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ABSTRACT

A microscopic model and a finite element model have been developed for predicting loads in
grain storage structures. In the micromechanical model, analytic equations for predicting bin loads
were derived without the assumption of a constant lateral to vertical pressures ratio (k value).
Janssen's equation, recommended by most design Standards and Codes, was found to be a special
case of the microscopic model for rigid particles. The constant k value in most existing theories was
shown only valid in the case of frictionless walls or rigid particles. The microscopic model was also
extended for predicting hygroscopic and discharge loads in grain storage bins. Model predictions of
static, hygroscopic, and discharge loads are all within standard deviations or 95% confidence intervals
of reported experimental data.

In the finite element model, the behaviour of grain en masse was modelled by endochronic
constitutive theories. Four types of mechanical models were constructed for describing the behaviour
of grain en masse. These models were named as relaxation-type, creep-type, first mixed-type, and
second mixed-type models, respectively. Endochronic constitutive equations were formulated directly
from the analysis of stresses and strains of mechanical models (classical approach), and from the
considerations of energy dissipations in the mechanism (energy approach). The model parameters
were determined for wheat en masse using triaxial test data. The predictive finite element model was
validated against experimental data from model bin tests. The maximum difference between predicted

and measured lateral pressures was 9.6 % and the average difference 5.8%.
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1. INTRODUCTION

In design and analysis of grain storage and handling systems, predictions of loads exerted
by stored materials on the structures are critical (Britton and Zhang 1989). Excessive design loads
increase the cost, whereas insufficient design loads may lead to structural failures. Loads in grain
bins are categorized as either static loads or dynamic loads. Static loads are exerted by grains on
structures under at-rest conditions. Changes in environmental or operational conditions cause bin
loads to increase. These increased loads are known as dynamic loads. Because some dynamic
loads are not unique to grain-bin systems and may be covered in other engineering practice, those
loads such as snow, wind, and earthquake loads are excluded in this study. Two most significant
conditions of dynamic loadings in grain-bin systems occur during grain wetting and discharging.
Bin loads dramatically increase during wetting as hygroscopic grain expansion occurs. At the
onset of discharging, bin loads tend to increase instantly, resulting in dynamic discharge loads. In
this study, the term “dynamic loads” is reserved for representing discharge loads or hygroscopic
loads.

One hundred years ago, Janssen (1895) provided the first set of analytical equations to
calculate the static stresses within a granular mass contained in a deep bin by considering the
equilibrium of vertical forces acting on a small element of the stored material. His formula is still
widely used in predicting static loads in grain bins. Airy (1897) used a sliding wedge theory to
compute lateral pressures in silos. Both Janssen’s and Airy’s theories assumed that the ratio of
lateral to vertical pressures (k value) is constant. Reimbert and Reimbert (1956) first considered k

values as a function of the height of the stored material and proposed a set of predictive equations



for static loads. All of these theories are continuum theories. They were all founded on some basic
assumptions, i.e., rigid bin walls, constant k value, or constant friction coefficient between wall
and grain. In reality, few bins have rigid walls. Increases in wall stiffness result in higher bin wall
pressures (Ooi and Rotter 1990). The k value is not a constant material property parameter
(Cowin 1979). The friction coefficient may vary with the moisture content. If Janssen's equation is
used, a higher k value may result in a higher bin wall pressure. As the coefficient of wall friction
decreases, the vertical force on the wall decreases but the bin wall pressure increases. It is critical
for designers to select an adequate combination of variables when using those classical theories
(Britton and Zhang 1989).

Compared to static loads, dynamic loads are still poorly understood. Although dynamic
loads have been identified to be the major cause of structural failures of bulk solids storage
systems (Jenike and Johanson 1969, Smith and Lohnes 1980), to date no adequate predictive
theories are available for bin designers. In most modern design standards and codes (DIN 1987,
ACI 1983, ASAE 1995), discharge loads are simply estimated by multiplying static loads by
overpressure factors, but no recommendations are given for hygroscopic loads. For discharge
loads, many researchers observed overpressures, but few rationalized the cause. Jenike and
Johanson (1969) explained that discharge loads were due to the switch of the stress state in the
stored materials from an active pressure field to a passive pressure field. Smith and Lohnes (1980)
hypothesized that dilation (increase in volume due to shearing) of the stored material is the main
cause of the overpressure of grain on bin walls during discharge. Kmita (1991) observed that
discharge loads were a result of impact loads. Among these hypothetical explanations, dilation

hypothesis is the only one which considers the key unique characteristics (volumetric behaviour)



of granular materials. For hygroscopic loads, Dale and Robinson (1954) observed that lateral
pressures on the wall adjacent to the bin bottom increased from 2.1 kPa to 13.5 kPa for a
moisture increase of 4% (w.b.). To date, no adequate theories are available for designers to
predict the hygroscopic loads.

Discharge loads are attributed to the internal shearing of the grain with a shear-volumetric
expansion restricted by the structure. During discharge, grain in different parts of the bin moves at
different velocities, thus shearing occurs within the grain mass. This internal shearing causes the
grain bulk to dilate laterally. The dilation, however, is restricted by the bin wall, thus an increase
in the wall pressure occurs (Xu et al. 1993a). For hygroscopic loads, swelling of grain particles is
responsible for the overpressure on bin walls during wetting. Grain particles swell when their
moisture contents increase. Thus, the grain bulk tends to expand. This expansion, however, is
restricted by bin walls, and consequently, additional pressures, termed hygroscopic pressures, are
imposed on the bin walls (Zhang et al. 1995). Because of the importance of volumetric expansion
in analysis of discharge and hygroscopic loads, the key step in developing models for predicting
dynamic loads is the modelling of the volumetric constitutive behaviour of the granular materials.

Both theories of micromechanics and macromechanics may be used to develop the
constitutive laws for granular materials. Micromechanics is based on the study of individual
particles' interactions. Although some micromechanics theories have been developed for granular
materials (e.g., Prat and Bazant 1991, Granik and Ferrari 1993), no theories have been applied to
predictions of bin loads. In the macromechanics category, earlier models were based on the
classical plasticity postulate (e.g., Coulomb 1773, Lade 1977), which were formulated on the

criteria of material yielding and unloading-reloading. Shear-induced volumetric expansion was not



taken into consideration. Therefore, classical plasticity theories are limited in predicting dynamic
loads.

Endochronic theory was founded on the irreversibility principle of thermodynamics
(Valanis 1971). The theory provided a unified approach to describe the plastic behaviour of
materials (Watanabe and Atluri 1986). The theory has been applied to many kinds of materials
such as metals, concretes, soils, and sands. The latest advance for granular materials was an
endochronic model (Valanis and Peters 1991) which accounts for the grain dilatancy. To date, no
systematic studies of endochronic theories for grain en masse can be found in the literature.

The finite element method (FEM) provides a powerful tool in solving complicated
structural problems. Mahmoud (1979) used the method to predict wall pressures for bins with
flexible corrugated walls. He employed a nonlinear elastic hyperbolic model to describe the stress-
strain behaviour of the stored material in the primary loading conditions. Zhang (1987), using an
elastoplastic constitutive model, proposed a finite element algorithm for predicting static and
thermal-induced loads in grain storage bins. Schmidt and Wu (1989) developed a finite element
model based on Lade's (1977) elastoplastic constitutive equation for calculating dynamic loads
during discharge. Xu et al. (1993b) developed a finite element predictive model using
endochronic constitutive equation of Valanis and Peters (1991). Much research has shown that
the finite element method has a great potential in predicting loads in bulk solids storage structures.
It should be noted that the predictive capacity of the FEM is to a large extent dependent on
model's capability of capturing the constitutive behaviour of the stored bulk solids.

The research done to date has enhanced our understanding of the loads exerted by the

stored materials on the structure. However, no adequate theories have been developed for



predicting bin loads, especially dynamic loads. Micromechanics may be used to develop the
microscopic theory of bin loads. The investigation of discharge and hygroscopic mechanisms may
throw a new light on developing the theories of dynamic loads. Systematic studies of endochronic
theory may lead to a new class of endochronic theories (macromechanics models) for constitutive
modelling of granular materials. Based on these constitutive theories, finite element models may

be developed for the analysis of grain storage structures.



2. OBJECTIVES

The goal of this research is to develop predictive models for bin loads with an emphasis on

modelling of the fundamental behaviour of granular materials.

1)

2)

3)

4)

5)

6)

The specific objectives are:

To investigate the deformation mechanism of granular materials, microscopically and
macroscopically.

To develop and verify microscopical theories for predicting static, hygroscopic, and
discharge loads in grain bins.

To investigate the physical basis of endochronic theory for granular materials.

To develop stress-based endochronic models for grain en masse by using the Gibbs free
energy formulation to account for shear-volumetric coupling.

To implement the endochronic models in finite element algorithms to predict loads in grain
storage structures.

To validate the predictive finite element algorithms against published experimental data

obtained from model bin tests.



3. LITERATURE REVIEW

In this chapter, classical theories of bin loads are briefly reviewed first. Then current
advances in predicting discharge and hygroscopic loads are discussed. Loads in grain bins depend
on constitutive behaviour of grain, therefore, reviews are extended to the constitutive theories for

grains and the finite element predictions of bin loads as well.
3.1 Bin Load Theories

3.1.1 Static bin loads

Historically, bins are categorized into deep bins and shallow bins depending on their
dimensions and properties of stored materials. One accepted definition is according to the rupture
plane. A bin is a deep bin if the rupture plane of grain intercepts the bin wall, otherwise, it is a
shallow bin. Rankine's (1857) theory is used for predicting static loads in shallow bins, and
Janssen's (1895) theory for deep bins.
Rankine's theory

Rankine's (1857) theory assumes that bin walls are frictionless. Lateral and vertical

pressures on bin walls are determined as;

L = pgytan2(45°—%) (3.1)

V= pgy (3-2)



Where:
V = vertical pressure, kPa
L = lateral pressure, kPa
¢ = angle of internal friction of stored materials, degree
p = bulk density of stored materials, kg/m’
g = gravitational acceleration constant, m/s”
y = grain depth, m
Equations (3.1) and (3.2) indicate that the lateral to vertical pressure ratio, k value, is a constant

which may be calculated as:

L
k=.1_/ = tan(45° —%) (3.3)

where:
k = ratio of lateral to vertical pressure

Rankine's theory is not applicable to bins with rough or corrugated walls because of the
assumption of frictionless walls.

Janssen's theory

For deep bins, bin wall friction plays an important role in calculating loads. By assuming a

constant k value, the lateral pressure is calculated as:

L=kV (3.4)

Vertical pressure is then determined from the vertical force equilibrium on a slice of grain over

the cross-section as follows:



y=PER ¢ TR
ky

where:
p = friction coefficient of grain on the wall
R = hydraulic radius of the bin, m
e = natural log base

The friction load on the wall is calculated as:

where

F = vertical friction load, kN/m

(3.5)

(3.6)

Janssen's equation has been recommended by most design Standards and Codes (ASAE Standards

1995, DIN 1987, ACI 1991, CFBC 1990).

There are other approaches to predicting static loads. Airy (1897) used the sliding wedge

theory to calculate lateral pressures in silos. The theory assumed a constant k value. Reimbert

and Reimbert (1956) first considered the k value as a function of the height of the stored material

and proposed a set of prediction equations for static loads. But they did not consider the direct

effect of the stress state on the k value. More details may be found in Manbeck et al. (1995).

Of all the theories mentioned above, bin walls are assumed to be rigid and wall friction is

assumed to be constant. In reality, few bins have rigid walls and friction may vary along the bin



depth.

The k value and bin wall friction are not two independent material properties in Janssen’s
theory. In Janssen's equation (3.5), k and p appear together as one parameter, and the effect of
selecting friction coefficient on predicted bin loads could be cancelled by selecting the “right” k
values. If we lower the value of the friction coefficient in Janssen’s theory, the wall friction force
will decrease. A decreased friction force on the wall means that less of the grain mass is supported
by the bin wall and a higher vertical pressure within the grain mass. If the k value is constant, this
higher vertical pressure will result in a higher lateral pressure which will yield a higher wall
friction force. Thompson et al. (1995) measured lateral pressures of a full-scale bin, and tried to
use Janssen's equation to fit the data and determine the p value. They found that two different
values of p (0.4 and 0.6) could have been used to obtain almost identical results for their 11.0 m-
diameter bin. This raises a question as how for a designer to select the “right” u and k value for

predicting the design loads.

3.1.2. Discharge loads

At the onset of discharge of grain from bins, lateral pressure increases instantly. This
increased lateral pressure is called discharge load. Discharge loads are, usually, much higher than
static loads. To date, no adequate predictive theories are available for bin designers.

In design practice, discharge loads are estimated from static loads by using an

overpressure factor (f;) (DIN 1987, ACI 1990, ASAE 1995):

L=/ L 3.7
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where:

L, = lateral pressure during discharge, k Pa

f, = overpressure (dynamic load) factor
Values of overpressure factors in the range from 1.4 to 2.1 are recommended by various design
Standards and Codes, but values up to 5 have been reported in the literature. This implies that the
discharge load actually experienced by a bin may be twice the design load, which partially explains
why most bin failures have occurred during discharging of stored materials.

Although much research has been carried out in the past 30 years on discharge loads, the
mechanism of the formation of discharge loads is still not clear. Jenike and Johanson (1969)
explained that discharge loads were due to the switch of the stress state in the stored materials
from an active pressure field to a passive pressure field. Kmita (1991) observed that discharge
loads were a result of impact loads. Impact loads can be distinguished from static loads by the
speed of application. If an object is put on a structure slowly, the force exerted by the object on
the structure (the applied load) equals the weight of the object (static load). If the object is put on
the structure suddenly, a load twice the static load is exerted on the structure (impact load). In a
storage bin when the discharge gate is opened suddenly, the material above the gate suddenly acts
on the remaining material, thus impact loads are induced. Smith and Lohnes (1980) hypothesized
that dilation (increase in volume due to shearing) of the stored material is the main cause of the
overpressure of grain on bin walls during discharge, but they did not advance their hypothesis to
prediction equations. Discharge of grain from a bin causes the grain in the different parts of the
bin to move at different velocities. Thus, shearing occurs within the grain mass. This internal

shearing causes the grain bulk to dilate. Dilation, however, is restricted by the bin wall, thus an
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increase in the wall pressure occurs. Based on this hypothesis, Xu et al. (1993a) and Zhang et al.
(1994a, 1994b) developed mechanical models to predict dynamic loads during discharge. The

overpressure factor was shown to be related to the dilatancy angle of the stored materials.

3.1.3 Hygroscopic loads

Little can be found in the literature on the prediction of the hygroscopic loads. Grain
particles swell when absorbing moisture, thus the grain bulk expands. This expansion, however, is
restricted by bin walls. Consequently, additional pressures, termed hygroscopic pressures, are
imposed on the bin walls. It is the swollen of grain particles that exerts the hygroscopic loads
(overpressure) of grain on bin walls during wetting.

Dale and Robinson (1954) observed more than sixfold increases of lateral pressure for a
moisture increase of 4% (w.b.) in the grains. Blight (1986) measured fourfold increases of lateral
pressure for grain sorghum in simulating the ingress of rain. Britton et al. (1993) monitored
vertical forces during the wetting processes. The swelling force lifted the bin wall from the bin
bottom for a moisture increase of 6% (w.b.) in the grains. These experiments indicate that grain
wetting may cause extremely high loads in grain storage bins. Zhang et al. (1995) rationalized the
hygroscopic loads from macroscopic mechanics. No theory has been developed from microscopic

mechanics.

3.2 Constitutive Models for Granular Materials
Generally, constitutive models for granular materials may be classified into two categories:

macromechanics (or continuum) models (e.g., Lade 1977, Valanis and Peter 1991) and
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micromechnics (or particulate) models (e.g., Prat and Bazant 1991, Granik and Ferrari 1993).
Micromechnics models are based on the analysis of stresses and strains within the microstructure
of granular materials. By contrast, macromechanics models describe the macroscopic

phenomenological behaviour.

3.2.1 Micromechanics

Fundamentally, a granular medium is a collection of individual particles. Micro-scale
interactions between particles control the macro-scale behaviour (Chang 1993). Therefore,
constitutive behaviour of granular media depends on their microstructures (or fabric). An
assembly of individual particles usually has a random microstructure (Bideau and Hansen 1993).
The disorder of the microstructure makes it very difficult to model. Much effort has been made on
description of granular fabric (Oda 1977, Nemat-Nasser 1982, Subhash et al. 1991), but few
theories are adequate for solving engineering problems. The idealisation of the microstructure
provided a way to cope the problem of random assembly. Balendran and Nemat-Nasser (1993)
used the concept of double-sliding plane to model viscoplastic flow of planar granular materials.
Granik and Ferrari (1993) treated the granular media as a Bravais lattice and developed a
complete set of constitutive equations. The details of this model will be discussed in Section 5.1.
Generally, discrete element method may be used to solve microscopic constitutive models (Rong

1994).

3.2.2 Macromechanics

To model the inelastic behaviour of granular materials, macromechanics requires a
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measurement to define the inelastic state of materials. Stresses and strains are the two
fundamental sets of variables. Therefore, either stresses or strains can be used to construct a
measurement for describing the state of the materials. By using stresses, a yielding surface can be
constructed (e.g., Lade 1977). By using strains, an intrinsic time can be defined (e.g., Valanis and
Peters 1991). Yielding surface and intrinsic time are the two alternative ways of describing the
state of materials. The concept of yielding surfaces is the foundation of the classical plasticity
theory which has more than two centuries of development. Intrinsic time is the key concept of
endochronic theory which initially developed by Valanis (1971). Endochronic theory is considered
to be more general than the classical plasticity (Wanabe and Atluri 1979, Dafalis and Popov
1975). It provides a unified way of describing material behaviour without using the concept of
yielding which is difficult to define for most granular materials (Valanis and Fang 1984).

Classical plasticity models

Classical plasticity is based on the concepts of yielding surface and unloading-reloading
criteria. It is assumed that an initial yielding surface governs the initial yield of the material. This
surface changes as the material deforms. The changed yielding surfaces are called "subsequent
yielding surfaces". The evolution of subsequent yielding surfaces is described by hardening rules.
A flow rule specifies the stress-strain relationship (Fung 1965).

Coulomb in 1773 first considered the effect of the hydrostatic pressure on the strength of
granular materials (Chen and Mizuno 1990). The yield criterion in the Coulomb model states that
failure occurs when the shear stress (t) and normal stress (o) satisfy the following linear equation

(Chen and Mizuno 1990):
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|t|+otand -c=0 (3.8)

where:

¢ = cohesion, kPa

¢ = internal friction angle, degree
The absolute value means that the shear may occur in the opposite direction. If the material is
frictionless (¢=0), the criterion reduces to the Tresca criterion (the maximum shear stress
criterion), and the cohesion ¢ becomes the yield stress. Shield (1955) showed that the yielding
surface of Coulomb's model is an irregular hexagonal pyramid in the principal stress space, whose
corners cause some difficulties in numerical analysis. Coulomb's model neglects the effects of
intermediate principal stress on yielding. Lade and Duncan (1973) investigated the effects of
intermediate principal stress on the failure strength of granular materials. They developed an
isotropic elastic-plastic work-hardening model which contained subsequent yield surfaces and a
failure surface (Lade and Duncan 1975). Lade (1977) modified the model by introducing a curved
yield surface which is suitable for numerical analysis. To get a more realistic description of the
material yielding, more complex yielding surfaces must be used, such as nested yield surfaces
(Mroz 1967), bounding surfaces (Dafalias and Popov 1975), and cap surfaces (Katona and Mulert
1984). However, the greatest difficulty encountered in the application of the classical theory of
plasticity to granular materials remains the lack of knowledge of the configuration of subsequent
yield surfaces (Valanis and Fan 1984). |

Endochronic plasticity

Endochronic plasticity describes the behaviour of materials by the measurement of intrinsic
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time. The constitutive laws are derived from the thermodynamic principle and evolution equations
of internal variables.

Intrinsic time is a "time-like" parameter of the material, which increases monotonically. In
the original version of the endochronic theory, the theory was developed for metal, in which
volumetric response is considered elastic. Valanis (1971) initially defined intrinsic time to be an
equivalent length of the total strain path (from the initial (zero) strain to the final state on the

stress-strain curve):

dz*=de P, de, (3.9)

where:

dz = increment of intrinsic time scale

de; = increment of total deviatoric strain

P, = material property tensor

I=1,2,3; j=1,2,3 for three-dimensional problems.
The repetition of an index (subscription) in a term denotes a summation with respect to that index
over its range.

Valanis (1980) subsequently found this definition too limiting (valid for small strains only)
and introduced a new definition of intrinsic time as the equivalent length of the plastic deviatoric

strain path:

dz*=de [P, de} (3.10)

where de;? is the plastic deviatoric strain increment tensor given as:
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p dg’]
de»- =de.."% (3.11)

i i

where:

ds; = deviatoric stress increment tensor, kPa

G = elastic shear modulus, kPa
Based on this definition of intrinsic time, various classical plasticity theories have been shown to
be the asymptotic cases of the endochronic theory (Valanis 1980).

For granular materials, the volumetric behaviour is unlikely to be elastic and may be
coupled with deviatoric behaviour. Valanis and Peters (1991) investigated the coupling between
deviatoric and hydrostatic behaviour, which led to dilatant deformation of the material. They used

a coupling parameter (k) to introduce the plastic volumetric strain de,? into the intrinsic time:

dz* =dede +«*(de}, )’ (3.12)

where the plastic volumetric strain increment (de?,) was given as:

do
de,=de,-—" (3.13)

where:
do, = hydrostatic stress increment, kPa
de, = volumetric strain increment
K, = elastic bulk modulus, kPa
The constitutive behaviour of granular materials is characterised by both deviatoric

behaviour and hydrostatic behaviour. Deviatoric behaviour is measured by deviatoric intrinsic time
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dz,, and volumetric by hydrostatic intrinsic time dz,. These two intrinsic time components are
related to the total intrinsic time through a hydrostatic hardening function (F,) and a deviatoric

hardening function (F):

dz
iy (3.14)

dz, = % and  dz, =
where:

dz,; = deviatoric intrinsic time component

dz, = hydrostatic intrinsic time component

F, = hydrostatic hardening function

F4 = deviatoric hardening function

Using these definitions of intrinsic time, constitutive models can be developed for granular
materials. A model can be either a relaxation-type, which relates the load (stress) response to
applied deformation (strain), or a creep-type, which relates deformation (strain) response to
applied load (stress). Relaxation-type models are formulated from the Helmholtz energy
representation (strain-based theory), whereas creep-type models from the Gibbs energy
representation (stress-based theory). Within the elastic limit, stress-based and strain-based models
are identical. Beyond the elastic limit, they are complementary. A Helmholtz formulation was
developed for granular materials by Valanis and Peters (1991), and applied to wheat en masse by
Xu (1992). With the original definition of intrinsic time (total strain path), Wu and Wang (1983)
derived a Gibbs formulation for sand. No work has been reported in the literature on Gibbs
formulation using the new definition of intrinsic time.

