
NOTE TO USERS

This reproduction is the best copy available.

Scheduling Advance Reservations with Priorities

in Grid Computing Systems

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the degree of

MASTER OF SCIENCE

Department of EIectrical and Cornputer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

O Rui Min, 200 1

National Library BiMiothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliogtaphk Services services bibliographiques
395 Weuington Street 39s me WaMingkm
OnawaON K l A O W OitaweON KlAûN4
canada Canada

The author has granted a non-
exclusive licence aîlowing the
National Lhraty of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or othewise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant a la
Bibliothèque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substanîie1s
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES
***+*

COPYRIGHT PERMISSION

SCHEDULING ADVANCE RESERVATIONS WïïH PRIORIIIlES IN GRID COMPUTING
SYSTEMS

RUI MIN

A Thesis/Practicum submittd to the Faculty of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

of

MASTER OF SCIENCE

RUI MIN O 2001

Permission bas been granted to the Library of the University of Manitoba to lend or sell copia of
this thesis/practicum, to the National Library of Canada to microfilm thW thesis and to lend or sel1
copies of the film, and to Univeisity Microfilms Inc. to publish an abstract of thb thesis/practicum.

This reproduction or copy of thh t h a h bas k e n made mdable by authority of the eopynght
owner solely for the purpose of private study and research, and may only ôe reprodud and

copied as permitted by copyright laws or with espress written authorïzation from the copyright
owner.

1 hereby declare that 1 am the soie author of this thesis.

1 authorize the University of Manitoba to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

Rui Min

I further authorize the University of Manitoba to reproduce this thesis by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Rui Min

Abstract

Grid computing systems utilize distriiutively owned and geographically dispersed

resources for providing a wide variety of services for various applications. One of the key

considerations in Grid computing systems is resource management with quality of service

constraints. The quality of service conshaints dictate that submitted tasks should be

completed by the Grïd in a timely fashion while delivering at Least a certain level of

service for the duration of execution- Because the Gnd is a highly "dynamic" system due

to the arriva1 and departure of tasks and resources, it is necessary to perform advance

reservations of resources to ensure their availability, and to meet the requirements of the

different tasks.

This thesis introduces two new scheduling algorithnis for advance reservations including

CO-reservations, namely. Reservution Scheduler- with Priorith and Benefit Functions

(RSPB) and Co-Reservarion Scheduler with Priorities und Benefit Functions (Co-RSPB).

The algorithms consider the relative priorities of various reservation requests while

scheduling reservations. The benefit fiinction is used to quanti& the "profit" for the client

in order to remove the re-negotiation overhead in case of resource scarcity. Simulations

are perfonned to compare proposed algorithrns with an existing approach or with some

comparison algonthms developed as basic comparison line in this thesis. The results

indicate that the proposed algotithms can improve the overall the performance by

satis*ng larger number of reservation requests.

Acknowledgements

1 would like to express m y sincere gratitude to Dr. M. Maheswaran for his valuable

guidance, encouragement, and his patience throughout the research project. 1 have greatly

benefited fiom his expertise and constant help and advice, without which this thesis

would not have been possible. I am also thanf i l to the thesis cornmittee members, Dr. R.

McLeod and Dr. A. Rueda, for being on my thesis cornmittee. Also, I would like to thank

Dr. R. McLeod for his valuable suggestions and help throughout the course of this thesis..

I express my acknowledgernent to Kwnaran Subramoniam for carefiilly reading early

draft of this thesis and giving a number of usefiil suggestions.

1 am deeply indebted to my parents for their support and sacrifices without which 1

certainly would not have reached where 1 have. I'd especially like to thank my husband,

Ming-Dong, for his love, encouragement, and support. Finally, 1 express my hearty

gratitude to my son Jesse and my daughter Cathy for their patience, understanding and

for being constant source of inspiration.

Table of Contents

1 t i ... 1

. . .. 1 -1 Preluninary Remarks 1

................................ 1.2 What is Grid 1

.................... .. 1.3 QoS Requirements in Gnd ... 2

1.4 Basic Concepts in QoS .. 3

... 1 -5 Motivation and Scope of Thesis ..8

.. 1 -6 S tnicture of Thesis II

2 Related Work .. 12

. . .. 2.1 Preliminary Remarks 12

2.2 Advance Reservations for Communication Network ... 12

2.3 Advance Reservations for Grid Computing 1 4

2.3.1 Scheduling Advance Reservations on Single Machine - 1 4

2.3.2 Scheduling Advance Reservations on Multiple Machines (Co.reservation) .. 15

2.4 QoS Supported CPU Scheduler .. 16

.. 2.5 Benefit Function Related Projects 17

... 3 S ystem Mode1 .. 18

... 3.1 Preliminary Remarks 18

.. 3 -2 Grid Resource Management Architecture -18

.. 3.3 Schedule Reservations 22

3.4 About the Time Slot Table 23

iii

.......................... . 4 RSPB: Reservation Scheduler with Pnonties and Benefit Functïons. 27

... 4.1 Preliminary Rernarks -27

4.2 Assumptions27

... 4.3 Notations and Mathematical Model ..28

4.4 Reservation Scheduling with Priorities and Benefit Functions 29

.. 4.5 Simulation Results and Discussion32

5 . Co-RSPB: Co-Reservatïon Scheduler with Priorities and Benefit Functions 39

Prelirninary Remarks 39

... Notations and Mathematical Mode1 - A 0

Co-Reservation Scheduling with Priorities and Benefit Functions 42

Cornparison Algorithms ...~............ ..46

Complexity Analysis 51

Simuf ation Results and Discussion 3 3

6 . Conclusions and Future Work62

... Acronyrns 65

... References -67

List of Figures

Figure 1.1 Some examples of benefit h c t i o n shape ... 7

Figure 3 -1 A resource management architecture for the Gnd 21

Figure 3.2 An example of a time slot table .. 24

Figure 3.3 Functions of a time slot table manager. .. 26

Figure 4.1 Outline of the dynamic reservation scheduler29

Figure 4.2 A priority and benefit fûnction based scheduling algorithm for indivisible

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

......,,... reservations. -30

Number of rejections versus nurnber of reques ts. 34

Number of rejections versus number of machines ... 34

Number of rejections versus request duration -35

The average of Reserved CPU versus the average of requested CPU 35

Sum of rejected prionties versus number of rejections 37

... Outline of Co-RSPB scheduling 42

Function floatscheduling for Co-RSPB 45

Function fixscheduling for Co-RSPB ,.. .. 46

Outline of Co-RSBF scheduling ... 47

Function floatscheduling for Co-RSBF ... 48

Function fixScheduling for Co-RSBF .. 48

Outline of Co-RSBFR scheduling 49

.. Figure 5.8 Function refineScheduling for Co-RSBFR 50

Figure 5.9 (a)S ystem benefit and (b) number of rejections versus number of requests.SS

...... Figure 5.1 0 (a) S ystem benefit (6) number of rejections versus number of machines 56

Figure 5.1 1 (a) S ystem benefit (b) number of rejections versus requested duration 57

Figure 5.12 (a)System benefit @) number of rejections versus percentage of floating

requests .. 59

Figure 5.13 (a) S ystem benefit (b)number of rejections versus scope of prionty 60

1.1 Preliminary Remarks

The rapid advancements in microprocasor technologies and computer communications have

facilitated the emergence of a new class of network-based applications. These applications are

different fiom the current ubiquitous WWW and WWW-based applications. They require

functionality that extends beyond the coordinated use of the network to enwmpass end systems,

data repo sitories, sensors, visudization devices, and advanced human computer interfaces. The

current Internet is not geared towards supporting such applications. Therefore, researchers have

proposed a generalized, large-scale computing and data handling infiastructure called the

Computationaf Grid (referred to as Grid in the following context) roK99a, Fos99, and JoG99J.

1.2 What is Grid

The "Grid" in dictionaries has some concept of "network" or cbnesh''. The term "Grid" for

network computing is analogous to the power grid. A power grid links source of electrical power

together, and provides for widespread access to power with certain services. Similady, a

"Computational Grid" is "a hardware and software infiastructure that provides dependable,

consistent, pervasive, and inexpensive access to high-end computational capabilities" FoK99aI.

In other words, a "Grid" is an internet sized network computing systern with millions of

machines distributed across multiple organizations and administrative domains to provide

dependable, consistent, pervasive, and cost-effective access to diverse services. To achieve this

goal, a Grid needs to provide several seMces inciuding: resource description and discovery

mechanisms, reliable multi-party communications, resource management with quality of service

(QoS), access control, data location, etc- Wan991-

Five major application classes are identified for computational Grids @fan99]:

Distributed supercomputing;

High-throughput computing;

On-demand computing;

Data-intensive computing;

Collaborative computing.

Although the tremendous advancements in cornputer communications and distri'buted computing

have enabled constnicting and experîmenting with several Gnd prototypes (such as Globus

[FoK97], Legion [Legion], and PVM PVM] etc.) and experiments based on these prototypes,

the Grid technology is very much in its infancy. Several key issues need to be investigated before

the Grid technology can see widespread deployment. Some of these issues include developing:

Efficient mechanisms for location independent use of distributed wmponents;

Efficient md highly scalable resource discovery schemes;

Mechanisms for efficient resowce allocation and reservation;

Quality of service brokering.

1.3 QoS Requirements in Grid

The Grid is a highly dynamic system. The components of the Grid that support the services are

referred to as the resource providers. Similady, the components of a Grid that use the services

for problem solving are called resource consumers. in a Grid system, the resource providers are

likely to be owned and administered by different organizations and possibly governeci by

different local policies. This means the resource providers will be committing varying amounts

of the resources to provide the services to the Gnd dependïng on the local policy and local

demand for the resources. The resource consumers can also belong to different users with

varying Ievels of subscription and pnvilegw. With traditional resource allocation mechanisms,

the fluctuations in the supply and demand situation in a Grid will impact the level of service

delivered to the resource consumers. Depending on the criticaiity of the applications associated

with a resource consumer, this may not be acceptable. To ensure that the sustained level of

service delivered to an application is within its requuements, the application's quam of service

(QoS) requirernents should be considered while allocating the resources. The mechanisms

involved in implementing the QoS requirements of an application Vary with the specialization of

the Grid. For exarnple, in a hi&-throughput computational Grid, an application may be

implemented by allocating time on a high-performance machine- Whereas, in a collaborative

computing Grid, a session rnight need the CO-allocation of several resources. h such a situation,

the QoS requirernents of an application should be xnapped ont0 several resources. Due to the

uncertainties of resource availability, it is necessary to support advance reservations to provide

QoS guarantees in a Grid system.

1.4 Basic Concepts in QoS

Quality of service (QoS) represents the set of those quantitative and qualitative characteristics

(referred to as QoS parameters) of a distributeci system necessary to achieve the required

functionality of an application. These QoS parameters are service specific. Different applications

may have different subsets of QoS parameters with various values required. For example,

bandwidth, delay, throughput, jitter, etc. may be the relevant QoS parameters for a

communication service. Whereas, CPU times and deadlines rnay be the relevant QoS parameters

for an application in a computational Grid. For some applications, these parameters may be

negotiable. For this kïnd of applications, the user may receive a certain degree of benefit if the

system provides a certain level of service measured by required subsets of QoS parameters

[ChS98] FoK951.

