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We present an overview of the known results describing the isometric and closed-range
composition operators on different types of holomorphic function spaces. We add new results
and give a complete characterization of the isometric univalently induced composition operators
acting between Bloch-type spaces. We also add few results on the closed-range determination of
composition operators on Bloch-type spaces and present the problems that are still open.

1. Introduction

A topic of interest in the paper is the description of isometric and, more generally, of closed-
range composition operators on the Bloch-type spaces, in terms of the specific behaviour of
the inducing function. The goal of the paper is to present an overview of the known results
by emphasizing the intuitive idea and geometrical aspects of the corresponding conditions,
to contribute to the classification with few new results and to list a number of open questions
related to this topic.

One of the earliest results on isometric composition operators, acting on spaces of
functions analytic on the open unit disk, is Nordgren’s result [1] from 1968: if φ is inner,
then Cφ is an isometry on H2 if and only if φ(0) = 0. Martı́n and Vukotić have generalized
recently in [2] that, indeed, Cφ is an isometry onHp for all p ≥ 1 if and only if φ is inner and
φ(0) = 0.

Since rotations induce isometric composition operators on most of the spaces, it is
of particular interest to determine the function spaces on which these are the only kind of
isometric composition operators. Such are, for example, all of the weighted Bergman spaces,
as shown by Martı́n and Vukotić in [2]. They have also classified the isometric composition
operators on the Dirichlet space and, under the univalence condition of the inducing function,
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on some of the other Besov spaces (see [2, 3]). The isometric composition operators on the
BMOA space have been determined by Laitila (see [4]).

As for the classification of the larger class of closed-range composition operators on
spaces of functions analytic on the unit disk, the known results include some of the weighted
Bergman spaces (see [5, 6]), and some of the Bloch-type spaces, which we will state and refer
to in the next few sections.

In most of the cases, the general rule is that a composition operator is either isometric
or has a closed range, whenever the image of the unit disc � under the inducing function
covers a significant (in some sense) part of � . As we will see below, that stays true in the
case of the Bloch-type spaces, with a specific description of what the ”significant part” means
in this context. Note that this represents a logical contrast to the description of the compact
composition operators on all of these spaces, where the image of the unit disc under the
inducing function must stay away significantly (again, in some sense) from the unit circle.

2. Definitions, Few Basic Notions, and Overview of
the Existing Results

For a nonconstant analytic function φ that maps the unit disk � into itself, the composition
operator Cφ on the Banach space X ⊆ H(� ) is defined by

Cφf = f ◦ φ (2.1)

with f in X, where H(� ) is the space of functions analytic on � . We will say that φ is the
inducing function for Cφ.

Depending on the spaceX, one gets various conditions on the inducing function under
which the corresponding composition operator satisfies a certain operator theoretic property
such as, for example, being bounded, compact, invertible, normal, subnormal, isometric,
closed range, Fredholm, and many others. For general results and references on composition
operators acting on various spaces of analytic functions, see, for example, [7, 8].

For α > 0, the α- Bloch spaces Bα (also referred to as Bloch-type spaces) are spaces of
functions f inH(� ) such that

∥
∥
∣
∣f
∣
∣
∥
∥
Bα = sup

z∈�

∣
∣f ′(z)

∣
∣

(

1 − |z|2
)α

<∞. (2.2)

Each Bα is a Banach space with a norm given by

∥
∥f

∥
∥
Bα =

∣
∣f(0)

∣
∣ +

∥
∥
∣
∣f
∣
∣
∥
∥
Bα . (2.3)

The family of Bloch-type spaces includes the classical Bloch space B = B1. The spaces Bα with
0 < α < 1 are the analytic Lipschitz spaces Lip1−α. Thus, for 0 < α < 1, Bα ⊂ A(� ) ⊂ H∞,
where A(� ) is the disk algebra. In general, for 0 < α < β, we have that Bα ⊂ Bβ and so the
α-Bloch spaces Bα form an increasing, uniform family of function spaces. Note also that the
Bloch space B contains H∞ and is included in all of the Bergman spaces Lpa, p ≥ 1, while for
large α, such as α ≥ 2, Bα includes the Bergman space L2

a.
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For further references and details on these general facts about the Bloch-type spaces
stated above and more, see [9, 10].

The boundedness and compactness of composition operators acting between Bloch-
type spaces has been established in a series of papers [11–15]. We state the most general form
of these results and use the following notation: for α > 0, β > 0 and φ being an analytic self
map of � , let

τφ,α,β(z) =

(

1 − |z|2
)β∣

∣φ′(z)
∣
∣

(

1 − ∣
∣φ(z)

∣
∣
2
)α . (2.4)

We write τφ,α whenever α = β, and τφ if α = β = 1.

