Applications of Higher Special Functions to some
Three-Dimensional Contact Problems in the

Classical Theory of Elasticity

by

Abdollah Darai, M.A., M.Sc.

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in the Department of Applied Mathematics

University of Manitoba March,

1985




APPLICATIONS OF HIGHER SPECIAL FUNCTIONS TO SOME THREE-

DIMENSIONAL CONTACT PROBLEMS IN THE CLASSICAL THEORY OF ELASTICITY

BY

ABDOLLAH DARAT

A thesis submitted to the Faculty of Graduate Studies of
- the University of Manitoba in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY

7© 1985

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis, to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the

thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.




Abstract

Three-dimensional contact problems, in the classical
theory of linear elasticity, can often be regarded as mixed
boundary value problems of potential theory.

In this thesis three such problems have been treated
where in each case contact, between the indenting object
(called a punch) and the elastic medium, is maintained over
an infinite region. It is assumed that a rigid frictionless
punch with a known profile has indented a homogeneous,
isotropic and linearly elastic half-space;

Chapter one is intended to serve as an introduction
where the basic physical assumptions and a brief discussion
of the equations of elastostatics are included.

In Chapters two and three the strip punch and the
parabolic punch problems are treated respectively. Applying
the theory of Mathieu functions, analytic solutions of
Laplace's equation are obtained through separation of
variables in the appropriate curvilinear coordinate system.

In Chapter four the wedge punch problem is discussed
and a partial solution 1is obtained in terms of Lamé
functions. Also some of the mathematical and physical

difficulties, inherent in the formulation of this boundary

value problem are discussed.
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Chapter I - INTRODUCTION

;P Physical assumptions and terminology

A contact problem in the theory of elasticity is
defined as a problem in which two or more bodies, at least
one of which 1is elastic, are in contact with one another
under the action of a set of forces. These forces create
certain displacements and stresses within and on the
boundary of some or all of the bodies in contact. Of course
such displacements and stress distributions also depend on
the physical characteristics of the bodies. Initially some
general assumptions are made concerning the nature of the
stresses and the displacements on certain regions. In
addition some data pertaining to the specific physical
problem is also available. Combining these assumptions and
the given initial or boundary conditions, we wish to
determine the stresses and the displacements at ali points
of the regions involved. However this may not be always
possible, due to the idealized assumptions based on the
nature of the problem and the approach taken to obtain a
solution. |

As we shall see later, for a certain class of
three-dimensional problems, one frequently encounters
singularities in the solution for some points of the regions
involved. In particular these are stress singularities
which are often of the square root type and are found on the
line which defines the contact edge, that 1is the 1line

separating the points of the material that are in contact




with the punch from the rest. Although singularities do not
appear in nature, their occurrence in such solutions is a
direct consequence of the particular mathematical model. 1In
such cases the solutions are acceptable over the regions
where no singularities appear and for points where
singularities are found it is common to make «certain
approximations based on the asymptotic behaviour of the
functions involved.

Within the last hundred years or so a number of
three-dimensional contact problems in the classical theory
of linear elasticity have been posed and either completely
or partially solved. Due to the variety of applications of
contact problems they have been classified into various
categories where each category is defined according to. the
nature of the physical assumptions and the requirements
which are imposed by a particular class of physical
problems. Thus the mathematical analysis in each case
de?ends upon the initial values of the particular problem,
if the problem is time-dependent, or the boundary values if
it is a static problem. Throughout this work we are mainly
concerned with one «class of contact problems: the
three-dimensional static punch (indentation) problem where a
rigid body (called a punch) of known cross-section is in

*
complete contact with part of an infinite elastic

%* The term "complete contact" is defined later in this
section.




half-space under the action of some force. This problem,
which can be treated as a mixed boundary value problem, will
be specified in detail later. However it should be noted
that by comparison with the two-dimensional contact problem,
the treatment of a three-dimensional problem invariably
requires more sophisticated mathematical techniques.

The literature on two-dimensional contact problems is
quite extensive and as important sources of solved problems
and references, Muskhelishvili [5], Love [3] and Gladwell
[2] may be mentioned. These problems are usually referred
to as plane contact problems and the elastic medium under
consideration is assumed to occupy an infinite half-plane.
The solutions are in most cases obtained in terms of
functions of a complex variable.

However it 1is clearly desirable to treat contact
problems of elasticity as genuine three-dimensional problems
whenever possible rather than applying methods which only
deal with a cross-section of the original problem.

Historically tHe development of elastic contact
problems can be traced back to the works of Hertz and
Boussinesq. Hertz in 1882 investigated the problem of
contact between two elastic bodies under normal loading. He
calculated the stress distribution within two -elastic
spheres which are in frictionless contact with one another.

Boussinesq on the other hand developed a solution for the

problem of contact between a rigid punch and an elastic




half-space. In 1885 he published the work that includes the
solution to the problem of determining the state of stress
within and on the boundary of a homogeneous isotropic
elastic half-space where part of its boundary is in
frictionless contact with a rigid punch under some normal
loading. He applied the methods of potential theory and was
primarily concerned with axisymmetric punches, where the
punch is assumed to be a solid of revolution whose axis is
normal to the boundary of the half-space.

The works of THertz and Boussinesq have been
substantially extended over the past years and developed in
many different ways. The problems that we have examined
belong to the 1line of investigation originating from
Boussinesq's work, and as major sources of reference in this
area, Galin [1], Gladwell [2] and Lure [4] may be cited.

Most of the research in this area has been carried out
for cases where the contact area (i.e. the area of contact
between the surface of the base of the punch and the
boundary of the elastic half-space) 1is finite, More
recently some problems have been tackled where the contact
area has been assumed to be infinite (e.g. the problem of an
infinite wedge pressed against an infinite elastic
half-space). Our work may be regarded as an examination of
some particular examples of the latter type of contact
problem. Although such problems appear to be somewhat

idealized, applications do exist notably in the area of soil

mechanics where the soil itself may be regarded as an




elastic half-space and the interaction of certain structures
or objects with the soil is the subject of inquiry (e.g.
long beams, railway tracks, etc.). A number of such
problems have been examined by Selvadurai [6]. On the whole
gince we are only concerned with deformations so small as to
be regarded as infinitesimal then the idea of an infinite
punch indenting an elastic medium which occupies an infinite
half-space appears reasonable provided there is some
restriction on the amount of energy expended in making the
indentation.

As with most models in the classical theory of
elasticity we need to adopt certain simplifying assumptions
with respect to the elastic body and its behaviour under the
pressure exerted by the punch.

It is assumed that the elastic material which occupies
the entire half-space is linearly elastic, homogeneous and
isotropic. An elastic medium is said to be linear if the
strain-stress relationship in the medium is linear. This
assumed property is sometimes referred to as the
"Generalized Hooke's Law of the Proportionality of Stress
and Strain", and its validity for many problems is based on
experimental evidence. Love ([3], Ch. 3, sec. 64) expresses
this law by the following statement: "Bach of the six
components of stress at any point of a body is a linear
function of the six components of strain at that point".

For a detailed discussion of stress and strain tensor

components the reader is referred to Love [3] and Gladwell
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[2]. An elastic medium is considered to be homogeneous' ang
isotropic if for any given point within the medium the
elastic constants are independent of the position of that
point and also the elastic properties of the continuum are
the same in each direction away from that point.

We also assume that the displacements are infinite-
simal. Suppose that a point in the elastic medium with
coordinates (x, y, z) , with respect to the axes 0X, oy,
0Z which are fixed, has moved to the point (x + u, y + v,‘
z + w as a result of deformation of the medium. If
products of derivatives of u, v, w with respect to «x, y
and z (i.e; (%%)(%% etc.) are neglected, then we say
that the assumption of infinitesimal displacement has been
adopted, Gladwell ([2], sec. 1.2).

The punch itself is assumed to be a perfectly rigid
body and in all that follows it is assumed that there is no
friction between  the punch and the surface of the elastic
medium, Certain conditions must also be imposed on the
shape of the punch (i.e. its profile and its cross-section).
These conditions will be specified later when we consider
the validity of the formal solution of the boundary value
problem.

Let S be the region of contact, that is the part of
the boundary of the elastic half-space consisting of those
points which after deformation are in contact with the

displaced surface of the base of the punch, and let S be




the region of the boundary of the half-space outside 'S .
Assuming that there is no loading outside the contact region
(i.e. on B8) we can take the normal component of stress to
be zero on S .

Now the problem which has been specified up to this
point, namely that of a rigid frictionless punch indenting
an elastic half-space under the idealized assumptions, may
further be classified into two &essentially different
problems (cases (a), (b) below). This distinctioﬁ is made
according to the shape of the base of the punch.

(a) In this case, there is smooth contact between the
base of the punch and the elastic medium. Examples include
punches which have convex bases so that the stress on the
boundary of the elastic medium is continuous everywhere,
zero outside the punch (i.e. on S) and at the edge of the
punch. In problems of this type the shape of the contact
region S is known a priori, but its dimensions depend on
the force that is applied to the punch (figures (1) and
(2)) . For instance S could be a circular disc whdse
radius increases as the punch is pushed further into the
medium. Such cases are usually called incomplete contact
problems.

(b) This case consists of problems where the shape
and dimensions of the contact region S are fixed, and

increasing the load on the punch, by a small amount, will

not change the region S but rather change the distribution




of stress (or pressure) under the punch as well as displace-
ments outside the punch. Of course this situation occurs
only in the infinitesimal theory of elasticity. Such a
punch will have a ridge which will separate the regions S
and S by a sharp edge. Figures (3) and (4). In this case
the normal component of stress is still zero on S but will
have a square root type singularity on the edge (i.e. the
line dividing S and § ). For example if the base of the
punch is completely flat, increasing the‘load on the punch
will not alter S , but the pressure distribution under the
base of the punch will be changed. Such cases are referred

to as complete contact problems.

| ’

“Dizrirn’ / //////, /2 7 !

Figure (1) Figure (2) Figure (3) Figure (4)

Initially, in the discussion of the equations of
elasticity aé they apply to punch problems, there is no need
to distinguish between the above cases. The point at which
a distinction has to be made between the two types of
problems (a) and (b) is where the boundary conditions
are being outlined for a particular problem. In both cases
the normal component of stress is taken to be zero on 5
and continuous on s . However 1in case (a) an extra

condition 1is imposed, namely that the normal component of

B T



stress is zero on the edge of the region S ,' whereas
solutions of problems of type (b) are expected to give rise
to a square root singularity for the normal component of
stress on the edge of the punch. It may be noted here that
the problems that are discussed in the subsequent chapters
will be of type (b) , where the base of the punch may be
oscillatory (i.e. not necessarily flat) and have a sharp

edge (e.g. figure (4)).

1.2 Coordinates and the mixed boundary value problem

We start off by employing the usual Cartesian
coordinate system whereby the z-axis points into the elastic
medium and the origin together with the x and y axes are
placed on the undisturbed surface. We also fix a set of
rectangular coordinates (&, n, z) within the punch in such
a way that the origins of the two systems coincide, (x, y)
and (€, n) coincide and the r¢=-axis coincides with the
negative z-axis, figure (5) (in this we have followed

Luré's description closely; Luré ([4], Ch. 5).

Q

Y

Figure (5)

T T M
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‘Suppose under the specified conditions a punch of a
given profile r = £(&, n) 1is pressed vertically into the
medium under the action of a certain force O which ig
applied to the punch in the direction of the z-axis. To
simplify matters, the line of action of Q is taken to be
the z-axis. This implies that the displacements of the
punch and the points of the medium are only translational
and there are no rotational displacements.

It is also assumed that

£(0, 0) = 0, (57 =0, (57) 0 .

£=n=0— E=n=0-

We wish to determine the displacements on the boundary
z = 0 of the infinite elastic medium on S (i.e. outside
the contact region), as well as the normal component of
stress on S (i.e. within the contact region).

Let (x', v', z') be the coordinates of an arbitrary
point on the surface of the punch with respect to the x, y,
z axes after the punch has been pressed into the medium.

Then if € is the vertical displacement of the point of the

surface originally at (0, 0, 0) , we have

x' = ¢
y' = n
z' = e~ f{gr n) .

If we now let (x, v, 0) denote the coordinates of

the points of S which after the deformation of the medium

correspond to (x', y', z'), then we have
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E x' = x +u
y' =y + v
z' = w

where u, v and w represent the components of displace-
ment of points of the deformed body, and each of these

components is a function of x, y and z .

So u= £-XxX
v=omn-y (1.1)
w=¢e¢=- f(x +u, y +v) .

Now if the profile function f is such that
£((x +u), (y +v)) - £(x, ¥)

is small compared to ¢ , then for (x, y) ¢ S , we can take
e - f£(x, y) as a close approximation to w , the normal
component of displacement. We observe that since we are
only concerned with small displacements then the above

approximation is reasonable provided ‘%g(i, n)l and

%%(E, n)[ are small enough. In the following chapters
where certain punch problems are treated as boundary value

problems, one of our boundary conditions will be
w=c¢- f£(x, yv) , for (x, y) € S .

Clearly if the punch is flat, then w = & inside S .
The components of displacement wu, v and w can be
found from a set of relations derived from the Papkovich-
Neuber solution to the problem of elastic equilibrium, which

will be discussed shortly.

I
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The following three conditions then give rise to a
mixed boundary value problem, which is sometimes called a
boundary value problem of the third kind, where the stresses
are given on some part of the boundary of the body and the
displacements are given on the remaining part:

(a) w 1is prescribed on S ,

(b) the normal component of stress, i.e. Tyy is

zero on S ,
(c) since we are assuming zero friction between the

punch and the boundary of the elastic medium, the

shearing stresses on the plane =z = 0 are taken
to be zero, i.e. Tez = Tyg = 0 for all (x, y)
on z =20 .

Thus a vertical force Q is applied to the punch as
the result of which the punch indents the elastic medium and
in order to maintain the equilibrium it is assumed that the
same force is applied indefinitely (i.e. it is not altered
at any time). The application of this force puts the region
S under normal pressure p(x, y) the distribution of which
is initially_unknown, but we have

0 = | [p(x, y)dxdy .
]

If we neglect rotation and only consider translation
of the punch into the medium, then for the case of the flat
punch, which is a complete contact problem, the region S

has the shape and the area of the cross-section of the punch

and the normal component of stress Téz has a discontinuity
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on the edge of the punch, whereas for the smooth rouﬁded
punch (i.e. where %g ' %5- are both continuous on the edge)
the contour of the region S is the intersection of the
surface of the punch with the plane ¢ = constant . On this
contour the normal pressure p is zero and T,z is
continuous on the entire plane z = 0 .

Also the direction of the line of action of the force

Q 1is restricted since we are assuming absence of friction.

1.3 Introduction of the potential functions

The problem of static equilibrium, and in particular
the problem of determining the state of stress in an elastic
half-space where part of its boundary 1is subjected to a
normal force Q , can be reduced to a boundary value problem
in potential theory. The 'displacement and the state of
stress of an elastic medium under normal loading, where the
normal component of stress L. is prescribed on part of
the boundary, the normal component of displacement is given
on another part of the boundary, and shear stresses are
absent, can be determined when we have found a function
v(x, y, 2z) which is harmonic everywhere except on the

region S of loading and vanishes at infinity with the

following behaviour:

L/ % where Q = | [pdxdy , and
: S

2 2)1/2

24 y© + z

R = (x

T
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Then the Papkovich-Neuber solution

2pd = 4(1 = vy - V{(r » ¥) + ¢} (1.2)
(see Gladwell [2], Ch. 1, sec. 1.10)

to the problem of elastic equilibrium can be used to arrive
at the required stress and displacement components.

In (1.2), d 1is the displacement vector, r is the
position vector of a field point, ¥ and ¢ are a pair of
vector and scalar functions respectively which in the
absence of body forces satisfy Vzw = 0 , and V2¢ = 0 ;

v is Poisson's ratio and u is the shear modulus (both
constants) .

Following the notation of Gladwell ([2], sec. 2.5), we

consider the special case where ¥ is chosen so that

p = (0, O, ¥V . Then for the components of displacement

d = (u, v, w) we have
2uu=-z%%--g-j—z- (1.3a)
o ., v _ 3
2uv Z 3y 3y (1l.3b)
e = - o Yy 29 ’ ‘
and 2uw = 4 (1 V) Y (z 2 + ¢y + az) (1.3¢c) .

The corresponding components of the stress tensor are

given by
N R o B o o, g5
Tz = | V) % T % oz 5% 52 .
N _
T o= (L -2v) ¥, 3% 32 ¢

yz G Sy oz ~ Oy (1.4b)
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/] 2 .
- _yy 2o, 3% 2%
tgz = 2(1 - v) -z ne Rula- (1.4c) .

For zero shearing stress on 2z = 0 we have

Tz (Xr ¥r 0) = 1, (%, y, 0) =0 for all x and vy .

vz
So if lim {z ——g— , -—i— , ——y—} (1L.5)
- 9X932 Byaz Bz
then (1 - 2v)p = g% (1.6)

and consequently the normal component of stress is given by

2
T =—Bﬂl—zi_w_

ZZ 92 822

In particular for z = 0 we have
wix, v, 0 = 22y, v, 0)

. 9 :
and T, (X0 1 0) = 2o(x, y, 0) (1.7a,b).

: It can be shown that this special case of the
Papkovich-Neuber solution is satisfied by a representation

of ¢ in the form

Vi, v, 2) = i=[] aiz%;zLL dx'dy (1.8)
S
where Rl = [(x - x‘)2 + (y - y') + z ]3'/2 is the

distance from the point (x, y, z) of the elastic medium to
the point (x', y', 0) of the surface. This representation
is known as the Boussinesq solution to the mentioned contact

problem and provided

lim (z _HL) =0 for (x,y)e S, (1.9
z=>0 az

|
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then g(x, y) can be taken as the normal pressure p(x; )

applied to the region S of the boundary so that

Tpz (X, ¥, 0) = = p(x, y) for (x, y)€& S .

Considering various partial derivatives of V¥ , where

y is given by (1.8), it may be shown that the limits in
(1.5) are all zero. For a discussion of these derivations
the reader is referred to Gladwell ([2], sec. 2.5). It
should also be noted that the Boussinesqg solution can be
obtained by first finding the solution of the elastic
contact problem where a concentrated force is applied in a
direction normal to the boundary of the elastic medium.
This solution can then be generalized to one where a set of

point forces are applied in which case the solution will

have a series representation. Finally the series represen-
tation may be replaced by the integral representation (1.8)
if the applied force 1is assumed to be distributed over a
region of the boundary of the elastic medium (see Lure [4],
sec. 2.5).

Now if ¥(x, y, 0) 1is known on S (i.e. w(x, y, 0)
is known on S) , then p(x, y) can be obtained on S from
(1.8) and once p(x, y) 1is known then V¥ (x, y, z) can be
obtained, again from (1.8), but the mathematical procedures
involved in solving the integral equation (1.8) are often
complicated and lengthy (see Lure [4], sec. 2.5) and we
shall follow a different approach to obtain V¥ , namely that

of solving ILaplace's equation through separation of

IIIIl‘I.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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variables by choosing a suitable coordinate system.

