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Abstract

This thesis presents the development, testing, and verification of transmission

tomography software for the applications of small-scale biological imaging

and large-scale stored-grain imaging. Transmission tomography is a non-

invasive technique for producing quantitative images of an object’s physical

properties. This is done by interrogating the object with waves and measur-

ing the resulting response at a set of measurement positions. The properties

of the received waves are analyzed, and used to calculate the properties of

the object which is interrogated.

First, a mathematical formulation of transmission tomography is pre-

sented and explained. The formulation is then used to build a numerical

model of the physical properties which dictate wave transmission in two sys-

tems of linear algebraic equations. The algorithms that are required for

building the numerical model are then explained.

The rest of this thesis is devoted to a series of experiments. These exper-

iments show the usefulness of transmission tomography in some particular

applications. They also motivate the incremental development of features of

the transmission tomography algorithm that was developed for this thesis.

The first experiment uses acoustic data to perform two-dimensional trans-

mission tomography. The first experiment shows that two-dimensional trans-

mission tomography of acoustic data produces useful images of an object’s

wave speed. The successful two-dimensional experiments motivate the two

following experiments, which use electromagnetic data to perform three-

dimensional transmission tomography. In order to perform three-dimensional

tomography of electromagnetic data, a modification is made to the numerical

model. The successful three-dimensional transmission tomography algorithm

is then applied to track the volume of grain stored in a bin. The final ex-

periment uses acoustic data and the modified numerical model to perform

three-dimensional transmission tomography to identify two distinct spherical

objects which are submerged in a liquid medium.
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Contributions

The primary contribution of this thesis is an algorithm which uses time-

domain scan data to perform non-destructive, quantitative imaging.

Contributions to State of Knowledge

The key contributions made to the general state of knowledge are summarized

here:

1. The development and implementation of a ray-based tomography al-

gorithm which operates on either acoustic or electromagnetic data to

quantitatively image an object’s properties, which are represented with

a finite basis

2. The optimization of algorithms which process time-domain signals to

extract features which are useful to the tomography algorithm

3. The incorporation of both a pulse basis and a polynomial basis in the

tomography algorithm, and analysis of their impact on image quality

4. The verification of the utility of the tomography algorithm, including:

• Monitoring the volume of grain stored in a metallic silo, using

electromagnetic measurements

• Identifying regions of fibroglandular tissue embedded in a region

of fat, in a tissue-mimicking acoustic phantom

Computer Program

The algorithm described in this work was implemented as a Matlab program.

The program consists of computer code to carry out the following tasks:

• Reading user-specified configuration information from text files

• Reading scan data and extracting features from scans, according to the

configuration
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• Calculating line-integrals of basis functions along straight paths

• Solving matrix equations, according to the configuration

• Writing visualization files to the file system

• Packaging imaging results in a convenient data structure

Various scripts were written in order to automate the imaging workflows

which produce the results presented in this thesis. These scripts are accessible

on a code repository which is hosted at the University of Manitoba. These

scripts perform the following tasks:

• Translating path data and scan data into a format that is readable by

the code described above

• Processing the scan data to aid the feature extraction described above

• Calling the code described above to generate imaging results

• Comparing the imaging results to expected results, via quantitative

error analysis

• Writing the results of the error analysis to files which can be included

in this thesis

The computer code for the program is the author’s own work, except for

the following components:

partitions This function [1] calculates and enumerates the unique ways to partition

an integer into a sum containing a given number of terms.

writeVTK This function [2] creates vtk-formatted files which can be viewed in

ParaView [3].

The electromagnetic simulations which are used in Chapter 4, Chapter 5,

and Chapter 6 make use of some computer code written by Hannah Fogel.

Hannah is also responsible for maintaining and operating the hardware which

is described in Chapter 3 and Chapter 7.

https://gorin.ad.umanitoba.ca
https://www.mathworks.com/matlabcentral/fileexchange/12009-partitions-of-an-integer
https://www.mathworks.com/matlabcentral/fileexchange/25784-writevtk
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Chapter 1

Introduction

Humans are curious creatures, and engineers are especially curious creatures.

Many engineers have felt the inclination to take something apart and put it

back together again, just to see what’s inside.

That is a fine technique for uncovering the secrets of a toaster or figuring

out how the wipers go back and forth on your car, but ‘taking it apart’ is

often not safe, and it may even be impossible! For example, in medicine,

tissue biopsy is generally performed after attempts have been made at tissue

imaging, via some modality such as X-ray, not the other way around. In

other words, we often prefer non-destructive imaging techniques over other

invasive techniques.

This thesis presents the development and testing of a non-invasive imaging

algorithm which makes use of transmission tomography. The research under-

taken in this thesis was motivated by the author’s experience with imaging

algorithms that are in use at the Electromagnetic Imaging Laboratory (EIL).

The transmission tomography algorithm that is presented here complements

the algorithms currently employed in the EIL. Specifically, the goal of the

work described in this thesis is to create an imaging tool with the following

features:

• Minimal reliance on prior information

• Robustness to modelling error

1
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• Fast execution time

The importance and relevance of these features are explained in the following

sections.

The primary use of the algorithm presented here is for the monitoring of

stored agricultural commodities, such as corn or wheat in a metal silo, via

radio-frequency (RF) electrical measurements [4]. Exploratory experiments

are also documented which use transmission tomography in a medical ultra-

sonic imaging context. The experiments presented in this thesis all follow a

similar workflow:

1. A set of data is generated by interrogating an object with pulsed waves

and measuring the resulting wave patterns at a set of points. This step

is performed performed synthetically in Chapter 4, Chapter 5, and

Chapter 6. This step is performed using real hardware in Chapter 3

and Chapter 7.

2. Transmission tomography is used to generate maps of the material

properties of the object from the set of data.

3. The maps of material properties are compared to the known material

properties in order to evaluate the accuracy of the transmission tomog-

raphy step.

The experiments show that meets the criteria from above, when used to

image either electromagnetic data from a grain bin or acoustic data from an

ultrasound imaging system.

1.1 Relevant History of Algorithm Develop-

ment in the Electromagnetic Imaging Lab-

oratory

The EIL is a research laboratory located in the Department of Electrical

and Computer Engineering at the University of Manitoba. The EIL began
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as a research lab focused on ground-penetrating radar, and has since grown

to study several techniques to “image objects obscured from normal percep-

tion” [5]. In recent years, researchers at the EIL and elsewhere, have spent

significant energy contributing to the field of microwave imaging (MWI) [6].

In particular, researchers at the EIL have developed and studied full-wave,

non-linear imaging techniques [7].

This research into full-wave, non-linear imaging has produced impressive

algorithms and systems, however, these algorithms have particular idiosyn-

cratic drawbacks which have stood in the way of full system implementations.

For example, full-wave imaging studies often rely on prior information [8].

Imaging studies often need accurate information about the shape and bulk

physical properties of the imaging target. Successful imaging of breast tissue

via MWI relies on an accurate definition of the boundary of the breast, as well

as an accurate model of the sub-cutaneous fat layer. Such prior information

is frequently unavailable.

Full-wave, non-linear MWI is also highly sensitive to modelling error.

MWI works by computationally modelling the wave phenomena in some

imaging domain, and tweaking the physical properties in the imaging domain

until the modelled electromagnetic fields match a set of real-world electro-

magnetic measurements. A modelling error is any difference between the

computational model of the wave phenomena and the actual wave phenom-

ena.

An example of modelling error is ignoring mutual antenna coupling in

imaging studies. It is computationally expensive to accurately model anten-

nas. Antennas are often represented with simple, less-accurate models, in

order to lessen that computational burden. Transmitting antennas are often

modelled as imposed current point-sources, while receiving antennas are of-

ten modelled as probes which do not disturb the field that they measure. In

reality, any co-resident antennas in an imaging chamber will mutually couple,

leading to a disturbance of the electromagnetic fields in the imaging chamber

which will not be captured in the computational wave model. The frequency

of operation can be chosen to minimize this effect [9], which unfortunately

reduces the set of measurements available to the imaging algorithm.
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Another source of modelling error is the exclusion of other measurement

apparatus from the computational wave model. Antennas are often rep-

resented as either point-sources or probes, but in reality, antennas must

be attached to a measurement device, such as a vector network analyzer

(VNA), via a set of cables and switches. A VNA reports its measurements

as S-parameters, but inversion algorithms often operate on either electric

or magnetic field values. The process of developing a suitable translation

between real-world measurements and their representations in the compu-

tational domain is known as calibration. Calibration often requires taking

measurements with some reference object [10], which may be impossible in

certain imaging scenarios.

The work in this thesis was undertaken after studying and using several

of the state-of-the-art tools which have been developed in the EIL. Broadly

speaking, the work undertaken in this thesis is an attempt to develop an

imaging tool which does not suffer from the drawbacks mentioned above. It

will be shown that those drawbacks can be avoided, at the cost of image res-

olution. The primary imaging application explored in this thesis is grain-bin

imaging, and exploratory experiments are made using ultrasound hardware.

The main issues that this thesis seeks to solve are briefly highlighted here.

1.2 Grain-Bin Imaging

The main application of the algorithm developed in this thesis is the mon-

itoring of grain via RF measurements taken from a set of stationary an-

tennas within storage silos. A quantitative imaging technique which uses

full-wave, non-linear contrast-source inversion (CSI) [11] to detect localized

grain spoilage in metallic bins has been shown to be successful [12]. In order

to image the grain using CSI, however, it is currently necessary to estimate

the shape of the heap of grain within the storage bin, and use the shape

of the heap as prior information. Imaging via CSI is also computationally

expensive, potentially requiring several hours of computation time [13].

The transmission tomography algorithm presented in this thesis can toler-

ate an inaccurate physical model of the grain bin. Transmission tomography
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is tolerant to modelling errors because transmission tomography does not

use a complete model of wave propagation phenomena. It is therefore hy-

pothesized that transmission tomography could be used as a grain imaging

algorithm which is more robust than CSI, but with lower resolution than

CSI.

1.3 Ultrasound Tomography

Some of the tools for MWI which have been developed at the EIL have

recently been applied to acoustic imaging [14], however, synthetic acoustic

imaging studies have shown that successful imaging requires an amount and

quality of data which is currently unattainable in a real-world acoustic imag-

ing device [15]. The difficulty in performing wave-field imaging (WFI) with

acoustic hardware lies in the operating wavelength. Commercial ultrasound

transducers operate in the megahertz range, and ultrasound imaging is often

used for targets whose physical properties are similar to those of water. The

speed of sound in water is roughly 1500 m s−1, so the operating wavelength of

an acoustic WFI system would be roughly 1.5 mm. In contrast, the operating

wavelength of a typical biomedical MWI system is roughly 10 cm.

In WFI it is necessary that transducers’ positions are known with sub-

wavelength certainty, in order to place time-harmonic field measurements on

the correct Riemann sheet [16]. The small wavelength that is used in acoustic

imaging is troublesome because the wavelength of operation can be similar

to the size of the transducers, which makes transducer localization difficult.

Transmission tomography, as will be explained in Chapter 2, operates on

time-of-flight measurements. Time-of-flight measurements are unaffected by

phase, so the issue of placing transducers on the correct Riemann sheet does

not exist in transmission tomography.

Another requirement in WFI is that the fields of interest be represented

with sufficient spatial resolution. At high frequencies, this can lead to storage

issues on the computer performing the imaging. A rule of thumb for repre-

senting fields with a pulse basis is that the basis points should be spaced

at one tenth of the wavelength of operation [17]. Representing an ultra-
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sound pressure wave with a pulse basis function would require pulse basis

points with less than 0.15 mm spacing. Representing a 10 cm square region

with such spacing would require more than 400× 103 basis points. If the

wavelength of operation is small, then the amount of resources required to

represent the fields can be a computational burden. In transmission tomog-

raphy, the interrogating waves do not need to be represented in this way,

which alleviates this burden of storage.

1.4 Transmission Tomography

As the two previous sections have shown, transmission tomography has the

following features:

• Tolerance to modelling errors

• Small computational burden

These features make transmission tomography attractive as a fast and

robust imaging technique. The details of transmission tomography will be

explained in Chapter 2, and its features will be demonstrated. The rest of this

thesis documents the development and testing of a transmission tomography

algorithm, which will be applied in a variety of contexts, in order to create

low-resolution images of targets.



Chapter 2

Transmission Tomography

Transmission tomography is a non-destructive imaging technique which pro-

duces quantitative spatial maps of the physical properties of an object, given

time-domain scan data. The goal of transmission tomography is to deter-

mine the physical properties of a target by modelling the way a causal, time-

domain wave pulse changes as it propagates through the target [18] [19].

2.1 General Formulation

Transmission tomography requires, at the bare minimum, a transmitting

element and a receiving element which are not co-located in space. Refer to

Figure 2.1 for a visual representation of the key elements of a transmission

tomography system. The transmitting element emits a signal, which will be

referred to as a pulse. The pulse then propagates outward, and is measured by

the receiving element. As the pulse propagates outward from the transmitter,

it naturally decays as its wave front expands. The pulse is further modified

by the transmission medium and the object of interest. The exact nature of

the decay and modification is complex. For example, electromagnetic wave

propagation is described by Maxwell’s equations [20], while acoustic wave

propagation in water can be described by a coupled set of partial differential

equations which relate pressure variations to fluid velocity [21].

Transmission tomography simplifies the complex modification of the trans-

7
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Transmission Medium

Tx-Rx Path (Pi)

Transmitter

(Ti)

Receiver

(Ri)

Propagating Wave Fronts

Delay

+

Decay

Figure 2.1: Physical setup of a general transmission tomography system,
showing a single transmitter-receiver path

mitted pulse by assuming that the modification depends only on the material

properties along the straight path from the transmitter to the receiver and

the attenuation due to the expansion of the wave front. For a given transmit-

ter and receiver, the propagating wave front is treated as a ray which travels

from the transmitter to the receiver, ignoring the effects of refraction and

diffraction. This assumption will be referred to as the ray assumption. The

decay due to the expansion of the wave front will be referred to as geometric

attenuation. Geometric attenuation is simple to model, for example, waves

generated by an acoustic point-source experience 1
r

geometric attenuation of

their power, where r is the distance between the wave front and the source.

As the ray propagates from the transmitting element to the receiving

element, it encounters regions of varying speed and attenuation. For example,



2.2. WAVE PROPAGATION MODEL 9

an acoustic pulse may propagate through a sample of bone, which is set in

a region of pure water. In this case, the ray originates in a region of water,

where the pulse propagates at roughly 1500 m s−1, and experiences near-

zero attenuation. In bone, the pulse would travel at roughly 4080 m s−1 and

experience attenuation of 20 dB cm−1 MHz−1 [22].

The physical properties of the media through which the pulse propagates

will impact the delay and the decay of the pulse, as viewed by the receiving el-

ement. In particular, the slowness of the media will impact the pulse’s delay,

and the attenuation of the media will impact the pulse’s decay. Transmis-

sion tomography uses many pulses’ delays and decays to extract information

about the slowness and attenuation of the object of interest.

