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Abstract

Tree-based methods have wide applications for solving large-scale problems

in electromagnetics, astrophysics, quantum chemistry, fluid mechanics, acous-

tics, and many more areas. This thesis focuses on their applicability for solving

large-scale problems in electromagnetics. The Barnes-Hut (BH) algorithm and

the Fast Multipole Method (FMM) are introduced along with a survey of im-

portant previous work. The required theory for applying those methods to

problems in electromagnetics is presented with particular emphasis on the ca-

pacitance extraction problem and broadband full-wave scattering.

A novel single source approximation is introduced for approximating clusters of

electrostatic sources in multi-layered media. The approximation is derived by

matching the spectra of the field in the vicinity of the stationary phase point.

Combined with the BH algorithm, a new algorithm is shown to be an efficient

method for evaluating electrostatic fields in multilayered media. Specifically,

the new BH algorithm is well suited for fast capacitance extraction.

The BH algorithm is also adapted to the scalar Helmholtz kernel by using the

same methodology to derive an accurate single source approximation. The

result is a fast algorithm that is suitable for accelerating the solution of the

Electric Field Integral Equation (EFIE) for electrically small structures.

Finally, a new version of FMM is presented that is stable and efficient from the

low frequency regime to mid-range frequencies. By applying analytical deriva-

tives to the field expansions at the observation points, the proposed method

can rapidly evaluate vectorial kernels that arise in the FMM-accelerated solu-

tion of EFIE, the Magnetic Field Integral Equation (MFIE), and the Combined

Field Integral Equation (CFIE).
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Chapter 1

Introduction: Tree-based

Algorithms

Many complex physical problems can be approached through N-body simula-

tion. Electromagnetic scattering computed with method of moments is one ex-

ample. Another example is electrostatic analysis applied to capacitance extrac-

tion [NW91]. Other important applications areas are astrophysical simulation

of galaxies [Dub96], high-Reynolds number flow through the vortex method

[LK01, MG05], simulation of non-Newtonian flows [YBZ04], and molecular

dynamics [JCJ+92]. When solved in a straight-forward manner, the N-body

problem requires O(N2) work per evaluation. Tree-based methods typically

reduce this complexity to between O(NlogN) and O(N3/2), depending on the

kernel and problem parameters. The most popular of these methods are the

Barnes-Hut algorithm [BH86] and the Fast Multipole Method [GR87]. While

the lower computational complexity is obtained by approximating groups of

bodies by some form of physical or mathematical approximation, tree-based

method can often be tuned to provide accuracy levels down to a computer’s

machine precision and thus give the same solution accuracy as the directO(N2)

summation method.

In this chapter, we will review previous research of tree-based algorithms

1



Chapter 1. Introduction: Tree-based Algorithms 2

for computational electromagnetics and correlate those results with the con-

tributions that are presented in the latter chapters of this thesis.

1.1 The Barnes-Hut Algorithm

The algorithm was proposed by Barnes and Hut [BH86] in 1986 for solving

large-scale gravitational N-body problems. A similar algorithm was proposed

independently by Appel in 1985 [App85]. The computational complexity is

reduced to O(NlogN) compared to O(N2) for the direct summation of all mu-

tual force interactions, where N is the number of bodies. The algorithm has

two phases. In the first phase the tree data structure is constructed by en-

closing all bodies in a cube1. This cube is then hierarchically sub-divided into

cubic sub-cells (oct-tree in three dimensions or quad-tree in two dimensions)

until there is only one body per cube. This hierarchical subdivision is done

adaptively so that regions with coarse distributions of bodies are refined to a

coarse level of the tree whereas denser regions have finer refinement. The tree

is then traversed bottom-up and a center-of-mass location and magnitude is

computed for each cube in the tree. In the second phase, the potential or force

is evaluated for each body as follows; the tree is traversed top-down and at each

cube d/r < θ is evaluated, where d is the width of the cube, r is the distance

from the center of the cube to the observation body, and θ is the opening angle

parameter which controls the trade-off between error and computational cost.

If d/r < θ holds, the potential is computed by evaluating the center-of-mass

at the cube and the traversal is terminated. Otherwise, the tree is recursively

traversed to all of its children where the test is repeated at each child. The

complexity is O(NlogN) when θ is sufficiently large, but deteriorates when θ

approaches zero in exchange for better approximation error with θ = 0 being

equivalent to direct summation.

1We use node(s), box(es), and cube(s) interchangeably to refer to part(s) of the tree data
structure.
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In the years following the original publication, many improvement and op-

timizations where proposed, including periodic boundary conditions [HBS91,

Bou88] where the algorithm is combined with the Particle Mesh Ewald method

[Ewa21], error control heuristics [JP89, BH89], higher-order approximations

by adding multipole moments to the center-of-mass [BCPB90] or using expan-

sions [GR87], and parallelization [HB87, MH89]. In 1994, Salmon and Warren

[SW94] examined the worst-case error in greater detail and showed that the

standard acceptance criteria may lead to either unacceptable errors or high

computational costs in gravitational problems. They also showed that using

additional multipole terms in the force evaluations outperforms the standard

center-of-mass approximation when a fixed error bound is required. The con-

clusions in [SW94] supported the notion that the Fast Multipole Method may

be a better choice when the error must be controllable. Much of the important

work published from the early 90’s until today have been focused on more ef-

ficient parallelizations schemes and their applicability to various hardware as

well as improvements to the tree data structure.

While the tree data structure is important to the algorithm, the computa-

tional time for constructing the tree is generally negligible compared to other

parts of the algorithm when it is applied to practical applications. However,

some proposed modifications to the tree structure may significantly improve

the overall complexity of the algorithm and most notable are binary trees and

k-means clustered trees [MG05]. Binary tree have been shown to be efficient

for certain application when level-skipping is utilized [WPM+02]. Instead of

using a spatial oct-tree, the k-means clustering approach hierarchically clusters

the bodies in a way that minimizes the approximation error for each cluster

and yields better separation between the clusters compared to the oct-tree.

The cost of building the tree is higher for k-means clustering in exchange for

more efficient evaluation in the second phase of the algorithm. Overall, k-

mean clustering have been shown to significantly improve the computational

efficiency for practical datasets [AL08, MG05].
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In order to solve many important large-scale problems, parallelized ver-

sions of the algorithms are needed. Thus, research into efficient parallelization

has been very active since the late 1980’s [HB87, MH89] until today. Today’s

state-of-the-art parallel implementation have tuned to run on up to 294,912

compute cores while simulating 2 billion moving bodies [WSH+12]. Implemen-

tations have been adapted to several hardware architectures, including, vec-

tor processors [Mak90], shared memory [BAD01], distributed memory [WS92,

WS93, Dub96], hybrid shared-distributed memory [SAG11], graphics proces-

sors [HNY+09, BGPZ12], and custom-made hardware [IMES90, MTES94,

KFM99]. The distributed memory parallelization algorithms typically work

by first partitioning the bodies across the processors, and then generating a

locally essential tree at each processor which is the union of the part of the

tree containing the local bodies and the remote tree nodes that are required for

evaluating the tree. Two important partitioning algorithms are the orthogonal

recursive bisection method (ORB) [WS92] and hashed oct-tree (HOT) method

[WS93]. The HOT method has been demonstrated to be more efficient and it

partitions the space by converting every tree node and body into a Morton key

based on its spatial location. This translates the three dimensional space (gen-

eralizable to N dimensions) into a one dimensional space-filling curve which is

sequentially partitioned to create the distribution of tasks. Furthermore, since

the Morton key can be computed in constant time and corresponds to a spatial

location, it allows a parallel task to determine which task owns a particular

part of the tree without requiring communication. The largest scale implemen-

tations use this method along with finer-scale shared memory parallelization

[WSH+12].

Traditionally, the primary application area for the Barnes-Hut method has

been astrophysics where it is used for gravitational force calculation and to

model hydrodynamic flows to, for example, simulate galaxy formation, stellar

collisions, and supernovae. Modeling of turbulent flows with the vortex model

within the scope of fluid mechanics is another application area that benefits
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from the adaptive nature of the Barnes-Hut algorithm. In computational

electromagnetics, the algorithm has been applied to capacitance extraction

and shown to be more efficient than the Fast Multipole Method [Jia04]. Its

applicability to electromagnetics is extended in this thesis by the development

of accurate capacitance extraction in multi-layered media (chapter 3) and low

frequency scattering analysis (chapter 5).

In chapters 3 and 5, the center-of-mass concept is translated to the spectral

domain where it is shown to be equivalent to matching the zeroth and first or-

ders of the spectra at the stationary phase point [Che88]. This provides a new

method for finding center-of-mass type approximations, in particular, Pois-

son’s equation in multi-layered media (chapter 3) and the Helmholtz equation

in free-space (chapter 5).

1.2 The Fast Multipole Method

The Fast Multipole Method (FMM) has achieved the greatest popularity

among the tree-based algorithms and is widely used in computational engi-

neering and science, for example, in electromagnetics [VCS03], molecular dy-

namics [BWS+95, GH02], quantum chemistry [WJGHG96, Dar00b], and fluid

dynamics [TG08, CWD08]. It was first formulated for the Laplacian kernel in

2D by Greengard and Rokhlin in 1987 [GR87]. Extensions for the Laplacian

kernel in 3D [GR88, SL91], the Helmholtz kernels in 2D [Rok90, EMRV92]

and 3D [Rok93, CRW93], and other equations [DKG92, GGM93] followed in

late the 1980s and early 1990s. In electromagnetics, the break-through came

in 1995 when Song and Chew [SC95] proposed a O(NlogN) version of FMM

for the Helmholtz kernel in 3D and its extension to the Combined Field Inte-

gral Equation (CFIE), which is commonly referred to as the High-Frequency

Fast Multipole Method (HF-FMM) or the Multi-Level Fast Multipole Algo-
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rithm (MLFMA)2. HF-FMM is used to compute matrix-vector products in

O(NlogN) operations which arise from Method-of-Moment (MoM) discretiza-

tions of scattering problems. While HF-FMM is widely used, it is based on a

far-field approximation which breaks down at low frequencies. Hence, the Low-

Frequency Fast Multipole Method (LF-FMM) was developed [GHRW98] for

efficient computation of scattering problems at low frequencies. FMM has also

been developed for accelerating evaluation of transient wave fields generated

by band-limited sources [ESM98, ESM99].

1.2.1 Brief Introduction

The idea behind FMM is to create a hierarchical tree data structure similar to

the Barnes-Hut algorithm which at its root level encloses all sources or basis

functions in the computational domain. An example of a two dimensional tree

with 5 levels is illustrated in Figure 1.1. FMM requires that each box, B, in

the tree contain two lists of boxes that are defined as follows.

• Neighbor Set: All boxes at the same level which are not well-separated3

from B.

• Interaction Set: All boxes at the same level of the tree which are (i)

well-separated from B and (ii) whose parents are not well-separated from

the parent of B.

A formal description of the algorithm divided into six phases follows.

1. Leaf-Node Aggregation: For each box at the lowest level of the

tree, construct an outgoing expansion that represents the field due to

all sources or basis functions contained in the box. To define the region

2In this thesis, we use HF-FMM in chapters 1 thru 6, and MLFMA in chapter 7.
3In most implementations of FMM, a box is well-separated from B if it is at least one

box width away from B. In this case, B’s Neighbor Set becomes equivalent to its adjacent
boxes or its “neighbors”.
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(a) Level 0 (b) Level 1 (c) Level 2

(d) Level 3 (e) Level 4

Figure 1.1: Example of a 5-level FMM tree data structure in two dimensions.

Sources are illustrated as red points and observation locations as blue points.

The root box (Level 0) is hierarchically subdivided until the desired resolution

is reached at the leaf-level (Level 4).
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(a) (b)

Figure 1.2: Illustration of the leaf-level aggregation phase for two different

boxes at level 4 (as shown in Figure 1.1). All sources are converted to outgoing

expansions at each box.

Figure 1.3: Illustration of the aggregation phase where outgoing expansions

are first aggregated from level 4 to level 3 and then from level 3 to level 2.
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(a) (b)

Figure 1.4: Illustration of the translation phase for two different boxes at level

2 (as shown in Figure 1.1). Outgoing expansions in the interaction set are

translated to an incoming expansion at each box.

Figure 1.5: Illustration of the disaggregation phase. Incoming expansions are

first disaggregated from level 2 to level 3 and then from level 3 to level 4.
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(a) (b)

Figure 1.6: Illustration of the leaf-level disaggregation phase for two different

boxes at level 4 of the tree (as shown in Figure 1.1). Incoming expansions are

evaluated at all observation locations in each box.

Figure 1.7: Illustration of the near-field summation phase for a single observa-

tion point at level 4 of the tree (as shown in Figure 1.1). Contributions from

all sources in the near region are added to the field at the observations location

by direct summation.



Chapter 1. Introduction: Tree-based Algorithms 11

of validity of the outgoing expansion, the box under consideration is in-

scribed in a sphere (or circle in two dimensions). The outgoing expansion

is then valid in the region exterior to the sphere. An illustration of this

phase is shown in Figure 1.2.

2. Aggregation: This procedure is carried out level by level from the

bottom up starting at the second lowest level. For each box, B, at level

L, convert outgoing expansions at each of B’s children to form outgoing

expansions at B. An illustration of this phase is shown in Figure 1.3.

3. Translation: For each box at each level, convert all outgoing expansions

in its interaction set to a incoming expansion. An illustration of this

phase is shown in Figure 1.4.

4. Disaggregation: This procedure is carried out level by level from the

top down. For each box, B, at level L, convert B’s incoming expan-

sions to incoming expansions at each of B’s children at level L + 1. An

illustration of this phase is shown in Figure 1.5.

5. Leaf-Node Disaggregation: For each box, B, at the leaf level of the

tree, evaluate B’s incoming expansion at all observation locations inside

B. The observation locations now contain contributions from all sources

except those contained in its neighbor set. An illustration of this phase

is shown in Figure 1.6.

6. Near-Field Summation: For each observation location, add contribu-

tions from all sources in its neighbor set. An illustration of this phase is

shown in Figure 1.7.

1.2.2 The High-Frequency Fast Multipole Algorithm

The outgoing expansion in HF-FMM is the far-field signature function,

f∞(r̂) = lim
r→∞

rf(r)

eikr
(1.1)
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which is defined on the unit sphere and approximates the scalar field f(r) in

the far region, where f(r) is governed by the Helmholtz equation. The e−iωt

time convention is assumed here. f∞(r̂) is sampled on a Nθ ×Nφ grid on the

unit sphere and stored at each box of the FMM tree, usually with Nφ = 2Nθ

or Nφ = 2(Nθ − 1). The number of samples depends on the band-width of

f∞(r̂) and accuracy requirements. Since the band-width is dependent on the

electrical size of a box, the number of samples per box is dependent on the

level of the tree. In the aggregation phase, interpolation is used to transfer

samples from boxes at the bottom levels of the tree to denser grids at higher

levels of the tree. The interpolator must have a computational complexity

no worse than O(NθNφlog(NθNφ)) in order to preserve the overall O(NlogN)

complexity4. Several interpolation schemes have been proposed, including ex-

panding over spherical harmonics [CCG+06], Fourier series [Sar03], and local

interpolators such as Legendre polynomials [SC00, EvdBG09]. Spherical har-

monics based interpolator expand f∞(r̂) over an orthonormal basis on the unit

sphere by carrying out a combination of Fast Fourier Transforms (FFTs) along

φ and a specialized one-dimensional FMM along θ [YR99]. The Fourier series

based interpolator extends the unit sphere to −π < θ ≤ +π, 0 < φ ≤ +2π by

symmetry and use two-dimensional FFTs for the interpolation. While the pre-

vious two interpolators are fully error controllable to machine precision, local

polynomial interpolators are only efficient when accuracies of approximately

two digits are acceptable.

The incoming expansion is represented by an amplitude field, f0(r̂), on the

unit sphere which is sampled on a grid identical to the one used for f∞(r̂).

f∞(r̂) is translated to form f0(r̂),

f0(r̂) = f∞(r̂)TL(r̂,d) (1.2)

where d is the vector from the expansion center of f∞(r̂) to the expansion

4When applied to high-frequency scattering problems with surface discretization, the
number of basis functions, N , is generally related to the electrical size of the scatter and
O(N) = O(NθNφ).
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center of f0(r̂) and TL(r̂,d) is the Rokhlin translator function of degree L

defined as follows.

TL(r̂,d) =
L∑
n=0

in(2n+ 1)hn(kd)Pn(r̂ · d̂) (1.3)

where hn is the spherical Hankel function of the first kind of order n and Pn is

the Legendre polynomial of degree n. Due to diagonal form of the translator

TL(r̂,d) computing f0(r̂) directly from Eqs. (1.2) and (1.3) requires only

O(NθNφL) operations. For many important problems, this results in O(N3/2)

complexity because the condition O(Nθ) = O(Nφ) = O(L) = O(
√
N) is valid

at the top level of the tree. In Eq. (1.3), r̂ only enters into the calculation as

r̂ · d̂ which is a function of the angle between r̂ and d. Therefore, TL(r̂,d) can

be computed in O(NθNφ) operations if it is precomputed for O(L) angles and

interpolated to the points on the grid. The interpolation of TL(r̂,d) have been

studied in detail [BGS91, CJMS01, SC01, VC01, EG06b] and an efficient error

controllable method is presented in [HS08]. The disaggregation is analogous to

the aggregation and the same interpolation methods can be used. In the leaf-

node disaggregation phase, the scalar field f(r) is obtained at the observations

points by integrating the amplitude field,

f(r) ≈
∫
S

f0(ŝ)eikŝ·rdS(ŝ) (1.4)

An efficient scheme for evaluating electric and magnetic fields is presented in

[CJMS01]. The corresponding vectorial far-field signature function, F∞(r̂), is

decomposed into its traverse components, F∞(r̂) = θ̂fθ,∞+ φ̂fφ,∞, and treated

as scalar fields.

In a practical implementation of HF-FMM, the error in the solution comes

from five sources: the Rokhlin translator, the choice of sample grid, the in-

terpolator, the integration, and round-off errors. While several studies have

investigated the total error in the solution and attempt to quantify it [KSC99,

Dar00a, OC01, Nil04], there is no exact method for accurate estimation of the

error. The existing semi-analytical methods either over-estimate the error or
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are only accurate in the asymptotic cases. Other work has been focusing on the

Rokhlin translator in isolation and several analytical or semi-analytical formu-

las for predicting L have been proposed [OC03a, CJMS01, HOC03, BPZ11],

the so called excess bandwidth formula have gained the greatest popularity

[CJMS01] even though it is inaccurate in many cases [DS09]. Local interpo-

lators are a significant source of error in the disaggregation phase due to its

inability to eliminate the high-order modes in the field and require careful

analysis [OC03b, EG06a]. Finally, the inherent inaccuracies in the numerical

implementation of many special mathematical functions often results in an

error behavior which is dependent on implementation specific details. A more

general method of controlling the error is by numerically searching and tab-

ulating errors in the solution for various worst-case configurations and values

of L, Nθ, and Nφ.

HF-FMM breaks down when the box width is less than approximately one

wavelength5. Numerically, this breakdown is due to the exponential increase

of the spherical Hankel function with increasing orders when its order exceeds

its argument, which in turn leads to numerical cancellation in the integration

(Eq. (1.4)). From a physical point-of-view, information about the evanescent

waves is lost because only propagating waves are aggregated and therefore

becomes inaccurate in the near-field region where evanescent waves are present.

Reconstructing near-field behavior from far-field information is an inherently

ill-conditioned problem.

1.2.3 The Low-Frequency Fast Multipole Algorithm

Due to the low frequency breakdown of HF-FMM, much work has been done

towards development of LF-FMMs and several formulations have been demon-

strated to be effective. Each formulation have advantages and disadvantages

5The breakdown of HF-FMM is dependent on accuracy. The breakdown occurs at ap-
proximately 0.3λ for 2 digits of accuracy and then increase rapidly for higher accuracies
(e.g. 4λ for 6 digits and 12λ for 9 digits).
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and a summary of important formulations follows.

One class of formulations are based on the spectral representation of the

Green function which use both propagating and evanescent waves. Due to the

properties of the spectral representation, the resulting expansions are direc-

tional and six unique expansions must be stored at each box and split into to

+x, −x, +y, −y, −z, +z. Greengard and Huang [GHRW98] introduced this

representation for a low frequency stable formulation that uses multipoles for

storing the field expansions at each box and switches to the spectral represen-

tation in the translation. Jiang and Chew [JC04] proposed a method named

Low Frequency Fast Inhomogeneous Plane Wave Algorithm (LF-FIPWA) that

is also based on the spectral representation. To improve the efficiency when

the box width becomes larger, the evanescent waves are partially extrapolated

from the propagating waves. Once the box width becomes large enough the

evanescent waves are completely absorbed into the propagating waves. LF-

FIPWA was further improved in [WS05] by the use of a generalized Gaussian

quadrature rule [YR98] for the evanescent part. Darve and Havé [DH04] de-

veloped a similar formulation that is based on the same direction dependent

plane wave representation with a slightly different integration path. This class

of methods are stable at both low and high frequencies, but require consider-

able memory overhead for storing six expansions at each box, and is therefore

usually combined with HF-FMM.

