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ABSTRACT

This thesis considers linear time invariant differential-
difference systems. Theorems on Controllability, Stability, and Null
Controllability of such systems are presented.

The major part of the thesis invéstigates the problem of deﬁer—
mining which control,oﬁt of a set of admissible controls,will reduce
the state of the system to zero in minimum time. Necessary conditions
for such a time optimal control are presented. Two examples are given

that demonstrate the technique of finding the time optimal control.
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CHAPTER I
INTRODUCTION

I. GENERAL INTRODUCTION

f

In recent years, much of the stu&y in the field cf control systems
engineering has been directed towards the optimization of control systems
or processes. Some of these industrial processes have an inherent trans-—
port lag and the dynamic behaviour of the perturbed system can be modelled
adequately by linear differential difference equations. See for example
the mathematical model of a Ripropellant Gas-pressurized Liquid Rocket
System given by Day and Hsial. Examples of delays are also found in such
diversified fields as the study of communications between space vehicles,
the study of traffic flow, and in economic theory.

Consider also systems where any time lags may be neglected. Many
such plants are of High order and the solution of Pontryagin's Maximum
Princip1e2 offers considerable difficulty. In many cases the high order
plant may be approximated by a low order plant and a pure delay. This
approximation can be quite good (See for example the discussion by FullerB),
and it may offer a more réalistic mathematical model of plants with

distributed parameters.

lK.S. Day and T.C. Hsia, "Optimal Control of Linear Time-Lag Systems",
1968 Joint Automatic Control Conference (Ann Harbor, Michigan, June 1968),
pp. 1046-1055.

2

L.5. Pontryagin et al. The Mathematical Theory of Optimal Processes,
(New York: Interscience Publishers, 1962).

3A.T. Fuller, "Optimal Nonlinear Control of Systems with Pure Delay",
International Journal of Control, Vol. 8, Wo. 2, 1968, pp. 145-168.




IT. THE SYSTEM

In this thesis systems are considered that are characterized by

the linear time-invariant differential-difference system

k
%(t) =.§ A, x(t-T,) + B u(t) — -1
i=0 ‘
where
O:TO<T1<......:<Tk=T

Ai = nxn constant matrix, i = 0, ..., k

B = nxr constant matrix

i

x(t) n-dimensional vector

u(t) r~dimensional control vector
and all the T, are constant.
The state space is the Banach space of continuous functions over

a time interval of length T. From Lee and Markus4, Repins, and Reeve6

the state of the system at any time t is denoted by the function

——— I-2

IN
Q
N
(@]

%, (0) = x(t+0) , - T

If the state, as defined above, of the system in T-1, is given at
time tyo the output of the system at time t is uniquely determined by

the state at time tO and the input u(t) of the system in (to, t).

4E.B. Lee and L. Markus, Foundations of Cptimal Control Theory,

(New Yerk: John Wiley and Sons, Inc., l967)t~bp. 521-522.

5Iu.}{. Repin, "On the Approximate Replacement of Systems with
Lag by Ordinary Dynamical Systems', Journal of Applied Mathematics and
Mechanics, Vol. 29, No. 2, 1966 (Pussian 19€5), pp. 254-264.

6P.J._Reeve, "A Method of Approximating to Pure Time Delay',
International Journal of Control, Vol. &, No. 1, 1968, pp. 53-63.




The initial state is
‘zto(g) = 9‘6) > -T50¢g0 —— I-3

where ¢(0) 1is the specified continuous initial function. This defini-

. . - . . . 7
tion of state is in agreement with the discussion by Johnson about the

misuse of the term 'state'.

ITIT. A BRIEF SUMMARY AND

PREVIOUS RELATED WORK

The first part of this paper is concerned with Controllability,
Stability, and Null Controllability of the system. Some previous resulfs
on these topics are mnot always easy to apply. In an article by Weiss
for example it is necessary to solve a differential difference equation
to determine controllability. Some results that are easier to apply, but
less complete, are given in Cﬁapter IT.

The second part of this paper investigates the time optimal regu-
lator problem. That is the problem of determining which control,outvof
a set of admissible controls, will reduce the error of the system given
by I-1 to zero in minimum time and maintain it at zero.

. . ..9
The system given by I-1 has been investigated before. Kharatishvili”,

7R.A. Johnson, "State Space and Systems Incorporating Delay',
Electronics Letters, Vol. 2, No. 7, 1966, pp. 277-278.

8Leonard Weiss, "On the Controllability of Delay-Differential
Systems'", SIAM Journal on Control, Vol. 5, No. 4, 1967, pp. 575-587.

9Pontryagin, op. cit., pp. 213-226.
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Bankslo, and Oguztorelill, to name a few, have also considered the time
optimal regulator problem. However, they.only considered the problem of
reducing the error to zero in minimum time, but nét the problem of keeping
it there afterwards. Chyuﬁg and Leelz, SeierstandlB, and Hélanayl4 use
quite a general cost index but they specify the fiﬁal time.

Fullerl5 considers the time optimal problem of reducing the error
to zero and maintaining it at zero in minimum time. For certain examples,
he is able to represent the optimal con?rol as a function of the state
vafiables, however, he only considers a lag in the control. For a very
large reference list of articles on delay systems, see M.N._Oguztpreli

At the end of this thesis, two examples are given. They were chosen
because they had been used before in a thesis by J.D. Stebbing17 on the
time optimal regulator problem where he considered reducing the error to
zero in minimum time_but not the problem of keeping it at zero. A com-—

parison is given between Stebbing's results and the results of this thesis.

1OH.T. Banks, ''Necessary Conditions for Control Problems with
Variable Time Lags', SIAM Journal on Control, Vol. 6, No. 1, 1968, pp. 9-47.

llM.N. Oguztoreli, Time-Lag Control Systems. (New York: Academic
Press Inc., 1966).

, lzD.H, Chyung and E.B. Lee, "Linear Optimal Systems with Time Delays',
'SIAM Journal on Control, Vol. 4, 1966, pp. 548-575.

13Atle Seierstand, "A Pontryagin Maximum Principle in Banach Space",
IEEE Transactions on Automatic Control, Vol. 13, No. 3, 1968, p. 299.

14A. Halanay, "Optimal Control for Systems with Time Lag'", SIAM
Journal on Control, Vol. 6, No. 2, 1968, pp. 215-234.

5Fuller, loc. cit.

16

Oguztoreli, loc. cit.

