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Abstract

Maximum likelihood is an ubiquitous method used in the estimation of gen-

eralized linear mixed model (GLMM). However, the method entails compu-

tational difficulties and relies on the normality assumption for random ef-

fects. We propose a second-order least squares (SLS) estimator based on the

first two marginal moments of the response variables. The proposed estima-

tor is computationally feasible and requires less distributional assumptions

than the maximum likelihood estimator. To overcome the numerical diffi-

culties of minimizing an objective function that involves multiple integrals,

a simulation-based SLS estimator is proposed. We show that the SLS esti-

mators are consistent and asymptotically normally distributed under fairly

general conditions in the framework of GLMM.

Missing data is almost inevitable in longitudinal studies. Problems

arise if the missing data mechanism is related to the response process. This

thesis develops the proposed estimators to deal with response data missing at

random by either adapting the inverse probability weight method or applying

the multiple imputation approach.

In practice, some of the covariates are not directly observed but are

measured with error. It is well-known that simply substituting a proxy vari-
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able for the unobserved covariate in the model will generally lead to biased

and inconsistent estimates. We propose the instrumental variable method

for the consistent estimation of GLMM with covariate measurement error.

The proposed approach does not need any parametric assumption on the

distribution of the unknown covariates. This makes the method less restric-

tive than other methods that rely on either a parametric distribution of the

covariates, or to estimate the distribution using some extra information.

In the presence of data outliers, it is a concern that the SLS estimators

may be vulnerable due to the second-order moments. We investigated the

robustness property of the SLS estimators using their influence functions.

We showed that the proposed estimators have a bounded influence function

and a redescending property so they are robust to outliers. The finite sample

performance and property of the SLS estimators are studied and compared

with other popular estimators in the literature through simulation studies

and real world data examples.

Keywords: Bias reduction; Discrete response; Influence function; Instru-

mental variable; Least squares method; Longitudinal data; Measurement er-

ror; M-estimator; Mixed effects models; Outliers; Robustness; Simulation-

based estimator.
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Chapter 1

Introduction

1.1 Longitudinal Data Analysis

In medical, biological, environmental and social sciences research, longitu-

dinal data analysis is widely used and constitutes the most fundamental

statistical research methodologies. Longitudinal data, by definition, is data

collected from repeated observations of subjects over time. Typically, a fixed

number of repeated observations are obtained at a set of common time points

although they are not required to be distributed evenly throughout the du-

ration of a study. The distinct feature of longitudinal data is that individual

subjects are measured repeatedly across time and these measurements are

likely to be correlated within the same individual. The scientific questions

of interest in longitudinal studies, often involve not only the usual questions,

such as how the mean response differs across treatments, but also how the

change of subjects’ responses over time (e.g., growth and aging) differs and
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other issues concerning the relationship between responses and time.

There are several major advantages of collecting longitudinal data.

First, longitudinal studies allow us to investigate how the variability of the

response varies in time with covariates. For instance, a clinical trial designed

to study time-varying drug efficacy in treating a disease, which cannot be

examined by a cross-sectional study. Second, longitudinal studies have the

capability to separate aging effects (changes over time within individuals)

from cohort effects (differences between subjects at baseline). Third, longitu-

dinal studies are more powerful to detect an association of interest compared

to a cross-sectional study. The reason is that the repeated measurements

from a single subject provide more independent information than a single

measurement obtained from a single subject. Last, longitudinal studies can

provide information about individual changes.

Conventional statistical methods require there to be an independence

between observations. Longitudinal data, however, unlike cross-sectional

data, is likely to violate this assumption because measurements within a sub-

ject may be correlated. Hence, the key challenge of longitudinal data analysis

is to account for the dependency in the data using more sophisticated sta-

tistical methodologies. Although there have been extensive methodological

developments for the analysis of longitudinal data in the last few decades (e.g.

Molenberghs and Verbeke 2005; Carroll, Ruppert, Stefanski, and Crainiceanu

2006; Molenberghs and Kenward 2007; Fitzmaurice, Davidian, Molenberghs
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and Verbeke 2008; McCulloch, Searle and Neuhasus 2008), there are still

many emerging issues arising in practice which motivate further research in

this area. In particular, the following problems are common in longitudinal

studies:

• longitudinal data may either be continuous or categorical or a mixture

of both;

• there are often missing data or dropouts;

• some variables may be measured with errors;

• data outliers are always present.

New statistical methods are required to address one or more of the above

problems as standard methods are not directly applicable. Commonly used

models for longitudinal data include: mixed models, marginal models and

transition models. Each of these modeling approaches offers their own ad-

vantages and disadvantages.

Mixed models (Harville 1977; Laird and Ware 1982; Breslow and Clay-

ton 1993), in which the regression coefficients are allowed to vary across

subjects, are commonly used to incorporate both variations within and be-

tween subjects. They include a mixture of fixed effects, which are parameters

associated with the entire population, and random effects which are associ-

ated with individual subjects. In general, the distribution of mixed effects
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is usually assumed to be normal. Mixed models can not only describe the

trend of data over time while taking account of the correlation that exists

between successive measurements, but also describe the different variation

for each subject over time. The mixed effects model is a powerful technique

for the analysis of longitudinal data when the objective is to make inference

about individuals rather than the population average.

In marginal models (Liang and Zeger 1986) the regression of the re-

sponse on explanatory variables is modeled separately from within-subject

correlation. These models focus on the mean structure, and more specifically

on the regression parameters linked to the means. The within-subject depen-

dence is treated as a nuisance, which needs to be accounted for since it affects

the power of tests and the precision of the regression estimates. The esti-

mation of parameters does not require full distributional assumptions, but

rather only require specification of a regression model for the mean response.

The primary objective of the marginal models is to estimate the effect of a

set of covariates on the marginal expectation of response without explicitly

accounting for subject to subject heterogeneity. Marginal models, are also

referred to as population-average models due to the fact that they describe

the average response in the population rather than an individual’s responses

(Zeger, Liang, and Albert 1988). A comprehensive discussion on the relation

between marginal and random-effects models can be found in Heagerty and

Zeger (2000) and Nelder and Lee (2004).
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In transition models, the conditional mean of an outcome at the cur-

rent time point is modeled as a function of its values at the previous time

points and covariates (Diggle, Liang and Zeger 1994). These models are

also known as conditional or Markov models. They are useful when one is

interested in studying the effects of covariates and of past responses on the

current response or predicting the future response given the past history. The

within-subject correlation is easily accounted for by conditioning on the past

responses, and the model can be easily fitted within the generalized linear

model framework.

1.2 Data Examples

Two real world longitudinal data examples are presented in this section for

illustration purposes.

1.2.1 Example 1: Framingham Study

In the Framingham study (Dawber, Moore and Mann 1957; Dawber 1980),

2634 participants’ cholesterol level is measured every 2 years over a 10 year

period. The objective is to study the change in cholesterol over time and

examine the association with age at baseline and gender. Figure 1.1 shows

cholesterol levels over time for 200 randomly selected individuals from the

Framingham study and a glimpse of the raw data for illustration purposes is

provided in Table 1.1. Figure 1.1 suggests all subjects seem to have a similar

5



trajectory and cholesterol levels increase linearly over time. However, each

subject has his/her own trajectory line with a possibly different intercept and

slope, which implies two sources of variations (within and between subject

variations) exist in this dataset.

Table 1.1: Cholesterol levels for a subset of participants over time

Subject Cholesterol Sex Age Year

1 175 M 32 0

1 198 M 32 2

1 205 M 32 4

1 228 M 32 6

1 214 M 32 8

1 214 M 32 10

2 299 F 34 0

2 328 F 34 4

2 374 F 34 6

2 362 F 34 8

2 370 F 34 10
...

...
...

...
...

1.2.2 Example 2: Seizure Count Data

In a clinical trial, 59 epileptics who were randomized to receive either the

antiepileptic drug progabide or a placebo , as an adjuvant to standard chemother-

apy. The logarithm of a quarter of the number of epileptic seizures in the

8-week period preceding the trial (Base) and the logarithm of age (Age) were

included as covariates in the analysis. For each individual, a multivariate re-

6



Figure 1.1: Trajectories of cholesterol levels for a subset of participants over time
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sponse variable consisted of the seizure counts during 2-week periods before

each of four clinical visits (Visit, 1,2,3,4) was collected. This data was first

analyzed by Thall and Vail (1990) to study whether the treatment effect is

effective after adjusting for available covariates. The data set is shown in

Table 1.2 and Figure 1.2. The response variable is count data which im-

plies that Poisson regression model would be appropriate. All subjects that

received the same treatment seem to have a similar trajectory but with no-

ticeable intra-subject and inter-subject variabilities. Subjects that received

different treatments may have possibly different intercepts and slopes. All

the observations seem to be correlated within the same subject. In addition,

there is a number of patients who seem to have irregularly large counts and

may be potential data outliers.
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Table 1.2: Epileptic seizure count data over time

Subject Count Treatment Base Age Visit

1 5 placebo 11 31 1

1 3 placebo 11 31 2

1 3 placebo 11 31 3

1 3 placebo 11 31 4
...

...
...

...
...

...

29 11 progabide 76 18 1

29 14 progabide 76 18 2

29 9 progabide 76 18 3

29 8 progabide 76 18 4
...

...
...

...
...

...

Figure 1.2: Epileptic seizure counts over time

 

  
  

 

   
 

 

    
 

  
  

 

    

 

    

 
 

    
    

 
    

 

    

 

 

 

   
    

 

    

 
    

 

  
 

 

 

 
  

 

 

 

    
    

 

     
    

 

 

 
 

 

 

    

 

    

 

    

 

 
 

 

 
 

    

 

    

 

 

  
 

 

    

 

    

 
    

0 1 2 3 4

0
50

10
0

15
0

Order of visit

Se
izu

re 
co

un
ts

Seizure counts for progabide arm

 
    

 
     
  

 
  

    

 

 

 

 

 
 

  
  

 
  

  

 

 

  

 

 

    
 

  
 

 

 

 

 
 

 

 

 
  

 

 

   
 

 

    

 

 
 

  

 

 

  
 

 

    

 

 
   

 

    

 

  
  

 

    
 

    

 

    

 

 
 

 
 

 

 
 

 

 

 
    

 
    

 

    

0 1 2 3 4

0
20

40
60

80
10

0

Order of visit

Se
izu

re 
co

un
ts

Seizure counts for control arm

8



1.3 Overview of Work

Recently, Wang (2003, 2004) proposed a Second-order Least Squares Estima-

tor (SLSE) for nonlinear measurement error models, and Wang and Leblanc

(2008) compared the SLSE with the Ordinary Least Squares estimator in

general nonlinear models. Wang (2007) extended this estimation method to

nonlinear mixed effects models with homoscedastic errors. This estimation

method is based on the first two marginal moments of the response variables

given the covariates. He showed that under some regularity conditions the

SLSE is consistent and asymptotically normally distributed. Li (2005) per-

formed extensive simulation studies of the SLSE for nonlinear mixed effects

models. Abarin (2008) applied the SLS method to cross-sectional regression

model with application to measurement error. The focus of this thesis is

to extend SLSE further to the Generalized Linear Mixed Models (GLMM),

which have been widely used in the modeling of longitudinal data where the

response is discrete.

This thesis contains some major extensions and studies of the second-

order least squares methodology. First, we address the computational issues

and implementation of the SLS estimators in practice. The finite sample per-

formance has not been studied especially under different setups of the weight

matrix. We conduct substantial numerical studies to investigate these in the

GLMM framework. Furthermore, we relax the high-level regularity condi-

tions in Wang (2007) to derive the asymptotic properties of the SLSE in

9



GLMM. Second, data outliers are common in longitudinal data. If no ac-

tion is implemented to deal with these outliers, they may distort an analysis

completely and lead to inappropriate conclusions. One of the concerns for

SLSE is that the second moments used in the estimation procedure may en-

large the outlier impact. We investigate the robustness property of SLSE

by means of the influence function, and show that the SLSE has a bounded

influence function. Simulation studies are performed to confirm this robust-

ness property. Third, our preliminary simulation studies, and the simulation

studies in Wang (2007) indicate that there are some finite sample biases for

the estimation of variance components. These biases are downward-oriented

and diminish with increasing sample sizes. We study the source of this finite-

sample bias and proposed a bias reduction technique by using independent

weights. Forth, longitudinal studies often feature incomplete data. Problems

arise if the missing data mechanism depends on the response process. We

extend the SLSE to accommodate response data missing at random by ei-

ther adapting the inverse probability weight method or applying the multiple

imputation approach. Fifth, data measured with error are very common in

longitudinal studies. Such data can cause significant difficulties in deriving

correct results and interpretation. We propose the method of moment esti-

mators for the generalized linear mixed models with measurement error using

the instrumental variable approach.

The thesis is organized as follows. Chapter 2 focuses on the estimation

of linear mixed model which is a special class of the GLMM. In Section 2.1,

10



we conduct a brief literature review on the existing estimation methodologies

in linear mixed model. Section 2.2 introduces the SLSE and gives its con-

sistency and asymptotic normality. We also discuss the implementation of

SLSE and investigate its robust property against data outliers here. Numer-

ical studies are examined to compare the finite sample performance of the

proposed estimator with the maximum likelihood estimator under various

scenarios in Section 2.3. The robustness property of the proposed method

against data contamination is also demonstrated through simulation studies

in this section. A real data application is illustrated in Section 2.4.

Chapter 3 proposes the simulation-based estimator (SBE) for the esti-

mation of GLMM. In Section 3.1, we introduce the model and conduct a brief

literature review on the estimation methodologies in GLMM. Section 3.2 dis-

cusses the model identifiability based on the first two marginal moments and

introduces the simulation-based estimator. In Section 3.3, we conduct sim-

ulation studies to compare finite sample performances of the SBE with the

quasi-likelihood estimator. A real data application is given in Section 3.4.

Section 3.5 reviews the missing data problems in longitudinal data and pro-

poses to accommodate response data missing at random by either adapting

the inverse probability weight method or applying the multiple imputation

approach. Monte Carlo simulation results are also reported in this section.

In Chapter 4, we introduce the linear mixed model with measurement

error and review some existing estimation methods. We propose the method

11



of instrumental variable approach for the classical additive measurement er-

ror model estimation in Section 4.2. Here we establish theoretical results

of the proposed estimator by assuming a known linear relationship between

instrumental variables and measurement error variables. Section 4.3 exam-

ines an alternative model with a Berkson-type measurement on covariates.

We investigate the finite sample performances of the proposed estimators

in comparison with the naive maximum likelihood estimator in Section 4.4.

Section 4.5 includes a simulation study based on a real data application.

In Chapter 5, we propose the method of moment estimators for the

generalized linear mixed model with covariate measurement error using the

instrumental variable approach. Section 5.2 introduces the model and the

proposed estimation procedure. A nonlinear regression relationship between

the instrumental variable and measurement error variables is assumed, and

the asymptotic covariance matrix of the proposed estimator is derived by ac-

counting for the estimation error of the regression/nuisance parameters. In

Section 5.3, we construct the simulation-based estimator for the case where

the closed forms of the marginal moments do not exist. In Section 5.4, we

present simulation studies of finite sample performances of the proposed es-

timators. Chapter 6 briefly summarizes overall findings and outlines possible

extensions for future work. The proofs of the theorems are given in the

Appendices.

12



Chapter 2

Second-order Least Squares
Estimation in Linear Mixed
Models

2.1 Introduction

Linear mixed models (LMM, Laird and Ware 1982) are a common frame-

work used to analyze repeatedly measured and clustered data which arise in

many areas, such as medical and biological sciences, epidemiology, agricul-

ture, social and environmental sciences. For subject i (i = 1, · · · , N) being

observed or measured repeatedly on ni occasions, a linear mixed model can

be expressed as

yi = Xiβ + Zibi + εi, (2.1)

where yi is the ni × 1 vector of responses, β is a p × 1 vector of the fixed

population effects, and bi is a q × 1 vector of ith subject’s random effects

13



and follows a certain distribution with mean 0 and covariance D(θ). D(θ)

is a q × q positive-definite covariance matrix depending on a r × 1 vector of

parameters θ. Xi and Zi are the ni × p and ni × q design matrices to link

β and bi to yi respectively. εi is the ni × 1 vector of residual error terms

following a certain distribution with mean 0 and covariance σ2Ini . Also, all

random vectors {bi, εi, i = 1, · · · , N} are assumed mutually independent.

For the estimation and inference of LMM, the most frequently employed

approach is the maximum likelihood (ML) approach. Assume both the ran-

dom effects and the residual errors are normally distributed. The marginal

distribution of yi is multivariate normal with mean Xiβ and variance σ2I +

ZiDZ
T
i . Assuming independence across subjects, the log-likelihood function

is given by

l(β, α) = c−
N∑
i=1

1

2
log(|Λi|)−

N∑
i=1

1

2
(Yi −Xiβ)TΛ−1

i (Yi −Xiβ), (2.2)

where c is a constant and Λi(α) = σ2I + ZiDZ
T
i depends on an unknown

vector α = (θ′, σ2)′ of parameters. Estimation of ψ = (β′, α′)′ requires joint

maximization of (2.2) using numerical optimization technique such as the

Newton-Raphson algorithm. In general, there is no analytic solutions avail-

able. However, if assume Λi is known, we can obtain the maximum likelihood

estimator of β as

β̂(α) = (
N∑
i=1

XT
i Λ−1

i Xi)
−1

N∑
i=1

XT
i Λ−1

i Yi. (2.3)

Since we usually do not know Λi, we typically estimate it from the data
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using the MLE. In general, it is not possible to write down simple expressions

for the ML estimate of Λi. The ML estimate of Λi has to be found by using

numerical algorithms that maximize the likelihood. Once the ML estimate

of Λi has been obtained, we simply substitute the estimate of Λi, say Λ̂i, to

obtain the ML estimate of β. Because β̂ is estimated by maximum likelihood

estimation method, the asymptotic covariance matrix of β̂ is the inverse of

the observed Hessian matrix at the optimum −∂l2(β)/∂β∂βT , i.e,

var(β̂) = (
N∑
i=1

XT
i Λ−1

i Xi)
−1 (2.4)

A criticism of the ML estimators for the variance components is that

they are biased downward because they do not take into account the loss

in degrees of freedom from the estimation of β. The method of residual

or restricted maximum likelihood (REML) (Patterson and Thompson 1971)

estimation was developed to address this problem. The main idea behind

REML is to estimate the parameters of main interest without having to deal

with the nuisance parameters. One possible way to obtain the restricted

likelihood is to consider transformations of the data to a set of linear combi-

nations of observations that have a distribution that does not depend on β.

When the residual likelihood is maximized, we obtain estimates of Λi whose

degrees of freedom are corrected for the reduction in degrees of freedom due

to estimating α. That is, the extra determinant term effectively makes a cor-

rection or adjustments that is analogous to the correction to the denominator

in Λi. If β is estimated by the MLE condition on α, then REML maximizes
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the following slightly modified log-likelihood to obtain α̂

l(β̂, α) = c−
N∑
i=1

1

2
log(|Λi|)−

N∑
i=1

1

2
(Yi −Xiβ̂)TΛ−1

i (Yi −Xiβ̂)

−1

2
log |

N∑
i=1

XT
i Λ−1

i Xi|. (2.5)

A comprehensive overview of the likelihood estimation algorithm and

its properties can be found in Demidenko (2004) and Jiang (2007). In general,

the computation of likelihood function is not simple and relies on Gaussian

assumption for both random effects and residual error terms. Since the ran-

dom effects are unobservable, it is not feasible to verify their distributional

assumptions. It is thus natural to be concerned whether these methods yield

reliable results when the Gaussian assumption is not appropriate. Several ex-

tensions of the LMM have been proposed to relax the Gaussian assumption

for the random effects (e.g., Verbeke and Lesaffre 1997; Zhang and Davidian

2001; Lin and Lee 2008). However, these works still assume the distribution

of residual errors to be normal, and impose certain parametric assumptions

for random effects distribution, such as Student-t, mixture-normal or skew-

normal. On the other hand, quasi-likelihood seems to be a viable solution

since it does not require distributional assumptions on random effects or

residual errors. However, since it is asymptotically equivalent to the ML

method for LMM estimation (Wu, Gumpertz and Boos 2001; Jiang 2007), it

suffers from lack of robustness against departure from Gaussian assumption

just like the ML method.
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Moreover, by assuming the distributions of random effects and residual

errors to be Gaussian, it makes ML estimator vulnerable to data contam-

ination or outliers (Pinheiro, Liu and Wu 2001). A few robust likelihood

techniques have been proposed by implementing certain symmetric and long-

tailed distributions, such as the Student-t distribution with low degrees of

freedom (e.g., Lange, Little and Taylor 1989; Pinheiro, Liu and Wu 2001).

However, to carry out this approach, one needs to know the degrees of free-

dom. Gill (2000) used the Huber function with a known c. The problem

with this approach is the determination of c. Preisser and Qaqish (1996)

suggested downweighting and deleting contaminated clusters for the gener-

alized linear mixed models. Similarly, Christensen, Pearson and Johnson

(1992) considered a case-deletion diagnostics for detecting influential obser-

vations in LMM. Both approaches require the identification of influential

observations beforehand and remove them from data analysis. Richardson

(1997) proposed a robust estimation in LMM with variance components only

using the bounded influence estimator. Yau and Kuk (2002) proposed an

approximate robust method based on the notion of ML for LMM. However,

this method may lead to inefficient estimates of the regression coefficients

and variance components.
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2.2 Second-order Least Squares Estimation

2.2.1 Estimation and Inference

For subject i at a given occasion j, the LMM can be written as

yij = x′ijβ + z′ijbi + εij, (2.6)

where x′ij and z′ij are the jth rows of the design matrixes Xi and Zi, respec-

tively. The closed form of the first two marginal moments of the response in

model (2.6) are

E(yij|Xi, Zi) = x′ijβ, (2.7)

E(yijyik|Xi, Zi) = (x′ijβ)(x′ikβ) + z′ijD(θ)zik + δjkσ
2, (2.8)

where δjk = 1 if j = k and 0 otherwise. Note that the derivation of the first

two marginal moments dose not require any parametric assumption for the

distribution of random effects or error terms.

Let ψ = (β′, θ′, σ2)′ and the parameter space Γ = Ω×Θ×Σ ⊂ IRp+r+1.

Following Wang (2007), the SLSE ψ̂N for ψ is defined as the measurable

function that minimizes

QN(ψ) =
N∑
i=1

ρ′i(ψ)Wiρi(ψ), (2.9)

where ρi(ψ) = (yij − µij(ψ), 1 ≤ j ≤ ni, yijyik − ηijk(ψ), 1 ≤ j ≤ k ≤ ni)
′,

µij(ψ) = E(yij|Xi, Zi), ηijk(ψ) = E(yijyik|Xi, Zi) and Wi = W (Xi, Zi) is a

nonnegative definite matrix of dimension ni(ni + 3)/2.
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The following assumptions are used for the proof of the consistency and

asymptotic properties of ψ̂N .

Assumption 2.2.1. (yi, Xi, Zi, ni), i = 1, ..., N are independent and identi-

cally distributed and satisfy E ‖Wi‖
(
y4
ij + ‖xij‖4 + ‖zij‖4 + 1

)
< ∞, where

‖·‖ denotes the Euclidean norm.

Assumption 2.2.2. The parameter space Γ ⊂ IRp+r+1 is compact.

Assumption 2.2.3. E [(ρi(ψ)− ρi(ψ0))′Wi(ρi(ψ)− ρi(ψ0))] = 0 if and only

if ψ = ψ0.

Assumption 2.2.4. The matrix B = E
[
∂ρ′i(ψ0)

∂ψ
Wi

∂ρi(ψ0)
∂ψ′

]
is nonsingular.

These are common assumptions in the literature of linear models. In

particular, assumptions 2.2.1 and 2.2.2 ensure that QN(ψ) uniformly con-

verges to Q(ψ) = Eρ′i(ψ)Wiρi(ψ). Assumption 2.2.3 is a high-level identifi-

cation condition to guarantee that Q(ψ) attains a unique minimum at the

true parameter value ψ0 ∈ Γ. A sufficient condition for assumption 2.2.3

is that the matrix
∑
X ′iXi is nonsingular with

∑
ni > p and at least one

matrix Z ′iZi is positive definite with
∑N

i=1(ni − q) > 0, provided all random

variables in the model are normally distributed (Demidenko 2004). Finally,

assumption 2.2.4 is necessary for the existence of the variance of ψ̂N . In

addition, the first partial derivative is given by

∂ρ′i(ψ)

∂ψ
= −

(
∂µij(ψ)

∂ψ
, 1 ≤ j ≤ ni,

∂ηijk(ψ)

∂ψ
, 1 ≤ j ≤ k ≤ ni

)
,
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with

∂µij(ψ)

∂ψ
= (xij, 0, 0)′,

∂ηijk(ψ)

∂ψ
=

(
(xijx

′
ik + xikx

′
ij)β,

∂vec(D)

∂θ
vec(zijz

′
ik), δjk

)′
.

Theorem 2.2.1. Under assumptions 2.2.1-2.2.3, as N →∞, ψ̂N
a.s.−→ ψ0.

Theorem 2.2.2. Under assumptions 2.2.1-2.2.4, as N → ∞,
√
N(ψ̂N −

ψ0)
L→ N(0, B−1CB−1), where

B = E

[
∂ρ′i(ψ0)

∂ψ
Wi

∂ρi(ψ0)

∂ψ′

]
(2.10)

and,

C = E

[
∂ρ′i(ψ0)

∂ψ
Wiρi(ψ0)ρ′i(ψ0)Wi

∂ρi(ψ0)

∂ψ′

]
. (2.11)

Furthermore, with probability one,

B = lim
N→∞

1

N

N∑
i=1

[
∂ρ′i(ψ̂N)

∂ψ
Wi

∂ρi(ψ̂N)

∂ψ′

]
and

C = lim
N→∞

1

N

N∑
i=1

[
∂ρ′i(ψ̂N)

∂ψ
Wiρi(ψ̂N)ρ′i(ψ̂N)Wi

∂ρi(ψ̂N)

∂ψ′

]
.

2.2.2 Computation

In general, there is no explicit solution for the SLSE. The iterative Newton-

Raphson algorithm could be used to compute SLSE, that is,

ψ̂(t+1) = ψ̂(t) −

[
∂2QN(ψ̂(t))

∂ψ∂ψ′

]−1
∂QN(ψ̂(t))

∂ψ
,
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where ψ̂(t) denotes the estimate of ψ at the tth iteration,

∂QN(ψ̂(t))

∂ψ
= 2

N∑
i=1

∂ρ′i(ψ̂
(t))

∂ψ
Wiρi(ψ̂

(t)), and

∂2QN(ψ̂(t))

∂ψ∂ψ′
= 2

N∑
i=1

[
∂ρ′i(ψ̂

(t))

∂ψ
Wi

∂ρi(ψ̂
(t))

∂ψ′
+ (ρ′i(ψ̂

(t))Wi ⊗ I)
∂vec(∂ρ′i(ψ̂

(t))/∂ψ)

∂ψ′

]
.

In the above equation, since the term (ρ′i(ψ̂
(t))Wi ⊗ I)

∂vec(∂ρ′i(ψ̂t)/∂ψ)

∂ψ′
has

expectation zero, it can be ignored from the second derivative. Therefore,

we have the following Newton-Raphson algorithm

ψ̂(t+1) = ψ̂(t) −

[
N∑
i=1

∂ρ′i(ψ̂
(t))

∂ψ
Wi

∂ρi(ψ̂
(t))

∂ψ′

]−1 N∑
i=1

∂ρ′i(ψ̂
(t))

∂ψ
Wiρi(ψ̂

(t)).(2.12)

For the choice of initial values in (2.12), we can use the so-called method

of moments estimates or maximum likelihood estimates. To avoid the com-

plexity of finding the derivatives of QN(ψ), we can also choose the Nelder-

Mead simplex method (Nelder and Mead 1965) to minimize the quadratic

inference function QN(ψ) to obtain ψ̂. Another question is how to specify

the form of weight Wi to carry out the SLSE. In theory, Wi only depends on

Xi and Zi, and any form of Wi satisfying the regularity conditions is valid for

the SLS estimator. However, it would be desirable to make inferences based

on the more precise estimator, so the optimal choice of Wi is the one which

yields the minimum variance-covariance matrix of ψ̂N . This choice is given

in the following theorem and has been proved in Abarin and Wang (2006).