QoS guarantees concems user's benefit tt signifies that the QoS received by the user would not

fluctuate with changes in resource usage by other applications and with changes in system state,

such as servers coming on-line and going off-line. QoS parantees are generally grouped into

classes such as hard QoS, soft QoS and best-efort QoS. Hard QoS signifies that the user will

receive required QoS every instance. Sofi QoS signifies that the user will receive required QoS

within a certain specified fraction of the instances. Best-effort QoS signifies that the user will not

receive any guaranteed QoS [ChS98].

To provide an increased expectation of promised QoS guarantees while allocating resources,

resewation concepts were frrst introduced in the area of communication network QoS [ZhD93].

There are two modes of reservation: imrnediate reservations and advance reservations.

lmrnediate reservations are also referred to as aZlocation where reserved resources are allocated

immediately. Advance reservations resource reservations in advance and the resources are used

in the future. This increases the expectation that resources c m be allocated when demandai.

Without advance reservationr, the user of the system may have more chance to encounter

degraded senice or even rejections.

In practice, rnany applications rnay have very large resource requirements and require multiple

resources sfinultaneously. For example, in a collaborative Grid, an application may require

resources fiom multiple cornputers and networks to execute- The mechanism that de& with

allocating multiple resources simultaneously is called CO-allocation. Advance reservation of

multiple resources for a specific duration is referred to as CO-reseryation. Another fiequently

used mechanism in QoS-driven resource management system (RMS) is admission contml.

Admission control ensures that dl applications accepted by the system will get guaranteed QoS

service by adrnitting an application only if there are sufficient resources in the system [ChS98].

An admission control process c m make a decision eiaer in a simple yes-or-no form or a more

sophisticateci form that allows negotiarion between the user and the system. A negotiutron is a

process of making an agreement between the user and the system about decreasing the value of a

set of QoS parameters. The system tries to maximumings benefits to the user via the negotiation,

therefore, making the system work in a most beneficial manner- The decrease in the level of

service that is agreed upon during negotiation is refmed to as gracefUI degradation and it is

caused by scarcity of system resources [ChS98] voK95].

Negotiation is usually performed in following way: the system provides several QoS degradation

options to the user, such as decreasing the resefvation value for resources or delaying the starting

time for advance reservations. The user selects an option that can give the user the most benefit,

then, informs the system to make an agreement. Once the user gets a c o ~ a t i o n nom the

systern, a contract between the system and the user is assigned. Negotiation mechanism allows

the system to provide more efficient service for more users under QoS constraints. This

negotiarion process adds considerable overhead to the system due to multiple messages beuig

transmitted between the system and the user-

Another important QoS concept used in this thesis is a benefit hction. Benefit bct ions are an

abstractions developed to mode1 an application's QoS requirements and preferences in the

cornrnunication network area. "The benefit hnction is a multidirnensional graph specifjhg the

benefit that the user receives if the system provides a certain level ofQoS- The dimensions of the

benefit function correspond to QoS rnetncs of interest to the application. The benefit fùnction is

especially useful for facilitating gracefül degradation between the application and the system."

EChS981. If the system is not able to provide desüed levels of QoS for an application due to

resource scarcity, the benefit function can then be used to make intelligent decisions without

asking the user regarding which QoS metrics to degrade, and by how much. Thus, reducing the

re-negotiation overhead.

Figure 1.1 shows some examples of beilefit fùnctions for CPU resewation in a Grid system.

Although, in these examples, benefit fùnctions are used only for quantifjhg the CPU

requirements and only have two dimensions, it may be used for other resources as well as the

time constraints and can be extended to multiple dimensions to support multiple QoS parameters.

benefit

100% CPU

(4
1w/o CPU

(a

Figure 1 -1 : Some examples of benef it function shape.

Figure 1.1 (a) shows a benefi' fhction where the appIication does not gain any benefit if the

system daes not reserve at least a certain fiaction of the CPU. Figures l.l(b), l.l(c), and l.l(d)

show cases where the application gains a reduced arnount of benefit even if the system reserves

less arnount of CPU than what is ideaily required. From the different benefit hctions in Figure

1.1, it c m be noted that some requests have "hard" QoS requirements and others have "soff' QoS

requirements. The requests with soft QoS requirements get some benefit even if the system does

not reserve the desired CPU percentage for them, although, the amount of benefit gained will be

lesser than a amount of benefit gained if the system would have reserved the desired CPU

percentage for them.

In case of resource scarcity, the RMS requires a way to evaluate the relative importance of

multiple, different applications which compete for the resource. The pnority can be used to

represents the application's importance. Depending on the different design objective, the priority

can be determined by different aspects. For example, in a commercial system, the pnority can be

determined by the cost that the user is wiiling to pay for a service. la a military system, the

priori@ cm be deterrnïned by the importance of the user or of the application [ChS98].

1.5 Motivation and Scope of the Thesis

As discussed above, Gnd computing is an emerging paradigm for next generation distributeci

computing. The Grid is a highly dynamic environment with on-line and off-line servers, and with

continuously varying demand fiom the clients. In such an environment, it is necessary to

consider QoS requirements of different clients to ensure that the resources are used in the most

beneficial manner. Due to the uncertainties of resource availability in a dynamic system such as

the Grid, it is necessary to support advance reservations to provide QoS guarantees.

In practice, different design objectives of a Grid system leads to different r e q u k e n t s of a

reservation algorithm. For exarnple, in a high-throughput cornputational Gnd, an application may

request to schedule reservations on a single hi&-performance machine. Whereas, in a

collaborative computing Grid, an application may request to schedule reservations on multiple

machines simultaneously (sometimes some machines may be directly specified) in order to

guarantee al1 required resources available while demanding. Therefore, it is necessary to design

different algorithms supporting advance reservations for different purposes.

This thesis presents an overall resource management architecture for a Grid environment and

proposes two algorithms for scheduling advance reservations on resources. Resewatior:

Scheduler with Priorities and Benefit Functions (RSPB) schedules reservations on a single

machine. Co-Reservation Scheduler with Priorities and Benefit Functions (Co-RSPB) schedules

reservations on multiple resources simultaneously. The two algorithms schedule resmations

while considering the relative priorities of the various reservation requests. Although, only CPU

resources are considered here, this approach may be generalized to other resources such as

network and storage. Also, in this thesis, immediate reservations are modeled as advance

reservations with current time as the start time and a predefined length for the duration. This

allows us to uniS. advance and immediate reservations.

In RSPB and Co-RSPB, each reservation request has an associated benefit fùnction that

quantifies the 'profit" accrued by the client, by securïng the resource at the requested level.

When the client is willing to negotiate for lower service levels, it could indicate this by providing

a benefit function that shows a reduced but positive benefit for tower resource levels. This

facility provided by the benefit fhctions removes the need for negotiations when there is a

resource scarcity.

Furtherrnore, in Co-RSPB, requests for fixed machine and floating machine are also considered

in order to satisQ some applications with special resource requirements. Requests for fixed

machines require that, only specific machines can be mapped to each sub-request of an

application. Requests for floating machines have more flexibitity' so that al1 sub-requests of an

application cm be mapped to any machines in the system if the machine can satisfjr the sub-

request's QoS requirement.

Both RSPB and Co-RSPB can be implemented on top of a CPU scheduler such as the Dynamic

S'op Real Tirne (DSRT) system rChN97, DSRT] or a QoS enhanced operating system kemel such

as QLinux [GoG96, QLinua.

The proposed algorithm RSPB is cornpareci with an existing approach. The simulation results

indicate that the RSPB can improve the overall the performance by satisfjring a larger nurnber of

reservation reques ts.

Because there is no open literature available to compare with Co-RSPB, we also developed two

cornparison algonthms Co-resewation Scheduler with Best Fit scheme (Co-RSBF) and Co-

reservation scheduler with Best Fit and Refne scheme (Co-RSBFR) as a base luie to see the

performance of Co-RSPB. In order to evaluate the performance of proposed aigonthms in terms

of QoS, a system benefit calculation mode1 is developed. The simulation results indicate that Co-

RSPB has a very good performance by satisfjing larger number of reservation request.

1.6 Structure of the Thesis

In the following chapter, related work that appeared in the open literature is discussed. An

architecture for a Grid resource management system (RMS) and how the proposed scheduling

algorithms fit into the architecture is examineci in chapter 3. The reservation scheduler algorithm

RSPB is presented in chapter 4. Using simulation studies, RSPB is comparai with an existing

resource reservation algorithm and simulation results are aiso discussed in this chapter. in

chapter 5, CO-reservation scheduler aigorithm Co-RSPB and two cornparison aigoritbms Co-

RSBF, Co-RSBFR is presented, The complexity of running time of these three algorithms is

analyzed, The simulation results and performance for three aigorithms are also discussed.

Finally, chapter 6 summaries the thesis and points out directions for future work.

2.1 Preliminary Remarks

A considerable arnount of literature has been emerged on supportïng advance reservations in the

context of network QoS that involves banhvidth guarantees. Network QoS can be given by using

a well-defined QoS mode1 and a setup protocol such as RSVP [ZhD933. However, the concept of

advance reservations is relatively new in the realm of Gnd computing. There are very few

publications on this topic- This chapter will give a bnef literature review on these two topics and

other topics directly relevant to this thesis.

2.2 Advance Reservations for Communication Networks

Foster et al. [FoK99b] proposes A Globus Architecture for Reservation and Allocation (GARA)

that enables CO-reservation and CO-allocation of heterogeneous resources (such as process, flow,

disk obj ect, memory object, etc.) for end-to-end QoS guarantees in emerging, network-based

applications. It also addresses issues such as dynamic discovery and independently controlled

and administered resources. GAEU treats both reservations and computational elements as first

class entities, allowing them to be created, monitored, and managed independently and

uniformly. A prototype of GARA implernentation is described and performance results are

provided to quanti@ the costs of the techniques.

Schelen el al. [ScP98] describes a . architecture supporting end-to-end resource resewations

through agents. An agent in each domain in the nebvork performs admission control for

immediate and advance reservations. The architecture allows immediate and advance

reservations to share network resource without pre-partitioning. Information about advance

reservations is used to perform admission control for immediate reservations. In other words,

information delivered fiom advance reservations help prevent immediate resewations fiom being

rejected or even preempted. Simulation results are provided to show the effects of providing

advance reservations with this model and the cost in terrns of resource utilization, the probability

of rejecting and preempting an immediate resewation. Schelen et al. [ScN99] provides a

prototype implementation of this model and focuses on obtainïng performance measures for

admission control within a single link-state routing domain.

Berson et al. [BeL98] introduces a server-based architecture supporting advance resewations. It

is domain-based, and it allows simple fùnctioning with inter-domain routing. in this architecture,

there is no reservation or multicast routing state needed in the routers until the reservation

becomes active. It allows applications to request advance reservations without the application

nuining during the length of the advance reservations.

Ferrari et al. [FeG95] discusses the requirements of the clients of an advance reservation service,

and distributed design of a multi-party, real-time communication scheme for such a service.

Simulation results are provided to show the performance and some of the properties of these

mechanisms.

2.3 Advance Reservations for Giid Cornputing

Depending on different design objectives of a computational Grid, a reservation algorithm can be

deveIoped to support scheduling reservations either on single machine or on multiple machines.

2.3.1 Scheduling Advance Resenratr'ons on Single Machine

Garimella [Ga1991 implements an Advance Resewations Semer (ARS) that works in conjunction

with the DSRT [ChN97] to reserve CPU resources in advance- In ARS, the client needs to

speci@ sorne QoS parameters such as the percentage of CPU required as weil as start time and

duration. Once the reservation request is admitted, the reserved resources will be available for

the client rifier the start time for the duration at the predefined percentage. However, in practice,

most applications have QoS requirements that are negotiable. Because ARS does not support re-

negotiations, it leads to higher number of rejected reservation requests.

