
Attribute Inference Privacy Protection for
Pre-trained Models

by

Hossein Abedi Khorasgani

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

August 2023

© Copyright 2023 by Hossein Abedi Khorasgani

Thesis advisor Author

Dr. Yang Wang, Dr. Noman Mohammed Hossein Abedi Khorasgani

Attribute Inference Privacy Protection for Pre-trained

Models

Abstract

With the increasing popularity of machine learning in image processing, privacy con-

cerns have emerged as a significant issue in deploying and using ML services. However,

current privacy protection approaches often require computationally expensive train-

ing from scratch or extensive fine-tuning of models, posing significant barriers to the

development of privacy-conscious models, particularly for smaller organizations seek-

ing to comply with data privacy laws. In this thesis, we address the privacy challenges

in computer vision by investigating the effectiveness of two recent fine-tuning meth-

ods, Model Reprogramming and Low-Rank Adaptation. We adapt these techniques

to provide attribute privacy protection for pre-trained models, minimizing computa-

tional overhead and training time. We integrate these methods into an adversarial

min-max framework, allowing us to conceal sensitive information from feature out-

puts without extensive modifications to the pre-trained model, but rather focusing

on a small set of new parameters. We demonstrate the effectiveness of our methods

by conducting experiments on the CelebA dataset, achieving state-of-the-art perfor-

mance while significantly reducing computational complexity and cost. Our research

provides a valuable contribution to the field of computer vision and privacy, offer-

ii

Abstract iii

ing practical solutions to enhance the privacy of machine learning services without

compromising efficiency and security.

Contents

Abstract . ii
Table of Contents . v
List of Figures . vi
List of Tables . vii
Acknowledgments . viii
Dedication . ix
Publications . x

1 Introduction 1
1.1 Thesis Objective . 6

1.1.1 Black-Box Protection . 6
1.1.2 White-Box Protection . 6

1.2 Contributions . 7
1.3 Thesis Structure . 8

2 Background and Related Works 9
2.1 Background . 9

2.1.1 Model Reprogramming . 9
2.1.2 Low-Rank Adaptation . 10
2.1.3 Adversarial Training / Min-Max Framework 11

2.2 Related Works . 12
2.2.1 Differential Privacy . 13
2.2.2 Privacy Preserving Feature Extraction 14
2.2.3 Image Obfuscation . 14

2.3 Summary . 16

3 Black-Box Protection With Adversarial Reprogramming 17
3.1 Method . 18

3.1.1 Reprogramming Model . 18
3.1.2 How Reprogramming Works 19
3.1.3 Min-Max Framework . 20

iv

Contents v

3.2 Experiments . 22
3.3 Ablation Study . 27
3.4 Discussion . 29
3.5 Summary . 33

4 White-Box Protection With LoRA 34
4.1 Method . 35

4.1.1 LoRA Model . 35
4.1.2 Our Proposed Method . 36

4.2 Experiments . 38
4.3 Ablation Study . 41
4.4 Discussion . 46
4.5 Summary . 47

5 Conclusions and Future Work 48
5.1 Conclusions . 48
5.2 Future Work . 49

Bibliography 57

List of Figures

1.1 Privacy Leak From Extracted Features 2
1.2 Adversarial Attack on Extracted Features 4

3.1 Sample Adversarial Program . 19
3.2 Three-Step Reprogramming Algorithm 21
3.3 Utility and Privacy Trade-off . 26
3.4 Utility and Privacy Per Label . 27
3.5 k Hyperparameter Ablation Study . 28
3.6 Image Transformer Ablation Study 30
3.7 Grad-CAM analysis . 32

4.1 LoRA on a 2D Matrix . 36
4.2 LoRA on a 2D Convolutional Layer 38
4.3 LoRA Fine-Tuning Layer Ablation Study 43
4.4 LoRA Fine-Tuning Rank Ablation Study 44
4.5 LoRA Fine-Tuning K Ablation Study 45

vi

List of Tables

3.1 Comparison of Trainable Parameters 24
3.2 Experiment Results . 25
3.3 Comparison of Avg. Train Time per Epoch 26

4.1 Convolutional Layer Low-Rank Adaptation 37
4.2 Experiment Results For Attribute Inference Adversary 40
4.3 Experiment Results For Reconstruction Adversary 41
4.4 Correlation Between Selected Attributes 46

vii

Acknowledgments

viii

This thesis is dedicated to nothing in particular.

ix

Publications

Some content of this thesis, including figures and tables have appeared in the

following publication:

• H. Abedi Khorasgani, Y. Wang and N. Mohammed. Black-Box Attribute

Inference Protection With Adversarial Reprogramming. In International Con-

ference on Privacy, Security and Trust (PST), 2023.

x

Chapter 1

Introduction

Deep learning has been greatly successful in a variety of computer vision appli-

cations, such as attribute classification [Liu et al., 2017], semantic segmentation [Yu

et al., 2018], and face recognition [Schroff et al., 2015]. However, as the use of ML

models becomes more common for image processing, privacy concerns in ML are

drawing more attention.

Previous works have shown that ML models can leak unintended information

about their dataset or input [Song and Shmatikov, 2019; Melis et al., 2019]. Although

a model is trained for a specific task, the model’s outputs (e.g., feature embedding) can

contain sensitive information about the data sample that can potentially be accessed

by an adversary.

For example, consider a scenario where a service provider utilizes a feature ex-

tractor on client devices to embed facial expressions such as smiling or frowning in a

picture and sends the extracted features to a cloud provider for further processing and

improving its services. Even though the model has been trained for a specific task,

1

2 Chapter 1: Introduction

its extracted features can still contain sensitive information about the original image,

such as the person’s gender, age or race. As a result, sharing or storing the extracted

features poses a privacy risk as it can be leaked due to security vulnerabilities or be

abused by the provider itself [Koczkodaj et al., 2019; Meredith, 2018; Williams, 2019].

This unintended information leakage is a privacy risk that enables adversaries to per-

form various attacks and learn private information about the users (See Fig. 1.1).

Data protection laws and regulations, such as GDPR, further complicate these issues

and incite designers to provide models with privacy protection.

Figure 1.1: Privacy Leak From Extracted Features

This figure illustrates the potential privacy leak from extracted features. The service
provider sends the feature embedding to a cloud location for further processing and/or
storage. If the attackers gain access to the unprotected features (e.g. through intercepting
the data or a vulnerability in the cloud), they are able to infer the private attributes of the
image. The figure uses a sample image from CelebA dataset [Liu et al., 2015].

One of the popular ways to address this issue is to train the model with an

adversary to provide protection [Ding et al., 2022; Li et al., 2021; Xiao et al., 2020;

Wu et al., 2022; Li et al., 2020]. That is, during the initial training of the model,

the model is trained in a min-max framework against an adversary trying to infer

sensitive attributes. An Alternative approach focuses on minimizing information

Chapter 1: Introduction 3

extracted (e.g., minimizing mutual information) so that there is no extra information

available to be exploited [Mireshghallah et al., 2021; Dave et al., 2022]. While these

studies have achieved notable results in performance and privacy, nearly all of them

share the implicit assumption that the model is trained from scratch, which can be

extremely expensive in terms of computation and time. Furthermore, this assumption

makes it harder for smaller organizations to compete with larger firms as they have

fewer resources available.

To overcome the barrier of high training costs, many transfer learning models have

been developed to enable fine-tuning or repurposing pre-trained models for various

downstream tasks with significantly fewer resources [Hinton et al., 2015; Zhou et al.,

2017; Guo et al., 2019; Zhang et al., 2019; Tsai et al., 2020]. However, these studies

mainly focus on achieving better performance and not privacy issues in ML. A pre-

trained model may not have been trained to provide any form of attribute inference

protection. This lack of protection can be either from the change in task domain (e.g.,

gender is not considered a sensitive attribute in the original task, but it is for the

downstream task), or simply from the lack of concern of the third party to provide

attribute privacy protection. Regardless of the reason, this results in a vulnerable

model, enabling adversaries to infer sensitive information from its extracted features.

Despite these needs, there are very few works that attempt to address all these con-

straints (adding privacy protection, using a pre-trained model and having low costs)

simultaneously.

To address this gap, we propose investigating the use of novel fine-tuning methods,

namely Model Reprogramming and Low-Rank Adaptation, for providing privacy on

4 Chapter 1: Introduction

pre-trained models with low costs (See Fig. 1.2). More specifically, we propose two

schemas: one for utilizing Model Reprogramming in a black-box setting and another

for employing Low-Rank Adaptation in a white-box setting.

(a)

(b)

Figure 1.2: Adversarial Attack on Extracted Features

The top figure shows an example scenario where extracted features leak sensitive information
because the pre-trained model does not provide attribute inference protection. The bottom
figure shows the desired solution, modifying the feature extractor in a manner to remove
sensitive information from the extracted features.

Model Reprogramming, also known as Adversarial Reprogramming [Elsayed et al.,

2018], is an emerging branch in ML where a model is repurposed for a new task with-

out the need to retrain or fine-tune the original model. Instead, this approach modifies

the inputs of the model to utilize it for a new adversarial task. Since compared to

retraining or fine-tuning, Model Reprogramming has a lower computational cost and

requires less access to the model parameters, it has already been extended for domain

Chapter 1: Introduction 5

adaptation [Chen, 2022], knowledge transfer [Tsai et al., 2020] and eliminating bias

in models [Zhang et al., 2022].

