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Abstract

Sinusoids and damped signals are a fundamental part of different engineering fields. Analysis

of these signals to give an accurate estimation of certain parameters such as frequency,

damping factor, and phase angle is important in many engineering fields as an accurate

estimation of these parameters is needed to ensure the smooth running of various processes.

The need for higher levels of precision and accuracy in the signal-processing domain has

resulted in the development of several algorithms based on different methods of operation.

These algorithms can be divided into two classes, namely, parametric and non-parametric

algorithms. The former assumes that the signal follows a particular model and estimates the

signal parameters based on that assumption, while the latter makes no assumptions regarding

the signal. Intuitively, the non-parametric class of algorithms seem to be a better choice for

real-life applications as the model of the signal is usually unknown. However, algorithms

under this class suffer from the issue of spectral leakage. Both classes of algorithms for

signal analysis have their strengths as well as shortcomings.

In this thesis, the concept of using machine learning methods in signal analysis is ex-

plored. To achieve this, the DeepFreq model is extended by modifying its architecture and

applying it to damped sinusoidal signals to provide an estimate of signal parameters such

as frequency and damping factor. The developed algorithm can estimate the number of

frequencies as well as the value of the frequencies contained in a signal waveform with an R2
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score of 0.88 even in noise levels of up to 0 dB. The algorithm’s performance was evaluated

using data samples of sinusoidal signals within the ISM band range of 2.4GHz to 2.65GHz.

The algorithm was tested on synthetic data and data from lab experiments, and the results

show that the deep learning model can perform frequency and damping factor estimation

for damped multi-frequency sinusoidal signals.
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Chapter 1

Introduction

1.1 Background

In signal processing and communications, one of the main problems faced is frequency es-

timation of noisy sinusoidal waves [1]. In the field of wireless electromagnetic sensors (that

is of interest to this research), the signals under consideration are transient responses of

electromagnetic scatterers and are often noisy. These noisy transient responses, upon closer

inspection, appear to be made up of small numbers of damped sinusoids. In the frequency

domain, these damped sinusoids are poles of the Laplace transformed transient response [2].

To characterize the frequency domain responses of electromagnetic scatterers in terms of

their singularities, the Singularity Expansion Method (SEM) is used. This method was

introduced in 1971 by Baum and it is based on the premise that the natural modes and

resonances of an electromagnetic scatterer which are characterized by poles in the complex

frequency plane, or the Laplace transform s-domain may be used to describe the scatterers

electromagnetic response to an incident wave [3]. It is particularly useful in the calculation
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or characterization of transient responses from antennas and other passive scatterers of elec-

tromagnetic radiation [4]. SEM was developed based on the observation of objects subjected

to electromagnetic pulse experiments. In these experiments, the objects were exposed to

a continuum of frequencies contained in a broadband transient excitation. The late time

transient response of the objects was observed to be dominated by damped sinusoids which

in the complex frequency plane corresponds to a pair of pole singularities [4]. The challenge

lies in accurately estimating the frequency of these transient responses.

Over the years, different theoretical techniques have been proposed to tackle the challenge

of frequency estimation. Some of these techniques include discrete Fourier transformation

[5, 6], Phase Locked Loops [7, 8], Least Squares Method [9, 10] and Matrix Pencil Method

[11,12]. The one thing these techniques have in common is that they aim to give an accurate

estimate of the frequency contained in the signal without trading their performance in terms

of speed, accuracy, and efficiency.

In recent times, artificial intelligence techniques have been applied in different areas of

science to automate processes, lower human error rates, increase efficiency, and improve

workflows [13–18]. In speech recognition and natural language processing, these techniques

have helped develop state-of-the-art systems for speech transcription, language identification,

and speaker verification [19–21]. Through advances in knowledge representation, multiple

knowledge sources can now be incorporated into a single framework. This development has

led to improvements in speech transcription as pronunciations across different accents are

better understood by these systems. Also, the introduction of statistical methods into ex-

isting system models and algorithms, has led to these systems being able to characterize

certain sets of speech features such as tone, and idiolect with increased accuracy. This has

led to significant improvements in language identification and speaker verification. In image
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detection and classification, these techniques have helped in robotic fruit harvesting, and

detection of abnormalities in plant leaves [22–27]. The advancements in image processing

techniques have resulted in systems that are able to perform a wide range of precision tasks

that are applicable to agriculture such as, fruit detection, fruit variety classification, fruit

disease detection, fruit sorting, fruit counting and fruit grading. These techniques have been

proven to be non-invasive, non-destructive, and effective with high accuracy when analyzing

fruit characteristics. In medical diagnosis, these techniques have been used to identify and

classify different types of skin lesions, cancers, and brain tumors [28–30]. The techniques

have improved discriminative representation abilities. They make use of feature maps and

attention maps that help the algorithm focus on discriminative parts of the ailment. This

focusing ability helps improve the accuracy of the algorithm when classifying conditions that

have similar symptoms. In the field of signal processing, deep learning has been applied in

different areas such as symbol detection, anti-interference, and modeling channel informa-

tion [31]. Deep learning techniques have the advantage of being independent of the signal

model while being able to extract useful information from the observed data. They have

been used to identify time domain signals based on their modulation type e.g., Binary Phase

Shift Keying (BPSK) as well as perform end-to-end wireless communication involving en-

coding, decoding, modulation, and demodulation of signals. They have also been used in

anti-interference schemes to mitigate radio frequency (RF) interference and the results show

that deep learning methods have comparable accuracy with existing mitigation algorithms.

In [32–36], deep learning was used in estimating the direction of arrival (DOA) of electromag-

netic waves. The use of deep learning in DOA estimation was explored because the existing

signal processing methods could only work well on data samples that were uncontaminated

with noise. Deep learning was used to extract certain features from noisy signals and map
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those extracted features to the DOA. The results showed an improved root-mean-square

error (RMSE) when compared to existing methods. In [1, 37–39], the use of deep learning

networks for signal parameter estimation of sinusoidal signals was introduced.

The use of artificial intelligence techniques for frequency estimation introduces the con-

cept of learning-based techniques to signal processing which is a significant improvement

over the model-based methods that previously existed. The application of learning-based

techniques would imply that algorithms can be trained to identify slight variations across

different signal waveforms, and depending on the robustness of their training dataset, these

trained algorithms could be used on a wide range of signal waveforms.

Applying machine learning methods to signal processing gives rise to numerous possibili-

ties including unsupervised real-time data analysis and evaluation. In this thesis, a modified

algorithm for frequency estimation based on [1] is proposed. The algorithm uses a Deep

learning architecture to estimate the frequency of damped sinusoidal waveforms over a fre-

quency range of 0Hz to 2.65GHz. The modification produces significantly better frequency

estimations for SEM waveforms than the model proposed in [1].

1.2 Research Objectives

The objective of this thesis is to explore the use of deep learning (DL), an artificial intelligent

technique in the area of signal analysis. Specifically, this thesis aims to explore using DL

to estimate signal parameters of damped sinusoidal signals. In this work, the signals being

considered are that of a wireless passive sensor proposed in [40]. Figure 1.1 shows a schematic

diagram of the operation of the wireless passive sensor. An interrogator transmits RF pulses

to the resonator and receives ringback signals from the resonator. The sensor is designed
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Fig. 1.1: Schematic diagram of the interrogation system for the wireless passive sensor.
Adapted from [40] with permission.

to have a resonance frequency of 2.57GHz and the interrogator sends RF pulses with a

frequency of 2.60GHz to the sensor. The 30MHz difference in frequency helps to differentiate

the ringback frequency of the sensor from that of the interrogator for accurate signal analysis.

The interrogator system consists of two 10 dB horn antennas, one of which is used to transmit

the RF pulses to the resonator while the other is used to receive the ringback signals from

the resonator. The algorithm developed in this work, takes in data samples comprising of

damped sinusoidal waveforms as inputs and gives the number of frequencies or damping

factors contained in each of the waveforms and the estimated value of these frequencies or

damping factors as an output.

The first part of this study involved training and testing the algorithm using artificial

real-valued damped and undamped sinusoidal signals. The damped sinusoidal signals were

generated using random values of damping factors and for each generated sample, a random

noise level was added.

The next part of this study involved training and testing the algorithm using data sam-

ples collected from lab simulations and measurements. The lab simulations were performed

- 5 -
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using the Multisim 14.1 environment where a wireless passive sensor including a transmitter

and receiver was designed. The ringback signals from this simulation were passed to the

deep learning algorithm. In the lab measurements, the data samples were collected when

a resonator was used as the wireless sensor. These experiments were not conducted in an

anechoic chamber and as such the data samples contain noise as well as interference signals.

These experimental conditions were employed to model real-world conditions. The results

of these tests are reported in Chapter 4.

The third part of this study involved comparing the performance of the algorithm with

that of existing signal processing algorithms. For this part, the different algorithms were

tested on the same data samples and their performances were evaluated based on accuracy

and computational complexity. The tests results and observations are reported in Chapter

3.

1.3 Research Contributions

The contributions of this thesis are as follows:

• The use of deep learning for frequency estimation of damped sinusoidal signals is

investigated. Different architectures were considered and tested. The results from

these tests were used to redesign the architecture and optimize the training parameters

to improve the accuracy of the algorithms’ frequency estimates.

• A robust signal model that consists of a wide range of frequencies is designed. This

allows for the proposed algorithm trained using this model to estimate the frequency

of sinusoidal signals over a wide range of frequencies.
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• The application of the deep learning algorithm for signal parameter estimation allows

for transfer learning which reduces the time required to estimate parameters of ‘new’

signal waveforms.

• The proposed algorithm is computationally less expensive than the traditional signal

processing methods. The proposed algorithm once trained can be used on a wide

range of datasets whereas the existing traditional signal processing methods which are

computationally expensive need to be run on the dataset every time to estimate the

signal’s frequency.

• The proposed method in comparison to traditional signal processing methods can be

used for real-time signal analysis as it is time efficient. The algorithm is able to

determine the number of frequencies and damping factors contained within a waveform

sample as well as estimate the value of these frequencies and damping factors without

prior knowledge of the exact model of the signal.

• The proposed algorithm is able to estimate the signal parameters of damped noisy

sinusoidal waveforms in comparison to the algorithm proposed in [1] that estimates

the frequencies of undamped sinusoidal waveforms.

• The proposed algorithm was trained using double exponential signal waveforms that

have an envelope similar to the signals obtained from a wireless interrogation system

and the results are presented.

• The proposed algorithm has a significantly reduced number of layers in comparison

to [1], and gives accurate results within a shorter training time.

• The proposed algorithm provides signal parameter estimates for multiple components of

- 7 -
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damped multi-sinusoidal signals whereas existing traditional signal processing methods

are able to provide single signal parameter estimates for damped sinusoidal signals.

• The application of deep learning to estimate the damping factors of damped multi-

sinusoidal signals was also explored and the results are discussed in Chapter 4 of this

work.

1.4 Thesis Outline

This thesis is divided into six chapters as defined below:

Chapter 1: Introduction, motivation, research objectives, and research contributions

are presented.

Chapter 2: Background on different signal processing algorithms for frequency estima-

tion including a brief history on the Matrix Pencil method algorithm and other traditional

signal processing methods is presented. The advantages and shortcomings of the algorithms

are discussed in this chapter.

Chapter 3: The architecture of the deep learning algorithm for frequency estimation is

presented in this chapter. The modifications made to the algorithm are discussed and the

different modules of the algorithm’s architecture are explained.

Chapter 4: The performance of the deep learning algorithm is evaluated in this chapter.

The data-sample preparation process for training, validation and testing is described. The

structure of the wireless interrogation system simulated with Multisim 14.1 is explained and

the proposed algorithm is evaluated using waveform samples from the simulation. Results

from tests run on data-samples collected from the wireless passive sensor are presented.

Also, the results from the comparison between the proposed algorithm and traditional signal
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processing algorithms for signal parameter estimation are discussed.

