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Abstract 

Grid computing systems utilize distriiutively owned and geographically dispersed 

resources for providing a wide variety of services for various applications. One of the key 

considerations in Grid computing systems is resource management with quality of service 

constraints. The quality of service conshaints dictate that submitted tasks should be 

completed by the Grïd in a timely fashion while delivering at Least a certain level of 

service for the duration of execution- Because the Gnd is a highly "dynamic" system due 

to the arriva1 and departure of tasks and resources, it is necessary to perform advance 

reservations of resources to ensure their availability, and to meet the requirements of the 

different tasks. 

This thesis introduces two new scheduling algorithnis for advance reservations including 

CO-reservations, namely. Reservution Scheduler- with Priorith and Benefit Functions 

(RSPB) and Co-Reservarion Scheduler with Priorities und Benefit Functions (Co-RSPB). 

The algorithms consider the relative priorities of various reservation requests while 

scheduling reservations. The benefit fiinction is used to quanti& the "profit" for the client 

in order to remove the re-negotiation overhead in case of resource scarcity. Simulations 

are perfonned to compare proposed algorithrns with an existing approach or with some 

comparison algonthms developed as basic comparison line in this thesis. The results 

indicate that the proposed algotithms can improve the overall the performance by 

satis*ng larger number of reservation requests. 
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1.1 Preliminary Remarks 

The rapid advancements in microprocasor technologies and computer communications have 

facilitated the emergence of a new class of network-based applications. These applications are 

different fiom the current ubiquitous WWW and WWW-based applications. They require 

functionality that extends beyond the coordinated use of the network to enwmpass end systems, 

data repo sitories, sensors, visudization devices, and advanced human computer interfaces. The 

current Internet is not geared towards supporting such applications. Therefore, researchers have 

proposed a generalized, large-scale computing and data handling infiastructure called the 

Computationaf Grid (referred to as Grid in the following context) roK99a, Fos99, and JoG99J. 

1.2 What is Grid 

The "Grid" in dictionaries has some concept of "network" or cbnesh''. The term "Grid" for 

network computing is analogous to the power grid. A power grid links source of electrical power 

together, and provides for widespread access to power with certain services. Similady, a 

"Computational Grid" is "a hardware and software infiastructure that provides dependable, 

consistent, pervasive, and inexpensive access to high-end computational capabilities" FoK99aI. 

In other words, a "Grid" is an internet sized network computing systern with millions of 

machines distributed across multiple organizations and administrative domains to provide 

dependable, consistent, pervasive, and cost-effective access to diverse services. To achieve this 



goal, a Grid needs to provide several seMces inciuding: resource description and discovery 

mechanisms, reliable multi-party communications, resource management with quality of service 

(QoS), access control, data location, etc- Wan991- 

Five major application classes are identified for computational Grids @fan99]: 

Distributed supercomputing; 

High-throughput computing; 

On-demand computing; 

Data-intensive computing; 

Collaborative computing. 

Although the tremendous advancements in cornputer communications and distri'buted computing 

have enabled constnicting and experîmenting with several Gnd prototypes (such as Globus 

[FoK97], Legion [Legion], and PVM PVM] etc.) and experiments based on these prototypes, 

the Grid technology is very much in its infancy. Several key issues need to be investigated before 

the Grid technology can see widespread deployment. Some of these issues include developing: 

Efficient mechanisms for location independent use of distributed wmponents; 

Efficient md highly scalable resource discovery schemes; 

Mechanisms for efficient resowce allocation and reservation; 

Quality of service brokering. 

1.3 QoS Requirements in Grid 

The Grid is a highly dynamic system. The components of the Grid that support the services are 

referred to as the resource providers. Similady, the components of a Grid that use the services 

for problem solving are called resource consumers. in a Grid system, the resource providers are 



likely to be owned and administered by  different organizations and possibly governeci by 

different local policies. This means the resource providers will be committing varying amounts 

of the resources to provide the services to the Gnd dependïng on the local policy and local 

demand for the resources. The resource consumers can also belong to different users with 

varying Ievels of subscription and pnvilegw. With traditional resource allocation mechanisms, 

the fluctuations in the supply and demand situation in a Grid will impact the level of service 

delivered to the resource consumers. Depending on the criticaiity of the applications associated 

with a resource consumer, this may not be acceptable. To ensure that the sustained level of 

service delivered to an application is within its requuements, the application's quam of service 

(QoS) requirernents should be considered while allocating the resources. The mechanisms 

involved in implementing the QoS requirements of an application Vary with the specialization of 

the Grid. For exarnple, in a hi&-throughput computational Grid, an application may be 

implemented by allocating time on a high-performance machine- Whereas, in a collaborative 

computing Grid, a session rnight need the CO-allocation of several resources. h such a situation, 

the QoS requirernents of an application should be xnapped ont0 several resources. Due to the 

uncertainties of resource availability, it is necessary to support advance reservations to provide 

QoS guarantees in a Grid system. 

1.4 Basic Concepts in QoS 

Quality of service (QoS) represents the set of those quantitative and qualitative characteristics 

(referred to as QoS parameters) of a distributeci system necessary to achieve the required 

functionality of an application. These QoS parameters are service specific. Different applications 

may have different subsets of QoS parameters with various values required. For example, 



bandwidth, delay, throughput, jitter, etc. may be the relevant QoS parameters for a 

communication service. Whereas, CPU times and deadlines rnay be the relevant QoS parameters 

for an application in a computational Grid. For some applications, these parameters may be 

negotiable. For this kïnd of applications, the user may receive a certain degree of benefit if the 

system provides a certain level of service measured by required subsets of QoS parameters 

[ChS98] FoK951. 

QoS guarantees concems user's benefit tt signifies that the QoS received by the user would not 

fluctuate with changes in resource usage by other applications and with changes in system state, 

such as servers coming on-line and going off-line. QoS parantees are generally grouped into 

classes such as hard QoS, soft QoS and best-efort QoS. Hard QoS signifies that the user will 

receive required QoS every instance. Sofi QoS signifies that the user will receive required QoS 

within a certain specified fraction of the instances. Best-effort QoS signifies that the user will not 

receive any guaranteed QoS [ChS98]. 

To provide an increased expectation of promised QoS guarantees while allocating resources, 

resewation concepts were frrst introduced in the area of communication network QoS [ZhD93]. 

There are two modes of reservation: imrnediate reservations and advance reservations. 

lmrnediate reservations are also referred to as aZlocation where reserved resources are allocated 

immediately. Advance reservations resource reservations in advance and the resources are used 

in the future. This increases the expectation that resources c m  be allocated when demandai. 

Without advance reservationr, the user of the system may have more chance to encounter 

degraded senice or even rejections. 



In practice, rnany applications rnay have very large resource requirements and require multiple 

resources sfinultaneously. For example, in a collaborative Grid, an application may require 

resources fiom multiple cornputers and networks to execute- The mechanism that de& with 

allocating multiple resources simultaneously is called CO-allocation. Advance reservation of 

multiple resources for a specific duration is referred to as CO-reseryation. Another fiequently 

used mechanism in QoS-driven resource management system (RMS)  is admission contml. 

Admission control ensures that dl applications accepted by the system will get guaranteed QoS 

service by adrnitting an application only if there are sufficient resources in the system [ChS98]. 

An admission control process c m  make a decision eiaer in a simple yes-or-no form or a more 

sophisticateci form that allows negotiarion between the user and the system. A negotiutron is a 

process of making an agreement between the user and the system about decreasing the value of a 

set of QoS parameters. The system tries to maximumings benefits to the user via the negotiation, 

therefore, making the system work in a most beneficial manner- The decrease in the level of 

service that is agreed upon during negotiation is refmed to as gracefUI degradation and it is 

caused by scarcity of system resources [ChS98] voK95]. 

Negotiation is usually performed in following way: the system provides several QoS degradation 

options to the user, such as decreasing the resefvation value for resources or delaying the starting 

time for advance reservations. The user selects an option that can give the user the most benefit, 

then, informs the system to make an agreement. Once the user gets a c o ~ a t i o n  nom the 

systern, a contract between the system and the user is assigned. Negotiation mechanism allows 



the system to provide more efficient service for more users under QoS constraints. This 

negotiarion process adds considerable overhead to the system due to multiple messages beuig 

transmitted between the system and the user- 

Another important QoS concept used in this thesis is a benefit hction.  Benefit bct ions  are an 

abstractions developed to mode1 an application's QoS requirements and preferences in the 

cornrnunication network area. "The benefit hnction is a multidirnensional graph specifjhg the 

benefit that the user receives if the system provides a certain level ofQoS- The dimensions of the 

benefit function correspond to QoS rnetncs of interest to the application. The benefit fùnction is 

especially useful for facilitating gracefül degradation between the application and the system." 

EChS981. If the system is not able to provide desüed levels of QoS for an application due to 

resource scarcity, the benefit function can then be used to make intelligent decisions without 

asking the user regarding which QoS metrics to degrade, and by how much. Thus, reducing the 

re-negotiation overhead. 

Figure 1.1 shows some examples of beilefit fùnctions for CPU resewation in a Grid system. 

Although, in these examples, benefit fùnctions are used only for quantifjhg the CPU 

requirements and only have two dimensions, it may be used for other resources as well as the 

time constraints and can be extended to multiple dimensions to support multiple QoS parameters. 
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Figure 1 -1 : Some examples of benef it function shape. 

Figure 1.1 (a) shows a benefi' fhction where the appIication does not gain any benefit if the 

system daes not reserve at least a certain fiaction of the CPU. Figures l.l(b), l.l(c), and l.l(d) 

show cases where the application gains a reduced arnount of benefit even if the system reserves 

less arnount of CPU than what is ideaily required. From the different benefit hctions in Figure 

1.1, it c m  be noted that some requests have "hard" QoS requirements and others have "soff' QoS 

requirements. The requests with soft QoS requirements get some benefit even if the system does 

not reserve the desired CPU percentage for them, although, the amount of benefit gained will be 



lesser than a amount of benefit gained if the system would have reserved the desired CPU 

percentage for them. 