Low-Rank Adaptation (LoRA) is also a recent fine-tuning approach, popular with

Large Language Models (LLM) as it provides an extremely efficient method to fine-

tune large models with only training a small number of parameters which can be

stored separately for different downstream tasks. Instead of fine-tuning a large matrix,

LoRA adds two smaller matrices parallel to the original whose output has the same

dimension. LoRA then fine-tunes the model by training the new side matrices rather

than the original matrix [Hu et al., 2021]. The low overhead approach of LoRA

has made it a popular choice for performing fine-tuning, transfer learning and even

providing privacy on Large Language Models [Yu et al., 2021; Liu et al., 2022a; Guo

et al., 2022; Wang et al., 2023; Treviso et al., 2023; Zhu et al., 2023]. While LoRA has

shown great application in LLMs, its presence in computer vision and Convolutional

Neural network (CNNs) is severely limited.

In light of the proven utility of both fine-tuning methods in transfer learning, a

critical question arises: Can these methods be effectively repurposed to address the

challenge of privacy in pre-trained models? We aim to explore and demonstrate the

feasibility of utilizing Model Reprogramming and Low-Rank Adaptation techniques

for providing privacy protection. In this study, we seek to fill the gap between ef-

ficient transfer learning and robust privacy protection, thereby contributing to the

advancement of privacy-conscious machine learning services.

6 1.1 Thesis Objective

1.1 Thesis Objective

This thesis aims to investigate the effectiveness and practicality of two recent fine-

tuning techniques, Model Reprogramming and Low-Rank Adaptation, in providing

attribute inference protection for pre-trained models. Specifically, we examine the

utility of Model Reprogramming in a black-box setting and Low-Rank Adaptation in

a white-box setting to offer robust protection.

1.1.1 Black-Box Protection

In the black-box setting, we assess the effectiveness of Model Reprogramming –

which operates at the input level – for providing privacy protection on pre-trained

black-box models. Further details of these experiments are available in Chapter 3.

1.1.2 White-Box Protection

To address white-box scenarios, we introduce an extension of Low-Rank Adapta-

tion specifically designed for Convolutional Neural networks. This extension facili-

tates a fine-tuning schema comparable to the methods commonly employed by Large

Language Models. Subsequently, we explore the applicability of the LoRA approach

for implementing privacy-preserving fine-tuning on pre-trained vision models. Details

of this study are presented in Chapter 4.

1.2 Contributions 7

1.2 Contributions

We demonstrate our proposed methods can achieve better or comparable privacy

protection trade-offs compared to other state-of-the-art methods with a significantly

lower training and computational overhead. To the best of our knowledge, our work

is the first to investigate the use of Model Reprogramming and LoRA for providing

attribute inference protection in computer vision.

We summarize our contributions as follows:

• We propose a min-max framework with Model Reprogramming for providing

attribute inference protection for black-box models.

– We demonstrate the effectiveness of Model Reprogramming on the CelebA

dataset compared to other state-of-the-art methods.

– We show that our method trains nine times faster than state-of-the-art

methods while providing similar privacy protection.

• We propose the use of LoRA for fine-tuning pre-trained CNNs in a white-box

setting for providing attribute inference protection.

– We evaluate the effectiveness of LoRA on the CelebA dataset compared to

other state-of-the-art methods.

– We show that LoRA can provide superior utility and privacy protection

with training less than 1% number of parameters compared to the original

model.

8 1.3 Thesis Structure

1.3 Thesis Structure

This thesis is organized as follows: In Chapter 2, we give an overview of relevant

background information on reprogramming, LoRA and adversarial training, followed

by literature review in computer vision privacy. We provide our black-box approach

with Model Reprogramming in Chapter 3 and our white-box approach with LoRA in

Chapter 4. Finally, we conclude the thesis and propose future works in Chapter 5.

Chapter 2

Background and Related Works

2.1 Background

2.1.1 Model Reprogramming

Model Reprogramming, also known as Adversarial Reprogramming, is a form of

adversarial attack on ML models that transforms the inputs for model to change the

model’s behavior to a desired adversarial behavior [Elsayed et al., 2018]. Transforming

the inputs for images, also known as visual prompting, is usually achieved by adding

values to whole or parts of the image or padding the image with custom values [Elsayed

et al., 2018; Zheng et al., 2021; Jia et al., 2022; Kim et al., 2022; Bahng et al., 2022;

Zhang et al., 2022].

Since Model Reprogramming only relies on learning a simple transformer for input

data and does not modify the actual model, it has quickly gained interest as an

alternative for transfer learning, fine-tuning and domain adaptation [Tsai et al., 2020;

9

10 2.1 Background

Hambardzumyan et al., 2021; Bahng et al., 2022; Chen, 2022; Zhang et al., 2022].

In a recent work, Zhang et al. further investigates the robustness of Model Re-

programming by using it to boost a pre-trained model’s fairness [Zhang et al., 2022].

Their method uses Model Reprogramming in an adversarial framework to improve

the fairness of the pre-trained model without retraining or fine-tuning the pre-trained

model.

2.1.2 Low-Rank Adaptation

Low-Rank Adaptation for Large Language Models was initially proposed by Hu

et al. [2021], as fine-tuning method with significantly lower computational overhead

while keeping the model’s quality intact. Following this, LoRA has been widely

adapted for transfer learning, fine-tuning and domain adaptation for LLMs [Wang

et al., 2023; Treviso et al., 2023; Pfeiffer et al., 2023; Liu et al., 2022a; Guo et al.,

2022; Zhu et al., 2023].

Despite the proven success of LoRA in Large Language Models, its current pop-

ularity for use in Convolutional Neural networks remains limited. Nonetheless, it is

worth noting that a related concept to LoRA has been previously explored, although

not for fine-tuning purposes, but rather for approximating and accelerating CNNs

[Jaderberg et al., 2014; Chang and Sha, 2017]. Building upon the achievements of

LoRA in LLMs and the existence of a parallel idea in CNNs, a natural question arises:

Can LoRA fine-tuning be effectively applied in CNNs, and how might it contribute

to privacy preservation in pre-trained models?

2.1 Background 11

2.1.3 Adversarial Training / Min-Max Framework

In this section, we define the problem statement by formulating the utility and

privacy problems and defining the min-max framework used for training our models.

Let D be our training dataset with color images (with size N ×N) as input features

X ∈ RN×N×3, M task labels Y ∈ RM , and P sensitive (private) labels S ∈ RP .

We denote the feature extractor as fF : X → Z which outputs features embedding

Z ∈ RE, feature classifier fC : Z → Y which outputs classifier scores Y ∈ RM based

on extracted features, and the adversary classifier is fA : Z → S which attempts to

infer private attributes from the feature embedding.

Our goal is to train fF and fC in a way that the adversary is unable to extract

sensitive information from the extracted features (output of fF) while the classifier is

still able to perform the utility task correctly (see Fig. 1.2(b)).

Utility Task: The utility task which involves both the feature extractor and clas-

sifier is finding the correct label scoring y = fC(fF (x; θF); θC) where x ∈ X and θF

and θC are the model parameters for the feature extractor and classifier respectively.

We define the utility task as a multi-class multi-label classification problem which we

measure with mean of Binary Cross Entropy loss over all labels, denoted as LTask.

Adversarial Classifier: An attacker can train an adversarial model for detect-

ing private attributes by using unprotected feature embedding s = fA(fF (x; θF); θA)

where x ∈ X and θA is the model parameters of the adversary. Similar to the utility

task, the loss of the adversarial classifier is measured with the mean of Binary Cross

Entropy loss over all labels S, denoted as LAdv.

12 2.2 Related Works

Min-Max Optimization: To train our model with two competing objectives, we

use a min-max optimization framework and define the loss as:

LMinMax = (1 − λ)LTask − λ · LAdv (2.1)

Where λ ∈ (0, 1) is a privacy-utility trade-off knob specifying which training objec-

tive, utility or privacy protection, is more important during training. Higher values

prioritize privacy protection, and lower values focus more on utility. Note that the

negative sign in (2.1) before LAdv signifies maximizing LAdv while minimizing LTask.

Our Min-Max training algorithm is shown in Algorithm 1. As noted, the training

contains three objectives: the classifier minimizing LTask, the adversary minimizing

LAdv and the feature extractor minimizing LTask and maximizing LAdv simultaneously

(i.e., minimizing LMinMax). Our algorithm also includes an additional parameter k

denoting the number of steps the adversary is trained before we train the feature

extractor and classifier. The reason for that is that by training the adversary more,

we achieve a more robust model which can better help us with providing protection.

Both our studies utilize this Min-Max framework and algorithm for training our

proposed method. Any needed modification is noted in the relevant chapter.

2.2 Related Works

As noted, various defense methods have been developed focusing on different as-

pects of privacy. In this section, we present relevant literature on various privacy

protection mechanisms and note their capabilities and limitations.