Theorem 2.2.3. Denote Ui = E[ρi(ψ0)ρ′i(ψ0)|Xi, Zi]. Then the minimum
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asymptotic variance-covariance matrix of ψ̂N is

E

[
∂ρ′i(ψ0)

∂ψ
U−1
i

∂ρi(ψ0)

∂ψ′

]
and this is obtained by setting Wi = U−1

i .

In practice, the calculation of Wi is not feasible since it involves un-

known parameters which need to be estimated first. One of the possible

solution is using a two-stage procedure. First, minimize QN(ψ) using a sub-

optimal choice of Wi, such as an identity matrix, to obtain the first stage

estimator ψ̂N1. Second, estimate Ui using ψ̂N1 and then minimize QN(ψ)

again with Wi = Û−1
i to obtain the second stage estimator ψ̂N2. In theory,

ψ̂N2 is asymptotically more efficient than ψ̂N1 because ψ̂N2 has the minimum

asymptotic variance-covariance matrix given in Theorem 2.2.3. In general, Ui

can be estimated using any nonparametric method, such as kernel or spline

estimators. However, in some cases, a simpler estimator of Ui would be

Û =
1

N

N∑
i=1

ρi(ψ̂N1)ρ′i(ψ̂N1). (2.13)

In many real data applications, the subjects are clustered so that the values

of Xi, Zi are equal for all subjects within one cluster. In such cases each Ui

can be estimated similarly to (2.13) using all the subjects within the same

cluster. Since Ûi is of dimension ni(ni + 3)/2, numerical inversion of Ûi may

be difficult when ni is large. In this case, one may consider using diagonal or

certain block diagonal sub-matrix of Ui. In section 2.3, we conduct extensive

simulation studies to investigate the sensitivity and efficiency of SLSE by

using different specifications of the weight matrix.
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2.2.3 Robustness

Outliers are common in experimental research data for reasons such as tran-

scription error or technical equipment malfunction. If no action is imple-

mented, such outliers may distort an analysis completely and lead to wrong

conclusions. In mixed models, outliers may happen not only at the level of

within-subject error but also at the level of within-subject variations. Some-

times they are referred to as e- and b-outliers respectively (Pinheiro, Liu and

Wu 2001).

Here we study the robustness property of SLSE by means of the influ-

ence function (IF), which was introduced by Hampel, Ronchetti, Rousseeuw

and Stahel (1986). The essential concept of IF is that one can use it to

assess the asymptotical bias of the estimator caused by a certain degree of

data contamination. The estimator is robust if the IF is bounded (Huber

2004). In principle, the SLSE is an M-estimator (Huber 2004) and mini-

mizing the quadratic distance function (2.9) with optimal weight matrix in

(2.13) is asymptotically equivalent to solving the equation

N∑
i=1

∂ρ′i(ψ)

∂ψ
Wiρi(ψ) = 0. (2.14)

It follows from Hampel, Ronchetti, Rousseeuw and Stahel (1986) that when

N →∞, the IF of the SLSE at point v = (xl, zl)
′ is

IF(v; ψ̂N , F ) = −B(ψ̂N)−1G(v; ψ̂N , F ) (2.15)
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where F is the underlying distribution and B is given in (2.10), and

G(v; ψ̂N , F ) =
∂ρ′l(ψ̂N)

∂ψ
Wiρl(ψ̂N). (2.16)

If ψ̂N is computed using the estimated optimal weight (2.13), we can show

that as ‖v‖ → ∞
∥∥∥IF(v, ψ̂N)

∥∥∥ → 0. In particular, we have the following

theorem:

Theorem 2.2.4. If the SLSE ψ̂N is computed using estimated optimal weight

(2.13), then
∥∥∥IF(v, ψ̂N)

∥∥∥→ 0 as ‖v‖ → ∞.

The above result implies that the SLSE ψ̂mN is a redescending M-

estimator (Huber 2004). The implication of the redescending property means

that the SLSE is able to reject extreme outliers completely. Intuitively, it is

expected that the outlier will be automatically downweighted by the inverse

of the optimal weight matrix Ul in the estimating equation (2.14). It does

not require to screen data for outliers and make a subjective decision to

exclude them from the analysis. This is practically meaningful because an

outlier may be an indication of a problem with the data generation process

but more importantly it may be a true unusual observation about reality.

2.3 Monte Carlo Simulation Studies

In this section, we carry out substantial simulation studies (1) to examine

finite sample behavior of the SLSE; (2) to evaluate and compare the robust-

ness of SLSE with restricted maximum likelihood (REML) estimator under
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misspecified random effects and residual error distributions; (3) to investigate

the sensitivity and efficiency of SLSE by using different specifications of the

weight; and (4) to demonstrate the robustness of SLSE against outliers. We

considered the following two linear mixed models commonly used to study

the growth curves (Demidenko 2004; Jacqmin-Gadda et al. 2006):

1. random intercept (RI) model: yij = β1 + β2xij + bi1 + εij;

2. random intercept and slope (RIS) model: yij = β1 +β2xij+bi1 +bi2xij+

εij.

The following configurations are used for simulation:

• N = 20, 50, 100, 200, 300, 400, 500; n = 4 or 8; and xij = j, j =

1, · · · , n;

• bi1, bi2 and εij are all generated independently from one of the follow-

ing distribution: Gaussian, χ2(3) and student’s t(4) distributions with

mean 0 and variance θ11, θ22 and σ2 respectively;

• β1 = 8, β2 = 2, θ11 = 1.96, θ22 = 1 and σ2 = 1.

All computations are done in R and the restricted maximum likelihood

(REML) estimates are obtained from lme package. The SLSEs are computed

using three different weight matrices:

1. identity weight (SLS1);
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2. diagonal of the estimated optimal weight (2.13) (SLS2);

3. fully estimated optimal weight (2.13) (SLS3).

To determine how well the methods perform, we present the estimation bias

and mean squared errors (MSE) of the estimators. For each model, 1000

Monte Carlo replications were carried out. For fair comparisons, the same

dataset was used to obtain both REML estimates and SLS estimates, at each

replication. To eliminate potential nonlinear numerical optimization prob-

lems on the selection of starting points, the true parameter values were used

as starting values for the minimization and the optimal weight calculation

for SLS method.

2.3.1 Robustness against Distribution Misspecification

The Monte Carlso simulation results are provided in Table 2.1 and Table 2.2.

Since the relative performances of the estimates are similar for RI and RIS

model, in consideration of space and clarity, we concentrate our discussion

on the simulation results for the RI model. Overall simulation results in all

sample sizes are summarized in Figure 2.1 - Figure 2.4. These figures contain

the absolute value of estimate bias and MSE under correctly specified as well

as misspecified models.

Fig 2.1 and Fig 2.2 depict the performance of SLS and REML methods

for fixed effects. They show all Monte Carlo mean estimates are close to

the true parameter values and no apparent biases are observed across all
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Figure 2.1: Bias and MSE of β1 from REML and SLS estimates based on a RI
model with Gaussian and non-Gaussian distributed random effect and residual
errors
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methods. This is not surprising as a few simulations studies (e.g., Verbeke

and Lesaffre 1997; Jacqmin-Gadda et al. 2006) have shown that maximum

likelihood inference on fixed effects is robust to misspecified LMM. At relative

small sample size (N = 20, 50, 100), SLS2 and SLS3 have lower MSE than

REML and SLS1. As sample size increases from 200 to 500, all four methods

behave very closely.

Figure 2.2: Bias and MSE of β2 from REML and SLS estimates based on a RI
model with Gaussian and non-Gaussian distributed random effect and residual
errors
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Fig 2.3 depicts the performance of estimators for the random effect.

Under Gaussian assumption, the bias from REML is very trivial and much
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smaller than the ones from all three SLS estimates; however, when the model

is misspecified, there is a noticeably bias increase in REML estimates, espe-

cially in small sample sizes. In all cases, SLS estimates show much smaller

MSE than REML, particulary when the model is misspecified. The variance

and MSE reduction in the misspecified model can be as high as 70 − 80%

in some instances. Additionally, the simulation results suggest that SLS3

estimates have some downward bias, although this bias decrease with the in-

crease of sample size. SLS1 appears to be biased at sample size 20 and 50 but

this bias disappears with sample size increases to 100. All mean estimates

from SLS2 are close to true parameter values and no apparent biases are

observed. All SLS estimates have similar MSE when model is correctly spec-

ified, but SLS3 shows a relatively higher MSE than SLS1 and SLS2 when

model is misspecified. Within SLS estimates, SLS1 and SLS2 seem to be

more satisfactory in terms of both bias and MSE than SLS3. This may due

to the numerical error for inversion of the optimal weight matrix in SLS3.

29



Figure 2.3: Bias and MSE of θ11 from REML and SLS estimates based on a RI
model with Gaussian and non-Gaussian distributed random effect and residual
errors
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Fig 2.4 summarizes the performance of estimators for the residual error

variance. Similar to the results from random effect, the bias from REML

is smaller than the ones from all three SLS estimates in all models. SLS3

estimates have some downward bias in the correctly specified model and this

bias gets bigger in the misspecified model, even though this bias decreases

with the increase of sample size. The similar finite bias was also observed in

the limited stimulation studies by Wang (2007). As a result, this finite bias

contributes significantly to its higher MSE. When comparing SLS1 and SLS2,

a similar pattern is observed as the random effects. In particular, SLS1 and

SLS2 performs much better than REML in terms of MSE under misspecified

models, and the variance and MSE reduction in the misspecified model can

be more than 70% in some instances. SLS1 appears to have a slightly higher

bias than SLS2 at sample size 20 to 100 but there is no clear pattern with

the increase of sample size.

Overall, the simulation results demonstrate that all methods show their

finite sample properties, as with the increasing number of sample size, their

MSE decrease and precision increase. Moreover, the bias and/or variance

from REML estimates of random effects has significant increase from Gaus-

sian to non-Gaussian LMM; however, they remain relatively stable for SLS

estimates. This confirms our assumptions that SLS estimator is superior

to REML for misspecified models because it does not rely on any paramet-

ric assumptions of random effects or residual errors. In addition, SLS3 has

shown smaller variance and MSE than REML even for Gaussian LMM. For
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Figure 2.4: Bias and MSE of φ from REML and SLS estimates based on a RI
model with Gaussian and non-Gaussian distributed random effect and residual
errors
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SLS estimates, SLS1-3 perform almost the same for fixed effects but SLS1

and SLS2 perform more satisfactory in terms of both bias and variance than

SLS3, especially when the model is misspecified. This is due to the fact that

in SLS1 and SLS2, the weighting matrix depend on less the parameters that

are poorly estimated because of misspecification. There is some finite bias

observed in the SLS3 estimates for the random effect and residual error vari-

ance but neither observed in SLS1 nor SLS2. Intuitively, this phenomenon

may due to the computational complexity of inverting the full optimal weight

matrix in SLS3. In comparison of SLS1 and SLS2, SLS2 demonstrates more

efficiency than SLS1, especially under small sample size. Thus, it is reason-

able to conclude that in practice, the diagonal of optimal matrix should be

used for SLS estimation without significant loss of efficiency.
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2.3.2 Robustness against Outliers

We conducted some simulation studies to compare the estimates of REML

with SLS when outliers exist. The RI model is used, and we generated

100 subjects (N = 100) with 8 measurements per subject (n = 8). 1000

Monte Carlo replications were carried out. In the first simulation study,

we randomly contaminated one measurement within some subjects (corre-

sponding to a single e-outlier). The proportions of contaminated subjects

were chosen as 0%, 5%, 10%, 15% 20%, 25%, 30% and 35%. In the second

simulation study, we contaminate the distributions of both bi and ei with

the mixed normal model of the form (1− p) ·N(0, θ11) + p · f ·N(0, θ11) and

(1 − p) · N(0, σ2) + p · f · N(0, σ2). The expected percentage of outliers p

was selected as 0, 0.1, 0.2, 0.3 and 0.4, and the contamination factor f was

selected as 10.

Table 2.3 reports the Monte Carlo mean estimates and MSE in sim-

ulation study one. For the sake of saving space, we only present the sim-

ulation results with 0%, 5%, 15% and 30%, since similar pattern of results

are observed. The influence of the outliers is clearly unbounded for REML

estimates because the estimation bias and MSE increase as the percentage

of data contamination increases. The magnitude of increase is especially

dramatic for the random effect and residual error variances. The same phe-

nomenon is observed in SLS1 estimates. In particular, SLS1 shows extremely

lack of robustness against outlying measurements. This is not surprising be-
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cause no downweight is applied in SLSE by using identity weight matrix,

and the marginal second moments enlarge the affect of outliers. SLS2 is rela-

tively more robust than SLS1 and REML with a smaller MSE, especially for

moderate percentages of outliers. In contrast, SLS3 is clearly bounded and

provides consistent mean and MSE estimates regardless of the percentage of

data contamination. Thus, we demonstrate SLSE using the optimal weight

matrix is robust against irregular measurements.

Table 2.4 reports the Monte Carlo mean estimates and MSE in sim-

ulation study two. For the fixed effects, means from all estimators remain

unbias and the corresponding MSE stay stable regardless of the percentage

of data contamination. It indicates that b- and e-outliers does not affect

the precision of all estimators for the fixed effects. The robustness of ML

estimation for fixed effects in this situation was also found in the simulation

studies by Pinheiro, Liu and Wu (2001). For the random effects and residual

errors, both REML and SLS1 result in considerable bias and MSE increase

with the increase of data contamination. SLS2 is relatively more robust than

SLS1 and REML, even though there are some higher bias and MSE at larger

percentages of data contamination. In contrast, SLS3 performs much more

satisfactory and produces the smallest bias and MSE among all estimators,

which represent substantial efficiency gains.
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Table 2.3: Simulation results for different percentage
contaminations of a single response in the RI model at
N = 100 and n = 8

RMEL SLS1 SLS2 SLS3

% Mean MSE Mean MSE Mean MSE Mean MSE

β1 = 8

0 8 0 8 0 8 0 7.999 0.02

5 8.5 1.4 5.5 68 8.1 0.1 7.9897 0.02

10 9.1 3.9 4.1 213 8.7 1.5 8.0055 0.02

15 9.8 7.8 5.5 377 9.4 3.9 7.9985 0.01

20 10.6 13.2 5 579 10 6.6 8.0046 0.01

25 10.9 17.7 2 704 10.1 7.7 7.9982 0.01

30 11.9 27.7 1.8 958 10.4 9.7 7.9945 0.02

35 12.5 37 -1 1369 10.4 9.8 7.9996 0.01

β2 = 2

0 2 0 2 0 2 0 1.9992 0

5 2.1 0.1 2.6 4 2 0 1.9999 0

10 2.2 0.2 3.1 15 1.9 0 1.9989 0

15 2.3 0.4 3.2 26 2 0.2 1.9997 0

20 2.4 0.5 3.5 40 2.1 0.2 1.9991 0

25 2.6 1 4.2 53 2.3 0.4 1.999 0

30 2.6 1.2 4.2 66 2.4 0.5 1.9994 0

35 2.8 1.7 4.9 94 2.5 0.6 1.9988 0

σ2
b = 1.96

0 1.97 0 1.97 0 2 0 1.8473 0.05

5 2.27 11 35 3396 2 0 1.8427 0.05

10 3.99 134 47 6968 2.2 1 1.8404 0.05

15 6.44 260 56 14374 3.4 9 1.8547 0.04

20 8.65 458 81 35765 5.1 31 1.8585 0.04

25 14 4600 100 42393 6.6 61 1.8704 0.04

Continued on next page. . .
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Table 2.3 – continued

RMEL SLS1 SLS2 SLS3

% Mean MSE Mean MSE Mean MSE Mean MSE

30 19 6165 125 64188 9.3 140 1.877 0.04

35 20 2765 157 112301 12 229 1.8871 0.04

σ2 = 1

0 1 0.0028 1 0.0009 1 0 0.8984 0.01

5 253 552545 162 135993 1 0.01 0.9038 0.01

10 699 2230175 318 420054 7.9 1218 0.9152 0.01

15 1087 3804815 460 849707 85 18598 0.9774 0.12

20 1601 6864968 649 1378208 150 42230 1.017 0.21

25 2281 11602110 980 2869012 195 66261 1.0726 0.57

30 3061 17463520 1426 5416065 248 101369 1.0763 0.54

35 3952 27098810 1803 7547520 287 132365 1.1332 1.18
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Table 2.4: Simulation results for different percentage contaminations of b-outliers
in the RI model at N = 100 and n = 8

RMEL SLS1 SLS2 SLS3

% Mean MSE Mean MSE Mean MSE Mean MSE

β1 = 8

0 8.0017 0.0257 8.0133 0.0253 8.0024 0.0256 7.999 0.0168

10 7.9872 0.0481 8.0696 0.0525 8.0418 0.0478 7.991 0.018

20 7.9895 0.0697 8.1159 0.0815 8.0898 0.0714 8.0064 0.0342

30 8.0216 0.1014 8.181 0.1317 8.1352 0.1048 8.0035 0.0514

40 7.9967 0.1159 8.1667 0.1597 8.141 0.1243 7.994 0.0712

β2 = 2

0 2.0002 0.0002 1.9974 0.0002 1.9992 0.0002 1.9992 0.0002

10 2.0008 0.0004 1.9935 0.0005 1.9956 0.0005 2.0004 0.0002

20 1.9998 0.0006 1.9903 0.0007 1.9911 0.0007 1.9981 0.0003

30 1.9992 0.0009 1.9879 0.0012 1.9893 0.001 1.9982 0.0005

40 1.9996 0.0011 1.9874 0.0015 1.9871 0.0013 1.999 0.0006

σ2
b = 1.96

0 1.9667 0.0826 1.9666 0.0113 1.9654 0.002 1.8473 0.047

10 3.6709 4.0814 2.0688 0.4002 2.3579 1.2344 2.1161 0.1727

20 5.4817 14.5464 2.7656 5.7757 3.0425 4.9856 2.6766 1.3226

30 7.2821 31.6571 3.7218 22.1528 4.5153 16.4061 3.389 3.7958

40 9.0106 54.0235 5.2967 50.5112 5.5028 28.6985 4.2571 8.0611

σ2 = 1

0 0.9993 0.0028 1.002 0.0009 1.001 0.0001 0.8984 0.0118

10 1.9145 0.87 1.0895 0.114 1.1263 0.1158 1.0872 0.0183

20 2.7897 3.2767 1.6067 1.3319 1.4233 0.7226 1.3808 0.1817

30 3.7245 7.5413 2.175 3.7683 2.1298 2.9917 1.7729 0.6809

40 4.5896 13.0129 2.6615 6.4271 2.5511 5.2334 2.1595 1.4584

%: Percentage of Contaminations
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2.4 Application

The proposed estimator is applied to the longitudinal data on cholesterol

levels collected as part of the famed Framingham heart study introduced

in Chapter 1. In the study, 2634 participants’ cholesterol level was mea-

sured every 2 years over 10 year period. The objective is to study change

in cholesterol over time and examine the association with age at baseline

and gender. This dataset is widely used in the linear mixed model literature,

partly because many studies conclude that the distribution of subject-specific

intercept is non-Gaussian. See, e.g., Zhang and Davidian (2001) and Lin and

Lee (2008). For illustration, we select a sample of 133 participants (60 men

and 73 women) whose cholesterol measurements as well as covariates of in-

terest are completely observed at the duration of follow-up time. In general,

the following linear mixed effect model is well accepted to fit the data:

yij = β0+β1Sexi+β2Agei+β3tij+b0i+b1itij+εij, i = 1, · · · , 133, j = 1, · · · , 6,

where yij is the cholesterol level for the ith subject at the jth time point, and

yij was divided by 100 for numerical calculation stability; tij (in years) was

taken as (time - 5)/10 measured from the baseline; Sexi is a gender indicator

(0 = female, 1 = male); and Agei is age at baseline. (b0i, b1i)
′ is assumed to

be normally distributed with mean zero and covariance D = (θ11, θ12, θ22)′,

and εij is assumed to be normally distributed with mean zero and variance

σ2.
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Table 2.5 includes the estimates and the corresponding 95% confidence

interval. For fixed effects, SLS estimates are highly agree with ML, but with

slightly tighter confidence intervals. Regarding the random effects and the

residual errors, the estimates are quite different between these two methods.

This finding is not surprising because the estimates of variance components

are usually more difficult to estimate and known to have fairly large variabil-

ities. However, the confidence intervals from SLSE are much smaller, which

may due to the non-normality distributed random effects. Thus, SLSE pro-

vides more precise estimates than ML in this example.

Table 2.5: SLS and ML estimation of Framingham cholesterol data

SLS ML

Parameter Estimate 95% Confidence Interval Estimate 95% Confidence Interval

β0 1.5380 (1.3028, 1.7732) 1.5740 (1.2343, 1.9137)

β1 -0.0369 (-0.1178, 0.0440) -0.0338 (-0.1564, 0.0889)

β2 0.0193 (0.0138, 0.0248) 0.0186 (0.0107, 0.0265)

β3 0.2745 (0.2341, 0.3149) 0.2787 (0.2248, 0.3326)

θ11 0.1033 (0.0731, 0.1335) 0.1259 (0.0934, 0.1584)

θ12 0.0077 (0.0000, 0.0236) 0.0218 (0.0005, 0.0430)

θ22 0.0418 (0.0208, 0.0628) 0.0390 (0.0136, 0.0644)

σ2 0.0329 (0.0280, 0.0378) 0.0432 (0.0380, 0.0484)
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Chapter 3

Simulation-Based Estimation in
Generalized Linear Mixed
Models

3.1 Introduction

Generalized linear mixed models (GLMM) have been widely used in the

modeling of longitudinal data where the response is discrete. They can be

viewed as a natural combination of linear mixed models (Laird and Ware

1982) and generalized linear models. In contrast to marginal or generalized

estimating equations (GEE) models (Zeger, Liang, and Albert 1988), GLMM

emphasize on the regression coefficients as well as the variance components

of random effects.
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3.1.1 Model Formulation

Suppose subject i is measured repeatedly on ni occasions. For a GLMM,

it is assumed that the response variable yij ∈ IR is conditionally indepen-

dent, given the covariates and random effects bi ∈ IRq, and have conditional

distributions from the exponential family

f(yij|bi, Xi, Zi) = exp

{
ωijyij − a(ωij)

φ
+ c(yij, φ)

}
, i = 1, · · · , N, j = 1, · · · , ni

(3.1)

where φ is a dispersion parameter, ωij is the canonical parameter and a(·) and

c(·) are known functions. LetXi = (x′i1, x
′
i2, . . . , x

′
ini

)′ and Zi = (z′i1, z
′
i2, . . . , z

′
ini

)′.

The conditional mean and variance

µcij = E(yij|bi, Xi, Zi) = a(1)(ωij) (3.2)

vcij = V ar(yij|bi, Xi, Zi) = φa(2)(ωij) (3.3)

satisfy g−1{µcij} = x′ijβ + z′ijbi and vcij = φν(µcij), where a(d) denotes the kth

derivatives against ωij, g
−1(·) and ν(·) are known link and variance func-

tions, respectively. The random effects are assumed to have mean zero and

distribution fb(u; θ) with unknown parameters θ ∈ IRr. In this model, the

parameter of interest is ψ = (β′, θ′, φ)′.

3.1.2 Maximum Likelihood Estimation

For estimation and inference in GLMM, the most frequently employed ap-

proach is likelihood-based. In general, the log-likelihood function has the
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following form:

l(β, θ, φ) =
N∑
i=1

f(yi|β, θ, φ)

=
N∑
i=1

∫
IRq

ni∏
j=1

f(yij|ui, β, φ)fb(u;D(θ))dui

which is N integrals over the q−dimensinal random effects bi. Except in

some special cases (e.g, identity link), these integrals are intractable. The

analysis is even more difficult when the dimension of random effects is high

or there are crossed random effects. To overcome this numerical difficulty,

several methods have been proposed to approximate the integrals in the likeli-

hood function, e.g., marginal quasi-likelihood and penalized quasi-likelihood

(PQL) estimation (Breslow and Clayton 1993), adaptive quadrature (Rabe-

Hesketh, Skrondal, and Pickles 2002), and maximum simulated likelihood

(Durbin and Koopman 1997). In the following, we provide a brief review of

PQL and adaptive quadrature methods.

3.1.3 Penalized Quasi-likelihood (PQL) Estimation

PQL method (Breslow and Clayton 1993) is based on a decomposition of

the data into the mean and an error term, with a first-order Taylor series

expansion of the mean which is a non-linear function of the linear predictor.

It is analogous to iteratively reweighted least squares for linear models in that

the model is linear in each iteration (Fitzmaurice, Davidian, Molenberghs and
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Verbeke 2008). More specifically, one considers the decomposition

yij = g(x′ijβ + z′ijbi) + εij (3.4)

where εij have the appropriate distribution with variance equal to (3.3). Us-

ing the current estimates β̂k and b̂ki , the models is linearized by expanding

g(x′ijβ + z′ijbi) as a first-order Taylor series around current estimates. This

yields

yij ≈ g(x′ijβ̂
k + z′ij b̂

k
i ) + g′(x′ijβ̂

k + z′ij b̂
k
i )x
′
ij(β − β̂k) +

g′(x′ijβ̂
k + z′ij b̂

k
i )z
′
ij(bi − b̂ki ) + εij (3.5)

Re-ordering the above expression gives

yij = ζij + g′(x′ijβ̂
k + z′ij b̂

k
i )x
′
ijβ + ξij (3.6)

where ζij = g(x′ijβ̂
k+z′ij b̂

k
i )−g′(x′ijβ̂k+z′ij b̂

k
i )x
′
ijβ

k−g′(x′ijβ̂k+z′ij b̂
k
i )z
′
ij b̂

k
i is the

sum of terms involving current estimates and ξij = g′(x′ijβ̂
k + z′ij b̂

k
i )z
′
ijbi + εij

is the terms involving random effects bi and the residual error terms εij. Note

that (3.6) is of the linear mixed models form, β̂k+1 can be obtained by us-

ing generalized least squares method based on the model-implied covariance

matrix Σk of the total residuals ξij. The parameters of the random part are

updated by fitting the model-implied covariance matrix Σk+1 to the sample

covariance matrix of the estimated total reburials (Goldstein 2003; Fitzmau-

rice, Davidian, Molenberghs and Verbeke 2008). The model fitting is done

by iterating between the calculation of the pseudo-data based on current
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estimates (i.e., β̂k and b̂ki ) and the fitting of the approximate linear mixed

model for these pseudo-data to obtain the next estimates (i.e., ˆβk+1 and

b̂k+1
i ). This iteration continues until convergence is reached. The resulting

estimates are called penalized quasi-likelihood estimates because they can

be obtained from optimizing a quasi-likelihood function which only involves

first and second-order condition moments, augmented with a penalty terms

on the random effects (Molenberghs and Verbeke 2005).

A variant of the PQL algorithm is the marginal quasi-likelihood (MQL)

method (Goldstein 1991, 2003), which is based on a linear Taylor expansion

of the mean g(x′ijβ + z′ijbi) around the current estimates β̂k for the fixed

effects and around bi = 0 for the random effects. This yields a very similar

expression as (3.5) and (3.6) expect g′(x′ijβ̂
k + z′ij b̂

k
i ) is replaced by g′(x′ijβ̂

k).

The resulting estimates are called MQL because they are obtained by evalu-

ation of the marginal linear predictor x′ijβ̂
k instead of the conditional linear

predictor x′ijβ̂
k + z′ij b̂

k
i .

In general, MQL only performs well if the variance of random-effects is

small and both methods perform bad for dichotomous outcomes with small

cluster size. With increasing number of measurements per subject, MQL

remains biased but PQL is consistent. The algorithms can be improved

considerably by using a second-order Taylor expansion in the random effects

(Goldstein and Rasbash 1996).
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3.1.4 Gaussian Quadrature Estimation

Gaussian quadrature is a numerical integration technique that approximates

any integral of the form ∫
f(u)exp(−u2)du

by a weighted sum, namely∫
f(u)exp(−u2)du ≈

Q∑
i=1

wqf(uq).