The function V represented by (1.8) may be viewed as
the potential of a simple layer of intensity Plx, ¥)
distributed over the region § .

From the boundary conditions we have

W_ o for z = 0 outside § .

Wxo o 0) = oy W ¥, 0) = pirle - £k, )
inside S and

(12 =

0Z .

Z=>{+ 0 outside S

Given the above boundary conditions the associated
boundary value problem can be solved through a suitable
choice of a curvilinear coordinate system provided S can

be fitted into such a system as a normal surface.

1.4 Luré's and. Shail's methods and the difference between

them

Luré ([4], sec. 5.2) reduces the problem to that of
finding the potential of a simple layer distributed over
some surface S* when the potential w*(x, Y, Z) on S*
is given and is continuous. This resolves into two problems
which may be called the internal and the external Dirichlet
problems. The internal Dirichlet problem gives ¢i(x, Y @),
harmonic within S* , such fhat wi(x, Y, 2) = w*(x, v, Z)

* . .
on S , and the external Dirichlet problem gives

‘ ,
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. " * .
lg(x, Y, 2Z) which 1is harmonic outside S , and behaves

’ . ¥ * . E
like Z%E at infinity. Also we(x, Yre 2) =V (x, ¥y, 2) on
s* .
* (] *
wi inside S
We than have 1]

*
we outside S

Now suppose S* belongs to a family of surfaces
depending on a single parameter s . Let S* be given by
some particular value of s , say s = s* , and let S0 be
the surface that corresponds to s* = 0 , where it is
assumed that SO takes the degenerate form of a flat region
on the boundary of the elastic medium. It is assumed that
SO is the same region as S , i.e. the region over which
the punch is applied. Then

v(x, ¥y, 2) = lim Vo (X, ¥, 23 S¥)
g*=>(

represents the harmonic function which is equal to
U(x, y, z) at points of S and is a potential of a simple

layer distributed over S . Hence when

p(x, vy, 0) = Tl—‘L\))[E - £(x, y)]

is prescribed on S , then V(x, y, z) will represent the
solution to the particular punch problem.

Using this approach some punch problems have been
solved by employing the appropriate coordinate system.
Among others, the flat circular punch and the circular punch

with a rounded base have been solved using oblate spheroidal

—
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coordinates (see Luré [4], sections 5.4, 5.5). .

In almost all the examples solved by Lure ([4], Ch.
5), the internal and the external harmonic functions are
found in each case. The reason for this seems to be that in
order to find the pressure distribution under the punch he
is employing the expression

, Blbe'(xr Yr 2; S¥) o, (%, ¥y, 2i S*)
llm [ a - a }
a*=>() n n

*
where n 1is the external normal to S . However since the
pressure distribution under the punch is known when the

normal component of stress, over the same region, is known,

oY

dz|z=0 '

could ignore the internal solution, wi , and only evaluate

and this component of stress is given by then one
the external solution we .

A number of similar problems have been solved by Galin
([11, Ch. 2). PFurthermore Shail [7] has solved the elliptic
punch problem, where complete contact is assumed, by using
the ellipsoidal coordinate system.

The method of coordinate surfaces described above is
limited in the sense that it can only be used where an
orthogonal curvilinear coordinate system can be found to fit
the punch, i.e. one of the degenerate surfaces of the
coordinate system must be the same as the contact region S .
Also Laplace's equation must be separable in this coordinate
system, However if such a coordinate system can be found,
then the punch profile can be moderately general and we may

still be able to obtain a solution of the boundary value

Illll.h.IIIllIIIIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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problem: On the other hand some other techniques such as

the intergral equation method mentioned in section 1.3 may

ot R e A

allow us to consider more general contact regions, but then

the punch profile is usually restricted to fairly simple 1

forms. |
The difference between Luré's description of the

problem and that of Shail's may be summarized as follows.

Luré treats the general problem of finding a relation

between the force Q acting on the punch and the displace-

ment € of the base of the punch at the origin. He also

assumes that the cross-section of the punch is known but

since the force Q is not fixed, and its variation is

allowed to produce variations in the contact area S as

well as in the displacement e , then the actual contact

area can be determined if Q 1is given and vice versa (using

the condition that the normal component of stress is zero at

the contact edge). That is to say he is mainly interested

in problems where there is incomplete contact, although he

does discuss some problems where the base of the punch is

flat. Introducing such variables into the problem has

certain obvious advantages, but it should be noted that one

also has to restrict the shape of the punch profile. This

restriction in most cases requires that the base of the

punch be a surface of revolution, i.e. with axial symmetry,

and be convex, so that the shape of the contact region

remains fixed although its area increases as the force Q

IIIIll‘.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIJ
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increases (e.g. we may be dealing with an expanding circle,
see Luré [4], sec. 5.5).

Shail [7] in his treatment of the elliptic punch
problem assumes that there is complete contact. That is to
say a force Q has been applied to a punch whose profile is
described by a function h(x, y) and consequently the punch
has imbedded itself into the elastic half-space. This force
o] is then assumed to be fixed throughout the problem 80
that the contact region S is known a priori and does not
change. However the shape of the region S , prior to
complete penetration, may go through various small changes:
He also assumes that the displacement within S 1is known
and it too does not change. So w(x, y, 0) = h(x, y) for
(x, y) € S , where w is the vertical component of dis-
placement of the elastic medium. However as expected in
such cases where there is complete contact, his solution
does involve a stress singularity, of the square root type,
on the edge of the punch.

Shail gives the solution of the case where h(x, y)
is a polynomial of arbitrary degree in x and y so that
it has a representation as a finite sum of ellipsoidal
harmonics. He also remarks that his analysis appiies to a
wider class of functions than polynomials. This in essence
is the advantage of his approach4to the punch problem in
comparison to Luré's.

In the problems that we have been dealing with, the

contact region S is taken to be infinite which necessarily

—
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places a restriction on the shape of the base of the punch
in order to avoid situations involving infinite force or
infinite displacements. Clearly in such cases a punch with
a convex profile will not do.
i We have thus opted for Shail's approach where the
| contact region S and the normal displacements on S are
prescribed. In fact we take w(x, y, 0) = h(x, y) for
(x, v) € S . However the force Q which is required to
keep the punch at its position of complete penetration into

the elastic half-space can be determined from

0= [ [p(x, y)dxdy
S

where ©p(x, y) 1is the pressure distributed over the region

S and is given by
p(x, y) = = Tzz(xl vy, 0) for (x, y) € 8,
and Téz(x, y, 0) can be obtained from
Y _ _
Tzz(xr y, 0) = B—Z(x' vy, 0) .

Furthermore the function ¢ , which is required in the
derivation of the components of displacement u and v

(1;3 a, b) can be found from (l1.6) and (1.8)

o(x, y, 2) = -(1—2}—2—2L [ [In(z + Ryp(x', y")dx'dy"'.
S

S



[2]

[3]
[4]

[5]

[6]

[7]
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Chapter 2 -~ THE STRIP PUNCH PROBLEM

2.1 Introduction

This chapter aims at a mathematical analysis of the
case where the punch occupies an infinite strip, its profile
being arbitrary and subject only to the limitations of what
is physically reasonable. Following the approach outlined
in Chapter one, the elastic medium is assumed to occupy an
infinite half-space and to satisfy the idealized conditions
of linear elasticity. That is to say, it is homogeneous and
isotropic, and the contact between the punch (which 1is
assumed to be perfectly rigid) and the medium is complete
and frictionless. Mathematically the problem may be
regarded as an exterior mixed boundary value problem for
Laplace's equation, which can be treated by transforming to
the elliptic c¢ylinder coordinate system. Applying the
method of Separation of variables and using Fourier trans-
forms the general solution for this problem is obtained. As
already mentioned (Ch. 1, sec. 1l.4) this technique has been
used for a punch of circular or elliptic cross-section, but
the extension to a punch of infinite cross-sectional area
introduces additional conceptual and mathematical
difficulties.

From the existing literature on related problems, the
works of Rvachev and Protsenko (V.L. Rvachev [8], [9]: V.S.
Protsenko, and V.L. Rvachev [7]) may be mentioned. The

problem which bears closest resemblance to that described in

—
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the last paragraph is to be found in Rvachev [8]. However |
Rvachev solves the problem for a special case and later in

the same article indicates an approach for the general case.

His technique differs from that which we have employed in ?
several ways. As it is suggested by the title of Rvachev's
paper, he is primarily concerned with obtaining the pressure
on the elastic half-space under the punch. On the other
hand we seek a harmonic function ¥  which not only gives
the pressure under the punch (which is the negative of the
normal component of stress, Tzz(x, vy, 0) = ?%(x, y, 0)) but
also gives the other components of the stress tensor as well

as the normal component of displacement outside the contact

region, i.e. on § . For a general punch problem, the

regions S and S were defined in Chapter one (sec., 1.1).
In this case S is an infinite strip on the xy-plane, of
uniform width, and § 1is the region of the xy-plane outside
S . As mentioned in Chapter one, since we are dealing with
a complete contact problem, the solution will involve stress
singularities on the edges of the punch and consequently the
two lines which separate S and S are excluded from
either of these regions.

Let thé contact region be defined, in terms of the
Cartesian coordinates (x, y, 2) , by =o< x <o ,

|ly] < £, =z =0, where £ is a constant. Rvachev [g]

takes the following solution which is a relationship between
the normal component of displacement, w(x, y, 0) , under the
punch and the distribution of pressure, p(x, y) , over the

same region:

|
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S s " p(x', y') o
wix, y, 0) = f f dx 'dy

where u and \V are the elastic constants defined in
Chapter one (sec. 1.3).

This is Boussinesq's solution with z = 0 (Ch, 1,
equation 1.8). Rvachev solves the integral equation for

p(x, y) by letting

w(x, v, 0) = g(\, y)cosAix , where A 1is an arbitrary

parameter.
Furthermore he assumes that gl vy can be

represented as an infinite series in Chebyshev polynomials,

i.e.

B g -
g(r, y) = s T (¢ -

Il t~138

n=0
Then if p(x, y) = ¢(A, y)cosix , for |y| < £, ¢
will satisfy
I =% ff
U

glky y) = o(X, E)K (Aly = E[)dE

where KO is the wusual modified Bessel function of the

third kind.

Finally ¢ is obtained as a Mathieu function series

in n , where n = arc cos % :
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¢( \fcosn) =
o = (-1)*af?V Feks, (0,-q)
; 2s e
(1-v) |sinn] soi£0 FekZi(o’-q) e21(”' q) +
i Lo® (1) A(Zl)Fek' L (0,-q)
+ . | . _ -
n£1( ) Sznizo 21(0_, 7 €23 ()
- o i, (2i+1) -
+ 7 (-1)"s ) (-1) "Agny1 Fekjip (0m@) —
n=0 2n+lj_=0 FEK2i+l(O: q) 2i+1

In this expansion

= % fng(k, fcos®)de , S, = % fﬂg(k, fcos8)coskade,

S
0 0 0

, 0 ¢<n< mand, cei and Feki

are Mathieu functions (which will be discussed later in this
chapter) .
Theoretically one can obtain the harmonic function Y

from

£
1 ® P(X'r y') g
Vi(x, y, 2) = 5= [ | dx'dy’.

However, as it is pointed out by Luré ([3], sections 2.6,

2.7), this integral is not easily evaluated.

_
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In what follows, rather than using the integral
equation approach of Rvachev, we use separation of variables
at the start and thus construct the solution ¢ directly.
Moreover instead of taking a somewhat special representation
for the normal component of displacement, w , under the
punch (i.e. the shape of the punch profile) we allow it to
be discribed by a more general function whose behaviour with
respect to the various variables is finally determined by

certain conditions which have to be imposed in order to

guarantee convergence of the solution. In terms of

Rvachev's analysis this means w(x, y, 0) = g(X, y)cosh x

is to be replaced by w(x, y, 0) = f g(A, y)cosixd\ , and
0

of course his final expression for the pressure under the
punch must then be integrated with respect to A from zero

to infinity.

2.2 The elliptic cylinder coordinate system

The elliptic cylinder coordinates of a point are given
by the wvariables (x, n, &) which are related to the

Cartesian coordinates by

X = X
y = £ coshg cosn (2.8.1)
z = f sinh& sinn

where -y < n<mw, and £ > 0 .

The sufaces corresponding to £ = constant consist of

a family of confocal elliptic cylinders; that for which

i
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o 1is such that its section by the plane x =0 is an

ellipse with foci (0, +f, 0) , eccentricity sechEO . For
? £ =0 we get the degenerate surface consisting of an
infinite strip in the xy-plane of finite width 2f . This
is merely the case of an elliptic cylinder of eccentricity 1
with zero minor axis and finite major axis, 2t . The
surfaces corresponding to N = constant are portions of
confocal hyperbolic cylinders which are normal to the

surfaces & = constant

2.3 Separation of Laplace's eqution in elliptic cylinder

coordinates
In terms of (x,n, &) , Laplace's equation Vzw =0
is given by
2 2 2 .
__3‘34, 5 2 (a‘g+a‘2")=o (2.3.1)
ox f° (cosh2&-cos2n)  3& an
Let ¢ = X(x)F(£)G(n) , then
" 11
Fo gt () -0
£f° (cosh2&-cos2n)
The separated equations are:
X" = oX (2.3.2a)
Frot (-]é'—o&fz cosh2f - B)F = 0 (2.3.2b)
G" + (B - Zof? cos2n)G = 0 (2.3.2¢)

where o and B are separation constants.

IIIll‘.IIIIIlIIlIlIIlIIIIIIIiIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
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" Equation (2.3.2¢) is Mathieu's equation and equation
(2.3.2b) is the modified Mathieu equation.

In making use of Mathieu functions, we shall follow
the notation of McLachlan [4]. He writes the standard form
of Mathieu's equation as

2
g—%'+ (A = 2q cos2z)w = 0 (2.3.3)

dz
but the parameter g may be positive, negative or complex.
It will shortly be shown that in the strip punch problem,
the separation parameter o (of equations 2.3.2) must be
real and negative, hence g 1is also real and negative.

We shall therefore write

and quote the necessary information on Mathieu functions in
this form, i.e.

2

o]

W 4 (A + 2n% cos2z)w = 0 (2.3.5)

2

z

There are four types of basically periodic solutions
(i.e. of period T or 2m) called Mathieu functions of
integral order of the first kind. Two of these are even
while the other two are odd, and they are expressed by the

following expansionék@ee McLachlan [4], Ch. 2)}:

co

e (z,—hz) = ZVA(ZH)(—hz)cos P g (2.3.6a)
n r=Q 2r
v e
Cezn+1(zr‘h2) E Aéﬁﬁll -h?)cos (2r+1) z (2.3.6b)

*

Graphs of ce ce and ce, , for certain wvalues of h,

0’ 2 4
are provided on page 57.
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se, ,1(z,-h?) = réoBéiﬁzl)(-hz)sin(2r+l)z (2.3.6¢c)
seynyp (2:7h%) = raoBéiﬁzz)(-hz)sin(2r+2)z (2.3.64d)

It should be noted here that the above four functions
are possible solutions of equation (2.3.5) provided A
(which is dependent on h2) takes one of the set of infinite
real values called characteristic numbers. The correspond-
ing characteristic values of )\ for the expression (2.3.6a,

-h%), a

b, ¢, d) are denoted respectively by a 2n+l(—hz),

2n(
b2n+l(-h2) and b2n+2(—h2) , where n is a positive
integer or zero. We also know that in this case (i.e. when
the equation has as solution a periodic Mathieu function of
one of the four types above) the second solution 1is not
periodic (see Arscott [1], sec. 2.4.1).
If for equation (2.3.2b) we take the standard form as
5_7 - (A + 2hzcosh 2z)w = 0 (2.3.7)
Z

then the four solutions with period i and 2wi are given

by McLachlan [4] in the following forms:

2, d. .20 _ % o(2n) .2
Ce, (z,-h%) = ce, (iz,-h%) = EOAzr (-h“)cosh2rz
(2.3.8a)
2, d. (o2 T . (2n+1) 2
Ce, ,q(z,mh%) € ce, ) (iz,-h%) r£0A2r+l (-h“)cosh(2r+l) z

(2e3«Bhb]

‘i



32

'_2 d. ] ' 2
e2n+l(z' h®) = -i se2n+l(1z,-h )
v o (2n+l) 2. . |
rzo Byiyy  (-h7)sinh(2r+1)z
(2.3.8c)
2y He _s .o, 2
Se2n+l(z, h™) =° =i se2n+l(1z,—h )
_ % L (2n+42) , .2, .
= rzo B2r+2 (=h®)sinh(2r+2) z
(2.3.84d)
and the corresponding characteristic values of A for
Ce (2, -hz) and Sem(z, —h2) are the same as those for

2

ce (z, -h?) and se_(z, -h%) , i.e. a_(-h%) and b_(-h?%

an
respectively.

We have, of course, many possible ways of choosing a

2 24
) (or Sem(z, -h“)).

2

second solution independent of Cem(z, -h

One such solution is denoted by Fekm(z, -h®) (or

Gek (z, -n?2

) respectively). These functions are
expressible in infinite series of the K-Bessel functions
(sometimes called the modified Bessel functions K,) . For

example

2
ce., (0,h") ®
%gn) 2 z (_l)rAéin)
ﬂAo (h®) r=0

n

Fekzn(z,-hz) = =1 (hz)Kzr(thoshz)

(McLachlan [4], sec 8.30) .

The usefulness of Fek2n(z, -h2) lies in its asymp-
totic behaviour as z -> » ., The following asymptotic forms

are given by McLachlan ([4], sec. 11.12):

IlllIlli.IIIllllllllIlIlIlIIIIIIIIlIIlllllllllllllllllIlIIIIIIIllllllllllllllllllllllll
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PY_(h) _
2n v l/zev

( )% y @s z =>° (2.3.9)
27

e, (z,-h%) -

- Py _(h) _ -
FEkzn(Z,-hz) ~ —irl—ﬂy—- v l/ze u ’ as Z => % (2.3.10)
(2m) ™
where

Phn(h) = (-1)Pce, (0, h¥)ee, (%, b%)/af?™ )
and

v = he? .

As we shall see in section 2.5, it is precisely the

2

behaviour of Fek2n(z, -h®) , as 2z => ® , which enables us

to choose this function as one of the solutions to the

boundary value problem.

