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Abstract

In this thesis, the effects of computational domain size and radius ratio on fully de-

veloped turbulent flow and heat transfer in a concentric annular pipe are investigated

using direct numerical simulation (DNS). To perform DNS, a new parallel computer

code based on the pseudo-spectral method was developed using the FORTRAN 90/95

programing language and the message passing interface (MPI) libraries .

In order to study the effects of computational domain size on the turbulence statis-

tics, twelve test cases (Lθ = π/6-2π and Lz = πδ-30πδ) of different domain sizes are

compared. The effects of radius ratio are investigated through a systematic compar-

ative study of four radius ratios of a concentric pipe (for Ri/Ro = 0.1–0.7). The

characteristics of the velocity and temperature fields are examined at two Reynolds

number of ReDh = 8900 and 17700. Here, Ri and Ro are the radii of the inner and

outer pipes, respectively, and Dh is the hydraulic diameter. The radius ratio af-

fects the interaction between the two boundary layers of the concentric annular pipe,

and has a significant impact on turbulent flow structures and dynamics. The char-

acteristics of the flow and temperature fields are investigated in both physical and

spectral spaces, which include the analyses of the first- and second-order statistical

moments, budget balance of the transport equation of Reynolds stresses, two-point

correlation coefficients, premultiplied spectra of velocity, vorticity, and temperature

fluctuations. It is observed that the scales and dynamics of turbulence structures vary

with the radius ratio as well as the surface curvature of the concave and convex walls.

The characteristic length scales of the turbulence structures are identified precisely

through a spectral analysis.
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+
zz(λ

+
z , r

+),

k+
z Ẽ
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+
rr on the concave side, (e) k+

z Ẽ
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ĚΘΘ two-dimensional temperature spectrum
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Chapter 1

Introduction

1.1 Background and motivation

Turbulent flow and heat transfer in a concentric annular pipe flow has many

engineering applications, such as heat exchangers, jet engine diffusers and oil drilling

processes (Nouri et al., 1993). The transports of momentum and thermal energy in a

concentric annular pipe are affected by the transverse curvatures of the inner (convex)

and outer (concave) walls. In response to the difference in transverse curvature of the

inner and outer walls, the spatial and temporal scales of turbulence are different near

these two curved walls of a concentric pipe. This further results in an asymmetry in

the radial profiles of the statistical moments of the velocity and temperature fields,

making the physics of turbulent flow and heat transfer more complex than that of in a

circular pipe flow or plane-channel flow. Furthermore, the case of concentric annular

pipe flow is general because both plane-channel and round pipe flows are special cases

of concentric annular pipe flows under the condition of Ri/Ro → 1 and Ri/Ro → 0,

respectively. Here, Ri and Ro (with 0 ≤ Ri ≤ Ro) are the radii of the inner or

outer pipes, respectively, The current research focuses on Poiseuille-type turbulent

concentric annular pipe flow driven by a constant axial pressure gradient, which is

different from the classical Taylor-Couette flow driven by wall shear due to relative
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rotation of the inner and outer cylinder surfaces (Taylor, 1923, 1936; Grossmann et al.,

2016).

1.2 Literature review

Thus far, previous experimental and numerical studies of Poiseuille-type concen-

tric annular pipe flow have primarily focused on the characteristics of the first- and

second-order flow statistics (such as the locations corresponding to the maximum

mean velocity and the zero mean Reynolds shear stress studied by Knudsen and Katz

(1950), Brighton and Jones (1964), Rehme (1974), Nouri et al. (1993), and Chung

et al. (2002)). In the current literature, there has been a disagreement on whether

the radial position corresponding to the maximum velocity collocates with that of the

zero mean shear stress. The experiments of Knudsen and Katz (1950) and Brighton

and Jones (1964) on concentric annular pipe water flows indicated that the maximum

velocity and the zero mean shear stress coincide. However, Rehme (1974) reported

that the radial position of the zero mean shear stress is closer to the inner wall than

that of the maximum velocity based on their measurements of annular concentric

pipe airflows using a double Pitot tube and hot-wire anemometry. Nouri et al. (1993)

conducted comprehensive laser-Doppler velocimetry (LDV) measurements of the flow

fields in both concentric and eccentric annuli for both Newtonian and Non-Newtonian

fluids. They showed that the radial positions of the maximum velocity and zero shear

stress are not collocated. This contradiction is also seen among numerical simulations.

Chung et al. (2002) performed DNS of a concentric annular pipe flow at Reynolds

number ReDh = UbDh/ν = 8900 similar to the experimental conditions of Nouri et al.

(1993), using a second-order finite difference method. Later Chung and Sung (2003)

extended their DNS study to also include turbulent heat transfer under a constant

wall heat flux ratio. Here, Ub represents the bulk mean velocity, Dh is the hydraulic

diameter, and ν is the kinematic viscosity of the fluid. The DNS result of Chung
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et al. (2002) indicated that the deviation in the radial positions of the maximum

mean axial velocity and zero shear stress is less than 1%. However, a more recent

DNS study of Boersma and Breugem (2011) based on a second-order finite volume

method code (conducted under conditions of Ri/Ro = 0.1 and ReDh = 8900–13940)

further showed the collocation of these two positions.

1.2.1 Influence of domain size on direct numerical simulation

of turbulent flow in a moderately-curved concentric an-

nular pipe

Over the past three decades, various DNS studies were performed to understand

circular pipe flows and structures, which feature two-dimensional (2D) statistical

homogeneity over an axial-azimuthal cylindrical surface. In the homogeneous di-

rections, typically, periodical boundary conditions are implemented. The minimum

computational domain size over which a periodic boundary condition can be used

for conducting DNS with sufficient predictive accuracy is a critical issue. In their

pioneering DNS study of the minimum computational domain for near-wall turbu-

lence, Jiménez and Moin (1991) revealed that the prediction of turbulence statistics

would not be accurate if the size of the computational domain is smaller than that

of the so-called “minimal channel”. Chin et al. (2010) performed DNS to investigate

the influence of computational domain size on the first- and second-order turbulence

statistics and axial velocity spectrum of turbulent circular pipe flows. They applied

periodic boundary conditions to the axial and azimuthal directions for a wide range

of pipe lengths for Lz = πR–20πR, where R is the radius of the circular pipe. In their

DNS study of a turbulent plane Couette flow, Avsarkison et al. (2014) kept a com-

putational domain length at Lz = 20πδ to ensure capture of streamwise-elongated

flow structures. Here, δ is one-half the plane channel height. Very recently, Yang

and Wang (2018) conducted a DNS study of streamwise rotating turbulent channel
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flow at a low Reynolds number of Reτ = uτδ/ν = 180 in conjunction with a wide

range of rotation numbers. They discovered that the wavelength of the streamwise

elongated Taylor-Görtler-like (TG-like) structures increases significantly with the ro-

tation number. At their highest rotation number tested, an extremely long domain

of Lz = 512πδ was used in order to correctly capture TG-like vortices.

Although there are many DNS investigations into the effects of computational

domain size on the predictive accuracy of channel and pipe flows (see, for example,

Jiménez and Moin (1991) and Chin et al. (2010)), the number of systematic studies on

the proper computational domain size for transient simulation of turbulent concentric

annular pipe flow is still very limited in the current literature. In the DNS studies

of Chung et al. (2002) and Boersma and Breugem (2011), the concentric pipe length

was set to Lz = 6πδ and 10Ro, respectively, based on an analysis of the two-point

correlation coefficient of axial velocity fluctuations. Here, δ is one-half the cylinder

gap, i.e. δ = (Ro − Ri)/2, defined in analogy to the usual convention for a plane-

channel flow (in which one-half the channel height between two planes is often used as

a basic measurement length scale). Quadrio and Luchini (2002) performed DNS study

of turbulent concentric annular pipe flow, with the radius ratio kept at Ri/Ro = 0.33

and 0.5, and the axial pipe length set to Lz = 4πδ. They examined the first- and

second-order flow statistics and studied the effect of transverse curvature on the peak

value of Reynolds shear stresses. In this chapter, the goal is to conduct a systematic

study of the minimum computational domain for DNS of concentric pipe flow in

both physical and spectral spaces. The evidence is shown to confirm a much longer

concentric pipe is needed in order to obtain accurate DNS results of flow statistics.

To this purpose, a comparative study based on different domain sizes in the axial and

azimuthal directions is conducted. The largest computational domain size (Lz = 30πδ

and Lθ = 2π) tested here far exceeds those reported in the literature. Furthermore,

based on the aforementioned investigation of the minimum computational domain

size, highly accurate DNS datasets are compiled and used for studying turbulence
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statistical moments and coherent structures of the concentric annular pipe flow, which

is an other objective of this research.

1.2.2 The effects of radius ratio on turbulent concentric an-

nular pipe flow and structures

In a concentric annular pipe flow, the radius ratio not only alters the transverse

curvature of the inner and outer cylinder walls, but also drastically affects the char-

acteristics of turbulent boundary layers developed over the inner and outer cylinder

walls. Closely related to this subject, in the current literature, there are studies

of flows over a single concave or convex curved surface. For instance, So and Mellor

(1973) conducted an experiment in a wind tunnel of curved surfaces to study curvature

effects on turbulent flow field. They reported that turbulence intensities are higher

on the concave wall than on the convex wall. Neves et al. (1994) conducted DNS to

study the effects of transverse curvature on the turbulent boundary layer developed

over a convex surface. They showed that as the transverse curvature increases, the

slope of the mean axial velocity in the logarithmic region and the turbulent inten-

sities reduce. They also showed that turbulence structures remain unaffected unless

the ratio of boundary layer thickness to the radius of transverse curvature is large.

As reviewed above, although there are a couple of experimental and numerical

studies of the concentric annular pipe flow of different radius ratios (Nouri et al.,

1993; Chung et al., 2002), the number of detailed DNS studies of the effects of radius

ratio on the turbulent flow in a concentric annular pipe is still rather limited in the

current literature.

In view of this, the goal is to conduct a systematic DNS study of turbulent concen-

tric annular pipe flow based on various radius ratios (Ri/Ro = 0.1–0.7). Specifically,

the effects of radius ratio are examined on the first- and second-order statistical mo-

ments of the velocity field, the interaction of the boundary layers developed over the
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inner and outer cylinder walls, spectra of the velocity and vorticity fields, the budget

balance of Reynolds shear stress, and the length scales of the streamwise vortical

structures near the inner and outer cylinder walls.

1.2.3 The effects of radius ratio on turbulent heat transfer

in concentric annular pipe flows

In the literature, extensive experimental and theoretical studies have been re-

ported to understand the characteristics of turbulent heat transfer in a Taylor-Poiseuille

flow. However, most of these studies were concentrated on experimental measure-

ments, developments of semi-empirical correlations, and Reynolds-averaged Navier-

Stokes (RANS) simulations. Kays and Leung (1963) conducted an experiment to

study turbulent flow and heat transfer in a concentric annular pipe under the con-

ditions of a fully-developed velocity profile and constant surface heat flux. They

reported first- and second-order statistics of temperature field for a wide range of

radius ratios, Reynolds numbers and Prandtl numbers. Wilson and Medwell (1968)

used the van Driest model in their numerical simulation of the temperature field in

a turbulent concentric annular pipe with a heated inner wall. Heikal et al. (1977)

conducted hot-wire measurements of turbulent heat transfer in a concentric annular

pipe flow. They studied the mean characteristic of temperature field and rate of heat

transfer. Mujeeb and Richard (1981) conducted RANS simulations based on three

different turbulence models to study the temperature field in a concentric annular

pipe flow. They improved the performance of their RANS simulations by using the

transport equation of turbulence kinetic energy and characteristic mixing length scale

in turbulence modeling. Later, Kaneda et al. (2003) derived a numerical predictive

method by using a semi-empirical model for the radial heat flux. They evaluated the

value of Nusselt number as the Prantel number varies. Yu et al. (2005) proposed a new

modeling equations for computing the values of Nusselt number for fully-developed
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turbulent convection in a concentric annular pipe, under the condition that the in-

ner cylinder wall is uniformly heated. They studied the Nusselt number for a wide

range of radius ratios and Reynolds numbers. Although RANS studies have provided

important insights into the first- and second-order statistical moments of the flow,

they have many limitations. For instance, high-order statistical moments (such as

skewness and flatness factors) and detailed transport processes of the Reynolds stress

tensor and heat flux vector cannot be well studied using a RANS approach.

In comparison with the RANS studies briefly reviewed above, so far, there have

been only a few DNS studies devoted to investigating turbulent heat transfer in con-

centric annular pipe flows. Chung and Sung (2003) performed DNS to study the

transverse curvature effects on the turbulent heat transfer in a concentric annular

pipe flow at a Reynolds number of ReDh = 8900. To this purpose, they compared

the turbulence statistics of the velocity and temperature fields on the inner and outer

cylinder sides. Ould-Rouiss et al. (2009) performed a DNS study of a heated concen-

tric annular pipe flow at Reδ = 3500 and Pr = 0.71. Here, the Reynolds number is

defined based on the half-width between the inner and outer walls, δ = (Ro −Ri)/2.

They studied the effect of heat flux ratio with boundary conditions identical to those

used by Chung and Sung (2003). Later, Ould-Rouiss et al. (2010) investigated the

effects of Prandtl number on turbulent heat transfer in a concentric annular pipe

using DNS. They observed that the turbulent heat transfer rate reduces near both

walls as the Prandtl number decreases from 1 to 0.026. Fukuda and Tsukahara (2020)

conducted a DNS study of passive heat transfer in Taylor-Poisueille flow at two radius

ratios of Ri/Ro = 0.5 and 0.8 for Reτ = 150 and Pr = 0.71. They investigated the

dependence of heat transfer on the radius ratio and the thermal boundary condition.

As reviewed above, although there are has been multiple experimental and RANS

studies of turbulent heat transfer in concentric annular pipe flow for different radius

ratios, the number of detailed DNS studies is still rather limited. In view of this, I

aim at conducting a systematic comparative DNS study of the turbulent heat transfer
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in concentric annular pipe flow based on four radius ratios (for Ri/Ro = 0.1, 0.3, 0.5

and 0.7) at a nominal Reynolds number of ReDh = 17700. Specifically, I will examine

the effects of radius ratio on the first- and second-order statistical moments of the

temperature field, interaction of the thermal boundary layers developed over the

inner and outer cylinder walls, spectra of the temperature fields, budget balance of

temperature variance and turbulent heat fluxes, and the length scales of the thermal

structures near the inner and outer cylinder walls.

1.3 Objectives

The major objectives of this research are given presented as follows:

1. Develop, optimize and validate a new pseudo-spectral code using FORTRAN 90/95

programming language and message passing interface (MPI) libraries to perform

DNS study of turbulent flow and heat transfer in a concentric annular pipe. This

objective is to provide an innovative tool to numerically study the complex flow

physics and the effects of surface curvature on turbulent heat and fluid flows.

2. Systematically investigate the effects of the computational domain size on the

predictive accuracy of turbulence statistics and flow structures.

3. Systematically investigate the effects of the radius ratio on turbulence statistics

and flow structures.

4. Systematically investigate the effects of the radius ratio on turbulent heat trans-

fer and turbulence structures associated with temperature field.

1.4 Outlines of the proposed thesis

The remainder of this thesis is organized as follows:
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• In Chapter 2, DNS study on effect of computational domain size in a moderately-

curved turbulent concentric annular pipe flow for a wide range of computational

domain sizes is presented.

• In Chapter 3, DNS study of radius ratio effects on turbulence statistics and

structures in concentric annular pipe flow for a wide range of radius ratios at is

presented.

• In Chapter 4, the DNS study of radius ratio effects on turbulent heat trans-

fer and turbulence structures associated with temperature field in concentric

annular pipe flow for a wide range of radius ratios at is presented.

• In Chapter 5, major conclusions of this thesis and the recommended future

works are presented.

• In Appendix A, detailed numerical algorithms of the pseudo-spectra code are

presented. For the testing run, a DNS of turbulent concentric annular flow at

ReDh = 8900 was conducted using the pseudo-spectra code, and the results are

validated against Chung and Sung (2003).

• In Appendix B, Implementation of Pseudo-spectral code in FORTRAN 90/95

programming language is presented.
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Chapter 2

Influence of Domain Size on Direct

Numerical Simulation of Turbulent

Flow in a Moderately-Curved

Concentric Annular Pipe

In this chapter, we aim at conducting a systematic study of the minimum compu-

tational domain for DNS of concentric pipe flow in both physical and spectral spaces.

New evidence will be shown to prove that a much longer concentric pipe than those

reported in the literature is needed in order to obtain accurate DNS results of flow

statistics. To this purpose, a comparative study based on different domain sizes in

the axial and azimuthal directions is conducted. Furthermore, based on the afore-

mentioned investigation of the minimum computational domain size, highly accurate

DNS datasets are compiled and used for studying turbulence statistical moments and

coherent structures of the concentric annular pipe flow, which is the third objective of

this research. A new highly-accurate pseudo-spectral method computer code is used

for performing DNS, which was developed using the FORTRAN 90/95 programing
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Figure 2.1: Computational domain and coordinate system.

languages and the message passing interface (MPI) libraries. The algorithms of this

computer code are given in Appendices A and B. The content and results of following

chapter is published in Bagheri et al. (2020).

The remainder of this chapter is organized as follows: in section 2.1, the test

cases and the numerical algorithm for solving the governing equations are described.

In section 2.2, the DNS results in the physical space are analyzed, including the

first-, second-, third- and fourth-order statistical moments of the velocity field, and

the two-point correlation functions of velocity fluctuations. In section 2.3, turbulent

coherent structures are investigated and their scales are studied based on calculation

of both two-dimensional (2D) and one-dimensional (1D) energy spectra. The scales of

energetic eddies and the corresponding domain size for capturing them are examined

through analyses conducted in both physical and spectral spaces.
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Table 2.1: Summary of test cases and grid resolutions. The nominal Reynolds number
is ReDh = 8900 for the A-, B- and C-series test cases, and is ReDh = 17700 for case D.

Cases Lz × Lθ × Lr Nz ×Nθ ×Nr ∆z+ (Ro∆θ)
+ ∆r+

min ∆r+
max

A1 πδ × 2π × 2δ 36× 512× 64 12.819 7.214 0.180 7.376
A2 2πδ × 2π × 2δ 64× 512× 64 14.528 7.267 0.182 7.431
A3 6πδ × 2π × 2δ 192× 512× 64 14.422 7.215 0.180 7.377
A4 (B5) 12πδ × 2π × 2δ 384× 512× 64 14.390 7.198 0.180 7.360
A5 18πδ × 2π × 2δ 580× 512× 64 14.361 7.234 0.181 7.396
A6 30πδ × 2π × 2δ 960× 512× 64 14.461 7.234 0.181 7.396
B1 12πδ × π/6× 2δ 384× 42× 64 14.679 7.459 0.184 7.508
B2 12πδ × π/4× 2δ 384× 64× 64 14.489 7.248 0.181 7.411
B3 12πδ × π/2× 2δ 384× 128× 64 14.475 7.241 0.181 7.404
B4 12πδ × 3π/4× 2δ 384× 192× 64 14.431 7.219 0.181 7.381
C 6πδ × π/2× 2δ 192× 128× 64 14.422 7.215 0.180 7.377
Ca 6πδ × π/2× 2δ 192× 128× 65 14.30 7.11 0.12 12.96
D 8πδ × π/2× 2δ 500× 280× 144 13.878 6.199 0.069 6.100

2.1 Test case and numerical algorithm

Figure 2.1 shows the schematic diagram of concentric annular pipe flow with

respect to the cylindrical coordinate system. In this figure, z, θ, and r, denote the

axial (streamwise), azimuthal and radial coordinates, respectively, and uz, uθ and

ur represent velocity components in the corresponding directions. The radius of

the cylindrical channel center is R = (Ri + Ro)/2. The equations that govern an

incompressible flow with respect to a cylindrical coordinate system read

∇ · ~u = 0 , (2.1)

∂~u

∂t
+ ~u · ∇~u = −1

ρ
∇p+ ν∇2~u− Π

ρ
êz , (2.2)

where p, ρ and ν denote the pressure, density and kinematic viscosity, respectively. Π

is the constant mean axial pressure gradient that drives the flow, and êz is the base

unit vector of the z-direction, with |êz| ≡ 1. The details of numerical algorithm to

solve the governing equations of the problem are presented in appendix A.
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Table 2.1 summarizes the computational domain sizes and grid resolutions for the

14 test cases of two nominal Reynolds numbers of ReDh = 8900 and 17700. In order to

facilitate our comparative study of the domain size effect on the predictive accuracy of

flow statistics and coherent structures, the radius ratio is kept at Ri/Ro = 0.5 for all

14 test cases. This radius ratio and lower nominal Reynolds number (ReDh = 8900)

considered here are identical to those used in Chung et al. (2002) and Nouri et al.

(1993). The test cases are categorized and labeled using four initial letters: A, B, C

and D. Six different axial domain sizes with a full cross-sectional domain (referred to as

the A-series test cases) are compared to examine the influence of axial computational

domain size on the predictive accuracy of turbulent statistics in both physical and

spectral spaces. In these six test cases, the axial domain size varies from Lz = πδ to

30πδ, while the azimuthal domain size is fixed to Lθ = 2π. The reason that a full

azimuthal domain size is used in the A-series test cases is that this can completely

shield off the effect of the azimuthal domain size on the flow statistics. The next group

is the five B-series test cases, which examine the influence of azimuthal domain size Lθ

on turbulent statistics. Five different azimuthal domain sizes ranging from Lθ = π/6

to 2π are compared. For the five B-series test cases, the axial domain size is fixed

at Lz = 12πδ based on the conclusion obtained from the above comparative study of

the A-series test cases. Case A4 (of A-series) is also case B5 (of B-series). For the

purpose of comparison and code validation, the computational domain size of Chung

et al. (2002) is also considered, which leads to the C-series test cases. In Table 2.1,

our DNS run with a finer radial grid resolution is labeled as case C, and that of Chung

et al. (2002) is referred to as case Ca. In order to study the Reynolds number effect

on the statistical moments of the velocity field, a higher nominal Reynolds number

of ReDh = 17700 is also considered, which is referred to as case D.

As shown in Table 2.1, in all our 12 test cases of A, B and C series, the axial

grid resolution ranges from ∆z+ = 12.819 for case A1 to 14.679 for case B1, and

the azimuthal grid resolutions range from (Ri∆θ)
+ = 3.599 for case A4 (or B5) to
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Figure 2.2: Cross-sectional view of the mesh for case B4.

(Ro∆θ)
+ = 7.459 for case B1. From Table 2.1, it is clear that the axial and azimuthal

grid resolutions are close to those used in Chung et al. (2002). The grid resolution of

case D is slightly finer than those of the other test cases in general. As an example

for showing the grid system, Fig. 2.2 provides a cross-sectional view of the mesh

used for performing DNS of case B4. The finest radial grid resolution for the first

node off the wall ranges from ∆r+
min = 0.180 to 0.184, which is slightly larger than

that used in Chung et al. (2002) but satisfies the need for performing rigorous DNS

of wall-bounded turbulence. More importantly, the maximum radial grid resolution

in our DNS is restricted to ∆r+
max = 7.376–7.508, which is much finer than that

(∆r+
max = 12.96) used in Chung et al. (2002). In Table 2.1, the wall unit is defined

based on the kinematic viscosity ν of the fluid, and averaged wall friction velocity

uτ =
√
τw/ρ, where τw is the mean wall shear stress based on weighted averaging

over the concave and convex walls, i.e.

τw =
Riτwi +Roτwo

Ri +Ro

. (2.3)

The grid resolutions listed in Table 2.1 are calculated based on the averaged
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wall friction velocity uτ . The wall frictional velocity can also be defined locally

as uτi =
√
τwi/ρ and uτo =

√
τwo/ρ, with τwi = ρν(d〈uz〉/dr)r=Ri and τwo =

−ρν(d〈uz〉/dr)r=Ro at the inner and outer cylinder walls, respectively. The values

of uτi and uτo are different due to the surface curvature of the inner and outer cylin-

ders. The ratio between these two wall friction velocities is uτi/uτo = 1.0596 under

the test conditions. In this chapter, unless otherwise noted, we use the local wall

friction velocities uτi and uτo in the non-dimensionalization of various quantities.

In our analysis, an instantaneous flow variable (for example, uz) is decomposed

into an averaged and a fluctuating component, i.e. uz = 〈uz〉 + u′z, where a pair of

angular brackets 〈·〉 represent temporal and spatial averaging over the homogeneous

directions. Specifically, the spatial averaging is performed over a z-θ cylindrical sur-

face at an arbitrary radial position r, and temporal averaging was performed over 35

large-eddy turnover times (LETOTs). Here, one LETOT is defined as δ/uτ , which

is a measure of the required time for large-scale structures with scale of δ to be un-

correlated. According to Adrian (2007), the length scale of large-scale motions (or

“turbulent bulges”) is approximately 2–3δ in a wall-bounded flow. Thus, an extended

duration of 35 LETOTs facilitates the evolution of large-scale structures and achiev-

ing good convergence in the calculation of the statistics of the velocity field. The

computational time step was kept at 0.001δ/Ub to keep the Courant-Friedrichs-Lewy

(CFL) number less than 0.8. All computations were performed on the WestGrid

(Western Canada Research Grid) supercomputers. Furthermore, spectral accuracy

was also ensured during the computation of flow statistics. Required CPU hours to

conduct a DNS varies depending on the number of grid points. Test cases A1 and A6

using 384 and 14,400 CPU hours are the least and the most expensive among all the

test cases, which were performed using 384 and 14,400 CPU hours, respectively.

Table 2.2 lists the mean flow parameters calculated from DNS for different test

cases. In the table, Reynolds numbers Reτi = uτiδti/ν and Reτo = uτoδto/ν are defined

based on the wall friction velocities (uτi and uτo) and boundary layer thicknesses (δti
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Table 2.2: Mean flow parameters calculated from DNS.

Cases δti/δ δto/δ Reτi Reτo ReDh

A1 0.867 1.133 130.91 164.24 8944
A2 0.887 1.113 136.86 161.29 8953
A3 0.880 1.120 134.14 161.55 8926
A4 (B5) 0.877 1.123 133.12 161.79 8935
A5 0.880 1.120 134.30 162.15 8926
A6 0.881 1.119 134.69 161.82 8917
B1 0.893 1.107 139.77 161.75 9042
B2 0.878 1.122 134.25 162.71 8962
B3 0.877 1.123 133.89 162.75 8944
B4 0.879 1.121 133.82 161.98 8944
C 0.880 1.120 134.14 161.55 8935
D 0.882 1.118 253.02 302.87 17770

and δto) over the inner and outer cylinder walls, respectively. The boundary layer

thickness, δt, is the wall-normal distance across a boundary layer from either the inner

or the outer wall to the point where the mean axial velocity reaches its maximum

(correspondingly, the Reynolds shear stress is zero). The exact wall-normal position of

this point will be investigated separately in section 2.2.2. The numerical simulations

were set up under the condition of a constant mean streamwise pressure gradient (Π),

which can be determined as

Π = −2(τwiRi + τwoRo)

(R2
o −R2

i )
. (2.4)

In the above equation, the values of τwi and τwo can be further determined based on

the values the skin friction coefficients (Cfi and Cfo) at the inner the outer cylinder

walls, respectively. Two nominal Reynolds numbers are tested, i.e. ReDh = 8900

and 17700. In order to set up the numerical simulation, we used the skin friction

coefficient values given in the DNS study of Chung et al. (2002) for the lower Reynolds

number case of ReDh = 8900, which is Cfi = 0.00941 and Cfo = 0.00849 at the inner

and outer cylinder walls, respectively. From Eq. (2.4), it is straightforward that

the value of the mean streamwise pressure gradient can be alternatively determined
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as Π = −CfρU2
b /(Ro − Ri), based on the averaged friction coefficient defined as

Cf = CfiRi/(Ri + Ro) + CfoRo/(Ri + Ro). The value of Cf can be determined from

the empirical equation given by Nouri et al. (1993), i.e. Cf = 0.36(ReDh)−0.39. We

used this method to set up the numerical simulation for the higher Reynolds number

case of ReDh = 17700. Test runs were conducted and minor adjustments to the value

of Π were made to ensure that the value of ReDh calculated from DNS converges to its

nominal value within a reasonable range of error tolerance. As is clear in Table 2.2,

the values of ReDh calculated from DNS of cases of relatively large domains (such

as cases A3-A6, B3, B4, C and D) are satisfactory, which have a very small error of

less than 0.4% in comparison with the nominal Reynolds values (of ReDh = 8900 and

17700). However, the values of ReDh calculated from DNS of cases of small domain

sizes (such as cases A1, A2, B1 and B2) are less satisfactory. The values of ReDh as

well as Ub calculated from the DNS are determined by the mean velocity field, and

the influence of domain size on the predictive accuracy of DNS on the mean velocity

field will be examined systematically in the following section.