For non-viscous granular materials, Darve et al. (1988) classified all continuum
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constitutive models according to the number of their tensorial zones, which are defined as
domains, separated by either the plastic potentials or the loading-unloading criteria, in the stress
space. A constitutive model has 2" tensorial zones if the model has n plastic potentials or loading-
unloading criteria. For example, elastic models have only one tensorial zone, Lade's (1977)
elastoplastic model with two plastic potentials has four tensorial zones, and endochronic models
have an infinite number of tensorial zones. The number of tensorial zones characterizes the
structure of the model, which strongly influences the predictive capability of the model (Darve et
al. 1988). In theory, endochronic models, with an infinite number of tensorial zones, have the

strongest predictive capacity (Darve et al. 1988).

3.3 Finite Element Analysis of Grain Storage Structures

The finite element method (FEM) provides a powerful tool of solving complex
engineering problems. It has been applied to the study of loads in grain bins. It gives an integrated
analysis of behaviour of stored grain, storage structure, and their interactions.

Mahmoud (1979) used the finite element method to predict wall pressures for bins with
flexible corrugated walls.v He employed a nonlinear elastic hyperbolic model to describe the stress-
strain behaviour of the stored material in the primary loading conditions. Zhang et al. (1987),
using an elastoplastic constitutive model, proposed a finite element algorithm which adequately
predicted static and thermal-induced loads in grain storage bins. Rotter and Zhang (1989)
investigated the stability of silos using FEM. Schmidt and Wu (1989) developed a finite element
model based on Lade's (1977) elastoplastic constitutive equation for predicting dynamic loads

during discharge. Puri and Manbeck (1991) studied the potential of finite element method in
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modelling load response of particulate materials. Xu et al. (1993b) developed a finite element
predictive mode! using endochronic constitutive equation of Valanis and Peters (1991).

It should be noted that most existing FEM models were formulated using potential energy
principles. The primary variables in these models are displacements, although forces (pressures)
are of primary interest in bin design, the predictive capacity of the FEM is to a large extent
dependent on model's capability of capturing the constitutive behaviour of the stored bulk solids

and their interactions with the storage structures.
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4. MICROSTRUCTURE AND BEHAVIOURS OF GRANULAR MEDIA

A granular medium is an assembly of individual particles (grains). The microstructure
within particles is stable in comparison with the microstructure of particles’ assembly. Therefore,
the discussion in this chapter is focused on the microstructure of particles' assembly instead of
microstructure within particles. Granular media of different microstructure may behave differently.
The real microstructure of a granular medium is unique, because the medium is packed somewhat
randomly. It is very difficult to treat each medium individually. When a granular medium is tested,
it is unlikely to identify the real microstructure. This implies that the real microstructure is
traditionally treated equally as an idealised one. It is important to understand the deviation of the
material response and the effects of microstructure changes on behaviours of granular media. In
this Chapter, factors affecting microstructure are analyzed, triaxial tests of two kinds of
microstructure are conducted, and the relationship between microstructure and behaviours of

granular media is discussed on the basis of test results.

4.1 Factors Affecting Microstructure

Microstructure of granular media depends on the type, quantity and quality of particle
contacts, as well as the shape, size, and surface condition of the individual particles. There are
many factors affecting microstructure of grains stored in a bin. Filling of grains into a bin gives an
initial microstructure of granular materials. Different filling methods will yield different initial
microstructures. During the storage, environmental changes have impacts on the microstructure.

A temperature (or moisture content) increment in a particle will induce a thermal (or hygroscopic)
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expansion in the particle which will interact with the neighbouring particles. Consequently,
change the microstructure. Vibration is another important factor which tends to consolidate the
bulk materials significantly resulting in a higher bulk density. Therefore, microstructure during
storage could be affected by temperature fluctuation, moisture fluctuation, foundation (or storage
structure) vibration, particles' creep and relaxation, biological and chemical reactions, etc. Some
factors (e.g., filling method and vibration) mainly affect particles' contacts, other factors (e.g.,
moisture and temperature fluctuations) may affect not only the contacts but also the properties of
individual particles. To investigate all these effects is beyond the scope of this study. Therefore,
only vibration effects will be investigated for the purpose of a better understanding of the effect of

changes in microstructure on the behaviour of granular media.

4.2 Experimental Investigation of Vibration Effects

Vibration has been used to improve the handling of bulk solids. During vibrating, bulk
solids are likely to exhibit lower strength and better flowability than in the static state (Roberts
1991). Vibration also reduces friction between structures and grain. When discharging bulk solids
from bins, vibration may convert a funnel-flow bin to a mass-flow bin. A vibrated granular
medium is likely to behave differently from a non-vibrated one, because vibration causes changes
in the microstructure (fabric) of the grain bulk. The visible change in fabric is expected to be the
reorientation of grain particles which may result in an increase in bulk density. Invisible changes
may be the modes of contact between grain particles. These changes affect the physical and
mechanical properties of grain en masse. Because forces applied to a grain bulk are transmitted

through inter-particle contacts, quantity and quality of contact points between particles may
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dictate behaviour of the grain bulk. One of most important variables is the total number of
contacts in the assembly of grain particles. If no force is being transmitted through a contact, the
contact is a pseudo-contact, which should be excluded from the total number of effective
contacts. A contact may be characterized by the contact normal (normal to the contact surface)
and contact area. All these aspects of interests will be briefly discussed in this Chapter through

examining triaxial test results on vibrated grain samples.

4.3 Triaxial Test

Grain bulk changes its volume during deformation. Therefore, strength (resistance to
microstructure changes) and dilation are the key macroscopic characteristics in responses of grain
en masse. Conventional triaxial tests were conducted to measure the axial forces and volumetric
changes when the samples were subjected to axial deformation.
Preparation of Test Samples

Grain used in all tests was Katepwa wheat. The moisture content of the wheat was
determined as 13.2 % (d.b.) by oven method (ASAE 1995), and particle specific gravity was 1.42
by comparison pycnometer. Samples were prepared using a latex membrane sleeve held inside an
aluminium jacket. A vacuum was applied between the membrane and the inside surface of the
jacket to ensure the shape and dimensions of the sample. Wheat was centrally filled into the
membrane sleeve. The jacket was 260 mm in height and 106 mm in diameter, which produced
cylindrical specimens 215 mm in height and 100 mm in diameter. After the jacket was filled with
wheat, it was fixed on the top of a vibratory device (Eriez Magnetics, Eriez Manufactory Co.,

Erie, PA, USA), and vibrated at a frequency of 50 Hz and an amplitude of 0.3 mm for 10 min. A
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vacuum was applied from the bottom of the specimen to hold the sample when the jacket was
removed. The sample was then placed in a sealed chamber and subjected to a constant confining
pressure of 41.4 kPa regulated by an air pressure regulator (Fig. 4.1).

Test Procedures

All tests were performed using a Chatillon ET 1100 universal testing machine. The triaxial
test apparatus was placed between the loading frames of the universal machine, and an axial force
was applied to the grain samples through a loading rim (Fig. 4.1). The universal testing machine
was controlled by a microcomputer. The axial displacement rate was set at 10 mm/min. The axial
forces and displacements were recorded automatically by a data acquisition system. Pore pressure
of the grain sample was recorded manually, using an H,O differential pressure monometer, for
every 1 mm of axial displacement. Volumetric strains were calculated from the measured pore
pressure data using the perfect gas law. The experiments were replicated three times for both

vibrated and non-vibrated samples.

4.4 Visual Observation of Vibration-induced Fabric Changes

Fabric changes in wheat en masse during the vibration were observed by vibrating a wheat
sample in a transparent plexiglass container (152 mm in diameter and 238 mm in height) using the
same vibratory device as described in the triaxial test. The observed fabric changes provided a

better understanding of the macroscopic behaviour of vibrated microstructure of wheat en masse.
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4.5 Test Results and Discussion

Behaviour in Triaxial Tests

Following the sign convention of soil mechanics, compressive stresses and strains are
constdered to be positive in this thesis. The data averaged from three tests are shown in Fig. 4.2.
The standard deviations of deviatoric stress and volumetric strain from the mean values are
summarized in Table 4.1. There were some variations (within 2 %) between tests in the initial bulk
density (IBD). The mean IBDs are 906.8 and 857.7 kg/m’ for vibrated and non-vibrated samples,
respectively.

The stress-strain-dilatancy behaviour of vibrated wheat samples was compared with that
of non-vibrated samples (Fig. 4.2). The deviatoric stresses of vibrated samples were higher than
that of non-vibrated ones, but they approached similar values at large axial strains. The average
difference in the mean measured deviatoric stresses between vibrated and non-vibrated samples
was 4.5 kPa. The maximum difference was 25.8 kPa at an axial strain of 6x107, The peak stress
of vibrated samples was 67.2 kPa, slightly higher than the 63.7 kPa stress for non-vibrated
samples for a difference of 3.5 kPa.

Vibration increased the dilatancy of wheat samples. The average difference in the
measured mean volumetric strains was 8.1x10 mm*/mm?®. At an axial strain of 200x10 3, the
volumetric strain of vibrated samples was 14.1x10” mm*/mm?®, five times the volumetric strain for
non-vibrated samples 2.8x10° mm’/mm’. Vibrated samples dilated throughout most of the loading

process, whereas non-vibrated samples first consolidated and then dilated (Fig. 4.2).
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Figure 4.2 Comparison of the stress-strain behaviour between vibrated and

non-vibrated wheat samples (m.c.=13.2%d.b.) at a confining
pressure of 41.4 kPa.



Table 4.1 Standard deviations for measured stresses and strains

Tests Vibrated Non-vibrated
AD% S(o,) S(e,) AD% S(o,) S(e)
1 -1.8 633 187 0.6 333 0.63
2 0.1 2.89 0.53 -1.0 488 0.18
3 1.6 356 1.66 0.4 202 0.64

AD%: Relative difference of measured IBD from the mean value
S(o4): Standard deviation of measured deviatoric stresses, kPa

S(e,): Standard deviation of measured volumetric strains, 1/1000

Observations of Microstructural Changes

From observations of a wheat sample in a plexiglass container, the response of the grain
bulk to vibration was found to occur in two stages. When wheat was initially filled into the
container, there was some unstable micro-structure in the assembly, and most particles were
deposited with the long-axis more or less parallel to the horizontal because of gravity effects
during filling. Contact normals tend to concentrate toward the vertical direction (Oda 1993),
which coincides with the direction of the applied compression force in conventional triaxial tests.

At the very beginning of vibration, wheat particles mainly translated into voids, resulting in
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consolidation of the grain bulk, i.e., a higher bulk density. At this stage, most particles were
sliding over one another, and the number of effective contacts for each grain particle increased.
Most increased contacts had their normals in the horizontal direction, which is important for the
stability of the fabric (Oda 1993). Further vibration seemed to have fluidized the grain bulk, and
produced less than 20 percent of the total change in bulk density, estimated from the surface
movement of top grains. During this stage, wheat particles adjacent to the wall moved downward,
whereas those located in the central region were forced to move upward. Particles travelled in
such a way that their long-axes were consistent with the moving path to minimize the resistance to
the motion, thus some particles were reoriented with their long-axes in the vertical direction.

Macroscopically, the wheat bulk gains more strength through increasing the number of
contacts, therefore, vibrated samples exhibit higher strength. Especially, an increase in number of
horizontal contact normals stabilises the fabric and results in higher resistance to vertical loads. As
the vibrated wheat bulk dilates, contact points in the medium decrease which lowered the strength
of the medium. For non-vibrated samples, the initial shear strength is much lower because of
fewer contacts in the medium, the consolidation increases the number of contacts and the shear
strength is also increasing. Lee and Seed's (1967) observed that, for a constant confining pressure,
volume changes which accompany the shearing deformations tend to produce samples with the
same void ratio at failure. This implies that contact points in vibrated samples are comparable to
those in non-vibrated samples at failure. Therefore, the stress response of vibrated samples
approached that of non-vibrated samples at larger deformation (Fig. 4.2).

Microstructural Stability

For the purpose of illustrating dilation microscopically, four particles in contact are
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considered (Fig. 4.3). Figure 4.3a shows an unstable microstructure (Fabric I) with Particles A
and B in an unstable position. There are four contacts, two vertical and two horizontal ones. If
only gravitational force exists, Points 1 and 3 (horizontal contacts) are pseudo-contacts because
no force is transmitted across these two points. Figure 4.3b shows a stable microstructure (Fabric
II), Particles A and B are now in a stable position. There are five contacts, none of them are in
vertical contact. Fabric II has less void than Fabric I. If both fabrics are now subject to a simple
shear, say, Particles A and B move leftiwards. Fabric I will show a lower shear strength with
consolidation, whereas Fabric II will show a higher shear strength with dilation. A grain bulk
consists of many Fabrics I and II aggregations. Vibration tends to convert Fabric I aggregations to
Fabric II type in the grain bulk, thus a vibrated grain bulk exhibits higher shear strength and

dilates more.

a) b)

Figure 4.3 Illustration of grain particle assemblies: a) Fabric I, unstable; and
b) Fabric 11, stable.
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S. MICROSCOPIC THEORY OF BIN LOADS

Analytic theories for predicting loads exerted by granular material on storage structures have
been traditionally derived from macroscopic approach (Janssen 1895, Reimbert and Reimbert 1987).
An underlining assumption in macroscopic theories is that granular materials behave like continua.
These continuum theories predict loads in storage structures with reasonable accuracy if appropriate
model parameters are used. Unfortunately, some of these model parameters often cannot be clearly
defined because of the inherent discontinuous nature of granular materials. For example, predictions
of the Janssen theory rely on the ratio of lateral to vertical pressures (k value), but many researchers
have shown that the lateral to vertical pressure ratio is not a constant material property parameter
(Cowin 1979, Atewologun and Riskowski 1991).

Discontinuity is a fundamental characteristic of granular media. When external stresses are
imposed on a granular medium, they are carried by the contacts between particles. Macroscopic
deformations of the medium result from inter-particle movements (slip and rotation) and particle
deformation. Therefore, to accurately characterize granular systems, parameters relating to individual
particles (granules) and inter-particle interactions should be considered. These fundamental
microscopic property parameters cannot be directly included in continuum theories. In this chapter,
an analytic predictive model is developed for loads in granular material storage structures (bins and
silos) from a micromechanics theory. Some important particle properties are considered in the model
development. Because most storage bins (silos) are axial symmetry, stresses are approximated as

being two-dimensional, and so discussion is limited to this condition in the following sections.
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5.1 Microstructural Mechanics

The predictive model is developed from a theory of microstructural mechanics for granular
media (Granik and Ferrari 1993). In their theory, a pair of particles (doublet) is considered as a basic
structural unit. When a granular medium is subject to loads macroscopically, strains develop within
the doublet because of deformations, rotation and slipping of particles. These strains are termed
microstrains. Corresponding to microstrains, microstresses also develop within the doublet. These
microstresses are: elongation (compression) microstress corresponding to separation (convergence)
of the particles; torsional microstress corresponding to rotation of particles about the doublet axis;
and shear microstress corresponds to slip between particles. The relationship between microstrains
(or microstresses) and macrostrains (or macrostresses) depends on the structure of the granular
medium. For a granular medium consisting of equal-sized spheres, two basic types of idealized
structures may exist in two-dimensional conditions: square packing and packing hexagonal (Fig. 5.1)
(Granik and Ferrari 1993). Square packing seldom exists in real granular media because of its
instability. The present theory assumes that a granular medium consists of hexagonally packed elastic
spheres. In such a structure, an individual particle is involved in six doublets which are separated by
a structural angle y=60° (Fig.5.2). For non-sphere particles, it is a good approximation if the media
are packed isotropically. Otherwise, the structural angle should be adjusted to reflect the non-
isotropic microstructure. Under static conditions, rotation and slip of particles are negligible in a
granular medium. It follows that the two corresponding microstresses, torsional and shear stresses,
may be assumed to be negligible. Therefore, microstresses acting on a particle may be expressed by
three components, p,, p, and p; , in three directions (Fig. 5.2). It should be noted that these

microstresses are conceptually different from contact stresses between particles. Contact stresses in
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doublets are local and discrete. However, by averaging contact stresses over projected area of
particles, discrete contact stresses may be approximated by continuous microstresses (Granik and
Ferrari 1993). In a doublet, microstress acting on each particle represents a fictitious stress uniformly
distributed over the projected area of the particle, in the direction of the line connecting the centres
of the particles (Fig.5.2). Microstresses can be transformed to macroscopic stresses in a rectangular

Cartesian coordinate system as follows (Granik and Ferrari 1993):
3
0;= }:1 U 5.1)
o=

where:
¢, = directional cosine of p,, &« =1, 2, 3

0, = macrostress tensor, =1, 2; j=1,2

(a) (b)

Figure 5.1 Idealized structures of equal sized spheres in two-dimensions: a) square packing, and

b) hexagonal packing.
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Figure 5.2 A basic unit of hexagonal structure and microstresses on a particle.

Since (0, &y, &;) = (-cos ¥, cos ¥, 1) and (0 45, £ 5, £ 3,) = (-sin y, sin v, 0), equation (5.1) can be

expanded as:

0, = 0}, = (p, +p,)cos’y +p, (5.2)

0, = 0, = (p, +py)sin’y (5.3)
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Ty =01 = (p, ~p,)cosy siny (5.4)

where:

o, = normal stress in x direction

g, = normal stress in y direction

z,, = shear stress on xy plane
Corresponding to the three microstress components, there are three microstrain components, &, &,
and g,. Physically, microstrain represents the rate of change in distance between particle centres in
a doublet. If particles are elastic, the relationship between microstresses and microstrains takes the

simple form of (Granik and Ferrari 1993):

p,=E¢, (5.5)

where:
P, = microstress, ¢ =1, 2,3
&, = microstrain, ¢ =1, 2, 3
E = elastic modulus of the particle

The kinematic relations relate the macrostrains to microstrains as (Granik and Ferrari 1993):

€, =Ly Qajezj (5.6)

where:

&= macrostrains
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By noting that repeating subscripts i and j imply summations (except the Greek letter o), equation

(5.6) may be written as:

g,=€,cos’y +2¢_siny cosy +e,sin’y 5.7)
€,=€,co8™Y - 2¢ siny cosy +¢, sin%y (5.8)
g,=€, (5.9)

where:
& = strain (&, ) in x direction
g, = strain (&,, ) in y direction
&,, = shear strain (&, ) on x-y plane
From continuum mechanics, equations governing the equilibrium of macrostresses and the

compatibility of the macrostrains (Fung 1965):

do,
.__-’_+)(I_=O (5.10)

F= T+ (5.11)

where:

X, = Dbody force, i=1, 2
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Substitution of Egs. (5.2) to (5.4) into Eq. (5.10) gives:

a(pl +p2) + a(p1 _pz)
ox ay

d
tany +% cos 2y =0 (5.13)
X

a(pl "pz) " a(pl +p2) tany - Pg

=0 (5.12)
ox y cosysiny

where:
Y = micro-structural angle
p = bulk density

g = gravitational acceleration constant

Equations (5.13) and (5.14) alone are not sufficient to determine three microstresses. Therefore, the
compatibility equation (5.11) must be used. Substituting Eqs. (5.5) into (5.7), (5.8) and (5.9), then

into (5.11) yields:

82 + a2 _ 82 82
B'p) @, pz)tany —Zﬁcoszy 1
Ax? oxdy dx? dy?

siny =0 (5.14)

Equations (5.13), (5.14), and (5.15) are the three governing equations which can be solved
simultaneously for the three unknown p,, p, and p;. It should be noted that compression stresses are

considered to be positive in the above equations.
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5.2 Static loads

5.2.1 Pressures in bins with frictionless walls

Consider a hypothetical bin with frictionless walls to develop some understanding of the
relationship between microstresses and macroscopic pressures in storage bins. If no friction exists
between the granular material and its containing structures, shear stress 7., should be zero and
microstresses do not vary across the bin cross-section (x direction). Therefore, from equation (5.4),

we have:
P, = P, = pQ) (5.15)
where p(y) is a microstress which is determined by substituting Eq. (5.15) into Eq.(5.13):

-_P&Y
rQ)= m‘ (5.16)

Substituting Eqs.(5.15) and (5.16) into Eq.(5.12) yields:

P, _

=~ (5.17)

Equation (5.17) indicates that p, is a function of y only, i.e., p; = p;(y). Using this condition and Eqs.

(5.15) and (5.16), Eq. (5.14) is simplified as:

82
——?—3— =0 (5.18)
dy?
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By integrating equation (5.18) and applying the boundary condition of p,=0 at y=0, we obtain:

P3=Ay (5.19)

where / is an integration constant. This constant (1) can be determined by examining the horizontal
microstrain &, If particles in the granular medium are perfectly rigid (Poisson’s ratio is zero),
microstrain & is zero for symmetric structures like hexagonal packing, and therefore, microstress p;
is zero as indicated by Eq.(5.5) with & = 0. Consequently, A is zero as indicated by Eq.(5.19).
However, particles are deformable for most real granular media. Therefore , microstresses p,; and p,
will cause the particle to deform in the horizontal direction, resulting in microstrain &;. To determine
the magnitude of &, microstresses p, and p, are resolved into horizontal (p,) and vertical components
(p,) (Fig. 5.3). The magnitudes of horizontal components are (p,cos’y = pcos’y ) and (p,cos’ y =
peos’y) for p, and p,, respectively. The two respective vertical components are (p,sin’y = psin’ y)
and (p,sin’y = psin’ y). If the particle has a modulus of elasticity of E and Poisson’s ratio of v, the

horizontal deformations due to the horizontal and vertical stress components are:

D, = —( %] (2rcosy) = —( pcoTsZy) (2rcosy) (5.20)
D.=| 2|y = ( Bii-‘lil) ™29 (5.21)
2\ E E )
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2rcosy
Figure 5.3 Decomposition of microstresses p, and p, into horizontal and vertical components p,

and p,.

where:
D, = horizontal deformation caused by the horizontal stress component
D, = horizontal deformation caused by the vertical stress component

r = radius of the particle

It should be noted that only a portion of the particle (2r cosy) is considered to be subject to
deformation when calculating D, (Fig.5.3). The total change in the particle diameter in the horizontal
directionis (D, + D,). Therefore, the horizontal strain ¢&; is determined as (D,+D,)/2r. By using Eq.

(5.5), the horizontal microstress is calculated as:

D, +D,
py=ke;=E

] = p(vsin?y -cos’y) (5.22)
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Combining equations (5.16), (5.19) and (5.22) gives:

A =( ——piz-) (vsin®y —cos>y) (5.23)

Macrostresses can now be calculated from microstresses by using Egs. (5.2)-(5.4), (5.16), and

(5.19):
o, =(pgcot®y +1)y (5.24)
0,=pgy (5.25)
Ty =0 (5.26)

From equations (5.24) and (5.25), the lateral to vertical pressure ratio (k value) is determined as:

cot?y Jor A=0

c
—;—+cot2y 1—-‘%!] SforA#0

k= (5.27)

=
9

Equations (5.24) to (5.27) may be used to predict pressures in shallow bins where wall friction can

generally be ignored.