Here Q is the order of the approximation, the uq are the solutions of the

Qth order Hermite polynomial and the wq are corresponding weights. The

higher the value Q, the more accurate the approximation will be. The nodes

(or quadrature points) uq and the weights wq are reported in Abramowitz

and Stegun (1972). Alternatively, Press, Teukolsky, Vetterling and Flannery

(1992) proposed an algorithm for calculating all uq and wq for any value

Q. Gaussian quadrature approximates the likelihood by picking optimal

subdivisions at which to evaluate the integrand. However, in practice a

large number of quadrature points is required to approximate the likelihood

and the integrand can have a very sharp peak between adjacent quadrature

points. Adaptive Gaussian quadrature overcomes these problems by rescaling

and shifting the nodes such that the integrand is sampled in a suitable range,

however, adaptive Gaussian quadrature is much more time consuming. For a

detailed discussion on Adaptive Gaussian quadrature, one can refer to (Rabe-

Hesketh, Skrondal and Pickles 2002; Pinheiro and Chao 2006). In general,
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the method can only deal with a small number of random effects (at most

2-3 random effects) which limits its general applicability.

A comprehensive evaluation and comparison of these approximate meth-

ods is unavailable in statistical literature. However, some limited studies

have shown that the analytical simplification may not be always satisfactory

and may produce biased and highly inefficient estimates (Lin and Breslow

1996; Joe 2008). Furthermore, the likelihood methods rely on normal as-

sumption for random effects. Since the random effects are unobservable, it

is not feasible to verify their distributional assumptions. It is thus natural

to be concerned whether these methods yield reliable results when the nor-

mality assumption is violated. In addition, it is also known that likelihood-

based methods are sensitive to data outliers. On the other hand, there are

many works extending the GEE-type or quasi-likelihood to the estimation of

GLMM (Zeger, Liang and Albert 1988; Jiang 1998; Sutradhar 2004). How-

ever, these methods are usually inefficient and require the simulation size S

to go to infinity to obtain consistent estimators. In practice, since S has to

be fixed, these methods only produce approximate consistent estimates.

3.2 Simulation-Based Estimation

3.2.1 Model Identifiability

Based on the conditional moments in (3.2) and (3.3), and assuming con-

ditional independence of yij, the second-order condition moments can be
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express as ηcijk = µcijµ
c
ik + δjkv

c
ij, where δjk = 1 if j = k and 0 otherwise.

Therefore, the first and second marginal moments can be expressed as

µij(ψ) = E(yij|Xi, Zi) =

∫
g(x′ijβ + z′iju)fb(u; θ)du (3.7)

and

ηijk(ψ) = E(yijyik|Xi, Zi) =

∫
g(x′ijβ + z′iju)g(x′ikβ + z′iku)fb(u; θ)du

+δjkφ

∫
ν(g(x′ijβ + z′iju))fb(u; θ)du. (3.8)

Throughout this chapter, all integrals are taken over the space IRq. It is

straightforward to show that ψ can be estimated using nonlinear least squares

method provided they are identifiable by (3.7) and (3.8) (Wang 2004, 2007).

In the following, we motivate our approach using two most popular

GLMM as examples to demonstrate that ψ can indeed be identified and

consistently estimated using the first two marginal moments (3.7) and (3.8).

Example 3.2.1. Consider a mixed Poisson model for counts, where V (yij|bi) =

E(yij|bi) and logE(yij|bi) = x′ijβ+ z′ijbi. Assuming bi ∼ N(0, D(θ)), we have

µij(ψ) = exp(x′ijβ + z′ijD(θ)zij/2), and (3.9)

ηijk(ψ) = µij(ψ)µik(ψ) exp[z′ijD(θ)zik)] + δjkφµij(ψ). (3.10)

All unknown parameters in this model are identifiable because they can be

consistently estimated by (3.9) and (3.10) which are usual nonlinear regres-

sion equations in observed variables.
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Example 3.2.2. Consider a mixed logistic model for a binary response yij,

where φ = 1 and logit{Pr(yij = 1|bi)} = x′ijβ + z′ijbi. For this model we find

µij(ψ) = E(y2
ij|Xi, Zi) =

∫ (
ex
′
ijβ+z′iju

1 + ex
′
ijβ+z′iju

)
fb(u; θ)du, and (3.11)

ηijk(ψ) =

∫ (
ex
′
ijβ+z′iju

1 + ex
′
ijβ+z′iju

)(
ex
′
ikβ+z′iku

1 + ex
′
ikβ+z′iku

)
fb(u; θ)du, for j < k.

(3.12)

The integrals in (3.11) and (3.12) are intractable but can be approximated us-

ing Monte Carlo simulation techniques. Therefore, all parameters can be con-

sistently estimated by (3.11) and (3.12) through the nonlinear least squares

method.

Example 3.2.3. Consider a mixed Probit model for a binary response yij,

where φ = 1 and Φ−1{Pr(yij = 1|bi)} = x′ijβ + z′ijbi. Assuming bi ∼

N(0, D(θ)), we find

E(yij|Xi, Zi) = E(y2
ij|Xi, Zi) = Φ(x′ijβ · |D(θ)zijz

′
ij + I|−q/2); (3.13)

and

E(yijyik|Xi, Zi) =

∫
Φ(x′ijβ + z′ijbi)Φ(x′ikβ + z′ikbi)fb(u; θ)du. (3.14)

In this model, the first marginal moment admits an analytic form, while the

second marginal moment does not.
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3.2.2 Estimation and Inference

Even though the model is identifiable through the first two marginal mo-

ments, closed forms of these moments are usually not available in GLMM.

In addition, the density fb(u; θ) is usually unknown. Therefore, we propose

a simulation-based approach to overcome these two difficulties simultane-

ously. As it is well known, simulation-based estimation is computationally

convenient when moment functions cannot be evaluated directly (Pakes and

Pollard 1989; Gouriéroux and Monfort 1997). The basic idea is to form un-

biased estimators of integrals in moment equations with their Monte Carlo

simulators. In particular, we propose a simulation-by-parts (Wang 2004)

technique to construct two sets of moments. First, generate random points

uis, s = 1, 2, . . . , 2S from a known density h(u), and construct

µij,1(ψ) =
1

S

S∑
s=1

g(x′ijβ + z′ijuis)fb(uis; θ)

h(uis)
, (3.15)

ηijk,1(ψ) =
1

S

S∑
s=1

g(x′ijβ + z′ijuis)g(x′ikβ + z′ikuis)fb(uis; θ)

h(uis)

+
δjkφ

S

S∑
s=1

ν(g(x′ijβ + z′ijuis))fb(uis; θ)

h(uis)
(3.16)

using the first half of the points uis, s = 1, 2, . . . , S. Then construct µij,2(ψ)

and ηijk,2(ψ) similarly using the second half of the points uis, s = S + 1, S +

2, . . . , 2S. It is obvious that the simulated moments are unbiased estimate of

the true moments, since E(µij,t(ψ)|Xi, Zi) = µij(ψ) and E(ηijk,t(ψ)|Xi, Zi) =

ηijk(ψ), t = 1, 2. We denote the parameter space by Γ = Ω×Θ×Σ ∈ IRp+r+1,
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and the true parameter value by ψ0 = (β′0, θ′0, φ0)′ ∈ Γ. Finally, the SBE

ψ̂N,S for ψ is defined as

ψ̂N,S = argmin
ψ∈Γ

QN,S(ψ) = argmin
ψ∈Γ

N∑
i=1

ρ′i,1(ψ)Wiρi,2(ψ),

where ρi,t(ψ) = (yij − µij,t(ψ), 1 ≤ j ≤ ni, yijyik − ηijk,t(ψ), 1 ≤ j ≤ k ≤ ni)
′

and Wi = W (Xi, Zi) is a nonnegative definite matrix which may depend

on Xi and Zi. By using two different sets of independent simulated points,

QN,S(ψ) is an unbiased estimator of QN(ψ) because ρi,1(ψ) and ρi,2(ψ) are

conditionally independent given (Yi, Xi, Zi) and hence

E [ρi,1(ψ)Wiρi,2(ψ)] = E [E (ρi,1(ψ)|Yi, Xi, Zi)WiE (ρi,2(ψ)|Yi, Xi, Zi)]

= E (ρi(ψ)Wiρi(ψ)) (3.17)

where ρi(ψ) = (yij − µij(ψ), 1 ≤ j ≤ ni, yijyik − ηijk(ψ), 1 ≤ j ≤ k ≤ ni)
′.

To construct simulated moments in (3.15) and (3.16), it only requires

the random effects distribution to have a known parametric form. Hence,

instead of relying on normality assumption on bi, we can use more flexible

distributions. For example, one can follow Davidian and Gallant (1993) and

Zhang and Davidian (2001) to represent the density of bi by the standard

seminonparametric density which includes normal, skewed, multi-modal, fat-

or thin-tailed densities. One can also impose the Tukey(g, h) family distri-

bution (Field and Genton 2006) for bi as well which is generated by a single

transformation of the standard normal and covers a variety of distributions.

To establish the consistency and asymptotic normality of ψ̂N,S we make
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the following assumptions.

Assumption 3.2.1. g(·) and ν(·) are continuous functions; fb(u; θ) is con-

tinuous in θ ∈ Θ for all u.

Assumption 3.2.2. (yi, Xi, Zi, ni), i = 1, ..., N are independent and iden-

tically distributed and satisfy E
[
‖Wi‖

(
y4
ij + 1

)]
< ∞; g2(x′β + z′u)fb(u; θ)

and |ν(g(x′β + z′u))|fb(u; θ) are bounded by a positive function G(x, z, u)

satisfying E
[
‖Wi‖

(∫
G(Xi, Zi, u)du

)2
]
<∞.

Assumption 3.2.3. The parameter space Γ ⊂ IRp+r+1 is compact.

Assumption 3.2.4. E[ρi(ψ) − ρi(ψ0)]′Wi[ρi(ψ) − ρi(ψ0)] = 0 if and only if

ψ = ψ0.

Assumption 3.2.5. g(·) and ν(·) are twice continuously differentiable and

fb(u; θ) is twice continuously differentiable w.r.t to θ in an open subset θ0 ∈

Θ0 ⊂ Θ. Furthermore, all first and second order partial derivatives of g(x′β+

z′u)fb(u; θ) and ν(g(x′β + z′u))fb(u; θ) w.r.t (β′, θ′)′ are bounded absolutely

by the positive function G(x, z, u) given in assumption 3.2.2.

Assumption 3.2.6. The matrix

B = E

[
∂ρ′i(ψ0)

∂ψ
Wi

∂ρi(ψ0)

∂ψ′

]
(3.18)

is nonsingular.

Theorem 3.2.4. Suppose that Supp(h) ⊇ Supp(fb( · ; θ)) for all θ ∈ Θ0.

Then for any fixed S > 0, as N →∞,
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1. under assumptions 3.2.1-3.2.4, ψ̂N,S
a.s.−→ ψ0;

2. under assumptions 3.2.1-3.2.6,
√
N(ψ̂N,S − ψ0)

L→ N(0, B−1CSB
−1),

where

2CS = E

[
∂ρ′i,1(ψ0)

∂ψ
Wiρi,2(ψ0)ρ′i,2(ψ0)Wi

∂ρi,1(ψ0)

∂ψ′

]
+E

[
∂ρ′i,1(ψ0)

∂ψ
Wiρi,2(ψ0)ρ′i,1(ψ0)Wi

∂ρi,2(ψ0)

∂ψ′

]
. (3.19)

Note the above asymptotic results do not require the simulation size S

tends to infinity because we use the simulation-by-parts technique to approx-

imate moments. This is fundamentally different from other simulation-based

methods which require S goes to infinity to obtain consistent estimators

(Zeger, Liang, and Albert 1988; Jiang 1998; Sutradhar 2004). In general, the

simulation approximation of the integrals will result in certain efficiency loss

but this loss decreases at the rate O(1/S) (Wang 2004). Therefore, the effi-

ciency loss due to the simulations can be made small by increasing S. For the

choice of h(u), in theory, it has no impact on the asymptotic efficiency of the

estimator, as long as it has sufficiently large support. However, the choice

of h(u) will affect the finite sample variances of the simulated moments.

It is well known that the finite sample variances will be minimized when

h(u) ∝ |g(x′ijβ+z′iju)fb(u; θ)| and h(u) ∝ |g(x′ijβ+z′iju)g(x′ikβ+z′iku)fb(u; θ)|.

When closed forms of moments exist such as in Example 3.2.1, the SBE

becomes M-estimator (Huber 2004) ψ̂N . We can shown ψ̂N is consistent and

asymptotic normal distributed. In particular, we have the following corollary.
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Corollary 3.2.5. As N →∞,

1. under assumptions 3.2.1-3.2.4, ψ̂N
a.s.−→ ψ0;

2. under assumptions 3.2.1-3.2.6,
√
N(ψ̂N−ψ0)

L→ N(0, B−1CB−1), where

B and C are given in (3.18) and

C = E

[
∂ρ′i(ψ0)

∂ψ
Wiρi(ψ0)ρ′i(ψ0)Wi

∂ρi(ψ0)

∂ψ′

]
.

Remark 3.2.1. Since random effects are usually assumed to have zero mean

it is more convenient to define bi = D(θ)1/2ξi where the random variable ξ

has mean zero and covariance matrix Iq. Hence alternatively, we can re-write

(3.15)-(3.16) as

µij,1(ψ) =
1

S

S∑
s=1

g(x′ijβ + z′ijD(θ)1/2uis)fξ(uis)

h(uis)
,

ηijk,1(ψ) =
1

S

S∑
s=1

g(x′ijβ + z′ijD(θ)1/2uis)g(x′ikβ + z′ikD(θ)1/2uis)fξ(uis)

h(uis)

+
δjkφ

S

S∑
s=1

ν(g(x′ijβ + z′ijD(θ)1/2uis))fξ(uis)

h(uis)
.

In this case, there is no parameter of interest in fξ(uis).

Remark 3.2.2. For binary responses yij, E(yij|Xi, Zi) = E(y2
ij|Xi, Zi) with

probability one. Therefore, the terms y2
ij−E(y2

ij|Xi, Zi) in ρi,1(ψ) and ρi,2(ψ)

are redundant and do not need to be included.
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Remark 3.2.3. For certain GLMM such as a probit model with normal

distributed random effects, the first marginal moment admits an analytical

form but not the second marginal moments. In this case, only the second

moments need to be simulated.

3.2.3 Computation

In general, the SBE does not admit an explicit solution and can be computed

using Newton-Raphson algorithm as

ψ̂(τ+1) = ψ̂(τ) −

(
∂2QN,S(ψ̂(τ))

∂ψ∂ψ′

)−1
∂QN,S(ψ̂(τ))

∂ψ
,

where ψ̂(τ) denotes the estimate of ψ at the τ th iteration, and

∂QN,S(ψ̂(τ))

∂ψ
=

N∑
i=1

[
∂ρ′i,1(ψ̂(τ))

∂ψ
Wiρi,2(ψ̂(τ)) +

∂ρ′i,2(ψ̂(τ))

∂ψ
Wiρi,1(ψ̂(τ))

]
(3.20)

∂2QN,S(ψ̂(τ))

∂ψ∂ψ′
=

N∑
i=1

[
∂ρ′i,1(ψ̂(τ))

∂ψ
Wi

∂ρi,2(ψ̂(τ))

∂ψ′
+ (ρ′i,2(ψ̂(τ))Wi ⊗ I)

∂vec(∂ρ′i,1(ψ̂(τ))/∂ψ)

∂ψ′

]

+
N∑
i=1

[
∂ρ′i,2(ψ̂(τ))

∂ψ
Wi

∂ρi,1(ψ̂(τ))

∂ψ′
+ (ρ′i,1(ψ̂(τ))Wi ⊗ I)

∂vec(∂ρ′i,2(ψ̂(τ))/∂ψ)

∂ψ′

]
(3.21)

The terms (ρ′i,1Wi ⊗ I)
∂vec(∂ρ′i,2/∂ψ)

∂ψ′
and (ρ′i,2Wi ⊗ I)

∂vec(∂ρ′i,1/∂ψ)

∂ψ′
are op(1)

so they can be omitted from the second derivative for computational conve-

nience. Here, we use g(d)(·) and ν(d)(·), d = 0, 1, 2, to denote their dth order

derivatives, and use f
(d)
b (u; θ) to denote its dth order partial derivative w.r.t.

θ. By assumption 3.2.5 and the dominated convergence theorem, the nonzero
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first order derivatives in (3.20) and (3.20) can be expressed in the following

form:

∂µij,1(ψ)

∂β
=

xij
S

S∑
s=1

g(1)(x′ijβ + z′ijuis)
fb(uis; θ)

h(uis)
,

∂µij,1(ψ)

∂θ
=

1

S

S∑
s=1

g(x′ijβ + z′ijuis)

h(uis)
f

(1)
b (uis; θ),

∂ηijk,1(ψ)

∂β
=

xij
S

S∑
s=1

g(1)(x′ijβ + z′ijuis)
g(x′ikβ + z′ikuis)fb(uis; θ)

h(uis)

+
xik
S

S∑
s=1

g(x′ijβ + z′ijuis)g
(1)(x′ikβ + z′ikuis)

fb(uis; θ)

h(uis)

+δikφ
xij
S

S∑
s=1′

ν(1)(g(x′ijβ + z′iju))g(1)(x′ijβ + z′iju)
fb(u; θ)

h(uis)

∂ηijk,1(ψ)

∂θ
=

1

S

S∑
s=1

g(x′ijβ + z′iju)g(x′ikβ + z′iku)

h(uis)
f

(1)
b (u; θ)

+δikφ
1

S

S∑
s=1

ν(g(x′ijβ + z′iju))

h(uis)
f

(1)
b (u; θ),

∂ηijk(ψ)

∂φ
= δik

1

S

S∑
s=1

ν(g(x′ijβ + z′iju))fb(u; θ)

h(uis)
.

Another important question is how to specify the form of weight Wi to

compute ψ̂N,S in an optimal way, such that AV
(
ψ̂N(Wi)

)
−AV

(
ψ̂N(W opt

i )
)

is nonnegative definite for all possible Wi. It can be shown that W opt
i is

approximately equal to

A−1
i = E[ρi,1(ψ0)ρ′i,2(ψ0)|Xi, Zi]

−1. (3.22)

The proof is analogous to that in Abarin and Wang (2006) and is therefore

omitted. In practice, Ai is not feasible since it involves unknown parame-
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ters to be estimated. One possible solution is using a two-stage procedure.

First, minimize QN,S(ψ) using a sub-optimal choice of Wi, such as an identity

weight matrix, to obtain the first stage estimator ψ̂N1,S. Second, estimate

Wi = Â−1
i using ψ̂N1,S and then minimize QN,S(ψ) again with Â−1

i to ob-

tain the second stage estimator ψ̂N2,S. In general, the computation of Ai in

(3.22) is difficult since it requires the specification of third- and fourth-order

moments of yij. However, these high order moments can be easily approxi-

mated using the Monte Carlo simulation method introduced in this section.

Alternatively, Ai can be estimated using any nonparametric method such as

kernel or spline estimators. In some cases, a simple consistent estimator of

Ai would be

A(ψ̂) =
1

N

N∑
i=1

ρi,1(ψ̂N1)ρ′i,2(ψ̂N1). (3.23)

In many real data applications, the subjects are clustered so that the values

of Xi, Zi are equal or close for all subjects within one cluster. In such cases,

each Ai can be estimated similarly to (3.23) using all the subjects within the

same cluster.

3.2.4 Robustness

Let v be the subset of observations (Xl, Yl) under investigation, and the IF

of SBE at point v takes the form

IF(v; ψ̂N,S, F ) = −B(ψ̂N(F ))−1
∂ρ′l,1(v; ψ̂N,S(F ))

∂ψ
Â−1ρl,2(v; ψ̂N,S(F )),

(3.24)
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where F is the underlying distribution and B is given in (3.18).

Corollary 3.2.6. If the SLSE ψ̂N is computed using the estimated optimal

weight (3.23), then
∥∥∥IF(v; ψ̂N , F )

∥∥∥→ 0 as ‖v‖ → ∞.

The implication of above corollary is that the influence function of

ψ̂N is bounded and ψ̂N has a redescending property (Huber 2004). It is

expected that data outliers in either x or y directions will be automatically

downweighted by the inverse of the estimated optimal weight matrix. It does

not require detection for outliers beforehand to implement downweighting

strategy. The proof is analogous to that of Theorem 2.2.4 and is therefore

omitted.

3.2.5 Bias Reduction

It is noticed in the simulation studies by Wang (2007) and our preliminary

simulation studies, there are some finite sample biases for the estimation of

variance components by the SBE. These biases are downward-oriented and

diminish with increasing sample sizes. The source of this bias lies in the fact

that the optimal weight in (3.22) is replaced by a root-N estimate given in

(3.23) for the second stage minimization. Asymptotically this replacement

has no impact on the properties of SBE. However, it does make a difference

in finite samples because Ai(ψ̂) depends on yi and causes the correlation with

ρi,1(ψ) and ρi,2(ψ). Note in the setup of the SBE, we require Wi may only

depend on Xi and Zi. Evaluating this bias analytically is not easy. Instead,
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we extend the independently weighted method proposed by Altonji and Segal

(1996) for the bias reduction. The basic idea is to break the correlation be-

tween Ai(ψ̂) and ρi,t(ψ) by designing the weighting matrix using observations

other than used to construct the sample moments. We randomly split the

sample into K groups with Nk subjects in each group and the independently

weighted SBE (SBEIW) ψ̂IWN,S for ψ is defined as the measurable function

that minimizes

QN,S(ψ) =
1

K

K∑
k=1

Nk∑
i=1

(ρki,1(ψ))′A−ki (ψ̂)ρki,2(ψ), (3.25)

where ρki,t(ψ) is constructed for the kth group and A−ki (ψ̂) is constructed using

all but the kth group. Intuitively, this estimator is less biased because the

statistical dependence between the weight matrix and sample moments were

broken. However, splitting the sample causes efficiency loss due to the loss

in degrees of freedom. Since cov(ψ̂kN,S, ψ̂
k+l
N,S) = 0 for l 6= 0 by design, it can

be easily shown that

cov(ψ̂IWN,S) =
1

K2

K∑
k=1

cov(ψ̂kN,S),

where ψ̂kN,S is obtained by minimizing
∑Nk

i=1(ρki,1(ψ))′A−ki (ψ̂)ρki,2(ψ). In the

simulation studies presented in section 3.3.1, we select K = 2 and observe

significant improvement in estimation bias over SBE with negligible efficiency

loss.
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3.3 Numerical Studies

3.3.1 Monte Carlo Simulation Studies

In this section, we evaluate the finite sample behavior the proposed estimator,

and compare them with the penalized quasi-likelihood estimator (PQLE) by

Breslow and Clayton (1993). We conducted substantial numerical studies by

using different generalized linear mixed models and parameter configurations.

We carried out 500 Monte Carlo replications in each simulation study and

reported the average biases ((1/500)
∑500

i=1 ψ̂i−ψ0) and the root mean square

errors (RMSE; (1/500)
∑500

i=1(ψ̂i−ψ0)2). All computations are done in R and

PQL estimates are obtained from glmmPQL package.

The first simulation study is designed based on Example 3.2.1. In par-

ticular, we simulated the model logE(yij|bi) = β0 + β1xij + bi, j = 1, · · · , 4,

where xij = 0.1j, β = (3,−1)′ and bi ∼ N(0, 0.25). In the present simulation,

we set N = 50, 100, 200, 300, 400 and chose the density N(0, 1) to be h(u)

and generated S = 1000 independent uis for SBE. For comparison purpose,

we also computed the ψN by using the two marginal moments from equa-

tions (3.9) and (3.10). Table 3.1 reports the biases and the root mean square

errors (RMSE). Fig. 3.1 visually summarizes the performance of all estima-

tors at various sample sizes in terms of RMSE and percentage of bias. From

Table 3.1 and Fig 3.1, we see that all estimators perform satisfactorily and

show clearly their asymptotic proprieties, i.e., the estimated RMSE decrease

with the increase of sample size. For fixed effects, both estimated RMSE
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and biases from the proposed estimators are very close to each other and are

comparable to the PQLE, although ψIWN and ψIWN,S have slightly higher RMSE

for β1. For the random effect parameter θ, all estimators present similar es-

timated RMSE; PQLE, ψN and ψN,S show some downward bias while ψIWN

and ψIWN,S show some upward bias. From Fig 3.1, significant higher percent

(10−20%) bias is observed in ψN as well as in ψN,S; however, it is worth not-

ing this bias gradually reduces with the increase of sample size. In contrast,

ψIWN and ψIWN,S have less than 5% bias which demonstrates bias reduction by

using the proposed independent weight methodology. In addition, we use

histograms to show how close the distribution of SBE estimates are to the

normal distributions and compare with PQL estimates. From Fig 3.2, we

have found that when N = 200 the distribution is already fairly close to

normal for all estimators; thus, the asymptotic normality properties of the

proposed estimates are justified.
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Table 3.1: Biases (RMSE) of the parameter estimates

N PQLE SLSE SLSIW SBE SBEIW

β0 = 3

50 0.006 (0.082) -0.086 (0.115) 0.001 (0.162) -0.069 (0.109) 0.012 (0.168)

100 0.012 (0.060) -0.053 (0.077) -0.009 (0.090) -0.039 (0.075) 0.007 (0.103)

200 0.010 (0.040) -0.029 (0.052) -0.009 (0.058) -0.022 (0.055) 0.005 (0.061)

300 0.006 (0.033) -0.021 (0.040) -0.005 (0.040) -0.016 (0.047) -0.003 (0.052)

400 0.009 (0.031) -0.017 (0.035) -0.005 (0.034) -0.010 (0.044) -0.003 (0.043)

β1 = −1

50 -0.007 (0.152) 0.007 (0.143) 0.020 (0.341) 0.009 (0.130) -0.005 (0.329)

100 -0.004 (0.109) 0.006 (0.106) 0.013 (0.180) 0.008 (0.107) 0.007 (0.195)

200 0.000 (0.073) 0.002 (0.077) 0.015 (0.109) 0.004 (0.074) 0.013 (0.115)

300 -0.001 (0.064) 0.003 (0.061) 0.007 (0.081) 0.000 (0.058) 0.003 (0.081)

400 -0.001 (0.056) 0.001 (0.054) 0.003 (0.067) 0.003 (0.054) 0.006 (0.065)

θ = 0.25

50 -0.010 (0.053) -0.043 (0.060) 0.011 (0.105) -0.054 (0.076) 0.012 (0.122)

100 -0.007 (0.040) -0.043 (0.056) 0.004 (0.066) -0.045 (0.069) 0.001 (0.081)

200 -0.004 (0.026) -0.030 (0.042) 0.012 (0.059) -0.036 (0.059) 0.000 (0.060)

300 -0.003 (0.023) -0.024 (0.035) 0.006 (0.048) -0.027 (0.051) 0.002 (0.055)

400 -0.004 (0.019) -0.022 (0.032) 0.002 (0.033) -0.025 (0.048) 0.005 (0.048)

An addition simulation study was conducted based on the RIS model

in Chapter 2 to confirm the performance of SLSIW. We have similar findings

as the first simulation study and the results are presented in Table 3.2.
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Figure 3.1: RMSE and percentage of bias of parameter estimates for model
at various sample sizes.
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Figure 3.2: Histograms of PQLE, SLSE and SBE for model with N = 200.
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Table 3.2: Simulation results with normal distributed
random effect and residual errors based on the RIS model

SLS SLSIW

N Bias RMSE Bias RMSE

β0 50 -0.055 0.666 -0.023 0.470

100 -0.002 0.184 0.004 0.257

200 -0.001 0.131 -0.005 0.153

300 -0.001 0.108 -0.005 0.114

400 -0.002 0.092 -0.005 0.099

500 -0.004 0.084 -0.005 0.090

β1 50 -0.018 0.212 -0.003 0.293

100 -0.001 0.112 -0.010 0.157

200 -0.002 0.075 0.002 0.089

300 0.000 0.065 0.000 0.071

400 0.000 0.056 0.001 0.060

500 0.003 0.050 0.008 0.053

θ11 50 -0.142 0.604 0.028 1.185

100 -0.068 0.442 0.089 0.656

200 -0.027 0.321 0.062 0.422

300 -0.038 0.268 0.034 0.308

400 -0.027 0.238 0.020 0.273

500 -0.013 0.209 0.032 0.234

θ22 50 -0.106 0.232 -0.025 0.394

100 -0.053 0.162 0.035 0.216

200 -0.035 0.119 0.013 0.141

300 -0.021 0.090 0.011 0.100

400 -0.014 0.077 0.015 0.087

Continued on next page. . .
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Table 3.2 – continued

SLS SLSIW

N Bias RMSE Bias RMSE

500 -0.014 0.071 0.009 0.079

φ 50 -0.143 0.197 -0.011 0.228

100 -0.085 0.127 -0.001 0.130

200 -0.046 0.083 0.013 0.088

300 -0.032 0.064 0.007 0.067

400 -0.027 0.054 0.004 0.053

500 -0.019 0.048 0.006 0.049

In the second simulation study, we consider a logistic model: logit(Pr(yij =

1|bi)) = β0 + β1× trti + β2xij + bi0 + bi1xij, where bi ∼ N [(0, 0)′, diag(θ0, θ1)].

