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ABSTRACT

The main objective of this dissertation is to study
whether the constitutive models proposed by Man, namely (I)
"the modified second-order fluid" and (II) “the power-law
fluid of grade 2", are applicable for describing the
creeping flow of polycrystalline ice. Both models (I) and
(IT) are the special instances of Rivlin-Ericksen fluids of
complexity 2, and both of them can be regarded as simple
generalization of Glen’s flow law. Since the models are
meant only for the slow creeping flow of ice, they are
supposed to have constitutive domains for which the first
Rivlin-Ericksen tensor Ar and its material derivative are
restricted to some neighourhoods of 0 in Sym«, the space of
symmetric tensors with zero trace.

To see whether the two models can represent empirical
data, they are employed to fit the experimental data of
pressuremeter and triaxial creep tests provided by
Kjartanson and Jones, respectively. The nonlinear second-
order ordinary differential equations which govern the
creeping flows of specimens in pressuremeter and triaxial
tests are derived for both models (I) and (II). These creep
equations contain unknown material parameters which pertain
to the specimens. By drawing on what is known about Glen’s
flow law and after a sensitivity analysis, a fitting
procedure is worked out to estimate the values of the

material parameters from the available data for the



pressuremeter and the triaxial tests, respectively. The
procedure includes an iterative least-squares fitting scheme
using the Levenberg-Marquardt algorithm; at each iteration
the creep equation in question is solved numerically by
using the fifth-order Runge-Kutter-Nystrom method. While
both models give good fits to the data of Kjartanson and
Jones, models (II) is found to give consistently better fits
to the pressuremeter data.

Constitutive restrictions imposed by thermodynamics (
i.e., the Clausius-Duhem inequality) are derived for both
models (I) and (II) under the assumptions that the free
energy assumes a minimum value at the rest state and is a
convex function of A1 in a neighbourhood of 0 in Sym«. The
restrictions on the meterial coefficients are consistent
with the numerical values obtained by fitting data of the
pressuremeter and the triaxial creep tests. Some stability
problems related to cannister flows and triaxial homogeneous
motions are discussed, both for models which obey the
thermodynamic restrictions and for models which violate
them.

Some possible applications of the models are also
discussed. Among them are: (i) flows of glaciers, (ii) heat
and mass transfer in a pipe, (iii) a preliminary
investigation on devising a short-term in-situ pressuremeter
test which will deliver the material parameters of

polycrystalline ice in models (I) and (II).
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CHAPTER 1 Introduction

Section 1.1 A brief review of some constitutive relations

for creep of polycrystalline ice

Ice, as a natural substance, is widely distributed over
cold regions of the world. 1In particular, it is significant
to reveal the mechanical properties of ice for establishment
of foundation of structures, development of natural
resources at cold regions, prediction of motion of glaciers
and icebergs, and treatment of ice sheets on the sea and
lakes. It 1is recognized from observation (Michel, 1978;
Hutter, 1983) that any ice body is composed of ice crystals
which appear in the form of hexagonal structures and have
anisotropic mechanical properties. But when an ice body
contains a great deal of randomly oriented ice crystals, we
could approximately regard it as a material which has
isotropic mechanical properties. Such an ice body is usually
called polycrystalline. In this dissertation, we shall be
mainly concerned with the creep behaviour of homogeneous
bodies of polycrystalline ice for the reason that many ice
problems involve phenomenon of creep (for instance, flow of
glaciers and settlement of foundations).

An often used simple equation that describes

polycrystalline ice in uniaxial creep is



& = bo (1.1.1)

(cf. Glen, 1952, 1955); here e is the wuniaxial engineering
strain, ¢ is the uniaxial stress, b and n are material
coefficients. Equation (1.1.1) is usually called Glen’s flow
law. Nye (1952, 1957) generalized Glen’s flow law to a full
constitutive equation. Nye’s generalization 1is wusually
called "the generalized flow law" (Paterson, 1981, p. 30);
it in effect models ice as an incompressible power-law fluid
(Bird and others, 1977, p.208). But since the thirties,
(1.1.1) and the power-law fluid model have been used in
metallurgy to describe metals at high temperatures (Norton,
1929; Odgvist, 1966). In the current literature, Glen’s flow

law is often expressed in the form

P = (T/B)n, (1.1.2)
where
¢ om (trD*/3) , [tr(Tl)2/3]l/2 (1.1.3)

are the octahedral strain rate and shear stress,
respectively; D is the stretching tensor, T’ is the deviator
of the Cauchy stress tensor T (Hooke, 1981). It is well
known from tests in laboratory and measurements in glacier
that Glen’s flow law and its generalization by Nye are

adequate for describing the secondary (i.e. steady) creep of



polycrystalline ice (Hooke, 1981; Mellor & Cole, 1983;
Ashby, 1985). For instance, it will be shown in Sec. 6.1
that the velocity profile in shearing flows predicted by the
power-law fluid model 1is corroborated by measurements in
glaciers. But this model cannot describe the primary creep
of ice. Besides, it fails to show any normal stress effect
in shear flows. After noticing the preceding defects of
Glen's flow law, McTigue and others (1985) suggested to use
the second-order fluid model as a constitutive relation for
the creep of polycrystalline ice. However, the second-order
fluid model has its own two shortcomings, namely, inability
to describe adequately the secondary creep of ice and to
show the appropriate velocity profile in the shearing flow
of glaciers. For details, see Secs.5.3 and 6.1 below, and
Man & Sun (1986). It 1is interesting to notice that the
merits of Glen’s flow law may just be used to remedy the
defects of the second order fluid model, and vice versa.

In the literature there are also many other
constitutive relations proposed for creep of polycrystalline
ice, which mostly are empirical or semi-empirical, (cf.
sSzyzekewski & Glockner, 1985; Spring & Morland, 1983;
Hutter, 1983). 1In what follows, however, we shall
concentrate on two special Rivlin-Ericksen fluid models to

be introduced in the next section.



Section 1.2 Two special Rivlin-Ericksen fluid models

Man (1984) has proposed the following two constitutive

relations for the creep of polycrystalline ice:

(I) T + pI = MIAI + (G Az + Al (1.2.1)
(I1) T + pI = I (MA1L + 1A + 0zaf), (1.2.2)
where trar = 0, (1.2.3)

n o= (tral/2)™ 2, (1.2.4)

Here (1.2.3) indicates the incompressibility of ice; T is
the Cauchy stress tensor; -pI is the indeterminate spherical
stress due to incompressibility, #, ®«1, ®« and m are
material parameters which in general depend on the material
point and the temperature; A1 and A: are the first and
second Rivlin-Ericksen tensors defined through the rate of
the relative right Cauchy-Green tensor Ct(T) (Truesdell and

Noll, 1965):

i=1,2,.... (1.2.5)

It is more convenient to calculate these kinematic tensors

by the recursion formulae



Al =1L + LT,
....... '
A, =A, , +A, L+ LA (1.2.6)
i i-1 -1 i-1'
where L = Vv is the special velocity gradient. Whenm = 0,

both (1.2.1) and (1.2.2) are reduced to the second-order

fluid model:

o

T + pI = HA1 + (1A: + gAY, (1.2.7)

When 1 = &p= 0, both (1.2.1) and (1.2.2) become the power-

law fluid model:
T + pI = AllAr. (1.2.8)

Moreover, it can be shown from (1.1.2) and (1.1.3) that

(1.2.8) is consistent with (1.1.2), i.e. Glen's flow law, if

B = 2(6)™ %, n = 1/(1 + m). (1.2.9)

Hence nmodels (I) and (II) can be taken as modifications of
Glen’'s flow law and the second-order fluid model.

The well-known Rivlin-Ericksen constitutive relation
may be considered as the theoretical background of models

(1) and (II). A fluid of the differential type and



complexity n is defined by the constitutive relation:

T="TA1, A:, ..., A ), (1.2.10)

where T is an isotopic function of Ai, i=1, 2,..., n. By
using

the principle of material frame-indifference and matrix
theory, Rivlin and Ericksen (1955) have derived an explicit

representation of (1.2.10):

T = d1T + d2A1 + d3Ar + dqA + dpaf + ¢ (ArA: + AxA1) +

by (AiAr + AeAT) + b (AfA1 + MiAE) + 0sRs + bre (A + ArA2),
(1.2.11)

where 1 to ®1¢ are functions of the invariants of Ay,

A ...y, An' It is easy to see that models (I) and (II) are
special instances of incompressible Rivlin-Ericksen fluids
of complexity 2.

In principle, the Rivlin-Ericksen model (1.2.10) might
be used to describe any motion of the fluids, since there is
no restriction on the magnitudes of A1, Az ,..., An. On the
other hand, models (I) and (II) may possibly be suitable
only for the description of slow motions of fluids because
they could be regarded as approximations of (1.2.11) by

omitting higher order terms which are small in slow motions.

Nevertheless, considering the fact that the Newtonian fluid
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model which is also a specification of (1.2.11) can be used
to describe fast motions of some fluids, one may apply
models (I) and (II) as exact models for any motion of some
fluids. For simplicity, we shall call the classes of fluids
characterized by models (I) and (II) as fluids (I) and (II).

In chapter 2, we shall deal with the dynamic and
thermodynamic constitutive restrictions on models (I) and
(II), Dbasing on the requirements that the boundedness of
stresses, smoothness of velocity and compatibility with
thermodynamics, in the case of slow motion. We shall show
that cannister flows of fluids (I) and (I1) are
asymptotically stable when (I) and (II) are compatible with
thermodynamic restrictions and if A remains in a
neighbourhood of 0. But I find that cannister flows and
triaxial homogeneous motion of fluids (I) and (II) are not
asymptotically stable if X1 < 0, i.e., if X1 assumes a sign
that violates thermodynamics.

In chapters 3 to 5, we shall use fluids (I) and (II) to
fit the creep data of polycrystalline ice measured from
pressuremeter and triaxial tests. It will be seen that the
fits are very satisfactory for both the primary and
secondary creep of the two kinds of tests. In particular,
the positive value of the material parameter 1, obtained
from the fits, gives a strong and important support to the
conclusion of thermodynamic restrictions on the two models.

Thus polycrystalline ice may be considered as the first
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material which is in the «c¢lass of Rivlin-Ericksen fluid

model with positive 1.
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CHAPTER 2 Constitutive restrictions on the two models

Section 2.1 Introduction

Controversy about the characteristics of the second-
order (or second grade) fluid model, especially about the
sign of & has lasted about 20 years. Coleman & Markovitz
(1964) asserted that the sign of 1 should be negative
according to experiments on polymers if they were assumed to
be second-order fluids. Truesdell (1965) supported a
negative ®1; he drew on arguments which regarded second-
order fluids as fluids of convected elasticity. But Coleman,
Duffin & Mizel (1965) and Coleman & Mizel (1966) showed the
unboundedness of nontrivial solution in shearing flows of
second order fluids with &1 < 0. Several years ago, Joseph
(1981) concluded by using Lyapounov theory about stability
that the rest state of an n-th grade (n > 1) fluid 1is
unstable if the ratio of the coefficients of the n-lth and
the n-th Rivlin-Ericksen kinematic tensors (1.2.5) is
negative (in particular, for n = 2, } # 0 amd %1 < 0). When
applying thermodynamics to finding the constitutive
restrictions on the second and third grade fluids, Dunn &
Fosdick (1974), and Fosdick & Rajagopal (1980) concluded
that 1 must be non-negative if those fluids are compatible
with thermodynamis. Besides, Dunn & Fosdick (1974) showed

that the Cauchy stress of fluids with convected elsticity
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must only be spherical and hence there is no basis for
Truesdell’s results for second order fluids with ®; < 0.
Dunn & Fosdick (1974) also denied the possibility that the
polymers studied by Coleman & Markovitz (1964) and others
belong to the class of second order fluids.

In this chapter we shall show in Sec. 2.2 +that the
exponent m of fluids (I) and (II) must obey m > -1 to
satisfy the requirement of smoothnesss of stress, through an
example of shearing flow between two fixed infinite parallel
planes. We shall also prove that an unique weak solution
exists for the problem of steady shearing flow between two
fixed infinite parallel planes.

In Sec. 2.3, we shall investigate the thermodynamic
restrictions on fluids (I) and (II) for slow motion of the
fluids. With an attitude different from Dunn & Fosdick
(1974) and Fosdick & Rajagopal (1980), we shall not allow
the kinematic tensors in the response functions to assume
arbitrary values because we require the models to be valid
only for slow motion of the fluids. Our analysis will also
be based on the Clausius-Duhem inequality and on the
assumption that the Helmholtz free energy be convex with
respect to Ar in a neighbourhood of A1 = 0 and be a minimum
at the rest state. It will be found that a necessary
condition for compatibility with thermodynamics is 1 2 0.

In Sec. 2.4 we shall show that for cannister flows of

fluids which satisfy the thermodynamic restrictions,
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stability of the rest state implies 1its asymptotic
stability. In Sec. 2.5 we shall study some consequences that
the inequality 1 < 0 would entail in cannister flows and
triaxial homogeneous motions of fluids which violate the

thermodynamic restriction ®:1 & 0,
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Section 2.2 Effect of the exponent m on the regularity
of solution of steady isothermal

channel-flow

In this section, an existence and uniqueness theorem
for steady isothermal channel-flow of fluids (I) and (II)
will be proved. Moreover, it will be shown that smoothness
of the solution depends on the value of the exponent m.

Consider an (possibly unsteady) isothermal shearing
flow between two fixed, infinite and parallel planes which
are at a distance 2h form each other. Choose a Cartesian
coordinate system (x, y, 2z) such that the two infinite
planes are at x = -h and x = h, respectively. Consider flows

in which the velocity has the form:

v = (0, v(x, t), 0). (2.2.1)

In what follows, it is assumed that during the flow the
fluid in question adheres to the walls of the channel, i.e.,
v(th, t) = 0.

Let ei1, e and e: be the unit base vectors of the

chosen Cartesian coordinate system, and let

€ 9v/0x (2.2.2)

be the shear rate. It can be easily shown that in a channel
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flow,

o= 9K/9t,

L = Kezber,

Al = K(e18er + exfer),

Ar = 2kte18er + K(e1®er + eifer), (2.2.3)
al = Ki(e1®er + er®e:),

o m
o= 1k

where 1K1 is the absolute value of K and © denotes the
tensor product of vectors. It is obvious from (2.2.3) that
the condition of incompressibility trAi = 0 is automatically
satisfied in the shear flows. By subsitituting (2.2.2) and
(2.2.3) into (1.2.1) and (1.2.2), the stress tensor may be

specified as:

(1) T = -pI + ().Lll<ilm1<( + (X1I<£t)(e1®ex + er®er)
(2% + U Kter1®er + KpKtexler,
(2.2.4)
(IT) T = -pI + (HiKkIM + ml(lW|mK)t/(l+m))(e1®ex + er@er)

g 1 10

+ [(261 + U )Kier®er + CrkiepBer ],

where the subscript t denotes partial derivative w.r.t. the
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time t.

Suppose at the instant t the velocity field satisfies:

v(*, t) € C'([-h, h]);  dv(-, t)/dx € CO((-h, h)).

Then by Rolle’s theorem there exists a point ¢ in (-h, h)

such that

K&, t) = 0. (2.2.5)

A glance at (2.2.4) reveals that the extra stress T+pI will
be undefined at ¢ if m ¥ -1. Henceforth, it will be assumed
that m > -1.

Let us now restrict our attention to steady isothemal
flows for which the body force is null. By substituting
(2.2.4) into the balance equation of linear momemtum, we

obtain the following equations of motion:

(I) =0p/dx + (261 + G ))AKT/Yx = 0,
~9p/dy +l»a(lmlmﬁ)/ax =0, (2.2.6)
~8p/dz = 0;
(IT)  -8p/dx + (201 + & )d (112 /5y = ¢,
“Ip/dy + My (1k1™y/ox = 0, (2.2.7)

1l
j]

~0p/dz
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It can be easily deduced from (2.2.6) and (2.2.7) that

for fluids (I) and (II),

dp/dy = C, (2.2.8)

where C is a constant measuring the pressure gradient in the
direction of flow. Without loss of generality, let C % 0. It
follows from (2.2.6)z and (2.2.7)z, respectively, that for
fluids (I) and (II) the velocity field v should satisfy the

following boundary value problem:

d[ldv/dxlmdv/dx]/dx = C/M,

(2.2.9)
v(mh) = 0,
where C % 0 and ¥ # 0. Let us proceed to prove an existence
and uniqueness theorem for (2.2.9).
Define I ® (~h, h). Let L?(I) denote the space of

square (Lebesgue) integrable functions defined on I. Let

H™(I) & L*(I) be the Sobolev space of functions whose k weak
derivatives are also in L*(I). Hk(I) is a Hilbert space
under the innner product
h k . .
<u, w> # [ (5 u(l)w(l))dx,
-h  i=0

where u(l) and w(l) denote the i-th weak derivative of u and
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w, respectively. Since the elements of Hl(I) are in fact

absolutly continuous, the subspace

is well defined. By a weak solution of the boundary value

problem (2.2.9), I mean a function in H*(I)ﬁHé(I) which

satisfies
h m h )
Joldv/dx!7(dv/dx)(d®/dx)dx = -Cf ¢dx/M for all ¢ & Hi(I).
~h ~h
(2.2.10)
The preceding equation makes sense because dv/dx is

absolutely continuous on [-h, h] and d¢/dx is in L% (I).
In the proof of existence and uniqueness of weak
solution v for (2.2.9), the following simple mathematical

lemma will be applied.

LEMMA 2.2.1 For any real numbers a and b, and for any m > -

1,

(lal™a - Ib

Equality holds if and only if a = b.

pProof: This lemma follows easily from the inequality

Imr)(l - r) & 0 for Ilxrl % 1.



20

THEOREM 2.2.2 ©Let m > -1. There is a unique weak solution
of (2.2.9), which satisfies (2.2.10).
Proof: At first construct a solution of (2.2.10). Consider

the boundary-value problem

d(w )™ /ax = c/n,  wi(0) = w(h) = 0.

Its solution is

).

w(x) = gjr_r%(_c/ﬂ)1/(m+1)h(m+2)/(m+1)(l _ (x/h)(m+2)/(m+l)),
(2.2.11)
where 0 % x % h. Now, define a function v on {[-h, h] as
follows: wv(x)=w(x), if 0 % x % h; v(x) = w(-x), if -h & x &
0. Explicitly,

v(x) = gﬁpc/u)1/(m+l)h(m+2)/(m+l)(1 _ ([X[/h)(m+2)/(m+l)
(2.2.12)

The function v is even, and its derivative is
vi(x) = —(ec/pyt/ (mEL) o/ () (2.2.13)

It is clear that both v and v’ are in L?(I) and v satisfies
(2.2.9) and (2.2.10).

Suppose vi and vi are two solutions of (2.2.10). Then
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Jo(vii T e 1My yardx = 0, for all & in HY(I). (2.2.14
('vy 1 T2 2

Let ¢ = vi - v&. It follows from (2.2.14) that
h m m
IF(tvi17 vy = vy Ty (v - vy)dx = 0. (2.2.15)
~-h

Lemma 2.2.1 implies that v’i = v’z almost everywhere on [-h,

h]. It follows from the boundary conditions and continuity
of the function that vi = wvz.

Remark: It is clear from (2.2.12) and (2.2.13) that the
solution v is of class C!'(I) for any m > -1. For 0 # m > -1,
v is of class Cn, where n is the largest integer such that n
% 1/(m+l). Thence v is at least of class C*! if o # m > -1,
For m > 0, however, v will not be of class C* because v" "
W as x * 0. In other words for m > 0, the boundary-value
problem (2.2.9) does not admit a classical solution (by

which I mean a solution of class C*).



22

Section 2.3 Thermodynamic restrictions

Before the detailed discussion, let us introduce some
notions and preliminaries which will be used throughout the
remaining sections of this chapter.

R: the set of all real numbers;

V: the translation space of the three dimensional Euclidean
space;

Lin: the set of all linear transformations from V to V;

Sym # { T & Lin | TL = 7 };

Line # { T & Lin | trT = 0 };
Syme ¥ Sym ™ Line;

A*B @ tr(ABT), A, B & Lin;

FAL® @ A«A, A € Lin;
B: a continuous body;
Qo : the reference configuration of B;
f: the current configuration of B at time t;
X: the position of a general material point in 0« ;
x: the position of X in N at time t.
The balance law of linear momemtum, the balance law of
energy and the Clausius-Duhem inequality are given in the

global form as follows:

d(fyfvdv)/dt = [, Tnda + [, fbdV,
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d{lyP (e + lvlit/2)dvy/dt = Foo(Tnrv - grn)da + [f (b*v + ¥)dv,

d(f,PNdV)/de & - [, (q/8) nda + [0 (¥/0)adV; (2.3.1)

here dV and da are the volume and surface measure,
respectively; n 1is the outward unit normal field on 80; f
is the mass density; v # dx/0t is the velocity field
associated with the motion x = x(X,t); a superposed dot "."
denotes the material time derivative; A1 is the first
Rivlin-Ericksen tensor (cf.(1.2.5)); ® is the absolute
temperature; T is the Cauchy stress tensor, q is the heat
flux vector, and e, 11, ¥ and b are the internal energy,
entropy, radiant heating and body force per unit mass,

respectively. When all the fields in question are

sufficiently smooth, (2.3.1) can be recasted in local form:

divT + Pb = Pv,

Pe = T'Mm/2 - divg + PV,

P(e - o) % T A1 /2 - (grgrad®)/e, (2.3.2)

Henceforth (2.3.1) and (2.3.2) will be regarded as
equivalent.

The Helmholtz free energy is defined as

Vo= e - &, (2.3.3)
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in terms of which (2.3.2): may be represented as

p(@ + né) - T-A1 /2 + (g*grad®)/é £ Q (2.3.4)

which is usually called the dissipation inequality.

An eight tuple of functions (x, ®, $, ", T, q, b, )
defined on flo ¥ [t1, +t&#] is said to be a thermodynamic
process if it satisfies (2.3.1) or (2.3.2); t1 - tz is
called the duration of the process.

For the class of fluids (I) and (II) (cf.(1.2.1) and
(1.2.2)), the response functions of the free energy and heat

flux can be generally assumed in the form

(I, I1) Vo= w(®, g, A1, M),
(2.3.5)

(I, IT) q=4q(®, g, A1, Az),

where g # grad®. Of course, the response functions of models

(I) and (II) are usually different. Henceforth, we shall use
the following assumptions:
Assumption 2.1 The constitutive relations of (I) and (II)

are defined for

Ar & Ni1(0), Ar € Nz (0), (2.3.6)

where N1 (0), Nz (0) © Syme are small neighbourhoods of the
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point 0 & Symo ;

Assumption 2.2 In motion of fluids of (I) and (II),

& € R, g % VvV, Az € Sym (2.3.7)

may be arbitrary;

Assumption 2.3 The free energy has the property
(I, II) w(®, g, A1, Ar) - ¥ (®, g, 0, 0) 2 0, (2.3.8)

for any ® > 0, g & Vv, A1 & Ni1(0) and Az € Nz (0).

Assum. 2.1 is suggested to meet the requirement of slow
motion. Assum. 2.2 is based on the fact that the response
functions of stress, free energy and heat flux are
independent from the quantities in (2.3.7). Assum. 2.3 says
that the free energy is a minimum at the rest state.

Now, it turns out from (2.3.4) and (2.3.5) that

P + W g + Wy SR Wy B+ NB) - TeA/2 4 g/ € 0.
(2.3.9)

We conclude from Assum. 2.2 and linearity of @, g and A1 in

(2.3.9) that (2.3.9) can be valid only if

(I, II) Vo N =0, W =0, Wy =0

or
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(I, II) No= -y, Vo= g (8, Ar) (2.3.10)

To find the thermodynamic restriction on the material
parameter 1 of fluids (I) and (II), we shall concentrate on
the wunsteady shear flows (2.2.1) with uniform temperature,

i.e., g = 0. In that case,

(I, II) (B, A1) = W(H, Ky, (2.3.11)

where K is the shear rate. For convenience, we shall suppress
the superposed bar " - " and argument ® in what follows. Then

it follows from (2.3.10) that

= \|/({I}J({:»J + \];AI “ Al = \.[/@({{-) + \[;Kl(( (2.3.12)

from which and (2.2.3), the dissipation inequality (2.3.9)

may be written as:

. - . 2+m
(1) Py K - KK - T

(2.3.13)

(I1) Pt - oy Tk M~ g 2T 0.

It is obvious from (2.3.11) that in the given case, (2.3.8)

is simplified to

W(K) - w(0) & 0, for K & Ni(0) (2.3.14)
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where N(0) € R is a small neighbourhood of the point 0 & R.

