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ABSTRACT

This thesis is concerned with four aspects of flood
risk analysis, The use of Bayesian estimation theory is
central in all four aspects.

The first aspect concerns the parameter estimation
for probability distributions used for flood data. It
will be shown that a Bayesian approach gives better
estimates than the usually preferred method of maximum
likelihood. Lindley’s approximation technique greatly
simplifies the computation of all Bayes estimates.

The second aspect concerns the estimation of the
probability that a flood will be exceeded in a future
period. Then the wuncertainty in the parameters of the
probability distribution must be taken 1into account.
This is done by using the predictive distribution as
distinct from the descriptive distribution.

Next the customary assumption of stochastic
independence for annual flood peak series is waived. A
calculation of the Hurst statistic for about fifty annual
flood series from all over Canada indicates that long term
serial <correlation is present in many rivers. This 1is
shown to increase the uncertainty of the sample statistics
and leads to a substantlial upward assessment of the flood
risk. A simple but efficient technigue of modelling

series with a high Hurst statistic is described,.

il




The fourth aspect of flood risk analysis is an
attempt at reducing the uncertainty in the estimation of
the probability of exceedence of extreme floods. Taking

the Red River at Emerson as a case study, a physically-

based stochastic flood simulation model is developed
using scil moisture, snowfall, snowmelt, and ralnfall as
input. The predictive distribution of flood peaks

obtained from this model shows less uncertainty than the
predictive distribution based only on the recorded flood
peaks. This 1s not necessarily the whole answer.
Updating the predictive distribution with historic or
regional information using the simulation model is stiil
possible, but has not been attempted in this thesis.

The research described in the thesis shows that
parameter uncertainty appears to be more important than the
question of plotting positions, parameter estimation by
one method or another, or the choice between 2-parameter

and 3-parameter probability models.
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CHAPTER 1

INTRODUCTION

1.1 CONTEXT AND OBJECTIVES

Floods have always been a recurring menace |n most

inhabited parts of the world. While protective works have
been designed from tlime immemorial, the risk of floodlng
can seldom be eliminated. An essentlal step In a flood

protection study is therefore an assessment of flood
frequencies aimed at determining the probability that
peak flows of various magnltude wlll be exceeded.

The procedure traditionally lInvolves:

i Obtalning a record of annual fiood events
(usual length is 1less than 50 vears 1in
Canada).

Cii Choosing a probability distribution that
seems to fit the data. This 1s usually done
by arranging the observed data in order of
magnitude, plotting them on different types of
probablillty graph paper and, observing the
shape suggested by the plotted points,

il Estimating the parameter s of the
distribution, and

Civ) Making inferences about the occurrence of

future flood events.




Within steps (il) and (ili) there exist a number of
sources of wuncertainty. Three different types of
uncertalinty may be dlistinguished (Benjamin and Cornell,
1970):

tad Stochastic or natural wuncertalnty of the
probabilistic phenomenon Itself, here, the
annual flood peaks.

(b) Parameter uncertalnty, caused by limlited data
and aggravated by serial correlation.

(c) Model wuncertainty, assoclated with the
uncertainty of the best model to describe the
stochastic process.

How to deal with the three types of wuncertainty
depends on what one wants to analyse the flood data for,
l.e. to wunderstand or to predict. The purpose of the
analysis may be simply to extend our knowledge of the
flood potential of the river. This Is usually the goal of
a scientlst-statisticlian who is after the probabllity
distributlion that best describes the stochastic
variabillty, the flrst source of uncertalnty.

The sciéntist Is, of course, also interested in the
confidence one may have In the probabllity distribution,
that 1s, in the second type of uncertalnty. But the two
types of uncertalnty must be left entlirely separate. The
flrst type 1Is an objectlive Issue, belng a property of
nature. The second type depends on the knowledge and

information available. As such, it depends to a certaln




extent on the Investlgators and Is partly subjectlve;
hence the classlcal statlsticlan treats the two types of
uncertalnty quite differently.

The conflidence one has In the chosen probablility
distributlion to describpe the stochastlc varlablility of
flood peaks depends on how well lts parameters are
estimated. The method of maximum Jlikelihood 1is usually
preferred by most scientists/hydrologlists.

The first objective of this study is to show that
better estimates of the parameters can be obtained by
uslng the Bayeslan approach.

Lindley’s Bayeslan approxlimation procedure (Lindley,
1980> which greatly simplifies computation Is used to
obtain all Bayes estlimates. A 2-parameter distribution
(Gumbel) and a 3-parameter dlstribution (3-parameter
lognormal) fltted to some Canadlan rivers are used as
examples to demonstrate this technigue.

The purpose of the analysis may also be to guide
engineering decisions. The englineer, wunllike the
scientist, must go beyond a mere description of the
randomness of nature and of the limits of our knowledge.
He must make decisions based on predictions. He must
answer the question: Is that dyke high encugh to provide
flood protection within the planning horizon of, say, the
next 50 or 100 years? And then he or she must act on that
prediction. It makes no difference whether a dyke fails

because nature produced a very unusual event or because



the engineer underestimated the design flood. Engineers
therefore cannot separate the first two types of
uncertainty. They must be combined in the decision making
process. The use of Bayesian probabillity theory permits
one to combine stochastlc and parameter wuncertainty,
provided that both can be quantified.! The result is the
predictive distrlbution of the flood peaks (Zellner,
1971) . Its frequency curve is steeper (degree depending
on the length of record) than that of the descriptive

probability distribution, which merely descrlibes the

‘A careful distinction must be made between two kinds

of wuncertainty. On the one hand, there 1Is wuncertainty
that can be quantified objectively on the basis of
available information. Cne can deal with it rationally.
On the other hand, there 1is ignorance, leading to a
different kind of uncertainty. This uncertainty cannot be
quantified objectively or meaningfully. Stochastic
uncertalinty belongs to the first category. So does
parameter wuncertainty. There is no reason in the theory

of mathematical statistics why the model parameters, such
as the mean and the standard deviation, cannot be treated
as random variables in an appropriate statistical model.
And there Is no physical reason why their variabllity
cannot be quantified objectively, on the basis of
observations, provided a reasonable analogy exists between
the mathematical model and the physical reality.

Uncertainty regarding the appropriate type of
probability distribution belongs to the second category.
The guiding principle here is to choose the simplest model
that s compatible with the information one has about the
entire class of flood peak series to which the flood peak
series we are interested In belongs and that is capable of
adequately reproducing the significant features of that
Individual flood peak series.

The cholce between a two-parameter and a
three-parameter model can not be based on a balance of
probabliltlies, at least not with the current state of
relevant information. It is also not meaningful to say
that there is a 50% probabllity that the flood peaks on
Moose Jaw Creek follow a Gumbel distributlion and a 50%
probablility that they are log-normally distributed, simply
because one does not know which model to choose.




stochastlc state of nature on the basis of avallable
information.

Obtalning predlctive distributlions for continuous
distrlibutions requlres rather sophisticated mathematlics.
However, one can make use of the property that the
probability of exceedence of the predictive probability
distribution Is the Bayes estimator of the probabillity of
exceedence of a flood discharge under the squared-error
loss function (Sinha, 1985).

The second objective of this study is therefore to
obtain Bayes estimates of the probability of exceedence.

Lindley’s approximation is used to obtain the Bayes
estimates and this procedure 1|s demonstrated for some
Canadlan rivers fltted to two 2-parameter distributions,
the Gumbel dlistribution and the 2-parameter lognormal
distributlion. The flood data are assumed to be serially
independent.

From an engineering point of view, a nice feature of
the predictlive probablility dlistrlbution is that it
automatically provides a safety factor which 1is
substantial when the record is short and the safety factor
becomes small when the frequency curve is based on a large
number of data.

Engineers, however, use the descriptive rather
than the predictive probability distribution neglecting
the uncertainty in the information. This seems strange,

for In almost every other fleld of engineering the



uncertalnty caused by our limlited knowledge s not lgnored
but Is thé reason for the use of a safety factor. This
state of affalrs |s probably partly caused by the fact that
statistics courses for englneers at the Unlverslties are
mostly designed for and taught by scientists instead of
englneers. Another reason 1s undoubtedly the confidence
engineers have 1In the accuracy of the descriptive
probabillty distripbution based on the avalilable
information. That confidence seems Jjustified at first
glance since it can be shown that the effect of parameter
uncertalnty on flood risk is relatively small if one has a
reasonable length of record, and if the flood data are
serially independent which 1Is the standard assumption in
most analysis.

One must, however, seriously question the assumption
that annual peak flows are gserially independent for
practically all rivers. It is true that for annual flood
peak series the low lag serial correlation coefficlents are
usually small. As such any observed serial correlation
seldom, if ever, passes the customary tests of statistical
significance at the 10% or 5% level. But an analysis of
about 50 flood peak series from all over Canada indicated
that while short term serial correlation seems absent,
significant long term serial correlation as measured by a
high Hurst statistic (Hurst, 1951) is present in a large
number of rivers analysed, and this serial correlation

substantially increases the uncertainty of the parameters



cf @ flood probability distribution.

The third objective of this study is to demonstrate
the effect of serial correlation on fiood risk analysis.

This is demonstrated through the use of a
discretised predlictive probability distribution proposed
py Russeil (1982). This requires, however, a time series
model that will reproduce both the short term and the long
term serial correlation structure in addition to the
marginal distribution properties,. A number of models are
avallable to do this: nameiy, the Fast Fractional Gaussian
Noise model, the ARMA (1,1)> model, the Broken-line model
and the ARMA-Markov model. But these models are either too
cumpbersome to use because of their complexity or they
require computer time far in excess of that required for
autoregressive models.

The fourth objective of this study is, therefore to
develop a simple and efficient time series model with the
desired attributes.

Thus far, the underlying probability distribution of
the annual flood peaks has to be determined “a priori-.
The model chosen may not be the most suitable model.

The probabliiity distribution derived from observed flood

records may be reasonably well defined in the middle reach
where many observations are located. However, in the
upper tall on which flood protection decisions are often

based, there is considerable uncertainty due to the lack of

data in this region. One can reduce this uncertainty only



by obtaining additional 1information. Such additional

information can be obtained by a study of the physical

factors that determine the magnltude of flood peaks. An
attempt Is made to construct a simulation model in which
additional 1information about the factors Is combined

with a knowledge of the physics of the runoff process.
Sampling from this simulation model provides a probability

distribution that can be expected to be more reliable than

the distribution based on the record only. The Red River
at Emerson 13 used as a case study. The simulation model
also sheds some light on the possible causes of

significant long term serial correlation in the annual
spring peak flows on the Red River.
The final objective of thls study |s the development

of such a physlically-based simulation model.

