fourier series in

which each frequency is a multiple or harmonic ofthe fundamental frequency component

can defìne the waveform. Chapter 2 will describe how the magnitude of the harmonic

components can be calculated from a mathematical description of the waveforms. The

harmonic components of the sample waveforms shown in Figure I -l are given in

Table I -1.

Table 1-l Harmonic Content of Waveforms Shown in Figure l-t

Harmonic Content
Harmonic Distorted Undistorted

Waveform Waveform
DC
Fundamental Frequency
2'd Harmonic
3'd Ha¡monic

0.3 0.0
0.1 0.0

0.2
1.0

0.0
1.0

Once the magnitude of each harmonic is known, the impact of the distortion on the

network or network component is often determined by superposition of the harmonic

effects I I ] . [ 4 ]. To establish heating effect, for example, the harmonics are often

combined in an RMS (Root Mean Square) fashion by summing the squares of the

magnitudes of each of the harmonic components, then taking the square root of the sum.

If voltage rating is being considered, often the sum of the magnitude of the harmonic

voltages is used. In dealing with the impact of harmonics on communications, weighed

cumulation is often used, in which the magnitude of each harmonic is multiplied by a

weighting factor before the summation take place.

Harmonic analysis covers the broad subject of establishing the harmonic content of a

distorted waveform. In a 'traditional' harmonic analysis [ 5 ] ... t 9 ], the waveform is first

defined as a periodic function of time, either numerically (by a time series with numerical

values for each time step) or mathematicalty (by a series of mathematical expressions).

The harmonic content can be established using a numerical Fourier analysis if the

frlnction is described numerically. If the waveform can be defined by simple
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mathematical relationships, the numerical Fourier analysis approach can still be used but

this requires creation of a time series based on the mathematical expression before the

numerical Fourier analysis can be carried out. The more common approach for

mathematical expressions is to determine the harmonic content by symbolic evaluation of

the relationships, followed by simple numerical evaluation ofthe resultant mathematical

expressions to determine the harmonic content.

The 'traditional' mathematical determination of the harmonic content is limited to the

analysis of relatively simple networks because of the increase in complexity of the

algebraic expressions as the extent of the network is increased. For larger networks,

however, a time domain simulationl is required ofthe many non-linear and discontinuous

algebraic and differential equations that define the complex relationships between voltage

and currents in the network. The duration ofthe time domain solution must be sufficient

to allow all of the transients of the solution to decay. Once a repetitive time domain

waveform is established, a numerical Fourier analysis can determine the harmonic

content of the waveform.

Analysis of some existing or proposed electrical networks involving hundreds of

thousands of differential equations would require computational capability likely in

excess ofeven the latest and largest capacity 'super computers', waiting for the transients

to die down to establish the transients-free waveforms.

A more practical approach that has been developed t 10 I ... t 13 l, is harmonic domain

analysis. Frequency domain analysis has been used extensively in the analysis and design

of hnear control systems I 14 ], I 15 ]. Frequency domain analysis has also been used

extensively in the analysis of interactions between elements of an electrical power system

at sub-synchronous and super-synchronous frequencies. Harmonic domain analysis is

simply a subset of frequency domain analysis.

r Using time domain simulation tools such as PSCADÆMTDCfr and EMTPo or the simulation capability
ofmathematical analysis tools such as Matlab@.
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The load flow solution ofa power system is a harmonic domain analysis carried out at the

power system fundamental frequency. The linear portions of the network defined by

capacitors, inductors, resistors, mutually coupled elements are solved using complex

algebraic equations to define the steady state solution to the differential equations that

describe their behaviour. Repetitively switched elements such as power electronics are

modelled as equivalent harmonic current and voltage sources and non-linear elements are

treated as Norton or Thévenin equivalents. Iterative solution algorithms such as Gauss-

Seidel and/or Newton-Raphson techniques are used to solve the myriad of linear and non-

linear algebraic equations. Harmonic domain analysis is simply an extension ofthe power

flow to include the effects of dc and harmonics.

The same basic concepts used in the load flow solution can be (and have been) extended

to the solution of the network at dc and harmonic frequencies I 16 ]. The method of

solution ofthe dc and hannonic flow on the transmission network itself is effectively the

same as the method of solution at the fundamental frequency. The relationships between

the currents and the voltages across the network are defined by an admittance matrix. The

admittance matrix is re-defined for each harmonic frequency under consideration. While

the structure ofthe dc admittance matrix may be different, the structure ofeach harmonic

admittance matrix is the same as the structure at fundamental frequency.

In frequency domain application software such as NIMSCANo2, V-Harmo3,

CYMHARMO@4, the emphasis is placed on solving for the harmonic penetration in large

power systems. Each harmonic is evaluated individually, treating harmonic sources in the

power system as equivalent harmonic voltage or current sources, and using direct

superposition of harmonic contributions at any location in the network to establish the

harmonic content of any particular waveform.

Unfortunately non-linear elements in the network introduce a dependence ofthe solution

at one harmonic on the solutions at other harmonics. For example transformer saturation,

2 Developed by Teshmont Consultants LP
3 Developed by McGraw Edison
a Developed by CYMETM Po\ er Engineering
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often ignored in the fundamental fiequency solution, becomes a major factor in the

harmonic domain solution. The magnitude of the harmonics produced by saturation is a

function ofthe magnitude ofthe fundamental frequency voltage applied to the device. In

a similar vein, the magnitudes of harmonics produced by electronic switching devices are

also a function of the magnitudes of the fundamental fiequency voltages and currents.

Not only are the magnitude ofthese harmonic sources dependent on the magnitude ofthe

fundamental frequency component, they are also dependent on the magnitude of currents

and voltages at other harmonic frequencies, creating in essence a three dimensional

analysis problem.

Much work has been carried out by others developing the inter-harmonic spatial

relationships for non-linear components such as saturation [ 17 ] ... [ 20 ] and complex

electronic switching circuits such as for High Voltage DC Schemes (HVDC)

121 ) ... l,27 I and Flexible AC Transmission Systems (FACTS) devices l28l ..' 1321.

Much of the modelling involves transformation from frequency to time domain to solve

for the non-linear effects. The time domain solution is then re-transformed back to the

frequency domain for further analysis. This is the case for transformer saturation.

An extensive amount ofdevelopment work has been carried out for the harmonic domain

type ofanalysis, most recently in the application of harmonic domain switching functions

t l0 I, t 33 l, [ 34 ] to the modelling of harmonic domain models of power electronic

switching devices. However, for other than a few special conditions, a conversion from

frequency domain to time domain is required to determine the instants that conduction of

the devices begins and ends. The tum-on and tum-off times are then used in the harmonic

domain to analyse the impact ofthe device harmonics on the network. A diode is a good

example of this, where time domain information has been required to define the harmonic

domain response. Conduction ofthe diode begins when the instantaneous voltage across

it becomes positive and terminates when the instantaneous current through the device

attempts to become negative. The turn-on and turn-off times are based on time domain

information.
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1.2 OBJECTI\'ES

Much development work has been done by others in both time domain and harmonic

domain modelling. The time domain carries information about the frequency domain

which can be extracted using a fast Fourier transform. The harmonic domain houses

information about the steady state time domain that can be easily extracted using a

Fourier series. Each of the domains should be self sufficient. Once a time domain model

is built, it is self sufficient and all of its analysis can be done completely in the time

domain, yet many of the harmonic domain models rely on excursions into the time

domain to obtain information that intuitively should already exist in the harmonic

domain.

Fundamental mathematics shows that the principle of superposition is valid for the

summation and subtraction of harmonic waveforms. Multiplication of harmonic

waveforms involves a shift in the harmonic spectra (i.e. in the harmonic order) but there

is a rigorous mathematical relationship between the magnitude and frequency of

harmonics in the product to the magnitude and frequency of the harmonics in the

multiplicands, i.e. direct multiplication in the harmonic domain.

Given that three basic operators, i.e. add, subtract, and multiply can be carried out

entirely in the harmonic domain, it was hypothesized that it should be possible, also, to

directly divide two waveforms in the harmonic domain. With these four harmonic

domain tools it should be possible, similar to the time domain, to develop more complex

mathematical functions such as the square root and absolute value functions.

Several time domain programs are in existence. These programs use Dommel's

Algorithm [ 35 ] to rapidly construct a set ofalgebraic equations from the giYen network

parameters and interconnection data (net list). In this thesis, a new approach to solving

electrical circuits with non-linear elements directly in the harmonic domain is developed.

This approach is amenable to being incorporated into a general purpose'net list' based

solution package.
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At first glance it appears that using the frequency domain to solve non-linear circuits

should not be possible because the superposition principle only applies to linear circuits.

However with the addition of iterative calculations, this approach becomes rigorously

correct, as \¡/ill be shown in the research chapters.

Given that the harmonic domain is also a very usefiil analltical tool with roots in the load

flow solution, the objective ofthis research was to develop a Harmonic Domain Analysis

(HDA) methodology given the hypothesis that the analysis can be done entirely in the

harmonic domain. This would require:

l) development and demonstration of algorithms for the direct evaluation of

advanced mathematical functions

2) application of the mathematical algorithms to typical source of harmonic

interactions such as non-linear elements and power electronic devices

3) an indication of how the algorithms can be incorporated into methodologies

for other types of power system analyses

The HDA would permit the utilisation of the vast data entry and analysis algorithms

developed for the power flow and stability solutions and would lend itself to data

mapping techniques developed for graphical simulation packages such as

PSCAD/EMTDCTM.

The harmonic domain approach developed in this thesis is useful to the electrical

engineering community for the following reasons:

1) The rigorous mathematical treatment extends the art of network solution

theory.

2) Tbe direct calculation of harmonics is an independent check for time domain

solutions followed by Fourier analysis.

3) Compufationally, the harmonic method could be faster particularly for

systems with low damping in which time domain solutions could take a very

long time to converge to steady state.
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4) Systems excited with a large range of harmonics (e.g. dc and up to 'l MHz) or

systems with a large difference in their natural time constants, which could be

numerically unstable in a time domain solution, can be handled.

5) If the development of the proposed Harmonic Domain Analysis

methodologies continues, it could eventually be used to define initial

conditions for time domain transients solutions.

1.3 THESIS OUTLINE

Chapter 2 of this Thesis summarises the mathematical tools that were used and developed

for the proposed HDA methodology.

Chapter 3 summarises the modelling of the basic power system elements in the HDA and

their compatibility with existing methodologies for power flow and time domain analysis.

Chapter 4 summarises the HDA modelling of typical functions used in the development

of power system component controls.

Chapter 5 shows how the proposed HDA methodology can be applied to power electronic

switching circuits, such as diodes, thyristor controlled reactors and integrated power and

control systems associated with voltage sourced converter applications.

Chapter 6 shows how the proposed HDA methodology can be used for the direct

harmonic domain analysis of non-linear elements such as transformer saturation

characteristics.

Chapter 7 reviews the work that is presented and suggests topics for future research and

development into the proposed Harmonic Domain Analysis methodology.



CHAPTER 2

SUMMARY OF HARMONIC DOMAIN MÄTHEMÄTICS

2.1 INTRODUCTION

This chapter presents the development of several of the mathematical operations and

functions required to cary out the harmonic domain analysis described in other chapters.

Algorithms for the direct addition, subtraction and multiplication of the harmonic

component of waveforms are prerequisite for harmonic domain analyses. Algorithms for

direct addition and subtraction are trivial. However, algorithms for multiplication involve

a convolution of the harmonic vectors representing the waveform, and are described in

many of the papers on harmonic domain analysis of power systems I l0 ], [ 12 ]. The

author was unable to locate any published reference material on the direct division of

waveforms in the harmonic domain and thus developed a unique algorithm to do this

task.

In this chapter, the fundarnental mathematics of harmonic domain analysis are reviewed,

the notational conventions used by the author are described and the algorithms for the

four basic mathematical operations are presented. The procedure for the addition,

subtraction and multiplication of waveforms are included for completeness. A matrix

approach to multiplication of waveforms in the harmonic domain is introduced which

enables the direct division of two waveforms entirely in the harmonic domain.

This is followed by several original algorithms to compute the square root ofa harmonic

waveform. The square root function is essential to the formation ofhigher order functions

such as absolute value. The square root function is also critical to the harmonic domain

modelling of many nonJinear elements and is the fundamental building block to define
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the voltage and current \¡,/avefoÍns in electronically switched circuits. This chapter does

represent one of the fundamental contributions that the author has made to this research

aÍea.

It wìll be shown in this chapter that the square root function can be used as a building

block to define other functions such as the sign function and the comparison function.

2.2 DEFINITIONS

The Fourier series representation ofa bounded periodic function is as follows5:

f1x1=!+ Ë fu..orlll , u. rinl^l t 2-l l' 2 ':rl " L " L)
where:

L is % of the period of the repetitive waveform.

"" -l I rt*l*rnlxdx, n-0,1,2,¡,....'' Li L

b- = 
| I lt*tr¡n n-dx. 

n= 1.2.3....." Li L

tttl

, t-1 ì

In this document the period is always equal to one cycle of fundamenfal frequency ofthe

electrical system and the harmonic spectrum is limited to the highest harmonic under

consideration in the study. I.e.:

¡r*l -þ*ni'l u- *.I^, b-.in n^* I2 '-r\ " L " L)
where n,* is the highest harmonic of interest.

{2-41

For convenience, the coefficients describing the Fourier series of a given waveform are

mathematically and/or numerically housed in a single dimension array for the waveform.

E.g.:

n=[? . b' a2 b2 an^ {2-s \

5 The Fourier series is defined in many documents. The specific reference used by the author is a summary
provided on pages 434-435 ofthe CRC Standard Mathematical Tables, l6'h Edition [ 37 ]

o"^. 
.l'

t0
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In this document, a capitalized, variable name marked with an an:ow header as (used

above) will refer to a single dimension anay of length 2nmaj{+l that houses the harmonic

content of a given waveform. A capitalized variable name marked with a solid bar header

will refer to a transfer matrix (normally square of dimension 2n.*+i, by 2n.Ð(+1) that

houses the harmonic response of an input to output transfer characteristic. E.g., the

variable 2 as used in the follor.r ing equation:

Y =Z l I2-61

contains the harmonic transfer characteristic ffom the input variable i to the output

variable ú. In many ofthe expressions as used in this document, the transfer matrix Z is

constant, and sparse dependent only on the physical device that it is representing.

The majority of the analysis described in this document was carried out using Mathcad@

Version 6.0 and Excel@ Version 7.0. One of the reasons that the Fourier series

representation as described above was chosen over the more frequently used6 "Complex

Fourier SeriesÆxponential Fourier Series" is that only real quantities are involved and

therefore standard real vector/matrix tools (such as are available in mathematical

applications such as Mathcad@ and Excel@7 ) can be used.

ln this document, presentations of Mathcad@ calculation sheets, functions and expressions

are in line with the text or referenced as a fìgure or appendix, and are enclosed by a box.

Unfortunately, Mathcado Version 6 does not have the word processing capability to

differentiate between scalar, vector and array variable names. The text preceding each

presentation should clarify the nature ofthe variable used.

2,3 ADDITION AND SUBTRACTIONS OF WA\¡EFORMS

The sum (and difference) of two periodic waveforms with the same fundamental

frequency is also a periodic waveform of the same fundamental frequency. The Fourier

6In load flow and stability programs, the fundamental fiequency component is only analyzed using

complex Fourier series approach.
? Mathcad@ 6.0 can easily handle both real and complex variables, however, dealing with complex variables
in Excel@ Ve¡sion 7,0 is cumbersome.

1l
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coefficients of the sum (and difference) can be determined by the direct addition

(subtraction) ofthe two arrays housing the coefficients for the two wavefotms. I.e.:

õ=À+e {2-7 I

or:

c:Ã-É { 2-8 }

For both operations the approximate time domain waveform of õ can be regenerated

using Equation 2-1.

2.4 THE PRODUCT TRÄNSFORMÁ,TION MATRIX

The product of two periodic waveforms is also a periodic waveform where the Fourier

coefficients of the product can be derived directly from the Fourier coefücients of the

original waveforms. If the multiplicand and multiplier waveforms8 are defined to be:

A{or)= I fAancos{n (ùt)-Abnsin{n úrt)l

B((,)Ð = t [Ban cos(n.(Dt) + Bbn sin(n <ot)]
n=0

tr_ot

{ 2-10 }

The product can be determined from term by term multiplication ofthe two equations and

expanding the resultant trigonometric function products into their equivalent harmonic

form. I.e.:

c(.or) A(or)B(ot)-[åto""cos(n.ûrr)+Abnsin("u,nlj["Ë tBa"cosrn.,,rtt+aunsinrn r,rrrì)

......{ 2-11 }

or:

C(ot): t [Can cos(n.(l)t)+Cbn sin(n (Ùt)]
n=0

| 2-12 |

where:

3 In equations 2-9 and 2-10, the dc components ofthe cosine series are equal to % ofthe Fou¡ier Sc¡ies
coefficients and the dc components ofthe sine se¡ies are zero.

