
Bioinspired Algorithms for Pricing Options

A thesis presented

by

Sameer Kumar

to

The Department of Computer Science

in partial fulfillment of the requirements

for the degree of

Master of Science

in the subject of

Computer Science

The University of Manitoba

Winnipeg, Manitoba

March 2008

@ Copyright by Sameer Kumar, 2008



THE T]NTVERSITY OF MAIIITOBA

FACULTY OF GRADUATE STI]DIES
g¿Jgg

COPYRIGHT PERMISSION

Bioinspired Algorithms for Pricing Options

BY

Sameer Kumar

A ThesisÆracticum submitted to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

MASTER OF SCIENCE

Sameer Kumar @ 2008

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC's agent (UMlÆroQuest) to microfilm, sell copies and to publish an abstract of this

thesis/practicum.

This reproduction or copy of this thesis has been made availabte by authority of the copyright
o\ivner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyright owner.



Abstract
Option pricing is one of the fundamental problems in finance. Computing option

prices is a challenging problem and finding the best time to exercise an option is an

even more challenging problem. One has to be watchful for the asset price changes of

financial assets in the market place and act at the right time. This work proposes a

novel idea for pricing options using a nature inspired meta-heuristic algorithm called

Ant Colony Optimization (ACO) that captures the asset price movements. ACO

has been used extensively in combinatorial optimization problems and recently in dy-

namic applications such as mobile ad hoc networks. There has been no study reported

in the literature on the use of ACO for pricing financial derivatives. We first study

the suitability of ACO in finance and confirm that ACO could be applied to finan-

cial derivatives. We have then proposed two new ACO based algorithms to apply to

derivative pricing problems in computational finance. In this study, asset prices are

policed by ants to decide on the best time to exercise so that the holder will get the

maximum benefit out of the option contract. The first algorithm, named Sub-optimal

Path Generation generates various paths and identifies the best node in the solution

space for exercising the option. In this algorithm, ants follow the paths generated by

few ieading ants to find better solutions as they search the solution space leading to

what we call exploitation technique. In the second algorithm named Dynamic ltera-

tive Algorithm, ants explore the solution space incrementally dragging more ants on

the better path and eventually reaching the best node to exercise the option. This

algorithm captures the market place by using an exploration and exploitation tech-

nique. We analyze advantages and disadvantages of both algorithms. Our goals for



u1

the study, confirming the suitability of ACO for financial derivatives and identifying

the best time for exercising an option under given constraints are achieved by both

algorithms.



Contents

Table of Contents
List of Figures
List of Tables
Acknowledgments
Dedication

lntroduction
1.1 Basic Terminology
I.2 Nature Inspired Algorithms in Finance
1.3 Contributions of the Current Work

Some Option Pricing Techniques 7
2.I Binomial Lattice Option Pricing Model 7

2.2 Some Numerical Option Pricing Techniques 72

Ant Colony Optimization (ACO)
3.1 Ant Colony Optimization (ACO)

3.1.1 Foraging behavior of ants
3.I.2 Different ACO algorithms

3.2 Application of ACO in Finance

ACO for Option Pricing
4.1 Problem Statement
4.2 A First Simple Algorithm
4.3 Design of ACO Algorithms for Option Pricing

4.3.1 Sub-optimal Path Generation Algorithm
4.3.2 Dynamic Iterative Algorithm
4.3.3 Some Observations

5 fmplementationDetails
5.1 Sub-optimal Path Generation Implementation
5.2 Dynamic Iterative Implementation

IV

vi
vii
viii
ix

1

1
.)
ù

5

18

22

24
24
25

27

28

28
Ð.)ÙL

33
tt
ù r-,

JI

15
15

T7

IV



Coritents

6 Results and Discussion
6.1 Sub-optimal Path Generation Algorithm
6.2 Dynamic Iterative Algorithm
6.3 Various Features of Sub-optimal and Dynamic Iterative Algorithm .

6.4 Comparision between Sub-optimal, Dynamic Iterative Algorithm with
Binomial Lattice

7 Conclusions and Future Work

A Appendix

Bibliography

40
40
44
49

52

OT



List of Figures

2.L

2.2

3.1
9.)¿,á

Binomial Price Tlee
Backward Computation of Option Prices

Overview of Search Techniques
Ants facing obstacle in their path

Chart for Desired Profit vs Execution Time with Time Steps 2000
Chart for Time Steps vs. Execution Time with S15 Profit
Initial Graph 1

Final Graph 1

initial Graph 2

Final Graph 2

10

11

4.I Initialiy ants wander randomly. . .

4.2 Ants gradually start to find better nodes
4.3 Ants start following paths which lead to better nodes (bottom of the

figure)

5.1 Flowchart for Sub-optimal path generation algorithm
5.2 Graph 1: Graph with 15 nodes
5.3 Graph 2: Graph with 30 nodes
5.4 Flowchart for Dynamic iterative algorithm

16

T7

26

26

27

36

38

38

39

4L

42

44
44

46
46

6.1

6.2
6.3
6.4
6.5
6.6

Vì



List of Tables

3.1 A non-exhaustive list
3.2 A non-exhaustive list

1.1 Similarities between ACO and the real market 4

19of successful ACO Algorithms
of applications of ACO algorithms grouped by

6.1

6.2
6.3

6.4
6.5

problem type

Desired Profit vs Execution Time with Time Steps 2000
Time Steps vs. Execution Time with $15 Profit
Comparision between Binomial method and Sub-optimal path genera-
tion algorithm .

Number of Nodes vs Execution Time
Number of Maximum Links vs. Execution Time

22

47

42

43

48

49

vu



Acknowledgments

First and foremost, I want to thank my advisors, Dr. Ruppa Thulasiram and Dr.

Parimala Thulasiraman, for their guidance during my research and study at University

of Manitoba. My very sincere thanks to them for the support, encouragement and

great effort they put into training me in the scientific field during the course of this

thesis.

I take this opportunity to express my profound gratitude from my heart to my

beloved parents, "Dr. Keshari Kumar Singh" and "Mrs. Pushpa Singh", for their

never-ending support & faith and the sense of security they have always given me. I

would especially like to thank my father for all the advises he gave me, when I needed

them the most.

My deepest gratitude goes to my brother "Pawan Kumar Singh" and sister-in-law

"Deepti Singh" for their love and support throughout my student life. I also would

like to thank my niece "Vani" for the smile gifted to me, with her adorable and tender

voice on the phone calling me Uncle.

All the graduate students at the Department of Computer Science made it a

friendly place to work. I want to thank them for all their help, support, interest

and valuable hints. In particular, I would like to thank Monirul Hasan for all his

assistance and insight comments on the implementation issues.

VIIl



This thesi,s i,s dedi,cated to Lou'ing m,en'¿orA of mA hte grandfather, "Dr.

Shobh Nath Si,ngh". I ren'Lernber hi.m for all hi,s kzndness and wi.sdom.

IX



Chapter 1

Introduction

Computational Finance is a cross-disciplinary area that relies on mathematics,

statistics, finance and computational algorithms to make critical decisions. One of

the core tasks in this area is to analyze and meâ,sure the risk component that a

financial portfolio would create. A portfolio would generally comprise stocks, bonds

and other instruments such as derivatives. Derivatives are financial instruments that

depend on some other assets such as stocks. They are also referred to commonly as

options.

1.1 Basic Terminology

Option: An option is a contract in which the buyer (holder of an option) has the right

but no obligation to buy (with call option) or sell (wiih pzú option) an underlying

asset (for example, a stock) at a predetermined príce (strike pri,ce) on or before a

specified date (erpi,ration date). The seller (also known as writer) has the obligation



Chapter 1: Introduction

to honor the terms specified in the option contract (opti,on). The holder pays an

premium to the writer (see for example t2] t3])

There are two styles of options (call and put) and options can be divided into two

categories, vanilla options and exotic options:

o An European option can be exercised only at the expiration date whereas an

American option may be exercised on any date before the expiration date. Since

the American options provides added flexibility, their premium is generally

higher than European options. These two generally comprise vanilla options

due to their simpler nature.

o Exotic options are complex. These include Asian (based on some average),

barrier (looking for first stopping time), Bermudan (having few exercise points

during the contract period), and Russian (expiration time itself is floating).

These and other comprise exotic options.

Option pricing is one of the fundamental problems in finance which has lead to

the award of two Nobel prizes. In 1997, Myron S. Scholes and Robert C. Merton

shared the Nobel prize for the Black-Scholes-Merton model [4]. Recently, Engle re-

ceived a Nobel prize in 2003 for his Auto-Regressive Conditional Heteroskedasticity

(ARCH) model [5]. The generalized ARCH (GARCH) model has been a subject of

intense research and use in option pricing (see for example t6] i7]) Based on the

fundamental concept in these models, there are many numerical techniques proposed

in the literature for option pricing. The next chapter reviews these techniques with

detailed explanation on one of them, the binomial lattice approach [8].



Chapter 1: Introduct'ion

L.2 Nature Inspired Algorithms ln Finance

One of the current trends in science and engineering research is the introduction

of nature inspired algorithms. Nature inspired algorithms (also known as Swarm

Intelligence or evolutionary algorithms) [9] have been used in many applications to

solve many combinatorial optimization problems, including problems in telecommuni-

cations [10] [11] and dynamic networks such as mobile ad hoc networks [12]. Swarm

intelligence is an artificial intelligence technique inspired by animal societies such as

bees [13] [i4], termites [15], and ants [16]. These small animals live in a hostile,

decentralized environment and communicate with one another through a stigmergic

method to accomplish their tasks such as finding the food source. Ant Colony Opti-

mization (ACO) is one such swarm intelligence technique inspired by real ants. The

ants communicate with one another by depositing pheromone (scent) on the ground

to attract their fellow ants to follow their trail, one of the stigmergic approaches in

the animal world.

The feasibility of evolutionary algorithms in the field of finance has gained im-

portance and is being explored [17]. These algorithms have prospects in many areas

of finance such as to evolve trading rules, diagnosis of company's future etc. A key

advantage of using evolutionary algorithms to design a trading process is that these

algorithms can simultaneously evolve good rules and good parameters for such trading

process [17].

We found many similarities between the ACO and the real market (Table 1.1).