,17James D. Stebbing, "An Investigation into the Time Optimal Control
of Linear Systems with Delay" (unpublished Master's thesis, The University
of Manitoba, 1967). "



CHAPTER II
CONTROLLABILITY
I. CONTROLLABILITY

Consider the system characterized by

k
¥(t) =) A, x(t-1,) + B u(t) -—— II-1
- , i i —

i=0 ,

where
0 = < T, < < =
TO Tl Tk T

A.i = nxn constant matrix, 1 = 0, ..., k
B = nxr constant matirx
x = n-dimensional vector
u = r-dimensional control vector
5, @ =080  -15050

0

where ®¢(0) is the continuous initial function.
The state space is the Banach space of continuous functions over
a time interval of length T. Complete controllability to the origin of

t +1] means that for all given

the state space (function space) on [tO’ £

continuous initial functions on [tO—T, to] there exists a piecewise
continuous control u(t) on [tO, tf+T] such that x(t) = 0 for

t E[tf, tf+T].

Theorem 1

The system II-1 is completely controllable to the origin of the

state space only if

k -8Ts 1
(sI - Y Ai e 1y 7B == II-2

i=0



has n independent rows.
Proof. The system II-1 can be approximated to any degree of
. . . . .1
accuracy by a linear ordinary differential system. See Repin~ for a

good discussion of this approximation method.

Let
x (1) = x(t- D) )
=1 — m
2T
%, (8) = x(t= =)
e s - II-3
xpv_(t) x(t= —)
ER
x () = x(t-7) J
2.7
such that 1, » — i=1, ..., k —— II-4
1 m
L. = integer < m ~—~- II-5
1

Then II-1 can be replaced by

k
() =] A, x, (8 +Bu(e)
i=0 * i

£ () = 2(x(0) - %, (0)

& ——= II-7

£,(8) = 20, () - x,(6))

m
*n T (8~ 2, (8)) /

1 ; . .

“Tu.). Repin, "On the Aporoximate Replacement of Systems with Lag
by Ordinary Dvnamical Systems"”, Journal of Applied Mathematics and
Mechanics, Vol. 29, No. 2, 1966 (Russian 1965), pp. 254-264.
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for m large. Repin has shown that the accuracy of the approximation
given by II-7 increases as m increases, and in the limit as m - ®,

II-7 becomes equal to II-1.

Let
i§(t)~
x, (1)
X(t) = , a (m+l)n vector, ——— T1I-8
x (t)
.
C=1. , @ (m+l)n x r matrix, ~—— T1I-9
0
T L. + 1
_ 1
AO O. 0 . Ai - Q0 Ak
g -0 0 - 0
T n T "n . X
0 L -2 :
. T n T n .
A=
. . 0
- m n
B S -

-—- II-10

a (m+1)n x (mtl)n matrix, where In is the nxn identity matrix. There-

fore, from II-7 -—- II-10 we have
X(t) = A X(t) + C u(t) ~—= II-11

the (mtl)n order approximation to the system II-1.

3
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A necessary condition that the system II-I1 be completely con-
trollable is that
1 , ‘
(sI - A) "C . _ ——= I1I-12

have (m+l)n independent rows. By repeated row operations on

r‘ Lo R
| . I O ++ -« « + - 0

| n = ) .

o 1

o n

| .

SI(m+l)n— A . --— II-13

| L T I 0

N - . 1'1 |

L TP o 1!

| - m

the left half can be reduced to the (m+l)n identity matrix and the right

half becomes the matrix (sI - A)ﬁl, and

pa— ‘ . "‘xi‘
F(g)—l . i
| |
(s1 - &% = D (st %b’lF(s)—l C o = 11814
m.m m, =M -1
g (T) (s+ ;9 F(s)
where
' _ koo 25 m ~¥5
'F(s) = s8I —i-—z-O D s+ D A, - TI-15

Only the first n columns of (SI—A)—l are given in II-14
because the interest is in (sI—A)_IC, and C has at most the first n
rows non zero. It is easily verified that II-14 is correct by mu1ti§1y—
ing (sI-A) times the first ﬁ columns of (sI—A)—l as given by II-14.

From II-9 and II-14



F(s) t

1 - &)Y i = ; & (s %)‘1F(s)‘1 B - TT-16

@M s+ BHr) T

If the system II-1 is contrxollable to the origin of the state space,
then the approximating system II-11 is controllable,to the origin X = 0
in the limit m + . If the approximating system II-11 is controllable

then from II-12 and II-16, F(s)—lB must have n independent rows. From

I1-4
Ty
2., = m— ‘ - - II-17
i T
and therefore
, Ti
L. -~ L. nr
El_ 1 _I_ﬂ_ 1 = m 1 = it ——— -
(T) (s+ T) (ST+m) (ST+m) 11-18
From the binomial expansion it is easily verified that
. m m_ -8T L _
1im <ST+m> = e I1-19
>0 .
Therefore, from II-15 and II-19
k
_ST-
lim F(s) = sI_ -] e A, -—- II-20

m>o i=0

-1 , .. .
and F(s) "B must have n independent rows in the limit as m + ®, i.e.

if system TII-~1 is controllable

K
=574, 1
(6T - A e DB - TI-21

i=C

must have n~independent rows.
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Consider the special case where

A, v = Bu , . == II-22
1i- ‘ .

yields a solution for u for any v and all i=1, 2, ..., k. 1In

this case a u can be found that exactly cancels out the delay terms.

Theorem 2

If a r~vector u can be found to satisfy the equation
A, v = Bu ' A ——— TI-23

for arbitrary v and for all 1i =1, 2, ..., k where the Ai and B

are given by the system equation II-1

k
HOR)

A; x(t-1,) + B u(t)
i=0 '

then the system is completely controllable to the origin of the state space

if and only if the matrix

[BA AR +vennnes A B] -——= I11-24

has rank mn.

Proof. From II-23 we can pick a vector w(t) such that

I o~

A x(t-T) = = B w(t) ——m II-25

i=1

Let

u(t) = w(t) + z(v) -—- II-26
The system II-1 then becomes
x(t) = Ay x(£) + B z(t) ~—= II-27

‘It is well known that the system given in II1-27 is completely controllable
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to the origin if and only if the matrix2

n—lB]

[B AB ---- - A ——— 1I-28

0 70
has rank n. If there exists a z(t) that bfings x(t) to the origin
in T1I-27 then the u(t) given by II-26 will bring the syséem in II-1 to
the origin. On the other hand, if there exists a u(t) that brings x(t)
in II-1 to the origin, then thé z(t) given by II-26 will briﬁg x(t)
in II-27 to the origin. Hence the system given by II-1 is completely’
éontrollable to the origin if and.only if Ehe matrix given by.II—28 has
rank n. |

Q.E.D.
A more complicated proof where the Ai (i =0, 1, ..., kY are

functions of time is given by Buckalo3
IT. STABILITY

Consider the system II-1 with the control wu(t) =0

(o) = ] Ay x(e-T) ——= II-29
i=0
For
¢ =0 -T150<0 -—- 1I-30
900) = x, : ——- 1I-31

the Laplace Transform of II-29 is
k

x(s) = (sT - z A, e
i=0 *

-T;8,-1

) g e II-32

2M. Athans and P.L. Falb, Optimal Control, (New York: McGraw-Hill.
~ Book Company, 1966), p. 205.

