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Abstract  
 

Background: Multiple Sclerosis is a neurodegenerative disease characterized by demyelinated 

lesions and axonal loss in white matter regions of the brain. Spatially normalizing brain MRI 

data to a template is commonly performed to better facilitate comparisons between individuals or 

groups. Due to the presence of MS-related brain pathologies, spatial normalization methods can 

be compromised. This study therefore systematically compared five commonly used spatial 

normalizations for brain MRI including linear (affine), nonlinear MRIStudio (LDDMM), FSL 

(FNIRT), ANTs (SyN) and SPM (CAT12) algorithms to evaluate their performance in the 

presence of MS-related pathologies. After identifying an optimal spatial normalization method, 

this study then used pre-existing knowledge on the relationships between cognitive performance 

and resting-state functional connectivity in distributed large-scale brain networks to look at 

cognition, executive function and white matter structural connectivity. This would build on the 

previous findings in this study by using the optimal method to acquire FA and MD maps to use 

in conjunction with recently released functionally-defined white matter atlases to investigate 

relationships between executive function and microstructure throughout the default mode 

network and executive control network white matter. 

Methods: Using a cohort of 20 participants with MS from an ongoing cohort study and 1 healthy 

control participant, we lesion-filled each participant’s T1-weighted brain image to the Montreal 

Neurological Institute template using 5 normalization approaches for a real and simulated lesion 

dataset (total of 400 spatial normalizations). Inter-subject variability was quantified using both 

mutual information and coefficient of variation and normalization lesion volumes were evaluated 

using paired sample t-tests. Using SPM CAT12, we used diffusion tensor imaging metrics, FA 

and MD from 103 participants to extract values from DMN and ECN regions via the UManitoba-



 iii	

Functionally-Defined Human White Matter Atlases. Executive function was assessed using the 

Delis-Kaplan Executive Function System Color-word Interference Test. One-tailed Spearman 

correlations assessed relations between DMN and ECN white matter microstructure and 

individual differences in executive function correcting for age, sex and WTAR scores.  

Results: SPM CAT12 with lesion filling is the most robust method for spatially normalizing MS 

brain imaging data, as demonstrated in Coefficient of Variation maps, that make clear that SPM 

CAT12 resulted in the lowest average COV value (SPM: 9.6 and 21.4 for FSL). Using SPM 

CAT12, this study found executive function scores to be significantly correlated with individual 

differences in white matter MD measurements obtained from both the DMN (rho = 0.194; 96% 

CI = 0.0031 to 0.0347; p = 0.027) and the ECN (rho= 0.192; 95% = 0.029 to 0.345; p= 0.029), 

but not those obtained from global white matter (rho = 0.106; 95% CI = -0.059 to 0.0266; p = 

0.147) after correcting for age, sex and WTAR. 

Conclusion: Together, this thesis worked to: 1) compare spatial normalization methods on brain 

MRI data in the presence of MS lesions using real and simulated data to identify an optimal 

approach for comparing quantitative structural imaging metrics across participants, and 2) use 

this robust spatial normalization method to investigate the relationships between EF and 

microstructure throughout the DMN and ECN WM using recently released functionally-defined 

WM atlases. Together, these findings have expanded our understanding of best-practices in MRI 

data analysis and the variability in cognitive functioning among persons with MS. 
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1.1 Etiology and Prevalence of MS 

 
Multiple sclerosis (MS) is a chronic neurodegenerative disease of the central nervous 

system (CNS)1. It is the most common disabling neurological disease in young adults, with a 

typical onset between 20 to 40 years of age, affecting twice as many females as males2,3. In terms 

of prevalence, currently MS affects over 2.5 million people worldwide with roughly 290 cases 

per 100,000 Canadians, with the prairie provinces – particularly Manitoba having amongst the 

highest rates of MS in the world3,4. Although there is no known cause for MS, the disease itself 

has a complex etiology, with both genetic and environmental components contributing to the 

onset of the disease, with the risks being associated with exposure to environmental factors in 

genetically susceptible individuals3. In fact, studies suggest that Caucasians are the most 

affected, with a much lower prevalence among Japanese, Chinese, American Indians and 

individuals of African descent3. Because of this, many studies have suggested that environmental 

conditions in regions with higher latitudes in both hemispheres may foster environmental 

conditions optimal for developing MS.  

Much of the literature regarding prevalence, is tied to migration and MS. These migration 

studies reported that individuals growing up in high-prevalence areas remain at a higher risk for 

developing MS, even after moving to a low-risk region. Interestingly however, migration from a 

low-risk to a high-risk region during childhood seems to increase the risk of developing MS1. 

Considerable evidence has also led to the popular belief that these high-risk areas which happen 

to be situated in higher latitude regions worldwide, generate a lower duration and intensity of 

sunlight, creating environments that trigger low vitamin D levels - which is considered by some 

to be an environmental risk factor for MS. In fact, one record-linkage study found skin cancer 

mortality rates to be 50% less among MS patients, potentially supporting the correlation between 



 3	

reduced sunlight exposure and MS5. This then begs the question of what the effects of other 

environmental risk factors have on those who are genetically susceptible? One such study looked 

at the association between sun exposure in childhood and MS risk among 81 monozygotic twins, 

and found that twins with MS systematically reported lower levels of sun exposure, therefore 

supporting the possibility that reduced early sun exposure prompts the onset of MS6.  

Moreover, one putative factor with a strong biologic plausibility is obesity, as it has been 

shown to increase the risk of developing MS. In fact, some studies have found obesity, coupled 

with an early age of sexual maturity to be associated with the onset of MS - with the pediatric 

population of MS in particular being affected the most. One study in particular comprised of 

1571 cases and 3371 controls reported a two-fold increase in the risk for MS patients with a BMI 

exceeding 27 kg/m2. This pattern of association was the same for both men and women7. 

Interestingly, in relation to age, high body mass index during adolescence or early adulthood has 

in fact been associated with an increased risk of developing MS later in life. Some studies have 

also suggested that obesity and comorbid cardiovascular diseases are associated with increased 

MS susceptibility and worse disease progression8. In fact, one study reported that lifestyle-based 

behavior linked to higher cardiovascular disease was associated with greater central brain 

atrophy over a 5-year period in MS patients9. Another risk factor that influences the disease 

course of MS is cigarette smoking. This risk factor has been supported extensively in literature, 

such that one of many studies found smoking less than 5 cigarettes per day for many years 

implied a two-fold increase risk for developing MS. This same study also found that unlike many 

other risk factors such as vitamin D deficiency, the Epstein-Barr virus (EBV) infection and 

obesity to list a few, all of which seem to influence risk during a specific time point in one’s life 

- in particular during adolescence or early adulthood, smoking was not influenced by age, but by 
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both the duration and intensity of smoking10. Other studies with a focus on diet, associated their 

findings with the gut microbiome, whereby there has been evidence that suggests that the gut 

microbiota influences the course of MS, such that MS patients exhibit gut dysbiosis. The existing 

literature on the gut microbiome is often derived from experimental evidence using 

encephalomyelitis (EAE) mouse models of MS, where it has been reported that people with MS 

have an altered microbiome, increased intestinal permeability and changes in bile acid 

metabolism compared to healthy controls. Together, this alters peripheral and CNS immune 

homeostasis11. Epidemiological evidence has also been presented in the literature regarding 

exposure to the EBV –an established risk factor for MS, that essentially activates human 

endogenous retroviruses12. Interestingly, one recent study reported maternal EBV IgV antibody 

levels to be associated with risk of MS in the offspring13. That said, this study, among many 

others supports the role of EBV as a risk factor for MS.  

Several studies suggest that the risk of developing MS is primarily established in the first 

decade of one’s life, from which the authors inferred that environmental factors act early in life 

in genetically susceptible individuals, which together triggers the onset of the disease3. This is 

supported by the fact that 10% of MS patients experience their initial demyelinating event during 

childhood or adolescence14. Therefore, the prevailing view is that these environmental risk 

factors alone do not contribute to MS, but the time in which individuals who are genetically 

susceptible are exposed, is what prompts the onset of the disease3.  

To quantify genetic risk factors of MS, six twin surveys were conducted in which more 

than 2000 MS twins were studied. The findings of these surveys suggested that there was a 

genetic susceptibility with a concordance rate of 25-30% and index of heritability of 0.25-0.76 

found in monozygotic twins, ultimately alluding to the idea that there is a much higher 
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monozygotic than dizygotic twin concordance rate15. Apart from twins however, another study 

found that about 20% of MS patients had at least one relative who had been affected with MS16. 

Although the precise mode of inheritance remains unclear, the disease is understood to neither be 

Mendelian nor mitochondrial17. Furthermore, to date, >200 independent loci across the genome 

have been associated with MS risk18. In fact, of the many genes, the human leukocyte antigen 

(HLA) classes I and II on chromosome 6, T cell receptor b, cytotoxic T lymphocyte antigen 

(CTLA)-4, intercellular adhesion molecule (ICAM)-1, and SH2D2A are a few among many to 

be linked to the onset of MS16. Interestingly, many of the risk alleles for MS are shared by 

several other autoimmune disorders including type 1 diabetes mellitus, rheumatoid arthritis, 

systemic lupus erythematosus and Crohn’s disease, which lends further support to the 

autoimmune component of MS being an inherited risk18. Nonetheless, despite the identification 

of >200 independent loci across the genome, these seem to only represent a small fraction of the 

total phenotypic variability in MS, therefore suggesting that it is environmental factors coupled 

with genetic factors that increases the risks of developing MS18. That said, since there is not one 

specific gene nor one specific environmental factor causing MS; to date, the disease is believed 

to be multifactorial in nature, involving a combination of both environmental and genetic 

components. 

1.2  Physiology and Pathophysiology of MS 

1.2.1 Axonal Injury and Loss 

The pathological hallmark of MS are white matter (WM) plaques. These plaques are 

circumscribed areas of demyelination17. Although for many years, MS was considered to be 

exclusively a WM disorder, mounting evidence now suggests that there is also cortical gray 

matter (GM) degeneration as well as damage to normal appearing WM (NAWM)19,20. Though 
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the concept of cortical and deep GM lesions in particular, were first introduced in the very early 

literature of MS pathology by Charcot in 1868, it only gained widespread interest in the last three 

decades, ultimately leading to the classification of MS as a neurodegenerative disease21,22. The 

idea of MS being a neurodegenerative disease, is based on the extent of axonal loss and 

neurodegeneration that triggers irreversible disability in the beginning stages of MS. Although 

demyelination is the hallmark pathology of MS, irreversible axonal loss – thought to be a 

consequence of demyelination has also been observed. Axonal injury became a topic of popular 

interest, largely due to the irreversible effects it has23. Based on this evidence, one study found 

that although the relapsing-remitting functional impairments were caused by inflammation and 

demyelination, the accumulation of an irreversible neurological deficit was caused by axonal 

destruction and loss23. Although demyelination can in part, be repaired through endogenous 

remyelination, there has been no evidence to date of axon regeneration. That said - even 

remyelination is not always successful. Though in the earlier phases of MS it could in part be, 

the extent to which repair can take place is limited by oligodendrocyte survival within plaques, 

oligodendrocyte precursor cells, not having enough cytokines, growth factors and of course 

limitations of the underlying demyelination process of MS itself17. Conversely, irreversible 

axonal loss is believed to contribute to the continually worsening neurological deficits that take 

place in primary and secondary progressive forms of the disease, during which clinical 

progression corresponds to brain atrophy24. In fact, one study found axonal injury to be 

independent of demyelination25.  

1.3 Clinical Presentation of MS 

As discussed earlier in this thesis, disease activity in MS is strongly correlated with the 

formation of new lesions. These lesions seem to form in various locations throughout the CNS, 
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rendering the clinical course of MS to follow diverse patterns over time. This precise 

heterogeneity, as seen in both physical and cognitive outcomes is indicative of the distribution of 

demyelination within the CNS, and is what results in a diverse range of neurological symptoms 

attributed to a patient’s WM lesions – disseminated in time and space3,26,27. A patient typically 

initially presents with clinically isolated syndrome (CIS) as a first event that may indicate MS. 

CIS is characterized by either focal or multifocal regions in the CNS, commonly found in the 

optic nerve, brainstem or spinal cord. This is typically a patient’s first episode of inflammation20. 

These CIS patients often present with reversible episodes of neurological deficits that last for 

days to weeks1,28. From there, some CIS patients may or may not ultimately lead to a diagnosis 

of MS. Typically, those who do begin to develop some neurological deficits, which therefore 

increase their chances of getting diagnosed with relapsing-remitting MS (RRMS), at which point 

they will continue to have relapses, with partial or complete recovery. Most of these individuals 

will ultimately transition to a secondary progressive course in which there is gradual 

accumulation of disability independent of relapses1. Characteristically, patients with MS who 

present with a more chronic disease progression who go on to develop MS, often begin to 

present with multifocal lesions within the CNS as seen on MR images, particularly in the 

periventricular WM, brainstem, cerebellum and spinal cord WM - all of which support a 

diagnosis for MS29. These multifocal lesions then trigger symptoms such as motor weakness, 

optic neuritis, discoordination, diplopia, numbness, fatigue, depression, reduction in information 

processing speed and executive functions, and long-term memory deficits to list a few30. Taken 

together, focal WM lesions, WM atrophy and widespread changes in the microstructure of 

NAWM are the hallmark pathologies of MS31. Based on these symptoms, it is clear MS has a 

substantial impact on one’s daily functioning.  
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1.3.1 Types of MS 

The heterogeneous nature of MS, manifested through both physical and cognitive 

deficits, then created the need to generate a classification system, where the disease could be 

categorized into three ‘types’ of MS, namely RRMS, primary-progressive MS (PPMS), and 

secondary-progressive MS (SPMS) – designed to standardize, facilitate communication, enhance 

prognostication, and limit heterogeneity in clinical trial populations32. The most common form of 

MS, and the type that most patients typically present with in the earlier course of the disease is 

RRMS, which affects about 85% of patients17. About 10-15% of patients with RRMS experience 

a relatively mild disease course, and can remain clinically stable for many decades28. However, 

the remainder of those patients typically experience sensory symptoms, Lhermitte’s sign (axial 

or limb paresthesia with neck flexion), limb weakness, gait ataxia, brain stem symptoms fatigue 

and optic neuritis to list a few – all of which are a result of the demyelination in the CNS17. This 

form of MS is characterized by acute attacks of new or recurrent neurological signs followed by 

either a complete or partial recovery. RRMS is also separated by periods of stability with no 

clinical disease activity. Moreover, roughly 10-15% of patients experience PPMS, which is 

characterized by a gradual progression of neurological disability. The term ‘relapse’ is 

considered to be the clinical expression of acute focal or multifocal inflammatory demyelination, 

disseminated within the CNS33. Typically, it is quite common for RRMS patients to gradually 

evolve into SPMS, in which neurological disability accumulates progressively between or 

without additional relapses3,17 Irrespective of the MS type, the two main clinical phenomena of 

MS are relapses and progression33. Likewise, to further build on the idea that every MS patient 

experiences MS differently, and that not every patient fits into these three types of MS, many 

studies have sought to understand the mechanisms contributing to MS, to uncover what is 

causing these individual differences and why some individuals with MS seem to live a relatively 
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normal life, despite having MS - while others become entirely debilitated. This discrepancy 

between disease burden and cognitive outcome, where some patients have better preserved 

cognition than others continues to remain a challenge in the field22.  

