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Abstract

The Changjiang (Yangtze River) is the longest river in China and the third longest river

in the world. The Changjinag drainage basin covers nearly one fifth of the total area of China.

About 400 million people live in this area, which is about one third of the total population of

China and about one fifteenth of the total population of the world. The Changjiang plays an

important role in the lives of people and in the industries of China. The chemical elements

and compounds are important indexes for the water quality in the Changjiang. The spatial

distributions of major chemical elements in the river water along the Changjiang drainage

basin remain an issue for geostatistics. In this work, we use a Bayesian finite mixture model to

analyze the distribution of each major chemical elements. The traditional numerical method

to deal with a Bayesian finite mixture model is the Markov Chain Monte Carlo method. But

this method has difficulties dealing with finite mixture models with an unknown number

of components, so a ne\4/ sampling algorithm is used. This algorithm provides a valid and

practical solution to a Bayesian finite mixture model.

Three variables arc analyzed in this work, i.e., the concentrations of calcium (Ca), bicar-

bonate (HCO,) and TDS (total dissolved solid). The multi-year averages of observations

from 191 sampling stations in the Changjiang drainage basin over the period 1958-1990

are used for this study, so that 191 observations are available for each variable. Two sub-

populations are identified in the distribution of each variable studied. Various marginal

posterior distributions are given for the parameters in the mixture model. Furthermore,

using the classifying probabilities, all 191 stations are classified into two groups.
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Chapter 1

Introduction

1.1 Overvrew

The Changjiang (Yangtze River) is the longest river in China and the third longest river in

the world. The Changjiang drainage basin covers an area of 1.8 million square kilometers.

There are about 400 million people living in the Changjiang basin. This river has a significant

influence on the lives of people and industries in China. The river originates in western China,

and flows through the entire central region before it empties into the Pacific Ocean on the

east coast. The geographic setting along the river basin is very complicated. There are

plateaus, valleys, basins and plains. The river is joined by a large number of tributaries.

Despite all of its significance in the world, the major element chemistry of the Changjiang

has not been well studied (Chen at al., 2002). The chemical elements in the river water

are important indexes for the water quality and weathering processes in the basin. The

spatial distributions of major chemical elements represent a gap in our understanding of

the distributions of chemical elements in the river water. To understand the distributions
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of major chemical elements in the river basin and tributaries is of great importance to

human lives and industries. In addition, it is an interesting topic in geography, geology and

environmental science. Figure 1.1 shows a map of the Changjiang drainage basin and its

location in China

From a geographical point of view, the basin can be divided into 10 sub-basins. The num-

ber of sub-populations for the underlying distribution of each chemical element is however

unknown. The main goal of this practicum is to study the distributions of major chemical

elements in the river basin and identify the number of sub-populations in these distributions

We study this question using a finite mixture model with Bayesian approach

Two sub-populations are identified for the two major chemical elements and the total

dissolved solid concentration of chemical elements. The marginal posterior distributions of

the paramenters in the mixture model are also given, and estimations of the parameters are

summarized in tables.

L.2 The Changjiang Data

The data were collected in the Hydrological Yearbooks of China, and have been used by

Chen et al. (2002). Their research revealed the variability of major chemical elements and

the underlying mechanisms of the variabiltiy. The spatial distributions of major chemical

elements remained an issue for further study

In this work, we will not discuss the data from a chemical or geological point of view, but

from a statistical aspect. We are more interested in the spatial distributions of these chemical

elements in the Changjiang basin. For example, we would like to know how many sub-

3
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Figure 1.1 The Changiiang drainage basin and the sampling stations. The bold line is the main channel. The filled and
open circles are sampling stations along the main channel and tributaries, respectively.
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populations there are in the Changjiang basin and what the distributions of the parameters

look like. There are 191 sampling stations in the Changjiang drainage basin. These sampling

stations are monitored monthly over the period 1958-1990 for major chemical elements and

compounds (e.g., Ca, Mg, Na, K, HCOy SOa, Cl, and Si). Figure 1.1 shows the map of

the Changjiang drainage basin and the locations of sampling stations. The collection and

analytical methods of these data can be found in Chen et al. (2002). In this work, we use

the multi-year averâges over the period 1958-1990 for these 191 stations and analyze three

variables:

TDS (mg/l): the total dissolved solid concentration, in miligram per liter.

Ca (mg/l): calcium concentration, which constitutes, on average, 16To of the TDS, in

miligram per liter.

HCOs(mg/l): bicarbonate concentration, which constitutes, on average,64% of the TDS,

in miligram per liter.

In order to examine what distributions these random variables might have and how many

sub-populations there are, \rye plotted their histograms in Figure t .2, !.3 and 1 .4, respectively.

5
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Figure 1.4: Histogram of Ca

From these histograms it is difficult to say what distributions the variables might have

We use the logarithm transformation technique to transform the original data. Figures 1.5,

1.6, and 1.7 show the histograms of the logarithm of TDS, HCq and Ca, respectively.

Now, all these histograms show a clear pattern of a mixture of two or more symmetric

distributions. This indicates that, first of all, each variable has more than one underlying

sub-population; and second, each sub-population has a symmetric distribution. So we choose

a mixture model to describe the structure of the distribution.

