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Part A 

In attempting ~ summary of the work done on the Classical 

Problems (i.e. Squaring the Cirole, Duplioation of the Cube, Tri

sectlon of the Angle, Construction of Regular polygons and the 

Solving of Equations of degree higher than the fourth -- and espec

ially the solving of fifth 'degree equations) I am going' to traoe 

out an historioal acoount of the .attempts toward aolu~lon of each 

. prob~em, ~eaving to the ~atter part the proofs of the impos sibIlity 

of each. We shall see a number of most instruotive examples ot 

great things arls1ng .'out of impossibility, sinoe from these ·un-

suooessful" attempts, extendl.ng over more than two thousand yeare, 

have, within the last ODe hundred and fifty years, oome some of 
. 

the central and most characteristio developments of modern math-

ematlos. A etudy of these . efforts brings us then, at" the end and 

in oertain field8. ~ to the threshold of mathematics in the present 

century. It is also of interest for the s urprising relations 

which it reveals between apparently unre,lated questions .• 

The first prob~em I shall approach is the squaring of the 

circle. In modern notation this problem ·may be described ae the 

attempt to find an exact value for 7i' in the formula for the area 

of a oirole of radiu8 "r,) A .7)r • There are here two distinot 

prob~emB. Eirst~y there is the praotioal prob~em of finding the 

v~ue of Ii' with suffioient acouracy to saUsfy the .technological 

needs of the time. Thi. the Greeks had certain~y done by the 

time of Arohimedes or even before I his value of 3 ~/1 being 

accurate to 4 part. in 10,000 still suffices for ~l but verY 

refined measurements. and he. 1s reported to have obtained con

siderably better values than this. Seoondly there is the theor-

, 
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etioal problem of construoting a line of length 71' times a given 

line using straight edge and com~ss alone.. We ' ehal~ be conoern

ed ohiefly with the history of this theoretical problem,. which 

though apparently simple, ' has ocoupied the efforts of many great 

men until it was finally shown to· be impossible about 3ixty three 

years ago; and it has occup~ed the efforts of many lesser men both 

before and after it was shown ~o be impossible, 

The earliest reoorded value of 7l' is found in the Rhlnd Pap

yrus (in the British Museum) copied about 1700 B.C. by the Egypt

ian Scribe Ahmes. The Egyptians being so highly practical pro-

bably obtained their value for the relation between ·the diameter 

and area of a cirale by tr~al. and it 18 amazingly accur~te: the 

area of ·the circle is ~qual to the area of the square' whose side 

i s the diameter diminished by 1/9 i.e·o A .(~ d)''''. This would 

g i ve for 1t' the "alue 2~~ = 3.1604 (in plaoe of the exaot value · 

3.14159., ••• ) a tremendous improvement on th~ Babylonl~, aleo 

on the Hebraic value of 3. (See 1 King~ . Vll. 23j used in Solom-

on'e building of the Temple~ This reference "ten cubits from 

one brim to 1ihe other: it was round all about, ••• ~ .• and a 11.ne 

of thirty cubits did compass It about" reminds us that squaring 

. the circ+e, tha t Is, finding the side· of a s quare whos e area is 

equal to that of the given cirole, arid the reotification of the 

Circle, whioh ie the laying off of a line equal in length to the 

circumferenc·e, being given the rad'iue, are one a nd the same pro

blem, both depending on the ratio. , Which later oame to be oalled IT.' 

Anaxagoraa (born about 500 B.C.) i s the earliest name we 

have in connection with this problem, and be did no~ offer any 

solution. He was trying to find an exaot relation between the 
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radiuB and the area. The Sophists Antiphon and Bryson and their 

contemporary Hippoorates have left the results or their efforts. 

Antiphon introduoed the "Method of Exhaustion" by which a square 
, 

or an equilateral triangle is inscribed in a oircle, then a fig-

ure with twice as many sides, continuing the process until the 

polygon and oirole differed by as little as one pleased. Antiphon 

was really the only anciept who considered the cirole to be a poly-

gon of an infinite nwmber of sIdes, though Bryson's work differed 

' little except that be Introdu'oed ciroumsoribed as wel.l as insoribed 

polygons, and tinally took the mean of the two values. The area 

of squares equal to the outer and inner polygons could be found, 

as alao could the area of their mean. Simplioiua and Eudemua 

pointed out that the circle and the polygon oannot be equal, if 

the priqoiple that magnitudes are divisible without limit is true. 

Hippocrates (about 430 B.C. a P,ythagorean) at~empted the squaring 

meters., 

of the circle by means of lunulae 

or menisoi, ·whioh depends on the 

proposition Euclid Xll (2 ) that the 

a reas of t wo circles are to each 

ot~er as the squares on their dia

l have shown the diagram but have not included his rea-

Boning here as Hippocrates himself did not olaim to have been 

Buooessful in the problem4 His wor k on lunes . i s memorable however 

beoause the earliest speoimens in existence of reasoned ·geometrio 

proofs. are cont·ained therein. 

Amongst all the varies s ubJeots that Archimedes (287 _ 212 

·B.C.) studied, quadrature and cubsture were his chief hobbies, 

and the prooess he favored ~st was by Exhaustion. He obtained 
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the reslJlt that ~ 1/1""-1l'Li 10/71 by a lengthy proof. (cee Appell-

d1x 1) He 15 oredited with a stlll more acourate measurement, 
.:... 

3.141596, the account of whioh baa been lost, but the first one 

must have pleased Archimedes himself, &8, aocording to Heath, he 

wa s more interested in a value which oould be ueed in daily ~ife 

than in one of t~eoretloal interest only_ Arohimedes' methods 

were used for a thousand years to calcul.ate"li' to ever increasing 

plaoes of deoimals. 

ptolemy (of Alexandria, around 139 B.O.) from the relation 
• I 1/ 

of chorda of a cirole oalculated the value 3 8 30 Whioh ie 

3~1416, 8S is easily verlfled~ This i s the mean between the Aroh-

1medean values of ~ 1/7 and 3 10/71. 

Oriental mathematicians al eo 'worked on this problem. Their 

moat noteworthy results are the · following. The Hindu, Aryabhatta 

(500 A'D.) obt~ned the value 3.1416, while Brahmagupta nearly a 

century 18 ter gave 7T' as If 10 whioh was the most oommonly uBed 

val~e in Mediaeval timee. ~h!Bkara with the qorrect relation 

8
2

""" ~ V2 ... {4 - a: between !Sid,s ot an n-eided and a 2n-sided 
. 

inecr.lbed polygon arrive~ at 3.1416. The Chiness astronomer 

Tau Oh'ungch1h (born 430 A.D.) found the values 22/7 and 355/113. 

The Chinese are represented again in the work of a later period. 

It is interesting to note that the great Leonardo de Vinci 

attempted this 'problem, but · arrived nowhere with it • 

Besides oalculating the va lue of1!r, the anc~entB tried to 

demonstrate that oonstructions could be given Which Would aco

omplish the Bquar~ng of the oircle. The . first noteworthy one is 

Archimedes' spiral whioh has ,the equation I' = atl. 

Froma, a line is drawn perpendioular 
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to the radius vector after one oom-

plete turn and this perpendicular 

meets the tangent drawn trom P. 

Then OT will be the circumference 

of the circle with radiuB uP, but 

I ~an not find full detail. of what 

Archimedes offered aa proof. though 

GOY indioates that it is iinked up with his method of. Exhaustion. .. . 

Haath gives the following. Assuming OT • If- (Proved by Archim-

edesl) and having the equation!" a b. it oan be seen that after 

. one complete revo~utlon 1'. 21lL • OP 

. & . ,.a 
•. OT .. tao • (fa D fa- .. 211'/= 

Dinostratus applied the quadratrix (invented by Hippia. of 

Elis about 430 B.C. Who may also have used it in this problem) 

to the quadrature of the circle • . The quadratrix l·s desorlbed 

thus: g "ven a square , ABCD, suppose 

that a radius of the oircle movee 

uniformly ebout A from AB to the 

position AD and that in the same 

time the line BC moves uniformly 

parallel to itself from the position Be to the pos .. tion AD. The 
-

interseotion .of these two moving lines will determine a point and 

the loous of this point is the quadratrix. The application of 

the quadrstrix to the reotification of the circle presents a diff

ioulty, r ecogn1zed by the anoients. in that it requires us to 

know the position of Gt the po1nt where the quadratr1x intersects 

AD. (In the final position. both lines. radius and line para11el 

to Be cO-inoide and so cannot actually interseot). 
) 
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" Let AD be the X axis and AB the Y ax1a 

For the point P, the ordinate y i. proportional to the angle f ' 
and when y. 1, r • 1 
but rl. -I r : tan i 

• x = y . 
• . ·t~an~'j}l"'y= 

11m 
J--+o 

.. 

. z: tan 11' y 
I·

X 
.2. 

whioh meets the X axis at x : 11m 
y-+ • 

Now, eaoh of thee. in-When ,g 
-It> 

gen10uB constructions may be said to reotify the c1r~le. However 

it is the classical problem of constructing a l1ne ot length ? 

with straight edge and compass alone, that we are cons idering, 

(and will eventually show to be impossible), so that neither of 

the above, nor the helix whioh 1s supposed to have been used by 
Apollontu8, are acoeptable solutions, aince they require more 

. . ... 
elaborate mechanipal devioes for their con~truotion. 

l find the simple, though admittedly only apprOximate sol-

atiolle below quite interesting. The first one was given by 

Koohansky in 1685 __ 87-~~~n~J~ ________ ~~k 
J - YIJ 

I • 

D L 
. A cirole of radius ', l, having DL and IlK tangents of length :5 is 

drawn. • The angle BAI is oonstructed to be:50 and JL is Joined. 

Then 
JL. {3 - t/+ , 4 , "V~ -V'l2 : 3.1~l533 

Then the sqaare i. readily oonstruo'ed haTing area praotioally 

the same as the o1role. 
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Another, invented by Grunert US8S'1l'. 355/113 --
3.14159292~ ••• in 'place ot 3.14159265~ ••••• 

Let circle have radius 1, and rater 

to diagram. 

AE~rT~ 64 
: d lij3 

AG • vfp AG = 4 
B r • , 0113 

~. t ' J\H 2. 
Iili3 

, , -:r 
dffi' · s 

, AI! - . 
" -

• ', 3 + Aft give a 3+ 16 : 355 , the aami-oircumferenoe. 
' 113 113 

Amazing advanoes followad the attacka of the grea t math

ematicianS of the eighteenth oentury on this, and related pro-

blame. John Wallis (1716-1703) had effe.ted the quadrature at 
!l 

ourvss whose ordinates are any integral powers of (1 - x ) i.e • . , 
y • (1 

of 7 = 

~h 
- x) whar .• n i s integral. Following thie by. the atad)' 

. .2,0 'l... .... . ' 
(1 - x ) and 7 " (1 - x ), he attempted to tind y = (1. - x')" 

by interpolation, Whioh brought this d*vioe into prominsnoe. 

Qonsideration of the diffioulties that Wallis met le~Newton to 

the discovery ot the B~noDdal rbeo~em. Another new development 

oame about in the i nvention of ,the theory of oontinued fraotions 

due t~ Lord Brounokerta studies ot WaUis' work. Lord Brouncker. 

obtained the first inf1nite series for the area between an equil-

ateral hyperbola and its asymptotes, and Nicolaus Mercator arr-, 

ived a t the logarithmic series. But the most startling result of 

the study ot quadrature was Newton"s invent.ion of the method of 
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fluxions (the oaloulus) and also to the foundation of the theory 

of limits. And it ~a. through his detailed study ot the quad. 

rature of curvee that Leibnlt~ beoame aoquainted with higher 

mathematios. 

After the invention of oaloulus all methods of determining 

~ depended ~n Analysi.. Gregory (who was the first to try to 
, S-

-,,+t - ••• 
3r"- 5;" 

prove the prob1em impossible) used the series a : t 

1Ibere a a length ot aro. t • length of tangent and r = radIus of 

cirole. This is now written 1n the form 

3 ~- (1"'- <'1) % .. x +:x: ~ ••••••• - -x _ . r 5 , -
-, 

tan x. 

During the ne~ hundred years maoy series and relations were dis. 

cOYered by whioh ~oould be evaluated to ever increasing numbers 

of places, Many used Machin's t ormuia 'iT'. 
4 -

-' 
4 tan! - tan - , 1. . m 

(I do not find how uaohin oame upon this -- probably by trial -

at least it is saaily -.eritied). By expanding this seriee 711 

was found to 100, and later to 707 places of deoimals ._ the 

latter aohievement by W. Shanks in 1874. "One aan ascribe this 

feat to a sportsmanlike interest in making a reoord, sinoe no 
--

applioation oould eVer require such acour~oy." says ~elD in 
, ) 

his Element~y Kathematios from an advanoed ViewpOint, 

Remarkable work along this line was aooomplished by both 

Chinese and Japanese soientists but their methods were likely 

inspired by the teaohings of ths European miSSionary Pierre 

Jartoux. In Europe more and more students were beooming convin

ced that 71' was not the root ot any algebraio equation. Neither 

was any practiOal purpose served by evaluating ~to hundreds ot 

places. The fact that, using ~o decimal places, the. clro~-
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feren.e of the Earth oan be oomputed to within ~ fraction Of an 

inoh illustrates the futility of seeking etill oloeer approx-

imatione to ita value, 

The problem of squaring the airole, or of finding a ration~ 

al value for 71' had not been done a.nd mathematicians turned their 

whole attention to a.ttempting to prove the noh-algebraio nature 

of 7,'. On the other hand many men without training still kept 

~resent1ng solutions, as 1s evidenced 1n the pages and pages 

De Korgan in his "A Bundle of Paradoxes" devotes to defend1ng 

himself from attaoks for not aooepting their work. Even yet, 

the attempt g06S on4 I oame aoro~B a bQok in the Library 

(University' of Manitoba) entitled nThe Circle squared beyolIA 

Refutation" by Carl Thecdore Heisel -- aoknowledging ,Carl Theo

dore Faber __ first edition 19,s1. This author 'PUbl1Bhe~ aef-

'era! thousand of these bOQka at oonsiderable expense to himself 
, ' . 

and distributed them !!:!,!, to l~brar1 •• , colleges, and scienUsh 

throughout 'the United states and Foreign Countries, to p"omulgat~ 

the new truth and to 1eave the world better off beoause he 11ved. M 

He doee not olaim to be a renouned mathematioian but offers 88 

a 
oredentials that he i6 a suooessful businessman (and a 33 Mason) 

and publishes hiB picture to support his statements (this last 

inference, io olearly made). Q,uoting further we find "Although 

the Royal Sooiety of England, over a hundred years ago, deolared 

that the cirole coU1d not be squared, thousands of students and 

soholars allover ths world are oontinually studying and figuring 

to find the true and sxaot ratio between the diameter and the 

oircumferenoe of the oirole, whioh they know from the very nat'ure 

of things, must exist, or they would not devote their time to 

t 'hs study.' 
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The value for 71' which lI;e1sel. ofters 1s 3 l3/8l, derived 
, -

from the diameter being in ratio 9.8 to the side of the' square 

of equal area. He admits that this value was stated in the 

Rhind papyrus, but ol.aims to have found it indepsndentl.y bato?e 

the discovery of the Papyrus. I ooul.d find no proof in his 

book other than the bald 8tatemen~ of fact. and oertain measure. 

men~8 of lines on diagrams. I tested only one of these and it , 

was not exact. The book consistB largely of the reviling of 
, , 

professional mathematioians ·who hesitate to acknowl.edge anything 

ne ••••••••• for tear of losing their positions. M 

The problem of the Duplication of the Oubs is one of ths 

most anoient of all. It Beems to have originated almost 1mmed-

iatel.y atter the discovery that a squars, double the size of a 

g iven one. oan be described, using the diagonal as a side. No 

doubt, the pr1est of the Oraol.e at Delos who ordered an Altar 

built twiCe the size of the e~isting one. well knew wbat he was 

snying and that the psstll.enoe from whioh the peepl.e sought de

l.iveranee woul.d ,have time to run itsel.t out batore the oompl.etlon 
I 

of the Altar -- thcugh Pl.ato, whose help they asked, interpreted 

the task set by the god as proof that he wished to , ahame tbe 

Greeks for their negleot of geometry. 

For a time the problem was attacked as one in solid geom

etry -- but Hippoorates observed that the problem was identical 

with that of finding two mean proportionala between two given 

numbers. Let a be the side of the or1ginal cube, then find two 

mean proportionals x and y between a and 2&. 

1.e. a J x : x I Y = Y J 28 

ay • x '. Y ,.-'Sa 
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aleo 2= • '¥ . "-
.. 2ax-x 

- ::"1 a 

.5 1 
o#2a.x 

and x ie the required length. Aft~r this the problem was always 

considered a s one ~n plaLe geometry. It Bho~d be noted he~e 

that this eeems to hav e been the introduotion of the method of 

geometrical reduotion and the "reduotio ad abaurdum" , procedure. 

The one worth while attempt in three dimensions is that of 

Arohytas (428 - 347 B.C.). It is to determine the interseotion 

of the three surfaoes of revolution -- the right cone, the oyl-

inder, and the anohor ringl having its inner diameter nil. 

o 

Let AC be the t wo lengthe bet"een whioh we wish to find 

the two ~an ' proportlonalB. Draw a semioirole AC but 1n a plane 

perpendioular to the oirole ABC and let this semioircle revolve 

about an axis through A (thus generating the tore with inner 

diameter zero).. Then construot a right cyl-inder on the c !role 

ABC as base, Which will cut the tore fa Bome curve. Finally let 

CD, the tangent to the cirole at C meet 'AB produoed at D and let 

the tr1angle ADC revolve about AC as az18, generating the sur

face of a right oone and the point B describing a 'semioirole 

BqE in a plane perpendioular to ABC, and with its diameter EX 

at right angles to AC. The surface of the cone will out acroes 

the curve ot the interseotion of cylinder and tore in Bome point 
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P, in whioh position AC cut's the cirole ABC at ·Ill and All is the 

aide of the required cube", when AC : 2AB. 

Sinoe both semioiroles E~ and 

APC I are perpendicular to the 

plane, their line of intersectio 

Q.N will be perpendioular to lIE. . .. 
•• Q,.N • BN.lm • ,AB'.Nll 

• 
.'. '" AQ,Il = gO 

In analytioal geometry, using A 

as origin and AC as X axis 
a...2. 1.. :t2,. 

(1) x+ytz = ~ .. x (oone) .... .. 
(2) x + y : ax (cylinder) 

(3) x'+ /+z" = aVX1+ 1" (tore) 

ere AC = a, and AD • b 

... IIQ. 1/ PC rom (1) and ('2) 
;t ." 

: • C A , AP .. AP , All • All ,A .(x + y ) and oombin
, b'" 

i.e.AC , AP • AP I All • All , AB ing this with 3 
.t .:a. :a. .1:t 2-

a II Xtl+ z :.v~ + l or AB, All, APt AC ra=r-=e--=i"n--=c.:.o"n_---/ roi;-.f-,~r- J:lI b 
VX~7+Z x+,. ... 

tinued proportion or AC , AP = AP • All • All • AB. 

Eudoxus, a pupil of Arobytl!'s, apparently olaimed to have 

solved the problem but there are no tru8tworthy reoords of any 

original oontribution to this problem on his part. It seems 

that he used Arcbytas method, only proJeoting the curves onto 

the plane, obtaining the ourv~known as the Kampyle of Eudoxus • 

Menaeohmus' solution appeal. to me as the most interesting 

.. one ot all, in its simplioity and in the faot that it led to the 

disoovery of conic., the theory ot whioh soon raised geometry to 

the greatest height whioh it was to reaoh during anoient times. , . 

.' (Heath credits llenaechmus rather than Euclid with the. dictum 

"There 1s' no royal ~oad to geometry.") 

Using the proportion ~ • x = x I Y • Y , b, he observes 

that :2.. :2.. 
x : ay, y • bx and 7:3. = abe The interseotion ot any two 

of these will g1ve the value of x corresponding to any given 

value of a and b. In giving the detail. of the solution, I shall , 
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u •• the parabola and hyperbola (though two parabolae oould be 

used) • 

Construct a parabola with ~ aa 

latus rectum and uY ae prinoipal 

axis, so that its equation Is 
, :l, 

--~1----'~--~~--~~---:~ x = by and the hyperbola suoh 

that tlie reotangle formed by the 

perpendiculars drawn to the 

asymptotes has an area ab i.e. xy • ab. The point of int&~seot-

ion P give. PH and PII, the required mean. for 

AO • PH • PH • PI.! • PI( • ,OB 

, AO • FIl whioh i • -z;y. ab ,,-
Of PH 

.t 
and ~ • 12I whioh i. x - 1)y -OB 

It a : 1, and b • 2, then a cube with side PH will have double 

the volume of one with side OB., 

A p,ursly meohe,nioal devioe is s ometimes 'as.ribed to Plato 

(429 ' - 348 B',C.) though there is doubt conoerning th1B as 'Plato 

definitely scorned meohanioal solutions. If his, some suggest 

that be wished to ridicule the In~entors of such, by its extreme 

eimplioity. 
F 

o 

L 8 

CA ,is twice OB and 'is placed 

perpendicular to OB • . FNB 1s a 
o 

rigid wooden angle of 90 and liL 

is a sliding bar always remaining 

parallel to BN, The arm B.lI 1. 

plaoed passing through B and with 



, 

.. ~.:;, ..... 
":-.. "; 

tbe right angle on OA produoed. Then AL is slid along until 

botb tbe right angle FMA bas its vertex on OB produoed and AL 

pas ses through A. This wou1d no doubt requ1re many tr1a1B, the 

position of BR being adJusted eacb time. Finally ON and OK are 

the two mean proportionals between OB and OA, whioh ~B ea811y 

Been from tbe three eimilar triangles ot tbe figure. One reoog-

nisee from tbe analytical statement that tbie ie eeeentially tbe 

interseotion of two parabolae (Menaechmus' metbod) sinoe OMP.N 

i. a reotangle 

" , , , , , , 

--' - 'I'-

\ 
\ 

, , , 
I 

N 

: x -y 

also ~ :...L
y ra- . -

Rence 2ax 

J 
x : 

wbere x is one oo_ordintrtEf or" the pOint of interseotion of the 

two curves. 

More readily done is Er-atostbenes' (271)-1941 B;C.) solution. 

It oonsi.ts of three equal reotangles eliding along a common bal • 
... IV 

Ell. 

Let AE and DR be tbe given lengtbs. between wbiob it is required 

to find tbe iowo mean proporUonalB. Slide one reotangle under 

tbe otber until tbe straight line Joining A and D passes through 
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the interseotions ot MF and BG with the diagonals. Let it meet 

ER produced in 11:. Trlangles DIlK, CGK, BI'K and AEK are simllarJ 

also the triangles CRK, BGK and AFK • 

. DH.BK.CK.Ca.GK.BK.BJ' 
.. CG GK iiK iii iK Ai Ail' 

• _llH 
• • and CG i. the side of the oube whioh w111 

CG 

have double the volume of one w1th side UHM No wonder EratoB-. 
thenes was pleased with his ·meaolab1um- or ."mean tlnder M, even 

though It did not usher in &n¥ .new curvo" to add to the sum at 

geometric knowledge. 

Nloomedes (about 150 B.C.) however, derided Eratosthenes' 

eftort as being imprao~ioable(l) a. well a. ungeomstrioal. Hls 

own, by means of the Concho1d 18 as 'follows: 

>-

/It BC and AB are the two. given lengths. 

F 

Complete the reotangle and bisect 

AB at D and BC at E. Join LD and 

produoe ,to G on c~ produoed. Draw 

EF perpendioular to BC and ot sueh 

a length that HC • AD. Join YG • 

Draw OR parallel to JIG, hav ing i:6 

ot suoh a length that RK = AD 

whers ~RK is a straight line, Join KL and produoe to • on BA 

produoed. 