12
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Cao =+[2Aa0Bao rAatBal +AblBbl +Aa2Ba2 +Ab2Bb2 +....]

car = j¡2aa¡Bao +(2Aa0 +Aa2)Bat +Ab2Bbl +(Aal +Aa3)Ba2 +(Abl +Abl)Bbz +....1

Cbì =+[2AbrBao +Ab2 *Bar +(24a0 -Aa')Bbl+(-Abr +Ab3)Ba1 +(Aa1 -Aa3)Bb2 +....]

Ca2 = +Í2 Aa2Ba¡ + (Aar + Aa3 )Bat + (-Abl + Ab3 )Bbl + (2440 + Aaa )Ba2 + AbaBb2 +....ì

cb2 =+[2Ab2Ba0 +(Ab] +Abl)Bal +(Aa¡ -Aa3)Bb1 +Aba *Ba2 +(24a0 -Aa4)Bb2 +....1

I zea,eao . rAa¡-1 r Aa;,¡ )Ba¡ -t-Ab;-¡ -Ab,n¡ )Bb¡ -{Aai 2 + Aa, {. )Ba2 - I
Ca, -jl r-eU, 2-Ab,r2)8b2...+{2Aa0.Aa2r )Bai -Ab)iBb,+tAa¡ -4a2,*¡ )Ba,-¡' 

I

L{Abr -Ab2,,rrBb,,r-{Aa: -Aa:i--,)Bai-2 - {Ab' -Ab2i-r ,Bbi+2 -................1

| 2eb;Ba¡ + teb,-' + Abr*r )Bal +(Abi I -Abì+l )Bbl + (Abi-2 +Abi+2)Ba2 +

Cn, =]l taa'-, - ea,+) )8b2... + Ab2, Bai + (24a0 - Aa,i )Bai + (-Abl + Abri+t )Bai+r +

Iraa¡ -4a2,*¡ tBb¡*¡ +(-Ab2 +Ab2i+2)Baì+2 +(Aa2 -Aa2j+2)Bbi*z +.. .. ........

: {2-13}

The coeffrcients of õcan be derived directly from the above expressions. The number of

harmonics in waveform õ is twice the number in each of waveforms Ã and É as a result

ofthe frequency doubling introduced by the products ofthe nth terms. E.g.:

An cos(n ot) Bn sinl¡.6¡t1= 4l9l1sin zn cor ¡ | 2-14 \

Most references describe the multiplication of two waveforms mathematically as:

c=Ãoe { 2-15 }

where the symbol ø is a convolution operator that carries out the term by term

multiplication of the waveform components. The author observed from Equation 2-13

that the "C" coefficients can also be rewritten in matrix notation as follows:

c=T B l2-t6l
where the matrix iis a function of only the coefficients ofvariable Ã. I.e.:

T=re(Ã) 12-17 I

where:

l3



TP (A) =

2ao al

2q 2a¡¡ +a2

2\ b2

2az at + a3

2bz bl +b3

)a, âa +a¡
2\ b2 +b4

2ac a3 +zt5

2hq b¡ +b5

br az

b2 at+aJ
zao-a2 -bt +b3

-b¡ + b3 2a6 + aq

at-a3 b4

-b2 + b4 at +a5

a2-a4 bt +b5

-b3 +b5 a2 + a6

a3 -a5 b2 +b6

bz a¡ b3

bl +b3 a) +a4 b2+b4

â! -âr -b, +b, a, -a,
b4 a¡ +a5 b¡ +b5

2ao -a4 -bl +b5 al -a5
-b1 + b5 2a¡ + a6 b6

al -45 b6 2a¡ -a6
-b2 +b6 at+a.t -bt +b?

a2-a6 bl +b? a7 -a7

aq b¿

a3 +45 b3 +b5
.''b3 +b5 a3 -a5
à2+d6 b2 +bu

-b2+b6 a2-ø6

al+a1 bl +b7

-bl +b7 at -a7
2a¡ + a6 b8

b¿ 2a¡ -ag

......{ 2-18 }

'a'and 'b'as referenced ìn the above matrix are the 'a' and 'b' coefficients ofthe vector'A'.

The identification 'A' has been omitted fiom the above description of the matrix elements

as it is common to all elements of the matrix. The author has defined this matrix as a

"product transformation matrix" as it transforms the single dimension array Ãinto a two

dimensional array that can be used in the direct multiplication of the coefficients of the

two single dimension arrays.

The notation:

õ = çrÃte

as used throughout the thesis, is effectively the same operation shown below:

ö=Ães

as used by others.

lz-te I

{2-20 |

The number of columns of the product transformation matrix must match the length of

the second multiplicand amay. The number of rows however can be set to reflect the

desired accuracy of the product. Saturation of the accuracy occurs vt¡hen the number of

harmonics of the product is equal to the sum of the number of harmonics of the

multiplicand and the multiplier. Limiting the number of harmonics in the result

effectively produces numerical filtering of the product.

Unless otherwise indicated herein, the number of harmonics in the product is set equal to

Ilmat

14
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2,5 THE INVERSE TRANSFORMÄTION MÀ,TRIX

An interesting property of a square product transformation matrix is that under ceÉain

conditions (stated later), it can be inverted. The inverse of the waveform is simply:

InvÃ=rp-r(n)öne 12-21|

where:

.Tone-ft ooo ]' {2-22 |

or simply the first column of the inverse of the transformation matrix representing Ã.

It is important to note that:

ro (rn"Ã ) 
+ ro-r (a )

L _"ra \

The equality is approached only if the highest harmonic order included approaches

infìnity.

Either method could be used to solve for the unknown vector É in the following

relationship where both õ and Ã are known:

c = ro{Ã)n l2-24 |

The solutions could be:

n=ro-'{Ã)õ 12-251

or altematively:

È=¡ot5-rtÃ)on"l c {2-26}

The differences between the two methods have been confirmed by the author to be

minimal. As the first equation results in less computation effort and fewer operations, it is

used wherever possible.

Ifa waveform (in the time domain) has zero crossings, its inverse should have an infinite

value at these zero crossings. In the proposed harmonic domain analysis, if the harmonic

t5
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array is limited to a small number of terms, its transformation matrix may appear to be

non-singular and hence invertible. However, as more haÍnonics are added, the matrix

becomes more ill-conditioned and the corresponding time domain waveform evaluated

from the Fourier coeff'rcients converges to infinite impulses at the zero crossings of the

original waveform.

The power of the inverse transformation matrix can be seen for a situation where the

harmonic content of the voltage 'i' and current 'Ì' are known at a given location in a

harmonic simulation (or po\¡r'er network). The apparent harmonic impedance ' Zuoo ' of the

network at the point would satisry the expression:

zâpp.I=v l2-27 |

If we consider the time varying impedance, equal to the division of the voltage waveform

by the current waveform, ie

2,, =ro-r(r) v {2-28 )

then the product of the time-varying impedance and current vectors should, by definition,

equal the voltage vector. Or,

rP(2,1)i=v

Comparing to Equation 2-27, the apparent impedance is given by:

Z"oo = ro (ror (i) i)

The same relationships can be applied if 'tù ' and ' ¡l- ' are used instead of i ' and ' r- '

respectively. The resultant impedance represents the harmonic Thévenin equivalent

impedance '2r¡",' at the location. This in turn can be used to predict the behaviour of the

system voltage for other ¡J situations. I.e.:

ÂÇ"* = Z,¡"" ,ll.* l2-3t j

I t_to ì

l2-30 |

l6
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2.6 TI{E SQUARE ROOT FLTNCTION

As will be shown in Chapters 5 and 6, the harmonic domain square root function can be

used for direct evaluation of saturation characteristics and is the basic building block for

the direct modelling of electronic switching firnctions in the harmonic domain. Three

algorithms have been set up and used to evaluate the square root ofa waveform.

The objective of the each of the algorithms is to solve (in the harmonic domain), the

equ iva lent ofthe algebraic expression:

.2 -* =0 l2-32j
for 'r' where 'r' is the root and 'x' is the argument

2.6.1 The rExact' NeMon-Raphson Solution

The first algorithm considered is based on a NeMon-Raphson solution [ 36 ] of the

algebraic equation:

f(r)=r2-¡=¡ {2-33 }

The Newton-Raphson solution is given by:

,*'l
., =r; , |i' I ri 12-34|

\ cjr '/

since:

4=r, { 2-3s }&

, _ I r*ri r-lx { 2-3ó }'t2

where i denotes the current iteration.

In the harmonic domain, Equation 2-33 becomes:

t(n)=¡,(n).n-x:o 12-37 )

It can be shown that:

t7
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and therefore, in the harmonic domain, the iterative solution becomes

- n,-¡ +q-r (n¡-¡)x
*,=-----¡

This is effectively the same aìgorithm as given by Equation 2-36e.

{ 2-38 }

{2-3e }

I2-40 |

{2-4t I

The Newton-Raphson method is known to be affected by the initial condition or "seed".

Several choices for this seed were investigated, all of which appeared to work to a limited

degree as follows:

Method I Ro =One
, t;t.11

Method 2 R6 = onelllx 
I

Method 3 Ã6=i

ln Method Z aUove {lill is the magnitude of the harmonic domain array expressed as thetl lJ

root of the sum of the squared magnitudes of the elements (or Frobenius norm) in the

anay'0. It i. identical to the length ofa vector equated to the single dimension array '*'.

In order to limit the time for computations, the number of harmonics was restricted to 20,

with a tolerance based on both the magnitude of the argument and the number of

harmonics in the vector.

The exit criterion was based on the magnitude ofthe error dehned as:

",=Jfl;',(*,)Ã;l)
¿n S tol

,or = lo 'o llill
nmd+lll lJ

e lnformation located at http://www2.sunysuffolk.edu/wrightj/M428/squareroots l.pdf indicates that this
algorithm has ancient Egyptian origins. The ¡eference identifies it as 'Method ofthe Means' and p.esents

several numerical examples.
i0 The unusual notation used here is to avoid confusion with the absolute funclion denoted ]Xl as used

elsewhe¡e in this document

I8



Preliminary testing of the algorithm showed that the algorithm is relatively robust with

convergence to within the tolerance in about 3 to 4 iterations for positivell arguments.

The algorithm could require up to 9 or i0 iterations to reach a solution for arguments

where the waveform represented by the argument reaches zero a few times during the

period. The number of iterations is dependant on the number of harmonics, with more

iteration required for an increased number ofharmonics.

The algorithm is also relatively insensitive to the choices investigated for initial values.

The algorithm retums the positive root if the initial choice is positive and if the argument

is positive.

The algorithm was tested for arguments that are known to have solutions where the time

domain waveform could be negative. For example the time domain waveform cos2(ttt),

which can also be expressed as its harmonic equivalent j(l+co(2<ot)) has a root'cos(rot)'

which has negative values in the time domain for % ofthe period. The algorithm does not

return the equivalent of cos(ot) but retums the coeflìcients of only the positive root

waveform as desired.

For example, in the harmonic domain the argument '"o.t1tt)' would be represented by its

harmonic equivalent'](t+cos(2r,rt))' in an arrayl2:

r¡ In this context, 'positive'means that the time domain waveform represented by the variable is greater
than ze¡o over the entire period,
12 The arrangement ofdata in this array follo\rys the convention defined by Equation 2-5-

000000

The coefficients ofthe returned solution are:

19
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As many applications using power switching devices result in voltage or current

waveforms similar to the step function above, the above algorithm is considered to have

only limited applications.

2.6.2 The Taylor Series Expansion

A second solution algorithm was developed based on the Taylor series expansion:

N,,n
fta + Y) = ¡ Lf(n)(a)+RN {2-42}

n=0 nl

around a value of a:l .

The operating point of 1 was selected to be consistent with the Taylor series expansion of

the square root function given in [ 37 ]13.

The Taylor series approximation ofthe square root function is:

r(r+v)=JHy =Ji {2-431

where:

Y=x-l
r-Ir (a)=+a :

I (")=-+"-f =-]r'1a¡a | {2-44Ìr

¡"t,1 =-å(-1)"-r =-Jr (a)

Since, ¡!=n (n-l)! and since a=1, the change in the coefficient from the (n-l)lh derivative to

the nù derivative is the multiplying factor:

*n
cn =L wherec¡ -¡ 12-451

n

Thus, the change in the Taylor series term is:

corrn = cny Yn-l {2-46 |

13 The series given r'n [ 37 ] only provides the fi¡st few coefficients ofthe expansion, The rest can be
derived using Equation 2-45

22
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With a sufficient number of terms in the series, the remainder term RN can be neglected.

Applying the same algorithm to the harmonic domain analysis, the change in the Taylor

series term becomes:

co.r" = c"ro (v) Í' I

where:

?" '=ro(v) 9n 2 etc.

As the algebraic algorithm converges only for values ofy between +1.0 and -1.0, the

argument is first divided by a scalar constant:

r".to' - {l* } 12-49 }
J

*nere {lil} again denotes the magn itude of the vector equivalent to * .UlJ "

The result is multiplied by Jf*tor.

The exit criteria selected is based on a pre-selected maximum value ofl.l'or if:

{le...l}.ør

{1c"." l} ' {1c"."-,l}

or:

{2-47 |

{2-48 \

{ 2-s0 }

{ 2-s1 }

The algorithm is efficient in terms of computing requirements in that the product

transposition matrix is created once and only matrix multiplication is involved.

An arbitrary limit of 500 corrections was used in the test algorithm. An exit tolerance of

10-5lxl was chosen.

The algorithm again works well for waveforms which do not cross or touch zero. Test

systems not shown here with a maximum harmonic of 50 and with a waveform minimum

of about 50% of its maximum satisfies the exit criteria in about 10 steps. The 'cos2 ' test

23
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x -r- lR. ìR. =op\ ,,¡ ,

was not possible.

A'best fit' Newton-Raphson algorithm was proposed and developed. The algorithm is an

improvement over the 'exact' solutions in that it is more 'robust' and as will be

demonstrated does not diverge for tested arguments including the step function. In this

'best fit' Newton-Raphson algorithm, the error defined by the scalar 'e' is minimized in the

'leasÍ squared' sense where:

¿=ÉrÉ

where:

r=i r, (n )Ã

At the minimum value of e:

9=o
ôR

where 4 is defined to be:
âR

^r^dE I d€, dE dÊ,

;F - I ô*", ô^", ô*b'

ôc ¿(FrF) ^ dË 
r 

_

---------------__
âRa¡ ôRa¡ ôRa6

or:

^ ^:T9Z=zL ¡
ôR AR

_iL--to,ri,[' o o ...]t
ôRa6

{2-s9 |

ôRan.*

-t'ãrl

-l

aRbn max l

I2-s2 |

{ 2-s3 }

{2-s4 )

{ 2-ss }

{2-s6 |

{2-s7 }

{ 2-s8 }

lz o ...1

-1lo z n

l, , l
l'l

,r, (Ã)l:]= -n -[T]n = -zn - -



Similarly:

l'læ 
= -zr, (a )l I

l,l

Therefore:

4t = .zr"lrìâR ,\,

or:

4= zr"rlÃlàR'\/

Since:

4=r4'¡
ôR âR

then:

I = -+r,r lÃìr¿R \/

{ 2-60 }

{2-61 }

t2-62 \

l2-63 |

l2-64 |

l2-66 )

For minimum error, the algorithm must find É such that:

ror(n)F=õ l2-6s]

Using Newton-Raphson solution

Q = ror (È)n = r,r (n)x-rrr (n)r, (n) n

âa - 
ôþ,'(R)x] 

_ 
a[i/(n)r, (¡) ¿]

âR ôR AR
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rpr (R)i

[ 2Ráoxao r 2Rat)(at , 2Rbixbt :Ra¡Xaz { 2Rb2Xb2 -
-] Ra Xao r,2Rao r Ra,rxar .2Rb2'X'b)-,Râì Ra.rxa2{rRbj +Rbl'Xb2-.."[ , ]

¿xa| lÀÞ
2Xå, XÂ^ +Xâ. lxib,
,*, jx¡, - *"" o,

, 2xar Xåì +Xar -Xbr+Xbr
= i .¿x¡. xu, * x¡. xar xal

2Xa1 Xâ' + Xa., -Xbl, + Xb.
,"¡. 

