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Abstract

Using the principles of the W-statistic for exponentiality of a single distribution
(Shapiro and Wilk, 1972; Samanta and Schwarz, 1988) we develop procedures for
testing a composite hypothesis of exponentiality of two distributions having the same
scale parameter. The proposed V-exponential statistic for complete samples turns
out to be a normalized ratio of the square of the generalized least squares estimator
(also the minimum variance unbiased estimator) of the common scale parameter
to a pooled sum of squares about the samples means. The V-exponential statistic
is origin and scale invariant and has a null distribution that depends only on the
sample sizes. We also prove some other important results relating to our proposed
V-exponential statistic. Following the approach of Samanta and Schwarz (1988), the
V-exponential statistic is then modified when one or both samples are censored. The
modified test statistic has the same null distribution as in the uncensored case with
a corresponding reduction in sample size(s).

Finally, following the approach of Stephens (1978), we propose a V*-exponential
statistic for testing exponentiality of two distributions for complete samples. In
each case, we provide the empirical power results for various types of probability
distributions considered under the alternative. We also compared the power results
of the one-sample W-exponential test, two-sample V-exponential statistic and V*-
exponential statistic. We see that the obtained results are similar in each case. That

is, the three tests seem comparable in terms of sensitivity.
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Chapter 1
Introduction

When testing for goodness-of-fit, we take an observed sample and test how well
it fits a given distribution. The general procedure consists in: (i) setting the null
hypothesis, denoted by Hy, which states that a given random variable X follows
a probability distribution whose form is known and may depend on a number of
known or unknown parameters, (ii) calculating a test statistic, which is some function
of the data measuring the distance between the hypothesized distribution and the
sample data, and (iii) making a decision about the acceptance or rejection of the

null hypothesis.

There are many reasons to use goodness-of-fit tests. First, if the suggested probability
model is correct, we have more confidence in our model for data generating process
and on the parameters that describe the population. Secondly, the knowledge of the
distribution for the data, allows us to use standard statistical testing and estime;,tion
procedures, such as analysis of variance and the construction and calculation of
confidence and prediction intervals. Finally, with the knowledge of the distribution,

extreme tail probabilities can be computed.

There are several goodness-of-fit techniques. Graphical analysis is an informal pro-

cedure. One such technique is based on the probability plot, which is defined as the
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ratio of the number of observations less than or equal to z; (a realized value of the
sample) to the total number of observations n. The probability distribution function
is called empirical cumulative distribution function (i.e. ecdf). It is a simple tool
which is easy to use on a piece of graph paper or using simple computer programs. It
is less formal than the numerical techniques that will be presented later and usually
is used to support the numerical testing procedures. It often gives a better under-
standing of the numerous relationships present in the data. The ecdf plot does not
depend on any assumption about a hypothesized parametric distribution function.
It has some advantages over the other statistical goodness-of-fit techniques since it
gives immediate and direct information regarding the shape of the underlying distri-
bution (i.e. skewness) and is an effective indicator of potential outliers. Also, most
importantly, it can be used effectively for censored data. However, its sensitivity
to random occurrences in the data sometimes leads to the wrong conclusion. We

cannot solely rely on it, especially when the sample size is small.

The x? goodness-of-fit test is a classical statistical procedure. It was developed
by Karl Pearson. It uses the comparison between the observed cell count and the
corresponding expected value under the hypothesized distribution. The test statistic
asymptotically follows a x? distribution with c—k—1 degrees of freedom. Here c is the
number of cells and £ is the number of estimated parameters for the distribution.
The x? goodness-of-fit test is applied to binned data (i.e. data put into classes).
Therefore, the value of the x? test statistic is sensitive to how the data is binned.

Another disadvantage of the x? test is that it requires a sufficient sample size for the
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x* approximation to be valid. In practice, it is usually required that, the expected
frequency should be at least 5. Because of this, the test is not valid for small samples,
and if some of the expected counts are less than five, one may need to combine some
bins associated with the tails of the hypothesized distribution. These reductions
discard some information, so that the x? goodness of fit test is less powerful than the
other goodness-of-fit techniqués. However, this test can be used for both continuous
and discrete data, as well for the univariate and multivariate data. It is the most

widely used goodness-of-fit test.

The Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling tests are based
on the distance between the empirical distribution function and the hypothesized
distribution function. Let us take the Kolmogorov-Smirnov test as an example.
From the empirical distribution function, we have the ratio of the number of obser-
vations less than or equal to z; to the total number of observations n and y; are
the corresponding ordered statistics. Hence the empirical distribution function for
Kolmogorov-Smirnov test is a step function which will increase by 1/n unit at the
order of each data point. Kolmogorov-Smirnov test statistic is defined as the max-
imum distance between the empirical distribution function and the hypothesized
population distribution function. The null distribution of the Kolmogorov-Smirnov
test statistic does not depend on the underlying cumulative distribution function
being tested. There is no limitation for the sample size, and it is an exact test_(.e.
not like x? goodness of fit test, which requires a sufficient sample size for the x>

approximation to be valid).
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Goodness-of-fit tests for distributional assumptions have been a major study area
for statistical research, especially for testing normality. Applications of the normal
distribution can be mainly classified in two categories. First they relate to the class
of statistics which are taken to be normally distributed due to the applicability of
large sample theorems such as the Central Limit Theorem (Rao, 1973). Secondly,
when the normal distribution is assumed, it can be applied to the appropriate math-
ematical model for the underlying phenomenon under investigation. The tests for
normality can be classified into 5 groups: 2 test, empirical distribution function
tests, moment tests, regression tests, and miscellaneous tests. For example, as we
mentioned before, the x? test uses the comparison between the observed cell counts
and the corresponding expected values under the null hypothesis. For the normal
distribution, the x? test statistic is calculated by grouping the hypothesized distri-
bution (with known or estimated parameters) into a multinomial distribution of M
cells, comparing the observed number of observations with the expected number of
observations in each cell. The x? test is of historical interest and is continuously

being modified.

The most commonly used goodness-of-fit test of normality is the Shapiro-Wilk test
(1965) (so called W-statistic). The test considers a regression of the ordered sample
observations on the expected values of the order statistics of a random sample from
a standardized version of the hypothesized distribution. The W-test statistic for
normality is defined by dividing the square of an appropriate linear combination

of the sample order statistics (using the method of generalized least squares) by
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the usual symmetric estimate of variance. In fact the test considers the ratio of
two estimates of the population variance and hence is also known as an analysis
of variance test. This ratio is invariant for both location and scale. The exact
distribution of W statistic under the null hypothesis only depends on the sample size
n, not on the location and scale parameters u and o. The exact distribution of the W-
normal statistic is unknown, but Shapiro and Wilk (1965) provided the percentage
points for the test using Monte Carlo simulation. Using extensive Monte Carlo
studies Shapiro and Wilk suggested that the critical region of the test is the lower
tail area of the null distribution of W, that is, larger values of W (i.e. values close
to 1) indicate norniality. This W-statistic is very simple to calculate when the table
of appropriate linear coefficients is available. Even for small samples (n < 20), it is
found that the test is quite sensitive (powerful) against a wide range of alternatives.
Shapiro and Wilk (1965) provided the power results obtained from different goodness
of fit tests. They concluded that the W-statistic is more powerful than other tests
for skewed alternatives. Unfortunately, for large sample sizes, it may be difficult to
determine the percentage points and may need a necessary value of the multiplier in

the numerator for the test statistic.

From a general viewpoint, the procedure used to derive the W-statistic for normal-
ity can be applied to derive tests for other distributional assumptions, such as the
exponential distribution. Using these principles, an analysis of variance test for ex-
ponentiality of a distribution based on a .complete sample has been proposed by

Shapiro and Wilk (1972). The W-exponential statistic is defined to be the ratio
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of the squared difference between the sample mean and the smallest observation
to the usual symmetric sum of squares about the mean. Similar to the W-normal
statistic, the W-exponential statistic is usable for testing various composite or simple
hypotheses of exponentiality. The W-statistic for exponentiality leads to a two-tailed
test. This is because the W-exponential statistic may take either low or high val-
ues depending on the properties of alternative distribution. Compared with other
goodness-of-fit tes-ts, the W-exponential statistic seems to be more powerful over a
wide range of alternatives. A modified W-exponential statistic has been proposed by
Samanta and Schwarz (1988). This modified statistic is applicable when the sample

is censored. This will be discussed in detail in Chapter 2 of this thesis.

So far the test procedures available in the literature are all based on one single
sample from one population. The proposed test statistic for testing the composite
hypothesis of exponentiality of two distributions is developed in Chapter 3. We
consider the null hypothesis that two independent random samples come from two
exponential distributions with different unknown location parameters, but with the
same unknown scale parameter, against the alternative hypothesis that the common
form of these two distributions is not exponential. Using the principles usec.l for
the construction of the W-statistic for exponentiality, we propose a V-exponential
statistic that turns out to be a normalized ratio of the square of the generalized
least squares estimate of the common scale parameter based on the order statistics
of independent random samples from the standard exponential distribution, to a

pooled sum of squares about the sample means. This V-statistic is origin and scale
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invariant. The null distribution of the V-exponential statistic is shown to depend
only on the sample sizes. We also prove some other important results relating to
our proposed V-exponential statistic. Tables of empirical percentage points of the
V-statistic are constructed for various combinations of sample sizes by using Monte
Carlo simulation. We give some numerical exarﬁples to illustrate the applications of
the proposed test. Chapter 4 provides the empirical power results for various types
of probability distributions under the alternative hypothesis. Chapter 5 deals with
a modified test statistic using the approach of Samanta and Schwarz (1988) when
one or both samples are censored. In Chapter 6, we use Stephens’ (1978) approach
and propose a second test statistic called the V*-exponential statistic, that can be
used in the same context. The null distribution of V*-exponential statistic is the
same as the W-exponential statistic of Shapiro and Wilk (1972) corresponding to
an appropriately modified sample size. Numerical example and power studies of the
V*-exponential statistic are also included. We also compare the power results of
the one-sample W-exponential test, two-sample V-exponential and V*-exponential
tests. We see that the results are close to each other, that is, the three tests (W-
exponential, V—exponenfial and V*-exponential statistics) are comparable in terms

of their sensitivity results. Concluding remarks are given in Chapter 7.



