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Abstract

This thesis presents a new general purpose power system simulation technique based on dy-

namic phasors and conventional power system simulation methods. The method developed

in this work converts time-domain circuits to equivalent dynamic phasor representations.

These dynamic phasor equivalents are then simulated using nodal analysis and numerical

integrator substitution. Simple linear circuit models are presented first in order to demon-

strate that the new method is capable of accurately simulating small systems. The method

developed in this work is then expanded to include control systems, power electronic con-

verters, and synchronous machines. Visual comparisons with simulation results obtained

using time-domain electromagnetic transient simulators demonstrate that the new dynamic

phasor-based technique is capable of accurately simulating power system components.
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Chapter 1

Introduction

Power systems are large and complex systems with a wide variety of components that

are continuous or discrete and linear or nonlinear. As a result, transient dynamics of

power systems range in timescale from hundreds of nanoseconds to days [1]. Standard

power system simulation techniques tend to be focused on a specific subset of transient

dynamics. While this focus has lead to powerful simulation tools, it also restricts them

to the timescales for which they were designed. Recent developments in power system

modeling and simulation has given rise to new techniques that are capable of targeting

the entire range of power system dynamics. The objective of this thesis is to develop a

new general purpose simulation method based on these techniques, which is capable of

simulating a wide range of power system dynamics.

1.1 Problem Definition

Figure 1.1 illustrates a general set of categories that represent different dynamics in the

power system along with their approximate timescales [1]. Transients associated with the

exchange of energy stored in electric and magnetic fields throughout the system are known

as electromagnetic transients (EMTs). These types of transients are characterized by small

timescales and high frequency content in the range of 50 Hz to 100 kHz. As a result, com-

puter simulations of EMTs must be carried out using small time steps and highly detailed

models. Therefore, simulation of EMTs is best suited to models of small subsystems and
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short time durations [2].

On the other end of the timescale spectrum shown in Figure 1.1 are electromechanical

transients, which are associated with the exchange of energy stored in the electrical network

and the rotating masses throughout the system [1]. These types of transients are charac-

terized by large timescales and low frequency oscillations in the range of 1 Hz to 3 Hz [3].

Simulators designed for electromechanical transients ignore electrical network dynamics in

order to reduce computational load and enable simulation of large systems for long dura-

tions [4]. However, this assumption also restricts electromagnetic transient simulators to

low frequency phenomena.

10−7 10−3 101 105

Time (s)

Electromagnetic
Transients

• Lightning

• Switching transients

• Subsynchronous
resonance and
transient stability

• Generator and power
electronic controls

Electromechanical
Transients

• Long-term
dynamics

• Load frequency
control

Figure 1.1: Timescale of transient dynamics in power systems

Simulators designed for EMTs and electromechanical transients are effective for handling

their respective types of simulation. However, these subclasses do not effectively address the

center of the timescale range, where the transient dynamics of a power system is a result

of both its electrical network and mechanical subsystems. This portion of the dynamics

spectrum is associated with phenomena such as subsynchronous resonance (SSR) and tran-

sient stability [1]. Furthermore, simulators designed for either EMTs or electromechanical

transients are confined to the task for which they are designed. Therefore, it is not possible

to use the same model to accomplish different simulation tasks.

The problem that this thesis will address is the lack of flexibility in conventional power

system simulation techniques. This thesis will address this problem through the develop-

ment of a new simulation technique based on dynamic phasors. Previous research has shown
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that dynamic phasors are highly flexible and are capable of targeting a wide range of power

system dynamics. The following section will give a brief introduction to dynamic phasors,

including its mathematical framework.

1.2 Dynamic Phasors

Phasor analysis involves representing sinusoidal quantities in steady state as complex num-

bers using only their magnitude and phase [5]. This type of analysis shifts the frequency

spectra of the original system such that constant complex numbers represent real sinusoidal

quantities [6]. Standard phasor analysis is used in conventional electromechanical transient

simulators to represent the electrical network [4].

Dynamic phasors were introduced as a means of extending the bandwidth of electrome-

chanical transient simulation to include the dynamics introduced by equipment such as

power electronic converters [6, 7]. A dynamic phasor is simply a phasor where the magni-

tude and phase angle are allowed to change over time. This method allows electromechanical

transient simulations to retain some of the dynamics associated with the electrical network

without significantly increasing the computational load of the simulations. Previous work

has demonstrated that dynamic phasors significantly improve the accuracy of electrome-

chanical simulations involving power electronic converters [3].

The primary limitation of this dynamic phasors formulation is that the analysis is still

limited to the base operating frequency of a power system. This dynamic phasors formu-

lation does not provide any means of capturing the behaviour of higher order harmonics,

which are defined in this work as all harmonics whose frequency is greater than the funda-

mental component. Harmonics are produced by nonlinear devices such as power electronic

converters and saturating transformers. In a seemingly unrelated area of research, the gen-

eralized state space averaging method was introduced as a means of producing dynamic

average value models of a wide variety of power electronic converters [8]. Generalized state

space averaging accomplishes this by assuming that all quantities in a system model may

be represented as a Fourier series with time-varying coefficients. However, examination of

this method reveals that the Fourier coefficients are actually dynamic phasors themselves.
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Except the dynamic phasors of this formulation are defined for the fundamental frequency

as well as all of its harmonics. Therefore, models developed using generalized state space av-

eraging may be used to simulate the entire range of dynamics shown in Figure 1.1, including

the middle range between EMTs and electromechanical transients.

The main idea behind the generalized state space averaging method is that any ar-

bitrary waveform, x (t), may be approximated by a Fourier series with time-dependent

coefficients [8]. The complete Fourier series of x (t) is defined on the interval from t− T0 to

t by

x (t− T0 + s) =
∞∑

k=−∞
〈x〉k (t) ejkω0(t−T0+s), (1.1)

where ω0 and T0 are the base frequency and period of the series, respectively, and s is a

parameter defined between 0 and T0. The kth time-dependent Fourier coefficient in (1.1),

〈x〉k (t), is given by

〈x〉k (t) =
1

T0

T0∫
0

x (t− T0 + s) e−jkω0(t−T0+s)ds. (1.2)

In practice, the series given by (1.1) must be truncated to a subset of harmonics, K,

that includes all significant harmonics for a system model. The level of detail of a model

may be adjusted by including or omitting harmonics, depending on the requirements of the

model. Furthermore, only positive harmonics are required for systems that consist entirely

of real-valued quantities.

Equation (1.2) demonstrates that for T0-periodic functions, the time-dependent coef-

ficients, 〈x〉k (t), reduce to the Fourier coefficients of x (t). The time-dependent Fourier

coefficients given by (1.2) are dynamic phasors, defined at the fundamental frequency and

all of its harmonics. As this formulation serves as the basis for the remainder of this work,

dynamic phasors from this point forward will strictly refer to the coefficients given by (1.2).

Figure 1.2 illustrates a graphical interpretation of the dynamic phasors method given

by (1.1) and (1.2). The idea behind the dynamic phasors method is that the series uses

a window of length T0 to capture a portion of x (t) [8]. The dynamic phasors of x (t) are

calculated based on the portion captured by the window. This window then slides across

– 4 –



the waveform, calculating a new set of dynamic phasors at each point in time. Figure 1.2

illustrates this concept for the average value or dc component (k = 0) of the waveform.

t

x (t)

t

〈x〉0 (t)

T0 T0

Figure 1.2: Visualization of the dynamic phasors method

The dynamic phasors method shown in Figure 1.2 is useful for situations where the

waveform is known at every point in time. However, simulation is concerned with generating

the waveforms for a system based on the inputs and characteristics of the elements contained

in the system [7]. Instead, (1.2) may be viewed as the definition of an operator known as

the dynamic phasor operator, 〈·〉k [8]. This operator may then be applied to a set of

time-domain equations, transforming them into a new set of equations in terms of dynamic

phasors. Consider a set of nonlinear state equations given by

dx

dt
= f (t,x,u) , (1.3)

where x (t) is an n×1 vector of state variables and u (t) is an m×1 vector of input variables.

Applying the dynamic phasor operator to (1.3) yields the dynamic phasor form of the state

equations, which is given by 〈
dx

dt

〉
k

= 〈f (t,x,u)〉k . (1.4)

The left hand side of (1.4) may be evaluated using the dynamic phasor differentiation
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property [8], which is given by

〈
dx

dt

〉
k

=
d 〈x〉k
dt

+ jkω0 〈x〉k . (1.5)

A general form for the right hand side of (1.4) does not exist as each individual system

is different and requires special consideration. Furthermore, in general it is not possible

to obtain a closed-form expression for the right hand side of (1.4) when the system is

nonlinear [8]. Therefore, approximations are required to model nonlinear systems using

dynamic phasors. An important exception is polynomial nonlinearities, where dynamic

phasors may be obtained analytically using the convolution property given by

〈xy〉k =

∞∑
l=−∞

〈x〉k−l 〈y〉l . (1.6)

The final dynamic phasor form of (1.3) may be derived using (1.4) and (1.5) and is given

by

d 〈x〉k
dt

= −jkω0 〈x〉k (t) + 〈f (t,x,u)〉k . (1.7)

This equation demonstrates that the dynamic phasor operator transforms a set of equa-

tions in terms of time-domain quantities into a new set of equations in terms of dynamic

phasors [8]. Dynamic phasors have been used in a wide variety of areas to demonstrate

their capabilities in power system design and simulations. Previous research in dynamic

phasors has been primarily focused in the following areas:

1. Power electronics [8–14]: Modeling and simulation of power electronics has received

a significant amount of attention in dynamic phasor research. The original generalized

state space averaging method was introduced as a means of expanding the range of

power electronic converters that could be modeled using average value techniques [8].

Generalized state space has been used to model dc/dc converters [9–11], resonant

converters [8, 13], and dc/ac bridge topologies [11, 12]. An interesting application of

dynamic phasors for modern power systems is in the area of microgrids [14]. Previous

research has shown that dynamic phasors may be used to improve model accuracy

and determine properties such as controller stability.
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2. HVDC and FACTS [15–25]: High voltage direct current (HVDC) and flexible ac

transmission systems (FACTS) have also received a significant amount of attention

in dynamic phasor research. It has been shown that dynamic phasor models may

be used for advanced applications, such as controller design focused on damping and

removing instability in power systems [25].

3. Machines [26–30]: A particularly important area of research in dynamic phasors has

been in the modeling of machines. Previous research has demonstrated that conven-

tional machine modeling techniques may be enhanced using dynamic phasors [26,28].

Dynamic phasors are capable of identifying the influence of harmonics and ac system

imbalance and characterizing their impact on both electrical and mechanical quan-

tities. Furthermore, machine models may be developed that incorporate effects of

higher order harmonics using dynamic phasors.

4. SSR and Hybrid simulation [16, 22, 24, 31]: Previous research has demonstrated

that dynamic phasors may be incorporated into electromechanical simulations to en-

hance the accuracy of power electronic models [24].

1.3 Thesis Motivation

The majority of previous research in dynamic phasors has been focused on illustrating its

advantages and capabilities for specific subsystems. The state space models developed and

used in literature are valuable for demonstrating properties of the researched systems. How-

ever, the programs used to simulate these models are also limited to the specific subsystems

for which they were developed. Therefore, investigating new configurations requires either

direct modification of program code or development of new programs.

Another major advantage of dynamic phasors that has not received much attention

is the ability to select the level of detail in a system model by including or excluding

harmonics [8, 27]. The majority of previous research has been focused on averaged or

low frequency modeling using dynamic phasors. Previous research has demonstrated that

dynamic phasors may be used in power electronic models to simulate the effects of higher
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order harmonics and obtain a more complete picture of the converter dynamics [8–10]. In

some cases, additional harmonic detail is essential to ensure that simulations are accurate,

particularly when parts of the system are dominated by harmonics. Furthermore, previous

research has also demonstrated that higher order harmonics may be used to characterize

component behaviour during adverse conditions [27,28,32].

General purpose simulation that includes higher order harmonics has been largely ig-

nored in research. A state space-based general purpose simulator has been developed in

literature [2]; however, this work primarily focused on the unification of EMT and elec-

tromechanical transient simulation. While some higher harmonic behaviour was included

in specific models, the method developed did not include provisions for automatically in-

cluding or excluding harmonics based on the level of detail required. General purpose

discrete Norton equivalents that are based on the fundamental frequency form of dynamic

phasors discussed in Section 1.2 have also been explored in research [33]. However, there

is no possibility for inclusion of higher order harmonics as these models are based on the

fundamental frequency dynamic phasors formulation.

The focus of this thesis is to present the development of a new general purpose simulation

method based on dynamic phasors. The new method must be systematic and modular such

that a wide variety of system configurations may be simulated using the same method and

models. Furthermore, the new method must be capable of automatically adjusting the

harmonics included in simulation such that a single model may be used to simulate both

averaged behaviour and higher order harmonics.

1.4 Thesis Organization

This thesis presents a new general purpose simulation method using conventional power

system simulation methods along with the dynamic phasors formulation discussed in Sec-

tion 1.2. Background information on power system simulation and the methods used by

general purpose EMT simulators is presented in Chapter 2.

A discussion of the general purpose simulation method developed in this work for dy-

namic phasor-based models is presented in Chapter 3. This chapter includes derivations of
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basic circuit models, such as capacitors and voltage sources, that form the building blocks

for larger and more complex power system models.

The methods used in this work to simulate control and measurement systems is presented

in Chapter 4. This chapter includes a discussion on the different modeling techniques

available for control systems. The methods used to integrate control system models into

the simulation method presented in Chapter 3 are also presented in this chapter.

Chapter 5 presents the line-commutated converter (LCC) model developed for use in

the general purpose simulation method discussed in Chapter 3. This chapter includes a

discussion on the methods used in literature to model power electronic converters. This

chapter also includes a detailed derivation of the LCC model as an example of how power

electronics may be included in the general purpose simulation method developed in this

work.

The synchronous machine model developed for use in the dynamic phasor-based gen-

eral purpose simulation method is presented in Chapter 6. This chapter includes a review

of synchronous machine theory and the methods used in literature to model synchronous

machines using dynamic phasors. This chapter also includes the derivation of a dynamic

phasor-based synchronous machine model that is compatible with the general purpose sim-

ulation method developed in this work.

Conclusions and contributions of this work along with recommendations for future re-

search are presented in Chapter 7.
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Chapter 2

Electromagnetic Transient

Simulation

Simulation of EMTs in power systems has historically been dominated by state space and

nodal analysis-based algorithms [1]. The state space method is used extensively to represent

and simulate physical systems. Prior to the introduction of the nodal analysis method,

power system simulations were carried out primarily using state space-based algorithms.

The popularity of the state space method in the area of dynamic phasors is evident from the

wealth of literature and research available on the topic of generalized state space averaging.

The advantage of the state space method is that it naturally represents the dynamics

of physical systems. The dynamics of an nth order physical system may be written as

a set of n first order differential equations, known as state equations, each representing

the dynamics of a variable, known as a state variable [1]. Furthermore, it is possible

to represent a wide variety of nonlinearities and discrete elements using state space [2].

Finally, numerical methods for ordinary differential equations (ODEs) are defined in terms

of first order differential equations [34]. Therefore, the state space method is particularly

well suited to simulation of large systems with a wide variety of different elements such as

power systems.

The primary drawback of the state space method for general purpose simulators is

that formulation of the state equations is a complicated task. Automatic formulation of
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the state equations for a system model requires identification of the relationships between

state variables and other quantities in the system [1]. This task is difficult to handle

computationally and the result is additional complexity in computer software developed to

carry out simulations using state space.

The second method uses nodal analysis in conjunction with a method known as nu-

merical integrator substitution (NIS), which has become the most widely used method for

EMT simulation in power systems [1]. This method forms the basis for world leading appli-

cations in EMT simulation, such as PSCAD/EMTDC, EMTP-RV, and RTDS. The nodal

analysis-based approach to general purpose simulation is simple, systematic, and flexible.

It is simple and systematic because it relies on a minimal amount of information regarding

the system topology to formulate a set of discrete equations that can be used to simulate

a power system model. The nodal analysis-based method is also flexible because the only

requirement of discrete equivalents is that they must be represented as conductances and

current sources.

The basic idea behind the nodal analysis method is that the discrete equivalent of a

continuous model is formulated automatically based on the system topology. A set of nodal

equations may then be developed from this discrete equivalent, which are used to solve for

the network voltages in each time step. Figure 2.1 illustrates a simplified version of the nodal

analysis simulation procedure [1]. The simulation procedure begins with an initialization of

the system and network voltages. All of the current sources in the system are then updated

at the beginning of the simulation loop using the network voltages from the previous time

step. The network voltages are then obtained using the nodal equations developed from the

discrete system equivalent. This procedure is repeated until the required simulation time

has elapsed.

This chapter focuses on providing a brief introduction to the important concepts in

power system simulation using the nodal analysis method. Section 2.1 provides background

information on nodal analysis and how the network equations are developed. Section 2.2

discusses how the NIS method may be used to extend nodal analysis for simulation of more

complex and dynamic circuits. Finally, Section 2.3 concludes the chapter with a discussion

on the exponential method for numerical integration.
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Initialization
t = 0
v = 0

Update sources
and history terms

Solve for
network voltages

v = Y−1i

Increment time
t = t+ ∆t

t > tfinal?

Simulation
complete

no

yes

v : vector of node voltages
Y: admittance matrix
i : vector of current sources

Figure 2.1: Nodal analysis simulation procedure

2.1 Nodal Analysis

Node-voltage or nodal analysis is a type of circuit analysis that uses Kirchoff’s current law

(KCL) to systematically develop a set of equations that may be used to obtain the solution

for a given circuit [5]. The equations developed using this method are known as node-

voltage or nodal equations and the unknown variables in these equations are the voltages

at each node, which are known as node voltages. The node voltages are measured relative

to a single node known as the reference node, which generally corresponds to the ground,

i.e. zero voltage, in physical circuits.

Consider an arbitrary circuit with N + 1 nodes that consists solely of admittances and

current sources. The solution of this circuit would require N KCL equations, since one

equation is required for each node except the reference node [5]. Assuming that current is

always leaving the present node under consideration, then the general form of the nodal
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equation at the ith node may be written as follows:

yi0vi +
N∑
j=1
i 6=j

yij (vi − vj) = Ii, (2.1)

where node 0 is the reference node and the reference node voltage, v0, is equal to zero [35].

The total admittance connecting node i to node j is represented by yij in (2.1). This term

accounts for the net effect of all the branches connecting node i to node j and is equal

to zero when there is no connection between the two nodes. The right hand side of (2.1)

represents the net effect of all the current sources incident on node i, where positive values

indicate current is injected into the node. The leading term in (2.1), yi0, represents the

admittance between node i and the reference node. Alternatively, (2.1) may be written in

the form given by

Yiivj +
N∑
j=1
i 6=j

Yijvj = Ii, (2.2)

where Yii and Yij are the self and mutual admittances, respectively [35] and are given by

Yii =
N∑
j=0
i 6=j

yij ; and (2.3)

Yij = −yij . (2.4)

Assembling the nodal equations from each node in a circuit into a single matrix equation

yields:



Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N

...
...

. . .
...

YN1 YN2 · · · YNN





v1

v2

...

vN


=



I1

I2

...

IN


(2.5a)

Yv = i, (2.5b)

where Y = [yij ] is known as the admittance matrix [35]. The diagonal elements of the
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admittance matrix are equal to the self admittance terms given by (2.3) and the off-diagonal

elements are equal to the mutual admittance terms given by (2.4). The node voltages, v,

may be obtained by assembling the admittance matrix and current source vector, i, based

on the circuit topology and solving (2.5b).

The primary advantage of the nodal analysis method for circuit analysis is that assembly

of the admittance matrix and source vector is systematic. The equations for the elements of

the admittance matrix illustrate that they are calculated entirely based on the admittance

and topology information of the circuit. Similarly, the elements of the current source vector

are based entirely on the topology of the circuit and the parameters of each source in the

circuit. Therefore, the nodal equations may be systematically developed by hand for small

circuits or using computer algorithms for large networks based on a list of nodes and circuit

elements.

2.2 Numerical Integrator Substitution

Nodal analysis is useful for analysis of circuits that consist solely of current sources and

admittances. However, the nodal analysis method discussed in the previous section cannot

directly handle elements that have differential or complex nonlinear relationships between

the voltage and current. For example, simple linear elements, such as capacitors and in-

ductors, or more complex nonlinear elements, such as saturating transformers, cannot be

included in the admittance matrix or source vector in their original time-domain continuous

form. Therefore, adjustments to the nodal analysis method are required in order to use it

in the analysis of more complex and realistic networks.

The NIS method is used in many EMT simulators to convert continuous circuit models

to discrete equivalents for simulation [1]. This method is based on numerical methods for

solving ODEs, which is also known as numerical integration. Numerical integration methods

are used to solve the majority of ODEs that arise from physical systems since they are

generally complex and impossible to solve using analytical methods [34]. These methods

involve converting continuous ODEs into discrete representations known as a difference

equation [34]. The primary goal in numerical analysis of ODEs is to obtain difference
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equations that accurately capture the continuous behaviour of the modeled system [1].

There are a number of numerical integration methods that fall into distinct categories,

and selection of an appropriate method involves consideration into the characteristics of the

application. The NIS method for power system simulation was originally introduced using

the trapezoidal integration method due to its accuracy, simplicity, and stability [36]. The

stability of the trapezoidal method is particularly useful for general purpose simulation of

any system because it is A-stable [34]. This property ensures that simulations of stable

continuous systems carried out using the trapezoidal method will be numerically stable.

The trapezoidal method for an arbitrary first order ODE of the form

dx

dt
= f (t, x) (2.6)

is defined by the following difference equation:

x [n] = x [n− 1] +
∆t

2
(f (tn, x [n]) + f (tn−1, x [n− 1])) , (2.7)

where ∆t is the time step, tn is the time at the nth time step, and x [n] is the discrete form

of x (t) shown in (2.6). Assuming that the initial conditions (t0 and x [0]) of the system

are known, the difference equation given by (2.7) may be solved at each time step using

the information from the previous time step. This process is repeated until the simulation

time, tn, is greater than the desired duration, tfinal.

