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Abstract

Three-dimensional contact problerns, in the classical

theory of linear elasticity, can often be regarded as ¡nixed

boundary value problens of potential theory.

In this thesis three such problems have been treated

where in each case contact, betweên the indenting object
(called a punch) and the elastic medium, is maintained over

an infinite region. It is assumed that a rigid frictionleis
punch with a known profile has indented a homogeneous,

isotropic and linearly elastic half-space.

Chapter one is intended to serve as an introduction

where the basic physical assumptions and a brief discussion

of the equations of elastostatics are included.

fn Chapters two and three the strip punch and the

parabolic punch problems are treated respectively. Applying

the theory of Mathieu functionsr analytic solutions of

Laplace I s equation are obtained through separation of

variables in the appropriate curvilinear coordinate system.

fn Chapter four the wedge punch problen is discussed

and a partial solution is obtained in terms of Lamd

functions. AIso some of the mathematical and physical

difficulties, inherent in the formulation of this boundary

value problern are discussed.
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Chapter f - INTRODUCTION

1.1 Physical assumptions and terninology

A contact problern in the theory of elasticity is

defined as a problem in which two or more bodies, ât least

one of which is elastíc, are in contact wiÈh one another

under the action of a set of forces. These forces create

certain displacements and stresses within and on the

boundary of sone or all of the bodies in contact. Of course

such dispLacements and stress distributions also depend on

the physical characteristics of the bodies. Initially some

generaJ- assumptions are made concerning the nature of the

stresses and the displacements on certain regions. In

addition some data pertaining to the specific physical

problen is also available. Combining these assumptions and

the given initial or boundary conditionsr wê wish to

determine the stresses and the displacements at all points

of the regions involved. However this may not be always

possible, due to the idealized assumptions based on the

nature of the problen and the approach taken to obtain a

solution.

As we shall see later, for a certain class of

three-dimensional problems, one frequently encounters

singularities in the solution for some points of the regions

involved. In particular these are stress singularities

which are often of the square root type and are found on the

line which defines the contact edge, that is the line

separating the points of the material that are in contact
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r.¡ith the punch from the rest. AJ-though singularities do not

appear in nature, their occurrence in such solutions is a

direct consequence of the particular mathenatical mode1. rn

such cases the solutions are acceptable over the regions

where no singularities appear and for points where

singularities are found it is common to make certain

approx imations based on the asyrnptotic behaviour of the

functions involved.

?fithin the last hundred years or so a number of

three-dimensional contact problems in the classical theory

of linear elasticity have been posed and either conpletely

or partially solved. Due t,o the variety of applications of

contact problems they have been classified into various

categories where each category is defined according to the

nature of the physical assumptíons and the requirements

wh ich are irnposed by a par t icular c lass of phys ic al
problems. Thus the mathematical analysis in each case

depends upon the initiaL val-ues of the particular problem,

if the problem is tirne-dependentr or the boundary values if
it is a static problem. Throughout this work vùe are nainly

concerned with one class of contact problems: the

Èhree-dimensional static punch (indentation) problem where a

rigid body (called a punch) of known cross-section is in

cornplete contact* with part of an infinite elastÍc

* The term
section.

ncomplete contact" is defined later in this
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harf-space under the action of some force. This problem,

which can be treated as a mixed boundary value probrem, will
be specified in detail later. However it should be noted

that by comparison with the two-dirnensíonar contact problem,

the treatment of a three-dimensional problem invariably
requires more sophisticated mathematical techniques.

rhe literature on two-dimensional contact problems is
quite extensive and as important sources of solved problems

and references, Muskhelishvili [5], Love t3l and Gladwell

1,21 may be mentioned. These problerns are usually referred
to as plane contact problems and the elastic medium under

consideration is assumed to occupy an infinite half-plane.
Ihe solutions are in most cases obtained in terms of
functions of a complex variableo __

llowever it is clearly desirable to treat contact
probJ-ems of elasticity as genuine three-dimensional problens

whenever possible rather than applying meÈhods which only

deal with a cross-section of the original problem.

Historically the development of elastic contact

problens can be traced back to the works of Hertz and

Boussinesq. Hertz in 1882 investigated the problen of
contact between two elastic bodies under normal loading. He

calculated the stress distribution within two elastic
spheres which are in frictionless contact with one another.

Boussinesq on the other hand developed a solution for the

problem of contact between a rigid punch and an elastic
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half-space. rn 1885 he published the work that includes t.he

solution to the problen of deterrnining the state of stress
within and on the boundary of a homogeneous isotropic
elast ic half -space ¡¡here part of i ts boundary is in
frictÍonless contact with a rigid punch under some normal

loading. He applied the methods of potential theory and !,¡as

primarily concerned with axisymmetric punches, where the

punch is assumed to be a solid of revolution whose axis is
normal to the boundary of the half-space.

Ihe works of Hertz and Boussinesq have been

substantially extended over the past years and developed in
many different ways. The problems that $re have examined

belong to the line of investigation orig inating from

Boussinesqrs work, and as major sourges of reference in this
area, Galin [1] , Gladwel1 1,21 and r,urá l4l may be cited.

Most of the research in this area has been carried out,

for cases where the contact area (i.e. the area of contact

between the surface of the base of the punch and the

boundary of' the elastic half-space) is finite. More

recently some problerns have been tackled where the contact

area has been assumed to be infinite (e.g. the problem of an

infinite wedge pressed against an infinite elastic
half-space). Our work may be regarded as an examination of
some particular examples of the Latter Èype of contact

problem. Although such problems appear to be somewhat

idealized, applications do exist notabJ-y in the area of soil
mechanics where the soil itself may be regarded as an
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elastic half-space and the interaction of certain structures

or objects with the soil is the subject of inquiry (e.g.

long beansr râilway tracks, etc. ) . A number of such

problems have been examined by selvadurai t6l. on the whole

since we are only concerned with defornations so smal1 as to
be regarded as infinitesinal then the idea of an infinite
punch indenting an elastic medium which occupies an infinite
half-space appears reasonable provided there is some

restriction on the amount of energy expended in making the

indentat ion.

As with most models in the classical theory of
elasticity $re need to adopt certain simplifying assumptions

with respect to the elastic body and its behaviour under the

pressure exerted by the puach.

It is assumed that the elastic material which occupies

the entire half-space is linearly elastic, homogeneous and

isotropic. An elastic medium is said to be linear if the

strain-stress relationship in the mediurn is linear. This

asåu¡ned property is sometimes referred to as the
nGeneralized Hooke rs Law of the Proport,ionality of Stress

and Strainn, and its validity for many problerns is based on

experinental evidence. Love ([3], Ch. 3, sec. 64) expresses

this law by the following statement: nEach of the six

components of stress at any point of a body is a linear
function of the six components of strain at that point".

For a detailed discussion of stress and strain tensor

components the reader is referred to Love t3l and Gladwe1l
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ïzj. An erastic medium is considered to be homogeneous and
isotropic if for any given point withín the mediu¡n the
elastic constants are independent of the position of that
point and also the elastic properties of the continuum are
the same in each direction a!.¡ay fron that point.

hle also assume that the displacements are inf inite_
simal. suppose that a point ín the elastic mediurn with
coordinates (x, y, zl , with respect to the axes ox, oy,
oz which are fíxed, has moved to the point (x -¡ ür y + v,
z + w) as a result of defornation of the medium. rf
product's of derivatives of u, v, r"r with respect to x, y
and z (i.e. tfff tfff etc. ) are neglected, then Ì{e say
that the assurnption of inf initesi¡na1 d isplacement has been
adopted, Gladwe11 (t21, sec. L.2) .

The punch itself is assumed to be a perfectry rigid
body and in all that follows it is assumed that there is no
friction between the punch and the surface of the eLastic
medium. certain conditions must also be imposed on the
shape of the punch (i.e. its profile and its cross-section).
Ttrese conditions wÍ11 be specified rater when we consider
Èhe validÍty of the fornar solution of the boundary varue
problem.

Let s be the region of contact, that is the part of
the boundary of the elastic harf -space cons isting of t,hose
points which after deformation are in contact with the
displaced surface of the base of the punch, and let s be
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the region of the boundary of the half-space outside 'S .

Assuming that there is no loading outside the contact region

(i.e. on S¡ rre can take the normal component of sLress to

be zero on S

Now the problern which has been specified up to this

point, namely that of a rigid frictionless punch índenting

an elastic half-space under the idealized assumptionsr IltâY

further be classified into two essentially different
problerns (cases (a) , (b) below) . This distinction is made

according to the shape of the base of the punch.

(a) rn this case, there is smooth contact between the

base of the punch and the elastic medium. Examples include

punches which have convex bases so that the stress on the

boundary of the elastic nedium is continuous everywhere,

zero outside the punch (i.e. on S) and at the edge of the

punch. In problems of this tyPe the shape of the contact

region S is known a priori, but its dimensions depend on

the force that is applied to the punch (figures (1) and

(2) ) . For instance S could be a circular disc whose

radius íncreases as the punch is pushed further into the

nedium. 'Such cases are usually ca1led incomplete contact

problems.

(b) This case consists of problems where the shape

and dinensions of the contact region S are fixed, and

increasing the load on the punch, by a snall amountr will

not change the region S but rather change the distribution



I

of stress (or pressure) under the punch as well as displace-

ments outsíde the punch. Of course this situation occurs

only in the i.nfinitesinal theory of elasticity. Such a

punch wíll have a ridge which will separate the regions S

and S by a sharp edge. Figures (3) and (4). In this case

the norrnal component of stress is still zero on S but will
have a square root type singularity on the edge (i.e. the

line divÍding S and S ). For example if the base of the

punch is completely flat, increasing the load on the punch

will not alter S , but the pressure distribution under the

base of the punch will be changed. Such cases are referred

to as complete contact problerns.

,t

// lt
,t,t.lt

Itt I /t/

Figure (1) Figure (2) Figure (3) Figure (4)

Initially, in the discussion of the equations of

elasticity as they apply to punch problems, there is no need

to distinguish between the above cases. The point at which

a distinction has to be made between the two types of
problems (a) and (b) is where the boundary condiÈions

are being outlined for a particular problen. In both cases

the normal component of stress is taken to be zero on S

and continuous on S . However in case (a) an extra

condition is imposed, namely that the normal component of
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stress is zero on the edge of the region S , whereas

solutions of problems of Èype (b) are expecÈed to give rise
to a square root singularity for the normal component of
stress on the edge of the punch. ft may be noted here that
the problems that are discussed in the subsequent chapters

will be of type (b) , where the base of the punch may be

oscíllatory (i.e. not necessarily flat) and have a sharp

edge (e.g. figure (4)).

L.2 Coordinates and the mixed boundary value problen

lVe start off by employing the usual Cartesian

coordinate system whereby the z-axis points into the elastic
nedium and the origin together with the x and y axes are

placed on the undisturbed surface. We also fix a set of
rectangular coordinates ( E, I r 6) within the punch in such

a hray that the origins of the two systens coincide, (x, y)

and (E, n ) coincide and the ç-axis coincides wit,h the

negative z-axis, figure (5) (in this !,re have followed

Luré's description closely; Luré ([4], Ch. 5).

x'€

Yr
z

Figure (5)

a
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Suppose under the specified conditions a punch óf a

given profile e = f( E, n) is pressed vertically into the

¡nedium under the action of a cert,ain force O which is

applied to the punch in the direction of the z-axis. To

simplify matters, ttre line of action of O is taken to be

the z-axis. Ttris irnplies that the displacements Òf the

punch and the points of the nedium are only translatiónáf
and there are no rotational displacements.

It is also assumed that

âff(0, 0) 0, =0
6=n=0

=0
t=n=0

,aft-

'â6 a ân

lrle wish to deternine the displacements on the boundary

z = 0 of the infinite elastic nedium on E (i.e. outside

the contact region) r âs well as the normal component of

stress on S (i.e. wíthin the contact region).

Let (xt, y', z') be the coordinates of an arbitrary
poínt on the surface of the punch with respect to the x¡ y t

z axes after the punch has been pressed into the medium.

It¡en if e is the vertical displacement of the point of the

surface originalLy at (0, 0r 0) r wê have

xr = E

Yt = n

z, = e- f(8, n) .

If lre no!ú Let (x, yt 0) denote the coordinates of

the points of S which after the deforrnation of the medium

correspond to (xt, yt, zt), then we have
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xl = x + u

yt = ! * V

'zt = lrt

where ü¡ v and !ü represent the componênts of dlisplace-

ment of points of the deforned body' and êach of these

components is a function of *r y and z .

So u =' t - x

v= n-y (1.I)

tr= f(x*ury+v).
Now if the profile function f. is such that

Ís s¡nal1 compared to e , then for (xr y) e S r wê cân take

e - f (x, y) as a close approximation to sr ' the .normal

component of displacenent. füe observe that since !ûe âre

only concerned with s¡nal1 displacements then the above

approxirnation is reasonable provided l#,t,n)l and

|ff,t,n,l are smal1 enough. fn the followíng chapters

where certain punch probleurs are treated as boundary

problems, on'e of our boundary conditions will be

value

lv= e- f(x, y) for (x, y) e sI

Clearly if the punch is flatr then r¿- = e inside S .

The components of displacemenÈ ur v and w can be

found fro¡r¡ a set of relations derived frorn the Papkovich-

Neuber solution to the problen of elastic equiLibriu¡r, which

will be discussed shortly.
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The following three condit.ions then g ive rise to a

mixed boundary value problen, which is sometimes called a

boundary value problem of the third kind, where the stresses

are given on some part of the boundary of the body and the

displacements are given on the remaining part:
(a) w is prescribed on s ,

(b) the normal component of stress, i.e. ,r, , is
zeto on 3 ,

(c) since tre are assuming zero fr Íction between the

punch and the boundary of the elastic medium, the

shearing stresses on the plane z = 0 are taken

to be zero, i.e. T--- = T--- = 0 for alL .(x, y),<z - yz
on z = 0.

Ttrus a vertical force O is applied to the punch as

the result of which the punch indents the elastic medium and

in order to naintaín the equilibrium it is assumed that the

same force is applied indefinitely (i.e. it is not altered

at any tíme) . The application of this force puts the region

S under normal pressure P(x' y) the distribution of which

is initially unknown, but we have

O= IIPß, Y)dxdY
s

If $¡e neglect rotation and only consider translation
of the punch into the medium, then for the case of the flat
punch, whích is a complete contact problem, the region S

has the shape and the area of the cross-section of the punch

and the normal component of stress
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on the edge of t,he punch, whereas for the smooth rounded

punch (i.e. where H , H are both continuous on the edge)

the contour of the region S is the intersection of the

surface of the punch with the ¡rlane Ç = constant . On this
contour the normal pressure p is zero and r-- is
continuous on the entire plane z = 0 .

Also the direction of the line of action of the force

0 is restricted since vre are assuming absence of friction.

1.3 Introduction of the potential functions

Tt¡e problem of static equilibrium, and in particular
the problem of determining the state of stress in an elastic
half-space where part of its boundary is subjected to a

normal force O , can be reduced to a boundary value problen

in potential theory. The -displacement and the state of

stress of an elastic medium under normal loadirg, where the

normal component of stress ,r" is prescribed on part of

the boundary, the normal component of displacement is given

on another part of the boundary, and shear stresses are

absent, can be determined when lre have found a function

û (x, y, z) which is harmonic everywhere except on the

region s of loading and vanishes at infinity with the

following behaviour:

where O / /pdxdy t andü

R
2

v

a.
R

(x 2

S

+ z2lL/2+



Then the Papkovich-Neuber solution

2td = 4(1 v)g - V{tr , U) + O}

(see Gladwell 1.21 , Ch. Il

(1 2v) â4/ - d A2r.1, a2 þay 'wE - EE

L4

(1.2)

sec.1.10)

(1.4a)

(1. 4b)

to the problern of elastic equilibrium can be used to arrive
at the required stress and displacement components.

In (L.21 , d is the displacement vector ¡ t is the

position vector of a field point, ü and ö are a pair of
vector and scalar functions respectively which in the

absence of body forces satisfy V2U = O , and v2 þ = 0 ;

v is Poisson rs ratío and u is the shear modulus (both

constants) .

Following the notation of Gladwell (t21, sec. 2.Sl , we

consider the special case where t is chosen so that

t = ( 0, 0, rlr) . Then for the components of d isplacement

d = (u, vt w) v¡e have

2uu= ,å*-å* (r.3a)

zuv=-z -a-u.
ay

_ai.
ây

(1. 3b)

and 2uw = 4(r v)ü - tz ff + ,p * **) ( 1. 3c)

Ttre corresponding components of the stress tensor are

given by

Txz (1 2v) aìll
âx

a2rlt
ãx a-ã

a2þ
ðx âz

Tyz
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rzz = 2(L - v) îJ¿
ãz

z f,u-
2

àz

^2,
-d o

ð22

0 we have

(1. 4c)

For zeto shearing stress on

r*z(xt yt 0) = rrr(x, y, 0) 0 for all x and y

So if 1im Iz
z->0

þL
âx âz rz ,'!_

àyãz ,¿' e_
ð22

Ì 0 (1.5)

then (1 2v)ü -a-0.
ðz

(1.6)

and consequently the normal component of stress is gíven by

Tzz = -aJ,
àz

z ¿1¿-
ð22

fn particular for z = 0 we have

w(x, y t 0)
(1 -v)

u
ü(x' yt o)

and trr(x' Y' o) {}{*, Y, o) (1.7arb) .

ft can be shown that this special case of the

Papkovich-Neuber solution is satisfied by a representation

of r|l in the form

v(x, Y, zt = * If sliñ:ü dx'dy' (l. B)
SI

where Rl = t(x *,)2 + (y y'12 + z2tL/2 ís the

distance from the point (x, yt z) of the elastic mediurn to

the point (x', y', 0) of the surface. This representation

is known as the Boussinesq solution to the mentioned contact

problem and provided

lím(24, =0 for (x,y) eS, tf.gl
z->0 àz-



then 9 (x, y) can be

applied to the region
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taken as the normal pressure p(x, y)

S of the boundary so that

rrr(x, y, 0) = p(x, y) for (x, y) e s

Considering various partiaL derivatives of U , where

qJ is given by (1.8) , it may be shown that the limits in
(1.5) are all zero. For a discussion of these derivations
the reader is referred to Gladwe11 (1,21 , sec. 2.5) . It
should also be noted that the Boussinesq solution can be

obtained by first finding the solution of the elastic
contact problen where a concentrated force is applied in a

dÍrection normal to the boundary of the elastic mediu¡n.

Ttris solution can then be generalized to one where a set of
point forces are applied in which case the solution will
have a series representation. Finally the series represen-

Èation nay be replaced by the inÈegral representation (1.8)

if the applied force is assumed to be dístributed over a

region of the boundary of the elastic mediurn (see r,urê t41 ,

sec. 2.5').

Now if ü(x, y t 0) is known on S (i.e. !v(x, y, 0)

is known on S) , then p(x, y) can be obtained on S frorn

(1.8) and once p(x, y) is known then ú (x, y ¡ z) can be

obtained, again from (1.8), but the nathenatical procedures

involved in solving the integral equation (1.8) are often

cornplicated and lengthy (see Lurá 1.41 , sec. 2.5) and we

sha1l fol-low a different approach to obtain ü , namely that

of solving Laplace ts equation through separation of



variables by choosing â suitable coordinate system.

The function rl represented by (l. g) may be viewed as

the potential of a simple layer of intensity p (x, y)

distributed over the region S .

From the boundary conditions we have

_0_u
ðz

0 for z= 0 outside S

u
(1 v)

L7

le - f k, y)lü(x, y t 0)

inside S and

-a-u_
ðz

u
(1 v) !'¡(x, yt 0)

f+e (x, y)

t'
inside S

outside Sz->0*

Given the above boundary conditions the associated

boundary val-ue problem can be solved through a suitable

choice of a curvilinear coordinate system provided S can

be fitted into such a system as a normal surface.