Chapter 5: Conclusions of this thesis and potential future research work are discussed

in this chapter.
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Chapter 2

Literature Review

Signal processing methods can be classified into two types: parametric methods and non-

parametric methods [41]. For spectral analysis, parametric methods are based on models

while non-parametric methods are based on the Fourier transform. The parametric methods

are able to provide high resolution estimates and are suitable for data samples that are

relatively short. However, these methods are computationally more expensive than the non-

parametric methods and typically require an estimation of the model orders i.e., they require

that the exact model of the signal and the disturbances be known. The Prony algorithm is

an example of a parametric method [41]. The algorithm extracts information from a signal

under analysis and uses this information to define the signal as a sum of damped complex

exponentials. This definition is used to estimate the signal’s parameters such as its frequency,

its phase, its amplitude, and its damping factor. On the other hand, non-parametric methods

which are based off the FFT algorithm, have low computational costs when compared to

parametric methods and can easily be implemented because they do not require that the

exact model of the signal be known. These methods are considered practical for real-life
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applications as the signal of interest may have components that cannot be precisely modeled

such as an unknown number of sinusoids, an unknown number of frequencies, noise with an

unknown distribution, amongst others. These components invariably affect the accuracy of

the parametric methods which are also computationally expensive as much of their estimation

depends on the computation of the pseudo-inverse of a matrix [42]. However, non-parametric

methods are not without their shortcomings as these methods have two main challenges;

spectral leakage and picket fence effects [43]. Spectral leakage is caused by the truncation

of a signal to a finite length. FFT and DFT algorithms work on the assumption that the

signal being analyzed is continuous and repeats itself after the measured time interval. This

leads to errors in the assumed signal when the length of the DFT is not an integer product

of the period of the signal. In multi-frequency signals, when the length of the DFT is not an

integer multiple of all the components of the signal, it results in a smeared spectrum caused

by interference amongst the sinusoidal components of the multi-frequency signal. Spectral

leakage is not the same as aliasing, which is caused by sampling a signal at a rate lower than

the Nyquist rate. On the other hand, the picket fence effect is the fall off in frequency between

two frequency bins. Frequency bins are intervals between samples in the frequency domain

i.e., they are storage bins for spectral energy. The frequency is only accurate at these specific,

regular intervals (bins). The parametric and non-parametric methods of signal processing

are discussed in detail below.
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2.1 Non-parametric Signal Processing Algorithms

2.1.1 Windowed Interpolation Algorithms

Previously, the well-established methods of determining parameters of continuous signals

involved counting the zero-crossings of the signal to get the frequency, peak to peak mea-

surement to get the amplitude and window averaging to get the dc value of the signal. These

methods had their shortcomings as they were most effective when moderate accuracy of 1%

or lower was desired [44].

Over the years, the need for fast and computationally efficient algorithms to process

distorted signals has given rise to the development of a variety of signal-processing algorithms.

A number of these algorithms are based on the fast or discrete Fourier transform (FFT or

DFT), which is a good way to perform power spectrum analysis and filter simulation [45].

FFT is a computationally-efficient method of determining the DFT of a time series [46]. The

DFT is defined by [46]

An =
N−1∑
m=0

(Sm) e
(−2πj/N)×nm, 0 ≤ n ≤ N − 1 (2.1)

where An is the nth coefficient of the DFT, Sm is the kth sample of the time series and N

denotes the number of samples in the time series. The DFT of a time series is a reversible

mapping operation that defines a time series and it is closely related to the Fourier transform

of the continuous waveform that samples were taken from to form the time series. However,

a shortcoming of using the DFT or FFT is spectral leakage which allows a single tone signal

to be spread across multiple frequencies making it hard to distinguish the actual frequency

of the signal. Although spectral leakage is affected by the sampling period of the signal,
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it is important to note that it is not caused by it [47]. Another point worthy of note

is that the phase of the signal impacts the accuracy of the frequency and damping factor

estimates for signals with a small number of cycles. Also, the phase that minimizes systematic

error for frequency estimation does not necessarily minimize the error for damping factor

estimation [48].

To solve the challenge of signal parameter estimation due to spectral leakage, a method

based on the interpolation of DFT points on a spectrum was used to estimate signal param-

eters in the presence of spectral leakage [44]. Interpolation DFT algorithms compute the

sample of the continuous spectrum of the DFT between frequency bins [48]. The purpose

of DFT interpolation is to determine the value of frequency correction and from that value

the angular frequency of the signal can be obtained [49]. However, it was found that only

short-range spectral leakage (i.e., spectral leakage caused by positive frequencies [43]) could

be efficiently countered by the interpolation scheme [45]. The method proved to be imprac-

tical in countering the effects of long-range spectral leakage (i.e., spectral leakage caused by

negative frequencies [43]) when estimating signal parameters [45].

In [45], a new method to characterize the parameters of multifrequency signals was

introduced. The multifrequency signals considered are of the form represented by [45]

s(m∆t) =
∑
k

Ake
2πjfkm∆t, 0 ≤ m ≤ N − 1. (2.2)

In this method, the signals are weighted using a Hanning window before the discrete Fourier

transform is calculated. An example of a Hanning window is shown in Fig. 2.1. The Hanning
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window is described as [45]

w(m∆t) = 0.5

(
1− cos(

2πm∆t

T
)

)
, 0 ≤ n ≤ N − 1, (2.3)

and the DFT of the signal in (2.2) is defined as [45]

S(n∆f) =
∑
k

AkDN((n∆f − fk)T ) (2.4)

where

DN(θ) =
sin(πθ)

Nsin(πθ/N)
e(

−jπθ(N−1)
N

) (2.5)

and ∆f = T−1 where T = N∆t. The tapered time function which is calculated by applying

the Hanning window to the multifrequency signal i.e. s(m∆t) · w(m∆t) is given by [45]

SH =
∑
k

AkBN((n∆f − fk)T ) (2.6)

where

BN(θ) = 0.5(DN(θ)− 0.5(DN(θ + 1) +DN(θ − 1))). (2.7)

In (2.4), DN represents a Dirichlet kernel which is an expression of the partial sum of the

Fourier series of a function. In the frequency domain, (2.6) can be written as

SH(n∆f) = 0.5[S(n∆f)− 0.5(S((n+ 1)∆f) + S((n− 1)∆f))]. (2.8)

An algorithm based on (2.8) is of a lower computational complexity than an algorithm

based on (2.6). For a function, the summation of three consecutive Dirichlet kernels that

have different phases cancels out the side-lobe structure of the function [47]. The Hanning
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Fig. 2.1: The Hanning window in the time domain.

window acts as a tapered window which is used to remove discontinuity in the signal. It is

applied in the time domain to improve the properties of the signal in the frequency domain.

Tapered windows help remove the effect of long-range spectral leakage. After windowing, the

DFT of the signal is calculated and the interpolation method is used to counter the effect of

short-range spectral analysis. The method effectively combines the advantages of windowing

with that of interpolation resulting in an improved efficiency in estimating signal parameters.

The Hanning window used in the method was adopted for its simplicity and because leakage

across the boundaries of the window is negligible except for frequencies close to 0 and fmax.

The proposed method, when compared with other interpolation algorithms that existed at

the time has a higher accuracy and gives a better estimate of the fundamental frequency of

signals in the case of additive white noise [45]. The method has its short comings in that

it is only viable for signals whose noise variance does not exceed 3% and, the frequencies of
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Fig. 2.2: The Hanning window in the frequency domain.

the signal have to be spaced sufficiently.

In [50], the Rife and Vincent family of weighting functions were used to remove the effect

of short-range spectral leakage and the results were further examined under noisy conditions.

The Rife and Vincent weighting functions were specifically chosen in this approach because

they improve the accuracy of measurements over a wide range of applications. Rife and

Vincent in their work [51] discussed three classes of weighting functions to be used for

windowing. The Class I weighting functions provide minimum high-order side-lobe amplitude

for large frequencies. The Hanning window falls under this category. Figure 2.2 shows the

Hanning window in the frequency domain. The central peak is known as the main-lobe

while the other peaks at regular intervals are called side-lobes. Each sidelobe also represents

a frequency bin. Class II weighting functions provide minimum main-lobe width at the

expense of higher side-lobe amplitudes. These weighting functions are the result of applying
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Taylor approximations to the Dolph-Tchebycheff functions. They give good results when the

spectral components of the signal under evaluation are very close. However, the wider side-

lobe width increases the distortion of the signal in the frequency domain. Class III weighting

functions combine the desired properties of Class I and Class II weighting functions. They

have a narrower main-lobe width when compared with Class I algorithms, but they have

slightly higher side-lobes. The slightly narrower main-lobe widths of Class III weighting

functions helps them provide a better resolution for small frequency separated tones than

Class I weighting functions. They also provide better resolution for weighting large frequency

separated tones than Class II weighting functions.

An advantage of the Rife and Vincent family of weighting functions is that they allow

simple interpolation algorithms that counter the effect of short-range spectral leakage to be

obtained. These algorithms help make accurate estimations of sinusoidal signal parameters

such as frequency, magnitude, and phase with little to no increase in computation time. This

method of using the Rife and Vincent family of weighting functions works on the assumption

that the minimum distance between two continuous frequencies is large enough and as such,

the harmonic interference caused by long-range spectral leakage is completely removed by

the windowing operation. When additive Gaussian noise was introduced to the signal, it

was found that for noise levels less than 40 dB, the difference in the error curves for the

performance of the three classes was more evident than for practically noiseless signals with

noise levels greater than 100 dB [50].

The algorithms discussed in [50] outperforms those proposed by [44], specifically the

Class I and Class II algorithms which provide optimal filtering with the least computational

effort. The method when used with interpolation algorithms gives root mean square (rms)

voltage estimates accurate to within 0.1% and frequency estimates accurate to within 0.01%

- 17 -



Signal Parameter Estimation Using DL 2.1 Non-parametric Signal Processing Algorithms

even at relatively high noise levels. This proves that the weighting functions used to combat

the effect of long-range spectral leakage play a role in the accuracy of the signal parameters

estimated.

2.1.2 Yoshida’s Algorithm

The Yoshida algorithm, originally designed for an inverted torsion pendulum, was proposed

in 1981 [49]. The algorithm was applied to damped sinusoidal signals containing multiple

frequencies which were the result of an electro-magnetic force (EMF) generated in a coil [52].

The generated damped sinusoidal signals were assumed to have three distinct group of fre-

quencies. The first group represented the main signal obtained from the damped oscillation.

The second group represented a sum of the parasitic motions of the signal which consist of

several harmonic motions whose angular frequencies are far from the angular frequency of

the signal in the first group. The third group represented every other frequency not consid-

ered in group one and group two, and all forms of noise fall in this category. A DFT of the

damped sinusoidal signal was calculated in a finite time interval and the four largest DFT

bins were used to estimate the signal parameters according to [52]

R =
X(k − 2)− 2X(k − 1) +X(k)

X(k − 1)− 2X(k) +X(k + 1)
(2.9)

where the damping factor α and the frequency ωo are calculated using the following equations

[49]:

α =
2π

N
Im (

−3
R− 1

) and ωo =
2π

N
Re (k − 3

R− 1
). (2.10)
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In the above equations, k is the index of the DFT bin with the largest magnitude, X is used

to denote the DFT bins, and R represents the ratio calculated using the four largest DFT

bins. This ratio is used to estimate the signals damping factor and frequency according to

(2.10). The results showed that the frequency components of the waveform analysis were

well separated. Also, there was a significant improvement in the signal to noise ratio and

parasitic motion disturbances were suppressed.

2.1.3 Bertocco’s Algorithm

In [53], a frequency domain interpolation algorithm was proposed. The proposed algorithm

can estimate parameters for signals modelled as linear combinations of damped sinusoids.