Finally we note that writing (T—;- - z) for z in
(2.3.3) (which is the standard form of Mathieu's equation)
will give the relationship between ce2n(z, -hz) and the

standard solution:

?T .
ce, (z, —h2) = = By h2)

n
(1) "ce, (3

(-1 I (-l)rAéin)(hz)cos 2rz .
r=0

It can also be shown that —hz) = azn(hzj (see

a2n(

Arscott [1l], sec. 3.3.1).
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2.4 Formulation of the general boundary value problem

Consider the half-space z > 0 occupied by a
homogeneous, isotropic, linearly elastic medium. On the
surface z = 0 let S denote the infinite strip |y| < £ ,
X e (==, ») , and let S be the region outside § ,
ly] > £, x € (-», ) . A rigid frictionless punch is
applied to the region S , its profile being given by a

function K(x, y). Contact is assumed to be complete every-

where on S , (figures (1), (2), (3)).

eﬂﬁ)‘ X
_ S 72?%%77‘ﬂ4ﬂﬂﬂ/
)
t
; v
» z
*
z
Figure (1) Figure (2) Figure (3)
The region § 1is assumed to be stress free (TZz =0
on S). For zero shearing stress on z = 0
(iee. T__(x, y, 0) = T_(x, y, 0) =0 , for all x and y),

X2z vz

the set of equations (1.3 a, b, ¢) , (1.4 a, b, ¢) , (1.6)
and (1.7 a, b) of Chapter one can be employed to solve the
boundary value problem for Vzw = 0 . Of particular inter-
est are kl.? a, b) since they give the relations between y
and the normal components of stress and displacement on the

boundary 'z =0.




The boundary condition can be stated as:

w(x, y, 0) = K(x, y) on S

i
.

TZZ(X, vy, 0) =0 on

Hence we seek a solution to the boundary value problem

for the harmonic function ¢ , where for the elastic medium

we have

(ii1) %; = 0 on S
(iv) 1;—&—2L V(x, y, 0) = K(x, y) on S

where K(x, y) is some prescribed function and Vv , U are
elastic contants defined in Chapter one, section 1.3.

The function K(x, V) can always be expressed as the
sum of four functions each having symmetry or antisymmetry
about one of the axes x =0 , v = 0 , and because of
linearity we can superpose solutions corresponding to these
four functiéns. To simplify the analysis, therefore, we
shall assume that

(v) K(x, y) is symmetric about y

0

(vi) K(x, y) is symmetric about x 0 .

Consequently in terms of x and n we define

H(x, n) = TI—%—;T K(x, f cosn) .
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. m
H(x, n) 1is then symmetric about n = 5 and x = 0

2.5 = The general solution of the boundary value problem

We now transform to the elliptic cylinder coordinate
system where n will be restricted to 0 < n < 7T since we
are only concerned with the half-space occupied by the
elastic medium. Separating Laplace's equation in this
coordinate system we obtain equations (2.3.2 a, b, c); and
conditions (i) to (vi) of section 2.4 become:

(i)'  equation (2.3.1) holds for £ e (0, =) ,

ne (0, 7y and x € (-%, )

(ii) " Y =>0 as |x] -> » or & -> ® , for
ne [0, 7
(1ii) " since
9 cosh& sinn 9, _sinh& cosn 3
oz o0& n

f(sinh25+sin2n) f(sinh2€+sin2n)

and S is the region where £ > 0 , n=0 or

m™ , then gg = 0 on S 1is equivalent to

—~_...__1 aw- = = T
Fsinh 31 = 0 at n= 0 and n (where

£ e (0, 9 and x € (=% ©))

(iV)' Y(x, n, 0) = H(x, n) , where n e (Ol T
X € (-« < and

H(x, n) d -(*l‘_%”\)_)K(X’ y)
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1}

(v)? H(x, n) is symmetric about n

o N

(vi) ! H(x, n) 1is symmetric about x

il

For X in (2.3.2a) to be finite o must be negative.

Let a = ~k2 Jo)
X = A coskx + B sinkx (2.5.1)

Since the solution V¥ is assumed to have the form

= X(x)F(&)G(n) , we require X(x) and G(N) to have
properties corresponding to the symmetries of H(x, n) given

by (v)' and (vi)' . 1In the first place (vi)' implies that

X = A coskx .

Also since o = --k2 , Lf we let k2f2 = 4h2 , then equation
(2.3.2c) becomes
G" + (8 + 2h2 cos2nm)G = 0 (2.5.2)

but from (iii)' we have G'(m) G'(0) = 0 which implies
that G is a Mathieu function of the first kind (i.e. of

period ©® or 271) (see Arscott [l], sec. 2.1.1l., theorem

3), and G'(0) = 0 implies that G must be cezn(n, —hz)
2 ) ] 2
or ce2n+l(n, -h®) . Finally from (v)', G(n) = cezn(n, -h*)
and hence we can let g = a2n(—h2) .
Next equation (2.3.2b) implies that
F" + (-2h® cosh2f - a, )F = 0 (2.5.3)
sO0 we can choose CeZn(E, —h2) and Fek2n(E, -hz) as a

pair of linearly independent solutions of (2.5.3). However
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condition (ii)"' requires that the general solution tends to
zero as & => «, and as explained in section 2.3

Fek, (&, -h2)  is the only one which shows this behaviour
(see sec. 2.3, (2.3.9) and (2.3.10)), so we must exclude

2y

Hence a separated solution is of the form

the solution CeZn(E, ~h

o]

2hx 2 2

v "y (x, n, &, h) = Bn(h)cos—-f-—cezn(n, ~h )Fean(i, ~h™)

n n

where n is an arbitrary non-negative integer, h is an
arbitrary non-negative parameter and Bn(h) an arbitrary
constant, written in this way since n is an integer-valued
parameter while h 1is continuous.

The above solution 1is however a single separated
solution and cannot be expected to satisfy the remaining
boundary condition (iv)'. Since the parameter n is
discrete whereas the parameter h is continuous and can
take any value from zero to + it is natural to superpose
solutions by summing over n from zero to += and inte-
grating with respect to h from zero to +» . The coef-
ficient Bn(h) can then be determined if we let the general
solution satisfy condition (iv)'.

A general solution is thus given by

* 2hx

35 B, (h)cos=F=ce, (n, -h“)Fek, (¢, -h

p o= f )dh (2.5.4)
0

n
Ignoring questions of convergence for the moment, and

proceeding formally with the solution, (iv)' implies

14
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. L e 2 ohx |
H(x, n) = 'é go ¢, (h)ce, (n, -h)cos <= dh (2.5.5)

n

2

where Cn(h) = Bn(h)Fean(O, -h*)

Writing (2.5.5) as

H(x, n) = [“g(h, n) cos 2%§ dh
0
where g(h, 1) = [ c_(h) ce, (n, -h?) (2.5.6)
n=0 '

and using the Fourier cosine transform formula, we get

g(h, n) = = [H(x, n) cos 2BX g4 (2.5.7)
fr 0 £

(provided the integral exists).
Multiplying both sides of the above equation by
ceZm(n, —h2) and integrating with respect to n from zero

to m , we get:

o)

7 -2 2
fo ngo C,(h)ce, (n, -h%)ce, (n, -h%)dn
: ™ oo .
= "2 ce, (0, -h?) [TH(x, n)cos X ax an (2.5.8)
0 0

Still proceeding formally we interchange the order of
integration and summation on the left-hand side of (2.5.8)
and use the orthogonality of Mathieu functions (see
McLachlan [4], sections 2.19, 2.21) to deduce that the left-

hand side is equal to g Cm(h) . Therefore




8
fr%Fek, (0, -h?) 0

By (h) =

X cosg%§ dx dn

Having evaluated
problem is then given by
elastostatics (1.3 a, b, ¢

ding displacements and

m
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o 2
[" H(x, n)ce,_(n, -h*) x
0 2n

(2.5.9)

the 1 of the

B, (h) solution

(2.5.4).' From the equations of

) and (1.4 a, b, c) the correspon-

stresses can be obtained. - In

particular the normal component of surface displacement
outside the punch (i.e. on S ) is given by (l1.7a), namely
w(x, y, 0) = (1 ;\)) p(x, y, 0)
=) F 2hx 2y
'—_—3___J5 nZO B (h) cos® ce, (0, -h) x
x Fek2n[cosh-l(i%l>, -h%1an .

Moreover, wusing (1.7b), (iii)' of section 2.5 and
(2.5.4), the normal component of stress under the punch
(i.e. on S ) can be expressed by

: 3
Tzz(xr ye 0) = 'é_i)' (x, y, 0)
= (82 - yH T2 [T 1 B_(h) cos?lE
0 n=0
x ce, [cos 1 (%), -h?IFeky (0, -h%)an (2.5.10)

where |y| < £ .
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We observe that the stress function (2.5.10) has
singularities at y = + £ , i.e. at the edge of the contact

region. As mentioned in Chapter one, in punch problems
where complete contact is assumed, one expecté to find
stress singularities of the square root type at the edge of

the contact region.

2.6 Validity of the formal solution

As already stated the analysis of the previous section
is purely formal and its validity depends on the behaviour
of the prescribed function H(x, n) . For a given profilé
H(x, n) ., naturally'one can examine the iterated integral
(2.5.9) for convergence and for differentiability with
respect to x , & and n , then proceed to a corresponding
investigation of the expression for ¢ in (2.5.4) . We can
say that we have obtained an actual solution of the problem
provided the profile H is sufficiently well-behaved for
the formal steps indicated by (2.5.9) and (2.5.4) to be
valid. This is to be expected from a ‘"physically
reasonable" profile. One would like, however, to do better
than this, and here we attempt to give conditions on H
which are sufficient, though not necessary, for the analysis
of the last section to hold.

It may be noted that from a mathematical point of view

some of the conditions stated below may be relaxed. For
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example'most of the continuity conditions imposed on the
partial derivatives of H with respect to n can be

changed to piecewise continuity or if the function H(x,n) ,

when considered as a function of X , is of bounded
variation on [0, #) then we need not require that %% be

continuous for all x on [0, ») . However since we are
dealing with a physical problem where H(x, n) describes
the surface of the base of the punch, this function in
almost all cases will satisfy the conditions stated below,
and hence it will not be of great importance to use a more
general set of conditions. It may be pointed out that if
the surface of the base of the punch has sharp points then
our smoothness conditions will no longer apply and must be
changed to piecewise smoothness. The treatﬁent of such
cases would involve a complicated analysis of stress singu-
larities within the contact region, which is beyond the
scope of this thesis.

In what follows certain inequalities will be required
to establish the various convergences. In order to avoid
any digression from the main 1line of argument, these
inequalities are derived in the appendices and only the

appropriate results will be quoted here.
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Let us begin by imposing the following conditions on
H(x, n)
(c.1) There exists a function Ao(x) , such that
[H(x, n)| < Ay(x) for all n e[0,m] and
Ay (x) € L{0, ) .
(c.2) H(x, n) is a continuous function of both x and n
for all x €[0,») and all n € [0, 7] .
(c.3) As a function of n , H(x,n) is four times contin-
uously differentiable (i.e. partially with respect

to n) for all n e[0,m] and all x € [0,«) .

(c. 4) For i =1, 2, 3, 4 , there exist functions Ai(x)
i i} .
such that B—H—l@-—ﬁﬂ—)- < Ai(x) , for all n e [0, 7w] ,
oan
and A (x) € L[0, =) .
(c.5) 3_;1;({}_,_& is a continuous function of both x and n

for all x € [0, ) and all n € [0, 7] .

-aj ’ .
O H(X, D) _ g at n =0 ,

(c.6) For each x e [0, «) ,

8n3,
and n = ®, for j =1, 3 .
T ,
(c.7) Let M (h) = g;%;ﬂ\ and for i =1, 2, 3, 4,
let M hy = max ’alT
¢ i) = genen ol

where T = T(h, n) d. [PH(x, n)cos 2—2—— dx . 'The
existence of these exgressions is ensured by
conditions (c.1l) and (c.4) above. We shall assume
~that for integers i and m , where 0 < i < 4

and 0 <m<8 , [ B'M (h)dh <,
- 0
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(c.8) There exists a constant, K , such that for
h e [0, ») and for integers i and m ’ where

0 <i<4 and 0 <m< 8, h™, (h) < X .

In addition it should be kept in mind that H(x, n)
is assumed to be an even function of x and n .

Let

T(h, n) 9 éwH(x, n) cos g%’5dx (2.6.1)
then (c.l) implies the existence of T(h, n) for all h >0
and n € [Ol m] .

Next we expand T(h, n) as a Mathieu function series:

T(h, n) =
n

o~ 38

2
. D, (h) ce, (N, -h ) (2.6.2)

From the general theory of Sturm-Liouville expansions
(see Ince [2], sec. 11.5) we know that if, for any fixed
real h , T(h, N) 1is a continuous function of N , where
N belongs to some finite interval, then the Fourier series
and the Mathieu function series expansions of T(h, n) are
equiconvergent (i.e. the two series will converge under
exactly the same conditions) on the same finite interval.
Now (2.6.1), (c.l) and (c.2) together imply that T(h, n)

is a continuous function of n for each fixed h > 0 .

3T(h, n)
an

continuous function of n for all n e [0, 7] and each

Furthermore (c.3) and (c.4) imply that is also a

fixed h > 0 . Hence for each h > 0 , the infinite series

(2.6.2) converges uniformly in n to T(h, n) . The
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coeffieicnts D, (h) are found by the usual technigue

(analogous to that for the Fourier series coefficients) as

follows:

14

Maltiplying both sides of (2.6.2) by ce, (n, -h’)
integrating with respect to n from 0 to m and applying

orthogonality properties of Mathieu functions, we get

gncezﬁ(n, —hz)T(h; n)dn = % D_(h) (2.6.3)

(term by term integration of ) (h)ce2 (n, -hz)ce2 (n,~h*%)
n=g 0 n m
is permitted since this is a uniformly convergent series of

2

continuous functions of N , for each fixed h >0) .

Now let

4D_ (h) .
B, (h) = I _ (2.6.4)

T fFek, (0, -h?)

and note that Fek, (0, -h%) # 0 for any n=20,1, 2, ...,

and any h > 0 (see appendix A). So

4 v | -2 2
7 T(h, n) = nZO B, (h)Fek, (0, -h%)ce, (n, -h*)
and
[“cos 2RX 5 B, (h)Fek, (0, -h®)ce, (n, -h%)dh
0 n=0
= ?% [Zcos 3%5 T(h, n)dh
0
= f% [T [Tcos 2%5 H(x', n)cos Z?X dx' dh
0 0
= H(x, n) .

The validity of the last step, which states that H(x, n)

is equal to the inverse cosine transform of its transform is

ensured by (c.l), (c.2) and (c.5). Hence expression (2.5.5)
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is justified, where C_(h) = %f Dn(h)”} and Bn(h) is given
by (2.5.9).

It remains to show that the function V¥ (x, n, &) ,

given by (2.5.4), is a continuous function of x, n and ¢ ,
is twice partially differentiable with respect to each of

x, n and £ , and tends to zero as |x| or & tend to

infinity, for each n e [0, m]

.

We start by rewriting ¢ as

2

. % Fek, (£,-h%)
v(x, n, &) = %f f cosg%i ) Dn(h)ce2n(n,-h2) 2n 5 dh
0 n=0 Fean(O,-h )

(2.6.5)
where Dn(h) is given by (2.6.3)

From appendix B (part I)

’

2

2
Fekzn(O,—h )

Fek2n(€,-h <1

0 <

for all n

[}

0, 1, 2, ..., all h > 0 and all £ > 0
From appendix C , (C.1l.9),

A_2 2 .
ce, (M,~h%) | < v, + v;h + v,h%,

where oWor Yy and Y, are positive constants, and from

appendix D , (D.1.1l) ,

m 2 ™ 2
zla,, + 2h° + 1)D_(h) | < = (L + 4h")M, (h) +

M, (h) ,
/3 2

T
2

4
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where M, (h) and Mz(h) are defined by condition (c.7).

From this inequality it follows that

21 (144h%) Mg (h) +1, (h) ]
(4n2+1)

an(h)& <

Hence

2
Fekzn(gl"h )

4 []
< [Mg(h) ] asht +

D_(h)ce,_(n,~-h")
‘ n 2n Fean(o,-hz) 120

-1 (2.6.6)

H e~10

+ M2(h)

8.hJ7 (4n3+1)
j 3

0
where o; and Bj are positive constants.

Using condition (c.8) and Weierstrass's M-test we
deduce that

Fek, (&,-h?)

i ~38

2
D,(h)ce, (N,=h") is uniformly convergent

n=0

Fek, (0,-h?)
with respect to nn, & and h . Furthermore, from the
general theory of Mathieu equations (c.f. [5] sec. 2.11)
ceqopn Ny -h%)  is continuous in n and h , Fek, (& 4 -hz)
is continuous in g and h , and from (2.6.1), (2.6.3),
(c.1) and (c.2) D _(h) is also continuous. Hence the
function represented by the above infinite series Iis
continuous in n , & and h .

Next let

2

N ©o
Uy (x,m,8) = %g / cos—z-%-’£ } Dn(h)ceZn(n,—hz) dh
0 n=0

2
Fek,, (0,-h%)
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then for each N =1, 2, ..., by is a continuous function
of x, n and £ and by condition (c.7), the sequence of
functions y  converges uniformly to V¥ . ‘Hence Wx,n , &)
is a continuous function of x, n and ¢£.

Differentiating the integrand in the expression for U,
(2.6.5), twice partially with respect to x only introduces
factors h and h? in the integrand. 1In either case the
uniform convergence of the integrand is ensured by condition
(c.7) and the continuity of the integrand, as a function of
x,N, & and h , is not affected.

To show that

] Fek, (E,~h?)

27 b (h)ce. (n,-h?
an n=g B0 2n* '

)

Fek, (0,=h?)

, Fek, (&,-h°)
b, (h)ce} (n,-h%) \
Fek2n(0,-h )

|
e~ 8

n=0

we observe that

2
5 Fek, € ,~h%) |
) IDn(h)ce§n<n,-h2) 2n 5 |

n=0 Fean(O,—h )
2
o ce', (n,~h*)
< 7 [(a2n+2h2+1)nn(hﬂl A
n=0 a, +2h“+1
n
) _——gz—-[(16h4+16h2+l)M0(h)+8h2Ml(h) +
n=0 (4n4+1)

+ 2(40%41) My (h) 4M, ()] (Yg+¥oh+ Yph2)

(by (0.2.7) of appendix D, and (C.2.2) of appendix C)




49

6 ] 4 13 4 +
< My(hy -7 e.ht + M (h) ] Aht + M (h) T o.ht +
0%7 5 i 177 42 8 277 420 1
2 .

+ M,(h) } T,ht

B T
where the coefficients oy Ai’ o, and T, are positive
constants. '

So the series containing ceén(n,—hz) is uniformly
convergent in 0, € and h (using condition (c.8) as
before). Also the terms of the series are continuous
functions of N, &€ and h . Moreover

2
. o Fek. (£,-h2)
é cos 3%5 ZO Dn(h)ceén(n,—hz) 2n

n'—'

5 dh

is uniformly convergent with respect to x, Nn and & and
the integrand is a continuous function of x, n, & and h .
Hence. Yy can be differentiated partially with respéct to n
(term by term).

A similar argument can be used to show that ¢ is

twice partially differentiable with respect to n . Here we

2

" 2 2
replace ce2n(n,-h ) by - (a2n+2h cosZn)ceZD(n,—h ) « Then

using (D.2.7) and (C.1l.9) we have

2
Fean(E,-h )

2
Fekzn(O,—h )

" 2
Dn(h)cezn(n,-h )

) /5[(Y0+Ylh+v2h2)(a2n+6h2) / (a2n+2h2+l)2] x
n=0

4

x  [(1l6h +16h2+l)M0(h)+8h2Ml(h)+2(4h2+l)M2(h)+M4(h)]'
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-and from conditions (c.7, 8y it follows that y can be differ-
entiated twice_partially with respect to n (it may be noted
that to obtain the required result we write

(ayn+6h%) < (ag +2h%+1) + (4h%)  in the last series and
treat it as a sum of two series).