The ray assumption implies that transmission tomography can only pro-

vide useful information about the material properties within a region whose

boundary is determined by the transmitter-receiver paths that are used for

imaging. The only material properties that are visible to the transmission

tomography algorithm are the properties between the transmitters and re-

ceivers. This point is explained more deeply in Chapter 5.

The following sections in this chapter describe a numerical implementa-

tion of transmission tomography. Section 2.2 describes a fundamental ap-

proximation which enables transmission tomography. The concepts of total-

field and scattered-field imaging are described in Subsection 2.2.1. Then,

Subsection 2.2.2 explains how transmission tomography is implemented in a

computer program. Section 2.3 describes methods for determining the delay

and decay of a pulse. Finally, Section 2.4 provides equations for converting

slowness and attenuation to other physical properties.

2.2 Wave Propagation Model

Suppose an object of interest is interrogated by many pulses, each of which

is generated by a transmitting element at some position and measured by a

receiving element at some other position. Let i index the unique transmitter-

receiver configurations. Refer to Figure 2.1 for a visual depiction of a transmitter-

receiver configuration. Let Ti and Ri be the transmitter and receiver for the
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configuration indexed by i, respectively. Let Pi be the straight path from Ti

to Ri. An example of the signal measured by Ri is shown in Figure 2.2.si(t) tDi tAi

pAi

Figure 2.2: Example of a transmission tomography scan, as measured by
receiver Ri

The transmitter, Ti, sends out a pulse at time tDi, with some power pDi.

The pulse is assumed to be an oscillating function with centre frequency fc,

in order to align the transmission tomography presented in this thesis with

standard acoustic imaging techniques, however, it is not strictly necessary

to assume that the pulse has a centre frequency, as will be discussed in

Section 2.3. The time of arrival (TOA) of the pulse, tAi, depends on the

pulse’s time of transmission, tDi, and the slowness, c−1, of the medium along

the path. This dependence is expressed in the following equation:

tAi = tDi +

∫
Pi

c−1 (~r (l)) dl (2.1)

The power of the received pulse, pAi, depends on the transmitted power, pDi,

the distance-dependent geometric attenuation, g (Pi), and the attenuation,

α along the path. This dependence is expressed in the following equation:

pAi = pDi × g (Pi)× 10

−100fc
1 × 106

∫
Pi
α(~r(l))dl

10 (2.2)

The exponent with a base of ten, and the factors of 100 and 1× 106 in

Equation 2.2 are present because α is expressed in units of dB cm−1 MHz−1.

This equation can be presented in a simpler way by taking logarithms, as in
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the following equation:

−100fc
1× 106

∫
Pi

α (~r (l)) dl = 10 log10

(
pAi

pDi × g (Pi)

)
(2.3)

The integrals in Equation 2.1 and Equation 2.3 can be isolated to produce

the following set of equations:∫
Pi

c−1 (~r (l)) dl = tAi − tDi (2.4)∫
Pi

α (~r (l)) dl =
−1× 106

100fc

(
10 log10

(
pAi

pDi × g (Pi)

))
(2.5)

The quantities under the integrals are the material properties. The quantities

tAi and pAi will be referred to as features of the measured signal, si (t).

The time-delay of the received pulse is determined by the slowness of the

propagation medium, along the straight-line path from the transmitter to the

receiver. Likewise, the decay of the signal is determined by the attenuation

of the propagation medium, along the same straight-line path.

If α was to be expressed in units of Np m−1, the term on the right-hand

side of Equation 2.5 would simplify to the following equation:∫
Pi

α (~r (l)) dl = − ln

(
pAi

pDi × g (Pi)

)
(2.6)

The attenuation equation is expressed in the form of Equation 2.4 in order

to align the work in this thesis with standard acoustic imaging techniques.

2.2.1 Total-Field and Scattered-Field Imaging

Consider the quantities present in Equation 2.4 and in Equation 2.5. The

path, Pi, is known, since the path depends only on the location of the

transmitting element and the receiving element. The geometric attenua-

tion, g (Pi), is known, since Pi is known. The centre frequency, fc is also

known. The material properties (c−1 (~r), and α (~r)) are unknown, that is,

they are the quantities that will be reconstructed. The quantities tAi, tDi,
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pAi, and pDi are ostensibly unknown. Two of these quantities, tAi and pAi,

are features which can be extracted from the time domain scans. Considering

Figure 2.2, it is clear that the information about the TOA of the pulse, as

well as the power of the pulse, are present in the received time-domain pulse.

In Section 2.3, some techniques for extracting features from the time-domain

scans are discussed. The two remaining quantities, tDi and pDi, cannot be

extracted from the received time domain pulse. In this section, it will be

shown how transmission tomography can be performed when these parame-

ters are unknown. It will also be shown how transmission tomography can

be performed when these parameters are known.

The quantities, tDi and pDi, will be referred to as compensation factors.

If the compensation factors are known, then transmission tomography is

possible via total-field imaging, otherwise, imaging must be performed via

scattered-field imaging. Total-field imaging relies on interrogating the imag-

ing domain with pulses once, and reconstructing the physical properties of

the imaging domain from that single-pass set of data. The process of total-

field imaging is summarized as follows:

1. The imaging domain is interrogated with pulses from several transmit-

ters.

2. The pulses are received and measured by several receivers per trans-

mitter.

3. The absolute physical properties are calculated, using the following

information:

• The paths’ geometry

• The compensation factors

• The pulse features

Scattered-field imaging relies on interrogating the imaging domain with

pulses twice, and reconstructing the physical properties of the imaging do-

main from the difference between the two sets of data. One of the interroga-

tion steps is performed with a known target in the imaging domain, while the
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other interrogation step is performed with an unknown target in the imaging

domain. The data produced by the known target are referred to as incident

data, while the data from the unknown target are referred to as total data.

As an example, consider a medical imaging scenario, where an ultrasound

array is being used to image a body part. The array and the body part may

be submerged in water, which would act as a matching medium between the

ultrasound transducer and the body part. In this example, the incident data

would be the measurements taken with the array submerged in water, and

with the body part absent. Then, a new set of measurements would be taken

with the body part present. This new set of measurements would make up

the total data.

The differences between the total and incident data are then used to

calculate the difference between the known target and the unknown target.

Crucially, scattered-field imaging can be performed when the compensation

factors are unknown. The process of scattered-field imaging is summarized

as follows:

1. A known target is placed in the imaging domain.

2. Incident data are collected.

3. An unknown target is placed in the imaging domain.

4. Total data are collected.

5. The relative differences in the physical properties are calculated, using

the following information:

• The paths’ geometry

• The features of the incident pulses

• The features of the total pulses

6. The absolute physical properties are calculated by adding the relative

property differences to the properties of the known target.
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Suppose there is a set of known target properties which produce a corre-

sponding set of data. These properties will be referred to as incident prop-

erties, and their corresponding data will be referred to as incident data.

Suppose there is another set of unknown target properties which produce

a corresponding set of data. These unknown properties will be referred to

as total properties, and their corresponding data will be referred to as total

data.

The incident data are related to the incident properties, and the total

data are related to the total properties, according to the following equations,

derived from Equation 2.4 and Equation 2.5:∫
Pi

c−1
INC

(~r (l)) dl = tAi
INC − tDi (2.7)∫

Pi

αINC (~r (l)) dl =
−1× 106

100fc
10 log10

(
pAi

INC

pDi × g (Pi)

)
(2.8)∫

Pi

c−1
TOT

(~r (l)) dl = tAi
TOT − tDi (2.9)∫

Pi

αTOT (~r (l)) dl =
−1× 106

100fc
10 log10

(
pAi

TOT

pDi × g (Pi)

)
(2.10)

The superscripts, INC and TOT are used to differentiate between incident

and total quantities, respectively. The compensation factors (tDi and pDi ×
g (Pi)) are identical for the incident and total data.

On their own, Equation 2.9 and Equation 2.10 are the continuous rep-

resentation of the total-field formulation of transmission tomography. With

total-field formulation, the material properties are recovered by finding a

solution to Equation 2.9 and Equation 2.10, over each path indexed by i.

The scattered-field formulation of the transmission tomography system

is attained by subtracting Equation 2.7 from Equation 2.9, and subtracting

Equation 2.8 from Equation 2.10.∫
Pi

(
c−1

TOT
(~r (l))− c−1INC

(~r (l))
)
dl = tAi

TOT − tAiINC (2.11)∫
Pi

(
αTOT (~r (l))− αINC (~r (l))

)
dl =

−1× 106

100fc
10 log10

(
pAi

TOT

pAiINC

)
(2.12)
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The following difference terms are introduced to simplify the left-hand sides

of Equation 2.11 and Equation 2.12:

δc−1 (~r) = c−1
TOT

(~r)− c−1INC
(~r) (2.13)

δα (~r) = αTOT (~r)− αINC (~r) (2.14)

Then, Equation 2.11 and Equation 2.12 can be rewritten using Equation 2.13

and Equation 2.14. These equations are the continuous representation of the

scattered-field formulation of transmission tomography.∫
Pi

δc−1 (~r (l)) dl = tAi
TOT − tAiINC (2.15)∫

Pi

δα (~r (l)) dl =
−1× 106

100fc
10 log10

(
pAi

TOT

pAiINC

)
(2.16)

Subtracting the total-field equations from the incident-field equations elimi-

nates the compensation factors, thus, the scattered-field formulation of trans-

mission tomography permits imaging without compensation factors. The

remaining right-hand-side terms only contain features of the time domain

scans. The material properties are recovered by finding a solution to the

above system, over each path indexed by i, then calculating c−1
TOT

(~r) and

αTOT (~r) from Equation 2.13 and Equation 2.14. Note that recovering the

material properties from the scattered-field formulation requires knowledge

of c−1
INC

(~r) and αINC (~r). The flow of information in the total-field and

scattered-field formulations is depicted in Figure 2.3. If the incident material

properties are well-characterized, and scan data exist for both the incident

field and the total field, then the scattered-field formulation can be used. If

those conditions are not met, then the total-field formulation (Equation 2.9

and Equation 2.10) must be used, which requires that the compensation

factors are known.

2.2.2 Discretizing the Model

In order to find a solution to the transmission tomography system, it is

necessary to translate the continuous representations of the transmission to-
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Known
Media

Unknown
Media

Total
Data

Incident
Data

Imaging

Reconstruction
Of

Unknown
Media

(a) Scattered-field formulation. Two sets of
measurements must be taken to reconstruct the

unknown target.

Unknown
Media

Total
Data

Compensation
Factors

Imaging

Reconstruction
Of

Unknown
Media

(b) Total-field formulation. One set of measurements is
taken, and a set of compensation factors must be used in

order to reconstruct the unknown target.

Figure 2.3: Flow of information in scattered-field and total-field formulations.

mography systems into forms which can be processed by a computer. In

other words, the model must be discretized, both spatially and temporally.

The model is spatially discretized by expressing the two material properties

in some finite basis. The model is temporally discretized by representing the

scans as sequences of samples, sampled at frequency fs.

Spatial Discretization

Let {φ1 (~r) , . . . φN (~r)} be the chosen basis functions, and let {c−11 , . . . c−1N }
and {α1, . . . αN} be the corresponding basis coefficients for c−1 (~r) and α (~r),

in a basis with N functions. Then, the material properties can be expressed
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in the finite basis as follows:

c−1 (~r) =
N∑
j=1

c−1j φj (~r) (2.17)

α (~r) =
N∑
j=1

αjφj (~r) (2.18)

By substituting Equation 2.17 and Equation 2.18 into Equation 2.4 and

Equation 2.5, moving constant terms outside of the integral, and expand-

ing the logarithm term, we obtain the following equations:

N∑
j=1

c−1j

∫
Pi

φj (~r (l)) dl = tAi − tDi (2.19)

N∑
j=1

αj

∫
Pi

φj (~r (l)) dl =
−1× 106

100fc
(10 log10 (pAi)− 10 log10 (pDi × g (Pi)))

(2.20)

Performing this conversion for both the total-field and the incident field,

we have the following equations:

N∑
j=1

c−1j
TOT

∫
Pi

φj (~r (l)) dl = tAi
TOT − tDi (2.21)

N∑
j=1

αj
TOT

∫
Pi

φj (~r (l)) dl =
−1× 106

100fc

(
10 log10

(
pAi

TOT
)
− 10 log10 (pDi × g (Pi))

)
(2.22)

N∑
j=1

c−1j
INC
∫
Pi

φj (~r (l)) dl = tAi
INC − tDi (2.23)

N∑
j=1

αj
INC

∫
Pi

φj (~r (l)) dl =
−1× 106

100fc

(
10 log10

(
pAi

INC
)
− 10 log10 (pDi × g (Pi))

)
(2.24)

These equations hold simultaneously for each path (Pi) indexed by i. The
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four sets of simultaneous equations can then be expressed in matrix form.

Lc−1
TOT

= tA
TOT − tD (2.25)

LαTOT = qA
TOT − qD (2.26)

Lc−1
INC

= tA
INC − tD (2.27)

LαINC = qA
INC − qD (2.28)

Here, L is a matrix such that Li,j =
∫
Pi
φj (~r (l)) dl, and the underlined

quantities are vectors created by the concatenation of the quantities in Equa-

tion 2.21, Equation 2.22, Equation 2.23, and Equation 2.24. The matrix, L

will be referred to as the path integral matrix. The cumbersome quantities

from the right-hand-side of Equation 2.22 and Equation 2.24 are compressed

by defining the following terms:

qAi
TOT =

−1× 106

100fc
10 log10

(
pAi

TOT
)

(2.29)

qAi
INC =

−1× 106

100fc
10 log10

(
pAi

INC
)

(2.30)

qDi =
−1× 106

100fc
10 log10 (pDi × g (Pi)) (2.31)

The path integral matrix, L is, in general, not a square matrix. The

matrix may have more rows than columns , as in Figure 2.4a, or more

columns than rows, as in Figure 2.4b. These two states are referred to as

over-determined and under-determined, respectively. The number of rows in

L is the number paths along which the target was interrogated. The number

of columns in L is N , the number of functions in the chosen basis.

Taken together, Equation 2.25 and Equation 2.26, are the discrete rep-

resentation of the total-field formulation of transmission tomography. The

material properties can be recovered directly from the total-field formulation

by calculating a solution to the two equations.

The discrete representation of the scattered-field formulation of trans-

mission tomography is attained by subtracting Equation 2.27 from Equa-

tion 2.25 and subtracting Equation 2.28 from Equation 2.26. Let δc−1 =
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L ×

p
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basis
functions

= f
Many
paths

(a) Over-determined system

L

× p
Many
basis
functions

=

f
Few
paths

(b) Under-determined system

Figure 2.4: Over-determined and under-determined matrix systems. The
shape of L depends on the number of paths and the number of basis functions.
p is a vector of properties, and f is a vector of features.

c−1
TOT− c−1INC

, and let δα = αTOT−αINC. The resulting equations are the

following:

L
(
δc−1

)
= tA

TOT − tAINC (2.32)

L (δα) = qA
TOT − qAINC (2.33)

The only unknown quantities in Equation 2.32 and Equation 2.33 are the

left-hand-side vectors, δc−1 and δα. The compensation factors have been

eliminated by subtracting the incident equations from the total equations.