41



S.2.2 Pressures in bins with frictional walls

The frictional force between grain and the bin wall transfers a portion of the grain weight to
the bin wall. For a slice of grain (Fig.5.4), the total grain weight is (gpo44y), where 4 is the cross-
sectional area of the bin and Ay is the height of the slice. The portion of grain weight that is
transferred to the bin wall is (uo, SAy), where u is the coefficient of friction between granular
material and wall and § is the bin perimeter. The grain weight () that is actually supported by the

grain mass itself is the total weight less that transferred to the wall:

b=pgAAy-po SAy (5.28)

Therefore, the equivalent body force is calculated as the effective grain weight () per volume:

= -pguo S -pg- L
AAy *A R

(5.29)

where:
Y = equivalent body force
S = bin perimeter
A = cross-sectional area of the bin
R = hydraulic radius (A/S) of the bin

p = coefficient of friction between granular material and wall
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Figure 5.4 A slice of grain over the bin cross-section.

By using this equivalent body force in Eq.(5.13), the frictional force is included in the equilibrium

equation :

dp. - o + o
®,-p,) . 2 pz)tany -| pg- HO, 1 =0 (5.30)
ox ay R ] cosysiny

Since the force equilibrium is considered for a slice of grain over the bin cross-section, it is implied
that stresses are uniform across the bin cross-section. In essence, stresses considered here are “mean”
stresses and microstresses p, and p, are equal across the cross-section. This suggests that equation
(5.15) remains valid for bins with frictional walls. Substituting Egs. (5.2), (5.15), and (5.19) into Eq.

(5.30) and solving the resulting equation yields:
d@2p) .
—(a;’) sin’y - pg+—1%(2pcoszv + A)=0 (5.31)

Microstress p can now be determined by solving Eq. (5.31) with proper boundary conditions, e.g.,

p=0at y=0. Equation (5.31) is a first order differential equation with constant coefficients. It has a
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particular solution of:

R A
py) = ———(pg+Man’y -£25) (5.32)
ncos?y R
and a complementary solution of:
_ ooty
2p(0) =Ce K (5:33)
Combining Eqs. (5.32) and (5.33) gives the general solution to Eq. (5.31):
R )\, _ pcotzyy
2p(y) = (pg+ranty -EYy ce R (5.34)
pcos2y R

where C is the integration constant, which is determined by substituting the boundary condition p=0

at y=0 into the above equation:

c=-_R
2

pcos“y

(pg +Man’y) (5.35)

Substitution of Eq.(5.35) into Eq.(5.34) gives:

_ peot’y

2 Fabiiadll
op(y) = LEFMAVIR | TRy Ay (5.36)
ucos?y cos™y

The horizontal stress can now be determined by substituting Eqs.(5.36) and (5.19) into Eq. (5.4):
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3 W
o = (g + MaYIR | Ry (5.37)

¥ B

From Eqgs.(5.2), (5.3) and (5.19), vertical pressure can be calculated as:

o, = (0, - Ay)tan’y (5.38)

From equation (5.38), the lateral to vertical pressure ratio is determined as:

A
k= COt2‘Y + —;))- (5'39)

Yy

Equation (5.39) indicates that for bins with frictional walls, the lateral to vertical stress ratio is not
a constant, instead it varies with the depth and stress level. A constant k value exists only if particles
are rigid (A = 0) or the vertical stress is linearly proportional to depth like in shallow bins where wall
friction is ignored. Therefore, k value can no longer be viewed as a material parameter in load
predictions of deep bins. It should be noted that Equations (5.37) to (5.39) are reduced to the well-
known Janssen’s equation if 4 = 0. This means that the Janssen’s equation is a special case of the
present theory with assumption of a constant pressure ratio (k) or rigid particles (A=0). Apparently,
equation (5.39) cannot be solved directly for the k value, but the k value is not needed when using

equations (5.37) and (5.38) to predict lateral and vertical pressures.

5.3 Hygroscopic Loads

Hygroscopic pressures are induced in grain storage bins when grain moisture changes. Several
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researchers have reported that hygroscopic pressures may be considerably higher than static pressures
(Dale and Robinson 1954; Blight 1986; Britton et al. 1993). Unfortunately, hygroscopic loads have
not been included in most design standards and codes because of the lack of information on predictive
theories for hygroscopic loads. Only the ASAE EP433 (ASAE 1995) cautions that increases in grain
moisture content should be maintained within one or two percent during storage to prevent high
hygroscopic loads from occurring.

The difficulty of predicting hygroscopic loads arises from the complex nature of grain en
masse and interactions between grain and containing structures. Zhang and Britton (1995) developed
a predictive model for hygroscopic loads by assuming that grain bulk moves like a continuum during
hygroscopic expansion. But grain en masse is of inherent discontinuous. Therefore, predicting
hygroscopic loads should be based on the behaviour of individual grain particles and interactions
among particles. In this section, the behaviour of wetted grain is examined from the point of view of
microscopic mechanics, and a model is developed for predicting loads induced by increased moisture

of grain in bins.

5.3.1 Hygroscopic expansion of grain particles
When a grain particle absorbs moisture, its volume increases. The volumetric strain of swollen

grain particles may be estimated from grain moisture changes as follows (Zhang and Britton 1995):
e, = [ 2MC_|I Du 5.40
Y 1 + MCy |\ p, (5.40)

where:
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€, = volumetric strain of a wetted particle, m*/m’
AMC = increase in moisture content, %db

MC, = initial grain moisture content, %db

P, = initial particle density, kg/m’

p,, = density of water, kg/m’

If assuming that particles expand uniformly, the hygroscopic microstrain can be calculated as:

3 3{1+MC p, (5.41)

5.3.2 Hygroscopic pressures

Volumetric increases of individual grain particles cause the grain bulk to expand. If the
expansion is not restrained, the grain bulk should not undergo a significant stress increment. If the
grain bulk is restrained, a hygroscopic pressure will be induced as a result of the restriction of grain
expansion. In other words, there would be no hygroscopic pressures induced if the grain is allowed
to expand freely (like in a completely flexible container), and hygroscopic pressures would reach the
maximum (for a certain moisture change) if the grain is stored in rigid containers.

To determine the maximum hygroscopic pressure (in a rigid container), the moisture-induced
expansion may be viewed in analogue to thermal expansion between two bodies of exactly the same
shape, one subject to heating and the other one not. Following the theorem of Duhamel-Neumann
analogy in thermoplasticity (Fung 1965), the hygroscopic pressures of swelling grain bulk confined

in a perfectly rigid container are calculated as:
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L=0,=L,+(p,+p,)cos™y +p, (5.42)

V=0,=V,+(p, +p,)sin®y (5.43)

where:

L = lateral pressure (during wetting), kPa

V = vertical pressure (during wetting), kPa

L, = initial lateral pressure (before wetting), kPa

V, = initial vertical pressure (before wetting), kPa
The L , and V , are static pressures, and the p,, p , and p ; are the moisture-induced microstresses,
which may be calculated by a modified Eq. (5.5): p, = E’,, where E’ is the modulus of elasticity for
wetting grain in rigid containers. Equations (5.42) and (5.43) predict hygroscopic pressures in perfect
rigid containers. However, grain storage bins are usually not perfectly rigid. Bin walls and floors
deform and grain is free to move at the bin top when grain expands. Zhang and Britton (1995)
indicated that structural deformations are negligible comparing with the upward movement of grain.
In the process of wetting, hygroscopic stresses initially reduce the static frictional force (F,) between
the bin wall and grain, further wetting reverses the direction of frictional force, and grain starts
moving upward until the frictional force reaches its maximum value. Before grain starts to move
upwards, the bin could be treated as in a rigid container if wall and floor deflections are ignored.
When upward movement occurs, the microstresses p, and p , should be calculated from the vertical

force equilibrium of grain at a given depth (y). Vertical force equilibrium conditions, before wetting
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and after wetting, may be approximated as follows:

F,
Vo=pgy-— (5.44)
R
F
V= P&y * % (5.45)

where:
p = bulk density, kg/m®
g = gravitational acceleration constant, m/s?
y = depth of grain, m
F, = initial (static) frictional force, kN/m
F = frictional force during wetting, kN/m
R = hydraulic radius of bin, m

Combining Eqs. (5.43) - (5.45) gives:

Fy+F

P *Py= (5.46)

Rsin?y

Since &, is restricted by the bin wall, microstress may still be calculated as p; = E’e;. However, wetted

grain may become softer, therefore, the modulus of elasticity during wetting should be modified when

calculating ps.
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ps = (FEN= (5.47)

where:

E’ = modulus of elasticity for wetted grain, kPa

f = moisture reduction factor due to softening of wetted grain
To estimate the modulus of elasticity E for wetting grain in equation (5.47), an empirical correlation
proposed by Smith and Lohnes (1983) for bulk moduli for maize (shelled corn), wheat, barley and

oats is used:

a, 2
K, = 1] K, (5.48)

where:
K, = tangent bulk modulus, kPa
oy, = hydrostatic stress, kPa
€, = asymptotic value of volumetric strain, m*/m’
K, = initial bulk modulus, kPa
Because the granular medium is approximated as being isotropic and homogenous, E’ may be

determined from Eq.(5.48) as:

| o
E’=3(1-2v)K, = 3(1-2v) +1| K, (5.49)

i 8v,ult
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where:
v = Poisson’s ratio of wetting grain.

Equation (5.49) is used to evaluate the initial tangent modulus for wetting grain. During wetting, the
modulus may fluctuate due to stress change and grain softening. So, the moisture reduction factor
f may be defined as the ratio of initial modulus to that of wetted grain in a rigid container. Physically,
the modified modulus (fE’) represents a segment modulus for wetting grain. It should be noted that
the modulus of elasticity (E) in Eq.(5.5) represents the modulus of an idealised granular medium (Fig.
5.1) subject to static loading, and that the modulus of elasticity (E’) in Eq.(5.49) represents the

modulus of a deformed granular medium subject to hygroscopic loading.

5.4 Discharge Loads

5.4.1 Patterns of shear deformation

The mechanism of shear deformation of granular media may be best illustrated by the simple
(direct) shear test (Fig.5.5). When a sample is sheared horizontally, a macroscopic shear plane (SS-
plane) develops. The actual motion of particles, however, occurs along a wavy S'S' plane because of
the discontinuity of granular materials. This wavy plane is termed the slip plane (Nemat-Nasser,
1980). The slip plane divides the sample into two portions, namely an upper portion and a lower
portion. Each portion behaves like a rigid block at a given instance (Horne 1964, Nemat-Nasser
1980). Therefore, the shear deformation is explained as sliding between the two serrated faces of rigid
blocks (Fig.5.5) (Rowe 1962). When shearing occurs horizontally, upper block moves upwards, and

thus dilation takes place vertically.

51



G l dilation
Ag

& N
5 DU CRRPT
Exy

-

Figure 5.5 Simple shear test and shear-induced dilation mechanism.
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Dilatancy Angle

Dilatancy angle 0 is often used to characterize the dilation mechanism (Fig.5.5). This angle
is related to friction angles of granular materials as follows (Rowe 1962, Nemat-Nasser 1980,

Moroto 1987):

0=0¢-9¢, (5.50)

where:

0 = dilatancy angle

¢ = macroscopic (overall) angle of internal friction

¢, = microscopic (true) angle of friction
Tt should be noted that the shear stress is related to normal stress by the angle of internal friction, and

volumetric expansion strain is related to the shear strain by the dilatancy angle. For example, in

simple shear test (Fig.5.5), T,, = (0, tand), and &, = (€,, tan 0). Under biaxial loading condition, the
slip plane is represented by a shear band with an inclination angle of minimum value of (45°+6/2) with
respect to the minor principal stress (Han and Drescher 1993) or (45°-6/2) with respect to the major
principal strain increment (Bard 1990). Dilatancy angle 6 can be calculated from the rate of plastic

volume strain (¢,7) and the rate of plastic shear strain (¢,) (Ord et al. 1991):

|

sin(0) = - (5.51)

R

The above equation indicates that the dilatancy angle is not a constant but a function of the

deformation process.
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5.4.2 Discharge loads

Similar to the hygroscopic loads, discharge loads may be calculated as:

L=0,=L,+(p, +p2)coszy D (5.52)

V=0,=V,+(@, +p,)sin’y (5.53)

where:

L = lateral pressure (during discharging), kPa

V = vertical pressure (during discharging), kPa

L, = static lateral pressure, kPa

V, = static vertical pressure, kPa
The microstresses p,, p, and p; are now representing the shear-induced stresses. These stresses are
unlikely to be obtained exactly because of the complexity of the discharging problem. An
approximation may be obtained from the analysis of the shearing.

For a layer of grain to slide over another layer of grain, internal friction must be overcome.
At the onset of discharge, internal shearing is initiated. Fast-moving grains overcome the friction on
slow moving (or dead) grains, in other words, a frictional load is applied to the slow-moving grains
which interact with the structure. Shear-induced vertical stress (the second term on the right side of
Eq. 5.53) is approximated by this frictional load, which is estimated as (L tan) by using Coulomb’s

criterion:
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p, *pysin’y =Ltand (5.54)

ie.,

_ Ltang
sin®y

PP, (5.55)

The vertical shearing causes a horizontal expansion of the grain en masse. This expansion is restricted
by the bin wall and an additional lateral load (p,) is induced. It seems reasonable to assume that the
maximum expansion corresponds the maximum lateral pressure. By the relationship of dilatancy, the
maximum lateral expansion displacement may be approximated as (d,, tan8,,,), where d_,, is the
maximum length of dilatancy shear (Fig.5.5). Since the horizontal expansion is restricted by the bin

wall, the lateral expansion per unit diameter gives an average microstrain €;:

d_ tand
€= %’i (5.56)

where:
r = radius of the bin, m
d,.. = maximum length of dilatancy shear
0,,., = maximum dilatancy angle
By assuming that p ; =E' € ; and using Egs (5.55), (5.56), and (5.49), the maximum lateral pressure

is obtained by solving Eq.(5.52):
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o

L 1 ( L +3 (1 2 ) dmax tanemax ( h 1)2 K
= +3(l-2v + i 5.57
1 -tand cotzyk ¢ 2r K, &37

By definition, the overpressure factor may be calculated as:

d_ _tanO o K
f=L-= 1 (1 #3(1-2v) max _Tmax h L qy2 i (5.58)
L, 1-tand cot2yL 2r K&, e L,

If no dilatancy (0,,,, = 0), equation (5.58) is reduced to:

1

f,=
Y 1-tand cot?y

(5.59)

Equation (5.59) implies that overpressure factor is a function of structural angle and internal frictional
angle of the granular medium even if neglecting the dilatancy effects. If further no internal friction
($=0), equation (5.59) gives that f ;= 1. Therefore, the overpressure may be attributed to the internal

friction and dilatancy of the granular medium.

5.5 Model Validation

5.5.1 Static Loads
Model predictions are compared with experimental data reported by (1) Dale and Robinson

(1954) for shelled maize in a smooth walled model bin, (2) Thompson et al. (1995) for maize in a full-
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size corrugated bin, and (3) Zhang et al. (1987) for wheat in a smooth walled model bin. There is a
large volume of data in the literature on loads in bulk solids storage structures. These three were
selected as being representative of agricultural products. Dale and Robinson (1954) conducted five
tests, loads (vertical, lateral, and friction) were only reported for Tests 2 and 3, which are used in the
following comparisons. Model predictions are also compered with the Janssen theory for the model
bin of Dale and Robinson (1954). Three values (0.4, 0.5 and 0.7) of the lateral to vertical stress ratio
are selected to cover the range of k values recommended by design codes and standards for
agricultural materials (e.g., DIN 1987). Bin dimensions and material property parameters used in
model predictions are summarized in Table 5.1. It is assumed that the maize has a Poisson’s ratio of
0.40 (ASAE 1995) and the coefficient of friction 0.34 (Mohsenin 1986) for smooth steel of Dale and
Robinson’s model bin. Applying the Janssen equation to data reported by Thompson et al. (1995),
the coefficient of friction was estimated to be 0.55 for the full-size corrugated bin of Thompson et
al. (1995). Parameters for Zhang et al.’s wheat bin are taken from their paper (Zhang et al. 1987).
Lateral and vertical stresses are predicted by Eqs. (5.37) and (5.38), respectively, and the
resultant friction force on the bin wall is calculated from Eq. (3.6). Predicted bin loads are in close
agreement with the experimental data for all three cases (Tables 5.2 and 5.3). It is noted that
differences between the model predictions and Janssen’s theory are dependent on the k value selected.
Janssen’s equation predicts too high vertical pressures if a lower k value is used, and too low vertical

pressures if a high k value is used (Table 5.2).
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Table 5.1 Parameters used in microscopic theoretical predictions

Parameters Model bin of maize” Model bin of wheat® Full-size bin of maize'
Bin height, y,,., 1.524 m 12m 14m

Bin radius, r 0.2286 m 045m 55m
Hydraulic radius, R 0.1143 m 0.225m 2.75m

Bulk density, p 780 kg/m® 817 kg/m® 718 kg/m®
Friction coefficient, p 0.34 0.19 0.55

Poisson's ratio 0.4 0.29 0.4

*: Data from Dale and Robinson (1954)
©: Data from Zhang et al. (1987)

t: Data from Thompson et al. (1995)
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Table 5.2 Comparisons of theoretical predictions with test data for a model bin (Dale and Robinson

1954)
Loads Predicted Data' Janssen's
k=0.4 k=0.5 k=0.7
Lateral (kPa) 2.86 +0.73 2.15 2.30 2.46
Vertical (kPa) 3.93+0.06 5.38 4.61 3.52
Friction (kN/m) 0.88+0.01 0.72 0.80 0.93

t average of data from tests: #2 and #3 reported by Dale and Robinson (1954).

Table 5.3 Comparisons of theoretical predictions of lateral pressure (kPa) with test data for a

full-size bin of maize (Thompson et al. 1995) and a model bin of wheat (Zhang et al. 1987)

Full-size bin of maize

Depth (m)
3.1
6.1
9.1

11.9

Predicted

8.9

15.9

219

26.0

Data

10.2+1.8

17.1£2.1

24.1+£3.1

26.9+4.0

Model bin of wheat
Depth (m)  Predicted Mean data
1.08 2.95 291
0.825 2.33 2.59
0.57 1.67 1.67
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5.5.2 Hygroscopic Loads

To validate the proposed model, predicted hygroscopic pressures are compared with
experimental results reported by Dale and Robinson (1954). Only the data from their Test No.’s 2
and 4 are used in the following comparisons because the exact grain moisture changes were reported
for these two tests. In Test No.2, Dale and Robinson observed an increase in lateral pressure from
2.1 to 13.5 kPa and an increase in vertical pressure from 3.98 to 15.2 kPa at the bin bottom, while‘
the grain moisture changed from 13.0% to 16.9%wb. These represent an overpressure of 11.4 kPa
and 11.2 kPa in the lateral and vertical directions, respectively, for a moisture increase of 4%wb. In
Test No.4, ten minutes of flooding was applied to the grain bulk, and the maximum lateral pressure
0f21.93 kPa and vertical pressure of 20.34 kPa were observed in approximately two hours with the
change of moisture content about 10%(wb) from 12.5% to 22.4%.

Material parameters reported by Smith and Lohnes (1983) for maize (shelled corn) (Table 5.4)
are used in equation (5.49) to calculate the modulus of elasticity E’. For a small increment of moisture
content, the moisture factor is taken a value of 1 due to the limitation of available data. The moisture
factor is estimated to be 0.75 from maize data reported by Blight (1986) for flooding situation. Static
pressures L, and V,, are taken from the test data of Dale and Robinson (1954). The hydrostatic stress
in equation (5.49) is replaced by the average of static vertical and lateral pressures ((2L,+V,)/3) for
a cylindrical bin. Since the resultant friction force during wetting was not recorded in the test and no
equation can be found to predict it, it is assumed that the friction is the same as static condition, i.e.,
F=F,, where | was also taken from the test data of Dale and Robinson (1954). Other model
parameters are listed in Table 5.5.

An overpressure of 10.9 kPa is predicted both laterally and vertically for an increase of 4%wb
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Table 5.4 Measured initial bulk moduli and asymptotic volumetric strains for
maize (shelled corn) at 15% moisture content, and for wheat at

10.3% moisture content (Smith and Lohnes 1983).

Maize Wheat
Bulk Density p, kg/m® 771 779
Initial Modulus K, kPa 5913 645
Asymptotic Strain €,,,,, x10” 41.03 73.12

Table 5.5 Material property parameters used in model predictions

Initial Particle Density (p,,), kg/m® 1400
. Initial Bulk Density (p), kg/m’ 774°

Initial Moisture Content (MC,), %db 13

Poisson's Ratio (V) 0.4

* reported by Dale and Robinson (1954)
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in grain moisture, which gives a hygroscopic lateral pressure of 13.0 kPa and vertical pressure of 14.9
kPa. The relative differences between predictions and data in Test No.2 are 3.7% and 2.1% for lateral
and vertical pressures, respectively. For the flood situation in Test No.4, the initial static pressures
were not reported, and it was assumed to be the same as in Test No.2. The predicted vertical pressure
was 19.38 kPa and lateral pressure 20.9 kPa at the bin bottom for a moisture increase of 10%. The
relative differences between predicted hygroscopic pressures and data in Test No.4 are 4.7% for both

lateral and vertical pressures.

Table 5.6 Comparison of predicted hygroscopic pressures with measured data.

Hygroscopic Moisture content Predicted Measured %Difference
pressure increment (kPa) (kPa)

Lateral 4.0% 13.0 13.5 3.7%
Vertical 4.0% 14.9 15.2 2.1%
Lateral 10.0% 20.9 21.9 4.7%
Vertical 10.0% 194 20.3 4.7%

5.5.3 Discharge Loads

To validate the model of discharge loads, the overpressure factor predicted by Eq. (5.58) is

compared with experimental data reported by Zhang et al. (1993) for wheat in a smooth and a
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corrugated-walled model bin. Table 5.7 lists the reported bin dimensions, wheat properties and
discharge operations. Table 5.8 collects reported ranges of dilatancy angles for some granular
materials in the literature. The maximum dilatancy angle was reported as 19.3 degrees for wheat
(Zhang et al. 1994). There is no theory available to calculate the maximum length of dilatancy shear.
The d,,, is estimated as the shear rate times the peak time of lateral pressure from the discharge
operation (Table 5.7). The shear rate may be estimated from the discharge rate and the height of the
measurement. When the orifice is opened, the mass loss of support starts moving downward whereas
those supported by the bin bottom forms a dead zone with an inclined angle of (11/4+0/2) with respect
to the bottom. It should be noted that this angle (during discharge) is different from the angle of
repose which is measured from the materials left in the bin after discharge. At the height of 0.38m,
the radius of the central moving zone is calculated as the sum of orifice radius (0.03) and (0.38
cot(n/4+0/2) ), i.e.,, 0.3 m. Therefore, the discharge rate divided by the moving area gives an
approximated shear (flow) rate, which is calculated as (4.79m*/3600s)/( 0.3%> m?) = 0.0047 m/s. The
parameters used to calculate the discharge expansion modulus are taken from the test data reported
for wheat by Smith and Lohnes (1983) (Table 5.4). The hydrostatic stress is taken as the average of
static vertical and lateral pressures ((2Ly+V,)/3) for a cylindrical bin. By using Eq. (5.58) with these
parameters, the overpressure factor was estimated as 1.55 for the smooth wall and 1.44 for the
corrugated wall (Table 5.9). From Eq. (5.59) if no dilatancy, the overpressure factor was calculated
as 1.19 for the effect of internal friction only, therefore, the dilatancy contribution may be estimated
as 1.36 for the smooth wall and 1.25 for the corrugated wall. The relative differences between

predicted and measured overpressure factors were less than 1% (Table 5.9).
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Table 5.7. Bin dimensions, physical properties of wheat, and discharge operations

Bin dimensions:

Wheat properties:

Discharge operation:

Bin height, y,...
Bin diameter, 2r
Orifice diameter

Measuring height

Bulk density, p
Poisson's ratio
Angle of internal friction

Moisture content

Discharge rate

Time of peak lateral pressure

1.5m
1.0m
0.06 m

0.38m

779 kg/m®
0.29
25.6°

11.3%

4.79 m’/h
0.6 s (smooth wall)

0.4 s (corrugated wall)
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Table 5.8 Summary of reported dilatancy angles.

materials ranges (degree) source

gravel 0 to 12 Jacobsen (1990)

sand 3.5 to 187 Vardoulakis (1980)
coarse sand -9 to 19 Han & Drescher (1993)
sandstone -193 to 27 Ord et al. (1991)

soil -10  to 30 Bardet (1990)

wheat 07 to 193 Zhang et al. (1994)

Table 5.9 Comparison of predicted discharge overpressure factor with measured data.