In case of resource scarcity, the RMS requires a way to evaluate the relative importance of 

multiple, different applications which compete for the resource. The pnority can be used to 

represents the application's importance. Depending on the different design objective, the priority 

can be determined by different aspects. For example, in a commercial system, the pnority can be 

determined by the cost that the user is wiiling to pay for a service. la a military system, the 

priori@ cm be deterrnïned by the importance of the user or of the application [ChS98]. 

1.5 Motivation and Scope of the Thesis 

As discussed above, Gnd computing is an emerging paradigm for next generation distributeci 

computing. The Grid is a highly dynamic environment with on-line and off-line servers, and with 

continuously varying demand fiom the clients. In such an environment, it is necessary to 

consider QoS requirements of different clients to ensure that the resources are used in the most 

beneficial manner. Due to the uncertainties of resource availability in a dynamic system such as 

the Grid, it is necessary to support advance reservations to provide QoS guarantees. 

In practice, different design objectives of a Grid system leads to different r e q u k e n t s  of a 

reservation algorithm. For exarnple, in a high-throughput cornputational Gnd, an application may 

request to schedule reservations on a single hi&-performance machine. Whereas, in a 

collaborative computing Grid, an application may request to schedule reservations on multiple 

machines simultaneously (sometimes some machines may be directly specified) in order to 



guarantee al1 required resources available while demanding. Therefore, it is necessary to design 

different algorithms supporting advance reservations for different purposes. 

This thesis presents an overall resource management architecture for a Grid environment and 

proposes two algorithms for scheduling advance reservations on resources. Resewatior: 

Scheduler with Priorities and Benefit Functions (RSPB) schedules reservations on a single 

machine. Co-Reservation Scheduler with Priorities and Benefit Functions (Co-RSPB) schedules 

reservations on multiple resources simultaneously. The two algorithms schedule resmations 

while considering the relative priorities of the various reservation requests. Although, only CPU 

resources are considered here, this approach may be generalized to other resources such as 

network and storage. Also, in this thesis, immediate reservations are modeled as advance 

reservations with current time as the start time and a predefined length for the duration. This 

allows us to uniS. advance and immediate reservations. 

In RSPB and Co-RSPB, each reservation request has an associated benefit fùnction that 

quantifies the 'profit" accrued by the client, by securïng the resource at the requested level. 

When the client is willing to negotiate for lower service levels, it could indicate this by providing 

a benefit function that shows a reduced but positive benefit for tower resource levels. This 

facility provided by the benefit fhctions removes the need for negotiations when there is a 

resource scarcity. 

Furtherrnore, in Co-RSPB, requests for fixed machine and floating machine are also considered 

in order to satisQ some applications with special resource requirements. Requests for fixed 



machines require that, only specific machines can be mapped to each sub-request of an 

application. Requests for floating machines have more flexibitity' so that al1 sub-requests of an 

application cm be mapped to any machines in the system if the machine can satisfjr the sub- 

request's QoS requirement. 

Both RSPB and Co-RSPB can be implemented on top of a CPU scheduler such as the Dynamic 

S'op Real Tirne (DSRT) system rChN97, DSRT] or a QoS enhanced operating system kemel such 

as QLinux [GoG96, QLinua. 

The proposed algorithm RSPB is cornpareci with an existing approach. The simulation results 

indicate that the RSPB can improve the overall the performance by satisfjring a larger nurnber of  

reservation reques ts. 

Because there is no open literature available to compare with Co-RSPB, we also developed two 

cornparison algonthms Co-resewation Scheduler with Best Fit scheme (Co-RSBF) and Co- 

reservation scheduler with Best Fit and Refne scheme (Co-RSBFR) as a base luie to see the 

performance of Co-RSPB. In order to evaluate the performance of  proposed aigonthms in terms 

of QoS, a system benefit calculation mode1 is developed. The simulation results indicate that Co- 

RSPB has a very good performance by satisfjing larger number of reservation request. 

1.6 Structure of the Thesis 

In the following chapter, related work that appeared in the open literature is discussed. An 

architecture for a Grid resource management system (RMS) and how the proposed scheduling 



algorithms fit into the architecture is examineci in chapter 3. The reservation scheduler algorithm 

RSPB is presented in chapter 4. Using simulation studies, RSPB is comparai with an existing 

resource reservation algorithm and simulation results are aiso discussed in this chapter. in 

chapter 5, CO-reservation scheduler aigorithm Co-RSPB and two cornparison aigoritbms Co- 

RSBF, Co-RSBFR is presented, The complexity of running time of these three algorithms is 

analyzed, The simulation results and performance for three aigorithms are also discussed. 

Finally, chapter 6 summaries the thesis and points out directions for future work. 



2.1 Preliminary Remarks 

A considerable arnount of literature has been emerged on supportïng advance reservations in the 

context of network QoS that involves banhvidth guarantees. Network QoS can be given by using 

a well-defined QoS mode1 and a setup protocol such as RSVP [ZhD933. However, the concept of 

advance reservations is relatively new in the realm of Gnd computing. There are very few 

publications on this topic- This chapter will give a bnef literature review on these two topics and 

other topics directly relevant to this thesis. 

2.2 Advance Reservations for Communication Networks 

Foster et al. [FoK99b] proposes A Globus Architecture for Reservation and Allocation (GARA) 

that enables CO-reservation and CO-allocation of heterogeneous resources (such as process, flow, 

disk obj ect, memory object, etc.) for end-to-end QoS guarantees in emerging, network-based 

applications. It also addresses issues such as dynamic discovery and independently controlled 

and administered resources. GAEU treats both reservations and computational elements as first 

class entities, allowing them to be created, monitored, and managed independently and 

uniformly. A prototype of GARA implernentation is described and performance results are 

provided to quanti@ the costs of the techniques. 



Schelen el al. [ScP98] describes a .  architecture supporting end-to-end resource resewations 

through agents. An agent in each domain in the nebvork performs admission control for 

immediate and advance reservations. The architecture allows immediate and advance 

reservations to share network resource without pre-partitioning. Information about advance 

reservations is used to perform admission control for immediate reservations. In other words, 

information delivered fiom advance reservations help prevent immediate resewations fiom being 

rejected or even preempted. Simulation results are provided to show the effects of providing 

advance reservations with this model and the cost in terrns of resource utilization, the probability 

of rejecting and preempting an immediate resewation. Schelen et al. [ScN99] provides a 

prototype implementation of this model and focuses on obtainïng performance measures for 

admission control within a single link-state routing domain. 

Berson et al. [BeL98] introduces a server-based architecture supporting advance resewations. It 

is domain-based, and it allows simple fùnctioning with inter-domain routing. in this architecture, 

there is no reservation or multicast routing state needed in the routers until the reservation 

becomes active. It allows applications to request advance reservations without the application 

nuining during the length of the advance reservations. 

Ferrari et al. [FeG95] discusses the requirements of the clients of an advance reservation service, 

and distributed design of a multi-party, real-time communication scheme for such a service. 

Simulation results are provided to show the performance and some of the properties of these 

mechanisms. 



2.3 Advance Reservations for Giid Cornputing 

Depending on different design objectives of a computational Grid, a reservation algorithm can be 

deveIoped to support scheduling reservations either on single machine or on multiple machines. 

2.3.1 Scheduling Advance Resenratr'ons on Single Machine 

Garimella [Ga1991 implements an Advance Resewations Semer (ARS) that works in conjunction 

with the DSRT [ChN97] to reserve CPU resources in advance- In ARS, the client needs to 

speci@ sorne QoS parameters such as the percentage of CPU required as weil as start time and 

duration. Once the reservation request is admitted, the reserved resources will be available for 

the client rifier the start time for the duration at the predefined percentage. However, in practice, 

most applications have QoS requirements that are negotiable. Because ARS does not support re- 

negotiations, it leads to higher number of rejected reservation requests. 

The Resource Broker (RB) proposed in [KiNOO] integrates with the ARS presented in [Gar99]. 

The RB improves ARS to give a fast and constant response by using a CPU resource broker 

mode1 with a new admission control and also improves ARS by providing multiple negotiation 

options for the cIients. However, the occurrence of re-negotiation adds considerable overhead to 

the system. Further, in order to allocate a resource to multiple competing applications, the 

admission control algorithm requires a way to evaluate the relative importance of the different 

applications. in this way, the admission controlIer can make decisions to reject less important 

applications first to ensure a group of clients get the most benefit. 



2.3.2 Scheduling Advance Resen/atl~m on Muîtiple M'hines (Co=mmmation) 

Smith et al. [SmFOO] proposes and evaluates several algorithms for supporting advance 

reservations in supercornputer scheduling systems. These algorithms improve traditional 

scheduling algorithrns by unifjing scheduling traditionai tasks fiom job queues with the 

reservation requests. These advance reservations allow users to request multiple resowces 

simultaneously fiom scheduling systems at specific times. However, [SmFOO] allocates the '%me 

slots" exclusively, Le., the resources are not reserved in a shared fashion by multiple clients for 

the same duration. The applications are assumed to operate on a %est effort" basis and the 

reservation requests are assumed to have different priority than the applications. These 

differences in priorities are considered while the reservations and applications are scheduled by 

the system. Fixing machine scheduling is not supported. 

2.4 QoS Supported CPU Scheduler 

The two advance reservation algorithms developed in this project are based on the assumption 

that the local management service support immediate reservations. With traditional general 

purpose operating systems such as Windows NT and Unix which schedule processes based on 

the Time Sharing (TS) pnnciple, the contracted advance resmations cannot be paranteeci when 

they are allocated to the local resource. Therefore, a CPU scheduler supporting immediate 

reservations is needed. 

The Dynarnic Sofi Real T h e  (DSRT) System based on research in [ChN97] is a user-level 

scheduler, which can provide processor CPU guarantees to soft real time perïodic and aperiodic 



tasks. The DSRT system is built on various platform including SunOS 5.7, SGI IR[X 6.5, Linux 

(RedHat 6.2), and Windows NT. It provides hncüons including protection among red-thne (RT) 

processes, fairness among RT and non-RT processes, rate monotonie scheduling, and a fix to the 

U N E  security problem. 