Next, to show that ¢ is partially differentiable
with respect to £ we use (B.4) of appendix B, (C.1.9) of
appendix C and (D.2.7) of appendix D. If we use (B.2) of
appendix B, instead, then it can be shown that V¥ 1is twice
partially differentiable with respect to & . In both cases
the arguments are similar to those of the differentiability
of V¥V with respect to n.

Finally in order to show that ¥ tends to zero as |x|
or g tend to infinity, we proceed as follows. First,
using the Riemann-Lebesgue lemma*, since the integral in
(2.6.5) is uniformly convergent and the function represented
by the series in the integrand is a continuous function of
h , then for each n e [0, 7] and each & > 0,

lim p(x, n, &) = 0 .
| x]=>e

Next, for each x € (-», ) and each nef0, wl] ,
the integral in (2.6.5) converges uniformly for all & > O
and the integrand is a continuous function of h and ¢ ,

* The Riemann-Lebesgue lemma is usually stated for integra-
tion over finite intervals, however it can be generalized to

cases involving infinite limits of integration (see Olver
[6], theorem 4.1, page 73).
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so lim [ = [ lim . Furthermore the series in (2.6.5) is
E=> E=>00

also uniformly convergent in h and £ and the terms of

the series are continuous functions of h and £ . Hence

1im ) = ) lim . From the asymptotic behaviour of
g->e £>n
Fek, (£,-h%) as & -> = (see (2.3.10)), it follows that

1im ¥(x, n, §) = 0 . Using a similar argument it can be
E=>w

deduced that Bn =0 at n =0 and n =71 .

Therefore Y(x, n, &) represented by (2;5.4) is

<

Qo

continuous and satisfies Laplace's equation as well as the
boundary conditions of the stated boundary value problem,
provided the function H(x, n) satisfies conditions (c.l)
to (c.8).

In passing we note  that bunder the above smoothness
conditions on H , VY also satisfies the limits (l.5) and

(1.9) of Chapter one.

2.7 An example

As an example we consider the punch problem where the
surface of the base of the punch 1is represented by the
function

2%sin?n
274+x

H(x, n) = &
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wshere & , & are parameters having the dimensions of
length, § measuring the maximum depth of the punch which
occurs at the origin. The cross-sections of the punch

profile, taken through the planes of symmetry, are as shown:

longitudinal cross-section

o ot sl

transverse cross-section

-{ 4

¥
4

z= S(V'%a)

® 2 .2
Then T(h, n) =8 cos(22x) 2 glnzn
0 (2°+x%)

288 o2 (- 22h
£ in nexp £ .

dx

_ 248 22h
Also Mo(h) = E-exp(— 5
ies 22h)

and for i =1, 2, 3, 4, Mi(h) = 2 ~F—exp(— 5

Clearly conditions (c.l) to (c.8) of section 2.6 are

satisfied. Moreover
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= 4% _ 2%h 2, .2
Dy(h) = G exp(- Zg [Tcey (n,-b%)sin®ndn
n
- 23
= {2188 15a(20) (n2) 4 al®™ (n®)1exp(- by (2.7.2)
where AéZn) and AéZn) are the first two coefficients in

the Fourier series expansion of cezn(n,-hz) .

The above example of a punch profiie has been chosen
to illustrate the theory because, while being smooth and
physically reasonable, it allows us to express the

coefficients Dn(h) explicitly. The reasons for this are
A
1%+ % m 2 2
transform and (ii) the integral f ce2n(n, -h®)sin“ndn is
0 .
expressible in terms of only two Mathieu coefficients

%2) r ¥ =0, 1 . 1If, in place of sinzn(= % - %cos2n) ’

the expression (2.7.1) for the punch profile involved higher

(i) the expression has a simple Fourier cosine

Al

trigonometric terms in n (so that =z , in terms of vy ,
were given by a polynomial of degree higher than the
second) , then the effect would be to introduce further terms
in (2.7.2), but only a finite number of these. Thus the
computation involved would be of the same order of
magnitude, éince numerical «construction of a Mathieu

function generally produces all the significant coefficients

(2n)
A'Sy

In punch problems, one of the quantities of interest

is the normal component of stress under the punch (i.e. on

S) + Ty,(x, y, 0) . Recalling that 7 __(x, y, 0) = v )
| : 92 2=0
then the normal component of stress (under the punch) for

this particular example is given by
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' - 4 ® 2hx ©
T 0 = - LA
22X ¥ O = 2 3173 J cos 5 nEO Pp (R) X
2
-1 o Fek.! (0,-h*“)
% ce, [cos l(%)' ‘hzl an( ’ hz) dh . (2.7.3)
Fe 0,-
2n'!

" The total force exerted on the punch is given, of course, by
the integral of the expression (2.7.3) over the total area

of the punch, i.e.

£
[© ]  1,,(xs ¥y, 0)dydx
- 00 -f
o /2
=4c] | Tt (x, fcosn, 0)sinndndx (2.7.4)
0 0 22

Evaluation of the expression (2.7.2), hence of (2.7.3)
and (2.7.4), can only be done numerically, but in view of
recent progress in the techniques of computing Mathieu
functions, this is by no means an impossible task.

To illustrate this observation, we take the particular
case where 2 = 3f , so that the subsﬁantial part of the
punch profile is long compared Qith its width (see the
figures on fu 52 above) . Tis has the effect that the
factor exp(-2%h/¥f) tends to zero quite rapidly as h
inéreases, so that it is only necessary to compute the
D, (h) for small values of h . (Indeed, it 1is quite
possible that tolerable accuracy could be achieved by using
the perturbation formulae‘for Mathieu functions given in,
for example[‘[Sl sec. 2.25, but the following computations

have been carried out without this approximation.)
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Moreover, for such a profile, it is oniy necessary to
consider small values of n , for the following reason: for

h =0 , Mathieu functions reduce to trigonometric functions,

namely

-1/2

cey(n, 0) = 2 , ce, (n, 0) = cos2n , (n > 1)

n

and for small values of h the Mathieu functions remain
close to these approximations. Hence, for n > 2 and h
small, the coefficients A(gn) and A(gn) are small
compared with 1, so that Dn(h) is itself small (see [4],
sections 3.27 to 3.35).

Using the method described in [10] the coefficients
A(gn) and A(%n) . and hence the Dn(h) have been computed
for n=0,1, 2 and h =0, .1, .2, .3, ..., 2.0 and are

shown in the following table:




Values of Dn(h)/a

Dn(h) (-l)nz
S - f
in the case % = 3f
h n=0 n=1
.0 4.24264 -3.00000
.1 2.32254 -1.65459
.2 1.26495 -0.92155
.3 0.68519 -0.51792
.4 0.36895 0.29337
.5 0.19736 -0.16723
.6 0.10481 -0.09574
.7 0.05524 -0.05492
.8 0.02889 -0.03150
.9 0.01499 -0.01803
1.0 0.00773- -0.01028
1.1 0.00397 -0.00583
1.2 0.00203 -0.00329
1.3 0.00103 -0.00185
1.4 0.00053 -0.00103
1.5 0.00027 -0.00058
1.6 0.00014 -0.00032
1.7 0.00007 -0.00018
1.8 0.00004 -0.00010
1.9 0.00002 -0.00005
2.0 0.00001 -0.00003

n=2

0.00000
0.00137

0.00303 -

0.00376
0.00370
0.00321
0.00257
0.00195
0.00142
0.00101
0.00070
0.00048
0.00032
0.00021
0.00014
0.00009
0.00006
0.00004
0.00002
0.00002
0.00001

56-

[2A(gn)(h2) + A(gn)(hz)]exp(—ZZh/f)




The follbwing are graphs of cezn(n, -h
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2) for

n=20 1,2  h =0, 0.5 1.0, 2.0, and n e [0, T .
These functions are = -periodic and symmetric about n =~1L2 .
Ceo(“)“\l)h—
2
1.0
] S ——— (h=0)
06. (k:.;")
" hz1.0)
__h=2.0
o 7
1/1-\- ‘W/Z )
~ W) (h=2+0
ey (M, \.O/,L Ceu (1 -h?) )
- ‘¥ Q\:Lo)
lél
- "
%
. >
? 0
‘ﬂ/ 1\'/2 Yl T"/’I-
- At
— 4l
Al
h=2-0) -3
(hzo) ™
(»\:-5)
(h=1.0)
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A further difficulty occurs in the evaluation of the
integrand of (2.7.3) by the occurrence of the factor

2

Fek$ (0, -hz)/Fean(o, -h®) , since neither numerator nor

denominator is easily evaluated directly. An expression for
Fek! (0, -h2) is in [4] (sec. 13.31) while Fek, (0, -h?)
2n 2n

could be obtained from the Bessel function series of [4]
(sec. 8.30) or the Bessel function product series of. [4]
(sec. 13.30).

However, it appears to be simpler to evaluate the
quotient directly, as follows:

In the modified Mathieu equation (2.5.3), which we

write in the form

2

F"(&) = Q(E)F(&) , where Q(g&) = a,, + 2h“cosh 2¢ (2.7.5)

we make the substitution
v =F(8)/F'(E) , (2.7.6)
obtaining the equation

VU(E) = 1 - Q(E)vE(E) . (2.7.7)

2

Now, from the asymptotic form of Fek2n(£, -h*°) it follows

that, as & => o , vy -~ -h-le—g. We take a moderate value
50 of & , integrate the equation (2.7.7) numerically by a
standard technique back to € = 0 , hence obtaining v(0)
which is the reciprocal of the desired quantity.
Furthermore, in the evaluation of the normal component

of surface displacement outside the strip we need to find
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Fekzh(ﬁ,—hz)

numerical approximations for L(k&) . How-

Fean(o,—h2)
ever once v(0) has been obtained one can easily evaluate
L(&) by.straight forward numerical integration since L(&)
tends to zero rapidly as & tends to infinity. The graph
of L(§) 1is given in Appendix B.
To evaluate the stress Ty immediately below the
centre of the punch (i.e. at x = 0 , y = 0) as well as at

the edge of the punch (i.e. at x = 0 , y = f) we proceed as

follows:

2)

)

Fekj (0 ,-h

let V_(h)
n Fekzn(O,—hz

and U (n, h) = D (h)V, (h)ce, (n, ~h?)

[}

(-1)"p (0)V_ (h)ce, (5 -n, hZ)

2
so that n = 0 corresponds to the edge of the strip and
n = % corresponds to the centre of the strip. Then from
(2.7.3)
r~ 4 oo _l
T,,(0, ¥, 0) 7 173 | Utcos™ &, hydn

ﬂf(f2—y2) 0
where U(n, h) = Uo(n, h) + Ul(n,h) + U2(n, h) .

Finally we truncate the above integral since the

integrand is small when h > 2 , and evaluate

1(n) = J?U(n, h)dn
0

using Simpson's rule.

The following table gives the values of V. (h) for

r =0, 1, 2 and h =0, 0.1, 0.2, ..., 2.0 .




Values of Vh(h)

Fek, (0,-h%)

Vi, (h) = » 5
ean(O'_h )

h A vy v,

.0 0 -2 -4

.1 - .40935 -2.00670 -4.00272
.2 - .55663 -2.02606 -4.01059
.3 - .69087 ~2.05766 -4.02398
.4 - .81926 ~-2.10221 -4.04253
.5 - .94330 -2.15503 -4.06620
.6 -1.06295 -2.22010 -4.09517
.7 -1.17776 ~-2.29568 -4.12899
.8 -1.28715 -2.38152 . -4.16788
.9 -1.39072 -2.47721 -4.21159
1.0 -1.48832 -2.58218 4.26003
1.1 -1.57998 -2.69549 -4.31332
1.2 -1.66608 - =2.81619 -4.37120
1.3 -1.74712 -2.94317 -4.43341
1.4 -1.82365 ~-3.07531 -4.50045
1.5 -1.89620 -3.21130 -4.57185
1.6 -1.96529 -3.35031 -4.64770
1.7 -2.03145 -3.49113 -4.72813
1.8 ~2.09499 ~-3.63280 -4.81301
1.9 -2.15629 -3.77458 -4.90268
2.0 -2.21464 -3.91558 : -4.99725
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Using the above table and the appropriate values of
p_ (h) and ce, (1, -h2) we obtain the following two
n n .
approximations for I(n) ; namely at n= % (i.e. at the
centre of the punch) and at n = 0 (i.e. at the edge of the

strip) .

us -
1(2)£: 1.2711
I(0)= 0.7968 .

We note that the stress at the centre of punch

(n = %) is negative, This 1is in accordance with the
assumption that T,y = 7P where p 1is the normal pressure
applied to the punch. Also since I(0) > 0 and L. is a

continuous function of 1n , then for some value of . n in
(0, %ﬁ T = 0 . This‘shows that the above example does
not represent a complete contact problem since contact is
lost near the edge of the strip.

To solve this problem completely, one has to determine
the contact region. This may be done by the following
method which is essentially an iterative procedure.

First we find the pressure p in the strip, where

p(x, y) = -1,,(x, y, 0), and the contour in the xy-plane, on

]

which p 0 . The region of the xy-plane bounded by this
contour, i.e. where p > 0 , is then chosen to be the new

contact region, say S1 . Next making use of the expression

V(x, y, 2) = 5%— éf Eﬁf:ierl dx' dy'
(see Ch. 1, (1.8))

we find a new p(x, y) such that the prescribed displace-
ment function w(x, y) , where w(x, y) = Wx, y, 0) for

X,y € Sl , satisfies
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|} [ ]
wix, y) = E%—fj Jiﬁié%éL) dx' dy' .
51

If p(x, y) > 0 for all x, y e Sl then we increase
the region Sl and repeat the last step to obtain a new
p(x, ¥y) . On the other hand if p(x, y) < 0 at some point
in Sl , then the region Sl is decreased and again a new
p(x, y) 1is obtained.

The above steps are repeated until we find the region,

say S_ such that

p(x, y, 0) = w(x, y) for (x, y) e S
where w(x, y) 1s prescribed
p(x, y) > 0 in §S_
and

p(x, y) = 0 on the boundary of S_ ,

o

In the next example we consider a profile which is

constant along the y-axis, i.e. H 1is independent of n .

2
S4

Let H(x, n) = = 5 where % and § are as in the
L7+x

previous example. Then following the steps outlined above,

28 -2%
T(h,n) =22 exp(™2 )

428 2
D (h) = 2% exp (%) %ﬂceZn(n, -h“)dn

and [ Tceyp(n, ch¥yan = (-1)Pmag? ()
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so for & = 3f
D_(h) = (-1)"12sexp(-6h)a{* (n?

and using the same numerical procedures as those used in the
previous example we obtain the following table of Dn(h) ’

for n=0,1, 2 and h =20, 0.1, 0.2, ..., 2.0 .
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Values of Dn(h)/s

§§(h)= (-1)"126exp (-6h) A% (n?)

h n=0 n=1 n=2
.0 8.48526 0 0

.1 4.65674 - .01646 0

.2 2.55546 - .03613 .00005
.3 1.40190 - .04457 .00008
.4 .76855 - .04335 .00015
.5 .42084 - .03695 .00019
.6 .23004 - .02888 .00022
.7 .12546 - .02120 .00023
.8 .06824 - .01482 .00021
.9 .03701 - .00995 .00019
1.0 .02002 - .00645 .00016
1.1 .01080 - .00407 .00012
1.2 .00582 - .00250 .00010
1.3 .00313 - .00151 .00007
1.4 .00168 - .00089 .00005
1.5 .00091 - .00052 .00004
1.6  .00049 - .00030 .00003
1.7 .00026 - .00017 .00002
1.8 .00014 - .00010 .00001
1.9 .00008 - .00006 .00001
2.0 .00004 - .00003 .00001
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The normal component of stress, under the punch, can now be

approximated by

4 .
T, (0, ¥y, 0) = I(n)
zz ﬂf(fZ_y2)l/2 !
where Ib%):; - .,4818 ,
I(0)= - .4130 ,
and furthermore Toy is negative everywhere under the
punch.

In Chapter one it was pointed out that in punch
problems where one assumes complete contact, there will be
stress singularities at the edge of the contact region. The

stress function obtained for the above example clearly

H

exhibits the expected singularity at y + £ (i.e. at the

edge of the strip).
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2.8 The strip-crack problem

Since crack and punch problems, when considered as
boundary value problems, can be treated along similar lines,
here we shall briefly discuss the crack problem corres-
ponding to the strip-punch problem.

It is assumed that a créck has developed inside an
iﬁfinite elastic medium. As in the case of the ?unch
problem the infinite elastic medium 1is assumed to be
homogeneous, isotropic and linearly elastic. We shall also
assume that the crack is opened out symmetrically by equal
normal pressures applied to its faces in the sense that if
the Cartesian coordinate system is set up with the origin
placed inside the crack, then the c¢rack is opened out
symmetrically with respect to each-of the planes x = 0 ,

y =0 and z = 0 .

In the strip crack problem the crack occupies the
infinite strip S defined by z =0 and |y| < £ . This
means that the region S is that part of the plane 2z = 0
which after applying the normal pressure becomes the crack-
face. |

Due to the assumed symmetry we need only consider an

elastic medium occupying an infinite half-space where the
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crack-face is the region S which is now on the boundary of
the half-space. The geometric aspect of this problem is
similar to that of the punch problem, discussed in section
2.4, and will not be examined in detail here (see figuies 1,
2 and 3 of 2.4).

For zero shear stress across the plane of the crack,
the equations of elastostatics (as stated in Chapter one)
hold. Namely we have the relations (1.3 a, b, ¢), (1.6) and
(L.7 a, b). So the corresponding boundary value problem can

be stated as follows. A harmonic function Y is to be

found such that

(i) vzw =0 for z > 0
(ii) v => 0 aé r ->* in z >0
(iidi) v(x, y, 0) = 0 for (x, y) outside S , i.e.
the normal component of displacement is zero on
the plane z = 0 outside the strip. This
condition 1is due to the assumption that

pressure is applied symmetrically.

. Y
(iv) T, (%, ¥, 0) = 5~ o = -p(x, y) , when
(x, y) € S .
p(x, y) is some prescribed function which as before is

assumed to be symmetric about x =0 and y =0 .
In terms of elliptic cylinder coordinates, (x, n, &)
with x € (=©,), nel[0, 7] and & > 0 , the above

problem can be restated as:
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(i)' equation (2.3.1) of section (2.3) holds for

X € (o, ©, ne€ [0, T] and £ > 0
(i1)' ¥ =>0 as |[x]| => 2or &€ -> >, for n e [0, 7]
(iii)' v =0 at n=0,7 for £E>0 and x € (=», )
(iv) ! E;%Tﬁ('%% €_0> = -g(x,n) , where n € (0, m,

d

X € (~o ») and q(x, n)="p(x, y) . In addition

g(x, n) is assumed to be symmetric about
T
x =0 and n = 5 -

Let t{(x, n) d. _ f sinng(x, n) , then through a set
of steps, similar to those outlined in section (2.5), we

obtain the formal solution

2
Kn(h)se2n+l(n,-h ) Gek

“cos X T (£,-h2)an

Y = [ cos ===
A £ %o 2n+1

(2.8.1)

where se2n+l(n,—h2) is given by (2.3.6c) and
Gek2n+l(E,-h2) is the <corresponding solution of the
modified Mathieu equation which tends to zero as ¢ tends
to infinity (see McLachlan [4], 11.12 and 11.42).

