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Abstract

Software engineers use design patterns to refactor software models for quality. This dis-

places domain patterns and makes software hard to maintain. Detecting design patterns directly

in requirements can circumvent this problem. To facilitate the analogical transfer of patterns from

problem domain to solution model however we must describe patterns in ontological rather than in

technical terms. In a first study novice designers used both pattern cases and a pattern ontology

to detect design ideas and patterns in requirements. Errors in detection accuracy led to the revi-

sion of the pattern ontology and a second study into its pattern-discriminating power. Study results

demonstrate that pattern ontology is superior to pattern cases in assisting novice software engineers

in identifying patterns in the problem domain.
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Chapter 1

Introduction

In software engineering, practitioners make every effort to design software that meets

both the functional and quality requirements of end-users. Function, because software must solve

problems in the real world; quality, because software that does not run properly on a computer is

not of much use to anyone.

Designers often integrate domain patterns into the solution model to make it reflect real-

world entities and relationships. This facilitates the solving of end-user problems within the context

of the application domain as it evolves over time. Unfortunately, software not designed with tech-

nology constraints in mind often runs poorly on a computer. This may force designers to use design

patterns to restructure the model to improve the software’s run-time performance. An unwanted

side-effect of this refactoring is the reduction of the model’s ties to real-world things, as technical-

quality patterns taken from the realm of technology begin to displace the domain patterns initially

collected from the problem domain.

This forces software engineers into making a difficult choice. Do they keep the domain

patterns in the model for the sake of software maintainability even if this means reduced software

performance? Or do they restructure the model to fit design patterns that increase software per-

1



Chapter 1: Introduction 2

formance but at the expense of its maintainability? For example, should designers model even the

smallest parts of a skyscraper (e.g., bolts) as objects, knowing full well that no computer could pos-

sibly load such a detailed object model? On the other hand, should they really be adding layers of

isolating, adapting, and sharing mechanisms foreign to skyscrapers into the model of a skyscraper

just to get it to work on a computer?

At the present time, software engineers fall into three camps on this question. In the first

camp are those that insist that we link model elements directly to the properties of real-world things,

whatever the cost. A second camp argues that models should be structured for quality to run well on

computers, come what may. A third camp seeks to reconcile these two positions; their goal is to use

pattern-assisted design techniques to integrate both domain and design patterns into the software

model, and without prejudice to either one.

This thesis belongs to the third camp in that it examines how design patterns may be used

to increase the run-time performance qualities of the software model (in this thesis, the “quality”

of the model) without compromising its faithful representation of the things in the problem domain

(in this thesis, the “accuracy” of the model). It is well-known that the design patterns found in the

pattern catalogs offer reusable structural solutions to known design-quality problems. Our goal is to

show that we can also use these patterns to accurately detect ontological regularities (in this thesis,

the “domain patterns”) in the domain and so to transfer them into the technical realm.

In our opinion, designers should use design patterns not only to refactor substandard mod-

els but to build both technical quality and domain accuracy into their initial software models as well.

To reach this goal however requires that we change how we describe design patterns so that they

become useful in initial design-phase activities as well.

But why so?

From the findings of the computer and cognition sciences we learn that accurate pattern

detection depends primarily on two things. In the first place, each pattern must be distinct from other
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patterns so that we can detect it specifically in instances. Secondly, the terms used to define a pattern

must match the terms used to describe real-world things for the analogical transfer of knowledge

from the source (in our case the domain pattern described in the requirements) to the target (in our

case the design pattern) to occur.

Unfortunately, existing design-pattern descriptions fail on both counts. First, existing de-

scriptions use technical terms to describe the patterns. These technical terms are unlike the domain

terms used to describe things. This makes it difficult for designers to map the design patterns to

the regularities detected in things. Second, the design patterns overlap once the abstraction powers

used in the design process eliminate the technical terms that differentiate them. Choosing the right

pattern to model the domain knowledge becomes difficult when more than one design pattern can

match the functional regularities being detected there.

From these observations flow our first prediction, that designers using design patterns as

currently described are likely to detect specific patterns in requirements with low accuracy.

As a solution to this problem we propose to describe design patterns differently. We first

identify a set of basic structural and behavioral pattern properties present in existing design patterns.

We name these key design ideas in ontological terms that cross application domains. We then use

these design ideas to differentiate the design patterns in a hierarchical ontology of patterns, that is,

in a pattern ontology.

We expect pattern ontology to facilitate the use of design patterns in the design phase

of software engineering for two reasons. First, describing design patterns in ontological terms

should facilitate the mind’s analogical transfer of pattern knowledge from the problem domain to

the technical realm. Second, differentiating design patterns in a hierarchical tree using very specific

design ideas should facilitate the mind’s detection of these ideas and of the design patterns attached

to them in real-world things.

From this flows our second prediction, that designers are likely to detect specific pat-
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terns in requirements more accurately using pattern ontology than using traditional design-pattern

descriptions.

In this thesis, then, we first critique the approaches used to mimic domain knowledge in

models, to structure models for quality, and to use patterns in support of the design- and domain-

pattern integration process. We study the findings of the computer and cognition sciences to learn

how to detect specific patterns in things and how to transfer these patterns to a different knowledge

domain with accuracy. Based on these findings we present a theoretical model that explains why

pattern ontology should result in a more accurate detection of patterns in requirements than tradi-

tional design-pattern descriptions. We present an initial pattern ontology and the method used to

construct it as proof of the feasibility of this new approach to design-pattern definition.

We present two studies with novice designers that validate the hypotheses above. In the

first study we investigate whether pattern ontology permits a more accurate detection of design

ideas and of patterns in requirements than traditional design-pattern descriptions. In a second study

we investigate whether calculated changes in the design ideas used to define the pattern ontology

can improve pattern-detection outcomes. Study results show that using traditional design-pattern

descriptions does indeed lead to low accuracy in pattern detection, and that using pattern ontology

has the opposite effect.

The thesis makes several important contributions to ongoing research in the field of soft-

ware engineering:

1. A theoretical model that sheds light on the cognition mechanisms underpinning accurate pat-

tern detection and pattern-knowledge transfer in software design.

2. The introduction of ontological analysis to design-pattern definition.

3. The identification of several key design ideas that can efficiently describe and differentiate

the design patterns currently published in the pattern catalogs.
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4. Experimental studies that demonstrate that using pattern ontology results in a more accurate

detection of design ideas and of patterns in requirements than using existing design-pattern

descriptions.

The rest of the thesis is divided into six sections as follows. Chapter 2, Related Works,

reviews software-engineering, human-cognition, and pattern-recognition research done in the com-

puter and cognition sciences. Chapter 3, Theoretical Model, uses research findings to explain why

designers should detect patterns in requirements more accurately using pattern ontology than us-

ing traditional design-pattern descriptions. Chapter 4, Problem, Solution, and Hypotheses, briefly

outlines the problem, solution, and hypotheses of the thesis. Chapter 5, Experimental Method, de-

scribes the studies undertaken to test the hypotheses. Chapter 6, Findings, analyzes study results in

the light of the theoretical model and of the hypotheses. Finally, Chapter 7, Conclusion, reviews

the results and contributions of the thesis and points to future research that is possible in the area of

pattern ontology.



Chapter 2

Related Works

When designing software, software engineers have two key objectives in mind. The soft-

ware must help end-users solve a problem that they are having in the application domain. The

software must run efficiently on computer technology. Engineers must meet both objectives if their

software is to be both useful and useable to end-users.

If the designer structures the software according to how entities exist in the application

domain, then software maintenance becomes easier. This is true because when entity interactions

change in the application domain so can the software structures that mimic them. This is the key

benefit of designing software for domain accuracy (section 2.1, Designing for Model Accuracy).

Another approach is to structure the software using design patterns so that it runs more effectively

on computer technology. In this case, it is the non-functional structures integrated into the model

that will predominate (section 2.2, Designing for Model Quality).

Unfortunately, the ontological patterns of the real world and the technical patterns of the

computer world are often dissimilar and may conflict. To ask the software engineer to choose

between model accuracy and model quality is unfair however because both are required in the

software. A third option then is for the engineer to use pattern-assisted design techniques to integrate

6
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both design patterns and domain patterns into the software model at the same time (section 2.3,

Pattern-Assisted Design).

This last approach has merit because the software will then model the structural elements

both of the application domain and of the technical realm. A prerequisite of this approach how-

ever are design patterns described in a way that the designer can accurately detect them in software

requirements. Existing design-pattern descriptions do not fit the bill, if what both novice and expe-

rienced designers say about them is true (section 2.4, Design Patterns). Hence we need to describe

design patterns differently if we are to realize the promise of pattern-assisted software design.

The maintainability and structural quality of a software model will depend then primarily

on the accuracy of the designer’s identification of design patterns in the requirements: the closer the

match between the domain and design patterns, the better the resulting software will be. We look

to the cognition sciences (section 2.5, Pattern Transfer in Human Cognition) and to the computer

sciences (section 2.6, Pattern Recognition in Machines) for insight into the mechanisms that underlie

accurate pattern recognition in humans and in machines.

We will use this research in the next chapter (chapter 3, Theoretical Model) to predict the

accuracy of detecting patterns in requirements using traditional design-pattern cases or the proposed

pattern ontology. A description of thesis hypotheses and of the experimental method used to validate

them will then follow.

2.1 Designing for Model Accuracy

One of the goals of software design is to define a software solution for an end-user prob-

lem in an application domain. This solution must model domain knowledge accurately if end-users

are to use it to solve real problems. Matching model structures to domain patterns can also make

the software easier to maintain because as domain realities change so can the solution model that
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represents them.

Domain analysis. Designers may use domain analysis, for instance, to define problems

and solutions in the context of the application domain (Andrade et al., 2004). They may use a

problem-sensitive modeling language (Andrade et al., 2006), a formal language (Evermann and

Wand, 2005), or even domain-analysis tools (Lisboa et al., 2010) to assist them in their work. As

a general rule domain models are useful only to the extent that they use the language and duplicate

the patterns of the problem domain.

Expert systems. Designers may use expert systems instead to model expert knowledge

of problems and solutions in a domain (Liao, 2005). End-users can then navigate through these

reasoning systems to solutions already known to work for problems in the targeted domain.

Ontology. Ontology can also capture the real-world relationships of the entities that exist

in the application domain (Pinto and Martins, 2004). An additional benefit of these structures is that

they give designers the key semantic terms to use to describe how the entities are bound together or

differentiated in their original real-world context.

Simulation models. Business-process model elements (Dijkman et al., 2008) or Petri nets

(Bernardeschi et al., 2001) can also represent domain knowledge. Designers can use these more

dynamic models to observe the changing behavior of represented domain entities over time.

Contracts. Designers may also specify desired domain outcomes for the software using

shall statements (Daniels and Bahill, 2004) or more formal contracts (Cheon et al., 2005). Design-

ers can use these contracts to confirm that software outputs do in fact meet the domain requirements

of end-users, or even to drive the software-development process itself (Beck, 2002).

Prototyping. Another option is to use prototyping. In this case domain elements are

shown on a visual interface that end-users are to interact with at some point (Arnowitz et al., 2007).

This can help designers target the right domain knowledge to model for the end-users who are to

eventually use the software.
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Use cases. Designers may describe the interactions of end-users and software with use

cases (Eriksson et al., 2008) or scenarios (Sutcliffe, 2003) instead. Making explicit the specific

domain knowledge that end-users expect to work with can increase the likelihood that the software

will be useful in that application domain.

Knowledge decomposition. Alternatively, designers may use knowledge-decomposition

techniques like problem frames (Jackson, 2005; Seater et al., 2007), requirements engineering (Li,

2008), or requirements specification (Redondo et al., 2005) to specify more precisely in the initial

requirements the domain knowledge describing the problem and its real-world context.

Object-oriented design. Object-oriented design is also an option. Here designers link the

attributes, operations, and associations of real-world things to the classes that are to represent them

(Schach, 2002). Domain-driven design is a good example of this approach (Evans, 2003). Using

an object-modeling language can also help designers correct model associations that are logically

incorrect and so cannot possibly exist in the real world (Barbier and Henderson-Sellers, 2000).

Agile methods. Finally, agile methods transfer domain knowledge directly into software

code without the use of an intermediary model (Martin, 2003). In this case, it is the software artifact

itself that represents and encapsulates all that is known about the entities and the domain.

These approaches all produce a solution model that accurately reflects the realities in

the application domain. This tight coupling of model and domain patterns increases model main-

tainability but it also makes refactoring the model along technical lines more problematic. Domain-

centric approaches may force the designer to sacrifice model quality for model accuracy. A different

approach to software design is needed if we are to avoid this dilemma altogether.
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2.2 Designing for Model Quality

An equally important goal of software design is to structure the solution model so that the

software runs well on a computer. Software must not only solve problems in a domain. It must also

run reliably and efficiently on a computer if end-users are to get any benefit from it.

Formal methods. Designers can improve model quality by following formal software-

development methods (Bjørner, 2000; Miller et al., 2006). Most formal methods are adaptations of

the well-known Waterfall method which defines the activities necessary to the systematic elabo-

ration of software.

Grammars. Restricting the words or forms permitted in requirement specifications can

also help. Grammar rules like Z-notation (Spivey, 1992), set theory and Venn diagrams (Al-

Karaghouli et al., 2000), F-logic (Yang and Kifer, 2006), or natural-language rules (Georgiades

et al., 2005) can help designers define more exactly and up-front what end-users require.

Model diagrams. Modeling solutions in diagrams constrained by composition rules—for

example, by the Unified Modeling Language—may also increase model correctness (Burton-Jones

and Meso, 2006) and quality (Nugroho and Chaudron, 2008). Helping designers avoid elementary

logic errors when doing design is the principal benefit of this technique.

Validation tests. Designers can also use validation tests to verify that a model mirrors the

problem domain (Nelson and Monarchi, 2007). Feedback loops do not say how to change a model

to increase its quality but they are still useful to designers as model-error detection mechanisms.

Design-concept analysis. Designers must also have a correct understanding of design

concepts (for instance, what is meant by the term cohesion) before using them to evaluate and

improve the quality of a model. Uncertainty as to what a quality looks like is unlikely to result in a

model that contains it (Mišić, 2000). Some even call for precise, axiom-based definitions of design

concepts so that designers can detect them more consistently (Morasca, 2008).
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Quality attributes. Techniques exist to evaluate the quality of model architecture as well.

Designers can use code tactics (Bachmann et al., 2002), process-analysis (Eguiluz and Barbacci,

2003), and architecture review (Bass et al., 2003) to identify software-model parts that may need to

change to support a targeted quality.

Pattern catalogs. Following the lead of the Gang of Four (Gamma et al., 1995), practi-

tioners (Fowler, 1997, 2003) and pattern communities (Henninger and Corrêa, 2007) have defined

scores of pattern cases that address specific design-quality failings. Designers should use exist-

ing pattern catalogs if at all possible (Cutumisu et al., 2006). Reusing industry-tested patterns is

preferred to the invention of new design patterns whose quality characteristics are still unknown.

Refactoring to patterns. Finally, designers can follow expert directions on how to incre-

mentally restructure model parts to fit a specific design pattern (Kerievsky, 2005). Following the

steps that other designers have used to integrate a design pattern into a model increases the likeli-

hood that the resulting model will contain it.

Methodology, modeling rules, quality-analysis techniques, and design patterns can all

help the designer to improve the quality of a solution model. On the other hand, imposing quality

rules on a model—and in the worst-case scenario, even refactoring it—may also displace the domain

patterns already implanted there. Quality-centric approaches may force the designer to sacrifice

model accuracy for model quality. A better approach might be to structure the solution model using

only the design patterns that match the domain patterns detected in the requirements. This would

remove the need to sacrifice model accuracy for model quality, and vice-versa.

2.3 Pattern-Assisted Design

Perceiving quality and accuracy as conflicting goals in software design may also result in

software that is increasingly difficult to maintain over time. If a designer continually changes model
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structures from domain patterns to design patterns—then back again, depending on the needs of the

moment—it will not be long before previously-discernible patterns (domain or technical) are lost

in the mix. Redesign, a.k.a. refactoring, is a reactive approach to integrating domain and design

patterns, and it is certainly not the optimal way to design software for the long term.

Providing software engineers with design patterns that match domain regularities can

neatly sidestep the quality-accuracy dichotomy completely. If the design patterns picked to structure

the model and the patterns detected in the problem domain are a good fit, the initial solution model

will adapt well to changes in the domain and will have desirable performance qualities too. Such is

the promise of the pattern-assisted approach to software design.

Aspects. For instance, designers may use system aspects to detect specific system ele-

ments (for example, user roles) in the problem domain (Garcı́a-Duque et al., 2006). The benefit

of scanning the requirements for one design property at a time is that it permits a more exact detec-

tion of the specific property in question.

Pattern discovery. Designers can use a similar strategy to identify complete patterns in

requirements (Muller et al., 2007; Hsueh et al., 2009). Designers can use patterns to build quality

into the solution model at design time (Wania and Atwood, 2009). This means that they need not

limit the use of patterns to the refactoring phase of software development only.

Decision-support. Another option is to use a knowledge base of design rules to support

designer modeling decisions. Such a system can prompt designers with timely advice on how best

to integrate quality patterns into a solution model under construction (Antony et al., 2005).

Expert system. Designers may also find useful expert systems that map problem forces to

the patterns that resolve them. These systems can guide designers in their choice of the best pattern

to use to fix specific quality failings detected in the model of the domain (Moynihan et al., 2006).

Ontology-driven. Finally, designers can use an existing ontology of a domain to guide

their creation of new models in this same domain (Fonseca and Martin, 2007; Soffer and Hadar,
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2007). In this case designers use proven domain patterns to correct errors in domain-knowledge

accuracy detected in the new model.

The approaches above use expert knowledge about design and domain to define credible

links between the two. Designers can use this bridge of expertise to link known structural patterns

to detected but not-yet-identified domain regularities. Domain-centric and quality-centric design

techniques never venture outside their own area of expertise; pattern-assisted design techniques do;

hence their utility to designers seeking to implant both functional and quality structures into their

models from the start.

However, are design patterns—currently seen as the best way by far to integrate desirable

run-time qualities into the software model—not currently geared for use in quality-centric design

only? This is the primary goal of refactoring after all. If so, of what practical use are such patterns

to software engineers confronted on a daily basis not only with the technical models but also with

the ontological realities of the application domain? Is there not growing evidence also that design

patterns as currently described are becoming increasingly impossible to use? We consider these and

other equally important questions about design patterns as currently defined next.