1.4 turáts and Shailrs nethods and the difference between
them

Lure ([4], sec. 5.2) reduces the problem to that of

finding the potential of a simple layer dÍstributed over

some surface s* when the potential ü*(* ¡ yt z) on s*

is given and is continuous. This resolves into two problems

which may be called the internal and the external Dirichlet
problems. The internal Dirichlet problem gives tl.t, (x, y, z) ,

harmonic within S* , such that rli(x t yt zl = ü*(*, y, z)
*on S , and the external Dirichlet problem gives



z) which is

at infinity.
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and behavesharmonic outside

Also ü"(x, y, z)

*
ü" (x,

like
*,.

s

0
z.ñT

Y, s ,
*

U (x, yt z) on

*
?fe than have qr

Ui inside s

rl, outsÍde Se

Now suppose s* belongs to a family of surfaces

depending on a single parameter s . Let s* be given by

some particular vaLue of s , say s = s* , and let SO be

the surface that corresponds to s* = 0 , where it is
assumed Èhat SO takes the degenerate form of a flat region

on the boundary of the elastic medíum. It is assumed that

SO is the same region as S, i.e. the region over which

the punch is applied. Then

*

ü(x, Y, z) = lin
s *->0 ú" (x, y, z ì s*)

represents the harmonic functÍon which is equal to

Ú(x, y, zl at points of S and is a potential of a simple

layer distributed over S . Hence when

ü(x, y t o) = d\t. f (x, y) l

is prescribed on S , then t! (x, y, z) will represent the

solution to the particular punch problen.

Using this approach some punch problerns have been

solved by enploying the appropriate coordinate system.

Among others, the flat circular punch and the circular punch

with a rounded base have been solved using oblate spheroidal
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coordinates (see Lurá l4l, sections 5.4, 5.5).

In almost all the examples solved by Luré ( t4l, Ch.

5), the internal and the external harmonic functions are

found in each câse. The reason for this seems to be that in

order to find the pressure distribution under the punch he

is employing the expression

Iim
s*->0

ðüe(xt y¡ zi s*) Aüi(xt y¡ zì s*)
lân ân

where n is the external normal to S* . However since the

pressure distribution under the punch is known when the

normal component of stress, over the same region, is known,

and this component of stress is given by *l "=o 
, then one

could ignore the internal- solution, Vi, and only evaluate

the external solution qre

A number of similar problems have been sol-ved by Galin

(tIl, Ch. 2). Furthermore Shail I7i has solved the elliptic
punch problem, where complete contact is assumed, by using

the ellipsoidal coordínate system.

Tt¡e method of coordinate surfaces described above is

limited in the sense that it can only be used where an

orthogonaL curvilinear coordinate system can be found to fit
the punch, i. e. one of the degenerate surfaces of the

coordinate system must be the same as the contact regiön S

Also Laplace fs equation must be separable in this coordinate

system. However if such a coordinate systen can be found,

Èhen the punch profile can be moderately general and we may

sti11 be able to obtain a solution of the boundary value
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probLem. on the other hand sone other techniques such as

the intergral equation method mentioned in section r.3 may

allow us to consider nore general contact regions, but then

the punch profile is usually restricted to fairly siinple

forms.

Itre difference between Luráts description of the

problem and that of shail's may be summarized as fo1lows.

Lurd treats the general problen of finding a relation
between the force O acting on the punch and the displace-
ment s of the base of the punch at the origin. He also

assunes that the cross-section of the punch is known but

since the force O is not fixed, and its variation is
allowed to produce variations in the contact area S as

well as in the displacement e , then the actual contact

area can be determined if O ís given and vice versa (using

the condition that the nornal component of stress is zero at

the contact edge) . That is to say he is mainly interested

in problems where there is ínconplete contact, although he

does discuss some problems where the base of the punch is
flat. Introducing such variables into the problem has

certain obvious advantages, but it should be noted that one

also has to restrict the shape of the punch profile. This

restriction ín most cases requires that tþ" base of the

punch be a surface of revolution, i.e. with axial symmetry,

and be convexr so that the shape of the contact region

remains fixed although its area increases as the force O
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increases (e.9. we may be dealing with an expanding circle,
see Luré l.4l , sec. 5.5) .

Shail 17J in his treatment of the elLiptic punch

problern assumes that there is complete contact. That is to

say a force O hg" been applied to a punch whose profile is

described by a function h(x, y) and consequently the punch

has imbedded itself into the elastic half-space. [his force

O is then assumed to be fixed throughout the problem so

that the cbntact region S is known a priori and does not

change. However the shape of the reg ion S , pr ior t,o

complete penetration, may go through various smal1 changes.

He also assumes that the displacement within S is known

and it too does not change. So w(x, y t 0) = h (x, y) for

(x, y) e S , where \.¡ is the vertical component of dis-
placement of the elastic medium. Ilowever as expected in

such cases where there is complete contact, his solution

does involve a stress singularity, of the square root Èype,

on the edge of the punch.

Shail gives the solution of the case where h (x, y)

is a polynornial of arbitrary degree in x and y so that

it has a representation as a finite sum of ellipsoidal
harmonics. He also remarks that his analysis applies to a

wider class of functions than polynomials. This in essence

is the advantage of his approach to the punch problen in

comparison to Lurérs.

rn the problems that vrte have been dealing with, the

contact region S is taken to be infinite which necessarily
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places a restriction on the shape of the base of the punch

in order to avoid situations involving infinite force or

infinite displacements. Clearly in such cases a punch with

a convex profile will not do.

!üq have thus opted for Shail rs approach where the

contact region S and the normal displacements on S are

prescribed. fn fact $re take hr(x, y t 0) = h (x, y) for

(x, y) e S . However the force O which is required to

keep the punch at its position of complete penetration'into

the elastic half-space can be deterrnined from

o / fPt", Y)dxdY
S

p (x, y) is

is given by

where

S and

P (x, Y)

the pressure distributed over the region

T (x, Y, o) for (x, y) e S ,

and rrr(x, Y, 0) can be obtained from

rrr(xr yt o) = #(*, y, o)

zz

Furthernore the function

derivation of the components

(1.3 a, b) can be found from

ô(x' Yt zl (1 - 2.v)
2t

þ , which is required in the

of displacement u and v

(I.6) and (1.8)

f lLn(z + R)p(xr, y')dx'dy'.
s
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Chapter 2 TEE STRIP PUNCE PROBf,EU

2.L fntroduction

Ttris chapter aims at a ¡nathematical analysis of the

case where the punch occupies an infinite strip, its profile

being arbitrary and subject only to the linítations of what

is physically reasonable. Following the approach outlined

in Chapter one, the elastic mediu¡n. is assumed to occupy an

infinite half-space and to satisfy the ideaLized conditions

of linear elasticity. That is Èo sây, it is homogeneous and

isotropic, and the contact between the punch (whích is

assumed to be perfectly rig id) and the nediurn is complete

and fricÈionless. Mathematically the problen nay be

regarded as an exterior inixed boundary value problem for

Laplace rs equation, which can be treated by transforning to

the elliptic cylinder coordinate system. Applying the

nethod of separation of variables and using Fourier trans-

forms the general solution for this problem is obtained. As

already mentioned (Ch. 1, sec. 1.4) this technique has been

used for a punch of circular or elliptic cross-sectionr but

the extension to a punch of infínite cross-sectional area

introduces additional conceptual and mathematical

difficulties.
From the existing literature on related problems, the

works of Rvachev and Protsenko (V.t. Rvachev [8], tglt V.S.

Protsenko, and V.L. Rvachev 17l) may be mentioned. The

problem which bears closest resemblance to that described in
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the last paragraph is to be found in Rvachev t8l. However

Rvachev solves the problem for a special case and later in

the samê article indicates an approach for the generar case.

His technique differs from that whích we have employed in

several ways. Às ít is suggested by the title of Rvachevrs

paper, he is primarily concerned with obtaining the pressure

on the elastic half-space under the punch. On the other

hand vre seek a harnonic function t! which not only gives

the pressure under the puhch (which is the negative of the
âùnormal component of stress, rr=(x, y, 0) = þ(x, y, 0) ) but

also gives the other components of the stress tensor as well

as the normal cornponent of displacement outside the contact

region, i.e. on 3 . For a general punch problem, the

reg ions S and 3 hrere def ined in Chapter one (sec. 1. 1) .

In this case S is an infinite strip on the xy-plane, of

uniform width, and S is the region of the xy-plane outside

S . As mentioned in Chapter one, since we are dealing with

a complete contact problem, the solution will involve stress

singuJ.arities on the edges of the punch and consequently the

two lines which separate S and S are excluded from

either of these regions.

Let the contact region be defined, in terms of the

Cartesian coordÍnates (x, y¡ z) , by -æ( x < oo ,

lyl < f , z = O, where f is a constant. Rvachev tgl

takes the following soLution which ís a relationship between

the normal component of displacernent, w(x, y¡ 0) , under the

punch and the distribution of pressure, p(x, y) , over the

same region:
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1-v
ñ_

f
Í P(xt , Yt)9r(x, y ¡ 0) Í

f
dx rdy I

[ (x-x ') 2 + (y-y') 2 l L/2

where u and v are the elastic constants defined

Chapter one (sec. 1.3) .

Th ís is Boussinesq I s solut,ion with z = 0 (Ch.

equation 1.8). Rvachev solves the integral equation

p(x, y) by letting

1n

L,

for

hr(x, yt 0) = 9(1, y)cosÀx , where À is an arbitrary
parame ter.

Furthermore

represented as an

i. e.

he assumes that

infinite series in
g(À, y) can be

Chebyshev polynomials,

9(À' Y) I
n=0

snrn (f)

Tt¡en if p (x, y) = 0 ( À, y) cosÀx

will satisfy
t for lvl < f f 0

9(À' Y)
1-v

fiu

f
f
-f

0(À, €)Kotrfv Ell¿C

where K^ is
U

third kind.

Finally
in n , where

the usual modified Bessel function of the

0 is obtained as a Mathieu function series

n - arc cos v
r, t
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0( À' fcos n)

uf^1rt-"ñît-[
(-1) t A

(2il,
0

Fekå, (o,-e)
c!-0

I

æ

I
0

Fekr, (0,-e) ce2i (n,-q) +

+ i (-r) ns.,- i
¡ âllcn=I -"i=0

t-rr iejli) r"ki, ( o,-e)
ce2i (n r-q) +retjf (0, -q)

æ æ (-1) 1 A
(2i+1)
2n+1 rekii+1 (0,-e)

I+ I (-rlns2n+1 I --F"Frt_1 [0]-q) ce2i+l (n, -g
n=0 i=0

In this expansion

"o = | /nstÀ, fcos0)-d0 sk = 2 frg1x, fcos0)-cosk€d0 '

L-2 ',q =!nfoX'r 0 < n < T and, cêi and Fek,

are Mathieu functions (which will be discussed later in this

chapter)

Theoretically one can obtain the harmonic function Ú

from

-fII
2tr -t

I
æ xrü(x, y¡ z) 2 2_zl 2

dxrdyr.
[(x-x') + (y-y') +

Howeverr âs it is pointed out by r,uré ( t3l , sections 2.6,

2.71 , thís integral is not easily evaluated.
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In what follows, rather than using the integral.
equation approach of Rvachevr vJê use separation of variables
at the start and thus construct the solution ü directly.
Moreover inst,ead of taking a somewhat special representation

for the normal component of displacement ¡ w , under the

punch (i.e. the shape of the punch profile) lre allow it to

be discribed by a more general function whose behaviour with

respect to the various variables is finally deternined by

certain conditions which have to be imposed in order to
guarantee convergence of the solution. In terms of
Rvachevrs analysis this means w(x, y, 0) = 9( À, y)costr x
is to be replaced by ur(x, y, 0) = f*g(À, y)cosÀxdÀ , and

0
of course his final expression for the pressure under the

punch must then be integrated with respect to À from zero

to infinity.

2.2 Ttre elliptic cylinder coordinate system

TLre elliptic cylinder coordinates of a point are given

by t,he variables (x, tr E ) which are related to the

Cartesian coordinates by

x=x
y=fcoshfcos¡
z=fsinhEsinn

where -î<n<firandg >0

(2.2.L)

a

The

family

sufaces corresponding

of confocal elliptic
to | = constant consist of

cylinders; that for which
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Ç = E0 is such that its section by the plane x = 0 is an

ellipse with foci (0, tf, 0) , eccentricity sechEO . For

Ç = 0 we get the degenerate surface consisting of an

infinite strip in the xy-plane of finite width 2f . This

is nerèly t,he case of an elliptic cylinder of eccentricity 1

with zero minor axis and finite major axis, 2f . The

surfaces corresponding to n = constant are portions of

confocal hyperbolic cylinders which are nornal to the

surfaces 6 = constant

2-3 Separation of laplacers eqution in elliptic cylinder
coordinates

In terns of (x, n , 6)

is given by

.'
a 
oü 

..,_ 2

ax2 f2 (cosh2E -cos2 n )

Let tl,-x(x)F(E)G(n) t

Laplace rs equation

2
0

f. (cosh2 6-cos2 n)

The separated equations are 3

Xn = qX

F' + fl"f2 cosh26 - ß) r = O

Gr' + (ß - Lrof2 cos2n)G = 0

where G and ß are separation constants.

0

(2.3.1)

(2 .3 .2a)

(2.3.2b1

(2 .3 .2c')

v2 rþ

(#.#)=0
then

* 3")
lE",-
\F

2+xn
x
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Equation (2.3.2cJ is À{athieu rs equation and equation

Q.3.2b) is the modífied Mathieu equation.

fn mak ing use of Mathieu functions, $re shall follow

the notation of Mclachlan t4l. IIe writes the standard form

of Mathieu rs equation as

d2w

æ
+ (À - 2q cos2z)w = 0 (2.3.3)

but the parameter q may be positive, negative or complex.

It will shortly be shown that in the strip punch problem,

the separation parameter cl (of equations 2.3.2) must be

real and negative, hence q is also real and negative.

lrle sha1l therefore write

-h 2 (h>0) (2.3 . 4'q

and quote the necessary information on Mathieu functions in

this form, i.e.

d2w

-dz
+ (À + 2h

2 cos2z) w = 0 (2.3.5)

There are four types of basically periodic solutions

(i.e. of period 1I or 2n) called Mathieu functions of

integral order of the first kind. Two of these are even

while the other two are odd, and they are expressed by the

following expansions* lsee McLachlan l,4l , ch. 2l ¿

æ

^ã (z r-h2 I aI3") (-h2) cos 2rz
^¿Lr=u

(2.3.6a)
2n

oo

"e2rr+r 
(z 

' -h
2 Ia ( 2n+1)

2r*I (-h 2
) cos (2r+Il z (2.3.6b)

r=0
*

Graphs of cêgr ""2 and

are provided on page 57.
4

for certain values of h
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""2n+l 
(z r-h2 I

r=0

æ

I
r=0

B
( 2n+1¡
2r*L (-h 2 )sin(2r+L)z (2.3.6c)

s"2n+2 þ,-h 2
) B

(2n+21
2r12 (-h 2

) sin (2r+21 z (2.3.6d)

It should be noted here that the above four functíons

are possible solutions of equation (2.3.5) provided À

(which is dependent on t,2) takes one of the set of infinite

real values cal1ed characteristic numbers. The correspond-

ing characteristic values of À for the expression (2.3.6a,

b; c, d) are denoted respectivel-y by a2rr( -h2) , .2n+l (-h2) ,
t)

b2rr*1 (-h') and b2n+2(-h") , where n is a positive

integer or zero. Vle also know that in th is case ( i. e. when

the equation has as solution a periodic Mathieu function of

one of the four types above) the second solution is not

periodic (see Arscott [1], sec. 2.4.I).

If for equation (2.3.2b) we take the standard form as

+ (). + 2h2cosh 2z)w = 0 (2.3.7)
dz

then the four solutions with period ,r( i and 2¡i are given

by Mcl,achlan [4] in the following forms:

c"2n (r,-h2) g' ."2r, (iz,-h2)
oo

I ot?"l (-h 2
) cosh2rz

r 0
(2.3.8a)

æ

2n*1 
('' -h2) Ia ( 2n+1

2r+L ) cosh (2r+L) zCe
g.

r=0
I -h 2

( 2. 3. 8b)



SC (r, -h2) 4'
2n+1

Se 2n+I

and the

Ce*(zr -h

Fek (2, -h 2
2n

s"2rr+l (iz ,-h2J
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(2.3.tc)

(2.3.8d)

À for

those for

-1

co

2is (-h ) sinh (2r+L) z
r=0

2

( 2n+1 )

2r+L

(, ,'h2) g' -1 Se (iz,-h
2n+1

oo

Ie (2n+2)
2r+2

2(-h ) sinh (2r+2) z

corresponding characteristic
)')-') and Se*(2, -h-) are

(2, -¡2) i. e. a*(-h

r=0

(-1)n
ce (0'h

vaLues

the same

2

o(2n)"2r

br(
m

se

of

as

and

2

tcer(2, -h') and

respectively.

lfe have, of course, many possible ways of choosing a

second solution independent of Ce*(zr -t2) (or Ser(zr -t2)).
One such solution is denoted by Fekr(zr -n2) (or

,
Gek*( z, -h') respectively) . Tlrese functions are

expressible ín infinite series of the K-Bessel functions

(sometimes called the modified Bessel functions KJ . For

example

¿-h )

K ( 2hcoshz )2r

2
2n i (-r) r

r=0
(h

fiA (2n)
0

2(h )

(McLachlan [4], sec 8.30)

Ttre usefulness of Fe kz

totic behaviour as z -> oo

are given by Mcl.achlan (t41, sec. 11.12):

t
n(z , -h') l-ie s in its asymp-

Ttre followíng asymptotic forms
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C"2n(2,-h 2
)

Pån ( h)

-

(2r ¡ 
''

-L/2 v
râSZ-)@v e (2. 3. e)

Fekrn (2,-h 2
Pån ( h)

-

(2r) "
v-L/2e -v (2.3.10)aS z-)ø

where

Pån ( h) (-1) nce2rr(0, h2) ce2n
fi
z , n2l /aå2") (r,2) ,

and

v=hez

As $re shall see in section 2.5, it is precisely the

behaviour of Fekrr, ( z r -f,2) r âs z -> oo , which enables us

to choose this function as one of the solutions to the

boundary value problem.

Finally e¡e note that writing ü z) for z in
(2.3.3) (which is the standard form of Mathieu,s equation)

will give the relationship between cern(2, -n2) and the

standard solution:

cern(2, -h 2
1-1) 

ncern 
(

1T

h 2
2 þ'

(-r)n i^ (-rt rej2n)
r=0

(h ¿
) cos 2rz

II can also be shown that

[1] , sec. 3.3.1) .

ct (-h 2 ) - arrr(h 2 ) (see2n
Arscott
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2 4 Formulation of the general boundary value problem

Consider the half-space z > 0 occupied by a

homogeneous, ísotropic, linearly elastic medium. on the

surface z = 0 1et S denote the infinite strip lyl < f ,

x € (-*, co) , and let E be the region outside S ,

lvl > f , x € (-*, *) . A rigid frictionLess punch is
applied to the region S , its profile being given by a

function K(x, y). Contact is assumed to be complete every-

where on S , (figures (1) , (21 , (3) ) .