The Resource Broker (RB) proposed in [KiNOO] integrates with the ARS presented in [Gar99].

The RB improves ARS to give a fast and constant response by using a CPU resource broker

mode1 with a new admission control and also improves ARS by providing multiple negotiation

options for the cIients. However, the occurrence of re-negotiation adds considerable overhead to

the system. Further, in order to allocate a resource to multiple competing applications, the

admission control algorithm requires a way to evaluate the relative importance of the different

applications. in this way, the admission controlIer can make decisions to reject less important

applications first to ensure a group of clients get the most benefit.

2.3.2 Scheduling Advance Resen/atl~m on Muîtiple M'hines (Co=mmmation)

Smith et al. [SmFOO] proposes and evaluates several algorithms for supporting advance

reservations in supercornputer scheduling systems. These algorithms improve traditional

scheduling algorithrns by unifjing scheduling traditionai tasks fiom job queues with the

reservation requests. These advance reservations allow users to request multiple resowces

simultaneously fiom scheduling systems at specific times. However, [SmFOO] allocates the '%me

slots" exclusively, Le., the resources are not reserved in a shared fashion by multiple clients for

the same duration. The applications are assumed to operate on a %est effort" basis and the

reservation requests are assumed to have different priority than the applications. These

differences in priorities are considered while the reservations and applications are scheduled by

the system. Fixing machine scheduling is not supported.

2.4 QoS Supported CPU Scheduler

The two advance reservation algorithms developed in this project are based on the assumption

that the local management service support immediate reservations. With traditional general

purpose operating systems such as Windows NT and Unix which schedule processes based on

the Time Sharing (TS) pnnciple, the contracted advance resmations cannot be paranteeci when

they are allocated to the local resource. Therefore, a CPU scheduler supporting immediate

reservations is needed.

The Dynarnic Sofi Real T h e (DSRT) System based on research in [ChN97] is a user-level

scheduler, which can provide processor CPU guarantees to soft real time perïodic and aperiodic

tasks. The DSRT system is built on various platform including SunOS 5.7, SGI IR[X 6.5, Linux

(RedHat 6.2), and Windows NT. It provides hncüons including protection among red-thne (RT)

processes, fairness among RT and non-RT processes, rate monotonie scheduling, and a fix to the

U N E security problem.

A QoS enhanced Linux Kentel for Multimedia Computing (QLùiux) is a replacement of Linux

2.2.x kemel with the ability to provide quality of service guarantees. It includes the following

features :

Hierarchical Start Time Fair Queuing (H - S F Q) CPU scheduler;

Hierar-chical Start T h e Fair Queuing (H - S F Q) network packet scheduler;

Las> Receiver Pocessing (LRP) network subs ystem;

Cello disk scheduling algorithm [not stable yet].

When a QLinux is enabled, any selected combination of these features will replace the standard

features/schedulers available in Linux.

The H-SFQ CPU scheduler is based on research in [GoG96]. Goya1 et al. [GoG96] presents a

Start-time Fair Queuing (SFQ) algorithm for operating system supporting variety of hard and

soft reai-time as well as best effort applications in a multimedia-computing environment. SFQ

enables "hierarchical partitioning of CPU bandwidth, in which an operating system partitions the

CPU bandwidth among various application classes, and each application class, in tum, partitions

its allocation (potentially using a different scheduling algorith) among its sub-classes or

applications."

2.5 Benefit Functions in Related Projects

ERDoS [ChS98] desmies "the End-to-End Resource Management of Distn'buted Systems QoS

Architecture, which enables adaptive, end-to-end, scalable resource management of dismbuted

systems. The purpose of the architecture is to delineate a common application programmer's

interface (APT) between and within the resource management layers so work by multiple

research groups can be integrated into a common product." It provides domain-specific

application (such as command and control, multimedia, and medicai domains etc.) QoS support.

ERDoS employs a Hierarchical System Mode1 to deal with heterogeneous resowce and system

scalable problem. QoS level for each application is effected depending on scheduhg policy

when the state of system changes. Benefit fùnctions are used to communicate user QoS

preferences of an application to the resource manager. In case of failure or scarcity of resource,

the resource manager uses this information to gracefùlly degrade application QoS, therefore,

minimize the adverse effect on each application user.

Maheswaran [Mal1991 presents a dynamic and centralized scheduling algorithm for

computational resources in a network computing system. The algorithms takes into account

applications' QoS requirements when scheduling. The level of service received by each

application is quantified by a benefit function defined for that application. The objective of the

algorithm is maxirnizing the total benefit provided to the applications. Simulation results are

presented to evaluate the performance of the algorithm.

3.1 Preliminary Rernarks

The Grid Resozwce Management System (RMS) in this thesis is designed to support advance

reservations and immediately allocations of resources, which is dedicated to the systm. In order

to provide QoS guarantees, al1 applications coming to Grid for service with QoS requirements

are required to reserve resources before allocation. Appiications requesting best-effort service are

not required to reserve resource in advance. The reservations c m be either immediate or advance

reservations. For each application requesting QoS service, the user needs to s p i S . following

parameters:

Machine type on which the user desires to reserve resourçe;

The starting time. [t can be either current time for immediate reservation or future time for

advance reservations;

The duration for the application execution;

Preferred priority according to the importance of the application or the cost level which the

user is willing to pay; and

Benefit hc t ion shape which indicates the user's preference about QoS degradation in case

of resource scarcity.

3.2 A Grid Resource Management Architecture

The resource management architecture for the Grid is shown in Figure 3.1. The architecture

shows the components involved in advanceci reserving and immediateiy allocating resources for

a user request.

In this architecture, when a user logs ont0 the Grid, the Gnd launches a Client. The Client

authenticates the user. If the application request best-effort service, the application information

service (AIS) uses historicai information and leaming algorithms to predict the resource

requirements of an application's ninning. For applications with hard or soft QoS requirements,

the resource requirements are specified by the user during application submitting stage. The

Client then interacts with the QoS broker to implement the applications that are submitted to it.

The QoS broker provides a virtual resource to the Client with the desired QoS attributes. This

virtual resource will aiso provide feedback to the Client if the capability of the vimial resource

drops sufficiently to affect the QoS attributes.

Depending on the extent of the Grid, there will be thousands of QoS brokers. When a Client

needs service it will connect to a QoS broker that is in its neighborhood. Once the Client

connects to the QoS broker, for each application, it submits the resource requirements dong with

the desired QoS constraints to the QoS broker. By defauit, the application is provided the best-

effort service. Based on the level of subscription, the QoS broker will determine whether the

level of s e ~ c e requested by the Client is valid. This preliminary admission control will preclude

any Client fiom monopolizing the resources.

Once the QoS broker receives a valid request for resource allocation or reservation, it contacts

the admission controllers (AC) to implernent it. The set of ACs contacted by a QoS broker is

detemined by the resource discovery agent. The resource discovery agent could be ùnplemented

in several ways. Several alternative approaches for scalable, high-performance resource

discovery agents for a Gnd system are evaluated in WaKOOa, MaKOOb, and MahOl]. The trade-

off of using general-purpose resource discovery/naming systems versus Grid specialized systms

are discussed in WaKOOa, MaKOOb, and MahO LI. When there is multiple ACs that are willuig to

schedule allocations and resewations towards a resource request, the QoS broker can use

different strategies in handling such a situation. One strategy would be to rank the resource

offerings and pass them ont0 the Client so that the Client could choose one to implement the

application. Another strategy is to select one resource offking using some heuristics and Client

supplied information. Yet another strategy would be to poil the eligible ACs in sequence and

select an offering based on sorne criteria

Once the QoS broker finds an agreeable resource reservation fiom an AC, it forms a QoS

contract with the AC. Because the resources may not exclusiveIy be under the Grid control (e.g.,

the resources may be used by owners without the Grids intexvention), therefore the QoS contract

formed between QoS broker and AC may be violateci. Therefore, the QoS broker should monitor

for any possible violations of the contracts and initiate renegotiations with the Client and the

admission controller to rernedy them.

The QoS contract violation could be caused by two reasons: (a) fluctuations in resource

availability and (b) variation in the resource requirement of the application. The resource

management architecture presented here decouples the contract into two stages. This enables

more robust scheduling environments because when an application overmns the expected

resource requirement, the Client needs to renegotiate the contract with the QoS broker. A rogue

application would not affect the resource reservations of the other applications.

User 1

information

>
service

u03
resource (QOS) allocation/ %@k%&otiiktion

information/modify

resource allocation/ I I resource requesW
information query/negotiation

Resource
d iscove ry/

CO-allocation I

Figure 3.1 : A resource management architecture for the Grid.

resource request resource request

/ Time dot table '+: Admission
- \ r 3

manager + controller
Admission
controller

i

allocation enforcement allocation enforcement
v ' Resource '

scheduler
\ 2

A A
/ querylinfo. j

Resou rce J

information controwdata
<

control/data

L service J udate 1 v
m m =

Resource Information Service (RIS) provides information of resources in ternis of their load,

operating system version, installed software, availability, etc- the contents of information service

are updated by automated discovery and publication mechanisms. The information of a RIS is

queried by resource discovery agent to locate resources with desired QoS characteristics.

3.3 Scheduling Resewations

The admission Controller (AC) has two responsïbilities:

Making decisions about accepting an application's request using proposed algorithm.

Applications requesting the best-effort service are always accepted by the AC;

Enforcing allocation of reserved resources when an allocation request is received.

When an AC receives a reservation request fiom a QoS broker, the AC scans the t h e slot tables

in the required time duration for al1 machines which are controlled by the connecteci resource

scheduler, If the QoS requirements of the application (either hard QoS requirements or sofi QoS

requirernents) can be satisfied, the AC updates the time dot tables for selected machines with the

arnount of prornised resources and responds the user using the unique user ID. The value of the

pararneter that has sofi QoS requirements c m be obtained from a user's preferred benefit

function shape and the parameter value that can give the highest benefit to the user. Once the

application's request is accepted by the AC, a contract about the application's QoS guarantees

between the user and the system is assigned. This procedure only marks the time slot tables for

reservations. The reserved resource is not effective until an allocation request is received. If the

request is rejected, the QoS broker will try to contact with other Acs provideci by the resource

discovery agent or re-negotiate with the user until the requested resource is found or the user

gives up the reservation.

The time slot table is updated every time interval, which is qua1 to a bime dot, in order to keep

the first slot always being the current time slot. When the stm tùne of an application is in the

first slot in the time slot table, the system is ready for the application's execution using reserved

resources. Upon usage request's amval, the AC sends allocation requests to the resource

scheduler. The resource scheduler arranges the resources for an application's execution. For the

application that is still ninning at the end of the requested duration, the system will provide a

best-effort service to it. If the application teminates before the end of the requested duration, the

user can claim these reserved resources for other application's execution without additionai

reservation using the same user ID. Or the resources can be released autornatically by the systm.

The user also can modie or cancel the reservation before resources allocation occurs. In the case

of QoS degradation or reservation cancellation, the AC modifies the corresponding t h e slot

tables and cancels the QoS contract if reservation cmcellation is required. On the other hand, if

the user requests more resources to be reserved, the AC has to perfotm the admission control

procedure again to rnake a decision as descnbed above.

