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ABSTRACT

Tuberculosis (TB) is an infectious respiratory disease caused by the bacterium My-

cobacterium tuberculosis. TB is the second largest cause of mortality by infectious

diseases and is a challenging disease to control. It spreads easily among people

via droplets propagated by an infectious person. Treatment against TB has been

available since the 1950s; however, various problems with treatment have led to

the emergence of drug-resistance in TB bacteria, which further complicates disease

control.

Furthermore, TB is a disease that predominantly affects poor countries or coun-

tries with high population densities. With the generalization of travel and migration

in the second half of the twentieth century, individuals infected in such countries are

likely to move to or spend some time in richer countries, making TB a worldwide

problem.

In this thesis, we consider the role of population movement in the spread of

tuberculosis by studying two different models. The first one is an extension to a

spatialized context of a simple existing mathematical model for the spread of TB.

We establish that, similarly to the original model, the equilibrium without disease is

globally asymptotically stable when the basic reproduction number R0 is less than

one. In the case that R0 > 1, we prove that the system is uniformly persistent. The

second model considers the spread of drug-resistant TB in a population, then between

connected populations. We establish that a backward bifurcation can occur and

that the coupled system has more types of equilibria than the systems in isolation.

Finally, we consider a general class of models including the previous two in isolation
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and after coupling. We investigate which dynamical properties of the isolated models

are preserved when coupling the models through movement. Some new results are

provided in that direction.
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1. INTRODUCTION

Infectious diseases are caused by pathogenic microorganisms such as bacteria, viruses,

parasites or fungi; infectious diseases can be spread, directly or indirectly, from one

person to another [35]. Direct spread of disease happens when an individual is in-

fected by contact with the reservoir; a reservoir for a disease is the place or individual

where the infectious agent survives. Humans and animal are examples of living reser-

voirs and soil and water are nonliving reservoirs. Contact with the reservoir happens

by touching an infected person, eating an infected meal or being bitten by an infected

animal or insect. It could also happen by inhaling the infectious agent in droplets

emitted by an infected person, or by sexual contact. Examples of diseases that are

transmitted directly from person to person are tuberculosis, AIDS, influenza and

malaria. Indirect contact occurs when an individual touches or uses an object in

the environment where a pathogen lives for a period before it reaches an individual,

e.g. an infected tissue with a cold virus, a toy that was used by a sick kid or in-

fected water used in drinking, cooking, etc. Influenza, cholera, cryptosporidiosis and

giardiasis are examples of indirectly infecting diseases [22].

1.1 Epidemiology and Mathematical Modelling

Epidemiology is the discipline that studies the spread of diseases in populations. The

concern of epidemiologists is to study how to prevent, minimize or control the impact

of diseases in populations. Since understanding the mechanisms of spread of infec-

tious diseases can help in controlling them, that brings mathematical modelling into
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the picture. Mathematical modelling plays a key role in developing an understanding

of the mechanisms of spread of infectious diseases. Generally, obtaining information

about a disease can be done by scientific experiments and collecting data, which is

costly and requires a long time. A mathematical model is a mathematical description

of the disease based on some hypothesis taken from expert and scientific knowledge

of the disease (medical doctors, public health officials, epidemiologists). The solu-

tions of the model give conclusions which are compared to the scientific experiments

and collected data. Moreover, mathematical models can be the only way to decide

on which of two different control strategies is to be applied when it could be hard or

sometimes impossible to decide on them epidemiologically, specially with inaccurate

or incomplete data. More details on mathematical modelling is given in Section 2.2

.

1.2 Transmission of Tuberculosis

Tuberculosis (TB) is a very harmful disease caused by a bacteria called Mycobac-

terium tuberculosis. It was first discovered in 1882 by a German physician named

Robert Koch, who received the Nobel Prize in 1905 for this discovery. TB usually

attacks lungs, but in uncommon cases, it can also infect other parts of the body such

as kidneys, spine and brain. Bad cough (mixed with blood), loss of weight, fever and

feeling weak are some of the main symptoms of tuberculosis. The problems about

TB are the following facts [23, 29, 30, 37]:

• About one third of the world’s population is infected (latently) with TB.

• It is the second (after HIV) cause of death by infectious disease. It is estimated

that TB killed 1.45 million people in 2011.

• Without proper treatment, almost two thirds of the infected cases will die.

• It infects all age groups; 64,000 children died from TB in 2011.
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There are several ways to diagnose TB, such as skin tests, chest X-rays, sputum

analysis and PCR tests to detect the genetic material of the causative bacteria.

As Mycobacterium tuberculosis is an airborne bacteria, germs can stay in the air

for hours and people with active TB can spread the germs by coughing, sneezing,

talking, laughing, singing, etc. Susceptible people inhale the germs into their lungs,

their immune system starts fighting the germs and depending on its strength, it

will either stop the germs from taking control or the germs settle inside the patient,

leaving them with an inactive TB infection [36]. Fifty years back, TB was considered

an incurable disease. With the discovery of different anti-TB agents in early 1940’s,

a cure of such deadly disease was considered to be feasible. Unfortunately, it soon

emerged that the use of anti-TB agents as single agents caused a resistance toward

the given agent in the bacteria. That resistance could be treated with a combination

of these agents [14]. Higher resistance toward combination of agents started to

appear as well. So controlling such a disease is considered to be a challenging but

not impossible job. Another challenge about TB is the fact that TB is not spread

homogeneously all over the world. Over 95% of infection and death caused by TB

occurs in the developing countries [37]. As of 2010, the International Organization

for Migration (IOM) estimated the number of migrants worldwide to be 214 million;

57% of all migrants settled in the developed countries [13]. Such flows of potentially

TB infected individuals changes the dynamic of TB and complicate control strategies

used in countries. It is definitely causing more burden on the developed countries to

control TB. More details on the biology of TB and its challenges are given in Section

2.3.

1.3 Motivation of the Thesis

The purpose of this thesis is to investigate the influence of migration in the spread of

tuberculosis. For that we started by considering a mathematical model developed for
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a single population by Castillo-Chavez and Feng in 1997[9]. That model was chosen

as it is simple enough to begin the investigation on the influence of migration i.e.,

of connecting multiple populations. Moreover as it was well studied qualitatively

by the authors, we were able to compare the results before and after considering

migration.

But as that model is a very simple model, it does not capture number of very

important facts about TB that play a very important role in understanding the mech-

anism of spread of TB, such as exogenous reinfection, fast infection and resistance to

antibiotics in TB. For that, we developed a new comprehensive mathematical model

that presents most of the important facts on TB and qualitatively analyzed the new

model.

Next, we again added migration to the new model to study its role in spreading

TB. In the qualitative analysis, emphasis was given to determine the existence and

stability of the solutions as well as the type of bifurcation developed by the studied

dynamical systems.

Analyzing a model with migration can be quite a challenge, because the developed

model will be of large dimensionality. For example if we start with a model for

disease that divides the total population into n compartments, then adding migration

between p countries or cities gives us a model of dimensionality np. The challenge

of studying such models led us to try to develop as much as possible a theoretical

framework to minimize the efforts needed in analyzing models with linear migrations;

this was the second challenge of this thesis. More generally, this thesis seeks to

address the following question:

Starting with n duplicates of a mathematical model (Πi) for a given

disease, what type of change is caused by adding linear migration to that

model giving us a new meta-model (Π)?

More precisely, suppose a property P is known/shown to hold for all
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(Πi) (e.g., invariance of the positive orthant under the flow, persistence,

global stability of a certain type of equilibrium, etc.). Does property P

still hold for the meta-model (Π)?

In another words,

• Which features of model (Πi) is inherited by model (Π)?

• Can adding linear migration in model (Π) induce properties that were not

possessed originally by model (Πi)?

This thesis attempts to answer some of these challenging and interesting ques-

tions, setting the stage for future work on the topic.

1.4 Thesis Outline

The thesis is organized as follows. Chapter 2 is devoted to some preliminaries in

mathematics, mathematical epidemiology and biology of tuberculosis relevant to the

thesis. In Chapter 3, the terminology, theories and construction of metapopulation

models are described. Some new theoretical results about metapopulation are proved

in Chapter 3. In Chapter 4, we adapt a simple model of drug-sensitive TB studied

by Castillo-Chavez and Feng in [9] by adding migration to study its effect on the

dynamics of TB. Chapter 5 presents a new model to study three strains of TB (drug-

sensitive strain, MDR-TB, XDR-TB). The model takes the form of a deterministic

system of non-linear differential equations and is qualitatively analyzed. The impact

of migration on spreading the different strains of TB is studied in Chapter 6.



2. PRELIMINARIES

2.1 Mathematical Preliminaries

A summary of some of the main mathematical theories and methodologies used in

this thesis is presented in this section. We start by stating some notation for matrices

that are used throughout this thesis.

Definition 2.1.1 ([17]). Let A,B be two n×n-matrices, with A = [aij] and B = [bij].

Then

• A ≥ 0 is a nonnegative matrix if aij ≥ 0 for all i, j and A ≥ B if A−B ≥ 0.

• A > 0 is a positive matrix if A is a nonnegative matrix and there exists i, j

such that aij > 0; we write A > B if A−B > 0.

• A� 0 is strongly positive if aij > 0 for all i, j and A� B if A−B � 0.

• The same notation are used for vectors.

• The set of all λ ∈ C that are eigenvalues of A is called the spectrum of A and

denoted σ(A).

• The spectral radius ρ(A) of A is the nonnegative real number defined by

ρ(A) = sup {|λ| : λ ∈ σ(A)} .

• The spectral abscissa η(A) of A is
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η(A) = sup {<(λ) : λ ∈ σ(A)} ,

where <(λ) is the real part of the eigenvalue λ.

A special type of matrices that plays a very important role in this thesis called

M - matrices is defined as follow

Definition 2.1.2 ([6]). Any matrix A that can be written in the form

A = sI−B, s > 0, B ≥ 0,

for which s ≥ ρ(B) is called an M-Matrix.

2.1.1 First-Order Systems of Ordinary Differential Equations

A first-order system of ordinary differential equations (ODE) is given by

dx

dt
= f(t, x), (2.1)

where t ∈ R, x ∈ U ⊂ Rn, with U is open and f : R × Rn → Rn. System (2.1)

is called autonomous if f : Rn → Rn does not depend explicitly on time t, non-

autonomous otherwise.

Throughout this thesis, we deal with autonomous systems of ordinary differential

equations and unless ambiguous, the dependence of x(t) on t, will not be explicitly

shown.

From now on, for x ∈ U ⊂ Rn and U open, t ∈ R, we consider the following

autonomous system:

dx

dt
= f(x). (2.2)
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The following theorem gives a sufficient condition that a system should fulfill to

have a unique solution.

Theorem 2.1.3 (Fundamental Existence-Uniqueness Theorem [26]). Let U be an

open subset of Rn containing an initial value x(t0) = x0 and assume that f ∈ C1(U),

i.e. a continuous function whose derivative is also continuous function. Then there

exists a constant a > 0 such that the initial value problem (IVP):

dx

dt
= f(x), (2.3)

x(t0) = x0.

has a unique solution x(t) on the interval (t0 − a, t0 + a).

From now on, it is assumed, unless otherwise indicated, that f is such that

solutions exist and are unique.

Definition 2.1.4 ([34]). • A constant solution of (2.2), x(t) = x∗ ∈ Rn, is

called an equilibrium if and only if f(x∗) = 0.

• The equilibrium x∗ is said to be stable if given ε > 0, there exists δ = δ(ε) >

0 such that for any solution y(t) of (2.2) satisfying ‖x∗ − y(t0)‖ < δ, then

‖x∗ − y(t)‖ < ε for t > t0, t0 ∈ R.

• The equilibrium x∗ is said to be asymptotically stable if

(i) it is stable and,

(ii) there exists a constant c > 0 such that for any solution y(t) of (2.2)

satisfying ‖x∗ − y(t0)‖ < c, there holds lim
t→∞
‖x∗ − y(t)‖ = 0.

• A solution which is not stable is said to be unstable.
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In some cases, an equilibrium could be stable not on Rn but in a neighborhood of

the equilibrium. The size of that neighborhood varies from an equilibrium to another

depending on the dynamical system considered. So we say the equilibrium is a locally

stable equilibrium. The following is a precise definition of the phenomenon.

Definition 2.1.5 ([34]). Let x∗ be an equilibrium of the initial value problem (2.3)

and the region D be the set of all points x0 ∈ Rn such that the solution of (2.3) is

defined for all t ≥ 0 and converges to x∗ as t→∞.

• If D ( Rn, then x∗ is called locally asymptotically stable. D is called domain

of attraction of x∗.

• If D = Rn, then x∗ is called globally asymptotically stable.

To decide whether an equilibrium is stable or not the following definition is useful.

Definition 2.1.6. The Jacobian matrix of f at the equilibrium x∗, denoted J(x∗),

is J : Rm → Rn defined by the matrix

J(x∗) = Df(x∗) =


∂f1
∂x1

(x∗) · · · ∂f1
∂xn

(x∗)

...
. . .

...

∂fm
∂x1

(x∗) · · · ∂fm
∂xn

(x∗)


of partial derivatives of f evaluated at x∗.

Definition 2.1.7. Let x(t) = x∗ be an equilibrium solution of (2.2). Then, x∗

is called hyperbolic if none of the eigenvalues of Df(x) have zero real part. An

equilibrium point that is not hyperbolic is called non-hyperbolic.

2.1.2 Determining the Local Asymptotic Stability of Equilibria

To decide on the local asymptotic stability of an equilibrium x∗ of the system (2.2),

one can proceed as follows.
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As the stability of an equilibrium x∗ depends on the behaviour of the system near

x∗, let

x(t) = x∗ + ε(t), (2.4)

and substitute with (2.4) into (2.2). By Taylor expension, we get

dx

dt
(t) =

dx∗

dt
(t) +

dε

dt
(t) = f(x∗ + ε(t)) = f(x∗) +Df(x∗)ε(t) +O(‖ε(t)‖2).

Hence,

dε

dt
(t) = Df(x∗)ε(t) +O(‖ε(t)‖2),

which describes the evolution of orbits near x∗. So the behaviour of solutions arbi-

trarily close to x∗ is obtained by studying the associated linear system

dε

dt
(t) = Df(x∗)ε(t),

where Df(x∗) is a matrix with constant entries because it is evaluated at x∗. There-

fore its associated solution with the initial value ε0 ∈ Rn is given by

ε(t) = eDf(x∗)tε0.

Theorem 2.1.8. Suppose all of the eigenvalues of Df(x∗) have negative real parts.

Then, the equilibrium solution x∗ of the system (2.2) is locally-asymptotically stable.

2.1.3 Comparison Theorem

Comparison theorems are sometimes used to establish the global asymptotic stability

of equilibria. The idea of this method is to compare the solutions of the system of



2. Preliminaries 19

differential equations (2.2) with the solutions of a comparable differential system.

Suppose we have

z′(t) ≤ f(z), (2.5)

or

z′(t) ≥ f(z), (2.6)

on a suitable time interval and where z ∈ Rn.

Consider the autonomous system (2.2), where f is continuously differentiable on

an open subset D ⊂ Rn.

Definition 2.1.9 ([27]). f is said to be of Type K in D if for each i, fi(a) ≤ fi(b)

for any two points in D satisfying a ≤ b and ai = bi.

Studying the sign structure of the Jacobian matrix of the system (2.2) helps in

identifying functions of type K as follow:

Definition 2.1.10 ([27]). D is p-convex if tx+(1−t)y ∈ D for all t ∈ [0, 1] whenever

x, y ∈ D and x ≤ y.

Obviously, a convex set D is also p-convex. One very useful characterization of

functions of Type K is the following: If D is a p-convex subset of Rn and

∂fi
∂xj
≥ 0, i 6= j, x ∈ D, (2.7)

then f is of Type K in D.

Theorem 2.1.11 (Comparison Theorem [28]). Let f be continuous on R × D and

of type K. Let x(t) be a solution of (2.2) defined on [a, b]. If z(t) is a continuous

function on [a, b] satisfying (2.5) on (a, b), with z(a) ≤ x(a), then z(t) ≤ x(t) for all

t in [a, b]. If y(t) is continuous on [a, b] satisfying (2.6) on (a, b), with y(a) ≥ x(a),

then y(t) ≥ x(t) for all t in [a, b].
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2.1.4 Bifurcations

In this section, some basic results of bifurcation theory are presented. We write (2.2)

as

dx

dt
= f(x, µ),

to indicate that f depends on a parameter µ ∈ R. Further, we assume that f(x, µ) ∈

C1(E) , where E is an open subset of Rn.

Definition 2.1.12 ([26]). Let

x′ = f(x, µ), (2.8)

f ∈ C1(E), E ⊂ Rn,

depend on a parameter µ ∈ R. If the qualitative behaviour of the solutions of system

(2.8) remain the same as the parameter µ changes, then system (2.8) is said to be

structurally stable. System (2.8) is not structurally stable if its solutions change

their qualitative behaviour as µ varies through a certain value µ0. A value µ0 of the

parameter µ in which f(x, µ0) is not structurally stable is called a bifurcation value.

There are several types of bifurcation. We present here the most common ones

in the context of mathematical epidemiology, in the lowest dimension required for

their existence; for more details see [26].

1. Saddle node bifurcation: This type is when fixed points exist and are destroyed

by changing the values of some parameters.

Canonical Form: Consider the non-linear differential equation

dx

dt
= µ+ x2.
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Fixed points are x∗ = ±√µ. So, when µ < 0, there are no real fixed

points (which are the only ones of interest here), while when µ > 0, we

have two fixed points and only one fixed point is present when µ = 0. In

this example the bifurcation taking place at µ = 0 is called a saddle node

bifurcation.

2.Transcritical Bifurcation: This type corresponds to the case where the fixed points

change stability with the change of the values of some parameter.

Canonical Form: Consider the non-linear differential equation

dx

dt
= µx− x2.

The fixed points are x∗ = 0 and x∗ = µ. For any value of µ, these fixed

points do not disappear but their stability changes with the values of µ.