2.2 Turbulence statistics in physical space

2.2.1 Mean velocity

Figure 2.3(a) compares the mean velocity profiles of A-, B-, C- and D-series test

cases along with the DNS data of Chung et al. (2002) under the testing conditions

of two nominal Reynolds numbers of ReDh = 8900 and 17700. To facilitate a fair

comparison between the convex and concave sides, the mean axial velocity is plotted

in the “global coordinate” (non-dimensionalized by one-half the cylinder gap δ), i.e.

(r−R)/δ, and scaled based on the mean friction velocity uτ . The distributions of the

mean axial velocity is asymmetric in the radial direction, which is a distinctive feature

of a concentric annular pipe flow. As is evident in Fig. 2.3(a), for the lower nominal
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Reynolds number cases, the velocity profiles collapse well for cases A2-A6 and B2-B4.

An excellent agreement between the results of case C and the reference data of case Ca

is observed, which confirms the predictive accuracy of the computer code in terms of

the generation of reliable DNS data of the mean velocity of the concentric turbulent

annular pipe flow. However, from Fig. 2.3(a), it is seen that the value of the mean

axial velocity 〈uz〉+ is slightly overpredicted by about 2.7% in case A1 and slightly

underpredicted by 1.3% in cases B1, respectively. As shown in Table 2.1, case A1

has the smallest axial domain size (which is Lz = πδ) and case B1 has the smallest

azimuthal domain size (which is Lθ = π/6). This indicates that if we solely focus on

the mean velocity profiles and accept an arbitrary error tolerance up to 3%, it would

be very tempting to conclude that the axial and azimuthal domain sizes Lz = πδ

and Lθ = π/6 are sufficient for conducting DNS of the current concentric annular

pipe flow. In other words, the criterion based on the predictive accuracy of the first-

order statistical moment of the velocity field can be very tolerant, and literally, all 12

test cases of the lower nominal Reynolds number can well predict the value of 〈uz〉+.

However, in the following sections, it will be shown that this conclusion is, in fact,

incorrect with respect to the prediction of the second-order statistical moments and

spectral analysis of the velocity field.

It should be indicated that the above observations were made by investigating

the effects of the axial and azimuthal domain sizes independently through A- and

B-series test cases. The reason that cases A1 fails is that its domain size Lz = πδ

is too small to capture the characteristic axial length scales of flow structures, and

similarly, case B1 fails because its azimuthal domain size is too small to capture the

characteristic azimuthal length scales of flow structures. Therefore, the performance

of a combined case of πδ×π/6× 2δ is expected to be even worse, as it is too small to

capture flow structures in both axial and azimuthal directions. Later in section 2.3,

concrete evidence will be provided to support this physical analysis. We will explain

rigorously why these two small axial and azimuthal domain sizes (Lz = πδ and
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Figure 2.3: Profiles of the mean axial velocity 〈uz〉+. (a) in global coordinate for
A-, B-, C- and D-series test cases, and (b) in wall coordinate for cases A6 and D.
To facilitate the comparison of cases of the lower nominal Reynolds number, their
profiles are partially enlarged and shown in an inset graph in (a).

Lθ = π/6) fail to capture the characteristic wavelengths of the most energetic eddies,

either independently or in combination, through analyses of 1D and 2D premultiplied

spectra of turbulence.

Figure 2.3(b) compares the profiles of the mean axial velocity on the convex and

concave sides of cases A6 and D for two different nominal Reynolds numbers ofReDh =

8900 and 17700. Among the twelve A-, B- and C-series test cases for the lower nominal

Reynolds number, case A has the longest axial domain size of Lz = 30πδ and a full

azimuthal domain size of Lθ = 2π. As such, the influence of the axial domain size on

the numerical results is the minimum, and the influence from the azimuthal domain

size is completely shielded off. The exceptionally large computational domain of

case A6 is also the largest in the current literature for concentric annular pipe flows,

which is five times that used by Chung et al. (2002) under a similar testing condition.

The DNS result of the velocity field is the most accurate in case A6, and here we

use this test case to demonstrate the transverse curvature effect on the wall scaling

of the mean axial velocity profile. To this purpose, the mean axial velocity and wall
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coordinates are scaled based on the local wall friction velocities of the convex (uτi) and

concave (uτo) walls in Fig. 2.3(b). The profile of the standard law-of-the-wall based

on von Kármán’s two-layer model for a zero-pressure-gradient (ZPG) boundary layer

over a flat plate is also displayed for the purpose of comparison.

From Fig. 2.3(a), it is seen that as the nominal Reynolds number increases from

ReDh = 8900 to 17700, the magnitude of 〈uz〉+ increases slightly when they are dis-

played in the global coordinate (r−R)/δ. However, the profiles of 〈uz〉+ of these two

Reynolds numbers collapse once they are plotted in wall coordinate r+ in Fig. 2.3(b).

Apparently, the velocity magnitudes on both concave and convex sides of the concen-

tric pipe are slightly larger than that prescribed by the classical log-law for a ZPG

boundary layer over a flat plate, 〈uz〉+ = 2.44 ln(r+) + 5.0. Furthermore, through

a linear regression analysis, it is observed that the velocity profiles at two Reynolds

number collapse well on a log-law of 〈uz〉+ = 2.65 ln(r+)+4.5. Owing to the curvature

difference between the two cylinder surfaces, the mean velocity profile of concentric

annular pipe flow is asymmetrical in the radial direction (Fig. 2.3(a)), which leads

to differences in the velocity profiles plotted in the wall coordinates measured from

the convex and concave walls in Fig. 2.3(b). From Fig. 2.3(b), it is clear that the

differences are the most apparent in the channel center. This is because not only the

values of uτi and uτo are different (with uτi/uτo = 1.057), but also the peak position of

〈uz〉+ deviates from the domain center of (r−R)/δ = 0. Specifically, from Fig. 2.3(a)

and Table 2.2, it is seen that the profile of 〈uz〉+ peaks at (r−R)/δ = −0.119. In the

following, the mechanism underlying the shift of the peak position of 〈uz〉+ towards

the inner cylinder wall will be further analyzed from the point of view of the balance

of viscous and turbulent shear stresses.

2.2.2 Reynolds stresses

Figures 2.4 and 2.5 show the profiles of all four non-trivial Reynolds stresses at

two nominal Reynolds numbers of ReDh = 8900 and 17700 (including the reference
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Figure 2.4: Profiles of Reynolds stresses 〈u′iu′j〉+ predicted based on various computa-
tional domain sizes of the A-series test cases in comparison with those of the C- and
D-series test cases. (a) 〈u′zu′z〉+, (b) 〈u′θu′θ〉+, (c) 〈u′ru′r〉+, and (d) 〈u′zu′r〉+.

case Ca) in the global coordinate. In order to facilitate a clear comparison of all

14 test cases under the influences of different axial and azimuthal domain sizes and

Reynolds numbers, the results of A-series test cases are compared with those of C-

and D-series test cases in Fig. 2.4, while those of B-series test cases are compared

with those of C- and D-series test cases in Fig. 2.5. All Reynolds stresses have been

non-dimensionalized by the mean wall friction velocity (uτ ). From Figs. 2.4 and 2.5,

it is apparent that the profiles of all Reynolds normal and shear components are

asymmetrical in the radial direction at both Reynolds numbers. By comparing the
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Figure 2.5: Profiles of Reynolds stresses 〈u′iu′j〉+ predicted based on various computa-
tional domain sizes of the A-series test cases in comparison with those of the C- and
D-series test cases. (a) 〈u′zu′z〉+, (b) 〈u′θu′θ〉+, (c) 〈u′ru′r〉+, and (d) 〈u′zu′r〉+.

results of cases C and Ca, it is evident that in either Fig. 2.4 or Fig. 2.5, the profiles

of Reynolds normal and shear stresses obtained in the current DNS agree well with

those of Chung et al. (2002). In Fig. 2.4, the Reynolds stress profiles of the A-series

test cases collapse except for cases A1 and A2. As is seen in Fig. 2.4a, the magni-

tudes of the axial Reynolds normal stress of cases A1 and A2 are over-predicted in the

near-wall region on both sides of the concentric annular pipe. Meanwhile, Fig. 2.4b

shows that in cases A1 and A2, not only the value of 〈u′θu′θ〉+ is underpredicted, but

also the locations of the near-wall peaks on both sides of the concentric annular pipe
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are incorrectly predicted, which shift towards the center of the channel. In view of

this, it concluded that in order to correctly predict the Reynolds stress level, the min-

imal axial computational domain size must be kept at Lz = 6πδ (or approximately,

L+
z = 2800). The influence of azimuthal computational domain size on the predictive

accuracy of Reynolds stresses can be identified by comparing the DNS results of the

five B-series cases with those of cases C and Ca at a lower nominal Reynolds number

of ReDh = 8900 in Fig. 2.5. From Fig. 2.5a, it is observed that the prediction of the

profile of 〈u′zu′z〉+ is satisfactory, which is in an excellent agreement with the results

of cases C and Ca in all five B-series cases. However, as is clear from Figs. 2.5b and

2.5c, the values of 〈u′θu′θ〉+ and 〈u′ru′r〉+ of case B1 are underpredicted on the convex

side and in central region of the concentric annular passage. Clearly, based on the

prediction of Reynolds stresses, the minimal azimuthal computational size must be

stretched from Lθ = π/6 (which is the previous conclusion based on the prediction of

the mean axial velocity profiles shown in Fig. 2.3) to Lθ = π/4.

From Figs. 2.4 and 2.5, it is seen that the Reynolds number has a significant in-

fluence on the predicted value of Reynolds stresses. Clearly, as the nominal Reynolds

number increases from ReDh = 8900 to 17700, the magnitudes of 〈u′θu′θ〉+ and 〈u′ru′r〉+

vary significantly. By contrast, those of 〈u′zu′z〉+ and 〈u′zu′r〉+ are less sensitive. Fur-

thermore, it is interesting to observe from both Figs. 2.4d and 2.5d that the Reynolds

shear stress 〈u′zu′r〉+ is the least sensitive to the axial and azimuthal computational

domain sizes. A further study of the transport equation of the mean axial velocity

facilitates a better understanding of this invariant behavior of the Reynolds shear

stress. Considering that the flow is statistically stationary and homogeneous in the

r–θ cylindrical surface, the following equation that expresses the viscous and turbulent

shear stresses can be derived from the momentum equation:

τtot

ρ
= ν

d〈uz〉
dr
− 〈u′zu′r〉 =

Π

2ρ
r +

D

r
, (2.5)

where τtot denotes the total shear stress (as the summation of the viscous and turbu-
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lent shear stresses), and D is a constant of integration given as

D =
R2
oRiu

2
τi +R2

iRou
2
τo

R2
o −R2

i

. (2.6)

From Eq. (2.5), it is straightforward that at the radial position of r = rm =√
−2ρD/Π, the total shear stress vanishes, i.e. τtot = 0. Consequently, νd〈uz〉/dr −

〈u′zu′r〉 = 0. In other words, at radial position rm, if 〈u′zu′r〉 = 0, then it is guaranteed

that d〈uz〉/dr = 0; or vice versa. From this analysis, it is clear that the radial position

for zero Reynolds shear stress is strictly collocated with that for the maximum of mean

velocity (where d〈uz〉/dr = 0) at radial position rm in a concentric annular pipe flow.

The above analytical approach for deriving this conclusion is not complex, however,

it helps to clear the disagreement on this issue seen in the literature (as reviewed in

section 1.1). Now we can say with certainty that, the experimental observations of

Knudsen and Katz (1950) and Brighton and Jones (1964) and DNS results of Boersma

and Breugem (2011) are accurate on this issue. The thicknesses of boundary layers

developed over the inner and outer cylinder walls are different to reflect the difference

in the surface curvature of these two walls, and their values can be determined as

δti = δ + rm and δto = δ − rm, respectively. The values of δti and δto calculated from

DNS for all test cases are presented in Table 2.2.

To further verify the above analysis using DNS, the shear stress balance of case A6

(which has the largest computational domain) is shown in Fig. 2.6. This figure

shows the profiles of the mean axial velocity, viscous Reynolds shear stress τvis/ρ =

νd〈uz〉/dr, turbulent Reynolds shear stress τtur/ρ = −〈u′zu′r〉, and total Reynolds

shear stress τtot = τvis + τtur. In Fig. 2.6, all shear stress terms have been non-

dimensionalized using the mean friction velocity. Clearly, at the radial position de-

marcated by the black dashed line, the axial mean velocity 〈uz〉 reaches its maxi-

mum, and Reynolds shear stress 〈u′zu′r〉 becomes zero concurrently. Specifically, at

the lower nominal Reynolds number ReDh = 8900, the radial position where τ+
tot = 0,

〈u′zu′r〉+ = 0 and d〈uz〉/dr = 0, deviates from the domain center and occurs instead
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Figure 2.6: Profiles of the mean axial velocity 〈uz〉 and budget balance of total shear
stress (τtot = τvis + τtur) displayed in the global coordinate based on the DNS results
of case A6. Considering the large differences in their absolute magnitudes, the mean
axial velocity 〈uz〉 is non-dimensionalized using the bulk mean velocity Ub, while the
shear stresses are non-dimensionalized based on the mean wall friction velocity uτ .

at (r − R)/δ = −0.119. Further from Table 2.2, it can be inferred that this special

radial position remains almost unchanged as the nominal Reynolds number increases

to ReDh = 17700, which is located at (r −R)/δ = −0.118.

2.2.3 Higher-order statistics

Thus far, the effects of surface curvature and Reynolds number on the turbulent flow

field have examined through the first- and second-order flow statistics. In order to

develop a deeper understanding of these effects on the transport of momentum, the

third- and fourth-order statistical moments of the velocity field can be examined.

Because the higher-order statistical moments of the velocity field are more sensitive

than the lower-order ones in the calculations, we restrict our examination of the do-

main size effects on the predictive accuracy of DNS to the study of the first- and

second-order statistical moments (e.g., mean velocity, Reynolds stresses, two-point

correlations, and energy spectra) in both physical and spectral spaces, which rep-

resents a usual practice in the literature on the study of the minimum domains for

DNS Jiménez and Moin (1991); Yang and Wang (2018). In the following, we focus
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Figure 2.7: Skewness factors of the velocity field on the convex and concave sides of
the concentric annular pipe for cases A6 and D. (a) convex side, and (b) concave side.
The vertical dashed lines demarcate the zero-crossing points of the skewness factors
for S(u′z) = 0 and S(u′r) = 0. Near-wall regions featuring the sweeping and ejection
events are labeled using “S” and “E”, in either green or black color corresponding
to either case A6 or D, respectively. The skewness factor of the ideal Gaussian
distribution is also plotted using a thin dashed line, which is S(u′i) ≡ 0.

our attention on the physics of the flow while we study the properties of the skewness

and flatness factors. Specifically, we intend to examine the Reynolds number effects

on the skewness and flatness factors by comparing their values of cases A6 and D;

and furthermore, we study the curvature effects on the skewness and flatness factors

by comparing their values on the convex and concave sides of the concentric annular

pipe. The velocity skewness and flatness factors are defined as Kim et al. (1987):

S(u′i) =
〈u′3i 〉
〈u′2i 〉3/2

and F (u′i) =
〈u′4i 〉
〈u′2i 〉2

, (2.7)

respectively. Figures 2.7 and 2.8 compare the skewness and flatness factors of all three

velocity fluctuating components at two nominal Reynolds numbers of ReDh = 8900

and 17700 through cases A6 and D.

For turbulence signals obeying the ideal Gaussian distribution, S(u′i) ≡ 0. From

Fig. 2.7, it is clear the value of the skewness factor of azimuthal velocity fluctuations

follows the Gaussian distribution (i.e., S(u′θ) = 0), which reflects the fact that flow is

26



r+

F
la
tn
es
s
fa
ct
or

0 20 40 60 800

5

10

15

20

25

30

D, F(u')

A6, F(u'z)
A6, F(u'r)
A6, F(u')
D, F(u'z)
D, F(u'r)

(a)

r+

F
la
tn
es
s
fa
ct
or

0 20 40 60 800

5

10

15

20

25

30

(b)

Figure 2.8: Flatness factors of the velocity field on the convex and concave sides of
the concentric annular pipe for cases A6 and D. (a) convex side, and (b) concave
side. The flatness factor of the ideal Gaussian distribution is also plotted using a thin
dashed line, which is F (u′i) ≡ 3.

statistically axial-symmetric, and therefore, homogeneous in the azimuthal direction.

However, the skewness factors of the other two components (S(u′z) and S(u′r)) of the

velocity field deviate significantly from the Gaussian distribution as a result of wall

anisotropy. As the nominal Reynolds number increases from ReDh = 8900 to 17700,

the amplitude of S(u′r) varies little, but that of S(u′z) increases significantly.

The flow physics are dominated by sweeping and ejection events on near both

convex and concave cylinder walls, although the strengths of these events are different

due to the difference in the surface curvature of the two cylinders. The ejection

events are characterized by S(u′z) < 0 and S(u′r) > 0, while the sweeping events are

characterized by S(u′z) > 0 and S(u′r) < 0. The ejection and sweeping events are

associated with the so-called “Q2” and “Q4” events in quadrant analysis of Reynolds

stresses, respectively (Adrian, 2007). The quadrant analysis of Reynolds shear stresses

can be conducted with respect to the sign of u′i or u′3i . This is because sign(u′i) =

sign(u′3i ). Therefore, sweeping and ejection events of a wall-bounded flow can be

studied based on the skewness factor. In order to facilitate a clear discussion of

near-wall ejection of sweeping events, regions corresponding to these two events are
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delineated using vertical dashed lines, which go through the zero-crossing points of

the skewness factors in the radial direction (at which S(u′z) = 0 and S(u′r) = 0).

The Reynolds number effects on the sweeping and ejection events are evident, which

occur within r+ ∈ [5, 8] and r+ ∈ [28, 134] on the convex cylinder side; but within

r+ ∈ [3, 8] and r+ ∈ [30, 161] on the concave cylinder side, respectively, at the lower

nominal Reynolds number of ReDh = 8900. As the Reynolds number increases to

ReDh = 17700, the strengths of the ejection and sweeping events become stronger, as

the magnitudes of both S(u′z) and S(u′r) increase. At ReDh = 17700, the sweeping and

ejection events occur within r+ ∈ [5, 12] and r+ ∈ [30, 253] on the convex cylinder side;

but within r+ ∈ [4, 12] and r+ ∈ [31, 302] on the concave cylinder side, respectively.

From these numbers, it is clear that the profiles of S(u′z) and S(u′r) are asymmetrical

in the wall-normal direction as a result of curvature difference between the convex

and concave cylinder walls, a physical feature that is different from that the classical

2-D plane-channel flows Kim et al. (1987). In fact, this asymmetrical feature can be

easily seen by directly comparing Figs. 2.7a and 2.7b, which show that the amplitudes

of S(u′z) and S(u′r) in these two figures are different at the same radial position r+.

From Fig. 2.8, it is clear that the flatness factors of all three components of velocity

fluctuations peak at the wall, a pattern that is a characteristic of near-wall turbulence

also observed in the classical turbulent plane-channel flows (Kim et al., 1987). The

magnitude of F (u′i) is the largest near the wall, and gradually converges to F (u′i) = 3

as the distance from wall increases, which is the theoretical value for the Gaussian

distribution. The Reynolds number effects on the flatness factor is evident. As the

nominal Reynolds number increases from ReDh = 8900 to 17700, the amplitude of

F (u′θ) varies little, but those of F (u′r) and F (u′z) increase significantly. Furthermore,

by comparing Figs. 2.8a and 2.8b, it is clear that the magnitude of the F (u′i) is larger

near the concave side than near the convex side in general, as a result of the curvature

difference between the inner and outer cylinder walls.
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Figure 2.9: Profiles of normalized two-point correlation coefficient Rzz of the axial
velocity fluctuations (u′z) calculated over the cylindrical surface located at r+ = 15
from the convex and concave walls, where the Reynolds normal stress 〈u′zu′z〉 reaches
its peak value. (a) axial correlations for A- and D-series test cases (convex side),
(b) axial correlations for A- and D-series test cases (concave side), (c) azimuthal
correlations for B- and D-series test cases (convex side), and (d) azimuthal correlations
for B- and D-series test cases (concave side).

2.2.4 Two-point correlation

Two-point correlation is a conventional tool for studying the adequacy of the com-

putational domain size as well as the length scales of coherent structures. The axial

and azimuthal 1D two-point correlation functions for the axial velocity fluctuations
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are defined as

Rzz(∆z) =
〈u′z(z, rθ, r, t)u′z(z + ∆z, rθ, r, t)〉
〈u′z(z, rθ, r, t)u′z(z, rθ, r, t)〉

, (2.8)

and

Rzz(r∆θ) =
〈u′z(z, rθ, r, t)u′z(z, rθ + r∆θ, r, t)〉
〈u′z(z, rθ, r, t)u′z(z, rθ, r, t)〉

, (2.9)

respectively.

Figures 2.9(a) and 2.9(b) compare the profiles of the axial 1D two-point correlation

coefficient Rzz(∆z) of the A-series test cases calculated over the cylindrical surface

positioned at r+ = 15 from the convex and concave walls, where Reynolds normal

stress 〈u′zu′z〉+ reaches its peak value. Given their overly short axial domain sizes,

the correlation coefficient curves of cases A1 and A2 end with finite values far above

Rzz(∆z) = 0, clearly suggesting insufficiency of the axial domain sizes to justify the

use of the assumption of periodic boundary condition in these two test cases. By

contrast, the two-point correlation coefficients of cases A3–A6 fall to Rzz(∆z) = 0

at ∆z+ ≈ 1000. This indicates that a minimum domain of Lz = 6πδ (of case A3)

is, indeed, required to capture the length scale of axial turbulent flow structures.

Figures 2.9(c) and 2.9(d) compare the azimuthal 1D two-point correlation Rzz(r∆θ)

at r+ = 15 on the convex and concave sides, respectively. The value of Rzz(r∆θ)

becomes negative and reaches its minimum at (r∆θ)+ ≈ 60 and (r∆θ)+ ≈ 90 on

the convex and concave sides, respectively. This indicates that the mean spacing

between the near-wall streaks is smaller on the concave side and larger on the convex

side due to the curvature difference between these two cylinder walls. The value of

Rzz(r∆θ) does not end with zero in cases B1 and B2, suggesting that the azimuthal

computational domain sizes are insufficient for accurately conducting DNS in these

two cases. Based on the above analysis of the 1D two-point correlation coefficients

and previous analysis of the first- and second-order flow statistics, it is tempting to

conclude that the minimum computational domain should be kept at Lz = 6πδ and

Lθ = π/2 in order to capture the length scales of energetic eddy motions at the lower

nominal Reynolds number of ReDh = 8900. This would lead to the conclusion that
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the domain of cases C and Ca is proper. However, so far, our study (conducted in

section 2.2) has been limited exclusively to the physical space based on the analysis of

the first- and second-order statistical moments of the velocity field and 1D two-point

correlation coefficients, Rzz(∆z) and Rzz(r∆θ). It should be noted that the choice of

the computational domain sizes purely based on evidences in the physical space may

not be conclusive. To confirm, the study needs to be further refined by examining

the characteristic wavelengths of turbulent flow structures in the spectral space. In

fact, we will show in the following section that this suggested minimal domain (of

Lz = 6πδ and θ = π/2) is actually insufficient, a proper computational domain that

allows for capturing the most energetic eddy motions is that of case B4 (of Lz = 12πδ

and Lθ = 3π/4) based on the analysis of the axial and azimuthal 1D premultiplied

spectra of velocity fluctuations.

2.3 Turbulence structures and spectral analysis

2.3.1 Scales of hairpin structures and near-wall streaks

In a concentric annular pipe flow, the scales of energetic eddy motions are dominated

by two types of coherent turbulent structures, i.e. near-wall streaks and hairpin struc-

tures. The presence of near-wall streaks represents a universal feature of wall-bounded

turbulent flows. Figure 2.10 shows the near-wall streaks on the convex and concave

sides at r+ = 15, where the maximum turbulence kinetic energy (TKE) occurs. The

near-wall streaks are visualized using non-dimensionalized axial velocity fluctuations

u′+z , which show a persistent and regular pattern. From Fig. 2.10, it is clear that low-

and high-speed streaky structures alternate and are uniformly distributed in the ax-

ial and azimuthal directions. As one of the most energetic near-wall flow structures,

these energy-containing streaks are elongated in the axial direction, which need to be

captured in DNS by using a properly sized axial domain. If the axial domain is too
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(a) (b)

Figure 2.10: Contours of the non-dimensionalized axial velocity fluctuations u′z
+ of

case B4, plotted at r+ = 15 on the convex and concave sides, where the maximum
TKE occurs. (a) convex side, and (b) concave side. The contours are colored using
the magnitude of the instantaneous axial velocity fluctuations u′+z . To enhance the
visual clarity of near-wall structures, only a portion of the computational domain of
case B4 is plotted. The plotted domain sizes are Lz = 6πδ and Lθ = π/2.

short to capture the streaky structures, the axial length scales of the streaks will be

artificially chopped off or distorted, and consequently, the level of TKE contained by

near-wall streaks cannot be accurately calculated by DNS.

In section 2.2, we studied the minimum domain size required for properly conduct-

ing DNS in the physical space based on analysis of a variety of flow statistics, including

the two-point correction coefficients. As is well known, energy spectra are closely re-

lated to two-point correction coefficients, simply because they are counterparts of

each other in Fourier transform. Different from two-point correlations, energy spec-

tra can show precisely the turbulence energy level of flow structures at each specific

wavelength, which in turn, facilitates identifying the characteristic length scale (wave-

length) of turbulence structures at an arbitrary turbulence energy level. The axial

and azimuthal length scales of coherent structures can be examined precisely through

the analysis of premultiplied 2D energy spectrum, kzkθĚii, where Ěii = Ěii(kz, kθ, r)

is the 2D energy spectrum of velocity fluctuations in a homogeneous r-θ cylindrical
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surface, defined as

Ěii(kz, kθ, r) = 2û′i(kz, kθ, r)û
′
i

∗
(kz, kθ, r) (2.10)

for i = 1, 2 or 3 (no summation convention implied). Here, an overline ( ) indi-

cates time averaging, û′i represents a Fourier coefficient of u′i, û
′
i

∗
denotes its complex

conjugate, and kz and kθ denote the axial and azimuthal wavenumbers, respectively.

For discrete Fourier transform performed in a cylindrical coordinate system, these two

wavenumbers are determined as kz = nzkz0 and kθ = nθkθ0 for nz ∈ [−Nz/2, Nz/2−1]

and nθ ∈ [−Nθ/2, Nθ/2 − 1], respectively. Here, kz0 = 2π/Lz and kθ0 = 2π/(r · Lθ)

are the lowest positive wavenumbers in the axial and azimuthal directions determined

directly based on the domain sizes Lz and Lθ, respectively. The premultiplied 2D en-

ergy spectrum kzkθĚii is advantageous in identifying the characteristic wavenumbers

(kz and kθ) of the most energetic eddies in a r-θ cylindrical surface. In our discus-

sion, besides wavenumbers, we also use wavelengths to evaluate the length scales,

which are defined as λz = 2π/kz and λθ = 2π/kθ. Clearly, both kz and λz are in-

dependent of r, but both kθ and λθ are functions of r (because kθ0 is a function of

r). Equation (2.10) can be alternatively expressed as a function of wavelengths as

Ěii(λz, λθ, r) = 2û′i(λz, λθ, r)û
′
i

∗
(λz, λθ, r).

Figures 2.11(a)-2.11(d) display contours of premultiplied 2D energy spectra k+
z k

+
θ Ě

+
zz

of case B4 at two radial positions: close to the wall at r+ = 15, where the axial com-

ponent of TKE (i.e., 〈u′zu′z〉) peaks; and one quarter cylinder gap (or, δ/2) away

from the wall (i.e., (R − r)/δ = 0.5 from the convex wall, or (r − R)/δ = 0.5 from

the concave wall). The flow structures at these two radial positions are qualitatively

different in the sense that streaky structures are populated in the near-wall region

around r+ = 15, while hairpin packets are populated around the elevated position

δ/2 away from the convex or concave wall. In presenting results, the 2D energy spec-

trum, wavenumbers, and wavelengths have been non-dimensionalized using ν and

local wall friction velocity (which equals to either uτi or uτo depending on the convex
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(a) (b)

(c) (d)

Figure 2.11: Premultiplied 2D spectra k+
z k

+
θ Ě

+
zz of axial velocity fluctuations on the

convex and concave sides of the concentric annular pipe for case B4, which vary with
the axial and azimuthal wavelengths. (a) r+ = 15 on the convex side, (b) r+ = 15 on
the concave side, (c) (R− r)/δ = 0.5 on the convex side, and (d) (R− r)/δ = 0.5 on
the concave side. In each figure panel, the wavelength is given both as λ+

z (bottom)
and as λz/δ (top). Similarly, the azimuthal coordinate is given both as λ+

θ (left)
and as λθ/δ (right). The computational domain of case B4 (i.e., Lz = 12πδ and
Lθ = 3π/4) are shown as the boundaries in Fig. 2.11. For the purpose of comparison,
smaller axial and azimuthal domain sizes used in other test cases are also labeled in
the figure. The figure presentations are made at two radial positions: close to the wall
at r+ = 15, where 〈u′zu′z〉+ peaks; and at one quarter the cylinder gap (or, δ/2) away
from the wall (i.e., (R− r)/2 = 0.5 from the convex wall or (r−R)/2 = 0.5 from the
concave wall). Three energy levels are distinguished, and the innermost, intermediate
and outermost isopleths correspond to 0.875 max(k+

z k
+
θ Ě

+
ii ), 0.625 max(k+

z k
+
θ Ě

+
ii ) and

0.375 max(k+
z k

+
θ Ě

+
ii ), respectively.
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or concave side). These non-dimensionalized quantities are indicated using super-

script “+” in consistency with the convention of wall coordinates. In Fig. 2.11, the

spectrum maps show three regions of high-, intermediate- and low-intensity cores

distinguished by colors, and their borders are shown using black solid lines corre-

sponding to 0.875 max(k+
z k

+
θ Ě

+
zz), 0.625 max(k+

z k
+
θ Ě

+
zz) and 0.375 max(k+

z k
+
θ Ě

+
zz) (or,

7/8-th, 5/8-th and 3/8-th the peak values of the non-dimensionalized premultiplied

spectrum, respectively). The high-intensity core enclosed by the innermost isopleth

of 0.875 max(k+
z k

+
θ Ě

+
zz) corresponds to the most energetic eddies of the turbulent

flow field. Although the low-intensity core (enclosed by the outermost isopleth of

0.375 max(k+
z k

+
θ Ě

+
zz)) corresponds to less dominant energetic eddies encompassing a

large range length scales, it still contributes considerably to the total TKE of the

flow.

