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ABSTRACT

This thesis considers linear time invari.ant differential-

difference systems. Theorems on Controllabilíty, Stability, and. Nu11

Controllabí1ity of sùch sysËems are presented.

The major part of the thesís investigates the problem of deter-

rnining rvhich controlrout of a set of ad.missible controlsrwíl-l reduce

the state of the system to zero in minímum time. Necessary conditions

for such a time optimal control are presented. Two examples are given

thaË demonstrate the technique of finding the time opËimal control.
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CHAPTER

INTRODUCTION

GENERAL INTRO])UCTION

l

Ïn recent years, much of the stucly in the fíe1c1 cf control systems

engineeríng has been directed towarcls the optimization of control systems

or Processes. Some of these industrial processes have an inherent trans-

port lag and the dynamic behaviour of the per:turbed system can be modelled

adequately by linear clifferential difference equations. See for example

Ëhe mathematical model of a Bipropellant Gas-pressurized Liquíd Rocket

System given by Day and llsial-. Iixamples of delays are also founcl in such

diversified fields as the study of communications betr,reen space vehicles,

the study of traffic florv, ancl in economic theory.

consider also systems where any time lags may be neglected. l.fany

such plants are of high order and the solution of Pontryagin's Maximum

)Principle- offers considerable difficulty. In many cases the high order:

plant may be approximated by a lorv order plant and a pure de1ay. This

approximation can be quite good (See for example the discussion by fu11er3)

and it may offer a more realistic mathematical model of plants rvÍth

distributed parameters .

'ltK.S. Day ancl T.C. Hsia, "Optimal Control of Linear Tirne-Lag Systems'r,
1968 Joint Automatic Control Conference (Ann Harbor, l'lichigan, June 1968),
pp. rOaO-iOSS.

2r.r. Pontryagin et al . fh" ìIa-thernatical Theory of Optim-al Processes,
(l'Ierv York: Interscience Putrl ish-ers:-Ir6Ù .

3¿..f . Fu1ler, "Optima]- Nonl inear Control of Systems rvith Pure Delay",
Internatíonal Journal _of Control, \/o-1 . B, No. 2, 1968, pp. 145-168.

T.



II. THE SYSTE}I

In this thesis systems are considered that are characterized by

Ëhe linear time-invariant dífferential-difference systen

k
*(t) = ) a, x(r-'r=) + B u(r)

I- l- -a=U

0 = a0 . -1 . ' .. at = a

A- = nxn constant matrix, i = 0, ..., k
1

B = nxr constant matrix

x(t) = n-dím.ensional vector.

u(t) = r-dimensional control vector

--- r-1

where

and a1l the r . are cons tant .
1

The sËate space is the Banach space of continuous functions over

a time interval of length T. From Lee and l4ark-u"4, R.pí.r5, rrrd R."rr.6

Ëhe state of the system at any time t is denoted by the function

--- r-2

If the state, as defined above, of the system in I-1, is given at

time t0, the output of the system at tíme t is uniquel.y deÈermíned by

the state at time a0 ancl the input u(t) of the system in (t0, t).

40.U. Lee and L" Markus, Founclations of Cptimal Control Theory,
(Nerv Ycrk: John hril.ey and Sons, Itr". J9671, pp. SZi-S2L

5rrr.tr. Repin, "Or the .A-pproxinate Replacernent of Systems with
Lag by OrCinary Dynamical Systems", Journa.l of Applied Ì'fathematics and
Mechanics, \'ol . 29, No. 2, L966 (Fussian 1965), pp. 254-2.64.

6p..1 . Reeve, "A IÍethocl of Apnroxí-natíng to Pure Tirne l)elay",
Internation-a_1_ JglInq! cf Control , \IoJ. . 8, ì\lo. 1, 1968, pp. 53-63.



The initial state is

x- (o) = ô(o) ,
-Lo

where 9(o) is the specified

Ëion of state is in agreemént

misuse of the term rstater.

-T<õ<O.\"\'

continuous inítia1

rvith the discussion

- r-3

f uncti-on. This def ini-
7by Johnson' about the

TII. A BRIEF SMOÍARY A}]D

PREV]OUS RELATED I.IORI(

The first part of Èhis paper is concerned v¡i.th Controll.ability,

Stability, and Nu11 Controllability of the system. Some previous results

on these topics are not always easy to apply. In an article by hreíss8

for example ít is necessary to solve a dífferential difference equation

to determine controllability. Some results that are easier to app1y, but

less complete, are given in Chapter II.

The second part of this paper investigates the time optimal regu-

lator problem. That is the problern of determining which control,out of

a set of admissible controls, v¡í11 reduce the error of the system given

by I-1 to zero ín minimum time and maintain ít at zero.
o

The system given by T-1 has been investigated before. Kharatíshvili',

7*.a. Johnsonr "state Space and Systems
Electronícs Letters, Vo1 . 2, llo. 7, L966, pp.

Bl"on"td üleiss, "Or the Controllability
SysËems", SIAI'{ Journal on Control, Vo1 . 5, No.

Incorporating Delay",
277-278

of Delay-Differential
4, 1967 , pp. 575-587 .

9ror,atyrgin, op. cit. , pp. 213-226.
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8".rk"10, and oguztorelill, to name a few, have also considered the iime

optirnal regulator problem. Horvever, they only consicle::ed the problem of

reducing the error to zero in minimum time, but not the problern of keeping

it there af terwards. chyung rrrd L..12, seierstundl3, and Halurl"yl4 ,r..

quite a general cost inclex but they specify the final time.
15Fu1ler-- considers the time optimal problem of reducing the error

to zero and maintainíng it at zero in minimum tirne. For certain examples,

he is able to rePïesent the optimal control as a function of the state

varíables, horvever, he only considers a 1ag in the control. For a very

large reference list of articles on delay systenrs, see M.N. Oguztor"1i16.

AÈ the end of this thesis, two exa-mples are given. They rvere chosen

because they had been used before in a thesis by J.D. stebbinglT on the

time optimal regulator problem where he considered reducing the error to

zero ín minimum time but not the problem of heeping it at zero. A com-

parison is given betr,¡een Stebbíngts results and the results of this thesis.

10".r. Banks, "Necessary Conclitions for Control problems with
Variable Time Lags", SIAlul Journal _on Control, Vol . 6, No. 1, 196g, pp. 9-47

11lr.U. Oguztoreli, Time-Lag Control Systems. (Nerv york-: Academic
Press Inc. , L966)

12O.". Chyung and E.B. Lee, "Linear Optínial Systems with Tíme Delays,,,
STAM J_ournal on Control, Vo1 , 4, L966r pp. 548-575.

1a
"Atle Seierstand, "A Pontryagin Maximum Principle ín

Transactions on AutoniatÍc Control, Vo1. 13, No. 3, 1968

1L-'4. Halanay, "Cptimal Control for SysËems rvith Time
Journal on Control, Vol. 6, No. 2, 1968, pp. 275-234.