Theorem A (see [12, 15]). For α, β > 0 and φ an analytic selfmap of � , the composition operatorCφ

is a bounded operator from Bα into Bβ if and only if

sup
z∈�

τφ,α,β(z) < ∞, (2.5)

and Cφ is a compact operator from Bα into Bβ if and only if

lim
|φ(z)|→ 1

τφ,α,β(z) = 0. (2.6)

Here are a few simple consequences of TheoremA and of some basic complex analysis:
recall the Schwarz-Pick lemma which states that for φ a self-map of the unit disk

(

1 − |z|2
)∣
∣φ′(z)

∣
∣

1 − ∣
∣φ(z)

∣
∣
2

≤ 1. (2.7)

Thus, when α = β = 1, τφ(z) ≤ 1, andwe get from TheoremA that every composition operator
is bounded on B. Moreover, the Schwarz-Pick lemma and Theorem A imply that if α ≤ 1 ≤ β,
then Cφ maps Bα boundedly into Bβ, since then τφ,α,β(z) ≤ (1 − |φ(z)|2)1−α. If furthermore
α < 1 ≤ β, then Cφ from Bα into Bβ must also be compact. Note also that if ‖φ‖∞ < 1 and
Cφ : Bα → Bβ is bounded, then Cφ is compact.

All of the spaces Bα include the identity function, and so a necessary condition for Cφ

to be bounded from Bα into Bβ is that φ belongs to Bβ. Thus, for 0 < β < 1, every analytic
self-map of � that is inH∞ \ Bβ induces an unbounded composition operator from Bα to Bβ.

In this paper, we are particularly interested in the closed-range composition operators
and, even more specific, in the isometric composition operators. Recall that the operator Cφ :
Bα → Bβ is isometric whenever

∥
∥Cφf

∥
∥
Bβ =

∥
∥f

∥
∥
Bα , ∀f ∈ Bα. (2.8)

Since every nonconstant φ is an open map, the composition operator Cφ is always one
to one. By a basic operator theory result, a one-to-one operator has a closed range if and only



4 International Journal of Mathematics and Mathematical Sciences

if it is bounded below. Thus, Cφ has a closed range if and only if it is bounded below, namely,
if and only if there existsM > 0 such that

∥
∥Cφf

∥
∥
Bβ ≥M

∥
∥f

∥
∥
Bα , ∀f ∈ Bα. (2.9)

In particular, every isometric Cφ has a closed range.
On the other hand, recall that the only (closed) subspaces of the range of a compact

operator are the finite dimensional ones. Thus, since a composition operator Cφ never has a
finite rank (because φ is an open map), a compact Cφ can never have a closed range. Hence,
a compact Cφ can never be an isometry.

The first few classification results on isometric composition operators acting on the
Bloch-type spaces were done for the classical Bloch space in a series of papers [16–19]. We
present the classification in the form that appears in [18].

Theorem B (see [18]). Let φ be an analytic self-map of � . The composition operator Cφ is an
isometry on the Bloch space B if and only if φ(0) = 0 and either φ is a rotation, or for every a in
� there exists a sequence {zn} in � such that |zn| → 1, φ(zn) = a, and τφ(zn) → 1.

The result provides a large class of functions inducing isometric composition operators
on the Bloch space. For example, if φ is an almost thin infinite Blaschke product fixing the
origin, that is a Blaschke product with a sequence of zeroes {zn} that includes 0 and is such
that lim supn→∞|B′(zn)|(1 − |zn|2) = 1, then Cφ is an isometry on B. For more examples and
the proof of the theorem, see [18].

For all of the other Bloch-type spaces, the result from [20] shows that the only isometric
composition operators are the trivial ones.

Theorem C (see [20]). Let 0 < α, α/= 1, and let φ be an analytic self-map of � . Then the composition
operator Cφ is an isometry on Bα if and only if φ is a rotation.

Remarks 2.1. As already mentioned in the introduction, one notices a general behavior of the
functions inducing an isometric composition operator. From the two previous theorems, we
can see that if Cφ is an isometry on Bα, then � = φ(� ), which further implies that ∂� ⊆ φ(� ).
Moreover, in the case α/= 1, φ must be a rotation.

This is similar to many other cases of isometric composition operators acting on spaces
of analytic functions. The general requirement is thatφ(� ) covers a significant (in some sense)
part of � , or even further, that φ has to be a rotation. For example, if Cφ is an isometry either
on the Hp spaces or on the weighted Bergman spaces Ap

w with 1 ≤ p < ∞, then φ has to
be either an inner function or a rotation, respectively, as shown in [2]. If Cφ is an isometry
on the Dirichlet space, then φ has to be an univalent full map, that is, one to one and such
that the area measure of � \ φ(� ) is zero, (see [3]). The complete determination of isometric
composition operators in all of this cases is given by adding the condition φ(0) = 0.