Suppose the free energy is a convex function of Kk on N1 (0),

namely,

(I, II) (dw/dK )k = w(K) - w(0), for kK & Ni(0). (2.3.15)

Then it is clear from (2.3.14) and (2.3.15) that for Kk &

N(0)

(I) (dw /By /e 20,

(2.3.16)
(TT) (Bv /oK )k /1612 ™ 2 0 formo» - 1

When the initial velocity in unsteady shear flows and

pressure gradient are arbitrary, one may find a state in

which

kK =0, but DK/Dt # 0, (2.3.17)

where, of course, the velocity is assumed to be continuous.

Now, we take the limit as Kk # 07 in (2.3.13) so that we

obtain

(1) %iIS*Lp(\')"\' /- iK% o0,
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(2.3.18)
(II) %;§+P(ww/lmil+m - M)KE % 0.

Since the sign of K & N: (0) is arbitrary (i.e., K may be

positive or negative), (2.3.8) holds if and only if

—

—~

~—

=2
i

. ) -
llm f\’)](; /I‘ 7

T
(2.3.19)
(II) Xy = lim+ﬁww/lﬁll+m form > - 1
) ‘
from which and (2.3.16), we find that
I, II Xy & 0. 2.3.20
(

When steady flows of fluids (I) and (II) take place in

a uniform temperature field, namely,

we immediately obtain from (2.3.9) and (2.3.10) that

(1) p(Ar) = [MIIAI I + (1 + oz )trAfj/2 » 0,
(2.3.22)

(IT) b(ary B Nmlarl: + (s + o )traf /2 ® o0,

where Il is given in (1.2.4). Particularly, choosing the
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shear flows (2.2.1) in which A1 1% = 2% % 0, tr(A1*) = 0 as
the special case of the flows (2.3.21), we obtain from

(2.3.22) that

(I, II) TN (2.3.23)

By using the well known Hamilton-Cayley theorem in
matrix theory and the Cardano’s formula for the real roots
of the equation x* + ax + b = 0, a,b,x ® R (Zaguskin, 1961,

pl50), we can easily prove that the inequality

ltr(Ar iyl % 1A /N6 (2.3.24)

should hold for any A1 & Syme whose all eigenvalues are
real. (2.3.24) was also shown by Fosdick & Rajagopal (1979).

For further discussion, consider a cylindrical fluid
body. Let % (t) be the length of the cylindrical body at
time t and let the body be confined by a uniform pressure -
peI. Suppose the cylindrical body undergoes a homogeneous
and irrotational motion under a superimposed axial load ¢.

Then the following relations should be valid:

x = F(t)x(0),

If

F (X - 1/ ebe + T/VK,
Al = a(I - 3ele), (2.3.25)

dA1 /dt = da/dt(I - 3efe),
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Ar = a' (I + 3efe) + da/dt(I - 3efe),

where e is the unit vector parallel to the axis of the
cylindrical body, & is the tensor product of vectors, « i
L(t)/%(0), and a # -db(t)/dt/%(t). Consequently, for both
fluids (I) and (II), the extra part of the Cauchy stress is

also homogeneous and hence the balance equation of linear

momemtum (2.3.2)1 becomes

fb = grad(p) + fv, (2.3.26)
where

. U

v = FF "x. (2.3.27)
Now suppose the body force is derivable from a potential [,
namely, b = -grad”. Then by choosing

p(X,t) - p*(t) = - Px"FF 'x - PI"(x), (2.3.28)
where p* is a function of time t, we see that (2.3.25) can

be exactly satisfied. In other words, the motion (2.3.25) is
dynamically possible (Passman, 1982). For conveniece, I
shall henceforth refer to the homogeneous motion (2.3.25) as
triaxial homogeneous motion.

For the triaxial homogeneous motion, we can easily
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obtain from (2.3.25): the equation
ltrAf | = 1A 1846, (2.3.29)

which appeared in the work of Fosdick and Rajagopal (1980,
Lemma 2). Dunn (1982, footnote) gave a special case of
(2.3.25): in the form A1 = (3e®e - I). By (2.3.22) and

(2.3.29), we obtain another constitutive restriction: for A:

€ N1 (0),
(1) ~(VEYMII/TAL L w4+ Xy % (V) ML/ 1AL,

(2.3.30)
(IT) ~(B)M/IAL] E X % (EYM/ IR

Finally, by summarizing the results, we can state the
thermodynamical restrictions on fluids (I) and (II) as

follows:

THEOREM 2.3.1. Suppose the constitutive relations of fluids
(I) and (II) are defined when A: & Ni(0) and DA: /Dt & Nz (0).
If the free energy ¥ 1is convex in the variable A1, the
necessary and sufficient conditions that the response
functions of T, % and q of fluids (I) and (II) are
compatible with the Clausius-Duhem inequality are that

(a) the free energy ¥ and the entropy " satisfy
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(I, IT) o= kl)((«}}), Ar),
(2.3.31)
(I, II) w8 + M o= 0;
(b) the viscosity M meets
(I, II) Hod0; (2.3.32)
(c) the normal stress coefficients X: and &z obey
(I, II) Xy 0,
(1) _g‘m/2(q6)p/|AJ|l“m O ¢ O T ¢ R Z_m/z(UG)N/lAjll—m,
(2.3.33)
(IT) () TA T oy + K % (NEe)M/TAN;
(d) the dissipation inequality has the form
(I, II) Pw_ A1 - T'A1/2 + q-g/¢ % 0, (2.3.34)

where the material parameters may be functions of material
point and temperature.

Remark: If arbitrary A1, DA1/Dt & Sym¢ are included in
constitutive domains of fluids (I) and (II) (i.e., fast
motion of fluids (I) and (II) may then take place), by

following arguments similar to those used by Dunn and
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Fosdick (1974), we can immediately obtain the following

stronger constitutive restrictions:

(I, IT) X1 & 0, Xy + &y = 0;

(I, II) q g/ % §(A1);

(1) VB, ALY = w(®, 0) + G1lArl?/(4p)

(IT) VB, A1) = w(8, 0) + & 1A I2+m/[2l+m/2(2 + m)P 1,

where ¢ (A1) is defined by (2.3.22).
By taking A1 = 0 in (2.3.33)z, we get
COROLLAY 2.3.1. Under the same assumptions in Theorem 2.3.1,

(2.3.33)r holds when m > 1 if and only if

(1) X1 + &z = 0. (2.3.35)

Suppose the response function of the heat flux q
satisfies the principle of frame-indifference. Then it is

not difficult to show that

(I, II) q(*, 0, =, =) =0, (2.3.36)

Now, let ®¢ > 0, ®, 6 A1, Az be fixed, and & @ 16 - @sl +

larl + 1A2 | + Igl. Then by using (2.3.36), we have
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(I, II) q(®, g, A1, Ar) = -Kg + o(f), as & + 0 (2.3.37)

according to Taylor’s expansion, where

(I, II) K # -dq(%e, g, M1, A )/dg at g = 0. (2.3.38)

(2.3.37) asserts that in slow motion, the response function

of the heat flux can be approximated by Fourier’'s law

(I, II) q = -Kg (2.3.39)

if the temperature difference and the temperature gradient
are small. Let fluids (I) and (II) be at the rest state.

Then it turns out from (2.3.34) and (2.3.38) that

(I, II) ( -Kg)-g % 0

which leads to

COROLLAY 2.3.2. Under the same assumptions of Theorem 2.3.1,
1f 18 ~ ®el + 1Ml + Ia! + Igl is small, the response
function of the heat flux can be approximated by Fourier’s
law, and the conductivity tensor K must be positive semi~-

definite at a rest state.
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Section 2.4 Cannister flows for models compatible with
thermodynamics: stability implies asymptotic

stability

In this section we shall study cannister flows of
fluids characterized by models (I) and (II) that satisfy the
thermodynamic restrictions. For motions whose A1 remains in
N1 (0) for all time t, we shall prove that v % 0 as t * ®, In
other words we shall show that for cannister flows stability
implies asymptotic stability of the rest state.

Suppose a fluid occupies the entire volume of a rigid
closed container . After the container is shaked at time t
% 0, and then suddenly fixed for t > 0, the fluid satisfies
the adherence condition v = 0 on d0. The flows inside 9 for
t > 0 are called cannister flows and are introduced by Dunn
and Fosdick (1974) for the analysis of mechanical stability
of second order fluids. It can be easily shown that an
incompressible fluid undergoing cannister flows must be
consistent with the condition of mechanical isolation

(Gurtin, 1972) when the body force b hsa a potential:
IaﬂTn'vda + [,PbrvdV = 0. (2.4.1)

In what follows, the body force of any fluid is always
assumed to be derivable from a potential function. Thus in

cannister flows of an incompressible fluid, by (2.4.1) the
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balance equation of mechanical energy (Gurtin, 1981)

d(foﬂlvlde/Z)/dt + I.T'AldV/Z = J.OTn'Vda + $Oﬁb'vdv

0 d

may be simplified to

i
O

d(fflvitav/2)y/dt + [, T-A1dV (2.4.2)

Equation (2.4.2) is usually used as a point of departure for
the analysis of mechanical stability of cannister flows.

For simplicity, let us consider the case in which the
fluids (I) and (II) are homogeneous and the temperature is
uniform. Then the material parameters M, 1, ®«x and m of
fluids (I) and (II) are constants. Substituting (1.2.1) and

(1.2.2) into (2.4.2), we obtain

(I)  d(fyPlvi®dv)/dt + [0 R -AidV + 20,8 (A1 )dV

i
O

(II)  d(fyPiviiav)/de + S 0uilTAL A1 + 20,8 (A1 )dV

Il
<O
~

where ¢ is defined by (2.3.22). Furthermore, we define a

function E by

I

(1) E(t) = [oPlviZdv + @i f, 1A l2dv/2,
(2.4.4)

23y (2 + m)2™ 2y,

b}
—
=3
+
1]

.f'of)lvlzdv + (X1,I'O|A1|
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which measures the kinetic energy and stretching energy in
the fluid body.

Since
2+m _ m .
DIA: /Dt = (2 + m)lAa1l7A1I+AL, (2.4.5)
by (2.4.4) and (2.4.5), (2.4.3) can be represented as

(I, II) dE/dt =

|
o
Q.
<

(2.4.6)

Then by using

¢(Aar) & 0, for any A1 & N1 (0),

(cf. Theorem 2.3.1), we obtain

LEMMA 2.4.1. If fluids (I) and (II) are compatible with the

thermodynamic restrictions, the energy function E should

obey
(I, II) E(t) # 0, dE(t)/dt % 0, for t # 0 (2.4.7)
in cannister flows whose A1 remain in N1 (0) for all t # 0.

The lemma shows us that the non-negative function E
must have a upper bound in the class of motions in question.

Since F > 0 and ®1 * 0, it follows (2.4.4) that
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(1) FolBrltdv % 2E(t) /01,
(1) IQ1A112+de % 2m/2(2 + m)E(t) /W .
For the class of motions in question (i.e, A1 & N1 (0)),

there exists a positive real number ki such that

lar (x, t)! < ki for x & 0, t > 0, (2.4.8)
from which when -1 <m % 0,
lag 1 k?,
or
folarlzav € Ja 1A 2 gy, (2.4.9)

On the other hand, it follows from Holder'’s inequality
(Hewitt & Stromberg, 1965) that when m > 0, there must exist
a positive number ki increasing with the measure of the

domain @ such that

[o 1B 12aV € kel 12 ) 2 gy, (2.4.10)

Let

s = Max(ki™, kz). (2.4.11)

In cannister flows, the Poincaré inequality (Rektorys, 1975)

may be simplified to
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J'm_lvlzdv & C,f'ﬂlgradvl'idv, (2.4.12)

where C is a positive number which increases with the
diameter of the domain . Besides, it can be easily shown

that in cannister flows of any incompressible fluid,
fﬂlgradvlidv = [, ta11dv/2 (2.4.13)

Next, we shall show that there 1is a positive real
number A such that dE/dt + AE % 0 for t # 0. The foregoing
inequality will play an important role in the analysis of
asymptotical stability of cannister flows. Let AN be a
positive number which will be defined shortly. It turns out
from (2.4.4), (2.4.6), (2.4.11), (2.4.12) and (2.4.13) that

by ®1 + Xz = 0 as m > 1 for model (I),

—m/2M1A1|2+m

(1) dB/dt + AB = -2[,([2 + (41 + oz )trafl jdv

F M PIVIEAY 4 A S 1AL TdV/2 € =27, (27 20 0 2

+o0e LIALIFA61AV + ACPsS ) 1Al 2™ May/o + NSETNE R EVoP

2—m/2}.i

€ S [NS(CP o+ ®1)/2 = 2 ~ ey 4 g kT E) A

and similarly for model (II)

-m/2

(IT) dE/dt + NE £ [ [N(CPs/2 + 2 Xy /(2 + m))

-l

2+m

dv
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2PTV2Z 00 ey v e ik 6y 1A | 2 gy,
(2.4.14)
Now, define the number A by
_ -m/ 2 1-m , -
(I) N = 47[2 Ho— ty + e lkt T/N6]/s/(CP O+ 1) as 0 < m %
A= 22—m/2ﬂ/s/(cﬁ + 1) as m > 1, (2.4.15)
(IT) No= 20M - T+ (g lk:/\l6]/[2m/2'lcf’s + /(2 + m)],

from which with (2.4.14), we find that for t # 0,

(I, II) dE(t)/dt + AE % 0
or
(I, II) E(t) & E(0)Exp( -At), (2.4.16)

where the positivity of M is guaranteed by ¢ (A1) & 0.
Hence from (2.4.4) and (2.4.16), we have established

the following

THEOREM 2.4.1. If fluids (I) and (II) are compatible with
thermodynamic restrictions, for cannister flows whose Al
remains in Ni(0) for all t # 0, the flows will decay

exponentially with t in the sense that

(I, II) folvltdv £ E(0)e™ t/p,
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2+m

dv

m/2

(2 + m)E(0)e

-At

/Xy,
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Section 2.5 What happens if @1 < 0 ? Some consequences

It has been shown in the last section that cannister
flows of fluids (I) and (II) are asymptotically stable when

the fluids satisfy the thermodynamic restrictions
(I, IT) B0, w0, $(my) 2o,

and if A1 remains in N1 (0). But what will happen to models
which violate the thermodynamic restrictions? We shall see
in this section that for flows of fluids (I) and (II) in
sufficiently small cannisters, if ®1 < 0, the flows will
never stop after any initial disturbance so long as M # 0
and ¢ (A1) & 0.

To explain it, let
(I, I1) X1 < 0, M 0, (A1) = 0. (2.5.1)

We still start from the balance equation of mechanical
energy (2.4.2). For convenience, set ®«1 = ~lt1!, Thus

(2.4.3) can be represented as

(1) d{fpflvitdv — Ty LS, TA112dv/2]/dt + 2l badv = 0,
(2.5.2)

(II) d{/pflvliav - 1oy 17, 181 2™ay/ 2™ 2 (2 + my)y/de
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(1) N(t) = l&ulfy1m12dv/2 - J,Plvitdy,
(2.5.3)
(1) n(t) = 1o it 7y (2™ 2 (2 4 myy - sopivizay,
which obviously have the property
dN(t)/dt = 0 for t & 0 (2.5.4)

from (2.5.1) and (2.5.2). It follows from (2.4.12) and

(2.4.13) that the function N satisfies

(2.5.5)

2+m m/ 2

(II) N(t) & Ixalf, Al dv/[2 (2 +m)] - CASyIAL12QV/2

for t # 0, where C is the Poincaré number, a monotonic
increasing function of the diameter of the cannister. Let b
> 0 be such that

Ao 1® 181 (x, 0)l < b, x & 0.

Then by the same argument as that used in Sec. 2.4, we can

find a positive number S for which
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‘ N < Qf , |2t
J,(IIA"’ l dv ''''' S'I‘O'iA") I dV (2.506)

holds for m > -1. Now we choose a small cannister (but still

finite) such that

(1) C o< lxal/p,
(2.5.7)
(IT) ¢ o< 20001 /2202 + mypsy,
which with (2.5.5) and (2.5.6) leads to
(I, II) N(O) > 0. (2.5.8)

But since N(t) is a non-decreasing function of time t

from (2.5.4), it obviously satisfies

(I, IT) N(t) # N(0) > 0 for t % 0. (2.5.9)

According to (2.5.3) in which the second term on the right-

hand side is always non-negative, we find that for t = 0,
(1) FolALTEAV & 2N(t) /Il > 0,

(2.5.10)
(IT) [, 18015 My 2 ™22 + myn(ty/ 1l > 0.

(2.5.1), (2.5.7) and (2.5.10) indicate that if 1 is
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negative and the size of cannister 1is small enough,
cannister flows of fluids (I) and (II) will never stop so
long as J} & 0 and ¢ (A1) # 0.

For second order (or grade) fluids, Fosdick and
Rajagopal (1979) concluded that if the material moduli

satisfy

and if the viscosity M is sufficiently large and the size of
the cannister is sufficiently small, then for any given

positive constant M, it is necessary that

fo|A117AV > M

at some time. In fact no matter what values of M and 1 + 3
are, triaxial homogeneous motion (2.3.25) will be unstable,
and the length of fluids (I) and (II) will elongate or

shrink without limit under any initial disturbance, as long

as
(I, II) Xy < 0, M 20, ¢ 2= 0. (2,5,11)

For triaxial homogeneous motion (2.3.25), it is shown in
Sec. 4.1 that when there 1is no axial load ¢, the motion

equation of fluids (I) and (II) should be
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(I) Mra + Bm/zulalma - (%1 + ®z)at = 0,

(2.5.12)
(IT) Xra + Ma - (X1 + Kz)a? = 0
for t > 0, with the initial condition a(0) = a¢, where a« is

a non-zero constant. It should be emphasized that the motion
(2.3.25) and equation of motion (2.5.12) are exact when
(2.3.28) 1is satisfied, and they may be approximately valid
for those experiments for which inertia and body forces can
be ignored (Passman, 1982). The analysis in this section
will be based on the assumption that (2.3.28) is valid. It

follows from (2.3.25) and (2.3.22) that

m/2

(1) p = 3ar3™ uial™a - (X + wp)at],

3m/2+l|alm

(I1) ¢ = afla - (K1 + Kz )at)

from which and (2.5.12), we find that if ®1 < 0,

(T) - 3l laa + ¢ = 0,
(2.5.13)

3m/2+l(

(11) - 1lal™aa + § = 0

for t > 0. But ¢ is non-negative; cf. (2.3.22). Then after

integration of (2.5.13) w.r.t. time t, we find that for t # 0,
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(17)  loxa a2t 2 a8ty e g
or
(1) a2 af > o0,

(2.5.14)
(II) a2+m e ag+m > 0.
It turns out from a # -dl/dt/% and (2.5.14) that for any time t
(I, II) It (t)! # constant > 0 (2.5.15)

which illustrates that the length of the fluids will
elongate or shrink without limit after a initial disturbance
so long as ®1 < 0, » & 0 and ¢ # 0.

Indeed, it can be easily calculated from (2.5.12): that

for fluids (II),

L {
a(t) = [Hao/ (X1 + mx)]/{[ﬂ/(M1 + Xe )y - a¢]e)t/X1 +oaq},
(2.5.16)
for t & 0. In other words, if J # 0 and 1 % 0, then a(t)
will approach zero as t “ ® and hence the motion is
asymptotically stable. But if J 2 0 and ®1 < 0, then a(t) -+

W/ + &z ) as t o,
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Chapter 3 Evaluation of material parameters by

fitting data of pressuremeter tests

Section 3.1 Initial-boundary value problem pertaining

to pressuremeter tests

In  pressuremeter tests, a testing probe which is
essentially a cylindrical rubber membrane is inserted into a
cylindrical cavity of the tested substance and is then
inflated to expand the cavity, the deformation of which is
recorded in the meantime; cf. the monograph by Baguelin &
others(1978). Specifically, by performing the pressuremeter
test on ice which undergoes creeping, one may measure the
cavity radius of the ice versus time. Usually the
pressuremeter test is performed either in-situ or in the
labloratoty. In both situations, the size of the tested
substance is much larger than that of the probe itself.

In  pressuremeter tests, the length of the cavity is
finite and the ratio of length to radius of the cavity
usually 1is large thanr 10. When analysing the initial-
boundary value problem pertaining to the pressuremeter test,
we let the origin of the cylindrical coordinate system (r,
©, z) and the z-axis locate at the middle point of and along
the central line of the cavity, respectively. Let v = (u, v,
w) denote the velocity field within the tested substance,

where u, v and w are the physical components of v under the
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cylindrical coordinate system. In particular, when the
tested substance is polycrystalline ice, we introduce the
following assumptions:
3.1 The sample is a homogeneous, isotropic and
incompressible continuum.
3.2 Its temperature is uniform and remains constant with
time.
3.3 The body and inertia forces appearing in the balance
equation of motion are negligible.
3.4 The primary and secondary creep of the sample can be
described by models (I) and (II), defined by (1.2.1) and
(1.2.2).
3.5 During the test the deformation of the sample is
axisymmetric and the velocity component w % 0 for a thin
slab N(z = 0) which contains the cross-section at z=0..
Assum. 3.5 is based on the fact that only the radius at
the middle point (z = 0) of the ice cavity is measured and
deformation even at the free surface of the ice, which is
perpendicular to the axis z, is too small to be measured
during the test period. In other words, it is assumed that
the middle segment of the ice sample undergoes a plane
deformation. The following analysis will be restricted to
the domain N(z = 0).

By Assum. 3.5, the velocity field is simplified to

v(r,t) = (u(r,t), 0, 0) (3.1.1)
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from which, the first Rivlin-Ericksen tensor (1.2.4): should

be

[Ar (r,t)] = diag[20u(r,t)/dr, 2u(r,t)/r, 0], (3.1.2)
where [ * ] denotes the matrix form of a second order tensor
and diag[ * , =, * ] the diagonal form of a matrix. Since

the ice is assumed to be incompressible, we have

trA1 = 0 or Jdu/ldr + u/r = 0, (3.1.3)

which leads to

u(r,t) = c(t)/r, (3.1.4)

where ¢ is a function of time t. Then (3.1.2) and (3.1.4)

yield

[A1] = diag[ -~ 2c¢/r*, 2c/rt, 0],
(Al ] = diag[4ct/r', 4ct/r', 0]; (3.1.5)
o= (2c/r* )"

follows from (1.2.4)2; similarly the second Rivlin-Ericksen

tensor Ar is given by
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[Ax] = diag[ - 2¢&/r* + 8ct/r', 2¢&/rt, 0]. (3.1.6)

Substituting (3.1.5) and (3.1.6) into (1.2.1) and

(1.2.1), we obtain the stress distribution in the ice:

(I) T . = -p - M(20/r2)1+m + 4l ct/xt + Xy (=2¢/rt + 8ct/rx'),
Toe = -p + M(2c/ ) ™ b ampct/rt 4+ 0y (26/rt), (3.1.7)
(I1)y T __ = -p * (2¢/r* ) —B(2c/Tt) + 4dUzct/rt o+ X1 (=2¢/xt
+ 8c*/r' ],
Toe = -P + (2¢/r* )M [H(2c/xt) + Axpct /[t + ®y (28/x*)1;

(3.1.8)

all other stress components vanish.

Since Assum. 3.3 specifies the balance equation of

motion

divT + fb = fv
to
dTrr/dr + (T

rr = Top)/r =0, (3.1.9)

by substituting (3.1.7) and (3.1.8) into (3.1.9), we obtain

1+m

(1) T /dr - 204 (2c/xt) /r + 1 (-4¢/rt + 8ct/x')/r = 0,

(3.1.10)

(IT) 9T r/<')r - (2c/r2)m[~2ﬂ(2c/rz) + O (-4¢&/xt + 8ct/r' )/

with the boundary conditions:
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T.(re,t) = -P(t), T_(¥,t) = -Po(t), (3.1.11)

where r+ is the cavity radius which is a function of time t
during the creep process, -P(t) and -Po(t) are the radial
stresses on the cavity and at infinity, respectively. A

straightformard integration of (3.1.10) from re to W yields:

(I)  =P(t) + Po(t) + Iiﬁ(zc/rg)“m + (W (28/xd) - 2ct/x)) = 0,
(3.1.12)
(1) =P(t) + Po(t) + y3=(2¢/xf) ™™ + 22 (2c/xg)™(e/x))
—M1(2c/r2)2+m/(2+m) = 0.
Let r denote the rate of r, namely u. We have
c(t) = ©(r,t)r(t) (3.1.13)

from (3.1.4), and especially at the wall of the cavity,
C(t) = fc::(rﬁ),t)r{)(t), (3.1_14)

Then (3.1.12) and (3.1.14) yield the cavity creep equation of

the ice:

1+m

(1) X1ro/re + 5T1Tmy (2%e/To) - [P(t) - Po(t)]/2 = 0,

(3.1.15)

(IT) ®ire/re + Hiw/ro - 5500 [fo/re]t - lgT{P(t)
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~ Po(t)][2te/re] ™ = 0.

In practice r«(te) and fe (te) are usually determined from

experimental data for some initial time te.