A QoS enhanced Linux Kentel for Multimedia Computing (QLùiux) is a replacement of Linux 

2.2.x kemel with the ability to provide quality of service guarantees. It includes the following 

features : 

Hierarchical Start Time Fair Queuing ( H - S F Q )  CPU scheduler; 

Hierar-chical Start T h e  Fair Queuing ( H - S F Q )  network packet scheduler; 

Las> Receiver Pocessing (LRP) network subs ystem; 

Cello disk scheduling algorithm [not stable yet]. 

When a QLinux is enabled, any selected combination of these features will replace the standard 

features/schedulers available in Linux. 

The H-SFQ CPU scheduler is based on research in [GoG96]. Goya1 et al. [GoG96] presents a 

Start-time Fair Queuing (SFQ) algorithm for operating system supporting variety of hard and 

soft reai-time as well as best effort applications in a multimedia-computing environment. SFQ 

enables "hierarchical partitioning of CPU bandwidth, in which an operating system partitions the 

CPU bandwidth among various application classes, and each application class, in tum, partitions 

its allocation (potentially using a different scheduling algorith) among its sub-classes or 

applications." 



2.5 Benefit Functions in Related Projects 

ERDoS [ChS98] desmies "the End-to-End Resource Management of Distn'buted Systems QoS 

Architecture, which enables adaptive, end-to-end, scalable resource management of dismbuted 

systems. The purpose of the architecture is to delineate a common application programmer's 

interface (APT) between and within the resource management layers so work by multiple 

research groups can be integrated into a common product." It provides domain-specific 

application (such as command and control, multimedia, and medicai domains etc.) QoS support. 

ERDoS employs a Hierarchical System Mode1 to deal with heterogeneous resowce and system 

scalable problem. QoS level for each application is effected depending on scheduhg policy 

when the state of system changes. Benefit fùnctions are used to communicate user QoS 

preferences of an application to the resource manager. In case of failure or scarcity of resource, 

the resource manager uses this information to gracefùlly degrade application QoS, therefore, 

minimize the adverse effect on each application user. 

Maheswaran [Mal1991 presents a dynamic and centralized scheduling algorithm for 

computational resources in a network computing system. The algorithms takes into account 

applications' QoS requirements when scheduling. The level of service received by each 

application is quantified by a benefit function defined for that application. The objective of the 

algorithm is maxirnizing the total benefit provided to the applications. Simulation results are 

presented to evaluate the performance of the algorithm. 



3.1 Preliminary Rernarks 

The Grid Resozwce Management System (RMS) in this thesis is designed to support advance 

reservations and immediately allocations of resources, which is dedicated to the systm. In order 

to provide QoS guarantees, al1 applications coming to Grid for service with QoS requirements 

are required to reserve resources before allocation. Appiications requesting best-effort service are 

not required to reserve resource in advance. The reservations c m  be either immediate or advance 

reservations. For each application requesting QoS service, the user needs to s p i S .  following 

parameters: 

Machine type on which the user desires to reserve resourçe; 

The starting time. [t can be either current time for immediate reservation or future time for 

advance reservations; 

The duration for the application execution; 

Preferred priority according to the importance of the application or the cost level which the 

user is willing to pay; and 

Benefit hc t ion  shape which indicates the user's preference about QoS degradation in case 

of resource scarcity. 

3.2 A Grid Resource Management Architecture 

The resource management architecture for the Grid is shown in Figure 3.1. The architecture 

shows the components involved in advanceci reserving and immediateiy allocating resources for 

a user request. 



In this architecture, when a user logs ont0 the Grid, the Gnd launches a Client. The Client 

authenticates the user. If the application request best-effort service, the application information 

service (AIS) uses historicai information and leaming algorithms to predict the resource 

requirements of an application's ninning. For applications with hard or soft QoS requirements, 

the resource requirements are specified by the user during application submitting stage. The 

Client then interacts with the QoS broker to implement the applications that are submitted to it. 

The QoS broker provides a virtual resource to the Client with the desired QoS attributes. This 

virtual resource will aiso provide feedback to the Client if the capability of the vimial resource 

drops sufficiently to affect the QoS attributes. 

Depending on the extent of the Grid, there will be thousands of QoS brokers. When a Client 

needs service it will connect to a QoS broker that is in its neighborhood. Once the Client 

connects to the QoS broker, for each application, it submits the resource requirements dong with 

the desired QoS constraints to the QoS broker. By defauit, the application is provided the best- 

effort service. Based on the level of subscription, the QoS broker will determine whether the 

level of s e ~ c e  requested by the Client is valid. This preliminary admission control will preclude 

any Client fiom monopolizing the resources. 

Once the QoS broker receives a valid request for resource allocation or reservation, it contacts 

the admission controllers (AC) to implernent it. The set of ACs contacted by a QoS broker is 

detemined by the resource discovery agent. The resource discovery agent could be ùnplemented 

in several ways. Several alternative approaches for scalable, high-performance resource 



discovery agents for a Gnd system are evaluated in WaKOOa, MaKOOb, and MahOl]. The trade- 

off of using general-purpose resource discovery/naming systems versus Grid specialized systms 

are discussed in WaKOOa, MaKOOb, and MahO LI. When there is multiple ACs that are willuig to 

schedule allocations and resewations towards a resource request, the QoS broker can use 

different strategies in handling such a situation. One strategy would be to rank the resource 

offerings and pass them ont0 the Client so that the Client could choose one to implement the 

application. Another strategy is to select one resource offking using some heuristics and Client 

supplied information. Yet another strategy would be to poil the eligible ACs in sequence and 

select an offering based on sorne criteria 

Once the QoS broker finds an agreeable resource reservation fiom an AC, it forms a QoS 

contract with the AC. Because the resources may not exclusiveIy be under the Grid control (e.g., 

the resources may be used by owners without the Grids intexvention), therefore the QoS contract 

formed between QoS broker and AC may be violateci. Therefore, the QoS broker should monitor 

for any possible violations of the contracts and initiate renegotiations with the Client and the 

admission controller to rernedy them. 

The QoS contract violation could be caused by two reasons: (a) fluctuations in resource 

availability and (b) variation in the resource requirement of the application. The resource 

management architecture presented here decouples the contract into two stages. This enables 

more robust scheduling environments because when an application overmns the expected 

resource requirement, the Client needs to renegotiate the contract with the QoS broker. A rogue 

application would not affect the resource reservations of the other applications. 
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Resource Information Service (RIS) provides information of resources in ternis of their load, 

operating system version, installed software, availability, etc- the contents of information service 

are updated by automated discovery and publication mechanisms. The information of a RIS is 

queried by resource discovery agent to locate resources with desired QoS characteristics. 

3.3 Scheduling Resewations 

The admission Controller (AC) has two responsïbilities: 

Making decisions about accepting an application's request using proposed algorithm. 

Applications requesting the best-effort service are always accepted by the AC; 

Enforcing allocation of reserved resources when an allocation request is received. 

When an AC receives a reservation request fiom a QoS broker, the AC scans the t h e  slot tables 

in the required time duration for al1 machines which are controlled by the connecteci resource 

scheduler, If the QoS requirements of the application (either hard QoS requirements or sofi QoS 

requirernents) can be satisfied, the AC updates the time dot tables for selected machines with the 

arnount of prornised resources and responds the user using the unique user ID. The value of the 

pararneter that has sofi QoS requirements c m  be obtained from a user's preferred benefit 

function shape and the parameter value that can give the highest benefit to the user. Once the 

application's request is accepted by the AC, a contract about the application's QoS guarantees 

between the user and the system is assigned. This procedure only marks the time slot tables for 

reservations. The reserved resource is not effective until an allocation request is received. If the 

request is rejected, the QoS broker will try to contact with other Acs provideci by the resource 

discovery agent or re-negotiate with the user until the requested resource is found or the user 

gives up the reservation. 



The time slot table is updated every time interval, which is qua1 to a bime dot, in order to keep 

the first slot always being the current time slot. When the stm tùne of an application is in the 

first slot in the time slot table, the system is ready for the application's execution using reserved 

resources. Upon usage request's amval, the AC sends allocation requests to the resource 

scheduler. The resource scheduler arranges the resources for an application's execution. For the 

application that is still ninning at the end of the requested duration, the system will provide a 

best-effort service to it. If the application teminates before the end of the requested duration, the 

user can claim these reserved resources for other application's execution without additionai 

reservation using the same user ID. Or the resources can be released autornatically by the systm. 

The user also can modie or cancel the reservation before resources allocation occurs. In the case 

of QoS degradation or reservation cancellation, the AC modifies the corresponding t h e  slot 

tables and cancels the QoS contract if reservation cmcellation is required. On the other hand, if 

the user requests more resources to be reserved, the AC has to perfotm the admission control 

procedure again to rnake a decision as descnbed above. 

3.4 About the Time Slot Table 

A t h e  dot table is responsible for keeping track of current allocations and fùture reservations 

for resources. Each individual resource has a mapped time dot table. Figure 3.2 shows an 

exarnpIe of a time slot table. It is a two-dimension Cartesian coordinate. The "y" axis represents 

the percentage of the resource. The "x" axis represents the tirne, which is divided into a number 

of slots. The first time slof represents the slot in which the current time is included. 
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Figure 3.2: An example of a time slot table 

A lime do t  table manager is used to provide fùnctions to maintain a set of time dot  tables. It has 

following responsibilities: 

Whenever a new resource is available for the system, the resowce reports its percentage 

value that can be man& by the system to the time dot  table manager. The time slot 

table manager then creates an ernpty tirne dot table for this resource; 

If a resource is assigned with an advance reservation, the time dot table manager is 

responsible for marking the time slot table associate with the resource in corresponding 

slots with the reservation value; 

If a reservation on a resource is canceled, the time do t  table manager is responsible for 

erasing the reservation fiom the time slot table in corresponding dots with reservation 

value; 

If a resource leaves the system, the time dot table manager is responsible for removing 

the time dot table for this resource fiom the time dot  table manager. Applications 

assigned on this resource should be rescheduled on other resources. This procedure is 

handled b y the QoS broker; 

When the AC queries, the t h e  dot table manager is responsible for providing 

reservation information on a11 resources; 



[n order to keep thefirst slot as the currenr time slot the tirne dot table manager is also 

responsible for updating time dot tables every time interval, which is qua1 to a time slot. 