Solving these two equations yields the vectors of physical property differences.

The vectors of actual physical properties can be obtained by adding the
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recovered differences to the known incident physical properties.

c−1
TOT

= c−1
INC

+ δc−1 (2.34)

αTOT = αINC + δα (2.35)

Finally, the vectors of property coefficients can be translated into spatial

maps by expanding the physical properties in the chosen basis, using Equa-

tion 2.17 and Equation 2.18. This final translation step is the same for both

total-field imaging and scattered-field imaging.

Solving Matrix Equations

Each of Equation 2.32, Equation 2.33, Equation 2.25, and Equation 2.26 use

a matrix equation to relate a vector of properties to a vector of features via

a path integral matrix. Let p and f represent the vector of properties and

the vector of features in any of those equations.

Lp = f (2.36)

There are several methods for calculating a p which satisfies this equation

for a given L and f . Choosing a method for solving Equation 2.36 depends

largely on whether the equation is an over-determined or under-determined

system. See Figure 2.4 for a graphical depiction of these two types of systems.

If Equation 2.36 is over-determined, then there may be no exact solution,

that is, there is no p which satisfies the equation. A common technique for

calculating a solution to an over-determined system is least-squares analysis

[23]. Since Equation 2.36 cannot be solved exactly, we instead quantify the

error between Lp and f , and minimize this error. The error is represented

by F
(
p
)

in the following equation:

F
(
p
)

=
∣∣∣∣Lp− f ∣∣∣∣2 (2.37)



2.2. WAVE PROPAGATION MODEL 21

Then, we seek a value of p which minimizes this error.

p = arg min
x
F(x) (2.38)

This optimal p is calculated using the following equation [23]:

p =
(
LTL

)−1 (
LTf

)
(2.39)

Several other techniques can be used to find solutions to over-determined

matrix systems. Least-squares analysis is described here because it is the

solution technique that will be used from Chapter 5 onward.

If Equation 2.36 is under-determined, then there are several solutions,

that is, there are several values of p which satisfy the equation. A common

technique for calculating a particular solution to an under-determined system

of equations is the conjugate-gradient least-squares (CGLS) algorithm [23]

[24]. This technique differs from least-squares analysis in that it is iterative.

An initial guess for p is imposed, then the value of p is repeatedly updated

until some stopping condition is met. The details of the CGLS algorithm will

not be explained here. While there are many other techniques available for

solving under-determined matrix systems, CGLS is mentioned here because

it is used in Chapter 3 and Chapter 4.

Temporal Discretization

The time-domain scans, si (t) are stored as sequences of samples, sampled at

frequency fs. It is equivalent to say the scan is sampled at sampling interval

ts, where ts = 1
fs

The sampled version of the scan will be represented with

square brackets, and indexed with n, according to the following relation:

si [n] = si (nts) (2.40)
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2.3 Feature Extraction Details

Transmission tomography operates on time-domain scans, in order to pro-

duce spatial maps of physical properties. As discussed in Section 2.2, the

physical properties are chosen to match the delay and decay features of the

set of measured time-domain pulses. The process of calculating the pulse

features from the time-domain scans is feature extraction.

For each scan, its two features (TOA and power) are calculated in series.

First, the TOA is calculated, then the power of the measured pulse is calcu-

lated. The TOA must be calculated first because the power calculation relies

on having an accurate time window in which the pulse appears.

2.3.1 Time-Of-Arrival Determination

The pulses generally consist of several different important phenomena. The

important phenomena are listed below, in order of appearance. This list

is not exhaustive, since there may be infinite scattering events to consider,

however, this list does contain the most common and important phenomena

which appear in scans.

1. Noise due to cross-talk: This occurs when the generator-to-transmitter

signal path and the receiver-to-measurement-device signal path get

close to each other. This can happen if the pulse generator and the

measurement device are the same device. Cross-talk can also be expe-

rienced when a switching device is used to multiplex the pulse generator

and the measurement device through several transmitters and several

receivers.

2. Low-power background noise: After the cross-talk has extinguished,

the measurement device will see no signal except for background noise.

3. Fastest-path pulse: There are many possible paths along which the

wave front will propagate on its journey from the transmitter to the

receiver. The receiver is first excited by the portion of the wave front

which travels along the path of least time.
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4. Straight-path pulse: The portion of the wave front which travels along

the straight path from the transmitter to the receiver arrives after the

fastest-path pulse. The straight-line path is generally not the path of

least-time from the transmitter to the receiver, in any non-homogeneous

medium.

5. Slow pulses and reflections: The portions of the wave front which prop-

agate along paths which are slower than the straight path will arrive at

various points in time after the arrival of the straight-line pulse. Ad-

ditionally, there may be late-arriving reflections due to the geometry

of the imaging domain. For example, the imaging domain may be in

some walled chamber.

A visual representation of the cause of these phenomena is shown in Fig-

ure 2.5, for a simple imaging target. Note that the phenomena described

above have intersecting support in time, that is, the phenomena blur into

each other.

Three different TOA detection algorithms have been implemented in this

thesis:

1. peak detection,

2. the modified energy ratio (MER), and

3. the variance score method.

Each of these algorithms has certain idiosyncratic benefits and drawbacks.

These benefits and drawbacks mean that different sets of data require dif-

ferent algorithms for determining TOA. The different algorithms will be de-

scribed here, with guidance as to where each algorithm is applicable. For

each description, suppose we seek the TOA, tAi from the time-domain scan

si (t). A sample scan is shown in Figure 2.6. This scan is included as a visual

aid for the explanation of the various TOA determination algorithms.

The sample scan’s extracted TOA is shown in Table 2.1, for each of the

three extraction methods, showing that they all agree, despite their differ-

ent approaches. The experiments in this thesis make use of either the MER
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(a) Schematic of sources of scan phenomena. The red path is the path of
least-time. The green path is the straight-line path. The blue path is one

of many slow paths.

(b) Scan phenomena. Sections are colour-coded to match the sources
shown above.

Figure 2.5: Physical causes of observed phenomena in time-domain scans

method or the variance score method. Specifically, the experiments in Chap-

ter 3 use the variance score method, the experiments in Chapter 4, Chapter 5,

Chapter 6 and Chapter 7 all use the MER method. Further details will be

provided in each chapter. The peak detection method is not used in this
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(a) Sample scan

1.4 1.45 1.5 1.55 1.6 1.65 1.7

Time [s] #10 -4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 S
ig

na
l L

ev
el

(b) Zoomed sample scan

Figure 2.6: Sample scan for illustrating algorithms for determining time or
arrival

Table 2.1: Time-Of-Arrival of Sample Scan

Method Peak MER Variance Score
TOA [µs] 148.7 145.1 144.5

thesis, however, it is presented here since it has proven to be useful in other

scenarios.

Peak

Peak detection, as a TOA algorithm, is a simple method. The TOA is

calculated as follows:

tAi = arg max
t
|si(t)| (2.41)

That is, the TOA is taken to be the time where the scan reaches is peak

absolute value. This algorithm is depicted in Figure 2.7, for the sample scan.

This method has been shown to be effective on the multimodal ultrasound

breast imaging (MUBI) data set [25], however, the peak detection method

can fail if the time-domain scan contains a target with significant attenuation.

The straight-line path may get attenuated enough that reflected and refracted

pulses which pass around the target appear stronger than the straight-line

pulse. Additionally, this method can fail due to strong cross-talk at the
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beginning of the scan.
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Figure 2.7: Time-of-arrival determination via peak detection

The negative impact of late-arriving reflection can be decreased by trun-

cating the time-domain scans. If the minimum possible wave speed is known

ahead of time, then it is possible to define a maximum possible time-of-flight

(TMAX) for each path with TMAX = path distance
cMIN

. The scan may be safely trun-

cated to TMAX in order to ignore some late reflections, however, some late

reflections may still be visible.

This method is implemented as a simple linear search through the scan,

so its computational complexity is O (NS), for a scan with NS total samples.

Modified Energy Ratio

The MER method has also been shown to be effective on the MUBI data

set [26]. The MER method finds a point in the scan where the power sharply

increases. This method relies on calculating an energy ratio, R (t).

R (t) =

∫ t+w
t

(si (τ))2 dτ∫ t
t−w (si (τ))2 dτ

(2.42)

The ratio compares the energy in a window after t to the energy in a window

before t. The parameter w is the size of the window, and it is typically taken

to be 3 periods of the centre frequency of the scan. The ratio, R (t), is then
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modified via multiplication with the absolute value of the scan. The result,

M (t) is the modified energy ratio.

M (t) = |s (t)|R (t) (2.43)

Finally, the TOA is chosen to be the maximizer of M (t)

tAi = arg max
t

(M (t)) (2.44)

Multiplying R (t) by |s (t)| helps ensure that if random noise produces a

spurious jump in R (t), then that spike is ignored. This algorithm is depicted

in Figure 2.8, for the sample scan.
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Figure 2.8: Time-of-arrival determination via modified energy ratio

This method is more resilient to cross-talk than the peak detection method,

as long as cross-talk is the very first phenomenon encountered in the signal.

In that case, cross-talk will appear in the numerator of R (t) only if cross-

talk appears in the denominator of R (t), and no spurious spike in R (t) will

occur. This method is susceptible to strong, late-arriving reflections. If the

difference between the arrival of the reflection and the arrival of the straight-

line pulse is greater that w, and the late pulse has more power than the

straight-line pulse, then that method will incorrectly assign tAi to the late

pulse. Again, as was the case with the peak detection method, it may be

possible to truncate the scans in order to decrease the negative impact of
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some late reflections.

A naive implementation would achieve O (NSw) computational complex-

ity for this algorithm. The actual complexity can be reduced to O (NS) by

keeping track of the numerator and denominator terms for R (t), and iter-

atively subtracting out old terms and adding in new terms as the windows

move along the scan.

Variance Score

The method which will herein be referred to as the variance score method

is adapted from a statistical TOA detection method, known as the AIC-

picker, which has been shown to be effective on the computed ultrasound

risk evaluation (CURE) dataset [27]. The variance score method seeks to

divide the scan into two regions: the region before the arrival of the first

pulse, and the region after the arrival of the first pulse. The time tAi is the

point which separates these two regions. Suppose that the total time of the

scan is T . The TOA, tAi, is chosen to be the minimizer of the score function,

S (t).

tAi = arg min
t
S (t) (2.45)

The score function is a ratio of two variances, VL (t), and VR (t). These are

the left variance and the right variance, respectively. The left variance is the

variance of si from 0 to t, while the right variance of the variance of si from

t onward.

VL (t) =
1

t

∫ t

0

(si (τ)− sL)2 dτ (2.46)

VR (t) =
1

T − t

∫ T

t

(si (τ)− sR)2 dτ (2.47)

The left and right variance calculations require the calculation of the left

and right means (sL (t) and sR (t)), which are calculated with the following
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equations:

sL (t) =
1

t

∫ t

0

si (τ) dτ (2.48)

sR (t) =
1

T − t

∫ T

t

si (τ) dτ (2.49)

This algorithm is depicted in Figure 2.9, for the sample scan. Specifically,

all three steps of the variance score algorithm are shown. The left and right

variances are shown in Figure 2.9a and Figure 2.9b. These figures highlight

how the left and right variance can encode information about TOA. It is clear

when the dividing time is near the TOA, the right-variance peaks. Then, as

the dividing time moves beyond the TOA, the left variance increases sharply

and the right variance decreases sharply. The ratio of these two values gives

the variance score, shown in Figure 2.9c and Figure 2.9d. The minimum of

the variance score is a good approximation of the TOA.

The variance score method excels at picking time-of-flight in the presence

of noise [27], however, this method can experience the same failure modes as

MER.

Care must be taken in the implementation of this TOA calculation method.

A naive implementation would have O (N2
S) computational complexity, as

each of the NS samples in time requires the calculation of the variance of the

remaining (NS − 1) samples. Similar to the MER method, this computation

can achieve O (NS) complexity, by keeping track of the two mean values and

the two variance values as the algorithm iterates through the scan.

2.3.2 Pulse Power Determination

Once the TOA is determined, the power of the received pulse can then be

calculated. The power is calculated using the following formula:

pAi =
1

wp

∫ tAi+wp

tAi

(si (t))
2 dt (2.50)
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Figure 2.9: Time-of-arrival determination via variance score
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The power is simply the average of the square of the received signal, over a

period of time. The beginning of the period is taken to be the TOA. The

parameter, wp must be set prior to imaging, and is dependent on the shape of

the transmitted pulse. For example, if the transmitted pulse is 5 wavelengths

of an enveloped sinusoid with period ttran, then a good value for wp would be

5× ttran.

2.3.3 Ignoring Data

The feature extraction algorithms will occasionally fail, due to any of the

causes listed above. The feature extraction step generally fails by identifying

a wrong TOA for a particular pulse. If the TOA is identified incorrectly, then

the pulse power calculation will also be wrong, since the power calculation

relies on an accurate approximation of the envelope of the pulse. In this

thesis, a data processing step takes place after all of the features are extracted

for a particular imaging session.

The processing consists of identifying scans whose features are impossible,

given some knowledge of the imaging domain. For example, suppose a pulse

interrogates some object, immersed in a background with speed cb, along a

path of length l. Furthermore, suppose it is known that there are certain

bounds, cMIN and cMAX on the expected speed of the material being imaged.

For a scattered-field imaging scenario, the expected change in TOA could

then be bounded, as follows:

l

(
1

cMAX

− 1

cb

)
≤
(
tAi

TOT − tAiINC
)
≤ l

(
1

cMIN

− 1

cb

)
(2.51)

Likewise, given a background attenuation, αb, and the bounds of αMIN and

αMAX on the expected attenuation of the material being imaged, it is possible

to put bounds on the relationship between the power of the total pulse and

the power of the incident pulse. The bounds are calculated as follows:

l (αMIN − αb) ≤
−1× 106

100fc
10 log10

(
pAi

TOT

pAiINC

)
≤ l (αMAX − αb) (2.52)
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The criteria from Equation 2.51 and Equation 2.52 allow certain scans to be

identified. Scans which fail either criteria are then ignored. Scans are ignored

by simply removing their corresponding rows from the L matrix, which was

introduced in Equation 2.25 and Equation 2.26.

A median filter technique, presented in [27], was shown to be effective

in identifying and remedying erroneous scans. That technique compares the

features of the scan received by a particular receiver to the scans received by

its neighbours. If the scan’s calculated features differ from its neighbours’

features by a a certain amount, then the feature is replaced with the median

of its neighbours’ features. This technique is not implemented in this thesis,

as the algorithm that was developed treats each transmitter-receiver path as

an independent entity. It is not assumed that the transmitters or receivers are

arranged in any regular order, so a regional median filter was not investigated.