Xuan et al. [XZAG04] proposed a broadband method called Uniform

MLFMA which is based on a modified form of HF-FMM where the integration

over θ on the unit sphere is shifted to the complex plane. Due to this shift the

integration over θ is extended to [−π + αi,+π + αi] and therefore additional

quadrature points are required compared to HF-FMM. The Rokhlin translator

is no longer known analytically and must be constructed numerically. Despite

this additional overhead, the method is significantly more efficient than the

directional formulations based on the spectral representation. However, it is

difficult to control its error and it can only support low accuracy solution
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[VGMO+04, WS05].

Bogaert et al. [BPO08] developed the Nondirective Stable Plane Wave

Multilevel Fast Multipole Algorithm (NSPWMLFMA) which, like Uniform

MLFMA, is based on the same underlaying formulation as HF-FMM. The in-

tegration path is shifted to the complex plane where the location of the path

is determined by an analytic expression. Instead of sampling the plane waves

on fixed grids like the previous formulations, their locations are determined

numerically with the QR algorithm. While this leads to an error controllable

representation, the interpolations in the aggregation and disaggregation phases

must be carried out with dense matrices. Therefore, it quickly becomes ineffi-

cient when the box size increases and it must be combined with HF-FMM to

remain efficient at all frequencies. A variation of the method was presented in

[BO09a, BO09b] where the Green function is expanded over pseudo-spherical

harmonics in a way that allows for sampling of plane waves on a uniform grid.

FFTs are then used for the aggregation and disaggregation phases which sig-

nificantly improve the asymptotic complexity. However, additional overhead

is introduced because a denser grid is required at each box.

In [SH07, VGHS07], Shanker et al. developed a formulation based on

Cartesian harmonics called Accelerated Cartesian Expansions (ACE). The

field is expanded over Taylor series by using Cartesian tensors. ACE is efficient

in the quasi-static regime but rapidly becomes inefficient at higher frequencies

due to the difficulty in approximating oscillatory kernels with Taylor series.

Its strength lies its simplicity and that it can relatively easily be adapted to

many types of kernels. Combined with HF-FMM, it can be used for efficient

broadband analysis [VHSV09, VSA09, VSV08].

The formulation that has been studied in the greatest detail, in particular

in the mathematics community, is the classical LF-FMM based on partial-

wave expansions which form a basis over elementary solutions to the three

dimensional Helmholtz equation. These elementary solutions are expressed

in terms of spherical harmonics and spherical Bessel and Hankel functions.
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The expansions at each box is represented by P 2 − 1 coefficients and is said

to be of order P . Aggregation, disaggregation, and translations are carried

out by re-expanding the coefficients and requires the computation of so called

re-expansion coefficients. Explicit expressions for the re-expansion coefficients

can be obtained via Clebsch-Gordan coefficients [Ste61, AS64] or Wigner 3-j

symbols [AS64, ED95] which leads to O(P 6) operations for the re-expansion

[ED95]. This can be improved to O(P 5) by using symmetries and special

properties [GD05]. While this is acceptable for sub-wavelength interactions, it

quickly becomes impractical for higher frequencies where the expressions are

also numerically unstable. Improved O(P 4) schemes can be derived by com-

puting the re-expansion coefficients via recurrence relations. When combined

with HF-FMM [JC05, CCG+06, GD09], O(P 4) and O(P 5) are sufficient for

efficient analysis with low-order basis functions when two or three digits of

accuracy is sufficient. However, if higher accuracy is required or if it is not

combined with HF-FMM, the complexity must to be improved to O(P 3) or

ideally, O(P 2logP ) in order to maintain a computationally efficient implemen-

tation. The complexity can be reduced to O(P 3) by rotating the spherical

coordinate system and perform the translation along the z-axis followed by a

second rotation to the original coordinate system. Due to symmetrical prop-

erties of the translation coefficients, O(P 3) coefficients remain non-zero when

the translation is carried out along the z-axis. This technique is called point-

and-shoot and its main challenge is that the rotation suffers from numerical

stability issues. An efficient recurrence relation for performing the rotation is

presented in [GD05] but starts to break down around P ≈ 30 when double

precision arithmetic is used6. According to Greengard et al., recurrence rela-

tions of orders up to P ≈ 160 have been implemented by their group and hints

on their implementation were provided in [GG09]7. Gimbutas and Greengard

6This was determine by our implementation of the method since its stability is not
discussed in [GD05].

7We developed a recurrence relation based on those hints combined with well-known
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[GG09] recently developed a novel method that is based on pseudo-spectral

projections and numerically stable to beyond P = 1000. The recurrence rela-

tions are computationally more efficient than pseudo-spectral projections for

values of P where they are stable. Though this formulation of LF-FMM can

yield efficient implementations, it is complicated compared to the previous

versions of LF-FMMs.

Chew recently derived a vectorial form of the elementary spherical basis and

its corresponding addition theorem [Che07, Che08, LC10] which only requires

two components of the full vectorial form of EFIE to be stored in memory or

three components for a mixed potential form of EFIE [LCJQ12]. In previous

work, three or four components were stored in memory, thus this method

yields a memory saving of 25% or 33% depending on the formulation of the

EFIE. In chapter 7 of this thesis, the vectorial form is extended to MFIE and

CIFE in addition to EFIE. Furthermore, without any loss in efficiency, our

formulation only requires one component to be stored in memory regardless of

the vectorial form which is equivalent to an additional memory saving of 50%

to 67% compared to Chew’s vectorial formulation.

1.2.4 Parallelization of the Fast Multipole Method

Many parallelization strategies for FMM have been proposed for multiple

hardware architectures, including distributed memory architectures [DJV+01,

HAS02, KP05b], shared memory [OSVW99], hybrid shared and distributed

memory [PPY+12], and graphics processors [CAO10]. Over the past decade,

much research has been focusing on efficient load balancing for distributed

memory architectures, primarily by exploring partitioning strategies for the

hierarchical tree data structure and algorithmic refactoring to overlap compu-

tation with communication [KP05a, FO08a]. The partitioning strategies can

properties of the associated Legendre polynomials which appears to be stable up to P ≈ 180
in our implementation.
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be classified into spatial partitioning, directional partitioning, and hierarchical

partitioning. In spatial partitioning, the tree is partitioned between the proces-

sors so that each box is assigned to a single processor. This approach works well

for non-oscillatory kernels where the expansion order remain constant through-

out the tree, for instance, the Laplacian kernel and the Helmholtz kernel in the

quasi-static regime. However, if the domain becomes electrically large where

wave physics dominates, the expansion order is approximately proportional to

the box width. For surface scatterers, this usually results in a computational

load that is uniform for all levels of the tree. Therefore, the load becomes un-

evenly distributed at the top levels of the tree. Improved load balancing can

be achieved by using spatial partitioning at the bottom levels of the tree and

switch to directional partitioning at the higher levels [VC05, VCS03]. Direc-

tional partitioning duplicates all boxes across all processors and the expansions

themselves are partitioned instead. While this approach has been successfully

deployed to solve large-scale problems [VCS03], it ultimately leads to load im-

balance for large numbers of processors. In order to sustain the load balance

at all levels hierarchical partitioning must be used, where both spatial and

directional partitioning are applied simultaneously for the intermediate levels

of the tree in a hierarchical configuration [EG09, EG11, FO08b].

1.3 Outline of Thesis

This thesis is organized as follows.

In Chapter 1, we introduced the Barnes-Hut algorithm and the Fast Multi-

pole Method. A survey of previous work related to their use in computational

electromagnetics was presented.

In Chapter 2, we discuss capacitance extraction and its importance in to-

day’s electronic design automation industry. An overview of popular numerical

techniques is presented and related to our contributions.

In Chapter 3, we extend the free-space center-of-charge approximation to
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multi-layered media and present detailed derivations and error analysis. We

show that the center-of-charge approximations can be hierarchically clustered

and applied to the Barnes-Hut algorithm efficiently. Finally, the method is

demonstrated for fast capacitance extraction in practical interconnects.

In Chapter 4, we transition from electrostatics to full-wave modeling. We

introduce EFIE and provide a formulation that can be accelerated with tree-

based algorithms.

In Chapter 5, we generalize the Barnes-Hut algorithm for rapid evaluation

of time-harmonic fields and show that it can be a simple alternative to the

LF-FMM.

In Chapter 6, we transition from full-wave modeling in the low frequency

regime to all frequencies and discuss challenges that arise in broad-band mod-

eling and their remedies. MFIE and CFIE are also introduced in this chapter.

In Chapter 7, we introduce a novel modification of the LF-FMM based

on partial wave expansions. We show that the proposed extension is highly

efficient for evaluating the vectorial fields that are arise in the solution of EFIE,

MFIE, and CFIE.

In Chapter 8, we conclude this thesis and provide suggestions for future

work.



Chapter 2

Capacitance Extraction

In this chapter, we introduce capacitance extraction and its importance to the

analysis and manufacturing of integrated circuit’s in today’s electronics indus-

try. We also present a survey of common numerical techniques for capacitance

extraction and how they relate to our contributions in Chapter 3.

Since the first integrated circuits (IC) were invented there has been a need

to predict parasitic effects between metal wires that connect electronic de-

vices. The parasitic parameters are used to convert a physical design to an

electric network that consists of resistors, capacitors and inductors. Voltages

and currents are applied to the resulting networks to model and predict char-

acteristics such as signal delay, signal noise, voltage drop, and other reliability

and performance metrics. Signal and Power Integrity Engineers use these

characteristics to simulate, validate, and optimize designs of the interconnects

before they are manufactured. The semiconductor technology has evolved

rapidly over the past decades and today’s ICs have up to a seven billion de-

vices manufactured and interconnected on a single semiconductor substrate or

wafer [NVI13]. The high density of wires and devices as well as the nanometer

scale lead to extremely complicated wiring arrangements and electromagnetic

interactions. The circuits are typically embedded in layered dielectric media

which increase the complexity of the electromagnetic interactions. Therefore,

21
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Figure 2.1: Parallel plate capacitor.

accurate estimates of parasitic parameters are paramount in order to design

high-density and high performing integrated circuits. In addition, inaccurate

simulations may cause severe side-effects to the signal integrity such as, ring-

ing, high reflection loss, and excessive cross-talk.

The simplest model of a capacitor is the parallel-plate model which consists

of two parallel conductive plates that are separated by a dielectric slab with

permittivity ε and thickness d. The plates extend uniformly over an area A

and have potentials Φ1 and Φ2. A charge of Q1 = +Q and Q2 = −Q is

distributed on the plates as shown in Figure 2.1. The capacitance can then be

obtained from

C =
Q

Φ1 − Φ2

= ε
A

d
(2.1)

This result show that the capacitance depend on the area of the conductive

surface as well as the distance between the conductors and the dielectric prop-

erties of the material that separates them. In practice, the geometry of the

interconnects is very complicated and capacitance between multiple conduc-

tors must be taken into account. In a network of N conductors, a capacitance

matrix C is defined as the relationship

Q = CΦ (2.2)
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where Q and Φ describe the charges and potentials at the conductors, respec-

tively. The expanded form of 2.2 can be written as
Q1

Q2

...

QN

 =


C11 C12 . . . C1N

C21 C22 . . . C2N

...
...

. . .
...

CN1 CN2 . . . CNN




Φ1

Φ2

...

ΦN

 (2.3)

where the diagonal coefficients Cii represents the self-capacitance of conduc-

tor i and the off diagonal coefficients Cij represents the mutual capacitance

between conductors i and j.

To fully characterize the conductive paths in a network, we need matrices

of mutual resistances R, inductances L, and conductances G, in addition to

the capacitance matrix C. An equivalent circuit model of the entire region

of interest can be obtained by cascading the corresponding R, L, C, and G

matrices. In this thesis, we discuss efficient methodology for extracting the

capacitance matrix, C, in interconnects via tree based algorithms. Finally,

we note that numerical techniques for capacitance extraction can in general

be modified to be applicable to extraction of parasitic resistance and induc-

tance due to duality of capacitive and inductive interactions in the quasi-static

regime.

2.1 Numerical Techniques

Perhaps the most widely used capacitance extraction method involves slicing

the full 3D geometry into 2D slices and computing the 2D capacitance for

each slice from a large database of pre-computed values. The 2D capacitances

are then cascaded to obtain the capacitance matrix for the full 3D structure.

This approach is efficient and sufficiently accurate for a large fraction of the

interconnects inside integrated circuits. However, the method can be highly

inaccurate for interconnects where full 3D effects must be taken into account.
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In those cases, 3D electrostatics field solvers are required for accurate descrip-

tion of the capacitive interactions. A general approach for computing the

j’s column of the capacitance matrix is to set jth conductor to the potential

Φj = 1V and ground the remaining conductors,

Φi =

{
1 if i = j;

0 otherwise
(2.4)

By solving for charges Qi, i = 1, ..., N , induced on each conductor we obtain

jth column of capacitance matrix, Cij = Qi.

Available electrostatic solver techniques include the finite-difference method

[SKS+88], the finite-element method (FEM) [CB85] and integral equation (IE)

methods such as the method of moments (MoM) [NW91]. These methods can

solve for the electrostatic charge density with high accuracy. Both the FDM

and FEM require that the field throughout the entire volume occupied by

the geometry is discretized and enclosed in a bounding box, which leads to

large but sparse matrix equations. IE methods only require that the surfaces

of material interfaces are discretized which result in comparatively smaller

matrix equations that are dense. In ICs, this involve discretization of the

surfaces of the conductors and the interfaces between dielectric layers. IE

methods have many advantages over FDM and FEM, including good condi-

tioning, lower dimensionality and the capability of handling arbitrary geome-

tries efficiently. However, due to the dense nature of the matrix equation, the

computational time and memory requirements become prohibitive for large

problems. To further reduce the complexity, the matrix equation is normally

solved with an acceleration technique that reduce the computational complex-

ity of a matrix-vector product from O(N2) to orders that are as low as O(N)

for an N × N matrix. The principle behind the acceleration methods is to

compute contributions from nearby elements accurately and introduce math-

ematical approximations for contributions from distant elements while con-

trolling the approximation errors. Several acceleration matrix vector product

algorithms have been developed, most notably are the fast multipole method
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(FMM) [NW91], precorrected-FFT [BBJ94, PW97], and matrix compression

methods [KL97, GJ04].

Integrated circuits are most commonly implemented as planar 3D metal

structures embedded in stratified medium of the silicon substrate. Several

attempts have been made to extend the free-space kernel in FMM to incor-

perate the stratified dielectric media so that only surfaces of conductors are

discretized with MoM [JMM95, JMM96, PC04]. By eliminating the bound-

aries between dielectric layers, a substantial reduction of computational time

and memory is realized. However, these methods are difficult to implement due

to the complicated mathematical machinery require to factorize the pertinent

Green’s function.

2.2 Barnes-Hut Accelerated Capacitance Ex-

traction

In the next chapter, we introduce a new capacitance extraction algorithm that

is accelerated with the BH algorithm. It provides several desirable properties,

including

• Acceleration of the pertinent matrix vector products to O(NlogN) time

and memory which matches the fast multipole method.

• Inclusion of the stratified dielectric media effects so that only the surfaces

of conductors are discretized.

• Simplicity of implementation compared to the FMM for stratified media.

• Enables the use of the BH algorithm which in itself has desirable prop-

erties such as being inherently adaptive and easy to parallelize.
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The Barnes-Hut algorithm is widely used in astrophysics for

solving large gravitational N -body problems using O(N logN)

time and memory. This reduction in computational cost is

achieved by a hierarchical application of the classical center-

of-mass approximation. As both gravitational and electrostatic

potentials are subject to a 1/R dependence, the Barnes-Hut

algorithm is also a natural choice for rapidly evaluating inter-

actions between charged particles. The contribution of this pa-

per is an extension of the Barnes-Hut hierarchical clustering

to the acceleration of charge interactions in stratified media.

We derive and validate a closed-form expression for the shift

of the center-of-charge location induced by the physical inho-

mogeneities and show that proper positioning of the center-

of-charge ensures O(1/R3) error decay in the field approxima-

tion. Hierarchical applications of the proposed clustering ap-

proximation is demonstrated for the construction of O(N logN)

Method-of-Moment based capacitance extractors.

3.1 Introduction

When designing interconnect layouts at the chip, package and board integra-

tion levels, microwave engineers continue to adopt an approach where para-

sitic RLCG parameters of the nets are evaluated using quasi-static extractors.

These parameters are then used to create SPICE-compatible circuit models

which account for the distributed electromagnetic coupling mechanisms be-

tween the nets of the layout. Combined with non-linear device models, the

circuit models of the distributed passive structures can be used to accurately

predict crosstalk, ringing, ground bounce, time of flight and various other pa-

rameters critical for the electronic design of high-speed propagation channels.

In method-of-moments [1] based extractors the number of unknowns N in-
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troduced by discretization of the interconnect geometry leads to O(N2) com-

putational complexity. The direct O(N2) solution makes numerical extraction

of RLCG parameters practically impossible for complicated designs involving

a large number of nets. Under these circumstances, the computational com-

plexity of method-of-moments can be reduced to O(N logN) with the aid of

hierarchical tree-based fast algorithms.

Fast algorithms of this nature also play an important role in astrophysics,

fluid dynamics, and various other areas of computational physics where the

demand for fast solutions to large problems has produced several tree-based hi-

erarchical acceleration schemes [2]. These methods include Appel’s algorithm

[3], the Barnes-Hut algorithm [4], and the fast multipole method [5, 6]; all of

which reduce the associated computational complexity of the N -body problem

from O(N2) to O(N logN). The fast multipole method is perhaps the most

popular of these acceleration schemes as it is capable of achieving full ma-

chine precision, a feature that neither Appel’s algorithm nor the Barnes-Hut

algorithm can boast. In comparison, the low-order nature of the Barnes-Hut

algorithm may allow for a faster and more memory efficient solution than

the fast multipole method. As a result the Barnes-Hut algorithm may be the

method of choice when only two digits of accuracy are desired [7]. This level of

accuracy is often sufficient in low order method-of-moments [1] discretizations

of the electrostatic integral equation that arise in RLCG parameter extrac-

tion. This makes the Barnes-Hut algorithm an attractive acceleration scheme

for large interconnect networks [7, 8, 9, 10, 11, 12, 13, 14, 15].

The presence of multilayered media makes it difficult to apply fast algo-

rithms to the capacitance extraction problem. Complications arise due to the

way fast algorithms mathematically represent the pertinent Green’s function.

The lowest degree of complication is incurred by random-walk based algo-

rithms [16]; algorithms based on QR-compression of rank-deficient matrices

[17, 18]; hierarchical algorithms proposed in [19, 20]; and direct hierarchical

solvers [21, 22, 23]. FFT-based acceleration schemes such as the pre-corrected
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FFT algorithm [24, 25] (also known as the adaptive integral method [26, 27])

and the conjugate gradient FFT algorithm [28] may have more serious prob-

lems in the presence of stratified media as they are known to partially lose their

efficiency for such inhomogeneities [29]. Finally, the extension of tree-based

hierarchical methods such as the fast multipole method, Appel’s algorithm,

or the Barnes-Hut algorithm to general layered media is significantly more

complicated than any of the algorithms previously mentioned. Hierarchical

methods generally rely on an analytic factorization of the pertinent Green’s

function, and while several modifications of the fast multipole method algo-

rithm for solving Poisson’s equation in multilayered media have been proposed

in the past [12, 13, 14, 15], such modifications for the Barnes-Hut algorithm

have not yet been developed.

Assuming that the layered media Green’s function is known, any direct

O(N2) solution to the N -body problem is kernel independent. In our previous

publications [30, 31, 32] we have presented a point-based capacitance extractor.

This extractor was deemed to be kernel-independent since the Barnes-Hut al-

gorithm was applied using a free-space center-of-charge approximation. When

working in a multilayered medium, the free-space center-of-charge approxima-

tion entails notably higher error than an equivalent multilayer center-of-charge

approximation that accounts for the subtrate inhomogeneities. In [33] it was

shown that for a group of charged particles located within a domain crossing a

single dielectric interface the center-of-charge shifts with respect to its location

in homogeneous media by a distance proportional to the difference in relative

permittivities of the media above and below the interface. In this paper we

provide a complete extension to [33] by proposing a systematic methodology

for determining the center-of-charge location for an arbitrary distribution of

charged sources embedded in a general multilayered media.
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Figure 3.1: Group of arbitrary charged sources situated in general multilayered

media. Different markers depict groups of charges confined within distinct

layers. Solid black markers denote partial centers-of-charge for distinct layers.

3.2 Derivation of the Center-of-Charge in Lay-

ered Media

3.2.1 The Spatial Center-of-Charge Approximation

Consider a stratified media consisting of L layers sequentially indexed l =

0, 1, . . . , L − 1 in the direction of increasing coordinate z transverse to the

layer interfaces. Let the lth layer contain N l point charges ql0 through ql
N l−1

situated at the coordinates r′l0 through r′l
N l−1

as shown in Fig. 3.1. The point

source elevations are assumed to be confined to the interval z′ ∈ [z′min, z
′
max].
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The electrostatic potential Gl
m(r, r′) observed at a point r in layer m due

to a point charge of one Coulomb situated at r′ in layer l satisfies Poisson’s

equation [34]

∇2Gl
m(r, r′) = − 1

ε0εm
δ(r − r′),

am−1 ≤ z ≤ am, al−1 ≤ z′ ≤ al,

(3.1)

where 0 ≤ l ≤ L−1, am is the z coordinate of the mth dielectric interface, ε0 is

the free-space permittivity and where εm is the relative permittivity in layer m

(Fig.3.1). The potential Gl
m(r, r′) must be continuous and satisfy continuity

of the normal component of the electric displacement D = −ε0εr∇Φ across

the dielectric interfaces located at z = am, i.e.,

Gl
m+1 = Gl

m, εm+1∂zG
l
m+1 = εm∂zG

l
m, (3.2)

where m = 0, . . . , L− 2 and the operator ∂x above and throughout the paper

denotes differentiation with respect to a variable x.