15rrr11.r, roc. cit.
l6oguztorelí, loc. cit.
17Jur"" D. Stebbing, "An Investígation into the Time

of Linear Sys terns r.iith Delal"' (unpubi ished lfas ter t s thesis ,of Manitoba, 1967).

IEEE
Banach Spacet',

, P. 299.

Lag", sIAlvl

0ptimal Control
The Uníversity



C}IAPTER I1

CONTROLLABTL]TY

I. . CONTROLL¿\BILITY

Consíder the systen characterized by

k
\-*(t) = ) A* x(r-t-) -F B u(r)

]- l_ -1=o

where

0 = a0 . ai. ". tk = a

A.- = nxn constant matrix, í = 0, ..., ka-
B = nxr constant matírx

x = n-dimensional. vecLor

u = r-dimensíonal control vector

x*(o)=ö(o) -r(o(0
-10

r.vhe-re Þ(o) is the continuous initial function.

The state space is the Banach space of continuous functions over

a time interval of length T. Comirlete control.lability to Èhe origin of

the state space (function space) on [aU, tr+tJ means that for all given

contínuous ínitial functions on ItO-a, a0] there exists a piecervise

continuous control l¿(t) on [t.,, t.+'r] such that x(t) = 0 for

t eIrr, tr+'r].

Theorem I

The system II-1 ís conpl etely conlrollable to the origin of the

state space only if

--- rr-1

--- rr-2



Proof. The system ll-1 can be approximatecl

accuracy by a linear ordinary cliffere-ntial- system.

good discussion of tliis approximation method.

Let

has

such that

Then II-1

índepenCent ro\^7s

to any degree of

.1See Kepln tor a

--- rr-3

--- rr-4

II-5

TI_6

--- rr-7

X^

x
-m

T,
1

Cl

1

a,-k

can

(t) =
i

0r
,l_x(t- --)

m

(t) = x(t-t)

9" .'r
_1

m
i = 1, 1-

tN

L^
UC

lnteger ( m

m

replacecl by

k
=I A.xô (t)+Bu(r)

! ñ-l-=u :1.

*(t)

!r (t) = 3(*(.) - x" (r) )t- -t_

*. (t)
-z

:

i (r)

= tr(x. (r) - "^(t))T --L -t

1-''Iu.ì'. iìeoìi'r, "Ol-r

ìr1,' 0r.ii.n¿ii'.' Ì)'.'r'raui.caJ. S¡'s
ì,ie.clr¿rnics, \-crJ-.29, |lo. 2

- " 
(t))

-m

tl-re Aporo:<i.rnate F.ep1-acement of Svs tems
teflts", ¿g"."ÈL of ¡\pp1Íecl llathematics
, I96(- (Russian 1965) , pp. 254-264 .

rvith Lag
ancl
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for n 1arge. Repin has shown that the accuracy of the approximation

given by II-7 increases as m increases, and in the limit as m * æ,

II-7 becomes equal to II-1.

Let

x(r) =

x (r)

x, (r)
-l

:

å(r)

, a (m+l)n vector, --- rr-8

a (m+l)nxrmatrix, --- rr-9Ç=

A=

B

o

o

"̂0
m__I
TN

0

o

m_ m_
-r --lTNTN,

0

^ m m_'.u -r --ITNTN

--- rr-10

a (m*l)n x (m+l)n matrix, where to i.s the nxn identity matrix. There-

fore, from II-7 --- II-10 rve have

ict)=AX(r)+cu(t)

the (r*f )n order approximation to the svstein II-1 .

--- rr-11



the system II-T1 be

B

completely con-A necessary condition that

trollab-'1-e is that
'_'t

(sI - A) 'C

have (n+f)n independent

i

"r (*rt)r,- A

By repeated rorv

I
n

0

the (m+1)n identity

-1A) -, ancl

_'r
F (s)

--- rr-r2

--- Tr-13

and the right

-t

II-1lr

--- rr-15

given in II-14

at most the first n

correct by multiply-

-1 as given by II-14

operatio\üs .

0

I

In

9

o

to

T

I

I
I

I

I

I

I

i

i

I

L

the left half

half becomes

where

can be reduced

the matrix (sI

t-

_1
(sI-A)'= -1¡'(" 

) 
-l

Ç> c"* ft

:

¿lrm¿^- fl\-flrr^t-1
\ ,, \ù ¡ _J ¡ \Þ,,rT-L

k - e. - -ç.F(s) = sr - i (+)'"' (s+ ï) '"a 
A,n .u^ 'T' T- 1

t=U

Only the first n columns of (sr-A)-l are

because the ínterest ís in (sl-A)-lc, and C has

ïorüs non zçTo. It is easily verified that II-14 is

ing (sI-A) times the first n columns of (sI-A)

From II-9 and II-14



-1 ì

F(s) - 
I

(sr ¡,) -lc = Çl t'* i, 
-tr (") -1

Therefore, fron II-15 and II-19
k

lim- F(s) = sr - t .-"ti A. --- IT-20
m-+æ n ilO l-

_1
ancl F(s) 'B must l-lave n indepenclent ro\ùs ín the límit as m * *, i.e.

if system II-1 is controllable

lim ( *, )*' = e-sr-sT-l-m'
ITPco

k1
(sr - I ¡,. u-" ti)-'B!l

i 
-^

must hatte n-inclecerLc';eni r:ci.ts,

--- rr-16

--- rr-19

Ç)*{'n il-*r(")-1 r

If the system II-1 is controllable to tiie origin of the state space,

then the approximating system II-11 is controllablerto the orígin ð = 0

ín the linit m -> æ. If the approximating system II-11 is controllable

then from II-I2 and IT-16, f(s)-le must have n indepen<lent rows. From

II-4
T.

9". =* t -rr-17l_T

and therefore 
Tí

- A. - -¿-. A "5-(i)-r (s+ f,) 
'-i - (;fu1'-i = (fi;) --- rr-ra

From the binomial expansion it is easily verified that

Q .E.D.

--- rr-zL



Consider the special case r.rhere
.'o

--- Tr-22A. v = Bu
l_-

yielcls a solutíon for u for any v and all í = I, 2, ..., k In

this case a u can be found that exactly cancels out the delay terms.

Theorem 2

If a r-vector u can be founcl to satisfy the eqrration

--- rr-23

for arbitrary v and for all i = I, 2, .. ., k where the A- and B

are given by the system equation II-1
k

¿,., =rlo A. x(t-t.) + B u(t)

then the system is completely controllable to the origin of the state space

íf ancl only if the matrix

A.v=Bua-

lB AoB oot-tul --- rr-24

--- rr-26

has rank n.