2.2 Related Works 13

Algorithm 1 Min-Max Training Algorithm

Input: k, fF , Dataset D

Output: θF , θC

1: for every epoch do

2: while training batches exist do

3: for k steps do ▷ Train Adversary for k batches

4: sample new batch from D

5: LAdv → update θA

6: end for

7: sample new batch from D

8: LMinMax → update θF

9: sample new batch from D

10: LTask → update θC

11: end while

12: end for

2.2.1 Differential Privacy

Differential Privacy (DP) [Dwork and Roth, 2014] is currently one of the most

recognized methods for providing privacy. DP is based on a mathematical notion

of privacy wherein the difference between two models trained on datasets D and

D′, where D and D′ only differ in one record, is limited by a privacy parameter

ϵ. Differentially-Private Stochastic Gradient Descent (DP-SGD) [Abadi et al., 2016]

is one of the common implementations of DP which operates by adding random

Gaussian noise to the gradients during training. While DP is widely used for many

14 2.2 Related Works

applications and can also defend against various attacks [Liu et al., 2022b; Hu et al.,

2022], its privacy guarantee comes with a heavy utility trade-off cost.

2.2.2 Privacy Preserving Feature Extraction

P-FEAT, proposed by Ding et al. [2022] is one of the more recent studies on train-

ing a feature extractor against an adversary to remove sensitive or extra information

from the extracted features [Ding et al., 2022; Li et al., 2021; Xiao et al., 2020; Li

et al., 2020]. P-FEAT propose a method to train a feature extractor based on ad-

versarial training to ensure the extracted features do not contain sensitive attributes

and cannot be used by an adversary for inference attacks. Although these studies

provide good utility and privacy trade-offs, they all suffer from the major drawback,

requiring white-box access as the model is being trained from scratch, making these

approaches prohibitively expensive in terms of computational power and time.

2.2.3 Image Obfuscation

In contrast to training a private feature extractor, image obfuscation methods use

a complex image degradation function for transforming the input data [Dave et al.,

2022; Wu et al., 2022, 2018]. Such methods focus on training an anonymizer and fea-

ture extractor pair for transmitting anonymized data from clients to servers. While

these methods do not focus on a black-box setting, their approach can be adapted

for a black-box scenario. Wu et al. propose a supervised adversarial training frame-

work to remove features from images [Wu et al., 2022]. In their approach, an image

degradation model is trained against an adversary which attempts to infer sensitive

2.2 Related Works 15

attributes from the degraded image. Dave et al. proposed Self-supervised Privacy

Preservation for Action Recognition (SPAct), a self-supervised version of [Wu et al.,

2022], where the input is degraded to remove any unnecessary information that can

leak privacy. They train the degradation model by using Contrastive Self-supervised

Loss. [Dave et al., 2022] Effectively, Contrastive Self-supervised Loss ensures that

two similar images result in a similar output, while different images output vastly

different results.

Cloak proposed by Mireshghallah et al. [2021], provides a self-supervised feature

suppression framework that operates by determining the features that most contribute

to the model’s utility and suppressing all other features. Cloak separates relevant and

irrelevant features by how much they degrade utility with added noise. Features that

can tolerate higher values of noise are classified as non-conducive features. After

finding non-conducive features, Cloak replaces them with a constant value trained

to maximize utility. Unlike other methods, Cloak does not provide privacy using a

simulated adversary. Instead, by removing features that do not contribute to the

final task, Cloak removes information that can be exploited in an attack. Compared

to other methods, Cloak has less computational complexity as it does not use any

complex architecture like CNNs. In addition, to the best of our knowledge, Cloak

is the only work that attempts to address the issue of privacy in black-box models.

However, Cloak anonymizes the image by removing information as much as possible,

and does not directly protect sensitive attributes, which can result in sub-optimal

protection.

16 2.3 Summary

2.3 Summary

In this chapter, we introduced two recent methods popular for fine-tuning mod-

els,Model Reprogramming and Low-Rank Adaptation, followed by a generic Min-Max

framework that is commonly used for training a model against two competing objec-

tives. Furthermore we reviewed the recent literature in privacy for computer vision

and highlighted their shortcoming, notably their high costs for training a private

model.

Chapter 3

Black-Box Protection With

Adversarial Reprogramming

With the increased popularity of ML models, privacy concerns in ML are getting

more attention, creating a need for providing better protection during the utilization

of machine learning services. Despite the advancements in machine learning tech-

niques, prevailing privacy methods often necessitate extensive retraining, from scratch

or through fine-tuning large portions of the model. This shortcoming acts as a bot-

tleneck in the progression of privacy in models, impeding their development due to

considerable computational and time requirements. To address this gap, we study the

potential of Model Reprogramming as a means of providing privacy on a pre-trained

model in a black-box setting. Providing privacy in a black-box setting allows us to

utilize robust commercial ML services without concern over whether they provide pri-

vacy as we implement our own privacy protection via Model Reprogramming. More

specifically, we adapt Model Reprogramming into an adversarial min-max framework

17

18 3.1 Method

aiming to obfuscate sensitive information in feature outputs without modifying the

original model and with significantly lower computational overhead.

3.1 Method

3.1.1 Reprogramming Model

The reprogramming model is a simple model that combines an input image with

a set of custom values (the adversarial program), creating a modified input which is

then forwarded to the target model. A combination of the input and the adversarial

program can be done in a variety of manners, such as replacing a part of the image,

padding the image with custom values or adding the image and custom values to-

gether. The adversarial program is optimized (usually through backpropagation) to

realize the desired behavior from the pre-trained model.

The adversarial program, also known as visual prompt or reprogram values, is a

global adversarial perturbation. In other words, the values are not dependent on the

input image, rather the same program is used for any input image. Given that use

of a global perturbation may not seem intuitive (as features in an image can have

varied locations), we will provide a more detailed explanation of how reprogramming

works in Section 3.1.2. Additionally, reprogramming can include a label mapping

from the original task to the adversarial task. However, as we only investigate the

use of reprogramming in the same domain, we do not use any label mapping.

In this chapter, we define our reprogramming model as the sum of the input and

the adversarial program without any modifications on the original image. Following

3.1 Method 19

previous works, we use tanh to restrict the reprogram values to (−1, 1), same range

as the normalized inputs for the model (See Fig. 3.1). More formally we define our

reprogramming model as:

fR(x; θR) = x + tanh(δ) (3.1)

where δ is the adversarial program (δ ∈ RN×N×3), which is part of the reprogramming

model’s parameters (θR). Note that since we do not apply any transformation on the

image (such as padding or resizing), our model does not have any other hyperparam-

eters, and the adversarial program is the only trainable part of our model.

Figure 3.1: Sample Adversarial Program

Our adversarial program adds a set of values to the input image. In our method, we use a
program with the same size as the input image, without any masking or padding operation.
We use tanh to limit the values added on the image to (−1, 1). This figure shows the
transformer process applied to a sample image from CelebA [Liu et al., 2015].

3.1.2 How Reprogramming Works

Working of adversarial reprogramming is currently an active topic of investigation.

In the original paper, Elsayed et al., justify the working of an adversarial program

as a result of the nonlinearity of the model [Elsayed et al., 2018]. That is, assuming

a linear model with weights θ and bias β, the modified input x + δ will change the

20 3.1 Method

output of the model from xθ+β to xθ+ δθ+β. The δθ effectively acts as a constant

and can manipulate the bias in the model, however, the adversarial program is not

able to modify the calculation done on the input (xθ). Elsayed et al. then conclude

that a requirement for adversarial reprogramming to be successful is for the model to

contain nonlinear calculations, which is satisfied by the nonlinear deep network.

Zheng et al. carried out a more detailed investigation into the operation of adver-

sarial reprogramming by analyzing the similarity between source and target domains

[Zheng et al., 2021]. Specifically, Zheng et al. analyze the gradient since and align-

ment of inputs during training and their interaction on the ML model.

Since our approach does not include source or domain shift, we believe the non-

linearity explanation of [Elsayed et al., 2018] is more appropriate in this setting. It

should be noted that we are not using reprogramming to obfuscate or anonymize the

image. We use reprogramming to manipulate the operation of the pre-trained model.

More specifically, we remove sensitive information from the extracted features by ex-

ploiting the model’s nonlinearity, effectively suppressing calculations related to private

attributes throughout the model.

3.1.3 Min-Max Framework

To adapt the Min-Max framework presented Section 2.1.3, we denote the Min-Max

loss as LReprogram and fF (·; θF) as fR(fB(·); θR) where fB is the pre-trained black-box

model. An overview of our algorithm is shown in Fig. 3.2. In step 1, shown in

Fig. 3.2(a), we fix the reprogram values and the classifier and update the adversarial

classifier (θA) to minimize LAdv for k batches. Next step, shown in Fig. 3.2(b), we

3.1 Method 21

update the input transformer (θR) to minimize LReprogram, while keeping classifier

and adversarial classifier fixed. Finally, in step 3, Fig. 3.2(c), we update the classifier

(θC) to minimize LTask. We repeat this process for the whole epoch. Here, we use

uniform distribution ranging from -1 to 1 to initialize δ.

(a) Step 1

(b) Step 2 (c) Step 3

Figure 3.2: Three-Step Reprogramming Algorithm

Overview of our training algorithm. fB is the black-box feature extractor, fC is the feature
classifier, fA is the adversarial classifier, and fR is our reprogramming model. The training
framework is a min-max optimization process with 3 distinct training steps. In step 1, the
adversarial classifier is optimized for inference for k batches (LAdv), while the other models
remain fixed (frozen). In step 2, the classifier and adversarial classifier are fixed, and the
reprogramming model is optimized with the new LReprogram loss for 1 batch. Finally, in
step 3, the classifier is optimized for the task utility (LTask). For more details, refer to
Section 3.1.