Similarly from (iv)' (inverting the Fourier cosine

transform and using the orthogonality of Mathieu functions

of the first kind) the coefficients Kn(h) are given by

K,(h) = — 8 — fﬂfmt(x}n)se2 +l(n}—h2)0082%§dxdn;
T fGekén+l(o,-h ) 00 n

It is easy to see that if we impose a set of condi-

tions on t(x, n) , similar to those given in section 2.6
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((c.1) to (c.8)), then the formal solution ¥ |, expressed by
(2.8.1), is continuous and satisfies (i)' to (iv)'. With
some minor modifications, the inequalities obtained in the
appendices can also be used here. For example it can be
shown that

2 2
Gek he) Gek2n+l(0, h®) 1

2n+l(g' <
2) —~ 2n+1

]
Gek2

A

-h%) | T | gek!

2n+1(0r7h

n+1(0’

for n=20,1, 2, ..., and h > 0 .
The normal component of stress across the xy-plane

outside the crack is given by

, _ 1 3y )
Tz (X ¥, 0) = f£sinhz \ o0 |, .,

where‘ y > £ (i.e. g > O)V. As we approach the edge of

the crack, i.e. (y - f) =-> 0+ , the stress function becomes
2 _ f2]l/2

singular since when n = 0 , fsinh £ = [y
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Chapter 3 - THE PARABOLIC PUNCH PROBLEM

3.1 Introduction

In this chapter the three dimensional punch problem
where the contact region is parabolic is investigated using
an approach similar to that of Chapter two. In general,
parabolic contact problems of elasticity have not received a
great deal of attention. A solution to the two dimensional
problem is given by England ([2], 3.8) and the parabolic
crack problem for uniform pressure has been solved by Shah
and Kobayashi [6]. Also in a paper by Kassir [3], solutions
for parabolic crack problems under uniform pressure, uniform
shear and pure bending are given.

As mentioned in Chapter two, crack and punch problems,
for the séme regions, can usually be solved along similar
lines. This is due to the fact that if such probléms are
viewed as mixed boundary value problems, then by switching
the appropriate boundary conditions of one problem we can
define the other. In the punch problem we have a state of
zero normal stress outside the puﬁch as well as a prescribed
function for the normal component of displacement under the
punch, whereas in the corresponding crack problem the normal
component of displacement outside the crack is zero and the
normal component of stress (pressure) is prescribed inside
the crack.

Shah and Kobayashi [6] use the algebraic form of the

paraboloidal coordinate system and solve the problem by
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integrating a differential equation and arrive at a
potential function. The success of this approach is largely
due to the assumption that the pressure to which the crack
is subjected is uniform.

Our solution to the parabolic punch problem allows a
general representation for normal displacements under the
punch (within physically reasonable limits) which in terms
of the corresponding crack problem amounts to allowing a
general pressure distribution inside the crack.

Kassir [3] on the other hand uses existing solutions
for some elliptic crack problems which are restricted in the
same sense as mentioned above. He then uses a limiting
process to obtain the solution for the corresponding
parabolic problem. This process essentially transforms the
ellipsoidal coordinate system to the paraboioidal coordinate
system and the solutions to both problems are matched
accordingly. It appears that the problem with a more
general boundary condition, corresponding to the pressure
inside the crack, will not yield easily since the limiting
process becomes considerably more complicated.

In the following sections of this chapter a solution
is constructed through the separation of Laplace's equation
in paraboloidal coordinates. This solution will contain
three types of Mathieu functions: "ordinary", "modified",

and "co-Mathieu" functions, with arguments 1lying in the
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following ranges respectively, (-7, 71, [0, i%®),

[%ﬂ;véﬂ+im); Separated solutions of Laplace's equation in

the paraboloidal coordinate system are discussed in section
3.3 and for a more detailed study of these solutions the

reader is referred to Arscott [1].

3.2 The paraboloidal coordinate system

The paraboloidal coordinates (o, B, Y ) are related

to the Cartesian coordinates by

X = %c(coshza'+ cos2B - cosh2y)
y = 2c coshacosBsinhy
z = 2c sinhasinBcoshy
where o, B8 and Y are all real, ¢ is a dimensional

parameter and
0 <o < w, -T < B <T, 0 <y <=,

The surfaces o = constant <consist of a family of
elliptic paraboloids. In particular if o = Gy the vertex
of the elliétic paraboloid is given by (%c cosh2a,, 0, 0)
(in the Cartesian coordinate system) and its axis is OX ,
so that a point with coordinates (x, 0, 0) where
x < %c cosh2a, lies inside the elliptic paraboloid. The
section of this paraboloid by a plane perpendicular to the

x-axis is an ellipse, the sections by the planes y = 0 and

z = 0 are both parabolas.
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On such a surface o = Gy there is a singular'arc;
namely the intersection with the surface y = 0 ; on this
singular arc the correspondence between (x, v, 2) and
(ar Br Y) coordinates ceases to be one-to-one. If
0 < B' < » , the points with paraboloidal coordinates
(ao; %w +8', 0) coincide, also the pair (age '*%ﬁ + g', 0)
represent the same point. As shown in [I] this. has
important consequences if we require a solution of Vzw = 0
to have continuous gradient across the arc.

For @ = 0 we obtain the degenerate surface occupied

by a parabolic plate in the xy-plane with vertex at

(%c, 0, 0) . The surfaces Y = constant also consist of a

family of elliptic paraboloids. For Y YO we have the

or 00 O

elliptic paraboloid with vertex at (= %c cosh2Y
s with Cartesian

whose axis 1is the x-axis, and point
coordinates (x, y, 2) ﬁhere X > - %c cosh2y, lie inside
this paraboloid. The sections are similar to those of
@ =0, . On such a surface Y = Yo the intersection with
a = 0 forms another singular arc, where the points with
paraboloidal coordinates (0, *+8', Yo) » for 0 < Bg' < % ’
coincide. This also has implications for continuity of
solutions and continuity of the gradients of solutions

across the arc.
When Y = 0 we obtain the parabolic plate in the

1

xz-plane with vertex at (- 3¢, o, 0) . Finally the

surfaces B = constant <consist of portions of hyperbolic
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paraboloids. B = By gives one quarter of a hyperbolic

paraboloid, and the complete paraboloid is given by

g = + Bo B =+ (1~ Bg) . The degenerate surfaces are

B

[
o
-
|+

% and T . For our purposes the region formed
by B= 0 and B =T is of interest since it is the
infinite plate with a parabolic hole in the xy-plane which

occupies the exterior of the surface o = 0 in this plane.

3.3 Separation of Laplace's equation in paraboloidal
coordinates
Laplace's equation, vzw = 0 , in paraboloidal
coordinates becomes (1.122, Meixner and Schafke [5])

N2 2

(cos2g+cosh2y) IV, (cosh2y+cosh2a) RN
2 2
oo 9B
32y
+ (cosh2a-cos2RB) — = 0 .
. ]
Y
Let v = A(a )B(B )C(Yy ) , then three ordinary

differential equations emerge:

A"(a) + (=X + 2q cosh2a)A(a) =0 (3.3.1)
B"(B) + (A - 2q cos2B)B(B) = 0 (3.3.2)
C"(Y) + (=) = 2q cosh2Y)C(y) = 0 (3.3.3)

where X and 2g are separation constants chosen so that
(3.3.2) takes the standard form of Mathieu's equation.
Initially X and g are arbitrary and independent but, as

we shall see later, the boundary conditions of our problem
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will require that g be negative, say q = =h? , where
n € [0,*) . The separation constant )\ = Mhz) turns out

to be one of the characteristic values a bn which were

n’
described in section 2.3.

Arscott [I] called solutions of (3.3.3) "co-Mathieu
functions" and introduced a notation for them but, as will
be seen, solutions of (3.3.3) can be expressed conveniently
in terms of solutions of (3.3.1), namely the familiar
"modified" Mathieu functions.

With the solutions of equations (3.3.1) - (3.3.3) in
mind we quote various needed results from Mathieu function

theory.

Consider the ordinary and modified Mathieu equations,

respectively:

2
Q_% + (X - 2q cos2z)w = 0 (3.3.4)
dz
dzw '
== - (A - 2q cosh2z)w = 0 (3.3.5)
dz

(3.3.5) being obtained form (3.3.4) by changing z to iz .

Equation (3.3.4) has the same qualitative nature
whether g 1is positive or negative. 1Indeed, it is easily
seen that if wi(z, q) is a solution of (3.3.4) , then
w(g - 2z, =-q) 1is also a solution. This remark leads to the
well known relations between 2n-periodic Mathieu functions

of the first kind (McLachlan [4], 2.18):

N
o)
(S
N
-
Q
i

(-1)"ce, (2, -q) (3.3.6a)
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Ceni1 (3 - 2, @ = (-1)Psey ,q(z, =) (3.3.6b)

se‘2n+l(% -2z, q) ('l)ncezn+l(zl -q) (3;3.60)

(-1)"se.. .. (2, -q) (3.3.6d)

TTF_
Seon+2(z ~ 2, Q) an+2

In the problems under consideration here, we  are
interested only in these 2n-periodic Mathieu functions of
the first kind. The parameter A must, of course, have the
appropriate characteristic value am(q) or bm(q) .

In equation (3.3.5), on the other hand, a change of
sign of g changes the qualitative nature of the equation
completely. If q > 0 , say gq = h2", then (at least for
sufficiently large 2) the coefficient of w . 1is negative,
so the equation is oscillatory. The two standard solutions

are the modified Mathieu functions of the first and second

kinds. To be specifi¢, 1let wus take the «case where

A=

) , so that the periodic solution of (3.3.4) is

ce2n(z; h%) ; the solutions of (3.3.5) are then respectively

Cezn(z, h*®) = ceZn(lz, h*)
and

Fey2n(z, h2) .

As z -> ® these are both oscillatory and tend to zero,

their asymptotic behaviour being, as 2z =->« , ([4], 11.10)
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Ceyn(z, h%) ~ p, (0?) (25) 1/ 2sin(v + )
Fey, (z, hz) ~ —pZn(hz)(%;)l/zéos(v ¥ %)

where

(2n)

A2 2, _ 2 1
v ‘= he® and pZn(h y = ceZn(O,h )cezn(zw h )/A ).

On the other hand, if gq is negative, then equation™
(3.3.5) 1is non-oscillatory (C.f. Appendix A) and the
solutions are exponentially increasing or decreasing. The
standard solutions are the modified Mathieu functions of the

first and third kind, namely

(2, -h®) = ce, (iz, -h?)

2y

with asymptotic behaviour (for large z) ([4], 11.12)

Fek2n(z, -h

o _32y ~ ,_q\n 2 -1/2°v
n(zs =h%) (=1)"p,y, (h7) (27V) e
and
2, -~ n 2 -1/2 -v -
Fekzn(z, -h*) (-1) pzn(h ) (27v) / e .
Next we consider the "co-Mathieu equation" (3.3.3) in
the form
a2 -
W o
— + (=)= 2gq cosh2z)w = 0 (3.3.7)
dz
It is easily verified that if w(z, q) satisfies

(3.3.4) then w(3m+ iz, q) satisfies (3.3.7). Following

Arscott [I] we write those solutions corresponding to

Cen(z, q) as




CEy (z, @) 9 cey (3n + iz, Q) = Ce, (z —%im, q)
FEan(z, q) d. FeyZn(z - %—i'n, q)
FEK, (z, q) d. Fek, (z -'%iﬂ, q) .

The qualitative nature of this equation depends also
on the sign of q , but in the opposite way to that of
equation (3.3.5). For gq > 0 , (3.3.7) is non-oscillatory,
with CE and FEK the real solutions, CE being

exponentially increasing and FEK decaying. As 2z => o ,

CEyn (2, 0%) ™ py (%) (2m0) 7L/ %eY

and
172 -y

2, 2 - -
FEK, (z, h°) ~ p, (h%) (21v) e V.

For q < 0 , the real solutions are CE , FEY , both
oscillatory and decaying. We shall not need these in the
problem under discussion.

Finally we observe that formulae (3.3.6) yield simple
links between the modified Mathieu and the co-Mathieu

functions. Writing (%7T+ iz) for =z in (3.3.6a) gives

Ce, (2, @) = (—l)nCEzn(z, -q) (3.3.8)

Consequently it is possible to avoid use of the CE functions
altogether. We shall retain them while putting our problem
into mathematical terms but then eliminate them in favour of

the Ce functions in order to analyze the solution.




3.4 Formulation of the boundary value problem

»
u
o

nl

As in Chapter two, we shall assume that the half-gpace
z >0 is occupied by an isotropic, homogeneous, linearly
elastic medium. Let S denote that part of the surface
z = 0 which corresponds to o = 0 (i.e. a parabolic
plate) and let S be the region outside S on =z = 0
which we assume to be stress free.

A rigid frictionless punch whose profile is defined by
the function K(x, y) is applied to the region S and
contact is assumed to be complete everywhere on S . For
convenience we shall assume that K(x, V) is symmetric
about y = 0. A general profile can be written as the sum
of two functions, one symmetric and the other antisymmetric
about y = 0 and the corresponding solutions can then be
incorporated into one. For zero shearing stress on z = 0 ,
the general equations of elasticity of Chapter one (in

particular 1.7 a, b) can be used to reduce this problem to a
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mixed boundary value problem of potential theory, described

by (i) to (v) of section 2.4.

3.5 The general solution of the boundary value problem

In terms of the paraboloidal coordinates (¢, B, Y)-

we wish to find V¥ = Y(o, 8, v) such that it satisfies the

following set of conditions:

52y ' 52 y
(a) (cos2B+cosh2y) 5 + (cosh2Y+cosh2a)——§ +
3a 9B
321[)
+ (cosh2a—cosZB)—-§ = 0
3y
for a € (0, = , g € (0, m) and vy € (0, =) .

(b) ¢ >0 as a«=-> » or y=->= , for B € [0, n].

. o8 _ B8a 3 98 3 Iy 9
(C) Since 5z 3z 3 + 5; -g—-e- + ——E W ’ and
9 ‘ . .
g% = 4coshasin8coshy(cos28+31nhzy) / c[31nh22a’

(cos2f+cosh2y) + sin228(cosh2d+cosh2y) +
+ sinhZZY(coshZa—coszB)]
(3.5.1)
%% = 4sinhacos8coshy(cosh2a+sinh2y)/ c[sinhzza
(cos28+cosh2y) + sin®2p (cosh2u+cosh2y) +

+ sinh22y(cosh2a~00328)]

(3.5.2)
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Y . i
3% = 4sinhasinssinhy(coshza-coszs) / c[sinhzza

(cos2B8+cosh2y) + sin223(cosh2a+cosh2y) +

+ sinh22y(cosh2a-c0528)]
(3.5.3)

and 8§ is the region where o >0 , y> 0 , B= 0 or m,

2 5 is equi T
then 5z = 0 on S is equivalent to Jcsinhacoshy 38 = 0

B =0 and B = 7 , where a € (0, =) and vy € [0, ») .
(d) (0, B, Y) = H(8, v) , where H(B, v) & K(x, y),
B € (0, m) and vy € [0, =) .

(e) H(B, vy) 1is symmetric about B8 = % .

Equation (3.3.2) together with the above conditions

((c) and (e)) imply, by the same argument as that used in
Chapter two (sec. 2.5), B(8) = cezn(B, q) and of course
that A = azn(q), but with no restriction on the sign of q .
We turn to the question of what solution of (3.3.3)
must be chosen. Consider the part of a surface a = %4 (#0)
which lies inside the elastic medium. This surface is
described as 8 and Yy vary over the ranges 0 < B8 <1

and 0 < v <« with one~-to-one correspondence except on the
singular arc given by y = 0 . Here the points corres-
ponding to the triads (ag, %1ri3', 0) , for 0 < 8! <-% ’
coincide. Now, we naturally require that our ultimate
solution ¢ should be continuous, with continuous gradient,

throughout the interior of the elastic medium. As explained

in [1], these continuity requirements lead to the conclusion
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that if ¢ ="A(@)B(B)C(y) and B(B) = ce, (8, q) then we
must have C(y) = CE;,(y, q); the solutions FEY, (y, q)
and FEK, (y, q) are ruled out.

We still have no criterion for the sign of q , but
this appears when we take account of condition (b) , for as
noted above, CEzn(Y' q) -> 0 as y -> » only if gq < 0 .

2

We therefore set g = ~-h and our separated solution is of

the form

2 2

v = Afa)ce, (8, -h“)CE, (y, -h“) .
Finally, consider A(s) which satisfies (3.3.1) with

2

q = —h2 . Hence A(a) may involve Ce2n(a r =h") or

Fek, (o, -n?%) but the former must be excluded because of
condition (b); as a =-> « , Ce2n(a, -h2) -> ©
So A(ae) = Fekzn(a, —hz) and our separated solution

is necessarily of the form

2 2

¥ = Fek, (g, —hz)cezn(B, -h?)cE, (v, -h%) .

More generally, a single separated solution can be

written as

[

HQu

2
vy & v (a,8iysh) = B_(h)Fek, (a,-h%)ce, (s,-h%)Ce, (y,h%)

n

2 2
where CEZn(y, -h®) has been replaced by CeZn(Y ; h7)
(relation (3.3.8)), and as in Chapter two, section 2.5, n

is an arbitrary non-negative integer, h is an arbitrary
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: . , : Pk
non-negative parameter and B (h) an arbitrary constantf )
Consequently a general solution for the mixed boundary value

problem can be written in the form (see sec. 2.5)

2 2

T 2 )
p = é ngdBn(h)Fekzn(a, h“)ce, (8,-h

ydh
(3.5.4)

)Cezn (Y rh

To find the coefficients ”Bn(h) we proceed formally.

From boundary condition (4) ,

2

H(8, y) = é” 7 Cn(h)cezn(B,—hz)Cezn(Y,h ydh  (3.5.5)

n=0
- w2
where Cn(h) = Bn(h)Fekzn(O, h®) .

Since cezn(B, -h2) = (—l)ncezn(% - B, h2) ’

(-1)"c_(h)ce, (§ - g, h%)Ce, (y, h°

0 k

) )dh .

H(B, v) = [°
0 n

(3.5.6)

We now have to invert this relationship in order to
obtain Cn(h) in terms of H(g, y) . The problem does not
appear to have been treated before. Our method is to use an
integral relationship due to McLachlan ([4], sec. 10.51,
(9)) which in turn 1is derived from Whittaker's general
solution of Laplace's equation; this converts (3.5.6) into a
double Fourier cosine transform.