S à J
x

3
Y

3

Y
zz

x

z
Figure (1) Figure (2) Figure (3)

The region S is assumed to be stress free (rr" = Q

on S) . For zero shearing stress on z = 0

(i.e. r*r(xr y, 0) = ,r=(*t yt o) = 0 , for all x and y),
the set of equations (1.3 a, b, c) , (L.4 a, b, c) , (1.6)

and (1.7 a, b) of Chapter one can be employed to solve the

boundary value problem for v2rþ 0 . Of particular inter-
est are (I.7 a, b) since they give the relations between

and the normal components of stress and displacement on

boundary z = 0

'jl

the



Hence lrre seek a solution
for the harmonic function ü ,

we have

The boundary condition can be stated as:

w(x, Y, 0) K(x, y) onS

rrr(x, yt 0) 0 on s

35

boundary value problem

for the elastic medium

to the

where

(i) v

(ii) u

2,
v 0 for z> 0

aS r -> ø , (f (*2 * y2 * ,2)t/2) ,

in z>0
(iii) #=0 on s

(iv)_ + ü (x, yt O) = K(x, y) on s

where K(x, y) is some prescribed function and v , u are

elastic contants defined in Chapter one, section 1.3.

The function K(x, y) can always be expressed as the

sum of four functions each havíng symmetry or antisymmetry

about one of the axes x = 0, y = 0, and because of
linearity vre can superpose solutions corresponding to these

four functions. To simplify the analysis, thereforer vrê

shall assume that

(v) K(x, y) is symmetric about y = 0

(vi) K(x, y) is symmetric about x = Q

Consequently in terms of x and n we define

H(x, rl) _u(r - v) K(x, f cosn)



36

II (x, n) is then symmetric about n
T

2 and x=0

2.5 The general solution of the boundary value probren

lrle nor^, transform to the elliptic cylinder coordinate
system where ¡ will be restr icted to o < n < rT since r¡¿e

âre only concerned with the half-space occupied by the

elastic mediurn. separating Laprace rs equation in this
coordinate system $re obtain equations (2.3.2 a, b, c) ; and

conditions (i) to (vÍ) of section 2.4 become:

(i)' equation (2.3.1) holds for 6 e (0, * ) ,

n e (0, r) and x € (--, -)

(ii)' ü -> o as l*l >

n e [0, tt]

( iii) ' since

d

T¿
cosh E s1n n (i

TE + sinh 6 cos n a

Tnf(sinh 2
E+s in 2

n) f(sinh2E*=in2n¡

and S is the region where E > 0, n 0or

T , then ailr

òz 0 on S is equívalent. to

I ð!j._
dn =0 at l= 0 and rl = T (whereEÐññI

E e (0, æ) and x € (--, *))

H (x, rl) , where ne(0,n)

x € (--, æ)

.u
and

K(x, y)H(x, n) q

( iv) t t!(x, rìr 0)

V



37

(v) '

(vi)'
For X

Let 0 = -k2

H(x, n) is symmêtric abou. ^ - r
L 'r - î,

H(x, n) is symmetríc about x = 0

in (2.3.ea) to be finite o must be negative.

so

X=Acoskx+Bsinkx (2.5"1)

.:

Since the solution ü ís assumed to have the form

\l) = X(x) F ( E)c(n ) r wê require x(x) and c(n ) to have

properties corresponding to the symmetries of H(x, n) given

by (v)' and (vi)' . In the first place (vi)' implies that

X = A coskx

Also sÍnce 0, = -k 2 if we let k 2
f. 2 4h 2 then equation,

(2.3.2c\ becomes

cn + (ß + 2h2 cos2n)G = 0 (2.s"2)

but from (iii)' we have G'(r) = G'(0¡ = 0 which implies

that G is a Mathieu function of the first kind (i.e. of
períod î or 2 r ) (see Arscott [1], sec. 2.L.L., theorem

3), and Gr(O) = 0 Ímplies that G must be cerrr(n, -n2)

or ce2rral(n, -n2) . Finally from (v),, G(n) = cern(n, -n2)

and hence we can 1et ß = arn{-fr2)

Next equation (2.3.2b) implies that

F' + (-2h2 cosh2 6 - a F 0 (2.5.3)
2n

so !'¡e can choose Cer,, ( E, -t 2) and Fekr,. ( E r -h

independent solutions of (2.5.3) 
"

) asa
Howeverpair of linearly

2
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condition (ii) | requires that the general solution tends Èo

zero as E -> -, and as explained in section 2.3

tr'ek2n(6, -n2) is the only onè which shows this behaviour

(see sec. 2.3, (2.3.9) and (2.3.10) ), so we must exclude

the solution Ce2n(8, -f,2)

Hence a separated solution is of the forn

d.= Vrr(xr rìr \¡ Bn (h) "o"ff""2n (n , -h2 ) r"krn G, -hú'n ,h) 2

where n is an arbitrary non-negative integer, h is an

arbitrary non-negative parameter and Bn(h) an arbitrary
constant t wt itten in this way since n is an integer-valued

parameter while h is continuous.

Ttre above solution is however a single separated

solution and cannot be expected to satisfy the remaíning

boundary condition (iv) '. Since the parameter n is
discrete whereas the parameter h is continuous and can

take any value from zero to +æ it is natural to superpose

solutions by summing over n from zero to {æ and inte-
grating with respect to h from zero to +co . The coef-

ficient B_ (h) can then be determined if we let the generaln'
solution satisfy condition (iv)'.

A general solution is thus given by

@æ

n=0
u= I

0
I Bn (h) "o"S""2n (n, -h2¡r"krr, {q , -r,2)ar, (2.5.4)

Ignoring questions of convergence for

proceeding forrnally with the solution, (iv) '

the moment, and

implies
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II(x' n) å-"io 
cn (h) cern (n , -h2) cos 2hx: t dh (2.5.5)

where Cn(h) = Bn(h) Fekrn(0, -h 2

Vlriting (2.5.5) as

H(x, n) = /*g(h, n) cos
0

2hx: t dh

where g(h, n) = I Cn (h) ce2r, (n , -h 2 (2.5.6)
n=0

and using the Fourier cosine transform formula, we geÈ

g(h, n) 4 /-H(xr | ) cos 2hx

-
f dx (2. s.7)fn

0

(provided the integral exists) .

Multiplying both sides of the above
)cerr(l , -h') and integrating with respect to

to TÍ r w€ get:

equation by

n from zero

co
.1ì'J" i c
0 n=0 n 

(h) cern (n , -h2 ) cer* (n , -h 2
)dn

=l
0

Tf 4:-
tTT

cer* (r , -n2) /* ¡t (x, n ) cos
0

2hx: r dx dn (2.5.8)

Sti11 proceeding formally we interchange the order of

integration and summation on the left-hand side of (2.5.8)

and use the orthogonality of Mathieu functions (see

Mcl,achlan l4l, sections 2.L9, 2.2L) to deduce that the left-

hand side is equal to { c*tfrt . Therefore
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Bn (h) I
ln
0

/] tt*, n)cern(rr
oot

-h 2 X

f ,r2Fek zn(o' -h 2

XA ""+ dx dn (2.5.9)

Having evaluated Bn (h) the solution qr of the

problem is then given by (2.5.4). From the equations of

elastostatics (1.3 ê¡ b, c) and (1.4 a, b, c) the correspon-

ding displacernents and stresses can be obtained. In

particular the normal component of surface displacement

outside the punch (i.e. on S ) is given by (1.7a), namely

w(x, y t 0) = (1 - v)
u

ú(x, Yt o)

= (l - v)
u I- I

n=0
B (h)cos 2hx

t¿n (0, -h 2
) X

0
n

-1llvl\x Fek2nlcosh -Y*) , -h 2 ldh

Moreover, using (1.7b) , (iii) ' of
(2.5.4)-, the normal component of stress

(i.e. on S ) can be expressed by

section 2.

under the

5 and

punch

trr(xr yr 0) _IU.
àz

(x, yt o)

æ

(f 2
v2 \-L/ 2 I-i Bn (h) ""ff x

0 n=0

x cerrr["o=-l 1f¡ , 2 2

where lvl < f

-h I Fekl'¿n (0, -h )dh (2.s.10)
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Vle observe that the stress function (2.5.10) has

singularities at y = + f , i.e. at the edge of the contact

region. As mentioned in Chapter one, in punch problems

where compleÈe conÈact is assumed, one expects Èo find

stress singularities of the square root type at the edge of

the contact region.

2.6 Validity of the formal solution

As already stated the analysis of the previous section

is purely formal and its validity depends on the behaviour

of the prescribed function H(x, n ) . For a given prof ile

H(x, n) , naturally one can examine the iterated integral

(2.5.9) for convergence and for differentiability with

respect to x, E and 1 r then proceed to a corresponding

investigation of the express ion forr]l in (2.5.4\ hle can

say that $re have obtained an actual solution of the problem

provided the profile H is sufficiently well-behaved for

the formal steps indicated by (2.5.9) and (2-5.4) to be

valid. Ih is is to be expected from a "phys ically

reasonable" profile. One would like' however, to do better

than this, and here we attempt to give condiÈions on H

which are sufficient, though not necessary' for the analysis

of the last section to hold.

It may be noted that from a mathematical point of view

some of the conditions stated below may be relaxed. For
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example most of the conÈinuity conditions imposed on the

partial derivatives of H with respecÈ to n can be

changed to piecewise continuity or if the function H(xrn) ;

when considered as a function of x , is of bounded

variation on [0, co) then vte need not require that H be

continuous for all x on [0, æ) . llcwever since v¡e are

dealing with a physical problem where H(x, n ) describes

the surface of the base of the punch, this function in

almost all cases wilI satisfy the conditions stated below,

and hence it will not be of great importance to use a more

general set of conditions. It nay be pointed out that if
the surface of the base of the punch has sharp points then

our smoothness conditions will no longer apply and must be

changed to piecewise smoothness. The treatment of such

cases would involve a complicated analysis of stress singu-

lariÈies within the contact region, which is beyond the

scope of this thesis.

In what follows certain inequalities will be required

to establish the various convergences. fn order to avoid

any digression from the main line of argument, these

inequalities are derived in the appendices and only the

appropriate results will be quot,ed here.



Let us begin by imposing the following conditions on

H(x, n) 3

(c.1) There exists a function A6 (x) , such that

lg(*,n)l <Ào(x) for all ne[0,n] and

Ao(x) e L[0,*)
(c.2) H (x, n ) ís a continuous function of both x and n

for all x e [0r*) and all ¡ e [0, ri]

(c.3) As a functíon of n , H(x, n ) is four times contin-

uously dif ferentiable (i. e. partial-ly with respect

to n) fora11 ne[0rr] andall x e[0r-)
(c.4) For i = I, 2, 3, 4 , there exist functions Ar(x)

arH(xrn)such that

(c.5)

and AÍ
âH(x, n)

âx
for all

(c.6) For each x e [0, -) ,

and n = 'nt for j =

(c.7) Let M0 (h) ra* ìr \
0< rì< 1I

let Mi (h) = ä:i.,
where T = T(hrn)

ex istence of these

conditions (c.1) and

that for integers i
'ooand 0<m<8, J

0

^idn
I

(x) e L[0, -)
is a continuous function of both

x e[0r".) and all n e [0rn]
a 
jH(x, 

n )
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for all- n e [0, I ]

xandn

0atn 0

<A (x)

j
â

I1
n
3

and for i 1, 2 3 4 ,

ârT
^Idn
g. /^*"(*, ¡)cos + dx . The

0
expressions is ensured by

(c.4) above. Vtre shall assume

andmrwhere0<i<4

frmu. (fr)afr < co
l-'



(c. 8)

is assumed

Let

There exists a constant, K

h e t0, æ) and for integers

0<i<4and0<m<

to be an even function of x

I hmMi (h) K

, such that
iandm
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for

, where

,

In addition it should be kept in mind that

and n.
H(x, n)

(2.6.I\

(2.6 .2)

Ã-æT(h, n) E' 
J
0

H(x, n) cos 2hx-T- dx

then (c.1) implies the existence of T(h, n) for all h > 0

and n€[0rt]
Next we expand T(h, n) as a Mathieu function seríes:

T (h, rì) Io
n=0

(h) ce 2(rl , -h )n 2n

From the general theory of Sturm-Liouville expansions

(see rnce tzl, sec. 11.5) we know that if, for any fixed

real h , T(h, n) is a continuous function of n , where

tl belongs to some finite interval, then the Fourier series

and the Mathieu function series expansions of T(h, n) are

equiconvergent (i.e. the two series will converge under

exactly the same conditions) on the same finite interval.

Now (2.6.I) , (c.1) and (c.2) together imply that T(h, n )

Ís a continuous function of n for each fixed h >

Furthermore (c.3) and (c.4) imply that aT(þL n) is also a
dn

continuous function of 1 for all n e [0, r) and each

fixed h >

(2.6.2') converges uniformly in n to T(h, n) . The
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coeffieicnts Dn (h) are found by the usuål technique
(analogous to that for the Fourier series coefficients) as
follows:

Multiplying both sides of (2.6.2) by ce2, ( n, _f,2) ,
integrating with respect to n from 0 to r and applying
orthogonality properties of t{athieu functionsr wê get

(2.6.3)/ncer,r{n, -h2)r(h, n)dn = } on{h)

(tern by term integration of
is permitted since this is a

cont,inuous functions of n

Now let

nioon 
(h) ce2n (n , -h2) cer*(n ,-h2)

uníformly convergent series of
for each fíxed h > O) .

B
4D- (h)

/hr
r fFek 

er, 
(0 , -h2)

Fekrn(0, -n2) / o for any

0 (see appendix A). So

g{ r(h, n )

n

and note that
and any h >

and

B (h) rer 0n 2

(2.6 " 4l

n = 0, 1, 2, r

-h 2

2-h )dh

2hx'-r

n

co

v
L

n=0
( , -t 2) cerr, (n,

) cern (¡ ,co
coI

0

2hx: t I
n=0

2<! Bn (h) rek

T r,n,
zr,(o' -h

n )dfr

n)cos

4
fn

¡@J cos
0

dxr dh

H(x, n)

The validity of the rast step, which states that H(x, n)
is equal to the inverse cosine transform of its transform is
ensured by (c.1) , (c.2) and (c. 5) . Hence expression (2. 5.5)

å ¿- /*cos T ",*',
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is justified, where Cntt) = *E Dn(h) , and Bn(h)

by (2.s.9).

It remains to show that the function qr (x,

given by (2.5.4) , is a continuous function of xr l
is twice partially differentiable with respect to
x¡ ¡ and E , and tends to zero as l*l or E

infinity, for each n e [0, n]

lrle start by rewr iting qr as

is given

fì r E )

and E

each

tend

,

ot

to

Fek (9,-h 2
)

ü (x, tr g) 4

-TTI
i 
-.o"28" I

ö t nlo
Dn ( h) ce2r, ( n, -h 2

)
2n dh

Fekr,r(0,-h 2

(2.6.s)

where Dn(h) is given by (2.6.3)

From appendix B (part I) ,

Fekrr, ( g, -h 2

0<
2

<1
Fek

2n
(0,-h

for all n = 0l

From appendix C ,

1, 2 | ..., aLlh>
(c. 1.9) ,

""2r, 
(n , -h 2 + Ylh + yzh2

Y0

where Y0

appendix D

, Yt and

(D. 1.1)

Y 2 are positive constants, and from

,

r (r + 4h2)M + ,llt"r^ + zh2 + t) Dn (h) 
| /7, 0

(h) I t't^ (h)/2¿



vrhere M0 (h) and M2 (h) are def ined by condition (c.7) .

From this inequality it follows that

I I 2 t (r+arr2 )uo (h) +M2 (h) l
lo-tf¡ll< .I ¡r. | - (4nr+I)

r,jl t4r,2+t)-1
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(2.6 .6J

Hence
2

2
D (h)ce (n, -h )n 2n

Fek 2n
(8,-h

Fek (0,-h

4

l=u
+

2
2n

+ M2 (h) ß j
2

Ij=o

where o. and ß-r are positive constants.1l
Using condition (c.8) and !.Ieierstrassrs M-test

deduce that

rekrn ( E,-h2)

Fekrn (0,-h2)

we

I 
^or, 

(h ) cerr, ( n , -h2 )
n=u

is uniformly convergent

with respect to n , E and h . Furtherrnore, from Lhe

general theory of l¿athieu equat,ions (c. f . tSJ sec. 2.11)
))

ce2n(rrr -h') is continuous in n and h , FekZn(E , -h')
is continuous in E and h , and from (2.6.1), (2.6.3t,
(c.1) and (c.2) Dn(h) is also contínuous. Hence the

function represented by the above infinite series is

continuous in rì r Ç and h .

Next let
Fekrrr(6'-h

2

4 .N 2h: 
co

= k ! ".=ff"ioon(n)ce2n(n,-h2)
)

rlt¡r(xrrìrE) dh
2

Fek rrr 
( 0, -h
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then for each N = 1, 2, ..., UN is a continuous function

of x, n and E and by condition (c.7), the sequènce of
functions ü ¡ converges uniformly to rl, . Hence rl(x, n , E )

is a continuous function of x, n and E .

Differentiatíng the integrand in the expression for þ,

(2.6.5) , twice partially with respect to x only introduces

factors h and h2 in the integrand. rn either case the

uniform convergence of the integrand is ensured by condition
(c.7) and the continuity of the integrandr âs a function of
xrlr 6 and h, is not affected.

To show that

â

ã¡ Dn ( h) 
""2n 

( rr, -h z Fekr,..' (6 ,-h2)
I

n=0 F"k2n (0,-h2)
2

i
n=0

Fek (8,-h
2 2nDn(h) 

""ån( n'-h
Fekrn (0,-hz)

we observe t,hat
2æ

t
L

n=0 lonttl""år,(n,-h2)
Fekrn (E , -h )

oo

Fek (0 ,2n

cet

h 2

,r(n'-h

0

2

I I t"rn*tn'*tr on tr,lll
+zh2+L

"2n
n=0

co

n=0

ñ,
¡an2+t)

t (rorr4+re rr2+t) l,t (h) +8h r.1 (h) +

+ 2 (qh2+t) M2 (h) +M4 (h)l ( vo+ y1h+ y2hzJ

(by(D.2.7) of appendix D, and (C.2.2, of appendix C)

2
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+o
4
I
L

i=0
..i
^.nI

4
f
L

i=00

6j
I

,.hi
1

I hr< Mo (h) + Ml (h) + M (h)
2 1

Fekr,, ( g, -h

o.h
].

+ M4 (h)
2

I
i=0

where the coefficients P Ài' oi and ti are positive
1

,

constants.

So the

convergent in

cos

n
n 2n

containing

Eandh
terms of

Dn(h)cej,r(n,-h

)
""å., 

( n, -h') is uni forrnly

(using condition (c.8 ) as

the series are continuous

ser ]-e s

rl ,

thebefore). AIso

functions of n , 6 and h. Moreover
2

I*
0

2hx: t

2

4 2t (16h +1 6h

I
n=0

2 dh
2Fek (0'-h )2n

is unifornly convergent with respect to x¡ n and E and

the integrand is a continuous function of x, rì, E and h .

Hence U can be differentiated partially with respect, to n

(tern by term) .

A similar argument can be used to show that r|., is

twice partially differentiable with respect úo r) . Here we

replace ""ärr(n,-h2) by (arn+2hzcos2n)ce2n(n,-h2) . Then

using (D.2.71 and (C.1.9) we have

I
n=0

r<L
n=0

Fek (8,-rr2)
D (h)ce (n,-h 2n

Fek (0,-h 2
¿n

2 2 2

2 2+1) M0 (h) +8h MI (h') +2 (4h +1) M2 (h) +M4 (h) l

llt tYo+Yth+Y ,n2) la2n+6h ) / (arn+2h l+1) X
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and from conditions (c.7,8) it, fo''ÌLov¡s that rf can be dif fer-
entiated twice partially with respect to n (it nay be noted

that to obtain the requíred result r¡re wr iLe
,)l

(a2n+6h ¿ ) <

Èreat it as a sum of two series).