As each layer l contains N l point charges, the total field observed at r in

layer m can be written as a superposition of individual charge contributions

Φm(r) =
L−1∑
l=0

N l−1∑
n=0

qlnG
l
m(r, r′ln). (3.3)

To accelerate the N -body problem via the Barnes-Hut algorithm, we must

approximate the electrostatic potential Φm(r) produced by N point sources

with the electrostatic potential Ψ`
m(r) of a single point charge QΣ placed at

r′Σ = x′Σx̂+ y′Σŷ + z′Σẑ in some layer `,

Ψ`
m(r, r′Σ) = QΣG

`
m(r, r′Σ). (3.4)

In the classical free-space problem, the center-of-charge value Qfs
Σ and lo-

cation r′fsΣ are computed as the net charge and weighted average position

respectively

Qfs
Σ =

L−1∑
l=0

N l−1∑
n=0

qln, r′fsΣ =
1

QΣ

L−1∑
l=0

N l−1∑
n=0

qlnr
′l
n. (3.5)
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This paper is devoted to determining the value QΣ and the location r′Σ of

the center-of-charge approximation in layered media such that the approximate

potential is O(1/R3) accurate, i.e.,

Φm(r) = Ψ`
m(r, r′Σ) +O(1/R3), (3.6)

where R = |r − r′| and r′Σ is located in layer `.

For clarity we outline the procedure used to determine the center-of-charge

approximation in layered media:

• We show that if a box contains charged sources that spans multiple z-

directed dielectric layers, the location of the center-of-charge along the

x and y coordinates is the same as if the sources were located in a

homogeneous space. This is achieved by:

– Converting the layered media Green’s function to its spectral repre-

sentation over the x and y coordinates. This representation becomes

Ewald’s identity [35] in the absence of inhomogeneities over the z

coordinate.

– Expanding the Green’s function spectrum into a Taylor series rep-

resentation at the stationary phase point [34, 35].

– Determining the net charge QΣ and lateral coordinates ρ′Σ of the

center-of-charge by matching its monopole and dipole moments

(zero-th and first Taylor series terms) to those of the true field.

• The center-of-charge location z′Σ is obtained by matching dipole moments

of the true and center-of-charge fields over the z coordinate as follows:

– The solution of the ordinary differential equation in each layer sat-

isfied by the spectral Green’s function is written for the true and

approximating field spectra as a sum of common and forced solu-

tions.
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– Equating the monopole and dipole moments of the solutions to the

differential equation in each layer for the true and approximating

fields yields the sought location of the center-of-charge elevation z′Σ.

3.2.2 The Spectral Center-of-Charge Approximation

In order to satisfy the spatial center-of-charge approximation (3.6) we will

match the spectrum of the center-of-charge approximation to the spectrum of

the charge distribution near the stationary phase point [34, 35]. Therefore we

write the solution of (3.1) as a Fourier transform

Gl
m(r, r′) =

1

4π2

∫ 2π

α=0

∫ ∞
λ=0

dαdλλg̃lm(λ, z, z′)e−iλ·(ρ−ρ
′
), (3.7)

where ρ = xx̂ + yŷ, ρ′ = x′x̂ + y′ŷ are the respective locations of the ob-

servation and source points in the XY -plane and where λ = kxk̂x + kyk̂y is

the position vector of a point in the spectral domain (commonly referred to

as k-space) with kx = λ cosα and ky = λ sinα [34]. In (3.7), g̃lm(λ, z, z′) =

glm(λ, z, z′)e−iλ·ρ
′
, where glm(λ, z, z′) is the true 2D spectrum of Gl

m(r, r′).

From (3.3) and (3.7) the net potential resulting from all point charges in the

system can be written as

Φm(r) =
1

4π2

∫ 2π

0

∫ ∞
0

dαdλλ

L−1∑
l=0

N l−1∑
n=0

qlng̃
l
m(λ, z, z′ln)e−iλ·(ρ−ρ

′l
n).

(3.8)

Using the method of stationary phase [35] it is possible to show that in (3.8)

the stationary phase point λ = 0 of the Green’s function provides a dominant

contribution to the field Φm(r) at distant observation locations |r| � 1 [35].

Following [35], we factor the integrand in (3.8) into a slowly varying part

φm(λ, α) =
L−1∑
l=0

N l−1∑
n=0

qlnλg̃
l
m(λ, z, z′n

l
)eiλ·ρ

′l
n , (3.9)
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and a rapidly oscillating part e−iλ·ρ. Thus (3.8) becomes

Φm(r) =
1

4π2

∫ 2π

0

∫ ∞
0

dαdλφm(λ, α)e−iλ·ρ. (3.10)

Similarly, the approximate potential (3.4) can be expanded as

Ψ`
m(r, r′Σ) = QΣG

`
m(r, r′Σ) =

1

4π2

∫ 2π

0

∫ ∞
0

dαdλψ`m(λ, α)e−iλ·ρ,
(3.11)

where ψ`m(λ) is the slowly varying part in the approximating field spectrum

ψ`m(λ, α) = QΣλg̃
`
m(λ, z, z′Σ)eiλ·ρ

′
Σ . (3.12)

In order to achieve O(1/R3) error in (3.6) it is sufficient to match the

slowly varying spectra in (3.9) and (3.12) to first order in the vicinity of the

stationary phase point λ = 0. Detailed error analysis supporting this claim

is provided in the Appendix. Expanding each spectrum into Taylor’s series

about λ = 0 and equating up to the first order terms we wish to enforce

φm(0, α) + λ∂λφm(0, α) = ψ`m(0, α) + λ∂λψ
`
m(0, α) (3.13)

Satisfying (3.13) in the vicinity of the stationary phase point implies satisfying

(3.6) as shown in the Appendix. The location r′Σ and value QΣ of the approx-

imating point charge provide four degrees of freedom and we can select their

values such that the truncated true field expansion on the left hand side of

(3.13) matches the truncated approximating field expansion on the right side

of (3.13). This matching procedure is described next.

3.2.3 Equations for the Center-of-Charge in Layered

Media

In order to enforce (3.13) from (3.9) and (3.12) we note that the first order ex-

pansion of the product of two functions is equal to the product of the first order
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expansions of the same functions (where second order terms are neglected),

and re-write the first-order equivalence (3.13) as follows

QΣ

[
ĝ`m(0, z, z′Σ) + λ∂λĝ

`
m(0, z, z′Σ)

]
[1 + λ · ρ′Σ] =

L−1∑
l=0

N l−1∑
n=0

[
qlnĝ

l
m(0, z, z′ln) + λ∂λĝ

l
m(0, z, z′ln)

]
[1 + λ · ρ′ln],

(3.14)

In (3.14) ĝ`m and ĝlm are used to denote the respective products λg̃`m and

λg̃lm. Retaining only the zeroth and first order λ terms we obtain the following

relationships

QΣĝ
`
m(0, z, z′Σ) =

L−1∑
l=0

N l−1∑
n=0

qlnĝ
l
m(0, z, z′ln), (3.15)

QΣĝ
`
m(0, z, z′Σ)ρ′Σ =

L−1∑
l=0

N l−1∑
n=0

qlnĝ
l
m(0, z, z′ln)ρ′ln, (3.16)

QΣ∂zĝ
`
m(0, z, z′Σ) =

L−1∑
l=0

N l−1∑
n=0

qln∂zĝ
l
m(0, z, z′ln). (3.17)

The above four equations (vector equation (3.16) constitutes two equations)

can be satisfied through the appropriate choice of the four parameters QΣ, x′Σ,

y′Σ, and z′Σ characterizing the center-of-charge value and its location.

3.2.4 Determining QΣ and ρ′Σ

Satisfying relationships (3.15)-(3.17) begins by observing that for any of the

observation layers m = 0, . . . , L− 1 the Green’s function spectrum ĝ`m(0, z, z′)

at λ = 0 remains constant for any source point location z′ and source layer

index `. By virtue of this property equations (3.15) and (3.16) are trivially

satisfied when the approximating charge QΣ and its transverse coordinates

ρ′Σ = (x′Σ, y
′
Σ) are chosen as

QΣ =
L−1∑
l=0

N l−1∑
n=0

qln, ρ′Σ =
1

QΣ

L−1∑
l=0

N l−1∑
n=0

qlnρ
′l
n. (3.18)
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It is apparent from (3.5) that the system (3.18) represents the classical formulas

for the center-of-charge in homogenous 2D space. This will confirm an intuitive

physical result: the z dependent inhomogeneity of the layered media should

not affect the value QΣ or coordinate ρ′Σ of the center-of-charge transverse

to the inhomogeneity. In what follows we will show that a solution to (3.17)

provides a value of QΣ that is consistent with (3.18).

3.2.5 Determining z′Σ

While equations (3.15) and (3.16) were satisfied by choosing the net charge

QΣ and its lateral coordinates x′Σ, y′Σ as if the sources were situated in a ho-

mogeneous medium, determining the center-of-charge location z′Σ by satisfying

(3.17) entails a notably more complicated procedure which is described below.

The differential equation for g̃lm(λ, z, z′)

Without loss of generality, we assume that all source points have zero trans-

verse coordinate, i.e., ρ′ln = 0, ρ′Σ = 0. In order to distinguish between the

spectrum of this special case and the spectrum when non-zero transverse co-

ordinates are present we introduce the spectral functions

φ̇m(λ) =
L−1∑
l=0

N l−1∑
n=0

qlnĝ
l
m(λ, z, z′ln), (3.19)

ψ̇`m(λ) = QΣĝ
`
m(λ, z, z′Σ), (3.20)

for the true, and approximating field spectra, respectively.

By substituting the spectrum (3.7) into Poisson’s equation (3.1) it is easy

to show that the point spectrum g̃lm(λ, z, z′) = ĝlm(λ, z, z′)/λ satisfies the fol-

lowing ordinary differential equation

d2g̃lm(λ, z, z′)

dz2
− λ2g̃lm(λ, z, z′) = − 1

ε0εm
δ(z − z′),

am−1 ≤ z ≤ am, al−1 ≤ z′ ≤ al,

(3.21)
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and the spectral domain analog of boundary conditions (3.2)

g̃lm+1(λ, am, z
′) = g̃lm(λ, am, z

′),

εm+1∂zg̃
l
m+1(λ, am, z

′) = εm∂zg̃
l
m(λ, am, z

′),
(3.22)

where m, l = 0, . . . , L− 2.

The solution of this system can be written in its most general form as a sum

of the common and particular solutions to the ordinary differential equation

for both the true and approximating fields in layer m as

φ̇m(λ) =
C−m(λ)e−λ(z−am−1)

2ε0εm
+
C+
m(λ)e−λ(am−z)

2ε0εm

+
Nm−1∑
n=0

q
(m)
n e−λ|z−z

′(m)
n |

2ε0εm
,

(3.23)

ψ̇`m(λ) =
D−,`m (λ)e−λ(z−am−1)

2ε0εm
+
D+,`
m (λ)e−λ(am−z)

2ε0εm

+
δm`QΣe

−λ|z−z′Σ|

2ε0εm
,

(3.24)

where δ`′` is the Kronecker’s delta, am−1 ≤ z ≤ am and where the superscript

notation (m) is used to indicate that charge values and positions are located in

layer m. Here we extend our definition of the geometry such that a−1 = −∞
and aL−1 = ∞. The choice of index value ` = 0, 1, . . . , L − 1 places the

center-of-charge in any one of the layers. Additionally, as the electrostatic

potential must vanish at ±∞ we note that C+
L−1, D+,`

L−1, C−0 and D−,`0 must all

be identically zero.

Having explicitly written equations for the spectra (3.23) and (3.24) we

may draft a plan for enforcing their first order equality as follows: First we

will determine explicit forms for first-order approximations of (3.23) and (3.24)

in terms of the unknown coefficients C
+/−
m and D

+/−,`
m . Next we will use the

boundary conditions (3.22) to solve for the coefficients C
+/−
m and D

+/−,`
m which

will allow us to equate the first-order expansions of (3.23) and (3.24) and solve

for z′Σ.
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First Order Expansions for φ̇ and ψ̇

For clarity we consider the specific case of a three-layered medium. Our moti-

vation is two-fold: First, there is no loss of generality as the steps taken hold

for the general L layer case, and second, explicitly solving the three-layer case

provides significant insight into the solution of the problem. For the purpose

of compact notation we have found it beneficial to cast (3.23) and (3.24) into

matrix form

φ̇(λ) = E(λ) ·C(λ) + Q(λ), (3.25)

ψ̇(λ) = E(λ) ·D`(λ) +QΣe
−λ|z−z′Σ|d`. (3.26)

where the arrays φ̇ and ψ̇ are given by

φ̇(λ) =
[
φ̇2(λ) φ̇1(λ) φ̇0(λ)

]t
,

ψ̇(λ) =
[
ψ̇2(λ) ψ̇1(λ) ψ̇0(λ)

]t (3.27)

while the coefficient arrays C and D` are given by

C(λ) =
[
C−2 (λ) C+

1 (λ) C−1 (λ) C+
0 (λ)

]t
, (3.28)

D`(λ) =
[
D−,`2 (λ) D+,`

1 (λ) D−,`1 (λ) D+,`
0 (λ)

]t
, (3.29)

where t denotes matrix transposition. In (3.25) and (3.26), the L × (2L − 2)

matrix E provides weights for the 2L− 2 unknown coefficients in C and D` in

each of the L layers (the coefficients C+
L−1, D+,`

L−1, C−0 and D−,`0 are ommited

as they are identically zero). We also note that our convention is such that

the equation for layer L− 1 corresponds to row 0 of the matrix. For the three

layer case the matrix E is simply

E(λ) =


e−λ(z−a1)

2ε0ε2
0 0 0

0 e−λ(a1−z)

2ε0ε1
e−λ(z−a0)

2ε0ε1
0

0 0 0 e−λ(a0−z)

2ε0ε0

 , (3.30)
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while the vectors Q and d` are

Q(λ) =


∑N(2)−1

n=0
q
(2)
n e−λ|z−z

′(2)
n |

2ε0ε2∑N(1)−1
n=0

q
(1)
n e−λ|z−z

′(1)
n |

2ε0ε1∑N(0)−1
n=0

q
(0)
n e−λ|z−z

′(0)
n |

2ε0ε0

 ,d` =


δ2`

2ε0ε2
δ1`

2ε0ε1
δ0`

2ε0ε0

 . (3.31)

We recall that we are seeking to satisfy (3.17) which was derived as a

consequence of first order spectral matching in (3.13). Therefore we require

first order expansions of φ̇ and ψ̇. These expansions can be written in terms

of the first order expansions of each term in (3.25) and (3.26)

φ̇(λ) ' (E0 + λE1) · (C0 + λC1) + (Q0 + λQ1), (3.32)

ψ̇(λ) ' (E0 + λE1) · (D`
0 + λD`

1) +QΣ(1∓ λ(z − z′Σ))d` (3.33)

where λ → 0. In the above equations, matrix subscripts are used to denote

which term in the corresponding expansion each matrix represents; and of

course once the equations are expanded, only terms up to first order are re-

tained. Also, in (3.33) the ‘−’ or ‘+’ sign is chosen when z > z′Σ and z < z′Σ

respectively. From (3.30) it follows that for three layers E0 and E1 are given

by

E0 =
1

2ε0


1
ε2

0 0 0

0 1
ε1

1
ε1

0

0 0 0 1
ε0

 ,

E1 = zE′1 + E′′1 =
z

2ε0


−1
ε2

0 0 0

0 1
ε1

−1
ε1

0

0 0 0 1
ε0



+
1

2ε0


a1

ε2
0 0 0

0 −a1

ε1

a0

ε0
0

0 0 0 −a0

ε0

 ,
(3.34)
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while from (3.31) Q0 and Q1 are

Q0 =


Q

(2)
Σ

2ε0ε2
Q

(1)
Σ

2ε0ε1
Q

(0)
Σ

2ε0ε0

 ,

Q1 = ∓zQ′1 ±Q′′1 =∓ z

2ε0


Q

(2)
Σ

ε2
Q

(1)
Σ

ε1
Q

(0)
Σ

ε0

± 1

2ε0


Q

(2)
Σ z
′(2)
Σ

ε2
Q

(1)
Σ z
′(1)
Σ

ε1
Q

(0)
Σ z
′(0)
Σ

ε0


= ∓zQ0 ±Q′′1

(3.35)

In (3.35), the values Ql
Σ and z′lΣ denote the net charges and corresponding

centers of charge for the sources contained in each layer l

Ql
Σ =

N l−1∑
n=0

qln, z′lΣ =
1

Ql
Σ

N l−1∑
n=0

qlnz
′l
n, l = 0, . . . , L− 1. (3.36)

Also, in (3.35) the top sign is chosen when z > z′max and the bottom sign

is chosen when z < z′min where we recall that globally the point charges are

confined to the interval z′min ≤ z′ln ≤ z′max for any n and l. As will be shown

in the sequel, this apparently limiting assumption is made so that the ex-

pressions obtained do not depend on the observation location z provided that

z > z′max or z < z′min. While the strict validity of the derivations that follow

will only hold when z > z′max or z < z′min, in the Appendix we show that the

derived center-of-charge approximation is still O(1/R3) = O(1/ρ3) accurate

when z′min ≤ z ≤ z′max. As a result, the values Q0 and Q1 can be obtained

by considering only the partial per-layer net charges Ql
Σ positioned at the per-

layer centers of charge elevations z′lΣ given by (3.36). The consequence is that

we can always work with a single equivalent point charge Ql
Σ in each layer l

placed at the per-layer center-of-charge z′lΣ.
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First Order Expansions for C
+/−
m and D

+/−,`
m

In general, the equations (3.25) and (3.26) relate the fields in L layers to 2L−2

coefficients C and D`. The 2L−2 coefficients can be determined by satisfying

the continuity of the potential and normal deterivative of the electric flux

across each of the L− 1 interfaces in (3.22).

The special case of a three-layer system corresponding to the matrix (3.30),

and the vectors (3.31) produces a 4 × 4 system of equations for each of the

unknown coefficient vectors C and D`

Ē(λ) ·C(λ) = Q̄(λ), (3.37)

Ē(λ) ·D`(λ) = QΣd̄`(λ). (3.38)

where the first L− 1 rows of the (2L− 2)× (2L− 2) matrix Ē(λ) are multi-

plicative terms for the coefficients C(λ) and D`(λ) when enforcing continuity

of the spectral potential at each interface aL−2, . . . , a0. The following L − 1

rows arise when enforcing continuity of the normal derivative of the potential

spectra. For three layers this matrix can be written as

Ē(λ) =


1
ε2

−1
ε1

−e−λ(a1−a0)

ε1
0

0 e−λ(a1−a0)

ε1
1
ε1

−1
ε0

−1 −1 e−λ(a1−a0) 0

0 e−λ(a1−a0) −1 −1

 . (3.39)

In a similar fashion, the size 2L − 2 column vectors Q̄(λ) and d̄`(λ) are con-

structed from the parts of the boundary equations that are independent of

C(λ) and D`(λ) respectively. For three layers they may be written as

Q̄(λ) = (−1)×
∑N(2)−1

n=0 q
(2)
n

e−λ(z
′(2)
n −a1)

ε2
−
∑N(1)−1

n=0 q
(1)
n

e−λ(a1−z
′(1)
n )

ε1∑N(1)−1
n=0 q

(1)
n

e−λ(z
′(1)
n −a0)

ε1
−
∑N(0)−1

n=0 q
(0)
n

e−λ(a0−z
′(0)
n )

ε0∑N(2)−1
n=0 q

(2)
n e−λ(z

′(2)
n −a1) +

∑N(1)−1
n=0 q

(1)
n e−λ(a1−z′(1)

n )∑N(1)−1
n=0 q

(1)
n e−λ(z

′(1)
n −a0) +

∑N(0)−1
n=0 q

(0)
n e−λ(a0−z′(0)

n )

 ,
(3.40)
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d̄`(λ) =


−δ2`e−λ(z′Σ−a1)

ε2
+ δ1`e

−λ(a1−z
′
Σ)

ε1
−δ1`e−λ(z′Σ−a0)

ε1
+ δ0`e

−λ(a0−z
′
Σ)

ε0

−δ2`e
−λ(z′Σ−a1) − δ1`e

−λ(a1−z′Σ)

−δ1`e
−λ(z′Σ−a0) − δ0`e

−λ(a0−z′Σ)

 . (3.41)

Solving for the coefficients C and D`

In order to find the first two terms in the Taylor expansion of C(λ) and D`(λ)

we can approximate the true coefficients as

C(λ) = Ē−1(λ) · Q̄(λ) ' (Ē0 + λĒ1)−1 · (Q̄0 + λQ̄1), (3.42)

D`(λ) = Ē−1(λ) ·QΣd̄` ' (Ē0 + λĒ1)−1 · (d̄`0 + λd̄`1), (3.43)

where the matrices Ē0, Ē1; Q̄0, Q̄1; and d̄`0, d̄`1 are the first two coefficients

in the Taylor expansion of (3.39), (3.40) and (3.41) respectively

Ē(λ) ' Ē0 + λĒ1 =
1
ε2

−1
ε1

−1
ε1

0

0 1
ε1

1
ε1

−1
ε0

−1 −1 1 0

0 1 −1 −1

+ λ


0 0 a1−a0

ε1
0

0 a0−a1

ε1
0 0

0 0 a0 − a1 0

0 a0 − a1 0 0

 ,
(3.44)

Q̄ ' Q̄0 + λQ̄1 = −


Q

(2)
Σ

ε2
− Q

(1)
Σ

ε1
Q

(1)
Σ

ε1
− Q

(0)
Σ

ε0

Q
(2)
Σ +Q

(1)
Σ

Q
(1)
Σ +Q

(0)
Σ

+

λ


Q

(2)
Σ

(z
′(2)
Σ −a1)

ε2
−Q(1)

Σ
(a1−z′(1)

Σ )

ε1

Q
(1)
Σ

(z
′(1)
Σ −a0)

ε1
−Q(0)

Σ
(a0−z′(0)

Σ )

ε0

Q
(2)
Σ (z

′(2)
Σ − a1) +Q

(1)
Σ (a1 − z′(1)

Σ )

Q
(1)
Σ (z

′(1)
Σ − a0) +Q

(0)
Σ (a0 − z′(0)

Σ )

 ,
(3.45)
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d̄`(λ) ' d̄`0 + λz′Σd̄′`1 + λd̄′′`1 =


−δ2`
ε2

+ δ1`
ε1

−δ1`
ε1

+ δ0`
ε0

−δ2` − δ1`

−δ1` − δ0`

+

λz′Σ


δ2`
ε2

+ δ1`
ε1

δ1`
ε1

+ δ0`
ε0

δ2` − δ1`

δ1` − δ0`

+ λ


−δ2`a1

ε2
− δ1`a1

ε1
−δ1`a0

ε1
− δ0`a0

ε0

−δ2`a1 + δ1`a1

−δ1`a0 + δ0`a0

 ,
(3.46)

where d̄`1 = z′Σd̄′`1 + d̄′′`1 .