The pseudo code of a time slot table manager is showed in figure 3.3. CIass dotManager is a 

time slot table manager responsible for managing time dot tables for al1 machines controlled by 

the AC. Function initiafize creates an ernpty dotManager at the system set up tirne. Whenever a 

machine cornes in, function create-dot-table creates an empty rime dot table for this machine. 

Then sends this to dotManager to manage. Function add-reservation marks the time dot table in 

specific slots for a specific machine when the reservation is assigned on this machine. If the do t  

is assigned with other jobs already, the value of reserved CPU for this slot is the sum of all 

reserved CPU value. Otherwise, the slot is marked with the new reserved CPU. Function 

query_sh~tuble is responsibie for queryîng the reservation information on a specific machine in 

a specific slot. Function update-dot-table decreases slot order by one every slot t h e  interval. 

This function ensures that the current time is always within the k t  d o t  When a machine leaves 

the systern or encounters some failure, fiinction handlefaifure removes the time dot table for 

the machine fiom slothdanager. The reservations assigned on this machine needs to be 

rescheduled using the unique user ID. Function cancel-reservation is responsible for canceling 

reservations within given slots. Because the start time and the desired reservation duration fiom 

an application c m  be an arbitrary value rather than slotted tirne used in the system, therefore, 

function calala te-starr-slot and calculate-end-sslor interpret user's arbitrary time value to 

slotted value. 



class SlotManager 
function Initializer() 

create an empty dotManager at system set up time; 

function create-slot-table(machineName mj) 
create an empty slot table table-mj; 
sent table-mj to slotManager; 

function add-reservation(machineName mj, startslot t-start, endSlot t-end, CPLTValue 
C P U-rsv) 

get table-mj from slotManager; 
for (slot t = t-start, t<= t-end, t++) 

if (t contains some CPU value) 
get CPU percentage CPUold already reserved in this slot; 
CPU-new = CPU-old + CPU-rsv; 
mark the slot with CPUnew; 

else 
mark the slot with CPUrsv; 

endfor 

function query-slot-table(machineName mj, dot t) 
get table-mj from dotManager; 
return reserved CPU value in slot t; 

function update-dot-table() 
for each slot table in slotManager 

for each slot in a slot table 
new-slotorder = old-slot-order -1 ; 
if (new-dot-order c 0) 

cancel the slot with reservation in this slot; 
endfor 

endfor 

function handle-failure(machineName mj) 
remove table-mj for slotManager; 

function cancel-reservation(machineName mj, startsiot t-start, endSlot t-end, CPUValue 
CPUcancel) 

get table-mj from dotManager; 
for (slot t=t-star, tc=t-end, t++) 

get CPU percentage CPUoId already resenred in sIot t; 
CPU-new = CPU-otd - CPU-cancel; 
mark the slot with CPU-new; 

endfor 

function calculate~start~slot(double start-time, int slot-interval) 
get current-time; 
startslot t = flaorFunction((start-time - current-time)/slot-interval); 
return t; 

function calculate-end-slot(double start-time, double duration, int dot-interval) 
get cuvent-time; 
endSlot t = ceilingFunction((start_time + duration - current-time)/slot-interval); 
return t; 

Figure 3.3: Functions of a time slot table manager. 



4 RSPB: RESERVATION SCEKEDULER WITE 
PRIORITIES AND BENEFIT F'UNCTIONS 

4.1 Preliminary Remarks 

Reservntion Scheduler with Priorilies and Beneft Functions (RSPB), which schedules 

reservations on a single machine, can be used in an admission control for a system such as hi&- 

throughput computational Grid. RSPB schedules reservations while considering relative 

prionties of various application requests. Benefit hc t ions  are used to mode1 user's QoS 

requirements. Machine load balancing is also considered. A detailed description of the algorithm 

is presented in this chapter. Simulation results and discussion are also given. 

4.2 Assumptions 

The algorithm is based on the following underlying asmmptions. A centralized resource 

reservation scheduler is assumeci, Le., al1 the resource reservations are performed by a 

centralized unit. Requests arrive randomly based on a Poisson arriva1 process. Because the 

requests are arriving in a random fashion in real time, the reservation scheduler cannot wait until 

al1 the requests have arrived to commence the scheduling. It should make the decisions on the 

requests as each one arrives or makes a decision afier the d v a l  of a batch of requests. This 

algorithm follows the Iater method. Once a request is granted the reservation, a contract for the 

reservation is signed between the application and the system. The reservation scheduler won't 

examine the same request more than once except the case in which a QoS violation occurred. 

This situation should be handled by a higher level QoS broker that engages in re-negotiation to 



establish another reservation or a continuation of the current reservation. Based on the operating 

policies, the reservation scheduler may find another reservation or the application rnay operate 

under best-effort conditions. 

4.3 Notations and Mathematical Model 

Let rn be the number of machines in the system. The machines are assumed to be homogeneous. 

Let CPU-sys, represent the percentage of CPU of the j-th machine Mj that is dedicated to the 

Grid systern. For each request Rk arrivhg at the reservation scheduler, following parameters are 

defined. 

tk-srarr: start tirne of reservation for Rk; 

tk-.ond: end time of reservation for Rk; 

CPU,,k: minimum CPU requirement of & for delivering the maximum benefit to the 

application; 

pk: priority of Rk, due to lirnited amount of resources, the scheduler cannot meet the demands 

of al1 the requests. When the overall dernand exceeds the available resources, the objective of 

the reservation scheduler is to minïmize the sum of priority of the requests that are rejected. 

This study uses heuristic approaches to achieve this objective. 

Bk(PcpJ: the benefit function associated with Rk. It gives the benefit which the client will 

receive if it is reserved CPU at the requested level. Figure 1.1 shows some of shapes that the 

benefit function could take for a reservation request. Although, in this project, benefit 

functions are used only for quant img the CPU requüments, it may be used for other 

resources as we1I as the t h e  consîraints. 



4.4 Resewation Schcduling with Prioritks and ûenefit Functions 

This section examines RSPB reservation scheduling algorithm. h this study, each reservation 

request involves a single resource, i.e., no CO-reservation of resources is considered here. Figure 

4.1 shows the outline of the dynamic reservation scheâuler. In this scheduler, dynamically 

arriving requests are collected for a predefined time interval to form a meta-request. 

t=b: scheduler start time 
At: inter-schedule tirne 
while (true) 

t = t + At; 
while (current tirne < t) 

get current request R; 
add R to Rmeta 
if (requested start time of R < t) 

t = current time; 
endwhile 
scheduleRmea(Rmeta) 

endwhile 

Fi~ure 4.1 : Outline of the dvnamic reservation scheduler. 

The dynamic reservation scheduler makes a decision upon receiving a meta-request using the 

scheduZeR,,, fùnction that is shown in Figure 4.2. The scheduleR,, function is called in 

following two situations: 

When the current time is equal to the current schedufing ment rime that is quai  to t; 

The requested start tinte of request R is less than m e n t  scheduling event time t. This 

ensures that requests with start tirne less than current schedding event time is scheâuled 

before curent time is equal to nrrrent scheduling ment time. One example of îhis kind of 

requests is immediate reservations. 



f unction scheduleRmeta (meta-rquest Rrneta) 
Rk : the km request in Rmeta; 
Mi : the jm machine in the system; 
CPUmiB-k : minimum CPU requirement when Rk 

get lowest acceptable benefit from reservation; 
load-heaviestj(tm. tn) : the heaviest load of Mi within a reservation duration tm to ti; 
CPU-smallestj(tm, b) : the smallest availability of CPU to reserve 

for Mj within a duration t,,, lo tn; 
machQueuehard : a machine queue used to store machines 

which can satisfy hard QoS request of Rk; 
machQueuesoft : a machine queue used to store machine 

which can satisfy soft QoS request of Rk; 
6jk : benefit value whkh Rk Cari get f r ~  Mj; 
Rnonçatis~ : meta-request used to store rejected requests; 

for al[ requests Rk in Rmeta 
sort the requests in descending order by pk; 

for each sorted request Rk in Rmeu 
reset machQueuehard and mactiQueueso~ 
get tk-stmt and tk-end; 
calculate CPUmin-k according to selected benefit function shape; 
for each machine Mi in the system 

get load-heaviestj(tk-srart, tk-end); 
CPU-smallestj(tk-start, tk-end) = CPU-SYS~ - laad-heaviestj(tk-start1 tk-end); 
if (CPU-smaf kstj(tk-startl tk-end) 3 CPUmax-k) 

machQueuehard + Mi; 
else 

if (machQueuehard is empty) 
if (CPU-smaIIestj(tk-start, tk-end) 2 CPUmin-k) 

if (machQueuesofi contain machine Mi) 
Bjk = Bk(CPU- smallesti(tk-~tart, tk-end)); 
Bik = Bk(CPU-~malIe~ti(tk-~~rt, tk-end)); 
if (Bjk > Bik) 

machQueuesofi + Mi; 
else 

rnachQueuesofi + Mi; 
endfor 
if (both the machQueuehard and machQueuesoft are empty) 

put the request Rk into meta-request Rnonsatisty; 
else 

if (machQueuehard is not empty) 
select the machine with the lowest average CPU load within duratim (h, t"); 

else 
the machine in the machQueues& is the choice 

mark the tirne slot table for this machine with requested reservation; 
endfor 

Figure 4.2: A priority and benefit function based scheduling algorithm for indivisible resewations. 
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Figure 4.2 shows the pseudo code for the scheduleR,, hction.  Line (12) sorts the requests in 

R,,, in descending order by the prionty of the requests. This ensures thaî if multiple reservation 

requests require reservation in the sarne duration, the requests with higher priority will be 

scheduled first. This reduces the sum of rejected prioritics thus e n d g  the resources are used in 

the most beneficial manner. Line (1 7) determines the minimum CPU requirernent for request Rk 

(Le., CPU capacity at which Rk can provide the lowest acceptable benefit to the application 

according to the selected benefit finction shape). This value will be used to determine if the 

request should be rejected or admitted (with gracefül degradation) in case of resource scarcity 

and its hard QoS requirernent cannot be guaranteed. 