1.2 OUTLINE OF THESIS

The study was performed by first outllining some
basic principles of Bayesian analysis and to point out
distinctive differences between the sampling theory
(classical statistics) and Bayeslian methods of inference.
This is given 1In Chapter Two. In Chapter Three, the
parameters and T-year floods of a 2-parameter and a
3-parameter probablllty dlistributlons are obtalned using

the maximum likelihood method and Bayesian method and



their results compared. In Chapter Four, flood fregquency
analysls uslng the predictive probabllity distribution
approach ls considered. Chapter Flve presents an analysis
of the serlal correlation structure of about 50 flood peak
series from all over Canada. The development of a new
time series model capable of reproducing the Hurst effect
as well as short term serial correlation structure Is
presented 1In Chapter Six. Chapter Seven presents the
study on the effect of serial correlation on flood risk
analysis. The development and evaluation of the
physically-based flood simulatlon model for the Red River
is given in Chapter Eight. Chapter Nine presents

conclusions and recommendations from the study.



CHAPTER 2

BAYESIAN ANALYSIS

2.1 GENERAL

Detailed discussions of the Bayeslian approach to
statistical inference are given in Jeffreys (1961), Box &
Tiao (1973) and Zellner (1971).

Thls chapter will introduce only some of the basic
principles and .concepts of Bayeslan analysis,. Some
important differences between the classlical approach and
the Bayesian approach to statistical inference are
outlined and the relevance of the Bayesian approach to

flood risk analysis discussed.

2.2 BAYES’ THEOREM

This theorem 1Is named after Reverend Thomas Bayes
(1702 - 1761). It is derived, in fact, from a basic law
of probability theory and is regarded by a growing number
of statisticlans and engineers as belng fundamental to the
revision of probability in the light of additional
evidence.

Bayes’ theorem, which follows from the definition of

conditlional probablllity, involves a prior (or a priorti)

10



distribution based on theoretical considerations or on the
investigator’s own beliefs about the possible states of
nature; the prlor probabilities are not necessarily
assoclated with repeatable experiments or the analogs
thereof. This dlstribution describes all the relevant
Information prlor to the recelpt of a sample of data or
additional Iinformation as approprlate. Glven the prior
distributlon and the additional information, by combining
these and usling Bayes’ theorem, the posterior (or a
posterlior!) distribution could be evaluated. The
posterior distribution then embodles all the available
information about the state of nature.

Bayes’ theorem is derlved as follows:

Let 91, B,, 85 . . . . 8_, denote all possible
states of nature which may refer to the state of weather,
water level in the reservoir or any other variable or
parameter which 1s subjected to wuncertalinty and let x
represent a sample of data (additional information). The
prior probabillitles estimated before the recelpt of the
data can be expressed by P’(Gi) and the conditional
probablllities of the sample x subject to the states of
nature 8, are denoted by P(x/ei). Also, let the posterior
probabillities P“(Gi/x) represent the probabilities of the
states of Bi of nature, given the sample x. 1f P('ei, X )
denotes the joint probability of Bi and x, by wusing

conditional probablilities, it can be stated that:

i1




P(Gi, X ) P’(Si) . P(x/Bi)

Cix> . P"(Gi/x)
where the normallzling constant C(x)> ls given by:
m
C(x) - ZP’(GI) . B(x/B ) L. (2.1)
i=1
This leads to Bayes’ theorem:

P’(Bi) . P(x/ei)

ip'wp . P(x/8)

=1

(2.2)

P“(Qi/x) =

Note that (2.2) should be changed to integral form for
continuous states and probabillty density functions.
In the following section, parameter estimation of a

contlinuous varlable using Bayes’ theorem |Is described.

2.3 BAYESIAN PARAMETER ESTIMATION

In Bayeslan parameter estimation, Bayes’ theorem is
used to combline statlistical information.

Let x = (x;, x5 . . . . x,) be a random sample of

observations with probability density function f(x/8>

which depends on the parameter 8 but is otherwise
completely known. The parameter 8 may be vector valued
or a real valued parameter. Let g(8) be a prior

probability distribution of 8 obtained before observing x.

The available information embodied iIn the observed data x

12



and the prior probability of 8 can then be combined using
Bayes’ theorem. The posterior distribution of 6 which is
the probability density of 8 conditional upon x is given

by:

T(B/x) = K . g(8) ., f(x/8)
where T[(B8/x) is the posterior distribution of €, 2ix/8) ig
called the likelihood of x, and K is the normalising

constant given by:

| QER. ﬁnce/£>d9 = -[9(8). 1(x/8)d8
AN

o

where (L is the parameter space of 6.
Hence,

g(8) ., f(x/8)»

T<e/x) el (2.3

Ig<e> . J(xs8>d86
FeN

The posterior density T{(8/x) then embodies all the
information one has about 8. Thus in Bayesian inference,
all inferences about © are based on the posterior
distribution of 8.

In practical applications, one may wish to
characterize the posterior distribution in terms of a
small number of measures such as measures of central
tendency, dispersion, and skewness, with a measure of
central tendency serving as a point estimate of 6.

In this thesis, only the mean and the variance of
the posterior distribution of 8 will be used as measures

of central tendency and dispersion respectively in view of

13



their common wusage in classical statistics and everyday
l1fe. In Bayesian termlinology wusing the mean of the
posterior distribution of 8 as a point estimate, is
tantamount to obtaining the Bayesian estimator of 8 under
a squared-error loss functlon.

For example, the Bayes estimator of 8, given the

data x, 1s by definition the expectation of the posterior

density of B8 under a sguared-error loss function. This is
given by:
8* = E(srxy = Je.me/i)de el (2.4)
el

and the posterior variance of 8 is given by:

Var(e,/x> = E(8%/x) - g*° C.. (2.5)

In (2.4> and (2.5), observational data and prior
Information are both used and combined In a systematic way
to estimate the underlying parameter 8. In the next
section, it will be shown how given available sample
Informatlion, the probabllity density function of as yet
unobserved observatlons can be obtalned by the Bayesian

approach.
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2.4 PREDICTIVE PROBABILITY DENSITY FUNCTION

When a dyke falls, It makes no difference whether it
failed because nature produced a very unusual flood or
because the engineer wunderestimated the design flood
discharge. As such, the natural varlabllity or stochastic
uncertainty of the flows as well as the wuncertainty
concerning the parameters of the flood probabillity
distribution must be comblined. This can be done by
applyling compound distrlibutlon theory 1In a Bayeslan
framework (Wood et al., 1975). This procedure results in
what Benjamin and Cornell (1970) called the Bayesian
distribution or the predictive density of a future
observatlion (Zellner, 1971) of flood discharges x. This

distribution is glven by:

f(x) = J f(x/8) . T(8/x) dB L. (206D
fql

where f(x/8) is the model distribution of the flood
discharges, conditional upon the parameters 0; B /x> is
the posterior density function for 8; and ?(x) is the
Bayesian predictive distribution of the flood discharges,
now parameter free,

The predictlve distribution f(x) can be interpreted
as an average of conditional predictive pdf’s, f(x/8),
with the posterior probabllity distribution function (pdf)
for 8, T (8/x) serving as the weighting function.

Updating the predictive distribution when new information

1%



become avallable is achieved by updating the distributions
cf the wuncertaln parameters through Bayes’ theorem and
then updating the predictive distribution using (2.7). It
Is Incorrect to try to update ?(x)vdirectly.

Obtaining the probability density function of the
predictive distribution for continuous probabllity
distributions is qulte complilicated. However, one can more
easily obtain the mean and varlance of the predictlive
distribution. Take, for example, a model distribution
f(x/8) with 2 parameters (p, ©) and, - < pu <= and o > 0.

Assume that o is known and fixed, and only p Is uncertain.

From (2.6),
%)
f(x) = Jf(x/p, o) . TUu) dp ce. (2.7
o0
The predictive mean of x = ax
o0
mx = .[x D f(x) dx
L. 00
oG o0
= Jx [J‘ f(x/u, o). T(u) dp} dx . (2.8)
-0 . o0

By a change of the order of Integration,

- f [ Jx.f(x/p, o) dx | Tl du Ce. (2.9
-0 —C0

The inner brackets is the expectation of x, mx

Therefore,

m, = f m, . TUCu) dy e (20100

Thus, the mean of the predictive distribution is just the

average of the means of x for various values of u.

16
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The predictlve varlance of x Is glven by:

o2 = B (x%) - an (2.11)
where:
o0 4
E(x%) = f ¥ 2 [J f(x/p, o). Tl(u) dp ]dx vl (2412
—c0 Ze0
® ~
- r [f x% t(x/p, o dx].'ﬂ(p) dy ... (2.13)
- -0l
-] . 2
= J (o 4+ m)  T(p) dp b (2.14)
Therefore,
<% <0 N
cf = f 02 CTCu) du + J (p - mx)2 TLC) du .. (2.15)
Pt -0

1t 'H(p) is a symmetrlcal distribution with mean nu and

varliance cﬁ, then

mx = L. (2.016)

and 3‘ = 02 + 02 vl (20107
X M

Hence, the predictive distribution f(x)> has a

larger variance than the model distribution f(x/8), since
the former Incorporates both sStochastic and parameter

uncertainty.

When both p and o are uncertain, the predictive mean
of x, m, is given by:

o0

i
m, = J! Jp.T[(}J, o) du do L..(2.18)
[¢]

-0



T2

and the predictive variance of x, o, is given by:
o0 (\DO * <Q

T2 L2 v 2

o, = JG " T{(u,0) dudo + (u - mx) T (u, o) dpdo
o =00 o oo

(2.19

2.5 PRIOR DISTRIBUTIONS AND LIKELIHOOD FUNCTIONS

The mathematical soundness of the Bayeslan aproach
has been widely accepted; the present controversy is with
regard to appllcation, in particular the choice of prior
distribution g(8) (Kottegoda, 1980).

Zellner (1971) distinguishes between two types of
prior probabilities; those obtained from past samples of
data are termed data based, and those obtained from
personal or theoretical considerations are termed non-
data based.

With data based prior distribution, no subjectivity
is lInvolved. On the other hand, if one has no prior
information, the prlor distributlion g(8) must be decided
on a subjective basis or on theoretical grounds in which
the theory of invariance of Jeffreys (1961) is widely used.

In a state of in-lgnorance about the parameter(s) @,
Jeffreys (1961) suggested the following rules for the
cholce of the prlor distributicon g(8) which according to

Jeffreys, "... cover the commonest cases".



distributed, i.e. gl(al} = constant.
ity 1f {1y = (0, e >, choose 1io0g 82 toc be
uniformly distributed, 1.e. g~(B.) =< L
& < 9,,
&

where 1; is the range space of 91,

Rule i is invariant under any linear
transformation and Ruie (il> is invarlant under any power
transformation of 8. In the literature, such priors are
described as vague, diffuse, improper or non-informative.