1.3.2 The Cognitive Reserve Hypothesis  

One study investigated how learning and memory impairments being two prevalent 

deficits in MS, seem to be weakly associated with MS disease and severity/brain atrophy34. From 

this, the cognitive reserve hypothesis was born. This hypothesis states that both genetic factors 

(measured through means of maximum lifetime brain growth and quantified by intracranial 

volume), and environmental factors (measured through various life experiences and quantified 

through intellect, education, vocabulary and occupational activities) together, contribute to a 

‘reserve’ against disease-related cognitive decline. Together, from this, several studies inferred 

that higher lifetime intellectual enrichment lessens the negative impact of MS disease severity 

(i.e. brain atrophy) on learning and memory and ultimately explains why there is a disconnect 

between brain disease and cognitive status in neurologic populations like that of MS - which 

could explain why some people are not as affected by their MS as others. Several other studies 

did in fact support this hypothesis35,36,37. Together, this could pave the way for potential 

preventative measures used for those more susceptible to developing MS34,36,37,38. Thus, with no 

known cause or cure, this debilitating disease renders it difficult for individuals to function in all 

aspects of their lives, making MS a life altering disease - and fairly unpredictable in nature.  

1.4 MS Diagnosis: Imaging and Clinical Assessments  

1.4.1 Imaging: Magnetic Resonance Imaging (MRI) 

Over the past few decades, with the advent and widespread availability of Magnetic 

Resonance Imaging (MRI) systems, brain imaging has gained an increasing role in both MS 
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diagnosis and research39. This is largely in part due to MRI being a powerful noninvasive 

imaging modality that uses strong magnetic fields to produce images of biological tissue. 

Fundamentally, diagnosing MS is largely based on the demonstration of the dissemination of 

demyelinating lesions to various regions across the CNS (dissemination in space (DIS)) and over 

time (dissemination in time (DIT)).  

WM disorders such as that of MS have historically used MRI as a primary diagnostic 

tool. However, MRI methods have come a long way since the 1980s. Historically, imaging 

biomarkers have struggled to predict specific symptoms and their severity. In fact, a concept 

known as the ‘clinicoradiological paradox’ refers to the weak correlation of MRI lesion load with 

clinical disability, describing its reduced value as a prognostic marker for clinical 

impairments30,40,41. This notion has now unsurprisingly proved to be a paradox, owing to MRIs 

sensitivity to MS-related abnormalities, non-invasiveness, reproducibility and repeatability42,43. 

This association between clinical findings and the radiological extent of involvement has now 

led to MRIs prominent role in diagnosing MS, and is now a powerful diagnostic tool for 

detecting and measuring lesions, assessing brain atrophy and evaluating WM and GM MS 

pathology20,41.  

Despite the widespread use of the MRI as a powerful diagnostic tool, its use remains 

limited when trying to decipher some of the neural mechanisms underlying cognition in diseases 

like MS. Studies that have used conventional MRI have found it challenging to investigate 

something as complex as cognitive impairment in MS on just the basis of T2 lesional disease 

burden. Therefore, although conventional MRI has effectively proven to quantify structural brain 

damage, WM and GM pathology outside of damaged tissue, in areas known as NAWM and 

NAGM it becomes challenging to quantify, and therefore requires more advanced quantitative 
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neuroimaging techniques. Because of this, the use of more advanced quantitative MRI 

techniques is now becoming increasingly common, as they allow for the visualization of 

widespread abnormalities in the CNS - beyond WM focal lesions, which ultimately broadens our 

understanding of the neurodegenerative disease process44. These quantitative measures which are 

highly sensitive in detecting MS plaques, provide quantitative assessments of inflammatory 

activity and lesion load, which is essential in times when MS-related abnormalities go undetected 

with conventional MRI - which is often the reason why modest correlations are reported between 

MRI-visible WM lesions and neurological deficits33,44. Some of these advanced quantitative MRI 

methods include diffusion tensor imaging (DTI)45, magnetization transfer imaging (MTI)46 and 

myelin water imaging (MWI)47 to list a few, which have allowed us to look at the 

microstructural, metabolic and functional changes in MS patients – moving closer toward 

understanding the variables giving rise to the complex manifestation of diseases like MS44. DTI 

imaging in particular, which will be discussed in more detail later in this thesis, has advanced the 

field of brain imaging with the ability to obtain reliable in vivo estimates of brain damage, 

suggesting that MS is not limited to lesions visible on T2-weighted images as seen by 

conventional MRI, but instead has demonstrated that several brain regions that may appear 

‘normal’ (i.e. NAWM) on conventional MRI, are in fact driving some of these cognitive deficits. 

In fact, in addition to NAWM merely driving some of these cognitive deficits, several DTI 

studies have reported damage in specific WM tracts to be associated with EF decline, as 

supported by poor performance on the Paced Auditory Serial Addition Test (PASAT), The 

Multiple Errands Test (MET) and the Trail Making Test (TMT) and Color Word Interference 

Test (CWIT) from the DKEFS Test20. Together, this suggests a clear association between DTI 

and NAWM in MS, and therefore suggests that conventional MRI is not sufficient in 
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understanding more complex cognitive deficits in persons with MS. Similarly, among many, one 

such study reported increased MD in NAWM over a 15-month period in persons with MS - 

independent of lesion load and brain volume. These findings were then further supported by 

other findings that reported that changes in NAGM occur over time, independent of whole brain 

and GM volumes48,49. Taken together, it is evident through the extent of damage in NAWM and 

NAGM, that there seems to be damage beyond what conventional MRI methods can detect. This 

then created the need to investigate brain damage beyond what is seen by conventional MRI, 

therefore paving the way for MS studies to then employ more advanced quantitative MRI 

methods as mentioned above, in hopes to work toward better understanding anatomical 

connectivity patterns to enhance our understanding of the relationships between MRI findings 

and specific cognitive deficits and the corresponding brain networks that are affected50. 

However, despite how far we have come by employing more advanced quantitative imaging 

methods in studying MS, these studies are often predicated on precise one-to-one spatial 

mappings between the brain images of different individuals. This is often done through warping 

each participant’s brain to that of a commonly used brain template which enables researchers to 

conduct region of interest analyses and group-wise comparisons. However, with MS studies in 

particular, the presence of MS lesions and other MS-related brain pathologies seem to affect the 

accuracy of automated warping methods - also known as spatial normalization. Chapter 3 of this 

thesis, will therefore work to address this gap.  

1.4.2 Diffusion Tensor Imaging 

 One powerful quantitative MRI method that revolutionized the visualization of WM 

structures by exploiting the properties of water diffusion is DTI imaging. This method originally 

introduced in 1994 by Basser et al., measures the displacement of water molecules on a micro 
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scale, ultimately providing information about the WM fibers that pass within a pixel45,51. Since 

water molecules in the human body undergo a random Brownian motion - typically influenced 

by partially permeable barriers and structures, DTI then works to quantify the relative diffusivity 

of water in a voxel into directional components, which is in turn affected by the magnitude and 

directionality of diffusion51,52. The restriction of water molecule movement depends on the 

direction in which the diffusion is measured. This property is known as anisotropy and results in 

greater diffusion along axons in comparison to the transversal measurement. DTI also provides 

brain maps of the magnitude of diffusion - reflected by the mean diffusivity (MD), and the 

degree of anisotropy as mentioned above - termed fractional anisotropy (FA)53. These two scalar 

maps are used to quantify diffusion properties. MD values reflect the average rate of molecular 

diffusion, such that higher values of MD correspond to higher diffusivity and vice versa. 

Conversely, FA can be computed for each voxel expressing the preference of water diffusion in 

an isotropic or anisotropic manner. The term isotopic can be understood as there being no 

restrictions on diffusion, such that molecules will diffuse equally in all directions, and 

anisotropic is a process whereby there are no restrictions on diffusion, where diffusion may 

occur along one axis. For instance, in WM, anisotropy is high, meaning the water molecules 

diffuse fastest along the length of the fiber and the slowest perpendicular to them/across the 

width of the fiber. Moreover, FA values are relative measures that can range between values of 

0-1. Values closer to 1, indicate that nearly all the water molecules in the voxel are diffusing 

along the same preferred axis (anisotropic diffusion), whereas values closer to 0, indicate that the 

water molecules are equally likely to diffuse in any direction (isotropic diffusion). One of the 

advantages of using DTI is that it is rotationally invariant, meaning it can measure the principle 
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diffusivities regardless of the position of the fibers in space. Therefore, it can extract both the 

magnitude of the diffusivities and also their 3D alignment45.  

1.4.2.1 Application of DTI Measurements with MS 

In relation to MS, previous DTI studies have shown that as WM tracts undergo 

demyelination or axonal loss, their microstructure is disrupted, which in turn alters the diffusion 

of water. Previous studies have also shown that higher MD values with lower FA values in acute 

plaques are likely indicative of edema, demyelination, axonal loss and an overall increase in 

barrier permiability40. Thus, since MS is a demyelinating disease, DTI plays a pivotal role, as the 

myelin within the WM is believed to be one of the main drivers of the DTI signal. That said, 

although it is clear that there is a significant amount of potential for DTI studies to enhance our 

understanding of MS, the complex manifestation of the disease renders it difficult to do so to its 

full potential. Despite the commonality of most MS patients experiencing chronic progression, 

the complexity of MS results in a diverse range of neurological symptoms experienced by 

patients – leading to unique MS experiences all around27. This in turn creates a need for 

uncovering the variables giving rise to these individual differences in cognition, and particular 

executive function. Therefore, to advance our understanding of this variability, Chapter 4 will 

highlight some of the underlying factors contributing to these individual differences seen in 

cognitive performance using DTI measures.  

1.5 Clinical Assessments 

With the ability of advanced quantitative MRI methods to detect disease-related 

abnormalities and specifically its proven sensitivity to detect demyelinating lesions, we are able 

to use reliable imaging modalities in conjunction with a variety of clinical assessments, which 

together enhance diagnosis and leads to many new avenues that work to reduce disease activity, 
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and in part progression1. Likewise, a criterion from the 1980s known as the Poser Criteria was 

typically used as diagnostic criteria. To fit this criteria, a patient needed to present evidence of at 

least two relapses - in line with typical MS symptoms and have evidence of some sort of 

involvement of WM in more than one region of the CNS54. Since then however, this model has 

been replaced by the McDonald criteria, which itself has been revised in May of 2017. This 

system requires patients to have lesions that affect at least two distinct sites in the CNS with two 

episodes of neurological symptoms separated in time, for which there is no better reason for their 

clinical presentation55. Unlike the Poser criteria, the revised McDonald Criteria allows for a more 

rapid diagnosis and improved specificity and sensitivity. Ultimately this revised criteria allows 

for a simpler diagnostic process with fewer MRI examinations39.  

As the field of MS advances, efforts have been made to gage a more holistic picture of 

MS. To do so, various rating scales have been used in conjunction with MRI methods. Some of 

which include the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis 

Functional Composite (MSFC). In fact, of the two, Kalkers et al., investigated the relationship 

between the new MSFC and MRI lesion load as a biological disease marker and found that the 

MSFC correlated better with both T2 hypointense and T1 hypointense lesion load than the 

EDSS56. Other studies have worked to further prove the strong association between cognitive 

function and MRI measures, such as Edwards et al., who found a clear relationship between 

cerebral atrophy and cognitive performance by suggesting an association between MRI volume 

estimations and cognitive deficits by correlating WM volumes with global Cognitive Index 

Scores (CIS)57.  
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1.5.1 Cognition  

Cognitive impairment affects 40-70% of individuals with MS - rendering it to be a major 

cause of disability. To understand cognition in MS, it is integral to first understand some of the 

domain-specific cognitive processes that influence neurocognitive domains such as attention, EF 

and memory to list a few. This is largely because cognitive deficits in MS are domain-specific, as 

opposed to contributing to global cognitive decline. Interestingly, these domain-specific deficits 

in MS, result in considerable variability in the frequency and pattern of impairment among MS 

patients58.  

According to the DSM-5 approach, some of the primary neurocognitive domains include 

complex attention, EF, language, perceptual-motor function, learning and memory and social 

cognition. Clinically, attentional behavior refers to the ability to choose a task on which to attend 

(selective attention), in order to utilize mental resources focused on a specific task, despite being 

surrounded by distractions (focused attention), to ultimately sustain attention on a specific task 

over long periods of time (sustained attention). Attention deficits in MS have been observed in 

up to 25% of patients59. Moreover, speed of information processing refers to the ability to 

maintain and manipulate information for a short period of time, and to the speed in which one 

can then process that information. This key deficit is seen in about 20-30% of MS patients60. 