In the present simulation, we selected N = 200, 300 and n = 5; covari-

ates trti = 1 for half the sample and 0 for the remainder, xij = (j − 3)/2;

β = (−1.0, 0.5, 0.5)′; θ0 = 1 and θ1 = 0.5. To compute the SBE, we chose

the density of N [(0, 0)′, diag(2, 2)] to be h(u), and generated independent

points uis, s = 1, ..., 2S using S = 500, 1000 and 2000 respectively. Table

3.3 reports the simulation results. Overall, it is clear that the SBE results

in smaller bias than the PQLE for fixed effects as well as the random ef-

fect θ0, while the SBE has slightly bigger bias only for the random effect

θ1. The finding is not surprising, as it is known that the PQLE may have

severe bias in the estimates of the fixed effects and variance components of
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random effects, when repeated measured data are binary. As the sample size

N increases from 200 to 300, the RMSE for all parameters from all methods

decrease. For the SBE, as the number of simulated values S decreases from

2000 to 500, RMSE become slightly bigger but the estimates stays relatively

stable. It implies that even at a relative small sample size of simulated values

S = 500, the SBE still produces reasonable estimates. Comparing the PQLE

with the SBE computed using S = 2000, the PQLE seems to have smaller

RMSE, especially for the random effect estimates.

Table 3.3: Biases (RMSE) of the parameter estimates with different number
of the simulated points S for SBE

SBE

PQLE S = 2000 S = 1000 S = 500

N=200

β0 = −1 0.109 (0.180) -0.071 (0.188) -0.070 (0.200) -0.049 (0.191)

β1 = 0.5 -0.054 (0.189) 0.029 (0.217) 0.040 (0.218) 0.032 (0.174)

β2 = 0.5 -0.057 (0.124) 0.030 (0.141) 0.030 (0.139) 0.024 (0.109)

θ0 = 1 -0.108 (0.258) 0.103 (0.332) 0.112 (0.375) 0.063 (0.358)

θ1 = 0.5 0.074 (0.279) 0.082 (0.402) 0.107 (0.392) 0.061 (0.366)

N=300

β0 = −1 0.113 (0.164) -0.030 (0.135) -0.045 (0.154) -0.033 (0.178)

β1 = 0.5 -0.067 (0.176) 0.021 (0.170) 0.024 (0.169) 0.027 (0.183)

β2 = 0.5 -0.058 (0.109) 0.022 (0.109) 0.022 (0.107) 0.013 (0.108)

θ0 = 1 -0.116 (0.210) 0.055 (0.255) 0.071 (0.298) 0.051 (0.345)

θ1 = 0.5 0.088 (0.241) 0.074 (0.319) 0.073 (0.324) 0.045 (0.334)

The third simulation study is to demonstrate the robustness of the pro-

posed estimator in the presence of outliers, we conducted simulation studies

79



on random intercept Poisson and logistic models with one covariate, and the

parameter values β=(1, 1)’ and θ=0.25. We generated N = 100 subjects with

n = 5 measurements per subject. The values of the covariate xij = (j− 3)/2

in the Poisson mixed model, and one random measurement within five dif-

ferent subjects was contaminated by using 100yij (i.e., 5% subjects with one

outlier). For the logistic model, xij was generated from N(0, 1). Since the

response variable yij is binary in the logistic model, outliers arise in x. To

create outliers, we followed Sinha (2004, 2006) to replace one randomly cho-

sen x value within five different subjects by x + 3 (i.e., 5% subjects with

one outlier). For comparison, we also present the simulation results without

outliers. Table 3.4 summarizes the simulation results. In the case of Poisson

mixed model, the SBE stays almost the same as outliers increase from 0%

to 5% while a significant increase from PQLE. For the logistic model, the

SBE shows smaller biases for the estimation of β1 and θ in the presence of

outliers. For the estimation of fixed effects β0 and β1, the SBE provides

smaller RMSE than the PQLE. However, the PQLE of θ appears to have

smaller RMSE. This interesting and counterintuitive phenomenon was also

found in the similar simulation study conducted in Sinha (2004) and Noh

and Lee (2007) when they compared their proposed robust estimation meth-

ods with the classical likelihood-based method. Similarly, we can argue that

the RMSE of the PQLE of θ underestimates because of the relatively larger

biases observed in the PQLE of the fixed effects.
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Table 3.4: Biases(RMSE) for the parameter estimates with and without out-
liers

No Outliers With Outliers

PQLE SLSE/SBE PQLE SLSE/SBE

Poisson Model

β0 = 1 0.021 (0.060) -0.082 (0.103) 0.162 (0.205) -0.057 (0.082)

β1 = 1 -0.001 (0.038) 0.017 (0.043) -0.004 (0.163) 0.011 (0.041)

θ = 0.25 -0.013 (0.043) -0.047 (0.062) 0.097 (1.029) -0.040 (0.059)

Logistic Model

β0 = 1 0.020 (0.212) 0.066 (0.306) -0.059 (0.412) 0.074 (0.365)

β1 = 1 0.051 (0.229) 0.117 (0.317) -0.108 (0.433) 0.073 (0.301)

θ = 0.25 0.017 (0.320) -0.021 (0.571) -0.013 (0.295) 0.028 (0.643)

3.3.2 Application

In this section, we apply the proposed methods to analyze the popular

epilepsy seizure count data presented in Chapter 1. The data come from

a clinical trial of 59 epileptics who were randomized to receive either the

antiepileptic drug progabide (TRT = 1) or a placebo (TRT = 0), as an ad-

juvant to standard chemotherapy. The logarithm of a quarter of the number

of epileptic seizures in the 8-week period preceding the trial (BASE) and the

logarithm of age (Age) were included as covariates in the analysis. For each

individual, a multivariate response variable consisted of the seizure counts

during 2-week periods before each of four clinical visits (VISIT, coded -0.3,-

0.1, 0.1 and 0.3) was collected. By a thorough investigation, Thall and Vail

(1990) identified a number of patients as outliers, who has irregular large

counts. Recently, the data were further analyzed by Sinha (2006) using his
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proposed robust quasi-likelihood estimator (RQLE). Here we consider the

following model used by Sinha (2006):

logE(yij|bi) = x′ijβ + bi0 + bi1VISITij, (3.26)

where bi0 ∼ N(0, θ0) and bi1 ∼ N(0, θ1) are the independent random effects,

and xij represents the vector of the predictors BASE, TRT, AGE, VISIT,

and the interaction between BASE and TRT. Following (3.9) and (3.10), the

first two moments are

µij = exp(x′ijβ + θ0/2 + (VISITij)
2θ1/2)

νijk = exp
[
(xij + xik)

′β + 2θ0 + (VISITij + VISITik)
2θ1/2

]
+ δikµij.

To calculate the standard error of Υ̂N , we have trivially

∂µij
∂ψ

=

(
xijµij,

µij
2
,
(VISITij)

2

2
µij

)′
∂νijk
∂ψ

=

(
(xij + xik)νijk, 2νijk,

(VISITij + VISITik)
2νijk

2

)′
+ δik

∂µij
∂ψ

.

Table 3.5 reports the fixed and random effect estimates by the SBE,

the RQLE and the classical marginal quasi-likelihood estimator (MQLE).

The estimates of the fixed effects are very similar and the covariate BASE is

highly significant by all three approaches. However, we observe a significant

difference in the estimates of the random effects. In particular, the SBE

estimates highly agree with the RQL estimates, but quite different from

those obtained by the MQL method. The standard errors (SE) of θ2
0 from

all approaches are relatively close but the SBE results in a SE reduction of
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50% for θ2
1 in comparison with the MQLE. Since Sinha (2006) concludes that

the RQL method appears to be successful in handling outliers in the epilepsy

data, we confirm that the SBE has the same property.

Table 3.5: Comparison of parameter estimates and their standard errors (SE)
for the seizure count data

SLSE RQLE* MQLE*

Parameter Estimates (SE) Estimates (SE) Estimates (SE)

INTERCEPT -1.324 (1.672) -1.330 (0.928) -1.388 (1.248)

BASE 0.915 (0.117) 0.895 (0.083) 0.890 (0.141)

TRT -0.758 (0.627) -0.795 (0.446) -0.849 (0.424)

TRT × Base 0.397 (0.205) 0.260 (0.238) 0.324 (0.216)

AGE 0.453 (0.485) 0.462 (0.277) 0.463 (0.365)

VISIT/10 -0.230 (0.268) -0.230 (0.156) -0.253 (0.241)

θ0 0.135 (0.093) 0.130 (0.050) 0.257 (0.083)

θ1 0.117 (0.709) 0.116 (0.357) 1.904 (1.386)

*Obtained from Sinha (2006).

3.4 Incomplete Longitudinal Data

3.4.1 Missing Data Mechanism

Incomplete longitudinal data are almost inevitable in longitudinal studies

due to various reasons (e.g. dropout or noncompliance in clinical trials).

Problems arise if the mechanism leading to the missing data depends on re-

sponse process. It is known that ignoring missing data or the use of naive

methods may introduce bias and lead to misleading inferences (Little and

Rubin 2002). To obtain valid inferences from incomplete longitudinal data,
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it is essential to consider the reason for missingness, which is usually referred

to as the missing data mechanism. The missing data mechanism attempts to

answer, from a statistical perspective, the question of why data is missing.

The central issue is to properly characterize the probabilistic relationship

between the value that should have been observed but it was not observed.

This relationship is defined statistically in terms of the conditional distribu-

tion of the missing data indicator matrix given the observed data. Little and

Rubin (2002) gave a general treatment of statistical analysis of missing data

mechanisms, which includes a useful hierarchy of missing-value models. Let

Ri = (Ri1, Ri2, · · · , Rin)′ be the vector of missing data indicators for Yi, such

that Rij = 1 if response Yij is observed, and 0 otherwise. We partition Yi

into Y O
i and Y M

i , where Y O
i contains those Yij for which Rij = 1 and Y M

i

contains the remaining components. Assuming Xi is always observed, the

three classifications of missing data mechanisms are:

(i). Missing Completely At Random (MCAR): Data are said to be MCAR if

the probability of failure to observe a value is unrelated to any observed

or unobserved data. The MCAR assumption is often too strong to be

plausible in practical situations, except in the case where data is missing

by design. Under the MCAR assumption, the conditional distribution

of the missing data mechanism given the data Y is given by

P (Ri|Yi, Xi) = P (Ri|Xi).

(ii). Missing At Random (MAR): Data are said to be MAR if the probability
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of an observation being missing only depends on observed data. MAR is

a weaker and more plausible assumption than MCAR. Under the MAR

assumption, the conditional distribution of the missing data mechanism

given the data Y is given by

P (Ri|Yi, Xi) = P (Ri|Y O
i , Xi).

(iii). Missing Not At Random (MNAR): Data are said to be MNAR if the

probability of an observation being missing depends on both observed

and unobserved data. Under the MNAR assumption, the conditional

distribution of the missing data mechanism given the data Y is given

by

P (Ri|Yi, Xi) = P (Ri|Y O
i , Y

M
i , Xi).

3.4.2 Missing Data Patterns

There are two broad classes of missing data pattern: intermittent missing

and dropout. Intermittent missing pattern refers to the scenario that a sub-

ject completes the study but skips a few occasions in the middle of the study

period. Dropout (attrition, lost of follow-up) is a particular example of mono-

tone pattern of missingness, which means if one observation is missing, then

all the observation after it will be unobserved. Intermittent missing is often

easier to deal with because the subject is still participating the study and the

reason of missing values can be ascertained. Dropout is often more serious

because the subject is no longer available and we cannot be certain that the
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dropout is or is not related to the observed or unobserved outcome. MAR

mechanisms are commonly assumed when the interest lies on estimation of

parameters, especially when monotone missing data patterns are under con-

sideration. The rationale of using such mechanisms is discussed by authors

including Robins, Rotnitzky and Zhao (1995), and Lindsey (2000). In the fol-

lowing, we focus on the discussion of modeling monotone MAR longitudinal

data.

3.4.3 Estimation of Missing Data Process

A transition model is considered for modeling the dropout data process. Let

λij = P (Rij = 1|Ri,j−1 = 1, Xi, Zi, Y
O
i ) be the conditional probability that

subject is observed at visit j, given that subject is present at time j − 1;

and πij = P (Rij = 1|Xi, Zi, Y
O
i ) be the marginal probability subject i is

present at time j which is equal to
∏j

t=2 λit. Generally it is assumed that all

individuals are observed on the first occasion, that is Ri1 = 1 and λi1 = 1.

Let πijk = P (Rij = 1, Rik = 1|Xi, Zi, Y
O
i ) be the probability for observing

both Yij and Yik given the response history and covariates. For monotone

missing data pattern, Rij = 0 implies Rik = 0 for all j < k so πijk = πik. Let

Hij = {yi1, yi2, · · · , yi,j−1} to be the history of observed responses for subject

i up to (but not including) time point j.

Usually, λij is unknown and must be estimated from the observed data.

Since the missing data indicator variable Rij is binary, we consider a logistic
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regression model for the drop-out process

logitλij = A′ijα (3.27)

where Aij is the vector consisting of information of Xi, Zi and Hij, and α

is the vector of regression parameters. This model has been widely used in

modeling the drop-out process (e.g., Diggle and Kenward 1994; Fitzmaurice,

Laird and Zahner 1996; Molenberghs, Kenward and Lesaffre 1997; Yi and

Cook 2002). Estimation of parameters α can be proceeded by running a

logistic regression analysis using the likelihood method. In particular, we

let Di be the random dropout time for subject i and di be a realization,

i = 1, · · · , N . Define

Li(α) = (1− λidi)
di−1∏
t=2

λit

where λit is given in (3.27). Then the corresponding score equation of subject

i is Si(α) =
∑N

i=1 ∂ logLi(α)/∂β, which yields unbiased estimate of α if

model (3.27) is correctly specified. The resulting estimator is denoted by α̂.

Moreover, the marginal probabilities πij(α̂) can be consistently estimated.

3.4.4 Weighted SBE

The SBE based on the observed data is given by

ψ̂oN,S = argmin
ψ∈Γ

Qo
N,S = argmin

ψ∈Γ

N∑
i=1

(∆iρi,1(ψ))′Wi(∆iρi,2(ψ)),
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where ∆i = diag(Rij, 1 ≤ i ≤ ni, RijRik, 1 ≤ j ≤ k ≤ ni). Under MCAR

assumption, the SBE remains valid because

1

N
Qo
N,S(ψ)

a.s.−→ E[(∆iρi,1(ψ))′Wi(∆iρi,2(ψ))] = E(∆i)Q(ψ),

where E(∆i) = diag(πij, 1 ≤ i ≤ ni, πijπik, 1 ≤ j ≤ k ≤ ni) and Q(ψ) =

Eρ′i(ψ)Wiρi(ψ). Since Q(ψ) attains a unique minimum at ψ0 ∈ Γ (see section

A.4) and E(∆i) does not depend on ψ, it is straightforward to show that

ψ̂oN,S
a.s.−→ ψ0 as N → ∞. Also, it is easy to show the estimator of B and

Cs in (3.18) and (3.19) based on the observed data are consistent by similar

manipulations. However, under MAR assumption, ∆i depends on Yi and the

SBE is no long valid because E[(∆iρi,1(ψ))′Wi(∆iρi,2(ψ))] 6= E(∆i)Q(ψ).

We consider modifying the proposed method to adjust MAR type of

monotone missingness through the inverse probability weighted (IPW) method.

It is known that IPW is a general methodology for constructing estimators

of smooth parameters under non- or semi-parametric models for the full data

and a semi-parametric or parametric model for the missingness mechanism

(Horvitz and Thompson 1952; Robins and Rotnitzky 1995; Yi and Cook

2002). The idea is to weight each subject’s contribution in the estimation

by the inverse probability that a subject drops out at the time he dropped

out. The weights are obtained from models for the missing data process, and

these models must be correctly specified for the resulting estimators to be

consistent.

Let ∆̃i = diag(Rij/πij, 1 ≤ i ≤ ni, RijRik/πijk, 1 ≤ j ≤ k ≤ ni) be
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the weight matrix accommodating missingness. We define the weighted SBE

(WSBE) as

ˆ̃ψN,S = argmin
ψ̃∈Γ

Q̃o
N,S(ψ) = argmin

ψ∈Γ

N∑
i=1

ρ̃′i,1(ψ)W̃iρ̃i,2(ψ),

where ρ̃i,t(ψ) = ∆̃iρi,t(ψ). By model assumptions and the law of iterated

expectation, we can show that

E[Q̃o
N,S(ψ)] = E[

N∑
i=1

∆̃iρi,1(ψ)′Wi∆̃iρi,2(ψ)]

= E[
N∑
i=1

E[∆̃iρi,1(ψ)′Wi∆̃iρi,2(ψ)|Xi, Zi, Yi]]

= E[
N∑
i=1

E[∆̃i|Xi, Zi, Yi]ρi,1(ψ)′Wiρi,2(ψ)]

= E[QN,S(ψ)],

where the last equality holds due to the fact that E[∆̃i|Xi, Zi, Yi] is an identity

matrix if the probabilities πi are correctly specified. Under two additional

assumptions

Assumption 3.4.1. Given the past history of observed responses and co-

variates, the probability that individual i is still in the study at time j is

bounded away from zero or P (Rij = 1|Ri,j−1 = 1, Xi, Yij) > 0.

Assumption 3.4.2. The probability of dropout model must be correctly

specified. i.e. λij = P (Rij = 1|Ri,j−1 = 1, Xi, Zi, Yi).

Theorem 3.2.4 holds for ˆ̃ψN,S except that ρi,t(ψ) is replaced by ρ̃i,t(ψ) in

(3.2.6) and (3.19). The optimal weight Ãi becomes E[ρ̃i,1(ψ0)ρ̃′i,2(ψ0)|Xi, Zi].
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For the computation of optimal weight, the moment estimator defined in

(3.23) is not conformable because the length of ρ̃i(ψ) is different across sub-

jects. Therefore, we propose to construct the optimal weight using the simu-

lation method. The second-order marginal moments can be calculated using

(3.16), and the third- and fourth-order moments will be calculated using the

same method. In particular, we first construct the third conditional moments

for yij, i.e,

Cov(yij, yikyil|bi, Xi, Zi) =


E(y3

ij|bi, Xi, Zi)− µcijηcijj, if j = k = l,

ηcijjµ
c
ik − µcijηcikl, if j = k 6= l,

ηcijjµ
c
il − µcijµcikl, if j = l 6= k,

µcijµ
c
ikµ

c
il − µcijηcikl, if j = k 6= l.

For the fourth conditional moments, we have

Cov(yijyik, yilyit|bi, Xi, Zi) =


E(y4

ij|bi, Xi, Zi)− (ηcijj)
2, if j = k = l = t,

E(y3
ij|bi, Xi, Zi)µ

c
it − ηcijjηcijt, if j = k = l 6= t,

ηcijjµ
c
ilµ

c
it − ηcijjηcilt, if j = k 6= l 6= t,

µcijµ
c
ikµ

c
ilµ

c
it − ηcijkηcilt, if j = k 6= l,

and other elements can be computed similarly. To compute E(y3
ij|bi, Xi, Zi)

and E(y4
ij|bi, Xi, Zi), we can use the following results by McCullagh and

Nelder (1989). That is,

E[(yij − µcij)3|bi, Xi, Zi] = φ2a(3)(ωij),

E[(yij − µcij)4|bi, Xi, Zi] = φ3a(4)(ωij) + 3(φa(2)(ωij))
2.

Then we can use the simulation method introduced in section 3.2.2 to con-

struct the marginal moments, and thus obtain the optimal weight. Alter-

natively, we can adopt the idea of working variance matrix in Prentice and
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Zhao (1991) and Vonesh, Wang, Nie and Majumdar (2002) to construct opti-

mal working weight. For example, assuming yi is from a multivariate normal

distribution, the third moment of yi is

cov(yij, yikyil) = µilσijk + µikσijl, for all j, k, l,

where σijk = E(yij − uij)(yik − uik), and the forth moment of yi, for all

j, k, l, t is

cov(yijyik, yilyit) = σijlσikt+σijtσikl+µikµilσijt+µijµilσikt+µikµitσijl+µijµitσikl.

Thus, both third and forth moments can be specified by using only the first

and second moments. Alternatively, we can assume independence among the

elements of yi. Then the third moment of yi is given by

cov(yij, yikyil) =


E[(yij − uij)3] + 2µijσijj − 2µ3

ij if j = k = l,

σijjµik if j = l 6= k,

σijjµil if j = k 6= l,

0 otherwise.

The forth moment of yi is

cov(yijyik, yilyit) =


E[y4

ij]− µ2
ij − σijj if j = k = l = t,

E[(yij − uij)3]µit + 2µijµitσijj if j = k = l 6= t,

E[(yij − uij)3]µil + 2µijµilσijj if j = k = t 6= l,

0 otherwise.

If we further assume the underlying distribution of yi is symmetric, we have

E[(yij − uij)3] = 0.
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3.4.5 Multiple Imputation

An alternative for SBE to handle missing data is by the means of multiple

imputation. Multiple imputation (MI) was first proposed by Rubin (1977)

and was described in detail by Rubin (1987) and Schafer (1997). The key

idea of this procedure is to fill out each missing value with a set of M plau-

sible values that represent the uncertainty about the right value to impute.

Multiple imputation inference involves three distinct stages:

(i). Fill out missing values, Y M , M times to generate M complete data sets.

Here MAR assumption is key to the validity of MI because YM are gen-

erally sampled from a condition distribution f(Y M |Y O, ψ). Commonly

used imputation methods include regression method (Rubin 1987), pre-

dictive mean matching method (Heitjan and Little 1991; Schenker and

Taylor 1996), propensity score method (Rosenbaum and Rubin 1983;

Lavori, Dawson, and Shera 1995) and MCMC Method (Schafer 1997).

(ii). Each imputed data set is analyzed by using standard procedure, and

the resulting estimates and the corresponding sampling covariances

(within-imputation variance) are denoted by ψ̃Mk and Vk, k = 1, · · · ,M .

(iii). The results from the M analyses are combined to produce a single MI

estimator, ψ̃MI , and to draw inferences based on ’Rubin’s rules’ for MI.

The MI estimator of ψ is the average of the individual estimators

ψ̃MI =
1

M

M∑
k=1

ψ̃Mk .
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The estimated variance of this combines between- and within-imputation

variability as follows

VMI =
1

M

M∑
i=1

Vk +

(
1 +

1

K

)(
1

K − 1

) M∑
k=1

(ψ̃Mk − ψ̃MI)
2.

Pros and cons of IPW methods with respect to MI have been the subject

of some debate (Scharfstein, Rotnitzky and Robins 1999; Clayton, Spiegelhal-

ter, Dunn and Pickles 1998; Carpenter, Kenward and Vansteelandt 2006). In

the following section, we conduct some simulation studies to compare WSBE

and MI-SBE.

3.4.6 Monte Carlo Simulation Studies

We conduct some simulation studies to assess the performance of the WSBE,

MI-SBE and SBE under MCAR and MAR scenarios with moderate amount

(10%-30%) of missing data. We carried out 500 Monte Carlo replications in

each simulation study and reported the average biases ((1/500)
∑500

i=1 ψ̂i−ψ0)

and the root mean square errors (RMSE; (1/500)
∑500

i=1(ψ̂i − ψ0)2). Two

scenarios of continuous responses and count data are considered here. The

continuous response yij is generated from a linear mixed model:

yij = β0 + β1xij + bi + εij,

and εij is generated from a standard normal distribution. For count data, yij

is generated from a mixed poisson model with

logE(yij|bi) = β0 + β1xij + bi.
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We set β = (1, 1)′ and generate bi from the normal distribution N(0, θ) with

θ = 0.25. The true covariate xij is simulated from the normal distribution

N(1, 1) for the linear model and N(0.5, 1) for the Poisson model. Sample

sizes are set at N = 100 and N = 200, and the number of observations per

subject ni is set to be four. The MI were carried out with the R package

MICE, and employees the predictive mean matching method for the data

imputation. Since MICE uses a fixed seed for random number generation,

we vary this seed using the iteration time in each run. A review of this

package and comparisons with other software is given by Horton and Lipsitz

(2001). Further, we set the number of multiple imputations M = 5 which is

generally sufficient to yield efficient results (Rubin 1987). Monotone missing

data indicator Rij is generated from the following logistic model

logitλij = α0 + α1yi,j−1.

When considering a MAR missing mechanism, we set α = (3, 1)′ and α =

(3, 0.5)′ for the continuous response; we set α = (0.5, 0.5)′ and α = (0.5, 0.1)′

for the count response. When considering a MCAR missing mechanism, we

set α = (3, 0)′ for both models. These parameter setups not only lead to

difference missing data mechanism but also different percentage of missing

data.

Table 3.6-3.7 summarize the simulation results. Overall, the results

from the linear regression model have similar patterns to those of the Poisson

regression model. It can be seen that the finite sample biases and RMSE are
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reasonably small for WSBE and MI-SBE in all situations. When data MCAR

(i.e., α1 = 0), all methods performs quite similarly. This not surprising as we

show the naive SBE remains valid under MCAR. When data MAR (i.e., α1 6=

0), we can see obvious superiority of WSBE and MI-SBE over SBE in terms

of bias and RMSE, especially for the estimation of variance components.

Although in some cases the naive SBE yields relative small bias for fixed

effects, we notice there is a convergent issue for the naive method in the

computation. When sample size increases from N = 100 to N = 200, both

bias and RMSE decrease for WSBE and MI-SBE which suggest they produce

consistent estimates. However, this is not the case for naive SBE under MAR

data. In general, MI-SBE outperforms WSBE. This is not surprising as it is

documented in the literature that IPW is generally less efficient (Robins et al.

1995). To improve efficiency, one may consider applying augmented inverse

probability weight method (Robins, Rotnitzky and Zhao 1995; Rotnitzky,

Robins and Scharfstein 1998; Scharfstein, Rotnitzky and Robins 1999; Bang

and Robins 2005). Furthermore, we notice the numerical computation is

more stable in MI-SBE.
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Table 3.6: Simulation results for the liner regression model
Missingness SBE WSBE MI-SBE

Bias RMSE Bias RMSE Bias RMSE
N=100

(3, 0) β0 -0.046 0.143 -0.047 0.144 0.008 0.100
β1 0.019 0.077 0.019 0.077 -0.015 0.071
θ 0.117 0.265 0.121 0.273 0.047 0.115
φ -0.053 0.177 -0.053 0.177 -0.038 0.141

(3, 0.5) β0 -0.041 0.134 -0.058 0.139 -0.003 0.098
β1 0.019 0.075 0.012 0.075 -0.010 0.066
θ 0.135 0.268 0.102 0.248 0.026 0.112
φ -0.074 0.179 -0.020 0.166 -0.033 0.135

(3, 1) β0 -0.035 0.130 -0.069 0.148 0.008 0.106
β1 0.017 0.073 0.016 0.077 -0.017 0.058
θ 0.134 0.272 0.101 0.260 0.048 0.145
φ -0.073 0.178 -0.012 0.172 -0.008 0.131

N=200
(3, 0) β0 -0.020 0.100 -0.020 0.099 0.009 0.071

β1 0.009 0.059 0.009 0.059 -0.015 0.049
θ 0.055 0.183 0.055 0.183 0.066 0.100
φ -0.026 0.124 -0.027 0.124 -0.019 0.102

(3, 0.5) β0 -0.027 0.101 -0.042 0.104 -0.003 0.069
β1 0.006 0.062 0.008 0.060 -0.007 0.045
θ 0.085 0.209 0.045 0.187 0.044 0.081
φ -0.051 0.132 -0.002 0.123 -0.029 0.087

(3, 1) β0 -0.016 0.103 -0.037 0.102 -0.005 0.073
β1 0.023 0.157 0.011 0.058 -0.008 0.046
θ 0.080 0.188 0.037 0.175 0.042 0.090
φ -0.053 0.125 0.010 0.120 -0.023 0.099
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Table 3.7: Simulation results for the Poisson regression model

Missingness SBE WSBE MI-SBE

Bias RMSE Bias RMSE Bias RMSE

N=100

(3,0) β0 -0.143 0.389 -0.153 0.403 0.041 0.090

β1 -0.015 0.252 -0.016 0.247 -0.081 0.150

θ 0.137 0.339 0.148 0.350 -0.041 0.080

(0.5,0.5) β0 -0.262 0.488 -0.150 0.518 0.014 0.087

β1 -0.034 0.246 0.042 0.277 -0.075 0.164

θ 0.337 0.494 0.043 0.404 -0.025 0.065

(0.5,0.1) β0 -0.299 0.504 -0.145 0.410 0.026 0.086

β1 -0.034 0.255 0.023 0.280 -0.149 0.202

θ 0.362 0.532 0.068 0.328 0.036 0.081

N=200

(3,0) β0 -0.090 0.283 -0.087 0.276 0.034 0.069

β1 -0.026 0.194 -0.025 0.195 -0.076 0.123

θ 0.089 0.251 0.084 0.241 -0.027 0.060

(0.5,0.5) β0 -0.205 0.392 -0.078 0.273 0.008 0.061

β1 -0.044 0.192 0.018 0.198 -0.071 0.130

θ 0.285 0.421 -0.015 0.220 -0.003 0.047

(0.5,0.1) β0 -0.275 0.465 -0.093 0.333 0.016 0.061

β1 -0.044 0.216 0.008 0.228 -0.141 0.177

θ 0.337 0.486 0.017 0.258 0.049 0.071
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Chapter 4

Second-order Least Squares
Estimation in Linear Mixed
Models with Measurement
Error on Covariates and
Response

4.1 Introduction

Generalized linear mixed models have been widely used in the modeling of

longitudinal data where the response can be either discrete or continuous.