These similarities acted as motivation for the current study i.e. to apply ACO to

the option pricing problem. For option pricing, the solution space consists of a large



Chapter 1: Introduct'ion

ACO Market
Meta-heuristic search technique Investors look for best time to buv or sell
Based on the collective behaviour of decen-
Lralized ants; self-organized systems

Based on the collective behaviour of de-
centralized traders, investors etc.; self-
organized systems

No centralized control structure No central control among investors
Local interactions between agents lead to
the emergence of global behaviour-

Interaction between investors lead to emer-
gence of market behaviour

The agents follow very simple rules which
leads to very complex rules/algorithms at
the global level

Investors follow simple rules that lead com-
plex nature for the market

Table 1.1: Similarities between ACO and the real market

number of price nodes, each representing a time and price of the underlying asset

during the option contract period. The ants are basically agents of an investor. They

have a large bounded space of price nodes to search through in deciding the best time

(node) to exercise the option. The nodes within the search space are dispersed in

many locations and are connected in some random manner. The collective goal of

the ants is to find the best node to exercise the option to help the investor in making

an informed decision. This can be achieved by directing a path to the node, thereby

allowing other agents to quickly arrive at the node. This path can be created using

a variety of techniques as is discussed in the next chapter. ACO is a probabilistic

approach that allows the path to be created in a random r,¡/ây. That is, the graph is

ad hoc and random. There is no real structure to the graph. Therefore, ACO allows

flexibility by distributing the nodes randomly and thereby capturing the real market

place.



Chapter 1: Introduct'ion

1.3 Contributions of the Current Work

In this thesis, \¡/e use ACO to compute option prices. The objective of ACO

in most applications is to find the shortest path. However, in option pricing, the

primary interest is not in finding the shortest path, it is rather finding the best node

that brings large benefit to the investor by exercising the option at that node. In

other applications, the destination (food source) is known, however in the option

pricing problem we are looking to compute the destination (best time to exercise

the option). Other applications involved ant cooperation based on distance/time

between the nodes/activities but the option pricing problem involves cooperation

based on asset values. Therefore, the general purpose ACO algorithm has to be

redefined and redesigned for use in the option pricing problem. In the current work,

we first study the suitability of ACO in finance and confirm that ACO could be

applied to financial derivatives. We started with a simple algorithm, which did not

have any cooperation among the ants in finding an optimal node. However, this

understading acted as a good starting point. This experience and the analysis of the

results gave us the knowledge to develop improved algorithms based on ACO. We

have then designed two new ACO based algorithms to apply to derivative pricing

problems in computational finance. In this study, prices are policed by ants to decide

on the best time to exercise so that the holder will get the maximum benefit out of

the option contract. The first algorithm is a react'iue algorithm, named Sub-opti,mal

Path Generat'ion Atgorithm. This algorithm generates various paths and identifies

the best node in the solution space for exercising the option. In this algorithm, ants

follow the paths generated by some leading ants to find better solutions as we search



Chapter 1: Introducti,on

the solution space leading to an exploitation technique. In the second algorithm, a

proactiue algorithm named Dynam'ic lterat'iue Algori,thm, few ants explore the solution

space incrementally dragging more ants on the better path and eventually reaching the

best node to exercise the option. This algorithm captures the market place by using

an exploration and exploitation technique. We analyze advantages and disadvantages

of both algorithms. Our goals for the study, confirming the suitability of ACO for

financial derivatives and identifying the best time for exercising an option under given

constraints are achieved by both algorithms.

The current study is a proof of concept using ACO for derivative pricing. We

use American options as they are computationally challenging. To the best of our

knowledge the literature on pricing options using ACO is none.

We divide the rest of the document as follows. In the next Chapter, we provide

some background information on option pricing with a detailed description of one

of the common and classical techniques, the binomial lattice approach. We start

Chapter 3 with a description of ACO algorithm and then we highlight some related

work in general finance that uses other nature inspired algorithms. We describe

the sub-optimal path generation and dynamic iterative algorithms in Chapter 4. ln

Chapter 5, we present the implementation details. We provide results and discussion

in Chapter 6 and the last section presents conclusions and future work.



Chapter 2

Some Option Pricing Techniques

In this chapter we describe the binomial lattice model and other techniques avail-

able to price options.

2.L Binomial Lattice Option Pricing Model

One of the early models for option pricing is the Nobel prize winning Black-

Scholes-Merton (BSM) model [4] [18]. Black- Scholes developed a model to alleviate

risk involved in financial investments. Merton [18] augmented it with stochastic cal-

culus resulting in a stochastic partial differential equation (PDE) for the option. This

model is valid for simple European options and a major assumption was that under-

Iying stock would have constant volatility. A closed-form solution is available only

for simplified BSM model with many assumptions, especially since numerical tech-

niques for solving PDE were not popular in the finance community at that time.

This scenario changed in 1979 when first discrete time approach was proposed by



Chapter 2: Sorne Opti,on Pri,c'ing Techn'iques

Cox-Ross-Rubenstein (CRR) [8]. The CRR binomial model is a simple and intu-

itive numerical technique developed for pricing options. The binomial option pricing

model has proved over time to be the most flexible, and popular approach to price

options. If constructed assuming the same initial conditions, binomial model agrees

asymptotically with the Black-Scholes model. Moreover, binomial model can be used

for pricing American style options. The standard binomial option pricing model as-

sumes that the binomial tree is recombining with constant volatility, constant risk

less return and constant payout return. However, these could be relaxed unlike the

BSM Model.

Binomial model uses a binomial tree structure to price options. We divide the

time between valuation (current) date and expiration date into a certain number of

time steps. Each node in the tree represents a possible price of the stock (underlying

asset) at a particular time. In binomial method, knowing the asset price is the basis

for computing the option value. The valuation of the binomial tree is iterative; Afber

building the tree with asset price distribution it starts from the leaf nodes and works

backwards towards the root node, which represents the valuation date. The option

price at the valuation date is calculated by pricing option at all the intermediate nodes

between expiration date and the valuation date. This process, called "discounting"

involves moving backward in time from the expiration date to the valuation date.

Computing option using this iterative method involves three steps:

1. Price tree generation

2. Computing option plice (local pay-off) at each leaf node

3. Iterative computation of option values at earlier nodes using a discounting fac-



Chapter 2: Some Opt'ion Pric'ing Techn'iques

tor. The value at the root node is the value of the option.

Some of the variables and parameters that are required to price an option are:

Asset Price: ,9; Strike Price: K;Time to lVfaturity: T; Interest Rate: r; Number of

Steps: N; Interval time between 2 steps: Aú; Volatility: o; Probability: p; Upward

Nlovement: ø; Downward Movement: d.

Binomial Tbee

The prices at each node is computed by working forward through the tree from

valuation date (current date) to expiration date. An example of the binomial price

tree is shown in figure 2.1.. At each step (or level) of the tree, the price of underlying

asset can increase or decrease by a factor of u or d respectively, where u and d

are generâIly I0% or 20To change. If S is the current price of the underlying asset,

then the price at the next step will be either Su : S x u or,S¿ : S x d. Asset

price computation is repeated until the expiration date is reached. The value of the

increase (z) or decrease (d) factor is computed using the volatility o of the underlying

asset and the interval time between two steps [8] as follows:

U: eoÆ

¿ - "-oJñ

It is easy to notice that the down movement is assumed to be inversely proportional

to the up movement, to generate recombining tree.

Option value at the expiration date: The computation of option value starts at

the leaf nodes (maturity date) of the binomial tree. The value of the option at the

leaf nodes is simply its local pay off, which is defined as follows:

I:-
u



10 Chapter 2: Some Opti,on Pri,c'ing Techn'iques

0 
^t 

2Àr 3^r

Time

Figure 2.1: Binomial Price TYee

for a call option it is : Mar[(S - lf),0]

and for a put option it is : Marl(K - ,S),0]

Option value at intermediate nodes: Once the value of the option is computed at

the leaf nodes, working backward (figure 2.2) towards the root node (valuation date)

gives the value of the option. The option value at a node is computed using the option

values of the two children nodes (opti,onup and opt'iondown) weighted by respective

probabilities. opti,onup is multiplied by p, which is generally understood/interpreted

as the probability of underlying asset to move up and opti.ondown is multiplied by

(1 - p), which is the probability of underlying asset to move down. The p is given

bv [8]

s(r-ø)L7: - ¿p- u-d



Chapter 2: Some Opti,on Pri,ci.ng Techn'iques 11

Figure 2.2: Backward Computation of Option Prices

and the option value is given by

Opti,onValL!,e : e-'Lr (p x opti,onup * (L - p) x opt'iond,own)

where ¡¡" "'rúr is the discounting factor. In other words, the option value at a node

is the discounted value of the weighted sum of option values at a future time due to

up or down movement of the underlying asset.

For the European option, the value at each node is simply the option value com-

puted using the formula stated above. The value at the root node is the value of

the option on the valuation day. For the American option, the value at each node is

Marlopti,on ualue based on d'iscount'ing,local po,A-oÍ fl where local pay off is max(S-

K,0) for- a call option or max(K-S,O) for a put option. This step allows to identify

the best possible time to exercise the American option. Thulasiram et al. [19] have

designed and developed a parallel and multithreaded algorithm for this problem. Thu-



T2 Chapter 2: Some Opt'ion Pri,c'ing Techniques

lasiram and Bondarenko [20] have developed parallel algorithm for multidimensional

option pricing problem. Huang has extended these studies to Asian options l2I] [22].

Now we will look at other popular techniques used for pricing options.

2.2 Some Numerical Option Pricing Techniques

There are many other techniques for pricing options such as Finite differencing to

solve Black-Scholes model, Monte-Carlo simulations, Fast Fourier Tlansform (FFT),

Neural Networks and Genetic Programming. I will briefly discuss finite differencing ,

Monte-Carlo simulations and FFT in this section.

The finite-difference methods (see for example [23]) solve the Black-Scholes partial

differential equation (PDE) by approximating the partial derivatives by either an

implicit or explicit discretization of individual terms in the PDE and then solving

the resulting linear algebraic system of equations. Implicit method involves solving

PDE by indirectly solving a system of simultaneous linear equations (where unknown

variable being solved for, is itself used in the solution. Therefore, there is a higher

cost of iteration for convergence) and convergence is always assured. Explicit method

solves a PDE by using the appropriate boundary conditions and proceeding in time

through small intervals. These methods are easy and effective when number of terms

in the PDE is less. The choice of the discretization technique depends on the accurâcy,

convergence, stability, and the execution time required for the intended application.

There are many methods to discretize the partial differential equation for the

finite-difference technique. For example, the explicit discretization technique is very

simple but would compromise the accuracy of the resuit. Fully implicit finite-difference



Chapter 2: Some Opti,on Prici,ng Techn'iques

method can be implemented with some ease but has some serious stability issues. On

the other hand, the Crank-Nicolson method [2a] has much better accuracy and sta-

biiity and is popular for many general PDEs. While the error in the Crank-Nicolson

method is bounded, there is no guarantee that this error will not propagate in the

solution domain. One way to avoid this kind of error propagation is to use classical

Páde approximation technique explored in [25] for financial application.