It 91 and 82 are both unknown, we can assume a-priori

that 91 and 62 are independent since any prior knowiedge

one may have about B, is not likely to influence one’s
prior pbelief about 92 (Box and Tiao, 1973).
Thus ,
( = . .
g 91. 8,0 9,(8) . 9,008,780
A g, (B8.) .ga(B,)
171 272
= é (2.20
2
Such “vague’” or “diffuse’ prior is quite wuseful

because with a relatively modest sample size, the shape of
the posterior distribution will be virtually identical to
that of the sample likelihood function. In this case, any
prior ideas about the parameters will be overshadowed by
information obtained from the data. The role of the
dominant 1lkelihood In the analysis of scientific

experiments. is discussed in detail by Box and Tiao (1973).

e



The other element necessary in a Bayesian analysis
is the likellhood function. This is the function through
which the sample data x modify pricr knowledge of 8. It
can be regarded as the function that represents the
information about 8 contained in the gample data. This
likelihood function is the same one used in some classical
techniques of estimation and hypothesis testing, namely,
maximum likelihood estimators and llkellhood ratioc tests.
The 1ikellhood function is defined as follows. Let x =
(Xi, Xy v xn) be a sample of independent observations,
and let the density functlon with unknown parameter 8 of
each observation be f(xi/e). Since the trials are

independent, the likelihood function Is simply the product

cf the n density functions. That is,
n
Pexsey =TT f(x,/8) ce. (20210
L=t :

In the following section, the relevance of the
Bayesian approach to flood risk analysis is discussed.
Some distinctive differences between the classical and
Bayeslan approach to statistical Inference are also

outlined.
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2.6 CLASSICAL VERSUS BAYESIAN

Martz and Waller (1982) have outlined In detall the
digtinctive differences between the classical and Bayesian
approach to statlstical Inference. In this section, only
a brlef comparison Is given wlth a discussion on the
relevance of the Bayeslan approach to flood risk analysls;

In the classical ahproach, inferences are based on
the likelihood function in which the unknown parameter O
s assumed to be a flixed constant. In the Bayesian
approach, however, B8 is treated as a random variable
having a probability distribution which represents a
formalization of informatlion about 8 before observing a
sample. In flood risk analysis such prior information can
come about from regional hydrologic and geomorphic
Information (Wood et al., 1974; Vicens et al., 1975; Wood
and Rodriquez-Iturbe, 1975) as well as sample data. It
would be imprudent to neglect such additional information
If It Is available.

Another distinctive difference between the two
methods of inference is the method of reasoning.

The classical method of inference 1Is depicted in
Figure 2.1, The process starts out by postulating a
tentative sampling model. Inductive reasoning is then
used in conjunction with the saﬁple observations to
produce inferences about the unknown parameters in the

assumed model].
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Assumed
Sampling | -~ w .
Model ;
i
: —
Sample INDUCTIVE

Data REASONING

STATISTICAL |
INFERENCE 3

Figure 2.1 Inferences Based On Classical Theory
(after Martz and Waller, 1982)

Figure 2.2 depicts the Bayesian method of inference.
The process alsoc starts with an assumed sampling model. A
prior probability distribution is also postulated for
those unknown parameters in the assumed sampling model.
Bayes’ theorem is then used to combine the sample data and
the prior distribution. Deductive reasoning iIs then used
in conjunction with the resulting posterlior distribution
to produce the desired inferences about the parameters of
the assumed sampling mode].

A further distinctive difference between the
classical and Bayeslan approach 1is that the Bayesian

approach wusually requires less sample data to arrive at

the same quality of inferences than the <classical
approach. This 1is due agalin to the wuse of prior
Information. This 1s especially important in flood risk

analysis due to the lack of data on floods in most parts of
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Figure 2.2 Bayesian Inference
Cafter Martz and Waller, 1982

the world.

Another important aspect of the Bayesian approach is
that Bayes’ theorem provides a mathematical framework for
processing new sample data as such data becomes
sequentially avallable over time. The theorem provides a
mechanism for contlinually wupdatling avallable knowledge
about 8 as more sample data become available. How this is
done is explained in Martz and Waller (1982), and Box and
Tiao (1973). This basic fact concerning Bayes theorem Is
the basis of real-time processing of sample data by use of

well-known mathematical devices such as the Kalman filter



(Kalman and Bucy, 1961}, which have been used in real-
time flood forecasting, satellite tracking, etc.

Other advantages of the Bayesian approach to flood
risk analysis and other englneering designs are discussed
in Davis et al., 1972 and Kottegoda, 1980. A summary of
some characteristics of the classical theory and Bayesian

methods of statistical inference is shown in Table 2.1.

2.7 SUMMARY

An Introductlon to the Bayesian approach and some
comparison with classlical theory was presented. The
Bayesian approach has a number of attributes that are
especially Important to flood risk analysis. These are
the expliclt use of prior information, ability to
continuously update our knowledge about the parameters,
and the abllity of the Bayesian approach to combine
parameter uncertalnty and stochastic uncertainty.

In the following chapter, the estimation of
parameters and T-year flood by the Bayesian approach is

consgidered.

24



TABLE 2.1
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A SUMMARY OF CERTAIN CHARACTERISTICS OF CLASSICAL
THEORY AND BAYESIAN METHODS OF STATISTICAL

INFERENCE (after Martz & Waller,

1982

Characteristlic

Classical Theory

Bayeslan

Parameter(s) of
Interest

Prior
Distribution

Sampling Model

Posterior
Distribution

Method of
Reasonling

Type of Interval
Estimate

Role of Past
Experlience

Purpose of
Sampling
Experiment

Quality of
Inferences

Quantity of Sample
Data

Unknown constant(s)

Does not exlst

Assumed

Does not exlst

Inductive

Confidence
interval

Not applicable

Supply the data
for making
inferences

More restrictive
than Bayes’
because of
excluslive use
cf sample data

Bayes”’

reguires

Random variable(s)

Exists and
expllcitly
assumed

Assumed

Expllcitly derived

Deductive

Credible
interval

Applicable

Conflirm or deny
expected
performance as
predicted from
past experience

Depends on ability
to quantita-
tively relate
past experience
to the sample
data

approach usually

less because

It utilizes relevant

past data




CHAPTER 3

BAYESIAN ESTIMATES OF PARAMETERS
AND T-YEAR FLOOD

3.1 GENERAL

In flood frequency analysls, the method preferred by
hydrologists to estimate the “true’ parameters and T-year
events of flood probabllity distrlbutlon is the method of
likelihood. This is because the maximum Ilikellhood
estimates possess the properties of consistency and
asymptotic efficiency (Kendall and Stuart, 1973). In
additlion, in most cases, It gives a smaller standard error
of estimate of the T-year f{flood when compared to other
methods, In this chapter, the Bayes estimates of the
parameters and T-year flood for two commonly used flood
probability distributions are obtained and the posterior
variances .0of these estimates compared to the corresponding
Maximum Likelihood Estimate’s (MLE’s). Lindley’s Bayesian
Approximation procedure (Lindley, 1980) is used to obtain
the Bayes estimates, thus avoiding the need to evaluate
unwieldy ratios of multiple 1integrals necessary in
Bayesian analysis. A ‘vague’ prior distributlion described
in Section 2.5 ls used to obtain all Bayes estimates. The
probability distributions considered are the Gumbel and

the 3-parameter lognormal distributions. The 2-parameter
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lognormal Is not considered as it is a special case of the

3-parameter lognormal distribution.

3.2 MAXIMUM LIKELIHOOD ESTIMATES

For a given probability density function f(x/8),

where 8 = (91, 85, . . . 8 ) are parameters, the Jjoint
probablility that a sample of n values (xl, Xy voea X))
came from that distribution is:

I(x/8) = £(x,/B) . fx,/8) . . . . f(x /8> ..(3.1)

where Jf(x/8) is the likelihood. The principle of maximum
likellhood states that the values of 91, 82, etc. should
be chosen to maximize J(x/8). This is obtained by

partially differentiating Jf(x/8) with respect to each of

the parameters and equatlng to zero. Usually for
continuous distributions, it 1i8 easier to maximize the
natural logarithm of the 1llkelihood function L. The

system of eguations whlich when solved to achieve this

maximization are the maximum likellhood estimators for the

parameters of the distribution. This system is:
iE_ = é&_ = i&_ etc =0 Lo (3020
691 asz des



3.3 STANDARD ERROR OF ESTIMATES

2 measure of the variability of an estimated value is

the standard error of estimate. This Is defined as:
& A2 77172
s = [Z“‘i -9y ] (3.3
n

where ai is the computed estimate of recorded value 9,
(Kite, 1977). The standard error measures the errors in
the estimated parameters of the chosen population
distribution that may be linaccurate due to the lack of
data and/or sampling fluctuation.

The standard error of estimate by maximum likelihood
is obtained as follows: Assume a particular distribution
with parameters 91, 82 and 93 which have been estimated by
the method of maximum likellhood. If Z is a function of
él’ 62 and éS’ each of which is subject to sampling
error then the variance Z can be obtained from first order
Taylor serles expansion (Benjamin and Cornell, 1970).
This Is glven by:

2 R 2 R 2 n
Var(z) = 02 > Var(ei) + 9z Var(8,> + 9z Var(g
691 2

17 —_— 1’ %3
39, )\ 36, 36,/ \36,)
! / i A A
+ 2/62 /‘3Z ')Cov(g , 8.) ce. (3.4)
20 73
CIPYACER
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The standard error of estimate of Z is then defined
as the square root of (3.4).
In the followlng section, Lindley’s Bayesian

Approximation is discussed.

3.4 LINDLEY’S BAYESIAN APPROXIMATION PROCEDURE

One of the reasons why the Bayesian approach Is not
widely wused in flood analysis 1is the mathematical
complexity. Bayes estimators are often obtained as a
ratio of multiple integrals which cannot be expressed in
closed forms and numerlical approximations are necessary.
Here, Bavyes estimates approxlimated by an asymptotic
expansion of the ratlo of two Integrals due to Lindley
(1980) are discussed,

The posterior expectation of an arbitrary function
u(B8) with prior probability distribution v(8) and log-

likelihood function L(B8):

' [ uce> . vee) . explL(B)] db
E [u(8)/x] = 0 c. (3.7

iﬁv(e). explL(8) d8

which 18 the Bayes estimator of u(8) under the squared

error loss function may be asymptotically estimated by:



2
1
+ L. . g, . of u . + terms of
2 ZZ EZ Z; Z; ik bJ kf b4 ]g
L J
the order 1/n2 and smaller ... (3.8

All functions being evaluated at the MLE of 6, and

where i, Jj, k, 1 =1, 2, . . . m; 8 = (81, Boy - . I
6 = MLE(8), £ is the range space of 8, v(8) is the prior
distribution of &, u = u(8), L = L(B) is logarithmic
likelihood function, u,, = 8°u/88, 38, L, =
63L/68i68jdek, p = p(8 = log v(B), p; = 6p/69J and o, =

(i, Jj>th element of the variance-covariance matrix,
(Lindley, 1980). See Appendix B for the derivation of
Lindley’s expansion.

Sinha (1985, 1986a, b, c¢), and Sinha and Sloan
(1985) have used the linear Bayes estimator (3.8) for the
Bayeslian estimation of the rellability function of varlous
distrlbutlbns. Gren (1980) also states that (3.8) is a
"very good and operational approximation for the ratio of
the multi-dimensional lIntegrals", Sinha (1987) has also
shown that up to order of 1/n2, the linear Bayes estimator
is more efficient than the MLE. Although the method
requires that é be the unique MLE of 8, in most instances

the local MLE produce acceptable estimates (Sinha and

Sloan, 1988).
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In the next section, Bayes estimates of the
parameters and T-year flood for flood data fitted by the
Gumbel distributlion will be obtained and their posterior
variances compared to the corresponding MLE’s. This will

be followed by the 3-parameter lognormal distribution.