From Taylor’s expansion we know that

(Ē0 + λĒ1)−1 = Ē−1
0 − λĒ−1

0 · Ē1 · Ē−1
0 + · · · , (3.47)

and retaining terms up to first order in λ we obtain

C(λ) ' C0+λC1 = Ē−1
0 · Q̄0+

λ(Ē−1
0 · Q̄1 − Ē−1

0 · Ē1 · Ē−1
0 · Q̄0),

(3.48)

D`(λ) ' D`
0 + λD`

1 = QΣĒ−1
0 · d̄`0 + λQΣ

(z′ΣĒ−1
0 · d̄′`1 + Ē−1

0 · d̄′′`1 − Ē−1
0 · Ē1 · Ē−1

0 · d̄`0),
(3.49)

which are the desired first-order expansion for the unknown coefficients C and

D`.

Equating φ̇ and ψ̇ to obtain z′Σ

Substituting the first-order expression for the coefficients C into (3.32) we

obtain the desired first order approximation of the potential spectra in the

vicinity of the stationary phase point

φ̇(λ) ' (E0 · Ē−1
0 · Q̄0 + Q0) + λ(E1 · Ē−1

0 · Q̄0+

E0 · Ē−1
0 · Q̄1 − E0 · Ē−1

0 · Ē1 · Ē−1
0 · Q̄0 + Q1),

(3.50)

where λ→ 0.
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A similar substitution of the first order representation for D` into (3.33)

provides the approximating center-of-charge potential spectrum in the vicinity

of λ = 0

ψ̇
`
(λ) 'QΣ(E0 · Ē−1

0 · d̄`0 + d`)+

λQΣ[z′ΣE0 · Ē−1
0 · d̄′`1 + E0 · Ē−1

0 · d̄′′`1

− E0 · Ē−1
0 · Ē1 · Ē−1

0 · d̄`0
+ E1 · Ē−1

0 · d̄`0 ∓ (z − z′Σ)d`],

(3.51)

where λ→ 0. The choice of sign in (3.51) is again taken using ‘−’ when z > z′Σ

and ‘+’ when z < z′Σ.

Previously we have shown that the equations for the center-of-charge in

layered media (3.15) and (3.16) could be satisfied by selecting QΣ and ρ′Σ as

in (3.18). We must now verify that this selection of QΣ consistently satisfies

(3.17). Equating the zeroth order terms of (3.50) and (3.51) gives

QΣ(E0 · Ē−1
0 · d̄`0 + d`) = (E0 · Ē−1

0 · Q̄0 + Q0). (3.52)

An involved analysis of this system of equations shows that each row of the

equation is satisfied precisely when the center-of-charge value is selected as

sum of net charges in the individual layers

QΣ = Q
(0)
Σ +Q

(1)
Σ +Q

(2)
Σ , (3.53)

independent of which layer ` contains QΣ. This is exactly the value derived in

(3.18).

Finally, we can determine the elevation of the center-of-charge z′Σ by match-

ing the first order coefficients in the Taylor series expansion of the approxi-

mating field in (3.51) and the true field (3.50)

[E0 · Ē−1
0 · (z′Σd̄′`1 + d̄′′`1 )− E0 · Ē−1

0 · Ē1 · Ē−1
0 · d̄`0

+ (zE′1 + E′′1) · Ē−1
0 · d̄`0 ∓ (z − z′Σ)d`]QΣ =

[E0 · Ē−1
0 · Q̄1 − E0 · Ē−1

0 · Ē1 · Ē−1
0 · Q̄0

+ (zE′1 + E′′1) · Ē−1
0 · Q̄0 ∓ (zQ0 −Q′′1)].

(3.54)
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It can be shown that the terms containing the observation point elevation z

in the right and left hand sides of the equation (3.54) simplify i.e.,

z(E′1 · Ē−1
0 · d̄`0 ∓ d`)QΣ = z(E′1 · Ē−1

0 · Q̄0 ∓Q0), (3.55)

provided that QΣ is selected as in (3.53) and z > z′max or z < z′min. From

equations (3.54) and (3.55) one can see that the center-of-charge elevation z′Σ

relates the following vectors

E0 · Ē−1
0 · (Q̄1 − d̄′′`1 )− E0 · Ē−1

0 · Ē1 · Ē−1
0 · (Q̄0 − d̄`0)+

E′′1 · Ē−1
0 · (Q̄0 − d̄`0)±Q′′1 = [E0 · Ē−1

0 · d̄′`1 ± d`]QΣz
′
Σ.

(3.56)

Each row of this system of equations relates the charge values and locations in

each observation layer m corresponding to each row of the system. It is clear

that in each observation layer, the relationships have the same dependence

on z′Σ and so we must assume that there is a value of z′Σ that simulatenously

satifies the equations. Picking any m allows us to solve for z′Σ as

z′Σ =

[E0 · Ē−1
0 · (Q̄1 − d̄′′`1 )− E0 · Ē−1

0 · Ē1 · Ē−1
0 · (Q̄0 − d̄`0)+

E′′1 · Ē−1
0 · (Q̄0 − d̄`0)±Q′′1]m/([E0 · Ē−1

0 · d̄′`1 ± d`]mQΣ).

(3.57)

In fact, it is true that each value of m will give the same value of z′Σ.

Eliminating non-physical solutions

As is clear from (3.57) the solution of the center-of-charge location z′Σ is de-

pendent on the layer location of the center-of-charge `. Consequently, there

are L − 1 solutions to (3.57) corresponding to ` = 0, . . . , L − 1. We have nu-

merically validated for numerous point distributions in anywhere from two to

hundreds of layers that only one of the L − 1 solutions for z′Σ will satisfy the

assumption that z′Σ is located in layer `. The other L− 2 solutions explicitly
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Figure 3.2: Random charge distribution of 200 point charges situated in a 5-

layer medium. This distribution is used in the first set of experiments reported

in the numerical results section.

violate this assumption by providing a value of z′Σ located in some layer other

than `.

Comments

Although the methodology presented in the previous sections appears compli-

cated, using the resulting expressions to determine an accurate center-of-charge

location in layered media is straight-forward. It suffices to compute QΣ and ρ′Σ

from (3.18) followed by solving (3.57) with appropriately constructed matrices

and vectors for the layered media under consideration.
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3.3 Numerical results

3.3.1 Error behavior of the clustering approximation

In the following numerical examples we analyze the error behavior of the

Barnes-Hut clustering approximation in multilayered media and compare it

to the case when the effect of the inhomogeneity on the location of the center-

of-charge is neglected.

Consider a random distribution of N = 200 charged points sources each

carrying a random charge between 0 and 1 Coulomb and situated in a five-

layered medium (L = 5) as shown in Fig. 3.2. The point coordinates are

confined to a cube of size c = 1[m]. Associating the origin of the coordinate

system with the cube’s center, we compute the relative error in the electro-

static potential Φ(r(R, θ, φ)) given by (3.3) due to the Barnes-Hut clustering

approximation Ψ(r(R, θ, φ), r′Σ) in (3.4) provided that the net charge QΣ, and

its location r′Σ are selected according to (3.18) and (3.57). The dependence of

the error on angle θ is shown in Fig. 3.3 for radii of R = 1[m], R = 10[m],

and R = 100[m]. The error is computed as the average relative error over all

φ angles

δθ(R, θ, r
′
Σ) =∫ 2π

0

|Φ(r(R, θ, φ))−Ψ(r(R, θ, φ), r′Σ)|
2π|Φ(r(R, θ, φ))|

dφ,
(3.58)

as a function of θ. For comparison, we show the same angular distribution of

the relative error but in the case of the free-space clustering approximation

Ψ(r(R, θ, φ), r′fsΣ ) with r′fsΣ given in (3.5). From the figure we observe that

for most angles the multilayer center-of-charge produces an error significantly

lower than the free-space center-of-charge at the same distance. Specifically,

at 10[m] the multilayer center-of-charge produces an error nearly one-hundred

times smaller than the equivalent free-space center-of-charge.
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Figure 3.3: Plot of the relative error δθ(R, θ, r
′
Σ) versus angle θ for observation

radiuses R = 1[m], R = 10[m], and R = 100[m]. The solid lines represent the

relative error due to the novel clustering approximation (3.18), (3.57). The

dashed lines represent the relative error due to the clustering approximation

computed with the free-space formula (3.5).
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For our next experiment we numerically demonstrate that for the same 200

point charge distribution, the z-coordinate of the center-of-charge computed

according to formula (3.57) is indeed the location which yields the minimum

error in the approximation of the true field (3.3) by the single-source field

(3.4). For the purpose of this experiment we choose coordinates x′Σ and y′Σ

according to the free-space formulae (3.18) and computed the average of the

relative error

δ(R, r̃Σ) =∫ 2π

0

∫ π

0

|Φ(r(R, θ, φ))−Ψ(r(R, θ, φ), r̃Σ)|
4π|Φ(r(R, θ, φ))|

sin θdθdφ,
(3.59)

as a function of coordinate z̃Σ, (i.e., r̃Σ = x′Σx̂+ y′Σŷ + z̃Σẑ), within the span

of the box height, z̃Σ ∈ [−c/2, c/2]. The plot of the relative error δ(R, r̃Σ)

versus the coordinate z̃Σ is shown in Fig. 3.4 for three observation radii. One

can see that the theoretically predicted center-of-charge (3.57) coincides with

the minimum of the numerically evaluated average relative error in the field

approximation, i.e. at z̃Σ = z′Σ.

The dependence of the average relative error (3.59) on the radius of obser-

vation R is depicted in Fig. 3.5. One can observe when the inhomogeneity is

properly accounted for the relative error δ(R, r′Σ) exhibits a O(1/R2) depen-

dence while the relative error δ(R, r′fsΣ ) of the field approximation ignoring the

effect of multilayered media on the location of the center-of-charge decays only

as O(1/R). It is also interesting to note that the error level achieved in the

inhomogeneous model at R = 10[m] is not observed in the free-space model

until R = 1000[m].

Our next experiment is to demonstrate that the clustering of charged

sources in a multilayered media can be performed hierarchically in the same

fashion as it can be done in free space. This property constitutes validating

an extension of the hierarchical Barnes-Hut algorithm to the case of multi-

layered media, a fact that must be verified before the methodology we have

presented can be applied to the acceleration of the capacitance extraction
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Figure 3.4: Plot of the relative error δ(R, r̃Σ) versus z̃Σ for observation radiuses

R = 1[m], R = 10[m], and R = 100[m]. The vertical markers indicates the

theoretical location of the center-of-charge elevation z′Σ given by (3.57) and

the center-of-charge elevation z′fsΣ in (3.5).
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Figure 3.5: Plot of the average relative error δ(R, r′Σ) versus R for the value of

center-of-charge elevation z′Σ computed using formula (3.57) accounting for the

inhomogeneity of multilayered space and the elevation of the center-of-charge

z′fsΣ assuming the space to be homogeneous.
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problem. A discussion of the hierarchical clustering performed by the Barnes-

Hut algorithm is beyond the scope of this paper. Interested readers may find

a sufficient discussion in [4].

For the purpose of this demonstration we consider a charged, perfectly

conducting cube 1[m] in size, situated in a 4-layered media (Fig. 3.6). The

surface of the cube is discretized using a triangular mesh of P = 192 patches

with equal charge values assigned to the barycenter of each triangle. A two-

level hierarchical partitioning of the geometry (2-level oct-tree) is also shown

in Fig. 3.6. A box that bounds the entire geometry is selected as the root of

the oct-tree and is denoted as Level 0 (in this case the cube itself coincides

with the root of the tree). The cube is divided into eight Level 1 boxes that

contain 24 triangles each. Level 2 boxes are then produced by subdividing each

Level 1 box into eight boxes containing 2, 4, or 6 triangular patches depending

on their location in the tree as shown in Fig. 3.6.

We begin hierarchically determining the center-of-charge of the cube by

clustering the triangles in each of the 64 boxes at Level 2 of the oct-tree. This is

accomplished by determining their respective centers-of-charge and net charges

according to formulae (3.18) and (3.57). We then determine the centers-of-

charge in each of the 8 boxes at Level 1 in two alternative ways. First, consider

a box at Level 1 that spans layers 3 and 4 as shown in Fig. 3.6. For this box,

we take each of the 24 individual patches it contains and compute its center-

of-charge directly. In this fashion, the computed center-of-charge z′Σ for the

selected Level 1 box was computed from (3.57) as 0.739583[m]. In comparison,

we compute the center-of-charge of the same Level 1 box from (3.57) by using

the 8 centers-of-charge computed for its Level 2 children. The center-of-charge

elevation we obtain is z′hΣ = 0.739582[m], where the superscript ‘h’ is used to

denote that the result was obtained via ‘hierarchical’ clustering. The difference

in the last digit between z′Σ and z′hΣ can be attributed to round-off error in

single precision arithmetic. Similarly, it has been verified that the center-of-

charge for the root box at Level 0 computed directly and hierarchically also
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Figure 3.6: Group of arbitrary charged sources situated in general multilayered

media. Different markers depict groups of charges confined within distinct

layers. Larger size markers denote partial centers-of-charge for distinct layers.

coincide. A direct computation using each of the P = 192 sources contained

in the root box gives a center-of-charge elevation z′Σ = 0.473958[m] while the

center-of-charge of the Level 0 box determined from the 8 centers-of-charge

of its Level 1 children gives z′hΣ = 0.473957[m]. The computed values of the

center-of-charges are also summarized in Fig. 3.6.

This numerical demonstration shows that hierarchical clustering of charged

sources in multilayered media can be performed using the multilayer center-

of-charge analogously to the case of a homogeneous medium.



Chapter 3. Hierarchical CoC Approximation for Multilayered Media 53

3.3.2 Capacitance extraction comparison against An-

soft’s Q3D Extractor

In order to validate our proposed center-of-charge clustering approximation

and demonstrate its practical significance, we incorporated our method into

the Barnes-Hut accelerated capacitance extraction algorithm described in [30]

and conducted capacitance extraction for 7 nets of IBM’s Plasma package1

depicted in Fig. 3.7. The first column of the resulting capacitance matrix

was compared with the one obtained with Ansoft’s Q3D Extractor [36] and

those results are given in Table I. The weakest mutual capacitance is observed

between nets 1 and 6 with over 30 times attenuation compared to the self

capacitance. The difference in that interaction compared to Q3D Extractor

did not exceed 2.4%. Q3D Extractor utilizes a boundary element formulation

that discretizes the surfaces of both the conductors and the dielectric inter-

faces. This discretization allows Q3D Extractor to accelerate the matrix-vector

products using the fast multipole method with the homogeneous space kernel

[6]. In the example illustrated in Fig. 3.7, Q3D Extractor utilized 144, 580

elements for the conductor surface and 303, 716 elements for the dielectric in-

terfaces. The run time for Q3D Extractor was 1, 524 seconds with a peak

memory allocation of 2, 400 megabytes. The 144, 580-element surface mesh of

the conductors created by the Q3D Extractor solver was subsequently utilized

in the Barnes-Hut algorithm. The run time for the Barnes-Hut solver was 337

seconds with a peak memory usage of 510 megabytes. The tolerance in the

diagonally preconditioned GMRES matrix equation solver was set to 0.001.

The simulations were performed on a single 3.0GHz Intel Xeon E5472 CPU

core.

1Courtesy of Alpha Group, IBM T.J. Watson Research Center.
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Figure 3.7: (a) A 75-net fragment of the IBM Plasma package implemented in

7-layer process with relative permittivities ε0 through ε8 equal to 1, 3.5, 4.4,

3.5, 4.4, 3.5, 4.4, 3.5, and 1, respectively, and the dielectric interface locations

a0 through a7 equal to 16µm, 62µm, 108µm, 162µm, 562µm, 616µm, 670µm

and 732µm, respectively. Capacitance is extracted for the highlighted seven

signal nets. (b) Close-up depiction of the 7th net geometry and its surface

mesh (c) containing 15, 748 triangular elements.
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Table 3.1: First column of the capacitance matrix for 7 nets of IBM’s Plasma

Package

Capacitance [fF ]

1 2 3 4 5 6 7

Q3D Extractor 265.3 -89.2 -26.3 -22.2 -11.6 -8.4 -8.6

Barnes-Hut 264.5 -88.7 -26.2 -22.4 -11.7 -8.6 -8.4

3.3.3 Matrix-vector product comparison against Fast-

Cap

As Ansoft’s Q3D Extractor software does not provide detailed runtime statis-

tics for individual matrix-vector products, we could not use it for comparison

of its fast multipole method accelerated matrix-vector product against that in

the proposed Barnes-Hut algorithm. For that purpose we utilized the Fast-

Cap [8] software which uses a similar approach for handling the conductors in

multilayered media to the one implemented in Q3D Extractor. Namely, it dis-

cretizes surfaces of both the dielectric interfaces and the conductors and uses

the homogeneous-space kernel fast multipole method to accelerate the matrix-

vector product. The geometry of a cross-bar structure embedded in 15-layer

process simulated using FastCap and our proposed algorithm is shown in Fig.

3.8. The relative permittivities of layers ε0 through ε14 are equal to 1, 3.5, 1,

4.4, 1, 3.5, 1, 4.4, 1, 3.5, 1, 4.4, 1, 3.5, and 1. The elevations of layer interfaces

a0 through a13 are 16µm, 49µm, 62µm, 95µm, 108µm, 141µm, 162µm, 562µm,

583µm, 616µm, 637µm, 670µm, 683µm, and 732µm, respectively. Each of

the 42 identical conductors forming the cross-bar interconnect is 200µm long,

18.9µm wide, and 12µm thick. The lateral spacing between the conductors is

18.9µm while the elevations of the bottom planes of each of the 7 metal layers

are 26µm, 72µm, 118µm, 362µm, 593µm, 647µm, and 703µm, respectively.

The lateral dimensions of the layers are 2mm×2mm with the lateral geometric
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Figure 3.8: Geometry of a cross-bar interconnect of 42 conductors embedded in

15 layer process. Details of the geometry are given in the text. In addition to

the 35, 120-element mesh on the conductor surfaces utilized in our proposed

algorithm the figure shows fragments of the 39, 968-element surface meshes

discretizing the dielectric layer interfaces in FastCap. To clarify the design

only a fragment of the dielectric layer interfaces is shown.
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center coinciding with that of the cross-bar interconnect. The surface of the

conductors are discretized into 35, 120 elements, while the dielectric interfaces

are discretized into 39, 968 elements.

In order to ensure the same order of approximation error FastCap was

set to use second order multipole expansions [7]. The Barnes-Hut clustering

parameter was set to θ = 1/(
√

3/2 + 1) = 0.54. This value corresponds to a

near interaction radius of
√

3/2 + 1 box widths in the Barnes-Hut tree which

is equivalent to the radius used by the fast multipole method in FastCap. The

preconditioner was turned off in FastCap to improve its matrix-vector product

performance.

Each matrix-vector product in the Barnes-Hut solver took 0.34 seconds on

average compared to 2.04 seconds for FastCap. The total memory used by

the Barnes-Hut solver was 130 megabytes while the peak memory usage by

FastCap was 3, 900 megabytes. In this experiment, we observed that the new

Barnes-Hut clustering approximation adds approximately 2% to the overall

matrix-vector product runtime compared to the free-space center-of-charge

approximation. It is important to note that since the free-space center-of-

charge is faster to compute, it should be used when all sources are located in

a single layer.