From [4] (sec. 10.51, (9)).,

2m

2
") Cegq (1ih®) = 0y [ cosIF(s,y, 8/h)lce,, (8,0%)d8

™
ce,, (3 —8/h

(*) CE, is changed to Ce merely for convenience,
since in the evaluation of the coefficient Bn(h) we shall

employ a relationship involving the product ceane2n .
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where F(B8,v,9,h) = 2h(coshysinRcosé+sinhycosBsin®) , and
Pan = Cepy (0,h%)ce, (37,0%) / 27af®) (n?) |

So we can write

m 2 2 V2
cezn(§ -B,h )Cezn(Y,h )y = 402n é cos(2hcoshYsinBcose)x_

y cos(2hsinhycosBsin9)ce2n(G,hz)de (3.5.7)
and
/2

H(B,y) = [7 ) Dn(h)f cos (2hcoshYsinBcos8) *
0 n=0 0

x cos(2hsinhYcosBsin9)ceZn(G,hz)deh (3.5.8)

= (=710 '
where Dn(h) = (=-1) 402nCn(h) .
Provided we . can interchange the order of summation and

integration inside (3.5.8), then

-7/ |
H(B,v) = [ [ cos (2hcoshysinBcos8) x
00

x cos (2hsinhvycosf8sing) f(6,h)d8dh (3.5.9)

where £(6, h) = ] D_(h)ce, (8, h?) .
- n=0

Next we make the following transformations:

hcos8 2coshysin®B
let ' and

hsiné

X1

2sinhycos8

oy
[
|

X2
where 6 € [0, g] , h ef0, = , ye[0o, » , B €[0, 7],
so gl € [0, = , EZ € [0, = , Xle [0, =) and

X2 € (...co, oo)
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Then (3.5.9) becomes
Hy(%1,%,) = émémcos(xlgl)cos(ngz)g(gl;gz)dgldgz (3.5.10)

d . : .
where H (xy%,) €0 H(v) and g5, 9@ £ 0

Using the two-dimensional Fourier cosine transform

formula on (3.5.10) we get

Lo

4 o
9(51152) = ;5 é é cos(xlal)cos(ngz)Hl(xl,xz)dxldx2 .

Changing back to variables h and & ,

2

nzoDn(h)cezn(e,h )

4h fmfw .
= e cos (X, hcos8)cos(x,hsiné)H. (x,,x.,)dx,dx., .
TY2 00 1 2 1'*717°2 1772

(3.5.11)

Next we multiply both sides of (3.5.11) by
cezm(e, hz) , where m 1is a fixed non-negative integer, and
il

integrate with respect to €& from 0 to 5 . Proceeding

formally, we change the order of summation and integration,

and use orthogonality of cezn(e, h2) to obtain

/2
m [ 2y (== -
10, (h) = / 5ce, (8,h°) [ [ cos(x;hcose) cos (x,hsind) x

0 v 00

X Hl(xl,xz)dxldxzde . (3.5.12)

Since dxldx2 = 2(cosh2y + cos2B8)dRdy, then in terms

of B and vy , (3.5.12) can be written as

.7 N
ce, (8,h%) [7f" H(B,Y)cos(2hcoshYsinBcos8)x
00

3
W
O

X  cos(2hsinhycosBsin®) (cosh2y+cos28)dgdyde .
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Then interchanging orders of integration (provided it

can be justified) and using (3.5.7), we get

8h o /2 , "
D_(h) = =%— [[ (cosh2y+cos2B)ce, (%5 -8,h
m 3 2m "2

T Pom 00

x CeZm(Y.hz)H(B}Y)dBdY;

2y,

Hence

/2

2 w© 3
c (h) = -%—5— é é (cosh2y+cos28)ce, (8,-h

m p2n
x Cezn(y,hz)H(B,Y)dBdY (3.5.13)

2) N

and the inversion of the relationship (3.5.6) is complete.
It may be noted here that from (3.5.1), (3.5.2),
(3.5.3) and (3.5.4), the normal component of stress under

the punch, i.e. on S , is given by

ie~18

, -1 2
(2csinBcoshy) é B, (h)Fek} (0,-h%) x

n=0
x ce. (8,-h%)Ce. (v,h%)dh (3.5.14)
2n'"’ 2n\ Y , e
where g€ (0, ) and vy € [0, =) .

Concerning the edge of the contact region, i.e. where
a = 0 and B =0 or = , the presence of the term
(2¢ sinBcoshy)—l in (3.5.14) indicates a singularity of the
function representing the normal component of stress. This
singularity is of the square root type which is expected in
complete contact problems. |

More explicitly let P be a point inside the region

S with Cartesian coordinates (x, y, 0) and let Q be the
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point on the boundary of S 'with Cartesian coordinates

(XI §l 0) .
_ My

Q.("’Y)O)
/3;'0

'P(")\’rO)

S Yy X
(\ic)o)o)
o=0

p="

Also let the corresponding paraboloidal coordinates of P
and 0 be (ay B, v) and (o', B', ¥") respectively.

Then o = o' =0, and B8Y = 0 , so

§2 - Y2 = (2c sinhy')2 - (2¢c cosBsinhy)2 .

Since the x-coordinates of P and Q are the same,

%0(2 - cosh2¥Y') = %c(l'+ cos28 = cosh2y)
i.e. 2'sinh2Y' = cosh2Y - cos28
hence (§2 - yz)_l/2 (2¢ sinBcoshy) ™t .

3.6 On the validity of the formal solution

As in Chapter two (sec. 2.6) a set of sufficient
conditions can be imposed on the profile function H(B,Y)

in order to Jjustify the formal steps taken in section 3.5.




However, since the subsequent analysis will be quite Similar
to that employed in Chapter two, we shall not pursue this in
detail here. Clearly one expects the conditions on H to
be somewhat stricter than those used in the previous

chapter.

To justify the expression (3.5.6) the following steps
may be outlined. Let

T(E1,8,) = émémcos(xlal)cos(xzaz)Hl(xl; X,)dx,dx, (3.6.1)

where El} 52} xl} Xy and  Hy(xq, X,) are as defined in
section 3.5. Some conditions on Hy(Xq, %,) will be

°

required here to ensure the existence of 'T(gl, gz)

- Next let

El = hcosé , 52 = hsiné

T(ey,6,) 4 Lon, 6 .

If we expand J(h, 8) as a Mathieu function series,
under similar conditions to those given in Chapter two, we

obtain

8

J(h, 8) =
n

il o~

2
. En(h)cezn(e, h™)

where, provided the series is uniformly convergent,
/2
_é _ . 2
E (h) = = é J(h, 8)ce, (8, h*)de .

Now we choose the coefficients Cn(h) in (3.5.6)

such that
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n
(-1)"E_(h)
2
T ®2n

Cn(h) =

where

1

v _ 2 2

) / 27 al®™ m?) |

It may be noted here that since

2

ces (0, h%) = cey (%w, h

and the zeros of basically periodic solutions of Mathieu's

equation are all simple, then

2 1 2 .
ceZn(O, h®) # 0 and ceZn(EWU h®)y #0 , 1i.e. pZn # 0 .

Finally inverting the double Fourier cosine transform

(3.6.1) we obtain .

[o o]

= A e
Hy (x1,%)) = =5 g g cos (xEy)cos(Xy8,) T(Ey,E,)dE AL,

and by changing the variables back to h , €, 8 and vy , we
get (3.5.§). Some further conditions must be imposed on Hl
to ensure that the double Fourier transform can be inverted.
For example. we can require Hy to be three times
continuously differentiable with respect to Xy and Xo o
In order to show that the function V¥ represented by
(3.5.4) 1is the solution of the boundary value problem, as
before, it must be shown that ¥ is continuous and
satisfies Laplace's equation together with the boundary

conditions. Writing ¢ in the form
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2
- o 2 _qy - Fek, (a,=-h")
ba gy = [0 ] Lo g —B
0 n=0 ¢ n Fek, (0,-h?)
n
ce, (B,-h“)Ce~,_(v,h") o
x —2n 2n” ! dh (3.6.2)

P2n
we observe that, from appendix B ,

2
Fekzn(d,—h )

2| <1
Fek, (0,-h?)

and from (3.5.7) and appendix C (c.1.9),

2

lcezn(ﬁ,-hz)Cezn(Y,hz) \

> < 2“(Y0‘+ Ylh'+ Y2h
n

Moreover, by the same technique as that used in
appendix D, a suitable bound can be found for En(h) to
ensure the wuniform convergence of the series and the
integral in (3.6.2). The rest of the analysis, required to
demonstrate that ¢ 1is twice differentiable with respect to
the three variables, can be developed by modifying the

techniques used in the appendices.

3.7 An example

We shall now consider an example where the function
representing the punch profile, i.e. H(B8, y) , is indepen-

dent of B . Let
H(B, y) = scoshyexp(-sinh®y) (3.7.1)

where ¢ is a dimensional parameter equal to the maximum

depth of the punch. The cross-sections of the punch profile

are shown below:




91

longitudinal cross-section

_%f A -
I
* : 8
]
]
\'J
Z
transverse cross-section
-lic¢ Qe
> Y
)
v
Z
The coefficient Bn(h) ' in the general solution
Cn(h)

(3.5.4), can be written as

5 where Cn(h) is
Fek2n(0,-h )

given by (3.5.13) ,
/2

c (n) = -2B_ 7 (cosh2y + cos2B)ce, (8, —hz)
n 3 2 2n
LAN-PY 0 0

Ce,, (v, %) H(8, v)deay .

Using (3.7.1),
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C_ (h) =[%w coshyexp(~sinhzy)coshZYCeZn(y, h?)dy
|7 ce, (8, —hz)diﬂ+[fo cosh Yexp (-sinh?y)Ce, (¥, h?) ay

/ COS2Bce2n(B, —hz)dB]. (3.7.2)

Two of the four integrals in (3.7.2) can be evaluated

easily, namely

m/2

.2 _ T (2n) :
% ce, (8, -h“)as (-1) A5 (3.7.3)
and
/2 ' o
|7 cos2bce, (8, ~h2ygp = (-1t Tp(2n) (3.7.4)
0 n 4 2
where A(gn) and A(%n) are the first two coefficients in

the Fourier series expansion of ce, -
To evaluate the remaining integrals in (3.7.2) we make
use of the Bessel function series expansion of Ce2n(Y, h2),

where

2, w
2. Cep, (0,07 ¥

Cezn(Yr h ) - A(zn)
0

(2n) .
e A or J2r(2h sinhy)
([41, 8.10., (17))

(3.7.4a)

This leads to the following expressions for the two

integrals under consideration in (3.7.2)

2 ©
ce n (0,07 1y A(2n)
A(gn) 2r

[% coshycosh2y x

r=0 0

x exp(—sinhzv)JZr(2hsinhY)dY (3.7.5)

and
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cezn(o,hz) g

I a2 1% coshy <
A(2n) r=0 2r 0
0
x exp(-sinh®y)J,_(2hsinhv)dy (3.7.6)
Finally, the integrals in (3.7.5) and (3.7.6) can be
evaluated using Hankel transforms ([7], 8.6, (8) and (14)).

If we let sinhy = x , then

fw coshvcosthexp(-sinhzy)J2r(2h sinhy)dy
0 .

2

[T (2x

+1)exp(-x)J,_(2hx)dx .
0

The integral in (3.7.6) will reduce to the same form

except for the term (2x2+l) in the integrand which will be

missing. Now from tables of Hankel transforms ([7]1),

3
' (r+%)
© 2 _.2 _ 2r 27
% x“exp(-x“)J, (2hx)dx = (20) 7" vy
x Fp (BFE 5 are1  n?) (3.7.7)
and
2 2
= 2 _ /1. .~h h
,% exp(-x°)J, (2hx)dx = S exp( % )I_(3) (3.7.8)

where in (3.7.7), T(t) is the Gamma function, and lFl

is the confluent hypergometric function (also known as

Kummer's confluent hypergeometric function). This function

has the following series representation

3 S, 2.k
% (r+3), (-h%)
2r+3 ., . n2y 2°k
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where (a)0 = 1 and (“)k = g(a+l) (a+2) ... {(a+k-1) . In

(3.7.9%), I is the usual modified Bessel function.

In section 2.7 certain numerical procedures were
employed to compute the normal component of stress, Tzz ’
under the punch. Here we shall indicate briefly how similar
techniques may be used in the computation of T,, (under the

punch) for the above example which is represented by the

following expression

2
' )
Fekzn(O, h“)

: -1 ° o

1., = (2c sinpcoshy) [ ) c¢c_(n .2 %
7z 0 n-o D Fek2n(0, h™)

x ce, (8, -h%)Ce, (v, h%)dh (3.7.9)

2n 7 4 2n r L) .
where
n2p2 o (
2 2 2n o0 2
‘“EE%'Cn(h) = (-1)nce2n(0, h?) rEO B,- ) é (2x° + 1) x
2 (_l)n+l A£2n)
X exp(-x )J2r(2hx)dx + 5 )
)
2, v . (2n) [ 2

x ce, (0, h) rzo B,2 g exp(-x“)J, (2hx)ax

and | (3.7.10)

; _ ceZn(O,hz)cezn(ﬂ/Zl hz)
2n (2n)
ZﬂAO

For this example the integrals in (3.7.10) have been
further reduced to products of Gamma functions, confluent

hypergeometric functions and modified Bessel functions,
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however it appears that the integral representations in
(3.7.10) are easier to handle as far as the actual numerical
computations are concerned.

This observation is based on the fact that
|J,.(2hx)| < 1 and tends to zero rapidly as h , x or r
increase. The numerical values of the J2r Bessel
functions have been extensively tabulated (e.g. M.
Abramowitz and I.A. Stegun, Handbook of Mathematical
Functions, Dover 1968.) In addition the term exp(—xz)
causes the integrals to converge even faster. So a standard
numerical method (e.g. Simpson's rule) may be employed here
over a small interval of x , say [0, 4].

As in section 2.7, one can obtain fairly accurate
results using small values of h (say 0, 0.1, 0.2, ..., 2.0)
and n (say 0, 1, 2). This is due to the occurrence of the
coefficients Al |

2

expression for Cn(h) .

in) , and the functions J2r(2hx) in the

(2n)
A2r

(3.7.10) can all be computed using the method outlined in

The coefficients and the Mathieu functions in
section 2.7 which is based on the techniques developed in
reference [10] of Chapter 2.

Finally in order to evaluate (3.7.9) we note that the
Fek! (0,-n%)
2n '

2
Fekzn(O,—h )
exactly the same methods as those used for the example of

terms and cezn(B,-hz) can be computed by

section 2.7. Furthermore the non-periodic Mathieu. function

Ce2n(Y, hz) can easily be computed from expression (3.7.4a)




94b

since again the series converges quite rapidly. The same
set of values of n and h can be used here while the
series itself may be approximated using the first 4 or 5
terms, depending on the desired accuracy.

Consequently a fairly accurate approximation of Ty
can be obtained by using the first three terms of the series
in (3.7.9) while h takes the values 0, 0.1, 0.2, ..., 2.0.

The integral can then be computed using a standard numerical

integration technique.

The above treatment can easily be modified to handle
cases where the punch profile involves simple trigonometric
functions of g . For instance if H 1is a product of’ sin28
and the above function of Y (3.7.1) then only the

expressions (3.7.3) and (3.7.4) would have to be altered to

/2
f sin28ce2 (8, —hz)dB
0 n
and
/2 2 2
/ sin“Bcos26ce, (8, -h®)dp
0 n

both of which are easily expressible in terms of the

(2n)
Aty .

Thus, clearly, more general punch profiles than the

coefficients .

one given by (3.7.1l) can be treated along similar lines.
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Chapter 4 - THE WEDGE PUNCH PROBLEM

4.1 Introduction

We now consider the problem which arises when the
punch contact is over an infinite wedge-shaped domain.
Clearly, some assumption must be made, as was necessary for
the strip punch and the parabolic punch, regarding the wedge
profile at large distances from the apex. If the depth of
penetration does not decrease to zero sufficiently rapidly,
then theoretically an infinite amount of energy will be
needed to make the indentation. The difficulties arising
from this observation are, however, no more serious than in
the cases considered already.

A more serious problem 1is posed, however, by the
presence of the sharp vertex of the wedge. Intuitively, it
is clear that this produces a "worse" stress singularity
than the square-root type which arises at a smooth edge of a
punch, and the difficulties are both ©physical and
mathematical.

Howevér the probem is not confined to the occurrence
of stress singularities alone. In Chapter two we observed
the existence of stress singularities on the edges of the
strip punch, but the potential <y which was obtained as the
general solution of the boundary value problem was found to
satisfy the boundedness requirement at infinity as well as

being continuous within and on the boundary of the half-
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space; In the case of the wedge punch, with a sharp vertex,
even the existence of such a well-behaved solution is in
doubt. Thisg difficulty is again due to the highly idealized
condition resulting from the sharp point at the vertex. An
investigation of some of the attempts by various authors in
this area clearly indicates the magnitude of the diffi-
culties involved in obtaining a solution which is mathemat-
ically as well as physically "complete". Thus the solution
-obtained in this chapter is by no means claimed to be the
"complete" solution to such a problem.

As in the case of the strip punch problem in
conjunction with the assumed idealized conditions of linear
elasticity (see Ch. 2), the wedge punch problem is treated
here as a mixed boundary value problem of potential theory.
‘Basically a function ¢ 1is to be found which is harmonic in
a certain region and is prescribed on part of the boundary
of this region while its normal derivative is zero on the
remaining part of the boundary of the same region. In terms
of the wedge punch problem this means that a function
representing the punch profile 1is prescribed over an
infinite sector in the xy-plane and the normal component of
stress is taken to be 2zero outside this sector (on the
xy-plane). We shall assume that the prescribed function
which represents the punch profile is not constant and tends
to zero at infinity. This is discussed in more detail in

sections 4.3 and 4.4.
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Here we shall briefly review some of the literature on
the wedge punch and related problems. A number of different
techniques have been used by researchers in this area. How-
ever these techniques will not be examined here since we are
primarily concerned with the nature of the various solutions
and the corresponding stress singularities obtained.

One of the earliest attempts towards a solution of the
wedge punch problem can be found in the works of Galin [7].
He considers a punch with a flat profile and assumes that
the first partial derivatives of ¥ vanish at infinity. 1In
his solution the normal component of stress under the punch
is found to behave as r_ near the apex, where «r 1is the
distance from the apex. This solution, however, indicates
that there is some additional loading on the boundary of the
elastic medium along the straight line which is the continu-
ation of the line bisecting the wedge, outside the punch.

Later Rvachev [15], through an essentially different
approach, attempted to solve the same problem without the
additional normal pressure outside the punch. He assumed a
solution of the form ¢ = rvf(e,cb) and concluded that the
normal component of stress near the wedge apex behaves as
rv—l where Vv 1is dependent on the wedge angle and
0<v<l1.

Parihar and Keer [10], [14], BazZant and Keer [5] and

‘Bazant [4] have also adopted the same (or very similar)

boundary conditions which has 1inevitably led them to
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consider stress singularities, near the apex, of the form
given by Rvachev. 1In [10] the boundary condition correspon-
ding to the displacements under the punch is the same as
that used by Rvachev (namely a constant), while in [14], [5]
and [4] it is taken to be zero.