3.5 GUMBEL DISTRIBUTION

The Gumbel distribution is widely used for frequency
analysis of extremes |In meteorology and hydrology.
Lettenmaier and Burges (1982), Phien and Arbhabhirama
(1980), and Jain and Singh (1987) gave several reasons for
its popularity.

The Gumbel distribution, despite Its extensive use,
generally has no accepted method of estimating its
parameters. In an extensive study, Jain and Slingh (1987),
compared seven methods of estimating the parameters. They
found the method of maximum likelihood to be the best
method based on various crlteria. Studles by Phlen et al.
(1980> and Lettenmaier et al. (198B2) also concluded that
the method of maximum Jikelihood gave better estimates
than the method of moments and other methods. These
conclusions are based on the criteria of goodness of
tlt and estimation variability.

In thls sectlon, Bayes estimates of the parameters

and of the T-year events will be obtalned and the
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posterlor varlances of these estimates compared to the

corresponding MLE’s.

3.5.1 Maxlmum Likellhood Estimates

The probablllty denslty functlion (pdf) of the Gumbel

distribution is given by:

- -
f(x/p, o = 1 exp i—x'” - exp[—x'“”..w.%
o g o
c >0) - < x, M ¢ @

Given a random sample X = (xl, Xop o0 xn) from

the pdf (3.9), the logarithmic llkelihood {8 glven by:

é;<xi - p - jé [exp - (Xi_ “)]

i=1 o

L = - nlog o -

1
P
(3.10)

Taking partial derivatives with respect to o and pu

and equating to zero, one gets:

Q| O
Y|
i
| =
]
ql -
[aamn |
4]
>
e/
I
T
b
1
=
S
| N
i}
o
'~
w
—
a8
~r
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From (3.12), one obtalins:

n

noo= Zexp[-l_ui-p)] Ce. (3.13)
o

=1

or exp - =
r\' -
o8 Zexp( X.; .. (3014
o

=1

From which one obtains:

n
M = o log [ n / ZEZexp (— ii) ] ... (3.15)
1=1 lox
From (3.11), one has:
(X D] ( ) -
-no+ NX oW explpso Zg (x; - M) exp (- X ) = 0
o o = o

(3.16)

Substituting for exp(u/o)> from (3.14), one obtains a

function of a'only.

R n . n
F(o) = :Ein exp(- iL) - (x - o ZZ exp (- fl_) = 0
=1 o i=1 lon
(3.17
where X is the arithmetic average of x. Using the moment

estimate of o (Gumbel!, 1958) as the starting value, (3.17)

may be solved for & iteratively using Newton-Raphson
routine. Having obtained &, A may be estimated from

(3.15).
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3.5.2 T-Year Return Period Event

Uslng the parameters estimated by maximum likellhood,
the T-year return period event or T-year event of the

Gumbel distribution is given by:

Xp = p + oYg SeL (3018

where, YT = - log [-log(l - }%)] (Kimball, 1949); and T
corresponds to a given return period In years of the

extreme event.

ST’ the standard error of Xp, may be obtained from

(3.4). This is given by:

2 dx.n \2 * ox 2 -
ST = ( T ) Var(g) + ( T > Var(u)
oo oM
\ N A
+o2 (ﬁ)(a_xz Cov(o, p)> ... (3.19)
\do dp :
From (2.18), one obtains:
X1 o= v, C.. (3,200
o)
a"I = c.. (3.21)
op
The varlance-covariance matrix,
Var(g) Cov(&; ﬂ) oy oy ]
[on = . . =
H Coviu, o) Var(u) Ty o0 J

(3.22>
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is estimated from:

_ -1
8% oL )
602 (50' 6}1
SRR . (3.23)
9L %L
dp do 3 Ao
L A
H .
where,
2 n
°L = i_ { ndz - 20 ZZ (x, - W
3c? o 1=
n \ -
+ 20 > (e, - @) exp - <fl__'___)| (320
=1 o J
2 n
0L = - i_ zz [ (x; = M) exp - <x1 _ p) ] . (3.25)
ou o0 B o
2 n
é_& = - i_ zz [ exp - (Xi ~ p> ] = —E_ ... (3.26)

3.5.3 Bayes Estimates

Using the principles suggested by Jeffreys (1961)

and described In Section 2.5,
gy (W) = constant

92 (o) < /0




Assuming p and o to be independent ‘a priori’, the

jolnt prlor distribution of u and o ls glven by:
v (g, o) = GyCp) - g to/pd
= gl(p) : gz(d)

o (3.27>

1
o

Combining the prior with the likelihood function and
using Bayes’ theorem, the joint posterior distribution of

(p, 0 Is obtained:
T, o/x) = K-f (x/n, o).v (n, 0) ... (3.28)

where X Is the normalising constant.

Under the squared-error 108s function, Bayes
estimator of a function is 1ts posterior expectatlion.
Hence, the Bayes estimators of o, M and T-year event Xg

are glven by:
*

o = E (o/x>
= fo o . T (u, 0/x) do du
f Joewv (u, o) f (x/p, O do du
= T °° ... (38,29
o o0
I f v (g, o). f (x/p, o) do dp
Zoo o
. fﬁ L xp v (u, o) f (x/p, @ 0O dp
S .. (3.30)

f ﬁ; vip, o). f (x/p, o) do Ou

and similarly for p*.



3.5.4

2-parameter case

E{u(g>)] = u +

where,

Bayesian Approximation

Lindley’s asymptotic expansion of (3.7) for the

is given by:

5‘“11’11 o UpoOpp) b Uy 50y,
tou oy py b OpPa) b Up(Oyapy b TpaPp)
1 2
v [ Lggtuyoyy ¢ U0y 0yp)
. 2
boLy §8U 00y, 4 Up(oy Oy 4 2’12’?;
2
,
t o Lyp §uytoy 0p, * 20150+ 3UpTip0pp
2
b Lga(u 0y 0,, * uzcrzz)] : .. .(3.31)
2
u = u(e, uy = ii, u, = 91, Ujp = d%u R
do OM do o
2 2
9%, u - 9%y, p = log v(®), = _af_
22 P1 v
do o
T . A T T
55 30 — 03 —_— 12 >
M oo op dc Oy
33L
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Uij = (i, JjJ)th element of the variance-covariance
matrix given by (3.22), and all constants are to be
evaluated at the MLE of (o, P)' See Appendix C for

evaluation of LiJ's.

3.5.5 Numerical Example

The annual maximum flows of the Turtle River at Mine
Center, Ontario, is used as an example. Figure 3.1 shows
the fit of the Gumbel distribution to the observed data by
max imum likelihood. The maximum likellhood estimators for

this river are:

n =58, o= 45.810, p = 101.270

22.5061 9.5444
(o1 =
J 9.5444 40.2302
p = log(i/0), p1 = -0.02183, Py = 0
L30 = 0.0054401, Lgg = ~-0.0006033
le = 0.0014625, Loy = -0.0014985
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Let v = o, Uy = 1, up = 0, u;y =0 for all of i, js.

Substituting into (3.31):

- x _ 1 2
Elo/x) = o = o + o,,p, * = [ Lggoy) + Loy (30,070
+ L, (o o} + 20 )2 + L. .o, O, ]
12 11712 12 03712722
= 46.894
Also let u = 02, u, = 20, Uy = 2, Uy = Ujp = Uy, = 0.

Substituting into (3.31):

E[cz/il = &2 + O + 200

[}
11 11P1 + Lsodoll + 3L210611612
+ L 8(6 g + 20‘2> + L &c .G
12 11712 12 03" 12722
= 2222.380
The posterior variance of o is then given by:
_ * 2 2
Var(o/x) = 011 = E (o7/x) - [ E (o/x) 1
= 21.3329
which is less than 611 = 22.5061.
Similtarly,
ECu/x) = nu° = 101.182
= ®  _ _
and Var(u/x) = O,p = 40.2230 < Opy = 40.2302
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Table 3.1 summarizes the results.

TABLE 3.1

Bayes (%) and MLE (#) Estimates of (o, M)
For Turtle River At Mine Center (n=58)

(Gumbel Distribution)

Parameter a * Var(») Posterlor Variance
(o} 45.810 46.894 22.5061 21.3329
M 101.270 101.182 40.2302 40,2230

Bayes estimates of the T-year event s obtained as follows:

Let u = xT S VR UYT
Vg = Y up =0, ugy = Uy, =0
where YT = =-log [ -log (1 - L) ]
, T
For T = 100 (100 year return perliod flood), YT = 4,60015.
Substituting into (3.31), one gets:
E(x / x) = * = 316.90
T=100 7 %’ = Xp % '
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Also let u = x%,
- , 2 _ ) -
Substituting into (3.31):
E (x.2 / x) = 101,005.9381
T=100 ! )

Hence, the posterior varlance of X;_,,, is given by:

Ly o 2 ) 2
Var(xg_,g07% = E (xqp /%) §E Xp_y0g7%]

580.3281

If one defines the posterior standard error of the T-vear

event as:
ST(xT / X)) = /fVar(xT / XT
The folilowing is obtained:
Sp (Xp_ygp / XY = 24.090 < S, = 24.583

Table 3.2 summarizes the results for return periods
T = 2, 5, 10, 20, 50, 100 and 1000 years for the Turtle

River at Mine Center (n = 58).




TABLE 3.2

Standard Error 0Of Estimate Of T-Year Events
Fitted By Gumbel Distribution

- Turtle River At Mine Center

(n = 58)

T-year 2 5 10 20 50 100 1000
QT 118.06 169.98 204.36 237.33 280.02 312.00 417.69
ST ?.089 10.931 14.041 17.189 21.386 24.883 385,297
X; 118,37 171.562 206.71 240. 46 284.18 316.90 425.09
S; 7.082 10.822 73.843 16.902 20.981 24.090 34.513

(~) MLE, (%) Bayes estimates

The tables above shows that the posterior variances

of (o, u) and posterior standard errors of the

T-year

events are less than the corresponding MLE‘s even wlth a

‘vague’ prior.

Lindley‘s procedure was repeated for sSeven

maximum annual flood events of rivers from all

other

over

Canada. The results are shown in Table 3.3. The results

show that for all seven rivers, Bayes estimates

parameters (o, u)> and the T-year flood have

of the

smaller

posterior standard error than that obtained by the method

of maximum likellihood,
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In the next section, the 3-parameter lognormal

distribution |Is considered.

3.6 3-PARAMETER LOGNORMAL DISTRIBUTION

The 3-parameter Jlognormal distributlion 1is another
widely wused probability dlstribution In fitting annual
flood events. This distribution is a general skewed
distribution and is exceptionally flexible and well suited
for flood frequency analysis.