Here, a transcritical bifurcation happens at µ = 0 since df
dx

= µ − 2x,

therefore

• µ < 0 , the fixed point x∗ = 0 is stable, while x∗ = µ is unstable.

• µ > 0 , the fixed point x = 0∗ is unstable, while ∗x = µ is stable.

Transcritical Bifurcation are of two types: supercritical (forward) bifurcation

or subcritical (backward) bifurcation.

3. Pitchfork Bifurcation: Canonical Form: • The non-linear differential equation

dx

dt
= µx− x3.

is the canonical form of supercritical pitchfork bifurcation.
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• The non-linear differential equation

dx

dt
= µx+ x3 = f(x, µ)

is the canonical form of subcritical pitchfork bifurcation.

4. Hopf bifurcation: This is a bifurcation that happens when a fixed point of a dy-

namical system loses stability as a pair of complex conjugate eigenvalues of the

linearization around the fixed point cross the imaginary axis of the complex

plane. There are two types of Hopf bifurcations (supercritical / subcritical)

depending on the stability of the limit cycle. If the limit cycle is orbitally

stable then the bifurcation is supercritical. Otherwise it is unstable and the

bifurcation is subcritical.

Canonical Form: The complex valued non-linear differential equation

dz

dt
= z

(
µ+ b|z|2

)
, b, z ∈ C, µ ∈ R parameter.

2.1.5 Persistence Theory

Let D be a metric space with metric d, F : D → D be continuous and ∂D be closed.

Definition 2.1.13. We say that F is uniformly persistent (with respect to ∂D), if

there exists η > 0 such that for all x ∈ D\∂D,

lim inf
n→∞

d(F n(x), ∂D)) > η, (2.9)

where F n(x) = (F ◦ · · · ◦ F )(x).

Next, we present a theorem that characterizes uniform persistence. For that,

assume that F (D\∂D) ⊂ D\∂D.
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Definition 2.1.14. X is a global attractor of D if

1. X is the maximal compact invariant subset of D, and

2. d (F n(x), X)→ 0 as n→∞, for all x ∈ D.

Suppose X is a global attractor of X and M be the maximal compact invariant

set in ∂D. Then M ⊂ X.

Theorem 2.1.15 ([16]). F is uniformly persistent (with respect to ∂D) if and only

if

1. M is isolated in X, and

2. W s(M) ⊂ ∂D, where W s(M) is the stable set of M and is defined by W s(M) =

{x ∈ X : F n(x)→M as n→∞} .

2.2 Mathematical Epidemiology

Some basic notation and terminology in mathematical modeling is given. Then a

simple example is presented to show how one models infectious disease spread.

2.2.1 Reproduction Number and Bifurcations

To qualitatively analyze the dynamics of an infectious disease model, one basic yet

very important quantity is the basic reproduction number, denoted by R0. The

basic reproduction number R0 represents the average number of new cases a typical

infectious individual can generate in a completely susceptible population [1, 18]. If

R0 < 1 then on average, an infected individual generates less than one new infection

in the susceptible population; therefore the disease dies out eventually. If R0 > 1,

then an infected person is infecting on average more than one person, which leads to

persistence of the disease in the population. At R0 = 1, the disease-free equilibrium

(DFE) changes its stability, becoming unstable for R0 > 1 and a new endemic
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equilibrium (EE) is born. If the EE is locally asymptotically stable when R0 > 1,

then this phenomena is known as forward bifurcation, which is observed in most

epidemiological models.

In other epidemiological models, another phenomenon, backward bifurcation, oc-

curs, where a stable EE co-exists with a stable DFE for R0 < 1; see for example

[5, 15]. The existence of a backward bifurcation makes it more difficult to eliminate

the disease.

2.2.2 Next Generation Operator Method

Section 2.1.2 introduced a classical method to decide on the local asymptotic stability

of an equilibrium. This section presents a method specific to infectious disease mod-

els known as the next generation operator method [33]. This method was originally

introduced by Diekmann et al. [11] and formulated to be used in epidemiological

models by van den Driessche and Watmough [33]. This method is basically a method

to compute the reproduction number. An advantage of using this method is that it

allows direct calculation of R0 without carrying out the local stability analysis. For

example, given an infectious disease model with n compartments, order those com-

partments such that the first m compartments stand for the infected compartments

and the remaining n − m are the non-infected ones. Using the classical method,

to decide on the local stability of the DFE we need to study the eigenvalues of a

Jacobian matrix of size n × n, while using the next generation method, the local

stability of the DFE is decided by studying a matrix corresponding to the infectious

compartments only, i.e., of size m × m. The formulation of the method in [33] is

given in Appendix A and an example to show how to apply it is given in Section

2.2.3.
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2.2.3 A Simple SLI Mathematical Model

Consider a disease with a latent period during which an individual is a carrier of the

disease but cannot transmit it to others, after which the person becomes infectious.

An example of such a disease is tuberculosis in the absence of treatment. To math-

ematically model the disease in a certain population, we divide the total population

of N individuals into three different compartments according to the disease status:

susceptible (S), latently infected (L) and infectious (I). Then the total population

is N = S +L+ I. The interactions between the compartments represent the disease

transmission in the population.

The number of new infections generated per unit time in a given community is

known as disease incidence. To model incidence in a disease model, we need to define

a function which describes the rate at which new infections are generated. This rate

is called incidence rate. Two main types of incidence functions have been used in

disease modeling: standard incidence, using the function βSI/N and mass action

incidence, using βSI. The parameter β describes the probability that a contact is

infecting. The choice of function to use plays an important role in the dynamics of

the model.

We assume that upon infection, and individual becomes latently infected, i.e.,

moves from the S to the L compartment. The individual spends an average 1/k

time units in the L compartment before progressing to the I compartment, wherein

he/she becomes infectious, i.e., is actively propagating the disease. Birth occurs only

in the susceptible compartment (there is no vertical transmission of the disease) at

the rate λ and natural death occurs in all compartments at the rate d, i.e., the

average duration of life is exponentially distributed with mean 1/d time units.

To model a disease such as the one described above, the following SLI model is
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used

dS

dt
= λ− dS − βSI

N
, (2.10a)

dL

dt
=
βSI

N
− dL− kL, (2.10b)

dI

dt
= kL− dI. (2.10c)

Note that depending on the characteristics of the disease under consideration

and the purpose of the study, the model can take different forms such as SLIR,

SLIRS, SIS, SIR, SIRS, where S, L, I and R are the susceptible, latently infected,

infectious and recovered (or “treated”) compartments, respectively. Many other

variations (and additional compartments) are possible.

To find the disease free equilibrium (DFE) of system 2.10, we set I = 0 in (2.10a)

and find that the DFE is unique and given by

(
λ

d
, 0, 0

)
. (2.11)

To decide on the linear stability of the DFE, the next generation method is used;

see Appendix A. We start by ordering the infected classes as L, I. The vector

representing new infections into the infected classes, F , is given by

F :=

 β
SI

N

0

 .

The vector, V , representing other flows within and out of the infected classes is

given by

V :=

 dL+ kL

−kL+ dI


The matrix of new infections F and the matrix of transfers between compartments
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V are the Jacobian matrices obtained by differentiating F and V with respect to the

infected variables, evaluated at the disease free equilibrium (DFE). They take the

form

F =

0 β

0 0

 ,

V =

d+ k 0

−k d

 .

Then the next generation matrix defined in Appendix A is

FV −1 =
1

d(d+ k)

βk β(d+ k)

0 0

 ,

FV −1 has spectral radius, denoted ρ, given by

ρ(FV −1) =
βk

d(d+ k)
.

Defining R0 = ρ(FV −1), we have by Theorem (A.2) that the DFE is locally asymp-

totically stable if R0 < 1 and unstable if R0 > 1.

2.3 Biology and epidemiology of Tuberculosis

To design a model that accurately describes a given disease, a clear understanding of

the way that the disease spreads is important, in order to avoid ignoring important

factors or facts related to the studied disease. This section gives a brief explanation

of the mechanism of TB infection.
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2.3.1 Person to Person Transmission

TB can remain in an inactive state in an individual for years without causing symp-

toms or spreading to other people. Individuals who are latently infected with tu-

berculosis can only progress to active disease in two ways. Either by reactivation of

the latent infection, a mechanism known as endogenous reactivation, which usually

happens when the immune system of a latent patient is weakened due to old age or

infection with another disease such as HIV or cancer. Reinfection when a latently

infected person acquires a new infection from another actively infected individual,

known as exogenous reinfection, is the other way to develop active TB.

Although TB is considered to be a curable disease, over 8 million new cases of

TB occur each year worldwide and TB is the second causes of mortality, second

to human immunodeficiency virus (HIV) [24]. In 2011, 8.7 million people got in-

fected with TB and 1.4 million lost their lives because of it [37]. Therefore, getting

proper treatment is very important when dealing with this disease. Latently infected

individuals can be treated with an antibiotic, isoniazid (INH), to prevent the TB in-

fection from becoming active. INH is usually very successful in treating active TB as

well as in combination with a few other drugs, but the course of treatment usually

takes six months to a year under supervision and support given to the patient by

a doctor. Poorly managed TB care due to limited resources, inappropriate dosing

or prescribing of medication, poorly formulated medications and/or an inadequate

supply of medication may complicate the treatment and the germs can develop a new

strain which is resistant against the drug. The new strain is known as Multi-drug

resistant TB (MDR-TB). MDR-TB strains are resistant to at least two of the first

line anti-TB drug. MDR-TB has been reported in every country. In the case of

the MDR-TB, a second type of the anti-TB drugs should be used. However, those

drugs are not always available, which leads to the need for extensive chemotherapy

(up to two years of treatment). Resistance against the second line drugs can be also
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developed, which is referred to as extensively drug-resistant TB, XDR-TB. XDR-TB

is a type of tuberculosis that is resistant to three or more drugs, including the most

effective second-line anti-TB drugs [25]. In 2011, 310 000 cases of MDR-TB were

reported in the world, 9% of them are XDR-TB. India, China and Russia had 60%

of those cases.

Drug-resistant TB is a serious, as yet unsolved, public-health problem, especially

in Southeast Asia, the countries of the former Soviet Union, Africa, and in prison

populations. Poor patient compliance, lack of detection of resistant strains and

unavailable therapy are key reasons for the development of drug-resistant TB.

2.3.2 Spatial Heterogeneity

The spread of TB does not happen homogeneously over the world. That is because

TB is a disease of poverty, as evidenced by the fact that about 95 percent of TB

deaths occur in low- and middle-income countries [24, 37]. According to the last

WHO report, the burden of TB is highest in Asia and Africa as India and China

together account for 40% of the worlds TB cases. The African Region has 24% of

the world’s cases and the highest rates of cases and deaths per capita [37]. Table 2.1

shows the estimated burden of TB in 2011 in some developing countries, Table 2.2

shows the same information in a few developed countries.

Country Population Mortality Incidence Prevalence
Bangladesh 150 494 000 68 000 340 000 620 000
China 1 347 565 000 47 000 1 000 000 1 400 000
India 1 241 492 000 300 000 2 200 000 3 100 000
Nigeria 162 471 000 27 000 190 000 280 000
South Africa 50 460 000 25 000 500 000 390 000

Tab. 2.1: Estimated burden of disease caused by TB in 2011 in some developing countries
[38].
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Country Population Mortality Incidence Prevalence
Canada 34 000 000 61 1 600 1 900
France 63 000 000 290 2 700 3 500
UK 62 000 000 350 8 800 12 000
US 313 000 000 420 12 000 15 000

Tab. 2.2: Estimated burden of disease caused by TB in 2011 in some developed countries
[38].

Figure 2.1 shows an estimation of TB incidence rate in the world [37].

Fig. 2.1: Estimated TB incidence rate 2011. Figure from WHO [37, p. 22].

Even though TB is more prevalent in developing counties than in developed ones,

in 2005, the United Nations reported that there were around 200 millions interna-

tional migrants at that time, with sixty percent of these immigrants now in developed

countries [32]. Recently, the International Organization for Migration (IOM) reports

the increase in the number of the international migrants to 214 million international

migrants around the world today [19]. This shows that TB is a worldwide problem,

not only a local one. And this stresses the importance of not only studying the

disease in every country but also putting some effort in studying the impact of the

movement in spread of TB.



3. GENERAL METAPOPULATION MODELS

Chapter 2 presents estimated data showing that TB is not homogeneously spread

worldwide and that the presence of TB depends, to a large extent, on whether the

country is developed or not. It also presents some estimated numbers of international

migration worldwide and the main direction of migration from the developing coun-

tries to the developed ones. These estimated numbers show that movement between

countries or cities could play a very important role in the spread of TB, which is

what this thesis is trying to study.

For that reason, metapopulation models are used to study the spread of TB, since

metapopulation models allow us to study the dynamics of a given disease taking into

account the migration or movement between countries/cities.

The term metapopulation was first used in the ecological literature by Richard

Levins to describe the population of populations in 1970. Although it has been

used since that time in ecology, it is relatively recent in the mathematical epidemiol-

ogy field. Arino in [2] defines a metapopulation model as a model involving explicit

movement of individuals between distinct locations. In other words, a metapopu-

lation defines a graph with vertices called patches containing subpopulations with

nontrivial dynamics linked by arcs representing the possibility of movement. A main

question investigated in this chapter is the following

Starting with isolated patches each with certain dynamical properties,

does a model resulting from the linear coupling of these patches inherit

any of the properties of the original isolated patches?
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We begin by presenting some of the graph and dynamical theories used in metapop-

ulation models below. The formulation follows [2].

3.1 Notation from Graph Theory

Assume that we have p distinct patches in a set P of patches. Each patch contains

a certain number of compartments belonging to a common set S. Each patch is a

vertex in a graph G. The arcs of G, collected in a set A, represent the possibility

for individuals in a given compartment to move between two patches. Therefore G

is the multi-digraph determined by G = (P ,A).

Definition 3.1.1. Consider the multi-digraph G = (P ,A), where P is the set of

patches and A is the set of arcs.

• Direct access is the binary relation Rs given by Rs(X, Y ) if, for compartments

s ∈ S, there exists an arc As ∈ A from X to Y , where X, Y ∈ P.

• Indirect access occurs when a given compartment s ∈ S from patch X has

an access to patch Y only through a different patch Z.

• For a given s ∈ S, the connection matrix Cs associated to G is given as

follows

(Cs)(i,j) =

 1 if Rs(Pj, Pi),

0 otherwise

Example 3.1.1. For a given compartment s ∈ S, consider the digraph described by

Figure 3.1.

Patch 1 has direct access to 2 and indirect access to 3, while 3 does not have any

access to either 1 or 2. Keeping the order as in Figure 3.1, the associated connection

matrix Cs is given by
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Fig. 3.1: An example of a multi-digraph for a given compartments s.

Cs =


0 1 0

1 0 0

0 1 0

 .

Definition 3.1.2. In a multi-digraph G

• Movement is similar for all compartments if the existence of an s ∈ S

such that Rs(X, Y ), implies that Rs(X, Y ) exists for all s ∈ S.

• A strongly connected component for a compartment s ∈ S is a subset of

the patches, Q ⊂ P such that for all patches X, Y ∈ Q, if compartment s in

X, then X has access to Y .

• A strongly connected digraph for a compartment s is the digraph where

all the patches belong to the same strongly connected component, i.e., Q = P.

Remark 1. Strong connectedness is equivalent to irreducibility of the connection

matrix Cs, where an irreducible matrix is a matrix that is not similar to a block

upper triangular matrix by permutation matrices.

3.2 The Dynamics of a Metapopulation Model

The dynamics of a metapopulation model combines the dynamics within each patch

(resulting from the interactions between compartments that are present in the patch)

with an operator describing the movement of individuals between the patches. This

operator is assumed to be linear throughout this thesis.
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Let Nsi(t) be the number of individuals of compartment s ∈ S in patch i ∈ P at

time t, Ns = (Ns1, · · · , Nsp)
T be the vector of distribution of individuals of a given

compartment s among the different patches and N i = (N1i, · · · , Nni)
T be the vector

of composition of the population of a given patch i, where n = |S|, and p = |P|.

To describe the evolution of the population, we start by writing the evolution of the

individual components of the system as follows

dNsi

dt
= fsi(N

i) +

p∑
j=1

ms
ijNsj −

p∑
j=1

ms
jiNsi, (3.1)

where for s = 1, . . . , n and i = 1, . . . , p, ms
ji is the rate of travel from patch i to

patch j of individuals in compartment s and fsi : Rn → R is the function describ-

ing the dynamics within patch i of individuals of compartment s. Note that it is

assumed here that the dynamics in a patch only depends on those individuals who

are physically present in the patch.

The term

p∑
j=1

ms
ijNsj describes the inflow of individuals of compartment s into

patch i from all the other patches, while the outflow of individuals of compartment

s from patch i to all other patches is described by

p∑
i=1

ms
jiNsi. It is assumed here

that ms
ii = 0 for all s. Another way to write equation (3.1) uses a vector form,

dNs

dt
= fi(N

i) +MsNs, (3.2)

where fi : Rn → Rp and Ms is a p × p matrix called the movement matrix, as it

shows the movements between the patches; this matrix is given by
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Ms =



−
p∑
j=1

ms
j1 ms

12 · · · ms
1p

ms
21 −

p∑
j=1

ms
j2 · · · ms

2p

...
...

. . .
...

ms
p1 ms

p2 · · · −
∑p

j=1m
s
jp


. (3.3)

So Ms represents the connection matrix associated with the graph of patches

combined with a description of the intensity of the connections. As the movement

matrix plays a very important role in metapopulation models, the next theorem gives

some of the most important properties of that matrix.

Theorem 3.2.1 ([2]). Consider a compartment s ∈ S. Then (Ms) is a singular M-

matrix. All eigenvalues of −Ms have non-positive real parts. 0 is an eigenvalue of

Ms, and one of the eigenvectors associated to the eigenvalue 0 is the eigenvector 1lTp =

(1, · · · , 1). In the case thatMs is irreducible, then 0 is an eigenvalue with multiplicity

1, 1lTp is (to a multiple) the only strongly positive left eigenvector associated withMs,

and all other eigenvalues have negative real parts.

