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ABSTRACT

A microscopic model and a finite element model have been developed for predicting loads in

grain storage structures. In the micromechanical model, analytic equations for predicting bin loads

were derived without the assumption of a constant lateral to vertical pressures ratio (k value).

Janssen's equation, recommended by most design Standards and Codes, was found to be a special

case ofthe microscopic model for rigid particles. The constant k value in most existing theories was

shown only valid in the case of frictionless walls or rigid particles. The microscopic model was also

extended for predicting hygroscopic and discharge loads in grain storage bins. Model predictions of

static, hygroscopic, and discharge loads are all within standard deviations or 95o/o confidence intervals

of reported experimental data.

In the finite element model, the behaviour of grain en masse was modelled by endochronic

constitutive theories. Four types of mechanical models were constructed for describing the behaviour

of grain en masse. These models were named as relaxation-type, creep-type, first mixed-type, and

second mixed-type models, respectively. Endochronic constitutive equations were formulated directly

from the analysis of stresses and strains of mechanical models (classical approach), and from the

considerations of energy dissipations in the mechanism (energy approach). The model parameters

were determined for wheat en masse using triaxial test data. The predictive finite element model was

validated against experimental data from model bin tests. The maximum difference between predicted

and measured lateral pressures was 9.6 Yo and the average difference 5.8%.
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LIST OF SYMBOLS

This list contains all symbols with their definitions in this study. These symbols are defined when

they are first used in the text.

A cross-sectional area of the bin
A, material constant
ar(') positiveintermediatevariables(viscosity-likeshearcoefficient)
q¿(Ò positive intermediate variables (viscosity-like hydrostatic coefficient)
t r(') positive intermediate variable (viscosityJike coupling coefficient)
B, material constant
bral intermediate(viscosity-like)shearcoefficient
br(') intermediate(viscosity-like)hydrostaticcoefficient
br,(') intermediate(viscosity-like) couplingcoefücient
Co llar(ot

Co material parameter
Cr material parameter
c, l/k(Ð
c cohesion
CG) l/k('), material constants
DG) material constants
Dr horizontal deformation caused by vertical stress component
dr ÀE,(l-v)/[(1+v)(1-2v)]
d2 ÀE,v/[(l+v)(1-2v)]
d.o maximum dilatancy shear displacement

dZ increment of intrinsic time scale

d"u deviatoric component of intrinsic time
dz" hydrostatic component of intrinsic time
d.,¡ increment of total deviatoric strain
don hydrostatic stress increment
den volumetric strain increment
dro deviatoric intrinsic time component
dzn hydrostatic intrinsic time component
dr,¡ deviatoric stress increment tensor
E elastic modulus of particle
E' tangent modulus during wetting or discharging
Ei elastic modulus of interface in compression
E* elastic modulus of bin wall material
e natural log base

dij plastic deviatoric strain tensor
F vertical resultant frictional force, klt{/m
Fo static frictional force, kN/m
Fh hydrostatic hardening function

vtl



Fd deviatoric hardening function
f moisture factor, or ratio of elastic moduli of unwetted grain to wetted grain in a rigid

container
f. discharge overpressure factor
G elastic shear modulus
G, shear modulus of interface element
q ) Gbbs free energy density
G. deviatoric components of Gibbs free energy

G, hydrostatic components of free energy
GuG) deviatoric components of Gbbs free energy in r-th unit
g gravitational acceleration constant, m/s2

Hd deviatoric components of Helmholtz free energy
Hn hydrostatic components of Helmholtz free energy

J hydrostatic kernel function
J0 llar<o), model parameter for simplified hydrostatic kernel function
Kh elastic bulk modulus
K hydrostatic bulk modulus
K, ((þr,('))/(d), material constant

K initial bulk modulus, kPa

K tangent bulk modulus, kPa

ç KG)

k(r) spring constants in r-th spring element

k ratio oflateral to vertical stress

L lateral bin pressure during loading, or wetting, or discharging, kPa
L0 initial lateral pressure (before wetting), kPa

Ld discharge load
loi direction cosine of po

MCo initial grain moisture content,o/odb
N displacement modulus
Pl" material property tensor
po microstresses, a:I,2,3
QG) internal variables (hydrostatic stress) in r-th slip element

Q¡t" internal variables (stresses) in r-th slip element
q,j deviatoric internal strain tensor
q¡ hydrostatic internal strain
qrju' internal deviatoric strains in r-th slip element
qG) internal hydrostatic strain in r-th slip element

R hydraulic radius (A/S) of the bin, m
r radius of particle
S bin perimeter
s deviatoric stress under triaxial loading
s relative displacement
sij deviatoric stress tensor
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s- deviatoric stress at failure (at zo =-¡ under triaxial loading
s0 deviatoric stress at yield (at zo :0) under triaxial loading
Tü internal stress tensor
TOL prescribed small tolerance
t thickness of the interface element
Uü internal strain tensor
V vertical bin pressure, kPa

% initial vertical pressure (before wetting), kPa
y depth of grains, m
z' dummy variable

tBl gradient matrix

tDl elastic coefficient matrix

[D*] the stress-strain matrix for the wall

IDJ stress-strain matrix for the interface

{dH} plastic stress vector

{do} [do, do, dou do,']r, stress vector

{de} [de, de, deu de,,]r, strain vector

tl.{] matrix of shape (interpolation) functions

{T} surface traction force vector

{X} unit volume body force vector

Ö macroscopic (overall) angle of internal friction
Ôu microscopic (true) angle of friction
Od deviatoric kernel function
€ü macrostrains
€c microstrains,a,:1,2,3
€v volumetric strain of wetted kernel, m3/m3

€u,,ilt asymptotic value of volumetric strain, m'/mt
€nü plastic strain tensor
€Pr, plastic hydrostatic strain
y micro-structural angle
y shear strain (s/t) in interface element
p friction coefficient of grain on wall
AMC increase in moisture content, o%db

pr.o initial kernel density, kdrnt
p* density of water, kd*t
p bulk density of stored materials, kg/^t
oü stress tensor, kPa
oh hydrostatic stress, kPa
o* hydrostatic stress atzn: -, kPa
o0 confining pressure in triaxial test (at zn: 0), kPa
on normal stress
p, Hù la/')
pc) l/(ar(')çr'l¡, intermediate variable
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F, material parameter
I coupling kernel function
f, b@lq¿(o), model parameter for simplified coupling kernel function

^, 
g(r)¡r(r), model parameter

.l.G) l/(ar(Ð(.))
Àe participation factor
v Poisson's ratio of particles

vw Poisson's ratio of bin wall material

vi Poisson's ratio of interface element

dr A./brG), material constant
a, material constant

Ç, B/br('), material constant
t shear stress

0 dilatancy angle
0no maximum dilatancy angle
o in r-th element

ll ll norm ("length") of tensor or vector

I I absolute value



T,. INTRODUCTION

In design and analysis of grain storage and handling systems, predictions of loads exerted

by stored materials on the structures are critical @ritton and Zhang 1989). Excessive design loads

increase the cost, whereas insufficient design loads may lead to structural failures. Loads in grain

bins are categorized as either static loads or dynamic loads. Static loads are exerted by grains on

structures under at-rest conditions. Changes in environmental or operational conditions cause bin

loads to increase. These increased loads are known as dynamic loads. Because some dynamic

loads are not unique to grain-bin systems and may be covered in other engineering practice, those

loads such as snow, wind, and earthquake loads are excluded in this study. Two most significant

conditions of dynamic loadings in grain-bin systems occur during grain wetting and discharging.

Bin loads dramatically increase during wetting as hygroscopic grain expansion occurs. At the

onset of discharging, bin loads tend to increase instantly, resulting in dynamic discharge loads. In

this study, the term "dynamic loads" is reserved for representing discharge loads or hygroscopic

loads.

One hundred years ago, Janssen (1895) provided the first set of analytical equations to

calculate the static stresses within a granular mass contained in a deep bin by considering the

equilibrium of vertical forces acting on a small element of the stored material. His formula is still

widely used in predicting static loads in grain bins. Airy (i897) used a sliding wedge theory to

compute lateral pressures in silos. Both Janssen's and Airy's theories assumed that the ratio of

lateral to vertical pressures (k value) is constant. Reimbert and Reimbert (1956) first consiclered k

values as a function of the height of the stored material and proposed a set of predictive equations



for static loads. All of these theories are continuum theories. They were all founded on some basic

assumptions, i.e., rigid bin walls, constant k value, or constant friction coefücient between wall

and grain. In reality, few bins have rigid walls. Increases in wall stiffiress result in higher bin wall

pressures (Ooi and Rotter 1990). The k value is not a constant material property parameter

(Cowin 1979). The friction coefücient may vary with the moisture content. If Janssen's equation is

used, a higher k value may result in a higher bin wall pressure. As the coefücient of wall friction

decreases, the vertical force on the wall decreases but the bin wall pressure increases. It is critical

for designers to select an adequate combination of variables when using those classical theories

@ritton and Zhang I 989).

Compared to static loads, dynamic loads are still poorly understood. Although dynamic

loads have been identified to be the major cause of structural failures of bulk solids storage

systems (Jenike and Johanson 1969, Smith and Lohnes 1980), to date no adequate predictive

theories are available for bin designers. In most modern design standards and codes (DIN 1987,

ACI 1983, ASAE 1995), discharge loads are simply estimated by multiplying static loads by

overpressure factors, but no recommendations are given for hygroscopic loads. For discharge

loads, many researchers observed overpressures, but few rationalized the cause. Jenike and

Johanson (1969) explained that discharge loads were due to the switch of the stress state in the

stored materials from an active pressure field to a passive pressure field. Smith and Lohnes (1980)

hypothesized that dilation (increase in volume due to shearing) of the stored material is the main

cause of the overpressure of grain on bin walls during discharge. Kmita (1991) observed that

discharge loads were a result of impact loads. Among these hypothetical explanations, dilation

hypothesis is the only one which considers the key unique characteristics (volumetric behaviour)



of granular materials. For hygroscopic loads, Dale and Robinson (1954) observed that lateral

pressures on the wall adjacent to the bin bottom increased from 2.1 kPa to I3.5 kPa for a

moisture increase of 4Yo (* b ) To date, no adequate theories are available for designers to

predict the hygroscopic loads.

Discharge loads are attributed to the internal shearing of the grain with a shear-volumetric

expansion restricted by the structure. During discharge, grain in different parts of the bin moves at

different velocities, thus shearing occurs within the grain mass. This internal shearing causes the

grain bulk to dilate laterally. The dilation, however, is restricted by the bin wall, thus an increase

in the wall pressure occurs (Xu et al. 1993a). For hygroscopic loads, swelling of grain particles is

responsible for the overpressure on bin walls during wetting. Grain particles swell when their

moisture contents increase. Thus, the grain bulk tends to expand. This expansion, however, is

restricted by bin walls, and consequently, additional pressures, termed hygroscopic pressures, are

imposed on the bin walls (Zhang et al. 1995). Because of the importance of volumetric expansion

in analysis of discharge and hygroscopic loads, the key step in developing models for predicting

dynamic loads is the modelling of the volumetric constitutive behaviour of the granular materials.

Both theories of micromechanics and macromechanics may be used to develop the

constitutive laws for granular materials. Micromechanics is based on the study of individual

particles'interactions. Although some micromechanics theories have been developed.for granular

materials (e.g., Prat and Bazant 1991, Granik and Ferrari 1993), no theories have been applied to

predictions of bin loads. In the macromechanics category, earlier models were based on the

classical plasticity postulate (e.g., Coulomb 1773,Lade 1977), which were formulated on the

criteria of material yielding and unloading-reloading. Shear-induced volumetric expansion was not



taken into consideration. Therefore, classical plasticity theories are limited in predicting dynamic

loads.

Endochronic theory was founded on the irreversibility principle of thermodynamics

(Valanis l97l). The theory provided a unified approach to describe the plastic behaviour of

materials (Watanabe and Atluri 1986). The theory has been applied to many kinds of materials

such as metals, concretes, soils, and sands. The latest advance for granular materials was an

endochronic model (Valanis and Peters 1991) which accounts for the grain dilatancy. To date, no

systematic studies of endoch¡onic theories for grain en masse can be found in the literature.

The finite element method (FElvÐ provides a powerfi.rl tool in solving complicated

structural problems. Mahmoud (1979) used the method to predict wall pressures for bins with

flexible com-rgated walls. He employed a nonlinear elastic hyperbolic model to describe the stress-

strain behaviour of the stored material in the primary loading conditions. Zhang (1987), using an

elastoplastic constitutive model, proposed a finite element algorithm for predicting static and

thermal-induced loads in grain storage bins. Schmidt and Wu (1989) developed a finite element

model based on Lade's (1977) elastoplastic constitutive equation for calculating dynamic loads

during discharge. Xu et al. (1993b) developed a finite element predictive model using

endochronic constitutive equation of Valanis and Peters (1991). Much research has shown that

the finite element method has a great potential in predicting loads in bulk solids storage structures.

It should be noted that the predictive capacity of the FEM is to a large extent dependent on

model's capability of capturing the constitutive behaviour of the stored bulk solids.

The research done to date has enhanced our understanding ofthe loads exerted by the

stored materials on the structure. However, no adequate theories have been developed for



predicting bin loads, especially dynamic loads. Micromechanics may be used to develop the

microscopic theory of bin loads. The investigation of discharge and hygroscopic mechanisms may

throw a new light on developing the theories of dynamic loads. Systematic studies of endochronic

theory may lead to a new class of endochronic theories (macromechanics models) for constitutive

modelling of granular materials. Based on these constitutive theories, finite element models may

be developed for the analysis of grain storage structures.



2. OBJECTTVES

The goal of this research is to develop predictive models for bin loads with an emphasis on

modelling of the fundamental behaviour of granular materials.

The specific objectives are:

1) To investigate the deformation mechanism of granular materials, microscopically and

macroscopically.

2) To develop and veriff microscopical theories for predicting static, hygroscopic, and

discharge loads in grain bins.

3) To investigate the physical basis of endochronic theory for granular materials.

4) To develop stress-based endochronic models for grain en masse by using the Gbbs free

energy formulation to account for shear-volumetric coupling.

5) To implement the endochronic models in finite element algorithms to predict loads in grain

storage structures.

6) To validate the predictive fìnite element algorithms against published experimental data

obtained from model bin tests,



3. LITERATURE REVIEW

In this chapter, classical theories of bin loads are briefly reviewed first. Then current

advances in predicting discharge and hygroscopic loads are discussed. Loads in grain bins depend

on constitutive behaviour of grain, therefore, reviews are extended to the constitutive theories for

grains and the finite element predictions of bin loads as well.

3.1 Bin Load Theories

3. 1. I Static bin loads

Historically, bins are categorized into deep bins and shallow bins depending on their

dimensions and properties of stored materials. One accepted definition is according to the rupture

plane. A bin is a deep bin if the rupture plane of grain intercepts the bin wall, otherwise, it is a

shallow bin. Rankine's (1857) theory is used for predicting static loads in shallow bins, and

Janssen's (1895) theory for deep bins.

Rankine's theory

Rankine's (1857) theory assumes that bin walls are frictionless . Lateral and vertical

pressures on bin walls are determined as:

L = pgrta*Øs|-92)

v=pgy

(3.1)

(3.2)



Where:

V: vertical pressure, kPa

L : lateral pressure, kPa

$: angle of internal friction of stored materials, degree

p : bulk density of stored materials, kdtn'

g: gravitational acceleration constant, m/s2

y: grain depth, m

Equations (3.1) and (3.2) indicate that the lateral to vertical pressure ratio, k value, is a constant

which may be calculated as:

k = += tan (+50 - *)V2 (3.3)

where:

k: ratio oflateral to vertical pressure

Rankine's theory is not applicable to bins with rough or corrugated walls because of the

assumption of frictionless walls.

Janssen's theory

For deep bins, bin wall friction plays an important role in calculating loads. By assuming a

constant k value, the lateral pressure is calculated as:

L=kV (3.4)

Vertical pressure is then determined from the vertical force equilibrium on a slice of grain over

the cross-section as follows:



kuv

V=PÇRn-" lt
k¡t'

(3.s)

where:

p : friction coefficient of grain on the wall

R: hydraulic radius of the bin, m

e : natural log base

The friction load on the wall is calculated as:

(3.6)

where

F : vertical friction load, kl.{/m

Janssen's equation has been recommended by most design Standards and Codes (ASAE Standards

1995, DIN 1987, ACI 1991, CFBC 1990).

There are other approaches to predicting static loads. Airy (1897) used the sliding wedge

theory to calculate lateral pressures in silos. The theory assumed a constant k value. Reimbert

and Reimbert (1956) first considered the k value as a function of the height of the stored material

and proposed a set of prediction equations for static loads. But they did not consider the direct

effect of the stress state on the k value. More details may be found in Manbeck et al. (1995).

Of all the theories mentioned above, bin walls are assumed to be rigid and wall friction is

assumed to be constant. In reality, few bins have rigid walls and friction may vary along the bin

v
F = IvLdy

0



depth.

The k value and bin wall friction are not two independent material properties in Janssen's

theory. In Janssen's equation (3.5), k and ¡r appear together as one parameter, and the effect of

selecting friction coeffïcient on predicted bin loads could be cancelled by selecting the "right" k

values. If we lower the value of the friction coefficient in Janssen's theory, the wall füction force

will decrease. A decreased friction force on the wall means that less of the grain mass is supported

by the bin wall and a higher vertical pressure within the grain mass. If the k value is constant, this

higher vertical pressure will result in a higher lateral pressure which will yield a higher wall

friction force. Thompson et al. (1995) measured lateral pressures of a full-scale bin, and tried to

use Janssen's equation to fit the data and determine the ¡r value. They found that two different

values of ¡r (0.4 and 0.6) could have been used to obtain almost identical results for their I 1.0 m-

diameter bin. This raises a question as how for a designer to select the "right" p and k value for

predicting the design loads.

3.I.2. Discharge loads

At the onset of discharge of grain from bins, lateral pressure increases instantly. This

increased lateral pressure is called discharge load. Discharge loads are, usually, much higher than

static loads. To date, no adequate predictive theories are available for bin designers.

In design practice, discharge loads are estimated from static loads by using an

overpressure factor (f.) (DIN 1987, ACI 1990, ASAE 1995):

(3.7)Lo=foL
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where:

Lo: lateral pressure during discharge, k Pa

f.: overpressure (dynamic load) factor

Values of overpressure factors in the range from 1.4 to 2.I are recommended by various design

Standards and Codes, but values up to 5 have been reported in the literature. This implies that the

discharge load actually experienced by a bin may be twice the design load, which partially explains

why most bin failures have occurred during discharging of stored materials.

Although much research has been carried out in the past 30 years on discharge loads, the

mechanism of the formation of discharge loads is still not clear. Jenike and Johanson (1969)

explained that discharge loads were due to the switch of the stress state in the stored materials

from an active pressure field to a passive pressure field. Kmita (1991) observed that discharge

loads were a result of impact loads. Impact loads can be distinguished from static loads by the

speed of application. If an object is put on a structure slowly, the force exerted by the object on

the structure (the applied load) equals the weight of the object (static load). If the object is put on

the structure suddenly, a load twice the static load is exerted on the structure (impact load). In a

storage bin when the discharge gate is opened suddenly, the material above the gate suddenly acts

on the remaining material, thus impact loads are induced. Smith and Lohnes (1980) hypothesized

that dilation (increase in volume due to shearing) of the stored material is the main cause of the

overpressure of grain on bin walls during discharge, but they did not advance their hypothesis to

prediction equations. Discharge of grain from a bin causes the grain in the different parts of the

bin to move at different velocities. Thus, shearing occurs within the grain mass. This internal

shearing causes the grain bulk to dilate. Dilation, however, is restricted by the bin wall, thus an

11



increase in the wall pressure occurs. Based on this hypothesis, Xu et al. (1993a) andZhang et al.

(1994a, 1994b) developed mechanical models to predict dynamic loads during discharge. The

overpressure factor was shown to be related to the dilatancy angle of the stored materials.

3. 1.3 Hygroscopic loads

Little can be found in the literature on the prediction of the hygroscopic loads. Grain

particles swell when absorbing moisture, thus the grain bulk expands. This expansion, however, is

restricted by bin walls. Consequently, additional pressures, termed hygroscopic pressures, are

imposed on the bin walls. It is the swollen of grain particles that exerts the hygroscopic loads

(overpressure) of grain on bin walls during wetting.

Dale and Robinson (1954) observed more than sixfold increases of lateral pressure for a

moisture increase of 4o/o (w.b.) in the grains. Blight (1986) measured fourfold increases of lateral

pressure for grain sorghum in simulating the ingress of rain. Britton et al. (1993) monitored

vertical forces during the wetting processes. The swelling force lifted the bin wall from the bin

bottom for a moisture increase of 60/o (w.b.) in the grains. These experiments indicate that grain

wetting may cause extremely high loads in grain storage bins. Zhang et al. (1995) rationalized the

hygroscopic loads from macroscopic mechanics. No theory has been developed from microscopic

mechanics.

3.2 Constitutive Models for Granular Materials

Generally, constitutive models for granular materials may be classified into two categories:

macromechanics (or continuum) models (e.g., Lade 1977,Yalanis and Peter l99t) and
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micromechnics (or particulate) models (e.9., Prat and Bazant 1991, Granik and Ferrari 1993).

Micromechnics models are based on the analysis of stresses and strains within the microstructure

of granular materials. By contrast, macromechanics models describe the macroscopic

phenomenological behaviour.

3.2.1 Micromechanics

Fundamentally, a granular medium is a collection of individual particles. Micro-scale

interactions between particles control the macro-scale behaviour (Chang 1993). Therefore,

constitutive behaviour of granular media depends on their microstructures (or fabric). An

assembly of individual particles usually has a random microstructure @ideau and Hansen 1993).

The disorder of the microstructure makes it very difficult to model. Much effort has been made on

description of granular fabric (Oda1977, Nemat-Nasser 1982, Subhash et al. 1991), but few

theories are adequate for solving engineering problems. The idealisation of the microstructure

provided away to cope the problem of random assembly. Balendran and Nemat-Nasser (1993)

used the concept of double-sliding plane to model viscoplastic flow of planar granular materials.

Granik and Ferrari (1993) treated the granular media as a Bravais lattice and developed a

complete set of constitutive equations. The details of this model will be discussed in Section 5.1.

Generally, discrete element method may be used to solve microscopic constitutive models (Rong

tee4).

3.2.2 Macromechamcs

To model the inelastic behaviour of granular materials, macromechanics requires a

13



measurement to define the inelastic state of materials. Stresses and strains are the two

fundamental sets of variables. Therefore, either stresses or strains can be used to construct a

measurement for describing the state of the materials. By using stresses, a yielding surface can be

constructed (e.g., Lade 1977). By using strains, an intrinsic time can be defined (e.g., Valanis and

Peters l99l). Yielding surface and intrinsic time are the two alternative ways of describing the

state of materials. The concept of yielding surfaces is the foundation of the classical plasticity

theory which has more than two centuries of development. Intrinsic time is the key concept of

endoch¡onic theory which initially developed by Valanis (1971). Endochronic theory is considered

to be more general than the classical plasticity (Wanabe and Atluri 1979,Dafalis and Popov

1975).It provides a unified way of describing material behaviour without using the concept of

yielding which is difificult to define for most granular materials (Valanis and Fang 1984).

Classical plasticity models

Classical plasticity is based on the concepts of yielding surface and unloading-reloading

criteria. It is assumed that an initial yielding surface governs the initial yield of the material. This

surface changes as the material deforms. The changed yielding surfaces are called "subsequent

yielding surfaces". The evolution of subsequent yielding surfaces is described by hardening rules.

A flow rule specifies the stress-strain relationship (Fung 1965).

Coulomb in 1773 first considered the effect of the hydrostatic pressure on the strength of

granular materials (Chen and Mizuno 1990). The yield criterion in the Coulomb model states that

failure occurs when the shear stress (t) and normal stress (o) satisfy the following linear equation

(Chen and Mizuno 1990):
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Itl + otanS -c = 0 (3.8)

where:

c: cohesion, kPa

S: internal friction angle, degree

The absolute value means that the shear may occur in the opposite direction. If the material is

frictionless (0:0), the criterion reduces to the Tresca criterion (the maximum shear stress

criterion), and the cohesion c becomes the yield stress. Shield (1955) showed that the yielding

surface of Coulomb's model is an irregular hexagonal pyramid in the principal stress space, whose

corners cause some difficulties in numerical analysis. Coulomb's model neglects the effects of

intermediate principal stress on yielding. Lade and Duncan (T973) investigated the effects of

intermediate principal stress on the failure strength of granular materials. They developed an

isotropic elastic-plastic work-hardening model which contained subsequent yield surfaces and a

failure surface (Lade and Duncan 1975).Lade (1977) modified the model by introducing a curved

yield surface which is suitable for numerical analysis. To get a more realistic description of the

material yielding, more complex yielding surfaces must be used, such as nested yield surfaces

(Mróz 1967), bounding surfaces (Dafalias and Popov 1975), and cap surfaces (Katona and Mulert

1984). However, the greatest difficulty encountered in the application of the classical theory of

plasticity to granular materials remains the lack of knowledge of the configuration of subsequent

yield surfaces (Valanis and Fan 1984).

