NOTE TO USERS

This reproduction is the best copy available.

Scheduling Advance Reservations with Priorities

in Grid Computing Systems

by

A thesis

Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba, Canada

© Rui Min, 2001

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Straet 395, rue Wellington
Ottawa ON K1A ON4 Ontawa ON K1A ON4
Canada Canada
Your Sl Votre réldrence
Our Sla Notre rétérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-62798-5

Canadia

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

kR *

COPYRIGHT PERMISSION

SCHEDULING ADVANCE RESERVATIONS WITH PRIORITIES IN GRID COMPUTING
SYSTEMS

BY

RUI MIN

A Thesis/Practicum submitted to the Facuity of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree
of

MASTER OF SCIENCE

RUI MIN © 2001

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and
copied as permitted by copyright laws or with express written authorization from the copyright
owner.

I hereby declare that I am the sole author of this thesis.

[authorize the University of Manitoba to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

Rui Min

I further authorize the University of Manitoba to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Rui Min

Abstract

Grid computing systems utilize distributively owned and geographically dispersed
resources for providing a wide variety of services for various applications. One of the key
considerations in Grid computing systems is resource management with quality of service
constraints. The quality of service constraints dictate that submitted tasks should be
completed by the Grid in a timely fashion while delivering at least a certain level of
service for the duration of execution. Because the Grid is a highly “dynamic” system due
to the arrival and departure of tasks and resources, it is necessary to perform advance
reservations of resources to ensure their availability, and to meet the requirements of the

different tasks.

This thesis introduces two new scheduling algorithms for advance reservations including
co-reservations, namely, Reservation Scheduler with Priorities and Benefit Functions
(RSPB) and Co-Reservation Scheduler with Priorities and Benefit Functions (Co-RSPB).
The algorithms consider the relative priorities of various reservation requests while
scheduling reservations. The benefit function is used to quantify the “profit” for the client
in order to remove the re-negotiation overhead in case of resource scarcity. Simulations
are performed to compare proposed algorithms with an existing approach or with some
comparison algorithms developed as basic comparison line in this thesis. The results
indicate that the proposed algorithms can improve the overall the performance by

satisfying larger number of reservation requests.

Acknowledgements

I would like to express my sincere gratitude to Dr. M. Maheswaran for his valuable
guidance, encouragement, and his patience throughout the research project. I have greatly
benefited from his expertise and constant help and advice, without which this thesis
would not have been possible. [am also thankful to the thesis committee members, Dr. R.
McLeod and Dr. A. Rueda, for being on my thesis committee. Also, I would like to thank

Dr. R. McLeod for his valuable suggestions and help throughout the course of this thesis..

I express my acknowledgement to Kumaran Subramoniam for carefully reading early

draft of this thesis and giving a number of useful suggestions.

I am deeply indebted to my parents for their support and sacrifices without which I
certainly would not have reached where I have. I'd especially like to thank my husband,
Ming-Dong, for his love, encouragement, and support. Finally, I express my hearty
gratitude to my son Jesse and my daughter Cathy for their patience, understanding and

for being constant source of inspiration.

i

Table of Contents

I INETOAUCHION. «.ecnveeenerrereeeasensasecaeatanscessasessssssnesnnssrsessssesssssaasssne s sess s s sne e smesnnnnssassanassenes 1
1.1 Preliminary RemMArKS...... .o cee e 1
1.2 WHRAL IS GIAd...eeeeeeeeeceeee e ceece e ot eceeeeccsssnesen s ssssne s s as e s arm s sneess s s e s e e snnnsenssssass 1
1.3 QoS Requirements in Grid..........eemmirmieeeieeeneeneceencnenss ceeerenemeaneaneseres 2
1.4 Basic Concepts in QOS......cccovrrrrrniseerrisissremrre et s ctsernssesssanesesecssesnnerens 3
[.5 Motivation and SCOPE Of TRESIS....c.cueomrecriieeeeceeeee e aeees 8
1.6 SUCHUTE Of TRESIS. . .eeeoceeeceereeeemreeecerceeeearecocssneensernsrssnnsrasee s s aesnssasessrsasasanssnsssss 11

2 ReElAted WOTK.....ceoeeceeeeceerreieeeeeeesetssetiinsenieessstssssssssssssesssssmssessesssmssnesssnssssesssassnsasessss 12
2.1 Preliminary REMArKS. ... esane s 12
2.2 Advance Reservations for Communication Network.........cccoovemimiiiiciicnncccenens 12
2.3 Advance Reservations for Grid Computing.............ccccoemmerrmmrinicrinmerreeeeaseceraacnne 14

2.3.1 Scheduling Advance Reservations on Single Machine................cccccoaveaeenee. 14

2.3.2 Scheduling Advance Reservations on Multiple Machines (Co-reservation)..15

2.4 QoS Supported CPU Scheduler...........coeemmeeeeeeee e 16
2.5 Benefit Function Related Projects........ccccciceiiervcmnvreeininmennniniicsssecnsensnenssseenns 17
3 SYStEM MOGEL.......neeeeeeeeeeeeceeeee e serrrerreesenree s e ss s e s i s s s s e st ese s ba s e s b e s nanten 18
3.1 Preliminary Remarks.....c.ccoo i e 18
3.2 Grid Resource Management ArChiteCture............cccoeerrmmrierinriccmneceeereenensresnnenns 18
3.3 Schedule RESEIVAtIONS............ceeirmireireceruniescssnsensnnsesseeesnieessnrisssssssssssressnssnssssaces 22
3.4 About the Time SIOt Table......ocoucmimeecc e 23

4. RSPB: Reservation Scheduler with Priorities and Benefit Functions..... 27

4.1 Preliminary REMATKS.....ccoeoereniceeieticcneeeseerrenessssenneesrnesieseesssnesnasssnessasassosses 27
4.2 Assumptions - eecesseesesessesnesseesresesraneeaanenssnessnnnnaaaes .27
4.3 Notations and Mathematical Model............c.ccooririeecccrcnrrererseneeneenees 28
4.4 Reservation Scheduling with Priorities and Benefit Functions.................... 29
4.5 Simulation Results and DiSCUSSION.........c.ceevveeerseercveererermmiereienereessnnereresers e eneeees 32
5. Co-RSPB: Co-Reservation Scheduler with Priorities and Benefit Functions............... 39
S.1 Preliminary Remarks........ccoceeeeeeeevveecrccereorsresconeennennnnes eeeeenaeensraeananes .39
5.2 Notations and Mathematical Model........c.cueoiooeeereeeeee e 40
5.3 Co-Reservation Scheduling with Priorities and Benefit Functions........................ 42
5.4 Comparison AIGOTIthIS.........coueniaaeccereeee et ee e s s e 46
5.5 CompleXity ANALYSIS....coccmieieeeeeeierceeeereeecceesieterseerteneerstesssassstessssssssrrensennnen 51
5.6 Simulation Results and DiSCUSSION.........c..cccoeccecirinreerirrrrrrniiireseressseessssaesssessnnne 53
6. Conclusions and FULUTE WOTK............e e e cecccnneecsreeenieesscoseesssssssssssssssssnnnns 62
ACTOTLYITIS.uuemeeeeimeeeeeeeeeceeeeanecscetasenseesesseseressesssansasmensossssosestssesasssssrossestasssemassssmssssnnnnsnnes 65
RETEIEIICES.........eeeeeeeeeeeceeeetineeeretetetee e teeeeecreeaeesnsessassssssssnssnerssnmsssssssssessassssssaserssnnssrernnnns 67

v

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 4.1

Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

Figure 5.7

List of Figures

Some examples of benefit function shape eeeemsensennnne 7
A resource management architecture for the Grid............cocoovvrniniinnnnnnen. 21
An example of a time slot table......... ..ot 24
Functions of a time slot table manager.........c.ccccecevvveemremrincmncerrereccererrrenens 26
Outline of the dynamic reservation scheduler............ccoccoerivuureerninnmeemnnnnees 29
A priority and benefit function based scheduling algorithm for indivisible
TESEIVALIONS .cceeemenreeneememereresseciameeaaaacssomensacassnssssssssssssraressssssmerssssarersssssssresasases 30
Number of rejections versus number of requests..........ovvueeireeeveiiicirieneenenen. 34
Number of rejections versus number of machines......ccc.oveeevrevircneerennnen. 34
Number of rejections versus request duration...........cocveveevecieeriercereceeneeeneennes 35
The average of Reserved CPU versus the average of requested CPU........... 35
Sum of rejected priorities versus number of rejections...........c.oeeeeecneeeennnee. 37
Outline of Co-RSPB scheduling.......... ..ot eneees 42
Function floatScheduling for Co-RSPB...........ccceitieernoiniirteeenceececeeeeaenans 45
Function fixScheduling for Co-RSPB........cccoiiiiiiiiiiiecrerceccneevnrenene 46
Outline of Co-RSBF scheduling............cocooeeriiiiiiieccceenceece e 47
Function floatScheduling for Co-RSBF............cccccoviiimiinnctienceecccrensennans 48
Function fixScheduling for Co-RSBF.......... eerreeeerreeneeeaneas 48
Outline of Co-RSBFR scheduling...........cocoomieiiooooieiiiiierenceeereeeenens 49

Figure 5.8 Function refineScheduling for Co-RSBFR ...50

Figure 5.9 (a)System benefit and (b) number of rejections versus number of requests..55
Figure 5.10 (a) System benefit (b) number of rejections versus number of machines......56
Figure 5.11 (a) System benefit (b) number of rejections versus requested duration......... 57
Figure 5.12 (a)System benefit (b) number of rejections versus percentage of floating

TequestS......cceeeeennnnne eeeoeesesseesssenoeesetessesserteseenrrese e ranrasesesses s taane e nneas 59

Figure 5.13 (a) System benefit (b)number of rejections versus scope of priority............. 60

vi

1 INTRODUCTION

1.1 Preliminary Remarks

The rapid advancements in microprocessor technologies and computer communications have
facilitated the emergence of a new class of network-based applications. These applications are
different from the current ubiquitous WWW and WWW-based applications. They require
functionality that extends beyond the coordinated use of the network to encompass end systems,
data repositories, sensors, visualization devices, and advanced human computer interfaces. The
current Internet is not geared towards supporting such applications. Therefore, researchers have
proposed a generalized, large-scale computing and data handling infrastructure called the

Computational Grid (referred to as Grid in the following context) [FoK99a, Fos99, and JoG99].

1.2 What is Grid

The “Grid” in dictionaries has some concept of “network™ or “mesh”. The term “Grid” for
network computing is analogous to the power grid. A power grid links source of electrical power
together, and provides for widespread access to power with certain services. Similarly, a
“Computational Grid” is “a hardware and software infrastructure that provides dependable,
consistent, pervasive, and inexpensive access to high-end computational capabilities” [FoK99a].
In other words, a “Grid” is an Internet sized network computing system with millions of
machines distributed across multiple organizations and administrative domains to provide

dependable, consistent, pervasive, and cost-effective access to diverse services. To achieve this

goal, a Grid needs to provide several services including: resource description and discovery
mechanisms, reliable multi-party communications, resource management with quality of service

(QoS), access control, data location, etc. [Man99].

Five major application classes are identified for computational Grids [Man99]:

e Distributed supercomputing;
e High-throughput computing;
e On-demand computing;

e Data-intensive computing;

e Collaborative computing.

Although the tremendous advancements in computer communications and distributed computing
have enabled constructing and experimenting with several Grid prototypes (such as Globus
[FoK97], Legion [Legion], and PVM [PVM] etc.) and experiments based on these prototypes,
the Grid technology is very much in its infancy. Several key issues need to be investigated before
the Grid technology can see widespread deployment. Some of these issues include developing:

e Efficient mechanisms for location independent use of distributed components;

e Efficient and highly scalable resource discovery schemes;

e Mechanisms for efficient resource allocation and reservation;

e Quality of service brokering.