Carr and Madan [26] used the fast Fourier transform (FFT) approach for pricing

options. The underlying idea of the method is to develop an analytic expression for

the Fourier transform of the option price and to get the price by Fourier inversion. The

approach assumes that the characteristic function of the log-price is given analytically.

This algorithm offers advantages like speed, which allows the user to compute the

prices for a whole range of strike prices. A mathematical improvement to [26] was

provided by Barua et al. [27) and the improved model captured a wide variety of

strike and spot (current) prices. Also, this new model was implemented in a parallel

computing environment [27] [2S] and the results were obtained in a shorter time for

series of strike prices.

Monte Carlo simulation is widely used for pricing derivatives due to absence of

straight forward closed form solutions for many financial models. Boyle [29] first

introduced Monte Carlo simulation to option pricing. The Monte Carlo simulation

allows simulation of several sources of uncertainties that affect the value of the un-

derlying asset (and hence the option), given an optimal rule for exercising the option.

The more the sampling size the better results can be expected by this technique.

However, as the sampling size increases, computational resource requirement also in-

13



14 Chapter 2: Some Opti,on Pri,ci.ng Techn'iques

creases. For simpler options models, Monte Carlo is not a good choice because it is

very time-consuming in terms of computation. The Monte Carlo simulation approach

is of interest to solve complex real options models. Chen [30] [31] studied the quasi

Monte Carlo method for option pricing. Quasi-Monte-Carlo technique introduces

some determinism in the simulation that brings challenges in parallel implementation

of the Monte-Carlo technique.

Surnmary: Until now we briefly described the techniques that are used for pricing

options. We propose to use ACO in this work for pricing options. We explain Ant

Colony Optimization meta-heuristic in the next chapter.



Chapter 3

Ant Colony Optirnization (ACO)

Swarm Intelligence is an approach to solve complex problems based on the social

behaviors of some insects and animals. Ant Colony Optimization is an evolution-

ary algorithm and is a part of guided random search techniques (Figure 3.1). The

ACO [16] [32] is a technique inspired by real ants in nature. ACO has been used

to solve many combinatorial optimization problems and recently in a more dynamic

environment, mobile ad hoc networks.

3.1 Ant Colony Optimization (ACO)

The ACO approach is based on the foraging behavior of some ants. Many studies

have shown interest in finding how ants in nature are able to find shortest paths be-

tween their nest and food sources. Research in this area has discovered that ants use

indirect communication to communicate with other ants. This indirect communica-

tion involves modifying their environment, and is called sti,gmerg'ic communication.

15



16 Chapter 3: Ant Colong Opt'imi,zat'ion (ACO)

Evolutionary

algorithms

Figure 3.1: Overview of Search Techniques

In stigmergic communication, the ants move to food source from their nest, deposit-

ing on the path (ground) a chemical substance excreted from their body known as

pheromone. Other ants can sense and perceive these pheromones and tend to follow

the path with highest pheromone concentration. Using this communication, ants are

able to forage and collect their food in an efficient way.

ACO involves a number of artificial ants (who behave like real ants) to build

solutions to an optimization problem. These ants exchange information about their

own solutions to other ants using a communication scheme similar to the one used by

real ants [1].



Chapter 3: Ant Colong Optimi,zation (ACO) 17

t
']
f.
if.
.,

t'

:l'
l'
tH
I
I'l

*

ù
,|'

c'.¡
ü':l:

l.
t
I

t,
:t
I

t {r.
,f
,f

t
t

.l- t

a) b)

A
c)

obstacle in their pathFigure 3.2: Ants facing

3.1.1 Foraging behavior of ants

Consider figure 3.2a the ants move from Node A, the nest, to node E, the food

source. We introduce an obstacle which obstructs the path between A and E. Ants

have to make a decision whether to turn right or left at position B or D depending

on whether they are coming from A to E or E to A respectively (Figure 3.2b). The

decision or choice of an ant is based on the intensity of the pheromone on the trails.

The first ant reaching point B or D has the same probability to turn right or lefb,

as there is no pheromone on either of the two alternative paths. The ants following

the shorter path will reach destination faster than ants following the longer path. In

the example, the path BCD is shorter than the path BHD (Figure 3.2c). Therefore,

the number of ants following the path BCD per unit time will be higher than the

number of ants following BHD assuming all ants move at the same speed. This

causes the pheromone levels on the path BCD to be higher than on path BHD. The

ants approaching point B chooses path BCD because of higher pheromone levels,



18 Chapter 3: Ant Colony Opt'im'izat'ion (ACO)

thereby, following a shorter path to the food source E [33]. As time progresses, the

pheromone along longer path evaporates leaving the ants to converge along shorter

paths.

The objective of ACO in most applications is to find the shortest path. However,

in option pricing, the primary interest is not in finding the shortest path, rather

finding the best node that allows the investor to exercise the option. Therefore, the

general purpose ACO algorithm has to be improved to handle this problem.

3.L.2 Different ACO algorithms

In the literature many types of ACO algorithms have been proposed. The first

algorithm based on the behavior of ants was the Ant System (AS) [33]. This paper

introduced an optimization technique based on ant behavior and proposed solution for

solving taveling Salesman Problem (TSP). In the TSP solution, an ant is placed on

each city and it travels from current cit¡ visiting other cities only once and returning

to the original or initial city at the end of the tour. The ants communicate by

depositing pheromones on edges connecting the cities. Eventually, the pheromone

concentration on the shortest path increases due to more number of tours by ants.

The pheromone on unused edges gradually evaporates completely in absence on any

reinforcement of pheromone. Ant System work led to a development of number of

ACO algorithms with good results in many applications. Table 3.1 outlines a non-

exhaustive list of ACO algorithms in chronological order.

Applications of ACO

Dorigo [32] [33] proposed ACO which involves distributed computation, positive



Chapter 3: Ant Colony Opti,m'izat'ion (ACO) i9

Algorithm Authors Year
Ant System (AS)

Elitist AS
Ant-Q

Ant Colony System
IVIAX-MIN AS
Rank-based AS

ANTS
BWAS

Hyper-cube AS

Dorigo et al.
Dorigo et al.

Gambardella & Dorigo
Dorigo & Gambardella

Stützie & Hoos
Bullnheimer et al.

Maniezzo' 
Cordón et al.
BIum et al.

1991

1992
1995
1996
1996

t997
1999
2000
2001

Table 3.1: A non-exhaustive list of successful ACO Algorithms

feedback and a greedy heuristic to solve a given problem. Distributed, computing helps

in searching a wide area of the problem domain, positive feedback helps in finding

good solutions and a greedy heuristic is needed to find solutions in early stages. ACO

has found many applications and successful implementation has been applied to a

number of different combinatorial optimization problems. Some examples of ACO

being applied to static optimization problems are:

o Tlavelling Salesman Problem: The traveling salesman problem (TSP) requires

the shortest route to visit a collection of cities and return to the starting point.

Some TSP problems also require constraints like the salesman can only visit

each city only once. Dorigo and Gambardella [34] applied ACO to the Tbav-

elling Salesman Problem (TSP). They concluded that using pheromones (posi-

tive feedback), ants were able to make shorter feasible tours. Their simulations

demonstrated that ACO can give good paths for both symmetric and asym-

metric instances of TSP. This algorithm outperformed simulated annealing and

genetic algorithms [35].



20 Chapter 3: Ant Colony Opt'imi,zat'ion (ACO)

o Quadratic Assignment Problem: In a standard problem, v/e are given a set of

n locations and m facilities, and told to assign each facility to a location. The

aim is to find the assignment that minimizes the cost. ACO have been applied

to the quadratic assignment problem by Vlaniezzo and Colorni [36].

o The Job-shop Scheduling Problem: An instance of the job-shop scheduling prob-

lem consists of a set of n jobs and m machines. Each job consists of a sequence

of n activities so there are total of n m activities. Each activity has a duration

to complete and requires a single machine for its entire duration. The activities

within a single job require different machines. Two activities cannot be pro-

cessed or scheduled at the same time if they both require the same machine. The

objective is to find a schedule that minimizes the overall completion time of all

the activities. ACO has been applied to job-shop scheduling problem [37] [38].

Yoshikawa and Terai [38] demonstrated that using ACO showed improvement

compared to conventional scheduling techniques.

Shortest Common Supersequence Problem: The shortest common supersequence

is a common supersequence of minimal length. In this problem, the two se-

quences are given and the job is to find a shortest possible common superse-

quence of these two sequences. Michel and Middendrof [39] applied ACO to

solve shortest common supersequence problem. They concluded that ACO is a

promising alternative for strings which are not purely random.

Graph Coloring Problem: Graph coloring problem involves assignment of colors

to objects in a graph subject to certain constraints. It is a way of coloring the



Chapter 3: Ant Colony Opt'im'izati,on (ACO)

vertices of a graph such that no two adjacent vertices share the same color also

called vertex coloring. ACO have been used to solve this problem with the

smallest possible number of colors [40].

Vehicle Routing Problem: The Vehicle Routing Problem is a broad name given

to a class of problems in which a set of routes for a fleet of vehicles based at

one or more depots must be determined for a number of geographically spread

cities or customers. The objective of the problem is to find minimum cost vehicle

routes originating and terminating at a depot to deliver a set of customers with

known demands. Bullnhiemer et al. [41] used ACO to solve the vehicle routing

problem.

Routing in ad-hoc networks: Most of the problems in combinatorial problem

are static. Recently, ACO has been used for routing in ad-hoc networking. The

use of the ACO technique for determining routing in ad hoc networks is an active

area of research and exploration (see for example [10], [12] , [42], [43],1441, [45], [46]).

Sequential Ordering Problem: The Sequential Ordering Problem with prece-

dence constraints consists of finding a minimum weight Hamiltonian path on

a directed graph with weights on the edges and on the vertices, subject to

precedence constraints among nodes. Gambardella and Dorigo used ant colony

system to solve the sequential ordering problem [47]

Table 3.2 refers to an non-exhaustive list of applications of ACO algorithms grouped

by problem type.

The following section provides a brief review of the related work on ACO in finance.

2l



22 Chapter 3: Ant ColonE Opt'imizati,on (ACO)

Problem Type Problem Name Authors Year
Routing Traveling salesman

Vehicle routing

Sequential ordering

Dorigo et a1.

Dorigo & Gamberdella
Stützle & Hoos

Gambardella et al.
Reimann et al.

