
A framework for the indexing, querying, clustering,
and visualization of microbial genomes for
surveillance and outbreak investigation

by

Aaron Petkau

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

August 2022

© Copyright 2022 by Aaron Petkau

Thesis advisor Author

Olivier Tremblay-Savard and Gary Van Domselaar Aaron Petkau

A framework for the indexing, querying, clustering, and

visualization of microbial genomes for surveillance and

outbreak investigation

Abstract
Whole-genome sequencing (WGS) has increasingly become a routine part of mon-

itoring infectious diseases. The genomes of bacteria, viruses, or other infectious

agents are sequenced and used to identify nucleotide variants or other genetic

differences—providing a wealth of detailed information. This has particularly be-

come relevant with the COVID-19 pandemic, where sequencing of millions of viral

genomes over the course of the pandemic has been essential in early identification

of new viral lineages. The continuous generation of WGS data at this scale has

introduced a number of challenges for efficiently generating timely reports and

searching for epidemiologically significant patterns.

I have designed and implemented a framework to address these problems—the Ge-

nomics Data Index (https://github.com/apetkau/genomics-data-index)—

which uses ideas from the field of information retrieval to transform WGS data into

a collection of genomics features (nucleotide variants, kmers, and genes) and index

these features for rapid querying. I provide a command-line interface and Python

API for incrementally adding new data and querying the index. The query API in-

tegrates with existing methods for working with tabular and phylogenetic data to

ii

https://github.com/apetkau/genomics-data-index

Abstract iii

provide a common interface for clustering, visualization, and statistical analysis of

microbial genomes.

I evaluated this framework using three datasets containing assembled genomes and

sequence reads. Indexing assemblies was more sensitive for nucleotide variant de-

tection when there were fewer variants (sensitivity = 0.948 for 6.77% divergence

compared to reads sensitivity = 0.663), but sensitivity when indexing with reads

surpassed assemblies as variants increased. The software was able to scale to tens

of thousands of SARS-CoV-2 genomes (2.17 hours for loading 20,000 genomes) and

construct phylogenies consistent with the existing Pangolin lineage system. Con-

structing phylogenies using nucleotide variants derived from bacterial WGS reads

was found to consistently group outbreak-related bacteria into monophyletic clades

(4/4 correct clades), while kmer clustering was able to group bacteria only at the

species level.

I have already applied this software to aid in investigating new lineages of SARS-

CoV-2, and I believe this software will be of great benefit for future research and

genomic surveillance of other infectious diseases.

Contents

Abstract . ii
Table of Contents . viii
List of Figures . ix
List of Algorithms . xii
List of Listings . xiii
List of Tables . xiv
Acknowledgments . xv
Dedication . xvi

1 Introduction 1
1.1 Motivation . 2
1.2 Challenges . 3

1.2.1 Large-scale comparisons . 3
Dynamic data analysis . 4

1.2.2 Variety of analysis methods 4
1.2.3 Missing data . 5
1.2.4 Data integration . 5

1.3 Solution . 6

2 Background & Literature Review 9
2.1 Information retrieval . 9

2.1.1 Documents and terms . 10
2.1.2 Indexing . 10
2.1.3 Querying . 12

Boolean retrieval . 13
Ranked retrieval . 13

2.1.4 Categorization, classification, and clustering 14
Hierarchical clustering . 14
Partition clustering . 16

2.2 Microbial genomics . 17
2.2.1 Microbial whole-genome sequencing 17

iv

Contents v

2.2.2 Primary analysis . 18
2.2.3 Secondary analysis . 19

Genome assembly . 20
Reference alignment . 21

2.2.4 Tertiary analysis . 22
Nucleotide variant approaches 23
Kmer-based approaches . 25
Gene-based methods . 27

2.2.5 Phylogenetics . 29
Distance-based methods . 29
Character-based methods . 30
Evolutionary models . 32
Phylogenetics and clustering 32

2.3 Feature identification and storage . 34
2.3.1 Nucleotide variant models . 34

VCF . 34
SPDI . 36
HGVS . 37
VRS . 37
BED . 38
Coordinate systems . 39
Storage models and other data 39

2.4 Workflow management . 41
2.4.1 Development . 42
2.4.2 Execution . 45

3 Software design 47
3.1 Data analysis pipelines . 49

3.1.1 Pipeline design . 50
Genome assembly input . 52
Sequence reads input . 53

3.1.2 Parallelization of the Analysis stage 54
Analysis sample batching . 54

3.2 Indexing . 55
3.2.1 Feature identifiers . 56

Nucleotide variants . 56
Genes and alleles . 58
Kmers . 58
Unknown/missing data . 59

3.2.2 Storing sets of genomic samples 60
Alternative method (foreign keys) 62

3.2.3 Index storage . 64

vi Contents

Relational database . 64
Reference genome storage . 65
File system . 66

3.2.4 Parallelization of the indexing stage 66
Saving features . 66
Constructing a feature DataFrame 67
Index sample batching . 67