7
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1.3 Methodology

Statistical models are very useful tools for studying random phenomena. The models provide

probability distributions for random variables and which allow us to draw conclusions about

the variables. A random variable is one whose value is a numerical outcome of a random

phenomenon, e.g., rolling dice, tossing a coin. There are many simple statistical models,

e.g., binomial, Poisson, normal, gamma, etc. These models provide probability distributions

for some random variables. Based on these models, we can tell what values the random

variables can take and how to assign probabilities to those values or ranges of values

Although many phenomena allow simple, direct probability modelling, there are some

observed phenomena which can be too intricate to be modelled by these simple forms. For

example, the data are collected from an underlying distribution which has more than one sub-

population. A mixture model is a more flexible statistical model for the complex data. We

I



can use a mixture of a number of simple distributions to estimate the underlying distribution

from which we collected our data

The histograms of major chemical elements show that there is more than one mode

existing in the (logrithm of) data. So, a simple model is not suitable for these data, and

a mixture model is more appropriate. The mixture model has the flexibility of catching

the structure of the underlying distribution with more than one mode. In the mixture

model, uncertainty may come from the unknown number of components, the unknown mixing

weights and the unknown distribution parameters. Unknown mixing weights and distribution

parameters represent the most common situations in applications. Determining the number

and nature of the components is very challenging in applications. There is a remarkable

variety of estimation methods that have been applied to finite mixture models. In particular,

the method of moments, the maximum likelihood, and the Bayesian approach are often used

In this work, \Me use the Bayesian âpproach to the finite mixture model. In Bayesian

approach, one can draw inferences about parameters, by reference to their (marginal) poste-

rior densities. The statistical analysis of such a mixture distribution has been difficult. This

is due primarily to the fact that closed-form formulas generally do not exist for estimators

of the various parameters of the mixture model. Hence, numerical methods are required

for such situations. There are several numerical methods recently developed for statistical

inferences, e.g., the EM algorithm, data augmentation and the Markov Chain Monte Carlo

method. Comprehensive descriptions of these techniques are provided in Besag and Green

(1993), Smith and Roberts (1993). Each of these numerical methods has advantages and

disadvantages (Diebolt and Robert, 1994; Besag and Green, 1993)

The most commonly used numerical method for the Bayesian mixture model is the

10



Markov Chain Monte Carlo (MCMC) method. Smith and Roberts (1993) described the ad-

vantages of MCMC over traditional forms of Bayesian computation. In particular, MCMC

invites one to go beyond simple point and interval estimates. But this method has a number

of limitations. First, the rate of convergence can be slow. Second, this method has the

weakness dealing with a multi-modal distribution (Besag and Green, 1993). In this paper'

we introduce a new sampling algorithm developed by Fu and Wang (2002) to estimate the

distributions of parameters in the mixture model and apply this method to our data sets.

This method overcomes the disadvantages of MCMC. It is non-iterative, easy to implement

and efficient in computation. This method is based on the concept of random discretization

of the density function and it requires only the knowledge of the density function up to a

normalizing constant. This algorithm has performed very well for mâny benchmark examples

(see Fu and Wang,2002),

The results give us the posterior distributions of the parameters in the mixture model

and the predictive density for the future observations. Furthermore, marginal posterior

densities and point estimates of the parameters of interest can be obtained. As a by-product,

this algorithm also gives us the approximate maximum likelihood estimates (AMLE) of the

parameters. Two sub-populations are identified in the distributions of two chemical elements

(HCO,, Ca) and total dissolved solid concentration (TDS) of chemical elements. Moreover,

the 191 sampling stations for each variable are classified into two groups according to the

classifying probabilities.

11



I.4 The Scope of This Wbrk

The paper is divided into five parts: In Chapter 1 (this chapter), we briefly introduce the

issue of geostatistics, the datasets and the method we use for this study. In Chapter 2, we

give the background knowledge of the finite mixture model and the Bayesian framework

Chapter 3 gives the general computational methods for the Bayesian mixture model and an

introduction of F\r and Wang's new sampling method. In Chapter 4, the Changjiang data

arc analyzed using the Bayesian mixture model and Fu and Wang's sampling method. Pos-

terior distributions and classification of 191 sampling stations are presented there. Finally,

conclusions are given in Chapter 5

T2



Chapter 2

A Bayesian Finite Mixture Model

2.L A Finite Mixture Model

Finite mixture distributions have been used as models of distributions in modern statistics

for more than a century (Titterington et al., 1985). A finite mixture model is a flexible

model in practice. It is especially useful for data sets coming from a population consisting

of many sub-populations. For example, if blood pressures are taken from a population

including both cancer patients and non-cancer patients, the distribution of blood pressures

reflects the mixture of distributions of both groups. The distuibution of heights of students

at the University of Manitoba is a mixture representing the heights of both male and female

students. A mixture model can be used in problems of this type, where the population of

sampling units consists of a number of sub-populations, each of which has a relatively simple

distributior, €.8., has a simple model.

Suppose ft(r), Ír(r), ..., fn(*) are k probability density functions defined on the same

13



sa,mple space -R. The mixture distribution of /1(r), Ír(r), "', Ío(r) is defined as

Í (*) : ltr1.f{r) + w2f2(r) + . . . + wnÍn(n), r € IR (2.1)

where the mixing weights w¡ 2 0, i : L,2,,.,, k, and Dwj : L k is the number of com-

ponents. Functions f ¡(r) are called the component densities. It is straightforward to verify

that (2.1) does define a probability density function because, first, /(z) ) 0 for all x, and

second,

I r@)¿": tJIR JM

k
\-/,
j=L

k

h

(lw¡ f ¡(r))dr
j=7

,, Iof¡(r)d,r

D*¡:L (2.2)
j=L

In many situations, ilr), Ír(r),. . . , f n(r) will have specified parametric forms and the right-

hand side of (2.1) will have the more explicit representation,

f (r) : qf1(rl7) + w2f2(rl0r) + . ..+ wkÍk(rlîk) (2.3)

where 0¡ denotes the unknown parameter (vector) occurring in f ¡(r). It is common to assume

that the mixture components are all from the same parametric family, such as the family of

normal distributions (Leonard and Hsu, 1999; Gelman et al., 1995; Titterington et al., 1985).

In practice, the weights Tr.r¡ are usually unknown as well. Moreover, in many applications,

including this work, even the number of components K is unknown. Objectives in density

estimation include the assessment of the number of components of a finite mixture model

and inference about the number of modes of a population distribution.

L4



2.2 Bayesian Approach for The Finite Mixture Model

2.2.I Bayesian FYamework

As we mentioned above, there is a variety of estimation methods that have been applied

to the finite mixture model problems, but we only pursue Bayesian approach in this work.