Interestingly, several studies on MS have grouped together deficits in attention and speed of 

information processing, and have found associations between attention and speed of information 

processing and GM atrophy of strategic brain structures directly (such as the thalamus and 

cerebellum) or indirectly through control of visual functions such as in the putamen and occipital 

cortex involved in cognitive function61. EF impairment in contrast, is seen in up to 25% of 

patients and can be observed through tasks involving planning, problem solving, executing task 

strategies, decision-making, inhibition and flexibility to list a few62. Broadly, EF refers to 
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maintaining higher-level control over behavior and higher level reasoning60. Several studies have 

suggested that MS patients consistently demonstrate impaired EF in comparison to controls due 

to their impaired problem solving strategies and concept formation59. In fact, two studies 

reported that MS patients performed poorly on two tasks of EF - both the Wisconsin Card 

Sorting Test (WCST) and the Sorting Test from the DKEFS, which were shown to be correlated 

with increased lesion load and atrophy, as assessed by MRI63,64. Moreover, perceptual-motor 

function can be assessed through visual perception, visuoconstructional reasoning and 

perceptual-motor coordination. Deficits have also been reported in verbal abilities, which can be 

observed through speech comprehension. One instance in which deficits in impaired 

comprehension of language can be observed, is through a patient’s difficulty in responding to a 

set of questions or given instructions. This however can also be a result of deficits in other 

domains such as attention and executive functioning65. Language can be assessed through object 

naming, word finding, fluency, grammar and syntax and receptive language. Learning and 

memory however can be observed through free recall, cued recall, recognition memory, long-

term memory and implicit learning. The California Verbal Learning Test II (CVLT) II is a 

neuropsychological test often administered on MS participants to assess episodic verbal learning 

and memory. This test asks MS participants to remember a word list, whereby the administrator 

can then observe how they choose to recall those words through strategy or conceptual 

inference65,66. Memory and learning disturbances in MS appear to be quite frequent, with 

impaired memory seen in 40-65% of patients67. Memory impairments can be separated into 

different domains including episodic memory (personally experienced events), working memory 

(inability to retain information due to difficulties in concentration or attention) and semantic 

memory (word meaning and general knowledge)68. Most patients however typically present with 



 18	

impairments in their short-term and working memory67. Several studies have also reported 

fatigue as a symptom commonly experienced among patients, in which it could be inferred that 

perhaps fatigue is one of many factors contributing to poor cognitive performance59. Taken 

together, cognitive dysfunction in MS is a result of a series of domain-specific disconnections. 

The disruption of the WM tracts appears to lead to reduced functional connectivity between 

cortico-cortical and cortico-subcortical cognitive processing regions, that together result in 

impairments in specific cognitive domains69. 

1.5.2 Executive Function 

Roughly 17-25% of MS patients have difficulties in higher order executive functions62. 

Anatomically, EF relies primarily on the integrity of the prefrontal cortex and its connections 

with other cortical and subcortical systems. Diagnosing impairments in this domain however can 

be understood as engaging in purposive, self-serving behavior, and often leads to a patient’s 

inability to set goals, think conceptually, verbal fluency, make plans and organize. Therefore, a 

patient’s impaired control over their thoughts, behaviors and emotions affects not their ability to 

maintain daily functioning, but to also sustain independent living.  

Historically neuropsychological tests assessed several interrelated domains and regions of 

the brain. One domain-specific test known as the Delis-Kaplan Executive Function System 

(DKEFS) test has systematically been suggested to be the most robust test for measuring EF 

decline, such that it assesses a much wider range of independent executive abilities, over 

previous EF tests in MS. Among many studies, one large-scale New Zealand study conducted a 

comprehensive assessment of EF, general cognitive ability and memory by performing all 

subtests of the DKEFS using 95 MS participants. This study not only suggested that MS 

participants perform more poorly on tests of EF, but their findings also suggested that the 
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DKEFS allowed for a much more comprehensive assessment of EF than previous methods. 

Taken together, this study’s findings supported the robustness of DKEFS when assessing EF 

dysfunction70. These findings were lent further support by another study that found scores from 

the DKEFS sorting test to be significantly lower than healthy controls, whereby MS patient 

scores were a result of fewer sorts, a smaller description score and more redundant sorts63. In 

addition to these studies done on adult onset of MS, one study that used DKEFS in a pediatric 

MS cohort, also found DKEFS to be more robust in assessing EF, than previous tests such as the 

Stroop Test or the Tower of London Test71. Taken together, DKEFS, unlike many other 

neuropsychological tests, assesses EF exclusively, as opposed to other tests that assess a 

compound of various cognitive functions such as processing speed and working memory, 

rendering it difficult to isolate the effects of EF on a given test59. Interestingly, in addition to MS, 

other patient populations like Parkinson’s disease, Schizophrenia and Schizoaffective disorder all 

seem to use DKEFS when assessing EF72,73. That said, despite the identification of a robust 

method of measuring EF decline, there still remains gaps in understanding the complexity of EF 

dysfunction in MS, largely due to inconsistent findings and incomparable studies in the 

literature. Because of this, Chapter 4 of this thesis will work to further address EF dysfunction in 

MS.  

Understanding the mechanisms underlying cognitive impairment in MS have been 

moderately explored in the literature, through means of better understanding the structural and 

functional connectivity patterns that underlie these domain-specific impairments. In fact, a meta-

analysis performed on data from 495 patients across 12 different studies, seven of which focused 

on DTI imaging studies, found impaired cognition to be significantly associated with lower FA 

in the callosal genu, thalamus, right posterior cingulum and fornix crus. The findings from this 
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meta-analysis provide insight into how widespread WM damage is. In line with the literature, 

this study’s findings of lower FA relating to cognition, support the importance of understanding 

the functional and structural connections in the MS brain74,75. Taken together, both advanced 

quantitative MRI methods coupled with robust neurocognitive assessments are now used in 

conjunction with one another to enhance our understanding of cognitive impairment in MS. 

Chapter 4 of this thesis will therefore work to investigate the correlations between brain 

structure, EF and cognition, to uncover the associations between MRI findings and EF decline.  
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 Hypotheses and Objectives 
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2.1  Problem Statement  

The purpose of this thesis is to contribute to the understanding of how brain 

microstructure, as defined by DTI-based fractional anisotropy (FA) and mean diffusivity (MD) 

relates to individual differences in cognitive impairment in MS. This will be done by employing 

a network based approach, as high-level control processes have been suggested to rely on the 

integrity of, and dynamic interactions between core neurocognitive networks76. The functional 

interactions between these brain networks has provided insight into the associations between 

structural and functional connectivity changes to that of clinical deficits and overall cognitive 

performance. This however has been made possible through the use of anatomically-defined 

WM atlases and WM probability maps of the brain77. This thesis will therefore employ a network 

based approach to highlight how WM microstructure within two functionally-defined brain 

networks, namely the DMN – a highly activated brain network during resting state and 

deactivated during execution of working memory and attention cognitive tasks78 and the ECN – a 

network involved in executive functions such as control processes and working memory79  as 

well as lesioned and NAWM, correlate with individual differences in EF decline. This will 

ultimately improve our understanding of the underlying causes of MS-related cognitive decline, 

by establishing neural correlates underlying individual differences in cognitive performance in 

MS.  

2.2 Rationale  

Despite the fact that 40-70% of MS patients suffer from cognitive impairments, 

individual risk factors for cognitive disability remain largely unknown, and there are currently no 

reliable prognostic markers to identify patients who are likely to develop cognitive deficits, 

rendering it difficult to manage disease-related cognitive decline before it progressively worsens. 
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One barrier however, in overcoming this gap in the field is that several of the spatial 

normalization algorithms and brain templates that have been developed so far, have only been 

done on studies using neurologically healthy individuals. No previous studies have 

systematically compared normalization methods to evaluate their performance in the presence of 

MS-related pathologies. Therefore, in the absence of established ‘best’-practice’ guidelines for 

spatially normalizing brain imaging data in the presence of MS pathologies, it became imminent 

to determine a processing pipeline that would enable the most reliable comparisons between 

individuals or groups in MS neuroimaging studies. Therefore, once a robust method is identified 

that can yield more accurate voxel-wise and ROI-based comparisons between MS individuals or 

groups, all MS studies can then adopt a uniform image processing pipeline to allow for more 

accurate comparisons between studies and facilitate future meta-analyses. Establishing a data 

processing pipeline that can enable the most reliable comparisons between individuals or groups 

in MS neuroimaging studies, will then lay the foundation to explore different WM pathways and 

possible regions that correlate to various cognitive deficiencies, allowing us to draw inferences 

on cognitive performance and WM microstructure using our new functionally defined WM 

Atlases. Taken together, this approach will highlight how individual differences relate to 

cognitive performance, and ultimately establish how microstructure correlates to cognition in 

MS. By uncovering correlations between microstructure and cognition, we can shed light on the 

underlying causes of MS-related cognitive decline, and specifically that of EF decline.  

2.3 Aims  

This study will aim to first identify the most robust method to yield accurate voxel-wise 

and ROI-based comparisons between MS individuals or groups by establishing a uniform image 

processing pipeline. This pipeline will then be used to define 111 participant’s executive function 
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as the contrast between the most executive sub-component of the DKEFS Color-Word 

Interference Test (i.e. inhibition/switching tasks) vs. the two baseline measures (i.e. Condition 1: 

combined color naming and Condition 2: word reading tasks). This work will ultimately expand 

our understanding of how individual differences in brain microstructure, as defined by DTI-

based fractional anisotropy relate to cognitive performance.  

2.4 Hypotheses 

The following thesis will test the following two hypotheses: 1) that nonlinear warping 

methods in conjunction with lesion-filling will outperform conventional linear (affine) 

normalization 2) that there will be a positive correlation between individual differences in 

executive function and WM microstructure within the DMN and ECN, where participants with 

higher executive function will have lower MD values and higher FA values.  
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3.1 Abstract 

Background: Spatially normalizing brain MRI data to a template is commonly performed to 

facilitate comparisons between individuals or groups. However, the presence of multiple 

sclerosis (MS) lesions and other MS-related brain pathologies may compromise the performance 

of automated spatial normalization procedures. We therefore aimed to systematically compare 

five commonly used spatial normalization methods for brain MRI – including linear (affine), and 

nonlinear MRIStudio (LDDMM), FSL (FNIRT), ANTs (SyN), and SPM (CAT12) algorithms – 

to evaluate their performance in the presence of MS-related pathologies.  

Methods: 3 Tesla MRI images (T1-weighted and T2-FLAIR) were obtained for 20 participants 

with MS from an ongoing cohort study (used to assess a real dataset) and 1 healthy control 

participant (used to create a simulated lesion dataset). Both raw and lesion-filled versions of each 

participant’s T1-weighted brain images were warped to the Montreal Neurological Institute 

template using all five normalization approaches for the real dataset, and the same procedure was 

then repeated using the simulated lesion dataset (i.e., total of 400 spatial normalizations). As an 

additional quality-assurance check, the resulting deformations were also applied to the 

corresponding lesion masks to evaluate how each processing pipeline handled focal white matter 

lesions. For each normalization approach, inter-subject variability (across normalized T1-

weighted images) was quantified using both mutual information (MI) and coefficient of variation 

(COV), and the corresponding normalized lesion volumes were evaluated using paired-sample t-

tests. 

Results: All four nonlinear warping methods outperformed conventional linear normalization, 

with SPM (CAT12) yielding the highest MI values, lowest COV values, and proportionately-

scaled lesion volumes. Although lesion-filling improved spatial normalization accuracy for each 
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of the methods tested, these effects were small compared to differences between normalization 

algorithms. 

Conclusions: SPM (CAT12) warping combined with lesion-filling is recommended for use in 

future MS brain imaging studies requiring spatial normalization. 
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3.2 Introduction 

Multiple Sclerosis (MS) is a neurodegenerative disorder of the central nervous system 

characterized by focal lesions and atrophy in both white matter (WM) and grey matter (GM) 

regions80. Several quantitative MRI methods such as diffusion tensor imaging (DTI)81, 

magnetization transfer imaging (MTI)46, and myelin water imaging (MWI)47 have been widely 

adopted to study MS and other WM disorders82,83. Such studies are often predicated on precise 

one-to-one spatial mappings between the brain images of different individuals. This is typically 

achieved by warping each participant’s brain image to a common template, which then facilitates 

voxel-wise or region of interest (ROI)-based comparisons between individuals or groups84. 

However, among participants with MS, widespread brain pathologies (e.g., focal WM and GM 

lesions, distributed WM and GM atrophy, altered normal appearing white matter signals, etc.) 

are likely to affect the accuracy of automated spatial normalization methods. 

Several spatial normalization algorithms and brain templates have been developed for 

studies of neurologically healthy individuals85, but no previous studies have systematically 

compared normalization methods to evaluate their performance in the presence of MS-related 

pathologies. Generally, these approaches aim to minimize differences between each participant’s 

data and a template image, such as Talairach and Tournoux or Montreal Neurological Institute 

(MNI) templates86, using linear and/or nonlinear spatial transformations87,88. Linear 

transformations apply the same translation, rotation, and scaling parameters to all voxels within 

an image. Although they are robust to local pathologies, they do not accurately match individual 

brain structures, particularly in WM and other sub-cortical regions that are of particular interest 

in MS89. Conversely, nonlinear transformations apply different scaling parameters to each voxel. 

This allows more localized region-specific deformations, but the high-dimensional nature of 

these algorithms renders them prone to over-fitting during the template matching process, which 
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can reduce or eliminate abnormal but potentially salient features in the images (e.g., erroneously 

increasing or decreasing sizes of focal brain lesions)84,89,90. 

To minimize these types of erroneous spatial deformations, brain lesions in clinical populations 

are often identified and either discounted (aka, ‘de-weighted’) during spatial normalization or 

lesion-filled (aka, ‘in-painted’) by intensity-correcting them based on signals from neighboring, 

normal-appearing tissue before spatial normalization91. Lesion-filling has been shown to improve 

anatomical correspondence, as well as WM and GM volume measurements among participants 

with MS92,93. 