The NIS method was originally developed to obtain discrete models for linear lumped

elements with dynamic behaviour described by ODEs [36]. The main idea behind this

method is that a numerical method such as the trapezoidal method may be applied to

any element where the terminal voltage across and current through the device are related

by an ODE to obtain a discrete difference equation. The difference equation may then

be rearranged to reveal a discrete relationship between the voltage and current [1]. This

relationship may be used to express the element as a discrete Norton equivalent, which can

be used in conjunction with nodal analysis. As an example, consider an inductor, whose
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voltage and current are related through the following differential equation:

diL
dt

=
1

L
vL. (2.8)

Applying the trapezoidal method to (2.8) yields a difference equation for the inductor

given by

iL [n] = iL [n− 1] +
∆t

2L
(vL [n] + vL [n− 1]) . (2.9)

The discrete Norton equivalent of the inductor may be obtained by rearranging the

terms in (2.9) as follows:

iL [n] = yLvL [n] + Ih [n− 1] , (2.10)

where yL and Ih [n− 1] are the discrete equivalent admittance and current source for the

inductor, respectively, and are given by

yL =
∆t

2L
; and (2.11)

Ih [n− 1] = iL [n− 1] + yLvL [n− 1] . (2.12)

The current source in (2.10) is also known as the inductor’s history current term [1]. This

element represents the past information of the inductor and its influence on the present time

step. Figure 2.2 illustrates the discrete Norton equivalent of the inductor. This example

illustrates how the discrete equivalents produced by the NIS method may be used in circuit

simulations. First of all, the discrete equivalent shown in Figure 2.2 is substituted into a

continuous circuit in the place of each inductive element. The history current is updated

at the beginning of each time step, using the network voltages obtained from the previous

time step. The history current is then used in the present time step to obtain a new set of

network voltages.
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iL [n]yL

IL [n− 1]

+ vL [n] −

Figure 2.2: Discrete Norton equivalent of an inductor

2.3 Exponential Method for Numerical Integration

The previous section demonstrated how the trapezoidal method is used to convert con-

tinuous elements with dynamic behaviour into discrete elements that appear as Norton

equivalents. The trapezoidal method is sufficient for many situations due to the properties

discussed in Section 2.2. However, it has been shown that the difference equations that re-

sult from networks constructed using the trapezoidal method appear as a truncated Taylor

series of the exponential function, ex [37]. These truncated terms may result in numerical

inaccuracies and oscillations, which are particularly noticeable when systems are simulated

using large time steps.

The concept of using exponential integrator methods was first introduced in nodal

analysis-based simulators for control systems and has been integrated into the control sim-

ulation models in programs such as PSCAD/EMTDC [1]. However, exponential methods

are not limited to control system simulation and may be used to derive Norton equivalents

using the NIS method discussed in the previous section [37]. Previous work has shown that

the accuracy of power system simulation using the nodal analysis method may be improved

if the difference equations for the network include complete exponential forms.

Exponential integrator methods have been used extensively in mathematics in order to

solve specific forms of ODEs [38]. These methods are defined for nonlinear systems, and a

wide range of different exponential integrator techniques may be obtained by considering

different Taylor series approximations to the nonlinear system of equations. The method

used in this work is restricted to linear systems and therefore, may be considered as a subset

of the exponential integrator methods used in mathematics. Firstly, consider a linear nth
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order system whose state equations are given by

dx

dt
= Ax (t) + Bu (t) , (2.13)

where x is a n× 1 vector of state variables, u is an m× 1 vector of input variables, and A

and B are n × n and n ×m matrices of constants, respectively [39]. The general solution

to (2.13) for t ≥ t0 is given by

x (t) = eA(t−t0)x (t0) +

t∫
t0

eA(t−τ)Bu (τ) dτ, (2.14)

where x (t0) are the initial conditions of the system. This expression may be used to simulate

the system given by (2.13) by setting the initial time, t0, to t−∆t as follows:

x (t) = eA∆tx (t−∆t) +

t∫
t−∆t

eA(t−τ)Bu (τ) dτ, (2.15)

where eA∆t may be calculated using a variety of methods, such as the scaling and squaring

method [38].

The expression given by (2.15) requires further modification for the purposes of sim-

ulation as it includes an integral containing the input variables, which may be unknown

quantities prior to the execution of simulations. The approach used in previous research

is to assume a certain form of the input variables, which is based on their values at the

present and previous time steps [40]. Based on previous research, the approach used in this

work involves assuming that the input variables vary linearly between time steps. Under

this assumption, the input variables in (2.15) may be written as follows:

u (ζ) =
u (t)− u (t−∆t)

∆t
(ζ − t) + u (t) , (2.16)

where ζ is defined between t−∆t and t. Substituting (2.16) into (2.15) and solving yields
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the general form of the exponential integrator method used in this work, which is given by

x (t) = eA∆tx (t−∆t) + M0u (t) + M1u (t−∆t) , (2.17)

where M0 and M1 are the numerical integration coefficients and are given by

M0 =
A−2

∆t

(
I− eA∆t −∆tA

)
B; and (2.18)

M1 =
A−2

∆t

(
eA∆t (I + ∆tA)− I

)
B. (2.19)

Alternatively, (2.17) may be written in terms of discrete quantities as follows:

x [n] = eA∆tx [n− 1] + M0u [n] + M1u [n− 1] . (2.20)

The integration coefficients given by (2.18) and (2.19) indicate that A must be invertible

to use the exponential method defined by (2.20). A special case for this method occurs

when A is equal to the zero matrix, i.e. A = 0. For example, the inductor from the

previous section satisfies this condition. It can be shown that the exponential method

derived in this section reduces to the trapezoidal method when A = 0. Therefore, the

exponential integrator method does not replace the trapezoidal method, but instead may

be incorporated alongside the trapezoidal method to improve the nodal analysis method for

certain subsystems of a large electrical system [37].

2.4 Summary

This chapter presented a brief introduction to the nodal analysis method used extensively to

simulate EMTs in power systems. The primary advantages of the nodal analysis method for

power system simulation is that it is simple, systematic, and flexible. This method is based

on nodal analysis, which is a systematic technique for developing a system of equations

that may be used to solve for the node voltages in a power system network. However, this

method is limited to systems consisting of admittances and current sources.

The NIS method was introduced as a means of extending nodal analysis for the purposes

– 19 –



of EMT simulation in power systems. This method uses numerical integration methods

to convert continuous elements into discrete Norton equivalents. The NIS method was

first introduced using the trapezoidal method due to its accuracy and stability. However,

previous work has shown that systems simulated using the trapezoidal method may exhibit

numerical inaccuracies and oscillations. Therefore, the exponential method was introduced

to remove these numerical oscillations and improve the accuracy of simulations carried out

using the nodal analysis method.
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Chapter 3

Simulation Approach and Basic

Circuits

The conventional dynamic phasors technique discussed in Section 1.2 is generally used in

conjunction with state space representations. The dynamic phasor operator and associ-

ated properties are applied to the state equations for a given system to derive a set of

differential equations in terms of dynamic phasors. This procedure is known as state space

averaging [41] and is useful for dynamic phasor based modeling of independent subsys-

tems. However, it is difficult to use this approach to develop a general purpose dynamic

phasors-based simulation method as it relies on state equations. As discussed in Chapter 2,

general purpose simulation using state space is a complex task as the state equations and

relationships between different system variables must be identified. Furthermore, dynamic

phasor-based simulation includes the additional complexity of identifying approximations

to handle nonlinearities.

An alternative approach is to use a combination of the nodal analysis method discussed

in Chapter 2 along with a modeling approach known as in-place circuit averaging [42]. Fig-

ure 3.1 illustrates the main idea behind the in-place circuit averaging approach for dynamic

phasors. A circuit model in terms of time-domain quantities is shown on the left in Fig-

ure 3.1, which is converted directly to an equivalent dynamic phasor representation on the

right. The time-domain quantities in the circuit, such as voltage and current, are replaced
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by their dynamic phasors and each element is replaced by its equivalent dynamic phasor

model. Therefore, the in-place method differs from conventional methods as it operates on

circuits models instead of state equations.

+
−vs (t) Z

i (t)+

v (t)

−

...

+
−〈vs〉0 (t) Z0

〈i〉0 (t)+

〈v〉0 (t)

−

+
−〈vs〉K (t) ZK

〈i〉K (t)+

〈v〉K (t)

−

Original circuit Dynamic phasor equivalent circuits

Figure 3.1: In-place circuit averaging using dynamic phasors

Nodal equations must be developed for the set of dynamic phasor equivalent circuits

in order to simulate the circuit using the nodal analysis method. Figure 3.1 illustrates

that the result of converting a circuit model using the in-place approach is K equivalent

dynamic phasor circuits, where K is the number of harmonics included in the dynamic

phasor simulations. These circuits may be coupled, depending on the presence of nonlinear

devices such as power electronic converters [42]. A set of N nodal equations is required for

each equivalent circuit to simulate a circuit with N + 1 nodes. Therefore, the entire system

requires K × N nodal equations for simulation. These equations may be written in block

diagonal form as follows:



Y0 C01 · · · C0K

C10 Y1 · · · C1K

...
...

. . .
...

CK0 CK1 · · · YK





〈v〉0
〈v〉1

...

〈v〉K


=



〈i〉0
〈i〉1

...

〈i〉K


, (3.1)

where 〈v〉k and 〈i〉k are the kth dynamic phasors of the node voltages and current sources
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respectively. The diagonal matrices, Yk, represent the admittance matrices for the indi-

vidual dynamic phasor equivalent circuits, including the effects of any harmonic coupling

present in the circuit. The off-diagonal matrices, Cij , represent the coupling terms between

different harmonic equivalent circuits.

The entire set of nodal equations required to simulate a circuit using dynamic phasors

illustrates that the computational burden is increased with each harmonic included in the

simulations. This behaviour is not surprising since the computational burden of the gen-

eralized state space averaging method also increases as the number of harmonics increases.

However, (3.1) also demonstrates that the system of nodal equations has properties that

may be used to carry out simulations in an efficient manner. The coupling matrices in

(3.1) will be zero if the system is completely decoupled. This situation occurs in linear

systems and may also occur in discrete representations of nonlinear systems, depending

on the methods used to model the nonlinear components. The equations will be in block

diagonal form when the coupling matrices are zero. Therefore, each equivalent circuit may

be solved independently in this situation. Furthermore, computational methods such as

parallel processing may also be used when the harmonic equivalent circuits are decoupled.

As discussed in Section 2.2, all components must be converted to discrete Norton equiv-

alents in order to use the nodal analysis method for simulations. This chapter focuses

on developing discrete Norton equivalents for basic circuit components, which constitute

the building blocks of larger and more complex circuits. Section 3.1 develops the discrete

equivalents for resistors, capacitors, and inductors. Following this, Section 3.2 develops a

method for modeling combinations of simple components. Finally, the Norton equivalents

for voltage source models are discussed in Section 3.3.

3.1 Simple Components

Resistors, capacitors, and inductors are defined as simple components in this work. These

basic elements form the building blocks for larger and more complex circuits [5], and can

be used to approximate behaviour of complex systems such as transmission lines [35]. The

relationship between voltage and current in these elements is simple and will be used to
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demonstrate the simulation procedure in detail. The discrete dynamic phasor equivalent

models for the resistor, capacitor, and inductor are derived in Sections 3.1.1 to 3.1.3, respec-

tively. This section concludes with a detailed example of a simple circuit in Section 3.1.4.

3.1.1 Resistors

Resistors are used in circuits to model components that consume energy [5]. For example,

resistors are used in power systems to model active power loads and transmission line

losses [35]. Figure 3.2 illustrates a resistor in terms of continuous time-domain quantities,

where R is the resistance of the resistor. The current through and terminal voltage across

a resistor are related as follows:

iR (t) =
vR (t)

R
. (3.2)

R
iR (t)

+ vR (t) −

Figure 3.2: A resistor in terms of continuous time-domain quantities

The relationship between the resistor voltage and current dynamic phasors may be

derived by applying the dynamic phasor operator to (3.2) and is given by

〈iR〉k (t) =
〈vR〉k (t)

R
. (3.3)

The expression given by (3.3) shows that the dynamic phasor operator does not affect

the relationship between voltage and current in a resistor. This result is expected since the

relationship between voltage and current in a resistor is algebraic and the dynamic phasor

operator is linear [42]. Figure 3.3 illustrates the resistor in terms of continuous dynamic

phasors.

R
〈iR〉k (t)

+ 〈vR〉k (t) −

Figure 3.3: A resistor in terms of continuous dynamic phasors
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The discrete relationship between the resistor voltage and current dynamic phasors may

be obtained by substituting discrete quantities for continuous quantities in (3.3) as follows:

〈iR〉k [n] =
〈vR〉k [n]

R

= G 〈vR〉k [n] , (3.4)

where G is the conductance of the resistor. Figure 3.4 illustrates the resistor in terms of

discrete dynamic phasors.

G
〈iR〉k [n]

+ 〈vR〉k [n] −

Figure 3.4: A resistor in terms of discrete dynamic phasors

3.1.2 Capacitors

Capacitors are used in circuits to model components in which energy is stored in an electric

field and naturally arises when two charged components are separated by a medium [5].

For example, part of the interaction between a transmission line with another line or the

ground may be modeled using a capacitor [35]. Figure 3.5 illustrates a capacitor in terms

of continuous time-domain quantities, where C is the capacitance of the capacitor. The

current through a capacitor is linearly related to the first derivative of the terminal voltage

across the capacitor as follows:

iC = C
dvC
dt

. (3.5)

iC (t)
C

+ vC (t) −

Figure 3.5: A capacitor in terms of continuous time-domain quantities

The relationship between the capacitor voltage and current dynamic phasors may be

derived by applying the dynamic phasor operator and differentiation property to (3.5) [42]
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and is given by

〈iC 〉k (t) = C
d 〈vC 〉k
dt

+ jkω0C 〈vC 〉k (t) . (3.6)

The expression given by (3.6) implies that the capacitor appears as a capacitor in parallel

with a susceptance to dynamic phasors, which is illustrated by Figure 3.6 [42]. The value of

the parallel susceptance suggests that this branch appears as a short circuit as the harmonic,

k, approaches infinity. This observation is consistent with circuit theory, as the impedance

of capacitors approach zero as frequency approaches infinity [5]. Furthermore, the parallel

branch in the dynamic phasor capacitor model disappears for the dc component as the

susceptance of the parallel branch is zero when the harmonic is equal to zero. Therefore,

the dynamic phasor operator does not affect the relationship between voltage and current

in a capacitor for the dc component.

〈iC 〉k (t)
C

jkω0C

+ 〈vC 〉k (t) −

Figure 3.6: A capacitor in terms of continuous dynamic phasors

The relationship between the dynamic phasors of voltage and current in a capacitor

given by (3.6) may be rewritten as follows:

d 〈vC 〉k
dt

= −jkω0 〈vC 〉k (t) +
〈iC 〉k (t)

C
, (3.7)

which is in the form of a first order linear state equation where

x =

[
〈vC 〉k

]
; u =

[
〈iC 〉k

]
; A =

[
−jkω0

]
; and B =

[
1
C

]
.

Therefore, the exponential integrator method discussed in Section 2.3 may be used to derive

a discrete dynamic phasor Norton equivalent for the capacitor. Applying the exponential

integrator method to (3.7) yields the difference equation for the dynamic phasor form of
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the capacitor, which is given by

〈vC 〉k [n] = e−jkω0∆t 〈vC 〉k [n− 1] +m0k 〈iC 〉k [n] +m1k 〈iC 〉k [n− 1] , (3.8)

where

m0k =


∆t

2C
k = 0

1− jkω0∆t− e−jkω0∆t

∆tC (kω0)2 otherwise; and
(3.9)

m1k =


∆t

2C
k = 0

e−jkω0∆t (1 + jkω0∆t)− 1

∆tC (kω0)2 otherwise
(3.10)

and ∆t is the simulation time step. Rearranging the terms in (3.8) gives the discrete

dynamic phasor Norton equivalent for the capacitor defined by

〈iC 〉k [n] = yCk 〈vC 〉k [n] + ICk [n− 1] , (3.11)

where yCk and ICk [n− 1] are the discrete admittance and history current for the capacitor,

respectively, and are given by

yCk =
1

m0k
; and (3.12)

ICk [n− 1] = −
(
e−jkω0∆t

m0k
〈vC 〉k [n− 1] +

m1k

m0k
〈iC 〉k [n− 1]

)
. (3.13)

Figure 3.7 illustrates the discrete Norton equivalent for the capacitor in terms of discrete

dynamic phasors.

〈iC 〉k [n]yCk

ICk [n− 1]

+ 〈vC 〉k [n] −

Figure 3.7: A capacitor in terms of discrete dynamic phasors
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3.1.3 Inductors

Inductors are used in circuit models to represent components in which energy is stored in

a magnetic field and naturally arises in current carrying conductors [5]. Inductors may

be used to model the transformer windings and the armatures of electric machines [43].

Figure 3.8 illustrates an inductor in terms of continuous time-domain quantities, where L is

the inductance of the inductor. The terminal voltage across an inductor is linearly related

to the first derivative of the current through an inductor as follows:

vL (t) = L
diL
dt
. (3.14)

L iL (t)

+ vL (t) −

Figure 3.8: An inductor in terms of continuous time-domain quantities

The relationship between the inductor voltage and current dynamic phasors may be

derived by applying the dynamic phasor operator and differentiation property to (3.14) [42]

and is given by

〈vL〉k (t) = L
d 〈iL〉k
dt

+ jkω0L 〈iL〉k (t) . (3.15)

The relationship given by (3.15) implies that the inductor model appears as an inductor

in series with a reactance to dynamic phasors, which is illustrated by Figure 3.9 [42]. The

value of the series impedance suggests that the branch in series with the inductor appears as

an open circuit as the harmonic, k, approaches infinity. This observation is consistent with

circuit theory, as the impedance of inductors approach infinity as frequency approaches

infinity [5]. Furthermore, the series impedance in the dynamic phasor inductor model

disappears for the dc component as its impedance is zero when the harmonic is equal to

zero. Therefore, the dynamic phasor operator does not affect the relationship between

voltage and current in an inductor for the dc component.
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L jkω0L
〈iL〉k (t)

+ 〈vL〉k (t) −

Figure 3.9: An inductor in terms of continuous dynamic phasors

The relationship between the dynamic phasors of voltage and current in an inductor

given by (3.15) may be rewritten as follows:

d 〈iL〉k
dt

= −jkω0 〈iL〉k (t) +
〈vL〉k (t)

L
, (3.16)

which is in the form of a first order state equation where

x =

[
〈iL〉k

]
; u =

[
〈vL〉k

]
; A =

[
−jkω0

]
; and B =

[
1
L

]
.

Therefore, the exponential integrator method discussed in Section 2.3 may be used to derive

a discrete dynamic phasor Norton equivalent for the inductor. Applying the exponential

integrator method to (3.16) yields the difference equation for the dynamic phasor form of

the inductor, which is given by

〈iL〉k [n] = e−jkω0∆t 〈iL〉k [n− 1] +m0k 〈vL〉k [n] +m1k 〈vL〉k [n− 1] , (3.17)

where

m0k =


∆t

2L
k = 0

1− jkω0∆t− e−jkω0∆t

∆tL (kω0)2 otherwise; and
(3.18)

m1k =


∆t

2L
k = 0

e−jkω0∆t (1 + jkω0∆t)− 1

∆tL (kω0)2 otherwise
(3.19)

and ∆t is the simulation time step. Rearranging the terms in (3.17) gives the discrete
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dynamic phasor Norton equivalent for the inductor defined by

〈iL〉k [n] = yLk 〈vL〉k [n] + ILk [n− 1] , (3.20)

where yLk and ILk [n− 1] are the discrete admittance and history current for the inductor,

respectively, which are given by

yLk = m0k; and (3.21)

ILk [n− 1] = m1k 〈vL〉k [n− 1] + e−jkω0∆t 〈iL〉k [n− 1] . (3.22)

Figure 3.10 illustrates the discrete Norton equivalent for the inductor in terms of discrete

dynamic phasors.

〈iL〉k [n]yLk

ILk [n− 1]

+ 〈vL〉k [n] −

Figure 3.10: An inductor in terms of discrete dynamic phasors

3.1.4 Simulation Results

Figure 3.11 illustrates a simple circuit that will be used to demonstrate the method and

models developed for simple passive components. The dynamics of the output voltage,

v2 (t), are described by the second order differential equation given by

Rs
LC

is (t) =
d2v2

dt2
+

(
Rs
L

+
1

RC

)
dv2

dt
+
Rs +R

RLC
v2 (t) . (E3.1)

Figure 3.12 illustrates the equivalent dynamic phasor circuit for the kth harmonic, which

may be derived by substituting the dynamic phasor equivalents defined in Sections 3.1.1

to 3.1.3 for each component in Figure 3.11.
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is (t)

L

RRs C

+

v1 (t)

−

+

v2 (t)

−

Figure 3.11: RLC example circuit in terms of continuous time-domain quantities

〈is〉k (t)

L jkω0L

RRs C jkω0C

+

〈v1〉k (t)

−

+

〈v2〉k (t)

−

Figure 3.12: RLC example circuit in terms of continuous dynamic phasors

The dynamics of the kth output voltage dynamic phasor, 〈v2〉k (t), are described by the

second order differential equation given by

Rs
LC
〈is〉k (t) =

d2 〈v2〉k
dt2

+ a1k
d 〈v2〉k
dt

+ a2k 〈v2〉k (t) , (E3.2)

where

a1k =
1

RC
+
Rs
L

+ j2kω0; and (E3.3)

a2k =
Rs +R

RLC
+ jkω0

(
1

RC
+
Rs
L

)
+ (jkω0)2 . (E3.4)

The analytical solution for the output voltage dynamic phasors may be derived by solving

(E3.2) and is given by

〈v2〉k (t) =
RsIsk

λ1kλ2kLC

(
1 +

λ2ke
λ1kt − λ1ke

λ2kt

λ1k − λ2k

)
(E3.5)

assuming that the circuit parameters are chosen such that the eigenvalues, λ1k and λ2k,
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given by

λ1k, λ2k = −a1k

2
±
√(a1k

2

)2
− a2k (E3.6)

are distinct. Furthermore, (E3.5) was derived assuming that the current source dynamic

phasors, 〈is〉k (t), are step functions of the form given by

〈is〉k (t) =


0 t < 0

Isk t ≥ 0,

(E3.7)

where Isk is a real number for k = 0 and a complex number otherwise.

Figure 3.13 illustrates the discrete form of the example RLC circuit, which may be

derived by substituting the discrete equivalents discussed in Sections 3.1.1 to 3.1.3 for each

component in Figure 3.11.