2.4 Design Patterns

In the late 1970’s Christopher Alexander introduced the use of patterns to the field of

architecture design (Alexander, 1979). Following his lead the Gang of Four championed the use

of design patterns in software engineering in their seminal work, “Design Patterns: Elements of

Reusable Object-Oriented Software” (Gamma et al., 1995).

Since then both academia and industry have encouraged pattern use in designing software,

primarily because patterns seem to solve many of the problems often faced by software engineers.

For instance, patterns link design theory to modeling practice (van Diggelen and Overdijk, 2009).
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They have known quality characteristics (Gross and Yu, 2001) that designers can use to meet com-

peting end-user requirements (Hsueh and Shen, 2004). Patterns also make software models more

resilient to change (Aversano et al., 2007; Izurieta and Bieman, 2007).

The arguments that support pattern use in software engineering are convincing. The utility

to novice and experienced designers alike of design patterns as currently described is less so.

2.4.1 Utility to Novice Designers

In theory, design patterns should help novices to acquire design expertise (Lewis et al.,

2004) and to practice the analytical skills used in designing software (Muller et al., 2007). Design

patterns are schemas that novices can activate to better understand real things (Kohls and Scheiter,

2008). They help novices remove cognitive barriers that impede the efficient acquisition of design

and of domain expertise (Kolfschoten et al., 2010). They enhance the analogical-reasoning skills

that novices need to transfer domain patterns into the technical realm (Muller, 2005).

In practice, new designers often find existing design patterns confusing and hard to use: a

hindrance rather than a help in design activities. This seems to be true both of students (Chatzige-

orgiou et al., 2008) and of people with industrial experience (Vokáč et al., 2004). Novices cannot

easily apply patterns to problems nor integrate domain knowledge into them (Jalil and Noah, 2007).

Nor does understanding a design pattern necessarily result in its accurate identification in require-

ments described in non-technical terms (Boyer and Mišić, 2009).

It is true that these difficulties may have their source in deficient novice skill. Novices

may lack the expertise to abstract or specify knowledge (Wagner and Deissenboeck, 2008), to use

natural language to describe a domain correctly (Frederiks and van der Weide, 2006), or to avoid the

many errors that threaten the modeling effort (Walia and Carver, 2009). Modeling the complexity

of real-world interactions can also be a challenge to new designers (Batra and Wishart, 2004).

On the other hand it is hardly the fault of novices if existing pattern descriptions do not
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take into account how people new to design detect patterns in things. At present design patterns

seem to be written chiefly to help experienced designers refactor already implemented software.

This may explain in part why inexperienced designers find it difficult to use these descriptions to

identify patterns in problem-domain realities, or in the software requirements or models that repre-

sent them. Using a pattern-description format like that of Shvets (2008), one that uses more familiar

language and examples to describe the patterns, may ultimately prove more useful in helping people

to detect design-relevant regularities in the problem domain.

2.4.2 Utility to Experienced Designers

In addition there is ample evidence that even experienced software engineers are finding

it increasingly difficult to work with design patterns as currently defined. These difficulties seem to

stem mostly from pattern proliferation, pattern overlap, and pattern isolation.

Pattern Proliferation

First of all, mastering all design patterns or finding the right one to solve a problem has

become more difficult with the increase in the number of pattern variants available. Henninger

and Corrêa (2007) have identified the existence of at least 2,241 distinct pattern cases produced by

170 different groups in the pattern-language community. This is simply too many patterns for any

designer to ever master or use.

To help contain pattern proliferation, Agerbo and Cornils (1998) suggest that we focus

on core design ideas rather than on producing additional design variants. Rost (2004) goes further

and says that it is the key structuring idea—and not its many variations—that is the real pattern;

he recommends placing patterns in a hierarchy with the most invariant structural ideas at the top.

Kniesel et al. (2004) add that it is the more generic aspects of design patterns that often define the

most basic structural ideas.
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Using formal methods to define pattern-structure elements can also help pattern authors

identify duplicates. Some possibilities are the use of pattern-language grammar (Zdun, 2007), pat-

tern templates (Gamma et al., 1995; Buschmann et al., 1996), directed hierarchies (Riehle and

Züllighoven, 1996), graph structures (Tsantalis et al., 2006), and static-pattern specification (Kim

and Shen, 2008).

Identifying the design ideas essential to software design and using them to structure or to

suppress pattern variants should reduce pattern proliferation. Finding a method to identify these key

design ideas is especially critical given that the authors above give no indication of how to do so.

Pattern Overlap

A second problem with existing design patterns is that they may be too similar to use in

the detection of specific patterns in things. The Gang of Four thought for example that Wrapper and

Adapter were synonyms for the same pattern (Gamma et al., 1995). Studies in automated design-

pattern detection have also shown how difficult it is to identify specific design patterns using the

model structure of patterns alone (Antoniol et al., 2001; Guéhéneuc et al., 2010).

From this Philippow et al. (2005) argue that the differences between patterns come not

from their technical specification but rather from the domain knowledge that the patterns are meant

to represent. In fact Noble et al. (2002) insist that design patterns have a metaphoric dimension

that allows designers to map them to the differentiated patterns that exist in things; for example, we

would use the State pattern and not a Mediator to model property changes in a Sheep.

Important pattern properties can also serve as pattern differentiators on the technical side

of things. The Gang of Four for example categorize patterns according to their creational,

structural, or behavioral intent (Gamma et al., 1995). Ram et al. (2000) suggest using struc-

tural properties like adaptability or extendibility to differentiate them. McNatt and Bieman

(2001) propose to use the strength of pattern coupling as the pattern differentiator instead.



Chapter 2: Related Works 17

Some authors even define a complete property set that they then use to highlight pattern

similarities and differences. For instance, Smith and Stotts (2002) combine elemental patterns like

CreateObject and Redirect to describe different patterns. Rypáček et al. (2006) use a set of oper-

ators like send and join to define how different patterns interact with other model elements. Zdun

and Avgeriou (2008) use architectural primitives like callback and indirection to differentiate

patterns by their behaviors.

Describing design patterns using properties that have the power to differentiate both do-

main regularities and technical structures should eliminate pattern overlap. Unfortunately the prop-

erties identified to date are present in too many patterns and so lack the discriminatory power re-

quired for precise design-pattern differentiation. As with design ideas, we also need a method to

identify the key pattern properties, in this case those with the highest pattern-discriminating power.

Pattern Isolation

A third problem with design patterns is that they are becoming increasingly isolated within

distinct pattern cases. Henninger and Corrêa (2007) for instance point out that few of the 2,241

patterns that they reviewed even consider inter-pattern relationships. They suggest that this makes

combining patterns to solve more complex domain problems that much more difficult.

Several authors suggest ways to reduce pattern isolation. Noble (1998) for example ex-

plains how design patterns use, refine, or conflict with other patterns. Tahvildari and Konto-

giannis (2002) show how complex patterns use more primitive ones like Composite within layers.

Henninger and Corrêa (2007) propose to use ontology to show the semantic associations that link

patterns together.

Expecting pattern authors to describe inter-pattern use relations may be a bit unrealistic

however because no one can really foresee the inter-pattern interactions that a designer may need to

model for a given problem domain. More realistic might be to ask pattern authors to give the is-a
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relation between their design patterns and those already defined in a base pattern set, because is-a

relations are based on definition and not on use and so should never change.

In particular, pattern authors would need to identify the key design ideas or pattern prop-

erties that a new pattern has in common with an existing one, and also those that make it different

and unique. For example, do the Factory Method and Abstract Factory patterns not share a

common factory function, and is not the difference between them slight if not superficial?

Pattern proliferation, overlap, and isolation all seem to stem from a common cause: that

of faulty design-pattern definition. Describing design patterns as isolated pattern cases in particular

makes it hard for us to suppress pattern variants, to show the similarities and differences between

them, and to reduce their semantic isolation. For these reasons and for those given in the preced-

ing section describing design patterns differently may be a prerequisite to their continued use in

software-design activities by novice and experienced software designers alike.

2.4.3 Criteria for Key Pattern Properties

To describe design patterns differently though we must first identify the key pattern prop-

erties or design ideas to use in our pattern descriptions.

These pattern properties must meet a strict set of criteria. They must differentiate design

patterns so that each is unique and easily recognizable. They must form a hierarchical structure in

which pattern variants can inherit the more generic properties of their pattern parents. They must be

detectable in requirements and in things so that designers can use them to transfer domain patterns

into the design patterns of the technical realm. Above all the properties chosen must have the highest

pattern-detection power since this is what will make them most useful to software engineers.

In the next section, we examine research into human cognition. Our goal is to gain insight

into what pattern properties should look like if they are to facilitate the transfer of knowledge from

the application domain into the technical realm. We leave to the section after that a discussion of
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the principles that underlie pattern differentiation.

2.5 Pattern Transfer in Human Cognition

At the heart of software design we find designers. It is the human mind that analyzes the

problem in the light of its domain and that engineers a solution to it in a software model. Under-

standing how the mind transfers information across knowledge domains is a prerequisite then to

defining design patterns that support and do not oppose the mind’s transfer of domain knowledge

into the technical realm.

We consider first how the mind constructs conceptual models of the things in the world.

We then investigate how the mind uses patterns and analogical processes to transfer information

across knowledge domains. A brief discussion of the implications of these findings on the choice of

the pattern properties to use to describe design patterns follows.

2.5.1 Conceptual Models

The mind first constructs a conceptual model of the things in the world, because only then

will it have at hand the concepts that it needs to understand that world.

Mandler and McDonough (2000) show that the mind uses surface features (e.g., red or

square) and then simple concepts that categorize features (e.g., color or shape) to understand

things. Learning the relations that link concepts leads to a conceptual network (Hills et al., 2009)

that uses ideas to both group and distinguish concept collections (Hammer et al., 2009). The value

of a concept to the mind depends primarily on its power to categorize and so to support the mind’s

recognition and understanding of things (Vanoverberghe and Storms, 2003).

This network of concepts also has a hierarchical dimension: cognitive economy requires

that the mind re-use ideas present in more abstract concepts when defining new concepts (Cohen,
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2000). This is possible because abstraction reduces the feature specificity of ideas (e.g., Fido vs.

dog vs. mammal) which in turn increases the number of other concepts that an idea can relate to

(e.g., both dog and cat are mammals).

The mind can use this growing and ever-more complex model of reality to understand the

deeper structural regularities present in things (Dibbets et al., 2002; Wiemer-Hastings and Xu, 2005;

Westbrook, 2006). Predicting the presence of properties in a thing is also possible when many of a

known-model’s structural parts are found to already exist within it (Rehder and Hastie, 2004; Coley

et al., 2004).

It is possible to assist the mind in its construction of these conceptual models by inserting

already-validated models of reality into the mind through education. Doing so can give focus to the

knowledge-acquisition process and also improve the robustness of a person’s detection of exemplars

(i.e., of patterns) in things (Son et al., 2008).

In software engineering, design patterns are the conceptual models that the designer’s

mind should use to identify the domain patterns present in the things of the problem domain. Ac-

quiring knowledge of design patterns through education can also help software engineers avoid the

difficulties of acquiring pattern knowledge through trial and error.

2.5.2 Analogical Processes

Once the mind has mastered the patterns that govern things in one domain, it can use them

to acquire knowledge about the things that exist in another. The analogical processes that the mind

uses to detect known patterns in still-unknown things are described next.

The mind first applies a known model of reality—a category, a concept, or a more complex

pattern—to domain knowledge (Liikkanen and Perttula, 2009), the model used depending on what

we are seeking to learn about the domain (Ford, 2004). Doing so immediately populates the model

with the domain knowledge that matches the model concepts (Duncan, 2007).
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The mind examines the model’s alignment with domain regularities (Gentner and Bow-

dle, 2001), and uses contextual information to filter out concepts not relevant to the problem at hand

(Glucksberg et al., 2001; Poitrenaud et al., 2005). It does so because focusing on only relevant

concepts can increase the accuracy of the analogical match (Albers, 2007; Chaigneau et al., 2009).

Using concept collections that have crystallized into exemplars may also reduce the amount of fo-

cusing effort needed (Pierce and Chiappe, 2009). An expert has the ability to define these exemplars

and to use them to quickly identify the patterns in things (Popovic, 2004).

Pattern matching usually occurs on concept structures and especially those that are more

abstract for two reasons. First of all, many concepts (e.g., took) are used across knowledge do-

mains. Hence it is the structural links between concepts (e.g., bought = took + paid vs. stole =

took + not paid) that we must use to distinguish things (Gentner and Kurtz, 2006; Alam, 2009).

Second, domain specifics are too different to be matched (e.g., robot is not human). Hence the mind

must look to the more abstract concepts (e.g., attains goals logically) attached to the domain

specifics (e.g., robot algorithms and human rationality) for the similar concept structures

that allow cross-domain knowledge transfer to occur (Mandler, 2000).

Once the mind finds a structural match, it attaches the domain-specific knowledge describ-

ing the unknown thing to the concept structures already present in the mind (Chiappe and Kennedy,

2001). This continues down to the level of specificity that the similarity between the concepts in the

two domains permit. Analogical processes transfer knowledge across domains only to the extent

that the concepts common to both domains permit; after that, human ingenuity must come into play.

In software engineering, a design pattern encapsulates a specific combination of design

concepts. The designer’s mind applies different design patterns to the problem domain—or to the

model that represents it—looking for a match. Patterns are populated with more specific domain

knowledge once a match on the higher-level pattern structures is found. This continues until no

further matches are possible and the designer must turn to invention to complete the software model.
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2.5.3 Implications for Design Patterns

The findings of the cognition sciences have two important implications for the continued

use of design patterns in software engineering.

First of all, in describing design patterns we must use pattern properties that include con-

cepts common to both the application domains and the technical realm. The mind requires concepts

that are semantically similar to be present in differing domains for information transfer to occur

(Kintsch and Bowles, 2002). Without common concepts the domains remain isolated and no mental

process exists that can bridge the knowledge gap between them. If software engineers find existing

design patterns hard to use it is likely because the concepts now used to describe them obstruct the

natural knowledge-transfer mechanisms of the human mind.

Second, we must choose the right concepts to use for the knowledge-transfer task. Using

pattern properties that lack the analogical power to transfer knowledge from domain to model may

result in contrived models that are not accurate reflections of reality (Pierce and Chiappe, 2009).

Finding a method to identify the design concepts that have high analogical power may prove critical

to the continued use of design patterns in software design.

Another reason why designers may find existing design patterns hard to use is the current

lack of precision in their definitions. If designers are unclear as to what makes each design pattern

unique, they will find it hard to use design patterns to identify specific patterns in things: overlapping

patterns do not make for precise and accurate pattern recognition.

In the next section, we examine research into pattern differentiation and recognition in the

computer sciences. Our goal is to gain insight into how to use the discriminatory power of pattern

properties to improve the definition and differentiation of the patterns used in software design.
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2.6 Pattern Recognition in Machines

In machine-based pattern recognition a classifier compares the properties of a data in-

stance to those of a defined pattern class and if they are sufficiently similar, identifies the data

instance as a member of the pattern class.

If patterns overlap however the classifier may place a data instance in the wrong class.

Classification errors will then prompt the use of other pattern properties that better differentiate

the patterns and that result in more accurate instance classification. Best are the properties that

permit the accurate detection of distinct patterns even in noisy data instances where a pattern is

more difficult to discern.

The human mind is regulated by the same logical constraints as machines (von Rooij and

Wareham, 2008). As a result the rules that govern pattern use by machines should apply to a large

extent to the mind’s use of design patterns as well. Hence we examine next the techniques used in

the computer sciences to partition the pattern space, to identify high-value pattern features, and to

evaluate the discriminatory power of the concepts used in describing patterns.

2.6.1 The Science of Pattern Recognition

Computer scientists have observed that information features that are co-related tend to

form pattern clusters (Omran et al., 2007), and that as distinct clusters they partition the pattern

space (Alexe et al., 2006). Computer scientists use distance metrics, statistics, rules, decision trees,

or other techniques to identify the clusters, depending on their preferred pattern-recognition strategy

(Kotsiantis et al., 2006). Partition quality ultimately depends on the compactness of cluster features

and the separation between the cluster groups (Cardoso and de Carvalho, 2009).

We should not partition patterns using all of the information features at our disposal how-

ever. Ignoring the computational consequences of the curse of dimensionality or using overly-



Chapter 2: Related Works 24

specific pattern cases that are difficult to find may mean that no patterns are ever detected in the

instances. In the end only a judicious selection of the small set of features that efficiently divide up

the pattern space will make efficient and accurate pattern-detection possible (Sima and Dougherty,

2008).

There are a number of ways to identify these core differentiating features. Gunal and Edi-

zkan (2008) see benefit in using separability measures to find the features with the highest pattern-

discriminating power. Features that have high information gain and appear often (Richards et al.,

2006) or that often appear together (Aggarwal and Yu, 2001) are also usually significant. Identifying

these key features is also easier if we use filtering to remove redundant or irrelevant features first

(Last et al., 2001).

How the classifier measures the match of pattern class and data instance differs according

to the pattern-recognition strategy used (Kotsiantis et al., 2006). For the most part if the calculated

match crosses a pre-determined threshold then the classifier detects the pattern, otherwise it does

not (Jain et al., 2000). If the classifier detects a pattern that it should not, a false positive occurs. If

it does not detect a pattern that it should, then a false negative occurs.

Not detecting a pattern in an instance known to contain it indicates that the features used to

detect the pattern are at fault (Thabtah, 2007). Further tests of different feature combinations should

result in a set that better partitions the pattern space and that permits a more accurate detection of

distinct patterns in data instances (Jain et al., 2000). Fürst et al. (2008) describe in some detail

a technique that uses pattern-detection error rates to guide the discovery of the optimal pattern-

differentiating feature set.

In software engineering, people use existing design patterns—often with some difficulty—

to detect structural regularities in the problem domain or a model of it. To remove design-pattern

overlap especially we must identify the pattern features that will more sharply partition the design-

pattern space. Design patterns described by such features should in turn support a more accurate
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detection by all designers of distinct and specific patterns in instances of things.

2.6.2 Implications for Design Patterns

The findings of the computer sciences have two important implications for the continued

use of design patterns in software engineering.