22 3.2 Experiments

3.2 Experiments

In this section, we evaluate our proposed method’s performance on the popular

CelebA dataset [Liu et al., 2015] and compare it with existing solutions in the litera-

ture. Given that methods that can be applied to a black-box scenario are limited, we

also compare our method with other white-box methods that offer privacy protection.

Datasets: For the dataset, we use the popular CelebA [Liu et al., 2015] dataset –

more specifically, the aligned and cropped faces – containing 160K training and 20k

test images with 40 binary facial attributes. We define the utility task as detecting

arched eyebrows, black hair, high cheekbones and smile. We also define eyeglasses,

heavy makeup, gender and age as sensitive attributes. The dataset images are resized

to 224 × 224 and normalized for training. For our purposes, we split the training set

into two disjoint sets Dp and Df with 100k and 60k images respectively. We use Dp

for pre-training the feature extractor (i.e., the black-box model) and Df for providing

privacy protection without altering the black-box model. Finally, we use the test set

for evaluation.

We chose the CelebA dataset because it has been utilized in previous works cov-

ering attribute inference and privacy on images. Using a dataset that has been ex-

tensively studied ensures comparability and enables meaningful comparisons with

existing studies.

Comparison: We compare the performance of our method with state-of-the-art

methods, a few of which can be applied in a black-box setting and the rest we compare

as a white-box baseline. The black-box comparisons are: Cloak [Mireshghallah et al.,

3.2 Experiments 23

2021], SPAct [Dave et al., 2022], Obfuscator (Supervised adversarial framework)

[Wu et al., 2022] and Downsampling the input image by factor of 2 and 4. We

also compare with DP-SGD (referred to as DP) [Abadi et al., 2016], as a white-box

baseline.

To adapt Obfuscator and SPAct for our black-box setting, we split the utility

model with our black-box feature extractor and a classifier and train the classifier

instead of the feature extractor when necessary. Overall, this results in a similar

framework to Fig. 3.2, where the reprogramming model is replaced by the image

degradation model used in SPAct or Obfuscator. Note that for DP-SGD, we use

Opacus implementation [Yousefpour et al., 2021].

Models: We use ResNet-18 CNN [He et al., 2016] as the base model architecture

with the output of the final average pool layer as the feature embedding (Z ∈ R512)

and the fully connected layer as the classifier. Note that for our black-box setting,

we assume access to the lowest level gradient for training, but do not modify the pre-

trained model in any way. For simulating the adversarial classifier, we use a 4-layer

multi-layer perceptron (MLP) with 512, 1024, 256 and 4 neurons in each layer and

ReLU as the activation function. As previously noted, the transformer model is a

vector of the same size as the input image (224×224×3) which is added to the input

(3.1). Finally, for SPAct we use the UNet [Ronneberger et al., 2015] for the image

anonymizer as used in the original paper. We also use UNet as the image anonymizer

for Obfuscator for a straightforward comparison. Table 3.1 shows the number of

trainable parameters for each model used (excluding the simulated adversary).

24 3.2 Experiments

Table 3.1: Comparison of Trainable Parameters

Model No. Trainable Parameters
UNet (SPAct, Obfuscator) 17, 267k
Cloak 301k
Reprogram (Ours) 151k

The number of trainable parameters for each black-box protection method. Note that the
reprogramming method only needs the same number of parameters as the input size (224×
224 × 3 ≈ 151k) and Cloak requires two times that. The UNet model size is independent
of the input size.

Evaluation Metric: Since the distribution of the attributes is not fully balanced

across the dataset, we evaluate the performance of utility and attribute inference

with Average Precision and report the mean Average Precision (mAP) across labels.

Note that the reported privacy values are the attribute inference of the adversary.

Therefore, lower values indicate better privacy protection and are more desirable.

Additionally, we report the average training time per epoch to highlight the compu-

tational complexity of each method.

Experiments: For the methods with a single privacy-utility trade-off hyperparam-

eter λ (Ours, Adversarial, SPAct and Obfuscator), we evaluate them with values

of λ ∈ {0.3, 0.4, 0.5, 0.8}. For DP, we use epsilon values of ϵ ∈ {0.1, 0.2, 0.5, 1}

to provide high privacy. For Cloak, we use γ = 0.2 with suppression ratios of

sr ∈ {0.7, 0.8, 0.9, 0.95}. We set k = 1 for consistency across other works that train

the adversary for one epoch. We implement our algorithms with PyTorch [Paszke

et al., 2017] and train on a server with NVIDIA GTX 1080ti GPU and Intel i7-7700

CPU.

3.2 Experiments 25

We train all model using Adam optimizer [Kingma and Ba, 2014] with learning

rate of 10−3 with 1-Cycle Scheduling [Smith and Topin, 2019] and weight decay of

2 · 10−5. For the black-box methods, we first train the black-box model normally

(without privacy protection) on the Dp dataset. We then freeze the trained weights

and use them in the other methods. For non-black-box methods, we skip this step and

directly train the whole model with privacy protection from scratch. After training,

we freeze all weights and train a new adversary on the feature outputs to evaluate

the inference attack protection of the final model. Fig. 3.3 shows the utility-privacy

trade-off between our approach and the baselines and Fig. 3.4 shows the impact of

λ on the utility-privacy trade-off for each label for our approach and Obfuscator.

Additionally, Table 3.2 shows the value comparison between the methods at a similar

level of utility.

Table 3.2: Experiment Results

Method
Utility Privacy

mAP (%) mAP (%)

No Protection (Black-Box Model) 89.39 85.32
Downsample-2× 81.66 (↓7.7) 82.58 (↓2.7)

Downsample-4× 44.97 (↓44.4) 60.86 (↓24.5)

DP (Non Black-Box) (ϵ = 2) 74.04 (↓15.4) 76.62 (↓8.7)

Contrastive Loss (UNet) (λ = .3) 68.82 (↓20.6) 77.80 (↓7.5)

Obfuscator (UNet) (λ = .8) 73.34 (↓16.1) 59.23 (↓26.1)

Cloak (sr = .7) 72.05 (↓17.3) 74.04 (↓11.3)

Reprogram (Ours) (λ = .8) 74.64 (↓14.8) 60.75 (↓24.6)

Comparison of methods at a similar utility level where possible. Our approach outperforms
other methods with the exception of Obfuscator. See Section 3.4 for more details. The
number in parentheses indicate the change of accuracy w.r.t. the baseline, with the green
color indicating good changes (e.g., decrease in attack accuracy) and red indicating bad
changes (e.g., decrease in task accuracy).

26 3.2 Experiments

Table 3.3: Comparison of Avg. Train Time per Epoch

Method
Avg. Time No. of Total

per Epoch (s) Epochs Time (m)
DP (Non Black-Box) 550 50 458
Contrastive Loss (UNet) 3,949 50 3,291
Obfuscator (UNet) 713 50 594
Cloak 95 90 143
Reprogram (Ours) 82 50 68

Time comparison between different methods. The table shows the average runtime for one
epoch, the number of epochs and the total time for each method. Note that Cloak has two
training phases, and the reported time is over both training phases.

Figure 3.3: Utility and Privacy Trade-off

Privacy (y-axis) and Utility (x-axis) trade-off with different hyperparameters. Higher values
in utility and lower values in privacy are desirable. The best performance would be toward
the lower-right section of the plot.

3.3 Ablation Study 27

(a) Our Approach

(b) Obfuscator

Figure 3.4: Utility and Privacy Per Label

Impact of λ on utility-privacy trade-off for our method (top) and Obfuscator (bottom). The
first four labels are the task labels and the last four labels are the private labels that the
adversary attempts to infer. In both figures, the first bar (yellow bar) is the performance
of the black-box model shown for easier comparison.

3.3 Ablation Study

K: As noted in Section 2.1.3, our algorithm (Algorithm 1) trains the adversary

for k steps before training the feature extractor and classifier. The reason for this

is that training the adversary for multiple steps can yield a more robust adversary

which in turn is more beneficial for training a privacy preserving feature extractor.

28 3.3 Ablation Study

The k hyperparameter provides a controllable trade-off between strengthening the

adversary and the training time required. To investigate the effect of k for Model

Reprogramming in providing protection, we evaluate our method for k ∈ {1, 2, 4, 8}

and λ ∈ {0.3, 0.4, 0.5, 0.8}. The results are shown in Fig. 3.5 in form of an scatter plot.

As seen in this figure, the hyperparameter k does not provide any notable difference

for our method. In other words, our method is able to obtain the optimal results with

k = 1 and higher values of k do not provide any benefits.

Figure 3.5: k Hyperparameter Ablation Study

Privacy (y-axis) and Utility (x-axis) trade-off with different hyperparameters. As seen in
the plot, tests with different values of k result in a similar utility privacy trade-off.

3.4 Discussion 29

Logistic Function: As described in Section 3.1, our image transformer is modeled

as x+tanh(δ) to ensure that the reprogram values fall within the range of (−1, 1). To

investigate the impact of this approach, we compare it with two alternative methods:

one defines the image transformer as tanh(x+δ), encompassing both the image input

and added weights in a hyperbolic tangent function to restrict the output within

(−1, 1), and the other method simply defines the transformer as x + δ, allowing

unbounded outputs. To evaluate these approaches, we conducted experiments in the

same setting as described in Section 3.2, using λ ∈ {0.3, 0.4, 0.5, 0.8}, and present the

results as a scatter plot in Fig. 3.6. Surprisingly, despite the different approaches, the

results are remarkably close and follow the same trend line, indicating that bounding

the transformer output does not significantly impact the performance of the final

model in our experiments.