2.4 Extracting Auxiliary Material Properties

The transmission tomography tool described in this thesis reconstructs two

physical properties: slowness, and attenuation. These material properties

are diagnostically useful on their own, however, it is potentially necessary to

translate these two properties to other properties. For example, the electro-

magnetic imaging tools currently in use at the EIL expect materials to be

expressed in terms of complex-valued permittivity, ε̃. The EIL also has sev-

eral tools which perform time-harmonic WFI of acoustic fields. These tools

expect materials to be expressed in terms of complex-valued compressibility,

κ̃.

This section presents two techniques for translating from inverse wave

speed and attenuation (c−1 and α) to either complex permittivity (ε̃) or

complex compressibility (κ̃). Depending on the imaging context, and the

source of measured data, there are other properties which may be of interest.

For example, in a geological imaging context, the diagnostic properties of in-

terest may be the porosity and saturation of soil. The translations presented

here are chosen specifically for their utility to the members of the EIL.

Detailed derivations of the equations in this section are shown in Ap-
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pendix C.

2.4.1 Acoustic Properties

Given c−1 and α, in an ultrasound imaging context, the real and imaginary

parts of the complex-valued compressibility of a material can be calculated.

The following translation assumes that density (ρ) is constant:

< [κ̃] =
(c−1)

2 −
(
α ln(10)

4π × 105

)2
ρ

(2.53)

= [κ̃] =
−αc−1 ln (10)

2π × 105ρ
(2.54)

2.4.2 Electromagnetic Properties

Given c−1 and α, in an ultrasound imaging context, the real and imaginary

parts of the complex-valued permittivity of a material can be calculated. The

following translation assumes that permeability (µ) is constant:

< [ε̃] =
(c−1)

2 −
(
α ln(10)

4π × 105

)2
µ0

(2.55)

= [ε̃] =
−αc−1 ln (10)

2π × 105µ0

(2.56)
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Chapter 3

Two-Dimensional Ultrasound

Imaging on Unstructured

Meshes

3.1 Introduction

Previous work in the EIL [14] has led to the construction of various ultrasound

imaging systems. One such system, depicted in Figure 3.1, consists of a set

of ultrasound transducers, which are set in a planar ring, and submerged in

a bucket of water.

The system supports 64 piezoelectric transducers, which can act either

as transmitters or receivers. In transmission mode, the transducers convert

voltages to local pressure variations. In receiving mode, the transducers

convert local pressure variations to voltages. To act as a transmitter, a

transducer can be excited in one of two ways:

1. Excited by an impulse, and left to ring, or

2. Excited by a time-varying voltage source.

Impulse-excitation tends to provide more interrogation energy than exciting

the transducer with a continuous signal, however, the frequency of the trans-

ducer’s ringing cannot be controlled. The transducers resonate at roughly

35
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Figure 3.1: System schematic. Red lines indicate digital control connections,
with the arrow head pointing to the controlled device. Green lines indicate
digital signal connections ang blue lines indicate analog signal connections,
with arrows pointing in the direction of signal flow. Only 3 of the 64 trans-
ducer supports are shown, for visual simplicity.

1.4 MHz. A frequency of 1.4 MHz in water supports a wave with a wave-

length of 1.1 mm. Previous work [14] sought to use the 1.4 MHz transducers

to perform CSI in an imaging system similar to the one shown in Figure 3.2.

The small wavelength made it difficult to perform full-wave imaging with the

given transducers, however, the small wavelength is actually ideal for trans-

mission tomography. Therefore, this bucket imaging system was chosen as a

test-bed for initial transmission tomography tests, and the transducers were

excited by a voltage impulse.

3.2 Procedure

The bucket holds 64 transducers, equally spaced on a ring of radius 11.4 cm.

Three simple phantoms were developed and built by Hannah Fogel, a fellow

student and member of the EIL. These phantoms were used to test the reso-

lution of the tomography algorithm. The phantoms were made of a mixture

of gelatin and water, which was allowed to set in a cylindrical vessel with a
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Figure 3.2: Ring of ultrasound transducers, submerged in water

diameter of 8 cm. One phantom, shown in Figure 3.3, was a simple mono-

lithic region of the gelatin/water mixture. Two other phantoms were made

by boring holes through homogeneous phantoms along the vertical axis. One

phantom contained a single bore-hole, and the final phantom contained two

bore-holes. All of the bore-holes had a diameter of 1 cm. The speed of sound

in the gelatin was known to be 1.6× 103 m s−1, and the material was known

to be near-lossless.

The gelatin phantoms were interrogated by pulses from each of the 64

transducers. For each transmission, the non-transmitting transducers acted

as receivers, generating a total of 64×63 = 4032 time-domain scans. In order

to reduce random noise, each transmission event was repeated several times,

and the resulting set of measurements were averaged. The data acquisition

cards were set up with the following parameters:

• Transmitters excited by an impulse

• Sampling frequency of 50 MHz

• Averaging was enabled, with 50 recordings per scan

The 4032 time-domain scans were then inverted using the transmission

tomography algorithm. The imaging domain was set to be a circular region
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(a) Horizontal dimensions of
homogeneous gelatin phantom

(b) Vertical dimension of
homogeneous gelatin phantom

Figure 3.3: Horizontal and vertical scale of homogeneous gelatin phantom

with a radius of 11.4 cm. The imaging domain was meshed with a character-

istic length of 5 mm, producing an unstructured mesh which contains 2135

triangular elements. The open-source software gmsh [28] was used to mesh

the imaging domain. Each of the three gelatin phantoms was imaged on this

mesh. The tomography equations were solved via CGLS, truncated at 10

iterations. The resulting two-dimensional images were then quantitatively

evaluated for their reconstruction accuracy.

3.2.1 Data Processing Details

The imaging system used in this experiment produces strong crosstalk at

the beginning of each scan, so each scan is preprocessed prior to imaging, in

order to remove the crosstalk This crosstalk decays earlier than the expected

TOA for all of the scans, the preprocessing consists of deleting 300 entries

from the beginning of each scan.

The TOA is extracted with the variance score method, and the window
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size for the power calculation is set to six wavelengths, which is equivalent

to 214 samples.

3.2.2 Development

It is necessary to choose a basis function for representing the material proper-

ties. A pulse basis was chosen for this test. A pulse basis is a set of functions,

{φ1, φ2, . . . φN}, each of which has finite support. Each pulse basis function

is unit-valued within its support, and zero-valued elsewhere. The pulse basis

functions’ supports are all mutually disjoint.

A pulse basis was chosen because it is easy to integrate pulse basis func-

tions along a straight line. The integral,
∫
Pi
φj (~r (l)) dl is simply the length

of the intersection of Pi with the support of φj (~r).

Pulse bases are commonly supported by either square grids or unstruc-

tured meshes. Unstructured meshes permit more modelling freedom than

square grids, so a mesh-based pulse basis was chosen for this experiment.

With a mesh-based pulse basis chosen, the matrix L, from Equation 2.25

and Equation 2.26, is calculated by comparing each transmitter-receiver path

to each mesh element, and calculating their intersection. Therefore, filling

L has a computation complexity of O (IJ), where I is the total number of

transmitter-receiver paths, and J is the total number of basis functions. The

number of mesh elements intersected by any path is small, when compared

to the total number of mesh elements, therefore the resulting L is a sparse

matrix. Let lc be the characteristic side-length of the mesh elements. As

lc decreases, the number of mesh elements intersected by each path grows

proportionally to 1
lc

, while the total number of mesh elements grows propor-

tionally to
(

1
lc

)3
. The fill ratio of L, then, is proportional to

(
1
lc

)2
.

Seeking direct solutions to Equation 2.25 and Equation 2.26 will pro-

duce solutions with high variations, which lead to non-physical images. This

symptom has two causes:

1. Small errors which occur during feature extraction.

2. Mesh elements which are intersected by a small number of transmitter-
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receiver paths (lonely mesh elements).

Suppose there is some path whose extracted features contain small errors,

and which intersects a lonely mesh element. Each element which is inter-

sected by the path will have its reconstructed physical properties impacted

by the erroneous features, that is, the properties will change slightly in order

to achieve the erroneous feature. The elements which will be modified the

most are the elements that are intersected by the smallest number of paths.

Therefore, if there are lonely mesh elements and erroneous features, then the

lonely mesh elements’ recovered physical properties will be excessively large.

This symptom can be alleviated by seeking regularized solutions to the

tomography equations. The regularization technique employed in this test

is the CGLS algorithm. This technique was chosen for its ease of implemen-

tation and its speed. For a problem with J basis functions and P different

transmitter-receiver paths, solving the tomography equations with CGLS is

a O (JP ) operation. This is because each iteration of CGLS is a O (JP )

operation, and the number of iterations is set independent of J and P and

is determined by the desired spatial resolution. Matlab provides a built-in

function, lsqr() which performs the CGLS algorithm. The built-in function

was used for the inversions presented here, with appropriate options set to

permit a fixed number of CGLS iterations.

3.2.3 Testing

The reconstructions for this experiment were evaluated by comparing the

recovered sound-speed images to the known geometry of the gelatin phan-

toms. The attenuation images were not considered because the phantoms

were known to be near-lossless. The following features of the reconstructed

sound-speed images were quantitatively evaluated:

• Sound-speed reconstruction accuracy over the whole imaging domain

• Location of holes in the reconstructed sound-speed
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The sound-speed reconstruction accuracy over the whole imaging domain

was calculated using the following equation:

Ec =

∫∫
D

(c (~r)− cEXP (~r))2 d~r∫∫
D

(cEXP (~r))2 d~r
(3.1)

Here, c (~r) is the reconstructed sound-speed, cEXP (~r) is the expected sound-

speed and D is the imaging domain.

The radius of the phantoms, their sound-speed, and the radius of the holes

in the phantoms were accurately recorded prior to imaging. Some other

geometric features of the gelatin phantoms were not accurately recorded,

including the location of the phantoms within the imaging chamber and the

locations of the holes that were placed in the gelatin phantoms. The location

of the phantoms and the locations of their holes were calculated from the

reconstructed images via the following procedure:

1. Mesh elements were classified, via a sound-speed threshold, as either

gelatin or water.

2. The centre of the reconstructed phantom was set as the centre of the

gelatin elements’ bounding box.

3. The locations of the holes were determined by identifying elements

within the phantom that are located in a low sound-speed neighbour-

hood. An element’s neighbourhood is the set of elements whose centroid

is within 5 mm of its centroid. Holes were assumed to be at the cen-

troids of elements whose neighbourhoods’ speed most closely matches

the speed of water.

3.3 Results

The reconstructed sound-speed and attenuation images, for the three gelatin

phantoms, are shown in Figure 3.4.

A quantitative evaluation of each phantom’s reconstruction is shown in

Table 3.1, which documents the calculated locations of the holes, and the
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reconstruction accuracy over the entire imaging domain.

Table 3.1: Imaging metrics for two-dimensional ultrasound experiment

Phantom
Name

Calculated
Hole
Location(s)
[mm]

Expected
Hole
Location(s)
[mm]

Domain
Speed
Error

Homogeneous N/A N/A 1.666× 10−4

One-Hole (26.6, 2.88) (25.1, 3.65) 2.378× 10−4

Two-Hole (12.5,−7.34)
(−15.5, 0.551)

(16.3,−5.14)
(−14.8, 2.94)

3.029× 10−4

3.4 Discussion

The reconstructions in Figure 3.4 clearly show that it is possible to image the

simple gelatin phantoms. It is clear that the sound-speed image in Figure 3.4a

is the homogeneous gelatin phantom, the sound-speed image in Figure 3.4c

is the single-hole phantom, and the sound-speed image in Figure 3.4e is the

double-hole phantom. These images also show some straight-line artefacts.

This type of sharp artefact is a motivator for the work in Chapter 5, which

emerged as a method of smoothing out such imperfections. The attenuation

images are not diagnostically helpful in this scenario. The attenuation images

do present a faint outline of the gelatin phantoms, but these images are not

clear enough to be useful for tissue identification.

These time-of-flight tomography images demonstrate that it is possible to

generate quantitative images of low-contrast targets, given pulse transmission

data. These positive results motivate the development of a three-dimensional

imaging framework, which will be presented in Chapter 4.
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(a) Homogeneous Speed (b) Homogeneous Attenuation

(c) One-Hole Speed (d) One-Hole Attenuation

(e) Two-Hole Speed
Column Colour Range:

1400 to 1600 m s−1

(f) Two-Hole Attenuation
Column Colour Range:

-2 to +2 dB cm−1 MHz−1

Figure 3.4: Pulse-basis reconstructions of gelatin phantoms
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Chapter 4

Three-Dimensional Pulse-Basis

Transmission Tomography in

Grain Bins

4.1 Introduction

The results presented in Chapter 3 demonstrated that transmission tomog-

raphy is capable of imaging a geometrically simple target. A heap of grain,

stored in a bin, is another geometrically simple target, however, a heap of

grain is not a two-dimensional entity. Imaging a grain heap requires a three-

dimensional imaging system. This chapter describes an exploratory exper-

iment, which uses a mesh-based pulse-basis transmission tomography tool

to calculate the spatially-varying wave speed and attenuation within a grain

bin.

A tool which could extract wave-speed and attenuation from time-domain

pulses in a grain bin would be useful for monitoring the status of stored

grain. When grain is stored in a bin, it is desirable to know the moisture

and temperature of the grain at each location within the bin. The grain’s

moisture is of economic interest to the farmer who stores the grain. Grain

is traded by mass, so farmers would like to keep their grain as moist as

possible so that they may maximize profit. A negative aspect of moist grain

45
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is that moist grain is more likely to spoil than dry grain. When grain spoils,

it generates heat, which results in a local spike in the grain’s temperature.

These phenomena give farmers a strong motivation to have detailed spatial

information about the temperature and moisture of the grain in their bins.

The agriculture company, AGCO Winnipeg, in partnership with the EIL,

is developing tools that use non-linear, full-wave electromagnetic imaging to

provide this information, via the following process:

1. Use the electromagnetic measurements to calculate the electrical prop-

erties (i.e. permittivity and conductivity) of the grain.

2. Translate the electrical properties to diagnostic properties which are of

interest to farmers, such as moisture and temperature.

Electromagnetic measurements must be calibrated [10] when they are

used as data in non-linear MWI, such as CSI. The goal of calibration is to

negate the impact of all of the cabling and the switching network that are

required when taking RF measurements. The process of calibration requires

three entities:

1. Measurements taken while the imaging system is in a completely known

state, called the calibration data

2. A computational or analytic model of the imaging system in the com-

pletely known state

3. A second set of measurements taken while the imaging system is in an

unknown state

For example, in grain bin imaging, the calibration data may be collected

from a completely empty bin. An analytic model does not exist for calculat-

ing radiation patterns in an arbitrary resonant enclosure, however, an empty

grain bin can be modelled computationally. The calibration data, together

with the ‘empty bin’ model, can then be used to calibrate another set of

measurements, which may correspond to the bin filled with some amount of

grain. The calibrated measurements can then be used to perform non-linear
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MWI. A caveat of calibration is that the quality of the calibration process

depends on the similarity between the object from which calibration data are

collected and the object to be imaged [10].