I should like to add a few comments:
(a) The term containing the material parameter i has been
cancelled in the derivation. Thus ®& cannot be directely
evaluated by fitting the data of pressuremeter tests.
(b) (3.1.15) can be used to fit the data of tests which have
variable cavity pressure. Of course, it may be much easier
Lo use a constant cavity pressure in pressuremeter test.
(c) (3.1.15) cannot be solved analytically because of their
strong non-linearity. But fortunately, numerical methods
such as the Runge-Kutta method can be used by the aid of the
computer (Lambert, 1972). In what follows, we shall call the
solution of (3.1.15) the predicted radius.

To end this section, define

P(r,t) = I(r,t)/r(t) (3.1.16)

which is often called the creep rate in the engineering

literature. Then by (3.1.5): and (3.1.16),

[A1] = diag[ -2F(xr,t), 2f(r,t), 0]

which implies that A:, a kinematic tensor measuring

stretching in continuum mechanics, indeed delivers creep
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rates 1in three directions in the present problem.

Henceforth, we shall often use the cavity creep rate

Bo = fo/ro (3.1.17)

which can be determined from (3.1.15) as long as the values
of the material parameters, the cavity pressure and initial

conditions are given.
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Section 3.2 Effect of the material parameters on the

predicted creep rate

For convenience of analysis, we shall wuse u =
(ur,us ,us) to denote (M, ®1, m). There are two reasons to
find an explicit expression of dre/8u and of fw/du, where
ro is the predicted cavity radius, f¢ the predicted creep
rate defined by (3.1.17), and both are dependent on
(3.1.15). One of the reasons 1is that by those partial
derivatives, we can see how the material parameters
influence the predicted creep and which parameter will
dominate more importantly the predicted creep and creep
rate. Another reason is that those partial derivatives are
useful to evaluating the material parameters by least
squares estimation 1if the analytic expressions of the
gradient of objective function and of predicted solution
w.r.t. u are needed (see (A.2.7) and (A.2.8) in Appendix
A.2).

It is obvious from (3.1.15) that both the predicted
radius r+ and the creep rate f« depend on the material

parameters u and time t, namely,

ro = ro(u, t)
(3.2.1)

o = fia (ll, t)



56

from which and from (3.1.17),

fie /du (Ofe/du)/re - (To/ri)(dxe/du)

d(@re/du)/dt/re - (Fo/re)@re/du), (3.2.2)

il

Il

since u and t are independent of each other. (3.2.2) can be

represented as

d(@re/du)/dt - fo(8re/du) = rodfo/du (3.2.3)
with the initial condition:

dro/du = 0 at t = to (3.2.4)

which is based on the fact that the initial predicted radius
is given by the experimental data and hence is independent

of uw. An integration of (3.2.3) from te to t yields

, , o U R 11 g "
dro/du = Exp[Jt¢P¢dL][Jt¢r¢5ﬁ—Exp(—Jt¢ﬁ¢ds)dL],

(3.2.5)

where ro and Po will be numerically solved from (3.1.15),
but dfe/9u  is still an undetermined function. By the chain

rule of differentiation we have

d(dBe /Bu)/dt = Bfe/bu = BB /Su + (084 /BB ) (Do /bu),
(3.2.6)

which leads to an ordinary differential equation in 8fa/du:
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d(dBo /Buydt - (3o /8Ba) (38a/Du) = 8o /bu,  (3.2.7)

where & (-)/8u is the gradient of (*) w.r.t. u at the fixed

point f*«. The initial condition of (3.2.7) should be

Qe /du

i
(o)

at t = to, (3.2.8)

because the initial creep rate is given and is independent

of u. The solution of (3.2.7) can be expressed as:

t
t¢

8Fa /0u = Bxp (/L (8f¢ /8Po)dT) [/

)8é¢/8uExp(—IT

tﬁ(aé¢/aﬁ¢)ds)dw]’

(3.2.9)

where the initial condition (3.2.9) has been satisfied.

For the given models (I) and (II), the material
parameter vector wu has three components. But it can be
clearly observed from the above formulation that (3.2.5) and
(3.2.8) may be specialized or generalized to the case in
which the constitutive relation of a material has n material
parameters, n = 1,2,..., when the problem in question is one
dimensional with r¢ and fo as the general creep and creep

rate. Of course
Afre /8u and e /0P

in (3.2.9) should be solved for the assigned material from

the equations which pertain to the given initial-boundary
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value problem.
For models (I), (II) and the initial-boundary value
problem pertaining to pressuremeter tests, by taking the

time derivative of (3.1.7), we have

N "
Fo = ro/ro - £t/rt

or

tt

ro/ro = fro + FE, (3.2.10)

which with (3.1.15) leads to an alternative form of the creep

equations:

(I) fo = [P - Po - M(2ﬁ0)1+m/(l +m)]/ (201 ) - B

(3.2.11)

(II) Po = [(1L + m)(P - Po ) (200 )™M~ 2uBe )/ (200) - 285/(2 + m).

Then from the above equations, we obtain the explicit expres-

sions:

(T)  BPo/0Ps = -1 (280) /0y - 284,

B /80 = —(280) /(201 + m)s ],
ifo /81 = ~[P -~ Po = M(2W¢)1+m/(l + m)]/2/0f
. ((" o+ f" '?) ) /{X 1 = -—_;’_'\:) /r{» /C( 1 r

1

56 /6m = P28y ML/ (1 + m) - Ln(2fe)]/[2(1 + m)«: ];

(3.2.12)
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(IT) fa/0Fe = [ —-(l4m)m(P - Pw)(2ﬁ¢)‘m—l - MW]/% ~ 4fve /(24m),
SPo /60 = —fo/uy
aé¢/8m1 = ~[(1 + m) (P - Po)(2ﬁ¢)_m - 2Mﬁ¢]/(2mﬁ)
B0 /bm = (P - Po)(28¢) 1 - (1+m)Ln(2f0)1/2/¢8 + 284/ (2+m)
(3.2.13)

For slow creep, it may be postulated that
In(2fe) % 0, for t & te. (3.2.14)
In most engineering problems, the creep rate in question
will indeed be slow. For instance, in the pressuremeter
tests performed on polycrystalline ice at the University of
Manitoba, the maximum creep rate f¢ was only about 0.001
1/min when the cavity pressure was 2 MPa. Another example is
finished by the creep data of McTigue and others (1985) who
performed triaxial tests on polycrystallice ice. The maximum
creep rate was about 0.0018 1/day when the confining
pressure was 50 MPa and the extra axial stress was .47 MPa.
In what follows, we shall suppose that (3.2.14) be valid.
Since the material parameters should be compatible with
the restrictions
1 +m>0, M &0, o« 0,
cf. (Sec.2.3), then for model (I), from (3.2.13), (3.2.14)
and d*re/dt* % 0 (as measured from the creep curves of the

data), we obtain

(‘)‘ﬁi-,'{) /8}’ « O v (S\rfi-)‘C) /80(1 :) O I 8[553'{) /Sm )? 0 ’ fOr t !» t<:) r (3 . 2 . 15)
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which yield

dfro /00 % 0, e/ & 0, dfe/dm & 0, for t & te, (3.2.16)

from (3.2.12) and from the positivity of the exponential
function. Using (3.2.16) and the fact that the cavity radius

re is positive, we conclude that

dro /oM % 0, dre/dy & 0, dre/dm & 0, for t & te (3.2.17)

from (3.2.5).

(3.2.16) and (3.2.17) assert as expected that the creep
ro and creep rate fv of the ice in the pressuremeter test
must decrease as the viscosity # of the ice increases.
Secondly, they show that the creep and creep rate must
increase with the increment of ®¢ and m. This second
conclusion is not obvious.

For further analysis, define

Since
. k4
0% BRo/fx1 § B(20a) /(1 4 m)/(201)  (3.2.19)
from (3,2,12): and P ~ Ps £ 0, and
1+m

BRo /fm = #2000 ) ™/ (200 ) /(1 + m) (3.2.20)
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from (3.2.18), then comparision of (3.2.12)x, (3.2.19) and

(3.2.20) yields

L (1/KM)8Be/m S 8B /8H £ 0, (3.2.21)

It can be shown by substitution of (3.2.21) into (3.2.9) that

| (8B0 /00)/ (BBa /001 )1 2 &1 /M,
| (880 /OM)/ (8B0 /Om) | £ 1/(Mk), (3.2.22)

F(OFe /70Xy /03Fe /dm) 1 % 1/(t1k), for t & to,
and hence from (3.2.5),

P(Oxa /OM)/ (Dxe /30y )1 & 1 /),
F(@xo/80)/ (Do /dm)l % 1/(Mk), (3.2.23)

P@xe /001 )/ (dxe /dm) !l % 1/(1k), for t & to.

The values of the ratios given in the right-hand side of
(3.2.22) and (3.2.23) are certainly dependent on the unit of
time, force and length as well as the maximum creep rate.
But the ratios can be estimated as long as M, %1 and m are
determined and the maximum fe is given. When

(0P /bug) /(B /oug) | > 1, (b /bug) /(Do Mug)t 2> 1

for i,j = 1,2,3, 1 # j, it can be claimed that the parameter

u must have a more important effect on the predicted creep
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and creep rate than the parameter uj does. A quantitative

illustration will be given in Sec. 3.4.
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Section 3.3 Evaluation of the material parameters M

and m by fitting data of secondary creep

The experimental data of pressuremeter tests on
polycrystalline ice that I hand in hand are provided by
Kjartanson(1986). They are given in terms of the cavity
radius re¢* versus time t pressure P = 1000, 1250, 1500,
1750, 2000, 2250, 2500 MPa in the single-stage tests and P =
1500, 1750, 2000, 2250, 2500 MPa in one multistage test with
each stage lasting one day. The ice temperature of all the
tests was kept at -2°0C.

First of all the experimental creep rate fo* is
calculated by taking the least squares fitting of zre*. For
this purpose, the cubic polynormial function f(t) = ce + cit
+ cet? + cyt? is used to fit the data re¢* group by group.
Each group contains 14 points. It is more or less a matter
of experience as far as the choice of the fitting function
and the number of points in each group are concerned. After
ce to ¢y are determined by fitting re*, the rate of the
radius, say g*, will be directly calculated from the
function g(t) = df/dt = c1 + 2czt + 3cit?. In order to
ensure the accuracy of g* in the fitting, the last two
points in each group of g* are deleted because their error
may be larger The first two points of the next group of f
are forced to be equal to the last two points of the former

group of f, which has 12 points after the deletion. The
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related least squares fitting formulae are shown in Appendix
A.l.

Two typical creep-rate curves of the pressuremeter
tests are plottd in Fig. 1; they pertain to tests #3 and #6.
Each curve, marked by the point C at which f¢* has the
minimum value, can be divided into two parts: the first
stands for the primary creep and the next for the secondary
creep. It can be seen from Fig. 1 that tertiary creep, for
which the creep curve of which should become warped up, has
not appeared yet in the two tests. Other single-stage tests
have creep curves similar to those of tests #3 and #6. For

simplicity, define

* %
B = min (Fo (t)) (3.3.1)
tz)tﬂ
for each test. The values of fe* obtained from fitting of

the experimental data are not smooth enough to be used for
finding B*. Hence, I have taken the average value of flo* at
several points after C as the approximate B*. The values of
B* from the different tests are listed in Table 1, in which
the second column is given by the author and those from the
multistage tests are given by Kjartanson(1986). Thus we
totally have 22 pairs of pressure p and the minimum creep
rate B¥*,

Let us return to (3.1.15). Since for each pressure we

can find a point C at and after which dffex/dt % 0, (Fo*)? <<
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e * then for a given pressure and in the secondarv cree
I Y ’

(3.2.11) are simplified as:

l+m/

(I, II) M (2B ) (L +m) - (P -DPs) =0, (3.3.2)

where B¢ denotes the predicted secondary creep rate, and we
have set dF«/dt = 0, (Pe)* & 0 Dbecause we have postulated
that the two models can describe secondary creep(Assum.
3.4). It should be noted that the secondary creep equation
(3.3.2) of models (I) and (II) is precisely the same as the
creep equation under the power-law fluid model which can
satisfactorily describe the secondary creep of ice. Thus for
pressuremeter test models (I) and (II) can at least describe
the secondary creep of ice under different cavity pressures.
This assertion will be corroborated in what follows.

Since the secondary creep equations (3.3.2) of models

(I) and (II) coincide exactly, we may merge them into

l/(l+m)/

Bo = [(1 + m)(P - Po)/i] 2. (3.3.3)

To evaluate # and m by fitting the data, I define the

objective function F¢ by

) = Be(J,m; P.)1*, (3.3.4)

where B* is given in Table 1 and Be will be calculated from

(3.3.3). we seek a pair of } and m such that the function Fe
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arrives at a relative minimum by employing the Levenberg-
Marquardt algorithm (Appendix A.2). 1In all numerical
analysis of this work, we will always set Po = 0,

The computer program named MUM for optimizing M and m
by non-linear regression 1is given at the back of this
dissertation. The detailed numerical results are listed in

Table A from which it can be seen that after optimization,

B o= 9114 Kpa.min'™ , m = -.7111. (3.3.5)

A comparison of B* and Be is shown in Fig. 2. Moreover
(3.3.3) can be represented as:

LnBe = [Ln((l1 + m)/M) + LnP]/(1 + m) - Ln2, (3.3.6)

which gives a linear relation between LnBs and LnP. Hence I
have also plotted (3.3.6) with (3.3.5) in Fig. 3 for the
comparison. In Figs. 2 and 3, a square "ll" stands for an
experimental data point; the solid 1line is from the
prediction. It may be seen from Fig. 2 that (3.3.3) can
really fit the data. I have also computed the standard
statistical errors SE, the 95% confidence intervals and the
95% Bonferroni joint confidence intervals of estimated 4 and
m, all of which are shown in Table A. Since the relative
standard statistical errors SE(M)/M = 1367/9114 » 15%,
SE(m)/m = 0.01194/.7111 % 1.7% are acceptable for

engineering problems, we shall take the estimated values in
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(3.3.5) as the values of material parameters / and m for the
given tested ice.
In the literature, the power law fluid model is usually

presented in the version (Hooke, 1981):
¢ o= (r/B)7, (3.3.7)

where the notations are the same as those in Sec. 1.1. A
simple analysis of (3.1.5), (3.1.7) or (3.1.8) shows that

for the pressuremeter test problem,

-1/2

§ = 6 (2].:‘<:>/r<:)), (3.3.8)

1/2“ 1+m

T o= (2/3) (2f¢ /xa) (3.3.9)

in the secondary creep period, which can be combined as

m/ZM /(l+m).

(3.3.10)

P o= rr/(2(6)™ 2yt

Then (3.3.10) is consistant with (3.3.7) if and only if
B = 2(6) M, n=1/(1 + m). (3.3.11)

Then it follows from (3.3.11) and the results shown in Table
A that n = 3.46, SE(n) = .143, the 95% confidence interval
of n is [3.19 , 3.79], the 95% Bonferroni joint confidence
interval is [3.15 , 3.85], which are consistent with other
estimated values of n for polycrystalline ice (Hooke,1981).
Since the temperature of the tested ice in the above
analysis is -2°C, which is near the melting point, the ice

is rather soft.
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It can be seen from Table A that the initial values of
# and m are assigned for iteration. Indeed, the optimized
values of # and m will drift a bit when different initial
values are used. But they will still fall within small
intervals. When the orders of magnitude of M and m are
unknown before analysis, it is recommended that (3.3.6) be
used to fit the data by linear regression, which does not
require the assignment of initial values. Then the optimized
values from linear regression can be taken as the initial
values for the non-linear regression using (3.3.3). Along
theses lines, from the same data of the pressuremeter tests,
I got
A= 9006 KPa.min®™, m = -.7132 (3.3.12)
by linear regresson. The nonlinear regression analysis in
which the values in (3.3.12) were used as the initial values

showed that

4§ = 8956 KPa.min' ™™, m = -.7128, (3.3.13)
which are very close to the values in (3.3.5).

At the end of this section, I would like to emphasize
that from the above discussion models (I) and (II) can
satisfactorily fit the secondary creep data of
polycrystalline ice under different cavity pressures in

pressuremeter tests.
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Section 3.4 Evaluation of the material parameter

by fitting data of primary creep

In this section, we shall evaluate the material
parameter ®&1 by fitting the primary creep data of the given

1+m and m = ~,7111

pressuremeter tests when M = 9114 KPa.min
are fixed.

As mentioned in Sec. 3.3, during secondary creep,
dffe /dt &% 0 and (Fe)* ® 0 so that d*re/dt* » 0 from (3.2.10).

It implies that the term containing %1 will not influence

secondary creep and will only play its role during primary

creep. The primary creep data may suffice for the
determination.
When the wvalues of M and m are fixed, the predicted

radius re¢ solved from (3.1.15) is a function of time t and
the parameter %1 for the given pressure P. Hence, we define

the objective function

(I,ITI) Fi(y;te,t - ro(Xi;t,)1%; (3.4.1)

N) i) i

here xro* is the measured cavity radius and rs the predicted
radius solved from (3.1.15), xre* - 1o is called the
residual; for i=0,1,2,...,N, where N is a positive integer,
ti are the instants at which measurements were made in the

test:, te and tN are the initial and terminative time of the
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fitting period. We shall seek a value of %1 such that the
function Fi arrives at a minimum by wusing the Levenberg-
Marquardt alogrithm (Appendix A.2). Before doing it, we
have to calculate ro (%1 ,t).

I took te ® 10 min as the initial time for all the
tests, although the data of each test were recorded from
about 1 min. The reason is that at the beginning of each
test deformation in both the rubber membrane of the
pressuremeter and the tested ice would be mainly elastic,
but what concerned us here is only the creep behaviour of
the ice. Considering the fact that the creep rate of the ice
specimen would decrease quickly from its initial wvalue and
the ice specimen would be in secondary creep after about 500
min for the given pressures, I set a value of N such that tN
A 200 min. To examine whether my choice was feasible, I used
several tN which varied from 100 to 300 min, as the
terminative time to fit the data of several tests. It was
found (cf.Table 2) that the longer tN was, the larger the
value of 1 became, but the variation of %1 was small. The
assigned values of ty used in further analysis are shown in
Table 3.

For a given pressure and a roughly assigned value of
®1, we can obtain a numerical solution re (&1,t) of (3.1.15)
by using the Runge-Kutta integration algorithm (see Appendix

A.3). In my work I chose the integration step lengths h =

0.013, 3 = 1,2,...,300 to save the CPU time occupying the
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computer since my final aim was to evaluate %1 by iteration
in which (3.1.15) would be numerically solved repeatedly.
For the chosen integration step lengths, the time nodes of
the predicted solution «re¢(%1,t) were given in a sequence

{tj} where
tj = to + 0.013(J + 1)/2. 3 =1,2,...,. (3.4.2)

Then at t: % 10.01 min, tise ® 123 min and t&se % 343 min,
the integration step lengths are 0.01, 1.5 and 2.5 min,
respectively, which are much smaller than the recorded time
step lengths: 2, 10 and 10 min respectively in all the
tests. Thus integration accuracy could be satisfied by the
chosen h. Since the time nodes of r« (X1,t) usually would not
coincide with those of the experimental data, the Lagrange
interpolation algorithm with variable distance were employed
to get r¢(m1,ti) in (3.4.1).

There remained the problem how to choose the initial
value of 1 to start the iteration and whether different
choices of the initial &1 would converge to the same value.
Several initail values of 1 were tried. It was found that
for both models (I) and (II) initial wvalues of ©®: which
ranged over three orders of magnitude converged to
effectively almost the same final value after iteration; cf.
Table 4. Therefore, one is permitted to choose the initial

value of 1 rather roughly.
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Eventually for each test, I took &1 = 10% KPa.min? for
model (I) and %1 = 10°¢ kpa.min’ ™  for model (II) as the
initial wvalue of ®1, te % 10 min, tN % 200 min as the
initial and terminated time, and fixed M = 9114 KPa.minl+m,
m = =.7111 to estimate X1 of the two models by fitting the
primary creep data of all the tests. The results are listed
in Tables 5 and 6, where "objfun" is the value of the
objective function defined by (3.4.1), and SE(%:1) is the
standard statistical error; the relative error in column 7

between the measured and the predicted cavity radius ©ro*

and re¢ is defined by
Error = [re*(t) - xro(t)]/[re*(t) - re¥(te)], (3.4.3)

where re*(te) is the initial radius. A comparison of re* and
re 1is exhibited in Figs. 4 to 10 for model (I), where in
each figure the symbol "ll" stands for a data point, and the
solid line denotes the predicted curve. Since the predicted
radii of models (I) and (II) are very close to each other, I
have omitted plotting the predicted curve r¢ of model (II).
Based on the numerical analysis, I should like to add
the following remarks:
(a) For the two models and for all the tests, the maximum
relative error of the measured and predicted radii in long-
term creep is about %20%, which 1is wusually acceptable in

civil engineering. Indeed the long-term relative error of
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each test is only about or less than #10% except for test
#5.

(b) From Figs. 4 to 10, all the predicted radii fit very
well the test data of primary creep.

(¢) The scatter of the optimized %: as determined from the
data of each test is small. Especially for model (II), the
variation of the value of %1 determined from all the tests
is very small.

(d) For the tested polycrystalline ice with temperature at

~-2°C, the value of 1 may be taken as:

(I) Xy = 2.562%10% KPa.min?, (3.4.4)
(IT) X1 = 1.255%10% KpPa.min' ™, (3.4.5)
which are the average of the evaluated from the given
tests.

It can be concluded from the above observations that
both model (I) and model (II) can adequately describe not
only the secondary creep (cf. Sec. 3.3) but also the primary
creep of polycrystalline ice.

Finally, I want to quantitatively compare the effect of
the material parameters on the predicted creep and creep
rate. By fitting the measured radius re*, I get the
approximate maximum creep rate o = .00089 1/min, which is
estimated from test #2 with cavity pressure p = 2500 KPa.

Then from (3.2.18) and m = -.7111,
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k = 9.8. (3.4.6)

. _ N -

Now for model (I), with k = 9.8, 4 = 9114 KPa.min , W=
2.562%10% KPa.min? and m = -.7111 on hand, I find that for

the ratios in (3.2.22) and (3.2.23),

%y /M = 2.8%107 mint ™,

n ._l+m
Mk % 10235 KPa.min® ™, (3.4.7)
ik & .25%10!1? KPa.mint?,

which with (3.2.22) and (3.2.23) show that for the given
units, the importance of the effect of the material
parameters on the predicted creep and creep rate of the ice
in the pressuremeter problem is in the order of m, * and i
for model (I). We can arrive at the same conclusion for
model (II).

The complete program named ALPHAl to optimize ®1 for
model (I) when » and m are fixed is given at the end of the
dissertation; the subroutine %ZXSSQ in the program is the
finite difference analogue of the Levenberg-Marquardt method
issued by IMSL. The program for model (II) is similar and is

thence omitted.
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Section 3.5 Discussion

It is well known from the literature (Hooke,1981) that
the power-law fluid model can adequately represent the
secondary creep of polycrystalline ice. For instance,
velocity profile in shearing flows as predicted from this
model is <close to that measured from glaciers which
undergoes shearing flows (Sec. 5.1). But the power-law fluid
model has at least two shortcomings. A glance at (3.3.3),
the creep equation which pertains to the power-law fluid
model for pressuremeter tests, reveals that the predicted
creep rate should remain constant with time under a
constant cavity pressure. However, taking a look at the
measured creep rates (Fig. 1), we observe that for a single-
stage creep test with a constant cavity pressure the creep
rate 1in fact decreases with time during primary creep.
Consequently, the power-law fluid model cannot describe the
primary creep of polycrystalline ice. And hence we cannot
evaluate the material parameters of the model by fitting
short-term data. The power-law fluid model also fails to
exhibit normal stress effects in shearing flows(Sec. 5.1)
and (McTigue and others, 1985).

Noticing the defects of the power-law fluid model,
McTigue and others(1985) suggested to use the second-order
fluid model(1l.1.4) as the constitutive relation for

polycrystalline ice undergoing creep when they initiated the
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study of the possible significance of normal stress effects
on the shearing flows of glaciers. By settingm = 0 in

(3.1.15), we have the creep equation:

Kyxre/ro + HEe/re - (P - Po)/2 =0

or

Ki[Bo + BE) + Ao - (P - Po)/2 = 0, (3.5.1)

which is exactly the equation that pertains to the second
order fliud model. It can be seen from (3.5.1) that the
creep rate is no longer constant wunder a fixed pressure
since the term containing the derivative of creep rate
appears in the creep equation. In other words, the model may
fit the primary creep. The second-order fluid model can
certainly exhibit normal stress effects in shearing flows
(Truesdell and Noll, 1965). Now, suppose the model can also

fit the secondary creep. Then (3.4.8) is reduced to
Mo (t) = (P = Po)/2 = 0 (3.5.2)

in the secondary creep in which dfe/dt = 0. (3.5.2) asserts
that the relation between the creep rate and pressure is
linear. However the experimental data definitly deny this
relation (see Fig. 2). Thus the second-order fluid model
fails to represent the secondary creep when the cavity

pressure has different constant values. In addition, there
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is an obvious discrepancy between the velocity profile
predicted by the model and that measured from the shearing
flows of glaciers (Sec. 5.1).