3.4 Discussion

As we see in Fig. 3.3, our method constantly outperforms Cloak, DP and SPAct.

That is, at a similar level of privacy protection, our method has a higher utility (to-

wards the right side of the plot), and at a similar utility, it provides more privacy

protection (towards the bottom of the plot). We suggest that this is mainly because

neither DP, Cloak or SPAct specifically optimize for attribute inference protection;

rather, they provide a different form of privacy that is not always effective in protect-

ing against attribute inference attacks.

As for Obfuscator, we see our approach performs similarly. As seen in Fig. 3.3,

both Obfuscator (squares) and our method (stars) follow a similar trend in the utility-

30 3.4 Discussion

Figure 3.6: Image Transformer Ablation Study

Privacy (y-axis) and Utility (x-axis) trade-off with different hyperparameters. As seen in
the plot, all three methods follow a similar trend in utility and privacy trade-off. This shows
that bounding the transformer output does not greatly impact the overall performance.

privacy trade-off. However, we note that the Obfuscator’s model (UNet) has more

than 17 million trainable parameters, whereas reprogramming needs only about 151

thousand, two orders of magnitude less, parameters. In addition, UNet is compro-

mised of many convolution and de-convolution operations, whereas reprogramming is

only a logistic function (tanh) with an addition operation. While UNet is undoubtedly

more powerful overall, it does not perform significantly better than reprogramming.

The difference in complexity between methods which directly impacts the training

time is evident in Table 3.3. Our method has significantly lower complexity than all

3.4 Discussion 31

other methods, with the exception of Cloak. While Cloak is the only method to

have a comparable training time, our method provides a better utility-privacy trade-

off. The Obfuscator model which has a similar performance to our approach, takes

nearly 9 times longer to train one epoch. Overall, our method offers comparable

protection to state-of-the-art methods with far less computational complexity and

storage requirements.

Fig. 3.4(a) shows the average precision of utility and attribute inference attack

for each label for different values of λ compared to training without protection. As

noted previously, λ is our privacy-utility trade-off knob, with lower values prioritizing

utility and higher values prioritizing privacy. The effect of this hyperparameter is

visible in Fig. 3.4(a), showing that it is possible to use λ to achieve a desirable utility-

privacy trade-off that addresses our needs. Furthermore, Fig. 3.4(a) shows our method

protects attribute inference attacks for ‘Eyeglasses’, ‘Heavy Makeup’ and ‘Male’, but

does not adequately protect against the inference of the ‘Young’ attribute. Meanwhile,

with the exception of ‘Arched Eyebrows’, the model’s utility suffers a minimal loss of

performance. We contribute the performance loss for ‘Arched Eyebrows’ to the fact

that the ‘Arched Eyebrows’ and ‘Eyeglasses’ are closely associated in a picture, and

degrading the performance in one leads to degradation of the other one; especially

since the feature extractor is pre-trained and cannot be manipulated.

To examine whether these shortcomings result from our approach or are inherent

to the task, we compare our method with Obfuscator – since it is the only method

with comparable performance – shown in Fig. 3.4(b). As we see in Fig. 3.4(b),

Obfuscator also struggles in protecting the ‘Young’ attribute and shows a similar

32 3.4 Discussion

pattern in detecting ‘Arched Eyebrows’ and protecting ‘Eyeglasses’. This suggests

that the limitation is not inherent to reprogramming, but rather the tasks.

Figure 3.7: Grad-CAM analysis

Grad-CAM analysis over two sample images from CelebA [Liu et al., 2015]. The highlighted
zones (marked in red) depict regions exerting a major influence on the predicted labels in
each row and each protection method (columns). The first two rows are for the smiling
label (Utility) and the last two rows are for the eyeglasses label (privacy). The figure shows
how our method (Reprogramming) diverts the attention of the adversary for private labels
while maintaining the correct attention of the utility task.

Additionally, we perform Grad-CAM [Selvaraju et al., 2017; Gildenblat and con-

tributors, 2021] analysis to compare the performance of our method. Grad-CAM

produces visual explanations showing the regions of importance in a model’s predic-

3.5 Summary 33

tion. Fig. 3.7 shows a Grad-CAM analysis of the utility classifier on the ‘Smiling’

attribute and the adversary attempting to infer the ‘Eyeglasses’ attribute. As we see

in the first two rows (task attribute), the attention of the original model (No Protec-

tion) is primarily on the mouth. Our approach maintains the general regions, while

Obfuscator slightly shifts the attention, and Cloak shows the worse performance by

focusing on unrelated areas of the picture. In the last two rows (private attribute),

the adversary’s attack on the model with no protection is heavily influenced by the

eyes and the nasal bridge in the picture. In our approach, as well as Obfuscator and

Cloak, we see the adversary’s attention is diverted to different and unrelated regions

of the input, making it harder for the adversary to infer private attributes. Overall,

we see that our approach can maintain the original model’s attention area for the

utility task while diverting the adversary’s attention to unrelated regions to maintain

privacy.

3.5 Summary

In this chapter, we investigated the effectiveness of our proposed method for pro-

viding attribute inference protection on black-box models using Model Reprogram-

ming. By operating at the input level, Model Reprogramming offers a promising ap-

proach for modifying the behavior of black-box models, enabling it to protect against

attribute inference attacks. Through experiments on CelebA dataset, we showed that

our method provides better or comparable performance compared to the state-of-the-

art method while requiring significantly less computational overhead for training.

Chapter 4

White-Box Protection With LoRA

As the use of ML gains more traction, privacy concerns over the use of ML models

and sharing features are becoming more important for designers to address. Despite

the advancements in privacy, the prevalent methods for providing privacy are mostly

based on complete retraining or extensively fine-tuning the model. The high costs

of these methods create a significant barrier to providing privacy-conscious models

for smaller organizations. In this chapter, we offer a light-weight fine-tuning method

that can provide privacy to a pre-trained model with significantly less training costs.

More specifically, we use a Low-Rank Adaptation (LoRA) – a popular fine-tuning

method for Large Language Models (LLMs) – adapted for convolutional neural net-

works (CNNs), which we use to add attribute inference protection for a pre-trained

model in a white-box setting. A light-weight fine-tuning method allows for robust

adaptation of large pre-trained models without the costs of training from scratch or ex-

tensive fine-tuning. Additionally, LoRA provides the ability to fine-tune for different

tasks using the same pre-trained model and switching to each required downstream

34

4.1 Method 35

task as necessary.

4.1 Method

4.1.1 LoRA Model

The original LoRA fine-tuning scheme proposed by Hu et al. [2021] is specific for

2D matrices of LLMs. That is, for a weight matrix W0 ∈ Ra×b, two new trainable

matrices A ∈ Ra×r and B ∈ Rr×b are created, where r is the rank of the new matrices.

The rank is a hyperparameter that controls the size of the new matrices, controlling

the number of new trainable parameters. Effectively, BA represent ∆W ∈ Ra×b which

is the update values we would add to W0 if we were fine-tuning W0 itself. In other

words, the hypothetical updated matrix W is:

W = W0 + ∆W = W0 + BA (4.1)

In turn, we can use (4.1) to rewrite the forward pass as:

h = Wx = W0x + ∆Wx = W0x + BAx (4.2)

Note that Hu et al.’s schema is specific to 2D matrices as is reliant on the fact

that B and A are a low-rank decomposition of ∆W . While 2D-CNN’s weights are

4 dimensional, a similar idea is proposed by Jaderberg et al. [2014] in which they

approximate the convolutional layer with a sequence of two smaller convolutional

layers. Jaderberg et al.’s original objective is to enhance the efficiency of CNNs by

36 4.1 Method

Figure 4.1: LoRA on a 2D Matrix

Illustration of Low-Rank Adaptation proposed by Hu et al. [2021]. In the top we have the
original matrix of size a× b which the input goes through as usual. In addition to that, two
smaller matrices of rank r (r× b and a× r respectively) added in parallel, in a manner that
the the resulting output has the same shape as the original output. The two outputs are
added together the compromise the final output.

substituting the convolutional layers with a computationally less complex approxima-

tion. Although more complex, This approximation method is inherently very similar

to (4.1) in which it can be simulated using two smaller CNNs sequentially. For a

comprehensive understanding of the mathematics and further information, we refer

to [Jaderberg et al., 2014] as the detailed mathematical analysis and specifics exceed

the scope of this chapter.

4.1.2 Our Proposed Method

We adapt Jaderberg et al.’s approximation approach with Hu et al. [2021]’s fine-

tuning schema, and propose the following Low-Rank Adaptation schema for CNNs:

For a pre-trained Convolutional layer with cout filters, kernel size of k × k, padding

p× p and stride s× s define two smaller Convolutional layers with rank r as specified

4.1 Method 37

in Table 4.1 and calculate the new output with:

h = Conv2DPreTrained(x) + (Conv2DB ◦ Conv2DA)(x) (4.3)

Where ◦ is the function composition operation. Essentially, we replace the matrix

operations in (4.2) with CNN operation while ensuring the output of the new layers

match the original CNN (See Fig. 4.2). The details of the new convolutional layers

are shown in Table 4.1.