First of all, in describing design patterns we must use pattern properties that have high

discriminatory power. Software engineers must know the specific features that make design pat-

terns unique if they are to use them to detect specific patterns in the problem domain. The pattern

properties picked should also have high analogical power if they are to facilitate the transfer of the

patterns detected there into the technical realm.

Second, we must choose the right concepts to use for design-pattern differentiation. Ma-

chine based pattern recognition uses pattern-detection error rates on test instances to identify the

best features to use to partition the pattern space. In this thesis we use a similar approach to evaluate

the analogical and discriminatory power of the pattern-case and pattern-ontology properties used

by designers to detect patterns in things. This method is described in some detail in chapter 5,

Experimental Method.

2.7 Summary

In this chapter, we examined several domain-centric, quality-centric, and pattern-centric

approaches to software engineering. Only the last approach seemed able to preserve both model

accuracy and quality, and so to meet both the functional and non-functional software requirements

of end-users over the long-term. We then investigated why designers often find existing design

patterns hard to use. The reason: the critical high-level design concepts that can address the current

proliferation, overlap, and isolation of design patterns have yet to be found.
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We then examined the findings of the cognition and computer sciences: how the human

mind uses analogy and patterns to transfer knowledge across different domains; and how machines

partition the pattern space so that it is easier for them to identify specific patterns in things. From

these findings came two conclusions: first, that the design concepts used to define design patterns

should have both analogical and discriminatory power; second, that a method is needed to identify

the design concepts that do in fact have these powers, powers that are so very necessary to the

accurate identification of specific patterns in things.

In the next chapter, Theoretical Model, we use the research findings above to predict how

accurately a designer is likely to detect pattern properties in domain knowledge using the traditional

isolated pattern-case approach, and the one that this thesis advocates: pattern ontology. This sets

the stage for the formulation of the hypotheses of the thesis, as well as for the studies undertaken to

test their validity.



Chapter 3

Theoretical Model

The purpose of a theoretical model is to guide scientific research in a field of human

inquiry. Theoretical models are not only a source of hypotheses about reality; they are also a guide

to the construction of experiments that can validate these hypotheses. Software-engineering research

is to some extent based on theoretical models but their use in the validation of hypotheses has so far

been limited (Hannay et al., 2007).

In this chapter we present a theoretical model of the cognition processes that underpin

software design. We examine the role of design patterns in the transfer of pattern knowledge from

the application domain to the technical realm. We use our model to predict the pattern-detection

accuracy to be expected from the pattern-case and pattern-ontology approaches to software design.

We base our model on the findings of two sciences in particular. Cognition science shows

that the accuracy of knowledge transfer between two domains increases if the concepts used for the

transfer are common to both of them. Computer science offers proof that pattern-detection accuracy

improves if concepts with high discriminatory power are used to differentiate the pattern space.

Our hypothesis is that designers will detect the properties of design patterns in the problem

domain more accurately using a pattern ontology than using isolated pattern cases. We expect this

27
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to be true because pattern ontology uses concepts with high analogical and discriminatory power to

describe design patterns while pattern cases do not. We show how the findings of the cognition and

computer sciences support this thesis in the sections that follow.

3.1 Human Cognition in Software Design

As mentioned previously, people are at the center of software design. We expect then that

the mental mechanisms that people use to interact with the world on a daily basis will also be used

to design software. The rules of cognition govern how we think. To design software one must think.

Hence we examine the effect of cognition rules on software-design processes next.

3.1.1 Cognition in Design Activities

Studies in cognition science have shown that humans acquire the mechanisms of cognition

essential to survival early in life, and that they use these mechanisms throughout their lives to better

understand and to organize their world. Human minds detect patterns in things, produce conceptual

models of these patterns, and then revise these models of reality to take into account new or changing

patterns in the outside world. We see these same mechanisms hard at work in software-design

activities as well.

In domain analysis for example software engineers construct domain models that mirror

the patterns that they detect in the application domain. In the technical realm they construct technical

models using design patterns that allow computers to run software more efficiently. In both fields

software engineers use refactoring to correct or refine their models of domain or technical realities.

These design activities are illustrated for the two knowledge areas in question in Figure 3.1.
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Figure 3.1: Essential design activities in two knowledge areas

The software-design cycles illustrated in Figure 3.1 highlight the fact that the mechanisms

that we use to model reality are generally always the same, regardless of the knowledge area. The

patterns that people use to model things may vary across individuals, as may the specific knowledge

that is the object of their thoughts. However few would dispute the fact that all human minds use

more or less the same basic mechanisms of cognition to analyze and to model knowledge.

3.1.2 The Cognitive Gap

In the examples given in Figure 3.1, software engineers work in very specialized fields:

that of a domain or of the technical realm. Specialized fields need special terminology, models, and

patterns it is true. Even so specialization also has the negative effect of isolating knowledge areas

from each other and of making information transfer between them difficult. This is true because

knowledge specificity reduces the number of concepts that the knowledge areas have in common.

This cognitive gap exists between the application domains and the technical realm also.

Machines are logical and require correct information for computational purposes. Real-world things

behave as nature intended and in a much more chaotic way. The concepts used to describe things in

domains and in technology are different. This makes knowledge transfer between them difficult. As
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seen in the literature review, these differences even influence software-engineering practice: there

are domain-centric and technology-centric approaches to software design; a designer will use one

or the other depending on whether model accuracy or technical quality is their overriding goal.

As we saw earlier, designing software in a domain- or technology-centric way also has

negative consequences. Making changes to the model after the fact displaces important domain or

design patterns already built into the model. This may result in software that does not support both

the functional and non-functional needs of end-users in the long-term. A reactive approach to soft-

ware design simply does not bridge the gap between domain and technical knowledge effectively.

Using design patterns to transfer domain patterns into the technical realm at design time

can circumvent this problem. Design patterns can act as a bridge between domain realities and the

technical realm. The specifics of how design patterns actually help the mind bridge the cognitive

gap between the two knowledge areas follow.

3.1.3 Design Patterns as Bridges for Cognition

As mentioned briefly in the literature review on human cognition, a concept is defined

by the semantic terms (i.e., the ideas) attached to it. For example, the concept human is defined as

rational animal because human beings have both a mind and a body. Each of these terms is also

a concept in its own right however and also has a set of ideas that define it. For example, the concept

rational includes the terms logical and sequential while that of animal those of living and

warm-blooded.

What we notice in these definitions is that the more specific the concept, the greater the

number of terms that it contains, and the more abstract the concept, the fewer. This is the nature

of specification and of abstraction. Adding information specifies what we know about a thing. Re-

moving information makes what we know about a thing more general or abstract. For example,

specifying the concept human with the terms German, academic, and inventor of theory of
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relativity might lead us to name this new set of terms: Albert Einstein. Conversely, abstract-

ing the concept human (i.e., a rational animal) by removing its animal term leads us to consider

only the properties related to rationality in human beings.

In addition, because abstract ideas contain fewer terms, the mind can detect them in more

specific concepts more easily than the other way around. For example, scientists can use the terms

of the formula velocity = distance / time to easily detect the key real-world quantities that

control the velocity of a moving object. The formulation of the original velocity formula took

significantly more mental effort because of the need to extract from the specificity of many objects

in motion a generalizable pattern.

As stated earlier, the mind transfers knowledge across differing domains by finding the

conceptual model that they have in common. In fact the mind attempts to find, in the more specific

concepts that describe the things that exist in a domain, the more abstract ideas present in its known

patterns of reality. It does so by removing terms from domain concepts (abstraction) and adding

terms to pattern concepts (specification) until a match between domain and pattern ideas and con-

ceptual structures is found. This activity constitutes the bulk of the mind’s work of bridging the

cognitive gap between any two initially-unrelated knowledge domains.

In software engineering, designers should use the patterns proper to the technical realm to

transfer the ontological regularities detected in a domain into the technical realm. Design patterns

are defined using abstract concepts, for example, Proxy is defined as a “surrogate or placeholder for

another object to control access to it” (Gamma et al., 1995). Conversely the concepts that describe

domain realities (e.g., Albert Einstein) are usually quite specific. This means that the mind

needs no cognition mechanisms other than those already at its disposal to detect the optimal design

patterns to use to represent the ontological regularities detected in things.

Through abstraction and specification the mind can attach the right design ideas to the

patterns detected in the domain. As a result design patterns can act as cognitive bridges that facilitate
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the transfer of domain patterns into the technical realm. Furthermore only design patterns can do so

in a way that preserves both the domain accuracy and the technical quality of the software model.

3.1.4 Barriers to Design Pattern Use

Two barriers to the use of design patterns in software engineering exist however. As men-

tioned in the literature review, the design ideas currently used to describe design patterns lack ana-

logical and discriminatory power. As a result software engineers find them hard to use in software-

design activities that require the use of both analogy and discrimination in modeling the patterns

detected in the problem domain.

In the two sections that follow we examine the analogical and discriminatory power of the

design concepts used to describe design-pattern cases and design-pattern ontology. This examina-

tion will form the basis of our hypothesis about the accuracy in pattern detection that designers can

expect when using pattern cases or pattern ontology in software-design activities.

3.2 Design Pattern Cases

As seen in the literature review, pattern authors presently describe each design pattern as

an isolated pattern case for use in addressing a specific design defect in a solution model. This

approach may be suitable to refactoring software models for quality. It is not suitable however if the

designer’s goal is to find useful patterns for model design in the knowledge of the problem domain.

The reason why is simple: the technical terms now used to describe design patterns lack

analogical power; once the mind abstracts these terms away as part of the analogical knowledge-

transfer process the terms lose their power to differentiate the design patterns as well.
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3.2.1 Technical Terms Lack Analogical Power

Pattern authors for the most part describe design patterns using terms that are highly

technical in nature. The description that the Gang of Four gives for the Proxy pattern, for example,

uses terms like initialize objects and implement interfaces to describe the Proxy pattern’s

purpose and behavior (Gamma et al., 1995).

The technical terms used are also highly abstract (e.g., implement interfaces); one

might think that this makes them suitable for detecting patterns in things. Unfortunately not all

abstract terms have analogical power. Technical terms, although abstract, are quite specific to the

technical realm and have little meaning outside of it; for example a designer is unlikely to detect a

concept like implement interfaces in real-world things because these are described using terms

like rational or warm-blooded or living.

Technical terms are not natural to the language and realities of the application domain.

This creates a significant cognitive gap between domain and technical concepts that the technical

terms—tightly bound as they are to the technical realm themselves—cannot truly bridge. This lack

of analogical power makes technical terms an unsuitable vehicle for the transfer of domain patterns

into the technical realm.

3.2.2 Technical Terms Lose Discriminatory Power

The mind also uses analogical processes to find the common conceptual structures that

permit knowledge transfer across domains. As part of the concept-matching mechanism the mind

uses abstraction to remove more specific terms from the concepts in both knowledge areas until it

finds those that are a match between the two.

The same will hold true when using design patterns. When comparing the technical terms

that describe the patterns against the ontological terms that describe a domain the mind will detect

the cognitive gap that exists between the two. In response the mind will use abstraction to remove
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terms overly specific to each knowledge area, the goal being to find the more abstract terms that are

common to both and that will permit a knowledge transfer between them to occur.

This abstraction will result in the removal of technical terms from design-pattern concepts.

The justification: these terms are too specific to the technical realm; the desired common concepts

are unlikely to be discovered there. However this action also removes the terms currently used to

differentiate the design patterns. As a result many patterns at a higher level of abstraction are nearly

identical. This is why designers cannot really use design patterns as currently described to identify

specific patterns in things.

The effect of abstraction on design patterns is illustrated in Table 3.1 and in Table 3.2.

Façade

A B

B.1 B.2

Client

Target

Client

Adapter

Adaptee 1

Adaptee x

Subject

Client

Proxy

Real Subject

Pattern Intent Structure 

Façade A unified interface to a set of interfaces in 
a subsystem.  A higher-level interface that 
makes the subsystem easier to use. 

 
Adapter The conversion of the interface of a class 

into another interface clients expect.  
Adapter lets classes work together that 
couldn’t otherwise because of incompatible 
interfaces. 

 
Proxy Provide a surrogate or placeholder for 

another object to control access to it. 

 

Table 3.1: Three Gang of Four design patterns
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Accessor

Client

Module 1

Module x

Accessor

Client

Component 1

Component x

Accessor

Client

Resource 1

Resource x

Pattern Intent  Structure 

Façade Single access to different module(s). 

 
Adapter Single access to different component(s). 

 
Proxy Single access to different resource(s). 

 

Table 3.2: Three Gang of Four design patterns after abstraction

As seen in Table 3.1 and in Table 3.2, the effect of abstraction is to reduce the intent and

structure of the Façade, Adapter, and Proxy patterns to essentially the same thing: an Accessor

design idea that isolates a Client from a second entity which may be either a module, a compo-

nent, or a resource. As currently defined, the mind cannot use the Façade, Adapter, and Proxy

patterns to identify isolation, adaptation, or in persona patterns in domain knowledge. This

is why design patterns described using technical terms are not useful in identifying specific domain

regularities (like isolation, adaptation, or acting-as-another) in things.

To summarize: technical terms lack analogical power because they are too tightly bound

to the technical realm; they lose their discriminatory power because of abstraction and analogical

processes; as a result design patterns as currently described are not useful to software engineers in
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detecting specific design patterns in things during software design.

3.3 Design Pattern Ontology

An alternate approach to defining design patterns is to use ontological terms that can

bridge the cognitive gap between domain knowledge and the technical realm. Certain ontological

terms span application domains and may also be found in the technical realm: this guarantees their

analogical power. If concepts with high separability are used for the ontological terms, they will

also have discriminatory power. Choosing terms that are abstract will allow designers to use them

to detect patterns in more specific things. These criteria are all met in design-pattern ontology, as

we shall see next.

3.3.1 Ontological Terms Have Analogical Power

As we saw above, abstraction removes the technical terms from the pattern definition and

leaves only the essential design ideas that define each pattern’s unique and characteristic intent and

structure. Since it is these concepts that the mind uses for the analogical transfer of patterns into the

technical realm it is these concepts that we should use to define design patterns in the first place.

The ontological terms used to define the patterns should also be immune to abstraction:

they should be easy to detect both in domain patterns and in a specific design pattern; this will ensure

that the mind finds the required matching concepts without the need for additional abstraction.

For example, we find the term in persona, that is, acting-as-another, embedded in the

concepts of many domains: acting in theater, identity theft in law-enforcement, social

roles in sociology, even man-in-the-middle attacks in computer science. We also find the in

persona concept in the Proxy design pattern, and not in other patterns like Façade or Adapter.

Hence using the ontological term in persona to detect a Proxy pattern in domains that speak of
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actors or identity theft is likely to result in a solution model that better represents the things

in those domains.

Ontological terms that cross application-domain boundaries have analogical power. We

can discover the ones of use in software design through a two-step process: first applying abstraction

to the technical design patterns to identify the terms that have analogical power; then selecting the

ones most useful in mapping the design pattern to the targeted application domains. These are the

design ideas that will allow the detection of specific patterns of design in things; these are the ones

which for the given design pattern have the highest analogical power.

3.3.2 Ontological Terms Retain Discriminatory Power

Analogical power is not enough however. The ontological terms used for pattern definition

must also effectively separate the design-pattern space. A designer must know the specific design

ideas that make each design pattern unique. Only then can the designer use a design pattern to detect

a specific pattern in the problem domain.

The concept of sign for instance can split all numbers into two distinct numeric sets:

those that are positive, and those that are negative. Similarly, an ontological concept like life

can also split things into two distinct classes: those that are alive, and those that are dead. Ideas

with the power to separate concepts into distinct clusters are key to the partitioning of the design-

pattern space. Only these key design ideas can remove the semantic overlap that currently plagues

design-pattern definition.

Ideas that differentiate design concepts do exist in the pattern space also. For instance,

there is a significant difference between a pattern that isolates entities (e.g., Façade) and one

that enables sharing between them (e.g., Mediator). There is also a detectable difference be-

tween a pattern that simply transfers information (e.g., Façade) and one that adapts it to fit the

requirements of a different interface (e.g., Adapter).
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We can use these and other design ideas with like discriminatory power to efficiently

partition the design-pattern space.

3.3.3 Understanding Pattern Ontology

In fact, we discern in the technical descriptions of existing design patterns only a small

set of key design ideas that seem to have this differentiating power: isolate vs. share; transfer

vs. mediate; provide vs. collaborate. Some of these key design ideas also seem to be present

in multiple patterns, for example, the idea of isolate in the Façade, Adapter, and Proxy patterns.

Grouping patterns according to the design idea that they have in common and separating them by

design-idea differences gives us the pattern ontology shown in Table 3.3.

1 Isolate  
   1.1 Transfer 
 Facade  Isolate components internal to the system  

Wrapper  Isolate component external to the system  
Delegate  Represent a component internal  to the system  
Proxy  Represent a component external to the system  
Strategy  Plug an exchangeable operation into the system  
Provider  Plug an exchangeable component  into the system  

   1.2 Mediate 
 Adapter  Map external component interface to system interface  

Bridge  Map internal component  interface to system interface  
Mediator  Map interface for bi-directional interaction  
Broker  Bi-directional rule-based component and system interaction  
Interpreter  Translate component interactions with system interface  

2 Share 
   2.1 Provide 
 Repository  Aggregate the data of multiple sources  

Database  Communicate data using a protocol  
Server (Client)  Provide data or data-transformation services to clients  

   2.2 Collaborate 
 Publisher (Subscriber)  Registration controls component interactions  

Producer (Consumer)  Semaphores control component interactions  
Blackboard  Heuristic rules control component interactions  

3 Activity 
   3.1 Detect 
 Polling  Monitor component change at periodic intervals  

Listener  Monitor state change in a component in real-time  
Observer  Monitor event change in a component in real-time  

Table 3.3: Pattern Ontology – Using design ideas to group and to differentiate design patterns
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Interestingly enough the pattern ontology above meets the criteria that we identified in

section 2.4.3 for key pattern properties. The design ideas differentiate design patterns so that they

are unique and easily recognizable. The design ideas define a hierarchical structure in which pattern

variants inherit the more generic properties of their pattern parents. The design ideas cross appli-

cation domains and so have analogical power. They also separate the design-pattern space and so

have discriminatory power.

Pattern ontology seems well suited to bridging the cognitive gap between different do-

mains and the technical realm. The pattern-mapping function that it can play in software-design

activities is illustrated in Figure 3.2.