Endochronic plasticity

Endochronic plasticity describes the behaviour of materials by the measurement of intrinsic
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time. The constitutive laws are derived from the thermodynamic principle and evolution equations

of internal variables.

Intrinsic time is a "timelike" parameter of the material, which increases monotonically. In

the original version of the endochronic theory, the theory was developed for metal, in which

volumetric response is considered elastic. Valanis (1971) initially defined intrinsic time to be an

equivalent length of the total strain path (from the initial (zero) strain to the final state on the

stress-strain curve):

dz2 = de rP ¡odt o, (3.e)

where:

dz: increment of intrinsic time scale

deu: increment of total deviatoric strain

Pü": material ProPerty tensor

I: 1,2,3 ; j: 1,2,3 for three-dimensional problems.

The repetition of an index (subscription) in a term denotes a summation with respect to that index

over its range.

Valanis (1980) subsequently found this definition too limiting (valid for small strains only)

and introduced a new definition of intrinsic time as the equivalent length of the plastic deviatoric

strain path:

dz2=delpredeå (3.10)

where deue is the plastic deviatoric strain increment tensor given as:
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- ds..
de,! =ds,,- I (3.11)U'J2G

where:

dsu: deviatoric stress increment tensor, kPa

G: elastic shear modulus, kPa

Based on this definition of intrinsic time, various classical plasticity theories have been shown to

be the asymptotic cases of the endochronic theory (Valanis 1980).

For granular materials, the volumetric behaviour is unlikely to be elastic and may be

coupled with deviatoric behaviour. Valanis and Peters (1991) investigated the coupling between

deviatoric and hydrostatic behaviour, which led to dilatant deformation of the material. They used

a coupling parameter (r) to introduce the plastic volumetric strain denp into the intrinsic time:

dzz =delde,f *r2çd{)2

where the plastic volumetric strain increment (deÐ was given as:

(3.12)

- do,
d{o=der- + (3.13)

Lh

where:

don: hydrostatic stress increment, kPa

d€n: volumetric strain increment

Ç: elastic bulk modulus, kPa

The constitutive behaviour of granular materials is characterised by both deviatoric

behaviour and hydrostatic behaviour. Deviatoric behaviour is measured by deviatoric intrinsic time
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dzo, and volumetric by hydrostatic intrinsic time dzn. These two intrinsic time components are

related to the total intrinsic time through a hydrostatic hardening function (F) and a deviatoric

hardening function (F):

.dzdzüa= q anct æn=4 (3.14)

where:

dro -- deviatoric intrinsic time component

d"n : hydrostatic intrinsic time component

Fn: hydrostatic hardening function

Fo: deviatoric hardening function

Using these definitions of intrinsic time, constitutive models can be developed for granular

materials. A model can be either a relaxation-type, which relates the load (stress) response to

applied deformation (strain), or a creep-type, which relates deformation (strain) response to

applied load (stress). Relaxation-type models are formulated from the Helmholtz energy

representation (strain-based theory), whereas creep-type models from the Gibbs energy

representation (stress-based theory). Within the elastic limit, stress-based and strain-based models

are identical. Beyond the elastic limit, they are complementary. A Helmholtz formulation was

developed for granular materials by Valanis and Peters (1991), and applied to wheat en masse by

Xu (1992). With the original definition of intrinsic time (total strain path), Wu and Wang (1983)

derived a Gbbs formulation for sand. No work has been reported in the literature on Gbbs

formulation using the new definition of intrinsic time.

For non-viscous granular materials, Darve et al. (1988) classified all continuum
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constitutive models according to the number of their tensorial zones, which are defined as

domains, separated by either the plastic potentials or the loading-unloading criteria, in the stress

space. A constitutive model has 2" tensorial zones if the model has n plastic potentials or loading-

unloading criteria. For example, elastic models have only one tensorial zone, Lade's (1977)

elastoplastic model with two plastic potentials has four tensorial zones, and endochronic models

have an infinite number of tensorial zones. The number of tensorial zones charactenzes the

structure of the model, which strongly influences the predictive capability of the model (Darve et

al. 1988). In theory, endochronic models, with an infinite number of tensorial zones, have the

strongest predictive capacity (Darve et al. 1988).

3.3 Finite Element Analysis of Grain Storage Structures

The finite element method (FEIvI) provides a powerfi.rl tool of solving complex

engineering problems. It has been applied to the study of loads in grain bins. It gives an integrated

analysis of behaviour of stored grain, storage structure, and their interactions.

Mahmoud (1979) used the finite element method to predict wall pressures for bins with

flexible comrgated walls. He employed a nonlinear elastic hyperbolic model to describe the stress-

strain behaviour of the stored material in the primary loading conditions. Zhang et al. (1987),

using an elastoplastic constitutive model, proposed a finite element algorithm which adequately

predicted static and thermal-induced loads in grain storage bins. Rotter andZhang (1989)

investigated the stability of silos using FEM. Schmidt and Wu (1989) developed a finite element

model based on Lade's (1977) elastoplastic constitutive equation for predicting dynamic loads

during discharge. Puri and Manbeck (1991) studied the potential of finite element method in
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modelling load response of particulate materials. Xu et al. (1993b) developed a finite element

predictive model using endochronic constitutive equation of Valanis and Peters (1991).

It should be noted that most existing FEM models were formulated using potential energy

principles. The primary variables in these models are displacements, although forces (pressures)

are of primary interest in bin design, the predictive capacity of the FEM is to a large extent

dependent on model's capability of capturing the constitutive behaviour of the stored bulk solids

and their interactions with the storage structures.
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4. MICROSTRUCTURE AND BEHAVIOURS OF GRANULAR MEDIA

A granular medium is an assembly of individual particles (grains). The microstructure

within particles is stable in comparison with the microstructure of particles' assembly. Therefore,

the discussion in this chapter is focused on the microstructure of particles' assembly instead of

microstructure within particles. Granular media of different microstructure may behave differently.

The real microstructure of a granular medium is unique, because the medium is packed somewhat

randomly. It is very difficult to treat each medium individually. When a granular medium is tested,

it is unlikely to identify the real microstructure. This implies that the real microstructure is

traditionally treated equally as an idealised one. It is important to understand the deviation of the

material response and the effects of microstructure changes on behaviours of granular media. In

this Chapter, factors affecting microstructure are analyzed, triaxial tests of two kinds of

microstructure are conducted, and the relationship between microstructure and behaviours of

granular media is discussed on the basis of test results.

4.L Factors Affecting Microstructure

Microstructure of granular media depends on the type, quantity and quality of particle

contacts, as well as the shape, size, and surface condition of the individual particles. There are

many factors affecting microstructure of grains stored in a bin. Filling of grains into a bin gives an

initial microstructure of granular materials. Different filling methods will yield different initial

microstructures. During the storage, environmental changes have impacts on the microstructure.

A temperature (or moisture content) increment in a particle will induce a thermal (or hygroscopic)
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expansion in the particle which will interact with the neighbouring particles. Consequently,

change the microstructure. Vibration is another important factor which tends to consolidate the

bulk materials significantly resulting in a higher bulk density. Therefore, microstructure during

storage could be affected by temperature fluctuation, moisture fluctuation, foundation (or storage

structure) vibration, particles'creep and relaxation, biological and chemical reactions, etc. Some

factors (e.g., filling method and vibration) mainly affect particles' contacts, other factors (e.g.,

moisture and temperature fluctuations) may affect not only the contacts but also the properties of

individual particles. To investigate all these effects is beyond the scope of this study. Therefore,

only vibration effects will be investigated for the purpose of a better understanding of the effect of

changes in microstructure on the behaviour of granular media.

4.2 Experimental Investigation of Vibration Effects

Vibration has been used to improve the handling of bulk solids. During vibrating, bulk

solids are likely to exhibit lower strength and better flowability than in the static state (Roberts

1991). Vibration also reduces friction between structures and grain. When discharging bulk solids

from bins, vibration may convert a funnel-flow bin to a mass-flow bin. A vibrated granular

medium is likely to behave differently from a non-vibrated one, because vibration causes changes

in the microstructure (fabric) of the grain bulk. The visible change in fabric is expected to be the

reodentation of grain particles which may result in an increase in bulk density. Invisible changes

may be the modes of contact between grain particles. These changes affect the physical and

mechanical properties of grain en masse. Because forces applied to a grain bulk are transmitted

through inter-particle contacts, quantity and quality of contact points between particles may
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dictate behaviour of the grain bulk. One of most important variables is the total number of

contacts in the assembly of grain particles. If no force is being transmitted through a contact, the

contact is a pseudo-contact, which should be excluded from the total number of effective

contacts. A contact may be charactenzed by the contact normal (normal to the contact surface)

and contact area. All these aspects of interests will be briefly discussed in this Chapter through

examining triaxial test results on vibrated grain samples.

4.3 Triaxial Test

Grain bulk changes its volume during deformation. Therefore, strength (resistance to

microstructure changes) and dilation are the key macroscopic characteristics in responses of grain

en masse. Conventional triaxial tests were conducted to measure the axial forces and volumetric

changes when the samples were subjected to axial deformation.

Preparation of Test Samples

Grain used in all tests was Katepwa wheat. The moisture content of the wheat was

determined as 13.2% (d.b.) by oven method (ASAE 1995), and particle specific gravity was 1.42

by comparison pycnometer. Samples \Ã/ere prepared using a latex membrane sleeve held inside an

aluminium jacket. A vacuum was applied between the membrane and the inside surface of the

jacket to ensure the shape and dimensions of the sample. Wheat was centrally filled into the

membrane sleeve. The jacket was 260 mm in height and 106 mm in diameter, which produced

cylindrical specimens 215 mm in height and 100 mm in diameter. After the jacket was filled with

wheat, it was fixed on the top of a vibratory device (Enez Magnetics, Eriez Manufactory Co.,

Erie, PAo USA), and vibrated at a frequency of 50 Hz and an amplitude of 0.3 mm for l0 min. A
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vacuum was applied from the bottom of the specimen to hold the sample when the jacket was

removed. The sample was then placed in a sealed chamber and subjected to a constant confining

pressure of 4T.4 kPa regulated by anair pressure regulator (Fig. 4.1).

Test Procedures

All tests were performed using a Chatillon ET 1100 universal testing machine. The triaxial

test apparatus \¡/as placed between the loading frames of the universal machine, and an axial force

was applied to the grain samples through a loading rim (Fig. 4.1). The universal testing machine

was controlled by a microcomputer. The axial displacement rate was set at 10 mm/min. The axial

forces and displacements were recorded automatically by a data acquisition system. Pore pressure

of the grain sample was recorded manually, using an HrO differential pressure monometer, for

every I mm of axial displacement. Volumetric strains were calculated from the measured pore

pressure data using the perfect gas law. The experiments were replicated three times for both

vibrated and non-vibrated samples.

4.4 Visual Observation of Vibration-induced Fabric Changes

Fabric changes in wheat en masse during the vibration \ /ere observed by vibrating a wheat

sample in a transparent plexiglass container (I52 mm in diameter and 238 mm in height) using the

same vibratory device as described in the triaxial test. The observed fabric changes provided a

better understanding of the macroscopic behaviour of vibrated microstructure of wheat en masse.
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Figure 4.1 Triaxial test apparatus
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4.5 Test Results and DiscussÍon

Behaviour in Triaxial Tests

Following the sign convention of soil mechanics, compressive stresses and strains are

considered to be positive in this thesis. The data averaged from three tests are shown inFig. 4.2.

The standard deviations of deviatoric stress and volumetric strain from the mean values are

summarized in Table 4.1. There \ryere some variations (within 2Yo)between tests in the initial bulk

density (BD). The mean IBDs are 906.8 and 857 .7 kd*' for vibrated and non-vibrated samples,

respectively.

The stress-strain-dilatancy behaviour of vibrated wheat samples was compared with that

of non-vibrated samples (Fig. 4.2). The deviatoric stresses of vibrated samples were higher than

that of non-vibrated ones, but they approached similar values at large axial strains. The average

difference in the mean measured deviatoric stresses between vibrated and non-vibrated samples

was 4.5 kPa. The maximum difference was 25.8 kPa at an axial strain of 6x10-3. The peak stress

of vibrated samples was 67.2 kPa, slightly higher than the 63.7 kJa stress for non-vibrated

samples for a difference of 3.5 kPa.

Vibration increased the dilatancy of wheat samples. The average difference in the

measured mean volumetric strains was 8.lxl0-3 mm'/mm3. At an axial strain of 200x10'3, the

volumetric strain of vibrated samples was 14.lxl0-3 mmt/mm', five times the volumetric strain for

non-vibrated samples 2.8x10-3 mm3/mm3. Vibrated samples dilated throughout most of the loading

process, whereas non-vibrated samples first consolidated and then dilated (Fig. a.Ð.
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Table 4.1 Standard deviations for measured stresses and strains

Tests Vibrated Non-vibrated

LD% S(oJ S(e") LD% S(oJ S(e")

l -1.8 6.33 1.87 0.6 3.33 0.63

2 0.1 2.89 0.53 -1.0 4.88 0.18

3 1.6 3.56 L66 0.4 2.02 0.64

LDYo Relative difference of measured IBD from the mean value

S(o): Standard deviation of measured deviatoric stresses, kPa

S(e,): Standard deviation of measured volumetric strains, l/1000

Observations of Microstructural Changes

From observations of a wheat sample in a plexiglass container, the response of the grain

bulk to vibration was found to occur in two stages. When wheat was initially filled into the

container, there was some unstable micro-structure in the assembly, and most particles were

deposited with the long-axis more or less parallel to the horizontal because of gravity effects

during filling. Contact normals tend to concentrate toward the vertical direction (Oda 1993),

which coincides with the direction of the applied compression force in conventional triaxial tests.

At the very beginning of vibration, wheat particles mainly translated into voids, resulting in
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consolidation of the grain bulk, i.e., a higher bulk density. At this stage, most particles were

sliding over one another, and the number of effective contacts for each grain particle increased.

Most increased contacts had their normals in the horizontal direction, which is important for the

stability of the fabric (Oda 1993). Further vibration seemed to have fluidized the grain bulk, and

produced less than 20 percent of the total change in bulk density, estimated from the surface

movement of top grains. During this stage, wheat particles adjacent to the wall moved downward,

whereas those located in the central region were forced to move upward. Particles travelled in

such a way that their long-axes were consistent with the moving path to minimize the resistance to

the motion, thus some particles were reoriented with their long-axes in the vertical direction.

Macroscopically, the wheat bulk gains more strength through increasing the number of

contacts, therefore, vibrated samples exhibit higher strength. Especially, an increase in number of

horizontal contact normals stabilises the fabric and results in higher resistance to vertical loads. As

the vibrated wheat bulk dilates, contact points in the medium decrease which lowered the strength

of the medium. For non-vibrated samples, the initial shear strength is much lower because of

fewer contacts in the medium, the consolidation increases the number of contacts and the shear

strength is also increasing. Lee and Seed's (1967) observed that, for a constant confining pressure,

volume changes which accompany the shearing deformations tend to produce samples with the

same void ratio at failure. This implies that contact points in vibrated samples are comparable to

those in non-vibrated samples at failure. Therefore, the stress response of vibrated samples

approached that of non-vibrated samples at larger deformation (Fig. 4.2).

Microstructural Stability

For the purpose of illustrating dilation microscopically, four particles in contact are
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considered (Fig. a.3). Figure 4.3a shows an unstable microstructure (Fabric I) with Particles A

and B in an unstable position. There are four contacts, two vertical and two horizontal ones. If

only gravitational force exists, Points 1 and 3 (horizontal contacts) are pseudo-contacts because

no force is transmitted across these two points. Figure 4.3b shows a stable microstructure (Fabric

II), Particles A and B are now in a stable position. There are five contacts, none of them are in

vertical contact. Fabric II has less void than Fabric I. If both fabrics are now subject to a simple

shear, say, Particles A and B move leftwards. Fabric I will show a lower shear strength with

consolidation, whereas Fabric II will show a higher shear strength with dilation. A grain bulk

consists of many Fabrics I and II aggregations. Vibration tends to convert Fabric I aggregations to

Fabric II type in the grain bulk, thus a vibrated grain bulk exhibits higher shear strength and

dilates more.

a) b)

Figure 4.3 Illustration of grain particle assemblies: a) Fabric I, unstable; and
b) Fabric II, stable.
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5. MICROSCOPIC THEORY OF BIN LOADS

Analytic theories for predicting loads exerted by granular material on storage structures have

been traditionally derived from macroscopic approach (Janssen 1895, Reimbert and Reimbert 1987).

An underlining assumption in macroscopic theories is that granular materials behave like continua.

These continuum theories predict loads in storage structures with reasonable accuracy if appropriate

model parameters are used. Unfortunately, some of these model parameters often cannot be clearly

defined becar¡se ofthe inherent discontinuous nature of granular materials. For example, predictions

of the Janssen theory rely on the ratio of lateral to vertical pressures (k value), but many researchers

have shown that the lateral to vertical pressure ratio is not a constant material property parameter

(Cowin 1979, Atewologun and Riskowski 1991).

Discontinuity is a fundamental characteristic of granular media. When external stresses are

imposed on a granular medium, they are carried by the contacts between particles. Macroscopic

deformations of the medium result from inter-particle movements (slip and rotation) and particle

deformation. Therefore, to accurately characterize granular systems, parameters relating to individual

particles (granules) and inter-particle interactions should be considered. These fundamental

microscopic property parameters cannot be directly included in continuum theories. In this chapter,

an analytic predictive model is developed for loads in granular material storage structures (bins and

silos) from a micromechanics theory. Some important particle properties are considered in the model

development. Because most storage bins (silos) are axial symmetry, stresses are approximated as

being two-dimensional, and so discussion is limited to this condition in the following sections.
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5.1 Microstructural Mechanics

The predictive model is developed from a theory of microstructural mechanics for granular

media (Granik and Fenari 1993). In their theory, a pair of particles (doublet) is considered as a basic

structural unit. When a granular medium is subject to loads macroscopically, strains develop within

the doublet because of deformations, rotation and slipping of particles. These strains are termed

microstrains. Corresponding to microstrains, microstresses also develop within the doublet. These

microstresses are: elongation (compression) microstress corresponding to separation (convergence)

of the particles; torsional microstress corresponding to rotation of particles about the doublet axis;

and shear microstress corresponds to slip between particles. The relationship between microstrains

(or microstresses) and macrostrains (or macrostresses) depends on the structure of the gtanular

medium. For a granular medium consisting of equal-sized spheres, two basic types of idealized

structures may exist in nvo-dimensional conditions: square packing and packing hexagonal (Fig. 5.1)

(Granik and Ferrari 1993). Square packing seldom exists in real granular media because of its

instability. The present theory assumes tlnt agranular medium consists of hexagonally packed elastic

spheres. In such a structure, an individual particle is involved in six doublets which are separated by

a structural an$e y60' (Fig.5.2). For non-sphere particles, it is a good approximation if the media

are packed isotropically. Otherwise, the structural angle should be adjusted to reflect the non-

isotropic microstructure. Under static conditions, rotation and slip of particles are negligible in a

granular medium. It follows that the two corresponding microstresses, torsional and shear stresses,

may be assumed to be negligible. Therefore, microstresses acting on a particle may be expressed by

three components, pt, p z and pr, in three directions (Fig. 5.2). It should be noted that these

microstresses are conceptually different from contact stresses between particles. Contact stresses in
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doublets are local and discrete. However, by averaging contact stresses over projected area of

particles, discrete contact stresses may be approximated by continuous microstresses (Granik and

Ferrari 1993). In a doublet, microstress acting on each particle represents a fictitious stress uniformly

distributed over the projected area of the particle, in the direction of the line connecting the centres

ofthe particles (Fig.5.2). Microstresses can be transformed to macroscopic stresses in a rectangular

Cartesian coordinate system as follows (Granik and Ferrari 1993):

3

or, =å ao,lo,Po (s.l)

where:

!r: directional cosine of p* a,:1,2,3

o¡¡: ÍÍtãctostress tensor, i:1,2; i:1,2

(a) (b)

Figure 5.I Idealized structures of equal sized spheres in two-dimensions: a) square packing, and

b) hexagonal packing.
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Figure 5.2 Abasic unit of hexagonal structure and microstresses on a particle.

Since (Qr,,, .rr,0rr): (-cos y, cos y, l) and (A ,r, Q zz, Q n): (-sin y, sin y, 0), equation (5.1) can be

expanded as:

o, = o' = (pt*pz)coszy rp, (s.2)

(s.3)oy=o22=çr+pr)sin2y
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r*y = aLz = (pt-pz)cosysiny (s.4)

(s.6)

where:

ø, : normal stress in x direction

oy: norrnal stress in y direction

tro: shear stress on ry plane

Corresponding to the three microstress components, there are three microstrain components, t1, t2,

and er. Physically, microstrain represents the rate of change in distance between particle centres in

a doublet. If particles are elastic, the relationship between microstresses and microstrains takes the

simple form of (Granik and Ferrari 1993):

n =Eetd d, (s.s)

where:

p o -- microstress, d : 1, 2, 3

8o : microstrain, 0 : l, 2, 3

E: elastic modulus of the particle

The kinematic relations relate the macrostrains to microstrains as (Granik and Ferrari 1993):

¿o=Qoi Qo¡ei¡

where:

eü : macrostrains
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By noting that repeating subscripts i andj imply summations (except the Greek letter a), equation

(5.6) may be written as:

e,=ercos2y +Zerysiny cosf +ergi¡2y

ôo..l'+X.=0
ùcj '

^ð'"- ð'", ô'ru
¿ - =-+------:
ôxðy ô'y ôx2

e, =ercos2y -Ze*siny cos| +er5in2y

83=8t

where:

a,: strain (er, ) in x direction

e, : strain (err) in y direction

eo: shear strain (er, ) on x-y plane

From continuum mechanics, equations governing

compatibility of the macrostrains (Fung 1965):

(s.7)

(s.8)

(s.e)

the equilibrium of macrostresses and the

(s.10)

(s.11)

where:

X,: body force, i:|,2
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Substitution ofEqs. (5.2) to (5.4) into Eq. (5.10) gives:

ô@ pz) 
*ô(pr-pr) tunu*ôp, 

"os_2v 
=oðx ôy ôx

(s.13)

(s.12)

(s.14)

ô@r_-pr) *ô(ptp)tany _
ôx ôy

Pg -^
cosy siny

where:

y : micro-structural angle

p : bulk density

g : gravitational acceleration constant

Equations (5.13) and (5.Ia) alone are not sufficient to determine three microstresses. Therefore, the

compatibility equation (5.11) must be used. Substituting Eqs. (5.5) into (5.7), (5.8) and (5.9), then

into (5.11) yields:

ô'(pr"pr) 
_ ð'(pr-pr)tanv 

_ zô'p, 
"orru 

*2ô'p, ,i¡u =gôx2 ðxðy ôx2 ôy,

Equations (5.13), (5.14), and (5.15) are the three governing equations which can be solved

simultaneously for the tkee unknownp,, p, and pr. It should be noted that compression stresses are

considered to be positive in the above equations.
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5.2 Static loads

5.2.1 Pressures in bins with frictionless walls

Consider a hypothetical bin with frictionless walls to develop some understanding of the

relationship between microstresses and macroscopic pressures in storage bins. If no friction exists

between the granular material and its containing structures, shear stress r,n should be zero and

microstresses do not vary across the bin cross-section (x direction). Therefore, from equation (5.4),

we have:

Pt=Pz=P(Y)

where p(y) is a microstress which is determined by substituting Eq. (5.15) into Eq.(5.13):

(s.1s)

Substituting Eqs.(5.15) and (5.16) into Eq.(5.12) yields:

(s.16)

(s.17)

ps: psû). Using this condition and Eqs.

p(v)= Ps!
2sin¿y

ôps 
=0

ôx

ôzpt 
=0

ôy'

Equation (5.17) indicates thatpris a function ofy only, i.e.,

(5.15) and (5.16), Eq. (5.14) is simplified as:

(s.18)
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By integrating equation (5.18) and applying the boundary condition of pr:0 at y:0, we obtain:

Ps= )'! (s.1e)

where ,lis anintegration constant. This constant (,1.) can be determined by examining the horizontal

microstrain er. If particles in the granular medium are perfectly rigid (Poisson's ratio is zero),

microstrain e, is zero for symmetric structures like hexagonal packing, and therefore, microstresspr

is zero as indicated by Eq.(5.5) with f.i:0. Consequently,.tr. is zero as indicated by Eq.(5.19).