A specific isometric requirement in the case of the Bloch space is that when φ is not
univalent, it has to be of infinite multiplicity and such that the function τφ stays close to 1
over some of the preimages of each point in φ(� ). When φ is univalent, φ has to be a rotation,
and thus τφ(z) = 1, for all z ∈ � .

Since every isometric composition operator has a closed range, and since the closed-
range composition operators are semi-Fredholm, that is, in some sense close to invertible, it
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is not too surprising that similar requirements on φ(� ) and τφ,α play a role in determining the
closed range composition operators on Bα.

The following Theorem D below classifies the closed range composition operators
on the Bloch spaces Bα, α ≥ 1. The results are contained in a series of papers [21–23], and
we present their combined version. We need a few more definitions before we can state the
theorem.

We say that G ⊆ � is sampling for Bα if ∃S > 0 such that for all f ∈ Bα,

sup
z∈G

∣
∣f ′(z)

∣
∣

(

1 − |z|2
)α

≥ S∥∥∣∣f∣∣∥∥Bα . (2.10)

Let ρ(z,w) = |ψz(w)| denote the pseudohyperbolic distance on � , where ψz is a disc
automorphism of � , that is,

ψz(w) =
z −w
1 − zw . (2.11)

We say that G ⊆ � is an r − net for � for some r ∈ (0, 1) if for all z ∈ � , ∃w ∈ G such that
ρ(z,w) < r.

For c > 0, let

Ωc,α,β =
{

z ∈ � : τφ,α,β(z) ≥ c
}

, (2.12)

and let Gc,α,β = φ(Ωc,α,β). If α = β, we use the notation Ωc,α and Gc,α, and if further α = β = 1,
we write Ωc and Gc.

Theorem D (see [21, 23, 24]). Let φ be a self-map of � and let α ≥ 1. Then, the following are
equivalent.

(i) Cφ has a closed range on Bα.

(ii) There exists c > 0 such that the set Gc,α is sampling for Bα.

(iii) There exist c, r > 0 with r < 1 such that Gc,α is an r-net for � .

Moreover, if α = 1, then (i) to (iii) are also equivalent to the following.

(iv) There exists k > 0 such that ‖Cφψa‖B ≥ k‖ψa‖B, for all a ∈ � .

Note, for example, that when α = 1 and φ is a rotation, τφ(z) = 1, for all z ∈ � , and so
G1 = � . Thus, G1 is trivially sampling for B and an r-net for � for any r > 0. Therefore, (ii)
and (iii) are true. Part (iv) of the theorem also holds true if one takes k = 1.

If φ is not a rotation and Cφ is an isometry on B, then whenever c = 1−εwith 0 < ε < 1,
we have from Theorem B that G1−ε = � . Hence, as before, G1−ε is trivially sampling for B and
an r-net for � , for any r > 0. Again, part (iv) of the theorem is true with k = 1. Thus, we get
a geometric description of closed-range (or isometric) composition operators on these Bloch
spaces as composition operators for which the inducing function φ has a τφ,α function that
stays away from zero (or is close enough to one) over a set with large enough image.
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The geometrical aspects of the restrictions on the τφ function are particularly
interesting in the case when φ is univalent, since then, as a consequence of the Köebe one-
quarter theorem, we have that

τφ(z) ≈
dist

(

φ(z), ∂φ(� )
)

1 − ∣
∣φ(z)

∣
∣

. (2.13)

For the isometry case, this implies that φ has to be a rotation, and for the closed-
range case, it gives a deeper insight on the boundary behavior of φ, providing a number
of interesting examples and counterexamples.

For example, one gets that if φ is the Riemann mapping from � onto the slit disk
� \ [0, 1], then Cφ has a closed range on B. Or if φ is the Riemann mapping onto the
simply connected region in � created by taking away an infinite countable number of slits
and pseudo-hyperbolic disks connected to the slits, one can get either a closed-range or a
nonclosed-range composition operator Cφ by controlling the size and the placement of the
pseudohyperbolic disks. For more details on these examples, see [23].

It is not too hard to see that if Cφ has a closed range on Bα for some α > 1, then Cφ has a
closed range on Bα for all α ≥ 1. On the other hand, the slit disk example from above provides
an example of a univalent map φ such that Cφ has a closed range on Bα only for α = 1 (see
[21, 23]).

3. Further Results on Closed-Range and Isometric Composition
Operators on the Bloch-Type Spaces

In this section, we present our results on the classification of the isometric and closed-range
composition operators Cφ : Bα → Bβ. As Theorem A from the previous section states, not
every such composition operator is bounded. Thus, the boundedness condition on τφ,α,β plays
a natural role in the characterization of the isometric and closed-range composition operators
from Bα into Bβ.

