VLSI STRUCTURES FOR DIGITAL COMMUNICATION RECEIVERS

by

Patrick Glenn Gulak

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in
Electrical Engineering

Winnipeg, Manitoba

(c) Patrick Glenn Gulak, 1984

VLSI STRUCTURES FOR DIGITAL COMMUNICATION RECEIVERS

BY

PATRICK GLENN GULAK

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY

©

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

ABSTRACT

A taxonomy of VLSI layouts are presented for the imple-
mentation of maximum likelihood sequence estimators realized
by the Viterbi algorithm (VA), a dynamic programming solu-
tion to estimating a state sequence. These are classified
in terms of increasing interprocessor wire area each of
which are capable of increased data throughput. Cascade,
Linearly and Orthogonally Connected Mesh, Shuf fle-Exchange
and Cube-Connected Cycles layouts can efficiently embéd the
VA in silicon. These structures are generalized to accommo-
date an arbitrary source alphabet size and algorithm memory
length. The algorithm-structured layouts by implication are
appropriate for convolutional decoding. The area * time and
area * time2 measures of complexity for the VA are presented
and interpreted within the context of digital communica-
tions. One important result based on hardware considera-
tions suggests that the algorithm memory length should.be
prime. Viterbi receivers for correlative encoded MSK, using
first and second order encoding polynomials, are shown to
reside in a generalized class of Cube-Connected Cycles

layouts.

In addition, a Normalized Kolmogorov Metric Space is

proposed which can be incorporated into the VLSI designs.

Though the simulation results are preliminary, this new
metric space may find application in suboptimal soft deci-

sion decoding schemes.

- iii -

ACKNOWLEDGEMENTS

The author wishes to thank Dr. E. Shwedyk for his patient
supervision and encouragement throughout the extent of this

thesis.

The author is also indebted to numerous colleagues, espe-
cially those associated with the Materials and Devices
Research Laboratory (MDRL) at the University of Manitoba and
the Computer Group (SF206) in the Electrical Engineering
Department of the University of Toronto for various discus-
sions and suggestions. Thanks to David Bowness for help
with the planarity algorithm, and to Dr. J. Poltz for help

in discovering more about full necklaces.

Financial assistance by the Natural Sciences and
Engineering Research Council Postgraduate Scholarship

Programme and the University of Manitoba Graduate Fellowship

Programme is gratefully acknowledged.

CONTENTS

ABSTRACT v v « ¢ o 1ii
ACKNOWLEDGEMENTS . & & 4 o o« o o o o o o o o o o o o o o iv
CONTENTS &+ o ¢ o o 5 o o o o o o s o ¢ s o s s o o o o « V¥V
LIST OF FIGURES + « v & « « o o « o o o o o o o o o o o+ vii
SYMBOLS AND NOTATION & &« &« o s o« o o o o o » o o o o o « 1X

TABLE OF ACRONYMS L] L] . . L] . . L] L] . L . . * L] x i i

Chapter) page
I L] I NTRODUCTI ON [] . L] L] L] . L] » L] * . . . L] 1 2 . . L] . 1
The Motivation . « « o o « o s o o o o o o o & 1
Objectives L] L]] . . L] [] L] [] L] L] . L] L] [] L] . L] . 2
Contributions of This Thesis . « +« « ¢« + ¢ o« « o« 2
Thesis Organization . .« « « « o « o « & .« « « 5
II. DIGITAL COMMUNICATION RECEIVERS ¢« ¢« ¢ & ¢ s o s & 7
Introduction . . . e s o s e o s e e e o 2 o o 7
The PAM System Model T -
The Viterbi Algorithm « ¢« « « ¢« « « o« « 9
Path Metric Generation . « « « « o o o o o o o o« 14
The Normalized Kolmogorov Metric Space 19

III. MAPPING ALGORITHMS INTO VLSI CIRCUITS 29

INtroduction « ¢« « ¢ ¢ ¢ o o o o o s e e s o o o« 29
VLSI and Digital Communications - A

Literature Review . . e e e e e e e e o 31
A Computational Model for VLSI e e e e e s s .+ o 34
The Role of Models in Algorithm Design 38

Iv. COMPLEXITY ANALYSIS: CASCADE, MESH, SE, CCC AND
TREE ARCHITECTURES . + & o o o o o o o o o o 42

Introduction e e s e e e e e s e . 42
Layouts With Small Wire Area e o o o s e s s .« 44
Uniprocessor LayoutsS + o+ + o o o o o o o « » 44
Cascade LayoutsS « « « o « o o o o o o« o o o o 45
Linearly Connected Layouts . . « « « « + . o 49
Mesh LayoutsS .« « ¢ « « o o o o s o o o o« o & 55

Layouts With Large Wire Area . . .

Shuffle-Exchange Layouts« « +
Cube - Connected Cycles Layouts
Tree of Meshes Layouts . « « + « « « &
Area-Time Complexity Measures . . . + +
The Constant Factors in VLSI Implementatio

VLSI STRUCTURES FOR CORRELATIVE ENCODED MSK
RECEIVERS L] L] L L4 L] L] . . L] L] - . L d L] .

Introduction « « ¢ ¢ ¢ o ¢ o o o
Correlative Encoded MSK Modulation
VLSI Realizations . « ¢« ¢ o o + &
DiSCUSSION & ¢ o o o o o o o o o

e o s o
e o o o
* o o o
e e o &

VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

Summary and Conclusions
Summary of Major Contributions .
Suggestions for Future Research
Concluding Remarks . « « « + o &

e e & 0
s e o o
*« & s s
e e & o
e e o o

Appendix
A. PROOF THAT THE NORMALIZED KOLMOGOROV DISTANCE
IS AMETRIC . 4 & 4 o o « s o o s o o @
B. PROOF THAT Gy IS CONTRACTIBLE TO Gg . . .+ . .
cC. CONSOLIDATED SURVIVOR SEQUENCE MEMORY LAYOUT
D. VITERBI SIMULATION SOFTWARE . . .+ + &« & « o o
E. PLANARITY TESTING SOFTWARE . . o « o o o o &
F. FURTHER DESIGN DETAILS ON THE CASCADE LAYOUT
G. A BRIEF TUTORIAL ON THE SHUFFLE~EXCHANGE
CONSTRUCT . « + o o o s o o s o o o o &
H. A BRIEF TUTORIAL ON THE CCC CONSTRUCT

REFERENCES [. 3 L] . - . . . e T . .

N ¢ o ¢ o o

n

e e o o

63
63
83

102
108
119
119
121
123
125
131
131
132

135
139

page

140
145
149
151
165
{78

185
192

196

LIST OF FIGURES

Figqure ~ page
2.1 PAM COMMUNICATION SYSTEM . + &« « o « ¢ « o o o o o 13
2.2 STATE AND PATH DIAGRAM FOR THE VITERBI

ALGORITHM . + « « « o o o o o o o o s o o o « « 13
2.3 PARALLEL HARDWARE IMPLEMENTATION OF THE VA 15
2.4 THE KOLMOGOROV VARIATIONAL DISTANCE 22
2.5 THE NORMALIZED KOLMOGOROV METRIC . + + « + « « « . 24
2.6 P(e) versus SNR IN VARIOUS METRIC SPACES 28
4.1 CASCADE LAYOUT OF THE VA « & « o v o o o o o o o . 47
4.2 LINEARLY CONNECTED PROCESSOR LAYOUT OF THE VA . . 51
4.3 LINEARLY CONNECTED EVENT SEQUENCE 54
4.4 THE VA IN A 4X4 SQUARE MESH . . « « « « + + « + o« 60
4.5 THE VA IN A 2X4 RECTANGULAR MESH 61
4.6 THE VA IN A 3X9 RECTANGULAR MESH . . . « + « « . . 62
4.7 A COMPARISON OF THE BIPARTITE GRAPHS G_AND G, . . 75
4.8 VA GRAPHS FOR BINARY ALPHABET AND MEMORY 2 76

4.9 VA GRAPHS FOR BINARY ALPHABET AND MEMORY 3 77
4,10 VA GRAPHS FOR BINARY ALPHABET AND MEMORY 4 78
4.11 GRID MODEL 2-SE LAYOUT FOR P(2) ANDvV =7 79
4,12 VA GRAPHS FOR TERNARY ALPHABET AND MEMORY 2 . . . 80
4.13 FURTHER EXAMPLES FOR TERNARY ALPHABETS 81
4.14 DATA PATHS WITHIN THE VA 2-SE LAYOUT SLICE 82

4.15 CCC GRAPHS FOR BINARY ALPHABET AND MEMORY 2 . . . 87

- vii -

5.2
5.3
5.4
5.5

CCC GRAPHS FOR BINARY ALPHABET AND MEMORY 3
CCC GRAPHS FOR TERNARY ALPHABET AND MEMORY 2
A CCC BUILDING BLOCK FOR BINARY ALPHABETS .

CCC CHIPS IMPLEMENT THE VA (BINARY ALPHABET)

TREE STRUCTURES . ¢ o o ¢ o o o o o ¢ o o @
CCC EMBEDDED IN A TREE OF MESHES« .
THE Y-TREE LAYOUT . . .)

THE Y-TREE OF MESHES LAYOUT . . . « « . . .
THE AREA TRADEOFF .« & « o o o o o « o o & &
3-D MICROELECTRONIC PACKAGING SCHEME
DUOBINARY MSK « « + o o« o o o o o o« o « &
TFM MSK « v « o o o o o o o o« o o o« o o o 4
DUOBINARY MSK VITERBI RECEIVER « . .
TFM MSK VITERBI RECEIVER . + « « o « o « o« &

MULTI_H PHASE CODES

- viii -

88
89
90
91
98
99

100

101

112

116

126

127

128

129

130

SYMBOLS AND NOTATION

Symbol Representation

a Vector of input symbols

a, Source symbol at time k

ﬁk Estimate of received source symbol at time k

A Area of largest bounding rectangle

B Carrier amplitude

dk encoded data bit at time k

D Delay operator

Den Denominator

fC carrier freguency

£, Equivalent discrete-time channel

£(D) D polynomial of equivalent discrete-time
channel

F 3dB channel filter bandwidth

h modulation index

hy Discrete time channel impulse response

Hi Hypothesis i

i,j,k,1 index variables

ln x : The natural logarithm of x

log x The base two logarithm of x

log’ x (log x)7

m Cardinality of the source alphabet set

mod x modulo x

M(X,0) Metric space on a set X with distance

measure P

n(t)

Num

p(e)

P(e)

r(t)

g(n)=0(h(n))

Channel noise process

Vector of discrete noise samples
White Gaussian noise sample value
Problem size index

Two-sided Spectral height of white
Gaussian noise (joules)

Numerator

Probability density function

A priori probability |
Probability of (symbol) error
Received signal

Rate (1/7T)

Pulse autocorrelation coefficient
Transmitted signal

time

Symbol Interval

Noiseless output of the whitened matched
filter

Minimum bisection width
Truncated survivor listing
Output sample of the whitened matched filter
State defined by { gk' gk—l' cee gk—v+l }
State metric
Length of survivor listing
h/(2T)
"g is theta of h,".an exact bound within
a constant factor. There exist positive
constants ¢, and c, for which

clh(n)<g(n)<c h(n) for all sufficiently
large n.

0 Phase offset

A Path metric in the Viterbi Algorithm or
VLSI fabrication length unit (typ. * &~ 1um)

U Mean value (first moment)

Vv Viterbi Algorithm memory length

£ Random variable sample space

g(n)=0(h(n)) "g is big O of h," an upper bound within a
constant factor. There exists a positive
constant ¢ for which g(n)gch(n) for all
sufficiently large n.

P Metric (Distance meaéure in a metric space)
o? Variance (second central moment)

T Logic gate delay

) Information carrying phase

Y Element of the sample space £

g(n)=q(h(n)) "g is omega of h," a lower bound within a
constant factor. There exists a positive
constant ¢ for which g(n)2ch(n) for all
sufficiently large n.

] "Ceiling of x": the least integer > x
Lx] "Floor of x": the greatest integer < x
X » If x is m-ary, then X is any element from

the set {0,1,...,m-1} such that X # x.
(Note: If x is binary (m=2), then X
corresponds to the complement of x.)

| o] Absolute value
IE Euclidean norm in L, (Hilbert Space)
<K> Necklace of node K

- xi -

Symbol
ACS

cc
ccc
CCD
CLK
CMOS
CMOS,/S0S
CPM
CORDIC
dB
DCCC
DES
DFT
DLM
FIR
FFT

Hz

1C

IIR
1S1I
1/0
LIM

LEM

TABLE OF ACRONYMS

Representation

Add-Compare-Select
Convolutional Code
Cube-Connected Cycles
Charge-Coupled Device

Clock

Complementary Metal Oxide Semiconductor
CMOS by Silicon on Sapphire
Continuous Phase Modulation
Coordinate Rotation Digital Computer
Decibel

Double Cube-Connected Cycles
Data Encryption Standard
Discrete Fourier Transform
Distributed Logic Memory
Finite Impulse Response

Fast Fourier Transform

Hertz

Integrated Circuit

Infinite Impulse Response
Intersymbol Interference
Input/Output

Logic in Memory

Logic Enhanced Memory

- xii -

LPC
MAP
Mbit/sec
MHz
ML
MLSE
MMSE
MOS
MSE
MSK
PAM
pdf
PCCC
RL
ROM
RSA
SE
SNR
TFM
TP
VA
VHSIC
VLSI

WS1I

Linear Predictive Coding

Maximum a posteriori probability

Megabits per second

Mega-Hertz

Maximum Likelihood

Maximum Likelihood Sequence Estimation

Minimum Mean Squared Error
Metal Oxide Semiconductor
Mean Squared Error

Minimum Shift Keying

Pulse Amplitude Modulation
Probability Density Function
Pleated Cube-Connected Cycles
Radial Line

Read Only Memory
Rivest-Shamir-Adelman

Shuffle Exchange
Signal-to-Noise Ratio

Tamed Frequency Modulation
Throughput

Viterbi Algorithm

Very High Speed Integrated Circuits
Very Large Scale Integration
Wafer Scale Integration

One Dimensional

Two Dimensional

Three Dimensional

- xiii -

Chapter I

INTRODUCTION

1.1 THE MOTIVATION

This thesis is motivated by the problem of digital commu-
nication over noisy time dispersive linear channels.
Current research efforts in this area are due to the recent
proliferation of distributed digital information sourceé/
sinks (e.g.: telephony, satellites, computer networks) oper-

ating at very high data rates.

Increasing the data rate of a channel, reliably, involves
a tradeoff between the total power and bandwidth allocated
to the digital signal on one hand, and the complexity of the
decision algorithm on the other hand. Until recently, the
implementation of complex decision algorithms has been
discouraged by the fact that seguential processing systems
cannot compete in high data rate applications, while the
design of a highly concurrent hardware implementation 1is

disappointingly expensive and space consuming.

As an alternative, the technology of very large-scale
integrated (VLSI) circuits opens unprecedented opportunities
for realizing complex computational algorithms. However,

the ability to integrate a tremendous amount of hardware on

a small silicon area is challenging many traditional digital
logic design concepts. A distinct characteristic of VLSI
circuits is that the on-chip data communication dominates
the cost and performance of computing structures, whereas in
traditional parallel processing it is assumed that the memo-
ries and the processors are the dominant factors (i.e.,

expensive interconnections vs. expensive devices).

1.2 OBJECTIVES

This thesis establishes how the potential of VLSI can be
inteliigently exploited in the realization of certain types
of digital communication detectors. Specifically, this
thesis will study well formed VLSI architectures that are
capable of maximum likelihood sequence estimation (MLSE) as
implemented by the Viterbi algorithm (VA). As an underlying
theme it is maintained that architecture will not be sepa-
rable from algorithms and often tradeoffs between time (baud

interval) and implementation area are possible.

1.3 CONTRIBUTIONS OF THIS THESIS

Though several types of signal processing functions have
been embedded in silicon, this thesis is the first attempt,
to the author's knowledge, at investigating how certain
types of decoders and detectors for digital communication
can be realized as a VLSI circuit. The approach is novel in

that we focus attention on embedding digital communication

algorithms in architectures that are developed using the
VLSI grid model (which has made notable contributions to
other problem domains in computer science since 1979). It
is likely that this approach to the expression and evalua-
tion of digital communication algorithms will redirect
conventional thinking and become a standard technigue in the
future. Arising from this approach, the major contributions

of this thesis are:

1. A new metric space, called a Normalized Kolmogorov
Metric Space, is developed that has the property that
distance in the signal space 1is bounded. This is a
property of interest in a hardware realization that
desires register and data paths of minimal width. 1In
addition, the distance measure 1is parametric in the
sense that it 1is a function of the probability
density function of the noise source corrupting the
signal. Though the results are preliminary, this
metric space may find application in suboptimal soft
decision decoding schemes.

2. A taxonomy of VLSI processor architectures are iden-
tified for implementing the VA concurrently. These
are classified in terms of increasing interprocessor
wire area. This complements the work of researchers
studying other types of dynamic programming problems.

3. VLSI grid model layouts of the shuffle exchange graph
are generalized, for the first time, to include

m-shuffle exchange graphs.

All necklaces in a m-shuffle exchange graph are shown
to be full when the algorithm memory length is prime.
Cleaving the architecture into full necklaces is a
reasonable point to start the integration of the
design.

VLSI grid model layouts of the Cube-Connected Cycles
(CCC) graph are generalized, for the first time, to
accommodate m-ary alphabets while maintaining a
vertex degree of four.

The CCC structure can be embedded in a tree of meshes
graph because each is shown to have the same type df
separator theorem.

Viterbi receivers for correlative encoded MSK are
shown to fall within a generalized class of CCC
structures.

It_is demonstrated that for any VLSI implementation
the area*time? product and the power dissipation of
the VA is lower bounded by functions of the alphabet
size andvalgorithm memory length alone.

Though specific reference is made throughout the
thesis to the VA for MLSE of m-ary signals on inter-
symbol interference (ISI) channels, some or all of

the concurrent VLSI architectures described in the

following chapters directly apply to decoding (or
detecting, as applicable):

m-ary signals on ISI channels

binary convolutional codes (CC)

dual K codes (m-ary CC)

punctured CC

interleaved CC

CC combined with MLSE on ISI channels

coded modulation with multllevel/bhase signals
partial response signals

correlative encoded MSK

multi-h phase codes

Therefore, this research has identified a whole
generation of VLSI microelectronic components for

digital communication receivers.

1.4 THESIS ORGANIZATION

The subject material has been organized into five
sections. Chapter 2 begins with a brief overview of digital
communications in which important concepts are delineated.
This leads to the development of a new metric space in which
to operate a Viterbi receiver. Chapter 3 focusses concern
on mapping algorithms into VLSI circuits. Initially,
current VLSI implementations of digital communication algor-
ithms are reviewed, followed by a more theoretically moti-
vated introduction to computational models for VLSI. This
forms the foundation for the development, in Chapter 4, of
VLSI architectures for MLSE as realized by the Viterbi
algorithm, The concurrent VLSI précessor architectures are

presented in order of increasing interprocessor wire area

each of which are capable of increased data throughput. It
is important to note that these concepts can be used in the
design of decoders for various types of transmission codes
(e.g., convolutional codes, dc-free codes, run-length-
limited codes, etc.) whose outputs can be modelled as
outputs of a finite-state machine. As an illustration,
Chapter 5 develops VLSI structures which implement Viterbi
receivers for correlatively encoded MSK wusing first and
second order encoding polynomials. Finally, Chapter 6 pres-
ents conclusions and describes some problems for further

research.

Chapter 1I1I

DIGITAL COMMUNICATION RECEIVERS

2.1 INTRODUCTION

A digital communication system is one which communicates
a discrete number (symbol) chosen from a finite set
(alphabet). The process of "communication" involves trans-
ferring this data (symbol) from an information source
through a medium to a destination or sink. This chapter
presents a brief overview of important concepts in digital
communications. Initially, Section 2.2 considers the PAM
system model which establishes most of the notation used in
later sections. Next, we consider the details of a specific
digital communication receiver known as the Viterbi algor-
ithm. Its attractive performance, in noise, motivates our
guest to embed this algorithm in a VLSI format. One concept
central to an implementation of the VA is that of path
metric generation. This is discussed in more detail in
Section 2.4. Finally, in Section 2.5 a new metric space is
proposed in which path metric generation may be performed to

particular advantage.

2.2 THE PAM SYSTEM MODEL

One of the simplest and most common digital modulation
techniques [1] is pulse amplitude modulation (paM) .
Increased data rates over a band-limited PAM system tend to
induce interference among adjacent data pulses. This inter-
symbol interference is wusually the primary impediment to
utilizing a reasonable fraction of the channel capacity when

the signal to noise ratio is high.

A model of a basic PAM system is shown in Figure 2.1 . A
sequence of data symbols, { a; }, each drawn independently
from an alphabet of equally likely values {0,1,....,m-1},
are transmitted at a rate R=1/T symbols per second. The
linear channel with impulse response h(t) is assumed to have
a finite memory. The channel output signal is corrupted by

additive Gaussian noise.

If a whitened matched filter is adopted as the
receiving filter, it 1is more convenient to discuss the
system in terms of the equivalent discrete time channel with
impulse response f(t), which is defined as the sampled
output of the whitened matched filter due to a single
impulse applied at the channel input. Thus, when the
channel is characterized by f£(D) = f + £.D+ ... + fVDV,
where D is the delay operator and V is the span of £(t), the

sampled output of the whitened matched filter at time k is

given by
k-i"i "k (2.1)

where n, is an independent, additive Gaussian noise sample
of variance g% . The receiver operates on the noisy
distorted signal Yy, to recover the transmitted data symbols

a .
k

In order to combat the effects of intersymbol interfer-
ence (ISI), a variety of 1linear and nonlinear receiver
structures have been proposed [2]. Recently, a maximum
likelihood seguence estimator (MLSE) implemented by the
Viterbi algorithm (VA) has emerged as a seemingly ultimate
solution to the problem of data transmission over time
dispersive channels. Its performance can be shown to be as

good as could be attained by any receiver structure. [3]

2.3 THE VITERBI ALGORITHM

The Viterbi algorithm was originally invented to detect
convolutionally encoded data symbols [4]. Omura [5] showed
the VA was equivalent to a dynamic programming solution to
the problem of finding the shortest path through a weighted
graph. About ten years ago, Forney [3] showed that the VA
can be used to generate the maximum likelihood estimate of a
transmitted sequence over a band-limited channel with inter-
symbol interference. The Viterbi processor reguires that
the ISI at the channel output be limited to a finite number

of symbols and can be thought of as the dynamic programming

|
|
x
g
|
5
|

solution to the problem of estimating the state sequence of

a finite-state Markov process observed in memoryless noise

[6].

A survey of the Viterbi algorithm is given by Forney [7].
1ts applicability to receivers for channels with iﬁtersymbol
interference and correlative level coding (partial-response)
coding was suggested by Kobayashi [8]. Application of the
Viterbi algorithm to digital magnetic recording systems
[9,10], adaptive delta modulation [11], speech and pattern
recognition [12-15] have been discussed. Adaptive versions
of Forney's receiver have been proposed [16] and its combi-
nation with decision feedback equalization has been
suggested [17]. A thorough discussion of the use of the Va
to combat ISI is given in Viterbi and Omura [18] and here we

review some of the basic concepts for completeness.

The fundamentals of the Viterbi algorithm can be
described by considering the discrete time model for the

detector input, defined by

a ;8 (2.2)

Yie = 4y + n , where uy

k ' i

4
<

0

As derived from the Likelihood Ratio Test in white Gaussian
noise take TN , defined below for an N symbol seguence, as

the objective function to be minimized
N A)2
Iy = I lyg — % (2.3)
N k=1 ¥

where uy is derived from an estimate of the transmitted

N

sequence { a, }, given as

~ \) ol

v = E ak_ifi (2.4)
for N>> v (N = 5V is satisfactory [18]).

1f the noise ny, is white and Gaussian minimizing [y corre-
sponds to maximizing the log likelihood ratio for the detec-
tion of the data sequence, which minimizes the probability
of sequence error. Equation 2.3 can be minimized using
Bellman's dynamic programming technique [19].

Thus from (2.3), the recursive relation for time k is

= - 3 2 3
Ty CTp Tyt Mo t N (2.5)

Introducing the state definition

a } (2.6)

I¥(a,) = (r*
k Tk k-1~ % k-1

-a,)32 .7
(g _p) + - f1 (2.7
where the minimum is taken over all possible predecessor
states into each possible present state, and the asterisk

denotes the optimum.

In order to implement the algorithm one must calculate
and store I'*(a,) for all o and, in addition, one must

store the past sequence of state transitions (paths) into

- 11 -

each of the possible present states o . Figure 2.2 illus-
trates the Viterbi algorithm for a channel memory of two and
a binary alphabet. The four possible states along with
their corresponding state transitions are illustrated. This

graphical representation is usually called a trellis.

As the procedure indicated in equation 2.7 1is repeated
for each state and for each time interval, a unique set of
surviving paths result, one into each state. The dynamic
programming equation is then only a method of finding the

shortest route through a graph.

Eventually, at some point in time, all surviving paths
merge backwards through the trellis. The merge time is a
random variable and typically is assumed to occur within 5v
[18]. When a merge does occur, path detection can take
place up to the merge point since further extensions will

always originate from that state thereafter.

|
|
|
|
|

NOISE
n(t)

Source CHANNEL WHITENED
Symbols ~> h{t) e MATCHED o= RECEIVER »g"‘:‘:rd
(t) FILTER Yk ymbols
b | ' o
T %

Figure 2.1: PAM COMMUNICATION SYSTEM

—TIME

State State k-1 K K+l
Number Variable (a,_, a,) (o o,) (ayy a,)
0 (0,00 XTI

\\ // \ ,/
A //Y\
| (0,1) o« \ o N\ _p
\\ \/\// \\ ,\<//,
Fea@7 57
2 (|,0) &/ , 2// \b
* A(yK— Ka)\
rK"l(s) 6K= \\
3 (Ipl) ‘—PA —————) >)
(yk—uk)

Figure 2.2: STATE AND PATH DIAGRAM FOR THE VITERBI
ALGORITHM

._13..

2.4 PATH METRIC GENERATION

A typical hardware implementation of a Viterbi receiver
for a binary alphabet and a channel memory of two is illus-
trated in Figure 2.3 . The structure consists of four iden-
tical processing cells each corresponding to one of the ISI
states. The trellis is similar [7] to the computational
flow diagram of the fast Fourier transform (FFT). Unlike
the FFT, the basic operations within each <cell consist of
add, compare and select functions. In Figure 2.3, TI(a)
corresponds to the state metric or length, A{a) corre-
sponds to the path metric or length, ;(a) is the truncated
survivor listing of § symbols. The complexity of the algor-
ithm is easily estimated. With an algorithm memory of v
and alphabet size of m, there are m” possible states o each
associated with a particular 1ISI condition. The algorithm

V storage locations, one for each of the state

requires 2m
metrics T'(a) and one each for the truncated survivor listing
;(cx) of § symbols (each symbol 1is one of m possible).
Typically, § = 5 is chosen with 1little degradation in
performance. Computationally, in each wunit of time the
algorithm must make mv+ladditions, one for each transition,
and m\)comparisons among the mv+lresults. Thus the amount
of storage is proportional to the number of states and the
amount of computation to the number of transitions. It is
important to note that the VA réquires a fixed number of

computations per symbol independent of the number of symbols

received.

Ok-1 In-2 > 0y k-1
00 00
or ol
10 10
1 I

PATH
METRIC

1(- GEN.
; 7]
A(C)

A(A) \(B) A(H)

4
[seLecd* > seLect | [seLect{+™|sELECT |
v

oy Vv vz t
[Tioo] | ko) [

TYP. §=5v

AEog M
10-01 CMP

[

[sececi**secect | [secect] ssLECT;]
V ot ¥ 9 1 ¥
[(Cnl [%kon | [Conl oo]

A I

Figure 2.3: PARALLEL HARDWARE IMPLEMENTATION OF THE VA

15.

In the previous paragraphs, the complexity involved in
generating the incremental path lengths A was ignored. For
a discrete input sequence a = (al, 8,0 By eeny aN) and if
the receive filter is a whitened matched filter as discussed

in Forney [3], then, PN(Q) becomes as in equation 2.3
2 T N 2
@ =lly-a8l"=@-»aq-=]G -8 (2.8
k=1

Hence, the path metrics Ak are generated using

s v oo 2 (2.9)
k 'k~ iz -1 Ty

However, a whitened matched filter is not explicitly
necessary, for as pointed out in Viterbi and Omura
[18,p.274], if the receiver filter (with output yk) is just
a matched filter, an eguivalent expression for path metric
generation may be developed as shown below. When the

channel is characterized by
N
fo Lo tn, (2.10)

it follows that the maximum likelihood decision rule can be
based on,

~ 2
2 h) (2.11)

e~ 2

)
(r, -
k=1 & 1

which upon expansion yields,

N
The first term) T is an energy term independent of a

k

k=1
and hence can be ignored in making comparisons. With the
objective of simplifying the second term of equation 2.12

jdentify y; as
N
Yy T E T Py (2.13)

This term can be identified as the sampled output of a
matched filter for the channel. The third term can be
simplified by observing that the pulse autocorrelation coef-

ficients can be defined by
N
Rioy = kzl Pet Py (2.14)

Now, the objective function to be minimized as derived from

equation 2.12, can be rewritten as
y;+ L I & & R . (2.15)

Equation 2.15 can then be split into a form similar to that

of equation 2.5 where

k-1 . k-1 k-1 o (2.16)
Fk-l = -2 izl a.:L Yy + igl jZl a; aj Ri—j .
and
A AL : A 2
)\k = —Zak vt Zak i=1§-\) a, R, + (ak) R, (2.17)

where v is the channel memory length in units of T. Note
that since the COMPARE operation is done between m tran-

sitions for the same state the constant (Sk)zRo and the

constant factor 2 may be dropped from equation 2.17

producing:
kil
A =4acrl (4, R,_.) -]
fokey b k- k (2.18)

1f the source symbols a, are binary all the multiplications
in 2.18 become additions. For time varying channels esti-
mated R;'s would be supplied to the path metric calculation
hardware each symbol interval. Symmetries in R allow

i

2.18 to be simplified further [18, p.275].

2.5 THE NORMALIZED KOLMOGOROV METRIC SPACE

The receiver defined by the Viterbi algorithm uses a
metric A for the branches of the trellis diagram. This
metric may correspond to many possible forms such as those
defined by ML, MAP, or MSE criterion. In this section, the
performance of the VA in a metric space, which allows us to
cater for noise sources with various types of probability

density functions (pdf), is studied.

In Gaussian noise, the appropriate ML metric is the
Euclidean sguared distance. Other distance measures are
possible with a subseguent degradation 1in probability of
error performance. These may be justified by other consid-
erations such as hardware complexity and processor
throughput. The performance degradation may even be desire-
able in pseudo-error rate monitoring [20].

One such example would be the wuse of an absolute value

~

distance measure |y,- u,| . This distance measure is

;|
optimal, in a maximum likelihood sense, for Laplacian noise.
However, the simplicity of hardware implementation may tempt

one to consider its use in a Gaussian noise environment.

In fact, the distance between the received signal and any
of the ISI states can be measured by any convenient metric.
A large number of metrics have been suggested in the pattern
recognition 1literature [21-24], each having particular

advantages and drawbacks. Some of the more important

metrics used as interclass distance measures [21] are:
Minkowski, City Block, Euclidean, Chebychev, Quadratic,

Nonlinear.

Establishing the likelihood ratio always provides the
appropriate "distance measure" required. However, for
non-Gaussian noise sources the analysis may not be mathemat-
ically tractable. Despite this fact, the main criticism to
applying one of the above mentioned distance measures indis-
criminately 1is that they are not closely related to the

error probability.

A more appropriate metric which reflects the local prob-
ability structure of data can be obtained by using more
sophisticated probabilistic distance measures. For the two
class separability problem, the following measures have been
suggested:

Chernoff
Bhattacharyya
Matusita
The Divergence
Patrick-Fisher
Lissack-Fu
Kolmogorov Variational Distance
All these measures provide an upper (lower) bound to the

error probability. Of particular interest is the Kolmogorov

variational distance:

IIP(Elﬂl)Px - p(E]H,)P2|dE (2.19)

which is closely related to the Bhattacharyya coefficient

- 20 -

!
i
(
]

(w) = +-c0

[25]. Note that in (2.19) the integral is simply the area

indicated in Figure 2.4 .

At this point, we would like to introduce a new metric

space derived from the Kolmogorov Variational Distance.

Consider the metric space M(X,p) where:
the set X = {stationary random variables ¢ pNEIHl),FK€|HQ}

and the distance measure p is defined as

] Y
J max[p(&|H,)P,,p(E|H,)P,]1dE -I lp(£]H) Py -p(&|H2) P, |dE

-— 00

; Lr- f Pl e, -pllu)p.las | (2.20)

- 00

H2(w) = 1 - le(w)

(2.21)
where ¥ 1s an element of the sample space ¢ and the
subscript on p indicates "with respect to". This defini-
tion relates the distance of a sample from a specified
hypothesis to its contribution to the probability of error.
Note that the distance measure 1is the distribution function
of the error probability for the maximum likelihood (ML)

receiver.