Various estimation methods for GLMM have been developed in the literature

(e.g, Breslow and Clayton 1993; Durbin and Koopman 1997; Rabe-Hesketh,

Skrondal and Pickles 2002). However, estimation and inference in a GLMM

remain very challenging when some of the covariates are not directly observed

but are measured with error.
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It is well-known that simply substituting a proxy variable for the unob-

served covariate in the model will generally lead to biased and inconsistent

estimates of regression coefficients and variance components (e.g, Wang and

Davidian 1996; Wang, Lin, Gutierrez, and Carroll 1998; Carroll, Ruppert,

Stefanski, and Crainiceanu 2006). To account for the measurement error

(ME) as well as the correlation in the longitudinal data, Wang, Lin, Gutierrez

and Carroll (1998) proposed the simulation extrapolation (SIMEX) method

to correct for the bias of the naive penalized quasi-likelihood estimator in a

generalized linear mixed model with measurement error (GLMMeM), while

Wang, Lin and Guittierrez (1999), and Bartlett, Stavola and Frost (2009) pro-

posed a regression calibration (RC) approach. However, it is known that both

RC and SIMEX approaches yield approximate but inconsistent estimators in

general. Tosteson, Buonaccorsi, and Demidenko (1998) proposed a bias-

corrected estimator but it was shown to be highly inefficient. Buonaccorsi,

Demidenko and Tosteson (2000) proposed the likelihood based methods and

Zhong, Fung, and Wei (2002) studied the corrected score approach. However,

the ML methods rely strongly on Gaussian assumption for random effects,

ME variables and residual error terms. In addition, the likelihood function

for GLMMeM is generally intractable. Non- or semi-parametric approaches

have also been considered for models with normally distributed measurement

errors (Tsiatis and Davidian 2001; Pan, Zeng and Lin 2009). Instrumental

variable method have been used by many researchers to overcome ME prob-

lems in cross-sectional data (Fuller 1987; Buzas and Stefanski 1996; Wang
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and Hsiao 1995, 2010; Carroll, Ruppert, Stefanski, and Crainiceanu 2006;

Schennach 2007). In practice, any variable that correlates with the error-

prone true covariate can serve as a valid Instrumental variable, e.g., a second

independently measurement. Furthermore, the assumption of instrumental

variable is weaker than that of replicate data because Instrumental variables

can be a biased observation for the true covariates (Carroll and Stefanski

1994; Carroll, Ruppert, Stefanski, and Crainiceanu 2006).

In this chapter, we follow Abarin et. al. (2010) consider the linear

mixed models with measurement error (LMMeM) which can be regarded as

a special class of GLMMeM. In this model, we not only allow covariates

but also response subject to classical ME. Also, we consider both Berkson

and classical measurement errors in covariates because it is well-known that

the Berkson and classical measurement errors lead to fundamentally differ-

ent statistical structures and therefore must be treated differently (Carroll,

Ruppert, Stefanski, and Crainiceanu 2006). A nonlinear regression model

with Berkson error is usually identifiable without extra information (Wang

2004). Classical ME models usually need extra information such as repli-

cate measurements, validation data, instrumental variables, or knowledge of

the measurement properties in order to be identifiable (Carroll, Ruppert,

Stefanski, and Crainiceanu 2006; Schennach 2007; Wang and Hsiao 2010).

Therefore, we propose an exact consistent estimation method for LMMeM

based on the method of moments and instrumental variables.
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4.2 Linear Mixed Effects Model with Mea-

surement Error

4.2.1 Model Formulation

We define a linear mixed measurement error model (LMMeM) for the jth

observation on the ith individual as

yij = X ′ijβx + Z ′ijβz +B′ijbi + εij, i = 1, . . . , N, j = 1, . . . , ni (4.1)

where yij ∈ IR is the jth response for the ith subject; bi ∈ IRq is the random

effect having mean zero, covariance D(θ) and distribution fb(t; θ) with un-

known parameters θ ∈ IRpb ; and εij’s are mutually independent error terms

with zero mean and equal variances σ2
ε ; βx ∈ IRpx and βz ∈ IRpz are vectors of

fixed effects; Zij ∈ IRpz and Bij ∈ IRq are predictors observed without error;

Xij ∈ IRpx is the unobserved predictors. Further, we observe Wij defined as

Wij = Xij + δij, (4.2)

where δij ∈ IRpx is the vector of measurement errors. This is called a classical

additive ME model (Carroll, Ruppert, Stefanski, and Crainiceanu 2006),

which is the most common model for ME on covariates. We also suggest a

classical ME for the response as

ywij = yij + ξij, (4.3)

where ξ is a random measurement error with mean zero and covariance matrix

σ2
ξI. This model also assumes that ξ is independent from y. Moreover, we
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assume that W is surrogate, which means that given the true covariates, W

does not provide any extra information about the distribution of the response.

Further, ε, δ, and ξ are assumed to be independent from all random variables

in the model, as well as from each other. Since there is no assumption

concerning the functional forms of the distributions of X, δ, ε, and ξ, model

(4.1)-(4.3) is semi-parametric.

4.2.2 Estimation and Inference

In order to overcome the ME problem on X, one might suggest to replace

it with the observed variable, which is W . This is how naive procedures

estimate the parameters. We will assess later how ignoring ME effect on

covariates and/or response can affect the estimation procedure. Moreover,

since in this model, W and δ are correlated, simply replacing X by W − δ

violates the independency of the error term ε − δ and the covariates W .

It is not obvious to determine for which parameters the naive estimator is

inconsistent, unless we have more assumptions on the model. For example,

Carroll, Ruppert, Stefanski, and Crainiceanu (2006) showed that if X is

normally distributed, a classical additive error model holds, and X and Z

are independent, then the naive estimator will be consistent only for the

fixed and the random effects corresponding to Z. Unlike classical ME, it is

straightforward to see how the ME affects the response under the classical

additive ME model in (4.3). Since this model assumes that Y and ξ are

independent, and ξ has mean zero, then the naive estimator that uses ywij
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instead of yij remains unbiased. However, ignoring ME effect on response

variable and simply assuming that the error gets absorbed into the model

error is a myth. Even an unbiased ME on response increases the variability

of the fitted model (Carroll, Ruppert, Stefanski, and Crainiceanu 2006).

Here we assume that an instrumental variable Vij is available and is

related to Xij through

Xij = γVij + Uij, (4.4)

where γ is a row full rank matrix of unknown parameters and U is inde-

pendent from V and δ, has mean zero and variance covariance matrix αI.

Substituting (4.4) into (4.2) results in a usual linear regression equation

E(Wij | Vij) = γVij. (4.5)

It is straightforward to estimate γ using (4.5), so here we assume that γ is

known. In practice, one can estimate γ either using an external independent

sample or a subset of the main sample and estimate the other parameters in

the unused sample. Based on model assumptions, we can write three sets of

marginal moments as

E(ywij | Vi) = (γVij)
′βx + Z ′ijβz, (4.6)

E(ywijy
w
ik|Vi) = E(ywij | Vi)E(ywik | Vi) +BijD(θ)B′ik

+ϕjkαβ
′
xβx + ϕjkσ

2
ε + ϕjkσ

2
ξ , (4.7)
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and

E(ywijWik | Vi) = E(ywij | Vi)γVik + ϕjkαβx (4.8)

ϕjk = 1 if j = k, and zero otherwise. Following the convention of mixed

modeling literature, throughout this chapter all expectations are taken con-

ditional on Bi and Zi implicitly. Shennach (2007), Wang and Hsiao (2010)

have shown that a general model with independent cross-sectional data can

be identified using instrumental variables and these moment equations, pro-

vided certain regularity conditions hold.

In this model, the observed variables are (ywij,W
′
ij, V

′
ij, Z

′
ij, B

′
ij)
′ and the

parameter of interest is ψ = (β′x, β
′
z, θ
′, α′, σ2

ε)
′. In practice, σ2

ξ is not usually

the parameters of interest, and its estimation is straightforward, therefore it

is assumed to be known in the following. Hence, the theoretical results may

be regarded as conditional on the pre-estimate of σ2
ξ and γ. Let ρi(ψ) as

(ywij−E(ywij | Vi), 1 ≤ j ≤ ni, y
w
ijy

w
ik−E(ywijy

w
ik|Vi), ywijWik−E(ywijWik | Vi), 1 ≤

j ≤ k ≤ ni)
′, then the method of moments estimator (MME) for ψ is defined

as

ψ̂N = argmin
ψ∈Ωψ

QN(ψ) = argmin
ψ∈Ωψ

N∑
i=1

ρ′i(ψ)Aiρi(ψ), (4.9)

where Ai is a nonnegative definite matrix which may depend on V , Z and

B. We should mention in here that adding interaction terms between X

and one or more variables in design matrix X does not affect our estimation

procedure. Wang, Lin, Gutierrez, and Carroll (1998) showed that the naive

ML estimates of the coefficients subject to ME are asymptotically biased.
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Theorem 4.2.1. Under some regularity conditions ψ̂N is strongly consistent

and
√
N(ψ̂N − ψ0)

L→ N(0, D−1
ψ CD−1

ψ ) as N →∞, where

C = E

[
∂ρ′i(ψ0)

∂ψ
Aiρi(ψ0)ρ′i(ψ0)Ai

∂ρi(ψ0)

∂ψ′

]
(4.10)

and,

Dψ = E

[
∂ρ′i(ψ0)

∂ψ
Ai
∂ρi(ψ0)

∂ψ′

]
. (4.11)

The theorem actually shows that MME gets closer to the true value of

parameter, when the sample size increases. Therefore, the finite sample bias

of this method decreases with the increase in the sample size. However, it is

not the case for the naive estimator. The bias in the naive estimator does not

decrease with the sample size since it is a function of the variability in ME.

Therefore, we expect the MME to be more efficient. The above asymptotic

covariance matrix depends on the weighting matrix Ai. It is of interest to

choose an appropriate matrix Ai to obtain the most efficient estimator. It can

be shown (Abarin and Wang 2006) that the most efficient choice of weight

is Aopti = E[ρi(ψ0)ρ′i(ψ0)|Vi]−1.

4.3 Berkson Measurement Error Models for

Covariates

4.3.1 Model Formulation

A Berkson measurement error model for Xij is defined as

Xij = Wij + δij, (4.12)
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where δ is a random measurement error with mean zero and variance co-

variance matrix σ2
δI, and independent from W . Although (4.12) might look

similar to (4.2), they are actually very different. In a Berkson model, the

true covariate is assumed to have more variability than the observed covari-

ate, and Wij is reasonably assumed to be independent of δij. Substituting

(4.3) and (4.12) into (4.1), we have

ywij = (Wij + δij)
′βx + Z ′ijβz +B′ijbi + εij + ξij. (4.13)

Comparing the parameters in (4.1) to those in (4.13), we can see that the

naive estimator of fixed effects and the variance components of θ are consis-

tent. The only variance component for which the naive estimator is inconsis-

tent, is α. Since the error in (4.13) is εij + δ′ijβx + ξij, the naive estimator is

consistent for σ2
ε + σ2

δβ
′
xβx + σ2

ξ , instead of σ2
ε . Even if we estimate σ2

ξ either

using an external sample or a subset of the main sample in advance, by

σ2
ξ =

N∑
i=1

ni∑
j=1

(ni − 1)(ywij − ȳw.j )2∑N
i=1(ni − 1)

,

σ2
ε is still not identifiable. This estimator is crucial for predicting the re-

sponse using the true covariates. More specifically, in testing hypothesis, the

presence of ME on some of the covariates, and as a result of that, overesti-

mation of σ2
ε can cause “false negative” results. It can be estimated either by

some assumptions on the distribution of X or δ, or using external or internal

subset of the primary data.
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4.3.2 Estimation and Inference

Now, we show that using only the first two moment equations, we can esti-

mate all the parameters of the model. Based on the methodology in Wang

(2004), under the model assumption, we have

E(ywij|Wi) = W ′
ijβx + Z ′ijβz, (4.14)

and the moments of Sij given W and Z are

E(ywijy
w
ik|Wi) = E(ywij|Wi)E(ywik|Wi) +BijD(θ)B′ik

+ϕikσ
2
δβ
′
xβx + ϕikσ

2
ε + ϕikσ

2
ξ , (4.15)

For this case, we define ρi(ψ) = (ywij − E(ywij|Wi), 1 ≤ j ≤ ni, y
w
ijy

w
ik −

E(ywijy
w
ik|Wi), 1 ≤ j ≤ k ≤ ni)

′, and the method of moments estimator

(MME) for ψ is defined as

ψ̂N = argmin
ψ∈Ωψ

QN(ψ) = argmin
ψ∈Ωψ

N∑
i=1

ρ′i(ψ)Aiρi(ψ), (4.16)

where Ai is a nonnegative definite matrix which may depend on W , Z and

B. Similar to the classic model for X, it can be shown that γ̂N is strongly

consistent and asymptotically normally distributed, with mean zero and the

covariance matrix is given in the same form as (4.10) and (4.11).

4.4 Monte Carlo Simulation Studies

In this section, we carry out some simulation studies with different scenarios

to show the impact of ME on covariates only, or on both covariates and
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responses, using the method of moment and the naive maximum likelihood

estimators. We are also interested in examining the effect of the sample

size on the estimators and their finite sample behavior. We examined these

issues under both an additive classical and Berkson ME models. Moreover,

we investigated the sensitivity of MME under misspecification of the ME

model.

4.4.1 Design of Simulation Studies

We considered the following LMMeM with two different sample sizes N = 100

and N = 300.

yij = β0 + β1Xij + bi + εij, j = 1, ..., 4. (4.17)

The random intercept bi was generated from a normal distribution with mean

zero and variance 0.25, and εij was generated from a standard normal dis-

tribution. For each of the sample sizes, 1000 datasets were simulated. All

computations were done in R and the maximum likelihood estimates were

obtained from the lmer package. The MME was computed using fully es-

timated optimal weight. To determine how well the methods perform, we

present the estimation bias and RMSE of the estimators. To eliminate some

potential nonlinear numerical optimization problems in the determination of

the starting points, the true parameter values were used as starting values for

the minimization and the optimal weight calculation for the MME method.

For a classical ME model, the instrumental variable was generated from
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a standard normal distribution. Therefore, we could generate X through an

instrumental model that describes the relation between X and V according

to

Xij = 1.2 + 0.4 ∗ Vij + Uij, (4.18)

where U and V are generated from a standard normal distribution. We

generated δ from a standard normal distribution. This variability of ME

on X is considered quite large in ME literature. However, in the following

simulation studies, we show that unlike some other methods such as RC,

MME works quite satisfactory, even when ME has large variability. We also

generated W according to a time variant version of model (4.2).

For the Berkson case, we considered X as a time variant variable. For

both classical and Berkson ME models, the error-prone response was gener-

ated according to model (4.17).

To examine the sensitivity of the MME when we have misspecification

in the ME model on covariates, we assumed that the true ME model for

X is classical, when it was actually Berkson. A classical ME is the most

frequently used model, so most likely to be chosen by default when one does

not know the details of the design of a study. In order to ensure that all

the relationships between the variables are satisfied, we generated U and

δ independently from a standard normal distribution, and then generated

W and V from a bivariate normal distribution with mean vector (0.2, 0)′

and variances of 3.96 and 1.4, respectively. The covariance between the two
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variables can be easily calculated based on (4.18) and the classical ME for

X. In the last step, we generated X from a Berkson model.

4.4.2 Simulation Results

Tables 4.1-4.5 summarize the results of the simulations. Tables 4.1 and 4.2

show the results for a classical model, when we have either ME on X only

(Table 4.1) or ME on both X and Y (Table 4.2). As expected, the naive

estimator for all the parameters (except θ) is more biased compared to the

MME. We also notice that the bias in MLE is persistent even when we

increase the sample size to 300 while the bias in MME reduces. MLE has a

smaller bias than MME in estimating θ because the MLE of θ0 is unbiased

(Wang, Lin, Gutierrez, and Carroll 1998). This is not very surprising since

MLE is using the strength of the full information on the distribution of X, ε,

and θ. Both estimators have smaller bias on θ when the sample size increases.

The large bias in the naive variance estimator of σ2
ε shows an overestimation

of the variability of the model error term. This bias increases even more

when MLE ignores the ME on both X and Y .

Tables 4.3 and 4.4 summarize the results for the Berkson case with

either Berkson ME on X only (Table 4.3) or Berkson ME on X and classical

ME on Y (Table 4.4). Although the MME shows a larger finite sample bias

in estimating β0, β1, and θ, the MLE has a much larger bias in estimating

σ2
ε . The finite sample bias in MME reduces with increasing N but this is not
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Table 4.1: Bias(RMSE) of the MLE and MME based on the classical ME
model with ME on X

N = 100 N = 300

True Value MLE MME MLE MME

β0 = 8 0.1031(0.1499) 0.0060(0.0921) 0.1003(0.1197) -0.0001(0.0631)

β1 = 2 -0.5068(0.5093) -0.0406(0.0669) -0.5050(0.5059) -0.0176(0.0436)

θ = 0.25 0.0078(0.1786) 0.0079(0.3487) -0.0021(0.1113) 0.0063(0.2250)

σ2
ε = 1 2.9808(2.9963) 0.0121(0.4393) 2.9961(3.0019) 0.0240(0.3018)

Table 4.2: Bias(RMSE) of the MLE and MME based on the classical ME
model with ME on both X and Y

N = 100 N = 300

True Value MLE MME MLE MME

β0 = 8 0.0952(0.1534) 0.0024(0.1036) 0.0996(0.1214) -0.0001(0.0690)

β1 = 2 -0.5035(0.5066) -0.0441(0.0759) -0.5044(0.5055) -0.0213(0.0511)

θ = 0.25 0.0221(0.2166) 0.0352(0.4088) 0.0003(0.1323) 0.0194(0.2536)

σ2
ε = 1 3.9773(3.9960) -0.0605(0.5110) 3.9874(3.9943) 0.0031(0.3433)
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the case for MLE. This bias increases to a very large amount when we have

ME on both X and Y . This indicates the large impact of ignoring ME on

both covariate and response for the naive estimator.

Table 4.3: Bias(RMSE) of the MLE and MME based on the Berkson ME
model with ME on X

N = 100 N = 300

True Value MLE MME MLE MME

β0 = 8 0.0021(0.1587) 0.0009(0.1526) -0.0006(0.0904) -0.0062(0.0952)

β1 = 2 0.0004(0.0801) -0.0322(0.0782) -0.0007(0.0456) -0.0103(0.0487)

θ = 1.96 0.0077(0.3510) -0.0942(0.4650) 0.0123(0.1994) -0.0197(0.2684)

σ2
ε = 1 0.9996(1.013) -0.0795(0.2950) 1.0052(1.0095) -0.0289(0.1760)

Table 4.4: Bias(RMSE) of the MLE and MME based on the Berkson ME
model with ME on both X and Y

N = 100 N = 300

True Value MLE MME MLE MME

β0 = 8 0.0062(0.1595) -0.0169(0.1595) -0.0013(0.0939) -0.0107(0.0977)

β1 = 2 0.0023(0.0962) -0.0295(0.0959) -0.0012(0.0555) -0.0080(0.0585)

θ = 1.96 0.0155(0.3973) 0.0180(0.5260) 0.0050(0.2243) 0.0088(0.2881)

σ2
ε = 1 1.9948(2.0098) -0.1580(0.4084) 2.0024(2.0072) -0.0485(0.2199)

Table 4.5 shows that under misspecified ME model for X, MME still

provides quite satisfying estimators for fixed effects, even for a relatively

small sample size. Although the estimators for the variance of the random
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Table 4.5: Bias(RMSE) of the MME based on the misspecified ME model
with ME on X

True Value Bias RMSE

β0 = 8 -0.0552 0.1740

β1 = 2 -0.0238 0.0851

θ = 1.96 0.3993 0.8383

σ2
ε = 1 2.5306 2.6248

effect and the model error term are biased, the results are encouraging, since

fixed effects are often of more interest. Considering that MME does not use

any distributional assumptions on any of the random variables in the model,

it still provides satisfactory estimators for most of the parameters of interest

in real applications. The large biases in θ and σ2
ε can be explained by two

factors. Firstly, the ME model is a part of the full model. If the ME model

is misspecified, the full model will be misspecified. Secondly, the correlation

between V and X is weaker than the correlation between W and X in a

Berkson case, so the estimates based on V are usually less accurate than

those based on W . Comparing Tables 4.3 and 4.5, one might find that MLE

is a better estimator, in the case of misspecification. Since the naive MLE

provides unbiased estimators for both random and fixed effects in a Berkson

ME models (Buonaccorsia and Lin 2002), it can be a better choice under the

assumed misspecification case provided the distributions of all the variables

in the model are correctly specified.
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4.5 Example - A Birth and Child Cohort Study

The simulation studies in the previous section consider a relatively simple

LMMeM. To better reflect the complexity of the LMMeMs generally ap-

plied to longitudinal studies, we generated another set of simulations where

the model considered was based on The Western Australian birth and child

(Raine) Cohort (Raine Study 2010; Abarin, Li, Wang and Briollais 2010),

an ongoing health research study in which pregnant women were recruited

between 16 and 18 weeks gestation, and their children followed up from birth

to 18-years. Simulations were used instead of the real data directly because

the true value of the variables is unknown in the real data. The LMMeM is

used to model the children’s body mass index (BMI) growth trajectories in

this study as a function of the gene FTO (fat mass and obesity-associated)

and more particularly the single-nucleotide polymorphism (SNP) rs9939609

in this gene. The purpose of our study is to test for an interaction between

this SNP and breast feeding accounting for possible ME in BMI and breast

feeding measurements.

In most longitudinal research studies, when BMI at a certain age is

collected, the variable of interest for BMI is actually the long term average

value of BMI for the person in that year. The reason why the true and

observed BMI differ is that weight has daily, as well as seasonal variation.

Moreover, since BMI only takes into consideration overall weight and height,

it can cause an overestimation or underestimation of the true BMI. For the
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ME in the response (error-prone BMI), a classical model seems reasonable,

as according to Carroll, Ruppert, Stefanski, and Crainiceanu (2006), BMI is

measured uniquely for an individual and it can also be replicated. There-

fore, we generated the observed response according to (4.3), where ξij was

generated from a normal distribution of mean zero and variance 0.1.

Some epidemiological studies showed that self-reported information on

duration of exclusive breast feeding tends to be biased (Rios, Neuhauser,

Margen and Melnick 1992). The main reason is that generally breast feeding

is mixed with other kind of milks and solids, which can mask the real effect

of ”exclusive” breast feeding (EXBF). In the modeling of BMI growth tra-

jectories, our interest is therefore to propose a ME model for the duration

of breast feeding (BF), considering EXBF as the true value. We select a

classical model for the ME of BF, as it seems there is more variability in the

observed (BF) than the true value (EXBF) (Rios, Neuhauser, Margen and

Melnick 1992). Another motivation is that the duration of breast feeding

measurements can be replicated. In some studies replicates are not avail-

able, such as measures of radiation exposure. We considered EXBF as a

time invariant variable, as it is observed once for every individual. In the ME

model, δ is generated from a standard normal distribution. In the design of

the study, if the same duration for breast feeding was assigned to a group of

women and the true value changed around it (women can feed their babies

longer or shorter time than what is assigned to them), the ME model could

be Berkson. The instrumental variable V that we use for the study is the
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minimum values of the age that women stopped breast feeding and the age

at which mothers started to feed their babies with other kind of milks. Our

study on Raine data shows that instrumental variable is related to EXBF

according to (4.18), where U is independent from V and δ, and has a stan-

dard normal distribution. We generated V from a uniform distribution with

minimum and maximum value 3 and 10 months, respectively.

We simulated data from a previous LMM applied to this data, and

considered an association between age, gender, the SNP in the FTO gene

assuming a dominant genetic model (the homozygotes for the rare allele and

heterozygotes have the same β parameters), duration of mother’s (exclusive)

breast feeding, and the interaction between the gene and the duration of ex-

clusive breast feeding as covariates, and BMI as the response. Age was our

only time-dependent variable. We generated 400 individuals with 7 obser-

vations at ages 2, 3, 5, 8, 10, 13, and 15 years. The vector of fixed effects

includes an intercept, breast feeding (error-prone variable), age, age2, age3,

gender, and the FTO SNP (carriers of the minor allele versus non-carriers

the minor allele), and also its interaction with duration of breast feeding.

We also assumed that we have a random intercept and a random effect on

age (i.e. slope parameter) for this model, as it appears that the variabil-

ity of BMI between individuals changes with age, and also at birth. We

generated the independent random effects from a normal distribution with

mean zero and a diagonal covariance matrix (θ11 = 5.5225, θ22 = 0.1156)′.

εij in this model was generated from a normal distribution with mean zero
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and variance 1.03. Based on the RAINE data, the vector of fixed effects is

(16.8, 0.6, 0.055,−0.004, 0.4,−0.2, 0.27,−0.05)′. For each of the sample sizes

considered, we generated 1000 Monte Carlo simulations and the Monte Carlo

mean estimates and root mean squared errors (RMSE) for the estimators

were computed. All computations were done in R and the naive ML esti-

mates are obtained from lmer package. We did not consider σ2
ξ , σ

2
ε , and α

as parameters of interest. Therefore, we treated them as known.

We computed the estimators of the vector of parameters using (4.9). We

used the diagonal matrix form of the weighting matrix to compute Ai. Table

4.6 shows the estimates of parameters using both the maximum likelihood

and the method of moment estimations, as well as bias and root mean squared

error of the estimators. Although for most parameters of interest MLE has

smaller RMSE, a closer look at the bias indicates that MLE is converging

to a wrong target. More specifically, for the effects that are related to ME

(like the effects for EXBF and the interaction), MME provides more accurate

estimates. As we mentioned in the previous section, the naive estimator of

the coefficients corresponding to BF are asymptotically biased. Since the

naive estimator of the coefficients corresponding to BF is biased, we can say

that the estimator of the gene-environment interaction term involving BF is

also biased. For the estimate of the residual error variance, the naive MLE

overestimates it by a large extent, while MME is nearly unbiased. This is

mainly because the variance induced by ME is not accounted for, in the naive

estimate and is subsequently attributed to the residual error .
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Table 4.6: Bias and RMSE of the MLE and MME

MLE MME

Effect True Value Bias RMSE Bias RMSE

Intercept 16.8 0.2788 0.4724 0.1369 0.4492

Age 0.6 0.0028 0.0784 -0.0337 0.1845

Age2 0.055 -0.0004 0.0103 0.0051 0.0255

Age3 -0.004 0.0000 0.0004 -0.0002 0.001

Gender 0.4 0.0033 0.2599 -0.0160 0.2968

EXBF -0.2 -0.0744 0.1092 -0.0154 0.1623

Gene 0.27 0.0528 1.0749 0.0154 1.0066

Interaction -0.05 -0.0178 0.2559 -0.0069 0.2775

θ11 5.5225 -0.0411 0.4391 -0.0035 0.4558

θ22 0.1156 0.0000 0.0085 -0.0036 0.0668

σ2
ε 1.03 -0.1004 0.1071 -0.0027 0.0945

For the effect of the FTO SNP, MME also provides a better estimator.