1.3 QoS Requirements in Grid

The Grid is a highly dynamic system. The components of the Grid that support the services are
referred to as the resource providers. Similarly, the components of a Grid that use the services

for problem solving are called resource consumers. In a Grid system, the resource providers are

likely to be owned and administered by different organizations and possibly governed by
different local policies. This means the resource providers will be committing varying amounts
of the resources to provide the services to the Grid depending on the local policy and local
demand for the resources. The resource consumers can also belong to different users with
varying levels of subscription and privileges. With traditional resource allocation mechanisms,
the fluctuations in the supply and demand situation in a Grid will impact the level of service
delivered to the resource consumers. Depending on the criticality of the applications associated
with a resource consumer, this may not be acceptable. To ensure that the sustained level of
service delivered to an application is within its requirements, the application’s quality of service
(QoS) requirements should be considered while allocating the resources. The mechanisms
involved in implementing the QoS requirements of an application vary with the specialization of
the Grid. For example, in a high-throughput computational Grid, an application may be
implemented by allocating time on a high-performance machine. Whereas, in a collaborative
computing Grid, a session might need the co-allocation of several resources. In such a situation,
the QoS requirements of an application should be mapped onto several resources. Due to the
uncertainties of resource availability, it is necessary to support advance reservations to provide

QoS guarantees in a Grid system.

1.4 Basic Concepts in QoS

Quality of service (QoS) represents the set of those quantitative and qualitative characteristics
(referred to as QoS parameters) of a distributed system necessary to achieve the required
functionality of an application. These QoS parameters are service specific. Different applications

may have different subsets of QoS parameters with various values required. For example,

bandwidth, delay, throughput, jitter, etc. may be the relevant QoS parameters for a
communication service. Whereas, CPU times and deadlines may be the relevant QoS parameters
for an application in a computational Grid. For some applications, these parameters may be
negotiable. For this kind of applications, the user may receive a certain degree of benefit if the
system provides a certain level of service measured by required subsets of QoS parameters

[ChS98] [VoK95].

QoS guarantees concerns user’s benefit. It signifies that the QoS received by the user would not
fluctuate with changes in resource usage by other applications and with changes in system state,
such as servers coming on-line and going off-line. QoS guarantees are generally grouped into
classes such as hard QoS, soft QoS and best-effort QoS. Hard QoS signifies that the user will
receive required QoS every instance. Soft QoS signifies that the user will receive required QoS
within a certain specified fraction of the instances. Best-effort QoS signifies that the user will not

receive any guaranteed QoS [ChS98]}.

To provide an increased expectation of promised QoS guarantees while allocating resources,
reservation concepts were first introduced in the area of communication network QoS [ZhD93].
There are two modes of reservation: immediate reservations and advance reservations.
Immediate reservations are also referred to as allocation where reserved resources are allocated
immediately. Advance reservations resource reservations in advance and the resources are used
in the future. This increases the expectation that resources can be allocated when demanded.
Without advance reservations, the user of the systern may have more chance to encounter

degraded service or even rejections.

In practice, many applications may have very large resource requirements and require multiple
resources simultaneously. For example, in a collaborative Grid, an application may require
resources from multiple computers and networks to execute. The mechanism that deals with
allocating multiple resources simultaneously is called co-allocation. Advance reservation of
multiple resources for a specific duration is referred to as co-reservation. Another frequentiy
used mechanism in QoS-driven resource management system (RMS) is admission control.
Admission control ensures that all applications accepted by the system will get guaranteed QoS

service by admitting an application only if there are sufficient resources in the system [ChS98].

An admission control process can make a decision either in a simple yes-or-no form or a more
sophisticated form that allows negotiation between the user and the system. A negotiation is a
process of making an agreement between the user and the system about decreasing the value of a
set of QoS parameters. The system tries to maximumings benefits to the user via the negotiation,
therefore, making the system work in a most beneficial manner. The decrease in the level of
service that is agreed upon during negotiation is referred to as graceful degradation and it is

caused by scarcity of system resources [ChS98] [VoK95].

Negotiation is usually performed in following way: the system provides several QoS degradation
options to the user, such as decreasing the reservation value for resources or delaying the starting
time for advance reservations. The user selects an option that can give the user the most benefit,
then, informs the system to make an agreement. Once the user gets a confirmation from the

system, a contract between the system and the user is assigned. Negotiation mechanism allows

the system to provide more efficient service for more users under QoS constraints. This
negotiation process adds considerable overhead to the system due to multiple messages being

transmitted between the system and the user.

Another important QoS concept used in this thesis is a benefit function. Benefit functions are an
abstractions developed to model an application's QoS requirements and preferences in the
communication network area. “The benefit function is a multidimensional graph specifying the
benefit that the user receives if the system provides a certain level of QoS. The dimensions of the
benefit function correspond to QoS metrics of interest to the application. The benefit function is
especially useful for facilitating graceful degradation between the application and the system.”
[ChS98]. If the system is not able to provide desired levels of QoS for an application due to
resource scarcity, the benefit function can then be used to make intelligent decisions without
asking the user regarding which QoS metrics to degrade, and by how much. Thus, reducing the

re-negotiation overhead.

Figure 1.1 shows some examples of benefit functions for CPU reservation in a Grid system.
Although, in these examples, benefit functions are used only for quantifying the CPU
requirements and only have two dimensions, it may be used for other resources as well as the

time constraints and can be extended to multiple dimensions to support multiple QoS parameters.

benefit benefit

> >
100% CPU 100% CPU

(a) ()

benefit benefit
A 7'\

— >
100% CPU 100% CPU

(©) (d)

Figure 1.1: Some examples of benefit function shape.

Figure 1.1(a) shows a benefi* function where the application does not gain any benefit if the
system does not reserve at least a certain fraction of the CPU. Figures 1.1(b), 1.1(c), and 1.1(d)
show cases where the application gains a reduced amount of benefit even if the system reserves
less amount of CPU than what is ideally required. From the different benefit functions in Figure
1.1, it can be noted that some requests have “hard” QoS requirements and others have “soft”” QoS
requirements. The requests with soft QoS requirements get some benefit even if the system does

not reserve the desired CPU percentage for them, although, the amount of benefit gained will be

lesser than a amount of benefit gained if the system would have reserved the desired CPU

percentage for them.

In case of resource scarcity, the RMS requires a way to evaluate the relative importance of
multiple, different applications which compete for the resource. The priority can be used to
represents the application’s importance. Depending on the different design objective, the priority
can be determined by different aspects. For example, in a commercial system, the priority can be
determined by the cost that the user is wiiling to pay for a service. In a military system, the

priority can be determined by the importance of the user or of the application [ChS98].

1.5 Motivation and Scope of the Thesis

As discussed above, Grid computing is an emerging paradigm for next generation distributed
computing. The Grid is a highly dynamic environment with on-line and off-line servers, and with
continuously varying demand from the clients. In such an environment, it is necessary to
consider QoS requirements of different clients to ensure that the resources are used in the most
beneficial manner. Due to the uncertainties of resource availability in a dynamic system such as

the Grid, it is necessary to support advance reservations to provide QoS guarantees.

In practice, different design objectives of a Grid system leads to different requirements of a
reservation algorithm. For example, in a high-throughput computational Grid, an application may
request to schedule reservations on a single high-performance machine. Whereas, in a
collaborative computing Grid, an application may request to schedule reservations on multiple

machines simultaneously (sometimes some machines may be directly specified) in order to

guarantee all required resources available while demanding. Therefore, it is necessary to design

different algorithms supporting advance reservations for different purposes.

This thesis presents an overall resource management architecture for a Grid environment and
proposes two algorithms for scheduling advance reservations on resources. Reservation
Scheduler with Priorities and Benefit Functions (RSPB) schedules reservations on a single
machine. Co-Reservation Scheduler with Priorities and Benefit Functions (Co-RSPB) schedules
reservations on multiple resources simultaneously. The two algorithms schedule reservations
while considering the relative priorities of the various reservation requests. Although, only CPU
resources are considered here, this approach may be generalized to other resources such as
network and storage. Also, in this thesis, immediate reservations are modeled as advance
reservations with current time as the start time and a predefined length for the duration. This

allows us to unify advance and immediate reservations.

In RSPB and Co-RSPB, each reservation request has an associated benefit function that
quantifies the “profit” accrued by the client, by securing the resource at the requested level.
When the client is willing to negotiate for lower service levels, it could indicate this by providing
a benefit function that shows a reduced but positive benefit for lower resource levels. This
facility provided by the benefit functions removes the need for negotiations when there is a

resource scarcity.

Furthermore, in Co-RSPB, requests for fixed machine and floating machine are also considered

in order to satisfy some applications with special resource requirements. Requests for fixed

machines require that, only specific machines can be mapped to each sub-request of an
application. Requests for floating machines have more flexibility, so that all sub-requests of an
application can be mapped to any machines in the system if the machine can satisfy the sub-

request’s QoS requirement.

Both RSPB and Co-RSPB can be implemented on top of a CPU scheduler such as the Dynamic
Soft Real Time (DSRT) system [ChN97, DSRT] or a QoS enhanced operating system kernel such

as QLinux [GoG96, QLinux].

The proposed algorithm RSPB is compared with an existing approach. The simulation results
indicate that the RSPB can improve the overall the performance by satisfying a larger number of

reservation requests.

Because there is no open literature available to compare with Co-RSPB, we also developed two
comparison algorithms Co-reservation Scheduler with Best Fit scheme (Co-RSBF) and Co-
reservation scheduler with Best Fit and Refine scheme (Co-RSBFR) as a base line to see the
performance of Co-RSPB. In order to evaluate the performance of proposed algorithms in terms
of QoS, a system benefit calculation model is developed. The simulation results indicate that Co-

RSPB has a very good performance by satisfying larger number of reservation request.

1.6 Structure of the Thesis

[n the following chapter, related work that appeared in the open literature is discussed. An

architecture for a Grid resource management system (RMS) and how the proposed scheduling

10

algorithms fit into the architecture is examined in chapter 3. The reservation scheduler algorithm
RSPB is presented in chapter 4. Using simulation studies, RSPB is compared with an existing
resource reservation algorithm and simulation results are also discussed in this chapter. In
chapter 5, co-reservation scheduler algdrithm Co-RSPB and two comparison algorithms Co-
RSBF, Co-RSBFR is presented. The complexity of running time of these three algorithms is
analyzed. The simulation results and performance for three algorithms are also discussed.

Finally, chapter 6 summaries the thesis and points out directions for future work.

11

2 RELATED WORK

2.1 Preliminary Remarks

A considerable amount of literature has been emerged on supporting advance reservations in the
context of network QoS that involves bandwidth guarantees. Network QoS can be given by using
a well-defined QoS model and a setup protocol such as RSVP [ZhD93]. However, the concept of
advance reservations is relatively new in the realm of Grid computing. There are very few
publications on this topic. This chapter will give a brief literature review on these two topics and

other topics directly relevant to this thesis.

2.2 Advance Reservations for Communication Networks

Foster et al. [FOK99b] proposes 4 Globus Architecture for Reservation and Allocation (GARA)
that enables co-reservation and co-allocation of heterogeneous resources (such as process, flow,
disk object, memory object, etc.) for end-to-end QoS guarantees in emerging, network-based
applications. It also addresses issues such as dynamic discovery and independently controlled
and administered resources. GARA treats both reservations and computational elements as first
class entities, allowing them to be created, monitored, and managed independently and
uniformly. A prototype of GARA implementation is described and performance results are

provided to quantify the costs of the techniques.