This numerical comparison shows that the Barnes-Hut algorithm is a com-

petitive alternative to the fast multipole method for capacitance extraction

when two digits of accuracy is sufficient. We would also like to point the inter-

ested reader to the numerical results in [7] which indicate that the Barnes-Hut

algorithm is approximately ten times faster than the fast multipole method

for capacitance extraction in homogeneous media.

3.4 Conclusion

This paper describes an extension of the free-space center-of-charge approxi-

mation to inhomogeneous stratified media. The expressions for the new center-
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of-charge (3.18) and (3.57) are easily computable from knowledge of the charge

distribution in the layered medium. When computed appropriately, the multi-

layered center-of-charge has been shown to have the desired O(1/R3) absolute

and O(1/R2) relative error behaviour. Although the asymptotic behaviour of

the multilayer center-of-charge mimics that of the free-space center-of-charge

in planar media, we have also shown that for fixed distances, the multilayer

center-of-charge is significantly more accurate on average. Hierarchical clus-

tering of the multilayer center-of-charge is shown to behave analogously to

free-space hierarchical clustering. The extension of the proposed Barnes-Hut

acceleration scheme for capacitance extraction in multilayered media is demon-

strated.

3.5 Appendix: Error Analysis of the Multi-

layer Center-of-Charge Approximation

The error induced when approximating the true field Φm(r) in (3.8) by the

field of the center-of-charge Ψ`
m located at r′Σ in (3.11) is

Φm(r)−Ψ`
m(r, r′Σ) =

1

4π2

∫ 2π

0

∫ ∞
0

∆m(λ, α)e−iλ·ρdλdα. (3.60)

where ∆m(λ, α) is the difference between the true and approximate spectra

(3.9) and (3.12)

∆m(λ, α) = φm(λ, α)− ψ`m(λ, α). (3.61)

Substitution of (3.9) and (3.12) into (3.60) yields

∆m(λ, α) =
L−1∑
l=0

N l−1∑
n=0

qlnĝ
l
m(λ, z, z′ln)eiλ·ρ

′
n

−QΣĝ
`
m(λ, z, z′Σ)eiλ·ρ

′
Σ .

(3.62)

It is convenient to distinguish between errors incurred by clustering sources

over the XY plane, ∆ρ
m(λ, α), and those due to clustering sources over the z
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coordinate, ∆z
m(λ). Then the total error may be written as

∆m(λ, α) = ∆ρ
m(λ, α) + ∆z

m(λ), (3.63)

where

∆ρ
m(λ, α) =

L−1∑
l=0

N l−1∑
n=0

qlnĝ
l
m(λ, z, z′ln)(eiλ·ρ

′
n − 1)

−QΣĝ
`
m(λ, z, z′Σ)(eiλ·ρ

′
Σ − 1).

(3.64)

∆z
m(λ) =

L−1∑
l=0

N l−1∑
n=0

qlnĝ
l
m(λ, z, z′ln)−QΣĝ

`
m(λ, z, z′Σ), (3.65)

Below, a detailed analysis of these two error contributions is provided. This

analysis is broken into regions based on the validity of the multilayer center-

of-charge approximation as discussed in the body of this work.

3.5.1 Asymptotic error at |z| → ∞

First, we consider the half-space domains external to the layers containing

the sources, i.e., external to z < min(a0, z
′
min) or z > max(aL−2, z

′
max). In

these regions, the multilayer center-of-charge approximation is strictly valid.

Additionally, the z-dependent factor of the spectrum of the true, (3.23), and

approximating, (3.24), fields is contained in a factor e−λ|z| which can be ex-

tracted and associated with rapidly changing part of the spectrum prior to

asymptotic analysis. Therefore we represent the true and approximated field

as

φ̇m(λ) =
L−1∑
l=0

N l−1∑
n=0

qlnĝ
l
m(λ, z, z′ln) =

e−λ|z|
L−1∑
l=0

N l−1∑
n=0

qlnγ̂
l
m(λ, z′ln),

(3.66)

ψ̇`m(λ) = QΣĝ
`
m(λ, z, z′Σ) = QΣe

−λ|z|γ̂`m(λ, z′Σ), (3.67)
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where m = 0 or m = L− 1 and where ĝlm = e−λ|z|γ̂lm. Choosing the net charge

according to (3.18) and the center-of-charge elevation z′Σ according to (3.18)

and (3.57) satisfies the equations (3.15) and (3.17). As a result we may write

L−1∑
l=0

N l−1∑
n=0

qlnγ̂
l
m(0, z′ln) = QΣγ̂

`
2(0, z′Σ), (3.68)

L−1∑
l=0

N l−1∑
n=0

qln∂λγ̂
l
m(0, z′ln) = QΣ∂λγ̂

`
2(0, z′Σ), (3.69)

and it becomes clear that the leading term in the error ∆z
m(λ) near the point

λ = 0 is proportional to λ2

∆z
m(λ) = λ2e−λ|z|×

1

2

L−1∑
l=0

N l−1∑
n=0

qln∂
2
λγ̂

l
m(0, z′ln)−QΣ∂

2
λγ̂

`
2(0, z′Σ)

 .
(3.70)

We wish to point out that the only dependence on z in the above equation is

in the exponential term.

When |z| � 1, the error contribution to the potential difference Φm(r) −
Ψ`
m(r, r′Σ) from clustering sources over the z coordinate is given by

1

4π2

∫ ∞
0

∫ 2π

0

∆z
m(λ)e−iλ·ρdλdα ∼

1

2π

∫ ∞
0

λ2e−λ|z|J0(λρ)dλ = O

(
1

R3

)
,

(3.71)

where ρ = |ρ| and where R =
√
ρ2 + z2. In the evaluation of (3.65) the

following identities where used [35], [7]

1

2π

∫ 2π

0

e−iλ·ρ−iνα+iνπ/2dα = Jν(λρ), (3.72)

∫ ∞
0

λne−λ|z|Jm(λρ)dλ ∼ Pm
n (cos θ)

rn+1
, (3.73)

where, cos θ = z/r.
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Now consider the behavior of ∆ρ
m(λ, α) spectral error in the vicinity of the

stationary phase point. The first-order expansion of (3.64) is

∆ρ
m(λ, α) = e−λ|z|

L−1∑
l=0

N l−1∑
n=0

qln[γ̂lm(0, z′ln) + λ×

∂λγ̂
l
m(0, z′ln) + . . . ][iλ · ρ′n + . . . ]−QΣe

−λ|z|×

[γ̂`m(0, z′Σ) + λ∂λγ̂
`
m(0, z′Σ) + . . . ][iλ · ρ′Σ + . . . ].

(3.74)

Provided that QΣ, x′Σ and y′Σ satisfy (3.15) and (3.16), and noting that the

first order terms for any γ̂ all have the same constant value at λ = 0, the error

due to clustering sources over XY simplifies to

∆ρ
m(λ, α) =iλ2e−λ|z|

L−1∑
l=0

N l−1∑
n=0

qln∂λγ̂
l
m(0, z′ln)λ̂ · ρ′n

−iλ2e−λ|z|QΣ∂λγ̂
`
m(0, z′Σ)λ̂ · ρ′Σ.

(3.75)

Thus, ∆ρ
m(λ, α) is proportional to λ2 near the point λ = 0 regardless of whether

or not equation (3.18) is satisfied through the appropriate choice of center-of-

charge elevation z′Σ from (3.57). Expanding ∆ρ
m(λ, α) into a Fourier series over

the spectral angle α

∆ρ
m(λ, α) = λ2e−λz

+∞∑
ν=−∞

βνe
−iνα, (3.76)

we obtain the contribution into the spatial error Φm(r) − Ψ`
m(r, r′Σ) from

∆ρ
m(λ, α) as

1

4π2

∫ ∞
0

∫ 2π

0

∆ρ
m(λ, α)e−iλ·ρdλdα =

1

2π

+∞∑
ν=−∞

βνe
iνπ/2

∫ ∞
0

λ2e−λzJν(λρ)dλ = O

(
1

R3

)
.

(3.77)

3.5.2 Asymptotic error at ρ→∞: z ∈ [z′min, z
′
max]

When the observation point elevation z lies within the source box boundaries

z′min < z < z′max, the multilayer center-of-charge formulation is not strictly
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valid. However, formulas of the form (3.23) and (3.24) still describe the z-

dependence of the true and approximating field, respectively

φ̇m(λ) =
L−1∑
l=0

N l−1∑
n=0

qlnĝ
l
m(λ, z, z′ln) =

e−λ(z−am−1)

2ε0εm

L−1∑
l=0

N l−1∑
n=0

qlnγ̂
l−
m (λ, z′ln) +

e−λ(am−z)

2ε0εm

L−1∑
l=0

N l−1∑
n=0

qlnγ̂
l+
m (λ, z′ln) +

Nm−1∑
n=0

qlne
−λ|z−z′mn |

2ε0εm
,

(3.78)

ψ̇`m(λ) = QΣĝ
`
m(λ, z, z′Σ) =

QΣγ̂
`−
m (λ, z′Σ)e−λ(z−am−1)

2ε0εm

+
QΣγ̂

`+
m (λ, z′Σ)e−λ(am−z)

2ε0εm
+
QΣδm`e

−λ|z−z′Σ|

2ε0εm
,

(3.79)

where am−1 ≤ z ≤ am. By virtue of (3.15), the error ∆z
m(λ) due to clustering

over the z-coordinate is obtained from (3.78) and (3.79) as

∆z
m(λ) =

λe−λ(z−am−1)

2ε0εmL−1∑
l=0

N l−1∑
n=0

qln∂λγ̂
l−
m (0, z′ln)−QΣ∂λγ̂

`−
m (0, z′Σ)

+

λe−λ(am−z)

2ε0εm

L−1∑
l=0

N l−1∑
n=0

qln∂λγ̂
l+
m (0, z′ln)−QΣγ̂

`+
m (0, z′Σ)


+

Nm−1∑
n=0

qln(e−λ|z−z
′m
n | − 1)

2ε0εm
− QΣδm`(e

−λ|z−z′Σ| − 1)

2ε0εm
,

(3.80)

where once again we have used the fact that the first order terms of any γ̂ at

λ = 0 are equal and constant.

The inverse Fourier-Hankel transform of the spectral terms containing

λe−λ|z−a| in (3.80) are easily evaluated with aid of identity (3.73). This yields a

spatial dependency proportional to the Legendre polynomial P1(|z−a|/ρ)/(ρ2+

(z − a)2) = O(ρ−3) when ρ� 1. The same O(ρ−3) spatial dependence is fea-

tured by the inverse Fourier-Hankel transform of the e−λ|z−z
′| − 1 terms in
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(3.80) giving ∫ ∞
0

(e−λ|z−z
′| − 1)J0(λρ)dλ =

1

ρ

(
1√

1 + (z − z′)2/ρ2
− 1

)
= O

(
(z − z′)2

ρ3

)
,

(3.81)

when ρ � |z − z′|. Thus, the contribution into the spatial error Φm(r) −
Ψ`
m(r, r′Σ) from ∆z

m(λ) decays as O(1/ρ3) when the observation point elevation

is within the source layers even though the error is only proportional to λ near

the stationary phase point.

Analogous to the preceeding procedure, it can be shown that when z ∈
[z′min, z

′
max] the error ∆ρ

m(λ) due to clustering sources in the XY plane behaves

proportionally to λ2 near the point λ = 0. Therefore, according to (3.73) its

contribution to the spatial error |Φm(r)−Ψ`
m(r, r′Σ)| is O(1/ρ3).

3.5.3 Asymptotic error at ρ→∞: z /∈ [z′min, z
′
max]

Outside the interval z ∈ [z′min, z
′
max] enclosing the sources, the choice of center-

of-charge elevation (3.57) ensures a spectral match between both the zeroth

and first powers of λ in the vicinity of stationary phase point λ = 0. Hence, the

clustering error introduced by grouping sources over the z coordinate (3.65) is

proportional to λ2 at the point λ = 0

∆z
m(λ) ' λ2

L−1∑
l=0

N l−1∑
n=0

qln∂
2
λĝ

l
m(0, z, z′ln)

−QΣ∂
2
λĝ

`
m(0, z, z′Σ)

)
, λ→ 0.

(3.82)

Once again, from identity (3.73), the error contribution from ∆z
m(λ) to the

total spatial approximation error |Φm(r)−Ψ`
m(r, r′Σ)| is O(1/ρ3).

The error (3.64) due to clustering of sources in XY plane in this region

can be written analogously to (3.75) without extracting the exponential term.

Then, a procedure similar to that used to obtain (3.77) proves that the error

behavior is also O(1/ρ3).
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Chapter 4

Applying Tree Based

Algorithms to Full-Wave

Modeling

In the previous chapter, we extended the Barnes-Hut (BH) algorithm to han-

dling of electrostatic interactions in stratified media. In Chapter 5, we will

show that the BH algorithm can be also applied to full-wave electromagnetic

modeling. In this chapter, we introduce full-wave modeling and outline the

requirements that must be satisfied by an acceleration technique such as the

BH algorithm.

4.1 Electric Field Integral Equation

Consider an arbitrarily shaped object that is a perfect electric conductor

(PEC) and occupies volume V and with a surface S. Let Einc(r) represent

an incident electric field due to external sources that impinges on the object.

The incident field will induce a surface current J(r) on the object, which in

turn produces a scattered electric field Escat(r). Since the object is a PEC,

70
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the total electric field satisfy

Escat(r) + Einc(r) = 0, r ∈ V (4.1)

and the boundary condition

t̂ · Escat(r) + t̂ · Einc(r) = 0, r ∈ S (4.2)

where r is the observation point and t̂ is a unit vector that is tangential to the

surface. The scattered field can be expressed as

Escat(r) = iωµ

∫
S

Ḡe0(r, r′) · J(r′)dS ′ (4.3)

where

Ḡe0(r, r′) =

(
Ī +
∇∇·
k2

)
G0(r, r′) (4.4)

is the electric-type dyadic Green’s function and

G0(r, r′) =
e−ik|r−r′|

4π|r− r′|
(4.5)

is the Green’s function for the scalar Helmholtz equations in 3D. In (4.3), the

physical meaning of Ḡe0(r, r′) · J(r′) is the electrical field at r due to a point

current source J(r′) located at r′. By integrating over S, we obtain the total

scattered field due to the induced surface currents on the object. Substituting

(4.3) into (4.2) yields the Electric Field Integral Equation (EFIE),

t̂ ·
∫
S

Ḡe0(r, r′) · J(r′)dr′ =
i

ωµ
t̂ · Einc(r) (4.6)

which can be solved for the unknown surface current distribution J(r′), r′ ∈ S.

4.2 Method of Moments

The Method of Moments (MoM) is a numerical method for solving integral

and differential equations by projecting of the unknown function to a space of
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known basis functions and projecting the equation to a set of test functions.

This procedure casts the integral (or differential) equation into a set of lin-

ear algebraic equations with respect to expansion coefficients of the unknown

function. In order to apply MoM to EFIE, the unknown current is projected

to a set of basis functions as

J(r) =
N∑
n=1

anbn(r) (4.7)

where {an} are the expansion coefficients and {bn(r)} are the basis functions.

Substituting this expression into (4.6) yields

N∑
n=1

an

∫
S

t̂ · Ḡe0(r, r′) · bn(r′)dS ′ =
i

ωµ
t̂ · Einc(r) (4.8)

To eliminate the dependency on r and to formulate a system of equations, the

above relationship is tested with the source basis1 by

N∑
n=1

an

∫
S

dSbm(r) ·
∫
S

Ḡe0(r, r′) · bn(r′)dS ′ =
i

ωµ

∫
S

bm(r) · Einc(r)dS

m = 1, . . . , N

(4.9)

We rewrite the above relationship as a concise set of linear equations

N∑
n=1

Zmnan = vm, m = 1, . . . , N (4.10)

where

Zmn =

∫
S

dSbm(r) ·
∫
S

Ḡe0(r, r′) · bn(r′)dS ′ (4.11)

is the (m,n)’s element in the corresponding matrix and

vm =

∫
S

bm(r) · Einc(r)dr (4.12)

is the m’s element of the right hand side vector.

1The strategy of choosing the same basis for both the source and testing functions is often
referred to as Galerkin’s method. MoM imposes no constraints on the testing functions, but
employing Galerkin’s method is generally an efficient choice.
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Sn

+

Sn

-

rn

+

rn

-

{n

Figure 4.1: RWG basis function defined on a pair of triangles.

4.3 Basis Functions

A popular choice of basis functions in (4.7) is the Rao-Wilton-Glisson (RWG)

basis [RWG82]. Each basis function is associated with a pair of triangles that

share a common edge as shown in Figure 4.1 for the case of planar triangular

elements. The basis functions are defined as follows:

bn(r) =


`n

2A+
n

(r− r+
n ), r ∈ S+

n

`n
2A−n

(r−n − r), r ∈ S−n
0, otherwise

(4.13)

where `n is the length of the common edge and A±n are the areas of the tri-

angles S±n . According to the definition of the RWG basis function the current

flows continuously from triangle S+
n into triangle S−n . The continuity of the

current is consistent with the physical behavior of current flow on conducting

surfaces. This greatly improves the accuracy of current solution with RWG-

MoM compared to alternative choices of basis functions. The surface charge

density on the pair of triangles is given by the divergence of basis function,
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which has the following form

∇ · bn(r) =


`n
A+
n
, r ∈ S+

n

− `n
A−n
, r ∈ S−n

0, otherwise

(4.14)

By applying the RWG basis to (4.11), we can limit the integration range to

the triangle pair Sm and Sn and simplify as

Zmn =

∫
Sm

dSbm(r) ·
∫
Sn

Ḡe0(r, r′) · bn(r′)dS ′ (4.15)

The above expression for Zmn shows that the complexity of computing Zmn

depends on the separation distance between Sm and Sn. If Sm and Sn are over-

lapping or adjacent, then it is necessary to perform an analytical singularity

extraction due to the singular behavior of the Green’s function. On the other

hand, the Green’s function is smooth if Sm and Sn are well-separated and the

integrals in (4.15) can be computed with a numerical quadrature rule.

4.4 Acceleration of MoM

Several techniques are available for solving the matrix equation resulting from

(4.10) and the most general technique is to perform direct inversion of the

system matrix. The computational cost for inverting a dense matrix grows

as O(N3) and requires O(N2) memory. A more common technique is to use

an iterative method that iteratively solves the equation by performing matrix-

vector products until the solution satisfies a convergence condition. The cost

of each matrix-vector product is O(N2) and by ensuring that the system is

well-conditioned, the number of iterations is often much smaller than N . An

iterative matrix solver does not use the system matrix explicitly and we can

therefore employ matrix-free methods to accelerate the matrix-vector product.

In order to show how we can apply tree based algorithms to perform the

matrix-vector product, we partition the space of basis functions into near and



Chapter 4. Full-Wave Modeling 75

far regions so that all interactions in the far region are well-separated. Let

Inear
m denote a set of indices such that {Zmn : n ∈ Inear

m } are the matrix elements

in the m’s row that are in the near region. Denote the remaining indices as

I far
m and rewrite (4.10) as∑

n∈Inear
m

Zmnan +
∑
n∈Ifar

m

Zmnan = vm, m = 1, . . . , N (4.16)

Let Zfar
mn denote an accurate approximation of Zmn in the far region that is

obtain by numerical integration as

Z far
mn =

Mm∑
k

wm,kbm(rm,k) ·
Mn∑
j

wn,jḠe0(rm,k, rn,j) · bn(rn,j) (4.17)

where Mi denotes the number of quadrature points on Si and {ri,k ∈ Si :

k = 1, . . . ,Mi} and {wi,k} are corresponding locations and weights of the

quadrature points, respectively. We can now approximate (4.16) as∑
n∈Inear

m

Zmnan +
∑
n∈Ifar

m

Z far
mnan = vm, m = 1, . . . , N (4.18)

We have effectively partitioned the system matrix into two matrices, Z̄
near

and Z̄
far

. The number of elements in Z̄
near

is, in general, of order O(N)

and therefore, it is sufficient to accelerate the matrix-vector product Z̄
far

a.

The matrix-vector product Z̄
far

a can viewed as an N-body problem where

we seek to compute the mutual interactions between all quadrature points

while excluding those in the near region. Hence, we can apply a tree-based

algorithm, such as BH or FMM, to compute Z̄
far

a provided that the algorithm

can approximate the pertinent Green’s function kernel. The formulation in

(4.17) utilizes the electric-type dyadic Green’s function Ḡe0. In Chapter 7,

we will present a version of FMM that can accelerate the Ḡe0 kernel directly.