Let

u(t)=t¡(t)+z(t)

The system iI-1 then becomes

Proof. From II-23 rve can pick a vector o(t) such that
k
I a. x(t-t.) = - s t¡(t) --- rr-25a- r -t=I

--- Tr-27

It is r,'e'l 1 ltnorvn that the system given in IT-27 is completely controllab].e
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to the origin if and only if the matrix2

-_1tB AoR oo" -ul

has rank n. If there exists a z(t) that brings x(t) to the origin

ín T1-27 rhen rhe ,r(r) given by II.-26 will bring the system in II-1 to

the origin. On the other hand, if there exists a g(t) that brings x(t)

in II-1 Ëo the origin, then the z(t) given by TT-26 will bring x(t)

ín TI-27 to the origin. Hence the system given by II-1 is completely

controllable to the origin if ancl only if the matrix given by II-28 has

rank n.

0.E.D.

complicated proof where the

Eime is given by Bucka1o3.

-r(o<0

is

-T.S -]e a)-x^
-1J

Ai (i = 0, 1,

II. STABILITY

II-1 uzith the control u(t) = 6

--- rr-28

., k) are

--- rr-29

--- rr-30

--- rr-31

--- rr-32

Controllability of
Automatic Control,

A more

functions of

Consider the sysËem

*(t) . x (t-'r. )1-- l_

For

Q(o) = 0

0(o) = x^
-1J

Ëhe Laplace Transform of II-29
k

x(s)=(sI-f a.
a=U

k=I A

i--0

2ot. Aah"ns and P.L. Falb, Optimal
Boolc Company, 1966), p. 205.

3Arr,1r.ro F. Buck-alo, "Explicit

Control, (Ner"' York: McGrarv-llil1

Conditions for
Transactions onLinear Systerns r,¡ith Time Lug", IEEE

Vo1. 13, No. 2, 1968, pp. 193-195.



I2
The l{yquist criterion is easily applied to rT-32 to determine if the

roots of 
k -T ão(s)=l"r-l Ar"'iol=o ---rr-33

i=0

1,
all lie Ín the left hand complex plane-'. The system is stable if and

i(

only if the plot of l"r -.1"^ or.-tt"l , as s encirè1es rhe ríght half
i=0

complex plane, makes no net encirclements of the orígin of the complex

plane.

The values of Ëhe roots of the system rr-29 can be determined

graphically, to get a better idea of stability using the method by Huang

and 1,i5. The method consists of letting

s=pO*jto

I-
K 

-T-ol"r-i a_.e-a"l =otul

i=0

then

--- rr-34

--- rr-35

becomes

Re I {noo¡r¡, -rjo a. .-pOrtcosrrrrr - j sin¡ro) | = o --- ïr-36

k
rm I (to+jr)r -.i^ a. 

"-p0Ï(cosrrtrr - j sin¡10) | = o --- rr-37
a=u

Equati.ons rr-36 and rr-37 each can be used to give a plot of Lù versus p0.

The intersectíon ooints are the characterístic roots of Ëhe system.

L'N.tl . Choksy, "Tíme Lag Systems", Progress in Con-trol Engineering, - 1,
Clonclon: Heyroood and Co. Ltd., L962), pp. 17-38

5-I. Huang and L.L. Li, t'P.oot Locus Deterinination of Linear Systens
çvith Transport Lug", IEEE Transactions on Automatic Control, t/o1. 12, ITo. 5,
Oct. 1967, pp. 632-634.
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III. DO}{AI}J OF NULL CONTROLLÄB]LITY

For the control process II-1
k

*(t) = I A_ x(t-r-) + B u(r)
r=u

the donaín of nul1 controllability consísts of all these continuous

functions x. (o) = 0(o) on [-'r, 0] that can be steered to the origin
-10

of the state space by the r-clímensional control vector u(t) on some

finite tíme interval t e[t', tf*a], rvhere each component u. (t) ,

i = 1, ..., r, of !(t) must satisf¡r the constraint l"r(t) I ( r for

a fj-xed constant€>a,This definition is analogous to tl.:e one for systems

wittrout t:i-r're de1ay. See, for exampIe, the definition by Lee and

â
ì,farkus-.

Theoren 3

Consider the system II-1
k

*(t) = I o., x(t-r-) + B u(r)
a=u

v¡Íth control cÞ;istraínt

|".(t)lçe i=l,...,r ---rr-38

If the systen is

a) Cornpletel-y Controllable, and

b) Asymptotícally Stable, i.e. every eigenvalue À has

Re À < 0,

"̂E.B. Lee and L. I'laricus, Foundations of Optimal Control- Theor¡¡
(ì.cr'' Yorh : .: rrhn i' j I .r.,. aLlcì Sons ,l"c, ,-l¡7t ) ; ;. 32 ,



then

xis

l_sthe

an

x.(o) e co[-r, o]*clomain of null controllability

n-vector.

x(t) =

in the lirni.t- as

I4

where

--- rr-40

m-+co

qis

control

origin

is

Proof The system II-1 can

linear autonomousaccuracy by the

xlt¡=¿X(t)+Cu(t) --- Ir-39

which is defined by equations II-3 to II-11. Controllabílity of sysrem

rr-1 implies controllability of system rr-39 as m -> co stability of

system rr-1 implies stabílity of system rr-39 for m large enou¡¡h.

Therefore' system II-39 satisfies conditions a) and b) of the theorem,

and system rr-39 has domaj.n of null controllabilityT , (m+l)n . sínce

be approximated to any degree of

sysÈem without tirne delays

x(Ë)

*(t- I)
m
9rx(t-ff), i a (nr+l)n vector)

defines x. (o) = x(t+o) , o e[-.r, 0] , ir is clear rhar X(t) =-t' -\- -/ ,

the sarne as x* (o) = O . Because the controls are bouncled, the_L

that takes X(t) to rhe origin ruiI1 take x(r) in II-1 to rhe

of state space. Therefore, the domaín of nul1 controllability

xa (o) e Co [-'r, O ] , rvhere x is an n-vector .

I

i
I

I

I

oco[-.,
o e [-'r, 0].

trÞau. 
,

0] denotes the

p. 85.

set of real functÍons continuous for
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C}IAPTER I I I

CONDITIOiIS FOR 0PTIII-¿\LITY

r. T}iE ADJ O]NT

A probl.ep. Given the system

k
*(t) =rlo o, x(t-t.) + B u(t) --- III-1

I

with continuous initial function

x(rr.,+o) = x* (o) = ó(o)uLo- - T -( O r< 0 --- III-2

where

0=t0at1 (Tk=T

A- = nxn constant matríx, í = 0, ..., k
l_

B = nxr constant matrix

xr,r = n-vector
-\ L./

u(t) = r d,imensional control vector

lu.,(t)l 1r i=L,2, r ---rrr-3
J

r'rhere the u. are the cornponents of u. Find the control u (t) that
J

transfers the state from the initial stater x- (o) = ô(o), to the zero
-10

state, X* ,-(o) = 0 , o e[-t, 0] , in minimum time. Such a u(t) r¿ill_L-TL
t

be called a time optimal control.