3.4 About the Time Slot Table

A t h e dot table is responsible for keeping track of current allocations and fùture reservations

for resources. Each individual resource has a mapped time dot table. Figure 3.2 shows an

exarnpIe of a time slot table. It is a two-dimension Cartesian coordinate. The "y" axis represents

the percentage of the resource. The "x" axis represents the tirne, which is divided into a number

of slots. The first time slof represents the slot in which the current time is included.

percentage
of CPU

time
Figure 3.2: An example of a time slot table

A lime do t table manager is used to provide fùnctions to maintain a set of time dot tables. It has

following responsibilities:

Whenever a new resource is available for the system, the resowce reports its percentage

value that can be man& by the system to the time dot table manager. The time slot

table manager then creates an ernpty tirne dot table for this resource;

If a resource is assigned with an advance reservation, the time dot table manager is

responsible for marking the time slot table associate with the resource in corresponding

slots with the reservation value;

If a reservation on a resource is canceled, the time do t table manager is responsible for

erasing the reservation fiom the time slot table in corresponding dots with reservation

value;

If a resource leaves the system, the time dot table manager is responsible for removing

the time dot table for this resource fiom the time dot table manager. Applications

assigned on this resource should be rescheduled on other resources. This procedure is

handled b y the QoS broker;

When the AC queries, the t h e dot table manager is responsible for providing

reservation information on a11 resources;

[n order to keep thefirst slot as the currenr time slot the tirne dot table manager is also

responsible for updating time dot tables every time interval, which is qua1 to a time slot.

The pseudo code of a time slot table manager is showed in figure 3.3. CIass dotManager is a

time slot table manager responsible for managing time dot tables for al1 machines controlled by

the AC. Function initiafize creates an ernpty dotManager at the system set up tirne. Whenever a

machine cornes in, function create-dot-table creates an empty rime dot table for this machine.

Then sends this to dotManager to manage. Function add-reservation marks the time dot table in

specific slots for a specific machine when the reservation is assigned on this machine. If the do t

is assigned with other jobs already, the value of reserved CPU for this slot is the sum of all

reserved CPU value. Otherwise, the slot is marked with the new reserved CPU. Function

query_sh~tuble is responsibie for queryîng the reservation information on a specific machine in

a specific slot. Function update-dot-table decreases slot order by one every slot t h e interval.

This function ensures that the current time is always within the k t d o t When a machine leaves

the systern or encounters some failure, fiinction handlefaifure removes the time dot table for

the machine fiom slothdanager. The reservations assigned on this machine needs to be

rescheduled using the unique user ID. Function cancel-reservation is responsible for canceling

reservations within given slots. Because the start time and the desired reservation duration fiom

an application c m be an arbitrary value rather than slotted tirne used in the system, therefore,

function calala te-starr-slot and calculate-end-sslor interpret user's arbitrary time value to

slotted value.

class SlotManager
function Initializer()

create an empty dotManager at system set up time;

function create-slot-table(machineName mj)
create an empty slot table table-mj;
sent table-mj to slotManager;

function add-reservation(machineName mj, startslot t-start, endSlot t-end, CPLTValue
C P U-rsv)

get table-mj from slotManager;
for (slot t = t-start, t<= t-end, t++)

if (t contains some CPU value)
get CPU percentage CPUold already reserved in this slot;
CPU-new = CPU-old + CPU-rsv;
mark the slot with CPUnew;

else
mark the slot with CPUrsv;

endfor

function query-slot-table(machineName mj, dot t)
get table-mj from dotManager;
return reserved CPU value in slot t;

function update-dot-table()
for each slot table in slotManager

for each slot in a slot table
new-slotorder = old-slot-order -1 ;
if (new-dot-order c 0)

cancel the slot with reservation in this slot;
endfor

endfor

function handle-failure(machineName mj)
remove table-mj for slotManager;

function cancel-reservation(machineName mj, startsiot t-start, endSlot t-end, CPUValue
CPUcancel)

get table-mj from dotManager;
for (slot t=t-star, tc=t-end, t++)

get CPU percentage CPUoId already resenred in sIot t;
CPU-new = CPU-otd - CPU-cancel;
mark the slot with CPU-new;

endfor

function calculate~start~slot(double start-time, int slot-interval)
get current-time;
startslot t = flaorFunction((start-time - current-time)/slot-interval);
return t;

function calculate-end-slot(double start-time, double duration, int dot-interval)
get cuvent-time;
endSlot t = ceilingFunction((start_time + duration - current-time)/slot-interval);
return t;

Figure 3.3: Functions of a time slot table manager.

4 RSPB: RESERVATION SCEKEDULER WITE
PRIORITIES AND BENEFIT F'UNCTIONS

4.1 Preliminary Remarks

Reservntion Scheduler with Priorilies and Beneft Functions (RSPB), which schedules

reservations on a single machine, can be used in an admission control for a system such as hi&-

throughput computational Grid. RSPB schedules reservations while considering relative

prionties of various application requests. Benefit hc t ions are used to mode1 user's QoS

requirements. Machine load balancing is also considered. A detailed description of the algorithm

is presented in this chapter. Simulation results and discussion are also given.

4.2 Assumptions

The algorithm is based on the following underlying asmmptions. A centralized resource

reservation scheduler is assumeci, Le., al1 the resource reservations are performed by a

centralized unit. Requests arrive randomly based on a Poisson arriva1 process. Because the

requests are arriving in a random fashion in real time, the reservation scheduler cannot wait until

al1 the requests have arrived to commence the scheduling. It should make the decisions on the

requests as each one arrives or makes a decision afier the d v a l of a batch of requests. This

algorithm follows the Iater method. Once a request is granted the reservation, a contract for the

reservation is signed between the application and the system. The reservation scheduler won't

examine the same request more than once except the case in which a QoS violation occurred.

This situation should be handled by a higher level QoS broker that engages in re-negotiation to

establish another reservation or a continuation of the current reservation. Based on the operating

policies, the reservation scheduler may find another reservation or the application rnay operate

under best-effort conditions.

4.3 Notations and Mathematical Model

Let rn be the number of machines in the system. The machines are assumed to be homogeneous.

Let CPU-sys, represent the percentage of CPU of the j-th machine Mj that is dedicated to the

Grid systern. For each request Rk arrivhg at the reservation scheduler, following parameters are

defined.

tk-srarr: start tirne of reservation for Rk;

tk-.ond: end time of reservation for Rk;

CPU,,k: minimum CPU requirement of & for delivering the maximum benefit to the

application;

pk: priority of Rk, due to lirnited amount of resources, the scheduler cannot meet the demands

of al1 the requests. When the overall dernand exceeds the available resources, the objective of

the reservation scheduler is to minïmize the sum of priority of the requests that are rejected.

This study uses heuristic approaches to achieve this objective.

Bk(PcpJ: the benefit function associated with Rk. It gives the benefit which the client will

receive if it is reserved CPU at the requested level. Figure 1.1 shows some of shapes that the

benefit function could take for a reservation request. Although, in this project, benefit

functions are used only for quant img the CPU requüments, it may be used for other

resources as we1I as the t h e consîraints.

4.4 Resewation Schcduling with Prioritks and ûenefit Functions

This section examines RSPB reservation scheduling algorithm. h this study, each reservation

request involves a single resource, i.e., no CO-reservation of resources is considered here. Figure

4.1 shows the outline of the dynamic reservation scheâuler. In this scheduler, dynamically

arriving requests are collected for a predefined time interval to form a meta-request.

t=b: scheduler start time
At: inter-schedule tirne
while (true)

t = t + At;
while (current tirne < t)

get current request R;
add R to Rmeta
if (requested start time of R < t)

t = current time;
endwhile
scheduleRmea(Rmeta)

endwhile

Fi~ure 4.1 : Outline of the dvnamic reservation scheduler.

The dynamic reservation scheduler makes a decision upon receiving a meta-request using the

scheduZeR,,, fùnction that is shown in Figure 4.2. The scheduleR,, function is called in

following two situations:

When the current time is equal to the current schedufing ment rime that is quai to t;

The requested start tinte of request R is less than m e n t scheduling event time t. This

ensures that requests with start tirne less than current schedding event time is scheâuled

before curent time is equal to nrrrent scheduling ment time. One example of îhis kind of

requests is immediate reservations.

f unction scheduleRmeta (meta-rquest Rrneta)
Rk : the km request in Rmeta;
Mi : the jm machine in the system;
CPUmiB-k : minimum CPU requirement when Rk

get lowest acceptable benefit from reservation;
load-heaviestj(tm. tn) : the heaviest load of Mi within a reservation duration tm to ti;
CPU-smallestj(tm, b) : the smallest availability of CPU to reserve

for Mj within a duration t,,, lo tn;
machQueuehard : a machine queue used to store machines

which can satisfy hard QoS request of Rk;
machQueuesoft : a machine queue used to store machine

which can satisfy soft QoS request of Rk;
6jk : benefit value whkh Rk Cari get f r ~ Mj;
Rnonçatis~ : meta-request used to store rejected requests;

for al[requests Rk in Rmeta
sort the requests in descending order by pk;

for each sorted request Rk in Rmeu
reset machQueuehard and mactiQueueso~
get tk-stmt and tk-end;
calculate CPUmin-k according to selected benefit function shape;
for each machine Mi in the system

get load-heaviestj(tk-srart, tk-end);
CPU-smallestj(tk-start, tk-end) = CPU-SYS~ - laad-heaviestj(tk-start1 tk-end);
if (CPU-smaf kstj(tk-startl tk-end) 3 CPUmax-k)

machQueuehard + Mi;
else

if (machQueuehard is empty)
if (CPU-smaIIestj(tk-start, tk-end) 2 CPUmin-k)

if (machQueuesofi contain machine Mi)
Bjk = Bk(CPU- smallesti(tk-~tart, tk-end));
Bik = Bk(CPU-~malIe~ti(tk-~~rt, tk-end));
if (Bjk > Bik)

machQueuesofi + Mi;
else

rnachQueuesofi + Mi;
endfor
if (both the machQueuehard and machQueuesoft are empty)

put the request Rk into meta-request Rnonsatisty;
else

if (machQueuehard is not empty)
select the machine with the lowest average CPU load within duratim (h, t");

else
the machine in the machQueues& is the choice

mark the tirne slot table for this machine with requested reservation;
endfor

Figure 4.2: A priority and benefit function based scheduling algorithm for indivisible resewations.

30

Figure 4.2 shows the pseudo code for the scheduleR,, hction. Line (12) sorts the requests in

R,,, in descending order by the prionty of the requests. This ensures thaî if multiple reservation

requests require reservation in the sarne duration, the requests with higher priority will be

scheduled first. This reduces the sum of rejected prioritics thus e n d g the resources are used in

the most beneficial manner. Line (1 7) determines the minimum CPU requirernent for request Rk

(Le., CPU capacity at which Rk can provide the lowest acceptable benefit to the application

according to the selected benefit finction shape). This value will be used to determine if the

request should be rejected or admitted (with gracefül degradation) in case of resource scarcity

and its hard QoS requirernent cannot be guaranteed.

In this reservation model, a CPU resource may be temporally shared by multiple reservations,

that is, multiple reservations may overlap in tirne. Therefore, we need to determine the cwrent

CPU usage for a given time interval before admitting a reservation. In Lines (19) and (38), the

current CPU (machine) usage is detennined using time dot tables that keep track of reservations

that have already been accepteci. The time dot tables only keep track of the partition of the CPU

that is dedicated to the Grid and thus, managed by the reservation scheduler.

