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This thesis is concerned with four aspects of f lood

risk analysis. The use of Bayesian estimation theory is

central in all four aspects.

for probability distributions used for f ìood data.

The first aspect concerns the parameter estimation

will be shown that a Bayesian approach gives better
est imates than the usuaì ly preferred method of maximum

A BSTRACT

likelihood,

simpìif ies the computation of all Bayes estimates.

The second aspect concerns the estimation of the

probabiìity that a flood wiil be exceeded in a future
nor iar{tsw r ¡ vv .

Lindley' s approximation technique greatly

probability distribution must be taken into account.

This is done by using the predictive distribution as

distinct from the descrlptive distribution.

Then the uncertainty in the parameters of the

independence for annual flood peak series is waived.

Next the customàry assumption of stochastic

calculation of the Hurst statistic for aþout f ifty annual

flood series from al I over Canada indicates that iong term

serial correlation is present in many rivers, This is

shown to increase the uncertainty of the sample statistics
arrd leads to a substantial upward assessment of the flood

It

risk. A simple but eff icient technique of modelling

series with a high Hurst statistic is described,

lt



The fourth aspect of f lood risk analysis is an

attempt at reduci ng the uncertainty in the est imati on of

the probability of exceedence of extneme f loods. Taking

the Red River at Emerson as a case study, a physically-
based stochastic f lood simulation model is developed

using soi I moisture, sDor.¡f all , snowmeit, and rainf all ag

innr'l¡ ¡¡ H V I .

obtained from this model shows less uncertainty than the

predictive distribution based only on the recorded f lood

peaks.

The predictive distribution of f lood peaks

Updating the predictive distribution with historic or

regionaì information using the simulation modeì is stiìl
possibie, but has not been attempted in this thesis.

This is not necessarily the whoìe answer.

The research described in the thesis shows that
parameter uncertai nty appears to be mone important than the

question of plotting positions, parameter estimation by

one method or another, or the choice between 2-parameter

and 3-parameter probabi I ity models.
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1.1 CONTEXT AND OBJECTIVES

Floods have always been a recurring menace in most

inhabited parts of the world. Hhile protective works have

been designed from time immemorial, the risk of floodlng

can seìdom be eliminated. An essential step In a flood

protection study is therefore an assessment of flood

frequencies aimed at determining the probability that

peak f lows of various mågnitude v¡ill be exceeded.

The procedure traditlonal ly involves:

CHAPTER 1

I NTRODUCT I ON

(i) 0btaining a necord of annual flood events

(usual length is less than 50 years in

Canada).

(i¡) Choosing a probability distribution that

seems to fit the data. This is usually done

by arrang i ng the observed data i n order of

magni tude, plotting them on dlfferent types of.

probabl I i ty graph paper and, observing the

shape suggested by the plotted polnts.
(iii) Estlmatlng the parameters of the

(iv) 1'laklng inferences about the occurrence of

futune f lood events.

distribution, and



l{ithin steps (ii) and (iii) there exist a number of.

sources of uncertainty. Three dif ferent types of

uncertalnty måy be distlnguished (Benjamln and Connel l,
1970 ) t

\ cl ,, Stochastic or natural uncertainty of the

probabilistic phenomenon ltself, here, the

annual f lood peaks.

(b) Parameter uncertal nty, caused by I imi ted data

How to dea I r.¡i th the three types of uncertainty
depends on what one wants to anal yse the f I ood data for ,

and aggravated by serlal correlation.
Model uncertainty, associated with the

uncertalnty of the best model to descrlbe the

stochast i c process.

i.e. to understand or to predict.
anaì ysis may be simpl y to extend our knowledge of the

flood potentlal of the rlver. Thls is usually the goal of

a scientist-statistician who is after the probability
distribution that best descrlbes the stochastic
variabillty, al. f Irst source of uncertalnty.

The scientist is, of course, arso interested in the
confidence one may have in the probabi I ity distribution,
that ls, in the second type of uncertainty. But the two

types of uncertainty must be I eft entirel y separate. The

f irst type is an oÞJective lssue, being a property of
nature.

information avai lable. As such, ¡t depends to a certain

The purpose of the

The second type depends on the know I edge and



extent on the lnvestlgators and Is partly subJectlve;

hence the classlcal statlstlclan treats the two types of

uncertainty quite dif ferently.
The conf idence one has in the chosen probability

distrlbution to descrlbe the stochastic varlabllity of

f lood peaks depends on how well its
est imated. The method of maximum I ikel
preferred by most sci ent ists/hydrologlsts.

The first objective of this study

better estimates of the parameters càn

usinS the Bayeslan approach.

L i nd I ey's Bayesl an àpprox imat I on procedure ( Ll ndl ey,

1980) whlch greatly simplifies computation is used to

obtain all Bayes estlmates,
(Gumbel) and a 3-parameten distribution (3-parameter

ìognormal) fitted to some Canadian rivers are used as

exampies to demonstrate this technique.

engineering decisions,

pèrameters ar.e

ihood is usually

The purpose of the anal ysi s may al so be to guide

scientist, must go beyond a mere description of the

randomness of nature and of the I imi ts of our knowl edge.

He must make decisions based on predict ions. He must

anslrer the question: Is that dyke high enough to provide

f lood protection within the planning. horizon of , sây, the

next 50 or 100 years? And then he or she must act on that

is to show that

be obta i ned by

A 2-parameter distrlbution

prediction. i t makes no dif f erence ç¡hether a dyke f ai ls

because nature produced a very unusual event or because

The engineer, uFrlike the



the engi neer underest imated the desi gn f I ood. Engi neers

theref ore cannot separate the

uncertainty.
process. The

one to combine stochastlc and parameter

provided that both can be quantlfied.t The result is the

pnedictive distrlbutlon of the f lood peaks (Zellner,

t97I). Its frequency curve is steeper (degree dependlng

on the ìength of record) than that of the descriptive

They must be combined

use of Bayes i an probab i I i ty

probability dlstribution, which

1A careful distinction must be made betç¡een two kinds
of uncertainty. 0n the one hand, there is uncertainty
that can be quaniif ied objectively on the basis ofavailable infonmation. One can deal with it rational ly.0n the other hand, there is ignorance, leading to a
dif ferent kind of uncertainty. This uncertainty cannot bequantif ied objectively or meaningfully. stochasticuncertainty belongs to the f irst category. so doesparameter uncertainty. There is no reason in the theoryof mathemat i cal stat i st i cs ç¡hy the mode I parameters, suchas the mean and the standard deviation, cannot be treated
as random variables in an appropriate statistical model.And there ls no physical reason $¡hy their variability
cannot be quantif ied objectively, on the basis of
observations, provided a reasonabìe analogy exists betweenthe mathemat ica I mode I and the physi cal real i ty.

f i rst
in the

two types of

decision making

theory permits

uncertainty,

Uncertalnty regarding the appropriate type ofprobability distribution belongs to the second category.The guiding principle here is to choose the simplest modelthat is compatible with the information one has about the

merely describes the

entire class of f lood peak series to which the f lood peakseries \re are interested in belongs and that is capable ofadequately reproduclng the signif icant features of thatindividual flood peak series.
The cholce between a two-parameter and åthree-parameter model can not be based on a bal ance ofprobablllties, at least not wlth the current state ofrelevant information. It is also not meaningful to saythat there is a 50å probabillty that the flood pears on

Þtoose Jaw creek follow a Gumbel dlstrlbution and a s0tprobabi I i ty that they are log-normal ly dlstributed, slmply
bec ause one doe s n of know wh i ch mode I t o choose .



stochastlc state
information.

0btalnlng predictlve dlstributlons for continuous

dlstrlbutlons requlres rather sophlstlcated mathematlcs.

However, one can make use of the property that the

probabi I i ty of exceedence of the predict ive probabi I i ty

distribut ion is the Bayes estimator of the probabi I I ty oÍ

exceedence of a f I ood di scharge under the squaned-error

ìoss function (Sinha, 1985).

The second objective of this study is therefore to

obtai n Bayes est imates of. the probabi I i ty of exceedence.

Lindley's approximation is used to obtain the Bayes

est imates and th i s procedure is demonstrated for some

canadian nivers fltted to two 2-parameter dlstrlbutions,
the Gumbel distrlbution and the 2-parameter lognormal

dlstrlbutlon. The flood data are assumed to be serial lv

independent.

From an engineering point of view, a nice feature of

the predictive probabllity distribution is that it
automatically provides a safety f actor which is
substant i ai when the record i s short and the safety factor
becomes sma I I when the frequency curve i s based on a I arge

number of da ta.

Engineers, however, use the descrlptive rather
than the predictive probability distrlbution neglecting

the uncertalnty in the information. This seems straDge,

for in almost every other f ield of engineering the

a1 nature on the basis of available



uncertalnty caused by our I Iml ted knowledge Is not l gnored

but ls the reason for the use of a safety factor' Thls

state of affalrs I s probabl y pant I v caused bv the fact that

statistlcs courses for englneers at the Unlversltles are

most I y desi gned for and taught by sc ient ists Instead of

englneers. Another reason is undoubtedly the confidence

engineers have ln the accuracy of the descriptive

Probabilitydistrlbutionbasedontheavailable
information. That confidence seems iustified at first

gl ance s i nce i t can þe shown that the ef fect oÍ Parameter

uncertainty on f lood rlsk is relatlvely small if one has a

reasonable length of record, and if the f lood data are

serially independent which is the standard assurnption in

most analYsis.

0ne must, however , ser i ousl y quest I on the assumpt i on

that annual peak f ìows are serially indePendent for

practically all rlvers. It ls true that for annual f ìood

peak series the low lag serial correlation coefficients are

usualìy small. As such any observed serial correlation

seldom, if ever, pès3es the customàry tests of statistical

slgnif icance at the 10? or 5t level'

aboutS0floodpeakseriesfromalloverCanadaindicated
that wh i I e short term serial corre I at ion seems absent '

significant iong term seriai correìa.tion as measured by a

hleh Hurst statistic (Hurst, 1951) is present in a large

number of rivers analysed, ànd this seriaì correiation

substantial ly increases the uncertainty of the parameters

But an analYsis of



af a f looo probability oistribution.
The third objective of this study is to demonstrate

the effect of serial correlation on fìood risi,< analysis.
This is demonstrated through the use of a

drscretised predlctive probability distribution proposeo

D-v Russeil (1982). This requires, however, a time series
model that wiil neproduce both the short term and the iong

(erm seriai correlation structure in addition to the

marginaì distribution properties. A number of modeìs are

available to do thisi nameìy, the Fast Fractional Gaussian

lioise mociel, the ARMA (1,1) model, the Broken-iine mooel

and the ARMA-Markov model. But these models are eitner roo

cumÞersome to use becåuse of their complexit'i or thei'

require computer time far
åutoregressi ve model s.

The fourth objective of

oevelop a simple and efficient

desined attributes.

Thus far, the underlying probability distribution of

the annuaì f iood peaks has to be determinecj 'a priori-.
The model chosen may not be the most suitable model.

Tne probabi ì j ty distribut ion deri ved fron observed f I oocj

records may be reasonaÞly well def ined in the middle reach

tn excess of

where måny observations are locateci.

upper taiì on which f iood protection decisions åre often

based, there is considerabìe uncertainty due to the lacr of

data in lhis region. 0ne can reduce this uncertainty only

this study is, therefore to

t ime ser i es mode I wi th the

that requireo for

However, in the



by obtaining additional information.

informatlon can be obtained by a study of the physical

factors that determlne the magnltude of f lood peaks. An

attempt is made to construct a simulation model in which

additional information about the factors is combined

wi th a knowl edge of the physi cs of the runoff process.

Sampling frorn this simulation model provides a probability

distributlon that can be expected to be more reliable than

the distribution based on the record only. The Red River

at Emerson ls used as a case study. The sln¡ulation model

also sheds so.me light on the possible causes of

signif icant long term serial correlation in the annual

spr i ng peak f I ows on the Red R i ver .

The final objective of this study ls the development

of such a physical ly-based simulation model.

Such additional

T ,2 OUTt I NE OF THES I S

The study was performed by flrst outl lning some

basic principles of Bayesian analysis and to point out

distlnctive differences between the sampìing theory
(cìasslcaì statistics) and Bayesian methods of inference.
This is given in Chapter Two.

parameters and T-year f loods of a 2-parameter and a

3-panameter pnobabl I lty dlstrlbutlons are obtalned uslng

the maximum I ikel ihood method and Bayesian method and

I.n Chapter Three, the



their results companed. in Chapter Four, flood frequency

analysls using the predlctive probability distriþution
approach is considered. Chapter Five presents an analysis
of the serlal correlation structure of about s0 f lood peak

series from all over Canada. The developrnent of a new

time series model capable of reproducing the Hurst effect
as well as short term senial correlation structure is
presented ln Chapter Six.

study on the effect of senial cornelation on flood risk
analysis.
physical ly-based flood simulatlon model for the Red Rlver
is given in Chapter Eight.
concìusions and recommendations from the studv.

The development and evaluation of the

Chapter Seven presents the

Chapter Nine presents



2. L GENERAT

Detailed discussions of the Bayesian approach to
statistical inference are given in Jeffreys (1g61), Box &

Ti ao ( I 973) and Ze I I ner < I97L) .

Th i s chapter wi il i ntroduce on r y some of the basi c

principles and concepts of Bayesian anarysis. some

important di fferences between the c I asslcal approàch and
the Bayesian approach to statisticar inference are
outlined and the relevance of the Bayesian approach to
f lood risk analysis discussed.

CHAPTER 2

BAYESIÀN ANATYSIS

2 .2 BAYES' TH EOR E}I

10

Thls theorem is named after Reverend rhornas Bayes
(1702 - 176r). It is derlved, in fact, fron a basrc raw
of probab i r i ty theory and i s regarded by a growi ng numÞer
of statisticlans and engineers as being fundamental to the
revision of probability in the llght of additional
evldence.

Bayes, theorem, which follows
conditional probabllity, involves

from the def inition of

a prior (or a priori)



di str i but i on based on theoret i ca I consi derat i ons or on the

investigator's own beìiefs about the possible states of

nature; the prlor probabilities are not necessarlly

assoclated wl th repeatabl e experiments or the analogs

thereof .

lnformatlon prlor to the receipt of a sampl e of. data or

additional information as approprlate.

distrlbution and the addltional information, by combining

these and using Bayes' theonem, the posterior (or a

This dlstribution describes all the relevant

posterlorl) distribution could be evaluated.
posterior distrlbution then embodles all the available

information about the state of nature.

Bayes' theorem i s der i ved as fo I I ows:

states of nature which may refer

Let ol, È2, €3

water level in the reservoir or any other vaniable or

paràmeter whlch is subjected to uncertainty and let x

represent a sample of data (additional information). The

pri or probabi I i t ies est imated before the recelpt of the

11

data can be expressed by

probabilities of the sample

GIven the prior

nature g, are denoted by P(x,z€,). Also, let the posterior
probabilities Pu(0r,zx) represent the probabilities of the

states of 9, of nature, given the sample x. If P(8., X)

^denotes the joint probability of gi and x, by using

condi t ional probabl I i t ies, i t càn be stated that:

Bm, denote all possible

to the state of weather,

The

P'

X

(0i) and the conditional

subject to the states of



P(0,, x)

where the

C(x)

Th i s I eads

P'(€i) P(x/gi)

normal Izlng constant C(x) ls given by:

C(x) P'(0rix)

fnYL
i= 1

to Bayes' theoremr

P u ( 0 ,ix)

Note that (2.2 ) shoul d be changed to integral form for

con t i nuous states and probabi I i ty densi ty funct i ons.

In the f ollowing section, paråmeter estirnat ion of a

continuous variable using Bayes' theorem is described.

P'(gi) P(x/gI)

P'(8.) P(x/9.)tl

2.3 BAYESI AN PARAI'IETER ESTII{ATI ON

. P(x/8.)
¡

t2

In Bayesian parameter estimation, Bayes' theorem is

used to combin'e statlstical inf ormat ion.

Let X- = (X¡ r *Z *n ) be a rendom sampl e of

observations with probability density function f(x/0)
which depends on the paràmeter I but is otherwise
completely known.

or a real valued parameter.

ta t\

probabi I i ty di str ibut ion of I obtai ned before observ i ng x.

The avai I abl e i nformat i on embodi ed i n the observed data x

The parameter 0 may be vector va I ued

Let g(9) be a prior



and the prior probabi I ity of I can then be combined using

Bayes'theoren. The posterior distribution of 0 which is

the probability density of 0 conditional upon x is given

vr.

T((9/x) =

where T[(0/x) is

called the li

constant gi ven

-tK^=

where .fL is the

Hence,

K

the

ke I i

Dy:

t
I Tr(

Jrt 
-

par

s(€) .2(L/g)
posterior dietribution

hood of x, and K is

TI < gzx I

ê/x)d

amete

The poster i or densi ty Tt(e/x) then embodi es a I I the

i nf ormat i on one has about g. Thus i n Bayes i an i nference 
'

all inf erences about e are based on the posterior

distribution of g.

r space

l1

I
I eter

JJL

of e.

of e, 2(x/a> is
the normal ising

g(0) lcxze)
n

le{er,t ñ

ln practical appllcations, one may wish to

characterize the posterior distribution in terms of a

small number of measures such as measures of central

tendency, dispersion, and skewness, with a measure of

central tendency serving as a Point estimate of e.

In this thesis, only the mean and the variance of

the poster i or di str i but i on oÍ 0 r¡i I I be used as measures

of central tendency and dispersion resPectivel y in view of

.Iczts)d€

!{¿z€)dB

.(2.3)



their common usage in classical statlstics and everyday

llfe, in Bayesian terminology uslng the mean of the

posterior distribution of 0 as a point estimate, ig

tantamount to obtaining the Bayesian estimator of 0 under

a squared-error loss functlon.
For examp I e, the Bayes est imator of. g, gi ven the

data x, is Þy def lnition the expectation of the posterior

densi ty of. I under à squered-error I oss funct i on. Thi s is
given by:

and the posterior vaniance of g is given by:

^t E(0/x)

In <2.4) and (2.5), observational data and prior
lnformation are both used and comblned in a systematic way

Var ( e/x)

to estimate the underlying parameter g.

section, it wi I I be shown how given åvailable sample

Informatlon, the probabllity density function of ås yet

unobserved observat lons can be obtained by the Bayeslan

approach.

Ji ^, 
E/x)dê

IAlt

E<ezlx> - exz

\¿,.t1

(2.5)

In the next



2.4 PREDICTIVE PROBABILITY DENSITY FUNCTION

i{hen a dyke falls, it makes no difference whether it

failed because nature produced a very unusual flood or

because the engineer underestimated the design flood

discharge. As such, the natural variability or stochastic

uncertainty of the f lows as well as the uncertainty

concerning the parameters of the f lood probabillty

distributlon must be combined.

applying conpound dlstrlbutlon theory in a Bayeslan

frarnework (ï'lood et à1., 1975).

what Beniamin and Cornell (1970) called the Bayesian

distrlbution or the predictive density of a future

observation (Zellner, I97t) of flood discharges x. This

distribution is given by:

where

discha

the p

Bayesi

now pa

as an

with t

for e

Updat i

4t'

f (x) = | try/E) .llcgtx> do ...(2.6)t-Jla

f.(L/g) is the model distribution of the flood

rges, condi t ional upon the parameters 0 ¡ f[(8.¡x ) is

osterior density function for 0; and i<*> is the

an predict ive distribut ion of the f lood discharges,

rameter free.
The predictlve distribution ?<*> can be interpreted

average of conditional predictive pdf's, f(x/0),
he posterior probabi I ity distribution function (pdf)

, Ï(0/x) serving as the weighting function.
ng the predictive distribution when new information

15

Th I s can be done by

This procedure results in



becorne avai lable is achieved by updating the distributions
of the uncertain parameters through Bayes' theorem and

then updating the predictive distribution using (2.7). It
ls incorrect to try to update i<*> directty.

0btaining the probability density function of the

predictive distributlon for continuous probabiìity

distributions is qulte complicated. However, one can more

easily obtain the mean and variance of the predictlve

distribution. Take, for exanple, a model distribution
f(x/ê) with 2 parameters (F¡ , t) and, -oo( ¡r (aa and 6 > 0.

Assume that ú is known and fixed, and only ! is uncertain.

Fnom (2.6>,

The predicti

i (x)
^.of'

- I Íl- | r\

J*

ve mean

oo

lx f
IJ-q

^ootrtxl,L
-_ .o

of the

À

=

By a change

lll

16

x/¡t,

^a

o).7{(¡r) d¡r

^-lll X

dx

The inner

Therefore

(x)

I

I
I--Ø

lx
I

is

f.r
-tl-J L

-d

brackets

f.(x/y, o).T[(p) d¡r ]

X

Thus, the

average of

er of, integration,

m
I

=l
I'-Ø

me an

i hc

.t(x,/y, o) dx ]

the expectation

(2.7)

T[<tr) dP

of the pnedictive distributlon
means of x for various values of

dx

fl(p) dp (2.9)

of x, t*.

(2.8)

. (2.10)

just the

p.



1all

t^ { t \\¿.1r,,

is given by:

f^aã\\¿.L¿]

(2.13)

(2.14)

The predlctlve variance of x

ø).7[t¡rl d¡r ]Ot

s) o* ].I(¡r) d¡¡

(2.15)

and

I 1'I
(xo) - mo

A

)z I[(p) d¡r

wi th mean

f,(x/y,

f (x/y,

(2. r6)

^1,, I[(p) d¡r

".. = ;? r o2. (2.r7)
XLI

Hence, the predictive distribution i<*> has a

variance than the rnodel distribution f(x/9), since

ormer I ncorporates both stochast ic and parameter

ainty.
lr¡hen both p and o are uncerta i n, the predi ct i ve mean

m_ ia given Þy:

-f.*fr* = I lt.Ïrf , o) d¡r da ...(2.18)
Jo )-*

| *z [|.''--à /_ø

r rJ.. *2

¡oô

I tJ +

J*

-o3=i
X

I:{p-;*
distribut I On

where:

i<*2>

o2 . r[( ¡¡ ) d¡r

s a symmetrical

then

lt

Theref ore,
^q¿=lx,

tq

If I[<¡,) i

avarlance q,,
F

;=
X

and

larger

the f

uncert

of x,



and the

*2
X

predi

Áo n*lrnI io"ltJo '-Ø

lve variance of

d(p,6) d¡rdd

2.5 PRIOR DISTRIBUTIONS AND LiKETIHOOD FUNCTIONS

The mathemat i ca I soundness of the Bayesi an

has been wi de I y accepted; the present controversy

regard to appllcation, in pantlcular the choice

distribut ion g(0) (Kottegoda, 1980).

x,

f
I

Jo

co
Ã

f'
l(p
I

J--.Ø

zellner (1971) distinguishes between two types of

prion probabi I ities; those obtained from Past samples of

data are termed data based, and those obtained from

personaì or theoretical consideratlons are termed non-

data based.

\{i th data based pr ior di str iþut ion, Do subiect i v i ty

is given by:

-m a
)'.T[(¡t,c) d¡rdd

(2.t9>

18

is involved.

lnformation, the prior distrlbution g(0) must be decided

on a subiective basis or on theoretical grounds in which

the theory of invariance of Jef freys (1961) is widely used.

In a state of in-ignorance about the Paràmeten(s) 9,

Jeffreys (1961) suggested the foì.ì owing rules for the

choice of the Prior dlstnibution g(0) which according to

Jeffreys, "... cover the commonest casesn.

On the other hand, i f one has no Pr i or

apr oac h

is t¡ith

^1 n¡ | nrvt l,r ¡ vr



If

( i i) If

distributed, i.e. 9,(ú, i = L..lonstant

J1 | = (-â, oo ) choose 0,' l,: be unif ormìv

transformation and Ruie (ii) is invariant under any power

unif ormly distribuleo, i'e. 9¡(Ðo) è<

where fl¡ is the ränge space of 9ì

Rule (i) is

transformation of g^ In the liierature. such priors 3re

fi-2 = (0, æ ), choose iog g

described as vågue, dif fuse, improper or non-inf ormative.

1f 0, and É., åtrp ooth unþ'no\tn. we can a3=ume a-priori
l-L

that 8t ¿n,J E. årp independent since ån.v prior È:novìedge

one may have about 0t i = nrt i ii.:e i r' È.¡ i nf l uÉnG-p ÐnÈ 
=

prior beìief about 0. (Box and Ti¿o, l9i3).
a

g(8., E^) = q.(9,) 9.(9.,8,)f ¿ -t .L -L ¿ .l

invariant under

e tú trË
L

ii-
va

any linear

because v¡ith a reìatively modest sampie size, the shape of

the posterior distribution will be virtually identical to

that of. the sample I ikei ihood funct ion. In this case, any

prior ideas about the pàrameters wiìl be overshadowed by

* Sl(e1) , gn(An)

Such 'vägue' or 'dif fuse' prior is quite useful

c(1
-2

informatlon obtained from the data.

dominant ìikeljhood ln the anâìysis of scientif ic

experiments is discussed in detail by Box and Tiao (1973).

( t. z0 )

The role of the



The other element necessary in a Bayesian anal ysis

is the likellhood function. This is the function through

wh i ch the samp I e data X_ mod i fy pr i or knowl edge of g. I t

can be regarded as the function that represents the

information about 0 contained in the sample data. This

likelihood function is the same one used in some classical
techn i ques ol est imat i on and hypothesi s test i ng, name I y,

maximum I ikeì ihood estimators and I lkel lhood ratio tests.
The ìikelihood function is defined as follows. Let X_ =

(*1, *2, *n) be a sample of independent observat iona,

and let the density function with unknown parameter I of

each observation be f (x,tE),

independent, the likelihood function is simply the product

of the n denslty functions. That is,

In the f ollowlng section, the relevance of the

Bayesian approach to flood risk analysis is discussed.

Some di st i nct i ve di f f erences þetv¡een the classical and

Bayesian approach to statlstical inference ane also
outlined.

2<rt e>

20

n

f t (x ,/ê)

Since the trials are

(2.2r)



2.6 CLASSICAL VERSUS BAYESIAN

Martz and \{al ler (l9Bz) have ouil lned ln detal I the

distlnctive dlfferences between the classlcal and Bayeslan

approach to statlstical inference. In thls section, only
a brlef comparison ls given wlth a discussion on the

re I evance of the Bayesl an approach to f I ood r I sk ana I ysl s.
In the classical approach, inferences are based on

the I ikel ihood functlon in which the unknown parameter g

ls assumed to be a f ixed constant,
aPproach, hohrever, 0 is treated as a random variable
having è probability distribution which represents a

formal izatlon of information about g before observing a

sample. In flood risk analysis such prior information can

come about from regional hydrologic and geomorphic
lnf ormation (i,lood et â1., rg74; vlcens et â1., lgzsi Ì{ood

and Rodriquez-llunbe, 19zs) as r*,ell as sample data. Ii
would be imprudent to neglect such additional lnformation
lf it ls available.

Another distinctive difference between the two
methods of, inference is the method of reasoning.

The c I assical method of inference ls depicted in
Figure 2,1. The process starts out by postulatlng a

tentative sampling model. inductive reasoning is then
used in conjunction with the sample observations to
produce i nferences about the unknown paramerers i n the
assumed mode I .

2t

In the Bayesian



Assume d
Sampling
Mode I

Samp I e
Data

Flgune 2.1

I NDUCT i VE
REA SON I NG

The process al so starts wi th an asgumed sampl i ng mode I .

Figure 2.2 depicts the Bayesian method of inference.

Inferences Based 0n Classical Theory(after Martz and i{aller, 1982>

prior probability distribution is also postulated for
those unknown parameters in the assumed sampling model.

Bayes' theorem is then used to combi ne the samp I e data and

the prlon distribution. Deductive reasoning ls then used

in coniunction wlth the resulting posterior distribution
to produce the des i red i nferences abou t the paramet ers of

the assumed =lrpling model.

A further distinctive difference between the

classical and Bayesian approach is that the Bayesian

approach usually requires ìess sample data to arrive at

the same quality of inferences than the classical
approach. This is due again to the use of prior

sTAT r S1 r CAL 
I

I NFERENCE i
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information. This is especial ly important in flood nisk

analysis due to the lack of data on floods in most parts of



Assume A

Sampl ing
Mode I

Samp I e
n-t -L,Cl L ê

Assume
Pr i or

; D i s t r i bu t i on

llf Parameter

Bayes'
Th eor em

Figure 2.2 Bayesian Inference
(after Martz and Waller, I982>

the wor ld.

educt I ve
Reason i n

Another important aspect of the Bayesian aPProach is

that Bayes' theorem provides a mathematical framework for

¿J

processing new sample data as such data becomes

sequentiaì ly available over tlme. The theorem provides a

Statistlcal
lnference

mechan i sm for cont i nuai ly updatlng avai lable knowledge

about I as more sample data become available. How this is

done is explained ln Martz and I'lal ler (1982>, and Box and

Tiao (1973). This Þasic fact concerning Bayes theorem is

the basis of real-time processing of sample data by use of

wel l-known nathematical devices such as the Kalman fi lter



(Kalman and Bucy, 196!), r.¡hich have been used in real-
time f lood forecasting, satellite tnacking, etc.

0ther advantages of the Bayesian approach to f I ood

risk analysis and other engineering deslgns are discussed

in Davis et ål , 1972 and Kottegoda, 1980. A sumrnary of

some characterlstics of the classical theory and Bayesian

methods of statistical inference is shown in Table 2.1.

2.7 SUHüARY

compar i son wi th c I ass i ca I theory was pnesented.

An i n troduct i on to the Bayesi an approach and some

Bayesi an approach has a number of attributes that are

especially important to flood risk analysls. These are

the explicit use of prior
cont inuously update our knoç¡ledge about the parameters,

and the ability of the Bayesian approach to combine

parameter uncertai nty and stochast ic uncertal nty.