Overpressure factor Predicted Measured %Difference
Smooth wall 1.55 1.56 0.6%
Corrugated wall 1.44 1.45 0.7%
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6. ENDOCHRONIC CONSTITUTIVE EQUATIONS

A systematic modelling of macroscopic stress-strain behaviour of granular media is
necessary to develop finite element models for predicting bin loads. Two mechanical models,
namely creep-type and relaxation-type, are constructed for developing a stress-based constitutive
model and a strain-based model, respectively. In the creep-type model, strain responses are
predicted from applied stresses, therefore, the theory is called stress-based theory. In the
relaxation-type model, stress responses are predicted from applied strains, and the theory is called

strain-based theory.

6.1 Mechanical Models for Grain En Masse

~Grain en masse is elastoplastic, therefore, the macroscopic constitutive behaviour of grain
en masse can be modelled by using different connections of spring-elements (elastic) and slip-
elements (plastic), with springs storing energy whereas slip-elements dissipating energy.
Traditionally, slip-elements are symbolically represented by the two parallel bars for frictional
slips, where shear and volumetric deformations are not coupled. To account for the shear-
volumetric coupling, the traditional slip-elements are modified to slip-dilatancy elements
represented by two curved parallel bars. The physical basis of slip-dilatancy elements are shown in
kFig. 5.5. With these mechanical elements, mechanical models of relaxation-type and creep-type
are constructed for modelling the stress responses under deformation and strain responses under

loads, respectively.
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6.1.1 Relaxation-type model

A relaxation-type mechanical model consists of many spring-slip units connected in
parallel. In each spring-slip unit, a spring element and a slip-dilatancy element are connected in
series. Figure 6.1 shows such a relaxation model for describing deviatoric (shear) behaviour of
materials. When the material is subject to a plastic deviatoric strain e;?, each and every unit
experiences the same strain, but the total stress is the summation of the stress spectrum of each

spring-slip unit.

q’ q q

Figure 6.1 Relaxation mechanical model for shear response.
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To illustrate the process of modelling the material responses using relaxation-type models,

models with three spring-slip units are considered for one dimensional shear conditions (Figs.6.2).

To simplify the discussion, no shear-induced volumetric deformations are considered. Therefore,

slip-dilatancy elements are approximated as slip (frictional sliding) elements. To further simplify

calculations, it is assumed that all the springs have the same stiffness as k;, but each slider has a

different friction limit, such that: P1<P2<P3. For describing force responses to applied plastic

deformations (UP), spring constant vanishes in one of the units. At the onset of applying UP, the

force response increases instantly until P = P1 when Slider 1 is triggered to slide. This means that

the initial tangent stiffness is infinitive (Figs.6.2). The sliding of Slider 1 indicates an initial

material yield, then, UP is directly applied to Springs 1 and 2. Therefore, the tangent stiffness

changes from infinity to 2k,. Further deformations cause the force response (P=P1+ 2k, UP)

Pl

11:2

11:3

to

Figure 6.2 Tllustration of responses of relaxation model in one-dimensional shear.
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reaching P2, Slider 2 is triggered to slide. Now, the additional force can only be taken by Spring 2
and the tangent stiffness is further reduced to k;, and P=P1+k,UP. When the increments of UP
makes P reach P3, no more forces can be taken by the materials and the plastic deformation UP
may reach infinity, i.e., the material fails. The unloading is a mirror process of loading.

A similar relaxation model can be constructed for volumetric response (Fig. 6.3).
Rectangular boxes represent volumetric endochronic elements, in which volumetric slip-elements

are coupled with the shear slip-dilatancy elements (Fig.6.3) for shear-induced volumetric

qo B,
—MVv—
q(z) B ,
- AN—
€ — ~ €
qe , Bn ’
BV

® ®
s B

Figure 6.3 Relaxation mechanical model of volumetric response.
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deformations. When the material is subject to a plastic volumetric strains €,?, each and every unit
experiences the same strain, and the total hydrostatic stress is the summation of the stress
spectrum of each spring-slip unit.

Figure 6.4 shows the mechanism of the relaxation-type model, in which deviatoric
response and volumetric response are combined together with the vertical direction for the
deviatoric behaviour (solid line) and horizontal direction for the volumetric behaviour (thin solid

line).

N
h Bx
-
N 7 M
qg) ) h Bz
€n » | ANV
—b> qéz)'fbjf_—l <g—
qy

B,
qi-"’—}jm

Figure 6.4 Mechanism of relaxation-type model for strain-based
endochronic theory.
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6.1.2 Creep-type Model

A creep-type mechanical model consists of many spring-slip units connected in series. In
each spring-slip unit, a spring element is connected with a slip element in parallel. Figure 6.5
illustrates a creep model for describing deviatoric (shear) strain responses of materials to an
applied shear stress S;. When applying a deviatoric stress S;; to the material, the stress is applied
to each and every unit, and the strain responses are the summations of the strains from all parallel-

connected spring-slip units.

®
Q j

QY

y

®)
Q¢

Figure 6.5 Creep mechanical model for shear response.
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To illustrate the process of modelling the material responses using creep-type models,
models with three spring-slip units are considered for one dimensional shear conditions (Figs.6.6).
To simplify the discussion as for creep-type models, slip-dilatancy elements are approximated as
slip (frictional sliding) elements, and all the springs are assumed to have the same stiffness as k;.
Consider each slider having a different friction limit, such that: P1<P2<P3. For describing the
flow properties of materials (failure), spring constant vanishes in one of the units. When the
applied force P is smaller than P1, Slider 1 is the controlling element, and the initial tangent
stiffness is infinitive (Figs.6.6). thj,n P is increased to P1 (an initial material yield point), Slider 1
starts to slide (yield surface expansion) and Spring 1 deforms and the tangent stiffness decreases
from infinity to k,. When P reaches P2, Slider 2 is triggered to slide, both Spring 1 and Spring 2
deform and the tangent stiffness is further reduced to k,/2. When P=P3, plastic deformation UP

increases to infinity, i.e., the material fails. The unloading is a mirror process of loading.

Py

P2

P1

Figure 6.6 Ilustration of responses of creep model in one-dimensional shear.
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A similar creep model can be constructed to characterized the volumetric behaviour of
materials (Fig.6.7), in which shear slip-dilatancy elements are also contributed to volumetric
behaviours. When the material is subject to a hydrostatic stress o,, each and every unit
experiences the same stress, and plastic volumetric strains €,” is the summation of the strain

spectrum of each spring-slip unit.

I)(l) D(Z) D(ﬂ)

%9

Q(l) Q(Z) Q(ﬂ)

Q(f) a(;)

Figure 6.7 Creep mechanical model of volumetric response.
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Figure 6.8 shows the mechanism of creep-type model, a combination of deviatoric (shear)
and volumetric responses with the vertical direction for the deviatoric behaviour (solid line) and

horizontal direction for the volumetric behaviour (thin solid line).

¢Sij
\/ ' Q(‘) D®

m Ml
~ [P

i

Q(n)

C(n) J; I
@

Figure 6.8 Mechanism of creep-type model for stress-based endochronic theory.
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6.1.3 Mixed-type models

The previous two sections indicate that either creep-type model or relaxation-type model
may be selected for describing the deviatoric behaviour or volumetric behaviour, respectively. A
cross-selection of a relaxation-type model and a creep-type model, for shear and volumetric
behaviours, gives alternative ways of modelling the constitutive behaviour of materials. These
models are of the mixed-type of creep-type and relaxation-type models.

Figure 6.9 shows the first mixed-type model, in which shear response is of creep-type (in

vertical direction) and volumetric response is of relaxation-type (in horizontal direction).

¢
X7 (;)
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sc(!) ‘?QD
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— C(Z) ? Q(g)

T

Figure 6.9 First mixed-type mechanical model.
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Figure 6.10 shows the second mixed-type model, in which volumetric response is of

creep-type and shear response is of relaxation-type.

AL
Q¥
)
’ q (;) G
o} —
D" D DP
AN M- AN

K13

Figure 6.10 Second mixed-type mechanical model.
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6.2 Formulation of Stress-based Constitutive Model

The stress-based model may be formulated by either the classical approach or energy
approach. Classical approach uses the force equilibrium equations and geometry relationship,

whereas the energy approach uses the principle of irreversible thermodynamics.

6.2.1 Classical Approach

We first consider a one-dimensional situation. Figure 4.2 implies that the slope of the
stress-strain curve at large deformation may be zero in some situations. To capture this failure
behaviour in Fig. 6.5, the spring element in the unit where maximum internal stress develops is
vanished. Figure 6.11 shows such a modified creep-type model for describing the deviatoric
behaviour of the material subject to a uniaxial load. The stresses and strains in frictional elements
are treated as internal variables. Internal deviatoric stresses are denoted as 0, 0%, 07, ..., 0",
and internal plastic deviatoric strains as ¢%, ¢, ¢, ... ¢, where O represents the maximum
internal stress and the other internal stresses are arranged in sequence by their magnitude. The
spring constants, which are model parameters, are assumed to be &%, &7, ... K for the
corresponding spring elements. When the material is loaded by a deviatoric stress S, the stress

equilibrium for a typical unit is:

S = Q(r)+k(r)q(r) 6.1)

The superscription (r) represents the r-th unit (r=0,1, ..., n.). In endochronic theory, the internal
stresses O™ are assumed to be proportional to the rate of internal strains as ¢ with respect to

intrinsic time (Valanis 1981). Therefore, the constitutive equations for the 7-th frictional element
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are:

()
0¥ = a2
24

where:
a,® = proportional constant

z, = deviatoric component of intrinsic time

S * Q(O)A

%&Qm Q®
k® é ;g QW Q®

k@ é ;% Q@ Q(l)‘

eP

Figure 6.11 A one-dimensional mechanical model with a yield and a failure point.

(6.2)
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Substituting of Eq. (6.2) into Eq. (6.1) gives:

S = al(r)_‘_idq_(r) +k(r)q(r)

2]
and ¢® (r+0) may be obtained by solving Eq. (6.3):

; zd B zh | dS
q® = {Cr(l-e é )EZ—/dz’
where:
z' = dummy variable
C.= k"
B.= k@ /a,”

and ¢ may also be obtained by solving Eq. (6.3) with &% = 0:

24
as
a® = [Ce ) B
o dz

where:

C,=1/a,”

(6.3)

(6.4)

(6.5)

Since all creep units are connected in series, the overall plastic strain can be calculated as the sum

of strains of all individual frictional elements (Fig.6.11):

n
r=0

(6.6)
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Substituting Eqs. (6.4) and (6.5) into Eq. (6.6) results:

P ds
e? = f(I)d(zd—z ’);z-/dz’ (6.7)
0
where:
®f(z) = Cz,+3y, C(1-e ) (6.8)
r=1

Equation (6.7) may be generalised for three-dimensional cases by using tensor expression as

follows:
#a ds.
el = f@d(zd—z ’)Zjldz' (6.9)
0

Equation (6.9) is the constitutive equation for deviatoric behaviour of grain en masse. Equation
(6.8) may be viewed as the kernel function of tensorial zones. The mechanical model of
volumetric behaviour is similar to that of deviatoric behaviour. Stress equilibrium in a r-th unit,

similar to Eq. (6.1), may be written as:

0, = 0 +K0g,” (6.10)

where:
o, = hydrostatic stress
Q, = internal hydrostatic stress variable

q, = internal hydrostatic strain variable
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K = hydrostatic bulk modulus

® = in r-th elastic element
However, unlike deviatoric behaviour, volumetric deformation has two sources: I) hydrostatic
compression, and ii) shear-induced dilation (Valanis and Peters 1991). The hydrostatic
compression is proportional to the rate of internal hydrostatic strain variables, and shear-induced
hydrostatic stress is proportional to the integration of complementary deviatoric plastic work:

" = aé"%’?—b“’?e{%dz’ (6.11)

where:

a," = constant

b® = constant

.z, = hydrostatic component of intrinsic time

Following the similar discussion for deviatoric behaviour, the hydrostatic constitutive equation

may be obtained:

o do, % p45,
& = fJ(zh-z')-?E-/-dz +fF(zh—z’)e,.j———/dz (6.12)
0 0 dz
= 1 -A :
J = Q) (e ) (6.13)
r=1

r
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c
T %F, & KxF, (6.14)
where:
J = hydrostatic kernel function
I'= coupling kernel function
A, =Ka,%, model parameter
J, = 1/a,”, model parameter
Iy = b“/a,”, model parameter
K, =K®
For materials with an initial yield point and a failure point, the deviatoric kernel function
expressed by Eq. (6.8) may be approximated by one linear term and one exponential term:
®, = Cpz, + C(1-e "% (6.15)

where:

C, C, and [, = material parameters
Under one-dimensional conditions, Eq. (6.15) is a mathematical representation of a mechanical
model consisting of a friction element and a friction-spring unit, as shown in Fig. 6.1 when n =1.
Here O™ and O'” define the initial yield point and the failure point, respectively, and z, represents
a deviatoric plastic strain scale.

Compared with deviatoric deformation, hydrostatic deformation is small for grain en
masse under most loading conditions. The linear term alone is a sufficient approximation to the

hydrostatic and coupling kernel functions (Valanis and Fan 1984):
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J = Jez, (6.16)

' = Ty(xFy) 'z, (6.17)

where:
J, = material parameter for simplified hydrostatic kernel function

I, = material parameter for simplified coupling kernel function

6.2.2 Energy Approach

Energy approach provides a unified way to formulate endochronic equations. When grain
en masse is loaded by a stress oy, energy is dissipated by friction elements and stored in spring
elements. Internal stresses T;; (stresses in friction elements) are responsible for the energy
dissipation, which are governed by the principle of irreversible thermodynamics. Gibbs free
energy, which is used for modelling creep-type behaviour, is stored in spring elements in terms of
applied stresses and internal stresses. The strain responses of the material are calculated by taking

the derivative of Gibbs free energy with respect to applied stresses:

) 9G(o,.,T))

809.

& (6.18)

where:
& ;= plastic strain tensor
0; = stress tensor

T;= internal stress tensor
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G( ) = Gibbs free energy density

Similarly, internal strains may be calculated as follows:

U = - 9G(0;,T})

where:
Uj; = internal strain tensor

Gibbs Free Energy

The total free energy in the system is the summation of the energy stored in each spring
element. It is assumed that internal stresses Tj; is resolved into deviatoric component Q; and
hydrostatic component Q, and that Gibbs free energy is also resolved into a deviatoric component
G, and hydrostatic component G,. For a typical spring element 7, the deviatoric stress acting on it
is s which is equal to the total stress s; less the internal deviatoric stress on the friction element
0,7, ie., 5,°=(s; - Q) (Fig. 6.11), and the corresponding strain of the spring element 'is

e, =s,/k"”. Therefore, the deviatoric component of Gibbs free energy stored in a single spring

element G, is determined as:

r 1 » ¢ 11 .
6o = Leosp 1Ly - o (6.20)

where:

G = deviatoric components of Gibbs free energy in r-th unit
s; = deviatoric stress tensor

0 = internal deviatoric stress variables
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| | = the norm (“length”) of tensor.

The total free energy stored in the system is the sum of energy stored in all spring elements:

n . 1 n ; .
Gy =), G = 52C%s, - o9 (6.21)

where:

G, = deviatoric components of Gibbs free energy

C® = 1/k®, material constants
Deviatoric stress s;, together with internal deviatoric stress Q... O,/, defines the deviatoric
state of the material. Similarly, for hydrostatic behaviours, hydrostatic component of free energy

may be written as:
1 - T r
G, = EED(’IOI,-Q"P (6.22)

where:
G, = hydrostatic components of Gibbs free energy
D® = material constants
0, = hydrostatic stress
0" = internal hydrostatic stress variables
| | = absolute value

Evolution equations

To calculate Gibbs free energy using Eqgs. (6.221) and (6.22), determinations of internal stresses

are necessary. Internal stresses are governed by the energy dissipation. Following the principle of
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irreversible thermodynamics, the rate of energy dissipation should be always positive for an

irreversible process:

dg? da®
gl Rt B RPN nd o2 | >0 .
9y [ dzd) a Y ( a (6.23)

where:
g, = internal deviatoric strains
g™ = internal hydrostatic strain
The above inequalities can be satisfied mathematically in many possible ways. A simple way is to

express O, and O as positive linear functions of internal strain rates (Valanis 1984):

)

aq.
n = N1y
0,7 = e’ (6.24)
»
(€3] = a(’)dq
0 O (6.25)

h

where
a, = positive constant (viscosity-like shear coefficient)
a,”” = positive constant (viscosity-like hydrostatic coefficient)
These equations assume that deviatoric and hydrostatic responses are independent. For grain en
. masse, however, shearing may cause volume changes (dilatancy). Therefore, Eq. (6.25) is
modified to account for shear-volume coupling by including shear work, which is calculated as the

product of the shear strain e”; and the shear stress rate (ds,/dz) integrated over the range of

86



hydrostatic intrinsic time:

» o (ds
» = a(r)dq _a(r) e P| 0|/ 6.26
where:

a,” = positive constant
By using Eq. (6.19), internal strains can be determined by differentiating Gibbs free energy

densities with respect to internal stresses:

oG oG
N _ _“7d ) = -k
A I T (6.27)
if
Substituting Eq. (6.27) into (6.24) and (6.26) yields:
r d aGd
0,9 + afl)—[ =0 (6.28)
&
dzd aQU
n_d [ G oo Bl
Q(") + a() = -a € -2 dz 6.29
2 dz,\ 30 ® 21.{ "\ dz (6.29)

Equations (6.28) and (6.29) are the evolution equations which may be used for determining the
internal stresses.

Stress-based Theory

Stress-based theory is obtained by solving Egs. (6.18) - (6.29). From Eq. (6.18), the deviatoric

and hydrostatic responses are written as:
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;=== and g =— (6.30)

where:
¢’; = plastic deviatoric strain tensor
€, = plastic hydrostatic strain

Substitution of Eq.(6.21) into Egs. (6.28) and (6.30), and performing the Laplace transformation

on the resulting equations gives:

el = 3 C%s -07] (6.31)
r=1
09 - a’C(s,-0,") = 0 (6.32)

- “where 7 is a transformation parameter; and an overhead bar (7) indicates that the variable is in the

transformed domain. Solving Eq. (6.32) for 0, and substituting it into Eq.(6.31) yields:

n
oP - (
e = ZC’)

r=1

1

1 -
s | e |
1+a](r)C(,-)t t by (6.33)

Using the convolution theorem of Laplace transformation expressed by Eq. (6.34) (Hirsch 1985):

Ly fie,~z20f 2Dzt = Lifi(z )t Lif(z )} (6.34)

0

where:
L{ } = Laplace transformation

the inverse Laplace transformation of Eq.(6.33) gives:
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Z4

ds,
ej = [@ulz,z)—dz (6.36)
0

s’

o, =Y coli-e ™) (6.35)

r=1

where:
@, = the deviatoric kernel function
BY = 1/(a,"C®), intermediate variable
Equation (6.35) may be viewed as the summation of an incremental constitutive equation
de /=@ ds; over the entire intrinsic time history, where @; is equivalent to a tangent compliance.
By noting that C® = C, and B® = B, Equations (6.35) and (6.36) are basically identical to
Eqgs.(6.7) and (6.8). Therefore, for materials with an initial yield point and a failure point, the
. deviatoric kernel function expressed by Eq. (6.36) may be approximated by one linear term and
one exponential term, as stated in Eq.(6.15).
Following a similar procedure, a constitutive equation similar to Eq. (6.35) is obtained for

the hydrostatic response:

¥ do, 7 Y,
&, = f.f(zh —z’)-—;d-z—/a’z + f[‘(zh -z0)e; Z;dz (6.37)
0 0
J= Y DOl -¢ ] (6.38)
r=1

89



(6.39)

where:
J = the hydrostatic kernel function
I'= the coupling kernel function
A9 = 1/(a,"D®)
For granular materials which are subject to large plastic deformations and negligible elastic

deformations, Equations (6.38) and (6.39) may be simplified as Eqs. (6.16) and (6.17).

6.3 Formulation of Strain-based Model

*+ - Strain-based model may be derived by either the classical or energy approaches. Both
approaches will yield to the same results, as in the case of creep-type model. Therefore,
relaxation-type model is formulated by energy approach only in this section, because of its unified
concept and solid physical basis of irreversible thermodynamics.