3.3 Compartmental Models

To describe and to study the dynamics of a disease, a system of ordinary differen-

tial equations called compartmental system is developed. Jacquez and Simon in [20]

define a compartment to be “an amount of some material that is kinetically homo-

geneous”. That means that the amount of material is always homogeneous at any

time and mixes with the content of the compartment once entering it. Defining qi

to represent compartment i, Ii to represent inflows into qi from outside the system

and g0i to represent outflows of qi out of the compartmental system, gji to represent

the transfers from compartment i to compartment j, then
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q′i(t) = Ii(t)− g0i(t) +
∑
j 6=i

gij(t) − gji(t),

such that the following two conditions hold

Ii ≥ 0, g0i ≥ 0, gji ≥ 0 for all i, j and t. (C1)

If qi = 0, then g0i = 0 and gji = 0 for all j, so that qi ≥ 0. (C2)

3.4 Studying the Dynamics of a Metapopulation Model

To study a metapopulation epidemic model, a certain number of steps should be

undertaken, which typically include several or all of the following:

• Studying the well-posedness of the system.

• Studying the existence of disease-free equilibria.

• Computing a reproduction number for the system and considering the local

asymptotic stability of the disease-free equilibria.

• If the disease-free equilibrium is unique, proving that it is globally asymptoti-

cally stable when R0 < 1.

• Studying the existence of a backward bifurcation phenomenon.

• Studying the existence of either endemic or mixed equilibria and their stabili-

ties.

We will start by proving some results in the direction of the question presented

at the beginning of the chapter, which we reformulate here.
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Consider p isolated patches, where the population of each patch i is divided

into n compartments and the dynamics is given, for i = 1, . . . , p, by

x′i1 = fi1 (xi1, · · · , xin) ,

...

x′in = fin (xi1, · · · , xin) .

(Πi)

Consider also the dynamics describing the p linearly coupled patches,

given, for i = 1, . . . , p, by

x′i1 = fi1 (xi1, · · · , xin) +

p∑
j=1

m1
ijxj1 −

p∑
j=1

m1
jixi1,

...

x′in = fin (xi1, · · · , xin) +

p∑
j=1

mn
ijxjn −

p∑
j=1

mn
jixin.

(Π)

Question: Does model (Π) inherit any of the properties of model (Πi)?

3.5 New Results on Metapopulations

The following are some results developed as a contribution to the understanding of

the role of linear movement between p patches in changing the dynamical properties

of the metapopulation model compared to the models within each patch in isolation.

3.5.1 Well-posedness

Obviously, linear movement will not violate the existence and uniqueness principle of

the solutions of (Π) if (Πi) satisfies that theorem as the difference between the two

models are linear terms which are infinitely many times differentiable. In the case of

nonlinear movement, we need the additional condition that the movement functions

are continuously differentiable in order to preserve the existence and uniqueness



3. General Metapopulation Models 38

property. Hence movement does not change the existence and uniqueness of solutions

and the continuous dependence on parameters and initial data of (Πi).

Theorem 3.5.1. If the positive orthant Rn
+ is positively invariant under the flow of

(Πi), then the positive orthant Rnp
+ is positively invariant under the flow of (Π).

Proof. The positive orthant Rn
+ being positively invariant under the flow of the

isolated patches described by (Πi) means that on each of the faces of the positive

orthant the vector field points inward. In other words and using Condition C2 in

Section 3.3, in any patch i , i ∈ {1, · · · , p}, if there is t1 such that one of the

compartments xij(t1) = 0 becomes zero that implies

x′ij(t1) ≥ 0⇔ fij (xi1, · · · , xin) (t1) ≥ 0, (3.4)

otherwise, if x′ij(t1) < 0 , xij(t1 +ε) < 0 which contradicts of a compartmental model,

for which solutions must remain nonnegative. So, if there is a t∗ such that xij(t
∗) = 0,

then x′ij(t
∗) = fij (xi1, · · · , xin) (t∗) ≥ 0, where j ∈ {1, . . . , n}. Now assume that

the initial conditions are positive for (Π) and that for some i ∈ {1, · · · , p} and

k ∈ {1, · · · , n}, xik(t1) = 0, with t1 the first t for which any variable becomes zero.

Studying the vector field of xik at t1 gives

x′ik(t1) = fik (xi1, · · · , xin) (t1) +

p∑
j=1

mk
ijxji(t1)−

p∑
j=1

mk
jixik(t1),

= fik (xi1, · · · , xin) (t1) +

p∑
j=1

mk
ijxji(t1).

Since xik(t1) = 0, then all outflow terms in fik (xi1, · · · , xin) (t1) vanish. Hence

fik (xi1, · · · , xin) (t1) is a sum of the inflow terms of positive variables only, therefore

by (3.4), fik (xi1, · · · , xin) (t1) ≥ 0, which implies that x′ik(t1) > 0.
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3.5.2 disease-free Equilibrium

Arino et al considered in [3] an SEIR model and proved a result establishing condi-

tions under which the DFE is preserved under linear migration. The same method

of proof can be used to prove the same type of result for a general metapopulation

system (Π).

Theorem 3.5.2. Consider p well posed systems given by (Πi). Suppose that (Π) is

at an equilibrium and that there is no disease in patch i. If Yi is the vector of infected

compartments in patch i, then Yj = 0 for each patch j that has an access to patch i.

Proof. The proof follows [3]. Suppose that there is no disease in a given patch i,

fixed, i.e. Yi = 0. But Yi = 0 implies that Y ′i = 0. Using (Π),

Y ′i = 0 = fi(Xi, 0) +

p∑
j=1

mY
ijYj = 0. (3.5)

Since the positive orthant is invariant under the flow of (Πi), then fi(Xi, 0) ≥

0. But since

p∑
j=1

mY
ijYj is nonnegative as well, then Equation (3.5) implies that,

fi(Xi, 0) = 0, and

p∑
j=1

mY
ijYj = 0. But

p∑
j=1

mY
ijYj = 0⇒ Yj = 0, ∀j,

which means that Yj = 0 for any patch j that has direct access to patch i. Continuing

this reasoning for all patches in the direct ancestry of patch i, i.e., those patches

having direct access to i, the result follows.

A straightforward corollary of Theorem 3.5.2 is given below.

Corollary 3.5.3. Assume that system (Π) is at an equilibrium and that all migration

matrices are irreducible. Then all patches are disease free if and only if one patch is

disease free.
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3.5.3 Endemic Equilibrium

In this section a generalization of another result proved in [3] is presented.

Theorem 3.5.4. Consider p well posed systems given by (Πi). Suppose that (Π) is

at an equilibrium. If the disease in patch i is at an endemic equilibrium, then the

disease is also at an endemic equilibrium in all patches j to which patch i has an

access.

Proof. The proof, using ideas as in [3], will be done by contradiction. Fix patch i

where the disease is endemically present, i.e.,
∑

k Yik > 0. Now assume that patch i

has an access to patch j where the disease is not present, i.e. Yj = 0. Using (Π) and

denoting yj :=
∑
l

Yjl the total number of infected in compartments in patch j, we

get

0 = y′j =
∑
k

(
fjk(Xj, Yj) +

p∑
r=1

mYk
jr Yrk −

p∑
r=1

mYk
rj Yik

)
.

Since Yj = 0 ⇒ Yjk = 0 for every infected compartment in patch j, then using

(Πi) and [31, Lemma 2.1], Yjk = 0 ⇒ Y ′jk = 0 ⇔ fjk(Xj, Yj) = 0. Hence the

above equation reduces to y′j =

p∑
r=1

(∑
k

mYk
jr

)
yr = 0 which implies that either(∑

km
Yk
jr

)
= 0 or yr = 0 for every patch r that has access to patch j. Since patch i

has an access for patch j, then mYk
ji 6= 0 for some infected compartment k.Therefore

yr = 0 for every patch r that has access to patch j, a contradiction.

A straightforward corollary of Theorem 3.5.4 is given below.

Corollary 3.5.5. Assume that system (Π) is at an equilibrium and that all migration

matrices are irreducible. Then the disease is endemic at all patches if and only if it

is endemic on one patch.

Remark 2. Corollaries 3.5.3 and 3.5.3 together establish the following fact: if all

migration matrices are irreducible, then any equilibrium of the coupled system is
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either disease free (disease free on all patches) or endemic (endemic on all patches).

This rules out the existence of mixed equilibria (disease free on some patches While

endemic on others).

3.5.4 Backward Bifurcation

In this section, we investigate the following question.

Can coupling patches linearly change the type of the bifurcation they

undergo provided that all isolated patches are of the same bifurcation type?

For any system such as (Πi), two types of bifurcations could happen at R0i = 1,

forward and backward. A forward bifurcation (supercritical) happens as R0 crosses

unity to the right. That time a positive asymptotically stable equilibrium appears

(Endemic) and the disease-free equilibrium becomes unstable. While the backward

bifurcation (subcritical) happens while R0 is still smaller than unity. In this case,

a positive unstable equilibrium and a stable positive equilibrium appear while the

disease-free equilibrium is still locally asymptotically stable. The existence of the

backward bifurcations means that to eliminate the disease it is not enough to just

reduce R0 to be less than unity. Castillo-Chavez and Song in [10] gave an approach

to determine the direction of the bifurcation at R0 = 1 depending on the sign of

two constant ai and bi which they defined; see Appendix B for the statement of the

theorem.

Conjecture 3.5.6. Consider p patches with dynamics described by (Πi). The new

model with linear migration between the p patches, with dynamics generated by (Π)

has constants a and b of Theorem B.1 given by

a = C(p)

p∑
i=1

ai, b = C(p)

p∑
i=1

bi, (3.6)

where ai and bi are the a and b in patch i for Theorem B.1 and C(p) > 0.
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Idea of the proof. To illustrate the idea, consider 2 patches with dynamics de-

scribed with (Πi), such that the 2 patches are at the bifurcation point and with the

same bifurcation type. That means that R0i = 1 for i ∈ {1, 2}, sgn a1 = sgn a2 and

sgn b1 = sgn b2. Constants a and b of (Π) are defined by

a =
2n∑

i,j,k=1

vkwiwj
∂2Fk
∂xi∂xj

(x∗, 0), (3.7)

b =
2n∑

i,k=1

vkwi
∂2fk
∂xi∂φ

(x∗, 0), (3.8)

where w and v such that vTw = 1 are a nonnegative right eigenvector and left

eigenvector corresponding to the zero eigenvalue of the Jacobian of the linearization

matrix of (Π) around the equilibrium x∗ with the bifurcation parameter φ equal to

0. It is easy to see that the second derivatives of (Π) relates to the second derivatives

of (Πi) as follows

∂2Fk
∂Xi∂Xj

(x∗, 0) =



∂2f1k
∂x1i∂x1j

(x∗, 0) ; k, i, j ∈ {1, · · · , n}

∂2f2(k−n)

∂x2(i−n)∂x2(j−n)
(x∗, 0) ; k, i, j ∈ {n+ 1, · · · , 2n}

0 ; otherwise.

(3.9)

To be able to prove this conjecture, we need to find a relation between the right

eigenvectors of the Jacobians of (Π) and (Πi). As proved before,

J :=

(
dFi
dxj

)∣∣∣∣
(x∗,0)

=

p⊕
i=1

Ji +M.

DefineW := (W1,W2) whereW1 andW2 are the right eigenvectors of the Jacobian
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of (Πi). The result will follow if we can prove or find conditions under which

MW = 0

does not only have the trivial solution. We have not been able to do this at present.



4. THE EFFECT OF MIGRATION IN THE SPREAD OF

TUBERCULOSIS

Tuberculosis (TB) is one of the most serious public health diseases facing society.

One third of the human population is infected by that bacterial disease, which is

considered to be the second leading cause of death by an infectious disease in the

world [7, 21]. TB progression depends on many factors such as nutritional status

and/or access to decent medical care and living conditions [7]. Lack of compliance

with an antibiotic treatment not only may lead to relapse, but also to the develop-

ment of antibiotic resistance in TB bacteria, which is a very serious problem. The

implicit good news is that latent and active TB can be treated with antibiotics.

Castillo-Chavez and Feng in [9] formulated two basic transmission models to

study both simple and two-strain TB in a very simple setting. For the single strain

TB model, they computed the basic reproductive number, studied its role on the

dynamics and proved the stability properties of that model in a special case .

In this chapter we consider the effect of migration on a the single strain TB model

of [9], in the general setting allowing the rate of movement to depend on the disease

status. The basic reproduction number is calculated, its role on the dynamics is

studied and we prove the global stability of the disease free equilibrium.

4.1 Metapopulation Model on p Patches

We start by formulating the general deterministic metapopulation SLIT epidemic

model. Assume that we have p distinct geographical locations that could be cities,



4. The Effect of Migration in the Spread of Tuberculosis 45

counties, countries, etc. and that we call patches. Within each patch i = 1, · · · , p, the

population is divided into compartments of susceptible, latent, infective and treated

individuals with number in each compartment denoted by Si(t), Li(t), Ii(t) and Ti(t),

respectively. The total number of individuals in each patch i is Ni(t) = Si(t)+Li(t)+

Ii(t) + Ti(t) and the total population in the system is N(t) = N1(t) + · · ·+Np(t).

Birth in patch i is assumed to be in to the susceptible class at the rate Λi > 0

per unit time and natural death is assumed to be independent of disease status and

occur at the constant per capita rate di > 0. βi ≥ 0 is the rate at which susceptible

individuals become infected by infectious individuals per unit time and σiβi is the

rate at which treated individuals become infected by infectious individuals per unit

time, where 1 − σi ∈ [0, 1] is the efficiency of treatment in preventing infection. If

σ = 0, then the treatment always prevents infection.While if σ = 1, then treatment

has no benefit. Note that we assume that treatment cannot be detrimental for

infection, i.e., σi ≤ 1.

Once infected, a susceptible or treated individual moves to the latent infection

compartment, then into the infective compartment as the individual becomes able

to transmit the disease with constant rate ki. Infectious individuals can recover

naturally and move back to the latent compartment with a constant rate ri. Both

latently infected and infectious individuals can move to the treated compartment by

getting the treatment at constant rate t1i an t2i, respectively. The disease induced

death rate constant for infectious individuals is denoted by µi. It is assumed that

while undergoing treatment, individuals are not subject to disease induced death.

The rates of movement of individuals between patches are assumed to depend on

disease status travel; travel is instantaneous and individuals do not change status

during travel. Let mS
ij,m

L
ij,m

I
ij, and mT

ij denote the rate of travel from patch j to

patch i of susceptible, latent, infective and treated individuals, respectively, where

for all i = 1, . . . , p,mX
ii = 0 and mX

ij ≥ 0 for all X ∈ {S, L, I, T}. This structure
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defines a multi-digraph with patches as vertices and arcs given by the travel rates,

which can be represented by the mobility matrices MS, ML, MI and MT , where,

for a given epidemiological status X ∈ {S, L, I, T},

MX =



−
p∑
j=1

mX
j1 mX

12 · · · mX
1p

mX
21 −

p∑
j=1

mX
j2 · · · mX

2p

...
...

. . .
...

mX
p1 mX

p2 · · · −
∑p

j=1m
X
jp


. (4.1)

It is assumed that these matrices are irreducible. The flow diagram of the model in

the absence of movement is as follows:

S i Li

I i

T i

Λ i βi S i I i /N i

r i I i

k i Li

d i S i d i Li t 1i Li

γi T i I i /N i

t 2i I i

(d i+δi) I i

d i T i

Fig. 4.1: The flow diagram of TB model in absence of movement.

Finally to write the model describing TB taking into the account the expression

of the matrix MX given by (4.1), we can consider for every X ∈ {S, L, I, T} and

i = 1, . . . , p mX
ii to be

mX
ii = −

p∑
j=1

mX
ji .

Hence all the previously discussed assumptions lead to the following system of

4p ordinary differential equations, for i = 1, · · · , p,
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S ′i = Λi − diSi − βi
SiIi
Ni

+

p∑
j=1

mS
ijSj, (4.2a)

L′i = βi
SiIi
Ni

− {di + ki + t1i}Li + σiβi
TiIi
Ni

+ riIi +

p∑
j=1

mL
ijLj, (4.2b)

I ′i = kiLi − {di + µi + t2i + ri} Ii +

p∑
j=1

mI
ijIj, (4.2c)

T ′i = t1iLi + t2iIi − σiβi
TiIi
Ni

− diTi +

p∑
j=1

mT
ijTj. (4.2d)

The model in each patch generalizes the model in [9] to include the rate of natural

recovery of the infectious individuals.

4.2 Mathematical Analysis

4.2.1 Basic Properties of Solutions

Proposition 4.2.1. Given nonnegative initial conditions, solutions to (4.2) exist

and are unique for all t ≥ 0. Furthermore, the positive orthant R4p
+ is invariant

under the flow of (4.2).

Proof. Since the vector field in (4.2) consists of sums of constants and rational poly-

nomial functions in Si, Li, Ii, Ti and that we show later that the Ni are positive, it is

differentiable. Hence solutions to (4.2) exist and are unique.

To prove the nonnegativity of solutions, first consider Si; setting Si = 0 in (4.2a),

we get

S ′i = Λi > 0.

This implies that for nonnegative initial conditions Si(0) ≥ 0, Si(t) remains positive

for all t > 0. Assume that the initial conditions are positive, i.e., Si(0) > 0, Li(0) >
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0, Ii(0) > 0 and Ti(0) > 0. Consider Li and assume that there exists t1 > 0 such

that Li(t1) = 0, and that t1 is the first t for which any variable becomes zero. At t1,

L′i(t1) =
βiSi(t1)Ii(t1)

Ni(t1)
+
σiβiTi(t1)Ii(t1)

Ni(t1)
+ riIi(t1) +

p∑
j=1

mL
ijLj(t1) > 0,

since the negative term mL
ii vanishes as it was multiplied by Li(t1). But, if Li(t1) =

0, then L′i(t1) ≤ 0 as initial conditions are positive (and for some interval I =

[t2, t1), L′i(t1) < 0), a contradiction. Then there is no t1 such that Li(t1) = 0. Hence

Li is positive for all t. Similarly, the variables Ii and Ti are positive.