Theorern 4

Let u(t) be a solution to the above problem. Let "a(o) be the

state of s1'stem TIT-1 corresponC,íng to u(t) anci. the gíven initial state

x, (o). Let t. clenote the rninirnunr time such that
-Lo r



L6

x.,-(o) =x(t+r+o) =0' -rr(o.(0 ---III-4
-t+-L

The-n there exis ts a corresponding acl j oint vector p (t) such that

k
a) p(t) = -.1^ oi p(t+t.) , t c[Ë0, .¡] rrr-s

r=u

and

--- Trr-6

Proof. The system III-1
k

i(t) = I A., x(t-r-) + B u(t)
i=0

can be approximated to any degree of accuracy by the linear tíme-invariant

system rvithout time delays

x(t)=ax(t)+cu(r) --- rrr-7

v¡hich Ís defined by equations II-3 to II-11. The accuracy improves as the

dimension of the system Ti-J-Z is increased. Equati.on TI-3 shorvs that the

initial state x* (o) = 0(o) irnplies an initial conCition X(tO) = $'o
for system. II:_-7, ancl the ta.rget x* --(O) = 0 implies the target set

tf ''
x(r.+t) = or-

Let v(t) be the time optimal control for system IIT-7, steering

X(t) from X^ to 0 From Pontryagin's Maximurn Pri.nciplel v(t) must
_lJ

satisfy

--- III-B

1'8.8. Lee anrt L. llarkus, Founclations of Optimal Control Theory
(lìer,' York : John i'lile1' anC- Sons , Inc; , 7967), PP . I2-9-I35 .

trl

u. is not defined.
J

b) u(t) = - ssn{ut nC.ù, t e[to,

In this thesís rj = - "g"{O] irnplies that

v(r) = - ssn{cr gt.l] , t e [to, tr+tl
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non-trivial solution of the adjoint equation

- aT p(t) , r e[ro, tr+t] ]rt-9

--- rrr-10

, i = 1, ..., m i are n-vectors. Equations

-r
In'
ï..

n

U- -0

--- ïII-11

where t (t) is a

¿(t) =

Let

P (Ë)

where the

II-10 and

Réversing time and letting

t-- -ì
I p(t) 

|t-l
lp.(t)l
I_-L ì=i.l
t.t-ltit
I o (t)i
I -:-{n IL_r

ancl p. (tj-a

íve

1'F
l- ,\tI"o
j

i0

io
i

;:
t.
;-

.J_
-4.

l_

:

::
0

T
- ^*K

¡.-

oö

I

I

i

I

I

I

I

I

I

ì

j

I

p (t)

III-9

t.lpt-
I

I

l9r
i

i Pt
t-
I

I

l
¡

Pn
__-,\r .

'.t

"i

I

%
L

P

Pr_I

Pc

prn

0

I

I

I

,I

I

m_
--l'.T *n

m_
-tTn

\\
\
\

_m
T
m

T

m_--rTN
m__I
TN
0
t\

t\
¡

,r

-
)ì
),

(t
Ct

i

| ---V
liz,
-1.=

l

; -fn
(r) 

,

-.i

--- rrr-12
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III-9 becones

dP (r.+r-r)
T

dP cr -+r- r)r
drd (rf+r-r)

oï

LG) = ¡.r z(t)

Since the systern is tÍme-invaria.nt 1et

z(0) = P (t.+t)

The Laplace Transform of III-14 yíe1C.s

rr 
-'lA') '2,(o)

The inverse of (slnlm+t¡ - ¿T) can be

formations. By repeated rorv operations

I

_ .T
, Ãl 

- ^"n (m+1) d

found by the- methocl

on

I0:

Tl-ni

--- rrr-13

--- rrr-14

--- rrr-15

--- rrr-16

of rorv trans-

--- rrr-17

aT p (t -+r-t)r

the left side can

T
n

io:.
I

^v

!r oln
I

r0 I
'n
I

t.
t'
t.
I:
I

t,̂U
I

I0:
I

.l

.t
'r.¡
.i

'0 
i

I

I

0tl
n

0

T

be reduced to the- iclentity matrj-x and, III-1 7 becomes



I9

k(l
Í=h

.T _A-t
k

-1

LI -1
tF -
I

t:

I c"* fr
I

¡.
I

i r"* *l
l'

-l

v¡here

F=sI

and therefore

m,
tl C_*_li(r. -rh) F-lI -m+sT'

-1

a_r-'r#rrl o-t c#"rl*

--- rrI-t-9

u-tc#"rl p-l¡-r-)m'm*sr' ì(srn(m+t)- ot)-t

Fron III-72 and III-i6

--- rrr-20

--- ïrr-21

--= IfI-23

-tEz^(s)=F')" 9.=o
ft;l u 

un,o,

Let

then

--- rlr-22

_'1
zo(s) = F 'fu(ol

T.
l-, m .m 

-111¡ ç+sr) T =
rn-\-o

--- rrr-18

, T.
K-rtI ^T, m ."'T

n -. ¿^ Ai (,n*".)
a=u

But

-sTi
--- rrr-24
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1.

límF=sT -i ¡T"-"inar¡-+æ 1 = 1..,

an<1 therefore
k

z^(s) = (rir, - i ^i "-"tt)-l zo(0) --- rrr-26--u' -' i=o

rshích is the Lap1áce transform of the equaliol

and from III-1,9

Let

--- rrr-25

--- rrr-27

--- rrT.-28

¿¡(0) = C z lt) = 0J.J' r<0

z,(0) = 0

z(0)=C
-r -ï

then using the same method, III-21 is the Laplace transforr¡, of

ET
L,k) =) tiz^(t-r..)--1r ilo I ---u I

TII._29

z^(r r' - ^
-u.;i -:r :O(t)=0 tttI

Since equa-tions III-27 and III-29 are 1r'-near their con.bined solutions

must also satísfy
k

¿"(t)=l tlZ^(t-'r-.) on t>r ---rrr-30---U t -\., I
1=u

ruith Èhe initial functíon on [0, r] eclu¿ll- to the sr,.m of the sol.utions

of. ITT-27 and LII-29 on IC, t] . Thereíore- z^ (t) mr.rst sa.lisf.rr

lc

2^G) =I Ai'z^(t-t.) on r>r ---rrr-31



2I

dZ^ (t -+r- t ) ì.---.u r dp (r) iì . r-ãAþ:O =rlo oi P(t'.'r.) --- rrr.-32

1.

p(t) = --i^ al r(t+rr) on [t0, .r] -- rrr-33
. '--u

From II-9 and III-B

cr p(t) = Br p(t)

From III-l-2 and III-15

II. TP.ANSVERSALITY

Consi<1er the systern described by

v(t) = - ssn{ut¿Cr¡l

,r(t) = - sgn nT l(t) on [r0, .r]

k
p(t) = -.1^ aT p(t+r.) on [to, tr]

í=0 r

--- rrr-35

If u(t) is the time opti-mal control for system TII-1, then in the

limit as m -) co it is also th.e time optimal- control for system rrr-7.