Although studies comparing different image processing pipelines and spatial 

normalization methods have revealed performance differences in Alzheimer’s disease, mild 

cognitive impairment, drug-resistant epilepsy, and stroke84,94, no such comparisons have been 

reported for MS. Therefore, in the absence of established ‘best-practice’ guidelines for spatially 

normalizing brain imaging data in the presence of MS pathologies84,89, we aimed to: 1) use MS 

brain imaging data to systematically evaluate the performance of five commonly-used spatial 

normalization approaches in four popular neuroimaging software packages including MRIStudio, 

FSL, ANTs and SPM, before and after lesion-filling; 2) create a simulated lesion dataset to 

compare how each normalization approach was specifically affected by focal lesions rather than 

global differences in brain volumes and GM/WM signal intensities; and 3) determine a data 

processing pipeline that would enable the most reliable comparisons between individuals or 

groups in MS neuroimaging studies. 
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3.3 Materials and Methods 

3.3.1 Data Acquisition 

The current study used de-identified MRI images from 20 randomly selected participants 

with MS [16 female; range 22-66 years] and one randomly selected neurologically healthy 

control participant enrolled in the ongoing Comorbidity, Cognition and Multiple Sclerosis 

(CCOMS) Study95. The study was approved by our institutional Research Ethics Board and 

written informed consent was obtained from all participants. All participants with MS (19 

relapsing remitting; 1 secondary progressive) were diagnosed by neurologists delivering 

specialized MS care using the revised McDonald criteria96. MS participants all had Expanded 

Disability Status Scale (EDSS) scores between 1.0-6.5 [mean±SD = 2.88±1.45], and disease 

durations between 1-23 years [mean±SD = 12.05±7.41 years]97. 

All brain imaging data were acquired using a Siemens Tim Trio 3T MRI system with a 

32-channel head coil (Siemens Healthcare, Erlangen, Germany). Each MRI examination 

included a whole-brain T1-weighted (T1w) MPRAGE (Repetition Time [TR] = 1900 ms; Echo 

Time [TE] = 3.46 ms; Inversion Time [TI] = 900 ms; Flip Angle = 9°; Matrix Size = 256 ´ 256; 

Number of Slices = 176, Field Of View [FOV] = 250 ´ 250 mm2; Voxel Size = 0.98 ´ 0.98 ´ 

0.98 mm3; Acquisition Time [TA] = 4:26 min) and a whole-brain T2-weighted fluid-attenuated 

inversion recovery (T2-FLAIR) sequence (TR = 9000 ms; TE = 100 ms; TI = 2499.2 ms; Flip 

Angle = 130°; Matrix Size = 256 ´ 256; Number of Slices = 32; FOV = 240 ´ 240 mm2; Voxel 

Size = 0.94 ´ 0.94 ´ 4.00 mm3; TA = 5.06 min). 

3.3.2 Image Processing 

We chose to compare four software packages that are well established, freely available, 

and widely used throughout the neuroimaging research community in order to ensure that our 
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findings could be replicated and would be of value in future MS neuroimaging studies. The 

following software packages were included: MRIStudio version 1.9 (https://www.mristudio.org/, 

Johns Hopkins University), FSL version 5.0.10 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, University 

of Oxford), ANTs version 2.1.0 (http://picsl.upenn.edu/software/ants/, University of 

Pennsylvania), and SPM12 version 7219 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/, 

Wellcome Trust Centre for Neuroimaging) with the Computational Anatomy Toolbox for 

SPM12 (CAT12 version R1148; http://www.neuro.uni-jena.de/cat/, University of Jena). All 

image analyses were performed on a Macintosh computer (OSX 10.13.6 High Sierra operating 

system).  

3.3.2.1 Skull Stripping  

Each participant’s raw T1w MRI image in subject space was ‘skull-stripped’ using FSL’s 

automated brain extraction tool (BET) with a fractional intensity threshold of 0.45 to separate 

brain from non-brain tissue98. This brain extraction step has previously been shown to improve 

subsequent normalization of structural MRI data in both healthy and clinical populations99. 

3.3.2.2 Lesion Filling 

Automated lesion segmentation was performed using the Lesion Segmentation Toolbox 

(LST) for SPM12 (http://www.statistical-modelling.de/lst.html, Technical University München). 

The T1w and FLAIR images were linearly co-registered before applying the lesion growth 

algorithm (LGA) using the T1w and FLAIR signal intensities and a kappa threshold of 0.2100. 

The binary lesion masks and normal appearing white matter (NAWM) masks from the LST were 

then used to create lesion-filled T1w images via the FSL ‘lesion_filling’ command93.1 

																																																								
1 The combination of SPM and FSL was intentionally employed here to avoid all of the image processing 
being performed within any single software package (which could potentially bias the subsequent 
normalization results in favor of that package). 
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3.3.2.3 Spatial Normalization 

Each of the 40 skull-stripped T1w images (i.e., 20 before lesion-filling and 20 after 

lesion-filling) were spatially normalized to 1.0 ´ 1.0 ´ 1.0 mm3 T1w MNI templates using each 

of the following five spatial normalization approaches (Figure 3.1). Each software package’s 

included T1w MNI template and default parameters were used, unless otherwise noted. 

1.  Linear (Affine): Linear spatial normalization was achieved by applying a 12-parameter 

affine (AIRLinear) transformation using the DiffeoMap Toolbox in MRIStudio101. 

2. MRIStudio (LDDMM): After an initial linear (affine) normalization within the DiffeoMap 

Toolbox (described above), nonlinear warping using the large deformation diffeomorphic metric 

mapping (LDDMM) algorithm102 was implemented with cascading alpha values (i.e., 0.01, 

0.005, 0.002) to allow increasingly elastic deformations, as previously described77. 

3.  FSL (FNIRT): After an initial linear (affine) normalization using FSL’s Linear Image 

Registration Tool (FLIRT)103,104, nonlinear spatial normalization was performed using FSL’s 

Nonlinear Image Registration Tool (FNIRT)105. 

4.  ANTS (SyN): Nonlinear spatial normalization was performed using the Advanced 

Normalization Tools (ANTs) Symmetric Normalization (SyN) algorithm106, which combines 

linear and nonlinear bidirectional mappings. 

5.  SPM (CAT12): Nonlinear spatial normalization was performed using the CAT12 Toolbox 

107 within SPM12, initially using low-dimensional nonlinear warping, followed by a two-stage 

nonlinear normalization approach based on Geodesic Shooting algorithms88,108. 
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Figure 3.1: Image processing pipeline 

Figure 3.1: Comprehensive image-processing pipeline for warping the T1w MRI images and lesion masks from each 
participant to the Montreal Neurological Institute (MNI) brain template. Spatial normalizations were performed using five 
commonly used algorithms, both before and after lesion-filling the T1w images. Note: Axial brain images are displayed in 
neurological convention (left=left); NAWM: normal appearing white matter, LST: lesion segmentation toolbox, LGA: lesion 
growth algorithm, Non-LF: non lesion-filled, LF: lesion-filled. 
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Although some of these software packages are able to generate normalized T1w images 

directly, such images may have been subjected to additional, interim processing steps such as 

smoothing, interpolation or global intensity scaling. Therefore, rather than using direct outputs 

from any of the software packages, the resulting deformation fields from each algorithm (after 

combining the linear and nonlinear deformations, if applicable) were applied to each 

participant’s original T1w image. This was done either before or after lesion-filling, but without 

any additional processing steps, and was also done to the corresponding LST-segmented lesion 

masks. The aim was to yield the most direct comparison between the algorithms themselves, and 

to limit other potential differences between the image processing pipelines and software 

packages. 

3.4 Methodological Comparisons 

We used three measures to assess spatial normalization accuracy, before and after lesion-

filling with each normalization algorithm, including: 1) mutual information (MI) between 

normalized images; 2) coefficient of variation (COV) between normalized images; and 3) 

volume of spatially-normalized lesion masks. Comparing the similarity of warped images using 

MI and COV values reflects how well each normalization procedure worked in terms of making 

all participants’ images look the same; however, tracking the lesion volume is also important to 

ensure that successful spatial normalization was not achieved by, or at the expense of, 

inappropriately shrinking or expanding focal lesions. 

To measure the similarity between spatially normalized T1w images that were generated 

using each approach, we first calculated MI, I(X;Y), for all combinations of image pairs within 

each group ( !"!
!!	(!"&!)!

= 190) using the freely-available Fast Mutual Information of Two Images 

or Signals Toolbox in Matlab (https://www.mathworks.com/matlabcentral/fileexchange/13289-
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fast-mutual-information-of-two-images-or-signals). Each of the raw MI values were then scaled 

between [0,1] by dividing them by the absolute upper bound, UX, defined by I(X;X) – based on 

the principle that any given image, by definition, contains as much or more mutual information 

about itself compared to any other image (,(-;/)
01

= ,(-;/)
,(-;-)

) 109. Thus, higher scaled MI values 

indicate greater similarity between images, with 0 indicating that images are completely 

independent (i.e., no correspondence between X and Y) and 1 indicating that images are 

completely dependent (i.e., 1:1 correspondence between X and Y) although not necessarily 

identical (e.g., allowing for global differences in contrast and/or signal intensity between X and 

Y). 

Then, to quantify and visualize the degree of overlap between the spatially normalized 

images, COV maps were generated for each normalization approach by dividing the standard 

deviation by the mean T1w signal intensity in a voxel-wise manner across all 20 images in each 

group (i.e., dataset/algorithm/lesion-filling condition). Overall performance was then quantified 

by calculating the average COV across all voxels within the brain, such that well-aligned sets of 

images (in which tissue types and signal intensities in each region are closely matched across 

participants) have lower overall COV values. 

However, while higher MI and lower COV are generally desirable, these measures alone 

do not reflect whether each normalization algorithm adequately deals with focal lesions. For 

example, images from different participants could theoretically be made to look more similar by 

reducing the variability caused by focal lesions (e.g., by shrinking them within NAWM or 

expanding them into ventricular regions). Thus, in order to evaluate the degree to which overall 

lesion volumes were preserved (i.e., scaled proportionally) during each spatial normalization, we 
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calculated the 3D volume of each warped lesion mask, and performed comparisons between 

methods using two-tailed paired t-tests.  

All statistical analyses were performed using MATLAB (version 2015a, The MathWorks 

Inc., Natick, MA, USA) and MedCalc 17.2 (MedCalc Software, Mariakerke, Belgium). 

3.4.1 Validation and Lesion-Specific Analyses Using Simulated Brain Lesion Data 

In addition to analyzing brain images of the 20 participants with MS, a simulated brain 

lesion dataset was generated for cross-validation and to examine the performance of each spatial 

normalization algorithm in the presence of focal WM lesions alone. Instead of using each 

participant’s raw brain images, which include inter-subject differences in GM, WM, and 

cerebrospinal fluid (CSF) volumes, NAWM intensities, as well as focal lesion locations and 

volumes, the simulated dataset was generated by transposing WM lesions from each participant 

with MS onto a reference T1w image from one randomly selected neurologically healthy study 

participant. An in-house MATLAB code, along with the healthy participant’s WM mask, was 

used to ensure that the imposed lesions were within the brain parenchyma and primarily 

restricted to WM regions – thereby producing a set of 20 images differing only in lesion location, 

volume, and intensity, while controlling for volume and signal intensity throughout GM, CSF 

and NAWM regions. Each of these images then underwent the same five spatial normalization 

approaches, before and after lesion-filling as described previously for the MS participant data, 

and the resulting deformation fields were then applied to the original reference T1w image 

without any lesions. Applying each of the resulting deformations to the same control image in 

this simulated dataset thereby provides a ‘ground truth’, where all of the warped images should 

have the same geometric properties and image intensities (i.e., MI should be 1 and COV should 

be 0) except for differences that result from spatial normalization of the images in the presence 
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of focal lesions. Although similar approaches have been taken in previous studies, one recent MS 

study in particular, also used a simulated dataset to run their experiments and ultimately validate 

their findings110. Therefore, results obtained from the use of a simulated database do seem to 

provide valuable insight, by providing a ‘ground truth’.  

3.4.2 Visualizing Differences at the Single-Subject Level  

Finally, we chose one MS participant (same as shown in Figure 1) to briefly illustrate 

some of the differences between normalization methods at the single-subject level. To do so, we 

applied the inverse deformations from each method, based on non-lesion-filled images, to the 

popular and freely-available JHU-MNI-ss atlas (aka, ‘Eve Atlas’)111 using nearest-neighbor 

interpolation. After warping the atlas into subject-space, the anatomical volumes of two deep 

GM structures (caudate and thalamus) and two deep WM structures (genu and splenium of the 

corpus callosum) were quantified based on the respective brain parcellations that resulted from 

each normalization method. Finally, we used the Dice similarity coefficient (DSC)112, ranging 

from 0 (no overlap) to 1 (exact overlap), to quantify the degree of spatial overlap between a 

binarized mask of all four structures from each normalization approach.  

3.5 Results  

In total, 400 spatial normalizations were performed on the MRI datasets (20 images x 5 

spatial normalization algorithms x 2 lesion-filling conditions x 2 patient/simulated datasets). 

Since some spatial normalization algorithms were more computationally intensive than others, 

ranging from ~1 minute/participant for linear (affine) to ~60 minutes/participant for MRIStudio 

(LDDMM), approximate processing times for each approach and exact version numbers for each 

software package are shown in Supplementary Table S1. 
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3.5.1 Normalization Accuracy 

To subjectively illustrate how well each algorithm performed, Figure 3.2 shows raw T1w 

images (without lesion-filling) and the corresponding spatially-normalized images following 

linear (affine), MRIStudio (LDDMM), FSL (FNIRT), ANTs (SyN), and SPM (CAT12) 

normalization for three representative participants with MS. 
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Figure 3.2: Corresponding spatially-normalized images of 3 participants from each algorithm 

Figure 3.2: T1w images (without lesion-filling), along with the corresponding spatially normalized images using 
linear (affine), MRIStudio nonlinear (LDDMM), FSL nonlinear (FNIRT), ANTs nonlinear (SyN), and SPM 
nonlinear (CAT12) algorithms for three randomly-selected participants with MS chosen to highlight how 
heterogeneous white matter pathology can be, including: Participant A) a large left posterior white matter lesion, 
Participant B) a small right anterior lesion, and Participant C) substantial white matter atrophy and bilateral 
anterior lesions. Note: Axial brain images are displayed in neurological convention (left=left); all four nonlinear 
normalization approaches clearly outperform linear normalization for aligning subcortical structures, including 
white matter.  
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The MI analysis (Figure 3.3a-d) revealed that nonlinear spatial normalization methods 

consistently outperformed simple linear (affine) normalization in terms of their ability to produce 

significantly more consistent spatially normalized images across our sample of participants with 

MS (Figure 3.3a and Figure 3.3b). However, among the nonlinear approaches, SPM (CAT12) 

yielded the greatest inter-subject correspondence (highest MI values) for both the MS participant 

dataset (Figure 3.3a and Figure 3.3b) and the simulated lesion dataset (Figure 3.3c and Figure 

3d), whereas FSL (FNIRT) yielded the lowest inter-subject correspondence (lowest MI values). 