It is interesting from the above discussion that the
merits of the second order fluid model seem to remedy the
defects of the power law fluid model, and vice versa. Just
for this reason, Man (1984) proposed the two special Rivlin-
Ericksen fluid models (1.2.1) and (1.2.2) as tentative
contitutive relations for polycrystalline ice undergoing
primary and secondary creep; these two models have the same
velocity profile as the power-law fluid model in steady
shearing flows and show normal stress effects in such flows.

But when fluids (I) and (II) finish primary creep, they
will always stay at secondary creep and never enter
tertiary creep which indeed takes place in a complete creep
process of a real material. Of course, it is hard to give a
three-dimensional constitutive relation which can completely
cover the three stages of creep.

The rest of this section will be focused on the
comparison of models (I) and (II). Although the two models
are cut from the same cloth, they will not have exactly the
same performance in all events.

Recalling (3.1.15), one may feel inclined to choose
model (I) since the creep equation of it is neater than that
of model (II). But the creep equations of both models (I)

and (II) are non-linear so that they have to be solved
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numerically. With the computer as a tool, the fact that
model (I) has a simpler creep equation 1is no longer
significant. It remains to be seen which model will give the
better fit to the experimental data.

Looking back at Tables 5 and 6, we observe that the
scatter in the optimized values of the material parameter
of model (II) is much smaller than that of model (I). Thus,
model (II) seems to be more attractive than model (I) does.
Secondly, Tables 5 and 6 show that the wvalues of the

objective function of model (II) is less than that of model

(I) for every test. The reason, according to my numerically
analysis, is that the predicted creep rate of model (II)
arrives at a constant later and 1is closer to the

experimental data than model (I) does. Consequently, model
(IT) can give a better fitting to the primary creep data. As
for the secondary creep, the two models have the same
performance.

When evaluating the material parameters by only fitting
the primary creep data of polycrystalline ice, it is

expected that model (II) will be more acceptable.
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Table 1
The minimum creep rate Bg* of the pressuremeter tests.
Pressure 8 10" 1/min
P(KPA) (#10) (#12) (#13)
1000 .03692 ——eem o
1250 .07110  ——eem oo L
1500 .1052 .1340 . 1050 1200
1750 .2127 .2040 1800 2100
2000 .3147 .3420 3100 34590
2000 L3171 e o L
2250 .4582 .5400 5450 5400
2500 .8125 .8400  ——==- 7800
Table 2
Optimize r, when A = 9114 KPa.min'*™ and m = -.7111 are fixed by

fitting the primary creep data of pressuremeter tests

for several fitted time intervals.

Model I Model 11
Test  tO(min) t,y(min) o %1078 10"’
#3 10 111 1.497 .8772
#3 10 170 1.594 .9187
#3 10 240 1.650 9495
#3 10 315 1.658 9393
#6 8 100 1.197 1.040
#6 8 160 1.384 1.154
#6 8 220 1.447 1.199
#6 8 250 1.505 1.207
#10 7 85 2.930 1.322
#10 7 135 3.141 1.431
#10 7 220 3.461 1.553
#10 7 280 3.759 1.693
where the initial o *10°=10. KPa.min? (1)

o6 *10°=10. KPa.min2™" (11)
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Determination of mu and m from thae S8CONdary Creep rates by nonlinear regression

Notaton

L3t cavity pressure; b---rate of secondary creep. bbL---predicted values of b;
residual---bli)-bbl1); Obytun---sum of squared residuals;
ert1s100.s{pii)-pblil)/Oli}; .r?'!OOA'(ln(b(i))‘Lﬂ(bD(‘ll)/('Lnlbll))),
Units:

P in KPfa, D and BL 1N 1./MmIin, MU TN KPa . minss () *em); m is a rea’l number

mu m. Oojytun: 1n iteration
9499 98409 - T09989740 -302099817E-09
9506 72266 -, 708898740 .St8631182E-09
9498 93609 - 709496798 .3%0131261E-09
9113 26328 S T11110284 .2285S889S50E-08
#120.31250 ©+.71111008% 224596730k -0§
107 40825 s.Tr1109817 -227070113E-08%
9113 88937 - 710606158 -258575827E-09
$113. 88847 S.TV11812999 .2300089012-09
Least square estimates: mus 9113 . 88156 me 0. 7111 ¢ Objfun:  22588E-08 Convergence critersons 2
XJAC, @ractient of resi1duals w.r . t. mu and m at the least square estimates. Resrcduals:
©.123234E-08 0 172717E-03 ©.43428F-08
©.287000E-08 ~0.38S17T7E-01 ©.10130¢-06
©.501818E-08 ~0.638838¢E-023 *0.28%81E-08
©.8501818E-08 ~0.838836E-013 “O.28781E-0%
0.SO1813E-08 ~0.638836E-01 ~O.11761E-08
©.S01818E-08 ~0.638836¢k-02 0.22387E-06%
O.354896E -0 ~0.1047TT4E-02 “0.44659E-05
O.85488%8E-08 ~0. 104TT4E-02 “0.208659E-05
O.854888E-08 “0.104774€-02 ~0.14889E-08
©.854896E-08 ~C.1047T74E-02 "0 19S584E-0F%
0 135807€-07 0. 160643E-02 “0. 48883208
©.135807E-07 0. 160643E-02 0. 419%69E-08%
©.135807€E-07 *0 160643£-02 ~0.39S598E-05%
©.135807E-07 “0. 160643E-02 “0.14669F-05
©.135807€-07 -0 160843E-02 *O.11ES89E-0S
©.204009E-07 “0 233822E-02 “0.7800S8E-05
©.20400%E-07 ~0.233922¢8-02 ©.37942E-0¢
©.208009E-07 -¢.233922E-02 ©.37948E-06
©.204008E-07 ~0.233922E-02 O .87847E-08
©.291968E-07 “0 327109E-02 ©.78129€E-0¢%
©.293964E-07 ~0.327109E-02 ©.403t3E-08%
©.2938CB4E-07 ~0.32710%E-02 ©.87813¢-08%
Matrix XJACTs XJAC Inversc of XJACTsxaacy
O . SS8V1TIE- 14 *0.8$38287E-09 C.185599E+12 O 14464A8E¢+ 1]
-0 §332%57&-09 ©.730704E- 04 C.144880¢8+1] O0.128434Ek¢02
SE{muly 1368 . 898 SE(m): ©.01194843
98% configence interval of mu:- | §282.% , 11984 .8) $5% confidence i1nterval of m: |- 71803 . -.68619],
95°% Bonferrori joint confidencs interval of mu: { s802.2 , 1242%.%}, of m: [-.7400%,- 68217)
P b: bb: orth: tn{r) - Lnib): inipb): or2%:
0. 31000E+04 ©0.3682E-08 ©.3238E-0% ©.1210E+02 O .8908L2+¢0) “.1251E+02 -.1284€+02 ©.1049E+01
C.1250E+04 C.T7T1t1tE-0S ©.T7010E-08 0. 1421F4+01 ©.7T13t1€+01 *.1183E+02 = tra1Ee02 ©.1207€+00
O .1500E+04 0.1082E-04 O.1318E-04 -.252%¢+02 ©.7313E+01 *-1148E+02 © . 1124€+02 -.1884E+0
0. 1500E+04 ©.1080E-04 ©.1318E-04 " .2849E4+02 0.7X13E+01 . 1148E+02 “.1124£+02 *.1981E+01
0. 1500E+04 ©.1200E-04 0.1318¢E-0¢ . 30SE+0 ©.7313E+0) * . YT1J3Es02 - . 11248402 -.825%¢2+0¢C
0.1500E+04 0. 1340E-04 ©C.1318E-04 C.1687E+01 ©.7313F+01 ©.11228+02 ~.1124€%02 ©.1498E+00
0. 17%0E+04 C.1800E~-04 ©.2247E-04 - . 2882E+02 C.T7487¢+0 c.1093E+02 - . 1070E+02 ©.2029¢8+0
O .1780E+04 ©O.2040E-04 ©.2247E-04 *.1013E+02 O TAE7E+O1 ©.10808+02 =.1070L+02 - .8836&+00
O.17%50E+04 ©.2100E-04 C.2247E-04 ~.8988E+01 O.7487E+01 - . 1077E+02 * . 1070€+02 ~.82688+00
0. 17S0E+04 ©.2227E-04 0.2247¢-04 - .883T7E+00 O.T46T7E+0 c. 10718402 ~.1070E+02 ~.82138-01
©.2000E+04 ©.3100E-04 0.3567¢-04 - . 1506E+02 ©.7601E+01 =.1038E+02 ~ 10248402 c . 13S5t1E+0
©.2000E8+04 0.3ta7E-04 0.3587E-04 *.1334E+02 O.7801E+01 -.10378¢02 ~.1024€¢02 *.1208E+01
©.2000E+04 ©.3171E-04 ©.3SETE-04 -.12848¢E+02 ©.7801E+01 “.1038£¢02 - .1024E4+02 - 1138E+0)
©.2000E+04 ©.3420E-04 ©.38CTE-0O8 ~.84293F+0 C.7801E+0} “.1028K+02 -.1024¢402 ~. 4088200
©.2000E+04 ©.34S0E-04 0.388TE-04 ~.3388k+01 ©C.7801E¢01% -. 10278402 ~.1024£402 “.3241E+00
©.22%50E+04 O.48828-04 0.5362E-08 <. 1703E+02 0.7719E+01 c.8991€¢01 =.98J4KE+01 - . 1874¢+0}
©.22508+04 0.S5400E-04 ©.5%3862E-04 ©.6991E+00 ©.7719E+01 ~.8827E+01 - . 28348401 ©.T7142E-01
©.2250E+04 O.SAOOE-04 0.5362¢£-04 O.8981E+00 0.7718E«01 *.9B827E+01? - .9834E4+01 0.7142€-01
©0.22850E+04 O.S4S0E-04 0.8382E-04 ©.1610E+0 O.T7T19E+01 *.981TE~O1 ~.9834€+0 ©.1684L+00
0.2%500£+04 0.7800E-04 ©.7722€-04 ©.99881E+«00 C.7824¢+0 -.9459E+0 - .SAB3E+01 ©.10681E+00
0 .2500E+04 0.81285€E-04 0.7722E-04 O.48SEE+O1 ©.7824€+01 ~.94188+01 - .9489E+01 ©.%400E+00
©.2500E+04 C.BAOOE-0O4 ©.7722€-04 ©.8070E¢0Q1 O.7824E+01 - .938SE+0O1 *.94E3E+0 ©.8988E+00
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Cavity pressure p, fitted time interval [t0 , t, ] and
number of points for fitting.

Test P(KPa) [t0 ,ty](min) N
#2 2500 [5 , 240] 25
#3 2000 [10 , 240] 30
#4 2000 (8 , 180] 30
#5 1500 [8 , 260] 17
#6 2250 (8 , 220] 30
#7 1750 [8 , 200] 25
#10 1500 [7 , 220] 50

*~--The first stage pressure of multistage test #10.

Table 4 L
Optimize «, when M = 9114 KPa.min and m = -.7111 are fixed by

fitting the data of primary creep of pressuremeter tests for several

initial values of ¢ .

Test initial after iteration
(1) o 1073 ot x1078 o6 *10°
(11) o *x10°% Model 1I Model I1I
#3 .1000 1.655 .9425
#3 1.000 1.651 .9403
#3 10.00 1.650 .9495
#3 100.0 1.337 .9079
#6 .1000 1.455 1.197
#6 1.000 1.464 1.198
#6 10.00 1.447 1.199

#6 100.0 1.340 1.068



Optimize

95%confzdence8
interval =10~

Test P({KPa)

optimized
ox 10”7

L7223

.650
.491
.951
.447
211
.461

.0254
.0415
.0295
.4981
L0173
. 1658
L1113

(.6693 ,
(1.565 ,
[1.431 ,
(4.895 ,
(1.412 ,
[3.045 ,
(3.238 ,

.7754]
1.735]
1.552]
7.007]
1.483)
3.376])
3.685]

+10.7 2175
+.,266 5095

-19.4 6360
-10.2 2395
-9.21 1700

42 2500
43 2000
#4 2000
5 1500
#6 2250
$7 1750
$10 1500
Average

Table 6

o« x10 -2 562 (KPa.mim?

+Mm
2tm,

95%confidence

Test P(KPa)

SE(o )x10™°

interval »10°%

(.7533 , .9225]
[.9320 , .9670)
[.9204 , .9646]
(1.600 , 1.932]
(1.170 , 1.222]
[1.636 , 1.736]
(1,518 , 1.587]

Error% at t
(min)

+10.7 2175
+.332 5095

-1.95 4530
-19.5 6360
-10.2 2395
-10.5 1700

+8.35 5810

%2 2500
#3 2000
%4 2000
#5 1500
#6 2250
%7 1750
#10 1500
Average

Model (I1)
D".*10.5=10.(Kpa.min
opt1mlz§d objfun
oG 10 x103
.8379 7.78 .0404
.9495 .568 .0086
.9425 .646 .0108
1.766 .485 .0782
1.199 2.58 .0110
1.686 2.07 .0501
1.553 . 395 0171
t1ds-1 255(KkPa.mim?'™ )

78



(mm)

Cavity radius

(mm)

Cacity radius

F-S
~

N
(o]

F
wn

F-N
o

45

Test #2

P=2500 (KpPa)

time (min)

0 1000 2000 3000

Fig. 4

Test #3

P=2000 (KPa)

time (min)

0 1000 2000 3000 4000 5000 6000

Fig. 5

Comparison of experimental & predicted creep by model (I)
for pressuremeter tests #2 & #3

85



86

Test #6
45 P=2000 (KPa) ////4;?
i
e

44
e
E
w 43
2
3
©
42
>
S
S a4

40

39

38 ' ' ' ' time (miéz

0 1000 2000 3000 4000 S000
Fig. 6
Test #5

- P=1500 (KPa) &¢¢¢’;¢¢f
0
a
e
<
3
>
=
>
L]
(&)

38 time (min)

0 1000 2000 3000 .4000 5000 6000 7000

Fig. 7

Comparison of experimental & predicted creep by model (I)
for pressuremeter tests #4 & #5



(mm)
w

F=N
~N

y rgdius

=~
o

Cavit

39

38

Test #6 R 87
e
S

P=2250 (KPa) o
#

time (min)

39.
39.
39.
€ 39.
E3g,

>38.
7 38B.
S38.
38.
38.
38.
3g.
38.
38.

QO — N W s U0 I3 WO = N Was U

1000 2000 3000

Fig. 8

Test #7

P=1750 (KPa) Jo®

time (min)

200 400 600 800 1000 1200 1400 1600 1800

Fig. 9



Cavity radius (mm)

&
ut

o
H

S
W

~
N

-3
-

40

38

384

Test #10
P=1500,1750,2000,2250,2500 (KPa)

time (min)

0 1000 2000 3000 4000 5000

Fig. 10

Comparison of experimental & predicted creep by model (I)
for multistage-pressure test #10

6000

88



89

Chapter 4 Evaluation of material parameters by fitting

data of triaxial tests

Section 4.1 Initial value problem pertaining

to triaxial tests

It has been shown in Chapter 3 that the predicted creep
from models (I) and (II) can fit very well the primary and
secondary creep of polycrystalline ice in the pressuremeter
tests. To examine the reliability of the two models as the
constitutive relations of ice undergoing creep, we shall use
them to fit the creep data from several triaxial tests of
polycrystalline ice. It could be asserted that a good model
which may be reliably used as a constitutive relation of a
material should at least fit the experimental data of
different tests for the material.

To reveal the possible significance of normal stress
effects on the shear flow of glaciers, McTigue and others
(1985) used the second order fluid model as the constitutive
relation for polycrystalline ice. They evaluated the
material parameters in the second order fluid model by
fitting their experimental data of triaxial tests on ice.
Their work was criticized by Man and Sun (1986), who used
the same data of McTigue and others (1985) and adopted the
assumptions 4.1 to 4.4 given by McTigue and others (1985)

for the purpose of comparing models (I) and (II) with
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theirs. In this Chapter I will supply the details about the
data-fitting, which was only briefly described in the paper
of Man and Sun (1986).

For each specimen of polycrystalline ice with the shape
of a finite circular cylinder, McTigue and others(1985)
introduced the assumptions:

4.1 The specimen is a homogeneous isotropic and
incompressible continuum.

4.2 Its temperature 1is uniform and remains constant with
time.

4.3 Body force and inertia force are negligible in the
analysis.

4.4 The specimen undergoes a homogeneous deformation under
the given surface traction during the entire test period.

Then as shown by McTigue and others, the deformation

gradient, the first and second Rivlin-Ericksen tensors are:

[F] = diag[«, tx‘l/2, cX“l/Z], (4.1.1)
a1} = diag[ -2a, a, a]l, (4.1.2)
[Ax ] = diag[ -2da/dt + 4a*, da/dt + a*, da/dt + a*], (4.1.3)

where F satisfies the condition of incompressibility detF =
1, o # 4(t)/L is the ratio of the current length % (t) at
time t and the original length L of the specimen, a # -

dix/dt/% is the creep rate. I have put a negative sign in the
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definition of the creep rate a, since d&/dt % 0 in
compression tests and the quantity a™ will appear 1in what
follows. Indeed, (1.2.4) and (4.1.2) gives us:

n o= 3m/2m (4.1.4)
By substituting (4.1.2), (4.1.3) and (4.1.4) into (1.2.1)
and (1.2.2), we obtain for models (I) and (II),
respectively, the extra stress:

m/2al+m

(I)y [T + pI] = diag[ -2M3 + 201 (-4 + 2a*) + 4uzat,

+
J3m/2al m

) + W1 (& + at) + Wpa*,

i3m/2al+m

) + K1 (a + a*) + tza*], (4.1.5)

(1T) [T + pI] = 3™ 2a%diag[ -20a + 20 (-4 + a’) + 4Xza?,
Ha + (& + at) + Upa*,

ha + 1 (& + at) + Kgat]. (4.1.6)

McTigue and others(1985) pointed out that the extra stresses

could be decomposed as follows:

[T + pI] = diag[¢ + pe, pe, pol, (4.1.7)

where pe is the confining pressure, and ¢ is the axial
stress 1in excess of the confining pressure. For simplicity
we call ¢ the extra axial stress 1in what follows. A

comparison of (4.1.5), (4.1.6) and (4.1.7) leads to

m/2al+m

(1) U + po = 243 + 201 (-4 + 2at) + 4lpat
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po = #3721 gy a4+ ar) 4 oopat,  (4.1.8)
(1T) 0 + po = 3™ 2T _2ma + 201 ( -4 + 2a%) + 40za? ]
. _ /2 _m . 2 2
pe = 3 a [Ma + K1 (a + a*t) + Kga*] (4.1.9)

Hence by eliminating ps in (4.1.8) and (4.1.9), the creep
equations of models (I) and (II) for the triaxial tests of
ice should be

(I) K14 + 3m/2“al+m - (X1 + Xzya* + ¢/3 = 0,

(I1) X14 + Ma - (X1 + Kz )ar + ga /312
with the given a(te) as the initial condition.

It is well known that the power-law fluid model can
adequately represent the secondary creep of ice in triaxial

tests through the creep equation

1+m/2

Ltm = 0. (4.1.11)

Ma + ¢/3
In secondary creep, since ice undergoes steady flow, i.e.
da/dt % 0, models (I) and (II) will in effect lead to the
same predictions as power-law fluid model if and only if

(I) [ + e lat << 3m/2Mal+m

14

(4.1.12)
(IT) X1 + oz lat << Ma.

In other words, the term (&1 + &z)a* in (4.1.10) should be
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negligible. When substituting the first Rivlin-Ericksen

tensor A1 expressed by (4.1.2) into (2.3.34), we precisely

have
(1) Xy + oz la? & 3m/2ual+m,

(4.1.13)
(1) Py + X tat % Ma,

which show that the condition (4.1.12) does not violate the
thermodynamic restrictions.

On the other hand, the extra axial stress ¢ of the four
tests of McTigue and others is the same, so one could not
get enough information from the experiments which actually
provided just one curve, to determine the four material
parameters.

Therefore, we shall neglect the term (%1 + Wz)a* by

setting
(I,II) (X1 + Wg)at =0 (4.1.14)

in the following numerical analysis.

Since the experimental data are given in terms of «,

for the purpose of fitting we rewrite the creep equation

(4.1.10) as:

m/2 1+m

(1) ul[&/a - (&/m)i] - 3 Mo _d/u) -0/3 =0,



94

(4.1.15)

(IT) (Xl[(;(l/fx - (O.(/(X)'JZ] - My __[;.(/[;() - O __(;(/[X)—m/31+m/2 = 0

with the given & (te), d¥(te)/dt as the initial conditions.
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Section 4.2 Evaluation of material parameters

The temperature, the confining pressure, the extra
axial stress and the test period of the ice specimens in the
four triaxial tests of McTigue and others (1985) are listed
in Table 7. Their creep data with ¢ versus time t, denoted
by "Wl are shown in Figs. 11 to 14, where & # [&(t) - L]/L
is the strain of the specimen. It can be seen from Table 7
that all the tests were made at the same extra axial stress
¢ = -470 KPa, at almost the same temperature from -9.5%C to

-9.8%C but with different confining pressures. If ice 1is
indeed an incompressible material as assumed, the creep
curves in triaxial tests should be independent of the
confining pressure. However the four curves of McTigue and
others, for which ¢ is fixed, are not coincident at all (see
Figs. 11 to 14 or McTigue and others (1985)). Since the
temperature of the four tests are almost the same, the
incoincidence of the four curves may be caused by
compressibility, inhomogeneity, anisotropy and defects of
the ice specimen as well as the inhomogeneity of the
deformation. There is also the possibility that the
confining pressure affects the initial reponse of the
specimens. When the four curves of McTigue and others (1985)
are plotted together in one figure, we find that they are
essentially parallel and discrepancies among them are small

if they are moved to the same initail point. Thus we
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conclude that the apparent differences in creep behaviour of
the four specimens are in fact differences in initial
response. Since models (I) and (II) are only meant for
describing the creep of ice, we can take Assums. 4.1 to 4.4
as approximately wvalid.

In Chapter 3, the parameters M and m of models (I) and
(IT) are evaluated by fitting the secondary creep rate of
several pressuremeter tests with different cavity pressures,
and then the wvalue of the parameter ®: is determined by
fitting the primary creep of the tests when the values of M
and m are fixed. By means of this treatment, a set of values
of 4, %1 and m were obtained which gave good fits to all the
tests. However, we cannot evaluate the parameters M, ®1 and
m by fitting the data of the four triaxial tests in the same
way since all the triaxial tests of McTigue and others
(1985) have the same extra stress ¢ which determines the
creep or creep rate according to (4.1.10) and (4.1.15). To
deal with this problem, we define the objective function
(I, IT)  Fe(M,%1,m) =& [tx*(ti) - (A, m)]Ey (4.2.1)

i=0

here &* = 1 + ¢ is the given data; & is the predicted
solution of (4.1.15) by the use of the fifth-order Runge-
Kutta-Nystrom method with the integral step length h = 0.05
day; tis = 17 day is taken as the terminal time of the fit

because the creep of the ice specimens entered the tertiary



97

stage around that time. we seek a set of M, 1 and m such
that the function Fi: assumes a relative minimum by using the
Levenberg-Marquardt algorithm. At the beginning of the
fitting, we met the problem of over-parametrization: there
are many sets of the values of }, X1 and m ( = -.671 to -
.70) which can give "good" fits to the data of the tests.
See Table 8, where "objfun" is the value of the objective

function F: defined by (4.2.1), and "error" is defined by

error = [K*(t) - ﬁ(t)]/m*(t¢). (4.2.2)

An effective way to overcome the over-parametrization
is to fix one parameter before fitting. Laboratory
measurements on polycrystalline ice generally support values
of n in the power-law fluid model (1.1.2) in the vicinity of
3 when the octahedral stress © is Dbetween 0.1 to 1 MPa
(Hooke, 1981). It 1is also found out from experiments that
the value of n seems to be independent of temperature, while
the viscosity B is temperature dependent. For the given

triaxial tests, the octahedrel stress

1/2,-1

o= =2 3 70 = 0.22 MPa.

In addition, as is evident from Table 9, when the exponent m
of models (I) and (II) ranges from -.65 to -.71, the

variation of the optimized 4 and &1 are small (recall that m
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= 1/n - 1 from (1.2.8)). Consequently we fix m = -2/3 or n =
3 and evaluate } and %1 by fitting the data.