The pdf of the 3-parameter lognormal distribution Is

glven by:
f(x/a, M, 62) = 1 exp - 1 {log(xi¥ a) - “]2}
vV 2m o(x - ad 2 2
o}
(3.32)
- o0 < a < x H - o0 ( < 20 3 oz > 0
(1)} M ;

where x(i) is the smallest value of x, a is the threshold
parameter, and (x - a) is the reduced variable. The
parameters u and 02 are the mean and variance of log(x-a)

respectively. In other words,
log(x - a)> ~ N(u, o)

The parameter, a, has to be estimated from the

available sample in terms of the random variable x.



Many methods have been proposed to estimate the
parameters of the 3-parameter distribution. Sangal and

Biswasg (1970), Burges et al. (197%) and Stedinger (1980>

have discussed some of these methods. In view of the
desirable asymptotic properties of the maximum likellhood
estimators, the MLE 1is still preferred by most
hydrologists. Sinha (1986a) and Kite (1977) have shown
how to obtain maxlimum llkellhood estimates of the
parameters (a, p, 02), The procedure by Kite (1977) is

used here.

3.6.1 Maximum Likellhood Estimates

Given a random sample x = (xi, Xoy + o+ . X ), the

logarithm of the likelihood function of the pdf (3.32) Iis

glven by:
n
L = <constant - nlogo - :2 log (xi - a)d
i=1
n
s %Z[log(x - @) - p )% .. 33

Taking partial derivatives with respect to a, u and

62 and eguating to zero, one gets:

3L . <5 -1 2
—d:-%:log()(i -ax, - T+ et - > - =0

47



n
Z[log (x;, -a> - p] =0 ... €3.35)

6_L oy Li[log (x. - a) - @2 = 0 .. (3.36)
2 : !
3@ 20 20 i

From (3.35), one obtalns:

A 1 V\' kS
o= Elog (xi - a e, (83,37
n <
1=1

and from (3.36):

. n n n .
02 = i s;logz(xi - a) - [ i :Eilog(xi - a) }2 .. 03.38)
n "

~

Substituting (3.37) and (3.38) into (3.34) a function in a

only is obtained,

n
£(a) = n? EZlog(x1 - aX(x; - ay
i=1
n
n A - A
+ ji(xl - a) ! {n :_;_llogz(x.1 - a)
= =1
n
A 2 A -
- [ zg:log(x1 - a) ] + n 1og(xi - a)} = 0
i=t

L=t
(3.39

This equation can be solved by iteration using an

A

appropriate starting value. Having obtained a, one can
then calculate for ﬁ and o< from (3.37) and (3.38). in
this study, a value of 0.8x(1) is used as the starting
value, A Newton-Raphson procedure is then used to solve

(3.39).
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3.6.2 T-Year Return Period Event

The T-year event for the 3-parameter lognormal

distribution is given by:

A

Xe = a + exply + otl ... (3.40)

where t Is the standard normal deviate. Since T is not a
varlable, the standard error of X, ST’ may be obtained

from (3.4). That is:

n
i

2 2 2
T2 = (équ Varca) + (éﬁ1> Var () 4+ 0xp \ % yar (5
63 d}) 60_2

+ 2 (éil éil Cov(a, ) + 2 (éil éil Cov(a, &%)
da Op da Jo2
+o2 (éﬁj) %1\ coveh, 6% el (34D
dp 30‘2
From (3.40):
dx
__3 = 1 ... (3.42)
da
aXT o
- = exp[p + ot Lol (3.43)
Op
axT t A A
- -explp + ot) c.. (3. 44)

3o 20
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A A
Let w = exp [p + otl, then,
2.2 n
ST2 = Var(a) + wZVar(ﬁ) + Y varae®
45°
+ Yocovea, &%) + 2 w Covia,
o
th ~2 A
L Cov(o™, w) (3.45)
o
The variance-covariance matrix 1Is the Inverse of the
symmetric matrix
-
[ 8% s 8%
da2 0a dp da do?
2 2 2
(11 = _ 8L 9%t o°L (3.46)
dp da ou du da?
- 53 A 1) 3
L 3o da do? dp 3¢ )2 _
That is,
[ Var(a Cov(a, ud> Cov(a, 02) |
= c - T = -1
o, ;1 = Cov(u, a>  Var(p) Cov(p, o) (1)
Cov(&z, ;) Cov(&z, ﬁ) Var(&2> i

(3.47)



It can be shown (Appendix D) that:

11

12

13

22

23

33

where D

1
— (3.
2nD
2
- explo /2 - W (3
2nD
2
E_ -exp(02/2 - M) .. (3.
nD
2 2
g .. - .expl 2(0‘2 - M) 1 - exp(c2 - 2M)
nD 20_2
(3.
- 2
. exp(o™ - 2u) ces (3.
nD
62 2 2
9 . (c® + 1) -expl 2(0% - > 1 - exp(g® - 2w
nD
(3.
is the determinant of (3.46).
2
, €XPp [2(0% - HJ explo™ - 2> (o542,
20° 20°

(3
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3.6.3 Bayes Estimates

If one is “in-ignorance’ about the parameters (a, u,

02), the ‘vague’ prior

2

—

gy, o) & _— and
62
h(a)> = —constant
would be appropriate (Jeffreys, 1961). It is reasonable

to believe that a is distributed independentliy of o2 and M
since any prior knowledge about a is not likely to be much
influenced by one’s knowledge about the values of these
parameters (Box and Tlao, 1973).

Thus, the joint prior distribution of (a, Mo 62) may

be written as:

2

v Ca, p, o) o g(yp, 62) hla/y, 62)

% g, 0% ha)

« (3.55)
52

Let x = (xl, Xor o 0 xn> be a random sample of size n

from the pdf gliven by’(3.32). The likelihood function is:

20°

n
Iix/a, u, 02) = < 1 )n TI(xi-a).exp {- ! [log(xi—a) - p]z}
L=1

Ven o
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Combining the likellihood with the prior distribution
glven by (3.55) and applyling Bayes’ theorem, the joint

posterior distributlion is obtained:

T¢a, po 0% = %) x/a, p, 0% -via, p, 62) ... (3.57)

where K is the normalizing constant given by:

X
j‘j\ (x/a, M, o) via, u, o?) da du do? ..(3.58)

Under the squared-error loss function, Bayes
estimators of a function is the posterior expectation of
that function. For example, the Bayes estimate of a is

given by:

.via, u, oz)f(x/a, M, o) dadpdo2

. |
ECas/x? = a = o

o

[o

(x/a, Mo 62)«V(a, Mo UZ) dadpdo*2

i
L2
(3.59)



3.6.4 Bayesian Approximation
Lindley’s expanslion of

case is given by:

Efut0yy1 = ¢y + (ulai - usa,
+ ! [ ACu, o + U,O

e 1711 2712

toBluyo,y w0y,
toClujog 4 w0y,

which has to be evaluated at é =

Also,

P1%11 * P2912 t P304

P1%1 1 P22 t P30s3

P1%931 * Pp032 t pgoz;

Y2912 v uyz0y4 ot

i (u oy + u (o p +

5 Y1191y 22922
Syqlygp v 2oy,L 5,

+

Ooalozy t O33lgzgy

U23923

2oyglyigy

for the 3-parameter
u3a3‘ toa, o+ ag)
+ usclz)
uscés)
usoés) ] . (3.60)
]
u, 02,

U33933”

2o53L,3;
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B
P11lyyp  t 20ypLyp  + 20yglygs  t 20,5L,4,
%02l t T33lase
C = Oyylygs t 20y5L1,5  + 2033ligy  + 20,4L,4,
to922lp23 t T33l33s
where,
y - 32y ) L _ 331
b 08, o8, 1k de. de. 08
1 i i J K
6 = p(B) = log v(B); - 9, and
mef T %
J
UiJ = (i, Jj)th element of the variance-covariance matrix
(3.47). The subscripts {, 2, 3 refer to (a, My 2>
respectively. See Appendices D and E for the evaluation

of the °1J matrix, LiJk'a and up;’s.

3.6.5 Numerical Example

The annual extreme flows of the St. Marys River at
Stillwater (n = 69) is used as a numerical example.
Figure 3.2 shows the fit of the 3-parameter lognormal
distribution to the observed data where the parameters are
estimated by the maximum likelihood method. The maximum

likelihood estimates are:



FREQUENCY

St. Marys River
" at Stlllwater
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LOGIX-4)

Figure 3.2 3-parameter Lognormal Distributlion




& = 116.13 U= 5.6647 o2 = 0.27026
2007.811 -7.96666 4.30617
o = -7 .96666 0.03553 -0.01709
4.30617 -0.01709 0.01135
-1.464 x 107%  -5.2664 x 10°3  3.0010 x 10-2
- 2
LiJk = 0 0 9.4468 x 10
-7.49642 0 6.9909 x 103
and L . = 3.74821,
Also, py, = Po = 0, Pz = -3.70014.
8 = -15.93343, ., = €.32354 x 1072
83 = -4.19966 x 107%, A = -1.64713 x 10°-!
B = -10.5824, C = 48.90154
Let u = a, v, uy = uy =0, Vij = 0 ¥y

Substituting into (3.60),

E Cas/yx) at 82.283

Similariy,

E (u/xd 5.77818

[}
=
]

E (62/x) = o2* = g.24157
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-
=

Also let u = a“, u, = 2a, Ugy = 23 Up = Ug = U;g = 0 for
all other i, Js.
Substituting into (3.60),

E (a/x) = 7,632.673
Therefore,

011* = Var(asx> = E(az/ﬁ) - a*z

= 862.181 which is less than oyq = 2007.811

Simitarly,

oy,* = 0.02266 < o0,, = 0.03553

045" = 0.01052 < o,y = 0.01135

Table 3.4 summarizes the results.

TABLE 3.4

Bayes (%) And MLE (~) Estimates Of (a, u, )
For The St. Marys River At Stillwater

(n = 69)
Parameter ~ #* Var(»™) Posterior Var.
a 116.13 82.283 2007.811 862.181
M 5.6647 5.7782 0.03553 0.02266

o2 0.2703 0.2416 0.01135 0.01052




Bayes estimates of the T-year event is obtained from

(3.40). For T = 2 vear return perlod, t = 0,

Let
U = Xq = 404.626
u, = 1, Ugy = 288.491, u;j; =0 for all other ijs.
a, =0, ag = 5.12465
Substlitutling into (3.,60),
E(xp/x) = 408.674
Also let u = x,° = 163,722.04, u, = 809.252
U, = 233,462.18, uy = u;4 =0, u, = 576.983
Uiy = 2, uy, = 399,916.82, Upy = Ugg = O
a, = -4596.629, ag = 9111.782
Substituting into (3.60),
E(xp2/x) = 167,365.8606
Hence,
Var(x,/x) = 167,365.8606 - 408.674°%

351.6375
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and standard-error, ST is given by:

* VVar (X7 %3 = ~ _
ST = Var(xT/i) = 18.7582 « ST = 19.184
Table 3.5 summarizes the result for return perjods T = 2,

5, 10, 50 and 100 vyears for the St. Marys River at

Stillwater.