Application Domain
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B
ab

C

ac

D
cd

Technical Realm
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ab’
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cd’
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px concept M
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pm
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Key:   X – real-world entity   xy – real-world relation   X’ – concept of entity   xy’ – concept of relation
pa – specific entity property    px’ – specific design pattern      

Figure 3.2: Pattern Ontology – Bridging the cognitive gap between domains and the technical realm

The identification of other key design ideas and pattern ontologies is possible, to be sure.

However we expect that it is only by placing design patterns in ontologies that we will address the

very real and still unresolved problems of pattern proliferation, overlap, and isolation.

Pattern ontology also seems closer to what Christopher Alexander would call a pattern

language. In his own words:
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Suppose now, for a given act of building, you have a pattern language, and that the
patterns in this language are arranged in proper sequence. To make the design, you take
the patterns one by one, and use each one to differentiate the product of the previous
patterns... Again, the patterns operate upon the whole: they are not parts, which can be
added—but relationships, which get imposed upon the previous ones, in order to make
more detail, more structure, and more substance.” (Alexander, 1979)

To summarize: ontological terms have analogical power because they exist as concepts in

multiple domains as well as in the technical realm; the ones extracted from technical design patterns

also have discriminatory power that makes them immune to abstraction processes; pattern ontology

is simply the hierarchical ordering of the design patterns according to the key design ideas that

group and differentiate them; as a result design patterns described in a pattern ontology should be

of great use to software engineers that have as a goal the detection of specific design patterns in

solution models, end-user requirements, and things.

3.4 Pattern Detection Accuracy

We consider next the accuracy in pattern detection that pattern cases and pattern ontology

permit. The analysis given here of the analogical and discriminatory power of the design ideas

present in pattern cases and ontology are the basis of the hypotheses given in the next chapter.

3.4.1 Accuracy due to Analogical Power

As we saw above, the use of technical terms reduces the analogical power of pattern-

case descriptions. The use of ontological terms, on the other hand, increases the analogical power

of pattern-ontology descriptions. The effect of analogical power on pattern-detection accuracy is

illustrated in Figure 3.3.
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Figure 3.3: Analogical power and pattern-detection accuracy – Cases vs. ontology

The measure of accuracy in analogical processes is the degree of similarity between the

concepts used for pattern transfer across domains. As illustrated in Figure 3.3, the technical concepts

used to define pattern cases have little to no similarity to those used to describe the problem domain.

Hence it seems safe to predict that a designer’s detection of design ideas and patterns in the domain

using pattern cases is likely to be inaccurate.

Conversely the design ideas used to define pattern-ontology also describe the things in the

domain. Our prediction here then is that design idea and pattern-detection using pattern ontology is

likely to be more accurate than when using pattern cases.

3.4.2 Accuracy due to Discriminatory Power

Using technical terms also reduces the discriminatory power of pattern cases, while using

terms with the power to partition pattern space increases that of pattern ontology. The effect of

concept discriminatory power on pattern-detection accuracy is illustrated in Figure 3.4.
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Figure 3.4: Discriminatory power and pattern-detection accuracy – Cases vs. ontology

The measure of accuracy in discriminatory processes is the degree of dissimilarity be-

tween pattern concepts that permits the identification of a unique pattern in a domain. As illustrated

in Figure 3.4, abstraction causes pattern cases to contain near-identical design ideas, while those

defined in pattern ontology never lose their distinctiveness.

Hence it seems safe to predict once again that designer accuracy in detecting design ideas

and patterns in the domain will be higher when using pattern ontology than when using pattern

cases.

3.4.3 Measuring the Accuracy of Pattern Detection

Finally we describe the method used in the thesis studies to measure the accuracy of a

designer’s detection of core design ideas and of patterns in domain knowledge. Note that a more

detailed explanation of the method used is given in chapter 5, Experimental Method.
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We first integrate a known pattern into a requirement description for software in a specific

problem domain. Software designers new to design patterns are then taught either pattern cases or

pattern ontology. They are asked to detect the design ideas and patterns present in the requirement

description, within tests used to capture the number of their accurate and inaccurate detections.

Test results tell us the degree of pattern-detection accuracy to be expected when new designers

use pattern cases or pattern ontology to identify regularities in a problem domain as described in a

software-requirement description.

In the case of pattern ontology, errors in pattern detection can also guide changes to the

design ideas used to differentiate the design patterns. The purpose of this refactoring of the pattern

ontology is to produce an improved version that has even greater pattern-detecting power.

3.5 Summary

In this chapter we presented a theoretical model of the cognition mechanisms underlying

software design. We examined the use of cognition in software-design activities, and of design

patterns as a cognitive bridge between the application domain and the technical realm.

We looked into why ontological terms have analogical and discriminatory power, and why

technical terms do not. A description of pattern ontology followed. These considerations led to a

prediction of the accuracy in pattern detection to be expected from a designer using the pattern-case

or the pattern-ontology approach to software design.

In the next chapter we define the problem, proposed solution, and hypotheses of the thesis.

A description of the experimental method used to validate the hypotheses follows next.
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Problem, Solution, and Hypotheses

We now identify the problem with using pattern cases to detect design ideas and patterns in

the problem domain, our proposed solution to this problem, and our hypotheses about the detection

accuracy to be expected when using pattern cases or pattern ontology in software-design activities.

4.1 Problem

The proliferation, overlap, and isolation of design patterns and the present need to refactor

substandard software models are symptoms of a much deeper problem: the design ideas currently

used to describe design patterns do not truly differentiate them nor do they support the accurate

transfer of application-domain patterns into the design patterns of the technical realm.

Pattern authors currently use technical terms to describe design patterns. Technical terms

lack analogical power and lose their discriminatory power during the analogical knowledge-transfer

process. As a result both novice and experienced designers find it difficult to use existing design

patterns to identify specific design ideas or patterns in things. This results in an inaccurate detection

of patterns of design in the problem domain. This in turn leads to software models that in the end

will lack domain accuracy, or technical quality, or both.

44
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At the present time software engineers cannot use design patterns to model the problem

domain in a way that from the outset meets both the functional and quality requirements of end-

users. Given the cost of maintaining software over the long-term this is a significant problem indeed.

4.2 Proposed Solution

The solution to this problem is to define design patterns differently. We must first extract

the key design ideas present in traditional design patterns and from these select those that have the

highest analogical and discriminatory power. We must then use the ontological versions of these

design ideas to group and to differentiate the design patterns in a pattern ontology.

Software engineers can use the pattern ontology to detect specific design ideas in the

regularities of the problem domain and to link them to a specific design pattern. This will result in

a more accurate transfer of specific domain patterns into the design patterns of the technical realm.

Pattern ontology should result in software models that from the outset support both the

functional and non-functional requirements of end-users in the problem domain. In other words,

pattern ontology should improve the quality of software design.

4.3 Hypotheses

Our thesis rests on the following three hypotheses for pattern cases and pattern ontology:

H0 There is no significant difference in detection accuracy when using
pattern cases or when using pattern ontology to detect design ideas
and patterns in a problem domain.

H1 Using pattern cases to detect design ideas and patterns in a problem
domain results in low detection accuracy.

H2 Using pattern ontology to detect design ideas and patterns in a
problem domain results in higher detection accuracy than using
pattern cases.
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H0 is the null hypothesis. Hypotheses H1 and H2 are based on the predictions about

pattern cases and pattern ontology given in section 3.4, Pattern Detection Accuracy. We proceed

now to a description of the experimental method used to validate the hypotheses above.
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Experimental Method

In this chapter we describe the experimental method and the studies used to validate the

two hypotheses of the thesis.

We first identify the experimental factors and the subject group used in our two studies.

We describe the treatments and tests used in each study. We also step through the procedure used

to apply the pattern-case and pattern-ontology treatments to the subject group and to test for post-

treatment effects.

In the next chapter we examine study test results in the light of our theoretical model to

see whether our predictions about pattern cases and pattern ontology were correct.

5.1 Experimental Factors

The independent variables used in the studies are Pattern Property, Requirement Set, and

Design Idea Format. The dependent variable is the Detected Property. The measure of the accuracy

of property detection is Detection Accuracy.

Pattern Property refers to any one of the many design concepts used to define a design

pattern. For the purposes of our two studies, a design pattern is defined as a collection of
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related design ideas. For the most part study tests require that subjects use either a specific

design idea or a named design-idea collection (i.e., a pattern) to identify the domain patterns in the

requirement set.

Requirement Set refers to a description of what the end-users require of the software. In

requirement sentences we use domain language to describe a domain pattern that mirrors the design

ideas or pattern that a test targets. In each test subjects try to detect the design idea or pattern

integrated into the requirement sentences. We expect the accuracy of their detection of the domain

pattern to vary according to the design-idea format used by the participant in the test.

Design Idea Format is the approach used to describe a design pattern: either as an isolated

pattern case or within a pattern ontology. Pattern cases use technical concepts and model diagrams

to describe design-pattern properties. Pattern ontology uses ontological concepts instead, and in a

hierarchy that distinguishes design patterns by their key design ideas.

Detected Property is the design idea or pattern that the subject actually detects in the

requirement set during a test. If a subject detects the wrong design idea or pattern, it is an inaccurate

detection. Otherwise, it is an accurate detection. In tests involving pattern cases only design-pattern

names can be given to subjects to use in identifying design ideas in requirements, because design

ideas only exist in pattern cases in an undifferentiated form and as part of the technical description

of the pattern. In the case of pattern ontology however both the names of specific design ideas and

of formal design patterns can be provided.

Detection Accuracy is measured by the number of subjects in the subject group that ac-

curately detect a design idea or pattern in the requirement set during a test. For example if half of

the subjects identify the right design idea in a test then the detection accuracy for that test is 50%;

if only a third, then 33%. Detection accuracy is linked directly to the design-idea format that the

subject uses to complete the test. Hence test results should reflect the pattern-detection power of

using either pattern cases or pattern ontology to detect the patterns of design in things.
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5.2 Subject Group

The composition, size, and motivation of the subject group participating in the two studies

can affect the validity of study test results. We consider each of these factors in turn.

5.2.1 Composition

Knowing the composition of the subject group allows us to extrapolate test results to

the population at large. In our case, participants must have enough pattern knowledge to learn

pattern cases and pattern ontology, but not so much that study treatments have no effect on them.

Participants must also be familiar enough with the application domain to be able to detect patterns

of design in the requirement set.

Subject accuracy in detecting design ideas must also be due only to the design-idea format

used in the test. If participants cannot learn design ideas and patterns or have a pre-existing mastery

of them, or if they are unfamiliar with the domain knowledge used in the test, then the treatment

might not be the sole cause of the observed detection-accuracy effect.

For the thesis studies we use a subject group that meets the composition criteria above to

ensure that our test results retain both their external and internal validity.

5.2.2 Size

To produce a statistically valid result the size of the subject group must not be too small.

Larger sample sizes ensure that an observed effect is not unique to a few select individuals; they

also increase confidence that test results do in fact apply to the population at large.

Dybå et al. (2006) report that of the 5,453 published studies in software engineering that

they examined, 92 of them followed experimental procedures in testing a hypothesis. The subject

sample size used in these studies varied widely (from 26 to 119 for the mean and from 15 to 65 for
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the median) but on average was 48 (σ = 51) with a median size of 30. We use subject groups of a

similar size to ensure that our test results have statistical validity.

5.2.3 Motivation

Finally, participants must be motivated to put effort into the treatment and test activities.

Once again, accuracy in design-idea and pattern detection must be due to the design-idea format

used in the test, and not in this case to a lack of participant effort in acquiring pattern knowledge or

in detecting patterns of design in the requirements during a test.

Since pattern ontology uses design ideas extracted from design patterns taken from the

pattern catalogs, and since learning how to use design patterns effectively in software-design ac-

tivities is essential to software engineering, the study of pattern ontology finds a natural place in a

course in software engineering. Software-engineering students are motivated by bonus marks and

tests both to learn and to apply their learning correctly. We use both to ensure that our test results

are not negatively affected by poor subject motivation.

5.2.4 Study Participants

As a result of the considerations above we chose as study participants Computer Science

students enrolled in a first- or second-year course in software engineering.

These students had all passed the prerequisites for the course in software engineering.

As a result they had experience with the simple patterns used to develop software, but also limited

to no experience using named design patterns to guide the work of software design. They also had

knowledge of application domains related to the technical realm, for example, how to use a database

or a network to support business function. This ensured that test results were due to the design-idea

format learned and then used in the tests and not to other extraneous factors.

Two different classes participated. In the first group were forty-five students and in the
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second forty-one. These group sizes are similar to those used in other software-engineering studies

and so seemed sufficient to ensure the statistical validity of study results.

Finally, students were given bonus marks for participating. Since design patterns are an

important part of the software-engineering curriculum they were also tested on their mastery of

pattern knowledge in two course quizzes: one on pattern cases and one on pattern ontology. These

marks seemed sufficient to encourage the students to put real effort into learning design ideas and

patterns and in using them correctly in study tests.

A questionnaire given at the start of each course evaluated student fitness to participate

in the study. Questionnaire results (given in Appendix A) confirm that the students participating

in the two studies met our criteria for the subject group. As a result we expect study results to be

applicable to the population at large, that is, to software engineers new to using design patterns to

identify ontological regularities in the problem domain within software-design activities.

5.3 Treatments and Tests

We use two studies to test the hypotheses about pattern cases and pattern ontology. The

treatments and tests used in the studies are described next.

5.3.1 Study 1 and Study 2 – Pattern Cases

In both the first and second study we test the ability of participants to detect pattern prop-

erties in software requirements using pattern cases.

We include a pattern-case test in both studies for three reasons. First of all, we need to

determine how accurately each subject group is able to detect patterns of design in the requirements

using pattern cases. These test results are needed to validate the first hypothesis. Second, we need

a baseline to which we can compare the pattern-ontology test results. Both test results are needed
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to validate the second hypothesis. Finally, duplicating the test addresses some of the concerns that

some authors have raised about software-engineering experiment repeatability (Miller, 2005).

In the pattern-case part of each study we do the following: 1. We integrate the pattern

case into requirement sentences using the language of the target application domain. 2. We apply

the pattern-case treatment: in this case participants study the technical design patterns to be used in

the pattern-detection test. 3. We test participant use of pattern cases in identifying patterns in the

requirements. 4. We evaluate participant pattern-detection accuracy individually and as a group.

The materials used for the pattern-case part of both studies are described in more detail in

Appendix B.

5.3.2 Study 1 – Pattern Ontology

In the first study we test the ability of participants to detect pattern properties in require-

ments using a pattern ontology.

In the pattern-ontology part of each study we do the following: 1. We integrate the design

idea or pattern into requirement sentences using the language of the target application domain.

2. We apply the pattern-ontology treatment: in this case participants study the ontological design

ideas and patterns to be used in the pattern-detection test. 3. We test participant use of pattern

ontology in identifying patterns in the requirements. 4. We evaluate participant pattern-detection

accuracy individually and as a group.

The materials used for the first pattern-ontology study are described in Appendix C.

5.3.3 Study 2 – Pattern Ontology

In the second study we again test the ability of participants to detect patterns in require-

ments using pattern ontology. The materials used for this study are described in Appendix D. Some

of the results in the first study prompted changes to the ontology and to the requirement set used in
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the second. The reasons for these changes are described next.

Refactoring the Pattern Ontology

As we shall see in section 6.2, the first study confirms our predictions about pattern ontol-

ogy: pattern ontology does result in a more accurate detection of domain patterns in requirements

than pattern cases. In some cases however the detection accuracy is still less than satisfactory.

Pattern-detection failures are not a cause of alarm however. To the contrary they have great value

in assisting researchers in refactoring a pattern ontology so that the design ideas used within it have

increased analogical and discriminatory power.

In machine-based pattern recognition the classifier uses the error rate to guide its selection

of the features used to partition the pattern space. In machine learning especially the combination

of features that gives the lowest classification error on the test instances is usually the optimal set,

all things considered. In our case the error rates guide us to low-performing design ideas. We can

change these design ideas and even the structure of the ontology through refactoring. The revised

ontology should result in improved pattern-detection accuracy in subsequent tests. If it does not we

need only repeat the process until the level of detection accuracy achieved is satisfactory.

Our thesis is that using pattern ontology can improve the quality of software design in the

long-term too. Refactoring activities allow us to increase the pattern-detection power of the design

ideas used in a pattern ontology through objective tests and over time. Needless to say, this is simply

not possible using pattern cases.

Addressing Requirement Ambiguity

There is another possible cause for reduced detection accuracy. The problem may not

be due to the design ideas used for pattern detection; it may be due to the lack of domain-pattern

specification in the requirement set.
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In machine-based pattern recognition the classifier may have difficulty classifying a data

instance if it is missing feature data essential to classification. In such cases we must add information

to the data instance so that it is classified correctly. Another option is for the classifier to place the

instance in the class that matches it best, if this is possible.

In our case requirements may be missing some of the design ideas necessary for exact

pattern detection. If this occurs a designer is wise to acquire more details about the domain pattern

so as to link it to as specific a design pattern as possible in the ontology. Another option is for

the designer to identify the design ideas present in the requirements, and then to adapt one of the

patterns that contains the design ideas to match the pattern in the domain. The option chosen will

depend of course on how closely the domain pattern matches available design ideas.

In this thesis we do the following to test whether pattern ontology retains its pattern-

discriminating power even in the face of requirement ambiguity:

1. We integrate design ideas into the requirements so that two patterns of design can solve the

domain problem. The design idea that differentiates the two targeted patterns of design how-

ever is left out so that the requirements become ambiguous (i.e., they lack specification).

2. As before, we apply the pattern-ontology treatment and test participant use of pattern ontology

in identifying patterns in the requirements.

3. We evaluate participant pattern-detection accuracy individually and as a group. The expecta-

tion is that participants will exclude all but the two targeted patterns of design from consider-

ation. Participants will then select one or the other pattern as the solution to the problem, the

choice depending on each participant’s resolution of the ambiguity in the requirements.

If participants are able to exclude all patterns other than the two targeted ones using the

one design idea, but if there is evidence that they cannot differentiate between these two because

the design idea necessary to do so is not clearly specified in the requirements, then the test will
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show that pattern ontology retains its ability to discriminate between patterns in the domain up to

the point that the requirements lose the specificity required for more accurate pattern detection.