Therefore, from III-35 and III-33, u(t) must satisfy

ancl

where

Q .E.D.

--- ItI-34

--- rrr-36

--- rrr-37

i.¡here-

--- Irr-33



2.2

xCt) is an n-vector

g(t) is the r-dinensional control

Ä 4., and B are constant rnatrices..0, --1

T>0ísaconstant

Suppose B is of rank q < r ; then there are r-q dependent columns Ín

B. í. e.

ff, = (Þr, ..., br, ..., Þr)

r,,¡íth b, a clependent colurnn at i = dl. , dr_q and then

--- rrr-39

--- TTr-40

Bg = Q', .. ., Þi, .. ., Þr)

= b-u- * .... +b.u. * .... *b u
-1 I ' -r-1 ' -rr

= Þ1.1 * ..., +(oriÞr * ...,+o:r\ * ..., sriÞr)ri + ..., * Þ¡rr

=Þ1(.,r* I orr"r) + . .. *b.(r, I orr"r)
l-I

tl

u.
l_

u
T

-1

u.
J

u
T

+

1

u.
].

u.
1

l-

I

I

I

j0.
J

0
T

a

I
i

I
i

=B uq --q

+

--- rrr*41



f.or

I is thet

The target

dl' d

dl, ...r d

A, x(t)
I-

u (t+t)

t e[t. tr+t]

t eItr-t, .r]

q < r, Ëhen the

form B uq-q

of rank gr

--- rrl-42

--- rrr-43

--- rrr-44

--- rrr-45

--- rrr-46

l-

JT
r-q

r-q
Hence

Theorem 5

If B, the nxr matrix given in III-38, has rank

forcing term Bg may be replaced by a forcing term of the

without any loss of control; where UO is a nxq matrix

and gq is a q vector.

It will be assumed, without loss of generality, for the rest of this

section Ëhat the nxr matrix in III-38 is of rank r, with the control g(t)

an r-vector. Since B is of rank r iË can be reduced to its normal form

by elementary ïor,/ Ëransformations2. Therefore, there exists a nonsingular

nxn matrix such that

Hs =[I
L.

I "tt nxï matrixrl
j

where rxr identíty matrix.

for our problem is the zero state

x,,-(o) =x(t.+'r+o) =0, Oe[''r,0]
-L.TT I -ï

x(t) = 0 for t e[tf , tr+'r1

This implies by substitution ín III-38 that

=0

=g+B

2Frrrrk Ayres,
Publishing Co. , 7962)

Theory and Problems
r pp. 4I-42.

of l.{atrices (Nerv York: Schaum
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--- rrr-47

--- rrr-52

HÀ,x(t) + [r---ì u(t+t) - 0, t eIt.-'r, r.]l- I rl - r r
l_o J

The last n-r equatíons of III-1I8 define the conditio

satisfy on Itf-t, af], and with the condíÈion *(tr)

ne\.ú target.

If u(t) is bounded by

lrr.(t)l < r , i = 1, ..., r

then there ís the adclitional restriction

Multiplying III-1r6 by H, trom TII-42

-__ III_48

ns that x(t) must

= 0 these define a

--- rrr-49

- 1 < lst row of HArx(t) < 1

i t e[rf-r, rf] .--- III-50
- 1 S rth row of }lA,x(t) < 1t-

Tf III-38 ís approximated by the n(m+l) dimensional eguation gíven in

rr-11

X(t)=AX(t)+Cu(t) --- Irr-51

Ehen

x (r) x (r)

x(t-) = 0
-' t'

approximates the state of III-38 for m large. Ftrom lIT-47 to III-50,

the target set for X(t) is define,l by

x(t-) = 0
-r --- rrr-53

rvíth the lasÈ n-r rotus of Mfli(tr) = 0 for i = l: ...: rn. If the



components of u are bouncied. as in III-49 then

I < lsr rorv of HAr-"r(tr) < 1 Ift
I- 1 < rth rort' of llArx. Ctr) .. 1 

J

Let the. last n-r ror,'s of llArI, = 0 be denot

fr(5r) = 0 , j = J., ..., n-r

there is
25

the restriction

_1 rt m --- III-54

ed by

Let S-. (f, , f- _) denote the set of points x. in Rl_ l.- - n-r- _i n

the f-(ë*) = 0, j = 1, ..., n-r. Since the f .(*.) = O areJ -1 -j'-i', "

define hyper planes in Rr, , and since 0 is a sol_ution

Si is not empty. Therefore, t.(ff, ..., fr,_r) is a smooth

and a vector p* is transversal to S. at some x.^e S. if-r i -- ---'-- :í0" 'i
p. is a linear combj-nation of the n-r vectorsgl

afn-r:--dx.
-l_

--- IIr-56

:-- III-55

at rvhich all

linear, they

to l-II-55

r-fold in R
n

and only if

âfr àfz
a*.'äîl' ' 't
-l_ -1

3at x.^-. rf s- ís a smooth r-fold in R then the target set ís a-].U i -- n

smooth mr-fo1d Ín Rn(in-r-t) with boundaries defined by the equality signs

of III-54. Therefore, a vector P is transversal to the target if and only

if 3 Ís a linear cornbination of the n(rn+l)-mr vectors

ãr

o

¡;
-l-

f .(x.) =J -r_
for i = 1,

j = 1,

..., ft j

n-r t

d

and

ã"
-1n

for .Q, = 1r ...: fl
--- Irr-57unL

rî.;
d^

3of. Arh.rls and p.L. Fa1b,
Book Company, 1966): pp. 9L-95.

ôx.
-1

:

0

Optim4 Control (Neru york: McGrarv Hill
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where *.0 ís a member of

"]

P(t) =

i:l
lo (t),
L"rn -J

then from ITI-55, III-56, and III-57 ,

of

*1

x
.l

i

I

I

If P(t) Ís the non-trivial solution to the adjoint equation of

PonËryagínrs }laximum Principle as given by III-9, then it must be Ërans-

versal to the target set at t = tÍ4. i.e. If

1 s Ct)-l

lr (t)]
, p(t) = n-vector, pi(t) = n-vector!

i = 1, ..., m

the p. (t-)

--- TIT-58

are linear combinatí.ons

..r D-r ; --- rrr-59

and since there is no tangent at x(tr) - 0 , p(tr) is arbitrary.