TABLE 3.5

Standard Error Of Estimates 0f T-Year Event
St. Marys River At Stillwater n = 69
3-Parameter Lognormal Distribution

T-year 2 5 10 20 50 1000
t 0.0 0.8416 1.2816 1.6449 2.0538 2.3264
QT 404.63 562.97 677.87 794.57 955.27 1083.0
éT 19.184 32.542 48.809 70.633 107.66 141.78
X? 408.67 569.14 €83.65 799.12 $57.01 1082.0
S; 18.752 31.952 48.458 70.486 107.64 141.77

(~) MLE, (%) Bayes estimates

From the tables above, the posterior variances of the
parameters and the posterior standard-errors of the T-year

event are less than the corresponding MLE’s.



Bayes estimates wusing Lindley’s procedure was
repeated for 1! other maximum annual flows from rivers all
over Canada. The results are summarized in Table 3.6.

Four of the 12 flood data analysed showed negative
posterior varlances for some of the parameters. The

negative posterior variances, however, do not affect the

estimate of the T-year flood and its standard error. The
Lepreau River (n = 68) 1In the Atlantlc Provinces is one
example where the posterior variance of a is negative. It

is possible that regularity conditions for the maximum
likelihood estimation of the threshold parameter a are not
met for this particular flood serles. This may be a
reason why a negative posterior variance was obtained from
the calculation. Also E(a?/x) may have been
underestimated and [E(a/x)l2 overestimated. In addition,
Lindley’s procedure being a asymptotic expansion, some

roundling off errors could have occurred.

3.7 SUMMARY

This chapter has shown that Bayes estimates have
somewhat smaller posterior variances to their MLE
counterparts, indicating that Bayes estimates of the flood
events at various return periods are as reliable or more

re]lable than the MLE’s.
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Once the MLE have been obtained, obtaining Bayes
estimates using Lindley’s procedure I8 simple and can be
worked out on a desk top calculator.

It has been found that for the 3-parameter lognormal
distribution, negative posterior variances of the
estimates of some parameters are obtained. This
‘irregularity’, however, does not affect the posterior
estimates and standard error for the T-year events. The
determination of Bayes estimates for (a, u, 62) are
independent of the determination of posterior expectation
and standard errors of the T-year events. For the Gumbel
distribution, the MLE of (u, o) are easlly obtalned. Here
the problem of negative posterior variance does not
arise.

In spite of the minor shortcoming of Lindley’s
method, this procedure is a useful technigque in flood
frequency analyslis.

In the next chapter, the predictive distribution

approach to flood analysis is considered.
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CHAPTER 4

PREDICTIVE DISTRIBUTION

4.1 GENERAL

In the previous chapter, flood analysis was
considered from a scientist/statlstician’s point of view.
That Is, the object of the analysis Is the description of
the stochastic variablillty of the observed floods.

Engineers, however, make use of the flood data to
guide engineering decisions, for example, when determining
the height of a dyke or the spillway capacity for a dam.
Therefore, the engineer, unlike the sclentist, must go
beyond a mere description of the variability of nature.
Since he 1Is concerned with predictions, he 1is also
concerned with the uncertainty in that description. Hence
stochastic and parameter uncertainty must be combined in
the declsion making process. This can be done by using
the predictive probability distrlbutlon as described In
Section 2.4. The predictive distribution quantifies the
risk of a future flood event on the basis of present
information. By avoiding the relative freguency
definition of probablility and using the Bayesian concept
of risk, the analysis sidesteps the conceptual problems-
associated with designations such as the thousand or ten

thousand year flood. There Is no conceptual problem with




a risk designation of 0.1, 0.01, or even 0.001f that a dyke

will be overtopped wlthin the next 50 or 100-year planning
period. This risk |s defined here as the probability
based on all avallable Information that a future flood
discharge will be equallied or exceeded In any year durling

the period bounded by the planning horlzon.

The predictive distribution approach to flood risk
analysls has been advocated by a number of researchers
(e.g. Wood et al., 1974; Vicens et al., 1975; Bodo and
Unny, 1976; Stedinger, 1983; Bernier, 1967; Russell,
19825, Except for Russell (1982) who obtained the
predictive distribution by discretization and computer
calculatlon, the others obtained the predictive
distribution either analytically which requlres rather
sophisticated mathematics or by numerical integration
which 1s a problem when integrating to Infinity (Bodo and
Unny, 1976). Obtaining the predictive distribution for
distributlons» other than the normal or lognormal
distribution such as the popular Gumbel and Gamma
distributlons Is very difficult (Stedinger, 1983).

In this chapter, the probabllity of exceedence of a
future flood discharge or the risk that a future flood
discharge is exceeded or equalled is obtained by using an
important property of the predictive distribution. The
property is that the probability of exceedence of the
predictive distribution is the Bayes estimator of the

probability of exceedence <(under a squared-error 1loss
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function) [Sinha, 19851). The Bayes estimates of the
probability of exceedence for the Gumbel distribution and

2-parameter lognormal distribution wiil be obtained using

a ‘vague’ prior distribution and Lindley’s Bayesian
approximation procedure. The posterior varliances of these
estimates are then compared to their corresponding MLE’s.
In addition, Bayes estimates of the probability of
exceedence for the 2-parameter lognormal distrlibution
obtained by Lindley’s method will be compared to those
obtained analytically.

Russell’s (1982) method of obtaining the predictive
distributlion will also be discussed in this chapter.
Some modiflications are made to his orlginal scheme to
improve the accuracy of the estimates and to deal with
serlally correlated data. It will be assumed that the
random varlable is adeguately descrlbed by a normal

distribution.

4.2 ESTIMATES OF THE PROBABILITY OF EXCEEDENCE

The risk that a flood discharge, g, will be exceeded L
or equalled in any vear within the next 50 or 100 vyear
planning horizon Is by definition the probabillity of

exceedence of g, namely Pq. That is:

P, = PX oy @ cee (401D



O

= f £(x/8) dx Co. (4.2)
Ct

where {f(x/8) 1is the underlying probability density
function of x with parameter(s) 8.
The maximum likelilhood estimate of Pq is obtained by

substituting the MLE of 8 into (4.2).

A o0 A
P = f f(x/8) dx Lo (4.3
e q
The asymptotic standard error of ﬁq, Sq can be
obtained from (3.4). For a two parameter case, this is
given by:
- 2 - 2 \ PR
2 6Pg\ var<e. ) +[°F Var(e + 2 6Pg 9P\ Covd, ,8.)
1 172
691 e, 691 aez

A

where Var(éi), Var(éz), and Cuv(Bi, 82) are given by (3.5
- (3.6). The standard-error of ﬁq ig then the square-root

of (4.4).

To obtain the probability of exceedence of the
predictive distribution, f(x/8) in (4.2) is replaced by

f(x) given in (2.7).

o0

P o= .f F(x) dx ... (4.5)
d )

o0 .
f J f(x/8) T[(8) dB dx e (408D
g Ay

68



Under the squared-error loss function, Bayes estimate

of the probability of exceedence is given by:

Pq* = EIP(X » gq/8)1 = &P(x > /8> TL(8)> db ce. (4.7)
o0
= fj £(x/6) dx T[(8) de
moUg
<0
= fff(x/e) T(8) dé dx ... (4.8)
q In
= P
q
Therefore, Bayes estimate of the probabllity of exceedence
is eqgual to the probabllity of exceedence of the
predictive distribution (Sinha, 1985), This property 1is

useful because [t is easier to obtaln Bayes estimate using
Lindley’s expansion than to obtaln the probabllity of
exceedence from the predictive distribution which requires
rather difficult mathematics.

The posterior standard-error of Pq*, Sq* is obtained

as follows:

2 *2
Var(P = - (4.9
a q/l) E(Pq /XD Pq
and define, Sq* = Var(Pq/;) L. (4,100

In the following Sections 4.3 and 4.4, maximum
likellhood estimates and Bayes estimates of the
probability of exceedence will be obtained for the Gumbel

and the lognormal distributions.
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4.3 GUMBEL DISTRIBUTION

The Gumbel distributlon has been descrlibed In
Sectlion 3.5,

4.3.1 Maximum Likellhood Estimate Of Pq

The probabllity of exceedence, Pq, for the Gumbel

distribution (3.9) is given by:

P = 1 - exp %-exp[ -9 - K 71 R CEED)
q T ")
The maximum likelihood estimates of Pq, ﬁq, is

~

obtained by substituting (ﬁ, c) obtained in (3.15) and
(3.17) into (4.4) and,

d_P_q = 3 - o Wy M, = uy ce. (4.12)
oo “
ézg = _1 . Wy W, = U, el (40130
du &

where, w, = exp {—exp[ -9 : M ] pow, = exp[ -9 : M ]



This leads to:

S = uytoyy ot uyton, + 2u1u2612 .. (4014

where, 611 = Var(o); Opn = Var(up); and 612 = Cov(o, p) and

are given by (3.22) - (3.23).

4.3.2 Bayes Estimate Of Pq

The ‘vague’ prior given by (3.27) and Lindley’s

expansion (3.31) will be used to obtain Bayes estimate of
the probablility of exceedence. To obtain Pq*, et u(8)?
= Pq in (3.31). And,
2 2
u=ap’u=ap’u=ap’u =6P,
! o0 2 ) 12 o0 o i 2
K K Yol
2
u = d Pg.
22 >
op
All other constants are as defined in Section 3.5.3 and

deviations of uij’s are given in Appendix C.
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4.3.3 Numerical Example

The annual max!imum flows of the Turtile River at Mine
Center (n = 5B) are agaln used as an example. The maximum

likellhood estimates for thlis river are:

>

o = 45.810, Moo= 101.270
22.5061 9.5444
[Gi] =
J 9.5444 40.2302
©y = -0.02183, Lgg = 0.0054401, Ly, = -0.0006033,
Ly, = 0.0014625, Ly, = -0.0014985.
Let g = 300 me/s. The maximum likelihood estimate of Pq

is glven by:

P = 1 - exp %—exp[ -9 - ﬁ) ]} = 0.01298

A

The asymptotic standard-error, Sq, is obtained as follows:

From (4.12) and (4.13),

o, . u, = 0.0012208; 0P, . u, = 0.0002814
(oYen O

Substlituting Into (4.14),

>

S = 0.006579



Bayes estimate of the probabllity of exceedence |s

obtalned as follows:

Let u = Pq = 0.01298
u = %Py - 0.0012208, u, = OPy - 0.0002814,
o0 o
2
Uy, = P . g-y wz[ Sou, oW, - Y1 9
dc‘ép - 3 (g - W
= 0.00002016
_ 62P - (g - u 2
Uy 2g = - y wz[ o%u; - w (g - > o+ 20w,
oo o
= 0.,000060798
3%p 1
u22 = q = - w2.u2 = -0.00000008023
6}.12 o
= - - a - M
where w1 exp[ exp ( - ) ]
- g -
w2 = _exp[ - “) ]

o

Substituting into (3.31), we get:

EIP(X » 300/x) P* = 0.01515

q

Also let v = u® = P 2 - 0.0001684, and

q
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2

Vi = 2u.u; = p% = 0.00003168,

Vo, = Zu . u, = 0.000007303,

Vi, = 2u.u;, + 2uu, = 0.0000012101,

Vg = 2u.uy, + 2u® = 0.000004558,

Vo, = Zu.up, + Zuy,® = 0.0000001563. -

Substituting Into (3,81) , one gets:
E[qu/LJ = 0.00026805

The posterior variance of Pq is then given by:

2 2
Var( -
ar(P /x) ELP,%/x) SELP_/x1}

q

0.00003856

Define the posterior standard-error of Pq as

g *

S
g¢Pq/ %) q

V’Var(Pq/if

0.006210

A

which is less than Sq = 0.,.006879.