Calibrating data for MWI in grain bins requires an accurate computa-

tional model of the bin and a set of measurements taken from a known

distribution of grain. These two entities are then used to calibrate a second

set of measurements, which are taken from a grain bin with some unknown

distribution of grain. There are two problems with calibrating data for grain

bins:

1. Data from the known distribution of grain may not be available, de-

pending on how the grain bin is used.

2. Calibration may fail, due to excessive differences between the two sets

of data. These differences may stem from the data acquisition sys-

tem, whose characteristics change over time. These differences may

also stem from a large differences between the shape of the two grain

distributions.

Transmission tomography does not require such a calibration procedure,

since the only properties of interest in the electrical measurements are de-

lay and decay. The experiment presented in this chapter uses transmission

tomography to quantitatively image a heap of grain, stored in a metallic

chamber.

4.2 Procedure

This experiment relies on synthetic data. In Chapter 3, it was possible to

experiment with real, measured data because the ground-truth properties

of those targets were known. Ground-truth data for stored grain, however,

are not easily accessible. The physical properties of grain which govern elec-

tromagnetic wave propagation are well-characterized [29], but a full-scale

experiment which controls both the dielectric properties and the shape of

stored grain is beyond the scope of this thesis. Using synthetic data allows
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for numerical validation of imaging techniques, since the electrical properties

of the target are known ahead of time.

Synthetic data were generated with the finite-difference time-domain (FDTD)

method [30], using the open-source software meep [31], operating on a simu-

lated model of a prototype grain imaging system located on-campus at the

University of Manitoba. The bin consists of a cylindrical region, with a trun-

cated cone region on top and a truncated cone region on the bottom. A

total of 24 antennas are distributed in the cylindrical portion of the bin, in

a quadruple-helix layout. The geometry of the bin is shown in Figure 4.1,

along with the true wave-speed profile.

The model of the bin was separated into a grain region and an air region.

The air region was modelled as free-space, with a complex relative permit-

tivity of 1.0. The grain region was modelled by a non-magnetic material

with a complex relative permittivity of 4.4− 0.51i, which is the approximate

permittivity of corn with a moisture content of 17 % [32]. The expected wave-

speed in the grain was derived from the complex permittivity of the grain by

solving Equation 2.55 for c. The expected wave-speed in the two simulated

materials is shown in Table 4.1, along with the expected attenuation. The

bin was filled halfway with grain, and the top surface of the grain was shaped

in a negative cone, with a declination angle of 30 deg. This shape models a

bin which is in the process of being emptied from a port at the bottom of

the bin.

The scattered-field formulation was chosen for this experiment, and the

incident medium was set as the bin filled with grain. Each of the 24 an-

tennas was sequentially excited, while the other antennas acted as receivers,

producing a set of 552 time-domain scans. The antennas were excited by

an enveloped sinusoidal signal, with a centre frequency at 60 MHz, sampled

at 9 GHz. Data were generated for both the incident medium and the grain

distribution shown in Figure 4.1.

The synthetic time-domain data were used to image the wave-speed within

the bin on meshes of varying density. Once again, the open-source software

gmsh [28] was used to generate meshes. The density of the mesh was con-

trolled by setting the characteristic length, lc, in the meshing program. Five
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(a) Antenna Positions - Front
View

(b) Antenna Positions - Top
View

(c) Expected Speed Profile

Figure 4.1: Synthetic grain distribution for grain-bin imaging experiment
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different characteristic lengths were studied, ranging from 0.1 m to 1.6 m.

The wave-speed reconstruction accuracy , Ec, was evaluated with the follow-

ing formula:

Ec =

∫∫∫
D′

(c (~r)− cEXP (~r))2 d~r∫∫∫
D′

(cEXP (~r))2 d~r
(4.1)

This equation is similar to Equation 3.1, with two modifications:

1. The surface integral is replaced by a volume integral, since this is a

three-dimensional problem.

2. The domain of integration, D′, is modified to only include mesh ele-

ments which are intersected by a transmitter-receiver path.

Mesh elements which are not intersected by any paths have undefined speeds,

so they will not be included in the error integral. The domain of integration

is therefore different for each mesh. It is still reasonable to compare the errors

from different meshes to each other, because the error integral is normalized

by the integral in the denominator.

Table 4.1: Expected material properties of grain reconstruction

Material < [εr] = [εr] c [m s−1] α[dB cm−1 MHz−1]

Grain 4.4 −0.51 1.4251× 108 2.2040× 10−4

Air 1.0 0 2.9979× 108 0

An additional metric is used to measure how thoroughly the imaging mesh

is interrogated by transmitter-receiver paths. This metric will be referred to

as the interrogation ratio, and it is calculated with the following equation:

RINT =
MINT

MMESH

(4.2)

Here, MINT is the number of mesh elements which are interrogated by at

least one transmitter-receiver path, and MMESH is the total number of mesh

elements.
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4.2.1 Data Processing Details

The scans’ TOA were extracted with the MER method. The scans feature

short arrival times, due to the use of a centre frequency of 60 MHz. Some

scans’ TOA do not satisfy the 3-λ requirement, which was discussed in Sec-

tion 2.3. The expected TOA along the shortest transmitter-receiver path

would be 1.89 ns, which is equivalent to 26 samples, however, the 3-λ re-

quirement means that the MER algorithm expects at least 450 samples prior

to the TOA. In order to meet this requirement, each scan is prefixed with

some samples of white noise. The power of the noise is set to achieve a

signal-to-noise ratio of 1000.

4.3 Results

The reconstructed wave-speed profiles are shown in Figure 4.3. Here, the

mesh elements which are not interrogated by any transmitter-receiver paths

are simply assigned the properties of the incident medium. Based on the an-

tenna configuration shown in Figure 4.1, it is clear that the mesh elements in

the upper and lower cones will not be intersected by any transmitter-receiver

paths. For the denser meshes, there are mesh elements within the cylindrical

portion of the grain bin which are not intersected by any transmitter-receiver

paths, as is especially evident in Figure 4.3e. The mesh elements which are

not interrogated by any transmitter-receiver paths are simply assigned the

physical properties of the incident medium, which is grain.

The mesh elements’ speeds are depicted with a colour scale ranging from

1× 108 m s−1 to 3× 108 m s−1. Many of the elements’ recovered speeds are

actually outside of this range. The colour scale was restricted to those bounds

in order to capture the range of the expected wave-speeds.

The error metric values for the different reconstructions are shown in

Table 4.2. Note that the error metric is a normalized metric. An error of 0

would represent a perfect reconstruction, while an error of 1 would represent a

reconstruction that assigns a speed of 0 m s−1 to each element. For reference,

the error incurred by assigning the speed of grain to the entire evaluation
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domain and the error incurred by assigning the speed of air to the entire

evaluation domain are included in the table. The error metric values are also

plotted in Figure 4.2, along with a plot of the interrogation ratio, RINT.

0 0.5 1 1.5
10−1

100

101

Characteristic Length [m]

E
rr

or
M

et
ri

c

(a)

0 0.5 1 1.5

0.1

0.2

0.3

0.4

Characteristic Length [m]

In
te

rr
og

at
io

n
R

at
io

(b)

Figure 4.2: Error and interrogation ratio with respect to mesh characteristic
length
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(a) lc = 1.6 m (b) lc = 0.8 m

(c) lc = 0.4 m (d) lc = 0.2 m

(e) lc = 0.1 m

Figure 4.3: Pulse-basis reconstructions of wave speed from meep-generated
electromagnetic data
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Table 4.2: Accuracy of reconstruction on meshes of varying density

Characteristic
Length [1 m]

Mesh Elements Speed Error Interrogation
Ratio

1.60 m 437 0.157 0.405
0.800 m 1247 0.934 0.417
0.400 m 7299 0.934 0.354
0.200 m 43 782 8.10 0.176
0.100 m 362 764 28.9 0.0575

Reference Speed Error
All Grain 0.116
All Air 0.249

4.4 Discussion

The images shown in Figure 4.3 do not resemble the expected wave-speed

distribution shown in Figure 4.1. The error metrics shown in Table 4.2 are

near 1.0 or greater than 1.0, except for the error associated with lc = 1.6 m.

Recall that an error of 1.0 is the error associated with assigning a uniform

speed of 0 m s−1. Looking at Figure 4.3a, it is clear that the result obtained

from setting lc = 1.6 m is not useful, despite its relatively acceptable error

metric.

These results suggest that the three-dimensional transmission tomogra-

phy tool is not capable of producing useful images of stored grain. The main

issue with this type of imaging is that each basis function has finite support.

The support of each basis function is the space occupied by the tetrahedral

element to which that basis function is assigned. Each tetrahedral element is

interrogated by subset of all of the pulse paths. Inversely, every tetrahedral

element is ignored by a subset of all the pulse paths. The problem of mesh

interrogation is highlighted in Figure 4.2b. For large characteristic lengths,

the set of transmitter-receiver paths interrogates every mesh element which

resides in the convex hull of the antennas. As the characteristic length of the

mesh shrinks, though, the mesh interrogation ratio falls off sharply, which

makes it difficult to draw physically coherent conclusions from the imaging

results.
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Consider the extreme case of an infinitely dense mesh, that is, consider

a mesh with infinitely many tetrahedral elements, all of which are infinites-

imally small. Furthermore, suppose that none of the pulse paths intersect

each other, except at transmitter and receiver locations. In this case, each

mesh element would be intersected by either 1 or 0 pulse paths, except for the

elements containing the transmitter and receiver points. Along each path,

there would be infinite degrees of freedom to satisfy the TOA and attenu-

ation equations. Therefore, the TOA and attenuation equations would all

be independent of each other. The resolution of the resulting images would

be infinite, but there would be no spatial coupling of the recovered material

properties, unless some additional regularization is imposed.

Consider the extreme case of a mesh which consists of a single tetrahedral

element, which contains all of the pulse paths. In this case, the spatial cou-

pling of the basis functions would be maximal, because the single tetrahedral

element would be intersected by all of the pulse paths, however, the image

resolution of the resulting images would be terrible, because a single material

property would be assigned to the entire imaging domain.

It is necessary to strike a balance between these two extremes by choos-

ing mesh elements which are big enough to be intersected by several pulse

paths, while being small enough to offer diagnostically useful image resolu-

tion. One solution would be to increase the number and variety of pulse

paths, in order to intersect more of the mesh elements, however, the target

applications of agricultural and biological imaging, the number of pulse paths

is set by hardware. These results show that in the target application of grain

bin imaging, it is not possible to attain satisfactory image resolution, while

simultaneously ensuring that each basis function is intersected by a sufficient

number of straight-ray paths.

We seek to remedy this problem by using a more suitable basis, a ba-

sis which offers a higher degree of spatial coupling of the recovered material

properties. A polynomial basis offers the desired spatial coupling of material

properties. Polynomial functions have infinite support, so each basis function

in a polynomial basis will be intersected by every pulse path. The develop-

ment and testing of polynomial basis functions for grain bin imaging will be
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described in Chapter 5.



Chapter 5

Three-Dimensional

Polynomial-Basis Transmission

Tomography in Grain Bins

5.1 Introduction

The pulse-basis reconstructions presented in Chapter 4 demonstrated that a

pulse basis has some drawbacks which make it unsuitable for three-dimensional

imaging. With a pulse basis, the basis functions’ supports are all mutually

disjoint. Spatial coupling of recovered material properties is only possible

via mutual intersection of basis functions and transmitter-receiver paths. In

the three-dimensional grain bin context, that amount of spatial coupling is

insufficient for achieving images with diagnostically useful resolution.

This chapter presents transmission tomography with polynomial basis

functions as a method of stabilizing the solution to the transmission tomog-

raphy problem. It is known that any multivariate polynomial function can

be reconstructed from a set of line-integrals of that function, as long as the

number of line-integrals matches the function’s degrees of freedom and the

end-points of the line integrals lie on a convex surface [33] [34]. The shape of

a pile of grain in a bin can be closely approximated with a low order polyno-

mial function, therefore, it is hypothesized that representing the grain with

57
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a polynomial basis will lead to stabler solutions than those achieved with a

pulse basis.

5.2 Procedure

The experiment presented in this chapter is the same as the experiment

presented in Chapter 4, except that a polynomial basis is used to represent

the material properties. In Chapter 4, a series of meshes were tested, in order

to examine the effect of the mesh density on the reconstruction accuracy.

With a polynomial basis, there is no spatial density parameter that can be

adjusted, instead, the degree of the polynomial basis will be parameter that

will be examined. A total of six different bases will be examined, ranging

from a basis of degree 1 to a basis of degree 6.

The error metric was modified to accommodate the change of basis. The

support of the polynomial basis is naturally infinite, however, it would not

be sensible to evaluate the reconstruction accuracy over an infinite domain.

A natural evaluation domain would be the interior of the grain bin, however,

the evaluation domain chosen for this experiment is even more restrictive

than the interior of the grain bin.

The transmission tomography technique interrogates a region of space

with transmitter-receiver paths in order to reconstruct a spatial map of cer-

tain physical properties. Several regions of the grain bin are not sufficiently

interrogated by transmitter-receiver paths. The upper and lower cones of

the bin are ignored, as are the portions of the main cylinder which are above

or below the antenna locations, since there is no transmitter-receiver path

which crosses through these regions. The portions of the main cylinder which

are within the vertical range of the antennas and near the walls of the bin

are also not sufficiently interrogated, due to the arrangement of the antennas

on the wall of the bin. For these reasons, the evaluation domain was set

to be the convex hull of the antenna positions. The convex hull of the an-

tenna positions is shown in Figure 5.1, set within a cylinder that represents

the cylindrical portion of the grain bin. The full set of transmitter-receiver

paths, shown in Figure 5.1b fails to thoroughly interrogate certain regions
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Figure 5.1: Evaluation domain for the error metric. The region shown here
represents the cylindrical portion of the grain bin. The upper and lower cones
are omitted for visual clarity. The set of paths fails to interrogate the outer
regions of the cylinder.

of the bin’s main cylinder, so the error metric is only evaluated within the

convex hull of the antenna positions, which is shown in Figure 5.1c.