"0, 
r* *, *u,'

L

l2xao 2xat zxbl

| :xa, xan + xa:, 2Xlbr

l.zxu, 2xb, xa^ xa,

,lr*u, *u, **u, xo, * xt,
,lzxt, xu, +xu, xar -xaì

I zxa., xa, +xao Xb2r +Xba

I :x¡, x¡" *x¡ xa, -xa,
l,"rl

2Xa2 2tr:
Xat +XÂ3 Xbt + Xbl
.Xbt +Xbr Xat Xâ3

Xao +Xâ4 2S4
2Xb1 Xao Xaa

Xat +Xa5 -Xbt +Xb5

Xbt +Xbs Xat - Xa5

lxar 2xbr ll*o
x?. +Xiá, Xb,+Xb il Râ,

"t' 
**u. *,,-t". ll n¡'

Xa,+Xa, Xb'+Xb, ll Ra,

xit,+xlbi xa, x", . ll n¡'
xao +xa6 2xae ln".

2Xb¡ xao xa¡ | na.::tL,

If we define:

r, (x)=

2Xa2 2Xb2

Xat +Xa3 Xbì +Xb3

-Xbl + X:b3 Xat -Xâl
Xâo +Xâ4 2Xb4

2Xb4 Xao - Xa4

Xat +Xa5 -Xbì +Xb5

Xbr +Xb5 xar -xat

2Xa3 2Xb¡

Xa2 +Xâ4 Xb2 +Xb

Xb! +Xba Xaz Xaa

Xat +Xa5 Xbl +Xb5

Xbr +Xb5 Xat Xâs

Xao +Xa6 2xb6

2Xb6 Xao -Xa6

......12-67 \

......{ 2-68 }

{2-6e I

{2-70 |

11(Ã)x = r, (i)n

a(r, r 
{n );i) a{ r,{i)nl ,r

---:-------:---j _ --i-----i----:--l - cot, lT) {X ))dRa6 ôRa¡ '\

a(r,r (n)x) a(r, (r)n) /
dR"' = ôRE = co' 2 1r2 (* ))r

or:

¿lror ln)xl , .,r,';à, ,=(r,(x)),=r,(*)

since r, (i) is symmetrical.

l2-71 |



It can be shown that:

ôR âR ôR ôR

and if we make the following substitutions:

r, = r, (Ã) n

Ã' = ror (n)

Èr:ñ
Ã, =11(n)ro(n)

then:

a[rJ (n)re (n) n] 
_ 

a[r,r (n)r, ] * 
a[Ã,r, (n)r,] 

* 
a[Ãz n]

t 1_1) \

âl T.'| fR ìK, I"''' 
;'u''"' -t,(r, )-r,(rn(n) n)

a[¡'r._!n)r' ] = 
a[¡'r'_!n)n'] 

_ 
a[¡'"_!¿' )n] 

= r,r (n )r, (n)[T]

àl A.Rl
--tj---l=r,'(n)r,(n)fil

t 2-73 |

{ 2-74 |

Therefore:

T ,-.r ,-, -ldl rPlRl rP{RlR I_!---'- ll =r,(rr(d) i) r zrrr {ñ)re(n) f t-7< ì

The Jacobian is given by:

, - 'T
i=f*J =S:',(x)-r,(r.(ri)n)-zr,r(n)ç(r) {z-i6llôRJ ôR ¿\ ¡

and the iterative solution becomes:

Á -l Ia, l rtrrr
Ri =Ri ,-Ã 

\L-tt t

The initial values for the solution and the exit tolerance were chosen to be the same as the

'exact' Newton-Raphson solution on the assumption that the algorithm would always

converge to a minimum error solution.
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The convergence/numerical issue was overcome by exiting the algorithm when the

absolute value of the enor 'e' increased over the previous iteration. The modified

algorithm, 'robust' in its solutions for the step wave as well as for non-zero positive

waveforrns is likely the'best'that can be achieved within the constraint of real harmonic

domain coefficients. The resultant solution, though not precisely accurate, is acceptable

for the analysis of most situations covered in this thesis.

2.6.4 Other Possible Solutions.

Although an 'acceptable' solution is obtained with the 'best fit' algorithm discussed in the

above section, the author believes there may be other solutions that would improve the

accuracy ofthe square root evaluation for the step function, but he leaves this problem for

future investigators. These ideas are discussed in Chapter 7.

While other solutions may be available, the'best fit'algorithm does provide good results

when applied to direct evaluation of saturation effects as described in Chapter 6 and for

basic diode switching operations as described in Chapter 5.

2.7 THE ABSOLUTE FT]NCTION

In many control and measuring circuits, the absolute function 'lxl' where x is a time

varying quantity, is frequently used to simulate the behaviour of a full wave rectifier

circuit. It can also be used to obtain an estimate ofthe state ofa sinusoidal waveform. If
the input waveform is dominated by a single frequency, the peak and RMS quantities can

be determined to a very good approximation by appropriate scalar multiplication of the

average of the absolute or fully rectified signal. The accuracy of the approximation

reduces in the presence of harmonics in the signal.

With a robust harmonic domain square root function, a very good approximation of the

'absolute' function can be developed based on the algorithm:

Abs(i) = Sqrt(Tp (x)X)

3l
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This harmonic domain algorithm was tested on many different waveforms as part of this

work. Provided that the coresponding time domain waveform to the argument has only

tra¡sitions through zero, not sustained operation at close to zero, all three square root

algorithms described in Section 2.6 ofthis chapter perform well as part of the harmonic

domain absolute function. The harmonic domain absolute function, of course, suffers

from the same limitations as each ofthe square root functions.

As the algebraic function can be used to simulate fully rectified control signals, it was

believed that the corresponding harmonic domain function could be used to simulate the

behaviour ofpower system rectifier circuits. The use ofthe harmonic domain application

ofthe absolute function to the harmonic analysis ofpower systems is given in Chapter 5.

2,8 TIIE SIGN FL]IICTION

The time domain sign function [f(x) =l for positive x, 0 for x=0 and -1 for negative x] is

useful in the analysis of many power electronic circuits, for example in a comparator

which compares a ramp with a level for issuing firing pulses. As it is also the derivative

of the absolute value function it (in harmonic domain form) could prove useful in

developing Newton-Raphson algorithms for the solution of systems using the absolute

function.

The sign function can be generated from the absolute function in one ofseveral ways:

sien(x) = (rp(x)-r Ãb(x)

sisn(x) = (Tp (Ãbs(x))-' (x)
l2-7e I

Both functions are subject to the limitations of the underlying square root function.

The sign function is used in the Newton-Raphson solution ofthe test circuit descrjbed in

Section 5.4 of Chapter 5.

32



( hiìlriÈ.I iilitlli:iit.- ¡i ;jlttìttiì!ìi! i)iitil:rÌìi ij,,iliE:ì;1iii !

2.9 THE DERIVATIVE OPERATOR

Development of harmonic domain models of inductors of the electrical system and many

of the transfer function block diagrams of control systems require the ability to

differentiate a waveform with respect to time. In this section a sparse hannonic domain

transformation matrix is developed that provides the harmonic content of the time

derivative ofthe original waveforrn. Since some form of this technique is used in almost

all harmonic domain analysis tools methods, it is presented here to contribute to the

documentation ofthe author's harmonic domain analysis methodology.

Given the function:

fr.r I - !-q - Ë ¡t"".oun..,,-fUns¡ntn.u.,r)]z n=l

1f,r,, - i [-nt-r. fa,, sintn. r,-,1 )- nur. fbn . cosr n. or r]dr -r'

In the harmonic domain:

-L¡=¡ o
d(')t

where o is a matrix representing a derivative operator:

lo o o ... o oltl
]0 0 r o ol

_ 10 -t 0 0 0tD_J 
I

lo o o o o "l0 0 0 0 -n 0l

{ 2-80 }

{ 2-81 }

12-82 \

{ 2-83 }

Use of the derivative function to set up the characteristic of an electrical network is

described in Chapter 4. Use of the derivative function to model several control function

block diagrams is described in Chapter 3.

2.10 OTIIER MATHEMATICAL FUNCTIONS

This chapter has described the development of what the author believes are the

fundamental mathematical harmonic domain models that are essential to the development
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of a direct harmonic domain analysis tool. The operations and functions can be used to

develop more complete models by the users of the HDA methodology proposed by the

author-



CHAPTER3

LINEAR POWER SYSTEM ELEMENTS IN THE HARMONIC

DOMAIN

3.1 INTRODUCTION

This chapter describes how power system passive electrical elements are modelled in the

proposed HDA model. The same principles have been used in almost all HDA models

considered in this thesis. They are presented here, however, to complete the description

of the propose HDA methodology and to highlight some of the limitations.

3.2 THE A.DMITTANCE MATRIX

One of the most common equations used to model electrical elements in the power

system is the admittance matrix equation, i.e.:

l¡' 
'l lv'' vrr. llu' Il,l_1,..,11,1t,! | l

lrk I lykr " ykk I lvk I

where:

vk corresponds to the voltage at node'k'in the network

ik corresponds to the current injections into the network at node 'k'

y*.* corresponds to the elements of the admittance matrix

{3-1 I

The off-diagonal elements of the matrix corespond to the negative of the admittance of

the branch interconnecting the two nodes The diagonal of the matrix (e.g. yr.r)

corresponds to the sum ofthe admittances ofall branches connected to node 'k' including

admittance of all shunt connected devices.
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One of the advantages of the admittance matrix is that the mathematical model of the

network can be built up component by component. As each new branch is encountered in

the data, its comesponding locations in the admittance matrix are identified, creating a

new node ifthe node does not exist. A new node is often added at the end ofthe anay for

convenience along (with its corresponding row and column in the matrix).

In a similar fashion, the location for information associated with any shunt connected

element is determined directly from its node number.

The admittance matrix itself is created from an initially empty matrix by sequentially

adding the admittance (or negative admittance for off-diagonal elements) of each branch

or shunt to the admittance(s) already present in the matrix at the appropriate locations.

In a power system network, there are generally only a few branches emanating from any

given node, possibly only 3 to 4 times as many branches as there are nodes for the

network. Hence, the admittance matrix above is very sparse. ln addition, for most

conditions the admittance matrix is symmetrical (i.e. y¡ is equal to y.¡;). Most applications

take advantage ofthe matrix sparcity and symmetry in the storage of the definition ofthe

network structure and admittances.

In power system load flow and stability analysis tools, the voltage v¡ and the current i¡

are complex variables (real and imaginary components), representing the firndamental

frequency component of the power system voltage waveform by its positive sequence

equivalent voltage. The magnitude ofthe voltage is equal to the magnitude of its complex

variable. The phase displacement of the voltage relative to other buses in the system is

contained in the angle ofthe polar presentation ofthe complex variable. Therefore, in the

load flow and stability tools, the admittance matrix houses the admittances expressed in

complex form.

Most time domain solution algorithms of a network use Dommel's approach [ 35 ] in
which inductive and capacitive elements are treated as a No¡ton equivalent with only real

time-independent admittances (i.e. conductances) and real time-dependent current
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injections at the node. Therefore, the admittance matrix as used in the time domain house

only real variables.

Most harmonic domain algorithms known to the author use a formulation of an

admittance matrix with a similar structure to Equation 3-1, except that in the harmonic

domain each element in the admittance matrix of Equation 3-1 represents a complete

matrix defining the harmonic relationships of the branch and each element in the voltage

and current vectors is an aÍray housing all of the harmonic content of the current and

voltage.

In the methodology proposed by the author, each element of the curent and voltage

arrays of Equation 3-l consists of a real array of dimension (2 n.**1, by 1) containing

the harmonic content of the cunent or voltage waveform for its corresponding node in

accordance with the layout described in Section 2.2 of Chapter 2-

In some other HDA schemes [ 10 ], the complex Fourier series has been adoptedls, and as

a result, the equivalent arays (now of dimension only n.Ð.+l) would house complex

variables. Other HDA schemes [ 29 ] could have slightly different structures for the

anays, but in general, the basic form ofEquation 3-l will likely be used.

The remaining sections in this chapter document the treatment ofthe main po\¡r'er system

passive elements in the authors HDA model.

3.3 RESISTORS

A resistor whose resistance is independent of frequency is very simply modelled in the

harmonic domain by the array 'R ' where ' n ' satisfies the ohmic equation:

VR =R iR {3-2}

¡5 
as opposed to the cosine, sine series expansion used by the author
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'V¡' and 't-*' are arrays housing the harmonic component of the voltage across the

resistor and the cunent through the resistor. The resistance is given by:

n=¡ T {3-3}

Here 'r' is a scalar variable and is equal to the resistance of the resistor and 't' is the

identity matrix.

Resistance of a transmission element can be a function of frequency. This is common in a

power system where skin effect plays an impoftant role at higher order harmonics. The

resistance of transmission lines and other inductive devices such as transformers and

reactors is known to increase with frequency.

Although frequency dependent resistance models have not been specifically addressed

elsewhere in this thesis, they can be incorporated very easily into the proposed HDA

model. A frequency dependent resistor can be modelled by the diagonal array:

{3-4}

In this matrix, the resistance is assumed to vary according to harmonic in accordance to

the function 'r(n)'. The dual entries for the harmonic components are used on the

assumption that resistance is independent of the phase relationship at each harmonic

between voltage across the resistor and the current through the resistor.

If the resistance is non-zero at every frequency, the matrix 'n' can be inverted into its

'admiftance' (in this case conductance) matrix form, i.e.:

õ=R-'

As the resistance matrix is diagonal, its inverse is also diagonal.

{3-s}

f'tor l
I r{lr 0 

I

- I r{l} I.t"'- 

| o ''"' 
n", 

I
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3.4 II\DUCTORS

In the time domain the relationship between the voltage 'v' across an inductor 'L' and the

current 'i' through the inductor is given by:

v(r¡t) = Llitrotl
dr

- 2u¡^¡-L¡1.r¡ 
{ 3-6 }

" d.¡t

The equivalent harmonic domain expression is given by:

i:zL.Í l3-7 I

where:

2r = 2ttfo r 'o { 3-S }

and:

D is the derivative matrix described in Section 2.9

ü is the harmonic domain voltage array

I is the harmonic domain current arrav

The zero impedance of the inductor at a frequency of zero creates a singularity in the

harmonic impedance matrix. All elements of the first row and first column of the

impedance matrix are zero. As a result it cannot be included directly into the complete

harmonic domain matrix of the system.

The problem disappears if there is resistance in series with the inductor. In a typical

power system application, this is almost always the case. The resultant impedance ofthe

inductor would be:

Zv - 2¡f r.: 'L'D + r '1
or:

Zl = 2¡¡fo .L D+ R(n)
{3-e}

The latter equation would be used if the resistance is dependent on frequency as

described in Section 3.3 ofthis chapter.
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With resistance and inductance based on typical power system elements, the matrix 'Zr'

is well conditioned and boundedl6

The admittance matrix formed by the inverse of the impedance matrix, i.e.:

Ír=zr-1 { 3-10 }

is also bounded and hence sparse.

An altemative way to handle an ideal inductor (i.e. no resistance) would be to treat the dc

and harmonic components differently. This is discussed in Chapter 7 along with other

ideas for future research in this area.

3.5 CAPACITORS

The harmonic admittance (mhos) of a capacitor can be calculated directly and

incorporated into the admittance matrix of:

i.:z,.fo c.D { 3-f1 }

where Y is the capacitance (F).

While the admittance can be readily calculated, the singularity in the derivative matrix

precludes the creation of an impedance matrix. Similar to the treatment of the inductor

(as described in the previous section), if a resistance (or in this case conductance) is

included in parallel with the capacitor, the resultant matrix can be inverted.

Unfofunately, capacitors themselves are low loss devices and inclusion of a parallel

resistor may not be appropriate. Use of a resistance, consistent with a typical capacitor,

would not significantly improve the condition of the resultant admittance matrix.

Fortunately, only the admittance matrix, and not its inverse, is required to represent the

capacitor using the admittance matrix formulation. The overall admittance matrix can be

inverted, provided that there are resistance elements elsewhere in the nefwork,

16 The matrix is diagonal with a single adjacent element
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In Chapter 5, it is suggested that a capacitor could be treated as an impedance to assist in

the solution of numerical interaction between capacitor and switching devices. If so, the

capacitor impedance issues will have to be addressed at that time.