However, particles are deformable for most real granular media. Therefore , microstresses pr andp,

will cause the particle to deform in the horizontal direction, resulting in microstrain er. To determine

the magnitude of er, microstressesp, andprare resolved into horizontal (p) and vertical components

(pr) (FiS 5.3). The magnitudes of horizontal components are (p,coiy : pcol y) and (prcol y:

pcoi y) for p, and pr, respectively. The two respective vertical component s are Qt,sirf y: psir/ y)

and Qt,sirf y: psirf y). Ifthe particle has a modulus of elasticity ofE and Poisson's ratio of v, the

horizontal deformations due to the horizontal and vertical stress components are:

D, = 
1 *)rr, "",Y) 

= - 
t "$) (2rcosv)

= ['+),ro,D,=(?)rur,,

(s.20)

(s.21)
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H
2rcosy

Figure 5.3 Decomposition ofmicrostresses p, and p, into horizontal and vertical components p*

and pr.

where:

D, : honzontal deformation caused by the horizontal stress component

Dr: honzontal deformation caused by the vertical stress component

r: radius of the particle

It should be noted that only a portion of the particle (2r cosy) is considered to be subject to

deformation when calculating D, (Fig.5.3). The total change in the particle diameter in the horizontal

direøion is (D, + DJ. Therefore, the horizontal strain e, is determined as (Dr+Dr)|2r. By using Eq.

(5.5), the horizontal microstress is calculated as:

( n. *n^\
p3= Eer= EITJ = r(vsinty -cos3y) (s.22)
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Combining equations (5.16), (5.19) and (5.22) gives:

(s.23)

Macrostresses can now be calculated from microstresses by using Eqs. (5.2)-(5.4), (5.16), and

(s.1e):

o,=(Pgco*Y *)')y (s.24)

or=Pü (s.2s)

^=(ffi) tu'in'v-cos3Y)

T=0xy (s.26)

From equations (5.24) and (5.25), the lateral to vertical pressure ratio (k value) is determined as:

(s.27)

Equations (5.24) to (5.27) may be used to predict pressures in shallow bins where wall friction can

generally be ignored.

otX

o
v

I cot2y for ]" =0
= 

t;*.ot'v(t ry) ror)'+o

41



5.2.2 Pressures in bins with frictional walls

The ûictional force between grain and the bin wall transfers a portion of the grain weight to

the bin wall. For a slice of grain @ig.5.4), the total grain weight is @pAAy). where,,4 is the cross-

sectional area of the bin and Ay is the height of the slice. The portion of grain weight that is

transferred to the bin wall is Quo. SAy), where p is the coefficient of friction between granular

material and wall and ,S is the bin perimeter. The grain weight (b) that is actually supported by the

grain mass itself is the total weight less that transferred to the wall:

b=pgALy - po;SÀy (s.28)

Therefore, the equivalent body force is calculated as the effective grain weight (å) per volume:

Y=h=ps-þo.Ï=or-+ 6.2s)

where:

Y: equivalent body force

S : bin perimeter

A: cross-sectional area of the bin

R: hydraulic radius (A/S) of the bin

¡r 
: coefficient of friction between granular material and wall
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Figure 5.4 A slice of grain over the bin cross-section.

By using this equivalent body force in Eq.(5.13), the frictional force is included in the equilibrium

equation:

ry.Y#rany-[,,+)ffi=o (s.30)

Since the force equilibrium is considered for a slice of grain over the bin cross-section, it is implied

that stresses are uniform across the bin cross-section. In essence, stresses considered here are "mean"

stresses and microstressesp/ and p, are equal across the cross-section. This suggests that equation

(5.15) remains valid for bins with frictional walls. Substituting Eqs. (5.2), (5.15), and (5.19) into Eq.

(5.30) and solving the resulting equation yields:

rysin2y 
- p s. #Qpcos2y 

+ Ly) =o (s.31)

Microstressp can now be determined by solving Eq. (5.31) with proper boundary conditions, e.g.,

p:0 at y:0. Equation (5.31) is a first order differential equation with constant coefficients. It has a
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and a complementary solution of:

Zp(y) = Ce

Combining Eqs. (5.32) and (5.33) gives the general solution to Eq. (5.31):

particular solution of:

Substitution of Eq.(5.35) into Eq.(5.3a) gives:

p(y) = 4tor *)"ta¡fy-p1
¡rcoszy 

- R '

ucot2v

Zp(y) = -3-tot * )rtañy - +', * Cn---l=t
tlcos'Y

C = - R;1pg+Àtan2y)
pcos-Y

ucot2v

-v
R.

(s.32)

(s.33)

(s.34)

(s.3s)

(s.36)

where C is the integration constant, which is determined by substituting the boundary condition p:0

at y:0 into the above equation:

2p(t) = @s *)'ta!fY)R 
0 - e

pcos-Y

The horizontal stress can now be determined by substituting Eqs.(5.36) and (5.19) into Eq. (5.a):

@^ 
'., - )ry

' 
"o*y
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uv

o* = (Pg * Àtan2Y)R 0 - e "*" )
tl

From Eqs.(5.2), (5.3) and (5.19), vertical pressure can be calculated as:

or=(o*-)rfltartY

From equation (5.38), the lateral to vertical pressure ratio is determined as:

k=cot2^{*LY
ov

(s.37)

(s.38)

(s.3e)

Equation (5.39) indicates that for bins with frictional walls, the lateral to vertical stress ratio is not

a constant, instead it varies with the depth and stress level. A constant k value exists only if particles

are rigid (À : 0) or the vertical stress is linearly proportional to depth like in shallow bins where wall

friction is ignored. Therefore, k value can no longer be viewed as a material parameter in load

predictions of deep bins. It should be noted that Equations (5.37) to (5.39) are reduced to the well-

known Janssen's equation if ,tr :0. This means that the Janssen's equation is a special case of the

present theory with assumption of a constant pressure ratio (k) or rigid particles (À:0). Apparently,

equation (5.39) cannot be solved directly for the k value, but the k value is not needed when using

equations (5.37) and (5.38) to predict lateral and vertical pressures.

5.3 Hygroscopic Loads

Hygroscopic pressures are induced in gain storage bins when grain moisture changes. Several
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researchers have reported that hygroscopic pressures may be considerably higher than static pressures

@ale and Robinson 1954;Blight 1986; Britton et al. 1993). Unfortunately, hygroscopic loads have

not been included in most desþ standards and codes because of the lack of information on predictive

theories for hygroscopic loads. Only the ASAE 8P433 (ASAE 1995) cautions that increases in grain

moisture content should be maintained within one or two percent during storage to prevent high

hygroscopic loads from occurring.

The difficulty of predicting hygroscopic loads arises from the complex nature of grain en

masse and interactions between gain and containing structures. Zhang and Britton (1995) developed

a predictive model for hygroscopic loads by assuming that grain bulk moves like a continuum during

hygroscopic expansion. But grain en masse is of inherent discontinuous. Therefore, predicting

hygroscopic loads should be based on the behaviour of individual grain particles and interactions

among particles. In this sectioq the behaviour of wetted grain is examined from the point of view of

microscopic mechanics, and a model is developed for predicting loads induced by increased moisture

of grain in bins.

5.3.1 Hygroscopic expansion of grain particles

When a gatnparticle absorbs moisturg its volume increases. The volumetric strain of swollen

grain particles may be estimated from grain moisture changes as follows (Zhang and Britton 1995):

(s.40)
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€v: volumetric strain of a wetted particle, m3/m3

AMC : increase in moisture content, o/odb

MCo: initial grain moisture content, o/odb

p*o: initial particle density, kdrtf

p*: density of water, kgltf

If assuming that particles expand uniformly, the hygroscopic microstrain can be calculated as:

I
g - -'ü¡

J
(s.41)

5 .3 .2 Hy groscopic pressures

Volumetric increases of individual grain particles cause the grain bulk to expand. If the

expansion is not restrained, the grain bulk should not undergo a significant stress increment. If the

grain bulk is restrained, a hygroscopic pressure will be induced as a result of the restriction of grain

expansion. In other words, there would be no hygroscopic pressures induced if the grain is allowed

to expand freely (like in a completely flexible container), and hygroscopic pressures would reach the

maximum (for a certain moisture change) if the grain is stored in rigid containers.

To determine the maximum hygroscopic pressure (in a rigid container), the moisture-induced

expansion may be viewed in analogue to thermal expansion between two bodies of exactly the same

shape, one subject to heating and the other one not. Following the theorem of Duhamel-Neumann

analogy in thermoplasticþ (Fung 1965), the hygroscopic pressures of swelling grain bulk confined

in a perfectly rigid container are calculated as:
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L = o*= Lo+ (pr+pr)cos2y *pt (s.42)

V= or=Vo* (pr*pr)sirfl (s.43)

where:

L: lateral pressure (during wetting), kPa

V: vertical pressure (during wetting), kPa

Lo: initial lateral pressure (before wetting), kPa

Vo: initial vertical pressure (before wetting), kPa

TheLoandV0arestaticpressures,andthept,pzandprarethemoisture-inducedmicrostresses,

which may be calculated by a modified Eq. (5.5): p" :E 
"o, 

where E' is the modulus of elasticity for

wetting gain in rigid containers. Equations $.a\ and (5.a3) predict hygroscopic pressures in perfect

rigid containers. However, grain storage bins are usually not perfectly rigid. Bin walls and floors

deform and grain is free to move at the bin top when grain expands. Zhang and Britton (1995)

indicated that structural deformations are negligible comparing with the upward movement of grain.

In the process ofwetting, hygroscopic stresses initially reduce the static frictional force (Fo) between

the bin wall and grain, further wetting reverses the direction of frictional force, and grain starts

moving upward until the frictional force reaches its maximum value. Before grain starts to move

upwards, the bin could be treated as in a rigid container if wall and floor deflections are ignored.

When upward movement occurs, the microstresses p, and p , should be calculated from the vertical

force equilibrium ofgrain at a given depth (y). Vertical force equilibrium conditions, before wetting
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and after wetting, may be approximated as follows:

vo=psy -+ (s.44)

(s.4s)

(s.46)

where:

p : bulk density, kgltf

g : gravitational acceleration constant, m,/s2

y: depth of grain, m

Fo: initial (static) frictional force, kN/m

F: frictional force during wetting, kl.I/m

R: hydraulic radius of bin, m

Combining Eqs. (5.a3) - (5.45) gives:

Fy=pg!* 
R

Fo*F
Pt+Pz= 

Ãrin'y

Since q is restricted by the bin wall, microstress may still be calculated as p, : E'or. However, wetted

grain may become softer, thereforg the modulus of elasticity during wetting should be modified when

calculating pr.
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(s.47)

where:

E' : modulus of elasticity for wetted grain, kPa

f : moisture reduction factor due to softening of wetted grain

To estimate the modulus of elasticity E' for wetting grain in equation (5.47), an empirical correlation

proposed by Smith and Lohnes (1983) for bulk moduli for maize (shelled corn), wheat, barley and

oats is used:

lo. lz
K =l n +llK.' lK'e'''t' I '

(s.48)

where:

IÇ: tangent bulk modulus, kPa

on: hydrostatic stress, kPa

€vr¡rt: asymptotic value of volumetric strain, m3/m3

If : initial bulk modulus, kPa

Because the granular medium is approximated as being isotropic and homogenous, E' may be

determined from Eq.(5.48) as:

P, = (fE\+

E|=3(!-zv)K,= 3(r t l*,-tl4 (s.4e)
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where:

v : Poisson's ratio of wetting grain.

Equation (5.49) is used to evaluate the initial tangent modulus for wetting grain. During wetting, the

modulus may fluctuate due to stress change and grain softening. So, the moisture reduction factor

f may be defined as the ratio of initial modulus to that of wetted grain in a rigid container. Physically,

the modified modulus (ffi') represents a segment modulus for wetting grain. It should be noted that

the modulus of elasticþ (E) in Eq.(5.5) represents the modulus of an idealised granular medium (Fig.

5.1) subject to static loading, and that the modulus of elasticity (E') in Eq.(5.49) represents the

modulus of a deformed granular medium subject to hygroscopic loading.

5.4 Discharge Loads

5.4.1 Patterns of shear deformation

The mechanism of shear deformation of granular media may be best illustrated by the simple

(direct) shear test (Fig.s.5). When a sample is sheared horizontally, a macroscopic shear plane (SS-

plane) develops. The actual motion of particles, however, occurs along a wavy S'S'plane because of

the discontinuity of granular materials. This wavy plane is termed the slip plane (Nemat-Nasser,

1980). The slip plane divides the sample into two portions, namely an upper portion and a lower

portion. Each portion behaves like a rigid block at a given instance (Horne 1964, Nemat-Nasser

1980). Therefore, the shear deformation is explained as sliding between the two serrated faces of rigid

blocks @ig.5.5) (Rowe 1962). When shearing occurs horizontally, upper block moves upwards, and

thus dilation takes place vertically.
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Figure 5.5 Simple shear test and shear-induced dilation mechanism.
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Dilatancy Angle

Dilatancy angle 0 is often used to charactenze the dilation mechanism (Fig.5.5). This angle

is related to friction angles of granular materials as follows (Rowe 1962, Nemat-Nasser 1980,

Moroto 1987):

0=0-öp (s.s0)

where:

0 : dilatancy angle

$: macroscopic (overall) angle of internal friction

0u: microscopic (true) angle of friction

It should be noted that the shear stress is related to normal stress by the angle of internal friction, and

volumetric expansion strain is related to the shear strain by the dilatancy angle. For example, in

simple shear test (Fig.5.5), r, : (o, tanQ), and e, : (s,v tan 0). Under biaxial loading condition, the

slip plane is represented by a shear band with an inclination angle of minimum value of (45"+0/2) with

respect to the minor principal stress (Han and Drescher 1993) or (45'-012) with respect to the major

principal strain increment @ard 1990). Dilatancy angle 0 can be calculated from the rate of plastic

volume strain (É"e) and the rate of plastic shear strain (ó,P) (Ord et al. 1991):

sin(O) = (s.s1)
sv

et

The above equation indicates that the dilatancy angle is not a constant but a

deformation process.

function of the
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5.4.2 Discharge loads

Similar to the hygroscopic loads, discharge loads may be calculated as:

L = o r= Lo * (p r*pr)cos'y *p. (s.s2)

V=or=Vo*(pr+pr)sin2y (s.s3)

where:

L: lateral pressure (during discharging), kPa

V: vertical pressure (during discharging), kPa

Lo: static lateral pressure, kPa

Vo : static vertical pressure, kPa

The microstresses pr, pz and p, are now representing the shear-induced stresses. These stresses are

unlikely to be obtained exactly because of the complexity of the discharging problem. An

approximation may be obtained from the analysis of the shearing.

For a layer of grain to slide over another layer of grain, internal friction must be overcome.

At the onset of discharge, internal shearing is initiated. Fast-moving grains overcome the friction on

slow moving (or dead) grains, in other words, a frictional load is applied to the slow-moving grains

which interact with the structure. Shear-induced vertical stress (the second term on the right side of

Eq. 5.53) is approximated bythis frictional load, which is estimated as (L tanQ) by using Coulomb's

criterion:
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pr+pr)sirf y =Ltanþ (s.s4)

1.o.,

Pt* Pz=
ItanQ

(s.ss)
sin2y

The vertical shearing causes a horizontal expansion ofthe grain en masse. This expansion is restricted

by the bin wall and an additional lateral load (pr) is induced. It seems reasonable to assume that the

maximum expansion corresponds the maximum lateral pressure. By the relationship of dilatancy, the

maximum lateral expansion displacement may be approximated as (d.* tan0j, where d,,,"* is the

maximum length of dilatancy shear (Fig.5.5). Since the horizontal expansion is restricted by the bin

wall, the lateral expansion per unit diameter gives an average microstrain er:

d-"*tuno.u"
(s.s6)83=

where:

r: radius of the bin, m

d.*: maximum length of dilatancy shear

0.*: maximum dilatancy angle

By assuming that p 3 : E' e, and using Eqs (5.55), (5.56), and (5.49), the maximum lateral pressure

is obtained by solving Eq.(5.52):

2r
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L= (s.s7)

(s.s8)

By definition, the overpressure factor may be calculated as:

r'= l- lI(' .'r' -zv)d^ot!o *'''*,.''i)

If no dilatancy (0,,*: 0), equation (5.58) is reduced to:

Ía=
1-tanS cot2y

(s.se)

Equation (5.59) implies that overpressure factor is a function of structural angle and internal frictional

angle of the granular medium even if neglecting the dilatancy effects. If further no internal friction

(Ô:0), equation (5.59) gives that f o: L Therefore, the overpressure may be attributed to the internal

friction and dilatancy of the granular medium.

5.5 Model Validation

5.5.1 Static Loads

Model predictions are compared with experimentd, data reported bV (1) Dale and Robinson

(1954) for shelled matzein a smooth walled model bin, (2) Thompson et al. (1995) for maize in a full-



sÞe comrgated bin, and (3) Zhang et al. (1987) for wheat in a smooth walled model bin. There is a

large volume of data in the literature on loads in bulk solids storage structures. These three were

selected as being representative of agricultural products. Dale and Robinson (1954) conducted five

tests, loads (vertical, lateral and friction) were only reported for Tests 2 and 3, which are used in the

following comparisons. Model predictions are also compered with the Janssen theory for the model

bin ofDale and Robinson (195a). Three values (0.4, 0.5 and 0.7) of the lateral to vertical stress ratio

are selected to cover the range of k values recommended by design codes and standards for

agricultural materials (e.g., DIN 1987). Bin dimensions and material property parameters used in

model predictions are zummarized in Table 5.1. It is assumed that the maize has a Poisson's ratio of

0.40 (ASAE 1995) and the coefficient offriction 0.34 (Mohsenin 1986) for smooth steel of Dale and

Robinson's model bin. Applying the Janssen equation to data reported by Thompson et al. (1995),

the coefficient of friction was estimated to be 0.55 for the full-size comrgated bin of Thompson et

al. (1995). Parameters for Zhang et al.'s wheat bin are taken from their paper (Zhang et al. 1987).

Lateral and vertical stresses are predicted by Eqs. (5.37) and (5.38), respectively, and the

resultant friction force on the bin wall is calculated from Eq. (3.6). Predicted bin loads are in close

agreement with the experimental data for all three cases (Tables 5.2 and 5.3). It is noted that

differences between the model predictions and Janssen's theory are dependent on the k value selected.

Janssen's equation predicts too high vertical pressures if a lower k value is used, and too low vertical

pressures if a high k value is used (Table 5.2).
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Table 5.1 Parameters used in microscopic theoretical predictions

Parameters Model bin of maize' Model bin of wheato Full-size bin of maize+

Bin height, y,,,*

Bin radius, r

1.524 m 1.2 m

0.2286 m 0.45 m

14m

5.5 m

Hydraulic radius, R 0.1143 m 0.225 m 2.75 m

Bulk density, p 780kglm3 817 kg/m3 7l9kglrrt

Friction coefficient, p 0.34 0.19 0.55

Poisson's ratio 0.4 0.29 0.4

*: Data from Dale and Robinson (1954)

O: Data fromZhang et al. (1987)

t: Data from Thompson et al. (1995)
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Table 5.2 Comparisons oftheoretical predictions with test data for a model bin (Dale and Robinson

res4)

Loads Predicted Data+ Janssen's

k:0.4 F0.5 k:0.7

Lateral (kPa) 2.70 2.86 +:0.73 2.15 230 2.46

Vertical (kPa) 4.02 3.93 *0.06 5.38 4.61 3.52

Friction (lò{/m) 0.87 0.88t0.01 0.72 0.80 0.93

t average of data from tests: #2 and #3 reported by Dale and Robinson (1954).

Table 5.3 Comparisons of theoretical predictions of lateral pressure (kPa) with test data for a

full-size bin of maize (Thompson et al. 1995) and a model bin of wheat (Zhang et al. 1987)

Full-size bin of maize Model bin of wheat

Depth (m) Predicted Data Depth (m) Predicted Mean data

3.1 8.9 10.2+1.8 l-08 2.95 2.91

6.1 15.9 17 .l+2.1 0.825 2.33 2.59

9.1 21.9 24.1t3.1 0.57 T.67 1.67

11.9 26.0 26.9+4.0
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5.5.2 Hygroscopic Loads

To validate the proposed model, predicted hygroscopic pressures are compared with

experimental results reported by Dale and Robinson (1954). Only the data from their Test No.'s 2

and 4 are used in the following comparisons because the exact grain moisture changes were reported

for these two tests. In Test No.2, Dale and Robinson observed an increase in lateral pressure from

2.1to 13.5 kPa and an increase in vertical pressure from 3.98 to 15.2 kPa at the bin bottom, while

the grain moisture changed from 13.0% to 16.9Yowb. These represent an overpressure of 11.4 kPa

and ll.2 kPa in the lateral and vertical directions, respectively, for a moisture increase of 4Yowb.In

Test No.4, ten minutes of flooding was applied to the grain bulk, and the maximum lateral pressure

of 2l .93 kPa and vertical pressure of 20 .34 kPa were observed in approximately two hours with the

change of moisture content about 10%(wb) from 12.5o/o to 22.4o/o.

Material parameters reported by Smith and Lohnes (1983) for maize (shelled corn) (Table 5.4)

are used in equation (5.49) to calculate the modulus of elasticity E'. For a small increment of moisture

content, the moisture factor is t¿ken a value of I due to the limitation of available data. The moisture

factor is estimated to be 0.75 from maize data reported by Blight (1986) for flooding situation. Static

pressures Lo and Vo are taken from the test data of Dale and Robinson (1954). The hydrostatic stress

in equation (5.49) is replaced by the average of static vertical and lateral pressures ((zLo+Vù13) for

a cylindrical bin. Since the resultant friction force during wetting was not recorded in the test and no

equation can be found to predict it, it is assumed that the friction is the same as static condition, i.e.,

F:Fo, where $ was also taken from the test data of Dale and Robinson (1954). Other model

parameters are listed in Table 5.5.

An overpressure of 10.9 kPa is predicted both laterally and vertically for an increase of 4Yowb
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Table 5.4 Measured initial bulk moduli and asymptotic volumetric strains for

maize (shelled corn) at l5olo moisture content, and for wheat at

l0.3yo moisture content (Smith and Lohnes 1983).

Maize Wheat

Bulk Density p, kg/m3 771 779

Initial Modulus I!, kPa 591.3 645

Asymptotic Strain €,,,ilþ x10'3 41.03 73.12

Table 5.5 Material property parameters used in model predictions

Initial Particle Density (pk'), kg/m3 1400

.Initial Bulk Density (p), kg/^t 774'

Initial Moisture Content (MC.), %db 13

Poisson's Ratio (v) 0.4

* reported by Dale and Robinson (195a)
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in gain moisture, which gives a hygroscopic lateral pressure of 13.0 kPa and vertical pressure of 14.9

kPa. The relative differences between predictions and data in Test No.2 are 3.7Yo and Z.\Yo for lateral

and vertical pressures, respectively. For the flood situation in Test No.4, the initial static pressures

were not reported, and it was assumed to be the same as in Test No.2. The predicted vertical pressure

was 19.38 kPa and lateral pressure 20.9k<Pa at the bin bottom for a moisture increase of l0%. The

relative diferences between predicted hygroscopic pressures and data in Test No.4 are 4.7Yo forboth

lateral and vertical pressures.

Table 5.6 Comparison of predicted hygroscopic pressures with measured data.

Hygroscopic

pressure

Lateral

Vertical

Lateral

Vertical

Moisture content

increment

4.jYo

4.0%

10.0%

t0.0%

Predicted

(l<Pa)

13.0

14.9

20.9

19.4

Measured o/oDifference

(lrPa)

13.5

t5.2

2T.9

20.3

3.7Yo

2.lYo

4.7%

4.7Yo

5.5.3 Discharge Loads

To validate the model of discharge loads, the overpressure factor predicted by Eq. (5.58) is

compared with experimental data reported by Zhang et al. (1993) for wheat in a smooth and a
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corrugated-walled model bin. Table 5.7 lists the reported bin dimensions, wheat properties and

discharge operations. Table 5.8 collects reported ranges of dilatancy angles for some granular

materials in the literature. The maximum dilatancy angle was reported as 19.3 degrees for wheat

(Zhanget al. 1994). There is no theory available to calculate the maximum length of dilatancy shear.