Besides the three isopleths which show three magnitude levels of the premultiplied

spectrum relative to its peak value, the absolute value of the non-dimensionalized

premultiplied spectra is also indicated using a color legend in Fig. 2.11. The com-

putational domain sizes of case B4 (i.e., Lz = 12πδ and Lθ = 3π/4) are shown as

the boundaries in Fig. 2.11. For the purpose of comparison, smaller axial and az-

imuthal domain sizes used in other test cases are also labeled in the figure. From

Fig. 2.11, it is clear that both the innermost and intermediate isopleths (correspond-

ing to 0.875 max(k+
z Ẽ

+
zz) and 0.625 max(k+

z Ẽ
+
zz), respectively) are fully captured. Fur-

thermore, it is seen that the majority of the outermost isopleth of 0.375 max(k+
z Ẽ

+
zz)

is captured, with only a very small portion of the isopleth missing in Figs. 2.11(a)

and 2.11(b). Based on this analysis of premulitplied 2D spectra k+
z k

+
θ Ě

+
zz, it is con-

firmed that the computational domain of case B4 (with Lz = 12πδ and Lz = 3π/4) is

satisfactory in general, which can facilitate capture of large flow structures up to wave-

lengths that correspond to at least 37.5% of the peak value of the non-dimensionalized

premulitplied 2D spectrum. By contrast, any arbitrary combination of smaller axial

and azimuthal computational domain sizes would result in an inaccurate prediction of
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large-scale structures with a higher percentage of TKE cutoff. For instance, as shown

in Fig 2.11(c), if the “worst” combination of Lz = πδ and Lz = π/6 is used for con-

ducting DNS, the domain is barely sufficient for capturing the peak of k+
z k

+
θ Ě

+
zz but

does not even allow for fully capturing the most energetic eddies of turbulence corre-

sponding to the innermost isopleth of 0.875 max(k+
z k

+
θ Ě

+
zz). The analysis conducted

here is based on the premulitplied 2D spectra k+
z k

+
θ Ě

+
zz at two special wall-normal

positions of r+ = 15 and (r − R)/δ = 0.5. Later in sections 2.3.2 and 2.3.3, we

will refine our study by further investigating the characteristic axial and azimuthal

length scales of the most energetic turbulence structures over the entire wall-normal

direction (i.e., the entire r-direction) through an analysis of their premulitplied 1D

spectra.

Figures 2.11(a) and 2.11(b) show that the mode of k+
z k

+
θ Ě

+
zz occurs at λ+

z ≈

1100 and λ+
θ ≈ 120 on the convex side, and at λ+

z ≈ 900 and λ+
θ = 90 on the

concave side. These two modes represent the characteristic length scales (periods)

of the streaky structures in the axial and azimuthal directions. The differences in

the axial and azimuthal characteristic wavelengths on the convex and concave sides

result from the surface curvature difference between the convex and concave cylinder

walls. Apparently, both axial and azimuthal characteristic length scales of the streaks

are larger on the convex side than on the concave side. This leads to an important

conclusion that the challenge involved in accurately performing DNS of a concentric

annular pipe flow mostly stems from the need of capturing large streaky structures

on the convex side. Compared to the concave side, the streaky structures on the

convex side are more elongated in the axial direction and more widely spread in the

azimuthal direction. Although the characteristic length scales of near-wall streaky

structures in a concentric annular pipe flow are sensitive to the surface curvature,

their magnitudes are, in general, comparable to those of a plane-channel flow, which

are approximately 1000 and 100 wall units in the streamwise and spanwise directions,

respectively Kim et al. (1987); Chernyshenko and Baig (2005).
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At a higher elevation of δ/2 away from the convex and concave walls, the cur-

vature effect on turbulence structures reduces, and the flow is dominated by hairpin

packets. From Figs. 2.11(c) and 2.11(d), it is seen that the mode of k+
z k

+
θ Ě

+
zz occurs

approximately at λ+
z = 405 and λ+

θ = 190 on both convex and concave sides. As

is well known from the study of near-wall turbulent boundary layer over flat plates

by Adrian Adrian (2007), hairpin structures constantly generate secondary hairpin

vortices (SHV), develop into primary hairpin vortices (PHV) and are destroyed as

downstream hairpin vortices (DHV). Figure 2.12 shows instantaneous contours of

the swirling strength (for λci = 1.0) of case B4. Similar to Fig. 2.10, only part of

the computational domain is used for illustrating hairpin structures in Fig. 2.12. In

addition, the domain is divided radially into two parts to clearly show the hairpin

structures on the convex and concave sides. The hairpin structures identified by the

swirling strength are further superimposed with colors corresponding to the value of

non-dimensionalized instantaneous axial vorticity ω′+z , with red and blue colors rep-

resenting its positive and negative values, respectively. This facilitates identification

of paired hairpin legs of counter-rotating directions. Figure 2.12 shows that hairpin

structures are populated on both convex and concave sides of the concentric annular

pipe, consisting of elongated legs (appearing as counter-rotating vortices, differenti-

ated using the blue and red colors of ω′+z ) near the wall, and arches (or heads) at

higher elevations relatively far away from the wall.

In order to demonstrate the spatial evolution of hairpin packets in the axial di-

rection, a chain of hairpin structures on the concave side of the pipe are isolated

from the surrounding flow structures in Fig. 2.12(b) using a green box and are shown

separately by projecting the selected domain into a 2D z-r plane in Fig. 2.13(a).

The hairpin structures displayed in Fig. 2.13(a) are magnified, showing a clear side

view of the axial development of hairpin packets (consisting of PHV and SHV) on

the concave side of the concentric pipe. The hairpin structures can be also studied

based on a conditional averaging method described by Adrian (1994). Figure 2.13(b)
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(a) (b)

Figure 2.12: Contours of swirling strength (λci = 1.0) for case B4. (a) convex side,
and (b) concave side. The contours are colored with instantaneous axial vorticity
ω′+z . To enhance the visual clarity of near-wall structures, only a portion of the
computational domain is plotted for Lz = 6πδ and Lθ = π/2.

shows the contours of 〈u′+z |Q2〉, where the averaging of axial velocity fluctuations

u′z is done based on the condition of ejection events (or, the Q2 events which fea-

ture u′ < 0 and v′ > 0). The reason that u′z is selected is that the length scales of

large-scale streaky structures (or, the “legs” of hairpin structures) can be very ef-

fectively determined by the axial velocity fluctuations in either two-point coefficient

analysis or 1D and 2D spectral analyses (see, Figs. 2.9, 2.10, 2.11, 2.14 and 2.15).

From both Figs. 2.13(a) and 2.13(b), the periodicity of the hairpin packets can be

readily identified (indicated using the thick dashed lines), with a period of approx-

imately λ+
z = 400. This result is consistent with our previous analysis of the mode

of premultiplied 2D spectrum k+
z k

+
θ Ě

+
zz based on Fig. 2.11, which indicates that the

axial characteristic wavelength of hairpin structures is approximately λ+
z = 405. The

above analysis of large-scale turbulence structures (specifically, near-wall streaks and

hairpin structures in core turbulent regions) was conducted based on premulitplied

2D spectra k+
z k

+
θ Ě

+
zz(r

+, λ+
z , λ

+
θ ) at two radial positions only. In order to develop a

general understanding of the effect of radial position on the axial and azimuthal char-
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(a)

(b)

Figure 2.13: Side view of hairpin structures on the concave side of the concentric
pipe for case B4. (a) contours of the swirling strength of λci = 1.0 colored using the
strength of ω′+z , (b) contours of conditional averaging of axial velocity fluctuations
〈u′+z |Q2〉 in the z-r plane located at θ = 0◦. In panel (a), the hairpin structures are
obtained by projecting the selected domain from Fig. 2.12(b) (indicated using a 3D
green box) into a 2D z-r plane here. The green and black dashed lines in panel (a)
show the positions of the PHV and SHV, respectively. The wavelength of both PHV
and SHV is approximately λ+

z = 400.

acteristic length scales of turbulence structures, in the following, we will refine the

research by looking into the premulitplied 1D spectra as a function of r+ and k+
z in

section 2.3.2 and as a function of r+ and k+
θ in section 2.3.3. In addition, through the

study of characteristic length scales of turbulence structures using the premultiplied

1D spectra, we will further investigate the minimal axial domain size required for

rigorously conducting DNS of concentric annular pipe flow and structures.
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2.3.2 Axial premultiplied energy spectra

The 1D axial energy spectrum can be directly computed by integrating the 2D energy

spectrum over the azimuthal wavenumbers, i.e.

Ẽii(kz, r) =

∫
Ěii(kz, kθ, r)dkθ , (2.11)

or in a discrete form, as Ẽii(kz, r) = kθ0
∑

kθ
Ěii(kz, kθ, r) for i = 1, 2 or 3 (no

summation convention implied). Due to the need of studying cases of different domain

sizes (of different values of kz0 and kθ0), the premultiplied 1D energy spectrum kzẼii

needs to be further normalized by the spectral area kz0kθ0 in our comparative study.

Because case A6 has the largest computational domain size, its spectral results are

the most accurate among all 12 test cases of the lower nominal Reynolds number of

ReDh = 8900. Figure 2.14 compares the premultiplied 1D axial energy spectra of all

three velocity fluctuation components on the convex and concave sides of case A6.

For the purpose of comparison, vertical dash-dotted lines are used to demarcate the

axial computational domain sizes of cases A3-A5, which vary from Lz = 6πδ to

18πδ. The premultiplied 1D energy spectrum has been non-dimensionalized using

the local friction velocity, which equals to either uτi or uτo depending on the convex

or the concave cylinder side in consideration. Similar to Fig. 2.11, three levels of the

premulitplied energy spectrum are identified, which represent the high-, intermediate-

and low-intensity cores of a turbulence structure. The contours for these three levels

of the premultiplied spectrum are distinguished by colors and black solid borderlines

corresponding to 0.875 max(k+
z Ẽ

+
ii ), 0.625 max(k+

z Ẽ
+
ii ) and 0.375 max(k+

z Ẽ
+
ii ).

Figures 2.14(a) and 2.14(b) compare the contour patterns of the non-dimensionalized

premultiplied 1D spectrum of axial velocity fluctuations k+
z Ẽ

+
zz on the convex and

concave sides of the concentric annular pipe, as a function of the radius r+ and

wavelength λ+
z . The mode (indicated using a red cross symbol “×” in the figure)

of k+
z Ẽ

+
zz occurs at (r+, λ+

z ) = (14.8, 1100) and (r+, λ+
z ) = (15.3, 900) on the convex

and concave sides, respectively. Clearly, the characteristic axial length scales of the
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Contours of premultiplied 1D axial energy spectra of k+
z Ẽ

+
zz(λ

+
z , r

+),

k+
z Ẽ

+
rr(λ

+
z , r

+), and k+
z Ẽ

+
θθ(λ

+
z , r

+) of case A6, non-dimensionalized by u2
τ . (a) k+

z Ẽ
+
zz

on the convex side, (b) k+
z Ẽ

+
zz on the concave side, (c) k+

z Ẽ
+
rr on the convex side,

(d) k+
z Ẽ

+
rr on the concave side, (e) k+

z Ẽ
+
θθ on the convex side, and (f) k+

z Ẽ
+
θθ on the

concave side. The value of uτ equals to either uτi or uτo, depending on the convex
or the concave cylinder side in consideration. In each figure panel, the wavelength
is given both as λ+

z (bottom) and as λz/δ (top). Similarly, the radial coordinate is
given both as r+ (left) and as (R − r)/δ or (r − R)/δ (right, for convex or concave
side, respectively). The cross symbol ‘×’ pinpoints the location of the mode.
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streaky structures as indicated by the axial modes of k+
z Ẽ

+
zz and k+

θ k
+
z Ězz (inferred

from Figs. 2.11 and 2.14) are consistent, which are λ+
z = 1100 and 900 on the convex

and concave sides of the concentric annular pipe, respectively. The radial position

where the mode of k+
z Ẽ

+
zz occurs is similar between the convex an concave sides of

the concentric annular pipe, which is approximately at r+ = 15. This implies that

under the testing condition, the near-wall streaky structures are the most energetic

at this radial position on both sides of the concentric annular pipe. The appearance

of the peak value of k+
z Ẽ

+
zz at radial position of approximately r+ = 15 is consistent

with that for 〈u′zu′z〉+ in the physical space. However, it should be indicated here that

the overlapping of these two modes of k+
z Ẽ

+
zz and 〈u′zu′z〉+ at r+ = 15 is not strictly

required in mathematics, because these two quantities are connected through an in-

tegral relationship, i.e. 〈u′zu′z〉 =
∫
Ẽzz(r, kz)dkz. From Figs. 2.14(a) and 2.14(b), it

is evident that the domain of case A6 (with Lz = 30πδ and Lθ = 2π) is sufficiently

large to fully capture the outermost isopleth that corresponds to 0.375 max(k+
z Ẽ

+
ii ).

If the axial domain size drops to Lz = 18πδ (as in case A5), the outermost isopleth is

still fully captured on the concave side of the pipe at all radial positions. As the axial

domain size drops further to Lz = 12πδ (as in case A4), the outermost isopleth is

well captured at all radial positions but is slightly missed around r+ = 15. However,

as is seen in Fig. 2.14(a), if the axial domain size continues to drop to Lz = 6πδ

(as in case A3), even the intermediate isopleth corresponding to a higher TKE level

of 0.625 max(k+
z Ẽ

+
ii ) cannot be fully captured, indicating a rather inaccurate DNS.

From the previous analysis of turbulence statistics in the physical space conducted in

section 2.2, we drew a conclusion that a minimum axial domain length of Lz = 6πδ

of case A3 was satisfactory, which is apparently contradictory to the evidence shown

in Fig. 2.14(a) and 2.14(b). The spectral analysis conducted here allows us to refine

the study by accurately assessing the axial characteristic wavelengths of energetic

near-wall streaky structures. Based on the combined physical and spectral analyses,

it is now confirmed that the minimum axial computation domain must be stretched
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to Lz = 12πδ, in order perform DNS accurately for the turbulent concentric annular

pipe flow investigated here.

By comparing Figs. 2.14(c)-2.14(f), it is apparent that all three isopleths (cor-

responding to 0.875 max(k+
z Ẽ

+
ii ), 0.625 max(k+

z Ẽ
+
ii ) and 0.375 max(k+

z Ẽ
+
ii )) are fully

captured by axial premultiplied 1D spectra of radial and azimuthal velocity fluctu-

ations, k+
z Ẽ

+
rr and k+

z Ẽ
+
θθ, respectively. It should be indicated that in Figs. 2.14(c)

and 2.14(d), the outermost isopleth is not fully captured at the maximum radial po-

sition around r+ = 150. This is not an indication of insufficient radial domain size,

but instead a reflection of the radial domain center, as only one-half of the radial

domain is plotted in Figs. 2.14(c) and 2.14(d). From Figs. 2.14(c)-2.14(f), it is ob-

served that the energy levels of k+
z Ẽ

+
rr and k+

z Ẽ
+
θθ (as indicated by the color-scale

legend) are one order of magnitude smaller than that of k+
z Ẽ

+
zz. The modes of k+

z Ẽ
+
rr

and k+
z Ẽ

+
θθ occur at (r+, λ+

z ) = (50, 200) and (30, 200) on both sides of the concen-

tric pipe, respectively. Clearly, the axial characteristic wavelengths of the turbulence

structures as indicated by the modes of k+
z Ẽ

+
rr and k+

z Ẽ
+
θθ are much smaller than that

of k+
z Ẽ

+
zz (which is about 1000 wall units, see above). Furthermore, it is interesting to

observe that the modes of k+
z Ẽ

+
zz, k

+
z Ẽ

+
rr and k+

z Ẽ
+
θθ appear at three different radial

positions for r+ = 15, 30 and 50, respectively. The physical mechanisms underly-

ing these observations relate to the features of hairpin structures shown in Fig. 2.13.

Similar to the hairpin structures of a turbulent boundary layer developed over a flat

plate (Adrian Adrian (2007)), the radially oriented parts of a hairpin structure that

connects the legs to the head (referred to as the “neck” by Adrian Adrian (2007))

contribute the most to the peak value of k+
z Ẽ

+
rr (associated with the radial Reynolds

normal stress component 〈u′ru′r〉+). The necks of hairpin structures (for both PHV

and SHV) are the most energetic around r+ = 50, characterized by wavelength of

approximately λ+
z = 200. Because the characteristic wavelength of either PHV or

SHV (see Fig. 2.13) is approximately 400 wall units, the axial separation of the hair-

pin necks is typically around 200 wall units at this particular radial position judging
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from the mode of k+
z Ẽ

+
rr. The reason that the peak of k+

z Ẽ
+
θθ appears at r+ = 30

is that there exist azimuthally-oriented vortex filaments, which connect hairpin legs

and are the most energetic around this elevation. These azimuthally-oriented vortex

filaments lay further away from the wall than the near-wall streaks, perturbed and

pushed away by ejections to form hairpin arches at higher elevations. Consistent with

the analysis of the hairpin necks, the characteristic wavelength that represents the

axial separation of azimuthally-oriented vortex filaments is also 200 wall units.

From the above analysis of the premultiplied 1D energy spectrum k+
z Ẽ

+
zz in Figs. 2.14(a)

and 2.14(b), it is understood that the axially-elongated streaks are the most energetic

and the longest at r+ ≈ 15 on both convex and concave sides. Correspondingly, the

magnitude of Reynolds normal stress 〈u′zu′z〉+ also peaks at this radial position on

both sides of the concentric annular pipe. The contours of k+
z Ẽ

+
zz shown in Fig. 2.14

are based on case A6 only, which has the largest computational domain and allows

for the most accurate prediction of turbulence statistics. However, in order to un-

derstand the direct influence of the axial domain size on the predictive accuracy of

k+
z Ẽ

+
zz, test cases of different axial domain sizes must be compared based on indepen-

dent numerical simulations. To this purpose, the profiles of all six A-series test cases

are compared in Fig. 2.15. To demonstrate the Reynolds number effect, the profiles

of the six A-series test cases are also compared against that of case D. The black

dashed lines demarcate the axial computational domain sizes as well as the cutoff

wavelengths of the A-series test cases, which vary from Lz = 6πδ to 30πδ in cases A3

to A6. Similarly, the red dashed line demarcates the axial computational domain size

and cutoff wavelength of case D.

From Fig. 2.15, it is clear that cases A1 and A2 fail to capture the mode of k+
z Ẽ

+
zz,

implying that the most energetic eddy motions are missed in DNS. This well explains

the failure of cases A1 and A2 in terms of the prediction of 〈u′zu′z〉+ in Fig. 2.4a. As is

clear from Fig. 2.15, although the mode of the premulitplied 1D energy spectrum has

been successfully captured in cases A3-A6, the spectrum cutoffs for these four test
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Figure 2.15: Profiles of non-dimensionalized premultiplied 1D axial energy spectra
k+
z Ẽ

+
zz of the A- and D-series test cases at the cylindrical surface located at r+ = 15

from the convex and concave walls. (a) convex side, and (b) concave side. Vertical
dashed lines demarcate the axial computational sizes (i.e., Lz values) for cases A1-A6
and D.

cases are different due to the differences in their axial domain sizes. At their cutoff

wavelength, the magnitude of the premultiplied 1D energy spectrum is 79%, 45%,

32% and 21% of its peak value on the convex side and is 79%, 44%, 34% and 18% of

its peak value on the concave side in cases A3, A4, A5 and A6, respectively. Given

the fact that the cutoff wavelength occurs at a very high TKE level, the amount of

TKE associated with wavelengths that are larger than the cutoff wavelength missed

by DNS is significant in case A3. For this reason, even though the axial domain

length of case A3 (Lz = 6πδ) was satisfactory in previous predictions of the mean

velocity, Reynolds stresses and two-point correlation coefficient, it is insufficient with

respect to the current spectral analysis. Based on our previous analysis of Fig. 2.14,

it is understood that an axial domain size of Lz = 12πδ is satisfactory in general

with respect to capturing TKE at all radial positions for test cases of lower nominal

Reynolds number of ReDh = 8900. From Fig. 2.15, it is further confirmed that even

at r+ = 15 where the near-wall streaks are the most energetic and the longest, the

cutoff wavelength occurs when the premultiplied 1D spectrum decays to 45% of its
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peak value, implying that most of the energy-containing length scales are resolved in

DNS.

Also from Fig. 2.15, it is seen that as the nominal Reynolds number increases

from ReDh = 8900 to 17700, the cutoff wavelength of case D takes place when the

premultiplied 1D spectrum decays to 39% and 47% of its peak value on the convex and

concave cylinder sides, respectively. By comparing case D with case A4, it is clear

that although the level of the premultiplied 1D spectrum at the cutoff wavelength

is comparable between cases D and A4, the axial domain length of case D is only

Lz = 8πδ, which is much shorter than that (12πδ) of case A4. This implies that a

shorter axial domain is needed for conducting DNS at a higher Reynolds number. This

phenomenon is interesting but not surprising, which is similar to that of the classical

turbulent plane channel flows Jiménez and Moin (1991); Kim et al. (1987); Moser and

Moin (1987) and can be explained as follows. From the above analysis of Figs. 2.14

and 2.15, it understood that the mode of either the 2D or 1D premultiplied spectrum

of axial velocity fluctuations occurs approximately at a wavelength of λ+
z = uτλz/ν ≈

1000 at both nominal Reynolds numbers, which corresponds to the characteristic axial

length scale of the most energetic streaky structures. Considering that the value of

wall friction velocity uτ increases as the Reynolds number increases (see Table 2.2),

then the characteristic wavelength λz (corresponding to the mode) must decrease in

order to maintain the value of the non-dimensional wavelength λ+
z at approximately

1000 wall units. As such, the physical axial length of concentric annular pipe required

for capturing the most energetic streaky structures can be shortened as the Reynolds

number increases.

For the lower nominal Reynolds number tested (ReDh = 8900), although the axial

computational domain size of case A6 is the largest, eddies of axial length scales that

are larger than the cutoff wavelengths (where the value of k+
z Ẽ

+
zz decays to 21% and

18% of its peak value on the convex and concave sides, respectively) are still missed in

the DNS. In fact, it is unrealistic to fully capture the premultiplied energy spectrum
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(with 0% of spectrum leaking) in a DNS or in a physical experiment, as it demands

using a pipe of infinite length. Thus far, the longest axial domain size used for DNS

of concentric annular pipe flow in the literature is Lz = 6πδ by Chung et al. Chung

et al. (2002) for a similar nominal Reynolds number of ReDh = 8900. As such, the

minimum axial domain size of Lz = 12πδ recommended here is twice that of Chung

et al. Chung et al. (2002), which makes it the longest in the current literature.

2.3.3 Azimuthal premultiplied energy spectra

Similar to the 1D axial energy spectrum, the 1D azimuthal energy spectrum can be

computed by integrating the 2D energy spectrum over the axial wavenumbers as

Ẽii(kθ, r) =

∫
Ěii(kz, kθ, r)dkz , (2.12)

or in a discrete form, as Ẽii(kθ, r) = kz0
∑

kz
Ěii(kz, kθ, r) for i = 1, 2 or 3 (no sum-

mation convention implied). Different from the 1D axial energy spectrum, the 1D

azimuthal energy spectrum is useful for analyzing the characteristic azimuthal length

scales associated with the energetic eddy motions. Based on the conclusion of the

previous subsection, it is understood that a minimum axial domain of Lz = 12πδ

is needed in order to capture axially-elongated energetic eddy motions. In this sub-

section, we aim at investigating the minimum azimuthal domain size for DNS by

analyzing the premultiplied 1D azimuthal energy spectrum k+
θ Ẽ

+
ii (as a function of

r+ and k+
θ ). To this purpose, case B5 (with Lz = 12πδ and Lθ = 2π) is selected, which

has a sufficient axial domain size and the largest azimuthal domain size to facilitate

generation of the most reliable azimuthal spectral results. Figure 2.16 compares the

premultiplied 1D azimuthal energy spectra of all three velocity fluctuation compo-

nents on the convex and concave sides of cases B5. Dash-dotted lines demarcate the

azimuthal computational domain sizes of cases B1-B5, which vary from Lθ = π/6 to

Lθ = 2π. Similar to the previous subsection, the local friction velocity (uτi or uτo) is

used for non-dimesionalization on the convex or concave side. The cross symbol ‘×’
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(a) (b)

(c) (d)

(e) (f)

Figure 2.16: Contours of premultiplied 1D axial energy spectra of k+
θ Ẽ

+
zz(λ

+
z , r

+),

k+
θ Ẽ

+
rr(λ

+
z , r

+), and k+
θ Ẽ

+
θθ(λ

+
z , r

+) of case B5, non-dimensionalized by u2
τ . (a) k+

θ Ẽ
+
zz

on the convex side, (b) k+
θ Ẽ

+
zz on the concave side, (c) k+

θ Ẽ
+
rr on the convex side,

(d) k+
θ Ẽ

+
rr on the concave side, (e) k+

θ Ẽ
+
θθ on the convex side, and (f) k+

θ Ẽ
+
θθ on the

concave side. The value of uτ equals to either uτi or uτo, depending on the convex
or the concave cylinder side in consideration. In each figure panel, the wavelength
is given both as λ+

θ (bottom) and as λθ/δ (top). Similarly, the radial coordinate is
given both as r+ (left) and as (R − r)/δ or (r − R)/δ (right, for convex or concave
side, respectively). The cross symbol ‘×’ pinpoints the location of the mode.
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pinpoints the mode corresponding to the maximum premultiplied energy spectrum,

i.e. max(k+
θ Ẽ

+
ii ). Similar to the previous analysis, contours corresponding to the of

high-, intermediate- and low-intensity cores are distinguished by three isopleth values

of the premultiplied 1D azimuthal spectra of 0.875 max(k+
θ Ẽ

+
ii ), 0.625 max(k+

θ Ẽ
+
ii )

and 0.375 max(k+
θ Ẽ

+
ii ), respectively. By comparing Figs. 2.16(a)-2.16(f), it is clear

that Fig. 2.16(e) represents the most critical scenario in terms of the choice of the

azimuthal domain size, which shows that a minimal domain of Lθ = 3π/4 (cor-

responding to case B4) is needed in order to fully capture the outermost isopleth

corresponding to 0.375 max(k+
θ Ẽ

+
θθ).

Figures 2.16(a) and 2.16(b) compare the contour patterns of premultiplied 1D

azimuthal spectrum of axial velocity fluctuations (k+
θ Ẽ

+
zz) on the convex and concave

sides. The mode of k+
θ Ẽ

+
zz occurs at (r+, λ+

θ ) = (14.8, 120) and (r+, λ+
θ ) = (15.3, 90)

on the convex and concave sides, respectively. The small difference in the modal

values of r+ between the convex and concave sides is due to the surface curvature

effect. Nonetheless, the appearance of the peak value of k+
θ Ẽ

+
zz at the radial position

of approximately r+ = 15 is consistent with the previous conclusion based on the

analysis of the premultiplied 1D axial spectrum k+
z Ẽ

+
zz.

Figures 2.16(c) and 2.16(d) show contours of the premultiplied 1D azimuthal spec-

trum of radial velocity fluctuations k+
θ Ẽ

+
rr on the convex and concave cylinder sides,

respectively. Clearly, the mode occurs at (r+, λ+
θ ) ≈ (50, 100) on both cylinder sides

of the concentric annular pipe. This mode of k+
θ Ẽ

+
rr indicates that the radially ori-

ented parts of hairpin structures (i.e., hairpin necks) are the most energetic at the

radial position of r+ ≈ 15 and the azimuthal spacing is approximately 100 wall units.