Tn the case where r = n, i.e. B is of rank n, then pr(tr) = 0,

i = 1, ..., m. In the case where the last n-r rorvs of tlA-,x are
- Af.(*.) '

ídentically zeror, the ã** = 0 for all j = 1, ..., o-ï, and g., (tr) = 0,
-r-rri = 1: ..., *: In reverse tíme this corresponds Ëo equations III-22 to

III-27, which in forrvard time corresponds to Ëhe condítion

P(Ëf) I o ,P(t)=0 t > t_t --- rrr-60

âf.(x.)J -r-
4".
-l-

ororu.-, p. 2Bo.

5rhi" corresponds

j = 1,

to the condition given in II- 23
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in the lÍm + æ.

equation

This acts as the fÍna1 function for the adjoÍnt

[(t) = - a[ e{t) - a] e(t+t)

Thís is equivalent to tlre conditj,on that p(t) nust satisfy

È(t) ='- AI p(t) , t elt"-r, t,l -- rrr-62
U- I I

wíth p(t.) unspecified. Tf the optimal. trajectory hits the target at
I

some point x.(t-) on the boundary defined by the equalitíes of III-54,^-Dr

the transversal may not þs i.sf ined, i.e. there rnav be a p'(tr) + 0. From

III-28 to III-30 \\re see that we m.ust add to the final function defined by

III-62, the function that satisfies

--- rrr-61

--- rrr-63

That ís if x(t) satisfies

the final function is the

of III-63.

T
s(t) = - ei p(t)

. b.rvith p(t.-r :-) + 0, p(t) = 0, t )
lm

the equalities of III-50 at t = tf-r

sum of the solution of III-62 and the

- _bL_-t - .tm
b then
m

solution



CHAPTER TV

EXA}IPLES

FIRST ORDER SYSTEI,I

The control s;vstem considered in this example is shorvn in Fig. 1.

The difference between the desired mixture and the actual mixture

at the purnp outS.et will be denoted by x. I^,{ren the motor is turning at

constant speed, the mixture v¡i11 be conslant. The motor has a constant

field current and its speecl Ís control.led by the armature voltage. The

motorls transfer functíon contains only one time constant, due to the

moment of inertia of the pump and the motor and the constant of propor-

tionality relating the motor speed to its back emf. The gains of the

motor and amplífier are assumed to be linear and are lumped together.

The resultíng block diagram of the system error is shown in Fig. 2.

The delay tíme r Ís given by the q.uotient, D/v, where v is

the velocity of the fluid ín the pipe and D is the distance from the

additive ínput port Ëo the point r"here the concentraËion of the mixture

is measured. The concentration cannot be measured at the input porÈ as

time rnust be allorved for the additive to mix with the fluid. It is

assumed that there is no change ín velocíty so that the tirne delay is

cons tant .

The problem to be solved is to determine the control signal r u(t),

so that the error,x(t), is reduced to zerorin minimum timeranci stays there.

There is a constraint on the magnitude of the control signal. That is

Èhe inequalitl

I.

f

,::

,,

:

:
:,)

a

1

,:i

l"(t) I f 1 ___ r\7_1
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F_D
Fluid -

u

D. C. I'fotor
I- = const.t

Fig. 1

Mixture Control System

Fig. 2

Plixture Control System

3

Amplifier

Control
u (r)

Desired
Ifíxture

Sensor

Bl.ock Diagram
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must be satisfiecl at all times.

This system, then, is described by the differentíal-difference

equatÍon

*(t) =-a x(r) - r x(t-t) + K u(t)

For a uníque solution, an initial function,

x* (o) = 0(o) on [-'r, 0] --- rv-3-0

must be specified-, r,'here t0 is the initial time and 0(o) ís a given

func tion

For thís problem the gain K rvas chosen equal to 2.0, the time

deJay T = 1.0, a = 1.0. Then IV-.2 becomes

*(t) = - x(t) - 2x(r-1.) + 2u(t) --- rv-4

B = K= 2.0, k= 1, aO = 0 r't, = 1.0

AO = - a = - 1.0, AI = - K= - 2.0

and equations IV-5 and IV-6 become

--- rv-2

--- IV-7

___ IV-B

r e[to, .f] --- rv-g

The optimal control for this problem may be found by usíng Theorem

4 and the transversality condition given in Chapter III. From Theorem 4,

Ëhe optimal control must satisfy

u(r) = - ssn {ut oC.} t elto, .rl --- rv-5

where the adjoint p(t) must satisfy
k

p(r) = -_i^ oi e(t+t.; r e[È0, ,r] --- rv-6
i=0

In our problem

u(t) = "e" {zp(t)}

p(t) = p(t) + 2i:(t+1) t e [tO, .f] --- IV-10
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From Theorer,r 2 the system IV-4 is completely controllable to the

origin of the state space since

a) u = -v satisfies A.v = Bu and

b) the matríx tgl = l2l has rank n = 1

The roots of the systen IV-4 can be determíned using tI-re method

of Section II, Chapter II. Since in this example, Ëhe solution of the

adjoint equation IV-10 is just the reverse time solution of the system

equatíon IV-4 with u = 0, the roots ivi1l be fhe same but of opposite

sign for IV-10 and IV-4. The Laplace transform of IV-4 r+ith u = 0 is

x(o) - ,f-l -*, "-s 
(t+1)u.

x(s) =

The characteristic

S+

Let s=

I

po

--- ïv-11
s*1+2e-s

roots of equation IV-4 are the solutions of

* 2e-s = 0 --- IV-L}

+ jül --- IV-13

and IV-12 becomes

Po+

oï

-P¡
jûJ + 1 + 2e "(cos ür - j sin o) = 6

These trvo equations are plotted in

the roots of the equation. Fig. 3

--- rv-14

IV_15

TV_16

Fig. 3, the intersectj-on points give

shows that the dominant root has

p0

ûJ-

+1+

2" 
Po

^ -po
¿e cos

sinûi=0

üJ=0

s=-0.09+j2.0

Therefore p(t) r¿ill have a frequency

-:- IV-17

-(¡+a-'*27
)
¿| 0.32

of

--- rv-18
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and the zero cr:ossings \,ril1 be approximately

1.6 seconds --- rv-19

apar t .

Therefore

p(t) i D cos(2t+0)

and frorn f\¡-9

--- rv-20

u(t) : - sgn {zn cosçzt+O)} --- rv-z]

for some

Fig. 3 shows that the roots of the system all have Res'< 0, and

Ëherefore the system is stable. The system has been shorun to be controll-

ab1e, ancl therefore by The-orem 3 the domaí.n of null controllability is

x-(o) e Co[-1, 0]; i.e. any contínuous initial function can be steerecl tot'
the origin by a u(t) v¡ith l"l ( 1.