Proof. ·EX = BK - BE , 
" "-: EX. BK - 2lIE.BK"tEl: "-

• BK (BK - 2BE) + BE ~ 

• BK (CK) + BE :t 
,"- >-

'. EX • BK.CK tOE (BC biseoted at E) 
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• • EK + ill!' : BK. CK f- (lE -+ llli'. 
2.. a 

,',FK = BK.CK .CF ••••••• .••• (1) 

and using UD : VA + AD we get 
~ ... 

lID • BIt .. .... DA - ........... (2) 

From the similar triangles )(AL and LCK 

• VA · .-· AB 
• BC -OK 

• VA = 2BC • • FLii CK 

VA II GC (GB .. AL .)I BC) 
• • AD OK 

VA : FH - iiK · • AD 

and MA 11 .- I -+ 1 -AD 

• UD -FK 
• • AD -iiK 

a nd 1!ll - FK 
AD - -AD 

From (1) and (2) 
..... ~ 

BM.IIA + DA : BK.CIt .;. OF 

,'. BM.JIA :: BK.OK (since DA • ,OF 

• . OK : BJ[ 
• • JlA BK 

LC 
OK 

Or ~ 
CK 

and if AB is twice Be, then VA is the side ot a cube having the 
5 

volume 2(BC). Nicomedes wae able to find the point K in the 
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diagram by means of the Conohold Whioh he detined as a ourve 

suoh that ths stra ight 11ne Joining any point on it with a given 

point is out by a given straight line so that the segment between 

the curve 

y 

D 

and the -g.l ven 
I , 

, 

/ 

-"', '. \ 
\ , , 

, , 
\ 

, , 

straight line ie of " given length. 

In oartesians (where 0 i s the 

given point. a - ,the given dist-

anel from given point to given 

straight line, and b - the given 

length) 11'8 have 1:. b 
x ~a 

similar triangl •• ) whenoe 
j 

tl ~ ~'l. 
r (x - a) = b x and 

"(from 

A ~ 2..:t.~ 
(x l' y )(x - a) - b x. O. The ourve ie shoWl! by the dotted " 

line men b is negative. Its polar equation io r • b + a seo I . 

Hieo.edes invented an instrument for drawing the ourve to acoomp_ 

any hi. solution. The arm AB oan move hoi-izontally along DE, the 

f7 "pivot C keeping the dista noe AC 

oonstant, the point P being the 

~::;;:::;====::::I I: ·pole. 

Another solution was presented 

" 8 by Apollonlue (247 .222 B:O.) but 

Hs construotion is a4Qng the lines of this last one, though it 

~ead8 t9 the .quat1on~ of the conia as jn Menaeohmus work. 

DiooleB (also about 150 B.C.) must also be mentioned. HiB' 

oonstruotion firot required the invention of the 01ssoid. 
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AS and CD are diameters of the 

circle perpendioular to eaoh other 

$nd G and H are pOints equidistant 

trom the centre.GE and ~ are per-

pendlculars to DC. ,oin ED and the 

oissoid is ths loous of points ot 

intersection ot ~ and GE tor all 

positions of G (and of H). In the 

cissoid EG = FH and DG = HO so that = DI! and CG = WI llJ Gi iiU 

(trom the semioirols DEG»'al.o DG _ 
GP -

(trom similar triangles) 

• CE • GE = DG a.nd the o1B~old givee two mean proport~ona18 .. 1liii il(J GP 

between GP and CG. 

K is taken on OB so that uK = b (here H. oc a 
JOin OK and produoe it t ·o out the 

ai •• oid in~. Through ~ draw the 

ordinate IJ[. 

Then OK • ~ • t (trom triangles 
Ol! lilf 

KOC and Il~C) and .!!'J. • .!!l! • 1! by 
> lID Lll ' CJ[ 

the .propsrties of the cissoid and DIl is ths Side ot the cube whioh 

ahall have twice the volume of the one with ths side~. The 

cartesian equation of the cieBold. using D as origin and DC -as axis 

of X. lo obtained from GP • DG • GE 
il(J 1liii ~ 

, Z = -==7'X~=== • V x(2a - xl 
, 'x (i(2a _ x) 2a _ x 

where DC • 2a 

.', y(2a - x) = x VX(2a - x) 
... . 3 

and by squaring y (2a - x) • x 
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In all these Msolutions"" it must be noted that in no case 

has ' the pro~le'iD been Bo"lved -- and th:eBe~ Gre'ek soholars knew 1t had 

not. In Eratosthenes' wor~, and in the one attributed to .Plato, 1t 

is frankly. admitted that one must resort to trial whioh is highly. 

ungeometrlc. There is Plato'a-oritioism that "the good of geom-
, 

etry is Bet aside and destroyed for we again reduce it to the 
, ' 

world of sense, instead of elevating and ,imbUing it with the eter-

nal and inoorporeal images of thought, even as it is employ.ed by. 

God, for whioh reBBOD He a;Lw&y,Q 1S God." in other Hsolutions", 

use is made of curves that oan not be oopatruoted by means of 

oompasses and straight edge. Aotually, the drawing of the oon-

chold, 018801d, and oonics is essentially done by trial BO that 

for all the tremendous efforts and IngenlousnesB ot the anoients, 

the acoomplishment .. a ,B as far away as ever. Yet in the very 

failure ', muoh was added to the, storti of mathematioal knowledge 

that would have been delayed many centuries, had a satisfactory 

solution been obtained. 

Attention was probably focused on the problem of triseoting 

an angle, in ,the oourse of attempting to construot· a regular poly

gon of nine sides (~hlch ~111 be oonsidered later). One of the 

earliest solutions, whose author is unknown Is as tollows: 

F, ____ __ ____ ____ _ _ 
-~--- - - i - - -- - - - - - - -0, 

J 
I 

I :""- -,.. -* __ 
1 -;--_ 

; G 
, ']) 

. c 

E ---- ------,---

Let ABC be the given angle to be. triseoted. Complete the reotangle 

ACBF and produoe FA to such a point E that when BE is JOined, liE 
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will be tw10e BA in length. ~oin AG where G is mid point of DE 

and it ia aean that AO will also aqual BA s1noe ADS is a right 

anglod triangle. Then < 1 :~2, and ", 3. 2« 1) 

, ' .< 4 : 2( 0<. 1) ,' . L. 4 : 2( <. 5) .inoo .. l:" 5 (exterior-

interioe) ... the angle ABC is three t.imes the angle DBC. Of 

cour.e, the difficulty here i . to be able to find the point E, a 

diftioulty whioh oan only 
11 

v 

be o'Veroo~ with tb,e help of conios .• 

£ 

., 

H 

Using the same diagram as before and 

taking OA. OB as axe~ of X and Y. de

soribe a oirole with oentre e(a,b) 

and radiuB 2BA. Alao deBc~lb. aD 

hyperbola with OX and VI as asym-

ptote. i.e. the hyperbola xy • abo Draw EO perpendioular to ax 

and Join BE and this line t~seot. the angle. It i. neoessary 

to prove that DE = CO ~ 2BA and than tha proof of triseotion 

given above, applies. Since xy = ab.' then i : * 
, 

or I :; in the triangle BElt . 

••• CG is parallel to BE and llCGE is a parallelogram 

,'. IE : CG 
. 

= b 
b - ., 

AnalytioallY, the above solution i. expres.ed thus. The 
.., .. ~ . . 

hyperbola XII. = ab and the cirole (x - a) -+ (y _ b) : 4(0. -t b') 
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interseot. The equation of the oircle may be expressed 

(x+ a)(x - 3&) = (y -+ b )(3b ., y) or 3b - y 
x - sa 

and x -+ a = .! 
y + b y 

5 inoe x : a f .rom:K3. ab 
1i y 

3b - y 
,,; ,. x - 3a 

'\l'! r 

- a --y 
... y(3b - y) :: a(x- 3&) 

• . ' y(3b - y) : a(~ - 3&) (since xy : ab) 
y 

. ~ 

• '. a!l (b • 3y) : y (3b • y) 

1 ~ .t ~ . 
i.e. y - 3by - 3& Y of a b : 0 

--

Now tan ABC = ~ i and let tan llBC • 11£ • % and let L : -. 
a a a a 

and we hav. a't3 _ 3&"b,"- _ 3&3 t ~ + a b .0 

a. 
Then y • at 

'3 _ 3bt - 3at ... b • or ail o which tactors into 

• . b = 3t - t - tan ABC - -• • a . 1 _ 3t:t. 

... t • tan(1/3 ABC) trom the trigonometrio relaUon tcr multiple 

angle., so that the trisection of the angle ,ls the same thing as 

901Y1ng a c;ubi'Q equation, 

Bieomede.', cune, the aODohoid, (discussed earl:1er) ~an be . 

used tor the triBeqtlon problem also, and aqtuall;y. Whf;JD used., 

ls another mean. of tinding the pOints D and E in the tir.t dia

gram in this section. Here B would be the given point, AC the 

given otraight line, and 2AB the cons tant length required by the 

oonohold. 

Anothsr curve, that has been described betore, 1s the quad-
" . 

raUx of Hippias. (see -- the. squaring ot the cirole.) This 

ourve oan be used, not only to triseot an angle, ,but also to 

divide it into any number of equal parts. 



.: ... ',: .. ' 

, . ,,: \' .. ". -

D '"'='"-=-----; --. 
~ ........... c . 
f ", , , , , 

C' , , , 
• . 

U Go- fJ 

22 -

iJt!J ia the quadratix and CAB the given 

angle whioh intereeptsthe quadr&tix 

at Y. Draw J'II perpendicular' to All 

and divide it in the ratio 1 I 2 (or 

in any given ratio). 
, I 

Join ~ Land 

LAB ia on. third of the given angle 

a s 1s easily seen from the pro pert loa of the quadrat1x. 

Arohimedes solution of thia problem is interesting (aa tar 

as it goes) because of 'ita aimplioity. 

The angle BOC 1s to be triseoted. 

,From B, a chord of the oirole with 

centre 0 an~ radiuB OB, 1s drawn and 

produced until it meets CO produced 

at H, oare being taken that EF equals 

the radius of the cirole. Join EO 

and the angle EOF ia one third of the angle BOC. Draw CK parallel 

to BE and Join OK. Anglea 1 and 2 are equal, alao angles 3 and 4 

and .L '1 :, 3 (interior-alternate). 

But angle FOil. <. 3 + "'- 6 

• , . 
, . 

:2( .. 3) ' 

• 2( .. 2) 

• ' . angle EOII has been triaeoted. Sinoe the ohorde BE and ell 

.~re parallel, the arCB Be and E¥ are equal, and henoe angle BOC 

is equal to the angle EOII and angle EOF 'a one third of , engl. BOC. 

Return1ng to solutions making direot use of 001)108, this one 

is f ound reoorded by the historian Fappue __ but the name of ita 

a.uthor 1s lost. Draw a hyperbola wlth • :; 2" having oentre C and 

" , vertices A and A and 'wi th CA produoed to S ao that A 8 = OA '. 
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o 

On AS describe a segment ~o conta1n 

th.e given angle am let the right 

biseotor of AS cut the segment in O. 

With 0 as centre and radius UA de-

scribe a cirole to cut the hyperbola . " ~ 

in p, Then the angle SOP i. one third 

the angle 8~. .From the definition 

of the hyperbola ~ : 2, as it 18 
LP 

readily established that S is the foaus and o~ the dlrectrix of . . . 
the coni •• Therefore the arc SP : .the arc PK and the angle SOP 

: angle POll, but angle POJ[ • 2"" POL and a. SOL i. one half the 

given angle, then angle SOP 1s one third of given angle S~. 

This contains ODe Of the very tew referenoes to focus and direot-
.. 

r1x 'of oonl08 to be fo~d ) ln Greek Mathematics, Too, we may Dote 

that this ls e ssentially the same solution a . the best one affsred 

by l!Iell'tcn' (1642 - 1121) and, in a form that differs only slightly, 

by Clairaut. 

An ingeniouB construotion worked out by Descartes leads to 

. a oubic equation. ~ .. .. 
W:ith the curve. y .. 10< and x + Y - ~ ~ 4&y = 0, 

where a • Sin 3A and 3A is the angle to be tri.eated, he find. 

the point. of interseotion, other than the origin 

B 
BOX = 3A i s the angle whoe. sine 

1. a. Sub.tituting tor x we get 
)( 

4y3-3y-a:Oar 

4y 3 _ 3)' _ Sin3A : 0 whiah i. 

siml.1ar to a well known equation 

and has as its smallest positive 

root y _: Sin A. So, construoting 

• 
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the angle whose sine is this value ot y, we have triseoted the 

angle. 

I am indebted to Dr. C. Mark 'for an interesting oommunication 

from Kr. L. J. Seaman to Prof. S. Beatty ot the University -ot 

Toronto, in ',whioh Mr. Seaman ofters Frot. Beatty a partnership 

(and .. ahare in "the ,royaltiee) tor handling the ~propaganda· tor 

hi& "Bolu.1i.1on of a problem considered insolvable tor 2500 years.· 

He had it oopyrighted in ' the United statee ' in 1931. It i. as 

follows, The Aro BlGC bounds the , g1~.n angle. Deecribe a c1role 

H 

o 
'wi th the ohord BC as diameter and on this oircle looate the pointe 

D and E such that the chords BD and .EO are each equal to the radius. 

With B as oentre and BE as radius, desoribe an aro outting CB pro-. . ',' , . 
duoed at H and similarly an arc with 0 a. oentre, cutting Be pro

duced at 1. Bi.eot the aro BD at, ;r and join EJH,. (It.!! readily 

proved that EJH are co-linear as l4r. Seaman suggests although I 

do not know why he introduoe. ;f at all). With oentre H and radius 

HD desoribe an arc cutting the aro BC at F. Similarly with centre 

I and radius El, out the arc BO at G. ;foin FO, and GO, and the 

angle BOC is trisected -- so Mr. Seamsn sayse 

The arCB Dr and EG depend only on Be and are supposed to 

work for any po.i Hon of 0 on AO , (that i., tor any size of angle 

, , 
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on the .egment BC). Actually the tri.ecUon is accomplished for 

anglee of two different magnitudes, but not for otlwr.. The hyp-

e rbola with 8 = 2 really would triseo't any angle. and 1 t Oal be 

drawn onoe Be i s g 1ven a nd Vlould go through E (or 1l). 

The cirole and hyperbola a.annot int erseot in more than four points. 
, , 

of which t wo are E and E. The other t wo Z and Z 11e between 

,t hes e. ,The construot1on works for these po1nts only though it 1s 

" very clo •• fcr its whole length. 

Letting AC • 3&, the di.tance OJ • 01 i. found to be 3aV3 (from 

the right angled trlapgle BEC) and the di.tance El lotl36a~+ 9a~V3, 

by using the law of. cosines. The 0 ire;'e with centre J 

( 3a (1) (3),0) and radiu.Jl 36a ..... 9a~r3 i. 

a a. ~ 
x ... y - 2(1'" 3)3"" +V3. 9aa. • O. 

The equation "ot the hyperbola with. : 2, tocuB at 0(3a,o) and 
a.... "-directrix x • c 1. 3x • y + 6ax _ 9a • 0 

"-
The.e inter.ect where 4x - 26. 3ax -I- (V3 _ 1) 9a'>. " 0 

or (2x - 3a)(2x - ('3 • 1) 3&) = 0 

. ' . x: 3& (l.e. a t E and E I) 
.'7 

a nd x = (13 - 1)3& (l.e. at Z and 2') 
1i 
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Thus', the ae8lll&Jl oonstruotion trieeots an angle of 90 , lat E .. 
and also an angle of about 72 • 

It is supposed that the real problem spurring on the Greeks, 

to ,try to diacover how to triseot an angle was that of desoribing 

a regular polygon of nine s1des.. It had been easy to construot 

t1gures of three, tour, fiVe, e1x and eight sides. A heptagon ,',,':,': 

seemed too diffioult -- as well it might -- and they conoentrated 

on the attempt to describe a Donagon, or t 'o divide an angle of 

• 360 • into nine equal parts, Whioh would aohieve their goal for 

them. The quadratrix oould be used for this purpoee, as stated 

previously, but this oonstruction wss not aoceptable here either, 

beoause the aIm was, to find a meane ot obtaIning a nonagon with 

ruler and oompasses -. onB that would lead to 1deal results. Also 

it is quite likely that they were able to arrive at good approx

imations by which construotions oould be worked out praotioally 

suoh as: RAC i. biseoted. Then CAE is biseoted, then MAE, until 

infinite G.P. 1/2 

B the biseoting lines oan no longer 

be distinguished, and to all 

intento and purposes XAC is an 

angle one third the sizu of BAC. 

This io aotually the sum of the 
e 

- 1/4 + 1/8, - 1/111 •••••••••• 1/2+(1+1/2). l/a. 
But ot oourse one Oan only approaoh, ~ot aohieve, this ~imlt. 

The Greeks readily drew figures of ten, twelve, and elx1een 

sideo, and all multiples by two of any of theoe, besides the ones 

mentioned earlier, but not until the time of Gauss (1777 _ 1855) 

was it guessed that a 17, sided figure was oonstruotible. The 

figure and description is given as Gauss worked it out at the age 

. .... 
"". 

·:"::c': 
.... :: : 

,";: . 
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of 17 years but its proof neqessltates Bome coneideration of meth-

ods of solving the reoiprooal equation by periods, as disoovered 

by Gauss. • 
17 

" (i.e. find iii" whioh will give the tor-Solve x - 1 = 0 
, 

minals of the sides of the insoribed polygon of 17 sides, in a 

circle of radius 1). Dividing both sides by x - 1, we get 
" I~- J~ 

X . + x + x + "..... ••••• x of 1 : o. 

To divide this into suitable periods, we seek an integer g suoh 

that the 16 roots oan be arranged in such an order that eaoh root 

is the gth power of the pr.oecUngone. This integer g 18 fa und 

by trial., Thet such an integer exists 1s proved in the theory of 

numbers and the proof 1s found in the appendIx. Two 1s unsu~tabl._ 
. , 3 9 III 

but g • 3 1s Bucoessful 80 that the roots are r. r • ~ • r , 
13 S ~.s- 1/ I I". / "1 i' 7 ~ I~ .<.. , 

r ,r • ,r • r , r • r ,r , r ,r • 1" ,r , r , after 

~ 7 '7 (r'"). (/4) ,0 th 11k noUng that r • J! 1 r • rand s e. Taking 

alte~nate terms we form the two periods 
, 13 ,Jr " S ~ ~ 

Y -r+r+r +1" +1" +1"-+1"+1" 
1 - .s ID 4- 'II ''t ? I~ , 

Y:z,. = r + r + r + r + r + J: + r + r 
I" I,r IV 

Then '1, + Y A.. : the sum ot the roots of x + x + x + •••• ,".x ~l : 0 

_ . Y/ -t Y2.,.= -1. 

By multiplying out ~ YL we have 64 partial produots, in the whole 

of which eaoh root is repeated tour times .'t Y, Y:t : .. , so that 

y 1 and y,,- satisfy the quadratic equation y 'r y - 4 = 0 ...... (1) 

Again, using alternate terms ot Y, ' we have the two periods 

IJ " AI-z,:r-4-r+-r4-r 

r ' .. 
I. I' a. 

the alternate terms of Y.t give z~ - r .f- r + r and -
1 • I. IL ... a r + r + r + r , 
10 " 7 , 

w,t • r + r of r f-. r 

, 
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or simply ~ I 4- z ',", = 1., 
W L" .... Y ,....- :;1,- • 

Multiplying out z z term by term, we get the sUm of all the 
'''' 

s1xiieen roots .', z, z.t, = -~ and s1milarly WI "2,. = -1 

.', Z t and z'" satisty. z2.. .... Y, Z .... 1 : ·0 •••••• &(2) 

and "", . and .. '- satisfy ' w~ - ' Y.;I.. .. - 1 = 0 ••••••••• (3) 

terms in have T. r + r 
16 

Taklng alternate z we 
I I 

'''A, • 
/./ .... 

r ... r 

Here ~~ and 
/, /. I' r' Y,.f.A,· .z, Y., Va. • r + r 1- r 1- , 

• W,, 80 that v, and .V.-., a~8 the 
~ 

roots ot :y - z. T + W,; 0 ••••••••• (4) a.nd finally since 

14 ''" 17 /(. r + r • V, and r r ~ r • 1, rand r will be the roots ot . , 
t2.·"" v, t .+ 1: 0 ......... (5) 

Thus, to find the values of the roots, nothing 'more diff10ult 

than the solving of quadratio equat10ns is needed. 

By De U01vre's theorem, eaoh of the 17th roots of unity 1. 

given by r: COB 2nlfl 
17 + 

r I; 008 ~ ... t sin 2 7T' 
... ·r ·W 

/1. 

• 
" sin 2n'7!> 

11 

r -- 008 27l' -n - i sin ¥; {aino. 008 :srr = 00. 

8in . 321i' = - ain 277' 1 I. 
• r + r • lr ' rr .. 

I J 'I 
Sim11arly 1'. + r : 2 008 8 If> = _ ,., '", 

2 008 27l' 
..", 

21i' -n and. 

:;; ., 

( ... 

'. z. =- 2 008 whioh 18 boupd to be po.itive, 'hr 

while oos 81T' is negaUve; it is not as larg: numerically as 
1'1 

,. 

COB 2 fi'. 
17 

3 ''I- ~ I.t. 
r+r .1'r ... r Likewise 11' • 

I 

, 
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• 2 C08 61i' +- 2 C08 1077' wh1ch 1. also poa1t1ve, and 
17 rr 

'3 .: 1* 7 ItJ S- ' I.J..) (. " ) 
" (r + r ) + (r +- r ) + (r +- r + r +- r 

" 2 oos 61f> 2 COB 14 'Ii' + 2 cos 10 71' + 2 CCB 121T' 
, 17, '" l'r l'r l'r 

Eaoh of the last three te:rma 18 negat:ive, and the second is greater 

than the first, so that the whole expression for y~ i. negative • 

Going back to equation (1), i.e. , y~+ y • 4 11', 0 we Bee that 

the product of the roots 18 negative . ·. Y, is posiUve and y,,- i8 

negativ~" 

Solving equation (1) Y" _ 1tlh-+ 16 
, 2 

" Y, = t(Vl7 - 1) and Y,,-. t(-~ - 1) , 

"-SalTing equation (2), i.e. z - Y, z - 1 ,,0 we have 

, 2 
and by Bo1ving equation (3) or w - y~w - 1 " 0, we heve 

The co-effioient. f 'or equaUon (4) are now known, 80 1 t , can be 

80118d, and then 'equations (5) whioh will giv,8 the values at ho 

roots of the original equation. A different choice' of ,.igns would 

lead to a different pa.i'r of a.nswers. The oonstruction for an in. 

scrib~d regular polygon of seventeen sides is as t 'olloWB I 

In a circle of r·adius unity. draw two diameters AB and CD 

at r1!iht angl.s to eaoh other, and draw tangents AS .. nd 16. 
, 

li'ind E s. that , AE " t AS (by mean. of ,two beseotton •• ) DeBoribe 

a oirole w1th centre E and radiue as ' . tUlL?: to out AS at Jj' and 

li' '. 

.. 
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Then U • Eli' - EA -ClE-- i • tJl.7 - t ' : t7,' where 1 • t~1i? - 1.) 

