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Abstract 

Identifying people who are at risk of fall during walking is crucial. The objective of this thesis is 

to comprehensively evaluate the application of two selected entropy measures, sample entropy 

(SampEn) and quantized dynamical entropy (QDE), as biomarkers of increased fall risk when 

applied to whole gait signals. SampEn is the most used entropy measure in human gait studies and 

QDE has the robustness of SampEn to noise but offers a superior computational performance. The 

first study further investigates the viability of SampEn and QDE along with choosing the signal 

which best discriminates between young healthy adults and elderly fallers as well as between walk 

only and dual-task walking condition. The results suggest that, amongst the five different signals 

representing trunk motion, leg motion, and the center of pressure of feet displacement, the center 

of pressure in the mediolateral direction (ML COP-D) is the best signal. The second study 

establishes the sensitivity of the SampEn and QDE of the ML COP-D signal to two preprocessing 

methods and to variant values of template size, tolerance size, and sampling rate. The results 

suggest that SampEn and QDE benefit from a relative consistency across variant parameter values, 

showing a significant increase from walk only to dual-task walking condition, especially when 

signals are low-pass filtered.  

Finally, the correlation of SampEn and QDE with two other families of gait measures (i.e., 

variability measures and the short-term largest Lyapunov exponent [LLE] measure), which have 

been used for gait stability assessment, is investigated. Two difficulty levels for the secondary 

visuomotor cognitive games are used. The results show that all gait measures increase due to dual-

tasking, except for the short-term LLE which increases significantly only during the easy game. 



Abstract 

  

 

iii 

 

Additionally, these measures are not sensitive to the degree of difficulty of the secondary tasks. 

This is along with a poorer task performance when participants perform the secondary task while 

walking as compared to stationary standing. Only one variability measure, dispersion of foot 

placement in the mediolateral direction, is positively correlated with SampEn and QDE. Overall, 

the SampEn and QDE of whole gait signals show a great potential to serve as biomarkers of 

increased fall risk because they consider both inter-stride and intra-stride information of human 

gait cycles and are able to discriminate between different walking conditions.  
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Chapter 1   

Introduction 

1.1 Motivation 

Falls, which mostly occur during human ambulation (including walking, turning, and standing), 

have devastating consequences [1]. One common cause of falls is neurological and physical 

impairment due to aging. The ability to walk declines as people age and especially when they 

become cognitively impaired. Complications in gait initiation, reduction of gait speed, and altered 

gait posture, such as forward lean and loss of gait symmetry, are some changes that may occur as 

people age [2]. These changes may accumulate over time and lead to fall [3].  

Falls in older adults cause physical injury, health service use, and fear of fall. The fear of fall 

causes a decline in physical activity and social participation after falling. These may lead to a 

further decline in overall physical and mental health conditions of older adults (e.g., depression, 

higher medication use, and atrophy) [4]. 

Furthermore, the world’s population is getting older and in 2050, more than 20 percent of the 

population will be aged 80 years or over as compared to 14 percent in 2015 [5]. A decrease in the 

number of falls will decrease the costs of healthcare dramatically. These expenses are because of 

many factors, such as treatments in emergency departments, hospitalization because of injuries, 
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nursing home cares, and other long-term effects such as future fear of fall, which cause people to 

be dependant on others and have less life quality. 

Although elderly adults are at higher risks of fall, young and middle-aged adults experience high 

incidents of falls too. Gait impairments along with accidental or environmental reasons are the 

leading causes of falls among these two age groups [1]. In addition, performing attention-

demanding tasks while walking may affect normal gait of all age groups and lead to fall [6]. 

Overcoming perturbations and obstacles because of internal and external sources (e.g., bumps in 

the roads, slippery ground, talking on the phone, etc.) is an example of such attention-demanding 

tasks.  

Given the observations discussed above, identifying people at risk of fall is a matter of great 

importance and will benefit both individuals and society. Individuals who are assessed and 

diagnosed with a high risk of fall can get supervised rehabilitating exercises to enhance their 

ambulation and confidence, and decrease their future possible falls. Furthermore, if the measure 

could identify persons who are not fallers (at high risk of fall) yet, but may become fallers in a few 

years, then preventive care planning could benefit them far ahead of time. 

Typical fall risk assessment tools are recording falls history (i.e., the number of falls in the past 

few months), Timed Up and Go test (i.e., time to rise from a chair without using arms, walk 3 

meters then turn and return to the chair), Dynamic Gait index (i.e., the ability to modify gait in 

response to task demands changes), and recording some other symptoms (e.g., collecting 

Orthostatic vital signs while supine and again while standing) [7]. Although these assessments are 

very valuable, they lack precise quantitative monitoring [8].  



Chapter 1. Introduction 

 

 

3 

 

Several attempts have been made to characterize human gait and find a biomarker for the incident 

of fall. Human gait signal analysis has been widely used to attain this objective [9], and linear and 

nonlinear dynamics measures’ association with fall risk have been studied to some extent. 

Variability measures [10], the short-term largest Lyapunov exponent (LLE) measure [11], and 

entropy measures [12] are among the measures that have shown promising results when 

discriminating between different walking conditions. Variability measures and the short-term LLE 

have been shown to outperform other existing gait measures in a comprehensive review in which 

entropy measures were excluded [9]. However, variability measures disregard intra-stride 

information and the short-term LLE does not look at the entire time series and examines only the 

degree of divergence of the neighboring points over a short period of time. Entropy measures have 

the advantage over these two families of gait measures if applied to whole gait signals because 

both inter-stride and intra-stride information are considered. Even though a great effort has been 

made, further investigation and more rigorous methodologies are needed [9], [13]. Firstly, these 

measures have produced inconsistent results stemmed from various underlying reasons. Using 

variant experimental protocols (e.g., treadmill vs. overground walking or fixed vs. preferred 

walking speed) and collecting various human gait signals (e.g., trunk linear acceleration and knee 

joint angle) are examples of those reasons. Secondly, several measures have been applied to inter-

stride spatio-temporal gait signals, such as step time signal. This type of approach neglects intra-

stride fluctuations that vary from one stride to the next and contain valuable information about the 

control mechanism of human gait.  

The use of entropy measures and their application to whole gait signals (as opposed to inter-stride 

spatio-temporal gait signals) could potentially be a solution to this problem. Although there are a 
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few studies that have applied entropy measures to whole gait signals [12], [14]–[16], several 

questions are unanswered and their viability needs further investigation. It is important to find out 

whether these measures are able to discriminate between different walking conditions, for 

example, between young healthy adults and elderly fallers and between walk only (WO) and dual-

task (DT) walking conditions. Despite a few attempts to answer this question, inconsistencies in 

the results hinder the application of entropy measures as biomarkers of increased fall risk. 

Therefore, it is beneficial to further investigate the viability of these measures along with 

comparing and contrasting the use of various human gait signals. In addition, entropy measures 

have been applied to segmented and normalized human gait signals rather than whole gait signals 

[12]. Studying the effect of this preprocessing could elicit further understanding of intra-stride 

information. Furthermore, entropy measures require predefined parameter values, and a thorough 

search of the relevant literature yielded no related article investigating the sensitivity of these 

measures to variant parameter values when applied to whole gait signals. Therefore, a systematic 

methodological study should be undertaken to address this issue. Finally, the correlation of entropy 

measures with other gait stability measures is not clear. Therefore, a direct comparison should be 

concerned with this problem.   

1.2 Objectives 

The main objective of this study is to investigate the efficacy of two entropy measures, sample 

entropy (SampEn) and quantized dynamical entropy (QDE), to act as biomarkers of increased fall 

risk when applied to “whole” gait time series. Whole gait signals are the entire time series data 
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obtained from force or inertial sensors. These two measures are selected based on a previous 

research [12], in which SampEn and QDE were recommended for human gait analysis. SampEn, 

as the most used entropy measures in human gat studies, has been applied to both stride interval 

times series and whole gait signals [12], [15]–[18]. QDE has the robustness of SampEn to noise 

and at the same time is computationally more efficient [12], [18]. If the discriminatory ability of 

these two measures is shown to be similar, QDE can be chosen as a viable alternative to SampEn 

because of its superior computational efficiency.  The specific objectives addressed in this study 

are listed below: 

(1) To investigate the discriminatory ability of the SampEn and QDE of five human gait signals 

(as both whole and segmented signals) during treadmill walking between two age groups 

(i.e., young healthy and elderly fallers) and between two walking conditions (i.e., WO and 

DT walking condition).  

Hypothesis I: Aging and dual-tasking will have an increasing effect on both SampEn and 

QDE of whole and segmented signals when controlling for the confounding effect of speed. 

Hypothesis II: The performance of SampEn and QDE will be different across different 

human gait signals. 

Hypothesis III: Using segmented and normalized signals instead of whole gait signals will 

result in different outcomes with respect to the discriminatory ability of SampEn and QDE.  

(2) To study the sensitivity of SampEn and QDE to variant parameter values and preprocessing 

methods when applied to whole gait signals. The outcomes will be a guideline for proper 

implementation of SampEn and QDE when applied to whole gait signals.  
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(3) To determine whether SampEn and QDE are correlated with two other gait stability 

measures (i.e., variability measures and the short-term LLE) and whether these measures 

are sensitive to the difficulty level of secondary tasks. This could shed some light on where 

entropy measures stand among commonly used measures of gait stability. 

Hypothesis IV: All gait measures will increase because of dual-tasking and the increase 

will be proportional to the difficulty of the secondary tasks.   

Hypothesis V: The entropy measures, variability measures, and the short-term LLE will 

not be highly correlated. 

Hypothesis VI: Task performance will deteriorate during dual-task walking as compared 

to stationary standing.  

 

To achieve the first objective, an experiment was designed where participants (young and older 

adults) walked on a treadmill at a fixed speed and under walk only and dual-task walking 

conditions. Five different gait signals were recorded and were used to calculate SampEn and QDE.  

Statistical analyses were employed to investigate the discriminatory ability of these two entropy 

measures when applied to whole gait signals and to select the best signal. To meet the second and 

third objectives, another experiment was designed, and the signal selected in the previous step was 

collected. The sensitivity of SampEn and QDE to variant parameters, low-pass filtering, and 

resampling was explored via statistical analyses. Finally, the correlation of these two measures 

with two other gait stability measures was determined.    
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1.3 Thesis Outline 

Chapter 2 provides an overview of human gait and related terminology, fall-provoking conditions, 

current human gait measures, and the reason why entropy measures of whole gait signals are worth 

further investigations. Chapter 3 details the methodology and experimental approach used in this 

study including an explanation of sample entropy, quantized dynamical entropy, and two other 

families of gait measures (variability measure and the short-term LLE). This is followed by 

describing data collection and secondary visuomotor cognitive games. In Chapter 4, the 

discriminatory ability of SampEn and QDE is investigated by analyzing the effect of aging and 

dual-tasking across 5 various human gait signals. The selected human signal from Chapter 4 is 

used in Chapter 5 to thoroughly investigate the sensitivity of SampEn and QDE to variant 

parameter values and preprocessing methods. Chapter 6 focuses on the secondary task 

performance along with investigating the correlation between entropy measures (SampEn and 

QDE) and two other families of gait measures (variability measure and the short-term LLE). 

Finally, Chapter 7 summarizes the contributions made in this thesis, important findings, and 

direction for future work.  
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Chapter 2   

Background 

In this chapter, first, a brief description of human gait will be presented. This will be followed by 

a literature review on human gait measures. Finally, the research gaps will be outlined.  

2.1 Human Gait and Fall-Provoking Conditions 

Balance is a functional term and its control during walking is a complex multi-dimensional task. 

The central nervous system deals with balance or gait stability requirements by two processes [19]: 

first by a feedforward control system to maintain control over the position and motion of the body’s 

center of mass (COM) within the moving base of support (BOS); second by a feedback control 

system to restore stability in response to a sudden perturbation or movement error (i.e., unexpected 

deviation from a planned movement) and to avoid falling. This sophisticated control system 

prevents falling during each stride where the COM of the body is outside of the BOS for a fraction 

of stride.  

The human gait cycle is the time interval between two successive incidences of quite repetitive 

events. It starts with the initial heel contact of the right foot with the ground denoting the beginning 

of the stance phase of the right foot. This incident coincides with the toe-off of the left foot which 

is the beginning of the swing phase of the left foot. These occurrences repeat for each foot with a 

half cycle delay. At the beginning and at the end of the stance phase of each foot, there is a period 
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when both feet are in contact with the ground. This period of the gait cycle is called the double 

support phase. The rest of the stance phase, when only one foot is in contact with the ground, is 

called the single support phase of that foot (see Figure 2-1). One stride (gait cycle) consists of two 

steps, left and right. And each step consists of one swing and one stance phase.   

 

 

 

 

Although each gait cycle seems to be a repetition of its previous cycle, many parameters change 

from one stride to another. This includes, but is not limited to, stride length, stride time, stride 

width, and intra-stride fluctuations. Stride-to-stride fluctuations of a healthy young adult walking 

in a straight line are relatively small and are on the order of just a few percent [10]. 

Various quantitative measures have been proposed for gait assessment. These measures have been 

studied when comparing normal walking to that of people who are at a greater risk of fall. 

Examples of such walking conditions pertain to older adults who have had repetitive falls [3], [20], 

[21], people who are engaged in a secondary motor-cognitive task while walking [12], [22]–[25], 

and finally people with diseases that affect their gait (e.g., Parkinson [26], [27] and peripheral 

Figure 2-1: Human gait cycle phases, starting with right foot initial contact. 
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neuropathy [28], [29]). In this thesis, the first two fall-provoking conditions (aging and dual-

tasking) are investigated. 

Dual-task walking imposes a great risk of fall not only on senior adults but also on young healthy 

population [6], [30], [31]. According to the strategy of “posture first”, people prioritize gait over 

the secondary cognitive or motor task if they sense a threat to their stability [32]. This implies that 

under DT walking condition, the performance of the secondary task would decrease, while gait 

stability would remain intact. However, when the secondary task becomes more complex and a 

higher degree of attention is required for its success, it is highly likely to see a poorer performance 

on both gait and secondary tasks [33]. Therefore, it is essential to quantify both gait and secondary 

task performance in order to be able to understand the prioritization and control mechanism of 

dual-tasking. 

Most of the secondary tasks used in the literature, such as verbal fluency [6], number subtraction 

[34], and the Stroop test [35], have a low ceiling effect which means they reach their maximum 

effect very fast, and will no longer affect human gait significantly. They also do not consider 

visuomotor processing. To overcome these limitations, Szturm et al. [36] have developed a 

computer game-based DT assessment platform. This platform consists of an instrumented 

treadmill, visuomotor cognitive computer games displayed on a computer monitor, and a motion-

sensing mouse attached to a plastic headband allowing for hands-free interaction with computer 

games. This DT assessment platform, which is used in this thesis, is a very good choice for the 

study of the effectiveness of a gait measure [37].   
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2.2 Human Gait Measures 

Human gait has a sufficient resilience to perturbations and it is very difficult to determine how 

close the complex human gait is to shift from a stable to an unstable state. From the biomechanical 

perspective, instability and falls occur when the projection of the COM falls out of the BOS [38] 

and no action is taken to restore stability. This resembles large perturbations being exerted on the 

gait. Assessing gait stability from the biomechanical perspective (e.g., using the margin of stability 

measure [39] while considering the position and velocity of the COM) is almost inaccessible 

during gait because of data collection procedures. In order to get usable data, several cameras and 

markers are required, and also a cumbersome amount of post-processing is needed. Even though 

there are some methods that can calculate the COM indirectly, their validity has not been tested 

yet [40]. 

Alternately, analysis of time series obtained during walking has been shown to be potential 

candidates for human gait studies. Conventional average stride (or step) variables were the very 

first features that were extracted during human gait. Stride (or step) length, stride (or step) width, 

stride (or step) time, swing time, and double-support time have been used to discriminate between 

faller and non-fallers, and between different DT conditions. Gehlsen et al. [41] identified the step 

frequency, stance time, swing time, double support time, step length, heel width, heel height, and 

toe height of two groups using camera equipment while participants walked on a motorized 

treadmill at a fixed speed. None of the aforementioned variables showed any significant change 

between non-fallers and fallers. Their results were confirmed by Feltner et al. [42] who studied 

stride length, step length, step width, stride time, step time, single support time, and swing time. 
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These variables were computed using the sagittal and frontal view videotapes of participants 

walking on a carpeted floor of 8.2 m. They found that none of the variables could distinguish 

between the retrospective fallers and non-fallers or could predict the prospective falls. On the other 

hand, Imms et al. [43] reported a significant decrease in velocity and stride length from fallers to 

non-fallers and no significant change of double support time. Maki [44] computed spatial and 

temporal gait parameters, from digitized footprints and footswitches, along with their variabilities. 

He reported that decreased stride length, reduced speed, and increased double support time were 

not indicative of falling but were associated with the fear of fall as stabilizing adaptations. 