The advantage of Bayesian inference is that one can treat every unknown parameter (e.g.,

parameters, mixing weights, and the number of components ) as a random variable and assign

a probability distribution to it. This method gives us the most flexibility to infer conclusions

about the unknown parameters in the model, given the observables. In other words, model

performance is addressed through features of posterior distributions of unknown variables,

given the observable ones. In the Bayesian framework, the parameters occurring in (2.3) are

regarded as random variables, which have their own probability distributions.

In this work, we use normal distribution components for the mixture model. One way

of seeing that the class of normal mixture densities is a very broad one comes from the

fact that any density can be approximated arbitrarily closely in a certain sense by a normal

mixture density (Gelman et al., 1995). The unknown parameters in this mixture model

include the mixing weights, the unknown number of components and the parameters in the

normal distributions, e.9., the means and variances.

In the following, lel X be the vector of random variables (the sample) of interest and

p(XlÉ) be the density of X given the vector of unknown parameters d. First, we start with a

joint probability distribution for 0 and X. According to Bayesian rule, the joint density can

be written as a product of two densities that are often referred to as the prior distribution

15



p(0) and the sampling distribution p(Xl?) respectively,

p(0,x): e(0)p(xl?) (2.4)

Given the observations of X, the sampling distribulionp(Xl?) is called the likelihood func-

tion of á. Statistical inference is based upon features of the conditional distribution of the

unknowns in the model, given the observables, using Bayesian theory,

p(?lx): p(0,x
(2.5)

p(x)

p(llx) is called the posterior distribution, and p(X) : Dee(0)e610) for discrete d and

p(X) : I p(0)p(Xl0)d,0 for continuous 0. The denominator of (2.5) does not depend on 0

and, with fixed X, can be considered as a constant. As such (2.5) is often written as

p(îlx) x e(0)e@10) (2.6)

Since, p(?lx) is a probability distribution of 0, given X,

_ e(o)e6le)
p(x)

l'Wdo : # | n(e)n,t,,)do : I (2.7)

Hence,

t e(0)e@10)d0 : p(x) (2.s)

This implies that the integral of p(0)p(Xl?) with respect to d does not equal to 1, but

to the constant that we omit from the posterior distribution. Given X, the value of the

integral in (2.S) is called the normalizing constant. Equation (2.6) is the technical core for

Bayesian inference. The primary task of any specific applications of Bayesian approach is to

develop the prior probability distribution p(0) and likelihood function p(Xl0), then perform

the necessary computations to summarize p(ïlX) in appropriate ways.

16



2.2.2 Prior Distribution

The prior distribution p(0) generally represents the uncertainty about I before data are

examined. There are two interpretations about prior distribution, one being that the prior

distribution represents a population of possible parameter values, from which the values of

parameters á of interest have been drawn. In such a case, the prior distribution is called

the formative prior distribution. This is the way in a more subjective sense to express our

knowledge about I as if its values could be thought of as random realizations from the prior

distribution. The other interpretation of prior is that there is no logical basis for assigning

one prior distribution to 0 as opposed to any other. In such situations, we simply assign I

an uniform prior distribution which is called the informative prior distribution. This way,

the prior distribution plays a minimal role in the posterior distribution.

In this study, we need to assign prior distributions to mixing weights, the unknown

number of components and the means and variances in the component distributions. It is a

common practice that we assume the normal components have different means and the same

variances. We also assume the means come from the same distribution. Specifically, there

will be a prior distribution for the vector of means and a prior distribution for the variance.

According to the nature of the means, we assign normal distribution to the vector of means

in the mixture model (Leonard and Hsu, 1999; Gelman et al., 1995). Other priors will be

described in Chapter 4.
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2.2.3 Posterior Distribution

Mathematically, the posterior distribution is the product of prior distributions and the like-

lihood function (up io a constant). It represents a compromise between the data and the

prior distributions. The prior distributions represent our prior belief about á, while the

likelihood function represents information about d provided by the data. The posterior dis-

tribution contains all the current information for the parameters about which we wish to

draw conclusions. The posterior distribution in this work is the product of the likelihood

function multiplied by the prior distributions for mixing weights, the number of components

and the prior distributions of the vector of means and variance. The means and variance

are the unknown parameters in the normal components. It is easy to see that the posterior

distribution comes out with a very complicated form.

In many situations, it is not feasible to perform calculations on the posterior density

function directly. In such cases simulation method is particularly useful to obtain inferences

from the posterior distribution. The flexibility of Bayesian inference is reflected in that

the posterior distribution can be summarized by simulation. In this study, various posterior

distributions of the parameters and predictive density are estimated using simulation method

of Fu and Wang (2002).

2.2.4 Conjugate Family

Prior distributions represent the prior beliefs for the parameters before the data are exam-

ined, and there are many distributions which can be used. However, there are some families

of distributions which may be more desirable than others for computational reason, such as

18



conjugate families. The formal definition is as follows:

If 5 is a class of sampling distributions p(Xld), and P is a class of prior distribution for

9, then the class P is conjugate for 5 if

p(llx) €P for atrp(Xl?) € 5 and p(0) eP. (2.e)

Simply stated, conjugacy is the property that the posterior distribution follows the same

parametric form as the prior distribution. Conjugacy has practical advantage in some cases,

especially in computation, but this is not always the case. A non-conjugate prior distribution

can make interpretation less transparent and computation more difficult, but a non-conjugate

does not pose any conceptual restrictions. One advantage of Fu and Wang's (2002) algorithm

is that no conjugate restriction is needed, which gives us more flexibility in analyzing practical

problems.

2.2.6 Bayesian Hierarchical Model

In the Bayesian finite mixture model, we assign a joint probability distribution for the param-

eters in the model. For example, in this study, the parameters include the mixing weights,

the means and variance in the components distributions and the number of components.