However, the extension to the BH algorithm that we will present in the next

chapter is designed to accelerate the scalar Helmholtz kernel, G0. Therefore,

we will continue by showing that we can write EFIE in a mixed potential form

where the matrix elements are defined in terms of the scalar G0 kernel instead

of the dyadic kernel Ḡe0 utilized thus far.
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4.5 A Mixed Potential Form of EFIE

Substituting (4.4) into (4.11) yields

Zmn =

∫
Sm

drbm(r) ·
∫
Sn

(
Ī +
∇∇
k2

)
G0(r, r′) · bn(r′)dr′

=

∫
Sm

drbm(r) ·
∫
Sn

G0(r, r′)bn(r′)dr′

+

∫
Sm

drbm(r) ·
∫
Sn

∇∇
k2

G0(r, r′) · bn(r′)dr′

(4.19)

By applying the divergence theorem to the integrals over areas Sm and Sn and

taking into consideration the fact that the RWG basis does not have current

flow normal to its boundary as well as the property ∇G0(r, r′) = −∇′G0(r, r′),

we can shift the gradient operator to the testing basis and the divergence

operator to the source basis as

Zmn =

∫
Sm

drbm(r) ·
∫
Sn

G0(r, r′)bn(r′)dr′

+
1

k2

∫
Sm

dr∇ · bm(r)

∫
Sn

G0(r, r′)∇′ · bn(r′)dr′
(4.20)

The expression for Zmn has been split into a vector potential term that is dis-

cretized by RWG basis functions and a surface charge density term discretized

by pulse basis functions defined in (4.14). The above expression for the RWG

MoM matrix elements is in the mixed potential form in which the first term

corresponds to discretization of the magnetic vector potential and the second

term to the discretization of the electric scalar potential. Equation (4.17) is a

reformulation of (4.15) where the Ḡe0 kernel as been replaced with G0 kernels,

which greatly simplifies the numerical evaluation of the matrix elements.
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4.6 An N-Body Formulation of the MoM Dis-

cretized Mixed Potential Form of EFIE

An expression for the elements in the mixed potential form of Z̄
far

is obtained

by combining equations (4.17) and (4.20) into

Z far
mn =

Mm∑
k

wm,kbm(rm,k) ·
Mn∑
j

wn,jG0(rm,k, rn,j)bn(rn,j)

+
1

k2

Mm∑
k

wm,k∇ · bm(rm,k)
Mn∑
j

wn,jG0(rm,k, rn,j)∇′ · bn(rn,j)

(4.21)

We can now apply this result to formulate the Z̄
far · a matrix vector product

as an N-body problem with bodies located at quadrature points {ri,k ∈ Si :

k = 1, . . . ,Mi, i = 1, . . . , N}. The procedure for evaluating the accelerated

matrix-vector product is provided below.

1. Evaluate Z̄
near · a and add the result to the solution vector.

2. Invoke the N-body solver for 4 sets of magnitudes {Q} according to:

• Solve for magnitudes Qx
n,j = wn,jan (bn(rn,j))x in order to obtain

Axm,k =
∑N

n

∑Mn

j Qx
n,jG0(rm,k, rn,j).

• Solve for magnitudes Qy
n,j = wn,jan (bn(rn,j))y in order to obtain

Aym,k =
∑N

n

∑Mn

j Qy
n,jG0(rm,k, rn,j).

• Solve for magnitudes Qz
n,j = wn,jan (bn(rn,j))z in order to obtain

Azm,k =
∑N

n

∑Mn

j Qz
n,jG0(rm,k, rn,j).

• Solve for magnitudes Qφ
n,j = wn,jan∇′ · bn(rn,j) in order to obtain

φm,k =
∑N

n

∑Mn

j Qφ
n,jG0(rm,k, rn,j).
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3. Use the relationship

∑
n∈Ifar

m

Zmnan =
N∑
n=1

Zfar
mn an =

Mm∑
k

wm,kbm(rm,k) ·Am,k

+
1

k2

Mm∑
k

wm,kφm,k∇ · bm(rm,k)

(4.22)

for m = 1, . . . , N to evaluate Z̄
far · a and add the result to the solution

vector.

The above procedure decomposes the Z̄ · a matrix-vector product into four

evaluations with an N-body solver governed by the scalar G0 kernel. In the

next chapter, we present an extension to the Barnes-Hut algorithm that is

suitable for accelerating the solution of the mixed-potential form of EFIE

according to the above procedure.
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The Barnes-Hut algorithm originally developed for O(N logN)

solution of N -body problem with the Laplace kernel is general-

ized to the case of the scalar Helmholtz kernel in three dimen-

sions. Analogous to the center-of-charge concept used in the

static algorithm, a center-of-radiation is associated with each

box of the hierarchically partitioned space enclosing the sources

of interest. The algorithm is applicable to the acceleration of

electromagnetic interactions between sources confined to elec-

trically small volumes. The method may be used in conjunction

with the high-frequency Fast Multipole Method to eliminate its

low-frequency breakdown.

5.1 Introduction

Today’s wireless systems tightly integrate the antenna’s radiating elements,

feeding networks, and RF circuitry. Electromagnetic simulations used to vali-

date system designs present various challenges. The most formidable of these

challenges is the large size of the pertinent discrete models and multi-scale

features of the designs. Among the limited computational techniques capable

of conducting such simulations is the boundary-element method-of-moments

[1] accelerated with broadband fast algorithms which allow for simultaneous

O(N logN) evaluation of full-wave and quasi-static interactions [2].

In this paper we propose a simple alternative to the low-frequency Fast

Multipole Method (FMM) [2], applicable when two digits of precision in the

evaluation of the pertinent matrix-vector product is sufficient for a given dis-

cretization scheme [1]. The proposed method is based on a generalization

of the Barnes-Hut (BH) algorithm [3] for rapid evaluation of electromag-

netic interactions from a large group of sources enclosed in an electrically

small volume. Similar to the static BH algorithm that introduces centers-

of-charge in association with each box of a hierarchically partitioned volume
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enclosing all static sources, the proposed full-wave version of the method in-

troduces centers-of-radiation (CoR) in association with each box containing

time-harmonic sources. The position and magnitude of the center-of-radiation

in each box is determined by matching the zeroth and first order spectral

moments of the true field produced by sources contained in that box to the

field of a single point source acting as the CoR in the vicinity the stationary

phase point [4]. Since the stationary phase point in k-space is a function of

observation angle, so is the CoR. The CoR sources are shown to allow for re-

cursive clustering necessary for the development of an O(N logN) solution of

the time-harmonic N -body problem. The numerical results presented in this

paper validate the method and demonstrate its error behavior in comparison

with low- and high-frequency FMM [2].

5.2 Center-of-Radiation Field Approximation

Consider N time-harmonic point sources with associated phasors q1, q2, ..., qN

varying with frequency ω and located in homogeneous space at r′1, r
′
2, ..., r

′
N .

The field produced by the sources satisfies the Helmholtz equation [4]

∇2φ(r) + k2
0φ(r) = −

N∑
i=1

qiδ(r − r′i), i = 1, ..., N, (5.1)

where k0 is the homogeneous space wavenumber, and r = xx̂+ yŷ+ zẑ is the

spatial position vector. The spatial solution of (5.1)

φ(r) =
N∑
i=1

φi(r) =
N∑
i=1

qi exp (−jk0|r − r′i|)
4π|r − r′i|

, (5.2)

corresponds to the spectral solution

φ̂(k) =
N∑
i=1

φ̂i(k) =
N∑
i=1

qi exp (jk · r′i)
k2 − k2

0

, (5.3)

where k = kxk̂x + kyk̂y + kzk̂z is the position vector in k-space, j =
√
−1.

With subsequent derivations in mind we extract the exponential part of the
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spectrum

Φ̂(k) =
N∑
i=1

Φ̂i(k) =
N∑
i=1

qi exp (jk · r′i). (5.4)

The spatial and spectral solutions are related via the three-dimensional Fourier

transform

φ(r) =
1

8π3

∫ ∫ +∞

−∞

∫
φ̂(k)e−jk·rdkxdkydkz. (5.5)

The far field φ(r), r � 1, of the group of sources is determined by the

spectrum in the vicinity of the spectral point ks = k0r̂ known as the stationary

phase point [4]. By introducing a single point source with associated phasor

QΣ located at rΣ which we refer to as the center-of-radiation we can match the

true field φ(r) to the field of the center-of-radiation ψ(r). This is accomplished

by matching the spectrum of the CoR field

ψ̂(k) =
QΣ exp (jk · rΣ)

k2 − k2
0

=
Ψ(k)

k2 − k2
0

, (5.6)

to the spectrum of the true field φ̂(k) in the vicinity of the stationary phase

point ks. The Taylor series expansion of the spectrum of a single point source

Φi(k) in the vicinity of k = ks follows from (5.4) as

Φi(k) = Φi(ks)
∞∑
n=0

[j(k − ks) · r′i]n

n!
, (5.7)

where matching the zeroth order term for the true field spectra Φ and CoR

field spectra Ψ requires that

Ψ(ks) = Φ(ks). (5.8)

Matching of the first order terms in the Taylor expansion of the true field

spectrum and the CoR field spectrum yields

[(k − ks) · rΣ]Ψ(ks) =
N∑
i=1

[(k − ks) · r′i]Φi(ks). (5.9)
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Figure 5.1: The solid lines shows the absolute distance between the center

of a 1mm box to the CoR according to (5.10) and (5.11) as a function of

observation angle ϕ with ϑ = π/2 due to N = 100 random point sources for

k0 = 500, 1000, 1500. The dashed line shows the same distance when the CoRs

are computed according to (5.12) for k0 = 1500. The square represents the

box boundaries in XY -plane and the dashed circle has a diameter of
√

3mm

to indicate when the CoR position falls outside the box. Point sources are

projected onto XY -plane.
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For arbitrary k (5.9) is satisfied when

rΣ =

∑N
i=1 r

′
iΦi(ks)

Ψ(ks)
=

∑N
i=1 r

′
iqi exp (jks · r′i)∑N

i=1 qi exp (jks · r′i)
. (5.10)

Having determined rΣ we can solve (5.6) for QΣ as

QΣ =
Φ(ks)

exp (jks · rΣ)
=

N∑
i=1

qi exp (jks · (r′i − rΣ)). (5.11)

From (5.10) and (5.11) we notice that in the limit as k0 approaches zero,

the complex valued CoR reduces to the static center-of-charge. We also notice

that the CoR depends on the observation direction r̂ since the stationary phase

point changes as ks = k0r̂. This is different from the static case where the

stationary phase point ks = 0 coincides with the origin of the k-space for any

observation direction r̂. The denominator in (5.10) may become sufficiently

small so that the CoR rΣ is not contained within the bounds of the box for

certain directions as shown by the solid curve corresponding to k0 = 1500

in Fig. 5.1. In order to ensure that the CoR is contained inside the box

for each observation direction r̂ we introduce four CoRs by separating the N

sources into four groups as N = N++(ks) + N+−(ks) + N−+(ks) + N+−(ks),

where N++(ks) is the number of sources that produce Φi(ks) lying in the first

quadrant of the complex plane, i.e. <Φi(ks) ≥ 0 and =Φi(ks) ≥ 0. Similarly,

N−+, N+−, N−− are the number of sources producing Φi in the second, third,

and fourth quadrants of the complex plane, respectively. If one introduces a

distinct CoR for the group of sources producing Φi in the first quadrant as

rΣ,++(ks) =

∑N++(ks)
i=1 r′iΦi,++(ks)∑N++(ks)
i=1 Φi,++(ks)

, (5.12)

it can be shown that the CoR is guaranteed to be situated within the bounds

of the box containing the sources, that is |<xΣ,++| < B/2, |=xΣ,++| < B/2,

|<yΣ,++| < B/2, |=yΣ,++| < B/2, and |<zΣ,++| < B/2, |=zΣ,++| < B/2, B be-

ing the size of the box. Thus, the field φ(r) of N sources (5.2) is approximated
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Figure 5.2: The left side shows |φ(r)| as function of observation angle ϕ with

ϑ = π/2 for the distribution of N = 100 random sources contained in a cube

of size B = 1mm at observation distances, |r|, of 2mm, 5mm, and 10mm for

k0 = 500.

with four CoRs as

ψ̃(r) =
QΣ,++(k0r̂)e−jk0|r−rΣ,++(k0r̂)|

4π|r − rΣ,++(k0r̂)|
+

QΣ,+−(k0r̂)e−jk0|r−rΣ,+−(k0r̂)|

4π|r − rΣ,+−(k0r̂)|
+

QΣ,−+(k0r̂)e−jk0|r−rΣ,−+(k0r̂)|

4π|r − rΣ,−+(k0r̂)|
+

QΣ,−−(k0r̂)e−jk0|r−rΣ,−−(k0r̂)|

4π|r − rΣ,−−(k0r̂)|
.

(5.13)

The dashed curve in the interior of the box in Fig. 5.1 depicts the mag-

nitude of CoR |rΣ,++(k0r̂)| at k0B = 1.5 for observation directions r̂ in XY -
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Algorithm 1 Compute CoRs of a set of sources

Inputs: Set of sources (r′i, qi), i = 1, . . . , N and observation direction r̂

Output: CoRs (rΣ,c, qΣ,c), c = ++,−+,+−,−−, for the set of

sources

1: ks ← k0 r̂

2: for each quadrant c = ++,−+,+−,−− do

3: rΣ,c ← 0

4: qΣ,c ← 0

5: tmp1← 0 {tmp1 is a temporary variable}
6: tmp2← 0 {tmp2 is a temporary variable}
7: for each point source i = 1, . . . , N do

8: Φ← qi exp(jks·r′i)
9: if Φ is in quadrant c then

10: tmp1← tmp1 + Φr′i; tmp2← tmp2 + Φ

11: end if

12: end for

13: rΣ,c ← tmp1/tmp2

14: qΣ,c ← tmp2/ exp(jks·rΣ,c)

15: end for
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plane, i.e. r̂ = cosϕx̂ + sinϕŷ, ϕ ∈ [0, 2π]. One can see that for all the

observation directions the CoR rΣ,++ introduced according to (5.12) stays

within the bounds of the box. The left side of Fig. 5.2 shows the true field

φ(r) in (5.2) and its CoR approximation ψ̃(r) given by (5.13) while the right

hand side of the plot shows their relative error

ε(r) = |φ(r)− ψ̃(r)|/|φ(r)|. (5.14)

for various ratios of box size B to the observation distance r.

5.3 Hierarchical Clustering of Sources

In order to incorporate the CoR into a BH type algorithm it is essential that

the CoR approximation can be applied recursively. Let us demonstrate that

this is indeed the case with both the CoR approximations (5.11) and (5.12).

For that purpose let us consider the original box containing the sources as

the parent box (center of the parent box is denoted with ‘B’ in Fig. 5.1) and

denote the 8 equally sized cubes sub-dividing the parent box as the child boxes

(centers of the first four child boxes are denoted as ‘B0’, ‘B1’, ‘B2’, ‘B3’ in

Fig. 5.1). From (5.10) the CoR of the parent box can be rewritten as

rBΣ (ks) =

∑NB

i=1 p
B
i ΦB

i (ks)∑NB

i=1 ΦB
i (ks)

=

∑NB

i=1 p
B
i q

B
i exp (jks · pBi )∑NB

i=1 q
B
i exp (jks · pBi )

, (5.15)

where pBi are locations of NB sources contained in the parent box with respect

to the system of coordinates having the origin at the parent box center. Split-

ting the sums in the numerator and denominator of (5.15) over child boxes

and representing the position vectors pBi in the systems of coordinates with

the origins at the child box centers we can rewrite (5.15) as

rBΣ (ks) =∑8
b=1

∑NBb

i=1 (pBbi + dBb)qBbi exp (jks · (pBbi + dBb)∑8
b=1

∑NBb

i=1 qBbi exp (jks · (pBbi + dBb)
,

(5.16)
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Algorithm 2 Compute CoRs for all each node in the BH tree

Input: Tree node n

Description: This algorithm computes the CoR locations and magni-

tudes of all the nodes in the tree rooted at n. The algorithm is called

from the main program with the root node of the BH tree as the in-

put.

1: for each observation direction r̂d, d = 1, . . . ,M do

2: if n contains 1 source then

3: Compute the CoRs due to the source for r̂d using Algorithm 3 and

store the result at n

4: else

5: Q.clear() {Empty the content in queue}
6: for each child ci of n, i = 1, . . . , 8 do

7: if ci is not empty then

8: Recursively call this algorithm on ci

9: Q.push(ci.CoRs) {push ci’s CoRs into queue}
10: end if

11: end for

12: Compute the CoRs due to all the aggregated sources in Q for r̂d using

Algorithm 3 and store the result at n

13: end if

14: end for
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where pBbi is the location of i-th source contained in b-th child box with respect

to the system of coordinates having the origin at this child box center and dBb

is the vector from the parent box center to the b-th child box center. With

the definition of the b-th child box’s CoR

QBb
Σ (ks) exp (jks · rBb

Σ ) =
NBb∑
i=1

ΦBb
i (ks), (5.17)

rBb
Σ (ks) =∑NBb

i=1 p
Bb
i ΦBb

i (ks)∑NBb

i=1 ΦBb
i (ks)

=

∑NBb

i=1 p
Bb
i qBbi exp (jks · pBbi )∑NBb

i=1 qBbi exp (jks · pBbi )
,

(5.18)

the expression for the parent box CoR simplifies to

rBΣ (ks) =∑8
b=1(rBb

Σ (ks) + dBb)ejks·(r
Bb
Σ (ks)+dBb)QBb(ks)∑8

b=1 e
jks·(r

Bb
Σ (ks)+dBb)QBb(ks)

.
(5.19)

Noticing that rBb
Σ (ks)+d

Bb in (5.19) is nothing but the b-th box’s CoR location

in the parent box’s coordinate system and denoting it as rbΣ(ks) we obtain the

expression for the parent box’s CoR in terms of children’s CoRs

rBΣ (ks) =

∑8
b=1 r

b
Σ(ks)e

jks·r
b
Σ(ks)QBb(ks)∑8

b=1 e
jks·r

b
Σ(ks)QBb(ks)

. (5.20)

Expression (5.20) shows that for the purpose of computing the parent’s CoR

the children’s CoRs can be considered as regular sources and the standard

CoR formula (5.10) applies. Hierarchical clustering can also be shown to an-

alytically hold under partitioning of the sources based on the complex plane

quadrants (Algorithm 1). To conserve space we numerically validate the hier-

archical clustering of sources grouped based on quadrants of the complex plane

given in (5.12). Table 1 gives the complex locations of CoR rBΣ,++ obtained

both directly and hierarchically using Algorithm 1 under 2-level partitioning

of the box containing the sources. The CoR was computed for a random dis-

tribution of N = 100 time-harmonic point sources in a 1mm parent box B for

observation direction r̂ = −0.55x̂− 0.64ŷ + 0.54ẑ and k0 = 500.
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Table 5.1: Parent CoRs rBΣ,++ obtained directly and recursively from children’s

CoRs rBbΣ,++, rBbΣ,+−, rBbΣ,−+, rBbΣ,−−, b = 1, ..., 8

Directly Recursively

<[mm] =[µm] <[mm] =[µm]

xBΣ 0.543954 17.969 0.543954 17.969

yBΣ 0.586232 15.8741 0.586232 15.8741

zBΣ 0.492261 -18.1524 0.492261 -18.1524

5.4 Numerical Results and Discussion

The behavior of the BH-CoR maximum approximation error (5.14) versus

wavenumber k0 is shown in Fig. 5.3. We found numerically that the worst-

case error for our proposed BH-CoR algorithm is achieved when there are two

source points located in opposite corners of the source box. We evaluated

the error for three values of the ratio θ = B/D, D being the shortest dis-

tance from the box to observation point. While the relative error drops off

as 1/D, a drastic increases in error is observed when the electric size of the

box B/λ exceeds 0.1. This indicates the quasi-static nature of the proposed

algorithm. For comparison the worst-case error is also shown for the high-

frequency FMM method (HF-FMM) [2]. The worst case source configuration

for both FMM versions is a single point source located at the corner of the

source box and evaluated with one box of separation [6]. The rapid increase

in HF-FMM approximation error at lower frequencies is clearly observed. The

point of intersection of the HF-FMM error curve with that of the proposed

BH-CoR method illustrates that when two digits of precision suffice the latter

may be used in conjunction with HF-FMM for construction of a broadband

tree-based O(N logN) algorithm. With the purpose of providing a reference

to an alternative low-frequency fast algorithm we also show in Fig. 5.3 the

behavior of worst-case error for the low-frequency FMM (LF-FMM) for the

same example. The LF-FMM error is shown for multipole expansion of orders
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up to 9. One can see that the proposed BH-CoR approximation (5.14) at dis-

tances to the observation point at least five box sizes away (θ = 0.2) provides

accuracy of field approximation error superior to that of a fifth order LF-FMM

approximation.

The CoR field approximation is inaccurate for high frequencies because of

the stationary phase approximation [4] and because the field is approximated

by monopole sources rather than multipole sources. In practical applications

it may be desirable to combine the proposed BH-CoR method with a high-

frequency method to overcome this limitation. One approach is to use BH-CoR

to accelerate the near interactions of HF-FMM. The near interaction step of

HF-FMM is of O(NM) complexity whereas BH-CoR can perform the same

step in O(N logM) complexity, assuming that all HF-FMM leaf boxes contain

exactly M sources.

It should also be noted that in a practical implementation of the proposed

algorithm one would only store the CoRs for a few observation angles and use

local interpolation [5] of the band-limited CoR field to evaluate its value for

an arbitrary angle.