3.6 OTHER SYSTEM ELEMENTS

The above approach of including Rs and Ls into a Harmonic Domain admittance matrix

can be readily extended to other passive elements, although this analysis is not explicitly

included in the thesis, for brevity. Step-up and step-do\¡r'n transformers can be

incorporated using treatment similar to the model of an off-nominal tap transformer in the

load flow and stability model. While directly equating transformer voltage ratios to the

tap position(s) of the Edith Clark equations [ 38 ] is mathematically exact, large

differences in voltage ratios may introduce numerical issues, and in a fashion similar to

the power flow, voltage scaling ofthe system model will likely be required to avoid these

problems.
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CHAPTER4

LINEAR CONTROL SYSTEM FUNCTIONS

4.1 INTRODUCTION

Frequency domain analysis has long been one ofthe favoured tools in the analysis and

design of linear control systems [ 14 ], [ 15 ]. The proposed Harmonic Domain Analysis

ofcontrol system functions tums out to be a subset of frequency domain analysis. Control

systems are comprised of individual control functions, where the dependence of the

ouÞut response on the characteristics of the input is defined by a frequency dependenl

transfer function, often expressed in a Laplace transform form [ 39 ].

This chapter describes how simple control functions such as first order lag and

proportional-integral-derivative type controllers can be transcribed into the nonlinear

HDA model proposed. It proceeds to describe the development of a harmonic domain

model of a time domain function that compares a repetitive ramp signal with another time

varying (but also repetitive) input signal. This time domain function is fundamental to

most phaselocked loop controls used to derive firing pulses for thyristors or other gate

driven electronic switching devices.

4.2 FIRST ORDER LAG FUNCTION

The first order lag function can be described by the Laplace transform form:

o(s), I

I(Ð l+r's

where:

O(s) is the Laplace transform ofthe output response

I(s) is the Laplace transform ofthe input response

I4-rl

+3
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s is the Laplace operator

r is the time constant ofthe response.

In the proposed harmonic domain model, the relationship between the harmonic content

of the output waveform õ and the input waveform i can be defined by:

õ=K l { 4-21

where:

O is a an array housing the harmonics of O(<ot)

I is a an anay housing the harmonics of I(ot)

r is matrix defining the harmonic relationship between I and õ

The Laplace Transform domain response can be re-written in the form:

(t+t s).o1s.¡=t1s¡ { 4-3 }

In the harmonic domain model, the equation becomes:

(T+" D)o=Î l4-4t
where:

T is the identifu matrix

o is the derivative operator described in Chapter 3

from which:

K=(r ,r.D) ' {4-5}

It can be shown that the matrix r is very sparse and can be developed directly without

having to carry out the inversion.

4.3 THE PROPORTIONAL INTEGRAL DERIVATIVE FIJNCTION

The Proportion Integral Derivative @ID) controller and the Proportional Integral (PI)

controller are used in many control system functions. The PI controller (i.e. the PID

controller without the derivative term), is simply a subset ofthe PID controller.
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The Laplace Transform ofthe PID controller is:

O(s) I

l(s) ris

where:

so is the controller gain

r¡ is the integrator time constant

r¿ is the derivative time constant

Again in the harmonic domajn the input to output response can be given in the form:

O=Kpn l {4-71

where:

o is the HDA equivalent ofthe output

Ì is the HDA equivalent ofthe input

K'o is a transfer matrix defining the harmonic relationship between i and õ

The transfer matrix is constrained however due to the presence of the integrator. Each

component of the Laplace Transform form the PID controller has its corresponding

component in the harmonic domain. I.e.:

Rpln=Kp+Kr+Ko

The gain component as it applies equally to all frequencies (hence harmonics) is simply:

r"=n- T

where ' I ' is the identity matrix.

{4-e}

The derivative component contains a frequency dependent component based on the

derivative ofthe input. I.e.:

Kn =.n D { 4-10 }

Similar to a treatment of a capacitor in the electrical network (as discussed in Chapter 3),

the dc input to the integrator by definition is zero, which in turn means that the input to

the whole PID controller must also be zero. The harmonic domain implies no change in

{ 4-61

{4-81
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time domain waveforrn from one period to the next. As the output ofthe integrator in the

time domain would continue to build-up for a constant 'dc' input, the average input in the

time domain must be zero, implying a zero value of dc input in the harmonic domain.

The harmonic component ofthe integral term can be expressed as:

K¡ = -Pn-tnIr { 4-11 }

In the proposed harmonic domain methodology, the dc component of the matrix is

arbitrarily set to zero and the resultant total harmonic domain gain is given by:

lo o'
K, =l . ) 14-12|' 

Lo *'n 
]

When combined with the proportional and derivative component, the total harmonic

domain representation ofthe PID Controller is given by:

KprD=Kp+Kt+KD

-g,.T-,¿ õ, I i: -'j'.I' ri L0 D¡-, 
1

{ 4-r3 }

with the added constraint that the dc component of the input to the PID controller 'l'
must be set elsewhere in the model to zero, i-e-:

to=o { 4-14 }

From the equation it can be seen that if the proportional and derivative components are

not present, the respective scalars gp and c¿ can be set to zero, leaving just the integrator

term.

Use ofthe PID Controller is described in Section 5.4 ofChapter 5.

4.4 THE COMPARE RAMP FTJNCTION

The firing pulses for controlled power electronic switching devices are often derived by

control circuits that compare a periodic ramp function with a reference signal [ 40 ] as
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In the above example, there are three zero crossings at the reference angle of 80 degrees,

within a range ofabout 78.5 to 8l degrees.

If fhe reference signal were closer to zero or closer to 360 degrees (a signal of 1.0) the

Gibb'slike effect is larger possibly creating additional zero crossings over a larger time

interval. With a truncation to 50 harmonics, the range of'error' in the representation of

the crossover could be as high as l5 degrees.

An error of 15 degrees in the calculated firing circuit of a valve would have a significant

impact on its estimated behaviour. A Lanczos filter could be applied to the difference

waveform eliminating the multiple crossovers at reference signals in the middle of the

range; however, reference signals close to zero or 360 degrees could still cause

difïìculties.

An alternative solution is to numerically solve for the intersection of the reference

waveform with a ramp, and generate the harmonic response of the output based on the

calculated point of intersection. Using a Newton-Raphson algorithm, the equation to be

solved is:

The variable P in the above represents the harmonic coefficients ofthe reference signal.

f = <ot -Êao b* (Þ- co(n,ot)+p6n sin(not)):0
n=l

The derivative ofthe equation is given by:

rlf n-..

ä-'-"- 
''lÊan 

sin(not) + pbn cos(n(Ùl))

{ 4-1s ì

| 4-161

As the reference signal will typically be dominated by the 'dc' component, a reasonable

initial guess for the solution 'd.' is:

oirer=¡=ot=Pag
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The solution'a'is subsequently used to define the harmonic coefficients of the resultant

pulse signal. Le.:

prtor=lf r-," 1 1:t'1,ì tcos{q.ì-l\ t-sin(2cr)' f "gqS¿:l l .l t4-19}' \"'-Ll'-;/ I " ll-' it ,' ll- ¿Í , l

:: .:ii .. i.!. L.:,:

and successive correction terms are given by:

( 4-18 ì

A numerical HDA ftnction named 'CompRamp' was developed based on the preceding

equations. The Mathcad@ implementation of the algorithm is shown in Appendix A. It is

demonstrated for a reference signal with a significant harmonic component in the

following example:

The components ofthe sample reference signal and resultant pulse are:

ltqz zo -s 2s o ...]
u- 

360

CompRamp(þ)r =1,4s7 .oïs -.62s .082 .023 .077 .t79 ...1

The reference signal p and resultant pulse P are shown along with the intermediate ramp

in the time domain representation shown in Figure 4-4.

b
Yo.'

t.5

I

0.5

0

Normal¡zed Response

0. 0 50 100 150 200 250 300 350 400

ú)T

Figure 4-4 HDA Analysis of Firing Pulse Determination with HDA CompRamp Function
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The solution is relatively robust and rapidly converges if the reference signal is

dominated by a dc component.

The Partial derivatives of the 'CompRamp' function with respect to each of the harmonic

components in the reference signal can be used in the analysis of non-linear systems that

incorporate the'CompRamp' function.

The derivative is determined by evaluating the influence of the components of the

reference signal on the intersection point. The impact of variations in intersection point

on the harmonic content of the resultant pulse is calculated and combined with the first

set of derivatives to obtain the overall derivative.

The derivative of the intersection point with respect to each harmonic component in the

reference signal is as follows:

Since at the intersection point o.

n*,
ct = pae + ! (pan cos(no) + pbn .sin(na))

n=l

then differentiating both sides ofthe equation with respect to pao gives:

jL -,* ""Ë" t-pan .sin(nq) + pbn cos(nq))-gg
oÞ40 n I dÞao

dÞao r+nþ(pu, sin(nø) - pbn .cos(no))
n=l

I4-20 |

| 4-2r I

5l



Similarly:

dc ner. ^ dcr
=coq(dì_n \ t_r1â .stn(nc(), þbn.cos(nq)) '^dpal n-r ' " 'dpar

dc{. - cos(cr,)

dÊar 
t + nþ (pun .sin(nø) - pbn . cos(no))

n=l

dc¡ _ sin(o)
dßb,'r-r l+n f (Ba".sinrnar pbn.cos{ncr))

dq _ cos{ 2(r }

dgaz 
r * nþ* (pu" .sin(ncr) - pbn .cos(nø))

n=l

dct sin(2a I

dßb,-r'¿ l+n f (pa" sinrnor pbn.coslna))
n=l

dct_ll co(ct) sin(cr) cos(2c¿) sin(2cl) ...]

rlß
l+n | (Ba,, sin(na)-Pbn cos(ncr))

n=l

I4-22 |

The derivative ofeach of the harmonic components ofthe pulse wavefonn Þ as defined

above (Equation 4-22) with respect to the intercept angle cI, are as follows:

, .,0 ,t -ll cos(ct) sin(q) cos(2al sin(2c) ...'l
_ l¿ I t,ltat

l¿".1 r

The derivative ofthe pulse waveform É with respect to each harmonic component ofthe

reference signal by chain rule is the product ofthe two derivatives:

r, 'Tdp -l ' cosrct sin(q) cosr2cr) sint2ar ...1 [l cos{or sinrq) cos(2CI) sint2at ...]

dÊ n 
t*nni'1pun .sin(ncr1-pbn .coslnc))

......{ 4-24 }
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The derivative is a matrix but it can be easily constructed from two almost identical

vectors. It was used in the development of the Jacobian for the iterative solution of the

voltage chopping circuit described in Section 5.4 ofChapter 5.

4.5 OVER}'IEW

This chapter has shown the development of three typical control system models as

required for the proposed HDA model. The use of these functions is demonstrated in

Chapter 5.

The modelling ofthe first order lag and PID controller characteristics would be similar in

most HDA models. Modelling of the valve firing pulse system by a conventional

algebraic sign function (or its logical equivalent) is likely to be common in most time

domain implementations. Its implementation in the harmonic domain as an HDA sign

function appears to be novel.
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CHAPTER5

APPLICÄTION TO POWER ELECTRONICS SWITCHING

DEVICES

5.1 INTRODUCTION

In this chapter, application of the author's proposed HDA methodology to power

electronic switching devices and circuits is investigated. Section 5.2 discusses and

demonstrates the application to diodes and how the simple harmonic domain model can

be incorporated into a typical admittance model of an electrical network. Section 5.3

discusses and demonstrates the compatibility of harmonic domain switching functions

with the proposed HDA methodology with a demonstration using a thyristor controlled

reactor circuit. Section 5.4 presents an example of the application to models comprising

both electrical circuits as well as non-linear control systems, where the electrical circuit

consists ofbasic net\¡/ork components along with a voltage chopping circuit.

5,2 APPLICATION TO ANALYSIS OF A DIODE CIRCUIT

5,2.1 Introduction

The harmonic domain methodology can be applied to either direct or iterative analysis of

simple diode circuits. It is the objective of this chapter to illustrate how the harmonic

domain methodology developed in Chapters 3 and 4 can be applied to a practical

example. The analysis presented is carried out entirely in the harmonic domain and is

based entirely on a solution of simultaneous equations. Tum-on and turn-off times ofthe

diode are not required.
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Consider the simple diode resistor circuit shown in Figure 5-1. The voltage'v,' is the

input to the device. In this example the voltage waveform is repetitive and therefore can

be considered in both the time domain and the harmonic domain. Its waveform can take

on any shape as long as it is repetitive and does not contain more than a few

discontinuitieslT. The objective is to determine the output diode current'i¿'for a specified

input waveform. The voltage across the diode and resistor can be determined given 'vr'

and'i¿'.

Figure 5-l Simple Diode Resistor Test Circuit

This chapter presents several harmonic domain analysis examples starting with a direct

approach to solving for the output current in the above example, and progresses to show

how the direct approach can be extended to an iterative analysis of more complex

circuits.

5.2.2 Example I Direct HDA Analysis of a Simple Resistor Diode Circuit

The relationship between the applied voltage in this circuit'v.'and the cunent through the

diode'ia'can be described in the time domain by the following equation:

id(ú)t)=I (v" (or)+1". (rot)l)

and the voltage across the diode by the equation

v¡ (cot) = v. (ot)- n . io (ot)

{s-l}

ls-2)

'7 Satìsfiing the Fourier series requirement.
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harmonic domain, i.e., 2.9 V. With a resistance of 0.01 O the peak current should

therefore be 290 A. The sum of the 'a' coefficients of the cument arrav is 289.999 A. In

this example a maximum of 50 harmonics was considered.

A direct solution of diode current is a convenient mechanism to demonstrate that

harmonic domain analysis can be carried out without excursions into the time domain to

determine turn-on and turn-offtimes of the diode. As Equations 5.1 and 5.3 are only valid

for a resistor located between the voltage source and the diode, an alternative approach

was developed (described next), that could be expanded into a resistive network approach

(described in Section 5.2.3 of this chapter) and eventually into an impedance network

approach (described in Section 5.2.4 of this chapter).

5.2.3 Example 2 Iterative HDÄ, Analysis of a Simple Resistor Diode Circuit

While the first example shows that the harmonic content of the diode can be computed

effectively in a single step, this approach is generally not possible when the diode forms

part of a larger network. It may be more efficient to incorporate the iterations associated

with the computation of the absolute function into the iteration process of the whole

scheme, i.e. putting the diode as part ofthe overall Jacobian for the network.

In this example, the equations leading to the absolute value of the applied voltage in the

first example are restructured into a format that lends itself to inclusion in the Jacobian.

The test circuit ofFigure 5-l will be used again in the validation ofthe revised algorithm.

Here, we will define the variable 'ü.*,** ' to be the product of the source voltage by

itself using the harmonic domain product transformation matrix described in Section 2.4

of Chapter 2, i.e.:

V" . =rrú-r.ú^Jsquared {s-s}

59



i lïL::i.i i él;'ii.::ii;iri.)i:¡¡\ii!-:li.:j¡rri.¡SìrrLiiri|-;;'.1,.:.

The product is then used again to solve for the absolute value of' Vs' herein denoted ' iu¡" '

i.e.:

r(%¡,) %¡, = 1.qu."a { 5-6 }

An initial guess at the vector'V"b"'is to set the 'dc' component of'úuo,'equal to the

square root ofthe dc component of'úr"0"*.0'and all ofthe harmonic components to zero.

Correction terms at each iteration are selected based on the Newton-Raphson iterative

solution, i.e.:

- l-r¡u¡,- ];f {t,u*,, u"0,-{,q,,"d)l {r,u*,u*, u,.o*,..) {5-7}
I dvu¡t'

It can be shown that:

dt
orç [T(%u') v"6, - V,.q,'.d I- 2 Tlvabs )

which simplifies to:

U*" = j(U*"-, +r-r(iu¡,n-r) ú".q"-"¿)

Therefore, the value of iu6" ' at the 'nth' iteration is given by:

úr.n = %0"" , -(2r(ù0,,-,)) ' (t(ú*,"-, ) ú,*"-, (.ou."o ) { 5-9 }

{s-8}

{ s-10 }

If' %bs ' at the 'nth' iteration is considered to be close enough to the final solution, then:

%o"n = vausn-1 =%ts

4¡. = T-l (ù¡. ) . i,,q,,u.,"¿

%¡" = r-1(ù¡.).r(V").v.
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Substituting for ' Vu6, ' into the equation for

io =r{, (r-'rv"o,i rtv"l 1*\)
or collecting terms:

-l[ =fr- (r-',v"o.r'rrv.rr r) v.

io=i\
where:

t =-L [r*r-]<v"o,l rtv.l]

current-

{ s-12 }

where'J' is the identity matrix. This result is significant as'V'is in the form of an

admittance matrix. This is conducive to including the model of the diode directly into a

full network admittance array.

The voltage across the resistor can be detemined from the product of the current array

'l¿'and the value ofthe circuit resistance'R'. i.e.:

v' =n fo { s-13 }

The exit criteria selected for the algorithm is based on the cumulative solution eror:

{ s-14 )

where 'k' denotes the harmonic number.