3Andrew F. Buckalo, "Explicit Conditions for Controllability of
Linear Systems with Time Lag', IEFE Transactions on Automatic Control,
Vol. 13, No. 2, 1968, pp. 193-195.
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The Nyquist ériterion is easily applied to II-32 to determine if the

roots of

, k
®(s) = |s1 - ) A e
: i=0

~T.8
) -—— II-33

4
all lie in the left hand complex plane}. The system is stable if and

k
-Ts8S .
only if the plot of [SI - Z Ai e * [ » as s enciréles the right half

i=0
complex plane, makes no net encirclements of the origin of the complex
plane.
The values of the roots of the system IT1-29 can be determined

graphically, to get a better idea of stability using the method by Huang

and Lis. The method consists of letting

s = py + jv ' ——— II-34
then
k _T‘S )
st -] A, e | =0 -—— II-35
. i
i=0
becomes
. § “PoT ..
Re l(p +iw)I - Z A, e (costw - j 31nrw)l = ( -~- 1I-36
0 ) i i 1
i=0
k AT
Im I(p0+jw)I - Z Ai e 0 kcosgw -] sinfp)| =0 ——= 1I-37
i=0

Equations II-36 and II-37 cach can be used to give a plot of w versus Py-

The intersection points are the characteristic roots of the system.

4N.H. Choksy, "Time Lag Systems", Progress in Control Engineering - 1,
(London: Heywood and Co. Ltd., 1962), pp. 17-38.

5I. Huang and L.L. Li, "Root Locus Determination of Linear Systems
with Transport Lag', IEEF Transactions on Automatic Control, Vol. 12, No. 5,
Oct. 1967, pp. 632-634.
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ITI. DOMAIN OF NULL CONTROLLABILITY

For the control process II-1

k
x(e) = ) A, x(t-1.) + B u(t)
i=0 * *

the domain of null controllability consists of all these continuous
functions EN (@) = ¢(0) on [-T, 0] that can be steered to the origin
0 =

of the state space by the r-dimensional control vector u(t) on some

finite time interval t €[t0? t _+1], where each component ui(t) s

f
i=1, ..., r, of u(t) must satisfy the constraint 'ui(t)] < e for
a fixed constantégroThis definition is analogous to the one for systems

without time delay. See, for example, the definition by Lee and

Markus6

Theorem 3

Consider the system IT-1

k
x(t) =) A, x(t-T,) + B u(t)

with controlewmstraint
lui(t)l <e i=1, ..., r ~—— TI-38

If the system is
a) Completely Controllable, and
b) Asymptotically Stable, i.e. every eigenvalue A has

Re A < 0,

6 ' . .
E.B. Lee and L. Markus, Foundations of Optimal Control Theory

New York: John Wiley and Sons, Inc., 1967), -p. 32.
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then the domain of null controllability is §t<g) £ Co[~T, O];c where

X 1is an n-vector.

Proof. The system II-1 can be approximated to any degree of

accuracy by the linear autonomous system without time delays
X(t) = A X(t) + C u(t) . ~—— I1-39

which is defined by equations II-3 to II-11. Controllability of system
IT1-1 implies controllability of system II-39 as m -~ « . Stability of
system II-1 implies stability of system II-39 for m large enough.

Therefore, system II-39 satisfies conditions a) and b) of the theorem,

and system II-39 has domain of null controllability7 R(m+l)n . Since
[ x(e)
(e
: 2T
X(t) = :.g(t—-a~), ; a (mFl)n vector, ——= II~40
- x(e-T) in the 1imit as m »> ®

defines §t(0) = x(t+0) , o e[-1, 0] , it is clear that X(t) =0 is
the same as _§t(0) = 0 . Because the controls are boﬁnded, the control
that takes X(t) to the origin will take x(t) in II-1 to the origin
of state space. Therefore, the domain of null controllability is

gt(O) € CO[—T, 0] , where x 1is an n-vector.

*
Co[—T, 0] denotes the set of real functions continuous for
o ef[-T, 0].

"Ibid., p. 85.
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CHAPTER 1IIL

CONDITIONS FOR OPTIMALITY
I. THE ADJOINT

A problem. Given the system
k
%(t) =iZO Ay x(t-7) + B u(t) --- III-1

with continuous initial function

_>_<_(t0+o) = X, (o) = ¢(0) ~-T<£0<K0 —-—= III-2
0 hd . ;
where
= < e e e e =
0 Ty T1 < < Ty T
Ai = nxn constant matrix, i =0, ..., k

B = nxr counstant matrix

X = n-vector

=(t)

u(t) = r dimensional control vector

[uj(t)[ <1 3=1,2, vuu, T - III-3

where the uj are the components of u. Find the control u(t) that
transfers the state from the initial state, §t0(0) = 9‘0), to the zero
state, §tf+T(0) =0, o¢[-1, 0] , in minimum time. Such a u(t) will
be called a time optimal control.
Theorem 4

Let u(t) be a solution to the above problem. Let §t(0) be the

state of system III-1 corresponding to u(t) and the given initial state

e (o). Let tf' denote the minimum time such that
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= = ~T<0¢g | e TTI-
X, (0) = x(et1t0) = 0, TS0 I1I-4

Then there exists a corresponding adjoint vector p(t) such that

k

. T .
a) B(t) = -] A;p(err) , telty, €] ~—= III-5
i=0 :
and
7 .
b) u(t) = - sgn{'B _B(tﬂ , t €[t0, tf] —— ITI-6
In this thesis uj = - sgn{O} implies that uj is not defined.

