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Abstract

The central nervous system (CNS) is made up of neurons and glial cells. Information is trans-

mitted along axons to other neurons, muscles, or glands. Recent studies indicate possible

changes in axon diameter distributions associated with diseases such as Alzheimer’s disease,

autism, dyslexia, and schizophrenia. Magnetic resonance imaging (MRI) techniques such as

diffusion MRI can be used to probe the tissue microstructure of the brain noninvasively. Current

MRI axon diameter measurements rely on the pulsed gradient spin echo sequence which cannot

provide short enough diffusion times to measure small axon diameters. Recent advances have

allowed oscillating gradient (OG) diffusion MRI to infer the sizes of micron-scale axon diam-

eters. Monte Carlo simulations of cosine OG sequences were conducted on a parallel cylinder

(diameters 1 to 10 µm) geometry. For feasible experiments on a Bruker BG6 gradient set, the

simulations inferred diameters as small as 1 µm on square packed and randomly packed cylin-

ders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise

ratio (SNR) with smaller diameters more affected by noise although all diameter distributions

were distinguishable from one another for all SNRs tested. Five frequencies were adequate

for d = 3 – 5 µm with single-sized cylinders and for effective mean axon diameters (AxD)

greater than 2 µm for cylinders with a distributions of diameters. There was some improve-

ment in precision for d = 1 – 2 µm with 10 frequencies. It was better to repeat measurements

at higher gradient strengths than to use a range of gradient strengths. Data were collected from

a portion of normal-appearing corpus callosum from an autopsy human brain, which did not

demonstrate any pathological changes. The average fitted AxD was 2.0± 0.2 µm, while AxD

obtained from electron microscopy was 1.4±0.2 µm. Fitted AxD showed more variability be-

low 7 OG frequencies and little change when using two or three gradient strengths, agreeing
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with the simulations.
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Chapter 1

Introduction

1.1 Purpose(s)

Magnetic Resonance Imaging (MRI) is a powerful tool for neuroscience. It can provide infor-

mation about the structure of central nervous system (CNS) tissue non-invasively. The resolu-

tion of human MRI is typically on the order of 1 mm3 and for mouse MRI around 100 µm3 [85].

This resolution is not high enough to see very small structures, such as axons, in the images.

Axon diameters are on the order of 1 µm, so a single voxel can contain hundreds of thousands

of axons [74]. Thus MRI provides macroscopic tissue information.

Recent advances in the development of the capabilities of MRI have allowed MRI to infer

the sizes of compartments in samples that are on the order of microns in diameter. Recently

there has been a push in MRI to determine axon diameter distributions and density of axons in

fibres within the CNS [7, 11]. The methods are currently used on humans and can infer axon

diameters as small as 5 µm [45]. These new developments rely on diffusion-weighted MRI,

which is described below.

Mouse axons are much smaller than 1 µm [175] which makes the current method irrelevant

for rodent studies. Rodent models of CNS disorders provide researchers with an important

tool to study CNS disorders. Because existing methods can infer diameters above 5 µm, this

thesis mainly focuses on diameters between 1 to 5 µm. With the method developed it can be

applied to rodent models to study the changes in fibre composition due to CNS disorders such
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as Alzheimer’s, schizophrenia, autism, or cancer.

1.2 Thesis Organization

This section gives brief descriptions of the upcoming chapters of this thesis. It provides an

overview of the projects and purpose of the work done as part of this thesis. MRI is explained,

diffusion is explained, and the projects completed as part of the thesis are explained.

1.2.1 An Introduction to MRI

MRI uses magnetization of hydrogen nuclei when placed in a magnetic field to generated sig-

nals and images. Magnetic resonance signals and images in the body depend on microscopic

properties of the tissues being imaged. Because of the abundance of water in the human body,

soft tissue signal from the body or brain typically comes from the water in the tissue. Dif-

ferences in water content and tissue types are a source of image contrast (for example cere-

brospinal fluid (CSF), grey matter and white matter in the brain). Pulse sequences manipulate

hydrogen nuclei signals, making them depend on quantities such as proton density (see Section

2.3) or T1 and T2 (see Section 2.1) relaxation times. Basic principles behind MRI are described

in Chapter 2.

Quantitative MRI methods combine many types of images to calculate quantities like dif-

fusivity of water, T1, and T2 relaxation times, or other tissue properties. We use diffusion MRI

because of its ability to probe microscopic length scales. A brief description follows, but the

full description of the methods and capabilities of diffusion MRI are given in Chapter 3.

1.2.2 An Introduction to Diffusion

Molecules in a liquid undergo diffusion. Their mean square displacement depends on the dif-

fusion time, ∆, as described by Einstein’s relation 〈x2〉 = 2D∆ (in one dimension), where D

is the diffusion coefficient [77]. Molecules diffusing in a uniform medium with no barriers

experience unrestricted diffusion. In many media (e.g. porous samples and cellular tissues)

barriers, such as cell walls, restrict molecular displacements so that the diffusion depends on
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the time scale of the study and the permeability of the barriers. Einstein’s relation can be used

to find an apparent diffusion coefficient (ADC) that is less than D because of restrictions. Un-

derstanding the influence of the restrictions on the ADC gives information about the geometry

of the boundaries of the surrounding medium.

Assuming water molecules are diffusing within an impermeable cylinder of radius a, one

can find the theoretical formula for ADC as a function of ∆ [10, 15, 127, 128, 184]. If the

sample contains many parallel cylinders of different radii, ai, one can sum together the expected

formulae with proper weighted factors to find the expected ADC for the sample as a function

of ∆. With MRI data, one can use the measured ADC as a function of time with the formula to

find the radii and weighting factors so that the radii and density of cylinders in the sample can

be inferred.

1.2.3 Diffusion MRI

Traditional MR measurements of the ADC in different samples use the Pulsed Gradient Spin

Echo (PGSE) sequence. After excitation, a magnetic field gradient pulse is applied to the

sample for a short time. This causes the magnetic moments of the hydrogen nuclei (or “spins”)

to obtain a phase based on their position at the time of the pulse. A 180◦ radiofrequency (RF)

pulse is then applied to the system which reverses the phase of the spins. Another identical

gradient pulse is applied to the sample which changes the phase of the spins based on their

position at the time of the second pulse (∆). If no diffusion has occurred, the phase acquired

from the second pulse will be equal and opposite to the phase of the spin just before the pulse

resulting in a net phase of zero. If diffusion occurs, the mean squared phase of all spins will

be nonzero and cause a loss in MR signal which can be used to calculate the ADC. Figure 1.1

shows a diagram of the spins in a PGSE sequence.

The key to providing a good inference of radii is the choice of the times, ∆, of the measure-

ments. For very short ∆, few water molecules have interacted with the boundaries so the ADC

is large. As ∆ increases slowly, more and more water molecules interact with the boundaries

causing a rapid decrease in the ADC. Around the time when 〈x2〉= a2 for a cylinder of radius

a, most water molecules will have interacted with the barriers at least once [145]. At much
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90° pulse

180° pulse

1st Gradient

2nd Gradient

90° pulse

1st Gradient

180° pulse

2nd Gradient

(Particles remain stationary) (Particles switch positions)

Net phase is zero Net phase is nonzero

Without diffusion With diffusion

Figure 1.1: After the 90◦ RF pulse, a rectangular gradient is applied to the sample. This causes
the spins to obtain a phase dependent upon their position at the time of the pulse. The 180◦

pulse reverses the phases of the spins. The second gradient pulse again causes the spins to
obtain a phase dependent upon their position. In the case of no diffusion, the net phase of the
spins will be zero. If diffusion has occurred, the net phase of the spins is nonzero, leading to a
smaller signal.
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longer times the ADC becomes essentially constant making the inference of the restriction size

impossible with this method.

The PGSE sequence requires that ∆ be large with respect to the restriction sizes in biolog-

ical tissues, thus limiting the information that could be obtained from the measurements. For

instance, water inside an axon can be approximated as water inside a cylinder in the above

model. To infer the diameter and surface to volume ratio of the axon, ideally ∆s around a2/2D

need to be used [145]. Unfortunately, the PGSE sequence cannot be used with these short diffu-

sion times because of hardware restrictions such as gradient amplitudes, and timing restrictions,

such as RF pulse times.

Using the oscillating gradient spin echo (OGSE) sequences, square gradient pulses are

changed to sinusoidal pulses. Each sine wave acts as diffusion-weighting, so with high fre-

quency sine waves, the effective diffusion-time can be made small [35,43,58,81,106,139,140,

143, 144, 154, 190]. Additional sine waves can be used to increase the diffusion-weighting so

that the ADC can be measured. However, only in the case of unrestricted diffusion can these

multiple diffusion-weighting periods be considered independent. Thus, the signal attenuation

should be described in terms of a frequency spectrum rather than the diffusion-time. Choosing

the appropriate OGSE sequence allows for sampling a narrow frequency domain of the diffu-

sion spectrum and thus provides a straightforward means of characterizing this spectrum. Using

temporal diffusion spectroscopy [140], the effective diffusion times are changed by changing

gradient frequencies, and a spectrum of diffusion rates can be measured which describe the

biological tissue microenvironment [43, 56, 98, 139, 140, 192, 193, 194, 196]. The principles of

diffusion MRI are described more fully in Chapter 3.

1.3 Inferring Restriction Sizes Using OGSE MRI

We have developed a Monte Carlo computer simulation of OGSE MRI sequences (described in

Section 3.5). The simulations allow us to generate diffusion-weighted signals for different tis-

sue geometries. We found that OGSE frequencies corresponding to scales in the range between

completely restricted and free diffusion best distinguish restriction sizes (e.g. axon diameters)
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under 10 µm in size. Combining these simulated measurements (or signals) with tissue models

such as AxCaliber [11] (described in more detail in Chapter 4) and ActiveAx [6, 7] allows for

the inference of restriction sizes in the samples. The AxCaliber model estimates axon diameter

distributions and axon density, while the ActiveAx estimates a single axon diameter index, also

called the “effective mean axon diameter.”

In the AxCaliber model, axons are assumed to consist of non-overlapping parallel cylin-

ders. Experimental (or simulated) MRI signals can then be fit to a theoretical model so that

axon distributions can be calculated. In Chapter 4, we perform simulations with a variety of

axon diameter distributions and axon densities. Our simulations show that it is possible to infer

diameters as small as 1 µm using gradient strengths available on our Bruker BG6 gradient set

(maximum gradient strength 1.01 T/m). For now, the method requires the axon orientation to

be known, but this requirement may be relaxed in the future. We also tested the model with dif-

ferent levels of signal noise. Much of the material in Chapter 4 has been published as a journal

article entitled “Assessing the accuracy of using oscillating gradient spin echo sequences with

AxCaliber to infer micron-sized axon diameters” in Magnetic Resonance Materials in Physics,

Biology, and Medicine [118].

In Chapter 5, we use a two compartment model on our simulated data (including signal

noise). Instead of extracting the full axon distribution, the model extracts an index of axon

diameter AxD [7]. Because image acquisition can be very time-consuming, we are interested in

how data with fewer OGSE frequencies and fewer gradient strengths affects parameter accuracy

and precision. We also look at how the model performs with different maximum gradient

strengths. Much of the material in Chapter 5 has been published as a journal article entitled

“Toward faster inference of micron-scale axon diameters using Monte Carlo simulations” in

Magnetic Resonance Materials in Physics, Biology, and Medicine [117].

In Chapter 6, we use an ADC model valid at short-times on our simulated data [90, 94,

122, 124, 140, 155, 157, 169, 200]. This model is used to extract surface to volume ratios and

diffusion coefficients. We are interested in the accuracy of the parameters, with and without

signal noise. We first explore the conditions for acceptable accuracy, then we experiment with

using fewer OGSE frequencies and fewer gradient strengths, with an interest in knowing how
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removal affects accuracy and precision of parameters.

In Chapter 7, we use a two compartment model on MR data acquired from a portion of

human brain. We are interested in how data with fewer OGSE frequencies and fewer gradient

strengths affects parameter accuracy and precision.

1.4 Conclusions

Chapter 8 summarizes the thesis and discusses the next steps for the project.
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Chapter 2

Nuclear Magnetic Resonance

Nuclear magnetic resonance uses a strong magnetic field and radiofrequency pulses to generate

images. A basic outline of its principles is described in this chapter.

2.1 Nuclear Magnetic Resonance

2.1.1 Magnetic Moments

Nuclei possess an intrinsic angular momentum called spin. The existence of spin gives rise to

nuclear magnetism. The magnetic field from the spin would be similar to that of a bar magnet,

where field lines leave one pole of the proton and return to the other pole. Let µµµ be the nuclear

magnetic dipole moment and JJJ be the spin angular momentum. Then

µµµ = γJJJ (2.1)

where γ is called the gyromagnetic ratio and depends on the type of nucleus. Sometimes, a

quantity γ/2π, having units of MHz/T, is given instead. Typical values of γ/2π for magnetic

resonance are 42.58 MHz/T for hydrogen nuclei (1H) and 10.71 MHz/T for 13C [100].

From quantum mechanics, we know that all the components of µµµ cannot be measured si-

multaneously. The magnitude of the magnetic moment is

|µµµ|= γ~
√

I(I +1) (2.2)
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where I is the spin quantum number, which depends upon the specific nuclei and ~ is the

reduced Planck’s constant (~ = 1.05 × 10−34 J·s). The spin quantum number can take on

zero, half-integer, or integer values (I = 0, 1/2, 1, 3/2,. . . ). There are a few general rules for

determining I. Nuclei with odd mass numbers have half-integer spins. Those with even mass

number and even charge have I = 0. Those with even mass number and odd charge have integer

spins [86]. Nuclei such as 1H, 13C, 19F, and 31P are all spin-1/2 systems where I = 1/2 [100].

Only nuclei with nonzero spin can be excited during an MR experiment.

Without an external magnetic field, each individual µµµ is randomly oriented due to thermal

motion. This situation is analogous to compass needles on a vibrating table. Therefore, there

is no net macroscopic magnetization. To generate a net magnetization, we need to align the

µµµ vectors. We use a strong external magnetic field B0. Assume a static field pointing along

the z-axis BBB = B0k̂̂k̂k (the z-axis is chosen by convention). We know from quantum mechanics

that only one component of µµµ can be measured at a time and that this component is discretized.

Assuming that the z-component is measured, we have

µz = γmI~ (2.3)

where mI is the magnetic quantum number. For a given I, mI ranges from −I to I in integer

steps (mI = −I, −I+1,. . . , I−1, I). This means that µz can take on 2I+1 possible values. The

angle between BBB and µµµ can be expressed as

cosθ =
µz

|µµµ|
=

mI√
I(I +1)

(2.4)

The magnetization is quantized along the direction of the main field. The transverse com-

ponent of µµµ is randomly oriented in the transverse plane. Therefore, µµµxy can be written as

µµµxy = µxî̂îi+µy ĵ̂ĵj. Now [100],

µx = |µxy|cosξ

µy = |µxy|sinξ

(2.5)

where ξ is a uniform random variable in the interval [0,2π). The magnitude of the transverse
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component is

|µµµxy|=
√

µ2−µ2
z = γ~

√
I(I +1)−m2

I (2.6)

As an example, we can calculate θ and |µxyµxyµxy| for a spin-1/2 system (I = 1/2, mI = ±1/2). In

a spin-1/2 system spin vectors can take on two possible orientations, either parallel or anti-

parallel. The angle between µµµ and BBB is θ = ±54◦, while the magnitude of the transverse com-

ponent is |µµµxy|= γ~/
√

2.

Next, we derive, with a classical treatment, the behaviour of µµµ in a static magnetic field B0k̂̂k̂k.

The time derivative of the spin angular momentum J is

dJJJ
dt

= µµµ×B0k̂̂k̂k (2.7)

which can be rewritten as an equation of motion for isolated spins,

dµµµ
dt

= γµµµ×B0k̂̂k̂k (2.8)

using Eq. 2.1. The solution to Eq. 2.8 is

µxy(t) = µxy(0)e−iγB0t

µz(t) = µz(0)
(2.9)

where the transverse component µxy = µx + iµy = µxî̂îi+µy ĵ̂ĵj has been rewritten as a complex ex-

ponential. Eq. 2.9 describes a precession of µµµ about BBB, a phenomenon called nuclear precession.

The precessing magnetization has angular frequency γB0 and rotates in the clockwise direction.

The precession frequency ω0 = γB0 is known as the Larmor frequency. Precession could also

be described using rotation matrices. If R = R(θ) describes a rotation of θ about the z-axis,

then we can write the time dependence of µµµ as µµµ(t) = R(ω0t)µµµ(0) [100]. A representation of

the precession is shown in Figure 2.1.
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m

z

x
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B0

Figure 2.1: Precession of nuclear spin (µµµ) about an external magnetic field BBB0.

2.1.2 Bulk Magnetization

We denote the sum of all microscopic magnetic moments in a macroscopic object as the bulk

magnetization M. If we have a collection of Ns magnetic moments µn, then M is

MMM =
Ns

∑
n=1

µµµn (2.10)

We mentioned in Section 2.1.1 that each µµµn takes on a different orientation in the B0-field.

The energy of a magnetic dipole in a magnetic field is

E =−µµµ ·BBB =−γ~mIB0 (2.11)

There are two energy states, E↑ and E↓, corresponding to the two possible values of mI (±1/2).

One is a low energy state and the other is a high energy state, separated by an energy difference

∆E = E↓−E↑ = γ~B0 (2.12)

The energy separation in a magnetic field is called Zeeman splitting, shown in Figure 2.2.

The spin population difference is related to the energy difference between states and to the
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B0 = 0

E = �hB0/2

E = -�hB0/2

B0 > 0

Figure 2.2: Zeeman splitting in a spin-1
2 system. When a nonzero magnetic field, B0k̂̂k̂k, is added

to a spin-1/2 system two energy levels exist with energies −γ~B0/2 and +γ~B0/2. The energy
difference is γ~B0.

temperature of the system (Ts). We can make use of the Boltzmann relation [31],

N↑
N↓

= exp
(

∆E
kBTs

)
(2.13)

where kB is the Boltzmann coefficient (kB = 1.38×10−23 J/K). Usually ∆E� kBT , so that we

can use small exponent approximation,

N↑
N↓
≈ 1+

γ~B0

kBTs
(2.14)

From here, we can find the population difference

N↑−N↓ ≈ Ns
γ~B0

2kBTs
(2.15)

There is a small excess of spins in the lower energy state. The lower energy state is more stable,

so more spins choose it. Even though ∆N is small, it still generates an observable macroscopic

magnetization in the sample. Figure 2.3 shows the basic idea behind spin alignment.

If we expand MMM into its components, we have

MMM =
Ns

∑
n=1

µµµx,n +
Ns

∑
n=1

µµµy,n +
Ns

∑
n=1

µµµz,n (2.16)
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Figure 2.3: Nuclear magnetic moment vectors (a) randomly oriented (with no field) (b) aligned
parallel or anti-parallel to an external magnetic field. Without a magnetic field the net magne-
tization is zero. With a magnetic field, the net magnetization is nonzero and points in the same
direction as the field.

where µµµx,n, µµµy,n, and µµµz,n are the projections of µµµn along each axis. we know that µµµz,n is ±γ~/2,

depending on the whether µµµ is parallel or anti-parallel. The sum of the x- and y-components of

µµµn are zero because the individual µµµxy (transverse components) have random phases.

In terms of the population difference ∆N, the magnetization is

MMM =

( N↑

∑
n=1

1
2γ~−

N↓

∑
n=1

1
2γ~
)
=

1
2
(N↑−N↓) (2.17)

At equilibrium it points in the z-direction. Its magnitude is

M0
z = |MMM|= γ2~2B0Ns

4kBTs
(2.18)

It is linearly proportional to the field strength and to the total number of spins in the system. It

is inversely proportional to the temperature. In an object, the number of spins available is fixed,

so one can vary B0 or Ts to change the magnetization. MRI experiments are typically going to

be performed at room temperature (or at body temperature), so that Ts is fixed. The only way

to increase the magnetization is to increase the field strength.

On clinical scanners, B0 typically ranges from 0.5 T to about 3 T [14]. As an example of

the magnitude of the quantities, assume a magnetic field of 1 T. The population difference as a

fraction of the total number of spins is ∆N/Ns ≈ 3 per million, so approximately 3 protons per
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million are available for generating a MR signal [82]. At 3 T, the proportion would be three

times greater (i.e. approximately 9 protons per million).

The Larmor frequency is the natural frequency of the spin system. The angular frequency

depends on B0 and gyromagnetic ratio of the material, so each species of nuclei will have its

own Larmor frequency. For example, 1H has ω0/2π = 42.58 MHz in a 1 T field [100]. This

makes it possible to choose one species of nuclei to image without disturbing the others.

2.1.3 Magnetic Field Inhomogeneities

Many spin systems contain a range of resonance frequencies. This might happen if there are

inhomogeneities in the applied magnetic field. When the B0-field is inhomogeneous, then the

Larmor frequency is spatially dependent. We call a group of nuclear spins with the same reso-

nance frequency an isochromat. Another possible reason for a range of Larmor frequencies is

due to the chemical shift effect which occurs because nuclei in different chemical environments

resonate at slightly different frequencies [96]. The surrounding electrons shield the nucleus, so

that it experiences an effective field

B̂0 = B0(1−δ) (2.19)

where δ is called the shielding constant. Its resonance frequency is shifted by ∆ω = δω0.

Chemical shift means that even if B0 is homogeneous, there may be a range of resonance

frequencies present in the sample. The exact value of δ depends on the chemical environment

near the nucleus. For example, some hydrogen nuclei in fat (CH2), have a chemical shift of

around 3.35 ppm from water (H2O) [100]. In biological samples, we could have a range of

δ values. Suppose that the maximum chemical shift in a sample is ωc/2, where ωc is called

the chemical shift frequency bandwidth. We could express the range of resonance frequencies

as |ω−ω0| < ωc/2. Chemical shifts are used to identify molecular structure using nuclear

magnetic spectroscopy.
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2.1.4 RF Excitation

An applied magnetic field BBB generates a net magnetization MMM in an object that points along the

direction of the field. Each individual microscopic moment has a transverse component, but

because they have random phases, there is no macroscopic transverse component. Resonance

refers to the establishment of phase coherence among the spins. One way to think about reso-

nance is to imagine children on a set of identical swings at a playground. Usually, the children

are out of phase with each other. If an external force is applied at the natural (or resonant)

frequency of the swings, then eventually the children will be in phase with each other. The

situation in MRI is similar. We need to apply some kind of external force to the spins to make

them go in phase. For a magnetized system, we use a small oscillating magnetic field B1(t) to

generate phase coherence. The B1-field has the same frequency as the spin-system.

To describe the resonance phenomenon fully, we need a quantum mechanical model. Ac-

cording to Planck’s law, the energy of electromagnetic radiation with frequency ωrf is E = ~ωrf.

To generate a coherent transition of spins from one energy state to another, the radiation energy

needs to be the same as the energy difference between states:

~ωrf = ∆E = γ~B0 (2.20)

Therefore, the resonance condition requires that ωrf = ω0.

2.1.5 RF Pulses

The B1-field is of short duration (ms or µs) and in the radio-frequency range. It is also much

weaker than the main field (e.g. B1 = 50 mT vs B0 = 1 T [100]). A typical B1-field could be

described by

BBB1(t) = 2Be
1(t)cos(ωr f t +φ)î̂îi (2.21)

where Be
1(t) is called the envelope function and φ is a phase angle [100]. This choice of B1(t)

is said to be linearly polarized along the x-axis because it oscillates in the x-direction. Eq. 2.21

can be decomposed into two circularly polarized fields, one traveling clockwise and the other
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counterclockwise:

BBB1(t) = Be
1(t)[cos(ωr f t +φ)î̂îi− sin(ωr f t +φ) ĵ̂ĵj]

+Be
1(t)[cos(ωr f t +φ)î̂îi+ sin(ωr f t +φ) ĵ̂ĵj]

(2.22)

The counterclockwise component rotates in the opposite direction as the spins and has little

effect on the system, so we can just consider the clockwise component:

B1(t) = Be
1(t)[cos(ωr f t +φ)î̂îi− sin(ωr f t +φ) ĵ̂ĵj] (2.23)

Note that this can be written in complex form:

B1(t) = Be
1(t)e

−i(ωr f t+φ) (2.24)

Since φ has no real effect on the excitation result, we take it to be zero from now on. The RF

frequency ωr f is usually constant over time and is chosen based on the resonance condition.

The envelope function is important because it determines the shape and duration of the pulse.

RF pulses are usually named based on the shape of Be
1(t) (e.g. whether it be a sinc function,

a rectangular function, etc). More discussion as to why the shape of the RF pulse is important

can be found in Section 2.3.

2.1.6 Rotating Frame

It is easier to describe the excitation process using a rotating frame of reference that rotates at

angular frequency ω about the z-axis and has orthogonal coordinate axes x′, y′, z′. The unit

vectors î̂îi′, ĵ̂ĵj′, k̂̂k̂k′ in the rotating frame can be related to the stationary unit vectors [100]:

î̂îi′ = cos(ωt)î̂îi− sin(ωt) ĵ̂ĵj

ĵ̂ĵj′ = sin(ωt)î̂îi+ cos(ωt) ĵ̂ĵj

k̂̂k̂k′ = k̂̂k̂k

(2.25)
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There are two important rotating frames in MR. One is the frame where ω = ω0, called the

Larmor rotating frame. The other is the frame where ω = ωrf, called the RF rotating frame. If

ωr f = ω0 = γB0, then both frames coincide. The magnetization in the rotating frame (MMMrot) is

related to the magnetization of the laboratory frame through the following equation:


Mx′

My′

Mz′

=


cos(ωt) −sin(ωt) 0

sin(ωt) cos(ωt) 0

0 0 1




Mx

My

Mz

 (2.26)

where Mx′ , My′ , and Mz′ are components of MMMrot. Similarly, the RF field in the rotating frame

(BBB1,rot) is related to the RF field in the laboratory frame through

B1,x′

B1,y′

=

cos(ωt) −sin(ωt)

sin(ωt) cos(ωt)


B1,x

B1,y

 (2.27)

where B1,x′ and B1,y′ are components of BBB1,rot. We could also rewrite Eqs. 2.26 and 2.27 using

complex notation. For the B1-field, we have

B1,rot = B1(t)eiωt (2.28)

where B1,rot(t) = B1,x′+ iB′1,y′ and B1(t) = B1,x(t)+ iB1,y(t). Similarly,

Mx′y′ = Mxy(t)eiωt (2.29)

where Mx′y′ = Mx′+ iMy′ and Mx′y′ = Mx + iMy. For example, suppose that

BBB1(t) = B1(t)cos(ωr f t)î̂îi−B1(t)sin(ωr f t) ĵ̂ĵj (2.30)

Using Eqs. 2.26 and 2.27, we can show that the B1-field in the RF rotating frame is B1(t)î̂îi′ [23].

Here, the B1-field points along the x′-axis in the RF rotating frame.

We can also find the rate of change of MMM observed in the rotating frame, given that dMMM/dt

is the rate of change observed in the laboratory frame. It can be shown that the equation of
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motion becomes
dMMM
dt

=
∂MMMrot

∂t
+ωωω×MMMrot (2.31)

where ∂MMMrot/∂t is the rate of change of MMM in the rotating frame [100]. Switching to the labora-

tory frame introduces a cross term involving ωωω and MMMrot.

2.1.7 Bloch Equation

The time-dependent behaviour of MMM in an applied magnetic field is described by the Bloch

equation [25],
dMMM
dt

= γMMM×BBB−
Mxî̂îi+My ĵ̂ĵj

T2
−

(Mz−M0
z )k̂̂k̂k

T1
(2.32)

where M0
z k̂̂k̂k is the equilibrium magnitude of MMM and T1 and T2 are time constants describing

relaxation of the system after excitation (described in Section 2.1.10). If the RF pulse dura-

tion is much less than T1 and T2, then we can neglect the final two terms when modeling RF

excitation [100]. The simplified Bloch equation becomes

dMMM
dt

= γMMM×BBB (2.33)

In the rotating frame, the Bloch equation is

∂MMMrot

∂t
= γMMMrot×BBBrot−ωωω×MMMrot

= γMMMrot×
(

BBBrot +
ωωω

γ

)
= γMMMrot×BBBe f f

(2.34)

where

BBBe f f =BBBrot +
ωωω

γ
(2.35)

is the effective magnetic field experienced by the magnetization in the rotating frame. Suppose

that the rotating frame rotates at the Larmor frequency, ωωω = −γB0k̂̂k̂k, in a static magnetic field

BBB = B0k̂̂k̂k. According to Eq. 2.35, BBBeff = 0. Since there is no effective longitudinal field in the

rotating frame, MMMrot does not precess.
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2.1.8 On-resonance excitation

We want to know the behaviour of MMM during excitation. For simplicity, we assume a spin system

with one isochromat of resonance frequency ω0 = γB0. The RF pulse in the rotating frame is

BBB1,rot = Be
1(t)î̂îi

′ (2.36)

The effective magnetic field in the rotating frame is

BBBeff =

(
B0−

ωr f

γ

)
k̂̂k̂k′+Be

1(t)î̂îi
′ (2.37)

When the RF frequency is at resonance, ωrf = ω0, the z′-component of the B-field vanishes and

all that remains is the RF field component Be
1(t)î̂îi

′. To find MMMrot, we use the Bloch equation in

Eq. 2.34:
∂MMMrot

∂t
= γMMMrot×Be

1(t)î̂îi
′ (2.38)

The general solution to Eq. 2.38 is [100]

Mx′(t) = 0

My′(t) = M0
z sin

(∫ t

0
γBe

1(t
′)dt ′

)
Mz′(t) = M0

z cos
(∫ t

0
γBe

1(t
′)dt ′

) (2.39)

showing that MMMrot precesses about the x′-axis, which makes sense, because the RF field points

along the x′-axis. Figure 2.4 shows how a BBB1-field causes excitation. As an example, suppose

the RF envelope is a rectangular function with amplitude B1. The equation for the magnetiza-

tion (Eq. 2.39) during excitation becomes

Mx′(t) = 0

My′(t) = M0
z sin(ω1t)

Mz′(t) = M0
z cos(ω1t)

(2.40)
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where ω1 = γB1. The magnetization precesses at frequency ω1 about the x′-axis. In the labora-

tory frame, MMM spirals down to the transverse plane [29].

M0

z

x

y

B0

M0

z'

x'

y'

B1

a

Figure 2.4: (a) Bulk magnetization MMM0 in the laboratory frame with a static magnetic field BBB0.
(b) Bulk magnetization MMM0 in the RF rotating frame during an RF pulse BBB1(t). The RF pulse,
applied in the x′-direction, causes MMM0 to rotate through an angle α towards the y′-axis.

2.1.9 Frequency Spectrum of RF Pulse

We want to know how a pulse of the form Be
1(t)e

−iωrft affects a system with more than one

isochromat. Let {F Be
1}(ω) denote the Fourier transform of Be

1(t). We can write the RF pulse

as [100]

B1(t) =
1

2π

∫
∞

−∞

{F Be
1}(ω)e−i(ω+ωrf)tdω (2.41)

We can think of Eq. 2.41 as decomposing B1(t) into vectors of amplitude {F Be
1}(ω)dω and

frequency ω+ωrf. In the linear system assumption, we assume that the total excitation effect

of B1(t) is equal to the sum of excitation effects of its components {F Be
1}(ω)dωe−i(ω+ωrf)t .

Ideally, each component excites an isochromat of resonant frequency ω+ωrf. In reality, there

will be a phase dispersal among isochromats along the transverse plane. Each isochromat

also goes through a different flip angle. Both properties are controlled by the specific form of

{F Be
1}(ω) [100].

There are two types of RF pulses. Hard pulses are short (∼1 µs) pulses meant to excite
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as many spins as possible. Soft pulses are longer pulses meant to excite a small range of

frequencies in the sample. Soft pulses are important for slice selection in imaging.

2.1.10 Relaxation

After being disturbed, the spins eventually return to equilibrium. During this process, the

spins undergo free precession, where MMM precesses about the B0-field. Longitudinal relaxation

describes the return of Mz to its equilibrium value M0, while transverse relaxation describes

the destruction of Mxy. Both relaxation processes are due to the existence of microscopic time-

dependent magnetic fields surrounding the nuclei, though the exact mechanism is complicated

[2, 26, 62]. The Bloch equation describing the process is

dMz′

dt
=−

Mz′−M0
z

T1
dMx′y′

dt
=−

Mx′y′

T2

(2.42)

The solutions to Eq. 2.42 are

Mx′y′(t) = Mx′y′(0)exp(−t/T2)

Mz′(t) = M0
z (1− exp(−t/T1))+Mz′(0)exp(−t/T1)

(2.43)

where Mx′y′(0) and Mz′(0) are transverse and longitudinal magnetizations immediately after

an RF pulse (at t = 0). Figure 2.5 shows relaxation curves after a 90◦ pulse. This description

applies only to weak-spin interactions like those found in liquids, which include most biological

applications of MRI [31]. At t = T1, Mz(t) has grown to 63% of its equilibrium value. At t = T2,

Mxy has decayed to 37% its initial value. Usually, T1 ranges from 300 to 2000 ms, while T2

typically ranges from 30 to 300 ms [100]. If we transformed Eq. 2.43 to the laboratory frame,

we would find that the transverse component precesses about the B0-field while undergoing

exponential decay. The total bulk magnetization spirals back up to the z-axis (but its magnitude

is not preserved). Since T2 is on the order of tens of milliseconds in biological tissues, the free

precession period lasts long enough for MR signals to be detected.
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t t

MxyMz

M0M0

M0e
-t/T2

M0(1-e
-t/T1)

Figure 2.5: Relaxation curves showing (a) recovery of longitudinal magnetization, and (b) de-
cay of transverse magnetization after a 90◦ pulse. The longitudinal magnetization exponentially
grows to its equilibrium value M0 while the transverse magnetization exponentially decays to
zero.

2.2 Magnetic Resonance Signals

In this section, the detection of MR signals (2.2.1) will be discussed. Section 2.2.2 discusses

how the signal relates to the density of spins in the sample. The section concludes with dis-

cussion of different ways MR signals can be created, such as free induction decay (2.2.3), spin

echo (2.2.4), and gradient echo (2.2.5).

2.2.1 Signal Detection

MR signal detection depends on Faraday’s law of induction and the principle of reciprocity.

Faraday’s law states that a time varying magnetic flux through a receiver coil induces an elec-

tromotive force (emf) proportional to the rate of change of that flux. Let BBBr(rrr) be the laboratory

frame magnetic field generated by a unit current in the coil. The flux through the coil due to a

bulk magnetization MMM(rrr, t) is

Φ(t) =
∫

ob ject
BBBr(rrr) ·MMM(rrr, t)drrr (2.44)
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By Faraday’s law, the voltage induced in the receiver coil is

V (t) =−∂Φ(t)
∂t

=− ∂

∂t

∫
ob ject

BBBr(rrr) ·MMM(rrr, t)drrr (2.45)

We can make a few assumptions to simplify Eq. 2.45 [100]. We assume that MMM(rrr, t) is un-

dergoing free precession with frequency ω(rrr). The frequency ω(rrr) is made up of a Larmor

component ω0 and a spatially dependent offset ∆ω(rrr). The offset could be caused by an in-

homogeneous field. Since Mz(rrr, t) is slow varying compared to Mx(rrr, t) and My(rrr, t), we can

neglect it. We assume free precession occurs at a much faster rate than T2 relaxation. Normally,

V (t) is a high frequency signal because the transverse magnetization precesses near the Larmor

frequency. Signal demodulation is used to remove the Larmor component, leaving only the low

frequency component ∆ω(rrr). Signal demodulation involves multiplying V (t) by a reference

signal with frequency ω0 and then applying a low-pass filter [31].

Usually, the signal is acquired using quadrature detection, which uses two orthogonal de-

tectors to measure the in-phase and out-of-phase components of V (t) [100]. The signal can be

written in complex notation, S(t) = Sr(t)+ iSi(t), where Sr and Si are the two orthogonal com-

ponents that are measured. If one assumes a homogeneous Br-field over the region of interest,

then S(t) is

S(t) ∝

∫
ob ject

Mxy(rrr,0)e−i∆ω(rrr)tdrrr (2.46)

where Mxy(rrr,0) is the transverse component of the magnetization (Mxy = Mx + iMy). If the

offset ∆ω(rrr) was caused by an inhomogeneous applied field, we could let ∆ω = γ∆B(rrr), where

∆B(rrr) describes the spatially varying field inhomogeneity.

2.2.2 Spin Spectral Density Function

The spin density spectral function ρ(ω) describes the frequency distribution of a spin system.

It is related to the magnetization density as dM(ω) = ρ(ω)dω. Integration of dM(ω) over all

frequencies gives the total bulk magnetization of the sample,
∫

ρ(ω)dω = M. In terms of ρ(ω),

the MR signal is

S(t) =
∫

∞

−∞

ρ(ω)exp(−t/T2(ω))exp(−iωt)dω (2.47)
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If one neglects T2 relaxation (or takes T2 to be infinite), then ρ(ω) is the frequency spectrum

of the signal S(t). Suppose we have a spin system with N isochromats, each with distinct

frequency ωn. The spectral density function is

ρ(ω) =
N

∑
n=1

M0
z,nδ(ω−ωn) (2.48)

where Mz,n is the equilibrium magnetization for an isochromat with frequency ωn. Another

possible spectral density is a Lorentzian distribution, which occurs with inhomogeneous fields

[100].

2.2.3 Free Induction Decays

The free induction decay (FID) is the signal generated by free precession of a bulk magnetiza-

tion MMM about the B0-field. It is the most basic form of transient signal from a spin system after

excitation. For a flip angle α, the FID signal is

S(t) = sin(α)
∫

∞

−∞

ρ(ω)exp(−t/T2(ω))exp(−iωt)dω (2.49)

The maximum amplitude occurs at t = 0,

A f = sin(α)
∫

∞

−∞

ρ(ω)dω = M0
z sin(α) (2.50)

and depends on the flip angle and the equilibrium magnetization value. The spectral distribution

affects the exact form of the signal. For a system with only one spectral component at ω0, the

spectral density is ρ(ω) = M0
z δ(ω−ω0) and the FID is

S(t) = M0
z sin(α)exp(−t/T2)exp(−iω0t) (2.51)

For one spectral component and a uniform field, the FID decays exponentially with T2. Inho-

mogeneous fields lead to faster decay because different isochromats quickly go out of phase,

shrinking the bulk magnetization. Signal decay due to field inhomogeneity is characterized
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by a time constant T ∗2 . Assuming that the field inhomogeneity causes a Lorentzian spectral

distribution, then signal decay is approximately

S(t) ∝ exp(−t/T ∗2 ) (2.52)

where
1

T ∗2
=

1
T2

+ γ∆B (2.53)

and ∆B measures the spread in magnetic field values over the sample. If the spectral density

is not Lorentzian, then Eq. 2.53, which describe simple T ∗2 decay, does not strictly hold [23].

Figure 2.6 shows a FID with time constant T ∗2 .

�

tRF

Signal

e-t/T2*

Figure 2.6: Free induction decay after an α pulse. The FID decays with approximate time
constant T ∗2 . As it decays, the FID oscillates with frequency ω0.

2.2.4 Spin Echoes

When spins are dephased and then subsequently rephased, an RF echo is generated. It is a

two-sided signal. It was discovered by E. Hahn in 1950 and has been widely used in MRI

experiments ever since [59, 60].

To generate an RF echo, we need two or more RF pulses. The simplest sequence uses a

90◦ excitation pulse and a 180◦ inversion pulse separated by a time delay τ (90◦–τ–180◦). This

sequence generates a spin echo. To illustrate how it works, suppose we have two isochromats,

like in Figure 2.7. One is “slow,” having frequency ωs. The other is “fast,” having frequency
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ω f . We apply a 90◦ RF pulse along the x′-axis. After excitation, both isochromats precess about

the z-axis, with one (the “fast” one) precessing slightly faster than the other. Since they precess

at different frequencies, they gradually lose phase coherence. At time τ, the phase difference

is (ω f −ωs)τ. We then apply a 180◦ RF pulse along the y′-axis. Both vectors flip over the

transverse plane, but now the faster vector (ω f ) is behind slower vector (ωs). During the next

time period τ, the faster vector catches up to the slower vector. At t = 2τ, called the echo time,

the spins are rephased.

x'

z'

x'

x'x'

y' y'

y'y'

z'

z' z'

Mf

Mf

Ms

Ms

90°x

t = 0 t = ��

t = �� t = 2�

a b

c d

Figure 2.7: Isochromats (MMM f and MMMs) in the Larmor rotating frame during a spin-echo experi-
ment. In (a), all isochromats are aligned along the y′-axis after the 90◦x pulse. In (b), isochromats
are dephased because of magnetic field inhomogeneities. In (c), a 180◦y pulse has inverted the
isochromats (t = τ). In (d), isochromats are completely rephased (t = 2τ).

The same reasoning applies to the more general case of an arbitrary number of isochromats.