Figures 2.16(e) and 2.16(f) show the contours of the premultiplied 1D azimuthal spec-

trum of azimuthal velocity fluctuations k+
θ Ẽ

+
θθ. From Figs. 2.16(e) and 2.16(f), it is

seen that the mode of k+
θ Ẽ

+
θθ occurs at (r+, λ+

θ ) ≈ (30, 150) on both convex and con-

cave sides of the concentric annular pipe. The physical mechanism underlying this

mode is that the characteristic azimuthal length of the vortex filaments that con-
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Figure 2.17: Profiles of non-dimensionalized premultiplied 1D azimuthal energy spec-
tra k+

θ Ẽ
+
θθ of the B- and D-series test cases at the cylindrical surface located at r+ = 30

from the convex and concave walls. (a) convex side, and (b) concave side. Vertical
dashed lines demarcate the azimuthal computational sizes (i.e., Lθ values) for cases
B1-B5 and D.

nect the legs of the hairpin structures (i.e., hairpin arches) are the most energetic

at r+ ≈ 30, with an characteristic azimuthal wavelength of λ+
θ = 150. It should

be further indicated here that although the hairpin necks are the most energetic at

r+ ≈ 50, this does not imply that the hairpin arches are necessarily the most ener-

getic at higher elevations for r+ > 50. This is because the structures and dynamics of

hairpin packets are always more complicated in reality than the ideal situation that

all hairpin structures are uniformly sized and each hairpin structure has a perfect

symmetrical shape of two legs, two necks and one arch.

In Fig. 2.16(a)-2.16(e), the contours of all three components of k+
θ Ẽ

+
ii show quasi-

elliptical shapes, with an inclined major axis. This inclined major axis shows a

linear scale growth rate with the wall-normal distance, which indicates that the az-

imuthal scales of near-wall streaks (Figs. 2.16(a) and 2.16(b)) and hairpin structures

(Figs. 2.16(c)-2.16(f)) increase as the wall-normal distance increases. This observa-

tion is consistent with the DNS results of turbulent pipe flows of Wu et al. Wu et al.
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(2012) and hot-wire measurements of turbulent channel and pipe flows of Monty et

al. Monty et al. (2007).

From the above analysis of Fig. 2.16, it is understood that the value of k+
θ Ẽ

+
θθ

is more sensitive to the choice of the azimuthal domain size than the other two

components of the premultiplied 1D azimuthal spectra. Furthermore, it is understood

that the analysis of Fig. 2.16 is conducted based on the DNS result of case B5 only,

which has the largest azimuthal domain size of Lθ = 2π and offers the most accurate

DNS results among the B-series test cases. However, in order to examine the actual

influence of the azimuthal domain size on the predictive accuracy of DNS, numerical

simulations based on all five B-series test cases need to be carried independently. To

this purpose, Fig. 2.17 compares the non-dimensionalized premultiplied 1D azimuthal

spectra k+
θ Ẽ

+
θθ of all five B-series test cases at a fixed radial position r+ = 30. The

reason that Fig. 2.17 is plotted for r+ = 30 is that k+
θ Ẽ

+
θθ peaks approximately at this

radial position based on the DNS result of case B5 shown in Figs. 2.16(e) and 2.16(f).

In Fig. 2.17, the black dashed lines demarcate the azimuthal computational domain

sizes as well as the cutoff wavelengths of the B-series test cases, which vary from

Lθ = π/6 to 2π in cases B1 to B5. The results shown in Fig. 2.17 provide a direct

measure on the accuracy of the assumed periodical azimuthal boundary condition

used in DNS at the lower nominal Reynolds number of ReDh = 8900. To investigate

the Reynolds number effects, the profiles of these five B-series test cases are also

compared against that of case D. Clearly, the turbulence energy level as indicated by

the premultiplied spectrum of the azimuthal velocity fluctuations (k+
θ Ẽ

+
θθ) increases

as the Reynolds number increases. This pattern of k+
θ Ẽ

+
θθ as a result of an increasing

Reynolds number in the spectral space is consistent with that of 〈u′θu′θ〉+ in the

physical space shown in Fig. 2.5b. Furthermore, the characteristic azimuthal length

scale (or, the spanwise separation) of the energetic streaky structures corresponding

to the modal value of k+
θ Ẽ

+
θθ also increases as the Reynolds number increases on both

convex and concave cylinder sides of the concentric annular pipe.
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From Fig. 2.17(a), case B1 barely captures the mode of k+
θ Ẽ

+
θθ on the convex side.

This well explains that the underprediction of 〈u′θu′θ〉+ on the convex side in Fig. 2.5b.

By contrast, the mode of the premultiplied 1D azimuthal spectrum k+
θ Ẽ

+
θθ is captured

in cases B2-B5. However, the cutoff wavelengths of k+
θ Ẽ

+
θθ differ. Specifically, at the

cutoff wavelength, the magnitude of k+
θ Ẽ

+
θθ is 87.6%, 52.7%, 33.6% and 11.2% of its

peak value on the convex side, and 84.6%, 62.7%, 20.1% and 7.0% of its peak value

on the concave side, in cases B2, B3, B4 and B5, respectively. In other words, based

on the comparative study of k+
θ Ẽ

+
θθ at r+ = 30 for the B-series test cases, the compu-

tational domain size of Lθ = 3π/4 of case B4 resolves most of the energy-containing

scales. Only a small portion of large scales remain unresolved which contain energy

that is lower than 33.6% and 20.1% of the peak value of k+
θ Ẽ

+
θθ at the cutoff wave-

length on the convex and concave sides of the concentric annular pipe, respectively.

Furthermore, from Fig. 2.17, it is seen that as the nominal Reynolds number increases

from ReDh = 8900 to 17700, the cutoff wavelength of case D takes place when the

value of k+
θ Ẽ

+
θθ decays to 39% and 24% of its peak value on the convex and concave

cylinder sides, respectively. This further indicates the domain size of case D is suit-

able for capturing the characteristic azimuthal length scale of the energetic large-scale

streaky structures at the higher nominal Reynolds number of ReDh = 17700. Finally,

it is very interesting to observe that in case B5, the value of k+
θ Ẽ

+
θθ decays to 11.2%

and 7.0% of its peak value on the convex and concave sides of the concentric annular

pipe, respectively. Considering that the azimuthal domain size of case B5 is a full

circle with Lθ = 2π, there is only one explanation that there are some low-energy

flow structures in the flow, which have azimuthal periods larger than 2π. An exam-

ple of this type of continuously developing azimuthal structure is the familiar helical

structure.
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Chapter 3

The Effects of Radius Ratio on

Turbulent Concentric Annular

Pipe Flow and Structures

In a concentric annular pipe flow, the radius ratio not only alters the transverse

curvature of the inner and outer cylinder walls, but also drastically affects the char-

acteristics of turbulent boundary layers developed along the inner and outer cylinder

surfaces. Closely related to this subject, in the current literature, there are studies

of flows over a single concave or convex curved surface. For instance, So and Mellor

(1973) conducted an experiment in a wind tunnel of curved surfaces to study cur-

vature effects on the turbulent flow field. They reported that turbulence intensities

are higher on the concave wall than on the convex wall. Neves et al. (1994) con-

ducted DNS to study the effects of transverse curvature on the turbulent boundary

layer developed over a convex surface. They showed that as the transverse curva-

ture increases, the slope of the mean axial velocity in the logarithmic region and the

turbulent intensities reduce. They also showed that turbulence structures remain un-

affected unless the ratio of the boundary layer thickness to the radius of transversely

curved surface is large.
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As reviewed in chapter 1, although there are a couple of experimental and nu-

merical studies of the concentric annular pipe flow of different radius ratios (Nouri

et al., 1993; Chung et al., 2002), the number of detailed DNS studies of the effects

of radius ratio on the turbulent flow in a concentric annular pipe is still rather lim-

ited in the current literature. In view of this, we aim at conducting a systematic

DNS study of turbulent concentric annular pipe flow based on various radius ratios

(Ri/Ro = 0.1–0.7). Specifically, we will examine the effects of radius ratio on the first-

and second-order statistical moments of the velocity field, interaction of the boundary

layers developed over the inner and outer cylinder walls, spectra of the velocity and

vorticity fields, budget balance of Reynolds shear stress, and the length scales of the

streamwise vortical structures near the inner and outer cylinder walls. The content

and results of following chapter is published in Bagheri et al. (2020).

The organization of the present study is as follows: in section 3.1, the test cases

are described and the sufficiency of the selected computational domains is discussed.

In section 3.2, DNS results of various radius ratio cases are compared and analyzed.

Finally, in section 3.3, the effects of radius ratio on the scales and strengths of stream-

wise vortical structures and hairpin structures are investigated.

3.1 Test cases and numerical algorithm

Figure 3.1 shows the schematic diagram of concentric annular pipe flow with

respect to the cylindrical coordinate system. In this figure, z, θ and r, denote the

axial (streamwise), azimuthal and radial coordinates, respectively, and uz, uθ and

ur represent velocity components in the corresponding directions. The radius of

the cylindrical channel center is R = (Ri + Ro)/2. The equations that govern an

incompressible flow with respect to a cylindrical coordinate system read

∇ · ~u = 0 , (3.1)
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Figure 3.1: Computational domain and coordinates.

∂~u

∂t
+ ~u · ∇~u = −1

ρ
∇p+ ν∇2~u− Π

ρ
êz , (3.2)

where p, ρ and ν denote the pressure, density and kinematic viscosity, respectively. Π

is the constant mean axial pressure gradient that drives the flow, and êz is the base

unit vector of the z-direction, with |êz| ≡ 1. The details of numerical algorithm to

solve the governing equations of the problem are presented in appendix A.

A summary of test cases and grid resolutions are given in table 3.1. Four radius

ratios (for Ri/Ro = 0.1, 0.3, 0.5 and 0.7) are compared at a nominal Reynolds number

of ReDh = 8900. The axial domain size is fixed at Lz = 12πδ for all cases, where

δ = (Ro − Ri)/2 denotes one half the cylinder gap. However, the azimuthal domain

size varies from Lθ = 2π (in the case of Ri/Ro = 0.1) to Lθ = π/2 (in the case

of Ri/Ro = 0.7). Later in Section 3.2.1, a brief analysis will be conducted in the

physical and spectral spaces to justify the choice of these computational domain sizes
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for conducting the current DNS and research. The spatial grid resolution is uniform

in both axial and azimuthal directions. In the wall-normal direction, Chebyshev-

Gauss-Lobatto points were used to improve the spatial resolution near the wall. In

Table 3.1, the wall units of the inner and outer sides are calculated based on the

local wall friction velocities defined as uτi =
√
τwi/ρ and uτo =

√
τwo/ρ, respectively.

Here, the mean wall shear stresses on the inner and outer cylinder sides are defined

as τwi = ρν(d〈uz〉/dr)r=Ri and τwo = −ρν(d〈uz〉/dr)r=Ro , respectively. The mean

wall friction velocity uτ can be defined based on the weighted averaging over the

inner and outer cylinder walls, i.e. uτ = (Rouτo + Riuτi)/(Ri + Ro). The origin for

the radial coordinate r is located at the pipe center. In order to conduct near-wall

analysis (as in a turbulent plane channel), a wall coordinate r+ is also introduced,

which is defined as r+ = (r−Ri)uτi/ν and r+ = (Ro−r)uτo/ν on the inner and outer

cylinder sides, respectively. In order to maintain the accuracy required by DNS, the

grid resolution is kept at ∆z+
i ≤ 14.95 and (Ri∆θ)

+ ≤ 6.39 on the inner cylinder

side, and ∆z+
o ≤ 14.49 and (Ro∆θ)

+ ≤ 8.46 on the outer cylinder side. The radial

resolution for the first node off the wall is kept for ∆r+
min,i ≤ 0.22 and ∆r+

min,o ≤ 0.18

on the inner and outer cylinder sides, receptively. More importantly, the maximum

radial grid resolution is kept for ∆r+
max,i ≤ 9.07 and ∆r+

max,o ≤ 7.41 on the inner and

outer sides, respectively. Here, superscript “+” denotes a quantity expressed in the

wall coordinate (through non-dimensionalization based on ν and uτ ).

In this chapter, an arbitrary instantaneous flow variable φ is decomposed as φ =

〈φ〉+φ′, where a pair of angular brackets 〈·〉 represent temporal-averaging and spatial-

averaging over a homogeneous (z-θ) cylindrical surface. For each simulation, statistics

were collected at each time step for a reasonably long time duration of 35 large-eddy

turnover times (LETOTs), where an LETOT is determined as δ/uτ . The spectral

accuracy was also enforced during post-processing of DNS data in order to maintain

a high precision of the statistical results. The time step was kept at 0.001δ/Ub such

that the Courant-Friedrichs-Lewy (CFL) number is less than 0.8. All computations
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Table 3.1: Summary of four test cases of different radius ratios and grid resolutions
associated with each case. Here, δ = (Ro −Ri)/2 is one half the cylinder gap.

Ri/Ro 0.1 0.3 0.5 0.7

Lz × Lθ × Lr 12πδ × 2π × 2δ 12πδ × 3π/2× 2δ 12πδ × 3π/4× 2δ 12πδ × π/2 × 2δ
Nz ×Nθ ×Nr 480× 256× 64 420× 260× 64 384× 196× 64 384× 210× 64

∆z+
i 14.20 14.26 14.95 14.82

∆z+
o 11.39 13.10 14.18 14.49

∆r+
min,i 0.22 0.19 0.19 0.18

∆r+
min,o 0.18 0.18 0.18 0.18

∆r+
max,i 9.07 7.97 7.64 7.57

∆r+
max,o 7.28 7.32 7.25 7.41

(Ri∆θ)
+ 0.98 2.45 3.74 6.39

(Ro∆θ)
+ 7.90 7.54 7.09 8.46

were performed on the WestGrid (Western Canada Research Grid) supercomputers.

Required CPU hours to conduct a DNS varies depending on the number of grid points.

Test cases Ri/Ro = 0.1 and 0.7 are the most and the least expensive test cases, which

were performed using 6,580 and 5,266 CPU hours, respectively.

3.2 Results and discussions

3.2.1 Computational domain sizes

The accuracy of the predicted flow field depends on not only numerical algorithm,

and temporal and spatial grid resolutions, but also the computational domain size.

Although the pseudo-spectral method employed here is highly accurate, it by itself

is insufficient to warrant a correct prediction of the principal flow physics associated

with the most energetic eddy motions. If the computational domain is overly small,

energetic eddies cannot be captured by DNS, which necessarily leads to an artificial

distortion or chopping off of the energy spectra at low wavenumbers. The sufficiency of

a computational domain size can be investigated in both physical and spectral spaces

based on the criteria of two-point correlation and premultiplied energy spectra.
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Figure 3.2: Profiles of 1D two-point correlation coefficients (Rzz and Rθθ) for all test
cases on the inner and outer cylinder sides. (a) The value of Rzz is calculated at
r+ = 15, where the Reynolds normal stress component 〈u′zu′z〉 peaks. (b) The value
of Rθθ is calculated at r+ = 30, where the Reynolds normal stress component 〈u′θu′θ〉
peaks.

The effects of domain size on turbulent concentric annular pipe flow has been

thoroughly investigated by Bagheri et al. (2020), who compared 12 test cases of

different axial and azimuthal domain sizes for a fixed radius ratio of Ri/Ro = 0.5.

They observed that the predictive accuracy of the first- and second-order statistical

moments of the velocity field is dependent on the axial and azimuthal domain sizes.

Through a systematic analysis of the velocity field in both physical and spectral

spaces, they indicated that in order to correctly predict turbulence statistics of a

concentric annular pipe flow, the axial and azimuthal computational domain sizes

should be kept sufficiently large such that the most energetic eddy motions can be

properly captured. In this subsection, we extend our study to include a wider range

of radius ratios, and briefly justify the sufficiency of the selected domains required

for accurately performing DNS for the four test cases of different radius ratios. A

conventional tool for examining the adequacy of a computational size domain is the

two-point correlation function. The axial and azimuthal one-dimensional (1D) two-
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point correlation functions for the axial and azimuthal velocity fluctuations are defined

as

Rzz(∆z) =
〈u′z(z, rθ, r, t)u′z(z + ∆z, rθ, r, t)〉
〈u′z(z, rθ, r, t)u′z(z, rθ, r, t)〉

. (3.3)

and

Rθθ(r∆θ) =
〈u′θ(z, rθ, r, t)u′θ(z, rθ + r∆θ, r, t)〉
〈u′θ(z, rθ, r, t)u′θ(z, rθ, r, t)〉

, (3.4)

respectively. Figure 3.2 compares the profiles Rzz and Rθθ of different test cases in

the axial and azimuthal directions, respectively. The value of Rzz is calculated at

r+ = 15, where the Reynolds normal stress component 〈u′zu′z〉 reaches its peak value,

while the value of Rθθ is calculated at r+ = 30, where the Reynolds normal stress

component 〈u′θu′θ〉 peaks (to be shown later in section 3.2.2). Figures 3.2(a) and

3.2(b) show that the values of Rzz and Rθθ marginally go to zero for ∆z/δ ≥ 6 and

(r∆θ)/δ ≥ 1.5, respectively, for all test cases. This indicates a sufficiency of the axial

and azimuthal computational domain sizes (i.e., Lz = 12πδ and Lθ = π/2-2π, see

Table 3.1). It is worth mentioning that the choice of domain sizes based on two-point

correlation coefficients in the physical space may not be conclusive, and it is necessary

to further study the energy spectra of the flow field in the spectral space to ensure

that all energetic eddies of low wavenumbers are fully captured. The two-dimensional

(2D) energy spectrum of velocity fluctuations is defined as

Ěij = û′iû
′
j

∗
+ û′i

∗
û′j , (3.5)

Here, Ěij(kz, kθ, r) is a real function of the axial and azimuthal wavenumbers and

radius, the overline denotes averaging over time, and subscripts i and j correspond

to the fluctuating velocity components. In Eq. (3.5), the 1D axial energy spectrum

can be directly computed by integration over azimuthal wavenumbers, as Ẽij(kz, r) =

kθ0
∑

kθ
Ěij(kz, kθ, r). The 1D azimuthal energy spectrum can be defined in a similar

way by integrating Ěij(kz, kθ, r) over kz, as Ẽij(kθ, r) = kz0
∑

kz
Ěij(kz, kθ, r). Here,

kz and kθ denote the axial and azimuthal wavenumbers, respectively. These two

wavenumbers are determined as kz = nzkz0 and kθ = nθkθ0 for nz ∈ [−Nz/2, Nz/2−1]
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and nθ ∈ [−Nθ/2, Nθ/2−1], respectively. Here, kz0 = 2π/Lz and kθ0 = 2π/(r ·Lθ) are

the lowest positive wavenumbers in the axial and azimuthal directions, determined

directly by the domain sizes Lz and Lθ, respectively.

Figure 3.3 compares the contour patterns of the premultiplied 1D axial spectrum of

axial velocity fluctuations (k+
z Ẽ

+
zz(λ

+
z , r

+)) and the azimuthal spectrum of azimuthal

velocity fluctuations (k+
θ Ẽ

+
θθ(λ

+
θ , r

+)) of the case of Ri/Ro = 0.1 on the inner and

outer sides of the concentric annular pipe. The reason this test case is selected is

that the curvature difference between the inner and outer cylinder walls is the most

distinct among all the test cases, which facilitates our investigation of the curvature

effect on the minimum computational domain size. Three levels of the premulti-

plied energy spectrum are identified, which represent the high-, intermediate- and

low-intensity cores of a turbulence structure. Following the approach of Hoyas and

Jiménez (2006) and Yang and Wang (2018), the contours for these three levels of the

premultiplied spectrum are distinguished by colors and by black solid borderlines cor-

responding to 0.875 max(Ẽ+
ii ), 0.625 max(Ẽ+

ii ) and 0.375 max(Ẽ+
ii ) (or, corresponding

to 7/8-th, 5/8-th and 3/8-th of the modal value, respectively). The modes (indi-

cated using a red cross symbol “×” in the figures) of k+
z Ẽ

+
zz and k+

θ Ẽ
+
θθ occur at

r+ ≈ 15 and r+ ≈ 30, respectively, on the both inner and outer sides. For DNS,

it is critically important to capture the peaks (modes) of these premultiplied energy

spectra, which correspond to characteristic length scales of the most energetic eddy

motions. The mode typically occurs at a large wavelength (but not necessarily at the

largest possible wavelength) of the premultiplied spectrum. The premultiplied spec-

tra can be useful for identifying the characteristic length scales of the most energetic

eddy motions in a logarithmic coordinate system because of the following identity:

〈u′iu′j〉 =
∫∞

0
Ẽij(km, r)dkm =

∫∞
0
kmẼij(km, r)d(ln(km)) (for i, j,m = 1, 2, or 3).

This method of spectral analysis turbulent structure length scales is precise, which

has been well established and documented in the literature (Jiménez, 2012; Kim et al.,

1987; Moser et al., 1999; Yang and Wang, 2018).
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(a) k+
z Ẽ

+
zz on the inner side (b) k+

z Ẽ
+
zz on the outer side

(c) k+
θ Ẽ

+
θθ on the inner side (d) k+

θ Ẽ
+
θθ on the outer side

Figure 3.3: Contours of premultiplied 1D axial energy spectra of k+
z Ẽ

+
zz(λ

+
z , r

+) and

k+
θ Ẽ

+
θθ(λ

+
z , r

+) of the case of Ri/Ro = 0.1. In the non-dimensionalization, the value
of uτ equals to either uτi or uτo, depending on the convex (inner) or the concave
(outer) cylinder side in consideration. The cross symbol ‘×’ pinpoints the loca-
tion of the mode. Three energy levels are distinguished, and the innermost, mid-
dle and outermost isopleths correspond to 0.875 max(k+

z Ẽ
+
ii ), 0.625 max(k+

z Ẽ
+
ii ) and

0.375 max(k+
z Ẽ

+
ii ), respectively. Besides these three isopleths which show three mag-

nitude levels of the premultiplied spectrum relative to its peak value, the absolute
magnitude of the non-dimensionalized premultiplied spectrum is also shown using a
color legend.
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From Figs. 3.3(a) and 3.3(b), it is evident that the axial domain of Lz = 12πδ is

large enough to capture the outermost isopleth at all radial position except for a slight

miss around r+ = 15 on the inner side of the concentric annular pipe. Figures 3.3(c)

and 3.3(d) show that all three levels of the azimuthal premultiplied energy spectrum

k+
θ Ẽ

+
θθ are also well captured in general on both inner and outer sides of the concentric

annular pipe, except for the isopleth of the low-intensity core (for 0.375 max(Ẽ+
ii ))

on the inner side at large azimuthal wavelengths. This is due to the use of the

periodic boundary condition in the azimuthal direction, which forces chopping off the

premultiplied energy spectrum at a small finite level after a full azimuthal cycle of

Lθ = 2π, even though the azimuthal flow structures may develop spatially beyond a

full cycle (exhibiting, e.g. a quasi-helical pattern) in physical reality. At the largest r+

value (or, at top edge of the figure panel), the isopleth of 0.375 max(Ẽ+
ii ) is seemingly

incomplete in Figs. 3.3(c) and 3.3(d). But this is simply because the isopleths of

0.375 max(Ẽ+
ii ) in these two figure panels are connected radially in the central domain

of the concentric annular pipe. Owing to the difference in the local friction velocities

(uτi and uτo), the wall units measured from inner and outer sides of the concentric

annular pipe are slightly different.

Figures 3.4(a) and 3.4(b) compare the profiles of 1D premultiplied spectra of

axial velocity fluctuations (i.e., k+
z Ẽ

+
zz(λz, r)) and azimuthal velocity fluctuations (i.e.,

k+
θ Ẽ

+
θθ(λθ, r)) of different test cases, respectively. Similar to the profiles of Rzz(∆z)

and Rθθ(r∆θ) shown in Fig. 3.2, the values of k+
z Ẽ

+
zz(λz, r) and k+

θ Ẽ
+
θθ(λθ, r) are also

calculated at r+ = 15 and r+ = 30, respectively. Clearly, by comparing Figs. 3.2

and 3.4, it is understood that although the two-point correlation coefficient and the

energy spectrum are counterparts of each other in Fourier transform, the criterion of

two-point correlation coefficient is more intuitive but less informative compared to

that of the energy spectrum. As is evident in Fig. 3.4, the premultiplied spectrum

shows precisely the characteristic length scale (or the mode) corresponding to the most

energetic eddy motions in the axial and azimuthal directions, the turbulence kinetic
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Figure 3.4: Profiles of premultiplied 1D spectra of axial velocity fluctuations (u′z)

k+
z Ẽ

+
zz(kz, r) and azimuthal velocity fluctuations (u′θ) k

+
θ Ẽ

+
θθ(kθ, r) for all test cases

on the inner and outer cylinder sides. (a) The value of k+
z Ẽ

+
zz(kz, r) is calculated at

r+ = 15, where the Reynolds normal stress component 〈u′zu′z〉 peaks. (b) The value of

k+
θ Ẽ

+
θθ(kθ, r) is calculated at r+ = 30, where the Reynolds normal stress component

〈u′θu′θ〉 peaks.

energy (TKE) level of large-scale structures captured at the cut-off wavelength, and

the maximum axial and azimuthal wavelengths of large-scale flow structures that can

be exactly contained and simulated using the selected domain.

From Fig. 3.4, it is evident that the TKE level as indicated by the premultiplied

spectrum is higher on the outer cylinder side than on the inner cylinder side in general.

The peak values of the premultiplied spectra k+
z Ẽ

+
zz(λz, r) and k+

θ Ẽ
+
θθ(λθ, r) occur on

the outer cylinder side at the lowest radius ratio tested (i.e, at Ri/Ro = 0.1). Clearly,

the peak values of the premultiplied spectra have been well captured, indicating that

the axial and azimuthal domain sizes (i.e, Lz = 12πδ and Lθ = 2π) are sufficient for

capturing the most energetic eddy motions in the case of Ri/Ro = 0.1. A perusal

of Fig. 3.4 further indicates that in the case of Ri/Ro = 0.1, the value of k+
z Ẽ

+
zz at

the cut-off wavelength (corresponding to the lowest wavenumber) is 48% and 28% of

its peak value on the inner and outer cylinder sides of the concentric annular pipe,
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respectively; while the value of k+
θ Ẽ

+
θθ at the cut-off wavelength is 56% and 18% of

its peak value on the inner and outer cylinder sides of the concentric annular pipe,

respectively.

Consistent with our previous analysis of Fig. 3.3, it is very interesting to observe

in Fig. 3.4 that even though a full circle of Lθ = 2π (which is the largest possi-

ble azimuthal domain size) has been used for the case of Ri/Ro = 0.1, the value

of premultiplied azimuthal spectrum k+
θ Ẽ

+
θθ is non-trivial at the cut-off wavelength

on both inner and cylinder sides, which decays to 56% and 18% of its peak value,

respectively. Given the fact that the DNS is conducted here using a highly-accurate

pseudo-spectral method code, the truncation error involved in the computation is the

minimum. Therefore, there is only one possible physical explanation to this observed

interesting phenomenon: there are some low-energy-level turbulent flow structures

with azimuthal periods larger than 2π, possess a quasi-helical pattern, and can con-

tinue developing peripherally even after a full circle. As explained above, the flow field

is homogeneous in the both of axial and azimuthal directions. In the axial direction,

the energy spectrum is chopped off (at a relatively very low TKE level) due to the

use of a finite-sized axial domain. Analogous to the axial direction, flow structures

can be larger than 2π in the azimuthal direction in physical reality. But, owing to the

use of the periodic boundary condition, the energy spectrum is artificially chopped

off in the azimuthal direction after a full circle, such that the value of the energy

spectrum is small (but non-zero) at the largest wavelength corresponding to Lθ = 2π.

The coventional periodic boundary condition is a good assumption for the statistical

moments of the velocity field (because turbulence is statistically homogeneoous in the

azimuthal direction), but it is not necessarily a good assumption for large coherent

flow structures, especially when they develop azimuthally with periods that are large

than Lθ = 2π.

Finally, it should be indicated that it is neither possible nor necessary to fully

capture the premultiplied axial energy spectrum k+
z Ẽ

+
zz (with 0% of spectrum leaking
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Table 3.2: Mean flow parameters of all four test cases of different radius ratios.