In this reservation model, a CPU resource may be temporally shared by multiple reservations, 

that is, multiple reservations may overlap in tirne. Therefore, we need to determine the cwrent 

CPU usage for a given time interval before admitting a reservation. In Lines (19) and (38), the 

current CPU (machine) usage is detennined using time dot  tables that keep track of reservations 

that have already been accepteci. The time dot tables only keep track of the partition of the CPU 

that is dedicated to the Grid and thus, managed by the reservation scheduler. 

Line (21) determines whether the examined machine can satisfy the hard QoS requirment of 

request Rk. If yes, this machine is put into a machine queue named rnachQueueM for later 

selection in line (38). Although it is not shown in the pseudo-code in Figure 4.2, the search for a 

machine that satisfies the reservation request can be stopped when a machine that satisfies the 

hard QoS is found. If none of the machines in the system c m  satisfjr the hard QoS requirement of 

Rk, the reservation scheduler will attempt to schedule the reservation with a degradation of the 



CPU requirement for Rk if the benefit fiuiction is provided to allow for the degradation. Lines 

(24) to (32) attempt to find a machine that satisfies this situation and this machine is considered 

to satis* the soft QoS requirernent of Rk. Lines (26) to (32) attempt to maxùnize the benefit 

delivered to the application by the reservation. 

Line (34) and (35) deai with the case where the system cannot provide the requested level of 

senrice to Rk. The reservation scheduler checks the meta-request and sends rejections 

messages to the clients that submitted the reservation requests in RnomatiSp The clients may 

resubmit their reservation requests with modifications and these submissions wili be considered 

for reservation at the next scheduling event. Line (38) ensures that the load is distributeci across 

the machines. 

4.5 Simulation Results and Discussion 

This section presents some results from a simulation study designed to evaluate the performance 

of the algorithm provided in the previous section. In this simulation study, the RSPB is comparai 

with the Resozwce Broker (RB) [ICiiOO]. For comparing the two reservation schernes, a discrete 

event simulator was written using the PARSEC language (represents for PARallel Simulation 

Environment for Complex S ystem), whic h is a C-based discrete-event simulation language 

[BaM98, PARSEC]. In the simulations, the reservation requests arrived randomly according to a 

Poisson arriva1 process. With each request, several attributes were associated to define 

parameters Iike reservation start time, end time, percentage of resource, shape of the benefit 

function, priority, etc. The benefit fhctions were restncted to the four shapes in Figure 1.1 such 



that each hc t ion  is used by 25% of total number of requests. Tirne siot table for each machine 

is maultahed by a modified version of the data structure called Interval Skip List maJ96, 

ISList]. The following parameters are true for the simulation results presented unless stated 

otherwise, 

10 machines participateci in the simulation; 

Each machine dedicated 70% of CPU to the Grid system; 

Each reservation requested for CPU usage was uniformly distrïbuted in [20%, 70%]; 

Requested duration was unifonnly distriibuted in 20-300 the units (PARSEC cfocktype); 

Requested starting times were uni fody  distriiuted over 4,320 the units; 

Time was slotted with a grandarity of one time unit. The simulation time is 100,000 tirne 

units. It created an average of about 10,505 requests. 

Figure 4.3 shows the variation of the number of rejections with the number of requests. The 

simulation time ranged fiom 10,000 to 120,000 time units and the averages of about 1063 to 

12,604 requests were created. Figure 4.4 shows the variation of the number of rejections with the 

number of machines. The number of machines participated in this experiment ranged fiom 2 to 

20. Figure 4.5 shows the variation of the number ofrejections with the average of duration. The 

average requested duration varkd in the [30,350] ranges. 

From Figures 4.3, 4.4, and 4.5, it can be noted that the number of rejections for RSPB is 

considerably lower than that for RB in al1 three cases. This is because the benefit function is used 

in RSPB. The requests that need to be re-negotiated in RB may be admitted in RSPB with 

graceful degradation of QoS, provideci they have specified soft QoS requirements using their 

benefit finctions. This reduces the number of rejections. 
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Figure 4.3: Number of rejections versus number of requests. 
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Fi~ure 4.4: Number of reiections versus number of machines. 
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Figure 4.5: Nurnbef of rejections versus request duration. 
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Ficiure 4.6: The average of reserved CPU versus the averaqe of re~uested CPU. 



Figure 4.6 shows the variation of the average of reserved CPU with the average of requested 

CPU- The average of requested CPU ranges fiom 20% to 70%. For çontrast, we show the ideal 

case of satisfjhg each request to 100% as well- 

In Figure 4.6, when the average of requested CPU is less than 25%, reserved CPU for al1 three 

curves are the same. This is because when the requested CPU is lower, the system can satis@ al1 

requests. Therefore, reservations for d l  three cases are the same. When the average of requested 

CPU is greater than 25%, three approaches deviate. in partïcular, RB and RSPB deviate f?om the 

ideal appoach. 

The curve for RB is lowest before the average of requested CPU is less than 63%. The difference 

between RSPB and RB becomes bigger and bigger for the average of requested CPU less than 

50%. However, this difference becomes smaller and smaller after 50% and aimost the zero after 

63%. The reason for this is when the average of requested CPU increases, the number of satisfied 

requests decrease. Therefore, the reserved CPU is decreased because of occurrence of rejections. 

However, considenng benefit fûnction in RSPB helps it to reduce the number of rejections, thus 

increasing the average percentage of reserved CPU. However, when the average requested CPU 

is greater than 50%, the advantage of this mechanism is not pronounced. After 63%, this 

advantage is almost none existent. This is because when the average of requested CPU is much 

higher, for example 60%, most machines ofien only have two possible States, either be reserved 

about 60% or idle. In Our study, from four different benefit fùnction shapes, the lowest CPU 

reservation that the user can be allocated and still gets acceptable benefit is requested CPU 

*25%. If in a certain time slot, let's assume al1 requests ask for 60% CPU, then, al1 machines in 



the systern are reserved by 60%, when a new request cornes even with lowest acceptable CPU 

which is 60% * 25% (from selected benefit fünction shape), it will be rejected. 

Figure 4.7 shows the result of sum of rejected priorities versus number of rejections. The 

simulation time ranges fiom 10,000 to 100,000 time units. It created about an average of 1,063 to 

1 0,505 requests. Requested starting tïmes were uniformly distributed over 4,320 time unitS. But, 

the difference fiom previous statement is that the startïng time added an extra 300 t h e  units in 

order to avoid too many times such that only one request in metaRequest is scheduled. 

Therefore, the advantage of ordering request by pnority is more obvious. 

0 - - -  - - - -  - - - * 

O 200 400 600 800 1000 1200 1400 1600 
l 

number of rejections 
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Figure 4.7: Surn of rejected priorities versus number of rejections. 



From Figure 4.7, we can see the sum of  rejected priorities of RSPB is less than that of  RB. This 

is due to priority ordering in RSPB. In RSPB, requests with higher pnonties are always 

scheduled prior to those with lower prionty This ensures when resources are scarce, requests 

with higher priority have more chance of being admitteci- 



5 CO-RSPB: CO-RESERVATION SCREDULER WITB 
PRIORITIES AND BENEFIT F'UNCTIONS 

5.1 PrelirninaryRemarks 

The difference between Co-Reservation Scheduler with Priorities and Benefit Functions (Co- 

RSPB) and RSPB is that Co-RSPB schedules reservations on multiple resources simultaneously, 

whereas RSPB schedules reservations on single resource. In some Gnd systems such as 

collaborative computing Gnd, a cornmon characteristic of applications is a need to allocate 

multiple resources simultaneously. A challenge of CO-allocation is, in a cornpetition system, 

some required resources might not be available when demandeci- Thus, the application cannot be 

executed with al1 required resources in desired time duration. To reduce the probability of 

resource unavailability while CO-allocating resources, a CO-resewation algorithm Co-RSPB is 

developed for a Grïd system siich as collaborative computing Grid- As with the RSPB described 

in the last chapter, Co-RSPB schedules CO-reservation while c o n s i d e ~ g  relative pnorities of 

various application requests. Benefit ftnctions are used to associate a client's QoS requirements. 

Two cornparison algorithms are also developed as a base Iine to compare the performance of Co- 

RSPB. Detailed description of these algonthms as well as simulation results and discussion are 

presented in this chapter. Because Co-RSPB is developed under the same assumptions as RSPB, 

the section for assumptions is skipped in this chapter. 



5.2 Notations and Mathematical Moôel 

Let m be the number of machines in the system, The machines are assumed to be homogeneous. 

Let CPU-vsj represent the percentage of CPU of the j-th machine Mj that is dedicated to the 

Gnd system. For each request Rk arriving at the reservation scheduler, foliowing parameters are 

defined. 

tk-SICIrt: start time of reservation for Rk; 

tk-end: end time of reservation for Rk; 

R;: the i-th sub-request of Rk; 

C P U ~ ~ - ~ :  minimum CPU requirement of R; for delivering the maximum benefit to the 

application; 

pk: priority of Rk. When the overall demand exceeds the available resources, the objective of 

the reservation scheduler is to minimize the sum of priority o f  the requests that are rejected, 

therefore to maximite system benefit- This study uses heuristic approaches to achieve this 

objective. 

B & ~ ~ J :  the benefit function associated with R;. It gives the benefit Rk will receive if it is 

reserved CPU at the requested level. Figure 1.1 shows some of the shapes the benefit 

function could take for a reservation request. 

In the following algorithm description, notations below are also use& 

CPU,~,.~': minimum CPU requirement for R~' when R: gets lowest acceptable benefit from 

reservation; 

Mj: the j-th machine in the system; 

load-heaviestj(tm, t,): the heaviest load of Mj within a reservation duration t, to tn; 

CPU-smalle~tj(t~, t,): the smallest availability of CPU to reserve for Mj within a duration t, 

to t,. CPV-~mdiestj(t~, tn) = CPU-sysj - 10ad-heaviestj(tm, tn); 

B~;: benefit value which R ~ '  can get fiom Mj; 



Rk-sub-me<a: sub-request queue of Rk; 

isFloating: Boolean variable, true if the request Rk asks for floating machines; false if the 

request Rk asks for fixing machines; 

rnachQhzd: a machine queue used to store machines which can satise hard QoS request of 

~ k ' ;  

machQmR: a machine queue used to store machines which can satisfy sofi QoS request of 

In order to quanti@ the system performance in terms of service, a system benefit calculation 

1 2  mode1 is also developed. Let bi, b2, ... bn be the benefit received by n sub-request Ri, , Rk , ... 