24

In the f ollowing chapter, the estimation
parameters and T-year f I ood by the Bayesian approach

considered.

information, ability to

The

aAvl

is



A SUI'II'IARY OF CERTÀiN CHARACTERISTICS OF CTASSICAL
THEORY AND BAYESIAN I'IETHODS OF STATISTICAT

INFERENCE (after Martz & l{al ler, 1982)

Characterlstlc

Parameter(s) of
Intenest

Pr i or
Distriþution

Samp ì i ng Mode I

Posterior
Distribution

Meihnr{ ¡1
Reason i ng

Type of Interval
Estimate

Role of Past
Experience

Purpose of
Sampl ing
Expeniment

TABLE 2. T

Classlcal Theory

Unknoç¡n constant(s)

Does not exlst

A ssumed

Does not exlst

lnductive

¿o

Random variable(s)

Ex ists and
exp I i c i t I y
åSSUmeo

Bayes I an

Oual ity of
Inferences

Confidence
interval

Not applicable

Suppiy the data
f or mak i ng
inferences

A ssume d

Explicitly derived

Deduct i ve

Cnedible
interval

ApplicaÞle

Quantity of Sample
lJclLcl

More restr i ct i ve
than Bayes'
þecause of
exclusive uge
of sample data

Conf i rm or deny
expected
performance aS
predicted f rom
past exper i ence

Depends on abi I i ty
to guant i ta-
tively relate
past exper i ence
to the sample
data

Bayes' approach usual ly
regu i res I ess because
it utilizes relevant
past data



3. 1 GENERAT

BAYES I AN EST I I{ATES OF PARAI.IETERS

AND T-YEAR FLOOD

In f lood fnequency analysls, the method preferred by

hydnologists to estimate the 'true' parametens and T-year

events of f I ood probaþi I i ty di str ibut lon is the method of

CHAPTER 3

ìikelihood.

estimates possess the pnoperties of. consistency and

asymptotic eff lciency (Kendall and Stuart, 1973>.

addition, in most cases, it gives a smaller standard error

of estimate of the T-year fìood when compared to other

This is because the maximum likelihood

methods.

parameters and T-year flood for two commonly used fìood
probabi I i ty distributions are obtained and the posterior

var iances of these est imates compared to the corresponding

Maximum Likel ihood Estimate's (l'lLE's). Lindley's Bayesian

Approxlmation procedure (Lindley, 1980) is used to obtain
the Bayes estimates, thus avoiding the need to evaluate

unwieldy ratios of multiple integrals necessèry in

Bayesian analysis, A 'vague' prior distribut lon described

in Section 2.5 is used to obtain all'Bayes estimates. The

probabj I ity distributions considered are the Gumbel and

the 3-parameter I ognormal distribut ions. The 2-parameter

¿o

I n th i s chapter, the Bayes est imates of the

in



I ognonmal is not considered as I t is a speci al case of the

3-parameter lognormal distribution.

3.2 }IAXIIIUII TIKETIHOOD ESTII'IATES

For a given probability

where O = (81r oZ, O*)

probabllity that a sample of n

came from that distribut ion is:

where I(L/T) is the likelihood. The principle of maximum

I ikeì lhood states that the values of 01, EZ, etc. should

be chosen to maximize I.(X-/9->, This is obtarned Þy

partially differentiating l(x/9-> with respect to each of

the parameters and equatlng to zero. Usually f or

continuous dlstributions. it is easier to maximize the

natural logarithm of the likelihood function L. The

system of eguatlons whlch when solved to achieve this

maxlmization are the maximum I ikel ihood estimators for the

parameters of the distribution. This system is:

l<uL> f,(x,/0)
l-

densi ty funct i on t(x/{),

are parâmetere, the ioint
values (*1, *2, . *n)

?7

f(x^/0)¿- f(xn,/0)

q OL

¡ñ--"2

.(3.1)

OL

.r%-
etc -n (3 .2)



3 . 3 STANDARD ERR OR OF EST I I{ATES

A measure of

the standard error

c

wher. âf ie the computed estimate of recorded value gi

(Kite, 1977>. The standard error measures the.errors in

the estlmated parameters of the chosen population

distribut ion that may be inaccurate due to the lack of

data and/or sampling fluctuation.

The standard error of estimate by maximum likeìihood

is obtained as fol lows: Assume a particular distribution

wlth paraneter= 9t, 0Z and g3 which have been estimated by

the method of maximum I ikel ihood. If Z is a function of

01, eZ and 83, each of ç¡hich is subiect to Bampling

error then the var iance Z can be obtained from f irst order

Taylor series expansion (Benjam¡n and Cornell, 1970),

Thls is given by:

the variability of an estimated value is

of estimate. This is defined as:

L. I

(q.'t - ¿,>2'l
L/2

¿ó

Var ( Z )

(3.3)

.Ò
lòz \ o

\òs. /'1

r zlòz \/¿r \
lur,l\*,I

var<ô.1
I

^iòz \iòz ',
¿[_|l_t
\òeei\òe./

r \- \to¿ \+t ì
I 

-l

\ dB^ /' ¿'

Cov(0., g^)
t¿

¿.^
Var(0^)

¿

Cov ( 0^, g^ )
¿' J

l¡z \ /Àz \, ol"u \i"" I+ ¿'t 

- 

| I 

-'
\òe./\òe^/\ ì,

/ \- ,2. lo¿ \+t I

\ òs^ i
Var ( 0^ )

covcô.
I , 0^ )

(3.4)



Equation (3.4) is the general variance of estimate

equation and is applicable to a function of any number of

varlabìes. The partial derlvatives may be obtained

di rect I y from the funct i on of Z ev al uated at the max imum

ì i ke I i hood est imates ô, . ôr, ôo. The requ i red var i ances!' '¿' -g

and covariances are obtained from the inverse of the

symmetric matrlx (Kendal I and Stuart, 1973 ) given by¡

itl

ò2r

Àoz"- 1

\¿ -OL

- ò21

ã'FÇ

ò21

òo^ò9.¿L

\¿-

;tJ-{

where L is the log-li
probabi I i ty distribut ion.

¿t

- ò21

òs-;f%

òt,t

ò2 r,

Var(9r)

Cov ( 9r, 0 t )

ô
OL
ãæ

\¿.

òe.òe,

Cov(9^, g. )

Cov ( 8, , 0 Z)

kelihood f unction

That is:

var<ô^l cov(é^. ô^,
¿ ¿ ' J

cov(ô^, ô^) vartô^>o' ¿ é

òtut

(3.5)

Cov(0.. g^)

of the chosen

-1tIl)' .(3.6)



en

is then def ined

Lindley's Bayesian

nlThe standard error of estimate

as the sguare root of (3.4).

In the foliowing section,

Approx imat i on i s di scussed.

ry the Bayesi an approach i s not

nalysis is the mathematical

rtors are often obtained as a

¡ which cannot be expressed in

approx imat i ons are necessary.

proximated by an asymptotic

two I ntegra I s due to Li ndl ey

rtion of an arbltrary function

ty distribution v(€) and log-

. v(8) expIL(g)] d€
(3.7)

3.4 LiNDtEY'S BAYESIAN APPROXIIIATI ON PROCEDURE
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Alì functions being evaluated at the MLE of g, and

where i, i, k, | = I,2, m; S = (91, 92, . Et),

ô = MLE(g), ll¿ is the range space of g, v(g) is the prior

distribution of g, u = u(0), L = L(g) is logarithmic

likelihood f unction, u,, - ò2u/ò0, ò0,, L, i,- =_¡J - I J' IJK

ò3tlòe,ðe.ò9u, p = p(g) = log v(g), p. = òpzò9, and di i =
¡ J ,\t f - f '-' ' I J I J ¡J

(i, j)th element of the variance-covariance matrix'

(Lindley, 1980). See Appendix B for the derivation of

Lindìey's expansion.

Sinha (1985, 1986a, b, c), and Sinha and Sloan

(1985) have used the I inear Bayes estimator (3.8) for the

Bayesian estimation of the rellability function of, varlous

distributions. Gren (1980) also states that (3.8) is a

" very good and oPerat i onal approx imat i on for the rat i o of

the multi-dimensional lntegrals". Sinha (1987> has also

shown that up to order of 11n2, the linear BayeS estimator

is more efficient than the HLE. Although the method

requires that ô ¡" the uni que MLE of g, i n most i nstances

the I ocal MLE produce acceptabì e estimates (Sinha and

Sloan, 1988).

* I ) ),u,,¿'ri

the orde c I/n2 and sma I I er

sij

+

ot l

2uiPj )dii

u, -i 
"{ rn
Ë

t e rms o f

...(3.8)

11



parameters and T-year flood for flood data fitted by the

Gumbel distrlbutlon wl I I be obtained and their posterior

varlances compared to the corresponding MLE's. This wi I I

be fol iowed by the 3-parameter lognormal distribution.

In the next section, Bayes estimates of the

3.5 GUI'IBEL DI STR i BUTi ON

The Gumbel distribution is widely used for frequency

analysis of extremes In meteorology and hydrology.

Lettenmaier and Burges (1982>, Phien and Arbhabhirama

(1980), and Jain and Singh (1987) gave several reasons for

its popularity.

The Gumbel distribution, dêspite its extensive use,

generally has no accepted method of estimating its
parameters. In an extensive study, Jaln and Singh (1987>,

compared seven methods of estimat ing the Parameters. They

f ound the method of. maximum likelihood to be the best

method based on various criterla. Studles by Phien et al.
(1980) and Lettenmaier et al. (1982) also concluded that

the method of naximum I ikeì ihood gave better est imates

5¿

than the method of moments and other methods.

conclusions are based on the criteria of goodness of

f lt and estimatlon variability.
In this sectlon, Bayes estimates of the parameters

and of the T-year events will be obtained and the

These



posterlor vanlances of

corresponding l'|LE's.

3.5.1 l{axlnuu¡ Llkel lhood Estlmates

The probabll lty

distribution is given

these estimates compared

f(x/y, a)

Given a randorn sample L = (*1, *2, . *n) f rom

the pdf (3.9), the logarithmic likelihood is given bv:

I
exp

de

vl

I1-
L

,

nslty

x-u

functlon (pdf )

>0

- n log Í

to the

-v ( X,

and

=
-od

Tak i ng

equat ing

exp t
p<ô¿

ll'l 
-r' ) (x: - u)

Cf ',-t
L- |

of. the Gumbeì

-n

PA

to

fL

L- I

x - r.l
tt6 ))

t
?

- ¿o

rtial
2e10,

(xi

òr n 1+=-\T- -/^oP c oA

derivatives with

one gets:

..(3.9)

n
f

i= |

{

7

r lx. - u\llexp - t r tlL-\d/r

/*i - ¡,ìl\ o 7r
(3.10)

respect to

- ¡r) exp -/xi- l'\= e

\CI

o' and ¡r

(3.11)

(3.t2)



From ( 3. 1 2 ) , on e

t)

n=
lt
L- |

/u\exÞ | t I't-l
\ r/

obt

exp

From wh i ch one

p=6

a i ns:

r1t¡t--ú
-l(*i - ¡r) l

n

From (3.11), one has:

rts
,/t
i=1

n3:obtai

l- x,\exp { rl
\f /

-n

log i n /

n(x - ¡¡)

r- / x.\
>exp ( +) I
i=1 \ o/

Substi tuting for exp(¡t/a)
functlon of Êonty.

exp( ¡t/6)

F(;)

34

(3.13)

= S*. exp(-
/, I '
i= t

(3.14)

rr

i=l

where x

est imate

may be

routine.
(3.15).

(*', - ¡l) exp i

î', - (x-;)>
- i -rv f - ¡

(3.15)

is the arithmetic average of x. Using the moment

of 6 (Gumbel, 1958) as the starting value, (3.17)

solved for ï iteratively uslng Newton-Raphson

Having obtained ;, , may Þe estimated from

f r om ( 3. 14 ) ,

*i ì = o7)

one obtains

(3.16)

exp ( - xì \ -L'

-
u

(3.17)



3.5.2 T-Year Return

Uslng the parameters estlmated

the T-year return period event or

Gumbel distribution is given by:

Peri od Event

where, Yî = - log t-log(l - /r>l (Kimball
-.t

corresponds to a gi ven return per iod in

extreme event.

*T
P

ST, the standard error of *T, may be obtained from

(3.4). This is given by:

s-2 = /ò*r \t varcs> * /ò*r \2v..<r,
' \El \dl,/

by maximum likellhood,

T-year event of the

From (3.18),

óx-l=
òo

dx-l=
ò¡

âq

(3.18)

1949)t and T

years of the

one obtains:

.T

1

^ | òx-\ / òx -\,¿ t 
-!-ll -rt 

cov(cr, p)
\òo i \ò¡r l

The varlance-cov

I uu.< år
=l

L Cov(¡.r,
tl

ar i an ce

o)

matrix,

Cov ( o-, p

Var<p >

(3.19)

,l t
J=t

( 3.20 )

(3,21)

"1l'
úzt

orz

úzz
J

( 3 .22)



is estimated from:

1

where,

ò2r - ò2r
a À-òU

òo" 
vv

ò2r à2r

- 

....-
oP ocr ðlr"

I¡

f ' 6

36

( 3 .23 )

3.5.3 Bayes Estlmates

Usi ns the principles suggested by JeÍf reys ( 1961 )

and described ln Section 2,5,

gl (F) = constant

gZ (ø) o< l/a



Assumi ng ¡l and 6 to be i ndependent , a pr l oî I, , the

joint prlor distrlbution of p and c is glven by:

v (¡, cr) = 91(¡r) gT(a/y)

x 9t(P) g'(c)

combining the prior with the likelihood function and

using Bèye3' theorem, the ioint Posterlor distribut ion of

(¡r, o) is obtained:

I[ (p , c/L) = K'I (L/P, d)'v (p, o) <3'28)

where K i s the normal isl ng constant.

under the squared-error loss functlon, Bayes

estlmator of a function is its Posterion expectation'

Hence, the Bayes estimators of c, ¡J and T-year event *T

are glven by:

øi = [ (a/x)

I I o Tt(F,o/x> dad¡.t
Yø

't

6

?'7

<3.27)

| | d. v (!, o) .l ({¡t, 6) do d¡r
-!â"o

| | v (F, o).1(¿/¡t, a) do d¡r
JJI
-öo
^æ^æ,rJ

- [ J, xT'v (F ' o> ) (Y/¡t ' o) do d¡r

X- =I ^æ ^oÕi- i v(¡r, o).1 (v/Y, o) do cjP
--Ø

and similarìy f or lri.

...(3.29>

. . . ( 3.30 )



3.5. 4 Bayesian APProximation

Lindley,s asymptotic exPansion of, (3.7) for the

2-parameter case is given bY:

EIu(0)l = u + '(u11-11 + UZZzZZ) + ut?îtz
¿

+ ut(øttpr r oZ1oZ) + uZ(\Z?t r 6ZZPZ)

1r,¡ltlI I L^^\

2 ' vw

c^¡ Lot i JU,
¿l L ¿

where, u = u(g), u. = du, ur = òu, ura =,ttÏ ,

' dc o òl.l La da ò¡l

+ 112ful(o-l túzz + 2or?,, + 3uzúrzorr\

+ 103(utltzazz + "zoz3r) ô -..(3.31)

nr', + u zÇt tot z)

rúLz + u ?( 6I tú2? + zo-rl>\

ò2u òtu, p = log v(g) , g, = òP,ull = 
#' 

uzz = 
ilt P = log v(g)' Pl = 

õ6

?a

- òp. r ò3r Los = +, Ltz = òtt
Pz = õi' "30 = 

,o.' òpo òo ò¡l

L .rl = _þ¿ ^
ò ld¡r



f,-lll

matrix given

evaluated at

evaluation of

i, j)th element

by (3.?2), and

the MLE of (d,

L, r's.¡J

3.5.5 Nunerlcal Example

The annual maximum f lows of the Turtle River at Mi ne

Center, 0ntario, is used as an example. Figure 3.1 shovrs

the f i t of the Gumbe I di str ibut i on to the observed data by

maximum I ikel ihood. The maximum I ikel ihood estimators for

of the variance-covariance

all constants are to be

¡r). See Appendix C for

this river are:

n = 58, ; = 45.810,

to-ijl

éY

=[
L

P=
Lso

L.^r¿

22.5061

9.5444

log(1/o), pt

F = 101

9.544

40.230

-0.021

0.0054401,

0.00t4625,

.¿tv

4l
I2)

83, pZ

L^^

1-2r

-0.0006033

-0.0014995
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Let u = Ç' ul = 1, uz = 0, uij = fl for all of i, js.

Substituting into (3.31)¡

Eta/y) = cr{ = o- * dtrpt - : I Lroorzr + Lzlgot.ntz)
é

+ L tz( o t t6t? + 2ntì2 r Lo 3or zozz)

Also let u = é, ul = Za-, u11 = Z, uZ = ,!Z = uZZ = [.

= Q6,894

Substituting into (3.31):
.) ^Ò ^ ^ ÒEtoo/x) = î4 * .1 1 * 7oottpt + L3'crotí + 3LZto6ltotz

c+ LtTo(ottolZ + zoti,) + LogootZÇZz

= 1222.380

The poster i or var i ance of. f i s then gi ven by:

41

Var(c/L> = fl I = E <o2lÐ - t E (o/t) l2

2r,3329

which is less than rtl = 22.S061.

Similarly,
E(y/y> = ¡r* = tOL.t82

and Var( ¡t/x) = oLZ = 40.ZZ1O I nZZ = 40 ,ZgOz



Tabl e 3.1 summar izes the resul ts.

Bayes (*) and l{tE (^) Estinates of (ú, ¡r)

For Turtle Rlver F¡t lllne Center (n=58)

(Gunbel Dlstrlbutlon)

Pararneter ^ x Var(¡) Posterior Variance

TABTE 3. 1

6 45.810 46.894 22.5061

F 101,270 10t.182 40.230?

Bayes estimates of the T-year event is obtained às follows:

Letu=*T=p+øy,

4?

,l = YT, tt1 = 1r ull = ,IZ = 0;

wher. t,, = -los t -los (1 - 
i, 

l

For T - 100 (100 year return perlod flood), Y- = 4.6001S.

Substituting into (3.31), onegets

E(*T=lO0 / x) - xT = 316.90

2r.3329

40.2230



Aìso let u = x!
T,

u1 = ZYT(P + oYt)' uz = 2(P + aYt)i

ull = ,tT'i ,ZZ - ?i uLZ = ZYT

Substituting into (3.31):

?E (xf-=tOO / l) = 101,005.9381

Hence, the posteri

V ar ( *T= I oO/L

If one def ines the posterior standard error of the T-year

event ag:

var I ance of. *T=100 is gi ven by:

= f, (*t=1 oo/x> fE (xT=loor*r72

Sr(xr/t)=@

The following is obtained:

43

= 580.328t

St (*T=100 / a) = 14.090 < ôT = 24.583

Table 3.2 summarizes the results for return periods

T = 2, 5, 10, 20, 50, 100 and 1000 years for the Turtle

River at l,tlne Center (n = 58).



Standard Error 0f Est lmate 0f T-Year Events

Fitted By Gumbel Distrlbution
- Turtle Rlver At l{lne Center

(n = 58)

T-year

TABLE 3,2

Xî
I

ê-T
*xi

qt-T

118.06

7,089

119.37

T . O B?

169.98

10 .931

171.52

r0,8?2

(^) MLE, (x) Bayes est imates

10

20.1 .36

{, ñl{¡òl.UT¡

306.71

7?.843

The tab les above shot*'s that the poster i or var i ances

of (r, ¡) and posterion standard errors of the T-year

events are less than the corresponding MLE's even wlth a

'vague'prior.
L i ndl ey's procedure was repeated for seven other

maximum annual f lood events of. rivers from all over

Canada. The resul ts are shown in Table 3.3. The results

show that fon al I seven rivers, Bayes estimates of the

parameters (d, ¡t) and the T-year f lood have smaller

poster ior standard error than that oþtained by the method

of maximum llkelihood.

20

237.33

17.189

240.45

16.902

44

50

280.02

?1 .386

284. 18

20.981

100

312.00

24. 583

316.90

24 ,090

1000

4t7 ,69

35.297

425.09

34.5r3
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in the

distribution

3.6 3-PARAIIETER LOGNORìIAL DISTRIBUTION

next section,

is considered.

The 3-parameter I ognormal dlstrlbut

widely used probability dlstributlon in

f lood events.

distribution and is exceptionaliy flexible

for flood frequency analysis.

the 3-parameter lognormai

glven by:

f(x/a, |.r,

The pdf of the 3-parameter

This distribution is a

o2> = ' .*o | 1 [log(x;- a) - ul 2J

/-Zîo<x - a) L ,oz ' J

46

- o¿ < A ( X,, 'rr)t

where x(1) is the

parameter, and

pàrameters p and

respectively. In

I on i s

fitting
genera I

and wel I

lognormål distribut ion

another

annual

sk ewe d

suited

-æ<F<ooi

smal lest value of X, a is the threshoìd

The paraneter, à, has to be estimated from

avai lable sample in terms of the random variable x.

(x - a) ls the reduced variable.

log(x - a) -v

.,
oo are the mean and variance of log(x-a)

oth er wor ds ,

æ>o

Ic

N(f , 02 )

( 3 .32)

The

the



Many methods have been proposed to estimate the

parameters of the 3-pararneter distributlon. Sangal and

Biswas (1970), Burges et al. (1975) and Stedinger ( 1980)

have discussed some of these methods. In view of the

desirable asymptotic properties of the maximum I ikel lhood

estimators, the HLE is still pref erred by most

hydrologists. Sinha (1986a) and KIte <1977> have shown

how to obtain maxlmum llkellhood estimates of the

parameters (4, p, c.2>. The procedure by Kite (t977> is

used here.

3.6.1 I'laximum Likel lhood Estlmates

Given a randorn sample X_ = (x1r *2, . *n), the

logarithm of the I ikel ihood function of the pdf (3.32) is
gi ven by:

A-lal

constant

Taking partlal derlvatives with
?o- and eguating to zeto, one gets:

nlogø

g = j,on,*, - a)(x. - a)-1 +

da ¡-=l

f '-t r n2+ ' ) | ¡oq(x. - a) - u l' (3.33)
nLs

2úo i=f

rLs-,-\ Z-
;-l

log (*i - a)

resPect

(oz - P)

to a,

n

r-l

(x.
I

Àt and

a) ' = 0

(3.34)



òrrë=>
Àt')L

¿ :-l' I L-l

òr,

òJ zoz

[ ,on (ri - a)

From (3.35), one obtains:
^rgF = ' ) log (xr - a)

n /' t
L=l

+Í
À L log (*i - a)

2a i=1

and from

I
þl

;

lr]

(3.36):

n
=ç,/,

L=l

Substituting (3.37) and (3.38) into (3.34)

only is obtained,

los2<x, - å)

f(;)

1¿
UI

(3.35)

rt- t-lsL- 4
" L=|

2
n

48

rt
-t) log(x,
.4¡
¿= 1

n
Y<*, -
L)¡
'tF I

(3.36)

(3.39)

Thls equation can be solved by iteration using an

appropriate starting value. Havlng obtained å, one can

then calculate f or ú anO ;F f rom (3..37) and (3.38). In

this study, a value of 0.8x,r, is used as the starting
val ue. A Newton-Raphson procedure i s then used to sol ve

( 3 . 39 ) .

loq(x. - a)-l

- å>t*.
I

^a/a) '{n
L

r \-1| > log(x, - a)
tZ-J¡

i- tL-t

( 3.37 )

l'..(3.38)

rL

S
t

L=l

loI

function in a

loez<x, - ;)

å
L=t

los(x, - å,J = o



3.6 .2

The T-year event for

distribution is given by:

T-Year Return Perlod Event

where t is the standard

varlable, the standard

*T a

from (3.4). That Is:

,r'= (þ" ) 
'r^r<â>

exp t ¡,

the 3-parameter

ot:

normal deviate.

2

error of *T, ST, may be obtained

/ ò*,\ / ò*,\| ----rl / --¡- |\ò./\¿p l

/ d*.\ / ò*. \l+, l--.-l
\op I la"2 )

-/h\
\dF /

lognormal

49

2

( 3.40 )

Since T is not a

From (3.40):
\o*T

=
ã"

Cov ( â,

ó
^Var (¡u )

Ê) +

cov <i, æ >

- ib\'
\¿o2 I

ò*,r

, /\\ /\\ cov(â, è2>
\òa l\ ¿ozJ

ò*,

exptp +

var<f>

àoz

dtl

exet¡

2i
+ otl

(3.41)

( 3 .42)

(3.43)

.(3.44)



Let w = exp tp + otl, then,

,r' = lar<â) + *2v.r<i> r #
4êrz

* t" cov(â, ü2) + z w cov(â, û)
C

The variance-covariance matrix is the inverse of. the

symmetric matrix

?
I '.- ^ 

FtLw Cov(co. û)

-
I

var<â21

ttlLÁJ

- ò21 _ ò21 _ ò2r,-.,- 

-
ò"2 òa d¡r da òoZ

qn

à2r - ð2 r.ã¡-ð; tF
ò2r ò21

That is,

òo2 òa

(3.45)

toijl =

ñ ùæ)'?

ò2r

var<ål cov(å, û) cov(å, æ)

dp òo2

ò2 r,

Cov(p, ã) var<¡r> Cov<¡r, ê)

cov(F, å¡ cov<å2,;) var<å2>

(3.46)

,tr-1

(3.47)



It can be sho\.rn (Appendlx D) that:

"11

I

=
2nD

nt2 - exp(62/2 - ¡r)

ot3 ct

"D
õ

ozz

2nD

exp ( o2 lz

nD

ozg

o2 +1

- ¡r)

-oZ
rD

o?

.D

zo2
expt 2<o2 - ¡r)

. exp(o2 - zlt)

where D

.(¿ + 1) expt 2<a2 - ¡r) l

51

(3.48)

is
+o2

the

I

^2¿ù

determinant of

cexp L2(o'- p)l

(3.49)

?
exp ( o-

a
exp(oo

( 3.50 )

2¡t>

(3.46).

(3.51)

(3.52)

exp{o2 - zy)

2y>

(3.53)

?oZ

< zo2 + 1)

(3.54)



3.6.3 Bayes Estlnates

ê),

If one is

the 'vague'

g(F, o2>

' i n- i gnorance' about the paramet ers ( â, ¡'t,

prior

would be appropriate (Jeffreys, 1961). It is reasonable

to bel ieve that a is distributed independentl y of æ and ¡r

since any prior knowledge about a is not likely to be much

inf luenced by one's knowledge about the values of these

parameters (Box and Tiao, !973>,

h(a)

I
,L

a
6o

constant

Thus,

be written

v (a,

an o

athe ioint prior distribution of (ô, p, 6o) may

ag:

5?

Let }L = (*1,

from the pdf

l.(x/a, p, o2>

g(H, r.2) h(a)

1q
62

*2, . xn) be a random sample of size n

given by (3.32). The likelihood function is:
,n

= (L\t TJ(*i-a),e*p f- t,rlos(x.-a) - tt)21
\e7r ol i=i ' [ 2o2 J

(3.55)



Combinlng the likelihood wlth the prior distribution
gi ven by (3.55) and appì ylng Bayes, theorem, the jol nt
posterior distributlon ls obtained:

TI(.,p, o:2)

where K

4K'=

is the

a.* ,',- ,nX(t)lttr
"o la t-ø

Under the

est imators of a

that function.
given by:

K,l (y,/a, ¡t, r'2).v(a, p, 62)

normal izing constant given by:

(y/a, ¡t, ê) v(a, l'¡, o2) da dp dæ ..(3.sg)

sguareo-error

f unct ion i s

For example,

E( a/x)
1- 1* ¡\u)

r -l J J-å'v(4, f ,
=O-4r-w

I oss funct i on , Bayes

the posterlor expectation

the Bayes estimate of å

53

Pr
J J J'? (¿/a, y, o¿).v(a, t, cL) aaopooz

( 3. 57 )

o-& -d

o2>1.(y/a, y, o2> oad¡roo2

of

is

(3.59)



3.6.4 Bayesl an Approx lnat I on

LIndley,s expansion

case is given by:

Etu(0>:

.11+l
2

(u1"1

of

wh i ch has

A lso,

(3.7) fon the O-panameter

A(u1o1 
1

B(uro'

c(uio31

uz^z

a,
I

-2

a^

.l

a-

to be evaluated

u2arz

uo 
"g

+

Prorr

P trzt

Proer

uzczz

U^O-^^
4 5¿

54

u3o1 z )

aa.t

Pzotz

P zúzz

P zúsz

u^ cr^^ )
J¿é

ug o33 )

at $ = (å,

ulzr1z +

1 (urrct.|
2 . Á ¡ ¿

dtlLttt

os'

Pgrr g

P s6zs

Psrss

u ?gî23

lô

u13r13 +

^4 r

+ u zzîzz +

+ ZntzLtzr

azzL zz t

(3.60)

t33133 
t

usg%g )

+ zttgLtgt 2nzgLzgt



ÚttLrtz

ÇzzLzzz

attLttg

zorzL t zz

where,

'z?Lzzg

oggLgg2

2otzL t zg

u.IJ

zo:3L t 3g

d2u

de . de.II

oggL3gg

p{9)

6ij = (i, j)th element of the
(3.47). The subscripts 1,

2nr3t t gg

1. .,IJK

respectively. See Appendices

log v(8); pi

2oz3Lzgz

of the 6i¡ matrix, Lijk." and uij,=.

.â
d-L

--;de. de. de,IJK

55

3.5.5 Numerlcal Exanple

2ozgLzss

The annual extreme f lows of the st. l'larys River at
stillv¡ater (n = 69) is used as a numerical exarnple.
F i gure 3.2 shows the f ¡ t of the 3-parameter I ognormal

distribution to the observed data where the parameters are

est imated by the maximum I ikel ihood method. The maximum

I ikel ihood estimates are:

oP,
òs,

J

vår ¡ an ce-cov ar i ance mat r i x

2, 3 refen to (à, }l, o2>

D and E for the eval uat i on

and



St. Marys River
at St I I lwater

Flgrurc 3.2 3-parameter Lognormal Dlstrlbut lon

Fltted Dengl ty
Funct I on



I
IÚi i = I

I

I
L

å= 1r6.13

2007 .8r I

-7.96666

4.30617

Lii. = 

|

F

-7.96566

0 .0 3553

-0.0r709

-1.464 x

nv

-7 .49642

5.6647

and LtZg = J.74gZL

Also' p, = P2 = 0, Ps - -3.70014.

t2

4.30617

-0.01709

0.01135

10-4 -5 .266 4

ar
T

a^

B

0.27026

I
I

I
I

I

It

- I 5. 93343,

- 4.19966 x

-10.5824,

X

ñ
U

u

Let u = å, ul, ,Z = u3 =

Substituting into (3.60),

1o-3 3.oo1o

I .4468

6.9909

E ( a/t)

Similarty,

E (þ/x)

"z

10-2

x 1o- 2

t02

103

6.32354 x 10-2

-t

I

I

I

J

+
a

o, uij = o,

48.90154

n <êtx>

-1.64713 x t0-1

82 .283

P

t¡.IJ

o2*

5.77818

0.24157



Also let u = â2, u1 = 2a, ull = 2i ,Z = u3 = ui j = 0 f or

all other i, is.
Substituting into (3.60),

E (a2/*> = J,632.6?3

Theref ore,

-r1* = var(a/g) = E<azlt> - "*2

Simiiarìy,

i - o.02266 < ú^ 3 o. o3ss3u22 'vLLee - z¿

t^o33" = Q'01052 < rg3 = Q'01135

Table 3.4 summarizes the resul ts.