5.4 Procedure

We used the following procedure to regulate study activities.

At the beginning of the course students filled in the questionnaire used to evaluate their

fitness to participate in the study. They were also informed at this time about the study on design

patterns, the two quizzes, and the bonus marks attached to participation. Eighty-six students agreed

to participate in the two studies.

In the first treatment, the instructor taught participants the targeted pattern cases in a one-

hour class. A closed-book quiz lasting thirty minutes followed a week later. This quiz evaluated

participant accuracy in detecting patterns of design in requirements using pattern cases.

In the second treatment, the instructor taught participants the pattern ontology specific

to the first or second study, again in a one-hour class. A closed-book quiz lasting thirty minutes

followed a week later. This quiz evaluated participant accuracy in detecting patterns of design in

requirements using pattern ontology.

In both cases, participant results were marked for accuracy according to the evaluation

grid specified for each test. The test results were then analyzed in the light of the theoretical model

to see if they supported or contradicted the hypotheses.

5.5 Summary

In this chapter we described the experimental method used to validate the hypotheses.

We considered the experimental factors, the subject group, the treatments and tests used to

test pattern-detection accuracy using pattern cases and pattern ontology, and the procedure used to
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regulate the studies. We also examined the use of pattern-detection errors in guiding the refactoring

of a pattern ontology, as well as the extent to which pattern ontology retains its pattern-detection

power even in the face of requirement ambiguity.

We examine study results in the light of the theoretical model next.
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Findings

In this chapter we give the results of the pattern-case and pattern-ontology studies and

examine them in the light of the theoretical model. The raw test results are given in Appendix E.

We first consider the results of the first study. A brief discussion of the reasons for the

changes made to the pattern ontology and requirements used in the second study follow. We then

consider the results of the second study. We close with an evaluation of the hypotheses in the light

of the significance (p-values) of the different study findings.

6.1 Study 1 – Pattern Cases

In this section we examine the results of the first pattern-case study. The treatment, re-

quirements, and test questions used in this study are given in Appendix B.

In the first question we asked participants to identify all the patterns that they detected in

the requirements. As seen in Figure 6.1, over half of the participants detected patterns of design that

were simply not there: a Façade (48.9%), a Proxy (53.3%), and a Bridge (60.0%). On the other

hand all the participants accurately detected the Shared Data pattern (100%). The latter result is

likely due to the fact that the Share design idea has high analogical and discriminatory power. It is
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for this reason that we also include it in our pattern ontology.

Inaccurate

Accurate

-48.9% -53.3% -60.0%

100.0%

-100%

-50%

0%

50%

100%

Facade Proxy Bridge

Shared Data

Figure 6.1: Study 1 Pattern Cases – Identifying patterns in requirements

In the second question we expected participants to match the requirement “application...

easily switched to (another) component” to the Wrapper pattern. As seen in Figure 6.2, only about

a quarter of participants (22.2%) were able to do so.

-6.7%
-15.6%
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-2.2%
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-100%
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100%

Facade Proxy Bridge Broker
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Inaccurate

Accurate

Figure 6.2: Study 1 Pattern Cases – Distinguishing the Wrapper pattern

As predicted by the theoretical model, patterns with overlapping semantics are difficult for

people to detect precisely in domain knowledge. Façade and Proxy contain elements of isolation

while Bridge contains an element of function switching. In this case however the ability to change

a component points to the Wrapper pattern specifically. That less than one out of four participants

could use pattern-case descriptions to distinguish between these patterns and to pick the one that

actually matched the requirements is significant.
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In the third question we expected participants to match the requirement “store is connected

to the central... computer for all credit card transactions” to the Client-Server pattern. In this case

participants varied widely in their choice of the pattern that best fit this requirement, as shown in

Figure 6.3.
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Figure 6.3: Study 1 Pattern Cases – Mapping requirements to the Client-Server pattern

Mediator was a popular choice (35.6%) as were other patterns (26.6%). Some even said

that there was no pattern discernible here at all (17.8%). However only one central computer is

mentioned and it is providing a credit-card service to each store: this is a Client-Server pattern

first and foremost. Unfortunately only a handful of participants (6.7%) were able to use this pattern’s

technical description to detect the right domain pattern in this problem domain.

6.2 Study 1 – Pattern Ontology

In this section we examine the results of the first pattern-ontology study. The treatment,

requirements, and test questions used in this study are described in Appendix C.

In the first question we asked the same subjects to identify patterns of design in the re-

quirements but this time using design ideas with higher analogical and discriminatory power. As a

result and as can be seen in Figure 6.4, subject pattern-detection error rates decreased significantly.
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Figure 6.4: Study 1 Pattern Ontology – Identifying design ideas in requirements

In the pattern-case study about half the participants incorrectly detected the Façade,

Proxy, and Bridge patterns in the requirements. In this study the results were significantly different:

detection errors of only 4.4% for Isolation/Translation and 28.9% for Isolation/Mediation.

As expected, using the Share design idea also gave good results (91.1% detection accuracy) within

the Share/Data Operation pattern set.

In the second question we asked participants to detect in the requirements the patterns of

design that underpin the Wrapper pattern. The results are shown in Figure 6.5.
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Figure 6.5: Study 1 Pattern Ontology – Distinguishing more precise patterns of design
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Using pattern cases only 22.2% detected the set of design ideas that define the Wrapper

pattern. Using pattern ontology 95.5% accurately detected the Isolation design element and

68.9% the Isolation/Translation pattern set.

Pattern cases use technical terms that make the detection of patterns in the problem do-

main difficult. Pattern ontology uses ontological terms that differentiate patterns according to their

core design ideas. These findings in particular demonstrate that pattern ontology results in a more

precise and accurate detection of pattern parts in domain knowledge than the pattern-case approach.

Finally in the third question participants were asked to detect the pattern present in the

requirement “rural computers connect to the central MTS computer for Internet browsing”. In this

case the results using pattern ontology were inconclusive, as shown in Figure 6.6.
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Figure 6.6: Study 1 Pattern Ontology – Detecting flaws in a pattern ontology

Although only 6.7% of subjects correctly identified a Client-Server pattern using pat-

tern cases, significant errors in detection accuracy also occurred using the pattern ontology: 35.6%

for Publisher-Subscriber and 33.3% for Share-Data Operation. The correct answer here is

Isolation/Mediation or more precisely Proxy. That four-fifths of the participants (80.0%) did

not detect this pattern in the requirements using this pattern ontology is significant.

The results for the first two questions were as expected. Test results for the third question

however prompted changes to the pattern ontology and requirements used in the second study. The
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changes made are described next.

6.3 Addressing Errors in Pattern Detection

To recognize a pattern in domain knowledge the mind must find a match between the

domain and the design pattern concepts. This means that pattern-detection failures may be due as

much to poorly-defined requirements (poorly-chosen domain concepts) as to faulty pattern descrip-

tions (poorly-chosen design concepts). We consider the second case first.

6.3.1 Errors due to the Pattern Ontology

As mentioned in the previous chapter, we can use detection-error rates to identify defi-

ciencies in a pattern-ontology and to guide the refactoring effort. The design ideas in the original

pattern ontology that had higher-than-expected error rates are shown in Table 6.1.

Detection Errors Likely Cause Refactoring Required 

Question 1 & 2 

Translation vs. 
Mediation 
Adapter 

The design idea Translate contains an adapt 
term that make it too similar to Mediate.  
This makes it hard for participants to 
distinguish between patterns that pass data 
and those that make changes to it. 

Change the design idea from Translate to 
Transfer to better distinguish the two 
pattern groups. This in turn will result in the 
Adapter pattern moving to the 
Isolate/Mediate group. 

Question 3 

Proxy 

Participants were not able to detect a Proxy 
as an Isolate/Mediate in the requirements.  
The in persona term, though an important 
feature of this pattern, does not seem to 
have sufficient discriminatory power by 
itself to distinguish this pattern from others. 

Abstract out the in persona term so that the 
design ideas that better characterize the 
fundamental aspects of the Proxy pattern 
predominate.  The Proxy pattern now 
moves to the Isolate/Transfer group. 

Question 3 

Data Operation 
Observer 

The technical design idea Data Operation 
applies to any information transfer.  Hence 
this term lacks pattern-differentiating 
power.  The Observer pattern is also 
misplaced: as a pattern it is an activity-
detecting mechanism and not one that 
supports the sharing of information. 

Change the technical design idea Data 
Operation with one that has better 
analogical and discriminatory power, e.g., 
Provide vs. Collaborate.  Move the 
Observer pattern to a new Activity/Detect 
pattern group. 

Table 6.1: Using detection errors to guide the refactoring of pattern ontology
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Refactoring led to the revised ontology shown in Figure 6.7.

Pattern   Pattern  
1 Isolate    1 Isolate   
   1.1 Translate  Transfer      1.1 Transfer  
 Facade    Facade  

Wrapper   Wrapper  
* Adapter   + Delegate  
 

 * Proxy  
  + Strategy  
  + Provider  

   1.2 Mediate     1.2 Mediate 
 * Proxy    * Adapter  

Broker   Bridge  
Bridge   Mediator  
Mediator   Broker  
  + Interpreter 

2 Share  2 Share 
   2.1 Data Operation  Provide     2.1 Provide 
 Repository    Repository  

Shared Database   Database  
* Observer   Server (Client)  

 Client-Server   
   2.2 Collaborate      2.2 Collaborate  
 Blackboard    Publisher (Subscriber)  

Publisher (Subscriber)   Producer (Consumer)  
Producer (Consumer)   Blackboard  

   3 + Activity 

      3.1 + Detect 
Key:    * Move   + Add   + Polling  

   + Listener  

   * Observer  

Figure 6.7: Post-study Analysis – Refactoring a pattern ontology

In the second study on pattern ontology we test whether the refactored ontology does in

fact result in higher pattern-detection accuracy.

6.3.2 Errors due to Ambiguous Requirements

We must take care however not to attribute detection errors due to ambiguous require-

ments to the pattern ontology. Hence in the second study we test the extent to which pattern ontology
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permits the accurate detection of patterns even in ambiguous requirements.

To test this we first integrate into the requirements two patterns that have a common design

idea as well as one that differentiates them. Only one of these two patterns is a solution to the domain

problem: the rest of the patterns are not. We expect participants to use pattern ontology to exclude

all but the two patterns from consideration. The actual pattern picked should vary however because

participants are likely to resolve the ambiguity present in the requirements differently.

Specifically, we place in the requirements of the second pattern-ontology study informa-

tion that points to both the Isolate/Transfer and Isolate/Mediate pattern set. These two are

different from the Share pattern set, which participants should exclude because of their detection of

the Isolate design idea in the requirements. However participant choice of either the Transfer or

Mediate design idea should vary because the requirement description permits the choice of either

one to be correct.

We expect test results then to show that pattern ontology allows the accurate detection of

a pattern in the requirements, but only up to the point that these become ambiguous. If so then:

pattern ontology permits the accurate detection of design ideas even in ambiguous requirements;

and refactoring pattern ontology should be done with caution because not all detection errors are

necessarily the fault of the design ideas used to define the pattern ontology.

6.4 Study 2 – Pattern Cases

In this section we examine the results of the second pattern-case study. The treatment,

requirements, and test questions used in this study are described in Appendix B.

In the first question participants were to identify all the patterns that they detected in the

requirements. The results are shown in Figure 6.8.
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Figure 6.8: Study 2 Pattern Cases – Identifying patterns in requirements

Participants again detected patterns that were not present there: a Façade (22.0%), a

Proxy (36.6%), and a Bridge (51.2%). Participants once again detected the Shared Data pattern

well enough (90.2%) due to the ontologically-sound Share design idea.

In the second question participants were to match the requirement “application... easily

switched to (another) component” to the Wrapper pattern. Figure 6.9 shows that participants again

had difficulty differentiating between patterns when using pattern cases. Only a fifth identified the

Wrapper pattern correctly (19.5%). The others picked Façade (7.3%), Proxy (22.0%), Bridge

(41.4%), or Broker (9.8%).
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Figure 6.9: Study 2 Pattern Cases – Distinguishing the Wrapper pattern

That four-fifth of participants (80.5%) could not detect the right pattern in the require-
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ments using pattern cases is significant.

In the third question we expected participants to detect the Client-Server pattern in the

requirements. Figure 6.10 shows the test results for the two subject groups.
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Figure 6.10: Study 2 Pattern Cases – Mapping requirements to the Client-Server pattern

Once again pattern-case descriptions did not help participants link the design ideas that

define the Client-Server design pattern to the domain patterns present in the requirements. In

this case almost all the participants (97.6%) did not detect the right pattern using the pattern-case

descriptions.

6.5 Study 2 – Pattern Ontology

In this section we examine the results of the second pattern-ontology study. The treatment,

requirements, and test questions used in this study are described in Appendix D.

In the first question we asked participants to identify patterns of design in the requirements

using the refactored ontology. Figure 6.11 shows these results. The error rates were again much

smaller when using ontology instead of cases for pattern detection: only one in ten participants had

a detection error when using Isolate/Transfer (9.8%) and Isolate/Mediate (7.3%); the error

rate was much higher (22.0%, 36.6%, and 51.2%) for the corresponding pattern cases.
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Pattern Cases
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Figure 6.11: Study 2 Pattern Ontology – Identifying design ideas in requirements

In the second question we examined the effect of ambiguous requirements on pattern

ontology. As shown in Figure 6.12, three out of four participants (78.0%) excluded all but the two

patterns integrated into the requirements from consideration. Almost equal numbers selected the

second design-pattern idea: Transfer (26.8%) vs. Mediate (36.6%).

Pattern Cases

Pattern Ontology

19.5%

78.0%

26.8%

36.6%

-100.0%

-50.0%

0.0%

50.0%

100.0%

Wrapper Isolate 
Total

Isolate/
Transfer

Isolate/
Mediate

Figure 6.12: Study 2 Pattern Ontology – Accuracy in the face of requirement ambiguity

These results show that pattern ontology retains its pattern-discriminating power even in

the face of requirement ambiguity: participants did detect the Isolate design idea in large numbers;

however when it came to the second design idea (Transfer or Mediate) participant detection was

mixed given the ambiguous description of the domain pattern integrated into the requirements.
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In the first study the test results for the third question were inconclusive: participants were

not able to use the pattern ontology to detect the Proxy or Isolation/Mediation pattern in the

requirements. The pattern ontology was refactored to address these deficiencies. In particular, the

Proxy pattern was moved to the Isolate/Transfer group to better differentiate it from patterns

that support the adaptation of information.

In the second study participants were again asked to detect the pattern present in the

requirement “rural computers make Internet requests through the central MTS computer”. The test

results are shown in Figure 6.13.
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Figure 6.13: Study 2 Pattern Ontology – Distinguishing more precise patterns of design

Changing the design ideas that characterize the different design patterns seems to have

increased their distinctiveness in the minds of the participants and made them easier to detect.

As a result we see low detection errors for patterns not present in the requirements:

Publisher-Subscriber (7.3%), Observer (4.8%), Isolate/Mediate (9.8%). We also see a

corresponding increase in detection accuracy for the pattern whose design ideas are in fact present

there: Proxy (65.9%). These results are also much better than those obtained using pattern cases,

i.e., the 2.4% accuracy rate obtained using the pattern-case descriptions.

As seen in Figure 6.14, the increase in pattern-detection accuracy (and corresponding

decrease in pattern-detection inaccuracy) is likely due to the use in the revised pattern ontology of
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design ideas with higher analogical and discriminatory power. Repeating the experiment is likely

to result in a pattern ontology that supports ever-improving levels of pattern-detection accuracy for

the design patterns described by this particular pattern ontology.
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Figure 6.14: Study 2 Pattern Ontology – Increased detection accuracy due to refactoring

6.6 Summary: Study Results vis-à-vis the Hypotheses

A summary of study results in the light of the hypotheses and relevant t-tests is given in

Appendix F. This summary leads us to the following conclusions about the hypotheses.

H0 There is no significant difference in detection accuracy
when using pattern cases or when using pattern ontology
to detect design ideas and patterns in a problem domain.

Rejected

H1 Using pattern cases to detect design ideas and patterns in
a problem domain results in low detection accuracy.

Supported

H2 Using pattern ontology to detect design ideas and patterns
in a problem domain results in higher detection accuracy
than using pattern cases.

Supported

Our thesis then that pattern ontology is superior to pattern cases when it comes to detecting

patterns of design accurately in the problem domain would appear to be substantially correct.
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Conclusion

In this chapter we review research findings, our theoretical model of software design, the

problem with existing design-pattern descriptions and our proposed solution to it, and whether study

results support our hypotheses about pattern cases and pattern ontology. We also consider threats to

the validity of our findings, the contribution that this thesis makes to software-engineering research,

and future directions for research in the area of pattern ontology.

7.1 Validation of the Thesis

In this thesis we examined three approaches to software engineering. The first results in

a model that mirrors domain patterns but that may not have the qualities required to run efficiently

on a computer. The second structures the model for run-time quality but using design patterns that

may be difficult to maintain as the problem domain evolves over time. The third approach also uses

design patterns, but in this case as a means to transfer domain patterns into the technical realm.

Unfortunately design patterns as currently described lead to pattern proliferation, overlap,

and isolation. Both novice and experienced designers find them hard to use in transferring pattern

knowledge into the technical realm. This is likely due to the current practice of describing patterns
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using technical terms that are quite foreign to the concepts used to describe real-world things.

Since software engineers use natural mental mechanisms to design software, research into

human cognition can provide insight into how to improve software-design activities. The findings of

computer scientists working in machine pattern-recognition can also shed light on the fundamental

logical rules that govern the accurate identification of specific patterns in things.

From human cognition we learn that pattern-knowledge transfer is only possible between

two knowledge areas if common concepts exist between the two: the more similar the concepts the

higher their analogical power. From machine pattern-recognition we learn that pattern identification

is only possible if the concepts that describe a set of patterns clearly differentiate them within the

pattern space: the more different the concepts the higher their discriminatory power.

In the thesis we also described a theoretical model of software design based on these

findings of the cognition and computer sciences. We explained how the cognitive gap between tech-

nical terms and real-world concepts reduces their analogical power. We described how abstractive

mechanisms cause technical terms to lose their discriminatory power. Since this is not the case with

ontological terms, we predicted that designer accuracy in detecting patterns of design in domain

knowledge would be higher when using pattern ontology than when using pattern cases.