Chapter 2
One-sample W-statistics for Exponentiality

There has been an extensive literature on goodness-of-fit tests for exponentiality.
Important references include Shapiro and Wilk (1972), Anderson and Darling (1952),
Bartholomew (1957), Cox and Lewis (1966), Darling (1953), Epstein (1960), Jackson
(1967), and Stephens (1978). Recently, the exponentiality testing is most used for
the time-constructed problem, such as waiting time. In this chapter, we discuss the
one-sample test procedures for exponentiality due to Shapiro and Wilk (1972). The
principle underlying the test procedures and the properties of the test statistic are

similar to the W-statistic for normality (Shapiro and Wilk, 1965, 1968).

We have the general exponential distribution which has the density function defined

as follows: |

f(a:) _ IB_ 6:17]){—(:17 - O‘)/IB}) | 2o (2.1)

0, otherwise.

where « is the location parameter (—co < a < o0) and § is the scale parameter

(8> 0).

Note that a random variable X having density function f is such that
1. gy =E(X)=a+p,

2. 02 =Var(X) =,
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3. when o = 0 and 8 = 1, X admits the standard exponential distribution,

e %, z > 0,
flz) = (2.2)

0, otherwise,

2.1 The W-exponential statistic for uncensored data

Suppose we define X; < X3 < ... < X, to be the order statistics of a sample of size
n obtained from a standard exponential distribution. Let the expected value of X;
be m;, that is,

E(_Xz>zm“ 7::]_’2,...,77/.
We have the covariance between X; and X as
CO'U(XZ';X]') = U’L'j = E[(Xz - ml)(Xj — m])], Z,j — 1,2’ -ee,mn,

and we write the expected values and covariances into vector and matrix form as

follows
m' = (my, ma,-++ ,my,), where m' is the transpose of the vector m,

V = (vi;), whereV is an x n matrix.

Further suppose Y7 < Y, < ... <Y, are the corresponding ordered observations
from an exponential distribution with location parameter « and scale parameter 3.

Then we can write Y; in terms of X; as

Yi:a+/8Xi> Z.:]->2a"'7n7
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where X is from the standard exponential distribution with density function as given

in (2.2). We also write Y in vector form for y as

Y;
Y,

Yo

Now, we apply the generalized least squares theory (Aitken, 1935, Lloyd, 1952) to

find the least square estimators of a and 3. We have

o
| ={Am)y vV (Am)}  (1m)' VY,
B
since
-1
1'v-11 1'V-im
{(A|m)yV-t(1m)} =
'V=im m'V-im
1 m'V=im —1'V-im
det _1/V—1m 1lv—11
where

det = {(U'VID)(m'V™Im) — (I'V7im)?},
=(,1,---,1).
Hence, we have

'V (1m —ml) VY
{@V1)(m'V-im) — ('V-im)?}

A= (23)
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From known properties of the exponential distribution (Kendall and Stuart, 1961),

we have the following properties for m; and Cov(X;, X;)

=Y (n—k+1)7, i=12-,n

Cov(X;, X;)=> (n—k+1)7% i<j
k=1

j
Cov(X;, X;) Zn—k—i—l T > 7.
k=1

After some algebraic work, we have some important Lemmas (Shapiro and Wilk,

1972) as following:

n .
1. m; = Z/Uij, that is, m’' = 1'V,

i=1
2. imi = n, that is, I'm = n,
i=1
3. 'Vt =(n?0,0,---,0),
and Corollaries:
1. V=m'V 1
2. m'V=im =n,
3. 'V7im =n,
4. 1V~ = n?,

5. V7Y = n?Y],
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6. 8= (Y —Y1)/(n—1), where Y = ZYz/n

i=1

12

We obtain the W-exponential statistic by standardizing the squared B with S2, so

the W-statistic for testing the composite hypothesis for exponentiality is

Y —Y;)?
We = (n—1)52

for the null hypothesis:
Hio: Fy) =1 —exp{—(y — a)/B},

where
n

= (v, -Y)

i=1

Note that

(2.4)

y>a

e W is used as a two-tailed statistic. It is invariant for both origin and scale

parameters and hence, can be used for testing the composite hypothesis of

exponentiality.

e From the mathematical point of view, the W-exponential statistic is bounded,

with a maximum value of 1 and minimum value of (n—1)~2 (see Shapiro, Wilk

and Chen, 1968).

e From the statistical point of view, we know that Y7 is a sufficient statistic

for the origin parameter o and Y is the sufficient for the scale parameter (3
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(Lehmann, 1959). As we mentioned before, the W-statistic is invariant for
both origin and scale. As a result, under the null hypothesis, we have that the
W-exponential statistic is independent of Y7 and Y (Basu, 1955). It depends

only on the sample size n (Hogg and Craig, 1956).

2.2 The W-exponential statistic for censored data

As previously mentioned the W-exponential statistic is given by

_ (T 1)
We= 1 D5

for the complete sample of size n (i.e. uncensored sample).

Now consider the case of a censored sample. That is, in a random sample of size n, the
71 smallest and r, largest observations are censored. Then there will be n — r; — 79
observations available. Samanta and Schwarz (1988) modified the W-exponential

statistic according to two different situations, (i.e. origin unknown and known).

2.2.1 Origin unknown

We denote the normalized waiting times as
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We know that when Hg is true, Ty, T3, --- , T,, are independent and identically

distributed random variables from the exponential distribution function

1—e U8 t>0,
F(t) = (2.6)

0, otherwise.

Now, let
_ Y-+ Yet--+Y))
i(i+1)

Vi +Vo 4. "
U, = L2+ +h = /nY,
Vn

which actually define an orthogonal transformation. If we write U; in terms of T;,

Ui

we get .
iﬂyﬂ
—'n—7
Ui:i_—‘lj‘j"“*—, i=1,2,-~-,n—1.
Vi(i+1)
Let
(n) (.7_1> . .
a; =———>— (n>i>j>2
with

agf) =a§-?) fori,7=2,3,--- ,n.

Using the newly defined variables, the original W-exponential statistic from the

uncensored data (we denote Wg(n) to indicate it is from a complete sample of size
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(&)

n(n —1) Z U?

i=1

(&)

n n

(n=1)>3 o'

=2 j=2

n) can be written as:

WE(TL) =

Now consider the censored situation as we mentioned before, that is when r; smallest
and 7, largest observations are censored. In other words we have an effective sample
of size n —r; — ro. That is Y, 41 < Y40 < ... < Y,_,, available observations for
testing the null hypothesis Hiy with the origin unknown. Then, the modified test
statistic (denoted as W) is given by

n—ry—ro 2
(5

=2
n—=ri—re2 N—"T1-—"7re

(n—ryi—re—1) a

Wi =

(n—ri—7ra)
ij Tr4iTri 45

@
||
)
.
||
¥

Note that
1. if there are no censoreddata, W1 is equal to the original Wg(n).

2. the distribution of W is the same as that of Wg(n —r; — 1) under the null

hypothesis.
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2.2.2 Origin known

Let us consider the situation where the origin is known. Stephens (1978) extended

the Shapiro and Wilk exponentiality test for testing the null hypothesis

1 eap{—(y—a0)/B}, y>o00, with ap known,
Hy: F (y) =
0, otherwise.

The extended W-exponential statistic is Wi (n)

Wi(n) = - =1 - - (2.8)
nq(n+1)> (Yi—a) = | ) (Yi- 040)]
i=1 i=1
Let
Zi:Y;_am 7:21727"'377’7
and the normalized waiting times T; for 1 = 2,3,--- ,n,as
Ti=(n—i+1)(Y;—Yi1) = (n—i+1)(Z - Zi)
and define 77 as
Ty =nZy = n(Y] — ap)-
We also know, when Hyg is true, 11, Ts, - - - , T, are iid random variables following

the exponential distribution function

1—e P, t>0,
F(t) =
0, otherwise.
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If we write Wg(n) in terms of T; and a;;, we get

b
(n+1)> Y oI + (Z :/;-)

=2 j=2 =1

n+1 2
En)
1=2

n+1 n+1

Y D o T

i=2 j=2

We can use this modified W-exponential statistic for the case where the origin «y is
known in the context of censored data. Suppose that, in the sample of size n; the
T9 largest observations are censored. Then, we have an effective sample of n — 79
available observations, that is ¥; <Y, < ... <Y, _,, for testing the null hypothesis

Hyy with the origin known. The modified test statistic (denotes as W) can be

written as:

n—ro+1 2
> 1)
. =2
W2 - n—ro+ln—ra+1 (2 9>
(n—ry) a§?”’"2+1)111_1fl}_1
=2 j=2
Note that

1. if there are no censored data, W is equal to the original W5 (n).
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2. following Stephens (1978), the distribution of W is the same as that of

Wi(n — r2 + 1) under the null hypothesis.

18



Chapter 3

The Two-sample V-statistic for Exponentiality for

Complete Samples

Based on the principles used by Shapiro and Wilk(1972) to derive W-statistic for
testing exponentiality and by Samanta and Schwarz(1988) to derive the modified
W-exponential statistic for censored data, we develop the V-exponential statistic for

testing exponentiality of two distributions.

3.1 V-exponential statistic for complete samples

Suppose for ¢ = 1,2, Y;; < YV < ... <Y, are the order statistics of a random
~ sample from a population with distribution function Fi(y). In this chapter we wish

to test the null hypothesis:

Fi(y) = F(i“—q—), —o<o<o,i=12 0<8<oo0,

Hjp : 1—e, if0<y< oo, (3.1)

0, otherwise

against the alternative hypothesis

19
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with F(y)#1—e7¥, forsomey

It is known that if the null hypothesis Hjzg is true, then a test of the different null
hypothesis

H40 O = Qe

can be done by using an F-test.

Let us write

YVij=a;+ 06Xy, withi=1,2 7=12,---,n,

where for each i = 1,2, X; < X <... < X, are the order statistics of a random
sample of size n; from a standard exponential distribution F'(z) as defined above (or

in 2.2)

Note that z;; and z, are independent when ¢ # [.