Usually, phase coherence is totally lost by t = τ, so that Mxy(t) vanishes and there is no mea-

surable signal. After the 180◦ pulse, the echo forms when all isochromats are rephased. The

same mechanism that causes spins to dephase also causes them to rephase, so that if we ignore
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T2, the echo is symmetric about t = τ:

|Mx′y′(τ− t)|= |Mx′y′(τ+ t)| 0 6 t 6 τ (2.54)

Sometimes, Mx′y′(t) after t = τ is referred to as the recalled transverse magnetization. Dephas-

ing due to T2 processes are irreversible, so that the amplitude of a spin echo is T2-weighted with

the whole signal having a e−t/T2 envelope (see Figure 2.8).

t

e-t/T2

RF

Signal

� �

90°

180°

Figure 2.8: Spin echo pulse sequence. After the initial 90◦ pulse, the signal quickly disappears.
Following the 180◦ pulse, an echo appears at t = 2τ. The echo amplitude is proportional to
e−2τ/T2 .

2.2.5 Gradient Echoes

Gradient echoes are generated using time-varying magnetic field gradients to dephase and

rephase the spins. We define an inhomogeneous gradient field BBBG whose z-component varies

linearly along a given direction. For example, we could have

BG,z = Gxx (2.55)

where Gx is an x-gradient. There are similar expressions for the y- and z-gradients. Technically,

there are other components of BBBG other than BG,z, but these are usually much smaller than the
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B0-field and can usually be ignored [23]. Then BG,z = BG. The total magnetic field is

BBB = (B0 +BG,z)k̂̂k̂k (2.56)

Figure 2.9 illustrates what happens to the magnetic field when we turn on a gradient. We can

define a gradient vector GGG = (Gx,Gy,Gz) made up of the x-, y-, and z-gradient components.

With this notation, the gradient field can be written as

BG,z =GGG ·rrr (2.57)

To show how we can generate a gradient echo, suppose we have an x-gradient. After the

90◦ excitation pulse, we turn on an x-gradient (−Gx) for a time τ. Because the field varies

spatially, spin frequencies will vary spatially. At t = τ, spins at different locations will have

acquired different phases. For t < τ, the phase at location x and time t can be written as

φ(x, t) = γ

∫ t

0
−Gxxdt ′ =−γGxxt 0 6 t 6 τ (2.58)

Phase coherence quickly disappears and the signal vanishes. Afterwards, an opposite gradient

(+Gx) is applied to rephase the spins and recall the signal. The phase during this period of time

is
φ(x, t) =−γGxxτ+ γ

∫ t

τ

Gxxdt ′

=−γGxxτ+ γGxx(t− τ) τ < t 6 2τ

(2.59)

At t = 2τ, φ(x, t) is zero for all x, showing that all spins have rephased. In the presence of

magnetic field inhomogeneities, the amplitude of a gradient echo is T ∗2 -weighted (see Figure

2.10).

2.3 Magnetic Resonance Imaging

The MR signal generated by an object is a sum of all the local signals from different parts

of the object. If the object is homogeneous, then all the local signals will be the same. But
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Figure 2.9: (a) Spatially independent magnetic field BBB = B0k̂̂k̂k. (b) Spatial dependence of the
magnetic field in the presence of an x-gradient Gx. The magnetic field becomes BBB = (B0 +
Gxx)k̂̂k̂k. Assuming Gx is positive, the magnitude of BBB increases linearly in the x-direction.
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Figure 2.10: Gradient echo pulse sequence. After the application of an α pulse, a negative
gradient is is applied for a time τ to dephase the spins. The spins are then rephased by an
equally strong positive gradient applied for an equal amount of time τ, so that the signal is
rephased at 2τ. The echo amplitude is proportional to e−2τ/T ∗2 .
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in biological samples, which are heterogeneous, we need a way to distinguish signals from

different spatial locations. There are two types of spatial localization: selective excitation (see

Section 2.3.1) and spatial encoding (see Section 2.3.2) [91, 109, 110, 111].

2.3.1 Selective Excitation

Slice selection has two requirements: a shaped RF pulse and an applied gradient field. A slice

of thickness ∆s can be described by

|µµµs ·rrr− s0|< ∆s/2 (2.60)

where µµµs is a vector that points away from the surface of the slice and s0 is the distance to the

center of the slice from the origin. MRI is unique and powerful because the slice orientation

can be in any arbitrary direction. Three special slice orientations are those along the x-, y-, and

z-directions. For example, a slice at z = z0 along the z-axis is given by |z− z0| < ∆z/2. We

apply a gradient to make the resonant frequency vary linearly along the sample in the direction

of the slice orientation. This gradient is called the slice selection gradient, GGGss. Appropriate

choice of B1(t) lets us excite spins at a specific slice. The magnitude of GGGss depends on the

desired thickness of the slice. If we want a thin slice, then we need a larger slice selection

gradient.

After choosing a slice orientation, we have to choose the temporal waveform of the RF

pulse B1(t). Both the envelope function Be
1(t) and frequency ωr f need to be chosen. In this

section, we use a Fourier transform approach to find these quantities [100].

We describe the slice profile using a spatial selection function ps(z) (for simplicity, a z-

direction slice orientation is used in this section). Since we want a rectangular slice centered at

z0, ps(z) will be a boxcar function:

ps(z) = Π

(
z− z0

∆z

)
(2.61)
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Suppose we turn on a z-gradient, GGGss = Gzk̂̂k̂k. The Larmor frequency at position z is

ω(z) = ω0 + γGzz (2.62)

or

f (z) = f0 + γGzz/2π (2.63)

Therefore, the frequency selection function is

ps( f ) = ps

(
2π f
γGz

)
= Π

(
f − fc

∆ f

)
(2.64)

where fc = f0+γGzz0/2π and ∆ f = γGz∆z/2π. Assuming the spins behave like a linear system,

the Fourier transform of B1(t) is p( f ) [100]:

B1(t) ∝

∫
ps( f )e−i2π f td f (2.65)

Eq. 2.65 allows us to find both ωr f and Be
1(t). If we substitute Eq. 2.64 into Eq. 2.65, we find

that

B1(t) ∝ ∆ f sinc(π∆ f t)e−i2π fct (2.66)

If we want a rectangular slice, the envelope function will be a sinc function. The proportionality

constant in Eq. 2.66 is determined by the desired flip angle. The desired RF frequency is

ωrf = 2π fc = ω0 + γGzz0 (2.67)

Figure 2.11a summarizes the idea behind spatial selection. A more accurate approach to finding

Be
1(t) involves solving the Bloch equation. Although the Bloch equation approach is more

accurate, it is also much more complicated [29, 31, 100, 105].

There are a few other considerations that need to be taken into account [100]. Suppose

the slice selection gradient is on for time τp. When the slice selection gradient is turned off,

there will be a position dependent phase shift γGz(z− z0)τp/2 across the slice. If ignored, it

can cause unwanted signal loss. To correct for it, a refocusing gradient Gr,z is turned on after
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excitation to rephase the slice. If the refocusing gradient is on for a time τr, the phase shift at

the end will be

φ(z, t = τp + τr) = γGz(z− z0)
τp

2
+ γGr,z(z− z0)τr (2.68)

If we choose Gz and τr correctly, we can make the phase shift disappear. The condition is

Gr,zτr =−
1
2

Gzτp (2.69)

Usually, we set Gr,z =−Gz and τr =
1
2τp, so that the refocusing gradient has opposite polarity

compared to the slice select gradient and is half the duration. Figure 2.11b shows a slice

selection gradient and a refocusing gradient.

The sinc function also has to be truncated. Truncation is equivalent to multiplication by

a rectangular window function. Its Fourier transform p′s( f ) is a convolution of an ideal rect-

angular function and a sinc function. The actual slice excitation profile will be non-uniform

and there will be some excitation in nearby slices (known as a “cross-talk” artifact). Other

envelopes for the RF pulses can be used which could provide smoother slice profiles. For in-

stance, a Gaussian RF pulse provides excitation of smaller side lobes compared to a truncated

sinc pulse [23].

2.3.2 Spatial Encoding

With spatial encoding, spatial information is encoded during the free precession period. There

are two types: frequency encoding and phase encoding.

2.3.2.1 Frequency encoding

In frequency encoding, the oscillation frequency of the MR signal is designed to be linearly

dependent on spatial position. Suppose we have a one dimensional spin distribution ρ(x). If we

have a homogenous magnetic field B0k̂̂k̂k and turn on an x-gradient (Gx), the Larmor frequency

at position x is

ω(x) = ω0 + γGxx (2.70)
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Figure 2.11: (a) Mapping slice width to frequency bandwidth. An RF pulse B1(t) with a sinc
envelope has a rectangular frequency profile. The rectangular frequency profile excites spins in
a frequency range ∆ f . Because of the linear Gz-gradient, spins in frequency range ∆ f map to
slice width ∆z. (b) Slice-selective 90◦ RF pulse and slice selection gradient. The slice selection
gradient is applied for time τp. Afterwards, a refocusing gradient is applied for time τp/2.

The signal due to the water at x in the interval dx is

dS(x, t) ∝ ρ(x)dxe−iγ(B0+Gxx)t (2.71)

where the flip angle, magnetization M0
z , and other constants are included in the proportionality

constant. The signal is frequency encoded because ω(x) depends on x, provided the gradient is

turned on. The signal from the entire object is

S(t) =
∫

ob ject
ρ(x)e−iγGxxtdx (2.72)

where demodulation removes the carrier signal e(−iω0t). Because resonant frequencies are spa-

tially dependent when the frequency encoding gradient is on, loss of phase coherence causes

the signal to decay at a faster rate. More generally, the frequency encoding gradient can point

in any direction, GGGFE = (Gx,Gy,Gz). The general form of the signal becomes

S(t) =
∫

ob ject
ρ(rrr)e−iγGGGFE ·rrrtdrrr (2.73)
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2.3.2.2 Phase encoding

Phase encoding involves turning on a gradient for a time TPE after the RF pulse. While the

gradient is on, spins are encoded along the gradient direction. After the gradient is turned off,

spins have acquired different phases depending on their position. After the preparatory period,

the phase at location rrr is

φ(rrr) =−γGGGPE ·rrrTPE (2.74)

where GGGPE is the phase encoding gradient and TPE is the phase encode interval. Because the

phase is linearly dependent on position, the resulting signal is said to be phase encoded. The

signal is the sum of all local signals,

S(t) =
∫

ob ject
ρ(rrr)e−iγGGGPE ·rrrTPE drrr (2.75)

where again, the carrier signal e(−iω0t) has been removed with demodulation. The phase φ(rrr)

can be adjusted by changing either the phase encode interval TPE or the gradient magnitude

|GGGPE |.

2.3.3 k-space

We can make the connection between spatial encoding (frequency and/or phase) and Fourier

transforms more explicit by introducing the concept of k-space [103, 119, 182]. Suppose we

have a frequency encoding gradient GGGFE . If we let

kkk =


γGGGFEt/2π FID signals

γGGGFE(t−TE)/2π echo signals
(2.76)

then we can write the signal as

S(kkk) =
∫

ob ject
ρ(rrr)e−i2πkkk·rrrdrrr (2.77)
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In this formulation, spin density and signal are Fourier transforms of each other. The gradient

GGGFE maps a time signal to a k-space signal. If GGGFE = 0, all time data points get mapped to the

k-space origin. If GGGFE is nonzero, then the time signal is mapped to a line in k-space. This set

of points defines the k-space trajectory. In practice, S(kkk) is available for a limited set of points.

For example, suppose we turn on x- and y-gradients Gx and Gy. The x and y components of

kkk are 
kx = γGxt/2π

ky = γGyt/2π

(2.78)

As time moves on, we trace out a line in k-space that starts at the origin and makes an angle

φ = tan−1
(

Gy

Gx

)
(2.79)

with the kx axis. If we chose to include an echo, the k-space components would be


kx = γGx(t−TE)/2π

ky = γGy(t−TE)/2π

(2.80)

Instead of starting at the origin, the k-space trajectory starts at kkk = (−γGxTE/2π,−γGyTE/2π).

We can also incorporate time varying gradients,

kkk(t) =
γ

2π

∫ t

0
GGGFE(τ)dτ (2.81)

where the lower limit represents the time just after RF excitation. Eq. 2.81 allows nonlinear

trajectories in k-space [100].

The phase encoding signal in k-space notation is

S(kkk) =
∫

ob ject
ρ(rrr)e−i2πkkk·rrrdrrr (2.82)

where

kkk = γGGGPETPE/2π (2.83)
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In frequency encoding, kkk was a function of t. In phase encoding, kkk is a single point, provided

GGGPE and TTT PE are given. This means that phase encoding affects the starting point and not the

trajectory in k-space. For a time varying gradient,

kkk =
γ

2π

∫ TPE

0
GGGPE(τ)dτ (2.84)

The final point in k-space depends only on the area of the integral in Eq. 2.84. Provided their

integrals are the same, differently shaped gradient waveforms end up at the same point (though

they approach it at different rates) [100].

2.3.4 Imaging Methods

Suppose we want a two-dimensional image. We can have either a 2D projection or a 2D slice.

To get a projection, we can use a non-selective hard pulse to excite all the spins. If we want

only a slice, we need to use a selective soft pulse to excite the spins in a specific slice. Given a

spin density ρ(rrr), we can define the image function to be

I(x,y) =
∫

∞

−∞

ρ(x,y,z)dz (2.85)

for a two dimensional projection and

I(x,y) =
∫ z0+∆z/2

z0−∆z/2
ρ(x,y,z)dz (2.86)

for a slice of thickness ∆z.

In k-space notation, the signal S(kx,ky) is related to the image function in the following

way:

S(kx,ky) =
∫

∞

−∞

∫
∞

−∞

I(x,y)e−i2π(kxx+kyy)dxdy (2.87)

We need to measure S(kkk) at enough points in k-space so that we can perform the inversion in

Eq. 2.87. The conventional method involves collecting n sets of signals Sn(t), each encoded in

a slightly different way. All Sn(t) taken together cover k-space. If we use this method, we need

to use multiple excitations so that we can cover multiple lines in k-space.
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2.3.5 k-space Acquisition

We need to decide how to encode each Sn(t) so that we cover k-space. One relatively simple

choice is to use a Cartesian grid [49]. After initial excitation, we first phase encode the signal

along the y-direction, then acquire the signal in the presence of a frequency encoding gradient.

Consider the nth excitation. During the phase encode step and preparatory readout, we have


kx = γGx(t− t0)/2π

ky = γn∆Gy(t− t0)/2π

t0 < t < Tacq/2+ t0 (2.88)

where we assumed that Gy = n∆Gy. When both gradients are turned off, kkk is at location

kkkA = (γGxTPE/2π, γn∆GyTPE/2π) (2.89)

The 180◦ refocusing pulse inverts kkk, changing it to –kkk. During data acquisition, we have


kx = γG(t−TE)/2π

ky = γn∆GyTPE/2π

|t−TE |< Tacq/2 (2.90)

While frequency encoding gradient is on, kkk moves in a horizontal line, intercepting the ky axis

at γn∆GyTPE/2π. By varying Gy, we can control the intercept. After each excitation, we trace

out a new horizontal line in k-space. This scheme is called the phase encoding method.

An alternative acquisition scheme involves sampling radial lines in k-space. In this scheme,

readout occurs in the presence of both the Gx and Gy gradients. Consider the nth excitation.

Between the 90◦ and 180◦ pulses, we have


kx = γG(t− t0)cos(φn)/2π

ky = γG(t− t0)sin(φn)/2π

t0 < t < Tacq/2+ t0 (2.91)

where φn is

φn = tan−1
(

Gn,x

Gn,y

)
(2.92)
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When the gradients are turned off, kkk is

kkkA = γG
Tacq

2 ·2π
(cos(φn), sin(φn)) (2.93)

The 180◦ pulse sends kkkA→−kkkA. During readout, we trace a k-space trajectory defined by


kx = γGcos(φn)(t−TE)/2π

ky = γGcos(φn)(t−TE)/2π

|t−TE |< Tacq/2 (2.94)

which is a line passing through the origin and ending at kkkA. We can trace a different line by

adjusting the relative strengths of Gn,x and Gn,y (or φn) in the next excitation. This scheme is

called radial projection imaging. Both acquisition schemes are shown in Figure 2.12.

2.3.6 Sampling Criteria

The Nyquist sampling theorem states that if G(t) is a bandlimited function with maximum fre-

quency fmax, then fs = 2 fmax is the minimum sampling rate needed to recover G(t). Here, the

reciprocal variables were time and frequency. In MRI, the reciprocal variables are k (analo-

gous to time) and position (analogous to frequency). Assume we have an object bounded in a

rectangular region of widths Wx and Wy. According to the Nyquist sampling theorem, k-space

should be sampled so that 
∆kx 6 1/Wx

∆ky 6 1/Wy

(2.95)

If we use the phase encoding method described in Section 2.3.5, then ∆kx and ∆ky are

∆kx = γ|Gx|∆t/2π

∆ky = γ∆GyTPE/2π

(2.96)
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Figure 2.12: Spin echo imaging sequences and k-space trajectories. (a) ‘Spin-warp’ trajectory.
A 90◦ slice selective pulse with a refocusing gradient, here in the z-direction, is applied to excite
the spins. A phase encoding gradient, shown here in the y-direction, is applied at the same time
as the frequency dephasing gradient to move to the starting point in k-space (kkkA). A 180◦ pulse
is applied to move kkkA →−kkkA. Here the pulse is shown with a slice selective gradient in the
z-direction. A frequency encoding gradient of duration Tacq, shown here in the x-direction,
is used to collect a horizontal line in k-space. (b) Radial projection trajectory. A 90◦ slice
selective pulse with a refocusing gradient, here in the z-direction, is applied to excite the spins.
Two gradients are applied simultaneously in the x- and y-direction to move the starting point in
k-space (kkkA). A 180◦ to move kkkA→−kkkA. Two gradients are then applied simultaneously in the
x- and y-direction to collect a radial line in k-space.
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Solving for ∆t and ∆Gy and making use of Eq. 2.95, we have the following conditions:

∆t 6
2π

γ|Gx|Wx

∆Gy 6
2π

γTPEWy

(2.97)

Eq. 2.97 gives the sampling requirements needed to make an image. Similar ideas can be used

to find minimum sampling requirements for polar sampling [100].

2.3.7 Image Reconstruction

Until now, we assumed that S(k) and I(x) were continuous. In reality, S(k) is made up of

discrete points S(kn) = S(n∆k), for integer n. The imaging equation then becomes

S[n] = S(n∆k) =
∫

∞

−∞

I(x)e−i2πn∆kx (2.98)

Provided that the Nyquist condition is satisfied (or that I(x) = 0 past a certain range), we can

write

I(x) = ∆k
N/2−1

∑
n=−N/2

S[n]ei2πn∆kx |x|< 1
∆k

(2.99)

The region |x| < Wx/2 is called the field of view (FOV). Eq. 2.99 is called the Fourier recon-

struction formula. Truncation of the series leads to a Gibbs ringing artifact. It can be reduced

by multiplying S[n] by a window function wn (such as a Hamming function), but at the cost of

reduced spatial resolution [100].

We can turn I(x) into I(m∆x) = I[m] if the Nyquist condition is fulfilled. Since I(x) is

frequency bandlimited (finite sampling, |k|6 (N/2)∆k), we can recover I(x) from I[m] as long

as

∆x 6
1

∆k
(2.100)

Eq. 2.100 sets a limit on the largest pixel size. When the equality in Eq. 2.100 holds, ∆x is
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known as the Fourier pixel size. So

I[m] ∝

N/2−1

∑
n=−N/2

S[n]ei2πnm/N −N/2 6 m < N/2 (2.101)

The reconstruction in Eq. 2.101 requires N2 multiplications, so it can be slow. Nowadays, we

would use the Fast Fourier Transform (FFT) developed in the 1960s by Tukey and Cooley [38].

The simple version of the Fast Fourier transform requires the number of data points to be a

power of two, so one might use zero-padding to make the data a power of two.

2.3.8 Image Contrast

Contrast is important because it allows humans to distinguish different parts of an image. Let

IA be the image intensity of tissue A and IB be the image intensity of tissue B. Image contrast is

defined by

CAB =
IA− IB

Ire f
(2.102)

where Iref is reference intensity. Image intensity, as well as contrast, depends on many fac-

tors. Some of these factors include spin density ρ, relaxation times T1, T2, T ∗2 , and diffusion

coefficient D. Generally, the contrast can be written as

CAB = f (ρ,T1,T2,T ∗2 ,D, . . .) (2.103)

where the function f depends on the data acquisition procedure. Each acquisition procedure,

called a pulse sequence, is usually designed to isolate one or more causes of contrast in the

image.

2.3.9 Example Pulse Sequences

This section describes several common pulse sequences designed to isolate contrast depending

on relaxation times.
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2.3.9.1 Saturation Recovery

The first such sequence is a saturation-recovery. It consists of a series of N 90◦ pulses separated

by a repetition time TR. If we want to generate a spin echo signal, we also need to include a

180◦ pulse after the 90◦ pulse. The saturation condition (TR� T2) ensures that no transverse

magnetization remains at the time the next pulse is applied. If necessary, we can use spoiler

gradients to destroy any remaining transverse magnetization [28]. Provided that TE � TR, then

the image intensity is [65]

I(rrr) ∝ ρ(rrr)
(

1− e−TR/T1

)
e−TE/T2 (2.104)

All three weightings (T1, T2, ρ) are present. If TE is very short, T2-weighting is nearly elim-

inated. If TR is also chosen to be long (> 1500 ms), then I(rrr) ≈ ρ(rrr) and the image is spin

density weighted. But if TR is short (< 500 ms) instead, then the image is T1-weighted. A

saturation recovery sequence is shown in Figure 2.13.

2.3.9.2 Inversion Recovery

Another useful sequence is inversion-recovery. It begins with a 180◦ inversion pulse followed

by an inversion time TI , then a 90◦ pulse is applied, followed by a recovery (or delay) time TD.

If we want to generate a spin echo signal, we also need to include another 180◦ pulse after the

90◦ pulse. The image intensity goes as [100]

I(rrr) ∝ ρ(rrr)
[

1−2e−TI/T1(rrr)+ e−TD/T1(rrr)
]

e−TE/T2 (2.105)

where TE is assumed to be much less than TR = TI +TD. Two parameters, TI and TD, can be

adjusted for optimal T1 contrast. Appropriate choice of TI can be even used to suppress signals

from certain tissues (e.g. fat, CSF, etc). If

TI = [ln2− ln(1+ e−TR/T 0
1 )]T 0

1 (2.106)
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then signals from tissues with T1 = T 0
1 will be suppressed and not contribute to the image [30].

This is known as signal-nulling. Inversion-recovery can generate more T1 contrast than satu-

ration recovery, so it is useful for differentiating tissues with similar (but different) T1 values.

Figure 2.14 shows an inversion recovery sequence.

2.3.9.3 Gradient Echoes

Gradient echo imaging replaces the 180◦ RF pulses with rephasing gradients. Gradient echo

sequences allow for much richer contrast mechanisms. Assume that TR� T2, so the transverse

magnetization is totally dephased before the next excitation. For an arbitrary flip angle α, the

echo amplitude is [100]

AE =
M0

z (1− e−TR/T1)

1− cosαe−TR/T1
e−TE/T ∗2 (2.107)

The echo amplitude carries T1 and T ∗2 weighting. The T1-weighting depends mainly on flip

angle, not TR. If the flip angle is very small, T1-weighting is eliminated. As flip angle increases,

T1-weighting also increases. The amount of T ∗2 -weighting is controlled by TE . Figure 2.15

shows an example of a gradient echo sequence.

2.3.9.4 Discussion

There are three main types of contrast in MRI imaging. Spin density contrast is proportional to

spin density differences between tissues. The T1 and T2 contrasts are exponentially dependent

on T1 and T2 values of the tissue. In soft tissues, ρ(rrr) is mostly uniform. For clinical fields

strengths, since T1 values are different, T1-weighted images are useful for viewing anatomical

definition. Sometimes, T2 changes occur in diseased states (such as tumours), so T2-weighted

images are useful for disease detection [100]. For high field strengths, such as the 7 T used

in the experiments and simulations described in this thesis, T1 values of tissues are similar so

T2-weighted images are used for viewing anatomical definition. Usually, we want to emphasize

one type of contrast (T1, T2, or spin density). That contrast is determined by the relative values

of TE and TR. A long TR and short TE gives spin density weighted images, a long TR and

intermediate TE gives T2-weighted images, and intermediate TR and short TE gives T1-weighted

images. The smallest achievable TE is limited by hardware. The maximum achievable TR is
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constrained by imaging times. Table 2.1 summarizes the contrast mechanisms.

Short TR Intermediate TR Long TR

Short TE T1-weighted Proton density
Intermediate TE T2-weighted

Table 2.1: Image contrasts of a saturation-recovery spin echo sequence.
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Figure 2.13: Spin echo imaging sequence. A 90◦ slice selective pulse with a refocusing gra-
dient, here in the z-direction, is applied to excite the spins. A phase encoding gradient, shown
here in the y-direction, is applied at the same time as the frequency dephasing gradient to move
to the starting point in k-space. A 180◦ pulse is applied to create a spin echo, here the pulse is
shown with a slice selective gradient in the z-direction. A frequency encoding gradient, shown
here in the x-direction is used to collect an echo that represents a line in k-space. The pulses
are then repeated after a time TR to collect another line of k-space.
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Figure 2.14: Inversion recovery imaging sequence. A 180◦ slice selective pulse, here in the
z-direction, is applied to invert the spins so that they point in the −z-direction. After a time TI ,
a 90◦ slice selective pulse with a refocusing gradient, here in the z-direction, is applied to flip
the spins into the transverse plane. A phase encoding gradient, shown here in the y-direction,
is applied at the same time as the frequency dephasing gradient to move to the starting point
in k-space. A 180◦ pulse is applied to create a spin echo, here the pulse is shown with a
slice selective gradient in the z-direction. A frequency encoding gradient, shown here in the
x-direction is used to collect an echo that represents a line in k-space. The pulses are then
repeated after a time TR to collect another line of k-space.
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t
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Figure 2.15: Gradient echo imaging sequence. An α slice selective pulse with a refocusing
gradient, here in the z-direction, is applied to excite the spins. A phase encoding gradient,
shown here in the y-direction, is applied at the same time as the frequency dephasing gradient
to move to the starting point in k-space. A frequency encoding gradient, shown here in the
x-direction is used to collect a gradient echo that represents a line in k-space. The pulses are
then repeated after a time TR to collect another line of k-space.
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Chapter 3

Diffusion Magnetic Resonance Imaging

In Chapter 2, we saw how to generate echoes using either RF pulses or magnetic field gradients.

In the presence of magnetic field gradients, full echo formation depends on the spins remaining

in their original positions for the duration of the experiment [77]. Spin displacements lead to

echo signal attenuation. This means that we can use magnetic field gradients to measure trans-

lational motion. When a gradient is turned on, the spins’ Larmor frequencies become position

dependent, and so their accumulated phases are also position dependent. If the particles diffuse

during the experiment, the 180◦ refocusing pulse and subsequent gradient do not rephase all

the spins, causing signal attenuation.

3.1 Diffusion and Brownian motion

Diffusion refers to the random motion of particles over time. At the molecular level, this is

caused by collisions between molecules. In 1827, Robert Brown observed suspended pollen

grains undergoing jittery motion in water, a phenomenon now called Brownian motion [77].

Einstein was able to connect Brownian motion with diffusion. He explained that water molecules

(too small to be seen) were colliding with the pollen grain, causing it to move. He also showed

that the root-mean square displacement was proportional to time,

〈rrr2〉= 2ndDt (3.1)
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3.1. DIFFUSION AND BROWNIAN MOTION

where D is the diffusion coefficient and nd is the dimensionality [50]. Figure 3.1 shows a

collection of particles undergoing diffusion. Figure 3.2 shows an example of a single particle

undergoing diffusion.

t = τ
1

t = τ
2 t = τ

3

Figure 3.1: Displacement of particles as a function of time (τ1 < τ2 < τ3). At short times (τ1)
the spread is small, but at long times (τ2 and τ3), the particles have a bigger spread.

r

rfinal

initial

Figure 3.2: Single particle undergoing a random walk. We observe the particle starting at
rrrinitial and ending at rrr f inal . The particle changes direction when it collides with another particle
causing the motion to appear as a random walk.

3.1.1 The Diffusion Propagator

Since MR signals come from the superposition of signals from many spins, and since the

motion of each individual particle will be different, an ensemble-based approach is helpful

[31, 77, 129, 168].

Let the position of particle i at time t be rrri(t). We would like to describe the probability of

a particle starting at rrr and moving to rrr′ over the time t (see Figure 3.3). This probability may

depend on the starting position itself. This probability is given by the self-correlation func-

tion Ps(rrr|rrr′, t), also called the conditional probability function. The self-correlation function
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3.1. DIFFUSION AND BROWNIAN MOTION

Ps(rrr|rrr′, t) has initial condition

Ps(rrr|rrr′,0) = δ(rrr′−rrr) (3.2)

The probability of finding a particle at rrr′ at time t is given by

P(rrr′, t) =
∫

P(rrr,0)Ps(rrr|rrr′, t)drrr (3.3)

where P(rrr,0) is the initial probability of finding a particle at rrr at t = 0. We can take it to be the

particle density ρ(rrr).

x

y

z

r

r'

R

Figure 3.3: Displacement of a particle from rrr to rrr′. The displacement vector is RRR. The proba-
bility for a particle to move from rrr to rrr′ over a time t is Ps(rrr|rrr′, t).

Classically, diffusion is described using Fick’s law. Fick’s law states that the particle flux

(number of particles per unit area per unit time) is proportional to the concentration gradient.

For self-diffusion there is no net concentration gradient, but the probability function P(rrr′, t)

obeys Fick’s law. The concentration at rrr is analagous to the probability of finding a particle at

rrr. Since P(rrr′, t) obeys Fick’s law, so does the conditional probability Ps(rrr|r′, t). This is Fick’s

first law,

JJJ =−D∇
′Ps (3.4)

where JJJ is a conditional probability flux, D is the diffusion coefficient, and ∇ is the gradient
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operator. Using the continuity equation,

∇ ·JJJ =−∂Ps

∂t
(3.5)

which says that probability is conserved, we can write Fick’s second law,

∂Ps

∂t
= D∇

′2Ps (3.6)

For free, unrestricted diffusion, Ps → 0 as rrr→ ∞. The solution to Eq. 3.6 is a Gaussian

function

Ps(rrr|rrr′, t) =
1

(4πDt)3/2 exp
(
− (rrr′−rrr)2

4Dt

)
(3.7)

The Markov nature of Brownian motion is reflected in the fact that Ps depends only on the

particle displacement rrr′−rrr. In PGSE MRI, particle displacements are indirectly measured, so

let RRR = rrr′−rrr denote the net particle displacement over time t. Then Eq. 3.7 becomes

Ps(rrr|rrr+RRR, t) =
1

(4πDt)3/2 exp
(
− RRR2

4Dt

)
(3.8)

A related quantity is the averaged propagator Ps(RRR, t), defined by

Ps(RRR, t) =
∫

Ps(rrr|rrr+RRR, t)ρ(rrr)drrr (3.9)

The average propagator gives the average probability for a particle to have displacement RRR over

time t. In cases such as free diffusion, P(rrr|rrr +RRR, t) is independent of starting position. The

average propagator is the same for all particles so that Ps(RRR, t) = Ps(RRR|rrr+RRR, t). Fick’s law (Eq.

3.6) can be rewritten to account for flow of velocity vvv [126, 162]. In that case, the propagator

becomes

Ps(RRR, t) =
1

(4πDt)3/2 exp
(
− (RRR−vvvt)2

4Dt

)
(3.10)

which is a Gaussian centered at RRR = vvvt that widens over time [31].

If we are interested in motion along one dimension, then we can integrate Ps(RRR, t) over the
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other two dimensions. For example, if we were interested in motion along the x direction,

Ps(X , t) =
∫

∞

−∞

∫
∞

−∞

1
(4πDt)3/2 exp

(
− RRR2

4Dt

)
dY dZ

=
∫

∞

−∞

∫
∞

−∞

1
(4πDt)3/2 exp

(
− X2

4Dt

)
exp
(
− Y 2

4Dt

)
exp
(
− Z2

4Dt

)
dY dZ

=
1

(4πDt)1/2 exp
(
− X2

4Dt

) (3.11)

The time evolution of Ps(X , t) is shown in Figure 3.4. Using Ps(R, t) (Eq. 3.11), we can show

that the average displacement is zero,

〈X〉=
∫

∞

−∞

XPs(X , t)dX

= 0
(3.12)

We can also find the mean square displacement 〈X2〉,

〈X2〉=
∫

∞

−∞

X2Ps(X , t)dX

= 2Dt
(3.13)

which is the same result as 3.1. Eqs. 3.7 and 3.11 are valid for the specific case of free and

unrestricted diffusion.

t = t1 t = t2

Ps(X,t)

X X

Ps(X,t)

Figure 3.4: Time evolution of the conditional probability function Ps(X , t) for free diffusion
from time t1 to t2 > t1. As time increases the probability that a particle will be farther away
from its original point increases.
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3.1.2 Restricted Diffusion

In Section 3.1.1, we saw that the propagator was a Gaussian when diffusion was unrestricted.

We now look at the case of restricted diffusion, or diffusion in the presence of boundaries. The

propagator can expanded in terms of its eigenfunctions [165],

P(rrr, t|rrr′, t ′) = ∑
n

e−λnD|t ′−t|un(rrr)un(rrr′) (3.14)

where λn are the corresponding eigenvalues. The time dependence in the propagator is de-

scribed by exponential decay. The eigenfunctions are solutions to the equation

−λnun(rrr) = ∇
2un(rrr) (3.15)

They have the property that

∑
n

un(rrr)un(rrr′) = δ(rrr−rrr′) (3.16)

The eigenfunctions depend on the geometry of the pore through the boundary conditions. If we

have impermeable boundaries, the boundary condition takes the form

∇P · n̂̂n̂n = 0 (3.17)

where n̂̂n̂n is a vector normal to the surface [32]. Here no flux passes through the barrier. Eq. 3.15

has been solved analytically for a limited number of geometries, including plane separation,

cylinders, and spheres.

3.1.2.1 Planes

In one dimension, the eigenfunction equation is

−λnun(x) =
d2un

dx2 (3.18)
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The general solution to Eq. 3.18 has the form Acos(λnx)+Bsin(λnx). The boundary condi-

tions for impermeable barriers at x = 0 and x = L are


u′n(0) = 0

u′n(L) = 0
(3.19)

The normalization condition is (∫ L

0
un(x)dx

)2

= 1 (3.20)

The eigenvalues are

λn =
n2π2

L2 (3.21)

The eigenfunctions are 
u0(x) =

√
1
L

un(x) =
√

2
L cos

(
nπx
L

)
if n 6= 0

(3.22)

Therefore, the propagator is [32]

P(x, t1|x′, t2) =
2
L

[
1
2
+

∞

∑
n=1

cos
(

nπx
L

)
cos
(

nπx′

L

)
e−(nπ/L)2D|t1−t2|

]
(3.23)

3.1.2.2 Cylinders

The propagator for a cylindrical pore with an impermeable barrier at r = a is [32]

P(rrr, t|rrr′, t ′) = ∑
k

∑
n

exp [−ν
2
nkD∆/a2]

[(
2

πa2

)(
ν2

nk

J2
k (νnk)

)(
1

ν2
nk− k2

)]
×Jk(νnkr/a)Jk(νnkr′/a)cos(kθ)cos(kθ

′)

(3.24)

where νnk is the nth root of J′k(ν) = 0 and Jk is a Bessel function of the first kind.
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3.1.2.3 Spheres

The propagator for a spherical pore with an impermeable barrier at r = a is [32]

P(rrr, t|rrr′, t ′) = ∑
k

∑
n

exp [−α
2
nkD∆/a2]

(
2k+1

2π

)(
1

a3( j2
k(νnk)− jk−1(νnk) jk+1(νnk))

)
× jk(αnkr/a) jk(νnkr′/a)Pk(cos(θ))Pk(cos(θ′))

(3.25)

where jk are spherical Bessel functions, νnk is the nth root of j′k(ν), and Pk are Legendre poly-

nomials.

3.1.3 Velocity Autocorrelation and Self-diffusion Tensor

The autocorrelation function of a time-dependent quantity A(t) is [31]

ACF(t) =
∫

∞

0
A(t ′)A(t + t ′)dt ′ (3.26)

Usually we assume we have a stationary ensemble, where only time differences are important.

In practice, this means that the results of an MR experiment are not dependent on the starting

time. Stationary ensembles also have the property that a time average of a quantity, like in Eq.

3.26, can be written as an average over all the particles in the ensemble. So we could also write

Eq. 3.26 as ACF(t) = 〈A(0)A(t)〉. If we know A(t) as a function of position, we can also write

ACF(t) as

〈A(0)A(t)〉=
∫ ∫

ρ(rrr)Ps(rrr|rrr′, t)A(rrr′)A(rrr)drrr′drrr (3.27)

The autocorrelation function measures how quickly A(t) loses memory of its previous values.

The correlation time τc describes the time-scale of the memory loss and is defined by

τc =

∫
∞

0 A(0)A(t)dt
A(0)2 (3.28)

When describing translational motion, we are particularly interested in the spectrum of the
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3.2. DIFFUSION-WEIGHTING GRADIENTS

velocity correlation function,

Dαβ(ω) =
1
2

∫
∞

−∞

〈vα(0)vβ(t)〉exp(iωt)dt (3.29)

where α and β denote Cartesian directions. The quantity defined in Eq. 3.29 is called the

self-diffusion tensor. Unless the applied gradients fluctuate in direction during a measurement,

cross-terms can be neglected. Because the gradients we use are applied in a single direction,

we will drop the indices and assume that α = β.

If a particle is undergoing a random walk with uncorrelated, infinitesimally spaced jumps,

then the velocity correlation function is

〈v(0)v(t)〉= 2Dδ(t) (3.30)

The corresponding diffusion spectrum is constant [31]. The velocity correlation for restricted

diffusion has a peak at t = 0 and a residual negative correlation at small times [140]. The cor-

responding diffusion spectrum is equal to the intrinsic diffusion coefficient at high frequencies,

but decreases as ω→ 0. If the pore geometry is closed, then D(ω) goes to zero. In open pores,

D(ω) is still reduced at low frequencies, but not all the way to zero. The reduction in D(ω)

occurs at frequencies accessible in MR experiments. Figure 3.5 shows the velocity correlation

functions and diffusion spectra for free and restricted diffusion.

3.2 Diffusion-weighting Gradients

At the beginning of this chapter, we said that diffusion leads to a reduced echo signal. In

diffusion imaging, large diffusion-weighting gradients are used to sensitize the MRI signals

to molecular diffusion. In a spin echo sequence, the area of the diffusion gradients on either

side of the refocusing pulse should be equal. If there is no refocusing pulse (a gradient echo),

then the net area of the diffusion gradients should be zero. These conditions ensure that the net

phase of stationary molecules at the echo is zero. In this section, we introduce some diffusion

pulse sequences used in this thesis.
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�
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〈v(0)v(t)〉

D(�)

D(�)

D0

D0
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dc

〈v(0)v(t)〉

Figure 3.5: Velocity correlation functions 〈v(0)v(t)〉 and associated diffusion spectra D(ω). In
(c) and (d), diffusion is free, with diffusion coefficient D0. The velocity correlation is a δ-
function and the diffusion spectrum is a constant (D0) over frequency. In (a) and (b), diffusion
is restricted. The velocity correlation is negative at short times and the diffusion spectrum is
reduced at low frequencies, but rises to D0 at high frequencies.

3.2.1 Pulsed Gradients

The commonly-used pulsed gradient spin echo sequence (PGSE) was developed by Steskjal and

Tanner in 1965 [163]. It consists of two rectangular gradients with amplitude G and duration δ

separated by a time ∆ (see Figure 3.6). These three parameters (∆, δ, and G) can be adjusted to

give a different weighting to the signal. The 180◦ refocusing pulse is applied at time τ. A pulse

sequence measures molecular displacements over a time scale called the diffusion time. This

time scale is well-defined only when the gradient duration is very small (see Section 3.3.2). In

a realistic situation, the time scale is described by an ‘effective diffusion time.’ For PGSE, the

effective diffusion time is determined by the spacing and duration of the pulses. Bringing the

two pulses closer together shortens the diffusion time. The effective diffusion time for a pulsed

gradient sequence is

∆e f f = ∆−δ/3 (3.31)

If the pulses were very narrow, the diffusion time would simply be ∆.

58



3.2. DIFFUSION-WEIGHTING GRADIENTS

Gradient

RF

����

���

G

�

�

t
� �

echo

Figure 3.6: The PGSE sequence uses two rectangular gradients of duration δ and strength G.
The first occurs just after the initial 90◦ RF pulse, with the second occurring a time ∆ afterwards.
The effective diffusion time is ∆−δ/3.

3.2.2 Oscillating Gradients

The oscillating gradient spin echo (OGSE) sequence replaces the pulsed gradients in PGSE

with sinusoidally oscillating gradients applied for a duration T [58,154]. There are two versions

used through this thesis: a sine gradient and a cosine gradient. Each gradient has NOG lobes

and amplitude G (see Figure 3.7). They can also be described by their angular frequency ωm.