〈is〉k [n]

yLk

GGs

Node 1

ILk [n− 1]

Node 0

yCk

Node 2

ICk [n− 1]

+

〈v1〉k [n]

−

+

〈v2〉k [n]

−

Figure 3.13: RLC example circuit in terms of discrete dynamic phasors

Figure 3.13 illustrates that there are two nodes (1 and 2) and one reference node (0) in

the example circuit. Therefore, two nodal equations are required to simulate the example

circuit, which are given by

(Gs + yLk) 〈v1〉k − yLk 〈v2〉k = 〈is〉k − ILk; and (E3.8)

−yLk 〈v1〉k + (G+ yCk + yLk) 〈v2〉k = ILk − ICk, (E3.9)

where the discrete indexes (n and n−1) have been dropped from these equations for brevity
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and match those included in Figure 3.13. Alternatively, the nodal equations may be written

in matrix format as follows:Gs + yLk −yLk
−yLk G+ yCk + yLk


〈v1〉k
〈v2〉k

 =

〈is〉k − ILk
ILk − ICk

 . (E3.10)

Simulations of the example RLC circuit were carried out using the dc (k = 0) and fun-

damental (k = 1) components to compare the simulated and analytical results. Assembling

the nodal equations for both of these components into a single system yields:



Gs + yL0 −yL0 0 0

−yL0 G+ yC0 + yL0 0 0

0 0 Gs + yL1 −yL1

0 0 −yL1 G+ yC1 + yL1





〈v1〉0
〈v2〉0
〈v1〉1
〈v2〉1


=



〈is〉0 − IL0

IL0 − IC0

〈is〉1 − IL1

IL1 − IC1


. (E3.11)

The admittance matrix in (E3.11) shows that the two harmonics are completely de-

coupled, which is expected for a circuit comprised entirely of linear components. The

component values and parameters used to obtain simulation results for the output voltage

dynamic phasors are listed in Table 3.1. Furthermore, it is assumed that the all of the

capacitor voltage and inductor current dynamic phasors were initially zero. Figures 3.14

and 3.15 illustrate the analytical and simulated output voltage waveforms for the dc and

fundamental components respectively. The results show that the simulated quantities are

in good agreement with the analytical waveforms.

Table 3.1: RLC example circuit simulation parameters

Parameter Value

f0 60 Hz

Is0 10 A

Is1 10 A

Rs 1 Ω

R 25 Ω

L 11.0 mH

C 0.11 mF
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Figure 3.14: Comparison of the output voltage dynamic phasors for the dc component
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Figure 3.15: Comparison of the output voltage dynamic phasors for the fundamental com-
ponent

A valuable property of dynamic phasor-based simulation is that it is possible to use

the simulation results to obtain an estimate of the frequency domain characteristics for

continuous systems. This property can be used to investigate the frequency characteristics

of a system and validate dynamic phasor models. Applying the Laplace transform to (E3.1)
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yields a transfer function that describes the relationship between the output voltage of the

example circuit and the input current source, which is given by

T (s) =
V2 (s)

Is (s)
=

Rs/LC

s2 + (Rs/L + 1/RC) s+ (Rs+R)/RLC
. (E3.12)

An estimate of the transfer function given by (E3.12) may be obtained by simulating

the example circuit using the step functions for 〈is〉k (t) given by (E3.7). Estimated values

for (E3.12) may then be calculated using the following expression

T (jkω0) ≈ 〈v2〉k
Is (k)

, (E3.13)

where 〈v2〉k are the output voltage dynamic phasors after the circuit has reached steady

state. Figure 3.16 illustrates the simulation results for first nine harmonics along with the

continuous frequency response produced by (E3.12) with s = jω. These results show that

the simulated values and the analytical response are in good agreement.

3.2 Composite Components

In the previous section, individual Norton equivalents were derived for the resistor, capaci-

tor, and inductor. These equivalents are versatile and may be used in any configuration to

simulate arbitrary circuits. However, certain combinations of the independent components

are found more frequently than others. For example, a series RLC branch may be used as a

filter and is found in a number of power system applications, including HVDC transmission

systems and resonant converters [44]. These combinations may be grouped together to form

composite components.

Grouping elements together into composite components offers a number of advantages

to simulations carried out using the nodal analysis method. From a modeling perspective,

composite element often has defining characteristics that only exist due to the combination

of elements. It is often advantageous to model composite elements based on these charac-

teristics rather than the component values of the simple elements. For example, a series

tuned RLC filter may be specified by either the resistance, capacitance, and inductance of
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the individual components or, more frequently, the resonant frequency and bandwidth of

the filter [45].
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Figure 3.16: Comparison of the analytical and estimated transfer functions

There are also computational advantages to using composite elements. Interior nodes

are defined as the nodes that form the connection between the constituent elements in a

composite component. Exterior nodes are defined as the nodes that are used to connect a

composite component to an electrical network. Figure 3.17 illustrates a series RLC circuit

in which its four nodes have been marked and numbered. In this circuit, nodes 2 and 3 are

the interior nodes while nodes 1 and 4 are the exterior nodes.

Composite component models offer a computational advantage over individual compo-

nent models because they remove all of the interior nodes from the system model. The

total effect of a composite element is captured using a single Norton equivalent, which is

connected to the system model using the exterior nodes. The interior node voltages may

be obtained using mathematical relationships between constituent elements and exterior
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node voltages. For example, only nodes 1 and 4 in Figure 3.17 must be included in the

node-voltage formulation when a composite component equivalent is used to simulate the

series RLC circuit. However, all four nodes in the circuit must be included in the formu-

lation when the series RLC circuit shown in Figure 3.17 is simulated using the individual

equivalents derived in the Section 3.1.

1 2 3 4

Interior

Exterior

Figure 3.17: Series RLC circuit with interior and exterior nodes marked

The reduction in the number of nodes required for circuit simulation is a particularly

important advantage for dynamic phasor-based simulation. As previously discussed, a dy-

namic phasor equivalent circuit must be included for each harmonic in the set selected for

simulations. This property greatly increases the number of nodes and equations required

to carry out the simulations. Therefore, a reduction in the number of nodes required for

simulation offers significant benefits in terms of simulation speed for dynamic phasor-based

simulation.

Composite components also improve the accuracy of simulations carried out using the

nodal analysis method. The primary motivation for previous research into composite com-

ponents in EMT simulation was to reduce the numerical inaccuracies and oscillations intro-

duced by the trapezoidal method. Simulation accuracy may be improved using difference

equations that are in exponential form since composite components often exhibit expo-

nential transient behaviour [37]. Previous research has demonstrated that the accuracy of

EMT simulations may be significantly improved using composite components, particularly

for large values of the simulation time step.

The root matching method is a simple and systematic method for deriving Norton equiv-

alents for composite components [37]. However, it lacks generality and must be repeated for

each new circuit configuration. A new method was derived in this work using the exponential

integrator method discussed in Section 2.3 that only requires a state space representation

– 37 –



for each new composite component. Figure 3.18 illustrates a general composite component

in terms of time-domain quantities. The first step in obtaining a generalized composite

component Norton equivalent is to assume that the dynamics of any composite component

may be represented as a set of linear state and output equations in the following form:

dx

dt
= Ax (t) + Bv (t) ; and (3.23)

i (t) = Cx (t) +Dv (t) . (3.24)

Z
i (t)

+ v (t) −

Figure 3.18: General form of a composite component in terms of time domain quantities

The most important aspect in the general equations given by (3.23) and (3.24) is that

the terminal voltage across the composite component must be selected as the input variable

and the current through the component must be selected as the output variable. The state

and output equations given by (3.23) and (3.24) may be converted to dynamic phasors using

the differentiation property as follows:

d 〈x〉k
dt

= Ak 〈x〉k (t) + B 〈v〉k (t) ; and (3.25)

〈i〉k (t) = C 〈x〉k (t) +D 〈v〉k (t) , (3.26)

where

Ak = A− jkω0I. (3.27)

The discrete form of the state and output equations may be derived using the exponential

integrator discussed in Section 2.2, which are given by

〈x〉k [n] = eAk∆t 〈x〉k [n− 1] + M0k 〈v〉k [n] + M1k 〈v〉k [n− 1] ; and (3.28)

〈i〉k [n] = C 〈x〉k [n] +D 〈v〉k [n] , (3.29)
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where

M0k =


∆tB

2
if Ak = 0

A−2
k

∆t

(
eAk∆t −Ak∆t− I

)
B otherwise; and

(3.30)

M1k =


∆tB

2
if Ak = 0

A−2
k

∆t

(
I− (I−Ak∆t) e

Ak∆t
)
B otherwise.

(3.31)

The general Norton equivalent for composite components may be derived by substituting

(3.28) into (3.29), which is given by

〈i〉k [n] = yk 〈v〉k [n] + Ik [n− 1] , (3.32)

where yk and Ik [n− 1] are the discrete admittance and history current for the generic

composite component, respectively, which are given by

yk = CM0k +D; and (3.33)

Ik [n− 1] = CeAk∆t 〈x〉k [n− 1] + CM1k 〈v〉k [n− 1] . (3.34)

3.2.1 Simulation Results

The RLC example circuit used in Section 3.1.4 will be used in this section to demonstrate

how composite components are constructed and incorporated into the general purpose sim-

ulation method developed in this work. Figure 3.19 illustrates the load portion of the RLC

example circuit, which may be represented in terms of the state and output equations given

by

diL
dt

=
v − vC
L

; (E3.14)

dvC
dt

=
iL
C
− vC
RC

; and (E3.15)

i = iL. (E3.16)

The state and output equations given by (E3.14) to (E3.16) may be written as a set of
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matrix equations of the form given by (3.23) and (3.24) where

x =

 iL
vC

 ; A =

 0 − 1
L

1
C − 1

RC

 ; B =

 1
L

0

 ; C =

[
1 0

]
; and D = 0.

These equations are sufficient for generating a discrete dynamic phasor Norton equivalent

for the circuit illustrated by Figure 3.19. Figure 3.20 illustrates the discrete equivalent

model of the example RLC circuit, in which the load is modeled using a single discrete

Norton equivalent with parameters defined by (3.33) and (3.34).

i (t) L iL (t)

RC

+

v (t)

−

+

vC (t)

−

Figure 3.19: RLC load circuit in terms of continuous time-domain quantities

〈is〉k [n] Ik [n− 1]Gs yk

+

〈v1〉k [n]

−

Node 1

Node 0

Figure 3.20: RLC example circuit in terms of discrete dynamic phasors and a composite
component load model

Figure 3.20 illustrates that there is one node (1) and one reference node (0) in this

discrete equivalent form of the example RLC circuit. Therefore, one nodal equation for

each harmonic is required to simulate this circuit, which is given by

(Gs + yk) 〈v1〉k [n] = 〈is〉k [n]− Ik [n− 1] . (E3.17)

An additional equation is required to obtain the output voltage dynamic phasors,
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〈v2〉k [n], since they are embedded within the composite component equivalent. The output

voltage dynamic phasors are given in terms of the composite component states as follows:

〈v2〉k [n] = 〈vC 〉k [n] , (E3.18)

where 〈vC 〉k [n] are the dynamic phasors of the capacitor voltage. Simulations were carried

out for the dc (k = 0) and fundamental (k = 1) components using the initial conditions

and parameters listed in Section 3.1.4. Figures 3.21 and 3.22 illustrates the simulated and

analytical output voltage waveforms for the dc and fundamental components respectively.

The results show that the simulated and analytical waveforms are in good agreement.
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Simulation Analytical

Figure 3.21: Comparison of the output voltage dynamic phasors for the dc component

3.3 Voltage Sources

Figure 3.23 illustrates the general form of a voltage source where an ideal source, vs (t), is

connected to an electrical network through an impedance, Zs. In general, the ideal voltage

source is either a periodic ac source or a dc source in power system models. For example,

a sinusoidal source may be used to model the ac system in an HVDC transmission system

model while a square wave source may be used to represent the input in a resonant converter

model [44]. The impedance block in Figure 3.23 is a placeholder representing any passive

elements that are used to model the impedance of the source. For example, a resistor in

series with an inductor may be used to represent the equivalent impedance of the ac system

in an HVDC transmission system model [4].
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(a) Real
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(b) Imaginary

Figure 3.22: Comparison of the output voltage dynamic phasors for the fundamental com-
ponent

vs (t)

Zs i (t)

+

v (t)

−

Figure 3.23: General form of a voltage source in terms of continuous time-domain quantities

Figure 3.24 illustrates the general form of a voltage source in terms of dynamics phasors.

This form may be derived by applying the dynamic phasor operator to vs (t) and replacing

all of the elements in Zs with their dynamic phasor equivalents. The equivalent circuit illus-

trated by Figure 3.24 suggests that there are two requirements for modeling sources using

dynamic phasors. The first requirement is that the original source waveform, vs (t), must

be represented in terms of its dynamic phasors, 〈vs〉k (t), which will be discussed in Sec-
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tion 3.3.1. The second requirement is that the source impedance network must be converted

to a discrete Norton equivalent for simulation, which will be discussed in Section 3.3.2.

〈vs〉k (t)

Zsk 〈i〉k (t)

+

〈v〉k (t)

−

Figure 3.24: General form of a voltage source in terms of continuous dynamic phasors

3.3.1 Waveform Modeling

The dynamic phasors for source waveforms may be derived by first assuming that the

waveforms have constant parameters, such as magnitude and phase, and are T0-periodic.

The dynamic phasors of a given waveform are equal to its Fourier series coefficients as

discussed in Section 1.2 under this assumption. As an example, consider a square wave

defined by

x (t) =


A 0 ≤ t < T0/2

−A T0/2 ≤ t < T0,

(3.35)

where A is the magnitude of the waveform. The dynamic phasors of this waveform are

equal to the Fourier coefficients of a square wave and are given by

〈x〉k (t) =


0 k even

2A

jkπ
k odd.

(3.36)

It is sufficient to model a source using constant parameters for many simulation cases.

However, it is advantageous to model sources using variable parameters in certain situa-

tions. For example, PSCAD/EMTDC sources include a mechanism for slowly increasing

the magnitude of sinusoidal waveforms upon initialization of a simulation case [45]. This

feature is valuable for sensitive cases where a sudden step change may cause instability.

The method used in this work to model these changes was to use the dynamic phasors of

the constant parameter form of the source and simply allow the parameters of the source
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to change. For example, suppose the the square waveform given by (3.35) must be modeled

with a variable magnitude. The dynamic phasors for the square waveform may be modeled

with a time-dependent magnitude as follows:

〈x〉k (t) =


0 k even

2A (t)

jkπ
k odd.

(3.37)

Figure 3.25 illustrates the square waveform defined by (3.35) where the amplitude un-

dergoes a step change from A to 2A at time ts. The dynamic phasor waveform reconstructed

using the first 20 harmonics is also included in Figure 3.25. The results show that the dy-

namic phasor waveform accurately reconstructs and represents the time-domain waveform.

0 1 2 3 4ts

Cycles

−2A

−A
0

A

2A

x

Dynamic Phasors Instantaneous

Figure 3.25: Comparison of a variable amplitude square wave

A special case that cannot be handled using the variable parameter technique previously

discussed are waveforms with a variable frequency. The frequency of a source may change

in certain circumstances, such as variable frequency control of resonant converters [13].

Variable frequency waveforms are a special case because the technique previously discussed

requires that the waveforms be T0-periodic. The dynamic phasors of the source waveform

are not equal to its Fourier coefficients without this assumption.

There has been limited research into simulating variable frequency systems using dy-

namic phasors. In fact, the requirement of using a fixed base frequency has been listed

as a limitation of dynamic phasor based simulations [30]. The original dynamic phasors

formulation includes adjustments to incorporate a variable base frequency [8]. However,
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the adjustments introduce significant complexity to the method in the form of implicit inte-

gral and differential equations. A different approach has also been explored, which involves

assuming that each variable in a system may be written in the form of a set of complex ex-

ponentials with time-varying magnitudes [29]. The complex exponentials for each variable

are in terms of a phase angle that describes its oscillatory characteristics. These variables

are then substituted into the system state equations and simplified to reveal a set of differ-

ential equations in terms of the time-varying coefficients. This method results in a system

of equations that properly capture the dynamics of variable frequency systems. However,

the state equations are formulated by hand and require insight and intuition. Therefore,

this method is poorly suited for a general purpose simulator.

The approach used in this work to model variable frequency sources involves a modi-

fication to the assumed state variable approach. The equations and variables of a system

are also written in terms of a phase angle that describes their oscillatory characteristics.

However, instead of directly substituting these variables into the system equations, their

dynamic phasors are derived by expanding the variables into a Fourier series and applying a

simple transformation. The dynamic phasors of variable frequency sources may be derived

by considering sources as 2π-periodic functions of instantaneous phase angle rather than

time and frequency. The Fourier series for source waveforms using this method is given by

x (t) =
∞∑

k=−∞
Xke

jkθ(t), (3.38)

where Xk and θ (t) are the Fourier coefficients and instantaneous phase angle of x (t),

respectively. The instantaneous phase angle of a waveform is related to its angular frequency

through the relationship given by

dθ

dt
= ω (t) , (3.39)

where ω (t) is the time-dependent angular frequency of the waveform. The dynamic phasors

for variable frequency sources may be derived using the Fourier series given by (3.38) and

a simple transformation. Adding and subtracting the product of the dynamic phasors base
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angular frequency and time, ω0t, from the exponential term in (3.38) yields:

x (t) =
∞∑

k=−∞
〈x〉k (t) ejkω0t, (3.40)

where the dynamic phasors of x (t) are given by

〈x〉k (t) = Xke
jk(θ(t)−ω0t). (3.41)

As an example of this method, consider once again the square wave given by (3.35) with

a constant magnitude and a step change in the frequency defined by

ω =


ω0 t ≤ ts

2ω0 t > ts.

(3.42)

The instantaneous phase angle may be obtained by substituting (3.42) into (3.39) and

assuming that θ (0) = 0, which yields:

θ (t) =


ω0t t ≤ ts

ω0 (2t− ts) t > ts.

(3.43)

Figure 3.26 illustrates the square wave defined by (3.35) with the step change in fre-

quency defined by (3.42). The dynamic phasor waveform reconstructed using the first 20

harmonics is also included in Figure 3.26. The results show that the dynamic phasor wave-

form accurately captures the step change in frequency and is in good agreement with the

time-domain waveform.
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Figure 3.26: Comparison of a variable frequency square wave

3.3.2 Impedance Modeling

The dynamic phasor voltage source model illustrated by Figure 3.24 must be converted to

a discrete Norton equivalent so that it may be included in the nodal analysis-based simula-

tion method. First of all, consider the situation when the source impedance is completely

resistive. The relationship between the ideal voltage source, terminal voltage, and current

leaving the source in Figure 3.23 is given by

〈vs〉k (t) = 〈v〉k (t) +Rs 〈i〉k (t) , (3.44)

where Rs is the equivalent source resistance. Rearranging the terms in (3.44) yields:

〈i〉k (t) = 〈is〉k (t)−Gs 〈v〉k (t) , (3.45)

which gives the dynamic phasors of the current leaving the source in terms of an equivalent

current source, 〈is〉k (t), the terminal voltage dynamic phasors, and the equivalent source

conductance, Gs. The expression given by (3.45) may be converted directly to the discrete

form by replacing the continuous quantities with discrete quantities as follows:

〈i〉k [n] = 〈is〉k [n]−Gs 〈v〉k [n] . (3.46)

The expression given by (3.46) defines the discrete dynamic phasor Norton equivalent for the

voltage source with a resistive source impedance model, which is illustrated by Figure 3.27.
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〈is〉k [n]

〈i〉k [n]

Gs

+

〈v〉k [n]

−

Figure 3.27: A voltage source and resistive impedance in terms of discrete dynamic phasors

Numerical integration is required to derive discrete Norton equivalents for voltage source

models where the source impedance includes dynamic elements, such as inductors. The

simple component equivalents discussed in Section 3.1 may be used to derive a discrete

Norton equivalent for voltage sources where the impedance may be represented by a single

capacitor or inductor. The composite element method discussed in Section 3.2 may be used

to derive a discrete Norton equivalent for voltage sources where the impedance cannot be

modeled using a single circuit element. Assuming that the dynamics of the source impedance

illustrated in Figure 3.23 may be written as a set of state and output equations of the form

given by

dx

dt
= Ax (t) + Bvz (t) ; and (3.47)

i (t) = Cx (t) +Dvz (t) , (3.48)

then the discrete dynamic phasor Norton equivalent may be derived using the technique

demonstrated in Section 3.2 as follows:

〈i〉k [n] = ysk 〈vz〉k [n] + Ihk [n− 1] , (3.49)

where ysk and Ihk [n− 1] are the discrete admittance and history current for the generic

voltage source, respectively, and are given by

ysk = CM0k +D; and (3.50)

Ihk [n− 1] = CeAk∆t 〈x〉k [n− 1] + CM1k 〈vz〉k [n− 1] . (3.51)
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The voltage across the source impedance is related to the ideal voltage source and the

terminal voltage of the device in terms of discrete dynamic phasors as follows:

〈vz〉k [n] = 〈vs〉k [n]− 〈v〉k [n] . (3.52)

Substituting (3.52) into (3.49) and simplifying gives the general form of the discrete

Norton equivalent for voltage source models with dynamic source impedances. The discrete

equivalent for the voltage source is given by

〈i〉k [n] = Isk [n]− ysk 〈v〉k [n] + Ihk [n− 1] , (3.53)

where Isk [n] is the discrete equivalent current injection of the source model and is defined

as follows:

Isk [n] = ysk 〈vs〉k [n] . (3.54)

Figure 3.28 illustrates the Norton equivalent given by (3.53), which can be substituted

directly into dynamic phasor equivalent circuits.

Isk [n]

〈i〉k [n]

Ihk [n− 1] ysk

+

〈v〉k [n]

−

Figure 3.28: A voltage source and dynamic impedance in terms of discrete dynamic phasors

3.3.3 Simulation Results

Simulations were carried out using the example circuit and parameters given in Section 3.1.4.

However, the current source and source resistance in Figure 3.11 were replaced by a voltage

source and resistance as shown in Figure 3.29. This voltage source model was selected since

its discrete dynamic phasor model is equivalent to the current source and resistor parallel

combination shown in Figure 3.13. Therefore, the dynamic phasor discrete equivalent circuit
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shown in Section 3.1.4 may be used once again to simulate the circuit.

+
−vs

iL
Rs L

RC

+

v2

−

Figure 3.29: RLC example circuit with a square wave voltage source

The voltage source in Figure 3.29 was modeled as a square wave with an amplitude

of 100 V and an initial frequency of 60 Hz. At 0.1 s, the frequency of the voltage source

is increased to 90 Hz. The frequency domain response of the circuit shown in Figure 3.16

demonstrates that there is significant harmonic content when the source is operated at 60 Hz.

Therefore, simulations were carried out for the first, third, and fifth harmonics. Figures 3.30

and 3.31 illustrates the reconstructed output voltage, v2 (t), and inductor current, iL (t),

waveforms simulated using dynamic phasors as well as the simulation results produced by

PSCAD/EMTDC. These plots illustrate that the dynamic phasor and PSCAD/EMTDC

simulation results are in good agreement.
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Figure 3.30: Comparison of the output voltage waveforms
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Figure 3.31: Comparison of the inductor current waveforms

3.4 Summary

This chapter presented a new general purpose method for simulating circuits using dynamic

phasors based on the nodal analysis method discussed in Chapter 2. Circuits simulated us-

ing this method are first converted to their equivalent dynamic phasor based representation

using the in-place circuit averaging method. Each element in the circuit is then converted

to a discrete Norton equivalent. The discrete equivalents for simple circuit elements were

provided in this chapter, which are based on the exponential integration method discussed

in Section 2.3. A generalized procedure for creating composite component models was also

presented in this chapter, which is based on state space and the exponential integration

method. Composite component models are valuable because they remove nodes from the

discrete equivalent system, which has a significant impact on the computational burden of

dynamic phasor-based simulations. Voltage source models were also presented in this chap-

ter, which included an extension of the composite components method for modeling complex

source impedance networks. The voltage sources section in this chapter also presented a

new method for modeling variable frequency behaviour. Comparisons with analytical and

PSCAD/EMTDC simulation results in this chapter demonstrated that the dynamic phasor

method developed in this work accurately captures the behaviour of basic linear circuits.