However, stride-to-stride variability in stride length, speed, and double support time increased with 

fall risk. These variables are defined as standard deviation (SD) or coefficient of variance (COV) 

of the mean (SD divided by mean). Unlike average variables, they take into account inter-stride 

variabilities that are very fundamental to human gait. To that point, these variabilities had been 

considered as system noise and had been neglected [10]. A prospective study of swing and stride 

time on community-living older adults by Hausdorff et al. [20] showed that variability of temporal 

variables is also capable of predicting future falls while the mean gait speed and Timed Up and 

Go did not show significant changes. In their study, footswitches (force-sensitive insoles) were 

used to collect swing and stride time data while participants walked at their normal pace on level 

ground. These results suggested that the variability measures might be more sensitive than the 

average of gait parameters to the elevated risk of fall. These measures may reflect the inconsistency 

in the ability of the neuromuscular control system for gait regulation and maintaining a steady state 

walking pattern. This interpretation of variability measures could associate them with gait stability 

and fall risk [10].  
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The results of the variability measures are not always consistent with the aforementioned ones 

(i.e., increased variability with increased fall risk). Brach et al. [45] reported that only extreme step 

width variability (too much or too little) was associated with retrospective fall risk and step length, 

stance time, and step time variability did not distinguish fallers from non-fallers. This observation 

was only made for participants who walked faster than 1 m/s on ground level.  

The detrended fluctuation analysis (DFA) of stride interval gait parameters has also been 

investigated as a potential human gait measure [46]. To calculate the scaling exponent from stride 

interval time series (e.g., stride time) using DFA, the data is integrated first. This is followed by 

fitting a line to the data in windows of size n. The average fluctuation of the data around the fitted 

line, f(n), is calculated for various n values.  Finally, the slope of the fitted line to the log-log plot 

of f(n) versus n is the scaling exponent (α). Values of 0.5 < α <1.0 have been reported for human 

gait showing the presence of positive long-range correlations. Herman et al. [47] tested the ability 

of long-range correlations to discriminate between fallers and non-fallers. They asked participants 

to walk on the level ground and collected stride time data using force sensitive insoles. Their results 

showed a significant increase in DFA scaling exponent from the non-faller control group to fallers 

along with a significant increase in stride time variability.   

Even though these measures have shown potential in discriminating between different walking 

conditions and have addressed many clinical questions about human gait, they have ignored the 

inherent dynamical nature of locomotion. The disregarded intra-stride information, which changes 

from one stride to the next, represents important passive and active gait control process. Therefore, 

researches started to investigate various time series analyses adopted from nonlinear dynamics to 

incorporate intra-stride information into their investigation.  



Chapter 2. Background 

 

 

14 

 

Hurmuzlu et al. [48] adopted the Floquet multipliers from robotic gait analysis to assess the orbital 

dynamic stability of human locomotion from kinematic data recorded during walking. This 

measure simply quantifies the resilience of the gait patterns when subjected to disturbances and it 

assumes that kinematic data is strictly periodic. Even though the assumption of periodicity is 

necessary for the calculation of the Floquet multipliers, it is not a correct assumption for human 

gait since there are fluctuations from one stride to the next [9].  Nevertheless, it is quantified by 

calculating the magnitude of the maximum Floquet multiplier which is the rate of 

convergence/divergence from a limit cycle because of small perturbations from one gait cycle to 

the next [49].  A pilot study by Granata et al. [50] reported a significant increase in the maximum 

Floquet multipliers from healthy young and healthy older participants to fall-prone older adults. 

Data used in this study was based on the relative position and velocity data of the COP with respect 

to the COM from a critically small sample size. 

Dingwell et al. [11], [51] were the first researchers who used the method of the largest Lyapunov 

exponent or LLE to analyze the local dynamic stability of human walking kinematics. This 

outcome measure quantifies the average logarithmic rate of divergence of neighboring trajectories 

- of the reconstructed state-space from a single time series of a nonlinear system - after small 

perturbations. In this measure, each state may be regarded as a small perturbation of the other 

states [9]. The larger values of the LLE is indicative of more local instability [11]. It is calculated 

as the slope of the mean divergence curve over 0 to 0.5 (or 1) stride [52] or over 4-10 strides [11]. 

The former one is called the short-term LLE (𝜆𝑠) and the latter one is called the long-term LLE 

(𝜆𝐿). Typical biological signals used to compute the short-term LLE are upper and lower trunk 

linear acceleration (trunk-LA) and linear velocity collected during overground and treadmill 
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walking [53]–[56]. Recently, the short-term LLE  of the center of pressure (COP) trajectory has 

also been shown to successfully distinguish between normal and auditory cueing walking 

conditions [57]. Lockhart et al. [58] reported a significant increase in the short-term LLE from 

healthy young and healthy older adults to fall-prone older adults. The short-term LLE was 

calculated from lower trunk-LA signal in the anteroposterior (AP) direction while participants 

walked on a treadmill at a preferred walking speed. Similar results were reported by Toebes et al. 

[59] where the short-term LLE and not the long-term LLE  of upper trunk-LA was positively 

associated with fall risk when participants walked at a fixed speed on a treadmill.  However, by 

considering only few steps when studying the divergence of system’s trajectory, the short-term 

LLE is not capable of predicting the global stability of human gait.  

Researches have also explored the viability of using entropy measures for the purpose of fall risk 

detection [12], [16], [17], [60]. Entropy measures are inherently representing the difficultness of 

describing the patterns of systems trajectory [61]. The terms unpredictability, irregularity, and 

complexity have been used to reflect this idea [62], [63]. Larger entropy values indicate less 

regularity or predictability in a time series [64]. Various entropy measures have been proposed 

based on Shannon’s entropy [65] and its successor method, approximate entropy (ApEn). ApEn 

was developed to enable using Kolmogorov-Saini entropy [66] for complexity analysis of 

experimental time series. A drawback of ApEn was its bias toward regularity caused by self-

counting when finding similar templates. Consequently, sample entropy or SampEn was 

introduced to avoid self-counting [67]. Recently, quantized dynamical entropy or QDE [12] was 

proposed, which has the robustness of SampEn and a superior computational performance. Multi-

scale sample entropy (MSE) [17] was also introduced to examine the regularity of signals at 
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different temporal scales. Even though single-scale measures are not capable of revealing hidden 

information in self-affine sequences, they have a lot to offer and are adequate for the purpose of 

single-scale comparison [61]. 

Entropy measures have been applied to both spatio-temporal cycle-to-cycle gait parameters and 

“whole” gait signals. Whole gait signals are the entire time series data obtained from force or 

inertial sensors. Applying entropy measures to the whole signal of motion or force reveals 

important information about the regularity of human gait signals [15], [60]. In other words, when 

analyzing whole data, inter-stride and intra-stride dynamical features are evaluated while 

analyzing inter-stride spatio-temporal gait signals neglects intra-stride information.  

The first study that applied entropy measures to study human gait dynamics was conducted by Arif 

et al. [68] in 2002. Their results showed that ApEn of the mediolateral (ML) linear acceleration of 

the center of gravity increased significantly from young adults to older adults. However, in that 

study participants had synchronized their cadence with the tempo of a metronome. As a result, it 

was not a comparison of normal walking of the two groups. Costa et al. [17] applied MSE to stride 

time signal and compared slow, normal, and fast walking of healthy young adults, and reported 

that a metronomically-paced walking destroyed the correlations among the stride intervals. Bisi et 

al. [15] further applied MSE to trunk-LA signal (AP and vertical directions) obtained from 

participants of different age groups (toddlers to older adults). Participants walked overground at 

their self-selected speed in a corridor longer than 12 m that resulted in the collection of 10 

consecutive strides. Their results showed that MSE changes with respect to aging. In another study 

by Ihlen et al. [16], the values of a modified MSE of trunk-LA in the ML direction were higher for 

non-fallers compared to those values of fallers at all scale levels. However, in this study, the 
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overground walking speed, which is a confounding factor and has been reported to be lower for 

fallers [44], was not controlled. Additionally, there was no abrupt change in the results across 

different scales as suggested by Costa et al. [17]. Leverick et al. reported that the value of four 

different entropy measures, including SampEn and QDE, were higher for older adults as compared 

to young healthy adults. In this study, the center of pressure displacement in the ML direction (ML 

COP-D) was collected during fixed speed treadmill walking and was segmented and normalized 

(amplitude and gait cycle) before calculating SampEn and QDE.   

A comprehensive review by Bruijn et al. [9] on the validity of different proposed gait measures 

for gait stability assessment concluded that variability measures and the short-term LLE 

outperform other existing gait measures. The validity of entropy measures based on the same 

criteria was shown by Leverick et al. [12].  

These three families of measures (i.e., variability measures, the short-term LLE, and entropy 

measures) have also shown different and to some extent contradictory results when they were used 

to compare WO to DT walking condition. For young healthy adults, a significant increase in 

variability measures (e.g., stride time variability [31] and stride width variability [22]), the short-

term LLE [23], and entropy measures [69] have been reported during DT walking. Whereas no 

significant change in variability measures (e.g., stride length variability [31], swing time variability 

[70], and stride time variability [71]), the short-term LLE [24], and entropy measures [12], [23] 

have also been reported as a result of dual-tasking. Moreover, a significant decrease in step width 

variability [72] has also been reported. Since these studies have had different protocols and task 

conditions, and have used different biological signals, a comparison would be difficult to make. 
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Hence, a direct comparison would be beneficial and would help understand how each measure is 

affected by dual-tasking.  

A few studies have investigated how variant parameters would affect entropy measures of short 

[73] and long [74] time series when using spatio-temporal gait variables. It was shown that entropy 

measures are dependent on the combination of template size and tolerance size, and not on data 

length [73], [74]. However, no study has investigated the effect of parameter selection on the 

SampEn and QDE of human gait whole signals over an appropriate number of continuous strides. 

During continuous, steady-state gait, these signals are similar in nature with a few dominant 

frequencies and have consistent fluctuations from one stride to the next. Considering the increasing 

use of these measures in analyzing human gait whole signals, it is essential to investigate how 

parameter selection would affect the outcomes. The importance of this investigation stems from 

the fact that parameter selection for calculating the SampEn and QDE of whole gait signals, in 

many studies, is based on those that have analyzed inter-stride gait variables [75], [76]. 

Most studies, which have examined the effect of aging or dual-tasking on human gait, use self-

paced walking and do not control the gait speed. Self-paced walking results in different walking 

speeds and, therefore, each walking condition will have a different average number of data points 

per stride. It has been shown that gait speed is significantly reduced during DT walking compared 

to WO trials [77] and it has been reported that speed has a significant effect on the measures of 

dynamical systems, such as the LLE [78]–[80]. Moreover, researchers have used different 

sampling frequencies when collecting target whole signals, which, in turn, have resulted in a 

different average number of data points per stride. It is unknown whether a different average 

number of data points per stride caused by varying walking speed or sampling rate would affect 
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SampEn. Furthermore, many researchers have opted to apply SampEn, or other entropy measures, 

to raw unfiltered signals [12], [76], [81] to avoid losing or altering information because of filtering. 

While others have filtered the high-frequency components of trunk-LA signal using a cut-off 

frequency of 20 Hz [82], [83]. Therefore, investigating the effect of filtering would also be 

beneficial.  

2.3 Summary and Research Gaps 

Although a great effort has been made to characterize human gait, there are still some remaining 

research questions. This thesis addresses these research gaps as articulated below: 

1- There are no studies using entropy measures comparing and contrasting trunk motion, leg 

motion, and the center of foot pressure during different walking conditions. It is important 

to study the behavior of these signals with aging and dual-tasking as they have different 

control mechanisms.  

2- Leverick et al. [12] proposed segmenting and normalizing human gait cycles before 

calculating entropy measures. It is important to compare it to the non-segmented and non-

normalized signal, and to examine the effect of segmenting and normalizing on entropy 

measures. 

3-  SampEn and QDE have shown to be more promising amongst other proposed entropy 

measures [12]. However, their sensitivity to variant parameter values and to different 

preprocessing methods has not been studied yet. The majority of studies that have applied 

entropy measures to whole gait signals have chosen the methodological details based on 
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the works that have analyzed inter-stride spatio-temporal gait variables [75], [76]. 

Therefore, it is of paramount importance to investigate the sensitivity of SampEn and QDE 

to variant parameter values (i.e., template size, tolerance size, and sampling rate) and to 

two preprocessing methods (i.e., resampling signals to have the same average number of 

data points per stride and low-pass filtering).  

4- The correlation between these two measures (SampEn and QDE) and two other families of 

gait stability measures (i.e., variability and local dynamic stability measures) is not known 

since no direct comparison is available in the literature.  

5- Task prioritization and sensitivity of gait measures to the difficulty level of the secondary 

visuomotor cognitive tasks could be further examined using the DT assessment platform 

proposed by Szturm et al. [36]. The visuomotor cognitive tasks employed in the present 

study are cognitively demanding and at the same time, gait speed and walking surface 

conditions can be controlled by means of using a treadmill. 
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Chapter 3   

Methodology and Experimental Approach 

In this chapter, the methodology and experimental approach used in this thesis are explained. First, 

the secondary visuomotor cognitive games will be described. Next, the data collection, which 

consists of two sets, will be presented. Finally, the calculation procedure of the three families of 

gait measures (i.e., entropy measures, the short-term LLE measure, and variability measures) used 

in this work will be presented.  

3.1 Visuomotor Cognitive Games 

The goal of visuomotor cognitive games (VCG) is to move a game paddle horizontally to interact 

with the moving game objects. The game objects are categorized as designated targets or 

designated distractors, with the shape of a soccer ball and a dotted sphere, respectively. They 

appear at random locations at the top of the display every 2 seconds and move diagonally toward 

the bottom of the display. In response to each “game event” (target appearance), participants 

produce a head rotation (i.e., rotation of the motion-sensing mouse) to move the game paddle 

(left/right) and catch the target objects as well as avoid the distractors [69], [84]. Two difficulty 

levels of VCG are tested in this thesis. The easy one (VCG1) has only one target and one distractor. 

The difficult one (VCG2) consists of one target and two distractors of different shapes (i.e., dotted 
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sphere and clock) and they appear much faster and the paddle size is smaller compared to VCG1 

(see Figure 3-1). 

(A) (B) 

  

3.2 Data Collection 

Two sets of data collection are used in this thesis, the first one is only used in Chapter 4 while the 

second one is used in Chapters 5 and 6, both described below.  

In the present study, a computer game-based treadmill platform, developed and validated by 

Szturm and colleagues, was used for data collection [36]. Although overground walking condition 

or walking at a self-selected gait speed is the true free-running daily life condition, treadmill 

walking at a fixed speed may limit the number of influencing variables when interpreting the 

results of gait analysis. Gait variables are significantly influenced by walking speed, and reducing 

gait speed is a highly consistent strategy to overcome gait instability [78], [80].  In other words, as 

people engage themselves in a secondary task, they might slow down as a control strategy and they 

Figure 3-1: Visuomotor cognitive games: (A) VCG1 (easy game) and (B) VCG2 (difficult game). 

The yellow game paddle is moved by head rotations to catch the target objects (soccer ball) and 

avoid the distractors (dotted sphere and clock). 
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become more cautious as well. This is observed in almost all dual-task gait studies when 

participants walk over the ground at their self-selected speed [77]. To avoid participants 

undertaking this strategy, it is necessary to control their speed by using a treadmill. Participants 

can walk at the same speed they feel comfortable walking and performing secondary tasks despite 

some restrictions imposed on their gait by the treadmill. In addition, treadmill walking is an 

efficient method to collect data from several consecutive strides. It has also been reported [80] that 

there was no significant difference of the ML trunk-LA SampEn between daily life overground 

and treadmill walking of older adults where the gait speed was matched. 

During all walking trials, participants viewed an 80 cm computer monitor positioned 1 meter away 

at eye level. During WO trials, participants watched a scenery video to maintain gaze and head 

position relative to the monitor.  For the purpose of hands-free interaction with cognitive game 

activities, a commercial motion-sensing wireless mouse (Elite mouse, SMK Electronics, USA) 

was mounted on a plastic headband worn by each participant (see Figure 3-2). Therefore, during 

walking, the head rotation was used to control the motion of a computer cursor. Participants were 

asked not to intentionally prioritize either their gait or the secondary task. Test protocols were 

defined based on a series of experiments conducted by Szturm and colleagues [12], [84] in which 

test-retest reliability and validity of dual-task assessment platform have been extensively 

investigated and reported.  
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3.2.1 First Dataset 

For the first dataset, a total of 40 subjects, including 20 healthy young adults (3 females, 20-36 

years old) and 20 older adults (12 females, 70-85 years old) were recruited. The elderly group was 

able to walk 400 meters without walking aid and had experienced one or more falls in the past 12 

months (elderly fallers). They had adequate hearing and vision to perform the computer game 

activities. The study was approved by the University of Manitoba human research ethics 

committee and all participants signed the informed consent form. This dataset was used in Chapter 

4.  

Participants were asked to walk on a standard treadmill under two different walking conditions; 

a) Walk only trial of 45 seconds at a speed of 0.8 m/s, and 

Figure 3-2: Dual-task assessment treadmill workstation and motion-sensing mouse.  
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b) Walking while performing the VCG1 task for 45 seconds at 0.8 m/s. 

Forty seconds of each walking trial is used in this analysis. During treadmill walking trials, the 

following five signals were recorded: the center of pressure displacement (COP-D) in the ML and 

AP directions (ML/AP COP-D), trunk linear acceleration in the ML and AP directions (ML/AP 

trunk-LA), and shank angular velocity (shank-AV) in the ML direction (ML shank-AV). A 

standard treadmill equipped with a pressure mat (Vista Medical Ltd., Canada) underneath the belt 

was used to collect the COP migration at a sampling frequency of 60 Hz. Two miniaturized inertial 

motion monitors (IMM) (NexGen Ergonomics, Canada) were used to record trunk-LA and shank-

AV at a sampling frequency of 128 Hz (see Figure 3-3). Straps were used to secure the IMMs to 

the sternum and the lower shank (2 cm above lateral malleolus). 