The 180◦ refocusing pulse is applied at time τ. Mathematically, we have

GGG(t) =


Gsin(ωmt) 0 6 t < T

Gsin(ωm(t− τ)) τ 6 t < τ+T

0 otherwise

(3.32)

for a sine gradient and

GGG(t) =


Gcos(ωmt) 0 6 t < T

Gcos(ωm(t− τ)) τ 6 t < τ+T

0 otherwise

(3.33)
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for the cosine gradient. More commonly, an OGSE sequence is described by its temporal

frequency fm = ωm/2π. The effective diffusion time for a sine gradient is [43]

∆e f f =
3T

8NOG
(3.34)

For a cosine gradient, the effective diffusion time is [43]

∆e f f =
T

4NOG
(3.35)

Diffusion times with oscillating gradients are proportional to the period T/NOG, so higher

gradient frequencies in the OGSE sequence correspond to a probe of shorter diffusion times.

Theoretically oscillating gradients have the ability to probe smaller restriction sizes than pulsed

gradients [154].

3.2.3 Diffusion Imaging

In diffusion-weighted imaging, we want diffusion measurements on a voxel-by-voxel basis.

There are several ways to do this [79, 93].

One possibility is to add diffusion gradients to a spin echo imaging sequence. The diffusion

gradients can be placed at the beginning of the sequence, around the 180◦ pulse, before the read

gradient and signal acquisition (Figure 3.8). This method is what we assumed in Sections 3.2.1

and 3.2.2. We could also use a gradient echo [54]. Diffusion has the same effect on gradient

echoes as on spin echoes, but because gradient echoes are affected by T ∗2 and not T2, echo times

need to be shorter to maintain the same SNR.

A stimulated echo sequence uses three RF pulses to generate a stimulated echo [53, 116].

Diffusion gradients can be placed after the first and third pulses. One advantage is that it allows

the effective diffusion time to be increased without additional T2 decay.

Another possibility is to use an echo planar imaging (EPI) sequence [108,136]. This method

is useful because it acquires images fast, often in a single shot (i.e. with a single RF excitation).

Because of the increased speed, many images can be acquired and averaged in a short period

of time. Its speed also helps to reduce motion artifacts. Possible downsides include lower
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Figure 3.7: The OGSE sequence uses two sinusoidal gradients. The first occurs just after the
initial 90◦ RF pulse, with the second occurring a time ∆ afterwards, after the 180◦ pulse. (a) The
sine-OGSE sequence uses two sinusoidal gradients of duration T and strength G. Each pulse
has NOG lobes and angular frequency ωm = 2πNOG/T . Here NOG = 3. (b) The cos-OGSE
sequence uses two sinusoidal gradients of duration T and strength G.

resolution and vulnerability to susceptibility artifacts.

Echo planar imaging reads all of k-space in one excitation. It begins with a 90◦ excita-

tion pulse, which is followed by two diffusion weighting gradients straddled around the 180◦

refocusing pulse (see Figure 3.9). During readout, it generates a series of gradient echoes by

alternating the polarity of the readout gradient. Before each echo, a small phase encode gra-

dient is applied. The effect is that k-space is traversed in a zig-zag pattern where the readout

gradients horizontally sweep out k-space and the phase encoding gradients increment ky

3.3 Diffusion Signals

This section explains basic principles of creating a magnetic resonance signal with diffusion

weighting. It explains how gradients are used to weight the signal to diffusion and the concept
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Figure 3.8: Diffusion-weighted spin echo MRI sequence. The diffusion weighting can be
applied in any arbitrary direction using different combinations of Gx, Gy, and Gz. This figure
assumes the diffusion gradients are rectangular in shape. The difference between this sequence
and the spin echo sequence shown in Figure 2.13 is the addition of the diffusion gradients.

of an apparent diffusion coefficient as well as a diffusion tensor and how to measure them with

MRI.

3.3.1 Bloch-Torrey Equation

When analyzing diffusion weighted spin echo sequences, it is useful to define an ‘effective

gradient’ GGG∗(t). It lets us ignore the 180◦ refocusing pulse in the analysis. A positive gradient

followed by a 180◦ RF pulse has the same effect on the phases of the spins as if a negative

gradient had been applied without the 180◦ RF pulse. In other words, a spin echo and a gradient

echo have the same diffusion weighting. We define GGG∗(t) as [31]

GGG∗(t) =


−GGG(t) before 180◦ pulse

+GGG(t) after 180◦ pulse
(3.36)

All gradients occurring before the 180◦ pulse have been reversed. Figure 3.10 shows the effec-

tive gradient for a standard PGSE sequence.

We want to know how a particular diffusion-weighting gradient attenuates the MR signal.

One way is to use the Bloch-Torrey equation. Torrey introduced a diffusion term into the Bloch

equation (Eq. 2.32). Ignoring any RF pulses and working in the rotating frame, then the time
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Gx
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Figure 3.9: Diffusion-weighted EPI sequence. The diffusion weighting can be applied in any
arbitrary direction using different combinations of Gx, Gy, and Gz. This figure assumes the
diffusion gradients are rectangular in shape. The EPI sequence uses alternating gradients in
the read direction with phase gradients applied between each change in read gradient to cover
many, if not all, lines of k-space after just one excitation. This allows images to be collected
faster.

evolution of the complex magnetization is [31, 176]

∂Mx′y′

∂t
= iγrrr ·GGGMx′y′−

Mx′y′

T2
+D∇

2Mx′y′ (3.37)

where D is the diffusion coefficient. If we assume isotropic diffusion, then the solution to Eq.

3.37 can be found by assuming an Mx′y′(r, t) of the form [31]

Mx′y′(rrr, t) = E(t)exp
(
− iγrrr ·

∫ t

0
GGG(t ′)dt ′

)
exp(−t/T2) (3.38)

RF

G(t)

���

t

G*(t)

t RF

���

���� echo

�

echo

�
� �

a b

Figure 3.10: Applied gradient G(t) and effective gradient G∗(t) for a pulsed gradient sequence.
In (a), two positive gradients are separated by a 180◦. In (b), instead of a 180◦ pulse, the first
gradient is negative. The echo occurs at t = 2τ. The effective gradient can be used to simplify
calculations because the diffusion weighting it gives is the same as the applied gradient.
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where E(t) is a diffusion attenuation factor and the final term describes T2 relaxation. At

the echo centre (t = 2τ), the exponent in the middle factor is zero because
∫ 2τ

0 GGG∗(t ′)dt ′ = 0.

Substituting Eq. 3.38 into the Bloch-Torrey equation leads to a differential equation for E(t),

dE(t)
dt

=−Dγ
2
(∫ t

0
GGG∗(t ′)dt ′

)2

E(t) (3.39)

which has the solution [31, 79]

E(t) = exp
[
−Dγ

2
∫ t

0

(∫ t ′

0
GGG(t ′′)dt ′′

)2]
(3.40)

We can write Eq. 3.40 as

E = e−bD (3.41)

where

b = γ
2
∫ t

0

(∫ t ′

0
GGG∗(t ′′)dt ′′

)2

dt ′ (3.42)

Eq. 3.42 defines the b-value and gives the amount of signal weighting imparted by the diffusion

gradients. The b-value depends on the gradient waveform. Eq. 3.41 can be used to calculate

the diffusion coefficient of a liquid. We measure the signal with different b-values and then

solve for D. This requires as few as two measurements:

D =
ln(E2)− ln(E1)

b2−b1
(3.43)

where E1 and E2 are diffusion-weighted signals measured with weightings of b1 and b2 [93].

For a given pulse sequence G(t), one can calculate E(t) to find the signal attenuation due

to diffusion. For example, in the pulsed gradient spin echo sequence we have

G∗(t) =


−G 0 < t < δ

+G ∆ < t < ∆+δ

0 otherwise

(3.44)

64



3.3. DIFFUSION SIGNALS

The relevant integrals are

∫ t

0
G∗(t ′)dt ′ =


−Gt 0 < t < δ

−Gδ δ < t < ∆

−Gδ+Gt ∆ < t < ∆+δ

(3.45)

(∫ t

0
G∗(t ′)dt ′

)2

=


G2t2 0 < t < δ

G2δ2 δ < t < ∆

G2(δ+ t)2 ∆ < t < ∆+δ

(3.46)

and ∫
δ

0
G2t2dt +

∫
∆

δ

G2
δ

2dt +
∫

∆+δ

∆

G2(δ+ t)2dt

= G2(δ3/3+δ
2(∆−δ)+ [(2δ+∆)3− (δ+∆)3)]/3)

= G2
δ

2(∆−δ/3)

(3.47)

The echo attenuation is

E(2τ) = exp(−γ
2G2

δ
2D(∆−δ/3)) (3.48)

From Eq. 3.48, the b-value for a PGSE sequence is

bPG =−γ
2G2

δ
2(∆−δ/3) (3.49)

We can also calculate the echo attenuation from a single sine gradient with angular fre-

quency ω0 and duration T , where G(t) = Gsin(ωmt). The relevant integrals are

(∫ t

0
G(t)

)2

dt =
(

G
ωm

)2

(1− cos(ωmt))2 (3.50)
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and (
G

ωm

)2∫ T

0
(1− cos(ωmt))2dt

=
G2

ω2
m
(6ωmt−8sin(ωmt)+ sin(2ωmt))/(4ωm)

∣∣∣∣T
0

=
3G2T
2ω2

m

(3.51)

The echo attenuation is

E(2τ) = exp
(
− 3γ2G2T

2ω2
m

D
)

(3.52)

The b-value is

bsin =
3γ2G2T

2ω2
m

(3.53)

In an actual experiment, there will be two sine gradients, so the total b-value will be twice that

of Eq. 3.53. Similarly, it can be shown that the b-value for a cosine gradient with duration T

and angular frequency ωm is

bcos =
γ2G2T
2ω2

m
(3.54)

Signal attenuation in both sine and cosine sequences depend on G2/ω2
m. If we increase the

gradient frequency and want to keep the same signal weighting, we have to increase G.

3.3.2 Narrow Pulse Approximation

Another method for calculating a diffusion signal involves the narrow pulse approximation,

which assumes an idealized pulse sequence with infinitesimally short gradients [31, 129, 172].

After excitation in the PGSE sequence, a magnetic field gradient pulse is applied to the sample

for a short time δ. The narrow-pulse condition assumes that the applied gradient pulses are

short enough that motion during them can be neglected (δ� ∆). This causes the spins to

obtain a phase based on their position at the time of the pulse. After the pulse, a particle at rrr

will have a phase γGGGδ · rrr. A 180◦ RF pulse is then applied to the system which reverses the

phase of the spins. Another identical gradient pulse is then applied to the sample a time ∆ after

the first gradient pulse. Assuming the particle is now at rrr′, then the phase change after the pulse
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will be γGGGδ ·rrr′. The net phase shift is

∆φ = γδGGG · (rrr′−rrr). (3.55)

If no diffusion occurs (rrr = rrr′), the phase acquired from the second pulse will be equal

and opposite to the phase of the spin just before the pulse resulting in a net phase of zero. If

diffusion occurs (rrr 6= rrr′), the mean squared phase of all spins will be nonzero and will cause a

loss in MR signal which can be used to calculate the diffusion coefficient. The echo signal will

then be the sum of transverse magnetizations, weighted by the probability of moving from rrr to

rrr′, which is ρ(rrr)Ps(rrr|rrr′,∆). The attenuation will be

E(GGG,∆) =
∫ ∫

ρ(rrr)Ps(rrr|rrr′,∆)exp(iγδGGG · (rrr′−rrr))drrrdrrr′ (3.56)

In terms of the particle’s net displacement, RRR = rrr′−rrr, the signal attenuation is

E(GGG,∆) =
∫ ∫

ρ(rrr)Ps(rrr|rrr+RRR,∆)exp(iγδGGG ·RRR)drrrdRRR (3.57)

The integral
∫

ρ(rrr)Ps(rrr|rrr+RRR,∆)drrr is the definition of the average propagator P(RRR,∆). There-

fore, we can write E(GGG,∆) as

E(GGG,∆) =
∫

P(RRR,∆)exp(iγδGGG ·RRR)dRRR (3.58)

Eq. 3.58 plays an important role in q-space imaging. In q-space imaging, we define qqq =

γGGGδ/2π, so that P(RRR,∆) and E(q,∆) become a Fourier transform pair. Measuring E(qqq) at

different qqq values (with fixed ∆) and then taking the Fourier transform can be used to map the

averaged propagator [13, 84, 104, 188, 191]. On the other hand, if we know P(RRR,∆), we can

obtain an analytical expression for E(GGG,∆).

If the propagator is a Gaussian (Eq. 3.11) with gradients applied along the x-direction, we

can write E(G,∆) as

E(G,∆) = exp(−γ
2G2

δ
2D∆) (3.59)

67



3.3. DIFFUSION SIGNALS

The exponent can also be written as−4πq2D∆. A comparison of Eq. 3.41 with Eq. 3.59 shows

that the b-value for a narrow pulse experiment is

bNP = γ
2G2

δ
2
∆ (3.60)

Eqs. 3.59 and 3.60 are valid if the narrow-pulse approximation holds.

3.3.3 Arbitrary Gradients

The narrow pulse approximation has limited applicability, so we want a more general method

of analyzing diffusion signals. The phase shift of the ith particle at time t can be written as

φi(t) = γ

∫ t

0
GGG∗(t ′) ·rrri(t ′)dt ′ (3.61)

In general, the echo attenuation requires calculation of an ensemble average over all the spins,

so the echo signal is [31, 164, 165, 166]

E(2τ) = 〈exp(iφi(2τ))〉=
〈

exp(iγ
∫ 2τ

0
GGG∗(t ′) ·rrri(t ′)dt ′)

〉
(3.62)

The phase shift can also be written in terms of particle velocity vvvi(t). Integrating Eq. 3.61 by

parts and making use of the echo condition (
∫ 2τ

0 G∗(t ′)dt ′ = 0), we find [165, 166]

φi(2τ) =−γ

∫ t

0
FFF(t ′) ·vvvi(t ′)dt ′ (3.63)

where FFF(t ′) is the time integral of the applied gradient,

FFF(t) =
∫ t

0
GGG∗(t ′)dt ′ (3.64)
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The steps for finding Eq. 3.63 are shown below [165, 166]:

φi(2τ) = γ

∫ 2τ

0
GGG∗(t ′) ·rrri(t ′)dt ′

= γ

(∫ t ′

0
GGG∗(t ′′)dt ′′

)
·rrri(t ′)dt ′

∣∣∣∣2τ

0
− γ

∫ 2τ

0

(∫ t ′

0
GGG∗(t ′′)dt ′′

)
·

drrr j

dt ′
dt ′

= 0− γ

∫ 2τ

0

(∫ t ′

0
GGG∗(t ′′)dt ′′

)
·vvv j(t ′)dt ′

=−γ

∫ 2τ

0
FFF(t ′) ·vvv j(t ′)dt ′

(3.65)

where we used the echo condition in the third line (
∫ 2τ

0 GGG∗(t)dt = 0). Eq. 3.63 allows us to

write the echo signal as

E(2τ) =

〈
exp
(
− i

∫ 2τ

0
FFF(t ′) ·vvv j(t ′)dt ′

)〉
(3.66)

3.3.3.1 Gaussian approximation

Suppose we have a continuous random variable A, whose distribution is described by the prob-

ability density p(A). If we want to find the ensemble average of 〈eiA〉, we can perform a Taylor

expansion, so that [79]

〈eiA〉=
∞

∑
n=0

in

n!
〈An〉

= 1+ i〈A〉− 1
2〈A

2〉+
(3.67)

Here 〈An〉 is called the nth raw moment. The Taylor expansion transfers the ensemble average

from the exponential to powers of A.

Similarly, it can be shown that the logarithm of 〈eiA〉 is [40, 79]

ln(〈eiA〉) =
∞

∑
n=1

in

n!
〈An〉c

= i〈A〉c− 1
2〈A

2〉c + . . .

(3.68)

where 〈An〉c is the nth order cumulant of A. Each cumulant is formed from combinations of
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〈An〉. The first three cumulants are

〈A〉c = 〈A〉

〈A2〉c = 〈A2〉−〈A〉2

〈A3〉c = 〈A3〉−〈A3〉c−3〈A〉c〈A2〉c

(3.69)

The first order cumulant is just the mean of A and the second order cumulant is the variance of

A.

The general form of an echo described by Eq. 3.62 is an ensemble average of an expo-

nential, where the random variable is the net phase shift φ j(t). More specifically, the random

variable is either the position rrr j(t) (Eq. 3.61) or velocity vvv j(t) (Eq. 3.63). Therefore, we can

expand the echo signal in a series of moments (or cumulants).

Suppose we expand the signal in terms of position. If gradient magnitudes are small, then

we can ignore higher order terms in the expansion, leading to the Gaussian phase approximation

[79, 133, 165, 192],

E(2τ) = exp
(
− γ2

2

∫ 2τ

0

∫ 2τ

0
GGG(t1) · 〈rrr(t1)rrr(t2)〉c ·GGG(t2)dt1dt2

)
(3.70)

It turns out that if there is no net flow, then all odd-order terms are zero [79]. The next highest

term in the expansion would be a 4th-order term. If diffusion is unrestricted, higher order terms

are zero. If we write the signal in terms of velocity cumulants, we have [55, 135, 165, 166]

E(2τ) = exp
(
− γ2

2

∫ 2τ

0

∫ 2τ

0
FFF(t1) · 〈vvv(t1)vvv(t2)〉c ·FFF(t2)dt1dt2

)
(3.71)

Again, if gradient magnitudes are small, then higher order terms can be ignored. Note that if

we substitute 〈v(t1)v(t2)〉= 2Dδ(t1− t2) (Section 3.1.3) into Eq. 3.71 we get

E(2τ) = exp
(
− γ

2D
∫ 2τ

0
[F(t1)]2dt1

)
(3.72)

which is the same echo attenuation found using the Bloch-Torrey equation (Eq. 3.40).
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3.3.4 Diffusion Spectrum

The diffusion signal can also be expressed in terms of the diffusion spectrum (Section 3.1.3).

The diffusion spectrum is the Fourier transform of the velocity correlation function (Eq. 3.29),

so we can also write the inverse transform [165]:

〈v(t1)v(t2)〉=
1
π

∫
∞

−∞

D(ω)exp(iω(t1− t2))dω (3.73)

Substituting Eq. 3.73 into Eq. 3.71 gives another form for the signal [140, 167]

E(2τ) = exp
(
− γ2

2π

∫
∞

−∞

|F(ω)|2D(ω)dω

)
(3.74)

where

F(ω) =
∫ 2τ

0
F(t)eiωtdt (3.75)

is the Fourier transform of F(t). The signal attenuation depends on the shape of the gradient

waveform, through F(ω), and on the diffusion spectrum D(ω). Eq. 3.74 also shows that

different gradient waveforms probe the diffusion spectrum differently. The next section looks

at a few waveforms.

3.3.4.1 Frequency spectrum

In this section we look at |F(ω)|2 for some typical gradient waveforms.

3.3.4.2 Pulsed gradients

The frequency spectrum for pulsed gradients of width δ and gradient amplitude G is [31]

|F(ω)|2 =
[

4G
ω2 sin

(
1
2

ωδ

)
sin
(

1
2

ω∆

)]2

(3.76)

At zero frequency, the spectrum has a large lobe with a width on the order of 1/∆. Shorter

diffusion times broaden the peak. This peak makes the sequence unsuitable for extracting

high frequency information from D(ω). If we let D(ω) = D0 (free diffusion) and integrate
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|F(ω)|2D0, we recover the usual PGSE attenuation coefficient (Eq. 3.49) [31].

3.3.4.3 Oscillating gradients

Oscillating gradients provide a way to probe the high frequency regions of D(ω). It can be

shown that |F(ω)|2 for a single sine gradient with NOG lobes and angular frequency ωm is [31]

|F(ω)|2 =
[

2Gωm

ω(ω+ωm)(ω−ωm)
sin(NOGπω/ωm)

]2

(3.77)

Two main features in the spectrum are a large lobe at ω = 0 and a smaller lobe at ω = ωm. The

spectrum for a single cosine gradient is

|F(ω)|2 =
[

2G
(ω−ωm)(ω+ωm)

sin(NOGπω/ωm)

]2

(3.78)

The frequency spectrum of a cosine has a lobe at ω = ωm. But unlike the sine gradient, there

is no lobe at ω = 0. In the limit of large NOG (infinite pulses), both Eq. 3.77 and Eq. 3.78

simplify. For a sine gradient, the spectrum becomes [31, 43]

|F(ω)|2 = π2G2

ω2
m

[
4δ(ω)+δ(ω+ωm)+δ(ω−ωm)

]
(3.79)

The signal attenuation is

E = exp
(
−bsin ·

[2
3D(0)+ 1

3D(ωm)
])

(3.80)

At large n, the sequence picks out D(ω = 0) and D(ω = ωm). For free diffusion, D(ω) is

independent of frequency (D(ω) = D0), so the sine sequence attenuation is

E = exp(−bsinD0) (3.81)

which is the same attenuation we calculated in Eq. 3.53 using the Bloch-Torrey equation.
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For a cosine gradient [43],

|F(ω)|2 = π2G2

ω2
m

[
δ(ω+ωm)+δ(ω−ωm)

]
(3.82)

and the signal attenuation is

E = exp
(
−bcosD(ωm)

)
(3.83)

The cosine sequence measures D(ω) at ω = ωm. An advantage of the cosine sequence is that it

only picks out one frequency in the diffusion spectrum, whereas the sine sequence also picks out

a zero frequency component. Measuring the diffusion-weighted signal with different gradient

frequencies and using Eq. 3.83 allows the diffusion spectrum to be measured. This is called

temporal diffusion spectroscopy [140]. Figure 3.11 compares the frequency spectra for PGSE

and OGSE sequences.

3.3.5 Apparent Diffusion Coefficient

Molecules diffusing in a uniform medium with no barriers experience unrestricted diffusion.

In non-uniform media (e.g. porous samples and cellular tissues) barriers hinder or restrict

molecular displacements so that the diffusion depends on the time scale of the study, on the

size of pores, and on the permeability of the barriers. Instead of a diffusion coefficient, we

measure an apparent diffusion coefficient, or ADC. The signal in Eq. 3.41 becomes

E = exp(−b ·ADC) (3.84)

where ADC < D. Taking measurements at different b-values allow one to calculate the ADC

(similar to Eq. 3.43). Understanding the influence of the restrictions or hindrances on the

ADC gives information about the structural properties and geometry of the boundaries of the

surrounding medium [79, 197, 198].

For narrow gradient pulses separated by diffusion time ∆, the ADC can be related to the
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Figure 3.11: Frequency spectra for pulsed gradients and oscillating gradients. (a) Frequency
spectrum for pulsed gradients. The spectrum has a broad lobe at ω = 0. (b) Frequency spec-
trum for sine gradient with frequency ωm. There are two smaller lobes at ω = ±ωm and one
larger lobe at ω = 0. (c) Frequency spectrum for cosine gradient with frequency ωm. There
are two lobes at ω =±ωm. Spectra in (b) and (c) were generated using the same pulse param-
eters (number of oscillations, pulse duration, angular frequency). An advantage of the cosine
sequence is that it only picks out one frequency in the diffusion spectrum, whereas the sine
sequence also picks out a zero frequency component.
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mean squared displacement [52, 201]:

ADCNP(∆) =
〈x2(∆)〉

2∆
(3.85)

The quantity 〈x2(t)〉/2t is the definition of a time-dependent diffusion coefficient D(t) [157].

An ADC obtained from a narrow pulse experiment with diffusion time ∆ is actually D(t = ∆).

If the system is closed, then the mean squared displacement approaches a constant value at long

times. According to Eq. 3.85, the ADC goes to zero at long measurement times. Comparing

Eq. 3.84 to Eqs. 3.83 and 3.80, we also have the following relationships [43, 140]:

ADCsin(ωm) =
2
3D(0)+ 1

3D(ωm) (3.86)

ADCcos(ωm) = D(ωm) (3.87)

The ADC measured with an idealized (infinite) sine gradient of angular frequency ωm is a

combination of diffusion spectrum components D(0) and D(ωm). The ADC measured with an

idealized cosine gradient is equal to the diffusion spectrum component D(ωm).

3.3.6 Diffusion Tensor Imaging

Diffusion is isotropic when the diffusivity is independent of direction. Anisotropic diffusion

is when diffusivity is not the same in all directions. For instance, diffusion of water within a

nerve axon (see Chapter 4) is more restricted across the axon than along the axon due to the

axonal membrane. In anisotropic media, the measured ADC will depend on the direction of

measurement [21].

Section 3.3.5 assumed a scalar ADC. This value is obtained from the projection of molecu-

lar displacements along one axis. In diffusion tensor imaging, we assume a three-dimensional

Gaussian model for molecular displacements [17, 18],

P(RRR, t) =
1√

4πt|D|3
exp
(
−RRRT D−1RRR

4t

)
(3.88)
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Instead of a scalar ADC, we use a nine element diffusion tensor D to describe diffusion [129]:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (3.89)

It is a symmetric tensor (D = DT ). The diagonal elements represent second displacement mo-

ments along the three axes (〈x2〉, 〈y2〉, 〈z2〉), while the off-diagonal elements represent corre-

lations between orthogonal displacements (〈xy〉, 〈xz〉, 〈yz〉). To find the elements of the tensor,

we need diffusion measurements made in multiple directions (at least 6).

The signal is now [79]

E = exp(−bĜ̂ĜGT DĜ̂ĜG) (3.90)

where Ĝ̂ĜG is a unit vector giving the gradient direction. The amount of weighting is now rep-

resented by a b-matrix instead of a single b-value [114, 115]. The elements of the diffusion

tensor can be found using multivariate linear regression [79, 83, 95]. If diffusion is isotropic,

then all off-diagonal elements in the tensor are zero and the diagonal terms are all equal, with

ADC = (Dxx +Dyy +Dzz)/3.

Diffusion in each voxel can be visualized using ellipsoids. With isotropic diffusion, the dif-

fusion propagator is spherically symmetric. Its value depends only on the displacement from

the origin. Therefore, surfaces of constant probability for molecular displacements are con-

centric spherical shells. When diffusion is anisotropic, the surfaces of constant probability are

ellipsoids. If diffusion is highly anisotropic, with diffusion higher along one axis, the ellipsoid

is prolate. If diffusion is greater along two axes but smaller along the third, the ellipsoid will

be oblate (see Figure 3.12).

3.3.6.1 Diffusion Tensor Metrics

The elements of the diffusion tensor depend on the relative orientation of the laboratory and

principal axes. Scalar metrics that are independent of the orientation of the sample are therefore

desirable. A few are described below [79].
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Figure 3.12: Three diffusion ellipsoids. (a) prolate ellipsoid (λ1 > λ2 ≈ λ3) (b) oblate ellipsoid
(λ1 ≈ λ2 > λ3). (c) spherical ellipsoid (λ1 ≈ λ2 ≈ λ3). These ellipsoids represent surfaces of
constant probability. In (a) and (b) diffusion is anisotropic. In (c) the diffusion is isotropic.

3.3.6.2 Radial and Axial Diffusivity

The first set of scalar quantities are the three eigenvalues, λ1, λ2, and λ3. They are the diffu-

sivities along the principal axes of the tensor, sorted according to size ( λ1 > λ2 > λ3). They

describe the degree of diffusion anisotropy. If the tensor is axially symmetric ( λ1� λ2 ≈ λ3),

then λ2 and λ3 can be combined to give a mean radial diffusivity λ⊥ = (λ2 +λ3)/2. The dif-

fusivity along the longitudinal axis is called the axial diffusivity, λ‖ = λ1. In white matter, it

is assumed that the direction of greatest diffusivity (λ1) points in the direction of an axon (see

Figure 3.13).

3.3.6.3 Mean diffusivity

The mean diffusivity represents an average ADC in a voxel. It is the average of the three

principal diffusivities, or one-third the trace of the diffusion tensor, Tr(D)/3. It describes

the size the ellipsoid. With b-values of around 1500 s/mm2, the mean diffusivity is relatively

uniform over the human brain (0.7×10−3 mm2/s) [77].

3.3.6.4 Fractional Anisotropy

The sample variance Var(λ) of the principal diffusivities

Var(λ) =
(λ1−〈λ〉)2 +(λ2−〈λ〉)2 +(λ3−〈λ〉)2

3
(3.91)
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Figure 3.13: Ellipsoids are used to visualize diffusion. In highly anisotropic tissues such as
white matter, the direction of greatest diffusivity is assumed to be parallel to the direction of
the fibre. The direction of the fibre is used in diffusion tensor tractography methods [19,37,78,
92, 125] to study connectivity in the brain.

is an invariant quantity that can be used to create two anisotropy measures: relative anisotropy

(RA) and fractional anisotropy (FA). The RA is given by

RA =
Var(λ)
〈D〉

, (3.92)

and the FA given by

FA =
3√
2

√
Var(λ)√

λ2
1 +λ2

2 +λ2
3

(3.93)

Fractional anisotropy gives the fraction of diffusion tensor magnitude that is anisotropic. Its

value lies between 0 (completely isotropic diffusion) and 1 (diffusion along one direction only).

Reported values in human white matter range from 0.5 to 0.8 [24,69,112]. Fractional anisotropy

is highest in the corpus callosum [27].

3.4 More Sophisticated Models

The principles in the previous sections form the basis of more complicated models. Some of

these are described below.
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3.4.1 Multi-tensor Model

The multi-tensor model generalizes the single tensor model to include multiple tensors [79].

It assumes that each voxel has n populations of fibres, each described by its own Gaussian

diffusion tensor. The displacement probability is

P(RRR,∆) =
n

∑
i=1

fiG(RRR,Di,∆), (3.94)

where fi are population fractions and G(RRR,D,∆) is a Gaussian with zero mean and covariance

2Di∆, with ∆ as the diffusion time. Water exchange between populations is assumed to be zero.

The normalized signal is

E =
n

∑
i=1

fi exp(bĜTĜTĜT DiĜ̂ĜG), (3.95)

where Ĝ̂ĜG is a unit vector pointing along the direction of the gradient. Model parameters are the

fi and the elements of each tensor. The principal eigenvectors of each tensor should give the

direction of a different fibre population. Parameters are found using non-linear regression (for

example using a Levenberg-Marquardt algorithm [95]).

The multi-tensor model has a large number of free parameters. While the single tensor

model has 6 free parameters, a multi-tensor model with n = 2 has 13 free parameters. The

model assumes that the number of populations is known beforehand. Due to limitations (such

as acquisition time, number of measurements needed, etc), the number of compartments has

usually been limited to n= 2. In voxels with one dominant fibre direction, the two tensor model

estimates are less accurate. Some groups are working on ways to determine what model to use

beforehand [5,67,138,180]. For n = 2, measurements are made with higher b-values compared

to a single tensor model. One study found that b-values in the range 1800 – 2400 s/mm2

provided the best parameter estimates [138].

3.4.2 Ball and Stick model [22, 67]

The ball and stick model assumes two or more compartments. Molecules in one compartment

(the ball) undergo isotropic Gaussian diffusion. Molecules in the other compartments only
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diffuse in one direction (Gaussian displacements in one direction). These are the ‘sticks,’ which

represent the fibres. The sticks can be oriented in any direction.

3.4.3 Composite Hindered and Restricted Model of Diffusion

(CHARMED)

The CHARMED model [12] also assumes two or more compartments. One compartment,

the “hindered” compartment, represents extra-axonal space where particle displacements are

modeled by a Gaussian function. When diffusion is hindered, particles are slowed down by

obstacles, but not totally trapped [189]. This was assumed to be the case in extra-axonal space.

The ADC at long times will approach a constant value. In the other compartment(s), represent-

ing cylindrical axons, molecules undergo restricted diffusion. The model can accommodate

multiple restricted compartments with the cylinders oriented in any direction. Images are ac-

quired with a range of b-values (up to 10000 s/mm2) and with directions arranged over a shell

(up to 30 directions at the largest b-value).

3.4.4 Diffusion Spectrum Imaging (DSI)

This method is designed to measure the diffusion propagator P(RRR,∆) without making any as-

sumptions about the microstructure [79, 102, 120, 187]. It uses the q-value model, which says

that for narrow pulses, a set of PGSE measurements at fixed diffusion time ∆ is the Fourier

transform of P(RRR,∆) (Section 3.3.2). In DSI, signals are collected over a Cartesian grid in

q-value and then Fourier transformed to get P(RRR,∆). Collecting many data points over three di-

mensional Cartesian space (often on the order of 500 q-values) requires long acquisition times,

which makes it an inefficient sampling scheme.

3.4.5 High Angular Resolution Diffusion-weighted Imaging (HARDI)

This acquisition scheme involves collecting images with a single b-value sampled over a spher-

ical shell in q-space [42,79]. It provides information on the diffusion-weighted signals’ angular

dependence, which is important for resolving crossing fibres. It requires less time to acquire
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data over the shell (typically on the order of 50 q-space samples) than over a full three dimen-

sional grid. Since it is not possible to perform a three dimensional Fourier transform with a

single shell, an assumption of the radial dependence of E(qqq) needs to be made.

3.4.6 Q-ball Imaging

This method uses HARDI acquisition data to approximate a diffusion orientation distribution

function (dODF) [120, 179, 181]. The dODF describes the relative number of particles that

have diffused along a given direction. It approximates the dODF using a Funk-Radon transform

of the q-value data. The method uses b-values of 4000 s/mm2 or higher and was able to resolve

fibre crossings of 45 degrees.

3.4.7 Spherical Deconvolution

The spherical deconvolution method is designed to estimate a fiber orientation distribution

function ( f ODF) [8, 178]. The f ODF quantifies the fraction of fibres pointing along a certain

direction in a voxel. The method works by assuming the final diffusion-weighted measure-

ments are the sum of measurements for each fibre population orientation, weighted by the

fraction of fibres with that orientation. Each measurement is a convolution of the f ODF with

the measurement for a single fibre population. The goal of spherical deconvolution is to find

f ODF through deconvolution. This requires a diffusion model for the fibres. For example, one

could use the ball and stick model [8]. Originally, this method was susceptible to noise which

produced spurious peaks and lobes, though later refinements to the model produced smoother

output [79, 153, 177].

3.4.8 Diffusion Orientation Transform (DOT)

This model uses HARDI data to estimate the propagator P(RRR) at a fixed radius R0 [79, 137]. It

can be evaluated at any R0, which is useful because large R0s will show increased separation

between fibres. In order to calculate it, one needs to approximate how the signal decays with

|qqq|. Two possible approximations are monoexponential or bi-exponential decay [137], with the
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more complex model more sensitive to crossing fibres.

3.5 Monte Carlo Simulation

A Monte Carlo method uses random number sampling to estimate a quantity [47]. Monte

Carlo methods became very popular after the introduction of computers. With a computer, it is

possible to generate large sequences of pseudorandom numbers in short amount of time.

In order to understand the effect of geometries, pulse sequences, or properties of the sample

on diffusion weighted MR signals, we use Monte Carlo simulations. The geometry of the

sample and diffusion properties of the sample, such as permeability, and diffusion coefficients,

are programmed into the simulation. These parameters can be controlled so that their effects

on the diffusion MR signal can be studied.

In this thesis a Monte Carlo simulation was used to study the diffusion spectrum from a

variety of geometries using the cosine sequence. Before the simulation begins, N particles are

randomly distributed over a lattice. At t = 0, the magnetization vectors of the particles are

aligned in the transverse plane as if just tipped by a 90◦ RF pulse. During the simulation, ith

particle’s transverse magnetization vector is stored as a phase variable φi.

At each time step, the position of each particle is updated by generating a three dimensional

step vector with random orientation in space. For three dimensions, the magnitude of the step

vector is
√

6D∆t, where D is the diffusion coefficient of the region containing the particle, and

∆t is the length of the time step. The new position of the particle then becomes

rrri(t j+1) = rrri(t j)+
√

6D∆tÛ̂ÛU (3.96)

where rrri(t j+1) is the updated position of the particle, rrri(t j) is the original position, and Û̂ÛU

denotes a random step vector. In practice, we usually choose the step direction by picking a

random point on a sphere.

The samples modeled in this thesis all have impermeable boundaries. The implications of

this assumption are discussed in Chapter 8. If the proposed trajectory of any particle intersects

a boundary, then the particle is mirror reflected. The simulation allowed for the possibility of
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multiple reflections in a single time step.

At time steps where gradients were applied, each particle has its transverse magnetization

incremented through an angle γGGG(t j) ·rrri(t j)∆t, where rrri(t j) is the position of the ith particle and

GGG(t j) is the gradient vector. The 180◦ refocusing pulse is not explicitly included. In order to

take into account the 180◦ refocusing pulse, we reverse the sign of GGG(t) for the first half of the

simulation (Section 3.3.3).

The total signal at the echo time is taken to be the net transverse magnetization of the N

particle ensemble, given by

E =

∣∣∣∣ 1
N ∑

i
MMMi

xy

∣∣∣∣ (3.97)

where MMMi
xy is the transverse magnetization vector of the ith particle.
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Chapter 4

AxCaliber model

This chapter discusses the development of a method to measure micron-sized restrictions in

samples and an application of the method for inferring axon diameter sizes in white matter in

the brain.

4.1 Introduction

In this section, axons and the importance of knowing their diameters are explained followed by

methods to determine axon diameters.

4.1.1 Axons

The CNS is made up of neurons and glial cells. There are about 100 billion neurons in the

human brain, but almost 10 times more glial cells [20]. Neurons have three main regions: the

cell body, axons, and dendrites. The cell body contains the nucleus and other organelles. Axons

are long, slender fibres that lead away from the cell body. Axons carry electrical impulses away

from the cell body. Many axons are surrounded by a myelin sheath. Dendrites are extensions

that receive signals from other neurons. Information is transmitted across synapses. Glial cells

are a class of cells that play a supporting role in the CNS. For example, oligodendrocytes are

involved in myelin production [20, 121]. Figure 4.1 shows the main features of a neuron.
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Cell body

Nucleus

Axon
Axon terminal

Myelin sheath

Dendrites

Figure 4.1: Diagram showing main features of a neuron. The cell body contains the nucleus.
Dendrites receive signals from other neurons. The axon carries signals away from the cell body
to the axon terminal. It is sometimes surrounded by a myelin sheath.

4.1.2 The Importance of Axon Diameters

Measuring axon diameter distributions is important for neuroscience because axon diameter is

directly proportional to nerve conduction velocity [11,70,151,173,186]. Recent studies indicate

possible changes in axon diameter distributions associated with diseases such as diabetes [107],

Alzheimer’s disease, [9] autism [68, 142], dyslexia [134], and schizophrenia [146, 150]. Cur-

rently, the only way to measure axon diameters is highly invasive, requiring sectioning of ex

vivo tissue using histological procedures such as electron microscopy [185]. These measure-

ments have limitations due to fixation and cutting artifacts, the need to use post mortem tissue,

and the use of only small tissue sample sizes [16, 185]. These methods also do not allow re-

peated measures on the same subject over time to view development, damage due to disease or

trauma, changes due to aging, or to monitor the effects of interventions/treatments. Recently

there has been a push to develop models to infer axon diameter distributions from in vivo mag-

netic resonance images [7, 11, 16, 66] so that changes in axon diameters can be monitored over

time.

4.1.3 Measurements of Axon Diameters

Axons are typically modeled as impermeable parallel cylinders with intra- and extra-axonal

water each with their own diffusion coefficient. Diffusion perpendicular to the axons is mea-

sured as a function of diffusion time using magnetic resonance imaging. The diffusion signals

are fit to models of diffusion in cylinders to infer the diameter of the cylinders or to obtain an
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inferred axon diameter distribution (ADD). For instance, with the AxCaliber method [11], sig-

nal data are first collected at a range of diffusion times and gradient strengths. During analysis,

signals are decomposed into intra-axonal and extra-axonal components. Water inside the axons

is assumed to undergo restricted diffusion, while extra-axonal water is modeled as undergoing

hindered diffusion.

Another method, ActiveAx [6], extends and optimizes these methods to determine the accu-

racy and precision with which this important new biomarker, axon diameter, can be estimated

in live human subjects [7]. The work from this group combined a simplified version of compos-

ite hindered and restricted model of diffusion (CHARMED) [12] with high-angular-resolution

diffusion imaging (HARDI) and a model with a single axon diameter [7]. It has been modified

to be robust in the presence of orientation dispersion but is insensitive to axons < 2.5 µm in

diameter [199].

These models have their limitations. Accurate models for extra-axonal water diffusion,

permeable axon membranes, and exchange of water between compartments are still being de-

veloped [132]. Estimating axon diameters in the presence of orientation dispersion is challeng-

ing [152, 199]. AxCaliber assumes parallel axons and requires that the diffusion gradients be

applied perpendicular to the axon. The need for many diffusion measurements can also lead to

long scan times [11].