In multi-frequency sinusoidal signals, spectral leakage is a function of not only the effect of

the spectrum for negative frequencies but also each sinusoid is a leakage source for the other

sinusoids. The interpolation algorithms previously discussed that involved the use of win-

dowing and interpolation considered only the case of undamped sinusoids [54]. For damped

sinusoids, those methods are no longer applicable. The Bertocco’s algorithm performs a

Discrete-Time Fourier Transform (DTFT) of the signal to get its frequency domain estima-

tion after which a DFT interpolation scheme is applied. The DFT interpolation scheme uses

the two largest DFT bins to estimate the signal parameters according to [53]

R =
X(k ± 1)

X(k)
(2.11)
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where k is the index of the frequency bin with the highest magnitude. The damping factor

α and the frequency q are calculated by [49]

q =
N

2π
arg

(
1−R

R× e±(−j2π
N

)

)
and α = ln

1−R

R× e±(−j2π
N

)
(2.12)

The main difference between the DTFT and the DFT is that the DTFT is the Fourier

transform of a discrete time signal and its output is continuous and periodic whereas the

DFT is a frequency domain sampled version of the DTFT output [55]. The accuracy degree of

the proposed algorithm is very close to those reported for undamped signals in the case where

the damping factor (α) ≤ 0.5. Under noisy conditions, Bertoccos’s algorithm was compared

to other time-domain approaches and it was found that it provides poor signal parameter

estimates [49]. The computational efficiency of this algorithm is significantly better and

can be used for real-time measurements in conditions where the spectral resolution of the

signal is not a major concern. It is important to note that although the Yoshida algorithm

precedes the Bertocco algorithm by thirteen years, the Yoshida algorithm outperforms the

Bertocco algorithm [49]. One major shortcoming of the Bertocco algorithm is that it becomes

rather impracticable for signals consisting of multiple frequencies because of the harmonic

interference from spectral leakage [56].

2.1.4 Bertocco-Yoshida Algorithm

In the Bertocco-Yoshida algorithm (BY1), concepts from the Yoshida algorithm and the

Bertocco algorithm are combined to form a more robust algorithm [49]. In the Yoshida

method, the second-order differences of the DFT bins are used in the signal parameter esti-

mation while in the Bertocco method, the zero-order differences of the DFT bins are used.
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Intuitively, it is noticed that the first-order differences are missing across both implementa-

tions. The BY1 algorithm explores the use of first-order differences in estimating the signal

parameters according to [49]

R =
X(k − 1)−X(k)

X(k)−X(k + 1)
. (2.13)

The damping factor α and frequency ωo are calculated according to [49]

α = −R(ln y) and ωo = I(ln y) (2.14)

where

y = ejωk
p−R

p(e
−j2π
N )−R(e

j2π
N )

and p =
−e−jωk + e−jωk−1

−e−jωk+1 + e−jωk
. (2.15)

The amplitude A and phase ϕ are given by [57]

A =

∣∣∣∣2Xk

c

∣∣∣∣ and ϕ = arg
2Xk

c
(2.16)

where Xk is the kth frequency bin and c = 1−yN

1−ye−jωk
. In this algorithm, the three frequency

bins with the largest magnitudes are used. The proposed algorithm can estimate the fre-

quency of damped sinusoids with a higher accuracy and a lower standard deviation (STD)

level than the Yoshida algorithm [49] and it has better noise immunity in estimating the fre-

quency and damping factor of sinusoids as well as lower systematic errors than the Bertocco

algorithm [48].
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2.1.5 Bertocco Yoshida Algorithm with Leakage Correction

In [58], the interpolated discrete Fourier transform of an element (IDTFoE) algorithm was

proposed. This algorithm is also referred to as the Bertocco-Yoshida order 1 with leakage

correction (BY1 LC) algorithm [42]. This algorithm extends the BY1 algorithm in that it

can reduce the effect of spectral leakage through iterative estimation of the signal parameters

and subtraction of the negative part of the spectrum from these estimates. The algorithm

makes use of the rectangular time window which offers the highest level of noise robustness.

The algorithm can analyze aperiodic signals that are assumed to be of exponential form

and estimate the frequency, phase, amplitude, and damping factor of these signals in several

steps. The signal is first sampled and then transformed into the frequency domain using

DFT. The frequency bins are then selected and a DFT interpolation is applied on the bins.

The result of this interpolation is used to estimate the signal parameters. The effect of

leakage from the negative frequencies of other spectral lines is then subtracted from each

of these frequency bins, and a new estimate for the signal parameters is found. For the

frequency bin Xk, subtracting the effect of the negative frequencies of other spectral lines is

given by [42]

Xnew
k = Xk −

A

2
e−jϕ 1− y∗N

1− y∗e−jωk
(2.17)

where A ≥ 0 is the signal’s amplitude and y∗ represents the complex conjugate of the variable

y which is defined in (2.15). This process of subtracting leakage from the frequency bins

and estimating new signal parameters is repeated until the estimated signal parameters are

within an acceptable error range. The method boasts of improved accuracy in estimating the

signal parameters and excellent convergence rates since approximate values are first obtained
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using the interpolated DFT before leakage correction is applied.

2.1.6 Two or Three-Point Interpolated DFT Algorithm

Over the years, research has been carried out on how to improve the accuracy of signal

parameter estimates when performing signal analysis using interpolated discrete Fourier time

(IpDFT) algorithms. Specifically in the area of using two or three-point IpDFT algorithms.

In the classical three-point IpDFT algorithms, a maximum side-lobe decay (MSD) window

is used for the signal analysis. The three frequencies with the largest magnitude are selected

and used to estimate the signal’s frequency. In [59], the classic three-point algorithm method

is further modified to reject the effect of spectral leakage on the estimation accuracy of the

algorithm. This modification is achieved by introducing weighted coefficients (α and β) in

the estimation process. The modified three-point algorithm is represented by [59]

R =
|X(k)|+ α|X(k − 1)|
|X(k)|+ β|X(k + 1)|

. (2.18)

The coefficients (α and β) depend on the number of acquired sinusoid cycles. The resulting

algorithm has an improved accuracy when there is a significant amount of spectral leakage

due to the signal image component. The method outperformed other IpDFT-based methods

for signal to noise ratio (SNR) levels of 30 dB or higher and when the acquired sinusoidal

cycles for the signal under analysis is small.

In [43,60], a three-point IpDFT algorithm was proposed to estimate the signal frequency

and damping factor by completely removing the effect of spectrum leakage due to negative

frequencies. It achieves this by using the three frequency bins with the highest magnitude

specifically, the part of the bins corresponding to its negative frequency are used. The pro-
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posed algorithm was coined I3PNDFT. The method was compared against other existing

IpDFT algorithms such as the BY1, Bertocco and IDFToE algorithms and it provided a

higher accuracy than all the listed algorithms even when a small amount of signal samples

were used [60]. The algorithm was further improved on to reduce its computational com-

plexity in [61]. Here, the negative part of the two frequency bins with the highest magnitude

was used. The resulting algorithm was compared against other existing IpDFT algorithms

such as the BY1, Bertocco, and IDFToE algorithms and the I3PNDFT algorithm and it was

found to have results very similar to the I3PNDFT algorithm while outperforming all the

other IpDFT algorithms.

2.2 Parametric Signal Processing Algorithms

2.2.1 Matrix Pencil Method

The Matrix Pencil Method (MPM) which is based on the Prony method dates as far back as

1985. The Prony Method itself was developed in 1795 by Gaspard Riche de Prony [62]. It

is similar to the Fourier Transform method in that it allows for the estimation of frequency,

magnitude, phase, and damping factors by building a series of damped complex exponentials

through the information it extracts from uniformly-sampled signals.

The Prony method was applied in [63] to the transient response of an electromagnetic

scatterer [64]. Prior to this, a conventional and iterative method was used to find the poles

of the system by finding the determinant of the zeros of the system in the complex plane.

The shortcoming of this conventional and iterative method is that it is unable to extract the

poles of the signal from the transient response. The Prony method unlike the conventional

method can systematically extract the complex poles and residues from a transient response.
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It does this by solving two matrix equations and solving for the zeroes of an N th degree

polynomial. To find N desired poles and residues using the Prony algorithm, at least 2N

equally spaced transient data samples are needed [63]. The Prony method works on the

premise that the impulse response of electromagnetic scatterers can be represented by the

sum of residues multiplied by exponentially damped sinusoids. The observed time response

of an electromagnetic scatter (d(t)) is given by [65]

d(t) = x(t) + n(t) =
M∑
i=1

Rie
sit + n(t), si = −σi + jωi (2.19)

where x(t) is the signal, n(t) is the noise associated with the signal, Ri represents the

residues or complex amplitudes of the signal, σi represents the damping factors of the signal,

ωi represents the angular frequencies of the signal and M represents the number of poles

used to estimate the sequence. The downside of the Prony’s method is that it does not

work for noise contaminated data and non-equispaced data samples even though it is a

straightforward process to determine useful information from the signal [66].

To address the shortcomings of the Prony’s method, the Pencil of Functions (POF)

method was developed. The Pencil of Functions method was first suggested in 1974 by V.K.

Jain [67]. It is based on the premise that a mathematical entity known as a “pencil of

function” is produced when a pair of linear functions are combined by a parameter. Just

like the Prony method, it can find the poles of a signal in two steps. The first step involves

solving a matrix equation and the second step involves finding the root of a polynomial [11].

The method is generally insensitive to noise and can find the desired poles and residues from

the output of a system when a known input is given [66]. The downside of this method is

that it is computationally expensive.
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The Pencil of Functions method was further improved by using the estimation of signal

parameters via rotational invariance techniques (ESPRIT) approach. The ESPRIT algo-

rithm assumes that an array of antennas comprises of two identical sub-arrays that may

overlap [68]. The ESPRIT algorithm exploits the “rotational invariance of the underlying

signal subspace induced by the translational invariance of the sensor array” [69]. This means

that the algorithm works based on the premise that the signal stays the same no matter how

it is oriented in space since the array of antennas produces the same output regardless of

how its input is shifted. This premise is based on the assumption that the requirement for

rotational invariance in space is satisfied because the sub-arrays are identical and the spac-

ing between them is known. The ESPRIT algorithm, which can produce signal parameter

estimates as generalized eigenvalues, was applied to the sinusoidal sequence problem, and it

resulted in the Matrix Pencil Method [12].

The Matrix Pencil Method, also known as the Generalized Pencil of Function method,

was suggested in [11] - [12]. The MPM models a given signal dataset as a sum of complex

exponentials [65] according to

d(kTs) = x(kTs) + n(kTs) ≈
M∑
i=1

Riq
k
i + n(kTs), 0 ≤ k ≤ N − 1 (2.20)

where qi = esiTs = eσi+jωi , Ts is the sampling period and k is the index number of the

data samples. The time variable t in (2.19) is replaced by kTs in (2.20) after the data is

sampled. The poles of the sampled signal are the generalized eigenvalues of the matrix pencil

equation [11] and can be estimated from the singular values of one of the linear functions of

the matrix pencil. The model is considered valid because the system generating the dataset

is treated as a linear time invariant (LTI) system which implies that the eigenfunctions of
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the operator are expressed as decaying exponentials from which the poles of the system can

be derived.

For a noiseless dataset, a pencil parameter L is chosen such that M ≤ L ≤ N −M . The

data matrix D is defined as

[D] =



d0 d1 · · · dL

d1 d2 · · · dL+1

...
...

. . .
...

dN−L−1 dN−L · · · dN−1


(N−L)×(L+1)

(2.21)

which can be written as [65]

[D] = [e1, D1]

= [D2, eL+1]

(2.22)

where ei represents the ith column of the data matrix. The matrices D1 and D2 can be

written as [65]:

[D1] = [Q1][R][Q0][Q2]

[D2] = [Q1][R][Q2]

(2.23)

where

[R] =



R1 0 · · · 0

0 R2 · · · 0

...
...

. . .
...

0 0 · · · RM


M×M

(2.24)
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[Q0] =



q1 0 · · · 0

0 q2 · · · 0

...
...

. . .
...

0 0 · · · qM


M×M

(2.25)

[Q1] =



1 1 · · · 1

q1 q2 · · · qM
...

...
. . .

...

qN−L−1
1 qN−L−1

2 · · · qN−L−1
M


(N−L)×M

(2.26)

[Q2] =



1 q1 · · · qL−1
1

1 q2 · · · qL−1
2

...
...

. . .
...