Linear (affine) and MRIStudio (LDDMM) both showed a statistically significant dependence in 

terms of whether images were lesion-filled or not (Figure 3.3a), but these effects were small 

compared to the differences between the five normalization algorithms for the MS participant 

dataset. Nonetheless, all five normalization approaches did show significantly higher MI scores 

as a result of lesion-filling in the simulated lesion dataset (Figure 3.3c).  
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Figure 3.3 a-d: Box-Whisker plots of mutual information (MI) values from each normalization method 

Figure 3.3a-d: Box-Whisker plots of mutual information (MI) values based on images 
from each normalization approach before and after lesion-filling: a) participant data, c) 
simulated data with p-values indicating within-algorithm differences before vs. after 
lesion-filling. Corresponding p-values of between-algorithm differences are presented in 
(b, d). Note: green boxes = non lesion-filled data; blue boxes = lesion-filled data, shaded 
cells in 2b and 2d indicate p-values £ 0.05 (Bonferroni corrected). 
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Figure 3.4 shows the COV maps and whole-brain COV values for the MS participant 

and simulated lesion datasets, which highlights inter-subject differences for each spatial 

normalization pipeline. For the MS participant data (Figure 3.4a), and consistent with the MI 

results, the average COVs for all nonlinear normalization methods were lower than linear 

normalization. This was particularly evident in periventricular regions, highlighting how 

ventricular size and shape differences between participants are not well accounted for by simple 

linear scaling. Among the nonlinear normalization approaches, the SPM (CAT12) algorithm 

produced the lowest average COV (Figure 3.4a), reflecting the least anatomical variability 

between spatially-normalized participant images. Lesion-filling improved normalization 

accuracy for all five approaches but these improvements within each algorithm were small in 

comparison to the relatively large COV differences between algorithms. Conversely, for the 

simulated lesion dataset (Figure 3.4b), linear (affine) normalization showed the least variability 

between normalized images. Similar to the results obtained in the MS participant data and the 

results based on MI values, the SPM (CAT12) algorithm produced the best results in terms of 

lowest COV values among the nonlinear normalization approaches. Lesion-filling again 

improved normalization accuracy for all five approaches, and these improvements were larger 

than those observed in the MS participant dataset. 
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Figure 3.4 a-b: Coefficient of Variation maps for each spatial normalization method 

Figure 3.4 a-b: Between-participant coefficient of variation (COV) maps based on each 
normalization approach before and after lesion-filling: a) participant data and b) simulated 
data. Whole-brain average COV values are shown for each approach, where higher COV 
values indicate greater between-participant variability.   



 43	

3.5.2 Normalized Lesion Volumes  

Figure 3.5 shows the lesion volumes before and after spatial normalization with each 

method. Given that the MNI brain template is slightly larger than most typical adult brains, 

lesion volumes increased as a result of spatial normalization to this template with all five 

methods, both with and without lesion-filling. Based on the MS participant data (Figure 3.5a), 

average lesion volumes were increased by ~35% for linear (affine), ~60% for MRIStudio 

(LDDMM), ~100% for FSL (FNIRT), and ~40% for ANT (SyN) and SPM12 (CAT12). Based 

on paired-sample t-tests, FSL (FNIRT) (p=0.001) and ANTs (SyN) (p=0.003) were the only 

normalization approaches to show within-method differences due to lesion-filling. Conversely, 

significant differences were found for all between-method comparisons (Figure 3.5b) except 

linear (affine) vs. ANTs (SyN) (p=0.06) and SPM (CAT12) vs. ANTs (SyN) (p=0.28), indicating 

that lesion volumes were influenced more by the spatial normalization approach than lesion-

filling. 

Within the simulated lesion dataset, lesion volumes also increased as a result of spatial 

normalization and in this case, all approaches showed significant within-method differences due 

to lesion-filling (Figure 3.5c). Paired-sample t-tests also revealed significant differences between 

all spatial normalization approaches (Figure 3.5d) except linear (affine) vs. ANTs (SyN) 

(p=0.31), linear (affine) vs. MRIStudio (LDDMM) (p=0.67), and MRIStudio (LDDMM) vs. 

ANTs (SyN) (p=0.57). 
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Figure 3.5 a-d: Lesion volumes for each normalization method after lesion-filling 

Figure 3.5 a-d: Box-Whisker plots of lesion volumes based on each normalization 
approach before and after lesion-filling: a) participant data, c) simulated data with p-
values indicating within-algorithm differences before vs. after lesion-filling. 
Corresponding p-values of between-algorithm differences are presented in (b, d). 
Note: green boxes = non lesion-filled data; blue boxes = lesion-filled data, shaded 
cells in 4b and 4d indicate p-values £ 0.05 (Bonferroni corrected). 
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3.5.3 Single-Subject Analyses 

In our single-subject example using one representative participant with MS, inverse 

deformations of the JHU-MNI-ss (Eve) Atlas based on each normalization method produced 

different estimated volumes of the caudate, thalamus, genu and splenium (Supplementary 

Figure 1a). Moreover, the corresponding masks of these regions had subjectively poor spatial 

overlap (Supplementary Figure 1b), which was supported quantitatively by modest DSC 

values, which ranged between 0.50-0.76 (Supplementary Figure 1c). 

3.6 Discussion 

We systematically compared five of the most commonly used and freely available spatial 

normalization methods, before and after lesion-filling in the presence of MS pathologies and 

found that nonlinear warping methods systematically outperformed conventional linear 

normalization in terms of their ability to consistently warp MS participant images to a common 

template. In particular, SPM12 (CAT12), closely followed by ANTs (SyN), yielded the most 

consistent results, with the highest MI and lowest COV values among the five approaches 

examined. Lesion-filling lead to small but reproducible improvements.  

These findings are similar to those of Klein et al. who also found SPM and ANTs to be 

the highest-ranking nonlinear normalization methods in comparisons based on brain imaging 

data from neurologically healthy volunteers85. However, ours was the first study to 

systematically compare spatial normalization methods in a MS cohort and to evaluate the effects 

of MS pathologies, including focal lesions, differences in NAWM and GM volumes and signal 

intensities, using actual MS participant data. Since the goal of this study was to compare the 

spatial normalization algorithms themselves, we controlled for differences in preprocessing and 

postprocessing as much as possible. Moreover, we employed a simulated lesion dataset that 
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exclusively focused on the effects of WM lesions and had a known ground-truth, where the MI 

should be one and the COV should be zero, because all of the images were based on the same 

healthy control participant. Thus, because the only variable was the presence of imposed focal 

lesions during the spatial normalization step, and the linear normalization is not sensitive to local 

features, it is not surprising that the linear (affine) normalization showed the least variability 

between normalized images in the simulated lesion dataset. 

Taken together, MI and COV results from the MS participant and simulated lesion 

dataset provide several important insights into different aspects of MS pathology and how they 

affect spatial normalization. First, WM lesions alone account for a sizable portion of the inter-

subject variability between spatially normalized images. Second, lesion-filling before spatial 

normalization significantly reduced inter-subject differences related to WM lesions. Third, 

factors such as brain atrophy and NAWM and GM signal intensities also led to substantial 

reductions in normalization accuracy. Fourth, these more global differences in tissue volume and 

signal intensity are affected little by whether or not images are lesion-filled before spatial 

normalization. Another finding that clearly emerges from our data is that depending on the 

choice of software and their spatial normalization algorithms, MS WM lesions and other inter-

subject differences are accounted for quite differently. 

The latter point is particularly important to consider given that in the absence of empirical 

comparisons to establish optimal methods, researchers tend to rely on techniques with which 

they are most familiar. Such variations in choice of methods increase the chances of systematic 

differences occurring in spatial normalizations between individuals or groups. This, in turn, 

could negatively impact study conclusions in two ways. First, erroneous inter-individual or inter-

group differences (type I errors) could potentially emerge from inaccurate spatial normalizations 
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due to invalid comparisons between different structures or tissue types. Second, sensitivity to 

true inter-individual or inter-group differences could be obscured (type II errors) due to 

inconsistently localized effects. Because spatial normalization represents a critical early step in 

the analysis pipeline, measures should be taken to ensure it is performed optimally.  

Although we found that different spatial normalization approaches had significantly 

different effects on lesion volumes, these differences were small, and our findings confirmed that 

none of the methods evaluated in our tests severely mishandled focal WM lesions (e.g., by 

systematically shrinking their volume to zero) even when lesion-filling was not performed. This 

served as an important quality assurance check within the current study, and also provided an 

important verification for both previous and future studies of MS and other WM disorders. 

Finally, the results of our single subject example highlight how different spatial 

normalization methods can produce very different volume estimates for individual brain 

structures. Moreover, the maps of spatial overlap, and the DSC calculations show that the shapes 

(3D locations) of the atlas-based brain parcellations are also quite different, falling below 

previously established thresholds of DSC > 0.7 for ‘good’ agreement between the resulting 

segmentations113. Therefore, in addition to affecting deformation-based volumetric estimates, the 

choice of spatial normalization algorithm will substantially affect neuroimaging-based 

comparisons between individuals and groups. 

3.7 Study Limitations 

This study has some notable limitations. First, we investigated only five of the available 

spatial normalization approaches for brain MRI data. These particular approaches were chosen 

because an exhaustive comparison between all available methods was not feasible, and these five 

are among the most common spatial normalization approaches used in contemporary 
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neuroimaging studies. Moreover, all five algorithms are included in software packages that are 

freely available. However, it is possible that another existing method would have out-performed 

the algorithms currently tested. Second, and also for feasibility-related reasons, each spatial 

normalization approach was only tested using the default parameters within its respective 

software package (unless otherwise noted), although some of the methods have several 

modifiable parameters. The rationale for this was that the developers of each algorithm set the 

default parameters based on internal testing and optimization; and because most researchers use 

these default settings, this likely provided the most common real-world set-up for each software 

package. Nonetheless, future studies could conduct further testing with different internal 

parameters (e.g., spatial resolution, smoothing, etc.) to further refine spatial normalization 

accuracy and overall pipeline performance. Third, only one lesion-filling approach was tested. 

Given that the primary focus of the study was on spatial normalization algorithms, a detailed 

comparison between different lesion-filling approaches was beyond the scope of the current 

study. Our testing showed relatively modest differences depending on whether images were 

lesion-filled or not compared to the larger differences based on which software package and 

normalization algorithm was used. Nonetheless, our results may have differed somewhat if we 

had used other lesion-filling approaches and this could be examined in future work focused on 

that topic. Fourth, because multiple software packages were used and each one comes with its 

own MNI template that includes different image dimensions and spatial resolutions, we first 

resampled each template to 1.0 mm cubic resolution when necessary in order to eliminate this as 

a variable between methods. However, for FSL (FNIRT) and SPM (CAT12), we also re-ran all 

of the spatial normalizations using their default templates (2.0 mm and 1.5 mm cubic resolutions, 
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respectively), and neither the resulting COV maps nor the resulting lesion volumes differed 

substantively from the results obtained from the higher resolution normalizations.  

3.8 Conclusions 

Our findings indicate that nonlinear warping methods systematically outperformed linear 

(affine) spatial normalizations and that the SPM (CAT12) algorithm proved to be the most robust 

among the methods tested, particularly when using lesion-filled images. We therefore suggest 

that future MS brain imaging studies use SPM (CAT12) and lesion-filling for optimal spatial 

normalizations. This should yield more accurate voxel-wise and ROI-based comparisons 

between MS individuals or groups within each study, and the adoption of a uniform image 

processing pipeline will allow for more accurate comparisons between studies and facilitate 

future meta-analyses. 
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3.10 Figure Captions 

Figure 3.1: Comprehensive image-processing pipeline for warping the T1w MRI images and 

lesion masks from each participant to the Montreal Neurological Institute (MNI) brain template. 

Spatial normalizations were performed using five commonly used algorithms, both before and 

after lesion-filling the T1w images. Note: Axial brain images are displayed in neurological 

convention (left=left); NAWM: normal appearing white matter, LST: lesion segmentation 

toolbox, LGA: lesion growth algorithm, Non-LF: non lesion-filled, LF: lesion-filled. 

Figure 3.2: T1w images (without lesion-filling), along with the corresponding spatially 

normalized images using linear (affine), MRIStudio nonlinear (LDDMM), FSL nonlinear 

(FNIRT), ANTs nonlinear (SyN), and SPM nonlinear (CAT12) algorithms for three randomly-

selected participants with MS chosen to highlight how heterogeneous white matter pathology can 

be, including: Participant A) a large left posterior white matter lesion, Participant B) a small 

right anterior lesion, and Participant C) substantial white matter atrophy and bilateral anterior 

lesions. Note: Axial brain images are displayed in neurological convention (left=left); all four 

nonlinear normalization approaches clearly outperform linear normalization for aligning 

subcortical structures, including white matter. 

Figure 3.3: Box-Whisker plots of mutual information (MI) values based on images from each 

normalization approach before and after lesion-filling: a) participant data, c) simulated data 

with p-values indicating within-algorithm differences before vs. after lesion-filling. 

Corresponding p-values of between-algorithm differences are presented in (b, d). Note: green 

boxes = non lesion-filled data; blue boxes = lesion-filled data, shaded cells in 2b and 2d indicate 

p-values £ 0.05 (Bonferroni corrected). 
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Figure 3.4: Between-participant coefficient of variation (COV) maps based on each 

normalization approach before and after lesion-filling: a) participant data and b) simulated 

data. Whole-brain average COV values are shown for each approach, where higher COV values 

indicate greater between-participant variability.   

Figure 3.5: Box-Whisker plots of lesion volumes based on each normalization approach before 

and after lesion-filling: a) participant data, c) simulated data with p-values indicating within-

algorithm differences before vs. after lesion-filling. Corresponding p-values of between-

algorithm differences are presented in (b, d). Note: green boxes = non lesion-filled data; blue 

boxes = lesion-filled data, shaded cells in 4b and 4d indicate p-values £ 0.05 (Bonferroni 

corrected). 