AxCaliber was used to infer axon diameters in human corpora callosa [66]. When results

from this study were compared with results measured histologically by light microscopy, it was

found that AxCaliber-inferred axon diameters were considerably larger than those found in the

tissue being studied (by ≈ 2 µm) [73]. These axon diameters inferred from MRI are biased

toward large axons. The comparison with tissue samples concluded that MRI derived axon

diameter measurements do not yet resolve axons in the 1 to 2 µm range, which constitute the

majority of cortical connections [73].

Both ActiveAx and AxCaliber use the pulsed gradient spin echo sequence [163]. The PGSE

sequence limits the size of axons that can be inferred using these methods. The PGSE sequence

cannot adequately access short enough diffusion times to distinguish small axon diameters

in mice or humans. Axon diameters range from 0.16 to 9 µm [101], whereas most PGSE
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sequences can only distinguish diameters 2.5 µm and larger [45]. Thus PGSE is irrelevant for

rodent studies, because the majority of the axons in rodent brain are much smaller. For instance

rat corpus callosum axon diameters are smaller than 4 µm with a mean around 1 µm [16]

and mouse optic nerve axons range from 0.2 to 2.4 µm [77]. Distinguishing smaller axon

diameters would provide important new information for neuroscience about the function of

nerves because axon diameter is directly related to nerve conduction velocity [7, 70, 151, 173,

186].

Thus another pulse sequence should be used in order to infer smaller axon diameters allow-

ing the ActiveAx and AxCaliber methods to be applied to mice. OGSE easily achieves diffusion

times on the order of 1 ms and has even achieved a diffusion time of 0.375 ms [43]. Recently,

the first demonstration of a trapezoidal OGSE sequence on humans showed its potential for

investigating microstructure information on a human MR system [183].

Using OGSE sequences can improve the ability to distinguish smaller axon diameters. As

Ref. [7] notes: “More significant improvements may come from replacing the standard PGSE

sequence with other diffusion-sensitive sequences such as oscillating gradient. . . experiments,

which may be more sensitive to microstructural parameters. . . Combination of the experiment

design with these other pulse sequences should allow the a priori range of axon diameters to

extend to include smaller diameters. This should provide protocols with sensitivity to wider

ranges and provide more discriminative axon diameter indices.” The same group performed

experiments with optimized gradient waveforms (GEN) as a first step toward changing the gra-

dient waveform in PGSE and were able to make axons with smaller radii more distinguishable

with GEN than with PGSE [45, 160]. They suggest that oscillating waveforms could go even

further than GEN [160].

Some studies have combined PGSE and OGSE for intermediate sizes using clinically fea-

sible gradient strengths. These studies take advantage of the unique time scales available by

each method to obtain intermediate size ranges that are wider than just using PGSE to measure

cell sizes and volume densities [76, 147]. Using the Non-Uniform Oscillating Gradient Spin

Echo (NOGSE) method, two oscillating frequencies are combined to benefit from both low

frequency oscillations (similar to the time-scale from PGSE) and high frequency oscillations
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(similar to the time-scales from OGSE) [159]. This method, which offers better sensitivity for

smaller diameter measurements than PGSE alone, is not suitable as of yet for high gradient

strengths but can be adapted for clinical imaging [141].

This chapter develops an important new method to distinguish smaller axon diameters

(< 5 µm) by combining cosine OGSE sequences with AxCaliber [11] methods to distinguish

smaller axons. This new method can be used in a research environment to study smaller axons

in rodent models of diseases. We present Monte Carlo computer simulations of various ge-

ometries to show the feasibility of this method in pre-clinical settings with higher field strength

imagers with large gradient strengths. For simplicity these studies also assume parallel axons

with gradients perpendicular to the axons. The AxCaliber model assumes hindered diffusion

of water in the extra-cellular space. We show this assumption breaks down for certain diffusion

times and suggest improvements for the reliability of the extra-axonal diffusion in the model.

4.2 Methods

In this section, the methods used to infer axon diameters are discussed. The original CHARMED

method and AxCaliber method are discussed first. Then the modifications we made from the

use of PGSE to the OGSE pulse sequence are explained. Then the computer simulations using

the method are explained.

4.2.1 CHARMED

As mentioned before (Section 3.4.3), CHARMED is a framework that has been used to de-

scribe the diffusion process in white matter [12]. Both restricted (non-Gaussian) and hindered

(Gaussian) diffusion contribute to signal decay. It assumes that restricted diffusion occurs in

the intra-axonal regions and hindered diffusion occurs in the extra-axonal region.

Suppose we have a bundle of parallel axons. One axon is modeled in Figure 4.2. The axons

point in the n̂̂n̂n direction. A gradient GGG (or qqq) is turned on and a diffusion signal is collected. Dif-

fusion of water occurs both parallel and perpendicular to the axons. Molecular displacements

in each direction are independent, so the total propagator can be written as a product of parallel
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and perpendicular propagators. This implies that the total signal is a product of signals due to

parallel and perpendicular displacements:

E(qqq,∆) = E‖(qqq‖,∆)E⊥(qqq⊥,∆) (4.1)

where E‖ and E⊥ are signals arising from parallel and perpendicular displacements, qqq‖ and

qqq⊥ denote components of qqq that are parallel and perpendicular to the axons. We can write

qqq = qqq⊥+qqq‖.

Inside the axons, parallel molecular displacements are assumed to be Gaussian with diffu-

sivity D‖. This means that the parallel signal component is

E‖(GGG‖,∆) = exp(−γ
2GGG2
‖δ

2(∆−δ/3)D‖) (4.2)

where GGG‖ is the parallel component of the gradient GGG. Other terms such as δ and ∆ refer to

standard pulsed sequence parameters.

Molecular displacements perpendicular to axons are assumed to be restricted. In their orig-

inal paper [12], they assumed constant gradient pulses so that ∆ ≈ δ. This was partly because

the mathematical formula is simpler and because the narrow pulse assumption was difficult to

achieve. Therefore, signal decay was described by the Neuman formula [128],

E⊥(GGG⊥,2τ) = exp(−(a4
γ

2GGG2
⊥/D⊥)(7/96)(2τ− (99/112)(a2/D⊥)) (4.3)

where D⊥ is the diffusivity perpendicular to the axons and a is the axon radius.

Diffusion in the extra-axonal compartment is Gaussian. Diffusion is anisotropic and de-

scribed by a diffusion tensor D,

Eh = e−4π2(∆−δ/3)qqqT Dqqq (4.4)

The model assumes that the principal axes of diffusion coincide with the parallel and per-

pendicular axes of the restricted compartment (i.e. the axons). The factor qqqT Dqqq can be ex-

panded out and expressed in terms of perpendicular and parallel diffusivities λ⊥ and λ‖ in the
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extra-axonal space and parallel and perpendicular components of qqq,

Eh(qqq,∆) = e−4π2|qqq‖|2λ‖(∆−δ/3) · e−4π2|qqq‖|2λ⊥(∆−δ/3) (4.5)

The CHARMED framework can be extended to include more than two compartments at the

cost of increased complexity. In general, the total signal is

E(qqq,∆) =
M

∑
i=1

f i
hE i

h(qqq,∆)+
N

∑
i=1

f j
r E j

r (qqq,∆) (4.6)

where M is the number of hindered compartments, N is the number of restricted compartments,

f i
h is the volume fraction of the ith hindered compartment, and f i

r is the volume fraction of the

ith restricted compartment. Signals are measured with a range of different qqq magnitudes and

orientations (concentric spherical shells). The qqq vectors in Eq. 4.6 can be written in spherical

coordinates denoting fibre direction (θn,φn) and qqq direction (θq,φq). Then qqq = q(θn,φn,θq,φq),

allowing for the extraction of fibre direction.

The number of free parameters depends on the number of compartments. For a single hin-

dered compartment, there are 7 parameters. For one restricted and one hindered compartment,

there are 12. For two hindered compartments (a dual tensor model), there are 13. For two

restricted and one hindered compartment, there are 15. Multiple compartments were used to

model crossing fibres. To reduce the number of free parameters, the original model fixed a and

D⊥. The parameters of interest were λ‖ and λ⊥ (hindered diffusivities), the orientation of the

restricted compartments (θ j
n, φ

j
n), restricted and hindered population fractions, D‖, and a noise

term.

Assaf tested the model using simulated data with a number of compartments to see how

well parameters could be estimated [12]. Of particular interest was whether crossing fibres

could be identified. They also calculated average propagators by Fourier transforming q-value

data. It was found that with 90◦ crossings, two restricted compartments and a hindered com-

partment worked best (M = 1, N = 2), with 20 or more directions. With 30◦ crossings, at least

30 directions were needed to distinguish the two fibres. They also collected experiment data

from excised pig spinal cord, including crossing fibres. The maximum gradient strength was
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50 mT/m. Diffusion time was 150 ms, with pulse duration of 40 ms. Signals were measured in

31 directions. Results were close to actual values with both single and crossing fibres.

4.2.2 AxCaliber PGSE

AxCaliber extends the CHARMED model to account for a distribution of axon diameters

[11]. In this protocol, gradients are applied perpendicular to the fibers. This simplifies some

CHARMED expressions, since only displacements perpendicular to fibers are measured. This

means that qqq = qqq⊥(= q) and qqq‖ = 0. Parallel diffusivities D‖ and λ‖ disappear from the

model. Only perpendicular terms remain. Since λ⊥ is the only diffusivity that remains in

the extra-axonal compartment, it is renamed the hindered diffusion coefficient Dh. Unlike

CHARMED, AxCaliber assumes short gradients, so that the narrow pulse approximation can

be used [11]. The signal from water inside an axon of radius R is modeled using Callaghan’s

expression [11, 32],

Er(q,∆) = ∑
n

4exp(−ν
2
n0D∆/a2)

[
(2πqa)J′0(2πqa)
(2πqa)2−ν2

n0

]
+∑

n
∑
k

8exp(−ν
2
nkD∆/a2)×

ν2
nk

ν2
nk− k2

×
[
(2πqa)J′k(2πqa)
(2πqa)2−ν2

nk

] (4.7)

where J′k are derivatives of kth order Bessel functions and νnk are solutions to J′k(ν) = 0.

The model uses one restricted and one hindered compartment, so that the total signal is

E(q,∆) = fhEh(q,∆)+(1− fh)
∫

f (a)Er(a;q,∆)da (4.8)

where f (a) is a function that describes the distribution of diameters. In writing Er, we included

a to emphasize that it depends on axon radius. Since Eq. 4.7 is the restricted signal for a single

axon, the full model (Eq. 4.8) includes a term for a range of diameters (described in Section

4.2.3). Based on earlier histological evidence, AxCaliber assumes that axon diameters follow

a gamma distribution [1, 11].

The model was tested using data collected from porcine sciatic nerves, optic nerves, and

porcine spinal cord. Diffusion times ranged from 10 ms to 150 ms (with gradient duration
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Figure 4.2: Diagram showing parameters used in the CHARMED model. A cylindrical axon
points in the direction nnn. Its orientation is described by azimuthal and polar angles φn and θn.
A gradient qqq is applied. Its orientation is described by azimuthal and polar angles φq and θq. It
can be decomposed into components parallel and perpendicular to the axon (qqq‖ and qqq⊥).
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of 4 ms), with a maximum gradient strength of 300 mT/m. Extracted diameter distributions

agreed well with histological measurements.

Barazany et al. [16] included an extra term to model a CSF compartment. The term

is similar in form to that of the hindered compartment, but with diffusion coefficient DCSF

(≈ 3 µm2/ms) instead of Dh. This addition expanded the number of free parameters to five ( fh,

fCSF, Dh, and two gamma distribution parameters). Their group measured axon diameter dis-

tributions along the length of the corpus callosum of a rat brain. Diffusion times ranged from

11 ms to 100 ms. The maximum gradient strength was 282 mT/m. The extracted distributions

were similar in shape to those obtained from histological measurements.

4.2.3 OGSE and AxCaliber

For OGSE, the model in Eq. 4.8 is a function of frequency and gradient strength:

E(ωm,G) = faxonEr(ωm,G)+(1− faxon)Eh(ωm,G) (4.9)

where faxon is the relaxation-weighted volume fraction of axons, or intra-axonal space. Because

we will be assuming that T2 is the same in each compartment, faxon will be referred to simply as

the intra-axonal volume fraction from this point onwards. Eq. 4.9 has slightly different notation

than Eq. 4.8 because we are using faxon instead of fh. Diffusion in the extra-axonal space is

assumed to be hindered and is modeled with a Gaussian distribution

Eh = e−bDh (4.10)

where Dh is the hindered diffusion coefficient of extra-axonal space. The b-value will depend

on the pulse sequence. For a cosine-OGSE sequence of gradient strength G and gradient angu-

lar frequency ωm, it is given by [43]

bcos =
γ2G2T

ω2
m

(4.11)
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For a sine-OGSE sequence, it is [43]

bsin =
3γ2G2T

ω2
m

(4.12)

The form of the restricted signal also depends on the pulse sequence used to collect data.

The diffusion-weighted signal from a cosine-OGSE due to restricted water inside a pore is

Er = exp(−β(2τ)) (4.13)

with [192, 194]

β(2τ) = 2γ
2G2

∑
n

Bnλ2
nD2

(λ2
nD2 +ω2

m)
2

{
λ2

nD2 +ω2
m

λnD

(
T
2
+

sin(2ωmT )
4ωm

)
−1+ exp(−λnDT )

+exp(−λnDτ)(1− cosh(λnDT )
}
(4.14)

where D is the diffusion coefficient, 2τ is the echo-time, and λn and Bn are the structure depen-

dent coefficients given below [192]. The coefficients λn and Bn depend on the radius a in the

case of cylinders and spheres, and for planes, the separation distance L, so that Eq. 4.14 can be

used to extract pore sizes. Therefore with OGSE, data can be collected with different gradient

strengths and over a range of oscillation frequencies, to determine pore sizes. For comparison,

the diffusion-weighted signal for a sine-OGSE gradient is [192]

β(2τ) = 2γ
2G2

∑
n

Bnω2
m

(λ2
nD2 +ω2

m)
2

{
λnDT (λ2

nD2 +ω2
m)

2ω2
m

+1− exp(−λnDT )

+exp(−λnDτ)(1− cosh(λnDT )
} (4.15)

We can give a brief overview of the derivation of Eqs. 4.14 and 4.15. The derivation starts

with the Gaussian approximation (Section 3.3.3.1) [192],

β(2τ) =
1
2

γ
2
∫ 2τ

0

∫ 2τ

0
GGG(t1) · 〈rrr(t1)rrr(t2)〉 ·GGG(t2)dt1dt2 (4.16)
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If we replace the time averaged quantity 〈rrr(t1)rrr(t2)〉 with a spatial average∫ ∫
ρ(rrr1, t1)P(rrr1, t1|rrr2, t2)rrr1rrr2drrr1drrr2, we get

β(2τ) =
1
2

γ
2
∫ 2τ

0

∫ 2τ

0
GGG(t1) ·

[∫ ∫
ρ(rrr1, t1)P(rrr1, t1|rrr2, t2)rrr1rrr2drrr1drrr2

]
·GGG(t2)dt1dt2 (4.17)

For restricted geometries, the propagator can be expanded in terms of its eigenfunctions (Eq.

3.14), so that Eq. 4.17 can be rewritten as [72, 192]

β(2τ) =
1
2

γ
2
∑
n

Bn

∫ 2τ

0

∫ 2τ

0
e−λnD|t2−t1|G(t1)G(t2)dt1dt2 (4.18)

where

Bn =
∫ ∫

(Ĝ̂ĜG ·rrr1)(Ĝ̂ĜG ·rrr2)un(rrr1)un(rrr2)drrr1drrr2 (4.19)

The exact form of Bn depends on the eigenfunctions un(rrr), which in turn depend on the shape

of the restricting geometry. For parallel planes separated by L [192],

Bn =
8L2

(2n−1)4π4 (4.20)

and λn is given in Eq. 3.21. For cylinders of radius a [192],

Bn =
2(a/νn)

2

(ν2
n−1)

(4.21)

where νn is the nth root of J′1(ν)= 0 and J1 is a Bessel function of the first kind. The eigenvalues

are

λn =

(
νn

a

)2

(4.22)

For spheres of radius a [192],

Bn =
2(a/νn)

2

(ν2
n−2)

(4.23)

where νn is the nth root of νJ′3/2(ν)−
1
2J3/2(ν) = 0. The eigenvalues are

λn =

(
νn

a

)2

(4.24)
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The type of the gradient determines the form of the signal through Eq. 4.18. Solving the

integral in Eq. 4.18 using cosine or sine and substituting the cylindrical versions of Bn and λn

gives Eqs. 4.14 and 4.15.

The restricted signal from a large collection of axons is a volume-weighted sum of all

cylinder signals. It is assumed that the axon diameters come from a distribution w(a,ppp), pa-

rameterized by ppp. Usually this is a gamma distribution [11,61,71]. The signal arising from the

collection is

Er =
∑i w(ai,ppp)a2

i e−β(2τ;ai)

∑ j w(a j,ppp)a2
j

(4.25)

where e−β(2τ;ai) is the signal from a cylinder of radius ai [11].

To see where Eq. 4.25 comes from, we give a brief derivation. Suppose we have N axons.

Including the extra-axonal space, there are N +1 compartments in total. If f i
axon is the volume

fraction of the ith axon, and Si is the corresponding signal, then the total signal is the volume

weighted sum of contributions from each compartment

S = fexSex +
N

∑
i=1

f i
axonSi (4.26)

where fex is the volume fraction of the extra-axonal compartment and Sex is the extra-axonal

signal. We can write fex = 1− faxon, where faxon is the volume fraction of all axons taken

together. Assume that there are ni axons with radius ai. If V is the volume (or surface area) of

the substrate, then the fraction of volume taken up by all axons with radius ai is

f i
axon =

niπa2
i

V
(4.27)

The signal then becomes

S = (1− faxon)Sex +
n1πa2

1
V

S1 +
n2πa2

2
V

S2 + . . . (4.28)
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After factoring out a term
(

∑nkπa2
k

V

)
, it becomes

S = (1− faxon)Sex +

(
∑

N
i=1 nkπa2

k
V

)(
n1πa2

1

∑
N
i=1 nkπa2

k
S1 +

n2πa2
2

∑
N
i=1 nkπa2

k
S2 + . . .

)
(4.29)

Since
(

∑nkπa2
k

V

)
is the fraction of space taken up by all axons, or faxon, we can rewrite Eq. 4.29

as

S = (1− faxon)Sex + faxon
∑

N
i=1 nia2

i Si

∑i nka2
k

(4.30)

If the axon diameters come from a known distribution w(a,ppp), the number of axons with di-

ameters in the range [ai, ai +∆a] is w(ai,ppp)∆a. Substituting this into Eq. 4.30 and canceling N

and ∆a gives Eq. 4.25.

4.2.4 Monte Carlo Simulations

Monte Carlo simulations have been used to synthesize diffusion-weighted MR signals. We use

a Monte Carlo simulation based on that developed by Szafer [170] to simulate our signals. This

involves letting a set of spins diffuse over a lattice. While Szafer used a PGSE sequence, we

use OGSE sequences [154]. Our code was adapted for use on a GPU in order to take advantage

of increased speed and performance [64].

As described in Section 3.5, our simulations used impermeable barriers similar to other

studies [192,195]. Simulations described in Section 4.2.5.1) used 57344 particles, while simu-

lations with the more complex geometries described in Section 4.2.5.2) used 114688 particles.

For the simulations used in this thesis, these particle numbers give a relative uncertainty (stan-

dard deviation of simulated signals/mean of simulated signals) of less than 0.002. The time

step used in all simulations was 1 µs. The maximum particle step distance with this time step

will be approximately 0.12 µm, which should be smaller than most of the restriction sizes used

in the simulations. Our simulation did not consider different T2 in different tissues.

All simulations used two 20-ms ideal cosine gradient pulses, one before and after the 180◦

pulse, each applied perpendicular to the axons. We generated 400 cosine OGSE signals for

each geometry. For initial simulations, we used very high frequencies and very high gradients
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to obtain a sense of what would be needed to make the measurements and to confirm the

restricted signal formulas in Eqs. 4.14 and Eq. 4.25. Cosine frequencies ranged from 0.05 kHz

to 9.55 kHz. At each frequency there were 20 b-values (up to 2.09 ms/µm2). This gives around

90% signal decay at the highest b-value. The echo time (2τ) was 42 ms.

For reasons to be discussed later, and to use experimentally feasible pulse sequence pa-

rameters, we repeated the previous simulations using a narrower and more feasible range of

gradient frequencies and gradient amplitudes. There were 20 frequencies ranging from 50 to

1000 Hz in steps of 50 Hz. We will refer to the frequencies used in these simulations as the

‘restricted range’ of frequencies, in contrast to the ‘full range’ of frequencies described pre-

viously. Five gradient strengths were used for each gradient pulse, for a total of 100 signals.

These pulse sequence parameters were chosen to be feasible for experiments using a BGA6 gra-

dient set (Bruker Biospin) on our 7 T magnet (maximum gradient strength of 1.01 T/m) [63].

For fm > 200 Hz, the gradient strengths were 0, 60, 70, 80 and 90% of maximum. The gradient

strengths for 200 Hz or less were smaller. For fm = 50 Hz, G = 0, 1.5, 4, 7, 10% of maximum;

for fm = 100 Hz, G = 0, 4, 7, 10, and 15% of maximum; for fm = 150 Hz, G = 0, 15, 20, 25,

and 30% of maximum; for fm = 200 Hz, G = 0, 30, 40, 50, and 60% of maximum. These are

summarized in Table 4.1. We have achieved these values on our animal scanner [63]. The echo

time was 44.52 ms.

The simulations were programmed in CUDA C/C++ and run on a HP Z240 workstation

containing a Intel R© Xeon R© Processor E5-1650 6-core 3.20 GHz CPU. The HP Z240 work-

station contained two graphics cards, an NVIDIA Tesla C2075 (Fermi 2.0) graphics card for

dedicated CUDA computation and an NVIDIA Quadro 600 (Fermi 2.1) graphics card handling

OGSE frequency Gradient strength (as percentage of 1.01 T/m)
50 Hz 0, 1.5, 4, 7, 10
100 Hz 0, 4, 7, 10, 15
150 Hz 0, 15, 20, 25, 30
200 Hz 0, 30, 40, 50, 60

250 Hz or higher 0, 60, 70, 80, 90

Table 4.1: Gradient strengths used in simulations with our MRI machine (the ‘restricted’
range). The maximum gradient strength is approximately 1.01 T/m. Values are given as per-
centages. The highest b-value used in the measurements is 0.47 ms/µm2.
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the display.

4.2.5 Cylinders

We used AxCaliber, modified to use OGSE, to fit diameter distributions for a variety of simu-

lated distributions. White matter fibres were modeled as a collection of parallel non-overlapping

cylinders. The AxCaliber models assumed no water exchange between intra- and extra-axonal

regions [11]. This assumption has been made in later simulations [192, 199], but not in oth-

ers [131, 161]. In the present study we assumed no water exchange for consistency with the

AxCaliber model. Some studies have assumed different diffusivities in the intra- and extra-

axonal regions [154, 170, 192], while others have assumed equal diffusivities [46, 61, 195]. We

followed Ref. [192] in setting the intra-axonal diffusion coefficient (Din) to 1.0 µm2/ms and

using a larger extra-axonal diffusion coefficient (Dex), chosen here to be 2.5 µm2/ms [154].

The full AxCaliber model takes both intra-axonal and extra-axonal signals into account. For

studies performed here, each component (intra-axonal and extra-axonal) was simulated sepa-

rately and then together to verify the validity of the model. For the “intra-axonal” simulation,

water was located only inside the cylinders. In this case, the signal can be described by Eq.

4.25 alone. For the “extra-axonal” simulation, water was located only outside the cylinders and

the signal should be described by Eq. 4.10 alone. We can test this assumption by calculating

an ADC at each frequency using Eq. 3.84 and examining the frequency dependence of the

resulting spectrum. If the ADC is independent of frequency, then Eq. 4.10 is a good approxi-

mation. For the “full” simulation, we distributed the water everywhere, both inside and outside

the cylinders. For that simulation, the signal should be described by the full model given in Eq.

4.9.

4.2.5.1 Identical cylinders

The simplest geometry we consider is a collection of identical cylinders of diameter d arranged

on a square lattice. This could be considered a special case of Eq. 4.25, with w(a,ppp) equal to a

δ-function centered at a = d/2.

For the intra-axonal simulation, we tested eight diameters {1, 2, 3, 4, 5, 6, 7, 8} µm as the
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intra-axonal simulation. After each simulation, the cylinder diameter and intra-axonal diffusion

coefficient were extracted by fitting the simulated signals to Eq. 4.13 and Eq. 4.14.

For the full simulation, we used packing fractions of 0.5, 0.6, and 0.7 with the same eight

diameters. The signals were then fit to Eq. 4.9, with Eq. 4.10 and Eq. 4.13. Four parameters

were extracted from each fit: cylinder diameter, intra-axonal diffusion coefficient, packing

fraction, and the hindered diffusion coefficient.

4.2.5.2 Diameter distributions

The next two geometries consisted of a set of 100 cylinders randomly distributed over a square

domain with periodic boundary conditions. The substrate was generated according to the algo-

rithm in Ref. [61], briefly described by the following steps.

1. Choose 100 diameters from a diameter distribution and sort in descending order.

2. Starting with the largest cylinder:

(a) Choose a random position on the substrate.

(b) If the cylinder overlaps the edge(s) of the substrate, create copies of the cylinder

and place them on the opposite side(s) so that lattice periodicity is maintained.

(c) If either the cylinder or any of its copies overlap an existing cylinder, discard and

choose a new position (go back to 2(a)).

(d) Place the cylinder and its copies on the substrate.

3. Repeat the above steps until all 100 cylinders have been placed.

First, we allowed for a spread of diameters by sampling them from a Gaussian distribution.

This means that w(a,ppp) in Eq. 4.25 is a Gaussian with mean µN and standard deviation σN .

There were four distributions tested, with mean diameters of 2, 3, 4, and 5 µm, and standard

deviations of 0.6, 1, 1.34, and 1.6 µm, respectively. Packing fractions were between 0.6 and

0.75.
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To model a more realistic situation, diameters were also sampled from a gamma distribution

[61]. The gamma distribution has two parameters, αΓ and βΓ, and is given by

w(x,αΓ,βΓ) =
x−αΓ−1ex/βΓ

βΓ
αΓΓ(αΓ)

(4.31)

The mean of the distribution is αΓβΓ and it has a maximum at (αΓ−1)βΓ, provided that αΓ > 1.

We chose specific values for αΓ and βΓ with αΓ > 1 such that the maximum and mean were

close to the same value (within 1 µm), for easier interpretation. We tested three distributions

with mean diameters of 2, 2.1, and 4.2 µm. Packing fractions were greater than 0.6 for all

distributions. Figure 4.3 shows example substrates for the two types of distributions. Because

the placement of the cylinders could affect the results, we also generated three substrates for

each diameter distribution.

The intra-axonal diffusion coefficient was held fixed to its actual value for all fits [11].

For the intra-axonal simulations, the two distribution parameters were extracted by fitting the

signals to Eq. 4.25. The two distribution parameters were ppp = {αΓ,βΓ} for the gamma distri-

butions and ppp = {µN ,σN} for the Gaussian distributions. For the full simulation, signals were

fit to Eq. 4.9, with Eq. 4.10 and Eq. 4.25. Four parameters were extracted from each fit: the

two distribution parameters, the packing fraction, and the hindered diffusion coefficient.

4.2.6 Effects of Noise

We also look at the effects that noisy signals may have on fitted parameters in the model.

Gaussian noise was added to each component of the transverse magnetization at the end of the

simulations so that SNR values were 50, 100, and 200. This was repeated 1000 times and the

fitted parameters were binned into histograms for analysis.

4.2.7 Data Fitting

Signal data were fitted to the model with nonlinear least-squares regression using the Optimiza-

tion Toolbox in MATLAB [113]. All fitted parameters were constrained to be positive. Packing

fractions were constrained to lie between 0 and 1. The fitting procedure was repeated 50 times
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0 100 10

Figure 4.3: Two example substrates used in the simulations. The scale bar at bottom left of
each substrate denotes 10 µm. Left: Cylinder diameters sampled from a Gaussian distribution
with mean diameter 4 µm and standard deviation 1.33 µm. The lattice is 43.5 µm × 43.5 µm.
Right: Cylinder diameters sampled from a gamma distribution (αΓ = 21, βΓ = 0.1 µm) with
mean diameter 4.2 µm and standard deviation 0.45 µm. The lattice is 46.5 µm × 46.5 µm.

with random initial parameters. At the end, the fitted parameters providing the smallest sum-

of-squares were chosen as the best fit.

4.3 Results

The results of the intra-axonal, extra-axonal and full simulations are presented in this chapter.

More reasons for the choice to use a restricted range of frequencies are provided. Because

signal noise will not be added to the simulation data until Section 4.3.5, results show how the

model performs in an almost ideal situation. Simulation uncertainty (due to finite number of

particles) is more than an order of magnitude smaller than the noise we will add in Section

4.3.5, so we will postpone a more thorough error analysis until then (and continue in Chapter

5).
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4.3.1 Intra-axonal Simulations

Fitted values for the diameter are shown in Figure 4.4 for intra-axonal simulations using iden-

tical cylinders. The fitted values for each cylinder are in good agreement with the actual values

(to within 3 percent).

Simulated signals are comparable to analytical signals predicted with Eq. 4.25 for a dis-

tribution of diameters. An example of this comparison is shown in Figure 4.5 for one of the

substrates. The simulated values agree very well with the predicted analytical values, differ-

ing at most by 5 percent. Similar results were obtained with simulated data from the other

substrates.

Having established that Eq. 4.25 describes the simulated data, we can now use it to fit the

simulated data and obtain fitted distribution parameters. Using distribution parameters obtained

from fitting the signals to the intra-axonal term, a selection of fitted diameter distributions are

plotted in Figure 4.6. For both types of distributions tested, the fitted distributions agree very

well with the actual distributions. As an example, for the gamma distribution shown in Figure

4.6a, the predicted mean diameter differs from the true mean by only 1.2 percent.

4.3.2 Extra-axonal Simulations

We now consider the extra-axonal model (Eq. 4.10) in more detail. In the last section, we

compared the simulated signals with the signal predicted by the model. Here, we perform this

comparison in a slightly different way. Instead of comparing the signals, we will look at the

ADC spectra. Eq. 4.10 assumes a flat ADC spectrum, independent of frequency in the extra-

axonal space, because the extra-axonal water is assumed to be undergoing hindered diffusion.

Using our simulation data, we calculated ADC spectra in order to see how well that assumption

holds. ADCs were calculated from simulation data by performing linear regression on− ln(Eh)

and bcos (see Eq. 3.84).

Extra-axonal ADC spectra obtained from simulations on the square packed lattice are shown

in Figure 4.7a. Each spectrum was generated from simulations with a single cylinder diameter.

All spectra in Figs. 4.7a and 4.7b come from geometries with the same packing fraction, shown

here is 0.6. Simulations using other packing fractions show similar trends and the discussion
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Figure 4.4: Comparison of fitted cylinder diameters with their actual values (intra-axonal model
only). Fitted values are shown as ‘+’ symbols. Dashed line indicates ‘perfect’ fit. (a) Fitted
values obtained using the full frequency range. (b) Fitted values obtained using the restricted
frequency range.

0

5

10 0

0.05

0.1

0

0.2

0.4

0.6

0.8

1

 

Gradient Strength (T/mm) Frequency (kHz) 

N
or

m
al

iz
ed

 S
ig

na
l

Simulated
Predicted

Figure 4.5: Comparison between simulated signals (blue) and predicted signals (red) for the
intra-axonal model in Eq. 4.25 (using a gamma distribution of diameters). The signals are
plotted against frequency and gradient strength used in each simulation. The simulated and
predicted signals agree within 5 percent.

105



4.3. RESULTS

2 4 6 8
0

0.05

0.1

0.15

0.2

Diameter (µm)

F
ra

ct
io

n 
of

 a
xo

ns

 

 

0 5 10
0

0.05

0.1

0.15

0.2

Diameter (µm)

F
ra

ct
io

n 
of

 a
xo

ns

Actual distribution
Fitted distribution

a b

Figure 4.6: Two fitted diameter distributions for the intra-axonal model using the full range of
frequencies. Red bars indicate the actual distributions, while the black curves indicate the fitted
distributions. (a) Gamma distribution of diameters. (b) Gaussian distribution of diameters.
Two fit parameters (out of two in total) were used to create the black curves indicating the fitted
distributions.

that follows also applies to them.

For the same packing fraction, at a given frequency, the ADCs are smaller in lattices with

smaller cylinders, as expected. In these smaller lattices, the distance between adjacent cylin-

ders is smaller, and so these extra-axonal particles experience the effects of the boundaries at

shorter diffusion times, leading to smaller ADCs. The ADC spectra are constant, as needed

in the model, over the entire frequency range only when using the smallest diameter cylinder.

When the lattice of the same packing fraction contains larger diameter cylinders, not all water

molecules will experience the effects of the boundaries at all diffusion times and so the diffu-

sion is no longer considered hindered for all frequencies. The ADC spectra rise dramatically as

frequencies increase, indicating this breakdown of the model. Even when the diameter is only

2 µm, the spectrum rises from 1.4 to 2 µm2/ms. Therefore, we would expect the full model to

be adequate only for the most restricted geometries (for example, diameters of 1 µm).

One can attempt to overcome this limitation by using a restricted range of frequencies, up to

only 1000 Hz as described previously. For this restricted range of frequencies, not only are the

extra-axonal ADC spectra constant for the smallest diameter (1 µm), they are nearly constant

for 2 µm as well (see Figure 4.7b). Comparing Figure 4.7b to 4.7a, all the spectra show less

of an increase over the range of frequencies. None of the spectra shown in Figure 4.7b rise

above 2 µm2/ms. With this in mind, the full model should perform better over a wider range of
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Figure 4.7: (a-b) Extra-axonal frequency dependent ADC spectra for lattices containing identi-
cal square packed cylinders with packing fractions of 0.6. Each spectrum was calculated using
data generated from extra-axonal simulations using one cylinder diameter. To reduce clutter,
only results for diameters up to 6 µm are shown. (a) Spectra generated from simulations uti-
lizing the full frequency range. (b) Spectra generated from simulations utilizing the restricted
frequency range. (c-d) Extracted hindered diffusion coefficients (Dh) as a function of cylin-
der diameter. Results for each of the three packing fractions ( faxon = 0.5, 0.6, and 0.7) are
shown (as circles, squares, and diamonds, respectively). (c) Fitted values obtained using the
full frequency range. (d) Fitted values obtained using the restricted frequency range.
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diameters with this new range of frequencies. From the figure, this would include simulations

with 1 and 2 µm (and possibly 3 µm) diameter cylinders.

In the long-time (low frequency) limit, the measured ADC is reduced from its free value by

a factor λ2
τ , called the tortuosity constant, [52, 88, 156, 157, 201]

ADC(∆→ ∞) =
D0

λ2
τ

(4.32)

There are tortuosity models, usually relating the tortuosity to other properties such as volume

fraction. For example, in samples of packed spherical beads,

λ
2
τ = 1/

√
φbead (4.33)

where φbead is the volume fraction of fluid (the quantity φbead is also called the porosity) [156,

157]. That is, tortuosity is related to the fraction of space taken up by the pores. Tortuosity is

sometimes used to relate long time ADCs to diffusion coefficients in other directions, based on

previous experimental data. For example, if D0 is the free diffusion coefficient and ADC is the

long time apparent diffusion coefficient measured perpendicular to the axons, then [7]

ADC = D0(1− faxon) (4.34)

Eq. 4.34 has been used in certain models to eliminate parameters.

Figures 4.7a and 4.7b show that as the frequency goes to zero, each spectrum converges to

around 1.4 µm2/ms. Although we do not show them here, the ADC spectra obtained with the

other packing fractions show the same behaviour. For a packing fraction of 0.5, the long-time

ADC is around 1.6 µm2/ms, while for a packing fraction of 0.7, it is around 1.1 µm2/ms. Using

Figure 4.7b, λτ ≈
√

2.5/1.4 = 1.34 for packing fraction 0.6. Because the long-time ADCs

depend only on packing fraction (and not the size of the cylinders themselves), the tortuosity

depends on the packing fraction, in line with previous studies [170].
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4.3.2.1 Different substrates

Here we look into the possibility that cylinder placement on the substrate affects results. Figure

4.8 compares extra-axonal ADC curves from three different substrates. Each substrate uses

cylinders drawn from the same diameter distribution. The only difference is the arrangement

of the cylinders. The curves have similar shapes, rising from ADC ≈ 0.9 µm2/ms at 50 Hz to

ADC ≈ 1.15 – 1.2 µm2/ms at 1000 Hz. At a given frequency, ADCs are within 5 percent of

each other.

4.3.2.2 Apparent kurtosis

The extra-axonal ADC spectra in Figure 4.7a are noisy. The ADC spectra in Figure 4.7b are

smoother. To see the reason why this occurs, we need to explain the concept of kurtosis.

Equation 4.10 is only valid for relatively small diffusion weightings, but the weightings

used in the full frequency range lead to a 90% decrease in signal. This means that Eq. 4.10

needs to be modified. It can be shown that higher order terms in b need to be included, so that

ln(Eh) =−bADC+
1
6

b2KappADC2 (4.35)

where Kapp is called the apparent kurtosis [52, 75, 120, 144]. If diffusion is unrestricted, then

Kapp = 0. In the extra-axonal region, diffusion is hindered, so we expect that Kapp 6= 0. If b is

small, then only the first term in Eq. 4.35 contributes and we get Eq. 4.10.

We can use nonlinear regression on extra-axonal simulation data to extract both ADC and

Kapp. At each frequency, we fit the normalized signals E(b) and b-values bcos to Eq. 4.35

and extract ADC and Kapp. Figure 4.9 shows the ADCs found using Eq. 4.35 as a function

of frequency. The curves are smoother than before, as we see by comparing to Figure 4.9b to

Figure 4.9a.
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Figure 4.8: Extra-axonal ADC spectra for lattices containing gamma distributed diameters
(packing fraction = 0.75). Each spectrum was calculated using data generated from extra-
axonal simulations using a different cylinder placement. However, all used the same set of
cylinders, so that the only difference was their locations on the substrate.

4.3.3 Full Simulation (Intra- and Extra-axonal water)

4.3.3.1 Full Frequency Range

In Section 4.3.2, we saw that the full model (Eqs. 4.9, 4.10, and 4.25) describes the actual

extra-axonal data only when using the smallest cylinders in the simulations. When we collect

simulated data of extra-axonal water over the full frequency range, we can only model systems

with cylinders of 1 µm in diameter correctly. With this in mind, we present the results of fitting

full simulation data to the full model in this section to show the breakdown of the model when

both intra- and extra-axonal water is present. We start with the simplest situation: the square

packed lattice of identical cylinders.

Fits of hindered diffusion coefficients for different packing fractions are shown in Figure

4.7c. When cylinder diameters reach 5 µm, fitted Dh values jump to 3 µm2/ms. Because the

extra-axonal diffusion coefficient is only 2.5 µm2/ms, this suggests a breakdown in the model

for larger diameters. Qualitatively, below 5 µm, Dh is larger at lower packing fractions, as

one would expect. At higher packing fractions, the extra-axonal water comes into contact with

barriers more often, causing the measured diffusion coefficient to decrease.

110



4.3. RESULTS

0 2 4 6 8 10

1.4

1.6

1.8

2

2.2

Frequency (kHz)

A
D

C
 (

µm
2 /m

s)

0 2 4 6 8 10

1.4

1.6

1.8

2

2.2

Frequency (kHz)

A
D

C
 (

µm
2 /m

s)

ba

Figure 4.9: Extra-axonal frequency dependent ADC spectra for lattices containing identical
square packed cylinders (diameter = 3 µm, packing fraction = 0.6). Simulations use the full
frequency range, where maximum diffusion weightings are ≈ 90%. The spectrum in (a) was
generated assuming ln(Eh) had no kurtosis term (Kapp = 0 in Eq. 4.35). The spectrum in
(b) was generated assuming ln(Eh) included a kurtosis term (Kapp 6= 0 in Eq. 4.35). The
spectrum in (b) is much smoother, showing that the kurtosis term should be included at very
high weightings.

Figure 4.10a shows how fitted diameters compare to the actual diameters for a packing

fraction of 0.6. Simulations with the smallest diameter cylinders produce the most accurate fits,

while those with diameters above≈ 2 µm produce poorer fits. The fitted diameters for the 3 µm

and 4 µm diameter cylinders are smaller than the actual diameters. At 5 µm, a discontinuity

occurs, which suggests a possible problem in the model. As mentioned in Section 4.2.7, we

performed 50 fits with different randomly chosen initial parameters. Usually, the result with

the smallest sum-of-squares was the “correct” solution. When the model gave more accurate

results, 1 to 2 local minima in parameter space of the fit were found depending on the initial

parameters. In other words, there were 1 or 2 unique solutions from the 50 different fits and

the solution with the smaller sum-of-squares was the “correct” solution. More local minima

(> 3) appeared for models that did break down. For each fit we chose the minima/minimum

with the lowest sum-of-squares and physically plausible parameters but could have used other

constraints to pick the minima and hence the fitted parameters. Thus the failing of the fitting

method was more apparent in the increased minima found rather than the fitted values of the

parameters.