R~~ of application Rk at the QoS level at which it reserved. The maximum value for bi, bz, ... b, 

is set to be 1. Let Bk be the benefit that the application Rk receives. Bk is define as: 

Bk = l/n xi bi 

Thus, the maximum value for Bk is 1. 

Let B be the benefit that the system provides. B is defined as: 

B = Ck ~ k B k  

Where wk is the weight assigned to application Rk. This weight captures the importance of the 

application. In this study, it related to the application's priority. Let pi, pl, ... pm be the priority of 

applications RI, R2, ... R,. then the weight wk for the application Rk is defined as: 

wk=pk/&pj 

Thus, the maximum value for B is 1. Therefore, the objective of the system is to achieve benefit 

value as close to 1 as possible. 



5.3 Co-Resewation Scheduling with Priorities and Eenefit Functions 

This section examines the CO-reservation scheduling algorithm. In this study, each CO-reservation 

request involves in multiple resources. If any one required resource is not available to the 

application, the whole application wiU be rejected by the system. The outline of the dynamic CO- 

reservation scheduler is the same as Figure 4.1. Therefore, in this section, the description of CO- 

reservation scheduler is skipped and scheduleR,,, function is presented directly. 

Figure 5.1 shows the outline of ~ c h e d ~ l e R ~ ~ ~ ~  fùnction. Line (2)  to (4) sort the requests ùi Rmm 

in descending order by the priority of the requests. This ensures that if multiple reservation 

requests require reservation in the same duration, the requests with higher pnority will be 

scheduled first. This reduces the surn of rejected priorities, thus ensuring the resources are used 

in the most beneficial manner. Line (5) to (12) assign sub-requests to suitable machines for each 

request. If the request requires floating machines, function floatScheduling is cded. If the 

request requires fixing machines, function fdchedztling is called. 

function scheduleRmeb (meta-task Rmeta) 
(2) for al1 requests Rk in meta-request Rmeta 
(3) sort the requests in descending order by pk; 
(4) endfor 
(5) for each sorted request Rk in Rmeb 
(6) get tk-start and tk-end ; - 
(7) get ail sub-request R; of Rk. put RE into Rk-submeta; 
(8) if(isFloating = true) 
(9) floatScheduling(Rk-~~b-meb, tk-start, tk-end); 
(1 0)  else 
(11) fixScheduling(Rk-sub-meta, tk-start, tk-end); 
(12) endfor 

Figure 5.1 : Outline of Co-RSPB scheduling. 



Figure 5.2 shows the pseudo d e  for the floatScheduIing h c t i o n  for Co-RSPB. Line (3) 

determines the minimum CPU requirement for each sub-request R: of Rk (Le., CPU reservation 

at which R: can provide the lowest acceptable benefit to the application according to the selected 

benefit tùnction shape). These values will be used to determine if the request should be admitted 

with gracefùl degradation of some or ail sub-requests, or rejected when resources are scarce and 

hard QoS requirement of some or al1 sub-requests cannot be guaranteed. Line (4) sorts the sub- 

requests of Rk in Rk-sl,b-ntero in descending order by minimum CPU requirement of ~i,'. There are 

two purposes for this sorting. First, for sub-requests with a higher CPU requirement, there is less 

possibility to find a desired machine. Therefore, scheduling this kind of sub-requests first can 

inaease the possibilities, thus, reduce the chance of rejection for overall requests. The second, 

because of a lower possibility to fïnd a desired machine for sub-requests with a higher CPU 

requirement, scheduling it first can make the scheduling procedure faster. This is because if a 

sub-request with a higher CPU requirement is rejected by the system, the overall request is 

rejected. Thus, it is no longer necessary to schedule other sub-requests with lower CPU 

requirernents. 

In this reservation model, a CPU resource may be temporally shared by multiple reservations, 

that is, multiple reservations may overlap in time. Therefore, we need to determine the current 

CPU usage for a given time interval before admitting a reservation. In Line (9), the current CPU 

(machine) usage is determined using t h e  dot tables that keep track of reservations that have 

already been accepted. The t h e  slot tables only keep track of the partition of the CPU that is 

dedicated to the Grid and thus, managed by the reservation scheduler. 



Line (10) detexmines whether the examinecl machine can satisfjr the hard QoS requirernent of 

sub-request R:. if yes, this machine is put into a machine queue named machQharl. The size of 

mach&rd is set to be 1. Therefore, only one machine can be put into rnachQhard for each sub- 

request. Line ( 1 1 ) to line (1 5) is used to select a machine that has smallest CPU availability to 

satisQ the hard QoS requirement of sub-request R:. Although it is not shown in the pseudo-code 

in Figure 5.2, the search for a machine that satisfies the reservation sub-request can be stopped 

when a machine that satisfies the hard QoS is found- If none of the machines in the system can 

satis& the hard QoS requirement of R;, the CO-reservation scheduler will attempt to schedule the 

reservation with a degradation of the CPU requirement for R: if the benefit function is provided 

to allow for the degradation. Line (17) to (25) attempt to find a machine that satisfies this 

situation and this machine is considered to satise the soft QoS requirement of R;. Line (19) to 

(25) attempt to maximize the benefit delivered to the application by the reservation. 

Lines (27) and (30) deal with the case where the system cannot provide the requested level of 

service to R:. In this case, the overall request is rejected. Al1 reservations for sub-requests, whkh 

have been scheduled before R i ,  should be canceled. Sub-requests that don't have a chance to be 

scheduled are no longer necessary to be considered. The CO-reservation scheduler checks the 

meta-request RnonsolistG and sends rejection messages to the clients whose submitted reservation 

requests are in The clients may resubmit their reservation requests with modifications 

and these submissions will be considered for reservation at the next scheduling event. 



function floatscheduling (meta-request Rk-sub-me~, start-time tk-stm, end-time tkend) 
(2) for al1 sub-request R; in Rk-sià-meta 

(3) calculate C P U ~ ~ ~ - ~ '  according to selected benefit function shape; 

(4) sort sub-requests in descending order by C P U ~ ~ ~ - E  
(5) endfor 
(6) for each sub-requsest ~ k l  in Rk-~~ame<a 

reset machQhard and machQsoft 
for each machine Mj in the system 

get CPU-smallestj(tk-~tart, tk-end); 
i 

if (CPU-smaIIestj(tk-start, tk-end) 2 CPUmax-k) 
if (machQhard contains another machine Mr) 

if (CPU-smallestj(tk-çtart, tk-end) c CPU-smallestr(tk-~tart tk-end) 
machQhard <- Mi; 

else 
rnachQhard c- Mj; 

else 
i 

if (CPU-smaIIestj(tk-çtart, tksnd) 2 CPUmin-k) 
if (machQhard is empty) 
if (machQs& contains another machine Mr); 

B& = ~ k ~ ( ~ ~ ~ - ~ m â [ l e ~ t ~ ( t k - s t a r t ,  tk-end)); 
6d = ~k'(~~~-smallest&-*fi, tkend)); 

i n (eiki > B*) 
machQsoft c- Mi; 

else 
machQçofi C- Mi; 

endfor 
if (both the machQhard and machQsm are empty) 

put the request Rk info meta-request Rnonçatisfy; 

cancel reservation for REO~ which the order is bigger than R:; 
break; 

else 
if (rnach&rtj is not empty) 

the machine in machQhard is the choice; 
reserved CPU = cpumax-ki; 

else 
the machine in machQ~fi is the choice; 
reserved CPU = CPU-smallestj(tk-=tan, tk-end); 

mark the time slot table for this machine with reserved CPU; 
(39)endfor 

Figure 5.2: Function floatscheduling for Co-RSPB. 

Figure 5.3 shows pseudo code for the furSchedttling fünction. Since al1 sub-requests have fixed 

machine requirements, the algorithm here is much simpler than the previous one. The sorting 



procedure in Figure 5.2 is not necessary here. Further more, for each sub-request, only the 

desired machine need to be examined. Therefore, line (4) is used instead of a loop of number of 

machines in Figure 5.2. Once the desired machine is examined, the decision that if this sub- 

request can be satisfied is made immediately. The tïme slot table is also marked right after the 

examination. 

f unction fixscheduling (meta-request Rk-sub-meta. start-time tk-sbrt, end-time tk-end) 

(2) for ail sub-request ~k~ in Rk-subineta 
(3) 

i calculate CPUmin,k according to selected benefit function shape; 
(4) get request machine Mi; 
(5) g et CPU-smâIIe~tj(tk-~~~r~, tk-end); 
(6) 

i 
if (CPU-~malle~tj(tk-~ta~~, tk-@"d) 2 CPUma*-k); 

(7) mark the time slot table for this machine with requested reservation; 
(8) else 
(9) 

i if (CP U-smallestj(tk-~~~, tk-rnd) 2 CPUmin-k ) 
(1 0)  reserved CPU = CPU-~mallestj(t~-~~~, tk-rnd); 
(11) mark the time slot table for this machine with resewed CPU; 
(1 2) else 
(1 3) put the request Rkinto meta-request Rnonsatisfy; 
(1 4) cancel reservation for ~k~ of which the order is bigger than R;; 
(1 5) break; 
(1 6)  endfor 

Figure 5.3: Function fixscheduling for Co-RSPB. 