Figure S1: ROI volume estimates of two deep GM structures (caudate and thalamus) and two 

deep WM structures (genu and splenium of the corpus callosum) based on each normalization 

approach for a single participant with MS (a), along with subject-space masks of the four 

regions overlaid for the two most similar normalization approaches (b) and dice similarity 

coefficient (DSC) values of spatial overlap between all methods. 

 

Table S1: Spatial normalization processing times for each participant.	
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4.1 Abstract 

Background: Prior studies in MS have shown relationships between cognitive performance and 

resting-state functional connectivity in distributed, large-scale brain networks – specifically the 

executive control and default mode networks (ECN and DMN). The DMN is a highly consistent 

cognition-related cortical network involving several brain regions which supports the default-

mode activity of the human brain.  However, relationships between cognition, particularly 

executive function (EF), and white matter structural connectivity underlying these networks 

remain poorly understood. 

Objectives: We aimed to use recently released functionally-defined white matter atlases to 

investigate relationships between EF and tissue microstructure throughout ECN and DMN white 

matter in an MS cohort. Our priori hypothesis was that white matter microstructure in these 

networks would be positively correlated with EF. 

Methods: We obtained 3 Tesla high angular resolution diffusion imaging (HARDI), cognitive 

test scores and baseline demographic data from 103 MS participants enrolled in the Comorbidity, 

Cognition and Multiple Sclerosis (CCOMS) Study. White matter integrity was assessed using 

HARDI-based mean diffusivity (MD) and fractional anisotropy (FA) values extracted from ECN 

and DMN regions via the UManitoba-JHU Functionally-Defined Human White Matter Atlases. 

EF was assessed using the Delis-Kaplan Executive Function System Color-Word Interference 

Test (DKEFS CWIT). One-tailed Spearman partial correlations were performed between ECN 

and DMN white matter microstructural metrics vs. EF; correcting for age, sex, and premorbid 

cognitive ability using the Wechsler Test of Adult Reading (WTAR). Post-hoc tests were then 

performed, using MD values from each participant’s global white matter mask, to determine 

whether (and to what extent) the network-based white matter analyses were more predictive of 

EF. 
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Results: EF scores were significantly correlated with individual differences in white matter MD 

measurements obtained from both the ECN (rho = 0.192; 95% CI = 0.029 to 0.345; p = 0.029) 

and DMN (rho = 0.194; 95% CI = 0.031 to 0.347; p = 0.027), but not those obtained from global 

white matter (rho = 0.106; 95% CI = -0.059 to 0.266; p = 0.147) after correcting for age, sex and 

WTAR. None of the FA values (extracted from either the DMN or ECN) yielded statistically 

significant correlations with EF after correcting for age, sex and WTAR.  

Conclusions: Within our MS cohort, reduced executive functioning was associated with 

increased MD (decreased microstructure) throughout ECN and DMN white matter networks, but 

not with global white matter MD measures. These findings indicate that network-based analytic 

approaches are valuable for studying how participant-specific measures of white matter damage 

correspond to symptomatic variability among persons with MS. 
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4.2 Introduction:  

Multiple sclerosis (MS) is a chronic inflammatory disease, characterized by multifocal, 

demyelinated white matter (WM) lesions, and diffuse WM damage throughout normal appearing 

WM (NAWM)17,114. The widespread and variable spatial distribution of these lesions throughout 

the central nervous system (CNS) results in a range of commonly experienced clinical 

symptoms; some of which include motor, sensory, visual and cognitive deficits115. Cognitive 

deficits in particular affect about 40-70% of MS patients, with about 15-20% having deficits in 

higher order executive functions (EF) - rendering it difficult to perform normal daily activities 

and maintain social functioning116,117,118. This is largely due to EF impairments affecting 

planning, reasoning, problem solving, decision making, multitasking, working memory, and 

inhibition to list a few – all of which are essential for normal daily functioning. As a result, 

deficits in EF are among the most frequently reported and the most disabling119,120. This has been 

supported extensively in the literature, whereby numerous studies have found MS patients to 

have systematically lower EF performance than healthy controls. In addition, some brain 

imaging studies have found general MRI measures, such as WM hyperintensity volume, to be 

associated with cognitive impairment, and in particular lower EF and episodic memory121; while 

other studies have  reported associations between EF and more localized MRI measures in 

frontal subcortical WM tracts involving anterior thalamic radiation74. Nonetheless, while it is 

generally agreed that structural damage in MS is linked to cognitive performance, reliable 

associations between MRI measures and specific types and severities of clinical deficits have 

remained elusive. In fact, the relatively weak correlations between traditional MRI markers (e.g., 

number of lesions and lesion volume) and the severity of specific clinical deficits like EF – not to 

mention limited prognostic value for future decline – at the individual level has been dubbed the 

clinic radiological paradox30,40,41,122. 



 56	

That said, it is not to say that progress has not been made in identifying potential 

structural MRI correlates of cognition and EF in MS. One study looking at cognitive function 

(broadly defined) found significant MRI differences between MS patients with and without 

cognitive impairment123. Another recent study has even reported associations between structure 

and longitudinal cognitive decline, but was only able to achieve this by relying on complex, 

multivariate statistical models that combined several MRI measures, including regional brain 

volumes and microstructural measures124. Other studies using graph theoretical approaches have 

also successfully identified structural MRI changes associated with cognitive performance in 

MS115. However, no studies to date have identified a clear neural correlate of EF dysfunction in 

MS using a single structural MRI measure. 

Extensive work has however been done over the past decade using functional MRI 

(fMRI), which has revealed that the human brain is organized into large-scale functional 

networks that subserve different mental processes, and that many of these networks appear to be 

altered by MS125. Some studies have found strong associations between network-based 

functional connectivity in the default mode network (DMN) and executive control network 

(ECN) and specific markers of cognitive performance and EF125. There has also been evidence of 

altered functional connectivity in deep GM regions and within-network coherence decreases in 

MS126. Evidence has also been presented with altered resting-state fMRI connectivity patterns 

compared to healthy controls in the visual network (VN), sensorimotor network (SMN) and 

DMN127. Interestingly, functionally-defined WM atlases have recently been created and made 

freely-available for many of these same networks, including the DMN and ECN– allowing 

network-based structural MRI measures to be easily quantified and investigated77,128.  
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Therefore, the goal of the present study was to use a large and representative MS cohort 

to investigate the relationships between EF and WM microstructure using a network-based 

approach in the DMN and the ECN. We anticipate that this network-based approach will be 

sensitive to individual differences in EF and in turn, lead to the identification of a single 

structural MRI correlate of EF impairment in MS. In particular, we hypothesize that there will be 

a positive association between EF impairment and structural connectivity in the DMN and ECN 

networks, whereby participants with higher EF will have lower MD values and higher FA values, 

such that lower microstructural integrity will be associated with poorer cognitive performance.  

4.3 Methods  

4.3.1 Study Participants  

 
This study protocol has been approved by The University of Manitoba Health Research 

Ethics Board (HREB). Prior to enrollment, written consent was provided by all 111 participants 

involved in this study. Participants with definite MS were recruited through the Winnipeg Health 

Sciences Centre MS Clinic and had been previously diagnosed by a neurologist based on the 

revised McDonald criteria39. Of the 111 participants recruited, 93 of them had relapsing 

remitting MS (RRMS), 12 had secondary progressive MS (SPMS), and 6 had primary 

progressive MS (PPMS). Study inclusion criteria required all participants to be 18 years or older, 

provide written informed consent, have adequate knowledge of the English language to complete 

the study protocol, have adequate sensorimotor function to complete the cognitive tests, have no 

comorbid brain tumors or neurodegenerative diseases, and a stable course of disease (i.e., with 

no relapses) and disease modifying therapies (DMTs) for a minimum of 30 days prior to study 

enrollment.  Study exclusion criteria included contraindications to MRI, such as pacemakers, 
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metallic implants, pregnancy and claustrophobia. Participant characteristics can be found in 

Table 4.1.  

4.3.2 Clinical assessments  

 Neuropsychological testing was performed according to standardized instructions by 

research coordinators and under the supervision of a single  clinical neuropsychologist at the 

Health Sciences Centre in Winnipeg, Manitoba. Although a wide range of neuropsychological 

tests were administered as a part of the broader Comorbidity, Cognition and Multiple Sclerosis 

(CCOMS) study protocol, for the purposes of this study, EF was assessed using the Delis-Kaplan 

Executive Function System (DKEFS) Color-Word Interference Test (CWIT) and participant pre-

morbid IQ was estimated using the Wechsler Test of Adult Reading (WTAR).		

4.3.2.1 Executive Function System (DKEFS) Color-Word Interference Test (CWIT) 

The DKEFS battery is made up of nine tests, which include the Trail Making, Verbal 

Fluency, Design Fluency, CWIT, Card Sorting, 20 Questions, Word Context, Tower Test and 

Proverbs70. All nine tests provide 20 primary scores. The DKEFS battery as whole uses 

standardized versions of several currently used tests to assess a range of executive functions in 

adults and children aged 8-89 years old70. Many of the tests, that have been expanded on from 

established executive functioning tasks are now more sensitive to subtle changes in cognitive 

functioning. Though the DKEFS has been deemed to be a robust measure of EF in MS, it has 

also been well suited in assessing EF impairment in other clinical patient populations such as 

Parkinson’s disease129, unilateral brain damage130, Korsakoff syndrome131 and schizophrenia73 to 

list a few.  

The present study used scores obtained from the DKEFS CWIT. This test in particular 

has been  designed around the classic Stroop test, which works to measure the ability to inhibit a 
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dominant and automatic response to provide a more intentional response - ultimately assessing 

verbal inhibition. However, the CWIT’s inhibition/switching trial is unique to the DKEFS 

version of the Stroop task, and was added to also assess higher order abilities of set switching. 

The CWIT test works such that, for half of the items in the inhibition/switching task, participants 

are instructed to name the color of the ink the words are printed in. A rule change is instituted for 

the other half of the items that requires participants to instead read the actual word, therefore 

requiring participants to switch back and forth between the automatic response and the 

intentional response while keeping track of the rule changes. Scores are given based on the total 

completion time for a fixed number of trials, so that (all else being equal) higher scores indicate 

lower EF132. However, to control for individual differences in basic information processing speed 

and focus more exclusively on the higher-level inhibition and switching components, each 

participant’s EF was defined in this study as the contrast between the CWIT inhibition/switching 

task vs. the average of the baseline color naming (Condition 1: where participants name the 

colors of ink swatches as quickly as possible) and word reading (Condition 2: where participants 

read color names printed in black and white as quickly as possible) tasks133. 

4.3.2.2 Wechsler Test of Adult Reading (WTAR)  

The Wechsler Test of Adult Reading (WTAR) is a neuropsychological test that relies on 

mental abilities that are thought to remain largely unaffected following many types of 

neurological damage, and is often used to estimate pre-morbid Wechsler Adult Intelligence Scale 

IQ and Wechsler Memory Scale index scores. The format of this test requires participants to read 

50 words out loud that are presented to them on a card. Their scores from their test are then 

converted into estimates of pre-morbid IQ/memory, which can then be corrected for (along with 

other factors such as age and sex) in subsequent statistical analyses. 
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4.4 Functionally-Defined White Matter Atlases  

Although several studies have looked at fMRI vs. cognition relationships in large scale 

functional networks, the present study worked to overcome gaps in the literature by investigating 

structural connectivity vs. EF relationships in these same networks. To do so, this study made 

use of the recently released functionally-defined probabilistic WM atlases 

(https://www.nitrc.org/search/?type_of_search=group&q=UManitoba-JHU+Functionally-

Defined+Human+White+Matter+Atlas), to measure WM signals in regions that are thought to 

underlie specific networks associated with cognitive and executive domains: namely the dorsal 

and ventral default mode networks (dDMN, vDMN), and the left and right executive control 

networks (lENC, rENC)77. For the purposes of this study, these will be used to conduct 

subsequent region of interest (ROI) MRI analyses (described below) to examine the relationships 

between structural connectivity and cognition within specific networks pertaining to EF in MS.  

4.5 Magnetic Resonance Imaging (MRI) 

4.5.1 Data Acquisition 

Brain imaging data used in this study were acquired using a 3T Siemens TIM Trio MRI 

system (software version VB17a) equipped with a Siemens TQ-Engine gradient set and a 

Siemens 32-channel receive-only head coil (Siemens Healthcare, Erlangen, Germany).  For each 

participant, their MRI session included a T1-weighted (T1w), T2-weighted fluid attenuated 

inversion recovery (T2-FLAIR), and high angular resolution diffusion imaging (HARDI) 

sequences. 

4.5.2 T1w Anatomical Scans 

Whole-brain T1w images were acquired using a 3D magnetization prepared rapid 

acquisition gradient-echo (MPRAGE) sequence with the following parameters: repetition time 
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[TR] = 1900 ms, echo time [TE] = 3.46 ms, inversion time [TI] = 900 ms, flip angle = 9˚, 

GRAPPA = 2, matrix size = 256 × 256, Field of View [FOV] = 250 × 250 mm2, number of 

slices = 176, slice thickness = 0.98 mm, band width [BW] = 170 Hz/Px, echo spacing [ESP] = 

8.4 ms, reconstructed spatial resolution  = 1.0 × 1.0 × 1.0 mm3, acquisition time [TA] = 4.26 

min. 

4.5.3 Fluid Attenuated Inversion Recovery (FLAIR) Scans 

T2-weighted (T2w) images with water suppression were acquired with an axial 2D Fluid 

Attenuated Inversion Recovery (FLAIR) turbo spin-echo sequence with the following 

parameters:  TR = 9000 ms, TE = 100 ms, TI = 2499 ms, flip angle = 90˚, refocusing angle = 

130˚, matrix size = 256 × 256, FOV = 240 × 240 mm2, number of slices = 32, slice thickness = 

4.00 mm, BW = 287 Hz/Px, ESP = 7.17 ms, turbo factor = 16, BW= 287 Hz/Px, number of 

averages = 1, spatial resolution = 0.94 × 0.94 × 4.00 mm3, TA = 5.06 min. 