Proposition 4.2.2. Given nonnegative initial conditions, solutions to (4.2) are

bounded for all t ≥ 0.

Proof. To establish boundedness, note that in each patch i we have,

N ′i = Λi − diNi − µiIi +
∑

X∈{S,L,I,T}

p∑
j=1

mX
ijXj. (4.3)

Hence the total population satisfies

N ′ = Λ−
p∑
i=1

diNi −
p∑
i=1

µiIi +

p∑
i=1

∑
X∈{S,L,I,T}

p∑
j=1

mX
ijXj (4.4)

where Λ :=
∑p

i=1 Λi. Now, we can notice that the finite sum

p∑
i=1

∑
X∈{S,L,I,T}

p∑
j=1

mX
ijXj =

p∑
i=1

∑
X∈{S,L,I,T}

(
p∑
j=1

mX
ijXj −

p∑
j=1

mX
jiXi

)
= 0,

since
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p∑
i=1

∑
X∈{S,L,I,T}

(
p∑
j=1

mX
ijXj −

p∑
j=1

mX
jiXi

)

=
∑

X∈{S,L,I,T}

p∑
i=1

(
p∑
j=1

mX
ijXj −

(
p∑
j=1

mX
ji

)
Xi

)

=
∑

X∈{S,L,I,T}

p∑
i=1

p∑
j=1

mX
ijXj −

p∑
i=1

(
p∑
j=1

mX
ji

)
Xi

=
∑

X∈{S,L,I,T}

p∑
j=1

(
p∑
i=1

mX
ij

)
Xj −

p∑
i=1

(
p∑
j=1

mX
ji

)
Xi

= 0.

Defining d := min
i=1,...,p

{di}, equation (4.4) for the total population gives

N ′ ≤ Λ− dN. (4.5)

As solutions to scalar first order equations are monotone, this implies that N(t) is

bounded above by solutions of the differential equation Ψ′ = Λ − dΨ, i.e., N(t) ≤

max (Ψ(0),Λ/d), with, for all sufficiently large t, N(t) ≤ Λ/d. Whence, since N =∑p
i=1 Ni and each Ni ≥ 0, Ni is also bounded for each i, and for the same reason

Si, Li, Ii, Ti are bounded for each i.

4.2.2 Disease Free Equilibrium Point (DFE)

The metapopulation is at an equilibrium if the time derivatives in (4.2) are zero.

Patch i is at a disease free equilibrium (DFE) if Li = Ii = 0,∀i = 1, . . . , p. This

implies that Ti = 0,∀i = 1, . . . , p, as established in the following result.

Lemma 4.2.3. Given system (4.2), suppose that Li = Ii = 0 for all i = 1, ..., p.

Then

Ti = 0, ∀i = 1, ..., p.
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Proof. See [2].

Thus at a DFE, (4.2) is such that Si = Ni, ∀i = 1, . . . , p and satisfies

S ′i = Λi − diSi +

p∑
j=1

mS
ijSj −

p∑
j=1

mS
jiSi, (4.6)

which has the following matrix/vector form

S ′ = B +
(
MS − diag(di)

)
S, (4.7)

where B = (Λ1,Λ2, . . . ,Λp)
T ∈Mp×1. Then the DFE is given by

((
diag (di)−MS

)−1 B, 0, 0, 0
)
. (4.8)

By Gershgorin’s circle theorem, [40], all eigenvalues of MS have nonpositive real

parts. Therefore, shifting them by −di < 0 ensures that all the eigenvalues of

diag (di) −MS have strictly positive real parts. Hence
(
diag (di)−MS

)
is an in-

vertible matrix implying that the DFE is unique. Linear stability of the DFE can

be investigated using the next generation method [12, 33]. To derive a formula for

R0 using the next generation method, we follow the method of [33] and order the

infected variables as L1, . . . , Lp, I1, . . . , Ip. The vector representing new infections

into the infected classes, F , is given by

F :=

(
β1
S1I1

N1

+ σ1β1
T1I1

N1

, . . . , βp
SpIp
Np

+ σpβp
TpIp
Np

, 0, . . . , 0

)T
. (4.9)

The vector V representing other flows within and out of the infected classes

L1, . . . , Lp, I1, . . . , Ip is given by
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V := −



−{d1 + k1 + t11}L1 + r1I1 +

p∑
j=1

mL
1jLj −

p∑
j=1

mL
j1L1

...

−{dp + kp + t1p}Lp + rpIp +

p∑
j=1

mL
pjLj −

p∑
j=1

mL
jpLp

k1L1 − {d1 + µ1 + t21 + r1} I1 +

p∑
j=1

mI
1jIj −

p∑
j=1

mI
j1I1

...

kpLp − {dp + µp + t2p + rp} Ip +

p∑
j=1

mI
pjIj −

p∑
j=1

mI
jpIp



(4.10)

The matrix of new infections F and the matrix of transfers between compartments

V are the Jacobian matrices obtained by differentiating F and V with respect to the

infected variables, evaluated at the disease free equilibrium (DFE). They take the

form

F =

0 diag (βi)

0 0

 , (4.11)

V =

 V11 −diag (ri)

−diag (ki) V22

 , (4.12)

where V11 := diag (di + ki + t1i)−ML and V22 := diag (di + µi + ri + t2i)−MI are

both irreducibleM−matrices and so have positive inverses. Then the next generation

matrix is
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FV −1 =

diag (βi)A11 diag (βi)A12

0 0

 , (4.13)

where

A11 =

(
V11diag

(
1

ki

)
V22 − diag (ri)

)−1

(4.14)

A12 = diag

(
1

ki

)
V22

(
V11diag

(
1

ki

)
V22 − diag (ri)

)−1

.

FV −1 has spectral radius, denoted ρ, given by

ρ(FV −1) = ρ(diag (βi)A11) ∪ {0}. (4.15)

Since the matrix V is an M−matrix, it has a positive inverse [6]. Hence A11 is

positive and therefore diag (βi)A11 is also positive. Then using the Perron Frobenius

theorem, ρ(diag (βi)A11) > 0, whence the basic reproduction number, R0, is given

by

R0 = ρ(FV −1) = ρ(diag (βi)A11), (4.16)

where A11 is given by (4.14).

4.2.3 Global Stability of the DFE

Theorem 4.2.4. Define the basic reproduction number for system (4.2) by (4.16).

Then the DFE is globally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. We prove the global stability of the DFE by showing that if R0 < 1, then

lim
t→∞

I(t) = lim
t→∞

L(t) = 0,
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and then proving that the equilibrium (DFE) is (globally) asymptotically stable for

the linear system deduced from (4.2) by setting I = L = 0. Equations (4.2b) and

(4.2c) can be written in the form:

 L′(t)

I ′(t)

 = A

 L(t)

I(t)

+ C(t), (4.17)

where

A :=


−diag (di + ki + t1i) +ML diag (βi + ri)

diag (ki) −diag (di + µi + t2i + ri) +MI

 , (4.18)

and

C(t) :=



(
β1S1+σ1β1T1

N1
− β1

)
I1

...(
βnSn+σnβnTn

Nn
− βn

)
In

0

...

0


. (4.19)

Note that, for i = 1, . . . , p,

(
Si(s) + σiTi(s)

Ni(s)
− 1

)
βi ≤

(
Si(s) + Ti(s)

Ni(s)
− 1

)
βi,

as σi ≤ 1. So, using the fact that
Si(s) + Ti(s)

Ni(s)
≤ 1 gives

(
Si(s) + Ti(s)

Ni(s)
− 1

)
βi ≤ (1− 1)βi = 0
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and it follows that C(t) ≤ 0 for all t. So (4.17) satisfies

L
I


′

= A

L
I

+ C(t) ≤ A

L
I

 .

Let (Ψ,Φ) ∈ Rp×p. Then the behaviour of (4.17) can be obtained by studying the

linear system Ψ

Φ


′

= A

Ψ

Φ

 . (4.20)

The solution to (4.20) is clearly given by

Ψ(t)

Φ(t)

 = eAt

Ψ(0)

Φ(0)

 .

To study properties of eAt, notice that the Jacobian of (4.2) at the DFE is given by

J |DFE :=


MS − diag (di) D 0

0 A 0

0 E MT − diag (di)

 , (4.21)

where D = [0 − diag (βi)] and E = [diag (t1i) diag (t2i)].

Because the DFE is locally asymptotically stable when R0 < 1, all eigenvalues

of (4.21) have negative real parts when R0 < 1. But the eigenvalues of (4.21)

are the eigenvalues of MS − diag (di), MT − diag (di) and A. The eigenvalues of

MS − diag (di) and MT − diag (di) all have negative real parts, as by Gershgorin’s

circle theorem, all eigenvalues ofMS andMT have nonpositive real parts and shifting

them by −di < 0, i = 1, . . . , p, makes all real parts negative. It follows that ifR0 < 1,

then all eigenvalues of A have negative real parts.
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As a consequence, when R0 < 1,

lim
t→∞

Ψ(t)

Φ(t)

 = lim
t→∞

eAt

Ψ(0)

Φ(0)

 =

0

0

 .

and therefore,

lim
t→∞

I(t) = lim
t→∞

L(t) = 0.

So, when R0 < 1 and for sufficiently large times, L and I are zero and the nonzero

components in system (4.2) reduce to the following linear system:

S
T


′

= G

S
T

+

B
0

 , (4.22)

where B := (Λ1, . . . ,Λp)
T and

G :=

MS − diag (di) 0

0 MT − diag (di)

 .

Using the same reasoning as previously, it is clear that all eigenvalues of G have

negative real parts. So G is invertible and the equilibrium of (4.22) is given by

S∗
T ∗

 = −G−1

B
0

 .

By [2, Theorem 2], −(MS − diag (di)) and −(MT − diag (di)) are nonsingular M-
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matrices with nonnegative inverses, so

S∗
T ∗

 = −

(MS − diag (di))
−1 0

0 (MT − diag (di))
−1


B

0


=

−(MS − diag (di))
−1B

0


is such that S∗ > 0. Further, as all eigenvalues have negative real parts, all solutions

of (4.22) tend to this equilibrium. Thus, when R0 < 1, the DFE is globally asymp-

totically stable. The instability of the DFE when R0 > 1 is a direct consequence of

[33, Theorem 2].

4.2.4 Uniform Persistence

Next we study the dynamics of model (4.2) when R0 > 1. So let R0 > 1 and define

Ω :=
{(
S(t)T , L(t)T , I(t)T , T (t)T

)
∈ R4p

+ : S(t), L(t), I(t), T (t) ≤ H
}
,

where S := (S1, · · · , Sp)T , L := (L1, · · · , Lp)T , I := (I1, · · · , Ip)T , T := (T1, · · · , Tp)T ,H :=(
Λ1

d1

, · · · , Λp

dp

)T
. In the interior of Ω, (4.2) is called to be uniformly persistent in Ω̊

with respect to ∂Ω, if there exists a constant vector 0 < εT ∈ Rp such that, any solu-

tion
(
S(t)T , L(t)T , I(t)T , T (t)T

)
with initial value

(
S(0)T , L(0)T , I(0)T , T (0)T

)
∈ Ω̊,

lim inf
t→∞

I(t) ≥ ε lim inf
t→∞

L(t) ≥ ε

lim inf
t→∞

S(t) ≥ ε lim inf
t→∞

R(t) ≥ ε.
(4.23)

The disease is endemic if model (4.2) is uniformly persistent as that means that

both the infectious and the latent compartments persist above a certain positive level
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when R0 > 1.

Theorem 4.2.5. Model (4.2) is uniformly persistent in Ω̊ with respect to ∂Ω if and

only if R0 > 1.

Proof. The necessity of R0 > 1 follows from theorem 4.2.4 because R0 < 1 implies

that lim
t→∞

I(t) = lim
t→∞

L(t) = lim
t→∞

T (t) = 0. But since lim inf
t→∞

I(t) = ε > 0 implies

lim
t→∞

I(t) 6= 0, if it exists, that implies R0 ≥ 1. To prove sufficiency, we use theorem

proved by Hofbauer and So in [16, Theorem 4.1]. For that, choose X := R4p
+ to be

the metric space with the normal metric d. Then X := Ω is the global attractor of

X and define Y := ∂Ω. The maximal invariant set M in Y is the singleton set of

the DFE , (4.8), which is isolated, therefore the first assumption of Theorem 4.1 in

[16] holds. Finally to show that W s(M) ⊂ Y , since R0 > 1, then DFE is unstable

and hence W s(M) is only the DFE itself, i.e. W s(M) ⊂ Y . Hence model (4.2) is

uniformly persistence if and only if R0 > 1 [16, Theorem 4.1].

4.3 Numerical considerations

We consider the countries: Canada, China, India, Pakistan and the Philippines, as

the latter four countries are with the highest migration rate to Canada. We mainly

use data for 2010 since we also have transportation data for that year.

4.3.1 Parameter estimation

Canada China India Pakistan Philippines
Population (milions) 34.017 1,348.932 1,224.614 173.593 93.261

Life expectancy (years) 80.8 73.3 65.1 65.2 68.5
GDP 46,212 4,433 1,375 1,017 2,140

Health expenditure 5,222 221 54 22 77

Tab. 4.1: Country-related data from [35]. Monetary amounts are given in current (as of
2013) US dollars. GDP and Health expenditure are per capita.
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Estimates for 2010 of the population of Canada, China, India, Pakistan and the

Philippines are given in Table 4.1. As a proxy for travel between these countries, we

use IATA air travel data from the Bio.Diaspora Project (see, e.g., [4]), which details

the number of trips between locations. Although the data is available for each month,

to simplify the problem we use the total number of trips for 2010 between any two

countries in this list and report this as a daily average in Table 4.2.

Movement rates and demography

CA CN IN PA PH
Canada (CA) – 1,274 985 515 209

China (CN) 1,268 – 703 893 174
India (IN) 900 678 – 144 90

Pakistan (PA) 489 859 148 – 12
Philippines (PH) 200 150 58 9 –

Tab. 4.2: Average number of trips per day in the IATA database (see, e.g., [4]) from one
country (column) to another country (row). The two letter ISO 3166 code for
the countries is indicated.

Converting Table 4.2 into effective movement rates requires to approximate some

components, as the ODE model (4.2) is too simple to describe the complex reality

of mobility pictured here. We proceed as follows:

1. Compute movement rates MS.

2. Set death rates di.

3. Using (4.8), find B so that N = S∗ at the DFE corresponds to the population

of the various countries.

To compute movement rates, consider two countries in isolation from the others,

say, Canada and China. We want to describe the actual number of movements

between the countries. For a short time interval of, say, one day, we can neglect the
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variation of population due to birth and death and thus consider those rates to be

zero. Thus, after one day,

SCA(1) = e−mCN,CASCA(0),

where SCA(1) − SCA(0) = −1, 268 is the loss of population in Canada from trips to

China in one day. Thus,

mCN,CA = − ln

(
1− 1, 268

SCA(0)

)
,

where SCA(0) is the population of Canada. So, more generally, trips from X to Y

occur at the rate

mYX = − ln

(
1− ∆Y X

SX(0)

)
,

where ∆Y X is the number of trips per day originating in X and terminating in Y .

Using the population information, travel data in Table 4.2 and setting diagonal terms

so that MS has all column sums zero, we find

MS '



−8.4e− 05 9.45e− 07 7.94e− 07 2.91e− 06 2.2e− 06

3.73e− 05 −2.20e− 06 5.66e− 07 5.05e− 06 1.83e− 06

2.65e− 05 5.03e− 07 −1.53e− 06 8.14e− 07 9.47e− 07

1.44e− 05 6.37e− 07 1.19e− 07 −8.82e− 06 1.26e− 07

5.88e− 06 1.11e− 07 4.67e− 08 5.08e− 08 −5.11e− 06


.

Next, we estimate death rates by noting that 1/di is the average duration of life,

with life duration exponentially distributed. Finally, we deduce from (4.8) the value

B = (diag (di)−MS)S∗ such that the population in each country remains constant

in the absence of disease if initial conditions are chosen equal to S∗.

Choosing parameters this way allows to focus on the effect of disease transmis-

sion irrespective of initial convergence of the underlying demographic model to the
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equilibrium present in the absence of disease.

TB parameters

To identify TB related parameters, we use data from WHO [37], collected in Table 4.3

for convenience.

CA CN IN PA PH
Population 34 1348 1241 177 95

Mortality 0.18 3.5 24 33 29
Prevalence 5.6 104 249 350 484

Incidence 4.5 75 181 231 270
Total new cases 1,332 865,059 1,211,441 255,094 192,343

Treatment success 76% 96% 88% 91% 91%

Tab. 4.3: Country-related data used in parameter identification. Data from [37] for 2011
except Treatment success, 2010. Population is in millions. Mortality, Prevalence
and Incidence are per 100,000 population. Mortality excludes individuals coin-
fected with HIV, while Prevalence and Incidence includes them. Total new cases
are TB case notifications. Treatment success is in percent of new smear-positive
and/or culture-positive.

Estimation of the number of latently infected individuals is virtually impossible.

Estimates vary widely even within a given country. As a consequence, we use a vari-

ation on the commonly used statement that one third of the world’s population has

latent TB infection (LTBI), weighting that value by the GDP and health expenditure

per capita in Table 4.1 as well as incidence from Table 4.3. Canada has the highest

GDP and health expenditure, and prevalence of TB skin test (TST) positivity in the

general (not at specific risk) community were seen to vary from 0.9% in grade 10

students in Montréal to 33% in the personnel of a secondary school in Montérégie

(Québec); see the studies referenced in [39]. We thus choose LTBI prevalence to be

15% in Canada. China is second best in per capita GDP and health expenditure

and second lowest for incidence, we therefore use a prevalence of 20%. Finally, In-

dia, Pakistan and the Philippines are assumed to have a prevalence of 33%. The

prevalence of LTBI is then transformed into the initial number of latently infected

individuals in each country, Li(0).
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Then we compute the total number of new cases in a year (including retreatment)

and assume that all active TB cases undergo treatment. We further assume that the

average duration of treatment is six months and that the detection of an active

infection occurs equiprobably throughout the year. Thus, at the start of a new year

(time 0), only individuals who developed active TB during the second half of the

previous year are undergoing treatment, so we set Ti(0) to be half of the total new

cases. The initial condition for the number of individuals with active TB, i.e., Ii(0),

is taken as the difference between prevalence and incidence. Finally, Si(0) is chosen

so that initial conditions match the country population.