The algorithm is demonstrated for a test case where the source voltage contains a dc

offset, a fundamental frequency and a second harmonic component The circuit resistance

is assumed to be .01 O. The largest harmonic of interest'k *'is50. The voltage source in

this example is the same as used in the first example with the time domain response

shown in Figure 5-2.

6t
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After frve steps (iteration 6) of the above algorithm, the calculated values for the

harmonic component2O of the absolute value of diode voltage and circuilr current are

given in Table 5-1.

Table 5-1 Harmonic Content ofVoltage and Current for Diode Example Number 2

lvdlM
g€¡ieß lvdl

't.095
Ð.721

0.4n
{.079
0.,183

4.141
0_389
0.161

-0.208
{-0€2
-0.089
0.055

-0.036

lr(a)
ao¡iea l¡

e71
a
b
â
b
e24
b"7

b8.
a
b -3.

b2.

The progression of the algorithm at each iteration is demonstrated pictorially with the

reconstruction of the absolute value of the diode voltage waveform from the harmonic

content. The waveform is compared to the source voltage (solid curve), which is constant

for this example, in Figure 5-4.

20'a'and 
'b' conespond to the cosine and sin coefficients ofthe Fourier series as described in Section 2,2 of

Chapter 2
2r In this case, the circuit cunent'i,'is identical to the diode curent'id'
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Figure 5-7 Diode Resistor Circuit for Simple Network Analysis

At the midpoint bus, the current into the diode is calculated in the same manner as the

first example. I.e.:

io=V¿ (1 V¿ +V¿)

The current eror equation (to be solved using Newton-Raphson solution techniques) at

the midpoint bus becomes:

f,(úa,n¿)= t v.+1t+V¿y i¿+Y¿.8¿=õ

where:

v_:-L r'R.

¿=l.r' 2R¿

and by definition:

Ë¿ =lú¿

which can be also be defined by the Newton-Raphson

equation:

ir1vo,Ëo¡=r(io) Vo -r(eo ). 
Eo =õ

{ s-ls )

{ s-16 l

{ s-17 }

{ s_r8 I

form of the harmonic domain

{ s-le }
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The Jacobian for the Newton-Raphson solution ofthe two sets of simultaneous equations

can be expressed by the following partitioned matrix:

I âf, ar, I
| ôv, â8, I

Jac(vd.Ed)=l ôf' af; I

L avo dE¿ 
I

lY-+Y, Y, I

Jac(V¡,E,r)=l '-" I

L2.Trvd) z.r1e¿rl

*l
1s-22 |

For this example, l8 iterations were carried out. The error measured in terms ofthe sum

ofthe norms ofthe vector equivalent ofthe arrays representing two error functions f¡ and

fz is shown in Figure 5-8. The solution is within acceptable tolerance after five or six

iterations, similar to the second example. The number of iterations was increased to

examine numerical issues. The eror reduces rapidly but after the 10th iteration the

magnitude ofthe error is essentially unchanged. There is some hunting ofthe solution but

the numerical emor remains extremely small, and is well within acceptable tolerances.

{ s-20 }

{ s-21 }

The correction term at each iteration is given by:

foüol lt*Vo yd I' l1ú,.rv"rv¿r'V¿+v¿
l*ol= l: t,uo, , t,uo,l I r(vd)vd-r(Èd)E,r
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5.2.5 Example 4 Iterative I{DA Analysis of a Simple Resistor Inductor Diode
Circuit

The fourth example is based on the simple diode resistor-inductor test circuit shown in

Figure 5-9. The objective here is to show that the basic network solution algorithm for a

diode circuit, as developed through the first three examples, can be extended to include

frequency dependent components in the transmission network2z.

The inclusion ofthe inductance in the network will introduce discontinuities in the diode

voltage. The current through an inductor cannot be suddenly interrupted. It must be

forced to zero by a reverse voltage. While the source voltage may become negative while

the diode is conducting the diode will continue to conduct maintaining zero voltage until

the inductor current is extinguished.

Figure 5-9 Simple Diode Resistor Inductor Test Circuit

The presence of discontinuities increases the magnitude of the higher order harmonics,

and therefore provides a less favourable environment for numerical solution involving

iterative techniques.

The basic algorithm presented in Example 3 can also be used to solve for the harmonic

content the resistor-inductor circuit shown in Figure 5-9. To use the algorithm, the source

admittance must be modified to include the frequency dependent characteristic

z2The series R¡ and LL components ofthe circutt represent tÉnsmission ÍÌom the source to the diode.

\_Y__ -,/
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introduced by the additional inductor. In the harmonic domain, the source impedance as

discussed ín Chapter 3 is given by:

Z. =Rl T+D Lr- { s-23 )

The matrix Z is sparse and bounded. lts inverse V is also sparse and is given by:

\ =2"-' 15-241

It can be readily shown through theoretical analysis using elementary circuit theory that

inclusion of an inductor with an impedance of 0.1 O at its fundamental frequency when

inserted in series with the source and resistor of Figure 5-7 results in a solution where the

diode is continuously turned on. The algorithm converged to a solution where the diode

voltage was zero at all harmonics. When the dc component of the source voltage was

reduced to -0.3 V (originally +0.4 V), the diode cycled through btocking and conducting

states in agreement with the anall4ical solution.

The step changes in diode voltage resulting from turn-off of the diode and their

associated high frequency in the waveform are accompanied by Gibb's-like oscillations

creating a situation where potentially many solutions may exist to the set of harmonic

simultaneous equations. With careful selection of initial conditions for the voltage across

the diode, the algorithm does converge to a solution.

For this example, the norm of the voltage correction vector is used as an indicator of

proximity to a solution. The convergence rate as shown in Figure 5-10 is initially slow

but after about I6 iterations, the algorithm rapidly converges to a solution.
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The Laplace Transform ofthe source voltage becomes:

/.,,^. vso . Fl s.cos(y) n.o sin1y.¡ s.s¡n(y)-n.o.cos(,y) Irsts'=-r 
it ,1;l d 

vsr2n-lì- 
stn2.r,t-- 

\'sr2n-trj

......{ s-28 }

The equation representing the time response of the current for the conduction interval is

the inverse Laplace Transform ofEquation 5-25 with V(s) defined by Equation 5-28. The

time domain expression for the current was derived fiom the two equations using the

symbolic functions in Mathcad@23. Both Equation 5-28 and its Inverse Laplace Transform

can be applied to both conduction intervals with suitable selection of 'l'. For the interval

when the diode is not conducting, the diode voltage is zero in the time domain.

The tum on times of the diode can be determined by solving the time domain equations

for the zero crossovers at the angles corresponding to the start and end of diode

conduction. The start of each conduction period can be determined from the positive

transition, zero crossing of source voltage. The end of conduction can be determined

from the negative transition, zero crossing of the current waveform. The Mathcad@

symbolic equations were incorporated into time domain functions and iterated to

establish the solutions for the zero crossings for the test circuit. The resultant zero

crossings are shown in Table 5-4:

Table 5-4 Zero Crossings ofthe Diode Resistor Inductor Circuit

(Dogrs€8)

Cross¡ng 1

cÌossing

A symbolìc Fourier analysis ofthe contribution of each ofthe continuous components of
the diode voltage and current waveforms was determined in accordance with the

definitions given in Section 2.2 of Chapter 2. The resultant harmonic spectra is compared

2r The equations are nol included here because oftheir complexity and since they are only being used to
validate the answers from the Harmonic Domain Analvsis.
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5.2.7 Summary

The examples with the diode-resistor and diode inductor networks demonstrate that the

proposed Harmonic Dornain Analysis model of the Diode can be incorporated into a

typical Newton-Raphson Jacobian. This will facilitate a sequential build-up of the

proposed Harmonic Domain Model that includes a diode, which is analysed entirely in

the harmonic domain.

The accuracy ofthe harmonic content in the current is well within the accuracy that can

be expected for an electrical power system. While there are some numerical differences

in the harmonic content of the diode voltage waveform, their effects would be limited to

the diode itself. At locations more remote from the diode, the impact of any errors in the

harmonic content ofthe diode voltage itself will be attenuated by system inductance.

5.3 APPLICATION TO ANALYSIS OF A TIIYRISTOR CONTROLLED
REACTOR

5.3.1 Introduction

ln this chapter, the use of harmonic domain switching functions i 33 l, t 34 l, [ 13 ] and

their compatibility with the proposed HDA methodology will be examined. A thyristor

controlled reactor \¡/ill be used in the examples presented herein, but the switching

function approach can be applied to the harmonic domain analysis of almost all

'controlled' power electronic devices. It is well adapted for circuits where the start of
conduction and end of conduction is defined by controls such as in the voltage chopping

circuit example in Section 5.4.

This section identifies some of its limitations, particularly where end of conduction is

determined by the system to which the power electronic device is connected. An example

is power electronic circuits where end of conduction is established by end of the

commutation process from one power electronic device to another24.

2a This is the case with th€ TCR circuit analysed in this chapter
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In the set of examples to follow, the harmonic domain and switching function

methodology is applied to a simple thyristor controlled reactor circuit such as shown in

Figure5-15. The circuìt consists of a voltage source 'v,' applied across a series

affangement of an ideal reactor 'L', resistor 'R' and a parallel thyristor switch. For this

example, it is assumed that the thyristor firing angles 'ct1' and 'c.2' are controlled to

achieve a reference conduction angle'o'. The set point may be varying over a cycle in

response to ac system requirements and as a result, conduction angles for the positive and

negative current cycles could be different. Voltages and cunents are as defined in the

figure.

figur" SlfS Simple Thyristor Controlled 
-Reactor 

Circuit

The conduction intervals, angles, 'o¡' and 'o2' respectively, for each thyristor switch

define a cyclic time dependent switching function, which is dependent on the

characteristics of the applied voltage. Rico et al [ 13 ] suggested a 'simple' harmonic

domain switching function based only on the conduction intervals could be used to

describe the behaviour of the TCR. They consider only the TCR inductor (i.e. no

resistance) and determine a voltage 'Vu' which is calculated based on the harmonic

convolution (harmonic multiplication) of the switching function'S'and the source voltage

'V,'. The voltage'Vu'is applied to the inductor to determine the circuit current'I.'. As will

be shown in the following section, their method when used in conjunction with heavily

distorted source voltage will give erroneous results. The proposed HDA methodology as

presented in this section overcomes the limitations in their method.
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Algorithm 5-l

Thìs switching function does not take into account the effect of phase shift or harmonics

present in the source voltage. The author has modified this algorithm towards a more

general switching function and is used herein. It takes into account overall phase shift as

well as a relative shift in firing of each thyristor by introducing the actual thyristor firing

angle.

,ct l,<r þq 2,o 2\, ,, wt. ot deg

SI
S 0 if wt<û,1

S 0 if wt>ia.2ro2.'

S 0 if 1u,t> o1, o1.,l.i*t.1.o2t

Algorithm 5-2

The Fourier coefficients of the switching function can be determined using the fotlowing

algorithm where 'nn,'**' represents the maximum number of harmonics to be assumed in

the approximation:
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Àlgorithm 5-3

During conduction, the voltage across the thyristors is zero; hence, the voltage across the

reactor and resistor is equal to the applied voltage. At other times, the curent through the

reactor-resistor is constant at a value ofzero; hence, the voltage across the reactor-resistor

is zero. The voltage (V") across the reactor-resistor at any point in time is therefore equal

to the product of the switching function at that time and the source voltage at the

corresponding point in time.

In the harmonic domain:

v, = r(s) \ { s-29 }

Here, r(S) is the matrix representation of the switching function described by

Algorithm 5-1 earlier in this section.

This equation is used in this analysis in partitioned (dc and harmonics) form. l.e.:

lu"o I lroo ronl[v.o 
I

,n;]=Li,ã 
-;,IL\,] {s-30}
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The reactor current Ir(ot) as given in the time domain is related to applied voltage by the

first order differential equation:

Z.n.f. .1. -LI.1roÐ + R.Ir((t)Ð = % (cDt)

{ s-33 }

{ s-34 }

The corresponding relationship in the harmonic domain (see Chapters 2 and 3) is given

by:

(R l+2.¡ f".L D).L =% { s-32 }

where the ' I ' is an identity matrix of order (2.n-* +t ) and 'D' houses the harmonic

domain derivative matrix. Equation 5-32 can be rewritten as:

z \ =va

where:

2:R Í +z.n.f..t.o

The direct solution of ! (in Equation 5-33) in terms of Va is not possible ifthe resistance

is zero since the first row and column of Z become zero, as forced by the harmonic

domain derivative operator. This is not a limitation to the HDA methodology as will be

explained herein.

{ s-31 }

{ s-3s )

The matrix Equation (5-33) can be partitioned as follows:

f * õn'l[l,o] l%.1
Lõn z,I lih I l%, I

In this equation, the subscript 'h' denotes the harmonic component ofthe matrjx or array

The harmonic component oft-, can be determined from:

Ln =4' %n { s-36 }

80



( it.iiti-t ¡ - .:iÌpliiiLi:rr'1 1,, Pai,.\rJ i-i..1Í-.,¡lì.S :ì\!i1.-jtjrìs i.:.\ l,tr:

As current can only flow through the reactor during conduction, then the relationship

between the dc component and the harmonic component ofthe current can be determined

directly from the switching matrix:

ll,.l [¡r,. trr'lll,rl
I i-l li,, -;; I li] { s-37 }

from which:

i,o 0 -To,o) = To,n l* { 5-3S }

or since '¡,¡' is a scalar:

_tt.^= .rn".t^ { 5-39}'u (l Ià o) "" 'h

Substituting in the earlier relationship for the harmonic component I* (frorn

Equation 5-36),and 'ùn ' {f.or Equation 5-30):

_l
\" =;j-- 1,n Zn' n\ t s-40 Ì" (l roo)

where 'l¡ ' is a matrix housing all but the fìrst row of the matrix 11S.¡ , i.e.:

4 =[Tn,o rn,nl { s-41 }

The dc component can therefore be defined to be:

l.o =Vot \ ls-42|
where:

-l
Yo =¡1; ror, zñ' rr, { s_43 }

which is a row array including both dc and harmonic elements.

In a similar fashion, the expression for I can be expanded:

\n=Zi' ú^n { 5-44 }
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Substituting for V"n from (Equation 5-30):

Ì* =Z;' rni"

or:

lo' = În\
where:

Vn =Z;' în

The equations can be combined to give the harmonic domain

representation of the circuit:

L=v V'

where:

v =rI,l
Ivn,]

{ s-4s I

{ s-46 |

{ s-47 }

admittance matrix

{ s_48 }

{ s-4e }

Algorithm 5-4

will show numerical solutions of the circuit considered in thisThe following section

section.
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The following algorithm can be used to generate the elements ofthe admittance matrix:

Yi.n, o I,o l, cr.2, o2, f o, L,Rì - Tr. TlSin,o 1,o ¡,a 2,o2ì'
dim.2.n

Tgn submatrix Tr,0,0, l,diml

Tn submatrixiT s, l, dim,0, dim

,Zn submatrixi2 ri.fo.L.D(n) I identiry(2.n l).R,l,dim,l,dim,

-, I r-l0 , _ .l0n.i¿n .in
I t. j

- 0,0

'n _n 'n
Y stack iY 6, Y n'i
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(4.11 A from first column, first row of Table 5-5, 2.2 A from first column, first row of
Table 5-6) respectively.

However, the switching function as defined by Rico et al I l3 ], without adjustment to the

firing angles, is only valid for the conditions where there is:

. no phase shift in applied fundamental frequency voltage,

. no even order harmonic voltages, and

. no phase shift in odd order harmonics.

Although not indicated in the reference [ 13 ], the switching function must be locked to

the phase of the source voltage, or incorrect results will be obtained. This is a problem

with Rico's algorithm as presented in his paper. In order to overcome this, the proposed

HDA algorithm implementation adds a phase shift into the switching function.

The phase shift can also compensate for the effects ofodd order harmonics if the positive

and negative conduction intervals are the same25. The switching function, without

adjustment to the firing angles, will provide incorrect harmonic content if the above

conditions are not satisfied, possibly indicating a weakness in the model proposed by

Rico et al I l3 ] if it is used in conjunction with operating conditions outside of the norm.

Any TCR control system that uses conduction angle for closed-loop feedback control will
automatically adjust the frring angle until the target conduction angle(s) is(are) achieved.

This includes automatically (in the time domain) compensating for harmonics and phase

shift in the source voltage waveform.