For conceptual simplicity, we assume that given the number of components, the other sub-

vectors are independent. So the joint probability would be the distribution of the number

of components times the conditional distributions of other parameters given the number of

components. This is a hierarchical structure.

The mixing weights, the means and the variance can be thohght of as sub-vectors. Let 0¡

represents a sub-vector in the vector 0. We assume that the á¡ has the same distribution. In

19



other words, we are thinking of the parameters 0¡ as independent samples from a population

distribution governed by some unknown parameter (vector) /¡;
J

p(olÐ : flp¡,dÀó¡). (2'10)
j=L

In general, /¡ is unknown and we must assign a prior distributionto þ¡. Which is called the

hyper-prior distribution, p¡(/¡), and /¡ is calted a hyper-parameter (vector). The appropriate

Bayesian joint prior distribution is

p¡(ó¡,0¡) : p¡(ó¡)p¡(o¡ló), (2.11)

and the joint posterior distribution is

p¡(ó¡,0¡lr) x pi(ó¡,0¡)p@ló¡,0¡) : p¡(ó¡,0¡)p(rl?¡). (2,12)

In most real problems, in order to constrain the hyper-parameter into a finite region, the

common strategy is to assign an informative distribution to $¡ or estimate Ó¡ ftom the data

sets.

For example, in this work, we assign a normal distribution to the vector of means, the

mean and variance in this prior will be hyper-parametérs. We also need to assign hyper-prior

distributions to them. In order to simplify the computations, we extract the information

from the data to constrain the hyper-paramters into a finite region.

2.2.6 Predictive Distribution

Inference about future values of a random variable X, denoted by X, is often called predictive

inference. In Bayesian framework, this is done through the density

I p(X,0lx)d0p(xlx)

20



:l p(x10, x)e@lx)d,0

e@1?)e@lx)d0. (2.13)

Equation (2.13) displays the posterior predictive distribution as an average of conditional

predictions over the posterior distribution of d.

The predictive distribution gives us a probability description about the future values of

observations, given current observations. For example, what kinds of values might the future

observations take and what probabilities are associated with them

:T
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Chapter 3

Computation of The Bayesian

Mixture Model

While the Bayesian mixture model provides a feasible and coherent description of data

coming from a population with more than one sub-population, the numerical computation

of this model remains a challenging task. Markov Chain Monte Carlo (MCMC) method

is a commonly used tool for Bayesian computations (Gilks et al., 1998). When applied to

real problems, major difficulties arise from multi-modality of the underlying distribution

and ill-shaped sample space, especially in dealing with a mixture model with an unknown

number of components. In this chapter, \Me introduce a ne\4/ discretization-based numerical

algorithm developed by Fu and Wang (2002). This method has the advantages of simplicity

in concept and efficiency in computation. It is an effective method of simulation, especially

for a Bayesian mixture model

Posterior distribution is the major component in Bayesian inferences. In practice, except

for some very special cases, the posterior distribution and predictive distribution do not
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usuâlly come out with simple and standard forms, so that direct computation and interpre-

tation are not feasible. In such cases numerical methods are required to analyze the target

distribution. Simulation is a numerical method used to perform statistical inference about

the distribution. It forms a central component of applied Bayesian analysis.

Generally, simulation is used to generate samples from the target distribution. The com-

puter program utilizes random numbers to generate the values of random variables having

the assumed probabitity distribution, which are used to estimate the distribution of param-

eters of interest. In other words, we draw a sample according to the target distribution, and

then use the simulated data to construct a histogram to display the sample distribution. It is

a relatively easy way to get an idea of the form of the distribution when analytic difficulties

arise. In performing simulation, it is hetpful to think that, given a large enough sample,

the histogram provides practically complete information about the density function. Also,

certain quantities of the distribution, such as the mean and variance, can be estimated using

the drawn sample.

3.1 The Inverse Transform Method for Random Num-

ber Generation

As an introduction to the idea of simulation, let us first briefly review the inverse transform

method, which is the foundation for generating random numbers from a distribution of either

a discrete or a continuous type (Ross, L997),

Let U be a uniform random variable over interval (0,1), denoted by U - U(0,1). For any
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given cumulative distribution function F(x), the random variable X defined by X : F-'(U),,

has distribution F.

The method shows that we can generate a random number X from the continuous dis-

tribution F by generating a random number [/ from the uniform distribution U(0,1) and

thensettingX:F-'(U).

For a discrete distribution, the procedure is as follows. Suppose a discrete random variable

X has probability mass function

,lP¡:r,

To generate a random value of X, we generate a random number from [/(0, 1) and set

to, if.U 1po,

nr¡ if ps ( U 1po*pt,

X- (3.1)

r j, if Dl=i p¿ 1u 1Di=tp¿,

3.2 A Discretization-Based Sampling Method

This discretization-based sampling algorithm has been developed by Fu and Wang (2002)

and has been applied successfully to some benchmark examples of Bayesian models and also

in some real applications. A good review of this algorithm and its applications can be found

in Fu and Wang (2002). This algorithm requires only the knowledge of the distribution up to

a normalizing constant. It is dimension-free and non-iterative in contrast to Markov Chain

Monte Carlo method. It can be used in the computation of a high dimension-multivariate

P(X : r¡): P¡,i :0,I,.
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distribution, and in a Bayesian mixture model with an unknown number of components. To

illustrate this algorithm, let us consider the case where the posterior density function p(0) is

continuous. We only need the knowledge of p(0) up to a normalizing constant, which means

we may ignore any constant in p(d). Suppose 0 is a vector of d-dimension and p(0) has a

compact support,S(p) : lo,b]d, where -oo ( a1b ( oo are known. The algorithmconsists

of three steps: discretization, contourization and sampling.