Under Hsy, it follows that for each i = 1,2, Y;; <Y, < ... <Y, are the corre-
sponding order statistics of a random sample of size n; obtained from an exponential

distribution with location parameter o; and scale parameter (.
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We define the two vectors Y; and Y5 as

Y Yo
Yip Yoo

Y: = , Ya=
Ylnl ] }/277'2

and we write the general Y vector as

Y =

As before we denote the expected value of X;; as m;;, that is,

and the covariance between X;; and Xy as

0, for i # 1

Cov(Xij, Xir) = § wygp, fori=1I1=1,5,k=1,2--- 0,

Wik, fori:l:2aj7k=1)27"'7n27
So for each sample we have the covariance matrix
Covy = (Wijk)ny xna

Covy = ('ijk)nz Xng-
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For convenience, we write the covariance matrix of Y as

Covy 0
Q o
0 Covy

If we take the expectation of both sides of
Yy = oy + Xy,
we will have, in matrix form,
E(Y) = pb,

where

10 mi1

1 0 mi9

01 may

01 mo2

and

641

Now we apply the generalized least squares theory (Aitken, 1935, Lloyd, 1952) to
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obtain the least squares estimators for ay, ap and 3. We have

o~

83
&, | =@Q ') YQY

—~

g

)
I

where p’ is the transpose of p matrix.

Using Lemmas 1 to 3 and Corollaries 1 to 5, it can be shown that

n% 0 7
/ —1
D Q b= 0 n% o 3
N1 No N1+ No

and
2
7’L1}/11

vp/Q—ly — n%l@l

2 n;g
2.0

i=1 j=1
Hence, we have the estimate B for 3, which is the product of the last row of (p’Q'p)~*

with the column vector p’Q~1Y, i.e.

B _ nl(?1 - YY)+ nz(?z —Yo1)
(n1 -+ Ng — 2)

where

?1223/;]/7?,“ ’L=1,2
j=1



Chapter 3. The Two-sample V-statistic for Exponentiality for Complete Samples 24

Note that 3 is the minimum variance unbiased estimator (i.e. MVUE) for 3 ( Epstein

and Sobel, 1954)

We obtain the V-exponential statistic as a normalized ratio of the squared B to S2.
Hence, the resulting statistic for testing the composite hypothesis of exponentiality,
given in (3.1) is

{nl(?1 —Yn)+ nz(?2 —Yo1)}?
Vim,ma) = (e — 1)57

(3.2)

where
SE=D (¥ -Y)h i=1.2,

§* =82+ 82,

n* = maz(ng, ny).

Note that, as an omnibus procedure, V (n1, ns) is to be used as a two-tailed statistic.

3.2 Properties of the V—exponential statistic

Based on the above two-sample V-statistic, we obtain the following important results.

THEOREM 1 .
P{1/2(n* = 1)? < V(ny,ng) <1} =1
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Proof.

According to Lemmas 5 and 6 in Shapiro and Wilk (1972), we note that for any two

sample sequences
{nl(?l — }/11) -+ ’I’LQ(?Q — }/21)}2 S 277,*(7?,* e 1)S2,

and

2
— — 7
{nl(yl - Yll) +ng(Ye — Yzl)}2 2 { = S1+ : )1/252}

(ny — 1)1/2 (ng—1
- n*S?
n*—1
Therefore, we can write
{n1(71 - Y]_l) + ?’LQ(?Q - 5/21)}2 > n*5'2 ) 1
2n*(n* — 1)52 n*—1 2n*(n*—1)S?

ot

2(n* —1)2

As Shapiro and Wilk (1965) proved, the W-exponential statistic is bounded with a
maximum value of 1 and minimum value of (n — 1)72. Hence, the V-exponential

statistic has the following similar property

{ni(Y1— Yi1) +ne(Yse — Y1) }? S 1

1> .
- 2n*(n* — 1)5? 2(n* —1)2

THEOREM 2 .
The null distribution of V' (n1,ny) and V(ng, n1) are identical and depend only on n;

and ng, but not on a1, ay and S.
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Proof.

Following Samanta and Schwarz (1988) we define Tj; as

Tz‘j = (nz —J+ 1)(5/2]' - Y;,j——l)a j=23,-,n 1=12 (3-3)

Under the null hypothesis Hsg, T3;/8, j=2,3,-++,n, 4= 1,2., are independent
and identically distributed random variables with the standard exponential distribu-

tion.

Let

i (ni—j+1) m2izj22
o) = al) fori,j=2,3,,m,
1)
b(.’.”):—(]—-—, ng > > 75> 2
ey 22z

b = 637 fori,j=2,3,- ,ma,

Then we can write the V-exponential statistic V(ny,ne) in terms of the Tj;’s as

n Ve2 2
{2m+im}
=2

V(nl, nz) _ — — F==2 no n2
s ([ ena] e [E ] ]
== =2 j=2

So we can see from the above representation that the distribution of V/(n1,ng) and

V(ng,n;) are identical and depend only on the sample sizes n; and ny but not on
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the parameters oy, as and (. As a result, for the exponentially distributed samples,
(Y11, Yar, ni (Y1 — Yi1) + na(Yy — Yay)) is a complete sufficient statistic for (a1, as,
B) (Basu, 1955). Hence the statistic V(nj,n2) is statistically independent of (Y11,

Vo1, ni(Y1— Vi) + n9(Yy — Ya1)) under null hypothesis.

THEOREM 3 .
Under the null hypothesis Hsg, the distribution function of V(2,2) (i.e. when

ny = 2,ny = 2) is given by

NN

Hw)=1- (v =1)Y2

Proof.
We have
s s 2
{Z Ty + Z T2i}
V(ni,ng) = —— = = ny na
on*(n* — 1) { [Z > afITTy, / ny + b T T, / n2}
=2 j=2 =2 j=2

When n; = 2 and ny, = 2,

(51 +52)2
VI(2,2) =
%2 = a5t + 53y
where
T;
Sl - ~,—8127
S, =12

B
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Note that S; and S, are independent and identically distributed random variables

with the standard exponential distribution.

Now, suppose it is given that

Sl+‘92:37

in which case the conditional distribution of S; is uniform. Then, for u satisfying

82

S Suss,

we have

2=/}

S

P(S}+S53 <ulSi+Sy=5)=

Now, let

and note that for any r satisfying % <r <1, we have

S+ 53 2. o2 o2
P mST151+SQZS :P(Sl+52§T$|Sl+32:S)

= (2r — 1)/2,

so that this probability does not depend on s.

We concluded that for any v satisfying 3 < v < 1, the distribution function H(v) of
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V(2,2) is given by

H(v)=1-P(V(2,2) > v)

S24S2 1
— — _.___.._...._<_
1 P<(Sl+52)2 - v

=1- (vt =-1)¥2

3.3 Percentage Points of V(ny,ns)

The distribution of V' (ny, ng) under the null hypothesis was studied by Monte Carlo
simulation. We obtained the empirical cumulative distribution of V(n,n,) from
100000 random samples with sizes (ny,n9) (i.e. ny = 2(1)25,ns = 2(1)25,n1 < no).
Then we calculated the empirical percentage points of V(n, ny) from this empirical
distribution. The random samples were simulated using the Package R. The 0.5, 1,
2.5, 5, 95, 97.5, 99, 99.5 empirical percentage points of V(ny,ns) are given in Table
3.1.
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Table 3.1: Percentage Points of V-Exponential
0.005 0.01 0.025 0.05 0.95 0975 0.99 0.995

S
S
(V]

0.5023 0.5047 0.5123 0.525 0.9975 0.9993 0.9998 0.99996
0.1418 0.15 0.1666 0.1865 0.6205 0.6433 0.657 0.6617
0.0752 0.0815 0.0949 0.1101 0.4575 0.499 0.5336 0.5511
0.0513 0.0569 0.0672 0.0779 0.3399 0.3871 0.4378 0.4677
0.038 0.0427 0.0515 0.0605 0.2663 0.3049 0.3509 0.3826
0.0313 0.0354 0.0428 0.05 0.2138 0.2458 0.2873 0.3214
0.0268 0.0302 0.0365 0.0427 0.1787 0.2035 0.2376 0.2661
0.0231 0.0263 0.0314 0.0367 0.1514 0.1727 0.2003 0.2234
0.0206 0.0233 0.0282 0.0331 0.1315 0.1488 0.1726 0.1902
0.0188 0.0212 0.0256 0.0297 0.1141 0.1287 0.1487 0.1633
0.0173 0.0195 0.0233 0.0269 0.1021 0.1156 0.1334 0.1469
0.0161 0.0182 0.0216 0.0249 0.0912 0.1028 0.1184 0.1304
0.0151 0.0168 0.0201 0.0232 0.0823 0.0927 0.1067 0.1167
0.0141 0.0158 0.0186 0.0215 0.0761 0.0849 0.098 0.1067
0.0132 0.0148 0.0176 0.0202 0.069 0.077 0.0876 0.0965
0.0124 0.014 0.0165 0.0189 0.0634 0.071 0.081  0.0885
0.0121 0.0136 0.0159 0.0181 0.0589 0.0651 0.074 0.0804
0.0113 0.0126 0.0149 0.017 0.0549 0.0612 0.0692 0.075
0.0108 0.0121 0.0142 0.0162 0.0513 0.0567 0.0638 0.0699
0.0104 0.0117 0.0137 0.0155 0.048 0.0532 0.0601 0.0653
0.0101 0.0112 0.0131 0.0148 0.0452 0.0497 0.0562 0.0609
0.0097 0.0108 0.0125 0.0142 0.0426 0.0471 0.053 0.0573
0.0093 0.0104 0.012 0.0136 0.0403 0.0445 0.0499 0.0537
0.0088 0.0099 0.0115 0.0131 0.0383 0.0421 0.047 0.0511

O 00 N O Ut s W Y

I e Sy
NI

(RN GO T - - T N B R R - S G R - S . TR N NC U NC R R R N R O NC R N S )
NI N T N S N S N S G o o SO o
P N T G e S 1= B & - B S & N O S IO

[N}
@3}
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ny ng| 0005 001 0025 0.05 095 0975  0.99  0.995