– 51 –



Chapter 4

Control and Measurement Systems

Control systems are critical components in many fields of engineering and science [39].

Control systems are used to ensure a system remains at the desired operating point when

subjected to disturbances, such as variations in the system and faults [46]. There are several

control levels in power systems, which are carefully coordinated to maintain the reliability

of the system and maximize its efficiency [4]. For example, individual generating units have

control systems to regulate the speed and voltage of the machine, while the amount of power

output of all units is selected by the system generation controls.

A particularly important subset of control systems are feedback or closed-loop control

systems. Feedback control systems are defined as those that use measurements and infor-

mation about the current state of the system to adjust control parameters and ensure the

system operates at the desired operating point [39]. This type of control is generally used

in situations where a system is constantly changing and subjected to disturbances. Main-

taining the system at the desired operating point would be impossible in these situations

without feedback.

Feedback control systems involve measurement and decision making tasks to correct

any deviations from a desired operating point [46]. The measurement tasks may involve

some form of filtering to remove noise while the decision making tasks are often carried out

by controllers with some form of integral or differential behaviour, such as proportional-

integral (PI) controllers [39]. As a consequence, control and measurement systems introduce

additional dynamic behaviour to physical systems. Therefore, it is essential that these
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systems are modeled properly to ensure that simulations of physical systems involving

controls are accurate and reliable [1].

Control systems are often represented graphically using block diagrams. These diagrams

are used to illustrate how different elements in a system are related [39]. Each block repre-

sents a different part of the system, where the relationship between the input and output is

generally described mathematically using a Laplace transfer function. Figure 4.1 illustrates

the block diagram for a simple generic feedback control system, where r (t) is the input or

reference signal and y (t) is the output signal. The transfer function G (s) may be used to

represent the dynamics of the system and any associated controllers and H (s) may be used

to represent the dynamics of any measurement devices.

r (t) Σ G (s) y (t)

H (s)

−
+

Figure 4.1: Block diagram for a simple generic feedback control system

Laplace transfer functions are convenient for representing the continuous dynamics of

control systems. However, the relationship between inputs and outputs in a control system

must be represented using differential equations for the purposes of simulation. There are a

number of methods for converting Laplace domain transfer functions to state equations [39].

For example, the successive differentiation method is used in PSCAD/EMTDC [1]. The

numerical methods discussed in Chapter 2 may be then used to simulate the output variables

of a control system in response to its input variables.

This chapter focuses on the methods used in this work to incorporate control system

models into the general purpose simulation method discussed in Chapter 3. Section 4.1

examines how control systems may be modeled in the context of dynamic phasors. Following

this, Section 4.2 presents the methods used to simulate control system models. Finally, the

method used to integrate control systems into the general purpose simulation method is

discussed in Section 4.3.
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4.1 Control System Modeling

Two methods are considered in this work to model measurement and control systems using

dynamic phasors. The first method is a direct application of the dynamic phasor operator

to the control system. This method considers both the electrical network and the controls

as a single system and converts all system quantities to dynamic phasors. It is possible

to use the direct method when the system consists entirely of linear control elements. For

example, consider a simple second order linear filter, which may be represented using state

equations as follows:

dx1

dt
= x2 (t) ; (4.1)

dx2

dt
= −ω2

nx1 (t)− 2ζωnx2 (t) + ω2
nu (t) ; and (4.2)

y (t) = x1 (t) , (4.3)

where ωn and ζ are the natural frequency and damping factor of the filter, respectively [39].

These equations may be directly written in terms of dynamic phasors without any approx-

imations as follows:

d 〈x1〉k
dt

= −jkω0 〈x1〉k (t) + 〈x2〉k (t) ; (4.4)

d 〈x2〉k
dt

= −ω2
n 〈x1〉k (t)− (2ζωn + jkω0) 〈x2〉k (t) + ω2

n 〈u〉k (t) ; and (4.5)

〈y〉k (t) = 〈x1〉k (t) . (4.6)

The direct method can also handle polynomial nonlinearities using the dynamic phasor

multiplication property discussed in Section 1.2. The average power measurement system

illustrated by Figure 4.2 [45] is an example of a nonlinear system that may be converted

directly to a dynamic phasor representation. In this system, G (s) is an arbitrary linear

filter transfer function and v (t) and i (t) are the measured voltage and current waveforms,

respectively.

Figure 4.2 illustrates that the meter consists of two distinct stages. The first stage

multiplies the voltage and current to produce an intermediate signal, p (t), which is equal to
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the instantaneous power at the point of measurement. The second stage is a simple linear

filter designed to extract the dc component of the instantaneous power waveform generated

by the first stage. Figure 4.3 illustrates the dynamic phasor form of the average power

measurement system, where Gk (s) is the kth harmonic form of the filter transfer function,

G (s), shown in Figure 4.2. The kth dynamic phasor of the instantaneous power waveform,

〈p〉k (t), is given by

〈p〉k (t) =
∞∑

l=−∞
〈v〉k−l 〈i〉l , (4.7)

which may be derived using the dynamic phasor multiplication property discussed in Sec-

tion 1.2.

G(s)

i(t)

v(t)
p(t)

pav(t)

Figure 4.2: Average power meter in terms of time-domain quantities

∞∑
l=−∞

〈v〉k−l 〈i〉l Gk (s)
〈p〉k 〈pav〉k

〈i〉0 〈i〉1 〈i〉k

· · ·

〈v〉0
〈v〉1

〈v〉k

...

Figure 4.3: Average power meter in terms of dynamic phasors

Direct application of the dynamic phasor transformation to nonlinear systems is gener-

ally restricted to systems that exhibit polynomial nonlinearities. In general, it is not possible

to obtain closed form dynamic phasor expressions for the majority of nonlinear systems [8].

For example, a system that exhibits saturation cannot be converted to a dynamic phasor

representation using the direct method. The second method that was considered in this

work addresses the problems associated with modeling nonlinear control systems. This

method differs from the direct method as it separates the control system and electrical

network into separate entities. The electrical network is modeled using dynamic phasors

whereas the control system is modeled using its standard time-domain differential equa-

– 55 –



tions. A control system modeled using this method cannot be directly interfaced to the

electrical network since the control system quantities are not dynamic phasors. Therefore,

assumptions and approximations must be used to interface the electrical network to the

control system model.

This method is used extensively in literature to handle complex control systems in power

systems modeled using dynamic phasors. An example is the phase-locked loop (PLL), which

is an essential control element for power electronic systems. The PLL is a highly nonlinear

component used to generate a reference angle for power electronic converters that interface

with an ac network [47]. The approximate method has been used in literature to create a

PLL model that can be interfaced with a dynamic phasor network model [20,48].

An example of a measurement system that may be represented using this method is

a three phase root mean square (RMS) voltage meter. Figure 4.4 illustrates the RMS

voltage meter used in PSCAD/EMTDC for three phase systems, where va, vb, and vc are

the measured ac system voltage and vrms is the measured RMS voltage of the system [45].

The filter in Figure 4.4, G (s), is designed to extract and scale the dc component of vd such

that it is equal to the RMS value of the line-to-line voltage.

va

vb

vc

vd

+

−

G (s) vrms

Figure 4.4: Three phase RMS voltage meter model used in PSCAD/EMTDC

While it is possible to model a three phase rectifier using dynamic phasors, a simpler

and more efficient approach is to take advantage of the fact that the magnitude of the

phase voltages are directly available in dynamic phasors [20]. Assuming that the ac system

is balanced, an RMS meter in terms of dynamic phasors may be constructed as shown in

Figure 4.5, where G (s) is the low pass filter from Figure 4.4. The intermediate signal, vx,

– 56 –



is equal to the RMS value of the a-phase voltage, which may be calculated as follows [44]:

vx =

√√√√〈va〉20 + 2

∞∑
k=1

|〈va〉k|2. (4.8)

√
〈va〉20 + 2

∞∑
k=1

|〈va〉k|2 G (s)
vx vrms

〈va〉0
〈va〉1

〈va〉k
...

Figure 4.5: Three phase RMS voltage meter in terms of dynamic phasors

The dynamic phasor RMS voltage meter demonstrates the essential components of the

approximate modeling method. The first stage of the meter uses the mathematical expres-

sion for the RMS quantity of a complex Fourier series given by (4.8) to generate the auxiliary

signal vx. This stage provides the interface between the dynamic phasor network model and

the time-domain control system model. The second stage is the filter block, which appears

to be an unnecessary component since vx is equal to the RMS value of the a-phase voltage.

However, the dynamics of the filter are particularly important if the meter is used as part of

a larger control system. Therefore, this component is essential to ensure that the dynamic

phasor RMS voltage meter accurately captures the dynamics of the time-domain quantity

meter that would be otherwise omitted if vx was used as the meter output.

4.2 Simulation of Control Systems

The models obtained using the methods discussed in the previous section must be converted

from continuous system representations to discrete difference equations for simulation. The

components in a control system were broadly classified as either static or dynamic in this

work. Static components are those that relate their inputs and outputs through algebraic

relationships. These components may be simulated by simply substituting in the discrete

form for each quantity in the component relationship. For example, the convolution com-

ponent in the average power meter in the previous section is a static component and may

– 57 –



be simulated as follows:

〈p〉k [n] =
∞∑

l=−∞
〈v〉k−l [n] 〈i〉l [n] . (4.9)

Dynamic components are those that relate their inputs and outputs through differential

equations. The exponential integrator and trapezoidal methods discussed in Chapter 2 are

used in PSCAD/EMTDC to simulate dynamic control systems [1]. The same approach was

used in this work to obtain difference equations for dynamic control blocks. As an example,

consider the case where the filter in the average power meter is a first order system whose

transfer function is given by

G (s) =
Pav (s)

P (s)
=

1

1 + sτ
, (4.10)

where τ is the time constant of the filter. The input and output of (4.10) are related in the

time-domain through the following ODE:

dpav
dt

=
1

τ
(p (t)− pav (t)) . (4.11)

Applying the dynamic phasor operator and associated properties to (4.11) yields:

d 〈pav〉k
dt

=
1

τ
〈p〉k (t)−

(
1

τ
+ jkω0

)
〈pav〉k (t) , (4.12)

which gives the differential relationship between the meter input and output in terms of

dynamic phasors. Applying the exponential integrator to (4.12) yields:

〈pav〉k [n] = e(∆t/τ+jkω0∆t) 〈pav〉k [n− 1] +m0k 〈p〉k [n] +m1k 〈p〉k [n− 1] , (4.13)

where

m0k =
τ
(
e(∆t/τ+jkω0∆t) − 1

)
∆t (1 + jkω0τ)2 +

1

1 + jkω0τ
; and (4.14)

m1k =
τ
(
1− e(∆t/τ+jkω0∆t)

)
∆t (1 + jkω0τ)2 − e(∆t/τ+jkω0∆t)

1 + jkω0τ
. (4.15)
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The discrete form of the convolution equation given by (4.9) together with the filter

difference equation given by (4.13) may be used to simulate the average power meter.

Consider a system in which the voltage and current waveforms measured by the average

power meter for t ≥ 0 are sinusoidal and given by

v (t) = Vm sin (ω0t) ; and (4.16)

i (t) = Im sin (ω0t− φ) , (4.17)

respectively. The instantaneous power waveform at the point of measurement is given by

p (t) =
VmIm

2
(cos (φ)− cos (2ω0t− φ)) . (4.18)

Equation (4.18) demonstrates that the instantaneous power in an ac system consists of a

constant component, which corresponds to the average power at the point of measurement,

as well as an oscillatory component whose frequency is double the frequency of the voltage

and current [5]. Therefore, the set of harmonics for simulation of the average power meter

with sinusoidal inputs must be equal to {0, 1, 2} to accurately capture all of the meter

dynamics. The dynamic phasors of the voltage and current waveforms for t ≥ 0 are given

by

〈v〉k =


Vm
2j

k = 1

0 otherwise; and

(4.19)

〈i〉k =


Im
2j
e−jφ k = 1

0 otherwise,

(4.20)

respectively. The dynamic phasors of the intermediate signal may be derived by substituting

(4.19) and (4.20) into (4.9) and are given by

〈p〉k = 〈v〉k+1 〈i〉∗1 + 〈v〉k−1 〈i〉1 . (4.21)
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Equation (4.21) implies that the dynamic phasors of the intermediate signal are only

nonzero when k ± 1 = ±1. This condition is satisfied by the set {0,±2} and therefore,

the dc component and second harmonic are required to simulate the average power meter

using dynamic phasors. This observation is supported by (4.18), which shows that the

only components that appear in the instantaneous power waveform in a purely sinusoidal

ac system are the dc component and the second harmonic. The dynamic phasors for the

intermediate signal may be derived by evaluating (4.21) at k = 0 and k = 2 and are given

by

〈p〉0 =
VmIm

2
cos (φ) ; and (4.22)

〈p〉2 = −VmIm
4

e−jφ, (4.23)

respectively. Simulations of the average power meter were carried out assuming that all

initial conditions are zero and using the parameters listed in Table 4.1. Figures 4.6 and 4.7

illustrate the dc and second harmonic waveforms for the output of the average power meter

with sinusoidal input waveforms, respectively. These waveforms show that the analytical

and simulation results are in good agreement.

Simulations of the average power meter using the parameters listed in Table 4.1 were also

carried out using PSCAD/EMTDC. Figure 4.8 illustrates the PSCAD/EMTDC simulation

results along with the meter output waveform reconstructed using the dynamic phasor

simulation results. The simulation results demonstrate that the two methods are in good

agreement.

Table 4.1: Simulation parameters for the average power meter

Parameter Value

f0 60 Hz

τ 0.05 s

Vm 100 V

Im 1 A

φ 0◦
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Figure 4.6: Comparison of the average power meter output dynamic phasors for the dc
component
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Figure 4.7: Comparison of the average power meter output dynamic phasors for the second
harmonic
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Figure 4.8: Comparison of the average power meter output waveforms

4.3 Integration with Electromagnetic Transient Simulation

The control and measurement system models must be fully integrated into the nodal anal-

ysis method for simulation of the entire power system model. The approach used by

PSCAD/EMTDC is to decouple and interweave the electrical network and the control sys-

tem solution through a one time step delay [1]. The first part of each time step advances

the electrical network solution using the values calculated by the control system from the

previous time step as inputs. The second part then advances the control system solution

using the updated values from the electrical network solution in the first part of the time

step.

The method used to implement controllers in PSCAD/EMTDC also breaks down control

systems into individual blocks [1]. Commonly used control blocks are then provided as part

of the control systems model library, such as a PI control block. Each block is responsible

for modeling and simulating the output of the block in response to the input variables.

For dynamic blocks, this includes obtaining a difference equation and updating all of the

internal variables at each time step.

The methods used to implement controllers in PSCAD/EMTDC offer a number of ad-

vantages to nodal analysis-based simulation. First of all, this method is highly flexible as it

decouples the electrical network from the control system, which allows each to be modeled

and simulated independently using methods that are most appropriate to the individual

system components. Furthermore, individual blocks in a control system may be modeled
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independently and used to build large and complex control systems in simulation cases [1].

The decoupled solution method is often viewed as problematic as it artificially introduces

a time delay, which may adversely affect the stability of nodal analysis-based simulations [1].

There has been some effort in literature to remove the delay introduced by the decoupled

method through modified network solution methods [49]. However, these methods require

modifications that increase the computational burden of simulations [1]. Furthermore, the

time step delays are commonly viewed as an accurate portrayal of modern digital controllers

due to the sampling process used to capture analog inputs, such as voltage and current

measurements. Therefore, the same method was used to integrate control systems into the

general purpose dynamic phasor simulation method developed in this work.

Figures 4.9 and 4.10 illustrate an example three phase circuit and control system that

will be used to demonstrate the integration of controls into the general purpose simulation

method. Figure 4.9 illustrates the single line diagram for the electrical network, which

consists a three phase load connected to a sinusoidal voltage source. Figure 4.10 illustrates

the control system, which uses a PI controller to regulate the RMS line-to-line voltage across

the output resistor by adjusting the amplitude of the voltage source. The RMS meter used

in this example is illustrated by Figure 4.5 in Section 4.1, where the output filter is the first

order transfer function given by [45]

G (s) =
1

Tfs+ 1
. (4.24)

Vm sin (ω0t)

Rs L

RC

+

van

−

Figure 4.9: Single line diagram of a three phase RLC circuit with a sinusoidal voltage source

Simulations of the system illustrated in Figures 4.9 and 4.10 were carried out assum-

ing that all initial conditions are zero and using the parameters given in Table 4.2. The

reference RMS voltage, vref , was initially set to 10 V, and at 0.2 s is increased to 15 V.
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Figure 4.11 illustrates the RMS meter output simulated using both dynamic phasors and

PSCAD/EMTDC. Figure 4.12 illustrates the resistor voltage waveform near the moment

where the voltage reference, vref , is stepped up to 15 V. The simulation results show that

there is some disagreement near initialization and the reference voltage step change at 0.2 s.

This error may be attributed to the modeling differences used to implement the RMS meter

as discussed in Section 4.1. However, the simulation results appear to be in good agreement,

despite the discrepancies near sudden changes in the reference value.

Three
Phase
RMS

van
vbn
vcn

Σ

vref

Kp + 1
Tis

Vm
+

−

Figure 4.10: Feedback control system for the three phase RLC circuit

Table 4.2: Parameters for the example three phase RLC system with feedback control

Parameter Value Parameter Value

f0 60 Hz C 0.796 mF

Rs 1 mΩ Kp 1.25

R 25 Ω Ti 2 ms

L 0.318 H Tf 20 ms
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Figure 4.11: Comparison of the RMS meter output waveforms

– 64 –



0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

Time (s)

−20
−15
−10
−5

0
5

10
15
20
25

v a
n

(V
)

Dynamic Phasors PSCAD/EMTDC

Figure 4.12: Comparison of the resistor voltage waveforms

4.4 Summary

This chapter presented a review of the techniques available for modeling and simulation of

control systems using dynamic phasors. Two primary methods are available for modeling

control systems in dynamic phasors. The first method involves a direct application of the

dynamic phasor operator to the control system model. While this method provides an

accurate representation of the control system, it is limited to systems that are either linear

or exhibit polynomial nonlinearities. The second method involves separating the control

system from the dynamic phasor model of the electrical network and interfacing the two

systems using approximations. This control method is widely used as it can handle a

wide variety of nonlinearities. A method for integrating control systems into the general

purpose dynamic phasor simulation method discussed in Chapter 3 were also presented in

this chapter. The method used to integrate control systems involves introducing a time

step delay between the electrical network solution and the control solution, which is the

method used by programs such as PSCAD/EMTDC. Comparisons with PSCAD/EMTDC

simulation results in this chapter demonstrated that the dynamic phasor method developed

in this work accurately captures the behaviour of electrical networks that include control

system models.
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Chapter 5

Power Electronic Converters

Power electronic converters have significantly contributed to the advancement of modern

power systems and are found in a number of different applications. The primary goal of

converters in industrial settings is to transform power produced by a source to a form that

may be used by loads [46]. The adjustable-speed motor drive is an important industrial

application of power electronics [44]. Adjustable-speed drives allow motors such as pumps

and compressors to operate at their optimal speed, improving the efficiency of the motor.

Power electronics are also found in a number of transmission level applications, such as

interconnection of renewable resources and reactive power support. For example, the static

VAR compensator (SVC) is based on inductors and capacitors controlled by power electronic

switches. These devices can either provide or consume reactive power, depending on the

requirements of the system. SVCs are also highly controllable and may be used to improve

the stability and reliability of transmission systems.

One of the most notable applications of power electronics is the HVDC transmission

system. HVDC transmission systems are more efficient and cost effective for long distance

overhead power transmission [44]. HVDC transmission systems also offer a number of other

benefits, such as improved power system reliability. The controls in an HVDC installation

may be used to remove unwanted oscillations in the power system. Furthermore, HVDC sys-

tems may be used to connect systems of different operating frequencies, which is impossible

with a direct ac connection.

Many HVDC transmission systems are implemented using a power electronic converter
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known as the LCC [44]. Figure 5.1 illustrates the general circuit for an LCC constructed

using thyristors. This circuit also includes an inductance on the ac side, Ls, which is known

as the source side inductance. For example, the source side inductance is used to represent

the leakage inductance of converter transformers in HVDC applications.

va
ia

Ls

vb
ib

Ls

vc
ic

Ls

T4

T1

T6

T3

T2

T5

id

+

vd

−

Figure 5.1: General form of the LCC

This type of converter is known as a line-commutated converter because it relies on

the ac terminal voltage to turn the switching devices off [44]. The two types of switching

devices considered in this work are diodes and thyristors. LCCs constructed using diodes

are uncontrolled because the status of the diodes in the bridge is completely reliant on

the conditions of the external ac and dc systems. LCCs constructed using thyristors are

controlled because the point in time in which conduction beings for each thyristor may be

controlled through a gate signal. However, the point in time where conduction ceases for

each thyristor is still dependent on the conditions of the external systems.

LCCs operate at the frequency of the ac system they are connected to since they use the

ac system for commutation of the dc-side current between phases [44]. The implication of

this property for dynamic phasor-based simulation is that knowledge of the system frequency

must be available prior to simulation. This knowledge is required to ensure that the LCC

model is properly coordinated with the ac system model. In general, it is sufficient to

assume that the ac system frequency is equal to the dynamic phasor base frequency such

that the fundamental component of the ac system corresponds to the first harmonic of the

LCC model. However, this requirement is an important consideration if the LCC is to be
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used to simulate an HVDC transmission system where the two ac systems have different

operating frequencies.

LCC based HVDC systems have garnered a significant amount of attention in dynamic

phasor research. A complete model of the CIGRE HVDC benchmark system that uses

dynamic phasors for the entire electrical network has been developed in literature [48]. This

research includes a detailed derivation of the LCC dynamic phasor model using the switching

function approach. Comparisons of simulation results with PSCAD/EMTDC demonstrate

that the dynamic phasor model accurately captures the dynamics of the converter for all

cases except during commutation failure. Furthermore, this research demonstrated that

the dynamic phasor approach also accurately models the converter quantities for higher

order harmonics. Other research has also suggested improvements to LCC dynamic phasor

models to take into account asymmetrical conditions in the ac system and commutation

failure [32, 50] and LCC properties such as thyristor dead time [51]. In particular, it has

been shown that asymmetrical conditions in the ac system may be accounted for using

higher order harmonics [32].