Carroll, Ruppert, Stefanski, and Crainiceanu (2006) showed that the naive

estimator of the effect on the accurately measured covariate that is depen-

dent on the error-prone covariate, is biased. MME also shows a smaller bias

on the estimates of intercept and θ11. Wang, Lin, Gutierrez, and Carroll

(1998) showed that the naive estimator of the intercept for Gaussian data is

asymptotically biased. However, the result is surprising for θ11, as theoreti-

cally, we do not expect to have much difference between the naive estimator

and MME. Both estimators provide quite satisfactory estimators with no ap-

parent bias for the effect of Age2, Age3, and θ22. However, MLE performs

better than MME in estimating the effects of Age and Gender. Overall, con-
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sidering the fact that MLE actually benefits from the advantage of assuming

a distribution for error terms and the ME variable, as well as random effects,

the results are even more satisfactory for MME.
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Chapter 5

Second-order Least Squares
Estimation in Generalized
Linear Mixed Models with
Measurement Error

5.1 Introduction

In Chapter 4, we studied the method of moments estimators for the LMMeM

(a special class of GLMMeM) and assumed a simple linear relationship be-

tween ME variables and instrumental variables. We derived the asymptotic

variance matrix of the MME assuming the regression coefficients between

ME variables and instrumental variables are known. This chapter further

extends the method of moments for the GLMMeM using the instrumental

variable approach. Here we only consider classical ME in covariates but as-

sume a more general nonlinear regression relationship between ME variables

and instrumental variables. We also derive the asymptotic covariance ma-
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trix of the proposed estimators by accounting for the estimation error of the

regression/nuisance parameters.

5.2 Generalized Linear Mixed Models with

Covariate Measurement Error

5.2.1 Model Formulation

Consider the following generalized linear mixed model with measurement

error (GLMMeM)

g−1 (E(yij|bi, Xij)) = X ′ijβx + Z ′ijβz +B′ijbi, (5.1)

V (yij|bi, Xij) = φν(g(X ′ijβx + Z ′ijβz +B′ijbi)) (5.2)

where i = 1, . . . , N, j = 1, . . . , ni, yij ∈ IR is the jth response for the ith

subject; bi ∈ IRq is the random effect having mean zero and distribution

fb(t; θ) with unknown parameters θ ∈ IRpb ; βx ∈ IRpx and βz ∈ IRpz are

vectors of fixed effects; g−1(·) is a link function; ν(·) is a known variance

function and φ ∈ IR is a scalar parameter that may be known or unknown.

It is assumed that yij given bi are independent and belong to an exponential

family. Further, Zij ∈ IRpz and Bij ∈ IRq are known predictors observed

without error; and Xij ∈ IRpx is unobservable. Instead one observes

Wij = Xij + δij, (5.3)

where δij is the vector of measurement errors. Model (5.1) - (5.2) has been

studied by various authors, e.g., Wang, Lin, Gutierrez, and Carroll (1998);
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Buonaccorsi, Demidenko and Tosteson (2000); Zhong, Fung and Wei (2002);

Carroll, Ruppert, Stefanski, and Crainiceanu (2006).

5.2.2 Model Identifiability

It is known that the parameters of classical ME models generally require

extra information in order to be identified (Carroll, Ruppert, Stefanski, and

Crainiceanu 2006; Schennach 2007). Moreover, even if certain ME models

are identifiable, additional information is useful to improve the efficiency of

estimation (Schneeweiss and Augustin 2005). The common source of addi-

tional data includes: replicate measurements, validation data, instrumental

variables, or knowledge of the measurement error distributions. Here we as-

sume that one observes a set of instrumental variables Vij ∈ IRpV that is

related to the error-prone predictor Xij through

Xij = m(Vij; γ) + Uij, (5.4)

where m(·) is a known function, γ ∈ IRpv is a vector of unknown parame-

ters, Uij ∈ IRpx is independent of Vij and has mean zero and distribution

fU(u;α) with unknown parameters α ∈ IRpu . Further, we assume that the

ME δij is independent of Xij, Vij and yij, E(yij|Xij, bi) = E(yij|Xij, Vij, bi)

and E(yijyik|Xij, bi) = E(yijyik|Xij, Vij, bi) where j ≤ k. Following the con-

vention of mixed modeling literature, throughout this chapter all expecta-

tions are taken conditional on Bi and Zi implicitly. There are no assumption

on the functional forms of the distributions of Xij and δij. In this model, the
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observed variables are (yij,W
′
ij, V

′
ij, Z

′
ij, B

′
ij)
′ and the parameter of interest is

ψ = (β′x, β
′
z, θ
′, α′, φ)′.

To estimate all unknown parameters in the model, we first note that

substituting (5.4) into (5.3) results in a usual regression equation

E(Wij|Vij) = m(Vij; γ) (5.5)

which can be used to obtain consistent estimator for γ by least squares

method. In practice, γ can be pre-estimated using an external sample or

a subset of the main sample. We denote Xi = (X ′i1, X
′
i2, . . . , X

′
ini

)′, and de-

note Wi, Vi, Zi, Bi and Yi analogously. By model assumptions and the law

of iterated expectation, we have the following moments

κ1,ij(ψ) = E(yij|Vi) (5.6)

= E [E(yij|bi, Xi, Vi)|Vi]

= E [E(yij|bi, Xi)|Vi]

= E
[
g(X ′ijβx + Z ′ijβz +B′ijbi)|Vi

]
=

∫
g
[
(m(Vij; γ) + u)′βx + Z ′ijβz +B′ijt

]
fb(t; θ)fU(u;α)dtdu,
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and, similarly,

κ2,ijk(ψ) = E(yijyik|Vi) (5.7)

= E [E(yij|bi, Xi)E(yik|bi, Xi)|Vi]

=

∫
g
[
(m(Vij; γ) + u)′βx + Z ′ijβz +B′ijt

]
×

g [(m(Vik; γ) + u)′βx + Z ′ikβz +B′ikt] fb(t; θ)fU(u;α)dtdu+

ϕjkφ

∫
ν{g

[
(m(Vij; γ) + u)′βx + Z ′ijβz +B′ijt

]
}fb(t; θ)fU(u;α)dtdu,

and

κ3,ijk(ψ) = E(yijWik|Vi) (5.8)

= E(yijXik|Vi)

= E [XikE(yij|bi, Xi)|Vi]

=

∫
(m(Vik; γ) + u)g

[
(m(Vij; γ) + u)′βx + Z ′ijβz +B′ijt

]
fb(t; θ)fU(u;α)dtdu,

where ϕjk = 1 if j = k and zero otherwise. In the following we consider three

popular GLMMeM examples.

Example 5.2.1. Consider a linear mixed model with continuous responses

and an identity link function g(·). Assuming Uij has mean zero and variance

matrix αI, and bi has mean zero and covariance matrix Σb, we have the

explicit form of the moments

κ1,ij(ψ) = m(Vij; γ)′βx + Z ′ijβz,

κ2,ijk(ψ) = κ1,ij(ψ)κ1,ik(ψ) +BijΣbB
′
ik + ϕjkαβ

′
xβx + ϕjkσ

2,

κ3,ijk(ψ) = κ1,ij(ψ)m(Vik; γ) + ϕjkαβx.
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It is worth noting that no distributional assumptions are required for Uij and

bi to obtain these moments.

Example 5.2.2. Consider a random intercept mixed Poisson model for

counts, where logE(yij|bi, xij) = β0 + βxxij + βzzi + βxzxijzi + bi and φ = 1;

xij, zi and bi are scalars. Assuming bi ∼ N(0, θ) and uij ∼ N(0, αI), we can

derive the explicit forms of the moments as

κ1,ij(ψ) = exp
(
β0 + (βx + βxzzi)m(vij; γ) + (β2

x + β2
xzz

2
i )α/2 + βzzi + θ/2

)
,

κ2,ijk(ψ) = κ1,ij(ψ)κ1,ik(ψ) exp
(
(β2

x + β2
xzz

2
i )α + θ

)
+ ϕjkκ1,ij(ψ),

κ3,ijk(ψ) = m(vik; γ)κ1,ij(ψ) + ϕjk(βx + βxzzi)ακ1,ij(ψ).

Example 5.2.3. Consider a mixed logistic model for a binary response yij,

where φ = 1 and g(·) is the logistic distribution function. For this model we

find

κ1,ij(ψ) =

∫
g
(
m(Vij; γ)′βx + Z ′ijβz +B′ijt

)
fb(t; θ)fU(u;α)dtdu,

κ2,ijk(ψ) =

∫
g
(
m(Vij; γ)′βx + Z ′ijβz +B′ijt

)
·g (m(Vik; γ)′βx + Z ′ikβz +B′ikt) fb(t; θ)fU(u;α)dtdu,

κ3,ijk(ψ) =

∫
(m(Vik; γ) + u)g

(
(m(Vij; γ) + u)′βx + Z ′ijβz +B′ijt

)
fb(t; θ)fU(u;α)dtdu.

The above integrals are intractable but can be approximated using Monte

Carlo simulators. This case will be treated in the next section.
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5.2.3 Estimation and Inference

Since γ is of secondary interest, it is treated as a nuisance parameter and is

estimated by nonlinear least squares (NLS) method based on equation (5.5)

as

γ̂N = argmin
γ∈Ωγ

ΨN(γ) = argmin
γ∈Ωγ

N∑
i=1

r′i(γ)ri(γ), (5.9)

where r′i(γ) = (Wij − m(Vij; γ), 1 ≤ j ≤ ni). Under standard regularity

conditions, γ̂N − γ0 = Op(N
−1/2). Then we replace γ in (5.6)-(5.8) by its

least squares estimator γ̂N and denote the moments as κ̂1,ij, κ̂2,ijk, and κ̂3,ijk

correspondingly. Throughout this chapter, we denote the parameter space of

a parameter vector, say ψ, by Ωψ. In particular, the parameter spaces of βx

and βz are denoted as Ωx and Ωz respectively. Then the method of moments

estimator (MME) for ψ is defined as

ψ̂N = argmin
ψ∈Ωψ

QN(ψ) = argmin
ψ∈Ωψ

N∑
i=1

ρ̂′i(ψ)Aiρ̂i(ψ), (5.10)

where ρ̂′i(ψ) = (yij−κ̂1,ij(ψ), 1 ≤ j ≤ ni, yijyik−κ̂2,ijk(ψ), yijWik−κ̂3,ijk(ψ), 1 ≤

j ≤ k ≤ ni) and Ai = A(Vi) is a nonnegative definite matrix that may depend

on Vi.

To derive the consistency and asymptotic normality of ψ̂N , we make

the following assumptions.

Assumption 5.2.1. g(·) and ν(·) are continuously differentiable; m(v; ·) is

a Lebegue measurable function of v and is continuously differentiable with

respect to γ.
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Assumption 5.2.2. (Yi,Wi, Vi, Zi, Bi, ni), i = 1, ..., N are independent and

identically distributed and satisfy E
[
‖Ai‖

(
y4
ij + ‖yijWij‖2 + 1

)]
< ∞; Fur-

ther, there exists a positive function G(v, t, u) satisfying

E

[
‖A‖

(∫
G(V, t, u)(‖m(V, γ) + u‖+ 1)dtdu

)2
]
<∞,

such that g2
[
(m(v, γ) + u)′βx + Z ′ijβz +B′ijt

]
fb(t; θ)fU(u;α) and

ν
{
g
[
(m(v, γ) + u)′βx + Z ′ijβz +B′ijt

]}
fb(t; θ)fU(u;α) are bounded byG(v, t, u).

Assumption 5.2.3. The parameter space Ωψ ⊂ IRpx+pz+pb+pu+1 is compact.

Assumption 5.2.4. E[ρi(ψ) − ρi(ψ0)]′Ai[ρi(ψ) − ρi(ψ0)] = 0 if and only if

ψ = ψ0.

Assumption 5.2.5. g(·) and ν(·) are twice continuously differentiable; fb(t; θ)

and fU(u;α) are twice continuously differentiable w.r.t to θ and α respectively

in some open subsets θ0 ∈ Ωθ0 ⊂ Ωθ and α ∈ Ωα0 ∈ Ωα. Furthermore, all first

and second order partial derivatives of g
[
(m(Vij, γ) + u)′βx + Z ′ijβz +B′ijt

]
fb(t; θ)fU(u;α)

and ν
{
g
[
(m(Vij, γ) + u)′βx + Z ′ijβz +B′ijt

]}
fb(t; θ)fU(u;α) w.r.t (ψ, γ) are

bounded absolutely by the positive function G(v, t, u) given in Assumption

5.2.2.

Assumption 5.2.6. The matrices

Dψ = E

[
∂ρ′i(ψ0)

∂ψ
Ai
∂ρi(ψ0)

∂ψ′

]
, (5.11)

Dγ = E

[
∂r′i(γ0)

∂γ

∂ri(γ0)

∂γ′

]
(5.12)

are nonsingular.
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Theorem 5.2.4. As N →∞,

1. under assumptions 5.2.1-5.2.4, ψ̂N
a.s.−→ ψ0;

2. under assumptions 5.2.1-5.2.6,
√
N(ψ̂N−ψ0)

L→ N(0, D−1
ψ CD−1

ψ ), where

C = E(C1C
′
1) (5.13)

C1 =
∂ρ′i(ψ0)

∂ψ
Aiρi(ψ0) +DψγD

−1
γ

∂r′i(γ)

∂γ
ri(γ) (5.14)

Dψγ = E

[
∂ρ′i(ψ0)

∂ψ
Ai
∂ρi(ψ0)

∂γ′

]
(5.15)

The second term in equation (5.14) is the correction term due to the

first-step estimation of γ. If γ0 is known or estimated using an independent

sample from the main sample, then this term vanishes and the most efficient

weight is given by Aopti = E[ρi(ψ0)ρ′i(ψ0)|Vi]−1 (Abarin and Wang 2006). In

practice, direct calculation of Aopti is not feasible since it involves unknown

parameters to be estimated. One possible solution is using a two-stage proce-

dure. First, minimize QN(ψ) using Ai = I to obtain the first stage estimator

ψ̂N1. Second, estimate Aopti by any nonparametric method or

Aopt =

(
1

N

N∑
i=1

ρi(ψ̂N1)ρ′i(ψ̂N1)

)−1

, (5.16)

and minimizing QN(ψ) again using Aopti to obtain the second stage estimator

ψ̂N2. In practice, the calculation of Aopti may be difficult or inaccurate due

to its high dimension, so one may consider using certain diagonal weight

matrix. A detailed discussion on the choice of Aopti can be found in Li and

Wang (2010).
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In general, MME can be computed using Newton-Raphson algorithm

as

ψ̂(τ+1) = ψ̂(τ) −

(
∂2QN(ψ̂(τ))

∂ψ∂ψ′

)−1
∂QN(ψ̂(τ))

∂ψ
,

where ψ̂(τ) denotes the estimate of ψ at the τ th iteration,

∂QN(ψ̂(τ))

∂ψ
= 2

N∑
i=1

∂ρ′i(ψ̂
(τ))

∂ψ
Aiρi(ψ̂

(τ)), (5.17)

∂2QN(ψ̂(τ))

∂ψ∂ψ′
= 2

N∑
i=1

[
∂ρ′i(ψ̂

(τ))

∂ψ
Ai
∂ρi(ψ̂

(τ))

∂ψ′
+ (ρ′i(ψ̂

τ )Ai ⊗ I)
∂vec(∂ρ′i(ψ̂

(τ))/∂ψ)

∂ψ′

]
.

(5.18)

Since the second term in (5.18) has expectation zero, it can be ignored for

computational simplicity.

When using the weight (5.16), the MME is able to safeguard against

influential measurements. In particular, the influence function (IF) at a single

contaminated data point v for subject l takes the form (Hampel et al., 1986)

IF(v; ψ̂N , F ) = −Dψ(ψ̂N(F ))−1∂ρ̂
′
l(v; ψ̂N(F ))

∂ψ
Al(v; ψ̂N(F ))ρ̂l(v; ψ̂N(F )),

(5.19)

where F is the underlying distribution and Dψ is given in (5.11). If ψ̂N is

computed using the estimated weight (5.16), then analogous to the proof of

Theorem 2.2.4 we can prove that
∥∥∥IF(v; ψ̂N , F )

∥∥∥ → 0 as ‖v‖ → ∞. There-

fore, the influence function of ψ̂N is bounded and ψ̂N has a redescending

property (Huber 2004), so it is robust to influential observations or outliers.
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5.3 Simulation-based Estimator

The numerical computation of MME ψ̂N is straightforward if the moments in

(5.6)-(5.8) admit explicit forms. However, sometimes the integrals involved

in these moments are intractable. In this case, we propose a simulation-

based approach. The basic idea is to replace the integrals with their Monte

Carlo simulators as follows. First, generate random points tis and uis, i =

1, 2, . . . , N ; s = 1, 2, . . . , 2S from known densities l(t) and h(u). Then use

the first half of the points tis and uis, s = 1, 2, . . . , S to compute

κ1
1,ij(ψ) =

1

S

S∑
s=1

g
[
(m(Vij; γ) + uis)

′βx + Z ′ijβz +B′ijtis
] fb(tis; θ)fU(uis;α)

l(tis)h(uis)

κ1
2,ijk(ψ) =

1

S

S∑
s=1

g
[
(m(Vij; γ) + uis)

′βx + Z ′ijβz +B′ijtis
]

g [(m(Vik; γ) + uis)
′βx + Z ′ikβz +B′iktis]

fb(tis; θ)fU(uis;α)

l(tis)h(uis)

+ϕjkφ
1

S

S∑
s=1

ν
(
g
[
(m(Vij; γ) + uis)

′βx + Z ′ijβz +B′ijtis
]) fb(tis; θ)fU(uis;α)

l(tis)h(uis)

κ1
3,ijk(ψ) =

1

S

S∑
s=1

(m(Vik; γ) + uis)g
[
(m(Vij; γ) + uis)

′βx + Z ′ijβz +B′ijtis
] fb(tis; θ)fU(uis;α)

l(tis)h(uis)

and similarly use the second half of the points tis and uis, s = S + 1, S +

2, . . . , 2S to compute κ2
1,ij(ψ), κ2

2,ijk(ψ) and κ2
3,ijk(ψ). It is easy to see that

κι1,ij(ψ), κι2,ijk(ψ) and κι3,ijk(ψ), ι = 1, 2 are unbiased estimators for κ1,ij(ψ),

κ2,ijk(ψ) and κ3,ijk(ψ) respectively. Finally, the simulation-based estimator
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(SBE) for ψ is defined as

ψ̂N,S = argmin
ψ∈Ωψ

QN,S(ψ) = argmin
ψ∈Ωψ

N∑
i=1

ρ̂′i,1(ψ)Aiρ̂i,2(ψ), (5.20)

where ρ̂i,ι(ψ) = (yij−κ̂ι1,ij(ψ), 1 ≤ j ≤ ni, yijyik−κ̂ι2,ijk(ψ), yijWik−κ̂ι3,ijk(ψ), 1 ≤

j ≤ k ≤ ni)
′. We refer this simulation technique as simulation-by-parts since

ρ̂i,1(ψ) and ρ̂i,2(ψ) are constructed by using two independent sets of random

points. The benefit of simulation by parts is that ρ̂i,1(ψ) and ρ̂i,2(ψ) are condi-

tionally independent given (Yi,Wi, Vi, Zi, Bi) so that QN,S(ψ) is an unbiased

simulator for QN(ψ) for finite S. It is worth noting that the construction of

simulated moments only requires bi and Uij to have certain known paramet-

ric forms (not necessary normal). For example, one can follow Davidian and

Gallant (1993) and Zhang and Davidian (2001) to represent the density of bi

and Uij by the standard seminonparametric density which includes normal,

skewed, multi-modal, fat- or thin-tailed densities. One can also impose the

Tukey(g, h) family distribution (Field and Genton 2006) for bi as well which

is generated by a single transformation of the standard normal and covers a

variety of distributions.

Theorem 5.3.1. Suppose that Supp(l) ⊇ Supp(fb( · ; θ)) for all θ ∈ Ωθ0,

and Supp(h) ⊇ Supp(fU( · ;α)) for all α ∈ Ωα0 . Then for any fixed S > 0,

as N →∞,

1. under assumptions 5.2.1-5.2.4, ψ̂N,S
a.s.−→ ψ0;

2. under assumptions 5.2.1-5.2.6,
√
N(ψ̂N,S − ψ0)

L→ N(0, D−1
ψ CSD

−1
ψ ),
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where

CS = E (C1SC
′
1S) , (5.21)

2C1S =
∂ρ′i,1(ψ0)

∂ψ
Aiρi,2(ψ0) +

∂ρ′i,2(ψ0)

∂ψ
Aiρi,1(ψ0) + 2DψγD

−1
γ

∂r′i(γ)

∂γ
ri(γ)

(5.22)

Note that the above asymptotic results do not require the simula-

tion size S tends to infinity because we use the simulation-by-parts tech-

nique to approximate moments. This is fundamentally different from other

simulation-based methods in the literature which typically require S goes to

infinity to obtain consistent estimators. However, due to the approximation

of marginal moments, ψ̂N,S is generally less efficient than ψ̂N . In general,

analogous to the Corollary 4 in Wang (2004) we can show that the efficiency

loss caused by simulation decreases at the rate O(1/S).

5.4 Monte Carlo Simulation Studies

In this section, we evaluate the finite sample behavior of the proposed esti-

mators, and compare them with the naive ML estimates. We carried out 500

Monte Carlo replications in each simulation study and reported the biases

and the root mean square errors (RMSE). All computations are done in R

and the naive ML estimates are obtained from glmmPQL package.

In the first simulation study, we considered the mixed Poisson model in

Example 5.2.2. We simulated δij from N(0, 1), set zi = 1 for half the sample
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and 0 for the remainder, and set N = 100, 300 and n = 4. In addition, we set

xij = 1.5 + 0.5vij + uij, vij ∼ N(0, 1) and uij ∼ N(0, 0.25). Table 5.1 reports

the simulation results. For the fixed effects associated with ME, β0, βx and

βxz, the MME is almost unbiased while the naive MLE is severely downward

biased and attenuated towards zero. The MME is considerably more efficient

than the naive MLE in terms of smaller RMSE. With the increase of sample

size from N = 100 to 300, the RMSE and biases of MME are decreasing while

the ones from the naive MLE stay almost the same. For exactly measured

effect βz, the MME still provides a better estimate in terms of biases and

RMSE which may because zi interacts with xij. The naive MLE for βz is also

biased towards zero. However, with the increase of sample sizes, the biases

and RMSE reduces for the naive MLE as well as the MME. For the random

effect σ2
b , surprisingly both estimators provide quite satisfactory estimators

with no apparent biases.

Table 5.1: Biases(RMSE) for the parameter estimates in the random inter-
cept Poisson models

N = 100 N = 300

Parameter Naive MLE MME Naive MLE MME

β0 = 1.00 1.37 (1.39) -0.22 (0.27) 1.38 (1.38) -0.20 (0.23)

βx = 1.00 -0.79 (0.79) -0.05 (0.08) -0.79 (0.79) -0.07 (0.08)

βz = −0.50 0.38 (0.47) 0.06 (0.17) 0.36 (0.40) 0.05 (0.16)

βxz = 0.25 -0.20 (0.22) -0.01 (0.10) -0.19 (0.20) -0.02 (0.08)

σ2
b=1.00 -0.03 (0.21) -0.04 (0.19) 0.03 (0.28) -0.05 (0.15)

In the second simulation study, we considered a logistic model for bi-
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nary responses. In particular, we adopted the following model used in the

simulation studies by Wang, Lin, Gutierrez, and Carroll (1998):

logit(Pr(yij = 1|bi, xij, zij)) = β0 + βxxij + βzzij + bi (5.23)

where bi ∼ N(0, 0.5), zij ∼ N(0, 1) and δij ∼ N(0, 1). In addition, we

assumed an instrumental variable is observed that relates to xij though xij =

1.5+0.5vij+uij, vij ∼ N(0, 1) and uij ∼ N(0, 0.5). In the present simulation,

we selected N = 50, 100 and n = 3. The closed form of the marginal moments

are not available so we applied the SBE in this case. To compute the SBE, we

chose the density of N(0, 2) to be h(u) and l(t), and generated independent

points uis and tis, s = 1, ..., 2S using S = 1000. The simulation results are

presented in Table 5.2. For the fixed effects associated with ME, β0 and βx,

SBE is almost unbiased while the naive ML is severely downward biased and

attenuated towards zero. With the increase of sample size from N = 50 to

100, the RMSE and biases of MME are decreasing while the ones from the

naive ML stay almost the same. This is the same findings as the ones in the

first simulation study. For exactly measured effect βz, both estimates seem

to be unbiased; however, the naive ML provides a better estimates in terms

of smaller biases and RMSE. With the increase of sample size, the RMSE

and biases from both methods are decreasing. For the random effect, the

naive ML overestimates σ2
b with larger biases as well as RMSE. With the

increase of sample size, both estimators lead to smaller biases and RMSE.
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Table 5.2: Biases(RMSE) for the parameter estimates in the random inter-
cept Logistic models

N = 50 N = 100

Parameter Naive MLE MME Naive MLE MME

β0 = 0.00 1.65 (1.69) 0.02 (0.15) 1.61 (1.62) 0.01 (0.08)

βx = 2.00 -1.31 (1.32) 0.07 (0.72) -1.32 (1.32) 0.03 (0.12)

βz = 1.00 -0.10 (0.22) -0.05 (0.49) -0.11 (0.16) 0.01 (0.22)

σ2
b = 0.50 0.64 (1.06) 0.11 (1.09) 0.51 (0.65) 0.05 (0.13)
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Chapter 6

Summary and Future Work

Longitudinal data arise in many areas, such as medical and biological sci-

ences, epidemiology, agriculture, social and environmental sciences. The dis-

tinct feature of longitudinal data is that individual subjects are measured

repeatedly across time and these measurements are likely to be correlated

within the same individual. Although there have been extensive methodolog-

ical developments for the analysis of longitudinal data, there are still many

emerging issues arising in practice. In particular, outlying data, missing data

and measurement errors are very common in longitudinal studies, and many

of these issues need to be addressed simultaneously in order to draw reli-

able conclusions from the data. Generalized linear mixed models have been

widely used in the modeling of longitudinal data where the response is dis-

crete. In statistical literature, the most popular estimation approach for the

GLMM is the maximum likelihood method. However, it is usually difficult to

obtain a closed-form expression for the likelihood function when the random
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effects are multi-dimensional. Consequently, many methods have been pro-

posed to approximate the integrals in the likelihood function. In addition,

for computational convenience, these methods routinely require the normal-

ity assumption of random effects and within-subject error variances. Since

the random effects are unobservable, it is not feasible to verify their distri-

butional assumptions. It is thus natural to be concerned with these methods

yield reliable results when the normal assumption is not appropriate.

This thesis consists of a few major contributions to the theory and

method of GLMM inferences. In this thesis, we have proposed the second-

order least squares estimation method for the GLMM. This approach does

not require the parametric assumptions for the distributions of the unob-

served random effects. This estimator can be easily computed if the two

marginal moments admit an analytic form. The potential computational

issue of deriving the moment equations with multiple integrals has been ad-

dress by using the method of simulated moments. We have established the

consistency and asymptotic normality of the proposed estimators under mild

regularity conditions. The finite sample behavior of the proposed estimators

have been examined and compared with maximum likelihood methods by

simulation studies. The asymptotic confidence intervals and testing hypoth-

esis for the parameters are not studied here but they can be a subject of

future research.