In thís exampleras in all lst or<ler systems, the rank of B = K

in rv-2 is the same as the order of the è5'stem. Therefore from the

Ëransversality condition gíven by III-62, p (t) must satisfy

T1
22f

p(t-)=n ---TV-23't

Equations I\¡-4 and III-50 shoru that the boundary of the target set is

defined bv

p(t) = - oä o(t) = p(t) r eIrf-r, .f] --- rv-22

oï

lx(t) | = r

l"- (o)l = 1
L^t

x(t) híts this bounCary at

r eIt--1, t.]IT

o e[-1, 0]

--- rv-24

--- [r-25

b-T-
m

If L,-r then fron the Ciscr-rssion in
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Chapter III ancl III-63, the function that satisfys

p(t) = p(t) t e[tr-1, tf]

P(t--t Þ) = 1T. ''-tm'b'

must be adcled to the function

cligital computer ru'as usecl to

l"(tr-r) I

lx(t) I . r

p(t) = o

gr-ven

so-l-ve

rv-23 .

the case

--- rv-26

rv-27

The IBLI 360/65

rvhere

Þ
nì

and

in

by

for

t>T

TV-22

P (t)

fn this case p(t)

i(t) =

rvi Ëh

and r^¡ith

From IV-10

p (t.) = ri-r

p(Lf-l) = r r p(t) = o

p (t) is the solution to

p(t) = p(t) + 2p(t+1)

=l

t e(rr-r, rfl

the surn of solutions to

t eItr-t, tf]

t > t--1.t

ts

r eIto, Ëf-1]

--- rv-28

---- rv-29

--- rv-30

--- rv-31

--- rv-32

--- rv-33

p(r)

p(t) is shorvn in !'ig. 4 for various values of n and tr. If l"(t) I . f

for t e I tr-l, af] i. e. x(t) doesntt hit the boundary, then p (t)

corresponds to the solution given in Fig. 4 r,rith n1 = 0.

Fig. 4 shor,¡s that p(t) has zero crossings approximately 1.55

seconds apart rvhich agrees well rvith IV-19. The system equation IV-4 r.¡as

solved on the IBM 360/65 digital computer using the Continuous System

lfocleling Program. Since u(t) = - sgn {ZpCtl} , the switchings rvere made

1.55 seconds apart except for the last srvítching r,¡hich may vary slightl¡r

as seen ín Fig. 4. Dífferent u(t) rvere tried by varying the time of the

first sr"itchíng ancl the last sr'ritching, until the time optimal trajectorv
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lüas found. Fig. 5 shot.¡s the computer input statements for the initial

function x(t) = J on t e[-1, 0].

The time optimal trajectory, the trajectory for u = 0, and tÌre

time optimal control for the initial function x(t) = 5 on t e[-1,0]

are shor^¡n in Fig. 6. Time optimal controls r.¡ere also found, using the

above methocl for the initial states xo(o) = 1.1, 2.0, 3.0. The time

optimal trajectories and. controls are shorvn in Fig. 7.

The system equatÍon IV-4 has been usecl prevíous1y in an example

of time optimal controlsl. rn this example, horuever, the object \{as to

get the vecËor x(t) to zero in minímum time rqithout any consideration to

keepíng it at zero af.terwards. The optimum u(t) found for an initial

function x(t) = 5 on t e[-1, 0] brought x(t) ro zero ín 0.35 seconcls,

but x(t) could not be kept there after this tíme. Fig. 6 shov¡s that a

minimtrm time of 4.4 seconds is necessary to bring x(t) to zero and keep

it there after this time.

The system equatíon IV-4 l{as approxirnated by the method. given by

equations II-3 to II-11 in order to get a feel for the method. For m = 10

xr(t) = "Ct- lol
xr(t) = *(.- Íõ-)

.ro,.r= -fr-rl

lJ"rn." D. Stebbing, "At
of Linear Systems with Delay"
of lufanitoba, 1967) ,

Investigatíon into
(unpublished l{as ter I

--- rv-34

the Time 0ptimal Contrcl
s Thesis, The University
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Fig. 5

Computer Input Statements Example No. 1
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and for Ll =0

* (t)

*. (t)
.L

:

*10 (r)

= - x(t)

= 10(x(r) - xr(t))

i

I

t --- rv-35

10(xn(t) - xro(t))

with

= *10(o) = S.O --- rv-36

The solution to the approximating equations r\¡-34 and rV-35, and

the exact soluti'on are shown in Fig. B. rn this case although a fai-rly large
order approximat:Lon v¡as .usec1 , the accuracy \l,as poor. Caution shoulct be exer-
cisecl. ín use of such f inj-te approxírnations.

rn the'i*t,,..r1;".::?oT?"?:T:ttïi:jlj'"'io.," example, ir rrre noror

and pump are replaced by a value rvhose position is determined by a motor,

then the system will talce on the form of Figure 9.

----> xU

Figure 9

SYSTE}I BLOCK DIAGB.A}{
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It is assumecl thaL the rn.otorts f ield cLlrl:ent is constant so that

motor shaít position-arnatrrre voltage transfer function is the stancl-

form used above.

The problem ís to determí.ne the a11ov¡able control- signal u(t) such

that the error is reduced to zero in minimum time and stays at zero after

this time. .\s before, there is a constraint on the control signal. The

constraint is given by

l"1t) I S r

The error ivi11 be given by the differential difference equation

*(r) = - a *(t) - K x(t-r) + K u(t)

For a unique sohrtion to this equatíon, the injtía1 state

ó(o) , o e[-r, 0] , and u(t) must be specified, rvhere Þ(o) ís

functi.on. Let

IV-37

IV-38

x- (o) =to

a gíven

x(r)

then the syster¡

and for

From Theorem

e¡-í gin of t1-re state

= xr(r) ,

equatíon I\/

f*, rt>l=ll
[*, {t)j

1t_trI\ - J, l- -

il io ilt_ttt-tl)l l.' -?i

* (t)

¡=(

ix,(t
II
I

l"z('

r)=*(

to
-JO

ì0_ì-t
{o

may be replaced by

I [:;::] {. .l [:;::]ll . l;l

x, (t) --- rv-39

u (t)

- rv-40

"rct)i *i o 
1 i-"rcr-rri +

*, ctrl [-r ol 
{ ", rt-rl ] l:]u(,,

--- rv-4i

conuletely controllable to the2 the systenl

sDace since

I\¡-41 is



t=-tr

lniaosl

hasrank n=2.

The stability of the system is easily

criteríon given in Section II, Chapter II.
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--- rv-42

--- rv-43

determined using the Nyquist

Frorn II-33 and TV-41

rl'-1

"rl lo Il=l lutt-tuzl 
L'.1

and

[o sl=tl
Lr -2sl

oi

OI
I

a)io
Il=

with

b)

[" ol lott_t
Lo "l lo

)-c-+5s*5e"

o(s) =

i-ì
l=

-5 I

=0

0

-5

Oil-sle
o-l

S

_-s
5e

-1 I

"*, I

--- TV-44

This gives the Nyquist plot shovrn in Fig. 10.