The proof that o, (V) satisfies the three metric space
i
axioms [26] is given in Appendix A. For example, equipro-

bable hypotheses H;, H, with Gaussian conditional densities

- 21 -

A =, | p€in)P-p(EiH) Py |
) = -2}

Figure 2.4: THE KOLMOGOROV VARIATIONAL DISTANCE

- 22 -

of mean’ul,112 and standard deviation Gy40 respectively,

2 14
would have the following distance definition ¢, whenl, >U; :

Q(“Z_"_‘P.)
p.. (¥) = g Vv v < Hiiuo
Hi Uy = uo| ’ - 2
20(55)
(2.22)
Yy -
[y - W2 ’ 2
20 (+H—H2l,
o,) = 1 - oy (V) (2.23)
L 2
where: Q(a) = 1 J e“B /2 dg
21 Ja

(2.24)

This particular metric exhibits the property that samples
separated by a Euclidean distance of more than 30 are
essentially the same distance (within 1.0%) using the new
metric space. A graphical representation of such an effect
is presented in Figure 2.5 . Note that the distance measure
always has a finite range between zero and one. This is a
property of interest in a hardware realization that desires

register and data paths of minimal width.

The case of data dependent noise, where the noise vari-
ance is dependent on the hypothesis, is a representative
model for certain channel nonlinearities. For hypothesis

Hl' H2 with corresponding My M, and o, 10, and a priori

DISTANCE _

Figure 2.5:
Note that for the one-dimensional case,
distance equals the absolute value distance measure.

(Euclidean)?
Ya)

/— Absolute Value

Normalized
_______________ —- Kolmogorov

-

EUCLIDEAN DISTANCE

THE NORMALIZED KOLMOGOROV METRIC
the BEuclidean

probabilities Pl' P2 the following distance definition would

apply:
poo (=) v < e
o) ((P) = = T ’ <
H THi-H, | [Mi= M2 0
! P,Q(25,) + P20(—57;)
(2.25)
- ¥
P1Q(£Tﬂ——L) VoL
= 1 - ’ 0
[H1-H2 |]Ul-UZI
P, Q 20,)+ PgQ_(25,)
where:
(2.26)
o Ufog - uio? . 20?05 -
® 7 o2 -02+2W 02 -2H,0] @ 0] -0Z+2M102 - 2H207 nls,

Development of the Normalized Kolmogorov Metric Space is
based on a priori knowledge of the form of the conditional
density function. By the principle of maximum entropy, it
is reasonable to choose a normal density when the mean and
variance are the only known parameters. (Several methods
are available for estimating these parameters.) When para-
metric estimation is not sufficient it becomes necessary to
estimate the density function by direct functional approxi-
mation. An iterative technique employed with an appropriate
training sequence can estimate the true pdf to an arbitrary

degree‘of closeness [27].

In order to evaluate the utility of the proposed metric a
computer program (Appendix D) was written to simulate the
operation of the architecture illustrated in Figure 2.3 .

- 25 -~

Register Transfer Level computer simulations of this
receiver, evaluating the probability of error as a function
of SNR [28], were carried out for binary data on a single
pole channel of memory two, algorithm memory of two and an 8
bit path memory. The data rate, R =1/T, was fixed at four
times the 3dB channel filter bandwidth F (i.e., F /R = 1/4).
The motivation was to study the effect of implementation
losses on pérformance [29,30] hence the simulation modelled
each binary function within the processor. Control of the
bus width (in bits), input signal guantization, path metric
computations and other parameters critical to the operation
of the processor allowed for an analysis of each of these
factors on performance. The results of the simulation are

presented in Figure 2.6.

The relative performance (symbol P(e) .vs. SNR) of the
new normalized Kolmogorov metric space, proposed 1in this
chapter, the least squares and the absolute value metrics is
shown in Figure 2.6. The Euciidean squared type metric has
the best performance followed by the Normalized Kolmogorov
metric and lastly the Euclidean metric. At a P(e) of 10 73
all metrics are within 0.5 dB of one another, when at least
25 error events per SNR value were observed. A limited
number of simulation results in both Gaussian and Laplacian
noise suggest a similar ordering holds for P(e) versus agc,

carrier phase and register width. I1f the metric space

calculations within the Viterbi receiver are table driven,

- 26 -

the new proposed metric poses no additional computational
purden on the Viterbi processor. Though these results are
preliminary in nature they do appear to justify further
research aimed at establishing performance bounds in
different noise environments, channel characteristics and

implementation errors.

PROBABILITY OF ERROR

=1 VITERBI DETECTOR SIMULATION

10
8 bit PARALLEL RECURSIVE ARCHITECTURE
CHANNEL MEMORY of 2
PATH MEMORY of 8
SINGLE POLE CHANNEL
Q (D) = 1+0.2079 D+0.0432D2 1
u RATE = 4 TIMES 3 dB FILTER BANDWITH |
.‘\' GAUSSIAN NOISE
|]
~2 A O
10 {
<~ L) ‘
\ QUANTIZING
N - / DETECTOR
\ L]
\
- \
R\
A
-3 \§ o
lo \\ []
N
A
\
» \)
\ @
LOWER BOUND FOR — \\
L NOISI F/R= 2.0 \
\ L
i W
|O" 41 @ VITERBI (Least Squares))
" /\ VITERBI (Kolmogorov)
i O WVITERBI (Absolute)
| == LOWER BOUND FOR NO
INTERFERENCE (One Shot)
i | | |
8 9 10 I 12 I3 14

nene

vy SIGNAL TO NOISE RATIO (dB)

Figure 2.6: P(e) versus SNR IN VARIOUS METRIC SPACES

Chapter 111

MAPPING ALGORITHMS INTO VLSI CIRCUITS

3.1 INTRODUCTION

Very Large Scale Integration (VLSI) technology offers the
potential of implementing complex algorithms directly 1in
hardware [31,32] with ten million transistor chips being
promised shortly [33]. This resource encourages one to cast
an algorithm as a structure of concurrent processes prom-
ising as a reward tangible increases in performance over
traditional von-Neumann architectures. However, the design
of significant computing structures wusing VLSI 1is notori-
ously expensive [34]. The task of VLSI design involves
bridling the complexity of algorithm realization, using a
surface of thousands of simultaneously active computing
elements. Complexity control is achieved by defining a
topologically regular processor and wire layout which allows
a system of concurrent processes to efficiently move infor-
mation from where it was produced to where it 1is needed in

the next time instant.

This chapter presents the background material necessary
in the development of well structured, highly concurrent

VLSI layout strategies for realizing Maximum Likelihood

Sequence Estimators via the Viterbi algorithm (VA). Section
3.2 briefly surveys the marriage of VLSI and digital commu-
nications to date. Absent from the literature is an appre-
ciation of how the Viterbi algorithm can be efficiently

implemented in the VLSI domain.

In Section 3.3, a computational model for VLSI circuits
is introduced which provides a high level of abstraction at
which to start the design of VLSI circuits, thus allowing
one to think in algorithmic rather than electrical terms.
Efficient, practical circuits can be designed using this
- approach. By taking a realistic account of the placement of
processing elements and their interconnection, the VLSI
model of computation allows us to identify which composi-
tions will result in: modularity and ease of layout, local
communication paths, regular control and timing structures,
extensibility and minimum die area (yield 1is an inverse

exponential function of die area).

Finally, in Section 3.4, concepts are presented that will
let us talk about the complexity of problems in a formal
way. In later chapters, this will allow us to lower bound
commodities such as area and time to within a constant
factor, that the VA requires if it is to be implemented on

an integrated circuit.

3.2 VLSI AND DIGITAL COMMUNICATIONS - A LITERATURE REVIEW

The progress in VLSI technology, to date, has yielded
economical hardware realizations of highly sophisticated

signal processing algorithms.

Commercial products currently range from special purpose
devices such as CCD Sampled Analog Delay Lines [35], Sampled
Analog Correlators/Convolvers [36] and Sampled Digital
Correlators/Convolvers [37] useful in the realization of
matched filters, programmable transversal filters and adap-
tive equalizers, to general purpose programmable digital
signal processors [38-41] for the realization of digital
filters, codecs, LPC synthesizers, etc. Beyond basic
devices and general purpose processors numerous publications
have focused on novel architectures and techniques for many

important signal processing algorithms.

Ahmed et al. [42,43] suggests that algorithms appearing
to possess additions and multiplications as fundamental
operations are actually more naturally formulated in terms
of elementary plane and hyperbolic rotations (CORDIC).
Applications to speech synthesis and least mean square adap-

tive equalization are outlined.

Alternatively, bit serial techniques are proposed as a
simple and efficient way to implement digital filters and
other signal processing systems in silicon [44]. Bit-serial

architectural techniques do not overconstrain the system

level architecture and do not necessarily limit the applica-

tions to low-bandwidth problem domains.

Inner product step computer realizations have been
discussed extensively (see [45,46] for example). Pragmatic
approaches to digital signal processing circuits for VLSI

are outlined in Bloch et al. [47].

Logic-In-Memory (LIM) [48,49], Distributed Logic Memories

(DLM) [50] and more recently Logic-Enhanced-Memory (LEM)

[561,52] systems have been proposed to relieve the computa-

tional burden of matched filtering, pattern recognition and

other signal processing tasks. In a rather different
context, error detection and correction for memory systems

can also be accomplished using VLSI devices [53].

Systolic Architectures [54,55] have been developed for
FIR filtering, IIR filtering, convolution [56-58] and median
filtering [59]. Several high speed charged coupled signal
processing architectures [60-62] have been proposed for
matched filtering, DFT's and image transforms, some using

multivalued logic.

There are currently available high speed (up to 16
Mbits/sec) VLSI implementations of symmetric data encryption
algorithms sucﬁ as the Data Encryption Standard or DES [63] .
type and asymmetric or public key data encryption algorithms
such as the Rivest-Shamir-Adelman or RSA [64] scheme and

knapsack type [65].

- 32 -

Symbol slice or layout slice techniqgues [66] have been
proposed as a design methodology for the realization of Reed

Solomon Encoders [67].

Efficient VLSI structures for solving dynamic programming
problems [68] have been the subject of several recent publi-
cations [69-71]. This work 1is particularly interesting as
the Viterbi algorithm can be thought of as a dynamic
programming solution to estimating a state sequence. This
naturally leads us to consider how the Viterbi algorithm

could be efficiently implemented in a VLSI format.

Considerations for the hardware implementation of the
Viterbi algorithm [9,72-74] have generally dealt with
discrete 1IC's where the major concern was the hardware
(cell) cost and not the communication (wire area) costs
associated with a highly concurrent VLSI computing environ-
ment. When the hardware costs are minimized (often implying
global communication paths in a von Neumann architecture)
without regard to exploiting the inherent parallelism in the
algorithm, as in recent microprocessor realizations [75-77],
throughput is drastically reduced. A recent VLSI implemen-
tation of the Viterbi algorithm for convolutional decoding
[78] exploited the inherent parallelism of the algorithm to
achieve up to a 46 Mbits/sec throughput rate. However, it
was found that 38% of the space on the IC was occupied by
the wires that carry control and data to the functional

blocks. Analog Viterbi decoding structures [79], which may

provide throughput rates of up to 200 Mbits/sec suffer from
the same expensive interconnection problems that digital

implementations suffer from.

The remaining chapters of this thesis, attempt to explore
different layout strategies for the Viterbi algorithm and
its derivatives that acknowledges the design effort required
in laying out communication paths (wiring) that are a good
fit to VLSI. The first step towards this goal is the devel-
opment of an abstraction of integrated circuit layouts,
known as the grid model, which is presented in the next

section.

3.3 A COMPUTATIONAL MODEL FOR VLSI

A VLSI chip can be viewed as a computation graph whose
vertices are called nodes and whose edges are called wires.
Nodes or processing elements are a collection of transistors
and are responsible for information processing (computation
of Boolean functions). Wires are just electrical connec-
tions, and are responsible for both the transfer of informa-
tion between nodes and the distribution of power supply and
timing waveforms to nodes. This correspondence seems
straight forward enough but practical considerations force
us to restrict the discussion to classes of graphs with
vertex degrees that are bounded by a constant, and by
further assuming that vertices require only a constant area

of silicon. This is not to trivialize the design effort in

puilding a functional node but rather this assumption allows
one to simplify the structure so as to develop insights into

the wiring reqguired to realize a particular algorithm.

Following the Thompson model for VLSI [80], often
referred to as the grid model, we assume that there is only
one layer of interconnect material, and that wires are laid
out on a rectangular grid. Thus, wires may meet only at
right angles. Wires may also cross over each other at right
angles if one of them makes a run in a heavily doped
"channel" in the silicon substrate. The assumption of one
layer of interconnect material (planar embedding) is not
overly restrictive in the sense that the availability of g
layers of interconnect material can only reduce the area

requirements of a layout by at most a constant factor of qz.

There is a natural unit of area for VLSI. Manufacturing
and physical limitations give rise to a minimal spacing
between centers of parallel wires (i.e., pitch). In the
terminology of Mead and Conway [31], this minimal spacing is
called A (not to be confused with path metrics defined
earlier - usage should be clear from context). Thus a
convenient area unit is the sqguare of this length,lg . The
area of a chip can be expressed in terms of wunit squares
with one unit square being just large enough to contain one
small transistor or one wire cross-over. A 64K RAM has an
area of about 105 Az, and chips of 108>\2 may be possible
[80].

!
;
]
|
|
i'
i
;
i

The salient features of the Thompson model may be summa-
rized as follows:

1. One bit of storage or logic at a node requires 0(1),

that is, Order-At-Most one or constant area.

2. Wires are O(1) wunits wide and are laid out on a
rectangular grid. Thus, wires can cross only at
right angles.

3. The wunit of time is defined by specifying that a
unit-width wire has at most unit bandwidth. A wire
of length K has a driver of area K, which consists of
log K stages of amplification. Therefore, the delay
of the wire and driver is together 0O(log K).
However, the amplifier stages are individually
clocked and pipelining can be used to transmit one
bit every O(1) units of time through the wire (propa-
gation time independent of wire length).

Other VLSI models have been proposed [81], after [80],
which differ chiefly in the time required for a bit of
information to propagate across a wire.,' Attention has
focussed on this aspect of the model because the time to
communicate between processors [82] generally dominates over
processing time, and thus sets a lower limit to the achiev-
able performance. One of the fundamental realizations that
VLSI has brought into computing is that the expense in area
or time of transmitting a result from where it is produced
to where it is needed can often equal or exceed the cost of

producing the result in the first place. As a result,

algorithms that exhibit local communication are most desir-

! One other point of contention within the various VLSI grid

models, not considered in this thesis, is how to
adequately model chip I/0. We implicitly use a grid model
which assumes that the system is: synchronous, semellec-

tive, word-local, when-determinate and where-determinate.

- 36 -

able. Ultimately, the global time parameter of interest is
the output period, Tp, of the circuit defined as the maximum
time between two successive data passages at the output port
when the circuit 1is used in a pipelined fashion at the
highest data rate. This time, Tp, will limit the maximum

symbol interval, T, of the input data stream.?

The total area, A, of a VLSI chip may be bounded in two
respects. Lower bounds on area, to within a constant
factor, may be derived by measuring only the area actually
occupied by wires (i.e., the product of the number of
vertical tracks and the number of horizontal tracks
containing a processor or wire of the network). The area of
the smallest bounding rectangle is used to describe the
upper bounds. Although the assumption that processors can
be represented by points is clearly false in practice, good
Thompson model layouts can still be wused to develop good

practical layouts.

A unit of energy is defined by the product of the units
of area and time (AT). When a signal is sent from one MOS
transistor (charge control device) to another, the driver
must charge (or discharge) the capacitance presented by both
the wire and receiver. Thus, one unit of energy is consumed
by one unit of chip area every time it is involved in the

transmission of a signal [80, 83].

2 No distinction is made between T and T throughout this
thesis, thus providing an upper bound to the data rate
that can be supported by a given architecture.

- 37 -

A related topic, the problem of embedding a graph in a
two-dimensional grid with minimum area, minimum number of
edge crossings, minimum maximum edge length or fixed aspect
ratio has gained a great deal of attention in the recent
literature [84-99]. As a result, much has been learned
about the design and analysis of efficient chip layouts for
VLSI systems under certain constraints. In addition, von
Neumann's early work on cellular automata [100,101] eiuci-

dates some aspects of the area-time tradeoff.

3.4 THE ROLE OF MODELS IN ALGORITHM DESIGN

The task of the digital communication engineer is
twofold: (i) to find good (min P(e), MMSE, etc.) algorithms
for decoding, detection or estimation and (ii) to implement
these algorithms in real terms (optimally with respect to
some cost function such as area or power).?® The expression
of these algorithms, in the context of VLSI, can be achieved

by resorting to the VLSI grid model.

The VLSI. grid model is justified on the basis that its
area and time charges are sufficiently realistic to repre-
sent real computation and that it allows one to model all
instances of a problem. In order to clarify this concept,

let us formalize the notion of a problem.

3 This twofold task is often referred to as competence (what
the algorithm does) versus performance (how the algorithm
is to be performed).

- 38 -

A problem instance consists of a list of Boolean input

variables (xl,xz, ooy xr), a list of Boolean output vari-

ables (yl,yz, ceos ys) and a Boolean relation y, = fi(xl,xz,

eo ey xr) , I1<igs. The problem size parameter is a natural

number that allows for a convenient and consistent physi-
cally related description of each problem instance. For
example, the size parameter may be the number of input vari-
ables r, the dimension of an input matrix or the amount of
memory contained in the relation £ , etc. A problem is an
infinite sequence of problem instances, one for each of an
infinity of values of n, the problem size parameter.

Solutions to problems are sequences of circuits, within the

VLSI grid model, one for each instance of the problem. By
relating the variables of the problem insfance tb the inputs
and outputs of the circuit, by a schedule, we are able to
say that an integrated circuit has an algorithm embedded in

it (solves a certain problem instance).
The role of VLSI models in algorithm design is that:

1. 1t allows us to develop and discuss topological prop-
erties of a solution to a problem instance in isola-
tion,

2. It allows us to discuss an infinite family of
circuits, one for each n, by referring to the growth
rate of some cost function (often involving the
commodities of area and/or time) as n gets large,

3., It allows us to prove theorems of the form, "Every
VLSI circuit that solves problem P reguires area
n d)", for example. Thus we can develop lower
bounds to within a constant factor that allows us to
judge the asymptotic quality of a solution to a
problem (for a fixed A).

Traditional éomplexity theory, in dealing with time and
space, parallels these concepts in associating with a
problem an integer, called the size of the problem, which is
a measure of the quantity of input data. The time needed by
an algorithm, expressed as a function of the size of a
problem, is called the time complexity of the algorithm.
Analogous definitions can be made for space complexity where
space is the amount of memory used to store intermediate
results. However, this is where traditional complexity
theory diverges from the VLSI grid model in that the notion
of space gives no consideration to the VLSI area required to
transmit (route) these results to processing elements.
Associated with this is an energy cost of communicating
information throughout the system not considered in the
classical case. This is the inherent strength of computa-

tional models for VLSI.

Having developed the necessary background we are now in a
position to formally state the problem domain that will
guide the development of the solutions presented in the next
two chapters. Our concern will focus principally on the

following problem:

Let P(m) be a problem of maximum likelihood sequence estima-
tion implemented by the Viterbi algorithm with alphabet size
m and let Vv (the algorithm memory) be a value of the problem

size parameter for which the input and output sets of vari-

ables of P(m) are the path metrics® and truncated survivor

sequences, respectively.

Given P(m), the next chapter 1is devoted to generating
families of area efficient VLSI layouts that are solutions
to P(m). We will find that solutions to P(m) that contain
more wire, and hence occupy more area, generally can support

higher baud rates.

4 The input set of variables can be essentially reduced to
that of the sampled whitened matched filter output, by
accepting a constant area or time penalty at each node.
This approach only weakly influences the results developed
in the later chapters.

- 41 -

Chapter IV

COMPLEXITY ANALYSIS: CASCADE, MESH, SE, CCC AND
TREE ARCHITECTURES

4.1 INTRODUCTION

The problem, P(m), is not demanding because its algorithm
is complex in a conceptual sense. Rather, the essence of
the algorithm is a relatively simple procedure that must be
applied to a huge number of basic "units" or '"nodes".
Unfortunately, the number of nodes grows exponentially with
the problem size parameter v , the algorithm memory length.
This fact may be tolerable, as the technology of VLSI is
capable of realizing chips with the hundreds of thousands of
transistors (neglecting wiring) required to realize the VA
for channel memory lengths of commercial interest. What 1is
not especially clear or obvious at this point is the type of
topologies that are appropriate, and how "expensive" is the
wiring, for embedding or arranging these transistors? In
other words, what solutions to P(m), realize this important
digital communication algorithm? Furthermore, of all
possible solutions to P(m), what solutions are optimal with
respect to cost functions of area and execution time? In

addition, how <close do known designs approach those best

possible (even though these best realizations may still be

|
|
|

unknown) ? The answers to some of these gquestions are the

subject of this chapter.

This chapter is organized into four major sections. The
first two sections present several recirculation type commu-
nication graphs capable of implementing highly concurrent
forms of the Viterbi algorithm. Initially, we consider
layouts with small wire area. These designs are compact
requiring little silicon area, however, they are relatively
slow, thus restricting the baud rate of the input data
stream. The solutions to P(m) generated in this section
fall into the class of 1linearly and orthogonally mesh

connected processor arrays.

In the second section, section 4.3, we consider layouts
dominated by large interprocessor wire area. Communication
graphs based on Shuffle-Exchange, Cube-Connected Cycles, and
Tree-of-Meshes topologies are considered. These designs,
though requiring relatively large areas of silicon, are
capable of supporting maximum likelihood sequence estimation

of high speed data streams.

All of the structures presented can be generalized to
accommodate arbitrary source alphabet sizes and channel
memory lengthsf Special features, intrinsic to particular
layout strategies, of interest to the digital communication

engineer, are highlighted.

In section 4.4, we demonstrate that certain functions of
the problem size parameter are sufficient to lower bound
particular cost functions, such as area*time (AT), that any
vLSI implementation (within the grid model) of problem P(m)
must satisfy. In particular, the AT and AT? measures of
complexity are presented and interpreted within the context
of digital communications. The Mesh, Shuffle-Exchange and
Cube-Connected Cycles solutions for P(m) presented in this
chapter are good solutions in that they asymptotically

2
approach the AT lower bound to within a constant factor.

Finally, 1in the last section, we discuss issues related
to the realization of practical devices, the neglected

constant factors of the layouts described in this chapter.

4.2 LAYOUTS WITH SMALL WIRE AREA

4.2,.1 Uniprocessor Lavouts

The VA can be implemented on a single Add-Compare-Select
(ACS) processing element driven by a programmed control unit
(e.g. microprocessor) using a direct sequential algorithm.
This is the degenerate case of a concurrent realization of
this algorithm and we include it here, in this chapter, only
for completeness. The implementation suffers from being
processor poor and from being I/0 bound. The uniprocessor
must coordinate O(mY) random accesses to the processor's I/0
memory and perform O(m\Hl) arithmetic operations each symbol

interval T. Consequently, the hardware logic speed must be

n(mv+l/T). Since the processor/memory ratio is so low, (the
design is almost all memory), the throughput of such a
system is disappointing even though this 1is the smallest
area solition to P(m) imaginable. Adding more processing
elements has the potential of increasing throughput, as

demonstrated in the following section.

4,2.2 Cascade Layouts

The VA can be parallelized on a linear array of Vv proces-
sors each with geometrically varying memory sizes, in a
manner similar to that used for sorting numbers [102], In
the case of binary alphabets, each processor contains two
sets of ACS circuits arranged in a butterfly configuration.
Associated with each processor Pj (1sj<Vv) are two auxiliary
(2 V"3)-word FIFO queues, as illustrated in Figure 4.1, The
total memory of the system is proportional to the sum of
this geometric series. In our example, 2(23 - 1) + 1 words
are required. This is a factor of two larger than'necessary
as the function of each FIFO pair can be shared with one
FIFO of the same length. However, associated with this
memory reduction is control hardware of increased complexity
to coordinate memory interleaving. Each word in the FIFO is
responsible for storing a state metric and an associated

survivor sequence.

State metrics and survivor sequences migrate or recircu-

late, a limited distance, around the ring of processors,

each processing cycle. A processing cycle is defined to be
the time required for a processor to take its inputs and
perform an ACS operation. Unidirectional information trans-
fers between processors are coordinated by programmed
switches. The control algorithms for each switch are a
function of the current discrete time index k, as defined in

Figure 4.1,

The feature to note 1is that the topology 1is small,
regular and compact with essentially 1little interprocessor
wire area. The regular structure provides for extensibility
such that the architecture can accommodate arbitrary problem
size instances, in a controlled way. This is a prerequisite
for developing an appropriate silicon compiler for automated
design. The structure also allows one to partition the
circuit into processor/FIFO pairs for incorporation onto
separate chips (or printed circuit boards) as available

technology dictates.

Each symbol interval, the «circuit accepts a digiti;ed
whitened matched filter output into a dual ported memory or
FIFO queue of Vv words. Switch S5 routes operands from this
queue to the appropriate path metric generator, as deter-
mined by Procedure S5, in Figure 4.1, Each path metric
generator serves a unigue processing element and is respon-
sible for providing a set of four path metrics each valid
processing cycle, the <clock cycle during which the ACS

. . . v . .
processor is active, of which there are m in v symbol

LY

(TTe3°2p 210w 103 4 x1puaddy 29§)

*GS-1S S9YS3TMS 103 swyitiobre TOI3UuO0D 3Y3 3ae pajealsnyIr
*ga0ssao0ad A13a933ng SOY dae €g pue ‘Tg ‘g

*99ay3 Kaowsw pue j3aqeydie Lieulq I03J 8IN3DIFTY2aV

OSTVY

40 LNOAVT JIAVYISVD

YA HHL

tL°% sanbta

Procedure S3

Procedure S1 Procedure 52
if k modk = k mod8 if k modh = k mod8 i f
then: A -> B then:
else: A -> C if k mod2 = k modd
then: D -> F
else: D -> G
else:
if k mod2 = k modl

then: E -> F
else: E -> G

k mod2 = k modh
then:
if k mod2 = O
then: H -> J
else: H -> K
else:
if k mod2 = 0
then: | -> J
else: | -> K

Procedure Sh

if k mod2 = O
then: L -> N
else: M -> N

s
St FIFO [normauiZE s2 S3 S4
° DF HJ X
A N
FH Pé ':3
Ot E 6 IK —
c T ™
A
H | - q
: : -2
PATH CONTROL PATH CONTROL | . PATH OUTPUT
METRIC METRIC METRIC
GEN. ! GEN. GEN.
8 [)
CLK(S?)
Ug v
yk NP h
INPUT W gk

Procedure S5
if (k mod8
if (k mod8
if (k mod8

else:

"

L4y then: P -> U
6) then: P -> V
7) then: P -> W
(Path Metric Generators hold

No Connection

previous values)

intervals. 1f the first state metric generated in a group
of 2 Vprocessing cycles is subtracted from all others, state
metrics can be conveniently normalized to control register
overflow. Fixed delay maximum—likelihood estimates of the
transmitted data sequence are available from the truncated
survivor sequence of any state at each stage of the trellis.
A convenient method to tap into these survivors 1is to
extract the last Vv items in the survivor list once every m’
processing cycles which are available from processing
element Pv' The implicit assumption, of course, is that the
oldest items in the G5y-element survivor 1list have merged
indicating that all states agree on a common ancestry. An
output queue of length Vv allows the output to present one

output estimate each symbol interval T.

BEach processor/FIFO set is responsible for processing
states associated with one stage of the trellis. Pipelining
is possible in this recirculation network because newly
generated state information produced by processor Pj can be
passed to the immediate neighbor Pj(mod\0+1 so that states
associated with the next stage of the trellis can be
processed even before all states associated with Pj have
been evaluated. Pipelining allows v symbols to be processed
each m"’ processing cycles. Consequently, hardware logic
speed must be Q(mv/bT), a respectable improvement over the
one processor implementation. Even with complete pipelining
each processor P is idle for one-half of the processing

J
cycles.

Although the layout has been directed toward realizations
for binary alphabets, versions of this processor for arbi-

trary alphabet sizes should be apparent [103].

The cascade (like the uniprocessor) solution to P(m) is
mainly dominated by storage. The next section presents a
layout strategy that contains as many ACS proceésors as

storage elements, to within a constant factor.

4,2.3 Linearly Connected Layouts

A linearly connected network of processors is illustrated
in Figure 4.2, It consists of three rows of processing
cells where each element of a row is fitted with word-
parallel interconnections to its near neighbor. Each row of
this architecture is homogeneous in function. This allows
us to define a column of three processing cells as a stan-
dard building block. Linearly connecting 1 of these
building blocks together comprises a a solution to P(m) with
problem size parameter v . Since this architecture can be
viewed as a systolic array, the results of reference [104]
are particularly relevant to a wafer-scale implementation.
Though this architecture has an unpleasant aspect ratio for
channel memory lengths of interest, sayV >4, a theorem due
to Leiserson [105, p.94] can be used to establish the
comforting fact that a topologically equivalent layout can

be enclosed in a square whose area is at most three times

the area of the original rectangular layout.

The backbone of this architecture is formed by the middle
row of processing cells, while the top and bottom rows can
be viewed as support hardware. The top row takes a clock
signal as input and produces as output a set of sequence
control signals, one for each processor in the middle row.
The bottom row accepts the input signal Yy and generates a
unique path metric, one for each processing element in the
middle row. In some implementations this row may be
comprised exclusively of ROM hardware. Each processing cell
in the middle row contains a state metric register, survivor
sequence register, ACS circuit and control circuitry. THe
control «circuitry exchanges state metrics and survivor
sequences with a near neighbor as dictated by the sequence

control signals generated by the top row of processors.

Path metrics supplied by the bottom row are used to
update the state metric registers each stbol interval. As
output, the middle row provides fixed delay estimates of the
transmitted data sequence. These can be extracted from the
truncated survivor sequence resident in the rightmost

processing element.

The sequence of events during one symbol interval in the
center row of processing cells is illustrated in Figure 4.3.
The initial configuration consists of m\)sets of m identical
state metrics (and survivor sequences). In a series of near
neighbor transpositions, state metrics are moved (in only

m’-1 time steps) to appropriate positions in the one-

CLK —» SEQUENCE CONTROL

L 2 \

STATE METRIC + SURV. SEQ.J> qk~8

A

yk - PATH METRIC GEN.

(a)

CLK —>»

i Tk M
7
1
1
1

> - = i

r

\—Building Block

(b)

Og-3

Figure 4.2: LINEARLY CONNECTED PROCESSOR LAYOUT OF THE VA

(a) Functional Block Diagram
(b) Architecture for P(2) with v = 2
(binary alphabet and memory two)

._51_

dimensional array in anticipation of the path metrics gener-
ated by y;. This sequence of steps can be viewed as
unpacking in a stable manner (i.e. without altering their
original order) the items initially in the left half into
the even positions in the array, and those in the right half
into the odd positions of the array. The triangular struc-
ture of the series of transpositions is characteristic of
the control algorithm required for any size problem instance

of P(2).

After the path metrics have been added to the state
metrics, the bottom of the "triangle" consists of having
each even numbered processor compare its state metric with
that of its odd numbered adjacent neighbor. The smallest
state metric of this pair 1is chosen, normalized to prevent
overflow and then duplicated in its odd-even processor pair.
At the same time the survivor sequence registers are updated
and an estimate of a transmitted symbol in the past history
is ejected from the last processing cell in the array. The
events described in the last few paragraphs are then

repeated during the next symbol interval.

Overflow control 1is achieved by selecting one state
metric and subtracting it from all others. For an efficient
implementation one of the proéessors in the center of the
array should distribute its state metric into a special
register during the transposition operations. At the bottom

of the "triangle" each processor will have a copy of this

one state metric to be subtracted from all the newly gener-

ated state metrics.

Hardware logic speed must be Q(mv/T) in this algorithm
structured VLSI network. The simpler control algorithm this
structure enjoys is paid for by the increased processor area
and reduced throughput relative to the cascade design.
problem P(m) can be embedded not only in a one-dimensional
array of processors but also in two-dimensional arrays as

demonstrated in the next section.

EHEHEHEHEHEHEHE]
//\\\
/
7 N
/ \

(a)

(b)

START

MOVE
STATE
METRICS

TIME

(one
symbol

intervat)
ADD +
PATH

METRICS

COMPARE,
SELECT,
NORMALIZE

OUTPUT SYMBOL
ESTIMATE,

NEW STATE METRICS
STABLE,

RECYCLE TO START

Figure 4.3: LINEARLY CONNECTED EVENT SEQUENCE

(a) A schematic presentation of the sequence of events in

a linearly connected processor layout for P(2), v=2;

<—> denotes transposition.

(b) The corresponding trellis diagram.

_54 -

4.2.4 Mesh Layouts

in this section, we demonstrate that solutions to P(m)
can take the form of a compact mesh-type recirculation
network. The two-dimensional mesh layout has a higher
throughput than the linearly connected layouts studied in
the previous section because operands do not always have to
migrate as far through the network of processors. However,
the connectivity is inferior and hence time charges are
greater than the high wire area layouts to be studied in the
next section in that operands in a mesh must circulate
beyond immediate cell neighbors before they reach the

correct cell.

The rectangular mesh interconnection pattern consists of

N=m"’ identical processors (one for each state), arranged in

v v

L1 M=
a two dimensional array of size m 2" x m 2 . Bach processor
is connected to adjacent neighbors, as shown in Figure
4.4(a). Processors at the perimeter have two or three

rather than four neighbors; there are no end-around connec-
tions. The feature to note is that this structure 1is a
small and compact design that requires essentially little

interprocessor wire area.