Proof. The system III-1

k
CE(e) =] A, x(t-T,) + B u(t)
i=0 *

can be approximated to any degree of accuracy by the linear time-invariant

system without time delays
X(t) = A X(£) + C u(t) ‘ - III-7

which is defined by equations II-3 to II-11. The accuracy improves as the.
dimension of.the system III-7 is increased. FEquation II-3 shows that the
initial state Eto(c) = ¢(0) dimplies an initial condition §(to) = §0

for system I1II-7, and the target '§tf+T(G).= 0 implies the target set

g(tf+T) =0 .

Let w(t) be the time optimal control for system III-7, steering

X(t) from §0 to 0 . From Pontryagin's Maximum Principlel v(t) must
satisfy
- T _, : -
v(t) = -'sgn{C P{t)[ , t E[to,-tf+T] ——— II1-8
1

E.B. Lee and L. Markus, Foundations of Optimal Control Theory
(New York: John Wiley and Sons, Inc:, 1967), pp. 129-135.
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where  P(t) is a non-trivial solution of the adjoint'equation

P(t) = - AT P(t) , t e[to, tf+T] e TIT-9
Let
~_p_(t)~
Py (1)
P(t) = —— III-10
p._(t)

where the p(t) and pi(t) ,1=1, ..., m ; are n-vectors. Equations

IT-10 and III-9 give

— —_
{'. - : T m |
P - = - s Tt s s - 0
P ; AO T In O\ ' B E
: m _mp | |
P 0 T In T o : 2
, . ~ N i
: H m 1 1
* H =t I N N :
—22 0 (I)\ T n ! '13'
TN N N \ :
. . . I T \\ N ! ’
: i ™ A \\ : ‘
o \ AN | |
S T o |
Py T A . Do
T . i
. : R N :
: ; 0 :
e , 0 - T .
.: | T n
L T m
By ok 0 eeeei0 Ry
. = ._ —_
~—— II1-11 .
Reversing time and letting
r_z_o(t)*
Z(t) = P(tf-t-T—t) = ’ i -—— III-12
LY |
t



I1I-9 becomes

or

dP (t+1-t) dg(tfﬂ—t)
d(t+1-t) T d

= - AT _E_’(tf+’t~t)

2(e) = A" 2(t)

Since the system is time-invariant let

The

The

2(0) = Bt 1)

Laplace Transform of III-14 yields
2(s) = (sI - 457700
— n{m+l) ) -

inverse of (s AT) can be found by the method of

In(m+l) -

formations. By repeated row operations on

the

; I1 0 - 0
i n A
! [
‘ I _ AT 1 0 In .
S n(m+l) i‘ :
!
[
| 0
| ‘
;0 0 I
A

I 0- 0 1
n

i .o

0 I . .

; . n |

. b

, o

{

0 0 I

18

-—= I1I~13

- I1I-14

-~— ITI-15

- III-16

row trans-

-——= III-17

becomes



F QH+ST)
(s+ E)"l ( % AT( m_ (T.—Th)F~l
S T o imtbsT
m-1 T -1 m-1 T ~1,m
(st 7 A E (ot P 7 A F T
where T,
i
k T, m T
b= SIn ~.z Ai(m+sT)
i=0
and therefore
F—l
T,-1 _
(Stn(m+l)_ %) B
From III-12 and III-16
-1 o m
RO RE RS
2=0
Let
2,(0) = ¢ 2,(0) =0, 2 =1,
then
7, (s) ’F—l z. (0)
0] . =0
But Ti
) m .om—= ST
lim (m+sT> T = e

17 -1
A F

19

-1, m >m

(

m+sT

m m
(m+sT)

-=--~ ITI-18

---= III-19

-1, m

mt+sT

-—— ITI-20

—-—— ITI-21

-—— III-22

=== III-23

-—= I11-24

.
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and from III-19

k T -ST
lin F=sI_~-) A, e -—— III-25
n o, i
e i=0
and therefore
(s) = (s° —1Z< I SN - TI1-26
29 ( no i 20
i=0
which is the Laplace transform of the equation
k T
z,(t) ='ZO AL 2q(e-1,)
1” ——m II1-27
2,(0) = C zy(t) = 0 t <0
Let
EQ(O> =0 L=0,1, .., =1, r+l, .,., m
——— I1T1-28
HORYS
then using the same method, III-21 is the Laplace transform of
X T
_go(t) =iZo Ay Eo(t—"fi) |
- ~—— I11-29
=) = = < il
EO(T ) Er go(t) 0 t T -

Since equations III-27 and II1-29 are linear their combined solutions

must also satisfy

t) =

I 15

. T :
EO( Lo Ai EO(thTi) on t > T ~—= III-30

with the initial function on [0, T] equal to the sum of the solutions

of III-27 and ITII-29 on [0, T]. Therefore .zq(t) must satisfy
U

: k
. T
= i — T ——— -1
z:(t) ‘z Ai z:(t Ti) on t > 7T IIT-31
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From III-12 and II1I-15

E%QEEEiE:EZ.= _dp(t) | % AT (t+1.) e TTI=32
d(t_+1-t) dt . 4 BT )
f _ i=0
or
k T ’
p(t) = —.Z Ai Eﬁt+Ti) on [to, tf] ——— III~33
i=0
From II-9 and III-8
¢t pee) = BT p(o) . e ITI-34
and
[T 3
v(t) = - sgn{B E{t)j ‘ ~—— III-35

If u(t) is the time optimal control for system III-1, then in the
limit as m > < it is also the time optimal control for system III-7.

Therefore, from III-35 and III-33, u(t) must satisfy

u(t) = - sgn BT_B(t) on [to, tf] —-—— TII-36
where
: k T
M [ ) . — -
(L) '2 A p(EFT) on [tg,ot.] III-37
i=0
Q.E.D
IT. TRANSVERSALITY
Consider the system describted by
x(t) = AO x(t) + Al x(t-1) + B u(t) -—— ITII-38

where
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x(t) is an n-vector
u(t) is the r-dimensional control
AO’ Al, and B are constant matrices

T > 0 is a constant

r-q

is of rank gq < r ; then there are dependent columns in
‘B = (Bys +evs Bys +ovs B ——— ITI-39
dependent column at 1 = d]; ey dr— and then
Ei =05 gl + .., + aji hj oo, gr
for 1= dl’ ceay dr-q ——= TITI-40
J # dl, . > dr_q
. _uiw
BE = Q:z_l) (Y _111: s P‘I') ul
u
L T
= Eiul + oi.., + Eiui S f‘brur
=bju; + ..., o b, + ...,+0Lji§j + e, ari:b—r)ui + ..., +bu
= _12_1(11l + Z uliui) + . “e ve. + h_r(ur + Z ariui)
i ‘ i
B R
up t) oy
i
= " > + . . > .
(—_1‘21’, H P—Jv’ Er) u_'] :EL: ujlul
u_ -+ 2 o_.u,
T > Triti
L. i -
= B ——— III-41

Y
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Hence

‘Theorem 5

If B, the nxr matrix given in IiI—38, has’raﬁk g < r, then the
forcing term Bu may be replaéed by a forcing term of the form BqEq
without any loss of control; where Bq is a nxq matrix of rank g,
and uq 1is a q vector.