In general, depending on the choices of α and β, a composition operator induced by
a specific, fixed function can behave very differently. We illustrate this with the following
example, in which the inducing function is one of the nicest univalent selfmaps of the unit
disk, namely, a rotation.

Example 3.1. Let φ(z) = λz, with |λ| = 1. Then Cφ : Bα → Bβ is

(a) an isometry, whenever α = β,

(b) a compact operator if α < β,

(c) an unbounded operator if α > β.

Note that (a) holds since |φ′(z)| = |λ| = 1, and we have that

∥
∥Cφf

∥
∥
Bα =

∥
∥f ◦ φ∥∥Bα =

∣
∣f(0)

∣
∣ + sup

z∈�

∣
∣f ′(λz)

∣
∣

(

1 − |λz|2
)α

=
∥
∥f

∥
∥
Bα . (3.1)
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The other two cases follow easily from Theorem A, since

τφ,α,β =

(

1 − |z|2
)β∣

∣φ′(z)
∣
∣

(

1 − ∣
∣φ(z)

∣
∣
2
)α =

(

1 − |z|2
) β−α

. (3.2)

As for many other spaces, a condition that φ must satisfy whenever Cφ is an isometry
from Bα into Bβ, regardless of the choices of α and β, is that φ(0) = 0.

Proposition 3.2. If Cφ is an isometry from Bα into Bβ, then φ(0) = 0 and

sup
z∈�

τφ,α,β(z) = 1. (3.3)

Proof. Note first that the identity function e(z) = z belongs to each of the Bloch-type spaces
and has norm one. Thus, since Cφ is an isometry, it must be that ‖φ‖Bβ = ‖Cφe‖Bβ = ‖e‖Bα = 1.

Let φ(0) = a. Using the function fa(z) = 1 − az, we see that

∥
∥Cφfa

∥
∥
Bβ =

∥
∥fa ◦ φ

∥
∥
Bβ =

∣
∣fa(a)

∣
∣ + sup

z∈�

∣
∣f ′

a

(

φ(z)
)∣
∣
∣
∣φ′(z)

∣
∣

(

1 − |z|2
)β

= 1 − |a|2 + |a|sup
z∈�

∣
∣φ′(z)

∣
∣

(

1 − |z|2
)β

= 1 − |a|2 + |a|(1 − |a|)

= 1 + |a| − 2|a|2.

(3.4)

But since Cφ is an isometry and ‖fa‖Bα = 1 + |a|supz∈� (1 − |z|2)α = 1 + |a|, it must be that
|a|2 = 0. Thus φ(0) = a = 0.

To show that supz∈� τφ,α,β(z) = 1, we use another type of test functions. For a ∈ � ,
let ϕa(z) be the function such that ϕa(0) = 0 and ϕ′

a(z) = (ψ ′
a(z))

α, where ψa is the disc
automorphism of � defined by

ψa(z) =
a − z
1 − az. (3.5)

Using that (1 − |z|2)|ψ ′
w(z)| = 1 − |ψw(z)|2, we get

∥
∥ϕa

∥
∥
Bα = sup

z∈�

∣
∣ψ ′

a(z)
∣
∣
α
(

1 − |z|2
)α

= sup
z∈�

(

1 − ∣
∣ψa(z)

∣
∣
2
)α

= 1.
(3.6)
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Hence, since Cφ is an isometry from Bα into Bβ, we have that for any z0 in �

1 = sup
a∈�

∥
∥Cφϕa

∥
∥
Bβ = sup

a∈�
sup
z∈�

τφ,α,β(z)
(

1 − ∣
∣ψa

(

φ(z)
)∣
∣
2
)α

≥ sup
a∈�

τφ,α,β(z0)
(

1 − ∣
∣ψa

(

φ(z0)
)∣
∣
2
)α

≥ τφ,α,β(z0),

(3.7)

where the last inequality follows by choosing a = φ(z0), and the fact that ψa(a) = 0. Thus
τφ,α,β(z) ≤ 1, for all z ∈ � . On the other hand, for any a ∈ �

1 =
∥
∥Cφϕa

∥
∥
Bβ = sup

z∈�
τφ,α,β(z)

(

1 − ∣
∣ψa(z)

∣
∣
2
)α

≤ sup
z∈�

τφ,α,β(z), (3.8)

and thus, supz∈� τφ,α,β(z) = 1.