Fitted volume fractions for different packing fractions are shown in Figure 4.10c. The fitted
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packing fractions follow the trend of their true values. In other words, simulations with smaller

packing fractions have smaller fitted packing fractions. Simulations with smaller diameter

cylinders also provide more accurate fitted values. For example, lattices containing diameters

larger than 5 µm produce fitted packing fractions up to 20 percent larger than the real values,

while in simulations with diameters less than 5 µm, all fitted values are within 10 percent.

4.3.3.2 Restricted Frequency Range

We now present the simulation results for the previous geometries using the restricted range of

frequencies with the goal of improving the model to avoid breakdown.

Figure 4.7d shows fits of hindered diffusion coefficients obtained from the restricted fre-

quency range. Here the discontinuity at 5 µm no longer occurs (though there is some scatter

starting at 4 µm). The values remain below 2.5 µm2/ms, as they should. In fact, Dh is nearly

constant for diameters up to 3 µm. Because the model begins to break down when larger diam-

eter cylinders are present, the steady rise in fitted Dh values above 3 µm could be expected.

Figures 4.10b and 4.10d show fitted diameters plotted against the actual diameters at a

packing fraction of 0.6 and a comparison of fitted packing fractions obtained with the restricted

frequency range. The fitted packing fractions are all within 12 percent of the true packing

fractions for the range of studied diameters. Also, diameters less than 4 µm can now be fit

accurately. Once again, larger diameters pose a problem. When the diameters are larger than

4 µm, fitted diameters start to underestimate the true diameters. In fact, it appears that the

fitted diameters reach a constant value of about 4.6 µm. This clearly indicates once again a

breakdown in the model in that the extra-axonal water is not experiencing hindered diffusion

over the range of frequencies used. Once again the breakdown in the model causes more

minima to appear in parameter space. More emphasis should be made on the breakdown of the

model and appearance of the extra minima rather than the plateau value of the fitted diameter

because if other minima were used the fitted diameter would change.
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Figure 4.10: (a-b) Comparison of fitted cylinder diameters with their actual values using the
total signal model. Actual fitted values shown as ‘+’ symbols. Dotted line indicates ideal
one-to-one correspondence. (a) Fitted values obtained using the full frequency range. (b)
Fitted values obtained using the restricted frequency range. (c-d) Comparison of fitted packing
fractions with their actual values. Results are shown for various cylinder diameters (see legend).
Dotted line indicates ‘perfect’ fit. (c) Fitted values obtained using the full frequency range. (d)
Fitted values obtained using the restricted frequency range. (e-f) Comparison of using a full
frequencies range and the restricted frequency range for fitting diameter distributions with the
total signal model. Distribution is a gamma distribution with mean diameter 4.2 µm. Red bars
indicate the actual distributions, while the black curves indicate the fitted distributions. (e) Full
range of frequencies. (f) Restricted range of frequencies. The restricted range of frequencies
corrects for the underestimation of the mean axon diameter for the distribution for the larger
diameters.
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4.3.3.3 Diameter Distributions

Finally, we are ready to present the results of using our modified AxCaliber model on simu-

lated axon diameter distributions. Because intermediate diameters can now be fitted accurately

in the simple lattices for gradient frequencies less than 1000 Hz, one might expect that diameter

distributions containing these diameters could also be accurately fit. This is the case, as seen

in Figure 4.11. The top row shows a set of three Gaussian distributions, while the bottom row

shows three gamma distributions. Previous fitted distributions which were shifted (as seen in

Figure 4.10e) now fit the data much better. For five of the six distributions shown (Figure 4.11a,

4.11b, 4.11d-f), the fitted mean diameters are within 10 percent of the true means. The fitted

mean of the distribution in Figure 4.11c is 15 percent smaller than the true mean. This distri-

bution has a mean diameter of 5 µm, the largest we studied. In this regime, the extra-axonal

space is probably too large for the current model to work and a different range of frequencies

is needed. Thus careful selection of the frequency range is needed based on the expected range

of diameters in the sample.

4.3.4 Simple Extra-axonal Model

We saw earlier that the extra-axonal diffusion spectrum was frequency dependent. At higher

diameters, it was not described by Eq. 4.10. Because the actual form of the spectrum is

complicated, some have sought to make approximations. Some have assumed that D(ω) is

linear at short frequencies [195]. The extra-axonal signal is

Eh = e−b(Aω+D∞) (4.36)

where D∞ is the long-time hindered diffusion coefficient and A describes the rate of change

of D(ω) with frequency. For this relationship to hold, we obviously cannot use all of our

frequencies. We can see from the extra-axonal ADC spectra in Figure 4.7 that it might be better

to use OGSE frequencies up to only 500 Hz. Above that, the ADC spectra begin to level off

and the linear model might not be the best choice.

We tested this model on some of our simulation data (square-packed identical cylinders, for
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Figure 4.11: Six fitted diameter distributions for the total signal model. Red bars indicate
the actual distributions, while the black curves indicate the fitted distributions. (a-c) Gaussian
distributions with means of 2, 3, and 5 µm. (d-f) Gamma distributions with means of 2, 2.1,
and 4.2 µm. The restricted range of frequencies corrects for the underestimation of the mean
axon diameter for the distribution for the larger diameters. Two fit parameters (out of four in
total) were used to create the black curves indicating the fitted distributions.
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simplicity). Data were fitted separately to Eq. 4.9 with either Eq. 4.10 or Eq. 4.36 used as an

extra-axonal term. Because there are five parameters in the new model, we repeated fitting with

the intra-axonal diffusion coefficient fixed to its true value (Din = 1.0 µm2/ms).

Figure 4.12 compares fitted diameters with and without Eq. 4.36. Both models give similar

results up to 4 µm. At cylinder diameters above 4 µm, diameters extracted using the original

model start to level off at or below 5 µm, underestimating the true diameters. Results for the

new model show some improvement. With a packing fraction of 0.5, the fitted diameter from

the new model is more accurate than the old model for 5 µm (the fitted diameter is within 1

percent on the actual value), but fitted diameters level off afterwards. With a packing fraction

of 0.7, extracted diameters from the new model do not seem to get “dragged down” until 8 µm

(where the difference between true and fitted diameter is around 2.5 µm). However, fitted

diameters at 6 and 7 µm are still underestimated by around 0.7 to 1 µm.
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Figure 4.12: Comparison of fitted cylinder diameters using the simple extra-axonal model with
a single diffusivity (Eq. 4.10) and the linear extra-axonal model (Eq. 4.36). For the linear
model, fitting was performed twice. Once with the intra-axonal diffusion coefficient free and
once with it fixed. Dashed line indicates ideal one-to-one correspondence. Subplots show
results for different packing fractions. (a) Packing fraction = 0.5 (b) Packing fraction = 0.6 (c)
Packing fraction = 0.7.

4.3.5 Effects of Noise

To determine the effects of noise on the estimations of axon diameter distributions, Gaussian

noise was added to the transverse magnetization components in the simulations with the range

of frequencies chosen to give the best axon diameter estimates.
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Figure 4.13 shows two sets of comparisons for substrates with single diameter cylinders.

The top row shows simulation results with 1 µm diameter cylinders, while the bottom row

shows simulation results with 2 µm diameter cylinders. The three columns show increasing

SNR values (50, 100, and 200). As one would expect, there is less variation in fitted diameters

when SNR is high. The fitted diameter of the smaller cylinder is more affected by noise. Table

4.2 summarizes the results.

To illustrate how noise affects accuracy in diameter distributions, we give mean diameter

estimates as a summary. As an example, Figure 4.14 shows fitted mean diameters obtained

from noisy signals (Gaussian distributed diameters, mean diameter µN = 3 µm). At a SNR of

50, many (≈ 40 percent) fitted values have pooled near zero, meaning that the fitting procedure

has failed to find a physically plausible answer in some cases. As the SNR increases, the values

cluster closer to the real value. At SNR = 50, approximately 50 percent of the fitted mean

diameters lie within 0.5 µm of the true value, while at SNR = 200, this number rises to about

70 percent. Table 4.3 summarizes the results. Even at SNR = 200, the distribution of the fitted

means is not as narrow as in Figure 4.13 (see bottom right panel) because there is a distribution

of diameters rather than a single diameter like in Figure 4.13.

4.4 Discussion

We have used Monte Carlo simulated data to assess the model described by Eqs. 4.9, 4.10,

and 4.25. Simulated signals were generated for both simple and complex geometries. Separate

intra- and extra-axonal simulations were used to investigate each term in Eq. 4.9 before the

True Diameter 1 µm 2 µm
Mean diameter at SNR of 50 1.19 µm (34%) 2.28 µm (70%)

Mean diameter at SNR of 100 1.21 µm (64%) 2.12 µm (90%)
Mean diameter at SNR of 200 1.13 µm (92%) 2.04 µm (99%)

Table 4.2: Summary of results from fitting signals with added noise from a square packed
lattice (packing fraction = 0.6) of identical axons: For each SNR, data were collected from a
simulation and fitted to obtain the axon diameter. This process was repeated 1000 times. The
mean of the distribution of fitted diameters are listed here. The percentage of fitted diameters
within 0.50 µm of the true diameter for each case is given in brackets.
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Figure 4.13: Fitted diameters using signals with added noise from a square packed lattice (pack-
ing fraction = 0.6) of identical axons: For each SNR, data were collected from a simulation and
fitted to obtain the axon diameter. This process was repeated 1000 times. The distributions of
fitted diameters are shown here. Dashed lines represent true values. As SNR is increased the
distribution of fitted diameters converges closer to the actual diameter
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Figure 4.14: Fitted mean diameters using signals with added noise from 100 axons with Gaus-
sian distributed diameters (actual mean diameter µN = 3 µm): For each SNR, data were col-
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was found. This process was repeated 1000 times. The distributions of fitted µN values are
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True Mean Diameter 3 µm
Mean diameter at SNR of 50 (percent within 0.5 µm of actual value) 3.35 µm (44%)

Mean diameter at SNR of 100 (percent within 0.5 µm of actual value) 3.35 µm (60%)
Mean diameter at SNR of 200 (percent within 0.5 µm of actual value) 2.85 µm (77%)

Table 4.3: Summary of results from fitting signals with added noise from 100 axons with
Gaussian distributed diameters (actual mean diameter µN = 3 µm): For each SNR, data were
collected from a simulation and fitted to the modified AxCaliber model. The mean diameter
µN was found. This process was repeated 1000 times. The mean of the distribution of fitted
µN values are listed here. The percentage of fitted mean diameters within 0.50 µm of the true
mean diameter for each case is given in brackets.

whole model was investigated with combined intra- and extra-axonal simulations. As explained

below, it was required that the range of gradient frequencies used in the simulation be restricted

for Eq. 4.10 to be accurate. With restricted frequencies available on pre-clinical MRI machines,

it was possible to measure axons as small as 1 µm and as large as 4 µm.

For the intra-axonal simulation, the acquired signals, combined with the analytical expres-

sions, can be used to predict the diameters of small cylinders accurately. We also successfully

fitted diameter distributions for Gaussian and gamma distributions.

For the full simulation, the model may not be adequate. For the collection of identical

cylinders, larger diameters were underestimated. The model also had problems accurately

fitting cylinder diameter distributions, especially with distributions containing large diameters.

Certain fitted parameters, such as the mean diameter of a Gaussian distribution, underestimated

the actual value. Similar behaviour has been noticed by other groups [195]. These results

indicate that the model used in these simulations, the same model used in AxCaliber (Ref. [11]),

does not accurately model the extra-axonal signal.

If a more accurate extra-axonal model is developed, such as the improved exchange model

with variable radii developed by Lam et. al. [87], it could be combined with the existing intra-

axonal model. Ideally, any new model should keep the number of free parameters as low as

possible. Here we worked around some of the problems by choosing frequency ranges where

the original model was approximately true, keeping the number of parameters to a minimum.

The MR signal from white matter is due to the combined contributions of intra-axonal and

extra-axonal water. Close packing of cylinders will result in a relatively large intra-axonal
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signal. Conversely, in geometries with lower packing fractions, the signal should be mostly

due to extra-axonal water. Also, as the extra-axonal space increases, water should experience

fewer restrictions, and the hindered diffusion term should approach that of free diffusion. The

simulations indicate that the intermediate range is causing problems. The hindered diffusion

term also assumes that water molecules, though experiencing effects of barriers, are still able to

move throughout the pores. When we have many randomly placed highly packed cylinders, we

might have pockets of trapped extra-axonal water, which are not currently taken into account

in the model. This would lead to a deviation from the simple exponential decay describing the

extra-axonal signal. In a three dimensional simulation with non-parallel axons, the extra-axonal

water might not be trapped in pockets because it might be able to move to another area using

the third dimension. Thus, as more sophisticated models with orientation dispersion are made,

the problem of the trapped extra-axonal may become less relevant.

An assumption of the extra-axonal model is that the ADC in the extra-axonal space has a

single value at all frequencies. When the model tries to assign a single diffusion coefficient to

a frequency-dependent spectrum, it might have adverse effects on other parameter estimates.

We worked around this problem by simulating a narrower range of frequencies over which the

ADC was almost constant and Eq. 4.10 was satisfied.

Originally, we used 400 signals to fit cylinder sizes and distributions. It would be time-

consuming to collect this many signals on real samples. Later, we used only 100 signals, but

this would still lead to long experimental times. Monte Carlo simulations will need to be used

to find an optimum number of data points needed to obtain adequate results. Future simulations

will also be used to determine which frequencies and gradients are the best choices. This will

be discussed in Chapter 5.

We also looked at how noise affected the fitted parameters. As with other studies, we also

find that low signal-to-noise ratio has an effect on the accuracy of fitted diameter values [192].

We found that the value for the fitted axon diameter for small axons would be more affected by

low SNR, and that the effects could be mitigated with a higher SNR.

Our simulations assumed parallel axons and gradients applied perpendicular to these axons.

For actual tissue measurements where there is axon orientation dispersion, our model could

120



4.5. CONCLUSION

cause an overestimation of axon diameters [132]. Future studies will require models with axon

orientation dispersion for more accurate estimations of axon diameters and could require more

sophisticated gradients similar to diffusion tensor gradients rather than single direction as used

here.

Even when using the restricted range of frequencies, the model had difficulty estimating

accurate diameters in the upper range of those studied. This is probably because the extra-

axonal model does not describe the true extra-axonal diffusion spectrum in this regime. We

expect that these can be extracted with lower OGSE frequencies than the ones studied here, or

through a method combining OGSE and PGSE [76, 141]. a priori knowledge of the range of

axon diameters in the sample or the range to be studied could be necessary to obtain accurate

results.

4.5 Conclusion

Using OGSE pulse sequences with the AxCaliber fit model allows measurements of axon diam-

eter distributions containing smaller axons. Careful selection of the gradient frequency range

(corresponding to the diffusion time) is necessary to ensure a constant extra-axonal ADC with

frequency allowing for a more correct model of hindered diffusion in the extra-axonal space and

thus a more accurate estimation of axon diameters. With frequencies available on pre-clinical

MRI machines, it was possible to measure axons between 1 µm to 4 µm.
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Chapter 5

Optimization of Parameters

5.1 Introduction

In Chapter 4, we looked at how well the AxCaliber model works. Now we are going to do

a more thorough investigation of what happens in the presence of noise. We will also look

at how parameter accuracy and precision change depending on the number of OG frequencies

and gradient strengths. This analysis will be repeated using three different sets of gradient

measurements (clinical to pre-clinical strengths).

The experiments that the Monte Carlo simulations model require the collection of many

images at many different frequencies and using many different gradient strengths. This is time

consuming. Making fewer measurements can reduce the imaging time. For phantoms and ex

vivo imaging, this is less of an issue (only the cost of scanner time). For live imaging, it can

become a problem for the health and comfort of the subject. Therefore this chapter focuses on

reducing the number of images required while maintaining as much precision as possible in

order to make a method for live animals, with the goal of moving toward a clinically relevant

method. In practice, the desired accuracy and precision will depend on a number of factors,

many of which are unknown at this time. Some of these factors include on the variability of the

parameter of interest (e.g. axon diameter, axon density, etc) within the general population and

the amount of change occurring with disease.

Other groups have looked into optimization of their pulse sequences as another means to
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optimize data collection. These sequences have included GEN and trapezoidal gradients and

optimization sometimes involves comparing signal differences using simulations or minimizing

some cost function, as will be described below.

Alexander [6] developed an optimization procedure for measurements with rectangular gra-

dients. Their protocol minimizes an objective function to determine ideal experimental param-

eters (such as gradient strength and direction, pulse separation, pulse duration). Given the

number of desired measurements, optimization gives the experimental parameters in each mea-

surement that maximize sensitivity to model parameters. Optimization requires choosing a

signal model, so they used a two compartment model with parallel axons and impermeable

boundaries. Optimization also requires a priori parameter estimates, so that final optimized

experimental parameters depend on expected situations. During optimization, experimental

parameters were constrained to feasible values if necessary. In their protocol, they assumed

N = 30 directions with M = 4 measurements each. Simulations were performed to compare

different protocols (with maximum gradient strengths of 70 or 200 mT/m), finding that axons

with diameters between 10 and 20 µm were distinguishable in each protocol, though smaller

diameters (d = 2 to 4 µm) were only distinguishable at higher gradient strengths (200 mT/m).

Advantages of this method and the ones that follow are that they should provide optimized

measurement parameters for PGSE experiments, if given a priori information on the sample.

Drobnjak et al. [44, 45] applied the experimental optimization protocol from Alexander [6]

to arbitrary gradient waveforms. Instead of rectangular gradients, they use generalized gra-

dients, calculating the required analytical cylinder signal expressions using a matrix formal-

ism [33,44]. The signal model itself was the same as Ref. [6], though limited to one dimension

(assuming that gradients are applied perpendicular to axons). They determined the shape of the

optimized waveforms by minimizing an objective function. Each measurement, the number

of measurements being chosen beforehand, has its own separate optimized waveform. Like

Ref. [6], the optimization process uses a priori parameter estimates based on expected values

and allows for certain constraints, such as those based on hardware. The protocol was tested

using maximum gradient strengths of 40, 70, and 400 mT/m. Simulation data acquired with

the optimized measurements (called GEN) were compared to data acquired with rectangular
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gradients, showing improvement in precision of estimated parameters (for radii up to 5 µm).

They also found that optimal waveforms tended to include some form of oscillation. Their

later work [44] explored whether varying gradient orientation during a single measurement im-

proved sensitivity, finding little improvement over fixed orientation measurements, at least for

cylindrical pores.

Afterwards, Siow et al. [160] performed experiments on water-filled microcapillary tubes

(inner radii = 1 to 10 µm) using the GEN protocol. They used three sets of maximum gradient

strengths (40, 80, and 200 mT/m). Experimental results from GEN were compared with results

from PGSE, confirming that GEN waveforms provided an improvement over PGSE, especially

at gradient strengths of 40 mT/m.

Perrault et al. [141] used non-uniform oscillating gradient spin echo sequences which com-

bine features of OGSE and PGSE to allow greater sensitivity to small structures. After validat-

ing the OGSE analytical signals using simulations, they used a bootstrap procedure (500 runs)

to compare sensitivity of PGSE and OGSE at different maximum gradient strengths. Max-

imum gradient strengths were 40 (typical clinical imaging maximum gradient strengths), 80

(the upper-end of clinical imaging maximum gradient strengths), and 300 (NIH Human Con-

nectome Project maximum gradient strength, the highest for human imaging) mT/m. They

simulated 100 signals for separate sets of diameters (d = 4 to 8 µm) using the OGSE analyti-

cal expressions and added 10% noise for the bootstrap analysis. Precision and accuracy were

expressed in terms of the mean and standard deviation of parameters from the bootstrap tri-

als. They found that with maximum gradient of 40 mT/m, diameter estimates for both PGSE

and OGSE were low in precision and accuracy. At gradients of 80 mT/m, larger diameters

had an improvement for OGSE in comparison to PGSE. As expected, increasing the maximum

gradient strength to 300 mT/m improved precision and accuracy for both sequences.

Li et al. [97] compared fitted diameters and diffusion coefficients from filled capillary tubes

(d = 1.5 to 19 µm) for different numbers of OGSE frequencies. ADC frequency spectra were

modeled using a single compartment model. Extracted diameters showed almost no depen-

dence on number of OGSE frequencies (N = 2 to 12). Extracted diffusion coefficients were

independent of number of frequencies down to the 4.5 µm tube, where it showed dependence
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on N. All diffusion coefficients were poorly estimated with the 1.5 µm tube.

While Li et al. compared estimated parameters acquired with experimental measurements

of capillary tubing, modeling water inside the tubes, the work presented here uses Monte Carlo

simulations on a variety of simulated geometries, including identical square packed cylinders

and diameter distributions. In this study, the simulations are used to find how the precision

of parameter estimates change depending on the number of frequencies and gradient strengths

used in the experiment. Three sets of gradient strengths (with maximum strengths of 80 mT/m,

300 mT/m, and ∼900 mT/m) are used to study the method for clinical, Connectome, and pre-

clinical situations. In addition, results are compared when multiple gradient measurements (or

b-values) at a given frequency are spaced out over a range or collected at two points, one zero

and the other nonzero (with the nonzero gradient repeated). The aim of these experiments is to

reduce imaging time to a clinically useful sequence using clinically available gradient strengths.

5.2 Methods

The model and Monte Carlo simulation used in this study were similar to the previous study in

Chapter 4. Briefly, a two compartment model like Eq. 4.9 was used. However, the presence

of an axon diameter distribution was not incorporated into the model itself. Therefore, the

hindered signal was given by Eq. 4.10 and the restricted signal by Eq. 4.13 (not Eq. 4.25).

For this model, we are assuming that all axons have the same diameter, even if they do not.

The diameter that we extract is called the “effective mean axon diameter,” or AxD. We can

think of AxD as being the single axon diameter that would give the same diffusion signal as the

entire collection of axons [7]. It has been shown that AxD correlates with the quantity

AxD =
∑i d3

i

∑i d2
i
, (5.1)

where di is the diameter of the ith axon [7, 48, 195].
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5.2.1 Monte Carlo Simulations

Monte Carlo simulation parameters were the same as in Chapter 4. We assumed impermeable

barriers [192, 195] and ignored T2 differences between tissues. For simulations in simple lat-

tices, we used N= 57344 particles. For diameter distribution simulations, we used N= 114688

particles. The time step used in all simulations was 1 µs.

5.2.2 Cylinders

We performed two types of simulations. Initially, we performed “intra-axonal” simulations,

where water is contained inside the axons, but not outside. In this case, the signal can be

described by Eq. 4.13 alone. We then distributed water both inside and outside the axons. The

signal should be described by Eq. 4.9 (a “full” simulation). These simulations (“intra-axonal”

and “full”) were used together with the geometries given below.

The intra-axonal diffusion coefficient (Din) was set to 1.0 µm2/ms [192]. In simulations

with intra- and extra-axonal water, we first set the extra-axonal diffusion coefficient to 2.5 µm2/ms

[154]. We repeated the simulations with Dex = 1.0 µm2/ms to see if using equal diffusivities

affected results.

5.2.2.1 Geometry 1: Single cylinder

The simplest situation considered is diffusion inside a single cylinder of diameter d. Ten diam-

eters {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} µm were tested. After each simulation, the cylinder diameter

and intra-axonal diffusion coefficient were extracted by fitting the signal to 4.13 (together with

4.14).

5.2.2.2 Geometry 2: Identical cylinders on a square lattice

The next geometry considered is a collection of identical cylinders of diameter d arranged on a

square lattice. Water was distributed everywhere, both inside and outside the cylinders (a “full”

simulation). Five diameters {1, 2, 3, 4, 5} µm were tested with packing fractions of 0.5, 0.6,

and 0.7. The signals were then fitted to Eq. 4.9, with Eq. 4.13 and 4.10. Four parameters were
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extracted from each fit: cylinder diameter, intra-axonal diffusion coefficient, packing fraction,

and the hindered diffusion coefficient.

5.2.2.3 Geometry 3: Distribution of cylinder diameters

To model a more realistic situation, diameters were sampled from a gamma distribution [61].

A set of 100 cylinders were randomly distributed over a square domain with periodic boundary

conditions for this model. Substrates were generated according to the algorithm in Ref. [61].

Water was distributed everywhere, both inside and outside the cylinders (a “full” simulation).

Five distributions with mean diameters of 1.5, 2.0, 2.1, 4.1, and 4.3 µm were simulated,

with associated AxDs of 2.1, 2.3, 2.9, 4.8, and 6.1 µm. The AxDs were calculated using Eq.

5.1. Some of these distributions were used in Chapter 4. When choosing a distribution, we have

some control over the mean diameter, but not necessarily AxD, which is the important quan-

tity of interest. Therefore, covering equal intervals in AxD is not easily achievable. Packing

fractions were between 0.63 and 0.78.

Signals were fitted to Eq. 4.13, with Eq. 4.13 and 4.10. Because the geometry was more

complex, the intra-axonal diffusion coefficient was held fixed to its actual value for all fits [11].

We found that this reduced the number of local minima when fitting. Three parameters were

extracted from each fit: AxD, the packing fraction, and the hindered diffusion coefficient.

5.2.3 Three Gradient Sets

Twenty frequencies ranging from 50 to 1000 Hz in steps of 50 Hz were used with an echo time

of 44.52 ms. There were three different sets of gradients used.

1. Five gradient strengths were used at each frequency, for a total of 100 signals. These

pulse sequence parameters were chosen to be feasible for experiments using a BGA6

gradient set (Bruker Biospin) on our 7 T magnet (maximum gradient strength of 1.01

T/m). For fm > 200 Hz, the gradient strengths were 0, 60, 70, 80 and 90% of maximum.

The gradient strengths for 200 Hz or less were smaller. For fm = 50 Hz, G = 0, 1.5,

4, 7, 10% of maximum; for fm = 100 Hz, G = 0, 4, 7, 10, and 15% of maximum; for
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fm = 150 Hz, G = 0, 15, 20, 25, and 30% of maximum; for fm = 200 Hz, G = 0, 30, 40,

50, and 60% of maximum (see Table 4.1).

2. Seven gradient strengths were used at each frequency, for a total of 160 signals. Gra-

dients were {0, 50, 100, 150, 200, 250, 300 mT/m}. The highest b-value in the set is

1.31 ms/µm2.

3. Six gradient strengths were used at each frequency, for a total of 120 signals. Gradients

were {0, 40, 50, 60, 70, 80 mT/m}. The highest b-value in the set is 0.09 ms/µm2.

5.2.4 Data Fitting

At the end of the simulations, Gaussian noise was added to each component of the transverse

magnetization so that SNR was 100. Previous studies with OGSE on pre-clinical scanners have

reported SNR values from 50 [143] to 120 [149]. This was repeated 1000 times and the fitted

parameters were saved for analysis. The means and standard deviations of each of the 1000

results were calculated and used to assess accuracy and precision of the results. We denote the

mean and standard deviation for a particular variable by a subscript. The distribution means for

the intra-axonal diffusion coefficient, diameter (AxD), and packing fraction (if applicable) are

denoted by µD, µd (µAxD), and µ f . Their associated standard deviations are denoted by σD, σd

(or σAxD), and σ f .

Signal data were fitted to the model with nonlinear least-squares regression using the Opti-

mization Toolbox in MATLAB [113]. Packing fractions were constrained to lie between 0 and

1. Diffusion coefficients were constrained to lie in the range [0, 2.5] µm2/ms. Diameters (or

AxD) were constrained to the range [0, 20] µm. Before adding noise, the fitting procedure was

repeated 50 times with random initial parameters. At the end, the fitted parameters providing

the smallest sum-of-squares were chosen as the best fit. The best fit parameters were then used

as the initial parameters when fitting the noisy signals. We were mainly interested in the effects

of noise on known “true” solutions and therefore wanted to keep the problem of local minima

separate. We also wanted to reduce computation time as much as possible. If the solutions are

truly unknown, it would be better to repeat the fitting procedure with random initial parameters
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like before.

5.2.5 Number of Frequencies

Data were fitted using different numbers of frequencies. Initially, all 20 frequencies were used

(50 – 1000 Hz). This serves as a baseline. Higher frequencies were then successively removed

before refitting the data to the model. The number of frequencies used will be denoted by n f .

Data were fitted with nf = 5, 10, and 15 frequencies, corresponding to maximum frequencies

of 250 Hz, 500 Hz, and 750 Hz.

5.2.6 Gradient Subsets

For each set of measurements, the highest gradients were successively removed from the data

before refitting. We also fitted data using one nonzero gradient (e.g. G = {0, Gi}). Finally,

fitting was performed using one nonzero gradient repeated multiple times. This was done by

replicating the simulation results before adding noise. The subsets are summarized in Table

5.1. When necessary, the highest gradient strength in a subset is termed Ghigh to distinguish

it from the maximum gradient strength for the entire set of gradient strengths (Gmax). For the

Gmax = 80 mT/m gradient set, only the subsets with all six gradients or one nonzero gradient

(at G = 80 mT/m) were studied. A focus on pre-clinical gradient strengths was chosen for this

chapter given the difficulty of all methods to use gradient strengths below G = 80 mT/m.

5.3 Results

Simulations were performed with the goal of moving toward a clinically relevant imaging

method by reducing imaging time. The results from these simulations are presented here. Many

of the fits contain results that are pinned at the upper or lower bounds. This tends to happen

with smaller gradient strengths where there is less signal decay. Because this will sometimes

affect the sample statistics (mean and standard deviation), we will also show examples of the

actual parameter distributions and make a note of when it occurs. If they were removed, results

would appear better than they actually are.
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Subset # Gmax = 900 mT/m Gmax = 300 mT/m Gmax = 80 mT/m
1 G0, G1, G2, G3, G0, G1, G2, G3, G0, G1, G2, G3,

G4 G4, G5, G6 G4, G5
2 G0, G4 G0, G6 G0, G5
3 G0, G1, G2, G3 G0, G1, G2, G3, G4, G5
4 G0, G3 G0, G5
5 G0, G1, G2 G0, G1, G2, G3, G4
6 G0, G2 G0, G4
7 G0, G1 G0, G1, G2, G3
8 G0, G3
9 G0, G1, G2

10 G0, G2
11 G0, G1

Table 5.1: Gradient subsets used in data fitting. The first column lists subsets for the first gra-
dient set (7 subsets). The second column lists subsets for the second gradient set (11 subsets).
The third column lists subsets for the third gradient set (2 subsets). Every second subset uses
only one nonzero gradient. As defined here, higher subset numbers correspond to using fewer
and smaller gradient strengths.

5.3.1 Intra-axonal Simulations

In this section, results of the intra-axonal simulations are presented. We first give an overview

of the two fitted parameters (d and Din) when using all measurements.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.1a shows µd from the intra-axonal simulations as a function of diameter. The µd from

each diameter are in good agreement with the actual values. For d > 1 µm, differences are

under 4 percent. For d = 1 µm, the difference is approximately 30 percent (µd = 1.34 µm).

We should look at some of the distributions themselves. Figure 5.2a and 5.2b show the

fitted diameter distributions for d = 1 µm and d = 3 µm. The distribution for d = 3 µm was

relatively symmetric (this feature cannot be seen in Figure 5.4 because of the scale used). In

the case of d = 1 µm, there are a few fitted diameters that have clustered near the upper bound

(17/1000 > 19 µm). This skews the mean and standard deviation for the d = 1 µm cylinder.

Otherwise, the peak in the distribution is around 1 µm.

Figure 5.3a shows µD found using each cylinder diameter. For d > 1 µm, the values are in

good agreement with the actual value (within 1 percent). Error decreases at higher diameters.
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Figure 5.1: Intra-axonal simulation: µd as a function of cylinder diameter. Error bars represent
the standard deviation of the distribution of fitted diameters (σd). Dashed line indicates a
perfect fit. Three sets of measurements shown: (a) Gmax = 900 mT/m (b) Gmax = 300 mT/m
(c) Gmax = 80 mT/m. All measurements in each set were kept when fitting to the model. For
Gmax = 80 mT/m, µd are all higher than the actual diameters. Note: (c) uses different y-axis
limits.

For d = 1 µm, µD is 1.3 µm2/ms and has a large error.

Figures 5.2c and 5.2d show respective Din distributions for d = 1 µm and d = 3 µm. For

d = 1 µm, almost half of the fitted Din are clustered near the upper bounds

(460/1000 > 2.4 µm2/ms). Most of the rest are below 0.5 µm2/ms, with a peak near 0.1 µm2/ms.

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.1b shows µd from the intra-axonal simulations as a function of diameter. For d > 1 µm,

the µd for each diameter are within 3 percent of the true values. For d = 1 µm, the difference

is 16 percent (µd = 0.84 µm).

Figure 5.4a and 5.4b show the fitted diameter distributions for d = 1 µm and d = 3 µm.

The diameter distribution for d = 3 µm is relatively symmetric. In the case of d = 1 µm, many

fitted diameters have clustered near the lower bound (366/1000 < 0.02 µm). The peak of the

distribution is between 1.1 to 1.3 µm.

Figure 5.3b shows µD for as a function of diameter. Like those of the first gradient set, the

µD have better agreement with the true value at higher diameters (d > 2 µm). For d = 1 µm

and d = 2 µm, µD are higher than the true value (Din = 1.8 µm2/ms and Din = 1.3 µm2/ms,

respectively). As we might expect, error decreases as diameters become larger.

132



5.3. RESULTS

0 2 4 6 8 10
Fitted diameter ( m)

0

200

400

600

N
um

be
r 

of
 o

cc
ur

re
nc

es

0 2 4 6 8 10
Fitted diameter ( m)

0

200

400

600

0 1 2

Fitted D
in

 ( m2/ms)

0

100

200

300

400

500

N
um

be
r 

of
 o

cc
ur

re
nc

es

0 1 2

Fitted D
in

 ( m2/ms)

0

100

200

300

400

500
c d

ba

d = 1 m d = 3 m

Figure 5.2: Intra-axonal simulations: Distributions of fitted diameters for (a) d = 1 µm and (b)
d = 3 µm. Distributions of fitted intra-axonal diffusion coefficients for (c) d = 1 µm and (d)
d = 3 µm. Simulations use the Gmax = 900 mT/m set of measurements. All measurements were
kept when fitting to the model. The fitted Din for d = 1 µm are inaccurate. Both distributions
are narrower with d = 3 µm.

Figures 5.4c and 5.4d show Din distributions for d = 1 µm and d = 3 µm. For d = 1 µm,

over half of the fitted Din are clustered near the upper bound (698/1000 > 2.4 µm2/ms). The

rest are pushed against the lower bound. The distribution for d = 3 µm is wider than in Figure

5.2d.

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.1c shows µd from the intra-axonal simulations. All µd are larger than the actual val-

ues. The relative difference between µd and the true diameter becomes smaller as d increases.

At d = 1 µm, the difference is around 100 percent, decreasing to around 30 percent when

d = 10 µm.

133



5.3. RESULTS

2 4 6 8 10

Diameter ( m)

0

1

2

3
D

 (
m

2 /m
s)

2 4 6 8 10

Diameter ( m)

0

1

2

3

2 4 6 8 10

Diameter ( m)

0

1

2

3
Gradient set #1 Gradient set #2 Gradient set #3

ca b

Figure 5.3: Intra-axonal simulations: µD as a function of cylinder diameter. Error bars repre-
sent the standard deviation of the distribution of fitted intra-axonal diffusion coefficients (σD).
Dashed line indicates a perfect fit. Three sets of measurements shown: (a) Gmax = 900 mT/m
(b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All measurements in each set were kept when
fitting to the model. The µD are more accurate at larger diameters and with higher gradient
strengths.

Figures 5.5a, 5.5b and 5.5c show diameter distributions for d = 1 µm, d = 3 µm, and

d = 5 µm. We see the wide spread in fitted diameters. For d = 1 µm, large numbers of fitted

diameters have clustered near d = 0 µm (353/1000 are < 0.02 µm), with some clustered at

d = 20 µm (38/1000 > 19 µm). The distribution has a broad peak between 2 to 4 µm. As

we move to d = 3 µm, there are less values at d = 0 (75/1000 < 0.02 µm), though more have

appeared at d = 20 µm (127/1000 > 19 µm). The peak of the distribution is around 3.5 µm.

By the time we reach d = 5 µm, fitted values at d = 0 µm have disappeared, but those near

d = 20 µm remain (127/1000 > 19 µm). The peak is between 5.3 and 5.7 µm.

Figure 5.3c shows µD as a function of diameter. The µD are closer to the actual value

with larger diameters, with errors decreasing at higher diameters. Figures 5.5d, 5.5e, and 5.5f

show parameter histograms for d = 1 µm, d = 3 µm, and d = 5 µm. We can see that the

diffusion coefficient is poorly estimated. For d = 1 µm, a majority of fitted parameters are

near the upper bound (768/1000 > 2.4 µm2/ms). For d = 3 µm, nearly half are near the upper

bound (466/1000 > 2.4 µm2/ms). As we move to d = 5 µm, there are less at the upper bound

(189/1000 > 2.4 µm2/ms). The distributions themselves are skewed towards smaller Din, but

less so with d = 5 µm.
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Figure 5.4: Intra-axonal simulations: Distributions of fitted diameters for (a) d = 1 µm and (b)
d = 3 µm. Distributions of fitted intra-axonal diffusion coefficients for (c) d = 1 µm and (d)
d = 3 µm. Simulations use the Gmax = 300 mT/m set of measurements. All measurements were
kept when fitting to the model. The fitted Din for d = 1 µm are inaccurate. Both distributions
are narrower using d = 3 µm, but wider than in Figure 5.2.

5.3.1.1 Gradient Subsets

We now show how µd and σd change when gradients are successively removed from the data.

In this section, all frequencies (n f = 20) are used.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.6a shows µd for d = 1 to 5 µm using the gradient subsets in Table 5.1. For d = 2 and

3 µm, µd show little change over the subsets and agree well with the diameter of the cylinders

used in the simulations indicating the accuracy of the simulations is very good. It is therefore

important to study the precision of the results. The µd for 4 and 5 µm show little change until
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Figure 5.5: Intra-axonal simulations: Distributions of fitted diameters for (a) d = 1 µm, (b)
d = 3 µm, and (c) d = 5 µm. Distributions of fitted diffusion coefficients for (d) d = 1 µm,
(e) d = 3 µm, and (f) d = 5 µm. Simulations use the Gmax = 80 mT/m gradient set. All
measurements were kept when fitting to the model. Fitted diameters are more accurate and
distributions are narrower for larger diameters. Fitted Din are inaccurate.

the 4th subset. The µd for d = 1 µm increases from just above 1 µm to 2 µm.

Figure 5.7 shows σd for d = 1 to 5 µm and shows many interesting features. The first is that

subsets with smaller gradients, whether using just two gradients or more, tend to have higher

σd . For some diameters (d = 1 µm), there is a steady rise over the subsets (from around 2.4 µm

to 5 µm) . In others, σd seems to undergo a more exponential increase, with larger increases

after the 4th (d = 5 µm) or 5th (d = 3 µm) subset. Exceptions are d = 2 µm and d = 3 µm. In

these, σd remains relatively steady compared to the others (σd 6 0.4 µm).

The second is that multiple gradients spaced up to Ghigh cause a slight improvement over

just two gradients. In addition in almost all cases, two gradients (e.g. G = {0, Ghigh,1}) are

better than multiple gradients with a smaller Ghigh (e.g. G = {0, G1, G2,. . . , Ghigh,2}, where

Ghigh,2 < Ghigh,1). This result is likely due to the fact that most gradients in this set are spaced
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relatively far apart (∆G≈ 100 mT/m).
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Figure 5.6: Intra-axonal simulations: µd for different gradient subsets. Three sets of mea-
surements shown: (a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All
frequencies in each set were kept when fitting to the model. For Gmax = 900 mT/m and
Gmax = 300 mT/m, most µd show little change until the higher subsets. Note: (b) and (c)
use different y-axis limits.

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.6b shows µd for d = 1 to 5 µm using the gradient subsets in Table 5.1. With diameters

of 1 and 2 µm, µd increase over the subsets. With diameters of 3 to 5 µm, µd show little change

up to the 6th subset. At the 7th subset (Ghigh = 150 mT/m), µd start to increase.

Figure 5.7b shows σd for d = 1 to 5 µm. The plot shares several features with Figure 5.7a.

In subsets which include higher gradients, σd decreases. Also, using two gradients (G = {0,

Ghigh,1}), if Ghigh,1 is high enough, produces better results than multiple gradients spaced up to

a smaller gradient (G = {0, G1,. . . , Ghigh,2}, where Ghigh,2 < Ghigh,1). There is a steady increase

in σd with gradient subset number for d = 1 µm and d = 2 µm (from approximately 0.6 µm

to 5.6 µm). There is a faster increase in σd with gradient subset number for d > 2 µm. All σd

begin under 0.2 µm and eventually begin to spread apart at the higher subsets where the largest

gradient strengths used were relatively small. At Ghigh = 250 mT/m, the σd for d = 3 µm split

from the rest, followed by those of d = 4 µm at Ghigh = 150 mT/m. There appears to be a

change at the 9th subset, corresponding to Ghigh = 100 mT/m, where there is a jump in σd .