It will be assumed, without loss bf generality, for the rest of thisk
section that the nxr matrix in III-38 is of rank r, with the control u(t)
an r-vector. Since B 1is of rank r it can be reduced to its ndrmal form
by elementary row transformationsz. Therefore, there exists a nonsingular
nxn. matrix H such that

HB =[IrJ an nxr matrix ——— II1-42
0
where Ir is'tﬁe rxr identity matrix.

The target for our problem is the zero state

Etf+.[(0) = x(ttt0) = 0, 0 e[-1, 0] == III-43

or _§(£) =0 for t e[tf, tf+T] -—— III-44

This implies by substitution in III-38 that

Ay x(t~-1) + Bu(t) =0, t €[tf, tf+T] -—= III-45

or Al_g(t) + B u(t+1) 0, t E[tf—T; tf] == ITI-46

_2Frank Ayres, Theory and Problems of Matrices (New York: Schaum
- Publishing Co., 1962), pp. 41-42. ’
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and Eﬁtf) =0 ——= ITII-47

Multiplying II1-46 by H, from III-42

A L - - —— -—

HA,x () + {Ir u(t+t) =0, telt-T, t.] III-48
| O

The last n-r equations of III-48 define the conditions that x(t) must

satisfy on [t_ -7, tf], and with the condition gﬂtf) = 0 these define a

£

new target.

If wu(t) is bounded by
lu ()] <1, i=1, ..., ~—— ITI-49
then there is the additional restriction

- 1 < 1st row of HArg(t) <1

: t elt~T, t.] ——— III-50

.

- 1 < rth row of HA1§(t) <1

If IIT-38 is approximated by the n(mtl) dimensional equation given in

I1-11
X(t) = A X(t) + C u(t) -—~ ITI-51
then
Tx(t) Cx(®)
zi(t) x(t- %?
X(t) = . = -— III-52
x (t) x(t-1)

approximates the state of III-38 for m large. From III-47 to III-50,

the target set for X(t) 1is defined by
x(c.) = 0 ——— IT1-53

with the last n-r rows of HAlgi(tf) =0 for i=1, ..., m. If the
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components of u are bounded as in ITI-4Q then there is the restriction

Let the. last

Let Si(fl,

the fj(Ei)

define hyper planes in Rn , and since’ X, =

Si is not empty. Therefore, Si(fl, R )

lst row of HA_ x. (t.) € 1
1=i°7f

- 1 S
i=1, ..., m

— < 7 T

1 € rth row of hAl§i(tf) <1

n-r trows of HAlzgi = 0 be denoted by
&) =0, §=3, ., o

.., £ ) denote the set of points x, in R

n-r =i n

=0, =1, ..., n-r. Since the fj(zi) =0

n-r

Book Company, 1966), pp. 94-95.

~—~ I1I-54

~—- ITI-55

at which all

are linear, they
0 1is a solution to III-55

is a smooth r-fold in Rn

and a vector P is transversal to Si at some §iO€ Si if and only if
P ‘is a linear combination of the n-r vectors
9F.  Of 9f
1 2 n-r
ox, * 9x. ° T 3, 111-56
=i =i =i
at -§103 If Si is a smooth r-fold in Rn then the target set is a
smooth mr-fold in Rh(m+l) with boundaries defined by the equality signs
of III-54. Therefore, a vector P 1is transversal to the target if and only
if P dis a linear combination of the n{(m+l)-mr vectors
(2™ 0
E {0
P I
0 ) ot (x,)
! = 0 f.(x.) = i for =1 ve, M
X - dX, o : 09X, ! ? ’ :
b —1 [ 8
. , Lo =1, <y DT 3
f é__Q: 0 ;
. 0x i
R (U i _} :
and ——= III-57
ax/Q
N for 2 =1, , I
3 .
M. Athans and P.L. Falb, Optimal Control (New York: McGraw Hill
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where X, is a member of x =

s J
A

If Eﬁt) is the non-trivial solution to the adjoint equation of

Pontryagin's Maximum Principle as given by IIT-9, then it must be trans-

versal to the target set at t = tfa. i.e. If
p(t) |
|
py (0)
P(t) = : » p(t) = n-vector, Ei(t) = n-vector;
L ? i=1, ..., m
'p, (). ——~ III-58

of

= , 3 =1, «vu, DT ; - III-59

‘and since there is no tangent at §(tf) =0, Bﬁtf) is arbitrary.
In the case where r = n, i.e. B is of rank n, then Ei(tf) = 0,

i=1, ..., m. In the case where the last n-r rows of HA X are

1
: 5 Bf,(gi) _
identically zero~, the §§1—-— =0 forall j=1, ..., n-r, and Ri(tf) = 0,
’ =i
i=1, ..., m. In reverse time this corresponds to equations III-22 to

I1I-27, which in forward time corresponds to the condition

p_(tf) #0 , R(t)- =0 £t >t -—— III-60

“1bid., bp. 280.

5This corresponds to the condition given in II-23
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in the 1im - . This acts as the final function for the adjoint

equation

. T T

p(t) = — AO.R(t) - A p(t+T) -—— III-61
This is equivalent to the condition that p(t) must satisfy

coy T _ ' e ITI-
p(t) = AO p(t) ’ t e[tf T, tf] 111-62

with Eﬁtf) unspecified. If the optimal trajectory hits the target at
some point Eb(tf) on the boundary defined by the equalities of III-54,
the transversal may not be defined, i.e. there may be a Eb(tf) # 0. From
ITI-28 to III-30 we see that we must add to the final function defined by

I11-62, the function that satisfies

p(t) = - Ag p(t) ' ——— III-63
. b N b : . P
with Eﬁtf—T E) #0, p(t) =0, t > tf—T Pt That is if x(t) satisfies
the equalities of III-50 at ¢t = tf—T %- then the final function is the

sum of the solution of III-62 and the solution of III-63.



CHAPTER TV
EXAMPLES
I. TFIRST ORDER SYSTEM

The control system considered in this example is shown in Fig. 1.