U' I ClE + i = tm ~ t. -t 7" where 1 • t(-m - 1.) :Ei'+EA -- . , 
(1, and 7 .. ' thus having the asme val.ues as in the foregoing reoip

rooal. oquation), 

Let the cirole with oentre ~ and radius ~O out AS at H, and the 

I ' c.irolo with oentro ~ and radius ~ 0 out AS at H • 

Then All, = U +.m • U +- ~ : t 7, + ,/;!, + i 1,'" 
and it is seen that .thiS 1s ", in the. work above. Also 

All' .. ~/H' - ~/A. O~' - u' .fi + .t1: + t 7a. .and this is 

olearly "',. The ieng~hS Ax • z, and Ali I • WI 'are the oo •• ttio1enta 

ot v in equation (4) • . fhe next step 'is to find the roots of the 

oquation with th.a. co-effioiente. Draw HT~ parallel to QA and 

interseoting' DC produoed, in T and having ~ • AR', Uaing 

B .(0,1) to ~ ·(s" . • ,) (whe·re OB, OT are the axe.) as diameter, 

desoribe a oirole cutting· OT in N and Y, and we hava IN, OK the 

roots of equation (4). The larger root .v , was previously $hown 

to be 2 cos 2 7T' • 
17 

Biseot OJ[ at L to get the value at CQS 27T> , 
J:If 

and ereat the perpsndicular LP. The angle POL is ~, theretore 
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the ohord OP is one side of the required regular po~gon. 

The oonstruction of the regular pentagon (while known by 

other methods,. to the Greeka) oan be oarried out in the Bame way_ 
~-

Solve x - 1 ,,0. First di~ide by x - 1 getting 
.. , 2. 't.'f3 

x + ~ + x + x -t 1: O. 8Qr this g .2, 80 that r, r , r , I' 

are the roote. Take alternate roots ae per10ds y, .. r + r ~ 
~ . 

'1J.. ~ r+ r ,. 

Sinoe. y, +y~ " -1, and by multiplying y, 
~. 2. 

:r""'r-+r~1' "-= • ;I., ..... have the equation y .. y .. 1 .• 0 ••• (1 ) 

whoee roots are .1:!: Is • 
2 .. 

r 1- r : COB aW ' + 
T 

• 
j, sin 217' 

T 
-+ aos 2/7> 

T 

, 
- 1. Bin 2 

T 

: 2 ODS 2 iT' 
T 

whiah' i. poBitive 

, , 
'+ 

r + r : -H/s 
2 

~_B",,""_ p 

A 

OR .~:'iI! - OJ[ II BII - 011: .. 'i 

With oira1e of radiue 1, take M aB 

mid-point of OD. ... .. .. 
Then BII • OB -t- 011: 

.. 1 .+ t 

"BM: 1, ' 
With oentre • and radius &8, desoribe 

an aro ~utting OC at H. Bisect OK at 

L and ·ereot the perpendioular LP • 

- 1 • '1 1 I 

. , ORe2oos21i' 
T 

, , OL = 008 2111 
T 

• ' • tho angle POO : ~ and the ohord SI> 1s I'ne Bide of the insoribed 

pen.tagon. 

, . 
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GaUBS 8stablhhed th,e impossibility of desoribing a regular 

heptagon. Proeeeding along similar lines, 
1 b ~ . '+ '!o ::t I ) 

Z _ 1 = (z • l)(z + z + • + z + z + z ... 1 : 0 

' let x = .... ! and the 
z 

3 "-
seoond faotor beoomes x • ~ - ax - 1 : 0 

whioh 1s irreduoible. If reduoible i t would have a faotor x - ~ 
II 

Where p and q have no oommon faotor 

factor of .1. But by trial neither 

an~ , R would have to be a 
q 

1 nor _1 . is .a :root ot 

x 3 ~ x~ • 2% _ 1 • 0 and hence the .qua~ion 18 irredu~ible, and I 

has no consiructible root, o onstruotible, that 1s, by ruler and 

compess, being a result in definite accord with the work of yet 

more modern investigators. 

A regular polygon of 257 sides has been constructed, but 

until modern times, it was not known that only relatively tew 

regular polygone could be inscribed 1n a aircle, 

The story of the soluti on of algebraic equations ie a long 

one, tbat at a growth that proceeded olowly. Back in the Rhind 

Papyrus', we find the earlieet recorded ,equation in "heap; ita 

seTenth, its whole, it makes 19" Which we would Write x+ x - 19. - ,,-
the quadratio equation was studied by DloPhantus, the only Greek 

who wrote anythIng whatever on Algebra, though there likely were 

' many others who used the knowledge that the Egyptians had ,had, 

It is eurprising that while he could multiply two negative numbers, 

he did not reoognize negative root s of an equation; he did not 

adml t two r oote even when both were posi U ve, evidently being 

eaUatied in having obtained one -- and of oourse he did not solve 

tbe equation when the roots were irrational, although the P,ythag

oreana had known of the exiatenoe of i'rraUonal numbers, D1,opbantul 

used symbols for the unknown, and for equal1ty and minus. Ha 
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changed a tremendous number of problems to equations and solved 

them. As has been noted earlier many geomstrla constructions 

which neaded the interseotion of .two lines actually give a prao~

lcal method of eolvlng equations (most frequently they were cubios). 

The seoond book of Eu~lld . is on quadratio equations. I quote 

proP9s1t~on Xl to illustrate "To divide a given· stra ight line into 

two parts so t hat the rectangle oontained by the whole and one ot 

the parts ~ be equal to the . square on tha other part." 

Both negative and lrrational roots were W9l1 known to the 

Hindus who on tha Whole made muoh srea ter progress in Algebra 

than the Greeks had done -- though undoubtedly they knew and used 

suoh knowledge as .the Greeks had po s sessed. The wr1tings of the 

Hindus did not reaoh the weBte~n world directly but through the 

hands of the Arabians, of Whom the most important writer was 

MDhammed Ben UUsa who recgrds the general solution of the quad-

ratio in much the form we use it today. Still he only admitted 

the two roots when both were poeitlve. Other Arablan mathematio

ian. were Alknrohl and Omar Alkhayyami who claesified oubio equat

iODS by means of their geometrio ~on8t~uctions but there was no 

attempt at a general eolutlon of equatlons of the third degree. 

The Arabian writlngs were broQght to Italy in the thirteenth 

century by Leonardo of Piea and there interesting eolutions were 

found. SOipio Fer)ro solved the oubio equation ln the form 
3 

x + mx : n but his methode are not known, a result of the fad in 

those tlmes of keeping flnding. seoret. This matter ot seorecy 

.remind. us of the bltter quarrel between Tartagl~a ~ Carden, as 

to who originated the general solution of the oUb!(j.. It is gen

erally believed that Tartaglia was the ' autbor and that .he devised 

.. " ; .. . 

. ::,. 
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rules, for the solution of the yariOUB torms ot cubics included 

under the olassifioation made by the Arabians. The solution ot 
J ' :t 

the general cubio equation x + bx +- ox +- d = 0 oan be made to 
a ' 

depend.-upon the solution of y + py -+ q • 0 by using the subst1~-

Utioll -X. Y _ b ,obt,aining y'+ (0 - b:'y-+ d - bo + 2b'3 : 0 
- 1 ~, ~ 

and if we set c _ bot 
r 

apandd : q we ha'V8 

~ 
y .. py -+ q : 0, the reduoed oubic equation. In this put 

3 
and obtain z - R- + q • 0 whenoe we get 

27z3 

- - it~if + if, -
Then write this .,3 _ • ~:tfR 

3 ~ 
aa - where R • (t) + (1J. 

, 
Ifrom the theory of oomplex number. it is possible to find the oube 

root of any complex number (including real numbers), using 
, ' 3 

(00e8+" s1n&) • 008 ~8+i, sin ~8 ".and having found one oube 

root, the other two are obtained by multiplying the known root by 
,.. ' . 

w . - 1 "t-i13 i and by -w • .. 1 - 13 i" 
'2" '2 

Since (- ~ .. VR)( .. i - {R) 1;!~ - R 

: { - ft;~ll +~)j • (~i' 3 wee;';' find partloular cube roots 

3 ' , 

A"V_~+tfR, BeV-l- Va 
, suoh that AB .. -
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Therefore we 
... . .. 

have six values of z, 1.e'; At GwoA, c.J A. B, wB, w Be, 
~ ~ 

whioh can be paired thus All.wA("'Il) and WA~Il) each pail-having . . ., . 

a product - ~ • 80 that ~or any one of the .six values of z, "there 

is another .paired wIth it that z • . - L • 
3z 

Originally we put 

y = Z - L 80 the values of' yare the sums of the values of z 
3z' 

in any of the above pau:e, i .• e.:I, = A + B, 
.. .. 

y~ a w A +- w B. .. 
. '13 at..> A tcuB, which are now known as Cardan" s formulae for the 

roo·ts of the reduced cub.1c. They were pub~ished in his Are 

Kagna 1545. Cardan defl~itely was aware of negative roote but 

did not like them. cail1ng ·tbem ficUt1ou.s. If the roots of a 

cubic equation are all real and distinct A and B of Cardan's for

mul.ae require the finding of cube roots of imaginary quantities 

for ~ ·t~ns out to be negative •. 

since (y, '- 7~) = A ·wA + B. - £... .. ;11 = "-
(I -.w)(A -4> II) 

3 
as W = ~ '-

1 and (y, - Y3) = A - w A -+ B - <.J B = -",(1 -w)(A -,-"II.) 

The 

al~o (7,,- - Y.) :wA- "''-A-'I-~ I! -wI!:: '" (1 . ~ "')(4 . ~ B) 

product of the:e three . !.y (- y,,)(Y, - Y,){,y" - 7;) 

= - <..>' (1-"') (A -....,'i)(A -wB)(A - II) 

= - l[ 3(w'--,:)7[A ~ - B>] noting;':' '--I- w+ 1 :: 0 

:- · 1(3)(.tii)(21R) ·~6 13 fRi, 

Tbe product of the squares of the differences of the .roots at 

any equation is oalled t -he discriminant £) of the equation 

.'. "" :: ' (y, - 7,.) "-(Y, - y.) >-(Y,,- - 73 ) ';. (6I'3Jii i): -108R. 

This Is obviously positive if the roots are real and distinct 

.'. R must be negati va. 

It is' cal~ed the "lrredl101ble case" when R is negative; and 

this oase is treated as tollows. Th e equation Is handled as 

• 
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abon to the point ' of fineling J\ -._.V- i , ,q t-o'R_ , anel B = - ~ q - UB 
Then ineteael of what followed there, find r and{} eo that 

-1.qt-Oa. r(oos BtS,ain&) i.e.-J,q.rcos/J 
. ~ .. 

Md IR : r 11 sine 
.. ~ 

or R. - r sin () . 
:t :t? • 

SInoe r "r (C08 Ii -+ sin (J ) 

r --

;' 

: r(oo.lI+ j, sin') r -(o.oeB - i sin6) 

" (_ 1 q +tJR H- 1 q - JR) " 1 q2 - R 
~ '§ 1 

; _ ~ as explained pre~lously. 

vr- ~,f. (R being negative means that - ~ i s positive 

, • 3 1 . ~ 
As R i s nega .in ~ ~>l q ooa9. -i~ p~ .. /' #-=i, 

and 

or r-~ > .. f . . ooe 8 L. i and oan be found trom a tabl!, 

of cosines. Similarly - 1. q - fi : r (ooelh£ sinb) eo that 
~ 

_the cube roots at - i,,{R and - ,I -Va are 

M [coe~ +gm360· + i. sin~+l360J (m * 0, 1, 2) and tor 

each value of m, the" produot of thea'. t wo numbers 1s .. i a.nd 

therefore, their eum 2 u- ~ oos () t S1lJ360' f or the three values of 

m, gives the three real roote of the oubio . A purely algebraI0 

method of finding the oube root of the imaginary numbers enta iled 

in this, f a ils. There is a solution fo r the cubic with real 

distinot roots (the other oases offer no espeoial diffioulty.) 

making even greater use of trigonometry that i s due to Vieta. 
3 

He used COB 3x ; 4 ooe ~ _ 3 CQB X or putting z • COB X 
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z . i oos 3x • 0 . 

1 
Compare this with J + W .. q .: 0 after putting y .. nz 

~ ~ 1 
1.e. n Z 4- pnz + q • 0 or z + tram whioh 

and cos 3x is 

-Then OOS Sx oan be found fro~ a tab1e of cosines. The three 
o • 

va lues ot Z (. oos x) are OOS x, oos (x + 120 ) and OOS (x + 240 ) 

tram whioh the values at J are eas1ly writtsn off. Vieta also 

solved equations bJ a method ot approximation that was defln1telJ 

" the forerunner of Horner's method. Thus in x ~ 14x .. 1929, taking 

80 for the approximate root, and plaoing " .. eo ... b, we get 
:t 

(80+ b) + 14(80 + b) : 7929 

'-
or 114 b ... b .409. . I ,. 

Slnce 174 b 1S much grsat.er 
"-than b .. put 174 b • 409 ·and get b • 2. 

Henoe the seoond approximation to the root 1s 82. Put:lt: 82 ~ 0, 
""-

then (82+ 0) + 14(82+ 0) = 7929 

a. or 178 0 + 0 : 57 and continue the prooess as tar aa desired. 

About this time we find negative roots for equations oompletelJ 

aooepted. atevin is the first to reoord his defintte approval •. 

Naturally the equation of the fourth degree next olaimed the 

attention of mathematicians. Cardan seeme to have tried to find a 

soluhon, but whsre be failed, a pupil of hiS, Lodovioo J'errarl, 

. suoceeded. using a transformation to make both sides of the equat .. 

10n a perfeot square, a new unknown qUant1ty being introduced 

which is it8elf determined by an equation of tbe tbird degree. 
.. ~ 2.. 

To solve :It'" bx + c;: + dx -+ e: 0 write it 1n ths. equhalent 
... ~ 

form (x ... jbx) • .... 
o)x - dx - • 

BJ add1ng 
2. . 

(x +jbx)J -I- h''' to botb aides we bave 
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(x +1I>x", 171 '" HII - 0 + 'II"" -+(1t>Y - el)x +.... - 0 . , 

The first ~em~';~ is a p'erfeot .qUar. ;"'d the •• oond member oan be 

made BO, by ,. 
chooa1ng " sui tab 1. va1l18 Y, ot 'I. 

+ 4y "t (with tfti) Let b - 40 
~ ~ 

,Then t t x 
r . . . ;t 

+ (11)'1, - dlx + #, - e + ill'l, -
i 

:{ .. 
if, - e - \1I>Y, - Y , . -

~ 
,- dl 1.e. iY, -. . ! ilo'l, 

ba. _ 40+41, 
3 -'l :t "-"- 4.0 - 4.y, • ibJ, • Y, - oy + -illy - eb + , . , , 

2 3 ~ .. 
or , Y, - 0'1, + (bd - 4ely, -eb ... 4eo - d &, 0 .. _ ... 

whlch is a oubic an.d oan be 801"98d for Y,. 

II ow 17 ,,4 fittx . il>y, - d) , - \ • 7 " t 
" . 

, • . x +Hb - t)x +17, - d - 0 • 
:1 

and x + t(b + t)x + 17, - il>y, - d • 0 
i 

"-
- bcl7, 

~ 

+ d 

From eaoh of tho above quadratl0 equatione, two values of x oan 

be 1'ound. 

Th. equation of the third degree, and that of the fourth 

having been suooessfully sol"9.d, men were enoourage.d to try to 

find a similar solution for the equation of the tifth degree. 

Desoart •• , Euler and Lagrange all contr1buted much to the know

ledge of Algebra through their unsuccessful efforts I for example, 

Desoartes Rule ot Signs" 1s still the handiest means of looating 

real roots. Lagrange undertook to review the work of all his 

predecessors and ' showed tha~ their resUlts belonged. to one ,uniform ' , ' ' 

prinCiple, whioh oonsist. in reduoing the given equation to that 

of one of lower degree whose roots are linear functions of the 
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roots of the given equation and of the r .oots of unity. He showed 

too that the qu~n1i10 could no,~ be 80 reduoed, the equation on 

.,hioh its solution depended .being of sixth degree. But there be

gan to be suspioions that equations of higher degree were imposs

ible of so lution, and other line. to the a~proaoh to the study ot 

·the equations were being followed. We have Gauss' proof that every 

algebraio equation of degree n, with oomplsx co-effioient. has n 

roots. ~or this Gauss needed imaginary numbers which had bsen 

used,though soaroely admitted, from the time of Cardan onwards. 
Z .. • 

Euler in 1748 eet up the relation e • coe x + "sin x, by 

whioh time oomplex numbers were quite well estab11shed. Gauss' 

proof that every equation has a root is, briefly, this. 

Given the · polynomlal 
')\.. 1t.-I 

fez) • II + B,Z + •••••• ~ •••• a)t., :we lIBy write 

f (x + i,y) • u(x,),) + h(x,),) where u and v are real pOly1)omlale 

in the variables x and y. We are to show that there are real 

numbers x and )' for whioh u(x,y) 5 0 and v(x,y) = 0, in the 

Xl plane and therefore they mast have one pOine in oommon, and 

for that point t ·(x + iy) • O. would be true; 1.e. that point 

would be a root of f(z) : O. If we use the trigonometrio form 

of z. z: r(oosi -\. i. 6in'), it follows b)' De Koinre's 

theorem that z ..... r"lcos n9+:L sin n~). It r, the absolute 

value of z, be taken very large, the limit 

1 .. ~ ... a .. -t ............... ~ • . 1 
s" at ;w 

w 
or lIz) approaohes z asymptotically. Therefore u an~ v app_ 

w >co 
roaoh roDs D 1\ and r sin n e 1n the same way, ao that the 

oourse of the curves u : 0 and .... 0 o'an be found from 
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·cos ntJ- . : 0 and, sin ·ne-. O. The ourve sin nb-;. 0 consists 01' n 

straightlinee whioh go through the origin and meet the X axis 

at angles ot 0, 1C., 
n 

aT, -n 
••••••• (n - l)~. 

n 

oonsists of n 11nes through the origin whichblseot the f.ormer 

angles. (oos n 8,. 0 t or angles of 'Ii' , 
\ __ -:,-:._ . '2il 

, " 

~. · •••••• (n _ .l:)'V'"> 
2n i . 2n ' 

I , 

• ,-
'<k. 

"..,." / , , , 
0 -. • I 

, . , 

--
. , , , , -, J!; :-,o~' \"<-.. 

~ 
, , 

, d , 
" , 

I 
, 

The diagram 1s drawn tor n : 3 and. it must be Doted that in the 

oentral part ot the fi·gure the true ourves u· • . 0 and v • 0 oan 

be essentially d1fferenttrom straight 11nes (lndioated in the 

second diagram) -~ but as sta ted betore, if r is very large, the 

values approaOh these straight lines. 

Drawing a oirole with 0 as centre ~nd very large value ot ~ , 

for radius, it 1s obvious .. that the brolloh •• . u 'Ind v outside the 

cirole alternate so that it. 1s graphioally olear that theee 

branches must crOBS one another inside the oirole. This establ

ishes the taot that a poin t exists fOl' wh10h U ·: 0 and v .. 0 

are both true and theretore that there is a point for "hioh 

fIx T 'y) : 0 or f(z) • . 0 is . true or that t(z) = 0 has a root. 

It one sUoh root is found, ,we oan divide out a line~ facto. 

whioh reducee the degree of the equation by one, and repeat the 

argument n times: thus an ~qu~tion ot nth degre.e ha.~ I). rQots. 

rhi. explanation Whioh is given by Felix Klein is somew~~ br~efer 
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than Gauss' original one but is essentially the same. 

In 1631 Harriot had discovered the composition of an equat-

ion as the produot of f actor.s and the relations between the roots 

and the oo-effic1ents at an equation. This was an important 

milestone, siDce it ehowed that ani iDtegr~l root must be a faot

or of the absolute term, but i s naturally of no avail i f the aqua __ 

ions has no integral root. 

Knowing that all equations of nth degree have n complex roots, 

and de. pi!lring of finding a gene"ral method by whioh root s collld 

alwa.ys be ~ound exactly, mathematioians concerned themselves w~th 

the problem of finding the roots of " an aqua"tion to any required 

degree of accuracy, developing and· improving Vieta's early methods. 

FirJ!.t the roots must be roughly looated. Desoartes "Rule of 8igns' 

gave (at least to within "aD "even integer) "the ' number of poeitive 

roots and the number ot ~egatl~e roots. Rolle • . Sturm, Fourier 

an"d 'Budan worked out exc 'e~lent methods of isolating the roots. 

i The equation <tan then b'e so·lyed by methods advance~\ by Newton. 

by Horner, by Grafte, and ODe using oontinued fractions by 

Bernoulli, and one also by Eu~er. though Lagrange showed that 

this was essentially the same aa Newton'e. I shall give here, 

thedetaUs or 

equation xil+ 

only Horner'. method. by using it to solve the 
If ~ 

x - 12x ..;. 27x + 27 ": 0 ror the root whioh 

exists between 1 and 2. A root does exist for f(l) 1s positive 

and f(2) is negative arid since f(x) is oontinuous, at least one 

value of f(xl .0 muet lie be tween l "and 2. We shall use the 

transformed equation with root: p where x. ~ +p i.e. p : z - 1, 

~ ~ "3 
and our equaUon is the eame as (x - 1) -+ 6(x - 1) -+ 2(x _ 1) _ 

"- " 

32(x ~ 1) - 24(x - 1) + 32 • 0 
"'( 

THE U1lI'lC~~~Afi!;~'jtti~:i ~ 
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or p + 6p + 2p -' ~2p - .24p+32.0 

The oo-otticiants of this may be, found thus, trom the co.efticient. 

ot the given equation 

1 1 .12 -12 27 2'7 ~ 
1 2 -10 -22 5 

, 

1 2 -10 _22 5 32 

1 3 - '7 -29 

1 3 - 7 -29 -24 

1 4 - 3 

1 4 . 3 -32 -
1 5 

1 5 2 

1 

1 6 

By trial the root ot this is found t'p ~i. between .7 and .8 so 

finding a •• oond 
~- .. 3 

. P + 6p + 2p -

1 6 

• • 7 

1 6.7 

_,7 

1 7-.4 

.1 

1 8.1 

.'1 

1 8.8 

.'1 

1 9.5 

traneformed equation as before from th~ e quation 

"-
32p - 24p-+ 32 " 0 

32 ~ 

4 69 • • - • .. • 4 683 19 1219 30 18533 

6.69 - 27 .317 - 43. 1219 1.B146'7 

5.18 6.309 -13.3056 

11.8'7 -19.008 .56.4275 

5.6'7 1 2.278 

17.54 - 6.730 

6.16 

23.70 
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We now 
5 ~ 3 ~ 

can fo,m the equation y + 9,5y + 23.7y - 6.73y -
, 

56.4275y + 1.61467 ; , 0 whose roots are 1.7 lese than the r oots 

~f the orlginal equation. The value of y in this last equation 

is very small so the two most important terms are 

_56.4275 Y + 1.81467 whioh are a pproximately equal to zero, 

from which y •• 03216. The next ' divisor therefore would be .03 

but a fairly acourate value is found by stopping at ' this point 

and taking X : 1.7 + .03216 or 1.73216. Tliis process oan be 

used to find a~ and all real roots of an equation, and is ~ite 

satisfactory fram a praotioal point of view. It is however read- . 

11y Been that this method entails "trial" and doee not lead to 

formulae by which the roote of a fifth degree equaiion oan be 

expressed -- as is t he OBse w1~h equations of lower degree. A 

way around bad been found but the problem had not been solved and 

no further progrees wae made t,111 the t 1m. of Abel and Gauss • 

. , 
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Part B 

In modern times it ha'B bee~ p'roved that it 1s impossible to 

solve the general fl~th degree equation -- that is, that no root 

exist s in any number field made up from the r ational· operations 

on integers. To s et forth clearly what 1s meant by field, it is 

first necessary to define "Domainw. An integral domain 1s any 

set of elements for which the operations of addition and Bubtraotion 

are defiped with the following properties, 

(a) eaoh pair of elements a and b in the domain determine 

uniquely a eum a + b and a product ab for whioh the dis

tributive law : ~a(b + c) ;: ab ~ aoJ, the associative laws 

[a of (b -t 0 1 ;:. (a + b) + 0 and a(b.) • (ab )0] and the 

commutative laws [a ... b II b + a and ab a baJ hold • 

(b) the domain must oontain the elements zero and unity to 

act as indentities for addItion and multiplication 

(c) For each a in the domain there 1s an element '- a. 

(d) the oanoellation law for multiplioation holde. 