Each cell is a message driven processing element with the
ability to generate, forward and receive messages. Each
cell contains an add-compare-select circuit, a path metric

generator {(or table lookup), transceiver and multiplexers

and a microcoded control processor. Conceivably, Figure
4.4(a) could implement a Viterbi receiver with a memory of
four (24=16 states). Two bidirectional communication paths
would be provided to each neighbor for path survivors and
for state metrics. The way in which the processors are
indexed determines the routing algorithm used to move data
between processors. The objective is to use index schemes
which minimize the time spent in routing. A row-major index
scheme, as illustrated in Figure 4.4(a), yields a simple
routing algorithm for each cell. The routing algorithm is
ultimately determined by the trellis diagram which has been
rearranged in Figure 4.4(b) ;to exploit a divide and conguer

solution paradigm [106].

The routing steps and the corresponding migration of
state metrics is illustrated in Figure 4.4(c-f) for a
16-state binary VA receiver implemented on a 4 x 4 square
mesh. One stage of an m" state trellis (the trellis diagram
for one symbol interval) 1is implemented by a collection of
routing steps. The sequence of routing steps, defined by
the discrete time index k, repeats every v symbol intervals
since the state metrics are back in their original starting

location. Communication of information from one cell to its

nearest neighbor is called a unit distance route [107] and

takes time t Note that some routing steps require

R.
multiple unit distance routes, to move information from

where it was produced to where it is needed next. This is

|
|
|

accomplished by having cells swap information with near
neighbors. In addition to routing time, processing cells
have an associated processing delay, tACS. The throughput
of the VA, executed on a square mesh is limited by the worst
case number of unit distance routes reqguired in a symbol
interval and the delay of the ACS processing cells. It can
take as much as Of m'b/ih time to rearrange the data among
the processors in preparation for the next ACS step.
Fortunately, only a few of the ACS+route operations take
this amount of time. The average time for a ACS+route for
2" states is only O(2Ib/i]/v). Consequently, the maximum

symbol interval (T) this structure could support 1is lower

bounded by:

2 v/
—— t_) (4.1)

T=0 (e ¥ 7 &

Thus, the required logic speed (operations/second) of the

structure must be Q(ZIM/il/(vT)).
Three aspects of the mesh implementation are important.

1. First, in order to spread the routing step time
penalty equally among each symbol interval a FIFO
queue of depth v should be used on the detector input
data stream. The output of the FIFO queue is glob-
ally broadcast to all processing cells. This is the
only global wiring required in the design (besides

power and timing signals).

Second, overflow control of the state metric regis-
ters is not straightforward, if we are determined to
use only the local near neighbor communication paths.
One possible strategy involves normalizing state
metrics once every v processing steps (i.e., once
every V steps into the trellis). This provides for
the luxury of selecting one state metric, say state
zero, and separating this value from the main compu-
tational data path. During the first [v/2]
processing cycles, this value can be broadcast to all
processing cells, in the same row, using only nearest
neighbor broadcasts (on a dedicated connection). At
this point in time each column has at least one
processing cell with this value stored in a register.
During the next |v/2| processing cycles, this value
can be broadcast to all processing cells in each
column. Now, all state metrics can be normalized
using this value. This normalization routine is then
repeated in the next Vv processing cycles. The
penalty paid in this type of scheme is that state
metric registers would have to be several bits wider
than if state metrics were normalized each processing
cycle.

Third, the detector output 1is available at each
symbol interval from the truncated survivor sequence

of any processing cell.

Figures 4.5 and 4.6 illustrate layouts where the number
of states are not a perfect square and where the alphabet

size is not necessarily binary.

The number of states to be processed could be larger than
N, the number of processors. An efficient means of handling
this situation is very similar to that devised for odd-even
merge sort described in reference [108, p.155]. Naturally,
there is a corresponding performance degradation associated

with achieving varying degrees of parallelism.

|
|
|
|
|

cd e f
o123 0 -
) 2 1
41{s{e {7 : 1
T T ;1
g8 o o B
n 4
5 T
iz al1s T
(a) (b)
|
ol{1] [2}={3 ol [s] [1] [9
al<{5] [6l]7 2| [0l [3] [u
gl«={9] [io}= 1l [a] [i2] [5] 13
12l[13] [1a}{15 Tel 4] [7] 15
(c) (d)
o| [4] [8] [i2 ol [2] Ja] [6
i 3
11 5] [e] 13 gl llio] (i2] 14
2| |6 _|foj 14 BREIRERRK
§ §
3] [7] u] [i5 9] Tuw] [13] i5

(e) (f)

Figure 4.4: THE VA IN A 4X4¢ SQUARE MESH
(a) The 4x4 Mesh of Processors labelled in row major order
(b) The rearranged trellis diagram presented in a notation
similar to that in Knuth [109 p.222].

(c)-(f)

Routing steps and Migration of State Metrics of a 16-state

binary VA receiver implemented on a 4x4 Square Mesh.

The numerals correspond to state metric labels.

The execution sequence is: cdefcdefcd....

- 60 -

o1 H23
| IR I B
45617

(a)

(d)

Figure 4.5: THE VA IN A 2X4 RECTANGULAR MESH
Routing steps and Migration of State Metrics of a 8-state
binary VA receiver implemented on a 2x4 Rectangular Mesh.
The numerals correspond to state metric labels.

The execution sequence is: bcdbcdbe....

61

0] | 2 3 4q 5 6 7 8

9 |] 12 13 14 15 16 7

I8 19 29 2l 22 23 249 25 26
(a)

0 | 2 3 e 4 5 6 T > Q

9 {10] 12 13 =>4 5 [ei16 |7

I8 {9 [=»{20 21 22123 24> 25w 26
(b)

0] 9 18 | 10 19 2 i 20

0] 3 6 9 12 15 I8 2t 24
< } [!
| 4 7 10] 13 16 19 22 25
{ i 1 >
2 5 8 | 149 17 20 23 26
(d)

Figure 4.6: THE VA IN A 3X9 RECTANGULAR MESH

Routing steps and Migration of State Metrics of a 27-state
ternary VA receiver implemented on a 3x9 Rectangular Mesh.

The numerals correspond to state metric labels.
The execution seguence is: bcdbcdbc....

- 62

4.3 LAYOUTS WITH LARGE WIRE AREA

4.3.1 Shuffle-Exchange Lavouts

In this section we propose a shuffle-type recirculation
network to handle the data flow of the Viterbi algorithm
rather than decomposition into one step subtrellis compo-
nents (i.e., butterfly) proposed by other authors [7,72,76].
However, the shuffle-exchange (SE) network as defined in the
published literature can only be used to implement the VA
for binary alphabets (denbted here as 2-SE graphs). Well
known VLSI layouts for 2-SE graphs are extended and general-
ized in this section such that these new layouts realize the
VA for m-ary alphabets. The shuffle exchange pattern is an
ideal recirculation network in that one pass through the
network is sufficient to move data to appropriate nodes at
the next time instant. Solutions to P(m) based on the SE
topology are faster than those based on the mesh since the
performance of the mesh is 1limited by the routing time.
However, to counterbalance their improved time performance
SE circuits are much larger than mesh based ones due to the
increased area reguired for interprocessor wiring.
Nevertheless, by exploiting the parallelism of the algorithm
in shuffle-type layout slices, arbitrarily large channel
memory lengths (extensibility) can be accommodated while

maintaining regular communication and control paths.

Shuffle exchange graphs were [110] originally proposed in

1971 as an interconnection methodology for parallel computa-

tion. It has been shown that algorithms to compute the fast
Fourier transform (FFT), matrix multiplication and sorting
among others [111-118] can be efficiently implemented using

this scheme.

With the advent of VLSI, the question of how to best
layout the shuffle exchange graph on a grid using as little
area as possible 1is of practical as well as theoretical
importance. Thompson [80] in his Ph.D. dissertation was the
first to address this issue and showed that any layout of
the n-node (n=2") shuffle-exchange graph requires
Q(nz/logzn) area. Several researchers in the following year
attempted to find layouts which achieved Thompson's lower
bound [96,97]. The area layout question was finally settled
by Kleitman et. al. [91]. The O(nz/logzn)—area layout for
the shuffle exchange graph in [91] 1is asymptotically
optimal, however, it is not optimal for small values of n
(i.e., n<10). Leighton and Miller [119] describe tech-
niques for finding good layouts for small shuffle exchange
graphs. Their technique is generalized in this paper to
allow an area efficient embedding in silicon of the Viterbi

algorithm with arbitrary alphabet size and memory length.

The 2-SE graph consists of n=2Y nodes and 3n/2 edges.
Bach node is associated with a unique v-bit binary string

s s eee 4 S _ . Two nodes K and K' are linked via a

v-1" “v-2' 0
shuffle edge if K' 1is a left or right cyclic shift of K

(i.e., if K = Sv-l' cee 1 8, then K' = S, 7 **+ 1 S

or K' =8, 8 s «er Sl). Two nodes K and K' are linked

via an exchange edge if K and K' differ only in the first

' =
1’ S, then K S,_1"

sl, EO). For example, we have drawn the 8-node shuffle

exchange graph on the right side of Figure 4.7(a) with the

bito (iue., ifK= S e s y S

e s o r

v-1"'

shuffle edges drawn as dashed lines and the exchange edges

drawn as solid lines.

The above definition for the shuffle-exchange graph as

used by Thompson and others [80] will be denoted by G,. The

exchange edge can be defined in another way. Two nodes K

and K' are linked via an exchange edge if K = S o1t ot v
LI « s

sl, sO and K sv_z, eve g sl, SO' Sv—l' This graph,

denoted by GS, corresponds to the Viterbi algorithm trellis
structure for binary alphabets and is similar to Stone‘s
perfect shuffle depiction. The two graphs Gt and Gs are
illustrated in Figure 4.7 for V = 3, Appendix B shows that
there is a sequence of elementary contractions that will map

G, into G,. Consequently, G can be embedded with algor-

t t

ithms that reside in G_. By dealing with G, exclusively it
is not necessary to distinguish between these two struc-

tures.

The collection of all cyclic shifts of a node K is called
a necklace and is denoted by <K>. For example, the necklace
generated by 0011 is <0011> = { 0011, 0110, 1100, 1001 }.
Each necklace corresponds to a cycle in the shuffle-exchange

graph and shuffle edges always link nodes which are in the

same necklace. I1f the necklace contains precisely v nodes,
then it is said to be full. Otherwise, a necklace contains
less than v nodes and 1is said to be degenerate. For
example, <0011> is full while <0000> is degenerate. The
partition of the shuffle edges into necklaces is a key part
of the layout technique used to embed the Viterbi algorithm

into silicon.

In the layouts presented in Figures 4.8-4.13 each neck-
lace appears as a dashed rectangle consisting of arbitrarily
long segments of two vertical tracks and wunit length
segments of two horizontal tracks and each exchange edge
appears as a solid horizontal 1line segment. Figures
4.8-4.11 are sample solutions to P(2) while Figures 4.12 and
4.13 are sample solutions to P(3). The nodes or ACS proces-
sors in the VLSI grid model layouts are numbered such that
each corresponds to the state metrics they evaluate when
numbered in a "natural" ordering. It is not known how best
to order the necklaces in general to minimize the maximum
overlap of the horizontal exchange edges. One simple
heuristic proposed for the binary case [119] is to order the
necklaces from 1left to right so that the minimum value of

the nodes in each necklace form an increasing sequence.

As can be observed in Figure 4.11, the structure of the
layout facilitates efficient chip manufacture and data

management, with only seven ACS processors per layout slice

each connected by nonoverlapping horizontal wiring.

several other points are worthy of note. The adjacency
matrix of the SE graph has a regular structure. This
allowed an investigation as to the planarity of the graph
generated by considering processing nodes to be one-step
trellis components (i.e. butterfiy). The Hopcroft and
Tarjan planarity algorithm [120,121] established that for
4<v<10 the digraphs are nonplanar (Appendix E). This
complements the work of Thompson [80] who showed that the
shuffle exchange graph cannot be embedded in silicon using
area linearly proportional to the number of nodes. (This
has recently been established [122] to be a necessary but
not sufficient condition for nonplanarity.) This test was
motivated by the existance of a general purpose divide and
conquer layout algorithm that produces low area layouts for
a wide variety of families of graphs including planar graphs

of degree four or less [98].

To generalize the 2-SE structure presented earlier to an
m-shuffle exchange graph, which corresponds to solutions for
P(m), we proceed as follows. Associate each state (node)
with a unique v-digit m-ary string. Shuffle connections are
described by cyclic shifts as before. Exchange connections
are defined by nodes with the same first v-1 digits and the
last digit being any valid number within the number radix m
(i.e., 0,1,2,;..,m—1). The resulting graph has a maximum
vertex degree of four. The colleétion of all cyclic shifts

of a node K is called a necklace, as before, and is denoted

|
|
|
|
|
]
|
|
i
|

py <K>. For example, the necklace generated by 012 is <012>
= {012, 120, 201}. Each necklace corresponds to a cycle in
the m-shuffle-exchange graph and shuffle edges always link
nodes which are in the same necklace. I1f the necklace
contains precisely Vv nodes, then it is said to be full.
otherwise, a necklace contains less than v nodes and is said
to be degenerate. If a necklace contains only one node it
is said to be a self-loop. As an example, for v =3, <012> is
full while all degenerate necklaces, such as <222>, are
self-loops. It is possible to have a degenerate necklace
that is not a self-loop such as <012012>, for the case v=6.
The partition of the shuffle edges into necklaces 1is the

layout technigue used to embed the VA into silicon.

As in the binary case, it is not known how best to order
the necklaces in general to minimize the maximum overlap of
the horizontal exchange edges. However, the same simple
heuristic developed for the binary case [119] appears to be
equally useful in the m-ary case where the necklaces are
ordered from left to right so that the minimum value of the

nodes in each necklace form an increasing sequence.

In Figure 4.12, a shuffle-exchange layout for the Viterbi
algorithm with ternary alphabet and memory two, is shown.
Detailed data flow within the the shuffle exchange graph for
this design is presented in Figure 4.13(a). Note that each
collection or group of exchange edges is local to three

nodes. As usual, each node is an ACS circuit. The layout

can be extended to arbitrary memory size, as shown in Figure

4.13(b).

In general, for an m-ary alphabet and memory , there are:
(i) m” nodes.

(ii) m self-loops.

(iii) m nodes in each "exchange" edge.
In this context "exchange" edge refers to the
collection of edges defined by the exchange
operation with at least one common node.

V=1 n

(iv) m exchange" edges, m of which contain a node

that carries a self-loop.

(v) 2m’ - mV7! edges. This is established as follows: i
m“-m nodes are contained in the necklaces, which |
because of their cyclic nature also contain m " -m
edges. The mY"! "exchange" edges each contain

m-1 edges, as illustrated in Figure 4.13(b).

Finally, there are the m self loops that are not

usually illustrated, for a total of 2mV-mV !

edges.
As a check, consider when mV=2V=n., Then we have
2m¥-mV " !=2n-n/2=3n/2, as was known previously.

(vi) v nodes (ACS units) in each full necklace.

(vii) No more than L(mv - m)/vJ full necklaces.
Property (vii), above, leads to the following theorem.

DEFINITION: In the domain of natural numbers, let S
be a set whose elements are either primes
or pseudo primes to the base m.

THEOREM: In an m-shuffle exchange graph, there can be no
more than (m'-m)/v full necklaces, which occurs
iff v is an element of S.

PROOF : An m-shuffle exchange graph with m’ nodes has m

\%

self-loops. Consequently, only m" - m nodes are contained

in the necklaces. If all necklaces are full then v must be

Y

a factor of m“ - m since a full necklace, by definition, has

v nodes. By Fermat's Theorem [26], v is a factor of m’ - m

when v is prime.

All the other numbers that are not prime that satisfy the
equality mY - m = 0 (mod v) are, by definition, pseudo
primes to the base m. For example, 15 is a pseudo prime to
the base 4, because 4'5- 4 = 0 (mod 15) and 15 is composite
(5 * 3)., Since S is the union of the two subsets defined by
the primes and pseudo primes to the base m, a sufficient

condition for all necklaces to be full 1is that v be an

element of S.

Necessity is proved from the definition: if v is not
prime then it must be composite, and a composite number that
satisfies m' - m = 0 (mod V) must be a pseudo prime to the

base m. ®

As an aside, it is interesting to note that the set of
Carmichael numbers [123] are, by definition, pseudo primes
to every base m. In addition, the set of prime numbers are
prime irregardless of the base m. “Therefore, if v is either

v

a prime or a Carmichael number then v is a factor of m” - m

independent of the value of m.

- 70 -

PRSENREES o

Having established an wupper bound to the number of full
1aces we can expect in a m-SE graph, we will next show
,conditions under which all necklaces are full.

EOREM: In a m-shuffle exchange graph all necklaces,
other than the m self-loops, are full

independent of the value of m iff is a prime
number.

BEach node can be identified by a V-digit string or label
_i, SPYERERY. xj, ceer Xgy X where each xj is drawn from
he set {0,1,2,.-0,“‘1—1}0

The theorem amounts to proving that for any given node,

ther than that involved in a self-loop, no cyclic shifts

ess than y will regenerate the node label iff vV is prime.

Assume there exists a cyclic shift p for which the string

s regenerated. In this case the following sets of equa-

v-1 xv—p-l (mod V)

V=2 Tv-p-2 (mod V)

(4.2)

1~ *y-p+l (mod v)

0 *v-p (mod V)

Let US reorganize the system of equations such that after

_osing any one of the equations 1in 4.2 the others are

1ected by subscript and arranged in order as follows:

X = X
Q’l rl
x = X
Qz rl r2
[] (4.3)
X, _ =x
B T-1 Y

ure, where 0<k<y. To prove that there is always a sequence
f substitution steps that terminates in the 1last eqguation
elected with r. =4, let us do this by contradiction. Assume

here exists another r =rj#21 which 1is the subscript on the

k
ight side of the last equation. This however, cannot be
the last rk as rj must be on the left sinée each of the
indices is represented once and only once on both the left
and right sides of the equality in 4.2 and has not been

eliminated previously by substitution.

At this point we have established that the rk=zl and that

0<k<y. Now we will try to evaluate k.

Using the first eguation selected, the subscript on the
right is related to that on the left, for a shift of p, by

the following relation:

ll - p (mod V) = r, (4.4)

e that of the second eguation selected is related by:
e

R,z-p (mod V) =r, (4.5)
equivalently from 4.3:
r; P (mod V) =) “ (4.6)
;ch upon substitution of 4.4 into 4.6 yields:
9,1-2p (mod \))=r2 (4.7)
n general, for the kth substitution,
Ql—kp (mod v) = T, (4.8)

jowvever this is precisely the step where r,=%, (the last

step). In other words, the following equation holds:

L. = kp (mod V)

1 L

1
(4.9)

<> kp (mod V) 0 , where 0<p < v

The only way that kp (mod v) = 0, for v prime, is either
when k (mod v)=0 or when p (mod v)=0. Since p<v we know
that y is not a factor of p and hence p (mod v)=0 can be
discarded. However, there is a solution to k (mod v)=0
Yhich is k=v. But this means that all the xj's are eqgual to
le which implies that the only degenerate necklaces for v
Prime are the self-loops. Therefore, V prime is a suffi-
Ccient condition for all necklaces, other than the self-

loops, to be full.

‘NeceSSitY is proved by the following argument. If v is

t prime it must be composite. Suppose, 1in this case,
é a factor 4, wbere 1<g<v. Then take the node label or
ceer X and segment it into contiguous
rtions of @ digits. Choose values for each digit in a

ring ¥, _qr ¥, o

pstring of g digits from the set {06,1,2,...,m~1} such that
li the digits are not equal in value. (This is always
éssible since g>1 and m>1.) Place identical copies of this
ﬁbstring in each portion of the segmented node 1label.
fter g shifts the node label is the same. Since q is less
han v, the necklace that contains this node is degenerate.
Hence, if v 1is pnot prime there is at least one necklace,

other than the self-loops, that is not full. =

This theorem is significant in that for a particular

channel memory lengths. Fortunately, near term techno-
logical interest will probably be concerned with 1<v<20,

precisely where eight prime numbers reside.

A detailed block diagram of the shuffle layout slice is
shown in Figure 4.14, for P(2) and v= 2. The guantized
:input data signal yk is fed to the branch metric lookup
‘table (ROM) or combinational circuitry. The corresponding
's are delivered to the appropriate adders. Two ACS units
are detailed in this layout slice along with registers for

the path survivors ;(a).

i-‘ o
]

b
010 .'—12:
I
(o]] r-i'-- 3—%-1
! i
A
100 :‘-I"‘:
¢ '
! (
101 'L--—.s :
o |
uo 6
1 7
(a)
000 o}
00! == I‘I
| | |
((|
010 I =y |
{ ! |
! 3 |
o] : :" 'O——T—T-
i ot
100 i : -1 -4 =
t
! 1
101 i—? l
i
] '
"o -
t

(b)

Figure 4.7: A COMPARISON OF THE BIPARTITE GRAPHS G, AND GS
(a) The Shuffle-Exchange graph G, used by Thompson [80]
(b) Viterbi trellis structure (G,) for binary alphabets
similar to the Perfect Shuffle structure by Stone [110]
The bipartite graphs on the left side are folded about a
vertical axis to generate the graphs on the right side.
-—--- shuffle operation; exchange operation.

- 75 -

STATE

00
Ol
10
"
Butterfly
(a) (b)
0 2 T'?
'y RN
'] 3
Necklace
(c) (d)

Figure 4.8: VA GRAPHS FOR BINARY ALPHABET AND MEMORY 2

(a) Single stage trellis ‘

(b) The trellis diagram in (a) unfolded

(c) The ACS units in (b) separated

(d) Equivalent grid model layout for the 4 node 2-SE graph
———- corresponds to the shuffle operation

corresponds to the exchange operation

- 76 -

23

(o]} 67
45
(a) (b)
0 | 2 3 6 7 Il Ot O
'—‘9""",'—'1""?—"“ Il O1 O
| : | | 0101
Y G S 0O1 01
q 5
(c) (d)
i
A . -—--
: i A
| ' i % f_:
Lo i "
A !
(e)

ure 4.9: VA GRAPHS FOR BINARY ALPHABET AND MEMORY 3
Butterfly network (Signal Flow Graph)
Digraph
Grid model (optimal area) layout for 8 node 2-SE graph
Adjacency Matrix for (b)
Butterfly network on the 2-SE graph

- 77 -

(10001 000]
2 § 10001000
01000100
01000100
"y 00100010
0 00100010
0001000 |
: 12 0001000 1]

(a) (b)

! i
1
D S G
& 4+ 8 12 1 g3
]
L"".——-—‘——-‘——-‘—__:
4 5 10
e
'
(c) QE
! —
A
[}
L
L e
R
(d)
Figurek 4,10: VA GRAPHS FOR BINARY ALPHABET AND MEMORY 4
(a) Digraph '
(b) Adjacency Matrix for (a)
(c) Grid model (optimal area) layout for 16 node 2-SE graph
(d) Butterfly network on the 2-SE graph

”

‘—---—_--‘ - - . e - - -~

- - e o - - - - - * -
ro il
Ol ¢

e —————— et

%272

-

[} 0 o
'---.‘#,__..- g---——-vx'_--
<

vAJNNE NN JIE WP NP A Spu
~

g

' o=~ “--F=l-===l5~ ="t ---
0 © o mI|8
©_ o o @

2

87
t
J
]
\
T
o7
]
4
"7

85

Py
v,
1
]
|
1
I
]
1

2)

<

r‘!
r=l--t--r-F ———_-—-7’__—--..---‘_-_-.’
) Q 2] o
q L]] | f @ ”'

!
]
d

Tsg

1
T
|

@
]
|
!
!
[}
!
}
t

*

1
]
{
1
{
1
1
as‘{ns

!
i
|
|
!
|
1
]
!
]
1
I
\
]
i
[

!
131
i
{
[
]
]
[]
. []
T39 [78 :79762
]
]
[}
[
A)
)

P Y

101 114}

o

-.-_"9---__..__- I S DY s B E]
']
~

- - L PR I S PN Y PA Y T] L

-~ | — =~} @

u
3
Te

!
t
|
1
t
]
1
i
[
T
3
151 '{108‘
1
t
i
[}
[}
i
]
1

50'
§
1
]
1
1
]
-

73 10

8
119
1

]
t
t
]
T
d

01-...-—-..09"_..—-_-.4)9----_———.0
~

S NN (RN RN SRPUUIPURGNRQEN "S- N (.

JER N WL NI SIS L. S MR S Ll R Y

®
)&

" 0 (o
JERNRUED PURPS NI gl "M\, PRI FRpE _0____|
< o 0 1913 -
4 AL)

Figure 4.11: GRID MODEL 2-SE LAYOUT FOR P(2) AND V = 7
USING THE LAYOUT TECHNIQUE IN [119].

_79..

Figure 4.12:

(a)
(b)
(c)
(a)
(e)

STATE

O ~N O Hh N —-O

Single Stage Trellis

Butterfly network (Signal Flow Graph)

Digraph

Hex layout for the 9-node 3-Shuffle-Exchange Graph
A 7x3 layout for the 9-node 3-SE Graph

80

VA GRAPHS FOR TERNARY ALPHABET AND MEMORY 2

wn
B
a
Q_o <5
< T
4 .
z Q,
N o B~ 0
S Z 0 ~ < oo
S SPL SN A mom
- t £ o~ |
WU, M R =y = W0
- S ~ <t |
™ ——————— -1 m e3
| - 11T Tull“ H l— m [e
i 1] | - beee—-= o T|I"T Y * Y12 53
™ 1 ! ——— g T -~ w oo
Lddd-- 14~ - — -+|-{-- r ' il-- o l
- [e bk SN P vl it a s iy PO |
= N Y Y
‘o H -—— oy ﬂll.l - |'|“ m:mz [o0]
—..I.W.v:l"lln.;ll.IA .H.ll.n U H B _

I N i F . RN — -
™ [N D E atuind ok dd st i il bt — o+
e o .V"J' = ——— - o a I “ Rl

© z ~— L e s s s L - %
- *] o o w0
~ g —— = - == - - e = ey Tlf
- o ————tg-— t] R o
_q : | L B 1 1B S S 59,
™, 4 1 O ® < o O3
| r- -rr--—T- |" - O
- R D ! J 0w >y
o t- -1 N ") o]
o~ ©
o » - e e e e ey ™ O~
ol Gt et i - 0
© . e .0
> =1 I-ll o) <P ord +—
> " @ x
q N © TRy
N IS
4 o
4

a
b

g~~~
Nt N

x

ETRIC
GEN.

NORMALIZE

Figure 4.74: DATA PATHS WITHIN THE VA 2-SE LAYOUT SLICE

I' State Metric CMP: Comparator
» Path Metric SR: Shift Register
x Survivor Sequence SELECT: 2-TO-1 Multiplexer
a Output Data Seq. SUB: Subtract Unit
(See Chapter II for a description of the nomenclature)

- 82 -

4.3.2 Cube - Connected Cycles Layouts

A feasible substitute for the shuffle-exchange network is
a relatively new ‘interconnection scheme> known as the
Cube-Connected Cycles. The CCC has been shown to be capable
of efficiently solving a large class of problems that
include the fast Fourier transform, multiplication, polyno-
mial product, sorting, permutations and derived algorithms
[B84]. This section demonstrates that the CCC structure can
be used to solve dynamic programming problems of the type
suitable for implementing the Viterbi algorithm. The
topology of this network can be derived from a boolean
hypercube of 2k vertices by replacing each vertex with a
cycle of k vertices, for a total of k2k vertices. It has a
compact and regular VLSI type structure. In addition, the
CCC is of particular interest because its vertex degree is
independent of the problem size parameter, unlike the hyper-
cube. Unfortunately, the CCC structure as it stands is
capable only of implementing the VA for binary alphabets.
In this section, well known VLSI layouts for the CCC are
extended and generalized such that these new structures can
realize the VA for m-ary alphabets. These new computation

graphs have vertex degree less than five.

As opposed to the SE, which implements a recursive
version of the trellis diagram for one time step, the CCC
directly implements several stages of the trellis diagram,

as 1illustrated in Figure 4.15 for two time steps. The

correspondence between the trellis and the CCC layout can be
visualized by restructuring the trellis diagram as in Figure

4.15(a).

The CCC concept can be generalized for m-ary alphabets in
the same manner as the SE was. Since each node must have a
unigue label, associate each node with a unique v+1 digit
string where all digits are m-ary except the first digit
vhich is v-ary (i.e., nodes are labelled from 0,0,0,...,0 to
v-1,m-1,m-1,...,m-1)., Cycle connections, illustrated by the
vertical wires, are defined by nodes with the same last v
digits, the first digit being any number from 0 to v-1.
(Two nodes K and K' are linked via a cycle connection for K
=S, 8, ;s o s 5,8nd K' =85, 8, ,, ... , s, where 5 is
any digit from 0, ..., V-1 other than sv.) Cube connec-
tions, illustrated by the horizontal wires, are defined by

nodes which have the s\)th digit to the right of s _, being

-1

any number from 0 to m-1. (Two nodes K and K' are linked

via a cube connection for K = s , s y ese 3 S 4 ees , S
Vv V-1 i 0

and K' = s , s y eee s y see , 8 for j=v-1-185.)
v V-1 i 0 v

For an m-ary alphabet and memory v, the properties of the
generalized CCC are the following:
(i) vmV nodes.
(ii) mY cycles.
(iii) v nodes in each cycle.
(iv) ymV"lcube connections.
(v)’ m nodes in each cube connection.

v-1

(vi) 2ym” - vmY"'edges. This is established as

84

follows: V nodes ére contained in each of the
mY cycles, which because of their cyclic
nature also contain vm’ edges collectively.

V-1

Then there are vm cube connections each

with m-1 edges. 1In total, 2ym” —vmv"l edges.

Area efficient VLSI layouts for the CCC are generated
when cycles are ordered from 1left to right so that the
minimum value of the nodes in each cycle form an increasing
seguence. This concept is illustrated for binary alphabets
in Figure 4.16(b) and for ternary alphabets in Figure
4.17(c).

The SE processor has a slight area advantage over the CCC
processor, because of its simpler control algorithm.
However, the CCC is a somewhat more regular interconnection

pattern, so that it may be easier to wire up in practice.

The regular interconnection pattern can be exploited by
defining a CCC building block, useful in the construction of
VA systems with large channel memory lengths, as illustrated
in Figure 4.18 . These building blocks would be manufac-
tured as separate chips and arranged on a printed circuit
board or the dies would be integrated onto a silicon wafer
which contains a regular interconnection pattern. This
interconnection pattern would be personalized by the place-
ment of appropriate solder dots, as illustrated 1in Figure

4.18(c) and Figure 4.19, after selecting the functional

processors from those available on the wafer in each radial

1ine of processors.

Only processors in one stage of the trellis are active at
each time step. This implies that each cycle 1layout
requires that the)'s generated by a quantized received data
signal be fed to successive nodes each time step. This
feature 1is advantageous in serially transmitting the
survivor segquences, which normally require more bits than
the state metrics, over 1long interprocessor interconnec-
tions. In addition, this feature may allow the structure to
be multiplexed for the detection of data sequences from
several data sources. At most, v independent data streams
can be decoded in a CCC structure with vm" nodes, resulting
in full hardware utilization. Note however that the appro-
priate path metrics would have to migrate from node to node

around the cycle connection with the state metrics.

The CCC structure may also be used to decode one data
stream Vv times as fast as the speed of a single ACS
processing node and associated routing step. This feature
can be exploited 1in digital communication over burst noise

channels.