Table 4.1 summarizes the results for g = 200 to 500
in steps of 50 m3/s, for the Turtle River at Mine Center,

n = 58,
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TABLE 4.1

PROBABILITY OF EXCEEDENCE AND STANDARD-ERROR
TURTLE RIVER AT MINE CENTER, n = 58

200 250 300 350 400 450 500

.10941 0.038B16 0.01298 0.00435 0.00147 0.0004%2 0.00017
.03071 0.01505 0.00658 0.00271 0.00107 0.00042 0.00016
.11468 0.04204 0.01515 0.00545 0.00196 0.00071 0.00026

.03026 0.01454 0.0062!1 0.00249 0.00096 0.00036 0.00013

= MLE of P

q q
A ' A
S = Standard error of P
q q
Pq* = Bayes estimate of Pq
Sq* = Posterior standard error of Pq*
q = Flood discharge in m3/s.

The table above shows that the posterlior

standard-errors are smaller than the corresponding

standardf errors of the MLE’s by a minute amount. However,

Bayes

estimates of the probabillty of exceedence are

higher than the corresponding MLE’s. This is also to be

expected since Bayes estimates incorporate both stochastic

as well as parameter uncertainty. See also Figure 4.1,
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The analysis was repeated for seven other maximum
annual flows events or rivers all over Canada. The
results are shown in Table 4.2.

In the next sectlion, the 2-parameter lognormal

distribution will be conslidered.

4.4 2-PARAMETER LOGNORMAL DISTRIBUTION

The Z2-parameter lognormal or simply, the lognormal
distribution has long been a favourlte among hydrologlists
for describlng the distrlbution of floods and other
phenomena. Beard (1974) also concluded that among those
distributions considered for modelling flood flow
distributions across the United States, none were found to
be superior to the lognormal distribution. Hence, it is
reagsonable to assume that flood flows In much of North
America can be modelled by the simple and physically
reasonable lognormal distribution when one lacks evidence
to the contrary for the site in question (Stedinger,
1983). In additlon, 1t Is very easy to generate serially
correlated lognormal variates needed for Monte Carlo
simulatlions, |

The probability density function of the lognormal

distributlion iIs given by:
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Table 4.2 Bayes (*) and MLE (*) Estimates of the Probability of

Exceedence of a Flood Discharge q.

(g in m3/s)

OO'OO (= BN o B e e ] O OO0 O OO0 O [N o e el O O OO

(ool

1500

.22830
.03583
.23087
.03574

400
.18091
.03661
.18490
.03639

50
.28208
.04456
.28455
-04449

150
.34506
.05023
.34652
.05021

6000

.2219¢0
.05553
.22850
.05514

700
.21293
.04473
.21742
.04450

200
.36860
.05465
.36955
.05445

O O O o

O OO

Red River at Redwood Bridge, n=93

4500
0.00062
0.00041
0.00079
0.00037

900
0.00124
0.00083
0.00159
0.00075
69

oo oo oo oo oo oo

O O 00

2000 2500 3000 4000
.09048 0.03411 0.01262 0.00170
.02171 0.01104 0.00513 0.000987
.09374 0.03644 0.01397 0.00204
.02146 0.01079 0.00494 0.00091
Saugeen River near Walkerton, n=70
500 600 700 800
.063870 0.02581 0.00942 0.00342
.02069 6.01010 0.00457 0.00197
.07369 0.02844 0.01088 0.00416
.020390 0.00975 0.00433 0.00184
North Magnetawan River near Burk’s Falls, n
60 70 80 90
.12934 0.05624 0.02390 0.01006
.03076 0.01797 0.00958 0.00485
.13370 0.05999 0.02644 0.01159
.03045 0.01758 0.00924 0.00460
Pigeon River at Middle Falls, n=61
200 250 300 350
.13094 0.04547 0.01531 0.00510
.03303 0.01652 0.00725 0.00297
.13598 0.0494¢6 0.01759 0.00623
.03264 0.01603 0.00688 0.00275
Skeena River at Usk, n=37
7000 8000 9000 10000
.09089 0.03555 0.01365 0.00521
.03402 0.01775 0.00851 0.00388
.09897 0.04141 0.01715 0.00709
.03305 0.01675 0.00776 0.00340
Bulkley River at Quick, n=54
800 500 1000 1100
.10597 0.05105 0.02422 0.01140
.03054 0.01874 0.01079 0.00597
.11140 0.05556 0.02740 0.0134¢
.03005 0.01819 0.01031 0.00560
Harricana Riviere a Amos, n = 52
250 300 350 400
.11349 0.03107 0.00823 0.00216
.03180 0.0129%7 0.00456 0.00149
.11913 0.03476 0.00993 0.00284
.03130 0.01243 0.00423 0..00133

OO OO0

100
.00422
.00237
.00507
.00221

OO OO

400
.00169
.00117
.00221
.00105

OO0 0O

11000
0.00198
0.00172
0.00293
0.00143

1200
.00535
.00328
.00661
.00296

[ B e B e B = }

450
.00057
.00047
.00081
.00040

(=N e 2N« B o]

5
0.
0.
0.
0.

(=2 e BN o B e OO0

OO O o

0
0
0
0

O O OO

0
0
0
0

000

00023
00017
00030
00015

1000
.00045
.00034
.00061
.00030

110
.00176
.00113
.00223
.00104

450

.00056 -

.00045
.00079
.00038

12000

.00075
.00075
.00122
.00059

1400
.00117
.00091
.00160
.00078

500
.00015
.00014
.00023
.00011
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f(x/p, o) = exp [-(logx - p)2/202] o (4.15)

V2n o X

- © <y, logx < oo , o> 0

where x Is the value of the random varlable, p and o? are

the mean and varlance of log x respectively, That 1Iis,

log X ~ N(u, o2)

4.4.1 Maximum Likel ihood Estimates

Glven a random sample ¥ = (xi, Xop « « .« X ), the

logarithm of the likelihood function of the pdf (4.15) is

given by:
5 n
L = logf = -"1og 2w - " yog o - :2 log X
2 2 -
n 2
—Z”C’gxi T B | co. (4.16)
=1 207

Taking partial derlvatives of L with respect to u and o
and equating to =zero, the well-known maximum likelihood

estimators of H and ¢ are obtained. This Is gliven by:

A 1 r\-
poo= _E]og X . - N
1
nL=1
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= & Co. (4.18)

The variance-covariance matrix of (p, o) Is the inverse

of the symmetric matrix

[ %L 8%
(11 = ' . (4.19)
8% 9%
B do” du 602 n
That is,
" _
r Ea .
n
- -1 _ :
oy, = (1] = p L., (4.20)
0 -
L 2n |

The maximum tikelihood estimator of the probability

A

of exceedence Pq is given by:

)

'ﬁ = 1 - J 1, exp [—(1og X - @)2/2 &2 ]dx
9v2T o x

(4.21)

= 1 - §[]ogq —P] .. (4~22)
o



where ¢(z) is the standard normal cumulative distribution
function evaluated at z = (log gq - ﬁ)/&. For the sake of
computer calculation, an algorithm (26.2.17) from
Abramowitz and Stegun (1970) is used to calculate (4.22).

From (4.4) and (4.20)>, the asymptotic standard-error

of ﬁq iz obtained, and where,
o = 1 exp i -(log g - w2/ 26% 1 = u (4.23)
M V2T &
oy . log g -y uoo=ou, (4.24)
(oYe3 .
o
This leads to:
o 2 "2 2 2
sq2 = Y T 4 Uy T c.o. (4.25)
n 2n

4.4.2 BAYES ESTIMATES

The principles of Jeffreys (1961) described in
Section 2.5 will be wused to obtain the Jjoint prior

distribution of (p, o). This leads to:

Vg, o < 1/0 | ce. (4.26)
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The Jolnt posterlior dlstributlon of (u, 6> 1Is obtained by
comblining the prlor with the llkellhood function of (4.15)
and applylng Bayvyes’ theorem as In (3.28),

Under the squared-error loss function, Bayes
estimator of the probabllity of exceedence, Pq, is given
by (4.8). For the lognormal distribution, the analytical

solution to (4.8) |s glven by:

P, o= 1 -t [ n .]°9q'“;v] co. (4.2
4 no+ 1 s
L A2
> zg(]og X, - W)
where v = n - 1, gs” = =1 , and

t(z; v) is the cumulative distribution function of a t
random varlable with v degrees of freedom evaluated at z,
(Martz and Waller, 1982; Stedinger, 1983).

In this section, a Bayes estimator of Pq will also be
obtalned by wusing Lindley’s Bayesian approximation
procedure and compared to (4.27), and the MLE ﬁq given by
(4.22).

Lindley’s expanslon (3.31) for the 2-parameter

lognormal distribution is given by:

_ 1
Efu(B8)/x] = u + = (ullcr-l1 + ”22652) + PiuyTyy + Pz”z”éz
s D L Uil b L uno, . Oan) (4.28)
= 0372722 2172711722 e ‘

2
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From (4.20) Ulz = C,”,Dl = {0 and ]’_‘l,j = L3O = 0 (see

kppendix F). Also u(g) = Pq = 4 in (4.21) and

-
_ du _ du _9%u _ 3%u
Y1 T Y2 T o Y T Y22 T ’
A A
d}J 60' d}J o ao_c.
. _ 63L _10n _ 0°L _ 2n
Lo T — T —— Loy © ~ = —
do o” ou“
- 5 ’
e =% . .. =9 from 4.20
11 ze
n 2n
_ 3p = 0 = AP = o i
Pr = — = % P27 4 % =
dp oo o
all evaluated at (F, 6). See Appendix F for the
derivatives of u, /s and Lijé. Substituting in (4.28) one
obtains Pq*‘ Similarly, the posterior standard-error of

-

Pq* can be obtained letting u(8) = Pq‘. then,

= ~
s * = J E(p “/x) - p _*= L. (4,29
g q q

4.4.3 Numerical Example

The annual maximum flows of the Sturgeon River

at Fort Saskatchewan (n = 50) is used as an example. The
flood data for this river were found to be well fitted by
the Jlocagnormal distribution. The maximum 1likelihood

estimates for this river are:




= 3.06423, o = 0.739286, p, = -1.352656

P

q>
1}

1y = 0.010931, oy, = 0.002987!
L,, = 247.492387, Ly, = 1237.461933
Let g = 250 m°/s, from (4.22) ﬁq = 0.00044408 = u

0.0096822

U, = 0.00215354, up, = 0.00715791, Uygy

Usp, = 0.08760007

Substituting lnto (4.25)»

Sq = 0.00045138
Bayes estimate of Pq* by Lindley’s expansion is
obtained by substituting the evaluated constants into

(4.28), This leads to:

ECP_sx> = P * = 0.00066735
q q
Also let v = u(g) = qu = 0.000000197208
v, = 0.000001912694, v, = 0.0000063574,
Vy; = 0.0000178747, v,, = 0.000180274
Substituting into (4.28),
E(qu/i) = 0.00000059925

Var(P , = 2 - *2
q/_)_c_) E(Pq /XD Pq
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= 0.00000015389

Hence sq* = 0.00039229 < éq = 0.00045128.