The wedge punch problem is mathematically very close
to two other physical problem, namely (1) that of
electrostatic charge distribﬁtion on a thin flat plate with
a corner and (2) the "delta wing" problem relating to
aerodynamic flow, at subsonic speeds, over an aerofoil in
the shape of a triangular sector. Useful guidance and
information is to be obtained from papers, by the following
authors, dealing with these two problems: Morrison and
Lewis [13], Taylor [16], Brown and Stewartson [6], and
Taylor [17]. The first two relate to electrostatic
potential theory and the second two to a steady-state
aerodynamic problem.

All the above mentioned works (apart from that of
Galin) share a common feature; namely that the stress
singularity near the apex behaves like rv—l r With Vv
dependent on the angle of the sector, and in most cases
considerable emphasis is placed upon the numerical evalu-
ation of the small values of V. 1In essence they all treat
the problem as an eigenvalue problem which is a direct
consequence of the adoption of homogeneous boundary

conditions.
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Aleksandrov and Babeshko [1] treat the problem
differently. They consider a wedge punch with an arbitrary
profile so the boundary conditions are no longer assumed to
be homogeneous. This is a significantly different problem
in which the stress singularity near the apex is shown to
behave as r;3/2cos(6 In r) where 6 depends on the wedge
angle. They raise an objection, on physical grounds, to the
adoption of the boundary conditions which correspond to a
punch with a flat (i;e; constant) profile, namely that in
such cases "only a solution with infinite energy can exist".
One may also argue against the case where the punch profile
is taken to be zero, since it appears, at least, physically
unreasonable to expect that such a punch would produce any
non-zero stresses.

The problem that is treated in this chapter closely
resembles that discussed by Aleksandrov and Babeshko [1].
Although the form of our solution and the techniques
involved differ from those in [l], we are in close agreement
with [1] as far as the behaviour of the stress singularity
at the apex of the punch is concerned. It may be pointed
out here that Aleksandrov and Babeshko obtain the pressure,
p » under the punch and not the potential function vy .
They start with the type of integral representation
discussed 1in Chapter two (p. 26) and apply a Mellin
transform technique to find p . However, as mentioned in

Chapter two (p. 27), although once the function P

(representing the pressure) has been found, theoretically
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one can obtain the solution Y of the boundary value
problem (through a similar integral representation), usually
such evaluations prove to be quite cumbersome.

One of the difficulties encountered by some of the
earlier workers is the choice of a coordinate system which
fits the geometry: A number of different systems have been
used, but the one with most obvious advantages is. the
elliptic conal (sometimes called sphero conal) system, in
which the infinite triangular sector, which is the area of
contact between the punch and the elastic medium, is one of
the normal sufaces (see Arscott and Darai [3]). Three
versions of this system have been used; the "algebraic"
(Brown and Stewartson [6]), the "trigonometric"™ (Morrison
and Lewis [13]) and the "Jacobian" (Taylor [17]), but we
shall wuse the last-named, mainly because it gives the
simplest form to the basic differential equation, that of

Lamé, whose solutions are needed.

4.2 The elliptic conal coordinate system

We choose an alignment of the elliptic conal system
such that the elliptic conal coordinates r, o, B are

related to the Cartesian coordinate by

£ dnadng (4.2.1a)
Yy = Kr sna snB (4.2.1b)

z = %$ r cnaocnf (4.2.1c)
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where sn, cn and dn are the Jacobian elliptic functions
of modulus k (see [3] for a general discription). In this

coordinate system r, oo and B are confined to the domains

r>0 (4.2.2a)
o € (=2K, 2K] (4.2.2b)
B e

[K, K+2iK'] (4.2.2c)

where K is the complete elliptic integral of the first
kind.

This involves a different alignment from that used by
Taylor [17], but conforms to the usage elsewhere in this
thesis in that the 2z=-axis points into the elastic medium,
the wedge punch lies in the xy-plane, and goes to infinity
along the negative x-axis.

Taylor's [17] Cartesian coordinates X, Y, Z are thus
related toour x, y, 2z by X=y , 2 =%x, ¥ =2 . But the
variation of the r, &, B coordinates is the same as that in
Taylor's work.

With this choice of coordinates the coordinate sur-
faces which are of special interest in relation to our wedge
problem can be described as follows:

(i) The surfaces B =K , B = RK+2iK' are infinite
sectors given, parametrically, by x = + r dn o,
y = kr sno, z = 0 , respectively. Hence each is
a sector in the xy-plane with semivertical angle

Y . where




Since
convenient

(see [31])

so that
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i
P

siny (4.2.3a)

cosy k! (4.2.3b)

Thése sectors have as their center-lines the
positive and negative x-axes respectively, and we
shall take B = K+2iK' as the region of contact
of the punch which will be denoted by S (as in
the previous chapters).

The surfaces @ = + K together occupy the
remaining portions of the =xy-plane, giving the

configuration:

aY
; ol= K
B= K2 < p=X .
®=-¥
the wvariable B8 is complex, it 1is often

to replace it by the real variable u , given by

B = K+iK'~iu (4.2.4)
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k sng = dn(u, k') (4.2.5a)
k cng = - ik' cn(u, k') (4.2.5Db)
dng = k' sn(u, k') (4.2.5¢c)

To save tedious repetition, it is to be understood
that elliptic functions with argument u have modulus k'
in place of k .

The relations (4;2;la, b, ¢) between Cartesiaﬂ and

elliptic coordinates become

X = r dnoao sn u (4.2.6a)

Yy =r sn® dn u (4.2.6Db)

Z =r cn® cnu (4.2.6¢c)
so B= g , B= K+2iK' become u = K' , u = =K'
respectively.

4.3 Formulation of the boundary value problem

The mathematical formulation of the wedge punch
problem 1is basically the same as that of the strip punch
problem which was described in section 2.4.

It is assumed that a rigid frictionless punch in the
shape of a wedge of semivertical angle Y indents part of
the boundary of the half-space 2z > 0 . The elastic medium
which occupies this half-space is isotropic, homogeneous and
linearly elastic, and there is complete contact between the

punch and the elastic medium. Let S denote the contact
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region (i.e. in elliptic conal coordinates of section 4.2

the region B = K+2iK') and S denote the region outside S

on the xy-plane (i.e. a = + K and B= K) . We seek a

function ¢ which satisfies conditions (i) to (iv) of

section 2.4.

> %
4.4 The solution of the boundary value problem
Laplace's equation in elliptic conal coordinates
becomes
2 2
B2 A _ 1 27 _ 3%y, |

kz(snza—snzB) Baz 382
The conditions (i) to (iv) of section 2.4 can now be

stated as follows:

(a) Equation (4.4.1) holds for r € (0, ») ,

o € (-K, K} and B € (K, K+2ik")
(b) Vv =->0 as r

-> © , fora€ (-K, K) and

B e (K, K+2iK') .




(c)

(d)
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Since %% = ik chaeng

. i sna dno cn#

o% Kk'r (cna -cn?B) ’

9B _ i snB dnB cnu

%z kk'r(cnza -cn26) '
and § is the region o=+ K and B =K , then
%g = 0 on S is equivalent to
=0 when a=+K (4.4.2)
and 2% =0 when B=K (4.4.3)
y(r, a, K+2iK') = F(r, a) (4.4.4)
for o e [-K, K] and r € [0, =) ,
where F(r, o) is a prescribed function

describing the punch profile. In addition, to
simplify the work that follows we shall only
consider the case where the punch profile is
symmetric about the centre line of the punch,
i.e. it is assumed that F 1is an even function

of o .,

If we separate equation (4.4.1) in the form

then we

equations:

Y = R(r)A(a)B(B)

obtain the following ordinary differential
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2 d°Rr drR _ _ -
r 5;7 + 2r ar v(v+l)R = 0 (4.4.5)
2
43+ (-vv+lik%sn%u)a = 0 (4.4.6a)
da
as 2.2
=5 + (A=v(v+l)k"sn"g)B = 0 (4.4.6b)
dg
where A and v(v+1l) are the two separation constants

written in the form which allows us to express (4.4.6.a, b)
as standard Lam€é equations. Of course the domains of
definition of the variables o and B differ in these two
equations. In order to show which solutions of Lamé's
equation are appropriate for our boundary value problem we

first consider Lamé's equation in its general form

2 o
g—% + (A= v(v+l)kzsnzz)w = 0 (4.4.7)
dz
where z is a complex variable. Since z = K is an

ordinary point of (4.4.7), then there is only one solution
(apart from a constant multiple) such that w'(K) = 0 . So
from boundary conditions (4.4.2) and (4.4.3) and equations
(4.4.6a, b), Ala) and B(B) are the same functions
respectively of o and B8 . However, since & and B8 belong
to entirely different domains, the functions A(a) and

B(B) do not have the same behaviour.

To determine A(ax) we observe that from the symmetry
condition, imposed on fhe profile function, A(d) 1is even
in o . This implies that A'(0) = 0 , and since from
condition (c) A'(K) = 0 then we have to solve (4.4.7) on

the real axis with the boundary conditions
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w'(0) = w‘(K) = 0 (4.4.8a,b)

From the theory of periodic differential equations it
can be shown that (4.4.8a, b) are equivalent to the require-

ment that w{z) be even with period 2K , i.e.

w(-z) = w(z) , w(z+2K) = w(z) (4.4.9a,b)
(c.f. Arscott [2], 2.1.1 with 7 replaced by 2K; in parti-
cular example 2).

Now (4.4.7) and (4.4.8a, b) form a regular Sturm-
Liouville eigenvalue problem which is solvable only for a
denumerable infinity of eigenvalues. These may be denoted
by kim with m = 0, 1, 2, .eo = The corresponding
solutions may be written as Eégm(z) where the parameter m
denotes the number of zeros of this function in (0, K) .

The functions themselves may be determined in the form of

series. Ince [8] gave them as power series

2m 2r :
( A2rsn Z (4.4.10)

Ecv

z) =
r

Hi~18

0

and in a later paper [9] as Fourier-Jacobi series

. 0
Ec%m(z) = 2 C2 cos(2r am z) (4.4.11)
r
r=0
where cos(am z) = cn z.
To obtain the eigenvalues A and the coefficients
A2r or Cor one can use the three~term recurrence

relations which result from the sustitution of (4.4.10) or

(4.4.11) expansions (respectively) into the differential
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equation (4.4.7). The method used here is similar to that
used in the case of Mathieu functions. Other methods are
available for the determination of A and the corresponding
solutions of (4.4.7). One such method is the perturbation
technique devised by Taylor and Arscott [18] which has
proved effective in the type of electrostatic and aero-
dynamic problems mentioned in section 4.1.

The wusual phenomenon, relating to periodic differ-
ential equations, first observed for Mathieu functions
occurs here (see McLachlan [12], Ch. 3, or Arscott [2],
3.6). Formal substitution of (4.4.10) or (4.4.11) 1in
(4.4.7) yields a set of recurrence relations which can be
solved for arbitrary values of X , but the resulting series
would, in general, diverge at some point on the real axis
((4.4.10) at z = K , (4.4.11) at =z = 0). Choosing XA to
have a characteristic value guarantees convergence at all
points of the real axis, yielding a solution with the
necessary boundary properties (4.4.8) or (4.4.9).

In the very exceptional case that Vv is an integer,
the series (4.4.10) (or (4.4.1l1)) terminates and yields a
so-called Lamé polynomial, but this possibility does not
seem to arise in our current problem.

Thus the problem of finding A(c) 1is, essentially, a
matfer of applying known theory and techniques.

It may be thought that since, according to our formu-

lation of the problem, B(B) is.the same function of B as
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A(o) is of a , and A(o) can be determined more-or-less
explicitly, then B(B8) can also be easily determined
through a similar representation. This, however, is not the
case. It can be shown (Ince [8], [9]) that the series
(4.4.10) or (4.4.11) converge on the entire real axis, but
the regidn of convergence does not include all points of the
interval [K, K+2iK'] which is the domain of definition of

B . In particular, while (4.4.10) and (4.4.11) have
slightly different regions of convergence and the latter
converges faster than the former, both series fail to
converge at K+iK' . Consequently, although the function
B(z) for z € [K, K+2iK'] can be defined mathematically as
the analytic continuation of A(z) from a neighbourhood of
z = K along the line Re(z) = K , this alone does not lead
to an explicit expression for B(B) .

For instance at  K+2iK' the terms of the series
obtained by term-by-term differentiation of the series
(4.4.10) (or (4.4.11)) are all zero, but we cannot conclude
that B'(K+2iK') = 0 since convergence fails at this point.
In particular we should note that B(f) 1is not, in general,
a periodic function of B .

Howéver, there are integral representations of B(B) ,
in terms of other Lame functions (e.g. A(Q) in this case),
which can be handled more freely over the domain

[K, K+2iK'] and usually such representations are used when
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numerical results are required. A detailed discussion of
integral representations of non-periodic Lamé functions can
be found in R.S. Taylor's Ph.D. thesis [19].

To continue with the formal analysis, we recall that
when the partial differential equation (4.4.1l) was separated
the parameter v emerged as a separation constant.
Clearly, V(V+1) must be real (otherwise we could get a
complex expression for ¢ ) but there are three alternatives

for Vv(v+l) giving different forms of Vv , namely

(i)  Vv(v+l) >

(ii) v(v+l) =

i
N [l STl S ]

(iii) v(v+l) <

For each of the above alternatives we obtain a
different type of solution R(r) for equation (4.4.5).

These are given by

(1) if Vv(v+l1l) > -
-1

% , then
R = Ar’+ Br VY (4.4.12)

where without loss of generality we may take

1
\)>-§
(ii) if v+l) = - % , then
R=r22 (A +B 1n r) (4.4.13)

(1ii) if v(v+l) < - % , we set

<
i

- % + ip (p > 0) and then

w
1

r‘l/z(A cos(p 1ln r) + B sin(p 1n r)) .

(4.4.14)
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Thus we can write a separated solution in the form
V= R(x, v)Ec2M(c)Ec2®(p) (4.4.15)

incorporating the parameter Vv into the expression for R .
This solution satisfies (4.4.1) and the boundary conditions
(4.4.2), (4.4.3), but not (4.4.4). However, we may
construct a more general solution by summing with respect to
m and integrating with respect to Vv , namely
W(r,.a, B) = f mEO Cm(v)R(r,v)Ecim(a)Ecim(B)dv (4.4.16)
with (so far) arbitrary Cm(v) . The set of values of v
over which integration is to be performed is not specified
yet;

Using the remaining boundary condition (4.4.4), and
the expression (4.4.16) we obtain, formally,

F(r,o)

/ Xo Dm(v)R(r,v)Ecim(a>dv (4.4.17)
m=

where D, (v) = Cm(v)Ecim(K+2iK') .

Clearly, for the boundary value problem considered
here, the choice of the range of integration 1is not
immediately Aobvious on mathematical or physical grounds.
This serious difficulty seems to stem from the nature of the
problem itself. Perhaps the problem has been so idealized,
physically, that it 1is no 1longer possible to obtain a
"complete” mathematical solution.

In what follows we shall confine our attention to one

of the alternatives mentioned above, namely the case where
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v==-2+ip with p > 0 (i.e. v(v#l) < - %) . with

this choice for Vv , integration takes place along the line
Rev = 4-% and we can invert relation (4.4.17) to obtain a
formal solution ot the problem. The solution found in this
way seems to indicate that, in the immediate neighbourhood
of the vertex, complete contact between the punch and the
elastic medium is lost. However, due to the idealized
nature of the problem, in particular the assumption of a
sharp point at the vertex, an objection raised with respect

to this interpretation may not be too serious.

To proceed with the formal analysis, we set

22m

Vo= - % + ip , Ec%m(z) = Ep (z)

and take R in the form (4.4.14) . The expression (4.4.16)

can now be written as

Y({r,a,B) = fm ) r_l/z[Am(p)cos(p in ) +
0 m=0
. 22m 22m S
+ Bm(p)51n(p 1n r)]Ep (OL)Ep (B)dp (4.4.18)

where the dependence on m and p of the arbitrary con-
stants in R has been taken into account. The expression

which corresponds to (4.4.17) can then be written as
rl/zf(r,a) = fm ) *[Ym(p)cos(p In r) ¥
0 m=0

A~

+ & (p)sin(p ln r)]Egm(a)dp (4.4.19)
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where

Yo (p) = Am¢p>ﬁgm(x4zix'>

Su(P) = By(p)EST(R¥2IK') .

NexXt we introduce a new variable s and let

[joF}

Inr =s8 , rl/zF(r,a) * G(s,a) .

Relation (4.4.19) now becomes
G(s,a) = [ 7 [y (p)cos(ps) +
0 m=0
. Azm . .
+ dm(p)sm(ps)]Ep (a)dp (4.4.20)
which has the form of a Fourier transform. In order to

invert (4.4.20) we first split G(s, a) into its even and

odd parts (in s), say
G(S, Ol,) = Ge(s, OL) + GO(S, OL) .

So {(4.4.20) now becomes

Ge(s, a) = émmzo ym‘p)cos(ps)E;m(a)dp
Golsr @) = [7 T 5, (P) sin (ps) 2" (o) dp

which can be inverted by applying the inversion formulae for

Fourier cosine and sine transforms. This gives
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o]

Y Y AP)ES (a) = 2 [ cos(ps)G_(s, a)ds (4.4.21a)
0 m P il 0 e

m=

Y Gm(p)glém(u) =% £°° sin(ps)G (s, a)ds (4.4.21b)

m:

Now since over the interval (0, K) , the functions "
{Egm(ai} are solutions of a regular Sturm-Liéuville problem
they satisfy the usual orthogonality property, i.e.

2K &

- 2m 2o2m! _ o
fo EgT () EST (a)do = K (p) &, (4.4.22)

where Km(p) is a normalising constant (taken as T in
Ince's work but we shall leave it unspecified).

Hence by applying (4.4.22) to (4.4.2l1la, b) the
coefficients Y and Gm can be determined in the
following forms

2K ~
- 2 © ~2m
Yh(p) = EE;TE) IO é Ep (a)cos(ps)Ge(s, a)ds da
S B) = =2 [ % R2M(a)sin(ps)C (s, o)ds do
m P - TTKm(P) 0 O p sin pS o Sy S
which in turn determine the coefficients A and B in

m m
the expression for ¥ given by (4.4.18) .

As indicated in Chapter one, the normal component of
étress under the punch (inside S) 1is given by %% z2=0 °
Here the region S 1is given by B8 = K + 2iK' , =K < a < K
and r > 0 .