Line (21) determines whether the examined machine can satisfy the hard QoS requirment of

request Rk. If yes, this machine is put into a machine queue named rnachQueueM for later

selection in line (38). Although it is not shown in the pseudo-code in Figure 4.2, the search for a

machine that satisfies the reservation request can be stopped when a machine that satisfies the

hard QoS is found. If none of the machines in the system c m satisfjr the hard QoS requirement of

Rk, the reservation scheduler will attempt to schedule the reservation with a degradation of the

CPU requirement for Rk if the benefit fiuiction is provided to allow for the degradation. Lines

(24) to (32) attempt to find a machine that satisfies this situation and this machine is considered

to satis* the soft QoS requirernent of Rk. Lines (26) to (32) attempt to maxùnize the benefit

delivered to the application by the reservation.

Line (34) and (35) deai with the case where the system cannot provide the requested level of

senrice to Rk. The reservation scheduler checks the meta-request and sends rejections

messages to the clients that submitted the reservation requests in RnomatiSp The clients may

resubmit their reservation requests with modifications and these submissions wili be considered

for reservation at the next scheduling event. Line (38) ensures that the load is distributeci across

the machines.

4.5 Simulation Results and Discussion

This section presents some results from a simulation study designed to evaluate the performance

of the algorithm provided in the previous section. In this simulation study, the RSPB is comparai

with the Resozwce Broker (RB) [ICiiOO]. For comparing the two reservation schernes, a discrete

event simulator was written using the PARSEC language (represents for PARallel Simulation

Environment for Complex S ystem), whic h is a C-based discrete-event simulation language

[BaM98, PARSEC]. In the simulations, the reservation requests arrived randomly according to a

Poisson arriva1 process. With each request, several attributes were associated to define

parameters Iike reservation start time, end time, percentage of resource, shape of the benefit

function, priority, etc. The benefit fhctions were restncted to the four shapes in Figure 1.1 such

that each hc t ion is used by 25% of total number of requests. Tirne siot table for each machine

is maultahed by a modified version of the data structure called Interval Skip List maJ96,

ISList]. The following parameters are true for the simulation results presented unless stated

otherwise,

10 machines participateci in the simulation;

Each machine dedicated 70% of CPU to the Grid system;

Each reservation requested for CPU usage was uniformly distrïbuted in [20%, 70%];

Requested duration was unifonnly distriibuted in 20-300 the units (PARSEC cfocktype);

Requested starting times were uni fody distriiuted over 4,320 the units;

Time was slotted with a grandarity of one time unit. The simulation time is 100,000 tirne

units. It created an average of about 10,505 requests.

Figure 4.3 shows the variation of the number of rejections with the number of requests. The

simulation time ranged fiom 10,000 to 120,000 time units and the averages of about 1063 to

12,604 requests were created. Figure 4.4 shows the variation of the number of rejections with the

number of machines. The number of machines participated in this experiment ranged fiom 2 to

20. Figure 4.5 shows the variation of the number ofrejections with the average of duration. The

average requested duration varkd in the [30,350] ranges.

From Figures 4.3, 4.4, and 4.5, it can be noted that the number of rejections for RSPB is

considerably lower than that for RB in al1 three cases. This is because the benefit function is used

in RSPB. The requests that need to be re-negotiated in RB may be admitted in RSPB with

graceful degradation of QoS, provideci they have specified soft QoS requirements using their

benefit finctions. This reduces the number of rejections.

- -- -

Figure 4.3: Number of rejections versus number of requests.

10 15

number of machines
- - - . . -. .- - -. . - -- - - -- -- - - -

Fi~ure 4.4: Number of reiections versus number of machines.

r 50 200

request duration

Figure 4.5: Nurnbef of rejections versus request duration.

+RSPB +RB +best case

Ficiure 4.6: The average of reserved CPU versus the averaqe of re~uested CPU.

Figure 4.6 shows the variation of the average of reserved CPU with the average of requested

CPU- The average of requested CPU ranges fiom 20% to 70%. For çontrast, we show the ideal

case of satisfjhg each request to 100% as well-

In Figure 4.6, when the average of requested CPU is less than 25%, reserved CPU for al1 three

curves are the same. This is because when the requested CPU is lower, the system can satis@ al1

requests. Therefore, reservations for d l three cases are the same. When the average of requested

CPU is greater than 25%, three approaches deviate. in partïcular, RB and RSPB deviate f?om the

ideal appoach.

The curve for RB is lowest before the average of requested CPU is less than 63%. The difference

between RSPB and RB becomes bigger and bigger for the average of requested CPU less than

50%. However, this difference becomes smaller and smaller after 50% and aimost the zero after

63%. The reason for this is when the average of requested CPU increases, the number of satisfied

requests decrease. Therefore, the reserved CPU is decreased because of occurrence of rejections.

However, considenng benefit fûnction in RSPB helps it to reduce the number of rejections, thus

increasing the average percentage of reserved CPU. However, when the average requested CPU

is greater than 50%, the advantage of this mechanism is not pronounced. After 63%, this

advantage is almost none existent. This is because when the average of requested CPU is much

higher, for example 60%, most machines ofien only have two possible States, either be reserved

about 60% or idle. In Our study, from four different benefit fùnction shapes, the lowest CPU

reservation that the user can be allocated and still gets acceptable benefit is requested CPU

*25%. If in a certain time slot, let's assume al1 requests ask for 60% CPU, then, al1 machines in

the systern are reserved by 60%, when a new request cornes even with lowest acceptable CPU

which is 60% * 25% (from selected benefit fünction shape), it will be rejected.

Figure 4.7 shows the result of sum of rejected priorities versus number of rejections. The

simulation time ranges fiom 10,000 to 100,000 time units. It created about an average of 1,063 to

1 0,505 requests. Requested starting tïmes were uniformly distributed over 4,320 time unitS. But,

the difference fiom previous statement is that the startïng time added an extra 300 t h e units in

order to avoid too many times such that only one request in metaRequest is scheduled.

Therefore, the advantage of ordering request by pnority is more obvious.

0 - - - - - - - - - - *

O 200 400 600 800 1000 1200 1400 1600
l

number of rejections

- - - . -. - - - - - - - - - - - - - --

Figure 4.7: Surn of rejected priorities versus number of rejections.

From Figure 4.7, we can see the sum of rejected priorities of RSPB is less than that of RB. This

is due to priority ordering in RSPB. In RSPB, requests with higher pnonties are always

scheduled prior to those with lower prionty This ensures when resources are scarce, requests

with higher priority have more chance of being admitteci-

5 CO-RSPB: CO-RESERVATION SCREDULER WITB
PRIORITIES AND BENEFIT F'UNCTIONS

5.1 PrelirninaryRemarks

The difference between Co-Reservation Scheduler with Priorities and Benefit Functions (Co-

RSPB) and RSPB is that Co-RSPB schedules reservations on multiple resources simultaneously,

whereas RSPB schedules reservations on single resource. In some Gnd systems such as

collaborative computing Gnd, a cornmon characteristic of applications is a need to allocate

multiple resources simultaneously. A challenge of CO-allocation is, in a cornpetition system,

some required resources might not be available when demandeci- Thus, the application cannot be

executed with al1 required resources in desired time duration. To reduce the probability of

resource unavailability while CO-allocating resources, a CO-resewation algorithm Co-RSPB is

developed for a Grïd system siich as collaborative computing Grid- As with the RSPB described

in the last chapter, Co-RSPB schedules CO-reservation while c o n s i d e ~ g relative pnorities of

various application requests. Benefit ftnctions are used to associate a client's QoS requirements.

Two cornparison algorithms are also developed as a base Iine to compare the performance of Co-

RSPB. Detailed description of these algonthms as well as simulation results and discussion are

presented in this chapter. Because Co-RSPB is developed under the same assumptions as RSPB,

the section for assumptions is skipped in this chapter.

5.2 Notations and Mathematical Moôel

Let m be the number of machines in the system, The machines are assumed to be homogeneous.

Let CPU-vsj represent the percentage of CPU of the j-th machine Mj that is dedicated to the

Gnd system. For each request Rk arriving at the reservation scheduler, foliowing parameters are

defined.

tk-SICIrt: start time of reservation for Rk;

tk-end: end time of reservation for Rk;

R;: the i-th sub-request of Rk;

C P U ~ ~ - ~ : minimum CPU requirement of R; for delivering the maximum benefit to the

application;

pk: priority of Rk. When the overall demand exceeds the available resources, the objective of

the reservation scheduler is to minimize the sum of priority o f the requests that are rejected,

therefore to maximite system benefit- This study uses heuristic approaches to achieve this

objective.

B & ~ ~ J : the benefit function associated with R;. It gives the benefit Rk will receive if it is

reserved CPU at the requested level. Figure 1.1 shows some of the shapes the benefit

function could take for a reservation request.

In the following algorithm description, notations below are also use&

CPU,~,.~': minimum CPU requirement for R~' when R: gets lowest acceptable benefit from

reservation;

Mj: the j-th machine in the system;

load-heaviestj(tm, t,): the heaviest load of Mj within a reservation duration t, to tn;

CPU-smalle~tj(t~, t,): the smallest availability of CPU to reserve for Mj within a duration t,

to t,. CPV-~mdiestj(t~, tn) = CPU-sysj - 10ad-heaviestj(tm, tn);

B~;: benefit value which R ~ ' can get fiom Mj;

Rk-sub-me<a: sub-request queue of Rk;

isFloating: Boolean variable, true if the request Rk asks for floating machines; false if the

request Rk asks for fixing machines;

rnachQhzd: a machine queue used to store machines which can satise hard QoS request of

~ k ' ;

machQmR: a machine queue used to store machines which can satisfy sofi QoS request of

In order to quanti@ the system performance in terms of service, a system benefit calculation

1 2 mode1 is also developed. Let bi, b2, ... bn be the benefit received by n sub-request Ri, , Rk , ...

R~~ of application Rk at the QoS level at which it reserved. The maximum value for bi, bz, ... b,

is set to be 1. Let Bk be the benefit that the application Rk receives. Bk is define as:

Bk = l/n xi bi

Thus, the maximum value for Bk is 1.

Let B be the benefit that the system provides. B is defined as:

B = Ck ~ k B k

Where wk is the weight assigned to application Rk. This weight captures the importance of the

application. In this study, it related to the application's priority. Let pi, pl, ... pm be the priority of

applications RI, R2, ... R,. then the weight wk for the application Rk is defined as:

wk=pk/&pj

Thus, the maximum value for B is 1. Therefore, the objective of the system is to achieve benefit

value as close to 1 as possible.

5.3 Co-Resewation Scheduling with Priorities and Eenefit Functions

This section examines the CO-reservation scheduling algorithm. In this study, each CO-reservation

request involves in multiple resources. If any one required resource is not available to the

application, the whole application wiU be rejected by the system. The outline of the dynamic CO-

reservation scheduler is the same as Figure 4.1. Therefore, in this section, the description of CO-

reservation scheduler is skipped and scheduleR,,, function is presented directly.

Figure 5.1 shows the outline of ~ c h e d ~ l e R ~ ~ ~ ~ fùnction. Line (2) to (4) sort the requests ùi Rmm

in descending order by the priority of the requests. This ensures that if multiple reservation

requests require reservation in the same duration, the requests with higher pnority will be

scheduled first. This reduces the surn of rejected priorities, thus ensuring the resources are used

in the most beneficial manner. Line (5) to (12) assign sub-requests to suitable machines for each

request. If the request requires floating machines, function floatScheduling is cded. If the

request requires fixing machines, function fdchedztling is called.

function scheduleRmeb (meta-task Rmeta)
(2) for al1 requests Rk in meta-request Rmeta
(3) sort the requests in descending order by pk;
(4) endfor
(5) for each sorted request Rk in Rmeb
(6) get tk-start and tk-end ; -
(7) get ail sub-request R; of Rk. put RE into Rk-submeta;
(8) if(isFloating = true)
(9) floatScheduling(Rk-~~b-meb, tk-start, tk-end);
(1 0) else
(11) fixScheduling(Rk-sub-meta, tk-start, tk-end);
(12) endfor

Figure 5.1 : Outline of Co-RSPB scheduling.