Gambardella & Dorigo

1991,1996
t997

1997,2000
1999

2004
2000

Assignment Quadratic assignment

Course timetablin.'
Graph coloring

Stützle & Hoos
Maniezzo

Socha et al.
Costa k Hertz

2000
1999

2002,2003
i997

Scheduling Project scheduling
Total weighted tardiness

Open shop

Merkle et al.
den Besten et al.

Merkle & Middendorf
Blum

2002
2000
2000
2005

Subset Set covering
l-cardinality trees
Multiple knapsack
Vlaximum clique

Lessing et al.
Blum & Blesa

Leguizamón & Michalewich
Fenet & Solnon

2004
2005

1999

2003

Other Constraint satisfaction
Classification rules

Bayesian networks
Protein folding

Docking

Solnon
Parpinelli et al.
Martens et al.

Campos, Fernandez-Luna
Shmygelska & Hoos

Korb et al.

2000,,2002
2002
2006
2002
2005
2006

Table 3.2: Ã non-exhaustive list of applications of ACO algorithms grouped by prob-
lem type

3.2 Application of ACO in Finance

To the best of our knowledge, there is no work reported in the literature on the use

of ACO for option pricing problem. In this section, we briefly outline the literature

related to the use of ACO on other problems and applications, including finance

though not option pricing.

In finance, knowing volatility of a financial instrument makes an investor/banker

powerful and could make precise decisions. However, predicting volatility of an instru-



Chapter 3: Ant Colong Opti,mizat'ion (ACO)

ment, say stock price, is a daunting task and is a research area by itself. Researchers

and practitioners, using historical data have developed methods for predicting his-

torical volatility (see l 8] for a discussion on volatility). Historical volatility would

only reflect past and accuracy of stock prices predicted based on historic volatility is

questionable. There have been some efforts in measuring volatility accurately. Im-

plied volatility measures the intrinsic dependence of past stock prices not only with

time but with other factors affecting the price over a period of time. Keber and

Schuster [49] used generalized ant programming to derive analytical approximations

to determine the implied volatility for American put options. They used experimental

data and validation data sets for computing the implied volatility. Their results out-

performed any other approximations. Generalized ant programming is a nev/ method

inspired by genetic programming approach introduced by Koza [50] and Ant Colony

System (ACS) [34] [51]. it is to be noticed that generalized ant programming is not

ACO, which brings us to state the problem for our thesis.

Sumrnary: In this chapter, we briefly described the related work concerning ACO

and less explored financial application for nature inspired algorithms. We state the

problem for the current study, namely, ACO for option pricing in the next Chapter

followed by a solution methodology.

ôÐz¿



Chapter 4

ACO for Option Pricing

In this chapter, we discuss the problem and solution methodology.

4.L Problem Statement

The objective of ACO in most applications is to find the shortest path. However,

in option pricing, the primary interest is not in finding the shortest path, it is rather

finding the best node that brings large benefit to the investor by exercising the option

at that node. Our goals for this study are (i) to confirm the suitability of ACO for

financial derivatives and (ii) identifying/computing the best time for exercising an

option under given constraints. We started with a simple algorithm, which did not

have any cooperation among the ants in finding an optimal node. We have then

designed two new ACO based algorithms to apply to derivative pricing problems in

computational finance.

24



Chapter l: ACO for Opti,on Pri,ci,ng 25

4.2 A First Simple Algorithm

First we designed and implemented the following naive algorithm:

1. The solution space is divided into several subspaces which the ants explore to

achieve the goal of finding the optimum node (time) to exercise. The algorithm

divides the solution space based on the price of the underlying asset (vertical)

and the time interval (horizontal). For the basic implementation of a small

tree, we divided the horizontal and vertical axis in 3 steps each for a sub-space.

However, we varied this over several runs of the algorithm.

2. Since there is an opportunity to exercise an American Option any time (before

the expiry date) the holder finds it profitable, the pricing becomes an open

boundary problem. That is, one has to check many possible nodes for maximiz-

ing the option value and find the best of these maximum values. In the current

study as a simplification, we propose to let the holder prescribe either an option

value or a particular time period before the expiration date to end the explo-

ration. Also, instead of being greedy in finding the maximum in each subset of

nodes, the holder could stop the search in a given subset once a predetermined

value is reached. More ants are then injected from that node for exploring the

next subspace.

3. Initially each ant randomly explores individual path emanating from the nest

this is depicted in figure 4.1.

4. At each step, (in other words, for a given set of nodes) the best node is deter-

mined using a predetermined expression (for a put option V¿"Í I X - S !Vopt,



26 Chapter l: ACO for Opti,on Pri,ci,ng

Òc>

Figure 4.1: Initially ants wander randomly

where X is the strike price and S is the asset price; Va"f is the predefined op-

tion value and V6p¿ is the optimal value of option. We use these as boundary

conditions); this is repeated over several sub-solution spaces.

5. Once the best node is found, the pheromone density on the path leading to this

node is increased so that more ants will likeiy follow this path. In figure 4.2,

ants gradually find that better nodes are towards the bottom of the figure.

oo

I
(:,-cc

,
1,: '' r:;

¡, t

a.ll--,
I

.,I

trÕ4,

¡

Figure 4.2: Ants gradually start to find better nodes

6. We keep finding better nodes until our conditions for an optimal node are met.



Chapter l: ACO for Opti,on Pri,c'ing

In figure 4.3, most of the ants start following paths which lead towards the best

node.

ú

.a

t''J\

.t.:)aa

trt'tt'.^

',
a ' t' I 

')

-l'l.-l

ô

Figure 4.3: Ants start following paths which lead to better nodes (bottom of the
figure)

We were able to find the optimum node using the above algorithm. The design and

implementation of the simple algorithm has been presented and published at MICS

2007 152). It is a naive algorithm because of lack of cooperation among the ants in

finding the optimal node. However, this understanding a,cted âs a good starting point.

This experience and the results from the algorithm gâve us the knowledge to come

up with improved algorithms to achieve more cooperation among ants.

4.3 Design of ACO Algorithms for Option Pricinúb

\Vith the above understanding , we developed and explored the following two

improvements:

27



28 Chapter /1: ACO for Opti,on Pri,ci,ng

4.3.L Sub-optimal Path Generation Algorithm

1. Algorithm starts by injecting ants from the valuation date (root). Ants can

expiore any path based on random behaviour.

2. Individual ants compute the payoff at each node based on an expression V¿.f I

X - S S Vopt. As soon as an ant finds a value between the predefined values

in the expression it updates (increasing) the pheromone density leading to the

node.

3. Updating the pheromone on the path which has a good node (that satisfies the

expression in the previous step) helps in making the path more attractive for

other ants to explore more in the neighboring areas. However, ants still keep

going on other paths to explore the whole search space.

4. If ants find a better node then pheromone values are updated to make the path

to the newly found node more attractive.

5. Ants keep doing it until the most optimum node is found or until the constraint

how far (how close to expiration date) the user wants to search in a graph is

exceeded.

4.3.2 Dynamic lterative Algorithm

1. In the solution space the source is the current date and the destination can

be any node in the solution space. Destination is how far (future date) ants

will search. The destination can be updated with a better node afler some

time to help us explore the whole search space. Here, "some time" refers to



Chapter l: ACO for Opti,on Pric'inq

the computational time needed to find the optimal node for a source and a

destination.

The algorithm starts by injecting ants at the source, and the ants explore ran-

dom paths to reach the destination.

Each ant while traveling to the destination identifies the best node throughout

the journey which is computed using a predetermined expression (for example,

in case of put option X - S , where X is the strike price and S is the asset price).

The ant updates the pheromone density (locally) on the path. Local pheromone

update is done while looking for solutions. On the other hand, global pheromone

update is done after all ants have found a solution. The purpose of the local

pheromone update rule is to make the visited nodes less and less attractive as

they are visited by ants, indirectly favoring the exploration of not yet visited

nodes. The purpose of the global pheromone update rule is to promote ants to

search for nodes in the neighborhood of the best node found so far.

Once all ants have updated their local pheromone values, the best nodes from

all the paths explored by the ants are compared and the best node is identified.

Now pheromone density is updated globally so that more ants follow the path

which leads to the best node. The reason is to attract more ants so we can

explore all possibilities from the identified node. However, to avoid a local

minima, pheromone gets exhausted (by local update and evaporation) after

some time which forces ants to explore other areas in the solution space. Here

some time refers to the computational time taken by ants to slowly lower the

29

2.

,).

4.

5.



30 Chapter l: ACO for Opti,on Pri,ci,ng

pheromone value to initial value.

6. We keep sending more ants from the source. Ants will follow the paths that

have higher concentrations of pheromones compared to random behaviour, that

v/as seen initially.

7. The algorithm keeps on finding better solutions until the best node is found.

We generate a random acyclic graph. A certain number of vertices (nodes) are

connected to each other using edges (paths) randomly. The reason for not going for

cyclic graph is that in real world it is not possible for investor to go back in time and

have the same choices again. Ants can wander on these paths moving from node to

node. Each node stores an asset price and each edge represents the transition from

one stock value to another.

In the algorithm, ants deposit pheromone on the paths while walking and follow

paths based on probability of pheromones deposited previously. Initiall¡ all the

paths have initial pheromonê 76 on them so ants choose random paths. After a brief

transitory time, the difference between the amounts of pheromones will differ. So the

new ants coming from nest will prefer in probability to choose the path with higher

pheromone. We have taken the probability expression from ACS [34] and modified

to it suit the application. The following expression gives the probability an ant k at

node r chooses to go to node s.

:{
[r(r,s)] [a(r,s)]Pn*rrumOiz ifse J¡(r)

0 otherwise

P¡"(r, s)



Chapter l: ACO for Option Priczns

Where r is the pheromone, 4 is the difference between the stock values of (r, s),

J¡(r) is the set of nodes that ant k has still to visit and B is a measure to determine

relative importance of pheromone versus difference between the stock values.

In this algorithm, the ant with the best value globally deposits the pheromone.

This helps and probability equations are intended to make search more directed mean-

ing ants mostly search in the neighbourhood of the best node found by the algorithm.

Global updates are performed after all ants have reported their own best node. The

best ant (globally) is identified based on the best values reported by all ants. The

pheromone level is updated by this globally best ant by update rule

r(r, s) *- (i - a) r(r, s) + a Ar(r, s)

(

wherevr(r, s) : ] 
(%')-t if (r' s) e global best node

I o otherwise

where a (0 < o < 1)is the pheromone decay parameter ald Vsu is the difference

between the initial stock price and the best node globally. This is intended to provide

greater amount of pheromone for more profitable nodes.