Although having m = -2/3 in hand, we still need an
initial guess of M and 1 before iteration in the
optimization procedure can be started. we shall at first
explore a rough value of M, which may be used as the initial
M for iteration, through the secondary creep equation for

the triaxial test:

o= _3—(1+m/2)5a—(1+m) (4.2.3)

which follows from (4.1.10) when we set da/dt = 0 and (X1 +
%2 )a* = 0. For this purpose, we measured the slope of the
creep curve for each test to obtain the approximate
secondary creep rate a*, which was found to be .00073,
-00073, .001 and .00067 1/day at the 15th day so that the

corresponding rough value of M was 2510, 2510, 2260 and 2583

1/3

KPa.d for tests #1, 2, 3 and 4, respectively. Next, from

the creep curve of each test again, we estimated &, d«/dt/«
and d*&/dt*! at day 2. While these estimates are admittedly
very crude, they will be good enough for the present

purpose. Then by using (4.1.15) with m = -2/3 and M = 2466

1/3

KPa.d which is the average of the rough values from the

four tests, we obtained the crude values of X1 as shown in

5

Table 10. The average %1 = 2.%10° KPa.d! for model (I) and

4/3

X1 = 4000 KPa.d for model (II) were used as the initial
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values for the optimization iteration.

After this preparation, we optimized the parameters M
and &1 by fitting the data of all the triaxial tests when m
= -2/3 was fixed. The numerical results are shown in Table
11, from which one can see that the scatter of the optimized
values of J and &1 for both models (I) and (II) are small
and the fits are excellent because the relative error
defined by (4.1.2) is under *.029% at day 17 and is under
2.33% even at the end of each test. In what follows, we

shall take the averages

1/3

(I) M = 2414 KPa.d™ ' 7, 1 = 1.617%10¥% KPa.d?,

(4.2.4)
(IT) & = 2434 kpa.d™’3,  « = 3003 ®pa.d?’3,

(4.2.5)
and take m = -2/3 as the values of the material parameters.

To make the comparison transparent, the experimental and
predicted strain rates of model (I) for all four tests are
plotted in Figs. 11 to 14, respectively. In the figures each
square "lI'" denotes an experimental data-point, and the solid
line 1is the predicted curve. The predicted curves of model
(II1) are omitted since they are almost the same as those of
model (I). It could also be seen from the figures that the
predicted curve for each test fits the data very well both

for the primary and for the secondary stage of creep. The
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error after day 20 begins to increase since the ice
specimens arrived at tertiary creep at about that time,
whereas models (I) and (II) can only describe primary and
secondary creep.

To examine the effect of the initial guess of M and 1
on the optimization iteration, we also evaluated M and %1 by
using several sets of initial M and ®%: for the iteration. It
is found from the computation that all these initial wvalues
converged tc effectively the same final ¥ and 1 as the

1/3

initial values M = 2466 XPa.d 1 = 2.w10% KPa.d?! for

model (I), and %1 = 4000 KPa.d4/3

for model (II); cf. Table
12. It can be claimed, therefore, that models (I) and (II)
are acceptable and the present computation algorithm is
effective in fitting the primary and secondary creep data of
the triaxial tests.

Before turning to the next section, we would 1like to
discuss the effect of the material parameters on the
predicted creep and creep rate of the ice in triaxial tests.
For convenience, let u = (ur, u:, ur) denote (M, ®1, m). As
in Sec. 3.2, it can be shown by a similar analysis that in

the triaxial test problem, for t # to,

t da N

t = Exp( -/, a ds)dr], (4.2.6)

QN /da = - Exp(ftéadf)[ftﬁ 3

ba/du = Exp(/_ da/badr)[/y (54/8u)Exp( -IL ba/bads)dr .

(4.2.7)
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Let us concentrate on model (I), as for model (II) the
analysis and conclusion will be similar. From (4.1.10) and
(4.1.14), we have

/2Mal+m

a=(-v/3 - 3" ) /1, (4.2.8)

from which

dad/da = - 3m/2“(1 + m)am/ux,

sa/sen = - 321y,

sa/sey = (073 + 3™ 2at el - - oag,

sa/bm = - 3™ Zua 1y 31 20 sy (4.2.9)
Since * > 0, %1 > 0, da/dt % 0, and a << 1 or (Ln3)/2 +

In(a) < 0 from the previous computation and measurement of

the data, then
fa/én < 0, dSa/fxy &= 0, #a/fm > 0 (4.2.10)

from which and (4.2.6) and (4.2.7), we obtain

da/dkl < 0, da/axy 2 0, da/dm > 0, (4.2.11)

dU/HM > 0, du/dE1 £ 0, H&/dm < 0 (4.2.12)

due to the positivity of the exponential function.

To compare the effects of M, ®1 and m on the creep and

creep rate, we obtain from (4.2.9): and (4.2.9)4
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0 € da/suy < 30 2ua 1M (4.2.13)
for ¢ < 0, and
b&/8m = - 3m/2J-ial+mA/(X1 > 0, (4.2.14)

where the negative constant A is defined by

A = sup Ln(3l/2a). (4.2.15)

Tt

A comparison of (4.2.9) and (4.2.13) with (4.2.15) then yields

(8a/8hy/(8a/8ay <~ w1 /B < 0,
0 & (da/8My/(8&/86m) = 1/(MA), (4.2.16)
0 < (fa/dxy)/(¥a/fm) % - 1/(1A),

which with (4.2.4) and (4.2.5) lead to

| (8a/81) /8 (da/dxi )l > 1 /K,

| (Ba/bl)/(Ba/dm)l £ 11/ (HA)l, (4.2.17)

bda/dwyy/(da/dm)l % 11/(x1a)l, for t # tu,

and hence

POX/QMYy /(D0 /d0a Y1 > iy /4,
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PAX/9My/(dx/dmy !l & 11/ (HA)!, (4.2.18)
Paw/awyy/(dx/dm) !l % 11/(xyA)l, for t # te
By comparing (4.2.17) and (4.2.18) with (3.2.22) and

(3.2.23), we see that for the same model, namely model (I),
we have obtained the same estimates for the effect of the
material parameters on the predicted creep and creep rate in
the pressuremeter and the triaxial creep problems.

To have a quantitative comparison, by plugging the
approximate maximum values of a = 0.0018 1/day (which was
measured from the triaxial test #4 at day 1) and the

parameter values

A= - 5.221,
Xy /1 = 67 (day5/3),

Al = 1.27=10" (KPa.dayl/3),
[(XlA[ = 8.47}::10!21 (KPa.dayi),

in (4.2.17) and (4.2.18), we see that for model (I), under
the given wunits, the parameter m and &1 will give the
largest and the smallest effect on the predicted creep and

creep rate for the triaxial test problem.
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Temperature, confining pressure, extra axial stress and tested
time interval of the triaxial tests.

test temp. confining extra axial tested time
°C pressure{MPa) stress(KPa) (day)
#1 -9.5 0. -470. v, 34}
2 -9.8 0. -470. (v, 34)
#3 -9.5 -37. -470. (v, 23)
Ha -9.7 -50 -470 (v, 23]
Table 8
Optimize A, © and m by fitting the data 1(t)/L of triaxial
tests #1 and #4. MODEL (1)
Test initial after iteration objfun error at error at
m M o4 +10°% m *10° % {day) % (day)
#1 -.65 21998 1.242 -.6871 .487 ~.0004 17 -,25 34
-.67 2206 1.263 -.6868 .488 -.0011 17 -.25 34
#1 -.69 2099 1.217 -.6940 ,.487 -.0014 17 -.24 34
#1 -. M 1958 1.163 -.7045 .489 -.0025 17 -.2% 34
#4 -.65 2207 2.005 -.6707 .208 +.0038 17 -. 11 23
%4 -.67 20591 1.764 -.6779 .216 +.0079 17 -.10 23
#4 -.69 1972 1.868 -.6882 ,204 +.0022 17 -.12 23
#4 -.71 1941 1,733 -.6900 .214 +.0033 17 -. 11 23

vhere initial uU=2000 1*(Pa,day'/3 and a}=2*l0; KPa.dayﬁ
error:=(a-aa)/a, a and aa are experimental and predicted 1{t)/L.

Table 9

Optimize M and o by fitting the data 1(t)/L of triaxial
tests when m is fixed.

Model (1) Model (I1)
Test fixed m after iteration objfxn after iteration objfun

o *10°5 10 A o4 x10®
#1 -.65 2818 1.397 .488 2844 2746 .538
#1 -.68 2305 1,262 .487 2324 2025 .532
#1 ~.71 1886 1.141 .486 1896 1468 .530
#4 -.65 2514 2.095 .203 2549 4901 . 184
#4 ~-.68 2077 1.807 .204 2102 3690 .183
#4 -.71 1717 1.729 .205 - 1735 2782 . 183

In Tables 8~ 12, MU has the same unit, so does « .
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Estimate the initial ©O4 by using the data of triaxial tests

when M=2466(KPa.day¥¥ ) and m=-2/3 are fixed.
Model 1 Model 11
Test x & »10° & 103 ot x10° o,
(day™ ) (day*?)

#$ .9953 -.1307 L2161 1.406 2424
#2 9930 -.1387 1784 1.914 3434
#3 .9918 -.1392 1635 2.100 3776
#4 9910 -.1636 1428 3.168 6342

average: 2.147 3994
Table 11
Optimize U and o4 by fitting the data 1(t)/L of triaxial

tests from day 1 to day 17 when m=-2/3 is fixed.

Model (1)
Test after iteration objfun Error at t Error at t
M oty *10° =108 % (day) % (day)
#1 2522 1.334 .488 -.0008 17 -.25 34
#2 2536 2.012 .230 -.0023 17 -.12 34
#3 2335 1.128 .255%5 -.0281 17 -.33 23
#4 2261 1.994 .203 +,0023 17 -. 1 23

vhere the initial M =2466(KPa.day”’® ), o, =2.%x10° (KPa.day? ),

average M=2414(KPa.day” ) and = o) =1.617%10°(KPa.day? ).
Model (11)

Test after iteration objfgn Error at t Error at t
M o) *10 % (day) % (day)

#1 2532 2201 .528 -.0022 17 -.27 34

#2 2576 3676 250 -.0054 17 ~-.17 34

#3 2340 1958 .293 -.0290 17 -.33 23

#4 2289 4176 183 +.0001 17 -.13 23

where the initial M =2466(KPa.day Y3 R o(.=4000(!'(Pa.day‘"l3 ),
average A =2434(KPa.day ¥ ) and o, =3003(KPa.day4/ ),
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1{t)/L from day ' to day 17 of triaxial tests when m=-2/3 is fixed.

+.0030
+.0030
+.0030

-.0052

Error
b4

-0.27
-0.26
-0.28
-0.17
-0.33
-0.13
-0.16

Model (1)
Test intial s after iteration objfun

M %10 “ #1075 «ig6
#1 2000 05 2522 1.336 .487
#1 500. 1.0 2523 1.342 .488
#1 1000 1.0 2521 1.329 .487
#2 1000 1.0 2536 2,014 .230
#3 1000 1.0 2334 1.137 .255
#4 1000 1.0 2259 1.972 .203
#4 2000 0S 2259 1.975 .203
#4 2000 5.0 2260 1.983 .203

Model (11)
Test intial after iteration objfun
o M of} '106

1 500. S00. 2534 2223 .528
#1 1000 5000 2531 2214 .532
LR 1000 1000 2542 2317 .534
#2 1000 1000 2576 3677 .250
#3 1000 1000 2340 1958 . 294
¥4 1000 1000 2287 4146 . 184
¥4 500. 500. 2333 5011 .231
¥4 2000 2000 2288 4148 .183
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Chapter 5 Evaluation of material parameters by fitting

short-term creep data of pressuremeter tests

Section 5.1 Introduction

In Chapters 3 and 4, I showed by example that models
(I) and (II) could adequately describe both the primary and
secondary creep of polycrystalline ice through fitting the
long term data of some pressuremeter and triaxial tests
which were performed in the laboratory. There I proposed an
effective and feasible method of numerical analysis to
evaluate the material parameters of both models. One of my
main objectives 1is to analyze the mechanical properties of
frozen material in foundations, such as ice, permafrost in
cold regions. These frozen materials may hide under seabed,
or on the mountains, or Jjostle between two soil layers.
Should a sample of the frozen material be drawn out and
delivered to the laboratory, their material properties would
have changed upon arrivel since ice and permafrost are not
the usual elastic solids but are fluid-like materials which
may undergo creep under load and even sustain melting,
regelation, etc. For this reason, we would like to test the
properties of the material in question in-situ. Among a
variety of testing devices for the in-situ test, the
pressuremeter is one of the most widely used (Baguelin and

others, 1978; Ladanyi and Johnston, 1972).
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For the foundation problem, we certainly wish to know
the long term, in particular, the secondary creep properties
of the frozen materials. It is found from experiments that
the higher the cavity pressure applied by the pressuremeter,
the earlier the secondary creep will take place for ice and
frozen soils. There is the same observation in triaxial
tests (Jacka, 1984). But we cannot shorten the test time
without limit by increasing the cavity pressure because the
material around the pressuremeter may be damaged when the
pressure 1is too high. For instance, Kjartanson (1986)
noticed from his experiment that some macrocracks appeared
near the cavity of the ice when the pressure was 2.5 MPa. It
is also observed from his pressuremeter tests that ice
completely entered the secondary creep after the test
started for 800 min or 15 hours, when the cavity pressure
was less than 2.5 MPa. Consequently one has to wait at least
10 hours to measure the secondary creep properties for
undamaged ice samples similar to those prepared by
Kjartanson which were at -2%c. Is it practical and necessary
to perform a long term in-situ test about 10 hours in a cold
region? The answer to the first question is straight: no,
especially for tests wunder the Arctic ocean. In the
following sections, we shall attempt to seek an answer to
the second question.

Before we start, we would emphasize that it is

meaningless to use the power-law fluid model to fit the
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short term data obtained from creep tests on ice because

that model cannot represent the primary creep of ice; cf.

Sec. 3.5.



112

Section 5.2 Evaluation of material parameters by fitting

short-term data of a single-stage creep test

In this section we shall try to determine the material
parameters in models (I) and (II) by fitting short-term data
of a single-stage pressuremeter creep test and then use the
models that result to predict the secondary creep pertaining
to the pressuremeter test. The secondary creep data of the
tests will only be used as comparison. In addition, let us
temporarily forget the numerical results obtained in chapter
3.

For this purpose, we define the objective function

here ro* is the measured cavity radius, r¢ the predicted
radius from (3.1.15); te and ty are respectively the initial
and terminated times of the fitting period which are given
in Table 3 for each test. These time intervals indeed fall
in the primary creep period under the given pressures. we
shall seek a set of M, %1 and m such that the function F:
arrives at a minimum by wusing the Levenberg-Marquardt
optimization algorithm and then compare the predicted long

term creep radii with those from those measured. The method

to find the numerical solution of (3.1.15) has been
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introduced in Sec. 3.4. The procedure of numerical analysis
is given in Appendix A.3. It is obvious from (3.1.15) that
here we have a nonlinear regression problem to determine the
material parameters.

In nonlinear regression, it is necessary to assign the
initial value of the parameters to start the iteration. But,
when we are given the short-term data of a creep test, we

don’t even know the order of magnitude of the parameters

except that m ® - 2/3 or n ® 3 in the power-law fluid model
(Hooke,1981). Hence we have to search an initial value of M
and 1 from the short term data which are the only
information gathered, while wusing m * -2/3 as the rough

value of m.

To this end, let us look back at (3.1.15). Both
equations contain M and %1 linearly. So what we shall do is
to fix a certain value of m in the wvinicity of -2/3 and
estimate the value of dre/dt and d*r«/dt! at two instants,
say ti and t:, in the short-term period of test, in order to
get two simultaneous linear algebraic equations in * and .
Thus a pair of rough estimates of M and 1 can be found for
each test when the cavity pressure is given. One may
estimate dr«/dt and d*re/dt* through fitting the measured
cavity radii by wusing a polynomial, say f(t) from which
dre/dt = £’ and d*re/dt* = f" could be directly calculated
at the instants ti1 and t&. But in my work, I estimated

dfre/dt* by using the difference quotient of dre/dt. One is
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free to take one of the above methods because only rough
estimates of # and &1 are needed to start the iteration. For
a given test the rough # and 1 will be optimized with fixed
m through (5.2.1). The question how to choose ti and t: may
be raised. Will the rough ¥ and %1 estimated from different
pairs of t1 and t: lead to approximately the same end
results after the optimization? The answer could be found in
Table 13, where the fixed m = -.70. One can see from Table
13 that the end results are almost the same for rather
different choices of ti1 and t:. Of course, the optimized M
and 1 will depend on the choice of m. To examine the effect
of m, I took several values of fixed m and optimized the
corresponding rough estimates of M and ®1 for model (II) and
for tests #3, 5 and 6. The numerical results are shown in
Table 15, from which one can see that when m changes from -
.72 to -.66, the optimized ¥ and X1 are at most tripled.
Therefore up to this point, we can say that we can at least
determine the order of magnitute of ¥ and ®: by using the
short-term data of a single-stage creep test. For model (1),
the discussion and conclusion are similar (Table 14).

For models (I) and (II), we have obtained the values of
the parameters by fixing m in advance at a certain value in
[-.72, -.66]. 1In other words, we have found the range of M
and %1 of the given ice. But we still do not know what is
the value of m for the ice yet. To determine m, I allowed m

to vary in the optimization procedure. In order to make the
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discussion transparent, let us concentrate on one test and
also on one model, e.g., test #3 and model (II). It can be
read from Table 15 that the optimized M is 10307 and &1 is
93670 when m is fixed at -.70. Here I have omitted the units
of the parameters for convenience. I used * = 10307, ®«1 =
93670 and m = -.70 as the initial value of M, %1 and m to
fit the data by the Levenberg-Marquardt method. After the
optimization, the three parameters stop at 10306, 93570 and
-.70, repectively; cf. Table 17. The reason that the
iteration did not run much is that the objective function F:
defined by (5.2.1) is already almost at a local minimum when
Moo= 10307, ¥1 = 93670 and m = -.70. To overcome this "pre-
optimized" problem, I took -.69 and -.71 as the initial
values of m so that the initial values of the parameters
would no longer render the objective function a local
minimum. The motivation to change the initial m is based on

the fact that the predicted rv is most sensitive to m (Sec.

3.4). It is found from computation that after optimization m
came Dback to -.70 (Table 17). Indeed any initial value of m
in [~.72, ~-.68] seem to converge to about -.70 after

iteration for test #3, model (II) (see Table 19). But here I
encountered the over-parametrization problem: the initial m
= -.66 converged to -.68 and could give the same "good" fit
to the data 1like the other initial m (see Table 19). The
over-parametrization problem can also be found in Tables 14

and 15 which show that when the fixed m vaies from -.72 to
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-.66, the optimized values of the objective function of each
model have almost the same value for each test, and so are
the relative long term errors. Besides, the relative long
term errors of tests #3 and 6 are about -11%, -33% for model
(I), and -7.8%, -27% for model (II), respectively. The
errors of test #6 for both models here are much higher than
those in Tables 5 and 6. It should be pointed out that we
cannot simply take the average of the optimized parameters
M, %1 and m for either model (I) or model (II) because the
units of M and 1 contain the parameter m which varies from
line to line in Tables 14 to 18.

In the next section, we shall discuss about the
possibility of solving the over-parametrization problem and

reducing the long term errors.
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Section 5.3 Evaluation of material parameters by simul-
taneously fitting short-term data of two

single-stage creep tests

As mentioned in the last section, the major problem
that I met was over-parametrization when I was fitting short
term data of a single pressuremeter test. The reason why
over-parametrization appeared may be that a single creep
curve is not enough to determine the three material
parameters. we may follow either of two approaches in order
to get enough information. One of them is to fit the data of
a test in which the pressure varies within a short-term
period. Another is to simultaneously fit the short term data
of two tests with different pressures. As figured out in
Sec. 3.2, it 1is not difficult to fit data with variable
pressure by numerical analysis. But it is perhaps easier or
more practical to undertake a multistage test in which each
stage has a constant pressure. At present, I have only one
set of data from multistage test #10 in which each stage
lasted one day (see Fig. 10). With such data we cannot adopt
the first approch. What I can do here for the first approch
1s only to give a suggestion. For polycrystalline ice, let
each stage of the multistage test last about 80 min. Let the
pressure of the first stage be 1500 KPa; increase the
pressure Dby 500 KPa for each stage. Thus a test with three

stages last only about 250 min, which is allowable for the
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in-situ test.
When going by the second approach, namely,
simultaneously fitting the data of two single-stage tests,

we define the objective function

(I, II) Fa (M, &1 ,m; P1,pt)

= % [r¢* (ty: P1) - rﬁ(H,W1,m;ti; P1)]¢®

+ % [rw* (t;7 Pr) = ro (M, ,mpt,; Pi)]*; (5.3.1)
here ro*(*;P1) and ro*(*;Ps) are the mearured cavity radii
under pressures P1 and P:, respectively; ro(*,*,*;*;P1) and
ro{(=,*,*;*;Pt) are the predicted radii from (3.1.15) under
pressures Pi1  and P&, respectively. We seek a set of M,

and m such that the function F+¢ arrives at a relative
minimum by the Levenberg-Marquardt method. The procedure of
numerical analysis is given in Appendix A.3. The results of
computation are recorded in Tables 20 to 23.
I should like to add the following comments:

(a) From Tables 20 and 21, all initial m ranging from -.71
to -.66 seem to converge to about -.71 by simultaneously
fitting the short term data of the two tests #3 and 6 for
both models.

(b) In contrast with fitting the data of a single test,
shown in Tables 14 and 15, the objective function no longer
has the same values after iteration when m is fixed at

different wvalues for both models: neither are the relative
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long~term errors (see Tables 22 and 23).

(c) Comparing Tables 20 and 21 with Tables 18 and 19, we see
that the relative long-term errors from the fit to test #6
for the two models are reduced. In particular, the reduction
is impressive for model (II).

These findings reveal that the over-parametrization as well
as the higher error problem in fitting the short-term data
of a single-stage test could be improved by simultaneously
fitting short-term data of two single-stage tests with
different pressures. Whether or not it is practical to do
two short-term in-situ pressuremeter tests at the same time
remains a problem to be answered by the engineer or

experimentalist.
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Table 13
Optimize MU and o by fitting the primary creep data of
pressuremeter tests when m=~0.70 is fixed.

Model (11)
Test t1({min) t2(min) initial 5 after iteration

M o4 x10° M oG *107°
#3 5. 40. 9428 .3379 10293 .9250
#3 14, 60. 9882 .9408 10268 .9034
#3 5. 111. 10118 .4126 10307 .9367
#5 8. 59. 9421 L4567 10697 2.211
#5 20. 120. 10204 1.977 10583 2.004
#5 8. 160. 10173 .6130 10634 2.125
#6 4. 60. 9288 L4290 10041 1.054
#6 15. 90. 8650 .6896 10062 1.074
#6 4. 110. 9829 .5149 10061 1.072

In Tables 18~ 23, M4 has the same unit, so does «; .



Optimize A and % by fitting the primary creep data of pressuremeter
tests when m is fixed.