The visualizations presented in this chapter are also restricted to the

convex hull of the antenna positions. The error metric, then, is expressed in

the following equation, where H represents the convex hull of the antenna

positions:

Ec =

∫∫∫
H

(c (~r)− cEXP (~r))2 d~r∫∫∫
H

(cEXP (~r))2 d~r
(5.1)

An additional error, which will be referred to as the best-fit error, is

calculated for the analysis of this experiment. The best-fit error, EFIT is

calculated from the best-fit wave-speed, cFIT (~r) as follows:

EFIT =

∫∫∫
H

(cFIT (~r)− cEXP (~r))2 d~r∫∫∫
H

(cEXP (~r))2 d~r
(5.2)

The best-fit speed, cFIT (~r) is the inverse of a corresponding best-fit slowness,

c−1FIT (~r). The best-fit slowness, c−1FIT (~r) is the polynomial function which

most closely matches the known slowness distribution, using a least-squares

metric, at a set of test points. In this experiment, the set of test points is

a uniformly-spaced set of points which lie within the region H. The metric
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EFIT is included to give an indicator of the maximum accuracy that can be

achieved by performing transmission tomography with a polynomial basis.

The number of basis functions for each degree is also reported, since

the number of basis functions is the number of degrees of freedom that are

available to the imaging algorithm. Consider Table 4.2, and the relation-

ship between the mesh density and the number of basis functions. As the

mesh density was increased, the number of basis functions increased, since

each mesh element supports a unique basis function. In a polynomial ba-

sis, as the degree of the basis increases, the total number of basis functions

increases. For example, consider the function f , represented with a three-

dimensional polynomial basis of degree 1, using αi,j,k as the coefficient of the

xiyjzk monomial.

f (x, y, z) =α0,0,0+ (5.3)

α1,0,0x+ α0,1,0y + α0,0,1z

Thus, a polynomial basis of degree 1 requires 4 basis functions, and 4 basis

coefficients. Expressing f with a basis of degree 2, we then have the following:

f (x, y, z) =α0,0,0+ (5.4)

α1,0,0x+ α0,1,0y + α0,0,1z+

α2,0,0x
2 + α0,2,0y

2 + α0,0,2z
2 + α0,1,1yz + α1,0,1xz + α0,1,1xy

A polynomial basis of degree 2 requires 10 basis functions, and 10 basis

coefficients. Suppose the polynomial basis is of degree D, and there are

P paths which interrogate the target. In three spatial dimensions, there are
(D+1)(D+2)(D+3)

6
total basis functions. This formula is equivalent to calculating

the (D + 1)th tetrahedral number, which is the three-dimensional extension

of a triangular number [35]. The integrals of the polynomial basis functions

along the given paths are performed analytically, so integrating a single basis

function along a given path is a constant-time operation. The computational

complexity of the basis function integral operation, then, is O (D3P ).
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5.2.1 Data Processing Details

The scans for this experiment are the same as the scans used for the experi-

ment in Chapter 4, so the scans are processed in the same way.

5.3 Results

The reconstructed wave-speed profiles are shown in Figure 5.3, and in Fig-

ure 5.4. Each of the visualizations shows the bin clipped along the y-z plane,

viewed from the positive x direction, in order to show the reconstruction of

the interior of the bin. The visualizations of Figure 5.3 are all shown with

a colour scale ranging from 1× 108 m s−1 to 3× 108 m s−1, since that range

covers the wave-speed values that are expected to be recovered. The visual-

izations in Figure 5.4 show clipped isosurfaces of the recovered wave-speed,

in order to better show the three-dimensional shape of the reconstructions.

The true grain distribution is also shown here, in Figure 5.2, for convenience.

(a) Expected Speed Profile

Figure 5.2: Synthetic grain distribution for grain-bin imaging experiment

The numerical error analysis for each basis is shown in Table 5.1. The

reference errors for the all-grain and all-air case are included in this table, as
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(a) Degree 1 (b) Degree 2 (c) Degree 3

(d) Degree 4 (e) Degree 5 (f) Degree 6

Figure 5.3: Polynomial basis reconstructions. Colour indicates wave-speed,
from 1× 108 to 3× 108m s−1.

(a) Degree 1 (b) Degree 2 (c) Degree 3

(d) Degree 4 (e) Degree 5 (f) Degree 6

Figure 5.4: Isosurfaces of polynomial basis reconstructions. Colour indicates
wave-speed, from 1× 108 to 3× 108m s−1.



5.4. DISCUSSION 63

are the best-fit errors, which are calculated according to Equation 5.2. These

errors are plotted in Figure 5.5, using a logarithmic vertical axis.

Table 5.1: Accuracy of reconstruction on bases of varying degree

Basis Degree Basis Functions Speed Error Best-Fit Error
1 4 0.0748 0.0633
2 10 0.0502 0.0306
3 20 0.0475 0.0253
4 35 0.0523 0.0266
5 56 0.0625 0.0189
6 84 0.132 0.0153
7 120 5850 0.0189

Reference Speed Error
All Grain 0.249
All Air 0.115
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Figure 5.5: Error metrics with respect to basis degree

5.4 Discussion

Comparing the errors associated with polynomial-basis imaging in Table 5.1

with the errors associated with pulse-basis imaging in Table 4.2, it is clear
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that using a polynomial basis for transmission tomography in a grain bin

produces more accurate results than using a pulse basis for transmission

tomography in a grain bin. The polynomial-basis images of the wave-speed

in Figure 5.3 resemble the ground-truth grain distribution of Figure 5.2 more

closely than the images of the pulse-basis wave-speed in Figure 4.3.

The most useful reconstruction of this set of data is the third-degree

polynomial-basis reconstruction. This reconstruction achieves the lowest

speed error, as can be seen in Table 5.1. The third-degree reconstruction

is visually the best reconstruction, as well, as can be seen in Figure 5.3c.

The negative-angled cone shape is clearly visible in the reconstructed wave-

speed image.

The seventh-degree reconstruction is clearly an outlier in this experiment.

For this set of data, attempting to perform transmission tomography with any

degree higher that 7 results in a highly oscillatory wave-speed reconstruction.

The challenge of choosing the optimal degree will be discussed in Chapter 6

and Chapter 8.

The results of the experiment presented in this chapter show that per-

forming transmission tomography in a grain bin is possible when the material

properties are represented with a polynomial basis. In contrast, the results

shown in Chapter 4 show that transmission tomography in a grain bin is not

possible with a pulse basis.



Chapter 6

Monitoring Grain-Bin Fill

Volume

6.1 Introduction

The results presented in Chapter 5 show that transmission tomography can

use electromagnetic measurements to produce an accurate three-dimensional

map of the physical properties of a heap of grain, stored in a metal bin.

A spatial map of the wave speed of the grain heap is useful, however, a

farmer may not be interested in this particular property. As was discussed

in Chapter 4, a farmer is interested in the profit that can be made from

the agricultural product that is stored in their bin. To that end, the farmer

would want to know how much product they have.

This chapter presents an experiment which attempts to use the result

of transmission tomography to monitor the volume of grain in a bin as it

changes over time.
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6.2 Procedure

6.2.1 Data Generation

For this experiment, transmission tomography was performed on several sets

of synthetic data. Each set of data was generated using a different amount

of grain in the simulated bin. The amount of grain in the simulated bin was

controlled by setting the grain height parameter. The grain height is defined

to be the distance from the bottom of the cylindrical portion of the grain bin

to the vertical level of grain measured at the wall of the cylindrical portion

of the grain bin. This parameter is shown schematically in Figure 6.1.

Figure 6.1: Schematic of grain distribution for volume-tracking experiment

Synthetic measurements were taken for grain heights ranging from 0 m to

3.96 m, in a bin whose main cylinder has a height of 3.96 m. For each grain

height, the surface of the grain was shaped in a negative cone, with a dec-

lination angle of 30 deg, which matches the grain surface that was modelled

in Chapter 4 and Chapter 5.

Similar to Chapter 4 and Chapter 5, the software meep was used to
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generate the time-domain electromagnetic data.

6.2.2 Volume Extraction

Three-dimensional transmission tomography was performed on each set of

data. Based on the results of Chapter 5, imaging was performed using a

polynomial basis of degree 3. For each imaging result, a grain fill volume was

calculated as follows:

1. The convex hull of the antenna positions was partitioned into a set of

small, disjoint elements

2. The reconstructed speed profile was sampled at each element’s centroid

3. Elements with a reconstructed speed of 2× 108 m s−1 or lower were

labelled as containing grain

4. The volume of the elements labelled with grain were summed

A similar process was used to calculate an expected fill volume. In order to

calculate the expected fill volume, except elements were labelled based on

the position of their centroid relative to the known surface of the grain.

6.2.3 Data Processing Details

The scans for this experiment are the same as the scans used for the experi-

ment in Chapter 4, so the scans are processed in the same way.

6.3 Results

The calculated grain volume and the expected grain volume are plotted to-

gether in Figure 6.2. The volume extraction process is shown in Figure 6.3,

for three different grain heights.

The left-most column of Figure 6.3 shows the expected wave-speed dis-

tribution, based on the known shape of the grain. The middle column shows



68 CHAPTER 6. MONITORING GRAIN-BIN FILL VOLUME

0 1 2 3 4

0

10

20

30

40

Grain Height [m]

G
ra

in
V

ol
u
m

e
[m

3
]

Expected Volume
Calculated Volume

Figure 6.2: Extracted volume plotted against grain height

the wave-speed distribution that is calculated by the transmission tomogra-

phy algorithm. The right-most column shows the speed distribution that is

attained by partitioning the result of the middle column with a speed thresh-

old of 2× 108 m s−1. The top row corresponds to a low grain height, while

the bottom row corresponds to a high grain height.

6.4 Discussion

The thresholding technique successfully tracks the volume of grain stored in

the bin. Looking at Figure 6.2, the thresholding technique is most accurate

for low to medium grain heights. The technique only appears to degrade

for high grain heights, where the thresholding technique over-estimates the

amount of grain stored in the bin.

The cause of the overshoot, which is observed on the right side of the

graph in Figure 6.2, is the smoothing effect that is inherent in a low-order

polynomial basis. Looking at the third row of Figure 6.3, the shape of the

thresholded speed is not as sharply defined as the shape of the expected speed

distribution, and this smoothing results in an apparent excess of grain.

Looking at the first row of Figure 6.3, it is clear that the thresholding
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(a) Low fill,
Expected speed

(b) Low fill,
Tomography speed

(c) Low fill,
Thresholded speed

(d) Partial fill,
Expected speed

(e) Partial fill,
Tomography speed

(f) Partial fill,
Thresholded speed

(g) High fill,
Expected speed,

Column Colour range:
1.4× 108 - 3e8m s−1

(h) High fill,
Tomography speed,

Column colour range:
1.2× 108 - 3e8m s−1

(i) High fill,
Thresholded speed,

Column colour range:
1.4× 108-3e8m s−1

Figure 6.3: Grain volume calculation, shown for three different fill levels
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technique introduces an artefact in the upper region of the grain bin. The

thresholding technique interprets this artefact as a region of grain which is

floating near the top of the grain bin, which is obviously unrealistic. Based on

the data in Figure 6.2, it appears that this artefact does not have a significant

negative impact on the calculation of the grain volume. This is because

the volume of the artefact is actually quite small, despite its prominence in

Figure 6.3. The artefact is so visible because it occupies a flat region at the

boundary of the region being shown.

The polynomial basis degree was set to 3 because optimal results of the

synthetic experiment shown in Chapter 5 were achieved at that degree. This

insight may not be available in a real imaging scenario, when an actual heap of

grain is being imaged. Having a robust method for choosing the optimal basis

degree is necessary in order to apply the transmission tomography algorithm

to arbitrary real-world data, however, developing such a method is beyond

the scope of this thesis. A candidate method would be to perform an imaging

study on synthetic data in order to choose the basis degree for imaging real

measured data, which mimics the process used in this experiment, however,

a thorough analysis of other options has not been performed.

The results of this chapter provide evidence that the transmission tomog-

raphy algorithm can create diagnostically useful images from electromagnetic

measurements from within a grain bin.



Chapter 7

Biological Imaging in Three

Dimensions

7.1 Introduction

It was shown in Chapter 3 that transmission tomography using pulse-basis

functions on an unstructured mesh was capable of imaging low-contrast tar-

gets in two dimensions. Such an imaging formulation was unsuitable for the

three-dimensional environment of grain-bin imaging, as was demonstrated in

Chapter 4. Increasing the number and density of scans in the grain-bin is

infeasible, and Chapter 5 presented a transmission tomography tool which

uses a pulse basis to represent the material properties. Expressing the ma-

terial properties in a global basis led to smoother reconstructions, which are

diagnostically useful, and more accurate than the reconstructions which used

a pulse basis. Smooth, spatially-coherent images are desirable in the scenario

of grain-bin imaging because it is known that the material properties of grain

in a bin are geometrically simple.

This chapter demonstrates transmission tomography in a small-scale, bi-

ological tissue imaging context. Specifically, the techniques described in this

chapter make use of an ultrasound imaging chamber similar to the chamber

described in Chapter 3. For this experiment, the chamber was configured

as a three-dimensional imaging system. The 64 piezoelectric elements were

71
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mounted in a shell consisting of a cylindrical portion capped on the bottom

by a dome. The chamber is shown in Figure 7.1. The imaging chamber con-

sists of a yellow plastic enclosure which houses the piezoelectric transducers.

The transducers inserted through slots in the side of the enclosure, and held

in place with rubber plugs, as shown in Figure 7.1c. The shape of the cham-

ber was chosen to facilitate the imaging of breast tissue, which has been a

research topic in the EIL in recent years.

For this experiment, a water-tight cup, which can be seen in Figure 7.1c,

sits inside the enclosure and rests on the piezoelectric transducers. The

water-tight cup makes it easy to quickly create tissue-mimicking phantoms.

This experiment makes use of phantoms, instead of actual tissue samples, so

that the accuracy of the tomographic images can be accurately assessed.

(a) Enclosure populated
with transducers

(b) Partially-assembled
enclosure

(c) Enclosure with
water-tight cup

suspended in dry bucket

Figure 7.1: Images of the three-dimensional ultrasound imaging chamber

7.2 Procedure

A simple phantom was constructed by filling the cup with olive oil, and sus-

pending two spheres of gelatin in the olive oil. The sound-speed profile of this

phantom is shown in Figure 7.2, from several angles, with the transducers’

positions shown as white dots. The olive oil and gelatin material was chosen
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to approximate tissue found in a breast. The speed of sound was measured

in a sample of each of the gelatin spheres, as well as in the olive oil, and

in the water in which the system was submerged. Those measurements are

shown in Table 7.1. Note that the two gelatin spheres were formulated to

have different speeds. The sphere which sits higher in the shell has a higher

sound speed than the sphere which sits lower in the shell.

(a) Front view (b) Side view (c) Top view

(d) Oblique view (e) Suspension apparatus

Figure 7.2: Known speed profile with transducer locations. Colour indicates
wave-speed, ranging from 1400 m s−1 to 1600 m s−1.

The attenuation of the materials could not be accurately measured in

the lab, due to lack of precision power measurement tool, so the attenuation

images will not be analyzed.