To evaluate the rate of infection βX in country X, we note that, from (4.2b),

the number of new (primary infection) cases per unit time is βXSXIX/NX , where

numbers in compartments are considered at t = 0. Equating this quantity to the

number of new cases per day from Table 4.3 gives us a value of βX . (By doing this,

we neglect all other sources of change in the number of infections.)

Other rates are evaluated in a manner similar to that used for movement rates.

If ∆X is the number of deaths due to TB in a year in country X, then expressing

this number per time unit,

δX = − ln

(
1− ∆X

IX(0)

)
.

Note that we use here the number of individuals with active TB, not the total

population. Indeed, δX acts on IX , not NX .

Suppose, again, that there were no other factors at play. Then the rate πi of

movement from Li to Ii can be obtained by writing the variation of Li due to new

infections, L′i = −πiLi and solving for πi. We find

πX = − ln

(
1− ∆X

LX(0)

)
,
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where ∆X is the number of individuals having gone from LTBI to active TB in a

year, which we take to be the number of new TB infections.

The rate of treatment t1i of LTBI cases is very difficult to estimate. We take it

to be very small, at it is the least likely method of treatment. The rate of treatment

of infectious cases, on the other hand, is quite large since infectious cases are more

easily detected.

4.3.2 Numerical results

In conclusion, we produce some simulations one that shows the convergence of the

prevalence when R0 < 1 in Figure (4.3.2), another one that shows that the total

population in each patch does not change too much with migration in Figure (4.3.2)

and the last one is to show that asymptotic behaviour of the prevalence when R0 > 1

in Figure (4.3.2). In all simulations the number of the infected is per 100,000 people.
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Fig. 4.2: The prevalence when R0 < 1.
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Fig. 4.3: The prevalence when R0 > 1.
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Fig. 4.4: The total population.
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4.4 Summary

In this chapter, we analyzed model describing the dynamics of TB taking into account

the migration. The two most important results proved in this chapter are

1. Model (4.2) has a globally asymptotically stable DFE when R0 < 1 (Theorem

4.2.4).

2. Model (4.2) is uniformly persistent when R0 > 1 (Theorem 4.2.5).

Considering the TB model given in [9] and model (4.2), the mathematical analyses

done in this chapter shows that though the two models have two different DFE due

to the linear migration, however the global stability of the DFE was preserved under

the linear migration.



5. MODELLING MULTI-STRAIN TUBERCULOSIS

5.1 Introduction

Drug resistant tuberculosis (either MDR-TB or XDR-TB) makes it a considerable

challenge to control TB, since treatment is less efficacious for a patient infected

with MDR-TB or XDR-TB. In this chapter we consider modelling drug resistant

tuberculosis.

5.2 The Model

We start by formulating a general deterministic mathematical model of the trans-

mission of drug-sensitive, multidrug-resistant and extensively drug-resistant strains

of TB. The population of interest is divided into eight compartments depending on

their epidemiological stages, see Table 5.1.

Compartments
Variable Name Interpretation
S(t) Susceptible have never encountered TB
Ls(t) Latently infected with drug-

sensitive TB
Infected with drug-sensitive TB but not in-
fectious

Lm(t) Latently infected with MDR TB Infected with MDR-TB but not infectious
Lx(t) Latently infected with XDR TB Infected with XDR-TB but not infectious
Is(t) Sensitive drug TB infectious Able to infect others with drug-sensitive

strain
Im(t) MDR TB infectious Able to infect others with MDR strain
Ix(t) XDR TB infectious Able to infect others with XDR strain
R(t) Recovered Recovered by getting a successfully treat-

ment

Tab. 5.1: Description of the epidemiological states

The total population N(t) is given by
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N(t) = S(t) + Ls(t) + L(t) + Lx(t) + Is(t) + Im(t) + Ix(t) +R(t) (5.1)

Table 5.2 lists all parameters and their interpretation.

Parameter Interpretation
λ recruitment
βs drug-sensitive strain transmission coefficient
βm MDR strain transmission coefficient
βx XDR strain transmission coefficient
fi proportion of infected individuals that move to Li, i ∈ {s,m, x}
1− fi proportion of infected individuals making a fast trasition to Ii, i ∈ {s,m, x}
wi per-capita rate of endogenous reactivation of Li, i ∈ {s,m, x}
αij proportion of exogenous reinfection of Li due to contact with Ij, i ∈ {s,m, x}
ri per-capita rate of Ii moving back to Li without treatment i ∈ {s,m, x}
ts1 per-capita rate of treatment for Ls
ts2 per-capita rate of treatment for Is
ti per-capita rate of treatment for Ii, i ∈ {m,x}
1− σi efficiency of treatment in preventing infection with strain i, i ∈ {s,m, x}
p1 probability of treatment success for Ls
1− p1 proportion of Ls moved to Lm due to incomplete treatment or lack of strict

compliance in the use of drugs
p2 probability of treatment success for Is
1− p2 proportion of Is moved to Lm due to incomplete treatment or lack of strict

compliance in the use of drugs
p3 probability of treatment success for Im
1− p3 proportion of Im moved to Lx due to incomplete treatment or lack of strict

compliance in the use of drugs
d per-capita of natural death rate
µi pre-capita rate of death due to TB of strain i, i ∈ {s,m, x}

Tab. 5.2: Description of model parameters

The flow diagram of the model is as in Figure 5.1.
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Fig. 5.1: Flow diagram of the model with drug-sensitive, MDR-TB and XDR-TB for a
single population.
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All these assumptions lead to a system of 8 ordinary differential equations de-

scribing the disease dynamics.

The evolution of the number of susceptible individuals in the population is gov-

erned by the following equation:

S ′ = λ− dS − βs
SIs
N
− βm

SIm
N
− βx

SIx
N

(5.2a)

where λ is the rate at which new individuals join the population (birth) and the

βr, with r ∈ {s,m, x} are coefficients indicating the rate at which new infections

arise given contacts between susceptible and infectious individuals in the different

infectious classes.

When an individual is infected with any strain of TB, that person leaves the S

compartment and transitions to the latently infected compartment corresponding to

the strain they were infected with, i.e., to compartment Lr, where r ∈ {s,m, x}. A

proportion 1−fr, where r ∈ {s,m, x}, of the infected individuals moves to infectious

compartment Ir in what is called fast infection.

The number of latently infected individuals with drug-sensitive TB, Ls(t), is in-

creased by primary infections with the drug-sensitive strain Is, at the rate fsβsSIs/N ,

by reinfection of treated individuals at the rate σsfsβsRIs/N and by natural recov-

ery of individuals in the drug-sensitive infectious compartment Is at the per capita

rate rs. We assume that the efficiency 1− σs of treatment is in (0, 1), implying that

treatment does indeed reduce the probability of reinfection. On the other hand, Ls

decreases at the rate αsrβr, where r ∈ {s,m, x}, due to reinfection or secondary

infection with the same strain Is, which is known as exogenous reinfection or a dif-

ferent strain Im or Ix, following which the individual transitions from Ls to the

corresponding infectious compartment. Treatment, natural death and natural pro-

gression to the infectious stage (due to a weakening immune system) also decrease

the population in the Ls compartment. These facts are transcribed in the following
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equation.

L′s =fsβs
SIs
N

+ σsfsβs
RIs
N
− αssβs

LsIs
N
− αsmβm

LsIm
N

− αsxβx
LsIx
N
− {d+ ws + ts1}Ls + rsIs. (5.2b)

Similarly to the drug-sensitive situation, the number Lm of individuals latently

infected with MDR-TB increases when individuals in the S or R compartments are

infected with MDR-TB. Reinfection in Ls by an MDR-TB strains occurs at the

rate fmαsmβmLsIm/N and developing resistance to the drugs offered to individuals

infected with the drug-sensitive strain at rates (1− p1)ts1 and (1− p2)ts2 for latently

infected and infectious individuals, respectively; both increase the population in

Lm. The number of individuals in Lm decreases because of reinfection with Ix and

exogenous reinfection at the rates αmxβx and αmmβm, respectively. Taking into

account the fact that unlike for individuals in Ls, treatment is not offered to either

Lm or Lx, the rate of change of Lm is given by

L′m = fmβm
SIm
N

+ fmσmβm
RIm
N

+ fmαsmβm
LsIm
N
− αmmβm

LmIm
N

− αmxβx
LmIx
N
− {d+ wm}Lm + rmIm + (1− p1)ts1Ls

+ (1− p2)ts2Is.

(5.2c)

Similarly the rate of change of Lx is given by

L′x = fxβx
SIx
N

+ fxσxβx
RIx
N

+ fxαsxβx
LsIx
N

+ fxαmxβx
LmIx
N

− αxxβx
LxIx
N
− {d+ wx}Lx + rxIx + (1− p3)tmIm.

(5.2d)

To describe the rate of change of the numbers in infectious compartment Is, we

notice that natural recovery, natural death, death due to TB and failure of treatment
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that causes resistance to drugs in Is are the only reasons to leave Is at rates rs, ds, µs

and ts, respectively. All other facts such as exogenous reinfection in Ls, fast infection

in S or R and individuals who become infectious in Ls are feeding into Is at rate

αssβs, (1− fs)βs and ws respectively.

I ′s = αssβs
LsIs
N

+ (1− fs)βs
(
SIs
N

+ σs
RIs
N

)
+ wsLs

− {d+ µs + ts2 + rs} Is.
(5.2e)

Similarly, exogenous reinfection in Lm, fast infection in S,R or Ls and individuals

who become infectious in Lm are feeding into Im at the corresponding rates; see Table

5.2. Natural recovery, natural death, death due to TB and failure in treatment that

causes resistance to drugs in Im decrease Im at rates given in Table 5.2.

I ′m = αmmβm
LmIm
N

+ wmLm − {d+ µm + tm + rm} Im

+ (1− fm)βm

(
SIm
N

+ σm
RIm
N

+ αsm
LsIm
N

)
.

(5.2f)

Similarly, the rate of change of Ix is given by

I ′x = αxxβx
LxIx
N

+ wxLx − {d+ µx + tx + rx} Ix

+ (1− fx)αsx
(
βx
LsIx
N

+ αmx
LmIx
N

+
SIx
N

+ σx
RIx
N

)
.

(5.2g)

Finally the rate of change of R depends positively on the proportion of individuals

in Ls, Is, Im and Ix who successfully got treated and negatively on reinfection with

the sensistive, MDR and XDR strains and natural death at rates given in Table 5.2.

R′ = p1ts1Ls + p2ts2Is + p3tmIm + txIx − σsβs
RIs
N
− σmβm

RIm
N

− σxβx
RIx
N
− dR.

(5.2h)
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5.3 Mathematical Analysis

5.3.1 Basic Properties of Solutions

Proposition 5.3.1. Given nonnegative initial conditions, solutions to (5.2) exist

and are unique for all t ≥ 0. Futhermore, the positive orthant R8
+ is positively

invariant under the flow of (5.2).

Proof. Since the vector field in (5.2) consists of sums of constants and rational poly-

nomial functions in S, Ls, Lm, Lx, Is, Im, Ix, R and the total population N is positive

(as we will show later), it is differentiable.. Hence solutions to (5.2) exist and are

unique.

To prove the nonnegativity of solutions, first consider S; setting S = 0 in (5.2a),

we get

S ′ = λ > 0.

This implies that for nonnegative initial conditions S(0) ≥ 0, S(t) remains positive

for all t > 0. Assume that the initial conditions are positive, i.e., S(0) > 0, Ls(0) >

0, Lm(0) > 0, Lx(0) > 0, Is(0) > 0, Im(0) > 0, Ix(0) > 0 and R(0) > 0. Consider Ls

and assume that there exists t1 > 0 such that Ls(t1) = 0, and that t1 is the first t

for which any variable becomes zero. At t1,

L′s(t1) = fsβs
S(t1)Is(t1)

N(t1)
+ fsσsβs

R(t1)Is(t1)

N(t1)
+ rsIs(t1) > 0

But, if Ls(t1) = 0, then L′s(t1) ≤ 0 as initial conditions are positive (and for

some interval I = [t2, t1), L′s(t1) < 0), a contradiction. Then there is no t1 such that

Ls(t1) = 0. Hence Ls is positive for all t. Similarly, the variables Lm, Lx, Is, Im, Ix

and R are positive.

Proposition 5.3.2. Given nonnegative initial conditions, solutions to (5.2) are
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bounded for all t ≥ 0. Furthermore, the closed set

Ω :=
{(
S, Ls, Lm, Lx, Is,Im, Ix, R

)
∈ R8

+ :

S + Ls + Lm + Lx + Is + Im + Ix +R ≤ λ

d

} (5.3)

attracts the flow of (5.2) for any initial condition in R8
+.

Proof. To establish boundedness, we remark that the rate of change of the total

population is given by

N ′ = λ− dN − µsIs − µmIm − µxIx ≤ λ− dN. (5.4)

This implies that N(t) is bounded above by solutions of the differential equation Ψ′ =

λ − dΨ, i.e., N(t) ≤ max (Ψ(0), λ/d), with, for all sufficiently large t, N(t) ≤ λ/d.

Whence, since S, Ls, Lm, Lx, Is, Im, Ix, R are nonnegative, S, Ls, Lm, Lx, Is, Im, Ix, R

are also bounded. Now consider Ω given by (5.3). We have that Ω is invariant,

i.e., any solution of model (5.2) with initial condition in Ω remains in Ω for t ≥ 0.

Moreover, for any solution with initial condition outside Ω, i.e., N ≥ λ
d
, by (5.4)

N ′ < 0. Thus Ω attracts all solutions of (5.2) with any initial condition in R8
+ .

5.3.2 Stability of Disease Free Equilibrium (DFE)

The system is at an equilibrium if the time derivatives in (5.2) are zero. An equilib-

rium is a disease free equilibrium (DFE) if Ls = Lm = Lx = Is = Im = Ix = 0. This

implies that R = 0.

Thus at a DFE, (5.2) is such that S = N = λ
d
. Then the unique DFE is given by

E∗ =

(
λ

d
, 0, 0, 0, 0, 0, 0, 0

)
. (5.5)
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Local Asymptotic Stability of the DFE

Linear stability of the DFE can be investigated using the next generation method

[12, 33]. To derive a formula for R0 using the next generation method, we follow the

method of [33] and order the infected variables as

I := (Ls, Lm, Lx, Is, Im, Ix)
T .

The vector representing new infections into the infected classes F is given by

F :=



fs
(
βs

SIs
N

+ σsβs
RIs
N

)

fm
(
βm

SIm
N

+ σmβm
RIm
N

)

fx
(
βx

SIx
N

+ σxβx
RIx
N

)

(1− fs)
(
βs

SIs
N

+ βs
RIs
N

)

(1− fm)
(
βm

SIm
N

+ βm
RIm
N

)

(1− fx)
(
βx

SIx
N

+ σxβx
RIx
N

)



. (5.6)

The vector V representing other flows within and out of the infected classes I is

given by
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V :=



{d+ ws + ts1}Ls − rsIs

+αssβs
LsIs
N

+ αsmβm
LsIm
N

+ αsxβx
LsIx
N

{d+ wm}Lm − rmIm − (1− p1)ts1Ls − (1− p2)ts2Is

−fmαsmβmLsIm
N

+ αmmβm
LmIm
N

+ αmxβx
LmIx
N

{d+ wx}Lx − rxIx − (1− p3)tmIm

−fxαsxβx LsIx
N
− fxαmxβx LmIx

N
+ αxxβx

LxIx
N

−αssβs LsIs
N

+ {d+ µs + ts2 + rs} Is − wsLs

{d+ µm + tm + rm} Im − wmLm

−αmmβmLmIm
N
− αsmβmLsIm

N

{d+ µx + tx + rx} Ix − wxLx − αxxβx LxIx
N

−(1− fx)
(
αsxβx

LsIx
N

+ αmxβx
LmIx
N

)



(5.7)

The matrix of new infections F and the matrix of transfers between compartments

V are the Jacobian matrices obtained by differentiating F and V with respect to the

infected variables I and evaluating at the disease free equilibrium (DFE). They take

the form

F =

0 A

0 B

 , V =

C D

E H

 , (5.8)
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where

A =


fsβs 0 0

0 fmβm 0

0 0 fxβx

 , B =


(1− fs)βs 0 0

0 (1− fm)βm 0

0 0 (1− fx)βx

 ,

C =


d+ ws + ts1 0 0

(−1 + p1)ts1 d+ wm 0

0 0 d+ wx

 ,

D =


−rs 0 0

(−1 + p2)ts2 −rm 0

0 (−1 + p3)tm −rx

 ,

H =


d+mus + ts2 + rs 0 0

0 d+mum + tm + rm 0

0 0 d+mux + tx + rx

 ,

E =


−ws 0 0

0 −wm 0

0 0 −wx

 .

Then the basic reproduction number R0 for system (5.2) is the spectral radius of the

next generation matrix and is given by

R0 = ρ(FV −1) = max (R0x,R0m,R0s), (5.9)
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where

R0x =
(wx + (1− fx)d) βx

d2 + (tx + µx + wx + rx) d+ wx (tx + µx)

R0m =
(wm + (1− fm)d) βm

d2 + (tm + µm + wm + rm) d+ wm (tm + µm)

R0s =
(ws + (1− fs)d+ (1− fs)ts1) βs

d2 + (ts1 + ts2 + µs + ws + rs) d+ ws (ts2 + µs) + ts1 (ts2 + µs + rs)

It is worth mentioning here that R0x,R0m and R0s are the basic reproduction

numbers of the extensively drug resistant, multidrug resistant and drug-sensitive

resistant strains respectively.