 

  

Figure 3-3: Locations of inertial motion monitors. The image of IMM is reproduced with 

permission from NexGen Ergonomics Inc., http://www.nexgenergo.com [84]. 
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3.2.2 Second Dataset 

For the second dataset, a convenience sample of 29 healthy young participants (8 females, 28.3 ± 

2.7 years, 173.4 ± 8.8 cm, 69.7 ± 14.2 kg, mean ± SD) was recruited. They were screened to ensure 

that no participant had any illnesses, neuromuscular injuries or previous surgeries that might affect 

their balance and gait. The University of Manitoba human research ethics committee has approved 

the study and all participants signed the informed consent form prior to the tests. This dataset was 

used in Chapters 5 and 6. 

Participants were asked to walk on an instrumented Bertec treadmill (Bertec Corporation, 

Columbus, Ohio, USA) (see Figure 3-4) under four different walking conditions; 

a) Walk only trial of 1 minute at a speed of 1.0 m/s, and 

b) Walking while performing the VCG1 task (see Section 3.1) for 1 minute,  

c) Walking while performing the VCG2 task (see Section 3.1)  for 1 minute,  

d) Walk only trial of 1 minute at a speed of 1.3 m/s (WO-1.3).  

Forty seconds of each walking trial is used in this analysis. The ML COP-D signal was calculated 

from the force and moment components sampled at 1000 Hz. Additionally, prior to performing 

gait tests, participants were instructed on the computer tasks while seated. After comprehending 

the tasks, they performed each task while comfortably standing with a computer display at eye-

level. The outcomes of these tests were used as the baseline for task performance.  
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3.3 Gait Measures 

Three different families of gait measures have been used in this thesis (i.e., entropy measures, the 

short-term LLE, and inter-stride spatio-temporal gait variability measures). SampEn and QDE 

were used in Chapters 4 to 6 while other gait measures were only used in Chapter 6 for a direct 

comparison with entropy measures. The short-term LLE and variability measures have often been 

used to study human gait, and they have been shown to better assess human gait stability [9]. For 

example, Dingwell et al. [24] analyzed the short-term LLE of the upper trunk linear velocity 

signals and the results showed that performing the Stroop test did not have any significant effect 

on human gait local dynamic stability.  

SampEn (or a modified version, such as MSE) has often been used to study inter-stride gait 

variable time series [17]. While this approach led to some important findings, it does not include 

Figure 3-4: Dual-task assessment treadmill workstation using Bertec treadmill. 
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intra-stride fluctuations that contain important information about the gait control mechanism. Few 

studies have investigated the direct relationship between SampEn and whole gait signals such as 

trunk-LA time series. Ihlen et al. [16] used a modified MSE measure with ML trunk-LA and 

showed that the values were higher for non-fallers compared to those values of fallers at all scale 

levels. The overground walking speed, a confounding factor reported to be lower for fallers [44], 

was not controlled in their study. On the other hand, the SampEn and QDE of the segmented and 

normalized ML COP-D (collected during treadmill walking trials) were used by Leverick et al. 

[12] and their results showed that these two measures could discriminate between fallers and young 

healthy adults showing significant larger values for fallers.  

In the following sections, the calculation procedure of SampEn, QDE, the short-term LLE, and 

variability measures are presented.  

3.3.1 Sample Entropy Measure 

The SampEn (𝑚, 𝑟, 𝑁) of a dataset of length N is the negative natural logarithm of the conditional 

probability of two successive counts of similar pairs (i.e., having Chebyshev distance less than a 

tolerance r) of template size m and m+1 without allowing self-matches [67]. The calculation 

procedure of SampEn is as follows: 

Consider a time series of length 𝑁 given below: 

𝑋 = {𝑥(1), 𝑥(2), … , 𝑥(𝑁)} 𝑜𝑟 𝑋 = {𝑥(𝑗): 1 ≤ 𝑗 ≤ 𝑁}   (3-1) 

The value for template size (𝑚) is chosen to construct series of pairs, size 𝑚 as: 
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𝑋𝑚(𝑖) = {𝑥(𝑖 + 𝑘): 0 ≤ 𝑘 ≤ 𝑚 − 1}, 1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1  (3-2) 

Next, matching templates are found by comparing their Chebyshev distance (denoted as d|. |) to a 

pre-determined threshold size (𝑟) while excluding self-comparison. Next, the variable 𝐵𝑖, which is 

the number of pairs satisfying the aforementioned criteria, is built. 

𝐵𝑖
𝑚(r) =

1

𝑁 − 𝑚 − 1
 (# of d|𝑋𝑚(𝑖) − 𝑋𝑚(𝑗)| ≤ 𝑟,  𝑤ℎ𝑒𝑟𝑒 𝑗 = 1: 𝑁 − 𝑚 & 𝑖 ≠ 𝑗) (3-3) 

d|𝑋𝑚(𝑖) − 𝑋𝑚(𝑗)| = max{|𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)|: 0 ≤ 𝑘 ≤ 𝑚 − 1} (3-4) 

Next, 𝐵𝑚(𝑟) is defined as:  

𝐵𝑚(𝑟) =
1

𝑁 − 𝑚
∑ 𝐵𝑖

𝑚(𝑟) 

𝑁−𝑚

𝑖=1

 (3-5) 

This process is repeated for 𝑚 + 1 and 𝑟 to form 𝐴𝑚(𝑟): 

𝐴𝑖
𝑚(r) =

1

𝑁 − 𝑚 − 1
 (# of d|𝑋𝑚+1(𝑖) − 𝑋𝑚+1(𝑗)| ≤ 𝑟),   

where 𝑗 = 1: 𝑁 − 𝑚 & 𝑖 ≠ 𝑗 

 (3-6) 

𝐴𝑚(𝑟) =
1

𝑁 − 𝑚
∑ 𝐴𝑖

𝑚(𝑟)

𝑁−𝑚

𝑖=1

 (3-7) 

Lastly, SampEn [67] is calculated based on 𝐵𝑚(𝑟) and 𝐴𝑚(𝑟) as 

SampEn(𝑚, 𝑟, 𝑁) =  − ln
𝐴𝑚(𝑟)

𝐵𝑚(𝑟)
 (3-8) 

where 𝑚, 𝑟 and 𝑁 are the template size (i.e., the length of template vector), tolerance size and the 

length of time series, respectively. 
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3.3.2 Quantized Dynamical Entropy Measure 

The QDE (𝑚, 𝑟, 𝑁) of a dataset is based on the definition of Shannon’s entropy and measures the 

abundance of its dynamical features [12]. QDE is based on coarse quantization and vector 

identifiers [18]. The calculation procedure of QDE is as follows: 

Consider a time series as: 

𝑋 = {𝑥(1), 𝑥(2), … , 𝑥(𝑁)} or 𝑋 = {𝑥(𝑗): 1 ≤ 𝑗 ≤ 𝑁} (3-9) 

The quantized time series is constructed using a positive tolerance size (𝑟) and the floor function. 

The floor function ⌊𝑥⌋ gives the largest integer less than or equal to 𝑥. This process converts time 

series into quantized bins with various sizes, 𝑋𝑞: 

𝑋𝑞 = ⌊
𝑋 − inf(𝑋)

𝑟
⌋ (3-10) 

As a result, a quantized time series, all as whole numbers, is built: 

𝑋𝑞(𝑖) ∈ ℕ0 , i = 1, 2, … , N (3-11) 

Then pairs of neighboring points having a template size 𝑚 are constructed: 

{𝑥𝑞(𝑖), 𝑥𝑞(𝑖 + 1), … , 𝑥𝑞(𝑖 + 𝑚 − 1)} where 1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1 (3-12) 

Next, vector identifiers are defined as: 

𝜑𝑖 = [𝑥𝑞(𝑖), 𝑥𝑞(𝑖 + 1), … , 𝑥𝑞(𝑖 + 𝑚 − 1)] (3-13) 

Next, the number of occurrences of each identifier is defined: 

𝑄(𝜑𝑖) = #{ 1 ≤ 𝑖 ≤ 𝑁 − 𝑚 + 1, [𝑥𝑞(𝑖), 𝑥𝑞(𝑖 + 1), … , 𝑥𝑞(𝑖 + 𝑚 − 1)] ∈  𝜑𝑖} (3-14) 

By defining the relative frequency of identifiers as below, the probability of encountering a given 

identifier is: 
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𝑃(𝜑𝑖) =
Q(𝜑𝑖)

𝑁 − 𝑚 + 1
 (3-15) 

Next, 𝐻(𝑚, 𝑟) is defined based on Shannon’s entropy as: 

𝐻(𝑚, 𝑟) = − ∑ 𝑃(𝜑𝑖) log2 𝑃(𝜑𝑖)

 

𝜑

 (3-16) 

Where using a binary logarithm causes the units of 𝐻(𝑚, 𝑟) to be bits. In the end, the QDE per 

symbol is defined as follows: 

QDE =
𝐻

𝑚
 (3-17) 

For these entropy measures, values near zero imply more regular signals.  

3.3.3 Short-Term Largest Lyapunov Exponent Measure 

The sensitivity of a dissipative and globally stable dynamical system to initial conditions is 

quantified by the Lyapunov exponents. The presence of a positive exponent is sufficient to claim 

local instability in a particular direction. That being said, the sum across the entire spectrum, 

however, is negative. It has also been stated that two randomly chosen initial conditions will 

diverge exponentially at a rate given by the largest Lyapunov exponent or LLE since exponential 

growth in that direction quickly dominates the growth along the other Lyapunov directions [85].  

The calculation process of the LLE from an experimental time series is as follows: 

Consider a time series of length 𝑁 as equation (3-1), 𝑋 = {𝑥(1), 𝑥(2), … , 𝑥(𝑁)}. In order to 

calculate LLE [85], first, the attractor dynamics of the single time series should be reconstructed 
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using the method of delays [86] with a time delay (𝑇) (see Section 3.3.3.1) and an embedding 

dimension (𝑑) (see Section 3.3.3.2) as 𝑿,  

𝑿 = (𝑿1 𝑿2 … 𝑿𝑀)𝑇 (3-18) 

where 𝑀 = 𝑁 − (𝑑 − 1)𝑇. The rows of 𝑿 are the state-space vectors defined as 𝑿𝒊 at discrete time 

𝑖:  

𝑿𝑖(𝑑) = [𝑥(𝑖)  𝑥(𝑖 + 𝑇) …   𝑥(𝑖 + (𝑑 − 1)𝑇)] (3-19) 

After reconstructing the dynamics, the initial distance from the nearest neighbor of each point on 

the trajectory is located as: 

d𝑗(0) = min
𝑥�̂�

‖𝑿𝑗 − 𝑿�̂�‖ (3-20) 

where ‖. ‖ denotes the Euclidean norm (i.e., positive Euclidean distance). An additional constraint 

that nearest neighbors should have is a separation greater than the mean period of the time series: 

|𝑗 − 𝑗̂| > mean period (3-21) 

The next step is to consider the desired maximum iteration and measure the average separation of 

neighbors by calculating the distance between successive points of neighbors for each iteration 

from 0 to the maximum iteration. Finally, a least-squares fit to the average line, which is the plot 

of average separation values versus iteration values, will be the LLE: 

𝑦(𝑖) =
1

Δ𝑡
〈ln d𝑗(𝑖)〉 

(3-22) 

 For human gait signals, two regions of the average line are recommended for this purpose. The 

first one is over the first stride (or step) and is called the short-term LLE or 𝜆𝑠 [78]. The second 

one is over the 4-10 strides and is called the long-term LLE or 𝜆𝐿[11].   
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3.3.3.1 Time Delay  

The first minimum of average mutual information [87] has been proposed to calculate 𝑇. Given 

two time series 𝑋 = {𝑥(1), 𝑥(2), … , 𝑥(𝑁 − 𝐿𝑎𝑔)} and 𝑌 = {𝑦(1), 𝑦(2), … , 𝑦(𝑁 − 𝐿𝑎𝑔)} where 

𝑦𝑖 = 𝑥𝑖+𝐿𝑎𝑔. The mutual information 𝐼(𝑋𝑖, 𝑋𝑖+𝐿𝑎𝑔) is calculated as a function of 𝐿𝑎𝑔 using the 

following equation: 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑃𝑋𝑌(𝑖, 𝑗) log2 {
𝑃𝑋𝑌(𝑖, 𝑗)

𝑃𝑋(𝑖)𝑃𝑌(𝑗)
}

𝑁𝑌

𝑗=1

𝑁𝑋

𝑖=1

 

(3-23) 

where 𝑃𝑋(𝑖) and  𝑃𝑌(𝑗) are the occupation probability of the 𝑖-th and 𝑗-th bin, 𝑁𝑋 and 𝑁𝑌  are the 

numbers of elements, and 𝑃𝑋𝑌(𝑖, 𝑗) is the joint probability distribution. The first minimum in then 

considered as the time delay for the desired state-space reconstruction. 

3.3.3.2 Embedding Dimension 

In order to obtain the proper embedding dimension, d, Cao [88] proposed a practical method for 

its calculation using a known time delay. This method is based on the false neighbors [89] and is 

calculated as follows: 

Consider the reconstructed state-space of the time series of equation (3-1) as equations (3-18) and 

(3-19). Then 𝑎(𝑖, 𝑑) is defined as below: 

𝑎(𝑖, 𝑑) =
‖𝑋𝑖(𝑑 + 1) − 𝑋𝑛(𝑖,𝑑)(𝑑 + 1)‖

‖𝑋𝑖(𝑑) − 𝑋𝑛(𝑖.𝑑)(𝑑)‖
 , where 𝑖 = 1,2, … , 𝑁 − 𝑑𝑇 

(3-24) 

In Equation (3-24),  𝑋𝑖(𝑑 + 1) is the 𝑖-th reconstructed vector with embedding dimension 

𝑑 + 1 and 𝑛(𝑖 + 𝑑) is an integer such that 𝑋𝑛(𝑖.𝑑)(𝑑) is the nearest neighbor of 𝑋𝑖(𝑑) in the 
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 𝑑-dimensional reconstructed state-space. If 𝑑 is the true embedding dimension of the system, then 

any two points which stay close in the 𝑑-dimensional reconstructed state-space will remain close 

in the (𝑑 + 1)-dimensional reconstructed state-space. Such a pair of points is called true neighbors. 

In order to find the true embedding dimension, 𝐸(𝑑) and 𝐸1(𝑑) are defined as below: 

𝐸(𝑑) =
1

𝑁 − 𝑑𝑇
∑ 𝑎(𝑖, 𝑑)

𝑁−𝑑𝑇

𝑖=1

 

(3-25) 

𝐸1(𝑑) =
𝐸(𝑑 + 1)

𝐸(𝑑)
 

(3-26) 

For an attractor, 𝐸1(𝑑) stops changing when d is greater than some value, 𝑑0. Then 𝑑0 + 1 is the 

minimum embedding dimension of the time series required to construct the state-space. Cao [88] 

also defined parameters 𝐸∗(𝑑)and 𝐸2(𝑑) as follows: 

𝐸∗(𝑑) =
1

𝑁 − 𝑑𝑇
∑ |𝑥𝑖+𝑑𝑇 − 𝑥𝑛(𝑖,𝑑)+𝑑𝑇|

𝑁−𝑑𝑇

𝑖=1

 

(3-27) 

𝐸2(𝑑) =
𝐸∗(𝑑 + 1)

𝐸∗(𝑑)
 

(3-28) 

For random data, 𝐸2(𝑑) will be equal to 1 for any values of 𝑑 as any future values are independent 

of the past values. On the other hand, for a deterministic data, it has some values other than 1 for 

some 𝑑’s.  

3.3.4 Variability Measures 

Variability measures quantify the inter-stride spatio-temporal fluctuations around the mean value 

and report it as standard deviation, SD, or coefficient of variance, COV. Step time, step width, step 
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length, and swing time are the most commonly used parameters. Step time is the time between 

successive heel contacts, step length is the distance between two successive heel contacts in the 

AP direction, step width is the distance between two successive heel contacts in the ML direction, 

and swing time is the time between toe-off and heel contact of each leg.  Each of these parameters 

may be reported for right or left leg (odd or even step). Figure 3-5 shows the incidents of toe-off 

and heel contacts, and defines spatio-temporal gait variables on both ML and AP COP-D signals.  

 

 

𝐸1 & 𝐸5: Left heel contact 

𝐸2: Right toe-off 

𝐸3: Right heel contact 

𝐸4: Right toe-off 

Spatial parameter in AP direction: 

𝐸2 − 𝐸3: Right step length 

𝐸4 − 𝐸5: Left step length 

Spatial parameter in ML direction: 

𝐸1 − 𝐸3: Left step width 

𝐸3 − 𝐸5: Right step width 

Temporal parameters 

𝐸0 − 𝐸1: Left swing time 

𝐸2 − 𝐸3: Right swing time 

𝐸1 − 𝐸3: Left step time 

𝐸3 − 𝐸5: Right step time 

 
Figure 3-5: Spatio-temporal gait parameter definitions. 
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Chapter 4   

Discriminatory Ability of SampEn and QDE 

In this chapter1, the viability of using SampEn and QDE to characterize human locomotor 

performance is further examined across DT (VCG1) walking condition and as a function of aging. 