1 qM · · · qL−1
M


M×L

. (2.27)

The matrix pencil equation is defined by [65]

[D1]− λ[D2] = [Q1][R]([Q0]− λ[I])[Q2], provided M ≤ L ≤ N −M (2.28)

Assuming, λ = qi, where i = 1, 2, . . .M in (2.28), the matrix pencil would be of rank M − 1,

which implies that the generalized eigenvalues of the matrix pair D1 and D2 are qi. Therefore

(2.28) can be written as [65]

[D1][θ] = qiD2[θ] (2.29)

where θ is the generalized eigenvector. The eigenvalues of the system are computed by

multiplying one of the pencil matrices by the Moore-Penrose pseudo inverse of the other,
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and the poles are calculated directly from the eigenvalues as a one-step process [65] using

the equivalent form of (2.29) given by

([D2]
†[D1]− qi[I])[θ] = 0 (2.30)

where [D2]
† is the Moore-Penrose pseudo-inverse of [D2] which is given by: D2]

† = ([D]H [D]−1[D]H)

where the superscript H denotes the complex conjugate transpose of a matrix. The Moore-

Penrose inverse of a matrix is also known as the generalized inverse of a matrix. It is the

shortest length least squares solution to a system of linear equations that lacks a solution.

Once the exponents qi have been calculated using the Moore-Penrose inverse of the matrix,

the residues at the poles can now be computed using [65]

[Y ] = [Q][A] (2.31)

where

[Y ] =



d(0)

d(1)
...

d(N)


(N+1)×1

[Q] =



1 1 · · · 1

q1 q2 · · · qM

q21 q22 · · · q2M
...

...
. . .

...

qN1 qN2 · · · qNM


(N+1)×M

[A] =



R(1)

R(2)

...

R(M)


(M)×1

. (2.32)

The residues at the poles can be calculated by [65]

[A] = [Q]†[Y ] = [Q]H [Q]−1[Q]H [Y ] (2.33)
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which is the least square solution of (2.32) using the Moore-Penrose inverse of the matrix Q.

For a noisy dataset, the procedure is slightly different and involves using Singular Value

Decomposition (SVD) for efficient signal noise filtering. The pencil parameter L, for noisy

data samples is chosen to be between N
3

to N
2

where N is the number of samples. An

SVD of the data matrix is computed and errors due to noise are reduced by selecting the

M largest singular values of the decomposition and defining submatrices corresponding to

those singular values which are used to reconstruct the matrix pencil algorithms. The SVD

of the data matrix D is defined as [65]

[D] = [U ][Γ][V ]H (2.34)

The matrices [U ] and [V ] are unitary matrices of size (N−L)×(N−L) and (L+1)×(L+1)

respectively, while the matrix [Γ] is a diagonal matrix of size (N − L) × (L + 1) with the

singular values of the data matrix [D] in descending order. When dealing with noiseless

data, the data matrix [D] would have M non-zero singular values. However, for noisy data,

the data matrix [D] would have several small non-zero singular values and the M largest

singular values are chosen by a ratio comparing each singular value to the largest one given

by [65]

σi

σmax

≈ 10−f (2.35)

where f is the number of accurate significant digits of the data. The noise in the given data

is suppressed by defining submatrices denoted by (∗) according to the following [65]

[U∗] = [U(:, 1 : M)] (2.36)
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[V ∗] = [V (:, 1 : M)] (2.37)

[
∑∗] = [

∑
(1 : M, 1 : M)] (2.38)

[D∗] = [U∗][
∑∗][V ∗]H . (2.39)

The matrices [D1] and [D2] are defined from the submatrix D∗ which is noise filtered as [65]

[D1] = [U∗][
∑∗][V ∗

1 ]
H and [D1] = [U∗][

∑∗][V ∗
2 ]

H (2.40)

where V ∗
1 is equal to V ∗ without its first row and V ∗

2 is equal to V ∗ without its last row. The

eigenvalues and poles are computed in the same way as in the noiseless case. It is important

to note that if the smallest singular value of the given data is smaller than the round-off

error for the data, more data samples must be acquired.

The Matrix Pencil Method is generally more insensitive to noise than the Prony method.

It approximately reaches the Cramér-Rao bound, which implies that it achieves the lowest

possible mean squared error in comparison to other techniques and no other technique can

perform better in estimating the poles of a signal in a noisy environment. The Matrix

Pencil Method is computationally more efficient than the previous signal processing methods

discussed in [11].

2.2.2 Steiglitz McBride Algorithm

The Steiglitz McBride (STMB) algorithm works by identifying a linear system from its

input and outputs by minimizing the mean-squared error (MSE) between the system, and

its outputs [70]. The STMB algorithm has two modes: mode-1, and mode-2. It is an iterative

algorithm used to compute the pole-zero model. This algorithm was proposed in 1965 [70]
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as a system identification technique specifically for control systems where the examination

of the observed system signals provide a good understanding of the system’s operation in a

changing environment. The algorithm uses an iterative procedure to minimize the MSE, its

mode of operation is like the Kalman linear regression solution [71] except that it prefilters

the inputs and outputs. Equations (2.41 - 2.45) below explain the process. For N signal

samples, the following matrix equations are formed [42]

s = Sc+ e, s =



s1

s2
...

sN−1


S =



s1 s0

s2 s1
...

...

sN−2 sN−3


c =

c1
c2

 e =



e2

e3
...

eN−1


(2.41)

where

c1 = 2 cos(ω)e−α and c2 = −e−2α. (2.42)

The vector s and the matrix S are known variables of the equation in (2.41), they are made

up of data samples, while the vectors c and e are unknown variables. Assuming that error

(e) is negligible, from (2.41) we can derive the Kalman estimate (c) as [42]

c = Spinvs Spinv = (STS)−1ST (2.43)

where Spinv is the Moore-Penrose Psuedo inverse matrix of S and ST represents the transpose

of matrix S. The Kalman estimate (c) is derived from the original input-output values. The
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estimate is then used as a denoising filter which has the following transfer function [42]

Hc(z) =
1

(1− c1z−1 − c2z−2)
. (2.44)

The input-output values are multiplied by the filter to give new input-output values. These

new values are then used as inputs and outputs into the system and new Kalman estimates are

determined. The entire process is repeated with these new values until successful convergence

is reached i.e., the MSE falls within a desirable range. Once this occurs, the complex root λ

of the polynomial can be found by solving [42]

1− c1z
−1 − c2z

−2 = (1− λz−1)(1− λ∗z−1) = 0. (2.45)

The frequency ωo and damping factor α can then be calculated according to (2.14). The

method was noted to converge within 10-20 iterations and the results showed a significant

improvement when compared to the Kalman linear regression solution [70].

In [72], the convergence and accuracy properties of the STMB algorithm were further

investigated. It was discovered that in cases where the additive output noise was white, the

algorithm’s estimates gave a true representation of the system. It was found that the model is

not globally convergent [72] as was implied in [70], however, if the SNR is sufficiently large or

the signal has only one pole, the estimates would converge to the true value. It was concluded

that the mode-2 version of the STMB algorithm gives the most accurate estimates. The

main difference between both modes is that the method of computing the signal estimates is

slightly different, while the procedure stays the same. In the mode-1 version of the algorithm,

the initial estimates are computed from the output of the system while in the mode-2 version

of the algorithm, the initial estimates are a random set of values. It was found that the
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STMB method is like the iterative quadratic maximum likelihood (IQML) algorithm and

other algorithms that predate the IQML [73] and is great for estimating the parameter of

single damped sinusoids in white noise [74].

2.3 Machine Learning Methods

With the introduction of machine learning and AI techniques into different fields, the signal

processing field has not been left out. In recent times, artificial intelligence (AI) techniques

have been applied to improve the estimation of signal parameters. They have the advantage

of being re-used over a wide range of data sources provided the dataset is robust enough

to account for different scenarios. Also, they can be used for real-time signal analysis and

depending on the learning type involved (supervised or unsupervised), the algorithm is able

to train itself and constantly evolve. In supervised learning, the input data is provided to

the algorithm model alongside the output data whereas in unsupervised learning only input

data is provided and the algorithm learns patterns from the unlabelled data. The goal is to

train the model or algorithm to predict an accurate output when given new input data.

In [38], a deep learning algorithm for frequency estimation was proposed. A three-layer

model was used and the resulting model was able to accurately estimate the frequency of new

inputs with low error rates and in very little time. The authors stated that the proposed

model could be scaled up to accommodate high frequencies in the GHz range. In [37], a

learning-based approach to estimate the frequencies in a multi-sinusoidal signal from a finite

number of samples was proposed. The algorithm is coined PSnet and its aim is to perform

line-spectra super resolution using deep learning. The estimation accuracy was determined

by comparing the PSnet algorithm against two non-parametric models for traditional line
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spectra estimation, and it was found that the PSnet algorithm significantly outperformed

the other algorithms.

The algorithm proposed in [1], builds on the previously discussed algorithm in [37]. The

proposed algorithm is coined DeepFreq and is able to produce more accurate signal parameter

estimates than the PSnet algorithm and outperforms other algorithms when the SNR levels

range from medium to high. In [39], the DeepFreq algorithm was extended to apply to two-

dimensional signals. The resulting algorithm is coined ResFreq and is able to estimate the

frequencies of two-dimensional signals. It does this by transforming the signals from the time

domain to the frequency domain. This transformation helps reduce the number of network

parameters needed by the model and also improves the amplitude estimation of the ResFreq

algorithm. The results of the performance evaluation tests show that the algorithm is able to

operate at SNR levels ranging from −15 dB to 25 dB and that it provides better performance

in terms of accuracy and resolution that the DeepFreq algorithm for two-dimensional signals.

2.4 Summary

In this chapter, a brief overview of signal processing algorithms to estimate signal prarameters

such as frequency, phase, amplitude, and damping factor was discussed. The two classes of

signal processing algorithms, parametric and non-parametric algorithms were discussed in

detail. The parametric algorithms are based on models and can provide high-resolution

estimates for relatively short data samples. However, one major drawback of algorithms

within this class is that they require the exact model of the signal and its disturbances to

be known which is not practical in real-life applications as the signal of interest may have

components that cannot be modelled, such as an unknown number of frequencies amongst

- 35 -



Signal Parameter Estimation Using DL 2.4 Summary

others. The non-parametric algorithms are more suited for real-life applications as no prior

knowledge of the signal of interest is required. Algorithms within this class are based on

the FFT algorithm and have lower computational costs in comparison to algorithms under

the parametric class. However non-parametric algorithms have the issue of spectral leakage

and picket fencing when used to estimate the frequency component of sinusoidal signals.

Several algorithms under each class were discussed. The similarities between the algorithms

were explored and the improvements made on previous algorithms that gave rise to new

algorithms were also discussed. The advantage of each algorithm was presented as well as its

shortcomings. This chapter also provided information concerning the advantages and main

drawbacks of using the FFT/DFT algorithm for signal processing. The different suggested

methods in literature to counter the effects of these drawbacks as well as the shortcomings

of these suggested methods were discussed. This chapter gave an overview of different signal

processing algorithms, their advantages, and shortcomings. It is important to note that

none of these algorithms is inherently better than another. The choice of which algorithm

to use depends on the signal of interest and the level of accuracy needed while taking into

consideration the time complexity of the entire process

The next chapter introduces the deep learning algorithm proposed in this thesis for signal

parameter estimation. The structure of the algorithm and the different modules that make

up the algorithm structure are discussed. The algorithm is compared with existing signal

processing methods for frequency estimation, and the results are presented.
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Chapter 3

Deep Learning Models for Signal

Parameter Estimation

Deep learning (DL) is considered a subset of machine learning that is based on artificial

neural networks (ANNs) with three or more layers [75]. It is a type of machine learning

that is modeled based on the way the human brain functions. In deep learning algorithms,

a computer learns how to predict and classify data by filtering inputs through layers that

are made up of artificial neurons, also known as nodes. It is used to perform complex

computations on large datasets. Deep learning algorithms extract features and discover

useful patterns from input data during the training process, which involves filtering inputs

through the different layers of the algorithm. These features and patterns can then be used

to predict or classify data. This thesis aims to predict signal parameters from datasets

containing damped sinusoidal signals. Deep learning was chosen because of its ability to

extract features and discover useful patterns in data which is an important attribute needed

to solve the challenge proposed in this thesis.
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Different deep learning algorithms such as generative adversarial networks (GANs), long

short term memory networks (LSTMs), recurrent neural networks (RNNs), and convolu-

tional neural networks (CNNs) were considered to solve the signal parameter estimation

challenge. Among these algorithms, convolutional neural networks (CNNs) were chosen.