The d.o is estimated as the shear rate times the peak time of lateral pressure from the discharge

operation (Table 5.7). The shear rate may be estimated from the discharge rate and the height of the

measurement. When the orifice is opened, the mass loss of support starts moving downward whereas

those supported by the bin bottom forms a dead zone with an inclined angle of (æ l4+AD) with respect

to the bottom. It should be noted that this angle (during discharge) is different from the angle of

repose which is measured from the materials left in the bin after discharge. At the height of 0.38n¡

the radius of the central moving zone is calculated as the sum of orifice radius (0.03) and (0.38

cot(nl4+012) ), i.e., 0.3 m. Therefore, the discharge rate divided by the moving area gives an

approximated shear (flow) rate, which is calculated as (a.79rf 13600s)/(æ 0.32 m2): 0.0047 m/s. The

parameters used to calculate the discharge expansion modulus are taken from the test data reported

for wheat by Smith and Lohnes (1983) (Table 5.4). The hydrostatic stress is taken as the average of

static vertical and lateral pressures ((zLo+Vò/3) for a cylindrical bin. By using Eq. (5.58) with these

parameters, the overpressure factor was estimated as 1.55 for the smooth wall and 1.44 for the

comrgated wall (Table 5.9). From Eq. (5.59) if no dilatancy, the overpressure factor was calculated

as 1.19 for the effect of internal friction only, therefore, the dilatancy contribution may be estimated

as 1.36 for the smooth wall and 1.25 for the comrgated wall. The relative differences between

predicted and measured overpressure factors were less than T% (Table 5.9).
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Table 5.7. Bin dimensions, physical properties of wheat, and discharge operations

Bin dimensions: Bin height, y,n*

Bin diameter,2r

Orifice diameter

Measuring height

Wheat properties: Bulk density, p

Poisson's ratio

Angle of internal friction

Moisture content

Discharge operation: Discharge rate

Time of peak lateral pressure

1.5 m

1.0 m

0.06 m

0.38 m

779kglr#

0.29

25.60

Tt.3 %

4.79 m3lh

0.6 s (smooth wall)

0.4 s (comrgated wall)
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Table 5.8 Summary of reported dilatancy angles.

materials ranges (degree) source

gravel 0 to LZ Jacobsen (1990)

sand 3.5 to 18.7 Vardoulakis (1980)

coarse sand -9 to 19 Han & Drescher (1993)

sandstone -19.3 to 27 Ord et al. (1991)

soil -10 to 30 Bardet (1990)

wheat 0.7 to 19.3 Zhang et al. (1994)

Table 5.9 Comparison of predicted discharge overpressure factor with measured data.

Overpressure factor Predicted Measured o%Difference

Smooth wall 1.55 1.56 0.6%

Comrgated wall 1.44 1.45 0.7%
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6. ENDOCHROI\IIC CONSTTTUTT1rE EQUATTONS

A systematic modelling of macroscopic stress-strain behaviour of granular media is

necessary to develop finite element models for predicting bin loads. Two mechanical models,

namely creep-t,¡pe and relaxation-type, are constructed for developing a stress-based constitutive

model and a strain-based model, respectively. In the creep-type model, strain responses are

predicted from applied stresses, therefore, the theory is called stress-based theory. In the

rela^:<ation-type model, stress responses are predicted from applied strains, and the theory is called

strain-based theory.

6.1 Mechanical Models for Grain En Masse

Grain en masse is elastoplastic, therefore, the macroscopic constitutive behaviour of grain

en masse can be modelled by using different connections of spring-elements (elastic) and slip-

elements (plastic), with springs storing enerry whereas slip-elements dissipating energy.

Traditionally, slip-elements are symbolicatly represented by the two parallel bars for frictional

slips, where shear and volumetric deformations are not coupled. To account for the shear-

volumetric coupling the traditional slip-elements are modified to slip-dilatancy elements

represented by two curved parallel bars. The physical basis of slip-dilatancy elements are shown in

Fig. 5.5. With these mechanical elements, mechanical models of relaxation-type and creep-fype

are constructed for modelling the stress responses under deformation and strain responses under

loads, respectively.
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6.1. I Relaxation-type model

A relaxation-tlpe mechanical model consists of many spring-slip units connected in

parallel. In each spring-slip unit, a spring element and a slip-dilatancy element are connected in

series. Figure 6.1 shows such a relaxation model for describing deviatoric (shear) behaviour of

materials. When the material is subject to a plastic deviatoric strain e¡p, each and every unit

experiences the same straiq but the total stress is the summation of the stress spectrum of each

spring-slip unit.

I eou

v

A,

q:'
U

1el¡

Figure 6.1 Relaxation mechanical model for shear response.
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To illustrate the process of modelling the material responses using rela¡<ation-type models,

models with three spring-slip units are considered for one dimensional shear conditions (Figs.6.2).

To simplify the discussior¡ no shear-induced volumetric deformations are considered. Therefore,

slip-dilatancy elements ¿ìre approximated as slip (frictional sliding) elements. To further simplify

calculations, it is assumed that all the springs have the same stiffiress as k,, but each slider has a

different friction limit, such that: P1<P2<P3. For describing force responses to applied plastic

deformations (tP), spring constant vanishes in one of the units. At the onset of applying tlP, the

force response increases instantly u-ntil P : Pl when Slider I is triggered to slide. This means that

the initial tangent stiffiress is infinitive (Figs.6.2). The sliding of Slider I indicates an initial

material yield, then, tlp is directly applied to Springs I and2. Therefore, the tangent stiffiress

changes from infinity to 2kr. Further deformations cause the force response (P: Pl+ 2krUP)

+u'

kr

PI

P2

1u,

k2

P3
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Figure 6.2 Illustration of responses of relæ<ation model in one-dimensional shear.



reaching P2, Slider 2 is triggered to slide. Now, the additional force can only be taken by Spring 2

and the tangent stifFness is further reduced to kr, and P: Pl+krll. When the increments of IJ"

makes P reach P3, no more forces can be taken by the materials and the plastic deformation II

may reach infinity, i.e., the material fails. The unloading is a mirror process of loading.

A similar relaxation model can be constructed for volumetric response (Fig. 6.3).

Rectangular boxes represent volumetric endockonic elements, in which volumetric slip-elements

are coupled with the shear slip-dilatancy elements (Fig.6.3) for shear-induced volumetric

tl+

<t-L}H
oG)rhE b9

q? B,

q.P B.

Figure 6.3 Relæration mechanical model of volumetric response.
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deformations. When the material is subject to a plastic volumetric strains eoP, each and every unit

experiences the same strairU and the total hydrostatic stress is the summation of the stress

spectrum of each spring-slip unit.

Figure 6.4 shows the mechanism of the relaxation-type model, in which deviatoric

response and volumetric response are combined together with the vertical direction for the

deviatoric behaviour (solid line) and horizontal direction for the volumetric behaviour (thin solid

line).

Figure 6.4 Mechanism of relaxation-type model for strain-based
endochronic theory.
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6.1.2 Creep-type Model

A creep-type mechanical model consists of many spring-slip units connected in series. In

each spring-slip unit, a spring element is connected with a slip element in parallel. Figure 6.5

illustrates a creep model for describing deviatoric (shear) strain responses of materials to an

applied shear stress S,,. When applying a deviatoric stress S', to the material, the stress is applied

to each and every unit, and the strain responses are the summations of the strains from all parallel-

connected spring-slip units.

a 'l'
U

aol
U

a ':'
U

Figure 6.5 Creep mechanical model for shear response.
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To illustrate the process of modelling the material responses using creep-qape models,

models with th¡ee spring-slip units are considered for one dimensional shear conditions (Figs.6.6).

To simplify the discussion as for creep-type models, slip-dilatancy elements are approximated as

slip (frictional sliding) elements, and all the springs are assumed to have the same stifttess as k,.

Consider each slider having a different friction limit, such that: Pl<P2<P3. For describing the

flow properties of materials (failure), spring constant vanishes in one of the units. When the

applied force P is smaller than Pl, Slider I is the controlling element, and the initial tangent

stiffiress is infinitive (Figs.6.6). ffi9n P is increased to Pl (an initial material yield point), Slider 1

starts to slide (yield zurface expansion) and Spring 1 deforms and the tangent stiffness decreases

from infinity to k,. When P reaches P2, Slider 2 is triggered to slide, both Spring I and Spring 2

deform and the tangent stifrress is further reduced tokr/L When P:P3, plastic deformation tip

increases to infinity, i.e., the material fails. The unloading is a mirror process of loading.

P+

Pt

Figure 6.6Illustration of responses of creep model in one-dimensional shear.
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A similar creep model can be constructed to characterized the volumetric behaviour of

materials (Fig.6.7), in which shear slip-dilatancy elements are also contributed to volumetric

behaviours. When the material is subject to a hydrostatic stress on, each and every unit

experiences the same stress, and plastic volumetric strains eoe is the summation of the strain

spectrum of each spring-slip unit.

D"

Oh+ Oh
4-

QO'

DÐ

Figure 6.7 Creep mechanical model of volumetric response.
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Figure 6.8 shows the mechanism of creep-type model, a combination of deviatoric (shear)

and volumetric responses with the vertical direction for the deviatoric behaviour (solid line) and

horizontal direction for the volumetric behaviour (thin solid line).

Or
--Þ

Figure 6.8 Mechanism of creep-type model for stress-based endochronic theory.
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6.1.3 Mixed-tpe models

The previous two sections indicate that either creep-type model or relaxation-type model

may be selected for describing the deviatoric behaviour or volumetric behaviour, respectively. A

cross-selection of a relaxation-type model and a creep-type model, for shear and volumetric

behaviours, gives alternative ways of modelling the constitutive behaviour of materials. These

models are of the mixed-type of creep-type and relaxation-type models.

Figure 6.9 shows the fust mixed-type model, in which shear response is of creep-type (in

vertical direction) and volumetric response is of relaxation-type (in horizontal direction).

D

Gh+ si<-

I
Figure 6.9 Fkst mixed-type mechanical model.
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Figure 6.10 shows the second mixed-type model, in which volumetric response is of

creep-type and shear response is ofrelaxation-type.

Figure 6.10 Second mixed-type mechanical model.

$'r

A'

QU'
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6.2 Formulation of Stress-based Constitutive Model

The stress-based model may be formulated by either the classical approach or energy

approach. Classical approach uses the force equilibrium equations and geometry relationship,

whereas the energy approach uses the principle of irreversible thermodynamics.

6.2. I Classical Approach

We first consider a one-dimensional situation. Figure 4.2 implies that the slope of the

stress-strain curve at large deformation may be zero in some situations. To capture this failure

behaviour in Fig. 6.5, the spring element in the unit where maximum internal stress develops is

vanished. Figure 6.11 shows such a modified creep-type model for describing the deviatoric

behaviour of the material subject to a uniaxial load. The stresses and strains in frictional elements

are treated as internal variables. Internal deviatoric stresses are denoted as Q@, Q(I), Q(2), ..., Qþ),

and internal plastic deviatoric strains as do), d", f', ... 4', where Q@ represents the maximum

internal stress and the other internal stresses are ¿uranged in sequence by their magnitude. The

spring constants, which are model pafameters, are assumed to be l{), í2), ... l{n) for the

corresponding spring elements. When the material is loaded by a deviatoric stress S, the stress

equilibrium for a typical unit is:

S = gvt+þt)q(r) (6.1)

The superscription (r) represents the r-th unit (r0,1, ..., n.). In endochronic theory, the internal

stresses Qt) are aszumed to be proportional to the rate of internal strains as f'lwith respect to

intrinsic time (Valanis 1981). Thereforg the constitutive equations for the r-th frictional element
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are:

where:

(6.2)

ar(') - proportional constant

zo: deviatoric component of intrinsic time

Q(o)

Q(n)

s1

Figure 6.11 A onedimensional mechanical model with a yield and a failure point.

Q(o)

+

:f

Q(2)

Q(r)
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Substituting of Eq. (6.2) into Eq. (6.1) gives:

S = o.,ç)4{-*¡r(r)r(r)- dz¿ (6'3)

and dù (r*0) may be obtained by solving Eq. (6.3):

zd

qa) - [C,(t-r-o!zr 
zt¡ >ë-at, $.¿)' J r'dzt

0

z' : dummy variable

C,: lll{')

Pr= Hd /a/')

and 4@ may also be obtained by solving Eq. (6.3) with #0): 0:

z¿

q(o) = [c¡z¡z)4¿''o*
(6.s)

where:

Co: llaío)

Since all creep units a¡e connected in series, the overall plastic strain can be calculated as the sum

of strains of all individual frictional elements (Fig.6.ll):

,, = fnut
r=0

(6.6)
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Substituting Eqs. (6.a) and (6.5) into Eq. (6.6) results:

where:

a/êo) = Cú..Ét<t -r-þ") (6.s)
r=I

Equation (6.7) may be generalised for three-dimensional cases by using tensor expression as

follows:

,o ='iøo1ro-r)fia", $.i)

,í ='i*oço-r)fua,' 6.g)

Equation (6.9) is the constitutive equation for deviatoric behaviour of grain en masse. Equation

(6.8) may be viewed as the kernel function of tensorial zones. The mechanical model of

volumetric behaviour is similar to that of deviatoric behaviour. Stress equilibrium in a r-th unit,

similar to Eq. (6.1), may be written as:

on = QÍò +((ÒOk) (6.10)

where:

oo: hydrostatic stress

Qn: internal hydrostatic stress variable

q,, = internal hydrostatic strain variable
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K = hydrostatic bulk modulus

(r) - in r-th elastic element

However, unlike deviatoric behaviour, volumetric deformation has two sources: I) hydrostatic

compression, and ü) shear-induced dilation (Valanis and Peters l99l). The hydrostatic

compression is proportional to the rate of internal hydrostatic strain variables, and shear-induced

hydrostatic stress is proportional to the integration of complementary deviatoric plastic work:

eÍ,', = ";+-ur'píþ,, 1o.rr¡¿'t - L dto 
o

where:

q¿(ù : constant

b('): constant

hydrostatic component of intrinsic time

Following the similar discussion for deviatoric behaviour, the hydrostatic constitutive equation

may be obtained:

e, ='þø,-, r#"' i [ru,-, r, í** (6.r2)

J = Joz^-å 
å,t 

-r-^r,) (6.13)
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| = 
lF: *f 

=r",= 
(r -e-r,'r¡ 6.14)KFn 7=, KfFn\ /

where:

.,I= hydrostatic kernel function

,l': coupling kernel function

Å, : Y(t) ¡ r<'), model parameter

Jo: I/az@, model parameter

lr: b@/arlol, model parameter

K:K('l

For materials with an initial yield point and a failure point, the deviatoric kernel function

expressed by Eq. (6.8) may be approximated by one linear term and one exponential term:

Qa= Cúo*Crlt-e-Pr1 (6.1s)

where:

C, C, md þ, : material parameters

Under one-dimensional conditions, Eq. (6.15) is a mathematical representation of a mechanical

model consisting of a friction element and a friction-spring unit, as shown in Fig. 6. I when n :1.

Here grtt and 2rø define the initial yield point and the failure point, respectively, and eo represents

a deviatoric plastic strain scale.

Compared with deviatoric defonnatiorq hydrostatic deformation is small for grain en

masse under most loading conditions. The linear term alone is a sufficient approximation to the

hydrostatic and coupling kernel functions (Valanis and Fan 1984):
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J*J&o

T = lo(rFn)-rzn

u _ ôG{o*To\
"" - aoù'

(6.16)

(6.t7)

where:

Jo: matenal parameter for simplified hydrostatic kernel function

.Ç: material parameter for simplified coupling kernel function

6.2.2Energy Approach

Energy approach provides a unified way to formulate endochronic equations. When grain

en masse is loaded by a stress oij, energy is dissipated by friction elements and stored in spring

elements. Internal stresses T¡ (stresses in friction elements) are responsible for the energy

dissipatior¡ which are governed by the principle of irreversible thermodynamics. Gbbs free

energy, which is used for modelling creep-type behaviour, is stored in spring elements in terms of

applied stresses and internal stresses. The strain responses of the material are calculated by taking

the derivative of Gbbs ûee energy with respect to applied stresses:

(6.18)

where:

do: plastic strain tensor

øo: stress tensor

Tu = internal stress tensor
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G( ) = Gibbs free energy density

Similarly, internal strains may be calculated as follows:

Ír - -ôG{orTr)v,- 
--æ; (6.1e)

where:

Uo: internal strain tensor

Gibbs Free Energy

The total free energy in the gystem is the summation of the energy stored in each spring

element. It is assumed that internal stresses Tu is resolved into deviatoric component Q¡ and

hydrostatic component Q, and that Gbbs free energy is also resolved into a deviatoric component

Go and hydrostatic component Gn. For a typical spring element r, the deviatoric stress acting on it

is su(Ð which is equal to the total stress s¡ less the internal deviatoric stress on the friction element

Qu@, i.e.,r,r9:(r¡ - Quto) (Fig. 6.11), and the corresponding strain of the spring element is

erØ :soØ¡y('). Therefore, the deviatoric component of Gibbs free energy stored in a single spring

element Gr(') is determined as:

Gy = )r,v',v = *#,0, - e,u)n, g.zo)

where:

Go(') - deviatoric components of Gbbs free energy in r-th unit

su: deviatoric stress tensor

Q,j't = internal deviatoric stress variables
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ll ll : the norrn ("length") of tensor.

The total free energy stored in the system is the sum of energy stored in all spring elements:

where:

G¿: deviatoric components of Gbbs free energy

çtr): 1¿PtÐ, material constan-ts

Deviatoric stress s¡, together with internal deviatoric stress 81"... Qfd, d"froes the deviatoric

state of the material. Similarly, for hydrostatic behaviours, hydrostatic component of free energy

may be written as:

oo = Ðop = 
+h6(r)[su 

- e,lt' (6.21)

o, = +þroaloh-ea)P g.2z)

where:

G¡: hydrostatic components of Gibbs free energy

P(t) - material constants

ør: hydrostatic stress

g(r) : internal hydrostatic stress variables

I l:absolutevalue

Evolution equations

To calculate Gibbs free energy using Eqs. (6.221) and (6.22), determinations of internal stresses

are necessary. Internal stresses are governed by the energy dissipation. Following the principle of
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irreversible thermodynamics, the rate of energy dissipation should be always positive for an

irreversible process:

(6.23)

where:

n-G) 
: internal deviatoric strains

d') : internal hydrostatic strain

The above inequalities can be satisfied mathematically in many possible ways. A simple way is to

express Q¡t) and Ød * positive linear functions of internal strain rates (Vatanis 198a):

nr(g),, and n,(H),,

OQ) = o!>dq(')
dzh

(6.24)

(6.2s)

where

a,(') - positive constant (viscosity-like shear coefficient)

a r(') 
: positive constant (viscosity-like hydrostatic coeffi cient)

These equations assume that deviatoric and hydrostatic responses are independent. For grain en

masse, however, shearing may cause volume changes (dilatancy). Therefore, Eq. (6.25) is

modified to account for shear-volume coupling by including shear worh which is calculated as the

product of the shear strain do and the shear stress rate (ds/dz) integrated over the range of
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hydrostatic intrinsic time:

s(r, ="y,# ':l¡,;(*)*, 6.26)

where:

ar/') : positive constant

By using Eq. (6.19), internal strains can be determined by differentiating Gbbs free energy

densities with respect to internal stresses:

(¡) ôGo r r¡\ ôG,
n;:' = -õ and nQ) = ,0,, 6.27)

SubstitutingEq. (6.27) into (6.24) and (6.26) yields:

Qf" *"9å(#)-0 6,8)

e(', *'v'ä(#)= -'r'f,E)" 6.2s)

Equations (6.28) and (6.29) are the evolution equations which may be used for determining the

internal stresses.

Stress-based Theory

Stress-based theory is obtained by solving Eqs. (6.18) - (6.29). From Eq. (6.18), the deviatoric

and hydrostatic responses are written as:

87



(6.30)

\¡/here:

eP¡: plastic deviatoric strain tensor

d : plastic hydrostatic strain

Substitution of Eq.(6.21) into Eqs. (6.28) and (6.30), and performing the Laplace transformation

on the resulting equations gives:

,f=a?- and {r=y' at l ool,

..n
¿i = Ðc(r)Fu -ø;\

r=l

A? - a[')c<'tt5 --O¡(\ = o

¿i,=Ð{#] +",

,fr x, r, ).r,(" \d,l = ro,r,,rt Ltr,(z )\

where I is a transformation parameter; and an overhead bar (-) indicates that the variable is in the

transformed domain. Solving Eq. (6.32) for Q,f') and substituting it into Eq.(6.3 i) yields:

(6.31)

(6.s2)

(6.34)

(6.33)

Using the convolution tlreorem of Laplace transformation expressed by Eq. (6.3a) (Hirsch 1985):

where:

L{ } : Laplace transformation

the inverse Laplace transformation ofEq.(6.33) gives:
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,f ='þoþrr\ha'' (6.s6)

@o = fc(Ðh- r-u''"4 (6.3s)
r=l

where:

@o: the deviatoric kernel function

B(r) 
: 1/(ar(r)çG)¡, intermediate variable

Equation (6.35) may be viewed as the summation of an incremental constitutive equation

derP:(Þ/suover the entire intrinsic time history, where Ø, is equivalent to a tangent compliance.

By noting that C('): C, and FG': F,, Equations (6.35) and (6.36) are basically identical to

Eqs.(6.7) and (6.8). Therefore, for materials with an initial yield point and a failure point, the

deviatoric kernel function expressed by Eq. (6.36) may be approximated by one linear term and

one exponential terrr, as stated in Eq.(6.15).

Following a similar procedure, a constitutive equation similar to Eq. (6.35) is obtained for

the hydrostatic response:

4 ='^[*, -, r*"' i ¡ro, -, r, í ** (6.37)

J = ÐD(')h -ru*4 (6.3s)
¡=L
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| = I {[-tt -r-^''',,] (6.3e)
r=t aì'KÍ n

where:

../: the hydrostatic kernel function

l": the coupling kernel function

1(r): l/(q!(Ð(')

For granular materials which are subject to large plastic deformations and negligible elastic

deformations, Equations (6.38) and (6.39) may be simplified as Eqs. (6.16) and (6.17).

6.3 Formulation of Strain-based Model

,strain-based model may be derived by either the classical or energy approaches. Both

approaches will yield to the same results, as in the case of creep-type model. Therefore,

relaxation-type model is formulated by energy approach only in this sectioq because of its unified

concept and solid physical basis of irreversible thermodynamics.

Strain-Based Theory

Helmholtz free energy is used for modelling the relaxation-type model (Valanis and Peters

1991). Following stress-based theory Helmholtz free energy is assumed to be composed of a

deviatoric component and a hydrostatic component. For a given plastic strain, the energy stored in

the relaxation type mechanical models may be written as quadratic functions of applied strains and

internal strains (Fig.6.3) :

90



where:

IIo: deviatoric components of Helmholtz free energy

FIo: hydrostatic components ofHelmholtz free energy

q : deviatoric internal strain tensor

q,: hydrostatic internal strain

d: material constant

Br: material constant

Following the procedure used in deriving the stress-based model, internal shear stresses are

proportional to the rate ofinternal strains, internal hydrostatic stresses are proportional to the rate

of internal volumetric strains as well as the rate of plastic deviatoric work for shear-induced

volumetric deformations. Therefore, evolution equations for relaxation-type model may be

expressed as:

,r=+kn¡ef -q,912 and ,r=+ha,l{r-qÍ')1, G.40)

Q,u) =r{'#:; g.4t)

g(r)=byrdq"' -bg- 
d"f

v -" d", -urr't¡É (6.42)
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where:

b r(') 
: intermediate (visco sity-like) shear co effi cient

br(') : intermediate (visco sity-like) hydro static co effi cient

br,(') : intermediate coupling coeffi cient

Following Eq.(6.30), internal stresses a¡e related to internal strains as follows:

ôH, ðH,
Q, = -: and O = -- (6.43)ðQ,¡ ðq

Substitution of Eq. (6.43) into Eqs. (6.41) and (6,42) yields the following evolution equarions:

The stress responses to applied strains may be calculated from the derivative of Helmholtz

free energy with respect to the corresponding plastic strains (Valanis and Peters l99l):

ðHo 
+by>dqr!') =o

W-u, h - rc.44)

+ - b|+ = -b:l'r,,d'rf (6.4s)
êq{Ò " ùo 't u dz

aH. aH.tu=:i and o.- '
oei "'- a{o (6'46)

Similarly as in stress-based model, the following constitutive equations can be obtained by

solving Eqs.(6.a0) - @.aQ:
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,, = 'l*o@o-r)ff,",

o,= j*,ç,-, )*", i 
þø 

u, ),,,,ff*,

(6.47)

(6.48)

where three kernel functions Y" Yn and tr take the forms of:

vo=fl,e-oqa $.4g)
r=l

yr=ÉB,e-c/^ (6.50)
r=L

n-
tr=EK,e-ç/t' (6.51)

r=l

where

cr: lvbl(Ð, material constant

(, = B JbrØ, material constant

IÇ = ((þr,(')y(KFJ, material consrant

Equations (6.47) to (6.51) are consistent with those of Valanis and Peters (1991).