Ants while search for the solution, visits paths and alter their pheromone by

applying the local pheromone update

r(r, s) *- (1 - p) r(r, s) + p Ar(r, s)

where 0 < p < 1. Please refer to Section 5.2 for a set of parametric conditions for the

current study.

31



D.}¿L Chapter l: ACO for Opt'ion Pri,ci,ng

4.3.3 Some Observations

The ants in the natural world try to find a shortest path from nest to a food

source. The ad hoc network applications uses this idea from natural world directly,

in finding shortest route for sending messages/packets. The idea from natural world

put forth in ACO algorithm is improved for the finance application as follows:

o The option pricing application requires finding the best time for exercising the

option. That means the 'food' consumption is going to happen only once (ex-

ercise of option). That single best node would become the destination where

the option is exercised. In other words, the first major modification is that we

relax the requirement of the shortest path for the ants to follow.

o The locaì optimum values are used to direct more ants to explore further in the

solution space from the local optimum node.

o ACO has not been used to price options. Designing and implementing naive

algorithm acted as a feasibility study for the current work. ACO only generates

and evaluates a subset of the paths unlike binomial lattice model where all paths

and nodes are exhaustively evaluated. This would address memory issues and

explore the best time to exercise the option in an efÊcient way.

Summary: In this chapter, we described our algorithms. We describe the imple-

mentation details of the algorithms in the next chapter.



Chapter 5

Implementation Details

In the literature on parallelizing combinatorial optimization problems such as

TSP [53] and scheduling problems [54], where the graph is static, the implementation

has been done on parallel computers using the Message Passing Interface (MPI) [55]

or OpenMP [56]. Shared memory machines have shown [57] to produce better perfor-

mance results for ACO aigorithms. In applications such as mobile ad hoc networks,

where the graph is dynamic and mobility needs to be incorporated, a simulator has

been used for the implementation. Since, option pricing problem considers a static

graph (solution space), we choose to implement our algorithms on a shared memory

machine using OpenNiP.

With call and put oplions we expect the underlying asset's price to go one direc-

tion, up lor call and down lor put. We can utilize this fact in channelling the ants

in a particular direction towards the best node in the solution space. That is, when

an initial set of ants move in one direction more ants follows in this direction. These

ants are react'iue ants, which we use in our sub-optimal path algorithm.

û.)



34 Chapter 5 : Implementati.on Detai,Is

In another scenario, ants can explore the entire solution space for a best node both

for call and put options. This is useful when there are both styles of options issued for

the same underlying asset. The ants explore the solution space proactively on their

own without any direction by the investor. While few of the proacti,ue ants explore

the solution space independently, others follow earlier ants just like in reactive case.

Note that these definitions of proactive and reactive ants are different from usual

networking literature. In fact, they have inverse meaning.

In our implementation, ants are agents for a single investor. In the current scenario

all the agents are working for a single investor in finding a solution for the option

prices that helps the investor in making an informed decision for entering the option

contract. Node is a price point at a given time. Moving from a node to a future time

(node in the future time), there could be various possible prices for the asset. The

future time could be the next second, minute, hour, day or week. Each thread in the

system represents an ant which can randomly move around the solution space. For

ease of implementation, we have limited the number of nodes. We limit the number

of nodes for implementation because of memory constraint. The primary goal of the

algorithms is to find any good node (right time to exercise the option) rather than

finding the shortest path leading to that node in minimum time. More nodes means

more sampling, which is better, in general. However, sampling by minutes or every

10 minutes or even every 30 minutes may not yield much better results (in terms

of accuracy) in pricing. F\rrther, higher frequency sampling would result in heavier

computational load and hence higher computational cost. Hence, we restrict the

solution space to a reasonable number of steps.



Chapter 5: Implernentati,on Detai,ls

5.1 Sub-optimal Path Generation Implementation

No study has been reported in the literature using ACO for the option pricing

problem, let alone been parallelized. Therefore, we compare our results with binomial

Iattice results with same set of parameters (strike price, asset price, etc.) used in the

sub-optimal path generation algorithm implementation. We will use synthetic test

data to compare the proposed algorithms with the binomial model. The synthetic

data used can easily be mapped to a real world stock.

The algorithm starts by sending ants randomly on each path (in the solution

space) from an initial node. Once an ant reaches the next node it computes the local

pay-off for a put option as (X - S), where X is the strike price and S is the asset

price at the new node. Once the solution satisfies either of the boundary conditions:

X-S>Y (5.1)

(n x Aú) > a predef ined ti,me duri,ng contract peri'od (5.2)

where Y and predef i,ned ti,me are user defined parameters, the option price computed

is the optimum value. We have conducted experiments to price American put option

using the proposed algorithms. We have experimented by varying the parametric

conditions: initial stock price, strike price, volatility, time to maturity and number

of time steps. The algorithm provides the optimal solution based on the user defined

boundary conditions. The primary goal is to find the optimum node rather than

finding it in shortest path or in minimum time. The measure of comparison is the

pay-off an investor will get by exercising the option. The flow chart for the sub-

35



36 Chapter 5: Implementati,on Detai,ls

Send nerl sei ol anls

hnpulo üe beslnode afiu

eaú itemtior and

pheronrones arç ufraÌed so

|Ill)rc erìi$ fdlo!| llE pêlh h

ihiSnde

Figure 5.1: Flowchart for

optimal path generation algorithm

Sub-optimal path generation algorithm

is given (Figure 5.1).



Chapter 5: Implementati.on Detai.ls .)/

5.2 Dynamic Iterative Implementation

Figures 5.2 (Graph 1) and 5.3 (Graph 2) show two random acyclic graphs used in

the experiments with 15 and 30 nodes respectively. Here, V, : A, refers to vertex I/"

representing asset price A. For example in Figure 5.2, V7 : 15 refers to vertex 7 with

asset price 15. We applied the dynamic iterative algorithm to these random graphs.

The measure of comparison is the pay-off an investor will get by exercising the

option. ln other words, the time to exercise the option which gives us the highest

profit. In all our experiments the numeric parameters are set to the following values:

þ : 2,o : 0.1, p : 0.I and 16 : 0.1. The flow chart for the dynamic iterative

algorithm is as follows (figure 5.4):



38 Chapter 5: Implementat'ion Detai,Is

Figure 5.2: Graph 1: Graph with 15 nodes

Figure 5.3: Graph 2: Graph with 30 nodes

Summary: In this chapter, we provided an outline of the implementation of our two

algorithms. We analyze results in the next chapter.

r ) \ vr.le
v):21 =N 

tb

^-/-v.23() 
vx.zo() .Y r.ì,-1 ,/ --'AJ/ \ u"'u 

^ ,/ ---'



Chapter 5: Irnplementatzon Detai,ls 39

Send nexl sel of anb

Ant clnms path

b¡sed on

fobat li!
disklhrllon

fundioo

Çompute the h5l node lor
lhìs ilem'ioo and global

phèrûrnonés ârâ ùpdâred s
moß anB foüo,n the palh to

thls node

RÉpod ùs bBsl

nodofound end

lhe path to tlE
verlex

Figure 5.4: Flowchart for Dynamic iterative algorithm



Chapter 6

Results and Discussion

The experiments were done on an eight node shared memory machine with mem-

ory and hard disk of. 7.5 GB and 36 GB respectively.

To compare and validate the results obtained from the ACO we independently

implemented the binomial lattice algorithm for different data sets used in the ACO

study and gathered both timing and pricing results. The pricing results from both

the algorithms agree with results from binomial method.

6.1 Sub-optimal Path Generation Algorithm

The experiments carried out for this algorithm were driven by the general market

conditions. Market conditions generally demand results instantaneously to beat the

competition. The graph used in this algorithm is analogous to binomial or trinomial

tree. The contract period for our experiments is six months and number of time steps

vary between 2000 (amounts to about 30 minutes interval) to 5000 (amor-ints to about

40



Chapter 6: Results and D'iscuss'ion 41

Parameters Valuel Value2 Value3 Vahre4
Desired Profit 10 i5 20 25

Execution Time (secs) 0.049 0.106 0.515 r.269

Table 6.1: Desired Profit vs Execution Time with Time Steps 2000

Figure 6.1: Chart for Desired Profit vs Execution Time with Time Steps 2000

11 minutes interval). That is, in some experiments ants compute option prices for

changes in the asset price happening every 11 minutes and in other experiments ants

compute option prices for changes in the asset price happening every 30 minutes. In

table 6.1 and in Figure 6.1, we set the desired profit level between $10 and $25 at $5

interval to determine how quickly one can achieve such profits. \Me set the number of

time steps to be 2000. As the profit level increases, the execution time also increases.

The reason for this is that for better profitability the ants would have to search more

solution space and do more computation, hence increasing the execution time.

Table 6.2 and Figure 6.2 shows the execution time for various time steps at a

desired profit of $15. As the time steps increases with constant profit level, the

execution time also increases. This is because increasing the number of time steps

implies increasing the number of nodes in the solution space. Since the solution

Execution ïme Vs Profn

o

E 0.8

É 0.6

{o

+ E¡eculion 1m



42 Chapter 6: Results and D'iscuss'ion

Parameters Valuel Value2 Value3 Value4
Time Steps 2000 3000 4000 5000

Execution Time 0.106 0.123 0.203 0.2I3

Table 6.2: Time Steps vs. Execution Time with $15 Profit

Execution Î¡me vs T¡me steps

0.25

o 02

c 0.'15

Ê o.r

o
E 0.05

0

l=Ç"r'"rt¡;;l

3000 {000

Ï¡resleps

Figure 6.2: Chart for Time Steps vs. Execution Time with $15 Profit

space is analogous to binomial tree, the number of nodes can be of the order of 2¿

(for binomial tree), where L is the number of time steps. However, as can be seen

from table 6.2, the increase in time is very negligible. We compared the sub-optimal

algorithm to the binomial lattice method (Table 6.3). Our algorithm performed better

than the binomial lattice method in terms of speed. The performamce of sub-optimal

algorithm is better because in the ACO algorithm we do not generate all the nodes

at each time steps as in binomial lattice method. Our algorithm only generates and

computes price on nodes which are needed to price the option.