Note that in the more general case when Cφ : Bα → Bβ has a closed range, φ(0) does
not necessarily have to be zero. Still, without loss of generality, we will consider only the case
φ(0) = 0. This is possible since the disk automorphisms induce invertible (and thus closed
range) composition operators on every Bloch-type space. Namely, if φ(0) = a, we have that
φa(z) = ψa ◦ φ(z) is such that φa(0) = 0 and Cφa = CφCψa . Moreover,

τψa,α(z) =
∣
∣ψ ′

a(z)
∣
∣1−α ≤

(
1 + |a|
1 − |a|

)|1−α|
, (3.9)

and by Theorem A we have that Cψa : Bα → Bα is always a bounded (and an invertible)
operator. Thus Cφ : Bα → Bβ has a closed range if and only if Cφa : Bα → Bβ has a closed
range.

Theorem 3.3. Let φ be a selfmap of � , let α, β > 0, and let Cφ : Bα → Bβ be bounded. Then

(i) Cφ : Bα → Bβ has a closed range if and only if there exists c > 0 such that the set Gc,α,β is
sampling for Bα;

(ii) if Cφ : Bα → Bβ has a closed range, then there exist c, r > 0 with r < 1, such that Gc,α,β is
an r-net for � ;

(iii) if there exist c, r > 0 with r < 1 such that Gc,α,β contains an open annulus centered at the
origin and with outer radius 1, then Cφ has a closed range.

Proof. The proof of (i) is similar to the proof of Theorem 1 from [23]. Since Cφ : Bα → Bβ is
bounded, by Theorem A, we have that ∃K > 0 such that τφ,α,β(z) ≤ K. Thus, if Cφ is bounded
below byM, and if c = M/2, we will show that set Gc,α,β is sampling for Bα with a sampling
constant S =M/K. We have that for any f ∈ Bα,

∥
∥Cφf

∥
∥
Bβ = sup

z∈�
τφ,α,β(z)

(

1 − ∣
∣φ(z)

∣
∣
2
)α∣

∣f ′(φ(z)
)∣
∣ ≥M∥

∥f
∥
∥
Bα , (3.10)
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and since

sup
z/∈Ωc,α,β

τφ,α,β(z)
(

1 − ∣
∣φ(z)

∣
∣
2
)α∣

∣f ′(φ(z)
)∣
∣ < c

∥
∥f

∥
∥
Bα =

M

2
∥
∥f

∥
∥
Bα , (3.11)

it must be that

M
∥
∥f

∥
∥
Bα ≤ sup

z∈�
τφ,α,β(z)

(

1 − ∣
∣φ(z)

∣
∣
2
)α∣

∣f ′(φ(z)
)∣
∣

= sup
z∈Ωc,α,β

τφ,α,β(z)
(

1 − ∣
∣φ(z)

∣
∣
2
)α∣

∣f ′(φ(z)
)∣
∣

≤ K sup
w∈Gc,α,β

(

1 − |w|2
)α∣

∣f ′(w)
∣
∣.

(3.12)

Thus supw∈Gc,α,β
(1−|w|2)α|f ′(w)| ≥ M/K‖f‖Bα , that is,Gc,α,β is sampling for Bα with sampling

constant S = M/K. The other direction of the proof is fairly similar, and we leave it to the
reader.

(ii) Let w ∈ � and let ϕw be as in the proof of Proposition 3.2, that is, the function
defined by ϕw(0) = 0 and ϕ′

w = (ψ ′
w)

α. As shown before, ‖ϕw‖Bα = 1, and

∥
∥ϕw ◦ φ∥∥Bβ = sup

z∈�
τφ,α,β(z)

(

1 − ∣
∣ψw

(

φ(z)
)∣
∣2
)α
. (3.13)

Furthermore, assuming that Cφ is bounded and has a closed range, there existM,K > 0 such
that supz∈� τφ,α,β(z) = K and

K ≥ sup
z∈�

τφ,α,β(z)
(

1 − ∣
∣ψw

(

φ(z)
)∣
∣
2
)α

≥M. (3.14)

But since 1 − |ψw(φ(z))|2 ≤ 1, there exists zw ∈ � such that

τφ,α,β(zw) ≥ M

2
,

(

1 − ∣
∣ψw

(

φ(zw)
)∣
∣
2
)α

≥ M

2K
. (3.15)

Thus, for c = M/2 and r =
√

1 − (M/2K)1/α, we have that for all w ∈ � ; there exists zw ∈
Ωc,α,β such that ρ(w,φ(zw)) < r, and so Gc,α,β is an r-net for � .