Next, to show that (r is partialì.y different,iable

with respect to E we use (8.4) of appendix B, (C.1.9) of

append ix C and (D.2.7) of append ix D. If we use (8. 2) of

appendix B, instead, then it can be shown that ill is twice

partially differentiable wíth respect to E fn both cases

the arguments are similar to those of the differentiability
of U with respect Èo n

Finally in order to show that U tends to zero as I * I

or E tend to infinity, we procàed as fo1lows. First,
using the Riemann-Lebesgue lemma*, since the integral in

(2.6.5) is uniformly convergent and the function represented

by the series in the integrand is a continuous function of

h, then for each n e [0, n] and each 6 > 0 '

1im
l*l-t*

ü(x' rr E) 0

the

and

Next, f.or each x € (-oo, æ) and each

integral in ( 2. 6. 5) converges uni formly

the integrand is a continuous function of

n

for

h

e [0,

all
and

rl t

0E

E

* The Riemann-Lebesgue lemma is usually stated for integra-
tion over finite intervals, however it can be generalized to
cases involving infÍnite limits of integration (see Olver
[6], theorem 4.1, page 73).
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so lim I = / fim . Furthermore the seríes in (2.6.5) is
f->æ f->æ

also unifornly convergent in h and { and the terms of

the series are continuous functions of h and E Hence

Iirn I = J fin . From the asymptotic behaviour of
E->æ f ->co

t.
Fekr,, (1,-h' ) as E -> æ (see 1,2.3.10) ) , it follows that

lin rþ (x, rtr E) = 0 . using a similar argument it can be
f -¡æ

deducedthat #=0 at n=0 and n-r
Therefore ü(x, rl r E) represented by (2.5.4) is

continuous and satisfies Laplacers equation as well as the

boundary conditions of the stated boundary value problem,

provided the function H(x, n) satisfies conditions (c.1)

to (c.8).

rn þassing vre note'that under the above smoothness

conditions on H , þ also satisfies the limits (1.5) and

(1.9) of Chapter one.

2.7 An example

As an

surface of

function

example vre consider the punch problem where the

the base of the punch is represented by the

2 2
H(x, n ) 6

nJ-nsr,

2 2
L +x
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where ô , g are parameters having the dimensions of

length, 6 measuring the maximum depth of the punch which

occurs at t.he or ig in. TL¡e cross-sections of the punch

profile, taken through the planes of symmetty' are as shOwn:

long itud inal cross-section

-3.0 -\! -l l il. 31,
x

6
2-

- _ s.Q.
L- 

-

l'*t'
L

transverse cross-section

-+ +
Y

7= 6 (,- +:)
7

. 2hx.cos (1, )
L

2 sln 2
nIhen T(h, n) -6f

2 2
dx

0 (e" +x )

2e.6 2
f-- S ln nlexP ( - 2Lh,

f)

Also

and for i

t"Io (h) 2e"6

E--
4,

exp (-

Mi (h)

(c. 1)

2 e"h

f.

1, 2, 3, 2i &8-"*p 1-
2e" h

)f

ClearIy conditions

satisfied. Moreover

to (c.B ) of sect ion 2. 6 are
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4c6
D (h) rrfn

exp(- fft
t*brzo (n2) * o:2n) ,n2 ) J exp 1-

""2n(n r-h2)"ir,2ndnf
0

) (2.7.2)

where ajznl and ajz"l are the first two coefficients in
tthe Fourier series expansion of ""2rr(nr-h-)

Tfre above example of a punch profile has been chosen

to illustrate the theory because, while being smooth and

physically reasonable, it allows us to express the

coefficients Dn(h) explicitly. Ihe reasons for this are

(i) the expres";". -^2 &' Z has a simple Fourier cosineg"'+ x-
transform and (ii) the integral ]n""r,.,(n, -r,2)=in2ndn iso''
expressible in terms of only two Mathieu coefficients

o]i),r =0, 1. rf,inplaceof sin2n1=i-|cos2n) ,

the expression (2.7.L\ for the punch profile involved higher

trigonometric terms in n (so that z , in terms of y ,

h,ere given by a polynomial of degree higher than the

second) , then the effect would be to introduce further terms

in (2.7.2) , but only a f inite number of these. lhus the

computation involved would be of the same order of

magnitude ¡ since numer ical construct ion of a Math ieu

function generally produces all the significant coefficients
, (2n)n2r

In punch problems, one of the quantities of interest
is the normal component of sLress under the punch (i.e. on

S) , rzr(x, yt 0) . Recalling that ,"r(*, y, 0)

then the normal component of stress (under the

this particular example is given by

( 2n)
0

2th
f

d {,
f

Ld
0

punch) for
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4 I- 2hx: tcos i
n=0

Í
zz

(x' Y¡ o) D (h) x

x 
""2rrtcos-l ¡f¡

reki,., ( o; -h

y t 0) dydx

0
n

2

(x, fcosn, 0)sinndndx (2.7.4)

n tt*-y2l L/z

2 dh (2.7 .3), -h l 2Fek (0'-h
2n

The total force exerted on the punch is given, of course, by

the integral of the expression (2.7.3) over the total area

of the punch, i.e.
fI*I '=r(*'-f

.@ .L/zn
4f J ) ,

zz

Evaluation of the expression (2"7 "2) , hence of (2.7.3)

and (2.7 .4') , can only be done numer ically r but in view of

recent progress in the techniques of compuÈing Mathieu

functions, this is by no means an inpossibLe task.

To illustrate this observation, v¡e take the particular

case where L = 3f r so that the substantial .part of the

punch profile is long compared with its width (see the

figures on p. 52 above)" fhis has the effect that the

factor ex.p ( -2Lh/f) tends to zeÍo quite rapidly as h

increases, so that it is only necessary to compute the

Dn (h) for small values of h . (rndeed, it is quite

possible that tolerabLe accuracy couLd be achieved by using

the perturbation formulae for Mathieu functions given in,

for example, . [5] sec. 2.25, but the following computations

have been carried out without this approximation.)

00
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Moreover, for such a profile, it is only necessary to

consider smaIl values of n , for the following reason: for

h = 0 , Mathieu functions reduce to Lrigonometric funct,ions,

namelY

ceo (r1, 0) = z-L/z , cerrr(n, 0) = cos2n , (n ¡ 1)

and for sma11 values of h the Mathieu functions remain

close to these approximations. Hence, for n > 2 and h

sma11, the coefficients o(3") and o(tn) are sma1l

compared with 1, so that Dn(h) is itself small (see [4],

sections 3.27 Èo 3.35).

Using the method

o(fr") and o(3"r, and

for n = 0, I, 2 and

shown in the following

h 0, .L, .2, .3, .,

described in

hence the Dn

table:

tI0l the

(h) have

coefficients

been computed

2.0 and are
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Values of D_ (h) ¿/ ôn

pn (h)

ô

(-1) n¿

f r za(3") t 2l

in the case

+A ( 2n) (h2) I exp( -ze.h/fl
2

9' = 3f

h n=0 n=l n=2

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9
1.0
1.1
L.2
1.3
1.4
1.5
1.6
L.7
1.8
1.9
2.0

4.24264
2.32254
L.26495
0.68519
0.36895
0.19736
0. I0481
0. 05524

0.02889
0.01499
0.00773*
0.00397
0.00203
0. 00103

0.00053
0.00027
0.00014
0.00007
0.00004
0.00002
0.00001

-3.00000
-1.65459
-0 . 9 2155

-0 .5L7 92

0.29337
-0 .1 6723

-0.09574
-0 . 0 5492

-0.03150
-0.01803
-0.0r028
-0.00583
-0 .0 0329

-0.00185
-0.00103
-0.00058
-0.00032
-0.00018
-0.00010
-0.00005
-0.00003

0.00000
0.00137
0. 00303

0.00376
0. 00370

0.00321
0.00257
0.00195
0.00142
0. 00101

0.00070
0.00048
0.00032
0.00021
0.00014
0.00009
0.00006
0.00004
0.00002
0.00002
0. 00001
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The following are graphs of ce2r.(n r -h

, Lr 2, h = 0r 0.5r 1.0r 2.Q, and

functions are n -periodic and symmeÈric

2 ) for

n=0 n e [0, 1T

2

Th ese about n =
1T

2

eeo(1r-
r.l

t.o

-8

.6

,4

.7

h=o)

ì4
t

( h =.;)

h-- r.o)

(h=2.

coz ("ì, -h')

IJ,+ </7

= ?.'O)

\.0

.3

,(,

(e+ ("1,-h") ..f \
t.0 )

, t-o)

¿t

+
+

1
L

1
o

"l

0 Í/z ñ/,

L
-.t

-,+ +

6 --6

-.8 =¿.0) - $

( h-- o)
-- ,q)

(vr -- t.o)
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A further difficulty occurs in the evaluation of the

integrand of (2.7.3\ by the occurrence of the factor

rekj,r(0, -n2)/t"uzr,(0, -h2) , since neither numeraÈor nor

denominator is easiJ-y evaluated directly. An expression for
).?

Fekj,r(0, -h') is in t4l (sec. 13.31) while Fekrn(0, -h-)

could be obtained from the BesseI function series of t4l

(sec. 8.30) or the Bessel function product series of t4l

(sec. 13.30) .

However, it appears to be simpler to evaluate the

quotient directly, as follows:

In the modified Mathieu equation (2.5.3), which we

write in the form

F"(E) o(r)F(E) where a(q) = uzn + 2h 2 cosh 2E (2.7.5),

we make the substitution

v= F(E),/F'(t) , (2.7 .6)

obtaining the equation

v'(t) I O( q) u2 (e) (2.7 .7)

)Now, from the asymptotic form of Fek2n(t, -h-) it, follows

thatr âs { -¡ æ ¡ y - -h-1"-8. hte Èake a moderate value

EO of E , integrate the equation (2.7.7) numerically by a

standard technique back to f = 0 , hence obtaining v(0)

which is lhe reciprocal of the desired quantity.

Furthermore, in the evaluation of the normal component

of surface displacement outside the strip we need to find
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Fekrn ( E,-h2)

F"k2r, (0,-h2) How-

one can easily evaluate

integration since L(t)

to infinity. The graph

immediately below the

y = 0) as well as at

, Y = f) vre Proceed as

ever once v(0) has been obtained

straight forward numerical

zero rapidly as E tends

is given in Appendix B.

evaluate the stress , r,
the punch (i.e. at x = 0

of the punch (i.e. at x = 0

t( 5) by

tends to

of t(6 )

To

centre of

the edge

follows:

let
Fek jn (0 ,-h 2

V
n

(h) f
Fekr.r(Or-f¡2)

2and Un ( n, h) Dn (h) Vn (h)cern (1, -h

(-r) tD,, (h)vn (h) cerr, $

n = 0 corresponds to the

corresponds to the centre of

2-rì, h

edge of the

the strip.

strip and

Then from

)

so that
îî='2

(2.7.3)
T (0,zz

where U ( n,

Finally

integrand is

Y ¡ 0)

h)=

h¡e

smal1

U0(n, h) * ul(n,h) + u2(n, h)

truncate the above integral
when h>2 randevaluate

h) dh

h) dh

since the

values of vr (r¡) for

, 2.0

nt(f2'y2)I/z l- u(cos-1 +,
0'

r(n)

using Simpsonrs rule.

Ihe following table

r = 0; 1; 2 and h = 0' 0

12 v (n,
0

gives the

I, 0.2,
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Values of vn (h)

vn (h) =
Fekj. (0,-h2)

Fek ( 0 h
2

)2 n

h V
0 V

1
V

2

.0

.1

.2

.3

.4

.5

.6

.7

.B

.9
1.0
1.1
r.2
1.3
1.4
1.5
1.6
r.7
1.8
1.9
2.0

0

.4093s

. ss663

.69087

.8L926
. 9 4330

-1.06295
-1.17776
-r.28715
-1.39072
-r.48832
-1.57998
-r.66608
-r.7 47L2

-1 . B 2365

-1 . B 9620

-1.9 6s29

-2.03145
-2.09499
-2.rs629
-2.21464

-2
-2.00670
-2.02606
-2 .057 66

-2.r022L
-2.l-5503
-2.22010
-2.29s68
-2.38152
-2.4772L
-2.58218
-2.69549
-2.81619
-2.9 43l-7

-3. 07531

-3.21130
-3.35031
-3. 49113

-3.63280
-3 .7 7 4s8

-3.91558

-4
-4. 0 0272

-4.0r059
-4.02398
-4.0 42s3

-4 . 0 6620

-4.095r7
-4.L2899
-4. 1 67 BB

-4.2LL59
4.26003

-4.3L332
-4.37L20
-4.43341
-4.50045
-4. s7185

-4.64770
-4.7 2Br3

-4.81301
-4.90268
-4.99725



Dn (h) and

approx imations

centre of the

striP) .

(n, -h

r( n) i

and at

Us ing the above table
2

6I

and the appropriate values of

we obtain the following two

namely at n = i (i.e. at the

n = 0 (i.e. at the edge of the

ce ¿̂n

for

punch)

r(þ = - l' 27LL

r (0) s 0-7968

Vüe note that the stress at the centre of punch

( n = [l is negative. Ihis is in accordance with the

assumption that ,r, = -p where p is the normal pressure

applied to the punch. Also since I(0) > 0 and ,r, is a

continuous function of I r then for some value of n in

(0, i) ,zz = 0 Ïhis shows that the above example does

not represent a complete contact problem since contact is

lost near the edge of the strip.
To solve this problem completely, one has to determine

the contact region. This may be done by the following

method which is essentially an iterative procedure.

First we find the pressure p in the st.rip, where

P(x, y) = -'r.rr(x, yt 0), and the contour in the xy-pÌane, on

which p = 0 Tt¡e region of the xy-plane bounded by this

contour, i.e. where p >

contact regionr sây 51 . Next making use of the expression

ü(x' Y¡ z) I
2t

p(xt, y') dx, dy,

( see Ch

Í
s

I , (1. B) )

we find a new p(x, y)

ment function \¡¡(x, y)

x, Y tSl r sâtisfies

such that the prescribed displace-

, where v¡(x, y) = ú(x, Yt 0) for
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w(xr

If

reg ion

v)
I II

st
P(xt, Yt)
-_--E-

dx| dyt2tt

P(x, Y)

st

On the

>0forallxryuSt then vte increase

to obtain a new

0 at some point

and again a new

the

P (x,

in

p (xr

v)

sl'
v)

The

S-'

and repeat the

other hand if
last step

P(x, Y) <

decreasedthen the region

is obtained.

above steps are

such that

sI ls

repeated until we find the region,

say

ú(x, y, 0) = vù(x, Y)

where vJ ( x, y)

p(x, y) > 0 in S-

for (x, y) e

is prescribed

S
æ

and

P(x, Y) 0 on the boundary of S_ ,

In the next

constant along the

Let H(x, n)

previous example.

example

y-axis, i

6 e.2

we consider a profile which

independent of n

IS

e. H is

where 9. and ô are as in the

steps outlined above,
e.2

Th en
**2
following the

T(h' n)
2e"6 .-2e.h.= f exP( f )

Dn (h) 4rô
rf exp(:?#) /n ce2,. (n, -r¡2)a n

/n cern { n,and -h 2 )dn (-r) nnoát") tntl
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Sofor [= 3É

Dn (h) (-1) nr2 6exp (-6h) aj2n) 1rr2¡

and us ing

previous

for n=

the same numerical procedures as those

example vüe obtain the following table

0r 1, 2 and h = 0, 0.I, 0.2, ...t 2.0

used in the

ofD n
(h) ,
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Values of D- (h),/ ôn

D (h)
( 2n)
0

2n (-r)nr2ôexp (-6h) A (h
ô

h n=0 n=1 n=2

.0

.l

.2
2

.4

.5

.6

.7

.8
o

1.0
1.r
L.2
1.3
1.4
1.5
1.6
L.7
r.8
r.9
2.0

8. 48526

4.6567 4

2.55546
1. 40190

.76855

.42084

.23004

.L2546

.06824

.03701

.02002

.01080

.00582

.00313

.00168

.00091

.00049

.00026

.000r4

.00008

.00004

0

" 01646

.03613

.0 4457

.04335

.0369s

.02888

.02L20

.0L482

.00995

" 0064s

.00407

.00250

.001s1

.00089

.00052

.00030

.00017

.00010

.00006

.00003

0

0

.00005

.00008

.000r5

.00019

.00022

.00023

.00021

.00019

.00016

.00012

.00010

.00007

.00005

.00004

.00003

.00002

.0000r

.00001

.00001
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The normal component of stress, under the punch, can now be

approximated by

T (0' Yt 0) æ 4 r (n)zz rf(
.4818

* -;2)tn
where I Ë', ,

r (0) az .4130 I

and furthermore ,zz is negative everywhere under the

punch.

In Ch apter one it v¡as pointed out that in punch

problems where one assumes cornplete contact, there will be

stress singularities aÈ the edge of the contact region. Tkre

stress function obtained for the above example clearly

exhibits the expected singularity at y = + f (i.e. at the

edge of the strip).
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2.8 the strip-crack problem

Since crack and punch problems, when considered as

boundary value problems, can be treated along similar lines,

here $re shall briefly discuss the crack problem corres-

ponding to the strip-punch problem.

It is assumed that a crack has developed inside an

infinite elastic medium. As in the case of the punch

problem the infinite elastic medium is assumed to be

homogeneous, isotropic ánd linearly elastic. We sha11 also

assume that the crack is opened out symmetrically by equal

normal pressures applied to its faces in the sense that if

the Cartesian coordinate system is set, up wiÈh the origin

placed inside the crack, then the crack is opened out

symmetrically with respect to each of the planes x = O ,

y=0 and z= 0.

In the strip crack problem the crack occupies the

infinitestrip S definedby z= 0 and lyl <f. This

means that the region S is that part of the plane z = 0

which after applying the normal pressure becomes the crack-

face.

Ðue to the assumed symmetry we need only consider an

elastic medium occupying an infinite half-space where the
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crack-face is the region s which is now on the boundary of

the half-space. The geometric aspect of this problern is

sinilar to that of the punch problem, discussed in section

2"4, and will not be examined in detail here (see figures l,
2 and 3 of 2.4).

For zero shear stress across the plane of the crack,

the equations of elastostatics (as stated in Chapter oñe)

hold. Namely we have the relations (f-3 a, b, c), (1.6) and

(1.7 a, b). So the corresponding boundary value problem can

be stated as follows. A harmonic function rJr is to be

found such that

( i)

(ii)
(iii)

,
Vorlt = 0 for z > 0

u>
ü (x, Y t 0) = o for (x, y) outside s , i.e.

the normal component of displacement is zero on

Èhe plane z = 0 outside the str ip. Ttt is
condition is due to the assumption that

pressure is applied symmetrically.

rrr(x, y, o) = #l ^ = -p(x, y) , when

(x,y)eS

(iv)

p(x, y) is some prescribed function which as

assumed to be symmetric about x = 0 and y = 0 .

fn terms of elliptic cylinder coordinates,

with x e (-*r-)r n e [0, rf and t > 0 ,

problem can be restated as:

before is

(x,

the

r'ìr E )

above
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.(i) 
'

(ii) '

(iii),
(iv)'

tf =0 at
1 /ðùl,¿tfsin n \ AEI

equation (2.3.1) of section (2.3) holds for

x € (--, -)' n e [0, lll and q > 0

û->'0 as l*l >

x e (--, æ

9(x' n )

x=0 and

n-0rr forE>0 and x€(-*r*)
\
)= -q(xrn ) , where n € (0, r),

È-n I9-U
i ã"4 9(x, n)g'p(x, y) . In addition

is assumed to be symmetric about
,If

rt2

Let t (x, n ) g' f sintg (x, n)

of steps, similar to those outlined

obtain the forrnal solution

, then through a set

in section (2.5) r wê

2hx -S-...;;.{Xdn.r

tf= cosI
0

2hx: t nlo*n 
(h) sern*1 (n, -rr2¡ cek2n*1 (6,-h2) or,

f fr(x,n) sezn+l (n,-h2) co
00 ¿)

(2.8.1)

where se2n+I (t'ì , -h2 ) is g iven by ( 2. 3 . 6c) and

cek^ - tE,-n2¡ is the corresponding solution of the--''2n+1 \-' ¡¡

modified Mathieu equation which tends to zero as I tends

to inf inity (see Mclachlan l4l , LL.I2 and L]-.42) .