= 862.181 which is less than -11 = ?007.811

58

Bayes ( *) And t{LE (^) Est lnates Of ( ð, P, æ>

Parameter /\ * Var(¡) Poster ior Var.

For The St. l{arys Rl ver At St i I lwater
(n = 69)

TA BtE 3. 4

¡r

æ

116.13 82.283 ?007.811

5.6647 5 .778? 0.03553

0.2703 0.2416 0.01135

862. t8r

0.02266

0.01052



Bayes estimates of the T-year event is obtained from

(3.40). For T = 2 year return perlod, | = 0.

Let

ul = I' uZZ = 288'49t, uij = o for all other iis'

"4 = 0, aS = $.12465

Substltutlng into (3,60),

E(xrZx) = 408.674

u = *T = 40 4.626

Aiso let u = x^2 = 163,722.04, u. = BO9.Z5ZLl

,Z = 233t462.18, u3 = ul3 = 0, ULZ = 576 ^983

u1l = 2, ,ZZ = 399 1916,82, u.g = u33 = Q

a4 = -1596. 629 | "S = 9tlI .?82

59

Substituting lnto (3.60),

Hence,

E(x,¡o/L) = 167,365.8606
¿

Var(xr/t) = 167,365.8606 - '408.6742

351 .6375



and

^J{
"T

standard-error, Sf is given

Table 3.5 summarizes the result for return periods T = z,

5, 10, 50 and 100 years for the St. Harys River at

St i I lwater.

/ËGr/å) 18.7s2

pI,

e
¡

Standard Error 0f Est lmates 0f T-year Even tSt. llarys Rlver At Stillwater n = 6g
3-Paraneter Lognornal Dlstrlbution

T-year

19. 184

f

îT

c-T
,t*T

^T\-T

TABLE 3.5

40 4.63

19.184

40 I .67

r8.752

60

0.8416

562.97

32.542

569. 14

3r.952

(^) MLE, ( ìr) Bayes est lmates

IU

r . 2816

677,87

48.80 9

683.65

48.458

From the tables above, the posterior variances of the
paraneters and the posterior standard-errors of the T-year

event are I ess than the correspondi ng ÈfLE, s.

20

r .6449

794,57

70.633

799 . t2

70 .486

50

2.0538

955.27

107.66

957.01

107.64

1000

2.3264

10 83. 0

141.78

r 0 82. 0

r41.77



Bayes estimates using Lindley,s procedure was

repeated for 11 other maxlmum annual flows from rivers al I

over Canada. The results are summarized in Table 3.6.

Four of the tZ f I ood data anal ysed showed negat I ve

poster i or var i ances for some of the parameters.

negatlve posterior variances, however, do not affect the

est imate of the T-year f I ood and I ts standard error. The

Lepneau Rl ver (n = 68) ln the Atlantlc Provi nces is one

example where the posterior variance of a is negative. It
is possible that regularity conditions for the maximum

likelihood estimation of the threshold parameter a are not

met for this particulan f lood serles.
reason $¡hy a negative posterior variance was obtained from

the calculation

underestimated and tE(a,z¿) l¿ overestimated. In addition.
Lindley' s procedure being à asymptotic expansion, some

roundl ng off, errors cou I d have occurred.

Ê. 1

3.7 SUIII{ARY

Also E(a2lx> may have been

This chapter has shown that Bayes estimates have

somewhat smaller posterior variances to their MLE

counterparts, indicatlng that Bayes estimates of the f lood

events at var i ous return per i ods are às re I i abi e or more

re I i ab I e than the I'tLE, s.

The

This may be a
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0nce the MLE have been obtained, obtaining Bayes

estimates using Lindley's procedure is simple and can be

worked out on a desk top ca I cu I ator.
i t has been found that for the 3-parameter I ognormal

distribution, Degative posterlor variances of the

estimates of some parameters are obtained. This

'irregularity', however, does not affect the posterlor

est lmates and standard error for the T-year events. The

determination of Bayes estimates for (å, þ, a2) are

i ndependent of the deterrni nat i on of poster i or expectat i on

and standard errors of the 1-year events. For the Gumbe I

distrlbut ion, the MLE of (¡r, o) are easl ly obtalned. Here

the problem of negative posterior variance does not

ar i se.

In spite of the minor

method, this procedure is a

frequency analysls.

In the next chapter,
approach to flood analysis is

64

shortcorning of Lindley's
useful technique in fìood

the predictive

considened.

distrlbution



4. L GENERAT

in the prevlous chapter, f lood analysis $ras

considered from a scientïst/statlstician's Point of view.

That is, the obiect of the analysis ls the description of

the stochastic variabillty of the observed floods.

PRED I CT I VE DI STR i BUT I ON

CHAPTER 4

Engineers, ho$rever, make use of the f lood data to

guide engineering decisions, for example, when determinìng

the height of a dyke or the spi I lway caPacity for a dam.

Therefore, the englneer, uDlike the sclentlst, must go

beyond a mere description of the variabi I ity of nature.

Since he ls concerneo with predictions, he is also

concerned with the uncertainty in that descriPtion. Hence

stochastic and parameten uncertainty must be combined in

the dec I si on mak i ng process. Th i s can be done by us i ng

the predict ive probabi I i ty distribut Ion as descr ibed in

bþ

Section 2.4. The predlctive distribution quantlfies the

risk of a future f lood event on the basis of present

in f ormat i on

def ini tion of. probabi I ity and using the Bayesian concept

of risk, the analysls sldesteps the conceptual problems

associ ated wi th desi gnat ions such as the thousand or ten

thousand year f lood. There

By avoiding the relative frequency

is no conceptual problem with



a rlsk deslgnatlon of 0.1, 0.01, of even 0.001 that a dyke

wi I ) be overtopped wlthin the next 50 or 100-year planning

period. This risk ls defined here as the Probability

based on all avallable lnformation that a future flood

di scharge wi l I be equal I ed or exceeded i n any year dur I ng

the per i od bounded by the p I ann I ng hor i zon,

The predictive dlstributlon aPProach to flood risk

anal ysls has been advocated bY

(e.g. llood et å1., I974; Vicens et ài., 1975; Bodo and

Unny, 1976- Stedinger, 1983; Bernier, 1967; Russell,

1982>. Except for Russell (1982) who obtained the

predictive distribution by discretization and computer

calculatlon, the others obtained the predlctive

distribution either analytlcaìly which requlres rather

sophisticated mathematics or by numerical integration

which ls a problem when integrating to infinity (Bodo and

Unny, 1976>.

distributlons other than the normal or lognormal

distribution such as the popular Gumbel and Gamma

distributlons ls very difficult (Stedinger, 1983).

In this chapter, the probabl I lty of exceedence of a

future flood discharge or the risk that a future floo_d

discharge is exceeded or equal led is obtained by using an

important property of the Predictlve distributlon. The

property is that the probability of exceedence of the

predictive distribution is the Bayes eetimator of the

probability of exceedence (under a squàred-error loss

a number of researchers

66

0btaining the predictive distribution for



function) tSinha, 19851

probability of exceedence for the Gumbel distribution and

?-parameter lognormal distribution wi I I be obtained using

a 'vague' prior distribution and Lindley' s Bayesian

approx imat ion procedure. The posteri or vari ances of these

est imates are then conpared to their correspondi ng MLE's.

In addition, Bayes estimates of the probability of

exceedence for the 2-parameter I ognormål distribut lon

obtained by Lindley's method will be compared to those

obtained analyt ical ly.

The Bayes est imates of the

Russel I's ( 1982) method of obtaining the predict ive

distribution v¡ill also be discussed ln this chapter.

Some modiflcations are made to his orlginal scheme to

improve the accuracy of the est imates and to deal wi th

serlal ly correlated data.

random variable is adequately

distribution.

4,2 ESTIIIATES OF THE PROBABi tITY OF EXCEEDENCE

The r i sk that a f I ood di scharge ,

or equalled in any year within the

planning horizon is by def inition
exceedence of. g, n ame I y Pq. That i s:

I t wi I I be assumed that the

descr I bed by a normal

P
Y

P(X >/ q)

9, will be exceeded

next 50 or 100 yeðr

the proÞability of

(4.1)



where f (x/ê) is the underlying probability density

function of x with parameter(s) 0.

-f-
I

The maximum I i kel ihood est irnate of

subst i tut i ng the l'1LE of I i nto (4.2) ,

f(x/0t dx

Ŷ

The

obtained

given by:

P
r*

-J^

asym

f rom

f.(x/8) dx

SO
!

/òp \
-tvl iq/

pt

(3.
otic
4).

2^
Var(9,

standard enror of P^, S^ can be
YY

For a two parameten case, this is

where Var(0,).
I

- (3.6). The

, * /òto\ 
t

lil% i

P q

of (4.4).

IU

predictive

f (x) given

is obtained by

68

v"r<ôrr - r/i|o.J/5\ cov(ô,,ôrr- \òs1/\òrr)

Var(å-). and Cov(8..at

standard-error of Ë q

obtain the probabil

di'stribution, f (x/C)

in (2.7>.

Ò
næ

= | t(x) dxì-
q
v

oOn0= | | f <x/s) I[(s) dB
I l^va vlL:

(4.3)

r
Y

Er) are given by (3.5)¿-
i s then the ssuare-root

Ity of exceedence of the

in (4,2) is replaced by

ox

(4.5)

(4.6)



^(

ñJ(
E

Y

Under the squared-error I oss funct i on,

the probabi I i ty of exceedence i s gi ven by

EtP(X >/ q/9))

Therefore, Bayes est imate of the probabi I i ty ot. exceedence

is equal to the probability of exceeoence of the
predictive distribution (Sinha, 1985). This property is
useful because it is easier to obtaln Bayes estimate using

Lindley's expansion than to obtaln the probabllity of,

exceedence from the predictive distribution r.¡hich requires
rather diff icult mathematics.

The poster i or standard-error of h t ^ 'tHg", Sq" is obtained

IJ-n

I

P(X >/ q/8) 7[tel ds

^ÐI
I

Çf r(x/e) T[(s) ds dx

f.(x/9 ) dx T[(€ ) dg

=Þ

Bayes estimate

as f ollows:

Var ( P _tx>9-

69

(4.7)

and define,

(4.8)

In the following Sections 4.3 and 4.4, maximum

likelihood estimates and Bayeé estlmates of the
probabi I i ty of exceedence wi I I be obtained for the Gumbel

and the I ognorma I di str I but i ons.

s^t
Y

E(Pq2l*>

/-r;rrF ¿*

Px2q
(4.9)

(4.10)



4,3 GUI,IBEt DISTRIBUTION

The Gumbel dlstrlbutlon has been described ln

Sectlon 3,5.

4.3.1 llaxlmum Llkel lhood Est lmate 0f P

The probability of. exceedence, PO, for the Gumbel

distributlon (3.9) is given by:

The maximum likelihood estimates of p^, p^, isY q'

obtained by substituting (ú, ;) obtained in (3.15) and

(3.17) into (4.4) and.

ðp o-;q = . '- o W,.Ho = u (4,I2>
ðø ê 

J' t L

(v

Àp
:s=lw.*z=rz
òu,l

where, *t = e*o {-exp[ -o ; u ] , *z = expl q 
I ]', 

I

f A t{\¡ ¡. \f ¡ lI /

(4.13)



\
Thls leads to:

= u tzort + uz2ozz

whene, tl 1 = Var( o);

are given by (3.22>

4.3.2 Bayes Estimate 0f PO

The 'vague' prior given

expansion (3.31 ) wi I I be used to

the probabllity of exceedence.

!t--l..\, anO 6,n =u7z YcrL \F/ r L¿

( 3.23 ) .

2u t u zrtz

= Po in (3.91)

ul

(4.14)

Cov(â, Él and

dp q

òo

And,

uzz

7t

All other constants are ås def ined in

deviat ions of u i i'E are given in Appendi

by (3.27> and Lindley's

obtai n Bayes est imate of

To obtain to*, let u(g)

q
òF'

uLz ò2p
= ---9- t

òo- ò¡r

.4
ÀoÞ

v r l - 

-9-t

¡l 
^òo'

Sectlon 3.5.3 and

t.



4.3.3 Nunerlcal Exanple

The annual maxlmum f lows of the Turtle River at Mine

Center (n = 58) are agaln used as an example. The maxinum

llkellhood estlmates for thls river are¡

45.810,

Id,.r
¡J

o1 - -0.02183, LgO =

LfZ = Q.0014625, LZf

=[

Let q = 300 
^3/=,

is glven by:

22.506r

9.5444

F= r0r.270

9.5444

40.2302

0.0054401, LOg = -S.0006033,

= -Q.0014985.

P=l
Y

The asymp tot i c

From (4.t2> and

72

I
I

)

The max i mum

- exp [-exp[ -.ô - û) I ]L L : iJ

dp g

standard-erro¡ QI 
' "q'

(4.13),

Subst I tut i ng

q

ul

likelihood estimate of

0.0012208;

lnto (4.14>,

0.006579

is obtained

òp q

ò¡.r

0 .01 298

,2

as f ollows:

0.0002814



Bayes est imate of the probab I I i ty of exceedence i s

obtained as f ollows:

u1 = þ = Q.oor22o8, ,z= 
þ = 0.0002a14,

Let u = P- = 0.01?98q

^\¿^urz= + = q-f *z[-ou, + wr - ,"tt.]dcrò¡ o3 
û' ' L (q - ¡l)

= 0.00002016

ò2P^ = - (q - ¡r) - 2.ul,l = --çl-¿¡
ào. o4 

' vzl o-ul - "1(q - ¡r) + Zow',

= Q.000060798

ò2p I
'zz = - -,o = -

ò¡rz c

where w. = r*p[ -exp - (q - F¡ 1¡ -L . 
J

v

w^ = "*oi- - (q - lt) I
on

Substituting into (3.31), we get:

EtP(X ), i00/x) = pot - O.O1blS

Also let v = uz - ,o, o.ooo16g4, and



u1 = 2u , u1 = ,o' = o.00003168,

,Z = 2u . ,Z = 0.000007303,

u tZ = 2u.u r, + 2u lu, = 0.0000012101 ,

u 1l = zu. u, , + zu rz - o.Ooooo4ss8,

'zz = ?u'uz? + 2'rz = Q'oooooo1563'

Subst i tut ing into (3.31 ) , oDe gets:

Etpq?ltl = Q.ooo26Bos

The poster i or var i anc

Var(P^lx) = EY_

=0

Def i ne the post er i or standard-error of po aE

Sq(Pq/z> = =o* = /lãrr-Þ;r=i

= Q.006210

.,^
t.t

of PO i

2l*)
q-

0003856

IP

which is less Itnan 5o = Q. CI06579,

at hen given by:

[nreoz*:]2

Table 4.1 summarizes the results for g = ZOO to SO0

in steps of 50 *3/=, for the Turtle'River at l,tine Center,

n = 58.



PROBAB i tI TY
TURTTE

P
q

q
q

ñ*
Y

Y

qt
Y

200

OF EXCEEDENCE AND STANDARD-ERROR
RMR AT I'liNE CENTER, n = 58

TABTE 4. T

0.10941

0.03071

0.11468

0.03026

250

0.03816

0 .0150 5

0.04204

0 .01454

30 0

r
q

S q

P
Y

q

q

0 .01298

0.00659

0.01515

0.00621

= MLE of Pq

350

It

0.00435

0.00271

0.00545

0 .00249

Standard error of îo
Bayes estimate of PO

Poster i or standard error of Po*

Fiood discharge in 
^3/=.

400

0.00147

0.00107

0.00196

0.00096

75

The table above shows that the posterion
standard-errors are smaller than the corresponding
standardf errors of the I'lLE's by a minute amount. Hoç¡ever,

Bayes estimates of the probability of exceedence are

higher than the correspondi ng ltLE,s. ?his is also to be

expected since Bayes est imateg incorporate both stochastic

as wel I as parameter uncertainty. See also Flgure 4,1.

450

0.00049

0.00042

0.00071

0.00036

500

ñ ññA { tU. UUU 1 I

0.00016

0.00026

0.00013
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The anal ysis was repeated for seven other maximum

annual flows events or rivers all over Canada. The

results are shown in Tabìe 4.2.

distribution wiil be considered.

in the next section, the 2-parameter lognormal

4.4 2-PARA}IETER

di str i but i on has I ong been a favour I te among hydro I ogi sts

for describing the distribution of f loods and other

phenomena. Beard (1974) also concluded that among those

distributions considered for modelling f lood f lor¿

distribut ions across the United States, none were found to
be superior to the iognormal distribution. Hence, it is

reaeonable to assume that flood flows ln much of North

Amerlca can be modelled by the slnple and physically

neasonable lognonmal dlstribution when one lacks evidence

to the contnary for the si te in question (Stedinger,

1983). In additlon, it ls very easy to generate serially
correlated lognormal variates needed for Monte carlo
slmulations,

The 2-parameter lognormal

LOGNORI'IAL DI STRI BUTION

77

or s lmp l y, the l ognorma l

The probabi I ity density function
dlstribution is given by:

al the lognormal



Tabte 4.2 Bayes (*)

Exceedence

Y

/̂>
vY

Pq*
sq*

â
.Y
/è^eY
Þn*

Q æ:t

A-
4nvY

Þa*

Qa*v\a

A-
â-v:

Þn*

q- )É

q
î/q
À-
Þn*

aæ*eY

q
A
ê^vY
Þa*

Sq*

Y.Avq
ê^g\t

Pq*
Qa*

J-5UU

0 .22830
0.03583
0.23087
0.03574

400
0.18091_
0.03661
0. r8490
0.03639

and

ofa

2000
0.09048

Red River at Redwood Bridge, n=93

0.02171 0.01-104
0.09374 0.03644
0.021_46 0.010?9

MLE (^) Estimates

Flood Discharge q.

2500
0.03411.

500
0.06970
0.02069
0.07359
0 .02030

North Maqnetawan River near Burk's FalLs, n=69
50 60 70 80 90 Loo

0.282C9 0.I2-q34 0.05624 0.02390 0.01006 o.oo4220.04456 0.030?6 0.01?97 0.00958 0.00485 o.oo2370.28455 0.1_3370 0.05999 0.02644 0.011-59 o.o0507
0 - 04449 0.03045 0.01?58 o.00924 0.00460 o.oo22L

ligeon River at Middle Falls, n=61

Sauqeen River near Walkerton, n=70

3000
0.01262
0.00513
0.01397
0.00494

of the Probability of
(q in m-ls)

600
0.0258t
0.01010
0.02844
0.00975

4000
0.00170
0.00097
0.00204
0 . 000 9l_

I qrì

34506
oqn?1
34652
05021

0.

ñ

700 800
0.00942 0.00342
0.0045? 0.00197
0.01088 0.00416
0.00433 0.00184

4500
0.00062
0.00041
0.00079
0.00037

900
0.00124
0.00083
0.001_59
0.00075

13091
n??rì?
| <5qx

03264

U.

rì

6000
0.22t90
n ôqqc?
0.22850
0 . 055L4

¿JU
0.04547
U. UTbJZ
0.04946
0.01_603
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5000
0.00023
0.0001_7
0.00030
0.00015

1000
0.00045
0.00034
0.00061
0.00030

110
0 .001? 6

0.0011_3
0.00223
0 .00i.04

450
0.00056
0.00045
0.00079
0.00039

12000
0.000?5
0.00075
0.00t22
0.00059

1400
0.001r7
0.00091
0.00160
0.00078

500
0.000I5
0.000]4
0.00023
0.000I1

7000
0.09089
0.03402
0.09897
0.03305

700
0.21293
0.04473
0 .2L7 42
0.04450

Skeena River at Usk, n=3?

300
0.01531_
0.00725
0.01759
0.00688

8000
0.03555
0.01775
0.04141
0.01675

800
0.10597
0..03054
0. r1140
0.03005

200
0.36860
0.05465
0.36955
0.05445

Bul-kLev River

350
0.00510
0.00297
0.00623
0.00275

9000
0.01365
0.00851
0.0r-7t5
0.00776

at Quick,
900

0.05t05 0

0.01874 0

0.05556 0

0 . 01819 0

250
. rr_J9 y
.03180
'ì'l o1 ?

.03130

0
n

U

0

Harricana Riviere

400
0.001_69
0.00I.1?
0.0022I
0.00t05

11000
0.00r98
0.00172
0.00293
0.00143

1200
0.00535
0.00328
0.00661
0.00296

10000
0.00521
0.00389
0.00?09
0.00340

n=5 4
I000

.02422

. 0l_0? 9

- 027 40
.0103L

á Àmos,
300

0.03107
0.0129?
0.03476
0.01243

Lr0 0

0.01140
0.00597
0 .0134 5

0.00560

n=52

0.

0.
0.

?qrì

00823
00456
00993
00423

400
0.00216
0.00149
0.00284
0..00133

450
0.0005?
0.00047
0.00081
0.00040



f.(x/y, d)

where x is the value

the mean and variance

/ãox

- û ( P, logx < oo ,

exp i-(logx - p)Zl2o2l

log X N(Lr, o2>

4,4,1 ¡laxlmun

s1

of

the random varlable

log x respectively.

Glven a

I ogar i thm of

given by:

ø> 0

Llkellhood Estlmates

random samp I e

the likel ihood

(4.15)

ìog t
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Fl

F and 6" are

That ls,

n=--
¿

Taking partial derlvatlves of L with respect to p and 6
and equating to zeîo, the $rell-knovrn maximum likelihood
est imatons of ¡i and d are obta i ned. Th i s i s gi ven by:

X_ = (X1r *2,

function of the

log ?T

_t,,on Xi - y)z

â--

_n
?

^.¿log o

X_ ), the
ll

pdf (4.15) is

n-sA
ú- f

log r i

I og * 
i

(4.16)

(4.17>



n )
^2 ¿ilos *i - p)-

The variance-covariance matrix of (lr, 6) is the inverse

of the symmetric matnix

I ¡J

-ò2t.--
òv"

- ò2t
ærãt

Th¡ f ì e
.9,

\¿-OL

d¡r dø

t2-OL
a

o6

(4.18)

1

- r1ìU.. L¡JlJ
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The maximum I ikel ihood estimator of the probabi I ity

of exceedence tO is given by:

,^ú1 | 1 r ^ 2 - ^?. lPo = I I exp l-(loq x - u)'/2 6" Jo*
'16;* 

-L - |

t-

tl

a
-ûlì-

-2^

( 4 .19 )

r= 1-þl-t
log q

-c

-t,

<4.20)

(4.21)

( 4 .22)



where Q(z) is the standard normal cumulative distribut ion

function evaluated at z = (log q - irrî, For the sake of

computer calculation, an algorithm (26.2.17) from

Abramowitz and Stegun (1 970) is used to calcuìate (4.22).

From (4.4) and (4.20>, the asymptotic standard-error
.:ot to is obtained, and where,

Àp
.r-
o¡r

Ap
q

òo

,ã;

log g - p

exp t -( ìos q - irZ, 2;2

This leads to;

à2
q

u1

4.4 .2 BAYES EST I Ì.IATES

2 ^2ul o
n

81

,2

The princlpl

Section 2.5 will
distribution of (lr,

a ^õ,, L nê-2 "
2n

u1 <4.23)

v(p, c)

es of Jeffreys (1961)

be used to obtain the

d). This leads to:

( 4.24>

I/6

(4.25>

described in

i o i n t pr i or

( 4 .26)



The iolnt posterlor dlstrlbutlon of (¡l , õ') ls obtained by

comblnlng the prior wlth the llkellhood functlon of. (4.15)

and applylng Bayes' theorem as ln (3.28),

Under the squared-error loss function, Bayes

estimator of the probabl I lty of exceedence, Po, is given

by (4.8). For the lognormal distribution, the analytical
solution to (4.8) ls given by:

P=

where v = n - I,

1-t

t(z; v) is the cumulative distribution function of a t

random variable with v degrees of freedom evaluated at z,
(Martz and hraller, 1982; Stedinger, 1983).

In thls sectlon, a Bayes estimator of Po wi I I aleo be

oþtained by using Lindley's Bayesian approximation
procedure and compared to (4,27), and the HLE Po given by

( 4.22) .

log

õ
t¿

q - p.
,

rt

¿-)
;-l

82

"l
ìog *i - ir'

Llndley's expansion (3.01)

I ognormal di str ibut i on i s given by:

Etu(g)/x)

<4.27)

and

u+

1+'
2

1

2

('1r-11 * uzznzz)

õ
( LO g uZoZZo r LZIuZ6L t6ZZ)

for the

t Ptu1o11

2-parameter

P zu zczz

( 4 .28)



r-^* , ^,,2a) Í,.f r uilt \ 5 
I a

Appendix F). Also u(0)

du
.t.

o l./

1
t¡aa

tt <

du
q^

L Å-UU

1fìn
3,OL

=

- ñ - -¿ ! - r- "2I - u á¡r" "I2 - "30

= Þo =- u in (1.2r) and

.)

-t
n

,t:

)^
UÁJ

w
I I --:-

õtl

'I1=

a
L

IJ

a
ou

a
\L

I

ñI

-;op

LA

t-
-41LI

aìl evaluated at (H, d) See Appendix F f or the

derivatives of. u,,'= and L,,'s. SuÞgtituting in (.1 .lB) one

+obtains Po'. Similarly, the posterior standard-error of

Oo* can b; obtained letting u(€) - Pq then.

L

^\¿
^ 

rl

u ¡o = _,
AL \¿AF

2n

-,Ò

0, òoO^ = |t¿ 
do.

from (4.20>

\ 5Ë Ë

a1l

q

I

4.4.3 Numerical Example

r--'T - *ln'E(P ','X) - r
YY

The annual maximum f lows of the Sturgeon River

at Fort Saskatchewan (n = 50 ) is used as an exampl e. The

f lood data for this river were found to be well f itted by

the ìognormål distribution.
estimates for this river ane:

(1.29)

The maximum ìikelihood



Ë = 3. 06423,

LZf = 247 .49238î , LOg

Let q - 250 ^3/", from <4.22)

tl1 = Q.010931' t?Z = Q.00298?1

= 0.739286, pZ = -t.gE26gG

UZZ = Q.08760007

Substituting into (4.25>

ul = Q.00215354, uZ = 0.00715791,

J

= !237 .46 I 933

P- = 0.00044408
I

Bayes

obtained by

(4.28). This

0.00045138

E(POz'x) - pq

Also let v = u(0) = p

estimate of P^*
Y

substituting the

leads to:

84

ur l = Q.0096822

ut = Q.000001912694,

u1t = 0'0000178747,

Substituting into (4,28>,

.,
E(P_o/x) = Q.00000059925q-

by Lindley's expansion is
evaluated constants into

4 = 0.000000t97208

0.00066735

Var(P^z'x)
Y_

uz =

uzz =

0.0000063574,

0.000180274

E(Pqzlt, - to*t



Hence S t = 0.00039229q

PO from the predictive

P=q

0.00000015389

Tabl e 4.3 summar i zes the resu I ts for q = 50 to 250

in steps of 5O m3/s for the Sturgeon River at Fort

Saskatche$¡an (n = 50). Flgure 4.2 shows the resuits
graphical ly.

1 - tt3.29l; 49)

0.00090

<s o = 0.00045138.

distribution (4.27) is given by:

PROBABILITY OF EXCEEDENCE AND STANDARD-ERROR
STURGEON RIVER AT E'ORT SASKATCHEl{ÀN(n = 50)

Y

AR

v

P

b

P

q 0.12574

q 0.03408?

q* o.tzg44

q* o. o33BB

q 0.12900

50

TABLE 4.3

100

0 .018564

0.009509

0.020825

0 .00 9232

0.02152

ÈtLE ( ^ ) ,

150

0.00 42341

0.002999

0 . 00 52497

0.002822

0.00576

Bayes( *),

200

0.00012558

0.0010969

0.0017r92

0.000942

0.00210

Predlctlve(-)

250

0 .00 0444

0.0004514

0.000668

0 .00 03922

0.00090
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The table above shows that the posterlor

standard-errors are smaller than the corresponding

standard errors for the HLE's, and Bayes estimates of the

probabillty oÍ. exceedence are higher, as expected.

Furthermore, Bayes estimates of the probability of

exceedence obtalned by Lindl ey's expansion is a fai rl y

good approximation to those estlmates obtained
analytlcally.

approximation,/Predictive distribution are given in Sinha

(1986a).

The analysis hras repeated for

annual flow events of rivers from

fit the lognormal distribution. The

Tab I e 4.4. 0n i y the MLE and Bayes

compareo.

Further comparlson between using Bayeslan

In the next section, the Bayes estimate of the

probability of exceedence by a discnete approach is

d i scussed ,

87

4.5 PREDICTIVE D]STRIBUTION BY DiSCRETE APPROXiI'IATiON

geven other max i mum

all over Canada that

resu I ts are shown i n

estimates of P^ are
Y

In this Section, the probabi I ity of exceedence of a

future value of X is obtained by a discrete approach.

As noted in Section 4.1, Bayes' theorem for
continuous probabil ity models may often be difficult to

apply because of potential problems in evaluating the



lY
Sq
Pq *
-*Uq,

BAYES (*) AND
PROBABILITY
DI SCHARGE q

250
.27793
.03869
.27I r 7
.03867

550
.48197
.0 47 65
. 4821 3
.04765

ñ

0
0
ñ

nY
Pq
5q
Hq
^*Þq

Êd
Þq
Yq
Q¡leY

TABLE 4.4

MtE ( ^) ESTII'|ATES OF THE
OF EXCEEDENCE OT A FLOOD
( I ognormal dlstrlbuti on)(q in as/s)

BOW RiVER AT BANFF.
300 400

0.09764 0.00770
0.02019 0.00266
0.09821 0.00809
0.02013 0.00263

0

0

0

0

RED RMR AT E!{ERS0H. n =
1000

0.20325
0 .0 370 1

0.20569
0 .0 3693

800
.27 489
.0 4122

^-?^^,¿{o¿Y
.0 4120

0

0

0

0

ROSEVÀY RIVER AT LOWER OHTO.

lq
Sq,
Pq *
sq *

rq
3q
D^*
^Y
sq*

500
0.00049
0.00024
0.00055
0.00023

n=76

2000

¡ \JUU

0.11058 0

0 .0 241 3 0

0.t123? 0
0.02407 0

0 .0 4092 0 .0 1 153
0.01438 0.00570
0.04326 0.01288
0.01419 0.00554

150
.4298 I 0
.04959 0

.43039 0

.0 4958 0

0
n

0

0

ENGLISH RIVER ÀT UIIFREVT LLE

Ðcu
0.00012
0.00007
0.00014
0.00006

70

88

3000

| 200
.0 4L 42
.0rr82
.0 4269

at l I ?Ê.W¡lrV

200
.2317 2
.0 397 7
.23346
.0 3973

450
.47409
.05140
.47 429
.05140

ñ

0

0

0

SLOCAN RIVER NEAR CRESENT VALLEY.