This chapter begins with a brief introduction into the switching function method in

Section 5.1, which is used to model power electronic converters using dynamic phasors.

Following this, a basic discrete equivalent is developed for an LCC constructed using diodes

and neglecting any source side inductance in Section 5.2. This equivalent is then modi-

fied in Section 5.3 to incorporate thyristors. Section 5.4 discusses any final modifications

required to include the source side inductance and complete the general discrete dynamic

phasor equivalent of the LCC illustrated by Figure 5.1. Finally, simulation results are

presented in Section 5.5 comparing the dynamic phasor model with results obtained using

PSCAD/EMTDC.

5.1 Switching Function Method

The approach that has been used extensively in literature to model power electronic con-

verters using dynamic phasors is based on the switching function method. Switching devices

are generally simulated using a decision-based model in EMT simulators [1]. These models
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examine the conditions imposed by the external system on the device in each time step and

determine its status based on those conditions. This approach, coupled with interpolation

to account for discrepancies in the switching instant, results in an accurate switching device

model that may be used in any configuration. However, this approach cannot be used in

dynamic phasor-based simulation since the instantaneous time-domain waveforms are not

available for the device models to make decisions.

Switching functions are normalized piecewise-continuous functions that describe the

steady state operation of a power electronic converter or device [52]. For example, consider

the simple dc/dc step-down converter illustrated in Figure 5.2 [9]. Suppose that the switch

is operated periodically with period T0 such that it is conducting for first DT0 seconds and

the diode is conducting for the remainder of each period. Furthermore, suppose that the

load parameters are selected such that the load current is approximately constant. The

filter input voltage and source current in Figure 5.2 are given by

v (t) = s (t) vs (t) ; and (5.1)

is (t) = s (t) i (t) , (5.2)

respectively, where s (t) is the converter switching function and is given by

s (t) =


1 0 ≤ t < DT0

0 DT0 ≤ t < T0

(5.3)

s (t) = s (t+ nT0) .

The dynamic phasors for the load voltage and source current may be obtained by ap-

plying the dynamic phasor operator and multiplication property to (5.1) and (5.2) and are

given by

〈v〉k =

∞∑
l=−∞

〈s〉k−l 〈vs〉l ; and (5.4)

〈is〉k =

∞∑
l=−∞

〈s〉k−l 〈i〉l , (5.5)

– 69 –



respectively, where 〈s〉k are the dynamic phasors of the switching function and are given by

〈s〉k =


D k = 0

1− e−j2Dkπ
j2kπ

otherwise.

(5.6)

+
−vs

is
L

i

RC

+

v

−

Figure 5.2: dc/dc step-down converter

The discrete dynamic phasor form of the dc/dc converter may be derived by substituting

discrete quantities for the continuous quantities in (5.4) and (5.5). The discrete equations

may then be used to simulate transient behaviour of the converter by simply allowing

the discrete quantities to change over time. Therefore, an approximate discrete dynamic

phasor model of the dc/dc converter may be derived using switching functions developed

considering the steady state characteristics of the converter.

The switching function method enables dynamic phasor-based modeling of power elec-

tronic converters since it removes the decision making process typically used to analyze and

simulate converters. Instead, converters are described in terms of periodic functions that

may be converted to dynamic phasors. The disadvantage of this method is that the con-

verter models are not as flexible as the decision-based device models. Switching functions

are defined assuming that the switching devices in a converter are operated in a specific

sequence, known as an operational mode [53]. In general, power electronic converters have

a number of operational modes, depending on the conditions of the external system as well

as the manner in which the converter is operated. However, the switching function devel-

oped for one operational mode may not be valid for any other modes. Therefore, converters

modeled using the switching function method must be used in configurations such that they

operate in modes that were considered in their development.
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The dc/dc step-down converter illustrated in Figure 5.2 has two operational modes [53].

The first operational mode is continuous conduction mode, where either the switch or

the diode are conducting at all times. The converter switching function given by (5.3)

was developed assuming that the converter is operating in continuous conduction mode.

However, it is possible for converter parameters to be selected such that the converter

operates in discontinuous conduction mode, which is the second operational mode. A third

state is introduced in discontinuous conduction mode where both the switch and diode are

simultaneously off for a part of each period. In this situation, a new switching function

would be required to reflect the third state introduced by the second operational mode.

5.2 Uncontrolled LCC with No Source Side Inductance

The first converter that will be considered is an LCC bridge constructed using diodes with

no inductance on the ac-side of the converter (Ls = 0 in Figure 5.1). This topology will

be used to demonstrate a number of important concepts in the development of a discrete

dynamic phasor equivalent of the LCC for the general purpose simulation method developed

in Chapter 3. Furthermore, the basic model developed in this section will be modified in

later sections to include the effects of thyristors and source side inductance.

5.2.1 Steady State Operation

Analysis of the steady state characteristics of the LCC requires two primary assumptions.

First of all, it is assumed that the dc-side current is approximately constant in steady state.

This assumption is required to ensure that at least one device from both the upper (positive)

and lower (negative) groups is conducting at all times [44]. Furthermore, it is assumed that

both the ac-side voltage and current are balanced three phase quantities. This assumption

is generally used to simplify the analysis of the steady state characteristics of the LCC.

However, it restricts the dynamic phasor model developed in this work to studies involving

balanced ac systems and disturbances.

The LCC shown in Figure 5.1 may be analyzed by considering the positive and negative

diode groups separately. Figure 5.3 illustrates the positive dc terminal and diode group.
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This circuit acts as a maximum-selection function, where the positive terminal voltage on

the dc side is equal to the maximum of the three ac-side phase voltages [44]. The voltage

at the positive terminal on the dc side of the converter is given by

vp = max (va, vb, vc)−Ronid, (5.7)

where Ron is the on-state resistance of the diodes. Similarly, the negative diode group

illustrated by Figure 5.4 selects the minimum of the three ac-side phase voltages. The

voltage at the negative terminal on the dc side of the converter is given by

vn = min (va, vb, vc)−Ronid. (5.8)

The terminal voltage on the dc side may be obtained by taking the difference between

(5.7) and (5.8) as follows:

vd = max (va, vb, vc)−min (va, vb, vc)− 2Ronid. (5.9)

va

D1

vb

D3 id vp

vc

D5

Figure 5.3: Positive group for the three phase LCC constructed using diodes

Figure 5.5 illustrates the dc-side voltages assuming that the ac-side voltages are sinu-

soidal and the on-state resistance of the diodes is negligible. This figure illustrates that the

point at which the a-phase voltage becomes greater than the c-phase voltage is taken to

be the reference point for the LCC waveforms [44]. This point in time coincides with the

moment where D1 in the positive diode group begins conduction. This point was taken

as the reference because it coincides with the zero crossing of the vac line voltage, which

is readily available in three phase systems. Therefore, this reference point simplifies the
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implementation of the discrete dynamic phasor LCC equivalent.

D4

va

vn
id

D6

vb

D2

vc

Figure 5.4: Negative group for the three phase LCC constructed using diodes

The dc-side voltage waveform, vd, in Figure 5.5 illustrates that there are six identical

intervals per period of the fundamental. Therefore, the average value of the dc-side voltage

may be derived by considering a single interval [44]. The average value of the dc-side voltage

is given by

Vd =
3
√

2VLL
π

, (5.10)

where VLL is the RMS value of the ac-side line-to-line voltage. Figure 5.5 also includes

labels indicating which diodes are conducting during each of the six intervals in the dc-side

voltage. The a-phase ac-side line current shown in Figure 5.6 may be derived using the

diode conduction information in Figure 5.5 assuming that the current leaving the dc side

of the converter is constant and equal to Id.

5.2.2 Switching Functions

The rectifier switching functions may be derived by considering the conduction patterns and

waveforms illustrated in Figures 5.5 and 5.6. Table 5.1 summarizes the values of the dc-side

voltages for each of the six intervals shown in Figure 5.5. This table shows that the dc-side

voltage at every point in time is equal to a combination of the ac phase voltages, which

can be expressed as one of three line voltages [44]. The dc-side voltage may be written as

a single equation using the information in Table 5.1, which is given by

vd = sv (θ) vab + sv (θ − 2π/3) vbc + sv (θ + 2π/3) vca −Rdid, (5.11)
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where sv is the dc-side voltage switching function and is given by

sv (θ) =


1 0 ≤ θ < π/3

−1 π ≤ θ < 4π/3

0 otherwise

(5.12)

and Rd is the total resistance between the ac and dc sides of the LCC. The value of this

resistance for the diode LCC with no source side inductance is 2Ron as shown in (5.11).

−Vm

Vm

Vd

vavb vc

vp

vn

vd

0 2π
3

4π
3

2π

D5 D1 D3 D5 D1

D6 D2 D4 D6

Figure 5.5: Voltage waveforms for the LCC constructed using diodes neglecting any source
side inductance

−Vm
−Id

Id

Vm

vaia

0 2π
3

π
5π
3

2π

D1 D1D4

Figure 5.6: Line current waveform for the LCC constructed using diodes neglecting any
source side inductance

Table 5.2 contains the values of the ac-side line currents over one period of the ac

system fundamental frequency, which may be derived using the conduction information in

Figure 5.5. The ac-side line currents may be written as individual expressions using the
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information in Table 5.2, which are given by

ia = si (θ) id; (5.13)

ib = si (θ − 2π/3) id; and (5.14)

ic = si (θ + 2π/3) id, (5.15)

where si is the ac-side current switching function and is given by

si (θ) =


1 0 ≤ θ < 2π/3

−1 π ≤ θ < 5π/3

0 otherwise.

(5.16)

Table 5.1: dc-side voltages for each interval in the LCC cycle neglecting any source side
inductance

Start End Positive
Diode

Negative
Diode

vp vn vd

0 π/3 D1 D6 va vb vab
π/3 2π/3 D1 D2 va vc −vca
2π/3 π D3 D2 vb vc vbc
π 4π/3 D3 D4 vb va −vab

4π/3 5π/3 D5 D4 vc va vca
5π/3 2π D5 D6 vc vb −vbc

Table 5.2: ac-side line currents for each interval in the LCC cycle neglecting any source side
inductance

Start End Positive
Diode

Negative
Diode

ia ib ic

0 π/3 D1 D6 id −id 0
π/3 2π/3 D1 D2 id 0 −id
2π/3 π D3 D2 0 id −id
π 4π/3 D3 D4 −id id 0

4π/3 5π/3 D5 D4 −id 0 id
5π/3 2π D5 D6 0 −id id
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5.2.3 Dynamic Phasor Model

The dynamic phasor form of the dc-side voltage equation may be derived by applying the

dynamic phasor operator and multiplication property to (5.11), which yields:

〈vd〉k = Vdk −Rd 〈id〉k , (5.17)

where Vdk is the equivalent dynamic phasor dc-side voltage source and is given by

Vdk =
∞∑

l=−∞
〈sv〉k−l

(
〈vab〉l + e

−j2(k−l)π/3 〈vbc〉l + e
j2(k−l)π/3 〈vca〉l

)
(5.18)

The dynamic phasors of the dc-side voltage switching function, 〈sv〉k, are given by

〈sv〉k =


0 k even

ejkφ
(
1− e−jkπ/3

)
jkπ

k odd,

(5.19)

where φ is the phase angle of vac. The switching functions in Section 5.2.1 were derived using

the point at which D1 begins conduction as the reference point in the converter cycle. This

point in time coincides with the positive zero crossing of vac. However, vac may be shifted

relative to a universal reference point when the converter is interfaced to an ac system. The

value of this shift is equal to the phase angle of vac, φ. Therefore, the switching functions

and their dynamic phasors must also be shifted by φ as well to ensure that they coincide

with the ac-side voltages.

Similarly, the dynamic phasor form of the ac side may be derived by applying the

dynamic phasor operator and multiplication property to (5.13) to (5.15), which yields:

〈ia〉k = Iak; (5.20)

〈ib〉k = Ibk; and (5.21)

〈ic〉k = Ick, (5.22)

where Iak, Ibk, and Ick are the equivalent dynamic phasor ac-side current sources and are

– 76 –



given by

Iak =
∞∑

l=−∞
〈si〉k−l 〈id〉l ; (5.23)

Ibk =
∞∑

l=−∞
e
−j2(k−l)π/3 〈si〉k−l 〈id〉l ; and (5.24)

Ick =
∞∑

l=−∞
e
j2(k−l)π/3 〈si〉k−l 〈id〉l . (5.25)

The dynamic phasors of the ac-side current switching function, 〈si〉k, are given by

〈si〉k =


0 k even

ejkφ
(
1− e−j2kπ/3

)
jkπ

k odd.

(5.26)

The dependence of the LCC switching functions on the angle of vac poses a problem to

the dynamic phasor model since this value is not directly available in dynamic phasor-based

simulations. This problem may be solved by assuming that φ is well approximated by the

phase angle of 〈vac〉1 [8], which may be calculated as follows:

φ ≈ ∠ 〈vac〉1 +
π

2
. (5.27)

Equation (5.27) is an approximation because the phase angle of the time-domain ac-

side voltages may not be equal to the phase angle of the fundamental component depending

on the presence of harmonics. Furthermore, the additional π/2 in (5.27) is required since

the phase angle of a dynamic phasor is measured relative to the real axis and as a result,

represents the phase of a cosine waveform. However, φ was defined as the positive zero

crossing of vac, which corresponds to the phase of a sine waveform. Therefore, the angle

calculated from 〈vac〉1 must be shifted by π/2 such that it represents the positive zero crossing

of vac.

The equations given by (5.17) to (5.22) together with the approximation for φ given

by (5.27) define the continuous steady state dynamic phasor form of the diode-based LCC.

These equations suggest that in terms of dynamic phasors, the LCC appears as a set of
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coupled voltage and current sources [42]. The final step in obtaining a discrete dynamic

phasor LCC model that may be included in the nodal analysis method is to convert the

ac and dc equations to discrete Norton equivalents. However, the approximation given by

(5.27) poses a significant problem for deriving a discrete form of the LCC. The equations for

the switching functions are nonlinear functions of φ and as a consequence, they are nonlinear

functions of 〈va〉1 and 〈vc〉1. Therefore, approximations are required to derive a discrete

dynamic phasor equivalent for the LCC that can be incorporated into nodal analysis-based

simulations.

The method used in this work to derive a discrete dynamic phasor equivalent for the

rectifier is to introduce a one time step delay between the LCC and the electrical network.

This method is used in PSCAD/EMTDC to model nonlinear devices, such as synchronous

machines, which use a time step delay between internal quantities and the network volt-

ages [1]. The discrete dynamic phasor Norton equivalent for the dc side of the rectifier may

be derived using (5.17) and the ac-sides voltages from the previous time step as follows:

〈id〉k [n] =
1

Rd
(Vdk [n− 1]− 〈vd〉k [n])

= Idk [n− 1]−Gd 〈vd〉k [n] , (5.28)

where Gd is the equivalent dc-side conductance. The discrete dc-side current source,

Idk [n− 1], is given by

Idk [n− 1] = Gd

∞∑
l=−∞

〈sv〉k−l [n− 1] (〈vab〉l [n− 1] +

e
−j2(k−l)π/3 〈vbc〉l [n− 1] + e

j2(k−l)π/3 〈vca〉l [n− 1]
)
, (5.29)

where the discrete form of the dc-side voltage switching function is given by

〈sv〉k [n− 1] =


0 k even

ejkφ[n−1]
(
1− e−jkπ/3

)
jkπ

k odd.

(5.30)

The discrete form of the ac side of the converter may be derived by substituting the
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value of the dc-side current from the previous time step as follows:

〈ia〉k [n] = Iak [n− 1] ; (5.31)

〈ib〉k [n] = Ibk [n− 1] ; and (5.32)

〈ic〉k [n] = Ick [n− 1] , (5.33)

where the equivalent ac-side current sources are given by

Iak [n− 1] =

∞∑
l=−∞

〈si〉k−l [n− 1] 〈id〉l [n] ; (5.34)

Ibk [n− 1] =

∞∑
l=−∞

e
−j2(k−l)π/3 〈si〉k−l [n− 1] 〈id〉l [n− 1] ; and (5.35)

Ick [n− 1] =
∞∑

l=−∞
e
j2(k−l)π/3 〈si〉k−l [n− 1] 〈id〉l [n− 1] , (5.36)

and the discrete form of the ac-side current switching function is given by

〈si〉k [n− 1] =


0 k even

ejkφ[n−1]
(
1− e−j2kπ/3

)
jkπ

k odd.

(5.37)

The ac side equations demonstrate that in terms of discrete dynamic phasors, the ac side

appears as individual current sources for each phase. However, interfacing a current source

that is based solely on values from the previous time step with the electrical network can

lead to numerical instability, particularly in situations where the terminals of the device are

suddenly exposed to an open circuit [1]. The method used in PSCAD/EMTDC to introduce

models with this characteristic, such as the synchronous machine, into the electrical network

is to include an additional numerical interfacing circuit. This circuit consists of a small

conductance, Ga, in parallel with a compensating current source. Figure 5.7 illustrates the

interfacing circuit in terms of dynamic phasors for the a-phase terminal of the discrete LCC

model.

The value of the parallel conductance, Ga, may be selected as a small value relative to

some base impedance associated with the LCC [1]. For example, if the LCC is modeled with
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a converter transformer, the base impedance of the transformer may be used to select an

appropriate value for Ga. A more compact form of the a-phase terminal model illustrated

in Figure 5.7 may be derived by combining the compensating source with the LCC source.

The two individual current sources may be combined and expressed as a single source, which

is given by

I ′ak [n− 1] = Iak [n− 1]−Ga 〈va〉k [n− 1] . (5.38)

〈ia〉k [n]

Iak [n− 1]

+

〈va〉k [n]

−

Ga Ga 〈va〉k [n− 1]

Interfacing Circuit

Figure 5.7: Interfacing circuit for the a-phase ac port of the discrete dynamic phasor LCC
model

Figure 5.8 illustrates the final form of the discrete dynamic phasor LCC model, including

the interfacing requirements for the ac network.

〈va〉k [n]
〈ia〉k [n]

I ′ak [n− 1]

Ga

〈vb〉k [n]
〈ib〉k [n]

I ′bk [n− 1]

Ga

〈vc〉k [n]
〈ic〉k [n]

I ′ck [n− 1]

Ga

Idk [n− 1]

〈id〉k [n]

Gd

+

〈vd〉k [n]

−

Figure 5.8: Discrete dynamic phasor equivalent model for the LCC
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5.3 Controlled LCC with No Source Side Inductance

The second converter that will be considered is an LCC bridge constructed using thyristors

with no inductance on the ac side. The following section begins with an examination of the

steady state operating characteristics of the thyristor based LCC. Following this, the LCC

model developed in Section 5.2.3 will be modified to account for the differences between

diode and thyristor based LCCs. This includes a discussion on the modifications of the

switching functions to incorporate the effects of the thyristors as well as the addition of two

control system models required to properly capture the dynamics of LCCs.

5.3.1 Steady State Operation

The operation of the thyristor-based LCC is similar to the diode-based LCC, except that

the point at which conduction begins for each device may be delayed [44]. The amount of

time that conduction is delayed may be expressed as an angle and is known as the firing

angle, α. Figure 5.9 illustrates the modified positive and negative terminal voltages, along

with the total dc-side voltage and the ac-side phase voltages. It is important to note that

the reference point has been shifted such that it coincides with the moment where T1 in the

positive group begins conduction.

The plots show that the positive and negative terminal voltages no longer track the

maximum and minimum phase voltages. Instead, the dc-side voltages track the phase

voltage whose thyristors are involved in conduction of the dc-side current. The average

value of the dc-side voltage may once again be determined by examining a single interval

of the dc-side voltage waveform shown in Figure 5.9 [44] and is given by

Vd =
3
√

2VLL cos (α)

π
. (5.39)

Figure 5.10 illustrates the a-phase ac-side line current, which is based on the thyristor

conduction information in Figure 5.9. This waveform illustrates that the thyristors shift

the ac-side line currents to the right due to the delay effect of the firing angle, but do not

change the shape of the line current waveforms.
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Figure 5.9: Voltage waveforms for the LCC constructed using thyristors neglecting any
source side inductance
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Figure 5.10: Line current waveform for the LCC constructed using thyristors neglecting any
source side inductance

5.3.2 Switching Function Modification

The discrete dynamic phasor equivalent for the LCC illustrated by Figure 5.8 may be used

to model the thyristor based LCC as well with a few modifications. The waveforms in

Figures 5.9 and 5.10 demonstrate that the thyristors delay the conduction patterns of the

LCC bridge by the value of the firing angle. The delay introduced by the thyristors was

accounted for in Figures 5.9 and 5.10 by a rightward shift of the reference point. The

voltage and current switching functions for the diode bridge derived in Section 5.2.3 include

a term to account for the phase angle of the ac-side voltages. This term was included to

account for the relative shift of the reference point due to the phase shift of the ac terminals

to a universal reference point of the entire system. Therefore, the additional phase shift

introduced by the the thyristor firing angle may be included in the switching functions
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using the angle of the ac-side voltages. The discrete dynamic phasors of the dc-side voltage

switching function for the thyristor based LCC may be derived by adjusting (5.30) as follows:

〈sv〉k [n− 1] =


0 k even

ejk(φ[n−1]−α[n−1])
(
1− e−jkπ/3

)
jkπ

k odd.

(5.40)

Similarly, the discrete dynamic phasors of the ac-side current switching function for the

thyristor based LCC may be derived by adjusting (5.37) as follows:

〈si〉k [n− 1] =


0 k even

ejk(φ[n−1]−α[n−1])
(
1− e−j2kπ/3

)
jkπ

k odd.

(5.41)

5.3.3 Phase Locked Loop

The value of the firing angle is measured relative to the phase angle of the ac-side voltages.

Therefore, a measurement of the ac system angle is required to ensure that the thyristor

gate signals are issued at the correct time [47]. The instantaneous angle of the ac system

is measured using a PLL. Figure 5.11 illustrates the Transvektor PLL, which is used in

PSCAD/EMTDC to model power electronic converters [45, 47]. The output of this device

is a sawtooth waveform whose value is equal to the instantaneous angle of the a-phase input

signal.

va a

vb b

vc c

α

β

Σ
+

+

Kp + 1
Tis

ω0

+
+

Σ

0.8ω0

1.2ω0

1
s

Reset at 2π

θ

sin
cos

Figure 5.11: Transvektor PLL for time-domain simulation

Diode-based LCCs do not require a PLL since the diodes change status based entirely on

the conditions imposed by the external system. As a result, the angle calculated using (5.27)

could be used directly by the diode-based LCC switching functions without modification.

– 83 –



However, Figure 5.11 illustrates that the PLL is a dynamic control device with transient

characteristics that must be captured to ensure accurate simulation of the thyristor-based

PLL. Therefore, additional components are required in the dynamic phasor equivalent of

the thyristor-based LCC to properly account for the dynamics introduced by the PLL.