In the following case (Case'3'), the voltage source is assumed to include significant 2"d

and 3'd harmonic components (not in phase with the fundamental frequency). The circuit

25 ln a 'normal'mode ofoperation, conduction angles would indeed be similar, but to be general, the model
should be able to handle serious distortion in the firing angle circuit resulting in unequal conduction angles.
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Table 5-7 Harmonic Content of Waveforms after Àdjustment to Firing Angle

5.3.4 Summary

The switching function methodology provides a method for preliminary harmonic

calculations. It is not a 'purely' frequency domain method. It carries time domain

information indirectly through the harmonic content of the switching waveform, i.e., the

characteristics of the switching function are dependent on the firing angles and

conduction angles which are in fact time domain quantities.

The admittance matrix methodology described in Section 5.3.3 above could be used for

small signal analysis. It provides a convenient means to quickly determine the

dependence of harmonics in the circuit current on harmonics in the source voltage.

Its primary weakress is that it requires a reasonably accurate estimate of firing angles and

conduction angles to give correct results for operating conditions outside the norm. These

30tlo3

a
a
b
a
b

16rlaô

a
E

b
a
b
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angles could come from time domain analysis. Alternatively, an algorithm could be

developed to emulate the trial and error process described for test case 3 above, possibly

based on a neural net solution. Again, with a more robust harmonic domain square root

function the HDA treatment of the thyristor controlled reactor would be completely

flexible.

In the form described above, and when used with circuits where commutation is

involved, the harmonic domain switching function would have only limited application in

the overall HDA methodology as proposed by the author. It could be used, though, for

small signal harmonic analysis of most power electronic switching devices.

When the harmonic domain switching function is used to model the switching of non-

commutating circuits, it is very compatible with the author,s methodology. Its use

together with HDA simulation of controls is shown in the next section where it is applied

to the modelling ofa voltage chopping circuit.

5.4 APPLICATION TO VOLTAGE CIIOPPING CIRCUIT WITH CONTROLS

A 50 Hz voltage chopping circuit (VCC) was developed to demonstrate that the proposed

harmonic domain solution methodology can be applied to the analysis of circuits

involving a combination of power system linear elements, electronic switching elements

and controls with non-linear elements. The VCC is a fundamental element of most

three-phase voltage sourced converter (VSC) circuits. The VCC assumed is a single pulse

(per cycle) 50 Hz device, operating off a I kV ideal dc voltage bus. It is represented as

shown in Figure 5-24 as an ideal voltage source that generates no output for'c,'degrees of

the power frequency cycle and a constant output for the remaining portion of the cycle.

The VCC supplies a resistive load 'R¡ou¿' through a 2nd harmonic lossless series blocking

filter as shown in Figure 5-24(a). The load current is monitored and a signal representing

the dc component is generated from the measured current by passing the absolute value

of the measured current through a first order lag control circuit filter to reduce the

harmonic content as indicated in Figure 5-24(b). The equivalent dc component is
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compared to a signal proportional to the reference cuffent. A proportional-integral (pI)

controller is used to establish the reference angle'cr'that minimizes the error between the

reference cutrent and measured signal.

b) Cunent Monitoring Circuit

c) VCC Controls

Figure 5-24 C¡rcuit Diagram ofTest VCC and Controls

The simulation of the VCC itself and its low level firing angle controls is based on its

equivalent behaviour in the time domain. In the time domain, the reference angle 'o , is

compared to a ramp with a period of 1 cycle and a magnitude of360 degrees. Ifthe ramp

has a greater magnitude than the reference angle'ct', the VCC is turned on, creating a

I kV voltage at the output. When the ramp is less than 'cr ', the output of the VCC is set to

2e10.

The parallel L-C circuit forming the btocking filter in practice has a net impedance of
zero for the dc component, due to the presence of the inductor. Standard admittance

Lou",
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matrix definition of the network for the complete harmonic domain is therefore precluded

due to the resultant singularity in the dc component ofthe admittance.

The blocking filter also creates a very high impedance and corresponding low admittance

at the second harmonic. This exposes the solution of the network to potential numerical

issues.

The PI controller also creates a numerical anomaly in the dc component as the effective

gain ofthe integral component ofthe controller is infinite. The dc component ofthe input

to the controller must be set to zero numerically, affecting the output of downstream

calculations and at the same time the dc component of the ouÞut becomes independent of
the input vector making it a function of upstream calculations. It is not possible to define

a single matrix that represents the harmonic relation between the input and the output of
the PI controller. Therefore, the harmonic and dc components must be treated differently.

The relationship between the harmonic voltage produced by the voltage chopping circuit

itself to the firing angle 'cr' can be defined by a switching function matrix. For this

demonstration, a fixed dc voltage input to the convefter has been assumed, i.e., with no

superimposed harmonics on the converter supply voltage. The product of the switching

function matrix and the dc voltage source supply vector (with no harmonic components)

becomes a simple harmonic voltage vector that is a function of 'c¿'. If the firing angle

contains a harmonic component (i.e. it is time varying, which is the case in this

demonstration), the switching function matrix concept has to be adjusted to take into

account the harmonic content of 'ct'.

The controller to the hypothetical VCC contains the control block function 'lxl'. In the

time domain, this function would simply invert the input signal if it became negative. The

harmonic domain equivalent of this function as described in Section 2.7 is nonlinear, with

the characteristics of the transfer function dependent on the characteristics of the input.

The use of this element was included to demonstrate how the HDA methodology

proposed can readily handle this type ofnonJinearity.
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While many of the mathematical techniques to model the electrical network linear

components and the linear control system components are similar, the relative

magnitudes of the data in the resultant matrices could vary by orders of magnitude

introducing numerical problems when the matrix-matrix and matrix-vector numerical

operations are carried out. In a conventional power flow analysis, use of the per unit

system normalizes the data such that the admittance matrix or Jacobian matrix contain

numerical entries of similar orders of magnitude. For this demonstration, no scaling has

been introduced and as a result introduces numerical issues in the iterative solution ofthe

network.

The harmonic domain equations defining the power circuit (determined from the

representation of basic electrical components given in Chapter 3) can be shown to be:

i*o = Z*uiu-t ü"."

where:

f 1n*,." * n,""n ¡
Z.ou'" = 

|

lun

õn,

(Rsrce+R¡oad).l1.ì +({rnr" ,-nn". on )-r + znro .c¡¡,", .o¡ 
) 

I

{ s-s0 }

.....{ s-sl }
and 'fo' is the nominal system frequency.

In the above partitioned expression for'Z*"i"', the subscripts 'h' denote the harmonic

components only of the identity'T'and derivative 'D' operator matrices and the zero

vector õ. The limitations introduced by the zero net dc impedance ofthe 2nd harmonic

filter are eliminated by combining the filter with the resistance ofthe source and load.

The harmonic domain equations describing the transfer characterjstics of the measuring

circuit are:

Ir"^ = R"t l*¿ { s-s2 }
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where K.l is a sparse harmonic domain matrix representing the characteristics of a first

order lag function. It is determined using the HDA function FOL as described in

Chapter 4. I.e.:

K.r = FOL(2¡fo r¡)

Similarly, the filtered current is:

iub. = Abs (r,.* )

Io,, = K, L*
where:

{ s-s3 }

K.z = FOL(2nfo .trz )

The Abs function returns a harmonic vector housing the harmonics included in the

absolute value oflhe measured current ' tmeãç'

{ s-s4 }

, (-{< ì

In the control block diagram, the harmonic response ofthe control angle cr is given by:

1"" = Inn -i*
d = K¿ .i"., { s-56 )

where:

K13 = ptD(cpi,2rrfo .rpi,0) { s-s7 }

and Gpi and rpiare the proportional gain and integral time constant ofthe Pl controller.

The function PID generates a sparse harmonic domain matrix representing the

characteristics of a proportional, integral, derivative control circuit. For this application,

the derivative time constant is zero. Because of the integral term, the net dc transfer

characteristic of the PID function, although infinite, is set to zero. As the output ofthe

integrator is finite, the dc component ofthe error signal must be zero, i.e.:

L"o =g¡ { s-s8 }
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The reference voltage is derived using the integrated harmonic domain function

CompRamp that returns a vector housing the harmonics of a pulse waveforrn depending

on the harmonic content ofvector '¿'. I.e..

ür", = cornpnarnp (ã, fo )

The source voltage is assumed equal to the reference voltage, i.e.:

irr"" = Vr"i

The equations can be combined into three simultaneous harmonic expressions:

Ì.r"" - compRamp(õ): õ

1",' + t-r"¡ - K¿ .Abs(K"t .Z"q"i"-l \,"")=o
I-"oo = o

dn R.rn 1".r. = dn

{ s-61 }

Initial attempts to solve the above set of simultaneous equations entirely in the ffequency

domain were unsuccessful. As discussed in Chapter 4, Gibb'sJike oscillations associated

with the ramp function created multiple intersections of the fixed ramp and the reference

signal. This translates into multiple solutions in the frequency domain creating numerical

stability issues.

Even after slipping into the time domain to solve these problems, numerical issues were

still present associated with forcing the dc component ofthe current error vector'i",ro'to

zero.

The author believed that it was essential to demonstrate that the model could be apptied

to combined electrical and nonlinear control systems, to add credibility to the proposed

HDA model. To this end, an alternative algorithm was developed to solve the above set

ofequations, { 5-61 }, that does involve a slight digression into the time domain.

The solution for this example was divided into two separate components.

{ s-se }

{ s-60 }
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The HDA method was used to establish the scalar or time domain value of 'ct,, that would

be required to force the dc component of the current error vector to zero. This required a

modification to the CompRamp function to accept a scalar value as an input.

Tbe modified Mathcad@ implementation of the algorithm is as follows:

-ß
Þ'n max ' to t ,'

¿1t

lor i€ l..n max

, _ sint i.Ê )

r_2i lt).1i
. cos(iß) I
t.z 

' .
t.,t

lr
Algorithm 5-6

The resultant algorithm is a very minor calculation and is the same as the algorithm that

would be used to define the harmonic content of a switching function with the same

characteristics.

The harmonic domain equations can be re-arranged to define the relationship between the

dc component ofthe current enor and the scalar'c¿'as follows:

iK 12.abs iKlYcompnampio o,nrn*ì ì 10.1000 - I ¡ef

KIY above is a sparse matrix defined to be:

99



i lì:Lirt<i ¡ - .rr:t¡.:Ìiliii,it r., P¡i\\¡r'frlr'.i!'ijtlir:, !.ì,,ir,ùìt;l! 1).\t..,=i

The derivative of the modified CompRamp function with respect to 'o,' in Mathcad@

implementation format can be shown to be:

-tolq'nmax tn --¿
for ie 1..n.*

, f2 ì l. cos(i.c¿)

L . srn( r.c )

f
fI

Algorithm 5-7

This permits a Newton-Raphson solution algorithm as follows:

0 ct - 0.deÊ

-iterrI iter:1.000

. tKr2.l p.signiKlYCompRampioo,nfn*i ir.KlYdbydcr o o,n rnux to.l

1

,"" 
* rt uot KlYcompRampcro.nma* 

01000 
Irelo

o.c{.oi^q,

Algorithm 5-8

Note that the Jacobian and firing angle are both scalar quantities in the above

expressions.

Having solved the dc component of the cuffent error, the harmonic content can also be

directly calculated. I.e.:

,."" - CompRampio o, n

YV, Kl YV <rce

YV abs( KY\4

-^ - K -o AbsKYV.1000

en ''II"q I ref

Algorithm 5-9
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The product of the matrix R", (defining the characteristics of the PI controller) and the

cuffent error vector contains only harmonic content since the dc component of K"3was

originally set to zero. Here we will introduce a new variable 0 equal to the product:

F..r;{*ddl

The dc component of0 must be defined such that the time domain evaluation at,tllt=oo,is

correct. i.e.:

I sum. c{, o

for ie l,.nru*

sum sum 0, ,.cosli.øol er.siDlid.ol

. sum

Algorithm 5-10

The circuit was solved using the data shown in Figure 5-25

The harmonic content of the individual voltages, currents and the reference angle 'd

'were calculated as follows:

"."" 
,. CompRamp .t, o,n ,n*ì

load 'zequiv 
l vrr"" looo

filt -'K rl l load

uO, - abs i.l 6¡ì

meas "K¡2 labs

err -lmeas l¡ef

o.0o 0 .Kr3.l"¡deg 0o -0o

Rload l loadload 
rooo

v load
Ioad ^

Algorithm 5-l I
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The solution algorithm solved in less than 6 iterations. The correction to the firing angle

at the end of the 6ú iteration was in the order of 10-6 degrees. With the modified

algorithm, there was no evidence of numerical instability for the adverse conditions

selected. The magnitude ofthe harmonic content of the voltage and currents is shown in

Figure 5-26. The lack of 2nd harmonic in the load voltage and current confirms that the

2nd harmonic blocking filter is performing correctly. The absolute function results in the

generation of 2nd harmonic in the control sigrral t"o, but is again reduced in the control

signal Ì6,, by the first-order lag circuit.

o -5OHz nmax,, I ø -2n.f o loler -.00000001 it.*

srce .0l O L filter . lOOmH Cfilter -25.!¡ Rload .99.99C)

¡ -.O0l.sec rfy..2sec GO¡ .200 rpi -.0001.sec

t t"å ' ' 
I."fr n.* - o

Figure 5-25 Data used in HDA Analysis ofVCC

The potential singularity introduced by the zero impedance dc component ofthe blocking

filter was avoided in the example by combining the impedance of the filter in series with

the source and load resistance. This allowed the use of the standard admittance matrix

defrnition for the equivalent circuit of the network. The equivalent sparse matrix

Z.ou¡u used is poorly conditioned as a result of the high impedance at the second

harmonic, but it is non-singular for the condition studied and did not result in numerical

problems where its inverse was used in the calculation ofsystem currents.

The numerical anomaly introduced by the dc component of the pI controller was solved

by solving the dc and frequency dependent components ofthe network separately.
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Waveforms for each of the major currents and voltages were re-generated ftom the

harmonic content and are shown in Figure 5-27 for time domain validation ofresults. The

cjrcuit was analyzed in the time domain using PSCAD/EMTDCTM (Version 2) to validate

the harmonic domain analysis. The EMTDCTM waveforms shown in Figure 5-28 are

virtually identical to

methodology

waveforms HDA time domain

with proposed HDA methodolo Ev,nit \rcl,affiely straight forward to include

harmonicþ on the dc uw o2tr-"uttáéiñEþirs+it. tn Algorithm 5-( rhe vottase

V.,.. whef harmonics are included. syÞlfõóèomes the convolur¡on of the harmonics

From the dompRamp function and tháharmonic content ofÀnlrape on rhe d\hus Th.From the {ompRamp function and táharmonic conrenr o$\oltage on the

î-\ 
J'd harmonic i' n'ese"r 

2)nr¡f-¡e"\-æ\
With sàtisfacto\ validation. it is concluded that the HDA rnethod can be

¿mbined 
electri\ontrol circuits with nonlinear and switching elements. For

dpgnstration. time \in concepts were used to estabtish the instant at which the

would start to conduct. author believes however that it should be possible to

ic domain, given the appropriate algorithm. IS

benefit the 'pure' HDA approach, as ssed

\rtherin 
chyJÉ)

o
(2

ñV >:
(

\^
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Simple Diode R€sistor Capacitor Test Circuit

The failure to converge is attributed to the incorporation of the capacitor directly into the

admittance matrix formulation of the network equations, i.e.: ,r-:V.Ë' and its direct

inclusion in the Jacobian. In the admittance matrix formulation, the capacitor creates

large admittance matrix entries at high frequencies. Any numerical corrections to the

diode bus voltage will make large numerical corrections to the current through the

capacitor. The large numerical corrections to the current cause large corrections to the

diode voltage at the next iteration; and, the solution diverges.

In a passive network, the Jacobian consists of only the admittance matrix, and the

inclusion of a capacitor introduces only numerical concerns at high frequencies. The

admittance matrix equation is solvable. Howeve¡ the large off-diagonal elements in the

admittance matrix at high frequencies reduce the condition of the matrix, increasing the

likelihood ofnumerical erors in the solution.

The author believes, but has not shown that there is an entirely harmonic domain solution

to the divergence problem. This is discussed further in Chapter 7.

5.6 OVERVIEW

The proposed HDA is a useful approach for solving power electronic circuits consisting

of diodes, thyristors and IGBT's. Generally, the implementation worked well for the cases

examined. Some weaktesses were identified in the numerical solution, particularly for

the R-C diode circuit described in Section 5.5. ln principle, the approach is selfcontained

and does not need recourse to the time domain. However, the author has been so far only
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able to improve the accuracy of the HDA square root function to a certain limit, which

proved to be insufficient for some of the problems discussed here. Hence a small but

elementary time domain solution was required for the solution of the TCR circuit.
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CHAPTER 6

APPLICÄTION TO TRANSFORMER SATURATION

6,I INTRODUCTION

Much work has been carried out modelling transformer saturation in the harmonic

domain. All of the reviewed published effort has involved some excursion into the time

domain to establish the magnetizing current waveform. Harmonic components of the flux

are used to generate a time domain representation ofthe flux. The magnetizing current is

determined at each point in time using some defined relationship between flux and

magnetizing current. The harmonic components ofthe waveform are then determined and

brought back into the harmonic domain in the form ofpure harmonic current injections,

Norton equivalent, or equivalent switching functions. This approach, while successful,

still involves the time domain to establish harmonic domain quantities.