12

Schelen el al. [ScP98] describes an architecture supporting end-to-end resource reservations
through agents. An agent in each domain in the network performs admission control for
immediate and advance reservations. The architecture allows immediate and advance
reservations to share network resource without pre-partitioning. Information about advance
reservations is used to perform admission control for immediate reservations. In other words,
information delivered from advance reservations help prevent immediate reservations from being
rejected or even preempted. Simulation results are provided to show the effects of providing
advance reservations with this model and the cost in terms of resource utilization, the probability
of rejecting and preempting an immediate reservation. Schelen et al. [SCN99] provides a
prototype implementation of this model and focuses on obtaining performance measures for

admission control within a single link-state routing domain.

Berson et al. [BelL98] introduces a server-based architecture supporting advance reservations. It
is domain-based, and it allows simple functioning with inter-domain routing. In this architecture,
there is no reservation or multicast routing state needed in the routers until the reservation
becomes active. It allows applications to request advance reservations without the application

running during the length of the advance reservations.

Ferrari et al. [FeG95] discusses the requirements of the clients of an advance reservation service,
and distributed design of a multi-party, real-time communication scheme for such a service.
Simulation results are provided to show the performance and some of the properties of these

mechanisms.

13

2.3 Advance Reservations for Grid Computing

Depending on different design objectives of a computational Grid, a reservation algorithm can be

developed to support scheduling reservations either on single machine or on multiple machines.

2.3.1 Scheduling Advance Reservations on Single Machine

Garimella {Gar99] implements an Advance Reservations Server (ARS) that works in conjunction
with the DSRT [ChN97] to reserve CPU resources in advance. In ARS, the client needs to
specify some QoS parameters such as the percentage of CPU required as well as start time and
duration. Once the reservation request is admitted, the reserved resources will be available for
the client after the start time for the duration at the predefined percentage. However, in practice,
most applications have QoS requirements that are negotiable. Because ARS does not support re-

negotiations, it leads to higher number of rejected reservation requests.

The Resource Broker (RB) proposed in [KiN0O] integrates with the ARS presented in [Gar99].
The RB improves ARS to give a fast and constant response by using a CPU resource broker
model with a new admission control and also improves ARS by providing multiple negotiation
options for the clients. However, the occurrence of re-negotiation adds considerable overhead to
the system. Further, in order to allocate a resource to multiple competing applications, the
admission control algorithm requires a way to evaluate the relative importance of the different
applications. In this way, the admission controller can make decisions to reject less important

applications first to ensure a group of clients get the most benefit.

14

2.3.2 Scheduling Advance Reservations on Multiple Machines (Co-reservation)

Smith et al. [SmFO00] proposes and evaluates several algorithms for supporting advance
reservations in supercomputer scheduling systems. These algorithms improve traditional
scheduling algorithms by unifying scheduling traditional tasks from job queues with the
reservation requests. These advance reservations allow users to request multiple resources
simultaneously from scheduling systems at specific times. However, {SmFO00] allocates the “time
slots” exclusively, i.e., the resources are not reserved in a shared fashion by multiple clients for
the same duration. The applications are assumed to operate on a “best effort” basis and the
reservation requests are assumed to have different priority than the applications. These
differences in priorities are considered while the reservations and applications are scheduled by

the system. Fixing machine scheduling is not supported.

2.4 QoS Supported CPU Scheduler

The two advance reservation algorithms developed in this project are based on the assumption
that the local management service support immediate reservations. With traditional general
purpose operating systems such as Windows NT and Unix which schedule processes based on
the Time Sharing (TS) principle, the contracted advance reservations cannot be guaranteed when
they are allocated to the local resource. Therefore, a CPU scheduler supporting immediate

reservations is needed.

The Dynamic Soft Real Time (DSRT) System based on research in [ChN97] is a user-level

scheduler, which can provide processor CPU guarantees to soft real time periodic and aperiodic

15

tasks. The DSRT system is built on various platform including SunOS 5.7, SGI IRIX 6.5, Linux
(RedHat 6.2), and Windows NT. It provides functions including protection among real-time (RT)
processes, faiess among RT and non-RT processes, rate monotonic scheduling, and a fix to the

UNIX security problem.

A QoS enhanced Linux Kernel for Multimedia Computing (QLinux) is a replacement of Linux
2.2.x kernel with the ability to provide quality of service guarantees. It includes the following
features:

e Hierarchical Start Time Fair Queuing (H-SFQ) CPU scheduler;

e Hierarchical Start Time Fair Queuing (H-SFQ) network packet scheduler;
e Lazy Receiver Pocessing (LRP) network subsystem;

e Cello disk scheduling algorithm [not stable yet].

When a QLinux is enabled, any selected combination of these features will replace the standard

features/schedulers available in Linux.

The H-SFQ CPU scheduler is based on research in [GoG96]. Goyal et al. [GoG96] presents a
Start-time Fair Queuing (SFQ) algorithm for operating system supporting variety of hard and
soft real-time as well as best effort applications in a multimedia-computing environment. SFQ
enables “hierarchical partitioning of CPU bandwidth, in which an operating system partitions the
CPU bandwidth among various application classes, and each application class, in turn, partitions
its allocation (potentially using a different scheduling algorithm) among its sub-classes or

applications.”

I6

2.5 Benefit Functions in Related Projects

ERDoS [ChS98] describes “the End-to-End Resource Management of Distributed Systems QoS
Architecture, which enables adaptive, end-to-end, scalable resource management of distributed
systems. The purpose of the architecture is to delineate a common application programmer’s
interface (API) between and within the resource management layers so work by multiple
research groups can be integrated into a common product.” It provides domain-specific
application (such as command and control, multimedia, and medical domains etc.) QoS support.

ERDoS employs a Hierarchical System Model to deal with heterogeneous resource and system
scalable problem. QoS level for each application is effected depending on scheduling policy
when the state of system changes. Benefit functions are used to communicate user QoS
preferences of an application to the resource manager. In case of failure or scarcity of resource,
the resource manager uses this information to gracefully degrade application QoS, therefore,

minimize the adverse effect on each application user.

Maheswaran {Mah99] presents a dynamic and centralized scheduling algorithm for
computational resources in a network computing system. The algorithms takes into account
applications’ QoS requirements when scheduling. The level of service received by each
application is quantified by a benefit function defined for that application. The objective of the
algorithm is maximizing the total benefit provided to the applications. Simulation results are

presented to evaluate the performance of the algorithm.

17

3 SYSTEM MODEL

3.1 Preliminary Remarks

The Grid Resource Management System (RMS) in this thesis is designed to support advance
reservations and immediately allocations of resources, which is dedicated to the system. In order
to provide QoS guarantees, all applications coming to Grid for service with QoS requirements
are required to reserve resources before allocation. Applications requesting best-effort service are
not required to reserve resource in advance. The reservations can be either immediate or advance
reservations. For each application requesting QoS service, the user needs to specify following
parameters:

e Machine type on which the user desires to reserve resource;

¢ The starting time. It can be either current time for immediate reservation or future time for
advance reservations;

e The duration for the application execution;

e Preferred priority according to the importance of the application or the cost level which the
user is willing to pay; and

e Benefit function shape which indicates the user’s preference about QoS degradation in case

of resource scarcity.

3.2 A Grid Resource Management Architecture

The resource management architecture for the Grid is shown in Figure 3.1. The architecture
shows the components involved in advanced reserving and immediately allocating resources for

a user request.

18

In this architecture, when a user logs onto the Grid, the Grid launches a Client. The Client
authenticates the user. If the application request best-effort service, the application information
service (AIS) uses historical information and learning algorithms to predict the resource
requirements of an application’s running. For applications with hard or soft QoS requirements,
the resource requirements are specified by the user during application submitting stage. The
Client then interacts with the QoS broker to implement the applications that are submitted to it.
The QoS broker provides a virtual resource to the Client with the desired QoS attributes. This
virtual resource will also provide feedback to the Client if the capability of the virtual resource

drops sufficiently to affect the QoS attributes.

Depending on the extent of the Grid, there will be thousands of QoS brokers. When a Client
needs service it will connect to a QoS broker that is in its neighborhood. Once the Client
connects to the QoS broker, for each application, it submits the resource requirements along with
the desired QoS constraints to the QoS broker. By default, the application is provided the best-
effort service. Based on the level of subscription, the QoS broker will determine whether the
level of service requested by the Client is valid. This preliminary admission control will preclude

any Client from monopolizing the resources.

Once the QoS broker receives a valid request for resource allocation or reservation, it contacts
the admission controllers (AC) to implement it. The set of ACs contacted by a QoS broker is
determined by the resource discovery agent. The resource discovery agent could be implemented

in several ways. Several alternative approaches for scalable, high-performance resource

19

discovery agents for a Grid system are evaluated in [MaKOOa, MaKO00b, and MahO1]. The trade-
off of using general-purpose resource discovery/naming systems versus Grid specialized systems
are discussed in [MaK00a, MaK00b, and MahO1]. When there is multiple ACs that are willing to
schedule allocations and reservations towards a resource request, the QoS broker can use
different strategies in handling such a situation. One strategy would be to rank the resource
offerings and pass them onto the Client so that the Client could choose one to implement the
application. Another strategy is to select one resource offering using some heuristics and Client
supplied information. Yet another strategy would be to poll the eligible ACs in sequence and

select an offering based on some criteria.

Once the QoS broker finds an agreeable resource reservation from an AC, it forms a QoS
contract with the AC. Because the resources may not exclusively be under the Grid control (e.g.,
the resources may be used by owners without the Grids intervention), therefore the QoS contract
formed between QoS broker and AC may be violated. Therefore, the QoS broker should monitor
for any possible violations of the contracts and initiate renegotiations with the Client and the

admission controller to remedy them.

The QoS contract violation could be caused by two reasons: (a) fluctuations in resource
availability and (b) variation in the resource requirement of the application. The resource
management architecture presented here decouples the contract into two stages. This enables
more robust scheduling environments because when an application overruns the expected
resource requirement, the Client needs to renegotiate the contract with the QoS broker. A rogue

application would not affect the resource reservations of the other applications.

20

[

User J

acknowledge

[l

resource request

Application \ information (™~

i ! Client
information | guery/update (QoS buyer)
semnice
oS
resource (QoS) allocation/ F‘é%ﬁ%'é n&%o%gtion
information/modify
QoS broker

(

(QoS seller)

J

resource allocation/

information

resource request/
query/negg&ation

resource request

Resource
discovery/
co-allocation

resource request

allocation enforcement l allocation enfor Cementi
Resource Resource
scheduler scheduler
'?‘ query/info.
Resource L
information control/data control/data
service —J\ update

Resource

l
Resource

Figure 3.1: A resource management architecture for the Grid.

21

Resource Information Service (RIS) provides information of resources in terms of their load,
operating system version, installed software, availability, etc. the contents of information service
are updated by automated discovery and publication mechanisms. The information of a RIS is

queried by resource discovery agent to locate resources with desired QoS characteristics.

3.3 Scheduling Reservations

The admission Controller (AC) has two responsibilities:

e Making decisions about accepting an application’s request using proposed algorithm.
Applications requesting the best-effort service are always accepted by the AC;

e Enforcing allocation of reserved resources when an allocation request is received.

When an AC receives a reservation request from a QoS broker, the AC scans the time slot tables
in the required time duration for all machines which are controlled by the connected resource
scheduler. If the QoS requirements of the application (either hard QoS requirements or soft QoS
requirements) can be satisfied, the AC updates the time slot tables for selected machines with the
amount of promised resources and responds the user using the unique user ID. The value of the
parameter that has soft QoS requirements can be obtained from a user’s preferred benefit
function shape and the parameter value that can give the highest benefit to the user. Once the
application’s request is accepted by the AC, a contract about the application’s QoS guarantees
between the user and the system is assigned. This procedure only marks the time slot tables for
reservations. The reserved resource is not effective until an allocation request is received. If the
request is rejected, the QoS broker will try to contact with other Acs provided by the resource
discovery agent or re-negotiate with the user until the requested resource is found or the user

gives up the reservation.