Similar to (4.1), the new convolutional layers A and B are decomposition of a

virtual ∆W which is added to the original layer. With the weight of the original layer

W0 ∈ RCout×cin×k×k (where cin is the number of input filters), weight of the new layers

are WA ∈ RCout×r×1×k and WB ∈ Rr×cin×k×1. ∆W is then calculated as:

∆Wj,l,m,n =
r−1∑
i=0

WB
i,l,m,0 ×WA

j,i,0,n (4.4)

Table 4.1: Convolutional Layer Low-Rank Adaptation

Convolutional
No. Filters Kernel Size Padding Stride

Layer
Pre-trained cout k × k p× p s× s
A cout 1 × k 0 × p 1 × s
B r k × 1 p× 0 s× 1

The new convolutional layers A and B are specified in a manner that their composition
(Conv2DB◦Conv2DA) has the same output shape as the pre-trained layer. In our approach
r controls the intermediate number of filters between the new layers, similarly controlling
the number of new trainable parameters.

As noted in Section 2.1.3, we use the adversarial Min-Max framework for training

the model. We denote the Min-Max loss as LLoRA and the feature extractor as

fF ′(·; θF ′) which is the modified model as explained in the previous section.

38 4.2 Experiments

Figure 4.2: LoRA on a 2D Convolutional Layer

Our proposed LoRA schema for convolutional layers translates the benefits of [Hu et al.,
2021] for 2D matrices to 2D convolutional layers.

4.2 Experiments

To evaluate the performance of our proposed method, we aim to compare it with

the most relevant work, P-FEAT [Ding et al., 2022]. Unfortunately, the source code

for P-FEAT is not available and we were unable to reproduce its results from the

paper. Therefore, we aim to compare directly with the numbers reported in the

paper by recreating their experimental setting.

Ding et al. evaluate their method in a min-max training framework against two

types of adversaries. The first, similar to our previous chapter, is an adversary classi-

fier that aims to detect a private attribute from the extracted features. For the second

adversary, they use a reconstruction model that aims to reconstruct the original im-

age from the extracted features. Ding et al. present this method as an unsupervised

4.2 Experiments 39

training for defending against attribute inference attacks. We follow their experiments

and evaluate our method in the same fashion.

Datasets: Following [Ding et al., 2022], we use the CelebA [Liu et al., 2015] dataset,

containing 160K training, 20k test and 20k validation images with 40 binary facial

attributes. The task is defined as classifying the Male attribute, while Smile, Attrac-

tive, Mouth Slightly Open and Wearing Lipstick are considered private attributes. It

should be noted that each private attributes is tested separately, i.e. the model has

only one private label in each test. All reported results are separated by the private

attribute used in the test.

We use the training set for pre-training the model and then providing defence with

LoRA. To train the final adversary, we use the validation set as it is unseen data to

the model. Finally, we use the test set for all evaluations reported.

Models: The base model is AlexNet [Krizhevsky et al., 2012] with the first five

convolutional layers as the feature extractor and the final three fully connected layers

as the classifier. The classifier architecture is used for both the task classifier and

the adversarial classifier. After pre-training the model, we augment all convolutional

layers in the feature extractor as described in Section 4.1.2 and freeze the pre-trained

convolutional layers. Using r = 1, our final feature extractor has only 9k parameters

for training, compared to original feature extractor which has 3,747k parameters. Our

model has over two order of magnitude less parameters to train. For the reconstruc-

tion model we use the same architecture taken from [Dosovitskiy and Brox, 2016] and

use the L2 distance as the adversary’s loss.

40 4.2 Experiments

Experiments: We implement our algorithms with PyTorch [Paszke et al., 2017] and

train on a server with NVIDIA P100 Pascal GPU and Intel E5-2650 v4 Broadwell

CPU. We train all model using Adam optimizer [Kingma and Ba, 2014] with learning

rate of 10−4 and weight decay of 2·10−5. Initially, we train AlexNet normally (without

protection) on the training set as our baseline for 10 epochs. After that, we augment

all convolutional layers in the model as described in Section 4.1.2 with r = 1 and

freeze the pre-trained convolutional layers. The new model is then trained with

min-max framework against one of the adversaries – attribute inference adversary or

reconstruction adversary – for 20 epochs. In the end, to evaluate the protection of

the final model, we freeze all parameters and train a adversary on the feature outputs

for 20 epochs. Similar to [Ding et al., 2022] we limit our final results to k = 1 and

report with the optimal λ which is λ = 0.8. The results of our experiments and its

comparison to P-FEAT are shown in Table 4.2 for attribute inference adversary and

in Table 4.3 for the reconstruction adversary.

Table 4.2: Experiment Results For Attribute Inference Adversary

No Defense
(Baseline)

P-FEAT
LoRA

[λ = 0.6]
Private
Attribute

Task Attack Task Attack Task Attack

Smiling 97.86 82.62 94.93 (↓2.9) 62.55 (↓20.1) 96.32 (↓1.5) 49.97 (↓32.7)

Attractive 97.86 76.55 77.77 (↓20.1) 58.93 (↓17.6) 94.16 (↓3.7) 55.54 (↓21.0)

Mouth 97.86 79.9 92.31 (↓5.6) 76.84 (↓3.1) 96.60 (↓1.3) 50.49 (↓29.4)

Lipstick 97.86 91.4 91.81 (↓6.1) 61.75 (↓29.7) 96.10 (↓1.8) 47.81 (↓43.6)

Results comparison between our model and P-FEAT as reported in [Ding et al., 2022] for
defending against a specific privacy attack. We see our method outperforms P-FEAT on
every test. The number in parentheses indicate the change of accuracy w.r.t. the baseline,
with the green color indicating good changes (e.g., decrease in attack accuracy) and red
indicating bad changes (e.g., decrease in task accuracy).

4.3 Ablation Study 41

Table 4.3: Experiment Results For Reconstruction Adversary

No Defense
(Baseline)

P-FEAT
LoRA

[λ = 0.6]
Private
Attribute

Task Attack Task Attack Task Attack

Smiling 97.86 82.62 90.95 (↓6.9) 64.28 (↓18.3) 97.32 (↓0.5) 63.32 (↓19.3)

Attractive 97.86 76.55 90.95 (↓6.9) 72.83 (↓3.7) 97.32 (↓0.5) 71.36 (↓5.2)

Mouth 97.86 79.9 90.95 (↓6.9) 62.57 (↓17.3) 97.32 (↓0.5) 60.70 (↓19.2)

Lipstick 97.86 91.4 90.95 (↓6.9) 72.37 (↓19.0) 97.32 (↓0.5) 91.36 (↓0)

Results comparison between our model and P-FEAT as reported in [Ding et al., 2022] with
using reconstruction attack as an adversarial objective. Our method is able to outper-
form P-FEAT’s by having a higher utility and slightly better privacy on all labels except
Wearing Lipstick. The number in parentheses indicate the change of accuracy w.r.t. the
baseline, with the green color indicating good changes (e.g., decrease in attack accuracy)
and red indicating bad changes (e.g., decrease in task accuracy).

4.3 Ablation Study

To further examine our proposed method, we conduct several ablation studies

explained in this section. Specifically, we study the effect of selection of which layers

to fine-tune and the hyperparameter rank (r) and k on utility and privacy trade-

off. In the interest of maintaining the ablation study’s conciseness and clarity, we

exclusively focuses on the private attribute of Attractive. This approach enables a

more streamlined and straightforward examination of our method’s effectiveness in

preserving attribute privacy for this specific characteristic. By limiting the scope to

a single attribute, we can assess the impact of various parts of the method more

effectively and draw meaningful conclusions.

Selection of Layers: The Alexnet Model [Krizhevsky et al., 2012] is compromised

of five sequential CNN layers followed by three fully connected layers which we denote

42 4.3 Ablation Study

as CONV 1 → CONV 2 → CONV 3 → CONV 4 → CONV 5 → FC6 → FC7 →

FC8. As explained in Section 4.2, the convolutional layers constitute our feature

extractor which we fine-tune using our proposed method. While in our experiments

we fine-tune all of there convolutional layers with our proposed method, it is possible

to only fine-tune select layers, further lower fine-tuning costs for our tasks. To evaluate

how fine-tuning each layer impacts the models performance, we experiment with fine-

tuning each layer individually, and compare it with fine-tuning all layers For there

tests, we fix r = 1, k = 1 and test with λ ∈ {0.5, 0.6, 0.7, 0.8}. The results are

shown in Fig. 4.3. As we see in the figure, fine-tuning the later layers provides a

better privacy-utility trade-off – with the exception of the last layer – and fine-tuning

all layers provides the best performance. Interestingly, we see fine-tuning the final

layer (CONV5) does not provide a better performance and does not follow a similar

trend-line to the other tests.

Rank: As explained in Section 4.1, the rank hyperparameter (r) controls the the size

of the new convolutional layers added to the model. To evaluate how the rank impacts

the performance of our model, we repeat the experiments with ranks r ∈ {1, 4, 16, 64}

and λ ∈ {0.5, 0.6, 0.7, 0.8}, while setting k = 1 and fine-tuning all the convolutional

layers.