The transient characteristics of the PLL may be captured in the dynamic phasor LCC

model using the second control modeling method discussed in Section 4.1. Figure 5.12 illus-

trates an equivalent control system that may be used to model the dynamic characteristics

of the Transvektor PLL [20,48]. The input to this control system is the phase angle of the

ac system, which is calculated using (5.27). The output of this system reflects the transient

behaviour of the Transvektor PLL and is used by (5.40) and (5.41) in the thyristor-based

LCC model.

φ
(Calculated
using (5.27))

Σ
−

+
Kp + 1

Tis
1
s

−0.2ω0

0.2ω0

φ (Used in sv and si)

Figure 5.12: Transvektor PLL for dynamic phasor simulation

5.3.4 Thyristor Dead Time

The process of switching devices on and off in power electronic converters takes a finite

amount of time. For example, the gate signals for the thyristors in LCCs are issued every

π/3 radians. Furthermore, a thyristor cannot change status until a gate signal is issued to

the next thyristor in the conduction sequence [51]. Therefore, any changes in the firing

angle are not registered by the LCC until the next possible gate signal is issued. The time

delay between a change in the firing angle and when the change is reflected by the LCC

output is known as the thyristor dead time.

The dynamic phasor LCC model represents the relationship between the ac and dc sides

using continuous switching functions. As a consequence, the effects of the thyristor dead

time are not captured in the switching function equations. The thyristor dead time may

be included in the dynamic phasor LCC model using a constant time delay block as shown
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in Figure 5.13. However, the dead time is a random value that depends on the time and

value of the change in firing angle [51]. Therefore, an approximation is required to model

the thyristor dead time as a constant time delay component.

esTd(From external model) α α (Used in sv and si)

Figure 5.13: Time delay system used to model thyristor dead time

A common method for modeling the dead time using a constant time delay is to assume

that the dead time is a uniformly distributed random variable [51]. The expected value

of the thyristor dead time is then used as the value for the time delay in Figure 5.13.

The situation with the shortest delay occurs when a change in firing angle takes place

immediately before a gate signal will be issued. In this situation, the thyristor dead time is

equal to approximately zero. On the other hand, the situation with the longest delay occurs

when a change in firing angle takes place immediately after a gate signal has been issued.

In this situation, the thyristor dead time is equal to approximately π/3 radians. Therefore,

the expected value for thyristor dead time in LCCs is π/6 radians.

5.4 Controlled LCC with a Source Side Inductance

The final converter that will be considered is an LCC bridge constructed using thyristors

with an inductance on the ac side, which is the converter topology represented in Figure 5.1.

This LCC model is more realistic than the models discussed in previous sections since the

ac side generally includes some form of inductance [44]. The ac-side line current waveforms

shown in previous sections illustrate that conduction of the dc-side current changes between

phases instantaneously when no source side inductance is present. However, any inductance

present on the ac side prevents an instantaneous change in the ac-side line currents. There-

fore, the source side inductance introduces a finite period of time where conduction of the

dc-side current changes between phases, which is known as the commutation or overlap

angle, µ. The following section will begin with an examination of the effects of the source

side inductance on the steady state operating characteristics. Following this, the switching

function modifications required to incorporate the source side inductance will be discussed.
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5.4.1 Steady State Operation

Figure 5.14 illustrates the commutation interval where the a-phase positive group thyristor,

T1, is taking over conduction of the dc-side current from the c-phase positive group thyristor,

T5 [44]. The negative group during this interval is conducting normally through the b-phase

thyristor, T6. The reference point from Section 5.3.1 is also used in this section such that

this commutation interval begins at θ = 0.

va
ia

Ls

+ vLa −

vc
ic

Ls

id

+ vLc −

vb
ib

Ls id

+ vLb −

+

vd

−

Figure 5.14: Thyristor configuration during commutation of T5 into T1

The ac-side line current and dc-side voltage during commutation may be determined

using the circuit illustrated by Figure 5.14. The on-state resistance of the thyristors was

temporarily neglected to simplify the following analysis of the ac-side line current. The

Kirchoff’s voltage law (KVL) equation about the loop containing T1 and T5 is given by

va − vLa + vLc − vc = 0 (5.42)

and the a and c-phase line currents are related to the dc-side current as follows:

ia + ic = id. (5.43)

Assuming that the dc-side current is approximately constant and taking the derivative

of (5.43) yields:

dia
dθ

+
dic
dθ

= 0

vLa
Xs

+
vLc
Xs

= 0

– 86 –



vLa = −vLc, (5.44)

where Xs is the source side reactance of the converter and is equal to ω0Ls. Substituting

(5.44) into (5.42) and simplifying yields:

dia
dθ

=
vac
2Xs

. (5.45)

Assuming that the ac-side voltages are approximately sinusoidal and taking the integral

of (5.45) yields:

ia (θ) =

√
3Vm

2Xs
(cos (α)− cos (θ + α)) . (5.46)

An equation for the overlap or commutation angle may be obtained using the fact that

the a-phase current must be equal to the dc-side current when the commutation interval is

complete [44]. Substituting ia (µ) = id into (5.46) and solving for µ yields:

µ = cos−1

(
cos (α)−

√
2Xsid
VLL

)
− α. (5.47)

An alternative form of the a-phase line current equation that is convenient for definition

of the ac-side current switching function may be derived by combining (5.46) and (5.47),

which is given by

ia (θ) = id
cos (α)− cos (θ + α)

cos (α)− cos (α+ µ)
. (5.48)

The c-phase line current may be derived by substituting (5.48) into (5.43), which is

given by

ic (θ) = id
cos (θ + α)− cos (α+ µ)

cos (α)− cos (α+ µ)
. (5.49)

The dc-side voltage may be derived using the positive and negative terminal voltage

method used in Section 5.2.1. The voltage at the positive terminal on the dc side of the

converter including the on-state resistance of the thyristors during commutation is given by

vp =
va + vc

2
− Ron

2
id (5.50)
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and the voltage at the negative terminal on the dc side of the converter is given by

vn = vb −Ronid. (5.51)

Taking the difference between (5.50) and (5.51) and simplifying gives the dc-side voltage

in terms of the ac-side line voltages [46] as follows:

vd =
1

2
(vab − vbc)−

3

2
Ronid. (5.52)

Figure 5.15 illustrates the dc-side voltages for the thyristor-based LCC with a nonzero

source side inductance. These waveforms illustrate that the source side inductance causes

a drop in the positive and negative terminal voltages during commutation, which decreases

the effective voltage that appears across the dc terminals of the LCC [44]. This effect may

be seen in the expression for the average value of the dc-side voltage, which is given by

Vd =
3
√

2VLL cos (α)

π
− 3XsId

π
. (5.53)

The magnitudes of the harmonics present in the dc-side voltage may be determined

using a single interval of the vd waveform shown in Figure 5.15 and are given by

Vk =


3
√

2VLL|k sin(α)−j cos(α)+e−jkµ(k sin(α+µ)−j cos(α+µ))|
π(k2−1)

k = 6, 12, 18, . . .

0 otherwise.

(5.54)

Figure 5.15 illustrates the a-phase ac-side line current over one cycle of the funda-

mental. This waveform illustrates the overlap effect that is introduced by the source side

inductance [44]. The magnitudes of the harmonics in present in the ac-side line currents

may be calculated using the waveform shown in Figure 5.15 and are given by

Ik =


2
√

3Id |βk1 + βk2|
π (cos (α)− cos (α+ µ))

k = 1, 5, 7, 11, 13, . . .

0 otherwise,

(5.55)
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where

βk1 =
cos (α)− e−jkµ cos (α+ µ)

k
; and (5.56)

βk2 =


e−jα(e−j2µ−1)−j2µejα

4 k = 1

k cos(α)+j sin(α)−e−jkµ(k cos(α+µ)+j sin(α+µ))
1−k2 otherwise.

(5.57)
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Figure 5.15: Voltage waveforms for the LCC constructed using thyristors including the
effect of a source side inductance
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Figure 5.16: Line current waveform for the LCC constructed using thyristors including the
effect of a source side inductance
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5.4.2 Switching Function Modification

The previous section demonstrated that the presence of a source side inductance changes

the conduction pattern of the thyristors. Therefore, the source side inductance may be

incorporated into the dynamic phasor LCC model by modifying the voltage and current

switching functions. Table 5.3 gives the positive, negative, and dc terminal voltages in

terms of the ac-side phase voltages over one period of the ac system fundamental frequency.

The modified LCC voltage switching function that includes the effects of an inductance on

the ac side of the converter may be derived using the information in Table 5.3, which is

given by

sv (θ) =



1

2
0 ≤ θ < µ and

π

3
≤ θ < π

3
+ µ

1
π

3
+ µ ≤ θ < 2π

3

−1

2
π ≤ θ < π + µ and

4π

3
≤ θ < 4π

3
+ µ

−1
4π

3
+ µ ≤ θ < 5π

3

0 otherwise.

(5.58)

Table 5.3: dc-side voltages for each interval in the LCC cycle including the effect of a source
side inductance

Start End Positive
Thyristors

Negative
Thyristors

vp vn vd

0 µ T1, T5 T6 (va+vc)/2 vb (vab−vbc)/2

µ π/3 T1 T6 va vb vab
π/3 π/3 + µ T1 T2, T6 va (vb+vc)/2 (vab−vca)/2

π/3 + µ 2π/3 T1 T2 va vc −vca
2π/3 2π/3 + µ T1, T3 T2 (va+vb)/2 vc (vbc−vca)/2

2π/3 + µ π T3 T2 vb vc vbc
π π + µ D3 T2, T4 vb (va+vc)/2 (vbc−vab)/2

π + µ 4π/3 T3 T4 vb va −vab
4π/3 4π/3 + µ T3, T5 T4 (vb+vc)/2 va (vca−vab)/2

4π/3 + µ 5π/3 T5 T4 vc va vca
5π/3 5π/3 + µ T5 T4, T6 vc (va+vb)/2 (vca−vbc)/2

5π/3 + µ 2π T5 T6 vc vb −vbc

The discrete form of the dynamic phasors for the dc-side voltage switching function may

be derived by applying the dynamic phasor operator and time step delay method discussed
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in Section 5.2.3 and are given by

〈sv〉k [n− 1] =


ejk(φ[n−1]−α[n−1])

(
1− e−jkπ/3

) (
1 + e−jkµ[n−1]

)
j2kπ

k odd

0 k even.

(5.59)

The expression given by (5.59) shows that the dc-side voltage switching function is

dependent on the commutation angle, which may be calculated using (5.47). It was assumed

in Section 5.4.1 that the dc-side current is approximately constant and that the ac-side

voltages are approximately sinusoidal. In terms of dynamic phasors, these assumptions

imply that the dc-side current must be dominated by its dc (k = 0) component and that

the ac-side voltages must be dominated by their fundamental (k = 1) component. Therefore,

(5.47) may be expressed in terms of dynamic phasors as follows:

µ [n− 1] = cos−1

(
cos (α)− Xs 〈id〉0 [n− 1]

|〈vac〉1 [n− 1]|

)
− α. (5.60)

The expression given by (5.52) reveals that the total resistance between the ac and dc

sides (Rd) of the LCC is time dependent when an inductance is present on the ac side of

the converter. It was shown in Section 5.2.2 that Rd is equal to 2Ron when one device

in each group is conducting. However, (5.52) illustrates that Rd is equal to 3/2Ron during

commutation. The time dependence of Rd may be modeled using a switching function using

the same method as the dc-side voltage and ac-side line currents. However, a switching

function for Rd would be a function of the ac system angle, thyristor firing angle, and

commutation angle since the values of Rd depend on the configuration of the LCC. The

discrete form of a switching function that is dependent on these quantities requires the time

delay method discussed in Section 5.2.3. Therefore, the product of Rd and id would appear

as a current source rather than the equivalent resistance for the dc-side discrete Norton

equivalent.

This approach for handling the time dependent dc-side resistance would require modi-

fications to the dc side of the converter model used in the previous sections. Alternatively,

the original model may be used if the time dependence of the dc-side resistance is simply
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ignored. In general, the voltage drop across Rd is negligible compared to the magnitude

of the dc-side voltage. Therefore, the change in the voltage drop across Rd may be con-

sidered negligible and Rd may be modeled as a constant resistance that is equal to 2Ron.

The dc side of the LCC with a nonzero source side inductance may be modeled by simply

substituting the dc-side voltage switching function dynamic phasors given by (5.59) into

the dynamic phasor LCC model shown in Section 5.2.3 using this assumption.

Table 5.4 gives the ac-side line currents during each conduction interval for the LCC

with a nonzero source side inductance. The variables ion and ioff were used to denote the

current in the thyristors during commutation that are beginning and ceasing conduction,

respectively. Expressions for ion and ioff during each interval may be derived using the

method shown in Section 5.4.1. The LCC ac-side current switching function for the a-phase

line current may be derived using the information in Table 5.4, and is given by

si (θ) =



cos (α)− cos (θ + α)

cos (α)− cos (α+ µ)
0 ≤ θ < µ

1 µ ≤ θ < 2π/3

cos (θ − 2π/3 + α)− cos (α+ µ)

cos (α)− cos (α+ µ)
2π/3 ≤ θ < 2π/3 + µ

cos (θ − π + α)− cos (α)

cos (α)− cos (α+ µ)
π ≤ θ < π + µ

−1 π + µ ≤ θ < 5π/3

cos (α+mu)− cos (θ − 5π/3 + α)

cos (α)− cos (α+ µ)
2π/3 ≤ θ < 2π/3 ≤ θ < 5π/3 + µ

0 otherwise.

(5.61)

Applying the dynamic phasor operator and delay method to (5.61) yields the dynamic

phasors of the LCC ac-side current switching function, which are given by

〈si〉k [n− 1] =


ejk(φ[n−1]−α[n−1])

(
1− e−j2kπ/3

)
(βk1 [n− 1] + βk2 [n− 1])

jπ (cos (α [n− 1])− cos (α [n− 1] + µ [n− 1]))
k odd

0 k even,

(5.62)

where βk1 [n− 1] and βk2 [n− 1] are the constants given by (5.56) and (5.57), respectively,

with discrete variables substituted into the expressions for α and µ. The dynamic phasors
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given by (5.62) may be used directly in the ac side of the discrete LCC model discussed in

Section 5.2.3.

Table 5.4: ac-side line currents for each interval in the LCC cycle including the effect of a
source side inductance

Start End Positive
Thyristors

Negative
Thyristors

ia ib ic

0 µ T1, T5 T6 ion −id ioff

µ π/3 T1 T6 id −id 0
π/3 π/3 + µ T1 T2, T6 id −ioff −ion

π/3 + µ 2π/3 T1 T2 id 0 −id
2π/3 2π/3 + µ T1, T3 T2 ioff ion −id

2π/3 + µ π T3 T2 0 id −id
π π + µ T3 T2, T4 −ion id −ioff

π + µ 4π/3 T3 T4 −id id 0
4π/3 4π/3 + µ T3, T5 T4 −id ioff ion

4π/3 + µ 5π/3 T5 T4 −id 0 id
5π/3 5π/3 + µ T5 T4, T6 −ioff −ion id

5π/3 + µ 2π T5 T6 0 −id id

The modifications developed in this section to include the effects of commutation impose

two important constraints on the discrete dynamic phasor equivalent of the LCC. First

of all, the switching function modifications were derived assuming that the commutation

angle does not exceed π/3. This assumption restricts the LCC model to a single operational

mode in which the converter spends part of each cycle in commutation and the other part

conducting normally using one device from each group. However, it can be shown that

there are several different operational modes that depend on the size of the source side

inductance, the ac-side voltage, and the dc-side current [46,53]. Therefore, the LCC model

developed in this section is restricted to systems where the commutation angle does not

exceed π/3.

The second constraint that the modifications impose on the LCC model is that they

limit the size of any additional series inductance on the ac side of the converter. This sec-

tion demonstrated that the dynamic phasor LCC model including a source side inductance

requires knowledge of the size of the inductance to properly incorporate its effects. There-

fore, any additional series inductance included on the ac side of the LCC must be small in
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comparison to the converter source side inductance to ensure that it does not significantly

impact the dynamic characteristics of the converter.

5.5 Simulation Results

Figure 5.17 illustrates the example circuit that will be used to demonstrate the dynamic

phasor LCC model. The LCC is connected to a strong ac system, which is represented

using a sinusoidal source with a small series resistance. The load is modeled using a passive

RL circuit, where the resistance and inductance are chosen such that it filters the majority

of the dc-side harmonics and appears as a constant current load. Table 5.5 contains all of

the circuit parameters for the test system shown in Figure 5.17.

Rs Lsia

Rs Lsib

Rs Lsic

L

R

+

vd

−

+

vo

−

Figure 5.17: LCC connected to a strong ac system and passive dc load

Table 5.5: LCC test system parameters

Parameter Value

f0 60 Hz

VLL 230 kV

Ron 10 mΩ

Rs 1 mΩ

R 10 Ω

Ls 2 mH

L 0.1 H

Tables 5.6 and 5.7 contain the steady state magnitudes of select harmonics for the

dc-side voltage, vd, and the ac-side line current, ia, respectively. The analytical values
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were calculated using (5.53) to (5.55) and the dynamic phasor values were obtained using

simulations. The magnitudes of the harmonics obtained from PSCAD/EMTDC simulations

were also included for comparison. The firing angle of the thyristors was set to 5◦ for all

of the values shown in Tables 5.6 and 5.7. The data demonstrates that the analytical and

simulation results are in good agreement.

Table 5.6: Steady state dc-side voltage harmonics (all values in kV)

Harmonic Analytical Dynamic Phasors PSCAD/EMTDC

0 288.59 288.01 287.77

6 27.02 27.01 25.97

12 13.70 13.67 13.33

18 9.54 9.54 9.14

Table 5.7: Steady state ac-side line current harmonics (all values in kA)

Harmonic Analytical Dynamic Phasors PSCAD/EMTDC

1 31.60 31.54 31.63

5 5.34 5.27 5.35

7 3.20 3.19 3.13

11 1.15 1.13 1.11

13 0.66 0.66 0.65

17 0.36 0.35 0.37

19 0.35 0.35 0.35

Figure 5.18 illustrates the average value and magnitude of the sixth harmonic of the dc-

side voltage, vd, over firing angles from 5◦ to 85◦. These plots include the analytical results

along with the dynamic phasor and PSCAD/EMTDC results for comparison. Figure 5.18a

illustrates that all three methods are in good agreement for the average value of the load

voltage. Figure 5.18b illustrates that all three methods are in good agreement for the sixth

harmonic for smaller firing angles. However, the PSCAD/EMTDC results appear to diverge

from the analytical and dynamic phasor results as firing angle increases. This error may be

attributed to the load used to model the dc side of the test system shown in Figure 5.17. The

analytical equations and dynamic phasor model are both based on the assumption that the

dc-side current is approximately constant and dominated by its dc component. However,

the RL load shown in the test system will respond to the harmonics present in the LCC

dc-side voltage. Figure 5.18 demonstrates that the harmonics present in the dc-side voltage
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begin to dominate as the firing angle is increased, which in turn increases the harmonics

present in the dc-side current. Therefore, the constant dc-side current assumption used to

derive the analytical equations and create the dynamic phasor LCC model begins to break

down as the firing angle is increased for the test system.
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Figure 5.18: Comparison of the dc-side voltage harmonics for various firing angles between
5◦ to 85◦

Figure 5.19 illustrates the magnitude of the fundamental and fifth harmonic of the ac-side

line current over firing angles from 5◦ to 85◦ respectively. These plots include the analyt-

ical results along with the dynamic phasor and PSCAD/EMTDC results for comparison.

Figure 5.19a illustrates that the three methods are in good agreement for the fundamental

component, with some error between the dynamic phasor and PSCAD/EMTDC results as

the firing angle increases. Figure 5.19b illustrates that all three sets of simulation results

follow the same trends, with a small amount of error between the methods for all firing

angles.
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Figure 5.19: Comparison of the ac-side line current harmonics for various firing angles
between 5◦ to 85◦

Figures 5.20 and 5.21 illustrate the dynamic characteristics of the load voltage, vo, and

the ac-side line current, ia, respectively. In this test, the firing angle was initially set to 5◦,

which was changed to 30◦ at 0.1 s followed by a second change to 70◦ at 0.175 s. The set of

harmonics used to simulate this system is equal to {0, 1} such that these simulations only

capture the averaged behaviour of the system. The waveforms illustrate that the dynamic

phasor simulation results and in good agreement with the PSCAD/EMTDC results and that

the LCC model accurately captures the averaged behaviour of the test system. Figure 5.20

illustrates a minor discrepancy in the dc voltage waveforms at 0.175 s, where the firing angle

is changed from 30◦ to 70◦. This error may be attributed to the thyristor dead time problem

discussed in Section 5.3.4.
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Figure 5.20: Comparison of the load voltage dynamics for various firing angles
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Figure 5.21: Comparison of the ac-side line current dynamics for various firing angles

Figures 5.22 and 5.23 illustrate several cycles of the load voltage and ac-side line current

waveforms, respectively. The simulations were carried out using a firing angle of 5◦ and the

set of harmonics given by {0, 1, 5, 6, 7, 11, 12, 13} to capture the switching characteristics

of the converter. The results show that there is some error near the discontinuities in the

PSCAD/EMTDC waveforms, which is expected due to the truncated series used to generate

the reconstructed dynamic phasor waveforms. However, the results show that the dynamic

phasor simulation results appear to converge to the PSCAD/EMTDC waveforms, indicating

good agreement between the two methods.

Figures 5.24 and 5.25 illustrate several cycles of the load voltage and ac-side line current,

respectively. The simulations were carried out using a firing angle of 30◦ and the set of

harmonics given by {0, 1, 5, 6, 7, 11, 12, 13}. The reconstructed ac-side line current waveform

shown in Figure 5.25 appears to converge to the PSCAD/EMTDC waveform, indicating

good agreement between the two methods.
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Figure 5.22: Comparison of the load voltage steady state waveforms with a firing angle of
5◦
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Figure 5.23: Comparison of the ac-side line current steady state waveforms with a firing
angle of 5◦

Figure 5.24 illustrates that the reconstructed load voltage waveform is no longer in good

agreement with the PSCAD/EMTDC results. The reconstructed waveform produced by

the dynamic phasor simulations appears to have the correct shape, but its dc value is offset

from the PSCAD/EMTDC waveform. Closer inspection of Figure 5.18a reveals that the dis-

agreement between the average values produced by dynamic phasors and PSCAD/EMTDC

increases as firing angle increases. This error may be attributed to the load model problem

previously discussed.