CNNs specialize in processing data that is represented as a vector, matrix, or tensor. The

layers of a CNN which include a convolutional layer, a rectified linear unit (ReLu) layer and

a fully connected layer are structured to detect patterns that increase in complexity as the

network gets deeper [75]. The convolutional layer is the main block of the neural network as

it performs most of the network’s computations. This layer performs a convolution operation

which extracts features from the network’s input. The first convolutional layer captures the

low-level features of this input. As more layers are added to the network, the succeeding

convolutional layers adapt and begin to extract high-level features enabling the network to

have a wholesome understanding of its input. This means of understanding its input data is

similar to the way humans process information.

The ReLu layer introduces non-linearity into the feature maps by applying the Relu

activation function to the output of the convolutional layer. An activation function is used

to decide on the importance of a node’s input to the network. There are different acti-

vation functions, some of which are the sigmoid function, the tanh function, the softmax

function, and the ReLu function. CNNs make use of the ReLu function which is defined

as [76] f(x) = argmax(0, x) where x is a positive value received by a node. It helps prevent

exponential growth in the computation required by the network and it also prevents the

occurrence of vanishing gradients which is when the partial derivative of the loss function

vanishes as it approaches a value close to zero. This is often seen in deep networks, prevent-

ing the network from being trained. The fully connected layer is used to learn non-linear
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combinations of high-level features in the data.

In this work, a CNN model which is an extension of the DeepFreq model [1] is proposed.

The proposed model is named SPED, which stands for signal parameter estimation using

deep learning. The neural network architecture of the SPED model is an improvement on

the existing DeepFreq model architecture. The SPED model has an intermediate layer that

maps the input signal to a high-dimensional feature space and it has fewer hidden layers

than the DeepFreq model. The main contribution of this model is its ability to estimate the

frequencies and damping factors contained in damped multi-sinusoidal time-domain signals.

The DeepFreq model is only capable of estimating the frequencies of undamped sinusoidal

waveforms. Algorithm 1 shows the pseudo-code for the training and testing process for

frequency estimation using the SPED model. The network architecture of the SPED model

is explained in detail in the next section of this chapter.

3.1 SPED Model Architecture

The architecture for the SPED model is discussed in this section. For the purpose of expla-

nation, this section focuses on frequency estimation using the SPED model. The damping

factor estimation process is similar to that of the frequency estimation process. The differ-

ence lies in the parameter the model is trained on. A schematic diagram of the model is

shown in Fig. 3.1 where a damped sinusoidal signal is fed as an input into the model which

gives two values as its output. The first is an estimate of the frequency values contained in

the signal and the second is an estimate of the number of frequencies contained in the signal.

The model proposed in this work for frequency and damping factor estimation was

written using Python programming language, version 3.6.13. The model is divided into two
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Algorithm 1: SPED Model

Training Input : Dataset containing input waveforms

Training Output: Frequency values contained in the waveforms

1. Divide the input into training and validation datasets.

2. Generate bs batches of the training dataset and the corresponding labels to be

used to train the model.

3. for i← 1 to epochNumber do

for j ← 1 to bs do
- Generate noisy samples of the training dataset with varying SNR levels.

- Train the model using these noisy samples.

- Calculate the MSE loss between the predicted output and the true output

for this batch of training samples.

- Update the attributes of the network (weights and learning rate) using

ADAM optimizer.

- Evaluate the performance of the model using the validation dataset.

end for

return model

end for

Test Input : Input waveforms

Test Output : Frequency values contained in the waveforms

1. Load the trained model.

2. Normalize and process the input signal to get the frequency representation of the

signal and the number of frequencies contained in the signal.

3. Locate the spectral peaks of the frequency representation estimate.

4. Return the estimated values of frequency(s) contained in the signal.

- 40 -



Signal Parameter Estimation Using DL 3.1 SPED Model Architecture

modules: a discretization module and an estimation module, both of which are convolutional

neural networks (CNNs). The discretization module makes up the first half of the deep

learning network model. The output of this module when plotted shows a representation

similar to the DFT of a signal. In this plot, the peaks represent the frequencies present in

the input waveform. The estimation module makes up the second half of the deep learning

model. The output of the estimation module is a single number that represents the number

of frequencies present in the input waveform. The algorithm is able to achieve the desired

output or a value significantly close to the desired output by updating the weights of the

neural network to minimize the error between the predicted output and the expected output.

The algorithm was trained using the supervised learning process. It involved the use of

a labeled dataset containing inputs (signal waveforms) and correct outputs (corresponding

frequencies) in the training process to teach the algorithm to yield the desired output. There

are two branches of supervised learning, namely regression and classification. Classification

algorithms separate the data into specific categories, while regression algorithms are used to

understand the relationship between dependent and independent variables. They are specif-

ically useful in predicting numerical values based on different data points. The algorithm

proposed in this work is a regression-based supervised learning model where the dataset used

is labeled, and the model predicts numerical values based on the input data points.

3.1.1 Discretization Module

This module makes up the first half of the network model. Figure 3.2 shows a representation

of the structure of the feed-forward neural network implemented by this module. A batch size

of 256 is used in this implementation. The batch size is a hyper-parameter that defines the

number of samples to work through before updating the internal parameters of the network.
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Fig. 3.1: Schematic representation of the frequency estimation process for the SPED
model.

A batch size of 256 was chosen to ensure that the model goes through a substantial amount

of training samples before updating its weights. In this work, data samples consisting of

500 data points per sample were used. This number of points per data sample was chosen

because with 500 data points, a well-defined plot representing the waveform of damped

multi-sinusoidal signals containing frequencies ranging from 0 to 2.65GHz with a frequency

resolution of 20MHz can be obtained. The training dataset consists of 51, 200 data samples

while the validation dataset consists of 10, 240 data samples. These numbers were arbitrarily

chosen to ensure that the number of samples in the training and validation set is a multiple

of 256. From Fig. 3.2, the linear layer maps the 256 by 500 data samples to a feature space

consisting of 8, 000 points. These features are then passed through several one-dimensional

convolutional layers with Batch Normalization before the rectified linear (ReLu) activation

function is applied. Each convolutional layer consists of 32 filters with a kernel size of 3. A

kernel size of 3 was chosen because small kernels are better suited to capture and process

local patterns.

When dealing with two-dimensional planes, the words kernel and filter are used inter-

changeably even though a difference exists between them [77]. In two-dimensional planes, a
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Fig. 3.2: Structure of the neural network that makes up the discretization module of the
SPED model.

kernel and a filter are the same i.e., they are a two-dimensional array of weights. However

in a higher-dimensional plane such as a three-dimensional plane, a filter comprises of several

kernels that directly relate to the number of channels the data to be processed has. A kernel

is used to generalize linear algorithms to use curved shapes [78]. Kernels can achieve this

by transforming a two-dimensional data plane to a higher-dimensional plane. A Gaussian

kernel is used in this work as the datasets are of a non-linear nature. Figure 3.3 shows a

visual representation of a two-dimensional plane placed in a three-dimensional space such

that the data points that were separated by a curved line in the two-dimensional plane

are now separated by a plane in the three-dimensional space. The idea behind this is that

adding more dimensions increases the flexibility of the lines (two-dimensional) or the planes

(three-dimensional), allowing them to move around easily. The data represented in Fig. 3.3a

clearly shows that there is no linear relationship between the two sets of data points and as a

result, there is no line that can separate the three black points from the five red points in the

two-dimensional plane. However, we see that the curve shown in Fig. 3.3b is able to separate

the two sets of data points in the two-dimensional plane. When the two-dimensional plane

is placed in a three-dimensional space using a kernel, another plane depicted in green as
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(a) Non-linear Data-points on a 2D plane.

(b) Non-linear Data-points on a 2D plane with curve
separating the data-points.

(c) Non-linear Data-points in a 3D space.

(d) Non-linear Data-points in a 3D space with hyperplane
separating the data-points.

Fig. 3.3: Visual representation of the transformation of data-points in a 2D plane to a 3D
space in order to get a hyperplane to separate the non-linear dataset.
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shown in Fig. 3.3c can easily separate the black points from the red points by intersecting

the two-dimensional plane as a curve and the three-dimensional space as a plane as shown

in Fig. 3.3d. The data samples are transformed to a higher dimensional plane by kernels

and then the classification algorithm is run on the data in this higher dimensional plane

with the aim of getting a hyperplane that separates the different classes of the dataset. The

resulting hyperplane which is a curve in the two-dimensional plane can then be used to make

predictions on a new dataset as the hyperplane gives a somewhat linear relationship between

the data points and the expected output. This hyperplane when used with a new set of data

points, provided the data is similar, would also give accurate results. In this module, the

data is transformed from 256 × 500 to 500 × 8, 000, and shaped as 256 by 32 by x, where

x represents number of columns in the reshaped data sample. This three dimensional array

is then passed through each of the 15 layers in the network. The number of hidden layers

in the network was set as 15 to ensure that the training time wasn’t overly long given the

number of sample points contained in each signal waveform. Each layer is made up of a

one-dimensional convolutional network, the output of this network is batch normalized after

which the ReLu activation function is applied. After all the convolutional layers have acted

on this three-dimensional array, the 32 channels are then combined to form one channel by

reshaping the data to have a size of 256 × 1 × x where x represents number of columns in

the reshaped data sample. In this case, the value of x is 2, 000. Figure 3.4 shows a graphical

representation of applying a one-dimensional kernel to data.

The output of this module as shown in Fig. 3.5 is quite similar to the plot of the DFT

transform of a signal. From the plot, dominant peaks are noticed between 0 and 200, while

peaks that are similar to noise representation are noticed between 800 and 1200. As with

the DFT of a signal, in this representation, the peaks represent the frequencies present in the

- 45 -



Signal Parameter Estimation Using DL 3.1 SPED Model Architecture

Fig. 3.4: One-dimensional data convolution using a one-dimensional kernel.

input waveform. To get the frequency approximation of the peaks, the output of this module

is discretized using a grid of size 2000. The frequency resolution capable by the network using

this grid size is 25MHz. This method of frequency estimation was discovered to provide

better frequency estimates than when the network architecture was used to estimate the

frequencies [37]. The training process of the discretization module can be summarized as

forcing the neural network to learn to produce an output that is similar to the magnitude

of the DFT of the input signal. An accurate prediction is achieved by minimizing the error
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Fig. 3.5: Plot of the Discretization Module Output for an Input Waveform Containing
Four Frequencies.

between the network’s predicted value and the signal’s true value for a number of training

samples using the grid as a reference measure.

3.1.2 Estimation Module

The estimation module can approximate the number of frequencies contained in the signal

without prior information about the signal model. The discretization module locally con-

centrates the frequency information of the signal before passing it to the estimation module

making it easy for the estimation module to count the number of frequencies.

This module exploits the knowledge that the presence of true frequencies in the signal is

unperturbed by translations as far as the noise in the signal is not in the frequency domain.

Figure 3.6 shows a representation of the feed-forward neural network represented by this
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Fig. 3.6: Structure of the neural network that makes up the estimation module of the
SPED model.

module. The first convolutional layer has a wider filter than the remaining layers. The output

layer is a fully connected layer that outputs a single number which is the frequency estimate

of the number of frequencies in the waveform. This module is trained using the results

from the discretization module. Both modules are trained separately with the discretization

module trained first after which the estimation module is trained based on the results from

the discretization module. The performance of the algorithm is largely dependent on the

accuracy of the discretization module. In both modules, the training loss is minimized by

adjusting the weights of the network to reduce the error between the estimated value and the

true value. The network parameters such as the weights and the learning rate are updated

using the adaptive movement estimation (ADAM) optimizer. This optimizer was chosen

because it combines the benefits of the adaptive gradient algorithm (AdaGrad) and root

means square propagation (RMSProp) optimization methods [79].
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3.2 Summary

In this chapter, deep learning and convolutional neural networks were discussed. Also,

the architecture of the SPED algorithm was presented. The algorithm is a regression-based

supervised learning model that is trained using a labeled dataset. It is considered a regression

model because its output is continuous in nature i.e., it estimates the frequency and damping

factor values of damped sinusoidal signals. The algorithm consists of two modules: the

discretization module and the estimation module. The discretization module forces the

output of the network to produce a representation similar to the magnitude of the DFT of

the input signal. This output is then discretized using a grid to determine the frequency

or damping factor estimates depending on what parameter the network is being trained to

estimate. This is done by plotting the output of the discretization module across a database

grid and taking note of where the peaks fall. The estimation module returns a single number

which is an estimate of the number of frequencies contained in the signal. The estimation

module plays an important role in the performance of the entire algorithm. An accurate

estimate of the number of frequency values in the signal improves the algorithms’ ability to

estimate the values of these frequencies and their corresponding damping factors.