This was the point where mean fitted parameters also jumped (Figure 5.6).
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Figure 5.7: Intra-axonal simulations: σd for different gradient subsets. Three sets of measure-
ments shown: (a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 T/m. All frequencies
in each set were kept when fitting to the model. Note that for Gmax of 900 mT/m for diameters
of 2 µm and 3 µm the σd does not depend much on the gradient subset. As the highest gradient
strength used in the subset decreases, the σd for diameters of 4 µm and 5 µm increase. The σd
for diameter of 1 µm is larger than for all other diameters and also increases when the highest
gradient strength in the subset decreases. For Gmax of 300 mT/m σd for all diameters increased
as the highest gradient strength in the subset decreased. For Gmax of 80 mT/m σd was larger
for all gradient subsets than the other values of Gmax and changing from using all gradients to
two gradients caused an increase in σd .

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.6c shows µd for d = 1 to 5 µm using the gradient subsets in Table 5.1. The µd are

approximately 1 to 3 µm higher than the true diameter when using all the gradients. The µd are

larger in the two gradient subset.

Figure 5.7c shows σd for d = 1 to 5 µm, using the Gmax = 80 mT/m set of gradients. The

σd are 0.5 to 1 µm larger in the two gradient subset.

5.3.1.2 Frequency Removal

Because the fitted values tended to be more precise when using both higher and more gradients,

the effect of varying the number of frequencies was studied using all of the gradients for each

of the three gradient sets.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.8a shows µd as a function of n f for d = 1 to 5 µm. For d > 1 µm, µd show little change

over n f . With d = 1 µm, µd shows some increase towards lower n f . The µd for d = 1 µm at
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n f = 10 is higher than that of d = 2 µm.

Figure 5.9a shows σd as a function of n f for d = 1 to 5 µm. For d > 2 µm, σd show

little change over n f (all σd are under 0.4 µm). For d 6 2 µm, σd for n f = 5 are worse at

small diameters as compared to those with more frequencies. The 1 µm diameter cylinder has

relatively large σd for all frequencies, though it decreases at n f = 15 and n f = 20 (dropping by

approximately 1 µm). The large σd in comparison to the other diameters was found to be due

to outliers in its parameter distribution. For d = 2 µm, σd drops from 1 µm at n f = 5 to 0.1 µm

at n f = 10 before leveling off. For n f > 10, its σd is similar in magnitude to those of d > 2 µm.

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.8b shows µd as a function of n f for d = 1 to 5 µm. The µd show little change over n f .

Figure 5.9b shows σd as a function of n f for d = 1 to 5 µm. The σd for d > 2 µm remain

under 0.4 µm over all n f . These σd are similar in magnitude to those of the first gradient set.

The 1 µm diameter cylinder has a larger σd than the others over all n f . The 2 µm diameter

cylinder has a larger σd at n f = 5, which levels off at n f = 10 (σd drops from 1.4 µm to

≈ 0.5 µm). Unlike the first gradient set, the σd for d = 2 µm remain higher than those for

d > 2 µm even at higher n f .

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.8c shows µd as a function of n f for d = 1 to 5 µm. For d > 1 µm, µd show little

change over n f . They are also all higher than the true diameters. For d = 1 µm, µd shows some

variability over n f .

Figure 5.9c shows σd as a function of n f for d = 1 to 5 µm. There does not appear to

be a clear trend in σd over n f . For d > 1 µm, they change less than 5 percent over n f , but

the d = 1 µm σd declines by ≈ 25 percent). Each σd is much larger than the first or second

gradient set (σd > 4 µm vs σd 6 1 µm with the second gradient set).
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Figure 5.8: Intra-axonal simulations: µd as a function of n f . Three sets of measurements shown:
(a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All gradient strengths in
each set were kept when fitting to the model. For diameters larger than 1 µm, simulations at
both Gmax of 900 mT/m and 300 mT/m produce accurate µd values for trials with any number
of frequencies, n f , used. The values of µd at Gmax of 80 mT/m are all biased upward by 1 to
2 µm. Note: (c) uses different y-axis limits.
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Figure 5.9: Intra-axonal simulations: σd as a function of n f . Three sets of measurements
shown: (a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All gradient
strengths in each set were kept when fitting to the model. For diameters larger than 2 µm, sim-
ulations at both Gmax of 900 mT/m and 300 mT/m produce small σd values for trials with any
number of frequencies, n f , used. For 2 µm cylinders, the simulations with Gmax of 900 mT/m
produced results such that σd values were small for n f > 5 and relatively small for n f = 5.
The simulations for 300 mT/m produced slightly larger σd values for 2 µm cylinders than the
larger diameters for n f > 5. Simulations of cylinders of diameters of 1 µm produced the largest
values of σd at both Gmax of 900 mT/m and 300 mT/m. The values of σd at Gmax of 80 mT/m
were all large. Note: (c) uses different y-axis limits.
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5.3.2 Identical Cylinders (Intra- and Extra-axonal water) – Unequal Dif-

fusivities

This section discusses the case of identical cylinders on a square lattice with Din 6= Dex. We

first give an overview of the fitted parameters (packing fraction, d, and Din) when using all the

measurements.

Gradient set #1 (Gmax = 900 mT/m)

Figures 5.10a, 5.10d, and 5.10g show µd for d = 1 to 5 µm. As d goes from 1 µm to 4 µm,

the µd become closer to the true values. For d > 1 µm, all µd are within 10 percent of the true

values. At d = 5 µm, µd is slightly worse than at d = 4 µm. This is probably because the

extra-axonal model is less accurate here (Eq. 4.10).

Accuracy sometimes depends on packing fraction. The relative difference between µd and

actual diameter for d = 1 µm decreases at higher packing fractions, dropping from 47 percent at

packing fraction = 0.5 to around 15 percent at packing fraction = 0.7. The error also decreases

with packing fraction, dropping from 2 µm to 0.7 µm. There does not appear to be as visible

of a change with the other diameters.

We should also look at some of the distributions of fitted diameters, like we did for the

intra-axonal model. Figures 5.11a and 5.11b show the distributions of fitted diameters for

d = 1 µm and d = 3 µm (packing fraction = 0.6). For d = 1 µm, some fitted diameters have

clustered near the upper bound, skewing the mean and standard deviation of the distribution

(2/1000 > 19 µm). The peak of the distribution is around 1.3 µm.

Figures 5.12a, 5.12d, and 5.12g show µD as a function of diameter. The µD are 20 to 40

percent higher than the actual value (1.0 µm2/ms). Error decreases at larger diameters. For

example, with a packing fraction of 0.7, σD drops from around 1 µm2/ms at d = 1 µm to

0.4 µm2/ms at d = 5 µm.

In the intra-axonal simulations, Din was the worst parameter to fit, so we should expect

the same here. Figures 5.11c and 5.11d show the fitted Din distributions for d = 1 µm and

d = 3 µm (packing fraction = 0.6). For d = 3 µm, there are (118/1000 > 2.4 µm2/ms) fitted

Din that have clustered at the upper bound. The rest of the fitted Din are gathered around
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Figure 5.10: Full simulation: µd as a function of cylinder diameter. Error bars represent the
standard deviation of the distribution of fitted diameters (σd). Dashed line indicates a perfect
fit. Three sets of measurements are shown: (a-c) Gmax = 900 mT/m (d-f) Gmax = 300 mT/m
(g-f) Gmax = 80 mT/m. (a, d, g) are from simulations with packing fraction 0.5. (b, e, h) are
from simulations with packing fraction 0.6. (c, f, i) are from simulations with packing fraction
0.7. All measurements in each set were kept when fitting to the model. For Gmax = 900 mT/m
and Gmax = 300 mT/m, µd are less accurate at smaller diameters. For Gmax = 80 mT/m, µd are
higher than the actual diameters. Note: (c), (f), and (i) use different y-axis limits.
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Figure 5.11: Full simulation: Distribution of fitted cylinder diameters for (a) d = 1 µm and (b)
d = 3 µm. Distribution of fitted intra-axonal diffusion coefficients for (c) d = 1 µm and (d)
d = 3 µm. Simulations use the Gmax = 900 mT/m gradient set. All measurements were kept
when fitting to the model. The fitted Din for d = 1 µm are inaccurate. Both distributions are
narrower with d = 3 µm.
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Figure 5.12: Full simulation: µD as a function of cylinder diameter. Error bars represent the
standard deviation of the distribution of fitted intra-axonal diffusion coefficients (σD). Dashed
line indicates a perfect fit. Three sets of measurements shown: (a-c) Gmax = 900 mT/m (d-f)
Gmax = 300 mT/m (g-i) Gmax = 80 mT/m. (a, d, g) are from simulations with packing fraction
0.5. (b, e, h) are from simulations with packing fraction 0.6. (c, f, i) are from simulations with
packing fraction 0.7. All measurements in each set were kept when fitting to the model. The
µD tend to be more accurate at larger diameters.
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1 µm2/ms. For d = 1 µm, most of the fitted Din are clustered near the lower and upper bounds

(525/1000 > 2.4 µm2/ms). The peak of the distribution is around 0.2 µm2/ms.

Mean fitted packing fractions are shown in Figures 5.13a, 5.13d, and 5.13g. All mean fitted

values are within 10 percent of the actual values.

Gradient set #2 (Gmax = 300 mT/m)

Figures 5.10b, 5.10e, and 5.10h show µd for d = 1 to 5 µm. As diameters get larger, µd become

closer to the actual values and σds get smaller, at least up to d = 5 µm. Like in the last section,

fitting for d = 5 µm may be affected by poor modeling (Eq. 4.10).

The σd for d = 1 µm and d = 3 µm look quite large, so Figures 5.14a and 5.14b compare

the distributions of fitted diameters for d = 1 µm and d = 3 µm (packing fraction = 0.6).

For d = 1 µm, some fitted diameters have clustered near the upper bound (33/1000 > 19 µm).

There is also an upward bias in the distribution. The main peak is around 1.7 µm. For d = 3 µm,

the peak is shifted upwards to around 3.3 µm.

Figure 5.12b, 5.12e, and 5.12h show µD as a function of diameter. Error decreases with

larger diameters. For d = 4 µm and d = 5 µm, µD are around 10 to 13 percent higher than the

true value. For d = 1 µm, µD are 50 to 100 percent larger than the true value.

Mean fitted packing fractions are shown in Figures 5.13b, 5.13e, and 5.13h. All mean

values are within 10 percent of the true values.

Gradient set #3 (Gmax = 80 mT/m)

Figures 5.10c, 5.10f, and 5.10i show µd for d = 1 to 5 µm. All µd are higher than the true

diameters, which is what we saw with the intra-axonal simulations. Differences between µd

and true diameters tend to decrease at larger diameters. For a packing fraction = 0.6, the dif-

ference drops from 100 percent at d = 1 µm to 30 percent at d = 5 µm. The relative difference

also seems to be smaller at higher packing fractions. For example, using d = 3 µm, relative

difference drops from 50 percent with a packing fraction of 0.5 to 20 percent with a packing

fraction of 0.7.

Figures 5.12c, 5.12f, and 5.12i shows µD as a function of diameter. At smaller diameters, µD

145



5.3. RESULTS

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

f

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6

Diameter ( m)

0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

0 2 4 6
0

0.2

0.4

0.6

0.8

1

b

e

g

fd

a c

ih

Gradient set #3Gradient set #2Gradient set #1

f
axon

 = 0.7

f
axon

 = 0.5

f
axon

 = 0.6

Figure 5.13: Full simulation: µ f as a function of cylinder diameter. Error bars represent the
standard deviation of the distribution of fitted packing fractions (σp). Dashed line indicates a
perfect fit. Three sets of measurements shown: (a-c) Gmax = 900 mT/m (d-f) Gmax = 300 mT/m
(g-i) Gmax = 80 mT/m. (a, d, g) are from simulations with packing fraction 0.5. (b, e, h) are
from simulations with packing fraction 0.6. (c, f, i) are from simulations with packing fraction
0.7. All measurements in each set were kept when fitting to the model. For Gmax = 900 mT/m
and Gmax = 300 mT/m, µ f are accurate. Error bars are very large for Gmax = 80 mT/m (see
Figure 5.15). Note: (c), (f), and (i) use different y-axis limits.
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Figure 5.14: Full simulation: Distribution of fitted cylinder diameters for (a) d = 1 µm and
(b) d = 3 µm. Simulations use the Gmax = 300 mT/m gradient set. All measurements in each
set were kept when fitting to the model. At d = 1 µm, the distribution is shifted upwards by
≈ 1 µm. At d = 3 µm, the distribution is narrower, but still shifted upwards by ≈ 0.5 µm.

are higher than the true value. The difference drops from approximately 100 percent to around

50 percent as d goes from 1 µm to 5 µm. Based on what we saw in the intra-axonal simulation,

we should be cautious when interpreting these numbers, as the distributions themselves are

quite wide.

Mean fitted packing fractions are shown in Figures 5.13c, 5.13f, and 5.13i. Unlike other

gradient sets, mean packing fractions are inaccurate. Figure 5.15 shows the distribution of

fitted packing fractions for d = 3 µm (packing fraction = 0.6). The fitted values are spread out

with many clustered near the lower and upper bounds. Packing fraction, like the intra-axonal

diffusion coefficient, is a parameter that cannot be fitted accurately with gradients this small, at

least for cosine-OGSE.

5.3.2.1 Gradient Subsets

First changes in µd and σd will be studied when gradients are successively removed from the

data. For these simulations, all frequencies (n f = 20) are used and the packing fraction for the

cylinders was chosen to be 0.6.
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Figure 5.15: Full simulation: Distribution of fitted packing fractions for d = 3 µm (packing
fraction of 0.6). Simulations use the Gmax = 80 mT/m gradient set. All measurements were
kept when fitting to the model. Fitted packing fractions tend to be inaccurate.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.16a shows µd for d = 1 to 5 µm using the gradient subsets in Table 5.1. Except for

d = 5 µm, all are initially higher (< 20 percent) than the true diameters. The µd for d = 5 µm

is smaller (µd ≈ 4.7 µm), possibly because the extra-axonal term (Eq. 4.10) is not accurate.

There is an overall increase in µd as we move to smaller gradients, but the µd for d = 4 µm and

5 µm drop at the highest subset.

Figure 5.17a shows σd for d = 1 to 5 µm. There is a steady increase in σd as we move

through the subsets and smaller gradients are used. For some diameters, σd increases at a steady

rate, other diameters have a point where the rate of increase becomes larger. For example, σd

for d = 4 µm and d = 5 µm increase at a faster rate starting at the 4th or 5th subset, while the

rate of σd for d = 3 µm increases faster around the 7th. Compared to the intra-axonal model,

fitted parameters here tend to be less precise (σd is approximately 0.3 to 1.5 µm higher here).

The exception is d = 1 µm, which is likely because of outliers in its distribution, like Figure

5.2a.

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.16b shows µd for d = 1 to 5 µm using the gradient subsets in Table 5.1. All µd are

initially higher than the true diameters, with the biggest difference at d = 1 µm. The µd increase
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Figure 5.16: Full simulation: µd for different gradient subsets. Three sets of measurements
shown: (a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All frequencies in
each set were kept when fitting to the model. For Gmax = 900 mT/m and Gmax = 300 mT/m,
there is an overall increase in µd as we move to smaller gradients. There is less variation with
Gmax = 900 mT/m.
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Figure 5.17: Full simulation: σd for different gradient subsets. Three sets of measurements
shown: (a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All frequencies in
each set were kept when fitting to the model. For Gmax = 900 mT/m, σd increases as the max-
imum gradient strength in the subset decreases. A consistent trend in σd with gradient subset
is not seen for Gmax = 300 mT/m. There appears to be a discontinuity at Ghigh = 100 mT/m
where errors jump, like what was seen with the intra-axonal model (Figure 5.7b). This is
also where the µd become more inaccurate due to small gradients. For the simulations with
Gmax = 80 mT/m, with exception of d = 2 µm, σd are slightly larger for the two gradient
subset.
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moving to higher subsets, but not smoothly. The subsets with multiple gradients tend to have

higher mean fitted diameters. The subsets with two gradients tend to have smaller mean fitted

diameters. This is mainly due to more fitted diameters at d = 0 µm.

Figure 5.17b shows σd for d = 1 to 5 µm. The plot shows most of the same features as in

the intra-axonal model. However, this time it is not necessarily the case that increasing Ghigh

alone leads to better results. Although there is an overall increase in σd as the subset number

increases (as gradients become smaller), there is not the same smooth increase as before. There

appears to be a discontinuity at Ghigh = 100 mT/m where errors jump, like what was seen with

the intra-axonal model (Figure 5.7b). This is also where the µd become more inaccurate due to

small gradients.

Using the largest gradients (the smaller subsets), the σd are larger compared to the intra-

axonal model. However, there is less of an effect when moving to smaller gradients, at least for

some diameters (d = 2 µm, d = 3 µm) as compared to the intra-axonal model. For example,

in the intra-axonal model, errors for d = 2 µm rose by approximately 5 µm, while here they

rise 2 µm. For d > 2 µm, the results for the first gradient set and the second gradient set

(with Ghigh = 250 mT/m or 300 mT/m) are similar, at least for subsets with multiple gradients

(subsets 1 and 3). With one nonzero gradient, this is no longer true (compare subsets 2 and 4

here with those in Figure 5.17a).

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.16c shows µd for d = 1 to 5 µm using the gradient subsets in Table 5.1. The µd are

approximately 1 to 2 µm higher than the true diameter when using all the gradients. The µd in

the second subset are within 12 percent of those in the first subset.

Figure 5.17c shows σd for d = 1 to 5 µm. With the exception of d = 2 µm, where errors

drop by approximately 0.1 µm, σd are slightly larger in the two gradient subset.

5.3.2.2 Frequency Removal

The results presented here are for simulations with packing fractions of 0.6 that use all the

gradients and fewer frequencies.
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Gradient set #1 (Gmax = 900 mT/m)

Figure 5.18a shows µd as a function of n f for d = 1 to 5 µm. The µd for n f = 15 and n f = 20

are very similar. However, µd begins to increase at n f = 10 and n f = 5.

Figure 5.19a shows σd as a function of n f for d = 1 to 5 µm. The uncertainty for d = 1 µm

is high at smaller n f but levels off after n f = 15, dropping from around 6 µm to 4 µm). For

d = 2 µm to d = 5 µm, σd at the n f = 5 are larger than those with n f > 5 (by approximately

1 µm). After leveling off, σd at n f = 10, n f = 15, and n f = 20 are all very similar to each other

(within 0.5 µm of each other).

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.18b shows µd as a function of n f for d = 1 to 5 µm. For d > 2 µm, there is a small

increase in µd at lower n f . For d = 1 and 2 µm, µd increases at smaller n f , but there is some

fluctuation. For example, at n f = 10 and n f = 15, µd for d = 1 µm are higher than the µd for

d = 2 µm.

Figure 5.19b shows σd as a function of n f for d = 1 to 5 µm. For d = 3, 4, and 5 µm, σd

show little change over n f (changes are < 0.1 µm). The d = 1 µm and d = 2 µm errors become

smaller as n f increases, with those of d = 2 µm dropping by 2 µm as n f goes from 5 to 10.

Unlike the first gradient set, errors for d = 2 µm remain around 1 to 2 µm higher than those

of d > 2 µm when n f > 10 (compare Figure 5.19a to 5.19b). For d > 2 µm, σd are similar to

those of first gradient set (within 0.2 µm).

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.18c shows µd as a function of n f for d = 1 to 5 µm. For d > 1 µm, there is little

overall change in µd (6 2 µm above the true diameter). The d = 1 µm, n f = 5 data point was

excluded because even fitting without noise gave a result of zero.

Figure 5.19c shows σd as a function of n f for d = 1 to 5 µm. The σd for a given diameter

remain within 20 percent of each. There does not seem to be a downward trend over n f .
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Figure 5.18: Full simulation: µd as a function of n f . Three sets of measurements shown: (a)
Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All gradient strengths in each
set were kept when fitting to the model. For Gmax = 900 mT/m, µd are highest at n f = 5. For
Gmax = 300 mT/m and Gmax = 80 mT/m, µd are larger than the actual diameters. With d = 3
to 5 µm, there is little change over n f .
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Figure 5.19: Full simulation: σd as a function of n f . Three sets of measurements shown: (a)
Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All gradient strengths in each
set were kept when fitting to the model. For simulations with Gmax = 900 mT/m, the uncertainty
for d = 1 µm is large at smaller n f but levels off after n f = 15. For d = 2 µm to d = 5 µm, σd at
n f = 5 are larger than those for n f > 5. For simulations with Gmax = 300 mT/m, σd for d = 3,
4, and 5 µm show little change over n f . The d = 1 µm and d = 2 µm errors become smaller as
n f increases. For d > 2 µm, σd are similar to those of first gradient set. For simulations with
Gmax = 80 mT/m, σd are mostly independent of n f .
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5.3.3 Diameter Distributions – Unequal Diffusivities

This section presents results from simulations containing cylinders of different diameters.

5.3.3.1 Gradient Subsets

The results presented first are for simulations using all the frequencies (n f = 20) with different

gradient subsets.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.20a shows µAxD using the gradient subsets in Table 5.1. The µAxD for the two smallest

AxD (2.1 µm and 2.3 µm) are larger than the true AxD, while the µAxD for the three highest AxD

are smaller than the actual AxD. The highest AxD are underestimated the most (AxD = 4.8 µm,

6.1 µm). This may be due to poor modeling of the extra-axonal term (Eq. 4.10). The µAxD for

all AxDs show little change over the subsets.

Figure 5.21a shows σAxD for the gradient subsets in Table 5.1. There is a steady increase in

σAxD as we move through the subsets and use smaller gradients. While some σAxD increase at

a steady rate, others have a point where the rate of increase becomes larger. For example, σAxD

for AxD = 4.8 µm and AxD = 6.1 µm increase at a faster rate starting at the 5th subset, while

the rate of that of AxD = 3 µm increases at the 7th (increasing by approximately 0.6 µm). The

σAxD for AxD = 2.1 µm and AxD = 2.3 µm experience the slowest change over the subsets.

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.20b shows µAxD using the gradient subsets in Table 5.1. There is not much of an

overall trend over the subsets, but the µAxD do oscillate. The subsets with multiple gradients

tend to have higher fitted AxD. The subsets with two gradients tend to have lower fitted AxD.

This was partly due to more outliers at AxD = 0 µm in the parameter distribution.

Figure 5.21b shows σAxD for the gradient subsets in Table 5.1. There is an overall increase

in σAxD as the gradients become smaller. Some oscillation in σAxD occurs as we move through

the subsets. For AxD = 6.1 µm, there seems to be a discontinuity at Ghigh = 100 mT/m where

σAxD jump, like what happened in Figures 5.7b and 5.17b. However, unlike the previous cases,
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there was no corresponding change in the µAxD. In both the first and second gradient set, σAxD

for all the AxD start off with similar values. All σAxD are initially smaller than 1 µm. However,

as we move through the subsets, the differences in σAxD for the two gradient sets separate, so

that those of the first set tend to remain smaller than those of the second set.

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.20c shows µAxD using the gradient subsets in Table 5.1. The µAxD for the three smallest

AxD (2.1 µm, 2.3 µm, 2.9 µm) are larger than the true AxD, while the µAxD for the two highest

AxD are smaller than the actual AxD. In the second gradient subset, µAxD drops a small amount

(< 0.5 µm).

Figure 5.21c shows σAxD for the gradient subsets in Table 5.1. For AxD = 2.1 µm, 2.3 µm,

and 2.9 µm, σAxD are 0.1 µm smaller with two gradients. For AxD = 4.8 µm and 6.1 µm,

respective σAxD are 0.5 µm and 1.5 µm larger with one nonzero gradient. The small decrease

in the smallest AxDs might just be due to noise from the 1000 trials.

5.3.3.2 Frequency Removal

Results from simulations using all the gradients and varying number of frequencies are pre-

sented here.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.22a shows µAxD as a function of n f for the five AxD. There is some increase in µAxD

at lower n f .

Figure 5.23a shows σAxD as a function of n f for five AxD. The σAxD are highest at n f = 5

and decrease with n f . After n f = 10, they begin to level off. They decrease by less than 0.2 µm

between n f = 10 and n f = 20. The AxD = 6.1 µm distribution has the largest errors (0.25 to

0.4 µm greater than the rest). This is probably because the extra-axonal model does not model

distributions with larger diameters (or AxD) as well. These results cannot be compared directly

to the single diameter case because the axons are not necessarily the same size, but it is still

interesting to try. To use one example, comparing AxD = 2.1 µm to d = 2 µm, at n f > 5,
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AxD. Otherwise, there is little overall change. For Gmax = 300 mT/m, there is some fluctuation
in µAxD between even and odd subsets. For Gmax = 80 mT/m, µAxD are smaller using the two
gradient subset.
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Figure 5.21: Full simulation: σAxD for different gradient subsets. (a) Gmax = 900 mT/m (b)
Gmax = 300 mT/m (c) Gmax = 80 mT/m. All frequencies in each set were kept when fitting
to the model. For the simulations with Gmax = 900 mT/m, there is an increase in σAxD as the
highest gradient strength in a subset decreases. For distributions with smaller AxD, σAxD tends
to increase at a slower rate. For the simulations with Gmax = 300 mT/m, there is an increase
in σAxD as the largest gradient in the subset decreases. In both (a) and (b), σAxD for all the
AxD start off with similar values, but eventually separate, so that those of the first set tend to
remain smaller than those of the second set. For the simulations with Gmax = 80 mT/m, σAxD
are similar in both subsets.

155



5.3. RESULTS

the σAxD (σd) are similar, with those of AxD = 2.1 µm slightly smaller. At n f = 5, those of

AxD = 2.1 µm are smaller, by ≈ 0.8 µm.

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.22b shows µAxD as a function of n f for the five AxD. The µAxD show little change over

n f .

Figure 5.23b shows σAxD as a function of n f for the five AxD. The values of σAxD show

little change over n f , changing less than 0.2 µm. All σAxD are under 1 µm. Excluding n f = 5,

σAxD of AxD = 2.1 µm, 2.3 µm, and 2.9 µm are around 2 to 3 times larger than those of the

first gradient set, while σAxD of AxD = 4.8 µm and AxD = 6.1 µm are approximately the same

(within 10 to 20 percent). However, at n f = 5, σAxD with the first gradient set are up to 2 times

larger than σAxD here.

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.22c shows µAxD as a function of n f for the five AxD. The µAxD show little change over

n f .

Figure 5.23c shows σAxD as a function of n f for the five AxD. The values of σAxD are

obviously much larger than either the first or second gradient set. There does not appear to be

a clear trend over n f .

5.3.4 Identical Cylinders (Intra- and Extra-axonal water) – Equal Diffu-

sivities

We now move on to the case of identical cylinders on a square lattice with Din = Dex. Since

the results were similar to when Din 6= Dex, we will not give the overview of results of each

parameter before beginning with removal of data. Only σd are presented because µd showed

similar behavior compared to when Din 6= Dex.
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Figure 5.22: Full simulation: µAxD as a function of n f . Three sets of measurements shown: (a)
Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All gradient strengths in each
set were kept when fitting to the model. For Gmax = 900 mT/m, µAxD are highest at n f = 5 and
decrease with n f , leveling off past n f = 10. For Gmax = 300 mT/m and Gmax = 80 mT/m, there
is little change in µAxD.
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Figure 5.23: Full simulation: σAxD as a function of n f . Three sets of measurements shown:
(a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All gradient strengths in
each set were kept when fitting to the model. For the simulations with Gmax = 900 mT/m, the
σAxD are highest at n f = 5 and decrease with n f . After n f = 10, they begin to level off. For
the simulations with Gmax = 300 mT/m, the values of σAxD show little change over n f . For the
simulations with Gmax = 80 mT/m, the values of σAxD are obviously much larger than either
the first or second gradient set. There does not appear to be a clear trend over n f . Note: (c)
uses different y-axis limits.
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5.3.4.1 Gradient Subsets

We begin by removing gradients. For these simulations, all frequencies (n f = 20) are used and

the packing fraction for the cylinders was chosen to be 0.6.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.24a shows σd for d = 1 to 5 µm using the gradient subsets in Table 5.1. There is a

steady rise in σd as fewer and smaller gradients are used, like in the previous cases. Initially,

σd for all diameters are within around 0.5 µm of each other (subset #1). Some σd increase at a

steadier rate than others. Those of d = 2 µm or d = 3 µm steadily increase until the 7th subset,

while d = 5 µm increases at a faster rate after the 4th or 5th subset. Overall, these are very

similar to the corresponding Din 6= Dex case (Figure 5.17a).

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.24b shows σd for d = 1 to 5 µm using the gradient subsets in Table 5.1. The main

features are the same as Figure 5.17b. At Ghigh = 100 mT/m (subset #9), σd for d = 4 µm and

d = 5 µm jump about 2 µm. One difference between this case and the Din 6= Dex case is that σd

for d = 1 µm are smaller here than in Figure 5.17b, but that could be explained by less outliers

in the fitted diameter distributions here (in other words, by chance).

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.24c shows σd for d = 1 to 5 µm using the gradient subsets in Table 5.1. When using

one nonzero gradient, σd are up to 1 µm higher.

5.3.4.2 Frequency Removal

The results presented here are for simulations with packing fractions of 0.6 that use all the

gradients and fewer frequencies.
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Figure 5.24: Full simulation: σd for different gradient subsets. Simulations used the same
diffusivity for intra-axonal and extra-axonal compartments. Three sets of measurements shown:
(a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All frequencies in each set
were kept when fitting to the model. For Gmax = 900 mT/m, σd increases as the maximum
gradient strength in the subset decreases. For Gmax = 300 mT/m, there is an overall increase
in σd with gradient subset. For the simulations with Gmax = 80 mT/m, with exception of
d = 2 µm, σd are slightly larger for the two gradient subset.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.25a shows σd as a function of n f for d = 1 to 5 µm. For d = 1 µm, σd levels after

n f = 10 (where σd < 1.2 µm). For d = 2 to 5 µm, σd show little change, changing less than

0.5 µm over n f . All σd remain under 1.2 µm.

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.25b shows σd as a function of n f for d = 1 to 5 µm. For d > 2 µm, the σd show little

change over n f . The σd for each diameter stay in a 0.2 µm range. The σds for both d = 1 µm

and d = 2 µm decrease over n f , with those of d = 1 µm leveling at n f = 10.

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.25c shows σd as a function of n f for d = 1 to 5 µm. There does not appear to be a

consistent decrease of σd with n f .

5.3.5 Diameter Distributions – Equal Diffusivities

Finally, we look at the results from diameter distributions when Din = Dex.
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Figure 5.25: Full simulation: σd as a function of n f . Simulations used the same diffusiv-
ity for intra-axonal and extra-axonal compartments. Three sets of measurements shown: (a)
Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All gradient strengths in each
set were kept when fitting to the model. For simulations with Gmax = 900 mT/m, the uncertainty
for d = 1 µm is large at smaller n f but levels off after n f = 10. For d = 2 µm to d = 5 µm, σd at
n f = 5 are larger than those for n f > 5. For simulations with Gmax = 300 mT/m, σd for d = 3,
4, and 5 µm show little change over n f . The d = 1 µm and d = 2 µm errors become smaller as
n f increases. For d > 2 µm, σd are similar to those of first gradient set. For simulations with
Gmax = 80 mT/m, σd are mostly independent of n f .

5.3.5.1 Gradient Subsets

The results presented first are for simulations using all the frequencies (n f = 20) with different

gradient subsets.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.26a shows σAxD using the gradient subsets in Table 5.1. We can see the same features

as Figure 5.21a. There is an increase in σAxD as smaller and fewer gradients are used. Some

increase at a steadier rate, while others have a point where the rate of increase becomes larger.

The σAxD for AxD = 4.8 µm and AxD = 6.1 µm increase at a faster rate starting at the 4th

subset, while σAxD of AxD = 2.1 µm, AxD = 2.3 µm, and AxD = 3 µm experience a small

jump at the 7th (increasing by around 0.25 µm).

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.26b shows σAxD using the gradient subsets in Table 5.1. It looks similar to Figure

5.21b. There is an overall increase in σAxD at higher subsets. Otherwise, it cannot be seen

from the figures whether using Din = Dex gives smaller σAxD or not. For example, the σAxDs
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of AxD = 2.1 µm are larger here than the other case (Din 6= Dex) when using subsets with

Ghigh > 100 mT/m (up to 0.9 µm), whereas using subsets with Ghigh 6 100 mT/m its error is

smaller than the other case.

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.26c shows σAxD using the gradient subsets in Table 5.1. With the exception of

AxD = 4.8 µm and 6.1 µm, where σAxD increases by ≈ 0.2 to 0.3 µm, σAxD decrease by less

than 0.1 µm when using the subset with one nonzero gradient. This might just be due to noise

(in the 1000 trials).
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Figure 5.26: Full simulation: σAxD for different gradient subsets. Simulations used the same
diffusivity for intra-axonal and extra-axonal compartments. Three sets of measurements shown:
(a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All frequencies in each
set were kept when fitting to the model. For the simulations with Gmax = 900 mT/m, there
is an increase in σAxD as the highest gradient strength in a subset decreases. For distribu-
tions with smaller AxD, σAxD tends to increase at a slower rate. For the simulations with
Gmax = 300 mT/m, there is an overall increase in σAxD as the largest gradient in the subset
decreases. For the simulations with Gmax = 80 mT/m, σAxD are similar in both subsets.

5.3.5.2 Frequency Removal

We now remove frequencies to see how σAxD changes. The results presented here use all the

gradients and fewer frequencies.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.27a shows σAxD as a function of n f for the five AxD. The σAxD decrease with n f ,

though more slowly past n f = 10. Those of n f = 5 are around 1.5 to 2 times larger than those
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of n f > 10. With some exceptions, mostly at n f = 5, σAxD here are slightly smaller than when

Din 6= Dex (Figure 5.23a).

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.27b shows σAxD as a function of n f for the five AxD. Each set of σAxD changes less than

0.1 µm over n f . All σAxD are within 0.8 µm to 1.4 µm for the entire range of n f . These σAxD

are larger than when Din 6= Dex (Figure 5.23b) by up to 0.5 µm, depending on the particular

AxD.

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.27c shows σAxD as a function of n f for the five AxD. There does not seem to be a

consistent decrease of σAxD over n f but rather a dip in σAxD going from n f = 5 to n f = 20 for

the smaller AxD. For AxD = 2, 2.4, and 3 µm, the σAxD here are slightly smaller (by 0.1 to

0.2 µm) than the Din 6= Dex case (for all n f ). For AxD = 4.8 µm and AxD = 6.1 µm, σAxD are

approximately 0.1 µm larger here (see Figure 5.23c).
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Figure 5.27: Full simulation: σAxD as a function of n f . Simulations used the same diffusiv-
ity for intra-axonal and extra-axonal compartments. Three sets of measurements shown: (a)
Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All gradient strengths in each
set were kept when fitting to the model. For the simulations with Gmax = 900 mT/m, the σAxD
are highest at n f = 5 and decrease with n f . After n f = 10, they begin to level off. For the
simulations with Gmax = 300 mT/m, the values of σAxD show little change over n f . For the
simulations with Gmax = 80 mT/m, the values of σAxD are obviously much larger than either
the first or second gradient set. There does not appear to be a clear trend over n f . Note: (c)
uses different y-axis limits.
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5.3.6 Repeated Measurements at Gmax

In the previous sections, the best results were usually found when keeping all of the gradients.

To study whether two gradients (G = 0 and Gmax) with more measurements at Gmax are bet-

ter than one measurement at each of the original gradients, this section studies σd (σAxD) for

repeated measurements at Gmax. When comparing, the total number of measurements is kept

constant, so that if there were four nonzero gradients before (G = {0, G1, G2, G3, G4}), there

will still be four nonzero gradients (G = {0, G4, G4, G4, G4}). We only use the Din 6= Dex

simulation data here because the previous results from the Din = Dex simulations were very

similar.

5.3.6.1 Intra-axonal simulation

We begin the comparisons with the intra-axonal simulation data. For each gradient set, three

gradient subsets were used to study σd . One choice uses all the original gradients, while an-

other uses repeated measurements at G = Gmax (while keeping the number of measurements

constant). For comparison, the subset with one nonzero gradient (G = {0, Gmax}) is included.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.28a shows σd as a function of n f for the three subsets (for d = 2 µm). Repeated

measurements at Gmax give the smallest σd over the entire range of n f . At n f = 5, the new σd is

around 0.6 µm smaller than when using all gradient values. The difference shrinks as we move

towards n f = 20, as the σd for each subset start to converge.

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.28b shows σd as a function of n f for the three subsets (for d = 2 µm). Repeated

measurements at Gmax give the smallest σd at all n f . At n f = 5, the difference between using

repeated measurements at Gmax and the original measurements is the largest (around 0.8 µm).

At n f = 10, the difference is smallest (around 0.1 µm).

163



5.3. RESULTS

Gradient set #3 (Gmax = 80 mT/m)

We have already shown that fitting smaller diameter cylinders may not be feasible with these

gradient strengths. Thus, instead of d = 2 µm, the results from d = 3 µm were studied, because

the fitted diameter distribution for d = 3 µm had its maximum near d = 3 µm.

Figure 5.28c shows σd as a function of n f for the three subsets (for d = 3 µm). Repeated

measurements at Gmax once again produced the smallest σds. At n f = 5 and n f = 10, the σd

from repeated measurements is 1 µm smaller than from using all measurements, otherwise σd

is around 0.5 µm smaller.

5.3.6.2 Full simulation – Identical cylinders

This section presents comparisons for the full model (intra- and extra-axonal).

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.29a shows σd as a function of n f for the three subsets (d = 2 µm, packing fraction

of 0.6). As before, repeated measurements at Gmax give the smallest σd at each n f . The

improvement over using all measurements is greatest with n f = 5, with a 0.5 µm difference. As

n f increases, σd for the subsets start to converge.

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.29b shows σd as a function of n f for the three subsets (d = 2 µm, packing fraction of

0.6). Repeated measurements at Gmax give the smallest σd , with improvements over the other

subsets ranging from 0.5 to 1 µm.

Gradient set #3 (Gmax = 80 mT/m)

For illustration, a diameter with a more well-defined distribution (d = 4 µm) was studied with

this gradient set. Figure 5.29c shows σd as a function of n f for the three subsets (packing frac-

tion of 0.6). Repeated measurements at Gmax lead to smaller σd over all n f , with improvements

between 0.2 to 0.5 µm.
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Figure 5.28: Intra-axonal model: σd as a function of n f for three different gradient subsets.
Subsets include those with (‘+’) one nonzero gradient (‘x’) all gradient strengths (‘o’) repeated
nonzero gradients at Gmax. Three sets of measurements shown: (a) Gmax = 900 mT/m (b)
Gmax = 300 mT/m (c) Gmax = 80 mT/m. In (a) and (b), σd are from d = 2 µm simulations,
in (c) σd are from d = 3 µm simulations. For simulations with Gmax = 900 mT/m repeated
measurements at Gmax give the smallest σd over the entire range of n f . The improvement in
σd shrinks with increasing n f . For simulations with Gmax = 300 mT/m repeated measurements
at Gmax give the smallest σd at all n f . At n f = 5, the difference between using repeated mea-
surements at Gmax and all measurements is the largest. At n f = 10, the difference is smallest.
For simulations with Gmax = 80 mT/m repeated measurements at Gmax once again produced
the smallest σds. Note: (c) uses different y-axis limits.
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Figure 5.29: Full simulation: σd as a function of n f for three different gradient subsets. Sub-
sets include those with (‘+’) one nonzero gradient (‘x’) all gradient strengths (‘o’) repeated
nonzero gradients at Gmax. Three sets of measurements shown: (a) Gmax = 900 mT/m (b)
Gmax = 300 mT/m (c) Gmax = 80 mT/m. In (a) and (b), σd are from d = 2 µm simulations,
in (c) σd are from d = 4 µm simulations. For simulations with Gmax = 900 mT/m, as before,
repeated measurements at Gmax give the smallest σd at each n f . As n f increases, σd for the
subsets start to converge. For simulations with Gmax = 300 mT/m, repeated measurements at
Gmax give the smallest σd . For simulations with Gmax = 80 mT/m, repeated measurements at
Gmax lead to smaller σd over all n f .
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5.3.6.3 Full simulation - diameter distribution

Finally, we also illustrate the comparison using the diameter distributions.

Gradient set #1 (Gmax = 900 mT/m)

Figure 5.30a shows σAxD as a function of n f for the three subsets (AxD = 2.1 µm). Repeated

measurements at Gmax give smaller σAxD for n f > 5. Improvement in σAxD ranges from around

0.1 µm (n f = 15, 20) to 0.2 µm (n f = 10). Differences decrease with n f , so that σAxD for each

subset converge (or level off) at high n f .

Gradient set #2 (Gmax = 300 mT/m)

Figure 5.30b shows σAxD as a function of n f for the three subsets (AxD = 2.1 µm). Repeated

measurements at Gmax give smaller σAxD for all n f . The improvement over the second best

subset ranges from 0.1 µm (n f = 5) to 0.3 µm (n f = 10, 15, 20).