Figures 5.27 and 5.28 illustrate the load voltage and ac-side line current following the

balanced three phase balanced fault shown in Figure 5.26. The simulations were carried

out using a firing angle of 5◦ and the set of harmonics given by {0, 1}. A fault resistance

of 1 mΩ was applied at 0.1 s for 0.05 s. The simulation results demonstrate that the LCC
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model performs well during the fault and is in good agreement with the PSCAD/EMTDC

model. However, there is some error at the moment the fault is cleared, where the dynamic

phasor model appears to respond faster than the PSCAD/EMTDC model. This error is due

to the fact that the dynamic phasor model is able to respond immediately to the cleared

fault and do not capture the discrete switching characteristics of the time-domain converter

model.
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Figure 5.24: Comparison of the load voltage steady state waveforms with a firing angle of
30◦
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Figure 5.25: Comparison of the ac-side line current steady state waveforms with a firing
angle of 30◦

Figures 5.30 and 5.31 illustrate the load voltage and ac-side line current following the

unbalanced line-to-line fault shown in Figure 5.29. The simulations were carried out using

a firing angle of 5◦ and the set of harmonics given by {0, 1}. A fault resistance of 1 mΩ was

applied at 0.1 s for 0.05 s. The simulation results demonstrate that the LCC model is not

in good agreement with the PSCAD/EMTDC model. However, these results are expected
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since the dynamic phasor model was derived under the assumption that the ac system is

balanced and the presence of an unbalanced fault on the ac side of the converter violates

this assumption. Furthermore, the recovery period also illustrates that the dynamic phasor

LCC model requires more time to recover from the fault. This additional recovery time is

due to the fact that the dynamic phasor PLL model only uses the angles of va and vc to

generate an ac system angle for the LCC. This approach provides an accurate measure of

the angle produced by the time-domain PLL during balanced conditions. However, in the

presence of any unbalanced conditions, the time-domain and dynamic phasor PLL outputs

will no longer be in agreement.
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Figure 5.26: Three phase balanced fault
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Figure 5.27: Comparison of the load voltage dynamics following a three phase balanced
fault
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Figure 5.28: Comparison of the ac-side line current dynamics following a three phase bal-
anced fault
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Figure 5.29: Unbalanced line-to-line fault
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Figure 5.30: Comparison of the load voltage dynamics following an unbalanced line-to-line
fault
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Figure 5.31: Comparison of the ac-side line current dynamics following an unbalanced line-
to-line fault

5.6 Summary

This chapter presented an LCC model for use in the general purpose simulation method

discussed in Chapter 3. This model was derived using the switching function method, which

is commonly used in literature to model power electronic converters using dynamic pha-

sors. The final LCC model includes the effects of source side inductance and the dynamics

associated with thyristors. The continuous dynamic phasor model appears as a set of cou-

pled sources for the ac and dc sides of the converter, which is consistent with other models

presented in literature. The discrete form of the LCC model uses a time step delay to

decouple the ac and dc equations, which allows the LCC model to be included in a set of

nodal equations. Comparisons of simulation results produced using dynamic phasors and

PSCAD/EMTDC were included in this chapter. The simulation results generally demon-

strated good agreement between the two methods. However, the results also identified areas

in which the models differ, such as unbalanced faults and significant harmonic content in

the dc system. The disagreement between the dynamic phasor and PSCAD/EMTDC sim-

ulation results could be attributed to the fact that the test system did not satisfy the

requirements of the dynamic phasor LCC model under all operating conditions.
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Chapter 6

Synchronous Machines

Synchronous machines are among the most important elements in power systems and are

found in a number of applications. A synchronous machine may operate as a synchronous

generator, motor, or condenser [4, 43]. Synchronous generators are used to generate the

majority of the world’s electrical energy and are the primary source of both real and reactive

power for loads in ac power systems [43]. Synchronous motors are used to drive large

industrial loads, and synchronous condensers are used to provide reactive power support

for transmission networks [4].

Synchronous machines differ from the other models considered previously in this work

because they consist of both electrical and mechanical subsystems. The synchronous ma-

chine consists of a rotating shaft, also known as the rotor, which is generally equipped

with the field winding [4]. An external dc source, known as the exciter, provides power to

the field winding and establishes a rotating magnetic field within the machine. This field

rotates within the stationary part of the machine, also known as the stator, which is gen-

erally equipped with the armature windings. The rotating magnetic field induces a voltage

on the stator or armature windings, which in turn induces its own magnetic field within

the machine [43]. Energy is then transferred between electrical and mechanical subsystems

through the electromagnetic fields produced by the stator and rotor. A governor is used to

control the amount of energy transferred within these subsystems by controlling the speed

of the rotor in synchronous generators [4].

Proper representation of synchronous machines in power system models is required to
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ensure simulation results are reliable and accurate. The type of studies being performed

dictates the synchronous machine model that must be included in simulations. For shorter

duration studies that are concerned with high frequency transients, the synchronous ma-

chine may be modeled as a voltage source in series with an inductance [1]. However, models

that include the mechanical subsystem are required for longer term studies that are con-

cerned with low frequency electromechanical transients. For example, power system stability

studies are concerned with the interactions between the electrical network and mechanical

subsystems in synchronous machines [4].

Modeling and simulation of synchronous machines has been approached using a number

of different methods in literature. The first method takes advantage of space vectors and se-

quence components to develop a dynamic phasor model of the synchronous machine [27,28].

An advantage of this method is that the effects of imbalance and harmonics in the ac system

may be directly observed from the dynamic phasor form of the machine equations. Another

approach used in literature to develop a dynamic phasor model of the synchronous machine

is to directly convert the three phase model without a change of reference frame [2, 27].

Previous research has demonstrated that these synchronous machine models are capable of

accurately modeling the machine dynamics, under both balanced and unbalanced ac system

configurations. However, the simulations have focused on demonstrating these models in

the context of larger system studies, where an infinite bus is used to model the ac system.

In these situations, the frequency of stator quantities is constant and set by the infinite bus.

The method used in this work differs from previous research as it uses conventional

reference frame transformation methods to obtain a dynamic phasor-based model of the

synchronous machine, including its mechanical subsystem. Section 6.1 outlines the theory

of synchronous machines and develops the differential equations describing its dynamic

behaviour in terms of time-domain quantities. This model is then converted to a continuous

dynamic phasor representation in Section 6.2. A discrete dynamic phasor representation of

the synchronous machine is developed in Section 6.3 using the continuous dynamic phasor

model. Finally, simulation results for two test systems are provided in Section 6.4.
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6.1 Theory

Figure 6.1 illustrates the physical construction of a salient pole synchronous machine [43].

The axis of each phase corresponds to the magnetic axis of its respective winding. The

direct (d) axis corresponds to the magnetic axis of the rotor while the quadrature (q) axis

leads the d-axis by 90 degrees. The instantaneous rotor angle, θr, is defined as the angle of

the rotor q-axis measured with respect to the a-phase magnetic axis as shown in Figure 6.1.

In the following section, θr is assumed to be in electrical radians while the angular frequency

of the rotor, ωr, is assumed to be in per unit.

d

q

a

b

c

θr

ωr

a

a′

b

b′

c

c′

Figure 6.1: Physical construction of a synchronous machine

The electrical model of the stator windings is shown in Figure 6.2, where all quantities

are in per unit [43]. A single inductance behind an armature resistance, Rs, is used to model

each phase. The magnetic flux linkage, ψ, represents the combined effect of the rotor and

other stator windings. The motor convention was used to model synchronous machines in

this work and therefore, it was assumed that current entering the stator is positive.

The electrical model of the rotor is shown in Figure 6.3, where all values are in per unit

on the stator bases [43]. The first circuit on the d-axis is used to model the effects of the

field winding, which is denoted by the subscript fd. The rotor electrical model also includes

a single damper circuit on the d-axis, denoted by the subscript 1d, and two damper circuits
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on the q-axis, denoted by subscripts 1q and 2q. Damper circuits are used in synchronous

machine models to account for the effects of currents induced on the rotor.

ψa

Rs
va

ia

ψb

Rs
vb

ib

ψc
Rs

vc
ic

Figure 6.2: Electrical model of the stator

d

q

Rfd

ifd
− vfd +

ψfd

R1d

i1d

ψ1d

R1q

i1q

ψ1q

R2q

i2q

ψ2q

Figure 6.3: Electrical model of the rotor

The currents in the stator and rotor windings are related to the magnetic flux linkages

through the machine inductances [43] as follows:

ψs
ψr

 =

Ls (θr) Lsr (θr)

LTsr (θr) Lr


is
ir

 , (6.1)
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where the magnetic flux linkage and current vectors are given by

ψs =


ψa

ψb

ψc

 ; ψr =



ψ1q

ψ2q

ψfd

ψ1d


; is =


ia

ib

ic

 ; and ir =



i1q

i2q

ifd

i1d


.

The matrix Ls (θr) in (6.1) is used to represent the stator self and leakage inductances

as well as the mutual inductance between different phases [43]. As shown in Figure 6.1, the

rotor is not symmetrical with respect to the d and q-axes. As a result, the stator self and

mutual inductances vary as the rotor position changes. The elements in Ls (θr) are given

by

Ls (θr) =


Lls + Lss (θr) −Lsm (θr − π/3) −Lsm (θr + π/3)

−Lsm (θr − π/3) Lls + Lss (θr − 2π/3) −Lsm (θr − π)

−Lsm (θr + π/3) −Lsm (θr − π) Lls + Lss (θr + 2π/3)

 , (6.2)

where Lls is the leakage inductance of the stator windings. Lss (θ) and Lsm (θ) are the

stator self and mutual inductances, respectively, which are given by

Lss (θ) = LA − LB cos (2θ) ; and (6.3)

Lsm (θ) =
1

2
LA + LB cos (2θ) , (6.4)

where LA and LB depend on the physical parameters of the machine [43].

The matrix Lsr (θr) in (6.1) is used to represent the mutual inductances between the

stator and rotor circuits [43]. The elements in this matrix are given by

Lsr (θr) =


Lmq cos (θr) Lmq cos (θr) Lmd sin (θr) Lmd sin (θr)

Lmq cos
(
θr − 2π

3

)
Lmq cos

(
θr − 2π

3

)
Lmd sin

(
θr − 2π

3

)
Lmd sin

(
θr − 2π

3

)
Lmq cos

(
θr + 2π

3

)
Lmq cos

(
θr + 2π

3

)
Lmd sin

(
θr + 2π

3

)
Lmd sin

(
θr + 2π

3

)
 ,

(6.5)

where Lmd and Lmq are the magnetizing inductances of the d and q-axes respectively.
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Finally, the matrix Lr in (6.1) is used to represent the leakage and self inductances of the

rotor circuits and any mutual inductance between rotor circuits on the same axis [43]. The

elements of Lr are given by

Lr =



Ll1q + Lmq Lmq 0 0

Lmq Ll2q + Lmq 0 0

0 0 Llfd + Lmd Lmd

0 0 Lmd Ll1d + Lmd


, (6.6)

where Ll1q, Ll2q, Llfd, and Ll1d are the rotor circuit leakage inductances. The relationship

between the stator terminal voltages, magnetic flux linkages, and currents is given by

d

dt


ψa

ψb

ψc

 =


va

vb

vc

−Rs

ia

ib

ic

 (6.7a)

dψs
dt

= vs −Rsis. (6.7b)

Similarly, the relationship between the rotor field voltage, magnetic flux linkages, and

currents is given by

d

dt



ψ1q

ψ2q

ψfd

ψ1d


=



0

0

vfd

0


−



R1q 0 0 0

0 R2q 0 0

0 0 Rfd 0

0 0 0 R1d





i1q

i2q

ifd

i1d


(6.8a)

dψr
dt

= vr −Rrir. (6.8b)

The dependence of the inductances in (6.1) on θr is undesirable since the rotor position

changes with time. Hence, the inductances are functions of time, which complicates analysis

and has efficiency implications in simulations involving synchronous machines [1]. The

method used to eliminate θr from (6.1) is to refer all of stator quantities from their stationary

reference frame to the rotor’s reference frame [54]. Park’s transformation may be used to
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refer stator quantities to the rotor and is given by


xq

xd

x0

 =
2

3


cos (θr) cos

(
θr − 2π

3

)
cos
(
θr + 2π

3

)
sin (θr) sin

(
θr − 2π

3

)
sin
(
θr + 2π

3

)
1
2

1
2

1
2



xa

xb

xc

 (6.9a)

x′ = Tpx. (6.9b)

The stator quantities must be referred back to the stator’s reference frame to interface

a synchronous machine with a larger system model. The inverse of Park’s transformation

may be used to refer the stator quantities back to the stator reference frame [54] and is

given by


xa

xb

xc

 =


cos (θr) sin (θr) 1

cos
(
θr − 2π

3

)
sin
(
θr − 2π

3

)
1

cos
(
θr + 2π

3

)
sin
(
θr + 2π

3

)
1



xq

xd

x0

 (6.10a)

x = T−1
p x′. (6.10b)

Applying Park’s transformation to (6.1) yields the synchronous machine magnetic flux

linkage equations with the stator quantities referred to the rotor reference frame [43]. The

adjusted magnetic flux equations are given by

ψ′s
ψr

 =

 L′s L′sr

(L′sr)
T Lr


i′s
ir

 . (6.11)

The matrix L′s in (6.11) is used to represent the stator self and leakage inductances where

the stator quantities have been referred to the rotor’s frame of reference. The elements of

this matrix are given by

L′s =


Lls + Lmq 0 0

0 Lls + Lmd 0

0 0 Lls

 . (6.12)
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Similarly, the matrix L′sr in (6.11) is used to represent the mutual inductances between

the stator and the rotor where the stator quantities have been referred to the rotor’s frame

of reference. The elements of this matrix are given by

L′sr =


Lmq Lmq 0 0

0 0 Lmd Lmd

0 0 0 0

 . (6.13)

The elements of the inductance matrices in (6.11) demonstrate that the q-axis, d-axis,

and zero sequence flux linkages and currents are completely decoupled. As a result, (6.11)

may be written as three independent sets of equations, which are given by


ψq

ψ1q

ψ2q

 =


Lls + Lmq Lmq Lmq

Lmq Ll1q + Lmq Lmq

Lmq Lmq Ll2q + Lmq



iq

i1q

i2q

 (6.14a)

ψq = Lqiq; (6.14b)


ψd

ψfd

ψ1d

 =


Lls + Lmd Lmd Lmd

Lmd Llfd + Lmd Lmd

Lmd Lmd Ll1d + Lmd



id

ifd

i1d

 (6.15a)

ψd = Ldid; and (6.15b)

ψ0 = Llsi0. (6.16)

Applying Park’s transformation to (6.7b) yields the stator terminal voltage equations

for the synchronous machine with the stator quantities referred to the rotor’s frame of

reference. The adjusted stator voltage equations are given by

d

dt


ψq

ψd

ψ0

 =


vq

vd

v0

+


0 −ωr 0

ωr 0 0

0 0 0



ψq

ψd

ψ0

−Rs

iq

id

i0

 (6.17a)
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dψ′s
dt

= v′s + vsv −Rsi′s, (6.17b)

where the elements of vsv are known as the speed voltages [4]. The equations in (6.17a)

show that the q and d-axis stator terminal voltage equations are not completely decoupled

due to the speed voltages.

The magnetic flux linkage equations given by (6.14b), (6.15b), and (6.16) together with

the terminal voltage equations given by (6.8b) and (6.17b) describe the electrical dynamics

of the synchronous machine. Additional differential equations are required to model the me-

chanical dynamics of synchronous machines [4]. The first equation relates the instantaneous

rotor angle to the angular frequency of the rotor [43], which is given by

dθr
dt

= ωbωr, (6.18)

where ωb is the base angular frequency of the machine. The second equation gives the

relationship between the angular frequency of the rotor and the net torque applied to the

shaft of the machine [43], which is given by

dωr
dt

=
Te − TL +Dωr

2H
, (6.19)

whereH is the inertia constant of the synchronous machine and TL is the per unit load torque

applied to the machine. TheDωr term in (6.19) is used to represent any mechanical damping

effects, where D is the machine damping factor [4]. Te is the per unit electromagnetic air

gap torque of the machine [43], which is given by

Te = ψdiq − ψqid. (6.20)

6.2 Continuous Dynamic Phasor Model

The synchronous machine equations derived in the previous section may be readily con-

verted to dynamic phasors using the dynamic phasor operator and properties discussed in

Section 1.2. Applying the dynamic phasor operator to (6.14b), (6.15b), and (6.16) yields
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the dynamic phasor form of the magnetic flux linkage equations, which are given by

〈
ψq
〉
k

= Lq 〈iq〉k ; (6.21)

〈ψd〉k = Ld 〈id〉k ; and (6.22)

〈ψ0〉k = Lls 〈i0〉k . (6.23)

Similarly, applying the dynamic phasor operator to (6.8b) and (6.17b) yields the dynamic

phasor form of the terminal voltage equations, which are given by

d 〈ψr〉k
dt

= 〈vr〉k − jkω0 〈ψr〉k −Rr 〈ir〉k ; and (6.24)

d
〈
ψ′s
〉
k

dt
=
〈
v′s
〉
k

+ 〈vsv〉k − jkω0

〈
ψ′s
〉
k
−Rs

〈
i′s
〉
k
, (6.25)

where the dynamic phasors of the speed voltages are given by

〈vsv〉k =


−

∞∑
l=−∞

〈ωr〉k−l 〈ψd〉l
∞∑

l=−∞
〈ωr〉k−l 〈ψq〉l

0

 . (6.26)

Finally, applying the dynamic phasor operator to (6.18) to (6.20) yields the dynamic

phasor form of the mechanical equations, which are given by

d 〈θr〉k
dt

= −jkω0 〈θr〉k + ωb 〈ωr〉k ; (6.27)

d 〈ωr〉k
dt

=

(
D

2H
− jkω0

)
〈ωr〉k +

〈Te〉k − 〈TL〉k
2H

; and (6.28)

〈Te〉k =

∞∑
l=−∞

(
〈ψd〉k−l 〈iq〉l − 〈ψq〉k−l 〈id〉l

)
. (6.29)

The equations given by (6.21) to (6.29) form a complete dynamic phasor model of

the synchronous machine in the rotor’s frame of reference. This model may be used to

simulate a machine connected to an infinite bus or a small subsystem that is also modeled

using qd0 coordinates [2]. However, this approach cannot be used to model synchronous
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machines in this work since the components derived in Chapter 3 were not derived for three

phase systems and qd0 coordinates. Therefore, the dynamic phasor synchronous machine

quantities must be interfaced with the network using Park’s transformation. The dynamic

phasor form of Park’s transformation may be obtained by applying the dynamic phasor

operator to (6.9b), which yields:

〈
x′
〉
k

=
∞∑

l=−∞
〈Tp〉k−l 〈x〉l . (6.30)

The equation given by (6.30) demonstrates that the dynamic phasors of the transfor-

mation matrix, 〈Tp〉k, are required to carry out the transformation. However, expressions

for 〈Tp〉k cannot be obtained using a straightforward application of the dynamic phasor

operator since the elements of Tp are nonlinear functions of θr. Instead, the approach

demonstrated in Section 3.3 that was used to obtain dynamic phasors for variable frequency

sources may also be used to obtain expressions for 〈Tp〉k. A similar approach has been used

to develop a synchronous machine model without Park’s transformation, which involves

finding the dynamic phasors of the variable inductance matrices, i.e. Ls (θr) [27]. Park’s

transformation may be written as a Fourier series using θr as the independent variable as

follows:

Tp =
∞∑

k=−∞
Cke

jkθr . (6.31)

The Fourier coefficients, Ck, in (6.31) are given by

Ck =
1

3




0 0 0

0 0 0

1 1 1

 k = 0


1 α α∗

−j −jα −jα∗

0 0 0

 k = 1

03×3 otherwise,

(6.32)

where α = e−j2π/3. The Fourier series given by (6.32) may be converted to dynamic phasors
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by simply adding and subtracting the product of the dynamic phasor base frequency and

time, ω0t, from each exponential basis function. The dynamic phasor-based series of Park’s

transformation is given by

Tp =

∞∑
k=−∞

〈Tp〉k (t) ejkω0t, (6.33)

where the dynamic phasors of the transformation matrix are given by

〈Tp〉k (t) =
ejk(θr−ω0t)

3




0 0 0

0 0 0

1 1 1

 k = 0


1 α α∗

−j −jα −jα∗

0 0 0

 k = 1

03×3 otherwise.

(6.34)

The dynamic phasors of the inverse of Park’s transformation,
〈
T−1
p

〉
k
, may be derived

using the same method and are given by

〈
T−1
p

〉
k

(t) =
ejk(θr−ω0t)

2




0 0 2

0 0 2

0 0 2

 k = 0


1 −j 0

α −jα 0

α∗ −jα∗ 0

 k = 1

03×3 otherwise.

(6.35)

The dynamic phasors for the transformation matrices given by (6.34) and (6.35) are

nonlinearly dependent on the instantaneous rotor angle, θr. This nonlinear relationship

poses a problem since θr is an instantaneous time-domain quantity, which is not available

in dynamic phasor-based simulations. The approximation used in this work to solve this

problem is to assume that θr is well represented by its dc component, 〈θr〉0.
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6.3 Discrete Dynamic Phasor Model

The stator of the synchronous machine is modeled in PSCAD/EMTDC as a set of three

current sources, one for each terminal of the machine [1]. The current injection for each

source is calculated in each time step using the network voltages from the previous time

step and a discretized form of the equations listed in Section 6.1. The current sources

are then used in the next time step by the nodal analysis simulation method to update

the network voltages. This approach along with the continuous dynamic phasor equations

listed in Section 6.2 will be used to obtain a discrete dynamic phasor equivalent of the

synchronous machine.

The first step in the synchronous machine update procedure is to use the network

voltages from the previous time step as inputs to the model. The network voltages are

then referred to the rotor reference frame using Park’s transformation as follows

〈
v′s
〉
k

[n− 1] =

∞∑
l=−∞

〈Tp〉k−l [n− 1] 〈vs〉l [n− 1] , (6.36)

where the dynamic phasors for Park’s transformation in a discrete context are given by

〈Tp〉k [n] =
ejk(〈θr〉0[n]−ω0t)

3




0 0 0

0 0 0

1 1 1

 k = 0


1 α α∗

−j −jα −jα∗

0 0 0

 k = 1

03×3 otherwise.

(6.37)

The stator voltages from the previous time step calculated using (6.37) may be used

to update the magnetic flux linkages. A difference equation is required since the stator

voltage is related to the flux linkages through a differential relationship as shown in (6.25).