5.5 Conclusion

A new tree-based algorithm for an O(N logN) solution of the N -body prob-

lem with the scalar Helmholtz kernel is proposed. In the upward tree traversal

the center-of-radiation approximating the field of sources contained in a given

node of the tree is computed recursively. The magnitude and complex location

of the center-of-radiation is obtained by matching its field spectrum to the field

spectrum of the true sources in the vicinity of the stationary phase point. The

method turns identically into the Barnes-Hut algorithm in the limit as the

time-harmonic frequency approaches zero and therefore can be viewed as the

extension of the BH algorithm to the Helmholtz kernel. The method becomes

ineffective for electric sizes exceeding 0.1 wavelengths. The practical appli-
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Figure 5.3: Worst-case relative error of the field approximation versus fre-

quency by the proposed BH-CoR algorithm, high-frequency FMM and low-

frequency FMM for a source box of size B = 1mm. The error is computed

for the worst-case source configuration and by finding the observation angle

which yields the maximum error.
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cations of the algorithm can be found in fast characterization of electrically

small structures as well as in a combined implementation with high-frequency

FMM for constructing broadband full-wave electromagnetic solvers.
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Chapter 6

Broadband Full-Wave Modeling

In the previous chapter, we introduced an extension to the Barnes-Hut algo-

rithm that can be applied to the solution of full-wave problems at low fre-

quencies. Since it was based on the scalar Helmholtz kernel it was applicable

to the solution of a mixed potential form of EFIE. As the frequency increases

beyond the quasi-static regime, the EFIE becomes ill-posed at certain discrete

frequencies which correspond to spurious resonances of the scatterer. In this

chapter, we introduce the Magnetic Field Integral Equation (MFIE) and show

that it can be combined with EFIE to formulate the Combined Field Integral

Equation (CFIE) which is free of spurious resonances. In addition, the EFIE

suffers from a low-frequency breakdown problem that leads to inaccurate re-

sults at very low frequencies, and we will discuss remedies to this problem.

This will lay the foundation for the FMM algorithm that is presented in the

next chapter which is applicable to the aforementioned integral equations all

the way from statics up to the high frequency domain.

6.1 The Magnetic Field Integral Equation

Consider an arbitrarily shaped perfect electric conductor (PEC) with volume

V and surface S. Let Hinc(r) represent a magnetic field due to external sources
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that impinges on the object. The incident field will induce a surface current

J(r) on the object, which in turn produces a scattered magnetic field Hscat(r).

Since the object is a PEC, the total magnetic field vanishes inside object

Hscat(r) + Hinc(r) = 0 r ∈ V. (6.1)

The tangential magnetic field is discontinuous across the surface that carries

the electric current. This results in the following boundary condition on the

surface of the object

n̂×Hscat(r) + n̂×Hinc(r) = J(r) r ∈ S+ (6.2)

where S+ denotes a surface that is exterior to the object by an infinitesimally

distance. The scattered field can be expressed by summing up the contribu-

tions from the induced surface currents as

Hscat(r) = iωµ

∫
S

Ḡm0(r, r′) · J(r′)dr′ (6.3)

where

Ḡm0(r, r′) = ∇G0(r, r′)× Ī (6.4)

is the magnetic-type dyadic Green’s function and G0(r, r′) is the Green’s func-

tion to the scalar Helmholtz equation given by (4.5). Substituting (6.3) into

(6.2) yields

n̂×
∫
S

Ḡm0(r, r′) · J(r′)dr′ + n̂×Hinc(r) = J(r) r ∈ S+ (6.5)

In the case when the observation point is located exactly on the surface S,

Cauchy’s principal value method can be applied to the above equation to

extract the singularity in the Green’s function as

1

2
J(r)− n̂× P.V.

∫
S

Ḡm0(r, r′) · J(r′)dr′ = n̂×Hinc(r) r ∈ S (6.6)

where P.V. denotes the principal value integral. The above relationship is

the standard formulation of MFIE and detailed derivations can be found in

[Gib07]. If the object is electrically small and contain sharp edges, it is nec-

essary to re-formulate (6.6) as discussed in [RUP01]. MFIE is only valid for

closed objects, whereas EFIE is also applicable to thin and open surfaces.
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6.2 The Combined Field Integral Equation

The EFIE imposes the condition of vanishing tangential electric field on the

surface of the PEC object whereas the field inside the object is assumed to van-

ish due to analytic continuity of the fields throughout its source-free volume.

This formulation, however, does not distinguish between a solid PEC object

and a hollow thin-shelled PEC object. As a result, at resonant frequencies the

fields from the EFIE solution for a solid PEC object will act as those from

a thin-shelled resonant cavity with non-physical fields throughout its volume.

Mathematically, there exist null-space solutions that satisfies the EFIE equa-

tions with zero incident field. These null-space solutions add additional current

to the solution at resonant frequencies and can be interpreted as interior res-

onant modes of the object. The solution to EFIE becomes non-unique at the

internal resonance frequencies. At frequencies close to the internal resonances

EFIE becomes ill-posed and its discretization results in an ill-conditioned sys-

tem of linear algebraic equations because the resonance conditions are almost

satisfied.

MFIE also suffers from the internal resonances albeit these resonances oc-

cur at different frequencies than those of EFIE. The resonances in MFIE are

similar in nature to the resonances of EFIE and correspond to the resonant

modes of a analogous hollow cavity with perfect magnetic conductor (PMC)

walls. A comprehensive analysis of the internal resonance problem for EFIE

and MFIE can be found in [CTH08]. An important property is that the null-

space solutions to EFIE and MFIE differs and so does the frequencies at which

they occur. CFIE is formulated as a linear combination of EFIE and MFIE as

CFIE = α · EFIE + η(1− α) ·MFIE (6.7)

where α is a weighting parameter that is normally chosen within 0.2 ≤ α ≤ 0.5

and η is the intrinsic impedance of the surrounding space. The purpose of the

η factor is to equalize MFIE to the level of EFIE. By combining EFIE and

MFIE, both boundary conditions are satisfied simultaneously and the internal
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resonances are eliminated. The system matrix in CFIE is generally better

conditioned than for EFIE or MFIE which can significantly reduce the number

of iterations for iterative matrix solvers.

6.3 Low Frequency Breakdown Problems

At low frequencies where the object is much smaller than a wavelength there

is normally no benefit with using CFIE. The internal resonances do not occur

in the low frequency regime since their formation require a closed path of wave

propagation inside the cavity that is at least one wavelength in length. In ad-

dition, MFIE has accuracy problems at low frequencies [ZCCZ03]. Therefore,

EFIE is typically used for scattering problems at low frequencies. However,

EFIE also suffers from numerical instabilities at low frequencies as the level of

the vector potential contribution goes below the error level of scalar potential

contribution in (4.15). The ratio of the vector potential term to the scalar

potential term in (4.15) is proportional to the square of the electrical length of

the source basis function. Hence, when the mesh elements are much smaller

than a wavelength the vector potential vanishes due to finite precision of com-

puter arithmetic. The EFIE system matrix becomes rank deficient without

the vector potential contribution since the solution to the scalar potential is

non-unique.

Several methods have been proposed for elimination of the low-frequency

breakdown of EFIE. The loop-tree (or loop-star) basis [LLB03, Vec99] re-

arranges the RWG basis functions into loops that naturally corresponds to

divergence-free current and tree (star) basis functions that provide the current

with non-zero divergence. This stabilizes the scalar potential term and thereby

extends the validity of EFIE to lower frequencies. Augmented-EFIE (AEFIE)

[QC08] and the Current and Charge Integral Equation (CCIE) [TYO06] in-

troduce additional unknowns in order to decompose and normalize the con-

tributions from the vector and scalar potentials. Preconditioners based on
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the Calderon identities have also been shown to stabilize EFIE to very low

frequencies [ACB+08, SLCM13, YJN10].

6.4 Broadband Analysis with FMM

As discussed in Chapter 1, there no universal version of FMM that is efficient at

all frequencies. The popular HF-FMM is the most efficient version of FMM for

full-wave modeling at high frequencies but it is unable to accelerate interactions

between basis functions that are separated by less than about a half-wavelength

when 2 digits of precision is required. At higher accuracy requirements, the

breakdown is much more severe and renders HF-FMM inefficient. Several

remedies have been proposed in the literature as surveyed in Chapter 1. In

the next chapter, we will introduce a new version of FMM that is stable and

efficient from the low frequency regime up to high frequency domains of 100

wavelengths in size. The method is also easily extendable to handling of the

EFIE, MFIE, and CFIE kernels as well as their low-frequency modifications

(e.g. AEFIE and CCIE).
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A vectorial Low-Frequency Multi-Level Fast Multipole Algo-

rithm (LF-MLFMA) is proposed for acceleration of interactions

resultant from the Method of Moments (MoM) discretization of

the Combined Field Integral Equation (CFIE). The derivatives

relating the scalar Green’s function to its dyadic counterparts

are defined via recursive identities for scalar wave functions.

The method evaluates the matrix vector product in MoM by

performing three scalar LF-MLFMA passes. It is demonstrated

to be stable for scatterers spanning up to 110 wavelengths in

size. As the method does not impose any restrictions on the

depth of the MLFMA tree, it is suitable for the solution of

both broadband and multi-scale problems.

7.1 Introduction

The MLFMA is today’s most powerful method for solving large-scale elec-

tromagnetic problems with the boundary-element MoM [1]. It reduces the

computational work and memory in each iteration of the iterative solution of

the MoM matrix equation from O(N2) to O(N logN), where N is the number

of unknowns in the MoM discretization. For models that exhibits multi-scale

features, however, both the underlying MoM formulation and MLFMA accel-

eration schemes must be modified to maintain efficiency. For the MoM this

is due to the low-frequency and/or oversampling breakdown of the underlying

Electric Field Integral Equation (EFIE). The common MLFMA, herein refered

to as High-Frequency MLFMA (HF-MLFMA), breaks down at low frequen-

cies due to its inability to capture the evanescent modes of the field [2]. In

this paper, we propose a vectorial LF-MLFMA that is based on spherical ba-

sis functions [2, 3, 4] and show that it may be a particularly good choice for

solving multi-scale problems.

Two classes of MLFMA have been proposed in the literature for accelera-
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tion of interactions at low-frequencies (LF) which are suitable for combining

with HF-MLFMA to construct MLFMAs that are efficient at all frequencies.

The first class works with the original HF-MLFMA by extending its addition

theorem to capture both the propagating and evanescent parts of the field.

This has been achieved by either using translation methods that are based on

the spectral representation of the Green’s function [5] or by using QR compres-

sion to construct an efficient representation of the translation matrix [6]. These

methods preserve the asymptotic complexity of HF-MLFMA but require addi-

tional work which makes them considerably slower than HF-MLFMA. The sec-

ond class of LF-MLFMA is based on a multipole decomposition of the Green’s

function, where the incoming and outgoing fields are expressed as expansions

of spherical basis functions [2, 3, 4]. This representation requires the use of

translation operators of higher asymptotic complexity than HF-MLFMA and

is therefore less efficient at high frequencies. The method is, however, efficient

at low and mid frequencies which makes it suitable for the solution of multi-

scale geometries up to about a hundred wavelengths in size without combing

it with HF-MLFMA.

In this paper, we show that the second class of LF-MLFMA can acceler-

ate the solution of electrically large multi-scale geometries and propose the

following improvements:

• We extend LF-MLFMA to the CFIE kernel. Previous work has been

limited to the EFIE kernel [4].

• We show that both the EFIE and CFIE kernels can be evaluated with

the same memory requirement as the scalar kernel. The run time is

increased by a factor of three or four over the scalar kernel, depending

on the utilized EFIE formulation [1, 7]
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7.2 Field Expansions in Scalar Low-Frequency

MLFMA

Consider the following elementary spherical wave functions satisfying the scalar

Helmholtz equation, ∇2ψ + k2ψ = 0,

ψm,inn (r) = jn(k0r)Y
m
n (θ, φ), (7.1)

ψm,outn (r) = hn(k0r)Y
m
n (θ, φ), (7.2)

where ψm,inn denotes an elementary incoming spherical wave of degree n and

order m, and similarly ψm,outn denotes an elementary outgoing spherical wave

of degree n and order m. In (7.1), (7.2) and throughout the subsequent deriva-

tions the time-harmonic dependence e−iωt with angular frequency ω is assumed

and suppressed for brevity. Functions jn and hn denote the spherical Bessel

function of order n and the spherical Hankel function of the first kind and or-

der n, respectively. Y m
n denotes the spherical harmonic of degree n and order

m with the following normalization

Y m
n (θ, φ) = (−1)m

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimφ (7.3)

where Pm
n is the associated Legendre function of degree n and order m.

The field Φ produced at location r by a spatial distribution of N point

sources with locations r′1, r′2, ..., r′N and magnitudes q1, q2, ..., qN is given by

Φ(r) =
ik0

4π

N∑
k=1

qkh0(k0‖r− r′k‖). (7.4)

If the sources are enclosed by a sphere S centered at origin, then the field

Φ at an observation point r exterior to S is bandlimited [3]. Thus, it can

be approximated to arbitrary precision ε [2] by a truncated expansion over

outgoing spherical waves

Φ(r) ≈
P∑
n=0

n∑
m=−n

αmn ψ
m,out
n (r), r /∈ S. (7.5)
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The expansion coefficients {αmn } in (7.5) are given by

αmn = ik
N∑
k=1

qkψ
−m,in
n (r′k), rk ∈ S (7.6)

and P is the truncation order determined by the electrical radius of sphere S

and desired precision ε. Similarly, if the sources are located outside sphere S,

we can approximate the field in the interior of S by expanding over incoming

spherical wave functions

Φ(r) ≈
P∑
n=0

n∑
m=−n

βmn ψ
m,in
n (r), r ∈ S, (7.7)

and expansion coefficients {βmn }

βmn = ik0

N∑
k=1

qkψ
m,out
n (r′k), r′k /∈ S. (7.8)

In accordance with the addition theorem [3] the elementary spherical wave

functions can be shifted to another expansion center rc,

ψm,∗n (r) =
P ′∑
n′=0

n′∑
m′=−n′

γm
′,m

n′,n ψm
′,∗

n′ (r− rc), (7.9)

where ∗ denotes either in or out and P ′ is the truncation order of the new

expansion. As the expansion center changes from the origin to rc the bounding

sphere changes from S to S ′. Thus, in order to maintain desired precision ε the

new truncation order P ′ must determined based on the electrical radius of S ′.

Similarly, the outgoing expansion can be converted to an incoming expansion,

ψm,inn (r) =
P ′∑
n′=0

n′∑
m′=−n′

κm
′,m

n′,n ψ
m′,out
n′ (r− rc). (7.10)

To maintain the same precision ε in re-expanded expressions (7.9) and (7.10)

the new order P ′ must be chosen according to the electric radius of new bound-

ing sphere S ′. Several methods for computing the re-expansion coefficients,
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γm
′,m

n′,n and κm
′,m

n′,n , have been proposed in the literature [3, 2]. Direct computa-

tion of the coefficients in terms of Wigner 3-j symbols lead to O(P ′5) or O(P ′6)

computational complexity in (7.9) and (7.10). This is acceptable for electri-

cally small bounding regions S ′ and low accuracy levels ε [4]. The procedure,

however, becomes prohibitively expensive as the electric radius of S ′ increases.

The O(P ′5) complexity can be reduced to O(P ′4) by using appropriate recur-

rence relations in the computation of the coefficients κm
′,m

n′,n [3]. Furthermore,

if the translation is carried along the z-axis, it can be shown that γm
′,m

n′,n = 0

and κm
′,m

n′,n = 0 for all m 6= m′ and n′ < |m| and the translation complexity is

reduced to O(P ′3). O(P ′3) complexity can be obtained for arbitrary transla-

tion directions by first rotating the coordinate system so that the translation

direction is co-linear with its z-axis and then performing a second rotation

back to the original coordinate system after the translation has been done [3].

This O(P ′3) translation methodology is utilized in our implementation.

Since the spherical wave functions (7.1), (7.2) are composed of standard

special functions, their derivatives can be written in terms of the following re-

cursive formulas involving the same spherical functions but of different indices

∂xψ
m,∗
n (r) =

k0

2

(
b−m−1
n+1 ψm+1,∗

n+1 (r) + bm−1
n+1 ψ

m−1,∗
n+1 (r)

− bmn ψ
m+1,∗
n−1 (r)− b−mn ψm−1,∗

n−1 (r)
) (7.11)

∂yψ
m,∗
n (r) =

k0

2

(
−b−m−1

n+1 ψm+1,∗
n+1 (r) + bm−1

n+1 ψ
m−1,∗
n+1 (r)

+ bmn ψ
m+1,∗
n−1 (r)− b−mn ψm−1,∗

n−1 (r)
) (7.12)

∂zψ
m,∗
n (r) = k0

(
amn−1ψ

m,∗
n−1(r)− amn ψ

m,∗
n+1(r)

)
(7.13)

where the coefficients are defined by

amn =


√

(n+1+m)(n+1−m)
(2n+1)(2n+3)

if |m| ≤ n,

0 otherwise.
(7.14)

bmn =

sign(m)
√

(n−m−1)(n−m)
(2n−1)(2n+1)

if |m| ≤ n,

0 otherwise.
(7.15)
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and sign(x) is the signum function. The above recursive relations are key to

rapid evaluation of the derivatives entering into the dyadic Green’s function

kernels of the EFIE and MFIE. Proofs of the above differentiation theorems

(7.11)-(7.13) can be found in [3].

In scalar LF-MLFMA, expansions (7.5) and (7.7) are computed for each

box in its hierarchical tree data. Equation (7.6) is used to compute the outgo-

ing expansion coefficients at the leaf level whereas outgoing expansions at the

other levels are obtained by hierarchically aggregating the leaf box expansions

by using (7.9). The incoming expansions are computed by translating the

outgoing expansions to incoming expansions with (7.10), level by level. The

incoming expansions are finally hierarchically disaggregated down to the leaf

level with (7.9) and evaluated at the observation points (7.7). By selecting

P appropriately for each level, we can control the accuracy in LF-MLFMA

up to ε = 10−12 in double precision arithmetic. At the same time the expan-

sion stability considerations [2] allow us to maintain desired accuracy (down

to ε = 10−12 if needed) for geometries (width of MLFMA root box) exceeding

100 wavelengths and without any restrictions on the depth of the tree.

7.3 Novel Variant of the Vectorial Low-Frequency

MLFMA

In the vectorial LF-MLFMA we accelerate evaluation of the electric field,

E(r`), and magnetic field, H(r`), at L locations r`, due to electric current

distribution J(r′k) discretized over a finite number of quadrature points, r′1, r′2,

. . ., r′N

E(r`) =
N∑
k=1

[
1 +

1

k2
0

∇∇·
]

[h0(k0‖r− r′k‖)J(r′k)] , (7.16)

H(r`) =
1

k0

N∑
k=1

∇× [h0(k0‖r− r′k‖)J(r′k)] , ` = 1, ..., L. (7.17)
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In the proposed algorithm, we let the expansions in LF-MLFMA approxi-

mate the magnetic vector potential, Ã(r) defined by

Ã(r) =
N∑
k=1

h0(k0‖r− r′k‖)J(r′k). (7.18)

The vectorial expansion coefficients in the outgoing field (7.5) and incom-

ing field (7.7) are obtained directly from (7.6) and (7.8). The upward and

downward passes in vectorial LF-MLFMA are performed by three scalar LF-

MLFMA passes, one for each component of the vector potential. The signifi-

cant change in the proposed method lies in how the incoming expansions are

evaluated at the leaf level. Rather than evaluating Ã(r), we convert Ã(r) to

E(r) and H(r) by first substituting (7.18) into (7.16) and (7.17)

E(r) =

[
1 +

1

k2
0

∇∇·
]

Ã(r) (7.19)

H(r) =
1

k0

∇× Ã(r) (7.20)

where Ã(r) is approximated with incoming expansions at the leaf level

E(r) ≈
P∑
n=0

n∑
m=−n

(1 +
1

k2
0

∇∇·)(βmn ψm,inn (r)) (7.21)

H(r) ≈
P∑
n=0

n∑
m=−n

∇× (βmn ψ
m,in
n (r)). (7.22)

After expanding the differentiation operators we can obtain scalar expression

for the each component of E(r) and H(r)

Ex(r) ≈
P∑
n=0

n∑
m=−n

(βmn )xψ
m,in
n (r) +

1

k2
0

(βmn )x∂xxψ
m,in
n (r)

+
1

k2
0

(βmn )y∂xyψ
m,in
n (r) +

1

k2
0

(βmn )z∂xzψ
m,in
n (r)

(7.23)

Hx(r) ≈
P∑
n=0

n∑
m=−n

− 1

k0

(βmn )y∂zψ
m,in
n (r)

+
1

k0

(βmn )z∂yψ
m,in
n (r)

(7.24)
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where expression for the fields’ y and z-components are omitted for brevity.

Equations (7.11)-(7.13) can be directly applied to each components of E(r)

and H(r) to obtain a new set of expansions coefficients which are used by

our proposed version of LF-MLFMA to evaluate the field at the observation

points. We omit the derivation of the expansion coefficients in this paper as it

is both straightforward and lengthy. The new leaf level incoming expansions

become

E(r) ≈
P−2∑
n=0

n∑
m=−n

βm,En ψm,inn (r) (7.25)

H(r) ≈
P−1∑
n=0

n∑
m=−n

βm,Hn ψm,inn (r) (7.26)

In our implementation, the field coefficients {βm,En } and {βm,Hn } are computed

by performing a single pass over the vector potential coefficients {βmn } and

applying the recursion relations. Though the computational cost is of O(P 2)

it is insignificant compared to the other steps in LF-MLFMA provided all the

coefficients in the recursion relations are precomputed. As a direct consequence

of (7.11)-(7.13), each order of differentiation of an expansion over spherical

wave functions reduces the truncation order by one. Hence, the truncation

orders become P − 2 in (7.25) and P − 1 in (7.26). To maintain the same

expansion order as the scalar version, we have increased expansion order P by 1

or 2 depending on which vector kernel is being computed. This is similar to the

increase in expansion order when going from scalar high-frequency MLFMA

to a vectorial one [8].