Figure 5.2 shows the pseudo d e for the floatScheduIing h c t i o n for Co-RSPB. Line (3)

determines the minimum CPU requirement for each sub-request R: of Rk (Le., CPU reservation

at which R: can provide the lowest acceptable benefit to the application according to the selected

benefit tùnction shape). These values will be used to determine if the request should be admitted

with gracefùl degradation of some or ail sub-requests, or rejected when resources are scarce and

hard QoS requirement of some or al1 sub-requests cannot be guaranteed. Line (4) sorts the sub-

requests of Rk in Rk-sl,b-ntero in descending order by minimum CPU requirement of ~i,'. There are

two purposes for this sorting. First, for sub-requests with a higher CPU requirement, there is less

possibility to find a desired machine. Therefore, scheduling this kind of sub-requests first can

inaease the possibilities, thus, reduce the chance of rejection for overall requests. The second,

because of a lower possibility to fïnd a desired machine for sub-requests with a higher CPU

requirement, scheduling it first can make the scheduling procedure faster. This is because if a

sub-request with a higher CPU requirement is rejected by the system, the overall request is

rejected. Thus, it is no longer necessary to schedule other sub-requests with lower CPU

requirernents.

In this reservation model, a CPU resource may be temporally shared by multiple reservations,

that is, multiple reservations may overlap in time. Therefore, we need to determine the current

CPU usage for a given time interval before admitting a reservation. In Line (9), the current CPU

(machine) usage is determined using t h e dot tables that keep track of reservations that have

already been accepted. The t h e slot tables only keep track of the partition of the CPU that is

dedicated to the Grid and thus, managed by the reservation scheduler.

Line (10) detexmines whether the examinecl machine can satisfjr the hard QoS requirernent of

sub-request R:. if yes, this machine is put into a machine queue named machQharl. The size of

mach&rd is set to be 1. Therefore, only one machine can be put into rnachQhard for each sub-

request. Line (1 1) to line (1 5) is used to select a machine that has smallest CPU availability to

satisQ the hard QoS requirement of sub-request R:. Although it is not shown in the pseudo-code

in Figure 5.2, the search for a machine that satisfies the reservation sub-request can be stopped

when a machine that satisfies the hard QoS is found- If none of the machines in the system can

satis& the hard QoS requirement of R;, the CO-reservation scheduler will attempt to schedule the

reservation with a degradation of the CPU requirement for R: if the benefit function is provided

to allow for the degradation. Line (17) to (25) attempt to find a machine that satisfies this

situation and this machine is considered to satise the soft QoS requirement of R;. Line (19) to

(25) attempt to maximize the benefit delivered to the application by the reservation.

Lines (27) and (30) deal with the case where the system cannot provide the requested level of

service to R:. In this case, the overall request is rejected. Al1 reservations for sub-requests, whkh

have been scheduled before R i , should be canceled. Sub-requests that don't have a chance to be

scheduled are no longer necessary to be considered. The CO-reservation scheduler checks the

meta-request RnonsolistG and sends rejection messages to the clients whose submitted reservation

requests are in The clients may resubmit their reservation requests with modifications

and these submissions will be considered for reservation at the next scheduling event.

function floatscheduling (meta-request Rk-sub-me~, start-time tk-stm, end-time tkend)
(2) for al1 sub-request R; in Rk-sià-meta

(3) calculate C P U ~ ~ ~ - ~ ' according to selected benefit function shape;

(4) sort sub-requests in descending order by C P U ~ ~ ~ - E
(5) endfor
(6) for each sub-requsest ~ k l in Rk-~~ame<a

reset machQhard and machQsoft
for each machine Mj in the system

get CPU-smallestj(tk-~tart, tk-end);
i

if (CPU-smaIIestj(tk-start, tk-end) 2 CPUmax-k)
if (machQhard contains another machine Mr)

if (CPU-smallestj(tk-çtart, tk-end) c CPU-smallestr(tk-~tart tk-end)
machQhard <- Mi;

else
rnachQhard c- Mj;

else
i

if (CPU-smaIIestj(tk-çtart, tksnd) 2 CPUmin-k)
if (machQhard is empty)
if (machQs& contains another machine Mr);

B& = ~ k ~ (~ ~ ~ - ~ m â [l e ~ t ~ (t k - s t a r t , tk-end));
6d = ~k'(~~~-smallest&-*fi, tkend));

i n (eiki > B*)
machQsoft c- Mi;

else
machQçofi C- Mi;

endfor
if (both the machQhard and machQsm are empty)

put the request Rk info meta-request Rnonçatisfy;

cancel reservation for REO~ which the order is bigger than R:;
break;

else
if (rnach&rtj is not empty)

the machine in machQhard is the choice;
reserved CPU = cpumax-ki;

else
the machine in machQ~fi is the choice;
reserved CPU = CPU-smallestj(tk-=tan, tk-end);

mark the time slot table for this machine with reserved CPU;
(39)endfor

Figure 5.2: Function floatscheduling for Co-RSPB.

Figure 5.3 shows pseudo code for the furSchedttling fünction. Since al1 sub-requests have fixed

machine requirements, the algorithm here is much simpler than the previous one. The sorting

procedure in Figure 5.2 is not necessary here. Further more, for each sub-request, only the

desired machine need to be examined. Therefore, line (4) is used instead of a loop of number of

machines in Figure 5.2. Once the desired machine is examined, the decision that if this sub-

request can be satisfied is made immediately. The tïme slot table is also marked right after the

examination.

f unction fixscheduling (meta-request Rk-sub-meta. start-time tk-sbrt, end-time tk-end)

(2) for ail sub-request ~k~ in Rk-subineta
(3)

i calculate CPUmin,k according to selected benefit function shape;
(4) get request machine Mi;
(5) g et CPU-smâIIe~tj(tk-~~~r~, tk-end);
(6)

i
if (CPU-~malle~tj(tk-~ta~~, tk-@"d) 2 CPUma*-k);

(7) mark the time slot table for this machine with requested reservation;
(8) else
(9)

i if (CP U-smallestj(tk-~~~, tk-rnd) 2 CPUmin-k)
(1 0) reserved CPU = CPU-~mallestj(t~-~~~, tk-rnd);
(11) mark the time slot table for this machine with resewed CPU;
(1 2) else
(1 3) put the request Rkinto meta-request Rnonsatisfy;
(1 4) cancel reservation for ~k~ of which the order is bigger than R;;
(1 5) break;
(1 6) endfor

Figure 5.3: Function fixscheduling for Co-RSPB.

5.4 Cornparison Algorithms

To Our knowledge, there is no simïlar algorithm available to compare with the performance of

Co-RSPB. Actually, the problern that Co-RSPB solved is much like a bin packing problern

We consider only the number of rejections fiom the system rather than the benefit that the

system can provide;

All the requests have a hard QoS requirernent rather than some requests have a soft QoS

requirernent;

For each scheduling interval, ail machines have 100% CPU available to applications in R,,,,,

Based on above observation, we designed a Co-reservation Scheduler with Best Fit scheme (Co-

RSBF) as a cornparison algorithm to Co-RSPB. Co-RSBF is similar as Best Fit Decreasing

(BFD) algorithm in bin packing problem except the bin size (i-e. machine CPU availability in

this study) is not always 1. Co-RSBF focuses on the number of rejections fiom the system rather

than the benefit that the system can provide. Therefore, to reduce the number of rejections, ail

applications are given the minimum benefit by mng al1 sub-requests the minimum CPU

reservations. As BFD in bin packing, Co-RSBF should give a result that is extremely close to

lower bound of rejections.

Figure 5.4 shows the outline of Co-RSBF. Instead of sorting applications by priority, Co-RSBF

sorts applications by the sum of sub-request's minimum CPU requirements as in BFD.

function scheduleRmeta (meta-task Rmeta)
(2) for al1 requests Rk in meta-request Rmeta
(3) sort the requests in descending order by xi cpumin-ki;
(4) endfor
(5) for each sorted request Rk in Rmeta
(6) !Jet tk-start and tk-end ; -

(7) get al1 sub-request R* of Rk and put into Rk-sub-meta;
(8) if(isfloating = true)
(9) fl~âtS~heduling(Rk-~u~meta, tk-start, tk-4);
(10) else
(1 1) fixScheduling(Rk-~~b-meta, fk-start, fk-end);
(1 2)endtor

Figure 5.4: Outline of Co-RSBF scheduling.

Figure 5.5 shows the flootScheduling h c t i o n in Co-RSBF and Figure 5.6 shows the

f~Scheduling function for Co-RSBF.

function floatScheduling (meta-request Rk-sub-meta, start-time tk-=tart, end-tirne tk-end)
(2) for ail sub-request ~ k l in Rk-subrneta;
(3 calculate CPU~~~: according to selected benefit function shape;

(4) sort sub-requests in descending order by ~~urnin-k';
(5) endfor
(6) for each subresquest RL
(7) reset machQsofi;
(8j for each machine Mi in the system
(9) get CPU-~maIIe~ti(tk-start, tk-end);
(1 O) if (CPU_~maliesti(tk-~~~, tk-end 2 cp~min-ki);
(1 1) if (machQ contains machine Md
(1 2) if (CPU-smai testi(tkstart, tk-end) c CPU-sma(lestr(tk-start, tk-end))
(1 3) machQsofi <- Mi;
(1 4) else
(1 5) machQsofi <- Mi;
(1 6) endfor
(1 7) if (machQsoft is empty)
(1 8) put the request Rk into meta-request Rnonçatish;
(1 9) cancel reservation for Rkr of which the order is bigger than &';
(20) break;
(21) else
(22) the machine in machClsoit is the choice;

i
(23) mark the time slot table for selected machine with reserved CPU = CPUmin-k ;
(24) endfor

Figure 5 -5: Function floatscheduling for Co-RSBF.

function fixscheduling (meta-request Rk-s~b-meta. start-time tk-start. end-time t k ~ d)
(2) for ail sub-request ~ i : in RkksUbmeta

(3) calculate ~ ~ ~ m i n - k ' according to selected benefit function shape;
(4) get request machine Mi;
(5) get CPU-srnalle~tj(tk-~ta~t, tk-end);

i
(6) if (CPU-srnaile~tj(tk-~t,rt, tk-ey~) 2 CPUmin-k)
(7) reserved CPU = C P U ~ ~ ~ - L ;
(8) mark the time slot table for this machine with reserved CPU;
(9) else
(1 0) put the requeSt Rkinto meta-request Rnonsatisfy;
(1 1) cancel reservation for R; of which the order is bigger than FIki;
(12) break;
(1 3) endfor

F i~ure 5.6: Function fixschedulinq for Co-RSBF.