Lemma 5.3.3. The DFE of model (5.2), given by (5.5), is locally asymptotically

stable if R0 < 1 and unstable if R0 > 1, where R0 is defined by (5.9).

Lemma 5.3.3 says that if the average numbers of new infections generated by

a single individual infected with extensively drug resistant, multidrug resistant and

drug-sensitive resistant strains are less than 1, then we can eliminate TB if the initial

sizes of the subpopulations of the model are in the domain of attraction of the DFE.

To ensure that the elimination is global, we should prove the global stability of

the DFE. Before that, it is wise to check the possibility of existence of a backward

bifurcation.

Existence of a Backward Bifurcation

Theorem 5.3.4. In the absence of exogenous reinfection of Ex, i.e., if αxx = 0, or

when the proportion of infected individuals making a fast trasition to Ix, (1− fx) , is

greater than or equal to the proportion of exogenous reinfection of Ex due to contact

with Ix, i.e.

αxx ≤ (1− fx), (5.10)
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Model 5.2 has a forward bifurcation at R0 = 1. Otherwise, the model has a backward

bifurcation at R0 = 1 if

(αxx + fx − 1)(fxβx + rx)d
(

1− wx

(wx + d)2 +
wx

(wx + d)

)
> fx(1− σx)

(
wx

(wx + d)
+ tx

)
+ (1− fx)d (5.11)

Proof. The proof is using the Centre Manifold Theory given in [33, 10], see Appendix

B. To use the Centre Manifold Theory, consider the model when R0 = 1 and using

βx as the bifurcation parameter, then

βx =
d2 + (tx + µx + wx + rx) d+ wx (tx + µx)

(wx + (1− fx)d)
. (5.12)

Checking the eigenvalues of the Jacobian of model (5.2) evaluated at the DFE, E∗,

and βx shows that 0 is a simple eigenvalue and all other eigenvalues have a negative

real parts. Hence we can use Theorem B.1. The Jacobian of model (5.2) has a right

eigenvector w (corresponding to the zero eigenvalue) given by

w =

[
−w7βx

d
, 0, 0,

w7(fxβx + rx)

d+ wx
, 0, 0, w7 > 0,

w7tx
d

]T
, (5.13)

and a left eigenvector v given by

v =

[
−w7βx

d
, 0, 0,

w7(fxβx + rx)

d+ wx
, 0, 0, w7 > 0,

w7tx
d

]T
, (5.14)

To use Theorem B.1, it is convenient to change the variable names as follows

S = x1, Ls = x2, Lm = x3, Lx = x4, Is = x5, Im = x6, Ix = x7, R = x8,



5. Modelling Multi-Strain Tuberculosis 78

and the vector field in (5.2) as

(f1, f2, f3, f4, f5, f6, f7, f8) := (S ′, L′s, L
′
m, L

′
x, I
′
s, I
′
m, I

′
x, R

′) .

Hence,

a :=
8∑

i,j,k=1

vkwiwj
∂2fk
∂xi∂xj

(E∗, βx),

=
2v7w

2
7βxd

λ

[
−(fxβx + rx)

fx + αxx
(d+ wx)2

− fx
(d+ wx)

− (fxβx + rx)
1− fx − αxx

(d+ wx)

− txfxβx
1− σx

d(d+ wx)
− (1− fx)− tx(1− fx)

1− σx
d

]
,

which is strictly negative if αxx = 0 or inequality (5.3.4) holds. Moreover, we can

find that

b =
8∑

i,k=1

vkwi
∂2fk
∂xi∂βx

(E∗, βx) = v7w7
d(1− fx) + wx

d+ wx
> 0

is always positive. Therefore, by Theorem B.1 Model (5.2) has a forward bifurcation

at R0 = 1. If condition (5.3.4) is broken, then Model (5.2) goes under backward

bifurcation if condition (5.11) holds.

Theorem 5.3.4 shows that model (5.2) develops a backward bifurcation only if the

XDR strain has a backward bifurcation, regardless of whether or not the other two

strains are in backward bifurcation. That is because, as can be noticed in the model,

there is a vertical movement between the strains starting with the sensitive drug TB

and terminating with the XDR strain. So, because of that movement, whether or

not the first two strain are in backward bifurcation, the whole model will a develop

backward bifurcation only if the terminal strain is in backward bifurcation.
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Global Stability of the DFE

We now investigate the global stability of the DFE under the conditions that perclude

a backward bifurcation.

Theorem 5.3.5. Assume that

0 ≤ αxx ≤ (1− fx), (A1)

0 ≤ αmm ≤ (1− fm), (A2)

0 ≤ αss ≤ (1− fs). (A3)

Then the DFE (5.5) of (5.2) is globally asymptotically stable when R0 < 1.

Proof. Define X := (S, Ls, LmLx, Is, Im, Ix, R). We prove the global stability of the

DFE by showing that if R0 < 1, then limt→∞X (t) = E∗.

However, in this case system (5.2) is not of type K, therefore a standard com-

parison theorem is not applicable. Let tn → ∞ be a sequence such that Ls(tn) →

L∞s =: lim supLs(t). Then Ls(tn)′ → 0 using Lemma 2.1 in [31]. Then equation

(5.2b) gives

0 = fsβs
S + σsR

N
(tn)Is(tn)− αssβs

Ls
N

(tn)Is(tn)− αsmβm
Im
N

(tn)Ls(tn)

− αsxβx
Ix
N

(tn)Ls(tn)− {d+ ws + ts1}L∞s + rsIs(tn)

≤ fsβs
S + σsR

N
(tn)Is(tn)− {d+ ws + ts1}L∞s + rsIs(tn).

Using the fact that
S(t) + σsR(t)

N(t)
< 1 and that Is(t) ≤ I∞s at any t, it follows that

L∞s ≤
fsβs + rs

d+ ws + ts1
I∞s . (5.15)



5. Modelling Multi-Strain Tuberculosis 80

Now let sn →∞ be the sequence such that Is(sn)→ I∞s ; this again implies that

Is(sn)′ → 0 [31, Lemma 2.1]. Then equation (5.2e) gives

0 = αssβs
Ls
N

(sn)I∞s + (1− fs)βs
S + σsR

N
(sn)I∞s + wsLs(sn)

− {d+ µs + ts2 + rs} I∞s .

Using Assumption (A3),

0 ≤ (1− fs)βs
S + σsR + Ls

N
(sn)I∞s + wsLs(sn)

− {d+ µs + ts2 + rs} I∞s .

For simplicity, define a1 := (d+ µs + ts2 + rs) and a2 := (d+ws+ ts1). The fact that

S(t)+σsR(t)+Ls(t)
N(t)

< 1 and Ls(t) ≤ L∞s , together with equation (5.15) imply that

0 ≤
[
(1− fs)βs − a1 +

fsβsws + rsws
a2

]
I∞s

≤ [a2(1− fs)βs − a1a2 + fsβsws + rsws]
1

a2

I∞s

≤ [R0s − 1]
1

a2(a1a2 − wsrs)
I∞s .

(5.16)

Since R0 = max{R0s,R0m,R0x}, R0 < 1 implies that R0s < 1. Therefore, (5.16)

implies that I∞s = 0. Hence, limt→∞ Is(t) = 0. Similarly, using Assumptions (A1)

and (A2), we can prove the following inequalities involving Im and Ix

0 ≤ [R0m − 1]
1

a3(a3a4 − wmrm)
I∞m

0 ≤ [R0x − 1]
1

a5(a5a6 − wxrx)
I∞x ,

(5.17)

where

a3 := d+ wm, a4 := d+ tm + µm + rm, (5.18)

a5 := d+ wx, a6 := d+ tx + µx + rx. (5.19)
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Inequalities (5.17) imply that I∞m = I∞x = 0 whenR0 < 1, therefore limt→∞ Im(t) =

limt→∞ Ix(t) = 0. As a consequence, the total population N(t) converges to λ/d (us-

ing (5.4)). To finish the proof, we study system (5.2) after the convergence of N , Is,

Im and Ix, thereby reducing (5.2) to the following system

S ′ = λ− dS

L′s = −{d+ ws + ts1}Ls

L′m = −{d+ wm}Lm + (1− p1)ts1Ls

L′x = −{d+ wx}Lx

R′ = p1ts1Ls − dR.

(5.20)

The conclusion follows since model (5.20) is linear and clearly limits to (λ/d, 0, 0, 0, 0).

Remark 3. In the absence of the exogenous reinfection factor, Castillo-Chavez and

Feng in [9] proved under certain conditions the global stability of the DFE of a drug-

sensitive TB model and of two strains TB. Then considering the exogenous reinfec-

tion, Capurro, Castillo-Chavez and Feng in [8] considered a drug-sensitive TB strain

only and showed the existence of the backward bifurcation phenomena because of ex-

ogenous reinfection. Theorem 5.3.5 shows that even with exogenous reinfection, there

is a range for the exogenous reinfection parameter for which the model undergoes a

forward bifurcation. Outside that range, the system undergoes a backward bifurcation

as established in Theorem 5.3.4.

Remark 4. Conditions in Theorem 5.3.5 mean that although the existence of back-

ward bifurcation of model (5.2) mainly depends on the existence of the backward

bifurcation in the terminal group XDR strain as seen in Theorem 5.3.4, the global

stability of the DFE of model (5.2) happens only when the DFE is globally asymp-

totically stable for each strain. This is shown in the following three theorems.
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Theorem 5.3.6. Under assumption (A1), the DFE (5.5) of the submodel of the

XDR-TB is globally a asymptotically stable.

Proof. The submodel for XDR-TB in the absence of the other strains is as follows

S ′ = λ− dS − βx
SIx
N

, (5.21a)

L′x = fxβx
SIx
N

+ fxσxβx
RIx
N
− αxxβx

LxIx
N
− {d+ wx}Lx + rxIx, (5.21b)

I ′x = αxxβx
LxIx
N

+ (1− fx)βx
(
SIx
N

+ σx
RIx
N

)
+ wxLx

− {d+ µx + tx + rx} Ix, (5.21c)

R′ = txIx − σxβx
RIx
N
− dR. (5.21d)

Similarly to the proof of Theorem 5.3.5, we prove the global stability of the DFE by

showing that, if R0 < 1, then

lim
t→∞

S(t) =
λ

d
, lim
t→∞

Ix(t) = lim
t→∞

Lx(t) = lim
t→∞

R(t) = 0.

Here again, (5.21) is not of type K and a standard comparison theorem cannot be

used. Again, let tn →∞ be the sequence such that Lx(tn)→ L∞x . Then Lx(tn)′ → 0

using Lemma 2.1 in [31]. Then equation (5.21b) gives

0 ≤ fxβxIx(tn)− {d+ wx}L∞x + rxIx(tn) (5.22)

L∞x ≤
fxβx + rx
d+ wx

I∞x (5.23)

Now let sn → ∞ be the sequence such that Ix(sn) → I∞x , again implying that

Ix(sn)′ → 0 [31, Lemma 2.1]. Then equation (5.21c) gives
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0 < αxxβx
Lx
N

(sn)I∞x + (1− fx)βx
S + σxR

N
(sn)I∞x + wxLx(sn)

− {d+ µx + tx + rx} I∞x .

Using Assumption (A3), it follows from S(t)+σsR(t)+Ls(t)
N(t)

< 1, Ls(t) ≤ L∞s and equation

(5.23) that

0 ≤ [R0x − 1]
1

a5(a5a6 − wsrs)
I∞s . (5.24)

where a5 and a6 are given by (5.19). If R0x < 1, then I∞x = 0. Hence limt→∞ Ix(t) =

0. Moreover, the total population N converges to λ/d. To finish the proof, we study

(5.21) after convergence of N and Ix, reducing it to the following model

S ′ = λ− dS

L′x = −{d+ wx}Lx

R′ = −dR.

(5.25)

The proof is finished by remarking that (5.25) is linear and converges to (λ/d, 0, 0).

Theorem 5.3.7. Under assumption (A2), the DFE (5.5) of the submodel for MDR

- TB is globally asymptotically stable.

Proof. Similar to the proof of Theorem 5.3.6

Theorem 5.3.8. Under assumption (A3), the DFE (5.5) of the submodel for drug-

sensitive TB is globally asymptotically stable.

Proof. Similar to the proof of Theorem 5.3.6

In the rest of the chapter, we investigate further properties of model (5.2) under

assumptions (A1), (A2) and (A3).
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5.3.3 Existence of Boundary Equilibria

In this section, we investigate the existence and stability of boundary equilibria where

at least one of the infected variables is non-zero. It is important to notice that:

1. The TB drug-sensitive strain Is happens only when susceptible or treated in-

dividuals acquire primary infection with the sensitive strain at the rate βs.

2. There are three ways to generate individuals into the infected multidrug resis-

tant TB strain class Im,

• when susceptible or treated individuals acquire primary infection with the

resistant strain at the rate βm;

• when latently infected individuals with sensitives TB strain acquire sec-

ondary infection with the resistant strain at the rate αsmβm;

• when treated individuals infected (actively or latently) with the sensitive

strain develop resistance to treatment with proportion (1−p1) and (1−p2).

3. Finally, to generate individuals into the infected extensively drug resistant TB

strain class Ix, there are four ways:

• when susceptible or treated individuals acquire primary infection with the

XDR-TB strain at the rate βx;

• when latently infected individuals with sensitives TB strain acquire sec-

ondary infection with the XDR-TB strain at the rate αsxβx;

• when latently infected individuals with MDR-TB strain acquire secondary

infection with the XDR-TB strain at the rate αmxβx;

• when treated individuals infected with the MDR-TB strain develop resis-

tance to treatment with proportion (1− p3).

Taking this into account, we have in total 10 endemic and boundary equilibria.
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Boundary equilibria: when one strain endemically exists only as follow

1. Drug sensitive TB only,

Es = (S∗, L∗s, 0, 0, I
∗
s , 0, 0, R

∗) .

2. MDR-TB only,

Em = (S∗, 0, L∗m, 0, 0, I
∗
m, 0, R

∗) .

3. XDR-TB only,

Ex = (S∗, 0, 0, L∗x, 0, 0, 0, I
∗
x, R

∗) .

Low endemicity coexistence equilibria: More than one strain exists in this type. But

the existence of the resistant strain is due to treatment, not a new infection.

E.g. (S∗, L∗s, L
∗
m, 0, I

∗
s , I

∗
m, 0, R

∗) , in this case βm = 0 but L∗m 6= 0, I∗m 6= 0 and

lim
t→∞

L∗m(t) 6= 0, lim
t→∞

I∗m(t) 6= 0. The possible equilibria of this type are

4. Esm = (S∗, L∗s, L
∗∗
m , 0, I

∗
s , I

∗∗
m , 0, R

∗).

5. Emx = (S∗, 0, L∗m, L
∗∗
x , 0, I

∗
m, I

∗∗
x , R

∗).

Here the existence of Esm = (S∗, L∗s, 0, L
∗∗
x , I

∗
s , 0, I

∗∗
x , R

∗) is not possible as out-

flow of the drug sensitive strain goes into MDR strain, not the XDR one.

High endemicity co-existence equilibria: this type includes the new infections as well

i.e., βi 6= 0, i ∈ {s,m, x}. The possible equilibria of this type are

6. E∗sm = (S∗, L∗s, L
∗
m, 0, I

∗
s , I

∗
m, 0, R

∗).

7. E∗mx = (S∗, 0, L∗m, L
∗
x, 0, I

∗
m, I

∗
x, R

∗).

8. E∗smx = (S∗, L∗s, L
∗
m, L

∗
x, I
∗
s , I

∗
m, I

∗
x, R

∗).
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Again, the existence of E∗sm = (S∗, L∗s, 0, L
∗
x, I
∗
s , 0, I

∗
x, R

∗) is not possible because

even if we started with Lm = 0 and Im = 0 but Ls 6= 0 and Is 6= 0 then

L′m = (1− p1)ts1Ls + (1− p2)ts2Is > 0,

which implies that Lm will not remain 0, leading to

I ′m = wmLm > 0.

Mixed of high and low endemicity equilibira: this type occurs when one of the new

infection rates is zero but the class is there due to the treatment inflow as

following

9. E∗∗smx = (S∗, L∗s, L
∗
m, L

∗∗
x , I

∗
s , I

∗
m, I

∗∗
x , R

∗), when βx = 0.

10. E∗∗sxm = (S∗, L∗s, L
∗∗
m , L

∗
x, I
∗
s , I

∗∗
m , I

∗
x, R

∗), when βm = 0.

Drug-sensitive TB strain, Es, This equilibrium, Es = (S∗, L∗s, 0, 0, I
∗
s , 0, 0, R

∗), exists

only when the drug-sensitive TB strain exists and the other two strains disap-

pear. That would happen if βm = βx = 0 and the treatment did not induce

resistance, i.e., p1 = p2 = p3 = 1. To investigate the local stability of this

equilibrium we consider the corresponding submodel of model (5.2) given by
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S ′ =λ− dS − βs
SIs
N

, (5.26a)

L′s =fsβs
SIs
N

+ fsσsβs
RIs
N
− αssβs

LsIs
N
− {d+ ws + ts1}Ls + rsIs, (5.26b)

L′m =− {d+ wm}Lm + rmIm, (5.26c)

L′x =− {d+ wx}Lx + rxIx, (5.26d)

I ′s =αssβs
LsIs
N

+ (1− fs)βs
(
SIs
N

+ σs
RIs
N

)
+ wsLs − {d+ µs + ts2 + rs} Is,

(5.26e)

I ′m =wmLm − {d+ µm + tm + rm} Im, (5.26f)

I ′x =wxLx − {d+ µx + tx + rx} Ix, (5.26g)

R′ =ts1Ls + ts2Is + tmIm + txIx − σsβs
RIs
N
− dR. (5.26h)

Theorem 5.3.9. Under assumption (A3), the boundary equilibrium

Es = (S∗, L∗s, 0, 0, I
∗
s , 0, 0, R

∗)

exists and is locally asymptotically stable when R0 > 1.