In the harmonic domain approach proposed by the author, this is not necessary.

Transformer saturation can be modelled entirely in the harmonic domain with a one-to-

one correspondence between the equations used in the time domain and the equations

used in the harmonic domain.

6.2 HARMONIC DOMAIN MODEL OF TRANSFORMER SATUR,A.TION

The time domain analysis package PSCAD/EMTDCTM uses a continuous filnction to

describe the direct relationship between transformer magnetizing current and flux as

shown in Figure 6-1. The equation results in a curve which is asymptotic to two straight

lines on the flux-current diagram. One line passes through the origin and is propoÍional

to the transformer magnetizing impedance. The second line intercepts the flux axis at a
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'cut-off flux level and at a slope that is proportional to the saturated impedance of the

transformer.

The parameters used to define the saturation characteristics ofFigure 6-l are:

where:

m1 is the saturated reactance(p.u.)

mz is the magnetizing reactance (p.u.)

bo is the 'cut-off flux

The scalar algorithms defrning the relationship bet\¡,/een transformer flux and magnetizing

current2T can be expressed two ways.

l) Flux expressed as a function ofmagnetizing current is:

,u, ii rur, m r,m t, b o t - jB- I
mlI

b^
Dj .r

j

b
t.

ml m2
ILirr . ' salVsat i*, 

, ,-'

Algorithm 6-14

27 The equations presented here are a slightly more mathematically rigorous model ofthe saturation curve
used in PSCADTM in ùat no simplifoing approximations are made.
'" B, D, and E are constants used lo simpliry the ultimate expression for flux ,ry'

H
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As a result, the calculation of the magnetizing current harmonic spectrum given the

fundamental frequency and harmonic components of the applied flux can be carried out

entirely in the harmonic domain. The algorithm for the harmonic domain analysis is

essentially the same as the scalar algorithm, except that it uses the corresponding

harmonic domain functions and operators. The flux 'ry' is now an array housing the

fundamental frequency and harmonic components of the flux. The current'ir"i is a also

array housing the fundamental frequency and harmonic components of the magnetizing

current.

The harmonic domain algorithm is:

sat,i.\y,ml,m2,boi - B I
ml

sign(

Älgorithm 6-3

The use of the harmonic domain analysis method for calculating harmonics due to

transformer saturation is demonstrated in the following examples.

Consider first the case of a nonlinear inductor connected across a sinusoidal voltage

source of magnitude 1.2 p.u. The saturation characteristic is shown in Figure 6-1. Thís

applied voltage results in a purely sinusoidal flux ofpeak magnitude 1.2 p.u. (equal to the

cut offflux). A Mathcad@ calculation sheet was used to calculate the harmonic content for
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For each of the above three cases, the HDA results can be supported by time domain

simulations, validating the proposed HDA saturation algorithm. This result is extremely

satisrying, given the ultimate objective of developing a harmonic domain analysis tool

that would be one-to-one compatible with time domain modelling applications such as

PSCAD/EMTDCTM.

AíÌer preliminary validation using the simple test cases, the developed model is used in

the following example to solve an actual industrial filter problem.

6.3 HARMONIC DOMAIN ANALYSIS OF INDUSTRIÄ.L FILTER
COMMISSIONING PROBLEMS

This section provides a practical example ofthe apptication ofHDA to ac filter analysis.

During the course of validating the HDA transformer saturation model, the author was

also involved in the replacement ofan ac filter bank at an industrial plant where the major

load consists of four six-pulse star-connected rectifiers with interphase transformers.

Each six-pulse group produces 5tl', 7th, Ilù, l3th, etc. harmonics. Two of the rectifier

transformers are equipped with ungrounded star-star transformers and the other two have

ungrounded star-delta connections. The rectifier transformers are supplied from the main

63 kV switchyard over two 63 kV feeders. A star connected and a delta connected

transformer are normally paired on each of the feeders to provide effective l2-pulse

operation ofeach feeder (i.e. with approximate cancellation ofthe 5th and 7th harmonics).

Each rectifier however is operated independently so 6-pulse operation can occur,

particularly during start-up and shut down ofthe process.

The single filter bank that was originally in service consisted of two single-tuned filters

(5th harmonic and 7th harmonic) and two high-pass filters (12'h and 24s harmonic). The

filter has been redesigned into two smaller but identical filter banks. Each filter consists

oftwo single-tuned filters and one l2th harmonic high pass filter arm. Each filter is rated

for the condition with one complete filter out ofservice to provide operating flexibility in

terms of system voltage and reactive power control. Each bank is designed for full load

operation ofthe plant in either one by six-pulse, or up to two times twelve-pulse modes.
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The plant was originally supplied by an extensive 63 kV network. In parallel with the

replacement ofthe ac filters, the supply to the system was upgraded. A simplified single,

line diagram ofthe final network is shown in Figure 6-5.

To To
Rectifiers Other Plant Load

230 kv

T-

63 kV

35

MVA
Filter

iF,
63 kV

To
Local Load

To
23Okv

Network

Figure 6-5 Single Line Diagram ofSupply to Industrial Plant
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During commissioning of the new filters, problems were encountered from the moment

the filters were first energized. Modifications were required to the filter protection to

energize the filter banks even without the rectifiers in service. Once the filters were in

service, almost all switching events close to the station would result in loss of both filters.

Tripping of the second filter would occur within cycles of the loss of the {irst bank. As

changes to the ac system were being made at the same time as the replacement of the

filters, there were many switching operations including switching of transformers

(63/230 kV, rectifiers, station service and local load) and transmjssion lines (63 kV and

230 kV). The frlters even tripped as load was ramped-up on the rectifiers.

An urgent solution was required. The cost of lost production at the plant as a result of
fìlter outages was a major concem.

To gather as much information as possible on the cause ofthe filter trips, all ofthe relays

at the 63 kV fìlter and switching station were reconfigured to record a time slice ofabout

500 ms of the waveforms as used by the protection, for any activity by the relay, not just

the trip signal to the breaker. Depending on the event, the recorded waveform available

could be total current into the filter or current into any one of the three individual

branches.

While a complete set of waveforms was not available for any given event, it was apparent

that there were very high levels of4ú and 6th harmonics flowing into the filters and that

the magnitude of the harmonics in the waveforms were approaching continuous design

values for the filter components. This was not a good situation as both filters were in

service, but the filters were originally designed for single filter operation.

Design conditions for the filters took into account resonances between the filters and the

ac system at these harmonics, but only considering the rectifier to be the major source of
these harmonics, typicatly in the range ofa few amperes. Harmonic currents in the filter
branches were as bigh as 50 to 60 amperes at the 4th or the 6th harmonics. Some

conditions indicated lower levels with both harmonics present. The amount of harmonic
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content was dependent on the filter branch monitored and the nature of the initiating

disturbance.

Energlzing one of the 631230 kV transformers ('T3' or 'Ta') close to the plant almost

always resulted in a trip of the filters. One event was captured when the plant was being

supplied by only the four 63 kV circuits to the nearby generating station (generators ,G1'

to 'Ga') of Figure 6-5. One of the transformers was in the process of being energized

from the 63 kV bus as the first stage of connecting to additional generation via the new

single 230 kV circuit identified as 'L5' in the figure. The rectifiers were not operating at

the time. The 7tl' harmonic filter arm protection resulted in many of the resulting trips,

including the energization case. In almost all conditions, there was evidence of extremely

high levels of6ú harmonic curent in the 7th harmonic filter branch.

The author's HDA toolbox was used to assist in determining the nature of the problem,

which in turn led to a method for solving it. The high levels of 4th and 6tb harmonics in

the filters could result from

1) Magnitudes ofharmonic current sources in the system being much larger than

design values.

2) Amplification ofcurrent in the AC filters due to resonance with the rest ofthe

system being greater than design conditions.

The network was simplified to the equivalent circuit shown in Figure 6-6, and an

equivalent HDA model of the circuit was developed. Appendix B gives the Mathcad@

implementation ofthe set-up and initialisation ofthe HDA model. Filters are represented

explicitly, the ac system is modeled as an equivalent, and, the transformer is modeled as

an impedance in series with non-linear saturation characteristics. The HDA model

permitted the direct analysis of harmonic current in the voltages (to ground) at any

location as well as the harmonic current in anv ofthe branches.

Selection of models and parameters was, in general, made to minimise the damping

exhibited by the modelled network and hence ampli$ any resonances that may occur.

The selection ofconservative parameters is based on two objectives, namely:
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to provide an indication ofthe minimum level of harmonic current sources

required to excite the levels ofcurrent observed in the fietd

to provide a severe test for the proposed HDA method

The hlters were represented by fixed inductors, resistors and capacitors. The parameters

for the capacitors and the inductors and the resistor ofthe high-pass filter were based on

design specifications for each of the components. The resistors modelled in each of the

51h and 7ú harmonic single-tuned filters were selected to provide a filter'Q' of 100 at the

tuned frequency. The net impedance-frequency characteristics ofboth banks are shown in

Figure 6-7(a). The impedance of each individual filter branch was validated against field

measurements. The validation showed that the total calculated impedance ofeach filter is

likely within several percent ofactual impedance at all but a narrow range offrequencies

between the 5ú and 6th harmonics. The net impedance ofthe filter at the 6th harmonic is

heavily influenced by the sharply tuned parallel resonance that occurs between the 5ù and

7th harmonic filters. Slight variations in the filter component parameters will affect the

exact frequency at which the resonance occurs. Variations in damping from the .e'

values assumed will also have an impact. Both effects introduce unceÍainties into the

total filter impedance at the 6th harmonic.
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Figure 6-6 Energization Circuit and Equivalent Circuif

The ac system is modelled as a resistor and inductor in series and represents the variable

with the largest possible range of values in the analysis. The impedance ofthe ac system

at any given frequency will vary significantly with time as a result of changes to system

operating conditions and changes in network configuration. short circuit studies of the

nefwork canied out by others estimated the range ofshort circuit levels to be within I600

to 2000 MVA. The inductance of the system was arbitrarily selected for this analysis to

create a resonance between the ac filters and the ac system at exactly the 6th harmonic.

The inductance corresponds roughly to a short circuit level of about 2200 MV A at 60 Hz.

This is slightly outside the estimated range but the author \¡r'as more interested in the

harmonic analysis than the behaviour at fundamental frequency. The ac system resistance

was selected to provide an X to R damping ratio of 15 at 60 Hz. This is consistent with

the damping ratio of l5 used in the design ofthe ac filters.
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results for an identical unit. The non-linear magnetizing circuit is represented by the

Harmonic Domain Saturation characteristic described in Section 6.2.

In the HDA model, the harmonic impedance for the ac system is calculated only once and

stored in the sparse impedance matrix Zsls. Although a constant resistance - constant

inductance system model is used in this analysis to facilitate the set-up of the impedance

matrix, the matrix could have been based on full system network reduction analysis with

no increase in complexity. It could have also been set-up arbitrarily to create

simultaneous resonances at more than one harmonic.

In a similar manner the harmonic impedance of each filter branch and the total harmonic

impedance of both filters is calculated only once based on the frlter parameters,

confìguration and harmonic number and stored in sparse matrices for each of the

components. The total admittance of both filters is stored in a matrìx n. The harmonic

impedance ofthe transformer leakage reactance and resistance is stored in the ma;trix Z*.

While both the ac system and transformer were modelled as constant resistance devices,

factors such as skin effect and transformer eddy currents will tend to increase the

resistance with frequency. The more conservative approach adopted (i.e. less damping at

harmonic frequencies) is consistent with the two stated objectives ofthis demonstration.

A harmonic Thévenin equivalent of the ac nehvork was developed that included the ac

system, the ac filters and the series impedance of the energized transformer. The

harmonic equivalent is determined using the same numerical atgorithm that would be

used for the formation of a single frequency equivalent except matrix operations are

involved rather that scalar operations. The Mathcad@ implementation of the Thévenin

equivalent impedance calculation is:

th"rYf'Yr*rllZ {6-1}

{6-2}
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and the Thévenin equivalent voltage is given by

{6-3}

{6-4l.

{6-s}
and:

{6-6}

For this example, the source voltage (." was assumed to consist of only a fundamental

frequency component (vr. r). Peak voltage quantities were used in the analysis for

compatibility with the saturation characteristics. These were adjusted to RMS quantities

for output of individual harmonic content.

The only source for harmonic excitation of the system-filter configuration shown in

Figure 6-6 is the harmonic content of the magnetizing current of the open-circuit but

energized transformer.

In linear single frequency HDA models, flux at 60 Hz with a dc offset would be applied

to the transformer saturation characteristic in the time domain. The waveform of the

magnetizing current would be analysed and the harmonic content determined. The fixed

impedance network would be analysed with harmonic curent injections to determine the

harmonic flow in the filters. This process, however, does not take into account the impact

that the magnetizing current will have on the flux.

Later HDA models as described by Semlyen I l8 ] and Dommel I 17 ] calculate the

harmonics of the excitation voltage based on the fundamental fiequency and harmonic
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response of the initial current calculations. The time domain waveform of the flux is re-

generated by summing the Fourier coefficients at each time step. The waveform is

applied to the saturation characteristics to obtain a new magnetizing current waveform

and the new currents, based on a Fourier analysis ofthe waveform, are injecfed into the

network. The process is repeated until there is no refinement to the magnitudes of the

currents.

Although the HDA saturation model developed by the author lends itselfto other iterative

network solution techniques such as Newton-Raphson, the author has for this example

used a Gauss-Seidel iterative process similar to the repetitive methodology described

above. The most significant difference is that in the author's methodology, the harmonic

currents in the magnetizing current are determined directly from the harmonic content of
the flux. No flux and current waveforms are required.

The Mathcad@ implementation of the algorithm used is shown in Figure 6-8. It is simply

a Gauss-Seidel iterative solution with an acceleration factor of 0.2. New values ofvoltage

' i.u, ' across the saturated element are computed at the stalt of each iteration based on the

differences between the harmonic voltages at the previous iteration and the new voltages

' i"r.n"* ' calculated based on the previous set of harmonic current injections. The change

to the voltage is limited by the acceleration factor 'accel'. Flux is set equal to the integral

of the voltage '\"' by the operator 'OneByD'. This matrix is simply the inverse of the

harmonic component of the derivative operator matrix with the dc component arbitrarily

set to zero. The calculation of Z,¡ is not visible in Figure 6-8, but it is readily calculable

per equations 6-1, 6-2, and is shown in Appendix B.

Here, a Gauss-Seidel iterative approach (popular in load flow programs) is used as the

engine instead of the Newton-Raphson solution that was used in earlier chapters. The

solution converges within about 20 iterations to an acceptable level ofcorrection. For this

application, a maximum change of lo/o of the 6ù current harmonic injection was used as a

guide. The iterations were increased to over 50 to insure numerjcal stabilitv of the

solution.
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Current (A RMS)
4th harmonic

80
6th harmonic

24Magnetizing Circuit
5ù Harmonic Filter
-rh .,/ f1aÍnonlc ¡ lfier

65 54
16 55

These currents are in agreement with the 50-60 A filter currents at the 4th and 6th

harmonics observed in the freld!

Based on the tabìe it can be seen that even with a very sharply tuned resonance at the 6th

harmonic, the amplification from source (magnetizing circuit) to the 7tb harmonic filter is

only about a factor of about two. The amplification factors are less at the 4th harmonic.

The amplification at the 4th harmonic would have been larger if the filter and system were

also tuned to a 4ù harmonic resonance.

The fact that the amplification at the 6th harmonic, as established by HDA, was only a

factor of two was a key factor leading to the ultimate solution to the problem. (i.e.:

simply an adjustment to the protection.) A change was made initially to the time dial

setting on the basis that transformer saturation inrush currents are temporary (possibly

lasting up to 20 seconds). The manufacturer adjusted the protection to be closer to the

short time capability of the equipment.

Had the amplifìcation factor as determined by HDA been larger, the consequences could

have been much more serious. It may have been necessary to redesign the filter. Lower

values of4ù and 6ù harmonic currents in the system (possibly from other sources) could

have also caused the fillers to rrip.