Obviously the set of all integers forms a domain, and the Bet 

of all integers with some surd adjoined also forms a domain as 

a ;.. bU? It can be easily seen tha t this satisfies the four 

postulates 

contains an 

above~ Now a Field is an integral domain whioh also 
-I 

inverse a for eaoh element a ( not zero). That ie, 

diviSion by any element except zero Is possible in a field though 

not in a domain., The field must be decided upon betore it is 

possible to decide whether a g iven equation 1s solvable. Yor 

example 2x - 5 : 0 is solvable easily if the field is one in which 

x represents a number of dollars, but if x represents a nwmber ot 
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people. no answer is p0881ble. The field in wh1o~ we seek the 

anBWers to 'the fifth degree equa~ion is that formed from the in-

tegers by the ' rational operations. addition, subtraotion. multip

lication and . division, and the extracting of a root of unity a 

finite number of times·. 

Note that an algebraio expression may be reducible (that Is 

~ i\ facto,rable) or irreduoible depending upon the field used. it. 

polynomial in one variable 'x with oo-efficients i n the field is 

said to be reducible if it oan be expressed as a product of poly-

namiala, neither being a constant. eaoh baving co-effiolents in the 

field. For e",""ple' x'l-t 1 i s irreduQible in the field of real 
, ' 

numbers. but f a ctors into (x + 1.)(x - I.)' in the field which con-

• 
tains the imaginary element iii This further illuatrates the nec-

.ssity for specifying the field of operations. 

The operation by which a .Bl;)t of elemente x,.' Xa' X,, ••••• 

x~. Is ohanged. into a set of .. e~ementB ~. x .... x<,.' ••••••• x.l. 1s 

oalled a substitution. To each of the indioes a, b. 0 •••••• 1 

there corresponds one and one 'only of 1. 2. 3 ••••••• n. This we 

call a one-one correspolldence or an i,somorph1am. A substi iution 

may be wr1tten 8. X, x~ X
J 

••••••••••••• 

x~ X
J 
x~ ....•.......• 

or 8 : (1 2 3 ••••••••. ) either of which mea.ns x, is replaoed by 

X.t.. and so on. We define the "produot" of two substitutions, 8, 

and s~. as the Bubet1tution obt~ined by first performing 8, and 

a fterwards performing s,-' For example (123). meaning that x, 

is replaoed by x . ·x by x 
~ .. 3 

be written as (123)(12 ) and 

and x
J 

by x,, multiplied by (12) may 

is ~qual to (23). It must be noted 

--.,.-

" 
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tha t the produot of two substitutions i s not oommutative. The 

product (12 )(123) is (13). 

An abstraot group Is a sys tem oomposed of a set of elements 
, 

b n) and the "multiplica tion" oper at i on, and having (a, , 0, ••••••••• 

the properties (i) that t he product of any two and ths square at 

each are elements of the system, (ii) that t he a ssooiative law 

holde, (11i) that the system conta1ns an identity element I, (by 

whioh any element is replaoed by itself) and (Iv) that it contain 

an inverse for every element of the set ( t his allows that the 

produot of two elements forms the product ,I). The abstraot group 

definition oan be applied to a wi~e variety of systems: for in8~anGe, 

the elements ~ be the rotations of a regular hexagon through Gn 
" " 

o 0 

angls of 60 , or through multiples of 60 ; but what is important .. . "\ 

here i s that a set of substitutions may " form a group (said to 

be of order m if it oonta ins 'm elements). We shall cons1der 

only groups of substitutions in the following. The group of sub-

stitutione I, (123), (132), (12), (13), (23) is of order 8ix. It 

oonsists of the 31 possible substitutions on 3 letters, ani 1s 

known as the symmetric group of order six. Similarly the symmet

ric group of order nl consists of th~ nt s ubstitutions on n letters. 

If7-group is such that all its elements are powers of some one 

element (other t han the idsntity) it is known a s a cyolic group. 

That ' is, it s is a Bubstltuti9n of order n, the SUbstitution. 
%.. ....... ~ I 

I, s. 8 , ••••••• s form a cyclic group genera~ed by the sub-

stitution B. Further, a group is -regular" if each element 1s 

changed into every other element, and into itself, once and anoe 

only by all the substitutions of ths group. 
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The group I, (123), ~32) is both regular a nd cyclic. 

[ 

~ . 3 
(123), (123) = (132 ), (123) .= 1 and XI' 

by (123) X,, x,,-' xJ 

X , x 3 becomes 

a:d x · x x. b; (132)~. 
' .~,;}"'" !J 

This group I, (123), (132) whioh i s of order :three 1s a subgroup 

of the symmetric group of order six. slna:e. it 1s contained in the 

latter but in itself satieties all the requirements of the definlt. 

ion of ~ group. Actually a group may be considered as a subgroup 

of itself, but since we are usually only interested in a subgroup 

whioh is smaller than the whole. suoh a subgroup is oa lled a -pro-

per subgroup·, I and (12 ) form a proper subgroup of the symmetrio 

group of order six, as also do I, (123), and (132). The order at 

a subgroup 1s a factor of the order of the group, for., given a 

group G with n . elements in it and 8 subgroup H oonta ining r elem-

ents. then r i s a factor of D. If 0.,. 8&,' a ~ ••••••• a o\ot are the 

elements of H. and if b, 1s s ome element of G but not of H. then 

the produots a, b, ,- sA. b, , a. b, •••••••• a",.b, will all be in G but not 

in H from the def.i»>.tion of a group. If G is not exhausted, chOose 

some other element b ... of G (but not of H, nor o.t a, b I' aA. b, ••••••• 

~b,) and multiply the terms of H by it, obtaining a,b~, aAb~, 

alb~ ••••••••• a~b~ whioh aga1~ .w~~l ~l ~e in G but neithe~ In H. 
, 

nor in the prev"ious subgrou..,p. Repeat1ng this·, the . elements ot G 

all become used, and may be d1spl~ed as follows : 

ai' 8,2,... &.J •••••••••••••••• stl,. 

ab.ab,ab ., ••••••• ~ ••• a.tb .. 
1:2... -t. 2... 3.t.... " ........ 

etc • 

• 0 that the whole number n is a multiple of the number of elements 

in the first row. Thus the order of the subgroup 1s a faotor of 
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the order of the group. Tho result of dividing the order. of the 

group by the order of the .subgroup 15 the "in4ex. of the sub

group under the group. 

The alternating group 1s the full number of even substitutions 

o.n n letters, where by an eve:t:l ~':1~8~~ t~~~on is meant one tha~ can 

be decomposed into an even number of transpositions of two lettere. 

The alternating functi on ie 

p : (x I " x;t.HxJ ~ x
3
)(x, .. X"f). •••••• .•••••• (x, - x.J 

(X::a.. ~ X3)(X~ - %¥)., ............ (X;1. .. xJ 
•..•....•.•............• ~ .....••.•..... ~ 

An exchange or transposition of two numbers ohanges the sign 

of the function P, as using (12), the first factor is ohanged in 

slgn,whlle those In the · rsst of that line are int erchanged with 

factors in the line below, so that the produot ienot further 

altered. Similarly, for any odd number of transpositions the elgn 

of P is Qhanged~ An even number of transpositions makes no ohange 

in the product. The symmstric group is of order nl Ha li' of these 

Bubstitutions are odd. It oontains at least ODe odd eubs"t1tut1on 

( a transposition t), therefore all of its even substitutions 

multiplied by t give distinct and odd eubstitutions, and thsre are 

at lea.st as many odd substitutions as even onea.. Again, the pre-

duct of its odd substitutions by t give distinct an'" even subst1tut-

10DS, eo that ·, there are at least as.~ many even Bubs1iltutions as odd. 

Henoe half of the substitutions of the symmetric group are e~en. 

These are the substitutions which make u~ the ~ternating group 

on n letters. Ita .order, therefore, is ln1. 
~ 

The al te~nat1ng 
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group is a subgroup of index a in the symmetric group. 

The "transform" of one elell18"nt by another is the result 

obtained by mul.Upl;y'lng an,y given element, on the rigM by some 

o~her element and on the lett by the inverse of the lat ter. Thus 
'-1 _ / 

g Hg i. the transform of H by g, where g indioa tes the in-

"arse of g. Thus 

(132) (12) (123), 

(132 )(123) ; 1]'. 

the transform of (12) by (123) is the produot 

[(132) boing the inverse of (123), slnoe 

The result of the transform of (12) by (123) 

i 8 seen to be (23 ). A subgroup is called "invariant" if it con-

taina exaotly the same elements, though perhaps in different 
, , 

arrangement. when all the elements of the subgroup are transfo!"m-

ed by all the elements of th e original group; that ls, if l ,t is 

tra nsformed into itself by all the substitutions of the group, 

The identity is an invariant sub.titution of every group. ' It 

may be ob.erv~d that the funotion~ : X,~f xax¥ is invariant 

under the following G, = I, (12)(34), (13)(24), (J.4)(23), (13), 

( 24), (1234) and (1432). Any other of the .ubstitut'ions on 'four 

letters changes /f into aome other funotion, a"1 If .. : x, "J f x~x .... 

whioh is obtained using (23), not ip G,. or stated otherwise. 

"" . any of G~ transformed by a member of G~ gives a result found in 

Gp ' for example (13) [<12)(34' )] (·13)" or (12)(34) transformed 

by (13), gives (1432). A funotion such as /f .. " X,~+"",,¥ which 

is obtained from </J by substitutions of the group G~ .. not found in 

the subgroup GS- 18 said to be conJugate to <f. If the subgroup 
. . 

i~ of index 3 under G, there will b e ~hree dist1no~ oonJugate 

values of the function being considered and all the subst1tutions 

of the group G will be di vided in~o three subgroups, \Vh1oh are 

called' a Bet of co pJugate subgroups of G. It these conjugate 

"., 
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subgroups are all identical, the subgroup 1s said to be self-con-
. . 

Jugate or invariant. The symmetrio group of order six contains 

no invariant subgroup exoept the identity. The maximal invariant 

proper subgroup (that Ie a proper self-conjugate subgroup, not 

oontained in a larger self conJ~gate subgroup of G) Ie the most 

important one for our purposes. ·If w.e have a sucoession of max-
, . 

1mal invariant proper subgroups eaoh containe.d. wi thin the preced-

ing one, say G, H, K •• i ••••• whe~e K is a subgroup of H, and 

R of G, and if a is the index of H under G, and if b i. the 

index of K under H, etc, then a, b '. ' .. known as the oom-•••••• are 

position factors of the group G. If all the compDsltlon faotors 

" of the group G are prime numberB, G is called a "solvable group·, 

but before deaJ.ing with a solvable group I shall oonsider the 

group of an oquation. (Not until page t however wl~l it be v 

possible to ·define the group of an eq~ation.) 

In the first place, eyery equation has assooiated with it 

B definite group whioh will differ, in most cases, for· different 
3 ~ 

field.. Let us take the 8q~aUon ax +- bE + ex-!- d : 0, of t)lo 

thIrd degree Which has been proved "to have thr~e roots. we will 

assume the ro·ots to be distinct'- for! ,·if · they are not, f (x) and 
. . -, . . 

its derivative t (x) woUld have a cammon divisor g(x), not a 

··coli'st!,nt, and we could treat the equaUon ·t(x)/g(x) • 0 as 

.. having no' 'mul.t.1pl.e r .oo1;". In ·all that follows', theretore, we 
, , ' 

will consider the roote of the equat.ion to be distinct". , In the 

case in. hand, let the roots 'be XI' x:t and x 3. If we take some 

fUn-etian of these rO,ots, say XI x.t,. +X3 and replace" the X.Js by eaoh 

other fn as many ways a. possible, we shall find there are 3~ 

possible substitution. {l, (12), (13)0 · ·(23t, (123), (132)J and 
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if we had taken some funotion of all the roota of an ~quation 9t 

the nth degree, ther~ would be nl Bubstitutions. Some of these 

substitutions alter the value of the function and soma do not, as 
, 

in the caBe above, of the cubic equation and the function X/X~+ 

the subetitution (12) do.s not alter the value of the funation 

while (13) does. Futhermore. a aertain substitution may change 

one funotion of the roots and yet not change another, as (12) 

would change x, - x,- b~t no~ x, -I- X,2. • 

x • 
.> 

Suppose that for the equation of the nth degree. we take this 

function of the :roots: V, : m x + m x 4- m x + ••.••.• .••• , •• m .... ~.,. 
" .1 - .2,. 33 "" 

(this is the Galois funotion of the roots). then the uf, can be so 

chosen that every possible substitution of the xs ~ alter the 

expression; henoe it has nl different values whioh are represented 

by VI' V~, •· •••••• V"Jt.l. To show that it 1s possible to ohoose such 

m's, give to m any integral value, Bay 0, and to m~ ~ different 

integral value, Bay 1. . Looking at the equations ~ : Va ~here V, 

is obtained from V I by a substitution euoh as (213)] we find that 

certain 1'alues of m} are determined ~f V, : V ~ oontalns:m
J 

but no1i · 

m i (i, > 3) i.e. if V, .. V:z.' then "a -I- m'''J • "I + mJ ". 

11 x, - x~ • 
x3 - %;t 

value of m3 except this will make V .J. V. There will be other 
I -r- a 

values to be avoided, at eaoh later stage, -- ones wh.1oh will male • 
. , 

V . V , = 'f or V 2. • V., .for inst~oe, but there 1s an 1nfinite oholae 

of 'values that make V, • V .. ' V 3 all different. Next we give to m.,. 

an integral u,lue different from the nlueo of m", determined by 

the relations VI = V3 involving m4 but not m i (i;. 4o) and so on. 

USing the nl Galois funations .e torm the expression 
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p(y) : (y - V/Hy - V.,,)(y - V.) ................... (y - V,.!l 

where y is a variable. Let B, • 1, B.a.' s 3 ........ B,../ be the Bub-

.st1tutionB used to form V i. from VI' It B" BK = Bt.: (a group of su~ .. 

stitutlons) and we apply sJ to V" getting VSi ' and follow th1s 

by s~ , we get Vs,;' With" f1xed and the va lues 1, a, •• , ••• n l 

for j, L will take the Barrie values in some new order eo that s 

simply permutes VI' V.S •• I1"" "'.'Vs amongst themselves. Thus 
:I. -,..! 

the elementary symmetric funoHons of V~ found in p(y) are symmet-

r10 funo~10nB of x, ' x.t. " x 3' •••••••• IIX")v, and hence they are 

· integral rational funotiona of the ao-effioients of the original 

equation in x. They are also of course, integral rational tunot-

iODS of the m·s. Thus the oo .. effio1ente of the various ,Po\'Vere ot 

y in P(y) are quantities in the field F under oonsideration. If 

p(y) 1s reduoible in F, 1st G(y) be that factor, itself irreduo

ible in F, for whiah G(V,) = O. If p{y) is irreduoible in If thell 

G(y) " P(y). The equation G(y) ,. (y _ V/)(y _ V.) .... (y _ V,,,) " 0 

is oalled a Galois resolven~ of the given equati'on for the fi~ld 

F. The Galois resolvent again is different for different field.. .., ... 

3 ~ 
The equation x +x ~ x + 1 ~ 0 Whioh is known to have the roota 

. 
X I : - "" %2,:: t., x"3 •• 1 illustrates this. 

V,. m,x,'l- m~x~+"'Jx~ with m, • 0, m1.. . /1, a.nd 113 ~ _1 ghea 

V, 
0 

• x - x 
~ = ~-\- " ... 

Y,. • x 3- X 
I • 

-1 + t.. 

V~ • 
. 

x, -x,.. = -u 
V ~ =_ 

, 
x 3 • X '1.. = -1 - SI 

V~_ : 
, 

x - x : 1 - 1-, 3 , 
V~ - x - x .. 2" - t... I 
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If). (y - V/)(y - V,)(y - V3 )(y - Vt)(y - V,)(y - V£) 

Ii (y - 1 t i)(y - -1 + ~)(y + 21.)(y + 1 + f.)(y . , 1+ i.)(y - 2£) 

.. (y _ 1 - t)(y - 1+ i,)(y t 2i)(y - 2i)(y + 1 - ;')(y + 1 4- i) 
• {/ - 2y + 2)(Y~" ~)(y\ 2y+ 2) , 

The irreducible part of this , thet contains ,(y - V, ) 'is 
2 , " 

G(y) : y - 2y + 2 or (y - V, )(y - V,) 

if the field is the r eal numbers but if the field is t 'het wUh 

complex Dlullbers, then "Cv) • y • 1 • i or y - V" In order to 

show the t the sUbstitutions cf the x'S which ohange the Vs into 

one anather form a group of the given equation t'or the given field, 

it is necessary to pravs the following theorem whioh I am taking 

from "Modern Algebraio Theories" by L. E. Dickson. 

"Let + (x" ••••••• ••• x..,.) be a.ny polynomial, with co-eft1clents 

in a tield H, in the roots x,; of an equation with co-effioient. in 

H,' Let s be any s,ubstltution cn the roots and let it replaoe 1 
by ¢s and V, by Vs where V, is the nl valued Galois function with 

integral co-eftioients; Then 9, .. .l (V,) where A is a polynomial 
S pl(V~) 

with co-efficients in H While p' i. the derivative of the 

polynomial. 

p(y) • (1 - V, j(y • V,) ... , ..••••. ~ . .,. ..... (y - v""!) whose co-ettio

ienh belong to F whenoe P '(V )# 0.' Thus 4, is the same ,rational 

function f (Vs ) of -v;; thet t" (1; is 'ot VI'" It sJ SK. 8, • then 

81( replaoes ?s:,. by fSi' Thus 81{ pe"mutee ~ J) ' • •• - . -" ¢'tV/ ~n the 

.sama manner that it permutes V" •••••••• ,.,V r , Hence the ~erm • . ~, 
of ~(y) • r p(yl + ~ P(y), + ............ : ... ), PlY) 

, Y - V, s~ y - V 2. is.,., y - Ys~! 
are merely permuted amongst themselves by any substitution on 

X", xl! ••••••••• x • 
"'" 

Thus the ca-etficient. ot ~ (y) are rational 
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1ntegral symmetric functions of. XI' xr ............... x')uWlth co-effio-.. ,. ..' 
ients in the t1e1d Yi and henoe are equal to 

Taking y • Vs ' we obtain Ie (Vs ) • . 1. l"(V .. ) 

ione 1. p(y) will have the factor y - Vs 
'fL Y - V 

q~ntitles in E. 

einoe all the fract~ 

= 0 except,J ply I . 
IS y - y. 

" 
whioh equa ls fs. p '(V s ) 

.... J(V~) • 1>s p '(V,.) 

. 1 = ].. (Vs I 
•• 'fs P'(Vs ) 

when . V~ bas been eubstituted f 'or Y • 

Now let the roots of the Galoie resolvent O(y) = 0 of degree . . 

g be V , V , V, •••••••••• V~ where 1, a, b ••••••••• p ind1cate 
I ~ ~ r . 

the 

• . eubeUtutione by whioh the different V s are obtained from V, • 

Then 1, a, b. " , ••• 'H ••• P form a group G(the group of' 1;he g1ven 

equation tor the given field). We muet shew that the product at 

any two of them ie equal to one of them, 

Let V'" • . .l.t!...L where V"" • r in. the foregoing. Then 
. pi!V.) . 

VA.. : (Y"'~' • h (V.) • 
p'(Vs ) 

We suppose V~ ie one of the roots at G(y) • O. then the equation 

G/A.(y) \ : 0 Ie satisfisd whan y e ' V" IIultiply by the gth 
li> '(y17 

I 
power of P (y) and we obtain a polynomial H(Y)' whioh vanishes tor 

y " V" Sinoe G(y) • 0 is irreducible. any root Vs of o(y) . ; 0 

is '& ' root of H(Y) • O. 'and sInce pl (V
s 

J is not zero. we may divide 

H(, ) by the gth power of p '(Vs ) and get 0 : G f~v' • G(YM ) 
('P' Y. s 

hence Vhf is one of the roote of G(y) : O. 

3 a 
Returning to the illuetration x + x + x T 1 • O. for whloh 

G(y) • 0 or (y - V,J(y - V~) eO had roots V, and Y ~1n the field 
6 . 

at real numbers. the group is r I, (x I' xs-J 1. but 1n the field at 



- " 

.. , 
",: 

" 

I 
I , 
, 

I 
i 

: ":.:: . :",-;", 

'. ~- ,.:, 

. -::' .' ,j ..... , 
,"",,', 

55 -

complex numbers for whiah G(y) : 0 or y - V, : 0, the group 1. 

tbe identity. 
.' , 

Two very importan~ properties -of the group G of a given equat-

ion follow. The first is 

A. "If a rational funotion, with co-effloiente in the field ~, ot 

the roots of an eQuation wl,th oo-affi.ienia in S remains unaltered 

in value by all the substitution. of the group G of the 'equation 

tor F. it is equal to a quantity in So, 

A rational funotion of t,he r ,oots af the equation may be, ex

pressed in the form~ where, a. in ' the theorem on page -SO 

rI,,. dJ~ )..(V, I ,and when we exprese ¥,: Iv, in the form ,u,(Vd , 
T [I p/(V,) / P'(V,) 

In 9',.a mu~t restriot the cc-efficiente of the polynomia1~ 

BO that Ifi ¥ O. -If s is any Bubstitution of the group of substit

utions 1, at b, ••• · ••• .• .• ~t thenq{,j.: 0, tor if Vs is a root o'X 

~(y) = 0, then so ie V" in-v1rtue of the irreducibility of the 

Galois reBolvent G(y) II O. Henao' -A: ' )!Vr I (s: 1, a, b, , .... pI 
, '1'. I" Vs 

are defined for eaoh substitution s of the Group G, 

Supposs that~ 1s unaltersd in value by all thes. Bubstitut-
yJ 

iODS, then 

. . , 
1.. LlYLL 
if ~ 

Theretore (g)~. )!~;I + }J;;it ............. t)I~:1 
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or 1. = ! r ~ + ~ + •••••••••••••••• of.~ ~ 
If g (pv,1 /,,1'1,;] . _? r j 

the second member of wb10h is a rational symmetrio function with 

co-efflcients in F of the r oots VI' Va... .......... V". of G(y) : 0 

therefore it equals a ra_t10nal funcUon of the co-efficiants of G 

and hence is a quantity in F, and therefOre~ 10 in F and. prop-
IjI , ,.'-

erty A 1s proved. 

The Seoond of these prope~~leB 1s the converse: 

B. "It a rational. function of the roots with oo~efflo1entB in 

F 10 equal to a quantity in F, . 1t remaIns unaltered in value by 

al.l· ... the Bubstltu~ion8 of G.- To prove this. let-$-: r where r 

1& ~n F. Then )..(}) - r .; 0 
. /-" ("I ) 

is sa tisfied by y • V" and so 

~(y) - ~(y) • 0 for every root Vs of the reoolvent equaUon 

.. Gb') = O. Theretore r. ~ =..!l=-. . where 8 it 1. a. b_ .••••• p .. ' 
/" ---cv;T If's 

so that -$- is unaltered by all the oubstHuU·ons of G. 
-

To illustrate propertiee .A and B with the equation 
3 2 

X + X --t x-+ 1.0, let us use the function (x, • x)(x _ x,)(X -x · ). 
r---------=---~~~L-_.~~~~~.. 6 . I 

This e"pression equals if lSbcd - 4b'd + b'o" _ 40" _ 27d.1 for . ~ 

any oubio equaUon x + bx -+ cx ·+ d • 0 and is relatively ea.u.y 

found. For our equation, this is -16. This equals a quantity 

in the field of oomplex numbers and so, by property B, remains 

unaltered by all the substitutions of the group of the equation 

for the complex field. If we try all the substitutions 

I, (12), (13), (23), (123), (132) we find that only three cf 

them, 1.e. 1, (123), and. (132 ) leave the function unalt.ered, 

henoe the group for the complex~ield ie nc greater thaa 

I, (123), (132) but migbt be only the identity I. Try another 

func1;1on of the roots, say x,' The equation under oonsider.!>1;icn 

~ .. 