In the next chapter, the SPED algorithm was tested on waveform samples from different

simulated and experimental datasets. The performance of the algorithm was evaluated using

specified metrics and the results are presented.
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Chapter 4

Performance Evaluation of the SPED

Algorithm

In this chapter, the performance of the SPED algorithm is evaluated. The performance of

the algorithm is evaluated using regression metrics such as the mean square error (MSE), the

mean absolute error (MAE), and the R-squared (R2) score. Also, the algorithm is tested on

three different types of waveform samples that were generated using three different methods.

The first set of waveform samples are generated using synthetic data, the second set are

generated from a Multisim simulation that models a wireless passive sensor and the third set

are generated from laboratory test with the wireless passive sensor. The generation of the

waveforms using synthetic data, the Multisim simulation and the laboratory tests with the

wireless passive sensor are discussed in detail in this chapter. The evaluation tests performed

using these waveforms and the regression metrics used to evaluate the SPED algorithm are

also covered.
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4.1 Waveform Samples from Simulations

The synthetic data waveform samples were generated using

y(t) =
N∑

n=1

Rne
(−α+j(2πfn+ϕ))t + q(t) (4.1)

for real-valued damped sinusoidal signals, where Rn ≥ 0 is the signal amplitude, α ≥ 0 is the

damping factor, q is the noise added to the signal, n is the sample index, and N denotes the

number of samples. Figure 4.1a shows the plot of a waveform generated using (4.1). From

the plot we see that there is a steep rise in the amplitude of the signal from 0 to 2.3. A

second signal definition based on the concept of double exponential waveforms was generated

using

y(t) =
N∑

n=1

Rn(e
(−β)t − e(−γ)t)× ej(2πfn+ϕ))t + q(t) (4.2)

where β, γ ≥ 0 are used to define the signal envelope which shows a gradual rise in its

amplitude from 0 to 0.5 as shown in Fig. 4.1b. The modification of the signal definition for

a damped sinusoidal signal (4.2) was proposed to model the signal envelope of the synthetic

data waveforms to match of the envelope of ringback signals obtained from the multisim

simulations and the laboratory tests. The algorithm was trained on both waveforms and the

performance of the trained models was evaluated.

In [1], 100 data points were used in training their model. To effectively capture a damped

sinusoidal signal containing frequencies in the GHz, 100 data points would be inadequate.

In [38], 2, 000 data points were used in training their model. Their proposed network archi-

tecture is three layers deep. In this work, three layers would be insufficient to properly train

a model that is able to capture the relevant features needed to accurately estimate the fre-
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(a) Single exponential waveform sample.
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(b) Double exponential waveform sample.

Fig. 4.1: Plot of a single and double exponential waveform sample for a damped sinusoidal
signal.

quencies contained in the input waveforms. Neural networks that have a lot of layers have a

longer training time when compared with neural networks that have a smaller number of hid-

den layers. Also, the number of data points of the input waveform contributes significantly

to the training time. Datasets consisting of waveforms with large amounts of data points

have a longer training time than datasets consisting of waveforms with smaller amounts of

data points. To ensure that the training time is not overly long, there is a trade-off between

the depth of the neural network and the number of data points in the input signal.

The training dataset used in this work consists of 51, 200 data samples each consisting

of 500 data points. This number of data points was chosen after taking into consideration

certain design factors such as the number of layers in the network, the training time, and

the total number of points needed to accurately represent the damped sinusoidal signal. For

each of the waveforms contained in the training, testing, and validation dataset, a random

number of frequencies are contained in the waveform. The number of frequencies in each of

the waveform samples are chosen at random and range from a minimum of 1 frequency to
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Fig. 4.2: Plot of an input waveform containing three frequencies, 2.07GHz, 2.29GHz and
2.48GHz.

a maximum of 10 frequencies. Figure 4.2 shows a sample of a damped sinusoidal waveform

containing 3 frequencies. The frequencies contained in the waveform sample are chosen

at random and range from 0Hz to 2.65GHz. The model was trained using this range of

frequencies to ensure that it is robust and able to handle frequency estimation for a wide

range of input signals.

Figure 4.3 shows an example of the ringback signal from a laboratory experiment using

the wireless passive sensor. The ringback signal has three main components, the feedthrough,

the structural mode, and the antenna mode. The feedthrough and structural mode are

typically reflections from the interrogation and sensor antennas and can be removed using

time-gating. The antenna mode is the main part of the signal that contains information

on the resonant frequency of the sensor which is the frequency we want to estimate as
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Fig. 4.3: Plot showing a sample of a ringback signal gotten from laboratory experi-
ments with the wireless passive sensor and the different components of the ringback signal.
Adapted from [40] with permission.

accurately as possible. Although the ringback signal is expected to have a maximum of

three frequencies and noise in the signal, the dataset is generated such that each waveform

in the 51, 200 samples has between one and ten different frequencies. The preliminary tests

showed that a model trained using a maximum of ten frequencies had a higher frequency

estimation accuracy than a model trained using a maximum of four frequencies.

4.1.1 Results and Observations

The performance of the trained models was evaluated using non-linear regression model

metrics. In this work, the model trained using synthetic data based on (4.1) would be

referred to as the conventional model while the model trained using synthetic data based on
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(4.2) would be referred to as the modified model. After training, the conventional model was

evaluated on damped sinusoidal signals with varying SNRs. The results of these tests are

shown in Fig. 4.4. The results show that the SPED algorithm can accurately estimate the

frequencies contained in damped multi-sinusoidal waveforms even at low SNR values. The

results shown in Fig. 4.4 are generated using the validation dataset which consists of 1, 000

test samples that are not part of the training or testing data set used in the learning process

for the model. The frequency values are represented in radians by

f =
ωn

2πt
(4.3)

where ω ≤ π, n is the sample index and t is the period. Equation (4.3) is derived by solving

(4.4),

A cos(ωn+ ϕ)e−dn = A cos(2πft+ ϕ)e−ϕt (4.4)

where the RHS is a real-valued damped sinusoidal signal in the time domain. A false negative

rate (FNR) of 7.69% was achieved during the training process for the conventional model

while an FNR of 13.75% was achieved during the training process for the modified model.

The false negative rate (FNR) is calculated according to

FNR =
false negative

false negative + true positive
=

FN

FN + TP
. (4.5)

The FNR is the probability that a true positive would be missed by the algorithm. For

the conventional model, an FNR of 7.69% means that there is an 92.31% probability that

the network correctly identifies the frequency in the signal. Table 4.1 shows the result of the

regression metrics for the conventional and modified models evaluated using the test dataset
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Fig. 4.4: Plot showing four samples of input waveforms containing different number of
frequencies (a; 3 frequencies, b; 1 frequency, c; 7 frequencies, d; 9 frequencies). The output
of the deep learning algorithm for each of the input waveforms at different SNR levels is
shown.
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Table 4.1: Evaluation metrics for the SPED algorithm based on the conventional, modified,
and damping factor models using the test dataset

Evaluation Conventional Modified Damping Factor

Metrics Model Model Model

Mean Absolute Error
(MAE)

0.023 0.067 0.036

Mean Squared Error
(MSE)

0.023 0.067 0.029

Median Absolute Error
(MEAE)

0.001 0.001 0.007

Variance Score 0.89 0.69 0.84

R2 Score 0.88 0.64 0.83

that consists of 1, 000 waveform samples. The variance score is calculated according to

Variance Score = 1− Variance (y - ŷ)

Variance (y)
(4.6)

where y represents the target value and ŷ reresents the predicted value. It measures how

well the observed value differs from the mean of the predicted values. It is a useful metric in

determining how well the model handles variations in the dataset. The best possible score

is 1.0. The R2 score is often referred to as the coefficient of determination. It is calculated

according to

R2 score = 1− residual sum of squares

total sum of squares
= 1− RSS

TSS
. (4.7)

It is a useful metric in determining how well unknown samples would be predicted by the

model. As with the variance score, the best possible score is 1.0. From the results in the

table, it is evident that the conventional model performs better than the modified model as it

has a higher R2 score. This difference could be because the signal definition of the modified
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Table 4.2: Evaluation metrics for the SPED algorithm based on the conventional, modified,
and damping factor models using the training dataset

Evaluation Conventional Modified Damping Factor

Metrics Model Model Model

Mean Absolute Error
(MAE)

0.023 0.062 0.026

Mean Squared Error
(MSE)

0.023 0.063 0.026

Median Absolute Error
(MEAE)

0.001 0.001 0.007

Variance Score 0.90 0.71 0.86

R2 Score 0.88 0.67 0.85

model is more complex than that of the conventional model and as such the number of

features that need to be learned by the deep learning model increases which could reduce

the performance of the model. The use of deep learning to estimate the damping factors

of multi-sinusoids was also investigated and the results of the regression metrics are shown

in Table 4.1 under the column heading Damping Factor Model. The signal definition used

for this model is the same as that used for the conventional model. The difference is the

algorithm is trained to estimate damping factors instead of frequencies.

The evaluation metrics were also calculated using the training data to determine the

performance difference between the training and the test datasets. The results are shown

in Table 4.2. Comparing the results in Table 4.2 and Table 4.1, we notice a slight perfor-

mance drop between the training and the test datasets. The R2 scores are the same for the

conventional model across the two datsets but the variance score for the training dataset is

higher than that of the test dataset with a difference of 0.01. In the case of the damping

factor model, the R2 score and the variance score both vary across the two datsets with a
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difference of 0.02. Based on these results we can conclude that the model does not underfit

or overfit as it has good performance values on both the training and test dataset. An overfit

model is one that has good performance on the training dataset but performs poorly on the

test dataset while an underfit model is one that performs poorly on both the training and

test dataset. The results show that deep learning is a viable candidate for signal analysis

particularly in the case of frequency and damping factor estimation.

4.2 Multisim Waveform Sample

A resonator-based wireless passive sensor was modeled and simulated using Multisim 14.1.

This sensor was proposed in [40]. The passivity of the sensor makes it easy to fabricate and

mass produce while its wireless property allows for contactless measurements in environments

where the prevailing conditions are not suitable for wired connectivity. The sensor can detect

changes in environmental temperature, pressure, and electric field intensity due to changes

in its resonant frequency. In this simulation, the parameter being measured by the sensor

is electric field intensity. In the circuit model shown in Fig. 4.5, the switch S2 is used

to simulate switching between the transmitter and receiver. The switch is controlled by

a 100 kHz square wave generated by the function generator XFG2. The square wave has

a high amplitude of 5V and a low amplitude of 0V which controls the switch. When the

amplitude of the square wave is 5V , the switch S2 is in the top position, and the AC voltage

source powers the circuit. When the square wave is 0V , the switch S2 is in the bottom

position and the ringback signal is measured across the 50Ω resistor R2 which represents

the receiving antenna. Oscilloscopes Xsc1 to Xsc4 are used to measure the voltage across

various points in the schematic diagram. The 50Ω resistor R3 is used to mimic a 50Ω
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Fig. 4.5: Circuit model of the wireless passive resonator simulated in Multisim 14.1. The
block diagram of the interrogation system is shown in Section A.2 of the appendix.

voltage source by connecting it in series to the AC voltage source. A lossless transmission

line is used in the simulation software to represent the wireless channel through which the

RF signals are transmitted and received. To model a 2-way path loss of −20 dB, a 50Ω

T-network 10 dB attenuator was added to the output of the transmission line. Figure 4.6

shows an example of the ringback signal measured across the R2 resistor. The observed signal

waveform closely resembles the waveforms generated using synthetic data at high frequencies

that were discussed in the previous section. This simulation model closely matches the

fabricated resonator used for field tests. This was done to train and evaluate the SPED

algorithm on synthetic and experimental data that are similar in form.
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Fig. 4.6: Plot of the ringback signal across resistor R2 for the circuit model shown in Fig.
4.5.