Fig. 4.4 shows the performance comparisons of different ranks. Surprisingly, we

see increasing the rank does not increase the overall performance, but rather degrades

the utility-privacy trade-off to the point where models with r = 16 and r = 64 fail to

provide any notable privacy protection. We believe this due to the fact that in our

experimental settings, the lower number of parameters is sufficient and increasing the

4.3 Ablation Study 43

Figure 4.3: LoRA Fine-Tuning Layer Ablation Study

Attack accuracy (y-axis) and Utility accuracy (x-axis) trade-off with fine tuning different
layer. Higher values in utility and lower values in privacy are desirable. The best perfor-
mance would be toward the lower-right section of the plot. For clarity, test points with
the same layers are connected with a line of same color. The figure shows that fine-tuning
later layers has a stronger impact and a better privacy-utility trade-off compared to the
earlier layers, with the exception of the fifth layer. Fine-tuning all layers also has a stronger
impact, more visible for higher values of λ.

size makes the training process more difficult. More specifically, since we pre-train

the model, our fine-tuning process is mainly focused on adding privacy and managing

trade-off with the existing utility; therefore, our experiment does not benefit from the

increase in rank.

44 4.3 Ablation Study

Figure 4.4: LoRA Fine-Tuning Rank Ablation Study

Attack accuracy (y-axis) and Utility accuracy (x-axis) trade-off with fine tuning different
layer. Higher values in utility and lower values in privacy are desirable. The best perfor-
mance would be toward the lower-right section of the plot. For clarity, test points with the
same rank are connected with a line of same color. The figure shows that increasing the
rank has an adverse effect on performance for our experiments. We attribute this behavior
to the settings of our specific experiment, rather than a limitation of the fine-tuning method
itself.

K: Our Min-Max framework algorithm (Algorithm 1) includes a hyperparameter

k, denoting the number of steps the adversary is trained before we train the feature

extractor and classifier. The intuition behind k is that a stronger adversary is more

helpful in guiding our model to attain protection and k is the hyperparameter that

provides the trade-off between strengthening the adversary and the training time

required. To investigate how much this hyperparameter effects our proposed method

4.3 Ablation Study 45

we experiment k ∈ {1, 2, 4} for λ ∈ {0.5, 0.6, 0.7, 0.8}, with r = 1 and fine-tuning

all the convolutional layers. The results of this study are show in Fig. 4.5. As we

see in the figure, tests with k = 1 and k = 2 perform similarly, while increasing

k = 4 results in a worse utility-privacy trade-off. We believe this because increasing

the k value focuses more of the training resources for the adversary and less for the

feature extractor model and therefore increasing k beyond a certain threshold proves

detrimental to the training process.

Figure 4.5: LoRA Fine-Tuning K Ablation Study

Attack accuracy (y-axis) and Utility accuracy (x-axis) trade-off with fine tuning dif-
ferent layer. Higher values in utility and lower values in privacy are desirable. The best
performance would be toward the lower-right section of the plot. For clarity, test points
with the same k are connected with a line of same color. The figure shows increasing k
beyond 2 deteriorates the performance of the final model.

46 4.4 Discussion

4.4 Discussion

As we see in Table 4.2, our method constantly outperforms P-FEAT over all tests

with attribute inference adversary, offering both better task accuracy and better pri-

vacy. Note that the attack accuracy of 50% indicates the adversary is randomly

guessing which is the best possible outcome. Our method is able to achieve this

over three of the four labels. As for the reconstruction adversary, Table 4.3 show

our method outperforms P-FEAT with the exception of Wearing Lipstick attribute,

on which our method is unable to provide adequate protection. We suggest two pri-

mary reasons for this. Firstly, using a reconstruction adversary, while beneficial is

not enough to fully protect sensitive attributes. Secondly, the task attribute, Male,

has a strong correlation with the private attribute, Wearing Lipstick as shown in Ta-

ble 4.4. The shortcomings of the reconstruction adversary is also visible in regards to

other attributes, showing a notably lower protection (more than 10%) compared to

the attribute inference adversary. We believe this in combination with the high cor-

relation between the attributes results in our model being unable to provide adequate

protection for the Wearing Lipstick attribute.

Table 4.4: Correlation Between Selected Attributes

Male Attractive Mouth Slightly Open Smiling Wearing Lipstick
Male 1.00 -0.4 -0.1 -0.14 -0.79

The correlation between the utility attribute (Male) and private attributes reveals an im-
portant feature. The Male attribute has a high correlation with the Wearing Lipstick
private attribute. This characteristic of the chosen attribute means that hiding the Wear-
ing Lipstick attribute while keeping the Male attribute is a much more difficult task com-
pared to other attributes.

4.5 Summary 47

4.5 Summary

In this chapter, we explored the application of Low-Rank Adaptation (LoRA)

in the white-box setting for providing attribute inference protection in pre-trained

convolutional neural networks (CNNs). We demonstrated that LoRA as an fine-

tuning technique is applicable in CNN architectures and furthermore it is capable

of providing superior utility and privacy protection compared to the state-of-the-art

while requiring significantly less parameters for training.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we conducted a comprehensive study of two recent fine-tuning tech-

niques, Model Reprogramming and Low-Rank Adaptation (LoRA), to address the is-

sue of attribute inference protection for pre-trained models. Our investigation aimed

to bridge the gap between efficient transfer learning and robust privacy protection,

offering practical solutions for secure and privacy-conscious machine learning services.

We successfully demonstrated the potential of Model Reprogramming as an effec-

tive method for providing protection for pre-trained models in the black-box setting.

By operating at the input level, Model Reprogramming is able to manipulate the

model’s output to conceal sensitive attributes without the need to modify the origi-

nal model. We’ve shown that our approach can perform as good as existing methods

in providing attribute inference protection with considerably less computational com-

plexity.

48

5.2 Future Work 49

Moreover, our extension of Low-Rank Adaptation tailored for convolutional neural

networks showed notable improvement in providing protection compared to the most

recent work in attribute inference protection. This novel approach enables fine-tuning

comparable to established methods utilized by Large Language Models, making it

an attractive option for implementing privacy-preserving fine-tuning on pre-trained

vision models.

5.2 Future Work

It is important to acknowledge that despite the promising results, further evalu-

ation is necessary to assess the robustness of our proposed methods under different

settings and practicality in real-world applications.

Future research could significantly benefit from exploring the broader applicability

of our proposed methods in addressing various privacy aspects, including but not

limited to membership inference, reconstruction, and model-inversion attacks. We

believe future studies can provide us with a better understanding of the robustness

and limitations of our techniques for providing inexpensive privacy protection in ML

models. We also consider the potential of our approach for use across different datasets

and domains to be promising for future research.

Bibliography

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang. Deep Learning with Differential Privacy. In ACM SIGSAC Conference

on Computer and Communications Security (CCS), 2016. doi: 10.1145/2976749.

2978318.

H. Bahng, A. Jahanian, S. Sankaranarayanan, and P. Isola. Exploring visual prompts

for adapting large-scale models. ArXiv, abs/2203.17274, 2022.

J. Chang and J. Sha. An efficient implementation of 2D convolution in CNN. IEICE

Electronics Express, 14(1), 2017. doi: 10.1587/elex.13.20161134.

P.-Y. Chen. Model reprogramming: Resource-efficient cross-domain machine learning.

ArXiv, abs/2202.10629, 2022.

I. R. Dave, C. Chen, and M. Shah. SPAct: Self-Supervised Privacy Preservation for

Action Recognition. In CVPR, 2022. doi: 10.1109/CVPR52688.2022.01953.

X. Ding, H. Fang, Z. Zhang, K.-K. R. Choo, and H. Jin. Privacy-Preserving Feature

Extraction via Adversarial Training. ”IEEE Trans. Knowl. Data Eng.”, 34(4),

2022. ISSN 1558-2191. doi: 10.1109/TKDE.2020.2997604.

50

Bibliography 51

A. Dosovitskiy and T. Brox. Inverting Visual Representations With Convolutional

Networks. In CVPR, pages 4829–4837, 2016.

C. Dwork and A. Roth. The Algorithmic Foundations of Differential Privacy. Foun-

dations and Trends® in Theoretical Computer Science, 9(3–4), 2014. ISSN 1551-

305X, 1551-3068. doi: 10.1561/0400000042.

G. F. Elsayed, I. J. Goodfellow, and J. N. Sohl-Dickstein. Adversarial reprogramming

of neural networks. ArXiv, abs/1806.11146, 2018.

J. Gildenblat and contributors. Pytorch library for cam methods. https://github

.com/jacobgil/pytorch-grad-cam, 2021.

X. Guo, B. Li, and H. Yu. Improving the Sample Efficiency of Prompt Tuning with

Domain Adaptation. ArXiv, abs/2303.02861, 2022.

Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris. SpotTune: Transfer

Learning Through Adaptive Fine-Tuning. In CVPR, 2019.

K. Hambardzumyan, H. Khachatrian, and J. May. Warp: Word-level adversarial

reprogramming. In ACL-IJCNLP, 2021. doi: 10.18653/v1/2021.acl-long.381.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.

In CVPR, 2016.

G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.

ArXiv, abs/1503.02531, 2015.

https://github.com/jacobgil/pytorch-grad-cam
https://github.com/jacobgil/pytorch-grad-cam

52 Bibliography

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen.

LoRA: Low-Rank Adaptation of Large Language Models. ArXiv, abs/2106.09685,

2021.