Data contaminations or data outliers are common in longitudinal data.
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It is known that likelihood-based methods are vulnerable to data outliers

because they are based on the normal distribution. It is a concern that

the second-order least squares estimators may lack robustness as the second

moments used in the estimation may enlarge the outlier impact. We have

studied the robustness property of the second-order least squares estimators

by means of the influence function. We have proved that they have bounded

influence functions under certain form of the estimated optimal weight, and

hence, they are robust against data outliers. It is noticed in our simulation

studies, there are some finite sample biases for the estimation of variance

components by the second-order least squares estimators. These biases are

downward-oriented and diminish with increasing sample sizes. We have in-

vestigated the source of this finite-sample bias and proposed a bias reduction

technique by using independent weights. Simulation studies show that the

bias reduction method works well in finite sample with small efficiency loss.

Incomplete longitudinal data are almost inevitable in longitudinal stud-

ies due to various reasons. For a valid analysis, a study of the missing

mechanism is necessary. Based on the dependence of the missing data on

the response process, Little and Rubin (2002) classified missing data mecha-

nisms into three types: Missing Completely at Random (MCAR), Missing at

Random (MAR), and Not Missing at Random (NMAR). We have shown that

the second-order least squares estimators based on observed data are valid

only under MCAR missing data mechanism. Therefore, we have adapted

the inverse probability weight method and applied the multiple imputation
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approach to accommodate MAR response data. Furthermore, we have sug-

gested a few ways to compute the optimal weight matrix under the incomplete

longitudinal data setting. A future research is to develop a strategy for using

the second-order least squares in non-ignorable missing data problems.

In comparison with the likelihood-based methods, the second-order

least squares approach produces exactly (rather than approximately) consis-

tent estimates; and it requires less distributional assumptions since it allows

random effects to have any parametric distribution (not necessarily normal).

In comparison with the generalized estimating equation approaches and asso-

ciated simulation-based methods, the proposed approach is computationally

more attractive since it does not require the simulation size to go to infinity

in order to produce exactly consistent estimates. Moreover, for computa-

tional convenience, generalized estimating equation methods routinely use

the ”working” correlation matrix which may yield inefficient estimates. In

contrast, our approach does not necessarily require the ”working” specifica-

tion of the optimal weight matrix. Unlike the generalized estimating equa-

tion methods, the proposed estimators have a well defined objective function,

which is useful for hypotheses testing and model selection. It is well known

that in the presence of outliers the generalized estimating equation methods

will fail to produce consistent estimators and lead to misleading conclusions.

A further advantage of the proposed estimators is that they have a bounded

influence function and they are robust against data outliers.
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Measurement error or errors-in-variable is another challenging area in

longitudinal data analysis. It is well-known that simply substituting a proxy

variable for the unobserved covariate in the model will generally lead to bi-

ased and inconsistent estimates. This thesis has proposed the method of

moments estimation for the generalized linear mixed model with measure-

ment error using the instrumental variable approach. This method does not

require parametric assumptions for the distributions of the unobserved co-

variates or of the measurement errors, and it allows random effects to have

any parametric distributions (not necessarily normal). The methodology is

illustrated through simulation studies. In our measurement error model for-

mulation, we have restricted our attention to the case where only fixed effects

are subject to measurement error. Although this is a common model used

in the literature, it may not always be realistic. A possible extension of the

proposed approach is for the estimation of a generalized linear mixed model

with measurement errors in both fixed and random effects. Also, it would

be worthwhile extending the proposed estimators for the situations in which

discrete variables are measured with error. This problem is common referred

to as misclassification (Carroll, Ruppert, Stefanski, and Crainiceanu 2006).

Missing data and measurement error often arise simultaneously in a real

world problem, so it would be valuable to develop the proposed methodology

to cope with these situations.
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Appendix A

Appendix: Technical Proofs

A.1 Proof of Theorem 2.2.1

First, for any 1 ≤ i ≤ N , by assumptions 2.2.1 - 2.2.2 and Cauchy-Schwartz

inequality, we have

E

[
‖Wi‖ sup

Ω

∑
j

(yij − x′ijβ)2

]
≤ 2

∑
j

E ‖Wi‖ y2
ij + 2

∑
j

E ‖Wi‖ ‖xij‖2 sup
Ω
‖β‖2

< ∞,
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and

E

[
‖Wi‖ sup

Γ

∑
j

∑
k

(yijyik − (x′ijβx
′
ikβ + z′ijDzik + δjkσ

2))2

]
≤ 2

∑
j

∑
k

E ‖Wi‖ y2
ijy

2
ik + 2

∑
j

∑
k

E ‖Wi‖ sup
Γ

(x′ijβx
′
ikβ + z′ijDzik + ϕσ2)2

≤ 2
∑
j

∑
k

E ‖Wi‖ y2
ijy

2
ik + 6

∑
j

∑
k

E ‖Wi‖ sup
Ω

∥∥x′ijβx′ikβ∥∥2

+6
∑
j

∑
k

E ‖Wi‖ sup
Θ

∥∥z′ijDzik∥∥2
+ 6ni sup

Σ
σ4E ‖Wi‖

≤ 2
∑
j

∑
k

E ‖Wi‖ y2
ijy

2
ik + 6

∑
j

∑
k

E ‖Wi‖ ‖xij‖2 ‖xik‖2 sup
Ω
‖β‖2

+6
∑
j

∑
k

E ‖Wi‖ ‖zij‖2 ‖zik‖2 sup
Θ
‖D‖2 + 6ni sup

Σ
σ4E ‖Wi‖

<∞,

which imply E supΓ ρ
′
i(ψ)Wiρi(ψ) ≤ E ‖Wi‖ supΓ ‖ρ′i(ψ)‖2 < ∞. Then, it

follows from the uniform law of large numbers (ULLN, Jennrich 1969, The-

orem 2), that 1
N
QN(ψ) converges almost surely to Q(ψ) = Eρ′i(ψ)Wiρi(ψ)

uniformly for all ψ in Γ. Furthermore, we have

Q(ψ) = Q(ψ0) + 2Eρ′i(ψ0)Wi(ρi(ψ)− ρi(ψ0)) + E(ρi(ψ)− ρi(ψ0))′Wi(ρi(ψ)− ρi(ψ0))

= Q(ψ0) + E [(ρi(ψ)− ρi(ψ0))′Wi(ρi(ψ)− ρi(ψ0))]

because ρi(ψ)− ρi(ψ0) does not depend on Yi and hence

E [ρ′i(ψ0)Wi(ρi(ψ)− ρi(ψ0))] = E [E(ρ′i(ψ0)|Xi, Zi)Wi(ρi(ψ)− ρi(ψ0))] = 0.

Therefore by assumption 2.2.3 Q(ψ) ≥ Q(ψ0) and the equality holds if and

only if ψ = ψ0. Thus, all conditions of Lemma 3 in Amemiya (1973) are

satisfied, so we have ψ̂N
a.s.−→ ψ0, as N →∞.
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A.2 Proof of Theorem 2.2.2

The first derivative ∂QN(ψ)/∂ψ exists and has the first-order Taylor expan-

sion in Γ. Since ∂QN(ψ̂N)/∂ψ = 0 and ψ̂N
a.s.−→ ψ0, for sufficiently large N

we have

∂QN(ψ̂N)

∂ψ
=
∂QN(ψ0)

∂ψ
+
∂2QN(ψ̃N)

∂ψ∂ψ′
(ψ̂N − ψ0) = 0, (A.1)

where
∥∥∥ψ̃N − ψ0

∥∥∥ ≤ ∥∥∥ψ̂N − ψ0

∥∥∥. The first derivative of QN(ψ) in (A.1) is

given by

∂QN(ψ)

∂ψ
= 2

N∑
i=1

∂ρ′i(ψ)

∂ψ
Wiρi(ψ),

where

∂ρ′i(ψ)

∂ψ
= (−(xij, 0, 0)′, 1 ≤ j ≤ ni,

−((xijx
′
ik + xikx

′
ij)β, (∂vec(D)/∂θ)vec(zijz

′
ik), δjk)

′, 1 ≤ j ≤ k ≤ ni
)
.

Moveover, since
∂ρ′i(ψ)

∂ψ
Wiρi(ψ) are i.i.d., it follows the Central Limit Theorem,

as N →∞,

1√
N

∂QN(ψ0)

∂ψ

L→ N(0, 4C), (A.2)

where C is as in (6).

The second derivative of QN(ψ) in (A.1) is given by

∂2QN(ψ)

∂ψ∂ψ′
= 2

N∑
i=1

[
∂ρ′i(ψ)

∂ψ
Wi

∂ρi(ψ)

∂ψ′
+ (ρ′i(ψ)Wi ⊗ I)

∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

]
,

where I is the 2N(p+ r + 1) dimensional identity matrix, and

∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′
= −

(
∂2µij(ψ)

∂ψ∂ψ′
, 1 ≤ j ≤ ni,

∂2ηijk(ψ)

∂ψ∂ψ′
, 1 ≤ j ≤ k ≤ ni

)′
,
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with

∂2µij(ψ)

∂ψ∂ψ′
= 0, and

∂2ηijk(ψ)

∂ψ∂ψ′
=

(
xijx

′
ik + xikx

′
ij 0

0 0

)
.

By assumptions 2.2.1-2.2.2 and Cauchy-Schwartz inequality

E sup
Γ

∥∥∥∥∂ρ′i(ψ)

∂ψ
Wi

∂ρi(ψ)

∂ψ′

∥∥∥∥ ≤ E ‖Wi‖ sup
Γ

∥∥∥∥∂ρ′i(ψ)

∂ψ

∥∥∥∥2

≤
∑
j

E ‖Wi‖ ‖xij‖2 + 2
∑
j

∑
k

E ‖Wi‖ ‖xij‖2 ‖xik‖2 sup
Ω
‖β‖2

+
∑
j

∑
k

E ‖Wi‖ sup
Θ

∥∥∥∥∂vec(D)

∂θ

∥∥∥∥2

‖zij‖2 ‖zik‖2 + niE ‖Wi‖

< ∞,

and

E

(
‖Wi‖ sup

Γ

∥∥∥∥∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

∥∥∥∥2
)
≤ E ‖Wi‖ sup

Ω

(∥∥∥∥∂2ηijk(ψ)

∂β∂β′

∥∥∥∥2
)

≤ 2
∑
j

∑
k

E ‖Wi‖ ‖xij‖2 ‖xik‖2

< ∞.

Therefore,

E sup
Γ

∥∥∥∥(ρ′i(ψ)Wi ⊗ I)
∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

∥∥∥∥
≤

√
2N(p+ r + 1)E ‖Wi‖ sup

Γ
‖ρi(ψ)‖

∥∥∥∥∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

∥∥∥∥
≤

√
2N(p+ r + 1)

(
E ‖Wi‖ sup

Γ
‖ρi(ψ)‖2

)1/2
(
E ‖Wi‖ sup

Γ

∥∥∥∥∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

∥∥∥∥2
)1/2

≤
√

2N(p+ r + 1)

(
E ‖Wi‖ sup

Γ
‖ρi(ψ)‖2

)1/2
(

2
∑
j

∑
k

E ‖Wi‖ ‖xij‖2 ‖xik‖2

)1/2

< ∞.
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It follows from the ULLN, that (1/N)∂2QN(ψ)/∂ψ∂ψ′
a.s.−→ ∂2Q(ψ)/∂ψ∂ψ′

uniformly for all ψ in Γ, where

∂2Q(ψ)

∂ψ∂ψ′
= 2E

[
∂ρ′i(ψ)

∂ψ
Wi

∂ρi(ψ)

∂ψ′
+ (ρ′i(ψ)Wi ⊗ I)

∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

]
. Thus, it follows Lemma 4 of Amemiya (1973)

1

N

∂2QN(ψ̃N)

∂ψ∂ψ′
a.s.−→ ∂2Q(ψ0)

∂ψ∂ψ
= 2B,

which is due to the fact that

E

[
(ρ′i(ψ0)Wi ⊗ I)

∂vec(∂ρ′i(ψ0)/∂ψ)

∂ψ′

]
= E

[
(E(ρ′i(ψ0)|Xi, Zi)Wi ⊗ I)

∂vec(∂ρ′i(ψ0)/∂ψ)

∂ψ′

]
= 0.

Since B is nonsingular, for sufficiently large N , we have

√
N(ψ̂N − ψ0) = −

(
1

N

∂2QN(ψ̃N)

∂ψ∂ψ′

)−1
1√
N

∂QN(ψ0)

∂ψ

Therefore, by, assumption 2.2.4 and Slutsky’s theorem, we have
√
N(ψ̂N −

ψ0)
L→ N(0, B−1CB−1).

A.3 Proof of Theorem 2.2.4

The IF (2.15) is bounded if and only if G(v; ψ̂N , F ) is bounded. Write

Û =
1

N

N∑
i=1

ρiρ
′
i =

1

N
(Vl + ρlρ

′
l),

where Vl =
∑

i 6=l ρiρ
′
i. Then by Sherman-Morrison-Woodbury formula, we

have

Û−1 = N(Vl + ρlρ
′
l)
−1 = N

(
V −1
l − V −1

l ρlρ
′
lV
−1
l

1 + ρ′lV
−1
l ρl

)
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if Vl is nonsingular, V −1
l and Û−1 exist. Therefore,

U−1ρl = N

(
V −1
l ρl −

V −1
l ρlρ

′
lV
−1
l ρl

1 + ρ′lV
−1
l ρl

)
= N

(
V −1
l ρl

1 + ρ′lV
−1
l ρl

)
,

and accordingly,∥∥∥∥∂ρ′l(ψ)

∂ψ
U−1
i ρl

∥∥∥∥2

= N2

(
ρ′lV

−1
l

∂ρi(ψ)
∂ψ

∂ρ′i(ψ)

∂ψ
V −1
l ρl

1 + ρ′lV
−1
l ρl

1

1 + ρ′lV
−1
l ρl

)
→ 0

as ‖v‖ → ∞.

A.4 Proof of Corollary 3.2.5.1

For any 1 ≤ i ≤ N , by assumptions 1-3 and Cauchy-Schwartz inequality, we

have

‖ρi(ψ)‖2 ≤ 2
∑
j

y2
ij + 2

∑
j≤k

y2
ijy

2
ik + 2

∑
j

(∫
g(x′ijβ + z′iju)fb(u; θ)du

)2

+4
∑
j≤k

(∫
g(x′ijβ + z′iju)g(x′ikβ + z′iku)fb(u; θ)du

)2

+4φ2
∑
j

(∫
ν(g(x′ijβ + z′iju))fb(u; θ)du

)2

≤ 2
∑
j

y2
ij + 2

∑
j≤k

y2
ijy

2
ik + 2

∑
j

∫
g2(x′ijβ + z′iju)fb(u; θ)du

+4
∑
j≤k

∫
g2(x′ijβ + z′iju)fb(u; θ)du

∫
g2(x′ikβ + z′iku)fb(u; θ)du

+4φ2
∑
j

(∫
ν(g(x′ijβ + z′iju))fb(u; θ)du

)2
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and therefore

E sup
Γ
ρ′i(ψ)Wiρi(ψ) ≤ E ‖Wi‖ sup

Γ
‖ρ′i(ψ)‖2

≤ 2niE ‖Wi‖ y2
ij + ni(ni + 1)E ‖Wi‖ y2

ijy
2
ik

+2niE ‖Wi‖
∫
G(Xi, Zi, u)du

+2ni

(
ni + 1 + 2 sup

Σ
φ2

)
E ‖Wi‖

(∫
G(Xi, Zi, u)du

)2

< ∞.

Hence by the ULLN, supψ∈Γ

∣∣ 1
N
QN(ψ)−Q(ψ)

∣∣ a.s.−→ 0, whereQ(ψ) = E[ρ′i(ψ)Wiρi(ψ)].

Further, since ρi(ψ)− ρi(ψ0) does not depend on Yi,

Q(ψ) = E(ρ′i(ψ)− ρ′i(ψ0) + ρ′i(ψ0))Wi(ρi(ψ)− ρi(ψ0) + ρi(ψ0))

= Q(ψ0) + E(ρi(ψ)− ρi(ψ0))′Wi(ρi(ψ)− ρi(ψ0)).

It follows from assumption 3.2.4 that Q(ψ) ≥ Q(ψ0) and the equality holds

if and only if ψ = ψ0. Thus, all conditions of Amemiya (1973) Lemma 3 are

satisfied and therefore ψ̂N
a.s.−→ ψ0, as N →∞.

A.5 Proof of Corollary 3.2.5.2

By assumption 5 and the dominated convergence theorem, the first derivative

∂QN(ψ)/∂ψ exists and has the first-order Taylor expansion in Γ. Since

ψ̂N
a.s.−→ ψ0, for sufficiently large N we have

∂QN(ψ̂N)

∂ψ
=
∂QN(ψ0)

∂ψ
+
∂2QN(ψ̃N)

∂ψ∂ψ′
(ψ̂N − ψ0) = 0, (A.3)
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where
∥∥∥ψ̃N − ψ0

∥∥∥ ≤ ∥∥∥ψ̂N − ψ0

∥∥∥. The first derivative of QN(ψ) in (A.3) is

given by

∂QN(ψ)

∂ψ
= 2

N∑
i=1

∂ρ′i(ψ)

∂ψ
Wiρi(ψ),

where

∂ρ′i(ψ)

∂ψ
= −

(
∂µij(ψ)

∂ψ
, 1 ≤ j ≤ ni,

∂ηijk(ψ)

∂ψ
, 1 ≤ j ≤ k ≤ ni

)
with nonzero first derivatives:

∂µij(ψ)

∂β
= xij

∫
g(1)(x′ijβ + z′iju)fb(u; θ)du,

∂µij(ψ)

∂θ
=

∫
g(x′ijβ + z′iju)f

(1)
b (u; θ)du,

∂ηijk(ψ)

∂β
= xij

∫
g(1)(x′ijβ + z′iju)g(x′ikβ + z′iku)fb(u; θ)du

+ xik

∫
g(x′ijβ + z′iju)g(1)(x′ikβ + z′iku)fb(u; θ)du

+ δjkφxij

∫
ν(1)(g(x′ijβ + z′iju))g(1)(x′ijβ + z′iju)fb(u; θ)du,

∂ηijk(ψ)

∂θ
=

∫
g(x′ijβ + z′iju)g(x′ikβ + z′iku)f

(1)
b (u; θ)du

+ δjkφ

∫
ν(g(x′ijβ + z′iju))f

(1)
b (u; θ)du,

∂ηijk(ψ)

∂φ
= δjk

∫
ν(g(x′ijβ + z′iju))fb(u; θ)du.

Since
∂ρ′i(ψ)

∂ψ
Wiρi(ψ) are i.i.d. with zero mean, it follows from the Central

Limit Theorem that, as N →∞,

1√
N

∂QN(ψ0)

∂ψ

L→ N(0, 4C). (A.4)
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The second derivative of QN(ψ) in (A.3) is given by

∂2QN(ψ)

∂ψ∂ψ′
= 2

N∑
i=1

[
∂ρ′i(ψ)

∂ψ
Wi

∂ρi(ψ)

∂ψ′
+ (ρ′i(ψ)Wi ⊗ I)

∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

]
,

where I is the 2N(p+ r + 1) dimensional identity matrix and

∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′
= −

(
∂2µij(ψ)

∂ψ∂ψ′
, 1 ≤ j ≤ ni,

∂2νijk(ψ)

∂ψ∂ψ′
, 1 ≤ j ≤ k ≤ ni

)′
with nonzero partial derivatives

∂2µij(ψ)

∂β∂β′
= xijx

′
ij

∫
g(2)(x′ijβ + z′iju)fb(u; θ)du,

∂2µij(ψ)

∂θ∂θ′
=

∫
g(x′ijβ + z′iju)f

(2)
b (u; θ)du,

∂2µij(ψ)

∂β∂θ′
= xij

∫
g(1)(x′ijβ + z′iju)f

(1)
b (u; θ)du,

∂2ηijk(ψ)

∂β∂β′
= xijx

′
ij

∫
g(2)(x′ijβ + z′iju)g(x′ikβ + z′iku)fb(u; θ)du

+2xijx
′
ik

∫
g(1)(x′ijβ + z′iju)g(1)(x′ikβ + z′iku)fb(u; θ)du

+xikx
′
ik

∫
g(x′ijβ + z′iju)g(2)(x′ikβ + z′iku)fb(u; θ)du

+δjkφxijx
′
ij

∫
ν(2)(g(x′ijβ + z′iju))

(
g(1)(x′ijβ + z′iju)

)2
fb(u; θ)du,

+δjkφxijx
′
ij

∫
ν(1)(g(x′ijβ + z′iju))g(2)(x′ijβ + z′iju)fb(u; θ)du,

∂2ηijk(ψ)

∂θ∂θ′
=

∫
g(x′ijβ + z′iju)g(x′ikβ + z′iku)f

(2)
b (u; θ)du

+δjkφ

∫
ν(g(x′ijβ + z′iju))f

(2)
b (u; θ)du,
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∂2ηijk(ψ)

∂β∂θ′
= xij

∫
g(1)(x′ijβ + z′iju)g(x′ikβ + z′iku)f

(1)
b (u; θ)du

+xik

∫
g(x′ijβ + z′iju)g(1)(x′ikβ + z′iku)f

(1)
b (u; θ)du

+δjkφ

∫
ν(1)(g(x′ijβ + z′iju))g(1)(x′ijβ + z′iju)f

(1)
b (u; θ)du,

By assumption 3.2.1, 3.2.2, 3.2.3, 3.2.5 and Cauchy-Schwartz inequality,
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we have

E sup
Ψ

∥∥∥∥∂ρ′i(ψ)

∂ψ
Wi

∂ρi(ψ)

∂ψ′

∥∥∥∥
≤ E ‖Wi‖ sup

Ψ

∥∥∥∥∂ρ′i(ψ)

∂ψ

∥∥∥∥2

≤ E ‖Wi‖ sup
Ψ

(∑
j

∥∥∥∥∂µij(ψ)

∂β

∥∥∥∥2

+
∑
j

∥∥∥∥∂µij(ψ)

∂θ

∥∥∥∥2

+
∑
j

∑
k

∥∥∥∥∂ηijk(ψ)

∂β

∥∥∥∥2

+
∑
j

∑
k

∥∥∥∥∂ηijk(ψ)

∂θ

∥∥∥∥2

+
∑
j

∑
k

∥∥∥∥∂ηijk(ψ)

∂φ

∥∥∥∥2
)

≤
∑
j

E ‖Wi‖ ‖xij‖2

∥∥∥∥∫ sup
Ψ
g(1)(x′ijβ + z′iju)fb(u; θ)du

∥∥∥∥2

+
∑
j

E ‖Wi‖
∥∥∥∥∫ sup

Ψ
g(x′ijβ + z′iju)f

(1)
b (u; θ)du

∥∥∥∥2

+3
∑
j

∑
k

E ‖Wi‖ ‖xij‖2

∥∥∥∥∫ sup
Ψ
g(1)(x′ijβ + z′iju)g(x′ikβ + z′iku)fb(u; θ)du

∥∥∥∥2

+3
∑
j

∑
k

E ‖Wi‖ ‖xik‖2

∥∥∥∥∫ sup
Ψ
g(x′ijβ + z′iju)g(1)(x′ikβ + z′iku)fb(u; θ)du

∥∥∥∥2

+3ni sup
Σ
φ2E ‖Wi‖ ‖xij‖2

∥∥∥∥∫ sup
Ψ
ν(1)(g(x′ijβ + z′iju))g(1)(x′ijβ + z′iju)fb(u; θ)du

∥∥∥∥2

+2
∑
j

∑
k

E ‖Wi‖
∥∥∥∥∫ sup

Ψ
g(x′ijβ + z′iju)g(x′ikβ + z′iku)f

(1)
b (u; θ)du

∥∥∥∥2

+2ni sup
Σ
φ2E ‖Wi‖

∥∥∥∥∫ sup
Ψ
ν(g(x′ijβ + z′iju))f

(1)
b (u; θ)du

∥∥∥∥2

+niE ‖Wi‖
∥∥∥∥∫ sup

Ψ
ν(g(x′ijβ + z′iju))fb(u; θ)du

∥∥∥∥2

< ∞,
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E

(
‖Wi‖ sup

Ψ

∥∥∥∥∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

∥∥∥∥2
)

≤ E ‖Wi‖ sup
Ψ

(∥∥∥∥∂2µij(ψ)

∂β∂β′

∥∥∥∥2

+

∥∥∥∥∂2µij(ψ)

∂θ∂θ′

∥∥∥∥2

+ 2

∥∥∥∥∂2µij(ψ)

∂β∂θ′

∥∥∥∥2
)

+E ‖Wi‖ sup
Ψ

(∥∥∥∥∂2ηijk(ψ)

∂β∂β′

∥∥∥∥2

+

∥∥∥∥∂2ηijk(ψ)

∂θ∂θ′

∥∥∥∥2

+ 2

∥∥∥∥∂2ηijk(ψ)

∂β∂θ′

∥∥∥∥2
)

≤
∑
j

E ‖Wi‖
∥∥∥∥xijx′ij ∫ sup

Ψ
g(2)(x′ijβ + z′iju)fb(u; θ)du

∥∥∥∥2

+
∑
j

E ‖Wi‖
∥∥∥∥∫ sup

Ψ
g(x′ijβ + z′iju)f

(2)
b (u; θ)du

∥∥∥∥2

+2
∑
j

E ‖Wi‖
∥∥∥∥xij ∫ sup

Ψ
g(1)(x′ijβ + z′iju)f

(1)
b (u; θ)du

∥∥∥∥2

+5
∑
j

∑
k

E ‖Wi‖
∥∥∥∥xijx′ij ∫ sup

Ψ
g(2)(x′ijβ + z′iju)g(x′ikβ + z′iku)fb(u; θ)du

∥∥∥∥2

+20
∑
j

∑
k

E ‖Wi‖
∥∥∥∥x′ijx′ik ∫ sup

Ψ
g(1)(x′ijβ + z′iju)g(1)(x′ikβ + z′iku)du

∥∥∥∥2

+5
∑
j

∑
k

E ‖Wi‖
∥∥∥∥xikx′ik ∫ sup

Ψ
g(x′ijβ + z′iju)g(2)(x′ikβ + z′iku)fb(u; θ)du

∥∥∥∥2

+5ni sup
Σ
φ2E ‖Wi‖

∥∥∥∥xijx′ij ∫ sup
Ψ
ν(2)(g(x′ijβ + z′iju))g(1)(x′ijβ + z′iju)fb(u; θ)du

∥∥∥∥2

+5ni sup
Σ
φ2E ‖Wi‖

∥∥∥∥xijx′ij ∫ sup
Ψ
ν(1)(g(x′ijβ + z′iju))g(2)(x′ijβ + z′iju)fb(u; θ)du

∥∥∥∥2

+2
∑
j

∑
k

E ‖Wi‖
∥∥∥∥∫ sup

Ψ
g(x′ijβ + z′iju)g(x′ikβ + z′iku)f

(2)
b (u; θ)du

∥∥∥∥2

+2ni sup
Σ
φ2E ‖Wi‖

∥∥∥∥∫ sup
Ψ
ν(g(x′ijβ + z′iju))f

(2)
b (u; θ)du

∥∥∥∥2

+6
∑
j

∑
k

E ‖Wi‖
∥∥∥∥x′ij ∫ sup

Ψ
g(1)(x′ijβ + z′iju)g(x′ikβ + z′iku)f

(1)
b (u; θ)du

∥∥∥∥2

+6
∑
j

∑
k

E ‖Wi‖
∥∥∥∥x′ik ∫ sup

Ψ
g(x′ijβ + z′iju)g(1)(x′ikβ + z′iku)f

(1)
b (u; θ)du

∥∥∥∥2

+6ni sup
Σ
φ2E ‖Wi‖

∥∥∥∥∫ sup
Ψ
ν(1)(g(x′ijβ + z′iju))g(1)(x′ijβ + z′iju)f

(1)
b (u; θ)du

∥∥∥∥2

< ∞.
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Therefore,

E sup
Γ

∥∥∥∥(ρ′i(ψ)Wi ⊗ I)
∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

∥∥∥∥
≤

√
2N(p+ r + 1)E ‖Wi‖ sup

Γ
‖ρi(ψ)‖

∥∥∥∥∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

∥∥∥∥
≤

√
2N(p+ r + 1)

(
E ‖Wi‖ sup

Γ
‖ρi(ψ)‖2

)1/2
(
E ‖Wi‖ sup

Γ

∥∥∥∥∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

∥∥∥∥2
)1/2

< ∞.