Strain-Based Theory

Helmholtz free energy is used for modelling the relaxation-type model (Valanis and Peters
1991). Following stress-based theory, Helmholtz free energy is assumed to be composed of a
deviatoric component and a hydrostatic component. For a given plastic strain, the energy stored in
the relaxation type mechanical models may be written as quadratic functions of applied strains and

internal strains (Fig.6.3):
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5 (s 1% ’
H,= EA,Ue;-’-qg‘-’lz and H;,=§§;B,l8i,’-q;f’l2 (6.40)
p

1
2:3
where:

H, = deviatoric components of Helmholtz free energy

H, = hydrostatic components of Helmholtz free energy

q; = deviatoric internal strain tensor

qy, = hydrostatic internal strain

A, = material constant

B, = material constant
Following the procedure used in deriving the stress-based model, internal shear stresses are
proportional to the rate of internal strains, internal hydrostatic stresses are proportional to the rate
of internal volumetric strains as well as the rate of plastic deviatoric work for shear-induced
volumetric deformations. Therefore, evolution equations for relaxation-type model may be
expressed as:

dq
(’)_b(") if
l” = P 6.
Qj 1 Ed ( 41)

(6.42)

14

0=p0H? o %

Oy Ty,
h
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where:
b,® = intermediate (viscosity-like) shear coefficient
b, = intermediate (viscosity-like) hydrostatic coefficient
b, = intermediate coupling coefficient

Following Eq.(6.30), internal stresses are related to internal strains as follows:

0 - 0 o
y= 5 ad Q=-— 6.43
s £ (6.43)

Substitution of Eq. (6.43) into Eqgs. (6.41) and (6.42) yields the following evolution equations:

oH, . 0 dql_j(r)

=0
5.0 1 dz, (6.44)
j
oH N dg® def
i g,
h

The stress responses to applied strains may be calculated from the derivative of Helmholtz

free energy with respect to the corresponding plastic strains (Valanis and Peters 1991):

oH, oH,
s, =—= and o, = — 6.46
" e Y (6.46)

Similarly as in stress-based model, the following constitutive equations can be obtained by

solving Eqs.(6.40) - (6.46):
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“a de?
s; = f‘I’d(zd—z ’);”/dz’ (6.47)

ZhlP /)dSZ , Zh /) deifdz/
= - + - P ———
o { Kz )—de [H(zh 2 (6.48)
where three kernel functions ¥, ¥, and II take the forms of:
P, =) g (6.49)
r=1
P, =Y Be (6.50)
r=1
IO =Y Ke (6.51)

where

o, = A/b,”, material constant

¢, =B/b,", material constant

K. = ({b,;?)/(xF,), material constant
Equations (6.47) to (6.51) are consistent with those of Valanis and Peters (1991).

For the mixed-type mechanical models, constitutive equations may be selected according
to the types of deviatoric and hydrostatic responses, respectively. Equations (6.35) and (6.48) are
for the first mixed-type mechanical model, and equations (6.37) and (6.47) are for the second

mixed-type mechanical model.
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6.4 Determination of Model Parameters

Model parameters for the strain-based theory have been determined by Xu (1992) for
wheat en masse. The following section discusses determination of model parameters for the
stress-based theory.

Model parameters for the stress-based theory were evaluated using triaxial test data
reported by Zhang et al.(1987) for wheat at a moisture content of 8.1% (w.b.) and a bulk density
of 817 kg/m’. Their data, collected from conventional cylindrical triaxial tests, include four sets of
data from axial compression tests at confining pressures of 20.7, 34.5, 48.3 and 62.1 kPa, and one
set from hydrostatic compression tests. Axial compression data for a confining pressure of 48.3
kPa and hydrostatic compression data were used in determining model parameters. Because the
definition of intrinsic time is the same as that used by Valanis and Peters (1991) in their strain-
based theory, all parameters associated with the intrinsic time remain identical to those determined
by Xu. et al. (1992) for the grain (Table 6.1). Detailed procedures for determining these
parameters can also be found in Xu et al. (1993). Determination of parameters associated with the
kernel functions are discussed in the following sections.

Under triaxial loading conditions, the deviatoric stress may be expressed as (Valanis and

Peters 1991):
s =5, +(s,-5)e (6.52)
where:

s = deviatoric stress under triaxial loading

5., = deviatoric stress at failure (at z, =) under triaxial loading
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s, = deviatoric stress at yield (at z, =0) under triaxial loading

¢, = material constant

Table 6.1. Model parameters determined for wheat at a moisture

content of 8.1% w.b. and a bulk density of 817 kg/m?

Elastic bulk modulus (K), kPa 2067"
Elastic shear modulus (G), kPa 27501
Coupling parameter (x) 1.13t

Hydrostatic hardening function (F,)

@, 0.7

a 8.8x107%1

c 73.21
Simplified coupling function (T",), kPa™! -7
Hydrostatic kernel function (J,), kPa! 0.154
Deviatoric kernel function (®,)

C,, kPa 2.92

B, 3164

C,, kPa’ 8.0x10

T Reported by Xu et al.(1993)
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When the material is subjected to axial compression as in the conventional triaxial tests, the plastic
volumetric strain increment de ? is negligible compared with the plastic deviatoric strain de®,
therefore de?/dz = 1 as indicated by Eq. (3.12) (de®; =de® under axial compression, thus de?; deP;

=(de?)). It follows from Eq. (3.14) that:

% - gl F (6.53)

Under axial compression, the deviatoric hardening function Fy may be expressed as (Valanis and

Peters 1991):

F; =0, +bs (6.54)

where b has a constant value of 0.408 (Valanis and Peters 1991). Combining Egs.(6.53) and

(6.54) yields:

de? = (o, + bs)dz, (6.55)

Substituting Eq. (6.52) into (6.55) and integrating the resulting equation gives:
P - b _ _ ' ¥4
e? = (0, + bs )z, - E(S" S)(1-e ™9 (6.56)

The deviatoric strain can also be calculated from Eqgs. (6.7) and (6.15) as follows:

e? = (Coz,+C)s-5)) - afs,- s)({, + 1) (6.57)

where I, and I, are the integrations:
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z; - 1, -
I = / az/dz/ = d, ey 4.1
L = [zl i { ) (6.58)

1 -0z -B,z .
z; 4., 1Za £
]2 = feﬁlzd“([}l‘“)z/dz/ = Bl‘a(e ¢ ) IfBl ¢ (6.59)
0 ze ifB, =«

If assuming B, # ¢, comparison of Eq. (6.57) with (6.56) results in:

e ¥4 = o P (6.60)

which indicates that 3; must be equal to . Eq. (6.52) suggests that o is the slope of (s, - S)Vs. z,

curve plotted in a semi-log scale. The ¢ value was determined to be 3164 by Xu (1992) for the
wheat used in this study.

Substituting Eq. (6.52) into (6.57) and rearranging the equation yields:

C’0 Co -0z,
e? = Cyzy(s.-sp) + (C, T ms) - (5. m5)(C, ——+Cize (6.61)

]

Differentiating Eq. (6.61) with respect to z, and then letting z, approach infinity, Eq. (6.62) is

obtained:.

(6.62)

Zgmo | S~ S0 dzd

97



Following a similar procedure, J, in the hydrostatic kernel function is determined as:

J—h'm[ 1 (6.63)
1 Ckh *

where:

0., = hydrostatic stress at z, = «

0, = confining pressure in triaxial test (at z, = 0)
The failure and yield stresses and strain rates at failure determined from data reported by Zhang et
al. (1986) are summarized in Table 6.2. The strain rate (de f/dz,) at z,~= was determined from
the slope of the curve for hydrostatic strain versus hydrostatic intrinsic time at a large z, value
(Fig. 6.12) (the slope remained almost constant for 2z, >0.3). The strain rate (def/dz,) at zy~ was
determined in a similar fashion from a plot of deviatoric strain versus deviatoric intrinsic time. The
-hydrostatic stress o, was calculated as (g, + 0.408s,) (Valanis and Peters 1991). From these data
C, and J; were determined to be 2.94 kPa, 0.154 kPa’, respectively.

Differentiating Eq. (6.61) with respect to z,, and then letting z, approach to zero yields:

-‘%’i[ = Cy(e-1)(s, - 5,) (6.64)
40

Another expression of the strain derivative may be obtained from Eq. (6.55):

de?

o (6.65)

0
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Table 6.2. Failure stresses and strain rates derived from triaxial test
data (0,=48.3 kPa) for wheat at a moisture content of 8.1%

w.b. and bulk density of 817 kg/m* (Zhang et al. 1986)

Deviatoric stress at failure (s,), kPa 57.8t
Hydrostatic stress at failure (0.), kPa 71.9
Deviatoric stress at yield (s,), kPa 33.41
Deviatoric strain rate at failure (deiif’/dzd) 71.6
Hydrostatic strain rate at failure (de,?/dz,) 3.62
Slope (o) 3164

T Reported by Xu et al. (1993)
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Figure 6.12 Variation of hydrostatic (volumetric) plastic strain with hydrostatic intrinsic time.
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Equating Egs. (6.64) and (6.65) yields:

(6.66)

The coefficient C, is calculated to be 8.0x10™ using Eq. (6.66). Parameter I', was calculated to be

-7 kPa™! using Eqgs. (6.12), (6.16), and (6.17) at €7=0.

6.5 Verification of Stress-based Endochronic Theory

The model parameters listed in Table 6.1 were used to predict the stress-strain behaviour
of wheat en masse under the axial compression with a constant confining pressure of 20.7 kPa.
The integrations of Eqs.(6.9) and (6.12) were carried out numerically. Model predictions
compared with the experimental data reported by Zhang et al. (1987) (Figs.6.13 and 6.14). The
predicted deviatoric stresses closely followed the experimental data with an average relative
difference of 4% and an average difference of 0.83 kPa. The average difference between predicted
and measured volumetric strain is 1.08x107, The relative difference could not be calculated for
volumetric strains because measured strains had zero values. Predictions by the stress-based
theory are consistent with those by the strain-based theory of Valanis and Peters (1991) (Figs.
6.13 and 6.14). It is interesting to note that predictions of volumetric strains averaged from stress
theory and strain theory are in closer agreement with the experimental data than either theory

alone (Fig. 6.14) because of the complementarity of the theories.
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Figure 6.13 Comparison of predicted deviatoric stresses with data reported by
Zhang (1987) for triaxial loading at a confining pressure of 20.7 kPa.
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Figure 6.14 Comparison of predicted volumetric strains with data reported by
Zhang et al. (1987) for triaxial loading at a confining pressure of 20.7 kPa.
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7. ENDOCHRONIC FINITE ELEMENT ALGORITHM

7.1 Grain-Storage System

A finite element algorithm of strain-based endochronic théory has been developed by Xu
(1992), in which the grain-storage system was assumed to consist of three components: (i) grain;
(ii) grain-structure interface; (iii) structure (bin wall). In this study, the same system is used for
model development. The constitutive laws for the structure and interface elements are the same as
that in Xu (1992). In this Chapter, the focus is on formulating stress-based endochronic theory for
the grain. Matrix expressions are given for an axisymmetric situation, because most on-farm

storage grain bins are cylindrical and grain pressures are considered to be axisymmetric.

7.2 Bin Wall Element

The bin wall, assumed to be made of steel, was considered to be linearly elastic. Hooke's
law was used to describe the bin wall behaviour (Zhang 1987, Xu 1992):

{do}=[D, de} (7.1)

where:

[D,] = the stress-strain matrix for the wall

{do} = stress vector

{de} = strain vector
For an axisymmetric thin-walled bin, the bin wall may be treated as a membrane in which no shear
stress develops. Therefore, the bin wall was discretized by a line element (Fig. 7. 1), and [D,,] was

expressed as:
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Figure 7.1 Discretization of grain bin system.
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1-v w

E |1 v,
[D,J=—= v (7.2)

TN

where:
E,, = elastic modulus of bin wall material

v,, = Poisson's ratio of bin wall material

7.3 Interface Element

In finite element analysis, the contact surface between two materials has common nodes
which undergo the same displacements. This implies that relative motions at the common nodes
are not allowed (displacement must be continuous). On the contact surface between the grain and
the wall, the grain is free to slide over the wall, thus creating a discontinuous displacement field
from the grain to the wall. To model the relative motion and force transaction between the grain

and bin wall, an interface element (Zhang et al. 1987, Xu 1992) should be used:

{do}=[D ]lde) (7.3)

where:
{do} = [do, do, do, do,]”
{de} = [de, de, de, de,]"

[D;] = stress-strain matrix for the interface

For an axisymmetric body, [D,] is expressed as (Xu 1992):
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d, d, d, 0]

d, d, d, 0

[D]]= (7.4)
d, d, d, 0

0 0 0 G,

where:

d; = A, E(1-v)/[(1+v)(1-2v)]

d, = A, Ev/[(1+v)(1-2v)]

E, = elastic modulus of interface in compression

v; = Poisson's ratio of interface

A, = participation factor (0.01 - 0.1)

G; = shear modulus of interface.
E, and v, can be expressed in terms of the initial elastic bulk modulus K, and initial shear modulus
G of the grain as described in the following section. The shear modulus (G;) was determined from

the frictional behaviour of grain on the wall (Xu 1992):

G=dt/dy=0.5(uo,-T)Yt/(NY) (7.5)

where:
u = friction coefficient between grain and bin
0, = normal stress
T = shear stress
t = thickness of the interface element

N = displacement modulus
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y = shear strain (s/t)

s = relative displacement

7.4 Grain Element
The grain element was modelled by stress-based endochronic theory described in the
previous Chapter. The constitutive equations are converted to the matrix forms in this section.
Using the definitions of deviatoric stress dS;=do;-do,8; and deviatoric strain de;=de;-
d,de,/3 (where d is the Kronecker delta), and the relationships represented by Eqs. (3.10) and

(3.11), the following constitutive equations were obtained:

do,=do,$ +dS,

=K, 8,(de,~dz}) +2G (de;~de /]

=(K,5,de, +2Gde,)~(K,d def,+2Gde ] (7.6)

which can be expressed in matrix form as:

{do}=[D,}lde}-{dA} (7.7)

where {do} and {de} are engineering stress and strain vectors for axisymmetric conditions. [D,]

is the initial elastic coefficient matrix given as:
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(D1 D2 D2 0
D2 DI D2 0
[De]= (7.8)
D2 D2 DI 0
0 0 0 G
and
4. 2
Dl:Kh+_§G’ D2=Kh--3—G (7.9)

The "plastic" stress vector {dH} is given as:

{dH} =K, dej{I}+2Gide P} (7.10)

in which {I}=[11 1 0]".

A graphical interpretation of Eq.(7.7) was given in Xu (1992).

7.5 Calculation of Plastic Strains
To calculate the "plastic” stress vector {dH}, numerical calculation of plastic strains is
necessary. By the property of convolution integral, an alternative expression of Eq.(6.9) may be

written as:

‘4D (z,-z")
ef = [ s’ (7.11)

0

Substitution of Eq.(6.15) into Eq.(7.11) gives:
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Zq
=Pz ‘Z/
ef = [(Cy+Ciye P s e’ (7.12)
0

Assume that the domain of integration (0, z,) was divided into n subregions. Then, the current

plastic strain can be calculated from previous step using Eq.(7.12):

24
- _—
@)y = €yt [ (CorCiBe Peres e’ (7.13)

(zd)n -1

Applying the first mean-value theorem to the above integral yields:

zg
= 4 ‘Z/
e, =€), @)= s, [ (CotCiBre Piea=dy gy 1 (7.14)
(zd)n-l
ie.,
(de)), = 8,1, (Codzy+Cy(1-¢ ") (7.15)

where z, is the current value of the deviatoric intrinsic time scale, and dz, corresponds to the
current incremental loading process.
Similarly, the hydrostatic plastic strain (de,P) is obtained by using Egs. (6.12), (6.16) and

(6.17):

r
(deh),=(dz),| 0,1, J; +(efds,) |z'=z,,71 (7.16)
Equation (7.16) shows that the plastic volumetric strain is caused by i) consolidation due to
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hydrostatic stress, and ii) shearing-volumetric coupling.
Equations (7.15) and (7.16) imply that no history of previous values should be stored to

obtain current values.

7.6 Endochronic Finite Element Algorithm
Following Xu (1992), express the constitutive relations for the wall, grain and interface in

a general matrix form:

{do}=[D]lde}-ldA) (1.17)

where [D] is now the elastic coefficient matrix, and {dH} is the plastic stress vector which is
equal to zero for the wall and interface.

Using the principle of virtual work, one may obtain (Xu 1992):

[ (6deidoldv= [ dduidXidv+ [ (B TIdS (7.18)
v v S, *

where:
{T} = surface traction force
{X} = unit volume body force
The differential displacement vector {du} is related to the differential nodal displacement vector

{dq} as follows:

{dut=[N)idg} (7.19)
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where:
[N] = the matrix of shape (interpolation) functions

Strains are related to the nodal displacements as:

(de)=29 _ [ p1iag)

obx}

where:

[B] = O[N]/9{x}, gradient matrix

By substituting Eqgs. (7.19), (7.20) and (7.17) into Eq. (7.18) one obtains:

{ddgy{ f [B)’[D][B]avidq}- [ [NTdXiav
- fS [N]FidD}dS - f [BIHdH)av]=0

The non-trivial solution of Eq.(7.21) gives:

[K1ldg)=ldP)+dP )

where:

[K]= f V[B]T[D][B]dv
(aP)= [ [NY'dXidv+ fS [NIFdT)dS

(ap)= [ [BI"\dH\dV

(7.20)

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)

The stiffness matrix [K] remains constant during the iterative process, therefore, updating is

110



unnecessary. Comparing with linear elastic formulation, only the force vector is corrected by

adding or subtracting the plastic force vector {dP,} during iterations.

7.7 Solution Technique

The solution technique developed by Xu (1992) for strain-based model was used with a
slight modification to obtain solutions to Eq.(7.22). The method has been shown to yield a rapid
convergence and to permit large load increments. The solution procedure can be summarized as
follows:

1. Apply a load increment {dP} and determine the corresponding increments of elastic
stress {do'}, and strain {de'}, using the relationship [K]{dq}={dP}.

2. Update stresses and strains: {0'}, = { 0, } + {d0'}, and {€'},={€,}+{d€"}, .

3. Initiate dz, by taking the plastic strain as a fraction of the total strain, e.g.,
{deP},=0.1{de'},.

4. Calculate {dH}, using dz,, and update stresses: {0'}, = {0'}, + {dH},.

5. Compute the residual force vector: {R} = {dP}-{R,}, where R is the unbalanced force
vector, and R, is the internal nodal force vector corresponding to the current state of stress.

6. Stop the iteration process if:

—

<TOL
1P| (7.26)

where]. |is the norm of a vector and TOL is a prescribed small tolerance
7. Resolve [K]{dq}={R} to find {do'}, and {de'}, and repeat Steps 2 to 6.

In theory, the smaller the tolerance, the greater the number of iterations, and the higher the
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accuracy. However, an excessively small tolerance may accumulate the truncation errors. In this
study, the tolerance was 1%. A Fortran program was written based on the above algorithm
(Appendix ). The elements used in the program are four-node quadrilateral elements as described
by Zhang (1987). The program was developed for both stress-based and strain-based endochronic
theories. The program flowchart of strain-based endochronic FEM (Xu 1992) was applicable to
stress-based endochronic FEM as well. The graphical illustration of the iteration process, with the

explanation of the solution principle, can be found in Xu (1992).

7.8 Validation of Finite Element Algorithm

The endochronic finite element model was validated using experimental data reported by
Zhang (1987) for a model bin. The bin was made of 0.8 mm thick aluminum with a height of 1.2
m and a diameter of 0.9 m. The cylindrical bin wall was considered to be hinged at the rigid bin
floor. The bin structure and external loads were assumed to be axisymmetric; therefore, only half
of the bin was modelled. Because the bin is classified as a shallow bin, Rankine's theory was also
used as a comparison.

The grain in the bin was Larned wheat with a bulk density of 817 kg/m®, Poisson's ratio of
0.29, a moisture content of 8.1% d.b. and an internal friction angle of 25°. The endochronic model
parameters shown in Table 5.1 were used in modelling.

The bin was divided into 10 equal layers in the vertical direction and 5 equal sections in
the radial direction (Fig.7.1). There is a total of 75 elements in the system. The FORTRAN codes
were executed on an IBM 3090 mainframe computer at the University of Manitoba. The average

number of iterations for each load increment was about 4.
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Comparison of model prediction with experimental data

The model predictions were compared with both experiment data and FEM prediction
reported by Zhang (1987) or Rankine's theory (Table 7.1). Predictions of both microscopic and
endochronic finite element models were within the 95% confidence interval of the measured data,
whereas predictions of other FEM or Rankine's theory were not. The difference in percentage of
measured mean were shown in Table 7.1. Rankine's theory does not consider friction between
grain and the wall, therefore it predicts higher lateral pressure. At height of 12 cm (near bottom),
the prediction by Rankine's theory was beyond the 95% confidence interval (Table 7. 1). At height
of 37.5 cm, all the models except Rankine's predict lower lateral pressure than measured mean. At
the other two levels, predictions by endochronic finite element models or microscopic models
were in good agreement with experiment data, their relative differences were within 5%. The
average differences of three levels were within 6% for any models developed in this study. These
comparisons show that the proposed endochronic finite element models can satisfactorily predict

the static lateral pressures in grain storage bins.
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Table 7.1. Comparison of static lateral pressures (kPa)

Height Predictions Zhang et al. (1987)
(cm) Stress-based Strain-based Microscopic Mean (95%CI) FEM Rankine

12.0  3.03 (4.1%)" 3.03(4.1%) 2.95(1.4%) 2.91(2.77,3.04) 2.992.7%) 3.51(20.6%)
37.5 2.34(9.6%) 2.32(103%) 2.33(10.0%) 2.59(2.29, 2.90) 2.13(18.1%) 2.68(3.5%)

63.0 1.61(3.6%) 158(54%) 1.67(0.0%) 1.67(1.43,1.9) 1.45(13.2%) 1.85(10.8%)

T Relative difference to mean measured values

* 95% Confidence Interval
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8. SUMMARY AND CONCLUSIONS

In this study, theories of bin loads have been developed from both microscopic and
macroscopic approaches. By studying the microstructure of granular media at the particle level, an
analytical microscopic theory has been developed for predicting static loads for the first time. The
new theory accounts for the contributions of particle deformations to load, and Janssen’s equation
was derived as a special case of the present theory with an assumption of rigid particles. The new
theory has been extended for the analysis of hygroscopic and discharge loads. For hygroscopic loads,
dynamic microstresses are calculated from moisture-induced volumetric expansion of grain kernels.
For discharge loads, the overpressure factor is predicted from the dilatancy angle, the internal friction
angle, and the structural angle of the stored grain. The theory relates lateral pressure during discharge
to shear-induced dilatancy. This has brought our understanding of bin loads to the particle level. The
theory has been validated against the experimental data for both model bins and a full-size bin.

A class of mechanical models has been constructed for modeling the shear-volumetric
coupling behavior of granular materials at macroscopic level. Endochronic theories have been
developed by using these mechanical models. The proposed endochronic theories have been verified
against triaxial test data for wheat. A finite element algorithm has been developed for analysis of static
loads in axisymmetric grain bin systems by using the stress-based endochronic theory for the stored
grain. The endochronic finite element model was validated against the experimental data from Zhang
(1987).

From the study, the following conclusions were drawn:

1. The microscopic theory provides alternative analytic equations for predicting static,
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hygroscopic, and discharge loads using microscopic parameters.

Janssen's equation, recommended by most design standards and codes, is a special case of the
microscopic theory, with the assumption of rigid particles.

The lateral to vertical pressure ratio (k value) is a function of stresses, depth, the structural
angle of the particle assembly, and Poisson’s ratio of particles (particle rigidity).

The behavior of granular media can be modeled by endochronic theories. For wheat at a
confining pressure of 20.7 kPa, stress-based endochronic theory predicts deviatoric stresses
with an average relative difference of 4% and a mean absolute difference of 0.8kPa. The
average difference between predicted and measured volumetric strain is 1.08x10%,

Model parameters of endochronic theories can be evaluated from cylindrical triaxial tests.
The proposed FEM predicts static lateral pressures within 95% Confidence Intervals of

measured data.
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9. RECOMMENDATIONS FOR FURTHER WORK

In this study, the system of granular media in storage structure has been studied,
microscopically and macroscopically. The theories have been validated against experimental data.
These models provide rational way of calculating the static, hygroscopic, and discharge loads. The
recommendations for further work are as follows:

1. Determine experimentally the maximum dilatancy angle for agricultural products.

2. Extend the microscopic model to include cohesive materials.

3. Investigate the complementarity of stress-based and strain-based endochronic theories.

4. Extend the finite element model to include the finite strain case and Newtonian time for dynamic

analysis.
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APPENDIX LIST OF FINITE ELEMENT CODES

A FORTRAN PROGRAM FOR FINITE ELEMENT ANALYSIS
OF GRAIN-BIN SYSTEMS
USING ENDOCHRONIC MODELS & INITIAL STRESS METHOD

oNoNoNoNeNe!