One technique for achieving reliable transmission on a
burst noise channel 1is the use of time diversity or inter-
leaving [124]. The approach requires no knowledge of

channel memory other than its approximate length, and is

cube

cycle connection 0 2
connection
0 2 4 6
! 3
4 5 6
}" 7 5 7
1 3
(c)

x._
Ay

Ya

A
I §

(e)

Figure 4.15: CCC GRAPHS FOR BINARY ALPHABET AND MEMORY 2
(a) Conventional Trellis Diagram Structure
(b) Restructured Double Time Step Trellis Diagram
(¢) Grid model (optimal area) layout for 8 node CCC graph
(d) Grid model in (c) rearranged to illustrate cycles
on a 2-D hypercube
(e) Detailed Grid Layout With Bus Structure

15

0 4
¢ Py
& 4°
3
¢
I IRamr
16 17 18 19 20 21 22
(b)

23

Figure 4.16: CCC GRAPHS FOR BINARY ALPHABET AND MEMORY 3

(a) Restructured Trellis Diagram

(b) Grid model (optimal area) layout for 24 node CCC graph

(¢) The CCC illustrated on a cube

™ ~ O G a O N

Figure 4.17: CCC GRAPHS FOR TERNARY ALPHABET AND MEMORY 2
(a) Conventional Trellis Diagram
(b) Restructured Ternary Trellis Diagram
(c) Grid model (optimal area) layout for 18 node CCC graph
(d) Grid model in (c¢) rearranged to illustrate cycles
on a set of 2-D hypercubes

|
i
]
1
i
4
i
[}
|
-4

L e e o —— o —

r
1
]
1
1
i
¥
1
|

1
(a) (b)

v v
} @
L >
P
? D>
+He h
' o
dh_‘ P
P
Y <]
AN A

(c)

Figure 4.18: A CCC BUILDING BLOCK FOR BINARY ALPHABETS

(a) Detail of building block primitive (refer to Fig. 4.15)
Note that each heavy dot is an ACS circuit

(b) Schematic representation of the building block

(¢) Layout for CCC network for binary alphabet and memory 4
Note orientation of 8 building blocks (chips) and
placement of solder dots in central programming plane

- 90 -

Radial lines
merged

(@ (b) (c)

: a
& a
8 a
..o.EE P P ® E SXLRY v N v B v I v % Eﬂ ﬁ %-...
3| -
"™]
] -
8 &
B @
@ rogans (¢) SRR

Plane

Figure 4.19: CCC CHIPS IMPLEMENT THE VA (BINARY ALPHABET)

(a) Memory 2: 1 chip /RL: 1 RL : TOTAL 1 chip
(b) Memory 4&: 4 chips/RL: 2 RLs: TOTAL 8 chips
(c) Memory 6: 16 chips/RL: 3 RLs: TOTAL 48 chips
(d) Memory 8: 64 chips/RL: 4 RLs: TOTAL 256 chips
(e) Memory 10: 256 chips/RL: 5 RLs: TOTAL 1280 chips

Note: Solder dots absent and relative sizes not illustrated

consequently very robust to changes in memory statistics.
From a conceptual standpoint, the incoming stream of binary
data is separated into a fixed number, say v , of data
streams. Each of the v data streams is then separately
lencoded and the encoded sequences are interleaved together
for transmission through the channel. The constant v is
known as the interleaving degree. At the channel output,
the receiver demultiplexes (unscrambles) the received data
streams into v streams, each stream is separately decoded,

and the decoded data is finally commuted together again.

The idea behind this technique is that successive symbols
within any code word will be separated on the channel by v
symbol time units. Thus in the case of practical channels,
where memory decreases with time separation, the channel
noise affecting successive letters in a code word will be
essentially independent for sufficiently large Voo
Consequently, any of the coding techniques for memoryless
channels can be used on a burst noise channel in conjunction

with interleaving.

If the coding technique is a convolutional code of
constraint length K then the appropriate VLSI realization of
the convolutional decoder based on the Viterbi Algorithm is
a demultiplexer and a binary CCC structure with v2¥ nodes,
when the interleaving degree is a multiple of the convolu-
tional code input memory. The hardware is fully utilized

each symbol interval. The channel data rate is limited to v

times the speed of a single ACS processing node and routing

step.

The structure has the following performance characteris-
. tics. An error burst of length Vv on the channel will look
like single errors to each of the separate decodérs in the
structure. Hence, if each decoder is capable of correcting
b errors in a constraint length, then, with interleaving, b
or fewer error bursts of length v or 1less relative to a
guard space of length at most v(K-b) = v((v+1)n-b) will be

corrected, for a n-output convolutional encoder [124].

4,3.3 Tree of Meshes Layouts

Rather than observing that the trellis 1is in fact a
folded tree structure, this section considers a divide and
conguer layout strategy for the CCC solution to P(m) that
capitalizes on the planar embedding property of binary
trees. Our motivation is provided by the fact that certain
classes of graphs can. be partitioned recursively into pieces
with few connecting edges. This section presents recursive
geometries (floor plans) for realizing the VA in silicon, in
the form of H-tree and Y-tree of meshes. The H-tree of
meshes concept as proposed for othér application areas is
known while the Y-tree of meshes construct is presented here
for the first time. These layouts have attractive synchro-
nous clock distribution [125] characteristics (vis-a-vis

self timed systems) and may be technologically important in

the automated design and functional partitioning of VLSI

chips [126,127].

The binary tree of meshes [122] is formed by replacing
each node of a complete binary tree with a mesh and each
edge by several edges which link the meshes together. More
precisely, the root of the binary tree is replaced by an n x
n square mesh (where n is a power of 2), its sons are
repléced by n/2 x n meshes, their sons are replaced by n/2 x
n/2 meshes, and so on until the leaves are replaced by 1 x 1
meshes. In all cases connections are made between fathers
and sons so as to preserve the column and row order of the
nodes and to insure that the resulting graph is planar. By
modifying the familiar H-tree layout for binary trees the
N-node tree of meshes can be embedded without edge crossings
in a square region, as 1illustrated in Figure 4.20. The
resulting graph, referred to as the n x n H-tree of meshes
has N = 2nzlog n + n2 nodes. The N-node tree of heshes has

1
an O(N%/logzN)—separator [122].

Leighton in his doctoral dissertation [122] showed how to
embed any N-node planar graph in an O(N log N)-node tree of
meshes. This result has been generalized to arbitrary
graphs. By modifying the standard H-tree layout, an N-node
tree of meshes can be embedded without edge crossings in

area O(N log N).

Previously, a VLSI layout for the Cube-Connected Cycles
network on N = k2k vertices was presented [84]. The CCC
graph has an O0(N/logN)-separator theorem since removing all

edges in one dimension of the original hypercube bisects the

éraph, removal of those in another bisects the halves, and
so forth in all k dimensions (a recursive generalization of
bisector). The CCC and H-tree of meshes have identical

separétors as shown in equations 4.10 and 4.11 below.

N 3, _ nlogn + n?
)71 o= O{[1og(nzlogn + n

3
2)] }

2k k 2k 3
2 T"log2 k+ 2 . 1} when n = 2

log (2°%10g2% + 27%)

- o] k

x22k % (4.10)

i

o

[
2

O‘iGEE O (=— (4.11)

|
N

o (2%

consequently, the CCC can be embedded within the H-tree of
meshes topology. Figure 4.21(b) 1illustrates an example of
the CCC layout of Figure 4.16(b) embedded in the H-tree of

meshes Ta.

The CCC layouts for ternary alphabets, presented earlier,
lead to the development of a new construct called the Y-tree
of meshes, the counterpart of the H-tree of meshes. The
development of the Y-tree of meshes 1is guided by the
requirement it have a separator theorem identical to that of
the ternary CCC layouts. However, the concept of a sepa-
rator theorem must be generalized to accomplish this task.
In the case of ternary alphabets we are interested in the
cut set which trisects the computation graph.

Definition: Let S be a class of graphs closed wunder the
subgraph relation, that is, if G is an element of S, and G’
is a subgraph of G, then G' 1is also an element of S. The

class S is said to have an f(n)-triseparator, or is
f(n)-triseparable, if the following condition is true:

There exists a constant ¢ such that if G 1is an

n-vertex graph 1in §, then by removing at most
c-f(n) edges, G can be partitioned 1into three
disjoint subgraphs G G2 and G3 each having at

least n/4 vertices.
A family of graphs, S, has a strong f(n)-triseparator if the
conditions for an f(n) -triseparator hold, and in addition
G,, G,, and G; have at most (n+1)/3 nodes each.
The N-node CCC layout for ternary alphabets has a strong
O(N/log N) triseparator identical to the ternary tree of

meshes defined below.

The ternary tree of meshes 1is formed by replacing each
node of a complete binary tree with a mesh and each edge by
several edges which 1link the meshes together as before.
More precisely the root of the binary tree is replaced by an
n x n x n hexagonal mesh (where n is a power of 3), their
sons are replaced by n/3 x n/3 x n/3 meshes, and so on until
the leaves are replaced by 1 x 1 x 1 meshes. Like the
H-tree layout of tﬁe binary tree, the Y-tree layout 1is a
recursive embedding of the complete ternary tree in a hexag-
onal mesh. By modifying the Y—treé layout of Figure 4.22(a)
slightly the Y-tree of meshes 1is constructed as illustrated
in Figure 4.22(c). The Y-tree layout has a maximum edge
length less than that of CCC layouts embedded 1in a rectan-
gular grid. This is a desireable feature in £hat the Y-tree
layout attempts to minimize propagation delay of the inter-
processor connections. In a stylized representation, larger
channel memory lengths are easily depicted, as in Figure
4,23, This visual notation highlights the recursive parti-
tioning into pieces with few connecting edges that this

class of graphs enjoy.

1l

11

1

1

n
(V]
L
7)) 0
3] o
m g
o]
B Y-t
O (o}
j]
24]
B (V]
w "
33
jea}
B
fad x
B nag
= a 2 o
O o -
Nt ~— o QP
N E
. L]
$tu O
[o]
)] o
“w o3
300
Oy Dy
o 4 @
B —
<
%X 0o
< O
¥
o P
F-a
Eon

© Q

98

4

:

i2 20 22 14

(b)

Figure 4.21: CCC EMBEDDED IN A TREE OF MESHES
(a) CCC of Fig. 4.15 embedded in the H-tree of meshes T,
(b) ccCC of Fig. 4.16 embedded in the H-tree of meshes T,

Figure 4.22: THE Y-TREE LAYOUT
A Y-tree layout of a complete ternary tree of height 3
A forest of Y-trees packed in a bounding rectangle
Y-tree layout of Fig. 4.17 (P(3); v = 2)
Stylized Y-tree of meshes notation for (c)
Note placement of solder dots in central programming plane

- 100 -

THE Y-TREE OF MESHES LAYOUT

/

9

Y-tree of meshes T
lane.

in programming p

in a

3
ollection of ACS processors.

Figure 4.23:
CCC for ternary alphabet and memory

Small hex regions are a ¢
Note placement of solder dots

101

4.4 AREA-TIME COMPLEXITY MEASURES

Using the grid model described in the 1last chapter, we
demonstrate, 1in this section, that any VLSI implementation
of problem P(m) must obey certain functions of the problem
size parameter that lower bounds particular types of cost
functions such as area*time. This is done by a technique
originally developed by Thompson, using the VLSI grid model
which proves that a minimum amount of information must be
shipped from one part of the circuit to another to solve a

particular problem instance.

As demonstrated above, the speed of a VLSI design may be
limited either by the time taken by arithmetic operations or
by the time taken to get intermediate results to the proper
place. It is the latter that generally places a stricter
limit on large VLSI designs. For algorithms that must pass
data from one side of the communication graph to the other,
the bottleneck in data ‘flow is wultimately guantified and

bounded by the minimum bisection width of the graph.

The minimum bisection width of a graph is the smallest
number of edges whose removal disconnects one half of the
vertices from the other. The set of removed edges is called
the cut set of the bisection. For example, the minimum
bisection width of Figure 4.4(@) is four. In general, the

1
minimum bisection width of a square mesh of N nodes is N?Z,

- 102 -

Thompson found that any VLSI design for an N-point DFT,
with a communication graph of minimum bisection width w, is
jower bounded in area and time by w2/4 and N/(2w) respec-
tively. Thus he proved the following theorem [128]: If a
'VLSI design with area A computes an N-point DFT in time T,
then AT2> N2/16 . Siﬁce the trellis structure of the m-ary
VA is isomorphic to the signal flow graph of a radix-m DFT,
one would expect similar results to apply to the Viterbi
algorithm. In order to prove this conjecture we need the
following lemma.

LEMMA: Given the graph G with m’ nodes and m\)+l edgeé,
where each node is given .a m-ary label xv_l,...,xl,xo and
each node can source m edges (and sink m edges) according to
the following rule:

X yeee X

v-1 rX

0 RoygressrXogr¥ g

X ceerX X
v-2' "o’

1

v-1

then all partitions that separate the nodes into two
disjoint subsets, a "left side" that contains Lm/Zva_l
nodes and a "right side" that contains [h/Z]mv‘l nodes have
v - .
the property that q(m) edges cross the partition separating

the left and right side.

DEFINITION: Let 3j be an element from a subset of |m/2]
integers drawn from the set {0,1, ..., m-1}, In addition,
let j' be an element of the remaining [m/27 integers in the

set {0,1, ..., m-1}.

- 103 -

PROOF ¢
Step 1: THE NUMBER OF EDGES FROM THE LEFT TO THE RIGHT SIDE

1. The Um/zjmv ! nodes on the left are characterized by

N for example.

2. The nodes on the right hand 51de are characterized by
X l=3 for a total of [m/2|mY”™! nodes.
o=
3. For the nodes on the left side, |[m/2] of these nodes
have X, =j while [m/2] of these nodes have x__,=j'

4, Only those nodes on the left with X, have edges
which remain exclusively on the lef? glde while those
with x j' have edges which go exc1u51vely to the

right 51ée of the chip.

5. On the left, |m/2|*[m/2]*m"~ 2 nodes go to the right
side of the chip.

6. Each node has an outdegree of m. However, each edge is
delivering the same state metric to the same side of the
chip so only one wire per node is required to cross the
partition.

7. The total number of edges from the left side to the
right side is: 1*Lm/2j [m/2]*mV=2 = q(mV).

Step 2: THE NUMBER OF EDGES FROM THE RIGHT TO THE LEFT SIDE

8. Of the rm/zw*mvul nodes on the right side, Im/2] of

these nodes have X,_,=3

9. Each of these nodes source m edges from the rlght side
to the left side for a total of 1*[m/2]*|m/2]* mV-2
edges. '

Therefore, the total number of edges that cut the partition
eguals (mV) + q(mV) = o(mV).

It can be shown that even the divide and conguer
approach} which wuses more area, has the same bisection
width. Using the above lemma, we are now in a position to

prove the following theorem.

- 104 -

THEOREM: If a VLSI design with area A executes the Viterbi
algorithm with alphabet m and memory v in symbol
interval T, then ATZ> g(m2V).

PROOF: The proof proceeds as an extension of [80].

1. A communication graph of minimum bisection width w has

an area greater than w2/4.

2. Associate a graph, G, of minimum bisection width w, with
each VLSI design of the VA. At least m“/w time is required
to compute the VA with alphabet m and memory y on a VLSI
design that corresponds to G. This is a consequence of the
following property of the VA. With alphabet m and memory v
the algorithm has mV states. The algorithm ﬁust pass m"
words along valid state transitions amongst mV states in
each symbol interval T. If G is partitioned into two

V=1 ana [h/zj*mv_l nodes,

subgraphs each containing |m/2]*m
then by the above lemma for some symbol interval the minimax
number of operand transfers between subgraph states in the
trellis is 2(m"). Since Q(m") uniqgue signal flow edges as

defined by the trellis cut the bisector, it takes Q(m?/w)

time to pass o(mV) operands over w wires.

The arguments presented in 1. and 2. can be immediately

combined to give the theorem: If a VLSI design with area A

executes the Viterbi algorithm with alphabet m and memory

in symbol interval T then AT2'> Q(mzv). =

- 105 -

At least three designs approach this 1lower bound for
p(2), the VA for binary alphabets, those with either a

perfect shuffle, CCC or a mesh-type interconnection pattern.

Furthermore, as shown below, the energy consumption
during each symbol interval (power) defined by the AT
measure of complexity is given by AT = Q(mSV/%. The lower
bound is nearly tight fof P(m) in a technology such as CMOS
which has very 1low static power dissipation (vis-a-vis
dynamic power consumption). This measure can also be inter-
preted as the reciprocal of throughput per unit area.* A
completely pipelined circuit optimal with respect to this
criterion can be claimed to make best use of this area.

COROLLARY: Any grid model layout of area A that takes
minimax time T to solve P(m) with algorithm
memory v, is lower bounded by the relation

AT = o(m3V/3,

Proof: The area of any VLSI design for P(m) with algorithm
memory v must be 2(m“) since each of the m’ ACS processing
nodes occupies at least unit area. In addition, as stated
previously, a communication graph of minimum bisection width
w is lower bounded in area and time by w2/4 and o(m“/w),

respectively. Consequently, these statements can be

4 The United States Military development program for Very
High Speed Integrated Circuits (VHSIC) uses a processing
throughput per unit area (TP) figure of merit defined by:

TP = (gate density)*(clock rate) = gate-Hz/mmZ.
Contemporary microprocessors achieve a TP of = 1010
gate-Hz/mm2,

- 106 -

combined to produce:

2 V

X
A = (@’ + ¥) [‘-“—]> (4.12)

i

w

- Q(m\)(l+x)v\7--x + m\)x w2—x) (2.13)

AT® can be minimized with respect to w since the first term
decreases with increasing w while the second term increases
with increasing w, for 0<x<2, Take the derivative of equa-

tion 4.13 and equate to zero,

w

1-x v (1+x)
— - xm (4.16)
(2—x)m\)X
we X .o (4.17)
2=X
Therefore,
v/2
=0
w=0m"") (4.18)

optimizes AT™ for 0<x<2. This result can be combined with

equation 4.13 to produce,

art =g @ #®/2), 0 <x<2 (24.19)

- 107 -

For the case, x=1:

AT = o @3 . (4.20)

proving the Corollary. ®

4.5 THE CONSTANT FACTORS IN VLSI IMPLEMENTATIONS

This chapter has demonstrated the existence of an area-
time tradeoff for VLSI implementations of the Viterbi algor-
ithm, at least for asymptotically large problem instances.
Table 4.1 presents the asymptotic ordering of architectures,
discussed in this chapter, 1in terms of increasing wire area
which corresponds closely with increasing throughput. This
ordering may be destroyed in implementations of small
problem instances, since the processor area and control
circuitry - the neglected constant factors - may dominate
the wire area in these situations, forcing certain types of
architectures to 1lose their asymptotic size advantage.

(Hence, those with simple wiring schemes may be more costly

areawise to implement than those with complex wiring

patterns.) The tradeoffs amongst various architectures may

not be very tractable below some critical problem size

parameter Vo (i.e., below some critical channel memory

length vo). Several questions arise from such considera-

tions. First, can we establish an estimate of vO? Second,

is Vo of technological interest? I1f so, can problem

instances of > vobe fabricated (for a given baud rate)

using present technology?

- 108 -

601

TABLE 4.1

PERFORMANCE SUMMARY

LOGIC SPEED FOR A NUMRER OF
LAYOUT TYPE SYMBOL INVERVAL OF T WIRE AREA PROCESSORS REMARKS
mv+1
UNIPROCESSOR Qcﬁf——) 0(1) ® processor/memory ratio too low
® compute bound
v
CASCADE YK%%ﬂ o(v) e complex path metric controller
e pipelined
® input queue required
m’ vl vl
1-D ARRAY EKE;O O(m™) e simplified processors
® simple state and path metric
controller
v
31
2-D ARRAY fKE%HrO O(mv) v ® complex path metric controller
® input queue required
SE Q(%) O(mv(mv—l)] v ® choose v to be prime
1 v v v
cce Q(EJ O(vm (vm —1)) vm ® can decode v data streams with
same logic speed
H-tree;Y-tree SK%Q ? va ¥ ® specialized CCC layout

In order to answer these queries, consider the basic
arithmetic circuitry required for binary alphabets. The ACS
circuitry can be built in about 105A2, if the word length is
eight bits. This allows room for two adders, a comparator,
two multiplexers, a subtractor for normalization, a few
registers to hold operands and survivors, and several dozen
gates for control logic and buffering. Accordingly, up to
64 ACS cells (v=6) could fit on a present day chip that has
1O7A2 units of area. By partitioning the design onto

several integrated circuits (perhaps wusing the necklace
approach), which conservatively could expand the design by a
factor of 16, problem size instances of v=10 could be real-

ized.

By the year 1990, it is expected that approximately 1024
ACS cells could be formed on a 6 cm diameter silicon wafer.
Such a circuit would be capable of handling binary alphabets
with an algorithm memory of 10. Partitioning the design
onto several wafers would allow problem size instances of

v =14 to be implemented.

The interconnectiéns between the cells have yet to be
considered. In the mesh type layouts, assume that the 105>\2
cell is 320 on a side. As a consequence, a 30 to 50 wire
bus is easily accommodated contributing negligible area to
the layout. For v=6, this would allow all survivor and
state metrics to be transferred simultaneously. The layout

area of an N-element mesh based design is O(N), where N=m".

- 110 -

On a shuffle-exchange type design, N ACS cells regquire
O0(N?) area of which O(N2-N) area is wire. The area devoted
to wiring could be reduced somewhat by resorting to pipe-
lining and bit serial transmission of state metrics and
survivors, yielding perhaps a 4 to 16 factor 1in area
savings. In addition, the routing control logic 1is much
simpler for the shuffle-exchange layout than for the mesh.
The mesh cell, in fact, may be as much as a factor of v more
expensive in area, due to this control circuitry. These
considerations imply that for Vo in the range of 3 to 7,
both the mesh and shuffle-exchange layout areas are egual.
Below this range of Vo the size advantage of the mesh-based

design may not be apparent. This concept is illustrated in

Figure 4.24.

Now, with regards to the processing speed of each of the
ACS cells. The adder used in the ACS unit can take the form
of a carry-save adder in which ripple carries are used
between stages. The carry circuits can be‘ designed such
that there 1is only one logic delay per carry. The total
carry propagation delay for an 8-bit adder is then only 8t.

Approximately, 8 ns for current CMOS/SOS technology with

one nS gate delays. Look-ahead-carry techniques offer speed

advantages, but not without a corresponding hardware

penalty.

The comparator is implemented by subtracting the two

state metric sums from one another. The actual difference

ONIH3QHO DILOLdWASY

o
o~
> 2 A E
< w ®
o o N X
~ (e o =
- < xS w _
o a ao o)
UJ:E 1. 2:65 O <
Neo N =~ 2:)
”~
5 | w
| S
s g O
- 2F w
o L6 <0
. Tc W<
oo
oo ® o
£2c Qg <
E.‘_'N>.,
2 3'5:2
55es 5
0S5 @ 29
SET 3 -
.c‘g‘“ o o-co
€928 w @<
=0
oL ®G e+~ 0>
l-h.l:n- ~ 5
Osowm wEE
.e - os
i 2599
() 'C._<2 O
d QO o
(9] T OO o
gl © = IR
Owva

(,X) v3uv

LARGE

Figure 4.24: THE AREA TRADEOFF
The Constant Factors in the VLSI Implementations makes an
an Area Tradeoff Available only after some Critical Problem
Size Parameter v,. (For clarity only three layout types are
presented in the asymptotic ordering. Table 4.1 presents a
complete listing of classified architectures.)

is not of interest, only the carry out of the most signifi-
cant bit of the subtractor. Hence, only the carry portion
of the subtractor need be implemented. The total add
compare time is only one logic gate delay more than the add

‘time alone.

Two gate delays are required in the multiplexer circuit.
Eight logic delays for normalization of the state metrics.
and finally, eight gate delays are required in reading out
of and into the ACS output registers. In total approxi-
mately 271 logic gate delays are required between clocked

sections.

As mentioned earlier, the shuffle-exchange design would
be expected to be faster than the mesh design above some
threshold problem size Vo In either case, each
ACS-normalize step takes about 27 ns. The maximum routing
time during one symbol interval on a mesh-based design for
v =6, 1is /51/2 = 4 unit distance routing steps. Allowing
two or three clock pulses per unit route for synchronization
and buffering, routing takes 20 ns if a 5 ns clock is used.
Consequently, in such an implemehtation a minimum symbol

interval of 50 ns could be supported, for a 20 MHz

throughput rate.

Routing on the shuffle-exchange design is somewhat faster
with only one routing step each symbol interval. The total

ACS-normalize route cycle is therefore about 33 ns for a

- 113 -

throughput of 30 MHz. The speed advantage of the shuffle-
exchange layout 1is even more apparent with larger problem
instances as the mesh design reguires ever greater unit

distance routing steps.

In conclusion, problem instances of \%)=6 appear to be
just large enough for the asymptotic time and area analysis.
Above this threshold of vo the results of Table 4.1 would
appear to apply. In addition, it appears that current
fabrication technology is mature enough to implement problem
instances in the range of v=6 to y=10, operating at 10 MHz

to 50 MHz.

With regard to very large problem instances, Seitz [82]
states that in a fully mature MOS technology signal speed on
wires can be expected to be 1cm/3ns, or 18Bns across a 6 cm
wafer. Hence, wafer scale integration [104,129] of the
architectures discussed could conceivably operate in the

1 MHz to 10 MHz range.

A currently feasible, three dimensional microelectronic
packaging scheme for the VA can be constructed using a stack
of silicon wafers, as illustrated in Figure 4.25. This type
of layout strategy is appropriate to problem instances of
all sizes. Signals are passed vertically through the stack
along wire—liké data lines composed of feedthroughs (through

the wafers), and microbridge interconnects (between wafers).

- 114 -

The microbridge interconnection concept presents very low
parasitic impedancgs for the feedthrough thus permitting the
use of very small, 1low power devices to drive the data and
control 1lines. The overhead in area associated with a
microbridge is approximately the same as that of an ordinary

bonding pad [130].

The architecture of this scheme is configured such that
data flows in a parallel fashion out of the elements of one
wafer into all elements of another adjacent wafer. Three

elemental wafer types are sufficient to implement the VA.

The first wafer accepts a digitized input signal Y, and
uses this to address several small lookup tables (<256
bytes/table) in which appropriate path metrics have been
stored. The topology of this wafer is regular and compact,
being based on the extremely mature ROM type technology.
Alternatively, this wafer may contain appropriate digital
correlators and/or arithmetic logic to generate the required
path metrics, perhaps 1like that described by Frenette and

Peppard [131].

The second wafer, accepts path metrics generated by the
first wafer and calculates appropriate state metrics at each
baud interval. The digital hardware residing on this wafer

consists of adders, comparators and multiplexers

rbog ﬁ] wires from the comparator output of each

processing element are fed to the underlying third wafer to

- 115 -

INPUT

Ye © \ N N PATH
METRIC
ROM ROM WAFER
v\ T J" STATE
?“"\‘&ﬁ\" *—* METRIC
LU S S WAFER

—- oo u SURVIVOR

\ SEQUENCE:
-- -2 WAFER

A
Oy.3
OUTPUT

OX? _— CIRCUIT
| CONNECTION

BRIDGE —_| \

SPACER —* j%V

FEEDTHROUGH

Microbridge Connector

Figure 4.25: 3-D MICROELECTRONIC PACKAGING SCHEME
FOR THE VA
Microbridge interconnections are used between wafers
as developed by Hughes Research Laboratories [130].
Typical dimensions: 7000 pym x 7000 ym x 2000 pym
for the package of three wafers.

- 116 -

indicate the minimum state metric that was selected. This
third wafer is then responsible for maintaining updated
truncated survivor sequence listings for each state. The
digital hardware residing on this wafer consists only of
multiplexers and 20 to 60 bits of memory per node (in a
typical case). Fixed time lag estimates of the transmitted
data (i.e. the output of the VA) can be obtained from the
truncated survivor seguence of any state. This wafer could
be replaced with a binary tree of comparators to produce a
minimum path detector if state metrics were transported from

the second wafer.

One important feature to note is that inputs from the
outside world interact with only the first wafer; outputs
from the device are extracted only from the bottom layer.
Of course, clock signals and power would have to be fed to
all layers. The topology or arrangement of the m’
processing elements on each of the second and third wafers
could be any of those developed in Sections 4.2 or 4.3. As
an alternative, on the third wafer, the survivor sequence

registers may be consolidated as illustrated in Appendix C.

A significant characteristic of this 3-D embedding of the
VA in silicon is its potential for extremely low-cost fabri-
cation. The assembly of a 3-D computer consists of simply
stacking wafers on top of each other, where microbridge

interconnections between circuits are made simultaneously.

- 117 -

Circuit testing is greatly enhanced with this packaging
concept because of the cellular and functional partitioning
of the circuit elements. The various wafers, each homoge-
nous in function can be tested independently. The problems
of very large state space searches encountered in the
testing of unpartitioned VLSI circuitry are thereby elimi-

nated.

Additional economies could be anticipated [132], since
avoiding obstacles in a two dimensional environment can
require circuitous routing of wires. One would expect
average wire length to be shorter, with a subsequent savings

in active surface area and power dissipation.

It also appears that optical interconnections for VLSI
systems will offer attractive design features over tradi-
tional wiring methodologies. Of particulér interest, to the
high speed implementation (several hundred MHz) of the
architectures described in this thesis, is the optical
distribution of <clock signals and the optical perfect

shuffle network described in Goodman et. al. [133].

- 118 -

Chapter V

VLSI STRUCTURES FOR CORRELATIVE ENCODED MSK
RECEIVERS

5.1 INTRODUCTION

In addition to decoding convolutional codes, and the
demodulation of of intersymbol interference and partial
response PAM signals the Viterbi algorithm is applicable to
maximum likelihood demodulation of bandwidth efficient

continuous phase modulations (CPM).

Within the class of CPM signalling schemes, this chapter
presents a VLSI design methodology for synthesizing highly
concurrent computing structures which directly implements
the Viterbi receiver for Correlative Encoded MSK signals.
When the source symbols are correlatively encoded wusing a
first order polynomial, the appropriate Viterbi receiver
takes the form of a Cube-Connected Cycles (CCC) Structure,
studied in Chapter 4. Second order encoding polynomials
give rise to a new type of area efficient VLSI structure
which is a generalization of the CCC structure. The results
are important from the perspective that simple, practical
VLSI layouts are generated, by a structured design method-

ology, which commercial silicon foundries can fabricate.

- 119 -

Our interest 1is focussed on the MSK type of CPM scheme
because: (i) this technigue gives rise to signals with
excellent bandwidth efficiency, (ii) the receivers are not
very complex as theyleither require four or eight states to
be processed and stored during each symbol interval. The
Viterbi receiver specified in this paper can be commercially
realized today with dies containing less than 32,000 tran-
sistors (excluding synchronization hardware and correlators
for path metric generation) with throughputs on the order of

107 bits per second.

The presentation, which follows that of McLane [134]
closely, is organized into three sections. The first
section introduces details of correlative MSK modulation
which are relevant to the design. In the second section, we
establish that the Viterbi receiver for MSK modulation,
using first and second order encoding polynomials, falls
within a generalized class of Cube-Connected Cycles
processing structures. VLSI grid model layouts are
presented for these constructs. The final section summa-
rizes our findings and presents extensions to multi-h phase

codes and phase estimation.

- 120 -

5.2 CORRELATIVE ENCODED MSK MODULATION

The mathematical representation of a CPM signal is:

x(t) = B cos[2nf t + ¢(t) + 6] (5.1)

where B 1is the carrier amplitude, £ is the carrier
C

frequency, 6 is the phase offset, and ¢(t) is the informa-

tion carrying phase. We assume perfect carrier phase coher-

ence and hence take 6 = 0 without loss of generality.

The information carrying phase ¢(t), with modulation
index h=0.5, can be written in the following form:

t-(k-1)T

T 1, (k-1)T <t < kT (5.2)

T
o(t) = ¢((k-1)T) + §'dk[

where k is an integer, T 1is the bit period and dk the
correlative encoded data bit (implicitly rectangularly

shaped) for the ktP bit interval.

where a, 1is a
k' k

source symbol drawn from the finite alphabet [-1,+1]. This

In the simple case of no encoding dk=a

is the minimum shift keying (MSK) modulation format which is
just continuous phase digital FM with modulation index one-

half.

For duobinary MSK, the encoding polynomial 1is (1+D)/2,
and thus dk=(ak+ak_l)/2. The incentive to correlate the
data symbols prior to modulation is that duobinary MSK has
less phase variation than MSK and consequently has better

bandwidth efficiency.

- 121 -

|
Z
|
|
|
|
|
|
f
|

The Viterbi receiver, in this case, 1is specified by use
of the modulation state diagram in Figure 5.1(a). The
system states can be divided into two classes, one class
(Type A) occupied at odd bit times and the other class (Type
B) occupied at even bit times. The two classes are shown in
the recursive trellis diagram of Figure 5.1(b). Type A
transitions terminate at states 2, 3, 6, 7 while Type B

transitions terminate at states 1, 4, 5, 8 in Figure 5.1(b).

For tamed fregquency modulation [135], the memory in the
modulation is increased by one over that for duobinary MSK,
providing additional bandwidth efficiency over duobinary
MSK. The encoding polynomial in this case is (1+D)%/4,
hence dk=(ak+2ak_l+ak_2)/4. Thus, an eight state Viterbi
processor can be derived for the MSK modulation with
correlative encoding hsing the TFM encoding polynomial. The
modulation state diagram of Figure 5.2(a) specifies the
appropriate Viterbi receiver. Type A transitions termi-
nating in states 2, 4, 6, 8, 10, 12, 14, 16 are occupied at
odd bit times. Type B transitions terminating in states 1,
3, 5, 7, 9, 11, 13, 15 are occupied at even bit times. The
two classes are shown' in the trellis diagram of Figure

5.2(b).

- 122 -

5.3 VLSI REALIZATIONS

In this section we demonstrate that correlative encoded
MSK type trellis structures can be implemented in a fully
parallel manner on the Cube-Connected Cycles processor

interconnection scheme.

For duobinary MSK, the recursive two step trellis diagram
of Figure 5.1(b) can be equivalently implemented by the CCC
structure of Figure 5.1(c). Cycle connections can be iden-
tified as the four vertical loops. Note that the data flow
is unidireétional and counterclockwise in each of the loops.
Cube connections, illustrated by the horizontal wires,
handle bidirectional data. “Each node contains an add-
compare-select logic «circuit for ‘generating state metrics
and a survivor sequence register; no more than 2,000 tran-
sistors per node are required to implement the required
boolean operations. In addition, it is important to realize
that the path metric for each state transition is obtained
by the correlation function between the received waveform
and the expected signal waveform. In duobinary MSK three
pairs of correlators as illustrated in Figure 5.3(a) are
required for this task. In Figure 5.3(b) the complete
duobinary MSK Viterbi receiver floorplan is illustrated.
Note that nodes in each cycle "slice” require three unigue
correlator outputs. Cycle slices can be grouped into two
pairs such that three correlators are local to a pair. This
is the reasoning behind the rearrangement of cycle slices
presented in Figure 5.3(b).