(iii) LetCφ : Bα → Bβ be bounded and assume thatGc,α,β contains the annulusA = {z :
r0 < |z| < 1}. Suppose that Cφ does not have a closed range, that is, there exists a sequence of
functions {fn}with ‖fn‖Bα = 1 and such that ‖Cφfn‖Bβ → 0. Since supz∈� (1− |z|2)α|f ′

n(z)| = 1,
there exists a sequence {an} in � such that for all n,

(

1 − |an|2
)α∣

∣f ′
n(an)

∣
∣ ≥ 1

2
. (3.16)
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For any ε > 0, letNε be such that for all n > Nε, and we have ‖Cφfn‖Bβ < cε. Then

sup
w∈Gc,α,β

(

1 − |w|2
)α∣

∣f ′
n(w)

∣
∣

≤ 1
c

sup
z∈Ωc,α,β

τφ,α,β(z)
(

1 − ∣
∣φ(z)

∣
∣
2
)α∣

∣f ′
n

(

φ(z)
)∣
∣

≤ 1
c
sup
z∈�

(

1 − |z|2
)β∣

∣f ′
n

(

φ(z)
)∣
∣
∣
∣φ′(z)

∣
∣ =

1
c

∥
∥Cφfn

∥
∥
Bβ <

cε

c
= ε.

(3.17)

Considering further ε < 1/2, we get that each an with n > Nε belongs to the complement of
Gc,α,β. Thus |an| ≤ r0 < 1 and an → awith |a| ≤ r0.

On the other hand, since ‖fn‖Bα = 1, a normal families argument implies that there
exists a subsequence {fnm} that converges uniformly on compact subsets of � to some
function f ∈ Bα. But then {f ′

nm} converges to f ′ uniformly on compact subsets of � , and
since supw∈Gc,α,β

(1 − |w|2)α|f ′
n(w)| → 0 as n → ∞ and Gc,α,β contains an infinite compact

subset of � , we get that f ′ ≡ 0. This contradicts the fact that (1 − |a|2)α|f ′(a)| ≥ 1/2 and so Cφ

must be bounded below. Hence, Cφ has a closed range.

Example 3.4. Let φ(z) = z2, and let Cφ : Bα → Bβ. Then

τφ,α,β(z) =
2|z|

(

1 − |z|2
)β

(

1 − |z|4
)α =

(

1 − |z|2
)β−α 2|z|

(

1 + |z|2
)α . (3.18)

For z ∈ � with |z| > 1/2, we have that (1/2α)(1 − |z|2)β−α < τφ,α,β(z) ≤ 2(1 − |z|2)β−α. Thus

(i) if α < β, we have that τφ,α,β(z) → 0 as |z| → 1, and so Cφ is compact;

(ii) if α > β, we have that τφ,α,β(z) → ∞ as |z| → 1, and so Cφ is not bounded;

(iii) if α = β, we have that (1/2α) < τφ,α(z) ≤ 2, that is, A = {z : (1/2) < |z| < 1} ⊂ G1/2α,α

and so Cφ is bounded below and has a closed range. Recall that Cφ cannot be an
isometry on any of the Bα spaces.

Note that the same conclusions as in Example 3.4 hold if we choose φ(z) = zk, k ∈ �,
or even further, if we choose other particularly nice functions, such as, for example, finite
Blaschke products. The sufficient condition, as we will see later, is the boundedness of the
derivative over points that are mapped close to the unit circle.

As for the boundedness of the composition operator from Bα into Bβ when α > β in
general, we mention the following useful condition which might be known, but we could not
find it in the literature.

Proposition 3.5. Let 0 < β < α, and let φ be an analytic selfmap of � . If the composition operator Cφ

from Bα into Bβ is bounded, then φ has no angular derivative on ∂� , and if E = {ζ ∈ ∂� : |φ(ζ)| = 1},
then the (linear) measure of E must be zero.
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Proof. Recall that if φ has an angular derivative at a point ζ ∈ ∂� , then |φ(ζ)| = 1. Thus, if the
set E is empty, we are done. If not, recall further that if φ has an angular derivative φ′(ζ) at ζ,
then for any sequence {zn} in � that converges nontangentially to ζ, we have that

lim
n→∞

1 − ∣
∣φ(zn)

∣
∣

1 − |zn| =
∣
∣φ′(ζ)

∣
∣ = lim

n→∞
∣
∣φ′(zn)

∣
∣. (3.19)

Also, if φ(0) = 0, it must be that |φ′(ζ)| ≥ 1. For more details on angular derivatives, see, for
example, [8].

Without loss of generality, assume that φ(0) = 0 and suppose that φ has an angular
derivative at some ζ ∈ ∂� . Hence, whenever {zn} in � converges nontangentially to ζ, we
have that for large enough n,

τφ,α,β(zn) =

(

1 − |zn|2
)β∣

∣φ′(zn)
∣
∣

(

1 − ∣
∣φ(zn)

∣
∣
2
)α ≥ 1

2

⎛

⎜
⎝

(

1 − |zn|2
)

(

1 − ∣
∣φ(zn)

∣
∣
2
)

⎞

⎟
⎠

β

1
(

1 − ∣
∣φ(zn)

∣
∣
2
)α−β → ∞ (3.20)

as n → ∞, since (1 − |zn|2)/(1 − |φ(zn)|2) → |φ′(ζ)|−β and |φ(zn)| → 1. By Theorem A, Cφ

cannot be bounded from Bα into Bβ.
Furthermore, by a result from [14, Corollary, page 71], if the set E has a positive

measure in ∂� , then φ must have an angular derivative at some point of ∂� , and so Cφ can
not be bounded from Bα into Bβ.