The imaging chamber was populated with 64 transducers, as is shown

in Figure 7.1a. Similar to Chapter 3, the transducers were excited in se-

quence, while the non-excited transducers acted as receivers, producing 4032

time-domain scans. The scans were then imaged using the transmission to-

mography algorithm. Based on the findings of Chapter 5, a polynomial basis
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was chosen to represent the material properties.

Table 7.1: Expected material properties for 3D ultrasound experiment

Material Speed [m s−1]
Olive Oil 1405

Gelatin (upper sphere) 1598
Gelatin (lower sphere) 1516

Water 1447

Ec =

∫∫∫
H

(c (~r)− cEXP (~r))2 d~r∫∫∫
H

(cEXP (~r))2 d~r
(7.1)

The accuracy of the recovered sound-speed map was determined quanti-

tatively using the error metric from Equation 7.1. This error metric is the

same as the metric used in Chapter 5, and is shown again in this chapter

for the reader’s convenience. The function cEXP was generated from accurate

measurements of the position and size of the gelatin spheres, together with

the values from Table 7.1.

Figure 7.3: Ultrasound signal pre-processing. The transmitter-receiver path
is shown on the left, and the corresponding truncated signal is shown on the
right
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Similar to the experiment in Chapter 5, the transmission tomography

algorithm was run on polynomial bases of increasing degree, to examine the

impact of increasing the number of degrees of freedom.

7.2.1 Data Processing Details

The rigid plastic enclosure presents an opportunity for the generation of

reflections, which can impair TOA detection. In order to minimize the impact

of reflections, the scans were processed prior to imaging as follows:

1. The length of the transmitter-receiver path was calculated

2. A maximum delay was determined by combining the contributions of

the following effects:

• Pulse propagation in the slowest expected medium

• Pulse propagation in the switch and along cables

• Calculating a time-window to suit the chosen TOA detection al-

gorithm

3. The portion of the signal following the maximum delay was replaced

with low-energy Gaussian noise

4. A minimum delay was determined by combining the contributions of

the following effects:

• Pulse propagation in the fastest expected medium

• Calculating a time-window to suit the chosen TOA detection al-

gorithm

5. The portion of the signal preceding the minimum delay was also re-

placed with low-energy Gaussian noise

A graphic representation of the data processing procedure is shown in

Figure 7.3. The scans’ TOA were then extracted with the MER method.

Gaussian noise was chosen as the filler in order to prevent any divide-by-zero
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errors in the TOA process. Both the MER and variance score methods rely

on evaluating a ratio of terms which are derived from the scan signal. Using

zeroes as the filler signal would introduce the opportunity for the ratio’s

denominator to be zero.

7.3 Results

Images of the recovered sound-speed are shown in Figure 7.4 and Figure 7.5,

and the corresponding values of Ec are documented in Table 7.2. Results are

presented for polynomial basis degrees ranging from 1 to 9, as the imaging

results for higher polynomial bases degrade quickly.

The images in Figure 7.4 show a clipped view of the three-dimensional

reconstructed sound-speed. The plane of the clip is chosen to cut through

the two gelatin spheres, to show the shape of the reconstructed sound-speed.

These results are further processed by applying a contour filter, as can be seen

in Figure 7.5. The contour filter highlights the three-dimensional features of

the reconstructions.

The errors in Table 7.2 are reported along with the number of basis func-

tions in the given basis, and the best-fit speed error. The number of basis

functions indicate the number of degrees of freedom available to the imaging

algorithm. Recall from Chapter 5 that the best-fit error represents speed

error that is achieved when the slowness polynomial is the polynomial of

best-fit for the known slowness distribution. The best-fit error gives an in-

dicator of the best possible error that could be achieved with a polynomial

basis.

7.4 Discussion

It is clear in Figure 7.4 and Figure 7.5 that the transmission tomography

algorithm recovers the gelatin targets.

Among all of the sound-speed reconstructions, the highest accuracy is

attained with a polynomial basis of degree 5, using 56 basis functions to
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(a) Degrees 1 to 3

(b) Degrees 4 to 6

(c) Degrees 7 to 9

Figure 7.4: Face-view of sound-speed reconstructions. Colour indicates wave-
speed, ranging from 1300 m s−1 to 1800 m s−1.
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(a) Degrees 1 to 3

(b) Degrees 4 to 6

(c) Degrees 7 to 9

Figure 7.5: Contoured view of sound-speed reconstructions. Colour indicates
wave-speed, ranging from 1300 m s−1 to 1800 m s−1.
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Table 7.2: Accuracy of ultrasound reconstruction on bases of varying degree

Basis Degree Basis Functions Speed Error Best-Fit Error
1 4 0.001 55 0.001 07
2 10 0.001 49 0.000 949
3 20 0.001 32 0.000 763
4 35 0.001 35 0.000 619
5 56 0.001 28 0.000 447
6 84 0.001 31 0.000 342
7 120 0.001 49 0.000 283
8 165 0.001 61 0.000 261
9 220 0.002 14 0.000 254

0 2 4 6 8

10−3.5

10−3

Basis Degree

E
rr

or
M

et
ri

c

Tomography Speed Error
Best-Fit Error

Figure 7.6: Error metrics with respect to basis degree in three-dimensional
ultrasound experiment
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represent the slowness function. The recovered speed of the upper sphere

is clearly higher than the recovered speed of the lower sphere. At degree

5, the recovered speed of the upper sphere is roughly 1650 m s−1, and the

recovered speed of the lower sphere is roughly 1600 m s−1. These recovered

speeds are higher than the expected speeds of 1598 m s−1 and 1516 m s−1,

respectively, due to the inherent error of using a polynomial to represent a

step discontinuity.

The errors in Table 7.2 show that the tomography algorithm is robust over

a range of basis function orders. The reconstructions’ speed error is smooth

up to the degree-8 reconstruction, after which the speed error quickly rises.

The results of this experiment show that transmission tomography, using

a polynomial basis, is capable of identifying objects using quantitative and

qualitative analysis of the spatial sound-speed distribution. The stable, low-

resolution results of this experiment suggest that transmission tomography,

using a polynomial basis, could be a useful aid to non-linear inversion tech-

niques. Non-linear inversion techniques benefit from the inclusion of prior

information about the imaging target [8]. Without sufficient prior informa-

tion, these techniques often get stuck in local minima within the optimization

search space. Using the output from transmission tomography as an initial

guess for a non-linear inversion algorithm could direct the non-linear algo-

rithm away from local minima, toward an accurate result.



Chapter 8

Discussion and Conclusions

The work undertaken in this thesis sought to produce an imaging tool which

has the following features:

• Minimal reliance on prior information

• Robustness to modelling error

• Fast execution time

These features were realized by implementing transmission tomography, par-

ticularly using a polynomial basis to represent the material properties of

interest.

This thesis has presented a robust transmission tomography tool which

can be used to generate low-resolution, quantitative property maps of imag-

ing targets, given time-domain scan data. The only prior information that

is required by the transmission tomography algorithm is the location of the

transducers which produce and measure the interrogating waves. Additional

information about the maximum and minimum values of the expected mate-

rial properties can be exploited, but that information is not strictly necessary.

The algorithm is fast due to the simple wave propagation model, which ob-

viates the need for detailed and expensive modelling of coupled differential

equations. The simple wave propagation model also makes transmission to-

mography robust to modelling errors, as transmission tomography does not

81
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require sub-wavelength knowledge of transducer locations or perfect knowl-

edge of the geometry of the imaging domain.

The algorithm developed for this thesis is agnostic of the particular wave

propagation phenomena being studied, however, special attention was paid

to the applications of grain-bin imaging and medical imaging. This special

attention was warranted by recent work that has been undertaken in the EIL.

A general framework for transmission tomography was presented in Chap-

ter 2. The transmission tomography framework relies on a simplified wave

propagation model which ignores diffraction. It is assumed that a wave front

propagates directly away from its source, at a speed which depends only on

the material properties at the location of the wave front. As a consequence

of this assumption, it can be assumed that the time required for a pulse to

propagate from point A to point B in space depends only on the properties of

the medium on the straight-line path which connects A and B. Furthermore,

it is assumed that the the portion of the wave front’s attenuation which is due

to material losses depends only on the material parameters of the medium

on the straight-line path which connects A to B.

Spatial and temporal discretization schemes were then introduced. These

discretization schemes allow the simplified wave propagation model to be

expressed numerically, in the form of a system of linear algebraic equations.

The system of linear algebraic equations is then solved to produce an estimate

of the material properties of the imaging target.

Imaging tests were then performed on simple targets, in Chapter 3, using

a two-dimensional form of the transmission tomography framework. Acous-

tic data were used because of availability and ease of rapid testing. These

simple tests were performed with pulse basis functions, which were chosen

for their ease of implementation. The results of the two-dimensional test

provided evidence that the development of a three-dimensional transmission

tomography tool could work for grain imaging.

In Chapter 4, the two-dimensional transmission tomography tool was aug-

mented to perform three-dimensional transmission tomography, using pulse

basis functions. Three-dimensional tomography was performed on synthetic

data which were generated by a full-wave, time-domain numerical simulation.
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The results of the three-dimensional pulse basis experiment showed that the

imaging tool was incapable of accurately imaging a heap of grain stored in a

metal bin.

The results of Chapter 4 suggested that the transmission tomography tool

must adapt in order to successfully image a heap of grain stored in a bin. To

that end, the transmission tomography tool was further augmented to rep-

resent the material properties in a polynomial basis, instead of a pulse basis.

A pulse basis permits high-resolution imaging, due to the mutually disjoint

support of its basis functions, however, a sufficient amount of data must be

supplied to the algorithm in order to achieve a high-resolution image. In the

target application of grain-bin imaging, sufficient data are not available, due

to hardware cost constraints. A polynomial basis features functions whose

support is infinite. As a consequence, the amount of interaction between

basis functions and interrogation paths is greater with a polynomial basis

than with a pulse basis. With polynomial basis functions, the transmission

tomography tool’s accuracy in grain-bin imaging was improved to a degree

that the transmission tomography tool is diagnostically useful for grain-bin

imaging, as was demonstrated in Chapter 5.

The application of grain-bin imaging was explored further in Chapter 6.

Transmission tomography was used to track the volume of grain stored in a

bin, using the recovered speed distribution to partition the bin in regions of

grain and air. The resulting estimate of the volume of grain in the bin was

accurate for several different fill levels, ranging from a nearly empty bin to a

full bin.

The three-dimensional transmission tomography tool was then used in

an acoustic imaging context, as documented in Chapter 7. Similar to Chap-

ter 3, some imaging tests were performed on geometrically simple targets.

Qualitatively and quantitatively, it was shown that the transmission tomog-

raphy tool was capable of identifying the rough location and properties of

the targets.

The main goal of this thesis was to develop a fast and simple imaging

tool which could be used primarily for grain-bin imaging. Experiments were

performed which demonstrated that transmission tomography is a useful tool
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for fast, low-resolution imaging in grain bins. Some additional, exploratory

experiments were performed in ultrasound imaging, which demonstrated that

transmission tomography could provide valuable information in a field where

full-wave inversion is still struggling to perform. The tool developed in con-

junction with this thesis will be used in future grain-bin imaging work, likely

in boundary detection.

8.1 Future Work

This thesis represents one particular journey down a branching path of re-

search ideas. Along the way, several possible research paths were identified

which could augment the algorithm presented in this thesis. Some of those

paths are presented here.

8.1.1 Basis Degree Selection

In its current state, the transmission tomography algorithm lacks a robust

method for choosing the optimal degree for the material properties’ basis

polynomials. The experiments in Chapter 5 and Chapter 7 presented the

results of imaging using several different degrees, and selected the best re-

sult. Selecting the best result, however, was only enabled by the existence of

ground-truth data.

In Chapter 6, the basis degree was selected based on the synthetic study

in Chapter 5. Both experiments consisted of similar imaging targets, in the

same bin, so the insight from the first experiment was applied to the second

experiment.

In a real-world imaging scenario, there is no ground-truth which can be

used to evaluate imaging results. Therefore, it will be necessary to have a

robust method for choosing the basis degree to use for imaging. It is possible

that the method used in Chapter 6 would suffice, however, the inconsistency

between synthetic data and real data may derail that method. Developing

and testing some degree-picker methods could make the transmission tomog-

raphy algorithm more broadly applicable than it currently is.
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8.1.2 Diffraction-Aware Solver

The physical model of wave propagation that is employed in this thesis relies

on a key assumption. It is assumed that the waves propagate without diffrac-

tion, that is, the pulse which propagates from a transmitter to a receiver is

affected only by the material properties on the straight-line path between

the transmitter and the receiver. That fundamental assumption is not true,

however, it permits the development of a fast, simple imaging tool, and the

imaging results align with reality well enough to justify the assumption.

Diffraction can be accounted for via an iterative imaging technique [36].

This technique augments the straight-path transmission tomography that

was employed in this thesis by using the result of transmission tomography

to modify the straight-path pulse propagation assumption. Once a wave-

speed image is generated, that wave-speed image is used to find a new set

of interrogation paths which minimize time of flight. Then, the new interro-

gation paths are used to update the wave-speed image. These two steps are

repeated iteratively until a stopping condition is met.

This iterative technique was not explored in this thesis because the cal-

culation of optimal paths, as well as the solution of many matrix systems,

could slow the imaging algorithm down. The potential to improve image

resolution, however, is tantalizing, and it may be fruitful to add this feature

the transmission tomography algorithm.

8.1.3 Iterative Polynomial Basis Refinement

In this thesis, the basis coefficients of the material property functions are re-

covered by solving a matrix equation. The basis coefficients are all recovered

at the same time, and their values are chosen to satisfy the matrix equation

by some measure.

It was observed in Chapter 5 and Chapter 7 that the reconstructions

tend to degrade for basis degrees above some threshold. This degradation

may be due to an excess of degrees of freedom, that is, the imaging algo-

rithm is allowed to tweak too many variables at once in order to satisfy the

tomography matrix equations. It may be advantageous to calculate the ba-
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sis coefficients in sequence, and treat the already-calculated coefficients as

known values. For example, imaging would first be performed with a basis of

degree zero. Then, the zero-order terms in the basis would be held constant

while imaging is performed with additional linear terms in the basis. Then,

the zero-order and linear terms would be held constant while imaging is per-

formed with additional quadratic terms. Applying this process iteratively

may allow imaging to succeed with bases of higher degree.

8.1.4 On-Line Imaging

All of the imaging performed in this thesis was performed off-line. In general,

the off-line imaging workflow was the following:

1. For each transmitter, in turn

• Excite the transmitter, and

• Measure a received signal at each receiver

2. Store all of the scan data in a computer file

3. Read the data from the file

4. Perform transmission tomography

5. Store tomography results in a computer file

For grain-bin imaging, the imaging target is a heap of grain, which could

be scanned continuously to create a never-ending stream of imaging data.

The basis coefficients could be updated with each new scan, to present a

living image of the target.