3 3 (0.1623 0.1739 0.1962 0.2221 0.8278 0.8857 0.9342 0.9562
3 4| 0.088 0.0969 0.1136 0.1307 0.531 0.5796 0.6329 0.6643
3 5 10.0602 0.0676 0.0787 0.0917 0.3803 0.4271 0.481 0.5156
3 6 |0.0456 0.0508 0.0599 0.0698 0.2896 0.3254 0.3735 0.4067
7 10.0366 0.0414 0.0493 0.0571 0.2309 0.2609 0.2991 0.3285
3 8 [0.0308 0.035 0.0418 0.0483 0.1909 0.2154 0.2506 0.2761
9 10.0266 0.0297 0.0355 0.0412 0.1606 0.1818 0.2087 0.2312
3 100.0239 0.0266 0.0316 0.0365 0.1383 0.1558 0.1794 0.1982
3 11 /0.0206 0.0236 0.0282 0.0325 0.1204 0.1355 0.1853 0.17
3 12/0.0196 0.0219 0.0257 0.0297 0.108 0.1213 0.1395 0.1515
3 13]0.0173 0.0196 0.0233 0.0269 0.0952 0.1068 0.1216 0.1339
3 140.0165 0.0185 0.022 0.025 0.0863 0.0964 0.1102 0.1206
151 0.0153 0.0173 0.0203 0.0232 0.0787 0.0874 0.0989 0.1079
16 | 0.0141 0.016 0.0188 0.0216 0.0714 0.0793 0.0901 0.0983
17 1 0.0135 0.0151 0.0178 0.0203 0.066 0.0735 0.0831 0.0901
18 1 0.0127 0.0142 0.0167 0.0191 0.0611 0.0678 0.0769 0.0836

w W W W Ww

19 | 0.012 0.0135 0.016 0.0181 0.0568 0.0627 0.0708 0.0765
20 | 0.0117 0.0131 0.0152 0.0172 0.0529 0.0586 0.0662 0.0717
21| 0.011 0.0123 0.0144 0.0164 0.0499 0.0549 0.0617 0.0675
3 22/0.0105 0.0118 0.0138 0.0156 0.0465 0.0512 0.0576 0.0626
3 230.0102 0.0114 0.0133 0.015 0.0437 0.0481 0.0536 0.0575
3 24 10.0008 0.0109 0.0127 0.0143 0.0415 0.0456 0.0509 0.0547
3 250.0094 0.0104 0.0121 0.0137 0.0392 0.0429 0.0481 0.052




Chapter 3. The Two-sample V-statistic for Exponentiality for Complete Samples 32

ny ng | 0.005 0.01 0.025 0.0 095 0975 099 0.995

0.1019 0.1126 0.1326 0.1528 0.6233 0.6862 0.7645 0.8136

g
W

5 10.0685 0.0759 0.0904 0.105 0.4322 0.4807 0.5421 0.5801
0.0519 0.0583 0.0692 0.0798 0.3216 0.3608 0.4111 0.4467
0.0416 0.0468 0.055 0.0638 0.251 0.2823 0.3236 0.3575

N

0.0337 0.0384 0.0457 0.0529 0.2056 0.2305 0.2634 0.288

O o N O

0.0293 0.0332 0.0396 0.0455 0.1733 0.1952 0.2245 0.2441

N

0.0259 0.0291 0.0345 0.0398 0.1479 0.1666 0.1907 0.2077

W
_—
[an

11 0.0229 0.0258 0.0308 0.0355 0.1278 0.1437 0.1653 0.1798
121 0.0211 0.0236 0.0279 0.0321 0.1129 0.1261 0.1437 0.1559
131 0.0192 0.0215 0.0253 0.029 0.0997 0.1113 0.126 0.1363
14| 0.018 0.02 0.0235 0.0269 0.0905 0.1008 0.1143 0.1256
15| 0.0163 0.0183 0.0215 0.0247 0.082 0.0911 0.1028 0.1121
16 | 0.015 0.0169 0.0199 0.0228 0.0748 0.0828 0.0934 0.1031

O - . = . T N

17 | 0.0145 0.0163 0.0192 0.0217 0.0688 0.0761 0.0854 0.0932
18 | 0.0135 0.0152 0.0177 0.0203 0.0631 0.0697 0.0789 0.085

W

19 | 0.0131 0.0145 0.0169 0.0191 0.0585 0.0646 0.0721 0.0778

W

20 | 0.0124 0.0137 0.016 0.0181 0.0548 0.0604 0.0677 0.0729
21 1 0.0117 0.013 0.0152 0.0173 0.0509 0.0562 0.0628 0.0677
22 1 0.0112 0.0125 0.0145 0.0164 0.0478 0.0524 0.0581 0.0626
23 1 0.0107 0.012 0.014 0.0157 0.0453 0.0496 0.0551 0.0594

N L

24 1 0.0103 0.0114 0.0132 0.0149 0.0426 0.0467 0.0519 0.0559
25| 0.01 0.011 0.0127 0.0143 0.0401 0.0439 0.0487 0.0524

W

5 51 0.079 0.0873 0.103 0.1197 0.4833 0.5399 0.6093 0.6572
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ny ng| 0.006 0.01 0.025 0.05 0.95 0975 099 0.995

5 6 |0.0673 0.0647 0.0768 0.0894 0.3547 0.3974 0.4496 0.4904
5 7 10.0464 0.0517 0.0616 0.0713 0.2739 0.3066 0.3524 0.3858
5 8 10.0387 0.043 0.0508 0.0584 0.2213 0.248 0.2813 0.3072
5 9 0.0327 0.0368 0.0434 0.0497 0.1833 0.2039 0.2312 0.2504
5 10]0.0282 0.0319 0.0374 0.043 0.155 0.1738 0.1967 0.2132
5 11]0.0248 0.028 0.0332 0.0383 0.1343 0.1495 0.1699 0.1876
5 12]0.0227 0.0254 0.03 0.0346 0.1186 0.1325 0.1494 0.1643
5 13]0.0206 0.0232 0.0275 0.0313 0.1048 0.1165 0.1327 0.1446
5 14]0.0185 0.0209 0.0247 0.0284 0.0943 0.1044 0.1179 0.1278
5 15]0.0177 0.0198 0.0231 0.0263 0.0848 0.094 0.1061 0.1156
5 16| 0.0163 0.0184 0.0214 0.0244 0.0772 0.0855 0.0954 0.1032
5 170.0152 0.0169 0.0199 0.0227 0.071 0.0787 0.089  0.096
5 18 (0.0145 0.0161 0.0189 .0.0214 0.0654 0.0721 0.081 0.0873
5 1910.0135 0.015 0.0177 0.0202 0.0607 0.0671 0.0747 0.0811
5 20| 0.013 0.0145 0.0167 0.0189 0.0569 0.0628 0.0698 0.0756
5 21]0.0125 0.0138 0.016 0.0181 0.0528 0.0579 0.0645 0.0693
5 22]0.0118 0.0131 0.0153 0.0171 0.0495 0.0547 0.0611 0.0664
5 231]0.0114 0.0125 0.0145 0.0163 0.0465 0.051 0.0569 0.0612
5 240.0107 0.012 0.0139 0.0157 0.0438 0.0478 0.053 0.0566
5 251]0.0106 0.0116 0.0134 0.015 0.0414 0.0453 0.0503 0.0539
6 6 ]0.0642 0.0729 0.0866 0.0996 0.3847 0.4329 0.4909 0.5323
6 7 10.0519 0.0581 0.0679 0.0783 0.2939 0.3314 0.3748 0.4083

6 8 |0.0424 0.0467 0.0557 0.0643 0.2359 0.2642 0.2993 0.3249
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ni ng | 0.005 0.01 0.025 0.05 095 0975 099 0.99

6 9 | 0.0351 0.0396 0.0469 0.0541 0.1946 0.2183 0.248 0.2708

10| 0.0309 0.0346 0.0407 0.047 0.1641 0.1831 0.2079 0.226
6 11| 0.0273 0.0305 0.0358 0.0413 0.1422 0.1585 0.1806 0.1951
12| 0.0245 0.0275 0.0322 0.0368 0.124 0.1377 0.155 0.1676
13| 0.0217 0.0249 0.0292 0.0333 0.1093 0.1218 0.1385 0.1505

() BN ) BN =)

14 | 0.0205 0.0227 0.0266 0.0303 0.0979 0.1091 0.1231 0.1328
6 15| 0.0186 0.021 0.0247 0.0281 0.0887 0.0979 0.111 0.1196
16 | 0.0178 0.0196 0.0228 0.0259 0.0804 0.0889 0.1001 0.10é7
17 | 0.0161 0.0179 0.021 0.0239 0.0733 0.080 0.0908 0.098

(@)

18 | 0.0154 0.0171 0.0199 0.0225 0.0676 0.0741 0.0829 0.089
19| 0.0145 0.0162 0.0187 0.0211 0.0625 0.0688 0.0766 0.083
20 | 0.01387 0.0152 0.0176 0.02 0.0581 0.064 0.0714 0.0767
21| 0.0129 0.0143 0.0166 0.0189 0.0542 0.0595 0.0664 0.0713
22| 0.0124 0.0137 0.0158 0.0179 0.0509 0.0559 0.0624 0.0671
23| 0.012 0.0133 0.0153 0.0171 0.048 0.0527 0.0581 0.0625

S Yy DYDY DY O D

24 | 0.0114 0.0126 0.0145 0.0163 0.0449 0.049 0.0543 0.0582
25| 0.011 0.0121 0.0139 0.0156 0.0425 0.0465 0.0514 0.055
7 | 0.056 0.0634 0.075 0.0859 0.3162 0.3539 0.402 0.4381
8 | 0.0455 0.0513 0.0607 0.0696 0.2479 0.2778 0.3174 0.3479
9 | 0.0382 0.0431 0.0509 0.0585 0.2059 0.2303 0.2612 0.2853
10 | 0.0333 0.0379 0.0446 0.0505 0.1741 0.1934 0.2178 0.2355
11} 0.0291 0.033 0.0389 0.0441 0.1488 0.1658 0.1869 0.2029

S I N S I BN

12| 0.0261 0.0291 0.034 0.0389 0.1297 0.1435 0.1618 0.1751
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ny ng | 0.006 0.01 0.025 0.05 0.95 0975 099 0.99

7 14 10.0214 0.024 0.0284 0.0323 0.1024 0.1135 0.1276 0.1391
15| 0.02 0.0223 0.026 0.0295 0.0922 0.1017 0.1145 0.1234
16 | 0.0186 0.0207 0.024 0.0273 0.0836 0.0919 0.1039 0.1122