Gradient set #3 (Gmax = 80 mT/m)

Figure 5.30c shows σAxD as a function of n f for the three subsets (AxD = 2.9 µm). There is a

slight improvement in σAxD when using repeated gradients, but the σAxD jump around, making

it more difficult to see a clear trend.

Figures 5.31a-c shows the fitted AxD distributions using each of the three subsets (n f = 20).

When using all the original gradients, the distribution looks bimodal, with one peak between 2

and 3 µm and another between 5 and 6 µm. There are just over 200 values near AxD = 0 µm

(213/1000 < 0.02 µm). Using repeated gradients, there are fewer values near AxD = 0 µm

(179/1000 < 0.02 µm) and the second peak between 5 and 6 µm has become smaller, so that

the maximum near 3 µm is the only maximum left. With one nonzero gradient, there are more

values near AxD = 0 µm than either of the others (268/1000 < 0.02 µm) and the distribution

itself has become flatter over the range of 2 to 6 µm.
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Figure 5.30: Full simulation: σAxD as a function of n f for three different gradient subsets.
Subsets include those with (‘+’) one nonzero gradient (‘x’) all gradient strengths (‘o’) repeated
nonzero gradients at Gmax. Three sets of measurements shown: (a) Gmax = 900 mT/m (b)
Gmax = 300 mT/m (c) Gmax = 80 mT/m. In (a) and (b), σAxD are from AxD = 2.1 µm simula-
tions, in (c) σAxD are from AxD = 2.9 µm simulations. For simulations with Gmax = 900 mT/m,
repeated measurements at Gmax give smaller σAxD for n f > 5. The improvement in σAxD be-
comes smaller with increasing n f , and the σAxD for each subset level off at high n f . For simula-
tions with Gmax = 300 mT/m, repeated measurements at Gmax give smaller σAxD for all n f . For
simulations with Gmax = 80 mT/m, there is a slight improvement in σAxD when using repeated
gradients, but the trend is not as clear. Note: (c) uses different y-axis limits.
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Figure 5.31: Full simulation: Distribution of fitted AxD from the substrate with AxD = 2.9 µm
using different gradient subsets (here, n f = 20) of the Gmax = 80 mT/m gradient set. Subsets
include those with (a) one nonzero gradient, (b) all gradient strengths, (c) six repeated nonzero
gradients at Gmax = 80 mT/m. When using all gradients, the distribution looks bimodal, with
one peak between 2 and 3 µm and another between 5 and 6 µm. There are just over 200 values
near AxD = 0. Using repeated gradients, there are fewer values near AxD = 0 and the second
peak between 5 and 6 µm has become smaller, so that the maximum near 3 µm is the main
peak. With one nonzero gradient, there are more values near AxD = 0 than in either (b) or (c)
and the distribution itself has become flatter (ranging between 2 and 6 µm.
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5.4 Discussion

The results of the simulations suggest that 5 frequencies were adequate for d = 3 to 5 µm and

AxD > 2 µm. There was some improvement in precision for d = 1 and 2 µm with 10 frequen-

cies (at least for G = 300 mT/m and G = 900 mT/m), but comparisons at these diameters might

require a more refined technique. Similar to other diffusion MR studies [51], we found that it

was better to repeat measurements at higher gradient strengths than to make single measure-

ments over a range of gradient strengths. The improvement in σd/σAxD tended to be greatest

at small n f , especially noticeable at very high gradient strengths (= 900 mT/m). At high n f ,

there was less improvement.

The measure we used here was a sample standard deviation over the fitted parameters. For

fitted parameters with symmetric distributions, standard deviation may be an adequate descrip-

tion of uncertainty. But it was found that many fitted parameters have asymmetric distribu-

tions, especially for smaller gradients or smaller diameters. It was also found that σd/σAxD for

these distributions tended to be skewed by outliers, especially at the smallest diameters (e.g.

d = 1 µm), and even with high gradients.

Bayesian methods might be useful for fitting [6, 7, 160]. Some have shown that the use of

prior distributions might make results converge for smaller gradients [34]. Clayden et al. have

found this improved their results using gradient strengths as small as 35 mT/m.

In all the cases we studied, the intra-axonal diffusion coefficient was the most poorly fit

parameter. Many of the fitted estimates clustered near the upper and lower bounds and the

distribution itself was less clearly defined (in terms of peaks). It might be best just to fix it to a

set value beforehand, like we did for the diameter distribution simulations. The fitted packing

fraction was also a poorly estimated using the Gmax = 80 mT/m measurements.

In Figure 5.19b, σd for d = 3, 4, and 5 µm are constant over n f , whereas in Figure 5.19a,

those σd increase at n f = 5. The same can be seen in Figure 5.23, where Figure 5.23b shows

that σAxD remain constant over n f , but Figure 5.23a shows σAxD increase at n f = 5. The reason

is that the first gradient set (Gmax = 900 mT/m) does not necessarily use the highest gradient

strengths at each frequency. Some gradient strengths for n f 6 5 ( fm 6 250 Hz) are smaller in

this set of measurements than the Gmax = 300 mT/m set of measurements. The fact that the
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second set of measurements uses a single gradient over all frequencies, with higher gradient

strengths at low frequencies, might be responsible for the smaller σd/σAxD at n f = 5.

The σd/σAxD from the Gmax = 300 mT/m and Gmax = 80 mT/m (especially 80 mT/m)

measurements showed less change over n f compared to those from the Gmax = 900 mT/m

measurements. One possible cause is that the Gmax = 300 mT/m and Gmax = 80 mT/m mea-

surements have less diffusion weighting at higher frequencies. Therefore including higher fre-

quency measurements when fitting does not add very much new information, especially once

noise is added. This would be especially true for Gmax = 80 mT/m measurements, where the

signal only decays to 95% at 50 Hz.

For the Gmax = 900 mT/m measurements, where the gradient step increase is largest, the

differences between σd/σAxD from different gradient subsets was noticeable. A clear increase

in σd/σAxD is observed moving from multiple or higher gradient strengths to fewer and smaller

gradient strengths. In the Gmax = 80 mT/m measurements, it was not completely clear what was

happening as the gradient subsets were changed from five nonzero gradients to a single nonzero

gradient. For some diameters, σd/σAxD increased, for others σd/σAxD decreased. For a more

accurate measure of how uncertainty changes, a better measure than just taking the standard

deviations of the parameter distribution is needed. Alternatively, more than 1000 noisy trials

could be used to find σd (for example, 5000 [192]).

With the intra-axonal model, the Gmax = 300 mT/m and Gmax = 900 mT/m measurements

gave similar σds for d = 3 to 5 µm, at least when all gradient strengths were included (in other

words, there was little difference between using G = 300 mT/m and G = 900 mT/m). When

going below G = 300 mT/m, the difference becomes apparent, with σd becoming worse. The

Gmax = 300 mT/m and Gmax = 900 mT/m measurements also gave similar σds for d = 3 to

5 µm with the two compartment model. The two sets of measurements also gave similar σAxDs

for the substrates we studied (AxD= 2.1 µm to 6.1 µm). There did not appear to be a noticeable

difference in results between simulations with Din 6= Dex and simulations with Din = Dex.
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5.5 Conclusion

Oscillating gradients have already shown to be useful in inferring small axon diameters. Here

we have shown using Monte Carlo simulations that images can be collected with fewer gradient

strengths (as few as 2) and fewer gradient frequencies (between 5 to 10) without sacrificing the

precision of the measurements. This could be useful in reducing imaging time so that OG

techniques can be used in clinical settings. More work is needed for the method to work with

clinical gradient strengths.

170



Chapter 6

Short-time model

6.1 Introduction

In this chapter, we will study a short-time ADC model which can be used to infer surface to

volume ratios in samples. First we will look at the accuracy of fitted parameters without signal

noise. Then we will investigate how signal noise affects parameter estimates. We will also look

at how parameter precision changes depending on the number of OG frequencies and gradients.

This analysis will be repeated using three different sets of gradient measurements (clinical to

pre-clinical strengths).

At short timescales, the interaction of molecules with the surfaces in porous samples results

in some interesting behaviour. Mitra showed that at short times (
√

D0t � pore size [89]), the

diffusion coefficient is proportional to the square root of time and depends on the surface to

volume ratio of restrictions in a sample [122, 123, 124]. The relationship between the time

dependence of the diffusion coefficient, assumed to be measured with narrow gradient pulses,

and surface to volume ratio allows for the possibility of extracting information about restrictions

in porous media.

Latour [89] performed experiments using stimulated pulsed field gradients (PFG) on packed

glass beads (48 µm, 96 µm, 194 µm in diameter) and a sample of onion (extracted cell diameter

= 138 µm). The model incorporated the short time model and a long time tortuosity model

covering a range of diffusion times, between 7 ms to 800 ms. Due to finite duration pulses,
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the original model in Ref. [124] was modified to take into account movement occurring while

the gradients were turned on. Their experiments yielded good results and were able to extract

surface to volume ratios, free diffusion coefficients, and tortuosity constants.

With the potential for oscillating gradient sequences to probe shorter diffusion times, ex-

periments began to be made with smaller samples using OGSE sequences. Schachter [154]

measured surface to volume ratio in samples of packed beads using the short-medium time

interpolation model from Latour [89]. Bead diameters were 3 µm, 9 µm, 25 µm, and 46 µm.

Experimental OGSE frequencies ranged from 12.5 Hz to 87.5 Hz, with a maximum gradient

strength of 157.5 mT/m. Diffusion was completely restricted in the 3 µm sample, so the long

time diffusion coefficient was taken from it and used, through a tortuosity relation, to help ex-

tract the surface to volume ratio from the 9 µm bead sample. Extracted parameters were in

good agreement with the true values.

Parsons [140] also estimated surface to volume ratios of packed bead samples using OGSE

sequences. Bead samples ranged from 1 µm to 400 µm in diameter. Since the short time model

as derived by Mitra is only strictly true for narrow pulses, where diffusion times are well de-

fined, they used a modified form of the short time model to account for the fact that diffusion

times are not well defined for oscillating gradients. However, their modification assumed os-

cillating gradients of infinite duration. Frequencies ranged from 33.33 Hz to 1000 Hz (30 mea-

surements) and the maximum gradient strength was 1730 mT/m (or b-values of 400 s/mm2).

Bead diameters were extracted by fitting either the highest or lowest measured OGSE frequen-

cies, depending on the restriction sizes in the sample. Surface to volume ratios for the 1 µm

and 3 µm bead samples were unable to be properly extracted because of small restriction sizes.

Diffusion times were too long for the short time model to apply. Instead, they extracted lower

bounds on the surface to volume ratios by assuming a known free diffusion coefficient (D0 =

2.05 µm2/ms).

Novikov [135] derived the exact high frequency behaviour of the diffusion coefficient, a

useful result for OGSE sequences and valid for a large number of oscillations. While previous

groups such as Parsons had numerically derived the necessary modifications for the high fre-

quency behaviour, Novikov’s result was derived analytically. Sukstanskii [169] found the exact
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high frequency behaviour for sine and cosine gradients of any duration, expressing results in

terms of correction factors dependent upon number of lobes. As gradients become infinite in

duration, the expressions of Sukstanskii, Novikov and Parsons all converge to the same result.

Reynaud [149] used the short time OGSE behaviour to estimate surface to volume ratios in

tumours of mice. Measurements were taken both in vivo and ex vivo. Three b-values were used

(0, 0.2, 0.4 ms/µm2). Frequencies ranged from 65 to 225 Hz (10 measurements). Results were

used to create parametric maps of D0 and S/V . They found that using only higher frequencies

( fm > 100 Hz) when fitting caused confidence intervals of extracted parameters to increase. It

was also found that neglecting the correction factors of Sukstanskii caused an overestimation

of S/V (by 20%).

In this chapter, we use data from Monte Carlo simulations to test the ability of the short-time

model to extract surface to volume ratios for a variety of geometries. Geometries include iden-

tical square packed cylinders and substrates where cylinders have a distribution of diameters.

We also use simulations to find how the precision of parameter estimates change depending

on the number of frequencies and gradient strengths used in the experiment. We will describe

results for three sets of gradient strengths (with maximum strengths of 80 mT/m, 300 mT/m,

and 900 mT/m). The aim of these experiments is to reduce imaging time to a clinically useful

sequence using clinically available gradient strengths. In addition, we compare results when

multiple gradient measurements (or b-values) at a given frequency are spaced out over a range

or collected at two points, one zero and the other nonzero (with the nonzero gradient repeated).

6.2 Mitra model

Suppose we have a collection of molecules diffusing near a surface (shown as a cylinder in

Figure 6.1, but the following ideas will hold for almost any shape). At very short timescales,

most molecules do not come into contact with the boundary. These molecules have no informa-

tion about the shape or overall size of the pore. A short time later, molecules within a distance

(≈
√

2D0t) of the boundary will have interacted with it. During this time the surface seems to

be completely flat, so molecules find no information about the curvature.
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We can derive a simple formula for the time dependent diffusion coefficient near a boundary

at short times [156, 157]. We first divide the molecules into two groups. The first group is a

‘free’ group, made up of particles too far from the boundary to interact with it. The second

group is a ‘wall’ group, with molecules near enough to the boundary to interact. Assume that

the boundary is flat and at the yz-plane. The total mean squared displacement in the direction

perpendicular to the wall is the average of the mean squared displacements of the free molecules

and the molecules near the boundaries. The mean squared displacement of the ‘free’ molecules

is 2D0t. The mean squared displacement of the ‘wall’ molecules is reduced by some fraction

p. Due to the presence of the wall, their squared displacements are smaller than if they were

free. The total mean squared displacement can be written as

〈x2〉= f f ree〈x2〉 f ree + fwall〈x2〉wall (6.1)

where ffree and fwall are the fractions of molecules far from the wall and close to wall, respec-

tively. If we assume the entire pore system is closed, we also have ffree = 1− fwall. We expect

that only molecules less than a distance
√

2D0t from the wall will feel its effects. If the surface

area of the boundary is S, then the volume taken up by these “wall” molecules is S
√

2D0t. If

the entire pore has total volume V , fwall is S
V ·
√

2D0t. The total mean squared displacement

will be

〈x2〉=
(

1− S
V
·
√

2D0t
)
·2D0t +

S
V
·
√

2D0t · p ·2D0t (6.2)

Displacements parallel to the wall are unaffected:

〈y2〉= 〈z2〉= 2D0t (6.3)

The total mean squared displacement is

〈rrr2〉= 4D0t +
(

1− S
V
·
√

2D0t
)
·2D0t +

S
V
· p ·
√

2D0t ·2D0t (6.4)

The time dependent diffusion coefficient D(t) is related to the mean squared displacement
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through the relationship D(t) = 〈rrr2〉
6t (recall Section 3.3.5). Therefore,

D(t) = D0

(
1− (1− p)

6
S
V

√
2D0t

)
(6.5)

The diffusion coefficient depends on the surface to volume ratio S/V and on
√

D0t, independent

of the exact shape of the pore. All that remains is for the exact form of p to be determined. It

has been shown that D(t) is [89, 157, 201]

D(t) = D0

(
1− 4

3nd
√

π
· S
V

√
D0t
)

(6.6)

where nd is the dimensionality of the system (whether diffusion takes place in 1, 2, or 3 dimen-

sions).

The ADC measured in a typical experiment is equal to D(t) only for narrow pulses [169]

(Section 3.3.5). Therefore, Eq. 6.6 is only valid for narrow gradient pulses. For arbitrary

gradients, Eq. 6.6 becomes

ADC(t) = D0 ·
[

1− cG ·
S

ndV

√
D0t
]

(6.7)

where cG depends on the gradient waveform [169]. In principle, given G(t), one can find cG. It

has been shown that cG for a cosine-OGSE with NOG periods is

c′cos(NOG) =
4πNOG ·C(2

√
NOG)+3 ·S(2

√
NOG)

2
√

2πNOG
(6.8)

where C(x) and S(x) are Fresnel functions1 [3, 41, 169]. Previously, cG had been found for the

case of N→ ∞ [135]. For a sine-OGSE, cG is

c′sin(NOG) =
32πN3/2

OG +12πNOG ·C(2
√

NOG)+21 ·S(2
√

NOG)

18
√

2πNOG
(6.9)

As NOG increases, the coefficient c′cos(NOG) approaches a constant value of 1/
√

2. The limit

is reached relatively quickly, the difference between c′cos(NOG→ ∞) and c′cos(NOG = 5) is less

1The Fresnel integrals are defined as follows: S(x) =
∫ x

0 sin(πt2/2)dt and C(x) =
∫ x

0 cos(πt2/2)dt
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than 5%. Because of the first term in the numerator of Eq. 6.9, c′sin(NOG) diverges as NOG→∞.

Finally, rewriting Eq. 6.7 in terms of OGSE angular frequency ωm, we have

ADC(t = 2πNOG/ωm) = D0 ·
[

1− cG ·
S

dV

√
D0 ·

2πNOG

ωm

]
(6.10)

6.2.1 Cylinders

As usual, white matter fibres were modeled as a collection of parallel non-overlapping cylin-

ders. We will use the short-time model in Eq. 6.10 to extract surface to volume ratios and

diffusion coefficients from a variety of simulated geometries. For simplicity, we assume no

water exchange between intra- and extra-axonal regions [7, 11, 195].

We performed two types of simulations. Initially, we performed “intra-axonal” simulations,

where water is contained inside the axons, but not outside. We then distributed water both

inside and outside the axons (a “full” simulation). In simulations with intra- and extra-axonal

water, we first set the extra-axonal diffusion coefficient to 2.5 µm2/ms [154]. We repeated the

simulations with Dex = 1.0 µm2/ms. The ADC should be given by Eq. 6.10. These simulations

(“intra-axonal” or “full”) were used on the geometries given below.

6.2.1.1 Geometry 1: Single cylinder

The simplest simulation consists of water diffusing inside the cylinder of diameter d (an “intra-

axonal” simulation). Ten diameters {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} µm were used.

6.2.1.2 Geometry 2: Identical cylinders on a square lattice

The next geometry considered is a collection of identical cylinders of diameter d arranged on a

square lattice. Water was distributed everywhere, both inside and outside the cylinders (a “full”

simulation). Ten diameters {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} µm were used, with packing fractions

of 0.5, 0.6, and 0.7.
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〈x2〉= 2D0t〈x2〉< 2D0t

Wall

Figure 6.1: Short-time behaviour of particles surrounding a solid cylinder. At very short times,
only particles within ≈

√
2D0t can interact with the wall. The fraction of particles that this

represents is approximately S/V ·
√

2D0t, where S is the total surface area and V is the volume of
the entire container. On the right is a zoomed illustration of two particles inside the rectangular
box. The particle far from the wall (`2 > 2D0t) undergoes free diffusion with total mean-
squared displacement 6D0t. The x-component of the mean-squared displacement is 2D0t. The
particle near the wall (`2 < 2D0t) has its mean-squared displacement in the x-direction reduced
by a factor p. Displacements in other directions are unaffected.

6.2.1.3 Geometry 3: Distribution of cylinder diameters

We also used five diameter distributions with mean diameters of 1.5, 2.0, 2.1, 4.1, 4.3 µm.

Packing fractions were between 0.63 and 0.78. Water was distributed everywhere, both inside

and outside the cylinders (a “full” simulation).

6.2.2 Monte Carlo Simulations

Monte Carlo simulations were similar to those in Chapter 4. For simplicity, we assume im-

permeable barriers [192, 195] and ignore T2 differences between tissues. For simulations in

simple lattices, we used N= 57344 particles. For diameter distribution simulations, we used

N = 114688 particles. The time step used in all simulations was 1 µs.
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6.2.3 Three Gradient Sets

Twenty frequencies ranging from 50 to 1000 Hz in steps of 50 Hz were used with an echo time

of 44.52 ms. There were three different sets of gradients used.

1. Five gradient strengths were used at each frequency, for a total of 100 signals. These

pulse sequence parameters were chosen to be feasible for experiments using a BGA6 gra-

dient set (Bruker Biospin) on our 7 T magnet (maximum gradient strength of 1.01 T/m).

For fm > 200 Hz, the gradient strengths were 0, 60, 70, 80 and 90% of maximum. The

gradient strengths for 200 Hz or less were smaller. For fm = 50 Hz, G = 0, 1.5, 4, 7, 10%

of maximum; for fm = 100 Hz, G = 0, 4, 7, 10, and 15% of maximum; for fm = 150 Hz,

G = 0, 15, 20, 25, and 30% of maximum; for fm = 200 Hz, G = 0, 30, 40, 50, and 60%

of maximum (see Table 4.1).

2. Eight gradient strengths were used at each frequency, for a total of 160 signals. Gradients

were {0, 50, 100, 150, 200, 250, 300} mT/m.

3. Six gradient strengths were used at each frequency, for a total of 120 signals. Gradients

were {0, 40, 50, 60, 70, 80} mT/m.

6.2.4 Data Fitting

Signal data were fitted to the model with nonlinear least-squares regression using the Opti-

mization Toolbox in MATLAB [113]. The diffusion coefficient was constrained to the range

[0, 3] µm2/ms. The surface to volume ratio was constrained to the range [0, 2] µm−1. The

fitting procedure was repeated 50 times with different random initial parameters. At the end,

the fitted parameters providing the smallest sum-of-squares were chosen as the best fit.

There are two ways to fit simulation data to the model. The first method involves calculating

an ADC at each frequency and then fitting the ADCs to Eq. 6.10. The ADCs are calculated using

linear regression on ln(E) and bcos (also how we calculated the ADC spectra in Section 4.3.2).

The second method is to fit the signal data directly to Eq. 3.84 with the ADC term in the

exponent given by Eq. 6.10. The second method was used by Renaud [149]. We will use both

methods and then compare the results.
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6.2.5 Effects of Noise

At the end of the simulations, Gaussian noise was added to each component of the transverse

magnetization so that SNR was 100. This was repeated 1000 times and the fitted parameters

were saved for analysis. The means and standard deviations of each of the 1000 results were

calculated and used to assess accuracy and precision of the results. The distribution mean and

standard deviation for the diffusion coefficient are denoted by µD and σD. The distribution

mean and standard deviation for the surface to volume ratio are denoted by µS/V and σS/V . We

will use σS/V , the width of the S/V distribution, as a measure of uncertainty.

6.2.6 Number of Frequencies

Data were fitted using different numbers of frequencies. Initially, all 20 frequencies were used

(50 to 1000 Hz). This serves as a baseline. Higher frequencies were then successively removed

before refitting the data to the model. The number of frequencies used will be denoted by n f .

We fit the data with n f = 5, 10, and 15 frequencies, corresponding to maximum frequencies of

250 Hz, 500 Hz, and 750 Hz.

Since Eq. 6.10 is applicable at short-times, another option is to remove lower frequency

measurements. We chose to keep every second (or fourth) frequency when fitting the data. If

every second frequency is kept, there are n f = 10 frequencies (100, 200, 300, 400, 500, 600,

700, 800, 900, 1000 Hz). If every fourth frequency is kept, there are n f = 5 frequencies (200,

400, 600, 800, 1000 Hz). We will compare this method of frequency removal with the above

method to see if there is a difference in results.

6.2.7 Number of Gradients

For each set of measurements, the highest gradients were successively removed from the data

before refitting. We also fit data using one nonzero gradient (e.g. G = {0, Gi}). Finally,

fitting was performed using one nonzero gradient repeated multiple times (e.g. G = {0, Gi, Gi,

Gi,. . .}). This was done by replicating the simulation results before adding noise. The subsets

are summarized in Table 5.1. For the Gmax = 80 mT/m gradient set, only the subsets with all six
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gradients or one nonzero gradient (at G = 80 mT/m) were used since we were less interested in

the smallest gradients.

6.3 Results

In this section the results from the simulations of the short-time model are presented. Many of

the fits contain results that are pinned at the upper or lower bounds. This tends to happen with

smaller gradient strengths where there is less signal decay. Because this will sometimes affect

the sample statistics (mean and standard deviation), we will also show examples of the actual

parameter distributions and make a note of when it occurs. If they were removed, results would

appear better than they actually are.

6.3.1 Model Accuracy

We begin by finding the situations were the model in Eq. 6.10 gives accurate results. For now,

no noise will be added to the simulation data. After determining the situations where the model

works best, noise will be added to assess the precision of the fitted parameters. In this section,

we will use the first gradient set (Gmax = 900 mT/m) because it gives the largest weighting to

the signals.

When describing the data fitting procedure, we noted that there were two ways to fit the

data to the model. The first involved calculating ADCs and fitting the ADCs to Eq. 6.10. The

second involved fitting simulated signals directly to Eq. 3.84 (with the ADC in the exponent

given by Eq. 6.10). Here we compare results from the two fitting methods.

For each fit, we choose 50 randomized starting parameters, giving 50 solutions. Solutions

are sorted according to their associated sum-of-squares. Figure 6.2 shows 50 extracted surface

to volume ratios from intra-axonal simulations with d = 6 µm. Figure 6.2a shows solutions

obtained by fitting calculated ADCs to Eq. 6.10. Figure 6.2b shows solutions obtained by

fitting signals to Eq. 3.84 (with Eq. 6.10 in the exponent). In Figure 6.2a, final solutions

depend on the initial parameters. In Figure 6.2b, most of the solutions are the same and do not

depend on the initial parameters. The “best” solutions in Figure 6.2a (those defined as having
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the smallest sum-of-squares) appear to be converging towards the solution in Figure 6.2b. Since

we want our solutions to depend as little as possible on the initial parameters, we are going to

use the second method from now on and fit signal data directly to Eq. 3.84.

6.3.1.1 Intra-axonal Simulations

We begin with the intra-axonal simulations. Figure 6.3a shows fitted diffusion coefficients as

a function of cylinder diameter. With small cylinder diameters (d < 4 µm), fitted D0 are less

than the actual value (1.0 µm2/ms). In smaller pores, where the short-time condition is not

met, Equation 6.10 does not hold. In larger diameters, fitted D0 converge toward 1.0 µm2/ms.

At d = 1 µm, the fitted D0 is only 0.25 µm2/ms, while at d = 4 µm, fitted D0 is around

1.07 µm2/ms. For cylinders with d > 3 µm, the results have leveled off and the average fitted

D0 is around 1.07 µm2/ms.

Figure 6.3b shows fitted S/V as a function of cylinder diameter. Fitted S/V at each diameter

are all larger than the actual value. The average percent difference over all cylinder diameters

is 36 percent. Absolute difference between fitted S/V and true S/V decreases from around

1 µm−1 at d = 1 µm to 0.12 µm−1 at d = 10 µm. Since fitted D0 were underestimated for

d < 3 µm, we should probably use caution interpreting the S/V results for those diameters,

even if they are close. Figure 6.3c directly compares fitted S/V with true S/V . Note that all

S/V are overestimated.

6.3.1.2 Full Simulation (Intra- and Extra-axonal water) - Unequal Diffusivities

Next, we consider the case of identical cylinders on a square lattice.

Figure 6.4a shows fitted D0 as a function of diameter for each packing fraction. Fitted D0

increase with diameter before starting to level off at higher diameters.

Figure 6.4c shows fitted S/V as a function of diameter with each packing fraction. All fitted

S/V are underestimated, especially at small diameters. At larger diameters (d→ 10 µm), fitted

S/V become closer to the actual values, almost converging (percent differences are 5 to 10

percent at d = 10 µm). Figure 6.4e compares fitted S/V with true S/V for the entire collection

of simulations. Fitted S/V for each packing fraction have slightly different behaviour. Fitted
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Figure 6.2: Fitted surface to volume ratios obtained using 50 randomized initial parame-
ters, sorted by sum-of-squares (shown in ascending order), using intra-axonal simulations
(d = 6 µm). Solutions were obtained by (a) fitting calculated ADCs to Eq. 6.10 or (b) fit-
ting signals directly to Eq. 3.84. Results obtained by fitting signals to Eq. 3.84 show less
dependence on initial parameters.
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Figure 6.3: Fitted model parameters using intra-axonal simulation data. (a) Fitted diffusion
coefficients as a function of cylinder diameter. (b) Fitted surface to volume ratios as a function
of cylinder diameter. (c) Comparison of fitted surface to volume ratios with actual surface to
volume ratios. Dashed line indicates a perfect fit. Fitted D0 and fitted S/V are more accurate
with larger diameters.
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S/V from higher packing fractions (= 0.7) are more accurate and converge towards the true

value more quickly. For example, fitted S/V with packing fractions of 0.7 are on average 7

percent closer to the true S/V compared to those with packing fraction = 0.6. Since the model

in Eq. 6.10 does not account for compartments with different diffusivities, these are not as

accurate.

Figure 6.5c compares fitted S/V with true S/V for the five diameter distributions. All S/V

are underestimated by at least 25 percent.

6.3.1.3 Full Simulation (Intra- and Extra-axonal water) - Equal Diffusivities

We now apply the model on simulations with equal diffusivities in the intra- and extra-axonal

regions (Din = Dex).

Figure 6.4b shows fitted D0 as a function of diameter for each packing fraction. Fitted

D0 increase with diameter before leveling off above d = 4 µm. When d > 5 µm, relative

differences between fitted and actual D0 are less than 1 percent.

Figure 6.4d shows fitted S/V as a function of diameter for each packing fraction. Fitted S/V

are more accurate than in the last section (when Din 6= Dex). At smaller diameters, fitted S/V

underestimate the true values, while at larger diameters they overestimate them. The crossover

point for packing fractions of 0.5 and 0.6 occurs at d = 5 µm. When the packing fraction is

0.7, the crossover occurs at d = 8 µm. Figure 6.4f compares fitted S/V with true S/V . For

S/V < 1.5 µm−1, the fitted S/V are within 0.2 µm−1 of the true values.

We now look at simulations with diameter distributions. Figure 6.5a-b shows fitted dif-

fusion coefficients from each substrate. All fitted D0 underestimate the actual D0. The exact

difference depends on the particular substrate. Substrates with higher S/V s (with more re-

stricted geometries) have smaller fitted D0, while substrates with a lower S/V have fitted D0

that are closer to 1.0 µm2/ms. The fitted diffusion coefficient is around 0.6 µm2/ms for the

distribution with the highest S/V (= 3.3 µm−1), so that the difference between fitted and actual

S/V is approximately 40 percent. The fitted diffusion coefficients for the distributions with

smaller S/V (= 1.21 µm−1 and 1.24 µm−1) are 0.97 µm2/ms and 0.95 µm2/ms, respectively,

differences of less than 5 percent.
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Figure 6.4: Fitted model parameters using simulations with identical cylinders on a square
lattice. In (a, c, e), Din 6= Dex. In (b, d, f), Din = Dex. (a-b) Fitted D0 as a function of cylinder
diameter. (c-d) Fitted S/V as a function of cylinder diameter. (e-f) Comparison of fitted S/V
with actual S/V (with all simulations included). Dashed line indicates a perfect fit. Fitted S/V
are more accurate at lower S/V and when Din = Dex.

184



6.3. RESULTS

Figure 6.5c-d compares fitted S/V with true S/V . The fitted S/V s all underestimate the

true values. The difference between fitted and true S/V is smaller in distributions having lower

S/V . For the distribution with the highest S/V (= 3.3 µm−1), where D0 was underestimated by

40 percent, the difference between fitted and true S/V is around 36 percent. For the distribution

with the lowest S/V (= 1.21 µm−1), where there was a 3 percent difference between fitted

and true D0, the difference between fitted and true S/V is around 13 percent. Note the overall

similarity with Figure 6.4f. Fitted and true S/V start to converge as the true S/V approaches

1 µm−1.

6.3.2 Effects of Noise

To explore the effects that noise may have on fitted diffusion coefficients and surface to volume

ratios, Gaussian noise (SNR = 100) was added to each transverse magnetization component in

the simulation data. We saw in the previous section that in some situations (different diffusiv-

ities and small diameters), the model (Eq. 6.10) gives inaccurate results. We want to know

how noise affects fitted parameters with as little confounding as possible, so we will only use

results for the situations that worked well in the previous section. These are the square packed

medium-large cylinders (d > 5 µm) with a single diffusivity (Din = Dex).

6.3.2.1 Overview of Parameters

We begin by presenting an overview of the parameters and their uncertainties. All measure-

ments have been used.

Gradient Set #1 (Gmax = 900 mT/m)

Figures 6.6a, 6.6d, and 6.6g show mean fitted diffusion coefficients (µD) for d = 6 to 10 µm. All

µD are within 2 percent of the actual value. All σD are less than 0.04 µm2/ms. The distributions

of fitted D0 for d = 6 µm and d = 10 µm (packing fraction = 0.6) are shown in Figures 6.7a

and 6.7d. Both distributions are relatively symmetric about D0 = 1.0 µm2/ms with no outliers

(all fitted D0 are within 0.15 µm2/ms of 1.0 µm2/ms).

Figures 6.8a, 6.8d, and 6.8g show mean fitted S/V (µS/V ) for d = 6 to 10 µm. Figures 6.9a,

185



6.3. RESULTS

1 2 3 4

S/V ( m-1)

0

0.5

1

F
itt

ed
 D

0
 (

m
2
/m

s)

0 2 4

S/V ( m-1)

0

1

2

3

4

F
itt

ed
 S

/V
 (

m
-1

)

0 2 4

S/V ( m-1)

0

0.5

1

0 2 4

S/V ( m-1)

0

1

2

3

4

a b

dc

D
in

  D
ex

D
in

 = D
ex

Figure 6.5: Fitted model parameters from simulations with diameter distributions. In (a, c),
Din 6= Dex. In (b, d), Din = Dex. (a-b) Fitted D0 for the five distributions. (c-d) Comparison of
fitted S/V with actual S/V for the five diameter distributions. Dashed line indicates a perfect
fit. Fitted S/V are more accurate at lower S/V and when Din = Dex.
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6.9d, and 6.9g compare µS/V to true S/V . Figures 6.10a and 6.10d show the S/V distributions

for d = 6 µm and d = 10 µm. The distributions are slightly skewed towards lower S/V s

(skewness = −0.44 [d = 10 µm] and −0.43 [d = 6 µm]). In the distribution for d = 6 µm,

95% of fitted S/V lie in the range [0.63, 0.94] µm−1. In the distribution for d = 10 µm, 95%

of fitted S/V lie in the range [0.30, 0.67] µm−1.

Gradient Set #2 (Gmax = 300 mT/m)

Figures 6.6b, 6.6e, and 6.6h show µD for d = 6 to 10 µm. All µD are within 7 percent of the

actual value, though all overestimate it. All σD are less than 0.07 µm2/ms. The distributions of

fitted D0 for d = 6 µm and d = 10 µm (packing fraction = 0.6) are shown in Figures 6.7b and

6.7e. Both distributions are symmetric about D0 = 1.0 µm2/ms.

Figures 6.8b, 6.8e, and 6.8h show µS/V for d = 6 to 10 µm. Figures 6.9b, 6.9e, and

6.9h compare µS/V to true S/V . Figures 6.10b and 6.10e show the S/V distributions for

d = 6 µm and d = 10 µm. Both distributions are more skewed towards lower S/V s than

the Gmax = 900 mT/m results (skewness = −0.57 [d = 10 µm] and −0.56 [d = 6 µm]). In

the distribution for d = 6 µm, 95% of fitted S/V lie in the range [0.80, 0.86] µm−1. In the

distribution for d = 10 µm, 95% of fitted S/V lie in the range [0.44, 0.61] µm−1. This means

that the S/V distributions for the Gmax = 300 mT/m measurements are actually narrower than

those from the Gmax = 900 mT/m measurements.

Gradient Set #3 (Gmax = 80 mT/m)

Figures 6.6c, 6.6f, and 6.6i show µD for d = 6 to 10 µm. All µD overestimate D0 by 8 to 16 per-

cent. The σD are between 0.5 and 0.6 µm2/ms. The distributions of fitted D0 for d = 6 µm and

d = 10 µm (packing fraction = 0.6) are shown in Figures 6.7c and 6.7f. Both distributions are

skewed to the right. Although both distributions are much wider than the ones in Figures 6.7b

and 6.7e, all fitted D0 still lie within the parameter bounds ([0, 3] µm2/ms). The distribution for

d = 6 µm is bimodal, with a bigger peak around 0.5 µm2/ms and a smaller one near 1 µm2/ms.

The distribution for d = 10 µm shows both peaks beginning to merge, with the combined peak

near D0 = 0.6 µm2/ms.
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Figures 6.8c, 6.8f, and 6.8i show µS/V for d = 6 to 10 µm. Figures 6.9c, 6.9f, and 6.9i

compare µS/V to true S/V . Figures 6.10c and 6.10f show the S/V distributions for d = 6 µm

and d = 10 µm. Both distributions are skewed towards smaller S/V . In the distribution for

d = 6 µm, some fitted S/V s have clustered near S/V = 0 (209/1000 < 0.001 µm−1). The peak

of the distribution is around 0.8 µm−1. In the distribution for d = 10 µm, many fitted S/V s are

clustered near S/V = 0 (291/1000< 0.001 µm−1). The peak is between 0.6 and 0.7 µm−1. For

d = 6 µm, the peak is located near the true S/V . But for d = 10, the peak is ≈ 0.1 to 0.2 µm−1

to the right of the true S/V .

6.3.2.2 Gradient Subsets

Here we show how σS/V changes when gradients are removed from the data. For the next three

sections, we keep all frequencies (n f = 20) and work with data from simulations with packing

fraction = 0.6.

Gradient Set #1 (Gmax = 900 mT/m)

Figure 6.11a shows σS/V for d = 6 to 10 µm using the gradient subsets in Table 5.1. There is a

steady rise in σS/V as fewer and smaller gradients are used. One nonzero gradient measurement

(G = {0, G = Gn}) can potentially have a smaller σS/V than using multiple gradient strengths

(G = {0, G1,. . . , Gn−1}), provided that Gn > Gn−1. At a given subset, σS/V for different diam-

eters are within approximately 0.04 µm−1 of each other. At the lower subsets, σS/V increases

with diameter, so that σS/V for d = 6 µm is the smallest and σS/V for d = 10 µm is the largest.

At higher subsets, the opposite occurs. In subsets #5 to 7 and above, d = 6 µm has the largest

σS/V and d = 10 µm has the smallest.

Gradient Set #2 (Gmax = 300 mT/m)

6.11b shows σS/V for d = 6 to 10 µm using the gradient subsets in Table 5.1. There is a

steady rise in σS/V as fewer and smaller gradients are used. Again, one nonzero gradient

measurement (G = 0, G = Gn) can potentially give smaller σS/V compared to using multiple

gradient strengths (G= {0, G1,. . . , Gn−1}), provided that Gn >Gn−1. We also saw this with the
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Gmax = 900 mT/m measurements. The difference in σS/V between consecutive subsets appears

to get larger as we move to higher subsets (with exceptions for subsets in the #9 to 11 range).

In subsets #1 to 7, d = 6 µm has the smallest σS/V and d = 10 µm has the largest. In subsets

#8 to 11 (maximum gradient strengths 6 150 mT/m), the order is reversed: d = 6 µm has the

largest σS/V and d = 10 µm has the smallest.

We saw in the last section that the width of the S/V distributions for d = 6 and 10 µm

cylinders for the Gmax = 300 mT/m measurements were actually narrower than those for the

Gmax = 900 mT/m measurements (Figures 6.10a and 6.10d). Here we see that it is true for more

than one subset. Subsets #1 to 4 (possibly even #5) have smaller σS/V than subset #1 of the first

gradient set (Figure 6.11a). Subset #5 here uses a maximum gradient strength of 200 mT/m.

Very high gradient strengths (≈ 900 mT/m) do not provide any improvement and may even be

worse.

Gradient Set #3 (Gmax = 80 mT/m)

Figure 6.11c shows σS/V for d = 6 to 10 µm using the gradient subsets in Table 5.1. All σS/V are

larger when using only one nonzero gradient, although the difference is only 0.02 to 0.04 µm−1.

For the full picture, we should view the S/V distributions for each subset. Figures 6.12a and

6.12b show the S/V distribution for d = 8 µm. With one nonzero gradient, around 30 percent

of the fitted S/V s are near zero (327/1000 < 0.001 µm−1). Compared with the distribution in

Figure 6.12a, which uses all the gradients, the distribution peak here is less pronounced and the

distribution is a little wider, extending ≈ 0.1 µm−1 farther to the right. Otherwise, the peaks of

each distribution are in similar locations (≈ 0.7 to 0.8 µm−1).

6.3.2.3 Frequency Removal

Since the fitted values tended to be more precise when using both higher and more gradients,

we will study the effect of varying the number of frequencies while keeping all of the gradient

strengths in each of the three sets.
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Gradient Set #1 (Gmax = 900 mT/m)

There are a few ways to remove frequencies from the data. One involves keeping every ith

frequency (for example, keeping every second frequency measurement and removing the rest).

Another is to successively remove the highest frequencies first. We begin with the first of these

methods.