5.4 Cornparison Algorithms 

To Our knowledge, there is no simïlar algorithm available to compare with the performance of 

Co-RSPB. Actually, the problern that Co-RSPB solved is much like a bin packing problern 

We consider only the number of rejections fiom the system rather than the benefit that the 

system can provide; 

All the requests have a hard QoS requirernent rather than some requests have a soft QoS 

requirernent; 



For each scheduling interval, ail machines have 100% CPU available to applications in R,,,,, 

Based on above observation, we designed a Co-reservation Scheduler with Best Fit scheme (Co- 

RSBF) as a cornparison algorithm to Co-RSPB. Co-RSBF is similar as Best Fit Decreasing 

(BFD) algorithm in bin packing problem except the bin size (i-e. machine CPU availability in 

this study) is not always 1. Co-RSBF focuses on the number of rejections fiom the system rather 

than the benefit that the system can provide. Therefore, to reduce the number of rejections, ail 

applications are given the minimum benefit by mng al1 sub-requests the minimum CPU 

reservations. As BFD in bin packing, Co-RSBF should give a result that is extremely close to 

lower bound of rejections. 

Figure 5.4 shows the outline of Co-RSBF. Instead of sorting applications by priority, Co-RSBF 

sorts applications by the sum of sub-request's minimum CPU requirements as in BFD. 

function scheduleRmeta (meta-task Rmeta) 
(2) for al1 requests Rk in meta-request Rmeta 
(3) sort the requests in descending order by xi cpumin-ki; 
(4) endfor 
(5) for each sorted request Rk in Rmeta 
(6) !Jet tk-start and tk-end ; - 

(7) get al1 sub-request R* of Rk and put into Rk-sub-meta; 
(8) if(isfloating = true) 
(9) fl~âtS~heduling(Rk-~u~meta, tk-start, tk-4); 
(10) else 
(1 1 ) fixScheduling(Rk-~~b-meta, fk-start, fk-end); 
(1 2)endtor 

Figure 5.4: Outline of Co-RSBF scheduling. 



Figure 5.5 shows the flootScheduling h c t i o n  in Co-RSBF and Figure 5.6 shows the 

f~Scheduling function for Co-RSBF. 

function floatScheduling (meta-request Rk-sub-meta, start-time tk-=tart, end-tirne tk-end) 
(2) for ail sub-request ~ k l  in Rk-subrneta; 
( 3  calculate CPU~~~: according to selected benefit function shape; 

(4) sort sub-requests in descending order by ~~urnin-k'; 
(5) endfor 
(6) for each subresquest RL 
(7) reset machQsofi; 
(8j for each machine Mi in the system 
(9) get CPU-~maIIe~ti(tk-start, tk-end); 
(1 O) if (CPU_~maliesti(tk-~~~, tk-end 2 cp~min-ki); 
(1 1 )  if (machQ contains machine Md 
(1 2) if (CPU-smai testi(tkstart, tk-end) c CPU-sma(lestr(tk-start, tk-end) ) 
(1 3) machQsofi <- Mi; 
(1 4) else 
(1 5) machQsofi <- Mi; 
(1 6) endfor 
(1 7) if (machQsoft is empty) 
(1  8) put the request Rk into meta-request Rnonçatish; 
(1 9) cancel reservation for Rkr of which the order is bigger than &'; 
(20) break; 
(21) else 
(22) the machine in machClsoit is the choice; 

i 
(23) mark the time slot table for selected machine with reserved CPU = CPUmin-k ; 
(24) endfor 

Figure 5 -5: Function floatscheduling for Co-RSBF. 

function fixscheduling (meta-request Rk-s~b-meta. start-time tk-start. end-time t k ~ d )  
(2) for ail sub-request ~ i :  in RkksUbmeta 

(3) calculate ~ ~ ~ m i n - k '  according to selected benefit function shape; 
(4) get request machine Mi; 
(5) get CPU-srnalle~tj(tk-~ta~t, tk-end); 

i 
(6) if (CPU-srnaile~tj(tk-~t,rt, tk-ey~) 2 CPUmin-k) 
(7) reserved CPU = C P U ~ ~ ~ - L ;  
(8) mark the time slot table for this machine with reserved CPU; 
(9) else 
(1 0) put the requeSt Rkinto meta-request Rnonsatisfy; 
(1 1 ) cancel reservation for R; of which the order is bigger than FIki; 
(12) break; 
(1 3) endfor 

F i~ure 5.6: Function fixschedulinq for Co-RSBF. 



Although Co-RSBF can give results that are extremely close to the lower bound for rejections, 

the benefit that the system can provide in Co-RSBF is minimum one because each sub-request is 

given a minimum benefit According to the system benefit calculation model, the benefit Bk = 

l/n xi bi received by the user of the application is minimum. Therefore, the benefit B=xk wkBk 

that the system can provide is minimum. When the resources in a system are not extremely 

scarce, this result should not be expected. Therefore, we designed another cornparison algorithm 

called Co-Reservation Scheduler with Best Fit and Refning scheme (Co-RSBFR). Co-RSBFR 

uses the same floatScheduling and fmScheduling functions as CoaSB F to schedule requests in 

each scheduling interval in order to get lower rejections in each scheduling interval. Then, 

without increasing the number of rejections, Co-RSBFR tries to extend CPU reservation for each 

sub-request, thus extends system benefit within each scheduling interval. Figure 5.7 shows the 

outline of Co-RSBFR algorithm. 

function scheduleR,,t, (meta-task RmeW) 
(2) for al1 requests Rk in meta-request RmeU 

(3) sort the requests in descending order by L ~Wmin- i< ' :  
(4) endfor 
(5) for each sorted request Rk in Rmeta 
(6) get tk-start and tk-end ; 
(7) get al1 sub-request FIk' of Ri, put R~~ into Rk-=bmeta: 
(8) if(isFloating = true) 
(9) f l ~ a t S c h e d u l i n g ( R ~ - ~ ~ ~ - ~ ~ ~ ,  tk-~a~t,  tk-end); 
(10) else 
(1 1 ) f ixScheduling(Rk-submeta, tk-start. tk-end); 
(1 2)endfor 
(1 3)for each sorted request Rk in meta-request Rmem 
(14) if Rk is accepted 

(1 5) get tk-start and tk-rnd ; 
(16) pet al1 sub-requast R~~ of Rk, put R: into R c ~ ~ ~ ~ ~ ~ ;  
(1 7) refinescheduting(Rk-sub-meta, tk-startg tk-end): 
(1 8)endfor 

Figure 5.7: Outline of Co-RSBFR scheduling. 



Function refineScheduling(meta-task Rk-çub-neta, start-time tk-nart, end-time tk-end) 
(2) for each sub-request ~k~ in Rk- SU^-meta 
(3) if (it has soft QoS requirement) 

(4) get machine Ms on which RE is assigned; 

(5) get CPU- srnaiiests(tk-start, tk-end); 
(6) CPU-~mailest~(tk-~t~n, tk-end) = CPU~~"-2 c CPU-smallest(tk-sta~, tk-end); 

(7) if (~~~-sma~iest(tk-start. tk-end) 2 cpumax-k\ 
(8) machQhard C- Ms; 

(9) else machQson c- Ms; 
(1 0) for each machine Mi 
(11) if (j != s) 
(1 2) get CPU-smallestj(tk-start, tk-erid); i 

(1 3) if (CPU-smal~estj(tk-start~ tk-end) 2 CPUrnax-k ) 
(1 4) if (machQhad contains machine Mr) 

(1 5) if (CP U_smallest,(tk-~t~rt, tk-end) c CPU-smallestr(tk-ert, tk-a)) 

(1 6)  machQhard C- Mj; 
(1 7) else ma~hQhard <- Mj; 
(1 8) eke 
(1 9) if (machQhazd is empty) 
(20) if (machQçpft contains machine Mr) 

(21 ) 6,k: = ~ i < ' ( ~ ~ ~ - ~ m â ~ l e ~ t ~ ( t k - s t a r t ~  tk-end)); 

(22) 62 = ~I<1(~~~-~mal le~tdtk-mf i ,  tktmd)); 
(23) i > B*') machQsoft c- Mi; 
(24) else machQsoftc-Mj; 
(25) endfor 
(26) if (machClhard is not empty) 

(27) machine Mi in machQhard is the choice; 

(28) 
i reserved CPU = CPUmax-k ; 

(29) else 
(30) machine Mi in machQsoft is the choice; 

(31) reserved CPU = CPU-smaltestj(tk-~tart, tk-end); 

(32) mark time slo: table for Mi with reserved CPU; cancel reservation on Ms; 
(33) endfor 
(34) for each çub-request 

(35) if (reserved CPU < C P U ~ ~ ~ - L )  

(36) get the machine M. on which ~k~ is assigned; 
(37) get CPU-~mallestç(tk-start, tk-end); 

i 
(38) CPU-~mallest~(t~~t~rt, tkend) = CPU-rsvk + CPU-smallests(tk-start, tk-end); 

i 
(39) if (CPU-smâiIests(tk-start, tk-end) 2 CPUmax-k) 
(40) on Mg, cancel original rasenration; mark time slot table with CPU~~X-k;  
(41) else 
(42) on Ms, cancel original resewation; 

(43) mark time slot table with CPU,~malle~tj(tk-~tart, tk-end); 
(44) endfor 

Figure 5.8: Function refinescheduling for Co-RSBFR. 



Figure 5.8 shows the refinescheduling b c t i o n  for Co-RSBFR. Line (3) gives the condition that 

only sub-requests with soi3 QoS requirements need to be rehed. The benefit for sub-requests 

with hard QoS requirements are L , already. When trying to extend the benefit for sub-request R;, 

the reserved CPU for R; should be counted while examining the CPU availability for the 

machine on which R; is assigned in previous scheduling. Lines (4) to (9) work on this purpose. 

Lines (13) to (17) try to get the machine, which can satisw the maximum QoS requirement of 

sub-request R ~ '  and have the smallest CPU availability in order to leave machines with greater 

CPU availability to sub-requests with higher CPU reservation requùements. If there is no 

machine which can satisfy the maximum QoS requirement of sub-request R:, then lines (20) to 

(24) try to get the machine which can give the greatest benefit to R:. Note that there is at least 

one machine - that's the machine on which R; is assigned previously, can satise at least the 

minimum CPU reservation request. After the first round refïnïng, there may be the situation that 

after refining sub-request R;, the reservation for other sub-request on the same machine as R; is 

canceled, in this case, if the benefit value for R: is not L, it's reservation can be extended once 

more. Lines (34) to (45) work on this purpose. 