Since the ants search the solution space in various directions we observed a pro-

portional increase of the execution time with higher desired profit. This happens due

to structured search by the leading ants. This proportionality caught our attention

to have a close look at the algorithm. Though the ants were allowed to search the



Chapter 6: Results and D'iscuss'ion 43

Timesteps Binomial Method (Secs) Sub-optimal Path Generation (Secs)

10000 .-) 0.37
20000 13 1.44

40000 67 2.38
70000 220 7.46
100000 457 It.77

Table 6.3: Comparision between Binomial method and Sub-optimal path generation
algorithm

solution space, there was a controlled exploration. We allowed only a limited number

of ants in a smaller region of the solution space to reach a sub-optimal solution at

a node from which more ants were allowed to search in an orderly fashion. This is

the nature of the algorithm. One set of ants searching and dragging more ants to the

sub-optimal solution. That is, most of the ants are reacting to the first few ants. In

other words, T,he react'iue ants are exploiting the paths generated by few leading ants

and hence they are more exploiting than exploring. Therefore, it is expected that

with proact'iue ants, which explore the solution space, we would expect better results,

which is studied in the dynamic iterative algorithm.

Also note that in the sub-optimal algorithm, we have a structured graph. The

reason for this is that we initially wanted a fair comparison between the binomial

lattice method and our ACO method. In the dynamic iterative algorithm, we do not

restrict the structure of the graph. The data structure for the solution space is not

necessary trees. They are random graphs used to capture real market movements.



44 Chapter 6: Results and Dzscussi,on

9,1, g &:l,ø l,eræ,ã,i:då I É ût.1,

DercuÈy, cs.uuiEoba. ca LLIS . /a. our
IniEial greph
0{10) : 4(0.r000} 3(0.I000) 2(0.I000)
l(lsl: 6(0.1000) s(0.I000)

5(lI): 10(0.1000) 9(0.1000)
6(I2); II(0.1000)
7(14) : 8(0,r.000) r-2(0.r000)
8(8):
9(?):
r0 (13):
r1(16): 13(0.1000)
12(20):1.4(0.1000)
13(9): 14{0.1000)
r4(3);

ts]€ iæi¡gtli.qÁð'É
A;ti;..-;g@;a,í1qÉt;;11:,,, .,'',;

FinêI grôph
0(10):4(0,s6s6)
I{ls): 6{0,6086}
2lL3't| 7|D.38971
3 (-t7) !
4(9): 3 (0, 1000)
5(II): I0(0.1000)
6(12); LI(0.6086)
7lLA)t 81o.43261
e(8):
9(?):
r0 (13):
II(16): L3(0.5086
I2l2o) | I4lo. ß't4
13(9): 14(0,6086)
14 (3) :

Figure 6.3: Initial Graph 1

Figure 6.4: Final Graph 1

6.2 Dynamic fterative Algorithm

We applied the dynamic iterative algorithm to both the graphs described in fig-

ures 5.2 and 5.3 . Figure 6.3 gives the initial graph for Figure 5.2 (Graph 1). The



Chapter 6: Results and D'iscuss'ion

graph is represented by an adjacency list. For example, V"(A) : Vo(pl)V"(pz) means

vertex (I/") has an asset price of A and is connected to vertex I/, with pheromone p1

and vertex V"wilh pheromone pz. In Figure 6.3, 1(15): 6(0.1000) 5(0.1000) represents

vertex I with asset price 15 connected to vertex I/6 and vertex % with pheromone

level 0.1 at both nodes. Applying ACO to the initial graph shown in Figure 5.2

(Graph 1), we reach the final graph shown in Figure 6.4. The best vertex or node

to exercise the option is V+ with an asset price of 3. The path to the best node is

Vo - Vy -+ Va - Vt - Vz - Vr+. Also, note the changed pheromone levels by

which ants are guided to the best solution.

Similar results for Figure 5.3 (Graph 2) are also shown in Figures 6.5 and 6.6.

Figure 6.5 shows the list of vertices and how they are connected to other vertices in

the graph. It also captures the initial pheromone level (i.e. 0.i) on the edges between

the vertices. We apply our algorithm to Graph 2 and determine that the best node

is vertex V27 with asset price 12. The algorithm also computes the path of the ants

followed to reach this best node. The path is Vs -+ Va, - Vtt - Vtz - Vs n Vzo -
Vzz.

For verification of our pricing results, we have done the following during our

implementation. We opened a counter to store the asset prices from nodes when we

generate the graph. We compared the asset price from a node as we generate the

node with the asset value in the counter. For a put option, the counter price value is

replaced with the asset price at a new node if the price at the new node is smaller than

the counter price value (for a cøll option, the counter price is replaced with a larger

node price). This information tells us beforehand where to expect the best option

45



46 Chapter 6: Results and D'iscuss'ion

lnitial gTaph
0(2s): s(0.r000) 4(0.1000) 3{0.1000) 2(0.1000) l(0.
I128); 5(0.1000)
2lzÛt'tlo,Looo)
3(22): 8(0.1000) 2(0.I0001
4(19): lL(0.1000)
s(30): I0(0..1000) 9(0.1000)
6(30): 7(0.1000) 13(0,1.000) r2(0.1.000)
't l23l I

8(2s): 9(0.1000) ls(0.1000) 14(0,1000) 13(0.I000)
e(2?); 16(0.1000)
LO(321 | 22(o.Io00) 16 (0. 1000)
1I(18) : 23(0.1000) I7{0.I000)
r2(32): 2s(0.1000)
13(r9):
14(20¡:19{0.1000)
Is(20): 20(0.1000)
16124) | 22lo.Iooo)
I7(22): I5(0,I000)
r8 (19):
19(17): 20(0.1000) 26(0,I000) 2s(0.I000) L8(0,1-000)
20{14); 27(0.1000}
2I l22l I z8lo. L000) 2?(0. 10001
22120)t 29lO.IOOOÌ
23 (2r) : 29 (0,1000)
241381 |
25 (34): 24(0. L000)
26 (20) : 24(0. I000)
27 ll2l .
28 (.r4) :
291!6')l

t¡¡e ldrt Vlew U4ndow trelÞ

hl,@',\z
gl : QùÊk cqïiéct,';-LflÍôhlé;

Figure 6.5: Initial Graph 2

ÞttÈ,€

i;lË13

J.3 [0. r039)

r8 (0, r000)

cõüiècted

0 (2s) : s (0, I000)
I (28) : 6 (0. ).000J
2(2I);7(0.1000)
3(22)¡ e(0.I000)
4(19): lr(t.3900)
s(30): I0(0.I000)
6 (30): 7(0.1099)
7 l23l I

4(r.3900) 3(0.784t) 2(0.1.060)

2 (r. 4509)

9 (0. r.000)
13 (0. r000)

8(25); 9(0.1000) I5(0,Ì000)
9 (2?) : I6 (0. I000'
I0(32): 22(0,1000)
ll-(18):23(0.I000)
l2 (32) : 2s (0. r000)
r3 (19) :
14(20); 19(0.1000)
ls (20) : 20 (1.3900)
L6l24tt 22lO.lOOOt
I7 (22) : 15 (l-.3900)
l8 G9) :

19 (I?) : 20 (0. I00û)
20 (14) : 2? (I.3900)
2tl22lt 28(o,Loool
2zl2OIt 29lo.IOOO'!
2312L)t 29lo.Looo,
24138) |
2s(34) r 24(0.1000ì
26l2îlt z4lg.IDOOI
21 lrzl I
281L4) |
29 (16) ¡

16 (0.Ì000)
r7 ( r. 3900 )

26 (0. ro00)

27 (0. 1000)

Àc Èhe end of all ÌooÞs,
04III?15202',1

l€rÉ:l$li ii¿

connected to mercúi i55HZ : àff 128-cbc'¡ hmacÃd5 :. i t



Chapter 6: Results and D'iscuss,ion

price among various nodes generated. We use this to verify the best node computed

by the dynamic iterative algorithm. This is only for verification purposes. In all our

experiments, dynamic iterative algorithm worked well in computing the best node to

exercise the opiion.

4(



48 Chapter 6: Results and D'iscuss'ion

Parameters Valuel Value2 Value3 Value4
Number of Nodes 10 100 1000 10000

Execution Time (in secs) 3.06 4.90 7.0r 9.r4

Table 6.4: Number of Nodes vs Execution Time

Table 6.4, shows that the execution time increases as the number of nodes is

increased. Note that unlike the sub-optimal algorithm we do not fix a constant profit

because the graph is random and we do not restrict the limit on the gain. In other

words, we make the boundary open. From table 6.4, it can be seen for 10 nodes, the

execution time is 3 seconds while for a larger graph (10000) it is 9.14 seconds. The

overhead incurred in local and global pheromone updates, is predominantly attributed

to the larger time needed for a smaller graph.

The market is full of uncertainties. We generally do not know what is going to

happen tomorrow. In the binomial lattice algorithm the price change happens at

a given node only in two different \Mays: up or down that too by a known factor.

Similarly in trinomial lattice it happens three different ways. One advantage of ants

for finding paths is that v¡e can relax the restriction on price movements by letting

the ants explore in many different possible paths naturally. This physically means

ants can capture day-to-day changes of the volatility in the market place. There-

fore, unlike the other numerical approaches we do not have to specif,r volatility of

the underlying asset, one less parameter to handle in the implementation. For the

simulation purposes, we restrict the number of the different possible links that an ant

can have. In our implementations, we have case studies with number of links between

5 and 20 as shown in table 6.5. A single link between a node in a given time step



Chapter 6: Results and D'iscuss'ion 49

Parameters Valuel Value2 Value3 Value4
Number of Maximum Links 5 10 15 20

Execution Time (in secs) 4.48 7.01 9.13 72.3

Table 6.5: Number of Maximum Links vs. Execution Time

to a node in the future (next time step) means the asset is stable. An experiment

with 5 links means that an ant can have a maximum of five links going from one

time step (node) to the nodes in the next time steps. That is, five different possible

price changes are captured going from one node to the next. It need not have all five

links. If there are all five links present from a node to the next time step, it implies

that the underlying asset is highly volatile. In other words, we are able to capture

the volatility of the underlying asset. Similarl¡ presence of 20 links at a node imply

that the asset price is highly volatile. In table 6.5, it can be seen that as we increase

the maximum number of links (or volatility), the execution time increases. This is

because increase in volatility increases the computational intensity of the problem.