Ri/Ro δti/δ δto/δ Reτi Reτo ReDh

0.1 0.62 1.38 111.39 200.72 8945
0.3 0.78 1.22 123.90 178.04 8953
0.5 0.88 1.12 133.82 161.98 8927
0.7 0.95 1.05 142.83 155.49 8936

at the cut-off wavelength) in the axial direction either in a DNS or in a physical

experiment. There are two good reasons: firstly, this would demand the usage of a

pipe of infinite length, which is impractical; and secondly, even if this is possible, the

TKE level of the large-scale flow structures would be extremely low at the very high

wavelengths, making it meaningless to desire so. To compare, the concentric annular

pipe length considered here (Lz = 12πδ) is actually twice that used in the DNS study

of Chung et al. (2002) for a similar nominal Reynolds number of ReDh = 8900. The

initial choice of the computational domains used in this research (see, Table 3.1) is

based on the recent study of Bagheri et al. (2020), who systematically compared the

axial and azimuthal domain sizes for accurately conducting DNS of turbulent flow

confined within a concentric annular pipe at a fixed radius ratio of Ri/Ro = 0.5. Now,

after rigorously justifying the computational domain sizes selected for conducting the

current research, we can focus our attention on analyzing the effects of radius ratio

on the flow statistics and structures in subsections to be followed.

3.2.2 Flow statistics

Fundamental to the understanding of flow physics, the characteristics and inter-

action of the boundary layers developed above the inner and outer cylinder surfaces

need to be studied, which are sensitive to the radius ratio. Table 3.2 compares

the mean flow parameters of four test cases of different radius ratios. In the table,

Reτi = δtiuτi/ν and Reτo = δtouτo/ν are defined based on local wall friction velocity

(uτi or uτo) and boundary layer thickness over the inner (δti) or outer (δto) cylindri-
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cal wall, respectively. In an axially fully-developed concentric annular pipe flow, the

boundary layer thickness, δt, is defined as the distance from the wall to the point where

the axial mean velocity reaches its maximum (or alternatively, where the Reynolds

shear stress is zero). The interaction between the two boundary layers developed over

the inner and outer cylinder walls will be discussed later in section 3.2.3. In order to

maintain the nominal Reynolds number of ReDh = 8900, a constant mean streamwise

pressure gradient is applied to the momentum equation that governs the streamwise

flow, which is determined as Π = −CfρU2
b /(Ro − Ri). Here, Cf denotes the average

friction coefficient, defined as Cf = (CfiRi + CfoRo)/(Ri + Ro), where the skin fric-

tion coefficients of the inner and outer cylinder walls are defined as Cfi = τwi/(ρU
2
b /2)

and Cfo = τwo/(ρU
2
b /2), respectively. The value of Cf can be determined from an

empirical equation given by Nouri et al. (1993), i.e. Cf = 0.36Re−0.39
Dh

. In order to

ensure the value of ReDh calculated from DNS converges to its nominal value within

a reasonable range of error tolerance, minor adjustments were made for the value of

Π after initial test runs. The actual value of ReDh from the calculation is given in

Table 3.2, which deviates slightly (up to 0.6%) from the nominal value of 8900. From

Table 3.2, it is apparent that the boundary layer thicknesses and Reynolds numbers

are smaller on the inner cylinder side than on the outer cylinder side (i.e., δti < δti

and Reτi < Reτo) in all four test cases. This is a clear reflection of the curvature

difference between the two cylinder walls. Furthermore, as the radius ratio Ri/Ro

increases in value, the curvature difference between the two cylinder surfaces reduces,

and as a result, the difference between the values of δti and δti and that between Reτi

and Reτo decrease monotonically.

Figure 3.5 compares the boundary layer thicknesses (δti and δto) and the skin fric-

tion coefficients (Cfi and Cfo) of the inner and outer cylinder sides as a function of the

radius ratio. From Fig. 3.5(a), it is clear that the value of Cfi decreases significantly

while that of Cfo increases slightly as the radius ratio increases. Figure 3.5(b) shows

the effect of radius ratio on the boundary layer thicknesses over the inner and outer
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Figure 3.5: Profiles of skin friction coefficient and boundary layer thickness of the
inner and outer cylindrical walls in concentric annular pipe for all four test cases.
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Figure 3.6: Values of constants κ and B of the logarithmic law of the wall associated
with the mean axial flow in a concentric annular pipe for all cases.

sides of the concentric annular pipe. As the radius ratio increases, the boundary layer

thicknesses (δti and δto) of the inner and outer sides of the concentric annular pipe

decreases and increases, respectively.

The law-of-the-wall can be derived by postulating a length scale ` = κr. Here,

κ is the von Kármán constant, which reflects the ratio of the outer length scale to
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Figure 3.7: Profile of the mean axial velocity 〈uz〉+. (a) in wall coordinate for case
Ri/Ro = 0.1, and (b) in non-dimensionalized global coordinate (r − R)/δ for all test
cases.

the viscous length scale (Adrian, 2007). The law of the wall in the log-law region is

expressed as:

〈uz〉+ =
1

κ
ln(r+) +B . (3.6)

Direct numerical simulation enables us to accurately evaluate the constants κ and B

in the context of a concentric annular pipe flow. The Kármán constant is determined

as
1

κ
= r+∂〈uz〉+

∂r+
. (3.7)

Plugging Eq. (3.7) into Eq. (3.6), we obtain

B = 〈uz〉+ − r+∂〈u+〉
∂r+

ln(r+) . (3.8)

Figures 3.6(a) and 3.6(b) compare the values of κ and B on the inner and outer

cylinder sides of the concentric annular pipe of the four test cases. In both figures, a

plateau region presents, where the values of these two constants are relatively stable

and close to their classical values in the context of zero-pressure-gradient (ZPG)

boundary layer developed over a flat plate, i.e. κ = 0.41 and B = 5.0. Clearly, as
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the radius ratio decreases, the plateau region is reduced, especially near the inner

wall. Figure 3.7(a) contrasts the axial mean velocity profiles on the inner and outer

cylinder sides in the wall coordinate for the test case of Ri/Ro = 0.1.

The reason this test case is selected is that the curvature difference between the

inner and outer cylinder walls is the most distinct among all the test cases, which

facilitates our investigation of the curvature effect on the scaling laws of the mean

axial velocity profile of a concentric annular pipe flow. The velocity profiles of both the

inner and outer walls strictly follow the linear law-of-the-wall in the viscous sublayer

(i.e., 〈uz〉+ = r+). The log-law region is wider on the outer wall side than on the

inner wall side, which is consistent with a greater plateau region of the outer wall

shown in Fig. 3.6(a). Figure 3.7(b) compares the mean velocity profiles of all cases

along with the DNS data of Chung et al. (2002) with respect to the global coordinate

(r − R). An excellent agreement is observed between the current results and the

reference data of Chung et al. (2002) for the cases Ri/Ro = 0.1 and 0.5, which

confirm the predictive accuracy of the computer DNS in terms of the mean velocity

of the concentric turbulent annular pipe flow. Clearly, the boundary layer evolving

over the outer cylinder surface is thicker than that over the inner cylinder surface (i.e.,

δto > δti). The characteristics of the turbulent boundary layer near the inner cylinder

surface with higher velocities are similar to those of an accelerating boundary layer.

From Fig. 3.7(b), it is clear that the effect of radius ratio on the profile shape of the

mean axial velocity is limited. In the following, we will show that by contrast, the

second-order statistical moments of the velocity field are much more sensitive to the

radius ratio.

Figure 3.8 compares the profiles of the Reynolds normal stresses of four test cases

on both the inner and outer cylinder sides. The Reynolds normal stresses are scaled

based on the local friction velocities of the inner and outer cylinder walls accordingly.

From Fig. 3.8, the radius ratio effects can be readily identified by comparing the

results on the inner and outer cylinder sides of each case. The position of the peak
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Figure 3.8: Profiles of Reynolds normal stresses at various radius ratios. Arrow points
to the direction of an increasing radius ration Ri/Ro.

is consistent near the inner and outer cylinder walls in all cases, which occurs at

r+ ≈ 15, 30 and 50 for the axial, azimuthal and radial components of Reynolds normal

stresses, respectively. The magnitude of turbulence intensity associated with the axial

velocity fluctuations is the highest, followed by the components of the azimuthal and

radial velocity fluctuations. The difference between the inner and outer cylinder walls

becomes less apparent as the radius ratio increases. It is worth noting that the radial

and azimuthal components of turbulence intensity are more sensitive to the radius

ratio than is the axial component.
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3.2.3 Interaction of the inner and outer boundary layers

The study of the Reynolds shear stress is the key to a better understanding the

interaction between the inner and outer boundary layers. The radial position where

the Reynolds shear stress equals zero divides the inner and outer boundary layers. At

this special radial position, the mean axial velocity 〈uz〉/Ub reaches its maximum in

Fig. 3.7(b). Figures 3.9(a) and 3.9(b) compare the Reynolds shear stresses of four test

cases with respect to the wall-normal distance h (measured from the inner cylinder

wall) and wall coordinate r+, respectively. The DNS data of Chung et al. (2002)

are also plotted in Fig. 3.9(a) for the cases Ri/Ro = 0.1 and 0.5 for the purpose of

comparison, which show a good agreement with the current DNS results.

From Fig. 3.9(a), it is clear that zero-crossing point (where −〈u′zu′r〉+ = 0 and

d〈uz〉/dr = 0) deviates significantly from the cylindrical channel center (h/δ = 1).

However, as the radius ratio increases, this zero-crossing point shifts monotonically

towards the cylindrical channel center, as a result of reduced curvature difference. In

Fig. 3.9(b), the magnitude of −〈u′zu′r〉+ is apparently smaller on the inner side than

on the outer side, implying that the boundary-layer developed on the inner cylinder

side contains a smaller range of turbulence scales than the boundary-layer developed

on outer cylinder side. Furthermore, as is evident in Fig. 3.9(a), the magnitude of

the Reynolds shear stress −〈u′zu′r〉+ is higher on the outer cylinder side than on the

inner cylinder side. The difference between these two sides of the concentric annular

pipe becomes more pronounced as the radius ratio decreases. Clearly, as the radius

ratio value increases from Ri/Ro = 0.1 to 0.7, the profile of the Reynolds shear

stress −〈u′zu′r〉+ becomes increasingly symmetrical in Fig. 3.9(a), indicating that the

degree of curvature difference between the two cylinder walls reduces. In fact, as

the radius ratio further approaches the ideal value of unity (i.e., Ri/Ro → 0.1), the

curvature effect vanishes, as the flow configuration becomes that of a plane-channel

flow, which has a symmetrical Reynolds shear stress profile across the channel, with

the zero-crossing point located exactly at the plane-channel center. From Fig. 3.9(a),
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Figure 3.9: Profiles of Reynolds shear stress 〈u′zu′r〉+ at various radius ratios with
respect to (a) wall-normal distance h/δ (measured from the inner wall, the Reynolds
shear stress is non-dimensionalized by the average wall friction velocity uτ ), (b)
wall coordinate (both the Reynolds shear stress and wall coordinate are non-
dimensionalized based on the local wall friction velocity, i.e. uτi or uτo for the inner
or outer cylinder side, respectively). Arrow points to the direction of an increasing
radius ratio Ri/Ro

the boundary layer thickness δti or δto can be determined by finding the point where

−〈u′zu′r〉+ = 0. Values of the boundary layer thicknesses have been presented in

Table 3.2 and Fig. 3.5(b).

The boundary layer thickness (δt) of a fully-developed concentric annular pipe

flow can be also determined analytically. A further study of the momentum equation

of the mean axial velocity can provide a deeper understanding of the balance of the

Reynolds shear stress −〈u′zu′r〉. Considering that the flow is statistically stationary

and homogeneous in the z-θ plane, the following can be derived from momentum

equation:
τtot

ρ
= ν

d〈uz〉
dr
− 〈u′zu′r〉 =

Π

2ρ
r +

D

r
, (3.9)

and D is a constant of integration given as

D =
R2
oRiu

2
τi +R2

iRou
2
τo

R2
o −R2

i

. (3.10)
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The mean axial pressure gradient is balanced by the wall friction shear stresses

τwi and τwo at the inner and outer cylinder surfaces, expressed as

Π = − 2ρ

R2
o −R2

i

(Rou
2
τo +Riu

2
τi) . (3.11)

Substituting Eqs. (3.10) and (3.11) into Eq. (2.5), the following total shear stress is

obtain:
τtot

ρ
= − 1

r(R2
o −R2

i )

[
Ro(r

2 −R2
i )u

2
τo +Ri(r

2 −R2
o)u

2
τi

]
. (3.12)

The radial position rm where τtot = 0 (and where the Reynolds shear stress vanishes

and the mean axial velocity 〈uz〉 reaches its maximum) can be further expressed based

on the friction velocities at the two cylinder walls as

rm =

√
−2ρD

Π
=

√
R2
oRiu2

τi +R2
iRou2

τo

Riu2
τi +Rou2

τo

, (3.13)

or, in a non-dimensional form

rm
Ro

=

√
(uτi/uτo)2 +Ri/Ro

(uτi/uτo)2 +Ro/Ri

, (3.14)

which shows clearly that the value of rm is purely determined by the radius ratioRi/Ro

and the friction velocity ratio uτi/uτo. The value of Ri/Ro is a direct indication of the

curvature difference between the two cylindrical surfaces of a concentric annular pipe

while the value of uτi/uτo is a direct consequence of the surface curvature difference.

Now, the boundary layer thickness for the inner and outer sides can be alternatively

calculated as δti = rm−Ri and δto = Ro−rm for the inner and outer sides, respectively.

The values of δti and δto are given in Table 3.2.

To further study the interaction of the inner and outer boundary layers, the trans-

port equation of Reynolds shear stress for a steady-state flow can be studied, which

reads
D〈u′zu′r〉
Dt

= 0 = Πzr + Pzr +Dzr + Tzr + εzr , (3.15)

where the left hand side is the material derivative of the Reynolds stress, and the terms

on the right hand side of the above equation are the velocity-pressure-gradient term
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Figure 3.10: Profiles of the budget term of Reynolds shear stress 〈u′zu′r〉 of cases
Ri/Ro = 0.1 and Ri/Ro = 0.7. All budget terms have been non-dimensionalized
using local friction velocity (uτi or uτo) and ν.

(Πzr), production term (Pzr), viscous dissipation term (Dzr), turbulent diffusion term

(Tzr) and dissipation term (εzr), respectively. Given that the flow is homogeneous in
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the axial and azimuthal directions, these budget terms are expressed as

Πzr =
−1

ρ

(〈
u′z
∂p′

∂r

〉
+

〈
u′r
∂p′

∂z

〉)
, (3.16a)

Pzr = −〈u′ru′r〉
∂ 〈uz〉
∂r

, (3.16b)

Dzr = ν

(
∂2 〈u′zu′r〉
∂r2

+
1

r

∂ 〈u′zu′r〉
∂r

− 〈u
′
zu
′
r〉

r2

)
, (3.16c)

Tzr = −∂ 〈u
′
zu
′
ru
′
r〉

∂r
− 〈u

′
zu
′
ru
′
r〉

r
+
〈u′zu′θu′θ〉

r
, (3.16d)

εzr = −2ν

(〈∂u′z
∂r

∂u′r
∂r

〉
+

1

r2

〈
∂u′z
∂θ

∂u′r
∂θ

〉
+

〈
∂u′z
∂z

∂u′r
∂z

〉
+

〈
u′z
r2

∂u′θ
∂θ

〉)
. (3.16e)

To effectively investigate the curvature effects on the interaction between the inner

and outer boundary layers, here we only consider the cases of Ri/Ro = 0.1 and 0.7,

which represent the lowest and highest radius ratios under current testing condition.

Figure 3.10 compares the profiles of the budget terms in the transport equation of

the Reynolds shear stress on the inner and outer cylinder sides for cases Ri/Ro = 0.1

and 0.7. Clearly, the production, velocity-pressure-gradient, and turbulence diffusion

terms dominate the budget balance. The production term (Pzr) is the source of TKE,

which is counterbalanced by the velocity-pressure-gradient and turbulence diffusion

terms (Πzr and Tzr, respectively). The influence of the dissipation term εzr and

molecular diffusion term Dzr on the budget balance is relatively small, which consume

the Reynolds shear stress mostly in the buffer layer and the viscous sub-layer (for r+ <

30). By comparing the Fig. 3.10(a) with 3.10(b) and Fig. 3.10(c) with 3.10(d), it is

clear that the magnitudes of the dominant source and sink terms (i.e., the production

term Pzr and velocity-pressure-gradient term Πzr, respectively) are higher on the

outer side than on the inner cylinder side for both radius ratios of Ri/Ro = 0.1 and

0.7. However, as the radius ratio increases from Ri/Ro = 0.1 to 0.7, the differences in

the magnitudes of these two budget terms between the outer and inner cylinder side

decrease, which is a reflection of the fact that the curvature difference between the
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(a) (Ri/Ro = 0.1) (b) (Ri/Ro = 0.7)

Figure 3.11: Contours of ω′z
+

superimposed with velocity vectors composed of u′θ and
u′r, averaged in time and axial domain for cases Ri/Ro = 0.1 and 0.7. For clarity,
only one-quarter of the cross-section is shown.

two cylinder walls reduces as the radius ratio increases. The turbulent diffusion term

Tzr plays an important role in the budget balance of Reynolds shear stress, which

is typically negatively valued around the peak location of the production term Pzr

to diffuse the TKE towards the wall and the domain center as Reynolds shear stress

fluxes (associated with the triple velocity terms in Eq. (3.16d)).

3.3 Turbulence structures

Thus far, the interaction of the boundary layers developed above the inner and

outer cylinder surfaces has been investigated through the statistics of the velocity

field and the budget balance of Reynolds shear stress. In this section, the radius ratio

effects on coherent flow structures developing within these two turbulent boundary

layers are examined.

As is well known, the dynamics of the turbulent boundary layer are significantly af-

fected by the streamwise-elongated vortices (Robinson, 1991). To visualize and make
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Figure 3.12: Profiles of ω+
z,rms for various radius ratios.

a qualitative analysis on these vortices, we consider the time-averaged axial vorticity

fluctuations (ω′z
+

). The time averaging was performed over a duration of 35 LETOTs,

which ensures filtering out vortical structures that have short life spans and do not

contribute to large-scale structures. Figure 3.11 compares the contours of ω′z
+

and ve-

locity vectors in a r–θ plane for cases of Ri/Ro = 0.1 and 0.7. Only one-quarter of the

cross-section is shown to ensure a clear view of the velocity field. The averaged wall

friction velocity is used for non-dimensionalizing the axial vorticity fluctuations. The

red and blue regions reflect positively- and negatively-valued axial vorticity fluctua-

tions, respectively. In the azimuthal direction, contours of positively- and negatively-

valued ω′z
+

alternate, indicating that the streamwise-elongated flow structures appear

in pairs, forming large-scale counter-rotating vortices. From Fig. 3.11(a), it is clear

that for the case of Ri/Ro = 0.1, the intensity of these vertical structures is stronger

on the outer side than on the inner side. However, for the case of Ri/Ro = 0.7 as

shown in Fig. 3.11(b), the intensity of these vortical structures is similar on the inner

and outer sides, as a result of a much reduced curvature difference between the two

cylinder walls.

Beside the qualitative results discussed above, the characteristics of the streamwise-

elongated vortices can be further precisely examined through the analysis of the axial
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vorticity fluctuations in both physical and spectral spaces. Figure 3.12 compares

the root mean square (RMS) profiles of the axial vorticity fluctuations ω+
z,rms (non-

dimensionalized based on the local mean friction velocity uτi or uτo and kinematic

viscosity ν) of the four test cases with respect to the wall coordinate. From Fig. 3.12,

it is clear that the local minimum and maximum of ω+
z,rms occur approximately at

r+ = 5 and r+ = 20, respectively, for all cases. This is consistent with the observation

of Neves et al. (1994), who simulated a turbulent boundary layer over a cylindrical

surface and showed that the locations of these local extrema remain unaffected by

the transverse curvature. It is clear that the radius ratio, and correspondingly, the

transverse curvature significantly affect the strength of the axial vorticity fluctuations.

The axial vorticity fluctuations are stronger on the outer cylinder side than on the

inner cylinder side.

To develop a deeper understanding of the effect of radius ratio on the scales of

the streamwise vortical structures, the spectrum of the axial vorticity fluctuations

can be further examined. The 2D spectrum of the axial vorticity fluctuations can

be calculated through the Fourier transform of the axial vorticity fluctuation and

multiplying the result with its conjugate, i.e.

φ̌(kz, kθ, r) = 2ω̂′z(kz, kθ, r)ω̂
′
z

∗
(kz, kθ, r) , (3.17)

In Eq. (3.17), the one-dimensional (1D) axial vorticity spectrum can be directly

computed by integration over azimuthal wavenumbers, as φ̃z(kz, r) = kθ0
∑

kθ
φ̌(kz, kθ, r).

The 1D azimuthal vorticity spectrum can be defined in a similar way by integrating

φ̌z(kz, kθ, r) over kz, as φ̃θ(kθ, r) = kz0
∑

kz
φ̌(kz, kθ, r). Figure 3.13 shows the premul-

tiplied 1D spectra of vorticity fluctuations of all four cases in the axial and azimuthal

directions at r+ = 20, where the local maximum RMS value of axial vorticity fluc-

tuation ω+
z,rms occurs according to our previous analysis of Fig. 3.12. From both

Figs. 3.13(a) and 3.13(b), it is clear that in both the axial and azimuthal directions,

as the radius ratio Ri/Ro increases, the modes of both k+
z φ̃

+
z and k+

θ φ̃
+
θ shift to longer
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Figure 3.13: Profiles of the premultiplied 1D spectra of axial vorticity fluctuations
k+
z φ̃

+
z (kz, r) and k+

θ φ̃
+
θ (kθ, r) in the axial and azimuthal directions for the four test

cases at surface located at wall-normal position r+ = 20.

wavelengths while their peak values reduce monotonically on the outer cylinder side.

By contrast, the premultiplied 1D spectra k+
z φ̃

+
z and k+

θ φ̃
+
θ exhibit opposite trends on

the inner cylinder side. At this near-wall position of r+ = 20, the flow is dominated

by streamwise vortical structure. The axial mode of k+
z φ̃

+
z indicates the characteristic

axial length scale of the streamwise vortical structures, which varies from λ+
z = 200

on the outer cylinder side to λ+
z = 400 on the inner cylinder side in the case of

Ri/Ro = 0.1. While, the azimuthal mode of k+
θ φ̃

+
θ varies from λ+

θ = 20 on the cylin-

der outer side to λ+
θ = 50 on the inner cylinder side in the case of Ri/Ro = 0.1. These

modes represent the characteristic length scales of the energetic streamwise vortices

in the axial and azimuthal directions. Clearly, the axial and azimuthal characteristic

length scales of the streamwise vortices are larger on the inner side than on the outer

side.

As the distance from the wall increases, the flow field becomes dominated by

energy-containing structures known as hairpin structures. The physical background

that streaky and hairpin structures dominate the near-wall and core turbulence re-

gions in a concentric annular pipe flow is similar to that in a boundary-layer flow over a
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flat plate (Adrian, 2007). Figure 3.14 compares instantaneous contours of the swirling

strength (for λci = 1.25) of two cases of Ri/Ro = 0.1 and 0.7, which have the lowest

and highest radius ratios, respectively. In order to improve the visual effects here,

only a portion of the computational domain is plotted for each test case. In addition,

the domain is divided radially into two parts to clearly show the hairpin structures

on the inner and outer cylinder sides. To facilitate identification of counter-rotating

hairpin legs, the iso-surfaces of the swirling strength are further superimposed with

colors based on the value of non-dimensionalized instantaneous axial vorticity ω′+z .

By comparing Figs. 3.14(a) and 3.14(b), it is clear that the hairpin structures are less

populated on the inner cylinder side than on the outer cylinder side for the radius

ratio of Ri/Ro = 0.1. However, by comparing Figs. 3.14(c) and 3.14(d), it is seen that

as the radius ratio increases from Ri/Ro = 0.1 to 0.7, the difference in the density

of hairpin structures between the inner and outer cylinder sides reduces, as a direct

result of reduced curvature difference between these two cylinder surfaces.

The premultiplied 1D energy spectra of the axial velocity fluctuation in axial

(k+
z Ẽ

+
zz) and azimuthal (k+

θ Ẽ
+
zz) directions is advantageous in precisely identifying

the characteristic wavelengths (λ+
z and λ+

θ ) of these structures. Figure 3.15 compares

premultiplied 1D axial and azimuthal spectra of axial velocity fluctuations k+
z Ẽ

+
zz and

k+
θ Ẽ

+
zz, in core turbulent regions at δti/2 and δto/2 well above the inner and the outer

cylinder walls, respectively. The reason these two wall-normal positions are selected

is that hairpin structures are the most populated at these elevations. By comparing

Fig. 3.15 with Fig. 3.13, it is seen that the premultiplied 1D axial and azimuthal

spectra of axial velocity fluctuations (u′z) exhibit some similar feature to those of

axial vorticity fluctuations (ω′z). However, it should be indicated that Fig. 3.13 is

plotted at a near-wall elevation of r+ = 20, which is meant to show the energy level

and characteristic length scales of streamwise-elongated energetic vortical structures

(or, streaky structures) near the wall. By contrast, Fig. 3.15 is plotted to show the

hairpin structures that are populated in the core turbulence regions relatively far
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(a) inner cylinder side (Ri/Ro = 0.1) (b) outer cylinder side (Ri/Ro = 0.1)

(c) inner cylinder side (Ri/Ro = 0.7) (d) outer cylinder side (Ri/Ro = 0.7)

Figure 3.14: Contours of swirling strength (λci = 1.25) of cases Ri/Ro = 0.1 and 0.7.
The contours are colored with instantaneous axial vorticity ω′+z . For clarity, only a
portion of the computational domain is displayed with Lz = 6πδ and Lθ = π/2 for
all four panels.

from the inner and outer cylinder walls at δti/2 and δto/2, respectively. The modes

shown in Figs. 3.15(a) and 3.15(b) represent the characteristic length scales of hairpin

structures in the axial and azimuthal directions, respectively. From Fig. 3.15(a), it is

clear that the axial mode of k+
z Ẽ

+
zz varies from λ+

z = 400 on the cylinder outer side

to λ+
z = 700 on the inner cylinder side in the case of Ri/Ro = 0.1. Figure 3.15(b)

shows the effect of radius ratio on the azimuthal scale of hairpin structures. Although
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Figure 3.15: Profiles of the premultiplied 1D spectra of axial velocity fluctuations
(u′z) k

+
z Ẽ

+
zz(kz, r) and k+

θ Ẽ
+
zz(kz, r) in the axial and azimuthal directions for the four

cases at δti/2 and δto/2 in core turbulence region relatively far above the inner and
outer cylinder walls, respectively.

some weak monotonic trend can be still observed, the azimuthal mode of k+
θ Ẽ

+
zz does

not vary significantly, which occurs at λ+
θ = 200-300. The variation of these modes

reflects the curvature difference between the inner and outer cylinder walls due to the

change of the radius ratio. These quantitative results from the spectral analysis well

explain the qualitative results observed previously in Fig. 3.14. From Fig. 3.15(a), it is

seen that as the radius ratio increases, the axial characteristic length scale of hairpin

structures decreases and increases monotonically on the inner and outer cylinder sides,

respectively. The hairpin structures are longer on the inner cylinder side than on the

outer cylinder side at all radius ratios. Furthermore, the energy level of the hairpin

structures is lower on the inner cylinder side than on the outer cylinder side. As

the radius radio increases, the difference in the energy level between the inner and

outer cylinder sides reduces monotonically, which is a reflection of decreased curvature

difference between the two cylinder walls.
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Chapter 4

Direct Numerical Simulation of

Turbulent Heat Transfer in

Concentric Annular Pipe Flows

As reviewed in chapter 1, although has been multiple experimental and RANS

studies of turbulent heat transfer in concentric annular pipe flow for different radius

ratios, the number of detailed DNS studies is still rather limited. In view of this,

we aim at conducting a systematic comparative DNS study of the turbulent heat

transfer in concentric annular pipe flow based on four radius ratios (for Ri/Ro = 0.1,

0.3, 0.5 and 0.7) at a nominal Reynolds number of ReDh = 17700. Specifically, we will

examine the effects of radius ratio on the first- and second-order statistical moments

of the temperature field, interaction of the thermal boundary layers developed over

the inner and outer cylinder walls, spectra of the temperature fields, budget balance of

temperature variance and turbulent heat fluxes, and the length scales of the thermal

structures near the inner and outer cylinder walls.

The organization of the remainder of this chapter is as follows: in section 4.1,

the test case and the numerical algorithm for solving the governing equations are

described, and sufficiency of the selected computational domain for accurately pre-
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Figure 4.1: Computational domain and coordinate system. The flow is heated under
a uniform wall heat flux condition (q̇w = q̇wi = q̇wo) through the inner and outer
cylinder walls.

dicting the temperature field is studied. In section 4.2, the DNS results of various

radius ratio cases are compared and analyzed. Finally, in section 4.3, the effects of

radius ratio on the scales of thermal coherent structures are investigated.