3500
0.00667
0.00372
0.00767
0.00358

rì=67

Rc o
Sq, 0
Pq * o

sq * o

600
.00003
.000019
.00004
.000018

4000
.00402
.00248

^^ 
A--',uu9t,

^ñ)e7

n

0

0

0

1600

0.00230
0.00593
0.00226

300
0.06465
0.01817
0 . 0 6641
0 . 0 180I

500 600
0 .32425 0 . t2878 0
0.0465e 0.02776 0

0.325s5 0. 1 3073 0
0 .0 4658 0 .02768 0

1000
.45038
.05715
.45087
.05715

150
^F^2?. ¿c¿õJ

.05109

.25517

.05103

SOUTH THOÌ{SON R IVER AT CHASE ^

2000
0.00077
0.00042
0.00087
0.00040

n=63

Pq
/A
Þq
Pq l
sq'

n

0

0
n

500
0.00611 0

0.00295 0
0.00671 0

0.00289 0

1200
0 .17267
0.03729
0.17513
0.03721

0
u

0

0

2200
0.00030
0.00018
0.00035
0.00017

700
.00080
.00053
.00095
.00050
n=60

BABINE RMR AT BABINE.'n =

1500
0.02583
0.00907
0.027r0
0.00896

700
.0 441 I
.01268
.04557
.01260

200
0.05798
0.01945
0.06037
0 .01930

800
0.01393
0.00497
0.01465
0.00492
n=AA

800
.00032
.00024
.00040
.00022

1000
.00123
.00061
.00137
.00059

0

0

0

0

1600
0.01268
0.00501
0.01350
0.00494

250
0.01147
0.00533
0.01248
0.00523

l Ann
0.00285
0.00137
n nner ?

0.00134
40

0

0

0

300
0,00220
0.00130
0.00252
0.00125

2000
0.00060
0.00034
0.00069
0.00033

0.
n

n

ñ

00043
00030
00052
00029

400
.00009
.00007
.00011
.00006

0
n

0

0



integral in the denominator of the equation. This

difflculty does not arise If the prior distribution is a

coniugate prlor dlstrlbutlon. A conjugate prior

distriÞution, eåy g(0), for a given sampling distribution,
say f(x/0), is such that the poeterior distribution T[(0/x)

and the prlor g(9) are members of the same fami ly of

distrlbut ions. A sampl ing dlstribut Ion and I ts conjugate

when combined using Bayes' theorem can be integrated
without difficulty. Conjugate distributions are given in

most standard texts such as Raiffa and Schlai ffer (1961 ),
Box and Tiao (1973) and Ang and Tang (1975). However,

wi th the possi bl e except ion of the norma I di str i but i on,

these are too nestrictlve In form to be useful to a

practising hydrologists (Russel l, t982).

in this study, the probabi I istic model adopted takes

either the annual flows themselves, their logarlthms, or

some other transformation of the flows to be normalìy

distrlbuted ç¡ith parameters (F, ú). the uncertainty in

these paràmeters must be expressed in a joint probabl I I ty

89

dlstrlbution for ¡/ and ú,

evldently contlnuous but for the sake of computer
calculations, Russeì I <lgBZ) adopted discnete
approximations for the joint dlstrlbution of p and 6.

This essentially amounts to approximating the joint

distnibution by a discrete mass function and applying

Bayes' theorem for discrete probability models.

addition to making computer analysis possible,

Thls joint distribution is

in



dlscretlzatlon has the advantage of avolding mathematlcal

complexitles that add llttle to the understanding of the

process. Arguments and derivations can thus be kept

slmple and stralght f orl¡ard (Booy and !lorgan, 1985).

In general terms, then, the Joint dlstrlbution of. X

when both the mean u and standard deviation o are

uncertain

X

is defined by:

P(p = !i, t -- oj)

N (,u, d)

f n¡

J

¿-
J

i = I to I, and

In words: X i s nornal I y di str ibuted wi th a mean ¡i and

standard devlation cr. The range of values these
parameters can have i s represented by i. J parameter

conditions or combinations (iri, nj), the probability of

each condi t ion being Pij. since these conditions åre

mutually exclusive and cumuìatively exhaugtive, their
probabi I i ty must add up to un I ty.

Equatlon (4.31) def ines an array of conditlonal
distributlons which can represent either the joint prior
or posterlor distribution of (l.l , cr).

Under the squaned-error I oss funct lon, Bayes est imate

of the probabi I i ty of exceedence i s gi ven by:

T

>P.. =¿) IJ
i

p.ii
¡J

i-lJ-¡

YU

tn

to J, and

( 4.30 )

(4.31)

nì
Y

Y

( 4 .32)

EtP(X >/ q)/x) (4.33)



h,here P^ is the probability of exceedence of. thetl

predictive dlstribution of. a future value of X. This

T1
rlfi) ) (P(x
4+
JL

v
T

relationship $Jas proved earlier for the continuous case

(see Section 4.?),
probabi ì i ty that X is equal to or greater than a given

val u8 9, and the probabi I i ty of this event is governed by

a set of mutually exclusive and collectively exhaustive

>/ 9)/p i,

conditions (1,i, oj).

r.)
J

event occurs together with the condition is equal to the

conditionaì probability of the event given that condition.
Summing over al I possible conditions resuì ts in the average

probability of the event (X >/ q) weighted by each

probabi I i ty condit ion.

pl. i i,¡J

Hence, (4.34> represents the

(4.34)

( 4.35 )

Further, the probability that the

4.5.1 Probabl I lty Dlstrtbutlon of u and Ç

9T

dlstributions of the parameters are entirely
and that there is very little prior lnformation
the parameters (f , 6) relative to the i

contained in the sample. The only subjectlve
the choice of the underlying distribution of

In thls study it wi ll be assumeo that the

data-based

concern i ng

nformation
elenent is

the baslc



random varlable

distnlbuted.

relatively little prior information, the posterior
dlstribution of. the parameters will depend almost solely
on the sample information, as summarised by the likellhood
functlon. This produces a posterlor dlstribution quite

simiìar to the distribution obtained by classical

t{tth

X, wh i ch

moderately

inference.

interpnetation.

ls assumed

parameters as random variables and is willing to make

probabi I i ty statements concerni ng the paraneters, Hhereas,

the classlcal statistlcian conslders the parameters åe

fixed. The Bayesian approach thus al lows the uncertalnty
in the parameters to be quantif ied and using Bayes,

theorem penmi ts updatlng the parameter distrlbution ag

additional informatlon becomes avai lable.
l'lhen little prior knowledge is assumed about t¡

relatlve to the information which would be suppl ied from

the data, and a sanp I e of n observat I ons from a norma I

distribution with known variance 62 are given, then the

posterior distrlbution of y is also normal ly distributed

sized sample

The important di fference, however, is in

to be normally

The Bayeslan statistician treats the

(n >/ 30) and

92

(Box and Tiao, 1973).

stochastical ly independent, the posterior distribution of.

F is given by:

IT. (y/a, x)

If the n observations are

N(i, c2/n) ( 4 .36 )



That ls, the posterior distribution lf<y/o, x) is
normal ly distributed with meèn i and variance o2/n.

Simi iarly, given a sample x of n observations from a

normal distribution N(F, ê>, r.¡ith u known and with little
prior information about ø relative to that suppi ied by the

data, the poster ior distribut ion of. I is approximatel y

"chi-squared" (\2). However, for (n 7 30), the a-
distributlon is approximately normaì (Benjamin and

Cornel l, l97O),

Hence i n th i s study, both the mean and standard

deviation are assumed to be approximately normally
distributed. consequently, only the nean of the mean= *u

and the standard dev i at i on of the mean= % and, the mean of
the standard deviatio0 Dcr, and the standard deviation of
the standard deviation oo are reguired to def ine the
distributions of. (p, o) respectively.

The mean of the mean= r¡, corresponds to the eample

mean x-, and the mean of the standard deviatior il_
corresponds to the samp I e standard deviation s.

93

standard devl'atlon of the mean op, and standard deviation
of the standard deviation fo are more d¡f f icult to
deternine.
correlatlon structure of the random variable. Estimates
can be obtained by Honte carlo. techniques and the
procedure Is dlscussed in Chapter Seven.

They depend very much on the serial

The



4,5.2 D lscretlzatlon And Asslgnment 0f Probabt I ltles

Havlng deflned the dlstrlbutions of the mean and

standard devlatlon, the next step ls to dlscretlze and

assign probabi I I ties to the discrete values of the means

and standard deviations. This allorss the joint

distributions to be defined.

The discrete approxlmation Is accomplished by

dividing the set of possible values of, the paraneter of

interest into a number of intervals and determining the

probability of each intervaì.
assumed to be à probabi I ity-mass located at the mid-point
of the interval

are chosen to represent the normal distr ibut i on.

Eleven discrete values o't each of the two parameters

values are as shown in Figure 4.3 for the distrlbution of

the mean, with the initial probabilities assigned as the

correspondl ng èreas.

Thus f or both the parameters, the e I even ordered

values are 0.0113, 0.0280, 0.0660, 0.1210, 0.12S0, O.Ig?4,

0.1750, 0.1210, 0.0660, 0.0280, and 0.0110 respectively.
s I nce the mean and standard dev I at i on of the normal

distribution are independent, the joint probabilities are

simply the product of the tçro individual probabilities,

and in the eleven discrete value case, the corresponding

ioint probability distribution may be represented by a 11 x

94

This probability is then

I 1 mat n ix The normalised probability matrix is shown in

These
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Figure 4.4.

0nce the Jolnt probabi r rtres pij are estabr ished,
the probabi I i ty of exceedence of a future f I ood di scharge

*{I' vo" can be obtalned from (4.04). Also if additional
inf ormatlon becomes avai lable r.rhich may be ln the f onm of
newly recorded f lows, historical f lows or regional
information, then Po* can be updated using the neçr

information. This upd;ting is achieved in an indirecc way

by changing the I ikel ihood of. the parameter conditions,
l-!tij, in the I ight of the new information. This procedure

explained in detaii in Booy and Morgan (l9gs) is as

f ollows:

Let the Pij be the prior probabilities of the
condition (Fi, -¡) for all values of i and j. Thrs årråy
is called the prior probability distribution of the
pàrameters, slnce lt h,as established prior to the
availability of the new information. Let an event A be

observed, and for this event al I conditional probabi I ities
P(A/(P,, g-i )) have Þeen determined. p(A,2,(g,, r:)) is the' ¡ J ----' ¡ J

likelihood of A given the corresoonding conditions
tl'i,tj). The observation of the event A changes the
probability assegsment of the condition (Hi, oj) in that
one is in a better position to revise one,s degree or
be I i ef about (1, , 6). The rev ised probabl I i t les of the

conditions (pi, oj) af ter the observation of A are
obtained by applying Bayes, theonem as fol lows:

96



MEANS:

STD. DEV:

PROBABILITY MATRIX

u -2.5o'o o

u -2.0o'o o

u -1.5ooo
u -1'0ooo

u -0.5ooo

u o

u *0.5ooo

u *l .0ooo

u *1.5ooo

u *2.0o'o o

p *2.5ooo

m -2.5ouìl

0.000128

0.000316

0 .000746

0.001367

0.001978

0 . 00223 I

0.001978

0.001367

0 .000746

0.000316

Figure 4.4

Joint Probabilitv of the Mean and Standard Deviation

m -2.0ouu

0.000316

0.000784

0.001848

0.003388

0.004900

0.005527

0.004900

0.003388

0.001848

0.000784

m -1.5o

0.000746

0.001848

0.004356

0.007986

0.011550

0.013028

0. 0 i 1550

0.007986

0.004356

0.001848

m -1.0ouu

0 . 00i 367

0.003388

0.007986

0.014641

0.021175

0.023885

0.021175

0.01464r

0 .007986

0.003388

m -0.5ouu

0.001978

0.004900

0.011s50

0.021175

0.030625

0.034545

0.030625

0.021175

0.011550

0. 004900

0.000128 0.000316

m
p

0 . 00223 1

0. 005527

0.013028

0.023885

0.034545

0.038967

0.034545

0.023885

0.013028

0.005527

m *0.5ouu

0.001978

0.004900

0.011550

0.021175

0.030625

0.034545

0.030625

0.021175

0.011550

0.004900

0.000746 0.001367 0.001978 0.002231 0.001978 0.001367 0.000746 0.000316 0.000128

m *1.0ouu

0.001367

0.003388

0.007986

0.014641

0.021175

0.023885

0.021175

0 .0 1464i

0.007986

0.003388

m *1.5quu

0.000746

0.001848

0.004356

0.007986

0.01 1550

0.013028

0.011550

0.007986

0.004356

0.001848

m *2.0ouu

0.00031 6

0.000784

0.001848

0. 003388

0.004900

0.005527

0.004900

0.003388

0 . 001 848

0.000784

rn *2.5o
ìl ìl

0.000218

0.000316

0.000746

0.00i367

0.001978

0 . 00223 I

0.001978

0.001367

0 .000746

0.000316

.o
{



P((y,, c-j),/A)

where Pt(Fi, rj)/A) is the posterior or updated
probability distribution of the parameters (Fl, oj)
conditioned on the observation of A; each value of

f or

P{{¡li,Íi)iA) being salculated as the product of the'¡J

likelihood of A, P(A,z(¡r., o-j)) given the corresponding
¡an¿{ i} iaa | ¡sonqrrron ,lri, oj) and the prior probability of that
condition, Pi¡. The normal izing factor c ensures that the

sum of the posterior probabilities for all conditions add

up to unity.

c

and

P(A/ (pi,

J

cr, ))

J.

The updated probab i I i ty of exceedence of a future
f lood discharge 9, Po* can now be obtained from the

updated parameter array by means of the total probabi I i ty

theorem in the form of, (4.34).

to

If more than one event is available for updating,

the procedure can be repeated for each event, using the

posterion parameter distributlon after the first updating

as the pnlor for the second event. etc.

(4.37)

98



4 .6 SUI'iltARY

In this chapter, the predictive distributlon
approach to flood risk analysls was described. The

predictive distribution combines the stochastic
uncertainty that is inherent in the probabilistic
phenomenon and the parameter uncertalnty of the model lt
defines.
proþability of exceedence (under a sguared-error loss

function) is the probabiiity of exceedence of the

pred ict i ve di str lbu t ion.

I t was shown that the Bayes est imate of the

est imates of the probabl I i ty of exceedence were cal cul ated

using Llndley's expansion whlch greatly simplifles the

computation.

sma I I er standard error of est imate than the method of

maximun likellhood.
A discrete approx imat i on approach to calculating

Bayes est imate of the probabi I i ty of exceeoence was al so

described. This approach is entlrely data-based. It can

be used for serlally correlated or serlally lndependent

data. Also the distributions can be updated with different
types of informatlon.

I t was shown that Bayes est imates gi ve a

99

Using thls property, Bayes

In the f ollowing chapter, the serial correlation
structure of annual peak flows of canadian rivers are

analysed.



5.1

SERIAT CORRELATION STRUCTURE OF ANNUAT

PEAK FTOWS OF CANADIAN RIVERS

GEN ERA L

In previous chapters, the customary åssumption that

annual peak f low series are lndependent was used. For the

vast majori ty of rivens thls assumption appears to be

supported by stat i st i cal ev idence.

CHAPTER 5

The point that is overlooked, however, ls that most

statistical tests of serlal independence are designed to
show up only short term serial correlation,
insensitlve to the long ternr serlal correlation structure
of the data which is general ly far more important (l{al I ls
and Matal as, 1971>.

To demonstrate this issue, the serial correlation
structure of the recorded or reconstructed natural annual

peak f ìow series of 49 rivers from all over canada was

anaiysed. The years of record range from about 40 to 90

yeàrs. The average I ength of. record i s 60 years. The

rivers are I isted in Tabl e 5.1.
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The results show that while shont term serlal
cornelatlon is practically absent for most of the peak

flow series, slgnificant ìong term serial correlation is
present for a I arge number of peak f low series tested.

They are



Table 5.1 Huret'a K and
natural annual
Rlvers.
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5.2 STATiSTICAT TESTS OF INDEPENDENCE

Each of the f I ood peak series was subjected to the

fol lor.¡ing pèrametric and non-parametric tests of

i ndependence.

a) Anderson test for first order serial correlation
coefficient.

b) Median cnossing test.
c) Rank difference test.
d) Spearman rank order correlation test.
e ) T{ald-tlolf owl tz test.
f) Cumulative periodogram test.
g) Turnlng point test.
h ) Rescaled-range or Hurst coe f.,f.ic i ent,

Tests (a) to (g) are the commonly used

i ndepe nde nce .

These tests are weì I documented in most statistical
texts on time series analysis such as Kendal I and stuart
( 1973).

LU4

For the. 49 rivers tested, tests (a) - (g) gave

similar results, and confirms the general opinion that on

the whole, any short term serial correlation is smal I An

average value of 0.08 for the lag-one serial connelation
ceof f i ci ent !¡as obtai ned. slx of. the 4g ser les showed a

slgnlf lcant lag-one serlal correlatlon at the 10ä level
uslng Anderson's test (Anderson, 1g42).

tests of



the situation, however, is quite different for the

long term serial correlation as measured by the Hurst

coefflcient.

geophyslcal tlme series was flrst lnvestlgated by Hurst

The long term serial

(1951).

measured by means of the Hurst coeff I c i ent , h. A more

detailed discussion of this parameter is given in Appendix

\).

The strength of thls type of correlation ls

coefficlent ls estimated by Hurst's K value in whlch K is
theoretical ly 0.5 for series of independent data and it
i ncreases when there i s a greater degree of persi stence

and that I t cannot exceed 1,0. A compar lson between I ong

term serial ly correlated series and serial ly independent

series is presented in the next section.

It ls suff icient to mentlon here that the Hurst

correlation structure of

5.3 tONG TERI'I SERIAL CORRETATI ON

rrì1

For thg purpose of comparison between ìong term

serially correlated series and senially independent
series, Figure 5.1 is shown f lnst. It shows a theoretical
t ime ser i es wl th no ser l a l corre l at l on. The graph shows,

nevertheless, periods of relatively. high and periods of
relatively lor.¡ values of the variable. This chance

group I ng may mask, or i ndeed destroy, any group I ng that
might be caused by true long term serial correlation. It
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is therefore not suf,tlcient to examlne a time series
visual ly to åssess its serlal correlation strucrure; è

proper statistlcal analysls is essentlal, yet, even a

visual inspection can be useful in some respects as can De

seen from the next series of f lgures,

Flgures 5.2a - 5.2e illustrate a few of the observed

annual peak flow serles that were studled. The series are

a I I approx irnate ly log-norma I ly di str lbuted. To make them

comparable, the standardized log-transform is shown for
each series as well as the flow ln cubic metres per

second. These ser i es demonstrate to a greater or I esser
degree a charàcterjstic grouping oÍ high and low peèK

f lows in periods of irregular length.
group i ng i s measured by the Hurst's K-value, which is
indlcated fon each serles. The questlon novJ arlses: is
this grouping statisticaì | y signi ficant, or is i t due to
chance?

To answer th is quest i on, the Hurst's K- va I ues \^Jere

calculated for all 4g peak flow series. They are shown on

Table 5.1.
observed K-values was plotted and approxlmated by a normal

probabi I lty denslty function. Thls ls shown in Figure

number of independent series of the same length that
v¡ere obtained by theoretlcal simulation. The probabi llty
density function of K obtalned from the generated

independent series is also plotted on Figure S.3.

To analyse them, a histogram of the 49

The ca I cu I at i ons were then repeated for èn equa I

The degree of
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A comparison of the two probabirity density
functions shows that the standard deviatlon of the
K-val ues, whi ch i s part I y caused by chance group i ngs, i s

the såme and egual to 0.07. But the mean value of K ls
significantly greater for the observed peak flow series
than for the independent data.

The probablllty that
exceeded, based on the
independence, is about 10t. For the 49 Canadlan rivers
tested, about half the rivens showed a Hurst,s K of 0.70 or
greater, In

Hurgt's K to be as large or larger than 0.25.
probability that ( = 0.zs is equailed or exceeded, based
on the åssumption of independence, is onry about zz.

Hence, tt is clear that long term serial correlation
ls as much a reallty for the peak flow series of the
canadian rlvers as it is for the many geophysicar series
Hurst found.

Unfortunately, in the extensive discussions of the
Hurst phenom.enon, much attention was focussed on the
presumed " lnflnlte memory" supposedly tmpl led by a K_value
that ls signif rcantry and persistently rarger than 0.s.
The grouplng of, high and low values does not ref lect some

mysterious memory of what happened in a dlstant past. It
ls slmply a fonm of varlabllity whlch one encounters ln
natural tlme serles, and whlch Is of a dlfferent nature

fact, about 202 of the rlvers showeo a

( = 0.70 ls equalled or

alternate assumption of

I r2

than the variability

The

one finds in control led repeataÞle



êxperlments. The grouplnq reflects a greater variablllty
of the same mean and standard devlatlon compared to å

sequence of serlal ly independent data.

phenomenon or to exp I al n I t away. However, what remal ns

Is Hurst's monumental achlevement which exposed the

long-term correlation structure of a vast variety of

geophysical time series and his legacy of a useful
parameter that serves as an object I ve measure of I ong term

serlal correlatlon. Denying or lgnorlng the existence of

the Hurst phenomenon as a characteristic of natural

variability ref lects pre-conceived notions that
variabi I ity does not stem from observation but from the

fact that statlstical models do not f it the actual

sltuatlon.

Much has been wrltten to explain the Hurst

5.4 SUt'lt{ARY
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in this.chapter, the serial correlatlon structure of

annual f lood series from all over Canada \.¡as analysed. It
was found that significant long term serlal correlation as

measured by the Hurst coefflclent is present in a large

number of rivers.
In the next chapter, the nodelling of long term

serial correlation is discussed. This wil i be fol lowed by



the implications of long term serial correlation on flood
risk analysis.

11Al L.t



6. 1 GENERAL

TiHE SERiES I'IODEtS OT PEAK FtO}JS

peak f lows

correlation
cor re I at i on

known to

in the previous chapter, it was shown that annual

CHAPTER 6

whlle having negligible short term serial
often possess a signlficant long term serial

paràmeter estimation from the flood data. The effect of

this uncertainty on flood risk will be demonstrated in

Chapter 7 through the use of the dlscretlzed predict lve

dlstribution approach as described ln Section 4.5. Before

thls can be carried out, however, one would require the

structure.

substantiaìly increase the uncertainty in

probabi ì ity distriþution of. these pårameters.

normal I y distributed t ime series with members that are

independent or that fol I ow a simple correl ation stnucture,
the distribution of the parameters (p,6) can be obtained
-^-I.,|i^-IL,or¡é¡yL¡r-criry. For f lood series with a complicated serial
correlation structure, an analytical approach is out of

the guest i on. 0ne must resort to Honte Car I o techn i ques.

To obtaln the distribution of the parameters one

Long term serial correlation is

requlres a theoretical
neproduce the correct conrelatlon structure of the peàk

f lor.¡ ser les. A number of such t ime ser ies mode I s r.¡h I ch

can model serles characterized by both

f ime series model that will

For a

small finst order



serlãl correlatiorr coefflclent årrd a hlgh Hurst

coefficient are currently aval lable. These models arei

the Fast Fractlonal Gausslan Nolse Model (FFGN); the

Broken-Llne Model (BL); the ARMA (1,1) Model¡ and the

ARMA-MARK0V (AM) Model. It wl I I be shown, however, that

these model s are el ther too dl fficul t to use by practislng

engineers or that they requl ne excessi ve computen t Ime.

An added difficulty is that smaìl sample biases in these

modeis are not adequately documented. An efficient modeì

that is simple to use ls therefore needed.

in this chapter, the procedure for modelling a

hydrological time series, including the correction for

bias of parameter estimation, ls flrst presented. This is

followed by a review of the currently available models

that can reproduce the correct short and I ong term ser i a I

correìation.
tlme series model that is capabìe of neproduclng short and

long term serial correlation as well as the relevant

r{É

marglnaì

var I ance,

Finally,

di

lõ

stributÌon properties,
presented here.

simple and relatively eff icient

1.e., the mean and



6.2 I,f ODELT ING

To model a hydrological

estimate a set of statistics,
which form the model parameters.

HYDROLOG i C Ti}IE SERI ES

study, these are the mean, vâriance, f irst order serial

correlation coeff iclent and the Hurst coeff iclent. Each

parameter must be est irnated from the observed data. The

model is then used to transform

into K synthetic sequences, ç¡hich provide equally probable

random examp I es of the nànner i n wh i ch the t ime ser i es may

evolve ln the future.
generally assessed by comparins the statlstlcs of the

synthetic data sequences, õ,. with the historical
statistic= 9i. 0ne must distinguisn Þetween statistical
resemb I ance i n the i ong run ( for seguences whose I ength

àpproaches inf lnity) and in the short run (for sequences

that are about the sàme length as the planning horizon).

Accordlng to Matalas (1977>, statistical resemblance in

the long run is achieved if the 0i åpproach the Ei as the

length of the seguences lncreases; statlstical resemblance

in the short run is obtained when the 0,i, the averages of

the ôi trvËr the ä aynthetic Epgupncpãr apFroach the Ëi aã

K increases.

|.l
-i t¡

lme series one must

l-l- ¿ | Èt ¡ t¡¡l

In the context of this

1t-
It I

sets of random numbers

The validity of the modeì is

Hatalas and l{al

noted that, aìthough

run resemb l an ce, the

lis (1976) and Matalas (t977> have

short run resembìance implies long

converse ooes not necegsanily hold



since the

short run resemblance, the estimated values from the

historic series must be corrected for bias before being

used in the generatlon model. 0f the various statistics

that are empl oyed as model parameters, only the mean is

statisticaìly unbiased; the others are not. The correction

for bi as in al ì other parameters depends upon:

t+
1

may be biased est imates of the Ê i . To obtain

/ ti
\I¡

(ii

the length of synthetic sequences

genenated;

i)

in the pnesence of. serial correlation, expressions

for bias cornections are diff icuit to obtain analytically,

and must of ten be evaluated by Monte Canlo methods.

the t i me ser i es mode ì emp I oyed; and

the distribution function used to generate

the random i nputs to the mode ì .

Unf ortunately, the problem of bias has attracted

relatively I ittle attention. A complete treatment of the

probl em of bias is beyond the scope of th is study. The

118

discussion presented in the next section

the bias problem !¡as addressed.

be

illustrates how



6.3 BIAS CORRECTiON IN

should not be iudged solely on its abiìity to preserve the

parameters explicitly bullt into its structure, such

preservation ls a necessary crlterlon of the formal

correctness of the model (Klemes, 1972>. Nevertheless, âs

noted in the previous section, short run resembìance may

not be achieved due to the biäs in the estimatlon of the

Although the performance of

PARAÈIETER EST i I'fAT I ON

parameters. it wi I I be shown in this section that the

bias in the estimation of the parameters may be

substantial.

standard deviation,

coeff icient and Hurst coeff icient will Serve to illustrate

the order of magnitude of the necessary cornections for

bias.

a time series model

0ne of the few studies of bias in estimates of the

standard deviation lJas presented by l+¡allis and Matalas

(1972). They derlved blas correctlons for sample slzes of

100 f or a ìag one Þlarkov model tAR( 1) I usi ng Monte Car lo

methods. the resu I ts are shown i n Tabl e 6.1, They appl y

only to AR(1) models with normally distributed random

terms. The use of the correction factors is iìlustrated

by an exampìe.

Some resul ts given, which relate to the

119

f irst order serial correlation



CORRECTiON FACTORS, d , FOR THE STANDARD DEViATION
0F AN AR( 1) PROCESS I^tiTH A SAI'!PtE SI ZE 0F 100

(af ter llallls and l,latalas, 1972)

p 0 0.1 0.2 0.3 0.4 0.s 0.6 0.7 0.8 0.e

c{ 1 .0 0.99 0.99 0.99 0.98 0.98 0.97 0.95 0.94 0.90

TAB[E 6. 1

The expected values of the f irst serlal correìation

coefficient, Etp(1)J, given o for an AR(1) model ane also

obtained by l{al I is and Matalas (1972>, for sample sizes of

100. These nesults are shown in Table 6.2.

r:ri

EXPECTED VATUES OF THE FIRST SERTAL CORRELATION

EIp( 1) ], FOR AN AR( 1) PROCESS WITH A GMN

VALUE 0F p AND A SAI'IPLE SIZE 0F 100
:( af ter llal I ls and l,tatalas, 1972)

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.e

Eip(1)1 0.09 0.18 0.28 0.38 0.17 0.s7 0.67 0.76 0.86

TABTE 6.2



The use of Tables 6,1 and 6.2 mav be lllustrated bv

means of the fol I owi ng example quoted by Matalas and

t{alìis (1976>. Given that realizations are to be

generated for an AR( 1 ) mode I wl th å = 1O uni ts and p =

0.8, attention is paid f irstìy to the latter' The value

of the f irst serlal correlation coeff icient to be used in

the model ln order to ensure that Etp{1) ) = $ '8 may be

found from Table 6.2 to be 0.84,

Table 6.1 yields a cornection factor for the standard

deviation of c{ = 0.92,

standard dev iat Ion is therefore equal to t0/0.92

Synthetic flows would then be generated by using in the

generation process the vaìues of 10.87 and 0.84 for the

standard deviation and f irst

coe f f i c i ent respec t i ve ly .

Various algorithms for estimating the first serial

çorreìatlon coeff lcient lrere investlgated by l.lallis and

0'Connell (197?,). They found that for an AR(1) model with

normal ìy distributed randorn tern, the algorithm suggested

by Jenklns and l{atts (1968) and Box and Jenkins (1970)

L?1

Th e unb i ased est ima te of. th e

Using thls value for f,

gives a simple and satisfactory estimate.

aìgorithm is given by:

serial correlation

p{k)

1ñ a?

n -l<

È-.{

(*t - ;)(*t*k - ;)
-g
à (*.' _.2

The general

(6.1)



i n wh i ch the most commoni y used measure of short term

serial correlation is the f irst serial correlation
coeff icient É,r>.

However, the estimate p(1),
blased downwards, and i{allis
suggested that the computed val ue

p{1)

where n is the sampl e size, àîd ó< t >

(6.1). This bias correction, however,

for othen processes such as the ARMA ( 1 , 1 ) or FFGN. The

bias in p{ 1 ) for these processes is a funct i on of. other
parèmeters in the model as wel I as the seguence length to

be generated.

I p( r )

obtained through (6.1) is

and 0'Connell (1972)

of o should be replaced

I

;

Before the correction of. bias ln the estimation of

the Hurst coefficient is discussed, a clear distinction
must be drawn between the est imat i on procedune suggested

by Hurst , ( 1 951 , 1956) and that proposed by Mande I brot and

\{allis (1969> and extended by triallis and Matalas (1970),

The Hurst estimator, K, and the }lallls and Matalas

ltt

t aÒ
L LL

a

;

estimator, H, are discussed jn Appendix G.

lq

tq

sufficient to mention here that both H and K are biased

estimated from

not sat isf actory

estimators of the Hurst coefficient.