22

The time slot table is updated every time interval, which is equal to a time slot, in order to keep
the first slot always being the current time slot. When the start time of an application is in the
first slot in the time slot table, the system is ready for the application’s execution using reserved
resources. Upon usage request’s arrival, the AC sends allocation requests to the resource
scheduler. The resource scheduler arranges the resources for an application’s execution. For the
application that is still running at the end of the requested duration, th: system will provide a
best-effort service to it. If the application terminates before the end of the requested duration, the
user can claim these reserved resources for other application’s execution without additional

reservation using the same user [D. Or the resources can be released automatically by the system.

The user also can modify or cancel the reservation before resources allocation occurs. In the case
of QoS degradation or reservation cancellation, the AC modifies the corresponding time slot
tables and cancels the QoS contract if reservation cancellation is required. On the other hand, if
the user requests more resources to be reserved, the AC has to perform the admission control

procedure again to make a decision as described above.

3.4 About the Time Slot Table

A time slot table is responsible for keeping track of current allocations and future reservations
for resources. Each individual resource has a mapped time slot table. Figure 3.2 shows an
example of a time slot table. It is a two-dimension Cartesian coordinate. The "y" axis represents
the percentage of the resource. The "x" axis represents the time, which is divided into a number

of slots. The first time slot represents the slot in which the current time is included.

23

percentage
of CPU

A

100%

Lo eerer i e e et elgd

time

Figure 3.2: An example of a time slot tabie

A time slot table manager is used to provide functions to maintain a set of time slot tables. It has
following responsibilities:

e Whenever a new resource is available for the system, the resource reports its percentage
value that can be managed by the system to the time slot table manager. The time slot
table manager then creates an empty time slot table for this resource;

e [f a resource is assigned with an advance reservation, the time slot table manager is
responsible for marking the time slot table associate with the resource in corresponding
slots with the reservation value;

e If a reservation on a resource is canceled, the time slot table manager is responsible for
erasing the reservation from the time slot table in corresponding slots with reservation
value;

e If a resource leaves the system, the time slot table manager is responsible for removing
the time slot table for this resource from the time slot table manager. Applications
assigned on this resource should be rescheduled on other resources. This procedure is
handled by the QoS broker;

e When the AC queries, the time slot table manager is responsible for providing

reservation information on all resources;

24

e In order to keep the first slot as the current time slot the time slot table manager is also

responsible for updating time slot tables every time interval, which is equal to a time slot.

The pseudo code of a time slot table manager is showed in figure 3.3. Class slotManager is a
time slot table manager responsible for managing time slot tables for all machines controlled by
the AC. Function initialize creates an empty slotManager at the system set up time. Whenever a
machine comes in, function create_slot_table creates an empty time slot table for this machine.
Then sends this to slotManager to manage. Function add_reservation marks the time slot table in
specific slots for a specific machine when the reservation is assigned on this machine. If the slot
is assigned with other jobs already, the value of reserved CPU for this slot is the sum of all
reserved CPU value. Otherwise, the slot is marked with the new reserved CPU. Function
query_slot_table is responsible for querying the reservation information on a specific machine in
a specific slot. Function update_slot_table decreases slot order by one every slot time interval.
This function ensures that the current time is always within the first slot. When a machine leaves
the system or encounters some failure, function handle_failure removes the time slot table for
the machine from slotManager. The reservations assigned on this machine needs to be
rescheduled using the unique user ID. Function cancel_reservation is responsible for canceling
reservations within given slots. Because the start time and the desired reservation duration from
an application can be an arbitrary value rather than slotted time used in the system, therefore,
function calculate_start_slot and calculate_end_slot interpret user’s arbitrary time value to

slotted value.

25

class SlotManager
function Initializer()
create an empty slotManager at system set up time;

function create_slot_table(machineName mj)
create an empty slot table table_mj;
sent table_mj to siotManager;

function add_reservation(machineName mj, startSlot t_start, endSlot t_end, CPUValue
CPU_rsv)
get table_mj from slotManager;
for (slot t =t_start, t<=t_end, t++)
if (t contains some CPU value)
get CPU percentage CPU_old already reserved in this slot;
CPU_new = CPU_old + CPU_rsv;
mark the slot with CPU_new;
else
mark the slot with CPU_rsv;
endfor

function query_siot_table(machineName mj, slot t)
get table_mj from slotManager;
return reserved CPU value in slot t;

function update_slot_table()
for each slot table in slotManager
for each slot in a slot table
new_slot_order = old_slot_order -1;
if (new_slot_order < Q)
cancel the slot with reservation in this siot;
endfor
endfor

function handle_failure(machineName m;j)
remove table_mij for slotManager;

function cancel_reservation(machineName mj, startSiot t_start, endSilot t_end, CPUValue
CPU_cancel)

get table_mj from slotManager;

for (slot t=t_star, t<=t_end, t++)
get CPU percentage CPU_old already reserved in siot t;
CPU_new = CPU_old - CPU_cancel;
mark the siot with CPU_new;

endfor

function calculate_start_slot(double start_time, int slot_interval)
get current_time;
startSlot t = floorFunction((start_time - current_time)/slot_interval);
return t;

function calculate_end_slot(double start_time, doubie duration, int slot_interval)
get current_time;
endSlot t = ceilingFunction((start_time + duration - current_time)/slot_interval);
return t;

Figure 3.3: Functions of a time slot table manager.

26

4 RSPB: RESERVATION SCHEDULER WITH
PRIORITIES AND BENEFIT FUNCTIONS

4.1 Preliminary Remarks

Reservation Scheduler with Priorities and Benefit Functions (RSPB), which schedules
reservations on a single machine, can be used in an admission control for a system such as high-
throughput computational Grid. RSPB schedules reservations while considering relative
priorities of various application requests. Benefit functions are used to model user’s QoS
requirements. Machine load balancing is also considered. A detailed description of the algorithm

is presented in this chapter. Simulation results and discussion are also given.

4.2 Assumptions

The algorithm is based on the following underlying assumptions. A centralized resource
reservation scheduler is assumed, i.e., all the resource reservations are performed by a
centralized unit. Requests arrive randomly based on a Poisson arrival process. Because the
requests are arriving in a random fashion in real time, the reservation scheduler cannot wait until
all the requests have arrived to commence the scheduling. It should make the decisions on the
requests as each one arrives or makes a decision after the arrival of a batch of requests. This
algorithm follows the later method. Once a request is granted the reservation, a contract for the
reservation is signed between the application and the system. The reservation scheduler won’t
examine the same request more than once except the case in which a QoS violation occurred.

This situation should be handled by a higher level QoS broker that engages in re-negotiation to

27

establish another reservation or a continuation of the current reservation. Based on the operating

policies, the reservation scheduler may find another reservation or the application may operate

under best-effort conditions.

4.3 Notations and Mathematical Model

Let m be the number of machines in the system. The machines are assumed to be homogeneous.

Let CPU_sys; represent the percentage of CPU of the j-th machine M; that is dedicated to the

Grid system. For each request Ry arriving at the reservation scheduler, following parameters are

defined.

tk-seare- Start time of reservation for Ry;

trend: €nd time of reservation for Ry;

CPU gt minimum CPU requirement of R, for delivering the maximum benefit to the
application;

pi: priority of R, due to limited amount of resources, the scheduler cannot meet the demands
of all the requests. When the overall demand exceeds the available resources, the objective of
the reservation scheduler is to minimize the sum of priority of the requests that are rejected.
This study uses heuristic approaches to achieve this objective.

Bi(pcp): the benefit function associated with R;. It gives the benefit which the client will
receive if it is reserved CPU at the requested level. Figure 1.1 shows some of shapes that the
benefit function could take for a reservation request. Although, in this project, benefit
functions are used only for quantifying the CPU requirements, it may be used for other

resources as well as the time constraints.

28

4.4 Reservation Scheduling with Priorities and Benefit Functions

This section examines RSPB reservation scheduling algorithm. In this study, each reservation
request involves a single resource, i.e., no co-reservation of resources is considered here. Figure
4.1 shows the outline of the dynamic reservation scheduler. In this scheduler, dynamically

arriving requests are collected for a predefined time interval to form a meta-request.

t=to: scheduler start time
At: inter-schedule time
while (true)
t=t+ At;
while (currenttime < t)
get current request R;
add R tO Rmata
if (requested start time of R < t)
t = current time;
endwhile
scheduleRmeta(Rmeta)
endwhile

Fiqure 4.1: Outline of the dynamic reservation scheduler.

The dynamic reservation scheduler makes a decision upon receiving a meta-request using the
scheduleR .., function that is shown in Figure 4.2. The scheduleRn.;; function is called in

following two situations:

& When the current time is equal to the current scheduling event time that is equal to ¢;

& The requested start time of request R is less than current scheduling event time t. This
ensures that requests with start time less than current scheduling event time is scheduled
before current time is equal to current scheduling event time. One example of this kind of

requests is immediate reservations.

29

function scheduleRmeta (Meta-request Rmeta)
2) Rk : the k™ request in Rmeta;
3) M; : the | machine in the system;
4) CPUmin-x - minimum CPU requirement when Rk
get lowest acceptable benefit from reservation;
(5) load_heaviestj(tm. ta) : the heaviest load of M; within a reservation duration tm to tn;
(6) CPU_smaliestj(tm, tn) : the smallest availability of CPU to reserve
for M; within a duration tm {0 tn;

(7) machQueuenard : 2 machine queue used to store machines
which can satisfy hard QoS request of R;
(8) machQueuesoft - @ machine queue used to store machine

which can satisfy soft QoS request of R;
9) Bik : benefit value which Rk can get from M;;
(10) Rnonsatisfy : meta-request used to store rejected requests;

(11) for all requests Rk in Rmeta

(12) sort the requests in descending order by pg;

(14) for each sorted request Rk in Rmeta

(15} reset machQueuenard and machQueuesof

(16) get tk-start and ti-end;

(17) calculate CPUmin-k according to selected benefit function shape;

(18) for each machine M; in the system

(19) get load_heaviestj(tk-start, tk-end);

(20) CPU_smallestj(tk-start, tk-end) = CPU_sys;j - load_heaviestj(tk-start, tk-end);
(21) if (CPU_smallestj(tk-start, tk-end) 2 CPUmax-k)

(22) machQueuenhard < M;;

(23) eise

(24) if (machQueuenard is empty)

(25) if (CPU_smallest;(tk-start, tk-end) = CPUmin-k)

(26) if (machQueuesoft contain machine M;)

(27) Bijk = Bk(CPU_ smallesti(tk-start, tk-end)):

(28) Bik = Bk(CPU_ smaliesti(tk-start, tk-end));

(29) it (Bjx > Bix)

(30) machQueuesoft < M;;

(31) eise

(32) machQueuesoit < M;;

(33) endfor

(34) if (both the machQueuenard and machQueuescst are empty)

(35) put the request Rk into meta-request Rnonsatisfy;

(36) else

(37) if (machQueuenard is not empty)

(38) select the machine with the lowest average CPU load within duration (tm, tn);
(39) else

(40) the machine in the machQueuesqtt is the choice

41) mark the time sfot table for this machine with requested reservation;
(42) endfor

Figure 4.2: A priority and benefit function based scheduling algorithm for indivisible reservations.

30

Figure 4.2 shows the pseudo code for the scheduleR,,., function. Line (12) sorts the requests in
Rmeta in descending order by the priority of the requests. This ensures that if multiple reservation
requests require reservation in the same duration, the requests with higher priority will be
scheduled first. This reduces the sum of rejected priorities thus ensuring the resources are used in

the most beneficial manner. Line (17) determines the minimum CPU requirement for request Ry

(i.e., CPU capacity at which R; can provide the lowest acceptable benefit to the application
according to the selected benefit function shape). This value will be used to determine if the
request should be rejected or admitted (with graceful degradation) in case of resource scarcity

and its hard QoS requirement cannot be guaranteed.