Dual-tasking and aging are both known to negatively affect gait control. Results on both whole 

gait signals and segmented/normalized time series are presented. Five different signals are used 

for the sake of comparison and choosing the signal that best discriminates between different 

walking conditions. The first dataset (see Section 3.2.1) was used in this chapter. 

4.1 Data Analysis 

SampEn and QDE were calculated from both raw unfiltered data and segmented and normalized 

time series of 5 recorded ML/AP COP-D, ML/AP Trunk-LA, and ML Shank-AV signals. Forty 

seconds of data was used after discarding approximately the first 4 strides. The raw time series 

data of the AP/ML COP-D for 4 strides are presented in Figure 4-1 and on the right, their respective 

segmented and normalized signals for several gait cycles are presented. Segmenting AP/ML COP-

                                                 

 

1 The results of this chapter have been published in [69].  
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D was based on the maxima values of the AP COP-D signal denoting the beginning of the single 

support phase of one leg and toe-off of the other leg. Odd-numbered (or even-numbered) time 

indices were used to segment data into individual gait cycles as the time from the toe-off of one 

leg to the next toe-off of the same leg. Time normalizing of each gait cycle was performed by 

resampling gait cycle segments to the average number of data points. The amplitude of the COP-

D was also normalized to values between 0 to 1.  

 

Figure 4-1: Segmenting and normalizing: (A) AP COP-D, (B) AP COP-D (Normalized), (C) ML 

COP-D,  and (D) ML COP-D (Normalized). On the left, the raw time series data of the AP/ML 

COP-D for 4 strides and on the right, their respective segmented and normalized signals for several 

gait cycles are presented.  
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The raw time series data of ML shank-AV and ML/AP trunk-LA for 4 strides are presented in 

Figure 4-2, and on the right, their respective segmented and normalized signals for several gait 

cycles are presented. Segmenting these three signals was based on the minima of ML shank-AV 

signal denoting the instant of the toe-off of one leg. These time indices were used to segment the 

data into individual strides. Segmented data were spatially and temporally normalized similar to 

the COP-D signals.  

The majority of approaches and 5 signals had a decreasing trend with increasing template size, m. 

Parameter m (see Sections 3.3.1 and 3.3.2) was selected as 6 for further analysis based on the 

parametric study on where the curves plateaued or where they had the most common highest 

sensitivity to changes in gait dynamics.  

In the case of studying whole data, data length was fixed to 2500 data points for COP-D and 5200 

data points for IMM signals equivalent to about 30 strides. However, segmenting and normalizing 

resulted in having slightly different data length for subjects. A length convergence test was 

performed on the ML trunk-LA signal of older age group with 20 subjects, where a convergence 

criterion was %1. The Length was changed from 60 to 2400 with steps of 60 points. As shown in 

Figure 4-3, as m increased, SampEn converged at higher values of data length, N. Given m=6, 

convergence criteria met at N=960, which is considerably smaller than the data length of all 

subjects. 

Tolerance size, r, was selected based on literature as 0.2 of the average SD [12], [67] of the whole 

data of all subjects, and for segmented data series, it was the average SD of the signals [12]. 
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Figure 4-2: Segmenting and normalizing: (A) ML shank-AV, (B) ML shank-AV (Normalized), 

(C) ML trunk-LA, (D) ML trunk-LA (Normalized), (E) AP trunk-LA, and (F) AP trunk-LA 

(Normalized). On the left, the raw time series data of the IMM signals for 4 strides and on the 

right, their respective segmented and normalized signals for several gait cycles are presented. 
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4.2 Statistical Analysis 

A two-way (mixed repeated measures analysis of variance (ANOVA) was used to examine the 

main and interaction effects of task condition (i.e., WO and DT walking condition) and age (i.e., 

young and older age groups) on QDE and SampEn for each of the five gait signals. Further pairwise 

comparisons were performed to examine the effects of task condition for each age group. 

Normality of dataset was checked using the Shapiro-Wilk normality test and they were normally 

distributed. In all tests, a p-value less than 0.05 was considered significant. Statistical analysis was 

performed using SPSS software version 20 and MATLAB R2014a.     

Figure 4-3: Data length convergence test for a various range of template sizes, m. The ML trunk-

LA signal of older age group was used. 
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4.3 Results 

Statistical results of the effects of aging and DT on human gait signal regularity for each approach 

are presented in Figure 4-4, Figure 4-5, Figure 4-6, and Figure 4-7; SampEn whole data, QDE 

whole data, SampEn segmented data, and QDE segmented data. The group means and standard 

error of the means (SEM) are also presented in bar graphs. Statistical analysis revealed significant 

main effects of both aging and DT. No significant interaction effect was observed for any of 

dependent variables. A significant increase in entropy values with aging was observed for all four 

approaches for the ML/AP COP-D, ML shank-AV, and ML Trunk-LA. No significant age effect 

was observed for the entropy of AP trunk-LA.  

For analysis of whole signals, there was a significant increase in SampEn from WO to DT walking 

trials but only for the ML COP-D (p<0.001). This was the case for both age groups. For analysis 

of whole signals, there was a significant increase in QDE from WO to DT walking trials for the 

ML COP-D (p<0.001). This was the case for both age groups. There was also a significant increase 

in the QDE of ML shank-AV (p<0.05) during DT walking trials, but this was only seen in the older 

age group. No significant effect of dual-tasking on entropy values was observed for the trunk-LA.  

As compared to whole signals, for analysis of segmented data signals, there were far more 

significant changes in both SampEn and QDE between WO and DT walking condition. There was 

a significant increase in SampEn from WO to DT walking trials for all except one signal in the 

young age group; ML COP-D (p<0.005), AP COP-D (p<0.05), ML trunk-LA (p<0.005), and AP 

trunk-LA (p<0.005). The only exception was ML shank-AV. A similar increase in the SampEn of 

segmented data from WO to DT walking trials was observed in the older age group; ML COP-D 
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(p<0.001), AP COP-D (p<0.05), AP trunk-LA (p<0.05), and ML shank-AV (p<0.01). The only 

exception was ML trunk-LA.  

The results for the QDE of segmented data in the young age group were the same as those of 

SampEn; a significant increase in QDE from WO to DT condition for; ML COP-D (p<0.005), AP 

COP-D (p<0.05), ML trunk-LA (p<0.005), and AP trunk-LA (p<0.005). For the older age group, 

there was a significant increase in QDE for only three of the five signals; ML COP-D (p<0.001), 

AP trunk-LA (p<0.05), and ML shank-AV (p<0.01).  
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Figure 4-4: Group means and SEM of SampEn (unitless) of whole data along with the results of 

statistical analysis (F-statistics and p-values) representing age and DT effects: (A) ML COP-D, 

(B) AP COP-D, (C) ML trunk-LA, (D) AP trunk-LA, and (E) ML shank-AV 
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Figure 4-5: Group means and SEM of QDE (unitless) of whole data along with the results of 

statistical analysis (F-statistics and p-values) representing age and DT effects: (A) ML COP-D, 

(B) AP COP-D, (C) ML trunk-LA, (D) AP trunk-LA, and (E) ML shank-AV 
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Figure 4-6: Group means and SEM of SampEn (unitless) of segmented data along with the results 

of statistical analysis (F-statistics and p-values) representing age and DT effects: (A) ML COP-D, 

(B) AP COP-D, (C) ML trunk-LA, (D) AP trunk-LA, and (E) ML shank-AV 
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Figure 4-7: Group means and SEM of QDE (unitless) of segmented data along with the results of 

statistical analysis (F-statistics and p-values) representing age and DT effects: (A) ML COP-D, 

(B) AP COP-D, (C) ML trunk-LA, (D) AP trunk-LA, and (E) ML shank-AV 
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4.4 Discussion 

The present study investigated the effects of aging and increased information processing load on 

the entropy of various gait signals representing trunk motion, leg motion, and the COP migration. 

Both QDE and SampEn significantly increased with age and when performing a secondary 

visuomotor cognitive task. Steady-state gait signals are intrinsically periodic with consistent 

fluctuation from stride to stride. It can be argued that when human gait is disrupted by performing 

a secondary task or negatively affected by aging or diseases, these fluctuations would change. The 

unplanned fluctuations might increase during walking under challenging conditions known to 

cause gait disturbances and stumbles [90]. The increased fluctuations would, therefore, cause an 

increase in SampEn and QDE. Segmented and normalized data was more affected by the addition 

of a secondary task as compared to analysis using the whole data. Amongst different gait signals 

examined, the ML COP-D was the only one to exhibit a significant increase in irregularity with 

age and DT conditions for both QDE and SampEn, and for both segmented and whole data.  

The present findings demonstrated a significant increase in irregularity of the segmented gait 

signals when dual-tasking. An increase in entropy during DT treadmill walking was only seen in 

a few cases when using whole gait signals (i.e., ML COP-D and ML shank-AV). Segmenting gait 

signals into individual gait cycles and normalizing them by cycle time period and amplitude works 

similarly to detrending the signal by minimizing or eliminating inter-stride correlations of the 

signal [12]. Therefore, it would help reveal changes hidden by variations because of drifts. For 

example, a significant increase in the regularity of the segmented trunk-LA signal from WO to DT 

walking trials was observed for both QDE and SampEn, whereas, no change was observed when 



Chapter 4. Discriminatory Ability of SampEn and QDE 

 

 

48 

 

the analysis was performed using the whole trunk-LA data. Inter-stride features would reflect the 

gait history and the operation of the central locomotor pattern generator. Whereas intra-stride 

features would reflect the moment-to-moment behavior within each stance-swing phase, such as 

limb loading, single limb support dynamics, the center of body mass deceleration and acceleration, 

the accuracy of leg swing, etc. These processes are of relatively short duration (i.e., 70-100 

milliseconds) to accept the total body’s COM from heel contact, and a similar time period to 

decelerate lateral motion of the total body’s COM in single limb support, and the reverse in push 

off. Errors or disruption in any of these processes would result in gait instability and the need to 

reset locomotor rhythm and movement amplitude [91]. Note that temporal stride interval measures 

have also been used to examine gait performance [92]. It was reported that older adults with higher 

activity level exhibited a more irregular stride time series pattern during WO trials. However, 

analysis based on only inter-stride information does not take into consideration the information 

within each stride. The analysis which considers intra-stride dynamical features is important in 

understanding how different factors can impact human gait function. 

The present results are consistent with previous studies in which an increase in the entropy of the 

COP migration with age and while performing a concurrent cognitive task [12], and an increase in 

the entropy of trunk-LA in fallers as compared to non-fallers [60] were reported. A decrease in the 

entropy of trunk-LA in fallers as compared to non-fallers [16] during overground walking have 

also been reported. However, in that study, many important factors were uncontrolled such as gait 

speed and walking surface. Slowing down is an effective method that peoples, especially those 

who are at risk of fall, acquire to avoid losing stability. The difference in entropy between fallers 

and non-fallers could be because of a difference in gait speed, that is, fallers might have walked 
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slower outdoors than the non-fallers because of fear of falling. It should be noted that a young 

healthy adult can successfully manage or cope with many different complex and novel situations, 

maintain control of body movements, and restore stability. When older adults or individuals who 

have a reduced capacity and adaptability to perturbations (either external and internal) are forced 

to keep up with a specific speed (i.e., not able to slow down as a control strategy), then signal 

irregularity may increase because of an increase in movement variation or general lack of timely 

compensatory responses and as a consequence increased motion.  This is consistent with the theory 

of bidirectional change in complexity of control systems with oscillating intrinsic dynamics. In 

these type of systems, increased fluctuation around the rhythmical pattern of the trajectory 

increases the system complexity [90]. Moreover, a significant increase in the SampEn of lower 

trunk-LA in the AP direction during overground dual-tasking in older adults has been reported by 

Lamoth et al. [82]. It might suggest that the no significant change of the whole data entropy values 

of AP trunk-LA in our study is mainly due to treadmill walking which forces the participants to 

keep up with the fixed speed in the AP direction.  However, it should also be noted that a significant 

decrease in gait speed during DT walking condition as compared to WO condition was also 

observed [82]. A similar study by Bisi et al. [93] also examined the effects of dual-tasking on the 

SampEn of lower trunk-LA obtained from overground walking trials of adolescents. Their results 

showed no significant effect of cognitive load on SampEn and the values of self-selected gait speed 

were not reported during WO and DT walking condition. In those three studies [4-5, 39], 

participants performed the tasks overground and at their self-selected speed that is the free-running 

walking condition. However, uncontrolled gait speed, along with the desired parameters, might 

have influenced the entropy values.  



Chapter 4. Discriminatory Ability of SampEn and QDE 

 

 

50 

 

Another main finding of the present study was that the effects of age and DT condition on signal 

regularity differed among the five gait signals which included trunk and shank body segments, the 

COP migration, as well as both AP and ML directions of motion. The young age group did not 

show any significant changes in SampEn or QDE at shank segment while performing cognitive 

games, whereas the older age group exhibited significant increases while performing the secondary 

task. This would indicate that the control of swing phase during more challenging tasks is affected 

by age. Throughout the swing phase, only one foot is bearing body weight and the center of body 

mass is moving away from the base of support, hence, the velocity control of the swinging leg 

becomes important. The fact that AP trunk-LA did not show any age effect could be because of 

walking on a treadmill at a constant speed and therefore more or less in the same location in space. 

In addition, previous studies have shown that human gait is more sensitive in the ML direction 

regardless of the direction of perturbations [94] especially amongst older adults who are prone to 

fall [95]. The results of the present study are consistent with the previous findings and demonstrate 

that gait disturbances are most likely to be observed in the ML direction. SampEn and QDE of the 

ML COP-D, either whole or segmented data was the best signal to capture the age and DT effects. 

The ML COP-D was able to better represent the slightest within-stride changes comprising both 

stance and swing phases along with the transitions. These transitions are critical points where 

instability cannot be resolved easily.  

Two possible limitations should be considered when interpreting the results of this study. First, the 

present visuomotor DT involves both head rotation and cognitive processing. The current method 

cannot exclude any intersegmental mechanical effects of the head rotation that may cause the gait 

changes observed between WO and DT walking trials, and changes could be because of both 
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factors. However, head rotations during dual-tasking were relatively small and slow. The majority 

of head rotations for paddle movements, which occurred every 2 seconds, were less than 20 

degrees and movement duration was about 200-400 milliseconds. Based on a preliminary data, the 

SampEn of the whole data ML COP-D slightly decreased when participants rotated their head (up 

to 20 degrees) in synchrony with a cyclic motion of a target on the screen.  Also, a previous study 

[96] has examined the effects of head rotation on the COP migration while open loop tracking a 

moving visual target (up to 25 degrees) on a treadmill. The results demonstrated a very small COP 

deviation from the midline when participants performed the tracking task with head rotation. 

Second, all tasks were performed while participants walked on a treadmill. Although treadmill 

walking is an efficient method to collect data from several strides, previous studies have shown 

that it may alter some characteristics of gait, such as local dynamic stability and variability [11]. 

However, it was necessary for the current study to perform the tests on a treadmill to collect lengthy 

data and to limit the number of factors influencing gait by fixing the walking speed.    

4.5 Summary 

This chapter demonstrated that both aging and dual-tasking had a significant increasing effect on 

SampEn and QDE of whole gait signals. In addition, the results of this study suggest that the 

method of segmenting and normalizing could be beneficial when intra-stride changes are of 

interest. The results also demonstrated that, in a fixed-speed treadmill walking condition, the ML 

COP-D is more capable of capturing changes caused by aging and dual-tasking than AP COP-D, 

ML/AP trunk-LA, and ML shank-LA. This was true for both SampEn and QDE and while 
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analyzing both whole data and segmented/normalized data. Previous studies had only investigated  

one signal, such as trunk linear acceleration [16] or ML COP-D [12], and had reported inconsistent 

results. In this chapter, a more comprehensive investigation has been conducted by considering 5 

different signals and including both whole and segmented signals. This resulted in selecting the 

best signal for entropy measures and increased the knowledge base of the impact of segmenting 

signals. In the next chapter, the sensitivity of the SampEn and QDE of the ML COP-D to variant 

values of template size, tolerance size, and sampling rate and to two preprocessing methods will 

be thoroughly investigated.  
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Chapter 5   

Systematic Study on SampEn and QDE for Whole 

Gait Signals 

The first objective of this chapter2 is to systematically examine the sensitivity of the SampEn and 

QDE of the ML COP-D signals, obtained during treadmill walking, to variant values of template 

size, tolerance size, and sampling rate. The second objective is to determine the effects of the 

choice of low-pass filtering and data resampling (i.e., to have the same average number of data 

points per stride) on the SampEn and QDE of the ML COP-D signals. Discriminatory ability of 

SampEn and QDE is examined through comparing WO to DT (VCG1) walking condition. The 

second dataset (see Section 3.2.2) was used in this chapter.  