- 123 -

Fixed time lag estimates of the data can be obtained
alternately from the truncated survivor sequence of any Type
A and Type B processing node. Overflow control of the
finite 1length state metric regiéters can be achieved by
choosing one state metric and subtracting it from all other
state metrics of the same type at the appropriate alter-
nating bit period. The carrier and timing signals needed in
the receiver structure are obtainable from the technique

given by deBuda [136].

MSK modulation with correlative encoding using the TFM
polynomial has a trellis structure which forces us to gener-
alize the CCC structure into a new type of area efficient
VLSI structure which we refer to as the "double CCC", or
DCCC, shown in Figure 5.4(a). This name is derived from the
fact that an implementation of the trellis of Figure 5.2(b)
requires double the number of cube connections of a standard
CCC, as illustrated in Figure 5.4(b). Note that even though
there are four cycles in the embedding of Figure 5.4(a) the
direction of the data flow in each of the cycle loops is not
the same. One other important difference over duobinary MSK
is that five pairs of correlators are required to generate

the required path metrics [134].

- 124 -

5.4 DISCUSSION

The Viterbi algorithm technique as applied to correlative
encoded MSK is just a special case of a dynamic programming
solution to modulo-27 phase sequence estimation. The same
techniques that were presented in this paper can be extended
to develop special types of digital VLSI phase 1lock loop

equivalents [137].

In addition, the VLSI réalization of complex trellis
structures, generated by multi-h phase codes can be realized
by an analogous approach. Figure 5.5 shows the trellis
structure and VLSI grid model implementation of a Viterbi
receiver for {2/4, 1/4} constraint length 2 phase code
[138].

In conclusion, well structured VLSI layout strategies
have been identified for realizing Correlative Encoded MSK
type Viterbi receivers. When the source symbols are
correlatively encoded using a first order polynomial, the
appropriate Viterbi receiver takes the form of a
Cube-Connected Cycles Structure. Second order encoding
polynomials give rise to a new type of area efficient VLSI
structure called a DCCC, which is a generalization of the

CCC structure.

- 125 -

(3{(w/2)) DUOBINARY MSK

-~ ~ hzt/2 1+D
~ —
e / (o) =
State 7 \ == ISENT
Numbon/ \— OSENT
/ s

7 ph
\(3w/2,y Fr:::oncy

P
Stat
*/// ‘//' ates

(c)

(b)

Figure 5.1: DUOBINARY MSK
(a) Phasor State Diagram (from reference [134])
(b) Recirculating Trellis :
(c) Equivalent CCC structure

- 126 -

Type A Type B

TFM MSK

tm NIRRTy
-1 :
- ——- I'SENT

—— O SENT

Re

Figure 5.2: TFM MSK
(a) Phasor State Diagram
(Initial phase state = 0 ;
Initial encoder state all 0's or all 1's.)
(b) Recirculating Trellis

. -
[Qe 3%~
cos(2¥(f .t A)1) te
sin(2w(tc+A)t) taT
L'() dr ——O%d—-bs
[T
L
T3 [
I'()dr ——oxd—ve
L el 4
r(t)—=insare tsT 0x-3
Lﬂ)wr-—dkr.;
s |
w
t=7 |
AR e e i
2 -c
cos 2w (te-D)1)
sin2w(fe-A)N) TS ¢
T M .
L {)drc < ‘_. |
(a)
L N B S Y O
CORRELATORS
J ‘ ‘ ‘ PATH METRICS
dg dec d-¢ ¢ dfrl_i-_-l
1
TYPE 8 q
B 4r 5......2“T
2 \6 A
TYPE 3 '+ 6 0,-8
A 7 TJ T (2nen)T
-E OVERFLOW
(b)

Figure 5.3: DUOBINARY MSK VITERBI RECEIVER
(a) Generation of Path Metrics (A = 0.25/7)
(from reference [134]) :

(b) Floorplan of the Duobinary MSK Receiver (n is integer)

- 128 -

. 5 15
8 6

9 3 13 7

2 4 16 14

(a)

\ T _—cycle connection

‘ double cube
/connection

|
|

Figure 5.4: TFM MSK VITERBI RECEIVER
(a) VLSI Grid Model Layout of the DCCC (from Fig. 5.2(b))
(b) Illustration of the Double Cube Connection

- 129 -

13 i4 15 12

9 I
10 8
5 6 7

2
|) 3

(b)

Figure 5.5: MULTI-H PHASE CODES
(a) Trellis structure of {2/4, 1/4} constraint length 2
phase code :
(b) VLSI Grid Model Layout

- 130 -

~Chapter VI

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

6.1 SUMMARY AND CONCLUSIONS

The proliferation of digital information sources and
sinks has brought with it a greater need to convey this

commodity accurately, rapidly and inexpensively under the

constraints of finite bandwidth and finite power. In

response to this need, this thesis has investigated an
approach to building, in a VLSI format, digital communica-
tion receivers based on the Viterbi algorithm. Recently,
Ford Aerospace Corporation and Rockwell International have
jointly developed a convolutional decoding VLSI circuit,
based on the VA, containing 16 ACS processors on a 0.50 cm
by 0.73 cm die, using 2 um CMOS/SOS technology. Though this
feat was a "brute force" existence proof that VLSI tech-
nology is mature enough to implement small problem instances
of the VA on silicon, no general design methodology, until
this time, was available or identified to guide future

developments.

In addition, there have been persistent efforts in the
literature directed at investigatihg dynamic programming

structures in VLSI, for various applications. Since the VA

- 131 -

\

is a dynamic programming solution to estimating a state
sequence this prompts the query, "Is there a relationship
petween the VA and concurrent computer architectures that
are a good fit to VLSI?". The preceding chapters have
successfully resolved this question by establishing the
nexus between concepts in theoretical computer science and
digital communications. This highlights the importance of
synergistically tracking the research developments in both
disciplines. The major results established in this thesis

are summarized below.

6.2 SUMMARY OF MAJOR CONTRIBUTIONS

In the preceding chapters several new concepts have been

developed.

1. The concept of a Normalized Kolmogorov Metric Space
has been introduced for implementation within the
Viterbi algorithm. It has the property that distance
in the signal space is bounded. This is a property
of interest in a hardware realization that desires
register and data paths of minimal width. In addi-
tion, the distance measure is parametric in the sense
that it is a function of the probability density
function of the noise source corrupting the signal.
Though the results are preliminary, this metric space
may find application in suboptimal soft decision
decoding schemes for Gaussian and non-Gaussian noise
sources.

- 132 -

2.

A taxonomy of VLSI processor architectures are iden-
tified for implementing the VA concurrently. These
are classified in terms of increasing interprocessor
wire area. In order of\increasing throughput and
wire area: Cascade, Linear and Orthogonally Connected
Mesh, Shuffle-Exchange and Cube-Connected Cycles
layouts can efficiently embed the VA in silicon.
These structures are easily generalized to accommo-
date arbitrary source alphabet sizes and channel
memory lengths. 1In all cases, good practical layouts
are generated by a structured design methodology,
which commercial silicon foundries can fabricate.
VLSI grid model layouts of the shuffle exchange graph
are generalized, for the first time, to include
m-shuffle exchange graphs. The structures, in all
cases, facilitate efficient chip manufacture and data
management.

All necklaces in a m-shuffle exchange graph are shown
to be full when the algorithm memory length is prime.
Cleaving the architecture into £full necklaces is a
reasonable strategy to use for the integration of the
design. This implies that channel memory lengths
should always be equalized so that they are a prime
number of symbol intervals.

VLSI grid model layouts of the Cube-Connected Cycles
graph are generalized, for the first time, to accom-

modate m-ary alphabets while maintaining a vertex

- 133 -

degree of four. The regularity of the layéut allowed
us to define a standard building block which could
realize arbitrarily large memory lengths. It has the
potential to decode multiplexed data streams or
interleaved convolutional codes for burst noise chan-
nels.

6. The CCC structure can be embedded in an H-tree of

meshes graph because each is shown to have the same
type of separator theorem. A new recursive construct
called a Y-tree of meshes was introduced. This
structure can efficiently embed the CCC realizatioh
of the VA for ternary alphabets.

7. It is demonstrated that the area*time?

product and
the power dissipation of the VA is 1lower bounded by
functions of the alphabet size and algorithm memory
length alone. 1In particular, it was shown, using the
VLSI grid model, that if a VLSI design with area A
executes the Viterbi algorithm with alphabet m and
memory Vv in symbol interval T, then AT2 > c~m2v ’
where ¢ 1is a constant dependent on the technology.
Furthermore, any VLSI design of the VA has a power
consumption (reciprocal of throughput per unit area)
that is lower bounded by AT = Q(va/%.
8. Viterbi receivers for correlative encoded MSK are
shown to fall within a generalized class of CCC

structures.

- 134 -

In summary, the global unifying concept appears to be
that many scientific problems can be classified into grid-
point problem instances represented as a lattice in space
and time. (Wires provide interconnection in space; memories
provide interconnection in time.) This lattice-structure
often provides for a natural concurrent decomposition in
showing how to orchestrate a single computation so that it

can be distributed across an ensemble of processors.

6.3 SUGGESTIONS FOR FUTURE RESEARCH

Now that several feasible strategies have been unveiled
for implementing MLSE in VLSI, there is a basis upon which
to ask many gquestions and propose variations to the archi-
tectures. Some of these are now put forth as areas for

further investigation.

1. A study should be carried out to establish the
criterion that is being optimized when selecting the
shortest path length through the trellis as measured
in a Normalized Kolmogorov Metric Space. Are there
certain types of non-Gaussian noise processes where
this criterion is advantageous? Do quantized
distance measures that saturate, either through
design or through implementation, have to be opti-
mized?

2. The following evolution towards the commercial

exploitation of the concepts presented in this thesis

- 135 -

is envisaged. Initially, a linearly connected
processor slice, a CCC building block of Figure 4.18
and a 2-SE necklace (remember, make Vv prime) should
be realized as a minimum path receiver, using hard
decision decoding. The lack of both complex path
metric generation and survivor segQuences in such a
structure will eliminate some design issues and high-
light throughput bottlenecks. The ability of these
layout slices to handle soft decision decoding and
survivor sequences should then be integrated into the
design, realizing the VA in 1its complete form. If
convolutional decoders are of interest, puncturing
[139] will provide hardware simplification. Wafer
scale integration technology should then be used to
realize "complete" systems on silicon. The develop-
ment of an appropriate silicon assembler (or silicon
compiler) would help expedite this implementation
strategy.

Instead of handling and storing the entire survivor
seqguence list at each processing node for each symbol
interval, interpreting the survivor sequence list as
a sequence of pointers, as suggested in [72], may
remove the necessity to transport the entire survivor
sequence field to successive nodes. Perhaps a subop-
timal scheme can be contrived that contains only one
survivor sequence list for each necklace in a SE

layout or for each cycle in a CCC layout. This would

reduce the memory devoted to storing survivor
seqguences by a factor of v. (Approximately an order
of magnitude reduction in memory, not to mention the
associated reduction in wire area, power and/or
transport time, in most cases of interest.) The
performance of such a system would definitely be
better than a minimum path detector which, by defini-
tion, contains no survivor sequences at all.
Computer simulations for channels of interest would
establish the magnitude of degradation, however
analytic bounds on the performance of such a system
may be derivable.

4, It is well known that at least Q(sz/vz) units of
area are regquired to embed a 2-SE graph in the plane

under the VLSI grid model assumptions. Since the

nodes themselves only take up 0(2Y) area, the average
edge length in a planar embedding of the 2-SE graph
is (2Y /y2). Though this thesis has developed good
compact layouts for small SE and CCC graphs, those
precisely of interest in practical applications, it
would be insightful to prove that asymptotically a
m-SE graph (and the corresponding CCC graph for that
matter) requires at least o(m%Y/y2) units of area.
5. The power of recursive structures is their concise
expression. Are there other recursive structures,

conceived in the shadow of the tree of meshes, that

are appropriate for m-ary versions of the VA? One

- 137 -

construct worth exploring immediately is thét of the
Pleated Cube-Connected Cycles (PCCC), proposed in
[140].

The work by Moldovan [141] should be investigated to
determine if the mathematical technigues introduced
could be successfully applied to embedding the
Viterbi algorithm in other types of structures.
Decoders for other classes of codes defined by their
finite state machine representation (which implies
specific trellis structures) should be analysed for
their AT™ performance. Novel computing structures
for their realization should be pursued.

The (volume)**(time)Y 1lower bound should be estab-
lished for 3-dimensional embeddings of the VA.

The AT? lower bound was established for the VA, does

this apply to any algorithm for MLSE, in general?

- 138 -

6.4 CONCLUDING REMARKS

This thesis has shown that there is promise in building
VLSI devices that can implement the Viterbi algorithm for
important digital ‘communication tasks. These types of
systems will provide great economies and performance. The
success of such systems will depend on whether appropriate

development costs are expended.

The challenge remains, as always, to find VLSI implemen-
table algorithms for other important digital communication

tasks.

- 139 -

Appendix A
PROOF THAT THE NORMALIZED KOLMOGOROV DISTANCE IS
~ A METRIC

- 140 -

PRELIMINARY: A metric space M is a set X in which we can
talk sensibly about the distance [between any two elements
in X. For M to qualify as a metric space, the distance

function p(x,y) must satisfy the three metric axioms:

(i) p(x,y) >0 AND plx,y) = 0 IFF X = vy
(ii) o(x,y) = opo(y,x)
(iii) ep(x,2) < p(x,y) + p(y,2z) V x,v,z € X

NOTATION: In Chapter 2 a stylized notation was utilized to
represent the two elements between which the distance is to

be measured. Note, that since u1<u2, in all instances:

le (v) p (=, P)

p(x,y)

\

Py, (W) p(¥, +=) p(x,y)

2

In general, Py () indicates that the distance [is to be
1

measured between the received signal |y and the appropriate

3
]

corresponding supremum or infimum of Hypothesis Hi .

THEOREM: The space M(X,,) defined by:

the set X = {stationary random variables « p(EIHB, p(§|H2}
and the distance measure,

Y , N
|j maX[P(€|H1)P1,p(Ele)Pz]dE-I
X

lp(g|H,)P,-p(E[H,) P, |aE]
% .

D(X,Y) = + oo
é 0[1 - J |p(€|H1)P1 —p(Eng)ledg]

constitutes a valid metric space, given that x, y ¢ X

Note: The elements x and y only determine limits of integra-
tion.

- 141 -

PROOF: (i) The denominator of ;(x,y) is an intersection
of two conditional probability densities p(gIHl) and p(g]HZ)

of ¢ under the condition of H, and H, . Consequently,

0 < Num(x,y) < Den(-~, 4+») < 1 AS [x,y] C [~x», +=]

Num(x,vy)
=> 0 < Den (==, +%) < 1l
=> 0 < plx,y) < 1

I1f x=y then Num(x,y)=0. Therefore, the op(x,y)=0 condition

is satisfied.

If the noise is hardlimited such that sup(x)=a2 and

inf(x)=a1, then in order to enforce the olx,y)=0 iff x=y

condition we must enforce the following constraint:

[x,y] C [a), a:2]

OR [XIY] § (all a2)

- 142 -

(ii) Consider the numerator of o(x,y).

Y

Num(x,y) = | f(g)ag - g(g)ag|
% X
X X

Num(y,x) = | £(£)ag - | g(£)ag]
Yy Y

il

Y - Y
-1« (] f£(&)ag - g(£)dg) |

X X

b Y

= || £(g)ag - g(£)dE]
X X

= Num(x,y)

The denominator of p is equivalent in each case.
Consequently,

olx,y) = ply,x)

- 143 -

(iii) Let x,y and z be three sample values from the sample

space of the conditional densities p(ngl),p(ngZ)

' + ' > h = Num(ny)
o(x,y) oly,z) olx,z) where o(x,y) Den (oo 43

&> Num(x,y) + Num(y,z) > Num(x,z) (A.1)

Since Num(x,y) is the overlapped part of p(£|Hl)and p(ngQ

between x and y.

Let f(x) be the functional representation of the overlapped
part of the two probability densities. Clearly, f£(x) = 0,
¥ X.

Now (A.1) may be equivalently expressed as:

Z

{y f(g)ag + [f(g)ag > J £(g)ag
Ix v X

Z

Since this is clearly a property of definite integrals the

triangle inequality holds. .

Q.E.D.

- 144 -

Appendix B

)
&
(@)
B
je3}
]
m
=
£
O
<
m
Ee
4
(o]
&)
7)]
-
+J
(&
e
<
o
E
)
o
O
(44
o

145

THEOREM: There is a sequence of elementary contractions that will map
the recursive, bipartite (shuffle-exchange) graph Gt of cardinality
N=2n s Gt(N) , into the recursive, bipartite (shuffle) graph Gs of
cardinality N/2=2n—1, GS(N/Z) , where Gt(N) and GS(N/Z) is defined
by the following relation of incidence that associates with each edge a

pair of vertices X and X' :

DEFINITION:

«es, X in X 1is the corresponding

1. The IMAGE of the node x 0

n-1"

node X 1>t X in X' .

The CARDINALITY of graph G is defined to be the number of

elements in its vertex subset X (or X').

OBSERVATION: The edge defined by f: x _, «.c¢y, X > X , sesy X 1s
n-1 0 n-1 0

implicit. Each node in X 1is connected to its image X' since Gt
and Gs are recursive. (i.e., A node can always talk to its image at

the next clock tick.) 1In fact, G can be drawn such that X is

coincident with X' .

PROOF:

step 1: Reduce the cardinality (merge nodes) through an elementary
contraction of Gt by applying the following rule:

X g o0, X

n-1 0

Xn_l, seey Xo

This implies that exchange edges occur between X X ese, X

n-1" "n-2’
and its image.

Note: Henceforth, a node in Gt will be referred to by the label

wee, X. or by the pair of labels eve, X Jof
xn—l’ ! y P xn—l’ > 7o
which it was previously comprised. =10 o0 %o
Step 2: As a consequence of STEP 1 the rule:
h: x x eesy, X T X ceey X b4
n-1" "n-2’ > 7o n-2’ > 70’ Tn-1

bifurcates. We now have two rules (two shuffle edges) for each node.

In order to establish these rules, consider the following node in Xt:

LU Y X

Xa-1° 0

xn—l’ so0, XO

Since each xo, sees X € {0, 1} one element of the above pair will
n-

h = = .
have either xn_1 xo or xn__1 xo

X to each node to

Apply h: x 0* *n-1

seee, X seey, X

n-1’ Xn-2° 0 ” *h-2?

get:
xn_z g ®oey, xo N xn_l
X-20 °°°» Xq» X

Assume that Xg = X
(the same derivation applies 1f we assume x = X)

These nodes can be rewritten as:

X g oee,y, X

x , X
n—-2

1’ "n-1" "n-1

xn-z, vee, xl, X 1, X

n- n-1

- 147 -

BY the transformation g defined in STEP 1 we know these portioms of

the corresponding node pair belong to the following mapping:

"xn_z, se oy xl, xn__l

. an—Z’ sesy X}, Xp-1» ¥p-1

n-2? cosy xl, xn_l, xn_l —]
> Xp-2s ccs X1 ¥n-l

an-Z: esey X1, Xn-1, Xn-1

which was mapped from the vertex X , seey X in X .
n1 1
1.80:
X see X *.X eve X X X XX
n-1’ > n-2’ * 71 Tl v n-2" ’ xl’ x -1
STEP 3: Subtract one (1) from each indlices
X XX X + X e e X X X ov e X
2’ %o T Ta-3® T 70 Tne2 U X3 00 T *pe2
These are precisely the rules which define Gs .
Hence, Gt(N) = GS(N/Z)
Q.E.D.

- 148 -

Appendix C

CONSOLIDATED SURVIVOR SEQUENCE MEMORY LAYOUT

FOR P(2) AND v = 3

149

r """""""" M
! E"—' kM
5 R: I-bit REGISTER
! — ; M: 2-to- | MULTIPLEXER
: !
S |
A
D(0O!) DO
| — [— -~ X (00)
A
D(010) o - X(0i0)
DOl — -
| —— X (Ol1)
A
5 (100) 0 — - —— X (100)
D (101) -
| —— I—— —— X(I01)
i \
5 (10) 00— - X (110)
D) —] —
| — X (1)
FROM STATE ONE
COMPARATOR <—— gTAGE ——|<— CASCADE ~5V STAGES...
OUTPUT.

- 150 -

3]

m

<

=

e

(<9

(@]

wn
A

z
®x O
o
T B -
o < wn
& B -
& B
£

w0

-

m

[0

x

(2

—

>

.10.- //GULAK JOB ',,,T=30,C=0' 'GLEN'

20. // EXEC WATFIV,SIZE=256K
30. //GO.SYSIN DD *
40. $JOB WATFIV GLENN,NOEXT NOWARN
50. IMPLICIT INTEGER(A-Y) »
60. DOUBLE PRECISION ZSEEDI, 2ZSEEDO, 2SEED, ZSEEDL
70. REAL GGUBFS, Q, GAIN, DEG, RAD
80. INTEGER APM(256),BPM(256),CPM(256) ,DPM(256),
90. & EPM(256) ,FPM(256) ,GPM(256) ,HPM(256)
100, INTEGER ABPNEW(8),CDPNEW(8) ,EFPNEW(8) ,GHPNEW(8),
110. & ABPOLD(8) ,CDPOLD(8) ,EFPOLD(8) ,GHPOLD(8)
120. INTEGER REFDO(B), REFDN(B), DATA(3), MINPO(B), MINPN(8)
130. INTEGER QUANN(8), QUANO(8)
140. INTEGER IT,I0P(3),IER,13(1),14,I5
150. REAL TBL(27,5),P1(1),P2(1),R(1),RNOISE
160. EXTERNAL SUBRF
170. DIMENSION 2CHAN(3)
180. C
190. DATA MINPO/B*0/, MINPN/B*0/, QUANN/8%0/, QUANO/B*0/
200. DATA REFDO/8*0/, REFDN/8%*0/, DATA/3*0/
210. DATA ABPOLD/8*0/,CDPOLD/8%0/,EFPOLD/8%*0/,GHPOLD/8*0/
220. C
230, (emmmmmmemmemmmmm—s——emSe—s—SessoCsSooCSSoooooomoSoSmEomes
240, C
250. C SIMULATION OF AN LOG2(BUSW) -BIT WIDE VITERBI RECEIVER
260. C FOR A CHANNEL MEMORY OF 2 AND PATH MEMORY OF 8
270. C :
280. C ELECTRICAL ENGINEERING DEPARTMENT
290. C UNIVERSITY OF MANITOBA
300. C WINNIPEG, MANITOBA R3T 2N2
310. C
320, C
330. C VERSION 2.2
340, C
350. C (c) P.G. GULAK
360, C
370. C MARCH 1983
380. C
398. c NOTE: IMSL SUBROUTINES REQUIRED: GGVCR, GGUBFS
400, C
410, (mmmmmmmmm—mmemmmese—eeoseossSssoSSsoSsoSsSoToSmTooomTOC
420, C
430. C
440. 10P(1) = 23
450. 10P(2) =1
460. 10P(3) = -1
470. C
480. 14=10P(1)+1
490. 15=27
500. 1T=27
510, ZSEEDL=12457.0D0
520, C
530. C SET PARAMETERS
540, C '
550. ZSEEDI = 1999.0D0
560. ZSEED = 123457.0D0
570. TOUT = 10054
580. TSTOP = 10064 |
590. BUSW = 256 |
600. SUPPRESS = 0 , |
610. ZSNR = 10.00 A |
620. ZSTDEV = 1.25/(10 ** (ZSNR/20.0)) ,
630. ZB = SQRT (3.00) * ZSTDEV |
640. C

- 152 -

650, P1(1) = 2ZSTDEV
660. C
670. GAIN = 1.000
680. DEG = 0.00
690. RAD = (3.14159265/180.0) * DEG
700. C
710. €
720. . C INITIALIZE
730. €
740. BITS = 0
750. ERRCNT = 0
760. MINPER = 0
770. QUANER = 0
780. ABSMO=0
790. CDSMO=0
800. EFSMO=0
810. GHSMO=0
820. €
830, ¢ SET CHANNEL RESPONSE
B40. C
850. ZCHAN(1) = 1.00000
860. ZCHAN(2) = 0.20788
870. 2CHAN(3) = 0.04321
880. C
890. ¢
$00. € SET EXPECTED REFERENCE VALUES FOR FO/R0 VALUE
910. €
920. AREF=(BUSW/2)* (1.0 + (2CHAN(1)+2CHAN(2)+ZCHAN(3))/5.0)
930, BREF=(BUSW/2)* (1.0 + (ZCHAN(1)+ZCHAN(2)-2CHAN(3))/5.0)
940. CREF=(BUSW/2)*(1.0 + (-2CHAN(1)+2CHAN(2)+2CHAN(3))/5.0)
950, DREF=(BUSW/2)* (1,0 + {-2ZCHAN(1)+2CHAN(2)-2CHAN(3))/5.0)
960. EREF=(BUSW/2)* (1.0 + (2ZCHAN(1)-ZCHAN({(2)+ZCHAN(3))/5.0)
970. FREF=(BUSW/2)* (1.0 + (ZCHAN(1)-ZCHAN(2)-ZCHAN(3))/5.0)
980. GREF=(BUSW/2)*(1.0 + (-2ZCHAN(1)=-2ZCHAN(2)+ZCHAN(3))/5.0)
990, HREF=(BUSW/2)*(1.0 + (-2CHAN(1)-2CHAN(2)-2CHAN(3))/5.0)
1000. PRINT 59, AREF,BREF,CREF,DREF,EREF,FREF,GREF,HREF
1010. 59 FORMAT ('l1', 10X, 'EXPECTED ISI1 REF VALUES ', /,
1020. & B(5%,15), ///)
1030. C
1040. C GENERATE METRIC SPACE
1050. C
1060. THRES = BUSW / 7
1070. SEP = AREF - HREF
1080. ZSEP = FLOAT (SEP)
1090. HALF = SEP / 2
1100. ZHALF = FLOAT (HALF)
1110. 2ZSIGAD = (2STDEV * (BUSW / 10.0))
1120. 2SCALE = 0.5 / Q(ZHALF / ZSIGAD)
1130. €
1140. DO 88 I=],BUSW
1150. ‘DIF = IABS(I - AREF)
1160. ZDIF = FLOAT (DIF)
1170, ZX = (IZSEP - ZDIF) / (2ZSIGAD)
1180. ZXX = 2ZDIF/(ZSIGAD)
11%0. iIF (DIF .LE. HALF)
1200. & THEN
1210. APM(1) = Q(ZX) * THRES * ZSCALE
1220, ELSE
1230, APM(I) = (1.0/2SCALE - Q{(ZXX)) * THRES * ZSCALE
1240, ENDIF : _
1250, DIF =« IABS(I - BREF)
1260. *ZDIF = FLOAT (DIF) |
1270. ZX = (ZSEP - ZDIF) / (2SIGAD)
1280. ZXX = ZDIF/(ZSIGAD) |

- 153 -

1290.
1300.
1310.
1320.
1330.
1340.
1350.
1360.
1370.
1380.
1390.
1400,
1410,
1420.
1430.
1440.
1450.
1460.
1470.
1480.
1490.
1500.
1810.
1520.
1530.
1540.
1550.
1560.
1570,
1580.
1590,
1600.
1610,
1620.
1630.
1640.
1650.
1660.
1670.
1680.
1690.
1700.
1710.
1720.
1730.
1740.
1750.
1760.
1770.
1780.
1790.:
1800.
1810.
1820.
1830.
1840.
1850.
1860.
1870.
1880.
1890.
1900.
1910.
1920,

&

&

&

&

&

&

c &

IF (DIF
THEN

ELSE
ENDIF

.LE. HALF)
BPM(I) = Q(ZX) * THRES * ZSCALE
BPM(I) = (1.0/ZSCALE - Q(2XX)) *

DIF = IABS(I - CREF)
ZDIF = FLOAT (DIF

2X = (28
ZXX = IDI
IF (DIF

THEN

ELSE

ENDIF
DIF = IAB
ZDIF = FL
2% = (28
ZXX = IDI
IF (DIF

THEN

ELSE

ENDIF
DIF = IAB

)
EP - 2DIF) / (ZSIGAD)
F/(ZSIGAD)
.LE. HALF)
CPM(1) = Q(2X) * THRES * ZISCALE
CPM(I) = (1.0/ZSCALE - Q(2ZXX)) *
S(I - DREF)
OAT (DIF)
EP - IDIF) / (ZSIGAD)
F/(ZSIGAD)
.LE. HALF)
DPM(1) = Q(ZX) * THRES * ZSCALE
pPM(1) = (1.0/ZSCALE - Q(ZXX)) *

${ I - EREF)

ZDIF = FLOAT (DIF)

zX = (28

ZXX = IDI

IF (DIF
THEN

ELSE

ENDIF
DIF = 1IAB
ZDIF = FL
2x = (28
2XX = IDI
IF (DIF

THEN

ELSE

ENDIF
DIF = IAB

EP - ZDIF) / (2ZSIGAD)
F/{2S1GAD)

.LE, HALF)

EPM(I) = Q(2ZX) * THRES * ZSCALE
EPM(I) = (1.0/ZSCALE - Q(ZXX}) *
S(I - FREF)

OAT (DIF)

EP - 2DIF) / (2ZSIGAD)
F/(ZSIGAD)

.LE, HALF)

FPM(I) = Q(ZX) * THRES * ZSCALE
FPM(1) = (1.0/ZSCALE - Q(ZXX)) *

S(I - GREF)

ZDIF = FLOAT (DIF)

Z2Xx = (28
2XX = IDI
IF (DIF

THEN

ELSE

ENDIF
DIF = IAB
ZDIF = FL
2% = (28
ZXX = IDI1
IF (DIF

THEN

ELSE

EP - 2DIF) / (ZSIGAD)
F/{(2ZSIGAD)
.LE. HALF)

GPM(I) = Q(ZX) * THRES * ZSCALE
GPM(1) = (1.0/2ZSCALE - Q(ZXX)) *
S(I - HREF)

OAT (DIF)

EP - 2DIF) / { 2ZSI1GAD)
F/(ZSIGAD) i

LLE. HALF)

HPM(I) = Q(2X) * THRES * ZSCALE

- 154 -

THRES

THRES

THRES

THRES

THRES

THRES

ZSCALE

2SCALE

ZSCALE

ZSCALE

ZSCALE

ZSCALE

1930.
1940.
1950.
1960.
1970.
1980.
1990.
2000.
2010.
2020.
2030.
2040.
2050.
2060.
2070.
2080.
2050.
2100.
2110.
2120.
2130.
2140.
2150.
2160.
2170.
2180.
2190.
2200,
2210.
2220.
2230,
2240.
2250.
2260.
2270.
2280.
2290,
2300.
2310.
2320.
2330.
2340.
2350.
2360.
2370.
2380,
2390.
2400.
2410.
2420.
2430.
2440.
2450.
2460.
2470.
2480,
2490.
2500.
2510,
2520,
2530,
2540,
2550.
2560.

leXeXeXeXeXe ke kel

(aXe!

ann

leXeXaXeXeXeXekel

ENDIF HPM(I) = (1.0/2SCALE - Q(ZXX)) = THRES * ZSCALE
IF (APM(1) .GT. THRES) ApM(I)=THRES

1F (BPM(1) .GT. THRES) BPM(I)=THRES
1F (CPM(1) .GT. THRES) CPM(I)=THRES
1F (DPM(I) .GT. THRES) DPM(I)=THRES
IF (EPM(I) .GT. THRES) EPM(I)=THRES
1fF (FPM(1) .GT. THRES) FPM(I)=THRES
IF (GPM(I) .GT. THRES) GPM(I)=THRES
IF (HPM(I) .GT. THRES) HPM(I)=THRES

88 CONTINUE
PRINT , CPM

A 00-00 STATE TRANSITION
B 00-01 STATE TRANSITION
c 10-00 STATE TRANSITION
D 10-01 STATE TRANSITION
E 01-10 STATE TRANSITION
F 01-11 STATE TRANSITION
G 11-10 STATE TRANSITION
H 11-11 STATE TRANSITION

AB 00 STATE
CD 10 STATE
EF 01 STATE
GH 11 STATE

SM STATE METRIC
PM PATH METRIC

P PATH (STATE TRAJECTORY)

N NEW
0 OLD

DO 99 ITIME = 1,TSTOP

GENERATE NOISE SAMPLE
----- LAPLACIAN
CALL GGVCR(SUBRF,TBL,PI,P2,13,I4,IT,IT,IOP,ZSEEDL,R,IER)
ZNOISE = R(1)

————— GAUSSIAN
CALL GAUSS(ZSTDEV, 0.0, ZNOISE, ZSEEDI, ZSEEDO)
ZSEEDI = ZSEEDO

----- UNIFORM
2R = GGUBFS (ZSEEDI)
ZNOISE = (2.0 * 2R - 1,0) * ZB
 GENERATE PSEUDO RANDOM DATA
ZDATA = GGUBFS (ZSEED)
IF (ZDATA .LE. 0.5)
& THEN DO
DATA(1l) = =1

DO
DATA(1) = 1

- 155 -

2570.
2580.
2590.
2600.
2610.
2620,
2630,
2640.
2650.
2660.
2670.
2680.
2690.
2700.
2710.
2720.
2730.
2740.
2750.
2760.
2770,
2780.
2790.
2800.
2810.
2820.
2830.
2840.
2850,
2860.
2870.
2880.
2890.
2900,
2910.
2920.
2930.
2940,
2950.
2960.
2970,
2980.
2990.
3000.
3010.
3020.
3030.
3040.
3050.
3060.