We identified the problem with traditional design patterns, namely, that they are currently

described using technical terms that lack analogical and discriminatory power. We proposed as a

solution a small set of key design ideas that could differentiate the design-pattern space and also

map domain knowledge to the technical realm: this is pattern ontology. Our first hypothesis was

that using pattern cases to detect patterns in the problem domain would lead to low pattern-detection

accuracy. Our second was that pattern ontology would lead to higher pattern-detection accuracy than

if pattern cases were used.

We described the experimental method used to test these two hypotheses. Factors that

might affect the internal and external validity of our two software-engineering studies were consid-



Chapter 7: Conclusion 72

ered as well.

Finally, we discussed study results in the light of the theoretical model. The null hypoth-

esis was rejected. Study results confirmed reports of designer difficulty in using traditional design

patterns in software-design activities. Study results supported both the first and the second hypoth-

esis, confirming our prediction that pattern ontology would be superior to pattern cases in assisting

software engineers in identifying patterns of design in the problem domain.

7.2 Threats to Validity

To reduce threats to the internal validity of the studies we did the following. We chose

a subject group that had sufficient knowledge of patterns to participate in the studies but not so

much that study treatments would have no effect. Participants were also familiar with the problem

domain considered. We gave participants sufficient motivation to give their best efforts to their

work. University instructors also delivered the treatments and tests within a formal university course

to guarantee the objectivity of treatment and test delivery.

Two threats to the internal validity of the studies were possible however. In the first place

there was a delay of one week between pattern treatment application and testing. It is not known

whether this gave participants too much or too little time to master the pattern content. Second there

were no controls placed on participant learning in this time period. Subjects would have had ample

opportunity to acquire additional knowledge about design patterns if they so desired.

The effect of pattern-learning time on study results is still to be considered. The second

threat is unlikely to have played a significant factor in the results however. The pattern-case treat-

ment contained all essential information about the design patterns. Learning more about them is

unlikely to have negatively affected the subject group’s ability to identify them in domain knowl-

edge; if anything, the opposite is likely to be true. As for the pattern-ontology knowledge, it was
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not made available to participants until presented to them for the first time. Hence in both cases the

threat to the internal validity of the studies due to the treatments is likely to have been minimal.

The size of the two subject groups was also comparable to that used in other software-

engineering studies reported in the literature. The focus of the study was software designers not yet

familiar with using formal design patterns in design activities: thesis findings do not apply to people

unable to learn design patterns or to practitioners that have already mastered their use. Hence the

threats to the external validity of study results are likely to be minimal as well.

7.3 Contributions and Future Directions

This thesis makes several important contributions to the field of software-engineering re-

search: 1. A theoretical model that sheds light on the cognition mechanisms underpinning accurate

pattern detection and pattern-knowledge transfer in software design. 2. The introduction of ontolog-

ical analysis to design-pattern definition. 3. The identification of several key design ideas that can

efficiently describe and differentiate the design patterns currently published in the pattern catalogs.

4. Experimental studies that show that using pattern ontology results in a more accurate detection

of patterns of design in requirements than using traditional design-pattern descriptions.

Much more still remains to be done in this area however. The extraction of other core

design ideas from the design patterns present in the catalogs remains. The analysis of the analogical

and discriminatory power of these design ideas and where they fit best in a pattern ontology would

contribute greatly to our understanding of essential pattern relationships. Integrating existing pattern

variants into a community-shared pattern ontology would also help reduce the proliferation, overlap,

and isolation of design patterns that currently make design patterns difficult to use.

Other avenues of research are also possible. For instance, semantic-web techniques used

to measure the relatedness of ideas might prove useful in measuring and comparing the analogical
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and discriminatory power of design ideas. Research into how pattern-detection accuracy is affected

by other types of requirement failings, for example missing information or irrelevant information

(i.e., noise), is also possible. The effect on pattern-detection accuracy of the abstraction level of the

concepts used to match design and domain patterns might also be a fruitful research direction.

7.4 Closing Remarks

We close with the two main findings of the thesis.

First of all, using pattern cases to detect ontological regularities in domain knowledge is

likely to result in low design-pattern detection accuracy. This means that software engineers that use

existing technical design-pattern descriptions to design or to redesign software models are likely to

produce software that will lose its domain accuracy and even its technical quality over time.

Second, designer accuracy in identifying patterns of design in the problem domain will

be higher when using a pattern ontology than when using pattern cases. This means that software

engineers that use pattern ontology to identify design patterns in the problem domain are likely to

produce models that in the long-term retain both domain accuracy and technical quality.

As a method pattern ontology can also help researchers identify the best design ideas to

use to characterize and to differentiate design patterns. In this way too and in the long-term pattern

ontology can play a major role in improving the quality of software design.
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Participant Questionnaire

A.1 Questionnaire

Before the start of the software-engineering course, students filled in the following questionnaire.

1. I have completed the following courses (please check all that apply).

COMP 1010 - Intro. Computer Science I COMP 3030 - Automata & Formal Languages

COMP 1020 - Intro. Computer Science II COMP 3040 - Technical Communication in CS

COMP 2080 - Analysis of Algorithms COMP 3170 - Algorithms & Data Structures

COMP 2130 - Discrete Math for CS COMP 3190 - Intro. to Artificial Intelligence

COMP 2140 - Data Structures and Algorithms COMP 3350 - Software Engineering

COMP 2150 - Object Orientation COMP 3370 - Computer Organization

COMP 2160 - Programming Practices COMP 3380 - Database Concepts

COMP 2190 - Intro. to Scientific Computing COMP 3430 - Operating Systems

COMP 2280 - Intro to Computer Systems COMP 3490 - Computer Graphics 1

COMP 3010 - Distributed Computing COMP 3620 - Professional Practice

COMP 3020 - Human-Computer Interaction 1 COMP 3720 - Computer Networks 1

2. I have the following level of experience in analyzing user requirements for software. This in-
cludes problem-analysis experience obtained in Computer Science or in other university courses.

None 6 to 11 months 1 to 3 years more than 3 years
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3. I have the following level of experience in designing software. This includes solution preparation
experience obtained in Computer Science or other university courses.

None 6 to 11 months 1 to 3 years more than 3 years

4. I have the following level of experience in using object-oriented principles such as the relationship
between a super-class and its child classes.

None 6 to 11 months 1 to 3 years more than 3 years

5. I can describe or give a definition of the following design patterns (please check all that apply).

Façade Mediator Repository Shared Database

Proxy Broker Client-Server Publisher-Subscriber

Bridge Wrapper Observer Producer-Consumer

Adapter Singleton Blackboard Pool

6. Analyze the following user requirements. Answer the question that follows.

The Department of Agriculture is revamping its computer systems. They have asked you to design a
new real-time software system that can link the province’s temperature, humidity, and wind monitor-
ing stations to the central office here in Winnipeg.

The sensors send their data to very old and primitive station network which the new system must still
somehow use because the sensor system is too expensive to replace at this time.

Department staff will perform analysis and reporting on the data collected and stored on a central
office server. The system must also alert staff if sensor readings are abnormal because this might
signal a defective station sensor.

The new system must be designed so that additional stations can be added in the future, using network
addresses that can be changed dynamically to accommodate changes in the network.

They want you to use off-the-shelf software components as much as possible, but in such a way
that the department can replace the purchased components with different ones in the future to meet
changing department needs.

Select only one of the two answers below.

I do not know enough yet about finding patterns in user requirements to detect the patterns.

I am able to detect patterns in the user requirements above given previous experience.

7. If you selected the second answer to the question above, namely, that you are able to detect the
design patterns in the user requirements above, please fill in the following section as well.

I detected the following design patterns in the user requirements above (please check all that apply).

Façade Mediator Repository Shared Database

Proxy Broker Client-Server Publisher-Subscriber

Bridge Wrapper Observer Producer-Consumer

Adapter Singleton Blackboard Pool
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A.2 Questionnaire Results

The questionnaire results for the 86 students participating in the two studies follow.

1. Previous course work Computer Science I & II, Analysis of Algorithms, Discrete 
Math, Data Structures & Algorithms, Object Orientation, 
Computer Systems (> 90%) 

  Computer Organization, Database Concepts (80-90%) 

2. Experience analyzing 
requirements 

None (24%), 6 to 11 months (48%), 1 to 3 years (21%), 
> 3 years (7%) 

3. Experience designing 
software 

None (4%), 6 to 11 months (31%), 1 to 3 years (42%),  
> 3 years (25%) 

4. Experience in object-
oriented analysis 

None (1%), 6 to 11 months (18%), 1 to 3 years (55%),  
> 3 years (27%) 

5. Can describe or define 
design patterns 

Wrapper and Client-Server (> 85%); Proxy (69%), Façade, 
Adapter, Singleton, Repository and Shared-Database (40-60%); 
All other patterns (< 20%) 

6. Claims of proficiency in 
detecting patterns in user 
requirements 

53% of the 86 students 

7. Accuracy of pattern-
detection of students 
claiming proficiency 

Some detection: Adapter (60%), Shared-Database (65%), Client-
Server (82%) 

Poor detection: Proxy, Bridge, Repository, Observer (< 25%) 

Detected pattern not actually in requirements: Wrapper (38%), 
Publisher-Subscriber (24%), Façade (20%) 

Table A.1: Questionnaire results for potential study participants

A.3 Summary of Results

In the results above we see that the students in the course do have experience analyzing

requirements and designing software. Their course work also gives them some experience with

simple patterns and domains but little with design patterns per se.

About half of the group claims proficiency with design patterns. In a test however these

students demonstrate a lack of proficiency in using most of them. Hence all things considered the

study group is a good fit for the studies on pattern cases and pattern ontology.
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A.4 Patterns Present in the Requirements

The design patterns present in the requirements used in the questionnaire pattern-detection test are

shown below.

Design pattern Requirement sentences 

Client-Server Need real-time software system that can link the province’s temperature, humidity, 
and wind monitoring stations to the central office. 

Bridge The sensors send their data to a very old and primitive station network which the 
new system must somehow use. 

Shared Database Department staff will perform analysis and reporting on the data collected and 
stored on a central office server. 

Observer The system must also alert staff if sensor readings are abnormal because this might 
signal a defective station sensor. 

Proxy The system must be designed so that additional stations can be added in the future, 
using network addresses that can be changed dynamically. 

Wrapper Use off-the-shelf software components but in such a way that the department can 
replace the purchased components with different ones in the future. 
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Study 1 and Study 2 – Pattern Cases

The descriptions of the design patterns used in the pattern-case study are based on those of the

original Gang of Four (Gamma et al., 1995). The pattern descriptions for the other design patterns

used in the study mirror the example given below.

B.1 Treatment

The software-engineering course materials (Mišić, 2009) used to teach the Proxy pattern to the

subject group follow.

(1) The Proxy Pattern (Gang of Four-style)

• Context: often, it is time-consuming and complicated to create instances of a class (heavyweight classes)

• There is a time delay and a complex mechanism involved in creating the object in memory

• Problem: how to reduce the need to create instances of a heavyweight class?

• Forces: we want all the objects in a domain model to be available for programs to use when they execute a
system’s various responsibilities

• It is also important for many objects to persist from run to run of the same program

(2) The Proxy Pattern (continued)

Stand-ins for object may be needed because the real object

• Is not locally available;

• Is expensive to create; or

• Needs protected access for security or safety.
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The stand-in must

• Have the same interface as the real object;

• Handle as many messages as it can;

• Delegate messages to the real object when necessary.

Analogy: a stand-in or proxy

(3) Proxy Pattern Structure

Diagram

RealSupplierProxySupplier

«interface»
Supplier

request() 

Client

Elements and relations

• Entities: Client, ProxySupplier, RealSupplier, common interface of Supplier

• Client request to ProxySupplier

• ProxySupplier and RealSupplier share same Supplier interface

(4) Proxy Pattern Behavior

Diagram

:Client

request()

request() request()

:ProxySupplier :RealSupplier

Behavior

• Client requests an object from the ProxySupplier

• The first request results in the creation of the RealSupplier object and the subsequent use of this object by the
Client via the ProxySupplier. The common ProxySupplier and RealSupplier interface (Supplier) permits a trans-
parent transfer of the Client request to the RealSupplier object.

• Subsequent requests result in the use by the Client of the existing object RealSupplier via the ProxySupplier.

(5) Example Proxies

Diagram

ListProxy PersistentList

«interface»
ListIF

The list elements will 
be loaded into local 
memory only when 
needed

StudentProxy PersistentStudent

«interface»
Student
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Description - ListProxy

• ListProxy and PersistenList share the same ListIF interface.

• Client call to ListProxy loads the list elements the first time or as needed.

• ListProxy calls PersistentList on behalf of Client and completes request for list elements.

Description - StudentProxy

• StudentProxy and PersistentStudent share the same Student interface.

• Client request to StudentProxy (e.g. parent) results in involvement of actual student as needed.

• Client makes requests to actual PersistentStudent via StudentProxy proxy.

(6) Example Proxies (continued)

Diagram

ProxyImage

«interface»
Image

copy() : Image
display()
crop()

Client
actual

RealImage

- data

clone() : RealImage

Description

• Client uses common interface Image shared by ProxyImage and RealImage to access what it assumes is a Real-
Image.

• On Client request, ProxyImage makes actual request calls to RealImage whose results are then returned to the
Client by the ProxyImage

(7) When to Use Proxies

Use the Proxy pattern whenever the services provided by a supplier need to be mediated or managed in some way without
disturbing the supplier interface. Kinds of proxies:

• Virtual proxy – Delay the creation or loading of large or computationally expensive objects

• Remote proxy – Hide the fact that an object is not local

• Protection proxy – Ensure that only authorized clients access a supplier in legitimate ways

B.2 Test

There are three steps to preparing a test for a pattern-case study. We first choose the design patterns

to test and describe them using domain examples and terminology. We then prepare a requirement

set that inserts the domain patterns into the context of the problem domain. Finally we prepare test

questions that elicit the detection of the targeted design patterns in the requirement set.
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B.2.1 Integration of Patterns into Requirements

In this step we select the design patterns to test and describe them using domain examples.

Pattern properties Requirement sentences 

Entities request service from single 
entity. (Client-Server) 

Each store is connected to the central Winnipeg office computer 
for all credit card transactions. 

Central data accessed via protocols. 
(Shared Data) 

Store managers will run reports on inventory in the computer 
system. 

Transfer to external component. 
(Wrapper) 

Interact with existing Exchange application using Office... must 
be easily switched to an open-source email component in the 
future. 

B.2.2 Requirement Set Preparation

In this step we insert the domain examples into the context of a problem to solve in the domain.

Safeway hires you to design a new computer system to run their grocery stores. In the new system: staff will
increase stock counts whenever there is an inventory delivery to a store; cash registers will decrease stock
counts when there is a sale to a customer; store managers will run reports on inventory counts in the computer
system; and each store is connected to the central Winnipeg office computer for all credit card transactions.

Safeway wants the new system to interact with an existing Microsoft Exchange application using Office pro-
tocols to cut costs. However, the company also wants you to design the system so that it can easily switch to
using an open-source email component in the future.

B.2.3 Test Questions

In this step we ask participants to detect the targeted design patterns in the requirement set.

1. The following pattern(s) are present in the user requirements above [check all that you detect].

2 Façade

2 Shared Data (or Shared Database)

2 Proxy

2 Bridge

2 None of the above

2. Designing the system so that the email component can be switched easily in the future to the component of a different
vendor is an example of the pattern.

2 Façade

2 Proxy

2 Wrapper

2 Bridge

2 Broker
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3. Having store computers send credit card requests to the central Winnipeg computer for processing is an example of the
pattern.

2 Iterator

2 Mediator

2 Observer

2 Strategy

2 Another pattern:

2 None of the patterns above is discernible in these requirements

B.3 Evaluation of Participant Results

We evaluate the accuracy of participant design-pattern detection by comparing subject answers to

the correct answers. Using a multiple-choice format for the questions ensures that the participant

compares each design pattern to the domain pattern present in the requirements before making a

decision as to which is the best match.

1. The following pattern(s) are present in the user requirements above [check all that you detect].

2 Façade No. There is no isolation here of internal components.

2 Shared Data (or Shared Database) Yes. Stores connect to a central server that provides common data.

2 Proxy No. There is no isolation or representation of another entity here.

2 Bridge No. There is no cross-over of function here.

2 None of the above No. There is a discernible pattern here.

2. Designing the system so that the email component can be switched easily in the future to the component of a different
vendor is an example of the pattern.

2 Façade No. Façade is for a component internal to the system.

2 Proxy No. The isolating entity does not represent the email component.

2 Wrapper Yes. Switching the external email component requires a wrapper.

2 Bridge No. There is no cross-over of function here.

2 Broker No. There is no mediation of function here.
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3. Having store computers send credit card requests to the central Winnipeg computer for processing is an example of the
pattern.

2 Iterator No. There is no repetitive function here.

2 Mediator No. No other entity is mentioned so this is a service only.

2 Observer No. The detection of events is not needed here.

2 Strategy No. There is no swapping of function here.

2 Another pattern: Yes. Client-Server because of the service provided. Shared Data while
plausible is not valid because the request is for transactional processing
and not for access to common data.

2 None of the patterns above is dis-
cernible in these requirements

No. There is a pattern discernible in the store-server interaction.
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Study 1 – Pattern Ontology

The design ideas used to define the pattern ontology come from the design-pattern descriptions of

the original Gang of Four (Gamma et al., 1995). A description of the materials used in the first

pattern-ontology study follows.

C.1 Treatment

The software-engineering course materials (Mišić, 2009) used to teach pattern-ontology design

ideas to the subject group follow.

(1) What’s wrong with patterns?

• Patterns are good but: there is a non-negligible risk that patterns will be misused (or misapplied) because they are
misunderstood

• Now, how can a pattern be misunderstood? Does that happen because

– We don’t read the pattern carefully?

– We deliberately ignore the description of the pattern?

– We don’t understand the problem well?

– The description of the pattern does not lend itself to easy application to a real problem?

• Let us focus on this last... pattern... and see why the current pattern application wisdom may fail to deliver (the
purported improvement)
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(2) An Example

Safeway hires you to design a new computer system to run their grocery stores. In the new system: staff will
increase stock counts whenever there is an inventory delivery to a store; cash registers will decrease stock
counts when there is a sale to a customer; store managers will run reports on inventory counts in the computer
system; and each store is connected to the central Winnipeg office computer for all credit card transactions.