Proof. To show that we apply Theorem B.1 on model (5.26) and prove that the
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constants a is always negative and b is always positive. Hence there exists a local

asymptotically stable endemic equilibrium. In this case, we consider the model when

R0 = 1 using βs as a bifurcation parameter, then

βs =
d2 + (ts1 + ts2 + µs + ws + rs) d+ ws (ts2 + µs) + ts1 (ts2 + µs + rs)

(ws + (1− fs)d+ (1− fs)ts1)
. (5.27)

Checking the eigenvalues of the Jacobian of model (5.26) evaluated at the DFE

and βs shows that 0 is a simple eigenvalue and all other eigenvalues have a negative

real parts. Hence we can use Theorem B.1. The Jacobian of model (5.26) has a right

eigenvector, w, (corresponding to the zero eigenvector) given by

w =

[
−w5β

d
,
w5(fsβ + rs)

d+ ws + ts1
, 0, 0, w5, 0, 0,

w5 (ts1(fsβ + rs) + ts2(d+ ws + ts1))

d(d+ ws + ts1)

]T
,

(5.28)

where w5 > 0 and a left eigenvector ,v, given by

v =

[
0,

wsv5

(d+ ws + ts1)
, 0, 0, v5 > 0, 0, 0, 0

]T
, (5.29)

with v5 > 0. We change the variable names and the vector field in (5.26) as follows

S = x1, Ls = x2, Lm = x3, Lx = x4, Is = x5, Im = x6, Ix = x7, R = x8,

S ′ = f1, L
′
s = f2, L

′
m = f3, L

′
x = f4, I

′
s = f5, I

′
m = f6, I

′
x = f7, R

′ = f8.
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Hence using assumption (A3)

a =
8∑

i,j,k=1

vkwiwj
∂2fk
∂xi∂xj

(E∗, βs),

=
2wsv5w

2
5β

x∗1

[
−(fsβ + rs)

fs + αss
(d+ ws + ts1)2

− fs
(d+ ws + ts1)

− (fsβ + rs)
1− fs − αss

(d+ ws + ts1)

− (ts1(fsβ + rs) + ts2(d+ ws + ts1)) fs
1− σs

d(d+ ws + ts1)2
− (1− fs)

− (ts1(fsβ + rs) + ts2(d+ ws + ts1)) (1− fs)
1− σs

d(d+ ws + ts1)

]
< 0

and

b =
8∑

i,k=1

vkwi
∂2fk
∂xi∂β

(E∗, βs),

=v5w5
(d+ ts1)(1− fs) + ws

(d+ ws + ts1)
> 0

Therefore as a is always negative and b is always positive under condition (A3),

then there exists a locally asymptotically stable equilibrium. At any equilibrium the

model (5.26) implies Lm = Lx = Im = Ix = 0. Hence , Es = (S∗, L∗s, 0, 0, I
∗
s , 0, 0, R

∗)

exists and is locally asymptotically stable.

Studying the local stability of the remaining 9 endemic and boundary equilibria

is done in a manner similar to the proof of Theorem 5.3.9, by applying Theorem

B.1 to the submodel corresponding to each endemic or boundary equilibrium. The

following theorem summarizes this.

Theorem 5.3.10. Under assumption (A1), (A2) and (A3), the boundary and en-

demic equilibria
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Em = (S∗, 0, L∗m, 0, 0, I
∗
m, 0, R

∗) ,

Ex = (S∗, 0, 0, L∗x, 0, 0, 0, I
∗
x, R

∗) ,

Esm = (S∗, L∗s, L
∗∗
m , 0, I

∗
s , I

∗∗
m , 0, R

∗) ,

Emx = (S∗, 0, L∗m, L
∗∗
x , 0, I

∗
m, I

∗∗
x , R

∗) ,

E∗sm = (S∗, L∗s, L
∗
m, 0, I

∗
s , I

∗
m, 0, R

∗) ,

E∗mx = (S∗, 0, L∗m, L
∗
x, 0, I

∗
m, I

∗
x, R

∗) ,

E∗smx = (S∗, L∗s, L
∗
m, L

∗
x, I
∗
s , I

∗
m, I

∗
x, R

∗) ,

E∗∗smx = (S∗, L∗s, L
∗
m, L

∗∗
x , I

∗
s , I

∗
m, I

∗∗
x , R

∗) , when βx = 0,

E∗∗sxm = (S∗, L∗s, L
∗∗
m , L

∗
x, I
∗
s , I

∗∗
m , I

∗
x, R

∗) , when βm = 0,

exist for their corresponding models and are locally asymptotically stable when R0 >

1.

Proof. Similar to the proof of Theorem 5.3.9

5.4 Summary

In this chapter, a new model to study the dynamics of drug-resistant TB is developed

and comprehensively analyzed. The most important results proved in this chapter

are:

1. System (5.2) has a globally asymptotically stable DFE when R0 < 1 (Theorem

5.3.5) under suitable conditions.

2. If condition (A1) in Theorem 5.3.5 is broken, system (5.2) can undergo a back-

ward bifurcation.
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3. System (5.2) has 10 locally asymptotically stable endemic and boundary equi-

libria when R0 > 1 (Theorems 5.3.9 and 5.3.10).



6. THE EFFECT OF MIGRATION IN SPREADING RESISTANT

TUBERCULOSIS

6.1 Introduction

One of the main objectives of this thesis is to study the role of migration in the spread

of TB. In Chapter 4, we considered system (4.2), essentially a previously developed

model for TB [9] in which we introduced linear migration. We qualitatively studied

(4.2) and proved some results that show the effect of migration by comparing to the

properties of the model without migration in [9]. Next, in Chapter 5, we developed

system (5.2), which captures the most important facts about drug resistance in TB.

We analyzed (5.2) and proved a number of results that helped us in understanding

the mechanism of the spread of drug resistant TB. In this chapter, we proceed as

in Chapter 4and introduce linear migration to system (5.2) to study the effect of

migration in spreading the three strains of tuberculosis.

6.2 The Model

As in Chapter 4, we assume that we have p distinct geographical locations. Within

each patch and in the absence of migration, the model describing transmission of

TB is the one studied in Chapter 5, where the population of any patch i, where

i ∈ {1, · · · , p}, is divided into eight compartment depending on the epidemiological

stage that an individual is in.

The total population of each patch is given by Ni(t) = Si(t) + Lsi(t) + Lmi(t) +
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Lxi(t) + Isi(t) + Isi(t) + Isi(t) + Ri(t) and the total population in the system is

N(t) = N1(t) + · · ·+Np(t). Table 6.1 lists parameters used in the model and their

interpetation.

Parameter Explanation
λi recruitment coefficient in patch i
βsi drug-sensitive strain transmission coefficient in patch i
βmi MDR strain transmission coefficient in patch i
βxi XDR strain transmission coefficient in patch i
fzi proportion of infected individuals that move to Lzi in patch i

(1− fzi) proportion of infected individuals making a fast transition to Izi in patch i
wzi per-capita rate of endogenous reactivation of Lzi in patch i
αszi proportion of exogenous reinfection of Lsi due to contact with Izi, s ∈ {s,m, x},

in patch i
rzi per-capita rate of Izi moving back to Lzi without treatment in patch i
ts1i per-capita of treatment rate for Lsi in patch i
ts2i per-capita of treatment rate for Isi in patch i
tzi per-capita of treatment rate for Iz in patch i

1− σzi efficiency of treatment in preventing infection with strain z, in patch i
p1i probability of treatment success for Lsi in patch i

1− p1i proportion of Lsi moved to Lmi in patch i due to incomplete treatment or lack
of strict compliance in the use of drugs

p2i probability of treatment success for Isi, in patch i
1− p2i proportion of Isi moved to Lmi in patch i due to incomplete treatment or lack

of strict compliance in the use of drugs
p3i probability of treatment success for Imi, in patch i

1− p3i proportion of Imi moved to Lxi in patch i due to incomplete treatment or lack
of strict compliance in the use of drugs

di per-capita of natural death rate in patch i
µzi pre-capita rate of death due to TB of strain z, in patch i
mx
ij immigration rate from patch j to patch i of compartment x ∈

{S, Ls, Lm, Lx, Is, Im, Ix, R}

Tab. 6.1: Description of parameters in patch i = 1, . . . , p. We use the index z ∈ {s,m, x}
when refering to a strain.

See Chapter 5 for a description of the parameters, which are the same here except

that they are indexed by the patch number. In this model to study the migration

between the patches we assume that the rates of movement of individuals between

patches depend on disease status travel; travel is instantaneous and individuals do not

change status during travel. Let mS
ij,m

Ls
ij ,m

Lm
ij ,m

Lx
ij ,m

Is
ij ,m

Im
ij ,m

Ix
ij , and mR

ij denote

the rate of travel from patch j to patch i of susceptible, latent, infective and treated

individuals, respectively, where for all i = 1, . . . , p,mX
ii = 0 and mX

ij ≥ 0 for all X ∈

{S, Ls, Lm, Lx, Is, Im, Ix, R}. This structure defines a multi-digraph with patches
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as vertices and arcs given by the travel rates, which can be represented by the

mobility matrices MS, MLs , MLx , MLx , MI
s, MI

m, MI
x and MT , where, for a

given epidemiological status X ∈ {S, Ls, Lm, Lx, Is, Im, Ix, R},

MX =



−
p∑
j=1

mX
j1 mX

12 · · · mX
1p

mX
21 −

p∑
j=1

mX
j2 · · · mX

2p

...
...

. . .
...

mX
p1 mX

p2 · · · −
∑p

j=1m
X
jp


. (6.1)

It is assumed that these matrices are irreducible.

Finally to write the model describing the dynamics of the three strains of TB

along with the linear migration between the patches, we introduce new variables to

simplify the model.

• For every Xi ∈ {Si, Lsi, Lmi, Lxi, Isi, Imi, Ixi, Ri} where i = 1, . . . , p, define the

vector X to be

X =

(
X1, X2, . . . , Xp

)T
.

• Define the variable X to be

X := (S, Ls, Lm, Lx, Is, Im, Ix, R) ,

and

Xi := (Si, Lsi, Lmi, Lxi, Isi, Imi, Ixi, Ri) .

• Define GX to be the vector
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GX =



GX1

GX2

...

GXp


:=



X ′1

X ′2
...

X ′p


,

where GXi
describes the evolution of compartment Xi in patch i for i = 1, . . . , p.

Hence our model of concern describing the dynamics of TB resistant strains

along with linear migration is given by 8p ordinary differential equations. The rate

of change of S is given by

S ′ = GS (X ) +MSS, (6.2a)

where using (5.2a),

GSi
(Xi) := λi − diSi − βsi

SiIsi
Ni

− βmi
SiImsi
Ni

− βxi
SiIxi
Ni

.

The rate of change of Ls is given by

L′s = GLs (X ) +MLsLs, (6.2b)

where using (5.2b),

GLsi

(
Xi
)

:= fsiβsi
SiIsi
Ni

+ fsiσsiβsi
RiIsi
Ni

− αssiβsi
LsiIsi
Ni

− αsmiβmi
LsiImi
Ni

− αsxiβxi
LsiIxi
Ni

− {di + wsi + ts1i}Lsi + rsiIsi.

The rate of change of Lm is given by

L′m = GLm (X ) +MLmLm, (6.2c)
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where using (5.2c),

GLmi

(
Xi
)

:= fmiβmi
SiImi
Ni

+ fmiσmiβmi
RiImi
Ni

+ fmiαsmiβmi
LsiImi
Ni

− αmmiβmi
LmiImi
Ni

− αmxiβxi
LmiIxi
Ni

− {di + wmi}Lmi + rmiImi

+ (1− p1i)ts1iLsi + (1− p2i)ts2iIsi.

The rate of change of Lx is given by

L′x = GLx (X ) +MLxLx, (6.2d)

where using (5.2d),

GLxi

(
Xi
)

:= fxiβxi
SiIxi
Ni

+ fxiσxiβxi
RiIxi
Ni

+ fxiαsxiβxi
LsiIxi
Ni

+ fxiαmxiβxi
LmiIxi
Ni

− αxxiβxi
LxiIxi
Ni

− {di + wxi}Lxi

+ rxiIxi + (1− p3i)tmiImi.

The rate of change of Is is given by

I ′s = GIs (X ) +MIsIs, (6.2e)

where using (5.2e),

GIsi
(
Xi
)

:= αssiβsi
LsiIsi
Ni

+ (1− fsi)βsi
SiIsi
Ni

+ (1− fsi)βsiσsi
RiIsi
Ni

+ wsiLsi − {di + µsi + ts2i + rsi} Isi.

The rate of change of Im is given by

I ′m = GIm (X ) +MImIm, (6.2f)
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where using (5.2f),

GImi

(
Xi
)

:= αmmiβmi
LmiImi
Ni

+ (1− fmi)βmi
SiImi
Ni

+ (1− fmi)σmiβmi
RiImi
Ni

+ (1− fmi)αsmiβmi
LsiImi
Ni

+ wmiLmi − {di + µmi + tm + rmi} Imi.

The rate of change of Ix is given by

I ′x = GIx (X ) +MIxIx, (6.2g)

where using (5.2g),

GIxi
(
Xi
)

:= αxxiβxi
LxiIxi
Ni

+ (1− fxi)αsxiβxi
LsiIxi
Ni

+ (1− fxi)αmxiβxi
LmiIxi
Ni

+ (1− fxi)βxi
SiIxi
Ni

+ (1− fxi)σxiβxi
RiIxi
Ni

+ wxiLxi

− {di + µxi + txi + rxi} Ixi.

Finally, the rate of change of R is given by

R′ = GR (X ) +MRR, (6.2h)

where using (5.2h),

GR
(
Xi
)

:= p1its1iLsi + p2its2iIsi + p3itmImi + txIxi

− σsiβsi
RiIsi
N i

− σmiβmi
RiImi
Ni

− σxiβxi
RiIxi
Ni

− diRi.
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6.3 Mathematical Analysis

6.3.1 Properties of the Solutions

Proposition 6.3.1. Given nonnegative initial conditions, solutions to (6.2) exist

and are unique for all t ≥ 0. Futhermore, the positive orthant R8p
+ is positively

invariant under the flow of (6.2).

Proof. By Proposition 5.3.1, the solutions of the isolated patches exist and the pos-

itive orthant R8
+ is positively invariant under the flow of (5.2). Thus, the result

follows by Theorem 3.5.1.

Proposition 6.3.2. Given nonnegative initial conditions, solutions to (6.2) are

bounded for all t ≥ 0. Furthermore, the closed set

Ω :=
{(
S, Ls, Lm, Lx, Is,Im, Ix, R

)
∈ R8p

+ :

S + Ls + Lm + Lx + Is + Im + Ix +R ≤ D−1Λ
}
, (6.3)

attracts the flow of (6.2) for any initial condition in R8p
+ , where

Λ =

(
λ1, . . . , λp

)T
and D = diag (di).

Proof. To establish boundedness, define A := {S, Ls, Lm, Lx, Is, Im, Ix, R} and note

that in each patch i we have,

N ′i = λi − diNi − µsiIsi − µmiImi − µxiIxi +
∑
X∈A

(
p∑
j=1

mX
ijXj −

p∑
j=1

mX
jiXi

)
. (6.4)

Hence the total population satisfies
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N ′ = Λ−
p∑
i=1

diNi −
p∑
i=1

(µsiIsi + µmiImi + µxiIxi)

+

p∑
i=1

∑
X∈A

(
p∑
j=1

mX
ijXj −

p∑
j=1

mX
jiXi

)
(6.5)

where Λ :=
∑p

i=1 λi. Now, as shown in Chapter 4,

p∑
i=1

∑
X∈A

(
p∑
j=1

mX
ijXj −

p∑
j=1

mX
jiXi

)
= 0,

then defining d := min
i=1,...,p

{di}, equation (6.5) for the total population gives

N ′ ≤ Λ− dN. (6.6)

This implies that N(t) is bounded above by solutions of the differential equation

Ψ′ = Λ − dΨ, i.e., N(t) ≤ max (Ψ(0),Λ/d), with, for all sufficiently large t, N(t) ≤

Λ/d. Whence, since N =
∑p

i=1Ni and each Ni ≥ 0, Ni is also bounded for each i,

and for the same reason Si, Lsi, Lmi, Lxi, Isi, Imi, Ixi, Ri are bounded for each i. Now

consider Ω defined (6.3). Any solution of model (6.2) with initial condition in Ω

remains in Ω for t ≥ 0. Moreover, for any solution outside Ω, i.e., with N(t) ≥ Λ
d

for

some t, by (6.5), N ′ < 0 until such time as N(t) ≤ Λ
d
. Thus Ω attracts all solutions

of (6.2) with any initial condition in R8p
+ .

6.3.2 Stability of the Disease Free Equilibrium (DFE)

The metapopulation is at an equilibrium if the time derivatives in (6.2) are zero.

Patch i is at a disease free equilibrium (DFE) if

Lsi = Lmi = Lxi = Isi = Imi = Ixi = 0, ∀i = 1, . . . , p.
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This implies that Ri = 0, ∀i = 1, . . . , p, as established in the following result.

Lemma 6.3.3. Given system (6.2), suppose that

Lsi = Lmi = Lxi = Isi = Imi = Ixi = 0,

for all i = 1, ..., p. Then

Ri = 0, ∀i = 1, ..., p.

Proof. See [2].

Thus, at a DFE, (6.2) is such that Si = Ni, ∀i = 1, . . . , p and satisfies

S ′i = λi − diSi +

p∑
j=1

mS
ijSj −

p∑
j=1

mS
jiSi, (6.7)

which has the following matrix/vector form

S ′ = B +
(
MS − diag (di)

)
S, (6.8)

where B = (λ1, λ2, . . . , λp)
T ∈Mp×1. Then the DFE is given by

((
diag (di)−MS

)−1 B, 0, 0, 0
)
. (6.9)

By Gershgorin’s circle theorem, all eigenvalues of MS have nonpositive real parts.