IMPLICIT REAL*8(A-H,0-2)
INTEGER NEY,NEX NE,NDF KSTAGE
..... (NC1, NC2, NC3 ) ARE USED TO DEFINE SIZES OF ARRAYS

NDF: NUMBER OF DEGREE OF FREEDOM

NE: NUMBER OF ELEMENT

A(NDF,NDF): STIFFNESS MATRIX

F(NDF):  FORCE VECTOR

DISP(NDF): DISPLACEMENT VECTOR

UNDF):  DISPLACEMENT INCREMENT VECTOR

STE(): STRESS

STN():  STRAIN

STER():  STRESS INCREMENT

STNR():  STRAIN INCREMENT

STEE(4): ELEMENT STRESS

STNE(4): ELEMENT STRAIN

DZ(D): INTRINSIC TIME FOR ELEMENT I

Q10,Q2():BACK STRESS

HZ() : "PLASTIC" STRESS VECTOR

XC@4]):  X-COORDINATE FOR ELEMENT I

YC@4,):  Y-COORDINATE FOR ELEMENT I

MODEL: 1 FOR STRESS-BASED THEORY; OTHERS FOR STRAIN-BASED

ohoNoNeNoNoNoNoNoNeNoNoRoRoRo oo RoRoRe)

PARAMETER(NC1=480,NC2=960,NC3=240)
DIMENSION UNC1),U1(NC1),DISP(NC1),F1(NC1),RZ(NC1),B(NC1,NC1)
DIMENSION STEE(4),STNE(4),DEP(4),DSTE(4),F4(4)
COMMON/CODE/KI,KO,MODEL
COMMON/KMAT/A(NCI,NC1),F(NC1)
COMMON/STREN/STE(NC2),STN(NC2), STER(NC2),STNR(NC2)
COMMON/WALL/HBIN,RBIN, TBIN,EMW,PRW
COMMON/INTF/EMIN,EMIH,PRI,CKW,CKB,CFW,CFB, THR, TBI, TWI
COMMON/LOADS/DEN,DPS1,DPS2,CT,NDEP,NSCH] NSCH2
COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3),YC(4,NC3) KWALL
COMMON/CONST/PA,PL,NN2,NN4,NN8
COMMON/ENDO/DZ(NC3),EVP(NC3), VP(NC3),Q1(NC2),Q2(NC2)
COMMON/PARAM/EK EG,GAMA EKA FID,AL1,A1 FI1 AE.CE
COMMON/PARS/G1,C0,CC1,HJ1 BI
COMMON/F/HZ(NC2),HS(NC2),HZ1(NC2), YA1(NC2), YA2(NC2)

C.... CONSTANTS
KI=$
KO=6
NN2=2
NN4=4
NN8=8



PA=10.13
PI=3.14159
TOLF=0.01D0
NITZ=6

C
C INPUT AND OUTPUT PARAMETERS
C

READ(KI,*) MODEL
G, CONTROLL PARAMETERS
READ(KI,*) KOUT ,NDEP,NSCH1,NSCH2 NITM,TOL
READ(KI,*) NEX,NEY
G BIN PARAMETERS
READ(KI,*) HBIN,RBIN,TBIN,EMW,PRW,CT
WRITE(KO,3) HBIN,RBIN,TBIN,EMW ,PRW,CT
FORMAT(5X,BIN PARAMETERS:',/10X,'HEIGHT=',T35,F15.4/10X,
*RADIUS=,T35,F15.4/10X,'WALL THICKNESS='T35,F15.4/10X,
*ELASTIC MODULUS=,T35,E15.4/10X,'POISSON RATIO=',T35,F15.4/1 0X,
*COEFF OF CONTRACTION="T35,E15.4//))
G, INTERFACE PARAMETERS
READ(KL*) EMIN,EMIH,PRI,CKW,CKB,CFW,CFB,THR
WRITE(KO,4) EMIN,EMIH,PRI,CKW,CKB,CFW,CFB,THR
4 FORMAT(5X,INTERFACE PARAMETERS:',
*/10X,ELASTIC MODULI=',T30,2E15.4/10X,
*POISSON RATIO=',T30,F15.4/10X,DISP MOULI =, T30,2F15.4/10X,
*FRICTION COEFF='T30,2F15.4/10X,
*RATIO OF WIDTH TO HEIGHT=',5X F15.4//)
G, SURCHARGE LOADS
READ(KI,*) PS1,PS2
WRITE(KO,9) PS1,PS2
FORMAT(5X,LOAD VALUES:'/10X,'SURCHARGES=",T35,2F15.4/10X,
* J/5X,50("*)/N)
G, GRAIN PARAMETERS (endochronic MODEL)
READ(KI,*) EK,EG,GAMA EKA FID
READ(KI,*) AL1,A1,FI1,AE,CE
READ(KL*) G1,C0,CC1,HJ1,B1
WRITE(KO,16) G1,C0,CC1,HJ1,BI
16 FORMAT(2X,' ENDOCHRONIC MODEL PARAMETERS (STRESS-BASED):"//5X,
*COUPLING COEFF..GAMA1',T35,F15.4/5X,
*KERNEL FUNCTION:CO0,CC1,J1',T35,3E10.3/5X,
*BETAL: ', T35,E10.3,//5X,50("*"//)
WRITE(KO,17) EK,EG,GAMA EKA FID,AL1,A1,FI1,AE,CE
17 FORMAT(2X,' ENDOCHRONIC MODEL PARAMETERS (STRAIN-BASED):"//5X,
*MODULL K,G ', T35,2E15.4/5X,
*COUPLING COEFF..GAMA EKA',T35,2F15.4/5X,
*KERNEL FUNCTION:FID,AL1,A1',T35,3E10.3/5X,
*HARDENING FUNCTION:FI1,AE,CE ', T35,3E1 0.3/5X,/I5X,50("*")//)
READ(KI,*) DEN,ANG
C
C GRADING
CALL MGRID(NEX,NEY,NE,NDF NGF)
NST=4*NE
C INITIALIZATION
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KSTAGE=0
IF(NDEP.EQ.0) KSTAGE=1
CALL INULV(DISP,NC1)
CALL INULV(EVP,NC3)
CALL INULV(VP,NC3)
CALL INULV(STE,NC2)
CALL INULV(STN,NC2)
CALL NULVEC(Q1,NC2)
CALL NULVEC(HZ NC2)
CALL NULVEC(DZNE)

LOADING LOOP STARTS HERE

eXeXe ke ke

... INCREMENT OF LOAD
IF(NSCH1.GT.0) DPS1=PS1/FLOAT(NSCHI)
IF(NSCH2.GT.0) DPS2=PS2/FLOAT(NSCH2)
NSCH=NSCHI1+NSCH2
NSCHE=NSCH+1
C....SURCHARGE LOOP; INCREMENT = 1, NSCHI+MSCH2
DO 200 KS=1,NSCHE
IF(NDEP.GT.0) DEN=DEN/FLOAT(NDEP)
KW=NDEP
IF(KW.LE.O) KW=1
C....LOADS LOOP; INCREMENT = 1, NDEP
DO 100 KL=1,KW
CALL NULVEC(YAI1,NC2)

FORM AND SOLVE SYSTEM EQUATION

oNON!

CALL NULVEC(HZ1,NC2)
CALL FORCE(F,NE,NEX,NEY,NDF)
ZNORM=0.0D0
DO 166 I=1,NDF

166  ZNORM=ZNORM+F(D)*F()
DO 43 M=1,NDF
FIQMM)=FQM)+F1(M)

43  CONTINUE

C
C CALCULATE INITIAL ELASTIC RESPONCE
C

CALL STIFF(NEX,NEY,NE,NDF)
CALL MODIFY(NDF,NEY,NEX)

C --- CALCULATE NEW DISPLACEMENT VALUES
CALL SOLVE(U,NDF)

C --- CALCULATE AND UPDATE STRESSES AND STRAINS
CALL STRESS(NEY,NEX,NE,U)
DO 75 I=1,NST
STE()=STE(D)+STER()
STN(D)=STN(I)+STNR(I)

75  CONTINUE

C....ACCUMULATE DISPLACEMENTS
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DO 85 I=1,NDF
DISP(I)=DISP(I)+U()
85  CONTINUE

C
C ITERATION FOR UNBALANCED FORCES
C

DO 111 KF=1,6
CALL INTRIN(NE,NST)
DO 150 I=1,NST
STE(D)=STE()+HZ(D)
QI(D=Q2()
YAID=YA2(D)
150 CONTINUE
WRITE(6,*)'HZ:' (HZ(D),I=1 NST)
C --- CALCULATE AND UPDATE STRESSES AND STRAINS
CALL FMOD(NE,NDF,F1)
CALL STIFF(NEX,NEY,NE,NDF)
CALL MODIFY(NDF,NEY,NEX)
C**** CHECK IF THE SOLUTION IS REACHED ( ERR < TOLERENCE )
C....CALCULATION OF NORMALS
RNORM=0.0D0
DO 66 I=1,NDF
66  RNORM=RNORM+F(I)*F(I)
RATIO=RNORM/ZNORM
WRITE(KO,330) KZ,RATIO,RNORM,ZNORM
330 FORMAT(1X,TTERATION'14,4X RESIDUAL' 3E12.4)
C --- CALCULATE NEW DISPLACEMENT VALUES
CALL SOLVE(U,NDF)
C --- CALCULATION AND UPDATE STRESSES AND STRAINS
CALL STRESS(NEY,NEX,NE,U)
DO 175 I=1,NST
STE(D)=STE()+STER(])
STN(D)=STN(I)+STNR(])
175 CONTINUE
C....UPDATE INTRINSIC TIME COMPONENT
DO 37 I=1.NE
VP(D)=VP(D)+EVP()
37  CONTINUE

IFRATIO.LE.0.01) GOTO 95
111  CONTINUE
C END OF ITERATION
WRITE(KO,94) RATIO

94 FORMAT(1X//5X,50(*)/10X, "*#+#++ WARNING ****' /5K
*PLASTIC FORCE FAILED TO CONVERGE'/10X,RATIO ="E15.4///)
CALL OUTPUT(NE,NEY ,NEX,0,KOUT,DISP,TEMP)
STOP
C
95 CALL TENCHK(NE,NEX,NEY)
C IF NO GRAIN/INTERFACE ELEMENTS ARE IN TENSION, CONTINUE
C....UPDATE BACK STRESSES
DO 550 I=1,NST

Q1(M=Q2()
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550 CONTINUE

106 CONTINUE

C END OF INCREMENT OF LOADS

C

C OUTPUT RESULTS

C

C STATIC PRESSURE WITHOUT SURCHARGE
WRITE(6,*)'STE:'
CALL WRT(NE,NST,STE)
CALL OUTPUT(NE,NEY,NEX KSTAGE . KOUT,DISP,TEMP)
IF(NSCH.EQ.0) GOTO 210

110  IF(KSTAGE.GT.1) GOTO 210

200 CONTINUE

C END OF INCREMENT OF SURCHARGE
C STATIC PRESSURE WITH SURCHARGE

210

oNoNe!

10
111

CALL OUTPUT(NE NEY ,NEX KSTAGE ,KOUT,DISP,TEMP)
STOP
END

SUBROUTINES FOR THE SYSTEM

SUBROUTINE WRT(NE,NST,W)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION W(NST)

DO 10 I=1,NE

J1=4*1

J0=J1-3

WRITE(6,111) L(W(J),J=J0,J1,1)

FORMAT(1X,15,4D15.6)
RETURN
END

AUTOMATIC GRIDING
SUBROUTINE MGRID(NEX,NEY,NE,NDF,NGF)
MGRID(NEX,NEY,NE,NDF,NGF)

PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-2)

DIMENSION X(NC3), Y(NC3)
COMMON/CODE/KL,KO,MODEL

COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3),YC(4,NC3),KWALL

COMMON/WALL/HBIN,RBIN,TBIN,.EMW,PRW
COMMON/INTF/EMIN,EMIH,PRI,CKW,CKB,CFW,CFB,THR,TBI, TWI
CALL NULMAT(XC,4,NE)

CALL NULMAT(YC,4,NE)

RTB=0.01D0

WRITE(6,*)RTB :'\RTB

XN=RBIN/FLOAT(NEX)

YN=HBIN/FLOAT(NEY)

C TBI=THICKNESS OF INTERFACE(BOTTOM); TWI(WALL)

TBI=RTB*XN
TWI=RTB*YN
NX1=NEX+]
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1

80

10

20

50

70

NX2=NEX+2
NYI1=NEY+1
NE=NX2*NEY+NEX
NGF=NX2*NY1+NX1
NDF=2*NGF
DO1I=14

DO 1J)=1NE

ND(,J)=0
C KODE= -1/BOTTOM INTERFACE; 0/WALL 1/INTERFACE; 4/GRAIN

DO 80 I=1,NX1

KODE()=-1

X(D)=XN*FLOAT(-1)
Y(1)=0.0D0

KODENX1)=4

XNX1)=XNX1)-TWI

DO 10 J=1,NY1

Y1=(J-1)*YN

IF(JEQ.1)Y1=Y1+TBI

11=(J-1)*NX2+NX1

DO 10 I=1,NX2

=11+

Y(D)=Y1

KODE(I)=4

IF(LEQ.NEX) KODE(Il)=1

IF(LEQ.NX1) KODE(II)=0

CONTINUE

DO 20 I=1,NX2
X1=(I-1)*XN

X11=X1

DO 20 J=1,NY1
JI=(J-1)*NX2++NX1
IF.EQ.NX1)X1=X11-TWI
IFI.EQ.NX2)X1=X11-XN

XAI)=X1

DO 50 I=1,NE
K=l

IF(L.GT.NEX)K=I+1

ND(1,h)=K

ND(2,)=K+1

IF(KODE(I).EQ.0) ND(2,)=NX2+K
IF(KODE(I).EQ.0) GOTO 50
IF(LLE.NEX)K=I-1
ND(3,)=K+1+NX2
ND(4,)=K+NX2

CONTINUE

DO 70 I=1,NE

DO 70 J=1,4
J1=ND(.])
IF(J1.LE.0) GOTO 70
XCUD=X(1)
YCU,D=Y(I1)

CONTINUE
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C DETERMINING ELEMENT TYPE FOR BIN WALL:
CKWALL =0/THIN WALL; 1/ THICK WALL

DR=RBIN/FLOAT(NEX)

RATIO=TBIN/DR

KWALL=0

IF(RATIO.GE.10.0D0) KWALL=1

RETURN

END

o R— MODIFYING [K] {U} = {F} (ACCORDING TO BC'S)
SUBROUTINE MODIFY(NDF,NEY,NEX)

C MODIFY(NDF,NEY,NEX)
PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-Z)
COMMON/KMAT/A(NC1,NC1),F(NC1)

NC=NEX*2+3

NM=NC+NEY+1

DO 10 I=1,NM

K=I

IF(L.GT.NC)K=I+NC-1

IF(L GT.QNC+2))K=(I-NC-2)*(NEX+2)*2+2*NC+1
CALL MZERO(NDF K)

10  CONTINUE
RETURN
END

c GLOBAL STIFFNESS MATRIX A
SUBROUTINE STIFF(NEX,NEY,NE,NDF)

o STIFF(NEX,NEY,NE,NDF)
PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION ND2(8),CORD(4,2),WEIT(3),SAMP(3),DER(2,4),DERV(2,4),
*DERW(2),DERVW(2),BE(4,8),BT(8,4),BTDB(8,8),FUN(4),
*STEE(4),STNE(4), BEW(2,4),BTW(4,2),BTDBW(4,4), FUNW(2),
*D(4,4),DB(4,8),DW(2,2).DBW(2,4)
REAL*8 KE(8,8),JINV(2,2),JAC(2,2)
COMMON/KMAT/ANCI,NCI),F(NC1)
COMMON/STREN/STE(NC2),STN(NC2),STER(NC2),STNR(NC2)
COMMON/INTF/EMIN,EMIH,PRI,CKW,CKB,CFW,CFB, THR, TBI, TWI
COMMON/WALL/HBIN,RBIN, TBIN,EMW PRW
COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3),YC(4,NC3),KWALL
COMMON/CONST/PA,PL,NN2,NN4,NN8
COMMON/PARAM/EK EG,GAMA,EKA FID,AL1,A1FI1 AE,CE
COMMON/PARS/G1,C0,CC1,HJ1,B1

NST=4*NE
DO 10 I=1,NDF
DO 10 J=1,NDF
10 A(L)H=0.0D0
C GAUSSIAN POINTS AND WEIGHT
CALL GAUSS(NGP,SAMP,WEIT)
C CALCULATION OF ELEMENT STIFFNESS MATRIX [K]e
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C.... DO FOR EACH ELEMENT
DO 100 I=1,NE
CALL INULV(ND2,NN8)
CALL NULMAT(KE,NN8,NN8)
KOD=KODE(])
DO 15J=14
J1=4*(I-1)+]
STEE(J)=-STE(J1)
STNE(})=-STN(J1)
CORD(J,1)=XC({.,D
CORD(J,2)=YC({J,D)
K1=2*ND(J,D)
IF(K1.LE.0) GOTO 15
ND2(2*J-1)=K1-1
ND2(2*J)=K1
15  CONTINUE
C STRESS-STRAIN MATRIX
C... THIN WALL
IF(KOD.EQ.0.AND.KWALL.EQ.0) CALL DMATW(DW,EMW,PRW)
C THICK WALL
IF(KOD.EQ.0.AND KWALL EQ.1) CALL DMATE(D,EMW,PRW)
C FLOOR INTERFACE
IF(KOD.EQ.-1) CALL DMATI(D,STEE,STNE,KOD,EG,EK)
C WALL INTERFACE
IF(KOD.EQ.1) CALL DMATI(D,STEE,STNE,KOD,EG,EK)
C GRAIN
IF(KOD.GE.3) CALL DMATG(D,EG,EK)
CH¥sxtreok INTEGRATION OF [B]TID][B] dv
IF(KOD.NE.0.OR KWALL.NE.0) GOTO 40
C....1-D LINEAR ELEMENT (THIN WALL ELEMENT)
C DO 35J=1,NGP

C C=WEIT(J)
C X=SAMP())
C=2.0
X=0.0
CALL SHPFW(FUNW,DERW,X)

VIAC=DERW(1)*CORD(1,2)+DERW(2)*CORD(2,2)
DERVW(1)=DERW(1)/VIJAC
DERVW(2)=DERW(2)/VJAC
CALL NULMAT(BEW,NN2,NN4)
CALL BWMAT(BEW,DERVW,FUNW,RBIN)
CALL MATMUL(DBW,DW,NN2,NN2, BEW,NN2,NN4)
CALL MATRAN(BTW,BEW,NN2,NN4)
CALL MATMUL(BTDBW,BTW,NN4,NN2,DBW,NN2,NN4)
COEF=DABS(VJAC)*C*2.0DO*PI*RBIN*TBIN
DO 35 K1=1,NN4
DO 35 K2=1,NN4
KE(K1,K2)=KE(K1,K2)+BTDBW(K1,K2)*COEF

35  CONTINUE
GOTO 65

40  CONTINUE

C....2-D QUADRILATERAL ELEMENT
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DO 60 J1=1,NGP
DO 60 J2=1,NGP
C1=WEIT(J1)
C2=WEIT(J2)
X=SAMP(J1)
Y=SAMP(J2)
C1=2.0
C2=2.0
X=0.0
Y=0.0
CALL SHPFUN(UN,DER,X,Y)
CALL MATMUL(JAC,DER,NN2,NN4,CORD,NN4,NN2)
CALL INVBY2(JAC,JINV,.DETM)
CALL MATMUL(DERV,JINV,NN2,NN2,DER,NN2,NN4)
CALL BEMAT4(BE, EQR,DERV,FUN,CORD,NN4)
CALL MATMUL(DB,D,NN4,NN4,BE, NN4,NN8)
CALL MATRAN(BT,BE,NN4,NN8)
CALL MATMUL(BTDB,BT,NN8,NN4,DB,NN4,NN8g)
COEF=DABS(DETM)*C1*C2*2.0DO*PI*EQR
DO 60 K1=1,NN8
DO 60 K2=1 NN8
KE(K1,K2)=KE(K1,K2)+BTDB(K1,K2)*COEF
60  CONTINUE
C INSETRT ELEMENT STIFFNESS MATRIX INTO GLOBAL MATRIX
65 DO 80 J1=1,NN8
DO 80 J2=1,NN8
IA=ND2(J1)
JA=ND2(J2)
IF(IA.LE.0.OR.JA.LE.0) GOTO 80
A(IAJAY=A(IA, JAY+KE(J1,12)
80  CONTINUE
246  FORMAT(1X,8E10.4)
100  CONTINUE

oNoNoNoNeoXe!