Safeway wants the new system to interact with an existing Microsoft Exchange application using Office pro-
tocols to cut costs. However, the company also wants you to design the system so that it can easily switch to
using an open-source email component in the future.

(3) And one of the questions

Designing the system so that the email component can be switched easily in the future to the component of a different
vendor is an example of the pattern.

2 Façade

2 Proxy

2 Wrapper

2 Bridge

2 Broker

(4) The correct answer is...

• Adapter or Wrapper, which is described as the pattern that “converts the interface of a class into another interface
clients expect”

• But one might have been tempted to answer otherwise, for example:

– Bridge, because it “decouples an abstraction from its implementation so that the two can vary indepen-
dently”

– Façade, which “defines a higher-level interface that makes the subsystem easier to use”

– Or perhaps even a Proxy, which “provides a surrogate or placeholder for another object to control access
to it”

• All of which do seem similar enough

• So, what does that say about our problem?

(5) The problem is...

• The standard definition of design patterns makes them highly contextualized - the correct pattern to apply is very
much dependent on the context of the problem

• While this is the essence of the pattern-based design, we must acknowledge that the context of the pattern is not
easy to identify from the requirements specification which describes the problem from a viewpoint quite different
from the designer’s one

• As a result, several patterns may have quite similar descriptions of their respective contexts

• Which makes it quite easy (and, thus, likely) to MISINTERPRET the context of the real requirements

• And, by extension, lead the designer to apply a different and inappropriate pattern to the problem at hand
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(6) In other words

• Current approaches to pattern-based design necessitates the use of highly contextualized pattern descriptions

• Which results in designers having difficulty in selecting the correct pattern to apply to their own set of require-
ments

• But this may also (and quite frequently) result in an inability to apply the correct pattern in a different domain
(which is characterized by a different context)

• And may even result in the need to modify the pattern to suit the problem, but modify it in such a way that its
power to implement the specifications is lost

(7) So, is there a better way?

• A different approach relies on the familiar paradigm of abstraction: it begins with a classification of patterns
which is more abstract but, arguably, easier to apply

• Such patterns will be referred to as generic patterns or super-patterns

• Regular patterns are but special cases of their parent super-patterns, distinguished by the dependence on a specific
context

• In other words, we talk about pattern inheritance, much in the spirit of the object-oriented paradigm

(8) Example: Wrapper and Façade

• Wrapper, as defined before, “converts the interface of a class into another interface clients expect” - in other
words, it exposes methods which effectively map the interface of a component to a known API

• It applies to a component domain (can’t wrap a data tier, can you?)

• Façade, as defined before, “defines a higher-level interface that makes the subsystem easier to use” - it exposes
methods from various objects in a lower tier

• But this is applicable at the architecture level - it makes no sense to provide a façade to a component, right?

(9) Now, to find generic patterns

• We need to find the commonalities as well as differences between the two

• So, what would be the main FUNCTION of both Wrapper and Façade? What do they do, in most abstract terms?

• The common theme: they provide ISOLATION between different tiers/components

• But note that the concept of isolation is quite abstract and, thus, context-independent

• Now, the difference between the two is provided by the CONTEXT in which isolation is required

• In fact, there is more variation in that department...
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(10) Basic classification

Pattern   Pattern Specialization  
1 Isolate  
   1.1 Translate 
 Facade  To sub-component  

Wrapper  To integrated external component  
Adapter  Using component communication strategy  

   1.2 Mediate 
 Proxy  To available provider  

Broker  Using provider communication protocol  
Bridge  Using provider communication strategy  
Mediator  Between multiple clients and/or providers  

2 Share 
   2.1 Data Operation 
 Repository  Aggregation from multiple providers  

Shared Database  Requests made using provider protocols 
Observer  Response based on data change detection  

 Client-Server Service response to multiple requestors 
   2.2 Collaborate 
 Blackboard  Response based on cooperative heuristics  

Publisher (Subscriber)  Explicit coordination of data broadcast 
Producer (Consumer)  Synchronization of providers and requestors  

(11) Example

The Department of Agriculture is revamping its computer systems. They have asked you to design a new real-
time software system that can link the province’s temperature, humidity, and wind monitoring stations to the
central office here in Winnipeg. The sensors send their data to very old and primitive station network which the
new system must still somehow use because the sensor system is too expensive to replace at this time.

Department staff will perform analysis and reporting on the data collected and stored on central office servers.
The system must also alert staff if sensor readings are abnormal because this might signal a defective station
sensor. The new system must be designed so that additional stations can be added in the future, using network
addresses that can be changed dynamically to accommodate changes in the network.

They want you to use off-the-shelf software components as much as possible, but in such a way that the
department can replace the purchased components with different ones in the future to meet changing department
needs.

(12) Let’s detect Generic patterns

• Real-time software system links monitoring stations to the central office: collaboration

• The new system must still use the old and primitive station network: translation

• Data is collected and stored on servers: sharing

• Staff perform analysis and reporting: sharing

• System alerts staff of abnormal readings: communication

• Designed so additional stations can be added in the future: mediation

• Replace system components components: translation
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C.2 Test

There are three steps to preparing a test for a pattern-ontology study. We first choose the patterns

to test and describe them using domain examples and terminology. We then prepare a requirement

set that inserts the pattern of design into the context of the problem domain. Finally we prepare test

questions that elicit the detection of the targeted patterns in the requirement set.

C.2.1 Integration of Patterns into Requirements

In this step we select the patterns to test and describe them using domain examples.

Pattern properties Requirement sentences 

Share/Data operation       
(Client Server) 

Rural computers will connect via satellite to a central MTS computer in 
Winnipeg… that communicates with the Internet. 

Isolate/Mediate  
(Proxy) 

Customers… communicate with the Internet using a wide variety of different 
protocols… the central MTS computer communicates with the Internet in one 
way only…  

Share/Data operation    
(Shared-database) store all customer transactions so that the company can bill customers 

Isolate/Translate  
 (Wrapper)  connection software… easily switched to a better technology 

C.2.2 Requirement Set Preparation

In this step we insert the domain examples into the context of a problem to solve in the domain.

MTS hires you to design a new computer system to service rural customers. Rural computers will connect via
satellite to a central MTS computer in Winnipeg. Customers may be using a Mac, Windows or Linux operating
system that communicates with the Internet using a wide variety of different protocols. However, the central
MTS computer communicates with the Internet in one way only, so the new system must deal with this problem.
The system must store all customer transactions so that the company can bill customers based on how much
bandwidth they used while connected to the Internet.

The company also plans to purchase an All Stream subsidiary that builds components for optimal satellite data
transmissions. Consequently, they want you to design the MTS connection software installed on customer
machines so that it can be easily switched to a better technology should it becomes available in the future.
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C.2.3 Test Questions

In this step we ask participants to detect the targeted patterns of design in the requirement set.

1. The following generic pattern / sub-pattern is not present in the user requirements above.

2 Isolation / Mediation

2 Isolation / Translation

2 Share/ Data Operation

2 Share / Collaboration

2. Designing the system so that the MTS connection component can be switched easily in the future to the component of
the All Stream subsidiary is an example of the generic pattern (or generic pattern/ sub-pattern pair).

2 Isolation

2 Isolation / Mediation

2 Isolation / Translation

2 Share

2 None of the above

3. Having rural computers connect to the central MTS computer for Internet browsing is an example of the
pattern.

2 Blackboard

2 Observer

2 Publisher-Subscriber

2 Share / Data Operation

2 None of the above

C.3 Evaluation of Participant Results

We evaluate the accuracy of participant design-pattern detection by comparing subject answers to

the correct answers. Using a multiple-choice format for the questions ensures that the participant

compares each pattern to the domain pattern present in the requirements before making a decision

as to which is the best match.

1. The following generic pattern / sub-pattern is not present in the user requirements above.

2 Isolation / Mediation No. There is a conversion of multiple protocols to one protocol.

2 Isolation / Translation No. There is a need to switch to new technology.

2 Share / Data Operation No. Rural computers connect to the central one for Internet service.

2 Share / Collaboration Yes. There is no entity actively mediating the share.
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2. Designing the system so that the MTS connection component can be switched easily in the future to the component
of the All Stream subsidiary is an example of the generic pattern (or generic pattern/ sub-pattern pair).

2 Isolation Yes. The entity isolates. However, Isolate/Translate is better.

2 Isolation / Mediation No. No adaptation of information is needed in a switch.

2 Isolation / Translation Yes. The entity both isolates and transfers data.

2 Share No. There is no client sharing of data here.

2 None of the above No. There is a detectible pattern in these requirements.

3. Having rural computers connect to the central MTS computer for Internet browsing is an example of the
pattern.

2 Blackboard No. There is no mention of cooperative heuristics.

2 Observer No. No entity is monitoring a data change.

2 Publisher-Subscriber No. There is no mention of coordination of data.

2 Share / Data Operation No. There is no data store provision here.

2 None of the above Yes. There is no Isolate/Mediate pattern in the list above.
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Study 2 – Pattern Ontology

The pattern ontology used in the second study is a refactored version of the one used in the first. A

description of the materials used in the second pattern-ontology study follows.

D.1 Treatment

The software-engineering course materials (Mišić, 2009) used to teach pattern-ontology design

ideas to the subject group follow.

(1) What’s wrong with patterns?

• Patterns are good but: there is a non-negligible risk that patterns will be misused (or misapplied) because they are
misunderstood

• Now, how can a pattern be misunderstood? Does that happen because

– We don’t read the pattern carefully?

– We deliberately ignore the description of the pattern?

– We don’t understand the problem well?

– The description of the pattern does not lend itself to easy application to a real problem?

• Let us focus on this last... pattern... and see why the current pattern application wisdom may fail to deliver (the
purported improvement)

92
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(2) An Example

Safeway hires you to design a new computer system to run their grocery stores. In the new system: staff will
increase stock counts whenever there is an inventory delivery to a store; cash registers will decrease stock
counts when there is a sale to a customer; store managers will run reports on inventory counts in the computer
system; and each store is connected to the central Winnipeg office computer for all credit card transactions.

Safeway wants the new system to interact with an existing Microsoft Exchange application using Office pro-
tocols to cut costs. However, the company also wants you to design the system so that it can easily switch to
using an open-source email component in the future.

(3) And one of the questions

Designing the system so that the email component can be switched easily in the future to the component of a different
vendor is an example of the pattern.

2 Façade

2 Proxy

2 Wrapper

2 Bridge

2 Broker

(4) The correct answer is...

• Adapter or Wrapper, which is described as the pattern that “converts the interface of a class into another interface
clients expect”

• But one might have been tempted to answer otherwise, for example:

– Bridge, because it “decouples an abstraction from its implementation so that the two can vary indepen-
dently”

– Façade, which “defines a higher-level interface that makes the subsystem easier to use”

– Or perhaps even a Proxy, which “provides a surrogate or placeholder for another object to control access
to it”

• All of which do seem similar enough

• So, what does that say about our problem?

(5) The problem is...

• The standard definition of design patterns makes them highly contextualized - the correct pattern to apply is very
much dependent on the context of the problem

• While this is the essence of the pattern-based design, we must acknowledge that the context of the pattern is not
easy to identify from the requirements specification which describes the problem from a viewpoint quite different
from the designer’s one

• As a result, several patterns may have quite similar descriptions of their respective contexts

• Which makes it quite easy (and, thus, likely) to MISINTERPRET the context of the real requirements

• And, by extension, lead the designer to apply a different and inappropriate pattern to the problem at hand
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(6) In other words

• Current approaches to pattern-based design necessitates the use of highly contextualized pattern descriptions

• Which results in designers having difficulty in selecting the correct pattern to apply to their own set of require-
ments

• But this may also (and quite frequently) result in an inability to apply the correct pattern in a different domain
(which is characterized by a different context)

• And may even result in the need to modify the pattern to suit the problem, but modify it in such a way that its
power to implement the specifications is lost

(7) So, is there a better way?

• A different approach relies on the familiar paradigm of abstraction: it begins with a classification of patterns
which is more abstract but, arguably, easier to apply

• Such patterns will be referred to as generic patterns or super-patterns

• Regular patterns are but special cases of their parent super-patterns, distinguished by the dependence on a specific
context

• In other words, we talk about pattern inheritance, much in the spirit of the object-oriented paradigm

(8) Example: Wrapper and Façade

• Wrapper, as defined before, “converts the interface of a class into another interface clients expect” - in other
words, it exposes methods which effectively map the interface of a component to a known API

• It applies to a component domain (can’t wrap a data tier, can you?)

• Façade, as defined before, “defines a higher-level interface that makes the subsystem easier to use” - it exposes
methods from various objects in a lower tier

• But this is applicable at the architecture level - it makes no sense to provide a façade to a component, right?

(9) Now, to find generic patterns

• We need to find the commonalities as well as differences between the two

• So, what would be the main FUNCTION of both Wrapper and Façade? What do they do, in most abstract terms?

• The common theme: they provide ISOLATION between different tiers/components

• But note that the concept of isolation is quite abstract and, thus, context-independent

• Now, the difference between the two is provided by the CONTEXT in which isolation is required

• In fact, there is more variation in that department...

(10) Generics classification

• The table that follows presents some basic generic patterns

• Followed by a sub-classification based on some known variants (but which are still generic, i.e., context-independent,
to a large degree)

• Until we reach the contextual patterns we are familiar with, patterns which specializes the generic set in a specific,
concrete way

• Note that we provide the reason for including the contextual pattern in a given set the specialization is simply the
contextual distinction that makes the pattern different from any other in the set (and which justifies our giving it a
name, such as Wrapper or Façade)
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(11) Generics classification (continued)

Pattern   Pattern Specialization  
1 Isolate  
   1.1 Transfer 
 Facade  Isolate components internal to the system  

Wrapper  Isolate component external to the system  
Delegate  Represent a component internal  to the system  
Proxy  Represent a component external to the system  
Strategy  Plug an exchangeable operation into the system  
Provider  Plug an exchangeable component  into the system  

   1.2 Mediate 
 Adapter  Map external component interface to system interface  

Bridge  Map internal component  interface to system interface  
Mediator  Map interface for bi-directional interaction  
Broker  Bi-directional rule-based component and system interaction  
Interpreter  Translate component interactions with system interface  

2 Share 
   2.1 Provide 
 Repository  Aggregate the data of multiple sources  

Database  Communicate data using a protocol  
Server (Client)  Provide data or data-transformation services to clients  

   2.2 Collaborate 
 Publisher (Subscriber)  Registration controls component interactions  

Producer (Consumer)  Semaphores control component interactions  
Blackboard  Heuristic rules control component interactions  

3 Activity 
   3.1 Detect 
 Polling  Monitor component change at periodic intervals  

Listener  Monitor state change in a component in real-time  
Observer  Monitor event change in a component in real-time  

(12) Example

The Department of Agriculture is revamping its computer systems. They have asked you to design a new real-
time software system that can link the province’s temperature, humidity, and wind monitoring stations to the
central office here in Winnipeg. The sensors send their data to very old and primitive station network which the
new system must still somehow use because the sensor system is too expensive to replace at this time.

Department staff will perform analysis and reporting on the data collected and stored on central office servers.
The system must also alert staff if sensor readings are abnormal because this might signal a defective station
sensor. The new system must be designed so that additional stations can be added in the future, using network
addresses that can be changed dynamically to accommodate changes in the network.

They want you to use off-the-shelf software components as much as possible, but in such a way that the
department can replace the purchased components with different ones in the future to meet changing department
needs.



Appendix D: Study 2 – Pattern Ontology 96

(13) Walkthrough: the Isolate-Transfer branch

• Isolate: a component that separates entities

– Includes the simple passing of data (Transfer) and a more complex mapping of data between interfaces
(Mediate)

• Isolate-Transfer: a component that isolates entities and passes data between them

– Façade: internal components are isolated

– Wrapper: external shrink-wrap component is isolated

– Delegate: component represents another internal to system

– Proxy: component represents another external to system

– Strategy: plug in an exchangeable operation

– Provider: plug in an exchangeable component

(14) Let’s detect Generic patterns

• Real-time software system links monitoring stations to the central office: Share→ Provide

• The new system must still use the old and primitive station network: Isolate→Mediate

• Data is collected and stored on servers: Share→ Provide

• Staff perform analysis and reporting: Share→ Provide

• System alerts staff of abnormal readings: Activity→ Detect

• Designed so additional stations can be added in the future: Isolate→ Transfer

• Replace system components components: Isolate→ Transfer

D.2 Test

There are three steps to preparing a test for a pattern-ontology study. We first choose the patterns

to test and describe them using domain examples and terminology. We then prepare a requirement

set that inserts the pattern of design into the context of the problem domain. Finally we prepare test

questions that elicit the detection of the targeted patterns in the requirement set.



Appendix D: Study 2 – Pattern Ontology 97

D.2.1 Integration of Patterns into Requirements

In this step we select the patterns to test and describe them using domain examples.

Pattern properties Requirement sentences 

Share/Provide  
(Client-Server) 

Rural computers will connect via satellite to a central MTS computer in 
Winnipeg. 

Isolate/Transfer  
(Proxy) 

…MTS computer system used to service rural customers.  Rural computer 
connect via satellite to a central MTS computer in Winnipeg.  Customers… 
access the Internet using a wide variety of protocols. … convert to a 
standardized MTS-defined ‘usage protocol’ to ensure that the company has a 
consistent view of bandwidth use by rural customers. 

Share/Provide  
(Database) store all customer transactions so that the company can bill customers 

Isolate/Transfer 
(Wrapper) or 
Isolate/Mediate  
(Adapter) 

design will accommodate the new All Stream components; … easy given 
similar technologies and business practices of the companies 

D.2.2 Requirement Set Preparation

In this step we insert the domain examples into the context of a problem to solve in the domain.

MTS hires you to prepare an update to the MTS computer system used to service rural customers. Rural
computers connect via satellite to a central MTS computer in Winnipeg. Customers using the Mac, Windows
or Linux operating system access the Internet using a wide variety of different protocols. The system must store
all customer transactions so that the company can bill customers based on how much bandwidth they use while
connected to the Internet. Bandwidth-use reports must convert each protocol transaction to a standardized and
measurable MTS-defined ’usage protocol’ to ensure that the company has a consistent and accurate view of
bandwidth use by rural customers.