In this reservation model, a CPU resource may be temporally shared by multiple reservations,
that is, multiple reservations may overlap in time. Therefore, we need to determine the current
CPU usage for a given time interval before admitting a reservation. In Lines (19) and (38), the
current CPU (machine) usage is determined using time slot tables that keep track of reservations
that have already been accepted. The time slot tables only keep track of the partition of the CPU

that is dedicated to the Grid and thus, managed by the reservation scheduler.

Line (21) determines whether the examined machine can satisfy the hard QoS requirement of
request R;. If yes, this machine is put into a machine queue named machQueuep,,,4 for later

selection in line (38). Although it is not shown in the pseudo-code in Figure 4.2, the search for a
machine that satisfies the reservation request can be stopped when a machine that satisfies the

hard QoS is found. If none of the machines in the system can satisfy the hard QoS requirement of

Ry, the reservation scheduler will attempt to schedule the reservation with a degradation of the

31

CPU requirement for Ry if the benefit function is provided to allow for the degradation. Lines
(24) to (32) attempt to find a machine that satisfies this situation and this machine is considered
to satisfy the soft QoS requirement of R;. Lines (26) to (32) attempt to maximize the benefit

delivered to the application by the reservation.

Line (34) and (35) deal with the case where the system cannot provide the requested level of

service to Ry. The reservation scheduler checks the meta-request R,onsqarissy and sends rejections

messages to the clients that submitted the reservation requests in Rponsarisfy- The clients may

resubmit their reservation requests with modifications and these submissions will be considered
for reservation at the next scheduling event. Line (38) ensures that the load is distributed across

the machines.

4.5 Simulation Results and Discussion

This section presents some results from a simulation study designed to evaluate the performance
of the algorithm provided in the previous section. In this simulation study, the RSPB is compared
with the Resource Broker (RB) [KiNO0O]. For comparing the two reservation schemes, a discrete
event simulator was written using the PARSEC language (represents for PARallel Simulation
Environment for Complex System), which is a C-based discrete-event simulation language
[BaM98, PARSEC]. In the simulations, the reservation requests arrived randomly according to a
Poisson arrival process. With each request, several attributes were associated to define
parameters like reservation start time, end time, percentage of resource, shape of the benefit

function, priority, etc. The benefit functions were restricted to the four shapes in Figure 1.1 such

32

that each function is used by 25% of total number of requests. Time slot table for each machine
is maintained by a modified version of the data structure called Interval Skip List {HaJ96,
ISList]. The following parameters are true for the simulation results presented unless stated
otherwise.

e 10 machines participated in the simulation;

e Each machine dedicated 70% of CPU to the Grid system;

e Each reservation requested for CPU usage was uniformly distributed in [20%, 70%];

e Requested duration was uniformly distributed in 20-300 time units (PARSEC clocktype);

e Requested starting times were uniformly distributed over 4,320 time units;

e Time was slotted with a granularity of one time unit. The simulation time is 100,000 time

units. It created an average of about 10,505 requests.

Figure 4.3 shows the variation of the number of rejections with the number of requests. The
simulation time ranged from 10,000 to 120,000 time units and the averages of about 1063 to
12,604 requests were created. Figure 4.4 shows the variation of the number of rejections with the
number of machines. The number of machines participated in this experiment ranged from 2 to
20. Figure 4.5 shows the variation of the number of rejections with the average of duration. The

average requested duration varied in the [30, 350] ranges.

From Figures 4.3, 4.4, and 4.5, it can be noted that the number of rejections for RSPB is
considerably lower than that for RB in all three cases. This is because the benefit function is used
in RSPB. The requests that need to be re-negotiated in RB may be admitted in RSPB with
graceful degradation of QoS, provided they have specified soft QoS requirements using their

benefit functions. This reduces the number of rejections.

33

2500 -

2000 -

1500 -

1000 -

number of rejections

500 -

9000

8000 -

7000

4000

number of rejections

-1000

6000 -
5000 -

3000 -
2000 -
1000 -

2000 4000 6000 8000 10000 12000 14000
number of requests
Figure 4.3: Number of rejections versus number of requests.
——RSPB —=—RB
25

number of machines

Fiqure 4.4: Number of rejections versus number of machines.

34

5000 -

4000 -

1000

number of rejections

a O ~N o™
c O O O

average of reserved CPU
A N W M
o O © O

o

Fiqure 4.6: The average of reserved CPU versus the average of requested CPU.

3000 -

2000 -

Figure 4.5: Number of rejections versus request duration.

10

50

20

——RSPB _—=—RB_

100 150

request duration

200

——RSPB —#—RB —a—b

30

40

50

250

300

350

average of requested CPU

35

est case

60

70

80 |

Figure 4.6 shows the variation of the average of reserved CPU with the average of requested
CPU. The average of requested CPU ranges from 20% to 70%. For contrast, we show the ideal

case of satisfying each request to 100% as well.

In Figure 4.6, when the average of requested CPU is less than 25%, reserved CPU for all three
curves are the same. This is because when the requested CPU is lower, the system can satisfy all
requests. Therefore, reservations for all three cases are the same. When the average of requested
CPU is greater than 25%, three approaches deviate. In particular, RB and RSPB deviate from the

ideal approach.

The curve for RB is lowest before the average of requested CPU is less than 63%. The difference
between RSPB and RB becomes bigger and bigger for the average of requested CPU less than
50%. However, this difference becomes smaller and smaller after 50% and almost the zero after
63%. The reason for this is when the average of requested CPU increases, the number of satisfied
requests decrease. Therefore, the reserved CPU is decreased because of occurrence of rejections.
However, considering benefit function in RSPB helps it to reduce the number of rejections, thus
increasing the average percentage of reserved CPU. However, when the average requested CPU
is greater than 50%, the advantage of this mechanism is not pronounced. After 63%, this
advantage is almost none existent. This is because when the average of requested CPU is much
higher, for example 60%, most machines often only have two possible states, either be reserved
about 60% or idle. In our study, from four different benefit function shapes, the lowest CPU
reservation that the user can be allocated and still gets acceptable benefit is requested CPU

*25%. If in a certain time slot, let’s assume all requests ask for 60% CPU, then, all machines in

36

the system are reserved by 60%, when a new request comes even with lowest acceptable CPU

which is 60% * 25% (from selected benefit function shape), it will be rejected.

Figure 4.7 shows the result of sum of rejected priorities versus number of rejections. The
simulation time ranges from 10,000 to 100,000 time units. It created about an average of 1,063 to
10,505 requests. Requested starting times were uniformly distributed over 4,320 time units. But,
the difference from previous statement is that the starting time added an extra 300 time units in
order to avoid too many times such that only one request in metaRequest is scheduled.

Therefore, the advantage of ordering request by priority is more obvious.

——RSPB —=—RB

80000
70000 -
0000 -

o o

0000 -

H
o
o
o
o

30000 -
20000 -

sum of rejected priorit

10000 -
0 - - e e U

0 200 400 600 800 1000 1200 1400 1600

number of rejections

Figure 4.7: Sum of rejected priorities versus number of rejections.

37

From Figure 4.7, we can see the sum of rejected priorities of RSPB is less than that of RB. This
is due to priority ordering in RSPB. In RSPB, requests with higher priorities are always
scheduled prior to those with lower priority. This ensures when resources are scarce, requests

with higher priority have more chance of being admitted.

38

5 CO-RSPB: CO-RESERVATION SCHEDULER WITH
PRIORITIES AND BENEFIT FUNCTIONS

5.1 Preliminary Remarks

The difference between Co-Reservation Scheduler with Priorities and Benefit Functions (Co-
RSPB) and RSPB is that Co-RSPB schedules reservations on multiple resources simultaneously,
whereas RSPB schedules reservations on single resource. In some Grid systems such as
collaborative computing Grid, a common characteristic of applications is a need to allocate
multiple resources simultaneously. A challenge of co-allocation is, in a competition system,
some required resources might not be available when demanded. Thus, the application cannot be
executed with all required resources in desired time duration. To reduce the probability of
resource unavailability while co-allocating resources, a co-reservation algorithm Co-RSPB is
developed for a Grid system such as collaborative computing Grid. As with the RSPB described
in the last chapter, Co-RSPB schedules co-reservation while considering relative priorities of
various application requests. Benefit functions are used to associate a client’s QoS requirements.
Two comparison algorithms are also developed as a base line to compare the performance of Co-
RSPB. Detailed description of these algorithms as well as simulation results and discussion are
presented in this chapter. Because Co-RSPB is developed under the same assumptions as RSPB,

the section for assumptions is skipped in this chapter.

39

5.2 Notations and Mathematical Model

Let m be the number of machines in the system. The machines are assumed to be homogeneous.

Let CPU_sys; represent the percentage of CPU of the j-th machine M; that is dedicated to the

Grid system. For each request Ry arriving at the reservation scheduler, following parameters are

defined.

le-stare: Start time of reservation for Ry;

tr-ena: €nd time of reservation for Ry,

Rki: the i-th sub-request of Ry;

CPUmax_ki: minimum CPU requirement of Rki for delivering the maximum benefit to the
application;

P priority of R;. When the overall demand exceeds the available resources, the objective of
the reservation scheduler is to minimize the sum of priority of the requests that are rejected,
therefore to maximize system benefit. This study uses heuristic approaches to achieve this
objective.

Bki(pcpu): the benefit function associated with Rki. It gives the benefit R, will receive if it is
reserved CPU at the requested level. Figure 1.1 shows some of the shapes the benefit

function could take for a reservation request.

In the following algorithm description, notations below are also used:

CPUm;n,kiz minimum CPU requirement for Rki when Rki gets lowest acceptable benefit from
reservation,;

M;: the j-th machine in the system;

load_heaviestj(ty, t,): the heaviest load of M; within a reservation duration ty, to t,;
CPU_smallesti(tm, t,): the smallest availability of CPU to reserve for M; within a duration ty,
to t,. CPU_smallestj(tr, tn) = CPU_sys; - load_heaviest(ty, t,);

Bjki: benefit value which Ry’ can get from M;j;

40

® Ry _sub-meta® SUb-request queue of Ry;
e isFloating: Boolean variable, true if the request Ry asks for floating machines; false if the
request Ry asks for fixing machines;

e machQy.q: a2 machine queue used to store machines which can satisfy hard QoS request of

Ry
® machQ..s: a machine queue used to store machines which can satisfy soft QoS request of

Rki.

In order to quantify the system performance in terms of service, a system benefit calculation

model is also developed. Let by, b, ... b, be the benefit received by n sub-request Rkl, sz,
Ry" of application R at the QoS level at which it reserved. The maximum value for by, by, ... by
is set to be 1. Let By be the benefit that the application Ry receives. By is define as:

By =1/n2;b;
Thus, the maximum value for By is 1.
Let B be the benefit that the system provides. B is defined as:

B =2k wiBk
Where wy is the weight assigned to application Ry. This weight captures the importance of the
application. In this study, it related to the application's priority. Let pj, pa, ... pm be the priority of
applications Ry, Ry, ... Ry,. then the weight wy for the application Ry is defined as:

Wik =pk/ 2 pj

Thus, the maximum value for B is 1. Therefore, the objective of the system is to achieve benefit

value as close to 1 as possible.

41

5.3 Co-Reservation Scheduling with Priorities and Benefit Functions

This section examines the co-reservation scheduling algorithm. In this study, each co-reservation
request involves in multiple resources. If any one required resource is not available to the
application, the whole application will be rejected by the system. The outline of the dynamic co-

reservation scheduler is the same as Figure 4.1. Therefore, in this section, the description of co-

reservation scheduler is skipped and scheduleR .., function is presented directly.