S - plone

=s

Fígure

NYQUIST PLIIT 0F s

10

)-e +5s+5e

Im

- ße
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Sínce there is no encirclcneirt of the origin tlrere are no positive roots

and the system is stable. Thereíore, by Theorem 3 any continuous initial

functíon can be recluced to the zero state by the control u(t) rvith

l"(t) | < r

The optimal control for this probl.em may be found by using Theorem

4 and the transversality condition given in Cl-rapter III. From Theorem 4

an<l equation IV-41, the optimal control must satisfy

u(r) = - ssn{[]t n(.ù - - ssn {rrctt} , È slr., .rl --- rv-4s

r,¡here the adj oint g( t) mus t satis f y

1_
p(r) = - I^ oï p(r+t.) , r e[to, .r] --- rv-46

i=0 r

If the matríx

"=[o 
tl

L'd
is apolied as suggested by III-42, to A.1

'' [: i[; l i; :i --- IV-47

then the last rorv of HAIÄ is identícally zero, and from rrr-62 g(t)
must satisfy

P(t) = - aÏ P(t) '\J-

i.e. ¿(t) must satisfv

t eItr-t, .f] --- rv-48

--- T\r-,/, OLV +)t e(t' rf+l1p(t)=0 ,
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7,r(o) HZ+SZ

End Simulation
Start SÍmul-ation

x (r)

ETTD SI]'IULATION

I'IRITE xl, x2, TF, TEND,

SI{ITCHING TI}ÍES

z1 (t)
uÏr),

TF = TF + I/2 ERRTF

HZ
SZ

10
l0

PRINT x1(t),
PLOT x1 (t)
for t e[0,

TIZ = Zt(O)

CALL RERI]}iI

HZ+
SZ-

x2(t), t, u

+11

Fig.

Floru'Chart, x(t) =

>/

13

3.5

Xf0) = 3.5, TF = 3.3
HZ = 100, SZ = *100

Start Simulation
of zr(t), Z2(0) =

H7, - SZ:0.05ERRTF=TEND-1-TF

I nnnrr | :0.03
lxl:0.01

Z = Zt(O)

u(t) = -ssnIz23r-r)1

(t):o

TEND=t+1

u(t) = x(t-l)

nt. Simulation
of x(t)

: t e [-1, 0]
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and

[r,'i = [. 1 Pr,'l + I' 'i in'it+rl

Inrctll lt :; lrr(t;l lo 9i [r,r(t.tr)

,r,.ii .l' -ti l,i{t-t)tzr(r)-', i o o_i irz(t-r)j

p (t.-t) , then ,(t)
l-

fur,',; =i ' ol 
I

fzrant, [-t -t] t

If

¿(t) = --- rv-50

--- I\1- 51

--- rv-52ZG)=Q

is the solution of

, t a[0, tr-tol

t e[-f, 0]

zr(t) ís shorvn in Fíg. 11 for zr(0) = 5 ancl varj-oris values of zr(0).

The zero crossings of zr(t) are approximately 2.6 seconcls aoart, ancl

therefore from IV-45 the optimal control- will have srvitchings aÞproxirrrately

2.6 seconcls apart. The system equati.on II/-41 can be simulatecl tryíng

various inití.al sroítching times for .tr(t) untj-l the optimal control is

found.

The optimal solution \,ras founcl by using the IBl4 36A/65 ciígita1

computer ¡¡íth the Continuous System l{ocieling Program. The input state¡Ìents

are shown ín Fig. 72 anä the florv chart l'-n Fíg. 13 for a constant initia1

condition x(t) = 3.5 on t e[-1, 0]. A,n í.nitial guess of t, = 3.3 is

given. z.(t)[zT] Ís then simulated for 3.3 seconds i¡ith zr(0) = 5,

zr(0) - 0. The srvitchíng tímes ITA and TB] for u(t) are then usecl Ín

Ëhe símulation of x(t) [X]. Irrhen *(t) = Q near a = af , u(t) is set

equal x(t-f) ancl one second later the si¡rulation stops. If x(t) at

the end of the sinulatíon is larger than o.01, z,(0) is nade l.arger ancl

the program ís rr-rn again. If x(t) is srnaller t}ran -0.01., zr(0) is made



smaller ancl the progr-am Ís rerun. If
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lx(r) | 1 o.or then the time rvhen

i(t) = 0 [TE]ìD-1.01 is compared to tf. If the absolute value of the

dÍfference is greater than C.03 a ner¡ value of tc j-s triecl. that is equalt
to tIìe old val.ue of tf plus half the clífference. The system is rerun

until all the condi,tions are satisfied. I{hen al1 the condi.ti-ons are sat-

isfied, the optimal x(t) is plotted and the optimal control is given.

For other constant initial conditions it is only necessary to replace

the card r,¡ith X[] = 3.5, TF = 3.3 by a nerv card with the new x(0) and

a guess for tf. The optimum ivill. be re-ached more quickly for a good guess

of af slightly smaller than the actual tf.

Fig. 14 shor.¡s the time optimal trajectory and control for an initial

condítion x(0) = 5. The minimum time for x(t) = 0, *(t) - 0 is tr= 4.1

seconcls. Fig. 15 shov.'s the time optimal control po1ícy for cónstant ini-

tial conditíons from 0.0 to 5.0. These data were obtained. by running the

computer program for varíous ínitial conditions in Ëhe range 0.0 to 5.0.

To determine the optimal control. policy for a given constant initial

condition: (1) drars a vertical line on the graph through the number on the

horizontal axis corresponding to the initial condition. (2) The region

directly above the horizontal axj-s on this vertical line gives the ínitial

condition for u(t). (3) The sruitching times are given by the inËersection

of the vertical line rgith lines on Ëhe graph.
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CTIAPTER V

CONCLUSIO¡TS AIiID PROB],EMS

FOR FUF-TI]EP. STUDY

Ilecessary conclitions and sufficiency conditíons have been givèn

for systenì controllability. Iloi¿ever, more generalr necessary and suffi-

cient conditions are needed that can be more easily app1ied.

In the first theorem on controllability ít rvas assumed that if the

original time delay system is controllable then the approximating system

is controllable. Thís seems obvious fron a practícal point of vierv since

the solutions of the tiùo systems come arbitrarily cl,ose together as the

order of the approximatíng system is increased. If thjs. order ís m.ade

large enough, Ëhe solutions ruould seem íclentical due to the limits of

measurability. l'lorvever, it r.rould be desirable to prove this assumptÍon

mathematically. The second theorem on controllability is not new but a

neiv proof of the theorern is presented.

Necessary conditions for optÍma1íty have been given. These could

probably be extencled to the variable time delay case. The transversality

conditions given apply only to a srna11 number of systems. It would be

desirable to extend these to more general systems. Extra necessary con-

ditions could possibly be obtaíned by a study of the set of attaínabj-Iíty.

To satisfy the necessary conditions usually requi.res a 1ot of trial

and error. It may be possible to i.,7rite a computer: program that r^¡oulcl solve

a general first or second order tirne optimal problem.
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