8.1.5 Regularization Study of Pulse-Basis Imaging

It was shown in Chapter 4 that representing material properties with a pulse

basis leads to unacceptable imaging results. This was remedied in Chapter 5

by using a different set of basis functions. Another research would be to

seek a method of regularizing the transmission tomography matrix system
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which makes pulse-basis imaging acceptable. The only regularization which

was applied to pulse-basis imaging in this thesis was the CGLS algorithm.

Several other regularization techniques could be explored such as:

• Tikhonov regularization

• Penalizing property differences between neighbouring mesh elements

• Using higher-order representation of material properties within mesh

elements

• Employing iterative matrix solvers other than CGLS

Perhaps one of these techniques could permit high-resolution imaging, while

still maintaining the other attractive features of transmission tomography.
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sound ultrasound transmission tomography image reconstruction based
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Appendix A

Line-Integrals Of Pulse Basis

Functions

Integrating pulse basis functions along straight paths is the same as deter-

mining the length of the intersection between the elements which support the

basis functions and the straight paths. For this thesis, the elements which

support the basis functions are either tetrahedra in a three-dimensional tetra-

hedral mesh, or triangles in a two-dimensional triangular mesh. The process

of determining the length of the intersection between elements and paths

in three dimensions is described here. The process of integrating a two-

dimensional function is sufficiently similar that it is not shown.

Let A and B be the start and end point of the path. Let P , Q, R, and S be

the points which define the tetrahedral element. The following conditions are

short-circuit checks which can quickly tell if there is no intersection between

the path and the element:

• The x-components of each of {A,B} is greater than the x-component

of each of {P,Q,R, S}

• The y-components of each of {A,B} is greater than the y-component

of each of {P,Q,R, S}

• The z-components of each of {A,B} is greater than the z-component

of each of {P,Q,R, S}
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• The x-components of each of {A,B} is less than the x-component of

each of {P,Q,R, S}

• The y-components of each of {A,B} is less than the y-component of

each of {P,Q,R, S}

• The z-components of each of {A,B} is less than the z-component of

each of {P,Q,R, S}

If any of the above conditions are true, then the intersection between the

path and the element is zero. If none of the above conditions are true, then

the intersection must be determined using the following procedure:

• For each face of the tetrahedral element

– Calculate where the path and the plane defined by the face inter-

sect

– Check whether the intersection point occurs within the face or

outside the face

– If the intersection point occurs outside the face, then ignore it

• If two valid intersection points were found, then calculate the distance

between those points

• If one valid intersection point was found

– One of {A,B} is located inside the tetrahedral element

– Calculate the distance between the interior point and the valid

intersection point

• If no valid intersection point was found

– Check whether both of {A,B} are inside the tetrahedral element

– If both A and B are within the element, calculate the distance

between A and B

– If both A and B are outside the element, then the path-element

intersection is zero
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Some linear algebra is required to find out where a path and a plane

intersect. An example calculation will be shown for just one of the faces of a

tetrahedral element, in particular, the face defined by the points {P,Q,R}.
Such an intersection is shown in Figure A.1. Let C be the point where the
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Figure A.1: Calculating a surface intersection point on one face of a tetra-
hedral element

path intersects the plane defined by {P,Q,R}. The point C can be located

by starting at A and travelling some distance, γ, along AB.

C = A+ γ (B − A) (A.1)

The point C can also be located by starting at P , then travelling some

distance, α, along PQ, and then travelling another distance, β, along PR.

C = P + α (Q− P ) + β (R− P ) (A.2)

Equate the two expressions to produce an equation with three unknowns, α,
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β, and γ.

P + α (Q− P ) + β (R− P ) = A+ γ (B − A) (A.3)

Isolate P and A.

α (Q− P ) + β (R− P ) + γ (A−B) = A− P (A.4)

The points are all three-dimensional entities, so Equation A.4 is actually

three equations. The three unknowns can be recovered from these three

equations. Represent Equation A.4 in matrix form, assuming each point is a

column vector.

[
A− P

]
=
[
(Q− P ) (R− P ) (A−B)

]
×

αβ
γ

 (A.5)

Solving this equation yields the distances α, β, and γ. These distances, as

they pertain to finding C, are shown in Figure A.1b.

Whether C exists on the line segment between A and B depends on the

value of γ. C exists on that line segment only if 0 ≤ γ ≤ 1

Whether C is contained in the face defined by {P,Q,R} depends on the

values of α and β. C is contained in the face only if 0 ≤ (α + β) ≤ 1 and

0 ≤ α and 0 ≤ β .



Appendix B

Line-Integrals Of Polynomial

Basis Functions

Polynomial basis functions have infinite support, so integrating a polynomial

basis function along a path is not as simple as calculating the intersection

of a geometric element and a line, as is the case for pulse basis functions.

Performing this integration requires some calculus and algebra which allows

the integrand to be expressed as a polynomial of a single variable, t. Once the

integrand is expressed in terms of a single variable, a computational method

is required to evaluate the integral.

The process of integrating a three-dimensional polynomial basis function

along a straight line is described here. The process of integrating a two-

dimensional function is sufficiently similar that it is not shown.

B.1 Symbolic Representation

Let f (x, y, z) be a single polynomial basis function. Let i, j, and k be the

exponents of x, y, and z, respectively.

f (x, y, z) = xiyjzk (B.1)
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Let Ii,j,k be the integral of f along some straight path which is parameterized

by the variable t, which ranges from 0 to S.

Ii,j,k =

∫ S

t=0

x (t)i y (t)j z (t)k dl (t) (B.2)

The variable, t, is simply a parameterizing variable, not a length. That is

why the infinitesimal length, dl, is expressed as a function of t . Given dx,

dy, and dz, the following equation can be used to express dl:

dl =
√
dx2 + dy2 + dz2 (B.3)

The functions x (t), y (t), and z (t) are all linear functions of t. Let

(x0, y0, z0) be the starting point of the straight path, and let k̂ be a unit

vector along the straight path.

x (t) = x0 + k̂xt (B.4)

y (t) = y0 + k̂yt (B.5)

z (t) = z0 + k̂zt (B.6)

These equations allow dx, dy, and dz to be expressed in terms of dt.

dx = k̂xdt (B.7)

dy = k̂ydt (B.8)

dz = k̂zdt (B.9)

Now, dl can be expressed in terms of dt.

dl = dt

√(
k̂2x + k̂2y + k̂2z

)
(B.10)

Since k̂ is a unit vector, this equation simplifies.

dl = dt (B.11)
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Incorporate the linear functions for x, y, and z into the integral, with

dl = dt.

Ii,j,k =

∫ t=S

t=0

(
x0 + k̂xt

)i (
y0 + k̂yt

)j (
z0 + k̂yt

)k
dt (B.12)

Due to the choice of k̂, the value of S is the length of the straight path.

B.2 Computation

The integration is then solved computationally, using vectors of coefficients

to represent polynomials, and using the conv (·, ·) function in Matlab [37]

to multiply those polynomials. Let V (·) represent the transformation of a

polynomial to its vector representation. For example, vector representation

of the polynomial x0 + k̂xt is the following:

V
(
x0 + k̂xt

)
=

[
x0

k̂x

]
(B.13)

Multiplying two polynomials is analogous to convolving their vector repre-

sentations.

V
((

x0 + k̂xt
)2)

= conv

([
x0

k̂x

]
,

[
x0

k̂x

])
(B.14)

The coefficients of
(
x0 + k̂xt

)i
are calculated by iterative convolution.

V
((

x0 + k̂xt
)i)

= conv

([
x0

k̂x

]
, conv

([
x0

k̂x

]
, . . . conv

([
x0

k̂x

]
,

[
x0

k̂x

])
. . .

))
(i−1) times

(B.15)

The same process can be used to determine the coefficients of
(
y0 + k̂yt

)j
and(

z0 + k̂zt
)k

. Finally, the coefficients of the integrand of Ii,j,k are calculated
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via convolution.

conv

(
V
((

x0 + k̂xt
)i)

, conv

(
V
((

y0 + k̂yt
)j)

,V
((

z0 + k̂yt
)k)))

(B.16)

With the coefficients of the integrand known, the integral Ii,j,k can be eval-

uated with the Matlab functions polyint and polyval [37].



Appendix C

Details for Extracting Auxiliary

Material Properties

The algorithm described in this thesis deals with slowness and attenuation

as the material properties of interest. This appendix provides derivations

and instructions for translating slowness and attenuation to other material

properties which govern wave propagation. The properties to be calculated

depend on the imaging modality, i.e. acoustic or electromagnetic. For acous-

tic waves, slowness and attenuation will be translated to the real and imagi-

nary parts of a complex compressibility, κ̃. For electromagnetic waves, slow-

ness and attenuation will be translated to the real and imaginary parts of a

complex permittivity, ε̃. The translation for acoustic properties is shown in

Section C.2, and the translation for electromagnetic properties is shown in

Section C.3.

Both phenomena will use the following two-step procedure to translate

slowness and attenuation to other properties:

1. Use slowness and attenuation to calculate a complex wave number, k̃

2. Use the complex wave number to calculate the modality-dependent

properties.

In this appendix, the real part of quantity Q is represented as < [Q],

and the imaginary part of quantity Q is represented as = [Q]. The angular
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frequency, ω is related to the actual frequency, f via the following relation:

ω = 2πf (C.1)

C.1 Calculating the Complex Wave Number

The translation of material properties is enabled by examining the behaviour

of a plane wave. It will be assumed that the plane wave propagates along ẑ,

and that the plane wave is completely described by an initial value, u0 and

a complex wave number, k̃.

u (z) = u0 exp
(
−jk̃z

)
(C.2)

The term exp
(
−jk̃z

)
can be split into a term that controls magnitude and

a term that controls phase.

u (z) = u0 exp
(
−j<

[
k̃
]
z
)

exp
(
=
[
k̃
]
z
)

(C.3)

The term exp
(
=
[
k̃
])

controls the magnitude of u (z), while the term exp
(
−j<

[
k̃
]
z
)

controls the phase.

The real part of k̃ can be extracted from the wavelength, λ, which is

dictated by the frequency of operation, f , and the slowness, c−1.

<
[
k̃
]

=
2π

λ
= 2πfc−1 (C.4)

It will useful later on to work with the term
<[k̃]
ω

, so that term is calculated

here.
<
[
k̃
]

ω
= c−1 (C.5)

The imaginary part of k̃ can be related to the attenuation by considering

the magnitude of Equation C.3.

|u (z)| = |u0| exp
(
=
[
k̃
]
z
)

(C.6)
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It is useful to consider this magnitude with respect to a reference point.

|u (z + ∆z)|
|u (z)|

= exp
(
=
[
k̃
]

∆z
)

(C.7)

This ratio can also be determined by via the material’s attenuation.

20 log10

(
|u (z + ∆z)|
|u (z)|

)
= −α× (100∆z)× f

1× 106 (C.8)

Combine Equation C.7 and Equation C.8 to get the following equation:

20 log10

(
exp

(
=
[
k̃
]

∆z
))

=
−α∆zf

1× 104 (C.9)

Reduce the logarithm and cancel terms to produce the following equation:

=
[
k̃
]

=
−αf ln (10)

2× 105 (C.10)

Again, this term will be expressed with respect to ω.

=
[
k̃
]

ω
=
−α ln (10)

4π × 105 (C.11)

C.2 Acoustic Properties

The wave number of an acoustic plane wave is given by the following equation:

k̃2 = ω2ρκ̃ (C.12)

Here, ρ is the medium’s density, and κ̃ is the complex-valued compressibility.

The real and imaginary parts of this equation reduce to the following two

equations:

<
[
k̃
]2
−=

[
k̃
]2

= ω2ρ< [κ̃] (C.13)

2<
[
k̃
]
=
[
k̃
]

= ω2ρ= [κ̃] (C.14)
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Solve for the real and imaginary parts of κ̃.

< [κ̃] =
<
[
k̃
]2
−=

[
k̃
]2

ω2ρ
(C.15)

= [κ̃] =
2<
[
k̃
]
=
[
k̃
]

ω2ρ
(C.16)

Substitute in Equation C.5 and Equation C.11 to git rid of the wave number

and introduce slowness and attenuation. The resulting equations constitute

a translation from slowness and attenuation to complex compressibility.

< [κ̃] =
(c−1)

2 −
(
α ln(10)

4π × 105

)2
ρ

(C.17)

= [κ̃] =
−αc−1 ln (10)

2π × 105ρ
(C.18)

C.3 Electromagnetic Properties

The wave number of an electric plane wave is a non-magnetic domain is given

by the following:

k̃2 = ω2µ0ε̃ (C.19)

Here, µ0 is the vacuum permeability, and ε̃ is the complex-valued permittiv-

ity. The complex permittivity is related to the dielectric permittivity, ε and

conductivity, σ via the following equation:

ε̃ = ε− j σ
ω

(C.20)

The form of Equation C.19 is the same as Equation C.12, with µ0 taking the

place of ρ and ε̃ taking the place of κ̃. It follows, then, that the real and
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imaginary parts of ε̃ are given by the following equations:

< [ε̃] =
(c−1)

2 −
(
α ln(10)

4π × 105

)2
µ0

(C.21)

= [ε̃] =
−αc−1 ln (10)

2π × 105µ0

(C.22)


	List of Tables
	List of Figures
	Introduction
	Relevant History
	Grain-Bin Imaging
	Ultrasound Tomography
	Transmission Tomography

	Transmission Tomography
	General Formulation
	Wave Propagation Model
	Total-Field and Scattered-Field Imaging
	Discretizing the Model

	Feature Extraction Details
	Time-Of-Arrival Determination
	Pulse Power Determination
	Ignoring Data

	Extracting Auxiliary Material Properties
	Acoustic Properties
	Electromagnetic Properties


	Two-Dimensional Ultrasound Imaging on Unstructured Meshes
	Introduction
	Procedure
	Data Processing Details
	Development
	Testing

	Results
	Discussion

	Three-Dimensional Pulse-Basis Transmission Tomography in Grain Bins
	Introduction
	Procedure
	Data Processing Details

	Results
	Discussion

	Three-Dimensional Polynomial-Basis Transmission Tomography in Grain Bins
	Introduction
	Procedure
	Data Processing Details

	Results
	Discussion

	Monitoring Grain-Bin Fill Volume
	Introduction
	Procedure
	Data Generation
	Volume Extraction
	Data Processing Details

	Results
	Discussion

	Biological Imaging in Three Dimensions
	Introduction
	Procedure
	Data Processing Details

	Results
	Discussion

	Discussion and Conclusions
	Future Work
	Basis Degree Selection
	Diffraction-Aware Solver
	Iterative Polynomial Basis Refinement
	On-Line Imaging
	Regularization Study of Pulse-Basis Imaging


	Bibliography
	Line-Integrals Of Pulse Basis Functions
	Line-Integrals Of Polynomial Basis Functions
	Symbolic Representation
	Computation

	Details for Extracting Auxiliary Material Properties
	Calculating the Complex Wave Number
	Acoustic Properties
	Electromagnetic Properties