5.1 Data Analysis 

This chapter consists of two parts. In the first part, the sensitivity of SampEn and QDE to changing 

template size, tolerance size, and sampling rate is investigated when comparing WO to DT walking 

                                                 

 

2 The results of this chapter have been published in [106].  
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condition. Two methods were used to downsample signals from 1000 Hz to lower sampling rates 

(see Table 5-1). The goal was to downsample signals by factors of 1, 2, 4, 8, 16, and 32. The first 

method, decimation (D) by a factor of f, used an eighth-order low-pass Chebyshev Type I filter, 

which filtered the signal in forward and reverse directions to remove phase distortions, and then 

selected every f-th point. The filter had a normalized cut-off frequency of 0.8/f . This method was 

chosen to avoid aliasing distortion that might occur by simply downsampling the signal.   

The second method, filtering-downsampling (FD) by a factor of f, used a second-order Butterworth 

low-pass filter [97]–[99] with a cut-off frequency of 30 Hz, and then downsampled the signal by 

a factor of f. Butterworth low-pass filter is the most common filter used in the literature to reduce 

the effects of noise [99] along with maintaining the variability in the lower range frequencies where 

the musculoskeletal motion occurs [97].  

A nonparametric power spectral density or PSD estimator, Welch’s algorithm, was used to obtain 

the cut-off frequency. The PSD of a signal describes the power present in the signal as a function 

of frequency, per unit frequency. The dominant peak was at 0.89±0.06 Hz (mean ± SD) for WO, 

0.91 ± 0.06 for DT, and 0.99 ± 0.06 for WO-1.3. The last peak before the noise floor occurred 

in the 8-15 Hz frequency range (See Figure 5-1). Therefore, 15 Hz was considered as the highest 

frequency component and 30 Hz was used as the cut-off frequency.  
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f 
Sampling rate (Hz) 

Cut-off frequency (Hz) 

Decimation Filtering-Downsampling 

1 1000 800 30 

2 500 400 30 

4 250 200 30 

8 125 100 30 

16 62 50 30 

32 31 25 30 

Figure 5-1: Power spectral density of the ML COP-D signal obtained from one of the participants 

along with showing the dominant peak and the last peak before the noise floor.  

Table 5-1: Summary of downsampling factors (f), sampling rates and cut-off frequency for 

decimation and filtering-downsampling methods.  
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The two methods yielded approximately the same results with respect to the low-pass filtering 

for 𝑓 = 32 because of a similar cut-off frequency. Therefore, the first five f values could shed light 

on the effects of low-pass filtering prior to the calculation of SampEn and QDE.  

SampEn and QDE were calculated using all combinations of template size values (𝑚 =

2, 4, 6, 8, and 10) tolerance size values (𝑟 = 0.2 𝑎𝑛𝑑 0.3 ×SD of all time series), and 

downsampling factor values (𝑓 = 1, 2, 4, 8, 16, and 32) and for both decimated and filtered-

downsampled signals of WO and DT walking condition. The present investigation was based on 

more m and f values in the selected ranges. However, the necessity for statistical analysis with the 

purpose of studying the discriminatory ability of SampEn and QDE led to choosing fewer 

parameter values (i.e., levels within a factor); for example, five levels versus nine levels for 

template size (m=2~10). In a previous study [73], 𝑚 = 2,3,4 were tested when SampEn was 

applied to the inter-stride spatio-temporal gait variables. The present work included more m values 

to study the SampEn and QDE of the entire gait signals and not just times at heel strike or step 

distances. It was hypothesized that larger m values could better discern changes when there is a 

much greater number of data points per gait cycle or stride. Additionally, unlike ApEn, SampEn 

decreases almost monotonically with increasing r value [67], [73] and 0.1-0.3 times the SD has 

been suggested for inter-stride spatio-temporal gait variables [73]. The current analysis was based 

on 𝑟 = 0.1 × 𝑆𝐷, 𝑟 = 0.2 × 𝑆𝐷, and 𝑟 = 0.3 × 𝑆𝐷. However, when the parameter value 𝑟 =

0.1 × 𝑆𝐷 was used, many SampEn and QDE values converged to infinity. Therefore, this level 

was not included in the results. Large r values were not included because they result in much 

smaller SampEn and QDE values for each condition (i.e., more matched templates), which 

diminish the discriminatory ability of SampEn. 
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In the second part of this chapter, the effects of low-pass filtering and resampling, to have the same 

average number of data points per stride, is investigated. The SampEn and QDE of the ML COP-

D signal of WO, DT, and WO-1.3 (see Figure 5-2) were calculated using 𝑚 = 4, 𝑟 = 0.2 × 𝑆𝐷 

and 𝑓 = 8 (based on the results of the first part).  

 

Figure 5-2: Trajectory of COP migration under WO (top), WO-1.3 (middle), and DT (bottom) 

conditions: (A) low-pass filtered trajectory of COP migration displayed as AP COP-D vs. ML 

COP-D, the butterfly pattern is less visible during DT condition (B) low-pass filtered ML COP-D 

, drifting in ML direction is noticeable during DT condition (C) several strides of unfiltered ML 

COP-D, vibrational noise is increased during WO-1.3 condition 
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Four methods of preprocessing were used for each condition; 

• decimation (D),  

• decimation and resampling (D-R),  

• filtering-downsampling (FD) and, 

• filtering-downsampling and resampling (FD-R).  

The average number of data points per stride for WO, DT, and WO-1.3 were 142,140, and 128, 

respectively. Therefore, 30 strides of each time series were resampled so that all of the signals 

would have an average of 142 data points per stride.  

5.2 Statistical Analysis 

In the first part of this study, there were 4 factors of within-subject repeated measures, which were 

2 levels of walking condition (WO and DT), 2 levels of r, 6 levels of f, and 5 levels of m. The 

following steps were taken to perform the statistical analysis separately for both decimated and 

filtered-downsampled signals and Separately for SampEn and QDE.  

i. A two-factor repeated measures ANOVA (walking condition*m) was performed at 

each f level while considering the first tolerance level. 

ii. A two-factor repeated measures ANOVA (walking condition*m) was performed at 

each f level while considering the second tolerance level. 

iii. A two-factor repeated measures ANOVA (walking condition*f) was performed at each 

m level while considering the first tolerance level. 
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iv. A two-factor repeated measures ANOVA (walking condition*f) was performed at each 

m level while considering the second tolerance level. 

v. Post hoc pairwise comparisons with Bonferroni correction were performed to examine 

the effects of dual-tasking at each level. 

vi. Finally, a two-factor (walking condition*r) repeated measures ANOVA was 

performed at fixed m=4 and f=8 values, which were chosen based on the previous 

step’s statistical results.  

In the second part of this study, two two-factor within-subject ANOVAs were used to examine the 

main and interaction effects of the following factors on SampEn and QDE separately; 

• walking condition (WO versus DT) and preprocessing method (D, D-R, FD, FD-R)  

• gait speed (1.0 m/s versus 1.3 m/s) and preprocessing method (D, D-R, FD, FD-R)  

Normality of all dependent variables was checked using the Shapiro-Wilk normality test. Results 

confirmed that the data were normally distributed. Statistical analysis was performed using SPSS 

software version 24. A p-value less than 0.05 was considered significant. A Bonferroni correction 

was used in the software for multiple comparisons.  

5.3 Results of SampEn 

The results of the main and interaction effects of walking condition (WO and DT), template size 

m, and downsampling factor f at each tolerance size r value are presented in Table 5-2 and 

Table 5-3. In addition, the results of the pairwise comparisons of the significant main effects of 

walking condition are presented in Table 5-4. The detailed results for each downsampling method 



Chapter 5. Systematic Study on SampEn and QDE for Whole Gait Signals 

 

 

60 

 

are presented in the following sections followed by the results of the effects of preprocessing 

methods. 

For the vast majority of the combinations of parameter values, the SampEn of the ML COP-D 

during DT walking was significantly larger than that of WO. In general, SampEn decreased as m 

increased, as r increased and as f factor decreased (i.e., as sampling rate increased or as the number 

of points per stride increased). However, there were a few exceptions which will be discussed 

further.  
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W-C f W-C *f   W-C f W-C *f 

FD 

𝑟 = 0.2 × 𝑆𝐷 

m=2 <0.001 <0.001 <0.001 

D 

𝑟 = 0.2 × 𝑆𝐷 

m=2 0.009 <0.001 <0.001 

m=4 <0.001 <0.001 0.006 m=4 0.009 <0.001 <0.001 

m=6 0.001 <0.001 0.123 m=6 0.021 <0.001 0.023 

m=8 0.004 <0.001 0.334 m=8 0.037 <0.001 0.070 

m=10 0.020 <0.001 0.421 m=10 0.075 <0.001 0.211 

  W-C f W-C *f   W-C f W-C *f 

FD 

𝑟 = 0.3 × 𝑆𝐷 

m =2 <0.001 <0.001 <0.001 

D 

𝑟 = 0.3 × 𝑆𝐷 

m=2 0.008 <0.001 <0.001 

m=4 <0.001 <0.001 <0.001 m=4 0.001 <0.001 <0.001 

m=6 0.002 <0.001 0.080 m=6 0.015 <0.001 0.034 

m=8 0.006 <0.001 0.232 m=8 0.032 <0.001 0.154 

m=10 0.020 <0.001 0.387  m=10 0.068 <0.001 0.279 

 

  W-C m W-C *m   W-C m W-C *m 

FD 

𝑟 = 0.2 × 𝑆𝐷 

f=1 0.007 <0.001 0.001 

D 

𝑟 = 0.2 × 𝑆𝐷 

f=1 0.094 <0.001 0.004 

f=2 0.002 <0.001 0.007 f=2 0.806 <0.001 0.000 

f=4 <0.001 <0.001 0.128 f=4 0.049 <0.001 0.176 

f=8 <0.001 <0.001 0.015 f=8 0.008 <0.001 0.145 

f=16 <0.001 <0.001 0.002 f=16 0.001 <0.001 0.003 

f=32 0.007 <0.001 0.070 f=32 0.005 <0.001 0.114 

  W-C m W-C*m   W-C m W-C*m 

FD 

𝑟 = 0.3 × 𝑆𝐷 

f=1 0.011 <0.001 0.010 

D 

𝑟 = 0.3 × 𝑆𝐷 

f=1 0.329 <0.001 0.044 

f=2 0.006 <0.001 0.000 f=2 0.938 <0.001 <0.001 

f=4 0.001 <0.001 0.170 f=4 0.049 <0.001 0.020 

f=8 <0.001 <0.001 0.062 f=8 0.006 <0.001 0.178 

f=16 <0.001 <0.001 0.002 f=16 0.001 <0.001 0.004 

f=32 0.005 <0.001 0.006 f=32 0.005 <0.001 0.010 

 

 

Table 5-2: Main and interaction effects (p-values) of “walking condition (W-C)*f” on SampEn at 

each r and m value for filtered-downsampled and decimated ML COP-D. The two conditions are 

WO and DT. p-values in bold indicate a significant difference. 

Table 5-3: Main and interaction effects (p-values) of “walking condition (W-C)*m” on SampEn 

at each r and f value for filtered-downsampled and decimated ML COP-D. The two conditions are 

WO and DT. p-values in bold indicate a significant difference. 
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  Pairwise Comparisons (p-values) 

  𝑟 = 0.2 × 𝑆𝐷 𝑟 = 0.3 × 𝑆𝐷 

  FD D FD D 

f=1 

m=2 0.008 

- 

0.012 

- 

m=4 0.008 0.012 

m=6 0.008 0.011 

m=8 0.008 0.011 

m=10 0.004 0.011 

f=2 

m=2 0.008 

- 

0.012 

- 

m=4 0.008 0.011 

m=6 0.002 0.011 

m=8 0.001 0.005 

m=10 <0.001 0.002 

f=4 

m=2 0.008 0.568 0.011 0.578 

m=4 0.001 0.042 0.006 0.130 

m=6 <0.001 0.011 0.001 0.018 

m=8 0.002 0.035 0.001 0.007 

m=10 0.002 0.058 0.001 0.008 

f=8 

m=2 0.002 0.042 0.008 0.127 

m=4 0.001 0.013 0.001 0.005 

m=6 0.002 0.041 0.001 0.010 

m=8 0.001 0.008 <0.001 0.003 

m=10 0.001 0.015 <0.001 0.002 

f=16 

m=2 <0.001 0.001 0.001 0.002 

m=4 0.001 0.002 <0.001 0.001 

m=6 0.001 0.007 <0.001 0.002 

m=8 0.010 0.049 0.004 0.014 

m=10 0.052 0.181 0.042 0.102 

f=32 

m=2 <0.001 0.001 <0.001 <0.001 

m=4 0.004 0.004 0.001 0.001 

m=6 0.051 0.037 0.069 0.066 

m=8 0.138 0.105 0.143 0.156 

m=10 0.224 0.154 0.220 0.211 

 

Table 5-4: Pairwise comparisons of “walking condition*m” for SampEn at each r and f value for 

filtered-downsampled and decimated ML COP-D. The two conditions are WO and DT. p-values 

in bold indicate a significant difference. 
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5.3.1 Sensitivity to Variant Parameter Values for Filtering-Downsampling  

Figure 5-3 and Figure 5-4 show the effects of changing f and m values on the SampEn of the 

filtered-downsampled signals at 𝑟 = 0.2 × 𝑆𝐷. The figures are virtually the same as those of 𝑟 =

0.3 × 𝑆𝐷. The statistical results are also reported in Tables 5-2 to 5-4. A statistically significant 

interaction was found between walking condition and f at 𝑚 = 2 and 𝑚 = 4 for both tolerance 

values. Since the direction of the changes of SampEn with increasing f was increasing for both 

walking conditions, the interaction effects would signify a difference in the rate of the changes 

between levels. A statistically significant interaction was found between walking condition and m 

at all f values except for; a) 𝑓 = 4 and 𝑓 = 32 for 𝑟 = 0.2 × 𝑆𝐷 and b) 𝑓 = 4 and 𝑓 = 8 for 𝑟 =

0.3 × 𝑆𝐷. At each f value, the direction of the changes of the SampEn of WO, with respect to m, 

was similar to those of DT. The two-factor repeated measures of the ANOVA of “walking 

condition*r” showed that there was no significant interaction between the walking condition and 

the r value (p=0.813). However, there was a statistically significant decrease in SampEn with 

increasing r value (p<0.001). At each r value, the SampEn of DT was statistically significantly 

greater than that of WO (p<0.001). 

For all m values, there was a statistically significant main effect of walking condition and f value 

on SampEn. Similarly, for all f values, there was a statistically significant main effect of walking 

condition and m value on SampEn. SampEn significantly increased from WO to DT for most 

combinations of r, m, and f values except for; a) 4 out of 30 combinations of f and m values for 

𝑟 = 0.2 × 𝑆𝐷 and b) 3 out of 30 combinations for 𝑟 = 0.3 × 𝑆𝐷. Nevertheless, for these 

exceptions, there was a trend of increased SampEn from WO to DT. Based on the statistical 
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analysis, the increasing effect of dual-tasking on the SampEn of the ML COP-D signal can be 

captured for most combinations of r, m, and f values. The only exceptions are 𝑚 = 10 for 𝑓 = 16 

and 𝑚 = 6, 8, 10 for 𝑓 = 32.   
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Figure 5-3: Effects of changing f on SampEn of WO and DT at each m value at 𝑟 = 0.2 × 𝑆𝐷 for 

filtered-downsampled ML COP-D. Bottom-right: Effects of r on SampEn at 𝑓 = 8 and 𝑚 = 4. 

Error bars reflect SEM. 
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Figure 5-4: Effects of changing m on SampEn of WO and DT at each f value at 𝑟 = 0.2 × 𝑆𝐷 for 

filtered-downsampled ML COP-D. Error bars reflect SEM. 
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5.3.2 Sensitivity to Variant Parameter Values for Decimation 

Figure 5-5 and Figure 5-6 show the effects of changing f and m values on the SampEn of decimated 

signals at 𝑟 = 0.2 × 𝑆𝐷. The figures are virtually the same as those of 𝑟 = 0.3 × 𝑆𝐷. The 

statistical results are also reported in Tables 5-2 to 5-4. A statistically significant interaction was 

found between walking condition and f at 𝑚 = 2, 𝑚 = 4, and 𝑚 = 6 for both tolerance values. 

The direction of the changes of SampEn with increasing f was increasing for both tasks. A 

statistically significant interaction was found between walking condition and m at all f values 

except for; a) 𝑓 = 4, 𝑓 = 8 and 𝑓 = 32 for 𝑟 = 0.2 × 𝑆𝐷 and b) 𝑓 = 8 for 𝑟 = 0.3 × 𝑆𝐷. At each 

f value, the direction of changes of the SampEn of WO, with respect to m, was the same to those 

of DT. The two-factor repeated measures of the ANOVA of “walking condition*r” showed that 

there was no significant interaction between the walking condition and the r value (p=0.980). 

However, there was a statistically significant decrease in SampEn with increasing r value 

(p=0.001). At each r value, the SampEn of DT was statistically significantly greater than that of 

WO (p<0.001) 

For all m values, there was a statistically significant main effect of walking condition (except 

for 𝑚 = 10) and f values on SampEn. And for all f values, there was a statistically significant main 

effect of walking condition (except for 𝑓 = 1 and𝑓 = 2) and m values on SampEn. SampEn 

significantly increased from WO to DT for most combinations of m, r and f (4, 8, 16 and 32) values 

with a few exceptions; smaller m values at 𝑓 = 4 and larger m values at 𝑓 = 16 and 𝑓 = 32. 