,(6.2)

shows greater b i as but sma I I er var i ance than H. However .

both H and K are unbiased around 0.7, and that the bias

The estimator K

it is



forbothHandKdecreaseswithincreasingsampiesízen

but at a very sloç rate (\{allis and Matalas' I97I) ' The

magnitudeofbiasforbothHandK,however'wouìddepend
onthetimeseriesmodelused.Adiscussionofthedegree
ofbiasinHurst,gKforamodifiedfastfractional
gausslan nolse process for a samPle length of' 70 years Is

giveninaiatersectlon'Hence'toPreserveagiven

valueoftheHurstcoefficient,appropriatead.lustmentS

have to be made to the input parameters of the generation

mode I .

ThebriefdiscuSsiononbiascorrectioninparameter

estimationgiveninthisSectionhasshownthatboththe
variability and serlal correìation of generated series may

be seriously underestimated if the inPut parameters of the

generationmodelarenotproperìycorrectedforbias.

inthefoìlowingsectionS,èbriefrevieç¡ofthe

currentlyaVaiìabìemodelsthatareabletopreServe

simultaneously a high Hurst coefficient and a ìow first

seria]corre]atloncoefficlentwhlchistypicalofpeak
fìow series, are presented. The modeìs are presented ln

chronoìoglcal order of their development'

r23



6.4 FAST FRACTIONAL GAUSSIAN NOiSE }IODEt (FFGN)

in thls section, the Fractlonal Gaussian Noise (FGN)

procÊse for modei l lng long term seriaì correlatlon Is

f lnst Intnoduced. The diffenence between the FGN process

and short term serial correlation processes is

demonstrated i n terms of. corre I at i on funct I ons and samp I e

functions. Pinally, the most efficient approxirnation to

FGN, the Fast Fractional Guassian Noise (FFGN) generator,

is presented together r.¡ith the procedure to modify FFGN to

fit the low lag serial correlation coefficient.

A mathematical explanation of the Hurst phenomenon,

as described in Appendlx G, was provided by Mandelbnot

( 1965).

self-similar stochastic process called fractional gåussian

h^tcôQ

were published by Mandelbrot and Van Ness (1968) where the

termlnology of Fractional Brownian Motion (FBM) and

Fract i onal Gaussian Noises (FGN) was lntroduced to the

hydrological community. Readers are referred to the papers

by l'landelþrot et al, (1968), l'fandelbrot and l{allls (1969a,

b, c, d, e) and, Lawrence and Kottegoda (t977) for further
delails.

He reproduced the Hurst phenomenon by usi ng a

T ¿'1

The propert ies of such sel f simi I ar processes

FGN employs an autocorrelation function which is

independent of any observed correlogram but will

automatically reproduce the desired Hurst coef f icient.



The covarlance of

of a discrete-tlme

C(s;h)

The compar i son of the corre I ogram foc FGN and the

I ag- one Markov process t AR( I ) I on the basi s of equa I

values of p{1), the f irst serlal correlatlon coeff iclent,
is shown in Figure 6.1.

By def inition, fractional noises are continuous
paràmeter processes wlth "infinite memories"; that is,
there is è small but non-negligible statistical
relationship betç¡een members indef initely far apart in the

ir= | ls +
;L
¿.

two terms s time

FGN standardized

ôtÀ
r lttt ,2h¿t3l

unlts apart i

variables is

qÊriac

approximated. Mandelbrot and l.jal ì is ( 1969a) proposed two

discrete approximations, Type I and Type II, rvhich consist
of r+eighted moving averages of independent Gaussian
variabìes for the generation of f lorvs.

Perhaps the best way to appreclate the difference
between whlte., Gaussian noise and f ractional noise is to

compare sampl e funct ions. Flgure 6.2 shows a 1000 poi nt

realization of white noise and Figure 6.3 is a 1000 point
real ization of approximated fractional noise r.¡ith a Hurst

tq

n a series

gi ven by:

t ,tn]

For computer sirnu lat i on, i t must theref ore be

125

(6.3)

coeff icient, þ = 0,9.

It can be seen

more low frequenc
correlation than does

lhat Flgure 6,3 exhiblts conslderably
y behavlour or long term serlal
Figure 6.2.



Flgure 6.1

FGN h = O.7

Lag-One l'larkov

Compar I son of FGN and Lag-one I'larkov process
Basls of Egual values of p{1)

(after O"ConneII' 1977)

p<l> = 0.32

on the

e.-ì
,f,\



I¡

F i grure 6.2 PIot of 1000 poInts of Standarcilzed Gausstan
Wh I te Noi se

(after 0,Connel l, tg77)

L2?

5001

F I çrurc

¡ 000

6.3 Plot of 1000 polnts
Fract I onal Gaussl an

¡f0OO

of Standardlzed lnct
Nolgewlthh-0.9



Table 6.3 shows a f urther compar Ison betweerr AR( 1)

process, FGN and ARMA (i,1) correlation functlon with same

ìag one correlation coef f Icient.

COI'tPARI SON OF SERIAL CORRELATI ON COEFFI C I ENTS OF
AR(1), FGN, AND ARI'IA (1,1) PROCESSES(after Loucks et al,, 1981)

Ì -^¡,Og AR( 1)(P(1) = Q.376)

,f

I

Á-

lo

ö¿

Þ¿+

qnn

TABLE 6. 3

(\ ??<

ñ ôz)rlav.vLvL

x 10-7

., , ^ - I 'l^ ¡u

.. ,^-lBA IU

., , ^ -54À lu

., { ^ -213
^ 

lu

I.b

.A

Án

6.8

¿.u

FGN
(h = 0.73)

I '.! t-¡

U.Ji b

0.160

0 . 0 52

0 . 0 36

U.UlC

rì ô{ôV.V LL

Both the Type I and Type Ii approxlmations oÍ

discrete fractional noise developed by Mandelbrot and

\{allls (1969a) have several draçrbacks. Type I

aPProx imat i ons proved to be expensive computat ional ì y,

whi le the Type ii approximations was notably deficient in

high frequencies. Al though some improvements in computer

ARMA ( 1

(Ë = 0.92, 0

1

=

0.376

u. ¿vé

0 . 108

0.028

v . uv /-

)

0 .70 6 )

1.2 x 10

3.2 x 10-19



time \.¡as possibìe by uslng the flltered Type II
approxlmatlons proposed by Mataìas and \{al I is (t97t), the

reduction is not siqnif icant.
a neql åpproximation
(FFGN), which

approximation to FGN.

coefficient as an explicit Þarameter.

computer time is such that about 2000 FFGN variates can be

generated in the time it takes to general

variate (Kottegoda, 1980).

tq

in order to derive
properties of. the covarlance

reproduced. For large lags,

Fast Fractional Gaussian Noise

more ef f icient and f ìexibìe
In addition. it uses the Hurst

Mandelbrot (i971> proposed

given by:

C(s;h)

The construction of the standardized FFGN variates,

^f ( t; h) r Fpquiree two addi t ive components. The f irst
component, Xr(t; h)r concetrns low freguency effects and isL

formed by weighting NT independent Markov-Gauss iAR( 1)l
processes with Equation (6,4) as its large lag covariance

structure. The second component, XH(t). is a single
Markov-Gauss process wi th zero mean. The second comÞonent

is added to correct the high frequency error from xL(t;h).
The FFGN vanlates are obtained by summing the low

frequency term and h I gh frequency term:

r29

The reduction in

FFGN, thC

h ( 2h

f r,n¡t i¡n alM¡çI¡V¡t:J¡

the covari

single Type Iï

1) 52h-2

ìow f requency

ven by (6.3) is

ance function is

Xrttln)

(6.4)

)i¡(t;h) xH(r) (b.5)



The I ow frequency component

t97t> takes the f orm:

NTX¡(t;h) = Xn* X(t;rr)
m=1

where X( t;
cornelation
given by:

,, =[ML

t*) is the

parameter aln

h(2h

where B is a

f ollows that

is:

C, C a; h )

as def ined by

mth I'tarkov-GåuE¡s proceEs with

and theoretieal weight Wm. H* is

t)(81-h _ Bh-1¡ B-2(1-h)m

parameter, àDd

the covariance

ßs - 2h)

t'|ande lbrot

and the variance

I ?n

ñT
Sl .^
) i{-o c-r
/| tt¡ il¡

rn= |

of the process is
UT

']> i{_'
.L, llt

rn= I

Gauss process X(

nit variance and

CL(o¡h)

with

f is a gamma

function of XL(t

The

zero

1/2

X(t;rm)

Markov-

lTlê Â ñ ìl

ãrìil

r+ith

m

ct¡

tm X(t-1;rr)

exp(-B-m)

function. it
hl +^È r --ut ro¡. lag s

(6.7)

given by:

white noise term.

r; .r) is

takes the

?,7/2 -tr, t t-+
L

(1

(6.9)

a AR(1) model

I ann .

(6.8)

(6.10)

(6.11)



Mandeìbrot (197t> used a complicated method for
determining the values of. B and the number of Harkov-Gauss

processes NT, He found values 2 through 4 to be

convenient for B, NT is obtained from:

NT

ç¡here 0 is a quality f åctor and the vertical lines means

the smallest integer above the value enclosed. The

parameter B and qua I i ty fèctor 0 together determi ne the
gual ity of approximat ion.

ll tos(oT) 
lill ì"s(B) li

0thers, notably Chi et al. (1923) and Kottegoda
(1974) recommend values of about ls to zo for NT. In thls
study' it wås found that wlth s = 4 and NT = 1s produces

good resu ì ts for a wi de range of h.

As a result of neglectlng the high-freguency ano

some of the very loç¡ frequencv effects ln deriving the

€xpression for the low frequency component, XL( t; h), the
variance of the latter r+ill be ìess than unity. To make

up this def iciency in high frequency, Mandelbrot (197t)
suggested that a s imp I e Markov pnocess can be added to the

1Ql

low frequency variance.
fol lowing procedure:

(6.11)

The high f requency variance is given by:

ñþ
ñ cL ( o , h )

NT

Sw 2
LM
m=f

Chi et al. (1973) used the

(6.13)

(6.14)



The hlSh f requency f Irst
a¡c({i¡lonfLUçrrluiv¡lL' PH, ia thereforel

tff

where p{ 1)

P(1)

p{1) - Cr(1; h)

Similarly, C,(
L

giving:

is obtained

ser lå I corre lat I on

a
Lr-

ö

crcr; ll = Tn.t exp(-B-m)
,ií

The steps involved in generating
distributed FFGN variates are brief ly
(Srikanthan, 1979).

zth- I

.; h)

f rom (6.3) with s =

L

Step 1.

ie obtained

r *1 ¿

0btain the values of the mean (i), standard
deviation (s), lag-one serial correlation
coeff icient iþ,r>l and the Hurst coeff icient (h)

from the historical sequence. Specify the values

of B, NT and the required length T to be

generated.

Compute the weighting coeff icients Wn, and the
autocorrelations of the low frequency Màr-kov

processe" ar.

Conpute the variance oHt and lag-one serial
correlation coefficient of the high frequency

term PH.

(6.15)

from (6.9) with

That

Step ?.

(5.16)

Step 3.

(6.17)

normally
as f ollows



Step NT i ndependent random numbers, Gm( t ) . are assumed

equà I to the NT Markov processes in the I ow

frequency term to start the data generation

step 5. compute al I the Markov terms i n the I ow frequency

proceoure.

process equal to another random number. G(t).

step 6 ' 0btal n the h i gh frequency Markov term from xH( t )

= pH þ:H(t -1 ) + (t - pHi¡l"i G(t)
step 7. Finaìly the FFGN variate is obtained from xrtt;h)

= Xr(ti h) + rH XH{t)

Repeat steps 4 to 7 until the reguired ìength r is
generated.

expresslon and obtain
(6.6) to give XL(t; h).

Also, sêt the high frequency Markov

Figure 6,4 shows the flowchart for the generation of

normaìly distrlbuted FFGN variates v¡ith a speclf ied length
T.

the weighted sum as in

The construction of FFGN described above wilì
reproduce correctìy the covarlance structure glven by

Equation (6.3). However, for annual peak flow series and

other natural time serles, the f irst order seriaì
correìation coeff icient is usually close to zero instead
of that given by (6.16). in order to match the observed

f inst serial correlation, FFGN must be modif ied.
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F I grure 6,4 Flow Chart for the Generatlon of Fast Fractlonal
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(after Srikanthan and McMahon. 1978>
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must be corrected for ÞIa9,

þlas correction for the rnodif led FFGN process may be

posslble. However, blas correction derlved from the Monte

Carlo nethod ls sufflcient fon most practical purposes.

0nly the case when the modified FFGN sequences ère

normally dlstributed with zero meån and unit variance ls
i nvest i gated. The range of pH ueed weE -0 . îS to 0. I0 and

the model Hurst coefficient, h, range from 0.55 to 0.90.

In addi tion, g = 4 and NT = 15, The sequence lengths used

\^rere 50, 70 and 100. For each combination of pu and h,

and a given sequence length,500 independent samples were

genenated. From these 500 samp I es, the expected va I ues of

Hurst's K, mean and variance can be determined, since the

Analytlcal êxpresslons for

expected values of. Hurst,s K

affected by PH, their valuee ere åveraged for the varioug
vaìues of h.

values of Hurst's K can then be plotted against h. Figure
6.5 shows the result for the bias in Hurst,s
sequence length of 70.

1ât

Similarly, the relationship of the expected values
of the f irst serial correlation coefficient p(l) cån be

plotted for the various values of h at dif ferent levels of

PH. Fi qure 6. b shows the reau I t f or å Eiequence I ength of
1^,tJ.

Finally, the expected values of the standard
deviation can also be plotted against h. Figure 6.7 shows

the result for sequence lengths of s0, 70 and 100. The

The nelationship for the mean expected

are not signif icantly

K for a



v
f¡l

Fisrure 6.5 Blas ln Hurst's K for rnodFFGN process (N=70)
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standdrd devlatlorr does not seem to be aff ected by pn.

0nce the relationships between the expected values

and the Input paraneters are obtained, they can be used to

select the appropriate pr¡ . h, and bias correction for the

variance to obtain the desired pU\ and Huret.s K. For

examp ì e, a standardi zed ser i es of I ength 70 i s observed.

The estimated first order serlal correlation is 0.1 and

Hurst's K is 0.72. Using Figure 6.5, with E(K)

- 0.765. ldith h - 0.765 and 11 = 0.1, pH = -0.ib from

Figure 6.6. Finaìly, f rom Figure 6.7 with h - 0.765, the

model variance should be increased to I/0,958, Hence with

model parameters h - 0.765, pn = -0.18 and standard

deviation = 1.044, the generated sequences will give

Eto(1)l = 0.1, E(K) = 0,72 and unit variance. 0f course,

it is not possibìe to obtain exactly the historicaì
statistics since they are random variables, but the

diffenence will be small.

that Eip(1)i and E(K) may
I

outside the sinulation nesul

0.0 and E(K) ,= 0.80, then i

obtain Þ. and h to f it.rll

ranges of Etp(1)l and E(K),'l

in the next sectlon,
discussed.

I +U

0.72, n

The posslbi I ity al so exlsts
be incompatibìe with or ìie

ts. For example, if Etp{1)l =

t is practically impossible to

Hov¡ever, for most practical
there is little problem.

the Broken Line (BL) Model is



6.5 BROKEN-LINE I'IODEL ( BL )

The extensive computing resources required to

Imp I ement the FFGN processes have prompted å seanch for
altennative processes that reproduce the Hurst phenomenon.

0ne such model is the Broken Line Model (BL) proposed by

Meija et al. (1972, 1974>.

As lntroduced by l'lej ia et al . (t972), the BL model

consists of a sum of series of simple BL processes, each

of. which results from I inear interpolation between equal ly-
spaced normalìy and independently distributed (NID)

variables with random displacement of the starting polnt

of the serles In order to make it stationary. The slmple

broken line process ls illustrated in Figure 6.8.

l<t> = E(t, - ca) =

Algebraicìv, the simple BL process is given by:

where \

| 
^l¡T¡

æ.<l
¿;-ô

independent and identically
random variables with zeîo mean

[rt, * \.' *r-- \i (t, - i")] r(t,)

a random variable uniformly distnibuted over

the interval (0, 1),

time distance between the nj , also referred

to as the memory parametår, ånd

= t ja .( t' ,( (j + l)a

= $ otherwise

(6.19)

distributed
ano var¡ance



E(t I

Flgure 6.8

rl4

I

Schematlc Representatlon of the Slmple
Broken Llne Process

4 j+1

I

--..--{
I

I

l--t-ja

aj*e

&-
c.'i



The mean of the process is zero
(2,'3)æ. The autocorrelation function

t,= i0
L'

rs

t- 0.75(s,"a)-12
J.35 tl - s¡'ål-

The general BL process, Xb(t), r.¡hich is capaÞle of
reproducing a particuìar value of the Hurst coeff icient,
h, is obtained from a weighted summation of NT

independent, standardized simple BL pnocessess. This
approach ls direct ìy comparable to that of FFGN appl ied by

Ì'landelbnot (1971), but with BL used in place of AR(t)
processes. Therefore, as emphasi sed by Mande I brot ( 1 97z) ,

the BL process is more an alternative to FFGN than to the

FGN process itseìf .

As wi th FFGN, a l ow frequency component, xL( t ¡ h ),
is employed to approximate the large lag covariance
structure of discrete time FGN, and a high frequency
component, Xr{t), is edded to ensutre that the BL model has

unit variance. The ìow frequency Eerm is def ined às:

2i al

and the variance is

of the process is:

0

cl

â-LO,

(s.(à

-(s\<2a

T qJ

(6.20)

XL(i; h)

where

cm'

-(.,

v -fml
L

¿Et

(t) is a simple BL process

meån and un,i t variencef

NT

-
4 ill tlll
m=l

^rozn*2rBh-i2(h - 1)

| -hB' " ) B2(h-1

with pàrameters

', -l/¡il 
l\

)

(b.î1)

a /4L/ L

¡¡¡

( 6 .22>



ñ âRm'1-

h(2h - r)(2h - 2)(2h

and 
"1. which

from the f irst

P(t)=

6(23-2h - 1 )

ar2h-2 b(Bh-1 _ B1-h)

should be greater

ser i a I corre lat i on

3 ) ( 2h

2(h - 1)

82(h-1)m

The number

required to develop

NT = smallest

4> (2h

than un i ty,

coefficient:

NÏv)
/-
rn=O

tr\

where T is
respectiveìy

The h

independent

ñÆ&
V,i

H

I

I

L

t44

of simple broken

the BL process is

(6.23)

A^ 2*o 
1

tÞ

the sequence length, 0

(Èlejia et al., 1972).

igh fnequency term is
process with variance:

obtained

^2mþ

integer above

llejia et al. (1972> suggest that the hish frequency

term should be a BL process with a = ui. Hov¡ever,

Sr i kanthan and HcMahon ( 1978) advocated assumi ng a val ue

for a1 (), 1) and then evaluating the right hand side of
(6.24) to give Pf (say). The high frequency term may then

i

-ulà,b
¿

line processes (NT)

obtained f rom¡

ì
I

''i
i
I

)

NT

-\rrÈ /,' m
flt:O

t iog( 0T ) / | ogBJ

( 6 .24)

and B are 5 and

then def ined as an

( 6 .25 )

(6.26)



be taken as an AR(1) nodel

and f irst serial correlation

Srikanthan and McMahon (1978) also suggest

vaìue of "1 = ! will give satigf actory results.
The computer time per generated realization

model was found to be roughly a quarter of that
for the FFGN mode I .

rõ (Pfrl - Pr) .i oH, \¿,/

Although the BL model is fully capable of modelling

both long and short term seriaì correlation
simu I taneous I y, i ts greatest deterrent to the hydrol ogi st

is the estimation of its parameters which requine
iterative procedure (Lav¡nence and Kottegoda, Ig??), in

addition, small sample bias of the parameters of the BL

model are largely unknown.

with variånce given by

coef f iclent given by:

(6.26)

. Atr,I IJ

6.6 ARI'IA (1,1)

<6.27 )

that a

In this section,
f irst-orden-mov ing average

0'Connell (1971, 1974>

presented.

wi th BL

required

I,I ODE L

the f irst-order autoregressive-

i ARMA( 1 ,1 ) l process proposed by

as an approx i mat i on to FGN i s



The def

gi ven by I

ining equation

X.I

where ei and B are the peremeters of the model, Xt is tl*

process value at t ime t, and aÞ is an independent random

variate at time t.

¡,. t - 1

for the ARMA

uf ,

The autocorrelation funct

p{1)

and pt

( 1,1) process

"t-l

The autocorrelatlon function of the ARMA (1,1)

process exhibits an exponential decay from the first
autocorrelation coef f icient on!¡ards, with the rate of

decay being control led by the autoregressi ve parameter, g.

0'Conne I I (1974) has shown that wi th 0.8 < 6 { 0.99

and 0.5 < g ( 0.95, the ARMA (1,1) v¡as in certain
instances able to model long term serial correlation,
More specif icaìly, for large values of É, a value of € can

(É - g)(1 - óg)

Étkt_t p{1)

.t .t Er

ion of the process is given

¿øH
.)

o

(b.28)

be found which preserves a predetermined value of the

f irst serial correlation coeff icient yet provides a slowly

decaying autocorrelation function. Therefore, aìthough the

Hurst coefficient, h, is åsymptotically equal to 0.5 for

lkr

(6.29>

( 6 .30 )



the ARMA (1,1) process, careful choice of þ and

pnoduce values of h substantlally greater than 0.5.

Fitting of an ARMA (1,1) model to å sequence of

observed flows is compl icated by smal I sample bias in the

estimates of the variance, f irst serial cornelation

coefficient and Hurst coeftlcient. However, 0'Connelì

( 1974) has shown that the sma I ì samp I e est imate of the

variance, s?, tTìày be wri tten as:

2.f,ts )

ç,¡ith, f In, p(1)

o- f (n, p(1)

1where 6o and p{1) are the population vaniance and f irst
seriaì cornelation coeff icient, and n is the sample size.

0'Connell (1974> used Monte Canlo methods to derive

ø)

the small sample expectations of p(1) and Hurst's K, for

sample slzes of 25, 50 and 100, and selected values of ß

and g. The results for ó = 0,92 åre shown in Tabl e 6.4.

r+i 1i

4 AJra I

n(n

When mode ì l i ng f lolrs, the ARMA ( 1,1) mode l may be

written as:

t't

n(1

where i and

process and

Xt = i

(6.31)

(1 - onl

ÞL^! .

-t

are the mean and

åre normally and

-r -Þrét 0a, ,l

standard deviation of the

i ndependent ly di str i buted

( 6 .33 )



SMALT SAMPtE ESTIÈtATES OF THE HURST COEFFiCIENT,
EtKl, AND FIRST SERiAt C0RRELÀTI0N C0EFFICIENT, Etp(1)J

FOR 9 = 0.92 AND VARIOUS VALUES 0F g IN AN ARIIA ( 1 ,1) I{ODEL
(after 0'Connell L974)

TABTE 6.4

u

0.BB 0.019

0.81 0.114

0. B0 0. 189

0.76 0.269

0.72 0.349

0 .68 0 .426

,0.64 0.496

0.60 0 .560

0.56 0.616

'u,)¿ u.bbb

p{ i )

n

?5

EIK]

(\ ç.Ê,'7

n <a?

0 .686

n Á99

^ 
-rÒc

0 .740

v,í(¿
0.773

0.774

0.794

148

0 ,664

0.680

U. ÍUþ

^ 
?tr I

0.782
n ?4"

0.796

0.820

0. 825

¡UU

0.654

0.686

0.709

A -} AE

ñ 7qÊ.

0.783

0.800

0.803

0 .825

0.828

25

0 .001

n nñq

0.075

0.082

0.116

n r <o

0.218

U.¿IJ

0 .285

0.012

0 . 0 46

0.093

0 . 160

0. r99

0 .269

n ?n o

0.364

u ,1é¿

0 .467

100

0 .0 28

n n ?o

0 . 123

0.208

0.240

V , JJ¿

0.390

0 . 4 37

n q1Á

u.?é¿



var i at es u¡i th zeîo mean

oat = (1 -

The fitting procedure for this model is given in

0'Connei | (1974, 1977) . The steps are as foì I ows:

i) Compute 1, s, Hurst's K and the first serial

correlation, ö<t>, from the n-year historical

dllu varlance grven oy:

(1

ii)

0'

GA N I Â Q ?

Usins the tables of. 0'Connell <1974), find
values of ø and € for ç¡hich:

2óg )

iii)

EIK]

0btain the unbiased est imate of

S...', from (6.31). This is given

t19

K;

(6.3.{)

iv)

s,2

Etp{ 1) I

Substitute the values of i, Sub, d and € into
(6.33) to obtain the required generating

mechanism.

The ARMA (1,1) rnodel has two principle advantages.

Firstly, it has onìy two parameters; secondly, it requires
substantial ly less computing time than the FFGN and BL

process.

=2 / f In, p(r), ø)

I

is

Hoç¡ever, the major dnawback of

that the Hunst coeff lclent is not

the variance,

by :

the ARMA (1,1) model

an explicit parameter



of the model as

equivalence nag

parameters and h (

6.? ARI'lA-l'tARK0V ( Al'l ) l'l0DEL

ii is for the

been found

Lettenmater anû

}lhiìe the ARI'14 (1'1) model Is computationalìy

ef.flcient, the inability to Preserve a given Hurst

coefficientaSanexpìicitniodeìparametermaybeamajor

drawback in operatlonal apPlicatlons (Lettenmaier and

Burges, 1977a) ' 0n the other hand' the FFGN model ' wh I I e

it models h as an exPliclt Parameter' is relatively

expensive to run' especiaily when the number of

Markov-Gau33 terms i s I arge ' To Preserve the economy of

theARMA(1,1)andaìsousetheHurstcoefficientasan

explicitparameter,LettenmaierandBurges(1977a)modified

Mandeì brot's ( 1971 ) approach to deriving FFGN' Instead of

fittingaseriesofindePendentPnocessesto'build'a
desiredaulocorrelatlonfunctiontheoreticaìly,asimilar

effect was achieved by making the aPProximation to the FGN

autocorrelation function on a geometric basis'

Lettenmai er and Burges (19?7a) proposed a mixed model

calìedtheARMA-l,larkovwhichusestheHurstcoefficientaS
an exPlicit model parameter to achieve this fit'

For zero Inean and unit variance process' the

ARMA-Markov model consists of f ive parameters: the Markov

FFGN and BL mode I s '

between the ARMA (1'

Burges, 19?7a) '

r qñ

No

1\



and ARMA variance fraction" ct and cz, respectively; the

Markov and ARMA lag one autocorrelation coefficients pN

ànd PRN, respectively¡ end the åutoregressive parameter ó
of the ARMA mode I . The mov i ng average parameter, 0, of

the ARMA process is uniquely def ined by çj and the. lag one

conreìation condltlon l0t ( 1 is imposed.

The generatlng equation for the zeno mean and unlt
variance ARMA-Markov process is given by:

Xt = pH t,-rtt' * tatt'

, .(v) .{ev)where ti 'and Éa 'are independent processes having variance

cl(t - put, and czt(r - a?>,,'<t + g2 - zsiB)1, respectively.
The autocorrelation function of this process is

f itted to the theoretical autocorrelation function of FGN

given by (6.3) at thnee specified lags, Kl, KZ and K3.

The ìag one autocorrelation coeff icient may be arbitrariìy
spec i f i ed. The parametens of the mode I are obta i ned by

soì ving the fol lowing system of eguations:

Éxt-1 ( AM ) aÇ (Al'l)
L- I

cr

- lf'M

^K'" 1 Pt'r

nK,
"lPM -

^ Y^
u 1Pu"'

"2

czPau

ç (Al1 )
I

(6.35)

¡ H' -1
'ePAu

^ Kc-l
"ZPAM 

-

('^ Ka-1
-2TAM

p{l)

c(Kr;

c(Kr;

c(Kr;

h)

h)

h)

( b. 36 )



wheru Cl, CZ, pU, pA¡¡ and d are all conErtrained to lie
between 0 and 1, p{1) is the desired f irst serial
correlation coeff icient and C(K; h) is the autocorrelation
function of FGN given by (6.3). Lettenmaier and Burges

(1977a) suggest to take K1 , r.z and K3 to be åpprox imate I y

n/8, n/2 and n, where n is the length of, the sequence to

be generated. The system of, equations given by (6.36) may

be soi ved by using Neu¡ton's method to give the model

parameters for a given p{1) and h. The second ARttA

parameter, 0, is obtained from:

Pnu

The value of I which satisfies the invertibilitv condition

lgl < I is taken.

(1 - sjg)(ø - 8)

The ARMA-Markov mode I has al so been extended

generate skewed var i ates by Sr I kanthan (1979> .

1+g2-zÁê

Accordi nS to Sr i kanthan (1979) , the ARMA-l'farkov

model, whi le it is able to give simi lar values for the

Hurst coeff icient as FFGN and BL, has the following
disadvantages:

152

L)

ii)

I t does not preserve the mean as we I I as FFGN

or BL mode I s.

(6.37 )

1t conslderably underestimates

serlal correlatlon coefficlent.
and BL give better results, and

the f i rst
Boih FFGN



iii)

In addition to the disadvantages listed by

Srikanthan (1.979>, the small sampìe biases of the

ARMA-Markov model parameters are unknown and the

paråmeters of the models are difficult to obtain.

It is not possible to obtain pôrameter

estimates for series with negative f irst

serial correlation.

However. the ARMA-Markov do have two desired
attributes. Fi rst I y, i t requi res I ess computer t ime than

the PFGN on BL mode I s, and second I y, i t uses both h and

o(1) explicitìy to derive its parameters.

in the next section, a simple and relatively
ef f icient model, dsveloped alons the lines of the

ARMA-Markov model is described.

6.8 I'tIXED- NOI SE I{ODEt ( MN )

In the previous Section, it was shown that whiìe the

ARMA-Markov mode I is computat ionaì I y eff i clent, i ts maJor

drawback is in the est imation of the model,s pårameters.

This problem prompted the development of the

Mixed-Noise model.

in the deveìopment of the MN model, the Hurst

¡ncl{r¡lenr h, and f inst order serial corneiatlon p(l)À ¿ v ¡ v.¡ t t tt , À ¡ I J ç vt uv I Jv ! ¡ s ¡ 
I

are used expllcitly to estimate the model's pårameters.