3070. -

3080.
3090.
3100.
3110.
3120.
3130.
3140.
3150.
3160.
3170.
3180.
3190.
3200.

[eXeXg]

[eXeXe]

[eXeXe)

annonnnn

ENDIF

RBIN = DATA(1)
IF (RBIN .EQ. -1) RBIN = 0
CALL SHIFT (REFDO, REFDN, RBIN, RBOUT)

GENERATE CHANNEL RESPONSE FOR PSEUDO-RANDOM DATA

ZVOLTS = DATA(l)*ZCHAN(I)+DATA(2)*ZCHAN(2)+DATA(3)*ZCHAN(3)
ZVOLTS = GAIN * ((ZVOLTS * COS(RAD)) + ZNOISE)

IF (ZVOLTS .GT. 5.00) ZVOLTS = 5.00

1F (zZvoLTS .LT. -5.00) ZVOLTS = -5.00

DATA(3) = DATA(2)
DATA(2) = DATA(1)
DO 9 1=1,8

9 REFDN(1) = REFDO(I)

DELAY QUANTIZER DECISION FOR LATER COMPARI SON

QUANT = 1
i1F (ZVOLTS .LE. 0.0) QUANT = O
CALL SHIFT (QUANO, QUANN, QUANT, QBOUT)
po 12 1=1,8
12 QUANN(I) = QUANO(I)

A/D CONVERT AND USE BINARY WORD AS AN INDEX TO METRIC SPACE

IDATA = (BUSW/2) - IFIX (ZVOLTS * BUSW/10.0)
IF (IDATA .EQ. 0) IDATA = 1

START FIRST BUTTERFLY

ABSMO + APM(IDATA)
MOD{LTEMP, BUSW)
EFSMO + BPM(IDATA)
MOD (RTEMP , BUSW)

[
+3
]
=
o)
LI

iF (LTEMP.LT.RTEMP)
& THEN DO
ABSMN = LTEMP
PO 1 I=1,8
1 ABPNEW (I)=ABPOLD(I)
ELSE DO
ABSMN = RTEMP
DO 2 1=1,8
2 ABPNEW(I }=EFPOLD(I)

..—......._-——_.._-_-——-.—_--——-—-—_-—-----_....———-.._-..-.__—..—_.-_

_ LTEMP
LTEMP
RTEMP
RTEMP

ABSMO + CPM(IDATA)
MOD{LTEMP, BUSW)
EFSMO + DPM{IDATA)
MOD (RTEMP , BUSW)

1F (LTEMP.LT.RTEMP)
& THEN DO
CDSMN = LTEMP

- 156 -

oo

3210. DO 3 I=1,8

3220. 3 CDPNEW(1)=ABPOLD(1)

3230. ELSE DO

3240, CDSMN = RTEMP

3250, DO 4 I=1,8

3260, 4 CDPNEW(I)=EFPOLD(I)

3270. ENDIF

3280. C

3290, Crrrmeme—m e —————— e e e e — s s s —————
3300. C END FIRST BUTTERFLY

3310. C

3320, Crmm=memmee e o e e e oo s—ee e
3330. C

3340. C START SECOND BUTTERFLY

3350, Cro—— e ———————— e e —— e oo —ee o
3360. C

3370. C

3380. LTEMP = CDSMO + EPM(IDATA)

3390. LTEMP = MOD(LTEMP,BUSW)

3400. RTEMP = GHSMO + FPM(IDATA)

3410, RTEMP = MOD(RTEMP, BUSW)

3420. C

3430. 1F (LTEMP.LT.RTEMP)

3440. & THEN DO

3450, EFSMN = LTEMP

3460. DO 5 I=1,8

3470. 5 EFPNEW(1)=CDPOLD(1I)

3480. ELSE DO

3490. EFSMN = RTEMP

3500. DO 6 1=1,8

3510. 6 EFPNEW(I)=GHPOLD(I)

3520. ENDIF |
3530. C |
3540, Coommm e m e ————— e ———— |
3550. C

3560. C

3570. LTEMP = CDSMO + GPM(IDATA)

3580. LTEMP = MOD(LTEMP,BUSW)

3590. RTEMP = GHSMO + HPM({IDATA)

3600. RTEMP = MOD(RTEMP, BUSW)

3610. C

3620. 1F {LTEMP.LT.RTEMP)

3630. & THEN DO

3640, GHSMN = LTEMP

3650. Do 7 1=1,8

3660. 7 GHPNEW (1)=CDPOLD(I)

3670. ELSE DO

3680. GHSMN = RTEMP

3690. Do 8 1=1,8

3700. 8 GHPNEW (1) =GHPOLD(1)

3710. ENDIF

3720. C

3730, Crmsmmm— e e e e e s
3740. C END SECOND BUTTERFLY

3750. C

3760, Cormmmem e e o e o e e
3770. C

3780. C OVERFLOW PROTECT

3790. C FIND MINIMUM STATE METRIC

3800. C

3810, IF (ABSMN .LT. CDSMN)

3820. & THEN DO

3830. MIN1=ABSMN

3840. MINPl = 0

- 157 -

3850. ELSE DO

3860, MIN1=CDSMN

3870. MINPl = 1

3880. ENDIF

3890. IF (EFSMN .LT. GHSMN)

3900. & THEN DO

3910. MIN2=EFSMN

3920, MINP2 = 0

3930, ELSE DO

3940, MIN2=GHSMN

3850, MINP2 = 1

3960. ENDIF

3970. IF (MIN1 ,LT. MIN2)

3880. & THEN DO

3990, MIN = MIN1

4000. MINP = MINP1

4010, ELSE DO

4020, MIN = MIN2

4030. ; MINP = MINP2

4040. ENDIF

4050. C

4060. C GENERATE TWO'S COMPLEMENT & ADD TO EACH STATE
4070. €

4080. MIN = BUSW - MIN

4090. IF (MIN ,EQ. BUSW) MIN = 0

4100. C

4110. ABSMN = ABSMN + MIN

4120. ABSMN = MOD (ABSMN, BUSW)

4130, C

4140, CDSMN = CDSMN + MIN

4150, CDSMN = MOD (CDSMN, BUSW)

4160. C

4170. EFSMN = EFSMN + MIN

4180. EFSMN = MOD (EFSMN, BUSW)

4190. C

4200. GHSMN = GHSMN + MIN

4210. GHSMN = MOD (GHSMN, BUSW)

4220. C

4230. €

4240. C DELAY MINIMUM PATH DECISION FOR LATER COMPARISON
4250. C

4260. CALL SHIFT(MINPO, MINPN, MINP, MPOUT)
4270. DO 11 I=1, 8

4280. 11 MINPN{I) = MINPO(1)

4290, ¢

4300. C

8310, Crommm e e
4320. C

4330. C OUTPUT REGISTER STATUS FOR MACHINE
4340, C

4350, i1F (SUPPRES .EQ. 1) GO TO 77

4360, 1F (ITIME .LT. TOUT) GO TO 77

4370. C

4380, PRINT 21, ITIME,ABSMO,CDSMO,EFSMO,GHSMO
4390. 21 FORMAT (' TIME: ', I6, ' REGISTERS: ',4(I5,5X))
4400. PRINT 20, ABPOLD,CDPOLD,EFPOLD,GHPOLD
4410. 20. FORMAT (4(/,15%,812), /

4420, C

4430, 77 CONTINUE

4440. C

450, Comrmmmmem e e e o e
4460. C

4470, C END OF BIT INTERVAL AND PROCESSING
4480. C MAKE FINAL REGISTER TRANSFERS

- 158 -

4500, ABSMO = ABSMN

4510, CALL SHIFT (ABPOLD,ABPNEW,0,BOUT1)
4520, C

4530. CDSMO = CDSHMN

4540, CALL SHIFT (CDPOLD,CDPNEW,1,BOUT2)

' 4550. C
4560. EFSMO = EFSMN
4570, CALL SHIFT (EFPOLD,EFPNEW,0,BOUT3)

4580. C

4590, GHSMO = GHSMN

4600, CALL SHIFT (GHPOLD,GHPNEW,1,BOUT4)

4610, C

4620, C MAJORITY VOTE FOR FINAL DECISION -- MBOUT
o

4640. MBOUT = 0

4650. BSUM = 0

4660. BSUM = BOUT1 + BOUT2 + BOUT3 + BOUT4

4670. IF (BSUM .GE. 2) MBOUT = 1

4680. IF (SUPPRES .EQ. 1) GO TO 55

4690, IF (ITIME .LT. TOUT) GO TO 55

4700. PRINT 27, RBOUT,MBOUT,MPOUT,QBOUT

4710. 27 FORMAT (15X, 'TRANSMIT ', I3, ' ESTIMATE ', 13,
4720, & " MIN., PATH ', I3, ' QUANTIZER ', 13, ///)

CONTINUE

ACCUMULATE ERROR STATISTICS

IF (ITIME .LE. 64) GO TO 99
4800. BITS = BITS + 1

4810. IF (RBOUT ,EQ. QBOUT) GO TO 97
4820. QUANER = QUANER + 1
4830. 97 IF {(RBOUT .EQ. MPOUT) GO TO 98
4840, MINPER = MINPER + 1

4850, 98 IF (RBOUT .EQ. MBOUT) GO TO 99
ERRCNT = ERRCNT + 1]

99 CONTINUE
OUTPUT STATISTICS FOR SIMULATION

(e XeXe 2NN e]

4920, ZBUSW = FLOAT (BUSW)

4930. WIDTH = ALOG10 (ZBUSW) / ALOG10 (2.0) + 0.2

4940. PRINT 46, WIDTH

4950, 46 FORMAT ('1', 10X, I3, ' BIT PARALLEL RECURSIVE ARCHITECTURE'
4960, & e /1777

4970. C

4980. . 2ZBER = FLOAT(ERRCNT) / FLOAT(BITS)

4990. PRINT 47

5000, 47 FORMAT(10X, ' VITERBI RECEIVER ', //)

5010. PRINT 28, ERRCNT,BITS,ZBER,ZSNR

5020. 28 FORMAT (10X, I7, ' ERRORS IN ', IB,

5030, & ' BITS READ: BER = ',E12.5,' FOR SNR = ',F¢.l,' DB',//)

5040. C

5050, 2ZBER = FLOAT(MINPER) / FLOAT(BITS)

5060. PRINT 48

5070, 48 FORMAT (/////, 10X, ' MINIMUM PATH DETECTOR ', //)
5080. PRINT 28, MINPER,BITS,ZBER,2SNR

5090. C

5100. ZBER = FLOAT(QUANER) / FLOAT(BITS) .
5110. PRINT 49
5120. 49 FORMAT (/////, 10X, ' THRESHOLD DETECTOR ', //)

- 159 -

5130. PRINT 28, QUANER,BITS,2BER,ZSNR

5140. C

5150, C

5160. C

5170. STOP

5180. END

5190. SUBROUTINE SHIFT(OLD,NEW,BITIN,BITOUT)
5200. INTEGER OLD(8),NEW(8),BITIN,BITOUT

5210. C

5220, C ==--- SHIFT REGISTER PROCEDURE

5230. C

5240. N=8

5250. Nl = N-1

5260. OLD(1)=BITIN

5270. DO 99 I=1,N1

5280. OLD(I+1) = NEW(I)

5290. 99 CONTINUE

5300. BITOUT = NEW({N)

5310, RETURN

5320, END

5330. SUBROUTINE GAUSS(ZS,ZM,ZNOISE,DSEEDI,DSEEDO)
5340. DOUBLE PRECISION DSEEDI,DSEEDO

5350. C

5360, C =-=---- PROCEDURE TO GENERATE A GAUSSIAN R.V.
5370. C

5380. ' A= 0.0

5390, DO 1 I=1,48

5400. 1 A = A + GGUBFS(DSEEDI)

5410, ZNOISE = ((A - 24.0) / 2.0) * 25 + IM
5420. DSEEDO = DSEEDI

5430. RETURN

5440, END

5450, FUNCTION Q(X)

5460. REAL Q,X

5470. C

5480, C =--=--- QO FUNCTION FOR GAUSSIAN NOISE

5490. C

5500, X1=X

5510. IF(X.LT.0.0) X1 = -X

5520. IF(X1.GE.13.0) GO TO 12

5530. XS = X*X

5540, 2 = 0.39894228*EXP(-0.5%XS)

§550. IF(X1.LE.6) GO TO 19

5560. Q= Z*(1.0 - 1.0/XS)/X1

5570. IF(X.LT7.0.0) Q = 1,0 - Q

5580. RETURN

5590. 19 T = 1.0/(1.0+0.2316419%X1)

5600. Bl = 0.319381530

5610. B2 = -0.356563782

5620. - B3 = 1.781477937

5630. B4 = -1,821255978

5640. BS = 1.330274429 |
5650. F = T*(B1+T*{B2+T* (B3+T*(B4+T*B5))})) |
5660. Q = F*7

5670. IF(X.LT.0.0) Q = 1.0 - Q

5680, RETURN

5690. 12 Q = 0.0 |
.5700. 1IF(X.LT.0.0) Q@ = 1.0 |
5710. RETURN : |
5720. END

5730. C FUNCTION Q(X)

5740, C REAL Q,X%,RT2

5750. C

8760, C =-—---- Q FUNCTION FOR LAPLACIAN NOISE

- 160 -

5770.
5780,
5790.
5800.
5810.
5820,
5830.
5840.
5850.
586C.
5870.
5880,
5850.
5900.
5910.
5920.
5930,
53840.
5850.
5960.
5970,
5980.
5990,
6000.
6010.
602C.
6030.
6040,
6050,
6060,

11
22

[¢KeXsXeEnieXsinXe

SENTRY

RTZ = 1.414213562
IF (X .LT. 0) GO TO 1

1

Q= 0.,5*EXP (-1.0 * RT2 * X)

GO TO 22

Q=1.0-0.5* EXP (RT2 * X)}

CONTINUE
RETURN
ERD

SUBROUTINE SUBRF(TBL,Pl,P2,13,14,15)

INTEGER 13{(1}),14,I5

REAL TBL(I15,1),P1(1),P2(1)

- LAPLACIAN TABLE GENERATION FOR GGVCR {IMSL)

A = SQRT(2.0) / P1(1)

TBL{3,1) = -12.0 * P1(1l

TBL{3,2) = 0.0

DO 1 1=4,14

TBL{I,1) = (-21.0 + {

1F (TBL{1,1) .LT. 0.0
T8L{I,2) = 1.0 ~
GO TO 1

I-
)

)

3
G

0.5 * EXP(-~ A * TBL(I,1)))

TBL(1,2) = 0.50 * EXP{ A * TBL(I,1))

CONTINUE

TBL(I4+1,1) = +12.0 * P1(1l)
_TBL(I4+1,2) = +1.0

RETURN
END

161 -

10.

20.

30.

40,

50.

60.

70.

80.

S0.
100,
101,
110,
120,
130.
140.
150,
160,
170,
180.
1%0.
200.
210,
220,
230.
240,
250,
260,
270,
280,
2380,
300,
3l0.
320.
330.
340,
350.
360,
370.
380.
350.
400,
410,
420,
430.
440,
450.
460,
470.
480.
490.
500.
510.
520.
530.
540.
550,
560.
570,
580.
590.
600.
610,
620.
630.

//GULAK JOB ',,,T=1M,C=0', 'GLEN'
// EXEC WATFIV,SIZE=256K
//GO.SYSIN DD *

$JOB WATFIV GLEN,NOEXT,NOWARN

COMMON H(21},R(21),KS(101),DT(30),LG{30),15(30,100)
DATA LG/30*1/, 15/3000 * 0/

PROGRAM TO EVALUATE DMIN BY EXHAUSTIVE SEARCH OF
BINARY ERROR SEQUENCES.
SPAN OF CHANNEL IMPULSE RESPCNSE: 20 MAX
FIRST 30 SMALLEST ERROR SEQUENCES
ERRCR SEQUENCE LENGTH: 100 MaX

QOO0 00

a0 o0

20
21

- READ AND ECHO CHANNEL IMPULSE RESPONSE
PRINT 10

FORMAT (///,10%,' L,',12%,'{H{(K) ,K=0,L-1)" }
READ , LL,(H(1),I=1,LL)

PRINT , LL, (H{1),I=1,LL)

MAX=4*LL

- CALCULATE PULSE AUTOCORRELATION COEFFICIENTS (ONE-SIDE)}
DO 21 J=1,LL

SuM = 0.0

LAST = LL-J+1

DO 20 K=1,LAST

SUM = SUM + H(K} * H(K+J-1)

CONTINUE

R(J) = SUM

CONTINUE

PRINT , (R(I1),1=1,LL)

=~ INITIALIZE DISTANCE SQUARED VECTOR (DT) TO LENGTH 100
DO 22 M=1,30

DT(M} = 100.0

CONTINUE

- (I?ITIALIZE TRIAL ERROR SEQUENCE VECTOR (KS) WITH INIT ERROR
KS(l) = 1

DO 23 L=2, 101

KS(L) = 0

CONTINUE

- SET TRIAL ERROR SEQUENCE LENGTH (LS) POINTER
KS(2) = 0
LS = 2

- SCAN ERROR SEQUENCES UP TO LENGTH 3 * CHANNEL MEMORY
WHILE (LS .LE. MAX ,AND. LS ,LE, 100 } DO

DO 41 J=2, LS
IF(KS{J) .EQ. 2) KS{J) = -1
CONTINUE .

- CALCULATE DISTANCE OF TRIAL ERROR SEQUENCE
CALL DSTNC(DQ,LS,LL)

- REORDER ACCUMULATED LISTS IF NECESSARY ELSE DISCARD TRIAL
CALL REORDER(D{Q,LS)

- 162 -

640, C

650, € ----- GENERATE NEW TRIAL ERROR SEQUENCE
660, DO 42 1=2, LS
670. IF(KS(I).EQ. -1} KS(1) = 2
6B0. 42 CONTINUE
690. C
700. KS{2) = RS(2) + 1
710. DO 43 M=2, 100
720, IF {KS{M) .EQ. 3}
730, & THEN
740, KS(M) = 0
750, KS(M+1} = KS(M+1) + 1
760, ENDIF
770. 43 CONTINUE
780. C
794, € ----- SET ERROR SEQUENCE LENGTH (LS} POINTER
B0O. DO 44 N=2, 101
Bl0. IF(KS(N) ,NE. 0) LS=N
820. 44 CONTINUE
B30. C
B40, END WHILE
850. ¢
BE0, € mmmmm e e
870. ¢
B8B0., C =~---- TABULATE RESULTS
8990. PRINT 50
909, 50 FORMAT (///,' DISTANCE SQUARED ERROR SEQUENCE',/)
910. DO 52 K=1,30
© 820, IF(DT(K).EQ. 100.0 } GO TO 99
930. LN = LG(K)
840, PRINT 51, DT(K),(IS(K,L),L=1,LN)
950, 51 FORMAT{1X,Fl12.6,6X,2512,3(/,19%,2512))
560, §2 CONTINUE
970, 95 STOP
980. END
990, SUBROUTINE DSTNC(DQ,LS,LL)
1000. COMMON H(21),R{21),KS(101)
i018. ¢
1020, Crmmorm o e e e e e
1030. C
1040. ¢ TAKES THE TRIAL ERROR SEQUENCE OF LENGTH (LS) AND
1050. ¢ DETERMINES THE DISTANCE {DQ) GIVEN THE CORRELATION
1060. ¢ COEFFICIENTS OF THE CHANNEL
1070. C
1080, Crmmmm oo o e e e e e
1090. €
1100. € =-=---- CALCULATE DISTANCE (DQ) CONTRIBUTED BY R(1)
1110. SUM = 0.0
1120. DO 10 L=1,LS
1130. KSL = KS(L)
1140, IF(KSL .EQ. 0) GO TO 10
1150. SUM = SUM + KSL * KSL
1160, 10 CONTINUE
1170. Dg = SUM * R(1)
1180, €
1196, C ----- CALCULATE DISTANCE {(DQ) CONTRIBUTED BY REST OF R VECTOR
1200. SUM = 0.0
1210. DO 21 M=2, LS
1220. LAST = M-1
1230. KSM = KS(M)
1240. IF{ KSM.EQ.0) GO TO 21
1250, C
1260, DO 20 N=1,LAST

1270, MN = M - N +1

- 163 -

1280,
1290,
1300.
1310.
1320,
133¢.
1340,
1350.
1360.
1370.
1380.
1390.
1400.
1410,
1420.
1430,
1440,
1450,
1460,
1470.
1480.
1490.
1506.
1510,
1520,
1530.
1540,
1550.
1560,
1570.
1580,
1590.
1600,
1630,
1620,
1630.
1640,
1650.
1660.
1670.
1680.
1680.
1700,
1710.
1720,
1730,
1740.
1750.
1760,
1770.
1780,
1780.
1800.
1810.
182¢0.
1836,
1840,
1850.

(s NaXoNeleNeXeNeXeXa ksl

31
99

SENTRY
7 1.0

KSN = KS(N)

IF (MN .GT. LL ,OR. KSN .EQ. 0) GO TO 20
SUM = SUM + KSM*KSN*R(MN}

CONTINUE

CONTINUE

- FINAL DISTANCE FOR THIS TRIAL ERROR SEQUENCE

DG = DQ + 2.0 * SUM

RETURN

END

SUBROUTINE REORDER(DQ,LS)

COMMON H({21),R(21),KS(101),DbT{30),LG{30)},15(30,100)

TAKES THE TRIAL ERROR SEQUENCE AND DETERMINES WHETHER ITS
'DISTANCE' (DQ) IS LESS THAN ANY DISCOVERED SO FAR.

IF 80, THEN IT IS INSERTED IN THE APPROPRIATE ASCENDING
ORDER OF THE LIST.

- DETERMINE WHETHER DQ IS LESS THAN ANY DT IN THE LIST
DO i0 I=1,30

IDX=1

IF (DQ.GE.DT(IDX)) GO TO 10

GC TO 11

CONTINUE

- DQ IS GREATER THAN THOSE IN THE LIST ---> EXIT,

GO TO 98

~ LAST ENTRY IN THE LIST - NOTHING TO PUSH DOWN - INSERT DIRECT
IF (IDX.EQ.30) GO TO 30

LEFT = 30 - IDX

- PUSH DOWN OTHER ENTRIES IN THE LIST FOR NEW MEMBER
DO 20 M=1, LEFT

K = 30 - M

DT(K+1) = DT(K)

LG(K+1) = LG(K)

LN = LG{K+1)

DO 20 N=1,LN
IS{K+1,N} = IS(K,N)
CONTINUE

- PUSH NEW DISTANCE AND ERROR SEQUENCE LENGTH INTO LIST
DT(IDX) = DQ
LG(IDX) = LS

- PUSH NEW ERROR SEQUENCE INTO THE LIST
DO 31 L=1,LS

I1S(IDX,L) = KS{L}

CONTIRUE

RETURN
END

00 0.250 0.000 0.500 0.000 0.000 0.500 -

- 164 -

Appendix. E

PLANARITY TESTING SOFTWARE

- 165 -

i0.

20.

30.

40.

50.

60.

70.

BG.

90.
100.
110.
120.
130.
140,
150,
160.
170.
180.
19Q.
200.
210.
220,
230.
240,
250.
260,
270.
280,
280,
300.
3l0.
320.
330.
340.
350.
360.
370.
380.
390.
400.
410.
420.
430,
440,
450.
460.
470.
480,
4980.
500.
510.
520.
530.
540.
550.
560.
570.
580.
590.
600.
610.
620.
630.
640.

//GLENN JOB ',,,T=8,C=0,L=4,1=8",6"EMBED IN PLANE',MSGLEVEL=(1,1)

/7 EXEC PL1OCG,X=NX,AG=NAG,A=NA,CSI1ZE=512K LSIZE=512K

//PL1.SYSIN DD *
* PLANAR EMBEDDING

0/* AN IMPLEMENTATION OF THE ALGORITHM FROM
/% "EFFICIENT PLANARITY TESTING" IN THE JACM VOL,.12 (1974},
/* BY J. HOPCROFT AND R, TARJAN,

0/ e e e e e e e e
OPLANE: PROC OPTIONS{ MAIN } REORDER;
0 DECLARE

{ NU, /* NUMBER OF VTXS

EPS, ‘ /* NUMBER OF EDGES

MAXDEG, /* MAX DEGREE IN GRAPH
PATHLEN,
BADPATH,
RCOT INIT(1),
ADJ(*,*) /* ADJACENCY MATRIX
CTL } FIXED,
1 vX{ *) CTL,
2 NBR F1XED, /* SET BY "DFS" PROC
2 DEG FIXED, /* # OF ADJ VTXS
0 1 NUM{ *) CTL, /* VTR LIST BY ORDER OF DEPTH
2 1D FIZED,
2 DEG FIXED,
0 /* ADJACENCY STRUCTURE:
1 ADJ_LIST(*,*) CcTL, /* A LIST OF ADJ VTXS, FOR EACH VTX
2 JOIN BIT{(1), /* SELECT DIRECTED EDGES
2 AV FIXED, /* IDENTIFY ADJ VTXS
0 { AL({ *,*), /* ADJ LISTS IN ORDER OF VTX DEPTH
DEP{ *,*), /* DEPENDENCY GRAPH
LOWO(*), LOW1(*)) * LOWEST VTXS REACHED BY FROND
/* FROM DESCENDANTS OF VTX
CTL FIZED,
0 { SEGTOP, SEGEND } PTR, /* LIST OF SEGMENTS IN GRAPH
1 SEG BASED,
2 NZT PTR, /* PT TO NEXT SEGMENT
2 { PTOP, PEND) PTR, /% PT TO LIST OF PATHS IN SEG
0 1 PATH BASED, /* A PATH IN A SEG
2 NXT PTR, /* NEXT PATH IN SEG
2 LEN F1XED, /* LENGTH OF CURR PATH
2 NODE{ PATHLEN REFER(LEN })/* VTXS IN PATH
F1XED, :
{ MORE, /* FLAG END OF SYSIN FILE
PLANAR) /% T, IF GRAPH 1S STILL EMBEDDABLE

) BIT(1) INIT('1'B},
NULL BUILTIN,
(SYSIN, SYSPRINT) FILE:;
1 ON ENDFILE(SYSIN) MORE = '0'B;
OPEN FILE(SYSPRINT) PRINT STREAM OUTPUT,
FILE(SYSIN) STREAM INPUT;

MAINLTINE *

/* ESSENTIALLY THIS ALGORITHM 1S TWO DEPTH-FIRST SEARCHES:
/* 1, THE FIRST FINDS A SPANNING PALM TREE, P(G).

S USING SOME RESULTS FROM THIS SEARCH, THE VTXS ARE

/* ORDERED AS REQUIRED BY THE EMBEDDING PROCEDURE.

/* 2. APPLY ANOTHER SEARCH TO P(G), TRAVERSING THE VTXS IN A
/* PARTICULAR ORDER. THIS SEARCH FINDS PATHS IN G WHICH

/* ARE THEN EMBEDDED WITH PREVIOUSLY FOUND PATHS.
/* PINDING THE PATHS IN THE CORRECT ORDER IS NECESSARY FCR

- 166 -

650. ;* THE EMBEDDING PROCEDURE TO WORK PROPERLY AND EFFICIENTLY. *;
660, * *
670. /* THIS PROGRAM EXECUTES IN A TIME THAT IS LINEARLY DEPENDENT */
ggg. 5* ON THE NUMBER OF VERTICES IN G. G SHOULD BE BICONNECTED. */
v O/ e - */
700, 0 GET FILE(SYSIN) LIST{ NU };
710, DO WHILE{ MORE);
720. CALL INITIALIZE;
730. CALL DFS{ (ROCT), 0, 0);
740, CALL ORDER_ADJ_LISTS:
750, CALL HALFWAY;
760, CALL EMBED(AL, NUM.DEG, EPS, NU):
770. CALL WRITE_RESULT;
780, GET FILE(S¥YSIN) LIST(NU)}:
790. END;
800. 1 HALFWAY: PROC;
Bl0., O/ * - e e e e ——————————————— */
820, 0/* - DISPLAY ADJACENCY MATRIX, */
B30. /* - FREE STRUCTURES NO LONGER NEEDED. */
B40., O/ e ————— */
B50. 0 PUT FILE{ SYSPRINT) EDIT
B60. ((110) *=', * ' }(SKIP{3},A, SKIP(2),A):
B70. CALL WRITE_GRAPH(ADJ, VX(*)}.NBR, NU,
BBO. 'GIVEN GRAPH:'):
890. FREE VX, ADJ, ADJ_LIST;
900. END HALFWAY:
9i10. 1 WRITE_RESULT: PROC;
920. O DECLARE
930. { PATHCNT, SEGCNT) FI1ZED,
940. {P, S, Tl, T2) PTR;
950, O0/* DISPLAY LIST OF PATHS */
960. O PATHCNT, SEGCNT = 0;
970, PUT FILE(SYSPRINT } EDIT
980. ('PATH',*'NUMBER')(SKIP(2),COL(2),A,SKIP,A);
990. DO § = SEGTOP REPEAT Tl WHILE(§ -= NULL);
1000. SEGCNT = SEGCNT + 1;
1010. PUT FILE(SYSPRINT) EDIT
1020. (' (SEGMENT' ,SEGCNT,"')',*' ")
1030. (sxip(2),coL(6),A,F(3),A,SKIP,A };
1040. 0O DO P = §5-> PTOP REPEAT T2 WHILE{ P -= NULL);
1050, PATHCNT = PATHCNT + 1;
1060. PUT FILE(SYSPRINT } EDIT
1070. .(PATHCNT,'.....',P->NODE)}
1080. { SKIP,F(4), A,(P->PATH.LEN)F{3));
1090. T2 = P-> PATH.NXT;
1100. FREE P-> PATH;
1110. END; .
1120. © Tl = §-> SEG.NXT;
1130. FREE §-> SEG;
1140, END; :
1150. 0O/* IF PLANAR THEN DISPLAY DEPENDENCY GRAPH */
1160. © IF PLANAR THEN :
1170. DO;
1180. PUT FILE(SYSPRINT) EDIT
1190, ("<< *** PLANAR GRAPH *** >>')(SKIP(2},COL(5),A);
1260. ALLOCATE VX{ PATHCNT)};
1210. CALL WRITE_GRAPH(DEP, VX(*),NBR, -PATHCNT,
1220, ~ '"DEPENDENCY GRAPH:');
1230. END;
1240, ELSE
1250. O IF BADPATH < 0 THEN
1260. PUT FILE(SYSPRINT) EDIT
1270. ('<< 7?77 NOT PLANAR: TOO MANY EDGES ?7?7? >>')
1280. (SKIP(2),COL{(5),A);

- 167 -

1290,
1300.
1310.
1320.
1330.
1340,
1350.
1360.
1370.
1380C.
1380.
1400.
1410.
1420.
1430,
14490,
1450.
1460,
1470.
1480.
1490,
1500.
1510.
1520.
1530.
1540,.
1550,
1560.
1570.
1580,
1590.
1600.
1610.
1620.
1630.
1640.
1650,
1660,
1670,
1680,
1690.
1700.
1710.
1720.
1730.
1740.
1750C.
1760.
1770.
1780.
1780.
1800,
1810,
1820.
1830.
1840.
1850.
1860,
1870,
1880.
18%0.
1900.
1910,
1920.