Although Co-RSBF can give results that are extremely close to the lower bound for rejections,

the benefit that the system can provide in Co-RSBF is minimum one because each sub-request is

given a minimum benefit According to the system benefit calculation model, the benefit Bk =

l/n xi bi received by the user of the application is minimum. Therefore, the benefit B=xk wkBk

that the system can provide is minimum. When the resources in a system are not extremely

scarce, this result should not be expected. Therefore, we designed another cornparison algorithm

called Co-Reservation Scheduler with Best Fit and Refning scheme (Co-RSBFR). Co-RSBFR

uses the same floatScheduling and fmScheduling functions as CoaSB F to schedule requests in

each scheduling interval in order to get lower rejections in each scheduling interval. Then,

without increasing the number of rejections, Co-RSBFR tries to extend CPU reservation for each

sub-request, thus extends system benefit within each scheduling interval. Figure 5.7 shows the

outline of Co-RSBFR algorithm.

function scheduleR,,t, (meta-task RmeW)
(2) for al1 requests Rk in meta-request RmeU

(3) sort the requests in descending order by L ~Wmin- i< ' :
(4) endfor
(5) for each sorted request Rk in Rmeta
(6) get tk-start and tk-end ;
(7) get al1 sub-request FIk' of Ri, put R~~ into Rk-=bmeta:
(8) if(isFloating = true)
(9) f l ~ a t S c h e d u l i n g (R ~ - ~ ~ ~ - ~ ~ ~ , tk-~a~t, tk-end);
(10) else
(1 1) f ixScheduling(Rk-submeta, tk-start. tk-end);
(1 2)endfor
(1 3)for each sorted request Rk in meta-request Rmem
(14) if Rk is accepted

(1 5) get tk-start and tk-rnd ;
(16) pet al1 sub-requast R~~ of Rk, put R: into R c ~ ~ ~ ~ ~ ~ ;
(1 7) refinescheduting(Rk-sub-meta, tk-startg tk-end):
(1 8)endfor

Figure 5.7: Outline of Co-RSBFR scheduling.

Function refineScheduling(meta-task Rk-çub-neta, start-time tk-nart, end-time tk-end)
(2) for each sub-request ~k~ in Rk- SU^-meta
(3) if (it has soft QoS requirement)

(4) get machine Ms on which RE is assigned;

(5) get CPU- srnaiiests(tk-start, tk-end);
(6) CPU-~mailest~(tk-~t~n, tk-end) = CPU~~"-2 c CPU-smallest(tk-sta~, tk-end);

(7) if (~~~-sma~iest(tk-start. tk-end) 2 cpumax-k\
(8) machQhard C- Ms;

(9) else machQson c- Ms;
(1 0) for each machine Mi
(11) if (j != s)
(1 2) get CPU-smallestj(tk-start, tk-erid); i

(1 3) if (CPU-smal~estj(tk-start~ tk-end) 2 CPUrnax-k)
(1 4) if (machQhad contains machine Mr)

(1 5) if (CP U_smallest,(tk-~t~rt, tk-end) c CPU-smallestr(tk-ert, tk-a))

(1 6) machQhard C- Mj;
(1 7) else ma~hQhard <- Mj;
(1 8) eke
(1 9) if (machQhazd is empty)
(20) if (machQçpft contains machine Mr)

(21) 6,k: = ~ i < ' (~ ~ ~ - ~ m â ~ l e ~ t ~ (t k - s t a r t ~ tk-end));

(22) 62 = ~I<1(~~~-~mal le~tdtk-mf i , tktmd));
(23) i > B*') machQsoft c- Mi;
(24) else machQsoftc-Mj;
(25) endfor
(26) if (machClhard is not empty)

(27) machine Mi in machQhard is the choice;

(28)
i reserved CPU = CPUmax-k ;

(29) else
(30) machine Mi in machQsoft is the choice;

(31) reserved CPU = CPU-smaltestj(tk-~tart, tk-end);

(32) mark time slo: table for Mi with reserved CPU; cancel reservation on Ms;
(33) endfor
(34) for each çub-request

(35) if (reserved CPU < C P U ~ ~ ~ - L)

(36) get the machine M. on which ~k~ is assigned;
(37) get CPU-~mallestç(tk-start, tk-end);

i
(38) CPU-~mallest~(t~~t~rt, tkend) = CPU-rsvk + CPU-smallests(tk-start, tk-end);

i
(39) if (CPU-smâiIests(tk-start, tk-end) 2 CPUmax-k)
(40) on Mg, cancel original rasenration; mark time slot table with CPU~~X-k;
(41) else
(42) on Ms, cancel original resewation;

(43) mark time slot table with CPU,~malle~tj(tk-~tart, tk-end);
(44) endfor

Figure 5.8: Function refinescheduling for Co-RSBFR.

Figure 5.8 shows the refinescheduling b c t i o n for Co-RSBFR. Line (3) gives the condition that

only sub-requests with soi3 QoS requirements need to be rehed. The benefit for sub-requests

with hard QoS requirements are L , already. When trying to extend the benefit for sub-request R;,

the reserved CPU for R; should be counted while examining the CPU availability for the

machine on which R; is assigned in previous scheduling. Lines (4) to (9) work on this purpose.

Lines (13) to (17) try to get the machine, which can satisw the maximum QoS requirement of

sub-request R ~ ' and have the smallest CPU availability in order to leave machines with greater

CPU availability to sub-requests with higher CPU reservation requùements. If there is no

machine which can satisfy the maximum QoS requirement of sub-request R:, then lines (20) to

(24) try to get the machine which can give the greatest benefit to R:. Note that there is at least

one machine - that's the machine on which R; is assigned previously, can satise at least the

minimum CPU reservation request. After the first round refïnïng, there may be the situation that

after refining sub-request R;, the reservation for other sub-request on the same machine as R; is

canceled, in this case, if the benefit value for R: is not L, it's reservation can be extended once

more. Lines (34) to (45) work on this purpose.

5.5 Complexity Analysis

The running time of an algorithm is generally the most important aspect of concem. In this

section, the complexity of mnning time for three algorithms is anal yzed and compared.

It can be noted that there are four function calls inside three aigorithms, which was not s h o w in

previous sections. They are:

Sortïng function, which sorts requests or sub-requests by different crïticaIim

Querying fûnction, which queries machine utilization infornation withïn a specific duration

fkom a time dot tabCe;

Marking function, which marks new reservations on a rinte dot table for a specific machine

within a specific duration;

Canceling fünction, which cancels reservation fiom a fime dot table for a specific machine

within a specific duration-

It is obvious that these four functions cannot be completed within one basic operation- The

detexmination of running tirne upper bound for these four h c t i o n s is dependent on what kind of

algorithm or data structure these fuoctions use. It can be noted that for the purpose of comparing

the running t h e of Co-RSPB and Co-RSBF, the values of tirne for these four hc t ions

will not affect the cornparison result. Therefore, let Si, T,, Tm, and Tc is the d g time for

function sorting, querying, marking and canceling, respectively. Where i is the number of items,

which will be sorted. Thus, the running tirne upper bound for both Co-RSPB and Co-RSBF is

O(SN + NSK i- NMKT, + NK~T,) if (KTc > T 3 or O(SN + NSK + NMKTq + NKT,) if (KT, c

Tm), where N is the number of requests in Rmeta M is number of machina participateci in

schedding and K is the number of sub-requests in Rk-sub-meta-

From Figure 5.4, 5.7 and 5.8, it can be noted that the Nnning time upper bound for Co-RSBFR is

the running time upper bound for Co-RSBF plus the running time upper bound for the refining

procedure, that is O(SN + NSK + NMKTq + NK'T~ + NKT,).

From the above analysis, we koow that Co-RSPB and Co-RSBF have the same ninning time

upper bound. However, the runnïng tirne upper bound of CoRSBFR is higher.

5.6 Simulation Results and Discussion

This section presents some results fiom a simulation study designed to evaluate the performance

of the algorithm provided in the previous sections. in the simulation study we compared the Co-

RSPB with Co-RSBF as well as Co-RSBFR. A discrete event simulator was written using the

PARSEC language [BaM98] for comparing the three reservation schemes. In the simulations, the

reservation requests amved randomly according to a Poisson arriva1 process. With each request,

several attributes were associated to define parameters like reservation start the, end tirne, sub-

requests, percentage of resource, shape of the benefit function, prïority, etc. The benefit fùnctions

were restncted to the four shapes in Figure 1.1 such that each function is used by 25% of total

requests. Time slot table for each machine is maintaiaed by a modified version of the data

structure called Interval Skip List BaJ96J. The following parameters are true for the simulation

results presented unless stated otherwise.

1 0 machines participated in the simulation;

Machine CPU dedication to the Grid system was uniformly distributed in [50%, 100%];

It created 300 requests for each simulation, Each request consist of 1 to 6 sub-request;

Each reservation (for each sub-request) requested for CPU usage was unifomly distributed

in [IO%, go%];

Requested duration was uniformly distributed in 20- 180 time units (PARSEC clocktype);

Requested starting times were uniformly distributed over 4,320 time units;

The priority of request was uniformly distributed in [1, 1001;

80% percent of requests required floating machines;

Scheduling interval was 50 time units;

Time was slotted with a granularity of one time unit.

Figure 5.9(a) shows the variation of systern benefit with the number of requests. Figure 5.9(b)

shows the variation of the number of rejections with the number of requests. The simulation

created requests which ranged fkom 100 to 1,900. Figure 5.1qa) shows the variation of system

benefit with the number of machines. Figure 5.10(b) shows the variation of the number of

rejections with the number of machines- The number of machines paaicipated in this experiment

ranged fiom 4 to 40. Figure 5.1 1(a) shows the variation of system benefit with the average of

duration. Figure 5.1 l(b) shows the variation of the number of rejections with the average of

duration. The average requested dwation varied in the [24, 1591 ranges.

From Figures 5.9(a), 5.10(a), and 5.1 l(a), it can be noted that the system benefit for Co-RSPB is

considerably higher than that for Co-RSBF and Co-RSBFR in aii three cases. It's easy to

understand that the system benefit for Co-RSBF is always lower because each application is

given the minimum benefit in each scheduling interval even though the resource is enough to

give more benefit to applications. Two reasons may result in why Co-RSBFR gives lower system

benefit than Co-RSPB does. One is: even though Co-RSBFR can give a less a number of

rejections, fkom system benefit calculation mode1 described in previous section, the pnonty of

application is an important factor for system benefit. Without considering pnonty in Co-RSBFR

scheduling leads to lesser number of rejections but a lower system benefit. The second reason is

Co-RSBFR may have the same number of rejections as Co-RSBF in one scheduling interval, but

the refining procedure makes more resource unavailable for later scheduling than Co-RSBF

does. This may lead to higher number of rejections o c c h g for the overall scheduling

procedure, therefore resulting in a Iowa system benefit. From Figure 5.9(b), S.lû(b) and 5.1 l(b),

this assumption is approved.

Another fact is that when resources are not scarce the system benefit for Co-RSBFR is

considerably higher than that for Co-RSBF. However, when resources are extremely scarce, the

systern benefit for Co-RSBFR is very close to the benefit for Co-RSBF. This is because when

resources are extremely scarce, after Co-RSBF scheduling, there will be very limited resources

available for the refining procedure. Therefore, the refining procedure cannot make a significant

difference to overall systern benefit

From Figure 5.9(b), 5.10(b) and 5.1 1 (b), we can note that as we analyzed previously, the number

of rejections for Co-RSBFR is much higher than that for Co-RSPB and Co-RSBF. The number

of rejections for Co-RSBF is the lowest as we expected. The number of rejections for Co-RSPB

is about 10% higher than that for Co-RSBF and thk difference increases slightly when resource

becomes scarcer.