Figure 6.13 shows σS/V as a function of n f . For n f = 10, every second frequency was

kept, meaning fm = {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} Hz. For n f = 5,

every fourth frequency was kept. This means fm = {200, 400, 600, 800, 1000} Hz. The σS/V

are larger at smaller n f . At n f = 20, all σS/V are around 0.1 µm−1, while at n f = 5, they

are almost 0.3 µm−1. Since this is a difference of nearly 0.2 µm−1, we should see how the

fitted S/V distributions change. Figure 6.14a shows the S/V distribution for d = 8 µm using

n f = 20. Most fitted S/V (95%) are between 0.44 µm−1 and 0.78 µm−1. Figure 6.14b shows

the distribution using n f = 10. The distribution is much wider, with 95% of fitted S/V between

0.06 µm−1 and 0.94 µm−1. The distribution using n f = 5 is much worse (Figure 6.14c). In

this distribution, 95% of fitted S/V lie in the range [0, 1.0] µm−1, with some clustering near

S/V = 0 (52/1000 < 0.001 µm−1).

Next, we compare the previous method with the method of only removing the highest fre-

quencies. Figure 6.15a shows σS/V as a function of n f . In this case, the highest frequencies

were removed. The σS/V decrease 0.01 to 0.03 µm−1 between n f = 5 and n f = 20, which is

a much smaller change than in Figure 6.13. To make sure that nothing else has changed in

the S/V distributions themselves, we will compare them. Figures 6.14d and 6.14e show the

distributions for d = 8 µm with n f = 10 and n f = 5. Both distributions have similar shapes

and similar widths. With n f = 10, 95% of fitted S/V lie in the range [0.43, 0.81] µm−1. With

n f = 5, 95% lie in the range [0.44, 0.82] µm−1. Both distributions are much narrower than

those in Figures 6.14b and 6.14c.

Gradient Set #2 (Gmax = 300 mT/m)

Since we found that removing higher frequencies is the preferred method of lowering n f , we

will not show σS/V as a function n f from the first method here. Instead, we will give an example
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Figure 6.13: σS/V as a function of n f . For n f = 10, every second frequency was kept. The
ten frequencies were 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 Hz. For n f = 5,
every fourth frequency was kept. The five frequencies were 200, 400, 600, 800, and 1000 Hz.
Simulations use the Gmax = 900 mT/m set of measurements with a packing fraction of 0.6. All
gradient strengths in each set were kept when fitting to the model. Each σS/V is much higher at
n f = 10 and n f = 5 compared to n f = 20.

of how S/V distributions change. Figures 6.16a-c compare S/V distributions for d = 8 µm

using n f = 5, 10, and 20. In the distribution for n f = 10, most (95%) of the fitted S/V are

in the range [0, 0.90] µm−1. In the distribution for n f = 5, many fitted S/V are near zero

(445/1000 < 0.001 µm−1). The distribution is also more spread out (95% of S/V s in the range

[0, 1.43] µm−1) and its peak is now at 1.3 µm−1.

Figure 6.15b shows σS/V as a function of n f . In this case, the highest frequencies were

removed. For a given diameter, σS/V remains within a range of 0.001 µm−1 over n f . If we

compare Figure 6.15b with Figure 6.15a, we see that σS/V are smaller here (σS/V = 0.02 to

0.04 µm−1) than they are with the Gmax = 900 mT/m measurements (σS/V = 0.08 to 0.12 µm−1).

Looking at the S/V distributions themselves, we see that there is little difference between using

n f = 5 and n f = 20 (see Figure 6.16d-e for examples).

Gradient Set #3 (Gmax = 80 mT/m)

Figures 6.17a-c compare S/V distributions for d = 8 µm using n f = 5, 10, and 20. In the

distribution for n f = 20, 95% of the fitted S/V are in the range [0, 0.83] µm−1, with a peak at

approximately 0.7 µm−1. In the distribution for n f = 10, most (95%) of the fitted S/V are in the

range [0, 1.38] µm−1. The distribution is also shifted to higher S/V , with a peak near 1 µm−1.

Many fitted S/V have clustered near S/V = 0 (445/1000 < 0.001 µm−1). In the distribution
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Figure 6.14: Distribution of fitted surface to volume ratios for d = 8 µm with (a) n f = 20 (b)
n f = 10 (c) n f = 5 (d) n f = 10 (e) n f = 5. In (b), the ten frequencies were 100, 200, 300, 400,
500, 600, 700, 800, 900, and 1000 Hz. In (c), the five frequencies were 200, 400, 600, 800, and
1000 Hz. In (d-e), the highest frequencies were removed. In (d), the ten frequencies were 50,
100, 150, 200, 250, 300, 350, 400, 450, and 500 Hz. In (e), the five frequencies were 50, 100,
150, 200, and 250 Hz. Simulations used a packing fraction of 0.6 and the Gmax = 900 mT/m
set of measurements. All gradient strengths were kept when fitting to the model. Distributions
obtained when high frequencies were removed (d-e) are much narrower than when intermediate
frequencies were removed (b-c).
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Figure 6.15: σS/V as a function of n f . Unlike Figure 6.13, the highest frequencies were re-
moved. For n f = 10, fm = {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} Hz. For n f = 5,
fm = {50, 100, 150, 200, 250} Hz. Simulations use a packing fraction of 0.6. Three sets of
measurements shown: (a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c) Gmax = 80 mT/m. All
gradient strengths were kept when fitting to the model. In contrast to Figure 6.13, σS/V shows
little dependence on n f . Note: (c) uses different y-axis limits.

for n f = 5, the peak is closer to 1.5 µm−1. The spread in fitted S/V goes above 2 µm−1, with

some hitting the upper bound at S/V = 5 µm−1 (161/1000 > 4.9 µm−1).

Figure 6.15c shows errors as a function of n f . In this case, the highest frequencies were

removed. For a given diameter, σS/V remains within a range of 0.02 µm−1 over n f . Looking

at the S/V distributions themselves, we see that there is little difference between using n f = 5

and n f = 20 (Figures 6.17d-e).

6.3.2.4 Repeated Gradients

In the previous sections, the best results were found when keeping all of the gradients. We now

compare what happens when instead of spacing gradient measurements out between G = 0 and

G = Gmax, we repeat measurements at Gmax. When comparing, we will keep the total number

of measurements constant, so that if there were four nonzero gradients before (G = {0, G1, G2,

G3, G4}), there will still be four nonzero gradients (G= {0, G4, G4, G4, G4}). We will use σS/V

to compare the different results. For each gradient set, we will show σS/V for three gradient

subsets. One choice uses all the original gradients, while another uses repeated measurements

at G = Gmax (while keeping the number of measurements constant). For comparison, we also

include the subset with one nonzero gradient (G = {0, Gmax}).
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Figure 6.16: Distribution of fitted surface to volume ratios for d = 8 µm with (a) n f = 20, (b)
n f = 10, (c) n f = 5, (d) n f = 10, (e) n f = 5. In (b), the ten frequencies were 100, 200, 300, 400,
500, 600, 700, 800, 900, and 1000 Hz. In (c), the five frequencies were 200, 400, 600, 800, and
1000 Hz. In (d-e), the highest frequencies were removed. In (d), the ten frequencies were 50,
100, 150, 200, 250, 300, 350, 400, 450, and 500 Hz. In (e), the five frequencies were 50, 100,
150, 200, and 250 Hz. Simulations used a packing fraction of 0.6 and the Gmax = 300 mT/m
set of measurements. All gradient strengths were kept when fitting to the model. Distributions
obtained when high frequencies were removed (d-e) are much narrower than when intermediate
frequencies were removed (b-c).
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Figure 6.17: Distribution of fitted surface to volume ratios for d = 8 µm with (a) n f = 20, (b)
n f = 10, (c) n f = 5, (d) n f = 10, (e) n f = 5. In (b), the ten frequencies were 100, 200, 300, 400,
500, 600, 700, 800, 900, and 1000 Hz. In (c), the five frequencies were 200, 400, 600, 800, and
1000 Hz. In (d-e), the highest frequencies were removed. In (d), the ten frequencies were 50,
100, 150, 200, 250, 300, 350, 400, 450, and 500 Hz. In (e), the five frequencies were 50, 100,
150, 200, and 250 Hz. Simulations used a packing fraction of 0.6 and the Gmax = 80 mT/m
set of measurements. All gradient strengths were kept when fitting to the model. Distributions
obtained when high frequencies were removed (d-e) are much narrower than when intermediate
frequencies were removed (b-c).
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Gradient Set #1 (Gmax = 900 mT/m)

Figure 6.18a shows σS/V as a function of n f for the three subsets (using d = 6 µm, packing

fraction = 0.6). Repeated measurements at Gmax give the smallest σS/V over the entire range of

n f . There is approximately a 0.03 to 0.04 µm−1 decrease in σS/V when repeating the highest

gradient compared to using all original measurements.

Gradient Set #2 Gmax = 300 mT/m

Figure 6.18b shows σS/V as a function of n f for the three subsets (using d = 6 µm, packing

fraction of 0.6). Repeated measurements at Gmax give the smallest σS/V over the entire range of

n f . There is approximately a 0.005 µm−1 decrease in σS/V when repeating the highest gradient

compared to using all original measurements. The amount of improvement does not depend on

n f .

Gradient Set #3 Gmax = 80 mT/m

Figure 6.18c shows σS/V as a function of n f for the three subsets (using d = 6 µm, packing

fraction of 0.6). Repeated measurements at Gmax give the smallest σS/V over the entire range of

n f . There is approximately a 0.06 µm−1 decrease in σS/V when repeating the highest gradient

compared to using all original measurements. The amount of improvement does not depend on

n f .

5 10 15 20
0

0.04

0.08

0.12

n
f

σ S
/V

 (
µm

−
1 )

 

 

5 10 15 20
0

0.04

0.08

0.12

n
f

 

 

G = [0, G
1
,..., G

max
]

G = [0, G
max

]

G = [0, G
max

,..., G
max

]

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

n
f

 

 
a b c

Gradient set #3Gradient set #2Gradient set #1

Figure 6.18: σS/V as a function of n f for three different gradient subsets. Subsets include
those with (a) one nonzero gradient (b) all gradient strengths (c) repeated nonzero gradients at
Gmax. Three sets of measurements shown: (a) Gmax = 900 mT/m (b) Gmax = 300 mT/m (c)
Gmax = 80 mT/m. Data and σS/V are from d = 6 µm simulations with a packing fraction of
0.6. Repeating the highest gradient strength gives the smallest σS/V . Note: (c) uses different
y-axis limits.

202



6.4. DISCUSSION

6.4 Discussion

We found that the model in Eq. 6.10 gives less accurate results if diffusivities in the intra-

and extra-axonal compartments are unequal compared to when diffusivities are equal. This is

expected because the derivation of the ADC model in Eq. 6.10 assumes one diffusivity. When

studying the case of different diffusivities, we used diffusivity of 1.0 µm2/ms in the intra-axonal

space and 2.5 µm2/ms in the extra-axonal space. As the extra-axonal diffusivity approaches

1.0 µm2/ms, we would expect the results to converge. Further study is needed to know how

similar the intra- and extra-axonal diffusivities need to be for the results to adequately converge.

Since diffusivities are out of our control in real tissue, this is a potential source of error we need

to keep in mind. If diffusivities are different, we need to use caution when interpreting results.

In both cases, surface to volume ratios are more accurate when S/V is smaller. When S/V

was too high, or the geometry too restricted, then fitted S/V underestimated the true S/V . The

diameter distributions we used had higher surface to volume ratios (> 1 µm−1), so fitted S/V

underestimate the actual values. The amount of underestimation was greater in distributions

having higher S/V (in other words, those having smaller cylinders). An important consequence

of all this is that we might not be able to detect changes in surface to volume ratio in geometries

with high S/V .

We also extracted diffusion coefficients. We found that in restricted geometries with high

surface to volume ratios, fitted diffusion coefficients were underestimated. As surface to vol-

ume ratios decreased (and pore size increased), fitted diffusion coefficients rose and converged

to their actual values.

We looked into how the number of frequency measurements affects the precision of esti-

mated parameters. We compared two methods of doing this. One method involved removing

high frequencies. The other method involved only keeping every second or every fourth fre-

quency and removing the others. We found that if high frequencies are removed, results remain

mostly unchanged. However, results become much worse when removing frequencies using

the other method. This might be because the most important information of the diffusion spec-

trum D(ω) is contained at lower frequencies (< 250 Hz), at least for the situations (or axon

diameters) we were interested in. The highest frequencies also have lower signal weighting
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and are more affected by the addition of noise. If only smaller frequencies are used, we noticed

almost no change when moving down to five frequencies (6 250 Hz).

Measurements with maximum gradient strengths of 300 mT/m produced more precise S/V

results than measurements with maximum gradient strengths of 900 mT/m. This can be seen

in both the frequency comparisons and the gradient comparisons (Figures 6.11 and 6.15). It

was not until the highest gradient strength in the Gmax = 300 mT/m set of measurements was

reduced to 200 mT/m that very high gradient strengths (G = 900 mT/m) were any better.

We also considered whether it was better to repeat measurements at the high gradient

strengths or to space the gradient measurements out. It was found that repeated measurements

at higher gradients resulted in more precise surface to volume estimates. We saw a similar result

in Chapter 5, where repeated gradient measurements led to more precise diameter estimates.

6.5 Conclusion

Here we have shown that surface to volume ratios can be extracted accurately at pre-clinical

gradient strengths using OGSE. We have also shown using Monte Carlo simulations that im-

ages can be collected with fewer gradient strengths and fewer gradient frequencies without

sacrificing the precision of the measurements. This could be useful in reducing imaging time

so that OG techniques can be used in clinical settings. More work is needed for the method to

work with clinical gradient strengths.
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Chapter 7

Experimental data

So far this thesis has discussed a new method to infer micron-sized axon diameters and sur-

face to volume ratios using temporal diffusion spectroscopy. The method was developed and

optimized using Monte Carlo computer simulations. In this chapter, the method is tested on a

human corpus callosum. Data were collected using 15 frequencies and six gradient amplitudes

and analysis was performed leaving out images in a similar way to the Monte Carlo simulation

studies in Chapters 5 and 6.

7.1 Introduction

Many OGSE experiments have used phantoms, such as beads [140, 154] and tubing [94, 97].

Experiments have also been performed with cancer cells in mice and rats [35,36,148,149,196],

yeast cells [76], and rat grey matter [4, 43]. One study examined rat spinal cord with OGSE

and found mean effective diameters of 1.27 to 5.54 µm [195]. A more recent study examined

rat sciatic nerve and found mean effective diameters of 4.2 to 6.5 µm [80]. These values were

found to be in good agreement with histology.

7.2 Ethics Statement

Pieces of tissue were collected from the autopsy specimen, under the protocol approved by

the institutional health research ethics board along with the consent obtained from the family
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members.

7.3 Methods

This section describes the methods used to collect data on human corpus callosum. The sample

is described, and the imaging method and analysis method are described.

7.3.1 Sample

A portion of normal-appearing corpus callosum from an autopsy human brain which did not

demonstrate any pathological changes was obtained from the Matsuda lab in Pathology (Uni-

versity of Manitoba). The sample was kept in formalin for 10-14 days before imaging. The

sample was embedded in agarose within a 15 mL sample tube for imaging.

7.3.2 MRI

Images were acquired with a 2.5 cm diameter RF bird cage coil (Bruker Biospin), using a 7

T Bruker Avance III NMR system (Paravision 5.0), with a BGA6 gradient insert (maximum

gradient strength of 1.01 T/m).

Two 20 ms sine gradient pulses were used, separated by 24.52 ms. There were 15 frequen-

cies ranging from 50 to 750 Hz in steps of 50 Hz. Six gradient strengths were used for each

gradient pulse, for a total of 90 signals. For fm > 50 Hz, the gradient strengths were 0, 44,

61, 76, 88, 99% of maximum. For fm = 50 Hz, G = 0, 22, 32, 39, 45, 50%. A 1 mm thick

slice taken to be approximately perpendicular to the direction of the axons within the corpus

callosum was taken. The field of view was 2.56 cm2. A 128×128 matrix was used for 200 µm

in-plane resolution. The following imaging parameters were used: number of averages (NA) =

4, TR = 1250 ms, TE = 90 ms. A total of 14 sets of images were collected. The total imaging

time was 112 hours (4.67 days). The SNR in the corpus callosum in each image was 32 without

diffusion-weighting. The average SNR when using the highest gradient strength was 26.
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7.3.3 Histology

After imaging, the region just above the MRI slice was analyzed with electron microscopy

(EM). Ten EM slices were collected. Axon diameters were measured using ImageJ software

(National Institutes of Health, Bethesda, Maryland). To measure axon diameter, lines were

drawn across the smallest diameter of all cells identified as axons. Each slice contained 500

to 700 identifiable axons. Axon diameters ranged from 0.14 µm to 6 µm. The mean axon

diameter over all slices was 0.8±0.4 µm. Using Eq. 5.1, the average AxD was found to be

1.4±0.2 µm. The fitted AxD from Eq. 4.9 should correlate with this quantity and not the mean

diameter [7, 195].

7.3.4 Analysis

Images were registered to the first scan’s b0 = 0 image [174]. The mean ± standard deviation

of the signal in the ROIs, shown in Figure 7.1, was calculated using a custom written MATLAB

script. The signal was assumed to be described by a two compartment model given in Eq. 4.9.

The extra-axonal component Eh was described by Eq. 4.10. The restricted component Er was

given by Eq. 4.13, with β(2τ) given by Eq. 4.15. This time, we use the restricted signal for

a sine gradient. There are four model parameters (intra-axonal diffusion coefficient Din, AxD,

packing fraction faxon, hindered diffusion coefficient Dh), but we are mainly interested in AxD.

Signals were fitted to the two compartment model using least squares minimization to ex-

tract AxD. We used three different methods of removing data. Higher OGSE frequencies were

removed and the remaining data was refitted to the model to see how fitted parameters changed.

Model fitting was repeated using all possible combinations of the gradient strengths (30 com-

binations). Finally, we removed repeated measurements. There were initially 1260 images (15

OGSE frequencies × 6 gradient strengths × 14 sets of images).

7.4 Results

Figure 7.2 shows the variation in fitted AxD as a function of number of frequencies for each

corpus callosum ROI. In Figure 7.2a, which has the largest AxD (2.35± 0.01 µm with all

207



7.4. RESULTS

Figure 7.1: Image of sample showing the 13 regions of interest. Analysis ROIs were created in
the corpus callosum (ROI #1, 3, 5, 7-9), ependymal layer (ROI #2, 4, 6), cortex (ROI #10-12),
and in the agarose (ROI #13). We expect to find axon diameters in the corpus callosum, and cell
diameters in the ependymal layer given that they can be modeled as elongated parallel cells.

measurements), AxD are within 1% of each other if there are at least 7 frequencies. The highest

and lowest AxD occur when using 2 or 3 frequencies. The smallest fitted AxD is 1.9±0.1 µm

(3 frequencies). The highest fitted AxD is 2.6±0.2 µm (2 frequencies). Compared to AxD with

15 frequencies, these are respective differences of 17% and 3%. Error decreases when more

frequencies are used. In Figures 7.2b-f, AxD become smaller when the number of frequencies is

above 5. There is some variability in AxD for small numbers (< 6) of frequencies. Confidence

intervals also tend to become much wider when there are fewer frequencies.

Figure 7.3 shows variation in fitted AxD when using only two gradient strengths (ROI #1).

With the exception of the first gradient, fitted AxD are within 5% of each other. The error also

increases when smaller gradients are used, with fitted AxD values ranging from 2.40±0.08 µm

with the highest gradient strength to 4±6 µm with the smallest gradient strength.

Figure 7.4 shows fitted AxD for the best combinations with each number of gradients (the

best combinations for ROI #1 are shown in Table 7.1). The fitted values in Figures 7.4a, 7.4b,

and 7.4c are within a few percent of each other, while error when using just two gradients is

about 2 times larger than when using all six gradients. The fitted values in Figures 7.4d, 7.4e,

and 7.4f are within a few percent (< 5%) of each other, provided there are at least 3 gradient
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Figure 7.2: Fitted AxD (±95% confidence bounds) as a function of number of frequencies
for each corpus callosum ROI. There is some variability in AxD for small numbers (< 6) of
frequencies. In (b-f), AxD appear to decrease in as more frequencies are included. (a) ROI #1
(b) ROI #3 (c) ROI #5 (d) ROI #7 (e) ROI #8 (f) ROI #9.
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Figure 7.3: Fitted AxD (±95% confidence bounds) using two gradient strengths, G0 = 0 and
another chosen from between G1 through G5. The error in AxD decreases as the nonzero
gradient strength increases. Data shown here are from ROI #1 in the corpus callosum.
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strengths.

Number of gradient strengths Optimal choice of gradients
2 G0 = 0, G5
3 G0 = 0, G2, G5
4 G0 = 0, G2, G4, G5
5 G0 = 0, G1, G2, G4, G5
6 G0 = 0, G1, G2, G3, G4, G5

Table 7.1: The gradient combinations for 2, 3, 4, 5, and 6 gradient strengths that produced the
smallest error after fitting (ROI #1). Corresponding AxD shown in Figure 7.4a. Note that all
combinations include the highest gradient strength (G5).

Figure 7.5 shows fitted AxD as a function of number of repeated measurements for each

corpus callosum ROI. Error decreases as more repeated measurements are included. There

appears to be less variability in Figure 7.5a-c than Figure 7.5d-f. Error also tends to be higher

in Figure 7.5d-f and increases faster with fewer repeats. In Figures 7.5a, 7.5b, and 7.5c, AxD

are within 5% percent as long as the number of repeats is greater than 2 (though the AxD in

Figure 7.5a differ by less than 4% even with one repeat).

7.5 Discussion

We separately reduced the number of frequencies and number of gradients. For example, in ROI

#1, reducing the number of measurements such that the imaging time is shortened by a factor of

1.5 increases error by a factor of 1.2 (by reducing the number of frequencies), while changing

AxD by 1%. Reducing the number of measurements such that the imaging time is shortened

by a factor of 3 increased error by a factor of 2 (by reducing the number of gradients), while

changing AxD by 3%. Reducing the number of measurements such that the imaging time is

shortened by a factor of 14 increased error by a factor of 3 (by reducing the number of repeated

measurements), while changing AxD by 3%. However, the trade-off seems to depend on the

ROI (or fitted AxD). For example, in ROIs with a smaller fitted AxD (#7− 9), using just two

gradients changes AxD by 10%, but using three gradients only changes AxD by 1%. In ROI

#9 (fitted AxD≈ 1.8 µm), we could have reduced number of measurements by a factor of two

(using fewer repeats) and kept AxD within 2%.
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error) when using 2, 3, 4, 5, or 6 gradient strengths for data fitting. The gradient subsets are
shown in Table 7.1. If 3 or more gradients are used, AxD values are all consistent with each
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The largest fitted AxD from Figure 7.2 using all 1260 measurements was 2.35± 0.04 µm.

This fitted AxD is almost 1 µm higher than the AxD measured from histology (Section 7.3.3).

Fitted AxD from the other ROIs with all measurements were smaller, but still higher than the

histological AxD. The smallest fitted AxD was 1.81± 0.07 µm, which is only around 0.4 µm

higher than the histological AxD. The average fitted AxD over the corpus callosum ROIs was

2.0±0.2 µm.

In Chapter 5, we found that simulations with 5 to 10 frequencies gave similar results as

simulations with 20 frequencies. Here we found that there was more variability in fitted AxD

below 7 frequencies. However, in most ROIs, fitted AxD continue to decrease beyond 15 fre-

quencies. Simulations predicted that error should increase if smaller gradients were used. In

Figure 7.3, we see that error in AxD does increase as smaller gradient strengths are used. Sim-

ulations also predicted that fitted AxD errors from two gradients should be similar, but slightly

larger, compared to multiple gradients, especially if higher gradient strengths were used. For

ROIs with fitted AxD > 2 µm, fitted AxD using two gradients were similar to those using six
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gradients. For ROIs with fitted AxD < 2 µm, fitted AxD using 3 gradients were similar to those

using six gradients.

The maximum SNR in each set of images was around 30. We tried to compensate by

collecting many sets (×14) of images and including all of them in the analysis. This means

that the first data point (number of repeats = 1) in each subplot in Figure 7.5 uses one set of

SNR≈ 30 images. Fitted AxD from ROIs #8 and #9 appear to be noticeably worse in terms of

uncertainty with just one set of images included. Even when including multiple sets of images,

these ROIs tend to be worse in terms of uncertainty and variability. These ROIs also have the

smallest fitted AxD even when including all sets of images. We know from Chapter 4 that lower

SNR affects smaller diameters more than larger diameters and that it forces axon diameters to

be overestimated. If there happened to be heterogeneity in axon diameter over the slice, and

these ROIs actually contained smaller axons than the others, then this might be something we

would expect. The smallest AxD of the simulated axon distributions in Chapter 5 was 2.1 µm.

The mean fitted AxD was 2.31 µm. With a more realistic clinical SNR of 20, the mean fitted

AxD was found to be 2.50 µm. Therefore, we might expect fitted AxDs to be around 0.2 to

0.4 µm higher than the true values when AxD ≈ 2 µm. The difference between true and fitted

AxD for the simulated distribution with AxD = 2.9 µm was only 0.1 µm. If the true AxD is

smaller than 2 µm, then there might be a larger difference. If the difference is large enough (if

the difference was ≈ 1 µm), then 1.4 µm might be indistinguishable from 2 µm.

This study presents the first step toward reducing imaging time toward feasible axon diam-

eter measurements in vivo. Higher frequencies may be needed for sensitivities toward smaller

axons. Figure 7.2 shows that AxD might continue to decrease past 15 frequencies for most

ROIs. At fm = 750 Hz, the diffusion signal only decays to around 97% its original value. If

higher frequencies are used, it might also be necessary to use higher gradient strengths. Per-

meability might need to be included in the model. One study [99] found that the influence of

permeability was negligible in OGSE measurements if cells were larger than 5 µm in diameter.

The cells here are much smaller than 5 µm, so permeability might play a role.
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7.6 Conclusion

Here we imaged a portion of human corpus callosum and fit the data to a two compartment

model. We found that fitted AxD overestimated the histological AxD by 0.4 to 0.9 µm. We also

suggested some possibilities for reducing the number of images needed for accurate results.
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Chapter 8

Conclusion

We used Monte Carlo simulation data to test a few different microstructural models. We suc-

cessfully found models that, when combined with the OGSE sequences, can be used to measure

axon diameters and surface to volume ratios. We studied the effects of using different numbers

of gradient frequencies for measurements and in general found that 5 – 10 frequencies could

be used to give accurate results. We also found that collecting one image without added diffu-

sion weighting and multiple images with the same added diffusion weighting provided the best

results. A more detailed summary is presented in this chapter.

8.1 AxCaliber Model

The first microstructural model studied here was a modified AxCaliber model used to find

axon diameter distributions (Chapter 4). The model was modified for use with cosine OGSE

sequences. We started with intra-axonal simulations (d = 1 µm to 8 µm). This verified that

the intra-axonal OGSE model was accurate and could extract axon diameters. These were

followed by simulations with identical square packed axons. This situation corresponds to a

two compartment model. Extra-axonal diffusion was assumed to be hindered (ADC constant

with OGSE frequency). Because of the frequency dependence of the ADC in the extra-axonal

region, not all diameters were accurately estimated. For realistic frequencies of 50 – 1000 Hz,

diameters above 4 or 5 µm were underestimated. Finally, we ran simulations that included

a distribution of diameters and fitted the data to the AxCaliber model. Gaussian and gamma
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distributions, having diameters in the range 0.25 µm to 8 µm, were used. After data fitting,

we were able to recover the shape of the diameter distributions. In addition, the frequency

independent extra-axonal ADC model was replaced with a model where ADC linearly varied

with frequency. For diameters smaller than 4 or 5 µm, the original extra-axonal model gave

similar results as the more complicated model. Above 4 and 5 µm, there was little improvement

when using the new extra-axonal model. Noise (SNR = 50, 100, 200) was added to simulation

data to see how parameter estimates were affected. As expected, higher SNR led to more

accurate and precise parameters. We also found that lower SNR affected smaller diameters

(e.g. d = 1 µm) more than larger diameters. This limits the ability to infer smaller diameters.

8.2 Two Compartment Model

The second model was a simplified two compartment model (Chapter 5). The main objective

was to see how the number of measurements (e.g. number of OGSE frequencies) affected

parameter estimates (such as axon diameter). We were especially interested in parameter pre-

cision. Noise was added to all simulation data before fitting. We performed intra-axonal simu-

lations, simulations of square packed axons, and simulations with axon diameter distributions.

For intra-axonal simulations, axon diameters ranged from 1 µm to 10 µm. For identical square

packed axons, diameters ranged from 1 µm to 5 µm. For axon diameter distributions, diameters

ranged from approximately 0.25 µm to 8 µm. With an axon diameter distribution present, the

two compartment model gives a quantity AxD, similar to a mean diameter. Simulations were

performed with maximum gradient strengths of 80, 300, and 900 mT/m.

Precision of parameters was higher with larger axon diameter. Accuracy and precision of

estimated parameters were worse when using more complicated models (e.g. identical square

packed axons and diameter distributions). Measurements with higher gradient strengths gave

more accurate and precise results. With the smallest gradient strengths (80 mT/m), there was

an upward bias in estimated axon diameter. Intra-axonal diffusivity was poorly estimated at

the smallest diameters (d = 1 µm) and with smaller gradient strengths. There was little change

in fitted diameter down to OGSE frequencies of 250 Hz. This represents four times fewer
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measurements compared to the original number. There was also some decrease in parameter

precision when using two gradient strengths as compared to four or more. We also saw that

repeating measurements at a single gradient strength was better than spreading out the mea-

surements.

8.3 Surface to Volume Model

The third model was a short time ADC model used to find surface to volume ratios. Here

there were two objectives. The first was to assess the accuracy of the model for different axon

diameters. The second was to see how the number of measurements (e.g. number of OGSE

frequencies or number of gradients) affected parameter estimates. We performed intra-axonal

simulations, simulations of square packed axons, and simulations with axon diameter distribu-

tions. Axon diameters ranged from 1 to 10 µm. Initially, simulations used different diffusiv-

ities in the intra- and extra-axonal compartments. Later simulations used equal diffusivities.

In intra-axonal simulations, it was found that diffusion coefficients were underestimated at

smaller diameters (d < 5 µm), while surface to volume ratios were overestimated. Results

began to converge at lower surface to volume ratios (corresponding to larger axon diameters).

The same was true for simulations of square packed axons and simulations with axon diameter

distributions. At low surface to volume ratios, extracted surface to volume ratios and extracted

diffusion coefficients were more accurate (S/V < 1 µm−1). At high surface to volume ratios,

diffusion coefficients and surface to volume ratios were underestimated. With different dif-

fusivities, fitted parameters started to converge at axon diameters of d = 10 µm. With equal

diffusivities, fitted parameters converged to the actual values at around 5 µm. Since axons

in the diameter distributions were relatively small, S/V was always underestimated by some

amount, though less so with distributions with larger diameters.

Simulations used maximum gradient strengths of 80, 300, and 900 mT/m. Fitted diffusion

coefficients were more precise with larger diameters. Measurements with higher maximum

gradients tended to give more precise estimates. Maximum gradient strengths of 300 mT/m

gave more precise results than measurements at 900 mT/m. There was little change in fitted
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S/V down to OGSE frequencies of 250 Hz, which is equivalent to using four times fewer

measurements than the original number. However, this benefit only occurred when the highest

frequencies were removed. Removal of higher gradient strengths from the data led to a decrease

in precision. There was also some decrease in parameter precision when using two gradient

strengths as compared to four or more. We also saw that repeating measurements at a single

gradient strength was better than spreading out the measurements.

8.4 Extensions to Previous Work

One previous study had shown that just two OG frequencies were sufficient to estimate inner

diameters of capillary tubing [97]. In a capillary tube experiment, the signal comes from a

single compartment. This thesis used simulations that included both intra-axonal and extra-

axonal compartments. In addition to using strong pre-clinical gradient strengths (≈ 900 mT/m),

we used simulations with maximum gradient strengths of 300 mT/m and 80 mT/m. In Chapter

5, we found that estimated axon diameters were worse with a two compartment model, but 5 to

10 OG frequencies were sufficient to estimate axon diameters. We used the same methodology

on ex vivo diffusion-weighted images of a human corpus callosum and found that 7 or more

frequencies were needed for consistent axon diameter estimates. The same methodology was

used to show that 2 or 3 gradient strengths were sufficient.

8.5 Recommendations for Experiments

Based on the results of the simulations and analysis of the brain data, I recommend the follow-

ing parameters be used for data collection for samples with expected diameters of 2 to 4 µm.

If an AxD is desired, then the two compartment model in Chapter 5 should be used. Five

frequencies, equally spaced between 50 and 250 Hz, should be used. If diameters are closer to

2 µm, then 10 frequencies should be used (50 – 500 Hz). Gradient strengths should be as high

as possible. Two gradient strengths should be sufficient (G = {0, Gn}). But if there is time,

more measurements should be taken at the higher gradient strength (G = Gn).

If a diameter distribution is desired, the AxCaliber method using OGSE should be used, as
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in Chapter 4. We did not look at optimizing the choice of frequencies or gradients that could be

used to acquire fewer images in a shorter amount of time. But based on the results in Chapter

5, ten frequencies (6 500 Hz) are probably sufficient.

If the sample has a relatively uniform diffusivity and the expected surface to volume ratio is

less than 2 µm−1, then the short-time model in Chapter 6 can be used to calculate S/V . Based

on the simulations, these conditions require the sample to have larger diameter axons. Five

frequencies, equally spaced between 50 and 250 Hz, should be used. Two gradient strengths

should be sufficient (G = {0, Gn}). If there is time, more measurements should be taken at the

higher gradient strength (G = Gn).

Future students should be aware of slew rate considerations when adapting the method for

human use. Slew rate is restricted to less than 200 T
m·s in humans [171]. The gradients used in

this thesis do not meet slew rate limitations.

For the brain experiment presented in Chapter 7, 1260 images were collected over a period

of 112 hours from 6 gradient strengths and 15 frequencies repeated 14 times. Through the

analysis presented in section 7.4 I found that the number of frequencies could safely be reduced

to around 7 or 8, the number of gradient strengths to 2 or 3, and the number of repetitions to

7. This would require 1260× (3/6)× (8/15)× (7/14) = 168 images to be collected over a

period of 15 hours. If spatial variance in the axon diameter was not required, the SNR of the

image could be increased by decreasing the resolution. For instance, increasing the voxel size

by a factor of 2 in each of the in plane directions increases the voxel size by a factor of 4 while

decreasing the data collection time by a factor of 2 (2 times fewer number of k-space lines).

We can further reduce the imaging time by a factor of 2 by reducing the number of repetitions

to keep the SNR the same as the images collected in chapter 7. This will result in an image

collection time of 3.75 hours.This makes live mouse imaging possible. Further means to reduce

imaging time are needed to make the method suitable for research on humans and even further

reductions are needed to make this into a clinically relevant method.
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8.6 Future work

There are many ways we could move forward.

The first possibility is to explore the effects of using more complex geometries in the sim-

ulations. This could mean including axon dispersion, or non-parallel axons [46, 158, 199]. It

could also mean including permeable membranes. Permeability has been studied in the case of

pulsed gradients [39, 57], but it has recently been shown that permeable boundaries may have

a negligible effect on ADCs at timescales accessible to OGSE [99]. Simulation data could then

be used in the models described here to see how much extracted parameters, like axon diameter,

are affected. In the short time S/V model, we saw that different intra- and extra-axonal diffu-

sivities (Din = 1.0 µm2/ms, Dex = 2.5 µm2/ms) led to inaccurate S/V estimates for d < 10 µm.

Simulations with equal diffusivities (Din = Dex = 1.0 µm2/ms) gave relatively accurate S/V

estimates for d > 5 µm. Further simulations could be used to slowly increase the difference in

diffusivity to see any changes.

A second possibility is to develop more complicated microstructure models. For example,

axon dispersion models developed for PGSE could be adapted for OGSE [199]. Models that in-

corporate crossing fibres, like CHARMED [12], are another possibility. We could also include

axons with unknown orientations. More complicated modeling may require more complex

acquisition procedures, such as measurements with different gradient directions. Increasing

model complexity introduces more parameters. We may need to reduce the number of free

parameters, either by keeping some fixed or combining some of them together. New acqui-

sition schemes would also increase imaging times. We might have to reduce the number of

measurements again.

Another possibility is to use more sophisticated experimental design procedures and analy-

sis. This might involve introducing an ActiveAx-style experimental optimization [6]. It could

also involve incorporating prior information before data fitting [34].

The use of oscillating gradient temporal diffusion spectroscopy is gaining more attention. A

recent article in Nature [130] used elliptically polarized oscillating gradient spin echo in order

to separate tissue compartment signals in disordered systems in a monkey brain. Future work

could combine this method with the method developed in this thesis for a better inference of
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tissue properties.
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K. Deblaere, E. Achten, and I. Lemahieu. Simulation and experimental verification of the
diffusion in an anisotropic fiber phantom. Journal of Magnetic Resonance, 190(2):189–
199, 2008.

[53] J. Frahm, K. Merboldt, W. Hänicke, and A. Haase. Stimulated echo imaging. Journal of
Magnetic Resonance (1969), 64(1):81–93, 1985.

[54] R. Freidlin, J. Kakareka, T. Pohida, M. Komlosh, and P. Basser. A spin echo sequence
with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted
images in moving media. Journal of Magnetic Resonance, 221:24–31, 2012.

226

https://www.mathworks.com/matlabcentral/fileexchange/28765-fresnels-and-fresnelc
https://www.mathworks.com/matlabcentral/fileexchange/28765-fresnels-and-fresnelc


REFERENCES

[55] A. F. Frøhlich, S. N. Jespersen, L. Østergaard, and V. G. Kiselev. The effect of imper-
meable boundaries of arbitrary geometry on the apparent diffusion coefficient. Journal
of Magnetic resonance, 194(1):128–135, 2008.

[56] J. C. Gore, J. Xu, D. C. Colvin, T. E. Yankeelov, E. C. Parsons, and M. D. Does. Char-
acterization of tissue structure at varying length scales using temporal diffusion spec-
troscopy. NMR in Biomedicine, 23(7):745–756, 2010.

[57] D. S. Grebenkov, D. Van Nguyen, and J.-R. Li. Exploring diffusion across permeable
barriers at high gradients. I. narrow pulse approximation. Journal of Magnetic Reso-
nance, 248:153–163, 2014.

[58] B. Gross and R. Kosfeld. Anwendung der spin-echo-methode der messung der selbstd-
iffusion. Messtechnik, 77:171–177, 1969.

[59] E. Hahn. Nuclear induction due to free larmor precession. Physical Review, 77(2):297,
1950.

[60] E. L. Hahn. Spin echoes. Physical review, 80(4):580, 1950.

[61] M. G. Hall and D. C. Alexander. Convergence and parameter choice for Monte-Carlo
simulations of diffusion MRI. IEEE transactions on medical imaging, 28(9):1354–1364,
2009.

[62] L. Hebel and C. P. Slichter. Nuclear spin relaxation in normal and superconducting
aluminum. Physical Review, 113(6):1504, 1959.

[63] S. Herrera, M. Mercredi, T. Vincent, B. R, and M. Martin. Using oscillating gradient
spin-echo sequences to infer micron-sized bead and pore radii. In Proceedings of the
23rd Annual meeting of the ISMRM, page 3027, Toronto, Canada, 2015.

[64] S. Herrera, T. Vincent, M. Mercredi, T. Vincent, B. R, C. Bidinosti, and M. Martin.
Inferring axon diameter sizes using Monte Carlo simulations and oscillating gradient
spin echo sequences. In Proceedings of the 22rd Annual meeting of the ISMRM, page
4508, Milan, Italy, 2014.

[65] R. K. Hobbie and B. J. Roth. Intermediate physics for medicine and biology. Springer
Science & Business Media, 2007.

[66] A. Horowitz, D. Barazany, I. Tavor, M. Bernstein, G. Yovel, and Y. Assaf. In vivo
correlation between axon diameter and conduction velocity in the human brain. Brain
Structure and Function, 220(3):1777–1788, 2015.

[67] T. Hosey, G. Williams, and R. Ansorge. Inference of multiple fiber orientations in high
angular resolution diffusion imaging. Magnetic Resonance in Medicine, 54(6):1480–
1489, 2005.

[68] J. R. Hughes. Autism: the first firm finding= underconnectivity? Epilepsy & Behavior,
11(1):20–24, 2007.

[69] T. A. Huisman, T. Loenneker, G. Barta, M. E. Bellemann, J. Hennig, J. E. Fischer, and
K. A. Il’yasov. Quantitative diffusion tensor MR imaging of the brain: field strength
related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA)
scalars. European radiology, 16(8):1651, 2006.

227



REFERENCES

[70] J. Hursh. The properties of growing nerve fibers. American Journal of Physiology–
Legacy Content, 127(1):140–153, 1939.

[71] A. Ianus, I. Drobnjak, and D. C. Alexander. Model-based estimation of microstructure
parameters from diffusion MRI data in a substrate with microscopic anisotropy and a
distribution of pore sizes. In Proc. Intl. Soc. Mag. Reson. Med, volume 23, page 3035,
2015.
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