Recall that Theorems B, C, and D consider the closed-range and isometry classifica-
tions of composition operators acting between the same space Bα. The following theorem
looks at the determination of closed-range and isometric composition operators acting
between different Bloch-type spaces, namely, the case when α/= β.

Theorem 3.6. Let α, β > 0, α /= β, and let Cφ from Bα into Bβ be bounded. Then

(i) Cφ can not have a closed range, except possibly when 0 < α < β < 1, or 1 ≤ β < α;
(ii) Cφ can not be an isometry, except possibly when 0 < α < β < 1.

Proof. (i)

Case 1. Let α > β. Wewill show that if α > β and β < 1, thenCφ bounded implies that ‖φ‖∞ < 1
and so, by Theorem A, Cφ is compact. Thus Cφ can not have a closed range.

This follows from the more general fact that if Cφ : Bα → Bβ is bounded, then for
0 < ε < αwe have that Cφ : Bα−ε → Bβ must be compact, since

(

1 − |z|2
)β∣

∣φ′(z)
∣
∣

(

1 − ∣
∣φ(z)

∣
∣
2
)α−ε ≤

(

1 − ∣
∣φ(z)

∣
∣
2
)ε
sup
z∈�

(

1 − |z|2
)β∣

∣φ′(z)
∣
∣

(

1 − ∣
∣φ(z)

∣
∣
2
)α , (3.21)

which converges to 0, as |φ(z)| → 1.
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So, since 0 < ε = α−β < α, we have that ifCφ : Bα → Bβ is bounded, thenCφ : Bβ → Bβ

is compact, and since β < 1, it must be that ‖φ‖∞ < 1 as shown, for example, in [14].

Case 2. Let α < β.

(a) If α ≥ 1, then eachCφ is compact and thus can not have a closed range. This follows
from the fact that

τφ,α,β(z) =

(

1 − |z|2
)β∣

∣φ′(z)
∣
∣

(

1 − ∣
∣φ(z)

∣
∣
2
)α ≤

(

1 − |z|2
)∣
∣φ′(z)

∣
∣

1 − ∣
∣φ(z)

∣
∣
2

(

1 − |z|2
)β−α ≤

(

1 − |z|2
)β−α

. (3.22)

The first inequality is true since φ(0) = 0 and so

1
(

1 − ∣
∣φ(z)

∣
∣
2
)α−1 ≤ 1

(

1 − |z|2
)α−1 , (3.23)

while in the second inequality one uses the Schwarz-Pick lemma. Again, since
φ(0) = 0, we have that 1− |z|2 ≤ 1− |φ(z)|2, and by Theorem A, Cφ must be compact.

(b) When α < 1 ≤ β, then again, each Cφ is compact and so, Cφ can not have a closed
range. This follows similarly from the Schwarz-Pick lemma and Theorem A:

(

1 − |z|2
)β∣

∣φ′(z)
∣
∣

(

1 − ∣
∣φ(z)

∣
∣
2
)α =

⎛

⎜
⎝

(

1 − |z|2
)∣
∣φ′(z)

∣
∣

1 − ∣
∣φ(z)

∣
∣
2

⎞

⎟
⎠

α

(

1 − |z|2
)1−α∣

∣φ′(z)
∣
∣
1−α(1 − |z|2

)β−1

≤
(

1 − ∣
∣φ(z)

∣
∣
2
)1−α(

1 − |z|2
)β−1

→ 0

(3.24)

as |φ(z)| → 1.

(ii) Since every isometry has a closed range, by part (i), the leftover case to consider
when determining the isometric composition operators Cφ from Bα into Bβ is when 1 ≤ β < α.
We will show that in this case also, the composition operator can not be an isometry.

(a) Let 1 < β < α. Then, if Cφ : Bα → Bβ is an isometry, we have that ‖φ‖Bβ = 1. Thus

sup
z∈�

(

1 − |z|2
)β−1(

1 − |z|2
)∣
∣φ′(z)

∣
∣ = 1, (3.25)

where (1−|z|2)β−1 ≤ 1 and (1−|z|2)|φ′(z)| ≤ 1−|φ(z)|2 ≤ 1. Therefore, the supremum
is 1 only when both parts of the product converge or are equal to 1. This implies that
the supremum is attained at z = 0 and that |φ′(0)| = 1. But then, by Schwarz’s
lemma, φ must be a rotation, and rotations induce an unbounded composition
operators whenever β < α. Hence, a composition operator from Bα → Bβ is never
an isometry in the case 1 < β < α.
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(b) If 1 = β < α andCφ : Bα → B is an isometry, then, as before, ‖φ‖B = 1. In the proof of
Theorem B in [18], it is shown that this is enough to imply that either φ is a rotation
(but then Cφ is not bounded) or that φ is such that for every a in � there exists {zn}
with zn → 1, φ(zn) = a, and τφ(zn) → 1.