For the mixed-type mechanical models, constitutive equations may be selected according

to the types of deviatoric and hydrostatic responses, respectively. Equations (6.35) and (6.48) are

for the first mixed-type mechanical mode[ and equations (6.37) nd $.a\ are for the second

mixed-type mechanical model.
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6.4 Determination of Model parameters

Model parameters for the strain-based theory have been determined by Xu (1992) for

wheat en masse- The following section discusses determination of model parameters for the

stress-based theory.

Model parameters for the stress-based theory were evaluated using triaxial test data

reported by Zhang et al.(1987) for wheat at a moisture contenr of 8.IYo (w.b.) and a bulk density

of 817 kg/mt . Their dat4 collected from conventional cylindrical triaxial tests, include four sets of

data from axial compression tests at confining pressures of 20.7,34.5, 4g.3 and 62.1 kpa, and one

set from hydrostatic compression tests. Axial compression data for a con-fining pressure of 4g.3

kPa and hydrostatic compression data were used in determining model parameters. Because the

definition of intrinsic time is the same as that used by Valanis and Peters (i991) in their strain-

based theory, all parameters associated with the intrinsic time remain identical to those determined

by Xu et al' (1992) for the.grain (Table 6.1). Detailed procedures for determining these

parameters can also be found in Xu et al. (1993). Determination of parameters associated with the

kernel functions a¡e discussed in the following sections.

Under triaxial loading conditions, the deviatoric stress may be expressed as (Valanis and

Peters 1991):

s = s_ + (so -s_)e 
-*,

(6.s2)

where:

s: deviatoric stress under triardal loading

s-: deviatoric stress at failure (at zr:"¡ under triardal loading
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s0 : deviatoric stress at yield (at zo:0) under triaxial loading

c: material constant

Table 6.1. Model parameters determined for wheat at a moisture

content of 8.lYo w.b. and a bulk density of gl7 kg/^t

Elastic bulk modulus (K), kpa

Elastic shear modulus (G), kpa

Coupling parameter (K)

Hydrostatic hardening function @)

Õr

a

c

Simplified coupling function (1,), kpa't

Hydrostatic kernel function (J,), kpa't

Deviatoric kernel funaion ((Þ)

Co, kPa t

.F'
C,, lcPa-l

2067t

2750Ï

1. l3t

0.71

8.8x l0{ 1

n.2l

-7

0.154

2.92

3t64

8.0x 104

t Reported by Xu er at.(1993)
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When the material is subjected to axial compression as in the conventional triaxial tests, the plastic

volumetric strain increment dqe is negligible compared with the plastic deviatoric strain dd,

therefore d€/dz = 1 as indicated by Eq. (3.12) (ddu :deP under axial compressio* thus depu depu

:(dd)2 ). It follows from Eq. (3.14) thar:

dep deP -
q = Çra* ra (6.53)

Under axial compression, the deviatoric hardening function Fo may be expressed as (Valanis and

Peters 1991):

Fo=oo+bs (6.s4)

where å has a constant value of 0.408 (Vatanis and Peters 1991). Combining Eqs.(6.53) and

(6.s4) lelds:

deP = (oo * bs)dzo

substitutingBq. (6.52) into (6.55) and inregrating the resulting equation gives:

sn = (oo + bs)z¿- 
ff"_-s)(1 -r-n,)

The deviatoric strain can also be calcurated from Eqs. (6.7) and (6.15) as follows:

eP = (Cozo*CrXs-sJ - u(s-- s)(/, + /r)

where I, and I, are the integrations:

(6.ss)

(6.s6)

(6.s7)
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zd

I, = [zte*'dzt
0

zd -@:

a

-*' 
- l) (6.s8)

(6.se)

(6.61)

zd

fn = [s\Fa*$r-oÞ'd"I.J
0

_e-þ,,r) rf g, *

,f Þ, = a
= f u+('-*'

l'o'-*'

u- [ t- d"í]

'r-- [s- - so a"o]

If assuming 9r r d, comparison of Eq. (6.57) \¡/ith (6.56) results in:

e-*t = ,-Þ(a (6.60)

which indicates that B, must be equal to ø. Eq. (6.52) suggests that a is the slope of (s- - s) vs. z,

curve plotted in a semiJog scale. The a value was determined to be 3164 by Xu (lggz) for the

wheat used in this study.

substituting Eq. (6.52) into (6.57) and rearranging rhe equation yields:

¿n = Csza("--"J * (C,-*rU--sJ - (s--s)(C, -**rrr*-*,

Differentiating Eq. (6.61) with respect to z* and then letting zo approach infinity, Eq. (6.62) is

obtained:.

(6.62)
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Following a similar procedure, J, in the hydrostatic kernel function is determined as:

Jr= (6.63)

where:

o_ : hydrostatic stress at zn: *

oo: confining pressure in triaxial test (at zh: 0)

The failure and yield stresses and strain rates at failure determined from data reported by Zhang et

al. (1986) are summarized in Table 6.2. The strain rate (de f/dzr) at zr-* was determined from

the slope of the curve for hydrostatic strain versus hydrostatic intrinsic time at a large zn value

(Fig. 6.12) (the slope remained almost constant for zn >0.3). The strain rate (de,f/dzo)&t zo,- 1¡¡¿5

determined in a similar fashion from a plot of deviatoric strain versus deviatoric intrinsic time. The

hydrostatic stress o- was calculated as (oo + 0.40gs) (Valanis and peters 1991). From these data

c o and J, werc determined to be 2.g4 kpa 1, 
0. I 54 kpa'r, respectively.

Differentiating Eq' (6.61) with respectto z* and then letting zd apptoach to zero yields:

iL,,= c'(a-r)(s--s)
(6.64)

Another expression ofthe strain derivative may be obtained from Eq. (6.55):

H,rr= 
oo + ó'so

(6.6s)

^l-t - o{,]

'r-- lo-- oo A"rl
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Table 6.2. Failure stresses and strain rates derived from triaxial test

data (oo:48.3 lcPa) for wheat at a moisture content of 8.lo/o

w.b. and bulk density of 817 kglmt (Zhneet al. 1986)

Deviatoric stress at failure (s-), kPa

Hydrostatic stress at failure (o-), kPa

Deviatoric stress at yield (so), kPa

Deviatoric strain rate at failure (de,rPldz)

Hydrostatic strain rate at failure (de{/dz)

Slope (a)

57.81

71.9

33.41

7r.6

3.62

3164

t Reported by Xu et al. (1993)

0.004

.E 0.003
ct
JJ
tt2

.9 0.002

c)

E o.oor
o
ô 0.000

'r=
.tt
ct
E-0.001

{.002
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Equating Eqs. (6.6a) and (6.65) yields:

c^-b/--u'r-F (6.66)

The coefficient C, is calculated to be 8.ûxl0-4 using Eq. (6.66). Parameter lo was calculated to be

-7 þJtt using Eqs. (6.72), (6.16), and (6.17) at €f :0.

6.5 Verification of Stress-based Endochronic Theory

The model parameters listed in Table 6.1 were used to predict the stress-strain behaviour

of wheat en masse under the axial compression with a constant con-fining pressure of 20.7 l<Pa.

The integrations of Eqs.(6.9) and (6.12) were carried out numerically. Model predictions

compared with the experimental data reported by Zhang et al. (1987) (Figs.6.13 and 6.14). The

predicted deviatoric stresses closely followed the experimental data with an average relative

difference of 4o/o and an average difference of 0.83 kPa. The average difference between predicted

and measured volumetric strain is 1.08x10-3. The relative difference could not be calculated for

volumetric strains because measured strains had zero values. Predictions by the stress-based

theory are consistent with those by the strain-based theory of Valanis and Peters (1991) (Figs.

6.13 and 6.14).It is interesting to note that predictions of volumetric strains averaged from stress

theory and strain theory are in closer agreement with the experimental data than either theory

alone (Fig. 6.14) because of the complementarity of the theories.
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Figure 6.13 Comparison of predicted deviatoric stresses with data reported by
Zhang (1987) for triaxial loading at a confining pressure of 20.7 l<Pa.
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Figure 6.14 Comparison of predicted volumetric strains with data reported by
Zhang et al. (1987) for triaxial loading at a confining pressure of 20.7 kPa.
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7. EIYDOCHRONIC FINITE ELEMENT ALGORITHM

7.1 Grain-Storage System

A finite element algorithm of strain-based endochronic theory has been developed by Xu

(1992), in which the grain-storage system \¡/as assumed to consist of three components: (i) grain;

(ii) grain-structure interface; (iii) structure (bin wall). In this study, the same system is used for

model development. The constitutive laws for the structure and interface elements are the same as

that in Xu (1992).In this Chapter, the focus is on formulating stress-based endochronic theory for

the grain. Matrix expressions are given for an axisymmetric situation, because most on-farm

storage grain bins are cylindrical and grain pressures are considered to be axisymmetric.

7.2B.in Wall Element

The bin wall, assumed to be made of steel, was considered to be linearly elastic. Hooke's

law was used to describe the bin wall behaviour (Zhang 1987, Xu 1992):

1¿sl=[D*]ldel (7.r)
where:

[D*] : the stress-strain matrix for the wall

{do} : stress vector

{de} :strainvector

For an axisymmetric thin-walled bin, the bin wall may be treated as a membrane in which no shear

stress develops. Therefore, the bin wall was discretized by a line element (Fig.7.l), and [D*] was

expressed as:
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Figure 7.1 Discretization of grain bin system.
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(7.2)

where:

Ç: elastic modulus of bin wall material

v,,: Poisson's ratio of bin wall material

T.3Interface Element

In finite element analysis, the contact surface between two materials has common nodes

which undergo the same displacements. This implies that relative motions at the common nodes

are not allowed (displacement must be continuous). On the contact surface between the grain and

the wall, the grain is free to slide over the wall, thus creating a discontinuous displacement field

from the grain to the wall. To model the relative motion and force transaction between the grain

and bin wall, an interface element (Zhang et al. T987, Xu 1992) should be used:

1¿ç|=lD.l{de}

,r=ft[Tl

where:

{do} : [do. do, dou doJr

{de} : [de, de, deu deJr

IDJ : stress-strain matrix for the interface

(7.3\

For an axisymmetric body, [Dj is expressed as (Xu 1992):
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ld, d, d,

lo, dt d2

lD'l=la, dz dl

lroo

0

0

0

G
,

(7.4)

where:

d, : Ào E(1-v)/[(1+v)(l-2v)]

d, : LoE,v/[( 1 +v)( l -2v)]

E : elastic modulus of interface in compression

v,: Poisson's ratio of interface

Âo : participation factor (0.01 - 0.1)

G,: shear modulus of interface.

E and vi can be expressed in terms of the initial elastic bulk modulus Ç and initial shear modulus

G of the grain as described in the following section. The shear modulus (G) was determined from

the frictional behaviour of grain on the wall (Xu 1992):

G =drldy =0.5(¡ro,-t) 't¡¡M (7.s)

where:

¡r 
: friction coefficient between grain and bin

on: nonnal stress

c : shear stress

t: thickness of the interface element

N : displacement modulus
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y : shear strain (s/t)

s : relative displacement

7.4 Grain Element

The grain element was modelled by stress-based endochronic theory described in the

previous Chapter. The constitutive equations are converted to the matrix forms in this section.

Using the definitions of deviatoric stress dS,,:do,,-donôu and deviatoric strain deu:deu-

(7.6)

(7.7)

ôuden/3 (where ð is the Kronecker delta), and the relationships represented by Eqs. (3.10) and

(3.11), the following constitutive equations were obtained:

dor=dorõ,,+dS,

= K rõ r(d e r- d {r) +2G (de r- de tf )

= (K oõ,de, +2G de 
r) - 

(K ¡õ,d{, +ZG de tf )

which can be expressed in matrix form as:

{¿çl=lD"llde\-ldHJ

where {do} and {de} are engineering stress and strain vectors for axisymmetric conditions. [D"]

is the initial elastic coefficient matrix given as:
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LD"l=

D|D2D2O
D2DID2O
D2D2D]O
0 0 0G

(7.8)

(7.10)

p1=go+!Ç; nz=xo-?G (7.g)--'1 3-' n 
3

The "plastic" stress vector {dH} is given as:

ldHl = K nd el,{Il +2G lde 
p I

in which {I}:[ I I 0]r.

A graphical interpretation of Eq.(7.7) was given in Xu (1992).

7.5 Calculation of Flastic Strains

To calculate the "plastic" stress vector {dH}, numerical calculation of plastic strains is

necessary. By the property of convolution integral, an alternative expression of Eq.(6.9) may be

written as:

, 'ldeo@o-t)

'í = IT'rtu' (7.11)
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Assume that the domain of integration (0, z) was divided into n subregions. Then, the current

plastic strain can be calculated from previous step using Eq.(7.12):

z¿

@l), = (ef),-r. [ ço.crBre-Þ{zrz5¡s dz' lt.ts¡
(z ¿)n_t

Applying the first mean-value theorem to the above integral yields:

zd

çat,l),=(eÐ,-(ef)n-t*s¡j1,,=,0 [ {co+ctþ(-þ,Qo-'5)dz' 1tla,¡
(z¿)n_t

z¿

ef = l(co+crBre'e,@t"\r. 
dzI

0

gt f), - s 
¡¡l 

", 
="JC sfu a 

* c {l -' 
-þ'o' ))

(7.12)

(7.1s)

i.e.,

where zo is the current value of the deviatoric intrinsic time scale, and dzocorresponds to the

current incremental loading process.

Similarly, the hydrostatic plastic strain (deno) is obtained by using Eqs. (6.l2), (6.16) and

(6.r7):

(d.{), = ro, or,(o nl 
", =,J, 

* 1e,f ds ¡) 1,, =, r+) (7.16)
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hydrostatic stress, and ii) shearing-volumetric coupling.

Equations (7.15) and (7.16) imply that no history of previous values should be stored to

obtain current values.

7.6 Endochronic Finite Element Algorithm

Following Xu (1992), express the constitutive relations for the wall, grain and interface in

a general matrix form:

ldoj=[D]{de}-ldlll

where [D] is now the elastic coefficient matrix, and {dH} is the plastic stress vector which is

equal to zero for the wall and interface.

Using the principle of virtual work, one may obtain (Xu 1992):

[,]õde{{do}dv=[,{õduY{axlav*[r.{õdu}r{dr}ds

(7.17)

(7.18)

where:

{T} : surface traction force

{X} : unit volume body force

The differential displacement vector {du} is related to the differential nodal displacement vector

{dq} as follows:

{du}=ltll{dq\ (7.1e)
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where:

[Nl : the matrix of shape (interpolation) functions

Strains are related to the nodal displacements as:

{de\=ay# þt{dq\

where:

[B] : ô[N]/ô{x}, gradient matrix

By substituting Eqs. (7.19), (7.20) and (7.17) into Eq. (7.18) one obtains:

{õaqY¡ 
[,¡a]rlDltBldv{aøl 

- [,Vt]' 
wnn

- | ¡t't1r latlds - [ [B]r øIr\dvl=o
Jso- - Jv

The non-trivial solution of Eq.(7.21) gives:

lnldq|={dP\+{dP)

(7.20)

(7.21)

(7.22)

(7.2s)

(7.24)

(7.2s\

where:

Ín= [,la]r[D]laldv

ldPl= Ï"ÍtI'\üù* {r,l nr{dr}ds

ldP)= 
["lB]ruH]dv
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unnecessary. Comparing with linear elastic formulation, only the force vector is corrected by

adding or subtracting the plastic force vector {dP,} during iterations.

7.7 Solution Technique

The solution technique developed by Xu (1992) for strain-based model was used with a

slight modification to obtain solutions toBq.(7.22). The method has been shown to yield a rapid

convergence and to permit large load increments. The solution procedure can be summarized as

follows:

l. Apply a load increment {dP} and determine the corresponding increments of elastic

stress {do'}, and strain {de'}, using the relationship [K]{dq}:{dP}.

2.Update stresses and strains: {o'},: { oo } + {do'}1 and {e'},:{eo}+{de'},.

3. Initiate dztby taking the plastic strain as a fraction of the total strain , è.g.,

{dee},:0.1{de'},.

4. Calculate {dH}, using dz,, and update stresses: {o'}z: {o'}, + {dH},.

5. Compute the residual force vector: {R} : {dP}-{&}, where R is the unbalanced force

vector, and \ is the internal nodal force vector corresponding to the current state ofstress.

6. Stop the iteration process ifl

¿nrt= ll{R}ll <ToL
I{dP}ll

(7.26)

wherell.llis the norm of a vector and TOL is a prescribed small tolerance

7. Resolve [K]{dq}:{R} to find {do'}, and {de'}, and repeat Steps 2 to 6.

In theory, the smaller the tolerance, the greater the number of iterations, and the higher the
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accuracy. However, an excessively small tolerance may accumulate the truncation errors. In this

study, the tolerance was l%. AFortran program was written based on the above algorithm

(Appendix ). The elements used in the program are four-node quadrilateral elements as described

by Zhang (1987). The program \ryas developed for both stress-based and strain-based endochronic

theories. The program flowchart of strain-based endochronic FEM (Xu 1992) was applicable to

stress-based endochronic FEM as well. The graphical illustration of the iteration process, with the

explanation of the solution principle, can be found in Xu (lggÌ).

7.8 Validation of Finite Element Algorithm

The endochronic finite element model was validated using experimental data reported by

Zhang (1987) for a model bin. The bin was made of 0.8 mm thick aluminum with a height of 1.2

m and a diameter of 0.9 m. The cylindrical bin wall was considered to be hinged at the rigid bin

floor. The bin structure and external loads were assumed to be axisymmetric; therefore, only half

of the bin was modelled. Because the bin is classified as a shallow bin, Rankine's theory was also

used as a comparison.

The grain in the bin was Larned wheat with a bulk density of 817 kg/^t, Poisson's ratio of

0.29, a moisture content of 8.lYo d.b. and an internal friction angle of 25o. The endochronic model

parameters shown in Table 5.1 were used in modelling.

The bin was divided into 10 equal layers in the vertical direction and 5 equal sections in

the radial direction (Fig.7.l). There is a total of 75 elements in the system. The FORTRAN codes

were executed on an IBM 3090 mainframe computer at the University of Manitoba. The average

number of iterations for each load increment was about 4.
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Comparison of model prediction with experimental data

The model predictions were compared with both experiment data and FEM prediction

reported by Zhang (1987) or Rankine's theory (Table 7.l). Predictions of both microscopic and

endochronic finite element models were within the 95Yo confidence interval of the measured data,

whereas predictions of other FEM or Rankine's theory were not. The difference in percentage of

measured mean were shown in Table 7.1. Rankine's theory does not consider friction between

grain and the wall, therefore it predicts higher lateral pressure. At height of 12 cm(near bottom),

the prediction by Rankine's theory was beyond the 95%o confidence interval (Table 7.1). At height

of 37.5 cm, all the models except Rankine's predict lower lateral pressure than measured mean. At

the other two levels, predictions by endochronic finite element models or microscopic models

were in good agreement with experiment data, their relative differences were within SYo. The

average differences of three levels were within 6Yo for any models developed in this study. These

comparisons show that the proposed endochronic finite element models can satisfactorily predict

the static lateral pressures in grain storage bins.
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Table 7 .l . Comparison of static lateral pressures (kPa)

Height

(cm) Stress-based

Predictions

Strain-based

Zhang et al. (1987)

Microscopic Mean (95%CI') FEM Rankine

12.0 3.03 (4.r%)+

37.s 2.34 (e.6%)

63.0 t.6t (3.6%)

3.03 (4.r%)

2.32 (t0.3%)

r.s8 (s.4%)

2.es (t.4%)

2.33 (t0.0%)

r.67 (0.0%)

2.9t(2.77,3.04)

2.59(2.29,2.90)

1.67(1.43,1.9)

2.ee(z.7%)

2.r3(r8.t%)

r.4s(t3.2%)

3.sT(20.6%)

2.68(35%)

1.85(10.8%)

t Relative difference to mean measured values

* 95o/o Confidence Interval
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8. ST]MMARY AND CONCLUSIONS

In this study, theories of bin loads have been developed from both microscopic and

macroscopic approaches. By studying the microstructure of granular media at the particle level, an

analytical microscopic theory has been developed for predicting static loads for the first time. The

new theory accounts for the contributions of particle deformations to load, and Janssen's equation

was derived as a special case of the present theory with an assumption of rigid particles. The new

theory has been extended for the analysis of hygroscopic and discharge loads. For hygroscopic loads,

dynamic microstresses are calculated from moisture-induced volumetric expansion of grain kernels.

For discharge loads, the overpressure factor is prediaed from the dilatancy angle, the internal friction

angle, and the structural angle ofthe stored grain. The theory relates lateral pressure during discharge

to shear-induced dilatancy. This has brought our understanding of bin loads to the particle level. The

theory has been validated against the experimental data for both model bins and a full-size bin.

A class of mechanical models has been constructed for modeling the shear-volumetric

coupling behavior of granular materials at macroscopic level. Endochronic theories have been

developed by using these mechanical models. The proposed endochronic theories have been verified

against triÐdal test data for wheat. A finite element algorithm has been developed for analysis of static

loads in axisymmetric grain bin systems by using the stress-based endochronic theory for the stored

grain. The endochronic finite element model was validated against the experimental data fromZhang

(re87).

From the study, the following conclusions were drawn:

1. The microscopic theory provides alternative anal¡ic equations for predicting static,
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hygroscopic, and discharge loads using microscopic parameters.

2. Janssen's equatioq recommended by most desþ standards and codes, is a special case of the

microscopic theory, with the assumption of rigid particles.

3. The lateral to vertical pressure ratio (k value) is a function of stresses, deptlr, the structural

angle of the particle assembly, and Poisson's ratio of particles (particle rigidity).

4. The behavior of granular media can be modeled by endochronic theories. For wheat at a

confining pressure of 20.7 kPa, stress-based endochronic theory predicts deviatoric stresses

with an average relative difference of 4Yo and amean absolute difference of 0.8kpa. The

average difference between predicted and measured volumetric strain is 1.08x10'3.

5. Model parameters of endochronic theories can be evaluated from cylindrical triaxial tests.

6. The proposed FEM predicts static lateral pressures within 95% Confrdence Intervals of

measured data.
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9. RECOMMENDATIONS FOR FURTHER WORK

In this study, the system of granular media in storage structure has been studied,

microscopically and macroscopically. The theories have been validated against experimental data.

These models provide rational way of calculating the static, hygroscopic, and discharge loads. The

recommendations for further work are as follows:

l. Determine experimentally the maximum dilatancy angle for agricultural products.