.. . ..•.. 

.' . 

... ..... . 

..... ,., ... 
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hae one rational roo't X, 3: -It, ap~~ t:"o .oomp~ex ~.ootat e o that the 

substitution. (123) and (132) alter the function ~, , and there

fore by property B, again, (123) . and~32) are not in the group 

for the complex tield t which thus consists of 1 alon~. . In the 

field of real numbers howevsr, the group i s .een to be I, (23), 

on working Wi th the same funoUons. In general, adJ aining further 

elements such a8' ~ in this C&S8t reduoes the group of the equation. 

It is interesting to not. that it is immaterial which of a 

number of funation. of the roots i. used to determine the group 

of the equation, Fir.t, if property A holds for a group 

H' . 1, rt , •••••••• m. the co-ett1c1ents of 

f (y) : (y - V, )(y - V",) ............ (y - V,,) being symmetria 

functions of V" V /I.;, •• u .... V
7W

are not altered by the substitut-

ions of if. and theretore ·s1."e equal to quantities in.r. 
.. . 

The e'luat-

ian ~ (y) a 0 bas one root V, of the irreducible e'luation O(y) = 0, 

therefore it has all ~he roots V" Vo..·. v-t- ...... , .. v~ of O(y,): 0, 

so we Bee that .G ·: 1, a, b, ••••••• p ooour amongst the substit

utions 1, r t ••••••••• m of Hand G is a s~bgroup of H • 

Ag~in, 1et K = 1, p, •••••••••• t be a group for which property 

B is true. !he Galois funation O(V,) i. e'lual to zero in I and 

18 unaltered in .. a lue by the substitutions of K; therefore 

G(V,) .. G(Vfo) III •••••• , •••• .•••• . G(Vt-) • 0 and V,t V
fo

' •••••• , Y
t 

ocour amongst the roots of O(y) a 0 and K is a subgroup of O. The 

two properties evidently hold simultaneously if ·X :: K _ 0 and the -
group of the equation is un.1quo. 

, 
The funotions by which it· oan 

be determined are said to belong to . the group. 

~t a given function belongs to a subgroup X of index.p-., 

there are..tV conjuga te functions. There are..LV Bubstitutions belong-

.. 

, 
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ing to the group which will carry the given function into eaoh at 

its conjugates. Hor example, the function!.fl,: ~ x.,.+ X3X,+ belongs 

to the subgroup H, " Gg and If, = x x. t- x x and l/'J " x x T x X. 
2. 14:L't f.,. 2. .... 

, 
belong to the subgroups H 2. and H3 • Va can be obtained from if, by 

the Bubstitution (234) and if,from,/" by the substitution (243). 

The set of oUbstitutions such that to any subst! tution of the 

group on the letters ~" X,-' •· •• ' ••••••• X"' ... there corresponds . one 

de:t'lillte' 6ubatl tution on the lettere· of - one· ot· the conjugates is , 

caUed the group r. In the example 'above, it is [I, (234), (243» 

If H is an invar1antoubgroup of ~ of prime index, the group ' 

riB a transitive group of order".A.t;. o'n...u,..l.et'tera and "therefore 1a 

a regular gr.oup. A group 1s sa.id to be transi tlve if, for e,aoh ~".' 

element of the group, we oan f.1nd ,substitutions in the group whioh 

"replace this element by each of t~ other element a in the group. 

The gro,up G
J 

: [i, (123), (132)] h " transitive group of order 

~~::r;ee on 1:hr~e letters, fol;" .. 1 repl~ceB x, by x,, (123) repla.ces 

x, by x:>! (132) replaces x, by x3 etcetera. The symmetrio group 

on n letters is transitive but 10 not regular if n> 2. · .Let H be , 

the subgroup containing all the eubstitutions of G that leave one 

element x/ una! 't ered. Sinoe the group is transitive, there will 

bs a substitution s2 say, whioh ca.rries x, into x2.. • This sub-
-li"':-' 

stitution, applied to all the substitutions in H must give a new 

set of Bubetitu:tione, »SoL having exaotly as many members ~s Ii. 

each of which io different from all the members of H. This pro

oess · oan be continued till we have 

G • H +-Hs -+ Hs + •••••••••••• +Hs where the number of elements 
OJ. . a '. _ 

is ~ It is readily sesn that every oubst1tutlon of the group 

i_ in one of the Ms, -a that the order of the group is divisible 
• 
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by D. 

Further if an equation i6 irreduoible in a field F, its 

group for F will be transitive, and conversely. Suppose that the 

group G for f(x) = O. irreduoible · in F, 1s intransitive and oon-

tains substitutions replaoing x, by Jt , X , •••••••• x ,bat 
'''' "'" 

none replacing x, by the later terms x ••••••••••••• x. 
~+. ~ 

Con-

sider some one BU9stitut1on B of G replacing xl, by xi (l.. = m). 

G oontains a substitution t replaoing x by x ' and therefore a 
I " 

sUbstitution to replaoing x by x · with j ~ m and the 
, J 

x" xl' ., ••••••• X"'" are simply permuied among.at themselves by St. 

and any symmetric function of x , x , •••••••• x is unaltered. 
I ~ """ 

Therefore, by p~operty A, the ca-ettiolents of x in 

g(x) = (x - x )(x - x ) •••••••• (x - x ) are in F and fIx) i. 
'" -

seen to have the factor g(x), and it is established tha t if the 

group is 1ntransitive, the equation is reduolble~ Conversely, 

let G be transitive and fIx) be reduoible in E. Then fIx) has 

Borne faotor g(x) of degree m (m~ ri) such that g(x) : 0 has the 

root x I and sinoe g(x) 1s .equal to zero (in F) ' it is, by property 

B, unaltered in value by ' ever~ substitution of G. SInce G is 

transitive, x can be replaced b~ 
I 

any x' giving g(x ' ) - o for • 0 -
a~l L..c::: n, in contradiotion to our 

~ 
asaump~ion that m ~ n. To 

the • ... 3x + 1 -equation x 0 -illustrate,I will find 'tne gro~p of 
'-, 

for the field of rational numbers. The equation is irreduoible in 

this field, beoause it i t had been reduoible, it would have had to 

have at least one 11near facto~· , and neither of the two possibil

ities x-rl and x - 1 are factors. The funotion 

111 : (xi - '" ) (x. " x ) (-x - x ) i. the square root of the di s-'1' . .t. 4. J ~ I 

oriminant of the equation and 1B equal to ~9 (in the rational 

.-
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field) but only to either+9 or fo -9. Any transposition of . 

x , x , x, changes £...II into - if and so alters £I and therefore the 
I ,. 

transposition i s not in G, by prop~rty B. That is (12 ), (13), 

a nd ( 23 ) are not in the group :-which t herefore coneist s of 

~ I, (123), (132)\. Thus we hav e a trans itive group as the group 
3 

ot· the irreducible equation" - 3" + 1 .. O. 

- ._, ".--, 

One other expressi on that will be used later Is Mquotient 

group". If H is an invariant subgroup of G, of Index~, the quo

tient group ie designa ted G/!!. It is of order.w, whioh ie the 

result of dividing the order of G by the order of H. A. an example, . . 

we oonsider) a. above 4' .. (x, - X~)(" .. - X,)("3 - x,). which be

~ongB to G 3 Ll .. e. Is u~changed under the 8ubet Itutions of 

G~ .[1, (123), (132)l1 a nd whioh t aks. a second val!,el{ ... ' - ~ 
under G ~ I then G'/G, i s the group r Ii [ I, (If, 9i)}. li'Urther, 

a simple group is one whioh has no invariant subgroup exoept It-

self and the identity. Otherwise, it i s oomposite., It is seen 

t ha t a quotient group i s s imple , oinoe in the operation GIR, the 

s ubgroup H must be invariant or self conjugate and if r had a sub-

gr oup other t ha n the ident ity, then the substitution. of the sub

) group of r applied to H would give different results from thos~ 
of the substitutions of r not oontained in the subgroup of r , , 

~ oontrary to the hypotheses that H is invariant. And now we are 

ready to attaok the statement that "a group is called solvable 

if its t actors of compos! tion a re ,'all prime, otherWis e inaolTable.w 

The s olution of a n equa~1on with the group G for .any given 
'. 

field can be reduoed to the solution of a series of equatlons, 

eaoh having a simple regul ar group for the field obtained by 

adjOining to the field of the previous one a root of one of the 
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, 

earlier equations of the aeries; or in other words, 1f G is a 

solvable group, each auxiliary equation has a regular cyclic group 

of prime order. If we begin with the group G of the given equat-

ion for the given field, we oan find a aeries G, H, K, •••• • ,1, 

such that each is a maximal invariant subgroup of the preoeding 

one, and end1ng w1th the identity group. Ifv' 1s the 1ndex of H 

under G, and we construct a rational functiQD 4-' of the r ,oots with 

co-efUcHent. in the field and such that ljJ belonge to the subgroup 

H ·of G. then 'fwill be a root of an equation of degree ..;- whose 

group r is simply isomorphic (i.e. there is a one-to-one corres~

ondence between produots) with the simple quotient group G/H. 

Enlarge the field by the adjunotion of the root ~ and the group 

will be reduced to the subgroup R. This process is continued 

until the idsntity group is reaohed. The field then oontains all 

the roots of the equation, tor any ODe root, say x , is unchanged 
I 

by ths SUbstitution of the group, namsly I, and, by property A, 

is in the field. If in each case the index is prime, eaoh aux11-

1ary equation will be of prime degree. 

It 'is now necessary to sbow that any equation with a regular 

oyolic group of prime order p is solvable by 'radicals, when the 

field contains an imaginary pth root of unity) t. Let xl)' x,, 
X~t , ••••••••• ~'X ~_I be the roote of the given equation and let 

the group be generated by the substitution 

Q : (x • x , X •••••••••••• 'Xh ). Construot the function 
o I 1 ~-I 

" li 3i 0.-1)" 
r~=xo"Ttx'-+r X1.~i x,-+·················-a.f '1.,,_1 

with co~efficients in the giveri field. The substitution s replaoe. 

r, by f-"'\ G·A_0-.)S= X, -+r\+ t'"x,-+ - -. - . - --· .. ~r ( ~ ·\, 
,,< -. '1 

"" X, + (' X, + (' Xoj -+ - .... - .. .. + f' )(.1' 
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Let v · • (r ) p. Then V · is una ltered by • for v, beoome • . 
L .. If . . t-

Co-' rr,.J~ ~ (r 0) r and v ,is therefore in the given fiel.d so 1; is 

one of the pth root. V Vi of a quantity in the field • . The given 

function 15 as fol~owe tor 4. 1; 1, 2, •••••••••• ,p-I 

r, 

r p"' 
f.-' '" x. tf' 'I, 

~(J>-') l(p·') (I"')~X - tc 
+f X. t ! ~3+""'-+r r-' - ~ -I 

Multiplying t~es. equati'ons by I ;-' t -. ...... 'r-(t •. ,) we get 
) )} J 

. _("_.) _(L,) (p_.) f' ,. r: (' r Xo +- x, .. f x~ + 
p •• 

Summing these, the result is 

e . •••• e ••• 

-(p-') .tJ-.-..... f' V V~ - . 
T ,-r-

-+ t +, +·"", 

~ p-' 
, "(~,,) , =r "'f V~_I 

I' X, t-

when p is a prime, for t • 1, 
_I 

result beoomes px I .. . 0 -+ . f 

2, ••••••• ,p _ 1, ~hen the . above 
P .1;-- ' vv: t f-'VV,-+ " "" 
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or x(=~{c.-T{'~ + (l_2(j" .. +/ X;+ ---- .y> (p-') ~J 
x , Xz ' •••••• ~x oan be found simi~ar11 by multiplying the ex-

1. ~ p- , 
pre s sions for r , r , r ••••••••• r by l, ~ --.: ~ -.2j, /O- ;~ ' ... 

" , '2. p_J .. { { ... 
~. _/-fr-')jwhere J has the value s 2 , 3, ........ p - 1 instead of 1 

as in the case worked ou t to find the value of x, • 

, . .1.-[ -j • ..-- - ;'i .for- -(f>. iJ.;' Jr--) 
• ' XJ ' to C of f !I v, + t vv .. + ...... . + (" v Vp . , J 
As the xt 8 are distinot by hypotheslj,s. the Vs are not all zero. 

Some c erta.in r i. is not zero, and let us consider 1t as r
J 

• The 

Bubstitution s then determines the other roots. We have thus 

obt~ined expre s sions in t erms of radicals f or the roots of an 

equation with a regu~ar ~y clic gr.oup of pr1D!~L~der,' but 1t 
. ' , ., . 

must be 

noted that the work Jus t given definitely require s tha t one be 

able to find the pth roots of unity, whioh is done by s olving the 

.... p- ' p-~ />- , 
cyclotomic equati on x + x + x t ••.•.•..•• + x + 1 • 0 

whare p is an od d primo, This oquaU-on is irreduoible, tor it 
. . 

it wore not, suppose that it had factors f (x) ~ 1 (x) . !/' (x). / 

_.....c!>e~ X ~.!. l, .. th~. P • cP fl}.!'" (1) a nd as p is prime, either 

'\::1 . fJft 1 ('1) or if (1), oay rp{tJ must be +-1. All the rootal',t>;/ '. ... 
, .• ~ r (r) ......... fY "., 01' fIx) satisfy l' (x)'l/'(x) .0, therefore ~ (x) 

vanishes for oat least one of tbese values. 

.' .. ! 
" :,~ 

:: .... ' .. ,' 
0" '\ 

'-·11) rfC/J rc; ') · .' 
or a function 

, . 

. ~r; />- 'J; <> 

.. , l ( xl-'j = a 

for a ny ons of the 'roots of fix) • O. Hence pIx) :: f(x).q(x). 

Again letting x • 1, we get PIll =(j(1)]"-~ (t 1) ;: p.q(l), 

which ie impossible, the.efore 1ho oyc1otomio equation is irred

'uo1ble in the field of r ational numbers • . 

Returning to the problem of s olving 
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X 7 ••••••• t- x + 1 : ' 0 which 1s obtained trom 

: 0 by dividing by x • 1 = O. we use the fact from the 

theory of numbers that . there exiBts a number g Buoh ~hat the ' roo~s 

~ 3 p- I 

fJ ) f ) r ) .. ' .- .:>t=> may be arranged in the order 

q i' J' .,~ - >. /',/")/')1' ) . ... . -"" "/'" because the integers 
~ "'3 ". -~ 1, g, g , g:- , ••••• ~ ••• g . when divided by p g ive the numbera 

1,2, 3, •· •••••••••• 3P - 1 1n eome . O~de~. It x, = f ' %-7-

3'-' ,t·· 
xa at • %4 · r J ~·· ... ·····~··~?~"...I 'I: f 
the.n x._ x,"'. x.... x",., X • x,. •••••••• ~x = 

- j ~ '3) .,-1 
~ - . • . i a nd since g : 1 (mod p) ' Xj> • (X,._.) ~ will . squal x, • 

Consider any substitution s of the group. of the cyclotomic 

equation s • - (
x/. X,,, x] ............. ,x,,_,) 
xtt..' Xt , X.e.'.' ••••••••••• x.(. 

we · have x ~ 
. " x, '} . . '. x!t-~ xo." . (By property B. 1f a rational 

. 
_function of the roots equals & number 1n the field, it remains 

unaltersd in' value by all the substitutione ot the group) and 

t 
~x+)"""""""~XQ.. '. 

But. likewiss trom the faot that x . • 
£ 

and therefore x.,. • xQ.~. (b9th equal 

} 
%. above, . -, X 4+ , : x ... 'f 

to X,} ) 
X,t. : X-&:+I,···········, %0.- = x.f. and obviously b = a +1, 

~ , 

o :: b t- 1 ) :: a . + 2 (mod p .- 1) so the subst1tution may bs written 

... J ' 4) ,., .. , 8 .;:(·x,. x .. x . x ........... ,x~ ) 
XA , x ....... ' Xa.-tz..' x4.+1'···· •.• ~,x<1.t,._:L 

WIlere-' x", .. P : " i s replaced by "'t sinoe k + P - 1 ! p(mcd p - 1). 

It i s therefore Been t hat the Bubutltution B is the a - 1 power of 

(x f x,. . 
x 1 ..... ... ..... :x. ~_I) aa oan be readily verified by 'putting 

a '. ' 3~ Bay. in the sUbstUution • Just given. s was any aubst1tut-
. 

ion of the group G, therefore G is a subgroup, not ne.cesssr;l.ly a 
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proper subgroup, of the 0)'"01.10 group generated by (x I X:l x.3 ••••• 

X~_I). The oyolotomic equation being irreducible. G will be tran

sitive and therefore we oan say that if p is an odd prIme, the 

group, for the field of rational numbers, of the cyclotomic -equatien 

whose roots are the pth roota of unity, 1s a regular cyc110 group 

of order p - 1. Too, one of the pth roots of unity can always be 

found t and the others are sucoessive powers of the one root. 

An equation having a regul~ cyclic group of prime Qrder p 

for any field F is solvable by radioals relatively to that field. 

Let C(x) : 0 be an equation having a rsgular oyclic group. Ad-

join to F an imagina:ry pth root of uni ty c '. When any el.ement, 

not in 0. given field (not obtainable tram elsments in ths field 

by addition, subtraction,. multipl~cat1on or division) ie adjoin-, 

ed to the field, the field 1s enlarged, as any. sUI!:l, difference, 

product or quotient of this new element with itself or the orig

inal elements will be in ths fiold. When the tield has been en

larged by ths adJunotion of E , the group of C(x) = 0 is eithe~ 

the original cyo110 group or the i'dentity group. .Sinoe the 

order was prime, there is no othe~ pos8ibi11ty~ If the group of 

c(x) :0 is oyo110, c(x) • 0 is solYable in (Y, E) as was shown 

on page",. If the group at C(x) .. 0 io the identity group, the 

roots are in (F, e r and so oan be found from tl:!e quantities in li' 

by rational operations and ~o·ot extractions, the index of eaoh .. . 
root extractiOL.be1ng a prime divisor of p - 1 which is the order 

of the oyclotomic group of the oyclotomio equation for the pth 

roots of u!l~ ty_. 

This oomplstes the suffioient oondition for the solvability 

of an equation. If its group is oyol10' it oan be solved, whether 
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the group is of prime order~ or not. If it Is not of prtme order 

then it will h&ve factors of composition which are the · prime factors 

of its order and it will end in a cyclic group of prime order. Also 

if the group of the equation has a series of factors of composition, 

such that each subgroup Is of ·prime index and ending in the 1den-

tit)' group, it 'is solvable. In the latter case, there is a aeriea 

of auxiliary equations, -each of prime degree, which wi11 have re-. 
~ar cycll0 groups of prime order, and hence each is SOlvable. 

These roots are adjoined to :the field and the next auxiliary ~quat:

' ion 1s splved, untl1 , tbe field containiD5 the root~ of the given 

equation Is reached. 

The next task is to show tbat it Is a necessary condition, 

that for an equation to be solvable by radicals, its group must be 

a solvable ~oup; that ~s, that its group must be a regular cyclic 

group or have a series of prime composition factors- leading to the 

identity. By hypothesis, the roots ..x, , xa.' •••••• ,x~ must be able 

to be found by rational opera~ions and root extractions from the 

quantitiea in the field F - (E, k , k , k 
. - 1 ' .2. 3' ••••• ~ •• k~, where 

k.f' k,..., k3 , •••••••• ,k"., · are the roots of the m auxil.iary equations. 

It f.{ is a rational funet 'ion, of the roots of the equation, that 

belongs to the subgrC!up H of . ~ o~ index u, then l.p is the root of 
, 

an equation of degree u wi~h co-efficients in F whose group 1s 

isomorphic with the quotient group GIR. Let k, be the root ' lV • 

Similarly k;1' k
3

, ••••• ~ .••• ,k)ow are the roots of the' other auxiliary 

equations. The index of each root extraction may be assumed to be 

prime for " o~herwise, it can be considered as tw·o or more extract

ions of prime index performed in succession. U t ",. 
/,~)'--' '') T 

stand for the radicals in the ~xpreB810n.s for x.l' x~ •••• .•• ,x w 
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the procedure may be Bet forth by the series of biQomla~ equat .. 

iona , 
(~)~ ::L, 

,11- . 
" ~/VI}' ....... . 

qt.\ 5 , 
where L is a r a tional functi on of k,' k,-, •• .-. • .- • . ,k,..,.; li Is- a - rat-

i onal. function Of;-, k, ' k::t.! •••.•••• ,k,..."and 80 on, with & a ration-

al function of ( ........... ... ...... '0 ;) k, , . k~, ••• , •.•• ,k;:lloo ). Hence 
. 

oonsider a binomial equation of prime degree PJ 

(2 ) x~ - A • 0 where. A is in the f1e~d ll. Let 6 be an imaginary 

pth root of .unHy. U one root r of (2) bdongs to the field 
I L ' p-f 

11 = (F,~)., then all the other root a ~r, ~ r, • .- ......... ) e 'r 
, , 

be10ng to II al!d ' lhe, group of (2) for II is ' the. identity. On the 
, 

other hand, if A is not the pth power of a ,-quantity in J! • (2) 

w111 not be reducibl~. Here the roots can be denoted x~ • G x, ' 

x, • e. %.2' ....... )Xp =E X~_I' x, = fE. x" _. By reasonl'ng like that 

on the oyc~otomic equation, 11; is found that t .he group of (2) for 

I 
II is" subgroup of the cyclic group generated by (x I x ........ xl» 

but (2 ) being irreducible, its· group is transitive and theretore of 

order ->-:p and 80 1 t i s the regular cycli.c group of order p. ThuB 
. 

the binomial .equations (~) are equivalent to a series of equations 

of prime degrees, eaoh wi~h a regu1ar cyolic group, 

kit k2 •••• ~ •• ,~) = 0 for field E (k ,k ••••••••• ,~ 
I 2.,1 . 

If (z; .Y, k,' k .... '" •••• ,~) = 0 for tie~d (y, F) 

.............. , 
&fw; ••••• z,:lt k

" 

k2..t •••••• ,lc~: 0 for field ( ••••••• z."3, jI) 

8011'e "tpe first of these and adjoin Its ;00t 1' t o"t;he field and use 

for the field of the succeeding one ·".. In this way t the field oon

t a ining each root of the given equation is finally r eached. The 

group of this equation with respect to this field i s therefore the 

identity group. 
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Due to Ga~Oi8 (~8~i ' - '~832) is the theorem that, by each of 

these adjunctioDS, the group of the propDsed equation is either ~ot 

reduced at a~l or else is reduced to a~ invariant subgroup of ,prime 

index. I have been unable to find Galois' proof of this, so must 

be content with" deducing it from Jordan's theorem which foll.q \vs. 

"Let ~be group G,. for a field F, of an algebraic equation 
, I . 

f; (x) • 0 be r.educed to G, by the adjunction of a~~ of the root. 

of a seoond equation f.t (.x) .: .0, an~ l~t the group G~ for )f of 'the 
, . 

seqand equation ,be reduced to G.:f by the adju.no-tion of- all of the 
, , , 

roo~s of the first equat~on. 
i 

Then G, and 
, 

G .. are invariant Bub-

groups of. Gj and G ~ respect·ively, of equal indices, and the quot~ 

ient groups G~, and ~.~ I ar~ simply isomorphic. M . , /G .. 
Ther~ does exist a rat1.onal funo.tion cp, (with co-effic.ients 

in F) of the roots ~'J ' .•.. . ' .. . '.J ;- of the tirs.t equation, such 
. , 

that(Pt belongs to the subgroup U, ,which 1s the subgroup to 

w)l~ch the group of the eqllaUcn f I (xl • 0 was reduced by the ad-
. 

JunctIon of the roots 1'J 7'J " " "" >'7_of the second equati.on. 