7.4 Numerical Results

To test the proposed vectorial LF-MLFMA both electrically small but highly

oversampled targets and electrically large targets are examined. In the first

experiment we consider a sphere of radius 1m centered at the origin and dis-

cretized with 1, 624, 640 flat surface triangular elements. The sphere is excited



Chapter 7. Vectorial LF-MLFMA for CFIE 109

Algorithm 3 Vectorial LF-MLFMA

1: for c = {x, y, z} (loop over each component) do

2: for k = 1, . . . , N (N is the number of source points) do

3: qk ← (J(r′k))c (set magnitudes in (7.6))

4: end for

5: Perform a full pass with scalar LF-MLFMA omitting the final evaluation

at the leaf level

6: for b = 1, . . . , B (B is the number of leaf boxes) do

7: for n = 0, . . . , P,m = −n, . . . , n do

8: (βmn )c ← βmn (save expansion coefficients)

9: end for

10: end for

11: end for

12: for b = 1, . . . , B do

13: Convert {βmn } to {βm,En } and/or {βm,Hn }
14: Evaluate expansions (7.25) and/or (7.26) at all observation points in

box b.

15: end for
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by the volumetric current j = I`δ(r − r′) of radial electric dipole with dipole

moment I` = ẑ · A ·m and location r′ = ẑ · 10m. The time snapshots at

t = 0s of the current density J(r) = θ̂<[Jθ(θ)e
−iωt] produced on the sur-

face of the sphere by the radial electric dipole at ω = 2π · 7.5GHz and at

ω = 2π · 1.5MHz are shown in Fig. 7.1. The solid curve corresponds to the

solution obtained with the CFIE Rao-Wilton-Glisson (RWG) MoM solution

and accelerated with the proposed LF-MLFMA. The CFIE-RWG formulation

is weighted 0.2 to EFIE and 0.8 to MFIE and has 2, 436, 960 unknowns. The

analytic Mie series solution is shown with dashed lines in the same figure to

validate the method. Each iteration took 1367s (7.5GHz), 781s (1.5MHz) and

a breakdown of the time spent by LF-MLFMA is shown in Table 7.1. The peak

memory usage in these examples were 39.9GB (7.5GHz) and 35.3GB (1.5MHz)

which includes storage for 393 million non-zero element in the sparse near-field

MoM impedance matrix and 604 million non-zero elements in the LU-factored

preconditioner which contained 12 million non-zero elements prior to factor-

ization. The preconditioned GMRES matrix solver converged to a residual of

10−4 in 27 (7.5GHz) and 17 (1.5MHz) iterations.

In the second example, we apply the proposed vectorial LF-MLFMA to

accelerate the RWG-CFIE solution of a 9.2m rocket discretized with a surface

mesh with 972, 576 triangles, which corresponds to 1, 458, 864 unknowns. The

target is excited by an electric dipole at 3.6GHz positioned on the target’s

geometrical axis 2m away from rocket’s tip and directed collinear with the

axis. The snap shot at t = 0s of time-harmonic current density magnitude

|J(r)| = |<J(r′k)e
−iωt| is shown in Fig. 7.2. At 3.6GHz the length of the

target spans 110λ. The total run time for this example was 17340s. The

preconditioned GMRES matrix solver converged to a final residual of 8.7 ·
10−4 in 18 iterations. Each matrix-vector product took 802s of CPU time.

The MLFMA tree had 9 levels and a root box width of 110λ. The peak

memory usage was 27.9GB, which includes the storage for the sparse near-

matrix with 319 million non-zero elements and the LU-factored preconditioner
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Figure 7.1: A snapshot of time-harmonic current density on the surface of a

sphere of radius 1m that is excited by a radial electric dipole at 7.5GHz (a)

and 1.5MHz (b). The current density is plotted as a function of θ in (c) for

the numerical solutions, the analytic solutions, and the corresponding absolute

errors. The L2 error norms for the solutions are 5.7% (7.5GHz) and 0.073%

(1.5MHz).
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Table 7.1: Performance of the vectorial LF-MLFMA with CIFE-RWG for a

2, 436, 960-unknowns sphere

Level l=2 l=3 l=4 l=5 l=6 l=7 l=8

7.5GHz

Time 215s 117s 87s 65.3s 71.8s 136s 669s

Order P 78 42 24 14 9 7 7

Box size (λ) 12.63 6.32 3.16 1.58 0.79 0.39 0.20

1.5MHz

Time 0.16s 0.61s 2.40s 9.31s 36.8s 135s 589s

Order P 7 7 7 7 7 7 7

Box size

(10−6 · λ)
2500 1250 625 313 156 78 39

Figure 7.2: A snapshot of time-harmonic surface current density on 110λ long

rocket computed using the proposed vectorial LF-MLFMA.

with 250 million non-zero elements. The EFIE and MFIE content in this CFIE

simulation was 0.2 and 0.8, respectively. All simulations were carried out on

a single core of a Intel Xeon 2.66GHz processor. The truncation orders were

set for 2 digits of accuracy and one buffer box was used in the MLFMA tree.

7.5 Conclusion

In this paper, an extension to LF-MLFMA for efficient handling of the vectorial

EFIE, MFIE, and CFIE kernels is presented. We show that the method can
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be applied to targets of up to 110 wavelengths in size without combining it

with HF-MLFMA. The method maintains the same memory requirement as

scalar LF-MLFMA when evaluating the vectorial kernels. The CPU time is

three to four times higher than for the scalar kernel depending on which EFIE

formulation is being used.
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Chapter 8

Conclusions and Future Work

This chapter summarizes the results from the thesis and provides suggestions

for future work.

8.1 Conclusions

In Chapter 3, we extended the free-space center-of-charge approximation to

inhomogeneous stratified media. The new center-of-charge was shown to be

easily computable from knowledge of the charge distribution in the layered

media. When computed appropriately, the multilayered center-of-charge was

shown to exhibit the desired absolute O(1/R3) and relative O(1/R2) error be-

havior, where R is the distance from a box of charges. Hierarchical clustering of

the multilayer center-of-charge was shown to behave analogously to free-space

hierarchical clustering. Finally, we demonstrated the proposed Barnes-Hut

acceleration scheme for fast capacitance extraction.

In Chapter 5, we presented a new tree-based algorithm for the Helmholtz

kernel by introducing the center-of-radiation approximation in analogy to the

center-of-charge in Chapter 3. The center-of-radiation was derived by match-

ing the field spectrum of the true sources in the vicinity of the stationary
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phase point. We obtained a computationally efficient expression for finding

the magnitude and location of the center-of-radiation and showed that the

center-of-radiation can be applied hierarchically. The error behavior was stud-

ied and compared to LF-FMM and HF-FMM and shown to be valid in the

quasi-static regime.

In Chapter 7, we proposed an extension of LF-FMM that is efficient for han-

dling the vectorial EFIE, MFIE, and CFIE kernels. We showed that the new

method maintains the same memory requirement as scalar LF-FMM when

evaluating the vectorial kernels. The method was demonstrated for compu-

tational domains up to 110 wavelengths in size without combining it with

HF-FMM.

8.2 Suggestions of Future Work

• Explore the extension of the center-of-charge and center-of-radiation to

higher order approximations. Following the methodology shown in this

thesis, we may find higher-order approximations by matching higher or-

der moments at the stationary phase point of the field spectrum. Higher

order field approximations may be generated by, for example, introduc-

ing multiple center-of-charge sources. Another direction would be to add

dipole and quadrupole moments to the approximation.

• Investigate the hybridization of the center-of-radiation with the spheri-

cal wave basis functions that were presented in Chapter 7. For example,

the center-of-radiation may be more efficient at box sizes that are much

smaller than a wavelength where interpolation may not be required or

can be simplified. However, spherical basis functions may be more effi-

cient at the top levels as they do not require to be interpolated. Another

hybridization approach would use spherical wave basis functions and let
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its expansion center vary with the source distribution in a similar fashion

to the center-of-radiation.

• Extend the center-of-radiation approximation to inhomogeneous strati-

fied media. It may be possible to find an approximation by matching

the spectral moments according to the procedure outlined in Chapters

3 and 5.

• Rather than computing the location of center-of-radiation, we can in-

troduce a fixed grid of radiating sources at each box in the BH tree

data structure and match the spectrum with (uniformly or non-uniformly

sampled) Fourier harmonics. In particular, this may be useful for high-

order approximations or for inhomogeneous media where the non-linearity

makes it difficult to find the analytic location of the center-of-radiation.

• The center-of-radiation approximation breaks down beyond the quasi-

static regime because the underlaying approximation in the spectral do-

main becomes inaccurate at higher frequencies. It may be possible to

derive the center-of-radiation by using another type of approximation

which does not suffer from the same problem. One direction may be to

look at the phase center concept from antenna theory which is a single

source approximation that valid at high frequencies.

• Investigate and optimize LF-FMM for truly multi-scale geometries. Pre-

vious work has been focused on accelerating multi-scale point-based dis-

tributions. When non-point based basis functions are used, such as the

RWG basis, additional constraints are introduced based on the geometri-

cal size for each basis function. As such, the distance at which the source

and observation basis are well-separated is dependent on the properties

of both the source and observation patches. The BH algorithm’s adap-

tive nature is ideal for handing such interactions whereas FMM requires

that all interactions are govern by the same separation criteria.
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• Explore ways to improve the complexity of the translation procedure

in LF-FMM from the O(P 3) complexity to O(P 2) or O(P 2logP ). One

approach may be to use high-frequency asymptotic when P is large.

• Explore parallelization strategies for LF-FMM which are efficient for

both low and high frequencies. At high frequencies1, the workload in LF-

FMM remains approximately constant at each level of the tree. Previous

work on parallelization strategies for multipole based expansions have

been limited to spatial partitioning strategies where each box is assigned

to a single processor. In order to sustain good load balancing at all

levels, one approach would be to partition the expansions across multiple

processors. Similar parallelization strategies have been presented for HF-

FMM, however, those methods are not directly applicable to LF-FMM.

1Scatters of up to 110 wavelengths in size
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Appendix A

Extended Error Analysis for the

Multilayered Center-of-Charge

Approximation

In this appendix, we perform additional error analysis of the multilayered

center-of-charge presented in Chapter 3. Specifically, the error will be studied

in the L2 error norm instead of using the average relative error that was utilized

in the early chapter. In addition, we will analyze the level-dependant error

when the center-of-charge approximation is computed hierarchically with a

Barnes-Hut tree. Reusing the notations from Chapter 3, we modify Equation

(3.59) to work in the L2 sense as

δ2(R) =

∫ 2π

0

∫ π
0
|Φ(r(R, θ, φ))−Ψ(r(R, θ, φ), rΣ)|2 sin θdθdφ∫ 2π

0

∫ π
0
|Φ(r(R, θ, φ))|2 sin θdθdφ

(A.1)

The next set of experiments will utilize this equation.
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Figure A.1: Distributions of charges contained in a cube with a width of 1m.

The four distributions are two charges in opposite corners (a), 50 charges along

a line (b), 200 randomly distributed charges on the surface of a plane, and 1000

randomly distributed charges throughout the volume of the box (d).
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A.1 Numerical Study of the L2-Error Behav-

ior

For the purpose of our numerical study, we consider the four distributions of

charges as visualized in Figure A.1 and implemented as

• Distribution A: Two charges situated at opposite corners of the box,

both with a charge of 1 Coulomb. This represents a worst-case configu-

ration for the center-of-charge approximation.

• Distribution B: 50 charges are uniformly distributed along a line that

intersects two opposite corners of the box. Each charge carries a random

charge between 0 and 1 Coulomb1.

• Distribution C: 200 charges are randomly distributed on the surface of

a plane. Each charge carries a random charge between 0 and 1 Coulomb.

• Distribution D: 1000 charges are randomly distribution inside the box.

Each charge carries a random charge between 0 and 1 Coulomb.

In addition to the charge distributions, we also consider three types of back-

ground media defined below according to the notation in Figure 3.1.

• Free-space: Vacuum with relative permittivity ε0 = 1.

• Half-space: Two layers with relative permittivities ε0 = 2 and ε1 = 4

and the dielectric interface located at a0 = 0m.

• Multilayered: Five layers with relative permittivites ε0 thru ε4 equal

to 2, 10, 4, 7, and 2, respectively, and the dielectric interface locations

a0 thru a3 equal to −0.3m, 0m, 0.3m, and 0.4m.

1The center-of-charge approximation requires that all charges have the same sign. When
applied to a distribution of both positive and negative charges, we would introduce two
center-of-charge approximations for each box.
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Figure A.2: Plot of δ2(R) (A.1) as a function of observation distance R for the

four charge distributions situated in free-space.

Plots A.2, A.3, and A.4 show the error behavior for each combination of the

charge distributions and background media. We present these results to give

the reader of this thesis additional insight in how the error decays when the

L2-norm is used and also to demonstrate how various distributions of sources

and layers impact the error. Finally, we note that if these results are used

to implement error bounds, then the results for distribution A should be used

since it represents the worst-case configuration.

A.2 Error in Hierarchical Clustering

In order to study the error in the hierarchical clustering when the center-of-

charge approximation used in conjunction with the Barnes-Hut algorithm, we

consider the charge distribution D situated in the 5-layered dielectric media
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Figure A.3: Plot of δ2(R) (A.1) as a function of observation distance R for the

four charge distributions situated in half-space.
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Figure A.4: Plot of δ2(R) (A.1) as a function of observation distance R for the

four charge distributions situated in a 5-layered dielectric media.
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outlined in the previous section. In our first experiment, we compute the

center-of-charge approximation for the box without clustering which is equiv-

alent to a Barnes-Hut tree with a single level. This result is shown in Table

A.1. For our next experiment, we build four Barnes-Hut trees that are 2 thru

5 levels deep and evaluate the center-of-charge for the root box hierarchically

by traversing the tree bottom up while computing the center-of-charge ap-

proximations at each box in the tree. The results for each Barnes-Hut tree

is summarized in Table A.1. These results clearly show that the hierarchi-

cal clustering does not introduce any noticeable error because the locations

and magnitudes obtained by using hierarchical clustering match the directly

computed approximation within the precision of computer arithmetics.
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Number of Center-of-Charge

levels in tree Location Magnitude

1 x = -0.0182947850491114 520.5786350116038648

y = -0.0019920112273499

z = 0.0402527052492543

2 x = -0.0182947850491114 520.5786350116038647

y = -0.0019920112273499

z = 0.0402527052492535

3 x = -0.0182947850491114 520.5786350116038647

y = -0.0019920112273499

z = 0.0402527052492531

4 x = -0.0182947850491114 520.5786350116038647

y = -0.0019920112273499

z = 0.0402527052492532

5 x = -0.0182947850491114 520.5786350116038647

y = -0.0019920112273499

z = 0.0402527052492531

Table A.1: Center-of-charge computed hierarchically with a Barnes-Hut tree

with the number of levels varying from 1 to 5.



Appendix B

Complexity Analysis of the

Vectorial Low-Frequency

MLFMA

This appendix provides a complexity analysis for the Vectorial Low-Frequency

MLFMA that was presented in Chapter 7 of this thesis.

B.1 Relationship between Truncation Order

and Level in the MLFMA Tree

The truncation order, P , in (7.5) and (7.7) are determined by the electrical

size of Sphere S that enclosed all sources in a particular box and the desired

accuracy ε. Denote the electrical size of Sphere S with kd where k is the

wavenumber and d is the diameter of the sphere. The truncation order P` at

level ` of the MLFMA tree can be represented as

P` = αkd` + β + γ log ε (B.1)

where d` is the diameter of the smallest sphere that enclose a single box at level

` and α, β, and γ are constants. A more detailed analysis of the truncation
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Object Integral Number of boxes kD P`

equation at level `

Smooth SIE 4` N1/2 N1/22−`

Smooth VIE 8` N1/3 N1/32−`

Complex SIE 4` 1 1

Complex VIE 8` 1 1

Table B.1: Asymptotic relationship between MLFMA and solution parame-

ters.

order can be found in [GD05]. Let us assume that we apply MLFMA to a

scatterer that can be enclosed in a sphere of diameter D. The level-dependent

size can then be expressed as

d` =
D

2`
(B.2)

which leads to

P` = α
kD

2`
+ β (B.3)

where we have absorbed γ log ε into β under the assumption that the requested

accuracy remains constant through out the computations. Asymptotically, we

write the truncation number as

P` =
αkD

2`
, if kD � κ

β, if kD � κ
(B.4)

where κ can be assumed to be on the order of one wavelength.

B.2 Relationship between Electrical Size and

Number of Unknowns

The solution of integral equations normally require that the scatterer under

investigation is discretized by a minimum number of basis functions per wave-

length. For the purpose of this complexity analysis we consider two scenarios
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Translation method Operations

Direct computation O(P 5)

Recurrence scheme O(P 4)

Point-and-shoot O(P 3)

Rokhlin translator O(P 2logP )

High-frequency asymptotic [GD05] O(P 2logP )

Table B.2: Complexity of MLFMA translation algorithms.

• Smooth Object: The number of basis functions per wavelength re-

mains constant everywhere. This is a typical scenario for modelling

objects at high frequencies.

• Complex Object: The number of basis functions depends only on

the geometric complexity of the object. This is a typical scenario for

modelling of electrically small, but highly complex objects.

Based on these scenarios we can express the level-dependant MLFMA param-

eters as shown in Table B.1 for the Surface Integral Equation (SIE) and the

Volume Integral Equation (VIE), both discretized with N basis functions.

B.3 Complexity of Translation

The cost of performing a translation between two expansion centers of order P

is O(P ν logξ P ), where ν and ξ constants that depend on the algorithm used.

An overview of available translation algorithms in presented in Section 1.2.3

of this thesis and their complexities are summarized in Table B.2.
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B.4 Complexity Analysis of MLFMA

For simplicity, we will begin by analyzing the complexity of the surface integral

equation formulation for the smooth geometry case. The same procedure can

be applied to the other scenarios and those results are summarized in Table

B.3. According to the division of MLFMA described Section 1.2.1 of this

thesis, we perform the complexity analysis for the each phase below.

• Data Structures: The creation of the data structures requiresO(NlogN)

operations due to the fact that we need to sort the spatial locations of

the basis functions into an ordering that matches the structure of the

tree. The data structure can be stored in O(N) memory. However, we

normally store the expansion coefficients at each box of the tree in mem-

ory. Since each box at level ` has P 2
` −1 coefficients, the overall memory

required is
∑logN

`=1 4`P 2
` =

∑logN
`=1 4`(N1/22−`)2 =

∑logN
`=1 N = O(NlogN).

• Leaf-Node Aggregation: P is constant at the leaf-level and aggregat-

ing N basis functions requires O(N) operations.

• Aggregation: The aggregation at level ` requires 4`P ν
` logξ P` opera-

tions. Substituting P` = N1/22−` and using that ` ≤ logN and P` ≥ 1

we can write 4`P ν
` logξ P` = 4`(N1/22−`)ν logξN1/22−` =

O(4`(N1/22−`)ν logξN). Accordingly, the total number of operations

for the aggregation is
∑logN

`=1 4`(N1/22−`)ν logξN) = O(Nν/2 log1+ξN)

if ν = 2 or O(Nν/2 logξN) if ν > 2

• Translation: Same as aggregation.

• Disaggregation Same as aggregation.

• Leaf-Node Disaggregation: Same as leaf-node aggregation. Note that

the additional step proposed in Chapter 7 of converting the magnetic

vector potential to electric and magnetic field is carried out in constant
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Translation Smooth Object Complex Object

complexity SIE VIE SIE VIE

O(P 5) O(N2.5) O(N1.67) O(N logN) O(N logN)

O(P 4) O(N2) O(N1.33) O(N logN) O(N logN)

O(P 3) O(N1.5) O(N logN) O(N logN) O(N logN)

O(P 2logP ) O(N log2N) O(N logN) O(N logN) O(N logN)

Table B.3: Complexities for the overall MLFMA for different translation al-

gorithms, scatterers, and integral equations.

time for each box and therefore does not impact the complexity of this

phase.

• Near Field Summation: Since we assume that each box contains a

constant number of basis functions, the number of operations per box is

also constant. The complexity for this phase is therefore O(N).

As shown in Table B.3, the complexity of MLFMA is O(N logN) for elec-

trically small objects regardless of the complexity of the translation method

used. On the other hand, in order to effectively model smooth objects at high

frequencies we require a O(P 2 logP ) translation method for surface integral

equation formulations and no worse than O(P 3) for volume integral equation

formulations. The implementation that we used for the numerical results in

Chapter 7 was utilizing O(P 3) translation and even though it is asymtopically

O(N1.5) for surface scatterers, it performed similar to O(N logN) implemen-

tation for a 110 wavelength scatterer. The reason for this behavior is that the

predicted O(N1.5) complexity is an asymptotics and at 110 wavelengths we

were still close enough to the region where the method operate at O(N logN)

complexity. Finally, we note that in a practical implementation, we would

switch to either the High-Frequency MLFMA or to a O(P 2 logP ) translation

method as soon as they become numerically stable.
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