2. Extend the microscopic model to include cohesive materials.

3. Investigate the complementarity of stress-based and strain-based endochronic theories.

4. Extend the finite element model to include the finite strain case and Newtonian time for dynamic

analysis.
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APPENDD( LIST OF FINITE ELEMENT CODES

C A FORTRAN PROGRAM FOR FINITE ELEMENT ANALYSIS
C OF GRAIN-BIN SYSTEMS
C USINGENDOCI{RONIC MODELS & INITIAL STRESS METHOD
C

C

IMPLICIT REAL*8(A.H,O-Z)
INTEGER NEY,NEX,NE,NDF,KSTAGE

c.....( NCt, NC2, NC3 ) ARE USED TO DEFINE SZES OF ARRAYS
C NDF: NUMBEROFDEGREEOFFREEDOM
C NE: NUMBEROFELEMENT
C A(Ì..IDF,NDF): STIFFNESS MATRIX
C F(|IDF): FORCE VECTOR
C DISP(NDF): DISPLACEMENT VECTOR
C U(NDF): DISPLACEMENT INCREMENT VECTOR
C STEQ: STRESS
C STN( ): STRAIN
C STERQ: STRESS INCREMENT
C STNRQ: STRAININCREMENT
C STEE(4): ELEMENT STRESS
C STNE(4): ELEMENT STRAIN
C DZ(I): INTRINSIC TIME FOR ELEMENT I
C Ql0,Q2Q:BACK STRESS
C HZ0: "PLASTIC" STRESS VECTOR
C XC(4,I): X-COORDINATE FoR ELEMENT I
C YC(4,I): Y-COORDINATEFORELEMENTI
C MODEL: I FOR STRESS-BASED THEORY; OTHERS FOR STRAIN-BASED
c

PARAMETER(NC I =480,NC2=960,NC 3=240)
DiMENSTON U(|IC I ),U I (NC I ),DiSp(ÀtC I ),F r (t{C I ),RZ(NC I ),8 OIC 1,NC 1 )
DTMENSTON STEE(4),STNE(4),DEp(4),DSTE(4),F4(4)
COMMON/C ODEÆil,KO,MODEL
COMMON/KMAT/AG\IC l,NC I ),F(NC I )
COMMoN/STREN/STE(NC2),STN(NC2),STER(hrC2),STNR(NTC2)
C OMMONAVAILÆ]B IN,RB IN, TB IN,EMW,PRW
COMMON/INTF/EMIN,EMIH,PRI,CKW, CKB,CFW,CFB,THR,TBI,TWI
COMMON/LOADS/DEN,DPS I,DPS2,CT,NDEP,NSCHI,NSC}I2
COMMON/GRrD/KODE(NC3 ),ND(4,NC3),XC(4,NC3),yC(4,NC3),KWALL
COMMON/C ONST/PA,PI,NN2,NN4,NN8
coMMoNÆNDOlDZ(NrC3),EVP(NC3), Vp(NrC3),Q I CNC2),Q2OIC2)
COMMON/PARAÀ41EK,EG,GAMA,EKA,FID,AI I,A I,FI I,AE,CE
COMMON/PARS/GI,CO,CC 1,HJ I,B 1

COMMON/FÆZOIC2),HS(NrC2),FZ I (NC2),YA I (NC2),YA2(NIC2)
C.... CONSTANTS

KI:5
KO=6
NN2=2
NN4:4
NN8:8
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C
C

C

PA=l0.13
PI=3.14159
TOLF=O.01D0
MTZd

INPUT AND OUTPUT PARAMETERS

READ(KI,+)MODEL
C................... CONTROLL PARAMETERS

READ(KI,*) KOUT,NDEP,NSCHI,NSCH2,MTM,TOL
FJAD(KI,*) NEX,NEY

c................... . BINPARAMETERS
READ(KI,*) HBIN,RBIN,TBIN,EMW,PRW,CT
WRITE(KO,3) I{BIN,RBIN,TBIN"EMW,PR'W,CT
FORMAT(5X,'BIN PARAMETERS:,,/l 0X,'FIEIGHT=',T35,F 1 5.4/t 0X,
*Tù{DJIJS=',T35,F I 5.4/1 OX,'WALL THICKNESS=,,T35,F I 5.4/t 0X,
*'ELASTIC MODULUS=',T35,81 5.4/t OX,'POISSON RATIO=,,T35,F1 5.4/l 0X,
*'COEFF OF CONTRACTION=,,T3 5,Et 5.4 / l)

c................... ....... INTERFACE PARAMETERS
READ(KI,*) EMIN,EMIH,Pzu,CKW,CKB,CFW,CFB,THR
WRrTE(KO,4) EMIN,EMIH,PRI,CKW,CKB,CFWCFB,TIÌR

4 FORMAT(5X,'INTERIACE pARAMETERS:"
*/1 OX,'ELASTIC MODULI=',T30,2E I 5 .4 I tOX,
t'POISSON RATIO=',T30,F 1 5.4/t 0X,'DISP MOULi =',T30,2F I 5.4/t 0X,
*'FRICTION COEFF=',T30,2F I 5.4/ tOXt,
*'RATIO OF WIDTH TO I{EIGHT=',5X,F15.4//)

c................... ........... suRcltARGE LOADS
READ(Kr,*) PSl,PS2
WRITE(KO,9) PSl,PS2
FORMAT(5X,'LOAD VALUES:',/l 0X,'SURCHARGES=,,T35,2F I 5.4/l 0X,
+ //5X,50('*')//)

C................... GRAINPARAMETERS (endochronicMODEL)
READ(KI, *) EK,EG,GAMA,EKA,FID
READ(KI,*) ALl,Al,FIl,AE,CE
READ(KI,*) cl,Co,cc l,HJt,Bl
WRITE(KO, t6) cl,c0,cc l,Hjl,B I

l6 FORMAT(2X,'ENDOCI{ROMCMODELPARAMETERS(SrRESS-BASED):',//5X,
*'COUPLING COEFF. :GAMA l',T35,F I 5.4/5X,
*KERNEL FUNCTION: CO,CC l,J l',T3 5,3E I 0. 3/5X,
*'BETAI :',T35,8 I 0.3, / I 5X,50(,*,)/ /)
WRITE(KO, I 7) EK,EG,GAMA,EKA,FID,AL l,A 1,FI l,AE, CE17 FORMAT(2X,'ENDOCI{ROMCMODELPARAMETERS(SrRAIN-BASED):',//5X,

*'MODULI: K,G',T35,2E I 5.4/5X,
*'COUPLING COEFF. : GAMA,EKA',T3 5,2F I 5.4 / SX,
*'KERNEL FUNCTION:FID,AL l,A1',T35,38 I 0.3/5X,
*'IIARDENING FUNCTION;FII,AE,CE',T35,3E I 0.3/5X,/ /SX,ÍO(*,| /)
REAO6I,+¡ DEN,ANG

C
C GRADING

CALL MGRID(NEX,NEY,NE,NDF,NGF)
NST=4*NE

C IMTIALZATION
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c
C
c
C

C

C

C

KSTAGE=O
rF(NDEP.EQ.0) KSTAGE= I
CALL rNULV(DISP,NCl)
CALL INULV(EVP,NC3)
CALL INULV(VP,NC3)
CALL rNULV(STE,NC2)
CALL INULV(STN,NC2)
CALL NULVEC(QI,NC2)
CALL NULVEC(FIZ,NC2)
CAIL NULVEC(DZ,NE)

LOADING LOOP STARTS HERE

C....INCREMENT OFLOAD
IF(NSCHI .GT.O) DPS I =PS l/FLOAT(NSCHI )
IF(NSCH2.GT.0) DPS2=PS2/FLOAT(NSCH2)
NSCH=NSCHI+NSCH2
NSCFIE=NSCH+l

C.....SURCFIARGE LOOP; INCREMENT = l, NSCHI+MSCH2
DO 200 KS=I,NSCFIE
IFOTDEP. GT.O) DEN=DEN/FLOATOIDEP)
KW=NDEP
IF(KW.LE.0)KW=l

C.....LOADS LOOP; INCREMENT = 1, NDEP
DO l00KL:l,KW
cArL NULVEC(YAI,NC2)

FORM AND SOLVE SYSTEM EQUATION

CALL NULVEC(HZI,NC2)
CALL FORCE(F,NE,NEX,NEY,NDF)
ZNORM=O.0D0
DO 166I=I,NDF

166 ZNORM:ZNORM+F(I)*F(I)
DO 43 M=l,NDF
Fl(ltQ=FQvf)+FlO,')

43 CONTINUE
C
C CALCULATE INITIALELASTIC RESPONCE
C

CALL STIFFOIEX,NEY,NE,NDF)
CALL MODtrYOIDF,NEY,NEX)

C --. CALCULATE NEW DISPLACEMENT VALUES
CALL SOLVE(IJ,NDF)

C --- CALCULATE AND UPDATE STRESSES AND STRAINS
CALL STRE S S OIEY,NEX,NE,U)
DO 75I:I,NST
sTE(r)=sTE(r)+sTER(I)
STN(l;=51¡(I)+STNR(I)

75 CONTINUE
C.....ACCUMULATE DISPLACEMENTS
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DO 85I=I,NDF
DrsP(r)=DrsP(r)+u(r)

85 CONTINUE
c
C ITERATIONFORUNBALANCEDFORCES
C

DO lll KF=1,6
CALL IhITRIN(TIE,NST)
DO l50I=I,NST
sTE(I)=STE(r)+FrZ (r)

Q1(I)=Q2(I)
YAI(I)=YA2(I)

150 CONTINUE
wRrTE(6, *)'HZ:,WG),r= l,NST)

C --- CALCULATE AND UPDATE STRESSES AND STRAINS
CALLFMODOTE,NDF,FI)
CALL STIFF(I{EX,NEY,NE,NDF)
CALL MODIFYOIDF,NEY,NEX)

c**** cmcK IF THE SOLUTION IS REACT{ED ( ERR < TOLERENCE )
C..... CALCULATION OF NORMALS

RNORM=0.0D0
DO 66I:I,NDF

66 RNORM=RNORM+F(I)*F(I)
RATIO=RNORIú/ZNORM
WRrTE(KO,3 30) KZ,RATTO,RNORM,ZNORM

330 FORMAT(lX,'ITERATIONI"I4,4X,'RESIDUAL"3El2.4)
C --- CALCULATE NEW DISPLACEMENT VALUES

CALL SOLVE(U,NDF)
C --- CALCULATION AND UPDATE STRESSES AND STRAINS

CAIL STRESS(NIEY,NEX,NE,U)
DO I75I=I,NST
sTE(r)=sTE(Ð+STER(r)
STNl¡=51¡s(I)+STNR(I)

175 CONTINUE
C.....UPDATE INTRINSIC TIME COMPONENT

DO 37I=I,NE
VP(I)=VP(I)+EVP(I)

37 CONTINT]E
IF(RATrO.LE.0.01 ) GOTO 9s

III CONTINUE
C END OF ITERATION

WRrTE(KO,94) RATrO
94 FORMAT(I)U/5X,50('*')/10X,'**** WARNING ***{."/5X,

*'PLASTIC FORCE FAILED TO C ONVERGE',/ I OX,'RATIO =',El 5.4 / / l)
CALL OUTPUTOIE,NEY,NEX,O,KOUT,DISP,TEMP)
STOP

C

95 CALL TENCHK(NIE,NEX,NEY)
C IF NO GRAIN/INTERFACE ELEMENTS ARE IN TENSION, CONTINUE
C.....UPDATE BACK STRESSES

DO 550I:I,NST
Ql(I)=Q2(I)
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C

C

C

550 CONTINI]E
IOO CONTINUE
C END OF INCREMENT OF LOADS
c
C OUTPUTRESULTS

C STATIC PRESSURE WITHOUT SURCI{ARGE
wRITE(6,*)'STE:'
CALL WRTOIE,NST,STE)
CALL OUI?UTOIE,NEY,NEX,KSTAGE,KOUT,DTSP,TEMP)
rF(NSCH.EQ.0) GOTO 210

l lo IF(KSTAGE.GT.I) GOTO 210
2OO CONTINUE
C END OF INCREMENT OF SI]RCHARGE
C STATIC PRESSURE WITH SURCFIARGE

CATL OUTPUTOIE,NEY,NEX,KSTAGE,KOUT,DISP,TEMP)
210 STOP

END

SI.JBROUTINES FOR THE SYSTEM

suBRouTrNE WRTOTE,NST,W)
IMPLICIT REAL*8(A-H,O-Z)
DTMENSTONW(NST)
DO 10I=I,NE
Jl=4*I
JO=Jl -3

10 WRITE(6,111)I,(W(),J=J0,J1,1)
l l l FORMA'T(lx,rs,4Dls.6)

RETURN
END

C

C------------.- --AUTOMATIC GRIDING
SUBROUTINE MGRIDOTEX,NEY,NE,NDF,NGF)

c-------------- -----------MGRID(NEX,NEY,NE,NDF,NGF)
PARAMETER(NC I =480,NC2=960,NC 3=240)
IMPLICIT REAL* 8(A-H,O-Z)
DTMENSTON X(NC3 ),Y(NC3 )
COMMON/CODE/KI,KO,MODEL
c OMMON/GRIDIKODE(NC 3 ),ND(4,NC 3 ),XC(4,NC3 ), YC (4,NC3 ),KWALL
COMMON/WALL/I]BIN,RB IN, TBIN,EMW,PRW
COMMON/INTFÆMIN,EMIH,PRI,CKW,CKB,CFW,CFB,THR,TBI,TWI
CALL NULMAT(XC,4,NE)
CALL NULMAT(YC,4,NE)
RTB=0.01D0
WRITE(6,*)'RTB :',RTB
)Õ¡-PBIN/FLOAT(NEX)
YN=HBINIFLOAT(NEY)

C TBI:THICKNES S OF INTERFACE(B OTTOì\Ð ; TWI(WALL)
TBI=RTB*)ß{
TWI=RTB*YN
NXl=NEX+I
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NX2:NEX+2
NYI=NEY+I
NE:NX2*NEY+NEX
NGF=NX2*NYl+NXl
NDF=2*NGF
DO I I=1,4
DO I J=l,NE

I ND(I,Ð=O
C KODE= -IIBOTTOM INTERFACE; 0/WALL I/INTERFACE; 4/GRAIN

DO 80I=1,NXl
KODE(r)=-l
X(I)=¡¡{'*PtOAT(I-1)

80 Y(D=0.0D0
KODE(NXl)=4
x(l\Do):x(Nxl)-Twr
DO 10 J=I,NYI
Yl=(J-l)*)all
IF(J.EQ.1)Yl=Yl+TBI
Il:(J-l)*NX2+NXl
DO l0I=I,NX2
II=II+I
Y(I)=Y1
KODE(rr)=4
rF(r.EQ.NEX) KODE(rr)=t
IF(I.EQ.N)il) KODE(rD=0

IO CONTINUE
DO 20I=1,NX2
Il=(l-])*)$l
Xl l=Xl
DO 20 J=I,NYI
JJ:(J-1)*¡¡¡2+I+NXl
rF(r.EQ.N)(I)X1=X11-TwI
rF(i.EQ.NX2)X I =X I I -)C.r

20 X(J)=¡ç1
DO 50I=I,NE
K=I
IF(I.GT.NEX)K=I+1
ND(1,Ð=K
ND(2,Ð=K+l
IF(KODE(I).EQ. 0) ND(2,I)=NX2+K
rF(KODE(r).EQ.0) GOTO s0
rF(r.LE.NEX)K=r-l
ND(3,I)=K+1+NX2
ND(4,I)=K+NX2

50 CONTINUE
DO 70I=I,NE
DO 70 J:1,4
Jl=ND(J,Ð
rF(Jl.LE.O) coTo 70
xc(J,r)=x(Jt)
YC(j'I)=v1¡1¡

70 CONTiNUE
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C DETERMININGELEMENT TYPE FORBIN WALL:
C KWALL = 0 / THIN WALL; I / THICK WALL

DR=RBrN/FLOAT(NEX)
RATIO:TBIN/DR
KWALL=O
IF(RATIO. GE. I 0.0D0) KWALL= I
RETI.JRN
END

C
C-------------------- MODIFYING Kl {U} = {F} (ACCORDING To BC'S)

SUBROUTINE MODIFYOIDF,NEY,NEX)
C-------------- ---------------MODIFY(Ì.rDF,NEY,NEX)

PARAMETER(NC I =480,NC2=960,NC 3=240)
IMPLICIT REAL*8(A-H,O-Z)
COMMON/I(MAT/A(NC l,NC I ),F(NC I )
NC=NEX*2+3
NM=NC+NEY+l
DO 10I:I,NM
K=I
IF(.GT.NC)K=I+NC-l
tr(I. GT. (NC+2)K=(I-NC-2)*OIEX+z)*2+2*NC+ I
CALL MZERO(NIDF,K)

10 CONTINUE
RETI.JRN
END

c
C-------------. GLOBAL STIFFNESS MATRXA

SUBROUTINE STIFFG\TEX,NEY,NE,NDF)
c-------------- --------------STIFF(NIEX,NEY,NE,NDF)

PARAMETER(NC I :480,NC2=960,NC 3=240)
IMPLICIT REAL*8(A-H,O-Z)
DTMENSTON ND2(8),CORD(4,2),WErT(3),SAMP(3),DER(2,4),DERV (2,4),
*DERW(2),DERVW(2),BE(4,8),BT(8,4),BTDB (S,S),FrrN(4),
*sTEE(4),STNE (4), BEw (2,4),BTW(4,2),BTDBW(4,4),FUNW(2),
*D(4,4),DB(4,8),DW(2,2),DBW(2,4)

REAL* 8 KE(8,8),JINV (2,2),J AC(2,2)
COMMON/KMAT/A(NC 1,NC I ),F(NC I )
COMMON/STREN/STE(NC2),STN(NIC2),STER(Ì{C2), STNROTC2)
COMMON/INTFÆMIN,EMIH,Pzu,CKW, CKB,CFW,CFB,TI{R,TBI,TWI
C OMMON/TVALL/I{BIN,RBIN, TB IN,EMW,PRW
coMMoN/cRrD/r(oDE(NC3),ND(4,NC3),XC(4,NC3 ),YC(4,NC3),KWALL
COMMON/C ONSTIPA,PI,NN2,NN4,NNS
COMMON/PARAI4ÆK,EG,GAMA,EKA,FID,AL I,A 1,FI 1,AE,CE
COMMON/PARS/G 1,CO,CC I,HJ I,B 1

C

NST=4*NE
DO l0I=1,NDF
DO 10 J=I,NDF

l0 A(I,)=9.6¡6
C GAUSSIANPOINTS AND WEIGHT

CALL GAUSS(NGP,SAMP,WEIT)
C CALCULATION OF ELEMENT STIFFNESS MATRX [K]e
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C.... DO FOR EACH ELEMENT
DO l00I=I,NE
CAIL INULV(Ì..rD2,NN8)
CALL NULMAT(KE,NN8,NN8)
KOD=KODE(I)
DO 15 J=1,4
¡1=4*(I_t)+J
STEE(I¡=-51g1¡1¡
STNE(Ð:-STN(JI)
CORD(J,1)=XC(J,I)
coRD(J,2):YC(J,D
Kl=2*ND(J,I)
rF(Kt.LE.0) cOTo rs
ND2(2*J_1)=Kl_t
ND2(2*|¡=91

15 CONTINUE
C STRESS-STRAINMATRIX
C... THINWALL

rF(KOD.EQ.0.AND.KWALL.EQ.0) CALL DMATW(DW,EMW,PR!Ð
C THICKWALL

rF(KOD.EQ. O.AND.KWALL EQ. r ) CALL DMATE(DEMW,PRÐ
C FLOOR INTERFACE

rF(KOD.EQ. - I ) CALL DMATr@,STEE,STNE,KOD,EG,EK)
C WALL INTERFACE

rF(KOD.EQ. I ) CALL DMATI(D,STEE,STNE,KOD,EG,EK)
C GRAIN

rF6OD. cE. 3) CALL DMATG(D,EG,EK)
C¡ß*****'t**x* INTEGRT{TION OF tBlTtDliBl dv

IF(KOD.NE.0.OR.KWALL.NE.0) GOTO 40
c.....l-D LTNEAR ELEMENT (THrN WALL ELEMENT)
C DO 35 J=l,NGP
C C=WEIT(Ð
C X=SAMP(Ð

C=2.0
X=0.0
CALL SHPFW(FUNW,DERW,X)
VJAC=DERW( I )*CORD( 1,2)+DERW(2)*CORD(2,2)
DERVW( I )=þERw( I )A/JAC
DERV!V(2)=þtrRW(2)/VJAC
CALL NULMAT(BEW,NN2,NN4)
CALL B WMAT(BEW,DER VW"FUNW,RB lrt)
CALL MATMUL@BW,DW,NN2,NN2,BEW,NN2,NN4)
CALL MATRAN(B TW3EW,NN2,NN4)
CALL MATMUL@TDBW,BTW,NN4,NN2,DBW,NN2,NN4)
cOEF=DABS(VJAC){'C *2.0D0*PI*RBIN*TBIN
DO 35 Kl:l,NN4
DO 35 K2=l,NN4
KE(K t,rZ¡=1ç5(K 1,K2)+BTDBW(K1,K2)*COEF

35 CONTINUE
coTo 6s

40 CONTINUE
c.....2 -D QUADRILATERAL ELEMENT
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C DO 60 Jl=l,NGP
C DO 60 J2:I,NGP
C CI=WEIT(JI)
C C2=WEIT(J2)
c x=sAMP(Jl)
C Y=SAMP(J2)

Cl=2.0
C2=2.0
x{.0
Y=0.0
CALL S}IPFUNGLTN,DER,X,Y)
CALL MATMUL(JAC,DER,NN2,NN4,CORD,NN4,NN2)
CALL INVB Y2(JAC,JINV,DETÌ0
CALL MATMUL(DERV,JINV,NN2,NN2,DER,NN2,NN4)
CALL BEMAT4(BE,EQR,DERV,FUN,CORD,NN4)
CALL MATM{.]L(DB,D,NN4,NN4,BE,NN4,NN8)
CALL MATRAN(BT,BE,NN4,NN8)
CAIL MATMUL(BTDB,BT,NN8,NN4,DB,NN4,NN8)
GOEF=DABS@Erlg*,ç I *c2*2.0D0*PI*EQR
DO 60 Kl=1,NN8
DO 60 K2=I,NN8
KE(KI,KZ¡=KB(K l,K2)+BTDB0< l,K2)*COEF

60 CONTINUE
C INSETRT ELEMENT STIFFNESS MATRIX INTO GLOBAL MATRIX
65 DO 80 Jl=1,NN8

DO 80 J2=1,NN8
IA=ND2(Jl)
JA=ND2(J2)
rF(IA.LE.O.OR.JA.LE.0) cOTO 80
A(rA,JA)=A(rA,JA)+KE(J 1, J2)

80 CONTINI,]E
246 FORMAT(1X,8E10.4)
lOO CONTINUE

RETURN
END

c
C---.-----.---- CALCULATION OF STRESS AND STRAIN

SUBROUTINE STRES SOIEY,NEX,NE,U)
c-------------- ------------STRESSOTEY,NEX,NE,U)

PARAMETER(Ì{C I =480,NC2=960,NC3 =240)
IMPLICIT REAL*8(A-H,O-Z)
INTEGERNN4,NNs
DTMENSTON U(NrCl)
DTMENSTON ND2(8),D(4,4),BE(4,8),DSN(4),DSS(4),DSNT(4),
* coRD(4,2),WEIT(3),SAMP(3),DER(2,4),DERV(2,4),
* FUN(4),DEF(8),STEE(4),STNE(4),DW(2,2),BEW(2,4),FUNW(2),
* DERW(2),DERVW(2),DSNW(2),DSSW(2),DEFW(4)
REAL*8 JAC(2,2),JrNV (2,2)
COMMON/CODE/KI,KO,MODEL
cOMMON/STREN/STE(NC2),STN(NC2),STER(NC2),STNR(NC2)
C OMMON/TVALL/I]BIN,RB IN,TB IN,EMW,PRW
COMMON/INTFÆMIN,EMIH,PRI, CKW, CKB,CFW, CFB,TIIR,TBI,TW]
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cOMMON/GRTDIKODE(NC3),ND(4,NC3),XC(4,NC3 ),YC(4,NC3),KWALL
COMMON/CONST/PA,PI,NN2,NN4,NN8
COMMON/PARAÀ4/EK,EG,GAMA,EKA,FID,AL I,A 1,FI 1,AE,CE
COMMON/PARS/G 1,CO,CC I,HJ I,B I
NST=4*NE
CALL NULVEC(STER,NST)
CALL NULVEC(STNR,NST)

C GAUSSIANPOINTS AND WEIGHT
CALL GAUSS(NGP,SAMP,WEIT)

C

DO l00I=I,NE
CALL INULV(NID2,NN8)
KOD=KODE(I)
DO 5 J:1,4
Jl=(I-1)*4+J
STEE(J¡=-5181¡1¡
STNE(Ð=-SrN(Jl)
CORD(J,1)=XC(J,I)
coRD(J,2)=YC(J,r)
K1=2*ND(J,I)
rF(K1.LE.0) GOTO s
ND2(2*J-1)=Kl-l
ND2(2*Ð=Kl

5 CONTINUE
tr(KOD.NE.0.OR.KWALL NE.O) GOTO I 0

C**,T**'}***'i*,f **¡T¡T* GRADIENT MATRIXFOR I-D THIN WALL ELEMENTSc c=wErT(2)
x:sAMP(2)
CALL SI{PFW(FUNWDERW,X)
VJAC=DERW( I )*CORD( 1,2)+DERW(2)*CORD(2,2)
DERVW( I )=DERW( I )/VJAC
DERVW(2)=DERW(2)/VJAC
CALL NULMAT(BEW,NN2,NN4)
CALL BWMAT@EW,DERVW,FUNW,RBIhI)

C.....STRAINS AND STRESSES FOR I-D ELEMENTS
DO 6 J=I,NN4
JJ=ND2(I)
rF(JJ.LE.O) GOTO 6
DEFw(Ð=U1¡¡

6 CONTINUE
CALL MVN{UL(D SNW,BEW,NN2,NN4,DEFW,NN4)
CALL DMATW(D W,EMW,PR!Ð
CAIL MVIvIUL(D S SW,DW,NN2,NN2,D SNW,NN2)
CAIL NULVEC@SN,NN4)
CALL NULVEC(DSS,NN4)
DO 8 J=I,NN2
DSNl¡=P5¡nr1Y,,
DSSl¡=P551¡¡,,