Figure 5.1 shows the outline of scheduleR e, function. Line (2) to (4) sort the requests in Ry
in descending order by the priority of the requests. This ensures that if multiple reservation
requests require reservation in the same duration, the requests with higher priority will be
scheduled first. This reduces the sum of rejected priorities, thus ensuring the resources are used
in the most beneficial manner. Line (5) to (12) assign sub-requests to suitable machines for each
request. If the request requires floating machines, function floatScheduling is called. If the

request requires fixing machines, function fixScheduling is called.

function scheduleRmeta (Mmeta-task Rmeta)

@ for all requests Rk in meta-request Rmeta

(3) sort the requests in descending order by pk;
4) endfor

(5) for each sorted request Rk in Rmeta

®) get ticstat and tcend ;)

(7) get all sub_request Rk of Ry, put R« into Rk-sub-meta;
(8) if(isFloating == true)

9) floatScheduling(Rk-sub-meta, tk-start, tk-end);
(10) else

(11) fixScheduling(Rk-sub-meta, tk-start tk-end);
(12) endfor

Figure 5.1: Outline of Co-RSPB scheduling.

42

Figure 5.2 shows the pseudo code for the floatScheduling function for Co-RSPB. Line (3)

determines the minimum CPU requirement for each sub-request Rki of R, (i.e., CPU reservation

at which Rki can provide the lowest acceptable benefit to the application according to the selected

benefit function shape). These values will be used to determine if the request should be admitted
with graceful degradation of some or all sub-requests, or rejected when resources are scarce and
hard QoS requirement of some or all sub-requests cannot be guaranteed. Line (4) sorts the sub-

requests of Ry in Ry g,s-mera in descending order by minimum CPU requirement of Ry'. There are

two purposes for this sorting. First, for sub-requests with a higher CPU requirement, there is less
possibility to find a desired machine. Therefore, scheduling this Idnd of sub-requests first can
increase the possibilities, thus, reduce the chance of rejection for overall requests. The second,
because of a lower possibility to find a desired machine for sub-requests with a higher CPU
requirement, scheduling it first can make the scheduling procedure faster. This is because if a
sub-request with a higher CPU requirement is rejected by the system, the overall request is
rejected. Thus, it is no longer necessary to schedule other sub-requests with lower CPU

requirements.

In this reservation model, a CPU resource may be temporally shared by multiple reservations,
that is, multiple reservations may overlap in time. Therefore, we need to determine the current
CPU usage for a given time interval before admitting a reservation. In Line (9), the current CPU
(machine) usage is determined using time slot tables that keep track of reservations that have
already been accepted. The time slot tables only keep track of the partition of the CPU that is

dedicated to the Grid and thus, managed by the reservation scheduler.

43

Line (10) determines whether the examined machine can satisfy the hard QoS requirement of
sub-request Rki. [f yes, this machine is put into a machine queue named machQp,rq4. The size of
machQpuarq is set to be 1. Therefore, only one machine can be put into machQy,,q for each sub-
request. Line (11) to line (15) is used to select a machine that has smallest CPU availability to
satisfy the hard QoS requirement of sub-request Rki. Although it is not shown in the pseudo-code

in Figure 5.2, the search for a machine that satisfies the reservation sub-request can be stopped

when a machine that satisfies the hard QoS is found. If none of the machines in the system can
satisfy the hard QoS requirement of Rki, the co-reservation scheduler will attempt to sched;xle the
reservation with a degradation of the CPU requirement for Rki if the benefit function is provided
to allow for the degradation. Line (17) to (25) attempt to find a machine that satisfies this
situation and this machine is considered to satisfy the soft QoS requirement of Rki. Line (19) to

(25) attempt to maximize the benefit delivered to the application by the reservation.

Lines (27) and (30) deal with the case where the system cannot provide the requested level of
service to Rk". In this case, the overall request is rejected. All reservations for sub-requests, which

have been scheduled before R), should be canceled. Sub-requests that don’t have a chance to be

scheduled are no longer necessary to be considered. The co-reservation scheduler checks the
meta-request R,,nsqris and sends rejection messages to the clients whose submitted reservation
requests are in Ryonsarisf- The clients may resubmit their reservation requests with modifications

and these submissions will be considered for reservation at the next scheduling event.

function floatScheduling (meta-request Rk-sub-meta, start-time tk-start, end-time tk-end)
(2) for all sub_request Rk in Ri-sub-meta

(3) calculate CPUmink according to selected benefit function shape;

(4) sort sub-requests in descending order by CPUnmin-k;

(5) endfor i

(6) for each sub_requsest Rk in Ri-sub-meta

(7) reset machQnard and machQsoft

(8} for each machine M; in the system

(9) get CPU_smallestj(tk-start, tk-end); .

(10) if (CPU_smallestj(tk-start, tk-end) = CPUmax-k)

(11 it (machQnard contains another machine My)

(12) if (CPU_smallestj(tk-start, tk-end) < CPU_smalleste(tk-start, tk-end)
(13) machQhnard <- Mj;

(14) else

(15) machQnard <- Mj;

(16) else .

(17) if (CPU_smallestj(tk-start, ticend) = CPUmin-k)

(18) if (machQnard is empty)

(19) if (machQsoft contains another machine Mr);

(20) Bik = Bk (CPU_smallestj(ti-star, ti-end));

@1 Brk = Bi'(CPU_smallestr(ti-stan, tk-end));

(22) if (Bjk > Brk)

(23) machQsoft <- M;j;

(24) else

(25) machQsoft <- M;;

(26) endfor

(27) if (both the machQnard and machQson are empty)

(28) put the request Rk into meta-request Rnonsatisfy;)
(29) cancel reservation for Rk of which the order is bigger than R
(30) break;

(31) else

(32) if (machQnarg is not empty)

(33) the machine in machQnard is the choice;

(34) reserved CPU = CPUmaxk ;

(35) else

(36) the machine in machQsoft is the choice;

(37) reserved CPU = CPU_smallestj(ik-start, tk-end);

(38) mark the time slot table for this machine with reserved CPU;
(39)endfor

Figure 5.2: Function floatScheduling for Co-RSPB.

Figure 5.3 shows pseudo code for the fixScheduling function. Since all sub-requests have fixed

machine requirements, the algorithm here is much simpler than the previous one. The sorting

45

procedure in Figure 5.2 is not necessary here. Further more, for each sub-request, only the
desired machine need to be examined. Therefore, line (4) is used instead of a loop of number of
machines in Figure 5.2. Once the desired machine is examined, the decision that if this sub-
request can be satisfied is made immediately. The time slot table is also marked right after the

examination.

function fixScheduling (meta-request Rk.sub-meta, Start-time ty-siart €nd-time tx-end)
(2) for all sub_request R in Ri-sub-meta

(3) calculate CPUmin-k according to selected benefit function shape;

(4) get request machine M;;

(5) get CPU_smallest;(ti-start, tk-end):)

(6) if (CPU_smallest;(tk-start, tk-end) =2 CPUmax-k);

() mark the time slot table for this machine with requested reservation;
(8) else)

9) if (CPU_smallestj(tc-start, ti-end) = CPUmin-i)

(10) reserved CPU = CPU_smallestj(ti-start, tk-end);

(11 mark the time slot table for this machine with reserved CPU;

(12) else

(13) put the request R into meta-request Rnonsatisfy: .
(14) cancel reservation for Ry’ of which the order is bigger than Ry;
(15) break;

(16) endfor

Figure 5.3: Function fixScheduling for Co-RSPB.

5.4 Comparison Algorithms

To our knowledge, there is no similar algorithm available to compare with the performance of
Co-RSPB. Actually, the problem that Co-RSPB solved is much like a bin packing problem
[Wei95] if:

e We consider only the number of rejections from the system rather than the benefit that the
system can provide;
e All the requests have a hard QoS requirement rather than some requests have a soft QoS

requirement;

46

e For each scheduling interval, all machines have 100% CPU available to applications in R ,eq,-

Based on above observation, we designed a Co-reservation Scheduler with Best Fit scheme (Co-
RSBF) as a comparison algorithm to Co-RSPB. Co-RSBF is similar as Best Fit Decreasing
(BFD) algorithm in bin packing problem except the bin size (i.e. machine CPU availability in
this study) is not always 1. Co-RSBF focuses on the number of rejections from the system rather
than the benefit that the system can provide. Therefore, to reduce the number of rejections, all
applications are given the minimum benefit by giving all sub-requests the minimum CPU
reservations. As BFD in bin packing, Co-RSBF should give a result that is extremely close to

lower bound of rejections.

Figure 5.4 shows the outline of Co-RSBF. Instead of sorting applications by priority, Co-RSBF

sorts applications by the sum of sub-request’s minimum CPU requirements as in BFD.

tunction scheduleRmeta (Meta-task Rmeta)

(2) for ali requests Rk in meta-request Rmeta)
(3) sort the requests in descending order by Z; CPUmin-k ;
(4) endfor

(5) for each sorted request Ry in Rmeta

(6) gettkstartand tk-end; .

(7) getall sub_request Rk of Rk and put Ri into Ri-sub-meta;
(8) if(isFloating == true)

(9) floatScheduling(Rk-sub-meta, tk-start, tk-end);

(10) else

(11) fixScheduling(Rk-sub-meta, tk-start, tk-eng);
(12)endfor

Figure 5.4: Outline of Co-RSBF scheduling.

47

Figure 5.5 shows the floatScheduling function in Co-RSBF and Figure 5.6 shows the

fixScheduling function for Co-RSBF.

function floatScheduling (meta-request Rk-sub-meta, start-time ti.start, end-time tk-end)
(2) for all sub_request R in Rk-sub-meta;
(3) calculate CPUmin.« according to selected benefit function shape;

(4) sort sub-requests in descending order by CPUmin-k;
(5) endfor .

(6) for each subresquest Ry

7) reset machQsoft;

(8) for each machine M; in the system

(9) get CPU_smallesti(tk-start, tk-end);

(10) if (CPU_smallesti(tk-start, tk-end = CPUm.n-k)

(11) if (machQ contains machine M)

(12) if (CPU_smallesti(tk-start, tk-end) < CPU_smallestr{tx.start, t-end))
(13) machQsoft <~ M;;

(14) else

(15) machQsoft <~ M;;

(16) endfor

(17) if (machQesoft is empty)

(18) put the request Rk into meta-request Rnonsatisfv;

(19) cancel reservation for R« of which the order is bigger than Rk,

(20) break;

(21) else

(22) the machine in machQsoft is the choice;

(23) mark the time slot table for selected machine with reserved CPU = CPUm.n-k,
(24) endfor

Figure 5.5: Function floatScheduling for Co-RSBF.

function fixScheduiing (meta-request Rk-sub-meta. Start-time ti-start. end-time tx-end)
(2) for all sub_request Ry in Rk-sub-meta

(3) calculate CPUmink according to selected benefit function shape;

(4) get request machine M;;

(5) get CPU_smallesti(ti-start, tk-end);

(6) if (CPU_smallesti(tk-start, tk-end) 2 CPUmm-k)

@ reserved CPU = CPUmin-k;
(8) mark the time siot table for this machine with reserved CPU,;
9) else

(10) put the request Rginto meta-request Rnonsatisfy;

(11) cancel reservation for R’ of which the order is bigger than Rk,
(12) break;
(13) endfor

Figure 5.6: Function fixScheduling for Co-RSBF.

48

Although Co-RSBF can give results that are extremely close to the lower bound for rejections,

the benefit that the system can provide in Co-RSBF is minimum one because each sub-request is

given a minimum benefit. According to the system benefit calculation model, the benefit Bx =

1/n ¥; b; received by the user of the application is minimum. Therefore, the benefit B=3_; wiBi

that the system can provide is minimum. When the resources in a system are not extremely
scarce, this result should not be expected. Therefore, we designed another comparison algorithm
called Co-Reservation Scheduler with Best Fit and Refining scheme (Co-RSBFR). Co-RSBFR
uses the same floatScheduling and fixScheduling functions as Co-RSBF to schedule requests in
each scheduling interval in order to get lower rejections in each scheduling interval. Then,
without increasing the number of rejections, Co-RSBFR tries to extend CPU reservation for each
sub-request, thus extends system benefit within each scheduling interval. Figure 5.7 shows the
outline of Co-RSBFR algorithm.

function scheduleRmeta (Meta-task Rmeta)

(2) for all requests Ry in meta-request Rmeta)
(3) sort the requests in descending order by ¥; CPUnin-«;
(4) endfor

(5) for each sorted request Rk in Rmeta

(6) gettesarrand ticend: .