RETURN
END

C

C CALCULATION OF STRESS AND STRAIN
SUBROUTINE STRESS(NEY,NEX,NE,U)

C STRESS(NEY,NEX,NE,U)

PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-7)

INTEGER NN4,NN8

DIMENSION UNC1)

DIMENSION ND2(8),D(4,4),BE(4,8),DSN(4),DSS(4),DSNT(4),

* CORD(4,2),WEIT(3), SAMP(3),DER(2,4),DERV(2,4),

* FUN(4),DEF(8),STEE(4),STNE(4),DW(2,2), BEW(2,4). FUNW(2),
* DERW(2),DERVW(2),DSNW/(2),DSSW(2),DEFW(4)

REAL*8 JAC(2,2),JINV(2,2)

COMMON/CODE/KI,KO,MODEL
COMMON/STREN/STE(NC2),STN(NC2),STER(NC2),STNR(NC2)
COMMON/WALL/HBIN,RBIN,TBIN,EMW PRW
COMMON/INTF/EMIN,EMIH,PRI,CKW,CKB,CFW,CFB,THR, TBL, TWI
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COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3), YC(4,NC3),KWALL
COMMON/CONST/PA,PLNN2,NN4,NN8
COMMON/PARAM/EK EG,GAMA EKA FID,AL1,A1 FI1 AE,CE
COMMON/PARS/G1,C0,CC1,HJ1,B1
NST=4*NE
CALL NULVEC(STER,NST)
CALL NULVEC(STNR,NST)
C GAUSSIAN POINTS AND WEIGHT
CALL GAUSS(NGP,SAMP,WEIT)
c
DO 100 I=1,NE
CALL INULV(ND2,NN8)
KOD=KODE(I)
DO 5 J=14
J1=(-1)*4+J
STEE(J)=-STE(J1)
STNE(J)=-STN(J1)
CORD(J,1)=XC({J.,D)
CORD(J,2)=YC({,D)
K1=2*ND(J,])
IF(K1.LE.0) GOTO 5
ND2(2*J-1)=K1-1
ND2(2*J)=K1
5  CONTINUE
IF(KOD.NE.0.OR KWALL.NE.0) GOTO 10
Crrkkkkrtkkprkiiik GRADIENT MATRIX FOR 1-D THIN WALL ELEMENTS
C C=WEITQ2)
X=SAMP(2)
CALL SHPFWFUNW,DERW,X)
VIAC=DERW(1)*CORD(1,2)+DERW(2)*CORD(2,2)
DERVW(1)=DERW(1)/VIAC
DERVW(2)=DERW(2)/VJAC
CALL NULMAT(BEW,NN2,NN4)
CALL BWMAT(BEW,DERVW,FUNW,RBIN)
C....STRAINS AND STRESSES FOR 1-D ELEMENTS
DO 6 J=1,NN4
JI=ND2(J)
IF(JJ.LE.0) GOTO 6
DEFW()=U(JT)
6  CONTINUE
CALL MVMUL(DSNW,BEW,NN2,NN4,DEFW NN4)
CALL DMATW(DW,EMW,PRW)
CALL MVMUL(DSSW,DW,NN2,NN2,DSNW,NN2)
CALL NULVEC(DSN,NN4)
CALL NULVEC(DSS,NN4)
DO 8 J=1,NN2
DSN(T)=DSNW(J)
DSS()=DSSW(J)
8  CONTINUE
GOTO 90
C************************** GRADIENT MATRIX FOR 2_D ELEMENTS
10 7=
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=2
X=SAMP(J1)
Y=SAMP(J2)
CALL SHPFUN(FUN,DER X,Y)
CALL MATMUL(JAC,DER,NN2,NN4,CORD,NN4,NN2)
CALL INVBY2(JAC,JINV,DETM)
CALL MATMUL(DERYV,JINV,NN2,NN2,DER,NN2,NN4)
CALL NULMAT(BE,NN4,NN8)
CALL BEMATA4(BE,EQR,DERV,FUN,CORD,NN4)
DO 15 J=1,NN8
JI=ND2(J)
DEF()=U(JJ)
15  CONTINUE
CALL MVMUL(DSN,BE,NN4,NN8,DEF,NN8)
DSN(3)=0.5DO*DSN(3)
C....STRESS-STRAIN MATRICES
30  IF(KOD.GE.3) CALL DMATG(D.EG,EK)
IF(KOD.EQ.-1) CALL DMATI(D,STEE,STNE,KOD,EG,EK)
IF(KOD.EQ.1) CALL DMATI(D,STEE,STNE,KOD,EG,EK)
CALL MVMUL(DSS,D,NN4,NN4,DSN,NN4)
C ....STRESS INCREMENT IS 'DSS'
90 DO 80 J=1,NN4
J1=(-1)*4+]
STER(J1)=DSS(J)
STNR(J1)=DSN(J)
80  CONTINUE
100 CONTINUE
RETURN
END

C GLOBAL FORCE VECTOR
SUBROUTINE FORCE(F1,NE,NEX,NEY,NDF)

C FORCE(F1,NE,NEX,NEY,NDF)
PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION ND2(8),F1(NDF),CORD(4,2),FE(8)
COMMON/WALL/HBIN,RBIN, TBIN,EMW PRW
COMMON/INTF/EMIN,EMIH,PRI,CKW,CKB,CFW,CFB,THR, TBI, TWI
COMMON/LOADS/DEN,DPS1,DPS2,CT,NDEP,NSCH1,NSCH2
COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3),YC(4,NC3), KWALL
COMMON/CONST/PA,PI,NN2 NN4,NN8

CALL NULVEC(1,NDF)
DO 20I=1,NE
KOD=KODE()
IF(KOD.LT.3) GOTO 20
CALL INULV(ND2,NNB)
DO 50 J=1,4
CORD(J,1)=XC(I.D
CORD(J,2)=YC(J.D
K1=2*ND(,D
IF(X1.LE.0) GOTO 50
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ND2(2*J-1)=K1-1
ND2(2*J)=K1
50  CONTINUE
CALL WEIGHT(FE,],CORD,NEY,NEX)
C IF(KSTAGE.EQ.1.AND.KS.LENSCHI) CALL SCHG1(FE,CORD)
C  CALL SCHG2(FE,,CORD,NEX,NEY)
C....INSERT ELEMENT FORCE VECTOR INTO GLOBAL VECTOR
DO 30 J=1,NN8
JI=ND2(J)
IF(JILE.0) GOTO 30
F1(JT)=F1(J1+FEQ)
30 CONTINUE
20  CONTINUE
RETURN
END

C GLOBAL "PLASTIC" FORCE VECTOR
SUBROUTINE FMOD(NE,NDF,F1)

c FMOD(NE,NDF,F1)
PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION ND2(8),CORD(4,2), WEIT(3),SAMP(3),DER(2,4).DERV(2,4),
* BE(4,8),FUN(4),DSTE(4),STEE(4), DEP(4),F4(4).FZ8(8),BTE(8),
* BEW(2,4),FUNW(2),DERW(2),DERVW(2),F1(NC1)
REAL*8 JINV(2,2),JAC(2,2)
COMMON/ENDO/DZ(NC3),EVP(NC3), VP(NC3),Q1 (NC2),Q2(NC2)
COMMON/F/HZ(NC2),HS(NC2),HZ1(NC2), YAI(NC2), YA2(NC2)
COMMON/PARAM/EK EG,GAMA,EKA FID,AL1,A1,FI1,AE,CE
COMMON/PARS/G1,C0,CC1,HJ1 BI
COMMON/KMAT/A(NCI,NC1),F(NC1)
COMMON/STREN/STE(NC2),STN(NC2),STER(NC2),STNR(NC?2)
COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3), YC(4,NC3) KWALL
COMMON/WALL/HBIN,RBIN, TBIN,EMW PRW
COMMON/CONST/PA,PLNN2,NN4,NN8

CALL NULVEC(F,NDF)
CALL GAUSS(NGP,SAMP,WEIT)
DO 100 I=1,NE
KOD=KODE(l)
CALL NULVEC(FZ8,NN8)
CALL NULVEC(F4,4)
CALL INULV(ND2,NN8)
DO 15 J=1,4
J1=4*(I-1)+]
STEE(J)=STE(J1)
CORD(J,1)=XC{J.D)
CORD(J,2)=YC({J.,D)
K1=2*ND(J,D)
F(K1.LE.0) GOTO 15
ND2(2*J-1)=K1-1
ND2(2*J)=K1

15  CONTINUE
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CALL SHIFT(STE,F4,1,1)
IF(KOD.NE.0) GOTO 40
C....1-D LINEAR ELEMENT (THIN WALL ELEMENT)
C DO 606 =1 NGP

C C=WEIT()
C  X=SAMP(J)

C=2.0

X=0.0

CALL SHPFW(FUNW,DERW,X)

VJAC=DERW(1)*CORD(1,2)+DERW(2)*CORD(2,2)
DERVW(1)=DERW(1)/VIAC
DERVW(2)=DERW(2)/VIAC
CALL NULMAT(BEW,NN2,NN4)
CALL BWMATBEW,DERVW,FUNW,RBIN)
CALL NULVEC(BTF,NNS)
DO 6 K1=1,NN4
DO 6 K2=1,NN2
BTF(K1)=BTF(K1)+BEW(K2,K1)*F4(K2)
6  CONTINUE
COEF=DABS(VJAC)*C*2.0DO*PI*RBIN*TBIN
DO 606 K1=1,NN4
FZ8(K1)=FZ8(K1)+BTF(K1)*COEF
606 CONTINUE
GOTO 65
40  CONTINUE
C....2-D QUADRILATERAL ELEMENT
DO 60 J1=1,NGP
DO 60 J2=1,NGP
C1=WEIT(J1)
C2=WEIT(J2)
X=SAMP(J1)
Y=SAMP(J2)
C1=2.0
C2=2.0
X=0.0
Y=0.0
CALL SHPFUNFUN,DER X, Y)
CALL MATMUL(JAC,DER NN2,NN4,CORD,NN4,NN2)
CALL INVBY2(JAC,JINV,DETM)
CALL MATMUL(DERV,JINV,NN2,NN2,DER,NN2,NN4)
CALL BEMATA4(BE, EQR,DERV,FUN,CORD,NN4)
CALL NULVEC(BTF,NN8)
DO 61 K1=1,NN8
DO 61 K2=1,NN4
BTFK1)=BTF(K1)+BEK2,K1)*F4(K2)
61  CONTINUE
COEF=DABS(DETM)*C1*C2*2.0DO*PI*EQR
DO 60 K1=1,NN8
FZ8(K1)=FZ8(K1)+BTF(K1)*COEF
60  CONTINUE
C¥¥#*x4 INSERT ELEMENT FORCE VECTOR INTO GLOBAL VECTOR
65 DO 80 J2=1NN8

oNoNoNoNoNe]
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80
100

JA=ND2(J2)

IFJA.LE.0) GOTO 80

FUJA)=F(JA)+FZ8(J2)
CONTINUE
CONTINUE

DO 200 J=1,NDF

FO=F1()-F()

C  WRITE(6,%)F: (F(),I=1,NDF)

RETURN
END

INTRINSIC TIME DZ(NE)

SUBROUTINE INTRIN(NE,NST)

33

44

100

oNoNONORP]

INTRIN(NE,NST)
PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-Z)
COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3),YC(4,NC3) KWALL
COMMON/STREN/STE(NC2),STN(NC2),STER(NC2),STNR(NC2)
COMMON/F/HZNC2),HS(NC2),HZ1(NC2), YAI(NC2), YA2(NC2)
COMMON/ENDO/DZ(NC3),EVP(NC3), VP(NC3),Q1 (NC2),Q2(NC2)
COMMON/PARAM/EK,EG,GAMA EKA FID,AL1,A1,FI1,AE,CE
COMMON/PARS/G1,C0,CC1,HJ1,B1
DIMENSION STEE(4),STNE(4),SR(4),Q(4),5(4)
CALL NULVEC(DZNE)
CALL NULVEC(HZ NST)
CALL NULVEC(Q2,NST)
DO 100 I=1,NE
KOD=KODE(I)
IFKOD.LT.3) GOTO 100
CALL SHIFT(STN,SR,],1)
VSTN=SR(1)+SR(2)+SR(4)
CALL SHIFT(HZ1,STNE,L1)
CALL SHIFT(STE,STEE,L 1)
DO 33 J=1,4
STNE(J)=-STNE())
STEE(J)=-STEE(J)
HMODEL.EQ.1) GOTO 44
Z1=0.0D0
CALL YLD(I,STEE,VSTN,Z1,F1)
IF(F1.LE.0.01D0) ZR=0.0D0
IF(F1.GT.0.01D0) CALL MULLR(I,STEE,VSTN,Z1,F1,ZR)
DZ{)=ZR

CALL DHZ(I.STEE,Q)

CALL SHIFT(HZ,Q,L0)
CONTINUE

RETURN

END

SUBROUTINES FOR THE ELEMENTS
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SUBROUTINE TENCHK(NE,NEX,NEY)
TENCHK(NE,NEX,NEY)

101

10

102

90

100

PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-2)
COMMON/CODE/KI,KOMODEL

COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3),YC(4,NC3) KWALL
COMMON/STREN/STE(NC2),STN(NC2),STER(NC2),STNR(NC2)

DO 100 I=1,NE
KOD=KODE()
IF(KOD.EQ.0) GOTO 100
CALL NUMB(I1,12,13,14,))
S1=STE(1)

S2=STE(I2)

S3=STE(I3)

IF(KOD.GE.2) GOTO 10
IF(S1.LE.0.0D0.AND.S2.LE.0.0D0) GOTO 100
WRITE(KO,101) I :

FORMAT(I1X/5X, ****%% WARNING ****¥¥ /SK
*INTERFACE ELEMENT NO.',3X,13,3X, 'IN TENSION")
GOTO 90

IF(S1.LE.0.0D0.AND.S2.LE.0.0D0) GOTO 100
WRITE(KO,102) I

FORMAT(1X/SX,#***+* WARNING *¥##++¥ /3%
*GRAIN ELEMENT NO.'3X,13,3X, "IN TENSION")

IF(S1.GT.0.0D0) STE(I1)=-0.1D0
IF(S2.GT.0.0D0) STE(12)=-0.1D0
IF(STE(14).GT.0.0D0) STE(14)=-0.1D0

CONTINUE
RETURN
END

SURCHARGE PRESSURE (CENTER)

SUBROUTINE SCHG1(FE,CORD)
SCHG1(FE,CORD)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION FE(8),CORD(4,2)
COMMON/LOADS/DEN,DPS1,DPS2,CT,NDEP,NSCHI,NSCH2
COMMON/CONST/PA,PL,NN2,NN4,NN8

CALL NULVEC(FE,NN8)

IF(CORD(1,1).NE.0.0D0) RETURN
WL=0.5D0*(CORD(4,2)-CORD(1,2))

RAVG=5.0D0

C THIS SHOULD BE THE RADIUS OF THE PRESSURE DEVICE IN CM

A=2.0DO*PI*RAVG*WL
PF=DPS1*A/2.0D0
FE(1)=PF

FE(7)=PF

RETURN

END

ANY GRAIN/INTERFACE ELEMENTS = TENSION ?
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C

BODY FORCES

SUBROUTINE WEIGHT(FE,LLCORD,NEY,NEX)

C

WEIGHT(FE,,CORD,NEY ,NEX)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION FE(8),CORD(4,2)

COMMON/WALL/HBIN,RBIN, TBIN,EMW,PRW
COMMON/LOADS/DEN,DPS1,DPS2,CT,NDEP,NSCH] NSCH?2
COMMON/CONST/PA,PL,NN2,NN4,NN8

CALL NULVEC(FE,NN8)
A=(CORD(2,1)-CORD(1,1))*(CORD(3,2)-CORD(2,2))
PRES=DEN*A*P1/6.0D0
FE(2)=PRES*(2.0D0*CORD(1,1)+CORD(2,1))
FE(4)=PRES*(CORD(1,1)+2.0D0*CORD(2,1))

FE(6)=FE(4)

FE(8)=FE(2)

RETURN

END

SURCHARGE PRESSURE (TOP)
SUBROUTINE SCHG2(FE,L,CORD,NEX,NEY)
SCHG2(FE,J,CORD,NEX,NEY)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION FE(8),CORD(4,2)
COMMON/WALL/HBIN,RBIN,TBIN,EMW PRW
COMMON/LOADS/DEN,DPS1,DPS2,CT,NDEP,NSCH1,NSCH2
COMMON/CONST/PA,PLNN2,NN4,NN8

CALL NULVEC(FE,NN8)

A=PI*RBIN*RBIN
PRES=DPS2/A*PI/3.0D0*(CORD(3,1)-CORD(4,1))
FE(6)=PRES*(2.D0*CORD(3,1)+CORD(4,1))
FE(8)=PRES*(CORD(3,1)+2.D0*CORD(4,1))
RETURN

END

PSEUDO FORCE VECTOR {EP}

SUBROUTINE DHZ(I,STEE,F4)
DHZ(I,STEE,F4)

IMPLICIT REAL*$(A-H,0-Z)
PARAMETER(NC1=480,NC2=960,NC3=240)

DIMENSION Q(4),STEE(4),S(4),F4(4),5Q(4)
COMMON/CODE/KI,KO,MODEL
COMMON/STREN/STE(NC2),STN(NC2),STER(NC2), STNR(NC2)
COMMON/F/HZ(NC2),HS(NC2),HZ1(NC2), YAI(NC2), YA2(NC2)
COMMON/ENDO/DZ(NC3),EVP(NC3),VP(NC3),Q1 (NC2),Q2(NC2)
COMMON/PARAM/EK EG,GAMA EKA FID,AL1,A1 FI1 AE.CE
COMMON/PARS/G1,C0,CC1,HJ1,B1

CALL NULVEC(F4,4)

CALL NULVEC(S,4)

CALL NULVEC(Q,4)

CALL NULVEC(SQ,4)

CALL DS(S,STEE,SH)

Z1=DZ(D)
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TF(SH.EQ.0.0D0) WRITE(6,*)'WARNING:ZERO HYDROSTATIC STRESS'
IF(SH.EQ.0.0D0) RETURN

C FH: Hydrostatic Hardening function

220

23

300

24

FH=(1.0D0-FI1)*AE*DEXP(CE*(1.D0-DEXP(-DBLE(VP(D)))))+FI1*SH
IF(MODEL.EQ.1) GOTO 300

CALL SHIFT(Q2,Q,L,1)

DO 220 J=1,4

SQM=5(N-QW)

SQ2=S(1)*SQ(1)+S(2)*SQ(2)+S(4)*SQ(4)+2.D0*S(3)*SQ(3)
DZG=Z1*2 DO*EG/FID/SH
DZK=Z1*EK/FH/EKA*(SH-GAMA/FID/SH*SQ2)
DO 23 J=1,4

F4(1)=DZG*SQU)+DZK
F4(3)=(F4(3)-DZK)*0.5D0
RETURN

CALL SHIFT(STNRF4,1,1)

CALL DS(Q,F4,SHD)
Z0=Q(1)*Q(1H+Q(2)*Q()+Q(4)*Q(4)+2.D0*Q(3)*Q(3)+SHD*SHD*EKA*EKA
Z0=0.1*DSQRT(Z0)
CALL SHIFT(STER,F4,1,1)
CALL DS(SQ,F4,SHD)
CALL SHIFT(STN,F4,,1)
CALL DS(Q,F4,SHD)
SQ2=Q(1)*SQ(1)+Q(2)*SQ(2)+Q(4)*SQ(4)+2.D0*Q(3)*SQ(3)
BZ1=DABS(B1*Z0/SH)
IF(BZ1.LE.1.0D-7) BZ1=1.0D-6
DZG=2.DO*EG*(CO*Z0/SH+CC1*(1.0-DEXP(-BZ1)))
DZK=Z0*EK/FE/EKA*(SH*HJ1+G1/2.0D0*SQ2)
WRITE(6,*) 'Z0,DZG,DZK:",70,DZG,DZK
DO 24 J=1,4

FA()=DZG*S(J)+DZK
FA(3)=(F4(3)-DZK)*0.5D0
RETURN
END

TIME ZONE F=0

SUBROUTINE YLD(I,STEE,VSTN,Z1,F1)
YLD({,STEE,VSTN,Z1,F1)

IMPLICIT REAL*8(A-H,0-7)
PARAMETER(NC1=480,NC2=960,NC3=240)

DIMENSION Q(4),STEE(4),S(4),F4(4),DSH(4),SQ(4),QI(4)
COMMON/CODE/KI,KO,MODEL
COMMON/STREN/STE(NC2),STN(NC2),STER(NC2),STNR(NC2)
COMMON/F/HZ(INC2),HS(NC2),HZ1(NC2),YAI(NC2),YA2(NC2)
COMMON/ENDO/DZ(NC3),EVP(NC3),VP(NC3),Q1(NC2),Q2(NC2)
COMMON/PARAM/EK EG,GAMA EKA FID,AL1,A1,FI1,AE,CE
COMMON/PARS/G1,C0,CC1,HJ1,BI

CALL NULVEC(F4,4)

CALL NULVEC(S.4)

CALL NULVEC(Q,4)

CALL NULVEC(QL4)

CALL NULVEC(SQ.4)
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CALL NULVEC(DSH,4)
K=0
VPI=VP()+VSTN

C Fd=SH

5
30

DO5J=14

DSH@J)=STEE(])
CALL DS(S,DSH,SH)

K=K+1
IF(SH.EQ.0.0D0) WRITE(6,*)WARNING:ZERO HYDROSTATIC STRESS'
IF(SH.EQ.0.0) RETURN

CALL SHIFT(Q1,Q,L1)

C FH: Hydrostatic Hardening function

oNoNoNeoNe!

20

DEVI=CE*(1.D0-0.84D0*DEXP(VPI))
FH=(1.0D0-FI1)*AE*DEXP(DEVI)+FI1*SH
IF(FH.LT.SH) FH=SH

IF(MODEL.EQ.1) GOTO 300
ALZ=DBLE(AL1*Z1/SH)
EALZ=DEXP(-ALZ)

1 -al*dzd

S(ZD-QZi) = ----- [ S(ZD-QZi-)e ]

1+a

A=A1/AL1*(1.0D0-EALZ)FID+YA1(D)

YA2(D)=A

DO 20 II=1,4

QIAN=(QUI)*EALZ+S(I)*A)/(1.0D0+A)
SQAI=(SAL)-QUI*EALZ)/(1.0D0+A)

C SQ2: 5()Q()

23

300

SQ2=S(1)*SQ(1)+S(2)*SQ(2)+S(4)*SQ(4)+2 DO*S(3)*SQ3)
IF(K.GT.1) GOTO 99

DZG=Z1*2. DO*EG/FID/SH
DZK=Z1*EK/FH/EKA*(SH-GAMA/FID/SH*SQ2)
EVP(I)=-DZK/EK

DO 23 J=1.4

F4(T=DZG*SQU)+DZK

DSH(J)=STEE(J))-F4(J)

F4(3)=DZG*SQ(3)*0.5D0
DSH(3)=STEE(3)-F4(3)
IF(K.LE.1) CALL SHIFT(HZ,F4,1,0)
IF(K.LE.1) CALL SHIFT(Q2,QLL0)
IF(X.LE.1) GOTO 30
QQ=SQ(1)*SQ(1)*+SQ(2)*SQ(2)+SQ(4)*SQ(4)+2.D0*SQ(3)*SQ(3)
DEVP=(SH-GAMA/FID/SH*SQ2)/FH
F1=QQ/((FID*SH)**2)+DEVP*DEVP-1.0D0
RETURN

CALL SHIFT(STN,F4,11)
CALL DS(SQ,F4,SHD)
CALL SHIFT(STNR,F4,1,1)
CALL DS(Q,F4,SHD)
Z0=Q(1*Q(1)+Q(2)*Q2)+Q(4)*Q(4)+2.D0*Q(3)*Q(3)+SHD*SHD*EKA*EKA
Z0=DSQRT(Z0)
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IF(Z1.GE.Z0) Z1=20

IF(Z1.LE.1.0D-10) Z1=1.0D-10

CALL SHIFT(STER,F4,1,1)

CALL DS(Q,F4,SHD)
SQ2=Q(1)*SQ(1)HQ(2)*SQ(2)+Q(4)*SQ(4)+2.D0*Q(3)*SQ(3)

C IF(Z1.E.1.0D-8) Z1=1.0D-8
BZ1=DABS(B1*Z1/SH)

C DZG=C0/2.0D0+C1/Z1/BZ1*(1.0D0-DEXP(-BZ1))
DZG=CO0/SH+CC1*(1.0D0-DEXP(-BZ1))/Z1
DZK=(SH*HJ1+G1/2.0D0*SQ2)/FH
QQ=S(1)*S(1)+S(2)*S(2)+S(4)*S(4)+2.D0*S(3)*S(3)
F1=QQ*DZG*DZG+DZK*DZK-1.0D0
WRITE(6,%) 'Z1, 20:",Z1,20,DZG,DZK F1:\ DZG,DZK F1
WRITE(6,%) 'C1,B1,C0,QQ:",CC1,B1,C0,QQ
RETURN
END

C DEVIATORIC STRESS
SUBROUTINE DS(S,STEE,SH)