Pq from the predictive distribution (4.27) is given by:

5q = 1 - t[3.291; 49]
= 0.00090
Table 4.3 summarizes the results for g = 50 to 250

3

in steps of 50 m“/s for the Sturgeon River at Fort

Saskatchewan (n = 50). Figure 4.2 shows the results

graphically.

TABLE 4.3

PROBABILITY OF EXCEEDENCE AND STANDARD-ERROR
STURGEON RIVER AT FORT SASKATCHEWAN
(n = 50

q 50 100 150 200 250

P 0.12574 0.018564 0.0042341 0.00012558 0.000444

éq 0.03408B2 0.009509 0.002999 0.0010969 0.0004514
Pq* 0.12944 0.020825 0.0052497 0.0017192 0.000668
Sq* 0.03388 0.009232 0.002822 0.000942 0.0003922
gq 0.12900 0.02152 0.00576 0.00210 0.00090

MLEC(*), Bavyes(%), Predictlve(™)
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Flgure 4.2 Bayes Probabllity of Exceedence (Lognormal
Distribution) - Sturgeon Rlver Near Fort Saskatchewan
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The table above shows that the posterlior
standard-errors are smaller than the corresponding
standard errors for the MLE’s, and Bayes estimates of the
probablllity of exceedence are hligher, as expected,.
Furthermore, Bayes estimates of the probability of
exceedence obtalned by Lindiey’s expansion is a fairly
good approximation to those estimates obtained
analytically. Further comparlson between using Bayeslan
approximation/Predictive distribution are given in Sinha
(1986a).

The analysis was repeated for seven other maximum

annual flow events of rivers from all over Canada that
fit the lognormal distribution. The results are shown in
Table 4.4. Only the MLE and Bayes estimates of Pq are
compared.

In the next section, the Bayes estimate of the
probabllity of exceedence by a dlscrete approach |Is

discussed,

4.5 PREDICTIVE DISTRIBUTION BY DISCRETE APPROXIMATION

In this Section, the probability of exceedence of a
future value of X is obtained by a discrete approach.

As noted In Section 4.1, Bayes’ theorem for
continuous probabllity models may often be difficult to

apply because o¢f potential probilems in evaluating the
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TABLE 4.4

BAYES (%) AND MLE (~) ESTIMATES OF THE
PROBABILITY OF EXCEEDENCE OF A FLOOD

DISCHARGE g (lognormal

(g in m®/s)

distribution?

OO0 Lo B w I s I o] L oo B o I o OO0 oo OO OO0 OO QO

QOO0

500

250 300 400 550
.27793 0.09764 0.00770 0.00049 0.00012
.03869 0.02019 0.00266 0.00024 0.00007
.27917 0.09821 0.00809 0.00055 0.00014
.03867 0.02013 0.00263 0.00023 0.00006

= 7

550 1000 2000 3000 3500
.48197 0.20325 0.04092 0.01153 0.00667
.04765 0.03701 0.01438 0.00570 0.00372
.48213 0.20569 0.04326 0.01288 0.00767
.04765 0.03693 0.01419 0.00554 0.00358

ROSEWAY RIVER AT LOWER QHIQ, n = 67

800 1000 1200 1600 2000
.27489 0.11058 0.04142 0.00553 0.00077
.04122 0.02413 0.01182 0.00230 0.00042
.27629 0.11232 0.04269 0.00593 0.00087
.04120 0.02407 0.01175 0.00226 0.00040

vV =

150 200 300 500 700
.42988 0.23172 0.06465 0.00611 0.00080
.04959 0.03977 0.01817 0.00295 0.00053
.43039 0.23346 0.06641 0.00671 0.00095
.04958 0.03973 0.01808 0.00289 0.00050

\'s v =

450 500 600 700 800
.47409 0.32425 0.12878 0.04419 0.01393
.05140 0.04659 0.02776 0.01268 0.00497
.47429 0.32555 0.13073 0.04557 0.01465
.05140 0.04658 0.02768 0.01260 0.00492

SOUTH THOMSON RIVER AT CHASE. np = 48
1000 1200 1500 1600 1800
.45038 0.17267 0.02583 0.01268 0.00285
.05715 0.08729 0.00907 0.00501 0.00137
.45087 0.17513 0.02710 0.01350 0.00313
.05715 0.03721 0.00896 0.00494 0.00134

'

150 200 250 300 350
.25265 0.05798 0.01147 0.00220 0.00043
.05109 0.01945 0.00533 0.00130 0.00030
.25517 0.06037 0.01248 0.00252 0.00052
.05103 0.01930 0.00523 0.00125 0.00029

600
.00003

.00004

(e I = N a» I oo ]

4000

.00402
.00248
.00477
.00237

OO OO

2200

.00030
.00018
.00035
.00017

OO oo

800
.00032
.00024
.00040
.00022

OO0 oOoo

1000
0.00123
0.00061
0.00137
0.00059

2000

.00060
.00034
.00069
.00033

[en i &n B o B en ]

400
.00009
.00007
.00011
.00006

OO OO0

.000019

.000018
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integral in the denominator of the equation. This
difflcu]ty does not arise |f the prlor distribution is a
conjugate prlor distrlibution. A conjugate prior
distribution, say g(8), for a given sampling distribution,
say f(x/8), is such that the posterior distribution T{(8/x)
and the prlor ¢(8) are members of the same family of
distributions. A sampling dlstributlon and its conjugate
when combined using Bayes’ theorem can be integrated
without difficulty. Conjugate distributions are given in
most standard texts such as Ralffa and Schlaiffer (1961),
Box and Tiao (1973) and Ang and Tang (1975). However,
with the possible exception of the normal distribution,
these are too restrictive in form to be useful to a
practising hydrologists (Russell, 1982).

In this study, the probabilistic model adopted takes
either the annual flows themselves, their logarithms, or
some other transformation of the flows to be normally
distributed with parameters (M, o). The wuncertalnty in
these parameters must be expressed in a Jjoint probabllity
distribution for n and o, This Jjoint distribution is
evidently contlnuous but for the sake of computer
calculations, Russell (19829 adopted dliscrete
approximations for the Jjolnt distribution of p and o.
Thlis essentially amounts to approximating the joint
distribution by a discrete mass function and applying
Bayes’ theorem for discrete probabillty models. In

addition to making computer analysis possible,
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dlscretization has the advantage of avoiding mathematlical
complexitlies that add llttle to the understanding of the
process. Arguments and derivations can thus be kept
simple and stralght forward (Booy and Morgan, 1985).

In general terms, then, the Jolnt distributlion of X
when both the mean pu and standard deviation o are

uncertain is defined by:

X ~ N, o ce. (4.30)

Py = p. o=0o,) = P,,. Lo (4,31

for i = 1 to I, and j =1 to J, and

J I

ZZPU = 1.0 .. (4.32)
J {

In words: X 1s normally distributed with a mean u and
standard deviation o. The range of values these
parameters can have is represented by I.J parameter
conditions or combinations (pi, o;), the probability of
each condition being PiJ‘ Since these conditions are
mutually exclusive and cumulatively exhaustive, their
probablility must add up to unity.

Equation (4.31) defines an array of conditional
distributions which can represent either the joint prior
or posterlior distribution of (u, o).

Under the squared-error loss function, Bayes estimate

of the probability of exceedence is given by:

P* = EIP(X ) q)/x] L. (4.33)
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T oI

= z Z{P(X Yy /P, oy L B L (4,30
T

= P co. (4.35)
Py _

.

where Pq is the probability of exceedence of the
predictive distribution of a future value of X, This
relationshlp was proved eariler for the contlnuous case
(see Section 4.2, Hence, (4.34) represents the
probability that X 1is equal to or greatér than a given
value g, and the probability of this event is governed by
a set of mutually exclusive and collectively exhaustive
conditions Gy, o). Further, the probability that the
event occurs together with the condition is equal to the
conditional probability of the event given that condition,
Summing over all possible conditions results in the average
probability of the event (X > g) weighted by each

probability condition.

4.5.1 Probablllty Distributlon of p and o

In thils study 1t will be assumed that the
distributions of the parameters are entlirely data-based
and that there is very little prior Information concerning
the parameters (p, c) relative to the information
contained in the sample. The only subjective element is

the choice of the underlylng distribution of the baslic
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random varliable X, which 1s assumed to be normally
dlstrlbuted.

With a moderatély slzed sample (n > 30> and
relatively 1little prior information, the posterior
distribution of the parameters will depend almost solely
on the sample information, as summarised by the llkellhood
function. Thls produces a posterlor distribution quite
similar to the distribution obtained by classical
inference, The important difference, however, 1is in
interpretation. The Bayeslian statistician treats the
parameters as random variables and is willing to make
probability statements concerning the parameters, whereas,
the classical statisticlan considers the parameters as
fixed. The Bayesian approach thus allows the uncertainty
In the parameters to be quantified and using Bayes’
theorem permits updating the parameter dlistribution as
additlonal information becomes available.

When little prior knowledge is assumed about
relative to the information which would be supplied from
the data, and a sample of n observations from a normal
distribution with known variance 62 are given, then the
posterior distribution of M 1s also normally distributed
(Box and Tiao, 1973). If the n observations are
stochastically independent, the posterior distribution of

M is given by:

Mpro, ) ~ NK, o2/m) co. (4.36)
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That 1s, the posterior distribution Ti(u/o, x> is

2/n.

normally distributed with mean x and variance ©

Similarly, given a sample x of n observations from a
normal distribution N(y, 62), with u known and with little
prior Information about o relative to that suppiled by the

data, the posterior distribution of o Is approximately

"chli-squared" (X?). However, for (n 3> 30), the X?
distribution is approximately normal (Benjamin and
Cornell, 1970),

Hence 1in thls study, both the mean and standard
deviation are assumed to be approximately normailly

digtributed. Consequently, only the mean of the means mp

and the standard deviation of the means cp and, the mean of

the standard deviation m s and the standard deviation of

the standard deviation Oy are regqguired to define the

distributions of (M, 0) respectively.

The mean of the means m  corresponds to the sample

M
mean X, and the mean of the standard deviation mc
corresponds to the sample standard deviation s. The

standard deviation of the mean Gﬁ’ and standard deviation

of the standard deviation o are more difficult ¢to

o
determine. They depend very much on the serial
correlation structure of the random variable. Estimates

can be obtained by Monte Carlo techniques and the

pro