(7) get all sub_request Ry' of Ry, put R into Rk-sub-meta:
(8) if(isFloating == true)

) floatScheduling(Ri-sub-meta. t-start tk-end)s

(10) else

a1 fixScheduling(Rk-sub-meta, tk-start, tk-end):
(12)endfor

(13)for each sorted request Rk in meta-request Rmeta

(14) if R¢is accepted

(15) get ti-start and tceng;

(16) get all sub_request Ry of Ry, put Ry into Ry.sub-meta;
(17) refineScheduling(Rk-sub-meta, ti-start, tk-end):
(18)endfor

Figure 5.7: Outline of Co-RSBFR scheduling.

49

Function refineScheduling(meta-task Ri-sub-meta, Start-time ti-start, end-time ti-end)
(2) for each sub-request Rk in Ri-sub-meta

3) if (it has soft QoS requirement)

(4) get machine Ms on which Ry is assigned;

(5) get CPU_ smallests(tk-start, tk-end);

(6) CPU_smallests(tk-start, tk-end) = CPUmink + CPU_smallests(tk-stant, tk-end);
(7) if (CPU_smallests(ti-start, tk-end) = CPUmax-k)

(8) machQhard <- Ms;

(9) else machQsoft <- Ms;

(10) for each machine M;

(11) if (!=5)

(12) get CPU_smallestj(tk-start, tk-end);

(13) if (CPU_smallestj(tk-start, tk-end) = CPUmax—k)

(14) if (machQnard contains machine My)

(15) it (CPU_smallestj(tk-start, t-end) < CPU_smallestr(tk-start, tk-end))
(16) machQnard <- Mj;

a7n else machQnard <- M;;

(18) else

19) if (machQnacd is empty)

(20) if (machQsoft contains machine Mr)

(1) Bik = Bk (CPU_smallestj(ti-stan, tk-end));

(22) Brk = Bi(CPU_smallest(ti-start, tk-end));

(23) if (Bjc > Bn) machQsont <- Mj;

24) else machQsoft <- M;;

(25) endfor

(26) if (machQnard is not empty)

(27) machine M; in machQnard is the choice;

(28) reserved CPU = CPUmax-k;

(29) else

(30) machine M; in machQsott is the choice;

(31) reserved CPU = CPU_smallestj(ti-start, tk-end);

(32) mark time slo® table for M;j with reserved CPU; cancel reservation on Ms;
(33) endfor

(34) for each sub-request Hk

(35) if (reserved CPU < CPUmax.k)

(36) get the machine Ms on which Ry’ is assigned;

(37) get CPU_smallests(tk-start, tk-end);

(38) CPU_smaliests(tk-start, tk-end) = CPU fSVk + CPU_smallests(tk-start, tk-end);
(39) if (CPU_smallests(tk-start, tk-end) = CPUmax-k)

(40) on Ms, cancel original reservation; mark time siot table with CPUmax-k,
41) else

(42) on Mg, cancel original reservation;

(43) mark time slot table with CPU_smallesti(tk-start, tk-end):

(44) endfor

Figure 5.8: Function refineScheduiing for Co-RSBFR.

50

Figure 5.8 shows the refineScheduling function for Co-RSBFR. Line (3) gives the condition that

only sub-requests with soft QoS requirements need to be refined. The benefit for sub-requests
with hard QoS requirements are I, already. When trying to extend the benefit for sub-request Rki,
the reserved CPU for Rki should be counted while examining the CPU availability for the
machine on which Rki is assigned in previous scheduling. Lines (4) to (9) work on this purpose.
Lines (13) to (17) try to get the machine, which can satisfy the maximum QoS requirement of
sub-request Rki and have the smallest CPU availability in order to leave machines with greater
CPU availability to sub-requests with higher CPU reservation requirements. If there is no
machine which can satisfy the maximum QoS requirement of sub-request Rki, then lines (20) to
(24) try to get the machine which can give the greatest benefit to Rki. Note that there is at least
one machine — that’s the machine on which Rki is assigned previously, can satisfy at least the
minimum CPU reservation request. After the first round refining, there may be the situation that
after refining sub-request Rki, the reservation for other sub-request on the same machine as RkI is
canceled, in this case, if the benefit value for Rki is not [, it’s reservation can be extended once

more. Lines (34) to (45) work on this purpose.

5.5 Complexity Analysis

The running time of an algorithm is generally the most important aspect of concern. In this

section, the complexity of running time for three algorithms is analyzed and compared.

It can be noted that there are four function calls inside three algorithms, which was not shown in

previous sections. They are:

51

e Sorting function, which sorts requests or sub-requests by different criticality;

e Querying function, which queries machine utilization information within a specific duration
from a time slot table;

e Marking function, which marks new reservations on a time slot table for a specific machine
within a specific duration;

e Canceling function, which cancels reservation from a time slot table for a specific machine

within a specific duration.

It is obvious that these four functions cannot be completed within one basic operation. The
determination of running time upper bound for these four functions is dependent on what kind of
algorithm or data structure these functions use. It can be noted that for the purpose of comparing

the running time of Co-RSPB and Co-RSBF, the values of running time for these four functions
will not affect the comparison result. Therefore, let S;, Tq, Tm, and T; is the running time for

function sorting, querying, marking and canceling, respectively. Where i is the number of items,

which will be sorted. Thus, the running time upper bound for both Co-RSPB and Co-RSBF is
O(Sn + NSk + NMKT, + NKZTC) if (KT > Tyy) or O(Sny + NSk + NMKT, + NKTp) if (KT, <
Tm), where N is the number of requests in Ryea, M is number of machines participated in

scheduling and K is the number of sub-requests in Ry_syb-meta-
From Figure 5.4, 5.7 and 5.8, it can be noted that the running time upper bound for Co-RSBFR is

the running time upper bound for Co-RSBF plus the running time upper bound for the refining

procedure, that is O(Sy + NSk + NMKTq + NK*T, + NKTp).

52

From the above analysis, we know that Co-RSPB and Co-RSBF have the same running time

upper bound. However, the running time upper bound of Co-RSBFR is higher.

5.6 Simulation Results and Discussion

This section presents some results from a simulation study designed to evaluate the performance
of the algorithm provided in the previous sections. In the simulation study we compared the Co-
RSPB with Co-RSBF as well as Co-RSBFR. A discrete event simulator was written using the
PARSEC language [BaM98] for comparing the three reservation schemes. In the simulations, the
reservation requests arrived randomly according to a Poisson arrival process. With each request,
several attributes were associated to define parameters like reservation start time, end time, sub-
requests, percentage of resource, shape of the benefit function, priority, etc. The benefit functions
were restricted to the four shapes in Figure 1.1 such that each function is used by 25% of total
requests. Time slot table for each machine is maintained by a modified version of the data
structure called Interval Skip List [HaJ96]. The following parameters are true for the simulation
results presented unless stated otherwise.

e 10 machines participated in the simulation;

e Machine CPU dedication to the Grid system was uniformly distributed in [50%, 100%];

e [t created 300 requests for each simulation. Each request consist of | to 6 sub-request;

e Each reservation (for each sub-request) requested for CPU usage was uniformly distributed
in {10%, 90%];

e Requested duration was uniformly distributed in 20-180 time units (PARSEC clocktype);

e Requested starting times were uniformly distributed over 4,320 time units;

e The priority of request was uniformly distributed in [I, 100];

e 80% percent of requests required floating machines;

e Scheduling interval was 50 time units;

53

e Time was slotted with a granularity of one time unit.

Figure 5.9(a) shows the variation of system benefit with the number of requests. Figure 5.9(b)
shows the variation of the number of rejections with the number of requests. The simulation
created requests which ranged from 100 to 1,900. Figure 5.10(a) shows the variation of system
benefit with the number of machines. Figure 5.10(b) shows the variation of the number of
rejections with the number of machines. The number of machines participated in this experiment
ranged from 4 to 40. Figure 5.11(a) shows the variation of system benefit with the average of
duration. Figure 5.11(b) shows the variation of the number of rejections with the average of

duration. The average requested duration varied in the [24, 159] ranges.

From Figures 5.9(a), 5.10(a), and 5.11(a), it can be noted that the system benefit for Co-RSPB is
considerably higher than that for Co-RSBF and Co-RSBFR in all three cases. It’s easy to
understand that the system benefit for Co-RSBF is always lower because each application is
given the minimum benefit in each scheduling interval even though the resource is enough to
give more benefit to applications. Two reasons may result in why Co-RSBFR gives lower system
benefit than Co-RSPB does. One is: even though Co-RSBFR can give a less a number of
rejections, from system benefit calculation model described in previous section, the priority of
application is an important factor for system benefit. Without considering priority in Co-RSBFR
scheduling leads to lesser number of rejections but a lower system benefit. The second reason is
Co-RSBFR may have the same number of rejections as Co-RSBF in one scheduling interval, but
the refining procedure makes more resource unavailable for later scheduling than Co-RSBF

does. This may lead to higher number of rejections occurring for the overall scheduling

54

procedure, therefore resulting in a lower system benefit. From Figure 5.9(b), 5.10(b) and 5.11(b),

this assumption is approved.

Another fact is that when resources are not scarce the system benefit for Co-RSBFR is
considerably higher than that for Co-RSBF. However, when resources are extremely scarce, the
system benefit for Co-RSBFR is very close to the benefit for Co-RSBF. This is because when
resources are extremely scarce, after Co-RSBF scheduling, there will be very limited resources
available for the refining procedure. Therefore, the refining procedure cannot make a significant

difference to overall system benefit.

From Figure 5.9(b), 5.10(b) and 5.11(b), we can note that as we analyzed previously, the number
of rejections for Co-RSBFR is much higher than that for Co-RSPB and Co-RSBF. The number
of rejections for Co-RSBF is the lowest as we expected. The number of rejections for Co-RSPB
is about 10% higher than that for Co-RSBF and this difference increases slightly when resource

becomes scarcer.

Figure 5.12(a) shows the variation of system benefit with an increase in the percentage of
floating requests. Figure 5.12(b) shows the variation of the number of rejections with percentage
of floating requests. The percentage of requests asking for floating machines ranged from 0 to

100%.

55

‘——Co-RSPB —#— Co-RSBF —4—Co-RSBFR_

0.9

0.8

0.7

0.6
——il— > >— —

a 065

04

03
02 . ' . :.:=

0.1

enefit

system

0 500 1000 1500 2000
number of submitted requests '

(@

—*—Co-ASPB —8—Co-RSBF —+—Co-RSBFR_

1400

1200

—_
2 8
o O

600

400

number of rejections

200

0 500 1000 1500 2000
number of requests

®

Figure 5.9: (a) System benefit and (b) number of rejections versus number of requests.

56

system benefit

number of rejections

Figure 5.10: (a)System benefit (b)number of rejections versus number of machines.

~—*—Co-RSPB —%—Co-RSBF —#—Co-RSBFR_

1
0.9 & - <
0.8
0.7
0.6
0.5
04

—& -

0.3
0.2
0.1

0 .