These are very easily obtained,



In prlnciple, the MN model is obtained as the sum of

three lndependent AR(1) process each with a suitable weight

so as to reproduce approxlmately the autoconreìatlon

functlon characterlzed by a given f irst order correlation
coef f icient and a long term correlation structure
correspondlng to fractlonal noise with a glven Hurst

coefficient.
noise process is;

2KpMÑ(I() = a P,.'I l'¡lr I n

çJhere, â3, b2, c2, are the variance fraction (or weights)

which sum to unity, pH, p', pt, ere the autocorrelation
coef f icients of the three independent AR(1) processes.

The f irst AR(1) process models the high frequency ef fects,
the second AR(1) process modeìs the intermediate or medium

frequency ef fects, and the thlrd AR(1) pnocess models the

The autocorrelation function of a mixed-

low f requency effects of the time serles.

.2 KD 
P¡,r

essentlal ly the technique

154

function of FGN r¿ith the given three weighted auto-

conrelation function of the AR(1) process.

"2n 
K" rL

The MN model has six parameters. The three variance

f ractions {a2, b2 and "?) and the autoregressive
parameters (pn, pM, pi,).

The generating equation for a zero mean, unit
variance l'lN process is given by:

( 6 .38 )

is to f it the autocorrelation

Hence,



Xt = a(p'x.lT'*ÉlH), + b,pr*rlT'*tlt',

+ c(prx,ll' * tl t',

, .(H) . rr-a\ /r\
whe ra , ått"' , 8t'' '' and tr'-' ar e norma I i ndepen den t processes

having variance .i<t - pHar, ¡ict - pN3, and .3<1 - ptrr,
respectively.

The autocorrelation functlon o,t. this process is
f itted to the theoretical autocorrelation function of FGN

given by (6,3) at four specified lags, K1, KZ, K3, and K4.

The lag one autocornelation coeff icient, like the

ARI'lA-Þ1arkov model , may be arbi trari ly specified. To

obtain the parameters of the model requires the solution
of the f ollowing system of equations:

^2rb?r"2=t

(6.39)

"tp, * otpo, r "?pt = p(1)

"tpät * ozpfir * "tplt = c(K,; h) (6.40c)

^'plrtrozpfrzr"?pfz= c(Kr; h) (6.{od)

.tpü, * onpüt * "'pfu = c(Ku; h)

.tpåo * n2pfil r 
"zoKo = c(Koi h)

(6.40a)

(6.40b)

(6.40e)



r.Jhere, ôi, 62. ,-3- ô-.Q-, Ç-, PN and PL åre constrained to lie
between 0 and !, p( I ) i s the desired f irst order ser ial
correlation coef f icient, and c(K; h) ls the
autocorrelation f unction of FGN given by (6.3). pn ç¡ithin
limits is allowed to be negative if necessary.

4, Kz

these

200 is

f lood

f ac i I i

i n th i s study, i t was found conven ient to take Kt

= 15, K3 ="54, and K4 = 200. 0n a logarithmic scale,
chosen lags are equal ly spaced. The value of Kq =

chosen to reflect the planning period of most major

Slnce the autocorrelatlon function of an AR(1)

process 'dies off' rapidly with increasing lags, the

system of equations (6.40) can be evaÌuated sequentially

starting with the low frequency end. From (6.40e) and

6.40f ) , and assuming pn* and pft* to be negl i gi bte at lags

^3 ano Ã4,

protection schemes.

tate estimation of the model parameters.

156

A I so, the chosen spac i ngs

C(Kr; h)
C(KO; h)

For a given h value, Kg and K4. the left hand side
of (6.41) is def ined. Theref or" pi, can Þe calculated.
Substituting pf into (6.40f) and ignoring the high and

medium frequency terms, cZ is obtained.

"2 PLK3

"2 P, 
**

Pr*3 
- K4 (6.41)



From (6.40d),

lag K,,.

c(K, ¡ h)

and assuming pH*

From wh i ch one gets:

a
,L

o 
tP, *'

C(Kr; h)

Substituting into (6.40c), one Oets pr.
Then from (6.43), one obtains bi.
From (6.40a), ai = I - bl - .3.

"? p tr|

and from (6.40b), pn = ip(tl - otp, - "2pr),.'a2l ..,(6.44)
Perhaps the best way to illustrate the above

computational procedure ls by an example. Let the desired
Hurst coef f icient h and f irst serial correlation
coef f icient p(1) be 0.70 and 0.? respectively.

From (6.41),

2Kr-õ " rT.

be

P, 
*t

negligible

r57

-tclL

(6.42>

C ( 54 : 0 . 70 )

C(200; 0.70)

Th¡rcÍaro ^,TL

Subst i tut

frequency

¿̂
t-

( 6.43 )

ing into (6.40f), assuming the

terrn to be negliglble,

0.0256
0.01 1i

0.9e465

C(200; 0.7)

^ -146
rL

Pl
0.03419

high and medium



From (6.43),

a

Substituting into

C(4; 0.7)

___=
Pv¡ l¡

Theref ore, p,, = fi.88612.J r,r

Frorn (6.43), b! = Q.14442.
î.

From (6.40a), a¿ = | - 0.t4442 - 0.03419

- 0 .82t39

(6.40c), one 9êts:

and from <6.40b), pil

n n1âqq ^ -11v r vovvv 
rM

f itted mixed-noise process.

0nce the parameters ("2,

deternined, one can proceed

sequences.

Figure 6.9 shows the autocorrelation function of the

l qQ

"2p 14

= (o.t - øZpn - "2pt),,'aZ
- 0.04629.

Figure 6.

autocorrelation
process for h -

coefficients of

in this case.

Flgure

the varlance

coefficient

I 0 sh ows o n doub I e- I og graph paper the

function of the MN and theoretical FGN

0.55(0.05)0.95. The lag one correlation
the FGN and MN models are kept identical

b!, c3, pH, pM, pÛ atre

with generating synthetic

6. I 1 shows

f nact i ons

'f H' Pt't,

graphical ly the relationship3 among

(a2, b2, "3) and the correlation

pr) at various values of h to
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preserve the laq one correlatlon coeff Iclent of. FGN given

by (6,16),

Determlning the parameters of the HN model so that
i t correct I y reproduces a sequence of observed f I ows for a

given perlod length ls compllcated by small sample bias in

the estimates of the Hurst coeff icient, first serial
correlation coef f icient and variance.

Proper bi as corrections for these parameters can

however be obtained by the Monte carlo method. Figure

6, I2 shows the expected va I ues of the standard dev i at i on o
for sample slzes of 50, 70 and 100 at varlous values of. h.

It can be seen that the bias in the standard deviation is
quite substantial at large values of h. As expected, the

bias decneases with increasing sample size. Examination

of the data reveals that the blas in ø did not seem to be

affected signif icantly by the high frequency component of
the mode I .

To obtain small sample expectation of p{1) and

Hurst's K, P¡1 in (6.44) ie assumed to take on values of

-0.3 to +0.3 for a given value of h. This range of p¡r

I F.a

will cover most practical situations.
expectation of the first serial coefficient, Etp{1)J, and

Hurst's K, E(K), cån be determined. Figures 6.13 - 6.1S

show the smal I sample expectation of p{l ) and Hurst's K

for samp I e si zes of 50, 70 and 100. Each poi nt on the

graphs is based on 500 nepl icat ions.

the tresu lt i ng
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The fitting procedure for

i) Compute meèn, R

Hurst's K and

coeff icient, þ<t>,
se r i e s .

ii) Using Figures 6.13 to

and h for v¡hich:

E(K) = (; Etp{1

0btain unbiased est

deviation, Sub, from

gi ven by:

Sub = E ;¡ E(s)

Use S,,h, Ppr h andsv I ,,

equat i on .

this model is as follows:

; standard deviation, s;

f irst serial correlation

from the n-year historical

iii\

iv)

To illustrate the procedure, let the standard
deviation, Hurst's K and f irst senlal correlation,
estirnated from a sample of, size 100 be 3.0, 0,725 and 0.15

respectiveìy.

6.15, f ind values of pH

r67

)l = þ<r>

imate of

Figure 6.

Using Figure 6.15, with h

set E(K) = 0.725 and Etp{1)J =

with h - 0.76, E(a) = 0.95.

standard deviatlon. S- rr Fq¡J

parameters of þ = 0,76, pH = -0.01 and

used in the model to generate synthetic

average produce the requ i red samp I e stat

the standard

12. This is

x IN t h e ge n e r a t i n g

= 0 .76 and p¡¡ = -0 .01 , wE

0.15. Fnom Figure 6.12,

Therefore, the unbiased

- 3.0/0.95 = J.16.

Sub = 3.6, muet be

seguences wh i ch on

istics.

Hence,



Skewed MN sequences may be generated by using a

logarithmic transformation so that the logarithms ot

the flows are assuned to be normal ly distributed. Another

way to generate skewed MN variates is by modifying the

random numbers used in the generation process (Lettenmaier

and Burges, t977b> , Th i s procedure i s described in

Appendix H.

Although the procedure for generating skewed

deviates, descrlbed in Appendix H, is fully operational, it
is not used in this thesis.
transfornati on to normal i ty is used instead.

The mixed-noise process has several advantages.

Firstly, it uses both h and p(l) expiicitly to derive its
parameters.

easily. Thirdly, it has a simple structure, and, finaiiy
it is relatlvely ef f lcient ç¡hen compared to the
computational time of the FFGN model It renains,
however' to determine the optimum values of the lags K,,
u2. [3' and K4 where the lfN cortrelation f unction ie f orsed

Second I y , the parame ters can be est ima ted

168

to rnatch FGN correlation function.
comprehensive comparison with the ARI'lA-Harkov model and

othen contending models remains to be carried out.

The simple logarithmlc

0nly the l'lN model will
carried out in this thesis.

be used i n subsequen t studi es

in addition, a



6.e sut{t{ARY

in thls chapter, models capable of simultaneously

reproducing sequences wlth a hlsh Hunst coeff.Iclent and

low f irst order correlation coeff icient were reviewed. It
was shoç¡n that most current ì y avai I abl e model are e i ther

too difficult to use by practising engineers or requires

excessive computer tlme. In addltion, snall sampìe biases

f or these mode ls are large I y unkno$Jn .

A new model cal led the I'tixed-Noise model was

descrlbed and was shown to have several advantages over

those current I y avai ì abl e.

In the next chapten,
correì ation on flood risk anal ysi

16e

the

s wi

ef fect of serial

ll be presented.



7.1

SERiAt CORRELATiON AND

GEN ERA L

An examlnatlon of.

coeff icient shows that

record may be far ìess representative than a similar sample

obtained from an independent series. This is due to the

gneater vaniability of. the sample statlstics, Primarily
the mean, which produces a higher variabil ity of the flood

peaks. However, when speaking of the variability of the

f lood peaks, it is important to def ine the time frame one

CHAPTER 7

FTOOD RISK AHAlYSIS

tlme series wlth a high Hurst's

is cons,idering.
pronouncements about the varlabi i ity of hydrologic events

a sample obtained from a short

on å geological tlme scale.

ho',¡ever, to assume that wi th i n the p lann i ng hor i zon the

var i ab i I i ty pattern of hydrol ogl c events can be assessed

by study i ng the pattern observed during the period of

record. Both" perIods are in generaI somewhere between 50

and 100 years in length. While clirnatic f luctuations do

occur over this period, there is no evidence of cl imatic

change that would invalidate the baslc assumptlon of.

stationanity, èlthough in the rather weak sense that the

observed pattern of variabi I ity characteclzed by the Hurst

1 '' î'lI tv

There is no point in making

coefficient will persist.

It ls not unreasonable,

is: "l.lhat floods can one expect during the Planning period
The engineering question then



on the basis of our hydro-meteorologic experlence r.¡lth

peak f low variabi I ity duning the period of record?

It will be shown in this chapter that, even with
average Hurst's K values and long terrn time period, the

addl t i onai uncertainty ln the assessment of. the fioods
wh i ch one may expect wi th i n the p I ann i ng hori zon is
significant. Neglecting the panameter uncertainty, as is
current practice, cân lead to serious underestimation of

the potential f lood risk.
in this chapter, the effect of short and long term

serlal correlation on the variabil ity of sample statistics
is f irst discussed.
demonstratlon of the effect of serial correiatlon and

sample length on the f lood risk for a hypothetical peak

flow series. Flnaily, the flood rlsk for peak flow series
for some canadian rivers wi I I be analysed taking into
account their proper serial corre I at ion structure. This
wl I I be compared to the f lood r I sk based on the cusr,omary

assumption of serial independence. Al I peak flow series
are assumed to be lognormally distributed, and the
discrete predictive distribution approach described in
sectlon 4.5 wi I I be used throughout the analysis.

17 t

This wlll be followed by a



7 .2 EFFECT OF SHORT TERI'I SER IAL CORRETAT i ON ON SAI'IPtE
STATISTICS

Thls sect lon wl I I sho!, that when the oÞsenvatl ons of

a random varlaþle X are serlal ly correlated, the varlance

of the sample mean and sample varlance are greater than

that for independent observations. in addition, the bias

in the estlmatlon of the variance of X ls also greater.

Let x1, xZ, xt, xn, be the observed values of

stationary stochastic process. The sample mean

X=

is an unbiased estimate of the mean of

1+
!

tl t A

However, correlation
K I 0. affects the

!, tAJ

å1., 1981):

L7?

Var(X)

¡rx

among the *t,=r so

variance of X as

E tX

)
-x{
t

The var i ance

observations, is

braces. For px(K)

is a non-decreasing

- u 2l
tx

the process, Fx.

that o..(K) I 0 fortx

follows (Loucks et

+¿

1-
-!\ 2

k.
;

n-l
-l

/l

K=l

rr rL
Vl i-¡

¿-t /' !
t:1 K=(

of X, equal to n*t/n for

increased by the factor

) 0, aE ie often the cåae'

function of n, so that the

P* 
( r I I ( 7. 3 )

- u )(x,¡X K
- u ))rx

independent

wi thin the

this factor

variance of,



t73

X i s i ncreased by a factor whose magni tude does not

decrease r¿ith increasing sample size (Loucks, et ä1.,
1981).

For a I'tarkov lag-one or AR( 1) stochast i c process,

where

P¡Ctt) = Pk

The var i ance of X i s gi ven by :

a

var(Í) = 
n*o (1 r 2p rn!r-p) - (l-p)l (7.4)
t t ,1 - "f,

Table 7.1 illustrates the effect of. correlation
among xt '' - trn the standard error of the i r meen.

STANDARD ERROR 0F X WHEN f* = 0.Zs

AND p{k) = pk (after Loucks et â1., 19g1)

¿J

100

TABTE 7 . T

Corre i at i ons of 0bservat i ons

p = 0 0.3 0.6
I

U. UJÐ

0.025

0.067

0.048

0.034

0.096

0 . 0 69

0 .0 50



The propertles of

are a I so affected by correlatlon

expected val ue of v 2 becomes:x

.nI ) t*-
nlv

L_ l

E tv 2l
x

the estlmate of

- i)z

If the xt,= åre

I ag one process, then

by:

= c*2{ 1

E t v*2l

lõLL

n ñ

the varlance of X,

(7.5)

n -'l
\ (1
z-
K=l

where p = p(1). if p{k) =

above equation reduces to Etv

among the Xt,=.

2
o

assumed to be generated

the expected value of v

- 
:, 

p*(k) I

is an unbiased estimator of o*t for an independent
process. For p > 0, the term in braces is positive and

less than unity, whereby, s*t tends to under estimate o*t.
To obtain an unblased estimate of 6 2 F.ru 2t,*-, EIvx'l must be

divided by the terms in braces where p is replaced by its
sample estimate. Fortunately, the bias in u*t decreases

with n and is generally unimportant when compared to its
variance (Loucks et â1., lg8l). Table ?.2 shows the

approx imate bi as i n u*t for a Harkov lag one process

corresponding to Tabl e 7.1.

LÍ¿t

a
Ln

The

np{ 1-p) - p{ t-pn>

(7 .6)

hy a

2 iox '-

(1 - p)z

0 for all

*=' = t*t

Mar k ov

gi ven

ì
I

I

)

lkl > 0, then the

in which case S 2
X



BIAS IN u*t FOR HARKOV IAG ONE PROCESS

E tv*z) / tr*,

25

50

100

TABLE 7.2

P = Q

Cornelation among the observations also affects the
variance o' ìt u*o. Assuming that X has a normal
distribution, the variance of u*t for rarge n is
approximately (Kendarr and stuart, rg66) given by:

4

var(r*', x z o*'( r * zi p_z<u> ) ... (7.8)
n ã,*

where for o(k' Þ

, , = p¡4, becomes

0 .96

0 .98

0 .99

0.3

0.9277

0.9633

0.9816

175

u.b

) -4 n
var(v ') /, 2 "x ( 1 + F".---'x' ,ñ - +, !^'rî ) ... (T.e)

r-P

0.8520

0.9230

0.9608

Like the variance of R, the variånce of u*t is
i ncreased by a factor whose magn i tude does not decrease
wlth n. Thls is illustrated by Table 7,3, which gives the



coefficient of varlatlon of

when the observat i ons have

= ok-
J-

COEFFICIENT

HAVE A

u*2 as

n orma I

TABTE 7.3

OF VARIATION OF v 2
x

NORI.IAt DISTRIBUTION
(after Loucks et al.

25

50

100

a function of

distribution

l"u

n and p

and p{k)

7.3 EFFECT OF IONG TERÌ-I SERIAL CORRELATION ON
SAI'IPLE STATISTICS

0 .28

0 ,20

0.r4

l{HEN OBSERVATI ONS

AND p{k) = Pk, 1981)

1,7 6

7 .3 .1 Frac t I ona I No I se Process

0.3

observations (*1, xZ,

0.31

^ 
Òa

V .IJL

n lc

I t was shown i n the prev I ous sect i on that when the

term correlated process, the variance of the sample mean

and sample variance of the random variable x are greater

than that for independent observations. In addition, the

blas in the estimation of the variance of x is also

0.6

0.41

0 .29

0 .2t

. xn) follows a typical short



greater. it will be shown in this section that when the

series of. observations exhibits long term serial
correlation exempl ified by the fractional gaussian noise

process described in Chapter 6, the variance of the sample

statistics are greater than that fon either short term

corre I ated or i ndependen t processes.

Mandelbrot and ifal I ls (1969c) showed that the sample

mean or FGN is normal I y distri buted wi th a mean equal to

the mean of the basi c random var i abl e X. That i s:

¡f[ç_¡
^-\ ,/n <_¡" t=1

The var i ance of X however, i s gi ven by :

Var(X)

*t

,')vrner. d*o is the true variance of x and h is the Hurst

coefficient (see Appendix G). This equation reduces to
the well known o*=rn r.¡ith þ = 0.s (independent data).
Table 7.4 shows the effect of. ìong term serial correìation
on the standard error of x for various values of n and h.

it can be seen that with a typical h value of 0.7,
and n of 50, the uncertainty in the sample mean is almost
twice as large when the data are independent.

= n2
X

177

nzh-?

f 1 rô\\ a . Lu /,

(7 . L L )



STANDARD ERR0R 0F I FgR FGN pRoCEss
IiHEN f* = 0.ZS

n = 25

ÐU

100

TABTE 7 .4

h - 0.5 0.6 0.7 0.8 0.e

0.5 0.069 0.095 0.131 0.181
0.035 0.052 0.077 0.114 0.169
0.025 0.040 0.063 0.100 0.158

The expected value of u*2 for an F6N process is given
by:

E tv*21 = n*'( 1 - nzh-z)

wher" t* and h r¡ere def i ned above. (7 , L2) reduces to the
fami I iar Bessel bias correction for smal I sampl es when the
observations are independent, that is þ = 0.S.

labl e 7. s shows the bias i n u*z for FGN for vari ous
values of n and h. It can be seen that the bias in the
est Imate of. the sample vanlance for an FGN ptrocess is
greater than for independent data and that for the Markov
I ag one process for t yp i ca I va I ues of h ano p.

178

(7 .12)



fì=25

50

100

þ = 0.5

BIAS IN u*t FoR FGN

TABTE 7. 5

0 .96

0 .98

0.99

It is known that the varlance of u*2 is affected by
serial correlation, Hoivever, no analytical expression
cou ld be f ound i n the r i terature f.or the var i ance of u*=
for the FGN process nor courd the appropriate type of
distribution of. the sample variance be determined
analytically.

For mlxed processes i n wh i ch both short and r ong
term serial correlatlon are present as ln peak flow
series, the probabiity distribution of the sampre
statlstics cannot be easily determined analyticaiiy. The
approximate probabl I i ty dlstribution, however, can be
obt a i n ed us i ng the Mon te Car I o ne thod.

0.6

0 .9239

0.0563

0.9749

0.7

0.8550

0.9044

0 .9359

0.8

179

0.724t

0.7909

0.8415

0.9

0 .47 47

0 .5427

0.6019



7.3.2 Probabl llty Dlstrlbutlon 0f Sample Stattstlcs
By I'lonte Car lo Ètethod

uslng Monte carlo rnethods to obtaln the probabl llty
dlstrlbutlon of sample statistics requlres a time serles
model that produces "on average,' samples r.¡ith the same

statlstics as the observed sample. The mixed-noise model

descr i bed i n Chapter 6, v¡i I I be used here. The samp I e

statistics, after correcting for smal I sampl e bias, are

used as i nputs to the mode I to generate samp ie t irne ser i es

of. a speci fied length. The sample length to be generated

is usually the same length as the sample observations. A

large number (say 500) of these sampl es is then generated,

and, for each sample, the mean, standard deviation or

any other statistic can be calculated. From the 500 data

availabie for each statistic, êD approximate probabii Ity
di str I but I on can be determi ned. For examp l e, assume the

distribut ion of the mean is of interest. From the S00

sanpl es each of I ength n, 500 est imates of the mean are

avaiìable to construct an approximate probability
di str i but I on for the mean. The mean of the mean and the

standard deviation of the meàn which measures the

uncertainty in estimating the mean, cân then be obtained.

This uncertainty is dependent on the sample length and the

strength and nature of the serial correlation structure.

tB0



7.4 EFFECT OF SERIAL CORRETATION AND SAI.fPtE TEHGTH
ON FLOOD RISK ANALYSIS

In this section, the effect of serial correlation
and sample length wil I be demonstrated for a hypothetical

lognormal ly distributed peak f low series.

The effect of sample length for a serlally
independent series is shown ln Figure 7.1. It can be seen

that even f or modenately sized samples, parameter

uncertainty is very smal I for serial ly independent data,

However, if the peak flow series ls characterized by

a mixed-noise process r+i th an average Hurst's K value of

0.70 and a lag-one serial correlation coef f icient of. 0.2,

there i s some di fference between the observed frequency

cunve (independent data with no parameter uncertainty) and

the predictive distributions (risk curves) for records

that are about 25 years long. This is shown in Figure 7.2.

l'lith a K value of 0.75, the difference between the

observed frequency curve and the risk curves is quite

substant i al , even for records of 50 and 100 years. Th is

is shown on Figure 7.3.

A further comparison between the risk values
(probability of exceedence) obtained for serially
correlated peak flow data and serially independent data

for sample length of 100, is shown in Table 7.6. The peak

181
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EFFECT OF SERIAT

Prob(X I q),

(1)

TABTE 7.6

CORRELATI ON ON

H"¡og10x = 3.0,

Y
m3/s

(2>

P¡1¡0. ä

K=0 .75

1000 0.5

1200 0 .38675

2000 0.13761

3000 0.04255

4000 0.01524

50 0 0 0 . 0 0 61 6

6000 0.00274

7000 0.00132

8000 0.00068

(3)

RrFo ' e

K=0.70

FL00D RISK (N = 100)

s I ogl O* = 0.25

0.5

0.37782

0.11916

0.03149

0.00978

0.00348

0.00138

0.00060

0.00028

P(t)= o ' ?

0.5

0.37607

0.11577

0.02966

0.00896

0.00311

0.00121

0.00052

0.00024

Independent
data with
parameter
uncertainty

(5)

184

Column (

Co I umn

0.5

0.37578

0.11515

0.02929

0.00877

0.00302

0.00117

0.00049

0.00022

Independent
data wi thout
parameter
uncertainty

Column (3)

Column (4)

Coiumn (5)

Column (6)

t\

(2)

(6)

Future flow q m3/s.

: Mixed-Noise process
0.75.

: Mixed-Noise process
0 .70 .

nq

0.37573

0.r1427

0.02816

0.00802

0.00259

0.00093

0.00035

0.00015

Markov process p(1) = O.Z.

Independent data with parameter uncertainty.
Independent data wi thout parameter uncerta i nty.

wi th

wi th

P( 1)

p{ 1)

0.2 and

0.2 and

K

K



f lows are assurned to be lognormally distributed. Table

7,7 shows the situation when the samPle length is 50'

It can be seen that even for a sample length of 100'

the probability that a future flow of 6000 m3/s (say) is

equal I ed or exceeded i n any year dur i ng the per i od bounded

by the planning horizon is seriously affected by serial

correlation. For that flow, the risk is increased by a

factor of 3 if the peak f lor¿s are derived from a mixed-

noise process s¡ith ( = 0.75 instead of the customary

assumption of serial independence with no Paràmeter

uncertainty.

increased by a factor of 6,

These results illustrate three Points:

i ) If there is sufficient neason to bel ieve that ln the

time frame bounded by the planning horlzon the

annual peak f I ows are ser i al I y i ndependent or show

at most short term serial correlation, then the

predictive distribution seems a simple and

attractlve way of producing a safety factor to

account for the Parameter uncertainty in short

records.

For a sample length of 50, the risk is
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i¡\TLI if there is evidence ot, long term senial correlation

leading to a K value in excess of 0.70, then the

parameter uncertainty ls substant lal even when I ong

records are availabìe. The nature and the effect of

the senlal correlation should then be made the

subiect of a special studY.



EFFECT 0F SERIAL C0RRELATI0N 0N FL00D RISK (H = 50)

Prob(X >/ g), M,-- 
=

Itt "log10x = 3.0r 5logl0* = 0.25

Y
ms/ s

TABLE 7.7

(2)

QÐ=o.l
K=0 .75

1000 0.5

1200 0.39511

2000 0.15687

300 0 0 .05624

400 0 0 .02321

5000 0.01071

6000 0.00539

7000 0.00291

8000 0.00r66

(3)

P(1)= 
o ' 2

K=0.70

(4)

P(1)= 
0 ' I

0.5

0.37826

0 .1209 1

0 .0 3320

0.01088

0.00412

0.00174

0.00081

0.00040

Independent
data'with
paramefer
uncertainty

0.5

0.37553

0.11755

0.03133

0.00100

0.00370

0.00154

0.00070

0.00034

(5)
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Co I umn

Co ì umn

Co I umn

nq

0.37594

0. Lt6t7

0.03040

0.00950

0.00344

0.00140

0.00062

0.00030

(6)

Independent
data'wi thout
parameter
uncertainty

(1): Future flow q m3ls.

(2)z Mixed-Noise process
0 .75.

(3): Mixed-Noise
ñ ?ñu.tv.

Column (4)

Column (5)

Column (6)

0.5

v.étôtJ

0 . 1.1427

0.02816

0.00802

0.00259

0.00093

0.00036

0.00015

Markov process p{

independent dat a

i ndepe nde n t dat a

process

wi th p{ 1)

wi th p( 1)

1) = 0.2.

with para¡neter uncertalnty.

without parameter uncertainty.

0.2 and

0.2 and



Ìii) Parameter uncertainty appears to be a more important

lssue than the questions of plotting positions,

parameter estimation by. method of moments or maximum

I ikel ihood, or the choice between the standard

2-panameter and 3-parameter models.

In the next section, flood risk analysis for some

Canadlan peak f low serles of Canadlan rivers are presented.

7.5 FLOOD RISK ANALYSIS FOR SOI'IE CANADIAN RIVERS

In this section, the flood risk for some Canadian

peak f I ow ser i es wl I I be anal ysed taklng into account

their proper correlation structure. This will be conpared

to the f lood risk obtained based on the customary

assumption of seri al independence.

peak flow series is approximately iognormal ly distributed

and the statistics of each river is shown in Table 7.8.
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Five peak flow series are used as examples. Each

The f ive rivers are:

River at Emerson, the Roseway River at Lower 0hio, the

South Thomson River near Chase. and Slocan River near

Cresent Vallev.

The probabi lity distribution of the mean and

standard deviation is then obtained for each peak flow

senles uslng the Monte Carlo method descrlbed in Sectlon

7 .3 .2.

the Bow Ri ver at Banf f, the Red



5UI'f Ì'IARY STATi STI CS OF PEAK FLOrl SERI ES

Riven

Bow Riven
at Banff

Red Ri ver
at Emerson

Roseway R i ver
at Lower 0h i o

Sl ocan Ri ver
near Cresent
Valley

Sou th Thomson
River near
Chase

TABLE 7.8

t{ rl
^r l¡

76 5.37 0.256

70 6.28 0.762

o

67 4. L7 0 .356

6.09 0.27060

Note: N

l,'

F

Y

¡t/ { \P\r/
Þ

p

æv
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0.66 -0.08

0 .75 0 .17

0.74 0.08

0 .73 0.14

p{ 1)

48 6.88 0.223

= record length (years)

= sample mean (log"l

= samp I e standard dev i at i on ( I ogu )

= Hurst's coeff icient K

= lag-one serial correlation coefficient

= standard dev i at i on of meen ;

= etandard deviation of.standard deviation o.

0.0563 0.0205

0 .454t 0 .0824

0.2r41 0.0401

0.1301 0.029r

so.

0 .70 0 .17 0.0606 0.0240



Since the probabillty distributlons for both the

mean and standard deviation are approxirnately normally

distributed, only the standard deviation of the mean and

standard deviation of the standard deviation are necessary

to characterize the uncertainty in the estimation of the

mean and standard dev i at i on. These are a ì so summar i zed i n

Tab I e 7.8.

for each of, the rivers are shown In Figures 7.4

The resul ting predictive distributions (risk curves)

Also plotted on each of the figures are the frequency

curves obtained by fitting a lognormal distribution to the

observed data.

the pnedictive distribution and the descriptive

distnlþution can be substantial for rivers with large

Hurst's K values, ê,9. Red River and Roseway River.

0ne can see that the di f ference between

7.6 SUt'il{ARY

189

The object of probabi I ity analysis is to quantlfy

the variability of the peak f lows one may expect in the

period bounded by the planning horizon.
information available for pure statisticaì analysis is the

peak flow records.

there are ìor.¡ frequency conponents in the serial
correlatlon structure of the observed time series.
Al though the information about the nature of these low

7.8.

A high Hurst coeff icient means that

the on ly
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frequency components ls I lttie, the information shouid not

be discarded and denied by our probabi I ity analysls, as it
may drast i cal I y affect the degree to wh ich the peak f i ow

samp I e prov i ded by the record i s represen tat i ve of the
popu I at i on.

account the parameter uncertainty which is aggravated by

serial correlation, signif lcantly increases the risk
associated with future peak f lows.