4.5.4 High Angular Resolution Diffusion Imaging (HARDI) Scans 

Fifty non-collinear diffusion-encoded (b=1500 s/mm2) and five uniformly-interleaved 

reference (b=0 s/mm2) images were acquired with an optimized q-space sampling 

scheme134;http://www.emmanuelcaruyer.com/q-space-sampling.php) and the Human 

Connectome Project multi-band echo planar imaging (MB-EPI) “cmrr_mbep2d_diff” sequence 

developed at the Center for Magnetic Resonance Research135,136; Release R016 for VB17A, 

University of Minnesota, (https://www.cmrr.umn.edu/multiband). The following were imaging 

parameters for this spin-echo MB-EPI sequence: TR = 3284 ms, TE = 89.4 ms, flip angle = 90°, 

refocusing angle = 177°, matrix size = 106 × 102, FOV = 212 × 204 mm2, number of slices = 

80, slice thickness = 2.00 mm, MB factor = 4, number of averages = 1, BW = 1814 Hz/Px, ESP 

= 0.69 ms, phase partial Fourier = 6/8, spatial resolution = 2.00 × 2.00 × 2.00 mm3, TA = 6:34 
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min. However, this sequence was acquired twice, with opposite phase encoding directions – i.e., 

anterior-posterior (AP) and then posterior-anterior (PA) – for a total of 100 diffusion-weighted 

images (b=1500 s/mm2), 10 reference images (b=0 s/mm2), and an overall TA = 13:08 min. 

4.5.5 Data Processing 

In terms of HARDI data processing, all diffusion-weighted data were preprocessed using 

the Artifact Correction In Diffusion MRI (ACID) Toolbox in SPM12 (version 

63cc617;http://www.diffusiontools.com), which included both simultaneous motion and eddy 

current correction. This was based on whole-brain affine registrations137. EPI distortion 

correction was based on the oppositely phase-encoded (blip-up/blip-down) diffusion images and 

the Hyperelastic Susceptibility artifact Correction (HySCo) algorithm138. Whole-brain FA and 

MD maps were generated using the Fit Diffusion Tensor module and the robust weighted least-

squares fitting algorithm to automatically down-weight potential remaining outliers in the 

diffusion signal139. These maps were first coregistered to the MPRAGE image, and later had the 

overall deformation field using the CAT12 Toolbox applied to them, as shown to be optimal in 

Chapter 3.  

4.5.6 Region of Interest Analyses 

 A region of interest (ROI) analysis was performed to better understand the relationships 

between structural connectivity and cognition within specific networks pertaining to EF in MS. 

To do so, we first spatially normalized each participant’s MD and FA maps to the MNI template 

using SPM CAT12 – the optimal method for spatial normalization in the presence of MS lesions, 

as identified in Chapter 3. For each participant, we used ROIEditor within MRIStudio to extract 

MD and FA values from the dDMN, vDMN, lECN, and rECN regions included in the 

UManitoba-JHU Functionally-Defined Human WM Atlas, and then calculated the average DMN 
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and ECN values (by taking the average between the dDMN and vDMN sub-networks and the 

average between the lENC and rECN sub-networks, respectively). 

4.6 Quality Assurance and Outlier Rejection  

Prior to performing any statistical tests, we first subjected our data to a number of quality 

assurance checks. Of the 111 participants, 7 were excluded from this study due to diffusion 

acquisition errors and therefore corrupted images. One additional participant was further 

excluded due to an outlier in the neuropsychological data. To do so we searched the remaining 

DKEFS CWIT scores for outliers in MATLAB using the built-in ‘rmoutliers’ function with 

default values to remove any participants with a CWIT inhibition/switching contrast greater than 

3 standard deviations from the mean. This resulted in the removal of one additional participant, 

bringing the number of remaining participants to 103. 

4.7 Statistical Analyses 

The primary measures of interest in this study were each participant’s EF score (defined 

as the contrast between the DKEFS inhibition/switching task vs. the average of the baseline color 

naming and word reading tasks), MD values from the DMN and ECN, FA values from the DMN 

and ECN; and covariates to be used as regressors which included each participant’s age, sex and 

WTAR score. Two-tailed conventional Spearman correlations were first performed to 

characterize the dataset and determine the extent to which each of the continuous variables were 

correlated; and because sex is a discrete variable, two-tailed Mann-Whitney U-Tests were 

performed to assess whether any of the continuous variables showed any categorical sex 

differences. 

Then, because we had a priori directional hypotheses regarding the MD vs. EF and FA 

vs. EF relationships, we conducted one-tailed Spearman partial correlations in MATLAB using 
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the built in ‘partialcorr’ function to assess relations between the DMN and ECN WM 

microstructural measures and individual differences in EF, correcting for age, sex and WTAR 

scores.    

4.8 Post-Hoc Analysis 

Following the initial DMN and ECN analyses, post-hoc tests were then performed to 

evaluate whether, and to what extent, the use of this network-based WM approach yielded 

greater sensitivity to differences in EF than would have been found using a more global MRI 

measure of WM microstructure. We therefore went back and extracted MD values from the 

subject-specific global WM masks that were created during the earlier SPM CAT12 spatial 

normalization. After using ROIEditor in MRIStudio to extract the MD values from each 

participant’s unique WM mask, we then performed one-tailed Spearman partial correlations 

between these values and EF, correcting for age, sex and WTAR scores. This was therefore 

analogous in every way to our previous analysis, except that MD values were based on global 

WM, rather than the network-based ECN and DMN WM segmentations.  

We then compared the resulting correlations based on this global post-hoc approach with 

the correlations based on our initial network-based approach using the Meng test of dependent 

correlations with overlapping variables140. This was done using version 1.1-3 of the freely-

available CoCor software package141 which is available as either a toolbox for the R programing 

language (https://cran.r-project.org/web/packages/cocor/) or as an interactive web plug-in 

(http://comparingcorrelations.org/). 

4.9 Results  

Table 4.1 depicts participant characteristics. Figure 4.1 depicts the raw DKEFS 4 

contrast vs. the raw MD and FA values in each network. These correlations seen in the scatter 
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plots in Figure 4.1, as expected indicate a positive correlation between DKEFS 4 scores and MD 

values within both the DMN and ECN.  
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Moreover, values for the one-tailed Spearman partial correlations and the adjusted 

correlation and its 95% CI can be found in Table 4.2  The one-tailed Spearman partial 

correlations suggested that in the DMN, when we contrasted DKEFS 4 vs. MD, we found Pc = 

0.0270. Similarly, in the ECN, for DKEFS vs. MD, Pc = 0.0270. Similar trends in contrast, were 

not found for FA. We first looked at the DMN, where we compared DKEFS vs. FA and found Pc 

=0.2294. Similarly, in the ECN, for DKEFS vs. FA, Pc =0.5077.  
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Conventional direct two-tailed Spearman Correlations, can be seen in Table 4.3a-c. 

When looking at specific networks like the DMN, for MD vs. DKEFS, p=0.0026 and for MD vs. 

Age, p=0.0017, we found both to be statistically significant. Similarly, when looking at the ECN, 

similar associations were found with MD. For MD vs. DKEFS, p=0.0019 and for MD vs. Age, 

p=4.70E-04. However, in both the DMN and ECN networks, MD vs. WTAR did not yield 

statistically significant correlations.  
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Using a two-tailed Mann-Whitney U-Test, as seen in Table 4.4a-c we compared the 

independent variable of Sex vs. DKEFS, p=0.83, Sex vs. Age, p=0.26, and Sex vs. WTAR, 

p=0.86 – all of which were network independent, and found there to be no significant effects 
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overall and therefore a lack of a Sex effect generally. We then wanted to investigate whether the 

results would be the same when comparing Sex to FA and MD within the DMN and ECN. Based 

on this, we found that within the DMN, Sex vs. FA, p=0.98 and Sex vs. MD, p=0.77,  was 

aligned with previous findings – lacking an overall sex effect. Similarly, when investigating the 

effects of Sex in the ECN, we found similar results; such that Sex vs. FA, p=0.94 and Sex vs. 

MD, p=0.40  which ultimately also proved to have no statistically significant results. Taken 

together, the two tailed Mann-Whitney U-Tests indicated that there was a lack of a sex effect. 

 

	
	



 70	

4.10 Discussion  

This study used a large and representative MS cohort to investigate whether relationships 

could be identified between EF impairment and microstructure in two functionally defined WM 

brain networks, namely the DMN and the ECN. As expected, EF scores were significantly 

correlated with individual differences in WM MD measurements obtained from both networks. 

The use of recently released functionally-defined WM atlases to investigate this relationship, 

appeared to be more sensitive to individual differences in EF impairment than corresponding 

global WM measures. Overall, our findings indicated that these network-based measures 

represented more straightforward and easily-interpretable structural MRI correlates of EF in MS 

compared to previous structural MRI studies. 

The findings presented in this study on the association between structural connectivity 

and EF dysfunction suggest a clear association between cognitive impairment (EF impairment in 

particular) and WM microstructure in the DMN and ECN networks - which also happens to be 

aligned with much of the functional connectivity literature. For instance, several fMRI studies 

have investigated the role of the DMN and presented evidence of altered DMN functional 

connectivity in MS125,142, although not necessarily in early CIS143. Further evidence has also been 

presented by Bonavita et al., who reported a complex reorganization pattern of the DMN, in 

relation to cognitive dysfunction144. Neuroimaging studies have also supported an association 

between both DMN and ECN functional connectivity and changes in cognitive status of MS 

patients145. In fact, one study by Roosendaal et al. reported that patients with CIS compared to 

HCs, showed significantly higher synchronization in the ECN which supports the hypothesis of 

increased resting state networks functional connectivity changes being a possible compensatory 

mechanism for widespread brain tissue damage caused by MS143. 
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In some studies combining fMRI and DTI, DMN functional connectivity has also been 

shown to differ between MS and healthy controls, as well as between cognitively impaired and 

cognitively preserved MS participants; and where functional connectivity in the MS group 

appeared to correlate with diffusion imaging measures in the corpus callosum and the cingulum 

WM146. Similarly, a study by Hawellek et al., reported that the DMN exhibited increased 

functional connectivity that was correlated with cognitive ability among MS participants, despite 

the presence of large and widespread reductions in DTI-based measures throughout the central 

WM125. These studies therefore also tend to support the hypothesis that increased resting state 

activity and functional connectivity might be a compensatory mechanism for widespread WM 

damage147. However, fMRI studies of MS have tended to investigate cognitive impairment (more 

broadly defined), rather than focusing in on EF impairment, and even those combining fMRI and 

diffusion imaging have unfortunately not applied similar network-based analytic approaches to 

investigate the microstructure of the DMN or other large-scale brain networks.  

Previous studies examining associations between specific cognitive domains and 

structural connectivity, have done so using DTI as a measure of WM integrity in MS. These 

studies have, however, used different study populations, cognitive testing batteries, and other 

experimental approaches, which has led to discrepancies and inconsistent findings in the 

literature. For instance, one study reported an association between reduced FA and impaired 

performance on a task of planning and organization50. One year later, another study then reported 

contrasting results, since their study failed to find any significant relationships between FA and 

behavioral performance using a sorting task69.  

More recently, however, there has been more agreement in the literature whereby DTI 

studies have now begun to report overlapping findings of disrupted structural integrity in various 
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WM tracts in MS, including the optic radiation, the corpus callosum and the corticospinal tract. 

However, many of those studies used relatively weaker associations, whereby they correlated FA 

changes to EDSS scores using a VBM approach148. One study that looked at specific functional 

brain works, similar to this current study was by Shu et al., whereby they used DTI tractography 

and a sample size of 39, and reported reduced network efficiency in the WM structural networks 

in MS using graph theoretical measures. Through correlating topological efficiencies with EDSS 

scores and disease durations, they found pronounced changes in the sensorimotor, visual, DMN 

and language areas. Despite these findings, in contrast to the present study, that study lacked a 

clear one-to-one correlation, as they investigated a series of cognitive deficits throughout various 

networks, rendering it difficult to isolate the effects of EF. Therefore, in contrast to that study, 

the present study’s findings of decreased microstructural integrity (as measured by MD) within 

both networks being associated with poorer EF performance, which was measured through 

Condition 4 of the DKEKS CWIT – the most cognitively demanding tasks, allowed us to isolate 

the effects of EF dysfunction. Together,  our large sample size, network-based approach and use 

of a robust neuropsychological measure to assess EF overcame many of the gaps in the literature. 

That said, although many of the aforementioned studies had small sample sizes, used 1.5T MRIs, 

and did not investigate DTI relationships between WM integrity and structural integrity and EF 

function in MS, one study by Llufriu et al., reported associations between structural networks 

and FA in attention and EF, assessed with the Paced Auditory Serial Addition Test (PASAT) and 

Symbol Digit Modality Test (SDMT) – of which attention, auditory, working memory, 

information processing speed and visual attention could be examined. Their findings were in line 

with the aforementioned studies in MS, whereby structural brain network is less efficient due to 

widespread impairment of WM connections and GM structures117. In fact, one recent study 
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published in 2019 found widespread reduction in the structural integrity of the brain network in 

MS, even in the absence of cognitive decline149. Based on these aforementioned studies, it is 

clear that little is known about the relationship between EF and microstructure throughout the 

DMN and ECN WM.  

Although anatomically-defined WM atlases have been used in many previous studies of 

MS, ours was the first to use functionally-defined WM atlases to relate structural MRI changes 

within specific brain networks to a particular clinical deficit. Based on this, to our knowledge, 

this is the first study to use this set of functionally-defined probabilistic WM atlases to uncover 

an association between EF impairment and microstructure throughout the DMN and ECN WM. 