Therefore, by prope~ty A,~, _~~e8 in the enlarged field • 

... (3) Cf (;" ~.; .. , -'' F) =1,("";1') " ,,- )1,..) where 1 
is a rational funotion with co-efficients in~. Let t -he numer1o- . 

, 811y distino.t values Which .QJ, can assume under the sub8ti~ution G
t 

on the roots 5,) ; So) . .., .. .J ~ _b.e denoted by qJ,) ~"J . . . .. .. .J. ¥"..t 
( 

The~ . G, 1s of index k under G,. These k expressions ~are the 

"roots of ~n irreducIble equation in F. a1milarly far the 1 quan

tlt1es '4' whEtre r,j 92)" ' '_: "'J?t are a~l the distinot numarlcal 

Y~Ue8 which f I can take und&r ' trui . 8ubsti tut! ons (on".) i." .. .. , J 7- ) 
of GL• From (3) we see that these two equations have a cQWmon root 

Cf, : fJ' and whenever ~ two irredUC;ble ' equations .have one COmmon 

root, they are identical, so that the roots of one oorrespond in 
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some order wi th the roots of the other, and therefore k . : 1. 

If si '1s a substItution ot G, Which replaceB~ by ~, . , then 

the group G,' of if 1"8 transformed by B ,,' into the group oftp" of the 

same order a8 G, '. Since Q{: equals a certain tf ' it is in the 
, 

field F = (Ii', '!" 7., ' . .. " ..... J 7-) a.nd so is unaltered by the 

substi tut10ns ot the group G,' . ot f, (x) = 0 b~ prqperty B. Henoe 

the group. to Whlchlf', belongs has all the Bubsti tutio ns of G, I , and 
, 

ls ' qf the same order and therefore is identioal with G, ,and ben~e 
, 

G I Is invariant in G I • Thus the group for B of the ir;reduqible 

equation 8at.l~fied by ~ 18 the quotient group ~.tG1 '. 
. .. >.,-1 

belongs. It la of index k, s'ittce f, Is a root of an e quation of 

degree 'l: k that is irreducible ' in Ii'. By the adjunotion of ~ 

(or oftf, by (3) the group Go. of f ... (x) " 0 i s reduced to H .. and 

perhaps to a 8ubgro"p of 1I '2.. If aU ·the roots of the - equation 

t)x) ; 0 be adjoined as well as '1-', (which is a rational function 
, 

of those roots) but this last i s the subgroup G;L ; hence 1 t . 1s 

equal to, or c .ontained in H~. Now we have ' the result that i£ a 

group of if (x) ' = 0 reduces to a subgroup, of index k, on adjoining 

all the roots ot 1'" (x) = 0, then the group of f .. (x) = 0 reduces to 

a subgroup of index ~, where ~~k. when all the roots of i, (x) = 0 

a re adjoined __ It in the foregoing result t and f · are interchanged, . , .. 
it will read; if .the group of t 2JX) • 0 reduoes too a subgroup of 

index k, on adjoining all the roots of f,(x) .0, then "the group of 

t ., (.x) s . 0 reduces to a subgroup of index k:r... where ka. ~ k I but ka. 

1s seen to be the original k. · 

:. k: k,. ~ k, ~ k a nd this means that k, = k..... Hence, as before, 

the subgroup G ... ' is invariant in ".. Th f - ~_ ere ore the irreducible 

equation in F which is satisfied by P, has the quotient ' group ~~/ . 
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two irreducible equations wer·a identical. 

and c.1c: I must either be ident1cal or. simply-
, ~ 

~somorphic;--and now, --

Galois.' theorem:--

"By the adJunotion of any que ~oot of an eqUation f~{x) a 0 

.nose group for F is & regular cyo11c ' group of pr1me order ' p, the 

group for F of the equation flex) .0 either is not reduced at a11. 

or else is reduced to an invariant 8ubgroup of index p_- Note tb&t 

if one root of t~(x) : 0, which bae 'a regular cyclio group, 1s ad-

joined. then all the root.s are adjoined. for all the others are 

rationally expresSible in terms of one. The order or the group 

for ,f~(x) : 0 being prime in this case, it can be reduced only to 

the identity, if a t all, by the adjunction of r oots off, (x) : 0 

and so th~ invariant Bubgr~up is of prime index. If f, (x) ~ 0 

bas Its group reduced, it _will ha~e to be to an invariant subgroup 

of ·the same index (by Jordan" 8 theorem) and tbe~etore prim ••. 

Altogether, 'the extr~ction of roots is done from binomial 

aqua·ti ons which have the' identIty group or a regular cyclio group 

of prime index.· The adjUnction of the roots of these blnomi81 

equa~ion8 form a series ' of subgroups G, H, X ........ and eaoh re-

duetion is of prime index. Hence the law that the group is sol-

T.b1e if, and o~y if it is oyo~ic, or has a series of prime com

Position faotors, ending i~ the identity, which i ·s the only Bub

stitution leaving all the roots unchanged. Jj'or eaoh reduction of' 

prime index in the. ·order of the subgrou.ps, there 1 s an auxiliary 

equation of prime degree to be s olved. ThuB we see that an ~quat-

ion ,is solvable if. and only if, its group ' for the fie·ld deter-

mined by t he cO-,efflciente Is a. _eolvable~.group. we a re now "in a 
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poa~t~on to 8stab11sh the theorem (conoerning the solution of 

algebraic equations of degree grea ter than four) to which all the 

preceding considerations in Part B ha ve been directed. 

The general e quation of degre6 n> 4 is not solvable by 

radioa.ls 
-

The group of any equat~ont for the field determdned by its 

co.-efficients and any constants finite in number, i s the symmetric 

group which 1s of order n:1., as oaD be readily seen from the Ga lois 

reso1vent t.;J: (r .- V / )(r .- V.t.) .•.••••••••• ·•· ... · •. (r· .:. V:h/)' where 
, . 

the V's have been shown to be quantities in the field determined 

by the co .. efficients. When an inva riant subgroup exists-, (which 

is self conjugate) the transform of any substitution of this sub~ 

group is within the subgroup. Since any ',Bubstitution t~anBform8 

a product of k transpositions into a product of k transpositiona 

and therefore an e .... en subati tuttoD into an e"1'en subst:1tution, l ·t 

1s seen that the substitutions of tbe a~ternatlng group are tran8~ 

p~sed into e .... en substitutions· of the same a~ternating group and 

hence, the latter group is se1t c onJugate or -invariant. The 

faotors of compo81t~on for the Bynmretr~c . gro~p ~n n quantities 

a re 2 and lnt for the series G. H. I . but ~J1t is not prime and 
2 W 

hence t~e ~oup, and therefore the equatioD; is not, in general, 

eol.vab~e. Consider the groups tor the cubic, quartic and quintio 

equations. Let p~ sta nd to'r the symmetric group of order n 1 on 

n l.eUers. Let A.,..stand tor the al.ternating group of order in, 
on n l.etters. Let 5" (123.) mean 5 operations of the type (l.23), 

etc. Then' P
J 

• I + ~ ,.. (12) +- 2 ){ (123) is of order six. 

A = I ... 2 " (l~) is an invariant subgroup of order 
, 3· 

three and index two, which has I as its only invartant subgroup 

and this is' of index three, BO the composition factors are 2 and 

.': 

" 

........... 

.... ." 
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3 which are primes. 

Again P'f :: 1+ 6 ~ (12) + 8 ~ (123)+ 6 , (1234 )+ 3 > (12)(34) 

is of order twenty four. 

A : 1 + 8 )( (123 ) + 3 >< (l<l)(34) is an invariant subgroup 
'f -

of order twelve (not a prime) and index two. This has 

I + 3 • (12)(34) aa an invariant subgroup of order 4 and index 

three, since, for exampleU123{' (12) ( 34 )[i23] :: (14)(23) eto, 

This in turn haa I -+ (12)(34') aa an inva riant subgroup of order 
, -, 

two and index two, aince for example [(13)( 24 U (12)(34)U13)(24!l 

li (12)(34) and :ll.na11y there ia I as a maximal invariant , subgroup 

of index two. Thus the factors of composition are 2, 3, 2, 2 

Which. are primes. 

A1aop,il+l0"(12) -+20 >«123)+30 ,,(1234)+24 ~(12345) 

.,. 15 ,,(12)(34) +- 20 ,,(123)(45) 1a of order one hundred and 

twenty. 

A.: I.,. 20 ,,(123) + 24'(12345) 1- 15" (12)(34) ia 'of order 

Sixty and index two. BoW ar~ there any invariant subgroups of As-' 
, 

A/.4 is a subgroup, but it is not; invariant, since for exampl.e 

[(12)(35)1-;123) l!12)(35 >1 ; (152), 81lppose, however, that 8uGh 

a subgroup K exists .. and conaider one of its substitutions, k. 
, ' 

The subgroup K must contain the transform of k by· any substitution 

e of p.' Now if k contains five letters s~ (12345) the choice 

of e : '(1234) gives U1234)]-(12345)f1234U= (2341) which is not 

1.0 K which is a subgJ"oup .of AS' for it is Dot. in AS"- If k is of 

the type (12)(34). the ohoice of e • (12) giva. U12lr'(12)(34)[<12il 

; (12), again not in K. If k is of t he type (123), 

e ~ (12) gives U12)rh23) [(12)] ; (21) not ill K, 

the choice of 

the su:bgrou:p 

of AS', Thus k hae been shown t a be llo' substitution' ot A (except 1) 

. , 
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80 no subgroup K of A exists. Hence the group P has subgroup A 

with subgroup I. only, and the o~oBltlon factors are 2 ~nd 60 

(not a prime). The fifth degree equa~ion, therefore, is not, in 

general, Bolvable. 

Some classes of equati ons of the fifth degree oan be solved. 

Ji'or 
j- 3 

e"""'p1e ·the equation Y T 5y -t- 5y -f 2 • O. This lIIS¥ be aim. 

plitied as in Cardan"s solution of the cubic by setting y _= z ... .! • 
z J- . JO:,-

resulting in z ... L + 2 .& 0 or z "+ 2z 1 : ' O. Treating 
z.S ,,_---

~hle as a quadratic we have z"-: .1.rf2 and hence z. :V-l f-#a 
,j- :r . 5;;-'-----

and z " 0:1 • tf2. Let A = iI-1 +,(2 and B : iI.1.12 where A 
"'~-=-

denote. a dilfini to one of the fifth : roots i/ -1 +12 .• The others 

are thenG;!.U .. tF .e'V-1+d2E'f.1 t-r2, ande'/-l+-t12 .. . > . 

where E is an i~ginar.y fifth root of unity. 'These may be written . , 
A; G"A. e-2...A, e' A and e ~ A, and similarly we obtain B, e B, e 't- Bt' 

"·B and e'* B. 
1.-;--

Since (-1-+12)(-1 -[2) = ·-1, a particular fifth root tJ -1+11'2 
";....,....-= 

may be chosen to ·pair with a oertain If . ·1 • tf2 80 that the prodl.lct 

AI "1. 3 -' ~ 
1s -1. Thus A and B. f; A and E. B. €. A and. .E B. ' E .A and e B also 

y 

~ A and " B lIIS¥ be pai"ed. Sinoe z, and z~ glve 'a product -1, 

for ~ha: other pairs of roots of then z 
I • -.!.. and aim11a:\,ly 

/ 0 S Z (p 

Z + 2z • 1 • Q. 

of y will be 

Y, • A+B 

y .. - ".Ii + ,;; 11 • 

• • Y3 • G A+GB -
y~ - €J~+e"'B • 

· y. £ . €~ A ... · f3- B 

How y was equa~ to z - ~. . eo that the yslaee 
z 

which are the roots of the given equation, showing that this part-

, 
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icular fifth degree equation has, been solvable~ 

The next taaH is to show that this is consi~tent with the 

results of Group Theory. It is solvable because 1t baa a regular 

cyclic group of order fi~e. , Referring to the func~~on 
i" zi ' 

x~ +1' x,+f x:z.+ 
rf>-')' . •••••••• +.JO x sr , 

I p-I l.. 
which was used in 

establishIng the tact t hat a regular cyo1ic group of prime order 

was solvable. 

4 : 0 
. 

"':1 

~;2 

~. : 3 
. 
~: 4 

Y,-+ Y~ ... + Y;,+ y~+ yS_ = 0 
, .. ~ , 

y, -r <,Y .. " e 7,+ 6 Y" + (: yS- a 5B 
. , 11 

Y (-t ". y 2. "" E' q YJ + e 3'1 t" E YJ- : 0 

Y, + ~;SYt. +€"y.+ (;:-'1 Y,, + e-'.t'1t _ : 0 

V . • 
'1, + € Y,.,.1-~ Y.,,-t Ga YIf+ e"ys- : 5A 

(The results O. 5B, 0·, 0, 5A are found by multiplying the known 

"VaJ.uee of Y, ' Y::.' Y
J 

• Y",.. Y $- by the powers of E- Ind1,cated. 'and 

adding). ~e substitutions a, 8
4

• 8
3

, s~, sS-where 8 : (l2345) 

Which are the same as (12345), (13524), (14253). (15432) and I. 

applied to the functions above leave the quant~ties still in the 

field determined by A, B and €i. SWIIIIling the quantities g inn 

ab~ve 5y 
I 
.5B~5A or v _ 

"I - - A + B and Y:x... Y
J

, y't .... Yr are toand 

after the ·cyo110 alibatUutiona are applied. 

_The fact. now eBtab~isbed, ~bat one prob~em may be impossible 

1eadQ UB to consider the oihers. Is it possible for example to .

inscribe a regUlar polyg~n of any number of sides within a clrc1et , 

As shown in an ,earlier section, polygons of three. four, five, six, 

eight. ten and seventeen sides have been constructed. besides cert_ 

a.in muUlp1ea -- for .:.ample; a ;54-s1ded f1g~re is readily obta.ined 

from a seventeen sided figure.. Are all other·s p08Bi~l.e _~ OJ: can 

the 'far1·ous polygons be classified as to Which are construotible 

~ and which are not? The flra~ stip is to establish the crlte~ioD 
e-
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that " a proposed construction is possib~e by ruler and compass 

it, and ori~y if, the nUmbers which define a~lytloa~~y the desired 

geometric e~ements can be derived f~om those defining the g~v~n 

elements by a finite number of rational opera~ioDe, and square 

roots taken a finite number of t imes." The f oregoing is a neceSB~ 

e.r~ cQndition, tor if two ·st1i'a1.ght Hnes intersect. their point o~ ' 

interseotion i s r a tionally expressible in terms of the co~efficients 

in the equations ot the straight lines. "If a circle (x. d) -t-

1. .. 
(y .- e) : 1i' and a stra1.ght line y = mx+ b intersect, the value 

mx -+ b can be subatlt,*d for y and a quadratl,c equation in x re~ 

eults, which leads to noth~ng more oomplioated than a square root, 

The interseotion of two circles is Similar, for it I s easy ~~ 

obtain, by Bubtraction, the equa~ion of their common chord, a 

straight line, a nd the task then re.solv8s into the intersection of 

a circle and a 'stra ight lIne as above. 

The criterion quoted gives also a suffioient condition, far 

the rational operations of addition and Bubtraaiion oan be acoom

plished with a ruler, as a~so multipllca~ion and division with 

para llel l i nes. 

As shown . P • ab since y • ~ • 
Division is similar. ~he construotion of a square root requires 

the compass. To find the square 

root of m, layoff the length. m 

and 1 in the Bame straight line I 

and use m .+ 1 as di~eter. The perpendicular from the cirole to 
, .' 

the diamete:r at the end of m is rm 1n length. ThuB any construct

ion whose algebraic expr~Bsion is a quadratic equation is possible. 

~ 
To construct the roots of ax + . bx -+ C : 0, plot the points 

.' 
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B(O.l) and ~(a.b) and on B~ as 

Q(qiJ diameter desoribe a oirole. Its 

centre is a , b -+ 1 and r a diUB 
~ 2 

Thus the equation of the circle 18 

- ]J~ 
.2 / 

~ 

: a + 
"4 

b" - 2b -I- l. .. 
or x ax + b a 0 and ON and Oll give the values of x for which 

this is true. The construction of the roots of a ~uadratic equat-

ion was uBed earl.ier, as pa~t ,GI:1oU8S t construction of the 17 sided 

regular polygon -- Bee page 29. 

If to the domain of rational numbers we adjoin a quadratio 

surd. (8 T V"b)':, the domain also ,obviously includes its conjugate 

since a,n equation with rational co-efficients that haa x : a +Ib 

for one root. also has x .. a -Ib for a root; (x - a -6b)(x - ai-fb) 

1. .. .= 0 is x - 2ax+ a 
-

b = O. And if there are more quadratio 

~urds in one root, it will be possible to ·find more oonjugates 

to the value of the root. Thus, if the root has n distinct rad-

"'" . leals, there will be 2 conjugate expressions x , x , x , .••••• .• x .,.. 
, :t 3 ~ 

Tbe equation fIx): (x - x )(x - x ) ~ ••••••• (x _ x)....l = 0 wil.l 
I "-

have only rational co-efficientS)Qs the factors may b~ combined 

in pairs to reduce the number of surda by one, and these results 

combined in pairs again. 
IV 

The equation ' is of degree 2 and is 

irreducible in the f'ield of ration8.;l numbers, -or is an exact :p0".1; 



' .. ': .: t 7 

'.'., 

,: ... 
','." 

- , 77 L, ",)."",,l.,;,, .tL ~ .l'J'w 
of a~~ati~~ f; (x) of lower degreeJ\poesible. which i8 sat~Bfied 

by one of the roots x,. Divide fIx) by ,,(x) and let the qaot1ent 

be f, (x) 1.e. fIx) ,. q(x) . f ,(x) + r(x·) [t, (x) and tj (x) are 

integral func~ione with co_efticients in the field.] SInce f(x,) : 0 

and. p (x,) ,. 0 then r (x ,) ,. O. If 1 t is not identically zero • . then 

it io an equation having the root x, of · degree lower than I, and 

therefore contrary to hypotheSi';. .'. r(x) = 0 identioally and 

fIx) -1 (x). f,. (x). The same process. repeated oan give 
. .l 

_f .(x) = 1(x)' Therefore the degr .. e of fIx) = a. but it was 
:'" ... 

previouBly ehown to be of degree 2 so that 1 is a factor of 2 
. ~ 

and hence. a power of 2. Therefore the unique equation of lowest ' 

degree with co-efficienta in the field of rational numbers whioh 

ia satisfied by a fUnction x, derived from numbers of .the field 

by a finite number of rational operations ~nd extractions of square 

roots is of degree a power of 2. With thiS, it can be deduced that 

a construction is not possible with ruler and compasses if anyone 

of the numbers which define analytically the required geometric 

elements satisties an irreduclb1e equation in the given field 

which is of degree other than a power of 2. Thus the inscription 

of a reg~l~ polygon of n sides in a circ1e of radius 1 is possib1e 
ll,.. + I 

only when the nth roots of unity satisfy an equation x -1 : 0 

where h is a positive integer. We use the form 
, 

t sin L1P ,fo~ the l."oots of un1;ty. We can divide 

r : cos EJr+ 
n 

both. aide. of the 
n 3. +1 

equation x -1 • 0 by x - 1. obtaining the ~rreducible equation 
.2.{ .. '-, 

x -I- X -I- •••.•••••••.•• ' •• +x + 1 =. 0 wbich is of the degree re-

quired above. But. if h has an odd factor f rh ... . !kJ. then 2.{.+ 1 
1.1t ..(,-4 

or 2 -t 1 has the factor 2 -t 1 and 2 +- 1 ts t!Qt a prime numb8l'. 

This case ie considered later. . -.t 
lIeantime if the power 2 r 1 is 
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,a prime, h must bave no . odd faotor ., therefore the power' must be of 
~I: 

the form 2 + ~ whleh shown us why figures with three, five and 

. seventeen sides oan be inscribed, as caD also figures of 257 and 

65537 sides. 

If the number of sides, n, is nO.t a prime. but a composite 

number it i s e.asy to construct a polygon baving n sides, if n = ab ( . . , 
where a and b are primes of the form 2 -I-~. Hirst a polygon of 
a. sides 1s constructed which Bubtends an angle of 21TJ a.t the 

a 
centre, and then in a similar manner, a polygon of b sides, sub-

tending an angle of 2'Y. 
~ 

For the primes a and b there exist 1n-

tegers c and d for Which oa + db • 1 and henoe 

d.2 71' + c.~ --a b 
2 mea of db) 

ab 
: 2 1P which is the angle r 'equlred ii'!>. 

at the centre t o subtend each s ide of a regular polygon of ab sides. 

The process oan be continued for any number of prime factors of the 

required form so long as they occur' onl.y to the t irst power. 

Lastly! to investigate the construotion of a polygon of pS 

sides where p is a "prime. From De Uoivre's theorem, the equation 
s 

x f - 1 • 0 which bas the complex root f' = . 
oos 217' + 1. sin ~ '.'U 
~ p~ ' 

bas the factor 

root of the latter 

- 1 = () slnce the complex root (1) is not a 
~~ ,. 1>$-'(' f~-fl ,\ 

.~ X - 1 .::It ( ;_, f...-~_-1 + x IP -~4-•• ••••. + 1 -
'. X"I-,- 1 -

has the root (1). This is an irreducible equation as can be establ-

ished by a proof. almost the same a.e that for the cya1otom1c equat-

ion, which can be 
2 

replace 1",1-> -
deduced from the above if s = 1. 

P-I . 11 t. 
-- - ." f by ~, ~ ) ~ ) _ . . 

For the proof • . 

.t . ... /' where 

1 ," a, b •••••••••• 1 denote positive integers leas than pS and not 

s 
divisible by p, where 11o ·a primitive p th" root cf .unity 

4. J..t) • (/,( ',/ ) .. .. .... t a re all. the primitive p th roots of 
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un1ty). From the theory of numbers, t .here exists a primitive root 

S " 3 g of P , (p an odd prime) i.e. an integer g such that 1 , g, g , s,) •• 
. ~'-'(p-.) - $ . 

•••••• • ,.g when d ivided by p g1 'Ve in some order the integers 
) . ~~ 

1, a, b ••••••• 1. Thus the root. of (2 ) a re !,t~! " .. .... 1" . 
These roots can be constructed with ruler and compasses if 

S -I ( ) p p - -1 1s a pr1me which i s not true if s ? 1. , Thus a regular 

polygon can be construoted i f the number of sides is n ': 
t 

2 p.q.r •••• 
t-

•••• t where p, q ... r ........ t are pr imes of the form 2"- .. 1. The 
t 

factor 2 really represents ~ bisections of" angles formed trom 

D : p.q.r ••••••••.•.• t sides. This truth was arrived at by Gauss.-

but proof of only part of it was published by bim. 

In group theory this is explained briefly as follows. If the 

root s of the equation are not expressed in r ational numbers, then 

the adjunction of a square root to the field wi'll either not redllce 

the group at all or wll~ reduce it 

solved .x:z.2;'. 
to a subgroup of index 2._ Hence '-

~ : 0 when divided by x - 1, the equations 
.* 

gi~ing x.1 -t -

to be 
.+ 

,. -I 
X + ••••••• , .... '. + .1 :: 0 will be solvable in the 

field only if the subgr'oups can be dropped successively by t ·be 

,index 2, till the 5ubgroup containing onlY the identity 1s reached 

whioh will be possible with no other prime number of sides than 
.. t-

one of the form 2 .. 1 or compounds made up of different fac'tors 

of thia form. This applies also to equation (2) and so. the roots 

oan not be expressed in 

P ' - '(P strQctedJ unless 

rational nwmbers and square roots (i.e. con-

- 1) is a power of 2, which it cannot be 

for 8 /' 1. Thus 1 t is clearly and C onclus! v.ely shown by the 

Galois·- theor"em that a regu.1ar figure of B'even. or of. nine sides 

"cannot be constructed by ruler" and compass.. }iote the' construc.tion 

of the 11 sid"ed figure shows the use made of auxiliary quadratic 

---

" ;: 

, "" 

• •• '->; 
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8qu§;Ubns -- equations of index 2 ot group '~beory. 