Figure 5.12(a) shows the variation of systern benefit with an inçrease in the percentage of

floating requests. Figure 5.12(b) shows the variation of the number of rejections with percentage

of floating requests. The percentage of requests asking for floating machines ranged fiom O to

100%.

number of submitted reqwsts
- - - -- - - -- - - -- - - - - - ---- ---

(a)

1 O00

number of tequests

Fiçiure 5.9: (a) Svstem benefit and (b) number of reiections versus number of reauests.

15 20 25 30

number of machines

15 20 25 30

number of machims

Figure 5.1 0: (a)System benefit (b)number of rejections versus number of machines.

40 60 80 1 00 120 140

average of rssewation dutation

60 80 100 1 20 140

average of resewation du ration

Figure 5.1 1 : (a) System benefit (b) number of reiections versus reauested duration.

0.4 0.6 0.8

percent of floating

0.4 0.6 0 -8

percent of floating

Figure 5.1 2: (a) System benefit (b) number of rejections
versus oercentage of floatinçi rwuests.

40 60 80

highest priority

40 60 80

highest priority

Figure 5.1 3: (a) System benefit (b) number of rejections versus scope of priority.

From Figure 5.12(a) and 5.12(b), it can be noted that when ail requests ask for fixeci machines,

the number of rejections are highest, &&ore the system benefit are lowest for al1 three

algorïthms. As the percentage of requests requiring floating machines increases, the number of

rejections for d l three algorithms decreases and the system benefit increases, This is because the

requests for the fixed machines have less flexibiIity, therefore increasing the chance of

rejections-

Figure S.l3(a) shows the variation of system benefit with pnority. Figure 5.13(b) shows the

variation of the number of rejections with the highest p w t y . The lowest priority is set to be 1.

The highest priority ranged fiom 10 to 100.

From Figure 5.13(a) and 5.13(b), we c m see that the scope of pnority does not affect the value

of system benefit and the number of rejections- This proves that the system benefit caiculation

mode1 descnbed previously is correct.

6 CONCLUSIONS GND FUTURE WORK

This project presents a resource management architecture supporting advance reservations for a

Gnd computing system and introduces a novel way of incorporating QoS constraints as well as

priority into an advance reservation systern including a CO-reservation scheduling algorithm. The

project compares the performance of the proposed RSPB algorithm with an existing advanced

reservation algorithm, namely the Resource Broker, and compares the performance of Co-RSPB

with two comparison algorithms developed in this thesis, and analyzes the simulation results.

The QoS constraints are specified using an abstraction cafted benefit functions. Although the

proposed algorithm is designed to reserve CPU resources, it is easy to extend the algorithm to

reserve other resources such as network bandwidth, disk, memory, etc. It is also possible to

extend the algorithm to support multiple dimension benefit fùnctions, such as time deadline

benefit functions. The primary contributions of this thesis are:

Designing a resource management architecture supporting advance reservations for a Grid

computing system;

lntroducing a novel way of incorporating QoS constraints and pnonty into an advance

reservations scheduling algorithm for a Grid computing systern;

Developing a Rese~vation Scheduler with Priorities and Bene@ Functions (RSPB), which

improves the performance of existing approach (RB) by considering priorïties and benefit

functions associating the application;

Developing a Co-Resevvation ScheduZer with Priorities and BeneJit Functions (Co-RSPB),

which is the first CO-resewation scheduling algorithm separating fiom traditional scheduling

for admission control in Grid computing system;

Developing two comparison aigorithrns Co-Reservation Scheduler with Best Fit scheme (Co-

RSBF), and Co-Reservation Scheduler with Best Fit and Refine scheme (Co-RSBFR), as

base line to evaiuate the performance of Co-RSPB. Simulation resuits show that the Co-

RSPB has a very good pelforrnance by satisfjing larger number of reservation request.

Developing a novel system benefit calculation mode1 to quanti@ the system performance in

tenns of QoS senrice.

Several future directions are identifid for fürther investigation. Some of them include:

Developing schemes for incorporating multiple QoS constraints into the admission control

problem;

Comparing different data structures to h d fastest algorithm for searching in the time slot

tabIe;

Extending reservation of CPU resources to reservation of other resources, such as network

bandwidth, disk, mernory, etc.;

Designhg protocols to address communication overheads problem;

Implementing the prototype of a QoS driven RMS using the proposai aigorithms.

AC

MI

ARS

BFD

CO-RSBF

CO-RSBFR

CO-RSPB

CPU

DSRT

ERDoS

GARA

H-SFQ

L W

PARSEC

P W

QLinux

Qo s

RB

RIS

RMS

Admission Controller

Application Programmer's interface

Advance Reservations Server

Best Fit Decreasing algorithm

Co-Reservation Scheduler with Best Fit scheme

Co-Reservation Scheduler with Best Fit and Refïne scheme

Co-Reservation Scheduler with Priorities and Benefit fûnctions

Central Processing Unit

the Dynamic Soft Real Time system

the End-to -End Resource Management of Distributed S ystem QoS architecture

A Globus Architecture for Reservation and Allocation

Hierarchical Start-time Fair Queuing

Lazy Receiver Processing

PARallel Simulation Environment for Complex System

Parallel Virtual Machine

A QoS enhanceci Linux kernel for multimedia computing

Quality of Service

Resource Broker

Resource information Service

Resource Management System

RSPB Reservation Scheduler with Priorities and Benefit hctions

RSVP Resource ReSerVation Protocol

RT Real-Time

SFQ S tart-tirne Fair Queuing

WUrW World Wide Web

[DSRT]

[FeG95]

REFERENCES

R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, B. Park, and H.

Song, "PARSEC: A Parallel Simulation Environment for Cornplex System",

IEEE Computer, Vol. 3 1, NO. 1 O, Oct, 1998, pp.77-85.

S. Berson, R, Lindell, and R. Braden, An Architecture for Advance Resewations

in the Internet, technical Report, USC Information Sciences Institute, Los

Angeles, Suly 1998.

H. Chu and K- Nahrstedt, "A Soft Real Time Scheduhg Server in UNIX

Operating S ystem", in Pruceedings of DMS'97, (European Workshop on

Interactive Distribufed Mzlltimedia Systems and Telecornmunication SeMces),

Septernber 1997, Darmstadt, Germany.

S. Chatte rjee, B. Sabata, and J. J. Sydir, ERDoS QoS Architecture, Technical

Report ITAD- 1667-TR-075, SRI International, Califomia, May 1998.

software for DSRT, http ://miro .cs.uiue.edu~software/DSRT-2/dsrt-2.html

D. Ferrari, A. Gupta, and G. Ventre, Distributed Advance Reservation of Real-

Time Connections, technical Report, TR-95-008, Telnet Group, University of

Califomia and international Computer Science Institute, Berkeley, March 1995.

1. Foster and C . Kesselman, "Globus: A metacomputing M?astructure toolkit,''

International Journal of Supercornputer Appficafiuns and High Peformance

Computing, Vol. 11, No. 2, summer 1997, pp. 115-128.

I. Foster and C. Kesselman, The Grid: Blueprint for a Nav Computing

Itfrasbucture, Second Edition, Morgan Kauhann, 1999.

voK99bl 1- Foster, C. Kesselman, C , Lee, B. Lindeli, K. Nahrstedt, A. Roy, "A Distriïuted

Resource Management Architecture that Supports Advance Reservation and Co-

allocation," in Proceedings of Seventh E E E International Workshop on @al@

of Service (WQoS 99). London, UK, May 3 1 - June 4, 1999.

[Fos991 1. Foster, "Building the Grid: Integrated SeMces and Toolkit Architecture for

Next Generation Networked Applications",

http://www.gndfonim.org/buildin&-the-d-htm, 1999.

Far991 G. Garheila, "Advance CPU Reservations with the Dynamic Soft Real-Time

Scheduler", Master's Thesis, University of illinois at Urbana-Champaign, 1999.

[GoG96] P. Goyal, X. Guo, and H.M. Vin, "A Hierarchical CPU Scheduler for Multimedia

Operating S ystems", Proceedings of 2nd Symposium on Operaring System Desi@

and Impiemenration @SDI'96), Seattle, WA, October 1996, pp. 107- 122.

[HaJ96] E. Hanson, and T. Johnson, "Selection Predicate hdexing for Active Databases

Using lnterval Skip Lists," Information Systems, Vol. 21, No. 3, 1996, pp. 269-

298.

[IS List] software for Interval Skip List, http://www.cise.ufl.edd-hanson/IS-lsits/

[JoG99] W. E. Johnston, D. Gamon, and B. Nitzberg, "Information Power Grid

Implementation Plan: Research, Development, and Testbeds for High

Performance, Widely Distributeci, Collaborative, Computing and Information

S ystems Supporting Science and Engineering," NASA Ames Research Center,

http://www.nas.nasa.gov/lPG, 1999.

~ o o l K. Kim and K. Nahrstdt, "A Resource Broker Model with Integrated Resewation

Scheme", Proceedings of EEE international Conference on Multimedia and Expo

2000 (ICMESOOO), New York, NY, July 3 1 - August 2,2000.

[Legion] Legion home page, http://www.cs.virginia.edul-legod

Wah99I M. Maheswaran, "Quality of Senice Driven Resource Management Aigorithms

for Network Cornputing," 1999 International Conference on ParaIlel and

Disrributed Processing Technologies and Applications (PDPTA '99). June 1 999,

pp. 1090-1096.

[Mahûl] M. Maheswaran, "Data dissemination approaches for performance discovering in

Grid Computing S ystem," 1 oth IEEE Heterogeneous Computing Workshop (HCW

200 l), Apr. 200 1, to appear,

[MaKOOa] M. Maheswaran and K. Krauter, A Parameter-based Approach to Resource

Discovery in Grid Compfing System, Technical Report TR-CS00-13, Department

of Cornputer Science, University of Manitoba, Winnipeg, May, 2000-

[MaKOOb] M. Maheswaran and K. Krauter, "A Parameter-based Approach to Resource

Discovery in Gnd Computing System," 1" IEEUACM International Workshop

on Grid Computing (Grid 2000), Dec. 2000.

[Man991 F. Manola, Characterizing Cornputer-Related Grid Concepts, technical report,

Object services and consulting, inc., Texas, March, 1999.

http://www.objs.codagi1ity/tech-report~/9903-grid-report-~.htd

[PARS EC] PARSEC home page, http://may.cs.ucia.edu/projects/parsec/

[PVM] PVM home page, http://www.epm.oml.gov/pdpvmvmhome.html

[Q Linux] software for Qlinux, http://www.cs.umass .edu/-lass/software/qlhux

[ScN99] O. Schelen, A. Nilsson, J. Norrgard, and S. Pink, "Performance of QoS Agents for

Provisioning Network resources", In IFIP Seventh International Workshop on

Quality of Service (IWQoS'99), London, UK, June 1999.

[ScP98] O. Schelen, and S. Pink, "Resource Sharing in Advance Reservation Agents",

Joirinal of High Speed Networks, Special Issue on Multimedia Networking, 1 998.

[SmFOO] W. Smith, 1. Foster, and V. Taylor, "Scheduling with Advanced Reservations",

International Conference on Parallel and Dislributed Processing System. May

2000.

[VoK95] A. Vogel, B. Kerhervé, G. Bochmann, and J. Gecsei, "'Distniuted Multimedia

and QoS : A Survey," IEEE MultiMedia, summer 1995, pp. 10-19.

c m 9 3 1 L. Zhang, S. Deering, D. Estrin, S. Shenkar, and D. Zappala, ""RSVP: A New

Resource ReSerVation Protocol," IEEE Networks, September 1993, pp, 8- 18.