NN B

17 1 0.0167 0.019 0.0222 0.0251 0.076 0.084 0.0941 0.102
7 18 ]0.0159 0.0178 0.0208 0.0236 0.0702 0.0771 0.0864 0.0936
191 0.0151 0.0168 0.0195 0.0221 0.0647 0.0714 0.0794 0.085
7 20]0.0143 0.0159 0.0184 0.0207 0.0601 0.0657 0.073 0.0787
7 21]0.0136 0.015 0.0174 0.0197 0.0558 0.061 0.0679 0.0729
7 2210.0131 0.0145 0.0167 0.0187 0.052 0.0569 0.0635 0.0681
7 | 23 1 0.0123 0.0137 0.0157 0.0177 0.0492 0.0539 0.0592 0.0635
7 240.0118 0.0131 0.0151 0.0169 0.0463 0.0507 0.0561 0.06
7 25]0.0115 0.0127 0.0144 0.0162 0.0437 0.0475 0.0524 0.0561
8 | 0.0497 0.0557 0.0652 0.0749 0.2637 0.2931 0.3331 0.3636
9 10.0416 0.0465 0.0551 0.0631 0.2164 0.2412 0.2755 0.2971
10 | 0.0359 0.0404 0.0468 0.0537 0.1819 0.2027 0.2292 0.2483

co oo oo o

11 ] 0.0317 0.0356 0.0413 0.0471 0.1542 0.1711 0.1937 0.2128
12 1 0.0285 0.0318 0.0369 0.0421 0.1353 0.1502 0.1691 0.134
13 0.0259 0.0283 0.0328 0.0374 0.1191 0.1323 0.1478 0.1596
8 14| 0.023 0.0257 0.0297 0.034 0.1064 0.1173 0.1314 0.1415
8 150.0209 0.0235 0.0276 0.0312 0.0953 0.1049 0.1178 0.127
8 16| 0.0193 0.0215 0.0251 0.0284 0.0863 0.0948 0.106 0.1146
8 17 0.0181 0.0202 0.0234 0.0264 0.0786 0.0867 0.0966 0.1036

8 18 10.0171 0.0189 0.022 0.0247 0.0723 0.0797 0.0888 0.0954
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ny ng| 0005 001 0025 0.05 095 0975 099  0.995

8 19(0.0159 0.0177 0.0205 0.0232 0.0666 0.0729 0.0812 0.08683
8 2010.0152 0.0168 0.0194 0.0219 0.0619 0.0677 0.0753 0.0812
8 2110.0143 0.0159 0.0182 0.0204 0.0575 0.0631 0.0703 0.0754
8§ 22]0.0136 0.015 0.0173 0.0195 0.0538 0.0588 0.0655 0.0701 |
8 23| 0.013 0.0144 0.0165 0.0185 0.0502 0.0547 0.0606 0.0651
8 241]0.0123 0.0135 0.0156 0.0175 0.0475 0.0519 0.05672 0.0613
8 2510.0117 0.013 0.015 0.0168 0.0449 0.0489 0.0539 0.0578
9 9 10.0446 0.0503 0.0592 0.0675 0.2268 0.252 0.2861 0.3129
9 10]0.0385 0.0429 0.0501 0.0574 0.1893 0.2092 0.2379 0.2557
9 1110.0336 0.0377 0.0445 0.0504 0.1618 0.1793 0.2023 0.2192
9 12)0.0301 0.0337 0.0391 0.0445 0.1408 0.1555 0.176 0.1933
9 131]0.0268 0.0301 0.035 0.0399 0.1236 0.1361 0.1527 0.1655
9 14]0.0241 0.0271 0.0317 0.0359 0.1097 0.1211 0.1364 0.1471
9 150.0228 0.0252 0.0291 0.0329 0.0982 0.1082 0.1213 0.1311
9 16 0.0208 0.0229 0.0265 0.0301 0.089 0.098 0.1094 0.1183
9 1710.0191 0.0211 0.0247 0.0279 0.0812 0.0891 0.0994 0.1079
9 18]0.0179 0.0199 0.023 0.026 0.0742 0.0814 0.0909 0.098
9 19]0.0169 0.0188 0.0216 0.0243 0.0688 0.0752 0.0836 0.0902
9 20)0.0159 0.0176 0.0202 0.0227 0.0636 0.0695 0.0771 0.0824
9 210.0151 0.0166 0.0191 0.0215 0.0592 0.0645 0.0721 0.0774
9 22 0.014 0.0157 0.0179 0.0202 0.0553 0.06 0.0655 0.0707
9 231]0.0136 0.015 0.0171 0.0192 0.0518 0.0566 0.0627 0.0672

9 24| 0.013 0.0143 0.0164 0.0183 0.0487 0.053 0.0583 0.0627
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ny ng | 0006 001 0.025 0.05 095 0975 099  0.995

9 251]0.0124 0.0135 0.0155 0.0174 0.0458 0.0497 0.0548 0.0584
10 10| 0.0408 0.0461 0.054 0.0614 0.1993 0.2207 0.2482 0.2708
10 11 |0.0354 0.0395 0.0463 0.0529 0.1689 0.1874 0.2122 0.2296
10 12 ]0.0317 0.0352 0.0414 0.047 0.1464 0.1619 0.1827 0.198i
10 13| 0.0283 0.0319 0.037 0.042 0.1276 0.1413 0.1578 0.1695
10 14| 0.0257 0.0289 0.0335 0.0379 0.1138 0.1258 0.1413 0.1515
10 15 0.0237 0.0263 0.0306 0.0344 0.1021 0.1127 0.1264 0.1373
10 16 | 0.0216 0.0238 0.0277 0.0316 0.0927 0.1015 0.1141 0.1225
10 17 ]0.0202 0.0225 0.026 0.0293 0.0835 0.0915 0.1621 0.1097
10 18]0.0187 0.0208 0.0239 0.027 0.0766 0.0837 0.0934 0.0999
10 19 0.0177 0.0197 0.0227 0.0254 0.0707 0.0775 0.086 0.0926
10 20| 0.0167 0.0183 0.021 0.0236 0.0655 0.0715 0.0793 0.085
10 21| 0.0157 0.0174 0.0198 0.0223 0.0607 0.0663 0.0735 0.0787
10 22 |0.0146 0.0163 0.0188 0.021 0.0567 0.0619 0.0683 0.0731
10 23 |0.0142 0.0156 0.0178 0.0198 0.0531 0.0579 0.0637 0.0682
10 24 ]0.0134 0.0148 0.0169 0.0189 0.0497 0.0542 0.0599 0.064
10 25]0.0126 0.0141 0.0161 0.0179 0.047 0.0512 0.0566 0.0606
11 11 {0.0379 0.0422 0.0493 0.0559 0.1741 0.1928 0.2157 0.2342
11 12 0.0335 0.0375 0.0438 0.0495 0.1517 0.1681 0.1881 0.2038
11 13} 0.0298 0.0331 0.0388 0.0439 0.1328 0.145'7 0.1631 0.1766
11 14| 0.0274 0.0305 0.035 0.0396 0.118 0.1294 0.144 0.1549
11 15(0.0249 0.0275 0.0319 0.036 0.1051 0.1156 0.1291 0.1383
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n; ne | 0.005 0.01 0.025 0.05 095 0975 0.99  0.995

11 16 0.0227 0.0254 0.0293 0.0329 0.0954 0.1046 0.1157 0.124
11 17| 0.021 0.0234 0.0271 0.0304 0.0866 0.0949 0.1052 0.1131
11 18 |0.0197 0.0216 0.025 0.0283 0.0788 0.0865 0.0957 0.1025
11 19| 0.0185 0.0205 0.0235 0.0264 0.0728 0.0797 0.0886 0.0947
11 201(0.0174 0.019 0.022 0.0247 0.067 0.0731 0.0809 0.0367
11 21 0.0162 0.018 0.0209 0.0234 0.0621 0.0676 0.075 0.0798
11 2210.0155 0.0171 0.0197 0.0219 0.0579 0.063 0.0691 0.074
11 2310.0145 0.016 0.0184 0.0206 0.0543 0.0592 0.0652 0.0693
11 24 10.0139 0.0154 0.0175 0.0196 0.0509 0.0552 0.061 0.0654
11 250.0135 0.0147 0.0169 0.0187 0.0482 0.0522 0.0575 0.0614
12 12 0.0351 0.0395 0.0461 0.0521 0.1564 0.1723 0.1936 0.2088
12 13]0.0315 0.035 0.0407 0.0459 0.1374 0.1514 0.17 0.1824
12 14 ]0.0286 0.0318 0.0369 0.0416 0.121 0.1332 0.1489 0.1591
12 15]0.0258 0.0284 0.0334 0.0378 0.1087 0.1192 0.1329 0.1424
12 16| 0.0243 0.0266 0.0306 0.0344 0.0977 0.1069 0.1189 0.127
12 17 {0.0218 0.0245 0.0283 0.0317 0.0887 0.0969 0.1076 0.1155
12 1810.0207 0.0229 0.0263 0.0295 0.0812 0.0888 0.0983 0.1058
12 19 10.0193 0.0212 0.0244 0.0273 0.0743 0.081 0.0902 0.097
12 20| 0.0182 0.02 0.0229 0.0256 0.0688 0.0751 0.0828 0.0884
12 21| 0.017 0.0186 0.0216 0.0242 0.0638 0.0695 0.0769 0.0826
12 22 0.0156 0.0174 0.0201 0.0225 0.0593 0.0648 0.0714 0.0765
12 23 ]0.0151 0.0166 0.0191 0.0213 0.0556 0.0607 0.0667 0.0712

12 24(0.0146 0.016 0.0182 0.0203 0.0522 0.0567 0.0622 0.0661
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ny mng | 0.006 001 0.025 0.05 095 0975 099 0.995