It was -shown ear~ier that the rootll of a quadratic eq'ua't'i -on 

could read1ly be constructed with s ·traight edge and compasses. 

This 1s not possible for a 'cubic equation, in general, as the 

roots lie in ~ field not made available from the ratio~al field . . 

by the adjunction of square roots. If the cubic equation bas a 

1inear factor, the situation witl be quite ~imple, but if the 

equation Is lrreducibl~. it is - not possible. SOme cubic equations 

S 
such ae x - 1 = W&!i3 proved by o have constructible roote as 

. 2 " ~ 
Gauss, since the power 3 1~ of the form • 1 (for t • 0) but 

thie, as was ,stated a~ov., tollows fr9m its having a linear factor 

in the field of ration'al numbers .• . 

The problem of the trisection of an angle Is possible for 
• • certain angles, for exampl.e 90 • but is not, in gene.rsl., possible. 

It will Buftice if we show it to be impossible in one case and the 

• s 'tandard one u.sed for demonstrating this is the angle 120. .From ,.. 
triso.metry Cos 3A = 4 

3 
Co~ A - ;S Cps A 

' 0 

.' . Cos 120 3 • • 
~ 4 Cos 40 - 3 Cos 40. 

• • 
Let Cos 40 : . y, and noting tbat Cos 120 

. , 
= 4y .... By' 6 ' -..., or - y -t ~ : O. 

3 

we have 

Let 2y : x. Then x -;Sx + 1 : 0 describes the trisecting ot aa 

• • angle of 120 , for if x, and hence y or Cos 40 .an be constru.cte4 

it will be easy to construct a right-angled triangle having y for 

base and 1 for hypotenu.se, and the required angl.e would be found. 

But it Is impossible to solve x.J - 3x + 1 : 0, tbat is to get any 

constru.ctible root for it haa no linear factor~ incIdentally 

another proof for the impossibility of trisection of thie angJ.e 

fOllows from the fact that it is impossible to 'construct a r.gul~· 
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polygon . of 9 sides. 
-Treating' the equation under group theory, the maximum number . 

of substitutions on the three roots is six, namely 1 , (12), (13), 

( 23), (123), (132 ). 

for this equation is 

The i'unctiqm (x, - Xtt)(X, - x,,)(":t - x .. ) 

-+tf-4C 'J _ 27d% : :!:"!il08 - 27 =-±m : +9 

which is in the rational field; and BO thi~ function must be un-

changed by all the substitutions of the group wbich must the~e~or • . 

Qonsist of 1, (12 3), (132). But the adjunction of a quadratic 

surd cannot reduce this group to the 1dentity beoause it ' is of 

index 3. and so would ' need a oubic surd which is not constructible 

with ruler and comPJ;ts!:les., In this way., we may use the Galois' 

theory to show that the ancients could not have succeeded in their 

a.tt-empts to trl~ect -any a.ngle. 

Doubling the oube M ,d jU81;; ae much reaeon to be baffling. 

TPe analytioal representation of tbe problem is x'1 : 2 or x3 - 2 = 0 • 

It is irreducible in ~he field of . rationa1 nwmbers for it bas no 

linear factor as oan be pr9ve~ , by' a ssuming the root a , a and b 
'D 

having DO common taetor;-an aSBl:1lI1ption t 'hat leads to a contradict-

ion. An indirect proof of the 1mpo8sibl~ity , of finding a oon-
1 

s truotible root of x - 2 : 0 is as follows. Assume auch a root 

exists, though it is not in the rational field but in some exten-

sion of the rational. .. field made by adjunction of quadratic surds • 

Let 1 t be written in the form x = p ... qVw where p, q and vv 

belong to BOllle field F._. (k being the l east positive integer 

denoting the necessary ex~sn.ionB). but~ does not belong to the 

field g~_1 but to F~. Since x is in the 
J 3 

and also x - 2, and therefore we hayS x 

3 
field F~ , so is x 

- 2 : a + bfw (a and b 
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3 
,', (p + q IW ) 

• or p ~ 3P:tQ fW+- 3pq!2..W + q\NiW _ 2 • a + b UW. 

Equating the r a tional parts and the irrational, gives 

a = p 
3

.. 3pq '"I. - 2 
2. , 

b:wpq+qvJ, 

If " : . p + qI'W is a root of 8J) equation with rational co-eftic-

ients, it 1s known that x = p - q~ must also be a root. , 
Then (p - q Vw) - 2 

"!I .t. .r:-:-: 2-
: p - 3p q.w + 3pq w 

: p~-+3Pq\'" - 2 - (3p""q+ q 'w ) J:;;i . 

:a_b J;;:i 
, 

But x = p + q {,W was a r oot or x - 2 : 0 which meana that 

a + b rw ~ 0 and thi s cannot be ' true unless both a 'and b = 0 , 
. 

for if b *' 0, then (;J - - a and¥;; would be - ,; in the f1e~d i',, _, 

in which a and b 11e, ~ontrary to the aB8umption~ Then 
3 

(p - qIW .) - 2 = a - bUw = 0 and p _ qv.;;; is shown to be a 

second root of this equation and both of these root s are real and ' 

11e. in _the field F-{. This is Impo8sib.le for De lloivre' 8 work on 
. 
roots of unity (and also of any rational nwmber) shows that only 

one root can be real, the other t wo being imaginary _ 

r -, -
r .. = 

r -
3 -

COB 2 1T1 + L s in 2'" r-3 

cos 11 ."., + i sin -4 71' 
r- ~ 

cos 6 71> 
s:-

.,. i s in 6 1f) 
;s-

(imaginary) . 

(imaginary ) 

(real) 

3 Hence t.he a s sumption that a solut ion of x - 2 = 0 lies in some 

quadratic field F~ baa l ed to a contra dicti on· and therefore is 

wrong. 
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This however ia muoh more eimpty proved by means of the 
J . . . 

Galoi~t theorem. The equation x - 2 : 0 has Bubstitutions in 

ita group for the 

(123 ), (132)]. 

field of rational numbers (1, ·(12), (lS), (23), 

The only inva riant subgroup of this .is [1, (1~3). 
(132) ] which is of 'index 2 under the original group and t.hlS can 

be reached only by the adjunction of a root of an equati~.n whose _ 

group is a regular cyclic group of order 2. that is by a quadratic 

surd. 
/ 

But the group is now of order 3, and this can not be Bo~ved 

without the use of a cube root which can not be constructed with 

straight edge and compasses. It must be observed how elegantly 

the Galois theorem l~s the ghost of four of the problems upon 

which mathematicians of all ages have been defeated. (Though 

tomorrow BOrne naive person will bring forth s till another 

"solution", of one of theJij.) 

There remains the record of the attempts, and final success 

in l!ro~ing the irra tionality of Ii'. The first investigation of 

any 
Jt 

e 

~mportance was that of J. H. Lambert in . 1761" By considering 

.. 3 
:l-+x+x -+~-+ 

T ~ @. . 
• • • • •• • • •• •• he showed that. if x is 

'" a r a t-ional number, not zero, e caD not be r a tional; also, if x 

is a rational number different from zero, tan x cannot be a rat-

ional number 
3 

since tan x • x + Z ~ 
3 

,,-
25....+ 
5 

1 r-l-·· .. ····· .. 
Then if x = 2!., tan x : 1.. • 7r and also .1P cannot be ratIonal. 

4 I. "4 

That ~ cannot be the root of any algebraic equation with 

rational ' co-efficients ' was definitely proved by Louiville in 1840. 

~ ")t-I 
Let 'x be a real root of the alg~braic equation ax + bx + 

~-, 

CX -t- .•..•.•. : 0 with co-efficients all integei;a. If' this equat.ion 

has any equal roots, they can be removed, BO .cons1der .i t as having 
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al~ roots unequal. and let them be x, x,, %:2,' %3/······,1::"""-/· 

If R be any rational fraction then 
q "$t .,,-i ""')'[-.2. 

a l ~) -j- b C~) -j- c (~) + .••••••••••• 

: a (~. xX~ . x)(~ . x~ ............ ~ . x~) 
""" "'11. 1 

or 1 (ap + bp . q ;- •...•..•... ) -.,. q 

. : a (~ 

2- x : 
., q 

"tt.. ".1 ,.. _'1. ':I,.. 

ap + bp q ~ op q •••••••••• 

q"(a)( 2 - x )( l! - x ) •••••••••• (l! 
.. q I q a . q 

• x ) 
... - I 

If we ha ve a series of r a tional fractions converging to x as a 

limit. but none of them equal to x, and if" R be one of theBe 
q 

fraction,B 

(~.x)(~ X.)(~.X3)""""(~ "'"_) 
approximates to the fixed number (x - " )(x • x )(x - x,) ••••••• 

I ... ~ 

(x - X~_I). We 1fJB.y thereto~e suppose for all fractions~, that 
q 

a (~- x)(~ --X01) •••••••••• ~ - X~_llIB . n~:~icallY less than 

some fixed pos"lti"ge number A. Also ap ... bp. qt ••••••• ". ie 

an integer numerioally ~ 1 • 

.'. l~ -x/ ;:> A~<;;; which must hold for all the fractions ot 

. the sequence, from and atter Bome fixed element of the sequence 

for ~ fixed number A. If however, a number x c.an be defined such 

that no matter how far we go - in the sequence and no matter how A 

be Chosen, there exist. fractions be10nging to the sequence for 

which \ ~ -

root of an 

x I .:: 1 
Aq "

equation of 

, it may be concluded that x cannot be a 

degree n with integr~l co~efficlentB, and 

if .we oan show this to be the case for all va lues of n, .we CaD 

, 
conclude that x cannot be a root of any algebraic equation with 
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rational co-offioiants. Consider a number 

iX:k, k~ kll4- ••••••••••• +k..,.. .••••••••••• wherek"k.:t.. ·. -.. 
rlf 'f r~!-t J:'il r ..... / . . 

'I-
••••••• k ••••••• are all integers les s than the integer r, and do ... 
not a ll vanish after Bome fixed value of m, Then le-t 

:E 
q 

• k I k A. k" + •••••••• k .......... and 
- '" - -+ - , . - I 

we have p contilUlaJ.ly 
rt f r3.. ! r~ ' r- ' 

approaching x as m is increased 1.e. 

x - .~ . = k~"" + 
q r ~~/) .' 

k ....... ~ .... 4- •••••••••••••••• 
r (_n.)! 

-' q 

since all k's < r. 

Therefore no mat~er what va lues A and n have, if m and therefore 

q, 1s large enough, we ba~~ 

" relation I ~ -xl ,.> -L 
q Aq '" 

2r 
q ~+I 

< _1,,=_ 
Aq ,.. 

thus the former 

is not satisfied for all the fractions 

p • - ' The numbers x so def~ned. are .tberetor~ transcendental. ('1ran-
q 
scendental numbers ar~ those which cannot be a root of an e~uatlon 

of any degree whate'Ver where the co-efficients are ratio-nal numbers.) 
, 

The above does not answer our ,ques"tion 1:tll:t doe~ " prove the :existence 

of 't~anscendental numbers. 

In constructions with rul,er and compass, p'oints in, the plane 

are determined by the intersection of two straight lines, the inter-
, , 

section of a cirole and a 8tr~ight line, or by the interseotion 
, , 

of two oircles, all of whioh can be represented by equations.. In 

the ab"ove three . caS8s, t"he straight lines can be determined by a 
, 

pair of points whose c,o-ordinates are known, ~d the cir~les by 

thei:r centres and o~e point on the clrctpDfereno'e. The co-ordinat-ea 

of the points of interseotion are found by solving the pair of 
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equations that des9rlbe the lines, and th~Be .opera~ionB .. ~re either 

rational or involve the taking of the square root, in case one or 

both of the lines are 'cirel.as a s was stated b~tore in connection 

with polygons. 

x = ·a-+- bfB + 

the co-ordinate ' x, ~f a new point may be written 

b ' (i'-.+ .• !l •••••• or x -.. a. - b/P;; .. ••••••• : bIB 
and squaring both sides (x ~ a- b' fi' <t " .. ~~ ••••••• ) : b B 80 

that one surd is e,liminated and all may. be)by successive applioat

ions at the same process, and a final equation results which is ot 

degree that 1s some power of 2 and its co-efficlents will be rat-

10nal functions of the co-ordinates of the points. whethe'r suoh an 

equation can exist i s sufficient information to determine whether 

the problem corresponding to it can be performed by Euclidean 

methods or not ~ ThuB. if we ca n ~how that 17' is a transcendental 

number. we shall have shown that t 'here i s no po sB.ibility of oon

s truoti.ng w~th ruler and compass. a line 1Jlt~meB a given line; 

that . 1., we. allall have ahown the impossibility of squaring or 

rectifying the circ~e With ~qler and compass. 

It is necessary to prove the transcendence of e before prOT

i,ng that of 7T' . The proof for e. as follows. is based on Prot-

e asor D. E. Smith's account of Enrique's work (1907)~ To proTe 

tha t e is a transcendental mimber means that it must be shown 

that 9 is not a root of any algebraic equation with rational 

co-efflcients. that la. that it Is _impossible to have a general 

equation .. Of the form Co + C ,e + C.,a. e ~ -+ ......... C", e"'" • 0 where 

n is any positive integer and Co,. C, ·' '" C:z.. .... . ..... q"JIV are ratl.onal 

number. including o. (e .and e>,:+~ Since this wo uld change the 

degree of the equation.) It is necessary to consider' the function 

f (x) .. = a,x + a,.x + .. .. .,.... 
•••• ~. +a x . ,., , ~..}.- ' . 

•••• ' •• .e • p..-). the'" 0: 1 S :-bel'ng ra"1oniu.. 
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and also f(x) = x lex - 1)(:.: - . 2).-•• , ....... {x - mU ........ (~. 
(p - 1) I 

a x 
/ . 

'1 X ' x~ - I rx 
+8.1X+-.· ........ +8.,.,X: U -1ICx-2!' ....... (x 

p - 1) 

from which we eee that n • . p(m -+ 1.) - 1 an d that a 1s the· f iret .-, 
co-efficient tha t 1s not zero • . , A.lso we mus t oonsider the. ;fJlJl.c.t-

I " ion F.(x) ~ f (x)· + t (x)-t ...... -••• ~ (x) •. 
, 

largely upon the following three lemmas -- the proofs of whioh 
. 

will be found in the Append1x to th1s thes.s. 
"-

Lemma 1. 
, 

If .f(x) • . a/x ~ a~x + ••••.• ..a.(.B.,.,X .&n'd if S ....... denotes th. 

"-sum of the first n terms of the a,aries e , SQ that S I : 1, 

8 1.. • 1. + x, 
. . , 

S .. 1 + x + x then lI(x) becomes , 27 

.11 a. S, -I- 21 8.a,S.,."" 31 a" 8
3 

+ ••••••••• +n1 s.""S ... 

Also F(c) .11 a, + 218'1.. .+ 31 as + .......... n1 a ...... . 

Lemma II. Again using ' (2) if P 1s any prime number, n a ny posit-

, . 
integer depending upon the val~e of the C ~ and p. 

Lemma III. Again using .. .", 

f (x) : al x + &,2 X + ......... .f.a.",. x • 
~ -/r . . 

x L(x - l)(x - 2) ...... (x 
III - l)l 

and letting A/. I a, I • A,:; la.1 etc. and X • Ixl theD 
. ~ ~ p-' r ] P 

A/X -tA,..X + ...... +A~X .8 X L(X + l)(X + 2) ......... (X + m) 
' . Ip - lIt 

In the required proof starting with .'Z. • 1 + x -+ :x: ~ + x.1 + ..... 
"1 n 3r 

'" .. -... it (whi9h ia convergen~ for all .values of ·x) and lett1ng 

. . a 
Sf: 1, S:l.. ~ .+ :z:. , 5 3 • 1 ~ x 4- X • S - 1 + x T "1 m x~ I 

• 
+ x 4-
... 2£ 

aa before, and multiplying the expansion of e~ successively by 

It, 21, •••••.••••• nt and putting 



.. ,".-
.::i:.f;;:= 

',.', 
:"::" -

. : . ',: ':~" 

... ·f-

.,.' .... -.. 

88 

Z 3 
U,: ' x+x . -r x + ........ . r 2:3 

u = .. .,. 3 

X+L+ 
3 

.... ....... - ..... 

u .,., -- '" x + 
. ">t+ I 

X + x + .................. .. 
(n + ~)(n -+ Z.) 

we have 

1- • 3 
liS I -+ U e - liS, + x + i--+ x -+ ............ ...... - r."! 

'" :l 3 L. ... . 2IS .. + ZI e • 21S" + ' X -+ ~ + """" ' .......... ' .. ' . • 
3 3.4 

iJ 
I 

. -

nt = 
.,. 

n!S')&I'+x +- x 
(n +- 1){n -+ 

• • ••••• I~ U = n u~+ '"'. 

If we multiply both members of these last equat ions by 

a t a ; 
I "-

(lIa, -t 

a 3' ............ ,a""'IV and add, 

. " 2 1&;1.. + •••• +nla">l,. )e • 

... 0 ... e . • ..l..a U ~ .,. --
but Lemma I states that 

we sball have 
-. 

lI(x) - lIS a -+ 2~S;t &::z..-+ ....... +n".s",,&"W ". - , , 
al.so F(o) = l~a -+ 21&.:1. + . .............. _nla'" . , 
.. : lI(o Ie?' - F(x) + &, 11, -+ aU + ........ +a~U"'-. - .. .. 
:. lI(o)." = li'(x) + 'f' (x) ·which is an expression 

)< 
for ,., 

, 

wh1c>h 

depends upon F(x) and hence depends upon the choice of p in (2·). 

NoW recall that the e s sential. pO.in.t of the problem t~ to 

prove that it i8 impossible ' that 'Co J- 'l , e + c::Le~+ ......... .,. 

-C e ~ O. -
Take F(o)e1' : FIx) + 4' (x) and substitute 1. 2, 3 ••• · .... m 

for x an~"DlUltiply by Co ' c / .• 

F(o)e'c •• • [F(o) + CD '-I' (0) 

C
j 

•••• , •• .•• , .• and C • then add 
) .. . -
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lI(O)eO, =C,lI(~)+ C,Iji (~) 

~ 
1I(0)~ G:L = C",1I(2) -+- Co. LJ1 (2) 

,~ 

lI(O)e C "C F(m) + C If(m); . .,.., - -
thRt is 

' F(O) [C o + eC, + .>'C2 + .••.•• :.+ . .,"'C_} C. F(O) + C,lI'(I).,. C ... 1I(2)+

••••••• +I:l_lI(m) 'tC. qJ (0)+ c, (jJ (1.) r Co. '" (2)'1- ' "+C"", 9dm), 
"- ~ 

Now supposing that CD -t cJe 1- C2.8 +. - ••• ·.--I-,C.."..8 : 0 were 

po.sible we should have 0 " [c~(m'/ + p '!J +@~/'(O)-+ C, lftl)j

"''' '.;oC_ ff{.".)} 'by' Lemma II. 

To show tl).a t this ·.i;-s 'impossible ,. we ahal.l :f1rst show that 

I Co:) (m.1.).p + pQ: is ,grea ter: than • . ~~ equal to o~e, and that 

10011'(0)+ ' C,,4' (1)+ C ... If(2J:+ ..... +C_ il(m) /.is less than one. 

To investigate the fir·at part, t~ke -p' a px:1me greater than 

F 
m and not a factor of C~. then CD (m'S) is not divisible by p, 

and since Co is ' not zero, there results the fact that 
~ 

C. (ml) + PI! has an absolute 'Jalue ~. 1 since it is an integer 

lall the numbers C.' mt and Q. are integers, prevlousl.y stated.) ' . , 

Let X = /xl, so 

/U ... i= X"'[l -+ 

: , /U,.( <-

'" X .', IU~ I < X e , 

+ X ... 
11 

/II'(x)l<e
X ~,X 

....... --- .. ] 
:t 

X -t • •.• .•••••••••• n ] 

.•.••• .j.A,.X "J 
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from Lemma III . . P 
I 

I if' (xli <: eX .x·~-' UX + ~)(~ + 21 ............ (X + m)] 
. p _ ,)1 . . 

<. /(X + l)(X + 2) ..... ~ ... (X 4-;;' ) [XIX + l)\x + 2) ..... (X+ m)t- · 
p - ~) 1 

For any fixed value of X. we can take tor p a va lue so large 
. ~-' 

. that LX (x + 1)(X of 2) ........ (X+ mJJ 
. . . {p - 1)1 

'" shall. be aa small as we pl.ease, since 1 t 1s simila r to L. The 
nl 

expression 'the'ref"ore approaches zero as p increases • 

... /tHO)I. Iii' (1)/. IIJI (2)1 ••••••••••• 1 lJ.I(m) 1 . 

can all be made ae smal~ as we plesse by taking p sufficiently 

large. hence C.4'(O)+ c, £ii (1) -+ ••••••• .f.C_IP (m) ca n certainly 

be made less than unity 

.. [co(ml/ + pQ,] +~. Cf (0) I-

cannot equal zero, since it 1s something i 1: -t something ~ 1, 

therefore the suppoaition Co + Ole 
. • >-

-+ C e + ..... -••• C e = 0-.. --
must be wrong. Therefore e cannot be the root of an algebraio 

equati on~ 

Finally" to establish the transc_endence of m" This depena 

upon the following three truths a lready established 

"-
F(O)e : F(x) + If' (x) . 

X 1'-' G · ] I' (1P(x)l<. e XX:PpX+2l ........ ()(+m) 
p - lIs , , 

a nd 
Lw 

1 + e = a (see ·"ppendix) . 
. 

If we assume 1i> to be' an a l gebraic number, then :11 1P is an 

algebraic DUlllPer and theref.ore is the root. of a n algebraic equa:t

ion wi th rati onal co-efficient s • . Let the roots of this equat~ 

ion be Y, ' Y , Y .............. y t and amongst these i 1r 
&. - • 

mU.B:t. be 

found. 
L.7jl 

Therefore since 1 + · e · = 0, we have 

. ' ... 
'. '.,' 

," ":.::.': 
, :".",:: 
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Therefore, on mu.lt-iplylng we ha"V8 

'J; ~1 ij.... '1'+]'. 
1 + (e of e + ••.••.• 0(0'. ) + (e + 

_. _'.' Y1-I/?ov 
•• e _ ••• e vI-" • . .. ... + 

'1,+/,+ .. .. .... 'I-
de ... . , ) = 

The proof of the transcendence of 1l' consists in showini the 

last e"quation to be impossible.- The symmetric functions of 

the "quantities Y,' Y1; •• ~~~";Y~ are 'rational numbers -and are 

the roots of an 8;l,gebraic equ.ati o~. Let f<x) : 0 repreBe~t . 

this equation. The symmetric functions of the quantities 

. 
functions of Y", and the:retore rational numbers, and s o are 

root s .of a s;econd a lgebraic equation -1>,(%.) • 0 and 80 on untl1 

we have y + y ~ ••••• .,.1. the root , of an algebraic equation 
1 : .2. ?W 

f .... _,(x) ;:0 :, 1 (x). rI, (,,:). I" (x)u ...... f .. _,tJO.:) is an 
. 

integral function ,of x whioh ·becomes zero as Boon as x beoomes ' 

one of the numbers :J " Y t ~ . " .... JO • • -Y. _ 
. ~ ~ ~~ 

Some 

of theee numbers, say 1I of them. may be equa1 to zero. If we 

place + (x), 4, (x) • .••••••• f~- ' (x) : 0 and sl>ppress the factor 

" x w~ have an equation S ex) .0 which we m83 consider 8S being 

reduced to a form having integr.al cO-Qfflclents. Since the 

zero :roots have Just been suppressed, a ·("O) 'cannot equal zero, 

hence 
'""" :;l1o, -I 

!J (x) may be w.i tten " (x) "ax T a ,x + ........ a_ = 0 

,,"here a , So I _ , ....... ,8 are 1ntegral and & and a are not .,.,...,. . . ..,...... 

zero and a is positive. This may be transformed by m~tip1ying 
"'-I . 

by a and pl>tting z for ax. into an eql>ation with integr&l 

co--efflclents of the for.lI! ,Bte): 2-"»If b, -2 ;r.,, -,+ •. ~ ..... -+"b_ : 0 

where the .co-efficient of the highest power is unity. -Let tho 

.roo-t .e of: the equat-ion & (~) be XI_ %2-..' xl ' ...... -... , the~e repres-

. , . 
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enting the numbers amongst Y, ' y •• "' •• -)y , Y, r Y..t' Y, To ~ 
.l.) ... 