Similarly from ( iv) ' (inverting the Fourier cosine

transforrn and using the orthogonality of Mathieu functions

of the first kind) the coefficients Kn(h) are given by

Kn(h)
n2fc"kån*1(0,-h2)

It is easy to

tions on t(x, n)

see that if we impose a set of condi-

similar to those given in section 2.6t
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( (c. r) to (c. 8) ) , then the formal solutíon u , expressed by

¡Z.8.Ll , is continuous and satisfies (i) | to (iv) t. lfith
some minor modifications, the inequalities obtained in the

appendices can also be used here. For exampre it can be

shown that

G"k2n*1 (E , -h 2
Gek (0,-h 2

2n+1 1
l¡.r1G"kår,+r (0,-h2 G"kår,*t(0,-h )

for n = 0, l, 2,

The normal

outside the crack

and h>0
component of stress across the xy-pl_ane

is given by

T rr(x, yt 0) =

where y>f (i.e.

the crack, i.e. (y

singular since when

I
fs inhg ( a!¿-

ân l=0

E > 0 ) . As $¡e approactr the

o ' fsinh{ = Ly2 f2lL/2

edge of

become sf)

n
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Chapter 3 THE PARÀBOLTC PUNCE PROBLEI{

3.1 Introduction

rn this chapter the three dimensionar punch problem

where the contact region is parabolic is investigated using

an approach similar to that of chapter two. rn general,

parabolic contact probrems of elasticity have not received a

great deal of attention. A sorution to the two dimensional

problem is given by England ('1,21 , 3.8) and the parabolic

crack probrem for uniform pressure has been solved by shah

and Kobayashi [6]. Also in a paper by Kassir [3], solutions
for parabolic crack problems under uniform pressurer uniform

shear and pure bending are given.

As mentioned in ChapLer two, crack and punch problems,

for the same regions, can usually be solved along sirnirar
lines. This is due to the fact that if such problems are

viewed as mixed boundary value problems, then by switching

Èhe appropriate boundary conditions of one problem we can

define the other. In the punch problem we have a state of
zero normal stress outside the punch as weII as a prescribed

function for the norrnal component of dispracement under the

punch, whereas in the corresponding crack problern the normal

component of displacement outside the crack is zero and the

normal component of stress (pressure) is prescribed inside

the crack.

Shah and Kobayashi t6l use the algebraic forn of the

paraboloidal coordinate system and solve the problem by
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integrating a differential equation and arrive at a

potential function. The success of this approach is largely

due to the assumptíon that the pressure to which the crack

is subjected is uniform.

Our solution to the parabolic punch problem allows a

general representation for normal displacements under the

punch (within physically reasonable Iimits) which in terms

of the corresponding crack problem amounts to allowing a

general pressure distribution inside the crack.

Kassir t3l on the other hand uses existing solutions

for some elliptic crack problems which are restricted in the

same sense as mentioned above. He then uses a limiting
process to obtain the solutíon for the corresponding

parabolic problem. This process essentially transforms the

ellipsoidal coordinate system to the paraboloidal coordinate

system and the solutions to both problems are matched

accordingly. It appears that the problem with a more

general boundary condition, corresponding to the pressure

insíde the erack, will not yield easily since the limiÈing

process becomes considerably more complicated.

In the followíng sections of this chapter a solution

is constructed through the separation of Laplace's equation

in paraboloidal coordinates. This solution will contain

three types of Mathieu functions: "ordinary", "modified",

and "co-Mathieu" functions, with arguments lying in the
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z

following ranges respectivelyr (- r, T l,
l
;n+i-). Separated solutions of

paraboloída1 coordinate system are

72

[0, i*) ,

Laplacers equation in
discussed in sêction

these solutions the

(q, ßr.y ) are related

cosh2y )

€he

3.3 and for a more detailed study of

reader is referred to Arscott t11.

3.2 The paraboloidal coordinate systen

The paraboloidal coordinates

to the Cartesian coordinates by

x

v

I
2-

=2c

=2c

(cosh2o + cos2ß

coshocos ßs inhy

s inhos in ßcoshy

where o , I and y are all real¡ c is a dimensional

parameter and

ævO<e<co, -T<$<n, 0

The surfaces o = constant consist of a farnily of

elliptic paraboloids. In particular if cx = o0 r the vertex

of the elliptic paraboloid is given by (* cosh2o'r O, 0)

(in the Cartesian coordinate system) and its axis is Ox '
so that a point with coordinates (x, 0, 0) where

lx<
section of this paraboloid by a plane perpendicular to the

x-axis is an ellipse, the sections by the planes y = 0 and

z = 0 are both parabolas.
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on such a surface s = o0 there is a singular arc,

namely the intersection with the surface ^( = 0 ; on this

singular arc the corrêspondence between (x, y, z\ and

(o, ß, y) coordinates cêases to be one-to-one. If

0 < ßt <

1.'t(s0, tn *U', 0) coincide, also the pair (sO, --'In * ß', 0)

represent the same point. As shown in tll this. has

important consequences if !.re require a solution of V2rþ = O

to have continuous gradient across the arc.

For o = 0 we obtain the degenerate surface occupied

by a parabolíc plate in the xy-pIane with vertex at
1(i¿, 0, 0) . The surfaces y = constant also consist of a

family of elliptic paraboloids. For Y = Y0 r¡/e have the

elliptic paraboloid with vertex at (- þ cosh2YOr 0, 0)

whose axis is the x-axis, and points with Cartesian

coordinates (x, y t z) where x > +. cosh2 yo lie inside

Èhis paraboloid. The sections are similar to those of
c¿ = o0 . On such a surface y = y0 , the intersection with

oú = 0 forms another singular arc, where the points with

paraboloidal coordinates (0, *ß', YO) , for O < ß' , i, ,

coincide. This also has implications for conÈínuity of

solutions and continuity of the gradients of solutions

across the arc.

vlhen ^( = 0 we obtain the parabolic plate in the

xz-plane with vertex at (- *, O, O) . Finally the

surfaces ß = constant consist of portions of hyperbolic
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paraboloids. $ = ß0 gives one quarter of a hyperbolic
paraboloid, and the complete paraboloid is given by

ß = + ß0, ß = Ì (n - ßO) . The degenerate surfaces are

$=O, I+ and r. Forourpurposestheregionformed
by ß - 0 and g = r is of interest since it is the

infinite plate with a parabolic hole in the xy-prane which

occupies the exterior of the surface q, = 0 in this plane.

3.3 Separation of
coordinates

Laplacers equation in paraboloidal

Laplace's equation, v2rlt = 0 , in
coordinates becomes (L.L22, Meixner and Schäfke

^2,(cos2 ß+cosh2 y) g-# + (cosh2 y+coshl
ðaz 

(cosh2y+cosh2o) 
#

a2 rþ

¿v2
+ (cosh2cr-cos2 ß)

Let P = A(a )B(ß )c(Y )

differential equations emerges

0

(-À + 2q cosh2o)A(0) =

(r 2q cos2ß)B(ß) = 0

(-À 2q cosh2Y) C (y¡ =

paraboloidal

tsl )

+

then three ordinary

0 (3.3.1)

(3.3.2)

(3.3.3)0

,

A" (ct) +

B" ( ß) +

c" (Y) +

where À and 2q are separation constants chosen so that,

(3.3.2) takes the standard form of Mathieu's equation.

fnitially À and q are arbitrary and independent but, as

we shall see later, the boundary conditions of our problern
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wílL require that q be negativer' say q = -h2 , where

h e [0, * ) . The separation constant [ = f(fr2) turns out

to be one of the characteristic values ân, bn which !üere

described in section 2.3.

Arscott tIl called solutions of (3.3.3) "co-Mathieu

functionst' and introduced a notation for them but, as will
be seen, soLutions of (3.3.3) can be expressed conveniently

in terms of solutions of (3.3.1) , namely the farniliar

"modified" Mathieu functions.

With the solutions of equations (3.3.1) (3.3.3) in

mind we quote various needed results from Mathieu function

theory.

Consider the ordinary and modified Mathieu equations,

respectively: ..

.2o9'

-az'a
o$t (3.3.5)
-oz

1À - 2q cosh2z)w = 0

(3.3.5) being obtained forrn (3.3.4) by changing z to Lz

Equation (3.3.4) has the same qualitative nature

whether q is positive.or negative. Indeed, it is easily

seen that if w(zt q) is a solution of (3.3.4) , then
1I*(i - z¡ -q) is also a solution. This remark leads to the

well known relatíons between 2n-periodic Mathieu functions

of the first kind (McLachlan l4l, 2.18):

ce2n Ë - z¡ q) (3.3.6a)

+1À-2qcos2z)w=0 (3.3.4)

(-1)nce 2n(2, -9)
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t"2n+1 ü - z¡ q) (-1)nse 2n+L(2, -q) (3.3.6b)

êÀ"-2n*l ü - z, q) (-I)ncern+t(2, -q) (3.3.6c)

s.2n+2Ë-z¡q) (-1)nsern+2(2, -q) (3.3.6d)

fn the problems under consideration herer wê. are

interested only in these 2r-periodic Mathieu functions of
the first kind. The parameter À must, of course, have the

appropriate characteristic value a^(e) or bm(q)

fn equation (3.3.5), on the other hand, a change of
sign of q changes the qualitative nature of the equation

completely. -ff q > O r sây q = h2, then (at least for
suf f iciently l.êrge z) the coef f icient of $r is negative,

so the equation is oscillatory. The two standard solutíons

are the modified Mathieu functions of the first and second

kinds. To be specific, let us take the case where
,)À = atr, (h- ) r so that the per iod ic solution of ( 3. 3 . 4) is

tcern(2, h-) ,' the solutions of (3.3.5) are then respectively

cern(2, r,2) = cern(iz, r,2)

and

Feyrn(zr n2) .

As z -> æ these are both oscillatory and tend to zerol

their asynptotic behaviour beingr âs z ->æ , (t41, 11.10)
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( 2n)
0

TT

î

Eeyrn(z t h -p2n t rr2l cfol L/2.o" (u *' ä)

v = hez and p2r, (h2 ) = 
"ê2r, 

( o, h2 ) cerr, ( h )/A (h

2

where

I
2"'

2 2

On the other hand, if q is negative, then equation-

(3.3.5) is non-oscil.latory (C. f . Appendix A) and the

solutions are exponentially increasing or decreasing. The

standard solutions are the modífíed Mathieu functions of the

first and third kind, namely

Ce
2 (í2, -h-h ) =ce 2n

2
zn(2'

and
-t

Fekr,r(zr -h-)
with asymptotic behaviour

)Cern(2, -h-)
and

-2clw

-az

(for large z') ([4],

1-1) 
nP2¡ (h2) ( 2nv¡-L/z'-

11.12)
v

Fe -h 2

Next h¡e consÍder the "co-Mathieu equation" (3.3.3) in

the form

krn(2, ) (-1) npzn (r,2) ( zrv¡-r/2.'v

+ (- ¡, - 2q cosh2z) w = 0

It is easily verified
( 3. 3. 4) then 

" 
(å fi+ iz, q)

write thoseAr scott t fl $¡e

ce2nlz, q) as

(3.3.7)

that if w (2, q) satisfÍes

satisfíes (3.3.7) . Following

solutÍons corresponding to



CE2n(2, q) g' cerrr(|n + iz, q) = Cern(z - åtn, n,

FEYZn (2, q) g

d

- p2n (h

) - p2n(h

q)

I

)(2îv) e

2 -r/2 -v

7B

, FEY

these in

1

Feyrr, (z - iin ,

FEK2' (zr q) Fek (z in, q)
2n 2

The qualitative nature of this equation depends also

on the sign of q , but in the oppos ite hTay to that of

equation (3.3.5). For q > 0 , (3.3.7) is non-oscillatory,
with CE and FEK the real solutionsr CE being

exponentially increasing and FEK decaying. As z -) æ ,

CE'2î(2, i,2 )

., -L/2 v

and

2
2n

For q<0 the real

oscillatory and decaying.

problem under discussion.

Finally !üe observe that

links between the modified

(3.3. 6) yield simple

and the co-Mathieu

in (3.3. 6a) gives

FEK lz, h ) (2rv) e

solutÍons are CE

We shall not need

both

the

functions. writing (å n * íz)

formulae

Mathieu

for z

cern(2, q) = (-r) ncEz 
o(2, -q) (3.3.8)

Consequently it is possible to avoid use of the CE funcÈions

altogether. Vüe shalI retain thern wh Í le putting our problem

into mathematical terms but then eliminate them in favour of

the Ce functions in order to analyze the solution.
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3.4 Formulation of the boundary value problen

ß=ñ 5

S
( lc , o,o¡

x
o( =0

(l=o -S

z

As in Chapter two, v¡e sha1l assume that the half-space

z > 0 is occupied by an isotropic, homogeneous, linearly
elastic medium. Let S denote that part of the surface

z=0whichcorrespondstoo=0(i.e.aparabolic
plate) and let S be the region outside S on z = 0

which we assume to be stress free.

A rigid frictionless punch whose profile Ís defined by

the function K(x, y) is applied to the region S and

contact is assumed to be complete everywhere on S . For

convenience !ùe sha11 assume that K(x, y) is symmetric

about y = O . A general profile can be written as the sum

of two functions, one syrnrnetric and the other antisymmetric

about y = 0 and the corresponding solutions can then be

incorporated into one. For zero shearing stress on z = 0 ,

the general equations of elasÈicity of Chapter one (in

particular L.7 a, b) can be used to reduce this problem to a
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nixed boundary value problen of potential theory, described

by (i) to (v) of section 2.4.

3"5 The general solution of the boundary varue probren

In terms of the paraboloidal coordinates (o, g, v)

to find ú - ú( o, g , y) such that it satisfies thewe wish

following set of conditions:

(a) (cos2 ß+cosh2y)
^2,d !.,

-do
+ (cosh2y+cosh2s )

a2 {,

-aß'
+

+ (cosh2 o-cos 2 ß )
a2 ,i,--.5" =
ðyo

g€

0

for cl e (0, æ) , (0, n) and y e (0, æ)

(b) ú -> 0 as c -> æ or y ->æ , for ß e [0, n].

(c) Since d (t CT d dõ dJ-i-' àz âß
âv A*;*-dz dY

g+sinh2y )

Az àz âo , and

âcr

ñ = 4coshosinßcoshv (cos 2 / cls inh 2
¿s"

(cos2ß+cosh2y) + sin22ß (cosh2e+cosh2y) +

+ sinh22y (cosh2o-cos2ß) I

(3.s.1)

oÞ

ú = 4sinhacosßcoshv (cosh2 o+sinh2y )/ ctsính 22o

(cos2ß+cosh2y) + sin 2 2ß (cosh2a+cosh2y ) +

+ sinh 2 2y (cosh2q-cos2ß ) l

.a:

(3.s.2)
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ây
àz 4s inh os in 8s inhy (cosh 2 2 ß) / ctsinh 2 2acl-COS

(cos2ß+cosh2y) + sin 2 2ß (cosh2o*cosh2y) +

+ sinh 2 2y (cosh2c-cos2ß) l

(3.5.3)

and S is the region where 0, > 0 t Y> 0 , P= 0 or TrI

then Atll

E 0 on S is equivalent to I â(/
02csinhocoshy ã ß

and y e [0,

H (ß, v) g' 
K (x,

atß 0 and B = 'r , where d e (0, -) æ)

(d) ü(0, g, Y) H(ß, Y) where Y),

Ê e (0, n) and y e [0, æ

(e) H(8, y) is symmetric about ß
t

z

Equation (3.3.2) together with the above conditions
( (c) and (e) ) imply, by the same argument as that used in

Chapter two (sec. 2.5), B( ß) = cern(ß, q) and of course

that À = a.-(g), but with no restriction on the sign of q¿n

Ûfe turn to the question of what solution of (3.3.3)

must be chosen. Consider the part of a surface o = oO G0)

which lies inside the elastic medium. This surface is
described as ß and y vary over the ranges 0 < ß < î
and 0 S v S - with one-to-one correspondence except on the

singular arc AÍven by y = 0 Here the points corres-
'tponding to Èhe triads (oO, |r !B.t 0) , for 0 < ß' , i ,

coincide. Now, 9¡e naturally require that our ultimate

solution ù should be continuous, with continuous gradient,

throughout the interior of the elastic medium. As explained

in [1], these continuity requirements lead to the conclusion
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rhat if {, = A(a )B( ß)c(v) and B(ß) = ce2n(ß, q) then ere

must have C(.r) = CE2n(yr q) ; the solutions FEY2.(yr q)

and FEK2'(v, q) are ruled out.

Vüe still have no criterion for the sign of q, but

this appears when $ie take account of condition (b) , for as

noted above' CE2o(y, q) >

Vüe therefore set q = -h2 and our separated solution is of
the form

ü = A(cr)ce2n(9, 2-h2)cn2,r(v,

Finally, consider A(o )

q = -h2 . Hence A( a) may
)

Fekrr, (cr r -h') , but the former

condition (b); as cr -) æ , Ce

So A(o ) = Fekrn ( cr, 'n2)

is necessarily of the form

-)æ

separated solution

-h

which satisfies
ce r,, (

(3.3.1) with
.2.

dr -n ) Of

excluded because of

involve

must be

2n 
(o , -h2)

and our

2 2
CE,J, Fek (4, -h ) cern ( ß, -h (v, -h2n 2n

a single separated solution can be

2

More generally,

written as

d.rr='n ú,r(cr' ß'y'h) B (h) Fekn 2n
( o, -h2) ce2n ( g, -h2) ce2n (y,h2 )

where CE2r,(v, -t2) has been replaced

(relation (3.3.8)), and as Ín Chapter two,

is an arbitrary non-negative integer, h

2by Cern (y , h

section 2.5,

)

n

is an arbitrary
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non-negative parameter and Bn(h) an arbitrary const.rrt.(n)

Consequently a general solution for the mixed boundary value

problem can be written in the forn (see sec. 2.5)

2 2
rl,

2n
(e, -h )ce

To find the coefficients B

From boundary condition (d) ,

n(h) we proceed formally.

l* I e* (h)ret
0 n=0 ¡¡

(9,-h )ce, (v,h2)ar,

(3.s.4)
¿fL

H( ß' Y)

2n
(0,

2

H(ß' Y) h
2 )dh

(3. s. 6)

We now have to invert this relationship in order to
obÈain cn(h) in terms of H(ß, v) . The problem does not

appear to have been treated before. Our method is to use an

integral relationship due to Mclachlan ( [ a¡ , sec. 10.51,

(9) ) which in turn is derived from Whittaker I s general

solution of Laplace's equatÍon; this converts (3.5.6) into a

double Fourier cosine transform.

From t4l (sec. I0.51, (9)),

""2r, é -g,h2\c"2r, (y,h2) = ,rnl coslF(ß,y, e,h)]""2n(0,ht)u,

where Cn (h) = Bn (h) ren

Since cerrr(ß, -h

(*) CE2r, is changed to C"2r, merely
since in the evaluation of the coefficient
employ a relationship involving the product

á-"i0..(h)ce 2nß,-h2)cern(v,h2)ah (3.s-s)

-n2) .