5.5 Complexity Analysis 

The running time of an algorithm is generally the most important aspect of concem. In this 

section, the complexity of mnning time for three algorithms is anal yzed and compared. 

It can be noted that there are four function calls inside three aigorithms, which was not s h o w  in 

previous sections. They are: 



Sortïng function, which sorts requests or sub-requests by different crïticaIim 

Querying fûnction, which queries machine utilization infornation withïn a specific duration 

fkom a time dot tabCe; 

Marking function, which marks new reservations on a rinte dot table for a specific machine 

within a specific duration; 

Canceling fünction, which cancels reservation fiom a fime dot table for a specific machine 

within a specific duration- 

It is obvious that these four functions cannot be completed within one basic operation- The 

detexmination of running tirne upper bound for these four h c t i o n s  is dependent on what kind of 

algorithm or data structure these fuoctions use. It can be noted that for the purpose of comparing 

the running t h e  of Co-RSPB and Co-RSBF, the values of tirne for these four hc t ions  

will not affect the cornparison result. Therefore, let Si, T,, Tm, and Tc is the d g  time for 

function sorting, querying, marking and canceling, respectively. Where i is the number of items, 

which will be sorted. Thus, the running tirne upper bound for both Co-RSPB and Co-RSBF is 

O(SN + NSK i- NMKT, + NK~T,) if (KTc > T 3  or O(SN + NSK + NMKTq + NKT,) if (KT, c 

Tm), where N is the number of requests in Rmeta M is number of machina participateci in 

schedding and K is the number of sub-requests in Rk-sub-meta- 

From Figure 5.4, 5.7 and 5.8, it can be noted that the Nnning time upper bound for Co-RSBFR is 

the running time upper bound for Co-RSBF plus the running time upper bound for the refining 

procedure, that is O(SN + NSK + NMKTq + NK'T~ + NKT,). 



From the above analysis, we koow that Co-RSPB and Co-RSBF have the same ninning time 

upper bound. However, the runnïng tirne upper bound of CoRSBFR is higher. 

5.6 Simulation Results and Discussion 

This section presents some results fiom a simulation study designed to evaluate the performance 

of the algorithm provided in the previous sections. in the simulation study we compared the Co- 

RSPB with Co-RSBF as well as Co-RSBFR. A discrete event simulator was written using the 

PARSEC language [BaM98] for comparing the three reservation schemes. In the simulations, the 

reservation requests amved randomly according to a Poisson arriva1 process. With each request, 

several attributes were associated to define parameters like reservation start the, end tirne, sub- 

requests, percentage of resource, shape of the benefit function, prïority, etc. The benefit fùnctions 

were restncted to the four shapes in Figure 1.1 such that each function is used by 25% of total 

requests. Time slot table for each machine is maintaiaed by a modified version of the data 

structure called Interval Skip List BaJ96J. The following parameters are true for the simulation 

results presented unless stated otherwise. 

1 0 machines participated in the simulation; 

Machine CPU dedication to the Grid system was uniformly distributed in [50%, 100%]; 

It created 300 requests for each simulation, Each request consist of 1 to 6 sub-request; 

Each reservation (for each sub-request) requested for CPU usage was unifomly distributed 

in [IO%, go%]; 

Requested duration was uniformly distributed in 20- 180 time units (PARSEC clocktype); 

Requested starting times were uniformly distributed over 4,320 time units; 

The priority of request was uniformly distributed in [ 1, 1001; 

80% percent of requests required floating machines; 

Scheduling interval was 50 time units; 



Time was slotted with a granularity of one time unit. 

Figure 5.9(a) shows the variation of systern benefit with the number of requests. Figure 5.9(b) 

shows the variation of the number of rejections with the number of requests. The simulation 

created requests which ranged fkom 100 to 1,900. Figure 5.1qa) shows the variation of system 

benefit with the number of machines. Figure 5.10(b) shows the variation of the number of 

rejections with the number of machines- The number of machines paaicipated in this experiment 

ranged fiom 4 to 40. Figure 5.1 1(a) shows the variation of system benefit with the average of 

duration. Figure 5.1 l(b) shows the variation of the number of rejections with the average of 

duration. The average requested dwation varied in the [24, 1591 ranges. 

From Figures 5.9(a), 5.10(a), and 5.1 l(a), it can be noted that the system benefit for Co-RSPB is 

considerably higher than that for Co-RSBF and Co-RSBFR in aii three cases. It's easy to 

understand that the system benefit for Co-RSBF is always lower because each application is 

given the minimum benefit in each scheduling interval even though the resource is enough to 

give more benefit to applications. Two reasons may result in why Co-RSBFR gives lower system 

benefit than Co-RSPB does. One is: even though Co-RSBFR can give a less a number of 

rejections, fkom system benefit calculation mode1 described in previous section, the pnonty of 

application is an important factor for system benefit. Without considering pnonty in Co-RSBFR 

scheduling leads to lesser number of rejections but a lower system benefit. The second reason is 

Co-RSBFR may have the same number of rejections as Co-RSBF in one scheduling interval, but 

the refining procedure makes more resource unavailable for later scheduling than Co-RSBF 

does. This may lead to higher number of rejections o c c h g  for the overall scheduling 



procedure, therefore resulting in a Iowa system benefit. From Figure 5.9(b), S.lû(b) and 5.1 l(b), 

this assumption is approved. 

Another fact is that when resources are not scarce the system benefit for Co-RSBFR is 

considerably higher than that for Co-RSBF. However, when resources are extremely scarce, the 

systern benefit for Co-RSBFR is very close to the benefit for Co-RSBF. This is because when 

resources are extremely scarce, after Co-RSBF scheduling, there will be very limited resources 

available for the refining procedure. Therefore, the refining procedure cannot make a significant 

difference to overall systern benefit 

From Figure 5.9(b), 5.10(b) and 5.1 1 (b), we can note that as we analyzed previously, the number 

of rejections for Co-RSBFR is much higher than that for Co-RSPB and Co-RSBF. The number 

of rejections for Co-RSBF is the lowest as we expected. The number of rejections for Co-RSPB 

is about 10% higher than that for Co-RSBF and thk difference increases slightly when resource 

becomes scarcer. 

Figure 5.12(a) shows the variation of systern benefit with an inçrease in the percentage of 

floating requests. Figure 5.12(b) shows the variation of the number of rejections with percentage 

of floating requests. The percentage of requests asking for floating machines ranged fiom O to 

100%. 
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Fiçiure 5.9: (a) Svstem benefit and (b) number of reiections versus number of reauests. 
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Figure 5.1 0: (a)System benefit (b)number of rejections versus number of machines. 
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Figure 5.1 1 : (a) System benefit (b) number of reiections versus reauested duration. 
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Figure 5.1 2: (a) System benefit (b) number of rejections 
versus oercentage of floatinçi rwuests. 
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Figure 5.1 3: (a) System benefit (b) number of rejections versus scope of priority. 



From Figure 5.12(a) and 5.12(b), it can be noted that when ail requests ask for fixeci machines, 

the number of rejections are highest, &&ore the system benefit are lowest for al1 three 

algorïthms. As the percentage of requests requiring floating machines increases, the number of 

rejections for d l  three algorithms decreases and the system benefit increases, This is because the 

requests for the fixed machines have less flexibiIity, therefore increasing the chance of 

rejections- 

Figure S.l3(a) shows the variation of system benefit with pnority. Figure 5.13(b) shows the 

variation of the number of rejections with the highest p w t y .  The lowest priority is set to be 1. 

The highest priority ranged fiom 10 to 100. 

From Figure 5.13(a) and 5.13(b), we c m  see that the scope of pnority does not affect the value 

of system benefit and the number of rejections- This proves that the system benefit caiculation 

mode1 descnbed previously is correct. 



6 CONCLUSIONS GND FUTURE WORK 

This project presents a resource management architecture supporting advance reservations for a 

Gnd computing system and introduces a novel way of incorporating QoS constraints as well as 

priority into an advance reservation systern including a CO-reservation scheduling algorithm. The 

project compares the performance of the proposed RSPB algorithm with an existing advanced 

reservation algorithm, namely the Resource Broker, and compares the performance of Co-RSPB 

with two comparison algorithms developed in this thesis, and analyzes the simulation results. 

The QoS constraints are specified using an abstraction cafted benefit functions. Although the 

proposed algorithm is designed to reserve CPU resources, it is easy to extend the algorithm to 

reserve other resources such as network bandwidth, disk, memory, etc. It is also possible to 

extend the algorithm to support multiple dimension benefit fùnctions, such as time deadline 

benefit functions. The primary contributions of this thesis are: 

Designing a resource management architecture supporting advance reservations for a Grid 

computing system; 

lntroducing a novel way of incorporating QoS constraints and pnonty into an advance 

reservations scheduling algorithm for a Grid computing systern; 

Developing a Rese~vation Scheduler with Priorities and Bene@ Functions (RSPB), which 

improves the performance of existing approach (RB) by considering priorïties and benefit 

functions associating the application; 

Developing a Co-Resevvation ScheduZer with Priorities and BeneJit Functions (Co-RSPB), 

which is the first CO-resewation scheduling algorithm separating fiom traditional scheduling 

for admission control in Grid computing system; 

Developing two comparison aigorithrns Co-Reservation Scheduler with Best Fit scheme (Co- 

RSBF), and Co-Reservation Scheduler with Best Fit and Refine scheme (Co-RSBFR), as 



base line to evaiuate the performance of Co-RSPB. Simulation resuits show that the Co- 

RSPB has a very good pelforrnance by satisfjing larger number of reservation request. 

Developing a novel system benefit calculation mode1 to quanti@ the system performance in 

tenns of QoS senrice. 

Several future directions are identifid for fürther investigation. Some of them include: 

Developing schemes for incorporating multiple QoS constraints into the admission control 

problem; 

Comparing different data structures to h d  fastest algorithm for searching in the time slot 

tabIe; 

Extending reservation of CPU resources to reservation of other resources, such as network 

bandwidth, disk, mernory, etc.; 

Designhg protocols to address communication overheads problem; 

Implementing the prototype of a QoS driven RMS using the proposai aigorithms. 
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