By the ULLN and Lemma 4 of Amemiya (1973), we have

1

2N

∂2QN(ψ)

∂ψ∂ψ′
a.s.−→ E

[
∂ρ′i(ψ)

∂ψ
Wi

∂ρi(ψ)

∂ψ′
+ (ρ′i(ψ)Wi ⊗ I)

∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

]
= B

(A.5)

where the second equality holds because

E

[
(ρ′i(ψ0)Wi ⊗ I)

∂vec(∂ρ′i(ψ0)/∂ψ)

∂ψ′

]
= 0.

The result then follows from (A.3) - (A.5), assumption 3.2.6 and Slutsky’s

theorem.
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A.6 Proof of Theorem 3.2.4.1

First, the conditional expectation satisfies

E

(
sup

Γ
‖ρi,1(ψ)‖ |Yi, Xi, Zi

)
≤

∑
j

|yij|+
∑
j≤k

|yijyik|+
1

S

∑
j

S∑
s=1

E

(
supΓ

∣∣g(x′ijβ + z′ijuis)
∣∣ fb(uis; θ)

h(uis)

∣∣∣∣∣Xi, Zi

)

+
1

S

∑
j≤k

S∑
s=1

E

(
supΓ

∣∣g(x′ijβ + z′ijuis)g(x′ikβ + z′ikuis)
∣∣ fb(uis; θ)

h(uis)

∣∣∣∣∣Xi, Zi

)

+
supΣ φ

S

∑
j

S∑
s=1

E

(
supΓ

∣∣ν(g(x′ijβ + z′ijuis))
∣∣ fb(uis; θ)

h(uis)

∣∣∣∣∣Xi, Zi

)

≤
∑
j

|yij|+
∑
j≤k

|yijyik|+
∑
j

(∫
sup

Γ

∣∣g(x′ijβ + z′iju)
∣∣ fb(u; θ)du

)
+
∑
j≤k

(∫
sup

Γ

∣∣g(x′ijβ + z′iju)g(x′ikβ + z′iku)
∣∣ fb(u; θ)du

)
+ sup

Σ
φ
∑
j

(∫
sup

Γ

∣∣ν(g(x′ijβ + z′iju))
∣∣ fb(u; θ)du

)
.

Similarly, the above upper bound applies to E (supΓ ‖ρi,2(ψ)‖ |Yi, Xi, Zi) as

well. Further, since ρi,1 and ρi,2 are conditionally independent given (Yi, Xi, Zi),

we have

E

(
sup

Γ
|ρi,1(ψ)Wiρi,2(ψ)|

)
≤ E

[
‖Wi‖E

(
sup

Γ
‖ρi,1(ψ)‖ |Yi, Xi, Zi

)
E

(
sup

Γ
‖ρi,2(ψ)‖ |Yi, Xi, Zi

)]
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≤ E ‖Wi‖

(∑
j

|yij|+
∑
j≤k

|yijyik|+
∑
j

∫
sup

Γ

∣∣g(x′ijβ + z′iju)
∣∣ fb(u; θ)du

+
∑
j≤k

∫
sup

Γ

∣∣g(x′ijβ + z′iju)g(x′ikβ + z′iku)
∣∣ fb(u; θ)du

+ sup
Σ
φ
∑
j

∫
sup

Γ

∣∣ν(g(x′ijβ + z′iju))
∣∣ fb(u; θ)du

)2

.

Analogous to the proof of Corollary 3.1.1, we have E (supΓ |ρi,1(ψ)Wiρi,2(ψ)|) <

∞, and therefore by the ULLN,

1

N
QN,S(ψ)

a.s.−→ Eρ′i,1(ψ)Wiρi,2(ψ)

uniformly in ψ ∈ Γ, where

Eρ′i,1(ψ)Wiρi,2(ψ) = E[E(ρ′i,1(ψ)|Xi, Zi)WiE(ρ′i,2(ψ)|Xi, Zi)] = Q(ψ).

It has been proved previously that Q(ψ) attains a unique minimum at ψ0 ∈ Γ.

Therefore, by Lemma 3 of Amemiya (1973), ψ̂N,S
a.s.−→ ψ0, as N

a.s.−→∞.

A.7 Proof of Theorem 3.2.4.2

For sufficiently large N we have

∂QN,S(ψ0)

∂ψ
+
∂2QN,S(ψ̃N,S)

∂ψ∂ψ′
(ψ̂N,S − ψ0) = 0, (A.6)

where
∥∥∥ψ̃N,S − ψ0

∥∥∥ ≤ ∥∥∥ψ̂N,S − ψ0

∥∥∥ and the first derivative

∂QN,S(ψ)

∂ψ
=

N∑
i=1

(
∂ρ′i,1(ψ)

∂ψ
Wiρi,2(ψ) +

∂ρ′i,2(ψ)

∂ψ
Wiρi,1(ψ)

)
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is a summation are i.i.d. terms with mean zero and common covariance

matrix

4CS = E

[
∂ρ′i,1(ψ0)

∂ψ
Wiρi,2(ψ0)ρ′i,2(ψ0)Wi

∂ρi,1(ψ0)

∂ψ′

]
+E

[
∂ρ′i,1(ψ0)

∂ψ
Wiρi,2(ψ0)ρ′i,1(ψ0)Wi

∂ρi,2(ψ0)

∂ψ′

]
+E

[
∂ρ′i,2(ψ0)

∂ψ0

Wiρi,1(ψ0)ρ′i,2(ψ0)Wi
∂ρi,1(ψ0)

∂ψ′

]
+E

[
∂ρ′i,2(ψ0)

∂ψ
Wiρi,1(ψ)ρ′i,1(ψ0)Wi

∂ρi,2(ψ0)

∂ψ′

]
.

Hence by the central limit theorem we have

1√
N

∂QN,S(ψ)

∂ψ

a.s.−→ N(0, 4CS). (A.7)

Next, the second derivative is given by

∂2QN,S(ψ)

∂ψ∂ψ′
=

N∑
i=1

[
∂ρ′i,1(ψ)

∂ψ
Wi

∂ρi,2(ψ)

∂ψ′
+ (ρ′i,2(ψ)Wi ⊗ I)

∂vec(∂ρ′i,1(ψ)/∂ψ)

∂ψ′

]

+
N∑
i=1

[
∂ρ′i,2(ψ)

∂ψ
Wi

∂ρi,1(ψ)

∂ψ′
+ (ρ′i,1(ψ)Wi ⊗ I)

∂vec(∂ρ′i,2(ψ)/∂ψ)

∂ψ′

]
,

where I is the 2N(p+r+1) dimensional identity matrix. Similar to previous

proofs, it can be shown that 1
N

∂2QN,S(ψ)

∂ψ∂ψ′
converges to

E

[
∂ρ′i,1(ψ0)

∂ψ
Wi

∂ρi,2(ψ0)

∂ψ′
+ (ρ′i,2(ψ0)Wi ⊗ I)

∂vec(∂ρ′i,1(ψ0)/∂ψ)

∂ψ′

]
+E

[
∂ρ′i,2(ψ0)

∂ψ
Wi

∂ρi,1(ψ0)

∂ψ′
+ (ρ′i,1(ψ0)Wi ⊗ I)

∂vec(∂ρ′i,2(ψ0)/∂ψ)

∂ψ′

]
,

uniformly for all ψ ∈ Γ. Since

E

[
∂ρ′i,1(ψ0)

∂ψ
Wi

∂ρi,2(ψ0)

∂ψ′

]
= E

[
∂ρ′i(ψ0)

∂ψ
Wi

∂ρi(ψ0)

∂ψ′

]
= B
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and

E

[
(ρ′i,1(ψ0)Wi ⊗ I)

∂vec(∂ρ′i,2(ψ0)/∂ψ)

∂ψ′

]
= 0,

we have

1

N

∂2QN,S(ψ)

∂ψ∂ψ′
a.s.−→ 2B. (A.8)

Finally, the result follows from (A.6)-(A.8) and Slutsky’s theorem.

A.8 Derivation of the Working Optimal Weight

Matrix

A.8.1 Gaussian Assumption

Assume yi is from a multivariate normal distribution, and we denote σijk =

E(yij − uij)(yik − uik). The third moment of yi, for all j, k, l is

cov(yij, yikyil) = E(yijyikyil)− E(yij)E(yikyil)

= E[(yij − µij)(yikyil)]

= E[(yij − µij)(yik − µik)(yil − µil)] + µilσijk + µikσijl

+µikµilE[(yij − µij)]

= µilσijk + µikσijl,

since E[(yij − µij)(yik − µik)(yil − µil)] = 0 under normality assumption.
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The fourth moment of yi, for all j, k, l, t is,

cov(yijyik, yilyit)

= E(yijyikyilyit)− E(yijyik)E(yilyit)

= E[(yij − µij)(yik − µik)(yil − µil)(yit − µit)]

+µijE[(yik − µik)(yil − µil)(yit − µit)] + µikE[(yij − µij)(yil − µil)(yit − µit)]

+µilE[(yij − µij)(yik − µik)(yit − µit)] + µitE[(yij − µij)(yik − µik)(yit − µit)]

+µijµikE[(yil − µil)(yit − µit)] + µijµilE[(yik − µik)(yit − µit)]

+µijµitE[(yil − µil)(yik − µik)] + µikµilE[(yij − µij)(yit − µit)]

+µikµitE[(yij − µij)(yil − µil)] + µilµitE[(yij − µij)(yil − µil)]

+µijµikµilµit

−(E[(yij − µij)(yik − µik)] + µijµik)(E[(yil − µil)(yit − µit)] + µilµit)

= σijlσikt + σijtσikl + µikµilσijt + µijµilσikt + µikµitσijl + µijµitσikl.

since E[(yij − µij)(yik − µik)(yil − µil)(yit− µit)] = σijkσilt + σijlσikt + σijtσikl

under normality assumption.

A.8.2 Independence Assumption

Assume independence among the elements of yi. The third moment is

cov(yij, yikyil) = E(yijyikyil)− E(yij)E(yikyil).
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(i). If j = k = l, we have

cov(yij, yikyil) = E(y3
ij)− E(yij)E(y2

ij)

= E[(yij − µij)3] + 3µijσijj − 2µ3
ij − µijσijj

= E[(yij − µij)3] + 2µijσijj − 2µ3
ij.

(ii). If j = l 6= k, since E(yijyikyij) = E(y2
ij)E(yik) andE(yijyik) = E(yij)E(yik)

under independence assumption. Then it follows that

cov(yij, yikyil) = E(y2
ij)E(yik)− (E(yij))

2E(yik)

= µijσijj.

(iii). If j = k 6= l, similar to above, we have

cov(yij, yikyil) = E(y2
ij)E(yil)− (E(yij))

2E(yil)

= µilσijj.

(iv). If j 6= k 6= l, E(yijyikyil) = E(yij)E(yik)E(yil) and E(yij)E(yikyil) =

E(yij)E(yik)E(yil) under independence assumption. We have obviously

cov(yij, yikyil) = 0.

The fourth moment is

cov(yijyik, yilyit) = E(yijyikyilyit)− E(yijyik)E(yilyit).
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(i). If j = k = l = t, we have

cov(yijyik, yilyit) = E(y4
ij)− [E(y2

ij)]
2

= E(y4
ij)− µ2

ij − σijj.

(ii). if j = k = l 6= t, E(yijyijyijyit) = E(y3
ij)E(yit) and E(yijyij)E(yijyit) =

E(y2
ij)E(yij)E(yit) under independence assumption. Then it follows

that

cov(yijyik, yilyit) = E(y3
ij)µit − E(y2

ij)µijµit

= E[(yij − µij)3]µit + µ3
ijµit + 3µijµitσijj − (µijµitσijj + µ3

ijµit)

= E[(yij − uij)3]µit + 2µijµitσijj.

(iii). If j = k = l 6= t, similar to above, we have

cov(yijyik, yilyit) = E[(yij − uij)3]µil + 2µijµilσijj.

(iv). If j 6= k 6= l 6= t, under independence assumption, we have obviously,

cov(yijyik, yilyit) = 0.

(v). If (j = k) 6= (l = t), E(yijyijyilyil) = E(y2
ij)E(yil)

2 under independence

assumption. Then it follows that

cov(yijyik, yilyit) = E(y2
ij)E(yil)

2 − E(y2
ij)E(y2

il) = 0.
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A.9 Proof of Theorem 5.2.4.1

By assumption 5.2.1 and the Dominated Convergence Theorem (DCT), we

have the first-order Taylor expansion about γ0.

QN(ψ) =
N∑
i=1

ρ′i(ψ)Aiρi(ψ) + 2
N∑
i=1

ρ′i(ψ, γ̃)Ai
∂ρi(ψ, γ̃)

∂γ′
(γ̂N − γ0), (A.9)

where ‖γ̃ − γ0‖ ≤ ‖γ̂N − γ0‖. Further, for any 1 ≤ i ≤ N , by assumptions

5.2.1-5.2.3 and Cauchy-Schwartz inequality, we have

‖ρi(ψ)‖2

≤ 2
∑
j

y2
ij + 2

∑
j≤k

y2
ijy

2
ik + 2

∑
j≤k

‖yijWik‖2

+2
∑
j

(∫
g
[
(m(Vij; γ) + u)′βx + Z ′ijβz +B′ijt

]
fb(t; θ)fU(u;α)dtdu

)2

+4
∑
j≤k

(∫
g
[
(m(Vij; γ) + u)′βx + Z ′ijβz +B′ijt

]
g [(m(Vik; γ) + u)′βx + Z ′ikβz +B′ikt] fb(t; θ)fU(u;α)dtdu)

2

+4φ2
∑
j

(∫
ν{g

[
(m(Vij; γ) + u)′βx + Z ′ijβz +B′ijt

]
}fb(t; θ)fU(u;α)dtdu

)2

+2
∑
j≤k

(∫
‖m(Vik; γ) + u‖ g

[
(m(Vij; γ) + u)′βx + Z ′ijβz +B′ijt

]
fb(t; θ)fU(u;α)dtdu

)2
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and therefore

E sup
Ωψ

|ρ′i(ψ)Aiρi(ψ)| ≤ E ‖Ai‖ sup
Ωψ

‖ρi(ψ)‖2

≤ 2niE ‖Ai‖ y2
ij + ni(ni + 1)

(
E ‖Ai‖ y2

ijy
2
ik + E ‖Ai‖ ‖yijWik‖2)

+2niE ‖Ai‖
(∫

G(Vi, Zi, t, u)dtdu

)
+2ni

(
ni + 1 + 2 sup

Ωφ

φ2

)
E ‖Ai‖

(∫
G(Vi, Zi, t, u)dtdu

)2

+ni(ni + 1)E ‖Ai‖
(∫

G(Vi, Zi, t, u) ‖m(V ; γ0) + u‖ dtdu
)2

< ∞.

Hence by the uniform law of large numbers (ULLN),

sup
ψ∈Ωψ

∣∣∣∣∣ 1

N

N∑
i=1

ρ′i(ψ)Aiρi(ψ)−Q(ψ)

∣∣∣∣∣ a.s.−→ 0, (A.10)

where Q(ψ) = E[ρ′i(ψ)Wiρi(ψ)]. Similarly, by assumption 5.2.1-5.2.3 and

5.2.5 we can show(
E sup

Ωψ ,Ωγ

∥∥∥∥ρ′i(ψ, γ)Ai
∂ρi(ψ, γ)

∂γ′

∥∥∥∥
)2

≤ E ‖Ai‖ sup
Ωψ ,Ωγ

‖ρ′i(ψ, γ)‖2
E ‖Ai‖

∥∥∥∥∂ρi(ψ, γ)

∂γ′

∥∥∥∥2

<∞,

then again by the ULLN,

sup
Ωψ ,Ωγ

∥∥∥∥∥ 1

N

N∑
i=1

ρ′i(ψ, γ)Ai
∂ρi(ψ, γ)

∂γ′

∥∥∥∥∥ = O(1) (a.s.)

Therefore,

sup
Ωψ

∥∥∥∥∥ 1

N

N∑
i=1

ρ′i(ψ, γ̃)Ai
∂ρi(ψ, γ̃)

∂γ′
(γ̂N − γ0)

∥∥∥∥∥
≤ sup

Ωψ ,Ωγ

∥∥∥∥∥ 1

N

N∑
i=1

ρ′i(ψ, γ)Ai
∂ρi(ψ, γ)

∂γ′

∥∥∥∥∥ ‖γ̂N − γ0‖
a.s.−→ 0. (A.11)
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It follows (A.9) - (A.11) that

sup
Ωγ

∣∣∣∣ 1

N
QN(ψ)−Q(ψ)

∣∣∣∣ a.s.−→ 0. (A.12)

Furthermore, Q(ψ) = Q(ψ0) + E[ρi(ψ)− ρi(ψ0))′Ai(ρi(ψ)− ρi(ψ0)], then by

assumption 5.2.4, Q(ψ) ≥ Q(ψ0) and the equality holds if and only if ψ = ψ0.

Thus, all conditions of Amemiya (1973) Lemma 3 are satisfied and therefore

ψ̂N
a.s.−→ ψ0, as N →∞.

A.10 Proof of Theorem 5.2.4.2

By assumption 5.2.5 and the DCT, the first derivative ∂QN(ψ)/∂ψ exists

and has the first-order Taylor expansion in the open neighborhood Ωψ0 ∈ Ωψ

of ψ0. Since ψ̂N
a.s.−→ ψ0, for sufficiently large N we have

∂QN(ψ̂N)

∂ψ
=
∂QN(ψ0)

∂ψ
+
∂2QN(ψ̃N)

∂ψ∂ψ′
(ψ̂N − ψ0) = 0, (A.13)

where
∥∥∥ψ̃N − ψ0

∥∥∥ ≤ ∥∥∥ψ̂N − ψ0

∥∥∥. The first and second derivative of QN(ψ)

in (A.13) are given in (5.17) and (5.18).

Analogous to the proof of Theorem 5.2.4.1, by assumption 5.2.1 - 5.2.5

and Cauchy-Schwartz inequality, we can verify that

E sup
Ωψ

∥∥∥∥∂ρ′i(ψ)

∂ψ
Ai
∂ρi(ψ)

∂ψ′

∥∥∥∥ ≤ E ‖Ai‖ sup
Ωψ

∥∥∥∥∂ρ′i(ψ)

∂ψ

∥∥∥∥2

<∞

and

E sup
Ωψ

∥∥∥∥(ρ′i(ψ)Ai ⊗ I)
∂vec(∂ρ′i(ψ)/∂ψ)

∂ψ′

∥∥∥∥ <∞.
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Therefore by the ULLN and Lemma 4 of Amemiya (1973), we have

1

2N

∂2QN(ψ̃)

∂ψ∂ψ′
a.s.−→ E

[
∂ρ′i(ψ0)

∂ψ
Ai
∂ρi(ψ0)

∂ψ′
+ (ρ′i(ψ0)Ai ⊗ I)

∂vec(∂ρ′i(ψ0)/∂ψ)

∂ψ′

]
= Dψ

(A.14)

where Dψ is given in (5.11) and the second equality holds because

E

[
(ρ′i(ψ0)Ai ⊗ I)

∂vec(∂ρ′i(ψ0)/∂ψ)

∂ψ′

]
= 0.

Then by assumption 5.2.6 and (A.14), we rearrange (A.13) as

√
N(ψ̂N − ψ0) = (2Dψ)−1

(
− 1√

N

∂QN(ψ0)

∂ψ

)
(A.15)

For by assumption 5.2.5 and DCT, we have the first-order Taylor expansion

of ∂QN (ψ0)
∂ψ

about γ0:

∂QN(ψ0)

∂ψ
= 2

N∑
i=1

∂ρ′i(ψ0)

∂ψ
Aiρi(ψ0) +

∂2Q̃N(ψ0)

∂ψ∂γ′
(γ̂ − γ0), (A.16)

where ‖γ̃ − γ0‖ ≤ ‖γ̂ − γ0‖ and

∂2Q̃N(ψ0)

∂ψ∂γ′
= 2

N∑
i=1

[
∂ρ′i(ψ0, γ̃)

∂ψ
Ai
∂ρ′i(ψ0, γ̃)

∂γ′
+ (ρ′i(ψ0, γ̃)Ai ⊗ I)

∂vec(∂ρ̂′i(ψ0, γ̃)/∂ψ)

∂γ′

]
.

Similarly to the derivation of (A.14), we can show

1

2N

∂2Q̃N(ψ0)

∂ψ∂γ′
a.s.−→ E

[
∂ρ′i(ψ0)

∂ψ
Ai
∂ρi(ψ0)

∂γ′

]
= Dψγ. (A.17)

Then by (A.15)-(A.17), we have

√
N(ψ̂N −ψ0) = D−1

ψ

(
−N−1/2

N∑
i=1

∂ρ′i(ψ0)

∂ψ
Aiρi(ψ0)

)
+D−1

ψ Dψγ

√
N(γ̂− γ0)

(A.18)
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Therefore, if Dψγ = 0 we can ignore the effect of γ̂ and simply treated it as

a known constant. If Dψγ 6= 0, we need to make some adjustments to the

asymptotic variance of
√
N(ψ̂N − ψ0). Since γ̂N − γ0 = Op(N

−1/2), we have

the first-order Taylor expansion in the open neighborhood Ωγ0 ∈ Ωγ of γ0

∂Ψ(γ̂)

∂γ
=
∂Ψ(γ0)

∂γ
+
∂2Ψ(γ̃)

∂γ∂γ′
(γ̂N − γ0) = 0, (A.19)

By assumption 5.2.6, we can have the following representation of γ̂N

√
N(γ̂ − γ0) = D−1

γ

(
−N1/2

N∑
i=1

∂r′i(γ)

∂γ
ri(γ)

)
= N−1/2

N∑
i=1

(
−D−1

γ

∂r′i(γ)

∂γ
ri(γ)

)
,

(A.20)

where Dγ is given in (5.12). Then plug it back into (A.18), we have

√
N(ψ̂N − ψ0) = −D−1

ψ N−1/2

N∑
i=1

(
∂ρ′i(ψ0)

∂ψ
Aiρi(ψ0) +DψγD

−1
γ

∂r′i(γ)

∂γ
ri(γ)

)
(A.21)

Finally, the theorem follows from (A.13) - (A.21), CLT and Slutsky’s Theo-

rem.
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A.11 Proof of Theorem 5.3.1.1

By assumption 5.2.1 and the DCT, QN,S(ψ) has the first-order Taylor ex-

pansion about γ0,

QN,S(ψ) =
N∑
i=1

ρ′i,1(ψ)Aiρi,2(ψ)

+
N∑
i=1

[
ρ′i,1(ψ, γ̃)Ai

∂ρi,2(ψ, γ̃)

∂γ′
+ ρ′i,2(ψ, γ̃)Ai

∂ρi,1(ψ, γ̃)

∂γ′

]
(γ̂N − γ0),

(A.22)

where ‖γ̃N − γ0‖ ≤
∥∥∥ψ̂N − ψ0

∥∥∥. Since ρi,1 and ρi,2 are conditionally indepen-

dent given (Yi,Wi, Vi, Zi, Bi), analogous to the proof of Theorem 5.2.4.1, by

assumptions 5.2.1-5.2.3 and Cauchy-Schwartz inequality, we have

E

(
sup

Γ
|ρ′i,1(ψ)Aiρi,2(ψ)|

)
<∞.

Hence by the ULLN, 1
N

∑N
i=1 ρ

′
i,1(ψ)Aiρi,2(ψ)

a.s.−→ Eρ′i,1(ψ)Wiρi,2(ψ) uni-

formly in ψ ∈ Γ, where

Eρ′i,1(ψ)Wiρi,2(ψ) = E[E(ρ′i,1(ψ)|Yi,Wi, Vi, Zi, Bi)WiE(ρ′i,2(ψ)|Yi,Wi, Vi, Zi, Bi)] = Q(ψ).

Similar to proof of Theorem 5.2.4.1, we can show that

sup
Γ

∥∥∥∥∥ 1

N

N∑
i=1

ρ′i,2(ψ, γ̃)Ai
∂ρi,1(ψ, γ̃)

∂γ′
(γ̂N − γ0)

∥∥∥∥∥
≤ sup

(Γ,Υ)

∥∥∥∥∥ 1

N

N∑
i=1

ρ′i,2(ψ, γ̃)Ai
∂ρi,1(ψ, γ̃)

∂γ′

∥∥∥∥∥ ‖γ̂N − γ0‖
a.s.−→ 0. (A.23)

It then follows that

sup
Γ

∣∣∣∣ 1

N
QN,S(ψ)−Q(ψ)

∣∣∣∣ a.s.−→ 0. (A.24)
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It has been proved previously that Q(ψ) attains a unique minimum

at ψ0 ∈ Γ. Therefore, by Lemma 3 of Amemiya (1973), ψ̂N,S
a.s.−→ ψ0, as

N →∞.

A.12 Proof of Theorem 5.3.1.2

For sufficiently large N , by assumption 5.2.5 we have the first-order Taylor

expansion of ∂QN,S(ψ)/∂ψ about ψ0:

∂QN,S(ψ0)

∂ψ
+
∂2QN,S(ψ̃)

∂ψ∂ψ′
(ψ̂N,S − ψ0) = 0, (A.25)

where
∥∥∥ψ̃ − ψ0

∥∥∥ ≤ ∥∥∥ψ̂N,S − ψ0

∥∥∥ and the first and second derives are given by

∂QN,S(ψ)

∂ψ
=

N∑
i=1

(
∂ρ̂′i,1(ψ)

∂ψ
Aiρ̂i,2(ψ) +

∂ρ̂′i,2(ψ)

∂ψ
Aiρ̂i,1(ψ)

)
and

∂2QN,S(ψ)

∂ψ∂ψ′
=

N∑
i=1

[
∂ρ̂′i,1(ψ)

∂ψ
Ai
∂ρ̂i,2(ψ)

∂ψ′
+ (ρ̂′i,2(ψ)Ai ⊗ I)

∂vec(∂ρ̂′i,1(ψ)/∂ψ)

∂ψ′

]

+
N∑
i=1

[
∂ρ̂′i,2(ψ)

∂ψ
Ai
∂ρ̂i,1(ψ)

∂ψ′
+ (ρ̂′i,1(ψ)Ai ⊗ I)

∂vec(∂ρ̂′i,2(ψ)/∂ψ)

∂ψ′

]
.

Similar to the derivation of (A.14), we can show 1
N

∂2QN,S(ψ)

∂ψ∂ψ′
converges to

E

[
∂ρ′i,1(ψ0)

∂ψ
Ai
∂ρi,2(ψ0)

∂ψ′
+ (ρ′i,2(ψ0)Ai ⊗ I)

∂vec(∂ρ′i,1(ψ0)/∂ψ)

∂ψ′

]
+E

[
∂ρ′i,2(ψ0)

∂ψ
Ai
∂ρi,1(ψ0)

∂ψ′
+ (ρ′i,1(ψ0)Ai ⊗ I)

∂vec(∂ρ′i,2(ψ0)/∂ψ)

∂ψ′

]
,

uniformly for all ψ ∈ Γ. Since

E

[
∂ρ′i,1(ψ0)

∂ψ
Ai
∂ρi,2(ψ0)

∂ψ′

]
= E

[
∂ρ′i(ψ0)

∂ψ
Ai
∂ρi(ψ0)

∂ψ′

]
= Dψ
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and

E

[
(ρ′i,2(ψ0)Ai ⊗ I)

∂vec(∂ρ′i,1(ψ0)/∂ψ)

∂ψ′

]
= 0,

we have

1

N

∂2QN,S(ψ)

∂ψ∂ψ′
a.s.−→ 2D. (A.26)

Again, ∂QN,S(ψ0)∂ψ has the first-order Taylor expansion about γ0:

∂QN,S(ψ0)

∂ψ
=

N∑
i=1

[
∂ρ′i,1(ψ0)

∂ψ
Aiρ

′
i,2(ψ0) +

∂ρ′i,2(ψ0)

∂ψ
Aiρ

′
i,1(ψ0)

]
+
∂2Q̃N,S(ψ0)

∂ψ∂γ′
(γ̂N − γ0).

(A.27)

Finally, Analogous to the proof of Theorem 5.2.4.2, the results follows from

(A.20), (A.25)-(A.27), CLT and Slutsky’s Theorem.
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