4.1 Test cases and numerical algorithm

Fig. 4.1 shows the schematic diagram and coordinate system of the concentric

annular flow under testing. Here z, θ, and r represent the axial, azimuthal and

radial coordinates, respectively. Correspondingly, uz, uθ and ur represent velocity

components in these three directions. The fluid properties, including density and

viscosity, are assumed to be constant. Hence, the temperature is considered to be a

passive scalar, with a constant Prandtl number of 0.71. The continuity, momentum

and thermal energy equations that govern the process of turbulent heat transfer in
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the context of an incompressible flow are expressed as

∇ · ~u = 0 , (4.1)

∂~u

∂t
+ ~u · ∇~u = −1

ρ
∇p+ ν∇2~u− Π

ρ
êz , (4.2)

∂Θ

∂t
+ ~u · ∇Θ = uz

dTw
dz

+ α∇2Θ . (4.3)

Here, ~u, p, ρ, and α represent the velocity vector, pressure, density, and thermal

diffusivity of the fluid, respectively. In Eq. (4.2), êz is the base unit vector of the

z-direction, with |êz| ≡ 1. In Eqs. (4.2) and (4.3), Π and dTw/dz denote the con-

stant mean axial pressure gradient that drives the flow, and the mean axial wall-

temperature gradient characteristic of surface heating under a constant surface heat

flux condition. Here, Tw = Tw(z) represents the local mean wall temperature of the

inner and outer cylinder surfaces at a given axial position, and Θ = Tw − T is the

deficit temperature relative to Tw. By definition, Θ ≡ 0 holds at both cylinder walls.

As shown in Fig. 4.1, the flow is fully developed both hydraulically and thermally.

No-slip boundary conditions are enforced at the cylinder walls for the velocity field.

Periodic boundary conditions are applied in the axial and azimuthal directions for

both the velocity field and the deficit temperature (Θ) field. This treatment method

for the temperature field is similar to that used in the numerical studies of turbu-

lent heat transfer in rotating square duct flows by Pallares and Davidson (2002) and

Fang and Wang (2018). Given the uniform surface heat flux boundary condition

(q̇w = q̇wi = q̇wo), both the bulk mean temperature (Tb) and the local mean pe-

ripheral temperature of the walls (〈Tw〉) increase linearly in the axial direction at

the same constant rate (i.e., dTw/dz = dTb/dz). Furthermore, for a thermally fully

developed flow, the deficit temperature Θ is invariant along the axial direction such

that dTw/dz = d〈T 〉/dz. The mean axial wall-temperature gradient can be evaluated

by applying the principle of energy conservation to a differential control volume to
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obtain
d〈T 〉
dz

=
dTb
dz

=
dTw
dz

=
2(q̇wiRi + q̇woRo)

ρCpUb(R2
o −R2

i )
. (4.4)

where, Cp is the specific heat of the fluid under constant pressure.

In this chapter, an instantaneous turbulence variable (for example, Θ) is decom-

posed into an averaged and a fluctuating components, i.e. Θ = 〈Θ〉 + Θ′. Here, a

pair of angular brackets 〈·〉 denotes temporal and spatial averaging. More specifi-

cally, the spatial averaging is performed over a homogeneous z-θ cylindrical surface

at an arbitrary radial position r, and temporal averaging was performed over 35

large-eddy turnover times (LETOTs). Here, a LETOT is defined as δ/uτ . The non-

dimensionalized temperature with respect to the wall coordinate is defined as Θ+ =

Θ/Tτi and Θ+ = Θ/Tτo, depending on the inner or outer cylinder side of the flow.

The wall friction temperatures on the inner and outer cylinder sides of the concentric

annular pipe are defined as Tτi = q̇wi/ρCpuτi and Tτo = q̇wo/ρCpuτo, respectively. The

mean wall friction temperature is defined as Tτ = (q̇wiRi + q̇woRo)/(ρCpuτ (Ri +Ro)).

The computational time step used is kept at 0.001δ/Ub to keep the Courant-Friedrichs-

Lewy (CFL) number less than 0.8. All computations were performed on the WestGrid

(Western Canada Research Grid) supercomputers. Required CPU hours to conduct a

DNS varies depending on the number of grid points. Test cases Ri/Ro = 0.1 and 0.5

are the most and the least expensive test cases, which were performed using 19,271

and 16,617 CPU hours, respectively. In order to save storage memory, all averaging

has been done during simulation and no instantaneous velocity field was saved for

the purpose of post-processing. Furthermore, spectral accuracy was ensured during

computation of temperature statistics.

Table 4.1 summarizes the computational domain size and grid resolution of the

four test cases of different radius ratios. Equally-spaced grid points were used in both

axial and azimuthal directions and Chebyshev-Gause-Lobatto points were applied to

the radial direction. In Table 4.1, wall coordinates are indicated using superscript ‘+’,

which are non-dimensionalized based on ν and wall friction velocity uτi =
√
τwi/ρ
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Table 4.1: Summary of test cases, grid resolutions, wall friction velocity [m/s] and
friction temperature [◦C].

Ri/Ro 0.1 0.3 0.5 0.7

Nz ×Nθ ×Nr 580× 540× 144 580× 540× 144 500× 280× 144 500× 360× 144
Lz × Lθ × Lr 8πδ × 2π × 2δ 8πδ × 3π/2× 2δ 8πδ × π/2× 2δ 8πδ × π/2 × 2δ

∆z+
i 14.940 13.237 14.443 14.270

∆z+
o 11.917 11.840 13.647 13.556

∆r+
min,i 0.104 0.096 0.088 0.092

∆r+
min,o 0.084 0.088 0.083 0.090

∆r+
max 7.551 7.318 7.015 7.412

(Ri∆θ)
+ 0.781 2.265 3.227 5.774

(Ro∆θ)
+ 7.102 6.793 6.099 7.834

uτi 0.078 0.071 0.065 0.064
uτo 0.060 0.061 0.062 0.063
Tτi 12.82 14.08 15.38 15.62
Tτo 16.66 16.39 16.13 15.87

or uτo =
√
τwo/ρ for the inner and outer cylinder sides, respectively. The values

of uτi and uτo are given in the table. In order to ensure the high spatial accuracy

demanded by DNS, the grid resolution is kept for ∆z+
i ≤ 14.940 and r∆θ+ ≤ 7.834

in the axial and azimuthal directions, respectively. The radial resolution is kept

for ∆r+ ≤ 0.104 near the walls and for ∆r+ ≤ 7.551 in the central domain. In

our study of the near-wall grid resolutions and wall-scaling behaviors, the wall units

are typically calculated ‘locally’ based on either uτi or uτo, depending on the inner

or the outer cylinder side under consideration. In this research, we also use the

average wall friction velocity, defined as uτ =
√
τw/ρ, where τw is the mean wall

shear stress based on weighted averaging over the inner and outer cylinder walls, i.e.

τw = (Riτwi +Roτwo)/(Ri +Ro). The mean wall friction velocity uτ is typically used

in a ‘global’ non-dimensionalization process when the entire flow field (between the

inner and outer cylinder walls) is considered. The same principle is applied to the

use of three wall friction temperatures Tτi, Tτo and Tτ defined above.
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4.1.1 Justification of domain size for DNS of turbulent heat

transfer

Although the pseudo-spectral method code used in this research is of a high nu-

merical accuracy for conducting DNS, the numerical accuracy by itself is insufficient

for correctly predicting the physical phenomena of turbulent heat and fluid flows.

This is because turbulence consists of eddies of different wavelengths. If the compu-

tational domain is too small to allow DNS to capture the characteristic wavelengths

of the most energetic eddies of turbulence, the DNS is deemed as inaccurate. This

has become a well-known issue since the pioneering work of Jiménez and Moin (1991),

who investigated the minimum domain size required for accurate DNS prediction of

turbulence statistics of a low Reynolds number turbulent plane-channel flow. The

current choice of the axial domain size of Lz = 8πδ is based on the conclusion of

our previous systematic study of the domain size effects on the predictive accuracy

of DNS of a concentric annular pipe fluid flow (Bagheri et al., 2020), which com-

pared 14 test cases of different axial and azimuthal domain sizes at a fixed radius

ratio of Ri/Ro = 0.5. The current research covers a wider range of radius ratios for

Ri/Ro = 0.1–0.7, and furthermore, expands the scope of our research from fluid flow

to heat transfer. Due to these two major differences, it is necessary to briefly examine

whether the selected computational domain sizes of the four test cases (see Table 4.1)

are sufficient for accurately conducting current DNS of turbulent heat transfer.

Similar to the velocity field, the computational domain size is expected to be

large enough to resolve the essential turbulence scales of the temperature field. The

scales of the turbulent temperature field can be investigated through the study of the

spectra of temperature fluctuations. The two-dimensional (2D) temperature spectrum

is defined as

ĚΘΘ(kz, kθ, r) = 2Θ̂′(kz, kθ, r)Θ̂′
∗
(kz, kθ, r) . (4.5)

where ĚΘΘ(kz, kθ, r) is a real function of axial and azimuthal wavenumbers and radius,
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Figure 4.2: Profiles of the premultiplied 1D spectra of temperature fluctuations, (a)
in the axial direction, and (b) azimuthal direction for the four cases at r+ = 15, where
the temperature variance peaks.

Θ̂′ represents a Fourier coefficient of Θ′, Θ̂′∗ denotes the complex conjugate of Θ̂′, and

the overline denotes averaging over time. Also in the above equations, kz and kθ

denote the axial and azimuthal wavenumbers, respectively. These two wavenumbers

are determined as kz = nzkz0 and kθ = nθkθ0 for nz ∈ [−Nz/2, Nz/2 − 1] and nθ ∈

[−Nθ/2, Nθ/2−1], respectively. Here, kz0 = 2π/Lz and kθ0 = 2π/(r·Lθ) are the lowest

positive wavenumbers in the axial and azimuthal directions, determined directly based

on the domain sizes Lz and Lθ, respectively. In Eq. (4.5), one-dimensional (1D)

axial temperature spectra can be directly computed by integration over azimuthal

wavenumbers, as ẼΘΘ(kz, r) = kθ0
∑

kθ
ĚΘΘ(kz, kθ, r). The 1D azimuthal temperature

spectra can be defined in a similar way by integrating ĚΘΘ(kz, kθ, r) over kz, as

ẼΘΘ(kθ, r) = kz0
∑

kz
ĚΘΘ(kz, kθ, r).

Figs. 4.2(a) and 4.2(b) compare the profiles of 1D premultiplied spectra of tem-

perature fluctuations in the axial and azimuthal directions (i.e., k+
z Ẽ

+
ΘΘ(λz, r) and

k+
θ Ẽ

+
θθ(λθ, r)) of all test cases, respectively. The values of k+

z Ẽ
+
ΘΘ(λz, r) and k+

θ Ẽ
+
ΘΘ(λθ, r)

are calculated at r+ = 15, where the temperature variance peaks. As is evident in

Fig. 4.2, the premultiplied temperature spectra precisely shows the characteristic

89



Table 4.2: Mean temperature field parameters of all four test cases of different radius
ratios.

Ri/Ro δ∗ti/δ δ∗to/δ Peτi Peτo ReDh

0.1 0.620 1.380 151.56 268.98 17788
0.3 0.803 1.197 173.85 231.84 17806
0.5 0.882 1.118 179.65 215.04 17770
0.7 0.962 1.038 193.46 198.46 17823

length scale (or the mode) corresponding to the most energetic thermal structures in

the axial and azimuthal directions, the turbulent scalar energy (TSE, or temperature

variance, 〈Θ′2〉) level of large-scale structures captured at the cut-off wavelength, and

the maximum axial and azimuthal wavelengths of large-scale thermal structures that

can be exactly contained and simulated using the selected domain.

From Fig. 4.2, it is evident that the TSE level as indicated by the premultiplied

spectrum is higher on the outer cylinder side than on the inner cylinder side in general.

Furthermore, the peak value of the premultiplied spectrum k+
z Ẽ

+
ΘΘ occurs on the

outer cylinder side at the lowest radius ratio tested (i.e, at Ri/Ro = 0.1). A perusal

of Fig. 4.2 further indicates that in the case of Ri/Ro = 0.1, the value of k+
z Ẽ

+
ΘΘ at

the cut-off wavelength (corresponding to the lowest wavenumber) is 31% and 42% of

its peak value on the inner and outer cylinder sides of the concentric annular pipe,

respectively; while the value of k+
θ Ẽ

+
ΘΘ at the cut-off wavelength is 20% and 6% of

its peak value on the inner and outer cylinder sides of the concentric annular pipe,

respectively. Thus, it is clear that the premultiplied spectra have been well captured,

indicating that the axial and azimuthal domain sizes of all test cases are sufficient

for capturing the most energetic eddy motions associated with the turbulent heat

transfer process.
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Figure 4.3: Effects of radius ratio on Nusselt number Nu and the skin friction coeffi-
cient Cf on the inner and outer cylinder sides.

4.2 Results and discussions

4.2.1 Temperature statistics

Table 4.2 shows the mean flow and thermal parameters of all four test cases. In

this table, the Péclet number (Peτ = δ∗t uτ/α) is defined based on the wall friction

velocity, thermal boundary layer thickness (δ∗t ) and thermal diffusivity. The Péclet

number describes the ratio of convective to diffusive heat transfer rates. Given that

Peτ = Reτ · Pr, the role of Peτ for the thermal energy equation is analogous to that

of Reτ for the momentum equation (Francisco et al., 2018). From table 4.2, it is clear

that the value of Peτ is larger on the outer cylinder side than on the inner cylinder

side. Moreover, this tendency enhances as the radius ratio decreases.

To evaluate the heat transfer performance, the Nusselt number can be calculated,

which is defined as

Nui =
Dh

Θm

∂〈Θ〉
∂r

∣∣∣
r=Ri

, (4.6)

or

Nuo =
Dh

Θm

∂〈Θ〉
∂r

∣∣∣
r=Ro

, (4.7)
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depending on the inner or outer cylinder wall, respectively. Here, Dh is the hydraulic

diameter and Θm is the bulk mean temperature, defined as:

Θm =
1

Ub

∫ Ro

Ri

〈uz〉〈Θ〉dr , (4.8)

Fig. 4.3 shows the effect of radius ratio on the skin friction coefficient and Nusselt

number of the inner and outer cylinder walls. Clearly, the value of the Nusselt number

on the inner cylinder wall is higher than that on the outer cylinder wall (i.e., Nui >

Nuo). The difference between the values of Nui and Nuo increases significantly as

the radius ratio decreases. The curvature difference between the inner (convex) and

outer (concave) cylinder walls increases as the radius ratio decreases, and becomes

the largest at Ri/Ro = 0.1 among the four test cases. From Fig. 4.3(a), it is clear

that owing to the curvature difference between the inner and outer cylinder walls, the

mean temperature field is asymmetrical in radial direction, and consequently, there

is a discrepancy between the values of Nui and Nuo. By comparing Figs. 4.3(a) and

4.3(b), it is clear that the profile shape of skin friction coefficient Cf is similar to that

of Nu, which is an indication of the analogy between the momentum and thermal

energy transport processes in the near-wall region. In fact, an analogy strictly holds

between the velocity and temperature wall laws in the viscous sublayer, i.e., u+ = r+

versus Θ+ = Pr · r+. Further considering that Cf ∝ ∂〈u〉/∂r and Nu ∝ ∂〈Θ〉/∂r

hold in the vicinity of the wall, Cf ∝ Nu. In other words, the magnitude of Nu is

linearly proportional to that of Cf , a feature that is evident from Figs. 4.3(a) and

4.3(b).

The logarithmic law of the wall can be derived by postulating a length scale

` = κΘr. Here, κΘ is the thermal Kármán constant. The law of the wall for the mean

temperature in the logarithmic region can be expressed as:

〈Θ〉+ =
1

κΘ

ln(r+) +BΘ . (4.9)

DNS enables us to accurately evaluate the “constants” κΘ and BΘ in the context of

turbulent heat transfer in a concentric annular pipe. The value of κΘ is determined
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Figure 4.4: Values of constants κΘ and BΘ of the logarithmic law of the wall associated
with the mean axial flow in a concentric annular pipe for all cases. Arrow points to
the direction of an increasing value of the radius ratio Ri/Ro.

as
1

κΘ

= r+∂〈Θ〉+

∂r+
. (4.10)

Once the value of κΘ is calculated based on the mean temperature field, the value of

BΘ can be subsequently determined using Eq. 4.9. Figs. 4.4(a) and 4.4(b) compare

the values of κΘ and BΘ on the inner and outer cylinder sides of the concentric annular

pipe of the four test cases. In both figures, a quasi plateau region presents, where the

values of these two “constants” are relatively stable, for κΘ ≈ 0.35 and BΘ ≈ 1.34.

In the quasi-plateau region, the turbulent thermal boundary layer developing over

the inner or outer cylindrical wall briefly exhibits a behavior that is similar to that

over a flat plate. From Figs. 4.4(a) and 4.4(b), it is clear that the values of κΘ and

BΘ vary with not only the wall-normal distance r+ but also the radius ratio Ri/Ro.

Clearly, the influence from the surface curvature (as indicated by the radius ratio) on

their values is significant. As the radius ratio decreases, the plateau region shortens

rapidly, especially on the inner cylinder wall side. In fact, at the lowest radius ratio

of Ri/Ro = 0.1, the quasi-plateau region vanishes completely on the inner cylinder

side.
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Figure 4.5: Profile of the mean temperature 〈Θ〉+. (a) Displayed with respect to the
wall coordinate for the case of Ri/Ro = 0.1, and (b) displayed with respect to the
non-dimensionalized global coordinate (r−R)/δ for all test cases of Ri/Ro = 0.1-0.7.
Arrow points to the direction of an increasing value of the radius ratio Ri/Ro. In
panel (b), the thermal boundary layer thicknesses, δ∗ti and δ∗to are labeled for the case
of Ri/Ro = 0.1.

The curvature difference between the inner and outer cylinder walls is the largest

in the case of Ri/Ro = 0.1, and consequently, the curvature effect on the wall scaling

law of the mean temperature is also the most apparent among all four test cases.

Fig. 4.5(a) compares the mean temperature profiles on the inner and outer cylinder

sides in the wall coordinate for the test case of Ri/Ro = 0.1. From Fig. 4.5(a), it is

evident that the temperature profiles of both the inner and outer cylinder walls strictly

follow the linear law-of-the-wall in the conductive sublayer (i.e., 〈Θ〉+ = Pr · r+),

where heat transfer is dominated by the molecular diffusion mechanism. Above the

molecular conductive sublayer, the log-law region is much wider on the outer wall side

than on the inner wall side. This is consistent with the previous analysis of Fig. 4.4(a)

which shows that the quasi-plateau region is the widest on the outer cylinder side,

and is the narrowest (almost non-existing) on the inner cylinder side (in the case

of Ri/Ro = 0.1). In consequence, due to the large curvature of the convex inner

cylinder wall of the case of Ri/Ro = 0.1, the mean temperature profile on the inner
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cylinder side deviates significantly from the familiar logarithmic law, a feature that

is apparent in Fig. 4.5(a). By contrast, the logarithmic law holds well on the concave

outer cylinder side. This is because the surface curvature is much smaller on the outer

cylinder side, and as a result, the wall scaling behavior of the mean temperature on the

outer cylinder side is similar to that over a flat plate. Fig. 4.5(b) compares the mean

temperature profiles of all four cases with respect to the global coordinate (r−R)/δ.

The thickness of the thermal boundary layer (δ∗ti or δ∗to) is defined as the distance from

the inner or outer cylinder wall to the radial position where the mean temperature is

the maximum and the radial mean temperature gradient is zero (i.e., d〈Θ〉/dr = 0).

Clearly, owing to the curvature difference between the two cylinder walls, the thermal

boundary layer is thicker over the out cylinder surface than over the inner cylinder

surface (i.e., δ∗to > δ∗ti). The values of δ∗ti and δ∗to are given in Table 4.2, which clearly

indicates the trends that the value of δ∗ti and δ∗to increases and decreases monotonically

as the radius ratio Ri/Ro increases, respectively.

Fig. 4.6(a) shows the root mean square (RMS) profile of temperature fluctuations

in the wall coordinate. The RMS values are scaled based on the local friction temper-

ature of the inner and outer cylinder walls accordingly. From Fig. 4.6(a), the radius

ratio effects can be readily identified by directly contrasting the results of the inner

and outer cylinder sides for each test case. The mode of the profile (corresponding to

peak value) is consistent in all test cases, which occurs at r+ ≈ 15. The peak values

are higher on the outer cylinder side than on the inner cylinder side, but the differ-

ence between the inner and outer cylinder walls becomes less apparent as the radius

ratio increases. Fig. 4.6(b) compares profiles of the axial turbulent heat flux 〈Θ′u′z〉+

of the four test cases in wall coordinates. By comparing Figs. 4.6(b) and 4.6(a), it

is clear that profiles of the axial turbulent heat flux 〈Θ′u′z〉+ and RMS temperature

Θ+
rms show a similar pattern. Later in section 4.8, it will be explained that these two

quantities are related because 〈Θ′u′z〉+ appears in the turbulence production term

for the temperature variance 〈Θ′Θ′〉+. Similar to the profiles of Θ+
rms, the mode of
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Figure 4.6: Profiles of RMS values of temperature fluctuation and axial turbulent
heat flux at various radius ratios. Arrow points to the direction of an increasing value
of the radius ratio Ri/Ro.

〈Θ′u′z〉+ is consistent near the inner and outer cylinder walls in all test cases, which

occurs at r+ ≈ 15.

4.2.2 Interaction of the inner and outer thermal boundary

layers

The radial position where the radial turbulent heat flux equals zero (i.e., −〈Θ′u′r〉 =

0) divides the inner and outer thermal boundary layers. At this special radial posi-

tion, the mean temperature 〈Θ〉 also reaches its maximum as shown in Fig. 4.5(b).

Figs. 4.7(a) and 4.7(b) compare the radial turbulent heat flux (−〈Θ′u′r〉+) of the four

test cases with respect to the wall-normal distance h (measured from the inner cylin-

der wall) and wall coordinate r+, respectively. From Fig. 4.7(a), it is clear that the

zero-crossing point (where −〈Θ′u′r〉+ = 0 and d〈Θ〉/dr = 0) deviates significantly

from the cylindrical channel center (h/δ = 1). Owing to the curvature difference

between the two cylinder walls, the profile of −〈Θ′u′r〉+ is asymmetrical about the
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cylindrical channel center in the radial direction, a feature that is evident in both

Figs. 4.7(a) and 4.7(b). To understand this phenomenon better, we may recall the

classical heated circular pipe flow case, in which, both the Reynolds stress −〈u′zu′r〉+

and turbulent heat flux −〈Θ′u′r〉+ are symmetrical about the axial center of the cir-

cular pipe. However, for the profiles of −〈Θ′u′r〉+ of heated concentric annular pipe

flows shown in Fig. 4.7(b), it is seen that the radial location of the profile peak varies

from r+ = 20 on the inner cylinder side to r+ = 50 on the outer cylinder side in the

case of Ri/Ro = 0.1. As the radius ratio decreases from 0.7 to 0.1, the zero-crossing

point monotonically deviates from the cylindrical channel center towards the inner

cylinder wall. In Fig. 4.7(b), the radial wall coordinate of the zero-crossing point of

−〈Θ′u′r〉+ is smaller on the inner side than on the outer side, implying that the ther-

mal boundary-layer developed over the inner cylinder wall contains a smaller range

of turbulence scales than does the thermal boundary-layer developed over the outer

cylinder wall.

4.2.3 Budget balance of transport equations

In order to develop a deeper insight into turbulent heat transfer, the transport

processes of the temperature variance (kΘ = 〈Θ′Θ′〉/2), and axial and radial turbulent

heat fluxes (〈u′zΘ′〉 and 〈u′rΘ′〉, respectively) can be further studied. The transport

equations of these three turbulence quantities can be expressed, in a general form, as

Πi + Pi + Ti +Di + εi = 0 . (4.25)

The terms in order of appearance are refereed to as: pressure-temperature gradient

(Πi), production (Pi), molecular diffusion (Di), turbulent diffusion (Ti), and molecular

dissipation (εi). The exact definitions of these terms are given in Table 4.3. In

this table, subscript “i” appearing in the general transport Eq. (4.25) is replaced by

subscripts “Θ”, “z” and “r” to denote the budget terms of the temperature variance,
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Table 4.3: Budget terms of transport Eq. ( 4.25) for temperature variance kΘ, axial
turbulent heat flux 〈u′zΘ′〉, and radial turbulent heat flux 〈u′rΘ′〉.

Budget terms for kΘ

PΘ =− 〈u′rΘ′〉
∂〈Θ〉
∂r

+ 〈u′zΘ′〉
∂〈Tw〉
∂z

, (4.11)

DΘ = +
ν

2Pr

(∂2〈Θ′Θ′〉
∂r2

+
1

r

∂〈Θ′Θ′〉
∂r

)
, (4.12)

TΘ =− 1

2

(∂〈u′rΘ′Θ′〉
∂r

+
〈u′rΘ′Θ′〉

r

)
, (4.13)

εΘ =− ν

Pr

(〈∂Θ′

∂r

∂Θ′

∂r

〉
+

1

r2

〈∂Θ′

∂θ

∂Θ′

∂θ

〉
+
〈∂Θ′

∂z

∂Θ′

∂z

〉)
. (4.14)

Budget terms for 〈u′zΘ′〉

Πz =
∂〈p′Θ′〉
∂z

− 〈p′∂Θ′

∂z
〉 , (4.15)

Pz =− 〈u′rΘ′〉
∂〈uz〉
∂r
− 〈u′ru′z〉

∂〈Θ〉
∂r

+ 〈u′zu′z〉
∂〈Tw〉
∂z

, (4.16)

Dz =
ν

r

∂

∂r

(
r〈Θ′∂u

′
z

∂r
〉
)

+
ν

Pr

1

r

∂

∂r

(
r〈u′z

∂Θ′

∂r
〉
)
, (4.17)

Tz =− ∂〈u′ru′zΘ′〉
∂r

− 〈u
′
ru
′
zΘ
′〉

r
, (4.18)

εz =− ν(Pr + 1)

Pr

(〈∂u′z
∂r

∂Θ′

∂r

〉
+

1

r2

〈∂u′z
∂θ

∂Θ′

∂θ

〉
+
〈∂u′z
∂z

∂Θ′

∂z

〉)
. (4.19)

Budget terms for 〈u′rΘ′〉

Πr =− ∂〈p′Θ′〉
∂r

+ 〈p′∂Θ′

∂r
〉 , (4.20)

Pr =− 〈u′ru′r〉
∂〈Θ〉
∂r

+ 〈u′ru′z〉
∂〈Tw〉
∂z

, (4.21)

Dr =ν
(1

r

∂

∂r

(
r〈Θ′∂u

′
r

∂r
〉
)
− 〈u

′
rΘ
′〉

r2

)
+

ν

Pr

1

r2

∂

∂r

(
r〈u′r

∂Θ′

∂r
〉
)

, (4.22)

Tr =− ∂〈u′ru′rΘ′〉
∂r

− 〈u
′
ru
′
rΘ
′〉

r
+
〈u′θu′θΘ′〉

r
, (4.23)

εr =− ν(Pr + 1)

Pr

(〈∂u′r
∂r

∂Θ′

∂r

〉
+

1

r2

〈∂u′r
∂θ

∂Θ′

∂θ

〉
+
〈∂u′r
∂z

∂Θ′

∂z

〉)
. (4.24)
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Figure 4.7: Profiles of radial turbulent heat flux −〈Θ′u′r〉+ at various radius ratios
with respect to (a) wall-normal distance h/δ (measured from the inner cylinder wall,
the radial turbulent heat flux is non-dimensionalized by the average friction temper-
ature Tτuτ ), (b) wall coordinate (both the radial turbulent flux and wall coordinate
are non-dimensionalized based on the local wall friction velocity and local friction
temperature, i.e. Tτiuτi or Tτouτo for the inner or outer cylinder side, respectively).
Arrow points to the direction of an increasing radius ratio Ri/Ro.

and axial and radial turbulent heat fluxes, respectively. It should be noted that the

transport equation of kΘ is free from the pressure-temperature gradient term (i.e.,

ΠΘ ≡ 0).

To effectively demonstrate the radius ratio effects on the budget balance of the

temperature variance kΘ and turbulent heat fluxes 〈u′zΘ′〉 and 〈u′rΘ′〉, the case of

Ri/Ro = 0.1 is considered, which has the largest curvature difference between the

inner and outer cylinder walls. Fig. 4.8 compares the profiles of the budget terms

of k+
Θ, 〈u′zΘ′〉+ and 〈u′rΘ′〉+ on the inner and outer cylinder sides for the case of

Ri/Ro = 0.1. To demonstrate the predictive accuracy of the DNS, the residual

term as a result of the balance between the left- and right-hand-sides of Eq. (4.25)

is also shown in the figure. The budget terms of the temperature variance is non-

dimensionalized by u2
τiT

2
τi/ν or u2

τoT
2
τo/ν, and those of the turbulent heat fluxes are

non-dimensionalized by u3
τiTτi/ν or u3

τoTτo/ν on the inner or the outer cylinder side,
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(e) Budget of 〈u′rΘ′〉+ on the inner cylinder
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Figure 4.8: Profiles of the budget terms of temperature variance (k+
Θ), axial turbulent

heat flux (〈Θ′u′z〉+) and radial turbulent heat flux (〈Θ′u′r〉+) on the inner and outer
cylinder sides of the case Ri/Ro = 0.1. The budget terms of the temperature variance
is non-dimentionalized by u2

τiT
2
τi/ν or u2

τoT
2
τo/ν, and those of the turbulent heat fluxes

are non-dimensionalized by u3
τiTτi/ν or u3

τoTτo/ν on the inner or the outer cylinder
side, respectively.
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respectively. In order to clearly demonstrate the effects of radius ratio on the budget

terms in the near-wall region, their profiles are displayed in a semi-logarithmic wall

coordinate. From Fig. 4.8, it is clear that there is a general trend that the magnitudes

of the budget terms are larger on the outer cylinder side than on the inner cylinder

side. This trend is consistent with that of the RMS temperature and turbulent heat

fluxes shown previously in Fig. 4.6.