The company has also recently purchased All Stream, a company that builds components that optimize satel-
lite data transmissions. They want you to ensure that your design will accommodate the new All Stream
components; they expect this should be easy given the similar technologies and business practices of the two
companies.

D.2.3 Test Questions

In this step we ask participants to detect the targeted patterns of design in the requirement set.

1. The following generic pattern / sub-pattern is not present in the user requirements above.

2 Isolate / Mediate

2 Isolate / Transfer

2 Share/ Provide

2 Share / Collaborate
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2. Designing the system so that the All Stream transmission component can be used by the updated system is an example
of the generic pattern (or generic pattern/ sub-pattern pair).

2 Isolate

2 Isolate / Mediate

2 Isolate / Transfer

2 Share

2 None of the above

3. Having rural computers make Internet requests through the central MTS computer is an example of the
pattern.

2 Publisher-Subscriber

2 Observer

2 Proxy

2 Share / Provide

2 Isolate / Transfer

2 Isolate / Mediate

D.3 Evaluation of Participant Results

We evaluate the accuracy of participant design-pattern detection by comparing subject answers to

the correct answers. Using a multiple-choice format for the questions ensures that the participant

compares each pattern to the domain pattern present in the requirements before making a decision

as to which is the best match.

1. The following generic pattern / sub-pattern is not present in the user requirements above.

2 Isolate / Mediate Yes. Using the All Stream component may require adaptation.

2 Isolate / Transfer Yes. There is the wrapping of the All Stream component.

2 Share/ Provide Yes. There is reporting on stored data.

2 Share / Collaborate No. There is no entity controlling data-sharing interactions.
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2. Designing the system so that the All Stream transmission component can be used by the updated system is an example
of the generic pattern (or generic pattern/ sub-pattern pair).

2 Isolate Yes. Isolation is present. However, Isolate/Mediate or Isolate/Transfer
is a better choice.

2 Isolate / Mediate Yes. If the “accommodation” is perceived as not being easy given the
need to integrate two different companies.

2 Isolate / Transfer Yes. If the expectation that the “accommodation” will be as easy as
expected is perceived as being realizable.

2 Share No. There is no sharing of centralized data here.

2 None of the above No. There is a detectable pattern here.

3. Having rural computers make Internet requests through the central MTS computer is an example of the
pattern.

2 Publisher-Subscriber No. There is no shared-data collaboration here.

2 Observer No. There is no detection of an event-change activity here.

2 Proxy Yes. The central MTS server isolates and transfers data, but also rep-
resents the rural computers attached through it to the Internet.

2 Share / Provide No. In this function of the server, it routes but does not store data.

2 Isolate / Transfer Yes. The routing is simple with no real modification of the data. How-
ever, Proxy is better given its representation property.

2 Isolate / Mediate No. The server isolates but does not adapt the data. Switching proto-
cols does not warrant the term mediation.
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Study Test Results

The test results for the first study of pattern cases are given in Table E.1.

Question Pattern Properties Detection (n=45) 

  Accurate Inaccurate 

1. The following pattern(s) are present in the 
user requirements. 
 
Answer:  Shared Data 
 
 

Façade 51.1% (48.9%) 
Shared Data 100.0% 0.0% 

Proxy 46.7% (53.3%) 

Bridge 40.0% (60.0%) 

None of the above 100.0% 0.0% 
   

2. Designing the system so that the email 
component can be switched easily in the 
future to the component of a different vendor 
is an example of the __________ pattern. 
 
Answer:  Wrapper 
 

Facade  (6.7%) 

Proxy  (15.6%) 

Wrapper 22.2%  
Bridge  (53.3%) 

Broker  (2.2%) 

 22.2% (77.8%) 

3. Having store computers send credit card 
requests to the central Winnipeg computer 
for processing is an example of the 
___________ pattern. 

 
Answer:  Client-Server 

Iterator  (2.2%) 
Mediator  (35.6%) 

Observer  (8.9%) 

Strategy  (2.2%) 

Another 6.7% (26.6%) 
None of the above  (17.8%) 

 6.7% (93.3%) 

Table E.1: Study 1 Pattern Cases – Test results
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The test results for the first study of pattern ontology are given in Table E.2.

Question Pattern Properties Detection (n=45) 

  Accurate Inaccurate 

1. The following generic pattern/ sub-pattern is 
not present in the user requirements. 
 
Answer:  Share/Collaboration 
 

Isolation/Mediation 71.1% (28.9%) 
Isolation/Translation 95.6% (4.4%) 

Share/Data Operation 91.1% (8.9%) 

Share/Collaboration 57.8% (42.2%) 

   
2. Designing the system so that the MTS 

connection component can be switched easily 
in the future to the component of the All 
Stream subsidiary is an example of the 
__________ generic pattern. 
 
Answer: #1 Isolation/Translation 
 #2 Isolation 
 

Isolation 13.3%  

Isolation/Mediation  (13.3%) 

Isolation/Translation 68.9%  

Share  0.0% 
None of the above  (4.5%) 

 82.2% (17.8%) 

3. Having rural computers connect to the 
central MTS computer for Internet browsing 
is an example of the ___________ pattern. 

 
Answer:  Isolate/Mediate 

Blackboard  (4.4%) 

Observer  (6.7%) 

Publisher-Subscriber  (35.6%) 
Share/Data Operation  (33.3%) 

None of the above 20.0%  

 20.0% (80.0%) 

Table E.2: Study 1 Pattern Ontology – Test results
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The test results for the second study of pattern cases are given in Table E.3.

 Question Pattern Properties Detection (n=41) 

  Accurate Inaccurate 

1. The following pattern(s) are present in the 
user requirements. 
 
Answer:  Shared Data 
 
 

Façade 78.0% (22.0%) 
Shared Data 90.2% (9.8%) 

Proxy 63.4 (36.6%) 

Bridge 48.8 (51.2%) 

None of the above 97.6 (2.4%) 
   

2. Designing the system so that the email 
component can be switched easily in the 
future to the component of a different vendor 
is an example of the __________ pattern. 
 
Answer:  Wrapper 
 

Façade  (7.3%) 

Proxy  (22.0%) 

Wrapper 19.5%  
Bridge  (41.4%) 

Broker  (9.8%) 

 19.5% (80.5%) 

3. Having store computers send credit card 
requests to the central Winnipeg computer 
for processing is an example of the 
___________ pattern. 

 
Answer:  Client-Server 
 
 

Iterator  0.0% 
Mediator  (53.7%) 

Observer  (2.4%) 

Strategy  0.0% 

Another 2.4% (29.3%) 
None of the above  (12.2%) 

 2.4% (97.6%) 

Table E.3: Study 2 Pattern Cases – Test results
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The test results for the second study of pattern ontology are given in Table E.4.

Question Pattern Properties Detection (n=41) 

  Accurate Inaccurate 

1. The following generic pattern/ sub-pattern is 
not present in the user requirements. 
 
Answer:  Share/Collaborate 
 

Isolate/Mediate 92.7% (7.3%) 
Isolate/Transfer 90.2% (9.8%) 

Share/Provide 82.9% (17.1%) 

Share/Collaborate 65.9% (34.1%) 

   
2. Designing the system so that the All Stream 

transmission component can be used by the 
updated system is an example of the 
__________ generic pattern. 
 
Answer: #1 Isolate/Transfer 
 #2 Isolate/Mediate 
 #3 Isolate 

Isolate 14.6%  

Isolate/Mediate 36.6%  

Isolate/Transfer 26.8%  

Share  (19.5%) 
None of the above  (2.5%) 

 78.0% 22.0% 

3. Having rural computers make Internet 
requests through the central MTS computer 
is an example of the __________ pattern. 

 
Answer: #1 Proxy 
 #2 Isolate/Transfer 

Publisher-Subscriber  (7.3%) 

Observer  (4.8%) 
Proxy 65.9%  

Share/Provide  (9.8%) 

Isolate/Transfer 2.4%  

Isolate/Mediate  (9.8%) 
 68.3% (31.7%) 

Table E.4: Study 2 Pattern Ontology – Test results
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Study Results vis-à-vis the Hypotheses

A summary of study results vis-à-vis the hypotheses is given in Table F.1 and in Table F.2.

In all cases we used a two-sample Student t-test for independent groups with two-tail P

values to determine if the null hypothesis might be safely rejected.

For the first hypothesis about pattern cases, sample 1 was taken from the baseline ques-

tionnaire results, with an “I do not know enough yet about finding patterns in user requirements to

detect the patterns” answer or an incorrect detection being treated as a failure to detect the pattern

accurately in domain knowledge.

For the second hypothesis about pattern ontology, sample 1 was taken from the pattern-

case results, since these results were the most representative of the pattern-detection ability of par-

ticipants immediately before the pattern-ontology treatment and tests.
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Test H0 H1 H2 
 

Pattern-Detection 
Sample 1 

Pattern-Detection 
Sample 2 

P-value 
(two-tail) 

 

   

   Pattern Cases     

      Question 1 

Façade Façade p ≈ .532 
Proxy Proxy p < .05 

Bridge Bridge p < .001 

Low detection accuracy: 
     ≈ 50% accurate detection of Façade, Proxy, and Bridge 

Reject Support - 

      Question 2 

Bridge Bridge p < .001 
Wrapper Wrapper p ≈ .603 

Low detection accuracy: 
     ≈ 50% accurate detection of Bridge 
     ≈ 25% accurate detection of Wrapper 

Reject Support - 

      Question 3 
Client-Server Client-Server p < .001 

Low detection accuracy: 
     ≈ 10% accurate detection of Client-Server 

Reject Support - 

   Pattern Ontology    

      Question 1 

Façade Isolation/Translation p < .001 
Proxy Isolation/Mediation p < .05 
Bridge Isolation/Mediation p < .01 

Improved detection accuracy: 
     ≈ 95% accurate detection of Isolation/Translation 
     ≈ 70% accurate detection of Isolation/Mediation 

Reject - Support 

      Question 2 

  Wrapper Isolation Total p < .001 
  Wrapper Isolation/Translation p < .001 

Improved detection accuracy: 
     ≈ 90% accurate detection of Isolation 
     ≈ 70% accurate detection of Isolation/Translation 

Reject - Support 

      Question 3 
  Client-Server Isolation/Mediation p ≈ .064 

No detectable improvement in detection accuracy 
null  - ? 

Table F.1: Study 1 results vis-à-vis the hypotheses
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Test H0 H1 H2 
 

Pattern-Detection 
Sample 1 

Pattern-Detection 
Sample 2 

P-value 
(two-tail) 

 

   

   Pattern Cases     

      Question 1 

Façade Façade p < .001 
Proxy Proxy p < .001 
Bridge Bridge p < .001 

Low detection accuracy: 
     ≈ 50% accurate detection of Proxy and Bridge 

Reject Support - 

      Question 2 

Bridge Bridge p < .001 

Wrapper Wrapper p ≈ .788 

Low detection accuracy: 
     ≈ 50% accurate detection of Bridge 
     ≈ 20% accurate detection of Wrapper 

Reject Support - 

      Question 3 
Client-Server Client-Server p < .001 

Low detection accuracy: 
     ≈ 5% accurate detection of Client-Server 

Reject Support - 

   Pattern Ontology    

      Question 1 

Façade Isolate/Transfer p ≈ .134 
Proxy Isolate/Transfer p < .05 
Bridge Isolate/Mediate p < .001 

Improved detection accuracy: 
     ≈ 90% accurate detection of Isolate/Transfer & Mediate 

Reject - Support 

      Question 2 

Wrapper Isolate Total p < .001 
Wrapper Isolate/Transfer p ≈ .439 

Wrapper Isolate/Mediate p ≈ .087 

Improved detection accuracy: 
     ≈ 80% accurate detection of Isolate, with requirement  
     ambiguity causing split in detection of Transfer (≈ 30%) 
     and of Mediate (≈ 40%) 

Reject - Support 

      Question 3 
Client-Server Proxy p < .001 

Improved detection accuracy: 
     ≈ 70% accurate detection of Proxy 

Reject - Support 

Table F.2: Study 2 results vis-à-vis the hypotheses
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Tore Dybå, Vigdis By Kampenes, and Dag I.K. Sjøberg. A systematic review of statistical power in
software engineering experiments. Information and Software Technology, 48(8):745–755, August
2006. doi: 10.1016/j.infsof.2005.08.009.



Bibliography 110

Hernan R. Eguiluz and Mario R. Barbacci. Interactions among techniques addressing quality at-
tributes. Technical Report CMU/SEI-2003-TR-003, Defense Technical Information Center OAI-
PMH Repository (United States), 2003.

Magnus Eriksson, Kjell Borg, and Jürgen Börstler. Use cases for systems engineering—an ap-
proach and empirical evaluation. Systems Engineering, 11(1):39–60, February 2008. doi:
10.1002/sys.v11:1.

Eric Evans. Domain-Driven Design. Addison Wesley, 2003.

Joerg Evermann and Yair Wand. Toward formalizing domain modeling semantics in language
syntax. IEEE Transactions on Software Engineering, 31(1):21–37, January 2005. doi:
10.1109/TSE.2005.15.

Frederico Fonseca and James Martin. Learning the differences between ontologies and conceptual
schemas through ontology-driven information systems. Journal of the Association for Informa-
tion Systems, 8(2):129–142, February 2007.

Nigel Ford. Modeling cognitive processes in information seeking: From Popper to Pask. Journal
of the American Society for Information Science and Technology, 55(9):769–782, July 2004. doi:
10.1002/asi.20021.

Martin Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1997.

Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2003.

Paul J. M. Frederiks and Theo P. van der Weide. Information modeling: the process and the required
competencies of its participants. Data & Knowledge Engineering, 58(1):4–20, July 2006. doi:
10.1016/j.datak.2005.05.007.
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Yann-Gaël Guéhéneuc, Jean-Yves Guyomarc’h, and Houari Sahraoui. Improving design-pattern
identification: a new approach and an exploratory study. Software Quality Journal, 18(1):145–
174, March 2010. doi: 10.1007/s11219-009-9082-y.

Serkan Gunal and Rifat Edizkan. Subspace based feature selection for pattern recognition. Infor-
mation Sciences, 178(19):3716–3726, October 2008. doi: 10.1016/j.ins.2008.06.001.

Rubi Hammer, Gil Diesendruck, Daphna Weinshall, and Shaul Hochstein. The development of
category learning strategies: What makes the difference? Cognition, 112(1):105–119, July 2009.
doi: 10.1016/j.cognition.2009.03.012.
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Scott Henninger and Victor Corrêa. Software pattern communities: current practices and challenges.
In Proceedings of the 14th Conference on Pattern Languages of Programs, PLoP ’07, pages 14:1–
14:19. ACM, September 2007. doi: 10.1145/1772070.1772087.

Thomas T. Hills, Mounir Maouene, Josita Maouene, Adam Sheya, and Linda Smith. Categorical
structure among shared features in networks of early-learned nouns. Cognition, 112(3):381–396,
September 2009. doi: 10.1016/j.cognition.2009.06.002.

Nien-Lin Hsueh and Wen-Hsiang Shen. Handling nonfunctional and conflicting requirements with
design patterns. In Proceedings of the 11th Asia-Pacific Software Engineering Conference,
APSEC ’04, pages 608–615. IEEE, November 2004. doi: 10.1109/APSEC.2004.57.

Nien-Lin Hsueh, Jong-Yih Kuo, and Ching-Chiuan Lin. Object-oriented design: A goal-driven
and pattern-based approach. Software & Systems Modeling, 8(1):67–84, February 2009. doi:
10.1007/s10270-007-0063-y.

Clemente Izurieta and James M. Bieman. How software designs decay: A pilot study of pat-
tern evolution. In Proceedings of the 1st International Symposium on Empirical Software
Engineering and Measurement, ESEM ’07, pages 449–451. IEEE, September 2007. doi:
10.1109/ESEM.2007.55.



Bibliography 112

Michael Jackson. Problem frames and software engineering. Information and Software Technology,
47(14):903–912, November 2005. doi: 10.1016/j.infsof.2005.08.004.

Anil K. Jain, Robert P.W. Duin, and Jianchang Mao. Statistical pattern recognition: a review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, January 2000.
doi: 10.1109/34.824819.

Masita Abdul Jalil and Shahrul Azman Mohd Noah. The difficulties of using design patterns
among novices: An exploratory study. In Proceedings of the 5th International Conference on
Computational Science and Applications, ICCSA ’07, pages 97–103. IEEE, October 2007. doi:
10.1109/ICCSA.2007.75.

Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley, 2005.

Dae-Kyoo Kim and Wuwei Shen. Evaluating pattern conformance of UML models: a divide-and-
conquer approach and case studies. Software Quality Journal, 16(3):329–359, September 2008.
doi: 10.1007/s11219-008-9048-5.

Walter Kintsch and Anita R. Bowles. Metaphor comprehension: What makes a metaphor
difficult to understand? Metaphor and Symbol, 17(4):249–262, October 2002. doi:
10.1207/S15327868MS1704 1.

Günter Kniesel, Tobias Rho, and Stefan Hanenberg. Evolvable pattern implementations need
generic aspects. In ECOOP 2004 Workshop on Reflection, AOP and Meta-Data for Software
Evolution, RAM-SE ’04, pages 111–126, June 2004.

Christian Kohls and Katharina Scheiter. The relation between design patterns and schema theory. In
Proceedings of the 15th Conference on Pattern Languages of Programs, PLoP ’08, pages 15:1–
15:16. ACM, October 2008. doi: 10.1145/1753196.1753214.

Gwendolyn Kolfschoten, Stephan Lukosch, Alexander Verbraeck, Edwin Valentin, and Gert-Jan
de Vreede. Cognitive learning efficiency through the use of design patterns in teaching. Comput-
ers and Education, 54(3):652–660, April 2010. doi: 10.1016/j.compedu.2009.09.028.

Sotiris B. Kotsiantis, Ioannis D. Zaharakis, and Panagiotis E. Pintelas. Machine learning: a review of
classification and combining techniques. Artifical Intelligence Review, 26(3):159–190, November
2006. doi: 10.1007/s10462-007-9052-3.

Mark Last, Abraham Kandel, and Oded Maimon. Information-theoretic algorithm for feature
selection. Pattern Recognition Letters, 22(6-7):799–811, May 2001. doi: 10.1016/S0167-
8655(01)00019-8.

Tracy L. Lewis, Mary Beth Rosson, and Manuel A. Pérez-Quiñones. What do the experts say?
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