Table 14 Model (1)
Test fixed t1 t2 initial -8 after iteration objfun Error at t
m {min){(min) M oG*10 M oG*10°8 *x10% % (min)
#2 -.70 6. 165. 10232 ,2557 9836 L4271 1.50 -8.7 2175
#3 -.66 S. 111, 16636 .3852 16894 1.500 .291 -11, 5095
#3 ~.70 5. 111 10076 .3285 10209 1.295 .293 -11, 5095
#4 -.70 8. 65 9503 .2236 9967 1.056 .365 -23. 4530
#5 -.66 8. 160 17499 1.549 17529 5.334 .453 -38. 6360
#5 -.70 8. 160. 10186 1.334 10295 4.989 .444 ~-33. 6360
#6 ~.66 4. 110. 15710 .3927 16087 1.252 1.63 ~32. 2395
#6 -.70 4. 110. 9712 .3368 9912 .9929 1.66 ~32. 2395
#7 -.70 7. 100. 9097 .5144 3457 1.644 .474 -53. 1700

Table 15 Model (11)
Test fixed t1 t2 initial s after iteration objfun Error at t
m (min){min) M o(*10 y o4 *x10°% *103 % (min)
#3 -.66 5. 111 16710 .7500 17034 1.710 .258 -7.8 5095
#3 -.68 5. 111, 13208 .5585 13267 1.256 .260 -7.8 5095
#3 -.70 S. 111, 10118 .,4126 10307 .9367 .259 -7.2 5095
#3 ~-.72 5. 111, 7823 .3022 7950 .6736 .259 -7.7 5095
#5 -.66 8. 160. 17473 1.168 17931 3.590 .502 ~-38., 6360
#5 -.68 8. 160. 13359 .8495 13504 2.370 .530 -34, 6360
#5 -.70 8. 160. 10173 .6130 10634 2.125 .485 -20. 6360
#5 -.72 8. 160. 7712 .4384 8001 1.470 .487 -22, 6360
#6 -.66 4 110, 15912 ,9207 16294 1.894 1.02 -27. 2395
#6 -.68 4. 110, 12531 .6921 12845 1.445 .997 -26. 2395
#6 -.70 4. 110. 9829 .5149 10061 1.072 .995 ~26., 2395
#6 -.72 4. 110, 7676 .3802 7863 .8043 . 996 -24., 2395
#2 -.70 6. 165. 10239 .3990 9904 .6187 .836 ~6.0 2175
#4 -.70 8. 65. 9592 .2634 10127 .8843 .234 -17. 4530
#7 -.70 7 100. 8157 .4279 9603 1.063 .556 -46. 1700
#10 -.70 7 150. 12144 2,881 9448 1.145 .820 -36. 5810

121
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Table 16

Optimize U , o and m of Model I by fitting the primary creep data

of pressuremeter tests. = = —--e---

Test initial objfun after iteration objfun Error at t
H o4*10% ~102 M ox10"8 =102 % (min)

#2 9836 .4271 -.69 66.96 10629 .4378 -.6935 .1594 -8.7 2175

#2 9836 .4271% -.70 .1601 9835 .4269 -.7000 .1600 -B.7 2175

#2 9836 .4271 -,71 38.96 9308 .4191 -.,7042 ,1603 -B8.7 2175

#3 10209 1.295 -.69 20.27 10626 1.322 -.6970 .0294 -11. 5095
#3 10209 1.295 -.70 .0293 10207 1.291 -.7000 .0292 -11., 5095
#3 10209 1.295 -.71 12.26 9777 1.292 -,7034 .0294 -11. 5095

#4 9967 1.056 -.69 13,23 10246 1.048 -.6977 .0364 -24. 4530
#4 9967 1.056 -.70 .0365 9967 1,056 -.7000 .0365 -23. 4530
#4 9967 1.056 -.71 8.342 9769 1,025 ~.7014 .0366 -25. 4530

#5 10295 4.989 -.69 2.452 10909 5.045 -.6958 .0445 ~33. 6360
#5 10295 4.989 .70 .0479 10295 4.959 -~.7000 .0478 -33. 6360
#5 10295 4.489 -.71 1.590 9902 65.984 -.7050 .0486 -20. 6360

#6 9812 .9929 -.69 49.37 10600 .9813 -.6943 .1691 -33. 2395
#6 9912 .9929 -.70 .1660 9912 .9926 -.7000 .1658 -32, 2395
#6 9912 .,9929 -.71 31.33 9922 .9941 -.6999 .1664 -32. 2395

#7 9611 1.813 -.69 8.546 9186 1.611 -,7022 .0476 -53. 1700
#7 9611 1.B13 -~.70 .0664 9600 1.826 -.6999 .0551 -46. 1700
#7 9611 1.813 -.71 6.438 9587 1.639 -.6986 .0476 -53. 1700

#10 9108 1.755 ~.69 10.79 9840 1.789 -~-.6942 .1202 -54. 5810
#10 9108 1,755 -.70 .1202 9106 1.753 -.7000 .1202 -57. 5810
#10 9108 1.755 -.71 6.679 8418 1.799 -.7064 .1219 -56. 5810



Optimize W , of and m of Model 11 by fitting the
of pressuremeter tests. = ~---veo-
Test initia objfun2 after iteratien

Mu o *10° m *10 M oGx10" m

82 9904 .6187 -.69 52,05 9980 .6308 -.6994
#2 9904 .6187 -.70 .0835 9905 .61%7 -.7000

#2 9904 .6187 -.71 28.56 9288 .5690 -.7053
#3 10307 .9360 -.69 14.95 10503 .9692 -.6986
#3 10307 .39360 -.70 .0259 10306 .9357 -.7000
#3 10307 .9360 -.71 8.104 9889 .8855 -.7032
#4 10127 .8843 -.69 B.666 10128 .8180 -,6999
#4 10127 .8843 -.70 .0233 10127 .8842 -,7000
#4 10127 .8B43 -.71 4.746 10179 .9177 -,7000
#5 10634 2.215 -,69 1.372 11850 2.351 ~-.6917

#5 10634 2.125 -,70 .0485 10615 2.195 ~.7007
#5 10634 2.215 .71 .7488 10470 2.061 L7011

t
t

#6 10061 1.072 -.69 .3317 10512 1,142 -,6965
#6 10061 1.072 -.70 .0994 10062 1,075 -.7000
#6 10061 1,072 18.51 10466 1.116 .6967

1
.
~
-

#7 89775 1,169 -.69 5.300 9829 1.090 -.6982
#7 9775 1,169 -.70 .0680 9660 1.093 -.6998
#7 9775 1.169 -.71 3.640 9851 1.216 -.6993

#10 9448 1.145 -.69 5.630 9882 1.211 -.6967
#10 9448 1.145 -,70 .0828 9483 1.146 ~.6997
#10 9448 1,145 -.71 3.036 9314 1
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primary creep data

objfun Error
o

*»10% %
0840 -5.8
.0835 -6.0
0828 -6.2
.0263 -7.0
.0259 -7.2
L0261 -7.3
0233 -17.
.0233 -17.
.0248 -15.
.0487 -22.
.0485 ~17.
.0487 -20.
.0999 -25,
.0992 -26.
.0996 -26.
.0554 -34.
.0555 -44,
.0604 -39,
.0842 -35
.0820 -36.
.0872 -32.

at t
{min)

2175
2175
2175%

5095
5095
5095

4530
4530
4530

6360
6360
6360

2395
2395
2395

1700
1700
1700

5810
5810
5810



Optimize M, &,
single pressuremeter test.
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and m by fitting the primary creep data of

objfun error
*10 %
.302 -9.83
.293 -10.7
.294 -11.1
.293 -11.0
1.65 -32.4
1.69 -33.3
1.70 -32.9
1.69 -33.6
=10 (KPa.min® )

objfun error
*10 %
.260 -7.78
.259 -7.64
.259 -7.87
.258 -7.76
1.00 -25.6
1.00 -26.6
1.08 -29.2
.993 -26.1

Table 18 Model (I)
Test Initial after iteration

m U *10°4 o *10°8 m
#3 -.66 1.010 1.343 -.7011
#3 -.68 .9%10 1.290 -.7024
#3 -.70 1.029 1.291 -.6994
#3 -.72 1.184 1.346 -.6885
#6 -.66 1.233 1.054 -.6820
#6 -.68 1.073 .9876 -.6933
#6 -.70 1.008 .9935 -.6985
#6 -.72 1.046 .9798 -.6953
where the initial 4 =10° (KPa.min'™™ ) and
Table 19 Mdel (11)
Test initial after iteration

m M x1074 %1075 m
#3 -.66 1.333 1.266 -.6797
#3 -.68 1.014 .9116 -.7012
#3 -.70 1.000 .8924 -.7022
#3 -.72 1.048 .9442 -.6986
#6 -.66 1.424 1.645 -.6715
#6 -.68 1.509 1.732 -.6665
#6 -.70 1.013 1.014 -.6988
#6 -.72 .9035 .9275 -.7086
where the initial w =10% (KPa.min''™ ) and

% =10" (KPa.miﬁ“m);

errors are calculated at t=5095(min) for #3, t=2395(min) for

#6, so are in table 18,



Optimize W, X, and m by simultaneously fitting the short-term
Creep data of two pressuremeter tests.

Table 20
———————— Model (1)
#3 and 46 . _____
Initial _after iteration objfun error error
m M*1074 oG* 10" m *10% % %
(#3) (#6)
-.66 1.059 1.157 -.6961 1.98 -16.0 -24.3
-.68 1.096 1.602 -.6933 1.97 -16.9 -24.8
-.70 .9809% 1.498 -.7020 2.1 -17.0 -26.2
-.72 .9009 1.463 ~.7088 2.31 -16.1 ~-26.6
where the initial H=10% (KPa.min'*™) ang &, =10" (KPa.min® ).
Table 21
-------- Model (11)
#3 and #6
Initial ffter iteration objfun error error
m M*10” o *1075 m *102 % %
(#3) (#6)
-.66 1.134 2,061 ~-.6949 .338 +3.53 -4.71
-.68 1.146 1.972 -.6933 .358 -.060 -7.97
~.70 .9543 1.551 -.7076 .279 -.501 -9.41
-.72 1.215 1.801 -.7031 . 299 +4.10 -5.,22
where the initial U =10* (KPa.min™™ ) and d.=105 (KPa.min?*M)

the fit time intervals of #3 and #6 are [10 . 240)(min) and
[8 , 220} (min) respectively, the relative errors are calculated
at t=5095(min) for #3 and t=2395(min) for #6.

125
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Table 22

Optimize AL and ol when m is fixed by simultaneously
fitting the primary creep data of two pressuremeter tests
#3 and #6.

Model (1)
Fixed m after iteration 5 objfun error error
Mx107* oG *10° *10° % %

(#3) (#6)

-.66 1.668 2.003 .200 -15. -19,
-.68 1.300 1.786 . 185 -15. -21.
-.70 1.006 1.521 .209 -17. -26.
-.72 7774 1.308 .280 -17. -30.

where the initial 4 =10° (KPa.min"™), o =10 (RPa.min® ),
the error is calculated at t=5095{(min) for #3 and t=2395(min)
for #6.

Table 23

Optimize M and o) when m is fixed by simultaneously
fitting the primary creep data of two pressuremeter tests
#3 and #6.

Model (II)
Fixed m after iteration objfun error error
Mx1074 o %1077 *10% % %

(#3) (#6)

-.66 1.825 4.307 .528 +13. +7.6
-.68 1.377 2.681 .419 +4.3 -2.2
-.70 1.059 1.481 .312 +2.4 -6.5
-.72 .8112 1.230 217 +.15 -12.

where the initial 4 =10% (kPa.min'™™), o =10° (KPa.min?™),
the error is calculated at t=5095(min) for #3 and t=2395(min)

for #6.
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Chapter 6 Applications of models (I) and (II)
Section 6.1 Application to glacier flows

In this section, we shall study the velocity profile
and normal stress difference in fluids modelled by the
constitutive relations (1.2.1) and (1.2.2) when they undergo
steady shearing flows, in order to indicate the merits of
the two special Rivlin-Ericksen fluid models.

The motion of a glacier could be idealized as the
steady shearing flow of a ice slab with uniform thickness h
down a plane inclined to the horizontal by an angle ¢ under
gravitation (Nye,1957). Choose a Cartesian coordinate system
such that the inclined plane coincides with the xi1-x: plne;
the Dbase vectors e1 and ex point along the line of greatest
slope down the inclined plane and normally upward from the
inclined plane, respectively. We seek a steady velocity

field in the glacier with the form

v = (v(xz), 0, 0) (6.1.1)
under the body force per unit mass

b = g(sinter - coste:r) (6.1.2)

and boundary conditions:
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v(0) = veer, T(h)e: = -puei, (6.1.3)

where g is the acceleration due to gravity, wve¢ a constant
number, T the Cauchy stress and p¢ the atmospheric pressure
acting on the glacier.

Suppose the glacier ice 1is modeled by (1.2.1) or
(1.2.2). We assume that the glacier 1is assumed as
homogeneous istropic and incompressible continuum. Under

those assumptions, the kinematic quantities should be

A1 = v'(e1fer + eir®er),

Ar = 2(v')terBer,

Al = (v' )t (e1Ber + ert®er),

o= (v)™ (6.1.4)

from (1.2.5) and (1.2.4), where v’ # dv/dx:, ® is the tensor
product of vectors. By substituting (6.1.4) into (1.2.1) and

(1.2.2), we obtain the Cauchy stress in the glacier:

+ 5 . .
(1) T = -pI + [“ﬁ(v')2 Mle1ber + nyv'(e18er + erber)
+ (20 4+ W) (v )ter®er,
(6.1.5)
(IT) T = -pI + (v )"[Kz (v')tei18er + Mv'(e1fler + erfer)

+ (200 + Kp ) (v )ter®er ].

Then using the balance equation of linear momentum and taking
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a simple analysis of the corresponding boundary value problem,

we obtain

(I, II) v(xz) - vo = [(Pgsin¢)/M]l/(l+m)(%zg)h(2+m)/(l+m)
[1 - (1 - xe/n)(3tm)/(14m) (6.1.6)

A glance at (6.1.6) reveals that the velocity of models
(I) and (II) in the present glacier problem is precisely the
same as that of the power law fluid model since the
parameters ®: and %z do not appear in (6.1.6). For further
discussion, we set m = -~ 2/3 which is usually acceptable for

ice in a glacier (Hooke, 1981). Then (6.1.6) is reduced to

(I, II) v(xe) - ve = [(Pgsind)/MH]*h'[1 - (1 - x2/h)"]/4.
(6.1.7)

We can also find from (6.1.6) that in this problem the
velocity associated with the second order fluid model (m = 0

in (6.1.6)) should be

v(xt) - ve = [(Fgsind)/Mih*[1 - (1 - x2/h)*]/2.
(6.1.8)

Before talking about which model has the velocity
profile more compatible with empirical data obtained from

real glaciers, let wus look at some empirical data. By
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measuring four boreholes distributed along a flowplane on
Barnes Ice Cap, Baffin Island, Canada (Fig. 15), Hooke and
Hanson(1985) gathered the velocity profile at the four
boreholes in the glacier (Fig. 16). The four curves have the
common character that the velocity profile is almost
vertical 1in the great upper portion of each borehole. The
glacier measured by Hooke and Hanson(1985) is certainly not
identical to the idealized one in the above analysis. But
the information provided by Fig. 16 suffices for qualitative
analysis.

For the purpose of comparison, (6.1.7) and (6.1.8) are
plotted in Fig. 17 with a given ve, P, g, ¢, ¥ and h. It is
obvious by comparison that the curve with m = - 2/3 1is
closer to the real velocity profile than that with m = 0
(which pertains to the second-order fluid model). In other
words, models (I) and (II) as well as the power-law fluid
model, rather than the second-order fluid model or the
Newtonian fluid model, can adequately describe the velocity
profile of a glacier.

Some phenomena 1in shearing flows of fluids, for
instance, climbing in Couette flow, swelling in Poiseuille
flow, depression or heaving of free surface in open channel
flow, <can be explained by normal stress differences; cf.
Coleman and others (1966) and Schowalter (1978). Noticing
that the power-law fluid model does not exhibit any normal

stress effect shearing flows, McTigue and others (1985)
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applied the second-order fluid model to study the possible
effects of normal stress differences in glacier flows. But
as pointed out before, the second-order fluid model cannot
satisfactorily predict the velocity profile. Cf. Man and Sun
(1986) for further comments on the work of McTigue and
others. 1Indeed, by wusing the two special Rivlin-Ericksen
fluid models (I) and (II), Man and Sun (1986) pointed out
that the effect of normal stress differences on glacier
flows may be far less pronounced than that envisaged by

McTigue and others (1985).
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Section 6.2 Heat and mass transfer in a pipe

In this section, we shall apply the special Rivlin-
Ericksen fluid models (I) and (II) given by (1.2.1) and
(1.2.2) to analyze the heat and mass transfer problem of
fluid in a fixed pipe by following the same method provided
by Szeri and Rajagopal (1985). Suppose a pipe of circular
cross-section and radius R has infinite length. The wall
temperature of the pipe is fixed as a constant, say ®«. Let
the fluid with constitutive relations (I) or (II) undergo a
steady flow under the constant pressure drop k in the flow
direction e, i.e.,

BT /bz = k; (6.2.1)
ZZ

here (r, ¢, z) denotes cylindrical coordinates, where the z-

axis coincides with the axis of the pipe. Let

(er, ey s ez)

denote the unit base vectors. We seek a velocity field v and

temperature distribution ® with the forms:

v = (0, 0, w(xr)), (6.2.2)

O = B (r). (6.2.3)

For the given problem, the first and second Rivlin-
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Ericksen tensors are given by the formulae

Ar = w (e Be_ + e _Be ),
r "z zZ r
(6.2.4)
6 o= "Yip &
Az 2(w’) e e ,
from which we deduce
B Py @ ;
Al (W)t (e Be + ez®ez),
(6.2.5)
p g M/ 2 ,m
[[=[( )Z] _(")r
where
w’ # dw/dz % 0, for 0 % r % R, (6.2.6)
and ® indicates the tensor product of vectors. Then by

substituting (6.2.4) and (6.2.5) into (1.2.1) and (1.2.2),

we obtain the Cauchy stess:

7oy 2 14 m+l 2
(I) T = -pI + (201 + oz ) (~w )fer@?er - H(-w") (er®ez
+ ez®er) + Um(—w’)iez®ez, (6.2.7)
= e —w! m ” !y ¢ X - W e
(II) T PT + (=w/)T[ (201 + U2 ) (-w')le Be - 4(-w')(e Be,
+ ez®er) + Mx(~w’)2ez®ez]. (6.2.8)

Since the flow is assumed to be steady, it may be shown that
v =20

and the balance equation of linear momentum is simplified to
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dp/dr = d[ (2001 + g ) (~-w )2 ]/dr + (21 + &Kz ) (~-w')%/r,
(1)  dp/bd = 0, (6.2.9)
dp/dz + d[lr(-w )" y/80/r = 0,

dp/dr = [ (21 + Uy )(—w')m+2]/<’ir + (201 + Mg ) (=w')
(I1) dp/dd = 0, (6.2.10)

; , ; m+l, ,.

dp/dz + J[Mr(-w") 1/9x/xr = 0
when the body force is neglected. Since the pressure
gradient k is constant in the fluid, i.e.

~0p/dz = AT __/dz = k,
Z2Z

the velocity profile can be solved from the equation
(I, II) drr(—w )™ e = 1k
or
(I, II) wi(r) = -[kr/(20(0))]L (E)FD) (6.2.11)
where we have used the symmetric condition w’(0) = 0.

Next we proceed to deal with the equation of heat
conduction which will be derived from the balance of energy.
It is known from the theory of continuum machanics (Gurtin,
1972) that the first law of thermodynamics is given in local

form as follows:

ADe/Dt = T*L - divg + PY; 6.2.12
q (

here ¢ is the internal energy, ¥ the radiant heat supply per

m+2/r

4
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unit mass, T the Cauchy stress tensor, L the velocity
gradient, g the heat flux, and / the density.

In general, the specific internal energy % for the
Rivlin-Ericksen fluid of complexity 2 can be written as

§o= 8(8, Ar, Az).

For the present problem where A1 and Ax are given 1in the

form (6.2.5), the function ¢ is specialized to

But ¥ and w’ are only dependent on r from (6.2.3) and

(6.2.4). Thus

D¢ /Dt = 0. (6.2.13)

Suppose the constitutive relation of the heat flux can

be characterized by Fourier’s law

(I, II) q = —K(({fﬂ)gradffﬁ,

Then in the present problem

(I, II) divq = -d[rk (#)d®/dr]/dr/r. (6.2.14)

It may be easily shown that
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m(({'}) y+2 )

T L = T+A1/2 = H(®)(-w") (6.2.15)

Suppose there is no radiant heat supply, i.e. ¥ = 0. Hence
by substituting (6.2.14) and (6.2.15) into (6.2.12) and
keeping (6.2.11) in mind, we obtain the temperature and

velocity field equations for models (I) and (II):

poy (—w )™ (F2 4 qrrr(@yey/de/r = 0,  (6.2.16)

W+ [kr/(ZJ‘x(ﬁ-}J)]l/(m(("”)ﬂ) = 0 (6.2.17)
with the boundry conditions:

w(R) = wo,
and the symmetric condition:

©7(0) = 0, (6.2.19)
where we and ®¢ are the given constants, and -’ #& d®/dr.

Since (6.2.16) and (6.2.17) with (6.2.18) and (6.2.19) are
two-point boundary value problems, their numerical solution
may be found by the finite-difference method (Walsh, 1981,
Kubicek & Hlavacek, 1983) as long as the functions M (®) and

m(#) are specified.
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To find the difference between non-Newtonian and
Newtonian fluids in the heat and mass transfer problem,
Szeri and Rajagopal (1985) applied the third grade fluid
model to steady shearing flows between two fixed and heated
plates. Using Reynold’s and Vogel’s models as viscosity
coefficients, they found that if the fluid is even slightly
non-Newtonian, variable viscosity solutions are not too

distant from constant viscosity solutions in contrast with

Newtonian fluid. Basing on their results, we may
approximately assume that the viscosity in models (I) and
(IT) is independent of temperature. For simplicity in

further analysis, we only consider the case 1in which the
heat conductivity X and m, the exponent in models (I) and

(IT), are also constants. Then (6.2.16) and (6.2.18) reduce

to:
(I, II) B(—w Y™ 2 4 kd(re)/dr/r = 0, (6.2.20)
(I, II) w4 (kr/2/m)t () o, (6.2.21)

which show that in the present case, the velocity w 1is
independent of temperature but the temperature # depends on
the velocity through (6.2.20).

A straightforward integration of (6.2.20) and (6.2.21)

yvields
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mt2 m+2
wix) - w = T3 e e R O SRR
(6.2.22)
w2 n2.0
G(r) - ®o = (B5f ¢ 2tz GOTURIL - e/R)TE Ty,
(6.2.23)

where the conditions (6.2.18) and (6.2.19) have been used.
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CONCLUSION

The main theoretical results presented in this thesis
are the thermodynamic constitutive restrictions on models
(I) and (II) derived under the assumptions that (1) the
motion of fluids characterized by models (I) and (II) is
slow; (2) the free energy has a minimum at the rest state
and 1is convex in A1 in a neighbourhood of A1 = 0.
Furthermore, it is shown that 4if A1 remains in the
respective constitutive domain of the two models, and models
(I) and (II) are (not) consistent with the constitutive
restrictions, cannister flows and triaxial homogeneous flows
are (not) asymptotically stable. It remains as further work
to study the Lyapunov stability of the rest state and
various motions of fluids (I) and (II).

When models (I) and (II) are applied to fit the creep
data of pressuremeter and triaxial tests, it is found that
the two models can adequately describe both the primary and
the secondary creep of polycrystalline ice. This finding
will be important in the endeavour to predict the long-term
creep behaviour of ice by using the two models to fit short-
term creeo data. The values of the material parameters of
models (I) and (II) estimated from the data of Kjartanson
and Jones corroborate the derived thermodynamic
restrictions. The fitting process is essentially based on a

nonlinear optimization method by the use of the computer.
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The techniques to evaluate the material parameters of models
(I) and (II) by fitting creep data are described in detail
in this thesis. As for the problem to devise a short-term
in-situ pressuremeter test which will delineate the long-
term creep behaviour of ice, it 1is found that the
experimental data of a single-sate pressuremeter creep test
are not enough to evaluate all the relevant material
parameters in the two models. To solve this problem, doing
short-term multistage tests may be worthwhile to provide

sufficient data for the applications of the two models.
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APPENDICES

A.l1 Least squares fitting with constraints

Let

be a set of given data points. The problem at issue is to

use a polynomial

f(x) =% c,x 77 (A.1.1)
X i
i=1
to fit the points (xk+l’ yk+l)"‘°’(xm’ ym) under the con-
straints that
f(xj) = Yj’ j=1,2,...,k < m. (A.1.2)
More precisely, we seek coefficients Ci in (A.1.1) that
minimize
m
¥ [£(x.) - y.]? (A.1.3)
j=k+1 J J
and satisfy
f(xj) = Yj’ j=1,2, k< m

This problem can be solved by the method of Lagrange
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multipliers. Let

m 0 i-1 X n i-1
F(c,b) = & [ (% C.X7 - y.)t] + k N LR C.X - Vi)
j=k+1 i=1 * J j=1 di=1 * ]
(A.1.4)
where ¢ and b are the transpose of (CJ,cm,...,cm) and

(M1 22,00 N respectively; b is the as yet undetermined

x)

Lagrange multiplier vector.