(-1)ncezr,(å - g, r,2)

h2 ) ce2r, (y ,= l- I^t-r)nan(h)cer,, $ - ßt0n=0¡

for
Bn
ce

conven lence ,

(h) we shal1
(1 a

2n""2n
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where F ( ß' Y, €, h) 2h (coshy sin ßcosê+s inhycos ß s in0) and

2P2n ce2n(0,h ¿n)ce r'oJ2n) ,n2,

( 3. 5. 8) , then

2

/

2n(o' h

and

,h2 )å,'

So !{e can write

""2,r({ -ß,h2) cer,, (y ,h2l = 4o2n f" "o"(2hcoshvsinßcosg) 
x

x cos(2hsinh^¡cosßsing)ce2n(g,tr2)Ag (3.5.7)

and

H ( ß, y) = l- i o- øl f/2 "os 
(2hcoshys in ßcoso) x

0n=0¡¡0
x cos(2hsinhycosßsin0)""2n(0,h2)d0dh (3.5.g)

(-t)n4p2ncn(h)

can interchange the order of summation and

where D (h)
n

ProvÍded we

integration inside

H(ß,y)

where f (0, h)

Next we make

cos (2hcoshysin ßcos0) X

X cos (2hsinhycosßsinO) f (0,h) dedh

=l
0

= I- o.r(h)ce
n=U

the following trans format ions :

(3.5.9)

2cosh ys in ß

2s inh Ycos ß

2

, *l

x2
let I

2

= hcosO

= hsinO

u

h e [0r

2 e [0'

where O e[0, [;l
soEle[0n-),
x2 € (--, @)

) , Ye [0, æ) , ß e [0, n]

L *I. [0, -) and

, æ

æ
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Then (3. 5. 9) becornes

H1 (xy x2) = J-l-"o" (x, e1) cos ( *2E2) s ( e1 , E2) ð Etd Ez (3. 5.10)

where H, (x*x2) g' H( ß, y) and s ( \, e) d' Elqu

Using the two-dimensional Fourier cosine transform

forrnula on (3.5.10) $re get

@

Changing back to varíabIes h and e

cos (xrE1) cos ( *2EZ) Hl ( *L,*2) dxrdx,4 r-rt¡t)JTt'0 0
9(Et,E2)

I* I-00

) ¡ø¡ø
r- (0'h-) i J cos (xrhcosO) cos (xrhsinO)
âtL. 0 0

!/2
=J

0

i D-(h)ce
n=0 tr

IY'
û

,

(0,h 2
2n

cos (xrhcos€) cos (xrhsinO) H, (xr, xr) dxrdx, .

(3.5.11)

Next we multiply both sides of (3.5.11) by
)cer*(0, h') , where m is a fixed non-negative integer, and

integrate with respect to g from 0 to i . Proceeding

formally, v/e change the order of summation and .integration,
and use orthogonality of cerrr(g, n2) to obtain

4h
-r,
1f

io*trrl
4h
-2ce

1T

X

X HI (xl, xr) dxrdxrdO (3.s.12)

Since dxrdx, = 2(cosh2y + cos2ß)dßdy, then in terms

of ß and Y , (3.5.L2) can be written as

32h 2 ,* T/2I I H(ß,Y)cos(2hcoshYsinßcos0)x
00

Dm (h)
î3

ce2m(0rh

cos (2hsinhycosßsinO) (cosh2y+cos2ß ) dßdvdg .
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Then interchanging orders of integration (provided it
can be justified) and using (3.5.7), we get

Hence

D (h)
m

cn (h)

th ,- T/2= :ä- I J (cosh2v+cos2ß)ce2n Ë -g,h2)
n.or* o o

cer^( y,h2) u ( p,v) dßdy.

X

X

32
2h

T

.- T/2
f | (cosh2v+cos2ß) ce2n (ß,-h2)
00

X

azn

' c"2., jY'h2) ¡r( g ry) dßdy (3.5.13)

and the inversion of the relationshíp (3"5.6) is complete.

It may be noted here that f rom ( 3 . 5. 1) , (3 .5 .2') ,

(3.5"3) and (3.5.4), the normal component of stress under

the punch, i.e. on S , is given by

(2csinßcoshy ) -1/- i
n=0

Bn(h)Fek),r(0,-h 2
X

0

2 2* cerrr(ßr-h ) Cet.r.(v 
' 

h )dh (3 . s.14 )

where g e (0, n) and y e [0, @)

Concerning the edge of the contact region, i.e. where

cr = 0 and p = 0 or n ¡ the presence of the term

(2c sinßcoshy)-1 in (3.5.14) indicates a singularity of the

function representing the normal component of stress. Tttis

singularity is of the square rooÈ type which is expected in

cornplete contacÈ problems.

More explicitly let P be a point inside the region

S with Cartesian coordinates (x, y, 0) and let 0 be the
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point on the boundary of S with Cartesian coordinates

(x, -Y, 0) .

g(xip)

ß'o

S x
çtác 'o'o)

o(:O

ß
1t

Also

and

Then

let Èhe

be

corresponding paraboloidal

(a, 9, y ) and (ot, ßt,

=0randßr'=0rso

coordinates of P

y t ) respectively"o

ct 0

v
2 2

v (2c sinhyr) 2 (2c cos ßsinhy) 2

Since the x-coordinates of P and 0 are the same'

L
2" (2 cosh2 v') -L2" (I*cos2ß-cosh2y)

1ô 2 sinh 2 Yr =cosh2y-cos2ß

hence t2 y2)-L/2 = Qc sin ßcosh r) -1

3.6 On the validity of the formal solution

As in Chapter two (sec. 2.6) a set of sufficient
conditions can be imposed on the profile function H(ß,y)

in order to justify the formal steps taken in section 3.5.
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Hov/ever, since the subsequent analysis will be quite similar
Lo that employed in Chapter twor w€ shall not pursue this in
detail here- clearry one expects the conditions on H to
be somewhat stricter than those used in the previous
chapter.

To justify the expression (3.5.6) the followÍng steps
may be outlined. Let

I*I00
óT(Et,EZ) cos (*It1)cos (x2E2)H, (x, , x2)dxrdx, (3.6.1)

where

section

ErEZ, *1, *2 and Hl (xl , *2)

Some conditions on Hl

requÍred here to ensure the existence of
Next let

3. s.

are as defined

(x1, *ì wi 1l
r(tr E2) .

1n

be

6I = hcosO = hsinO
2

and

r(Et,Ez) g. 
þ,n, 0)

If t¡re expand . J (h, 0)

similar conditions to

as a Mathieu function

those given in Chapter

series,

two, weunder

obtain

J(h, g) 2En(h)cerrr(0, h )

wherer provided the series is uniformly convergent,

/z
2E

n

Now !,/e

such that

(h)

6

1
L

n=0

-J(h, 0) cern(0, h )de

choose the coefficients Cn (h) in ( 3. 5. 6)

4T
=_t nto
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2

of Mathieu's

cn (h) n
2n 92n

where

e2n = ce2rr(0, n2)cernlln, h ) / 2T A
2 ( 2n)

0
(h

It nay be noted here that since

år,(0, h2) = cejn(|n, n2) = 0

and the zeros of basically periodic solutions

equation are all simple, then

cerrr(0, n2) / o and ""r,rtln,
2 i.e. P /oh ) / 0 2n

Finally inverting the double Fourier cosine transform

(3.6.1) 9/e obtaín

@
H, (xy xr) cos (*tEl) cos (*ZEZ) t( Ef ,E2)dELdE2

and by changing the variables back to h , Q, ß and "( r rrrê

get (3.5.6). Some further conditions must be imposed on Hl

to ensure that the double Fourier transform can be inverted.

For example we can require HI to be three times

continuously differentiable with respect to *1 and x2 .

fn order to show that the function ú represented by

(3.5.4) is the solution of the boundary value problemr âs

before, it must be shown that ü is continuous and

satisfies Laplace I s equation together with the boundary

conditions. Writing {, in the form

4 r-r
=-tt .r))

'Ío00



ü( a' ß' y)

cê 2., 
( ß, -h

Fekrn (cr , -h
.)

Fekrr, (0r-h-)

90

(3.6.2)

2

funct ion

indepen-

2
æ

Í
0

i
n=0

2)a"

r]f
2

(v,h

En (h)

2
)

X

Tf

2n
o2n

lre observe that, from appendix B ,

dh

(c.1.9) ,

example where the

i.e. H(ß, y) , is

Fek 2n

Fek (0, -h2)2n

(o,-h2)
<1

and from (3.5.7)

zn

and appendix C

( ß, -h2 ) a" 2n(t ,h2
a2n < 2r (vO + vrh + rZh

Moreover, by the same technique as that used in
appendix D, a suitable bound can be found for En(h) to

ensure the uniform convergence of the series and the

integral in (3.6.2). The rest of the analysis, required to
demonstrate that ü is twice differentiable with respect to

the three variables, can be developed by modifying the

Èechniques used in the appendices.

'3.'I An exauple

lfe shall no!,, consider an

representing the punch profile,
dent of ß Let

H(ß, Y) ôcosh yexp ( -s inh2 y ) (3.7.1)

where ô is a dimensional parameter equal to the maximum

depth of the punch. Ítre cross-sections of the punch profile
are shown below:
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long i tudinal cross-section

-rrc w x

z

transverse cross-sect ion

-ìi c f,ec
Y

z

The coef f icient Bn (h)

(3.5.4), can be writÈen as

g iven by ( 3. 5.13) ,

in
cn (h)

the general solution

2
where C (h) isn'Fek 2n

(0,-h

cn
(h) 2h í* i"00

(cosh2y * cos2ß)ce (ß, -h 2
3

If
2o^'¿n

2n

Ce (v' h 2 )H(ß, y )dßdy

E

5

Using ( 3. 7.1) ,

2n



,3p?¿n'2h6 coshy exp (-s inh2y ) cosh2y Cerr, (v , t 2 
) Av

'I u 4 -t I; cosh yexp 1-s inh2v ) cern (y , t¡2 ) av

NT)z^cern(ß'

cos2ßcern(ß, -h2)dß = (-rl*t 
¿ao

=u;

( 2n)
2
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(3.7 .4)

cn (h)

2

I cern(ß,
n/

0

r/

0

-h

cos2 gcerr, (ß, -t 2l 
A gJ. (3.7 .21

Two of the four integrals in (3.7 .2\ can be evaluated

easily, namely

r/2
2 ( 2n)

0-h )dß (-r (3.7.3)

and
Tr/ 2

I

I

2

2

I
0

0

where otSn' and o?r") ur" the f irst two coef f icients in

the Fourier series expansion of ce2n

To evaluate the remaining integrals in (3.7.2\ we make

use of the Bessel function series expansion of Cerr, (Y, h2\ ,

where
2 @

r,2 )

ce (0,h
2n I ( 2n)

2rCe (y,

A /- cosh.¡ cosh2y x
0

J 2r(2h sinhy )

( [4], 8.10., (17) )

(3.7 .4a)
for the two

(3.7.s)

An ( 2n)
0

r=0

This leads to the following expressions

integrals under consideration in (3.7.2)

A

cê2n (0,h2)
( 2n)

0

I
=Q

( 2n)
2rA r

.2x exp (-sinh-y ) J Zr( 2hsinhy) dy

and
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cê2r'ì (oth 2 æ

( 2n)
0

I A
( 2n)
2r f- coshr x

A r=0 0

x exp(-sinh 2 Y)J (2hsinhy)dy (3.7.6)2r

Finally, the integrals in (3.7.5)

evaluated using Hankel transforms (1.71 ,

If lre let sinhy = x, then

and (3.7. 6)

(8) and

can be

(14) ) .8. 6,

f coshycosh2yexp (-sinh2 ñ J rr(2h sinhy) dy
0

l* 1zx2 +L) exp ( -x 2 
) ¡

0
2r (2hx)dx

The integral in (3.7.6) will reduce to the same form

except for the term (Zx2+t) in the integrand which will be

missing. Now from tables of Hankel transforms ([7]),

I: *2"*p (-*2) J zr(2hx) dx = pÐ2t
0

r (r+å),
xr (2r+1)

rFt (
2r+3 ¡ Zr+L ; -h

t
(3.7 .7)x 2

and

I- exp ( -*2) ¿ zr( 2hx) dx *.*r,2') r,(
.2
n
1 ) (3.7.8)

0

where in (3.7.7) | r(È) is Èhe Gamma function, and tFt
is Èhe confluent hypergometric function (also known as

Kurnmer rs conf luent hypergeometric function) . This funct,ion

has the following series representation

æ

'**
(-ft2

I k
rFr (äf ¡ 2r+! , -h2,)

k=0
(2r+1)

k KI

k



!,¡here

(3.7.9) ,

I^Jhefe

and

xce (ß, h Ce

( 
") 0 = I and (o ) ¡ = o(cr*l) (cr+2) ... (o +k-1)

is the usual modified Besse1 function.

c (h)
n

2
2n

( Y, h )dh

Fe k (0,-h
2n
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In

2

(3.7.e)

2(2x +1) X

( 2hx) dx

(3.7.10)

I r

rn section 2.7 certain numerical procedures erere

employed to compute the normal component of stress, ,r, ,

under the punch. Here we shall indicate briefry how similar
techniques may be used in the computation of , r, (under the

punch) for the above example which is represented by the

following expression

Fek)n(0,-h2)
rææ

(2c sinÊcoshy) -r I f.0 n=0'zz

2
2n

f+cn(h) (-1) nce 0,
2

2

n2l

)JZr(2hx)dx +

."2r, (o ,h2 ) . "2., 
( n/2 ,

( i0
A12n )

¿r I*
0

o;'")

n r

(-1) n*1x exp(-x X
2 oJ',")

X cerr, ( o ' n2) 
,Jo 

ojr'"' j- "*n F*2)rzr

n2,t
p

2n 2rA ( 2n)
0

For this example the integrals in (3.7.I0) have been

further'reduced to products of Gamma functions, confluent

hypergeometric functions and modified Bessel functions,
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however it appears that the integral representations in

(3.7.10) are easier to handle as far as the actual numerical

computations are concerned.

Th is observation is based on the fact that

lJZr(2hx) | < I and tends to zeto rapidly as h , x or r

increase. It¡e numerical values of the J 2, Bessel

functions have been extensively tabulated (e. g. M.

Abramowitz and I.A. Stegun, Handbook of Mathematical

Functions, Dover 1968.) In addition the term exp(-x2)

causes the integrals to converge even faster. So a standard

numerical method (e.g. Simpson's rule) may be employed here

over a small interval of x , say [0, 4f.

As in section 2.7, one can obtain fairly accurate

results using smaIl values of h (say 0, 0.1, 0.2, ...r 2.0)

and n (say 0, 1, 2). This is due to the occurrence of Lhe

coefficients oj:t' , and the functions Jrr(2hx) in the

expression for Cn (h)

The coefficients o;1") and the Mathieu functions in

(3.7.10) can all be computed using the method outlined in

section 2.7 which is based on the techniques developed in

reference t10l of Chapter 2.

Finally in order to evaluate (3.7.9) we note that the

Fekir, ( 0, -h2 )
terms

exactly

sect ion

cer,. ( Y,

Fekrrr(0r-h
the same

7.
2

)

)

me thod s

Furthermore

can easily be

and
)ce2r,(ß'-h-) can be computed by

as those used for the example of

the non-periodic Mathieu. function

computed from express ion ( 3 . 7. 4a)

2

2

h
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since again the series converges quite rapidly. TL¡e same

set of values of n and h can be used here while the

series itself may be approximated using the first 4 or 5

Lerms' depending on the desired accuracy.

Consequently a fa irly accurate approx,imation of , ,,
can be obtained by using the first three terms of the series

in (3.7.9) while h takes the values O, 0.1, 0.2, ... I Z.O.

Tt¡e integral can then be computed using a standard numerical

integration technique.

The above treatment can easiry be modified to handle

cases where the punch profile invorves simple trigonometric
functions of ß . For instance if H is a product of sin2ß

and the above function of y (3.7.1) then only the

expressions (3.7.3) and (3.7.4) would have to be altered to
Tt/ 2 ,2^sln Þ ce 2

2n
ß , -h )dß

0
and

r/2
2 2s]-n ß cos2 ßce

2
ß , -h )ðe

0

both of which are

coefficients o(3|)

Thus, clearly,
one given by ( 3. 7.1)

n

easily expressible in terms of the

more general punch

can be treated along

profiles than the

similar lines.
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Chapter 4 TEE WEDGE PUNCE PROBLEM

4.1 Introduction

lrie nor^r cons ider the problem which ar ises when the

punch contact is over an infinite wedge-shaped donain.

C1ear1y, some assumption must be mader âs !,¡as necessary for

the strip punch and the parabolic punch, regarding the wedge

profile at large distances from the apex. ff the depth of
penetration does not decrease to zero sufficiently rapidly,
then theoretically an infinite amount of energy will be

needed to make the indenÈation. The difficulties arising
from this observation ârêr howeverr rto more serious than in
the cases considered already.

A more serious problern is posed, however, by the

presence of the sharp vertex of the wedge. Intuitively, it
is clear thaÈ this produces a "v,rorse" stress singular ity
than the square-root type which arises at a smooth edge of a

punchr and the difficulties are both physical and

mathemat ical.
However the probem is not confined to the occurrence

of stress singularities alone. fn Chapter two ere observed

the existence of stress singularities on the edges of the

strip punch, but the potential U which !,ras obÈained as the

general solution of the boundary value problem was found to

satisfy the boundedness requirement at infinity as well as

being continuous within and on the boundary of the half-
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space. In the case of the wedge punch, vrith a sharp vertex,

even the existence of such a well-behaved solution is in

doubt. rr,is difficulty is again due to the highly idealized

condiLion resulting fron the sharp point at the vertex. An

investigation of somê of the atÈernpts by various authors Ín

this area clearly indicates the magnitude of the diffi-
culties involved in obtaining a solution which is mathemat-

ically as well as physically ncomplete". Thus the solutÍon

obtaíned in this chapter ís by no means claimed to be the

"compÌete" solution to such a problem.

As in Èhe case of the strip punch problem in

conjunction with the assumed idealized conditions of linear
elasticity (see Ch. 2\, the wedge punch problen is treated

here as a mixed boundary value problern of potential theory.
-Basically a function U is to be found which is harmonic in

a certain region and is prescribed on part of the boundary

of this region while its normal derivative is zero on the

remaining part of the boundary of the same region. fn terms

of the wedge punch problem t,hi s means that a function

representing the punch profile is prescribed over an

infinite sector in the xy-plane and the normal component of

stress is taken to be zero outside this sector (on the

xy-plane) . We shal1 assume that the prescribed function

which represents the punch profile is not constant and tends

to zero at infinity. This is discussed in more detail in

sections 4.3 and 4.4.
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Here we sha1l briefly review sone of the literature on

the wedge punch and related probrems. A number of different
techniques have been used by researchers in this area. How-

ever these techniques will not be examined here since Ì¡¡e are

primarily concerned with the nature of the various solutions
and the corresponding stress singularities obtained.

One of the earliest attenpts towards a solution of the

wedge punch problen can be found in the works of Galin [7].
He considers a punch with a fÌat profile and assumes that
the first partial derivatives of qr vanish at infinity. In

his solution the normal component of stress under the punch

is found to behave as r-1 near the apex r where r is the

distance from the apex. This solution, howeverr indicates

that there is some additional loading on the boundary of the

elastic medium along the straÍghÈ line which is the continu-

ation of the line bisecting the wedge, outside the punch.

Later Rvachev [15J, through an essentially differenÈ

approach, attempted to solve the same problem without. the

additional normal pressure outside the punch. He assumed a

solution of the form ú = rvf(€, O ) and concluded that the

normal component of stress near the wedge apex behaves as
v-1r- where v Ís dependent on the wedge angle and

0Sv<1
Parihar and Keer [10], [14], Baäant and Keer t51 and

Baãant t4l have also adopted the same (or very sirnilar)
boundary conditions which has inevitably led then to
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consider stress singularitiesr Dêâr the apext of the form

given by Rvachev. In t10l the boundary condition correspon-

ding to the displacernents under the punch is the same as

that used by Rvachev (namely a constant) , while in I14], t5l
and t4l it is taken to be zero.

The wedge punch problem is mathematicalry very close

Èo two other physical problem, namely (l) that of
electrostatic charge distribution on a thin flaÈ plate with
a corner and (2) the trdelta wing" problem relating to
aerodynamic flow¡ ât subsonic speeds, over an aerofoil in
the shape of a triangular sector. useful guidance and

information is to be obtained from papers, by the following
authors¡ dealing with these Èwo problems: Morrison and

Lewis [13], Taylor [16], Brown and Stewartson [6], and

Taylor [17]. The first two relate to erectrostatic
potential theory and the second two to a steady-state

aerodynamic probLen.