Moreover, one recent study published in 2019, investigated the associations of DMN and CBL-

DMN structural connectivity with processing speed in 68 MS patients and 22 HCs, as assessed 

by the SDMT and mean FA as the weighting factor. Interestingly, this study also employed a 

network-based approach, which was moderately analogous to this current study’s approach to 

cater to the highly subject-specific cognitive deficits in MS - specifically processing speed. Their 

network approach, motivated by describing decline of a specific cognitive domain (i.e. 

processing speed), led to significant findings of the role of the cerebellum structural connectivity 

to the DMN in information processing speed decline150. Their findings however, unlike the 

present study were based on graph theoretical measures as opposed to performing a straight one-

to-one correlation. Nonetheless, their findings, similar to the present study support the notion that 

MS-related structural alteration affects network functioning, which in turn lends further support 

to the rationale of the present study. Although their focus was processing speed, and not EF, it is 

clear that a regionally defined approach can potentially yield more sensitive results.  
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One study by Genova et al. examined the relationship between EF and DTI-based 

measures of WM integrity in MS by exploring the association between processing speed and FA. 

Although there were some similarities between this study and ours, including the use of DKEFS, 

the two studies are in fact quite different in several important ways. First, Genova et al. used both 

the DKEFS Trail Making Test (TMT) and the CWIT reporting that performance on both EF 

tasks (albeit more so for the TMT than the CWIT) were highly dependent on processing speed74. 

However, their sample size was fairly small, including only 25 MS participants and 15 HC’s, and 

the groups were not matched for age, which may be relevant given that Denney et al. reported 

that age is significantly related to each measure of processing speed151 and DTI measures 

(including those in our study) correlate with age. It is also worth noting that the TMT includes a 

motor component, so it is possible that the larger effect observed in that test could be due to 

confounded motor deficits. Furthermore, the analysis of their brain imaging data was largely 

exploratory in nature (i.e., based on a data-driven approach to identify which WM regions 

exhibited significant correlations between FA and EF). In contrast, our study employed a sample 

size of 103 MS participants, and the brain imaging data analysis was purely hypothesis driven 

and based on examining relationships between structural measures throughout two a priori 

functionally-defined WM networks. 

As mentioned previously, our study also focused on establishing a neural correlate of EF 

impairment in particular, something that has been particularly elusive, rather than cognition in 

general. Therefore, our approach was more focused compared to studies like Yu et al., where 

they assessed cognitive impairment using the SDMT, Rey Auditory Verbal Learning Test 

(RAVLT) and PASAT. Their findings, based on 37 MS participants and 20 HC’s, suggested that 

lower FA coupled with higher MD values were significantly correlated with each of the three 



 75	

cognitive scores in various brain regions identified via group differences compared to HC’s, with 

the strongest associations found with the SDMT – which assesses processing speed and visual 

working memory152. However, while their follow-up analysis to correlate individual differences 

among MS participants – as opposed to the majority of studies focusing solely on group 

differences – is conceptually similar to the approach taken in our study and a handful of others, 

including Tovar-Moll et al., who correlated MD in the thalami of 13 RRMS and 11 SPMS 

patients with EDSS and PASAT scores153, ours is the first study to employ functionally-defined 

WM atlases to perform such correlations. Furthermore, these studies employed numerous 

neuropsychological measures to assess a wide range of cognitive domains including visual 

working memory and processing speed to list a few154, rather than a single test that was 

specifically chosen to evaluate individual differences in EF dysfunction.  

4.11 Study Limitations  

Our work is not without limitations. Seeing as how this is a cross-sectional study, the 

associations presented were not able to grasp EF dysfunction at multiple time points to be able to 

determine causation. Therefore, future work should involve performing a longitudinal study on 

the associations of EF dysfunction and microstructure to establish a true cause and effect 

relationship by observing EF dysfunction over time. By doing so, we can work toward 

potentially drawing predictive conclusions. Moreover, our sample of MS participants may have 

influenced our results. The effect of this limitation is that some participants may have had more 

lesions and in turn greater EF dysfunction than the other participants. Future studies can then 

work to use a more representative sample using participants with comparable cognitive abilities. 

Another limitation is the use of diffusion based metrics. The effect of this limitation is that, the 

present study could not explore myelin specifically and in turn the way it had affected the results 
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and our interpretation of these results. Therefore, future studies may want to employ MWI 

techniques to investigate whether it is microstructure driving these EF effects, or if it is myelin 

specifically. Another limitation is that the present study only looked at two networks, namely the 

DMN and ECN. To overcome this, future studies can then further explore whether structural 

connectivity in other functionally-defined brain networks – e.g., the salience network (SN), 

which is closely associated with both the DMN and ECN– leads to similar associations as 

presented in this study. Moreover, in the present study, we only found an association with one 

measure (MD), and not with FA which would have been more in line with some of the functional 

connectivity work that had been done. Another limitation is that the focus of the present study 

was EF dysfunction and for that reason a single robust test used to assess EF (DKEFS) was 

employed. Therefore disability in all cognitive domains were not assessed and further studies 

may want to use a network-based approach to investigate other cognitive domains in other 

networks. Furthermore, much of the literature correlated processing speed to that of EF decline, 

so perhaps taking that into account could have perhaps led to a more extensive assessment of EF.  

4.12 Conclusions 

Taken together, this study suggests a strong cross sectional association between a single 

MRI metric related to EF in MS. Specifically, we found that EF impairment was strongly 

correlated with individual differences in MD values within the DMN and ECN networks. In 

addition to identifying a possible neural correlate of EF in MS, these promising results 

potentially pave the way for future longitudinal studies to employ similar network-based analytic 

approaches to better understand how cognitive processes depend on structural integrity within 

specific WM pathways, and to determine if these methods could be helpful in predicting future 

cognitive decline among persons with MS.  
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4.14 Figure Captions 

Figure 4.1: Straight correlations were performed as seen in the scatter plots, which indicate a 

positive correlation between DKEFS 4 scores and MD values in both the DMN and ECN. The 

red points seen on each scatter plot represent an outlier for which a formal outlier rejection was 

performed. Note: DKEFS 4 = Delis Kaplan Executive Function System Condition 4, MD = 

Mean Diffusivity, FA = Fractional Anisotropy, DMN = Default Mode Network and ECN = 

Executive Control Network.  

Table 4.1: Participant Characteristics. Note: SD = standard deviation, DKEFS 4 = Delis 

Kaplan Executive Function System Condition 4, DKEFS 1 and 2 = Delis Kaplan Executive 

Function System Conditions 1 and 2, EDSS: The Expanded Disability Status Scale and WTAR = 

Wechsler Test of Adult Reading. 

Table 4.2: Results obtained from performing One-tailed Spearman Partial Correlations, after 

partialling out the effects of age, sex and WTAR scores. As shown, there were significant partial 

correlations between executive function and MD values in both the ECN and DMN, but no 

statistically significant partial correlations between executive function and FA in either network. 

Note: Rhoval = rho-value, 95% CI = 95% confidence interval, Pval = p-value, DKEFS 4 = 

Delis Kaplan Executive Function System Condition 4, MD = Mean Diffusivity, FA = Fractional 

Anisotropy, DMN = Default Mode Network and ECN = Executive Control Network. 

Table 4.3: Conventional Spearman Correlations (Two-Tailed) were performed after correcting 

for age, sex and WTAR scores to determine whether any pair of continuous variables were 

correlated. These results suggest statistically significant relationships between MD values and 

the two covariates – DKEFS 4 and Age in both networks. In the DMN and ECN networks, MD 
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vs. WTAR did not yield statistically significant correlations. Note: Rhoval = rho value, Pval = p-

value, DKEFS 4 = Delis Kaplan Executive Function System Condition 4, MD = Mean 

Diffusivity, FA = Fractional Anisotropy, DMN = Default Mode Network, ECN = Executive 

Control Network and WTAR = Wechsler Test of Adult Reading. 

Table 4.4: Mann-Whitney Tests (Two-Tailed) were performed to determine whether any of the 

continuous variables showed a categorical sex difference. These results indicate that there were 

no significant effects overall and therefore a lack of a sex effect generally. Note: Rhoval = rho 

value, Pval = p-value, DKEFS 4 = Delis Kaplan Executive Function System Condition 4, MD = 

Mean Diffusivity, FA = Fractional Anisotropy, DMN = Default Mode Network, ECN = 

Executive Control Network and WTAR = Wechsler Test of Adult Reading. 
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 Summary 
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5.1 Discussion 

To briefly recap, the purpose of this thesis was to: 1) compare spatial normalization 

methods on brain MRI data in the presence of MS lesions using real and simulated data to 

identify an optimal approach for comparing quantitative structural imaging metrics across 

participants, and 2) use this robust spatial normalization method to investigate the relationships 

between EF and microstructure throughout the DMN and ECN WM using recently released 

functionally-defined WM atlases. Together, these two objectives worked to expand our 

understanding of best-practices in MRI data analysis and the variability in cognitive functioning 

among persons with MS.  

The rationale for investigating the first objective in this thesis was to overcome the 

absence of an established ‘best’ practice guideline for spatially normalizing brain imaging data in 

the presence of MS pathologies. Although studies on spatial normalization algorithms and brain 

templates have been developed for neurologically healthy adults, no studies have compared 

spatial normalization methods in the presence of MS-related pathologies 155. In a similar vein, 

several studies in the past also worked to compare different image processing pipelines and 

spatial normalization methods on diseases like Alzheimer’s disease, mild cognitive impairment 

(MCI), drug-resistant epilepsy and stroke156,157. Together, this then highlighted the need for 

identifying an algorithm for MS. Therefore, these findings overcome this gap, by being the first 

study to compare the performance of five commonly and freely-available spatial normalization 

approaches to ultimately identify the most robust method for spatially normalizing brain imaging 

data in the presence of MS lesions. Specifically, this study identified SPM CAT12 as the most 

robust algorithm for spatially normalizing MS data among the methods tested, particularly when 

using lesion-filled images. Therefore, my findings suggest that future MS imaging studies 

(including my subsequent study on structural imaging correlates of EF) should use SPM CAT12 
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and lesion-filling for optimal spatial normalizations. Taken together, these findings will now 

enable MS researchers to follow a uniform image processing pipeline for more accurate 

comparisons.  

The rationale for the second objective in this thesis stemmed from existing knowledge 

about relationships between cognitive performance and resting-state functional connectivity in 

distributed, large-scale brain networks. Although there is a growing body of literature about 

functional brain connectivity in MS, no prior study had looked at the relationships between 

cognition, EF and WM structural connectivity within the ECN or DMN – despite the fact that the 

WM degeneration is the hallmark of MS pathology. For this reason, the second objective of this 

thesis worked to build on the first objective, by using SPM CAT12 to generate our FA and MD 

maps, and to then use these imaging metrics in conjunction with recently released functionally-

defined WM atlases to investigate the relationships between cognition, EF and microstructure 

throughout the DMN and ECN WM. Our findings from this study did in fact show EF to be 

correlated with individual differences in WM MD measurements obtained from both the DMN 

and ECN. The implications of these findings are potentially very important, and suggest that 

network-based imaging measures should be used in future studies combining MRI and cognitive 

assessments among MS patients (including longitudinal studies of cognitive decline).  

5.2 Future Directions  

Future work can be done on the findings presented in this study by perhaps using 

quantitative tract integrity profiles (Q-TIPS) – a novel toolbox created in our lab to estimate 

further the microstructural integrity and the trajectories of WM pathways. Since Q-TIPS is a 

toolbox that works to perform tract-based analysis by extracting quantitative MRI data along 

WM tracts, we could potentially build on the current network-based approach by examining 
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changes throughout the entire ECN and DMN to ultimately determine whether individual 

differences in EF can be ascribed to specific WM pathways. It would also be interesting to 

examine whether structural connectivity in other functionally-defined brain networks – e.g., the 

salience network (SN), which is closely associated with both the ECN and DMN– using the same 

functionally defined WM atlases used in this thesis. Based on the significant relationships 

identified in our study (i.e., between EF in both ECN and DMN structural connectivity), it would 

be interesting to find SN connectivity related to differences in cognitive deficits in MS. 

Moreover, this work could also be looked at in sub-networks, such as right vs. left ECN for 

instance or right vs. left in the DMN – since both the DMN and ECN seemed to correlate 

positively with DKEFS condition 4 scores. In doing so, as opposed to using DTI imaging 

metrics, it might be interesting to explore another quantitate MRI imaging measures such as 

myelin water imaging (MWI) which has been shown to be more a more specific measure of 

myelin.  

Moreover, although this study chose to use condition 4 of the DKEFS CWIT that is 

thought to measure both task inhibition and switching, future studies could potentially examine 

sub-domains of EF (e.g., based on condition 3 of the DKEFTS CWIT to investigate task 

inhibition exclusively, or to perform a contrast between condition 4 and condition 3 of the 

DKEFS to investigate the switching component, exclusively). It would also be valuable to look 

at other non DKEFS measures of cognitive function such as cognitive fatigue, which is a major 

issue itself. Since this thesis did find the network-based approach to be more sensitive than 

simply using global WM or NAWM values using condition 4, it would be interested to use these 

findings in the context of looking exclusively at condition 3’s inhibition or switching component.  
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It would also be valuable to conduct some longitudinal studies looking at cognition, EF 

and structural connectivity patterns to see whether the biomarker identified in this study could 

have value in predicting future cognitive decline. More broadly, it would be interesting to use 

this biomarker for disease diagnosis and the monitoring of the progression of the disease and the 

treatment effects. Moreover, since we based these findings on a mixed sample of MS 

participants, it would also be interesting to hone in on one type of MS longitudinally. Taken 

together, it would be valuable to look into perhaps different ROIs, different MRI measures and 

different cognitive measures.  

5.3 Conclusions 

Over the last few decades, with the advent and widespread availability of Magnetic 

Resonance Imaging (MRI) systems, brain imaging has gained an increasing role in both MS 

diagnosis and research39. Because of this, the use of more advanced quantitative methods such as 

DTI has revolutionized the visualization of WM structures by exploiting the properties of water 

diffusion45,51. These advanced quantitative neuroimaging techniques coupled with robust 

neuropsychological assessments, together, have paved the way for better understanding the 

structural and functional connectivity patterns in the brain. This thesis leveraged the existing 

knowledge in the field regarding functionally defined brain networks and the WM architecture of 

those networks, to support the relationship between EF and microstructure throughout the DMN 

and ECN WM. This thesis has showed that within this MS cohort, EF appeared to be influenced 

by individual differences in integrity of underlying WM throughout the DMN and ECN. These 

findings suggest that examination of microstructural integrity of functionally-defined WM fiber 

tracts can improve our understanding of the variability in cognitive functioning among persons 

with MS.   
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