Let {ak} be a sequence of points in � such that |ak| → 1, and let {zk} be such that
φ(zk) = ak and τφ(zk) ≥ 1/2. Then, as ak → 1,

τφ,α,1(zk) =

(

1 − |zk|2
)∣
∣φ′(zk)

∣
∣

(

1 − ∣
∣φ(zk)

∣
∣
2
)α =

τφ(zk)
(

1 − |ak |2
)α−1 ≥ 1

2
(

1 − |ak|2
)α−1 → ∞, (3.26)

and so Cφ : Bα → B is not bounded.

Note that in the proof of the previous theorem, we have shown that in general,
whenever φ(0) = 0, ‖φ‖Bβ = 1, and 1 ≤ β < α, then Cφ : Bα → Bβ is not bounded.

We state one more result on the isometric and closed-range composition operators
on Bloch-type spaces, which takes care of the classification in the case when the inducing
function φ satisfies extra conditions. For example, we show that the only univalently induced
isometric composition operators are the trivial ones, that is, the ones induced by rotations.
This is similar to a result from [25], where we have shown that a univalently induced
composition operator on Bα, α /= 1, has a closed range if and only if φ is a disk automorphism.

Theorem 3.7. Let α, β > 0, and let Cφ : Bα → Bβ be bounded.

(i) If φ is univalent and not a rotation, then Cφ is not an isometry.

(ii) If α/= β and if ∃M, r > 0, r < 1 such that |φ′(z)| ≤ M, whenever |φ(z)| > r, then Cφ does
not have a closed range.

Proof. (i) Let φ be univalent, not a rotation, and such that Cφ : Bα → Bβ is an isometry. By
Proposition 3.2, then φ(0) = 0 and supz∈� τφ,α,β(z) = 1. The function f(z) = z is such that
‖f‖Bα = 1 and so

1 =
∥
∥Cφf

∥
∥
Bβ = sup

z∈�
τφ,α,β(z)

(

1 − ∣
∣φ(z)

∣
∣
2
)α
. (3.27)

Since both parts of the last product are less or equal to 1, there is a sequence {zn} in � such
that τφ,α,β(zn) → 1 and |φ(zn)| → 0. Since φ is univalent, by the Köebe distortion theorem, it
can not be that |zn| → 1. Hence, ∃z0 ∈ � such that zn → z0, φ(zn) → φ(z0) = 0. Again, φ is
univalent, and so z0 = 0. But then τφ,α,β(0) = |φ′(0)| = 1 and by Schwarz lemma, φ has to be a
rotation, which is a contradiction. Hence, Cφ is not an isometry.

(ii) Let α/= β and let ∃M, r > 0, r < 1 such that |φ′(z)| ≤ M, whenever |φ(z)| > r. If
‖φ‖∞ < 1, then Cφ is compact and does not have a closed range. So, let ζ ∈ ∂� be such that
|φ(ζ)| = 1.

If β < α, the boundedness of the derivative as |φ(z)| → 1 implies that φ must have an
angular derivative at ζ, and by Proposition 3.5, Cφ is not bounded.
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If α < β, then whenever φ(zn) → 1,

τφ,α,β(zn) =

(

1 − |zn|2
)β∣

∣φ′(zn)
∣
∣

(

1 − ∣
∣φ(zn)

∣
∣
2
)α ≤ M

(

1 − |zn|2
)β−α → 0. (3.28)

Thus Cφ is compact and so it can not have a closed range.

Note that part (ii) of the previous theorem together with part (iii) of Theorem 3.3 show
that, for example, if φ is a finite Blaschke product, then Cφ : Bα → Bβ has a closed range only
when α = β.

We finish with the following two open questions.

Question 1. If the composition operator Cφ : Bα → Bβ is bounded, is the necessary closed-
range condition in part (ii) of Theorem 3.3 also sufficient for any α, β > 0? By Theorem D, this
is the case when α = β ≥ 1.

Question 2. Are there any closed-range composition operators Cφ : Bα → Bβ when α and β
are such that either 0 < α < β < 1 or such that 1 ≤ β < α? By Theorem 3.7 part (ii), if there is
such a Cφ, then φ will not be a finite Blaschke product.
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