3.2.L Discretization

The first step of Fu and Wang's algorithm is to create a discrete set of S"(p), which approx-

imate the sample space S(p). This can be done by first generating n independent random

points from the uniform distribution on [ø, b]0, 0r,02,"',0n - Ula,b)d. There are thus r¿

random vectors. These r¿ random vectors are independently, identically and uniformly dis-

tributed on [ø, ó]d. Define S"(p) : (0¡, j :1,2,.. . ,,rz). Then S"(p) is the discretized version

of .9(p). When n is large, S"(p) is an approximation of S(p).

3.2.2 Contourization

Second, \Me group S"(p) into I groups, Et, Ez, "', E¿. Each group has u points, where

u : nll. E1 contains the points of 0¡, at which p(0¡) have the highest values, E2 has the

points at which p(0¡) have the second highest values, and so on. We call E¿ the contours.

These contours are mutually disjoint, and the union of these contours forms S"(p).Further,

we define a discrete distribution on the contours -Ð¿, which is proportional to the average
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heights of the posterior densities on each contour .E¿:

1

P(Eo) : ; Æp(0),'i 
:7,2, "' ,t. (3.2)

3.2.3 Sampling

Suppose we would like to generate rn independent and identically distributed observations

from ,5r(p) according to the posterior distributionp(0).We use the inverse transform method

described earlier. First, we randomly sample with replacement rn contours according to the

discrete distribution (3.2). Suppose m¿is the number of occurance of E¿in these random

draws, Dm¿: rn. Then within contour E¿,we sample with replacement nz¿ points randomly.

All points thus obtained forms the desired sample. A detailed description of this method

can be found in Fu and Wang (2002).
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Chapter 4

The Changjiang (Yangtze River) Data

In this section, we apply the sampling algorithm of Chapter 3 to the Changjiang data. Two

sub-populations are identified in the data sets and various marginal posterior distributions

are given. Furthermore, we calculate the classifying probabilities to classify the 191 stations

into two groups.

4.L The Bayesian Mixture Model

As mentioned earlier in section l.2,we study mainly three variables: TDS, HCOz and Ca.

Histograms of the logarithm of the samples are shown in Figures 1.5, 1.6 andL.7, respectively.

The histograms show that there is more than one mode existing in all the three data sets.

So a Bayesian finite mixture model is suitable for the distribution of the data.

A Bayesian finite mixture model with normal density components is used for each of these

three variables. From the histograms it is difficult, however, to tell how many components

there are. It is therefore realistic and desirable, that we treat the number of components as
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an unknown paremeter (a random variable)

Suppose the data fri,'¿ -- 7,2,'..,ly' represent an independently and identically dis-

tributed random sample from a finite normal mixture distribution. We apply a normal

mixture model with an unknown number of components, K, to each of the variables, so that

the likelihood function is given by

¡r

II f @,1 tto, o2o, wk, le) : whj

2rol

JVKIt
i=I j=I

exp
(ro - tto¡)'1---24-l (4.1)

i=7

where pk : (1"m, I,Lkz, 
. . . , ltn*) is the vector of means, given K , and ofr is the variance, given

K. As mentioned earlier, \/e assume that different components have different means but the

same variance. wk : (wm,'trk2,...,wnn) are the mixing weights. As explained earlier, the

number of components K is unknown and is treated as a random variable.

Now let us consider the prior distributions. Note that the distributions of all other

parameters depend on the value of K. This is the hierarchical structure as we mentioned in

section 2.2.5. Specifically, given different K, therc will be different set of parameters:

lç :1, ut :1, ltrr, o?;

le :2, u)2t,'tr22 (wn + 1!)22: L), þzt, l.tzz, o3;

k : 3, lrsr, 'tr¡2, wzs (wT I wsz * t ¡s : I), þst, l.tzz, lt'3, 03.

The above parameters are all unknown and we assume that, given K, þk, of; and wk are

conditionally independent (Fu and Wang,2002). Thus, the full posterior distribution is

¡r

ll f @,luo , ofi, rh , n)p Q'olk) e ("îlk) p (rnln) n(n)
i=I
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As mentioned earlier, according to the nature of the location parameters, it is common

to choose the normal distribution for them. In order to avoid labelling problems, there is a

restriction for p,k (Fu and Wang, 2002), so the prior distribution is:

1
,l,In 1 I,trz 1 "' 1 ltnn (43)

J:I 2trol
exp

A simple prior for ol is to assume ofr is known. Such situation will seldom arise in practice

(Leonard and Hsu, 1999). The common prior for ort is the inverse-gamma distribution

(Ibrahim et al., 2002; Escobar and West, 1995). Invers-X2 is also used as a prior of ol

(Belisle et al., 2002; Gelman et al., 1995). In this work, we use the inverse-gamma prior

distribution

n (oiln) : # þ?)-"-' ¿-ot'f;, 07, > o (4.4)

For the weights wk , à natural choice of prior distribution is the Dirichlet distribution (Diebolt

and Robert, L994):

n(wk1n):# E r'(t-E *r,) ,o=E w¡¡1r (4b)

Since lhe K has a discrete distribution, we assign a discrete uniform distribution over the

set {1, 2,... ,le*o*}.This is an informative prior distributionf.or K. So, p(K - k) :ïlk^o,.

This provides equal support f.or K between 1 and k^o,.

Note that the parameter space is the space of all parameters tlft, þk , o?, K : I,2, " ' , k*or,

where k^o* is given. From the histograms, we can see that there are probably 2 or 3 modes

existing, so we choose k^o*:3.

All parameters in the prior distributions are hyper-parameters. We also need to assign

distributions or values to the hyper-parameters in the prior distributions of paramters. There
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âre five parameters (po, 03, a, B and 7) to which we need to assign distributions or values to.

In this work, we use a similar strategy as in Richardson and Green (1997) and Fu and Wang

(2002). The ¡is is the mean of the distribution of ¡th and ø02 is the variance of Ltk. We extract

this information from the data as follows. Let M* and -R" denote the midrange and the

range of the data respectively. Then, we set þo : M, and o! - R7. For the inverse-gamma

prior, we choose a : 2 and B: 1 to prevent the value of ol to be close lo zero (Escobar

and West, 1995). In the Dirichlet distribution, \¡re set ?:1. This corresponds to an uniform

distribution over the range of the values of the weights.