All the above mentioned works (apart from that of
Galin) share a common feature; namely that the stress

singularity near the apex behaves like ,v-1 r with v

dependent on the angle of the sector, and in most cases

considerable emphasis is placed upon the numerical evalu-

ation of the small varues of v . rn essence they all treat
the problem as an eigenvalue problem which is a direct
consequence of the adoption of homogeneous boundary

conditions.
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Aleksandrov and Babeshko tll treat the problern

differently. They consider a wedge punch with an arbitrary
profile so the boundary conditions are no longer assumed to
be honogeneous. This is a significantly different problem

in which the stress singularity near the apex is shown to

behave as r-3/2"o"(C l-n r) where ê depends on the wedge

angì.e. ffrey raise an objection, on physical groundsr to the

adoption of the boundary conditions which correspond to a

punch with a flat (i.e. constant) profile, narnely that in

such cases "on1y a solution with infinite energy can exist".
One may also argue against the case where the punch profile
is taken to be zero, since it appears, at least, physically

unreasonable to expect that such a punch would produce any

non-zero stresses.

Tt¡e problem that is treated in this chapter closely

resembles that discussed by Aleksandrov and Babeshko [1].
Although the form of our solution and the techniques

involved differ from those in [1], $re are in close agreement

with tll as far as the behaviour of the stress singularity
at the apex of the punch is concerned. It may be pointed

out here that Aleksandrov and Babeshko obtain the pressure,

p , under the punch and not the potential function qr

They start with the type of integral representation

discussed in Chapter two (p. 26) and apply a Mellin

transform technique to f ind p . Ilowever, as mentioned in

Chapter two (p. 27) , although once the function p

(representing the pressure) has been found, theoretically
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one can obtain the solution U of the boundary value

problem (through a similar integral representation), usually
such evaluations prove to be quiÈe cumbersome.

one of the difficurties encountered by some of the

earlìer workers is the choice of a coordinate system which

fits the geometry. A number of different systems have been

used, but the one with most obvious advantages is. the

elliptic conal (sometimes called sphero conal) system, in
whÍch the infinite triangular sector, which is the area of
contact between the punch and the elastic medium, is one of
the normal sufaces (see Arscott and Darai [3] ) . Three

versions of this system have been used; the "algebraic"
(Brown and Stewartson [6] ) , the "trigonometric" (Morrison

and Lewis t131) and the 'rJacobian" (Taylor t17l ) , but we

shall use the last-named, nainly because it gives the

simplest form Èo the basic differential equation, that of
Lamá, whose solutions are needed.

1.2 lbe elliptic conal coordinate system

Vfe choose an alignment of the elliptic

such that the elliptic conal coordinates E ¡

related to the Cartesian coordinate by

dno,dnß

y = kr sncr snß

ikr r cnocnß

conal

dt ß

system

are

rx=Ft ( 4. 2. la)

(4 .2 .Ib',)

(4.2.Ic)



vrhere sD r

of modulus

coordinate

cn and

k (see

system

dn

t3l

L02

are the Jacobian elliptic functions

for a general discription) . In this
and ß are confined to Èhe domains

(4.2.2a)

14:2"2b)

(4 .2 .2c)

t¡ C[

r

0

ß

0

(-2R, 2RJ

lK, K+2 iK I l

g

e

where K is the complete elliptic integral of the first
k ind.

This involves a different alignment from that used by

Taylor [17], but conforms to the usage elsewhere in this
thesis in that the z-axis points into the elastic medium,

the wedge punch lies in the xy-p1ane, and goes to infinity
along the negative x-axis.

Taylorrs t17l Cartesian coordinates N, y, Z are thus

related to our x¡ yt z by X = y, Z = x, Y = z . But the

variation of the t ¡ o, ß coordinates is the same as that in

Taylor rs work.

Vüith this choice of coordinates the coordinate sur-

faces which are of special interest in relation to our wedge

problem can be described as follows:
(i)Thesurfaces $=K, ß= K+2iK' areinfinite

sectors givenr pâf,âIlrêtrically, by x = t r dncr
y = kr sDG r z = 0, respectively. Hence each is

a sector in the xy-plane with semivertical angle

y r where
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Since the variable ß

convenient Èo replace it by the

(see t3l )

$ = K+iKt-iu

so that
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siny = k (4"2"3a)

cosY = kr (4.2.3b)

These sectors have as their center-1ines the

positive and negative x-axes respectivelyr and we

shall take ß = K+2ÌKr as the region of contact

of the punch which will" be denoted by S (as in
the previous chapt,ers) .

The surfaces o= I K together occupy the

remaining portions of the xy-pLane, giving the

configurat ion:

o(:K
ß=K+¿iK Ê'K

x

o(= -K

is conplex, it is often

real variable u , given by

(4.2.4)



k snP = dn(u, kt)

k cnß = ikt cn(u, k')
dnß = kr sn(u, kt)

To save tedious repetition, it
that elliptic functions with argument

in place of k

The relations (4.2.]'a, b, c)

elliptic coordinates become

x=rdnosnu
y=rSnctdnU

z=rcnocnu
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(4.2.5a)

(4.2.sb)

(4.2.5c)

is to be understood

u have modulus k I

between Cartesian and

(4.2.6a)

(4.2.6b)

(4.2.6c)

SO ß= K , ß= K+2iKr beCOme U = Kr ¡ U = -Kt

respectively.

4.3 Formulation of the boundary value problem

The mathematical formulation of the wedge punch

problen is basically the same as that of the strip punch

problem which was described in section 2.4.

It is assumed that a rigid frictionless punch in the

shape of a wedge of semívertical angle Y indents part of

the boundary of the half-space z > 0 . The elastic medium

which occupies this half-space is isotropic, homogeneous and

linearly elastic, and there is complete contact between the

punch and the elastic nedium. Let S denote the contact
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region (i.e. in elliptic conal coordinates of section 4.2

the region $ = K+2iK') and S denote the region outside S

on the xy-plane (i. e. c! = + K and g = K) . hle seek a

function i! which satisfÍes conditions (i) to (iv) of

section 2"4.

5
5 x

5

ì z

4.4 The solution of the boundary value problem

Laplace rs equation

becomes

J.n elliptic conal coordinates

dE (r 2 aü,-ã;r 1
(

a2l.t, - q-L
ð92

0 (4.4.1). ¿ ¿^.(sn 0-sn þ)

(i) to (iv)

2k 2 âcl

The condiÈions

stated as follows:

of section 2.4 can now be

(a) Equation (4.4.1)

0, e (-K, K) and

(b) if ->0 as r->

ß e (K, K+2iKr)

holds for (0, *) ,

ß e (K, K+2iK' ) .

* , for a e (-K, K) and
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(c ) Since ðr
É

I k cno cn ßkr

!-s.
ðz

sno d 0 cnß
kk'r (cn

,
cl -cn ß)

ðß
É

i snß dn ß cncr
2 2 ,

kkrr(cn 0 -cn ß)

and S istheregion o=1K and $=Krthen
Àrlr
*J = 0 on S is equivalent to
òz

3J=0 when 0=+K (4.4.2)
âs

- âi],rand Tä=0 when g=K (4.4.3)

(d) ü(rro, K+2iKr) = F(r, g) (4.4.4')

for cx e [-K, K] and r e [0, co) ,

where F(r, o ) is a prescribed function

describing the punch profile. In addition, to

simplify Èhe work that follows !.re shall only

consider the case where the punch profile is

synrnetric about the centre line of the punch,

i.e. it is assumed that F is an even function

of 0.

If we separate equation (4.4.1) in the form

rf = R(r)A(cr)B(ß)

then we obtain the following ordinary di fferential

equat ions :
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t

-2 d'R
-r)

dr
.t

doA

-'+dcr

+2r dR
dr v(v+l)R = 0 (4.4.5)

( À- v(v+l) k
2 sn 2o¡A = o ( 4. 4. 6a)

¿2s
.t

dß'
+ (À-vfv+l)k 2 sn 2 ß)B = 0 (4.4.6b)

where À and v( v+1) are the two separation constants

written in the form which allows us Èo express (4.4.6.a, b)

as standard Lamé equations. Of course the domains of
definition of the varÍables G and ß differ in these two

equations. In order to show which solutíons of Lamérs

equation are appropriate for our boundary value problern we

first consider Laméts equation in its general form

+- (À- u(v+1)k2sn2z)w= 0 (4.4.7)
dz

where z is a complex variable. Since z = K is an

ordinary point of (4.4.7), then there is only one solution
(apart from a constant multiple) such that w'(K) = 0 . So

from boundary conditions (4.4.2) and (4.4.3) and equations

(4.4.6a, b), A(o) and B(ß) are the same functions

respectively of o and ß . However, since o and ß belong

Èo entirely different domains, the functions A(o) and

B ( ß) do not have the same behaviour.

To determine A(o ) we observe that from Ëhe symmetry

condition, imposed on the profile function, A(o) is even

in o . This implies that Ar (0) = 0 , and since from

condition (c) A'(K) = 0 then we have to solve (4.4.7) on

the real axis with the boundary conditions
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$¡t(0) = w'(t<) 0 (4.4.8arb)

From the theory of periodic differential equations it
can be shown that (4.4.8a, b) are equivalent to the require-
mênt that w(e) be even with period 2K , i.e.

w(-z) = w(z) r w(z+2K) = w(z) (4.4"9a,b)

(c. f . Arscott 1,21 , 2.1.1 wit,h r replaced by 2K¡ in parti-
cular example 2).

Now (4.4.7) and (4.4.8a, b) form a regular Sturm-

LiouvilLe eigenvalue problem which is solvable only for a

denumerable infinity of eigenvalues. These may be denoted

by À,2* wíth m = 0, L, 2t .c. . The corresponding

solutions may be written as n"fttr) where the parameter m

denotes the number of zeros of this function in (0, K) .

The functions themselves nay be determined in the form of

series. Ince t8l gave them as power series

Ec 2n (z) i- 2r)A^SnZ
t=o ¿r ( 4. 4.10)

V

and in a later paper t9l as Fouríer-Jacobi series

Ec 2m (z)
co

I Crrcos(2r am z) (4.4.11)v
0t

where cos (âm z) = cn z.

To obtain the eigenvalues I and the coefficients
AZ, or C2, one can use the three-term recurrence

relations which result from the sustitutÍon of (4.4.10) or

(4.4.11) expansions (respectively) into the differential
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equation (4.4.7). The' nethod used here is similar to that

used in the case of Mathieu functions. Other methods are

available for the determination of À and the corresponding

solutions of (4.4.7). One such method is the perturbation

technique devised by Taylor and Arscott t18l which has

proved effective in the type of electrostatic and aero-

dynamic problems mentioned in section 4.I.
The usual phenomenon, relating to periodic differ-

ential equationsr first observed for Mathieu functions

occurs here (see McÏ,achlan ÍI21, Ch. 3, or ArscoÈt [21,

3.6) . Formal subsÈitution of (4.4.10) or (4,4.11) in

(4.4.7) yields a set of recurrence relations which can be

solved for arbitrary values of À r but the resulting series

would, in general' diverge at some point on the real axis

((4.4.10) at z = K , (4.4.I1) at z = 0). Choosing ). to

have a characteristic value guarantees convergence at all
points of the real axis' yielding a solution wiÈh the

necessary boundary properties (4.4.8) or (4.4.9).

In the very exceptional case that v is an integer '
the series (4.4.10) (or (4.4.1f) ) terminates and yields a

so-called Laná polynomial, but this possibility does not

seem to arise in our current problem.

Íhus the problem of finding A(d) is, essentially' a

matter of applying known theory and techniques.

It may be thought that sincer ãccording to our formu-

lation of the problem, B ( ß) is the same function of ß as
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A( o) is of o , and A( o) can be determined more-or-less

explicitly, then B ( ß ) can also be easily deterrnined

through a sinilar representation. This, however, is not the

case. It can be shown (rnce [8] ; t9l ) that the series

(4.4.10) or (¿.¿.ff) converge on the entire real axis, but

the region of convergence does not include all points of the

interval [K, K+2iKt] which is the domain of definition of

ß . In particular, while (4.4.10) and (4- 4.11) have

slightly different regions of convergence and the latter

converges fasÈer than the former r both series fail to

converge at K+iKr . Consequently, although the function

B(z) for z ê, [K, K+2iKr] can be defined mathematically as

the analytic continuation of A(z) from a neighbourhood of

z = K along the line Re (z) = K I this alone does not lead

to an explicit expression for B(ß)

For instance at K+2iKt the terms of the series

obtained by term-by-term differentiation of the series

(4.4.10) (or (4.4.11)) are all zero, but we cannot conclude

that Br (K+2iKr) = 0 since convergence fails at this point.

In particular we should note that B(ß) is notr in general,

a periodic function of ß .

However, there are integral rePresentations of B(ß) '
in terms of other Lame functions (e.g. A(cr) in Èhis case) ,

which can be handled more freely over the domain

IK, K+2iKt] and usually such representations are used when
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numerical results are required. A detailed discussion of

integral representations of non-periodic Lamé functions can

be found in R.S. Taylorfs Pli.D. thesis [19].
To continue with the formal analysis, we recall that

when the partial differentíal equation (4.4.1) was separated

the parameter v emerged as a separation constant.

ClearIy, v(v+l) must be real (otherwise vee could get a

conplex expression for tl, ) but there are three alternatives

for v(v+l) giving different forms of v , namely

v(v+l) >

v(v+I) =

v(v+1) <

For each of the above alternatives v/e obtain a

different type of solution R(r) for equation (4.4.5) "

The-se are given by

(i) if v1v+l) >

R = Arv+ Br-v-l

I
I then

4

(4 . 4. r2',)

( i)
(ii)

(iii)

I-a
1-4
I-T

(ii)

(iii)

where without loss of generality vre may take
'tvr-2,

if v(v+l) = -L4, then

ft = r-L/z (A + B ln r) (4.4.13)

if v(v+I) < -å r !ú€ set
ìv=-j+ ip (p>0) andthen

R - r'L/2 (A cos (p tn r) + B sin(p ln r) ) .

( 4. 4. 14)
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Thus we can write a separated sol-ution in the form

ü= R(r, v¡Ecr2m(cr)Ec3rt( ß) ( 4. 4. 15)

incorporating the parameter v into the expression for R

Thfs solution satisfies (4.4.1) and the boundary conditíons
(4:4:2) ; (4.4.3) , but not (4.4.4) . Howeverr wê may

construct a more general solution by sumrning with respect to
m and integrating wiÈh respect to v , namely

ü(r'

wi th

over

ye t.

i
m=0

0; ß)
2m ¿mC*(v)R(r,v)Ec ( o,) Ec ( ß) av (4. 4. 16)
V v

(so far) arbitrary C*(v) .

which integration is to be

The set of values of v

performed is not specified

Using the

the expression

F(rro) =

( 4. 4. 16) !,re obtain,
co

I L^ D,n(v) R(r,v)Ec
m=u

formally,

l* tol uu

remaining boundary condition (4.4.4), and

(4.4.L7)

where Dn(v) = cr(v)Ec2m(K+2iK') .

Clearlyr for the boundary value problem considered

here, the choice of the range of integration is noÈ

immediately obvious on mathematical or physical grounds.

This serious difficulty seems to stem from the nature of the

problen iÈself. Perhaps the problem has been so idealized,

physically, that it is no longer possible to obtain a

ncomplete" mathematical solution.

In what follows we shall confine our attention to one

of the alternatives mentioned above, namely the case where
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1.'tv= ; +ip with pt0 (i.e. v(v+l) <

this choice for v , integration takes place along the line
.T

Rev = - i and vre can ínvert relation (4.4.L7) to obtain a

fornal solution of the problem. The solution found in this
!,¡ay seems to indicate that, in the immediate neighbourhood

of the vertex, complete contact between the punch and the

elastic medium is lost. However, due to the idealized

nature of the problem, in particular the assumption of a

sharp point at the vertexr ârr objection raised with respect

to this interpretation may not be too serious.

To proceed with the formal analysis, ere set

2m (z)Ec (z)
V

and take R in the form (4.4.L4)

can now be written as

The expression (4.4.16)

-¿m= -ejp

ü (r, o, ß)

+

,Õ
=J

0
i

m=0
r-r/z tAn (p) cos (p ln r) +

(4.4.18)

where the dependence on m and p of the arbitrary con-

stants in R has been taken into account. The expression

which corresponds to (4.4.17) can then be written as

,L/zt ( r, o) i^ fv*(e)cos(p In r)
m=u

* B*(p)sin(p ln rr rift(.);3*(ß)dp

6m(p)sin(p ln rf f Êf*(o) dp

[*
0

+

( 4. 4. 19)
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where

v* (e) ; a* (e) Êfr*rx*z ir't

ô*te) = B* tel Êfr* tK+2iK ' )

Next we introduce a new variable s and let

lnr=s, ,L/2t(r,a) È' c(s,s)

Relation

G(s'q) =

(4.4.19) now becomes

l*
0

co

I I ym(p) cos (ps) +
m 0

+ 6n(p) s in (ps) I 
"3*, 

a) dp (4"4"2Q)

which has the form of a Fourier transform.

invert (4.4.20) we first split G(sr o) into

odd parÈs ( in s) r say

fn order to
even andits

G(s, o) = Q(s, o) + Go(s' o)

So -( 4. 4.20) now becomes

G

G

ô (s, o) f i^ Ym(p) cos (e"r Êfr* (o)dp
0 m=0 ¡¡r

{*_Ï^ ôm(p) sin(ps) Ê3m(c¿)dp
U M=U

(s, o)o

which can be inverted by applying the inversion formulae for

Fourier cosine and sine transforms. This gives



,,,io 
v*(e) Ê!'t*l

n.1, 
ôm(p)Êf*t.,r

¿- 
cos(ps)c"(s, s)ds

¿* 
sin (ps) Go (s, e)ds
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(4.4.2Ia)

(4.4.21b)

'tf ].n

b) the

in the

and B in
m

component of
-a_u.
ðz z=0

cr<K

2
1t

,)

=-
1ï

Now since over the interval (0, K) , the functions

iÊ2ttolÏ are solutions of a regulâr sturn-Liouvirre problem

they satisfy the usual orthogonality property, i.e.
2

o) (c¿) dq = K*(p) 6*r, (4.4.22)^o¡3
.CJp

K

0
r m EII¡Þp

where X*(n) is a normalising constant (taken as

Ince I s work but vre shali- leave it unspecif ied) .

Hence by apply ing ( 4. 4 .22| to ( 4 . 4 .2La ,

coefficients Yn and ô* can be determined

following forms

2R
v* (e) nx* (p)

0 "3* 
, o) cos (ps) G" ( s , ct) ds dcl

2K
6m (p) nçi-et f

0
I
0 "f^t")sin(ps) 

Go(s, s)ds do,

[*
0

2 I

2 ó

which in turn determine the coefficients A*

the expression for r|., given by ( 4. 4.I8)

As indicated in Chapter one, the normal

stress under the punch (inside S) is given by

Here the region S is given by S = K + ziKt r

and r>0

Using (4.4.18) and the appropriate partial derivatives
(see condition (c) earlier in this section) , the expression

for the normal component, of stress under the punch becomes



æ

-1 r h(ikrcna) " J L
m=0

r -r/2 tAm(p)cos(p In r) + a*(n)sin(p 1n r) l

Ê3*, "l Êf*' tx + 2iK' ) dp (4 - 4.23')

Due to the presence of the term (krcn o ) 
-l in

(4.4.23), the stress function exhibits a singularity at the

boundary of S (i.e. the edges of the punch) where ct = l(

or o = -K . Moreover this singularity is of the square

root type. To demonstrate this we let P be a point inside

S with Cartesian coordinates (x, Yt 0) and O be a point

on the edge corresponding to d = K with Cartesian

coordinates (x, y, O) , where x > 0

6¿= K

(x,l,o)

1r6

(r, ct, ß )

K, K+2iKr )

v

5
x

If we Iet the

ofPand0be

respectively r then

elliptic conal coordinates

(r, G, K+2iKr) and (r',

2rsn22t v k (r'2 2 2 a)

Since the x-coordinates of P and 0 are the same

rt rdn a--T-

? (x,Y,
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from which it follows that

( 2 y2)-r/2 k I (krcncr) -1v

fn this section we have used a purely formal approach

to obtain the general solution as well as an expression for
the normal component of stress. One could conceivably
just,ify the operations performed above by imposing a set of
sufficient conditions on the profile function F(r, o)

However, a more serious problem exists in relat,ion to the

boundary value problem itself; namely that the solution
given above is not unique. This appears to be a fundamental

difficulty which arises , in the solution of Laplace's

equation relative to a region whose boundary includes sharp

corners (see Kellogg t11l Ch. 11, sec. -1i .