4.2.1 Results and Observations

The conventional model was evaluated on the ringback signals from the Multisim simulation

and the results are presented in Table 4.3. The conventional model is used for this test

because the results from the regression metrics in Table 4.1 show that the conventional

model outperforms the modified model based on their R2 scores. The conventional model is

able to handle variance in data better than the modified model. From the results in Table 4.3,

it is evident that the algorithm is able to estimate the frequency contained in the waveforms

from the Multisim simulation with an accuracy of ± 40MHz. For some frequencies, the

algorithm returns more than one frequency estimate. However, both estimates are within

an error value of ± 40MHz . For a waveform of 3GHz, the algorithm is able to estimate

the frequency but with a larger error value than previously noted for other frequencies. This
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Table 4.3: Results of the SPED algorithm model when tested on signals from the Multisim
simulation

Signal Estimated Error

Frequency Frequencies

200MHz
165MHz

185MHz

35MHz

15MHz

310MHz
282MHz

305MHz

28MHz

5MHz

1.56GHz 1.54GHz 20MHz

2.58GHz 2.62GHz 4MHz

3GHz
3.06GHz

3.2GHz

60MHz

200MHz

increase in the error value could be attributed to the fact that the model was trained using

frequencies within the range of 0Hz and 2.65GHz of which 3GHz is not included. This

shows that the model can predict frequency estimates of signals that are outside its training

range albeit with reduced accuracy. To reduce the error value and improve the frequency

estimation of the algorithm over a wider range of frequencies, the algorithm can be trained

using a more robust dataset that includes more data samples spread over a wider frequency

range.

4.3 Passive Wireless Sensor Waveform Sample

The interrogation system used for the laboratory experiments was modeled and simulated in

Multisim 14.1 explained in Section 4.2. The data samples, an example of which is shown in

Fig. 4.7, are received from the sensor via a wired connection or a wireless connection. The
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Fig. 4.7: Plot of the measured downconverted ringback signal gotten from the wireless
passive sensor after interrogation.

first method involves connecting a coaxial cable to the resonator while the second method

involves using the horn antennas to transmit RF signals and receive ringback signals from the

resonator. The ringback signal is passed through a low-noise amplifier to amplify it without

significantly degrading its signal-to-noise ratio. This amplified signal is denoised using a

bandpass filter and down-converted using a mixer. The down-converted signals are captured

and stored using an oscilloscope. For this work, the waveforms were measured when the

resonator was used for wireless sensing with the horn antennas 80 cm apart. This distance

is within the far-field region for the ISM band of 2.4GHz to 2.5GHz. The experiments were

carried out in a lab environment with many reflective surfaces. This was done to model

real-life scenarios where clutter interference exists.
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Table 4.4: Results of the SPED model when tested on ringback signals received from the
wireless passive sensor

Interrogator LO Estimated Error

Frequency Frequency Frequencies

2571.4MHz 2830MHz
258MHz

285MHz

600 kHz

27MHz

2574.4MHz 2830MHz
228MHz

243MHz

28MHz

13MHz

2574.5MHz 2752MHz
163MHz

178MHz

15MHz

50 kHz

2579.4GHz 2830MHz 248MHz 3MHz

4.3.1 Results and Observations

The algorithm was tested on the waveforms from lab tests with the wireless passive sensor and

the results are shown in Table 4.4. The interrogator system transmits RF pulses at different

frequencies to the wireless passive sensor which has a resonant frequency of 2.57GHz. The

ringback signals from the sensor for these transmitted frequencies are down converted using

a local oscillator (LO). The down-converted signals are within the range of 177 to 258MHz

and these signals are then evaluated to provide the frequency estimate of the signal using the

SPED model. The results show that the SPED algorithm is able to estimate the frequencies

contained in the down-converted damped sinusoidal signal with an accuracy of ± 30MHz.

In most of the test cases, the algorithm provided more than one frequency estimate. This

is likely because of reflections and noise contained in the signal. The estimates provided

by the algorithm are all close in value to the actual frequency. The observed error value

between the actual frequency and the estimated frequency could be because of the precision

of the discretization grid within the model’s training process. The error between the actual
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frequency value and the estimated frequency value which is approximately ≤ 35MHz could

be reduced by increasing the precision of the discretization grid. Overall, the results show

that the SPED algorithm trained using a deep learning model can estimate the frequencies

of signals in a damped sinusoidal waveform. It has the advantage of not being susceptible

to spectral leakage and picket fencing like the non-parametric class algorithms because it

does not use an FFT-based approach. The deep learning model is able to estimate the

frequency values contained in input waveforms based of the features it learned from signals

in its training dataset. Also, no prior knowledge of the signals model is required as in the

case of the parametric class. The SPED algorithm when trained using a robust dataset can

be used to provide the frequency estimates of a wide range of signals.

4.4 Comparison with Other Methods

In this section, the SPED algorithm is evaluated against existing signal processing algo-

rithms. The three algorithms chosen for this evaluation are: STMB, BY1-LC, and MPM.

These algorithms are discussed in Section 2.2.2, 2.1.5, and 2.2.1 respectively. The BY1-

LC algorithm was chosen because amongst the non-parametric class of signal processing

algorithms, it boasts of improved accuracy in estimating signal parameters and excellent

convergence rates since it combines interpolation with an iterative process for signal param-

eter estimation. The MPM algorithm was chosen because amongst the parametric class of

signal processing algorithms, it approximately reached the Cramér-Rao bound which implies

that it achieved the lowest possible mean squared error in comparison to other techniques

and no other technique can perform better in estimating the poles of a signal in a noisy

environment. Details of the Cramér-Rao bound are given in Section A.1 of the appendix.
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The STMB algorithm was chosen because like the BY1-LC algorithm, it is a parametric class

iterative algorithm used to compute the pole-zero model of damped sinusoidal signals and it

boasts of good accuracy values when estimating the parameters of single-damped sinusoidal

signals in white noise. These three algorithms were chosen because they are considered the

best methods amongst the existing signal processing methods [42]. Also, they make a good

evaluation basis for determining the performance of the SPED algorithm when compared

with parametric and non-parametric signal processing algorithms.

4.4.1 MPM

The MPM method is a precise but computationally expensive total least square (TLS) solu-

tion to find the frequency of a given signal sample. A discussed in Section 2.2.1, the MPM

method dates as far back as 1985 and is the result of improvements on other algorithms

over time. The MPM method is based on the Prony method which is dated as far back

as 1795. The Prony method had the downside of not being able to estimate the frequen-

cies of noise-contaminated data and non-equispaced data samples. The Pencil of Functions

method was then developed to address the shortcomings of the Prony method, but it was

computationally expensive. The Pencil of Functions method was improved on to form the

Generalized Pencil of Function method also known as the Matrix Pencil Algorithm. This

improvement was brought about by incorporating the ESPRIT approach into the existing

Pencil of Functions method. The resulting MPM algorithm relies on matrix algebra and is

considered computationally expensive, especially when dealing with large data samples. The

algorithm and its related formulas are explained in Section 2.2.1 of this thesis.
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4.4.2 BY1-LC

The BY1-LC algorithm analyzes the parameters of signals in the frequency domain using

the Inverse Fast Fourier Transform (IFFT) method [58]. It works on the premise that the

mode energy centralizes at its frequency and forms a spectral peak. Each of these spectral

peaks contains information needed to accurately determine the unknown signal parameters.

The BY1-LC algorithm performs interpolation using the three DFT bins with the highest

magnitude. The signal to be processed is of finite duration and as a result, there is spectral

leakage in both the negative and positive spectra. The spectral leakage from the positive

frequencies spills into the negative frequencies’ spectrum and vice versa. Leakage correction

is achieved through an iterative process. DFT interpolation is applied on the frequency bins

after which, the signal parameters are estimated. The effects of spectral leakage from the

negative frequencies of other spectral lines are then subtracted from the three frequency bins

and a new estimate of the signal parameters is found. The entire process, as explained in

Section 2.1.5, is repeated until the error value falls below a certain threshold.

4.4.3 STMB

The STMB method is an iterative algorithm used to reduce the influence of noise on the

signal parameter estimates of an input signal. It achieves this by reducing the mean-square

error between the input signal and the model’s output. According to [70], the method is

able to provide accurate signal parameter estimates even at low SNR < 1 levels. In the

first iteration, the input signal samples are denoised by the application of a filter to give a

second set of samples. The coefficient values for the filter are obtained from the input signal

which consists of noisy data samples. A new estimate of the signal parameters is then found

using the denoised samples as explained in Section 2.2.2 and this process is repeated until
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the error value falls below a certain threshold. It is important to note that each iteration of

the STMB method is like the Kalman linear regression method with the difference being in

the filtering of the output and input values.

4.4.4 Results and Observations

To evaluate the performance of the SPED algorithm in comparison to existing signal pro-

cessing methods, the algorithms were tested on three sets of signals: multi-sinusoidal signals

generated from synthetic data, signals generated by Multisim simulation, and signals from

lab measurements with the passive wireless sensor. The waveforms from synthetic data were

generated according to (4.1) for damped sinusoidal signals. The frequency values and damp-

ing factor values were chosen such that the generated synthetic signals closely resembled

the waveform samples obtained from the lab measurements using the wireless passive sen-

sor. The idea behind this was to train the SPED algorithm using data samples that closely

resemble experimental data so that the trained model could be used to estimate the fre-

quency values of damped sinusoidal signals collected from lab tests or field tests in the real

world. The results of the test on signals generated using synthetic data are shown in Fig.

4.8. The input frequencies in the synthetic data are 248MHz, 238MHz, 288MHz, 286MHz

and 383MHz. From the graph, we notice that across the four algorithms, for SNR values

≥ 20 dB, the frequency estimates appear to be relatively constant for each algorithm. The

MPM algorithm performed similar to the BY1-LC algorithm for signals with SNR values

between 0 dB and 10 dB. At higher SNR levels, we see that the MPM algorithm is able to

estimate the actual frequency of the signal with an error value between 13 kHz to 23 kHz.

Depending on the application where the algorithm is used and the level of accuracy needed,

this error range could be acceptable. The BY1-LC algorithm has a similar performance to
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Fig. 4.8: Comparison of the frequency estimation accuracy among the four different algo-
rithms.

that of the MPM algorithm as its error value is between 20 kHz to 30 kHz with an exception

when the SNR value is 0 dB. The error value at that point is 12 kHz. The STMB algorithm

has error values ranging between 9 kHz, and 12 kHz, which is considerably low in comparison

to the two algorithms previously discussed. The SPED algorithm outperforms the other

methods. It has the lowest error value ranging between 6 kHz, and 7 kHz as shown on the

graph. The algorithm’s estimate of frequency values is relatively constant over the range of

SNR values.

The slight difference noticed could be attributed to precision errors because of floating-

point representation. This means that the algorithm can estimate frequency values at very

low SNR levels. The SPED algorithm has the advantage of being able to estimate multiple

frequencies within a damped sinusoid while the other methods are only able to estimate

single frequencies.

The simulations in Multisim model a wireless passive sensor with a resonant frequency
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Table 4.5: Comparison of the SPED algorithm with other signal processing methods when
tested on signals from the Multisim simulation

Signal Frequency Frequency Frequency Frequency

Frequency Estimate Estimate Estimate Estimate

(This Work) (MPM) (STMB) (BY1LC)

200MHz
165MHz

185MHz
200MHz 200MHz 200MHz

310MHz
282MHz

305MHz
313MHz 313MHz 313MHz

1.56GHz 1.54GHz 1.562GHz 1.561GHz 1.561GHz

2.58GHz 2.62GHz 2.584MHz 2.584MHz 2.583MHz

3GHz
3.06GHz

3.2GHz
3GHz 3GHz 3GHz

of 2.57GHz [40]. The waveforms from this simulation represent the ringback signals received

from the wireless passive sensor using an antenna. The algorithm was tested on a range of

frequencies and the results are shown in Table 4.5. For the signal with an actual frequency

of 200MHz, we see that the SPED algorithm provided two estimates for the frequency both

of which are between a 35MHz difference of the actual frequency. From the table, we see

that the other algorithms are able to accurately estimate the actual frequency of 200MHz.

In the case of the 310MHz actual frequency, we see that the algorithm once again provides

two signal estimates that are between a ± 28MHz difference of the actual frequency. The

other algorithms are able to estimate the actual frequency with a 3MHz difference.