12 2510.0137 0.0151 0.0172 0.0192 0.0491 0.0534 0.0586 0.0626
13 13 10.0336 0.0373 0.0433 0.0487 0.1417 0.1552 0.1732 0.1853
13 14| 0.03 0.0333 0.0387 0.0439 0.1247 0.1372 0.1534 0.1651
13 15]0.0273 0.0302 0.0349 0.0394 0.1112 0.1218 0.1362 0.1469
13 16| 0.0246 0.0276 0.0317 0.0359 0.1008 0.1102 0.1225 0.132
13 17]0.0228 0.0252 0.0291 0.0329 0.0914 0.0996 0.1101 0.1185
13 18 ]0.0214 0.0235 0.0272 0.0305 0.0832 0.0907 0.101 0.108
13 1910.0199 0.022 0.0253 0.0284 0.0763 0.0831 0.0918 0.099
13 '20|0.0185 0.0204 0.0236 0.0264 0.0705 0.0769 0.0854 0.0914
13 21 0.0176 0.0195 0.0224 0.0249 0.0652 0.0711 0.0787 0.0845
13 22| 0.0167 0.0185 0.021 0.0235 0.061 0.0663 0.0735 0.0781
13 23|0.0157 0.0174 0.0199 0.0222 0.0571 0.0619 0.0683 0.0725
13 24| 0.015 0.0165 0.0187 0.0209 0.0535 0.058 0.0638 0.0685
13 25| 0.0142 0.0157 0.0178 0.0198 0.0503 0.0545 0.0599 0.0639
14 14 0.0318 0.0349 0.0403 0.0454 0.1292 0.1411 0.156 0.1671
14 15]0.0285 0.0315 0.0364 0.0411 0.115 0.1258 0.1398 0.1493
14 16 0.0262 0.0291 0.0335 0.0376 0.1035 0.1129 0.1265 0.137
14 17 ]0.0239 0.0266 0.0308 0.0344 0.0938 0.1022 0.1131 0;1201
14 18 0.0224 0.0246 0.0284 0.0318 0.0851 0.0929 0.1027 0.1094
14 190.0209 0.0231 0.0265 0.0296 0.0786 0.0859 0.0949 0.1008
14 20| 0.0196 0.0214 0.0247 0.0277 0.0723 0.0788 0.0872 0.0933

14 21 0.0185 0.0202 0.0231 0.0258 0.0671 0.0729 0.0804 0.0862
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ny me | 0.006 0.01 0.025 0.05 095 097 099 0.'995

14 220.0173 0.019 0.0217 0.0243 0.0624 0.0677 0.0744 0.0792
14 23 ]0.0162 0.0177 0.0202 0.0226 0.0584 0.0634 0.0696 0.0739
14 24 0.0154 0.017 0.0194 0.0216 0.0546 0.0589 0.0649 0.0694
14 25]0.0149 0.0163 0.0185 0.0205 0.0512 0.0554 0.0612 0.0653
15 15 0.0302 0.0333 0.0383 0.0428 0.1185 0.1296 0.1432 0.1536
15 16| 0.0272 0.03 0.0351 0.0392 0.107 0.1169 0.13 0.1391
15 17 ]0.0253 0.0278 0.0321 0.0358 0.0964 0.1051 0.117 0.1254
15 18]0.0234 0.0257 0.0296 0.033 0.0876 0.0952 0.1049 0.1123
15 19]0.0217 0.024 0.0273 0.0305 0.0803 0.0875 0.0969 0.1029
15 20| 0.0202 0.0221 0.0255 0.0283 0.0742 0.0804 0.0886 0.095
15 21 (0.0187 0.0207 0.0236 0.0265 0.0685 0.0745 0.0816 0.087
15 2210.0179 0.0197 0.0224 0.0249 0.0638 0.0691 0.076 0.0811
15 23 |0.0168 0.0185 0.0212 0.0236 0.0593 0.0642 0.0702 0.0746
15 24 ]0.0162 0.0177 0.02 0.0222 0.0557 0.0604 0.0662 0.0706
15 25 0.0155 0.017 0.0191 0.0211 0.0523 0.0567 0.0623 0.0659
16 16 | 0.0283 0.0314 0.0359 0.0404 0.109 0.1188 0.1315 0.1407
16 17 ]0.0263 0.0285 0.0329 0.0371 0.098 0.1074 0.1186 0.1276
16 18 | 0.0243 0.0268 0.0305 0.0341 0.09 0.0981 0.1075 0.1151
16 19]0.0224 0.0247 0.0283 0.0316 0.082 0.0892 0.0979 0.1049
16 20| 0.021 0.023 0.0262 0.0293 0.0759 0.0821 0.0906 0.0964
16 211 0.0197 0.0216 0.0246 0.0274 0.0699 0.076 0.0835 0.0884

16 22| 0.0186 0.0204 0.0233 0.0259 0.0651 0.071 0.0777 0.0827
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ny ng| 0.005 001 0025 0.05 095 0975 099 0.995

16 23| 0.0174 0.0191 0.0219 0.0242 0.0609 0.0662 0.0724 0.0774
16 24 ]0.0166 0.018 0.0206 0.023 0.0567 0.0613 0.0671 0.0717
16 25| 0.0157 0.0172 0.0195 0.0217 0.0533 0.0574 0.0626 0.066
17 1710.0271 0.03 0.0343 0.0383 0.101 0.1101 0.1214 0.1293
17 18] 0.0247 0.0275 0.0315 0.0351 0.0922 0.1004 0.111 0.1182
17 191 0.0234 0.0255 0.0292 0.0325 0.084 0.0914 0.1007 0.1074
17 20| 0.0219 0.024 0.0274 0.0306 0.0773 0.0838 0.0921 0.0977
17 21]0.0205 0.0225 0.0255 0.0284 0.0713 0.0774 0.085 0.0907
17 22 10.0193 0.0211 0.0239 0.0266 0.0664 0.0718 0.0786 0.084
17 23| 0.018 0.0196 0.0224 0.0249 0.0619 0.0668 0.0738 0.0787
17 24 10.0172 0.0189 0.0212 0.0236 0.0578 0.0625 0.0684 0.073
17 25 0.0163 0.0179 0.0202 0.0224 0.0545 0.0593 0.0647 0.069
18 18 | 0.0262 0.0286 0.0327 0.0365 0.094 0.1018 0.1121 0.1198
18 19 10.0241 0.0264 0.0304 0.0338 0.0861 0.0935 0.1031 0.1095
18 20 0.0223 0.0245 0.028 0.0314 0.0791 0.0856 0.0943 0.1003
18 21 0.0209 0.0229 0.0262 0.0292 0.0733 0.0794 0.0873 0.0937
18 22| 0.0199 0.0218 0.0247 0.0273 0.0682 0.0735 0.081 0.0868
18 23 |0.0186 0.0205 0.0233 0.0257 0.0632 0.0685 0.0752  0.08

18 241 0.0179 0.0194 0.0219 0.0243 0.089 0.0639 0.0699 0.0744
18 25 0.0166 0.0183 0.0208 0.0229 0.0555 0.0601 0.0657 0.0699
19 190.0248 0.0275 0.0313 0.0349 0.0882 0.0958 0.1055 0.1128
19 20| 0.0231 0.0254 0.029 0.0322 0.0807 0.0874 0.0954 0.1008
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ny ng | 0005 0.01 0.025 0.05 095 0975 099  0.995

19 210.0217 0.0239 0.0271 0.0303 0.0749 0.0811 0.0886 0.094
19 22]0.0203 0.0223 0.0254 0.0282 0.0693 0.0748 0.082 0.0868
19 2310.0192 0.0211 0.0238 0.0264 0.0646 0.0697 0.0759 0.0808
19 24| 0.018 0.0196 0.0224 0.0249 0.0603 0.0653 0.0713 0.0763
19 25| 0.017 0.0187 0.0213 0.0236 0.0567 0.0611 0.0665 0.0705
20 20 0.0241 0.0265 0.03 0.0333 0.0823 0.089 0.0972 0.1042
20 210.0226 0.0247 0.0281 0.0311 0.0762 0.0823 0.0901 0.0957
20 22| 0.021 0.0231 0.0261 0.0289 0.0706 0.0764 0.0839 0.0892
20 23 |0.0196 0.0216 0.0245 0.0272 0.0659 0.071 0.0778 0.0827
20 24)0.0186 0.0204 0.0232 0.0256 0.0615 0.0662 0.0726 0.0766
20 250.0176 0.0194 0.0219 0.0242 0.0575 0.0619 0.0675 0.0718
21 21 0.0233 0.0256 0.0289 0.032 0.0778 0.084 0.0921 0.0984
21 2210.0221 0.024 0.0271 0.0299 0.0723 0.0779 0.0852 0.0902
21 23 ‘0.0203 0.0223 0.0252 0.0279 0.0669 0.0723 0.0791 0.0837
21 24 10.0193 0.0211 0.0239 0.0264 0.0626 0.0674 0.0737 0.0779
21 25|0.0182 0.02 0.0226 0.0249 0.0587 0.063 0.0691 0.073
22 22 10.0222 0.0244 0.0277 0.0306 0.0736 0.0796 0.0866 0.0922
22 23|0.0212 0.0231 0.026 0.0287 0.0685 0.0738 0.0805 0.0855
22 2410.0199 0.0217 0.0244 0.027 0.0638 0.0687 0.0748 0.079
22 25| 0.019 0.0205 0.0231 0.0254 0.0597 0.064 0.0697 0.0739
23 23 10.0216 0.0236 0.0266 0.0296 0.0696 0.075 0.0821 0.0869
23 24 |0.0204 0.0224 0.0251 0.0277 0.0649 0.0699 0.0764 0.0808
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ny ng | 0.005 0.01 0.025 0.05 095 0975 099  0.995

23 25]0.0194 0.0211 0.0237 0.0261 0.0607 0.0651 0.071 0.0752
24 24| 0.0211 0.023 0.0258 0.0285 0.0661 0.0711 0.0776 0.0822
24 25 10.0199 0.0218 0.0244 0.0269 0.0619 0.0666 0.0726 0.0763

25 25 0.0204 0.0222 0.0249 0.0274 0.0627 0.0674 0.074 0.0779

3.4 Numerical Example

EXAMPLE 1 .
Proschan (1963) has given the number of successive failures of air-conditioning sys-
tem of each member of a fleet of 13 Boeing 720 jet airplanes. The hours of flying

time between failures are listed below for two of the planes.

Plane 7908: 413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118.
Plane 7911: 55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33.

For testing the null hypothesis Hiq

Fi(y) = F(ﬂ:ﬁ—‘"—), —co <oy <0,i=12 0<p<o0,

Hip : 1—e™, if0<y< oo,
with F(y) =

0, otherwise
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against the alternative hypothesis

A= F (%)

with F(y)#1—¢e¥, for somey

Hga .