Nevertheless, SampEn was seen to increase from WO to DT for those exceptions. 
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Figure 5-5: Effects of changing f on SampEn of WO and DT at each m value at 𝑟 = 0.2 × 𝑆𝐷 for 

decimated ML COP-D. Bottom-right: Effects of r on SampEn at 𝑓 = 8 and 𝑚 = 4. Error bars 

reflect SEM. 
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Figure 5-6: Effects of changing m on SampEn of WO and DT at each f value at 𝑟 = 0.2 × 𝑆𝐷 for 

decimated ML COP-D. Error bars reflect SEM. 
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5.3.3 Effects of Preprocessing Methods  

The descriptive and statistical results of the walking condition (WO versus DT), walking speed 

(1.0 m/s versus 1.3 m/s), and preprocessing method (D, D-R, FD, FD-R) on SampEn for 

the combination of 𝑓 = 8, 𝑚 = 4, and 𝑟 = 0.2 × 𝑆𝐷 are presented in Figure 5-7 and Table 5-5. 

There was a significant interaction effect of walking speed and method, while no significant 

interaction of walking condition and method was found. In addition, all three walking condition, 

speed, and method had a significant main effect on SampEn (see Table 5-5). The results revealed 

that resampling signals to have a larger average number of data points per stride had a decreasing 

effect on the SampEn of WO-1.3 signals (see Figure 5-7). However, there was no significant effect 

of resampling on the SampEn of DT and WO signals. The only exception was the significant 

decrease in the SampEn of WO from FD to FD-R (see Table 5-5). In addition, SampEn 

significantly decreased when filtering the high-frequency components (see Figure 5-7). 

Furthermore, SampEn increased significantly from WO to DT when using all four methods. 

Finally, there was a significant increase in SampEn with increasing walking speed (WO to WO-

1.3) only when using decimation or decimation-and-resampling (see Table 5-5).   



Chapter 5. Systematic Study on SampEn and QDE for Whole Gait Signals 

 

 

71 

 

 

  

Figure 5-7: Effects of different preprocessing methods on SampEn of ML COP-D signal of WO, 

DT and WO-1.3 conditions for the combination of 𝑓 = 8, 𝑚 = 4 and 𝑟 = 0.2 × 𝑆𝐷. Error bars 

reflect SEM. 
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Main and Interaction Effects (p-values) 

 Condition/Speed Method Interaction 

WO vs. WO-1.3 0.017 <0.001 <0.001 

WO vs. DT 0.002 <0.001 0.057 

Pairwise Comparisons (p-values) 
 D vs. D-R D vs. FD FD vs. FD-R 

WO 0.104 <0.001 0.042 

WO-1.3 <0.001 <0.001 <0.001 

DT 0.981 <0.001 1.000 

Method WO vs. WO-1.3 WO vs. DT  

D <0.001 0.013  

D-R 0.001 0.006  

FD 0.701 0.001  

FD-R 0.225 <0.001  

 

 

  

Table 5-5: Statistical results of walking condition (WO and DT), walking speed (1.0 m/s and 1.3 

m/s), and preprocessing method (D, D-R, FD, and FD-R) on SampEn of ML COP-D for the 

combination of 𝑓 = 8, 𝑚 = 4 and 𝑟 = 0.2 × 𝑆𝐷.The top section presents main and interaction 

effects. The middle section presents the pairwise comparisons between preprocessing methods for 

each walking condition (WO, WO-1.3, and DT). The bottom section presents pairwise 

comparisons between walking conditions for each preprocessing method. p-values in bold indicate 

a significant difference. 
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5.4 Results of QDE 

The results of the main and interaction effects of the walking condition (WO and DT), m and f at 

each r value are presented in Table 5-6 and Table 5-7. In addition, the results of the pairwise 

comparisons of the significant main effects of the walking condition are presented in Table 5-8. 

The detailed results for each downsampling method are presented in the following sections 

followed by the results of the effects of the preprocessing methods. For the vast majority of 

combinations of parameter values, the QDE of the ML COP-D during DT walking was 

significantly larger than that of WO. In general, QDE decreased as m increased, as r increased and 

as f factor decreased (i.e., as sampling rate increased or as the number of points per stride 

increased). However, there were a few exceptions which will be discussed further.  
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  W-C f W-C *f   W-C f W-C *f 

FD 

𝑟 = 0.2 × 𝑆𝐷 

m=2 0.001 <0.001 0.001 

D 

𝑟 = 0.2 × 𝑆𝐷 

m=2 0.004 <0.001 0.001 

m=4 0.001 <0.001 <0.001 m=4 0.034 <0.001 <0.001 

m=6 0.002 <0.001 0.002 m=6 0.116 <0.001 0.005 

m=8 0.002 <0.001 0.007 m=8 0.262 <0.001 0.058 

m=10 0.002 <0.001 0.005 m=10 0.437 <0.001 0.224 

  W-C f W-C *f   W-C f W-C *f 

FD 

𝑟 = 0.3 × 𝑆𝐷 

m =2 0.001 <0.001 0.006 

D 

𝑟 = 0.3 × 𝑆𝐷 

m=2 0.002 <0.001 0.009 

m=4 0.002 <0.001 <0.001 m=4 0.01 <0.001 0.002 

m=6 0.003 <0.001 0.001 m=6 0.024 <0.001 0.004 

m=8 0.003 <0.001 0.006 m=8 0.049 <0.001 0.026 

m=10 0.004 <0.001 0.020  m=10 0.080 <0.001 0.134 

 

 

  W-C m W-C *m   W-C m W-C *m 

FD 

𝑟 = 0.2 × 𝑆𝐷 

f=1 0.003 <0.001 <0.001 

D 

𝑟 = 0.2 × 𝑆𝐷 

f=1 0.016 <0.001 <0.001 

f=2 0.004 <0.001 <0.001 f=2 0.108 <0.001 <0.001 

f=4 0.003 <0.001 0.001 f=4 0.240 <0.001 <0.001 

f=8 0.001 <0.001 0.004 f=8 0.155 <0.001 0.002 

f=16 0.001 <0.001 0.004 f=16 0.014 <0.001 0.005 

f=32 <0.001 <0.001 0.001 f=32 0.001 <0.001 0.002 

  W-C m W-C*m   W-C m W-C*m 

FD 

𝑟 = 0.3 × 𝑆𝐷 

f=1 0.002 <0.001 <0.001 

D 

𝑟 = 0.3 × 𝑆𝐷 

f=1 0.002 <0.001 <0.001 

f=2 0.004 <0.001 <0.001 f=2 0.020 <0.001 <0.001 

f=4 0.004 <0.001 0.001 f=4 0.127 <0.001 <0.001 

f=8  0.003 <0.001 0.002 f=8 0.053 <0.001 0.001 

f=16  0.001 <0.001 0.004 f=16 0.013 <0.001 0.007 

f=32 0.001 <0.001 0.002 f=32 0.001 <0.001 0.002 

 

  

Table 5-6: Main and interaction effects (p-values) of “walking condition (W-C)*f” on QDE at each 

r and m value for filtered-downsampled and decimated ML COP-D. The two conditions are WO 

and DT. p-values in bold indicate a significant difference. 

 

Table 5-7: Main and interaction effects (p-values) of “walking condition (W-C)*m” on QDE at 

each r and f value for filtered-downsampled and decimated ML COP-D. The two conditions are 

WO and DT. p-values in bold indicate a significant difference. 
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  Pairwise Comparisons (p-values) 

  𝑟 = 0.2 × 𝑆𝐷 𝑟 = 0.3 × 𝑆𝐷 

  FD D FD D 

f=1 

m=2 0.001 0.001 0.001 <0.001 

m=4 0.002 0.009 0.002 0.001 

m=6 0.006 0.079 0.004 0.006 

m=8 0.011 0.235 0.007 0.022 

m=10 0.018 0.431 0.012 0.053 

f=2 

m=2 0.001 

- 

0.001 0.001 

m=4 0.005 0.004 0.017 

m=6 0.010 0.009 0.084 

m=8 0.013 0.015 0.191 

m=10 0.012 0.020 0.275 

f=4 

m=2 0.002 

- 

0.001 

- 

m=4 0.005 0.006 

m=6 0.005 0.009 

m=8 0.003 0.009 

m=10 0.003 0.008 

f=8 

m=2 0.002 

- 

0.002 

- 

m=4 0.002 0.005 

m=6 0.001 0.004 

m=8 0.001 0.004 

m=10 0.001 0.003 

f=16 

m=2 0.002 0.006 0.002 0.007 

m=4 0.001 0.025 0.001 0.007 

m=6 <0.001 0.022 0.001 0.023 

m=8 0.001 0.034 0.001 0.018 

m=10 0.001 0.060 0.001 0.022 

f=32 

m=2 0.001 0.002 0.001 0.001 

m=4 <0.001 0.001 0.001 <0.001 

m=6 0.001 0.001 0.001 <0.001 

m=8 0.001 0.004 0.001 0.001 

m=10 0.003 0.009 0.003 0.002 

 

Table 5-8: Pairwise comparisons of “walking condition*m” for QDE at each r and f value for 

filtered-downsampled and decimated ML COP-D. The two conditions are WO and DT. p-values 

in bold indicate a significant difference. 
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5.4.1 Sensitivity to Variant Parameter Values for Filtering-Downsampling  

Figure 5-8 and Figure 5-9 show the effects of changing f and m values on the QDE of filtered-

downsampled signals at 𝑟 = 0.2 × 𝑆𝐷. The figures are virtually the same as those of 𝑟 =

0.3 × 𝑆𝐷. The statistical results are also reported in Tables 5-6 to 5-8. A statistically significant 

interaction was found between walking condition and f at all m values for both tolerance values. 

Since the direction of the changes of QDE with increasing f was increasing for both walking 

conditions, the interaction effect would signify a difference in the rate of the changes between 

levels. A statistically significant interaction was found between walking condition and m at all f 

values. At each f value, the direction of the changes of the QDE of WO, with respect to m, was 

similar to those of DT. The two-factor repeated measures of the ANOVA of “walking condition*r” 

showed that there was a significant interaction between the walking condition and the r value 

(p=0.023). Additionally, there was a statistically significant decrease in QDE with increasing r 

value (p<0.001). At each r value, the QDE of DT was statistically significantly greater than that 

of WO (p=0.003). 

For all m values, there was a statistically significant main effect of walking condition and f value 

on QDE. Similarly, for all f values, there was a statistically significant main effect of walking 

condition and m value on QDE. QDE significantly increased from WO to DT for all combinations 

of r, m, and f values. Based on the statistical analysis, the increasing effect of dual-tasking on the 

QDE of the ML COP-D signal can be captured for all combinations of r, m, and f values.  
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Figure 5-8: Effects of changing f on QDE of WO and DT at each m value at 𝑟 = 0.2 × 𝑆𝐷 for 

filtered-downsampled ML COP-D. Bottom-right: Effects of r on QDE at 𝑓 = 8 and 𝑚 = 4. Error 

bars reflect SEM. 



Chapter 5. Systematic Study on SampEn and QDE for Whole Gait Signals 

 

 

78 

 

 

Figure 5-9: Effects of changing m on QDE of WO and DT at each f value at 𝑟 = 0.2 × 𝑆𝐷 for 

filtered-downsampled ML COP-D. Error bars reflect SEM. 
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5.4.2 Sensitivity to Variant Parameter Values for Decimation 

Figure 5-10 and Figure 5-11 show the effects of changing f and m values on the QDE of decimated 

signals at 𝑟 = 0.2 × 𝑆𝐷. The figures are virtually the same as those of 𝑟 = 0.3 × 𝑆𝐷. The 

statistical results are also reported in Tables 5-6 to 5-8. A statistically significant interaction was 

found between walking condition and f at 𝑚 = 2~6 for 𝑟 = 0.2 × 𝑆𝐷 and 𝑚 = 2~8 for 𝑟 =

0.3 × 𝑆𝐷. The direction of the changes of QDE with increasing f was the same for both tasks. A 

statistically significant interaction was found between walking condition and m at all f values. At 

each f value, the direction of changes of the QDE of WO, with respect to m, was the same as those 

of DT. The two-factor repeated measures of the ANOVA of “walking condition*r” showed that 

there was no significant interaction between the walking condition and the r value (p=0.094). 

However, there was a statistically significant decrease in QDE with increasing r value (p<0.001). 

At each r value, the QDE of DT did not show any significant change from the QDE of WO 

(p=0.001).  

For a few m values, there was a statistically significant main effect of walking condition (𝑚 =

2~4 for 𝑟 = 0.2 × 𝑆𝐷 and 𝑚 = 2~8 for 𝑟 = 0.3 × 𝑆𝐷 ) on QDE. However, for all m values, there 

was a statistically significant main effect of f values on QDE. And for all f values, there was a 

statistically significant main effect of m value QDE. However, only at 𝑓 = 1,16 and 32 for 𝑟 =

0.2 × 𝑆𝐷 and 𝑓 = 1, 2, 16 and 32 for 𝑟 = 0.3 × 𝑆𝐷, there was a significant effect of walking 

condition on QDE. QDE significantly increased from WO to DT for only a few combinations of 

m, r, and f (16 and 32) values.  
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Figure 5-10: Effects of changing f on QDE of WO and DT at each m value at 𝑟 = 0.2 × 𝑆𝐷 for 

decimated ML COP-D. Bottom-right: Effects of r on QDE at 𝑓 = 8 and 𝑚 = 4. Error bars reflect 

SEM. 
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Figure 5-11: Effects of changing m on QDE of WO and DT at each f value at 𝑟 = 0.2 × 𝑆𝐷 for 

decimated ML COP-D. Error bars reflect SEM. 
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5.4.3 Effects of Preprocessing Methods  

The descriptive and statistical results of the walking condition (WO versus DT), walking speed 

(1.0 m/s versus 1.3 m/s), and preprocessing method (D, D-R, FD, FD-R) on QDE for 

the combination of 𝑓 = 8, 𝑚 = 4, and 𝑟 = 0.2 × 𝑆𝐷 are presented in Figure 5-12 and Table 5-9. 

There was a significant interaction effect of walking speed and method. Likewise, there was a 

significant interaction effect of walking condition and method. In addition, walking condition, 

speed and method had a significant main effect on QDE (see Table 5-9). The results revealed that 

resampling signals to have a fixed average number of data points per stride had a decreasing effect 

on the QDE of WO-1.3 and WO signals (see Figure 5-12). However, there was no significant effect 

of resampling on the QDE of DT signals (see Table 5-9). In addition, QDE significantly decreased 

when filtering the high-frequency components (see Figure 5-12). Furthermore, QDE increased 

significantly from WO to DT only after filtering the high-frequency components. Finally, there 

was a significant increase in QDE with increasing walking speed (from WO to WO-1.3) except 

for FD-R (see Table 5-9).   
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Main and Interaction Effects (p-values) 

 Condition/Speed Method Interaction 

WO vs. WO-1.3 <0.001 <0.001 <0.001 

WO vs. DT 0.019 <0.001 <0.001 

Pairwise Comparisons (p-values) 
 D vs. D-R D vs. FD FD vs. FD-R 

WO 0.029 <0.001 0.029 

WO-1.3 <0.001 <0.001 <0.001 

DT 0.307 <0.001 0.152 

Method WO vs. WO-1.3 WO vs. DT  

D <0.001 0.177  

D-R <0.001 0.116  

FD 0.049 0.002  

FD-R 0.784 0.002  

Table 5-9: Statistical results of walking condition (WO and DT), walking speed (1.0 m/s and 1.3 

m/s), and preprocessing method (D, D-R, FD, and FD-R) on QDE of ML COP-D for 

the combination of 𝑓 = 8, 𝑚 = 4 and 𝑟 = 0.2 × 𝑆𝐷. The top section presents main and 

interaction effects. The middle section presents the pairwise comparisons between preprocessing 

methods for each walking condition (WO, WO-1.3, and DT). The bottom section presents pairwise 

comparisons between walking conditions for each preprocessing method. p-values in bold indicate 

a significant difference.  
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5.5 Discussion 

The results of this study showed that the SampEn and QDE of the ML COP-D signal increases as 

participants perform a concurrent cognitive task while walking. Another study has reported that 

the SampEn of trunk-LA signal was smaller in older adults who had reported a fall versus non-

fallers when tested during overground walking [16]. However, in that study, speed was not 

controlled. Reducing one’s walking speed is a consistent strategy to manage threats to balance and 

when attending to concurrent cognitive tasks. In this regard, a main finding of the present study 

was that walking speed had a significant effect on the SampEn and QDE of the ML COP-D signal. 

Figure 5-12: Effects of different preprocessing methods on QDE of ML COP-D signal of WO, DT 

and WO-1.3 conditions for the combination of 𝑓 = 8, 𝑚 = 4, and 𝑟 = 0.2 × 𝑆𝐷; Error bars reflect 

SEM. 
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One reason is an increase in vibrational noise of the treadmill-mounted force plate at higher 

walking speeds. Increased noise will cause an increase in SampEn and QDE. This problem can be 

solved by preprocessing the signal using a low-pass filter to eliminate high-frequency vibrational 

noise. Another issue when comparing signals collected at different speeds is that stride time will 

be reduced as speed increases and therefore the number of data points per stride will be reduced. 