ELSE
PUT FILE(SYSPRINT) EDIT
(*<< ??7? NOT PLANAR: EMBEDDING STOPPED AT PATH',
BADPATH,' 777 >>')
{ SKIP(2),A,F{3),A);
FREE VX, NUM, AL;
END WRITE_RESULT;
1INITIALIZE: PROC;

[/ —mmm m = m e o eSS S S S oSS o oo sssSsessoooSTEs */
0/* - ALLOCATE STRUCTURES BASED ON "NU" */
/* - SET ADJACENCY LISTS */
it * /
0 DECLARE '
{ R, C, /* INDICES FOR "ADJ" */
IX) /* INDEX FOR "AV" */
_ FIXED,
P POINTER,
{ SUM, REPEAT } BUILTIN;
0 MAXDEG, EPS = 0;
ALLOCATE ADJ(NU, NU), VE(NU), LOWO(NU), LOW1{ NU Yi
GET FILE(SYSIN } LIST{ ADJ };
0 DOR=1TO NU;
vz(R }.NBR = 0;
vX(R).DEG = SUM(ADJ(R,*));
IF VE(R).DEG > MAXDEG THEN MAXDEG = VZ(R).DEG;
EPS = EPS + VE{(R).DEG;
END;
0 EPS = EPS / 2;
IF EPS > 3*(NU - 2)
PTHEN CALL NONPLANAR(-1 };
ELSE PLANAR = '1'B;
ALLOCATE ADJ_LIST(NU, MAXDEG);
DO R = 1 TO NU;
IX = 1;
ADJ_LIST(R,* }.JOIN = '0'B;
Do € = 1 TO NU;
IF apDJ{ R,C } > 0 THEN
AV{ R, 1IX)= C;
X = IX + 1;
END;
END;
END;
END INITIALIZE;
IDFS: PROC(V, P, DEPTH } RECURSIVE;
(/K= m = m e e mC oSS S oo SmSmoToSsesmToT */
0/* "DEPTH-FIRST SEARCH" */
VA . */
/% TRAVERSE GRAPH WHILE STACKING VTXS AS THEY ARE CROSSED. */
/* EACH NEW VTX INDICATES A TREE ARC; AN OLD VTX {WHICH x/
/% 1S NOT THE CURR VTX'S PARENT) INDICATES A FROND. UPON */
/* REACHING THE END, BACK DOWN THE STACK TO THE PREV VTX */
5* THEN CONTINUE ALONG ITS NEXT EDGE. :;
*
/* "LOW " VALUES, WHICH ARE REQUIRED TO ORDER THE VTXS */
/* OF THE SPANNING PALM TREE FOR THE "EMBED" PROC, ARE */
/* COLLECTED DURING "DFS". */
Q/* e e e e e o 7 2 i e e T o e e B o e */
0 DECLARE
(v, /* CURR VTX IN SPANNING TREE BEING BUILT */
P, /* PARENT OF "V" */
DEPTH, /* LAST DEPTH 4 ASSIGNED TO A VTX */
1%, /% TO INDEX THRU ADJ LIST */
W} /% VTX ADJ TO "V© */

- 168 -

1830.
1940.
1950,
1960.
1970,
1980.
19%0.
. 2000,
2010,
2020,
2030,
2040,
2050,
2060.
2070.
2080.
2050,
2100.
2110,
2120.
2130,
2140,
2150,
2160.
2170,
2180,
2190,
2200,
2210,
2220,
2230,
2240,
2250,
2260,
2270,
2280.
2290,
2300.
2310,
2320.
2330.
2340.
2350.
2360,
2370.
2380.
2380,
2400.
2410,
2420,
2430.
2440,
2450,
*2460.
2470.
2480,
2490.
2500.
2510,
2520.
2530,
2540.
2550.
2560,

FIXED,
MIN BUILTIN-
0 DEPTH, NBR{ V)} = DEPTH + 1;
LOWO(v), LOW1(V } = NBR{ V);
0 DO IX =1 TO VK(V),DEG:
W=AavV(VvV, IX):
IF VE(W).NBR = 0 THEN
DO;
ADJ_LIST{ V,IX },JOIN = '1'B;
CALL DFS{ W, vV, DEPTH }:
IF LOWO(W) < LOWO{ Vv) THEN
DO;
LOW1(v) = MIN{ LOWO(V), LOWl(W) };:
LOWO(V) = LOWO{ W);
END;
ELSE IF LOWO(W)} = LOWO{ V } THEN
LOWl{ Vv } = MIN(LOW1(V), LOW1{W));

ELSE
LOW1(V) = MIN(LOW1(V}), LOWO(W));
END;
ELSE IF NBR{ W } < NBR{ V) & W -= P THEN
DO;

ADJ _LIST{ V,IX },JOIN = '1'B;
IF NBR(W)} < LOWO(V) THEN
DO;
LOW1(V) = LOWO(Vv);
LOWO(V) = NBR{ W };
END;
ELSE IF NBR{ W } > LOWD(V) THEN
LOW1{ V)} = MIN(LOW1(V), NBR(W)});
END;
END;
END DFS;
1CRDER_ADJ_LISTS: PROC;

0/* THIS ROUTINE ORDERS THE ADJ STRUCTURE ACCORDING TO THE
/* DEPTH OF THE VTX IN P(G), THE ROOT BEING THE FIRST LIST
/* IN "AL",

/* WE ORDER THE VTZS IN BACH ADJ LIST ACCORDING TO THE
/* "PHI_FCN" OF THE CORR EDGE, USING A RADIX SORT.

0/* ..
0 DECLARE
CELL(2%NU+1) PTR,
1 EDGE BASED,
2 (vo, V1) FIXED,
2 NXT PTR,
(v,
z)
FIXZED,
{ P, SAVE) PTR;

0 CELL(*) = NULL:
ALLOCATE AL(NU, MAXDEG }, NUM{ NU }:
DO ¥ = 1 TO NU;
DO Z = 1 TO VX(¥).DEG;
IF JOIN(¥, Z } THEN
CALL ADD EDGE(¥, AV(Y, Z});
END;
END; ’
0 NUM(*).DEG = 0;
DO Z=1T0 (2*NU+1 };
DO P = CELL{ Z) REPEAT SAVE WHILE(P ~= NULL };
NUM(P-> V0).DEG = NUM{(P-> V0).DEG + 1;
AL{ P->V0, NUM(P->V0).DEG) = P-> V1;
SAVE = P-> EDGE. NXT:

- 169

2570.
2580,
2590.
2600,
2610,
2620.
2630.

. 2640,

2650.
2660.
2670,
2680,
2690.
2700,
2710,
2720.
2730.
2740.
2750.
2760.
2770,
2780.
279C.
2800,
2810,
2820.
2830.
2840.
2850.
2860.
2870.
2BBO.
2890.
2900.
2910.
2820.
2930.
2940,
2950,
2960.
2570.
2980,
2590,
3000.
3010,
3020.
3030,
3040.
3050.
3060.
3070.
3080,
3090,
3100.
3110.
3120.
3130,
3140.
3150.
3160.
3170.
3180.
3190.
3200.

1
a/*
0

0/*
0/*
/*
/*
0/*
]

FREE P-> EDGE;
END:
END;
ADD EDGE: PROC(V, W);

FOR THE RADIX SORT: PLACE AN EDGE IN THE APPROPRIATE CELL
DECLARE
(v, W,
c#)
FIXED,
NEW PTR:

C4 = PHI_FCN(V, W);
ALLOCATE EDGE SET{ NEW };
NEW-> EDGE.V0 NBR{ V);

NEW-> EDGE.V1 = NBR(W);
NEW~-> EDGE.NXT = CELL(C# };
CELL(C4) = NEW;

END ADD_EDGE;
PHI_FCN: PROC(V, W);

FOR 2 EDGES VE AND VY WE WANT X AHEAD OF Y IN "AL(V,E*)"
IF FRONDS FROM X OR DESCENDANTS OF X REACH VTXS LOWER
THAN FRONDS FROM Y OR DESCENDANTS OF ¥,

DCL {V, W, R) FI1XED;

R = 03 .

IF NBR(V) > NBR(W) THEN
R = NBR(W) + NBR{ W };

ELSE DO;
R = LOWO(W) + LOWO{ W };
IF LOWI(W) < NBR(V) THEN R =R + 1;
END;

RETURN(R);

END PHI FCN;

END ORDER_ADJ_LISTS;
1EMBED: PrROCT AL, DEG, EPS, NU);

0/*
*

THIS ROUTINE TEST THE PLANARITY OF G BY ATTEMPTING TO EMBED
THE PATHS ONE AT A TIME IN THE PLANE.

THE FIRST PATH GENERATED IN "PATHFINDER" 1S A CYCLE, C.
G-C 1S DISCONNECTED. CALL THE CONNECTED COMPONENTS OF G-C
SEGMENTS. THE PATHS ARE GENERATED IN SUCH A WAY THAT ALL
THE PATHS IN ONE SEGMENT ARE FOUND BEFORE THE FIRST PATH OF
THE NEXT SEGMENT.

FIND THE FIRST PATH, Pl, OF A SEGMENT 5.
1F Pl+C+ALL PREV SEGMENTS 1S PLANAR, AND,
IF S+C IS PLANAR THEN S+C+ALL PREV SEGMENTS IS PLANAR.

A PATH IS EMBEDED EITHER ON THE LEFT (EXTERIOR) OR RIGHT
{INTERIOR) OF C, IF Pl 1S EMBEDDED ON THE LEFT (RIGHT) THEN
ALL PATHS IN S MUST BE EMBEDDED ON THE LEFT {(RIGHT).

KEEP A STACK L OF PATHS EMBEDDED ON THE LEFT AND STACK R OF
PATHS EMBEDDED ON THE RIGHT, WE NEED STORE ONLY THE LAST
VTX OF THE PATH ON L AND R FOR THE FOLLOWING REASON:

WE MAY EMBED A PATH STARTING AT V1, ENDING AT V2, ON THE
LEFT (RIGHT) IF AND ONLY IF NO FROND, XY, PREVIOUSLY EM-
BEDDED ON THE LEFT {RIGHT)} SATISFIES V2 < Y < V1,

THE PATHS ON L AND R CAN BE GROUPED INTO BLOCKS SUCH THAT THE
PLACEMENT OF ANY ONE PATH DETERMINES THE POSITION OF ALL
PATHS IN THE BLOCK.

- 170 -

*/

3210, /* THE ACTUAL EMBEDDING IS DONE THROUGH "PATHFINDER"; ONLY */

3220. /* THE INITIALIZATION OF VBLS IS DONE HERE, */
3230, O/ % memm e e e e e e e m - */
3240. 1 DECLARE

3250. { STACK(0 : EPS), /* L AND R STACKS */
3260. NEXT (-1 : EPS), /* PTS TO NXT "STACK" ENTRY */
3270. /* NEXT(-1}) PTS TO TOP OF R */
3280. /* NEXT(0} PTS TO TOP OF L *x/
3290, F { 1 : EPS-NU+1), /* F(I1)=TERMINAL VTX OF PATH 1 %/
3300. FPATH(1 : NU), /* # OF 1ST PATH CONTARINING VTX I */
3310. FINV (0 : NU 3}, /* INVERSE OF "F" */
3320, CURR (NU+1), * LIST OF VTXS IN CURR PATH */
3330. FREE, * 31ST AVAIL POSN IN "STACK" */
3340, P, /* CURR PATH # */
3350. S * START OF CURR PATH */
3360,) FIXED,

3370. { AL{ *,*),

3380. DEG{(*),

3350. EPS, NU

3400.) FIXED,

3410, BTOP FIXED,

3420. 1B{0: NU),

3430. 2 (X, ¥)

3440. FIXED,

3450, { LEFT INIT(O),

3460. RIGHT INIT({ -1)

3470,) FIXED STATIC,

34B0. ALLOCATION BUILTIN;

3490. © P, S,

3500. NEXT (RIGHT }, NEXT(LEFT), STACK(0) = 0;

3510, © B{0).X, B(0).¥,

3520. BTOP = 0;

3530. FINV(*) = 0;

3540, 0 FREE, FPATH(ROOT) = 1;

3550, ALLOCATE DEP{ EPS-NU+1l, EPS-NU+1);

3560. DEP(*,*) = 0;

3570, SEGTOP, SEGEND = NULL:

3580. 0 CALL PATHFINDER((RQOOT));

3590.D DUMP: PROC:

3600.D DCL 2 FIXED; PUT EDIT('RIGHT:')(SKIP(3),Ar);

3610.D DO Z=NEXT(RIGHT) REPEAT NEXT(Z) WHILE(Z-=0};

3620.D PUT EDIT(STACK(Z))(F(3)); END;

3630.D PUT EDIT('LEFT :')(COL(1),A);

3640.D DO Z=NEXT{(LEFT) REPEAT NEXT(2Z) WHILE(Z~=0};

3650.D PUT EDIT(STACK(Z)}(F(3}); END;

3660.D PUT EDIT({'BLOCKS:'){COL(1),A});

3670.D DO Z=BTOP TO 1 BY -1;

3680.D PUT EDIT(' (',STACK(B(Z).X),STACK(B(Z).Y),')')}(a,(2)F(3),4);
3690.D END; END DUMP;

3700. 1 PATHFINDER: PROC{ V } RECURSIVE;

3710, O/ % ———mm e e e o e */
3720, 0/* PROCESS THE ADJ LIST OF EACH VTX.

3730. /* IF VW IS AN ARC THEN ISSUE A RECURSIVE CALL TO CONTINUE

*
*
3740, * ALONG THE PATH. AFTER RETURING FROM PROCESSING AN ENTIRE *
3750, * SEGMENT, ATTEMPT TO PUT ALL NEW BLOCKS ON L THEN GATHER *
3760. /* THEM INTO ONE BLOCK. */
3770, * IF VW IS A FROND THEN WE HAVE REACHED THE END OF A PATH. *
3780, * THEREFORE WE ATTEMPT TO EMBED THE PATH. */
3790, D/*=—mmmme e e e e e e e e e e m e -%/
3800, O DECLARE ,
381c0., {v, W, /* "W" IS ADJ TO "V" */
3820, IX, /* TO INDEX THRU ADJ LIST OF V %/
3830, LP, RP, /* LEFT & RIGHT "STACK" PTRS */
3840, SAVE_S /* LOCAL VBL TO SAVE GLOBAL "S" */

171 -

3850,) FIXED;
3860, O SAVE S = §;

3870. DC IX = 1 TO DEG(V);

3880. W= AL{ V, IX);

3890. IF S = 0 THEN CALL NEW_PATH({ V, SAVE_S);

3900. PATHLEN = PATHLEN + 1;

3910, CURR{ PATHLEN } = W;

3920. O 1F V < W THEN

3930, /% VW IS A TREE ARC */
3940. DO;

3950, FPATH(W) = P;

3960, CALL PATHFINDER(W) :

3870. IF PLANAR THEN

3SB0. DO;

3990, CALL REMOVE_HI_VTXS(V);

4000. IF FPATH{ W) == FPATHI(v)} THEN

4010. CALL MOVE_NEW_BLOCKS{ LP, RP, W):

4020, END;

4030. END;

4040, O ELSE

4050, /* VW IS A FROND */
4060, DO;

4070, IF PLANAR THEN

4080. DO;

4050, F(P) = W;

4100. CALL SWITCH_BLOCKS(LP, RP, W):

4110. CALL PATH_EPILOGUE;

4120. END;

4130. CALL STORE_PATH;

4140. § = 0;

4150, END;

4160. END;

4170. 1 PATH_EPILOGUE: PROC;

41B0, 0/% =T e e */
4190, 0/* - IF THE PATH IS NOT C THEN STACK THE PATH ON L. x/
4200. /* - ADD NEW BLOCK THAT CORRESPONDS TO UNION OF OLD BLOCKS */
4210. * DELETED IN "SWITCH_BLOCKS," x/
4220. /* - FINALLY, IF CURR PATH IS NOT A SINGLE FROND, ADD AN */
4230, * END OF STACK MARKER TO R TO PREPARE FOR A RECURSIVE */
4240, * CALL. */
4250, O/ K- e e e e e e e e */
4260, O IF W > 1 THEN

4270, DO;

4280. CALL ADD_STACK{ LEFT, W };

4290, IF LP = LEFT THEN LP = NEXT{ LEFT);

4300. END;

4310, O IF RP = RIGHT THEN RP = 0;

4320. IF (LP ~= 0) | { RP~=0)} | { V = §) THEN

4330, CALL ADD B(LP, RP);

4340. 0 IF V == § THEN CALL ADD_ STACK (RIGHT, 0)

4350, FINV(W) = P;

4360. END PATH_EPILOGUE;

4370. END PATHFINDER;
4380. 1 REMOVE_HI_VTES: PROC{ V);

4390, 0/*mmmmm =T e e e e e e o m oo */
4400. O0/* APTER ALL SEGMENTS STARTING AT VTX V(I+1) HAVE BEEN EXPLORED x/
4410. /* AND EMBEDED, SEGMENTS STILL TO BE EXPLORED START AT VTXS NO *x/
4420. /* GREATER THAN V(I). THEREFORE REMOVE ALL OCCURRENCES ON L x/
4430, /* AND R (AND THE CORRESPONDING BLOCKS) OF VTXS >= V(I). */
8440, 0/¥-=—mmmmmmm—e e e ———————— e e xy/

4450, O DCL V FIXED;

4460, 0 DO WHILE

4470. { (STACK(B(BTOP).X) >= V B(BTOP) .X = 0
4480. & (STACK(B(BTOP}.Y) >= V¥ B(BTOP).Y = 0 }

-172 -

4490.
4500,
4510,
4520.
4530.
4540,
4550.

« 4560,

4570.
4580.
4590.
4600.
4610.
4620.
4630,
4640,
4650.
4660.D
4670,
4680,
4690,
4700.
4710,
4720.
4730,
4740.
4750,
4760.
4770,
4780,
4730.
4800.
4810,
4820,
4830,
4840.
4850,
4860.
4870,
4880.
4890.
4900.
4910.
4920.
4930,
4840,
4950,
4960.D
4970.
4980,
4990,
5000.
5010.
5020.
5030.
5040.
5050.
5060.
5070.
5080C.
5090,
5100.
5110.
5120.

& BTOP > 0);
, CALL POP_B(1 };
END:;
IF STACK{ B(BTOP).X) >= V THEN B{BTOP)}.X
IF STACK(B(BTOP).Y) >= V THEN B{(BTOP}.Y
0 CALL POP_STACK(RIGHT, Vv, 0);
CALL POP_STACK(LEFT, V, 0);
END REMOVE_HI_VTXS;
1/ MOVE_NEW_BLOCKS: PROC{ LP, RP, W };
0 T o o e e e = B S T T e e T B e e e o e B o
O/% ALL OF SEGMENT WITH 1ST EDGE VW (FROM "PATHFINDER") HAS BEEN
/* EMBEDDED, THEREFORE NEW BLOCKS MUST BE MOVED FROM R TO L IF
/* POSSIBLE., (THIS 1S BECAUSE ALL NEW SEGMENTS ARE EMBEDDED ON
/* THE LEFT, THEN MOVED TO THE RIGHT LATER IF NECESSARY.)

0
0

~e we

0 DcL (LP, RP, W) FIXED;

0 LP = LEFT;
CALL DUMP;

0 ?OOP: DO WHILE

(STACK(B(BTOP}.X } > F(FPATH(W)))
l (STACK{ B(BTOP).Y) > F{ FPATH{ W })
& (STACK({ NEXT(RIGHT)} == 0 })

IF STACK(B(BTOP).X) > F(FPATH{ W }) THEN

DO;
IF STACK(B(BTOP).Y) > F{ FPATH{ W)) THEN
DO;
CALL NONPLANAR(P):
LEAVE LOOP;
END;
ELSE
LP = B{BTOP).X;
END;
0 ELSE /* STACK{ ¥ } > F(FPATH(W))
DO;

CALL SWITCH_NEXT(LP, RIGHT);
CALL SWITCH NEXT(RIGHT, B(BTOP).Y);
LP = B{BTOPJ.Y;

END;
CALL POP_B(1);
END;
0 IF B{BTOP).X = 0 THEN
IF LP == 0 | B{BTOP}.Y == 0

THEN B(BTOP}.X = LP;
ELSE CALL POP_B(1);
0 CALL POP_STACK(RIGHT, 0, 1);
CALL DUMP;
END MOVE_NEW_BLOCKS;
1/ SWITCH_BLOCKS: PROC{ LP, RP, W };
0 *_----_-_-__--_-__--------—T __
§/* ATTEMPT TO EMBED CURR PATH, P, ON THE LEFT. IF P MUST CROSS
/* A PATH O ALREADY ON L, THEN MOVE THE BLOCK THAT CONTAINS Q TO
/* R. THIS MAY CAUSE A BLOCK ON R TO BE MOVED BACK TO L.

/% 1F PATHS ON BOTH L AND R CONFLICT WITH P THEN G IS
/* NON-PLANAR.
0/* ___
0 DECLARE
{ LP, RP,
w,
TL, TR
} FIXED;

0 LP = LEFT;
RP = RIGHT;

- 173 -

*/

5130. O LOOP: DC WHILE

5140, { _

5150, { NEXT(LP) == 0 & STACK{ NEET(LP)) > W)
5160. l { REXT{ RP) == 0 & STACK(REXT(RP }) > W)
§170. : :

5180, IF B(BTOP).X == 0 & B(BTOP),Y == 0 THEN
5190. © IF STACK(NEXT{ LP })} > W THEN

5200, DO;

5210, IF STACK(NEXT{ RP)} > W THEN

5220. Do;

5230, CALL NONPLANAR(P);

5240. LEAVE LOOP;

5250. END:;

5260. ELSE

§270. CALL EXZCHANGE;

5280. END;

5290, 0 ELSE

5300. DO:

5310. LP = B(BTOP).X;

§320. RP = B(BTOP).Y;

5330. END;

5340. 0 ELSE IF B(BTCOP).X -= 0 THEN

5350, CALL MOVE_TO _RIGHT;:

5360, ELSE IF B(BTOP)}.Y ~= 0§ THEN

5370. RP = B{BTOP).Y;

5380. O CALL POP_B{ 1);

§390. END;

5400, 1 EXCHANGE: PROC;

5410, 0/% EXCHANGE BLOCKS ON TOP OF L AND R
5420. CALL SWITCH_NEXT(RP, LP);

5430, CALL SWITCH NEZT{ B(BTOP).X, B(BTOP).Y);
5440, LP = B(BTOP).Y;

5450. RP = B{BTOP).X;

5460. END EXCHANGE;

5470, - MOVE_TO_RIGHT: PROC;

54B0, 0/* MOVE BLOCK ON L TO R

5490, CALL SWITCH_NEXT(B(BTOP).X, RP);

5500. CALL SWITCH NEXT(RP, LP };

5510. RP = B{BTOP).X;

5520, END MOVE_TO_RIGHT;

5530. END SWITCH_BLOCKS;

5540, 1NEW_PATH: PROC(V, §§);

BB50, /% =m=m—mmmmmmm e e oo e S eSS S oS Sos s ssSososees

56560, O0/* WHEN A NEW PATH IS FOUND, INCR "P" AND RESET "CURR".
5570. /* IF THE NEW PATH INITIATES A NEW SEGMENT THEN ALLOCATE
5580, /* A NEW "SEG" STRUCTURE.

§5QD, /% =memmmmmm e m e e eSS m eSS osoos oS mem s
5600. 0 DECLARE

5610. (v, SS } FI1XED,
5620. NEW PTR;

5630. IF §§ = 0 | SS = ROOT THEN

5640. DO;

5650, ALLOCATE SEG SET{ NEW);
5660. IF SEGTOP = NULL

5670. THEN SEGTOP = NEW;

5680. ELSE SEGEND-> SEG.NZT = NEW;
5690. NEW-> SEG,NZT,

5700. © NEW-> SEG.PTOP,

5710, NEW-> SEG.PEND = NULL;

5720. SEGEND = NEW;

5730. END;

5740. P=P+ 1;

5750. PATHLEN = 1;

5760. CURR{ 1), S = V;

- 174 -

5770. END NEW_PATH;
5780. 1 STORE _PATH: PROC;

8790, O/ A T e e e

5800. 0/* A FROND SIGNALS THE END OF A PATH. ADD THIS PATH

5810, /* TO THE "PATH" LIST.

8820, O/ oo e e e e e
5830. O DECLARE

5840, NEW PTR,

5850. X FI1XED;

5860. ALLOCATE PATH SET{ NEW };

5870. IF SEGEND-> SEG.PTOP = NULL

5880. THEN SEGEND-> SEG.PTOP = NEW;

5890, ELSE SEGEND-> SEG.PEND-> PATH.NXT = NEW:

5900, SEGEND-> SEG.PEND = NEW;

5910, NEW-> PATH,NXT = NULL:

5920. © DO X = 1 TO PATHLEN;

5930, NEW-> PATH.NCODE{ X)} = CURR(X };

5940. END;

5950. END STORE_PATH;

5960, 1 ADD_B: PROC{ NX, NY };

5870, 0/* ADD NEW BLOCK TO "B" STACK

5980. DCL { NX, NY) FIXED;

599(0,. BTOP = BTOP + 1;

6000. B(BTOP).X = NX;

6010. B(BTOP).Y = NY:

6020. IF NX »= 0 & FINV(STACK{ NX })} == @ THEN

6030. DEP(P, FINV(STACK{ NX }} },

6040. DEP(FINV(STACK{ KX)), P) = 1;

6050, IF NY == 0 & FINV(STACK(NY))} == 0 THEN

6060, DEP{ P, FINV{ STACK(NY }}),

6070. DEP{ FINV{ STACK{ NY)}, P) = -1;

6080. END ADD_B;

6090. - POP_B: PROC(CNT):

6100, 0/* REMOVE "CNT" BLOCKS FROM "B" STACK
6110. 0 DCL CNT FIXED:

6120. BTOP = BTOP - CNT:

6130, END POP_B;

6140. 1 ADD_ STACK: PROC{ SIDE, ENT):

6150, 0/ * o e e e e e
6160. o;* ADD LAST VTX ("ENT") OF PATH TO "SIDE" (= L OR R} STACK.
6170, O/ e e e L L L
6180. © DCL (SIDE, ENT) FIXED;

6150, STACK(FREE) = ENT;

6200, NEXT (FREE) = NEXT(SIDE }:

6210, NEXT (SIDE) = FREE:;

£6220. FREE = FREE + 1;

6230, END ADD_STACK;

6240, - POP_STACK: PROC(SIDE, V, CNT);

6250, 0/ F e e e e

6260. 0/* REMOVE VTXS >= "V" FROM "SIDE" STACK,
6270, /* THEN REMOVE "CNT" VTXS FROM THE SAME STACK.

B2B0, O/ e e e e
6230, O DECLARE

6300. { SIDE,

6310. v,

6320, CNT,

6330. zZ) FIZED;

6340, IF V == 0 THEN

6350, DO WHILE(NEXT(SIDE) ~= 0 & STACK(NEXT(SIDE)} »>= Vv ¥:
6360. NEXT(SIDE) = NEXT{ NEXT({ 'SIDE Y);

6370. END;

6380, O DO 2 = 1 TD CNT;

6390. NEXT(SIDE) = NEXT(NEXT(SIDE));

6400. END;

- 175 -

*/

*/

*

*/

6410,
6420,
6430,
6440.
6450.
6460,
6470,
6480,
6490.D
6500.
6510.
6520.
6530,
6540.
6550,
6560.
6570,
6580.
6590.
6600,
6610,
6620,
6630,
6640,
6650,
6660,
6670.
6680,
6630.
6700,
6710.
6720,
6730,
6740,
6750.
6760,
6770.
6780,
6790.
6800.
6810.
6820,
6830.
6840,
6850.
6860.
€870.
6880.
6890.
6900,
6510,
6920,
6830,
€940.
6950,
6960.
6970,
6980,
6990,
7000,
7010,
7020.
7030.
7040,

END POP_STACK;
1SWITCH_NEXT: PROC{ ONE, OTHER };

0/* EXCHANGE TWO PTRS TO "STACK"™ ENTRIES.
0 DCL { ONE, OTHER, SAVE) FIXED;
SAVE = NEXT(ONE };

NEXT(ONE) = NEXT(OTHER);
NEXT(OTHER) = SAVE;
END SWITCH_NEXT;
HALT;
END EMBED;
1 WRITE_GRAPH: PROC(ADJ, 1D, NU, TITLE);

0/* PRINT A GIVEN ADJ MATRIX ALONG WITH A TITLE AND THE VTX NAMES
/* WHICH LABEL THE ROWS AND COLS OF THE MATRIX.
/* ASSIGN VTX NAMES, "ID", IF NONE ARE GIVEN.

D/* ___ e

0 DECLARE
(ADJ(* *),

ID(* },
NU,
R, C) FIZED,
TITLE CHAR(*),
REPEAT BUILTIN:
0 IF NU < 0 THEN DO:
NU = =-NU;
DO R = 1 TO NU:
ID{ R) = R;
END; END;

0 PUT FILE{ SYSPRINT) EDIT
{(TITLE) (SKIP,A)
{ '[', (ID(R) DO R=1 TO NU), REPEAT('---', NU))
{ sK1p{(2), COL{7),A, (NU)F(3), COL{4),n)
({ ID(R}," {",{ ADJ(R,C) DO C=1 TO KU) DO R=1l TO NU))
(coL{3},F({3),A, (NUIF(3));
END WRITE_GRAPH;
1NONPLANAR: PROC(P };
0/* RESET "PLANAR" SWITCH,
0 DCL P FIXED;
BADPATH = P;
PLANAR = '0'B:
END NONPLANAR;:
END PLANE;
//GO.SYSIN DD *
5

01111
1011212
11011
11101
11110
6
010101
101010
010101
101010
010101
101010
8

11001000
10131000
01001100
01000111
1110001090
0110010
0011101

- 176 -

*/

*/

DOoOO00O00O0MOLODOOOO A
COOCOOOOACOOOOHHOA
000 OLOUMNMOOOHAHOOAO
OO0 HOHHOLOOOOMO
GCOOOOAAHOD0O0O0OHOO
COOLUMMOOO0O0000~H00
COAAHMO00OO0OOOOOLAMOOO
HrMOOHOOOQOOOOAO0OO
ODODODMHMOOOOODOHOO
OO0 O N AAOO
COMOOOOODOOAAOCOOLO
0OO0OACOOOOANFAOOOQOO
OFHOOOOHNHOAODODOOLOO
OHMOO0OHMHAOOOHOCOCOOOO
AOAHAOO0O0OHMOO0OCOO0OQ
HEHOOOOODOAACOOoOOOOoO

00010011

-

OO0V OOLO0OODOoOO0OOD AA
OO0 HAOLOOOMOMH
OUOLOOOOOOOCOHMHOMO
00000V HOUOMOOOHOO
COO0ODO0OO0OHACOAOVOOMNOO
LOOOOOHOOOCOOHOOOO
COO0OHO0OOMODOOAOOO
OMOOADOOOOHAOOQOOO
OO OO0 OFAOOAHO
COoOQMOOOHOOOOAOO0O
COOODAOQOCOOOAAOOO000O
COAO0OOMOOHOOCODOODO
OCOHOOOMOOH0O000L0O00O0
OHOM-OOoOOODCOOO0oOw
AMOMNO0CO00OLHMOOOOOO00O
AHO00000000OOO00O0O

177

Appendix F

FURTHER DESIGN DETAILS ON THE CASCADE LAYOQOUT

- 178 -

The purpose of this appendix is to present, in a terse
form, the design details behind the development of the

architecture presented in Figure &.1.

TIMIRG PIAGRAM KOTION

In the timing diagram, illustrated on the next two pages,
the operand contents of each FIFO and PROCESSOR are

presented in the following format:

P
FIFO 3 FIFO

¥ X XX X X X X XX

X X
where each Pj internally consists of a butterfly (i.e.,
one-step trellis component) which for the binary case

would be traditiomally represented as:

- 179 -

time

N->A

* 4

*6

14
10

15
11

12 X X X

13 12 X X

14 13 12 X

15 14 13 12

* =

generator
X X X
X X

8 X X
X X

9 8 18
10 16

X 9 19

11 17

X X
X X
18 X
19 18

16

X

Input y, delivered to a path metric

16
17

10

11

*12

13

* 14

*15

16

=

o BN

14
10

15
11

12

13

14

15

15

12

13

14

15

14 13

15 14

12 X

13 12

14 13

12

13

12

12

13

12
14

13
15

22
20

23
21

22

23

18

19

19

22

23

18

19

18

20

22

16

18

18
19

20
21

22
23

16
17

N

The rearranged, three baud interval trellis diagram

associated with Figure 4.1 is presented below.

e LAY T S

The correspondence between the node numbers in this diagram
(what is referred to as operands), and the actual state

metrics they represent is presented in the table below.

OPERAND . STATE OPERAND STATE OPERAND STATE
0 0 8 0 16 0
1 1 9 2 17 4
2 2 10 4 18 1
3 3 11 6 19 5
4 4 12 1. 20 2
5 5 13 3 21 6
6 6 14 .5 22 3
7 7 15 7 23 7

- 182 -

The clock rate is defined as follows:

states

#f states
processors =

L]

Clock rate

(# processors) «(T)
baud interval

Derivation of Switch Algorithms

Procedure Sl is a special case to handle operands destined

for Py which are fed back from processor P3. The intention
is to initially fill the FIFO first with the first half
of the naturally ordered states, then feed operands
directly into P; with the last half of the naturally

ordered states.

Procedure 82, 83, §4

Each procedure is associated with a switch which in turn

is responsible for the routing of operands in one stage

of the trellis.

The switches are controlled by an algorithm similar to

that developed in ref [118, p.1052].

Procedure S5 feeds yy samples to the appropriate path

metric generators so Pj can compute state metrics as
soon as possible.

In general, the switch setting is controlled by:

A% v-1
If kmod{m') = m then Path Metric (yk) - Pl
If k mod(mv) = m\)_1 + m\)-—2 then Path Metric (yk) -+ P2
If k mod(mv) = m\)—l + mv_z + m . + mO then Path Metric (yk) + Pv

Appendix G

A BRIEF TUTORIAL ON THE SHUFFLE-EXCHANGE
CONSTRUCT

- 185 -

The purpose of this appendix is to informally provide
additional background material on the SE organization, for
the communication engineer not especially well-versed in its
function. We pursue the development of the 2-SE organiza-
tion throughout, to illustrate concepts. In the following
pages we move towards getting a mathematical description of
such a network and ultimately to a VLSI grid model represen-
tation. In conclusion, Figure G.1 demonstrates how the SE
construct can be used as a Viterbl receiver for coded

modulation.

There are two ways of boosting the efficiency of a
processing network: (i) pipelining and (ii) recirculation.
The pipelining approach introduces a row of registers
between each set or row of processing cells. A new problem
can be fed intq the network as soon as the previous problem
inputs have emerged from the first row of processors. In
the recirculation technigue, one row of processing cells is
used many times during the solution of a single problem. In
our case, during each stage of the computation this row
simulates the action of one of the stages in the trellis
diagram., The state metrics needed by the row as it
simulates the (k+1)St stage of the trellis are obtained from
the outputs of the kth stage of computétion. If the
connectivity is not precisely right the state metrics will
have to circulate more than dnce through the network of

processors.,

- 186 -

A recirculation network of particular interest is the
shufflé—exchange network, Initially, the shuffle-~exchange

operation itself is presented,

THE SHUFFLE OPERATION CAN BE VISUALIZED BY CONSIDERING A DECK OF CARDS
(WHICH MATHEMATICALLY COULD BE REPRESENTED AS A n-ELEMENT VECTOR).