Figs. 4.8(a) and 4.8(b) compare the profiles of temperature variance on the inner

and outer cylinder sides. From Fig. 4.8(a), it is seen that in the vicinity of the inner

cylinder wall (for r+ < 3), the budget balance is dominated by the molecular diffusion

term DΘ and molecular dissipation term εΘ. However, further away from the inner

cylinder wall (for r+ > 3), the turbulent production term PΘ gradually becomes the

dominant source for temperature fluctuations, balanced by εΘ, turbulent diffusion

term TΘ and molecular diffusion term DΘ. At r+ = 10, the production term PΘ

reaches its peak value. Also around this radial position, both TΘ and DΘ reach their

negative peak values. Clearly, the role of the molecular diffusion term DΘ is to drain

the TSE (or, temperature variance) generated by the turbulent production term PΘ

at the radial position r+ ≈ 7 and then diffuse it to the near-wall region for further

dissipation (by εΘ). A careful examination of the profile of the turbulent diffusion

term TΘ displayed in Fig. 4.8(b) indicates that TΘ has a primary positive peak at

r+ ≈ 4 and a much smaller secondary positive peak around r+ = 50. Thus, it is

understood that the role of the turbulent diffusion term TΘ is to drain the production

term PΘ at r+ ≈ 10 and then transport the TSE primarily towards the wall and

secondarily towards the center of the concentric annular passage. By comparing

Fig. 4.8(a) with 4.8(b), it is clear that the profile patterns of the budget terms are

similar. However, the near-wall region dominated by the molecular diffusion and

dissipation is larger on the outer cylinder side than on the inner cylinder side. As a

result, the peak value of the turbulent production term PΘ is extended to r+ ≈ 15 on

the outer cylinder side (compared to that at r+ ≈ 10 on the inner cylinder side).

101



Figs. 4.8(c) and 4.8(d) compare the profiles of axial turbulent heat flux 〈u′zΘ′〉+ on

the inner and outer cylinder sides for the case of Ri/Ro = 0.1. In general, the budget

profiles of 〈u′zΘ′〉+ exhibit a similar pattern to those of the temperature variance

shown in Figs. 4.8(a) and 4.8(b). This is not surprising. As detailed in section 4.1,

the flow (as represented by velocity ~u) is driven by a constant axial pressure gradient

Π, and similarly, the thermal energy (as indicated by the deficit temperature Θ)

is driven by a constant axial temperature gradient (under the constant wall heat

flux condition). Furthermore, the boundary conditions for the velocity field and

deficit temperature are identical, which are periodic in the axial direction and zero

identically at the wall. As such, for a passive heat transfer process, there is an analogy

between the transport processes of the axial velocity uz and deficit temperature Θ,

and consequently, between the transport processes of 〈Θ′Θ′〉/2 and 〈u′zΘ′〉. However,

there is a difference. In the transport equation of axial turbulent heat flux 〈u′zΘ′〉,

there is an additional term, i.e. the pressure-temperature gradient term Πz. From

Figs. 4.8(c) and 4.8(d), it is apparent that the role of the Πz term is to reduce the axial

turbulent heat flux, especially in the logarithmic region. By comparing Figs. 4.8(c)

and 4.8(d), it is seen that the magnitude of Πz is larger on the outer cylinder side

than on the inner cylinder side. Furthermore, from Fig. 4.8(d), it is evident that Πz is

the primary sink term that balances the production term Pz in the logarithmic region

(for r+ > 40).

Figs. 4.8(e) and 4.8(f) compare the budget balances of radial turbulent heat flux

〈u′rΘ′〉+ on the inner and outer cylinder sides for the case of Ri/Ro = 0.1. Although

the profile patterns are similar between Figs. 4.8(e) and 4.8(f), the magnitudes of

budget terms are much larger on the outer cylinder side than on the inner cylinder

side. Furthermore, compared to Figs. 4.8(c) and 4.8(d), the impact of the pressure-

temperature gradient term Πr is significantly enhanced. In fact, as is evident in

Figs. 4.8(e) and 4.8(f), Πr is the dominant sink term in the budget balance of 〈u′rΘ′〉+,

especially in the central region of the concentric annular pipe.
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(a) case Ri/Ro = 0.1 (b) case Ri/Ro = 0.7

Figure 4.9: Contours of the instantaneous non-dimensionalized temperature fluctua-
tions Θ′+, displayed over the cylindrical surface (or, z-θ plane) located at r+ = 15 on
the inner inside, and over the z-r and r-θ planes on the boundaries for cases of (a)
Ri/Ro = 0.1 and (b) Ri/Ro = 0.7.

4.3 Coherent structures associated with the tem-

perature field

Fig. 4.9 shows the turbulence structures visualized using the instantaneous con-

tours of non-dimensionalized temperature fluctuations Θ′+ over the cylindrical surface

(or, z–θ plane) located at r+ = 15 on the inner cylinder side, and over the z–r and

r–θ planes on the boundaries for cases of Ri/Ro = 0.1 and 0.7. The radius ratio

effect on thermal structures can be effectively demonstrated by comparing these two

test cases, as they have the smallest and largest radius ratios among the four test

cases. From both Figs. 4.9(a) and 4.9(b), it is seen that at the near-wall position of

r+ = 15, the low- and high-TSE level thermal streaky structures alternate and are

uniformly distributed in both axial and azimuthal directions. On the z-r and r-θ

planes displayed in Fig. 4.9, the presence of large-scale turbulent thermal structures

in the log-law region refereed to as ‘temperature front’ (TF) by Chen and Black-

welder (1978) is evident. These large-scale structures protrude from the near-wall
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region to the log-law region, characterized by rapid temperature fluctuations associ-

ated with upwards edged turbulence structures. The spread of TSE through TFs is

coupled with the hairpin structures characteristic of near-wall turbulence. The cur-

vature difference between the inner and outer cylinder surfaces is the largest in the

case of Ri/Ro = 0.1, but the smallest in the case of Ri/Ro = 0.7 among the four test

cases. Consequently, as shown in the z-r and r-θ planes of Figs. 4.9(a) and 4.9(b),

the protruded TF structures from outer cylinder wall are considerably more intense

than those from the inner cylinder wall in the case of Ri/Ro = 0.1. By contrast, the

intensity of protruded TF structures from the inner and outer cylinder walls is similar

in the case of Ri/Ro = 0.7.

In order to refine the study of the effects of radius ratio on the distribution of

TSE and the characteristic length scales of turbulent thermal structures, Fig. 4.10

compares the contours of 1D premultiplied spectra of temperature fluctuations in

the axial (k+
z Ẽ

+
ΘΘ) and azimuthal (k+

θ Ẽ
+
ΘΘ) directions for cases of Ri/Ro = 0.1 and

Ri/Ro = 0.7. In this figure, the premultiplied spectra are presented as a function of

wavelength (λ+
z or λ+

θ ) and wall coordinate (r+) from the inner or outer cylinder wall.

In their DNS study of turbulent plane-channel flow of Hoyas and Jiménez (2006), tur-

bulent Couette flow of Avsarkison et al. (2014) and streamwise-rotating plane-channel

flow of Yang and Wang (2018), the energetic eddy motions are distinguished at three

energy levels, which correspond to the 7/8-th, 5/8-th and 3/8-th of the modal value

the premultiplied spectrum of streamwise velocity fluctuations. This method of analy-

sis of premultiplied spectrum is useful for identifying the length scales of the energetic

eddy motions of fluid flows, and can be further extended to the current analysis of tur-

bulence structures associated with temperature fluctuations in a concentric annular

pipe. As such, three levels of the premultiplied spectrum are identified in Fig. 4.10,

which correspond to 0.875 max(k+
i Ẽ

+
ΘΘ), 0.625 max(k+

i Ẽ
+
ΘΘ) and 0.375 max(k+

i Ẽ
+
ΘΘ).

Here, subscript “i” can be replaced by z or θ to indicate the axial or azimuthal direc-

tion, respectively. These three energy levels of the premultiplied spectrum correspond
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(a) k+
z Ẽ

+
ΘΘ for the case of Ri/Ro = 0.1 (b) k+

z Ẽ
+
ΘΘ for the case of Ri/Ro = 0.7

(c) k+
θ Ẽ

+
ΘΘ for the case of Ri/Ro = 0.1 (d) k+

θ Ẽ
+
ΘΘ for the case of Ri/Ro = 0.7

Figure 4.10: Contours of 1D premultiplied spectra of temperature fluctuations
(k+
z Ẽ

+
ΘΘ) and (k+

θ Ẽ
+
ΘΘ) in the axial and azimuthal directions, respectively, for cases

of Ri/Ro = 0.1 and Ri/Ro = 0.7. The cross symbol ‘×’ pinpoints the location
of the mode. Three energy levels are distinguished, and the innermost, middle
and outermost isopleths correspond to 0.875 max(k+

i Ẽ
+
ΘΘ), 0.625 max(k+

i Ẽ
+
ΘΘ) and

0.375 max(k+
i Ẽ

+
ΘΘ), respectively. Besides these three isopleths which show three mag-

nitude levels of the premultiplied spectrum relative to its peak value, the absolute
magnitude of the non-dimensionalized premultiplied spectrum is also shown using a
color legend. In the non-dimensionalization, the value of the wall friction velocity
and temperature equal to either uτi and Tτi, or uτo and Tτo depending on the convex
(inner) or the concave (outer) cylinder side in consideration. The horizontal black
dashed line demarcates the border that separates premultiplied spectrum on the inner
and outer cylinder sides.
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to the high-, intermediate- and low-intensity cores of turbulent thermal structures. In

each figure panel, the mode is demarcated using a cross symbol “×”, and the ranges

of the three energy levels are distinguished using colors and thin black borderlines. It

should be indicated that although the thermal structures the low-intensity region (en-

compassed by the isopleth of 0.375 max(k+
i Ẽ

+
ΘΘ), or the outermost isopleth of the pre-

multiplied spectrum) are comparatively speaking, less energetic eddies, they still con-

tribute significantly to the total TSE of the temperature field. This can be understood

from the following identity: 〈Θ′Θ′〉 =
∫∞

0
ẼΘΘ(ki, r)·dki =

∫∞
0

[kiẼΘΘ(ki, r)]·d[ln(ki)].

From this identity, it is clear that the premultiplied spectrum kiẼΘΘ(ki, r) can be used

for identifying the characteristic length scales of the most energetic thermal structures

in a logarithmic coordinate system (based on ln(ki)).

The radius radio effects on the axial scales of turbulent thermal structures can

be investigated by comparing the distribution of k+
z Ẽ

+
ΘΘ in the λ+

z -r+ plane of cases

Ri/Ro = 0.1 and Ri/Ro = 0.7 in Figs. 4.10(a) and 4.10(b), respectively. The mode

(indicated using a cross symbol “×”) of k+
z Ẽ

+
ΘΘ occurs at (r+, λ+

z ) ≈ (15, 800) and

(r+, λ+
z ) ≈ (15, 500) on the inner and outer cylinder sides, respectively, for the case

of Ri/Ro = 0.1. However, it occurs (r+, λ+
z ) ≈ (15, 700) and (r+, λ+

z ) ≈ (15, 600) on

the inner and outer cylinder sides for the case of Ri/Ro = 0.7, respectively. From

Figs. 4.10(a) and 4.10(b), it is evident that the characteristic axial length scale of

the thermal streaky structures (as indicated by the modal value of λ+
z ) is larger on

the inner cylinder side than on the outer side. The difference in the modal value

of λ+
z between the inner and outer cylinder sides is about 300 wall units in the

case of Ri/Ro = 0.1, but reduces to approximately 100 wall units in the case of

Ri/Ro = 0.7. This significant reduction in the difference of the modal values of

λ+
z is a clear reflection of the reduced curvature difference between the inner and

outer cylinder walls as the radius ratio increases from Ri/Ro = 0.1 to 0.7. The

effects of radius ratio on the characteristic azimuthal scales of turbulent thermal

structures can be identified by comparing Figs. 4.10(c) and 4.10(d). The mode of
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k+
θ Ẽ

+
ΘΘ occurs at (r+, λ+

θ ) ≈ (15, 110) and (r+, λ+
θ ) ≈ (15, 90) on the inner and outer

cylinder sides, respectively, in the case Ri/Ro = 0.1; but at (r+, λ+
θ ) ≈ (15, 100)

on the both inner and outer cylinder sides in the case Ri/Ro = 0.7. Clearly, the

radial distance (r+ ≈ 15) where the mode is located is consistent between inner

and outer cylinder sides in both test cases of Ri/Ro =0.1 and 0.7. At the near-

wall position of r+ ≈ 15, the thermal streaky structures are the most energetic.

This is consistent with the previous observation of the peak position of the RMS

temperature Θrms in Fig. 4.6(a). The underlying reason for this phenomenon is that

the turbulent production rate is the maximum at this particular wall-normal position

(see Fig. 4.8). By comparing Figs. 4.10(c) and 4.10(d), it is also clear that as the

radius ratio increases from Ri/Ro = 0.1 to 0.7, the charateristic azimuthal length

scale of the most energetic thermal streaks remains stable, which is about λ+
θ ≈ 100

wall units.

From the above discussion, it is understood that at the near-wall radial position

of r+ ≈ 15, both the temperature variance and turbulent production rate peak due

to dominance of the energetic thermal streaky structures. As shown previously in

Fig. 4.9, at an arbitrary higher radial position for r+ > 15, the TF structures be-

come popular, which facilitate a transport of TSE from the near-wall region to the

domain center. The spectral information associated with the TFs, however, cannot

be effectively shown at the near-wall radial position of r+ = 15, where the thermal

streaks dominate. In order to develop an understanding of the characteristic length

scales of TF structures, the premultiplied temperature spectrum should be studied

at a much higher radial position. To this purpose, Fig. 4.11 displays two-dimensional

(2D) premultiplied spectra of temperature fluctuations on the inner and outer cylin-

der sides for the case of Ri/Ro = 0.1 at a much elevated position of one-half the

thermal boundary layer (i.e., at δ∗ti/δ = 0.5 or δ∗to/δ = 0.5) relatively far away from

each wall. Similar to Fig. 4.10, three levels of the premulitplied temperature spectrum

are identified, which demarcate the high- (7/8-th of peak), intermediate- (5/8-th of
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(a) at δ∗ti = 0.5 on the inner cylinder side (b) at δ∗ti = 0.5 on the outer cylinder side

Figure 4.11: Premultiplied 2D spectra k+
z k

+
θ Ě

+
ΘΘ on the inner and outer cylinder

sides of the concentric annular pipe for the case of Ri/Ro = 0.1 at one-half the
thermal boundary layer from the inner or outer cylinder wall (i.e., at δ∗ti/δ = 0.5
or δ∗to/δ = 0.5). The cross symbol ‘×’ pinpoints the location of the mode. Three
energy levels are distinguished, and the innermost, middle and outermost isopleths
correspond to 0.875 max(k+

z k
+
θ Ě

+
ΘΘ), 0.625 max(k+

z k
+
θ Ě

+
ΘΘ) and 0.375 max(k+

z k
+
θ Ě

+
ΘΘ),

respectively. In the non-dimensionalization, the value of the wall friction velocity and
temperature equal to either uτi and Tτi, or uτo and Tτo depending on the convex
(inner) or the concave (outer) cylinder side in consideration.

peak) and low-intensity (3/8-th of peak) cores. From Fig. 4.11, it is seen that at the

high elevation of one-half thermal boundary layer away from the cylinder wall, the full

ranges of axial and azimuthal wavelengths of the TF structures at all three TSE levels

are well captured by DNS using the selected computational domain. Furthermore,

it observed that the modes of k+
z k

+
θ Ě

+
ΘΘ occur at (λ+

z , λ+
θ = 600, 280) and (λ+

z , λ+
θ =

450, 180) on the inner and outer cylinder sides, respectively. The modal values of

λ+
z and λ+

θ represent the characteristic length scales of the TF structures in the axial

and azimuthal directions. The differences in the modal values of λ+
z and λ+

θ between

Figs. 4.11(a) and 4.11(b) is a consequence of the surface curvature difference between

the inner and outer cylinder walls. Clearly, both axial and azimuthal characteristic

length scales of the TF structures are larger on the inner cylinder side than on the

outer cylinder side.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this chapter, major conclusions of this research are summarized, which include

a summary of the influence of domain size on predictive accuracy of velocity and

temperature fields and, the effects of radius ratio on turbulent flow, heat transfer and

coherent structures in a concentric annular pipe.

5.1.1 Influence of domain size on DNS of turbulent flow in a

moderately-curved concentric annular pipe

The effect of computational domain size on the predictive accuracy of DNS results

of a moderately-curved turbulent concentric annular pipe flow has been studied in

both physical and spectral spaces. In order to study the Reynolds number effects

on the flow physics, two nominal Reynolds numbers are compared for ReDh = 8900

and 17700. The effects of domain size on the flow field are investigated based on a

comparative study of 12 test cases (including one reference case) at the lower nominal

Reynolds number. If we solely focus on the mean velocity profiles, it would be very

tempting to conclude that the axial and azimuthal domain sizes of Lz = πδ and
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Table 5.1: Summary of the minimum computational domain sizes required for per-
forming DNS for accurate calculations of different types of turbulence statistics at
the nominal Reynolds number of ReDh = 8900.

Criterion of turbulence statistics Minimum domain sizes

Mean velocity Lz = πδ and Lθ = π/6
Reynolds stresses Lz = 6πδ and Lθ = π/4
Two-point correlations Lz = 6πδ and Lθ = π/2
1D and 2D premultiplied energy spectra Lz = 12πδ and Lθ = 3π/4

Lθ = π/6 are sufficient for conducting DNS. However, based on an analysis of second-

order statistical moments, it becomes apparent that the results of Reynolds stresses

would not be accurate unless the minimum computational domain is extended to

Lz = 6πδ and Lθ = π/4. To determine if the computational domain is proper for

capturing the length scales of energetic eddy motions, the 1D axial and azimuthal

two-point correlation coefficients are examined, which indicate that the minimum

computational domain needs to be keep at Lz = 6πδ and Lθ = π/2. The study

of the minimum computational domain size for conducting DNS is further refined

by investigating the characteristic wavelengths of turbulent flow structures in the

spectral space. It is observed that an adequate computational domain that allows

for capturing the most energetic eddy motions is that of case B4 (i.e., Lz = 12πδ

and Lθ = 3π/4) based on the analysis of the 1D and 2D premultiplied spectra.

Table 5.1 summarizes these results of minimum computational domains sizes required

for accurately calculating turbulence statistics and for reproducing turbulence flow

structures. As the nominal Reynolds number increases from ReDh = 8900 and 17700,

the dimensional characteristic wavelengths of the most energetic streaky structures

reduce, and in consequence, the minimum domain for properly performing DNS can

be reduced to that of case D (i.e., Lz = 8πδ and Lθ = π/2).

In the current literature, there has been some disagreement on whether the radial

position corresponding to the maximum velocity collocates with that of the zero
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mean shear stress in a turbulent concentric annular pipe flow. The inconsistency of

the literature can now be concluded. Through a relatively simple approach, we show

analytically that the radial positions of the maximum velocity and zero shear stress

are, in fact, strictly collocated. This analytical result has been further validated using

our DNS data.

Based on the aforementioned investigation of the minimum computational domain

size, coherent flow structures of the concentric annular pipe flow are investigated at

the lower nominal Reynolds number of ReDh = 8900. The scales of energetic turbulent

flow motions such as near-wall streaks and hairpin structures are visualized using in-

stantaneous and conditionally-averaged axial velocity fluctuations (u′z), instantaneous

axial vorticity (ω′+z ) and swirling strength (λci). The scales of these structures are

further studied by examining the 1D axial and azimuthal two-point correlation coef-

ficients, and 1D and 2D premultiplied energy spectra. The 2D energy spectra show

that the both axial and azimuthal characteristic length scales of the near-wall streaks

are larger on the convex side than on the concave side. This leads to an important

conclusion that the challenge involved in accurately performing DNS of a concentric

annular pipe flow mostly stems from the need of capturing large streaky structures

on the convex side.

At a higher elevation of δ/2 away from the walls, hairpin packets are dominant

energy-containing structures. The scales of these structures are similar on both con-

vex and concave sides of the concentric annular pipe with a mode of approximately

(λ+
z , λ

+
θ ) = (405, 190). The cycle of the generation of PHV from SHV and destruc-

tion of PHV into DHV is observed by showing a side view of hairpin packets. The

pattern of generation and destruction of hairpin packets can be identified precisely

by studying the axial mode of the 1D or 2D premultiplied spectrum of axial velocity

fluctuations, or vividly by displaying hairpin structures using the λci criterion. The

characteristic wavelength of either PHV or SHV is approximately 400 wall units, and

therefore, the axial separation of the hairpin necks (of PHV and SHV) is typically
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around 200 wall units. At r+ = 30, there exist azimuthally-oriented vortex filaments,

which connect hairpin legs and are the most energetic around this elevation. These

azimuthally-oriented vortex filaments lay further away from the wall than the near-

wall streaks, perturbed and pushed away by ejections to form hairpin arches at higher

elevations. There is an interesting observation associated with the premultiplied 1D

azimuthal energy spectrum k+
θ Ẽ

+
θθ of case B5: although the azimuthal domain size is a

full circle with Lθ = 2π, the value of k+
θ Ẽ

+
θθ does not decay to zero at the cutoff wave-

length (after one period). This indicates that there are some low-energy turbulence

structures with azimuthal periods that are larger than 2π.

5.1.2 The effects of radius ratio on turbulent concentric an-

nular pipe flow and structures

The effects of radius ratio on the turbulence statistics and structures of concentric

annular pipe flow have been studied in both physical and spectral spaces. Four test

cases (of Ri/Ro = 0.1, 0.3, 0.5 and 0.7) are compared at a nominal Reynolds number

of ReDh = 8900. To ensure that the most energetic turbulence structures are captured

in DNS, the axial length of the pipe is set to Lz = 12πδ, while the azimuthal domain

size varies from Lθ = 2π to π/2 as the radius ratio increases from Ri/Ro = 0.1 to 0.7.

The radius ratio effects on the characteristics of the boundary layers developed over

the inner and outer cylinder walls are investigated by examining the mean velocity,

skin friction coefficient, boundary layer thickness, magnitudes and budget balance of

Reynolds shear stress, and turbulent flow structures.

The curvature difference between the inner and outer cylinder walls vary with the

radius ratio. The thicknesses of boundary layers developed over the inner and outer

cylinder walls are calculated analytically and compared against the DNS data. It is

concluded that the boundary layer thicknesses on the inner and outer cylinder sides

are functions of radius ratio Ri/Ro and friction velocity ratio uτi/uτo. In general, the
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boundary layer developed over the outer wall is thicker than that over the inner wall

(i.e., δto > δti). As the radius ratio increases, the curvature difference between the two

cylinder surfaces reduces, and as a result, the difference between the values of δti and

δto and that between Reτi and Reτo decrease monotonically. The mean axial velocity

profile 〈uz〉+ varies considerably with the radius ratio, and deviates from the familiar

law-of-the-wall for a ZPG boundary layer over a flat plate. At the lowest radius

ratio tested (Ri/Ro = 0.1), the logarithmic layer is apparently wider on the outer

cylinder side than on the inner cylinder side, and the magnitude of Reynolds shear

stress −〈u′zu′r〉+ is higher on the outer cylinder side than on the inner cylinder side.

However, as the radius ratio value increases from Ri/Ro = 0.1 to 0.7, the profiles

of both 〈uz〉+ and −〈u′zu′r〉+ become increasingly symmetrical, indicating that the

degree of curvature difference between the two cylinder walls reduces. The transport

equation of Reynolds shear stress is further investigated to study the interaction of

boundary layers developed above the inner and outer cylinder surfaces. It is observed

that the magnitudes of the dominant source and sink terms (i.e., the production term

Pzr and velocity-pressure-gradient term Πzr, respectively) are higher on the outer

side than on the inner cylinder side. As the radius ratio increases from Ri/Ro = 0.1

to 0.7, the differences in the magnitudes of these two terms between the outer and

inner cylinder side decrease, which is also a reflection of the fact that the curvature

difference between the two cylinder walls reduces as the radius ratio increases.

The effects of radius ratio on the coherent flow structures are examined in phys-

ical and spectral spaces. The scales of energetic turbulent flow motions such as

streamwise-elongated vortical structures and hairpin structures are visualized using

time-averaged axial vorticity fluctuations (ω′z
+

) and instantaneous swirling strength

(λci). The scales of these structures are further studied by examining the 1D axial

and azimuthal spectra of vorticity and velocity fluctuations. In the near-wall region

(around r+ = 20), streamwise vortical structures (or, streaks) dominate. It is ob-

served that as the radius ratio increases from Ri/Ro = 0.1 to 0.7, the characteristic
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length scale of streamwise vortical structures (as indicated by the axial mode of k+
z φ̃

+
z )

varies from λ+
z = 200 on the outer cylinder side to λ+

z = 400 on the inner cylinder

side in the case of Ri/Ro = 0.1 in the near-wall region. In core turbulent regions

at a higher elevation of δti/2 or δto/2 away from the inner or outer cylinder wall,

respectively, hairpin structures become dominant. In general, hairpin structures are

less populated on the inner cylinder side than on the outer cylinder side. The hairpin

structures are longer on the inner cylinder side than on the outer cylinder side at all

radius ratios. As the radius ratio increases, the axial characteristic length scales of

hairpin structure decreases monotonically on the inner cylinder side but increases on

the outer cylinder side. The characteristic axial length scale of the hairpin structures

as indicated by the axial mode of k+
z Ẽ

+
zz varies from λ+

z = 400 on the cylinder outer

side to λ+
z = 700 on the inner cylinder side in the case of Ri/Ro = 0.1. Meanwhile,

the azimuthal mode of k+
θ Ẽ

+
zz does not vary significantly with the radius ratio, which

occurs at λ+
θ = 200-300. The energy level of the hairpin structures is lower on the

inner cylinder side than on the other cylinder side. As the radius radio increases,

the difference in the energy level between the inner and outer cylinder sides reduces

monotonically, which is a reflection of decreased curvature difference between the two

cylinder walls.

5.1.3 Direct numerical simulation of turbulent heat transfer

in concentric annular pipe flows

Turbulent heat transfer and thermal structures in a concentric annular pipe have

been studied using DNS. In order to study the effects of radius ratio on turbulent

heat transfer in a concentric annular pipe flow, four test cases (of Ri/Ro = 0.1, 0.3,

0.5 and 0.7) are compared at a nominal Reynolds number of ReDh = 17700. The

radius ratio effects on the characteristics of the thermal boundary layers developed

over the inner and outer cylinder walls are investigated by examining the first- and
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second-order statistics of the temperature field, Nusselt number, thermal boundary

layer thickness, temperature spectra, budget balance of temperature variance and

turbulent heat fluxes, and axial and azimuthal characteristic length scales of turbulent

thermal structures.

It is observed that the thicknesses of thermal boundary layers developed over

the inner and outer cylinder walls are sensitive to the radius ratio. In general, the

thermal boundary layer developed over the outer wall is thicker than that over the

inner wall (i.e., δ∗to > δ∗ti). The mean temperature profile 〈Θ〉 varies significantly with

the radius ratio, and becomes increasingly asymmetric as the radius ratio decreases

from Ri/Ro = 0.7 to 0.1. At the lowest radius ratio tested (i.e., at Ri/Ro = 0.1), the

mean temperature profile on the inner cylinder side deviates significantly from the

familiar logarithmic law; however, a logarithmic law holds well on the concave outer

cylinder side. This is because the surface curvature is much smaller on the outer

cylinder side, and as a result, the wall scaling behavior of the mean temperature on

the outer cylinder side tends to be similar to that over a flat plate.

It is observed that the magnitudes of the RMS temperature Θ+
rms and axial turbu-

lent heat flux 〈u′zΘ′〉+ show a consistent pattern in all four test cases, which are larger

on the outer cylinder side than on the inner cylinder side. Both Θ+
rms and 〈u′zΘ′〉+

reach their maximum values at r+ ≈ 15, as a direct result of a large local turbulent

production rate in the near-wall region. The investigation into the behaviors of the

RMS temperature and turbulence heat fluxes is refined by examining the budget bal-

ance of the transport equations of temperature variance and turbulent heat fluxes.