When F is at a minimum,

dF/dc = 0, and dF/9b = 0,
or in detail
m n k .
2 et -yt e st =0, i=1,2,.00,0,
j=k+1 h=1 ] 17 j=1 1 J
o i-1
Boo(cixs T - y.) =0, i=1,2,...,k
i=1 J J J
(A.1.5)
(A.1.5) can be recasted compactly as
AW = B, (A.1.6)
where A is a square matrix of order (nt+k) defined by
= G-l -
A = X, 7, i=1,2, (I, j=1,2, 'k
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A5, 5 = O i,9,1,2,...,k
m .
. h+i-2 .
By = 2L X h,i=1,2,...,n
R B S ’ e ri
_i-1 . ,m
Ai+k,j+n - xj 4 l‘ll2r"'lnr ]'1,2,...,k,

B is an (n+k) vector defined by

B] = YJ/ j=1,2, P K
o i-1
B. = 21 VXL o, i=1,2 n
l+k j:k+l ] ] r 14 4 14
(A.1.7)
and W = (c, b) 1is the unknown (n+k) vector to be

determined. The matrices A and B can be evaluted from the
given data. The unknown coefficients ¢ and b can be easily
determined by solving the linear algebraic equations

(A.1.6).
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A.2 Nonlinear least squares optimization by the

Levenberg-Marquardt method

Statement of the problem: let y = (y1, y¢, ..., Yn) =
(y(tr), y(te), ..., ¥(t,)) be the n-observations of the
dependent variable y, x = (x1, Xt, ..., xm) the vector of m

parameters, f(x, t) the predicted solution, and

f. = f(x, t.), i=1,2,...,n. (A.2.1)

F = i (v; - fi)2 = min, (A.2.2)

locally, where F is called the objective function.
The Gauss-Newton method for the iteration of parameters
is as follows. Suppose one has got x(k) after (k - l)th step

of iteration. Then next step is to find an increment vector

§x such that F(x( ) = min (A.2.3)
locally. Since
rix O ox O3 nn vy, -5 ) o e /0x 090 Tox (K s
i

by the Taylor expansion, then one must have
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or(xX) 1 wyew =0 art wiF)= sx (A.2.5)

which with (A.2.4) leads to
Eoly; - £y - o, /0N Tex Vg0 0x) =0 (a.2.6)

By defining

) = x (v, - £eg /x5, (A.2.7)

ij?) - afi/éﬂxgk), j=1,2,...,m (A.2.8)

alk) = gOT0) (A.2.9)
(A.2.4) can be represented in the neat form

g(k) = a(K)g, (k) (A.2.10)
from which, §x(¥) can pe solved by

sx(K) = (a(k)y~1g(k) (A.2.11)

Since (A.2.4) is approximately valid,

would not exactly arrive at a minimum when the increment
vector solved from (A.2.11) is substituted into (A.2.3). The

further iteration given by



147

k+1) (k)

x = X + (A( (A.2.12)

is needed until the assigned convergent conditions are
satisfied. The matrix J defined by (A.2.8) can be computed
either analytically if there exists an explicit expression
of 9f/9x or numerically by the finite-difference method.

To avoid interruption of the iteration when A is
singular and to accelerate the iteration, Levenberg(1944)
and Marquardt (1963) independently proposed to replace

(A.2.12) by the superior formula

k+1) (k)

x = x(¥) 4 y"g (%), (A.2.13)

where A is a positive real number and I the unit matrix. In
addition, Margquardt(1963) proved the convergence of the
iteration (A.2.13) for any » # 0 and showed the strategy to
choose A at each step k . As another contribution to the
method, Marquardt showed that the iteration (A.2.13)
approaches the gradient or steepest descent method when »
®, Consequently, (A.2.13) shares both the merits of the
Gauss-Newton and gradient methods.

The Fortran computer program of the Levenberg-Marquardt

method called 7Z2XSSQ is issued by IMSL.
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A.3 Procedure of fitting creep data of ice by

nonlinear optimization

In the subroutine ZXSSQ issued by IMSL, which gives a
least squares estimation of the material parameters, it is
necessary to start with an initial guess of the parameters.
For models (I) and (II), we can determine a reasonable
"guess" by using the method introduced in Sec. 4.2 for
triaxial tests and 1in Sec. 5.2 for pressuremeter tests of
ice , respectively. In what follows we shall assume that an
initial "guess" of the material parameters has been
determined.

When the estimate satisfies one of the following
convergence criteria, the iteration will stop. The first
criterion is denoted by NSIG, an integer. This convergence
criterion is satisfied if on two successive iterations the
estimated values of the parameters agree to NSIG digits. The
second 1is denoted by EPS, a small real number. This
convergence criterion 1is satisfied 1if on two successive
iterations the sum of squared residuals has a difference
whose absolute value is less than or equal to EPS. The third
is denoted by DELTA, a small real number. This convergence
criterion 1is satisfied 1if the Euclidean norm of the
approximate gradient 1is less than or equal to DELTA. For
further details, c¢f. the description that accompanies

subroutine ZXSSQ issued by IMSL.
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The major steps in using models (I) and (II) to fit the
creep data of polycrystalline ice are as follows:
1. Read the creep data and pressure of the test.
2. Choose a function to fit the first several data-points to
determine the initial conditions of the creep equation in
question. If the creep data have the same value during some
time interval, only the middle point in the interval will be
used for the fitting.
3. Choose the time interval over which the fitting will be
done and set the time at which prediction of creep will be
terminated.
4. Give an initial guess of the material parameters.
5. Set the values of the convergence criteria: NSIG, EPS
and DELTA.
6. Enter the subroutine ZXSSQ for the iterative estimation
of the material parameters.
7. Compute the numerical solution of the creep equation that
corresponds to a given estimate of the material parameters
by the fifth-order Runge-Kutta-Nystrom algorithm.
8. Interpolate the predicted creep at the time nodes where
experimental data are measured.
9. Compute the wvalue of the objective function and its
gradient with respect to the material parameters by a finite
difference method.
10. Examine the convergence criteria. If one of them is

satisfied, then Jjump to step 12; otherwise, go to the next
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step.

11. The wvalues of the parameters are modified by the
subroutine ZXSSQ. Then go back to step 7.

12. Print out the values of the optimized parameters and the
final value of the objective function.

13. Compute the statistical errors of the optimized
parameters.

14. Compare the predicted creep with the experimental data
and compute the predicted creep rate.

15. Stop.

In the preceding program, the fifth-order Runge-Kutta-
Nystrom method is used to integrate numerically the creep

equation in question. For the initial value problem

y' = f£(t, y; ¢), y(te) = yeo (A.3.1)

where ¢ denotes the parameters, t¢ the initial time, y¢ the
initial wvalue of vy, a numerical solution of (A.3.1) is

computed from the following recursion formulae:

Yprp — Yq = D(23ky + 125ks - 8lke + 125ks)/192,

ki = f(tn + h/3, Y, t hki1/3; c),

ky = f(t + 2h/3, y_ + h(dkr + 6ke)/25; c),
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ke = f(t + h, y + h(ki - 12ke + 15k:)/4; c),

n
ke = f(t + 2h/3, y_ + h(6ki + 90ke - 50k: + 8ks)/81; c),
ke = f(t_ + 4h/5, y, * h(6ki + 36ke + 10k: + 8ki)/75; c);

(A.3.2)

here h is the step length.
As for the interpolation step 8, the Lagrange method

for three points with different distance is employed:

i+t2  i+2

y(x) =2 (1 (x - %)/ (% - x3))¥y (A.3.3)
k=1 ij=i
j#k

where

Y/ 2. (A.3.4)
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Computer programs

JOB ',,T=5"

Lol ok ol TN N I N0

EXEC FORTXCLG,OPT=2,SIZE=512K
ORT.SYSIN DD =

This program is used to evaluate the material parameters
mu and m at the time when ddr/dtt=0,

Program name---MUM

EXTERNAL OBJFUN

DIMENSION PARM(d),xaAc(zz,z),XJTJ(3),wORK(100),F(SO),AA(zz),x(z
,Y(2,2),DX(2),DXPROB(2),WORK1(4),5(2),AINV(2,2),B(2,2),
ALN(ZZ),PLN(ZZ),AALN(ZZ)

COMMON/C1/A(22),P(22)/C2/B1,B2

WRITE(6,100)

FORMAT(////////50X, ' Table A',/50X," =—eeeu= ')
WRITE(6,120)

FORMAT(//SX, 'Determination of mu and m from the secondary'
+' Creep rates by nonlinear regression’,//SX, 'Notaton:',/5X,
'P---cavity pressure; b---rate of secondary creep; ',
‘bb---predicted values of b;‘,/Sx.'residual-—-b(i)—bb(i);',
! Objfun---sum of squared residuals;',/sx,
'er1=100.+(b(i)-bb(i))/b(i); er2=100.*(Ln(b(i))-Ln(bb(i)))",
'/(-Ln(b(i))).",/SX, 'Units:*,/5X, P in KPa;',

' b and bb in 1./min; mu in KPa.min*« (1, +m)y;*', -

‘m is a real number.')

M=22

N=2

A(1)=_,3692E-5

A(2)=.7111E-5

A(3)=,1052E-4

A{4)=,105E-4

A(5)=,120E-4

A(6)=.134E-4

A(7)=.180E-4

A(8)=.204E-4

A(9)=,210E-4

A(10)=.2227E~4

A(11)=,.310E-4¢

A(12)=,3147E-4

A(13)=,3171E-4

A(14)=_342E-4

A(15)=,345E-4

A(16)=,4582E-4

A(17)=.540E-4

A(18)=,540E~¢

A{(19)=_.545E~4¢

A(20)=.780E-4

A(21)=.8125g-4

A(22)=.B40E-4

P{1)=1000.

P(2)=1250.

P(3)=1500.

P(4)=1500.

P(5)=1500.

P(6)=1500.

P(7)=1750.

P(8)=1750.

P(8)=1750.

P(10)=1750.

P(11)=2000.

P(12)=2000.

P(13)=2000.

P(14)=2000.

P{15)=2000.

P{16)=2250.
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650.

660.

670.

680.

690,

700.

710.

720. 230

730.

740.

750.

760.

770.

780.

790.

800.

810.

820.

830.

840.

850.

860.

870.

880.

830.

900.

910,

920.

930.

940. 200

950.

960.

970. 380

980.

990. 390
1000.
1010.
1020.
1030. 90
1040.
1050,
1060,
1070.
1080.
1090.
1100.
1110, 30
1120.
1130. 60
1140. 50
1150.
1160. 410
1170.
1180,
1190,
1200.
1210,
1220.
1230. 250
1240. 70
1250.
1260.
1270,
1280. 80

P(17)=2250.

P(18)=2250.

P(19)=2250.

P(20)=2500.

P(21)=2500.

P(22)=2500.

WRITE(6,230)

FORMAT(//3X, ‘'mu:*',14X,'m:*',15X,'0bjfun: in iteration')
X(1)=9006.

X(2)=-0.7132

B1=1,

B2=1,

X(1)=x(1)*B1

X(2)=x(2)*B2

NSIG=3

MAXFN=100

IXJAC=M

EPS=1.E-8

DELTA=1.E-15

10PT=2

PARM(1)=0.5

PARM(2)=5,

PARM(3)=120.

PARM(4)=1.E-4

CALL 2XSSQ(OBJFUN,M,N,NSIG,EPS,DELTA,MAXFN,10PT,PARM,X,SSQ,
F,XJAC, IXJAC,XJTJ ,WORK, INFER, IER)
x(1)=x(1)/B1 -
X{2)=x(2)/B2

WRITE(6,200) x(1),%x(2),S85Q,INFER
FORMAT(/5X, 'Least square estimates: mu=',F15,5,5X,'m=",
F12.5,5X,'Objfun="',E10.5,5X, 'Convergence criterion="',12)
WRITE(6,380)

FORMAT(//5X, 'XJAC, gradient of residuals w.r.t. mu and m',
' at the least square estimates.',6 5X,'Residuals:')
FORMAT(5X,E15.6,10X,E15.6,38X,E12.5)

DO 90 1=1,M

XJIAC(1,1)=XJAC(1,1)B1

XJAC(1,2)=XJAC(1,2)*B2

WRITE(6,390) XJAC(1,1),XJAC(1,2),F(I)

TOL=0.0

1A=N

IAINV=N

BBB=1.

DO 50 K=1,N

DO 60 J=1,N

DO 30 I=1,M

Y(J,K)=Y(J,K)+XJAC(I,J)*XJAC(I,K)/BBB

B(J,K)=Y{(J,K)*BBB

CONTINUE

CONTINUE

WRITE(6,410)

FORMAT(//9X,'Matrix XJACT*XJAC',40X,'Inverse of XJACT*XJACT')
DO 70 J=1,N

DET=B{(1,1)*B(2,2)-B(1,2)*xB(2,1)

AINV(1,1)=B(2,2)/DET

AINV(2,2)=B(1,1)/DET

AINV(1,2)=-B(2,1)/DET

AINV(2,1)=-B(1,2)/DET
FORMAT(5X,E15.6,5X,E15.6,20%X,E15.6,5X,E15.6)

WRITE(6,250) B(J,1),B(J,2),AINV(J,1),AINV(],2)
SS=(SSQ/FLOAT(M-N))*=*(0.5)

po 80 I=1,N

DX(I)=AINV(I,I)*x%x(0.5)*SS

DXPROB(I)=2.086%DxX(1)
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ZU1=X(1)-DXPROB(1)

2U2=%X(1)+DXPROB(1)
2U3=X(1)-2.42312Dx (1)
ZU4=%X(1)+2.4231+DX(1)

21=X(2)-DXPROB{2)

22=X(2)+DXPROB(2)

23=X(2)-2.4231+Dx(2)
24=X(2)+2.4231+DX(2)

WRITE(6,430) DX(1),Dx(2),2Uu1,2U2,21,22,
2U3,2U4,23,24

FORMAT(//SX, 'SE{mu)=",F12.3,5X, 'SE(m)=" ,F11.7,/5X,

*95% confidence interval of mu: [',F7.1,” , ‘',F7.1,'}', 5%
'95% confidence interval of m: [',F7.5,' , ',F7.5,'},", /Sx
'95% Bonferroni joint confidence interval of mu: [',F7. '

F7.1,'},',5%,'0of m: (',F7.5,",',F7.5,')")

WRITE(6,130)
FORMAT(//BX,'P:',12x,'b:',12x,'bb:',12x,'er1%:',Bx,'Ln(P):'.
BX,'Ln(b):*,8X, 'Ln(bb):"',7X, 'er2%:"')

DO 110 1=1, M

AA(T)=( (1. ¢x(2))-9(1)/x(1))--(1 /01.+x(2))) /2.
PLN(1)=ALOG(P(1))
ALN(1)=ALOG(A(1))
zzz-p(x)-(1.+x(2)}/x(1)
AALN(1)=ALOG(222)/(1.+X(2))-ALOG(2.)
5R2--100.~(ALN(1)~AALN(1))/A N(I)
ER1=100.*(A(1)-AA(1))/A(1)
WRITE(09,*)P(1),A(1),AA(1),PLN{1),ALN(I), AALN(])
WRITE(6,500) P{1),A(1),AA(I),ERT,PLN(1I),ALN(1),AALN(1) ,ER2
FORMAT(5X,B(E10.4,4X))

STOP

END

Evaluate the objective function
SUBROUTINE OBJFUN(X,M,N,0BJ)
DIMENSION AA{22),%X{(N),0BJ(M)
COMMON/C1/A{22),P(22)/C2/B1,B2
x(1)=x(1)/B1

x(2)=x{(2)/B2

0BJJ=0.0

DO 10 1=1,22

AACI ) =( (1. +x(2))*P(1)/X( 1) )en {1 /(1.+X(2))) /2.
OBJ(1)=A(1)-AA(1)
OBJJI=OBJJ+OBJ(1)=*2

WRITE(6,*) X,0BJJ

X{1)=x(1)»B1

X(2)=x(2)»B2

RETURN

END

. //GO.FTO9F001 DD DSN=QSUN.PA,DISP=OLD
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10. ;/ JOB ', ,T=15',CLASS=A
20. // EXEC PASSWORD
30. //SYSIN DD =

40. QSUN.ICE26 DAVID
50. ;; EXEC FORTXCLG,OPT=2,SIZE=512K

60. FORT.SYSIN DD +
70. C Program name---ALPHA1, Estimate alphal by fitting r(t)

80. € =  —mmmmmemmem e

90. DIMENSION XJAC(100,3),X3TJ(20),WORK(200),F(100)

100. COMMON/C8/T(1000),R(1000)/C25/T1(10),P1(10)/C16/NN,L,10,L1,LRR
110. C NN---NUMBER OF PRESSURES IN MULTISTAGE TEST

120. C L---TOTAL NUMBER OF TIME NODES

130. C 10---BEGAINING POINT IN EXPERIMENTAL DATA FOR ANALYSIS

140. C L1---NUMBER OF POINTS USED FOR OBJECTIVE FUNCTION

150. C LRR--~-TERMINATING TIME OF PREDICTION TT=LRR*%2+0.01/2. MIMUTES
160. C T--~ARRAY OF TIME NODES IN EXPERIMENT

170. C R---ARRAY OF RADIUS FROM EXPERIMENT

180. C Tl & P! ARE ILLUSTRATED BY THE FORMULA:

190. C PRESSURE ON CAVITY P=PI(I1) WHEN TI(I-1)<T<TI{(1),WHERE TI(0)=0.
200. WRITE(6,100)

210. 100 FORMAT(/S5X,'This program is used to evaluate alphal when ',
220. + 'mu & m are fixed and compare predicted radius with radius °,
230. + /5X,'from pressuremeter test for Model 1 TEST#3',//)

240, NN=1

250. L=185

260. 10=5

270. LI=30

280. FCT1=2.064 - - -

290. NP=1

300. LRR=1200

310. DO 14 1=1,L

320. 14 READ(O01,*) T(1),R(1)

330. DO 15 I=1,NN

340. READ(02,*) TI1(1),PI(1)

350. TII=TI(I-1)+1,

360. 15 WRITE(6,120) TI11,7TI1(1),PI(1)

370. 120 FORMAT(S5X,'When time is from',F8.0,' MIN to',F8.0,

380. + 'MIN the pressure on cavity=',F5.0,' KPA in the experiment')
390. NW=S5«NP+2+LI+(NP+1)*NP/2

400. NXJ=(NP+1)*NpP/2

410, CALL ICE(FCT1,NW,NXJ,NP,XJAC,XJTJ,WORK,F)

420. STOP

430. END

440. C

450. C THIS SUBROUTINE IS USED TO ESTIMATE ALPHA1 WHEN M,MU ARE FIXED,
460. C COMPARE THE PREDICT RADIUS WITH RADIUS FROM PRESSUREMETER TEST
470. SUBROUTINE ICE(FAC,NW,NXJ,NP,XJAC,XJTJ,WORK,F)

480. EXTERNAL OBJFUN

490. DIMENSION PARM(4),XJAC{LI,NP),XJTJ(NXJ),WORK(NW),F(LI)

500. + ,T7(1200),RR(1200),DDR(1200),X(1),

510. + DR(1000),ALPHA(1000)

520. COMMON/C1/T0,R0,DR0O/C6/L0,LR/C10/XX(3)/C16/NN,L,10,LI,LRR

530. + /c25/TT1(10),P1(10)/C8/T(1000),R(1000)/C12/B1,B2,8B3

540. C FOLLOWING CALL IS TO FIND R{TO),DR{(TO)/DT

550. CALL INITIL(80,T,R,10,14,3,T0,R0O,DRO)

560. DO 111 K=1,L

570. IF (T(K).GE.T0) GO TO 115

580. 111 CONTINUE
590. 115 TO=T(K)

600. LO=K

610. LR=LO+LI-1
620. TL=T(LR)
630. XX(1)=9114.

640. XX(2)=0.1E+10
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650. XX(3)=-0.7111

660. B1=1,

670. B2=1.

680. B3=1.

690. WRITE(6,106) TO,TL,L!,RO,DRO,XX,B1,B2,B3

700. 106 FORMAT(//5X,16HInitial time tO0=,

710. + F10.3,5X,20HTerminating time tl=,F6.1,5X,"'LI,number of points’,
720. + ' for fitting=',12,/5X,'Initial radius r0="',

730. + FB.4,5X%,'Initial velocity of r,dr{(t0)/dt=',E11.4,/5X,
740. + 'Initial parameters in iteration X=',63E13.5,/5X,

750. + ‘where X1,X2,X3---"', \
760. + 'mu,alphal,m',/5X,'Multiplyers for X, b1,b2,b3=",
770. + 511.3,,3x,511.3,3x,a11.3,/¥1x)

780. XX(1)=xxX(1) B

790. Xx(2)=xx(2)=B2

800. XX(3)=XX(3)#B3

810. X{(1)=xx(2)

820. N=1

830. NS1G=3

840. MAXFN=500

850. M=LI

860. IXJAC=M

870. EPS=0.1E-4

880. DELTA=0.1E-10

890. 10PT=2

900. PARM(1)=0.01 - -
910. PARM(2)=2.0

920. PARM(3)=1200.

930. PARM(4)=0.001

940. WRITE(6,170) NSIG,EPS,DELTA,IOPT, PARM

950. 170 FORMAT(/SX,'Given parameters in subroutine ZXS§SQ:',
960. & ' NISG=',11,3X,'EPS=',E7.1,3X,'DELTA=',E7.1,/5X%,

970. & 'I1I0PT=',11,3X, 'PARM(1)=",4(F12.4,3X))

980. WRITE(6,118)

990. 118 FORMAT(//2X,' mu:',14X,’'alphal:', 11X, 'm:"', 14X,

1000. + 'Objfun: in iteration')

1010. C FOLLOWING CALL IS FOR ITERATION IN OPTIMIZATION

1020. CALL ZXSSQ(OBJFUN,M,N,NSIG,EPS,DELTA,MAXFN,I0PT,
1030, + PARM,X,S$58Q,F,XJAC,IXJAC,XJTJ,WORK, INFER,1ER)

1040. WRITE(6,190) INFER,IER

1050. 190 FORMAT(/SX,'Convergence criterion INFER=',I1,

1060. & 5X,'error parameter I1ER=',I3)

1070. xx(2)=x(1)

1080. xx(1)=xx(1)/B1

1090. Xx(2)=xx(2)/B2

1100. XX(3)=xx(3)/B3

1110. WRITE(6,117) XX(1),xx(2),%xx(3),S5Q

1120. 117 FORMAT(/SX,'After iteration,the material moduli mu=',
1130. + F8.1,3X,'alphal=' E10.4,3X,'m=' ,F10.6,3X,'Objfun="',E10.4,
1140. + /5x)

1150. WRITE(6,222)

1160, 222  FORMAT(/SX,'The first five elements of array WORK:') !
1170. WRITE(6,*) WORK(1),WORK(2),WORK(3)},WORK(4),WORK(5)
1180, WRITE(6,210)

1190. 210  FORMAT(/5X,'XJAC',15X,'Residuals:')

1200. DO 30 I=1,LI

1210, XJAC(I,1)=XJAC(1,1)*B2

1220. SU=SU+XJAC(I,1)*»2

1230. WRITE(6,%) XJAC(1,1),F(1)

1240, 30 CONTINUE

1250. SUINV=1./SU

1260. DA=(SSQ*SUINV/FLOAT(LI-1))*»(0.5)

1270. PDA=FAC*DA

1280. WRITE(6,230) SU,SUINV,DA,PDA



1290.
1300.
1310,
1320.
1330.
1340.
1350.
1360.
1370.
1380.
1390.
1400.
1410.
1420.
1430.
1440.
1450.
1460.
1470.
1480.
1490.
1500.
1510.
1520.
1530.
1540.
1550.
1560.
1570.
1580.
1590.
1600.
1610.
1620,
1630.
1640.
1650.
1660.
1670.
1680.
1690.
1700.
1710.
1720.
1730.
1740.
1750.
1760.
1770.
1780.
1790,
1800.
1810.
1820.
1830.
1840.
1850.
1860.
1870.
1880.
1890.
1900.
13910.
1920.

[sXeXeXse!

230

355

108

109
20
200

+

+ 4+ 4+ 4

FORMAT(/5X, 'XJAC+2=",E10.4,5X, ' XJAC-2=',E10.4,5X,
'Standard error=',E10.4,5X, 'Probability errer=',E10.4)

DA1=XX(2)-DA

DA2=XX(2)+DA

PDA1=XX(2)-PDA

PDA2=XX(2)+PDA

WRITE(6,355) DA1,DA2,PDA1,PDA2,FAC

FORMAT(/5X,'Standard rang of alphal:',E10.4,3X,E10.4,5X,
‘probability rang of alphal:’,E10.4,3X,E10.4,
SX,'Probability factor=',F10.3,//)

COMPARING THE EXPERIMENTAL AND PREDICTED CREEP

WRITE(6,108)

FORMAT(/5X, 10HNOTATIONS: , /5X,BHt-~--Time, 5X,
‘r---Experimental radius',5X,'rr---Predicted radius',/5X,
‘alpha---drr/dt/rr',5X, 'error---100%{(r-rr)/(r-c0)",

/5%, 'Residual=r(i)-rr(i) Objfun=sum of residuals’',

/./4X,2Ht:,7X,2Hr:, 13X, 3Hrr:, 12X,

7Hdrr/dt:,11X,6Halpha:, 11X, 'error:%')

CALL RNUM(LRR,XX,TT,RR,DDR)

LO1=L0+1

DO 20 1=L01,L

TI=T(1)

CALL LAG(TT,RR,LRR,TI,Y1)

CALL LAG(TT,DDR,LRR,TI,Y2)

YY=Y2/Y1

ER1=100.%(R(1)-Y1)/(R(1)-R0)

WRITE(04,*) T(I),YY -

FORMAT(F10.3,3X,E12.6,3X,E12.6,3X,E12.6, 3X,

AX,E12.6,3%,F8.4)

WRITE(6,109) T(1),R(1),Y1,Y2,YY,ER}

WRITE(6,200) TT(LRR)

FORMAT(/SX,'TERMINATING TIME OF PREDICTION',F10.2)

RETURN

END

To calculate numerical solution of a set of diff. egs by
Runge~Kutta method

SUBROUTINE CMLAMB(N,H,L,Y,DY,YC, YK, XX)

DIMENSION Y(N),DY{(N),YC(N),¥YK(5,N),B(4),A(4,4),xx(3)

DATA B/O.11979166666,0.0,0.6510416666,0.0/,A/0.3333333333,

0.16,0.25,0.0740740740,0.0,0.24,-3.0,1.111111111111,0.0,
0.0,3.75,-0.6172839506,0.0,0.0,0.0,0.098765432/
IF(L) 12,10,12

DO 1 I=1,N

YK(S5,1)=y(1)

CALL DIFUN(N,Y,DY,XX)

RETURN

DO 3 K=1,4

DO 2 1=1,N

YK{K,I)=DY(1}
YC(1)=YK(S,1)+H*(A(K, 1) *YK(1,1)+A(K,2)=YK(2,1)+
A(K,3)*YK(3,I1)+A(K,4)*YK(4,1))
Y(I)=Y(I)+H*B(K)*YK(K, 1)

CALL DIFUN(N,YC,DY,6 XX)

DO 7 I=1,N
YC(I)=YK(S,I)+H*(0.08*YK(1,1)+0.48+YK(2,1)+
0.13333333333*YK(3,1)+0,.106666666666666+YK{4,1)1}
Y{(1)=Y(1)-H*0.421875*DY (1)

CALL DIFUN{N,YC.DY, XX)

DG 8 I=1,N

Y(1)=Y{(1)+H*0.6510416666*DY(])

GO TO 10

END
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1930.
1940.
1950.
1960.
1970.
1380.
1990.
2000.
2010.
2020.
2030.
2040.
2050.
2060.
2070.
2080.
2090.
2100.
2110.
2120,
2130.
2140.
2150,
2160,
2170.
2180.
2190.
2200.
2210.
2220.
2230.
2240.
2250.
2260.
2270.
2280.
2290.
2300.
2310,
2320.
2330.
2340.
2350.
2360.
2370,
2380.
2390,
2400.
2410.
2420.
2430,
2440.
2450.
2460.
2470.
2480.
2490.
2500.
2510.
2520.
2530.
2540.
2550.
2560.