THE DECK IS DIVIDED INTO TWO HALVES a AND b, HENCE WE REFER TO THIS AS
A 2~SHUFFLE. THE PERFECT SHUFFLE OPERATION CONSISTS OF INTERLEAVING
THESE CARDS TO PRODUCE THE STACK OF CARDS ¢, AS SHOWN BELOW:

1 &/ e T 1 1
8y p— ' — bl €y
3.3 e —| m—— 8.2 C3
8 e P ¢

. ..E.l.. et -
by ——— —— P3 %%
by ——= — %% %
b —» ———— b, g

THE EXCHANGE OPERATION CONSISTS OF SWAPPING OR EXCHANGING PAIRS OF
CARDS, IN ORDER, THROUGHOUT THE DEPTH OF THE STACK c.

NOW LET'S CONCATENATE THE SHUFFLE AND EXCHANGE OPERATIONS IN
ONE DIAGRAM, AS ILLUSTRATED BELOW.

SOMETIMES THE
EXCHANGE CORNECTIONS
ARE COLLECTED
TOGETHER IN PAIRS
AND PLACED INSIDE
THE PROCESSING HODE.
AS A CONSEQUENCE WE
HAVE OWE STAGE OF THE
TRELLIS DIAGRAM

-

MR S ST

———

SHUFFLE EXCHANGE

AN EXAMPLE OF A SHUFFLE-EXCHANGE RECIRCULATION NETWORK FOR n=8

SHUFFLE LXCHANGE
RECIRCULATION
‘ OR
L,_ ——— "FEEDBACK"
CONNECTIONS
S~
o< ><
\\Df
——.
g _
-~
e
..____‘.///)ix

1

FOLD BACK EXCHANGE CONNECTIONS
BY MAKING THE RECIRCULATION
EDGES OF ZERO LENGTH

FOLD THE BIPARTITE GRAPH
ABOUT A VERTICAL AXIS

O
0
1
3
It EACH NODE IS A
ey o PROCESSOR
b
]
i
r-- 3‘11"1
ps P
! Eo
: :...4-)_4.1]
) \
= i
b---95 | THERE IS A
! 6 ! - STRAIGHTFORWARD
$---J MATHEMATICAL
DESCRIPTION OF
&7 SUCH A NETWORK
———

Mathematically, the shuffle-exchange recirculation network may be
described as follows:

Suppose one has n processors numbered 0, 1, 2, ... , n-1, where n
is a power of two (i.e., n=2k)

Assocliate each processor or node with a unique k-bit binary string

or label represented by 8 1> v s 8ge

The Perfect Shuffle Operation (PS)

Two nodes w and w' are linked by a shuffle edge if w' is a left or
right cyclic shift of w.

T
k=1’ " 0 ao then w ak-Z’ PN

W'

i.e.: If w=a or

202 %K-1

=858 g cee 5 8g-

Exanmple: PS(001) = 100 or 010

The Exchange Operation (EX)

Two nodes w and w' are linked by an exchange edge if w and w' differ
only in the last bit.

, 8,5, 4

f:
a,. then w a 17 4y

i.e.: 1f w = a,_qs s+ 5 8y k=1’ *°°

Example: EX(001) = 000

Necklaces
The collection of all cyclic shifts of a node w is called a necklace
and is denoted by < w >.

Example: <001 > = {001, 010, 100 }
Now that one can describe such networks mathematically, let us

illustrate the shuffle-exchange recirculation network within the

VLSI grid model

- 189 -

THE SHUFFLE-EXCHANGE GRAPH n=2k nodes, 3n edges
2

SHUFFLE-EXCHANGE

- .- T - - .
-~ - - Ll ~ - I 2B
i — N Y—=3" T}~ | INTERCONNECTIONS FOR n=8
\ ,(L—'-—'l "‘___,,‘\ ,‘——' “—_— N/
N -~ ’ ” -
~ o -;N“ - ”/
""""" - oo ~=——- SHUFFLE
EXCHANGE
EACH NODE LABEL IS
010 on NECKLACE REPLACED BY ITS BINARY
- '\
Rl N EQUIVALENT
//’ i | \\
- |] ~
000 001 >~ | ' Lo 10 111
~a J) ”
~ |] ’
/ Ny [] /l /
>
100 101
EDGES ARE UNDIRECTED SELF-LOOPS ARE USUALLY
FOR ILLUSTRATION OMITTED
Y;______T;f_.___Tr______fg _____ 75______,7 THE SHUFFLE~EXCHANGE
I
; : : : LAYOUT IN THE VLSI
! : X : GRID MODEL
L ea - ——— |
4 s

A PRACTICAL IMPLEMENTATION
WHERE THE NODES ARE
PROCESSORS THAT OCCUPY

N

u"
N\
N
§
NN
’
R

W7Z//M
R B E FINITE O(l) AREA
b //77/ /i b
O SR /A LY/ SR !
A

MAPPER

{0}

CHANNEL SYMBOLS
3

!
-1
-3

CHANNEL SYMBOL SUBSETS

3 |

-1 -3

(b) (c)

-

Figure G.1: USING THE SE CONSTRUCT FOR A CODED MODULATION RECEIVER

{a) The Transmitter: a convolutional encoder and mapper

(b) Mapping Channel Signals by Set Partitioning {(see [142])

(c) Corresponding State Diagram for (a) _

{(d)} VLSI Grid Model Layout of the Decoder (A SE graph for P(2) and v=2)

Appendix H

A BRIEF TUTORIAL ON. THE CCC CONSTRUCT

The purpose of this aépendix is to provide additional background
material on the CCC organization, for the reader not especially
well-versed in 1ts function. We pursue one instance of the CCC, that
illustrated in Figure 4.16, and analyse it in depth. Shown below is
a processor organization which corresponds to Figure 4.16(b).
Processor Py communicates, over what is known as a cube connection,
with processor prj if and only if i and j differ in the rth bit from

the left in their binary representations.

P14

(\ (plﬁ \
P3s P2 Pis D26
Cube | /"—-—_—’

o

Connection
P.. * DP_.
ri r] 10 (P12\
é;) P2
Cycle Connection ~—— °© Psi‘j?z
Pri ” Pyro1,i-
>

Pas

(Pu,\
3t P2 P3s P23
—— =

The Table on the following page defines the state metrics that each
processor evaluates.
Again, to emphasize the power of the CCC organization, Figure H.1

demonstrates how the CCC construct can be used as a Viterbi receiver for

decoding punctured convolutional codes.

OPERAND PROCESSOR STATE METRIC
0 pl0 0
1 pll 2
2 pi2 4
3 pl3 6
4 plé 1
5 pl5 3
6 plé 5
7 pl7 7
8 p20 0
9 p21 4

10 p22 1
11 p23 5
12 p24 2
13 p25 6
14 p26 3
15 p27 7
16 p30 0
17 p3l 1
18 p32 2
19 p33 3
20 p34 4
21 p35 5
22 p36 6
23 p37 7

194 -

(c)

Figure‘H.l: THE CCC CONSTRUCT FOR DECODING PUNCTURED CONVOLUTIONAL

(a)
(b)

(c)

CODES
Trellis Structure for R=2/3, v=2 code.

Tréllis Diagram for R=2/3, v=2 produced by periodically
deleting bits from R=2/3, v=2 code.
CCC structure corresponding to (b).

- 195 -

10.

11,

REFERENCES

Lucky R.W., Salz J., and Weldon E.J., Principles of
Data Communication, McGraw Hill, Toronto, 1968.

Belfiore C.A. and Park J.H., Decision Feedback
Equalization, Proc. IEEE, Vol. 67, No. 8, Aug. 1879,
pp. 1143-1156.

Forney, G.D., Jr., Maximum - Likelihood Seguence
Estimation of Digital Sequences in the Presence of
Intersymbol Interference, IEEE Transactions on
Information Theory, Vel. IT - 18, No. 3, May 1972,
pp. 363 - 378,

Viterbi A.J., Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm,
IEEE Trans on Information Theory, Vol. 1IT-13, April
1967, pp. 260-269.

Omura J.K., On the Viterbi Decoding Algorithm, IEEE
Trans. on Information Theory, IT-15, Jan. 1869, pp.

Hayes, J.F., The Viterbi Algorithm Applied to Digital
Data Transmission, IEEE Communications Magazine,
March 1975, pp. 15-20.

Forney, G.D., The Viterbi Algorithm, Proc. IEEE, Vol.
61, March 1973, pp. 268-279,

Kobayashi, H., Correlative level coding and maximum
likelihood decoding, IEEE Trans. on Information
Theory, Vol. 1T-17, Sept. 1971, pp. 586-594.

Kobayashi, H., Application of probabilistic decoding
to digital magnetic recording systems, IBM Journal of
Research and Development, Jan. 1971, pp. 64-74.

Burkhardt, H., An Event-driven Maximum - Likelihood

‘Peak Position Detector for Run-Length-Limited Codes

in Magnetic Recording, IEEE Trans. on Magnetics, Vol.
MAG-17, No. 6, 1981, pp. 3337-3339.

Koubanitsas, T.S., Application of the Viterbi

Algorithm to Adaptive Delta Modulation with Delayed
Decision, Proc. IEEE, July 1975, pp. 1076-1077.

- 196 -

12. Tanaka, H., Hirakawa, Y., and Kaneku, 5., Recognition
of Distorted Patterns Using the Viterbi Algorithm,

IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. PAMI - 4, No. 1, Jan. 1982, pp.
18_250

13, Hull, J.J. angd Srihari, &.N., Experiments in Text
Recognition with Binary n-Gram and Viterbi
Algorithms, IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. PAMI-4, No, 5, Sept. 1982,
pp. 520-530.

14, Martelli aA., An Application of Heuristic Search
Methods to Edge and Contour Detection, CACM, Vol. 19,
No. 2, Feb. 1976, pp. 217-227.

15. Shinghal R. and Toussaint G.T., Experiments in Text
Recognition with the Modified Viterbi Algorithm, IEEE
Trans. on Pattern Analysis and Machine Intelligence,
Vol. PAMI-1, No. 2, April 1979, pp. 184-193,

16. Magee, F.R., Proakis, J.G., Adaptive maximum likeli-
hood sequence estimation for digital signaling in the
presence of intersymbol interference, IEEE Trans. on
Information Theory, Vvol. 1IT-19, Jan. 1973, pp.

120-124,

17. Lee W., A maximum likelihood segquence estimator with
decision feedback equalization, IEEE Trans. on
Communications, Vol. COM - 25, No. 9, Sept. 1977, pp.
971-979,

18, Viterbi A.J. and Omura J.K., Principles of Digital
Communication and Coding, McGraw-Hill, New York,
1979,

19. Bellman, R.E., Dynamic Programming, Princeton
University Press, Princeton, N.J., 1957.

20. Newcombe E.A. and Pasupathy S., Error Rate Monitoring
for Digital Communications, Proc. IEEE, Vol. 70, No.
8, Aug. 1982, pp. 805-828.

21. Devijver P.A. and Kittler J., Pattern Recognition: A
Statistical Approach, Prentice Hall, Toronto, 1982,
ppl 257"273-

22. Andrews H.C., Introduction to Mathematical Technigues
in Pattern Recognition, Wiley, 1972, p.35, p.124.

23. Bezdek J.C., Pattern Recognition with Fuzzy Objective
Function Algorithms, Plenum Press, 1981, p.48.
(Density Functionals). :

~ 197 -

. ll.* | S ; - ll..llllll-

24.

25.

26.

27,

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Dubois D. and Prade H., Fuzzy Sets and Systems:
Theory and Applications, Academic Press, 1980, p.324,

Kailath T., The Divergence and Bhattacharyya Distance
Measures in Signal Selection, IEEE Trans. on

Communication, Vol. COM-15, No. 1, Feb. 18967, pp.

52-60.

Iyanaga S. and Kawada Y. {(editors), Encyclopedic
Dictionary of Mathematics, MIT Press, Cambridge,
Mass., 1980, p. 927,

Tou J.T., Gonzalez R.C., Pattern Recognition
Principles, Addison-Wesley, 1974, pp.145-151.

Portny S.E., Large Sample Confidence Limits for
Binary Error Probabilities, Proc. IEEE, Vol. 54, No.
12, 1966, p.1993.

Pearl J., Theoretical Bounds on the Complexity of
Inexact Computations, IEEE Trans. on Information
Theory, IT-22, No. 5, Sept. 1976, pp. 580-586.

Dunhan J.G. and Tzou K.-H., Performance Bounds for
Convolutional Codes with Digital Viterbi Decoders in
Gaussian Noise, IEEE Trans. on Communications, Vol.
coM-31, No. 10, Oct. 1983, pp. 1124-1132,

Mead, C.A. and Conway, L.A., Introduction to VLSI
Systems, Addison-Wesley, 1S79.

Kung, H.T., Let's Design Algorithms for VLSI, Proc.
of the Caltech Conference on Very Large Scale
Integration, Jan. 1979, pp. 65-90.

Haavind R.C. (ed.), Submicron techniques point to
four megabit memory chip, High Technology, February

1983, p. 11.

Mead, C.A. and Lewicki, G., Silicon Compilers and
foundries will usher in user-designed VLSI,
Electronics, August 11, 1982, pp. 107-111.

E.G. & G. Reticon Corporation, Product Summary:
Discrete Time Analog Signal Processing Devices,
Product Note 97050, 1978.

E.G. & G. Reticon Corporation, R5403 Analog
Correlator/convolver, Product Note 97100, 1979.

Eldon J., Convolution - A powerful technique for

digital signal ©processing, LSI publication TP17A -
1/81 TRW LSI products, Dec. 1980.

- 198 -

38.

39.

40,

a1,

42,

43,

44,

45,

46,

47,

. 48,

49,

50.

Sawai A., Programmable LSI Digital Signal Processor
Development, in VLSI Systems and Computations, edited
by H.T. RKung, B. Sproull and G. Steele, Computer
Science Press, 1981, pp. 29-40.

Bowen B.A. and Brown W.R., VLSI Systems Design for
Digital Signal Processing. Vol. 1 - Signal Processing
and Signal Processors, Prentice Hall, 1982, PP.
256-287,

Chapman R.C., Editor, Digital Signal Processor, Bell
System Technical Journal, Vol. 60, No. 7, Part 2,
septo 1981 . -

Intel Corporation, 2920 Analog Signal Processor
Design Handbook, August 1980.

Ahmed H.M. and Morf M., Synthesis and Control of
Signal Processing Architectures Based on Rotations,
VLSI 81, edited by J.P. Gray, Academic Press, 1981,
pp. 43-52.

Ahmed H.M., Delosme J.M. and Morf M., Highly
Concurrent Computing Structures for Matrix Arithmetic
and Signal Processing, Computer, January 1982, pp.
65-82.

Lyon F.L., A Bit-Serial VLSI Architectural
Methodology for Signal Processing, VLSI 81, edited by
J.P. Gray, Academic Press, 1981, pp. 131-140.

Buric M.R. and Mead C.A., Bit-Serial Inner Product
Processor in VLSI, Proc. of Second Caltech Conference
on Very Large Scale Integration, Caltech Computer
Science Department, 1981, pp. 155-164.

Denyer P.B. and Meyers D.J., Carry-Save arrays for
VLSI Signal Processing, VLSI 81, edited by J.P. Gray,
Academic Press, 1981, pp. 151-160. -

Bloch R., Bottcher K., Lacroix A. and Talmi M.,
Architecture for VLSI - Circuits in Digital Signal
Processing, ICC 80, IEEE CH1541 - 5/80, pp.
1184-1187,

Elmasry M., Digital Bipolar Integrated Circuits,

Wiley, 18983, pp. 225-232.

Elmasry M., Thompson P.M., Two-Level Emitter Function
Logic Structures for Logic-in-Memory Computers, IEEE
Transactions on Computers, Vol. €-24, No. 3, March
1975, pp. 250-259,.

Kohonen T., Content Addressable Memories,
Springer-Verlag, New York, 1980, p. 282.

- 199 -

51. Denny W., Buley E.R., Hatt E., Logic Enhanced
Memories: An overview and some examples of their
application to a radar tracking problem, Caltech
conference on VLSI, January 1979, pp. 173-186.

52. Tanimoto S.L., Systolic Cellular Logic: Inexpensive
Parallel Image Processors, IEEE Conf. on Pattern
Recognition and Image Processing, 1981, pp. 306-3009.

53. Western Digital Corp., "WD8206 Error Detection and
Correction Unit, Product Specification", 1983, :

54. Kung H.T., Why Systolic Architectures?, Computer,
January 1982, pp. 37-46.

55. Kung H.T., The Structure of Parallel Algorithms,
Advances in Computers, Vol. 19, M.C. Yovits (editor},
Academic Press, 1981, pp. 65-112.

56. Cappello P.R., Steiglitsz K., Digital Signal
Processing Applications of Systolic Algorithms, VLSI
Systems and Computations, edited by H.T. Kung, B.
Sproull, and G. Steele, Computer Science Press, 1981,
pp. 245-254,

57. Kung H.T., Ruane L.R., Yen D.W., A Two-Level
Pipelined Systolic Array for Convolutions, ibid, pp.
255-264.

58. Baudet G.M., Preparata F.P., Vuillemin J.E.,
Area-Time Optimal VLSI Circuits for Convolution, IEEE
Trans. on Computers, Vel. C-32, No. 7, July 1983, pp.
684-688.

59. Fisher A.L., Systolic Algorithms for Running Order
Statistics 1in Signal and 1Image Processing, VLSI
Systems and Computations, edited by H.T. Kung, B.
Sproull, and G. Steele, Computer Science Press, 1981,
pp. 265-272, ’

60. Chiang A.M., A New CCD Parallel Processing
Architecture, ibid, pp. 408-415.

61. Kerkhoff H.G., Tervoert M.L., Stemerdink J.A., The
design and application of a CCD four-=valued full
adder circuit, Compcon 81, pp. 96-99,

62. Rerkhoff H.G., Tervoert M.L., Multiple-Valued Logic
Charge Coupled Devices, IEEE Transactions on
Computers, Vel. C-30, No. 9, Sept. 1981, pp. 644-652.

63. Advanced Micro Devices, "Am9518 Data Ciphering
Processor, Product Specification", April 1881,
{(similar products are produced by Fairchild Corp. and
Western Digital Corp.)

- 200 -

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Rivest, R.L., A Description of a Single-Chip
Implementation of the RSA Public-Key Cryptosystem,
IEEE 1980 Natiocnal Telecommunications Conference,
Houston, Texas, pp. 49.2.1-49,2.5.

Hindin, H.J., Bell algorithm speeds decryption of
public-key coding schemes, Electronics, Veol. 54, No.
16, Aug. 11, 1981, pp. 39-40.

Krishnan M.S., A Structured Approach to VLSI Layout
Design, Proceedings of the Second Caltech Conference
on Very Large Scale Integration, Caltech Computer
Science Department, January 1981, pp. 413-432.

Liu K.Y., Architecture for VLSI Design of
Reed-Solomon Encoders, ibid, pp. 539-553.

Brown K.0., Dynamic Programming in Computer Science,
Report Number, CMU-CS-79-106, Department of Computer
Science, Carnegie-Mellon University, February 1979,
44 pages.,

Ciminera L., Dermartin C., Serra A., Valenzano A.,
VLSI Structures for Speech Analysis and Pattern
Recognition, IEEE Conf. on Pattern Recognition and
Image Processing, 1982, pp. 692-697.

Guibas L.J., Kung H.T., Thompson C.D., Direct VLSI
Implementation of Combinatorial Algorithms, Proc. of

Caltech Conference on Very Large Scale Integration,
January 19738, pp. 508-525,

Chu K.H. and Fu K.S., VLSI Architectures for High
Speed Recognition of Context-Free Languages, Sth
Annual Symposium on Computer Architecture, April
1982, pp. 43-49,.

Rader C.M., Memory Management in a Viterbi Decoder,
IEEE Transactions on Communications, Vol. COM-29, No.

Gilhousen K.S., Heller J.A., Jacobs I.M. and Viterbi
A.J., Coding Systems Study for high data rate telem-
etry links, NASA Report, Jan. 1971, Prepared under
contract NAS2-6024 by Linkabit Corp., San Diego, CA.,
235 pages.

Synder J.S., High-Speed Viterbi Decoding of High-Rate
Codes, Sixth International Conference on Digital
Satellite Communications, Sept. 1983, pp. XII-16 -
XI1-23,

- 201 -

75. Crozier S., Wilson M., Moreland K.W., Camelon J. and
- McLane P., Microprocessor based implementation and
testing of &a simple Viterbi detector, Canadian
Electrical Engineering Journal, Vel. 6, No. 3, 1981,

pp. 3-8.

76. Conan J., An FB Microprocessor-Based Breadboard for
the Simulation of Communication Links Using Rate 1/2
Convolutional Codes and Viterbi Decoding, IEEE
Transactions on Communications, Vol. COM-31, No. 2,
February 1983, pp. 165-171,

77. Conan J., Implementation of Microprocessor based
Viterbi decoders, Proc. Int. Symp. Mini and
Microprocessors, Zurich, Switzerland, June 1978, pp.
87-93.

78. Orndorff R.M., Krcmarik J.D., Colesworthy R.J., Doak
T.W., and Koralek R., Viterbi Decoder VLSI Integrated
Circuit for Bit Error Correction, 16th Annual
Asilomar Conference on Circuits, Systems and
Computers, Nov. 8-10, 1982, 4 pages.

79. Acampora A. and Gilmore R.P., Analog Viterbi Decoding
for High Speed Digital Satellite Channels, IEEE
Trans. on Communications, Vol. COM-26, No. 10,
October 1978, pp. 1463-1470.

80. Thompson C.D. A Complexity Theory for VLSI, Ph.D.
thesis, Dept. of Computer Science, Carnegie Mellon
University, 1980.

81. Bilardi G., Pracchi M., Preparata F.P., A critigue
and an Appraisal of VLSI Models of Computation, VLSI
Systems and Computations, edited by H.T. RKung, B.
Sproull and G. Steele, Computer Science Press, Oct.
1981, pp. B81-88.

82. Seitz C.L., Self timed VLSI Systems, Caltech
Conference on VLSI, January 1979, pp. 345-355,

83. Kissin G., Measuring Energy Consumption in VLSI
circuits, Ph.D. thesis, Dept. of Computer Science,
University of Toronto, in preparation.

84. Preparata F.P. and Vuillemin J.E., The
Cube—-Connected-Cycles: A Versatile Network for
Parallel Computation, Communications of the ACM, Vol.
24, No. 5, May 1981, pp. 300-3009.

85. Thompson C.D., Area-Time Complexity for VLSI,
Proceedings of the 11th Annual ACM Symposium on
Theory of Computing, May 1873, pp. 81-88. :

- 202 -

86.

B87.

88.

89,

90.

91.

92.

93.

94.

9s.

96.

97.

Mead C. and Rem M., Cost and Performance of VLSI
Computing Structures, IEEE Journal of Solid State
Circuits, Vol. SC-14, April 1979, pp. 455-462.

Brent R.P. and Kung H.T., On the Area of Binary Tree
Layouts, Information Processing Letters, No. 11,
1980, pp. 44-46.

Leiserson C.E., Area-efficient graph layouts {(for
VLSI), Proceedings of the 21st Annual IEEE Symposium
on Foundations of Computer Science, Oct. 1980, pp.
270-281.

Vuillemin J.E., A combinatorial 1limit to the
computing power of VLSI circuits, ibid, pp. 294-300.

Baudet G.M., On the area required by VLSI circuits,
VLSI Systems and Computations, edited by H.T. Kung,
B. Sproull and G. Steele, Computer Science Press,
Oct. 1881, pp. 100-107.

Kleitman D., Leighton F.T., Lepley M., Miller G.L.,
New Layouts for the shuffle-exchange graph, Proc. of
the 13th ACM Symposium on Theory of Computing, May
1981, pp. 278-282, '

Leighton F.T., New Lower Bound Techniques for VLSI,
Proc. of the 22nd Annual Symposium on Foundations of
Computer Science, 1981, pp. 1-12.

Patterson M.S., Ruzzo W.L., Snyder L., Bounds on
minimax edge length for Complete Binary trees, Proc.
13th Annual ACM Symposium on Theory of Computing, May
1981, pp. 293-299.

Ruzzo W.L. and Snyder L., Minimum edge planar embed-
dings of trees, VLSI Systems and Computations, edited
by H.T. Kung B. Sproull and G. Steele, Computer
Science Press, Oct. 1981, pp. 119-123,

Valiant L.G., Universality considerations in VLSI
circuits, IEEE Trans. on Computers, Vol. C-30, No. 2,
February 1981, pp. 135-140.

Hoey D. and Leiserson C.E., A layout for the shuffle
~ exchange network, Proc. 1980 Int. Conf. Parallel
Processing, Aug. 1980, pp. 329-336.

Steinberg D., Rodeh M., A Layout for the Shuffle
Exchange Network with 0(N**2/(log N)**(3/2)) Area,
IEEE Trans. on Computers, Vol. C-30, No. 12, Dec.
1981, pp. 977-982,

- 203 -

98. Leighton F.T., A Layout Strategy for VLSI which is
Provably Good, 14th Annual ACM Symposium on the
Theory of Computing, 1982 pp. 85-98.

99, Yao A.C., The Entropic Limitations on VLSI

Computations, 13th Annual ACM Symp. on Theory of
Computing, May 1981, pp. 309-311.

100. Burks A.W. ({editor), Essays on Cellular Automata,

University of 1Illincis Press, Urbana, 1970, 375
pages.

101. Gulak, P.G., Self-Reproducing Automata -
Implications for VLSI, A Seminar presented to the
E. E, Departments of the University of Manitoba,
Winnipegq, Nov. 3, 1981, and the University of
Toronto, Toronto, Dec. 14, 1981, 36 pages, 22 refer-
ences.

102, Thompson C.D., VLSI Complexity of Sorting, IEEE
Trans. on Computers, Vol. €-32, No. 12, Dec. 1983,
ppl 1171_11840

103, Rabiner L.R. and Gold B., Theory and Application of
Digital Signal Processing, Prentice-Hall, jo} o8
609-616.

104, Leighton F.T. and Leiserson C.E., Wafer Scale
Integration of Systolic Arrays, Proc. IEEE 23rd
Annual Symposium on the Foundations of Computer
Science, 1982, pp. 297-311.

105. Leiserson C.E., Area Efficient VLSI Computation,
ACM-MIT Press Doctoral dissertation award series, MIT
Press, 1983, 136 pages. (Origin: Com-Sci Dept., CMU,
October 1981)

106, Aho A., Hopcroft J., Ullman J., The Design and
Analysis of Computer Algorithms, Addison Wesley,
1974,

107. Thompson C.D. and Kung H.T., Sorting on a
Mesh-Connected Parallel Computer, Communications of
the ACM, Vol. 20, 1977, pp. 263-271,

108. Ullman J.D., Computational Aspects of VLSI, Computer
Science Press, Rockville, Maryland, 1984.

109. Knuth D.E., The Art of Computer Programming, Vol. 3:
Sorting and Searching, Reading, MA: Addison-Wesley,
1973.

110. Stone H.S., Parallel processing with the Perfect
- Shuffle, IEEE Trans. on Computers, Vol., C-20, No. 2,
Feb. 1971, pp. 153-161.

- 204 -

111, Stanley W.D., Digital Signal Processing, Reston

Publishers, New York, 1975, p. 269.

112, Haynes L.S., Lau R.L., Siewiorek D.P., Mizell D.W.,
A Survey of Highly Parallel Computing, Computer, Jan,
1982, pp. 9-24,

113. Chen P-Y., Lawrie D.H., Yew P-C., Padua D.A.,
Interconnection Networks using Shuffles, Computer,
December 1981, pp. 55-64.

114. Golomb S.W., Permutations by Cutting and Shuffling,
SIAM Review, Vol. 3, No. 4, October 1961, pp.
293-297,

115. Morris S.B., Hartwig R.E., The Generalized Faro
Shuffle, Discrete Mathematics, Vol. 15, 1976, pp.
333-346, :

"116. Kodandapani K.L., Pradan D.K., A Generalization of
Shuffle-Exchange Networks, Proc. Information Science
and Systems, Princeton, 1980, pp. 523-530,

117. Bhuyan L.N., Agrawal D.P., Design and Performance of
a2 General Class of Interconnection Networks, Proc. of
the 1982 Conference on Parallel Processing, Aug,
24-27, 1982, pp. 2-9.

118. Thompson C.D., Fourier Transforms in VLSI, IEEE
Trans. on Computers, Vol. C-32, No. 11, Nov. 1983,
pp. 1047-1057,

119. Leighton F.T. and Miller G.L., Optimal Layouts for
Small Shuffle Exchange Graphs, vLSI 81, J.P. Gray
(Editor), Academic Press, pp. 289-300.

120. Hopcroft J. and Tarjan R., Efficient Planarity
Testing, JACM, Vol. 21, No. 4, October 1974, pp.

549-568.

121. Deo N., Graph Thecry with Applications to
Engineering and Computer Science, Prentice Hall,
1874, '

122, Leighton F.T., New Lower Bound Techniques for VLSI,
Ph.D. dissertation, Mathematics Department,
Massachusetts Institute of Technology, Aug. 1981,

123. Pomerance C., The Search for Prime Numbers,
Scientific American, Dec. 1982, pp. 136-147.

124. Lin S. and Costello D.J., Error Control Coding,
Prentice Hall, 1983, p.441.

- 205 -

125, Wann D.F. and Franklin M.A., Asynchronous and
Clocked Control - Structures for VLSI Based
Interconnection Networks, IEEE Trans. on Computers,
Vol. C-32, No. 2, March 1983, pp. 284-293.

126. Browning S.A., Communication in a Tree Machine,
Proc. of the Second Caltech Conf. on VLSI, Jan. 1981,
pp. 510-526.

127, Sabety T.M.,.Ibrahim H. and Shaw D.E., VLSI Design
for the NON-VON Project at Columbia University, VLSI
Design, March/ April 1983, pp. 71-72.

128. Thompson C.D., Area-Time Complexity for VLSI,
Caltech Conf. on VLSI, Jan. 1979, pp. 495-508.

129. Peltzer D.L., Wafer-Scale Integration: The Limits of
VLSI?, VLSI Design, September 1983, pp. 43-47.

130; Grinberg J., Nudd G.R. and Etchells R.D., A& Cellular
VLSI Architecture, Computer, Jan. 1984, pp. 69-81,

131, Frenette N., Peppard L.E. and Lodge J.H., A CMOS
Implementation of a Binary Correlator for Digital
Communications, 1983 Conference on Very Large Scale
Integration, University of Waterloo, Oct. 24-25,

- 1983, pp. 108-111,

132, Rosenberg A.L., Three-Dimensional VLSI: A Case
Study, Journal of the Association of Computing
Machinery, Vol. 30, No. 3, July 1983, pp. 397-416.

133. Goodman J.W., Leonberger F.J., Sun-Yuan Kung and
Athale R.A., Optical Interconnections for VLSI
Systems, Proc. IEEE, Vol. 72, No. 7, July 1984, pp.
850-866.

134. McLane P.J., The Viterbi Receiver for Correlative
Encoded MSK Signals, IEEE Trans. on Communications,
Vol. COM-31, No. 2, Feb. 1983, pp. 290-295,

135. deJager F. and Dekker C.B., Tamed Freguency
Modulation, A Novel Method to Achieve Spectrum

Economy in Digital Transmission, IEEE Trans. on
Communications, Vol. COM-26, No. 5, May 1978, pp.
534-542.

136. deBuda R., Coherent Demodulation of Frequency-Shift
Keying with Low Deviation Ratio, IEEE Trans. on
Communications, Vol. COM-20, June 1972, pp. 429-435,

137. Scharf L.L., Cox D.D. and Masreliez C.J, Modulo-27

Phase Sequence Estimation, IEEE Trans. on Information
Theory, Vol. IT-26, No. 5, Sept. 1980, pp. 615-620.

- 206 -

138. Mazur B.A. and Taylor D.P., Demodulation and Carrier
Synchronization of Multi-H Phase Codes, IEEE Trans.
on Communications, Vol. COM-29, No. 3, March 1981,
pp. 257-263,

139. Cain J.B., Clark G.C., and Geist J.M., Punctured
Convolutional Codes of Rate (n-1)/n and Simplified

Maximum Likelihood Decoding, IEEE Trans. on
Information Theory, Vol. IT-25, No. 1, Jan..1973, pp.
97-100.

140, Bilardi G. and Preparata F.P., An Architecture for
Bitonic Sorting with Optimal VLSI Performance, IEEE
Trans. on Computers, Vol. €-33, No. 7, July 1984,
pp. 646-651,

141. Moldovan D.I., On the Design of Algorithms for VLSI
- Systolic Arrays, Proc. IEEE, Vol. 71, No. 1, Jan.
1983, pp. 113-120.

142. Ungerboeck G., Channel Coding with Multilevel/Phase
Signals, IEBEBE Trans. on Information Theory, Vol.
IT-28, No. 1, Jan. 1982, pp. 55-67.

- 207 -