The difference between the desired mixture and the actual mixture
at the pump outlet will be denoted by x. When the motor is turning at
constant speed, the mixture will be constant. The motor has a constant
field current and its speed is controlled by the armature voltage. The
motor's transfer function contains only one time constant, due to the
moment of inertia of the pump and the motor and the constant of propor-
tionality relating the motor speed to its back emf. The gains of the
motor and émplifier are assumed to be linear and are lumped fogether.
The resulting block diagram of the system error is shown in Fig. 2.

The delay time T is given by the quotient, D/v, where v is
the velocity of the fluid in the pipe and D is the distance from the
additive input port to the point where the concentration of the mixture
is measured. The concentration cannot be measured at the input port as
time must be allowed for the additive to mix with the fluid. Tt is
assumed that there is no change in velocity so that the time delay is
constant.

The problem to be solved is to determine the control signal, u(t),
so that the error , x(t), is reduced to zero,in minimum time,and stays there.
There is a constraint on the magnitude of the control signal. That is

the inequalityv

lu(o ] <1 | | ——— Iy-1
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Fluid

N
W

=

S
ensot Desired
o= Mixture
Control
u(t)
D.C. Motor Amplifier
If = const.
Fig. 1
Mixture Control System
u S ) K > X
N — 5+ d
-ST
e

Fig. 2
Mixture Control System

Block Diagram
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must be satisfied at all times. '
This system, then, is described by the differential-difference
equation

%(t) =-a x(t) - K x(t-1) + K u(t) - TIV-2

For a unique solution, an initial function,
X, (o) = ¢(o) on [-1, 0] ——= IV-3
0 .

must be specified, where ¢t

0 is the initial time and ¢(0) is a given

function.
For this problem the gain K was chosen equal to 2.0, the time

delay T = 1.0, a = 1.0. Then IV-2 becomes
x(t) = - x(t) - 2x(t-1) + 2u(t) : == IV-4:

The-optimal control for this problem may be found by using Theofem
4 and the transversality condition given in Chapter III. From Theorem 4,

the optimal control must satisfy
) T
u(t) = - sgn {B p(t)} t €[t0, tf] ——= IV-5

where the adjoint p(t) must satisfy

k
. _ T ——— TV~
p(t) = .2 A7 p(e+t)) t elty, tg] IV-6
i=0
In our problem
B=K=2.0,k=1,7=0,1 =1.0 — V-7
Ay=-a==-1.0,A =-K=-2.0 . ——— IV-8
and equations IV-5 and IV-6 become
u(t) = sgn {Zp(t)} t E[tO, tf] ——— IV-9
p(t) = p(t) + 2p(t+l) t é{to, tf] -=— IV-10
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From Theorem 2 the system IV-4 is completely controllable to the
origin of the state space since

a) u = -v satisfies Aiv = Bu and

b) the matrix [B] = [2] has rank n = 1.

The rons of the system‘IV—4 can be determined using the method
of Section II, Chapter II. Since in this example, the solution of the
adjoint equation IV-10 is just the reverse time solution of the system
equation IV-4 with u = 0, the roots will be the same but of opposite

sign for IV-10 and IV-4. The Laplace transform of IV-4 with u =0 is

0
Cx(0) - 2/_l x(e) e S D g, ,
x(s) = - -—= IV-11
s+ 1+ 2e°°

The characteristic roots of equation IV-4 are the solutions of

s+ 1+ 28 ° = 0 ‘ —-— IV—iZ

Let s = + jw -—= IV-13

Pg

and IV-12 becomes

s

-p
Py + jw+ 1+ 2e O(cos w-=jsinw) =0 —-—— IV-14
or
Py + 1+ 2e cos w =0 ——= IV-15
. Pgp
w - 2e sin w =0 ~—— IV-16

These two equations are plotted in Fig. 3, the intersection points give

the roots of the equation. ¥Fig. 3 shows that the dominant rcot has
s =-0.09 + 3§ 2.0 ‘ -=- IV-17

Therefore p(t) will have a frequency of

w2 .
N — = = = 0, —— -
£ o o 32 _ o IV-18
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)

and the zero crossings will be approximately

1

%—= 57 S 1.6 seconds’ —-—— IV-19
apart.
Therefore

p(t) = D cos(2t+6) - IV-20
and from IV-9

u(t) ® ~ sgn {2D cos(2t+6)} | ——— IV-21

for some 8.

Fig. 3 shows that the roots of the system all have Res < 0, and
therefore the system is stable. The system has been shown to be controll-
able, and therefore by Theorem 3 the domain of null controllability is
xt(o) £ Co[—l, 0}]; i.e. any continuous initial function can be steered to
the origin by a u(t) with |u] ¢ 1.

In this example,as in all lst order systems, the rank of B =K
in IV-2 is the same as the order of the system. Therefore from the

transversality condition given by III-62, p(t) must satisfy
p(t) = - AT p(t) = p(t) t elt.~T, t.] ——= IV-22
0 f £
p(ty) =7 ——— IV-23

Equations IV-4 and III-50 show that the boundary of the target set is

defined by
lx(e)| = 1 t elt-1, t] —— IV-24
or x, (@] =1 o el-1, 0] ——— TV-25
f
If x(t) hits this boundarv at tf~T % then from the discussion in
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Chapter III and III-63, the function that satisfys

p(t) = p(t) t E[tf'—l, tf] el TV-26

- i 'E_ B
p(tf~T-E) =Ty s p(t) =0 t>T = IV-27

must be added to the function given by IV-22 and'IV—23., The IBM>360/65

digital computer was used to solve for p(t) in the case where
[x(tf—l)[ =1 -~— IV-28
[x(t)] < 1 t €(tf¥l, te] ——— IV-29

In this case p(t) is the sum of solutions to

p(t) = p(t) t e[tf—l, tf] -—— 1IV-30
with p(tf) =7 ' ‘ ~—— IV-31
and with p(tf—l) =7m1, p(t) =0 t > tf—l | ——- TV-32

From IV-10 p(t) 1is the solution to

plt) = p(t) + 2p(t+1) £ e[to, t.—1] ——— IV-33

f

p(t) is shown in Fig. & for various values of 7 and ™ If Ix(t)] <1

1"
for t 8[tf—l, tf] i.e. x(t) doesn't hit the boundary, then p(t)
corresponds to the solution given in Fig. 4 with M= 0.