Mathematically, the non-uniqueness of the above

solution can be demonstrated in the following way. Suppose

we seek a harmonic function ö(r, o., ß) which satisfies
conditons (4.4.2) and (4.4.3) together with a homogeneous

condition replacing (4.4.4) | i. e. 0 (r, a. I K+2iK ' ) = Q

This problem may nor¡¡ be viewed as an eigenvalue problem and

is entirely analogous to Èhe electrostatic and aerodynamic

problems mentioned at the beginning of this chapter (in

particular the trailing edge problem discussed by Taylor

t17l ) . Various authors (as noted in section 4.f) have

attempted this problem and shown that it does i.ndeed have

non-trivial solutions, for an infinity of discrete eigen-

values v , these eigenvalues being real and numerically

computable.
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Now, clearly, ,1,* = ú + 0 is also a solution which

saÈisfies our original boundary value problem (i.e. that
satisfied by ,f ) and if 0 is to be rejected it cannot be on

purely mathematical grounds.

As noted above, a further objection may be raised

concerning the physical interpretation of the soluLion {.,

represented by (4.4.18). This objection can be directed at
our. choice of values of v (namely that v = I

2+rp)
which has resulted in the occurence of the functíons

,-L/2.o=(p ln r) and ,-I/2=in (p ln r) in the expression

for ú . Since these functions oscillate more and more

rapidly as r approaches zero it appears then that, near

the apex of the wedge, complete contact no longer exists

between the punch and the elastic mediun. However, due to

the highly idealized assumption of a sharp point aÈ the

vertex, iÈ is not easy to decide how seriously such an

objection may be taken. A similar problem occurs in the

mathematical theory of standing vlaves in a body of water

conf ined bet,ween two boundar ies inclined at an angle and

forming a sector. In theory Èhe waves become infinitely
steep at the vertex, whereas in practice the linear Èheory

ceases to be applicable in such a confined space so that the

nathematical dif f iculty is not physically reJ-evant.

Clearly the wedge punch problem meriÈs further

investigation, particularly concerning the nature of the

mathematically admissible solutions.
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To show that fek2rr(0, -h

ÀPPENDIX À

2 ) / 0

Consider Fek2r, ( E , -f,2) as a solution of the

differential equation

r" ( E) (u2n + Zh}cosh2E)F ( E) = 0 (4. 1)

From Sturmrs comparíson theorm, applied to the

ordínary Mathieu equation with periodic boundary conditions,

the following Ínequality can be derived

2h2 < a^- (h2) < (2n12¿n'
n = 0, Lr 2t ..., and

2 2
1zn)

for

+2h

h>.0,

(see Mclach1an, Ch. 2 reference 141, sec. L2.20). So

a2r, + 2h 2 2cosh2E > 4n for all 6 e [o' co)

Using Sturmrs comParison theorem on (4.1) we can

deduce that the solutions of the differential equation (4.1)
a t 

^ 
t- \ .are non-oscillatory in any interval (0, b) ' i.e. no

solution can have more than one zeto in (0, b) ' (see Ince'

Ch. 2 reference [2], 10.32).

lrle also note that since ("2r, + 2h?cosh2l) > 0 , F"(6)

and F(g) both have the same sign for all E e [0, æ) . In

addition Fek2n (8, -t 2) tends to zero as 6 tends to

inf inity (the asyrnptotic form is given in section 2. 5) . So

)-)Fek2¡(0, -h") / 0 since Fekrn(E, -h') / 0
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ÀPPENDTX B

I. From appendix A, tr'ekrn ( 0, -h2 I / 0 Applyíng the

same argument as that used

equation

in appendix A to the differential

L" (6) (u2r, + 2h2 cosh26 ) t (E ) 0 (8"1)

Fekrrr(8,-fr 2

with L( q) ,
Fek 2n

(0r-h

we deduce that since t(0) = I , ther, t(E ) is a monotone

decreasing function of E and tends to zero as 6 tends to

infinity. This can be explained by the fact that since t(E)

is non-oscillatory in any interval (0, b) , and Ln(E) and

t( E) have the same sign, then t(g ) cannot cross the

E-axis at any point and yet tend to zero at infinity.

II. From part T, and differentiability of t(E) , it can

be deduced that I ¿' t El I and L" (E ) are both positive

monotone decreasing functions of E , tending to zero as E

tends to infinity. As an immediate conseguence we have

Feki,, (9,-h 2 Feki,r(0,-h 2

0< =a2n+2h 2 (8.2)
¿ 2Fek

2n
(0'-h Fek 2n

(0,-h
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Furthermore

/* "'(E)r'(E)aE = r(E)r,"te) 
f i I- r(E)L,',(E)dE

0

and also

æ

= |tr,(E)12 l;r,'(E)L"(E)dq
0

so

åt"' (o) I 2 = t(o) t" (o) + l- r,(E)L,i'(E)dE
0

(8.3)

<0 for

then the

But following the argument used above, L"'(E)

all E> O, and since t(E) > O for all E > 0,

integral in (8.3) is negative. Hence

It'(o)12 < 2L"(o)

and lrre have

¡r'tetl s ll'(o)l < IZIL"(0)JL/z = ¡i(atn + zh2)L/2

Fek (E )
+ 2h2)r/21.ê. Fek (0) /2 (a

¿n
(8. 4)

2n

The variation of t(E) with E (for different values of h)

is shown below.

r(E\

(h
2

0

(h=h
2

(h=h, )

E

I h
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APPEI{DIX C

I. Consíder the equation

ce ll (n' -h 2 )+(a +2h 2 cos2 n) ce (n, -h 2
2n 2n ¿n 0

and def ine y (n) = ce2r, ( n, -h

y"(n) + (.2r, + 2h2 + l)y(n) =

Multiplying (C. 1.1) by

respect to n) from 0 to t

2
) then,

(1 + 4h2sin2n)y(n) . (c.r.1)

y'(n)
r where

and integ rat ing (w i tfr

[0, n] lre get

t
0

" (c-1.2)

te

1
2

2 t
+ ] tarn+ 2h2+t)y2 (n )[y'(n)]

t
0

I
0

( 1+4h 2"in2n)y(n)y'(n)dn

Since cel,r(0, -h 2
0

ly' (t) l 2 + ("2r,

G+4h2

+2h 2 +t) ty 2 (r)-y 2 (0) l
t

sir,2n)y(n)y'(n)dn2l
0

(c.1.3)

Next we integrate

t ) and note that

(C.1.3) from 0 to r (with r:espect

)dr =; i

2n*2h2nr) y2 (o)

to IN
0

2 (t, -h 2ce 2n

IN
0

ty' (t) I2ar + {lu +2h 2 +1)-n(a
2n

2 ff00
(1+4h 2 sln 2 n)y(n)y'(n)dndt (c"1.4)

Now y2(O) can be eliminated fron (c.1.3) and (c.1.4)

and we obtain
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ly' (t) l2 + (arrr+2ht*t)r'(a) t
2 22l

0

( l+4h sin n)y(n)y'(n)dn

I=-IT fn ly'(r) ] 
2at +

0

1 (a +2h 2 +1)2 2n

+ {[ (1+4h 2s].n 2 n)y(n)y'(n)dndt (c. 1. s)

Also

J'ro'(t) I2at
1T

y(t)y'(t) In v (t) v" (t) dt
00

I
n(" +2h 2 cos2t) y 2 (t)dt (c. 1. 6)2n

since celr, ( n,

As noted in
-r,2) = o .

appendix A , ã2n + 2h2

ar'+zh2 | + zh2 lcoszn-r I

4n 2 so,

I arrr+Zfr2cos2 ¡l < a^ +6h
¿rL

2

Hence

Intv'(r)l
0

2dr (a +6h 2
Inv2 (t) dt
0

Lrtarn+anz)
2n (c.1.7)

From (c.r.5) and (c.r.7) we get

(arn+2h2+1)y2 (t)
t

[ 1r+an2"Ín2n)y(n)y, (n) ldn!21
0

+

+ llarn+en2 ) + 1 (a +2h 2+1) +
2 2n

+ Ztrd
,f

0
I (r+¿r,2.in2n)y ( n)y' ( n) | an¿t
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ln lv(n)v'(n) ldn <

o-(l'o
(us ing (C. 1. 7) )

(c"1.8)

+1) +2

+

n In lv(n)v'(n) l¿nat .
0

(arn+2h

+ t2n(1+4h2) lqn2*gh2)L/21 (¿n2+t) -1

¡4n2 +gr,2 ) ( 4n 2+1¡ -1 <

+* å(ur,,*zn2*tl
r 

lv( n)y'(n) ldn

.+

+

2

s å * 1an2+Bn2) (¿r,2*r) -1

s å("r,.+en2)

+ 2n(1+4h2) (ar,r+6h2)L/2

th

,

+

I

By Schwarzrs inequality

4n2

and 0<4n2+1<arrr+2h2 +

] tar,r+4r,2 )

I
0

r
û

2

2

$G*+n2l

j(ar,r+en2)L/2

(r)

and since 0 .< aâ- + 6h¿n

+ 2 (1+4h

2+1) y2

+

+2h
2n

(r)

Now

(a

2
Y

So
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14n2+oh2 )L/z (4n2+t) -1 (¿n2+gh2\L/2 (¿n2+r) -r/2 < 1 + 2,Æh,

so y2(t) s** 2r+qñ,n + (Bn+8)h2+ rcñ,rn3

2
)

2 where Y0, YI and \ 2 aret

positive constants. Hence, for a1l n e [0, nl and

n = 0, It 2, ,

I cern ( r, -h 2 (c. r. 9)

It may be noted that the same inequality holds fòr
')cerr, ( n, h- ) o

ïr.
(u2n

find

If in (C. f.5) , abover wê drop the term

+ 2h2 + f)y2(t) on the left-hand side

an inequality for ty' (t) I 2 we find,

and proceed to

using the same

argument as that used above,

ty'(t) 12 , {arrr+4h2+1) + 21 1t+4h2) (4n2+Bh2)L/2 (c.2.1)

Consequently r

t v'(t) \\;, 1

2 I 2rtr+¿n2) (¿näeh2)L/2
2

+
arn+2h +1 (a

2n
+2h +1)

< r + 2r (L+4h2) (¿n2+gtr2)L/2 (¿n2+t) -1

< 1+ 2r(L+4h2)(L+zñ,ht (by the
obtained

inequal i ty
in part I)

)
22
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where Y0, YI and y2 are the same constants as those used

in (c.1.9) .

Hence

c*ån ( n, -h2)
s Yg+Yrh+rrh 2 (c.2 "2)2â^ +2h¿n +1



ÀPPENDIX D

In this section sre shall derive two rnequaliLies,
(D.1.1) and (D .2.7) , for D,, (h) , where

D (h) -z
1T

/t""
0

( nr-h 2 )T(h,r)dn (D" r)n 2n

and

T(h, n) {-"(x, rr)cos * u.
0

(D. 2)

I. Multiplying (c.1.1) of
integrating, with respect to

appendix C

rì r from 0

by

to

T(h, n) and

fi e¡e get

lny" (n) Tdn
0

so

+(a
2n

+2h2+I) In y (n)Tdn =
0

IN
0

(t+4h2sin2n)y (¡ )rdn

v'tn)ln - Ir0 0

ry'(n) 
H un + (ar,r+2h2+t)\ Dn (h)

=l
0

n 
1t*4r,2s in2n ) y (n ) Tdn ,

and since y'(0) = y'(n) 0 t

âT
dn

TÍ

f + v (n)dn
0 ân'

Y(n) + + (arn+2h 2+U[ on (h)
0

IN
0

( 1+4h2s in2n ) y (n ) Tdn

I'rom conditions (c.3) and (c.4) of section 2.6, for

each h >

n e [0, r] ,

and when n -

,
a2r
-ã'âno

is a contÍnuous function of rì r where

and from condition (c.6)

T. So

o T
an 0 when n 0
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$,t,^rn+zn2+r) on (h) I
0

1ï
I tn4n2. in2 n) y (n ) ran

t'
0

* ,( n)on
ano

Using Schwarz rs inequality and the notation of
condition (c.7) of section 2.6,

| {,ur"* 2n2+L)Dn (h) 
|

2
) l" y2 ( n) ¿n )L/2 (

0
/nr2an )L/z +
0

+ Í'
0

ð2r
-.=iðn¿

2 dn) L/2
( ln v2 (n ) dn )L/z

0

, 1t*ar,2)Mo (h) + I u^ (tr)lz¿ (D. 1.1)

0
¿

TII. Multiplying (C.1.I) appendix C by ^2dn
and intè9ra-

ting with respect to n from 0 to II we obtain

/ny" (n )
0

a2r.'.-
ðn"

dn +(a +2h 2 +1) /nv (n )

0
4un
ano2n

/n ¡r+ar,2sir,2n)y(nl 4 un

So

d
2 T

1ï

0
/ny' ( n)
0

a3r--ã
ðn'

y'(n)
2

dn+
ðn

+ (arrr+2h2+r) {y (n) H I , /ny' (n )
0

H unÌ

[n Q++n2sin2n)y(n, +0 ðn'
dn (D.2.1)
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From conditions (c.3) and (c.4) of section 2.6, a3r
â

ân"
is a continuous function of n for n e [0, nf and for

(c.4) and (c.O) r wê have

fl = 'rT . So (D. 2-. 1) becomes

êac
ðT

T-n

h h>0 Using conditions

n-0 andwhen0 when

lny' ( n)
0

a3r
-ãdn

dn - (a +2h 2 +1) lonr' tn)f; an2n

ln G+an2sin2dy(n)
0

a2r,

-dn
dn

fnËegrating by parts agaÍn ,

d
3

T
,IT

a4r:?dn
- Y(n) ^3dn

+ /nv ( n)
0

dn
0

(arn+2h2+1) iy'(n)r
1I

I
0

'tï y"(n)ranÌ
0

/n (r*¿n 2 

"in2 
n) y (n )

0

a2t dn ,
;;ã

and using conditions (c.4) and (c.6)

I TT a4rF +2h2+L) In v', (n ) Tdny(n) dn+(a 2n0 0

[' g*an2s in2n ) y (n )
0

d
2

T

-dn
dn ,

tô

+2h 2 +1) I,
0

(a +2h 2 cos2n)y(n)Tdn2n

ln ¡t++n2s in2 n) y (n )
0

/nv (n )
0

a4r
:-
dn

dn

-[d 2n

a2r---ã
ð rlo

dn

(D.2 .2)
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and using (D.1) , we get

- (arn+2h2*tl {}ur'Dn (h) +2h2 /rcos2ny (n ) rdn}

/n 1rnan2"
0

]"N
2 ¡2^

n)y(n) + dn
ðn,

/ny (n )
0

a4r

;;õ
dn

Then

- ]tarrr+2h'*t) 
to,, (n) + (arn+2h2+r ) t{ QnZ +t) Dn (h )

2h 2
IN
0

cos2 rty ( n) ta nÌ

/n 1r+an2.ir,2n) y (n)
0

a2t

-ðn-
dn - ln v(n)

0

a4r

;Ã
dn I

or

$,larn+zn2*t )
2o (h) = - $tarn+2hz+t) (2h2nt¡ on 1r,¡ +n

+ znz (arn+zhz+L) In cos2ny(n)Tdn +
0

+ IN
0

(I+4h2sír,2n)y (n) a2r.....-
ðnz

dn /nv(n)
0

a4r
-Edn

dn

(D.2.3)

Next mult iply (C. I . 1) of appendix C by Tcos2n and

from0to'rr:integrate wÍth respect to n
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Ín cos2ny' ¡n) rd n i (a
2n

+2h2+I) /rcos2 ny (n) rdn
0 0

f
0

(1+4h2" in2n ) cos2ny (n ) rdn (D " 2.  ',)

Substituting for
(D.2 .3) , f rom (D .2 . 4t ,

( aro+2h

$re obtain

2+1) ln cos2n y ( n) Td n , 1n
0

1I

'*t)',
1T

7,
2 2

2(arn+2h (h) ( a^ +2h
¿n

+1) (2h +1)D (h) +n n

+ 2h2 /ncos2ny,,(n)Tdr

2h2

0

[' g+an2s in2n ) cos2ny (n ) Tdn
0

/n 1r+anzs ir,2
0

n)y(nl * un
an-

+ fnv(n)
0

*u.dn

(D. 2.5)

Now

il
'IT

I
0

cos2ny" (n)Tdn = y' (n)cos2nT
0

I-Ty'(n ) (cos2n H - 2s in2nr) dn
0

-y(n) (cos2n ffi -zrinznt) [ +Jrr lg

+ /ny(n) (cos2n + - 4sin2n$ - 4cos2¡t)dn
o- àn' dn

lnvtn) (cos2ni.:T' 4sin2r¡ # - 4cos2nr)dn
b - ân'

So (D.2.5) becomes
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[r,,rn*zn2*r) 
2o,, 

{t,) = jtur,r* zh2*t) en2*t)Dn (h) +

+ 2h2 ín y (o) cos2n 4 un -o ðn'

th2 I^' v rn ) s in2n H un gr,2 /^nv (n ) cos2n rdn
0 "'¡ 0

2h 2 I
0

T)t
( l+4h-s in'rì) y (n ) cos2ntdn -

1T

z

l'e*qn2sin2
0

n)y(nl 4 an
An_

'*t) o,, (n)

+ IN
0

v(n) a4r

-an
dn

+2h 2 +1) (2ha 2n

IN
0

¡t*an2"in2 n) y (n) ¿2r

-,dn
dn -

th2 [ny(n)sin2¡ âT
ãî dn

0

zn2 IN
0

1s*4t 2= in2 n) y ( n) cos2 nÎd n +

+ /ny(n) 4 un
0 ðn=

(D.2.6)

Now applying inequaliÈy (D.1.1) , of part I, Schwarzls

inequality and condition (c.l) of section 2.6 to (D"2.6), vrre

get

[,larn+zn2*t)2 | on (h) 
I

I
ñ,

( 2h 2+r) [ (].+4h 2
) l,t (h) +M (h)l +

0 2

+ (6h 2 +1 (
¡1I

J

2 (n)dn) t/2 (ln
0

r#rt

¿2r
) 

2an 
)r/z +v 2

0

+ eb2( In ,t(n) aüL/2 ( In00

ôn

an¡L/2 +
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+2h 2
5+ anz) ( f ,'(il aür/2( I' r2dn )L/z +

0

(n)dn)

0

+ fn
0

v
2 L/2

IN
0 '#''dn) L/2

Hence

(arn+2hznt) 2In,, (h) 
I

+ /2 (0r,2*r ) M2 $ ) + a/2 nzurlr:t

+ zñn21s*+r,2)Mo (h) + ,fzun :n) t

+

+

tÂ

(arn+zhz+Ðzlon (h) 
I

+ z,D, (¿r,2*t)M2(h) + ,trzun$)

(h) +

(D "2.7)