8 CONTINTIE
GOTO 90

c *'ß * * * * * * * * ¡r *,r * * * * * * * * * * ¡r * * GRADIENT MATRIX FOR 2_D ELEMENTS
10 Jl=2
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J2=2
X=SAMP(JI)
Y=SAMp(J2)
CALL SI{PFUN(FLrN,DER,X, Y)
CALL MATMUL(JAC,DER,NN2,NN4,CORD,NN4,NN2)
CALL INVB Y2 (JAC,JINV,DETM)
CALL MATMUL(DERV,JINV,NN2,NN2,DER,NN2,NN4)
CALL NULMAT@E,NN4,NN8)
CALL BEMAT4(BE,EQR,DERV,FUN,CORD,NN4)
DO 15 J:I,NN8
JJ=ND2(Ð
DEF()=U(J'r)

15 CONTINUE
CALL MVMUL(DSN,BE,NN4,NN8,DEF,NN8)
DSN(3)=0.sDO*DSN(3)

C..... STRESS.STRAIN MATRICES
30 rF(KOD.GE.3)CALLDMATG(D,EG,EK)

rF(KOD.EQ.- 1 ) CAIL DMATr@,STEE,STNEJ<OD,EG,EK)
IF(KOD. EQ. I ) CALL DMATr(D,STEE,STNE,KOD,EG,EK)
CALL MVMUL@SS,D,NN4,NN4,DSN,NN4)

C ....STRESS iNCREMENT IS'DSS'
90 DO 80 J:I,NN4

J1=(I-1)*4+J
srER(Jl)=DSS(Ð
STNR(JI)=DSN(Ð

80 CONTINUE
IOO CONTINUE

RETURN
END

c
C---.-----.---- GLOBALFORCE VECTOR

SUBROUTINE FORCE(F I,NE,NEX,NEY,NDF)
c-------------- ---------FORCE(FI,NE,NEX,NEY,NDF)

PARAMETER(NC I =480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION ND2(8),F I (NDF),CORD(4,2),FE(S)
C OMMON/VVALL/FIBIN,RBIN, TBIN,EMW,PRW
C OMMON/INTF/EMIN,EMIH,Pzu,CKW,CKB,CFW,CFB,THR,TBI,TWI
COMMON/LOADS/DEN,DPS l,DPS2,CT,NDEP,NSCH l,NSCFI2
c OMMON/GRID/KODE(NC 3 ),ND (4,NC3 )XC(4,NC3 ), YC(4,NC3 ),KWALL
COMMON/CONST/PA,PI,NN2,NN4,NN8

c
CALL NULVEC(FI,NDF)
DO 20I=I,NE
KOD=KODE(r)
IF(KOD.LT.3) GOTO 20
CALL rNULV(ND2,NN8)
DO 50 J=l,4
CORD(J,1)=XC(J,Ð
CORD(J,2)=YC(J,I)
K1=2*ND(J,I)
rF(Kl.LE.O) GOTO s0
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ND2(2*J-l)=(l-t
ND2(2*Ð=Kl

50 CONTINUE
CAIL WEIGHT(FE,I,CORD,NEY,NEX)

c rF(KSTAGE.EQ.I.AND.KS.LE.NSCHI) CAIL SCHGI€E,CORD)
c CALL SCHG2(FE,I,CORD,NEX,NEÐ
C.....INSERT ELEMENT FORCE VECTOR INTO GLOBAL VECTOR

DO 30 J=I,NN8
JJ=ND2(J)
IF(JJ.LE.O) GOTO 30
Fl(JÐ:Fl(JÐ+FE(Ð

30 CONTINUE
20 CONTINUE

RETURN
END

C

C-------------- -- GLOBAL "PLASTIC" FORCE VECTOR
SUBROUTINE FMODOTE,NDF,F I )c-------------- --FMODOTE,NDF,FI)
PARAMETER(NC I =480,NC2=960,NC 3=240)
IMPLICIT REAL*8(A-H,O-Z)
DTMENSION ND2(8),CORD(4,2),WErT(3 ),SAMP(3 ),DER(2,4),DER V (2,4),
* BE(4,8),FUN(4),DSTE(4),STEE(4),DEp(4),F4(4),F28(8),BTF(S),
* BEW(2,4),FLNW(2),DERW(2)ÐERVW(2),F 1 (NC I )
REAL*8 JrNV(2,2),JAC(2,2)
COMMoN/ENDOIDZ(NC3),EVP(NC3),VP(NC3),Q I (frC2),Q2(NC2)
COMMON/F/ÍZ(NC2)HS(NC2),FZ 1 (NC2),YA I (NC2),yA2(Nrc2)
COMMON/PARAÀ4/EK,EG,GAMA,EKA,FID,AL I,A 1,FI 1,AE,CE
COMMON/PARS/G I,CO,CC 1,HJl,B I
COMMONÆ(MAT/A(NC l,NC I ),F(NC I )
COMMON/STREN/STEOTC2),STN(NC2),STERG.rC2),STNR(NIC2)
CoMMON/GRID/KODE(NIC3 ),ND(4,NC3 ),XC(4,NC 3 ), YC(4,NC3 ),KWALL
C OMMON/WALL/I{B IN,RBIN, TBIN,EMW,PRW
COMMON/CONST/PA,PI,NN2,NN4,NN8

c
CALL NULVEC(F,NDF)
CALL GAUS S (IIGP,SAMP,WEIT)
DO l00I=I,NE
KOD=KODE(I)
CALL NULVEC(FZ8,NN8)
CALL NULVEC(F4,4)
CALL INULV(ND2,NN8)
DO l5 J=l,4
Jl=4*(I_t)+J
srEE(Ð=sTE(Jl)
CORD(J,1)=XC(J,D
coRD(J,2)=YC(J,Ð
Kl=2*ND(J,I)
rF(Kl.LE.O) coTo 15

ND2(2+J-1)=Kl-1
ND2(2*l)=1ç1

15 CONTiNI.IE
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CALL SHrFT(STE,F4,I, I )
IF(KOD.NE.O) GOTO 40

c.....l-D LINEAR ELEMENT (THIN WALL ELEMENT)
C DO 606 J=I,NGP
c c=wErT(Ð
c x:sAMP(Ð

C=2.0
x=0.0
CALL SI{PFW(FU}M,DERW,Ð
VJAC=DERW( I )*CORD( 1,2)+DERw(2)*coRD(2,2)
DERVW( I )=þERw( I )/VJAC
DERVW(2)=DERW(2)/VJAç
CALL NULMAT(BEW,NN2,NN4)
CALL BWMAT(BEWDERVW,FUNW,RBIN)
cArL NULVEC@TF,NN8)
DO 6Kl=l,NN4
DO 6 K2=I,NN2
BTF(K I )=BTF(K I )+BEW(K2,K1 )*F4(K2)6 CONTINUE
COEF=DAEIS(VJAC)*C*2.0D0*PI*RBIN*TBIN
DO 606 Kl=l,NN4
F Z8K1)=F Z8(K 1 )+BTF(K I ) 

* COEF
606 CONTINUE

coTo 65
40 CONTINIIE
c.....2-D QUADRTLATERAI ELEMENT
C DO 60 JI=I,NGP
C DO 60 J2=I,NGP
C C1=WEIT(JI)
C C2=WEIT(J2)
c x=sAMP(Jl)
c Y:SAMP(J2)

C1=2.0
C2:2.0
X=0.0
Y=0.0
CALL SHPFUN(FUN,DER,X,Y)
CALL MATMUL(JAC,DER,NN2,NN4,CORD,NN4,NN2)
CALL TNVBY2(JAC,JTNV,DETM)
CALL MATMUL@ERV,JINV,NN2,NN2,DER,NN2,NN4)
CALL BEMAT4(BE,EQR,DERV,FUN,CORD,NN4)
CALL NT.TLVEC@TF,NN8)
DO 61 Kl=l,NN8
DO 6l K2=1,NN4
BTF(K I )=BTF(K I )+BE(K2,K r )*F4(K2)6I CONTINUE
COEF=DABS@ETN0*ç I *C2*2.0D0:*PI*EQR

DO 60 Kl=l,NN8
F Z8ç<r)=F Z8(K I )+BTF(K I ) 

* COEF
60 CONTINTIE
C******* INSERT ELEMENT FORCE VECTOR INTO GLOBAL VECTOR
65 DO 80 J2=1,NN8
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JA:ND2(J2)
rF(JA.LE.O) GOTO 80
F(JA¡=P1¡6¡+FZ8(12)

80 CONTINUE
lOO CONTINUE

DO 200 J=I,NDF
F()=Fl(J)-F(J)

C WRITE(6,*)F:',(F(I),I=l,NDF)
RETURN
END

c
C-------------- -----------INTRINSIC TIME DZG\rE)

SUBROUTINE INTRING\TE,NST)
c-------------- --INTRTNOTE,NST)

PARAMETER(NC I =480,NC2=960,NC 3=240)
IMPLICIT REAL*8(A-H,O-Z)
COMMON/GRTDIKODE(NC3),ND(4,NC3),XC(4,NC3),yC(4,NC3),KWALL
CoMMoN/STREN/STE(NC2),STN(NC2),STER(NC2),STNR(NC2)
coMMoN/F /IIZQ'IC2),HS(NC2),HZ I (NC2),YA 1 (NC2),YA2(NC2)
cOMMON/ENDO/DZ(NC3),EVP(NC3),VP(NC3),Q I (NC2),Q2(frC2)
COMMON/PARAIvÍÆK,EG,GAMA,EKA,FID,AL l,A1,FI I,AE,CE
COMMON/PARS/GI,CO,CC 1,HJ I .B I
DIMENSTON STEE(4),STNE(4),SR(4),Q(4),s(4)
CALLNULVEC@Z,NE)
CALL NULVEC(HZ,NST)
CALL NULVEC(Q2,NST)
DO l00I:I,NE
KOD=KODE(r)
rF(KOD.LT.3) GOTO 100
CALL SHIFT(STN,SR,I, I )
VSTN=SR(l )+SR(2)+SR(4)
CALL SHIFT(FIZ l,STNE,I, I )
CALL SHIFT(STE,STEE,I, I )
DO 33 J=1,4
STNE(Ð=-STNE(Ð

33 STEE(J)=-51991¡
rf(MoDEL.EQ.l) GOTO 44
Z1=0.0D0
CALL YLD (I,STEE,VSTN,Zt,F t)
IF(F I .LE.0.0 1 D0) ZR=0.0D0
IF(F l . GT. 0. 0 I D0) CALL MULLR(I,STEE, VSTN,Z l,F 1,ZR)
DZ(\)=ZR

44 CALLDFTZ(r,STEE,Q)
CALL SHrFT(HZ,Q,r,0)

IOO CONTINUE
RETURN
END

c
c
C

C

C

SUBROUTINES FOR TFIE ELEMENTS
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C------------------------ANY GRAIN/INTERFACE ELEMENTS = TENSION ?

SUBROUTINE TENCHKOTE,NEX,NEY)
c-------------- -TENCHK(NIE,NEX,NEY)

PARAMETER(NC I =480,NC2=960,NC3 =240)
IMPLICIT REAL* 8(A-H,O-Z)
COMMON/CODE/KI,KO,MODEL
CoMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3 ),YC(4,NC3),KWALL
COMMON/STREN/STE(NC2),STNG\TC2),STER(NC2),STNR(NC2)
DO l00 r=l,NE
KOD=KODE(I)
IF(KOD.EQ.O) GOTO 100
CAIL NUMB(I I,I2,I3,I4,I)
sl:sTE(n)
s2:sTE(r2)
s3=sTE(r3)

C
IF(KOD.GE.2) GOTO l0
IF(S l.LE.0.0D0.AND. 52.LE.0.0D0) GOTO r 00
WRITE(KO,l0l) I

l0l FORMAT(1)VsX,r*'***** WARNING ******"/5X,
*'INTERFACE ELEMENT NO."3X,I3,3X,'IN TENSION')
GOTO 90

10 IF(Sl.LE.0.0D0.AND.S2.LE.0.0D0)GOTO 100
WRITE(KO,I02) I

102 FoRMAT(l)V5X,'****** WARNING ****'r,*"/3X,
*'GRAIN ELEMENT NO."3X,I3,3X,'IN TENSION')

90 tr(sl.GT.0.0D0)sTE(rl)=-0.1D0
tr(s2.GT.0.0D0) sTE(r2)=-0. lD0
rF(sTE(r4). cT.o.0D0) sTE(r4)=-o. 1 D0

IOO CONTINI.JE
RETURN
END

C

C - sr.rRcHARGE PRESSURE (CENTER)
SUBROUTINE SCHG I (FE,CORD)

c-------------- SCHGI(FE,CORD)
IMPLICIT REAL*8(A-H,O-Z)
DTMENSION FE(8),CORD(4,2)
COMMON/LOADS/DEN,DPS I,DPS2,CT,NDEP,NSCHI,NSCII2
COMMON/CONST/PA,PI,NN2,NN4,NN8
CALL NULVEC(FE,NN8)
rF(coRD( I, I ).NE.0.0D0) RETURN
WL=O. 5D0 *(CORD(4,2)-CORD( 1,2)
RAVG=s.ODO

C THIS SHOULD BE TITE RADruS OF TITE PRESSURE DEVICE IN CM
A=2.0D0*PI*RJ{VG*WL
PF=DPSI*A/2.0D0
FE(r)=PF
FE(7)=PP
RETURN
END

::C
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c-------------- BODY FORCES
SUBROUTINE WEIGHT(FE,I,CORD,NEY,NEX)
c-------------- ----WEIGHT(FE,I,CORD,NEY,NEX)

IMPLICIT REAL*8(A-H,O-Z)
DTMENSiON FE(8),CORD(4,2)
C OMMONA¡/ALL/HB IN,RB IN, TBIN,EMW,PR'VV
COMMON/LOADSIDENÐPS I ÐPS2,CT,NDEP,NSCH l,NSCI{2
COMMON/CONST/PA,PI,NN2,NN4,NN8
CALL NULVEC(FE,NN8)
A=(CORD(2, I )-CORD(1, I )*(CORD(3,2)-CORD(2,2)
PRES=DEN*A*PI/6.0D0
FE(2)=p¡95*(2.0D0*CORD( l, I )+CORD(2, I )
FE(4):PRES*(CORD( l, I )+2.0D0*CORD(2, I )
FE(6)=FE(4)
FEiS;=P912,
RETURN
END

C
C--.-------..-- SURCTIARGEPRESSURE (TOP)

SUBROUTINE SCHG2(FE,I,CORD,NEX,NEY)
c-------------- -----------SCHG2(FE,T,CORD,NEX,NEY)

IMPLICIT REAL*8(A-H,O-Z)
DIMENSTON FE(8),CORD(4,2)
C OMMONA¡/ALLIHB IN,RBIN, TBIN,EMW,PRW
COMMONILOADS/DEN,DPS 1,DPS2,CT,NDEP,NSCH I,NSCH2
COMMON/CONST/PA,PI,NN2,NN4,NN8
CALL NULVEC(FE,NN8)
A=PJ*RRIN*RRIN
PRES=DPS2/A*PV3.0D0*(CORD(3, I )-CORD(4, I )
FE10¡=ppg5*(2.D0*CORD(3, I )+CORD(4, t ))
FEla¡=ppg5 *(CORD(3, 

1 )+2.D0*CORD(4, I )
RETURN
END

C
c___--_________ -_____psEUDO FORCE VECTOR {Ep}

SUBROUTINE DIZ(I,STEE,F4)
c---------------- --- --- --DFIZ (r,STEE,F4)

IMPLICIT REAL*8(A-H,O-Z)
PARAMETER(NC I =480,NC2=960,NC 3=240)
DIMENSTON Q(4),srEE(4),s(4),F4(4),sQ(4)
COMMON/CODE/KI,KO,MODEL
C OMMON/STREN/STE(NC2),STN(Ì{C2), STER(NC2),STNRG\rC2)
coMMoNtFÆz(Nc2),HS(NC2),rZ I (NC2),YA I G.rC2),yA2(frC2)
coMMoNÆNDOIDZ(NC3),EVP(NC3),VP(NC3),Q 1 OIC2),Q2(NC2)
COMMON/PARAIvÍ/EK,EG,GAMA,EKA,FID,AL t,A l,FI l,AE,CE
COMMON/PARS/GI,CO,CC 1,HJ I,B I
CALL NULVEC(F4,4)
CALL NULVEC(S,4)
CALL NTTLVEC(Q,4)
CALL NULVEC(SQ,4)
CALL DS(S,STEE,SÐ
z1=DZ(t)
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IF(SH.EQ.0.0D0) WRITE(6,*)'WARNING:ZERO HYDROSTATIC STRESS'
rF(sH.EQ.0.0D0) RETURN

C FH: Hydrostatic Hardening firnction
FH=( 1.0D0-FIl )* Rr*¡FO(CE*( l.D0-DÐG(-DBLE(VPG)))+FI I *SH
rF(MODEL.EQ. l) GOTO 3oo
CALL SHrFT(Q2,Q,r,l)
DO220 J=1,4

220 sQ(Ð=s(Ð-Q(Ð
sQ2=S(l )*SQ(l )+S(2)*SQ(2)+S(4)*SQ(4)+2.D0*S(3)*SQ(3)
DZG=ZI * 2.D0 *E G/FID/SH
DZ¡;=Z1 *EKßÉVEKA* (SH_cAtvfr4ÆID/SH* Se2)
DO23 J=1,4

23 F41¡=¡2O*SQ(Ð+DZK
F4(3 )=(F4 (3 ) -DZr¡'ts. 5pO
RETURN

300 CALLSHTFT(STNR"F4,r,I)
CALL DS(Q,F4,SHD)
ZO=Q(l)*Q(1)+Q(2)*Q(2)+Q(4)*Q(4)+2.D0¡r'Q(3)*Q(3)+SHD*SFIfi*FKr{*EKr{
ZO=O.I*DSQRT(ZO)
CALL SHIFT(STER,F4,I, l )
CALL DS(SQ,F4,SHD)
CALL SHrFT(STN,F4,r, 1 )
CALL DS(Q,F4,SHD)
sQ2=Q( I )*sQ(l )+Q(2)*SQ(2)+Q(4)*sQ(4)+2.D0*Q(3)*sQ(3)
BZI=DAIìS(Bl *20lSÐ
IF(BZ l.LE. l.0D-7) BZ1 =1 .0D-6
DZG=2.D0*EG*(C0+20|SH+CC 1 *( I .0-DE)CP(_BZ I ))
DZK=ZO*EKßFIÆKA*(SH*HJ l.{C I /2.0D0* SQ2)
WRITE(6, *)', ZO,DZG,DZK:,Zj,DZG,DZK
DO24I=t,4

24 F41¡=D2O*S(Ð+DZK
F4(3)=Ga(3)-DZr¡*6.5¡O
RETURN
END

C
C-------------- TIME ZONE F=0

SUBROUTINE YLD(I,STEE,VSTN,Z 1,F I )
c-------------- -------YLD(I,STEE,VSTN,Zt,Ft)

IMPLICIT REAL*8(A-H,O-Z)
PARAMETER(NC I =480,NC2=960,NC 3=240)
DTMENSTON Q(4),srEE(4),S(4),F4(4),DSH(4),SQ(4),Qr(4)
COMMON/CODE/KI,KO,MODEL
COMMON/STREN/STE(NC2),STN(NC2),STER(Ì{C2),STNR(NC2)
coMMoNÆ/ItzcNC2),HS(NC2),lZ I (rrc2),yA I (NC2),YA2(NC2)
COMMONÆNDO/DZ(NC3),EVP(NC3),VP(NC3),Q 1 CNC2),Q2CNC2)
COMMON/PARAIvf/EK,EG,GAMA,EKA,FID,AL 1,4 l,FI l,AE,CE
COMMON/PARS/G 1,CO,CC 1,HJ I 

"B 
I

CALL NULVEC(F4,4)
CALL NULVEC(S,4)
CALLNULVEC(Q,4)
CALL NULVEC(Qr,4)
CALL NULVEC(SQ,4)
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C
C
c
c
C

CALL NULVEC(DSH,4)
K={
VPI=VP(I)+VSTN

C Fd=SH
DO 5 J=1,4

5 DSH(Ð=STEE(J)
30 CALLDS(S,DSH,SÐ

K=K+l
IF(SH.EQ.0.0D0) WRITE(6,*)'WARNING:ZERO HYDROSTATIC STRESS'
rF(sH.EQ.0.0) RETURN
CALL SHIFT(Ql,Q,I,1)

C FH: Hydrostatic Hardening firnction
DEVI=CE*( l.D0-0.84D0*DEXP(VPI))
FH=( I .0D0-FI I )*48*pBO(DEVI)+FI I * SH
IF(FH.LT.SÐ FH=SH
tr(MODEL.EQ.I) GOTO 300
ALZ=DBLE(ALI*ZllSÐ
EALZ=DE)G(-ALZ)

I -al*dZd
s(ZÐ-Q(zÐ = ----- [ s(Zi)-Q(zi-l)e ]

1+a

A=Al /AL I *( I .0D0-EALZ)1FID+YA I (I)
YA2lI¡=4
DO 20II=1,4
Q(rr)=(Q(rr)*EALZ+S([)*Ay( I .0D0+A)

20 SQGI)=(S(rÐ-QGD*EarZy(1.0D0+A)
c sQ2: s('j)QQj)

sQ2=S(1 )*SQ( I )+S(2)*SQ(2)+S(4)*SQ(4)+2.D0+S(3)*SQ(3)
rF(K.cT.1) GOTO 99
DZG=ZI * 2.D0 *EG/FID/SH

DZJ(=ZI *EWFHIE¡I{* (SH-GAMAÆID/SH* SQ2)
EVP(r)=-DZKÆK
DO 23 J=1,4
F4()=P¿6*SQ(Ð+DZK

23 DSHI¡=51EE(Ð-F4(Ð
F4(3)=DZG* SQ(3)*0. sD0
DSH(3)=STEE(3)-F4(3)
IF(K.LE. 1 ) CALL SHIFT W,F 4,t,0)
rF(K.LE. I ) CALL SHrFT(Q2,Qi,r,0)
rF(K.LE.l) GOTO 30

QQ=SQ(1 )*SQ( I )+SQ(2)*SQ(2)+SQ(4)*SQ(4)+2.D0*SQ(3)*SQ(3)
DE VP=(SH-GAIvL{/FID/SH* SQ2)ÆH
F I =QQ(@ID{'SÐ**2)+DEVP*DEVP- 1.0D0
RETURN

300 CALLSHIFT(STN,F4,I,I)
CALL DS(SQ,F4,SHD)
CALL SHrFT(STNR,F4,r, 1 )
CALL DS(Q,F4,SHD)
Zo=Q( I )*Q( I )+Q(2)*Q(2)+Q(4)"Q(4)+2.D0*Q(3)*Q(3)+SHD*SFID*EKA*EKr{
Z0=DSQRT(ZO)
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ß(Z1.GE.Z)) Zl=20
IF(Zl.LE. 1.0D- I 0) Zl =1.0D-1 0
CALL SHIFT(STER,F4,I, I )
CALLDS(Q¡4,SHD)
SQ2=Q( I )* SQ( I )+Q(2)*SQ(2)+Q(4)tSQ(4)+2.D0*Q(3 ) 

* SQ(3)

C IF(ZI.LE.l.0D-8)Zl=1.0D-8
BZI=DABS(Bl+ZllsÍÐ

c DZG-_CO /2.0D0+Ct tzl tBZ I *( I .0DO_DÐG(_BZ 1 )
DZG=CO/SH+CC I *( 1.0D0_DEÆ (_BZt))/Zl
DZK=(SH*HJ I +c I /2.0D0*SQ2)/FH

QQ:S( I )*S( I )+S(2)* S(2)+S(4)*S(4)+2.D0*S(3)* S(3)
F I =Q Q 

*DZG*DZG+DZK*DZK- I .0D0
WRITE(6,*)'Zl, ZÙi,Zl,Z0,'DZG,DZJ(*FI :',DZG,DZK,F I
WRITE(6,*)'C1,B1,C0,QQ:',CCl,Bl,C0,QQ
RETURN
END

c
C-------------- DEVIATOzuC STRESS

SUBROUTINE DS(S,STEE,SÐ
c-------------- -DS(S,STEE,STÐ

IMPLICIT REAL* 8(A-H,O-Z)
DTMENSTON STEE(4),S(4)
sH=(sTEE( I )+STEE(2)+STEE(4)/3.0D0
DO 10 II=1,4

l0 s(rD=sTEE(rr)-sH
S(r¡=51g't"
RETURN
END

C

C-------------- MULLER'SMETHOD
SUBROUTINE MULLR(I,STEE,VSTN,Z 1,F I ZR)

c-------------- ----MLJLLR(I,STEE,VSTN,Zt,Fr,Zn)
IMPLICIT REAL*8(A-H,O-Z)
DTMENSION STEE(4)
DATA NLIM,ZTOL,FTOL/1 O, 1 .08.6,1.0E-21