Th i s chapter has shown that tak ing into

195



CHATIT ER

STOCHASTI C PEAH FLO}I

8.1 GENERAL

In the previous chapters, the probability
distribution of rvhich the recorded annual peak flow series
is considered to be a sample was deterrnined ,a priori,.
The choice of. the probability distribution is usually
based on considerat ions of parsimony of parameters and

goodness of f i t of observed data. The chosen probabi I i ty
di stribution may be qui te wel I supported in the middle

reach where many observat i ons are avai I ab I e; i n the upper

tai l, upon which flood protectlon decisions are based,

there is much uncertainty due to the lack of data.

Moreover, âs demonstrated in the previous chapter, the

observed serial correlation structure of the peak flows may

add substantial ly to this uncertainty,
0ne can reduce the uncertalnty in the risk analysis

of extreme events such as peak flows only by obtaining

B

SII'IUIATION HODET
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addi t i ona I i nformat ion.

i nf ormat i on about the type of probabi I i ty di str i but i on and

the magnitude of its parameters can be obtained by a

stat i st i cal anal ysis of the physi cal factors, which as

jointiy distributed random variabies determine the
sevenity of the extreme event.
investigated in this chapter.

in principle, such additional

This possibility is



This investigation requires the development of a

physically-based stochastic simuration moder that takes as
input the mal n hydro-meteorol oglc factors that determi ne
the magnitude of, the extreme event and that proouce as
output synthetic extreme event series statisticallv
simi lar to the observed series.

The advantage in deveroping such a stochastic
simulation model is that it ailor¿s f or a f urr range of
possible interactions of the lnput varlables in that the
output of the mode I ref I ects not on I y combinat i ons that
have occurred in the past, but also comblnations that did
not occur but that åre equal ly probable, thereby providing
more informatlon.
provides the probability distributlon function of the
output variable.

The simulation model

bet ter basi s for a probabl I

event than a conventional

Probabl I i ty distribut ion.

197

A disadvantage of the stochastic simuration moder is
that considerable simplif lcation of physlcal and
statistlcai relatlonships are necessary which inrroouces
error i n the moder . i{hether the galn i n accuracy is
positlve can onry be assessed by buirdlng and anarysing
the models,

In addttion, the slmulation model

should, therefore, provide a

istlc assessment of the extreme

extrapo I at i on of the assumed

Thls chapter describes
physlcai ly-Oased stochastic

an at tempt to deve I op such a

sirnulation model for the



generation of annual

Emerson, Man l toba.

8.2 }IODEttING I-IETHODOTOGY

Thls section outilnes the assumptions and the

necessary steps involved in the construction and

subsequent use of the stochastic peak f low simulation

model for risk assessment.

spr i ng peak f I ows on the Red R i ver at

quite simple provided one can avoid or eliminate cross-

Stochastic model ling of

correlation.
input variables, values of the input variabies are

generated using values of random variables having the

spec i f i ed di str ibut ion f unct ions and used to cornpute a

singie value of the output variable,
repeated unti I a sufficient number of values of the output

vaniables have been generated to define the distribution
function of the output variable.

Given the distribution functions of the

198

The construct i on of the stochast i c s lmu I at I on mode I

i nvol ves the fo i I owi ng steps:

pnocess is, in principle,

i)
ii)

Identify the "contributing" or input variables.
Determine the probabi I i ty distributìon functions of

iii)
the i nput var i ab i es.

Ana I yse and mode I the ser i a I

of the input variabies.

This process is

corre I at i on structure



iv) Check the cross-correlations of the contrlbuting
variables.

v) Identify the physical-statistical relationship
betr¿een the i npu t var i ab I es and the output var i ab I e.

vi ) Generate val ues of. the output var iabl e from generated

values of the input variabies and the relationship
identif ied in (v).

vii) Check for statistical resemblance between the
generated and the observed spr i ng peak f I ow ser i es

maki ng adjustments i f necessary.

vl i i ) 0btain the probabi I i ty dlstribut ion funct ion of the

output variable.
lx) 0btaln the predictive distributlon function of the

sping peak fiows by sampl Ing from the predlctive
distnlbuti ons of the i nput varl abl es.

x) Compare the predictive distribution function
obtained from (ix) to that derived only from the

observed data.

199

The contributing variables in step (i ) are the hydro-

meteorological input data. They may be used as observed

on in the form of functions in r¿hich the ef fect of more

than one variable is aggregated. In their effect, the

contrlbutlng varlables must simulate the main physical

factons that determine the magni tude of the annual peak

f I ows.



In step (ii), the probability distnibution of. each

of the contributing variables is determined. It is

expected that some of the contr lbut I ng var I ab i es may be

skewed,

contribut Ing varlable.

A t ime ser i es of, observat i ons corresponds to each

correlation structune of the time series is analysed. The

analysis would involve the caìculatlon of the serial

correlation coeff iclents and the Hurst's coefflcient in

addltion to the marginal distribution parameters such as

the mean and standard deviation.
appropriate time series modei required to reproduce the

observed serial correlation structure of each of the

contributing variables would be identified and tested for
adequacy.

In step (ili) the seriaì

In step (iv), the cross-corr.elations among the

contributing variaþles must be checked. If significant
cross-correlations between any t$Jo contributing variables

are found, then it may be necessary to express one

contributing variable in terms oÍ, the other to el iminate

mul ticol I inearity problems.

In step (v), the statistlcal relatlonship between

the contributing variables and the annual sprlng peak

20 0

in this step the

flows is determined. The relationship must reflect the

physical runoff process. That is, the proper interaction
among the contributing variables and the manner in which

these contributing variables affect the spring peak flows



must be correctly represented in the statistical model.
It ls expected that the statistical model would be

non I i nean and the parameters of the mode I have to be

determined from the observed data uslng appropriate
st a t i st i ca I techn i ques.

l.ii th the t ime series moder fon each contributing
variabie indentified in step (lii), and the statistlcal
model relating the spring peak frows to the contributing
variables determined in step (v), generation of spring
peak flow series càn proceed. This is carried out in step
(vi).

generated and combined using the statistical model to give
one ser i es of the spr i ng peak f l ols.

A time senies of each contributing variabre is

repeated unti I a large number of. independent series of the
spring peak f lows, each of iength equal to the observed
sample, are generated. Al ternati vel y, ote could generate
only one very long series.
incorporation of the parameter uncertainty of the
distribut ion function of the contributing variables due to
short sample length impossible.

In step (vii) the statistical resemblance between the
generated spring peak f lor¿ series and the observed series
is tested. statistical resemblance is achieved when the
mean, standard deviation, serial correlation coefficients
and the Hurst coefficient that are calculated from the
observed serles äre equal to the expected values of these
statistics from the rarge number of independently

4^1LV t

This process is

But that would make the



generated seri es. Adjustrnents to the parameters of the

statistical model may be necessary to ensure that

statistical resembìance is achieved between the spring

peak f I ows generated from the slmu I at I on mode I and those

i n the observed ser i es.

The probabi I ity distribution function of the spring

peak f lows f rorn generated data is determined in step

(vili).

function is to calcuiate the relatlve frequency that a

given f iow ls exceeded or equalled based on a large number

of data. The number of data to be generated shou I d be

large enough to ensure that the distribution function

obtained is well def ined. A set of. f iows can be def ined,

and the calculated relative frequency or probabi i ity that

each f low is equalled or exceeded can be plotted on

pnobability graph paper to give the approximate

A simple way of obtaining this distribution

distribution function of the spring peak fìows.

probability distribution function obtained would be

descriptive distribution function since the parameter

uncentainty of the inputs distributlon function has not

been taken I nto account yet,

In step (lx), the predlctive distribution function

of the spring peak fìows is determined. This is obtained

by sampì ing from the predictive distnibution function of.

?02

each of the contributing variables.

assumed that the parameters of. the stat i st i cal mode I that

relate spring peak flows to the contributing variables

The

However, it is



are knoç¡n and f ixed,

determinat ion of these parameters wi I I not be incorPorated

in the model since its effect is considered to be very

small compared to other variabilities.

The I ast step of the process is the co¡npar i son of.

the predictlve dlstribution functlon of the spring peak

f I ows obtai ned from the stochast i c simul at i on mode I to the

predictive distribution function of the observed data

based on

function.

Uncertainties reiated to the

uncertainty of the predictive distribution function

obtained from the simulation model to be less than that

denived only f rorn the observed data. This wi I I indicate

that a more reliable estimate of, the f lood risk can be

made by uslng the predictlve distribution obtalned from

the simulation model.

assumed underlying probabi I ity distribution

ii can, therefore, be expected that the

' Usi ng the methodol ogy and assumpt i ons

section, a specif ic stochastic slmulatlon

annual spring peak flows on the Red River

203

be constructed.
sections.

This is described in

set out in this

modeì for the

at Emerson will
the following



8.3 IDENTIFICATION AND }IODEttING OF CONTRIBUTING
VARI ABTES

Spr i ng

comblnation

(RRBI, 1953)

i)

peak f lor,¡s on the Red Rl ver are caused by ä

of four primary hydro-meteorological variabies

The basin

runof f .

The sno\.J

wlnter.

it)

lll)

iv)

0ther factors such as vapor pressure, êVaporat i on,

depth of frost penetration, çJind, etc., mày aiso affect
the magnitude of. the spring peak flows. The effect of

these factors on spring peak flows however are quite minor

and are highly correl ated to the four main factors. As

such they can be absorbed in the other terms and in the

random error term of the simulation model The

description and model I ing of each of the four contribut ing

var I ab I es i s di scussed next .

storage conditions prior to the

The rate at whlch the snor\' pack ls me lted.
The spring precipitation coinciding with
melting snow.

pack that

¿u{

has accumu I ated over the

the



8.3.1 Basln Storage Condltion

The first of the four contrlbuting variables is the

basin storage condition which is primarily in the form of

soi I moisture, prior to the runoff. Basin storage sets

the stage for the f I ood event at hand; a high basln

storage condition reduces the lnfiltnation rate which

increases the surface runoff component leading to a higher

peak f I ow.

Soil moisture is seldom measured directly.
Hydrologists, theref ore, must resort to indicators. Tr.¡o

commonly used indicators are the baseflow rate in a river
prior to the runoff and the antecedent precipitation index

(API).

type prediction models.

suitable for probabi I itistic analysis using simulation

s i nce both have a compl i cated i ntendependency wi th the

probabi I Istic inputs that are requined in a simulation

study. For this reason, the "accumulated basin storage"
(ABS), a physlcal I y-based parameter that cou I d be used i n

a probabi llstic f lood anaiysis \{as developed (Booy and

Both have been found useful in multi-regressive
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Lye, 1985, 1986).

guantifies the average soil moisture conditions for the

Red Ri ver drai nage basi n upstream of Emerson, Man i toba.

Neither indicator. however. is

The ABS has been compared to the API and the

basef low rate for the purpose of real time f lood

predi ct ion (Booy and Lye, 1985). The resul ts for the

i n th i s study, the ABS pr imari I y



three me thods q¡ere rather slmi iar.
stochastlc slmulatlon polnt of vi
based ABS i s super i or .

ABSt

The ABS can be wr i t ten as:

where ABS is the accumulated basin storage, !{p is the
winter precipitation, Sp is the summer precipi tat ion, C

the coef f iclent of evapotranspiration, U the potential
evapotranÞiratlon, åfid R is the annual runoff at Emerson.

In this equation al I terms are expnessed in mi I I imetres as

spatial averages over the drainage basin. l{ith regard to
notation, the water yean with index t refers to the period

ABSI_' * Wpt_r + Sp, - C Ut _ Rr

Howeverr from the

êw, the physically-

from Aprl I lst of the yeatr t
Ìtihen attached to process parameter such as summer
precipltation, the index t refers to the water year t in
which the process takes place.
condition parameter, that is, the ABS, the index t refers

206

to the end of the water year t.
summer and wi nter precipitation must be made.

precipitation is all that precipitation that falls bet$reen

Apnil 1st and 0ctober 31st of a given yeär.

(8.1)

precipitation in the rest of the water year is designated
as winten precipitation.

to March 31 st of year t + 1 .

that none of the winter pnecipitation of year t
contrlbutes to the ABs until it melts in water year
t+1.

ÏJhen attached to a

A di st I nct i on betq¡een

For simplicity it ls assumed

Summe r

The



The terms l{p, Sp and R are obtained from the
histonical records, seventy years of record are avai rabre
from 1 915 to rq94. These are gi ven i n Tab r e g. 1 .

The initiar varue of the ABs and the
evapotransplration term c.u are estimated by a fitting
procedure descrlbed in detai I by Booy and Lye ( 19g6).
Figure B'1 shows the finar prot of the ABS on Apri r rst
for the peri od of necord.

The ABs as a factor I n the corre I at i on structure of
the annual spring peak frows on the Red River at Emerson

\./as also investigated by Booy and Lye (19g6). They f ound

that the auto-correlation of the ABs affected the low
frequency grouping in the peak f lows thereby producing a

hish Hurst coefficient, as wel I às, the low lags serial
c or r e lat i on coef f i c i en t s.

f luctuations as rneasured by the ABS explain in part the
observed ser i a r corre r at i on structure of the spr i ng peaK

f I ows at Emerson.

The ABS equatlon In the form of (g.1) cannot,
however ' be 

, 
used for simu i at i on purposes because the

runoff tenm R and the potential evapotranspiration term u

207

are correlated with other terms.
found that a h'orkabre simuratron moder for the ABS series
can be obtained by absorbing the runoff and the
evapotranspiration terms into other terms in the equation.
usi ng this procedure, the simulat ion rnode I equati on f or
the ABS ser i es can be ç+r i t c en äs:

Therefore, the soi I mo i sture

Booy and Lye ( 1 986 )



Tabl e 8.1

OBS

I la{q
2 f9r6
3 t9t7
4 t918
5 1919
6 1920
7 1921
I 1922
I 1923

lo 1924
1 I t925
12 1926
13 1927
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ABS 
r

wnert tl = 0.97, cZ = 0.TË, c3 = 0.83, and e¡ i=
approx imatel y normal I y distributed wi th a mean of -090 mm

and a standard deviation of 14.0 mm. The terms in (9.2)

are statisticaily independent of each other, and Ra = 0.97.
To generate va I ues ot ABS, one needs to generate

va I ues of sP, i{P and the error terms e. Th i s can be done

as long as the distribution function and the serial
correlation structure of these terms are Known. It vras

found that the summer prec ipi tat ion, sp, and the tranoom

error term, e, are approximately normal iy distnibuted.
The winter preci pi tat i on, \{P, however requi res a square-

root transf ormat i on to produce an approx imate I y norma I I y

distrlbuted data set. The Hurst coefficlent and the first
serial correlatlon together wlth the mean and standard

deviation of the terms in (B.z) are shown in Table B.z.
The appnopriate parameter val ues for time series model for
lfP, SP and e are also shown in Table 8.2.

The fitting procedure and the determination of the

input parameters and bias correction for the Mixed-Noise

rnodel has been described in detai I in Section 6.8. Summer

precipitation (SP) series, for exanple, can then be

generated as:

cnABSu n +
¿ L-l

*zwFt-t caSF, + *t

ñt 
^¿l.u

(8.2)

sPt 428 73.8 * zst (8.3)



Var i ab i e

SUMHARY STATISTICS OF ABS, SP, WP AND E

ABS

\E

i{P

WP

e

TABLE 8.2

Mean

267

428

87

9 .26

-390

s.d.

Note: s.d.

p{ 1)

MN

IND

120.6

73. I
4Õ. t

t.26
1A tì

21, t

Hurst's K

0 .88

0 .70

0 .67

0 .68

0 .63

standard deviation

p{ 1)

f irst serial correlation coef f icient
Hi xed-no i se mode I descr i bed i n Sect i on 6.8

Wh i te noise model ( i ndependent seri es)

0.81

0.0

0.0

v.v¿

0.10

Mode I

Eqn (8.2)

MN

MN

TND



wnere zst iE a stånderdi zed normal ly di str ibuted I'lixed-

Noise pnocess that will on average reproduce a Hurst's K

of 0.7 and a p(1) of 0.0.

The ABS serles generated using the simulation model

given by (8.2) was checked for statistical resemblance

wi th the observed ABS series. A large number of ABS

series, each 70 years long, were generated using the model

and generated sequences of SP, i,lP and e. This analysis

showed that, orì averä9ê, the ABS simulat ion model was able

to neproduce the observed mean, standard deviation, the

first 15 serial correlation coefficients, and the Hurst

coefficient reasonabìy wel I in that the expected vaìues of,

these st at i st i cs are approx imate I y equa I to the observed

sample values.

8.3.2 Snow Accumulatlon

¿L¿

The second contributing variable to the magnitude of.

the annual sp.ring peak f iows at Emerson is the amount of

snow or winter precipitation that has accumulated during

the winter. This variable was briefl y described in the

previous Section on the ABS. For simpl icity, the winter
preclpitatlon, l.lP, is assumed to start on November lst and

end on March 31st of the water year t. This is of course

strlctly not correct because in some years sno\{ may come

earlier while in other years lt may continue to snorJ



after March 31st. But deviation from the assumptions wiìl
not have much effect on the analysis.

The total amount of winter precipitation in the

basin is perhaps the most important variable that
contributes to the magni tude of the spring peak flows on

the Red River.
means that more water is avai lable for the runoff. The

severity of the fiood however would still depend on the

other contributing variables. But, if there is no snow

(highly unl ikeiy in the Red River basin), then severe

spning floods are extremely uni ikely even if a high ABS and

spring rains would occur.

High winter precipitation invariably

As d i scussed i n the prev i ous sect i on, the

precipltation series can be generated by using a

Noise nodel. The generating equation is:

where z\tt is a standardi zed lrtN proseEE that on ðverege

wlll rêproduce a Hurst's ( = 0.68 and p{1) = 0.0a.
The HPt =er i es i a then obta i ned by Eguar i ng Wpa 1.''1. A

I arge number of i{Ptl/2 seri es each of. 7o years I ong were

generated using (8.4) and the square transformation to
test the adequacy of the generat i ng scheme . I t was f ound

that on average the observed mean, standard deviation,
f lrst order seriaì coef f icient, and the Hurst,s
coefficient K of the \{P senies were reasonabiy weil

wPI/z = e.26

213

1,26 r( z\.rt

winter

Mixed-

.(8.4)



reproduced in that the

are approximately equal

L 3 .3 l,te I t -Rate 0f Snow

The third variable contrlbuting to the magnitude of

spring peak f lor+s is the rate at which the snoçr pack melts

expected values of these statistics
to the observed samp I e vaì ues.

in the spring.
parameter to develop. It depends on many meteoroiogical

factors for which very I i ttle data are avai lable for
proper time series analysis. The only available data for
whi ch I ong records are avai I abl e is temperature. The use

of temperature as an i ndex of mei t-rate was used wi th

some success by Johnson and Archer (t972) and by the

Hanitoba Water Resources Branch (Warkentin, personal

communications) f or short term f iood forecasting.
However, the method that was used to est imate the me I t-

The melt-rate is the rnost difficult

4't Å¿,ta

rate is highly subjective.
An objective albeit

tempenature is used in this
f ollows.

The melt index (MI) used is the average degree-

days above 32oF for a six days period prior to a nine day

I ag per i od from the day of the observed f I ood peak. Th i s

combination of, a six days average and a nlne day lag was

obtained by trlal and error until the best correlation is

simplif ied index based on

s tudy . I t may be descr i bed as



obtained with the magnitude of the peak f lor.¡s.

value of 0.07 was obtained which is comparable to the index

used by the Man i toba \.later Resources Branch. Th i s I ow pã

vaiue, aìthough statistically significant at the sz level,
indicates that the rate of snolr melt contributes little to

the magnitude of spring peak f lor¿s on the Red River. It
shoul d be noted that on I y the temperature data from the

Grand Forks station in North Dakota was used.

station is in the middle of the basin upstream of Emerson.

The denived melt-index, MI, is also given in Table

8.1. It was found that a square root transformation of Mi

wi I I give approximately normal ìy distributed transf orrned

variates. The summary statistics for the mel t index are

I isted below.

215

An Ri

Hi

MI

Mean

5.92

2 .29

s.d.

The melt-index can

3.94

0. 82

This

t4T.T/2 =

Hurst's K

0.70

^ 
"1 .v, tr

¿.¿Y

be generated from:

p(1)

0 .82

0

0

.10

. r¿

x zm,r

Mode I

HN

(8.5)



wnere zmt iã a Etandardized normal ly distributed proceEs

that on averàge \rili give Hunst's ( = 0.7 ènd p{1) = 0.1.
Mi is obtained by squani ng YlL/2.

The adeguacy of the me I t- i ndex generat i on mode I was

tested usi ng the same procedure for the 1.lp. i t was f ound

on average that the generation model reproduces the

observed sample statistics and seniai correlation
reasonably well in that the expected vaiues of these

statistics ane approximatel y equal to the observed sampl e

values.

8.3.4 SÞrlng Preclpltatlon

The finaì variabie contributtng to the magnitude of

the spring peak flor+s at Emenson is the precipiiation that
occurs between March 31st and the day of the peak f I ow. A

distinction must be made between the precipitation that
may fal I as snow or rain, and that fal ls onìy as rain.
Snow may cont i nue to fa I ì af ter March 3lst wi th a I ate

spring. Therefore, the precipitation that fal I s between

March 31st and the day of the f I ood peak at Emerson must

be di vided into two parts, cP and Mp. The variabl e Mp i s

defined as the amount of precipitation that fal ls from

April lst to the date nine days before the date of the

peak f I ow at Emerson. Hence, Mp may be I n the form of

snow or rain. The variable cP is defined as the amount of

216



liquid precipitation that falls during the nine day

sno$rmelt period before the date of the peak flow at

Emerson. The "nine days" is the iag period as defined in

the prev i ous sect i on on me I t - i ndex.

The total amount of precipitation CP and MP $¡ere

found to be h I gh I y corre I ated wi th the date of the peak

f I ow at Emerson às one wou I d expect; the I ater the peak

the larger the amount of. CP and I'tP. Theref ore, the " t ime

to peak" (TP) must be treated as a random var iabl e and

must be generated as part of the simulation process,

the variabìe "time to peaku TP is defined as the

number of days f rorn March 1st. For example, TP = jZ i f

the day of the peak is on April 1st, and TP = 63 if the

day of the peak i s on May 7nd.

The square root of TP was found to be approximately

normaì ly distributed. The summary statistics of rP and

its appropriate time series model are as follows:

?17

TP

ÎP'L

Mean'

46

6.47

s.o.

The generating equation for TP is given by:

LU. L¿

0.742

rpVz =-'t

Hurst's K

6.8

0 .68

0 .67

p{ 1)

0.74 * zt,

lllì

nrì

Mode i

MN



where ztt ¡s e

Noi se var iate. The generated val ues

and the i nteger part i s taken as TP.

After a mi nor adJustment to the transformed mean.

from 6.47 to 6.80 the generating eguation \{as found to be

abl e to reproduce on average the observed mean, standard

standardi zed normal

deviation, Hurst's
reèsonably well.

From the record, there are six years i n wh i ch TP was

less than 32. That is, the peak fìow occurred before

Apr i I I st . For these cases, CP and MP are both zero.

Also by definition when TP is less than 41. MP is zero.

ly distributed Mixed-

of TP*l"2 are squared

There are 2t such cages

simuiation model for MP

K and the first serial correìation

remaining 49 values of MP to Tp. A cube-roor
transformation on the values of MP used in the regression
was necessary to obta i n norma I I y di str i buted random error
terms. The simulation model is given by:

318

i n the observed data set. A

is obtained by regressing the

| /àMPi'" =

MP"'t

where em, the error term, is normal ly distributed wi th

mean = -4 .68 an d stan dard dev i at i on = 0 .96.

The generating scheme (8.7) rvas found to be able to

reproduce the stat i st i cs of the transformed var iate we i I .

131 i( TPt + r*t TPt, 40

otherwi se

( B.7a )

(8.7b)



Cubing the generated values of MP1.J3 however did not

preserve the historical statistics of MP. However, this
is not a problem in the construct ion of. the f inal compound

simulation model of spring peak f ior.¡s as wi ll be described
in Section 8,4.

S imi lar ly, a s imu lat i on mode l

regress i on of t he rema i n i ng 64 CP

root transformat I on on CP was ai so

normaily distributed random error
model. The simulation model for Cp

cP:'" =t

cP,I

where ec, the error term, is normal I y distributed wi th

mean = -0 .381 and standard dev i at i on = 0.90.

0.041 * TPt + ect

for CP was obtained by

values to TP. A cube-

found necessary to give

terms in the regresslon

is given by:

The generating scheme (8,8) $¡as also found to þe

able to reproduce the observed statistics of the

219

transformed variates wei l.
cubing cP1"3 to obtain cp did not preserve the historical
statistics of cP. Therefore only 6p113 wi thout the inverse
tnansformation is generated,

The summary statistics
f ollows:

TP>32

otherwi se

( 8.8a )

(8.8b)

As r¿i th the generat i on of MP,

for CPI/3 and MP1"3 "re as



t/^CP"
v^

MP'5

Me an

L ,1+4

1.438

cal cul ated p{ I ) were negat ive and has been set to zeîa
here for physical reasons.

8.4 CONSTRUCTION OF SPRING PEAK FtOW SII.tUtATION MODET

a/ì

1 .056

1.493

In thls sectlon, the cross-correlations among the

contributing variables are checked, and the physical-
stat istical relationship between the annual spring peak

f l ols at Emerson and the contr ibutlng vari abl es def ined.

Having identlfied the variables contributlng to the

magnitude of annual spring flows at Emerson; nameìy, the

soil moisture condition, the winter precipitation, the

rate of snowrnelt and the spring precipitation, and

procedures for s i mu I at i ng each of them, the i r cross-
corre I at i ons must be checked before they can be used i n

Hurst's K

0

lì .67

o( 1)

1/}r'\LLV

0

ñ

n

.U

the peak flow simulation model.

l{

x

me I t- i ndex, MI , to be corre lated to the ,' t ime to peak,, ,

TP. si nce the I ater the peak occurs, the greater are the

chances of having rapid rise in tempenature.

study, however, no appreci abl e corre I at i on between two

var i ab I es were found.

that the me I t- i ndex used di d not ref I ect the actual me I t

0ne wou I d expect that the

The reason for this is probably

In this



conditions in the basin.

temperature based indices.

The variables cP and Mp are correlated to each other
as expected since they ane both re I ated to Tp.

All other variables were f ound to be mutually
independent. This means that ABS, t'ip, Tp, and MI can each

be generated as independent inputs into the peak f lor.¡

simulation model.

A physlcally-based nelationshlp between spring peaK

flows and the pnimary contributing variabl es is given by:

This is

P¡I Ì klt+Ptu(ABSt- b) *t,"

maj or drawback

wher" k1, þrZ, h,3 atre ssale påtremetersi år E, d. er arE
shape parameters; b is a threshold parameter related to
effective soii moisture; and E is the random error term.

The explanation for (9.9) is äs fol lows:

The three precipi tation tenms namel y, i{p, Hp and Cp are

the factors that contribute to the magnitude of the spning

k3cPtt(ABSt- b)

221

of

peak f low additivelv.

k2MPto(ABSt- b) Mt,'

Precipitation (\{P), however, is influenced by the soil
moi sture condi t i on ( ABs ) , and the rate of me lt (llI ) of the

H

I

snow pa cK .

snoçJ) is similarlv inf luenced by the soil moistune
condition (ABS), and the melt rate (MI). The contribution
of CP is influenced only by the soi I moisture condition.

The contribut ion of Mp (whlch may be part

The contribution of the winter

(8.9)



The melt Index ls not lncluded because lt Is assumed that
cP consists only of rain ano no sno\,r. The last additive
term in (8.9) Is the erron term whlch takes Into àccounç

other factors that con tr I bute to the spr I ng peak f I ows but

\.¡ere not modelled explicltly.
To obtain the constants of the model given by

( 8.9), a non- l i near l east squares regressi on techn i que i s
used to fit the observed spring peak flow data (pF) to the

observed data of the var i ab I es on the r ight hand si de of
(8.9). The following results were obtained.

kt = o'oooo81

rn¿l E'<1rr\r of is normal ly digtributed with e meãn

standard deviation of 279.1.

Residual analysis u,as then used

adequacy of the regressi on mode I .

-130

kz = o'01418

The plot of. the predicted peak flow values against
the residuals of the fitted model indicated that the

t:¿¿

= 0.0294

var i ance of the residual s are not constant.

kg = o'oo140

there ls a probl em of heteroscedast ic i ty. A p I of of each

of the independent variables against the nesiduals showed

that the prob I em of het eroscedast i c i ty i s caused by the

winter precipiiation (tfP) variable; larger residual
variance being associated r.¡ith larger winter precipitation.

= 1.0886

a = 2,1092

e = 1.5464

of 93.5 and a

lo check the

That is,



A sirnple way to deal r¿ith heteroscedasticity is by

the method of " def l at ion" (Johnson , tg?z) whereby the

terms in the eguation are divided by the variable causing
heteroscedasicity. It is assumed that:

Di vlding (8.9) throughout by i{p

v¡i th homoscedast I c enror t erm.

gives a modification of (8.9):

Var (Et )

PF

WP

wPz ê

k.l{P.*'(ABS.-¿Lt

Ì.¡here, ¡ lt
t

k3cPtt(ABSt-

Þecome; k1 = 0.00ú0265r E2

2.309, b = -106, c = O.O28Z,

is normally distributed rvith

deviatio[ f'= 3.g.

b) MI,"

b) 1

}jP

results i

Performl ng

¿¿ó

Equation (8.11) is then used to genenate pFltr/p data
after which values of pF are obtained by multipiying
through by l{P.

= Ea,,l{p¡ r

r'l
k2MPt -( ABSr

-ì(Ë-t

n an equat i on

thls divlsion

(8.10)

The percentage of. vari ance of the spr I ng peak f I ow

at Emerson explained by the simulation model (8.11) is
about 742,

and the mode I

= 0 .0ü 78ç. k3

d - 1.236, e =

A meAn |l"' = 8.0

- b) MIt

The simulatlon model can be

dropp i ns the me I t- i ndex term ( MI )

e1
t{P

conEtants now

= 0.099i. e =

0.2524, and Ef

and a standard

(8.11)

slrnplifled further by

si nce the contr ibut i on



of. this variable is very smail and the real effect of

melting condltlon ls alneady taken Into account by the

"tlme to peak", TP.

The nefitted model is given by:

PI

WP,r

=kí wP: '(ABS. - b')t?v!

wherê k, ' - 0.0000ggi. k.r.l¿

ká cPl'( ABS t-

2.274, b' = 115, d' = 1.2L5, e' = 0,2774, Et

distributed with mean pE, = 1,0 and gtandard

= /.90. The Hurst's coeff icient K and

correìation coeff icient p{1) of. Et' is
respectively.