The conclusions that can be drawn from the above demonstration are that:

¡ The HDA methodology proposed by the author has been tested and used in the

analysis and was instrumental in establishing a solution ofan actual system problem.

The methodology was able to reproduce levels of harmonic currents similar to those

obtained by system measurement.
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o The HDA methodology has worked well in an environment that appeared to pose

difficulty from a numerical viewpoint.

The author's proposed HDA in general provides a very powerful tool for the design and

analysis of systems where ac filtering is an integral component. HDA provides answers

directly in a form that can be used in design or compared to design parameters of
equipment.

The HDA methodology proposed by the author provides additional flexibility in that the

HDA model is extremely simple, can be setup quickly and provides the fype of
immediate answers that are required in the practical solution of field problems.

6.4 USE OF HDA FOR TIME DOMAIN ANALYSIS

In this section it is shown how the proposed HDA methodology can be quickly used to

solve a problem that traditionally would have been dealt with only in the time domain.

In this example, HDA is used to confirm the likely cause of bursts of severe current

distortion from the same rectifier system described in Section 6.3 of this chapter. During

one ofthe filter tripping incjdents, protection on one ofthe 63 kV feeders to the plant also

picked-up but reset and did not trip the rectifier feeder. The plant advised that no

switching operations occurred at the time, ruling out rectifier transformer energization as

a cause ofthe filter trip.

Because the feeder protection picked-up, waveforms of the feeder three phase currents

were automatically recorded by the relay at the time of the incident. These were

downloaded for analysis. It \¡,/as apparent that the waveform included a rectifier load

component both prior to and during the burst ofdistortion. This component was removed

from the waveforms by simply subtracting the waveforms prior to the burst from the

waveforms during the burst. The resultant waveforms are shown in Figure 6-15.
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As two of the resultant waveforms exhibit a sustained zero component over a portion of
each cycle, it was deduced that subtracting the rectifrer load component from the

waveform was reasonable, and that the disturbance originated from the second rectifier

where the transformer had been energized but the valves were not initially conducting.

Several possible explanations of the phenomena were proposed, all related to some form

of disturbance on the dc side of the rectifrer transformer. The waveforms are similar to

those that might be expected as a result oftransformer saturation.

To demonstrate that rectifier transformer saturation could be the source of the problems,

the author's HDA saturation routine was used to calculate the harmonics in the

magnetizing cunent of a three phase ungrounded star-delta transformer energized at 63

kV, but with varying levels of dc flux offset in each winding. The results are shown in

Figure 6-16.
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The waveforms shown in Figure 6-16 were generated from the harmonic content in the

three current vectors Ìu,t. and Í". The process involved a'hial and error'approach,

adjusting the dc component ofthe flux (ABo, BCo and CA¡) in each ofthe delta windings

until the HDA waveforms were similar to the adjusted field measurement waveforms.

The Mathcad@ implementation of the HDA calculations is shown in Figure 6-17- The

current vectors q,i6 and t" house the harmonics of the magnetizing currents supplied by

each phase ofthe 63 kV bus.

Comparing Figure 6-16 to Figure 6-15, the waveforms show a remarkable similarity to

the modifìed field measurements. The HDA anatysis indicates that the burst of current

distortion could occur as a result of single sided saturation of the rectifier transformer. lt
is suspected that during start-up of the second rectifier, a control system malfunction can

occur that results in unequal current pulses through the valve windings of the rectifier

transformer. Unequal current pulses result in dc components ofthe currents also flowing

through the valve windings of the rectifier transformers resulting in saturation type

curents flowing in the primary windings.

This type of analysis is a traditional time domain problem. The author's HDA

methodology, however, does offer an altemate, simple and convenient mechanism for

carrying out the same analysis.
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CHÄPTER7

CONCLUDING REMARKS

7.1 GENERAL

The harmonic domain approach developed in this thesis is useful to the electrical

engineering community. The rigorous mathematical treatment extends the art of network

solution theory. The direct calculation of harmonics is an independent check for time

domain solutions followed by Fourier analysis. Computationally, the HDA method could

be more efficient than the time domain, particularly for systems with low damping and

systems excited with a large range of harmonics (e.g. dc and up to I MHz) or with a large

difference in their natural time constants. If the development of the proposed Harmonic

Domain Analysis methodologies continues, it could eventually be used to define initial

conditions for time domain transients solutions.

Chapter I of this thesis has provided background to harmonic domain analysis, provided

the motivation for this work and explained why the author believed that the HDA

methodology could be developed. Chapter 2 has described the development of the basic

harmonic domain mathematical tools (harmonic domain addition, subtraction,

multiplication, division, square root, absolute value and sign functions). Their use in the

development of harmonic domain models for basic electrical and control system

components has been described in Chapters 3 and 4.

Chapter 5 has shown that the HDA methodology can be directly apptied to the mode ing

of basic power electronic switching elements, while Chapter 6 has shown that the

proposed HDA methodology can be applied to the solution of electrical netwo¡ks with
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non-linear elements such as transformer saturation, and has successfully demonstrated the

methodology by its application to the solution ola real harmonic domain problem.

7.2 CONCLUSIONS

The prime objective of this research was to develop a Harmonic Domain Analysis (HDA)

methodology given the hypothesis that the harmonic analysis can be done entirely in the

harmonic domain. The HDA methodotogy presented in the thesis achieves this objective

and includes:

1) development and demonstration of algorithms for the direct evaluation of
advanced mathematical functions,

2) application of the mathematical algorithms to typical sources of harmonic

interactions such as nonlinear elements and power electronic devices,

3) an indication of how the algorithms can be incorporated into methodologies for

other types of po\¡,/er system analyses.

Based on these objectives, it was concluded that the hypothesis given in Chapter l, i.e.:

That given three basic harmonic domain operators, i.e. add, subtract, and multiply

can be carried out entirely in the harmonic domain, it should be possible, also, to

directly divide two waveforms in the harmonic domain. Wjth these four harmonic

domain tools it should be possible, similar to the time domain, to develop more

complex mathematical functions such as the square root absolute value and sign

functions.

Given the availability of robust mathematical functions, it should be possible to

model nonlinear elements such as power electronic switching equipment and

transformer saturation directlv in the harmonic domain.

Given basic mathematical tools and the ability to model non-linear elements

directly in the harmonic domain, it should be possible to develop a methodology

where these nonlinear elements can be incorporated into existing data structures
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and algorithms to permit the solution of large electrical power networks entirely

in the harmonic domain.

has been verified and that it is indeed possible to apply the Harmonic Domain Analysis

methodology to practical problems.

7.3 PRINCIPAI ORIGINAL CONTRIBUTIONS

The principle original contributions made in this thesis include:

l) development of mathematical tools to do a number of time domain operations

(multiply, divide, square root, absolute vaìue and sign) directly in the harmonic

domain. These tools allow the direct computation of the harmonic content

(frequencies, magnitudes and angles) of a waveform without recourse to Fourier

series transformations of the corresponding time domain values. The original

contribution to the multiplication operator is its treatment as a transformation

matrix.

2) development of derivatives of the advanced harmonic domain functions,

permitting the use of the these functions in the Newton-Raphson or other

predictive type solution ofnonlinear harmonic domain simultaneous equations.

3) combining the above tools into a circuit analysis algorithm that uses admittance

matrix solutions. This allows for the direct harmonic domain calculation of
arbitrarily large circuits with non-linear elements.

4) inclusion of basic power electronic circuits, and nonJinear control function

blocks in the above HDA procedure.

5) development of a composite environment that permits mixing controls, circuit

elements and switching functions for direct use in the harmonic domain.

6) validation of the approach taken with detailed time domain simulation.

7) development ofa harmonic domain model for non-linear magnetising branches.

8) application of the saturation model to an actual fi lter-transformer interaction

example, including validation with measured waveforms and current values. This

shows that the approach is a valid design tool in real applications.
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9) demonstration that the proposed HDA methodology is comparible with both

Newton-Raphson and Gauss-Seidel algorithms for the solutjon of non-linear

equations, and as such would be compatible with the large network solution

algorithms developed for load flow fundamental frequency analysis.

7,4 LIMITATIONS OF HDA AND FURTIIER WORK

The approach developed so far is very effective and clearly establishes the feasibility of
the methodology. Angles of attack for some remaining limitations and suggestions for
potential improvements are now outlined below. These issues could be addressed by

future researchers in this field.

The Square Root Functíon

The HDA square root function described in Section 2.6 could be improved to

allow a better approximation for the harmonic content of waveforms that have

time domain step function equivalents with a significant length of time where the

waveform is close to a value ofzero.

Much work has been done in the transformation from frequency domain (entire

spectrum, not just harmonics) to time domain and the author understands that a

Lanczos fìlter is often used in these transformations to reduce the Gibb'slike

oscillation effect as a result of frequency truncation. Application of a Lanczos

filter in the harmonic domain to the waveform prior to using the ,best fit, square

root algorithms may reduce the dc offset effect and could be examined as part of
further development ofthe authors proposed methodology.

In algebraic evaluations ofthe square root, the argument can be scaled by a factor

with a known root2e into a range where the product of a large and small number

does not occur during the square root calculations. The author believes that it may

be possible to divide the time slice (in the harmonic domain) into periods where

¿e For example a scaling factor 100 could be used as the known root is 10,
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the argument lies within a given range, apply a scaling factor to this range and

evaluate the square root in the harmonic domain only over the range.

Superposition of harmonics should apply to evaluate the harmonic content ofthe
complete waveform. Again this could be investigated as part of further research in

this area to improve the HDA square root function.

Ongoing development of HDA müthemat¡cøl operators andfunctions

The author has developed the appropriate mathematical tools as was required to

achieve the objectives of the research. Additional mathematical tools can be

developed as required by future HDA developers. An example ofthis is to expand

the HDA mathematical tool box to include logical functions. The sign function

discussed in Section 2.8 of Chapter 2 can be adapted to a primitive analogue-to-

digital converter.

As a first step the sign function can be used to develop an HDA equivalent of a

time domain comparison function that compares two harmonic domain inputs, say

Ã and É retuming one level of output if Ã is greater than È (in the time domain)

and a second level if Ãis less than ¡. In this case the argument to the sign

function would be À-É.

The magnitude of the swing in the output of the resultant sign function (either +l

or -l) can be scaled by scalar multiplication, and shifted by increasing or

decreasing the dc component of the output to correspond to the desired output

levels. If the output levels are selected to be say 1 and 0 for the positive and

negative inputs respectively, the sign function is the first step in the modelling of
logical functions in the harmonic domain.

The abitity to model logical frrnctions in the harmonic domain would create many

more possible avenues for fufure investigations, entirely in the harmonjc domain.
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The square root function provided satisfactory results for many ofthe applications

tested but as noted earlier, there is room for improvement. Even with the

somewhat limited fi¡nctionality of the square root function, however, other

mathematical models dependent on the square root function were developed and

successfully demonstrated.

The author believes that with additional research and development, a complete

library of 'robust' mathematical and logical harmonic domain operators and

functions could be developed. These higher level functions would be required if
complete compatibility with time domain system modelling tools such as

PSCADTM is to be achieved.

HDA models of Thyrístors

Sections 5.2 and 5.4 of Chapter 5 demonstrate that circuits including diodes and

gate turnoff devices (IGBT, MOSFET, GTO etc.) as used in several modern

topologies such as voltage sourced converter circuits can be readily modelled in

the harmonic domain. As a thyristor is simply a diode with conduction intervals

determined by logic, the author believes that it should be possible to also model a

thyristor circuit directly in the harmonic domain. This could be subject ofongoing

research into direct harmonic domain modelling ofcomponents.

HDA Modelling of Ideal Inductors and Cøpacitors

The treatment of capacitors and inductors in the proposed HDA could be

improved. The HDA admittance matrix representing an inductor and the HDA

impedance matrix representing a capacitor are both singular. The singularity

associated with the inductor is eliminated if a small resistance is inserted in series

with the inductor.

An ideal capacitor can be introduced into the HDA admittance matrix

representing the network, but it de-couples the two connected nodes for dc
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phenomena. Successful solution ofthe network is dependent on the presence ofa
resistive type connection to ground at each of the terminating nodes, (which could

be sufficiently large so as to not influence the results)

The author's proposed HDA methodology is based on an admittance matrix

formulation with both the dc and harmonic components integrated into the same

matrix. A refinement to this methodology to treat the dc differently from the

harmonic component may eliminate the limitations imposed on the modelling of
ideal inductors and capacitors.

HDA Modelling of ldeal Derivative ønd Integrator Control Functions

Modelling ideal derivative and integrator functions in the HDA have the same

limitations as ideal inductors and capacitors. Derivative functions can be

incorporated provided there is a proportional term as well. Integrators can be

incorporated provided there is some additionat means to define the dc conditions

of the input (must be zero) and output, (completely independent of input,

dependent only on output ofother control system functions).

Similar to the ideal inductor and capacitor, a refinement to the HDA methodology

to heat the dc differently flom the harmonic component may eliminate the

limitations imposed on the modelling of these components.

Dertvafive of the CompRamp Function

The derivative of the non-linear CompRamp function is a matrix that is easy to

define and can be readily incorporated into a Newton-Raphson iterative solution

of its non-linear effects. The demonstration of its use in Section 5.4 of Chapter 5

is based on a full matrix model. Its implementation in production software would

likely take advantage ofthe fact that the two single dimension arrays that define

the contents ofthe matrix are almost identical.
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The Time DomaÍn Rømp Function

The time domain ramp function is a common mathematical and control system

modelling function. It is not only just used in conjunction with a comparator

function (as demonstrated in Section 5.4). It could be used in conjunction with

many other types of circuits such as input to s\¡r'eep circuits, harmonic generator

circuits, etc. In some applications, for example, if the output ofthe ramp was used

as input to an integrator or first order lag filter, it may be possible to neglect the

Gibb'slike oscillation effects. In other applications, however, the oscillations

could cause solution difficulties similar to those experienced with the

development ofthe 'CompRamp' function as described above.

The Gibb's-like oscillation effects could also introduce numerical issues

associated with the output of the sign function or \¡/ith other discontinuous

functions. To provide the greatest flexibility for future development of HDA

models, it would be very beneficial to be able to model any function, independent

of its ultimate use in the control circuit.

The author believes that there should be a solution to the Gibb's-like oscillation

effects. The Lanczos filter appears to offer some direction for the solution, and

additional research and development along this path would improve the flexibility

of the proposed HDA methodology.

Other control Block Functìotts

Chapter 4 described the modelling offirst order lag and PID type ofcontrollers in

fhe proposed HDA. It is suggested that with additional research and development,

the same procedures described in that Chapter can be applied to the development

of other control function block diagrams such as lead lag functions and 2nd order

filtering ftnctions.
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Methodologies similar to that used in the development of the HDA CompRamp

function could be used to develop more complex nonlinear models and their

analytical derivatives.

Cøpacítor Díode Circuìts

Although the author has explored (unsuccessfully) other treatments of the

capacitor-diode configuration discussed in Section 5.6, it is still believed that

there is an entirely harmonic domajn solution to the dìvergence problem. This

may involve restructuring the Jacobian to include an impedance model of
capacitor elements, solving for voltages instead of currents associated with

capacitor elements. This should improve the condition ofthe Jacobian.

The solution of the diode-capacitor combination would make a very interesting

topic for future research.

Noñon Equivalents

As the algebraic saturation function described in Section 6.2 of Chapter 2 is

continuous, it is possible to symbolically differentiate the flux-current expression

with respect to flux, establishing an equivalent small signal admittance at any

operating point on the waveform. In a similar fashion, it should also be possible to

differentiate the harmonic domain expression with respect to each component of
the flux, building up a small signal admittance matrix for each set of harmonic

operating conditions. The small signal admittance matrix would aid in the

development ofa harmonic Norton equivalent ofthe saturation charactedstics. As

well it would assist in the direct incorporation of saturation characteristics into the

Jacobian of a Newton-Raphson solution. Both would be useful for the iterative

analysis required for the harmonic domain analysis of very large systems. This

could be a subject for future research and development into proposed HDA

methodology.
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With resolution of the above limitations, the author's proposed HDA methodology could

be integrated into an admittance based harmonic domain analysis tool with graphic

interface (GHDA), capable of examining harmonic impacts between devices across an

entire power system network. The tool would be able to link with conventional power

flow and stability data (such as PSS/ErM or PSLFo) to define the fundamental frequency

component of the nefwork admittance matrix and generator dynamic data, link with

frequency domain programs (such as NIMSCANo) to establish the harmonic effect in the

electrical network and with compatibility in network configuration and data with time

domain software such as PSCADiEMTDCTM for cross-validation of harmonic domain

and time domain analysis results and for defining the initiat conditions for the transients

solution, avoiding time domain initialization.
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