Note that the choice of values for hyper-parameters will have an influence on the posterior

distributions and estimations. Such an influence can be examined by a sensitivity analysis.

Richardson and Green (1997) have carried out a sensitivity analysis for their Bayesian models

and they found that the posterior estimates are not very sensitive to the values of hyper-

parameters chosen according to this strategy.

4.2 Distribution of TDS

We present the computational results in this section. The algorithm is introduced in Chapter

3. All numerical computations in this work are carried out using MATLAB in an Unix

environment.

Initial values of hyper-parameters and other parameters are specified as follows.

o Hyper-parameters for TDS:

þo : 5.0781, ol : 5.4951
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e.:2)þ:7r"y:lrk*or:3

o The compact intervals for the parameters:

k e (1 ,3), þk e [3,7]e, ol e 10.0a,0.3] and ø'e e [0,1]fr

o The prior distributions for ¡.r,k, ol and wk, given K:

o(t,olk):-,E#*o[-ffif,,^1ll*z1.'.1l-ln*(4'6)
p@?lk): (of;)-se-t/"7,o1> o. (4.7)

p(wklÐ:(k- 1)!, for 01w¡+.'.+ whk-t1I,w¡¡ - 1- wkt- "'-ukk-y (4.S)

This implies that we have no previous knowledge about the distributions of ü;¡'s, and we

let the data speak for themselves. This is an informative prior distribution as mentioned

in Chapter 2. It is easy to see that the posterior distribution has a dimension d:13. The

log-posterior distribution has the form

N

Ito* f (rolt,k,o?,wk,k) + Iogp (urln) * logp ('?lr¡ * logp (r*ln) + logp(k) (4.e)
i:L

The simulation processes are based on the log-posterior distribution. Samples are drawn

from the compact intervals. First, n : 5 x 106 uniform base points are simulated from

the compact intervals to form S"(p). Secondly, we group the points into contours and we

assign each contour with ten points. We compute the discrete distribution on each contour

according to the log-posterior probabilities. Third step, a sample of size rn : 3000 is drawn

using the discrete distribution. This sample is the desired sample.

The marginal posterior distribution of K is given in Table 4.1. The posterior for K

clearly favors 2 modes. Because the prior provides equal support for K. between 1 and
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Table 4.1: Prior and posterior distributions of the number of components K,f.or TDS.

K T2 3

4.3419 5.3463 5.7898

Prior tl\ Ll3 Ll3

Posterior 0 0.6337 0.3663

Table 4.2: AMLE of oft, p,k and wk, k : !, 2,3, for TDS

k:3

0.0736ol

pk

kw 0.1926 0.7792 0.0883

3, the likelihood function puts most of its weight on le : 2. As is typical with inference

about overlapping mixtures, there is clearly a great deal of uncertainty about the number of

components. But unlike traditional approaches to density estimation, the computations here

provide a formal assessment of such uncertainty. We present in Table 4.2 the approximate

maximum likelihood estimations of. ofi, ¡t"k and 'ufr's for lç: I,2, 3, respectively.

This algorithm also gives us numerical output of means, standard deviations, minimums

and maximums of the parameters. Because the posterior probability of le : I is 0, we do

not report the estimates for the case of one component. The results are presented in Tables

4.3 and 4.4 with k : 2 and k : 3, respectively. All the marginal posterior distributions of

the parameters are computed. Since the posterior favors 2 modes, then let us examine the

marginal posterior distributions of the parameters for k : 2. Figure 4.1 shows the marginal

k:2lc:l

0.2537 0.0856

5.L964 4.3854 5.4022

0.2009 0.79971
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posterior distributions of the sub-population means and weights for k :2. We can see that

the distributions of pzt and ¡-r,22 are roughly symmetric. The location of pzt is near 4.4 and

the range is from about 4.2 to 4.6. The location of pzz is near 5.4 and range is from about

5.3 to 5.5. Thus, based on the logarithm of original data, the marginal posterior distribution

of first sub-population mean most likely has a value of about 4.4 and standard deviation

around 0.07. The marginal posterior distribution of second sub-populatin location most

likely has a value of about 5.4 and standard deviation about 0.03. The marginal posterior

distributions for the weights are almost symmetric. The w21has a location around 0.2 and a

range from about 0.1 to 0.3, and the w22 has a location around 0.8 and a range from about

0.7 to 0.9. Figure 4.3 shows the marginal posterior distribution for the population variance

ø!. ttris distribution has a small variance and a location around 0.1. Figure 4.4 shows us,

given the existing observations, what values the future observations might take and what

kinds of probabilities are associated with them. Two modes a,re presented, one around 4.4

and the other around 5.4.
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meâ,n st.d mlnlmum

0.0990 0.0120 0.0641

4.3823

5.4006

0.0674

0.0275

4.t43r

5.3021

0.20i5

0.7985

0.0330

0.0323

0.1049

0.6900

Table 4.3: Posterior means, standard deviations, minimums and maximums of o2o, p,k and

wk, k :2, fot TDS.

ol

p,2

maxtmum

0.1535

4.6019

5.4880

0.3101

0.8951

maxlmum

0.1491

4.5910

5.4678

6.9312

0.3271

0.8621

Table 4.4: Posterior means, standard deviations, minimums and maximums of o2¡, p,k and

wk , k: 3, for TDS

l1)2

o!

p3

u3

std mtnlmummean

0.0969 0.0130 0.0624

0.L215

0.3356

0.2L54

3.1527

4.1599

5.3136

4.3457

5.L6L7

5.5178

0.0553

0.2715

0.2929

0.0002

0.0004

0.0003

0.1780

0.3754

0.4466
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4.3 Distribution of H C Oz

Initial values of hyper-parameters and other parameters are specified as follows.