However, the numerical methods discussed in Chapter 2 cannot be used in this situation

since the magnetic flux linkage equations are nonlinear. An explicit method, such as Euler’s
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forward method [34], must be used instead to convert the flux linkage differential equations

to difference equations. Applying Euler’s method to (6.25) yields the stator flux difference

equations, which are given by

〈
ψ′s
〉
k

[n] = (1− jkω0∆t)
〈
ψ′s
〉
k

[n− 1] + ∆t
(〈
v′s
〉
k

[n− 1] + 〈vsv〉k [n− 1]

−Rs
〈
i′s
〉
k

[n− 1]
)
. (6.38)

Similarly, a difference equation for the rotor magnetic flux linkages may be obtained by

applying Euler’s method to (6.24) as follows:

〈ψr〉k [n] = (1− jkω0∆t) 〈ψr〉k [n− 1] + ∆t (〈vr〉k [n− 1]−Rr 〈ir〉k [n− 1]) , (6.39)

where the field voltage from the previous time step is used in 〈vr〉k [n− 1]. The approach

used in PSCAD/EMTDC to obtain the field voltage is through an input to the machine,

which may be connected to an external field subsystem model [1]. This approach was also

used in the dynamic phasor synchronous machine equivalent to model the field subsystem.

The updated currents in the rotor’s reference frame may be calculated using (6.21),

(6.22), and (6.23) along with the updated values of the magnetic flux linkages from (6.38)

and (6.39). Solving for the current vectors in (6.21), (6.22), and (6.23) and replacing

continuous quantities with discrete quantities yields:

〈iq〉k [n] = L−1
q

〈
ψq
〉
k

[n] ; (6.40)

〈id〉k [n] = L−1
d 〈ψd〉k [n] ; and (6.41)

〈i0〉k [n] =
1

Lls
〈ψ0〉k [n] . (6.42)

Finally, the stator currents may be referred back to the stator reference frame using the

inverse of Park’s transformation and the values calculated in (6.40) to (6.42) as follows:

〈is〉k [n] =

∞∑
l=−∞

〈
T−1
p

〉
k−l [n]

〈
i′s
〉
l
[n] , (6.43)

– 117 –



where the dynamic phasors for the inverse of Park’s transformation in a discrete context

are given by

〈
T−1
p

〉
k

[n] =
ejk(〈θr〉0[n]−ω0t)

2




0 0 2

0 0 2

0 0 2

 k = 0


1 −j 0

α −jα 0

α∗ −jα∗ 0

 k = 1

03×3 otherwise.

(6.44)

The stator currents calculated in (6.43) are used as the values for the stator current

sources. However, interfacing a model with the network using current sources and values

based solely on the previous time step may result in numerical instability [1]. Therefore,

the interfacing circuit shown in Section 5.2.3 must be included in the electrical model of

the stator. Figure 6.4 illustrates the discrete dynamic equivalent of the stator including the

numerical interfacing circuit. The current sources in Figure 6.4 account for both the stator

current values given by (6.43) as well as the compensating conductance from the interfacing

circuit. The a-phase current source is given by

Iak [n] = 〈ia〉k [n]−Ga 〈va〉k [n− 1] , (6.45)

where 〈ia〉k [n] is the a-phase value calculated using (6.43). The interfacing conductance,

Ga, in this case may be selected as a small value relative to the base impedance of the

synchronous machine.

The equations describing the mechanical dynamics of the system must also be converted

to a discrete representation to complete the discrete dynamic phasor equivalent of the

synchronous machine. Applying Euler’s method to (6.27) and (6.28) yields the discrete

form of the mechanical equations given by

〈θr〉k [n] = (1− jkω0∆t) 〈θr〉k [n− 1] + ∆tωb 〈ωr〉k [n− 1] ; and (6.46)
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〈ωr〉k [n] =

(
1 + ∆t

(
D

2H
− jkω0

))
〈ωr〉k [n− 1] +

∆t

2H
(〈Te〉k [n− 1]− 〈TL〉k [n− 1]) .

(6.47)

The load torque, TL, is modeled in PSCAD/EMTDC as an input to the synchronous

machine, which may be connected to an external governor and turbine subsystem model [1].

This approach was also used in the dynamic phasor synchronous machine equivalent to

model the governor and turbine subsystem.

Iak [n]

Ga

〈ia〉k [n]
〈va〉k [n]

Ibk [n]

Ga

〈ib〉k [n]
〈vb〉k [n]

Ick [n]

Ga

〈ic〉k [n]
〈vc〉k [n]

Figure 6.4: Discrete dynamic phasor equivalent of the synchronous machine stator circuit

6.4 Simulation Results

Two systems were used to demonstrate the dynamic phasor synchronous machine model

developed in the previous section. The first system is a simple independent generator with

a passive load. The synchronous machine in this case selects the electrical frequency for the

entire network based on the frequency of the rotor. This system was selected to demonstrate

that the synchronous machine model developed in this work is capable of simulating systems

with machines where the electrical frequency is not necessarily equal to the base frequency

of the dynamic phasor series.
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The second system includes a synchronous generator with an infinite bus and a small

electrical network, which has been used extensively in literature to demonstrate synchronous

machine models [4]. The infinite bus in this configuration is used to represent a large

electrical network with an essentially fixed voltage and frequency. This test system was

selected to demonstrate that the synchronous machine model can also be used as part of a

power system model for system wide studies.

Simulations of both systems were carried out using only the fundamental component for

the ac system. The dynamic phasor form of Park’s transformation given by (6.30) may be

used to obtain a complete set of rotor harmonics with a given set of ac system harmonics.

This equation reveals that a complete rotor reference frame model must include the set of

harmonics given by {0, 1, 2} for an ac system containing only the fundamental component.

This observation is supported by previous research, which has shown that the dc component

represents the contributions from positive sequence components in the ac system [2]. The

first and second harmonics in the rotor reference frame represent the contributions from

zero and negative sequence components in the ac system, respectively. Therefore, only the

dc component in the rotor reference frame is required for balanced systems, while the higher

order harmonics are required to represent imbalance in the ac system.

It should be noted, however, that the simulations in this work were carried out using

only the dc component for the rotor reference frame equations. It was not possible to obtain

numerically stable simulation results when the first and second harmonics were included in

the set of rotor harmonics. The exact cause of the instability is unknown; however, it is

likely due to the time step delay and the choice of Euler’s method for numerical integration

of the rotor differential equations.

6.4.1 Independent Generator

Figure 6.5 illustrates the single line diagram for the first example system that will be used

to demonstrate the dynamic phasor synchronous machine model. The load model shown

in Figure 6.5 includes two parallel loads, one which models a purely resistive load and the

other which models a primarily inductive load. The synchronous machine includes a simple

PI feedback controller for the exciter and governor systems. The exciter system is shown
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in Figure 6.6, which measures the RMS value of the stator terminal voltage using the three

phase RMS meter discussed in Section 4.3 and regulates its value using the given reference.

The governor system is shown in Figure 6.7, which uses rotor frequency measurements from

the machine to regulate the frequency of the machine. Tables 6.1 and 6.2 contains all of

the synchronous machine and system parameters used in the simulations respectively. The

simulations were carried out using dynamic phasors and PSCAD/EMTDC assuming that

all initial conditions, including the rotor frequency, are zero.

SM
ia

R2

L

R1

+

va

−

Tm

vfd

Figure 6.5: Independent synchronous machine with a passive load

Three
Phase
RMS

van
vbn
vcn

Σ

vref

Ke + 1
Tes

vfd
+

−

Figure 6.6: Exciter system for the independent synchronous machine

ωref Σ

ωr

Kg + 1
Tgs Tm

−
+

Figure 6.7: Governor system for the independent synchronous machine

Figures 6.8 and 6.9 illustrate the simulation results for the terminal voltage and current

of the synchronous machine during start-up transient, respectively. The magnitudes of

the dynamic phasors are included along with waveforms obtained from PSCAD/EMTDC.

The results demonstrate that the dynamic phasor simulation results accurately capture the

envelope of the PSCAD/EMTDC waveforms.
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Table 6.1: Synchronous machine model parameters

Parameter Value Parameter Value

Base MVA 1100 MVA

Base voltage 18 kV

Base frequency 60 Hz

Lmq 0.91pu Lmd 1.66pu

Rs 0.025pu Lls 0.14pu

R1q 0.00842pu L1q 0.106pu

R2q 0.0081942pu L2q 0.0094199pu

Rfd 0.006pu Lfd 0.2004pu

R1d 0.0051pu L1d 0.0437pu

H 1.7 s D 0

Table 6.2: Independent generator system parameters

Parameter Value Parameter Value

f0 60 Hz Ke 25

R1 10 Ω Te 10 ms

R2 5 Ω Kg 25

L 23 mH Tg 10 ms
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Figure 6.8: Comparison of the stator voltage during start-up transients

Figures 6.10 and 6.11 illustrate the start-up transient simulation results for the rotor

frequency and electromagnetic torque of the synchronous machine, respectively. Figure 6.10

illustrates that the rotor frequency results produced by the dynamic phasor simulations are

in good agreement with the PSCAD/EMTDC simulation results. Figure 6.11 illustrates

that the electromagnetic torque results are in good agreement except near the peak of the

initial overshoot at approximately 0.2 s. However, this error was considered negligible given

the agreement between the electrical stator quantities.
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Figure 6.9: Comparison of the stator current during start-up transients
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Figure 6.10: Comparison of the rotor frequency during start-up transients
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Figure 6.11: Comparison of the electromagnetic torque during start-up transients

Figures 6.12 and 6.13 illustrate the terminal voltage and current waveforms of the syn-

chronous machine reconstructed using dynamic phasors, respectively. The simulation results

demonstrate that the PSCAD/EMTDC and dynamic phasor waveforms are in good agree-

ment. Therefore, this shows that the dynamic phasor model of the synchronous machine is
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capable of capturing behaviour where the electrical frequency of the system is not constant

and changes according to the machine dynamics.
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Figure 6.12: Comparison of the stator voltage waveforms during start-up transients
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Figure 6.13: Comparison of the stator current waveforms during start-up transients

Figures 6.14 and 6.15 illustrate the simulation results for the terminal voltage and cur-

rent of the synchronous machine following a balanced three phase fault, respectively. The

three phase fault shown in Section 5.5 was applied to the terminals of the machine at 2 s

for 0.25 s with a fault resistance of 0.01 Ω. Figure 6.14 illustrates that the terminal voltage

waveforms are in good agreement except when the fault is cleared, at which point there

are momentary high frequency oscillations of considerable magnitude that are not present

in the PSCAD/EMTDC simulations. Figure 6.15 illustrates that the current waveforms

are also in good agreement except at the point where the fault is cleared. The oscillations

present in the dynamic phasor results are likely numerical and due to the sudden nature of

the fault in conjunction with the integration method used to simulate the machine.
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Figure 6.14: Comparison of the stator voltage waveforms following a balanced three phase
fault
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Figure 6.15: Comparison of the stator current waveforms following a balanced three phase
fault

Figures 6.16 and 6.17 illustrate the simulation results for the rotor frequency and elec-

tromagnetic torque of the synchronous machine following the three phase balanced fault,

respectively. Figure 6.16 illustrates that the simulation results for the rotor frequency are

in good agreement. Figure 6.17 illustrates that the simulation results for the electromag-

netic torque are in good agreement except at the point where the fault is cleared. This

disagreement is a result of the problems noted earlier in the stator quantities.

Figures 6.18 to 6.21 illustrate the simulation results for the stator and rotor quantities

of the synchronous machine following an unbalanced line-to-line fault. The line-to-line fault

shown in Section 5.5 was applied to the terminals of the machine at 2 s for 0.25 s with a fault

resistance of 0.01 Ω. The simulation results indicate that the dynamic phasor model does not

accurately capture the transient behaviour of the machine during this fault. This behaviour
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is expected since the rotor was modeled in this work using only the dc component. The

first and second harmonics would also be required to accurately model unbalanced faults

such as the line-to-line fault used in this test.
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Figure 6.16: Comparison of the rotor frequency following a balanced three phase fault
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Figure 6.17: Comparison of the electromagnetic following a balanced three phase fault
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Figure 6.18: Comparison of the stator voltage waveforms following a line-to-line fault
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Figure 6.19: Comparison of the stator current waveforms following a line-to-line fault
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Figure 6.20: Comparison of the rotor frequency following a line-to-line fault
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Figure 6.21: Comparison of the electromagnetic torque following a line-to-line fault

6.4.2 Single Machine Infinite Bus

Figure 6.22 illustrates the single line diagram for the second example system that will be

used to demonstrate the dynamic phasor synchronous machine model [4]. The exciter and

governor were modeled using the simple feedback control systems shown in Figures 6.6
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and 6.7 from the previous example. The data given in Table 6.1 from the previous section

was used in this section to model the synchronous machine and Table 6.3 contains the

system data for this example.
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Vb

+

va

−

line 1

line 2Tm

vfd

Figure 6.22: Single machine infinite bus system

Table 6.3: Single machine infinite bus system parameters

Parameter Value Parameter Value

f0 60 Hz Ke 60

LT 0.117 mH Te 2 ms

L1 0.391 mH Kg 50

L2 0.728 mH Tg 10 ms

Vb 17.91 kV

Figures 6.23 and 6.24 illustrate the simulation results for the stator terminal voltage

and current following a sudden loss of line 2, respectively. Figure 6.23 illustrates that the

terminal voltage appears to be unchanged in both waveforms, except near the point where

the line is disconnected. At this point, the dynamic phasor simulation results include the

high frequency oscillations that were noted in the previous section. Figure 6.24 illustrates

that the stator current waveforms are in good agreement.

Figures 6.25 and 6.26 illustrate the simulation results for the rotor frequency and elec-

tromagnetic torque following the sudden loss of line 2, respectively. Figure 6.25 illustrates

that rotor frequency waveforms are in good agreement, with a small amount of error while

the frequency is recovering from the loss of line 2. Figure 6.26 illustrates that the elec-

tromagnetic torque waveforms are in good agreement except near the beginning of the

transient. The dynamic phasor results indicate that the high frequency oscillations noted

in the terminal voltage waveform are also present in the electromagnetic torque waveform.
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Figure 6.23: Comparison of the stator voltage waveforms following the loss of line 2

1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40

Time (s)

−40
−30
−20
−10

0
10
20
30
40

i a
(k

A
)

Dynamic Phasors PSCAD/EMTDC

Figure 6.24: Comparison of the stator current waveforms following the loss of line 2
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Figure 6.25: Comparison of the rotor frequency following the loss of line 2

– 129 –



2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

T
e

(p
u

)

Dynamic Phasors PSCAD/EMTDC

Figure 6.26: Comparison of the electromagnetic torque following the loss of line 2

6.5 Summary

This chapter presented a dynamic phasor-based synchronous machine model for use in the

general purpose simulation method discussed in Chapter 3. The dynamic phasor model

is based on a complete synchronous machine, including both electrical and mechanical

system dynamics. The model presented in this chapter uses Park’s transformation to refer

all stator variables to the rotor’s frame of reference. A dynamic phasor form of Park’s

transformation and its inverse are presented in this chapter. This approach differs from the

methods presented in literature, which generally use space vector formulations to model the

synchronous machine.

The continuous dynamic phasor model presented in this chapter is then transformed to

a discrete Norton equivalent using the time step delay technique used in programs such as

PSCAD/EMTDC. Comparisons of simulations results for two test systems were included

in this chapter. The simulation results demonstrate that the dynamic phasor simulations

accurately capture the dynamic behaviour of the synchronous machine. The simulation

results also demonstrate the limitations of the model, which were based on the limitations

of the numerical method used to integrate the stator and rotor differential equations.
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Chapter 7

Conclusions, Contributions, and

Future Directions

The objective of this thesis was to develop a new general purpose simulation method based

on dynamic phasors and conventional power system simulation techniques. Chapter 1

demonstrated that there has been significant research into the application of dynamic pha-

sors in areas such as power electronics, machines, and hybrid modeling. Previous research

has demonstrated that dynamic phasors may be used in applications such as improved sys-

tem modeling and controller design. Chapter 1 also demonstrated that there is a gap in

current dynamic phasors research. Previous work has been primarily focused on modeling

of specific subsystems and low frequency dynamics. The method developed in this thesis

is used to fill this gap through general purpose simulation techniques and provisions for

including higher order harmonics.

Chapter 3 presented the foundation for the dynamic phasor-based general purpose sim-

ulation method developed in this work. The in-place circuit averaging technique is used

to transform circuit models into coupled harmonic equivalent circuits. Simulations of the

harmonic equivalents may then be carried out using conventional power system simulation

techniques. This method was then extended in Chapters 4 to 6, which present the framework

for including more complex subsystems that are essential for power system simulation.
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7.1 Contributions and Conclusions

The primary contribution of this thesis is a new general purpose simulation method that

addresses the gaps identified in research. Comparisons of dynamic phasor simulation results

with PSCAD/EMTDC results throughout this work demonstrate that the general purpose

simulation method accurately captures the dynamic behaviour of a wide vareity of com-

ponents, such as controllers and LCCs. The results also demonstrate that the simulation

method developed in this work is capable of modeling both low and high frequency compo-

nents. Therefore, this method satisfies the original thesis objective of developing a general

purpose simulator that is not limited to low frequency simulations.

This thesis makes the following additional contributions to dynamic phasor modeling

and simulation research:

1. A review of previous research conducted on dynamic phasor based modeling and

simlation.

The literature review in Chapter 1 demonstrated that there has been significant

research conducted in the area of generalized state space averaging and dynamic pha-

sors. This review revealed that dynamic phasors are valuable in obtaining reduced

order models of a wide variety of power electronic converters and systems. More

importantly, this review revealed that dynamic phasor-based modeling is a powerful

tool for identifying the effects of harmonics and system imbalance on components such

as machines and converters. Therefore, dynamic phasors offer a number of benefits

for power system analysis beyond obtaining average value models of power electronic

converters.

2. Development of discrete equivalent models for simple components based on the expo-

nential integrator method.

Section 3.1 demonstrated that the dynamic phasor operator modifies the inductor

and capacitor such that their continuous dynamics include exponential behaviour.

Therefore, the exponential method discussed in Section 2.3 was used to obtain discrete

dynamic phasor equivalents of the capacitor and inductor. The implication of this
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contribution is that the capacitor and inductor are more accurately represented using

this method than the trapezoidal method.

3. Development of a generalized procedure for deriving discrete dynamic phasor equiva-

lents of composite component and voltage source models.

Composite components are important for the generalized dynamic phasor based

simulation method developed in this work as they reduce the computational burden of

simulations. The generalized procedure developed for passive composite components

in Section 3.2 is based on a general set of time-domain state space equations, which is

then systematically converted to a single discrete dynamic phasor Norton equivalent.

This method was then extended to voltage sources with dynamic impedances in Sec-

tion 3.3. The implication of this contribution is that it reduces program complexity

and encourages development of composite models for simulation.

4. Development of a new formal method for modeling variable frequency systems using

dynamic phasors.

Previous research has demonstrated that it is possible to model variable frequency

systems using dynamic phasors. However, the methods used are of limited use in

general purpose simulation as they require special insight and approximations for

each individual subsystem. The method developed in Section 3.3 generalizes the

approaches used in previous research for modeling variable frequency systems that

does not require modification to the standard dynamic phasor formulation. This

method is compatible with any variable frequency system and may be used in the

general purpose simulation method developed in this work.

5. Development of a discrete dynamic phasor equivalent for a LCC.

Comparisons of the dynamic phasor LCC model with PSCAD/EMTDC results

in Chapter 5 demonstrate that the model developed in this work accurately captures

the dynamic behaviour of LCCs. In particular, the simulation results demonstrate

that the dynamic phasor model accurately models the LCC for both low and higher

order harmonics. Therefore, this contribution demonstrates that accurate simulation
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of power electronic systems is possible with the general purpose simulation method

developed in this work. The implication of this contribution is that simulation of

larger system models that include power electronics, such as the CIGRE benchmark

systems, are possible using the method developed in this work.

6. Development of a discrete dynamic phasor equivalent of the synchronous machine.

Comparisons of the dynamic phasor synchronous machine model with simulation

results obtained using PSCAD/EMTDC in Chapter 6 demonstrate that the model

developed in this work accurately captures the dynamic behaviour of synchronous

machines. In particular, the simulation results demonstrate that the dynamic phasor

model developed in this work is capable of accurately simulating the synchronous ma-

chine under variable frequency conditions. Therefore, this contribution demonstrates

that accurate simulation of electric machines that include mechanical subsystem dy-

namics is possible with the general purpose simulation method developed in this work.

The implication of this contribution is that simulation of phenomena such as SSR is

possible using the method developed in this work.

7. Development of a dynamic phasor form of Park’s transformation.

The approach used in Chapter 6 to model synchronous machines is based on con-

ventional methods, which employ Park’s transformation to transfer stator quantities

to the rotor’s frame of reference. Therefore, a dynamic phasor form of Park’s transfor-

mation was developed in this work using the variable frequency method developed in

Section 3.3. The implication of this contribution is that other reference frame trans-

formations may be carried out using dynamic phasors by applying similar methods.

7.2 Limitations and Future Work

This thesis laid the foundation for general purpose dynamic phasor-based simulation of

power systems through the development of a systematic simulation method and a set of

commonly used models. However, the limitations of the models and methods developed in

this work were also identified, which along with development of new system models, provide
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the foundation for significant future work in this area. Future work in this area includes:

1. Chapter 3 identified that the computational burden of the general purpose simula-

tion method developed in this work increases as the number of harmonics included

in simulations increases. This property limits the number of harmonics that may be

realistically included in simulations. However, Chapter 3 also identified that com-

putational methods could be applied to the general purpose simulation method to

improve efficiency and increase simulation speed. Additional research is necessary to

investigate how more advanced computational methods, such as parallel processing,

may be applied to the general purpose simulation method.

2. The LCC model developed in Chapter 5 requires the ac side of the converter to be

balanced. The simulation results for unbalanced ac faults demonstrated that when

this condition is not satisfied, the dynamic phasor model does not accurately capture

the dynamic behaviour of the LCC. The balanced ac system assumption is important

for both the switching functions and the PLL to operate correctly. Future research

must be conducted in this area to improve the LCC and PLL models and enable them

to produce accurate results when the ac system is unbalanced.

3. The synchronous machine model developed in Chapter 6 is in theory capable of han-

dling unbalanced ac system conditions. However, the simulation results demonstrated

that due to numerical limitations, the synchronous machine model is unable to operate

correctly when the ac system is unbalanced. Furthermore, the simulation results also

demonstrated that the synchronous machine produces uncharacteristic high frequency

numerical oscillations during sudden faults and ac system events. Future research must

be conducted in this area to improve the discrete model of the synchronous machine

and enable it to produce accurate results for unbalanced ac systems and faults.

The synchronous machine model developed in Chapter 6 also does not take into

account more complex behaviour such as multi-mass rotor models [1] and magnetic

saturation [4]. Additional research is necessary in this area to enhance the synchronous

machine model and take into account advanced components such as saturation.
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4. Power systems include many additional components whose models were not addressed

in this work. Components such as transmission lines and transformers include com-

plicated behaviour, such as frequency-dependence and magnetic saturation, that pose

challenging research questions. Significant future work must be conducted to expand

the set of models that may be included in the simulation method developed in this

work.
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