In this example, we have
ny = 13,7%2 = 11,7“1 = 81 =Tg = 8§y = 0
;5
=13 Zylj
j=1
= 142.385,
R
Yo = 11 ; Y2j

= 152.545,

13

512 = Z(ylj - @1)2

=1

= 244097.0769,

11

SE=> (v25— %)

j=1
= 96840.72727,
§* =57 +53
= 244097.0769 + 96840.72727
= 340937.8042,

n* =maz(13,11) = 13.
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Hence we calculate the V-exponential statistic as following:
{n (Y1 — Y1) + no(Yo — Yap)}?
VvV =
(m1,m2) 2n*(n* — 1)52

V(13,11) = {13(142.385 — 9) + 11(152.545 — 33)}?
T 2x 13 x (13 — 1) x 340937.8042

= 0.0874.

From Table 3.1, it is seen that this value is greater than the lower 5% value 0.0439
corresponding to n; = 13 and ny = 11. Therefore, we conclude that there is no evi-
dence of non-exponentiality of the two failure distributions with equal but unknown

location parameters and same unknown scale parameters.



Chapter 4
Sensitivity Results for the Two-sample V-statistic

We used the empirical sampling results from Table 3.1 to evaluate the sensitivity
properties of theV-exponential statistic for exponentiality for various alternative dis-

tributions.

As we mentioned before, the V-exponential statistic responds to nonexponentiality
by assuming either small or large values, so that the test needs to be two-tailed in
general. That is, for each pair of n; and n, (i.e. ny = ng =5, ny = nyg = 10,
ny = ng = 15, n; = ny = 20, n; = ny = 25 ), we calculate the proportions which
fell above the 95% point and below the 5% point for the alternative distributions.
The sum of these two proportions provides the empirical power of a two-tailed test
with 10% significance level. The choice of the probability distribution under the
alternative hypothesis was based on the distributions commonly used as alterna;cives
to the exponential distribution (i.e. the Weibull, x?, half-normal, and lognormal dis-
tributions) and the distributions with U-shape hazard functions (i.e. power function
distributions). For the functional forms of the density functions of these distribu-

tions, see Brain and Shapiro (1983).

As expected, the V-exponential statistic is quite sensitive to departures form expo-

nentiality and especially to symmetric alternative distribution. The estimated power

46
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increases as the two sample sizes increase, and is greater than the corresponding es-
timated power of the one sample W-exponential test at the 10% significance level
for n = 5,10, 15,20, 25 (see Table 3 of Shapiro and Wilk, 1972). For example, for
ny = ny = 15, the estimated power of the V-exponential test is quite close to the cor-
responding estimate for the one sample W-exponential test at the 10% sigm'ﬁcancve
level for n = 30 (see Table 1 of Samanta and Schwarz, 1988). The powers are given

in Table 4.1.
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Table 4.1: Estimated Powers of the V-exponential test for selected sample sizes at

10% significance level.

n1=no=>5 | n1=ne=10 | n1=no=15 | N1=n9=20 | N1=n,=25
x2(1) 0.2044 0.3492 0.5024 0.5902 0.706
x2(4) 0.1198 +(0.2488 0.3672 0.5002 0.6062
x%(6) 0.1582 0.386 0.5992 0.7682 0.868
Beta(1,3) 0.1188 0.226 0.348 0.4914 0.5892
Lognormal(0,0.3) 0.2216 0.583 0.8032 0.9214 0.9634
Lognormal(0,0.7) 0.122 0.165 0.1962 0.2376 0.2608
Lognormal(0,1) 0.184 0.2716 0.3474 0.4114 0.465
Weibull(2.0,1) 0.2466 0.6278 0.8688 © 0.968 0.9908
Weibull(0.5,1) 0.4622 0.7766 0.9146 0.9694 0.9886
Half-normal 0.13 0.257 0.4144 0.5672 0.6618
Half-Cauchy 0.4848 0.7218 0.862 0.9284 0.9616
Uniform(0, 1) 0.5888 0.7876 0.9568 0.9902 0.9992
Normal 0.8488 0.8946 0.9896 0.9994 0.9999
t-distribution(2) 0.4534 0.8 0.8988 0.9408 0.9598
t-distribution(3) 0.4414 0.8406 0.9392 0.9714 0.988
t-distribution(4) 0.4432 0.8594 0.9562 0.9866 0.9962
t-distribution(6) 0.436 0.876 0.9764 0.9964 0.9988
Power Function(1/5) | 0.3708 0.6148 0.7764 0.8828 0.9376
Power Function(1/3) | 0.1038 0.1184 0.131 0.1438 0.1666
Power Function(1/2) | 0.1088 0.1314 0.1504 0.1828 0.2094




Chapter 5

The Two-sample V-statistic for Censored Samples

Now suppose that, in a random sample of size n; from the distribution function
Fi(y) the 7; smallest and the ry largest observations are censored. Therefore we
have the n; — r; — ro middle observations Y] ;41 < Y142 < .00 < Yy, 0, available.
Further suppose that in another random sample of size ny (first and second sample
are independent) from F3(y) and similarly to the first sample, the s; smallest and
the s, largest observations are censored. Therefore we have the ny — s1 — s, middle

observations Yz o 41 < Yo 542 < ... < Yo ,,_, available from the second sample.

Now we define

Q1=(n1—7”1_7“2),
gs = (77/2_31 —‘82>,

¢ = maz(q1, ¢2),

qa  q1

Z Z az('? DT psiTirsd
A o =2 i=2
q1 ’
@ @
Z Z bz(.?Z)TZSl +i12,1 4
p o =2 =2
q2 ’

and

Jw U=
(n—j+1)

49
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1)
pla2) _ ¥ : , >5> 7> 9).
ij <q2_] 1) (Q2— —j—-)

with ¢ = ag-‘fl) and 6% = b;?z) as defined before.

Then, using the V-exponential statistic for the uncensored data

{n1(71 = Y1) + 722(?2 —Yu)}?
Vi, ne) = 2n*(n* —1)52 ’

we propose a statistic V; for the null hypothesis:

Fi(y) = F(y_gai), —o < <o0,i=120<f<oo,
Hjy : 1—e™¥, if0<y<oco,

with F(y) =
0, otherwise

against the alternative hypothesis

Rly) = F(5=)

with F(y) #1—e¢e7¥, for somey

Hga :

as defined by
a a2 2
{Z Tl,m—{-i + Z T2,sl+i}
i=2 =2

M= AT .
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Note that

e the null distribution of V is the same as that of Vg1, ¢2),

e V] and V(ny, ny) are equal when there are no censored observations.

For convenience in computation, we further define

q1 'L _ 1 . q1
2 iyl (T +2 ) T>

C = =2 J=itl
il 7
N N a2
Do =2 2 =i+l
42 ,

and point out that we can use the following expression of V;

a @ 2
E Ty pgi + E T 6144
i=2 i=2

2¢*(¢* - 1)(C+ D)

Vi=

EXAMPLE 2 .

51

(5.2)

We consider the data in Bain (1978) (Problem number 4, page 203). In a new

process of making tires a certain additive is proposed for increasing the length of
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time of tread wear of a tire. 40 of the present tires and 40 tires made under the new
process are placed in service and the experiment is continued until the 20 smallest
observations (in thousands of miles) are obtained for each sample. [The data are not

- reported here].

In this example, n; = ny = 40, r; = s; = 0 and 75 = s = 20. From the data, the

computed value of V; for testing the null hypothesis Hsg is V7 = 0.0332.

From Table 3.1, one finds this value to be greater than the lower 2.5% point of the
(null) distribution of V (20, 20) and very close to the 5% point of this distribution.
Since both tails of this null distribution are used as critical regions defined by equal
tail areas, there is no evidence against the null hypothesis Hszy and the data do
not refute the exponentiality of both distributions with equal but unknown wearing

rates.



Chapter 6

Two-sample V*-statistic for Exponentiality for

Complete Samples

In this chapter, we propose another test statistic for testing exponentiality of two
distributions using the one-sample approach of Stephens (1978). We show that our
proposed statistic has the same null distribution as Shapiro and Wilk statistic with
an appropriate sample size. We also provide an example to illustrate the application

of the proposed method.

6.1 V*-exponential statistic for complete sample

Suppose Y7; < Y1 < ... <Y, are the order statistics of a random sample of size
ny from a continuous distribution function Fi(y) and Y2, < Y2 < ... < Y5, are the
order statistics of a random sample of size ny from another continuous distribution
function F5(y). Further suppose that the two samples are independent of each other.

On the basis of these, we wish to test the null hypothesis:

Fi(y) = F(}L"">, —co <o <0o,i=1,2 0<f<o0,
Hsp 1—e™, if0<y<oo,
with F(y) =
0, otherwise
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against the alternative hypothesis

A = F (%)

with F(y)#1—e¥, for somey

H3a :

We define

— 1
7; oormhe
=Z(Yz~j—7i)2’ t=12,

ijzi/;J-—-Y;l’ j:172)"'7ni, i:1’27

Then, we have that

where

From this, we can also write

o4
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and

We note that under the null hypothesis Hzg, Xi2 < Xi3 < ... < Xy, are the order

statistics of a random sample of size n; — 1 from the exponential distribution function

1—e /8 0<f<oo, 0<z<o0,
G(z) = (6.1)

0, otherwise,

Clearly, under the null hypothesis Hzg, these two samples can be combined to form

a single random sample of size n; + ny — 2 from the above exponential distribution

G(z).

If Z, < Zy < ... < Zp,4n,—o are the order statistics of this combined sample, then
following Stephens (1978), we propose a two sample test statistic V*(ny,ng) given

by
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ni+ng—2 2
(%7
i=1

ni+ng—2 - /ni+na—2 2
(TL1+7Z2—2) (n1+n2—1) Z le— ( Z Zz)
i=1 i=1

V* (nla n2) =

(ZQ: i Xw‘) |

i=1 j=2

(n1+n2 — 2) (7’L1+7’L2 — 1) I:ZEXEJ} _ <Z ? X2J>

i=1 j=2 i=1 j=

{nl(?1 - Y1)+ no(Y t_Yzl)}z _ ‘
(ny +ng — 2) {(n1 +na — 1) [S7 + S3] — [na (Y1 — Yaa) + n2(Ye — Yar)J2}

Under the null hypothesis Hsg, V*(n1,n2) has the same distribution as the null

distribution of the statistic Wg(ny + ny — 1) proposed by Shapiro and Wilk (1972).