The present results of the effects of different f values on SampEn and QDE demonstrated that these 

measures increased as the number of data points per stride decreased. One method to deal with this 

issue is to resample the signals so that the average number of data points per stride would be the 

same across different walking speeds. Based on these findings, it is important to control the 

walking speed when comparing the SampEn and QDE of gait signal between WO and DT 

conditions; since people, especially older adults, slow down when they perform a secondary task 

[34], [100].  

The results of this study suggest that SampEn and QDE benefit from a relative consistency (a 

significant increase from WO to DT) across different combinations of the variant values of m, r, 

and f. For chaotic signals like Mackey-Glass system, which resemble periodic time series, entropy 

values decrease with increasing m value [101]. In the present study, there was a decreasing trend 

of the QDE of the ML COP-D signal with increasing m. However, for SampEn, there were 

exceptions and the values plateaued only at 𝑚 = 4 for 𝑓 = 16. With respect to changes in template 

size at higher sampling rates, SampEn showed an increasing trend with increasing m. A possible 

reason for this behavior may be related to the strong periodicity of the signal. To overcome this, 

larger template sizes might be chosen for signals collected at higher sampling rates. A similar issue 

exists for lower sampling rates where SampEn values increased with increasing m, but only after 
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a specific m value. This suggests that smaller m values should be chosen for lower sampling rates. 

The difference between SampEn and QDE with respect to their changes with m values is due to 

their inherent methodological process. For SampEn, matched templates are compared at two 

template size levels, m and m+1. However, QDE represents the abundance of dynamical features 

at only one template size.  The two tolerance sizes performed similarly since the smaller one was 

already larger than the noise level of the signal. This study was not designed to investigate the 

effects of data length on SampEn and QDE. Nevertheless, the SampEn and QDE of whole signals 

plateau after a few strides [69] and it has been shown that 30 strides are sufficient to calculate the 

SampEn and QDE of whole gait signals [12]. 

There are three limitations to this study. First, the sample size of the current study (29 participants). 

This led to performing several 2-factor repeated measures ANOVAs instead of, for example, two 

3-factor repeated measures ANOVAs. A much larger sample size would be more appropriate to 

study the effects of four factors each with many levels. Second, this study examined the 

discriminatory ability of SampEn and QDE by only comparing WO to DT conditions. Several 

other factors, such as aging, should be considered to generalize the results of this study. Finally, 

only SampEn and QDE, which are single-scale entropy measures, were studied. Multi-scale 

SampEn and QDE analysis [17] or modified SampEn and QDE analysis (i.e., incorporating a time 

delay greater than one) [102] would likely yield important findings. 

5.6 Summary 

The goal of this investigation was to identify the sensitivity of SampEn and QDE to variant values 

of parameters (i.e., template size, tolerance size, and sampling rate) and two preprocessing 
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methods when applied to the ML COP-D signal obtained during treadmill walking under WO and 

DT conditions. There were two main observations in this study. First, the SampEn and QDE of the 

ML COP-D maintained the directional difference between two walking conditions across variant 

parameter values, showing a significant increase from WO to DT walking condition, especially 

when a low-pass filter with a cut-off frequency of 30 Hz was applied to the signals. This finding 

is in agreement with the previous studies [12], [60], [69]. For filtered-downsampled MLCOP-D, 

the combinations of large template sizes (i.e., m=6, 8, and 10) and large downsampling factors 

(i.e., f= 16 and 32) were the exceptions for SampEn, where no significant increase was observed. 

For decimated ML COP-D, only a few combinations were able to distinguish WO from DT 

walking condition (i.e., combinations of f=4, 8, and 16 and variant m values for SampEn and 

combinations of f=16 and 32 and variant m values for QDE). Second, the results demonstrated that 

walking speed should be controlled when studying the effects of another factor, such as adding a 

cognitive task. Based on the results of this study, it is recommended to use a low-pass filter prior 

to the calculation of the QDE and SampEn of the ML COP-D. In addition, a sampling rate of 125 

Hz or 62 Hz with template size of 2~6 and tolerance size of 0.2 times the SD of the entire time 

series is recommended for the SampEn and QDE of the ML COP-D signal. For studies testing 

overground walking where speed is difficult to control, an integer number of strides should be 

resampled so that the average number of data points per stride remains the same. In the next 

chapter, the correlation of the SampEn and QDE of the ML COP-D with two other families of gait 

measures (i.e., variability measures and the short-term LLE) will be investigated. In addition, the 

sensitivity of these measures to the degree of difficulty of the secondary tasks will be studied.  



Chapter 6. SampEn and QDE as Gait Stability Measures 

 

 

88 

 

Chapter 6   

SampEn and QDE as Gait Stability Measures  

The work in this chapter expands upon the previous studies [12], [69] by investigating the 

correlation of the SampEn and QDE of the ML COP-D with two other families of gait measures 

(i.e., variability measures and the short-term LLE) that reflect human gait stability [9]. To do this, 

the effects of DT treadmill walking on the select spatio-temporal gait variables, the short-term 

LLE, and entropy measures derived from the ML COP-D signal of young healthy adults are 

studied. The DT cost for each measure was computed before the correlation analysis. In addition, 

the effects of physical demands on the performance of the secondary cognitive games are 

determined. The performance of two visuomotor cognitive tasks (i.e., easy and difficult) was 

quantified during standing (single-task condition) and while treadmill walking (DT condition). It 

is hypothesized that (a) all gait measures would increase as a result of dual-tasking and the increase 

would be proportional to the difficulty level of the secondary task, (b) the entropy measures, 

variability measures, and the short-term LLE would not be highly correlated and (c) there would 

be a significant decrease in cognitive task performance during treadmill walking as compared to 

stationary standing. The second dataset (see Section 3.2.2) is used in this chapter.  
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6.1 Task Performance Measures 

Figure 6-1 shows a single movement trajectory and the sorted game responses of a participant to 

the game events of the VCG task. Three measures were used to compare stationary standing single-

task and dual-task performances. These measures were calculated based on the medium amplitude 

movements (30%-66% of the display width) of the paddle, which were the majority of the game 

events. The first one was the movement time that is the time from the beginning of the game paddle 

movement to the time it reaches its plateau at the point where the target disappears. The second 

one was the success rate that is the percentage of the total number of target objects that were 

caught. The third measure was the movement variance that is the average of the SD values of each 

sampled data point along the medium movement traces.  

For VCG games, statistical analysis (paired sample t-test or Wilcoxon test) revealed no significant 

difference between the two directions. Therefore, only one direction was considered for further 

analysis. 
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6.2 Data Analysis 

The ML COP-D and AP COP-D signals that were collected at 1000 Hz were low-pass filtered with 

a cut-off frequency of 30 Hz and downsampled to 125 Hz. Forty seconds of data was used after 

discarding approximately the first 4 strides. The analysis was based on at least 30 consecutive 

strides [12], [97], [103], [104] during WO trials and when performing two visuomotor cognitive 

tasks of increasing difficulty (VCG1 and VCG2).  

Figure 6-1: Secondary visuomotor cognitive games: (A) single movement trajectory of the 

visuomotor cognitive game, VCG, representing target appearance, response time, movement time, 

and target disappearance, (B) sorted left/right movement trajectories of visuomotor cognitive 

game, VCG. 
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6.2.1 SampEn and QDE 

For entropy measures, even though a wide range of 10-250 stride has been used in the literature 

[12], [55], [69], [76], [82], [100], [105], 30 strides has been shown to be sufficient [12], [103] and 

was used in this study as well. A template size of 4 and a tolerance size of 0.2 times the SD of all 

time series were used based on the results of the previous chapter [106]. 

6.2.2 Short-term Largest Lyapunov Exponent 

In Section 3.3.3, a brief description of the short-term LLE calculation was provided. Here, the 

procedure of obtaining the short-term LLE from the ML COP-D is explained. For the short-term 

LLE, one study [52] has recommended a relatively long experimental time series (150 strides) to 

obtain statistically reliable results.  However, other studies have reported that as few as 10 [103] 

or 35 [104] strides produce statistically reliable results. As a result, and in order to remain 

consistent with entropy analysis, 30 strides were used to calculate the short-term LLE. 

Since the number of strides between participants was different, all signals were normalized to have 

the same 30 × 142 = 4260 data points, where 142 was the average number of data points per 

stride [97]. Next, the minimum average mutual information was used to calculate the time delay 

(see Figure 6-2). A range of 19-39 was obtained for time delay from different signals, where the 

median 30 was selected for future analysis [56]. However, the value based on this method did not 

result in a straight line required for the short-term LLE. As a result, a time delay of 15 was selected 

which is approximately 10% of the average stride time, as suggested by England et al. [97].  
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Cao’s method [88] was used to find the true embedding dimension. Figure 6-3 shows both E1 and 

E2 plots (see Section 3.3.3.2) using 𝑇 = 15. E1 stopped changing at 𝑑 = 5. Therefore, 𝑑 = 5 was 

chosen as the true embedding dimension of the experimental time series ML COP-D. This is 

consistent with previous studies which have reported the same value for different human gait 

whole signals [56], [57], [107]. In addition, there were some d’s where E2 was not 1. This suggests 

that this single experimental time series is a deterministic signal and not a stochastic one [88]. 

 

 

Figure 6-2: First minimum of average mutual information, I, of ML COP-D signal occurring at 

time delay of 30. 
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With an embedding dimension of 5 and a time delay of 15, the proper state-space was constructed 

from the ML COP-D signal. Figure 6-4 (A-B) shows 4 strides of filtered ML COP-D and a three-

dimensional reconstructed state-space using a time delay of 15. Next, true neighbors were found 

with a constraint of a mean period of 142 (i.e., the average number of data points per stride). The 

average divergence, then, was found between successive points for an iteration of 142 × 4 = 568. 

Finally,  𝜆𝑠 was calculated as the tangent to the average rate of divergence over 0-0.5 stride (see 

Figure 6-4 (C))[97]. 

 

Figure 6-3: E1 and E2 values for different m values using the time delay of 15. E1 stops changing 

at d=5 and there are some d’s where E2 is not 1. 
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6.2.3 Average and COV of Step Variables 

• The variability measures that were used in this study were as follows: 

a) COV of step time (COV-ST),  

b) COV of step length (COV-SL),  

c) COV of step width (COV-SW), 

d) COV of swing time (COV-SwT) 

There was no statistically significant difference between the even and odd steps of these 

values. Therefore, the odd steps were only considered for subsequent analysis. 

Figure 6-4: Calculation process of short-term largest Lyapunov exponent, 𝜆𝑠: (A) 4 strides of ML 

COP-D; (B) 3D state-space reconstruction with the time delay of 15, (C) slope of mean divergence 

curve 〈ln 𝑑𝑗(𝑖)〉 over 0 to 0.5 stride. 
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e) COV of the drifts in ML and AP directions (ML/AP-Drift): These were calculated from 

the SD of all heel contact position values of each leg divided by the average of all these 

values. A statistically significant difference was found between even and odd steps in the 

ML direction; therefore, both values would be considered for analysis. However, there 

was no statistically significant difference between even and odd steps in the AP direction. 

Therefore, only odd steps were considered for subsequent analysis. 

6.3 Statistical Analysis 

Normality of datasets was checked using the Shapiro-Wilk normality test. For both gait and task 

performance measures, proper parametric (repeated measures ANOVA) or nonparametric 

(Friedman’s test) statistical methods were used to investigate the main effect of the task condition. 

This was followed by pairwise comparisons (paired-sampled t-test or Wilcoxon test) to assess the 

difference between specific conditions. A Bonferroni correction was used when multiple 

comparisons were performed. A p-value less than 0.05 was considered significant for all tests 

except for multiple comparisons, where 0.05 was divided by the number of comparisons.  

A Spearman's rank-order correlation was also performed to investigate the correlation between 

different gait measures used in this study. In order to account for the DT cost, for each gait 

measure, the value of WO was subtracted from that of DT condition. Pairwise comparisons 

between even and odd steps showed no significant difference therefore only odd steps were used 

for this analysis. IBM SPSS Statistics version 24 was used for all statistical analysis. 
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6.4 Results 

The descriptive and statistical results of the visuomotor cognitive games’ performance measures 

are presented in Figure 6-5. For both VCG tasks, success rate decreased significantly, and 

movement variance increased significantly from standing to DT walking conditions. There was no 

significant change in average movement time from standing to DT walking conditions. Post hoc 

pairwise comparisons showed a significant decrease in average movement time, success rate and 

movement variance from VCG1 to VCG2. This was the case for both standing and DT walking 

conditions.    

The descriptive results of the 10 gait measures for each walking condition (WO, VCG1, and 

VCG2) are presented in Figure 6-6 and Figure 6-7. More specifically, the results of the SampEn, 

QDE, 𝜆𝑠, COV-SL, ML-Drift (even), and ML-Drift (odd) are presented in Figure 6-6. The results 

of COV-ST, COV-SW, COV-SwT, and AP-Drift are presented in Figure 6-7. As presented in 

Table 6-1 there was a significant DT effect on all gait measures. Post hoc analysis revealed a 

significant increase in all outcome measures during the VCG1 task as compared to WO. There was 

a significant increase in entropy and variability measures between WO and VCG2, but there was 

no significant change in  𝜆𝑠 between WO and VCG2. With one exception, there was no significant 

difference in entropy or variability measures as the cognitive task demands increased (from VCG1 

to VCG2). The one exception was COV-SW which showed a significant increase (𝑝 = 0.016). 

However, as can be seen in Figure 6-6, there is a consistent trend for an increase in entropy and 

COV gait variables between VCG1 and VCG2.   
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With reference to the correlation analysis, only 6 out of 36 possible correlations were found 

significant. SampEn and QDE were significantly correlated with ML-Drift    

 (𝑟 = 0.401~0.549, 𝑝 < 0.05 and 𝑟 = 0.634~0.844, 𝑝 < 0.001, respectively). In addition, 

COV-SL was significantly correlated with COV-ST (𝑟 = 0.628~0.826, 𝑝 < 0.001), COV-SW 

(𝑟 = 0.381~0.504, 𝑝 < 0.005) and COV-SwT ( 𝑟 = 0.699~0.822, 𝑝 < 0.001). Finally, COV-

ST was significantly correlated with COV-SwT (𝑟 = 0.904~0.926, 𝑝 < 0.001). 

 

Gait Measures 

Main Effect Pairwise Comparisons  

F or 𝝌𝟐  

Statistics 
p-value 

WO vs. 

VCG1 

WO vs. 

VCG2 

VCG1 vs. 

VCG2 

SampEn 𝑭 = 𝟏𝟕. 𝟏𝟒𝟗 < 𝟎. 𝟎𝟎𝟏 
𝒕 = 𝟑. 𝟕𝟐𝟑, 

𝒑 = 𝟎. 𝟎𝟎𝟏 

𝒕 = 𝟓. 𝟒𝟕𝟒, 

 𝒑 < 𝟎. 𝟎𝟎𝟏 

𝑡 = 1.739, 

 𝑝 = 0.093 

QDE 𝑭 = 𝟏𝟓. 𝟑𝟕𝟖 < 𝟎. 𝟎𝟎𝟏 
𝒕 = 𝟑. 𝟒𝟖𝟏, 

 𝒑 =0.002 

𝒕 = 𝟒. 𝟓𝟔𝟔, 

 𝒑 < 𝟎. 𝟎𝟎𝟏 

𝑡 = 2.485, 

 𝑝 = 0.019 

𝜆𝑠 𝑭 = 𝟒. 𝟓𝟖𝟎 𝟎. 𝟎𝟏𝟒 
𝒕 = 𝟑. 𝟎𝟏𝟏, 

 𝒑 = 𝟎. 𝟎𝟎𝟓 

𝑡 = 1.853, 

 𝑝 = 0.074 

𝑡 = 1.051, 

 𝑝 = 0.302 

COV-SL 𝑭 = 𝟏𝟑. 𝟏𝟖𝟔 < 𝟎. 𝟎𝟎𝟏 
𝒕 = 𝟑. 𝟒𝟒𝟗, 

 𝒑 = 𝟎. 𝟎𝟎𝟐 

𝒕 = 𝟒. 𝟐𝟔𝟐, 

 𝒑 < 𝟎. 𝟎𝟎𝟏 

𝑡 = 2.086, 

 𝑝 = 0.046 

COV-ST 𝝌𝟐 = 𝟏𝟓. 𝟑𝟕𝟗 < 𝟎. 𝟎𝟎𝟏 
𝒛 = 𝟑. 𝟐𝟏𝟏, 

 𝒑 = 𝟎. 𝟎𝟎𝟏 

𝒛 = 𝟑. 𝟑𝟒𝟏, 

 𝒑 = 𝟎. 𝟎𝟎𝟏 

𝑧 = 0.811, 

 𝑝 = 0.417 

COV-SwT 𝝌𝟐 = 𝟏𝟕. 𝟎𝟑𝟒 < 𝟎. 𝟎𝟎𝟏 
𝒛 = 𝟑. 𝟑𝟒𝟏, 

 𝒑 = 𝟎. 𝟎𝟎𝟏 

𝒛 = 𝟑. 𝟕𝟗𝟓, 

 𝒑 < 𝟎. 𝟎𝟎𝟏 

𝑧 = 0.9632, 

 𝑝 = 0.336 

COV-SW 𝝌𝟐 = 𝟏𝟗. 𝟐𝟒𝟏 < 𝟎. 𝟎𝟎𝟏 
𝒛 = 𝟑. 𝟏𝟔𝟖, 

 𝒑 = 𝟎. 𝟎𝟎𝟐 

𝒛 = 𝟑. 𝟕𝟑𝟎, 

 𝒑 < 𝟎. 𝟎𝟎𝟏 

𝒛 = 𝟐. 𝟒𝟏𝟏, 

 𝒑 = 𝟎. 𝟎𝟏𝟔 

ML-Drift (odd) 𝑭 = 𝟏𝟎. 𝟑𝟏𝟖 < 𝟎. 𝟎𝟎𝟏 
𝒕 = 𝟑. 𝟔𝟑𝟓, 

 𝒑 = 𝟎. 𝟎𝟎𝟏 

𝒕 = 𝟑. 𝟖𝟒𝟏, 

 𝒑 = 𝟎. 𝟎𝟎𝟏 

𝑡 = 1.251, 

 𝑝 = 0.221 

ML-Drift (even) 𝑭 = 𝟐𝟑. 𝟒𝟕𝟐 < 𝟎. 𝟎𝟎𝟏 
𝒕 = 𝟓. 𝟎𝟓𝟎, 

 𝒑 < 𝟎. 𝟎𝟎𝟏 

𝒕 = 𝟓. 𝟗𝟒𝟎, 

 𝒑 < 𝟎. 𝟎𝟎𝟏 

𝑡 = 2.447, 

 𝑝 = 0.021 

AP-Drift 𝝌𝟐 = 𝟏𝟑. 𝟓𝟏𝟕 𝟎. 𝟎𝟎𝟏 
𝒛 = 𝟑. 𝟏𝟒𝟔, 

 𝒑 = 𝟎. 𝟎𝟎𝟐 

𝒛 = 𝟑. 𝟎𝟔𝟎, 

 𝒑 = 𝟎. 𝟎𝟎𝟐 

𝑧 = 0.011, 

 𝑝 = 0.991 

Table 6-1: Main effect (significance level: 𝑝 < 0.05) of task conditions on gait measures along 