o The hyper-parameters

þo : 4.638I, of; :5.6468

e,:2rþ:Ir.y:1rk*o*:3

o The compact intervals for the parameters:

k e (1 :3), þk € [3,6]ft, øl e [0.03,0.3] and trft e [0,1]k.

o The prior distributions f.or ¡,r,k, ol and u.'ft, given K are

k
1

X 6468
exp , þm 1 þx2 1 "' 1 l.tn*

(4.10)

p(o\,lk) : (ol)-3e-tlo7,ol > o. (4.11)

p@klÐ: (k- 1)!, for 01w,¡+"'+lrkh-t 1I,w¡¡ - 1- ukt-"'-ukk-t. (4.L2)

Except for some hyper-parameters, the prior distributions are of the same forms as those of

TDS. The posterior distribution also has a dimension d:13. The log-posterior distribution

has the form

o (t"ulk) : fr! JI
j=l

}to¡ - 4.6381)21- 2x5s468 I

N

itor f (rolt"k,o7,,wk,k) + logp (u*ln¡ * logp (r|,t*¡ I logp (r*lr) + logp(k) (4.13)
i=l

We simulate the parameters using the log-posterior distribution. First, n:5 x 106 uniform

base points are simulated from the compact intervals to form S"(p). Then we group the
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Table 4.5: Prior and posterior distributions of the number of components K,, for HCOs

k t2 3

Prior 113 Ll3 Ll\

Posterior 0 0.6263 0.3737

Table 4.6: AMLE of ol, ¡,tk and wk for k : I,2, 3, for HCOB

le :3

ol 0.0667

pk 3.8857 4.9456 5.1335

0.20L4 0.7360 0.0625

points into contours and each contour has ten points. We compute the discrete distribution

on contours. Finally a sample of size m : 3000 is drawn. This sample is the desired sample.

The marginal posterior distribution of K is given in Table 4.5. The prior for K equally

support K between 1 to 3. The posterior strongly supports 2 modes. So, we assume that

two sub-populations exist for the underlying distribution of this variable. Table 4.6 presents

the approximate maximum likelihood estimates of oft, ¡le and wk, for k:L,2,3, respectively.

This algorithm also gives us numerical output for the means, standard deviations, min-

imums and maximums of the parameters. The posterior probability f.or lc : 1 is 0, we do

not report the estimates for the case of one component. The results are presented in Tables

4.7, 4.8 with k : 2 and k : 3, respectively. All the marginal posterior distributions of the

parameters are computed. Since the posterior distribution of K indicates that there are two

wk

k:I lc :2

0.2560 0.0715

4.7476 3.8697 4.9693

1 0.2032 0.7968
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mrnlmummean st.d.

0.05730.0828 0.0097

0.0578

0.0254

3.6944

4.8680

3.8773

4.9594

0.0964

0.7034

0.1976

0.8024

0.0307

0.0307

Table 4.7: Posterior means, standard deviations, minimums and maximums of. ofl, p'k and

wk, k :2, for HCOB.

mâ,xtmum

ol 0.1192

l-r
2 4.0854

5.0473

0.2966

0.9036

modes, let us examine the marginal posterior distributions of parameters for k : 2. Figure

4.5 shows the marginal posterior distributions of the sub-population means. The distribu-

tions are near symmetric. The first sub-population mean has a location near 3.9 and the

range is from about 3.7 to 4.1. The second sub-population mean has a location near 4.95 and

range is from about 4.85 to 5.05. The marginal posterior distributions for the weights are

almost symmetric. The w21has a location around 0.2. The w22 has a location around 0.8.

Figure 4.7 shows that the marginal posterior distribution for the variance of components has

a location about 0.11. Figure 4.8 show us the predictive density of future observations given

observations. Two modes are presented, one around 3.9 and the other around 5.

ll)2
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Table 4.8: Posterior means, standard deviations, minimums and maximums of. o2o, p,k and

wk, k:3, for HCq.

o!

maxlmum

0.1 191

4.0409

5.0181

5,9777

0.3031

0.8519

p3

w3

0.8698

4.4 Distribution of Ca

Initial values of hyper-parameters and other parameters are specified as follows.

o The hyper-parameters

þo: 3.0673,of; :9.2382

d.:210:I,.y:I,k*o*:3

o The compact intervals for the parameters:

k e (1 :3), þk € [1,5]ft, ole 10.04,0.4] and'u.'k e [0,l]ft

mean std mlnlmum

0.0811 0.0095 0.0588

3.8527

4.6545

5.0273

0.0953

0.3870

0.L467

3.0308

3.74r9

4.8824

0.0005

0.0002

0.0002

0.L740

0.3059

0.5201

0.0568

0.2587

0.2778
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Table 4.9: Prior and posterior distributions of the number of components K,for Ca.

k t2 3

Except some hyper-parameters values, the prior distributions are of the same forms as those

of TDS and HCO3. The posterior distribution also has a dimension d:13. The log-posterior

distribution has the form

N

I tor Í(r¿lpk,o2*,uk,,k) + logp (urln¡ * Iogp ("7,1r¡ I logp (*oln) + logp(fr)

Prior Ll3 Ll3 Ll3

Posterior 0 0.6790 0.3210

o The prior distributions f.or I,tk, o2¡ and u.,ft, given K arc

i=l

k

n(uoln): *' Û ffi*o [- ffil,ro' 1 ttnz 1 "' 1 tt*x
J=

(4.14)

p(ollk) : (ol)-3e-tl'3,o20 > 0, (4.15)

p(wklÐ : (k -1)!, for 0 ( tr.r¡1 +. ..+ ukk-t 1 l,w¡¡: l -'ti)kt- "' -'u)kk-t (4.16)

(4.r7)

We simulate the parameters using the log-posterior distribution. Samples are drawn from

the compact intervals. First, n : 5 x 106 uniform base points are simulated from the

compact intervals to form S"(p),Second, we group the points into contours according to the

log-posterior probabilties. We assign ten points to each contour and compute the discrete

distribution on contours. On third step, according to the discrete distribution, a sample of

size m: 3000 is drawn. This is the desired sample.
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k:2k:I

0.3875 0.1006

3.3206 2.2227 3.5804

1 0.1834 0.8166

Table 4.10: AMLE of of;, p,k and wk for lç: L,2, 3, for Ca

k:3

0.0831ol

LTK 2.0492 2.5783 3.5950

w 0.1494 0.0840 0.7666

The marginal posterior distribution of K is given in Table 4.9. Two modes are strongly

supported by the posterior of K. The results are presented in Table 4.10 for the approximate

maximum likelihood estimates of. o2¡, ¡1fr and wk for k:7,2,3, respectively.