Fig. & shows thaf p(t) has zero crossings approximately 1.55
seconds apart which agrees wgll with IV-19. The system equation IV-4 was
solved on the IBM 360/65 digital computer using the Continuous System
Modeling Program. Since u(t) = - sgn <2p(tﬂ , the switchings were made
1.55 seconds apart except for the last switching which may vary slightly

as seen in Fig. 4. Different u(t) were tried by varying the time of the

first switching and the last switching, until the time optimal trajectorvy
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was found. Fig. 5 shows the computer input statements for the initial
function x(t) =5 on t gf[-1, 0],

The time optimal trajectory, the trajectory for u = 0, and the
time optimal control for thg initial function x(t) =5 on t e[-1, 0]
are shown in Fig. 6. Time optimal controls were also found, using the
above method for the initial states XO(O) = l.l,'2.0, 3.0. The time
optimal trajectories and controls are shown in Fig. 7.

The system equation IV—4 has been used previously in an example
of time optimal controlsl. In this example, however, the object was to
get the vector =x(t) to zero in minimum time without any consideration to
keeping it at zero afterwards. The optimum u(t) found for an initial
function x(t) =5 on t €[-1, 0] brought =x(t) to zero in 0.35 seconds,
but x(t) could not be kept there after this time. Fig. 6 shows that a
minimum time of 4.4 seconds is necessary to briﬁg x(t) to zero and keep
it there after this time.

The system equation IV-4 was approximated by the method given by

equations II-3 to II-11 in order to get a feel for the method. For m = 10

x (8) = x(t- % \

2
XZ(t) = x(t~ 169

. : P -—— IV-34

xlo(t)= x(t-1)

1James D. Stebbing, "An Investigation into the Time Optimal Control
of Linear Systems with Delay" (unpublished Master's Thesis, The University
of Manitoba, 1967).
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“EUPROBLEM INPUT STATEMENTSwH s

IN=Z % VERR
AFREALPLIS5.0+.1 .0 [N
JERR=U-KD
DELOUT=DEL A {00, L., %)

XKo=5,%XI1C-DELoUT
UA=COMPARTITIME TA
UB=COMPARICT IME, TB

UC=COMFARL T ™t s T C

U==1.042 . %UA- 2, %UB+2. 5 UC

TIMER DELT:O\OIyFINT{M:5<01PRDEL:O,OI;DUTDEL:QcOl
PRTPLT X{U,XD!

PARAM TA=(C.08:TB=1.65,TC=32.23

END

Ta=7.0 i . T o=, R S s
i ) = - 2
: § =i Dyt - H ¥ ,,

Fig. 5

Computer Input Statements Example No. 1
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and for u =0
2(t) = - x(t) b
>‘<1(t) = 10(x(t) - xl(t))
> -—— IV-35
:‘{lo(t) = 1O(x9(t) - Xlo(t)) )
with
x(0) = xl(O) = = xlO(O) = 5.0 ——— TIV-36

The solution to the approximating equations IV-34 and IV-35, and
the exact solution are shown in Fig. 8, 1In this case although a fairly large
order approximation was used, the accuracy was poor. Caution should be exer-
cised in use of such finite approximations.
II. SECOND QRDER SYSTEM
In the mixture control system of the previous example, if the motor

and pump are replaced by a value whose position is determined by a motor,

then the system will take on the form of Figure 9.

u 'fm K

N S(S + d)
~ST

Figure 9

Y
ke

SYSTEM BLOCK DIAGRAM
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It is assumed that the motor's field current is constant so that
the motor shaft position—armaturg voltage transfer function is the stand-
ard form used above.

The problem is to determine the allowable control signal u(t) such
that the error is reduced to zero in minimum time and stays at zero after
this time. As before, there is a constraint on the control signal. The

constraint is given by

lu(e)| <1 : ~—— 1V-37
The‘error will be given by the differential difference eauation

%(t) = - a %(t) - K x(t-1) + K u(t) ——— 1V-38

¥or a unique solution to this equation, the initial state X, (o) =
- 0
$(c) , 0 €f-1, 0} , and wu(t) must be specified, where ¢(0) is a given

function. Let
x(t) = xi(t) . R(e) = x, () ——— IV-39

then the system equation IV-38 may be replaced by

%, ()] To 1 xl(£§ 0 0 gl(t—rj 0
x(t) = = + u(t)
Lkz(t) LO ~-a XZ(tb K 0 gz(t—T> K
and for a =5, K=5, 1T=1 - IV-40
*.(t) 0o 1} lx. (&) 0 0. (e=1)] 0
- s ! + u(t)
k(O] 0 =5 lx (0] -5 O {x, (D)3
——— IV-41

From Theorem 2 ‘the system IV-41 is completely controllable to the

origin of the state space since
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a) ir 0o 0] “vﬂ 0
] = u ——— TV-42
t—a 0 V21 5‘
with u = —vl and
b) 0 5
[B{AOB] = —=— IV-43
5 =25

has rank n = 2.
The stability of the system is easily determined using the Nyquist

criterion given in Section IT, Chapter II. From II-33 and IV-41

s o] Jo 1] [0 of _, s -1
o) (S) = - - e = -5
. 0 S | ___0 fﬁm =5 0] S5e s+5
_2 . -s
=g  + 55+ 5e " =0 ——— TV-44
This gives the Nyquist plot shown in Fig. 10.
Im

S - plcne

Figure 10

2 -
NYQUIST PLOT OF §° + 5s + Se °
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Since there is no encirclement of the origin there are no positive roots
and the system is stable. Therefore, by Theorem 3 any continuous initial
function can be reduced to the zefo state by the control u(t) with
lu(e)| < 1.

The optimal control for this problem may be found by using Theorem
4 and the transversality condition given in Chapter III. From Theorem &4

and equation IV-41, the optimal control must satisfy

olT
u(t) = - sgn{[s} _E(t)} = - sgn{pz(t)} , t E[to, tf] ——= IV-45
where the adjoint p(t) mnust satisf&‘
I T
p(t) = —izo AL plt+t) t elty, t.] ——— IV-46
If the matrix

0 1
g =

1 0

0 1
HA, = ~—= IV-47

1 L1 0

then the last row of HA is identically zero, and from III-62 p(t)

1=

must satisfy

. __ T _ e
p(t) = Aq p(t) t E[tf 1, tf] IV-48

i.e. p(t) must satisfy

p(t) =0 , t E(tf, tf+l] ——= IV-49
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L(2an, TR
P B S 47 {1 .=520T)
. Ty
Pe S LTA D e EE 0T
T TE T
oeR TSI =T, T
ST""r HA (T L g Te =1, 7=