C
C

C
C

(e NeXgl

anoon

70

60
100

10

10

20
30

40
50
60
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To calculate function on right side of a set of diff. egs.
SUBROUTINE DIFUN{(N,Y,DY,X)

DIMENSION Y{N),DY(N),X(3)

COMMON/C25/T1(10),P1(10)

DO 60 1=1,10

IF (y{(1).LT.TI1(1)) GO TO 70

GO TO 60

P=p1(1)

GO TO 100

CONTINUE

DY(1)=1,

DY(2)=Y(3)

YY=(Y(3)/Y(2))=2
DY(3)=Y(2)*0.5+(P-X(1)*yy*w (1. +X(3))/(1.+4X(3)))/x(2)
RETURN

END

To calculate numerical solution R,DR/DT

SUBROUTINE RNUM(K,XX,TT,RR,DDR)

DIMENSION XX(3),Y(3),DY(3),YC(3),¥YK(5,3),TT(K),RR(K),DDR(K)
COMMON/C1/T0, RO ,DRO

Y{(1)=T70

Y{2)=RO

Y(3)=DRO

CALL CMLAMB(3,0.001,0,Y,DY,YC, YK;XX) - -
TT(1)=T0

RR(1)=R0O

DDR({ 1)=DRO

DO 10 1=2,K

H=0.01+FLOAT(1)

CALL CMLAMB(3,H,1,Y,DY,YC, YK, XX)

TT(I)=Y(1)

RR(I)=Y(2)

DDR(1)=Y(3)

RETURN

END

Lagrange's interpolation for variable distence by three points
SUBROUTINE LAG(X0,YO,N,X,Y)

DIMENSION XO(N),YO(N)

I=1

IF(X.LT.0.5%(X0(I+1)+X0(1+2))) GO TO 30
IF(X.GE.0.5+(X0(N-2)+X0(N-1))) GO TO 20

I=1+1

GO TO 10

I=N-2

M=I+2

Y=0.0

DO 60 J=1 .M

pP=1.0

DO 50 K=1,M

IF(J-K) 40,50,40
P=P*{X-X0(K))/(X0{(J)-X0(K))
CONTINUE

Y=Y+P*Y0({J)

RETURN

END

Fitting experimental data to find R,DR/DT at some time t. Befor
fitting, some points with repeat value are taken off according
certain rule.

SUBROUTINE INITIL(NN,T,R,I10,N,M,TO,R0,DRO)



2570.
2580.
2590.
2600.
2610.
2620.
2630.
2640.
2650.
2660.
2670.
2680.
2690.
2700.
2710.
2720.
2730.
2740.
2750.
2760.
2770.
2780.
2790.
2800.
2810.
2820.
2830.
2840.
2850.
2860.
2870.
2880.
2890.
2900.
2910,
2520.
2930.
2940,
2950.
2960.
2970.
2980.
2990.
3000.
3010.
3020.
3030.
3040,
3050.
3060.
3070.
3080.
3090.
3100.
3110.
3120.
3130.
3140.
3150.
3160.
3170.
3180.
3190.
3200.

O0OO00OO00OO0NOOO

C

C
C

20

40
50

40
30
10

60

70

DIMENSION T(NN),R{NN),RR(100),TT(100),AA(30,30),B(30)
NN---NUMBER OF POINTS TAKEN FROM DATA FOR TREATMENT

T---TIME NODES

R--~EXPERIMENTAL RADIUS AT T
10-~-FIRST POINT OF TREATMENT
N---NUMBER OF POINTS FOR FITTING
M-1---POWER OF POLYNOMIAL FOR FITTING

TO---AT THIS TIME,R & DR/DT ARE CALCULATED

RO---RADIUS AT TIME TO

DRO--- VELOCITY DR/DT AT TO
K---ORDERTH OF TO IN TT
TT---TIME NODES AFTER TREATMENT

KK=1
J=1
RR(1)=Rr{10)
Tr{(1)=T(10)
NNN=NN-1

DO 10 I=I0,NNN

IF (R(1+1).GT.R(1)) GO TO 20

KK=KK+1
GO TO 10
J=xJ+1
RR(J)=R(1+1)
TT(J)=T(1+1)

IF (KK.GT.1.AND.I.GE.I0+1) TT(J-1)=(T(1)+T(1~KK+1))/2.0

KK=1
CONTINUE
DO 40 K=1,N

IF (K.GT.3.AND.FLOAT(INT(TT(K))).EQ.TT(K)) GO TO 50

CONTINUE
TO=TT(K)

FOLLOWING CALL IS TO FIT EXPERIMENTAL POINTS
CALL MXCVFT(N,TT,RR,M,B,AA,K,T0O,R0,DRO)

RETURN
END

Least~squares fitting

SUBROUTINE MXCVFT(M,X,Y,N,B,AA,K,TO,R0,DRO)
DIMENSION X(M),Y(M),B(N),AA(N,N),R(50),DR(50)

DO 10 I=1,N
B(1)=0.0
DO 20 Jg=1,M

B(I)=B(I)+Y(J)*X(J)#**(1-1)

DO 30 L=1,N
AA(I,L)=0.0
DO 40 J=1,M

AA(I,L)=AA(I,L)+X(J)xr(L+1-2)

CONTINUE
CONTINUE

CALL GAUSS(N,AA,B,1.E-10,15W)

DO 50 I=1,M
R(1)=0.0
DR(1)=0.0 '
DO 60 J=1,N

R(I)=R(I)+B(J)*(X(1)*x(J~1))

po 70 J=2,N
DR(I)=DR(1)+B{(
EE=(Y(I)-R(1))
CONTINUE
TO=X{K)
RO=R(K)
DRO=DR(K)
RETURN

END

J)w
/Y

(X(1}%%(3-2))*FLOAT(J-1)
(1)-¥(1)+0.1)
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To calculate solution of a system of linear algebra egs.
SUBROUTINE GAUSS(N,A,B,EPS,ISW)

DIMENSION A(N,N),B(N)

NM1=N-1

DO 10 K=1,NM1
C=0.0

DO 2 I=K,N
IF (ABS(A(I,K))
C=A(1,K)
10=1
CONTINUE
IF (ABS{(C).GE.EPS) GO TO 3

1SW=0

GO TO 100

IF (I0.EQ.K) GO TO 6

DO 4 J=K,N

T=A(K,J)

Al(K,J3)=A(10,J)

A(10,J)=T

T=B(K)

B(K)=B(10)

B(10)=T

KP1=K+1

c=1.0/C

B{(K)=B(K)*C - -
DO 10 J=KP1,N

A(K,J)=A(K,J)*C

DO 20 I=KP1,N

A(1,3)=A(1,J)-A(1,K)*A(K,J)
B(J)=B(J)-A(J,K)*B(K)

B(N)=B(N)/A(N,N)

DO 40 K=1,NMt

I=N-K

C=0.0

IPI=]+1

DO 50 J=IP1,N

C=C+A(1,J)=B(J)

B{1)=B(1)-C

ISW=1

RETURN

END

.LE.ABS(C)) GO TO 2

Calculate the value of objective function
SUBROUTINE OBJFUN(X,M,N,RX)
DIMENSION X(N),RX{M),TT(300),RR(300),DDR(300)
COMMON/C6/L0,LR/C10/XX(3)
/c8/T(1000),R(1000)/C12/B1,B2,B3
XX(2)=x(1)

xxX(1)=xx(1)/B1

xxX(2)=xx(2)/B2

XX(3)=xx(3)/B3

CALL RNUM(300,XX,TT,RR,DDR)
RXR=0,0

DO 10 I1=LO,LR

TI=T(1)

CALL LAG(TT,RR,300,TI,Y1)
RX{1~LO+1}=(R{1}~¥1)
RXR=RXR+RX(1-L0+1)a=2

WRITE(6,*) XX,RXR

XX(1)=xXX(1)=B1

XX(2)=XX(2)*B2

XX(3)=XX(3)+B3

RETURN



3850, END

3860. /»

3870. //GO.FTO1F001 DD DSN=QSUN.ICE26,DISP=0LD
3880. 'GO.FTO02F001 DD DSN=QSUN.TIPI6,DISP=0LD
3890. //GO.FT04F001 DD DSN=QSUN.ICE6,DISP=OLD
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167

10. / JOB ', ,T=15',CLASS=A
20. // EXEC FORTXCLG,OPT=2,SI1ZE=512K

30. //FORT.SYSIN DD =
40. C FIND VALUES OF MATERIAL PARAMETERS BASED ON DATA FORM TRIXIAL
s0. ¢ TESTS OF ICE
60. C Program---X31, Estimate mu,alhpal by fitting r(t) MODEL 1
70, ¢ —ememeemmmeeo-
80. C when m=-2/3 is fixed.
90. EXTERNAL OBJFUN
100. DIMENSION W{9),PARM(4),XJAC(17,2),XJT3(6),X(2),
110. & HORK(47),F(17),DDA(1000),D(2),PD(2),AINV(2,2),Y(2,2),YY(2,2)
120. DIMENSION TT(1000),AA(1000),5(4,50),wx(17),wy(17),B(5),C(5,5)
130. COMMON/C1/T0,AO,DAO/tz/hI,LRR/C3/P/C8/T(50),A(so)/c12/n1,32,33
140, & /C5/%3
150. K=4
160. LI=17
170. LR=23
180. FCT1=2,131
190. FCT2=2.490
200, LRR=700
210. DO 10 I=1,37
220. READ(13,+*) T(1),s8(1,1),5(2,1),5(3,1),5(4,1)
230. 10 A(I)=1.-S(K,1)/100.
240, P=S(K,37)
250. N=12
260, DO 20 I=1,N
270. WX(I)=T(1) - - -
280. 20 wy(I)=a(1)
290. CALL MXCVFT(N,WX,WY,4,B,C,1,TO,AO0,DAO)
300. WRITE(6,500)
310. 500 FORMAT(//5X,'Compute the values of material parameters based",
320. & ' on the data from the trixial tests of polycrystalline ice’,
330. & /5%X,'when m=-.71 is fixed. MODEL 1 TEST#4"')
340. WRITE(6,510) S(K,35),5(K,36),5(K,37),T(1),T(LR),A(1),DAO,LI

3s0. 510 FORMAT(//SX,'Experimental temperature T=',F5.1,'C, Homogen',

360. & 'eous pressure v=',FB.0,'KPa, Axial stress sigma=',F6.0, 'KPa’,
370. & /5X,'Initial time tO=',F5.1,' day, Termative time tl=',F5.1,
380. & ' day',/SX,'Initial stretch a(t0)=',F10.5,

390. & Initial stretching da(t0)/dt=',F10.6 ,*' 1/day’,

400. & /5X,'Number of points for fitting=',I12)

410. x(1)=2000.

420. X(2)=2,E+5

430. X3=-,71

440. Bi=1,

450. B2=1,

460. B3=1,

470. WRITE(6,520) X,B1,B2

480. 520 FORMAT(//SX,'Initial values of material parameters X=',62E15.5,
490, & /5X, where x1,x2-~-mu,alphai',/5X, 'Multipliers for X BI1,',
500. & 'B2,=',2E11.3)

510. N=2

520. NSIG=3

530. MAXFN=500

540. M=L]T

550. IXJAC=M

560. EPS=0.1E-8

570. DELTA=0. 1E-8

580. 10PT=2

590. PARM{1}=0.0001

600. PARM(2)=1.5

610. PARM(3)=120.

620, PARM{(4)=1.E-7

630. WRITE(6,170) NSIG,EPS,DELTA,IOPT, PARM

640. 170 FORMAT(/5X,'Given parameters in subroutine ZXSSQ:',



650.
660.
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730.
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) NISG=',11,3x, EPS=",E7.1,3X, ‘DELTA="',E7.1, /5%,
"10PT=",11,3X, 'PARM(1)="',4(E10.4,3X%))
WRITE(6,118)

FORMAT(/5X,* MU:', 14X, 'ALPHAY: ', 8X,

"OBJECTIVE FUNCTION F: IN ITERATION')

FOLLOWING CALL IS FOR ITERATION IN OPTIMIZATION

CALL ZXSSQ(OBJFUN,M,N,NSIG,EPS,DELTA, MAXFN, 10PT,

PARM, X,SSQ,F,XJAC, I1XJAC,XJTJ,WORK, INFER, IER)

WRITE(6,190) INFER,IER

FORMAT(/SX,'Convergence criterion INFER=",11,

5X,'error parameter IER=',13)

WRITE(6,117) X(1),X(2),s8s0

FORMAT(/5X,'After iteration,the material moduli mu="',
E10.4,3x,'alphai=",E10.4,3X, 'Objfun=",E10.4)

WRITE(6,222)

FORMAT(/SX, 'The first five elements of array WORK:')
WRITE(6,*) WORK (1) ,WORK(2),WORK(3),WORK(4),WORK(5)
WRITE(6,210)

FORMAT(/5X, 'XJAC,Gradient of Residuals w.r.t. X',18X,'Residuals
DO 60 1=1,LI

WRITE(6,260) XJAC(I,1),XJAC(I,2),F(1)
XJAC(I ,1)=XJAC(1,1)=B1
XJAC(1,2)=XJAC(1,2)*B2
XJAC(I,2)=XJAC(1,2)*B2
FORMAT(5X,2(E11.4,5X),20X,E10.4)
DO 30 1=1,N -

DO 40 J=1,N

DO 50 11=1,L1
Y(I,3)=Y(1,3)+XJAC(II,1)*XJAC(11,T)
YY(I,3)=¥(1,3)

CONTINUE

TOL=0.0

I1A=N

IAINV=N

CALL GJ(Y,SSS,N,EP)

WRITE(6,270)

FORMAT(/SX, 'Matrix XJACT*XJAC',20X,'Inverse of XJACT*XJAC')
DO 80 I=1,N

WRITE(6,280) yy(1,1),vYY(1,2),¥(1,1),¥(1,2)
FORMAT(5X,2(E10.4,3x),10%,2(E10.4,3X))

DO 90 1=1,N

D(I)=(SSQ*Y(1,1)/FLOAT(LI-2))*%(0.5)

PD(1)=2.046*D(1}

Gli=X(1)-FCT1*D(1)

G12=X(1)+FCT1*D(1)

G21=X(2)-FCT1*D(2)

G22=X(2)+FCT1*D(2)

H11=X(1)-FCT2+*D(1)

H12=X(1)+FCT2+D(1)

H21=X{(2)-FCT2*D(2)

H22=X(2)+FCT2*D(2)

WRITE(6,290) D(1}),D(2),G6711,G12,621,G22,H11,H12,H21,
H22,FCT1,FCT2

FORMAT(/SX,’SE(mu)=’,E10.4,5X,'SE(alpha1)=',EIO.4,5x,
/5%, "95% confidence interval of mu: [,
E10.4,' , ',E10.4,']',/S5X,'of alphal: [',E10.4,' , ‘,E10.4,'}",

5X,/5X, 'Bonferroni confidence’

' interval of mu: [',E10.4,' , "JE10.4,']"',/5X,'0f alphal: [',
E10.4,"' , ',ElO.4,']',/5X,

'95% factor=',F6.3,5X, 'Bonferroni factor=',F6.3)

WRITE(6,570)

FORMAT(/S5X, 'NOTATION: a---Experimental value of 1(t)/L,",

' aa---Predicted value of l(t)/L',", Error---100+«(a-aa)/a')
CALL RNUM(LRR,X,TT,AA,DDA)
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WRITE(6,540)

FORMAT(//GX ‘Time (Day):',8X,'a:',15X,'aa
* (1/day):',5X, daa/dt/aa (1/day):"’

DO 44 I=1, LR

TI=T(1)

CALL LAG(TT,AA,LRR,TI,Y1)

CALL LAG{TT,DDA,LRR,TI,Y2)
22=Y2/Y1

Ci=1-a(1)

C2=1-Y1

WRITE(09,+*) T(1),C1,C2
ER=100.*(A(1)-Y1)/A(1)
WRITE(6,560) T(1),A(1),Y1,Y2,22,ER

FORMAT(10X,F5.1,5X,F10.5,8X,F10.5,10X,F10.7,10X,F10.7,12X,F10.5

CONTINUE
STOP
END

, 13X, 'daa/dt: "
,6X,'Error (%):')

To calculate numerical solution of set of diff. egs.

SUBROUTINE CMLAMB(N,H,L,Y,DY,YC, YK, XX)

DIMENSION Y(N), DY(N) YC(N) YK(S N),B(4),A(4,4),XX(3)

DATA B/O. 11979165666 0.0,0. 6510416666 0. O/,A/O 3333333333,
111111111111,0,0,
.0,0.098765432/

0.16,0.25,0. 0740740740 0.0,0.24,-3.0,1.
0.0,3.75,—0.6172839506,0.0,0.0,0
1F(L) 12,10,12

DO 1 I=1,N -
YK(S5,1)=Y(1)

CALL DIFUN(N,Y,DY,XX)

RETURN

DO 3 K=1,4

DO 2 I=1,N

YK(K,I)=DY(1)

YC(1)=wYK(S,I)+H~x(A(K, 1) *YK(1,I)+A(K,2)*YK(2,1)+

A(K,3)*YK(3,1)+A(K,4)*YK(4,1))
Y(I)=Y(I)+H*B(K)*YK(K,1)

CALL DIFUN(N,YC,DY,XxX)

DO 7 1=1,N

YC(I)=YR(S,1)+H*(0.08+YK(1,1)+0.48*YK(2,I)+

0. 13333333333*YK(3 1)+0. 106666666666666'YK(4 1))

Y{1)=Y(I)-H»0. 421875'DY(I)
CALL DIFUN(N,YC,DY, XX)

DO B I=1,N
Y{I)=Y(1)+H*0,6510416666*DY(1)
GO TO 10

END

To calculate function on right side of a set of diff. egs.

SUBROUTINE DIFUN(N,Y,DY,X)
DIMENSION Y(N), DY(N) x(2)
COMMON/CJ/P/ts/x3
DY(1)=1,
DY(2)=Y(3)

YY=-Y(3)/Y(2)

’

DY(3)=Y(2)2((P/3.43.#%(X3/2.)#X(1)*YY*n(1,+X3))/%X(2)

& +YYn22)

RETURN
END

To calculate numderical solution R,DR/DT

SUBROUTINE RNUM(K,XX,TT,RR,DDR)

DIMENSION XX(3), v(s) DY(3) YCc(3),YK(5,3),T7(K),RR{K),DDR(K)

COMMON/C1/T0, R0, DRO
Y(1)=TO
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Y{2)=R0

Y{3)=DRO

CALL CMLAMB(3,0.001,0,Y,DY,YC, YK, XX)
TT(1)=TO

RR(1)=R0

DDR( 1) =DRO

DO 10 I=2,K

H=0.05

CALL CMLAMB(3,H,1,Y,DY,YC,YK,XX)
WRITE(6,*) Y

TT(I)=Y(1)

RR{1)=Y(2)

DDR(1)=Y(3)

RETURN

END

Lagrange's interpolation for variable distence by three points
SUBROUTINE LAG(X0,YO,N,X,Y)

DIMENSION XO(N),YO(N)

I=1

IF(X.LT.0.5%(X0(1+1)+X0(1+2))) GO TO 30

IF(X.GE.0.5% (X0(N-2)+X0(N-1))}) GO TO 20

I=]+1

GO TO 10

I1=N-2 . - .
M=1+2

Y=0.0

DO 60 J=I,M

P=1.0

DO S50 K=l,M

IF(J-K) 40,50,40

P=P* (X~-XO0(K))/(X0(J)-X0(K))

CONTINUE

Y=Y+P*YO0(J)

RETURN

END

SUBROUTINE MXCVFT(M,X,Y,N,B,AA,K,TO,R0,DRO)
DIMENSION X(M),Y(M),B(N),AA(N,N),R(50),DR(50)
po 10 1=1,N

B(1)=0.0

DO 20 J=1,M

B(I)=B(1)+Y{(J)*X(J)**(1-1)

DO 30 L=1,N

AA(I,L)=0.0

DO 40 J=1,M

AA(I,L)=AA(1,L)+X(J)*x(L+1-2)

CONTINUE

CONTINUE

CALL GAUSS(N,AA,B,1.E-10,15W)

DO 50 I=1,M :
R{(1)=0.0

DR(1)=0.0

DO 60 J=1,N

R{I)=R{I)+B(I)*(X(1)**(3-1))

DO 70 J=2,N
DR(I)=DR(I)+B(J)*x(X{1)**(J-2))*FLOAT(J-1)
EE=(Y(I)-R(I1)})}/(¥(1)-¥(1)+0.1)

CONTINUE

TO=X(K)

RO=R(K)

DRO=DR(K)

RETURN
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END

Find solution of a system of linear algebra egs.
SUBROUTINE GAUSS(N,A,B,EPS,1SW)

DIMENSION A(N,N),B(N)

NM1=N-1

DO 10 K=1,NM1
C=0.0

DO 2 I=K,N

IF (ABS{A(I,K))
C=A(1,K)

10=1

CONTINUE

IF (ABS(C).GE.EPS) GO TO 3
15W=0

GO TO 100

IF (10.EQ.K) GO TO 6

DO 4 J=K,N

T=A(K,J)

A(K,J)=A(10,3)

A(10,3)=T

T=B(K)

B(K)=B(10)

B(10)=T

KP1=K+1

c=1.0/C

B(K)=B(K)=*C

DO 10 J=KP1,N
A(K,J)=A(K,J)*C

DO 20 I=KP1,N
A(T1,3)=A(1,3)-A(1,K)*A(K,J)
B(J)=B(J)-A(J,K)*B(K)
B(N)=B{N)/A(N,6N)

DO 40 K=1,NM1

I=N-K

C=0.0

IPI=I+1

DO SO J=IPT,N
C=C+A(I,J)*B(J)
B(1)=B(1)-C

ISW=1

RETURN

END

.LE.ABS(C)) GO TO 2

Inverse of symmetric positive define matrix
SUBROUTINE GJ(A,B,N,EP)
DIMENSION A(N,N),B(N)
EP=1,

DO 10 K=1,N

KK=N-K+1

w=A{1,1)

IF(W.LE.O0.) GO TO 30

DO 20 1=2,N

G=A(1,1)

IF(I-KK) 2,2,3

B(1)=G/w

GO TO 4

B({1)}=-G/W

DO 20 J=2,1
A{1-1,3-1)=A(1,3)+G*B(J)
A(N,N)=1./w

DO 10 I=2,N
A(N,1-1)=B(1)

RETURN
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30

3220.
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/*

EP=-EP
RETURN
END

Calculate the value of objective function
SUBROUTINE OBJFUN(X,M,N,RX)

DIMENSION X(N),RX(M),TT(1000),AA{1000),DDA(1000)
COMMON/C2/L1,LRR

/CB/T(50),A(50)

CALL RNUM(LRR,X,TT,AA,DDA)

RXR=0.0

DO 10 1=1,LI

Ti=T(1)

CALL LAG(TT,AA,LRR,TI,Y1)

RX(I)=A(I)-Y1

RAR=RXR+RX(1)*»2

WRITE(6,*) X,RXR

RETURN

END
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