We note that the above statistic V*(n;, ns) may be regarded as a two-sample gener-

alization of the one-sample Shapiro-Wilk statistic.

6.2 Numerical Example

We revisit EXAMPLE 1 from Chapter 3.
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Here the test statistic is

{ri (Y1 — Y1) + ne(Y o —_Ym)}2 _
(1 + 7z — 2) {(n1 +np — 1) [S2 + 53] — na (Y1 — Yi1) + na(Vs — Yar)J2}

V* (nl 3 n2) =
where

?i = ‘Z—: Yz’j/ni,
j=1

g

In this example, we have

7’L1=13,n2=11,7'1:81=’f'2=82=0,
1 13
ylzﬁgyu

= 142.385,

11

Yp = 11_12?42]'

j=1

= 152.545,

13

St=> (yy—7)

j=1

= 244097.0769,

11

Sz=> (v — )"

=1

= 96840.72727.
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Hence we calculate the two-sample V*-statistic as follows

{ni(Y1—Yi1) + na(Y s —“_Y21>}2 _
(1 + 12 —2) {(n1 +na = 1) [S? + SZ] — [ (Y1 — Yir) +n2(Y2 — Y1) ]2}

V*(nl, le) =

= (.05649.

From Table 1 of percentage points (also given in the Appendix) of the W-exponential
statistic (Shapiro and Wilk, 1972), it is seen that this value is greater than the lower
5% critical value 0.0266. That is, there is no evidence of non-exponentiality and
unequal failure rates of the two failure distributions. Note that we reached the same

conclusion as we did in Chapter 3 using the V-exponential statistic.

6.3 Power Study

Table 6.1 gives the simulated power of the Shapiro-Wilk test based on Wg(n) for
n = 20 and the power of V*(ny, ne) with ny = 11 and ny = 10 for various alternatives.
The reason for taking n; = 11 and ny = 10 is that V*(ni,ns) has the same null
distribution as the null distribution of the Shapiro-Wilk statistic with n = n; +ns —
1 = 20, that is Wg(20). The displayed results for Wg(20) have been taken from
Stephens (1978). From the table, it appears that the power of V* with n; = 11 and
Ng = »10 is comparable to that of the one-sample Shapiro-Wilk statistic with n = 20

for various alternatives.

In Table 6.2 we compare the power of the one-sample W-exponential test for n = 29
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to the power of the two-sample V-exponential and V*-exponential tests for n; = 15,

ny = 15 at the o = 10% significance level.

We see that the results are close to each other. That is, the three tests (-
exponential, V-exponential and V*-exponential statistics) seem to be comparable

in terms of sensitivity.
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Table 6.1: Estimated Powers of V*(11,10) and Wg(20) at 5% significance level.

Wg(20) | V*(11, 10)

Gamma (4) 0.40736 | 0.38822
(1) 0.27 | 025272
X2 (4) 0.21 0.16754
(6) 0.38 | 0.29486
Inverse-x?(6) 0.1731 0.1698
Beta(1,3) 009 | 0.149

Lognormal(0,0.3) | 0.60998 | 0.47034
Lognormal(0,0.7) | 0.12518 | 0.10534

Lognormal(0,1) 0.21 0.20858
Weibull(2.0,1) 0.72 0.52654
Weibull(0.5,1) 0.63 0.698
Half-normal 0.21 0.18752
Half-Cauchy 0.69 0.67892
Uniform(0, 1) 0.76 0.72608
Normal 0.92154 | 0.81778

Power Function(1/5) | 0.57362 | 0.50092
Power Function(1/3) | 0.08194 | 0.05882
Power Function(1/2) | 0.05716 | 0.07686
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Table 6.2: Estimated Powers of V' and V* exponential tests for n; = 15, ng = 15,
and W test for n = 29, at 10% significance level.

Wg(29) | V(15,15) | V*(15,15)

(1) 0.5293 0.5024 0.49122
X2(4) 0.45102 | 0.3672 0.38332
x2(6) 0.70026 | 0.5992 0.60966
Beta(1,3) 0.36124 0.348 0.36228

Lognormal(0,0.3) | 0.87658 | 0.8032 0.7935
Lognormal(0,0.7) | 0.2405 | 0.1962 | 0.20392
Lognormal(0,1) 0.3395 | 0.3474 0.35118
Weibull(2.0,1) 0.92202 | 0.8688 | 0.87008
Weibull(0.5,1) 0.92768 | 0.9146 0.9154

Half-normal 0.44756 | 0.4144 0.42774

Half-Cauchy 0.85076 0.862 0.8575

Uniform(0, 1) 0.96218 | 0.9568 0.96002
Normal 0.99594 | 0.9896 0.98492

t-distribution(2) | 0.93734 | 0.8988 | 0.80946

t-distribution(3) | 0.96424 | 0.9392 | 0.90004

t-distribution(4) | 0.97706 | 0.9562 | 0.93642

t-distribution(6) 0.9881 | 0.9764 | 0.9629

Power Function(1/5) | 0.83426 | 0.7764 0.7946

Power Function(1/3) | 0.1745 0.131 0.13612
(

Power Function(1/2) | 0.1231 | 0.1504 0.1602




Chapter 7
Conclusion

In this thesis, using the principles of the W-statistic for exponentiality of a single
distribution (Shapiro and Wilk, 1972; Samanta and Schwarz, 1988) we proposed
the V-exponential statistic for testing exponentiality of two distributions for both
complete and censored samples. The proposed statistic turns out to be a normalized
ratio of the square of the generalized least squares estimate (also the minimum
variance unbiased estimate, that is MVUE) of the common scale parameter to a
pooled sum of squares about the samples means. The V-exponential statistic is origin
and scale invariant. We proved some important results relating to our proposed two-
sample V—equnential statistic for testing exponentiality. It has a null distribution
that‘ depends only on the sample sizes n; and n,. The V-exponential statistic has
been presented as two-tailed in the sense that for an unspecified alternative to the
exponential, the statistic may shift to either smaller or larger values. We provided
some empirical power results for various types of probability distributions under
the alternative hypothesis. From these results, it is clear that it has comparative
sensitive results for various alternatives. Following the approach of Samanta and
Schwarz (1988) the V-exponential statistic was also modified for one or both samples
being censored. The modified test statistic has the same null distribution as in the
uncensored case, with a corresponding reduction in sample size(s). In each case, we

considered numerical examples to illustrate the applications of the proposed test.

62



Chapter 7. Conclusion 63

Further we used Stephens’ (1978) approach and proposed a second test statistic
called V*-exponential statistic for testing forexponentiality of two distributions in
the context of complete samples. This statistic has the same null distribution as the
W-exponential statistic of Shapiro and Wilk (1972) corresponding to an appropriate

sample size.

We also compared the power of the one-sample W-exponential test for n = 29, the
two-sample V-exponential and V*-exponential test for n; = 15, ny = 15 at the
a = 10% significance level. We found that the results are close to each other, that
is, the three tests (W-exponential, V-exponential and V*-exponential statistics) are

comparable in terms of sensitivity.

We are not aware of any literature in which exponentiality of two distributions having
the same scale parameter has been examined. In the absence of another test, the
V and V* exponential tests are useful additions to the current literature on testing

exponentiality of two distributions.



Appendix

Percentage Points of W-Exponential (Shapiro and Wilk, 1972, page 361)

n

0.005

0.01

0.025

0.05

0.95

0.975

0.99

0.995

3

© o N O

11
12
13
14
15
16
17
18
19
20
21

22

0.2519
0.1241
0.0845
0.0610
0.0514
0.0454
0.0404
0.0369
0.0339
0.0311
0.0287
0.0265
0.0247
0.0233
0.0222
0.0212
0.0203
0.0196
0.0190
0.0185

0.2538
0.1302
0.0905
0.0665
0.0591
0.0512
0.0422
0.0404
0.0380
0.0358
0.0337
0.0317
0.0298
0.0280
0.0264
0.0250
0.0238
0.0227
0.0217
0.0208

0.2596
0.1434
0.1048
0.0802
0.0700
0.0614
0.0537
0.0487
0.0447
0.0410
0.0382
0.0362
0.0334
0.0326
0.0310
0.0294
0.0278
0.0264
0.0250
0.0238

0.2697
0.1604
0.1187
0.0956
0.0810
0.0710
0.0633
0.0568
0.0528
0.0494
0.0460
0.0428
0.0398
0.0374
0.0352
0.0332
0.0314
0.0302
0.0290
0.0278

0.9926
0.8581
0.6682
0.5089
0.4162
0.3497
0.3005
0.2525
0.2265
0.2019
0.1829
0.1647
0.1485
0.1355
0.1257
0.1164
0.1071
0.1002
0.0948
0.0894

0.9981
0.9236
0.7590
0.5842
0.4852
0.4033
0.3454
0.2879
0.2619
0.2364
0.2113
0.1862
0.1669
0.1542
0.1423
0.1311
0.1199
0.1121
0.1054
0.0988

0.9997
0.9680
0.8600
0.6775
0.5706
0.4848
0.4015
0.3391
0.3039
0.2716
0.2422
0.2131
0.1926
0.1770
0.1614
0.1483
0.1374
0.1286
0.1198
0.1118

0.99993
0.9837
0.9192
0.7501
0.6426
0.5428
0.4433
0.3701
0.3314
0.2978
0.2642
0.2315
0.2123
0.1931
0.1794 |
0.1668
0.1452
0.1369
0.1288
0.1213
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0.005

0.01

0.025

0.05

0.95

0.975

0.99

0.995

23
24
25
26
27
28
29
30

0.0181
0.0177
0.0173
0.0169
0.0165
0.0161
0.0157
0.0153

0.0201
0.0194
0.0188
0.0182
0.0177
0.0172
0.0168
0.0164

0.0230
0.0224
0.0218
0.0213
0.0208
0.0203
0.0198
0.0193

0.0266
0.0256
0.0248
0.0240
0.0232
0.0225
0.0219
0.0213

0.0836
0.0788
0.0749
0.0712
0.0687
0.0649
0.0621
0.0593

0.0933
0.0882
0.0836
0.0791
0.0747
0.0706
0.0671
0.0643

0.1043
0.0984
0.0927
0.0885
0.0843
0.0801
0.0759
0.0719

0.1142
0.1071
0.1000
0.0948
0.0896
0.0859
0.0822
0.0786
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