C IMTIAL VALUES
FC=F1
Z2=1.0D-9
23=1.0D-8
CALL YLD(I,STEE,VSTN,Zz,F 2)
rF(F2.LE.O.lD0) TI{EN
zk-12
RETI.JRN
END IF
CALL YLD(r,STEE,VSTN,Z3,F 3)
IF(F3.LE.O.1D0) Tr{EN
ZPr=23
RETURN
END IF

C ITERATIONS
DO 20 J=I,NLIM
Hl=22-Zl
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ff2:23-22
G=Hl/Í12
4=613 *G_F2 *( I .0D0+c)+F I )(Il1 *(Il1 +F2)
B=(F 3 -F2 -A *H2*IfZ) /Í12
C=F2
BAC=B*B_4.0D0*A*C
rF(BAC.LT.O.0D0) THEN
WRITE(6,*)' B*B - 4*A*C < 0r

7R=0.0D0
RETURN
END IF
DISC=DSQRT(BAC)
rF(B.LT.0.0D0) DrSC=-DrSC

c RooT oF A+v**2 + B*V + C = 0
DELX=-2.0D0 * C(B+DISC)

CUPDATEZR
ZPI=LZ+DELX
CALL YLD(I,STEE,VSTN,ZR,FR)

C STOPPINGCRITERTA
FCR=FRÆC
rF((ABS(FCR).LE.FTOL).OR.GR.LE.0. lD0) THEN
IC=2
RETURN
END IF

C SELECT 3 POINTS FOR TT{E NEXT ITERATION(IN ASCENDING ORDER).
C DELX>0, CHOOSE 22,23,Æ.
C DELX <0, CHOOSEZI,Z2,Æ.

rF(DELX. GE. 0. 0D0) THEN
ZI=22
F1=F2
IF(DELX.GT.H2) TFrEN
22=23
F2:F3
23:ZR
F3=FR
ELSE
Z2=ZR
F2=FR
END IF
ELSE
Z3=22
F3=F2
rF(ABS@ELX). GT.H I ) TFrEN
Z2=Zl
F2=FI
Zl:ZR
Fl:FR
ELSE
Z2:ZR
F2=FR
END tr
END IF
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20 CONTINUE
C

IC=-l
wRrTE(6,200)NLTM,ZR,FR
RETURN

200 FORMAT(/ TOL NOT MET AFTER 

"I4,'ITERATIONS 

Z ="
* 8125,'F =', E12.5)

202 FORMAT(/ZTOLMETIN"I4,' ITERATIONS Z="
* 812.5,' F:',E12.5)

203 FORMAT(/ F TOL MET IN 

"I4,' 
ITERATIONS Z ="

* 812.5,' F:',EI2.5)
END

SLJBROUTINES FOR PROPERTY MATzuCES [D]

C PROPERTY MATRICES [D]
C-------------- ------ tDl FoR INTERFACE (BoTToM)

SUBROUTINE DMATI(D,STEE,STNE,KOD,EG,EK)
c ----

c
C
c
c
c

----------DMATI@,STEE,STNE,KOD,EG,EK)
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 D(4,4),STEE(4),STNE(4)
COMMON/INTFÆMIN,EMIH,PRI,CKWCKB, CFW,CFB,TIÌR,TBI,TWI
N=4
CALL NULMAT(D,N,ÌÐ
EC=0.01D0
IF(K.EQ.0)WRITE(6, * )'PARTICIPATION FACTOR :',EC
EEG=EG*EC
EEK=EK*EC
CALL DMATG(D,EEG,EEK)
ES=ABS(STNE(3)
IF(ES.LT. l.0E-5) ES=1.0D-5
rF(KOD.EQ.-l) TmN
SN__0. 29DO *ABS(STEE(2)

TINT=TBI
CL=O.044D0
GC:5.0D0
ELSE
SN:O. I 9D0*ABS(STEE( I )
TINT=TWI
cL=0.02D0
GC=l.5D0
END IF
G=0. sDO *(SN-ABS(STEE(3))* SQRT(TINTÆS/CL)
IF(G.GT.GC) G=GC
IF(G.LT.O.0 lD0) G{.0 l D0
D(3,3):G
IF(K.EQ. 0)WRITE(6, *)'TINT :',TINT
K=l
RETURN
END
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c
c-------------- ELASTTC (HOOKE LAW FOR AXTSYMETRTC) tDl

SUBROUTINE DMATE@,EM,PR)
c-------------- -------DMATE(D,EM,PR)

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 D(4,4)
N=4
CALL NULMAT(D,N,IIÐ
a t -t¡4*1 I .OD0-PRy( 1 .0D0+pR) *( I .0D0-2.0D0*pR)
C2=PR(1.0D0-PR;*ç1
C3=0.5D0*(1 .0D0-2.0D0*PRy(1 .0D0-PR¡*ç t
D(1,1)=Cl
D(|,2)=ç2
D(1,4)=C2
D(2,1)--C2
D(2'2)=ç1
D(2,4)=C2
D(3,3)=ç3
D(4,1)=C2
D(4,2)=ç2
D(4,4)=91
RETIIRN
END

C

c-------------- -----tDl FoRGRATN
SUBROUTINE DMATG(D,EG,EK)

c-------------- _____DMATE@,EG,EK)

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 D(4,4)
N:4
CALL NULMAT(D,N,Ì'Ð
Cl=EK+4.0D0/3.0D0*EG
C2=EK-2.0D0/3.0D0*EG
D(1,t¡=ç1
D(t,2)=C2
D(r,4)=C2
D(2,1):C2
D(2,2)=ç1
D(2,4)=C2
D(3'3¡=96
D(4,1)=C2
D(4,2)=C2
D(4,4):cl
RETURN
END

C

c-------------- -------tDl (ELASTTC) FOR l-D WALL
SUBROUTINE DMATW(D,EM,PR)

c-------------- ----DMATW(D,EM,PR)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSTON D(2,2)
c=Elú(1.ODO-PR*PR)
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C
C

c
c
c

D(l,l)=c
D(1,2¡=PP*ç
D(2,1)=PR*C
D(2,2)=C
RETURN
END

SUBROUTINES FOR FEM FUNCTIONS

C SFIAPE FUNCTION: FUN(4)=[NI; DER(2,a)=[N']
c
c-------------- ---- ttü FoR 2-D

suBRouTiNE S[{PFUN(FUN,DER,X,Y)

úilñ **ü iË; -;HPF.rN(FUN'DER'*' 
Y)

INTEGER I,J
REAL*8 DER(2,4),FUN(4)
xl=0.2sDo*(1.0D0_x)
X2=0.25D0*(1.0D0+X)
Y1=0.25D0*(1.0D0-Y)
Y2=0.25D0*(1.0D0+Y)
FUN(l):4.0D0*Yl*Xl
FUN(Z¡=4.QP0*Yl*X2
FUN(3)=4.0D0*Y2+X2
FUN(4)=4.0D0*Y2*Xl
DER(1,1)=-v1
DER(1,2):Yl
DER(1,3):Y2
DER(1,4)=-Y2
DER(2,1)=-X1
DER(z,2)---X2
DER(2,3)=X2
DER(2,4)=x1
RETURN
END

C

c----- D.ü FOR l-D WALL
SUBROUTINE SI{PFW€UN,DER,X)

c-------------- SI{PFW€LTN,DER,X)
IMPLICIT REAL*8(A-H,O-Z)
DTMENSTON FUN(2),DER(2)
FUN( I )=0.sDO*(1 .0D0-X)
FUN(2)=0.sDo+(1.0D0+X)
DER(l)=-g'5Pg
DER(2)=0.sDO
RETURN
END

C

C GRADIENTMATRIX [B] BE(4,8)=[rf'1 (DERV(2,4) )
C
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c----- IB] FOR LINEAR QUADRALATERAL
SUBROUTINE BEMAT4 (BE,SUM,DERV,FUN,CORD,NN4)

c-------------- ----BEMAT4(BE,SUM,DERV,FUN,CORD,NN4)
IMPLICIT REAL* 8(A-H,O-Z)
INTEGERNN4
REAL*8 DERV(2,4),FUN(4),CORD(4,2),BE(4,8)
NN8=8
CALL NULMAT(BE,NN4,NN8)
SUM{.ODO
DO 5I=I,NN4
SUM=SUM+FUN(I)*CORD(I, I )

5 CONTINUE
DO l0I=I,NN4
I2:2*I
Il=I2-1
BE(l,Il):DERV(1,Ð
BE(2,I2)=DERV(2,Ð
BE(3,I1)=DERV(2,I)
BE(3,r2)=DERV(l,r)
BE(4,n)=FUN(rySUM

IO CONTINUE
RETURN
END

C

c-------------- [B] FOR l-D WALL
SUBRoUTINE BWMAT@E,DERV,FIrN,R)

c-------------- ----------BWMAT(BE,DERV,FUN,R)
IMPLICIT REAL*8(A-H,O-Z)
REAL * 8 DERV(2 ),FUN (2),BE(2,4)
NN2=2
NN4=4
CALL NULMAT(BE,NN2,NN4)
BE(1,1)=FUN(l)1R
BE(r,3)=FIJN(2)/R
BE(2,2)=DERV(r)
BE(2,4)=DERV(2)
RETURN
END

SUBROUTINES FOR MATHEMATIC CACULATIONS

c-------------- GAUSSTANPOTNTS SAMP(3),WErGHT WErT(3)
SUBROUTINE GAUSS(NGP,SAMP,WEIT)

c----------------- AUSS(NGP,SAMP,WEIT)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION SAMP(3),WErr(3)
NGP=3
SAMP( I )=0. 2D0*SQRT( I 5.0D0)
SAMP(2)=0.0D0
sAMP(3)=-SAMP(l)

c
C

C

c
C
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wErT(l)=s.oD0/9.0D0
WEIT(2)=8.0D0/9.0D0
WEIT(3)=WEIT(l)
RETURN
END

C

c-------------- -MATP(MI,N2)=MATI(Ml,M2)*MAT2(N1,N2)
SUBROUTINE MATMUL(N4ATP,MATI MI,M2,MAT2,NI,N2)

c-------------- --MATMUL(MATP,MATI,Ml,M2,MAT2,NI,N2)
IMPLICIT REAL+8(A-H,O-Z)
REAL*8 MAT I (M l M2),MAT2(N I,N2),MATP(M 1,N2)

C OMMON/C ODE/Ki,KO,MODEL
rF(M2.EQ.NI) GOTO 1s

WRITE(KO,l)
I FORMAT(1)I/5X,',MATRIX MULTIPLICATION CAN NOT BE PERFORMED"//)
l5 L=ÌvI2

DO 5I=lMl
DO 5 J=1,N2
SUM=O.0D0
DO l0K=l,L
SUM:SUM+MAT I (I,K)*MAT2(K,Ð

IO CONTINUE
MATP(r,Ð=SUrú

5 CONTINUE
RETURN
END

C
C-------------- MATO4,|Ð-0.0D0

SUBROUTINE NULMAT(MAT,M,N)
c-------------- --------------NULMAT(MAT,M,N)
IMPLICIT REAL*8(A-H,O-Z)
INTEGER M,N
REAL*8MAT(M,N)
DO 5I=l,M
DO 5 J:l,N
MAT(I,Ð=g.0D0

5 CONTINUE
RETURN
END

C

C-------------- ----- VEC(Ì'Ð=0.0D0
SUBROUTINE NULVEC(VEC,I.Ð

c------------------- NLILVEC(VEC,Ð
IMPLICIT REAL*8(A-H,O-Z)
INTEGERN
DIMENSION VEC(Ì.Ð
DO 5I=l,N
vEC(r)=0.0D0

5 CONTiNUE
RETURN
END

C
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c-------------- -----rvEC(N)=0.0
SUBROUTINE INULV(IVEC,I.Ð

c-------------- -----INULV(IVEC,I.Ð
TNTEGER N,TVEC(I)
DO 5I=l,N
IVEC(I)=0.0

5 CONTINLIE
RETURN
END

C
C-------------- --------------INVM(2,2)=|/Mt\T(2,2)

SUBROUTINE INVBY2(MAT,INVM,DET)
INVB Y 2 ß44T, INVN,f ,DET )

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 MAT(2,2),INVM(2,2)
DET:MAT(2,2)*MAT( r, r )-MAT( 1,2)*MAT(2, I )
INVM(1,1)=MAT(2,2)
INVM(2,2)=MAT( I ,1 )
INVM(1,2)=-MAT(1,2)
INVM(2,1)=-MAT(2,1)
DO 5I:1,2
DO 5 J=1,2
rNVM(r,Ð =rNVM(r,ÐrDET

5 CONTINUE
RETURN
END

C-------------- -----------PVEC(M1=¡¿q1ß4,1.Ð*VECOÐ
SUBROUTINE MVMUL(PVEC,MAT,M,N, VEC,NÐ

c-------------- ---------MVMULeVEC,MAT,M,N,VEC,NÐ
IMPLICIT REAL*8(A-H,O-Z)
REAL* 8 MAT(M,ÌÐ, VECOD,P VEC(M)
INTEGER M,N
COMMON/CODE/KI,KO,MODEL
rF(N.EQ.NÐ GOTO 20
WRrTE(KO,l)

I FORMAT(1)V//5X,'MATRIX-VECTOR MULT CAN NOT BE PERFORMED"//)
20 DO 5I=l,M

SUM:O.ODO
DO l0 J=l,N
SUM=SUM+MAT(I,Ð * VEC(Ð

10 CONTINUE
PVECl¡=5¡1t4

5 CONTINIJE
RETURN
END

C

C-------------- --------------MTRAN(1.{,M) =MAT(M,I'Ð
SUBROUTINE MATRAN(MTRAN,MAT,M,I.Ð

c-------------- --------------MATRAN(MTRAN,MAT,M,Ì9
IMPLICIT REAL*8(A-H,O-Z)
INTEGER M,N
REAL* 8 MAT(M,Ì9,MTRAN(|r,M)
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DO 5I=l,M
DO 5 J=l,N
MTRAN(J'D=MAT(I'Ð

5 CONTINUE
RETURN
END

c
C-------------- ---------CONST = Vl(I) * V2(I)

SUBRoUTINE WMUL(CONST,V I,V2,N)
c-------------- ----------vvMUL(coNST,Vl,V2,N)

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 Vl(l),V2(l)
CONST=0.0D0
DO l0I:l,N
CONST=CONST+Vl (D*V2(I)

IO CONTINUE
RETTJRN
END

c
c-------------- MAT(lt4,l.f=VlOÐ*V2(NI)

SUBROUTINE VVMMUL(MAT,VI,M,V2,N)
VVì\4MUL(MAT,V l,M,V2,Ð

IMPLICIT REAL*8(A-H,O-Z)
REAL* 8 MAT(M,I.Ð,V I OÐ, V2 (1.Ð

DO 10I=1,M
DO l0 J=l,N
MAT(I,Ð=Vl(D*V2(Ð

IO CONTINUE
RETIIRN
END

c
C-------------- PVEC(Ð=VEC(M)*MATO4,N)

SI]BROUTINE VMMUL(PVEC,VEC,MV,MAT,M,Ð
c-------------- ---------VMMUL(PVEC,VEC,MV,MAT,M,N)

IMPLICIT REAL*8(A-H,O-Z)
REAL* 8 VECCVTÐ,MAT(À4,N),PVEC (ìÐ
DO 5I=1,N
SLIM=0.0D0
DO 10 J=l,M
SUM=SUM+VEC(Ð *MAT(J,I)

IO CONTINUE
PVEC(r)=SIIM

5 CONTINUE
RETURN
END

SI_TBROUTINE NUMB0 1,r2,r3,r4,Ð
c-------------- NUMB(II,I2,I3,i4,I)

IMPLICIT REAL*8(A-H,O-Z)
11=4*(I_l)+l
I2=Il+l
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C

c-

I3=Il+2
I4=Il+3
RETURN
END

SUBROUTINE SHIFT(FT,FT4,IN,NCT)
c-------------- -SHIFT(FT,FT4,IN,NCT)

PARAMETER(NC I =480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,O-Z)
DTMENSION FT( I ),FT4(4)
CALL NUMB(I l,i2,I3,I4,Il.Ð
rF (NCT) 1,2,1

2 FT(I1)=FT4(I)
FT(I2)=FT4(2)
FT(I3)=FT4(3)
FT(I4)=P1a14¡
RETURN

r FT4(I):FT(II)
FT4(2):FT(I2)
Fr4(3)=Fr(I3)
FT4(4)=Fr(I4)
RETURN
END

C I,J=I,NDF EXCEPT NDM
c-------------- -- A(I,Ð{

SUBROUTINE MZEROOTDF,NDM)
C-------------- -MZEROOTDF,NDIV{)

PARAMETEROIC I =480,NC2=960,NC 3=240)
IMPLICIT REAL*8(A.H,O-Z)
COMMON/KMAT/A(NC l,NC I ),F(NC I )
DO 5I=I,NDF
IF(I.EQ.NDM) GOTO s
AOIDM,Ð=0.oDO
A(I,NDI/Ð=O.0D0

5 CONTINUE
F(NDNQ=g'0D0
RETI'RN
END

BY PARTIAL PIVOTING ELININATION
- soLVE Kl {U} = {F}

SUBROUTINE SOLVE(X,Ð
c-------------- ---------soLVE(X,l{)

PARAMETER(I'{C I =480,NC2=960,NC3=240)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSiON X(l)
c OMMONÆ(MAT/AO{C 1,NC I ),F(NC I )
COMMON/CODE/Iil,KO
Nl=N-l

C ELIMINATiON
300 DO 5I=1,NI
C..... PIVOTING

c
c--
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Nh//AX=I
Il=I+l
DO IO J=II,N
IF(DABS(A(NMAX,D).LT.DABS(A(J,D) NN{AX=J

IO CONTINUE
C ...... CIIECK FOR ILL CONDITION

rF(DABS(A(NMAX,r)). GT. 1 .0E-6) GOTO 20
WRITE(6,3) NMAX,I,A(NMMAX,I)
WRITE(KO,3) NMAX,I,A(M\,ûvÍAX,D

3 FORMAT(I)l/5x,50('*')/tOX,',ILL CONDITIONAT COLLUMN,2Is,El0.3)
C ..... INTERCI{ANGE
20 IF(NMAX.EQ.T) GOTO 30

DO 25 J=l,N
C=A(I,Ð
A(r,Ð:A(NrMAX,Ð
ACNIMAX,Ð=C

25 CONTINUE
C=F(I)
F(r)=FCNIMAX)
F(NMAX)=C

C...... ELIMINATION
30 DO 40 J=Il,N

rF(DABS(A(J,r)).8Q.0.0) GOTO 40
C=A(J,I)/A(I,I)
DO 45 L:II,N
A(U-)=A(U-)-c*A(I,L)

45 CONTINI.]E
F(Ð:F(Ð-c*F(I)

40 CONTINUE
5 CONTINUE
C BACKSUBSTITUTION

IF(DABS(A(N,}Ð).GT. l .0E-6) GOTO 70
WRrTE(KO,3) N
STOP

70 X(N)=F(¡.¡)/A(N,N)
DO s0I=l,Nl
II=N-I
SUM=O.ODO

DO 55 J=l,I
JJ=N-J+1
SUM=SUM+A(II,JÐ*X(JÐ

55 CONTINUE
x(IÐ=(F(IÐ-SUI/Ð/A(IIJI)

50 CONTINUE
RETURN
END

OUTPUT RESULTS
c
c
c
c

C

STJBROUTINE OUTPUT(NE,NEY,NEX,KSTAGE,KOUT,DISP,TEMP)
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PARAMETER(NC I :480,NC2=960,NC 3=240)

IMPLICIT REAL*8(A.H,O-Z)
REAL*8 DISP(I)
DIMENSION ND2(8),STEE(4),STNE(4),CORD(4,2),DEF(8)
CTIARACTER TP I *4,TP2*9,TP3 *5,TP4*g,TIPE*9

COMMON/CODEÆí,KO
COMMON/STREN/STE(NC2),STN(NC2),STER(NC2),STNRO{C2)
C OMMONAilALL/HBIN,RBIN,TBIN.EMW,PRW
COMMON/INTFÆMIN,EMIH,PRI,CKW,CKB,CFW,CFB,THR,TBI,TWI
COMMON/LOADS/DEN,DPS I,DPS2,CT,NDEP,NSCHI,NSCTI2
COMMON/GRID/KODE(NC3),ND(4,NC3),XC(4,NC3 ),YC(4,NC3 ),KWALL
COMMON/C ONST/PA,PI,NN2,NN4,NN8
TPI='WALL'
TP2='INTERFACE'
TP3='GRAIN'
TP4='PLATE'
NEXI=NEX+l
rF(KSTAGE.EQ.0) WRITE(KO, I 03)

1 03 FORMAT( I )V//// 1 0X30(' +',) I 120X,'RESULT OUTPUT"//I 0X,
*30('+')///)

rF(KSTAGE.EQ.0) WRITE(KO,3)
rF(KSTAGE.EQ. 1 ) WRITE(KO,4)
IF(KSTAGE.EQ.2) WRITE(KO,6) TEMP

3 FORMAT(lXlllX,70('*',)llll5X,',STATIC PRESSURE WITHOUT SIJRCFIARGE"
*/1x,40(,:)lt)

4 FORMAT(tylllx,70('+')llll5x,'STATIC PRESSURE WITH SURCHARGE"
*/1){,40(':)/D

6 FORMAT(LXJllx,7}(',*')llllsX,',Ttf,RMAL PRESSURE"/1X,7j(',-',)//1X,

'T"TEMPERATURE=',F I 0. 4//)
C....... OUTPUT STRESSES ON WALL ONLY

IF(KOUT.EQ.l) GOTO 100

WRITE(KO,7)
7 FORMAT(2s¡,'*'t***WALL PRF.SSUIIE',T****r,

*//I X,T I g,'HEIGHT"T3 I,'LATERAL"Ts5,'VERTICAL'//)
DO 5I=I,NE
KOD=KODE(I)
IF((KOD.GE 3) AND.(KKEQ.O)) TI{EN
Jl=(t-l)*{a/
PV=-STE(Jl)
KK:I
END IF
rF(KOD.EQ.l) TI{EN
DO 15 J=1,4
CORD(J'l)=XC(J,I)
CoRD(J,2)=YC(J,D

15 CONTINUE
Jl=(l-l)*4+1
PL=-STE(J1)
HL=o. 5D0 * (CORD( 1,2)+CORD(4, 2))
wRrrE(Ko,g) HL,PL,PV

9 FORMAT(1X,T10,F15.4,T30,E15.4,T50,815.4)
KK=O
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END IF
5 CONTINUE

rF(KOUT.NE.2) RETURN
100 WRITE(KO,102)
102 FORMAT(l)15X,'*****OUTPUT FOR EACH ELE\IFNT*****"/)

DO l05I=1,NE
CALL INULV(|ID2,NN8)
KOD=KODE(Ð
DO I 15 J=1,4
Jl=(l-l)*{a¡
STEEI¡=-gTEl¡1,
STNE(¡=-51¡1¡1,
CORD(J,t)=XC(J'Ð
coRD(J,2)=YC(J,Ð
Kl=2*ND(J,I)
rF(Kl.LE.o) GOTO 115

ND2(2*J-l)=Kl-l
ND2(2*)=ç1

I15 CONTINUE
CALL NULVEC(DEF,NN8)
DO I l0 J=1,8
JJ=ND2(Ð
rF(JJ.LE.O) GOTO l l0
DEFl¡=P15P,'n

IlO CONTINUE
C

YF=0.0
C IF(KOD.GE.3.OR.KOD.EQ.l) YF=FPF(STEE)

rF(KOD.GE.3) YF=ABS(STEE( l )-STEE(2XSTEE(1 )+STEE(2))
rF(KOD.EQ.0) TrPE=TPl
IF(KOD.EQ. l.OR.KOD.EQ.- I ) TtrE=TP2
IF(KOD.EQ.-2) TIPE=TP4
IF(KOD.GE.3.OR.KOD.EQ.-3) TIPE=TP3
WRrTE(KO, 1 06) r,TrPE,YF,(ND(J,Ð,J=r,4),(CORD(J, l ),J= I,NN4),
*(coRD(J,2),J= 1,NN4),@EF(Ð,J= 1,8,2),(DEF(Ð,J=2,8,2),STEE,STNE
FORMAT( I )í/2X,'ELEMENT NO:',5X,I3, I 0X,'TYPE:',3X,49,F I 0.2/5X,
*'NODE NO :',T I 5,4I I 5/5X,'X-COORD :',T I 5,4F 1 5.41 5X,
*'Y-COORD:',T 

1 5,4F I 5.4/5X,'H-DISP:',T 15,4El 5.4/5X,
*'V-DISP:',Tl 5,481 5.4/ 5X,'STRESS:',Tl 5,481 5.4/ 5X,
*'STRAIN:',Tl 5,481 5.4)

c WRITEGO,Ill)I,STEE
cl l l FoRMAT(3X,rs,48t5.4)
105 CONTINUE

RETURN
END
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