H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang. Membership Inference

Attacks on Machine Learning: A Survey. ACM Computing Surveys, 2022. ISSN

0360-0300. doi: 10.1145/3523273.

M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up Convolutional Neural

Networks with Low Rank Expansions. ArXiv, abs/1405.3866, 2014.

M. Jia, L. Tang, B.-C. Chen, C. Cardie, S. Belongie, B. Hariharan, and S.-N. Lim.

Visual Prompt Tuning. In ECCV, Berlin, Heidelberg, 2022. Springer-Verlag. ISBN

978-3-031-19826-7. doi: 10.1007/978-3-031-19827-4 41.

M. Kim, H. Kim, and Y. M. Ro. Speaker-adaptive lip reading with user-dependent

padding. ArXiv, abs/2208.04498, 2022.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ArXiv,

abs/1412.6980, 2014.

W. W. Koczkodaj, M. Mazurek, D. Strza lka, A. Wolny-Dominiak, and M. Woodbury-

Smith. Electronic Health Record Breaches as Social Indicators. Social Indicators

Research, 141(2), 2019. doi: 10.1007/s11205-018-1837-z.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep

Convolutional Neural Networks. In NeurIPS, volume 25. Curran Associates, Inc.,

2012.

Bibliography 53

A. Li, Y. Duan, H. Yang, Y. Chen, and J. Yang. TIPRDC: Task-Independent Privacy-

Respecting Data Crowdsourcing Framework for Deep Learning with Anonymized

Intermediate Representations. In SIGKDD, 2020. doi: 10.1145/3394486.3403125.

A. Li, J. Guo, H. Yang, F. D. Salim, and Y. Chen. DeepObfuscator: Obfuscat-

ing Intermediate Representations with Privacy-Preserving Adversarial Learning on

Smartphones. In IoTDI, 2021. doi: 10.1145/3450268.3453519.

H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. Raffel. Few-Shot

Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning.

ArXiv, abs/2303.02861, 2022a.

X. Liu, H. Zhao, M. Tian, L. Sheng, J. Shao, S. Yi, J. Yan, and X. Wang. HydraPlus-

Net: Attentive Deep Features for Pedestrian Analysis. In ICCV, 2017. doi: 10.110

9/ICCV.2017.46.

Y. Liu, R. Wen, X. He, A. Salem, Z. Zhang, M. Backes, E. D. Cristofaro, M. Fritz,

and Y. Zhang. ML-Doctor: Holistic Risk Assessment of Inference Attacks Against

Machine Learning Models. In USENIX Security, 2022b. ISBN 978-1-939133-31-1.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In

ICCV, 2015.

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting Unintended Feature

Leakage in Collaborative Learning. In S&P, 2019. doi: 10.1109/SP.2019.00029.

S. Meredith. Facebook-cambridge analytica: A timeline of the data hijacking scandal,

54 Bibliography

2018. URL https://www.cnbc.com/2018/04/10/facebook-cambridge-analyti

ca-a-timeline-of-the-data-hijacking-scandal.html.

F. Mireshghallah, M. Taram, A. Jalali, A. T. T. Elthakeb, D. Tullsen, and H. Es-

maeilzadeh. Not All Features Are Equal: Discovering Essential Features for

Preserving Prediction Privacy. In WWW, 2021. ISBN 978-1-4503-8312-7. doi:

10.1145/3442381.3449965.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-

son, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In NIPS-W,

2017.

J. Pfeiffer, S. Ruder, I. Vulić, and E. M. Ponti. Modular Deep Learning. ArXiv,

abs/2302.11529, 2023.

O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Networks for

Biomedical Image Segmentation. In MICCAI, 2015. ISBN 978-3-319-24574-4. doi:

10.1007/978-3-319-24574-4 28.

F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face

recognition and clustering. In CVPR, 2015. doi: 10.1109/CVPR.2015.7298682.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-

cam: Visual explanations from deep networks via gradient-based localization. In

Proceedings of the IEEE International Conference on Computer Vision (ICCV),

Oct 2017.

L. N. Smith and N. Topin. Super-convergence: very fast training of neural networks

https://www.cnbc.com/2018/04/10/facebook-cambridge-analytica-a-timeline-of-the-data-hijacking-scandal.html
https://www.cnbc.com/2018/04/10/facebook-cambridge-analytica-a-timeline-of-the-data-hijacking-scandal.html

Bibliography 55

using large learning rates. In Artificial Intelligence and Machine Learning for Multi-

Domain Operations Applications. SPIE, 2019. doi: 10.1117/12.2520589.

C. Song and V. Shmatikov. Overlearning reveals sensitive attributes. ArXiv,

abs/1905.11742, 2019.

M. Treviso, J.-U. Lee, T. Ji, B. van Aken, Q. Cao, M. R. Ciosici, M. Hassid,

K. Heafield, S. Hooker, C. Raffel, P. H. Martins, A. F. T. Martins, J. Z. Forde,

P. Milder, E. Simpson, N. Slonim, J. Dodge, E. Strubell, N. Balasubramanian,

L. Derczynski, I. Gurevych, and R. Schwartz. Efficient Methods for Natural Lan-

guage Processing: A Survey. ArXiv, abs/2209.00099, 2023.

Y.-Y. Tsai, P.-Y. Chen, and T.-Y. Ho. Transfer Learning without Knowing: Re-

programming Black-box Machine Learning Models with Scarce Data and Limited

Resources. In PMLR, 2020.

Z. Wang, R. Panda, L. Karlinsky, R. Feris, H. Sun, and Y. Kim. Multitask Prompt

Tuning Enables Parameter-Efficient Transfer Learning. ArXiv, abs/2303.02861,

2023.

C. Williams. 620 million accounts stolen from 16 hacked websites now for sale on

dark web, seller boasts, 2019. URL https://www.theregister.com/2019/02/11

/620_million_hacked_accounts_dark_web/.

Z. Wu, Z. Wang, Z. Wang, and H. Jin. Towards Privacy-Preserving Visual Recognition

via Adversarial Training: A Pilot Study. In ECCV, 2018.

Z. Wu, H. Wang, Z. Wang, H. Jin, and Z. Wang. Privacy-Preserving Deep Action

https://www.theregister.com/2019/02/11/620_million_hacked_accounts_dark_web/
https://www.theregister.com/2019/02/11/620_million_hacked_accounts_dark_web/

56 Bibliography

Recognition: An Adversarial Learning Framework and A New Dataset. IEEE

Trans. Pattern Anal. Mach. Intell., 44(4), 2022. ISSN 1939-3539. doi: 10.1109/TP

AMI.2020.3026709.

T. Xiao, Y.-H. Tsai, K. Sohn, M. Chandraker, and M.-H. Yang. Adversarial Learning

of Privacy-Preserving and Task-Oriented Representations. Proceedings of the AAAI

Conference on Artificial Intelligence, 34(07), 2020. ISSN 2374-3468. doi: 10.1609/

aaai.v34i07.6930.

A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad, M. Malek,

J. Nguyen, S. Ghosh, A. Bharadwaj, J. Zhao, G. Cormode, and I. Mironov.

Opacus: User-friendly differential privacy library in PyTorch. arXiv preprint

arXiv:2109.12298, 2021.

C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang. BiSeNet: Bilateral Segmen-

tation Network for Real-time Semantic Segmentation. In ECCV, 2018.

D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni, Y. T.

Lee, A. Manoel, L. Wutschitz, S. Yekhanin, and H. Zhang. Differentially Private

Fine-tuning of Language Models. ArXiv, abs/2110.06500, 2021.

G. Zhang, Y. Zhang, Y. Zhang, W. Fan, Q. Li, S. Liu, and S. Chang. Fairness

Reprogramming. In NIPS, 2022.

J. O. Zhang, A. Sax, A. R. Zamir, L. J. Guibas, and J. Malik. Side-tuning: Network

adaptation via additive side networks. ArXiv, abs/1912.13503, 2019.

Y. Zheng, X. Feng, Z. Xia, X. Jiang, A. Demontis, M. Pintor, B. Biggio, and F. Roli.

Bibliography 57

Why adversarial reprogramming works, when it fails, and how to tell the difference.

ArXiv, abs/2108.11673, 2021.

Z. Zhou, J. Shin, L. Zhang, S. Gurudu, M. Gotway, and J. Liang. Fine-Tuning

Convolutional Neural Networks for Biomedical Image Analysis: Actively and In-

crementally. In CVPR, 2017.

Y. Zhu, X. Yang, Y. Wu, and W. Zhang. Parameter-Efficient Fine-Tuning with Layer

Pruning on Free-Text Sequence-to-Sequence Modeling. ArXiv, abs/2303.02861,

2023.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Publications
	Introduction
	Thesis Objective
	Black-Box Protection
	White-Box Protection

	Contributions
	Thesis Structure

	Background and Related Works
	Background
	Model Reprogramming
	Low-Rank Adaptation
	Adversarial Training / Min-Max Framework

	Related Works
	Differential Privacy
	Privacy Preserving Feature Extraction
	Image Obfuscation

	Summary

	Black-Box Protection With Adversarial Reprogramming
	Method
	Reprogramming Model
	How Reprogramming Works
	Min-Max Framework

	Experiments
	Ablation Study
	Discussion
	Summary

	White-Box Protection With LoRA
	Method
	LoRA Model
	Our Proposed Method

	Experiments
	Ablation Study
	Discussion
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