1
h/ \

l.¡P,I

kt MP9'(ABS, - b, ) 1

I | " i{Pl.

The difference in the percentage of variance of pF

explained by this new model and (8.11) is negligible.
Equation (8.12) is therefore pneferred since it has fewer

parameters.

.t/ì ILL+

x-t

= þ.00886, k"' =

The generat i on of. PF can now

the generation process are shown

f igure, the coeff icients d and

because the cube-root of CP and

instead of the original variable

8.3 . 4.

(8.12>

0.0926. a' =

is notrmally

deviation c]-n..
.E,¡

f irst seriaì
0.68 and 0.1

proceed. The steps in

in Figure 8.2. In the

e are multiplied by 3

MP are used as i nput s

as explained in Section
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To test the adequacy of the peak f lor+ slmulatlon
model (8,12), a large number of series each 70 year length

was generated,

The observed Hurst's K and f l rst sen l al corne l at i on

were reasonably well reproduced by the model in that the

values of these statistics are approximately equal to the

observed sampl e values. However, minor bias corrections
to the parameters Fg' and ú8, lrere required to reproctuse

on èverage the observed mean and standard dev i at i on of the

peak flow series. in addition, the minimum generated peak

f low value is set at 100 ^3/= which is close to the

observed minimum peak fì ow of L07 ^3/r. This is to avoid

accidentaì generation of negative flows.
The observed spr i ng peak f I ow st at i st i cs and those

obtained on average by the simulation model is shown in
Tab I e 8.3.

¿ ¿E)

OBSERVED AND GENERATED SPRING PEAK FtOT{ STATiSTICS

PF'--obs

PF gen

Mean

TABTE 8.3

Note: Unit of
pF
*.ODSYË =gen

692

692

s,o.

518

514

peak flow is m3/".
observed peak f low series.
trenerated peah f I ow ser ieE based on

rep I i cat i ons of 70 years.

sk,ew

1.8

?,1

Hurst's K

0.745

U. I9U

p{1)

U.¿U

0.16

e0 . 0 0 0



8.5 DESCRIPTIVE DISTRIBUTION FUNCTION OF SPRiNG PEAK
FIOtfS USING THE SUHUTATION MODET

To der i ve the comp I ete probabi I i ty distribution
function of the spring peak flows at Emerson using the

simulation model (8.12), a large number of peak flow data

(PF) must be generated.

seguences of PF each of length egual to 70 years, giving a

total of 1,400,000 peak f low data, gave stable
probabi I i ties based on relative frequencies.

The probability that a certain flow rate is equalled

or exceeded in any one year, P(X I Q), is estimated by:

P(X >/ Q>

Table 8.4 summarises the resuits for various values

of 0, and Figure 8.3 shows the plot of, the pnobability

It was found that 20 000

distribution function on probabi I ity graph paper.

observed flood data fitted by a 2-parameter lognormal

distributlon and is also shown ln Figure 8.3.

The probabi I ity distribution obtained from the peak

flow simulation modei (8.12) is a descriptive rather than

a predictive distribution since the parameter uncertainty
of the distribution functions of the contributing

227

No. of PF >/ 0

1,400,000

variables have not been taken into account.

stochastic or Inherent uncertainty of the contrlbuting
var l ab l es we re con s l dere d.

(8.13)

The

0n ly the



DESCRIPTIVE

(Total

0 (mx/s)

TABLE 8.4

D I STR I BUT I ON FRO}I

number of, data =

150

200

300

500

1000

2000

2670x

3000

3BB0xx

4500

5153xxx

6000

7000

8000

*)tQ

S I }'U LAT I ON IIO DEL

1,400,000)

I

1

1

,323,940

,262,996

,t02,640

758,6gg

263,396

44,296

18,396

r2,684

5,559

3 ,444
õ 1-^t¿, L IV

I ,320

1Aat.t¿,

448

?,?8

Probabi I i ty

x 1950 tx,{ IB52 f
*r(* 1826 t

0.94560

0.90214

0.78760

0.54r92

0 . 18814

0.03164

0.01314

0.00906

0.00397

0.00246

u . u u 1 Þþ

0.00094

0.00053

0.00032

ood
ood (highest historical .f Iood oþserved)
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0ne can see that the dlstrlbution function obtained

from the simulatlon model is almost indistinguishable from

that obtained by f itt ing a lognormal distribution to the

obsenved peak flow data up to a risk level (probability of

exceedence) of LZ. At the upper tails of the

distributions however, the distributlon obtained by

simulation is steeper than that of the assumed lognormal

dlstrlbut ion. Thi s I s an important considerat ion i n view

of the negative skew in the log transformed recorded series

wh ich has led previous investigators to curve the I ine

downward.

Tabl e 8.5 compares the probabi I ity of exceedences

obtained by simulation and the lognormal distribution of

some of. the historical spring fìoods at Emerson.

However, when mak i ng probabi l i t y assessments about

future f lood occurrences, the uncertainty in the

parameters must be included in the distribution funct ions

of each contributing variable. This is considered in the

next section.

¿t\)



PROBABITITY OF EXCEEDENCE OF HiSIORiCAt SPRING

PEAKS ON THE RED RIVER AT E}ÍERSON

Year

Ló¿ö

1852

1950

TABLE 8.5

0 (m3/=>

Prob^. , trFÃÞrm, ..ïbibility obtained from deesriptive simulation
mooe I

lnobi,N2; Probabil¡ty obtained from lognormal modelNotei"' Approxlmatê return periods iñ parenthesis.

5153

388 0

267 0

231

Probrr*

0.0016
(625)

0.0040
(250)

0 . 01 30
| ')', \

Probl¡q2

0.0013
<770)

0.0035
(286)

rì 
^ 

{ ?ñV.UT TU
(59)



8.6 PREDICTIVE DiSTRIBUTION FUNCTiON OF SPRING PEAK
FTOl.lS USING SiHUTATION I,fODEt

The predl ct i ve dl str ibut ion lras discussed i n Chapter

4. It combines both stochastic and parameter uncertainty
into the analysis.

To include parameter uncertainty into time series
genenation, it is necessary to sample from the predictive
distribution of the random variabie (vicens et å1., l97s).
For normally distributed variables this essentialìy
amounts to samplinq f rom a distribution function r¿ith a

langer variance.
generated peak f low sequences obtained this !,ray would then

include parameter uncertainty caused by serial correiation
and sample length.

The predictive distribution functions of the
contributing variabies are obtained using the discrete
predictive distribution approach described in section 4.s
after doing the necessary tnansformation of the variables
to nonmal I y distributed variates. The parameters used to
generate the'predictive distribution function are shown in

Figune 8.2 in parenthesis.

The mean remains the såme.

¿]r-

As with the descniptive distribution, ZO 000

sequences each 70 years long were generated to def ine the

predictive distribution of the spring peak f lows. The

results ane shown in Table 8.6.

The



TABLE 8.6

PREDICTIVE DISTRIBUTION TUNCTION(Total number of data =

0 (m3/s)

150

200

300

qnn

1000

2000

2670 x

JUUU

3880 xx

4500

5l53xxx

6000

7000

8000
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1
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1

,313,424
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,094,100

770,280

296,254

60 ,80 2

27 ,468
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9,549
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I ,229

2,674

L,624

1,050

¿Jó
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0

0

^
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.00441
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Figure 8,4 shows the results of Table 9.6
probabillty graph paper. The predictive and descripti
dlstrlbut lon of the observed sprlng peak fl ows assumlng

lognormal dlstrlbution are also shown in Figure 9.4.
The predictive distribution function that is

obtained by simulatlon is, âs expected, steeper than the

descriptive distribution which does not take paraneter

uncertainty into account.
di str i but i on funct i on based on I y on the observed data i s

conslderably steepen (larger predictive variance) than

that obtained from the simul ation model . This indicates
that the additional information obtained from the

contributing variables to the spring peak f lor+s have

reduced the variance of the predictive distribution. That

is, the uncertainty in the risk assessment is neduced by

the contrlbutinq varlables in the slmulation model

Furthermore, since no 'a priori' probabi I ity distribution
is necessary for the spring peak flows in the simulation
model, the uncertainty associated with choosing the

appropriate probability distribution to describe the

observed data is also reduced.

231

on

VE

a

But, the predictive

Therefore, the predictive distribution obtained

usi ng the stochastic simuì ation model shoul d provlde a

bet ter basi s for probab i I i ty assessment of, future f I oods

on the Red River at Emerson.
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8.7 SUl,f l,fARY

The constructlon of a physlcally-based stochastic
slmulatlon modeì for the sprlng peak flows on the Red

River at Emerson was attempted in this chapter.
In developing the simulation model, the observed

Hurst's K, first seriar correlation coeff icient and the
parame ters of the mode I frorn the non- I i near I east squares
f i t were assumed to be constant. These are a I so uncertai n

parameters. However, i t does not seem to be unreasonabl e

to assume at th is stage that they are constant for the
next 70 year period. 0nl y the uncertainty rel ated to the
parameters of the distribution function of the
contributing variables wetre taken into consideration in
fhe simulation model.

uncertainty caused by short sample length and serial
correlation.

The predictive

stochastic Sirnulation

tha t based on I y on th e

4'Jl¿

This uncentainty however included

distribution obtained from the

model showed less uncertainty than

observed data.



9.r CONCLUSI ONS

CONCLUSIONS AHD

are:

I

The pr imary conc I usi ons to be drawn

CHAFTER 9

If there is suff icient
observed series of annual

independent, and the only

describe the probabilist

observed data, then a

estimating the parameters

dlstribution provldes

estimates than the usual

maximum I ikel ihood.

REC Ol,lM END¡'T I ONS

¿êt

evidence to show that the

peak flows are serially
issue of interest is to

ic phenomenon using the

Bayesian approach of

of the flood probability

slightly mone reliable
ly preferred method of.

The computation of Bayes estimates with a ,vague,

prior distribution for the parameters, has been

shov¡n to be much simplif ied using Lindley,s Bayesian

appr ox i mat i on procedure.

from this thesis

¿. For making decisions concerning future floods
using the observed f lood data, the parameter

uncertainty of the flood probabi I ity distribution
and the stochast ic uncertainty of the flood data it
deflnes must be comblned. Thls can be achieved usinq

the predictive distribution approach. If there are



sufficient reasons to believe that in the future time

frame bounded by the pl anning hori zon, the annual

f Iood data are seriaily independent, elther
Lindley's method or Russel l,s discrete approach can

be used to obtai n the predi ct i ve distr ibut i on. i n

this case, pàrarneter uncertainty is primari ly due ro
short sample ìength.

If there is evldence

correiation ln the observed

high Hurst's coef f iclent
uncertalnty is substantial
records are avai lable.

The predictive distribution for serially
correlated data can be obtained by using Russel l,s
discrete predictive distribution approach.

uncertainty of. the estimated parameters is obtained

using a time series model that is capable of

?38

of iong term serial
f lood data leadlng to a

, then the panameten

even when long f lood

reproducing the observed serial
structure of the peak f I ows.

^ Annual peak flows series of Canadian nivers are

found to exhibit signif icant iong tern serial
correl at ion simi lar to the many geophyslcal time

ser i es exami ned by Hurst h imse I f .

A new technique for model I ing senies with a high

Hurst coefficient and a low first order serial
correlation coeff icient which is characteristic of

conrelation

the



f lood peak series was developed.

model is cal Ied a Mixed-Noise model.

shov¿n that the Hixed-Noise model

efficient and that estimation of the model,s
parameters is extneme I y easy In compari son to the

estimation of paråmeters for other models currently
available. In addition, graphs for detenmining the

small sample bias corrections of the model

parameters were devel oped for ease of use.

A stochastlc simulation model for the spring peak

f I or¿s on the Red Ri ver at Emerson was descr i bed.

The stochastic inputs to the simulation model are

the primary contributing variabies that determine

the magn i tude of the spr i ng peak f I ows. These are:
the soi I moisture condition in the basin prion to

runoff and measured by the ABS; the amount of winter
precipitation that has accumulated over the winter;
the melt-rate of the snok'; and the precipitation

6.

The resulting

it has been

is relatively

239

that occurs during the melting period.
contributing variable is genenated as a stochastic
time series, and the variabjes are related to the

spring peak flows by a physically-based statistical
relationship.

The predictive distribution obtained from the

simuiation model indicates that the additional
information from the contributing variables has

increased the reliability of risk assessment of

Each



future spr i ng peak f I ows when compared to the use of

the predi ct i ve di str ibut ion based on r y on observeo

data. In addition, the simulation model also
provldes the dlstribution functlon of the peak flows
thereby obv i at i ng the need to assume an , a pr i or i ,

flood distribution.

7. Long term soi I rnoisture f luctuat ions as measureo

by the accumu I ated bas i n storage was found to exp I ai n

in part the observed senial correlation structune of

the spr i ng peak f I ows at Emerson.

L Parameter uncertainty due to short sample length

and aggravated by ser i al corre I at i on appeans to be a

more important issue than the questions of
probabi I iiy plotting positions, parameter estimation

by the method of moments, maximum I ikel ihood, etc..
or the cho i ce between a 2-parameter and 3-parameten

d I st r i but i on wh i ch have been the subj ec ts of much

research by engineers and statisticians ai ike.

24t



9 .2 RECOI.II'f ENDAT I ONS FOR

There are

desirable:IS

Irr 1.lhi le Lindley's approximation procedure is an

attractive method for engineers to obtain Bayes

estimators, the technique at present is I imited to

non data-based prior distnibutions only. Techniques

for inclusion of data-based priors would greatly

enhance the attract iveness of Lindlev's aÞÞroach.

numþer of i ssues i n wh i ch furth er study

FURTHER STUDY

¿. Investigation into the theoretical properties of.

the Mi xed-No I se mode I and a comprehensi ve compan i son

ç¡i th other avai lable models are desirable.

includes developing simple procedures and

appropriate time series modeis

engineers to select and use.

4,1 |

Since parameter uncertainty caused by long term

serial correlation is quite substantial leading to a

upward assessment of f lood risk, physical reasons

for the I ong term behav i our shou I d be i nvest i gated

for each river basin where this phenomenon is
observed. The accumul ated basi n storage appears to

be a good parameter by wh i ch to exami ne the f I ows.

^ Further advancement of f i ood r i sk assessment can

probabl y on I y come from a better undenstandi ng of

the phys i ca I processes that determi ne the magn i tude

for pnactising

This



of f loods i

statistical

study, In

additional
technigues or

tseif.

hydrol ogy i s i ndi spensi bl e for such a

.additlon methodology for combinlng

information on f loods via Bayesian

of her me thods wou I d be des i rab I e .

A synthesis of physical and

¿4¿
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APPENDIX E

Bayesían Approximation constants of the

3 Parameter lognormal dístríbutíon
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APPENDIX F

Bayesian Approximation Constants of the
2 Parameter Lognormal Distribution
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APPENDIX G

HURST PHENOMENON

The use of the Hurst coefficient as a measure of
long term serial correlation is introduced in this
appendix. The estimation of. the Hurst coeff icient is
discussed, and the test of significance of
Hunst coef f icient is presented

the estimated

In his study of the rong term storage capacity of.

reservoirs, H. E. Hurst ( 19s1, 19s6) empl oyed a stat ist ic
cal led the "range of cumulative depantunes from the sampre

mean " , wh i ch equa l s the required storage volume of a

reservoir which for a given inflow sequence can nel ease in
eveny year the mean i nf I ow.

Let *1.

inf lows into
in the n year

xZ, *n be a . sequence of annua I

a resenvoi r over n years, Let the mean f I ow

per i od be denoted by:

,ftr t<-1

; z*i
L=1

The accumu I ated depar ture

af ter y yeans is:

I
\
Z--
[= r

i=

- i)
n

-tJ

is:

of. the f lows from the mean f loçr

in the last pen

departures from

i od, Sn

Ene mean

The rånge of the cumulative
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max (s )yv min (S ) ^^ v-
r'¡ fil

wher. sM and 5m åtre the I argest and sma I I est val ues i n the
set iSy]. Figure G1 illustrates. through the måss cutrve,
the relationships between S, anrJ En.

Hurst studied how the average varue of Rn chanFe= ås
a function of n and found that the expected value of Rn

divided by the standard deviation sn of the n ånnuar
inflows is proportional to n raised to some power h.

ñl

t. / ^'^ \ ^¡¡! \ il / ll

n

The exponent h which varies between 0 and I is cal led the
Hurst statistic' The ratio Rnr'sn is carred the trpssEled
range.

In addit ion to niven discharges, Hurst invest igated
a host of other natunal geophysical time series ranging
from tree rings to cray varves. Ar r in ar r, 7s di fferent
phenomenon were used. The total number of serres was

close to 900 and they vary in length from 40 to 2000 years.
Equation G1 implies that the relationship between

log E(R,zs) and log n is linear with slope h. See Figuce
G2. To determinê h, Hurst def ined:

)K

laa a R^ r¡ vY \ _l! /
\

n

ul

R^ln
l¡ - \

q,
-n a

n(")
;I

or
l¡a¡ V:, v¿
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where K represents an est imate of h for each of the 900

time series he invest igated. l 0ver al I phenomena Hurst,s
K was found to have an average varue of 0.23 with a

standard deviation of 0.0g. Asymptotically, fon
independent normal random variables, Hurst ( 1gs6) and
Fe I ler ( 1951) shoç¡ed that:

'Hunst used equation Gz so that E(R,/s) = t for n = zin his attempts to find the best possible fit to the dataused, but this restriction may cause bias. In view of itssimplicity, hoç¿ever, many researchers st i ll pref er it overt-hu more general expression equåtion Gl. Mandelorot andl'/allis (r969) proposed a graphiàal procedure f or estimatingh, through a so cailed pox diagram. To construct the poxdiagram, the series is divided into a number of sub-ser i es of I ength n, on doub I e I ogari thmi c papen. Anest imate of h denoted by H is obtsi neO as the s I ope of aI east squares I i ne f i tted to the I ogari thms of. the meanva I ues of. R ..s
Manoel'b."8í'and i.lallis contend that actuar poxdiagrams have a straight tnend iine of slope H that failsto pass through the point of abscissa log 2 and ordinate

0 ' As such, Hurst's K is thus a very poor est imate ofsl ope h. It tends to be too r ow when h > o.7z and toohisn when h < 0.72. As a result, the trend line andHurst's method may both suggest i dent i ca I va I ues for h,but Hurst's method wi I I great I y underrate the vari abi I i tyof h around its typical value.
I t must be poi nted out that the use of H as anestimator of h would invariably introduce a suþjectiveelement into the computation. As such, differenti nvest i gators may have a different est imate. usuar r ythese dif.f.etrences are quite small. The samplingpropert ies of both K and H for smal I samp I es nave beenextensively studied by l{al l is and Mataras (Ig7L). Theyfound that K and H are both biased est imators ot h. K i smone biased but less vaniable and H is less biaseo butmore var i ab I e. However, both K and H are unb i ased around0.7 . They a i so found that the bi as for both K and Hdecreases wi th i ncreasi ng n but at a very sr ow rate. 0n r yHurst's K is used in this study in viev¡ of its simpricity.Hipel and HcLeod (197s) in an effort to standardizethe estimation of h have proposed a maximum l iker ihoodmethod. Although it is statistically appealing, thepnocedure is rather involved and it has noi-been widelyu5eo.
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sKewness

transience

non-stat ionari ty

autocorrelation

in othen words, h -+ 0.5 as n becomes I arge, But Hurst

aì so made the far reäch ing discovery that fon mèny of the

natura I series he invest igated, the sl ope h remains much

steeper than 0.5 even for large values of n. The fai lune

of natural series to accord with theory is tenmed the

"Hurst phenomenorì". This so cal ied phenomenon generated

considerable interest among hydrologists and

mathematicians al ike since ii indicates a puzzling long

tenm "memory" or "persistence" in the random process that
generated the series. in the literature. a number of

possible explanations for the Hurst phenomenon have been

offered. So far none of these have been conclusive or

statisfactory. Four of, the most popular explanations are:

i)

ll,

iii)
iv)

Hypothesi s ( i ) may be di scarded on the basi s of studi es by

Matalas and Huzzen <1967> and Mandelbrot and \{allis
( 1969 ) , wh o sh owed that the behav i our of the resca I ed

range for a number of stochastic processes is unaffected
by the marginal distribution of the process. However,

some erroneous explanat.ions of the Hurst phenomenon have

been based on the unscaled range Rn which is affected by

the marginal distribution unlike the rescaled range Rnr'En.
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!iith regard to hypothesis (ii), the implication 1s

that, if sufficiently long time series were available in

nature, h r,¡ould tend to a value of 0.5 corresponding to

asymptotic independence. Rejection or acceptance of this

hypothesis must await the availability of longer

geophysical records. At this stage hypothesis (iii) and

(iv) must be considered as either of these could

advanced as an exp I anat i on of the Hurst phenomenon.

hô

i n an at tempt to account for h i s own f i ndi ngs, Hurst

( 1957) used a crude form of. non-stat ionari ty in the mean

of simulated series, resul t ing in some very appnoximate

agreements with the behaviouc of the rescaled range

observed in nature. Klemes (1974) used a simi lar but more

sophisticated technique to arnive at the same conclusion

that non-stationarity may be an explanation of the Hurst

phenomenon. However, it the ul timate aim is to generate

synthetic series, ron-stationarity is a rather intnactabie

assumption. it woul d be more desirabl e to use stationary

stochastic processes which can reproduce the Hurst

phenomenon f or application in the pianning of waten

resources system, unless strong physical grounds indicate

the contnany ( Lawrence and Kot tegoda , 1977 ) .

Ear I y attempts at explaining the Hurst phenomenon

through hypothesis (iv), âddressed the issue of

autocorre Iat ion, and empl oyed models of the autoregressive

type, with the lag-one autoregressive on Markov process.

Hoç¡ever, these attempts were largely unsuccessful. In the
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case of the I ag-one Markov process,

function o, iI K ¡E qiven bY:

p( 1)k

the autocorrelation

G4

1) for annual strearnf low is 0.3

0 .0 ) ; hence pt approaches zero

> 0.5, followed by a break

Such behaviour is not in

rK

A typical value of p<

(for peakflows it is x,

where for sma I I va I ues of n,

to the classical h = O.5 law.

very quickly and the memory of such a process is extremely

short. These processes wh i ch i nc I ude the more comp I ex

ARMA process are usual i y termed short memory mode I s. The

behav i our of the resca I ed range for these shont memory

models is characterized by a short initial transient,

conformance ç¿i th natural f ime ser ies where no convergence

to the h 0 . 5 I aw has been obse rve d. Fiering (1967)

appl ied a multi-ìag autoregressive model in an effort to

neproduce the Hurst phenomenon. He f ound that he nequ i red

a 20-lag model with h > 0.5 held for D .( 60.

Computational not statistical
ex t ens i on of th i s app noach .

grounds prevented an

Modeilers $¡ene at a loss for some time to develop a

model that reproduced the Hurst phenomenon until

Mandel brot and Van Ness ( 1965) deve I oped a procedure that

produces f loçrs with a specif ied value of h. Their model

is based fractional Brownian motion which can be used to

obtain fractional Gaussian noise.

brief ly described in Ch.apter 6.

This procedure is



HURST COEFFTCiENT AS A MEASURB OF SERIAT CORRETÀTION

Coming back to the use of eguation G1.
cèn be deduced.

fhe following

a) The greater the variabi I itv
the value of R

of Xi. the flreetpr
n'

b) The longer the period, the lnotre severe the
wettest and driest period encountered will be,
even if the data are completely independenE.
Hence as Jì _+ s<, , the storage regu i red wou I d
also tend to be inf inte.

c) More irportantly Rn,.,gn al=o oepend= on the
degree of clustering of r¿et and dcy years
caused by the serial correlation structure.
ser i a r corre r at i on r+hether short or r ong terrn,
tends to increase the I ength and severi ty of
dry an d we t per i ods.

d) In terms of h, the higher the val ue of h the
more persistent the series. Hence, a high
Hurst statistic is synonymous wi th I ong term
serial cornelation.
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VARIABITITY OF THE I.tEAN AND STANDARD DEVIAlION

In addltlon. to the expectatlon of the rescaled
range, Hurst (1gSl) also compared the variabi I i ty of means
for 50 vears and 100 years with what wourd be expected if
the observat ions were i ndependent, and not affected by
serial correlation. it appears in his f inding that the
means are much more variable than they would be in the
case of. seriar I y independent observations. The standard
deviation of a S0-year mean being 2.S times as great as it
would be for serially independent observations.
similarly, the standard deviation of a 100-year mean is
3.2 times as great as in serially independent
observations. This irnp ries that, over a rong period, the
maximum value is likely to be higher and the minimum value
lower than r¿ourd be pnedicted from the apprication of the
ordinary theory of probabi r r ty to the records from a short
period. simi lar resul ts were obtained for the standard
deviation of the standard deviations. For the 50-year
per i ods, the standard dev i at i on of the standard dev i at i ons
is 3.2 times higher than if the observations were seriar ry
independent, and for the 100-yeèr periods, it is 4.6 times
as great' Hence it appears that the standand deviati.on
for these naturar phenomena is more variabre than one
wou Id expect in the case of i ndependent observations.
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TESTING THE SiGNIFICANCE OF K AND H

Like any other statistic, the
or H must be tested for signi f icance.

compu ted va I ue al

SiGNIFiCANCE TEST FOR K

I t may be reca r r ed from Equat i on G2 that Hurst,s K

is obtained f rom the rescared range R,/s f or a given n.
The distribution of R,/S is known to be hlShly skewed when
n is smail (Manderbrot and !{arris, t969). Therefone, to
use R'/S as a test of statisticar dependence, it is
necessany to know not just E(R,/S) and E(R,/S)? but the
whole distribution. A closed form solution to the
distribut ion of R/s for smar r n has not been obtained yet.
Hor¿ever' it is feasibre to obtain usabre appnoximations bv
Monte Carlo simulation for any desired process.

The paper by t.iallis and 0,Conneil (1g75), gives in
graphicar form, the distribution of R/s for both normar
i ndependent processes and iag-one Markov processes for
var r ous va r ues of n ' The resu I ts were based upon 30,000
replications. Hence, one can use these f igures Io
ascertaifi probabi I i tv tests for R/s or K as a funct ion ot
n for an independent process or a Markov pIocess, and
oÞserved varues of R,/s or K f rom unknown distribution can
then be compared with these levels. rn essence the
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hypothesis Ho being tested is whether or not a given value

of a statistic, R,/S or K, could reasonably be expected to

have occurred it the generating mechanism were, sây, a

normal independent process. If only the probability of

exceeding a certain value of. R,/s is considered then we

have a one tailed test for the existence of persistence.

i{allis et â1., (1973) also considered the possibility of

using the R,/S statistic to distinguish shonr renm

persistence from ìong term persistence with a discussion

of i ts power.

SI GN I F I CANCE TEST FOR H

As pointed out earlier there is no protocol for the

calculation of H. Generaiised graphs like those fon

test i ng R/S or K cannot therefore be deve I oped. Howeven,

one can still test the signif icance of H by the Monte

Car lo procedure. If the null hypothesis is that of

independence, then we can generate a large number, say

1000 replications, of independent data with the same

length as the sarnp le and compute H i n exact ly the same way

as was used to calculate the sample H. the distnibution
of the 1000 Hs can then be pì otted on probabi I i ty paper.

Depending on the level of signif icance, it can read of.f

fnom the graph whether or not to accept of. reject the nul I

hypothesis.
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AFPENDIX H

SKEI.¡ED HIXED-NOiSE VARIATES

The

obtained

The

nec essany

in ditferent
MN process

sKewness i n th e MN var i at es mav
ways as descr i bed be I ow.

(6.39) can be written as:

be

X.I
_.,(H)<l^ .t .., ( M )I')^, t "xÍL)1

Cub i ns both s i des and tak i ng

r<x,3r = u3E<*Ít,t, + bsE(xlM)3) +

Sincs ¡.iH) v (FÍ)'t ' ^t And
other and have zeîo mean, the
product terms ane all zero.
are AR( 1 ) processes gi ven Þv:

1U\
^tt"' are independent of e¡ch
expected values of the cross_
Also, ¡. (H) \, (Èt),.t , ,,.,',, and Xf (L)

expectat ions,

"38<*Ít't,

(H.1)

<H.2)

Cub i ng both si des and

Ecxrsr = p3 E(xr:1)

a | /4( 1 _ nL\L/ ¿ /\Ict

expectations,

- p2)3/2 n<É,r31

,- Pz)3/2

X,
E P Xt-r

taking

(H.3)

(H.4)

(H.5)

(1

That is, Yx Y.

-P'
where [* and ye

random variables,
atre the coeff icient of

X, and random dev i ates, t

skewness of the



Subst i

cl \I

tuting into (H.2), one geß:

b3(L - P3>3/2

1-Pfi
- p?r>3/ 

2

Ye,H +/"=
-PH

"t r, - p?rt"
1_pi

f..,

i\ Modify only the high frequency term. in this case f.,*

and Yr,t- = O, and the required skewness of the

random numbers used i n the h i gh frequency component

is given by:

yx (H.7)

The ïli I son-Hi I ferty transform can then be used to

obtain the required skewed random variate. This

transform ls glven bY:

Y.,,=ê,ñ

â
- p,,

I f,t

distr
fe, n;

rando

ibuted

"I,= + [1
t€, 

H

,Ítwhere, tlf is approximatelY gamma

mean of zero, un i t var i ance and skew

ðe,H is the skewness of. the

required; and

ç,Õp is a normally distributed random

zetro mean and un i t var i ance.

* fr,* t. * Y.,r' lt - 2

6 36 lr,^

X¿, *

(H.6)

(H.8)

r+i th

m dev i ates

280

deviate with
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i i ) Hodi fy on I y the medium frequency term. In this
case, /.r,¡ añd Y¿,L = 0, and the required skewed

deviates are.obtained from (H.7) - (H.8) with

replaced by fr,".

iii) Modify only the low frequency term. In this case,lr,n

and ð¿,M = 0, and the skewed random deviates are

obtained from (H.7) - (H.8) with Vr,H replaced by

Ut,.'

Skewed random dev i ates can a I so be obtained by

assumi ng the same skewness for each component . That i s,
VVV\/ó¿= ðÊ,rl =ðt,r-t= ð¿,t. From (H.6),

t.

{.= y
èux

3<r - p?13/2

1 - o..-
+ bs(L - P3>3/2 +

r _ pu

^ ,-- -1:-t '/. ,rr 2lc*(1 - pi>"' 
IE

(H.9)
is obtained fromand the requ i red skewed random var i ate

( H.8) by rep lac i ns t¿,4 w i th Yâ
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