0 5 10 15 20 25 30 35 40 45
number of machines
(@)
—e—Co-RSPB ~#-Co-RSBF —#—Co-RSBFR
250
200
150
100
50
0
0 5 10 15 20 25 30 35 40 45
number of machines
(b)

57

system benefit

number of rejections

'—e—Co-RSPB —8— Co-RSBF —a— Co-RSBFR |

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 20 40 60 80 100 120 140 160 180 °
average of reservation duration |

(a)

—#—Co-RSPB —#—Co-RSBF —#—Co-RSBFR_
200
180
160
140
120
100
80
60
40
20

0 20 40 60 80 100 120 140 160 180

average of reservation duration

(b)

Figure 5.11: (a) System benefit (b) number of rejections versus requested duration.

58

system benefit

number of rejections

0.8
0.7
0.6
05
0.4
0.3
0.2
0.1

250

200

150 -

100

50

—*—Co-RSPB —#—Co-RSBF ~#—Co-RSBFR

0.2 04 0.6 08 1
percent of floating

12

(a)

—*—Co-RSPB —#—Co-RSBF —4—Co-RSBFR_

0.2 04 0.6 08 1
percent of floating

12

Figure 5.12: (a) System benefit (b) number of rejections
versus percentage of floating requests.

59

system benefit

number of rejections

© o o o
O o N ©

© o o
N oW h

o
o =

160
140
120
100
80
60
40
20

Figure 5.13: (a) System benefit (b) number of rejections versus scope of priority.

 —+—Co-RSPB —a— Co-RSBF —a— Co-RSBFR

el . g —l- <& <& o—————
——————— & —& & -4 & — . 3
= L — L L - = - L . |
0 20 40 60 80 100 120 .
highest priority ’
) o - o
~—#—Co-RSPB ——Co-RSBF —#—Co-RSBFR_
& & -t * L 2 & —a ®x—akr A
L o . 4 - o— <& < . - —— -
[L 2 i - L - - & — ‘
0 20 40 60 80 100 120 |
highest priority |
(b)

From Figure 5.12(a) and 5.12(b), it can be noted that when all requests ask for fixed machines,
the number of rejections are highest, therefore the system benefit are lowest for all three
algorithms. As the percentage of requests requiring floating machines increases, the number of
rejections for all three algorithms decreases and the system benefit increases. This is because the
requests for the fixed machines have less flexibility, therefore increasing the chance of

rejections.

Figure 5.13(a) shows the variation of system benefit with priority. Figure 5.13(b) shows the
variation of the number of rejections with the highest priority. The lowest priority is set to be 1.

The highest priority ranged from 10 to 100.

From Figure 5.13(a) and 5.13(b), we can see that the scope of priority does not affect the value

of system benefit and the number of rejections. This proves that the system benefit calculation

model described previously is correct.

61

6 CONCLUSIONS AND FUTURE WORK

This project presents a resource management architecture supporting advance reservations for a
Grid computing system and introduces a novel way of incorporating QoS constraints as well as
priority into an advance reservation system including a co-reservation scheduling algorithm. The
project compares the performance of the proposed RSPB algorithm with an existing advanced
reservation algorithm, namely the Resource Broker, and compares the performance of Co-RSPB
with two comparison algorithms developed in this thesis, and analyzes the simulation results.
The QoS constraints are specified using an abstraction called benefit functions. Although the
proposed algorithm is designed to reserve CPU resources, it is easy to extend the algorithm to
reserve other resources such as network bandwidth, disk, memory, etc. It is also possible to
extend the algorithm to support multiple dimension benefit functions, such as time deadline
benefit functions. The primary contributions of this thesis are:

e Designing a resource management architecture supporting advance reservations for a Grid
computing system,;

e Introducing a novel way of incorporating QoS constraints and priority into an advance
reservations scheduling algorithm for a Grid computing system;

e Developing a Reservation Scheduler with Priorities and Benefit Functions (RSPB), which
improves the performance of existing approach (RB) by considering priorities and benefit
functions associating the application;

e Developing a Co-Reservation Scheduler with Priorities and Benefit Functions (Co-RSPB),
which is the first co-reservation scheduling algorithm separating from traditional scheduling
for admission control in Grid computing system;

¢ Developing two comparison algorithms Co-Reservation Scheduler with Best Fit scheme (Co-
RSBF), and Co-Reservation Scheduler with Best Fit and Refine scheme (Co-RSBFR), as

62

base line to evaluate the performance of Co-RSPB. Simulation results show that the Co-
RSPB has a very good performance by satisfying larger number of reservation request.
Developing a novel system benefit calculation model to quantify the system performance in

terms of QoS service.

Several future directions are identified for further investigation. Some of them include:

Developing schemes for incorporating multiple QoS constraints into the admission control
problem;

Comparing different data structures to find fastest algorithm for searching in the time slot
table;

Extending reservation of CPU resources to reservation of other resources, such as network
bandwidth, disk, memory, etc.;

Designing protocols to address communication overheads problem;

Implementing the prototype of a QoS driven RMS using the proposed algorithms.

63

AC

API

ARS
BFD
Co-RSBF
Co-RSBFR
Co-RSPB
CPU
DSRT
ERDoS
GARA
H-SFQ
LRP

PARSEC

RIS

RMS

ACRONYMS

Admission Controller

Application Programmer’s interface

Advance Reservations Server

Best Fit Decreasing algorithm

Co-Reservation Scheduler with Best Fit scheme
Co-Reservation Scheduler with Best Fit and Refine scheme
Co-Reservation Scheduler with Priorities and Benefit functions
Central Processing Unit

the Dynamic Soft Real Time system

the End-to —End Resource Management of Distributed System QoS architecture
A Globus Architecture for Reservation and Allocation
Hierarchical Start-time Fair Queuing

Lazy Receiver Processing

PARallel Simulation Environment for Complex System
Parallel Virtual Machine

A QoS enhanced Linux kernel for multimedia computing
Quality of Service

Resource Broker

Resource Information Service

Resource Management System

65

RSPB Reservation Scheduler with Priorities and Benefit functions

RSVP Resource ReSerVation Protocol
RT Real-Time

SFQ Start-time Fair Queuing
WWW World Wide Web

66

[BaMO98]

[BeL98]

[ChN97]

[ChS98]

[DSRT]

[FeG95]

[FoK97]

[FoK99a]

REFERENCES

R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, B. Park, and H.
Song, “PARSEC: A Parallel Simulation Environment for Complex System”,
[EEE Computer, Vol. 31, No.10, Oct, 1998, pp.-77-85.

S. Berson, R. Lindell, and R. Braden, An Architecture for Advance Reservations
in the Internet, technical Report, USC Information Sciences Institute, Los
Angeles, July 1998.

H. Chu and K. Nahrstedt, “A Soft Real Time Scheduling Server in UNIX
Operating System”, in Proceedings of IDMS'97, (European Workshop on
Interactive Distributed Multimedia Systems and Telecommunication Services),
September 1997, Darmstadt, Germany.

S. Chatterjee, B. Sabata, and J. J. Sydir, ERDoS QoS Architecture, Technical
Report ITAD-1667-TR-075, SRI International, California, May 1998.

software for DSRT, http://cairo.cs.uiue.edw/software/DSRT-2/dsrt-2.html

D. Ferrari, A. Gupta, and G. Ventre, Distributed Advance Reservation of Real-
Time Connections, technical Report, TR-95-008, Telnet Group, University of
California and International Computer Science Institute, Berkeley, March 1995.

[. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,”
International Journal of Supercomputer Applications and High Performance
Computing, Vol. 11, No. 2, summer 1997, pp. 115-128.

[. Foster and C. Kesselman, The Grid: Blueprint for a New Computing

Infrastructure, Second Edition, Morgan Kaufmann, 1999.

67

[FoK99b]

[Fos99]

[Gar99]

[GoG96]

[Hal96]

[ISList]

[JoG99]

I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, A. Roy, “A Distributed
Resource Management Architecture that Supports Advance Reservation and Co-
allocation,” in Proceedings of Seventh IEEE International Workshop on Quality
of Service (IWQoS 99). Londoh, UK, May 31 - June 4, 1999.

I. Foster, “Building the Grid: Integrated Services and Toolkit Architecture for
Next Generation vNetworked Applications”,
http://www.gridforum.org/building_the_grid.htm, 1999.

G. Garimella, “Advance CPU Reservations with the Dynamic Soft Real-Time
Scheduler’”, Master’s Thesis, University of Illinois at Urbana-Champaign, 1999.

P. Goyal, X. Guo, and H.M. Vin, “A Hierarchical CPU Scheduler for Multimedia
Operating Systems”, Proceedings of 2nd Symposium on Operating System Design
and Implementation (OSDI'96), Seattle, WA, October 1996, pp.107-122.

E. Hanson, and T. Johnson, "Selection Predicate Indexing for Active Databases
Using Interval Skip Lists,” Information Systems, Vol. 21, No. 3, 1996, pp. 269-
298.

software for Interval Skip List, http://www._cise.ufl.edu/~hanson/IS-Isits/

W. E. Johnston, D. Gannon, and B. Nitzberg, “Information Power Grid
Implementation Plan: Research, Development, and Testbeds for High
Performance, Widely Distributed, Collaborative, Computing and Information
Systems Supporting Science and Engineering,” NASA Ames Research Center,

http://www .nas.nasa.gov/IPG, 1999.

68

[KiN0O]

[Legion]

[Mah96]

[Maho1]

[MaK00a]

[MaK00b]

[Man99]

[PARSEC]
[PVM]

[QLinux]

K. Kim and K. Nahrstedt, “A Resource Broker Model with Integrated Reservation
Scheme”, Proceedings of IEEE International Conference on Multimedia and Expo
2000 (ICME2000), New York, NY, July 31 - August 2, 2000.

Legion home page, http://www.cs.virginia.edu/~legion/

M. Maheswaran, “Quality of Service Driven Resource Management Algorithms
for Network Computing,” 1999 International Conference on Parallel and
Distributed Processing Technologies and Applications (PDPTA '99), June 1999,
pp- 1090-1096.

M. Maheswaran, “Data dissemination approaches for performance discovering in
Grid Computing System,” 10" IEEE Heterogeneous Computing Workshop (HCW
2001), Apr. 2001, to appear.

M. Maheswaran and K. Krauter, 4 Parameter-based Approach to Resource
Discovery in Grid Computing System, Technical Report TR-CS00-13, Department
of Computer Science, University of Manitoba, Winnipeg, May, 2000.

M. Maheswaran and K. Krauter, “A Parameter-based Approach to Resource
Discovery in Grid Computing System,” 1 [EEE/ACM International Workshop
on Grid Computing (Grid 2000), Dec. 2000.

F. Manola, Characterizing Computer-Related Grid Concepts, technical report,
Object services and consulting, Inc., Texas, March, 1999.
http://www.objs.com/agility/tech-reports/9903-grid-report-fin.html

PARSEC home page, http://may.cs.ucla.edu/projects/parsec/

PVM home page, http://www_epm.oml.gov/pvm/pvm_home.html

software for Qlinux, http://www.cs.umass.eduw/~lass/software/qlinux

69

[ScN99]

[ScP98]

[SmF00]

[VoK95]

[ZhD93]

O. Schelen, A. Nilsson, J. Norrgard, and S. Pink, “Performance of QoS Agents for
Provisioning Network resources”, In [FIP Seventh International Workshop on
Quality of Service (IWQ0S'99), London, UK, June 1999.

O. Schelen, and S. Pink, “Resource Sharing in Advance Reservation Agents”,
Journal of High Speed Networks, Special Issue on Multimedia Networking, 1998.
W. Smith, . Foster, and V. Taylor, “Scheduling with Advanced Reservations”,
International Conference on Parallel and Distributed Processing System, May

2000.
A. Vogel, B. Kerhervé, G. Bochmann, and J. Gecsei, “Distributed Multimedia

and QoS: A Survey,” IEEE MultiMedia, summer 1995, pp. 10-19.
L. Zhang, S. Deering, D. Estrin, S. Shenkar, and D. Zappala, “RSVP: A New

Resource ReSerVation Protocol,” I[EEE Networks, September 1993, pp. 8-18.

70