For higher frequencies in the GHz range, we see that in the case of 1.5GHz, the algorithm

proposed in this work provides an estimate that is 20MHz different than the actual frequency.

While the other algorithms are able to estimate the frequency to within 2MHz of the actual

frequency. For a signal having an actual frequency of 2.58GHz, the SPED algorithm is
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able to estimate the frequency to within 40MHz of the actual frequency while the existing

methods are able to estimate the actual frequency within 4MHz of the actual frequency. In

the case of a signal with a frequency of 3GHz, we notice that the SPED algorithm gives

two estimates. The first estimate is within 60MHz of the actual frequency while the other

estimate is 200MHz over the actual frequency. It is important to note that the algorithm

was trained on frequencies within 0Hz to 2.65GHz with a resolution of 20MHz and the

large error in the frequency estimation value could be attributed to the fact that the actual

frequency is out of the range of frequencies that the algorithm was trained on.

Overall, the performance of the SPED algorithm suggests that it can estimate the fre-

quency contained in a damped sinusoidal signal within ± 40MHz, and as such the algorithm

is viable for real-world applications depending on the level of accuracy needed. This esti-

mation accuracy could be further improved by increasing the precision of the database grid

during the training process of the deep learning model.

Several lab tests were carried out and the received ringback signals received from the

wireless passive resonator after interrogation were down-converted using a local oscillator.

The block diagram of the interrogation system showing its various components is given in

Section A.2 of the appendix. The algorithm was tested on these down-converted ringback

signals and the results are shown in Table 4.6. For the first signal with a frequency of

258.6MHz, we see that the SPED algorithm performs better than the other existing algo-

rithms. It provides two signal estimates, the first estimate of 258.6MHz is very close to the

actual frequency with a difference of 600 kHz while the second estimate has a difference of

27MHz. The other algorithms MPM, STMB, and BY1-LC have frequency estimates that

differ from the actual frequency by 14MHz, 8MHz, and 9MHz respectively. The SPED

model proposed in this work performs better than the other methods. For the second signal
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Table 4.6: Comparison of the SPED algorithm with other signal processing methods when
tested on ringback signals from the wireless passive sensor

Interrogator LO Downconverted Frequency Frequency Frequency Frequency

Frequency Frequency Frequency Estimate Estimate Estimate Estimate

(This Work) (MPM) (STMB) (BY1LC)

2571.4MHz 2830MHz 258.6MHz
258MHz

285MHz
244MHz 250MHz 249MHz

2574.4MHz 2830MHz 255.6MHz
228MHz

243MHz
243MHz 250MHz 249MHz

2574.5MHz 2752MHz 177.5MHz
163MHz

178MHz
172MHz 181MHz 178MHz

2579.4GHz 2830MHz 250.6MHz 248MHz 243MHz 250MHz 249MHz

with a frequency value of 255.6MHz, the algorithm proposed in this work provides two es-

timates that are within a 27MHz difference from the actual frequency. The MPM, STMB,

and BY1-LC algorithms provide estimates that vary from the actual frequency by 12MHz,

5MHz, and 6MHz respectively. For the third signal with a frequency value of 177.5MHz, the

proposed method provides two estimates. The first estimate varies from the actual frequency

by a difference of 500 kHz, while the second estimate varies with a difference of 6MHz. The

MPM, STMB, and BY1-LC algorithm vary from the actual frequency by 5MHz, 4MHz, and

500 kHz, respectively. In the case of the fourth signal with a frequency value of 250.6MHz,

the proposed method provides an estimate that is within a 2MHz difference from the actual

frequency while the MPM, STMB, and BY1-LC method provide estimates that differ from

the actual frequency by 7MHz, 600 kHz, and 1MHz, respectively.

Overall, the results show that the algorithm proposed in this work is comparable to the

existing signal processing methods as the frequency estimates across all four algorithms are

close in value. The SPED algorithm is more advantageous because once the model is trained
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it takes less time than the other signal processing methods to estimate the frequencies in the

damped sinusoidal signals. Also, the SPED model once it is trained can provide frequency

estimates of signals without knowing the exact model of the signal or its disturbances.

4.5 Summary

In this chapter, the performance of the SPED algorithm was evaluated using waveforms from

three different scenarios. The first evaluation was performed on waveforms generated from

synthetic data. In the evaluations, the trained model was evaluated on 1, 000 test samples

that were not part of the training or validation dataset and the results showed that the

model has a variance score of 0.89 and an R2 score of 0.88. The algorithm was trained

on a different signal model and the result of this training is referred to as the Modified

model. The modified model is trained using a double exponential signal waveform that has

a gradual amplitude slope from 0 when compared with the amplitude slope of the single

exponential signal waveform. The results show that this model has a variance score of 0.69

and an R2 score of 0.64. The reduction in variance and R2 scores can be attributed to the

increasing complexity of the signal model used to train the modified model. It is important

to note that the reduction in the values of these metrics does not mean that the model’s

performance is bad, it just shows that the model can be improved to achieve better values.

The algorithm was also modified to estimate the damping factors of frequencies contained in

a multi-sinusoidal signal and the resulting model is referred to as the Damping factor model.

The results show that the damping factor model has a variance score of 0.84 and an R2 score

of 0.83.

The second evaluation was carried out using signals gotten from a Multisim simulation.
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The results of this evaluation showed that at low frequencies, 0 Hz to 2.65 GHz, the algorithm

was able to provide frequency estimations that were accurate up to 40MHz. In the case

where the signal was used to estimate the frequency for a 3GHz waveform, the frequency

estimates given by the model were 60 Hz and 200 MHz above the actual frequency. It is

important to note that although the algorithm was trained on frequencies ranging from 0 Hz

to 2.65 GHz, it was able to estimate the frequency of a damped sinusoidal signal outside its

training boundaries.

The third evaluation was carried out using signals gotten from a wireless passive inter-

rogator system and the results showed that the trained model was able to provide frequency

estimations that were accurate up to 40MHz. Overall, the performance of the algorithm

based on the evaluation metrics shows that Deep Learning is a suitable tool for estimating

signal parameters of damped sinusoidal signals.

Also, the SPED algorithm was compared with existing signal processing methods for

multi-sinusoidal waveforms and the results were presented. The algorithm was compared

against three existing signal processing methods namely, STMB, MPM, and BY1-LC algo-

rithm. The results of the comparison show that the SPED algorithm outperforms the other

methods when tested on synthetic data. When tested on data from the Multisim simulations,

the SPED algorithms’ performance is below that of the other algorithms as its estimated

values are less accurate than the estimated values of the other algorithms. When tested on

data from the wireless passive sensor, the SPED algorithms’ performance is comparable to

the performance of the other algorithms. The results show that the SPED algorithm is a

viable signal processing method for damped sinusoidal signals in real-life applications. It

has the advantage of being used over a wide range of frequencies depending on its training

dataset and once trained it has a faster estimation time than the other methods.
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Chapter 5

Concluding Remarks

5.1 Conclusions

In this thesis, the use of deep learning for signal parameter estimation of damped sinusoidal

signals was investigated. The deep learning model referred to as SPED is a convolutional

neural network and can be broken down into two modules, a discretization module, and a

frequency estimation module.

The SPED model was trained using two different signal definitions and the resulting

models are referred to as Conventional model and Modified model. The modified model was

trained using a signal definition that modelled a double exponential waveform which has a

more pronounced envelope for the damped sinusoidal signal. The modified and conventional

model were evaluated on the test dataset using regression metrics and their variance scores

were 0.69 and 0.89 respectively, while their R2 scores were 0.64 and 0.88. The difference

is variance scores and R2 scores between the two models can be attributed to the varying

complexity of the signal definition waveforms. The signal waveform for the modified model
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is noticeably more complex than that of the conventional waveform and as a result, the

variance and R2 scores of the model are noticeably lower than that of the conventional

model. This variance and R2 score of the modified model could be improved by using a deep

learning architecture with more layers which would be capable of learning more complex

features than the existing SPED model.. The conventional model was tested on different

signal waveforms and the results were discussed. The signal waveforms used in the test were

of three types: synthetic data, data from a Multisim simulation of a wireless passive sensor

and data obtained from tests using the wireless passive sensor. The frequency range for the

waveforms ranged from 0GHz to 2.65GHz. A wide range of frequencies was chosen for the

training data to ensure that the algorithm was trained on a robust dataset allowing it to

be used to estimate frequencies over a wide range. The results of the tests on the Multisim

simulation data and the data from tests using the wireless passive sensor showed that the

deep learning model is able to estimate the frequencies contained in damped multi-sinusoidal

signals up to an accuracy of ± 40MHz. The deep learning model was also modified and used

to estimate the damping factors of different frequencies contained in damped multi-sinusoidal

signals and the performance of the model was evaluated using the test dataset. The results

show that the Damping factor model has a variance score of 0.84 and R2 score of 0.83 which

implies that the model can fit the test data quite well.

The conventional model was then compared to existing signal processing methods and

the results showed that the estimated values of frequencies given by the deep learning model

is comparable to the estimated frequency values given by the other existing methods. The

deep learning model has the advantage of being able to estimate multiple frequencies while

the existing signal processing methods are limited to providing frequency estimate values for

single sinusoidal signals. The results from the tests and evaluations carried out in this work
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show that deep learning is a viable artificial intelligence technique that can be applied in

signal processing for parameter estimation.

5.2 Future Work

In this thesis, a signal parameter estimation algorithm consisting of convolutional neural

networks was developed and tested. Waveform samples of damped multi-sinusoidal signals

were generated, and the performance of the algorithm was evaluated using these samples.

The algorithm was also modified to estimate the damping factors of damped multi-sinusoidal

signals and the models performance was evaluated and the results were presented. The

proposed algorithm can be improved on to enhance its accuracy and computational efficiency.

In this section, possible improvements and further studies are suggested to improve on

the existing algorithm.

• Fifteen layers were used in the development of this algorithm, using more layers to

increase the number of fine details that can be learnt during training could be explored

as an increase in the number of layers could possibly lead to an increase in the accuracy

of the parameters estimated by the algorithm.

• The ReLu activation function was used in the proposed algorithm. The use of different

activation functions could be explored to determine how they influence the computa-

tional efficiency and accuracy of the model.

• The concept of prediction could be further explored such that over a time period the

model is able to accurately predict the frequency of signals at a particular location.

This could be useful in monitoring and detecting changes in signals at a location.

- 77 -



Signal Parameter Estimation Using DL 5.2 Future Work

• The possibility of using the algorithm for real time signal processing could also be

explored. Right now, the algorithm works offline, it would be helpful to explore how

it would work for real time signal analysis.

• The concept of using reinforced learning or unsupervised learning to train a signal

parameter estimation model could be explored.

• The algorithm currently uses the Adam optimizer to update its network attributes

during its training process. The use of other optimization methods could be explored

as this could lead to an improvement in the accuracy of the models signal parameter

estimates.

• The performance of the algorithm can be further investigated alongside other existing

signal processing algorithms not explored in this thesis.

• A more robust assortment of data samples can be generated and used to train the

algorithm such that it can be applied on different types of signals and still have a good

accuracy estimate of the frequencies and damping factors.

• The effect of signal amplitude on the performance of the deep learning algorithm can

also be explored to determine if the algorithm performs better when trained on signals

within a specific amplitude range.

• Alternative deep-learning methods for estimating the parameters of the signal could

also be explored.
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Appendix A

A.1 Cramér-Rao Bound

This is also referred to as the Cramér-Rao Lower Bound (CRLB). It expresses a lower bound
on the variance of an unbiased estimator [80] i.e., it gives information on how well the
estimator would perform. An estimator that achieves this lower bound is considered fully
efficient as its solution achieves the lowest possible MSE among all unbiased methods. The
CRLB is calculated according to [80]

CRB(η) =
1

Ey

{[∂ ln p(y|η)
∂η

]2} , (A.1)

where η denotes the estimation of a single element, Ey denotes the the statistical expectation
of y which is a finite-dimensional vector and p(y|η) is the probability density function of r
given η.

A.2 Interrogator System Components

The components used to construct the interrogation system are shown in the block diagram
of Fig. A.1.
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Fig. A.1: Block diagram showing components used in the setup for interrogation system.
Adapted from [81] with permission.
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