6.3 Various Features of Sub-optimal and Dynamic

Iterative Algorithm

The performance of the sub-optimal algorithm is far better than the dynamic

iterative algorithm in terms of speed. This is due to the structure of the graph, we use

graphs that are analogous to binomial & trinomial trees. In one of our experiments,

we compared the execution time for both the algorithms for 10000 nodes. Sub-optimal

algorithm took less than one millisecond versus dynamic, which took 4.5 seconds (for



50 Chapter 6: Results and D,iscussion

maximum of 5 links). However, it should be noted that the sub-optimal algorithm

will not be able to find a good pricing solution in a dynamic environment in which

dynamic iterative algorithm works. This is because we do not use the parameters such

as evaporation criteria and local pheromone update that are used in the dynamic

iterative algorithm. The evaporation criteria allows ACO to converge towards a

better solution by providing a means of exploring many different good paths, while

at the same time eliminating the paths leading to bad nodes. Sub-optimal algorithm

produces faster results because \Me are exploiting the solution space generated by few

initial ants. Sub-optimal algorithm mainly relies on exploitation of already discovered

paths and nodes. This is good for a given style of option, call or put by channelling the

ants and it is expected that both local and global optimal solution will be available

in the same neighbourhood. Dynamic iterative aigorithm is exploration as well as

exploitation. Since it is advantageous to both styles of options call and put, it spends

more time exploring. Also, by doing so it finds the global optimal solution. Dynamic

iterative algorithm converges slower than the static algorithm because of the use of

local pheromone update and evaporation.

6.4 Comparision between Sub-optimal, Dynamic

Iterative Algorithm with Binomial Lattice

We compared our algorithms to the binomial lattice model. Sub-optimal algorithm

and binomial lattice model gave us the same pricing results, that is the best time to

exercise the option. Sub-optimal is faster than binomial model because binomial



Chapter 6: Results and D'iscussion

model exhaustively prices option for all the nodes in the tree, whereas sub-optimal

algorithm need not have to price options at all the nodes. Dynamic iterative algorithm

is not compared with the binomial model as the dynamic iterative algorithm works

is more complex and volatile environment than the environment in which binomial

and sub-optimal algorithm works. For the dynamic iterative algorithm, structure

of the solution space is random and the volatility parameter need not be specified

unlike the binomial and sub-optimal algorithm. In other words, this algorithm could

handle underlying assets that are represented with varying volatility models. In

sub-optimal and binomial lattice algorithms these volatility models would pose large

computational challenges.

Summary: We presented the results from both of our algorithms. We conclude our

current research work and outline some of our future work in the next chapter.

51



Chapter 7

Conclusions and Future \Mork

Pricing of options is a challenging problem. This work proposed a novel idea

of using nature inspired meta-heuristic algorithm called Ant Colony Optimization

(ACO) for pricing options. We first studied the suitability of ACO in finance and

confirmed that ACO could be applied to financial derivatives. Then, we designed and

implemented two new ACO based algorithms to apply to a derivative pricing problem

in computational finance. The first algorithm, named sub-optimal path generation

generates various paths and identifies the best node in the solution space for exercis-

ing the option. In this algorithm, ants follow the paths generated by some ieading

ants to find better solutions as \¡/e search the solution space leading to an exploitation

technique. Sub-optimal path generation algorithm outperformed the binomial lattice

model. The second algorithm named dynamic iterative algorithm, where few ants

explore the solution space incrementally dragging more ants on the better path and

eventually reaching the best node to exer-cise the option. This algorithm captures the

real market piace and finds the best time to exercise the option using exploration and

52



Chapter 7: Conclusi,ons and Future Work

exploitation techniques. Though the dynamic iterative algorithm converges slower

than sub-optimal path generation algorithrn, the dynamic iterative algorithm can be

executed on any random graph. Dynamic iterative algorithm is better ðhoice when

dealing with dynamic and highly volatile market place.

F\rture Work

In this work, our study was limited to vanilla options. As a future work, we would

like to apply ACO to exotic options such as to price Asian options. In our dynamic

iterative algorithm, the ants keep track of the price values at each node along a path.

We can easily use these price information to compute an average price so that we can

apply this algorithm to price an Asian option. We intend to this in the near future.

Similarly, the nature of our algorithms help us to price barrier option, where it is

required to find the first stopping time, that is, earliest node to exercise the option.

This can also be extended to Bermudan option.

We also intend to look into the possibility of using digital pheromones. Digital

pheromones are data structures inspired by the insect model. In our application,

IMe can allow ants to communicate more information among each other such as asset

price, length of the path etc. using digital pheromones.

Evolutionary algorithms such as ACO algorithms are gaining importance in many

areas of finance such as to evolve trading rules, diagnosis of company's future etc.

This thesis work is the forerunner for more research to be done in future in financial

applications using ACO algorithms.

53



Appendix A

Appendix

54



Appendir A: Append'ir 55

Data: Asset price tree
Result: Optimum node to exercise the option
Step 1: In this phase ants build their paths
for Each ant'inserted at the root node do

if Pheromone leuels are zero then
ant chooses a path randomly
else

If there are pheromones present on the paths then the ant chooses
the paths accordingly

end
end
Each ant calculates the profit at each node (X - S)
if profi,t i,s positi,ue then
I it is stored

end
if profit ) target profi,t then

the program terminates and details about the corresponding node is
printed

end
if ant trauels more than f; the totat ti,me tlnen
I ant dies

break out of for loop
end

end
Step 2: Pheromones are updated on the paths
for all ants do
I Compute the most profitable node

end
the pheromone on the path which leads to this profitable node is updated
go to step 1

Algorithm 1: Sub-optimal path generation algorithm



56 Append'ir A: Appendi,r

Data: Random graph
Result: Best vertex (Time) to exercise the option
Step 1: Initialization phase
for each pai.r i,f uer"t'ices (r,s) whi,ch are connected by an edge do
| ,(r,s) : ro

end
Step 2: In this phase ants build their paths. The path of ant k is stored in
Path6
for do

forK:ltomdodo
Choose the next vertex according to

P¡"(r, s): { n##HliÌ#ä;r ir s e r¡"(r)

[ 0 otherwise

Path6(i) : (rr, sr)
end
In this phase local updating occurs and pheromone is updated
forK:ltomdodo

r(r, s) *- (1 - p) r(r, s) + pAr(r, s)

rk: sl,
end

end
Step 3: In this phase global updating occurs and pheromone are updated
forK:ltomdodo
I Compute V

end
Compute 76""¿

for each edge (r,s) do

r(r,s) *- (1 - a)r(r,s) + a Lr(r,s)

end
I if End cond'it'ion : True then

Print the vertex with highest profit and the path to this vertex
else
I go to step 2

end
end

Algorithm 2: Dynamic iterative algorithm



Bibliography

[1] M Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization:

artificial ants as a computational intelligence technique," IEEE Comput.

Intell. Mog., vol. 1, no. 4, pp. 28-39, 2006. [Online]. Available: http:

I I dx.doi.orgl10. 1 109 / CI-M.2006.248054

[2] J. C. HulI, Opti,ons, futures, and other deri,uat'iue securities. Englewood-Cliff,

N.J.: Prentice Hall, May 2006.

[3] E Z. Prisman, Pri,c'ing Dertuat'iue Securi,ti,es: An Interact'iue Dynam'ic Enui-

ronment with Maple v and MATLAB wi.th Cdrom. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 2000.

[4] F Black and M. Scholes, "The pricing of options and corporate liabilities," Jour-

nal of Politi,cal Economy, vol. 81, pp. 637-654, Jan L973.

[5] R. Engle, "Autoregressive Conditional Heteroskedasticity with estimates of the

variance of U.K. inflation," Econometrica, vol.50, no. g, pp. g8Z-1008, 1982.

[6] J- C. Duan, "Term structure and bond option pricing under GARCH,"

57



58 Bi,bli,ography

unpublished manuscript, McGill University, 1996. [Online]. Available: citeseer.

ist.psu. edu/duan96term. html

l7l 
-, 

"The GARCH option pricing model," Mathematical Fi,nance, vol. b, pp.

13-32, 1995.

[8] J. C. Cox, S. A. Ross, and M. Rubinstein, "Options pricing: a simplified ap-

proach," Joumal of Fi,nanc,ial Economecs, vol. 7, pp.229-263,I9T9.

19] M Dorigo, E. Bonabeau, and G. Theraulaz, Swarm Intell'igence: From natural

to art'ifical sEstems. Oxford University Press, New York, NY, 1ggg.

G. D. Caro, F. Ducatelle, and L. M. Gambardella, "AntHocNet: An adap-

tive nature-inspired algorithm for routing in mobile ad hoc networks," European

Transact'ions on Telecommuni.cat'ions (ETT), Speci.al Issue on Self Organ'izat'ion

i,n Mobi.Le Networlci,ng, vol. 16, no. 5, pp. 443-455,2005.

G. D. Caro and M. Dorigo, "AntNet: Distributed stigmergetic control for com-

munications networks," Journal of Artificial Intell,igence Researcå, vol. 9, pp.

317-365, 1998.

M. Gunes, U. Sorges, and I. Bouazzi, "ARA - the ant-colony based routing algo-

rithm for MANETs," in Proceed'ings of the internat'ional conference on parallel

processing workshops (ICPPW'12),Vancouver, 8.C., August 2002, pp. 7g-8b.

[13] T. D. Seeley, The Wisdom of the H,iue : The Soci,al Physi,otogy of Honeg Bee

Coloni,es. Harvard University Press, Cambridge, Massachusetts, USA, lggb.

[10]

[11]

l12l



Bibli.ography

[14] H. F. Wedde, M. Farooq, T. Pannenbaecker, B. Vogel, C. Mueller, J. Meth, and

R. Jeruschkat, "BeeAdHOC: An energy efficient routing algorithm for mobile ad

hoc networks inspired by bee behavior," in Proceedi,ngs of Genet'ic and Euolu-

ti,onary Computation Conference, Washington, DC, June 2005, pp. 153-160.

[15] lvi. Roth and S. Wicker, "Termite: ad-hoc networking with stigmergy," in Pro-

ceedi'ngs of IEEE Global Telecommunicat'ions Conference (Globecom 2003),, San

Francisco, USA, 2003, pp. 2937-294I.

[16] M. Dorigo and T. Stützle, Ant Colony Opt'im'ization. MIT Press, Cambridge,

MA, May 2004.

[17] A. Brabozan and M. O'Neill, B'iologically Inspired Algori.thrns for Financi,at Mod-

elli,ng. New York: Springer, 2006.

C. Merton, "Theory of rational option pricing," Bell Journal of Econom'ics,

4, pp. 141-183, 1973.

[19] R. K. Thulasiram, L. Litov, H. Nojumi, C. Downing, and G. Gao, "Multithreaded

algorithms for pricing a class of complex options," in Proceed,ings (CD-RoM)

of the IEEE/ACM International Parallel and Di,stri,bued Processi.ng Sympos,ium

(IPDPS), San Fhancisco, CA, 2001.

[20] R. K. Thulasiram and D. Bondarenko, "Performance evaluation of parallel

algorithms for pricing multidimensional financial derivatives," in IEEE Corn-

puter Soc'iety Proceed'ings of the Fourth International Workshop on Hi,gh Perfor-

59

[18] R

voi.