Numerical output of means, standard deviations, minimums and maximums of the pa-

rameters are also given. The posterior probability for fr : 1 is 0, we do not report the

case of one component. The estimates of the parameters are presented in Tables 4.7L, 4.12

with k : 2 and lc : 3, respectively. The marginal posterior distribution of the number of

components f'avors two modes, so let us take a look at the marginal posterior distribution of

sub-population means on Figure 4.9. The distributions are near symmetric. The marginal

posterior distribution of p,21has a location near 2.2 and the range is from about 2 to 2.4.

The marginal posterior distribution of þtzz has a location near 3.6 and range is from about

3.5 to 3.7. The marginal posterior distributions for the weights are roughly symmetric. The

,u.r21 has a location around 0.2 and w22has a location around 0.8. The marginal posterior dis-

tribution of variance has a location 0.1 from Figure 4.11. Figurc 4.L2 shows us the predictive

density of future observations given observations. Two modes are presented, one around 2.2

and the other around 3.6.

k
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Table 4.11: Posterior means, standard deviations, minimums and maximums of. ofr, pe and

wh, k -- 2, f.or Ca.

mâxrmum

o| 0.7712

l-L
2 2.436L

3.6796

0.3010

0.9011

Table 4.12: Posterior means, standard deviations, minimums and maximums of. of;, pt'k and

wk, k: 3, for Ca.

maxtmum

o! 0.161i

I,L
ù 2.3882

3.6520

4.9773

w 0.3223

0.8566

w2

3

mlnlmummean st.d.

0.1116 0.0t27 0.0758

0.0661

0.0291

L.9778

3.4593

2.2L04

3.5787

0.1923

0.8077

0.0308

0.0308

0.0989

0.6990

minimummean std

0.06510.1079 0.0L42

1.0650

2.0997

3.4887

2.1477

3.0570

3.6862

0.1438

0.5300

0.2442

0.1569

0.2864

0.5567

0.0616

0.2754

0.2982

0.0000

0.0022

0.0005
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Figure 4.9: Marginal Posterior distributions of þk,wk, k :2, for Ca
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4.5 Classification of the Changiiang Basin

From the above computational results, the posterior distributions of K favor two modes for

the three variables. Now we would like to know how these distributions are associated with

geological Iocations.

According to Everitt et al. (2001), having estimated the parameters of the assumed

mixture distribution, observations can be associated with particular groups on the basis of

the maximum value of the following estimated probability:

,L9I;j:1,2;k:2. (4.18)

where

f¡@¿), 
,", I @,-puY'] ,:r,2,...,r9l;j:!,2;k:2. (4.19): 

ñot"P L- zoro f 
o - ',-,

We call it classifying probability. For each station, we compute the classifying probability

and assign it to class j, j:l or 2, whichever has the higher probability value. The results are

shown in Figures 4.13,4.I4 and 4.15.

p(r¿ e Ctass(i)l*) : =þþ! ,,¿
Di=, Í¡(r¿)'

21
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Chapter 5

Conclusions

We have studied the distribution of each variable defined earlier, using a Bayesian finite

mixture model and a ne\^/ sampling algorithm. The key contributions here lie in the un-

derstanding of the distribution of each chemical element studied in the Changjing basin

and in the identifying of two sub-populations existing for the underlying distributions. The

marginal posterior distributions of parameters in the mixture model provide us an insight

into the underlying distributions. In addition to demonstrating the sub-populations, we

classified the sampling stations into two groups, showing how the geological locations are

associated with the distributions.

This work represents the first systematical study of the distributions of chemical elements

in the Changjiang basin. The proposed algorithm provides an attractive approach to these

types of problems. It gives us with much more flexibility for making inference for a mixture

model with an unknown number of components. This is a big challenge in the computation

of Bayesian finite mixture models. The algorithm allows us to overcome the computational

inapplicability of formal Bayesian estimators, while maintaining the strength of the Bayesian
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Table 5.1: Estimated sub-populatin means of TDS,, HCOB and Ca

Gorupl 9.L2

Group2 35.87

approach.

According to the classifying results, most of the group 1 stations are located in the lower

reaches of the Changjiang river and the stations of group 2 are located in the upper and

middle reaches of the river area. The major chemical elements of the Changjiang are mainly

controlled by chemical weathering, atmospheric precipitaition, and other natural processes

as well as human activities (Chen et al., 2002). In the lower reaches of the river basin, there

is a higher level of annual average precipitation than in the middle and upper reaches of the

river. Carbonate rocks, the weathering of which produces Ca and HCO¡ in the river water,

are also less abundant in the lower reaches. We think that these are the main causes as to

why most of the stations in the lower reaches have a lower level of the chemical elements

studied.

Since we transformed the data sets using the logarithm technique at the beginning, now

we need to transform them back to their original scale. The estimated sub-population means

are given in Table 5.1.

Further study is needed on the prediction part of the problem. Although we have a

predictive distribution, which shows us that, given the sample x, what kinds of values future

observations might take, and what probabilities are associated with these values. Efforts

CaTDS HCOs

79.84 48.42

22t.4r r42.59
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are needed to focus on how to predict the chemical elements' values for specific locations

without observations, as well as the estimation errors
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