Using (4.4.18) and the appropriate partial derivatives

(see condition (c) earlier in this section), the expression

for the normal component of stress under the punch becomes
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o«

(ikrcnOL)”l [ ] r_l/z[Am(p)cos(p In r) + B _(p)sin(p 1n 1)]

m=0
A A [] f
Egm(a)E;m (K + 2iK")dp (4.4.23)
Due to the presence of the term (krcnm)"l in

(4.4.23), the stress function exhibits a singularity at the
boundary of S (i.e. the edges of the punch) where o =K
or o = -K . Moreover this singularity is of the square
root type. To demonstrate this we let P be a point inside
S with Cartesian coordinates (x, y, 0) and Q be a point
on the edge corresponding to a = K with Cartesian

coordinates (x, y, 0) , where x > 0 .

d:K /\\/

Q (%7:/;0)
5 POLY,0

If we let the elliptic conal coordinates (r, o, B)
of P and Q Dbe (r, @, K+2iK"') and (r', K, K+2iK')

respectively, then

=2 .2 2
y

- y© o= k2(r' - rzsnza) .

Since the x-coordinates of P and Q are the same

' o= rdna
k
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from which it follows that

(72 - v3y"/2 - ¢v (krona 7T .

In this section we have used a purely formal approach
to obtain the general solution as well as an expression for
the normal component of stress. One could conceivably
justify the operations performed above by imposing a set of
sufficient conditions on the profile function F(r, o) .
However, a more serious problem exists in relation to the
boundary value problem itself; namely that the solution
given above is not unique. This appears to be a fundamental
difficulty which arises .in the solution of Laplace's
equation relative to a region whose boundary includes sharp
corners (see Kellogg [11l] Ch. 11, sec. 1).

Mathematically, the non-uniqueness of the above
solution can be demonstrated in the following way. Suppose
we seek a harmonic function o(r, o, B) which satisfies
conditons (4.4.2) and (4.4.3) together with a homogeneous
condition replacing (4.4.4), i.e. ¢ (r, o, K+2iK') = 0 .
This problem may now be viewed as an eigenvalue problem and
is entirely analogous to the electrostatic and aerodynamic
problems mentioned at tﬁe beginning of this chapter (in
particular the trailing edge problem discussed by Taylor
[171). Various authors (as noted in section 4.1) have
attempted this problem and shown that it does indeed have
non-trivial solutions, for an infinity of discrete eigen-
values Vv , these eigenvalues being real and numerically

computable.
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*
Now, clearly, Vv = ¥ + ¢ is also a solution which

satisfies our original boundary value problem (i.e. that
satisfied by v) and if ¢ is to be rejected it cannot be on
purely mathematical grounds.

As noted above, a further objection may be raised
concerning the physical interpretation of the solution ¥
represented by (4.4.18). This objection can be directed at

1

our choice of values of v (namely that v o= - 5 + ip)

which has resulted in the occurence of the functions

r-l/zcos(p 1n r) and r~1/2

sin(p 1ln r) in the expression
for v Since these functions oscillate more and more
rapidly as r approaches zero it appears then that, near
the apex of the wedge, complete contact no longer exists
between the punch and the elastic medium. However, due to
the highly idealized assumption of a sharp point at the
vertex, it 1is not easy to decide how seriously such an.
objection may be taken. A similar problem occurs in the
mathematical theory of standing waves in a body of water
confined between two boundaries inclined at an angle and
forming a sector. In theory the waves become infinitely
steep at the vertex, whereas in practice the linear theory
ceases to be applicable iﬁ such a confined space so that the
mathematical difficulty is not physically relevant.

Clearly the wedge punch problem merits further

investigation, particularly concerning the nature of the

mathematically admissible solutions.
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APPENDIX A

To show that Fekzn(o, -h2) 0 .

Consider Fean( g, —hz) as a solution of the
differential equation
F"(g) - (a, + 2hZcosh2£)F(g) = 0 (A.1)

From Sturm's comparison theorm, applied to the
ordinary Mathieu equation with periodic boundary conditions,

the following inequality can be derived

2 2

(2n)2 - 2h° < azn(hz) < (2n)2 + 2h

for n=20,1, 2, «.., and h > 0,
(see McLachlan, Ch. 2 reference [4], sec. 12.20). So
2 2
a,, * 2h"cosh2t > 4n for all & € [0, =) .

Using Sturm's comparison theorem on (A.l) we can
deduce that the solutions of the differential equation (A.1l)
are non—oséillatory in any interval (0, b) , i.e. no
solution can have more than one zero in (0, b) , (see Ince,
Ch. 2 reference [2], 10.32).

2

We also note that since (a, + 2h cosh2&) > 0 , F"(§)

and F(&) both have the same sign for all ¢& € [0, ) . 1In
addition  Fek, (g, -h2)  tends to zero as £  tends to
infinity (the asymptotic form is given in section 2.5). So

Fekyn (0, -h%) # 0 since Fek, (&, ~h%y 2 0 .
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APPENDIX B

I. From appendix A, Fekzn(o, 4h2) # 0 . Applying the

same argument as that used in appendix A to the differential

equation
L"(E) - (a,, + 2h%cosh2E)L(E) = 0 (8.1)
Fek, (£,-h%)
with L(g) = —
Fekzn(o,-h )
we deduce that since L(0) = 1 , thern L(E) is a monotone

decreasing function of & and tends to zero as & tends to
infinity. This can be explained by the fact that since L(£&)
is non-oscillatory in any interval (0, b) , and L"(E) and
L(E) have the same sign, then L(E) cannot cross the

£-axis at any point and yet tend to zero at infinity.

II. From part I, and differentiability of L(g£) , it can
be deduced that [L'(&)| and L"(§) are both positive
monotone deéreasing functions of & , tending to zero as ¢§&

tends to infinity. As an immediate consequence we have

Fek} (€,-h2) Fek} (0,-h?)
0 < n 5 < n 5 =

(B.2)
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Furthermore

Friensas = nnnne |, - RIOTIERE
and also
© " N 2 |®
[P de = Fin (o) ]o
SO

FIL (012 = Loy (o) + 7 LEILME)dE (B.3)

But following the argument used above, L"(f) < 0 for
all £€> 0 , and since L(g) > 0 for all ¢ > 0 , then the

integral in (B.3) 1is negative. Hence
2 w
[L*(0)]" < 2L"(0)
and we have

L )] < L] < ZIL (012 = /3(a, + 2m%)1/2

Feké (¢)

2)1/2
Fekzn(O)

< /2 (a,, + 2h . (B. 4)

The variation of L(&) with ¢ (for different wvalues of h)

is shown below.

~
L(E%

(hl<h2)
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APPENDIX C

I. Consider the equation

cegn(n, —hz) + (a,, *+ 2h2c052n)ce2n(ﬂ, -52) =0

2

and define y(n) = ceZn(n, -h®) , then

2

yr(n) + (a2n + 2h" + 1)y(M) = (1 + 4hzsin2ﬂ)y(ﬂ)~ (C.I.1)

Multiplying (C.1l.1l) by y'(n) and integrating (with
respect to N) from 0 to t , where t € [0, N] we get

t t
Sly'(m1? ) 2(a, +20%+1) % (n)

t 2 .2 |

= g (1+4h®sinn)y(m)y'(n)dn . (C.1.2)

. ' 2, _
Since ce, (0, -h™) =0,
ly' (812 + (a, +20241) [y% () -y2 (0)]

t 2 .2 : o
= 2 é (L+4h"sin"n)y(n)y'(n)dn . (C.1.3)

Next we integrate (C.1l.3) from 0 to m (with respect

to t ) and note that [" cegn(t, -h?)dt = % ;
O .
éﬂ[Y'(t)lzdt + %(a2n+2h2+1)—w(a2n+2h2+1)y2(0)
7 t
= 2 [ [ (+th3sin®n)y(my' (n)dndt . (C.1.4)
00

Now YZ(O) can be eliminated from (C.1.3) and (C.1l.4)

and we obtain
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2 t 2 . 2
H)y"(t) -2 [ (1+4h%sin“n)y(m)y' (n)an
0

[y'(t)]2 + (a2n+2h2

1l ,m 2. 1 2
= 7 g [y'(t)]1“dt + 5(a, +2h“+1) -

£
- 2 f“g (1 + 4h2sin®n)yy(ny' (n)dndt . (C.1.5)

Also

i
Jﬂbﬂ(t)lzdt = y(t)y' (t) - g“ y(£)y" (t)dt

= Jﬂ(a2n+2h2c032t)y2(t)dt (C.1.6)
since cel (m —hz) =0
2 n ’ ‘ -
As noted in appendix A , a, + 2h2 > 4n2 r SO
!a2n+2hzcos2rﬂ < la2n+2h21 + 2h2[cos2n—ll < ag, + 602 .

Hence

m

2
§(a2n+6h Yy o (C.1.7)

én[y'(t)lzdt < (a, +6h?) é“yz(t)dt =

From (C.1.5) and (C.1.7) we get

2,...2 t 2 .2 , |
(a2n+2h +1)y“(t) < 2 é | (L+4h“sin“n)y(n)y'(n) ]dn +
1 2 1 2
+ Flay +6h%) + F(a, +2h%+1) +
2 (M 2,2
v J 1+an®sin®nyy (my () |anat
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1 2 1 2
5(a, +6h°) + Z(a, +2h°+1) +

A

+ 2(1+4n%) [T jy(myr(m]dan +
0

+ 2(1+4n%) g”g“ ly () y' (n) |dndt .

By Schwarz's inequality

{ é“ y2mantt? ¢ [Ty’ (n)12an}t/?

[T ly(my'(n)ldan <
0 0

< a(a n+6h2)1/2

5(a, (using (C.1.7))

So

: 2 2 1 2 1 2
(a2n+2h +L)y~ () < §(a2n+6h )y + §(a2n+2h +1) +

+ 2w(1+4h2)(a2n+6h2)1/2
and since 0 < as, * 6h2 < 4n2 + 8h2 ’
2 2
and 0 < 4n® + 1 < a2 + 2h" + 1 ,
- - n
y2(t) <2+ (an+en?) (n?+n)7h 4
+ [27(1+4h2) (4n2+8n2)1/2) (an241) L . (c.1.8)

Now

(4n2+8h2)(4n2+1);1> < 1+ 8h? ang
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(4n2+802) /2 (an?41) 1 < (an248n) /2 (4n241)71/2 (1 4 2/Em,
so  y2(t) < %'+ 2T + 4/ h + (8T+ 8)h2 + 16/3Th3
< (Ya+Y, h+Y h2)2 where Y., Y and Y are
2 (Yp+YphtY, ' or "1 2

positive constants. Hence, for all n € [0, T] and

n=0,l,2’ cee g

|ce, (N, -h?) | < Yg t Yih 4 Y2h2 ' (C.1.9)

It may be noted that the same inequality holds for

2
cezn(ﬂ, hey .

II. | If in (C.1.5), above, we drop the term

2

+ 2h" + l)yz(t) on the left-hand side and proceed to

(a2n
find an inequality for [y'(t)]'2 we find, using the same

argument as that used above,

[y' (812 < (a, +4h%+1) + 27 (1+4n?) (an+en®) /2 | (c.2.1)
Consequently,
< y' (t) >2 L1 , 2m(1+4n°) (an%een?)1/2
2 - 2 2 2
a2n+2h +1 a2n+2h +1 (a2n+2h +1)

< 1 + 2m(1+4h%) (4n2+8h%) 172 (4n241) 7t

<1+ 2ﬂ(1+4h2)(1+2/§h) (by the inequality
obtained in part I)

< (Y0+Ylh+72h2)2
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where YO; Yl and Yy are the same constants as those used
in (C.1.9).

Hence

ceén(n,-hz)
2

< Yty htvh? (C.2.2)

+1

a2n+2h




APPENDIX D

In this section we shall derive two inequaiities
’

(D.1.1) and- (D.2.7), for Dn(h) s where

D, (h) = 2 éﬂéeZn(n,-hz)T(h,n)dn (D.1)
and
I Al 2hx
T(h,n) = [ H(x,n) cos =5 dx . (D.2)
0

I. Multiplying (C.l.1) of appendix C by T(h, n) and

integrating, with respect to n, from 0 to 7 we get

fﬂy"(n)Tdﬂ + (a2n+2h2+l)fﬂy(n)’fdn = fTr (l+4hzsin2n)y(n)Tdﬂ
0 0 0

SO
T ™ AT 2 T
1 - ' Loy —
y'(n) . é y'(n) 3 dn + (ay +2h“+1)% D_(h)

= éﬂ(l+4hzsin2n)Y(n)Tdn ,

and since y'(0) =y'(w) =0,

T 2
+ fﬁé~2 y(n)dn + (a2n+2h2+1)% Dn(h)
0

-2 v ()
Bn‘ anz

0

= [T (1+4n3sin®n)y (n)Tdn .
0

From conditions (c.3) and (c.4) of section 2.6, for

2
each h > 0 , é—% is a continuous function of n , where
an
oT 0

ne€ [0, ] , and from condition (c.6) , Pl when n =0

and when n =17 . So
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F(ay +20%+1)p_(h) = [T (1+4h%sin®n)y(n)Tan -
0
2
3
- -—% y(mdn .
0 an

Using Schwarz's inequality and the notation of

condition (c.7) of section 2.6,

3(a, +20%+41)p_(h) | < (1+4n) ( [Ty?(mam/2( [T?am) 1/ 4
0 0
52

LTS 2am 2 [Ty iy am T2
0 9n 0
< %% (1+an®ymy(h) + L om(h) . - (D.1.1)

V2

2
II. Multiplying (C.1l.1l) appendix C by jL% and intégra-
on

ting with respect to n from 0 ¢to T we obtain

2

2
[Ty"(n) 3—% an + (a, +20%+1) [Ty(m) 23 an
0 an 0 an
T 2 .2 52
= [ (1+4h“sin“n)y(n) —> dan .
0 an
So
2 . ' 3
y'(n) 3—% - [Myr(n) 3—% an +
n4io 0 an
20241 | ar T _ Moy 2L an}
et iy (0 5 | - [Tyt 5

2
= ["+an®sin®n)y(n) &L an .

on

(D.2.1)

N

0
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53

From conditions (c.3) and (c.4) of section 2.6, =L
is a continuous function of n for ne [o, wI. and i:r
each h > 0 . Using conditions (c.4) and (c.6), we have
5= =0 when n=0 and when 1= T. So (D.2.1) becomes

3

My L an - (a, +20241) [Ty (2 4y
0 8n3 2n é In
2
= [T+an’sin®ny(n 2L an .
0 an
Integrating by parts again ,
3 T 4
]
-y X+ [Ty X -
an 0 0 an
™
- (ag+20%41y {yr(mr| - [y"(nyTan}
o 0
m 2 .2 32
= é (L+4h“sin“n)y () — an,
n

and using conditions (c.4) and (c.6)

4
Mein 3—% an + (a2n+2h2+1) [Ty" (nydan
0 - an 0
m 2 .2 327
= [ (1+4n®sin®n)y(n) =5 an ,
0 an

) 2 ™ 2
- (&, +2h“+1) é (a, *+2h“cos2n)y (n)Tdn

2

i

= [T@+anZsin?nymy L an - [Ty 2L an
0 g 0

(D.2.2)




and using (D.l), we get

2 | | \
-(a,y,+20°+1) {Ja, D_ (h)+2h° é"cos2ny(n)Tdn}

2
= [T@+ansin?nyy () 3—% an - [Ty (m)
0 an 0
Then
) a1 2 2 2 PP _
- 3(ay +2h%+1)“D_(h) + (a,_+2h +l){2(2h +1)D_ (h)
- 2% [T cos2ny (n) Td n}
0
T 2 2 BZT i 84T
= [ (1+4h“sin“n)y(n) —=dn - [ y(n) —3 dn
0 . an o on
or
T 2...2 _ . 2 2
- (2, +2h“+1) “D_ (h) = - 3(a, +2h“+1) (20°+1)D_(h) +

+ 2h2(a2n+2h2+l) [T cos2ny(n)Tdn +
0

+ f (l+4h sin n)y(n) 3T dn - fny(n) —= dn .

(D.2.3)

Next multiply (C.l.1l) of appendix C by Tcos2n and

integrate with respect to N from 0 to T :
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f“cosz ny" (n) Tdn $ (a2n+2h2+1) fﬂcos2 ny (n) Tdn
0 0

= [T (1+4n%sin®n)cos2ny (n) Tdn - (D.2.4)
0

Substituting for (a2n+2h2+l) [T cos2ny(mmdn , in
0

(b.2.3), from (D.2.4), we obtain

m 2 2 " 2 2
§(a2n+2h +1) Dn(h) = §(a2n+2h +1) (2h +l)Dn(h) +

ﬂ
+ 2h2 f cos2ny" (n)Tdn -
0
- 2n% [T (1+4n%sin%n)cos2ny (n)Tan -
0
2 4
- [T (1+4n®sin®n)y(n) 3—% an + [Tym) 3—% an .
0 an 0 an
(D.2.5)

Now
m

fﬂc052ny"(n)Tdn = y'(n)cos2nT
0 0

- fnY'(n)(cos2n oT _ 2sin2nT) dn
0

an
3 ) m
= =y (Nn) (cos2n n -25in2nT) +
0
m BZT 3T
+ [ y(M) (cos2n — - 4sin2n§— - 4cos2nT)dn
0 : omn n
2
= f”y(ﬂ)(cosZH é—% - 4sin2n %% - 4cos2nT)dn
0 an

So (D.2.5) becomes
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v 2 b)) T
3(ay +20%+1)%p_(h) = 5(a2n+2h2+1)(2h2+1)nn(h) +

' 2
+ 2h2 fwy(n)cos2n T dn -
0 3

ol

T
- 8h2 / y(N)sin2n %% dn - 8h2 f”y(n)cos2n1ﬂn -
0 ' 0

m
- 202 [T (1+4n2%sin®n)y (N) cos2nTdn -
0
m 2. 2 32T . 34
- [Nanfsin®nyyo) 25 an + [Ty &5 an
0 on 0 an

_I 2 2 -
= 3(ay +2h"+1) (2h°+1)D_(h)

32
f (1+4h2sin? ny() —= dn -
0

on

N

8h2 fﬂy(n)sin2n %Z dn -
0 n

2h2 fﬂ(5+4hzsin2n)y(n)c032ann +
5 )

4
v [Ty 2% an . (D.2.6)
0 an

=

Now applying inequality (D.l.l) , of part I, Schwarz's
inequality and condition (c.7) of section 2.6 to (D.2.6), we
get

™ ‘a2 2

3(a, +2h“+1) [Dn(h)l

™ 2 ' 2
b /% (2h7+1) [ (1+4h )Mo(h)+M2(h)] +

2, 2
+ (6h2+1) ( %" yZman 2" (&) Tan /2 4

0 an
+ 8n®([" g man /% f“(gﬁ) any /2




Hence
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+ 2h2 (544n2) ( {)” v2 (mam /2 {)“ r2an) /2 4

4

v 4
[T a2y 2an) 2
0 0 on

(a, +20%+1) %|D_(h) |

< /7 (20%41) [(1+an®) My (h) 4, (h) ]
+ V2 (6h%+1)M, () + 8/Z hPu (h) +

+ 2/Zn% (5+4n2)M  (h) + /DM, (B)

(ay *+2n%+1) 2 [D_(h) |

4

< /2 (1eh*+16n?+1)My(h) + 8/2n%My (h) +

+ 2/3 (4h2+l)M2(h) + /M, (h) .

(D.2.7)