It is observed that in the transport process of the axial turbulent heat flux 〈u′zΘ′〉,

the role of the pressure-temperature gradient term Πz is to reduce the axial turbulent

heat flux, especially in the logarithmic region. The magnitude of Πz is larger on the

outer cylinder side than on the inner cylinder side, and furthermore, it serves as the

primary sink term that balances the production term Pz in the logarithmic region

(for r+ > 40).
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The effects of radius ratio on the thermal structures associated with the turbulent

temperature field are studied in both physical and spectral spaces. Both near-wall

thermal streaks and TF structures at higher elevations are investigated. The charac-

teristic length scales of thermal structures are quantified using both 1D and 2D pre-

multiplied spectra of temperature fluctuations. In the near-wall region (of r+ = 15),

thermal streaky structures are dominant. It is observed that the streamwise char-

acteristic length scale of thermal streaky structures (as indicated by the axial mode

of k+
z Ẽ

+
ΘΘ) varies from λ+

z ≈ 800 on the inner cylinder side to λ+
z ≈ 500 on the

outer cylinder side in the case of Ri/Ro = 0.1. However, in the case of Ri/Ro = 0.7,

the streamwise characteristic length scales of thermal streaky structures are similar,

which are approximately λ+
z ≈ 600–700 on the inner and outer sides. These trends

reflect the curvature difference between the inner and outer cylinder walls, which is

the largest at Ri/Ro = 0.1 and the smallest at Ri/Ro = 0.7 among the four test cases.

At a much higher elevation relatively far away from the inner or outer cylinder walls

(specifically, at one-half the thermal boundary layer thicknesses, for δ∗ti = δ∗to = 0.5),

the TF structures became dominant. The characteristic length scales of the TF struc-

tures vary from (λ+
z , λ

+
θ ) ≈ (600, 280) on the inner side to (λ+

z , λ
+
θ ) ≈ (450, 180) on

the outer side in the case of Ri/Ro = 0.1. It is concluded that as a result of the

curvature difference between the two cylinder walls, both axial and azimuthal char-

acteristic length scales of the TF structures are larger on the inner cylinder side than

on the outer cylinder side.

5.2 Future work

To continue the research work of this thesis, I have the following suggestions:

1. The effects of radius ratio on transport of Reynolds stresses in concentric an-

nular pipe flow can be further studied in both physical and spectral spaces. In

this thesis, the effect of radius ratio on the magnitude of Reynolds stresses has
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been studied in Physical space. It would be interesting to study the underlying

mechanism of the Reynolds stress transport processes in the wall-normal direc-

tion and wall-parallel directions by examining the budget balance terms of the

Reynolds stresses in the spectral space.

2. The turbulent flow and heat transfer studied in this thesis were done at two

low and moderate Reynolds numbers. The physical of the heat and fluid flow

can be better understood by testing more Reynolds numbers to systematically

study the Reynolds number effects on the heat and fluid flows.

3. In the turbulent heat transfer study, the temperature field has been treated as

a passive scalar. It would be interesting to also test the buoyant effects on the

turbulent velocity and temperature fields.

4. In the present research, the concentric annular pipe is stationary (fixed to the

ground). In future studies, it would be interesting to investigate the effect of

system rotation (about the axial center and the radial axis) on the turbulence

statistics and coherent flow structures. In this proposal, the effects of Coriolis

forces on the transport processes of the momentum and thermal energy are to

be studied.
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Appendix A

Computer Code and Numerical

Algorithm

In order to conduct DNS of turbulent flow and heat transfer in a concentric annular

pipe, a new computer code has been developed based on a highly-accurate pseudo-

spectral method. This appendix describes the numerical algorithm for developing

this computer code. FORTRAN 90/95 programming language is used to develop

the computer code. The P3DFFT library is used to perform fast Fourier transform

(FFT), and the message passing interface (MPI) libraries are employed to parallelize

the computing processes.

Pseudo-spectral methods are highly-efficient and highly-accurate for solving the

partial differential equations that govern the thermal fluid flows (Fornberg, 1998; Tre-

fethen, 2000; Sanz-Serna, 1995). The pseudo-spectral methods are global, meaning

that the solution at each node depends on all the other computational nodes. Com-

paratively speaking, the finite volume and finite difference methods are local and the

solution at each point depends on the neighbouring nodes. Therefore, pseudo-spectral

methods can achieve much higher accuracy than do the finite difference and finite vol-

ume methods, given the same number of grid points of a discretized domain. A wide

range of pseudo-spectral methods (i.e. Galerkin, collocation, and tau methods) have
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been utilized for numerical simulation of the turbulent flow and heat transfer in the

literature. In this thesis, the collocation pseudo-spectral method is used for solving

the governing equations.

There are many theoretical studies on implementing pseudo-spectral methods to

study a turbulent plan-channel flow (Kleiser and Schumann, 1980; Kim et al., 1987).

However, the number of works on implementing pseudo-spectral methods to investi-

gate the turbulent flow in concentric-annular and circular-pipe is still lacking. The

goal of this appendix is to present an accurate scheme for solving an incompressible

flow confined within a concentric annular pipe.

The organization of this appendix is as follows: in Section A.1, the governing equa-

tions for compressible flow in cylindrical coordinates are presented. In Section A.2,

the spatial discretizations of the velocity and pressure fields are presented in the phys-

ical and spectral spaces. In section A.3, the temporal discretizations are described.

In section A.4, treatment of boundary conditions is implemented. In Section A.5, the

results of a test case are compared against the reference data to validate the devel-

oped code. In Section A.6, the implementation of the P3DFFT library and result of

a scaleability of study of the code are presented.

A.1 Test cases and numerical algorithm

Figure 4.1 shows the schematic diagram and coordinate system of the concentric

annular flow under testing. Here z, θ, and r represent the axial, azimuthal and

radial coordinates, respectively. Correspondingly, uz, uθ and ur represent velocity

components in these three directions. The fluid properties, including density and

viscosity, are assumed to be constant. Hence, the temperature is considered to be

a passive scalar. The continuity, momentum and thermal energy equations for an

incompressible flow for a cylindrical coordinate system are expressed as
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∇ · ~u = 0 , (A.1)

∂~u

∂t
+ ~u · ∇~u = −1

ρ
∇p+ ν∇2~u− Π

ρ
êz , (A.2)

∂Θ

∂t
+ ~u · ∇Θ = uz

dTw
dz

+ α∇2Θ . (A.3)

Here ~u, p, ρ, ν and α represent the velocity vector, pressure, density, kinematic

viscosity and thermal diffusivity of the fluid, respectively. In equations (A.2), êz is

the base unit vector of the z-direction, with |êz| ≡ 1. In equations (A.2) and (A.3),

Π and dTw/dz denote the constant mean axial pressure gradient that drives the flow,

and the mean axial wall-temperature gradient characteristic of surface heating under

a constant surface heat flux condition. Here, Tw = Tw(z) represents the local mean

wall temperature of the inner and outer cylinder surfaces at a given axial position,

and Θ = T − Tw is the excess temperature relative to Tw. By definition, Θ ≡ 0 holds

at the walls.

As shown in Fig. 4.1, the flow is fully developed both hydraulically and thermally.

No-slip boundary conditions are enforced at the cylinder walls for the velocity field.

Periodic boundary conditions are applied in the axial and azimuthal directions for

both the velocity field and the excess temperature (Θ) field. This treatment method

for the temperature field is similar to that used in the numerical studies of turbulent

heat transfer in rotating square duct flows by Pallares and Davidson (2002) and Fang

and Wang (2018). Given a uniform surface heat flux boundary condition (q̇w = q̇wi =

q̇wo), both the bulk mean temperature (Tb) and the local mean peripheral temperature

of the wall (〈Tw〉) increase linearly in the axial direction at a same constant rate (i.e.,

dTw/dz = dTb/dz). Furthermore, for a thermally fully developed flow, the excess

temperature Θ is invariant along the axial direction such that dTw/dz = d〈T 〉/dz.

The mean axial wall-temperature gradient can be evaluated by applying the principle

of energy conservation to a differential control volume to obtain

d〈T 〉
dz

=
dTb
dz

=
dTw
dz

=
2(q̇wiRi + q̇woRo)

ρCpUb(R2
o −R2

i )
. (A.4)
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where, Cp is the specific heat of the fluid under constant pressure and Ub is the bulk

mean velocity.

A.2 Spatial discretization

For the pseudo-spectral method code, Fourier series are applied to the streamwise

and azimuthal directions and the Legendre polynomials are used the wall-normal

direction to expand the velocity, pressure, and temperature fields. The Fourier trans-

form converts a velocity, pressure, and temperature field from a space domain repre-

sentation to a frequency domain representation as

û(kz, kθ, r, t) =
1

NzNθ

Nz/2−1∑
−Nz/2

Nθ/2−1∑
−Nθ/2

u(z, θ, r, t)e−i(kzz+kθθ), (A.5)

where i =
√
−1 indicates the imaginary unit, and kz = n1k0z and kθ = n1k0θ are the

streamwise and azimuthal wavenumbers, respectively. Here, nz ∈ [−Nz/2, Nz/2− 1]

and nθ ∈ [−Nθ/2, Nθ/2 − 1] are two integers, and k0z = 2π/Lz and k0θ = 2π/Lθ are

the lowest wavenumbers. In practice, only a finite number of modes are retained in

the calculation, and the conjugate-symmetric property of the Fourier transforms of

real variables (Canuto et al., 2012) is exploited, so that the negative-k modes are not

required. The corresponding inversion formula for the velocity field is

uk(z, θ, r, t) =

Nz/2−1∑
−Nz/2

Nθ/2−1∑
−Nθ/2

ûk(kz, kθ, r, t)e
i(kzz+kθθ) . (A.6)

Using Fourier series in wall parallel directions, spatial derivatives in z and θ directions

can be obtained by differentiating equation (A.5) with respect to z and θ. The

derivative of a function φn in the wall-normal direction can be written as

∂φi
∂r

=
nr∑
j=0

Dijφi , (A.7)

where matrix D is known as the (Chebyshev) derivative matrix.
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An explicit form of nr×nr matrix of D is given in Trefethen (2000) , which follows

ci =

2 for i = 0 or nr

1 for 1 ≤ i ≤ nr − 1 ,

(A.8)

D00 =
2n2

r + 1

6
, (A.9a)

Dnrnr = −2n2
r + 1

6
, (A.9b)

Dii = − −xi
2(1− x2

i )
for 1 ≤ i ≤ nr − 1 , (A.9c)

Dij =
ci
cj

(−1)i+j

xi − xj)
for i 6= j . (A.9d)

A.3 Temporal discretization

The high-order splitting method developed by Karniadakis et al. (1991) is used

for the time integration. The governing equations of velocity components (equa-

tions (A.2)) can be presented alternatively in the following form,

∂~u

∂t
+ N(~u) = −1

ρ
∇p+ ν L(~u) +−Π

ρ
êz . (A.10)

Here, L(~u) and N(~u) represent the linear viscous and non-linear advection terms,

respectively. The governing equations of the temperature field can also be written in

the same format as,
∂Θ

∂t
+ N(Θ) = αL(Θ) + uz

dTw
dz

. (A.11)

The velocity, pressure, and excess temperature are decoupled using a time-splitting

scheme, which consists of the following three sub-steps,

~̂u
?
−

2∑
q=0

αq~̂u
n−q

= ∆t
2∑
q=0

βqN(~̂u
n−q

) , (A.12)
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Table A.1: Scheme coefficient.

β0 β1 β2 α0 α1 α2

3 -3 1 3 -3/2 1/3

Θ̂? −
2∑
q=0

αqΘ̂
n−q = ∆t

2∑
q=0

βqN(Θ̂n−q) , (A.13)

~̂u
??

= ~̂u
?
−∆t∇p̂n+1 , (A.14)

Θ̂?? = Θ̂? + ∆t(u??z
dTw
dz

) , (A.15)

~̂un+1 =
6

11
(~̂u?? −∆tνL(~̂un+1)) , (A.16)

Θ̂n+1 =
6

11
(Θ̂?? −∆tαL(Θ̂n+1)) . (A.17)

where û?, Θ̂?, û?? and Θ̂?? are intermediate velocity and excess temperature fields

defined in equations (A.12-A.17). The superscript index n refers to time level. The

weight coefficients αq and βq for a 3rd order scheme are given in Table A.1.

Let, N(~̂u) represent the Fourier transform of advection terms. The non-linear

terms are calculated at the first step with no boundary condition. In the first step,

non-linear terms are calculated explicitly. They are taken in the form of a skew-

symmetric formulation based on the proposal of Karniadakis et al. (1991) in order

to minimize aliasing effects. The skew-symmetric form is the most tolerable for the

aliasing errors and the most expensive to compute. The non-linear terms are cal-

culated using the convective and divergence forms alternatively, which is commonly

known to be a good compromise between stability and computational cost (Black-

burn and Sherwin, 2004). The convective form of non-linear terms in the cylindrical

coordinates read

N(~u) = ~u · ∇~u =


uz

∂uz
∂z + ur

∂uz
∂r + uθ

r
∂uz
∂θ

uz
∂uθ
∂z + ur

∂uθ
∂r + uθ

r
∂uθ
∂θ + uruθ

r

uz
∂ur
∂z + ur

∂ur
∂r + uθ

r
∂ur
∂θ −

uθuθ
r

 , (A.18)
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and the divergence form of non-linear terms in the cylindrical coordinates is read

N(~u) = ∇ · ~u~u =


∂uzuz
∂z + ∂uruz

∂r + 1
r
∂uzuθ
∂θ + uzuz

r

∂uzuθ
∂z + ∂uruθ

∂r + 1
r
∂uθuθ
∂θ + 2uruθ

r

∂uzur
∂z + ∂urur

∂r + 1
r
∂uruθ
∂θ + urur−uθuθ

r

 . (A.19)

û?? satisfies the incompressibility constraint, thus

∇ · û?? = 0 . (A.20)

This velocity field should also satisfy the no-slip boundary condition in the wall-

normal direction. Therefor,

û?? · êr = 0 . (A.21)

Incorporating these assumptions into Eq. (A.14), a separately solvable elliptic equa-

tion for the pressure with Neumann boundary conditions is obtained,

∇2p̂n+1 = ∇ ·
(

û?

∆t

)
, (A.22)

∂p̂n+1

∂r
= 0 . (A.23)

The final field ûn+1 is obtained by solving the Helmholtz equation Eq. A.16 with

û∗∗ acting as a forcing term. The linear viscous term of the Fourier transformed

momentum equation (A.2) can now be written as

L(~̂u) = ∇2û =


(−k2

z −
k2
θ

r2 + 1
r
∂
∂r + ∂2

∂r2 )ûz

(−k2
z −

k2
θ+1
r2 + 1

r
∂
∂r + ∂2

∂r2 )ûθ − ν 2ikθ
r2 ûr

(−k2
z −

k2
θ+1
r2 + 1

r
∂
∂r + ∂2

∂r2 )ûr − ν 2ikθ
r2 ûθ

 . (A.24)

Note the coupling of L(ûθ) with L(ûr) in the viscous terms of Eq. (A.24). it arises

through taking a divergence of the viscous stress tensor in cylindrical coordinates.

The variables are related as

ũr = ûr + iûθ, ũθ = ûr − iûθ, ũz = ûz , (A.25)
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which can be used to diagonalise the linear terms (Orszag and Patera, 1983). The

diagonalised equations can therefor be presented as follows:

∂ûz
∂t

+N(ûz) = −ikθ
ρ
p̂+ νL(ûz) , (A.26)

∂ũθ
∂t

+N(ũθ) = −1

ρ

(
∂p̂

∂r
− kθ

p̂

r

)
+ νL(ũθ) , (A.27)

∂ũr
∂t

+N(ũr) = −1

ρ

(
∂p̂

∂r
+ kθ

p̂

r

)
+ νL(ũr) , (A.28)

ikzûz +
∂ûr
∂r

+
ûr
r

+
ikθûθ
r

= 0 . (A.29)

A.4 Implementation of boundary conditions

The velocity, pressure, and temperature fields are periodic in the streamwise and

azimuthal directions. However, in the wall-normal direction the Dirichlet boundary

condition is applied to the velocity and temperature fields, and Nuemann boundary

condition is applied to the pressure field. In the steamwise and azimuthal directions,

periodic boundary condition can be satisfied naturally through Fourier transform to

discretize the variables. However, in wall-normal direction, a special treatment is

required to impose the Dirichlet boundary condition on the velocity and tempera-

ture fields and Nuemann boundary condition on the pressure field. Here, detailed

treatment methods are presented. However, for the sake of brevity, only detailed

treatment of uz in terms of the Dirichlet boundary condition is presented, and the

same treatment method extends to uθ, ur, and Θ.

Considering Eq. (A.22), the coefficient matrix of pressure at given kz and kθ reads

CP = D2 + diag(1/r)×D + diag(k2
z +

k2
θ

r2
) (A.30)

Here, CP is a coefficient matrix of the pressure solver, diag(·) denotes a diagonal

matrix, and D is the (Chebyshev) derivative matrix that was previously defined by
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Eq. (A.9). Based on the intermediate velocity û? given by Eq. (A.12), the right hand

side (RHS) of Eq. (A.22) at arbitrary wave numbers kz and kθ reads

RP = D × û?r + diag(1/r)× û?r + diag(ikz)× û?z + diag(
ikθ
r

)× û?θ . (A.31)

Here, RP is the RHS vector of pressure solver. To impose the Neumann boundary

condition the first and last rows of CP and RP should modified as follow,

D1,1 D1,2 · · · D1,nz−1 D1,nz

CP2,1 CP2,2 · · · CP2,nz−1 CP2,nz

...
...

. . .
...

...

CPnz−1,1 CPnz−1,2 · · · CPnz−1,nz−1 CPnz−1,nz

Dnz,1 Dnz,2 · · · Dnz,nz−1 Dnz,nz





p̂(r1)

p̂(r2)
...

p̂(rnz−1)

p̂(rnz)


=



0

RP (r2)
...

RP (rnz−1)

0


. (A.32)

Using the linear solver provided by the LAPACK library, Eq. (A.32), the pressure

field with a specific boundary condition can be obtained.

Considering Eq. (A.16), the coefficient matrix of streamwise velocity (ûn+1
z ) at

given kz and kθ reads

CV = I +
6

11
·∆t · ν ·

(
D2 + diag(1/r)×D + diag(−k2

z −
k2
θ

r2
)
)

. (A.33)

Here, CV is a coefficient matrix of the streamwise velocity solver. Once the inter-

mediate velocity û?? is obtained from Eq. (A.14), the streamwise velocity at given kz

and kθ reads

RV =
6

11
û??z , (A.34)

where RV is the RHS vector of the streamwise velocity solver. To impose no-slip

boundary condition on the streamwise velocity field, the first and last rows of CV

and RV are modified as follows:

1 0 · · · 0 0

CV2,1 CV2,2 · · · CV2,nz−1 CV2,nz

...
...

. . .
...

...

CVnz−1,1 CVnz−1,2 · · · CVnz−1,nz−1 CVnz−1,nz

0 0 · · · 0 1





û(r1)

û(r2)
...

û(rnz−1)

û(rnz)


=



0

RV (r2)
...

RV (rnz−1)

0


. (A.35)
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Then with the linear solver provided by the LAPACK library, the streamwise velocity

field with a specific boundary condition can be obtained.

A.5 Validation based on concentric annular pipe

with Ri/Ro = 0.5

The new pseudo-spectral code has been validated based on the test case of turbu-

lent concentric annular pipe flow at RDh = 8900 and Pr = 0.71, and the results are

compared against the DNS data of Chung et al. (2002) and Kasagi et al. (1992). The

numerical simulations were set up under the condition of a constant mean streamwise

pressure gradient, which can be determined as

Π = −2(τwiRi + τwoRo)

(R2
o −R2

i )
. (A.36)

In the above equation, the values of τwi and τwo can be further determined based on

the values the skin friction coefficients (Cfi and Cfo) at the inner the outer cylinder

walls, respectively. In order to set up the numerical simulation, we used the skin

friction coefficient values given in the DNS study of Chung et al. (2002) for Reynolds

number case of ReDh = 8900, which is Cfi = 0.00941 and Cfo = 0.00849 at the inner

and outer cylinder walls, respectively. From equation (A.36), it is straightforward that

the value of the mean streamwise pressure gradient can be alternatively determined

as Π = −CfρU2
b /(Ro−Ri), based on the averaged friction coefficient defined as Cf =

CfiRi/(Ri +Ro) +CfoRo/(Ri +Ro). The value of Cf can be also estimated from the

empirical equation given by Nouri et al. (1993), i.e. Cf = 0.36(ReDh)−0.39. Test runs

were conducted and minor adjustments to the value of Π were made to ensure that the

value of ReDh calculated from DNS converges to its nominal value within a reasonable

range of error tolerance. The numerical setup parameters are summarized in table A.2,

. For this particular test case, the domain size is Lz ×Lθ×Lr = 6πδ× π/2× 2δ, and

a total number of grids of Nz×Nθ×Nr = 192× 128× 64 are used in the z−, θ− and
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Table A.2: Summary of test cases and grid resolutions. The nominal Reynolds number
is ReDh = 8900 for the C and Ca test cases.

Case Lz × Lθ × Lr ∆z+ (Ri∆θ)
+ (Ro∆θ)

+ ∆r+
min ∆r+

max

C 6πδ × π/2× 2δ 14.422 3.607 7.215 0.180 7.377
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Figure A.1: Comparison of wall-normal profile of mean velocity and Reynolds normal
stress against the DNS results by Chung et al. (2002), labeled as the case of Ca.

r− directions, respectively.

Figure A.1 compares the profiles of mean velocity and Reynolds normal stress

against DNS data of Chung et al. (2002). Figure A.2 compares the profiles of mean

temperature of the inner and outer sides against DNS data of Chung et al. (2002) .

In both figures A.1(a) and A.1(b), the DNS data set of Chung et al. (2002) is labeled

as the case Ca. Also, the root mean square (RMS) of temperature fluctuations is

compared against DNS results of Kasagi et al. (1992), labeled as the case Cb. The

boundary condition used for the temperature fluctuation in the study of Chung et al.

(2002) is zero gradients at wall, while in this study we used zero temperature fluc-

tuation at the walls. More recent studies of heat transfer consider zero temperature

fluctuations at the walls, such as the study of Kasagi et al. (1992), which the pro-

duced results by the code are compared against it. Here, the RMS of fluctuating
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Figure A.2: Comparison of wall-normal profile of mean velocity and Reynolds normal
stress against the DNS results by Chung et al. (2002)

temperature is compared against DNS data of Kasagi et al. (1992), which used the

same boundary condition we used fora channel flow with iso-flux heating at the walls.

A good agreement between the results from the current pseudo-spectral code and

the reference data is apparent. Based on the above results, it is concluded that the

pseudo-spectral code developed in this thesis has been validated and can be used for

DNS simulation.

A.6 Implementation of the P3DFFT library

In this thesis, the P3DFFT library is used for performing of Fast Fourier Transfor-

mation (FFT) in a three dimensional space (3D). With the employment of P3DFFT,

data can be transformed forward (real-to-complex) and backward (complex-to-real) in

a 3D space. The P3DFFT library consists of three major components: initialization,

array decomposition, , and forward (real-to-complex) and backward (complex-to-real)

3D Fourier transforms.

The P3DFFT library uses MPI library for communication between processors.
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Before initializing the P3DFFT library, the MPI library should be initialized. For-

tran programs use include “mpif.h” to define various constants and variables that

are necessary in every MPI Fortran program. The following code with abundant

comments shows how to initialize the MPI library.

1 include ’mpif.h’

2

3 call MPI_INIT (ierr)

4 call MPI_COMM_SIZE (MPI_COMM_WORLD , nproc , ierr)

5 call MPI_COMM_RANK (MPI_COMM_WORLD , proc_id , ierr)

The call to MPI INIT is required in every MPI program and must be the first MPI call.

It establishes the MPI “environment”, and its only argument is an error status. The

call MPI COMM SIZE returns nproc, the number of processes that the user has started

for this program. MPI COMM WORLD is the default communicator, which defines a set of

rules that dictates how processors can communicate with each other. MPI COMM WORLD

is one of the items defined in “mpif.h”. By calling MPI COMM RANK, each process finds

out its rank in the group associated with a communicator. Thus, although each

process in this program will get the same number in nprocs, each will have a different

number for proc id.

Only after initializing the MPI library, can the P3DFFT library be initialized.

The following code with abundant comments shows how to initialize the P3DFFT

library.

1 ! INITIALIZE P3DFFT

2

3 use p3dfft

4

5 ! nproc = total number of processors

6 dims (1) = nint(sqrt(real(nproc)))

7 dims (2) = dims (1)

8

9 ! Send dims , nx , ny , nz to p3dfft and get array dimensions (
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Table A.3: Arguments of p3dfft setup.

Arguments intent Descriptions

dims Input An array of two integers, specifying how the processor
grid should be decomposed.

nx, ny, nz Input (Integer) Dimensions of the 3D transform (also the global
grid dimensions).

istart , iend , fstart , fend) and size of each array (isize , fsize)

10 call p3dfft_setup (dims , nx , ny , nz , MPI_COMM_WORLD)

11 call p3dfft_get_dims (istart , iend , isize , 1)

12 call p3dfft_get_dims (fstart , fend , fsize , 2)

The number of nprocs specified must be even (except if one core is used) as a square

root (i.e., nprocs = i2, i ∈ Z). The required arguments to call p3dfft setup are

explained in Table A.3.

The p3dfft setup routine sets up a two-dimensional (2D) array decomposition.

P3DFFT employs 2D block decomposition whereby processors are arranged into a

2D grid dims(1) × dims(2), based on their MPI rank. Two dimensions of the 3D

grid are block-distributed across the processor grid, by assigning the blocks to tasks

in the rank order. The third dimension of the grid remains undivided, i.e. contained

entirely within local memory (see Fig. A.3). This scheme is sometimes called pencil

decomposition. A block decomposition is defined by dimensions of the local portion of

the array contained within each task, as well as the beginning and ending indices for

each dimension defining the array’s location within the global array. This information

is returned by p3dfft get dims routine.

The data are decomposed in z-pencil (see Fig. A.3(b)) in the real physical space,

this will allow each processor to have access to data in the wall-normal direction,

which is needed to perform differentiation (i.e., ∂/∂r). The forward transform (real-

to-complex) takes the array and transposes it into x-pencil ( x-direction in computa-

tional space, see Fig. A.3(a)) to perform differentiation in the wall-parallel directions
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Table A.4: Arguments of p3dfft get dims(start, end, size, ip).

Arguments Intent Descriptions

start output An array containing 3 integers, defining the beginning
indices of the local array for the given task within the global grid.

end output An array containing 3 integers, defining the ending indices
of the local array within the global grid.

size output An array containing 3 integers, defining the local
array’s dimensions.

ip input ip=1: “Original”: a “real space” array of real numbers
ip=2: “Transposed”: a “complex space” array of real numbers
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Figure A.3: The pencil decomposition of data.

(i.e. ∂/∂z or ∂/∂θ). The backward (complex-to-real) transform takes the array in a

transposed form and produces a real array in the original form.

A block decomposition is defined by dimensions of the local portion of the ar-

ray contained within each task, as well as the beginning and ending indices for

each dimension for defining the array’s location within the global array. This in-

formation is returned by p3dfft get dims routine. The required arguments to call

p3dfft get dims, in order of appearance, are explained in Table A.4.
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Table A.5: Arguments of p3dfft ftran r2c (in, out, opt).

Arguments Intent Descriptions

in input array of complex number
out output array of complex number
opt input a 3- letter character string indicating the type of transform desired.

array’s dimensions.

Table A.6: Arguments of p3dfft ftran c2r (in, out, opt).

Arguments Intent Descriptions

in input array of complex number
out output array of real number
opt input a 3- letter character string indicating the type of transform desired.

Forward transform is implemented by calling p3dfft ftran r2c (in, out, opt)

subroutine. The required arguments to call p3dfft ftran r2c are explained in Ta-

ble A.5. The key point to use this subroutine currently is choosing a correct option.

In order to perform Fourier transform in wall parallel directions (i.e., z− and θ−

directions in physical space, or x and y directions in computational space) and no

transformation in z direction opt=’nff’. Backward transform is implemented by

calling p3dfft ftran c2r (in, out, opt) subroutine as explained in Table A.6. In

order to correctly perform backward transform, the option argument (opt) should be

same as the one chosen for p3dfft ftran r2c (opt=’nff’).

A.7 Scalability of the code

The scalability of a parallel code (or, speedup) can be evaluated using the equation

Speedup = T1/TN , where T1 is the execution time of the code on one processor and TN
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Figure A.4: Scalability of the parallel code obtained on the WestGrid (Orcinus) server.

is the execution time running on N processors. The test case is selected to assess the

performance of the code is similar to case C presented in Table A.2. The preliminary

speedup based on result 1 to 256 computer cores are shown in Fig. A.4. The perfect

speedup corresponds to a 1-to-1 speedup is presented for a better comparison. The

results show that the code scales fairly well upto at least 256 processors. The speedup

is close to linear and does not exhibit a limiting value or a negative slope.
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