•••• 

•• < ••• ...t-y that are not ..... - . ... ... ,y""-, + y~ 
equal to zero. It 18 seen from equation (3) that they must sat-

1sfy the equat10n 

Now, note the ea rlier rela tion li'(O)el' : li'(x) +- 'I-' (x). If we 

put x for the n~bers x; , XL' X 3 olO •••••••• and add the results we 

have 

F(O). ;<' + F(O)e1< , + F(O) L ~+ .... : F(x,) -t li'(x,,)-r F("3) ••• 

• , .. ,t-ip (x,) + IjJ (x,)..,.. if (x3 )+ •••••• or 

F(O) r.. '" , ."'+ ."'3, J () () () ~ ~ •••••••• : li' ", +- F x.., .. F X J + 
L-

••••• 

. , ••• f 'Il(x,) 1- 4' (x,,) + 'I-' (x~) •••••••. 

,', F(O)[ -K]= 1!'(x,) + F(x,,} -T 1!'(x3 )r ......... cy(x; ) + ?-' .(x,,) ... 

Cf (Xl) + ••••• '...... or 

............ : , 0 

J . If this can be proved impossib1e, the, c1ear1y, the 'one hypoiheses, -
that 1s, ths.i"7fll be a.n algebraic number, musi be incorrect.. This 

. will be d,one in two steps. ,first, proving 0(0) + F(x, ) .. F(x .. )f-

e· •••••••• to be 1ntegra1 and not :. 0, and second, pr.~vlng t1;18 other 

.. ••••• _. ~~; thus the two parts 

could not possibly equal zero 

~ />-, 0" ( => )] P C.onsider 1'(x).. E. UT c _ 
{p - lH 

aoo,ording to asCending powers of 2 ~ thuB . 

] " (ti, (~) "' -'. 
:Ao+A/ 2- +A~ 2 +- ••••••• 

- A A ' • - l> + ,ax + A:La x 7". • ••••••• . , 

where 

where the A's are 
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integral: and A. :; b":. Therefore 
p_l p_l t>,. ,.+' pot I 

f(x) :A,a. x + A,ax ' T' Aa Q . X + ••.••••••• 
(p, - ~)I , 

Taking derivatives of this and letting x = 0, we have 

flO) ,. 0, 

f P -'(O) ,. 

f /(O),. 0, 
. ;-J.. 

•••••••• f (o) = 0 , 

pi A,a/> 
(p - ~lI 

" 1>- ' • b a 

b = p A,a. 

-

f />:""(O) ,. ,pIp -+ ~) A .. af'~ ' 

, .. 

If p, which is a prime, is chosen 1arger than the greatest number 
; . .., 

a, b • K, then t P-' (0) is not diTi8ib~e by p whHe all the other . . ~ . 
, , 

derived funotions are either 0, or are divislb1e by p. , 

[ 
P_I I. ~ - f 

t (O)=ba - and a/> - ' : ~(p) (see appendix~ Theretore 

F(O) whioh is t'(O)-r t " (0) -+ •••••• is an integer not divisib~e by 

p', Therefore K.F(O) is ~eo an 

b".ck to t(x): 2 " -' [ 8, ( z )] r 
(p - ~lf 

integer not d1Tisibb by p. Going' 

" we may arrange it according to 

ascending powers of (. 2- - 2.tJ where eK is .one of the ·roots. 
/=> . p+ 1 

t(x) • J -" -;:. .. J._.", / 2=,, ) + ( ,2 - <' ... ) B ,L~-,<) t- ..... , ~ .. 
(p - ~11 

/> f> />~, 
: , a. (x-XK)B,( ~,, ) ... a , (x-Xk )B .. ( .!,, )+ ... ~ .... 

(p - l)f 

since <- : ax and B, (;1,,, ).; B .. ( 2-,) eto. a"e integra~ funotions ot 

~" Wi th ration~ co-eff1ci.nts. 'Henoe taking derivative. and 

letting x,. x/< we havet(x",) ,. G, t '(x,,) • 0, ..... ,t"-' (xl'() = 0, 
'/. . ' /> p ' 
t (x"J ,. (pi) a BI ( ,. ) = pa" B,.(.c ... ,) 

(p - III 
/> +1 . PH " 

t (Xk ). p (p -r ~i a 'B .. ( -"; ) but reoalling that 
J ' " ~ .. 

F(x) • t (x) ... t (x) f- • u .... " ,<fot (x) 
I ' I . P. p f l 

F(X~) ,_ t ' (x) .. f (.) t- ........... -r t (x,,) + t (x)"- f- .... .. 
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b .. , 
pIp - 1)& B~ (",,)": ...... . 

:: an · i~tegral multiple of p 

I • F(x,) -t F(X-:z.) -+ F(xl )... • .............. = an integral multiple ot 

. p Bince each one of 11(",), F("e) ·ete,iB, 

':'TheretorB)!:.l'(O) ... ~("') .. . F(x·1 ) -t 11fx3)~ • · ......... con.i.ts or tw<> 

parts, one of whioh K.F(O). 1"8 ,an integer not dl~l·sl~l.e by. p, and 

the other F(%. ) -+ g -(x'lJ -4 J'(.,x~) <4- ... -•• ' •••• whiC;h is an integer 

dlvislbl:e by p~ so their sum must be an integer not ·divisible by p. 

'The ' second step in our 'undertaking ·1s to prove that . 

(Thi. ·proot, I 

reoeived -from Dr. C.Mark.) 

Consider a~n f(x.). a "'f- ' x /> -' [0 (x)]". 
(p - 1) 1 

&- (xl :: ...... ' •• .J.a~ 

: a(x - x,)(x - xa,.) •••• _ .......... " (x 

with 

xJ 
( r>.~ :J f -' I , r; . . 

then f x) :: & . x'- L{x - x, J(" - . xJ •••••••• (x 
(p- ,l)! 

·]P - ~) 
b 

~ ,. 
Assume f(x): ,x +ba.x -+ ••• · ..... +~x where n:; (m +l)p _ 1 

and taking A = ) a I. X:II lxt, Xc.' . lx,, '/' "(1 a 1, 2, ..... ' •• m.) and. 

JS. ",' • . lbu 1. it fo1101rs, as in the proof of Lemma III, that 

'- -
B',X .. B,-X -+ H •••• +~X :: ]' " 

A (-~')P - ' X " -' Cix + X ;!(X + x.l ........ Ix + x..l 
(p - 1 I 

for any value . of p. 

, .. 

To consider now l<p(:!,,) ~ Y' (x .. ) + ••••••• +i:f(x-J I, first note 

that lP (x) : b.U. + b':a..u2. ............ ~~~b.:.J,I~where Ui is the quant.i ·ty 

X
L . (. -11 

+ .;x:..-,,....._ 
1 T i 

L' .. 

+ 11 +·lJii + 2) + ••••••••••• 
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and we have alread.y proved that lu"" I L.. X""e
X 

or ) U, ( L.. X I.e~. 

Further /(y(x)1 ~ B, iu, 1 -+ B .. / u. II- ••• ~.'.+ B~lu_) equa~ion (4) 

: e X {Br X -+- B:l.. X:t. + B') X'} + ' •.• .•••• ei-B ... X ..,.. '} 

~ { (", .. »> -, ~' -' G( ) ( ) . ( 
:e A x . ~; .:l~+X . ••• ~ •••• X1"X 

X ~ 
:eA (x+ :x,HX .. XJ •••••• (X -t- JO. 

I t-' 
A "'of' X fix I- X ,)(X -+ :1...) •••.••••• (X -t X~) . 

(p • 1) I 

For . any nwm~~~ ; , p .can be chosen so large t hat this express-

, ion can be made as small as ' we pl~ase. Then . taking x in turn equal 

to x,. x~. x
J

, . _ •••••• 'fIe can ma.ke each one as smal.l as we please 

:: . ii (x,) ~ (JI (X,J..) -J ........... -+ IJ.J (x,j can be nnda <. 1 dr 
2. !W(x,) loan be < 1 and since· i[lI(x;) 1~:£ q (x,)~ 1'1' (x,-)i 

we he.e :E" (-x,-) between • l ' a nd 1. • . Hence U(O) + F (x, ) 7 F(x • .> + 
-

.e; ••••• + c.y (x , ) ~ qJ (x~) -+ ... , ••• "' .;. •• = 0 1s ~mposslble since the 

left member ~s been proved equa1 to an integer not zero, p~us a 

quantity lea . than one. 

Tber~tore it is not p08~ible to have a tunctio~ 

<$ (x) • ~ , (xl • q,(x) .•••••••.••• which could be equal to -zero when 

x is equal. to one of the numb,era Y, • Y l.' •••••• -'. ""-..' ' 

7 , + y1.... 7, + y •• -_ ••• · ,.1 -I 
') ) / ","" -I 

........ ~ 
Ther8tore it is impossible to ,find a n eqUation 

(1 + e ~ ' )(1 ~ e 1·) •••• , ••• ~'" (1 '1- e y~) : 0 "here the y's are 

a1gebra1c nwmbers. 
iv-

Slnee ~ -+. a . .!!. • 0, i 11 and henoe 1l'mus,t be a trans-

e-eD.dental number. That is m satlat·ies . ·no algebraic e_qua~lon wl th 

ratio~l co-effi.clents. and ·theretore cannot be constructed with 

ruler and COmpaB8~B. 

In this was, in quite reoent times (the. first proof ot the , 
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transcendence of <fl'J was glven In Cg~) ODe of the very early and 

famoua mathemati~al prob~ems was finally solved -- if to be shown 

incapable of solution ma.y be spoken of as itself a solution. With 

respeot to both the attaining of this solution. and the reader who ---reaohes this point (if tl;iere ~e oDe.), it may be approprIate 10'0' . 

again reoall Augustus De Korgan'a · tamous dictum: The quality ot 

the human mind Which must impre,66 us in 1ts infInite patience. 
,,' 

--,',' .: 
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Appendix 1 

Archimedes Proof that 3 1/7'-V<.3 10/71 

(Acoording to J. Gow "History of Greek IlathematioB) 

Z 

H 

Let the circle have diameter AC 

with oentre E. Let ZEC be one 

t hird of a right angle with Z 

c I-__ -=o~------.::.AJ 
E 

lying on the tangent at C. 

Then EZ = 2ZC 

,', Ee'l. • 3ZC.2 

,~=V3>~ 
, 'ZC 1 163 ·· 

a nd EO _ 2 _ 306 
ZC -Y - 153 

Draw Ea, biBeoting the angle ZEC 

Then· ZE _ ZR 
EO - iiC 

a nd ZE _ EO 
Zii-IiG 

. zE -j. EC' _ EC 
"ZH .., I1C-mr 

ZE +EC _ EC 
. , ZC -He 

266 306 CE 
•. 153 + 163 < iiC 

i.e. CE .., 571 
He " 163 

CE ' . 
iiC' ), 

CE\ 00"
HC~ ;> 

326041 + 23409 
23409 

EH ~ 349450 
iiC,;> 23409 

a nd EH <: 591 1/8 
HC 163 
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Again biseot the angle HEG by t .he line EP. On the same pr1n~ 

oiple,!£, ll62 1/8 , Prooeed by turther biseotions until the 
OP r 153 

z 

angle LEO that is 1/48 ot a 

right angle i s reaohed tor whioh 

IJ 
L 

!£ ..... 4673 ! 
LO --- 153 

AtE, make the angle CEil . • LEO c '-_=,-::-=-~-""~ ____ -\ I _ ____ - ~ 

h1 - .... 

The angle LEY • 1/24 ot a right angle and the line LK is a aide 

of a polygon of 96 sides circumscribed about the triangle 

or 

!Q. . • 
LIl 

4673 ! 
153 

4673 !] 
133 

AC = 4673! 
perimeter ot 96 aided polygon 14888 

;eerlmeter 
AO 

• 14688 
4673 ! 

• 3(4673!) + 667 t 
4673 t 

<:. 3(4673 t J + 1/7(4673 t) 
4673 t 

< 3 1/7 

-MuCh more then, ie the ciroumferenoe of the olrc1. less than 

3 1/7 times ths diameter. -

Seoondly, take a ,eirele with diameter. AC, and make the angle 

HAC equal one third ot a right 

. ---
c L-------~-~--~~fi 

angle 

Then All " 1351 mr 71iO 

But AC. 1560 
iiC 780 

Biseot the angle BAO by RA. The triangles HOZ !iDd HOA are 

equiangular and therefore AH = CH = AC 
Hc HZ CZ 

But !£ • 
OZ 

OA .... AB [Binoe £! • g 1 
BO · l All HZ 

,. 

- > 
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.CA + AB 
I' Be 

• .. , cA 1" AB < 2911 
Be """'780 

AH2 8473921 -< ' . HC 2 608400 

and AC~ :c . 9082321 
HC' 608400 

~ -, ·L i •• ~ 1351 t-~ ! 
"""'780 780 J 

Biseot the angle CAB by AP and following the eame prooedure, we 

. obtain the result tha t the ratio of 

~t~h~.~p~.r~i~m~.~t~e~r~of~i~n~e~o~r~i~b~e~d~po~l~Yug~o~n~o~f-!96~e~i~d~e~e > 6336 >3 10/71 
AC 2017t 

Muoh more then, is the ciroumferenoe ot tbe oircle greater than 

3 10/71 times the diameter, 
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Appendix 1I 
, s 

If g is a primitive root of P. the numbers g, g , g • 

are distinct (mod.p) and have tbe residues 1, 2, 3, ~ ••• ' • • .• ,p ... 1 

in Bome order. 

Proof. "Suppose g s 

where 

;( 
g (mod p) 

p ... 1 : 
? h >k J 

Then 
I.-I. 

g : 1 (mod p) 

1. 

But P ... 1 > h ... k ~ 1 and henoe there is a contra.diction to the 

hypothesis that g 1s a 

-" g /.., is ·not ! 

primitive root. 
i{ 

g 
, :L 

. , g. g • 
p-, 

~., ......... , .g al~ have different residues. a:n:l 

there1"ore the residues 1 " 2, 3, ••••••••• , p - 1 in some order·. 

For ·small va1ue of p, g 1s found by trial. 

For p = 5, try g = 2 
2. • 

2 :: 21 2 = 41 
't 

21: 1 (all mod 5.) 
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Appendix 111 

It a and p be primo to eaoh other 'and p is any prims then 
/> - , 

a : 1 (mod.p) 

Let r t r , r ••••••• ~,r~ , r = 0, be the residues, modu~us p, 
I ,.. 'J . ,..,- I p 

then ar,. &r7-,.' ar ••• ·.,. •• ar,~ will be congruent to r, . ' r:t' r:J ' ) .,... -1 .) 
.. ......... ,r" . -, • though perhaps not in that order., 

That is ar -r J , -, -
ar. - r - modp - I. 

'~"" , "\"-

ar : r p_' ~ J ... , 

Multiplying, the oongruences we have 
~_I 

a r r •••••••• r = , ,, -. 1>- I 

or a ~ - , p : P (mod p) 

r r ••• ~ ••••••• r 
J, J~ Jr . ' 

= p , 

Divide both sides' by P 
~- , 

Then a : 1 (mod ,p) ' 

" 
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'Appendix lV 

Let f(x) and g(x) be polynomials with co-effioients in a field 

F and let f (x) be irreducible in F. l .t one root",ot f (x) .. 0 

satisfies g(x) : 0, then f(x) is a divisor of g(x). 

",. is a root of f (x) • 0 and of g(x) • 0, therefore x ~ ~ is a 

factor both of f(x) and of g(x) and also of their greatest common 

divisor t(x), and so t(x) is not a constant. The co-efficients . , 

of t(x) 11e in the field F. Let f (x)/g(x) • a(x) with remaindsr 

r(x) or f(x) .. g(x) ra(x)j + r(x), whe:re r(x) 10 of degree less . 

than g(x); similarly, vlben ·g(x) is divided by r(x) let the quot

ient bs b(x) and rell!Binder s(x), eo that g(x) ~ r(x) lb(xB ... s(x) 

Proceeding thuB, let 

f(x) = g(x) • a(x) ' +r(x) 

g(x) : r(x) • b(x'l+ s(x) 

r(x) : s(x) • c(x) + t (x) 

s(x) = t(x) • d(x) 

Since a(x), r(x), b(x) ••••• were obtained by rational operations 

their co-efficisnts are in the field F. t(x) is sesn to be a 

divisor of s(x), r(x), g(x) and f(x) and is ths greatest common 

divisor. 

r(x) • f(x) - g(x) • a(x) and s(x) = g(x) [i + a(x) • b(xl) _ 

f(x) • b(x) and t(x) • fIx) [i ~ b(x) • o(x)] - g(x) [o.(x) + o(x)+ 

a(x) • b(x) • c(xJJ ' 

which Bho~ the greatest oommon divisor to have its co-efficlents 

in the field F. 

The quotient of f(x) by t(x) is a constant independent of x since 

otherwise f(x) would be ' reducible ... f(x) • c.t(x). But t(x) 

divides g(x) .', f(x) divides ~(x). 
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Appendix V 

To find the value of • %" - Using Maclauren' 8 formula , 

f(x) 
. I ~ 

~ t(O) t t (O).x -t- f (0). ,,'-
42 

'" -t- t (0). 3 
X + ••••• '" 

~.2 .3 

we have 

e ~ .eD+ eO,x+8D• x'" + 
~ 

• ••••••• 

, 3 

n+tr-+ "' ..... . 
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Appendix Vl 

To find the value of tan x - Again using )(a.o~aur1n· s formula ~ 

tan x • tan 
" " ~ 

o + ".eo (0) x + 2 
~ 

S80 O.tan O. 

" . (4 seo o.tan 0 + 2 oeo 0) Xl 
+ 'I';'2."'3 

••• ••••• 
, 
... ' 

, 
= x -j-x + .... , ... 

'3 

or ..... .. , .... ' , 

.': .' 

tan 
1. xS- 'x 1 

X -x+~4- + ••••••• - '6+-.., 3 
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Appendix Vll 

To prove that 
LX 

e - -1+1x - -1 

i111 
e + 

-
1 = 0 

ix' 3rt-
..... ,. 

i sin x = 1x _ iX' + ix ~- •••••••• 
3r 5T 

cos x • 1 -
, .. 

x + x - , 
x + 
6T 

"' ...... . 
2T 'iT 

both being found from Maclaurin's formula 

~'" 
" 

e = cos x + 1 'sin x 

e L7l' - COB 1j1+ i sin 7P - -1 - -
1<" .. e -I- 1 - 0 -

.. 

~-.- .' 

,,'. 
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Appendix flll 

Proof of Lemma I 

If f (x) 
.. 

- a x -+ &2. X - , 1 ... 8
3

X + -•••••• -t-a x and , if we l-et 
~ 

S - 1, S - 1 -+ x • , - .. - 1: 

" "-, 
2t 

......... ,,6 :: 1. ... x ... . ... 1 

then f'ex) ... f "(,,) .. f '''(x)." ••• +f (x) = 
11 S a +.21 Sa+- ...... ;-.nl S a,. . I' . ;t..::l . " 

Write f(x) 

, 
Then t (x) = 11 .. , +. 2Sa" ~! ... 3l"~fa:,. 

" t (x) 

,.. 

• 0.' 

= 21a > +- 31~ 
1. 

f (x) • nla_ 

.. 
+ 4 .la~j + . ~ ...... ... 

..., 
.. flex) .. f"(x) + f'1x) ... . ••••• _.p.f (x) . 

--
•••• .;.-n1a (1 +- x 

.".. 1.1 + .......... ' ~~:p 

:: 1 .1a
t 

S. -+ 2!&.l.S~ -+ 31a.J~ ;- ...... .,.ntaJrt..S'" 

or 1IS,&, ... 2 .1Ss,aL t 3SS;J&~ T ' ••••••• +nlS""Fa~ . 

Proof of Lemma II 

If f(xl = 
• 

and F(x) I " = f (x)"+ t (x) ... 

••••••••••• 

number anod n is any positive integer and th~ C·t .s are any integera. 

then CeF(O) ... C,F(l) -+ C .. F(2) + •••••• -rc; •• .,F.(m.) = c.(ml)/> + pq, 

where Q. 1s I!'0me · integer depend~ng . oil the value of the ot's and p. 

Arranging f(x) in asoending powers 'of x 

B , B ••••• ' •• ..B L{ ) are ·all lnt'egers and B 1s the product 
/-_, p' T l' "" ... -I P_I 
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• Taking' der1vatives 80 

as to determine F (O). F(l) ••••••• ,F(m) the results are 

I n ~-~ 
f (0) ' : 0, f (0) • 0 , ••••••.• f (0) : 0-, 

fP-' (0) = B._, • f"(O) :: pB .. , •••••• ,f (0) :: p(".' ) ......... ,. 5_ . 

F(O) = B pB ••.••• +rp(p. l) ••• •• ••• nB,] . . ,-1 + ~ -t L 
:: ± (ml)~" pB,,< ~ ••• of{j> (P-+ l) •••••• nB..:] 

.',0.1(0) :: ·C.(in:l' + a mult ipl e of p. Also t aking der ivates of 

f( x ) i n the form 

f( x ):: x"-' [jx - 1)(%- 2) ....... . .. (" - mj)" 
(p - III . . 

, po.-a r. . 'I ,. 
t (x) = (p - 1)" Ux· l)1x' - 2 ).. .......... (x - m)/ 

(p - 1) 1 

x /'-' • d fi" - l)(z; :. 2) . ......... (" • m)]" + ______ ;--...:dX:::=-:. -;:-._ . ____ _ 

(p - 1)1 . " '., 

.. t/(~) = 0" and all der1.vatives wi11 be either zero, or multiples 

of p when ~ is substituted for x~ 
I II II' ) 

F(l) whioh is :: t (1) -+ f (1) + t .(1) ......... and also C,B(l 

will be a multiple of p. 

similarly C ""lis a multiple of p and so on to 0 F(m). a lso a 
. ~-~ -
multiple of p. 

. '. CoF(O) .. C,F(l) +- C .. F(2):+ •••• +c.,!(m) 

Proot of' Lemma III 

If fIx) 
.. , 

IISX-+&X+& ..... x+ 
.. , 3. '" 

/> 
: . C. (ml) + . ~ 

-_ x ~-dCx J.I> .~~~~-~1~)~{X~-~2~)\~X~-...:3~1~.~.~ •• ~.~.~.~(x~ • ...:m~) - . (p . ' I ' 1 . 

and if A, • /a,1 • A ... lao. I •...... ,'10.:: 18:;0.) and X = I" I 
a. ... .-1 r;: 

then A,X ..... A~X · ... ••••• -+A .... X : X ttx of ~)(X + 2) ....... 
. (p - 1)1 

The seoond torm at fIx) i a obviously an er~re.8i6n with alternating 

signa. If 8 c.erta·in set of b1ri_~m1al f ac tors, all with plus signs 

be mu.lt1p11ed -- and then a secon,d ee:t, iden\ ica;l., only ~h8ot 801.1. 
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have minus sigDs, the results are t~e , same except that it) the 

latter case the signa are alt'ernate13 plus and minus 

i.e. X~-IGX - l)(x - 2) ••• ~ •• .,.!x. - mU P 
cou.ld dltter· trom 

x
p
-

J 
(fx + 1)(% + 2) ••••••• (x + m)] ~ only in having a.+ternate 

signs d1fferent, which proves the theorem« 