60 Bibliography

rna,nce Sc'ienti,fi,c and Engineeri,ng Comput'ing wi,th Appli,cations,, Vancouver, BC,

Canada, 2002, pp.306 - 313.

[21) K. Huang and R. K. Thulasiram, "Parallel algorithm for pricing American Asian

options with multi-dimensional assets," in Proc. (CD-RoM) 19th Intl. Sy*p.

High Perfornlance Computing Systems and Appli,cat'ions (HPCS), Guelph, ON,

Canada, May 2005, pp. 177-185.

l22l K. Huang, "A parallel algorithm to price Asian options with multi-dimensional

assets," Master's thesis, Department of Computer Science, University of Mani-

toba, Winnipeg, MB, CA, 2005.

[23] J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computati,onal Fluid Dy-

nam'ics and Heat Transfer. Second edition, Taylor & Fbancis, Washington DC,

1997.

l24l J. Crank and P. Nicolson, "A practical method for numerical evaluation of solu-

tions of partial differential equations of the heat conduction type," in Proceedings

of the Cambridge Phi,losophi,cal Soci,ety, vol. 43, 1947, pp. 50-64.

[25] R. K. Thulasiram, C. Zhen, A. Chhabra, P. Thulasiraman, and A. Gumel, "A

second order L0 stable algorithm for evaluating European options," IntI. J. of

High Performance Computi,ng and Netuorki,ng (IJHPCN), vol. 4, no. b/6, pp.

311-320,2006.

126] P. Carr and D. Madan, "Option valuation using the fast Fourier trânsform,"

Journal of Computati,onal F,inance,voI.2, pp. 61-73, 1998.



Bi,bLi,ography

[27] S. Barua, R. K. Thulasiram, and P. Thulasiraman, "High performance comput-

ing for a financial application using fast Fourier transform," in Springer LNCS

Proceedi'ngs of the European Parallel Computing Conference, (EuroPar P005),

vol. 3648, Lisbon, Portugal, 200b, pp. L246-I25J.

[28] S. Barua, "Fast Fourier transform for option pricing: Improved mathematical

modeling and design of efficient parallel algorithm," Mâster's thesis, Department

of Computer Science, University of Manitoba, Winnipeg, MB, C^,2004.

129] P. Boyle, "options: A Monte carlo approach," Journal of Fi,nanci,al Econom,ics,

vol. 4, pp. 223-238, 7977.

[30] G. Chen, "Distributed quasi Monte Carlo algorithms for option pricing on

HNows using DpC," Master's thesis, Department of computer Science, uni-

versity of Manitoba, Winnipeg, MB, CA, 2006.

[31] G. Chen, P. Thulasiraman, and R. K. Thulasiram, "Distributed quasi-monte

carlo algorithm for option pricing on hnows using ffipc," in ,4,¡/^9^9 '06: Proceed,-

ings of the 39th Annual symposi,um on simulat'ion. washington, DC, usA:

IEEE Computer Society, 2006, pp. g0-g7.

[32] M. Dorigo, "Optimization, Iearning and naturai algorithms," Ph.D. dissertation,

DEI, Politecnico di Milano, Italy [in italian] , IggZ.

[33] M. Dorigo, V. Maniezzo, and. A. Colorni, "The Ant System: optimization by a

colony of cooperating agents," IEEE Transact'ions on SEstems, Man, and, Cyber-

net'ics Part B: CEberneti,cs, vol. 26, no. 1, pp. 2g-4I, 1996.

61



62 Bibli,ography

[34] M. Dorigo and L. M. Gambardella, "Ant colony system: A cooperative learning

approach to the traveling salesman problem," IEEE Transact'ions on Euoluti,on-

ary Computat'ion, vol. 1, no. 1, pp. 53-66, April 1997.

[35] M. Dorigo, G. D. Caro, and L. M. Gambardella, "Ant colony optimization: A new

meta-heuristic," in Proceedings of the Congress on Euolutionary Computation,

P. J. Angeline, z. Michalewicz, M.schoenauer, X. yao, and A. zarzala, Eds.,

vor. 2. Mayflower Hotel, washington D.c., usA: IEEE press, 6-9 1gg9, pp.

1470-7477.

[36] V. Maniezzo and A. Colorni, "The ant system applied to the quadratic assign-

ment problem," IEEE Transactions on Knouledge and Data Engi,neerinc, vol. 11,

no. 5, pp.769-778, 1999.

[37] S. van der Zwaan and C. Marques, "Ant colony optimisation for job

shop scheduling," in Proceed'ings of the Third workshop on Genetic

Algorithms and Arti,fi,cial Lúe (GAAL 9g), 1999. [online]. Available:

citeseer. ist. psu. edu/vanderzwaang gant. html

[38] M. Yoshikawa and H. Terai, "A hybrid ant colony optimization technique for job-

shop scheduling problems," in SERA '06: Proceedings of the Fourth International

Conference on Software Eng'ineeri,ng Research, Management and Appli,cations.

Washington, DC, USA: IEEE Computer Society, 2006, pp. 9b-100.

[39] R. Michet and M. Middendorf, "An ACO algorithm for the shortest common

supersequence problem," in Neu ldeas i,n Opti,m,ization, D. Corne, M. Dorigo,



Bi.bliography

and F. Glover, Eds. London: McGraw-Hill, 1999, pp. 5i-61. [Online].

Available: citeseer.ist.psu.edu/michelggaco.html

[40] T. Ahmed, "simulation of mobility and routing in ad hoc networks using ant

colony algorithms," Informati,on Technology: Cod,ing and Cornputing, 2005.

ITCC 2005. Internat'ional Conference on) vol. 2, pp. 698-703 vol. 2, 4-6 April

2005.

Bullnheimer, C. Strauss, and R. F. Hartl, "An improved ant system algorithm

the vehicle routing problem," ín Annals of Operati,ons Researcå, vol. 89, 1999,

319-328.

[42) M. T. Islam, P. Thulasiraman, and R. K. Thulasiram, "Implementation of ant

colony optimization algorithm for mobile ad hoc network applications: OpenMP

experiences," ParaLlel and Distri,buted Comput'ing Practices Journal, vol. 2, pp.

6L-73,2004.

[43] M. T. Islam, "Design, implementation and performance analysis of the ant colony

optimization algorithm for routing in ad hoc network," Master's thesis, Depart-

ment of Computer Science, University of Manitoba, Winnipeg, MB, CA, 2004.

[44] M. T. Islam, P. Thulasiraman, and R. K. Thulasiram, "A parallel ant colony

optimization algorithm for all-pair routing in MANETs," in Proceedings (CD-

ROM) of the IEEE Cornputer Soci,ety Fourth IPDPS workshop on Parallel and,

Di,stri,buted, Sci,enti,fic and" Eng,ineering Computi,ng wi.th Appti.cations (PDSECA-

2003), Nice, France, April 2003.

63

[41] B.

for

pp.



64 Bi,bli,ography

[45] E. S. Osagie, "An Evaluation of an Ant Colony Optimization algorithm for

l\4ANETs using simulation (thesis in progress)," Master's thesis, Department

of Computer Science, University of iVlanitoba, Winnipeg, MB, CA, 2006.

146] J. Wang, "HOPNET: A Hybrid ant colony OPtimization routing algorithm for

Mobile ad hoc NETwork (thesis is progress)," Master's thesis, Department of

Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada , 2007.

[47] L. M. Gambardella and M. Dorigo, "An

local search for the sequential ordering

vol. 12, no. 3, pp.237-255, 2000.

ant colony system hybridized with a new

problem," INFORMS J. on Comput'ing,

[48] S. Rahmail, I. Shiller, and R. K. Thulasiram, "Different estimators of the underly-

ing asset's volatility and option pricing errors: parallel Monte-Carlo simulation,"

in Proceedings of the Internati,onal Conference on Computational F'inance and

i,ts Appli,cati,ons (ICCFAJ, Bologna, Italy, 2004, pp. 121-131.

[49] C. Keber and M. G. Schuster, "Generalized ant programming in option pricing:

Determining implied volatilities based on American put options," in Proceed,ings

of the IEEE International Conference on Computat'ional Intelli.gence for Fi,nan-

ci'øl Engineering, Hong Kong Convention and Exhibition Centre, Hong Kong,

March, 2003, pp. 123-130.

[50] J. R. Koza, Genetic Programming: On the Programm'ing of Computers by Means

of Natural Select'ion. Cambridge, Mass.: MIT Press,7992.

[51] L. M. Gambardella and M. Dorigo, "solving symmetric and asymmetric TSPs by



Bi,bli,ography

ant colonies," in Internat'ional Conference on Euolut'ionary Computation, Nayoya

University, Japan, 1996, pp. 622-627.

[52] S. Kumar, G. Chen, R. K. Thulasiram, and P. Thulasiraman, "Pricing derivatives

using ACo algorithm," in Mi,dwest Instruct'ion and Computing Symposium [CD-

ROMJ, Grand Forks, ND, USA, April, 2007.

65

[53] M. Randall and A. Lewis, "A parallel implementation

tion," Journal of Parallel and Distri,buted Computing,

7432,2002.

of ant

vol. 62,

colony optimiza-

no. 9, pp. I42I-

[54] P. Delisle, M. Krakecki, M. Gravel, and C. Gagné, "Parallel implementation

of an ant colony optimization metaheuristic with OpenMP," in Internati,onal

Conference of Parallel Architectures and Compl'icat'ion Techni,ques, Proceed,i,ngs

of the Thi.rd European Workshop on OpenMP, Barcelona, Spain, September 200I,

pp. 8-12.

[55] W. Gropp, A. Lusk, and A. Skjellum, USING MPI: Portable Parallel Program-

mi'ng wi'th the Message-Pass'ing Interface. Cambridge, Mass.: MIT Press, 1994.

[56] R. chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon, pør-

allel Programm'ing i,n openMP. San FYancisco, cA, USA: Morgan Kaufmann,

2007.

[57] P. Delisle, M. Gravel, M. Krajecki, C. Gagn, and W. L. price, ,,Comparing

parallelization of an ACO: Message passing vs. shared memory." in Hybri,d,

Metaheuri,stics, ser. Lecture Notes in Computer Science, M. J. Blesa, C. Blum,



bC) Bi,bli,ography

A. Roli, and M. Sampels, Eds., vol. 3636. Springer, 2005, pp. 1-11. [Online].

Available: http://dblp.uni-trier.deldblconflhmlhm200s.htmlfDelisleGKcP0b