with pairwise comparisons (significance level: 𝑝 < 0.05/3 = 0.017). p-values in bold indicate a 

significant difference.   
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Figure 6-5: Descriptive and statistical results of task performance measures: (A) group medians 

and inter-quartile ranges of success rate (%), (B) group medians and inter-quartile ranges of 

movement variance, (C) group means and SEM of average movement time (ms). The results of 

pairwise comparisons between standing and walking conditions for each VCG game are presented 

under x-axis labels. The results of pairwise comparisons between VCG1 and VCG2 for each 

standing and walking condition are presented above/under the dashed lines. p-values in bold 

indicate a significant difference (significance level: 𝑝 < 0.05/4 = 0.013). 
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Figure 6-6: Group means and SEM of: (A) SampEn, (B) QDE, (C) 𝜆𝑠, (D) COV-SL, (E) ML-Drift 

(odd), and (F) ML-Drift (even), under WO, VCG1 and VCG2 walking conditions. 
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6.5 Discussion 

The main purpose of the present study was to compare the gait variability measures, entropy 

measures, and the short-term LLE of the ML COP-D signal collected during treadmill walking 

under WO and DT conditions. The results partially confirmed our first hypothesis; variability and 

entropy measures increased significantly from WO to both DT walking tasks (VCG1 and VCG2). 

However, the short-term LLE increased when performing the VCG1 task and not the VCG2 task. 

It is not clear why participants opted to prioritize their local stability when performing the more 

difficult VCG2 task. Nonetheless, during VCG2, participants’ gait was more variable and more 

irregular than WO. There was a trend of increased gait variability and entropy measures from 

Figure 6-7: Group medians and inter-quartile ranges of: (A) COV-ST, (B) COV-SW, (C) AP-Drift, 

and (D) COV-SwT under WO, VCG1 and VCG2 walking conditions 
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VCG1 to VCG2, although these changes did not reach the significance level. In other words, the 

gait measures examined in the present study were more sensitive to changes from WO to DT 

walking condition, than to the difference in difficulty level between VCG1 and VCG2.  

While the present results showed a significant DT interference effect of the visuomotor cognitive 

tasks on SampEn and QDE, Other studies [12], [23] did not observe an increase in the SampEn of 

various gait time series between WO and DT treadmill walking conditions. The visuomotor 

cognitive tasks used in the current study were more challenging than the one used by Leverick et 

al. [12] in which no distractors were used and movement trajectories were predictable (i.e., straight 

vertical paths). There are a number of differences between texting used in the study of Magnani et 

al. [23] and visuomotor cognitive tasks used in the present study. In addition, Magnani et al. [23] 

computed SampEn from trunk linear velocity time series. In this regard, a previous study has 

reported no significant change in the SampEn of trunk-LA between WO and DT, whereas a 

significant increase in the SampEn of the ML COP-D was observed [69].  

The visuomotor cognitive games used in the current study required continuous visual observation, 

tracking of the moving visual objects, and timely precise head rotations in order to move the game 

paddle to catch moving targets and avoid distractor objects. The present findings showed that in 

addition to significant DT effects on gait performance, visuomotor cognitive performance (i.e., 

success rate and movement variance) were negatively affected during treadmill walking as 

compared to standing. It is important to quantify both gait and cognitive task performance when 

identifying possible prioritization strategies and when interpreting DT interactions between 

cortical processes responsible for gait and those responsible for the information processing 
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required by the cognitive tasks. Therefore, both gait and visuomotor cognitive tasks’ performance 

measures are required as fall risk biomarkers.  

Variability measures have been associated with instability. However, the cause-and-effect 

relationship between the two has been challenged. Dingwell et al. [24] re-analyzed the data from 

a previous study [72] in which 15 healthy young adults walked on a treadmill at their self-selected 

speed under two walking conditions (i.e., WO and walking while performing a visual Stroop test). 

They determined that decreased step width variability did not translate to greater local dynamic 

stability of trunk linear velocity during DT walking condition. Variability of spatio-temporal gait 

variables derived from heel strike or toe-off events (gait cycle endpoints) was used to determine 

gait performance. However, it would not consider the features of the entire gait signal. The intra-

stride dynamical features contain valuable information about the gait control mechanism. On the 

other hand, the short-term LLE reflects how the system responds to small perturbations as it 

examines the degree of divergence of two neighboring points over a period of one step. 

Additionally, SampEn and QDE compare each template to all other templates throughout the entire 

time series and identify ones that match. These differences in the features of the gait time series 

that are quantified by the three different methods are in agreement with the notion that local 

dynamic stability defined by the short-term LLE is not synonymous with regularity defined by 

entropy measures or either stride-to-stride variability [13].  

Another main finding of this study was that the ML-Drift measure was the only variability measure 

which had a significant and moderate to strong correlation with SampEn and QDE, but not with 

the short-term LLE. The ML-Drift measure looks at the dispersion of heel strike locations on the 

treadmill. The increased variability in heel strike locations in the mediolateral direction observed 
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during DT treadmill walking might be required to match or recapture disturbances in the control 

of the motion of the body center of mass [108]. This is consistent with previous research findings 

of the increased demands on mediolateral stability during visual perturbations [108]–[111].  

A few limitations should be considered when interpreting the results of this study. First, motor-

cognitive tasks were used in this study and it is not clear to what extent DT interference effects 

were due to added information processing load or due to head rotations. Nonetheless, a previous 

study [96] has reported that open loop tracking of a moving target with only head rotation, while 

walking on a treadmill, resulted in a very small COP deviation from the midline. Second, in the 

present study, the analysis was based on the data collected during treadmill walking. While 

treadmill walking does not equate overground walking, it was essential for this study to avoid the 

confounding effect of walking speed. Third, all participants walked at a fixed speed of 1 m/s. 

Although some studies have recommended collecting data at self-selected walking speed, 1 m/s 

was in the comfortable range of speed for the young healthy participants of this study.  

6.6 Summary 

The main purpose of this chapter was to study the correlation between entropy measures (SampEn 

and QDE) and two other families of gait measures (i.e., variability measures and the short-term 

LLE).  It was shown that entropy measures, the short-term LLE and variability measures were 

representing different aspects of human gait stability. In addition to different methods of 

calculation and various features of signals that these measures use, there was no significant 

correlation between them. The only exception was a significant correlation between entropy 
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measures and the ML-Drift measure. Therefore, a combination of these measures could elicit 

information on inter-stride and intra-stride changes due to dual-tasking. Furthermore, no measure 

was sensitive to the degree of difficulty of the secondary cognitive games. In addition to DT 

interference effects on gait, there was a significant decrease in performance measures of the 

cognitive games during walking as compared to standing. 
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Chapter 7   

Conclusions  

This thesis evaluated the viability of using sample entropy and quantized dynamical entropy 

measures of whole gait signals as biomarkers of increased fall risk. A few previous studies have 

investigated the effect of aging and dual-tasking on these two measures [12], [15]–[17]. However, 

they have reported inconsistent or contradictory results because of two possible reasons. First, they 

have used different test protocols regarding control for gait speed, different biological signals, and 

different secondary tasks. Second, they have disregarded either intra-stride or inter-stride 

information.  In this thesis, a dual-task assessment treadmill platform was used to enable 

performing different tasks, including dual-task walking while playing visuomotor secondary tasks, 

at a fixed yet comfortable speed. Whole gait signals were collected using inertial motion monitors 

and pressure mats and were used to calculate entropy measures. SampEn and QDE of whole gait 

signals successfully distinguished between young and older faller adults as well as between walk 

only and dual-task walking condition. All the objectives for this thesis (see Section 1.2) were met 

and the contributions made are listed below. In summary, it has been shown that SampEn and QDE 

of the center of pressure in the mediolateral direction are great candidates for assessing fall risk if 

the confounding effect of speed is avoided. They also represent a different aspect of human gait 

control mechanism than the one reflected by variability measures or the short-term LLE. Finally, 

these two measures produced similar results in terms of discriminatory ability, sensitivity to 

parameter selection and preprocessing methods, and correlation with other families of gait 



Chapter 7. Conclusions 

  

 

106 

 

measures. Therefore, QDE could be a viable alternative candidate for future studies to identify 

individuals at risk of fall as it is computationally more efficient. 

7.1 Contributions of this Thesis 

This thesis made a number of original contributions listed below: 

1. This research increased the knowledge base of the discriminatory ability of SampEn and 

QDE by examining the first three hypotheses of this thesis (see Section 1.2). Confirming 

the first hypothesis, it was shown that the SampEn and QDE of whole gait signals 

significantly increased with age and when dual-tasking when controlling for the 

confounding effect of speed. Human gait is likely to be disrupted by performing a 

secondary visuomotor cognitive task or negatively affected by aging and therefore 

unplanned inter-stride and intra-stride fluctuations increase. This would result in a more 

irregular and more unpredictable signal that would result in larger SampEn and QDE 

values. The second hypothesis was supported by showing that the discriminatory ability of 

the SampEn and QDE of whole gait signals differed among different signals. This 

observation indicates that each gait signal is a unique representation of human gait control 

process. Moreover, only when calculated from the ML COP-D signal, SampEn and QDE 

measures could detect both aging and DT effects. The superiority of the ML COP-D signal 

in terms of better distinguishing different walking conditions as well as the unobtrusive 

nature of its collection make it a great candidate for future studies which use entropy 

measures. The third hypothesis was also verified by showing that segmenting and 
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normalizing whole gait signals before calculating SampEn and QDE measures helped 

better discriminate between WO and DT conditions when using trunk-LA signal. This 

procedure removed inter-stride correlations and helped reveal changes hidden by variations 

because of drifts.  

2. Although a few studies have investigated the proper implementation of entropy measures 

when applied to stride interval time series [73], [74], there are no studies for whole gait 

signals. Therefore, for the first time, a comprehensive methodological study was conducted 

on the sensitivity of the SampEn and QDE of the ML COP-D to variant parameter values 

and preprocessing methods. It was shown that these measures produce a consistent result 

showing a significant increase from WO to DT conditions. SampEn and QDE decreased as 

tolerance size, template size, and the average number of points per stride increased. The 

few exceptions were mixed results of SampEn with increasing template size and mixed 

results of QDE with increasing the average number of points per stride. It was also shown 

that gait speed had a significant effect on the SampEn and QDE of the ML COP-D signal 

for two reasons. The first reason was an increase in vibrational noise of collected signals 

at higher speeds. And the second one was the variant average number of data points per 

stride of the gait signal when comparing signals collected at different speeds. The first issue 

can be avoided by low-pass filtering the signal. The second issue can be resolved by 

resampling signals so that all signals have the same average number of data points per 

stride without eliminating inter-stride correlations. The results of this methodological study 

can be used as a guideline for proper implementation of SampEn and QDE when using 

whole gait signals. Furthermore, these results highlight the confounding effect of walking 
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speed on these two measures and the importance of avoiding it by either fixing the speed 

or resampling the signals to have the same average number of data points per stride.  

3. The correlation analysis between entropy measures (SampEn and QDE) and two other 

families of gait measures (i.e., variability measures and the short-term LLE) commonly 

used in the literature was carried out. All measures were calculated from the ML COP-D 

signal collected during treadmill walking under WO and DT walking conditions of 

different difficulty level. The results partially confirmed the fourth hypothesis showing that 

SampEn, QDE, and variability measures increased significantly due to dual-tasking and 

the increase was proportional to the difficulty level of the secondary task. However, the 

difference between two dual-task conditions did not reach the significance level. The fifth 

hypothesis was also partially confirmed as the results showed that the three families of gait 

measures were not highly correlated except for the newly introduced drift measure in the 

ML direction which was highly correlated with SampEn and QDE. These results indicated 

that various measures proposed for gait analysis are indeed representing different aspects 

of human gait control mechanism.  

4. The sixth hypothesis was tested by analyzing the results of gait measures (i.e., entropy 

measures, the short-term LLE, and variability measures) and task performance measures 

side by side. Additionally, two visuomotor cognitive tasks were used to investigate the 

sensitivity of these measures to the difficulty level of the secondary tasks. A poorer task 

performance was observed from single-task condition to DT walking conditions. This was 

along with more irregular signals (i.e., larger SampEn and QDE), larger spatio-temporal 

gait variability, and larger short-term LLE (only for the easy task). This observation 
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indicated that gait and task performance were both affected by dual-tasking when there was 

no intentional prioritization. Furthermore, these measures were not sensitive to the degree 

of difficulty of the secondary tasks. 

7.2 Future Work 

Several unanswered questions were addressed in this thesis and the outcomes paved the way for 

further studies in this area. A list of possible future work is mentioned below:  

1. This thesis studied two fall-provoking conditions which are aging and dual-tasking. Other 

important factors, such as Parkinson’s disease, that can result in falls should be investigated 

to further examine the discriminatory ability of SampEn and QDE. Furthermore, it is 

indispensable to examine the effectiveness of these two measures when comparing non-

faller older adults to faller elderlies.    

2. A previous study [12] assessed the test-retest reliability of the SampEn and QDE of 

segmented and normalized ML COP-D for the older population. The results showed that 

these two measures exhibited sufficiently strong test-retest reliability. It is, therefore, 

recommended to further examine the repeatability or test-retest reliability [104] of these 

measures when applied to whole gait signals.  

3. It is recommended to perform a prospective study in which the effects of DT rehabilitation 

are investigated. The values of SampEn and QDE alongside the task performance measures 

should be evaluated before and after the treatment. This might reveal if the treatment is 
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able to improve gait or task performance and whether these measures are able to detect the 

differences.  

4. Multi-scale SampEn has been used to some extent with trunk-LA signal [16], however, the 

results have not shown any abrupt changes across different time scales. The results 

presented in this thesis suggest that the ML COP-D is a better choice for human gait 

analysis. Therefore, investigation of the multi-scale SampEn and multi-scale QDE of the 

ML COP-D should yield important findings. 

5. In the majority of studies (including this thesis) that have used either single- or multi-scale 

entropy measures, a time delay of one has been used when constructing the templates. 

These studies have shown promising results discriminating between different conditions. 

However, incorporating a time delay greater than one (previously applied to heartbeat 

interval time series [102]) could yield important findings. Comparing the procedure taken 

in this thesis with the one in which a time delay greater than one is used would be 

beneficial.  

6. Throughout this thesis, SampEn and QDE were applied to single signals after constructing 

the templates. Nevertheless, considering only one single signal as a representation of 

human gait is oversimplifying this complex system. A further step towards a better 

understanding of this complex system could be studying multiple signals by means of 

methods similar to entropy measures. For example, the effects of dual-tasking or aging on 

human gait COP-D in both ML and AP directions could be investigated using the 

correlation dimension. 
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7. It is highly recommended to further examine the increasing relationship between fall risk 

and entropy measures. For this purpose, future studies should include more experiments with 

the aim of incrementally increasing fall risk and study its relationship with entropy measures. 

Furthermore, by recruiting more participants with a more diverse range of fall risk, a threshold 

of SampEn and QDE indicating a higher risk of fall can be developed. 

8. In this thesis, participants performed the tests while walking on a treadmill at a fixed speed. 

Although treadmill walking does not equate overground walking, it was necessary to control for 

speed to investigate the effect of aging and dual-tasking on SampEn and QDE. Future studies could 

explore the correlation between overground walking and treadmill walking in this context.   
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