DELX=DELAY{ S s 1.4
XECEXUaSTAL T AT ey, o0 00y TLie)
X{i=X{C+ LLX

‘JL QK 1 Falt

Thims
LGRT=-5 P
XY= THT o0 0,0,0XT)

MINT=INTORL (O D47

X=STRXTeXIMNT

TIMA=T[ME-TH

UPARLZ=(XTH+ 1.0l (ot i=gennli,y 2oia-nt )]
UPAR=T1 0+ AT o) I Ie =0 -0 4 ? e
1'5‘"3 r: = "\: -t (‘v E B ; L C

MmT aFaSTa (= L, el = J U )4 (L =T e ) ED
TENCO~£.O TF

TEND= (" 70 LA™ T, TMF)

TIMER DELTJf;":v5;”f? =1ire

FIN [SL‘ TEND=TIMA

TERM I

W?lel",IZ)x XTsTFSsTEND, TA:TB
LZ FORMATI(SX,20H X XT,TF,TEND . TA,TB~=
15 IFU7-57-0. 050)24,24,516
16 TE{ABS(X)-0.01)24:24,17
17 15(X)18,18,22
18 HZ=Z70
19 GO TO 26
22 S7=70
232 GO0 TO 26
2% ERRTE=TEND-1.0G-TF
(ABS(ERRTFI-0.03)27,27,25
2% TF=TF+Q.5%ERKRTF
HZ = Fi + .0
S7=S7--32.:
26 :nLL xixv‘

~ g

’ 27 h\_}l\il! JUE

T
o~

Fig. 12

T { / v .F; ‘ ) Computer Program for Example No., 2



X(0) = 3.5, TF = 3.3
HZ = 100, SZ = -100
¥
o HZ 4+ SZ
7 Zl(O) 5
N Start Simulation
of Zz(t), ZZ(O) =5

ERRTF = TEND -~ 1 ~ TF

End Simulation z,(t)
Start Simulation u%t),

x(t)

v

3

u(t) = —sgnlz, (te-t)]

HZ = HZ + 10
= 5Z -~ 10

/ . N\

W TEND = t + 1

CALL RERUN

5 u(t) = x(t-1)

v
Cont. Simulation
of x(t)

PRINT xq(t), x9(t), t, u
PLOT Xl(t)
for t €[0, tgtl]

END SIMULATION
WRITE xq, x,, TF, TEND,
SWITCHING TIMES

Fig. 13

Flow Chart, x(t) = 3.5 , t e[-1, 0]



and
o @ [o o e e fo 50 fpg(e¥1)
B(e) = | | - | + ; | - 1V-50
[éz(tﬁ 113 |py(e) 10 0] [py(tFD)

If z(t) = Eﬂtf—t), then  z(t) is the solution of

) To o] [z,e) [o-5](z (t-1)
z(t) = ! } -| ! +{ | 1 -—— IV-51
RO I IR EO) I G EX )
, t g[0, tf—to]
z(t) =0 t e[~1, 0) ——= 1V-52

.Ez(t) is shown in Fig. 11 for 22(0) = 5 and various Vglues of zl(O).
The zero crossings of zz(t) are approximately 2.6 seconds apart, and
therefore from IV-45 the optimal control will Have switchings approximately
2.6 seconds apart. The system equation IV-41 can be simulated trying
various initial switching times for u(t) wuntil the optimal control is
found.

The optimal solution was found by using the IBM 360/65 digital
computer with the Continuous System Modeling Program. The input statements
are shown in Fig. 12 and the flow chart in Fig. 13 for a constant initial
condition =x(t) = 3.5 on t e[-1, O0]. An initial guess of tf = 3.3 is
given. zz(t)[ZT] is then simulated for 3.3 seconds with ;2(0) =5,
zl(O) = 0. The switching times [TA and TB] for wu(t) are then used in
the simulation of x(t)[X]. When =x(t) = 0 near t = tf, u(t) is set
equal x(t-1) and one second later the simulation stops. If x(t) at

the end of the simulation is larger than 0.01, zl(O) is made larger and

the program is run again. If x(t) 1is smaller than -0.01, zl(O) is made
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smaller and the program is rerun. If 1x(t)] < 0.01 then the time when
%x(t) = 0 [TEND-1.0] 1is compared to tf. If the absolute value of the

difference iz greater than 0.03 a new value of te is>tried that is equal
to the old value of tf plus half the difference. The system is rerun
until all the conditions are satisfied. When all the conditions are sat-
isfied, the optimal x(t) is plotted and the optimal control is given.

For other constant initial coﬁditions it is only necessary to replace
the card with XD = 3.5, TF = 3.3 by a new card with the new x(0) and
a guess for tf. The optimum will be reached more quickly for a good guess

of t slightly smaller than the actual t

i £

Fig. 14 shows the time optimal trajectory and control for an initial
condition x(0) = 5. The minimum time for =x(t) =0, x(t) =0 is tf= 4.1
seconds. Fig. 15 shows the time optimal control policy for cénstant ini-
tial conditions from 0.0 to 5.0. These data were obtained by runnihg the
computer program for various initial conditions in the range 0.0 to 5.0.

To determine the optimal control policy for a given constant initial
condition: (1) draw a vertical line on the graph through the number on the
horizontal axis corresponding to the initial condition. (2) The region
directly above the horizontal axis on this vertical line gives the initial

condition for wu(t). (3) The switching times are given by the intersection

of the vertical line with lines on the graph.
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CHAPTER V

CONCLUSIONS AND PROBLEMS

FOR FURTHER STUDY

Necessary conditions and sufficiency conditions have been given
for system controllability. However, more genefal,'necessary and suffi-
cient conditions are needed that can be more easily applied.

In the first theorem on controllability it was assumed that if the
original time delay system is controllable then the approximating system
is controllable. This seems obvious from a practical point of view since
the solutions of the two systems come arbitrarily close together as the
order of the approximating system is increased. If this‘order is made
large enough, the solutions would seem identical due to the limits of
measurability. However, it would be desirable to prove this assumption
mathematically. The second theorem on controllability is not new but a
new proof of the theorem is presented.

Necessary conditions for optimality have been given. These could
probably be extended to the variable time delay case. The transversality
conditions given apply only to a small number of systems. It would be
desirable to extend these to more general systems. Extra necessary con-
ditions could possibly be obtained by a study of the set of attainability.

To satisfy the necessary conditions usually requires a lot of trial
and error. It may be possible to write a computer program that would solve

a general first or second order time optimal problem.
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