C DS(S,STEE,SH)
IMPLICIT REAL*$(A-H,0-Z)
DIMENSION STEE(4),S(4)
SH=(STEE(1)+STEE(2)+STEE(4))/3.0D0
DO 10 II=1,4

10 S(ID=STEE(II)-SH
S(3)=STEE(3)

RETURN
END

C MULLER'S METHOD
SUBROUTINE MULLR(L,STEE,VSTN,Z1,F1,ZR)
C MULLR(I,STEE,VSTN,Z1,F1,7R)
IMPLICIT REAL*8(A-H,0-7)
DIMENSION STEE(4)
DATA NLIM,ZTOL,FTOL/10,1.0E-6,1.0E-2/
C INITIAL VALUES
FC=F1
72=1.0D-9
73=1.0D-8
CALL YLD(LSTEE,VSTN,Z2,F2)
IF(F2.LE.0.1D0) THEN
ZR=72
RETURN
END IF
CALL YLD(L,STEE,VSTN,Z3,F3)
IF(F3.LE.0.1D0) THEN
ZR=73
RETURN
END IF
C ITERATIONS
DO 20 J=1,NLIM
H1=72-71
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H2=73-72
G=H1/H2
A=(F3*G-F2*(1.0D0+G)+F1)/(H1*H1+F2))
B=(F3-F2-A*H2*H2)/H2
C=F2
BAC=B*B-4.0D0*A*C
IF(BAC.LT.0.0D0) THEN
WRITE(6,*)' B*B - 4*A*C <0’
ZR=0.0D0
RETURN
END IF
DISC=DSQRT(BAC)
IF(B.LT.0.0D0) DISC=-DISC
CROOT OF A¥V*#2 + B¥V +C =0
DELX=-2.0D0*C/B+DISC)
C UPDATE ZR
ZR=Z2+DELX
CALL YLD(,STEE,VSTN,ZR FR)
C STOPPING CRITERIA
FCR=FR/FC
IF((ABS(FCR).LE.FTOL).OR.(FR LE.0.1D0)) THEN
IC=2
RETURN
END IF
C SELECT 3 POINTS FOR THE NEXT ITERATION(IN ASCENDING ORDER).
C DELX> 0, CHOOSE 72,73,.XR
C DELX <0, CHOOSE Z1,72,XR
IF(DELX.GE.0.0D0) THEN
Z1=72
F1=F2
IF(DELX.GT.H2) THEN
72=73
F2=F3
Z3=ZR
F3=FR
ELSE
72=7R
F2=FR
END IF
ELSE
73=72
F3=F2
IF(ABS(DELX).GT.H1) THEN
Z2=71
F2=F1
Z1=ZR
F1=FR
ELSE
Z2=7R
F2=FR
END IF
END IF
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20  CONTINUE
C
IC=-1
WRITE(6,200)NLIM,ZR, FR
RETURN
200 FORMAT( TOL NOT MET AFTER "4, ITERATIONS Z =,
* E12.5/F=",E12.5)
202 FORMAT(/ Z TOL MET IN'J4, ITERATIONS Z=
* E12.5/F =" E12.5)
203 FORMAT(/F TOL MET IN',l4,; ITERATIONS Z =,
* E12.5/F =" E12.5)
END
o
C
C SUBROUTINES FOR PROPERTY MATRICES [D]
c
c
C PROPERTY MATRICES [D]
C [D] FOR INTERFACE (BOTTOM)
SUBROUTINE DMATI(D,STEE,STNE,KOD,EG,EK)
C DMATI(D,STEE,STNE,KOD,EG,EK)

IMPLICIT REAL*8(A-H,0-2)
REAL*8 D(4,4),STEE(4),STNE(4)
COMMON/INTF/EMIN,EMIH,PRI,CKW,CKB,CFW,CFB, THR, TBL, TWI
N=4

CALL NULMAT(DON,N)

EC=0.01D0
IF(K.EQ.0)WRITE(6,*)'PARTICIPATION FACTOR:'EC
EEG=EG*EC

EEK=EK*EC

CALL DMATG(D,EEG,EEK)

ES=ABS(STNE(3))

IF(ES.LT.1.0E-5) ES=1.0D-5

IF(KOD.EQ.-1) THEN

SN=0.29D0*ABS(STEE(2))

TINT=TBI

CL=0.044D0

GC=5.0D0

ELSE

SN=0.19D0*ABS(STEE(1))

TINT=TWI

CL=0.02D0

GC=1.5D0

END IF
G=0.5D0*(SN-ABS(STEE(3)))*SQRT(TINT/ES/CL)
IF(G.GT.GC) G=GC

IF(G.LT.0.01D0) G=0.01D0

D(3,3)=G

IF(K.EQ.0)WRITE(6,*)'TINT:, TINT

K=1

RETURN

END
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ELASTIC (HOOKE LAW FOR AXISYMETRIC) [D]
SUBROUTINE DMATE(D,EM,PR)
DMATE(D,EM,PR)

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 D(4,4)

N=4

CALL NULMAT(D,N,N)
C1=EM*(1.0D0-PR)/((1.0D0O+PR)*(1.0D0-2.0DO*PR))
C2=PR/(1.0D0-PR)*C1
C3=0.5D0*(1.0D0-2.0D0*PR)/(1.0D0-PR)*C1
D(1,1)=C1

D(1,2)=C2

D(1,4)=C2

D(2,1)=C2

D(2,2)=C1

D(2,4)=C2

D(3,3)=C3

D(4,1)=C2

D(4,2)=C2

D(4,4)=C1

RETURN

END

[D] FOR GRAIN

SUBROUTINE DMATG(D,EG,EK)
DMATE(D,EG,EK)

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 D(4,4)

N=4

CALL NULMAT®D,N,N)
C1=EK+4.0D0/3.0DO*EG
C2=EK-2.0D0/3.0D0*EG
D(1,1)=C1

D(1,2)=C2

D(1,4)=C2

D(2,1)=C2

D(2,2)=C1

D(2,4)=C2

D(@3,3)=EG

D(4,1)=C2

D(4,2)=C2

D(4,4)=C1

RETURN

END

[D] (ELASTIC) FOR 1-D WALL
SUBROUTINE DMATW(D,EM,PR)
DMATW(D,EM,PR)

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION D(2,2)
C=EM/(1.0D0-PR*PR)
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D(1,1)=C
D(1,2)=PR*C
D(2,1)=PR*C
D(2,2)=C
RETURN
END

SUBROUTINES FOR FEM FUNCTIONS

SHAPE FUNCTION: FUN(4)=[N]; DER(2,4)=[N"]

cloNoRoRoNoNoKe!

[N] FOR 2-D
SUBROUTINE SHPFUN(FUN,DER,X,Y)
SHPFUN(FUN,DER,X,Y)
IMPLICIT REAL*S8(A-H,0-Z)

INTEGER L,J

REAL*8 DER(2,4),FUN(4)
X1=0.25D0*(1.0D0-X)
X2=0.25D0*(1.0D0+X)
Y1=0.25D0%(1.0D0-Y)
Y2=0.25D0%(1.0DO+Y)
FUN(1)=4.0D0*Y1*X1
FUN(2)=4.0D0*Y1¥X2
FUN(3)=4.0D0*Y2*X2
FUN(4)=4.0D0*Y2*X1

DER(1,1)=-Y1

DER(1,2)=Y1

DER(1,3)=Y2

DER(1,4)=-Y2

DER(2,1)=-X1

DER(2,2)=-X2

DER(2,3)=X2

DER(2,4)=X1

RETURN

END

o}

C [N]FOR 1-D WALL
SUBROUTINE SHPFW(FUN,DER,X)

C SHPFW(FUN,DER,X)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION FUN(2),DER(2)
FUN(1)=0.5D0*(1.0D0-X)
FUN(2)=0.5D0*(1.0D0+X)
DER(1)=-0.5D0
DER(2)=0.5D0
RETURN
END

C
C GRADIENT MATRIX [B] BE(4,8)=[N'] (DERV(2,4))
Cc
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C [B] FOR LINEAR QUADRALATERAL
SUBROUTINE BEMATA4(BE,SUM,DERV,FUN,CORD,NN4)
C BEMAT4(BE,SUM,DERV,FUN,CORD,NN4)
IMPLICIT REAL*8(A-H,0-Z)
INTEGER NN4
REAL*8 DERV(2,4),FUN(4),CORD(4,2),BE(4,8)
NN8=8
CALL NULMAT(BE,NN4,NN8)
SUM=0.0D0
DO 5 I=1,NN4
SUM=SUM+FUN(I)*CORD(L,1)
5 CONTINUE
DO 10 I=1,NN4
12=2%]
I1=I2-1
BE(1,I1)=DERV(L,])
BE(2,12)=DERV(2,])
BE(3,11)=DERV(2,])
BE(3,12)=DERV(L,])
BE(4,11)=FUN(I)/SUM
10  CONTINUE
RETURN
END
C
C [B] FOR 1-D WALL
SUBROUTINE BWMAT(BE,DERV,FUN,R)
C BWMAT(BE,DERV,FUNR)
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 DERV(2),FUN(2),BE(2,4)
NN2=2
NN4=4
CALL NULMAT(BE,NN2,NN4)
BE(1,1)=FUN(1)R
BE(1,3)=FUN(2)RR
BE(2,2)=DERV(1)
BE(2,4)=DERV(2)
RETURN
END
C
C
c SUBROUTINES FOR MATHEMATIC CACULATIONS
o
o
C GAUSSIAN POINTS SAMP(3), WEIGHT WEIT(3)
SUBROUTINE GAUSS(NGP,SAMP,WEIT)
o GAUSS(NGP,SAMP,WEIT)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION SAMP(3),WEIT(3)
NGP=3
SAMP(1)=0.2D0*SQRT(15.0D0)
SAMP(2)=0.0D0

SAMP(3)=-SAMP(1)
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WEIT(1)=5.0D0/9.0D0
WEIT(2)=8.0D0/9.0D0
WEIT(3)=WEIT(1)
RETURN

END

MATPMI1,N2)=MATI(M1,M2)*MAT2(N1,N2)

SUBROUTINE MATMUL(MATP,MATI M1,M2 MAT2,N1,N2)

10

MATMULMATP,MAT1,M1,M2,MAT2,N1,N2)
IMPLICIT REAL*8(A-H,0-Z)
REAL*8 MAT1(M1,M2) MAT2(N1,N2) MATP(QM1,N2)
COMMON/CODE/KL,KO,MODEL
IFQM2.EQ.N1) GOTO 15
WRITE(XO,1)
FORMAT(1X//5X, MATRIX MULTIPLICATION CAN NOT BE PERFORMED',//)
L=M2
DO 5I=1 Ml
DO 5 J=1.N2
SUM=0.0D0
DO 10K=1,L
SUM=SUM-+MATI1(LK)*MAT2(K,J)
CONTINUE
MATP(I,)=SUM
CONTINUE
RETURN
END

MATMM,N)=0.0D0

SUBROUTINE NULMAT(MAT,M,N)
c NULMATMAT,M,N)
IMPLICIT REAL*8(A-H,0-Z)
INTEGER M\N
REAL*8 MAT(M,N)
DO 5I=1M
DO 5 J=1.N
MAT(I,J)=0.0D0
CONTINUE
RETURN
END

VECN)=0.0D0

SUBROUTINE NULVEC(VEC,N)

NULVEC(VEC,N)
IMPLICIT REAL*8(A-H,0-Z)
INTEGER N
DIMENSION VEC(N)
DOSI=1N
VEC(I)=0.0D0
CONTINUE
RETURN
END
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C IVEC(N)=0.0

SUBROUTINE INULV(IVEC,N)
C INULV(IVEC,N)
INTEGER N,IVEC(1)
DO 51=1,N
IVEC(D)=0.0
5  CONTINUE
RETURN
END
C
c INVM(2,2)=1/MAT(2,2)
SUBROUTINE INVBY2(MAT,INVM,DET)
c INVBY2(MAT,INVM,DET)
IMPLICIT REAL*$(A-H,0-Z)
REAL*8 MAT(2,2),INVM(2,2)

DET=MAT(2,2)*MAT(1,1)-MAT(1,2)*MAT(2,1)
INVM(1,1)=MAT(2,2)
INVM(2,2)=MAT(1,1)
INVM(1,2)=-MAT(1,2)
INVM(2,1)=-MAT(2,1)
DO 51=1,2
DO 5J=1,2
INVM(LJ)=INVM(LJ)/DET
5 CONTINUE
RETURN
END
c PVEC(M)=MATM,N)*VEC(N)
SUBROUTINE MVMUL(PVEC,MAT,M,N,VEC,NV)
C MVMUL(PVEC,MAT M,N,VEC,NV)
IMPLICIT REAL*8(A-H,0-7)
REAL*8 MAT(M,N), VEC(N),PVEC(M)
INTEGER M,N
COMMON/CODE/KIL,KO,MODEL
IF(N.EQ.NV) GOTO 20
WRITE(KO,1)
1 FORMAT(1X///5X,MATRIX-VECTOR MULT CAN NOT BE PERFORMED',//)
20 DOSI=IM
SUM=0.0D0
DO 10 J=1,N
SUM=SUM+MAT(LJ)*VEC(J)
10  CONTINUE

PVEC()=SUM
5  CONTINUE
RETURN
END
C
c MTRAN(N,M) = MATQM,N)
SUBROUTINE MATRAN(MTRAN,MAT,M,N)
c MATRANMTRAN,MAT,M,N)
IMPLICIT REAL*8(A-H,0-Z)
INTEGER M,N
REAL*8 MAT(M,N),MTRAN(N,M)
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DOS5SI=IM

DO5J=IN

MTRAN(,D)=MAT(1,J)
CONTINUE

RETURN

END

CONST = VI1(D) * V2()
SUBROUTINE VVMUL(CONST,V1,V2.N)
VVMUL(CONST,V1,V2,N)

10

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 V1(1),V2(1)

CONST=0.0D0

DO 10I=1,N

CONST=CONST+V1{D)*V2(l)
CONTINUE

RETURN

END

MATMN)=VI(M)*V2(N)

SUBROUTINE VVMMUL(MAT,V1,M,V2,N)

10

VVMMULMAT,VI,M,V2,N)
IMPLICIT REAL*$(A-H,0-Z)
REAL*8 MAT(M,N),VI(M), V2(N)
DO 10 =1M
DO 10 J=I,N
MAT(I)=VID*V2()
CONTINUE
RETURN
END

PVEC(N)=VEC(M)*MAT(M,N)
SUBROUTINE VMMUL(PVEC,VEC,MV,MAT,M,N)
VMMUL(PVEC,VECMV,MATM,N)

10

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 VEC(MV),MAT(M,N),PVEC(N)
DO 5I=1,N
SUM=0.0D0
DO 10 J=1.M
SUM=SUM-+VEC(J)*MAT(J,])
CONTINUE
PVEC(D)=SUM
CONTINUE
RETURN
END

SUBROUTINE NUMB(1,12,13,14.1)
NUMB(1,12,13,14,I)

IMPLICIT REAL*8(A-H,0-Z)
I1=4*(1-1)+1
12=I1+1
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13=11+2
I4=]1+3
RETURN
END

SUBROUTINE SHIFT(FT,FT4,IN,NCT)
C SHIFT(FT,FT4,IN,NCT)
PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-7)
DIMENSION FT(1),FT4(4)
CALL NUMB(1,12,13,14,IN)
IF (NCT) 1,2,1
2 FTAD=FT4(1)
FT(12)=FT4(2)
FT(13)=FT4(3)
FT(14)=FT4(4)
RETURN
FT4(1)=FT(1)
FT4(2)=FT(12)
FT4(3)=FT(I3)
FT4(4)=FT(14)

bk

RETURN
END

C 1,J=1,NDF EXCEPT NDM

C ALD=0
SUBROUTINE MZERO(NDF,NDM)

C MZERONDF,NDM)

PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-Z)
COMMON/KMAT/ANCI,NC1),F(NC1)

DO 5I=1,NDF

IF(LEQ.NDM) GOTO 5

ANDM,I)=0.0D0

A(INDM)=0.0D0

5  CONTINUE
FONDM)=0.0D0
RETURN
END

c BY PARTIAL PIVOTING ELININATION

C SOLVE [K] {U} = {F}
SUBROUTINE SOLVE(X,N)

C SOLVE(X.N)
PARAMETER(NC1=480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,0-2)

DIMENSION X(1)
COMMON/KMAT/ANC1,NC1),F(NC1)
COMMON/CODE/KLKO

N1=N-1

C ELIMINATION

300 DO S5I=1,Nl

C.... PIVOTING
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25

45

40
5

NMAX=]
I1=I+1
DO 10J=II.N
[F(DABS(ANMAX,I)).LT.DABS(A(J,D))) NMAX=]

CONTINUE

CHECK FOR ILL CONDITION

IF(DABS(ANMAX,])).GT.1.0E-6) GOTO 20
WRITE(6,3) NMAX,LANNMMAX,I)
WRITE(KO,3) NMAX,LAINMMAX,T)

FORMAT(1X//5X,50(*)/10X, TLL. CONDITION AT COLLUMN',215,E10.3)

INTERCHANGE

IFNMAX.EQ.I) GOTO 30
DO 25J=1N
C=A(J)
AQLD=ANMAX,])
ANMAX,))=C
CONTINUE
C=F(l)
F)=FONMAX)
FOINMAX)=C
ELIMINATION
DO 40 J=I1,N
IF(DABS(A(,1)).EQ.0.0) GOTO 40
C=AJ.I/ALD
DO 45 L=I1,N
A(JL=AQ.L)-C*A(LL)
CONTINUE
FQ=F)-C*F(D
CONTINUE
CONTINUE

C BACKSUBSTITUTION

70

55

oNoNoNe!

O

IF(DABS(AN,N)).GT.1.0E-6) GOTO 70

WRITE(KO,3) N

STOP
XMN)=FNYAN,N)

DO 50 I=1,N1

II=N-I

SUM=0.0D0

DO 55 J=1,]

JI=N-J+1

SUM=SUM+A(ILIN*X(JT)
CONTINUE

XAD=(F(T)-SUMY/A(ILII)
CONTINUE

RETURN

END

OUTPUT RESULTS

SUBROUTINE OUTPUT(NE,NEY ,NEX, KSTAGE,KOUT,DISP,TEMP)

153



103

15

9

PARAMETER(NC1=480,NC2=960,NC3=240)

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 DISP(1)

DIMENSION ND2(8),STEE(4),STNE(4),CORD(4,2),DEF(8)

CHARACTER TP1*4,TP2*9, TP3*5 TP4*9, TIPE*9

COMMON/CODE/KL,KO

COMMON/STREN/STE(NC2),STN(NC2),STER(NC2),STNR(NC2)

COMMON/WALL/HBIN,RBIN, TBIN,EMW,PRW

COMMON/INTF/EMIN,EMIH,PRI,CKW,CKB,CFW,CFB,THR, TBL, TWI

COMMON/LOADS/DEN,DPS1,DPS2,CT,NDEP,NSCHI1,NSCH2

COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3),YC(4,NC3),KWALL

COMMON/CONST/PA,PLNN2,NN4,NN8

TP1="WALL'

TP2=TNTERFACE'

TP3='GRAIN'

TP4="PLATE'

NEXI=NEX+1

[F(KSTAGE.EQ.0) WRITE(KO,103)
FORMAT(1X////10X,30(+)//20X, RESULT OUTPUT",/10X,

*30(+)//)

IF(KSTAGE.EQ.0) WRITE(KO,3)

[F(KSTAGE.EQ.1) WRITE(KO,4)

IF(KSTAGE.EQ.2) WRITE(KO,6) TEMP

FORMAT(1X/1X,70(*Y////5X,'STATIC PRESSURE WITHOUT SURCHARGE!,

*/1X,400-)/0)

FORMAT(1X//1X,70(*)////5X,'STATIC PRESSURE WITH SURCHARGE,
*/1X,40(-//)

FORMAT(1X/1X,70("*)////SX, THERMAL PRESSURE'/1X,70(-)/1X,
*TEMPERATURE='F10.4///)

OUTPUT STRESSES ON WALL ONLY

IF(KOUT.EQ.1) GOTO 100
WRITE(KO,7)
FORMAT(25X, *#***WALL PRESSURE*****'
*//1X,T19,HEIGHT", 31, LATERAL',T55,'VERTICAL'/)
DO 5I=1,NE
KOD=KODE()
IF((KOD.GE.3).AND.(KK.EQ.0)) THEN
J1=(I-1)*4+2
PV=-STE(J1)
KK=1
END IF
IF(KOD.EQ.1) THEN
DO 15 J=1,4
CORD(J,1)=XC({J.I)
CORD(J,2)=YC({,D)
CONTINUE
J1=(-1)*4+1
PL=-STE(J1)
HL=0.5D0*(CORD(1,2)+CORD(4,2))
WRITE(KO,9) HL,PL,PV
FORMAT(1X,T10,F15.4,T30,E15.4,T50,E15.4)
KK=0
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ENDIF
5 CONTINUE
IF(KOUT.NE.2) RETURN
100 WRITE(KO,102)

102  FORMAT(1X/5X,**xkxQUTPUT FOR EACH ELEMENT**¥**' /)

DO 105 I=1NE
CALL INULV(ND2,NN8)
KOD=KODE(])
DO 115 J=1,4
J1=(I-1)*4+]
STEE(J)=-STE(J1)
STNE(J)=-STN(I1)
CORD(J,1)=XC({.D)
CORD(®J,2)=YC(.I)
K1=2*ND(J,])
IF(X1.LE.0) GOTO 115
ND2(2*J-1)=K1-1
ND2(2*7)=K1

115 CONTINUE
CALL NULVEC(DEF,NN8)
DO 110J=18
JI=ND2(J)
IF(JJ.LE.0) GOTO 110
DEF(J)=DISP(J7)

110  CONTINUE

c
YF=0.0

C IF(KOD.GE.3.0RKOD.EQ.1) YF=FPF(STEE)

IF(KOD.GE.3) YF=ABS((STEE(1)-STEE(2))/(STEE(1)*+STEE(2)))

IF(KOD.EQ.0) TIPE=TP1
IF(KOD.EQ.1.OR.KOD.EQ.-1) TIPE=TP2
IF(KOD.EQ.-2) TIPE=TP4
IF(XOD.GE.3.0R.KOD.EQ.-3) TIPE=TP3

WRITE(KO,106) L, TIPE, YF,(ND(J,1),J=1,4),(CORD(J,1),J=1,NN4),
*(CORD(J,2),J=1 NN4),(DEF()),J=1,8,2),(DEF(J),]=2,8,2),STEE,STNE
FORMAT(1X//2X, ELEMENT NO:',5X,13,10X, TYPE:",3X,A9,F10.2/5X,

* 'NODE NO:',T15,4115/5X,'’X-COORD:',T15,4F15.4/5X,
*'Y-COORD:',T15,4F15.4/5X,'H-DISP:",T15,4E15.4/5X,
* 'V-DISP:',T15,4E15.4/5X,'STRESS:',T15,4E15.4/5X,
* 'STRAIN:,T15,4E15.4)

C WRITE(O,111) LSTEE

C111 FORMAT(3X.15,4E15.4)

105  CONTINUE
RETURN
END
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