Therefore, shifting them by −di < 0 ensures that all eigenvalues of diag (di) −

MS have strictly negative real parts. Hence diag (di)−MS is an invertible matrix

implying that the DFE is unique. Also, it is shown in [2] that a matrix of the form

diag (di) −MS is an M−matrix, implying that
(
diag (di)−MS

)−1 ≥ 0. So the

DFE is indeed nonnegative.
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Local Asymptotic Stability of the DFE

Linear stability of the DFE (6.9) can be investigated using the next generation

method [12, 33]. To derive a formula for R0 using the next generation method, we

follow the method of [33] and order the infected variables as

I = (Ls, Lm, Lx, Is, Im, Ix)
T ,

where X =

(
X1, X2, . . . , Xp

)T
, for every X ∈ {Ls, Lm, Lx, Is, Im, Ix}. The vector

representing new infections into the infected classes F is given by

F :=

(
AT1 AT2 AT3 AT4 AT5 AT6

)T
, (6.10)

where
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A1 :=


fs1βs1 (S1 + σs1R1) Is1

N1

...

fspβsp (Sp + σspRp)
Isp
Np

 ,

A2 :=


fm1βm1 (S1 + σm1R1) Im1

N1

...

fmpβmp (Sp + σmpRp)
Imp

Np

 ,

A3 :=


fx1βx1 (S1 + σx1R1) Ix1

N1

...

fxpβxp (Sp + σxpRp)
Ixp
Np

 ,

A4 :=


βs1(1− fs1) (S1 + σs1R1) Is1

N1

...

βsp(1− fsp) (Sp + σspRp)
Isp
Np

 ,

A5 :=


βm1(1− fm1) (S1 + σm1R1) Im1

N1

...

βmp(1− fmp) (Sp + σmpRp)
Imp

Np

 ,

A6 :=


βx1(1− fx1) (S1 + σx1R1) Ix1

N1

...

βxp(1− fxp) (Sp + σxpRp)
Ixp
Np

 .
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The vector V representing other flows within and out of the infected classes I is

given by

V := −
(
BT

1 BT
2 BT

3 BT
4 BT

5 BT
6

)T
, (6.11)

where
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B1 :=



− (αss1βs1Is1 + αsm1βm1Im1 + αsx1βx1Ix1) Ls1

N1

−{d1 + ws1 + ts11}Ls1 + rs1Is1 +

p∑
j=1

mLs
1j Lsj

...

− (αsspβspIsp + αsmpβmpImp + αsxpβxpIxp)
Lsp

Np

−{dp + wsp + ts1p}Lsp + rspIsp +

p∑
j=1

mLs
pj Lsj


,

B2 :=



αsm1fm1βm1
Ls1Im1

N1
+ (−fm1βm1αmm1Im1 − αmx1βx1Ix1) Ls1

N1

−{d1 + wm1}Lm1 + rm1Im1 + (1− p11)ts11Ls1

+(1− p21)ts21Is1 +

p∑
j=1

mLm
1j Lmj

...

αsmpfmpβmp
LspImp

Np
+ (−fmpβmpαmmpImp − αmxpβxpIxp) Lsp

Np

−{dp + wmp}Lmp + rmpImp + (1− p1p)ts1pLsp

+(1− p2p)ts2ppsp +

p∑
j=1

mLm
pj Lmj



,

B3 :=



fx1βx1 (αsx1Ls1 + αmx1Lm1) Ix1
N1
− αxx1βx1

Lx1Ix1
N1
− {d1 + wx1}Lx1

+rx1Ix1 + (1− p31)tm1Im1 +

p∑
j=1

mLx
1j Lxj

...

fxpβxp (αsxpLsp + αmxpLmp)
LspIxp
Np
− αxxpβxp LxpIxp

Np
− {dp + wxp}Lxp

+rxpIxp + (1− p3p)tmpImp +

p∑
j=1

mLx
pj Lxj


,
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B4 :=


αss1βs1

Ls1Is1
N1

+ ws1Ls1 − {d1 + µs1 + ts21 + rs1} Is1 +

p∑
j=1

mIs
1jIsj

...

αsspβsp
LspIsp
Np

+ wspLsp − {dp + µsp + ts2p + rsp} Isp +

p∑
j=1

mIs
pjIsj


,

B5 :=



(αmm1βm1Lm1 + (1− fm1)αsm1βm1Ls1) Im1

N1
+ wm1Lm1

−{d1 + µm1 + tm1 + rm1} Im1 +

p∑
j=1

mIm
1j Imj

...

(αmmpβmpLmp + (1− fmp)αsmpβmpLsp) Imp

Np
+ wmpLmp

−{dp + µmp + tmp + rmp} Imp +

p∑
j=1

mIm
pj Imj



,

B6 :=



(αxx1βx1Lx1 + (1− fx1)αsx1βx1Ls1 + (1− fx1)αmx1βx1Lm1) Ix1
N1

+wx1Lx1 − {d1 + µx1 + tx1 + rx1} Ix1 +

p∑
j=1

mIx
1jIxj

...

(αxxpβxpLxp + (1− fxp)αsxpβxpLsp + (1− fxp)αmxpβxpLmp) Ixp
Np

+wxpLxp − {dp + µxp + txp + rxp} Ixp +

p∑
j=1

mIx
pjIxj



,

using mX
ii = −

p∑
j=1

mX
ji for X ∈ {S, Ls, Lm, Lm, Lx, Is, Im, Ix, R} and i = 1, . . . , p.

The matrix of new infections F and the matrix of transfers between compartments

V are the Jacobian matrices obtained by differentiating F and V with respect to the
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infected variables I and evaluating at the disease free equilibrium (DFE). They take

the form

F =

(0)3p×3p F12

(0)3p×3p F22

 , (6.12)

V =

V11 V12

V21 V22

 , (6.13)

where

F12 :=


diag (fsiβsi) (0)p×p (0)p×p

(0)p×p diag (fmiβmi) (0)p×p

(0)p×p (0)p×p diag (fxiβxi)

 ,

F22 :=


diag (βsi(1− fsi)) (0)p×p (0)p×p

(0)p×p diag (βmi(1− fmi)) (0)p×p

(0)p×p (0)p×p diag (βxi(1− fxi))

 .
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V11 :=


C1 −MLs (0)p2 (0)p2

−diag ((1− p1i)ts1i) C2 −MLm (0)p2

(0)p2 (0)p2 C3 −MLx

 ,

V12 :=


−diag (rsi) (0)p2 (0)p2

−diag ((1− p2i)ts2i) −diag (rmi) (0)p2

(0)p2 −diag ((1− p3i)tmi) −diag (rxi)

 ,

V21 :=


−diag (wsi) (0)p2 (0)p2

(0)p2 −diag (wsi) (0)p2

(0)p2 (0)p2 −diag (wxi)

 ,

V22 :=


C4 −MIs (0)p2 (0)p2

(0)p2 C5 −MIm (0)p2

(0)p2 (0)p2 C6 −MIx

 ,

where

C1 := diag (di + wsi + ts1i) , C2 := diag (di + wmi) , C3 := diag (di + wxi) ,

C4 := diag (di + µsi + ts2i + rsi), C5 := diag (di + µmi + tmi + rmi) ,

C6 := diag (di + µxi + txi + rxi) .

Then the basic reproduction number R0 for system (6.2) is the spectral radius

of the next generation matrix and is given by

R0 = ρ(FV −1) = ρ

F12Ṽ21 F12Ṽ22

F22Ṽ21 F22Ṽ22

 , (6.14)
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where Ṽ21 and Ṽ22 are the entries of V −1 =

Ṽ11 Ṽ12

Ṽ21 Ṽ22

, and given by

Ṽ21 = −(V22)−1V21

(
V11 − V12(V22)−1V21)

)−1

Ṽ22 =
(
V22 − V21(V11)−1V12

)
,

Since V is an M−matrix, it has a nonnegative inverse. Hence Ṽ21 and Ṽ22 are

positive. Moreover, F12 and F2 are nonnegative matrices therefore FV −1 is a positive.

Then using the Perron Frobenius theorem, the spectral radius of FV −1 is positive,

ρ(FV −1) > 0. Then, from [33, Theorem 2]; see Appendix A

Lemma 6.3.4. The DFE (6.9) of model (6.2) is locally asymptotically stable if

R0 < 1 and unstable if R0 > 1, where R0 is defined by (6.14).

6.3.3 Existence of the Endemic Equilibria

In this section, we study the existence of endemic equilibria for model (6.2). Here

we recall that the movement matrices are assumed to be irreducible.The assumption

that MX is irreducible for all infected classes means that considering any infected

compartment, all the patches have access to each other directly or indirectly. That

implies that if a TB strain is endemically present in patch i, i.e, for any Xi ∈

{Lsi, Lmi, Lxi, Isi, Imi, Ixi}, Xi 6= 0, while that strain does not exist in patch j, then

the irreducibly of MX implies that

X ′j =

p∑
k=1

mX
jkXk > 0⇒ Xj > 0.

That means that the endemic equilibrium for model (6.2) will follow the highest

type of endemicity existing already within the patches in isolation. There are 10

types of endemic equilibria that could exist in each isolated patches, as studied in
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Chapter 5. So to have any of the following endemic equilibria

1. Drug sensitive TB only,

Esi = (S∗i , L
∗
si, 0, 0, I

∗
si, 0, 0, R

∗
i ) ,

2. MDR-TB only,

Emi = (S∗i , 0, L
∗
mi, 0, 0, I

∗
mi, 0, R

∗
i ) ,

3. XDR-TB only,

Exi = (S∗i , 0, 0, L
∗
xi, 0, 0, 0, I

∗
xi, R

∗
i ) ,

4. No XDR-TB

E∗smi = (S∗i , L
∗
si, L

∗
mi, 0, I

∗
si, I

∗
mi, 0, R

∗
i ) ,

5. No drug-sensitive TB

E∗mxi = (S∗i , 0, L
∗
mi, L

∗
xi, 0, I

∗
mi, I

∗
xi, R

∗
i ) ,

6. High endemicity in all strains

E∗smxi = (S∗i , L
∗
si, L

∗
mi, L

∗
xi, I

∗
si, I

∗
mi, I

∗
xi, R

∗
i ) ,

then all p patches must share same type of equilibria in isolation. Similarly as

in Chapter 5, the existence of E∗smi = (S∗i , L
∗
si, 0, L

∗
xi, I

∗
si, 0, I

∗
xi, R

∗
i ) is not possible

because even if we started with Lmi = 0 and Imi = 0 in a fixed patch i, but Lsi 6= 0

and Isi 6= 0, then

L′mi = (1− p1i)ts1iLsi + (1− p2i)ts2iIsi > 0,
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which implies that Lmi > 0, leading to

I ′mi = wmiLmi > 0.

Since MIm is irreducible by assumption, that implies that Imi > 0 for every i =

1, . . . , p.

Low endemicity coexistence equilibria: More than one strain exists in this type. But

the existence of the resistant strain is due to treatment, not a new infection.

E.g. (S∗i , L
∗
si, L

∗
mi, 0, I

∗
si, I

∗
mi, 0, R

∗
i ) , in this case βmi = 0 but L∗mi 6= 0, I∗mi 6= 0

and lim
t→∞

L∗mi(t) 6= 0, lim
t→∞

I∗mi(t) 6= 0. The possible equilibria of this type are

7. Esmi = (S∗i , L
∗
si, L

∗∗
mi, 0, I

∗
si, I

∗∗
mi, 0, R

∗
i ).

8. Emxi = (S∗i , 0, L
∗
mi, L

∗∗
xi , 0, I

∗
mi, I

∗∗
xi , R

∗
i ).

Again similarly to Chapter 5, the existence of Esmi = (S∗i , L
∗
si, 0, L

∗∗
xi , I

∗
si, 0, I

∗∗
xi , R

∗
i )

is not possible as outflow of the drug sensitive strain goes into MDR strain,

not the XDR one.

Mixed of high and low endemicity equilibira: this type when one of the new infec-

tion rates is zero but the class is there due to the treatment inflow as following

9. E∗∗smx = (S∗, L∗s, L
∗
m, L

∗∗
x , I

∗
s , I

∗
m, I

∗∗
x , R

∗), when βx = 0.

10. E∗∗sxm = (S∗, L∗s, L
∗∗
m , L

∗
x, I
∗
s , I

∗∗
m , I

∗
x, R

∗), when βm = 0.

All the above endemic equilibira are due to the dynamics of TB. However, the

movement between patches can introduce new endemic equilibria in the case of ir-

reducible matrices. The following is an example of such case, consider p patches

that are coupled linearly. For fixed i and j, patch i is endemic with MDR-TB and

XDR-TB, while patch j is endemic with MDR-TB only. Due irreducibility of the

migration matrix,
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I ′xj = mIx
ji Ixi > 0⇒ Ixj > 0,

patch j develops XDR-TB by the time

That gives us three new additional equilibria that can exist due to migration and

not because of the dynamics of TB. They are:

11. E∗∗1 = (S∗, L∗s, L
∗∗
m , L

∗∗
x , I

∗
s , I

∗∗
m , I

∗∗
x , R

∗),

12. E∗∗2 = (S∗, L∗∗s , L
∗∗
m , L

∗
x, I
∗∗
s , I

∗∗
m , I

∗
x, R

∗),

13. E∗∗3 = (S∗, L∗s, L
∗∗
m , L

∗∗
x , I

∗
s , I

∗∗
m , I

∗∗
x , R

∗).

In short, irreducible migration matrix can keep the state of endemicity of the con-

sidered patches, or can change the type of endemic equilibria in a model comparing

to the patches in isolation.



APPENDIX



A. NEXT GENERATION OPERATOR METHOD

The next generation operator method is a method to decide on the local asymptotic

stability of the disease free equilibrium in a model for the spread of an infectious dis-

ease. The method was originally introduced by Diekmann et al. [11] and formulated

for the use in ordinary differential equations compartmental epidemiological models

by van den Driessche and Watmough [33]. The formulation in [33] is given below.

Given an infectious disease model with n compartments, start by ordering com-

partments for i = 1, . . . , n: so that the first m ≤ n compartments stand for the

infected compartments and the rest are the non-infected ones. Suppose the trans-

mission model associated with a non-negative initial conditions can be written as

follows:

x′i = fi(x) = Fi(x)− Vi(x), (A.1)

where F is the vector representing new infections into the infected classes, and

Vi = V−i − V+
i is the vector representing other flows within and out of the infected

classes. Assume that Xs = {x ≥ 0|xi = 0, i = 1, · · · ,m} is the disease-free states

(non-infected state) of the model, and the functions described above satisfy the

following axioms:

(A1) If x ≥ 0, then Fi,V+
i ,V i ≥ 0 for i = 1, · · · , n.

(A2) If xi = 0, then V−i = 0. In particular, if x ∈ Xs then V−i = 0 for i = 1, · · · ,m.

(A3) Fi = 0 if i > m.
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(A4) If x ∈ Xs, then Fi(x) = 0 and V+
i (x) = 0 for i = 1, · · · ,m.

(A5) If F(x) is set to zero, then all eigenvalues of Df(x∗) have negative real part,

where x∗ is the DFE.

It is assumed that these functions are at least twice continuously differentiable in

each variable.

Lemma A.1 (van den Driessche and Watmough [33]). If x∗ is a DFE of (A.1) and

fi(x) satisfy (A1) - (A5), then the derivatives DF(x∗) and DV(x∗) are partitioned

as

DF(x∗) =

F 0

0 0

 DV(x∗) =

V 0

J3 J4

 , (A.2)

where F and V are the m×m matrices defined for 1 ≤ i, j ≤ m by,

F =

[
∂Fi
∂xj

(x∗)

]
, and V =

[
∂Vi
∂xj

(x∗)

]
.

Further, F is non-negative, V is a non-singular M−matrix and J3, J4 are matri-

ces associated with the transition terms of the model and all eigenvalues of J4 have

positive real parts.

Theorem A.2 (van den Driessche and Watmough [33]). Consider the disease trans-

mission model given by (A.1) with f(x) satisfying axioms (A1)–(A5). If x∗ is a

DFE of the model, then x∗ is locally asymptotically stable if R0 = ρ(FV 1) < 1 and

unstable if R0 > 1.



B. BIFURCATION

The next theorem is used to prove the presence of backward bifurcation in some of

the models of this thesis.

consider a general system of ODEs with a parameter φ:

dx

dt
= f(x, φ), f : Rn × R→ Rn and f ∈ C2 (Rn × R) . (B.1)

With 0 is an equilibrium point of the system for all values of the parameter φ,

that is

f(0, φ) ≡ 0 for all φ. (B.2)

Theorem B.1 (Castillo-Chavez & Song [10]). Assume

A1 : A = Dxf(0, 0) =
(
∂fi
∂xj

(0, 0)
)

is the linearization matrix of System (B.1) around

the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and

all other eigenvalues of A have negative real parts;

A2 : Matrix A has a nonnegative right eigenvector w and a left eigenvector v corre-

sponding to the zero eigenvalue such that v.w = 1.

Let k be the kth component of f and

a =
n∑

i,j,k=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), (B.3)

b =
n∑

i,k=1

vkwi
∂2fk
∂xi∂φ

(0, 0). (B.4)
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The local dynamics of (B.1) around 0 are totally determined by a and b.

i. a > 0, b > 0. When φ < 0 with |φ| � 1, 0 is locally asymptotically stable, and

there exists a positive unstable equilibrium; when 0 < φ � 1, 0 is unstable and

there exists a negative and locally asymptotically stable equilibrium;

ii. a < 0, b < 0. When φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ � 1, 0 is

locally asymptotically stable, and there exists a positive unstable equilibrium;

iii. a > 0, b < 0. When φ < 0 with |φ| � 1,0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is stable, and a

positive unstable equilibrium appears;

iv. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability

from stable to unstable. Correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

We notice that the forward bifurcation represented in case (iv) and the backward

bifurcation is in case (i).
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