3.3 Querying . 68
3.3.1 Query API . 68

Query objects . 68
Missing/unknown features . 70
Logical operations . 72

3.3.2 Query CLI . 78
3.4 Phylogenetics and clustering . 79

3.4.1 Building phylogenies from nucleotides 82
Constructing a multiple sequence alignment 83
Constructing the phylogenetic tree 84

3.4.2 Hierarchical clustering . 85
Clustering with kmer distances 85

3.4.3 Parallelization of the clustering stage 86
3.4.4 Flat clusters to tree comparison 87

Defining the score for a single set of genomes to a tree 87
Defining the score of a collection of sets of genomes to a tree . 88
Implementation of the cluster scoring system 91

3.5 Visualization . 91

4 Evaluation 94
4.1 Data simulation . 96

4.1.1 Methods . 96
4.1.2 Comparison across coverages 99
4.1.3 Comparison across substitution divergences 102

Investigation of poor performance for assemblies at high di-
vergences . 106

4.2 SARS-CoV-2 data analysis . 108
4.2.1 Methods . 108

Data preparation . 108
Data analysis and indexing . 109
Querying . 110
Clustering and phylogenetic analysis 111

4.2.2 Data analysis and indexing . 113
4.2.3 Querying . 116

Python API . 117

Contents vii

Command-line interface . 122
4.2.4 Phylogenetics and clustering 123

4.3 Read data . 124
4.3.1 Methods . 124
4.3.2 Running time . 128
4.3.3 Memory . 131
4.3.4 Disk usage . 132
4.3.5 Clustering . 134

4.4 Existing software . 136
4.4.1 Usage . 138
4.4.2 Indexing . 141
4.4.3 Querying . 142
4.4.4 Clustering and Visualization 144

5 Discussion 146
5.1 Evaluation . 147

5.1.1 Data simulation . 147
5.1.2 SARS-CoV-2 data analysis . 149

Analysis, indexing, and building a tree 150
Querying . 151
Clustering . 152

5.1.3 Read data . 153
Analysis and indexing . 153
Tree or clustering . 154

5.2 Applications . 155
5.2.1 The SARS-CoV-2 Delta variant in Canada 155
5.2.2 The SARS-CoV-2 Omicron variant 157

5.3 Limitations . 159
5.3.1 Contiguous nucleotide-level variants 159
5.3.2 Matching nucleotide to amino-acid variants 161
5.3.3 Multiple sequence alignment 162
5.3.4 Roaring bitmap limitations . 164
5.3.5 Gene-level clustering . 166
5.3.6 Reference genome mismatches for the data simulation evalua-

tions . 166
5.3.7 Uncontrolled variables for read data evaluation 170

5.4 Future work . 171
5.4.1 Index tools . 171
5.4.2 Development of a web application 172

Web interface . 172
Web API . 173

5.4.3 Sequence typing and classification 173

viii Contents

6 Conclusion 176

A Software design 179

B Simulated data 181

C SARS-CoV-2 evaluation 191

D Reads 197

E Proof of requirements of cluster-to-tree scoring 202

Bibliography 234

List of Figures

1.1 Software overview . 8

2.1 Information retrieval querying methods 12
2.2 Microbial comparison and typing methods 24
2.3 Nucleotide variation representation models 35

3.1 Software design overview . 49
3.2 Overview of the data analysis pipeline. 51
3.3 Database index . 63
3.4 Index data storage . 65
3.5 Query API overview . 71
3.6 Queries and logical operations . 75
3.7 Cluster to tree scoring example . 90
3.8 Visualize trees and queries . 92

4.1 Counts of detected nucleotide features over different read coverages . 100
4.2 Scores of detected nucleotide features over different read coverages . . 101
4.3 Comparison of distance to constructed phylogenetic trees over differ-

ent read depth of coverages . 102
4.4 Counts of detected nucleotide features over different substitution di-

vergences . 105
4.5 Scores of detected nucleotide features over different substitution di-

vergences . 105
4.6 Comparison of distance to constructed phylogenetic trees over differ-

ent substitution divergences . 107
4.7 Time to index SARS-CoV-2 genomes 114
4.8 Peak memory used to index SARS-CoV-2 genomes 115
4.9 Peak memory for the indexing stage across different batch sizes . . . 116
4.10 Disk space used to index SARS-CoV-2 genomes 117
4.11 Number of samples compared to time spent in different operations of

the query API . 118

ix

x List of Figures

4.12 Number of nucleotide features compared to time spent in different
operations of the query API . 120

4.13 Number of unknown features compared to time spent in different op-
erations of the query API . 121

4.14 Number of features with respect to number of samples for SARS-
CoV-2 . 121

4.15 Run time of selected operations in the CLI 122
4.16 Peak memory of selected operations in the CLI 123
4.17 Comparison of cluster scores for different methods of clustering

genomes . 125
4.18 Running time of different organisms for read data 129
4.19 Relationship between samples and features for the read data 131
4.20 Peak memory usage across different organisms for the read data . . . 133
4.21 The total usage across different organisms for the read data 134
4.22 Kmer tree using four different organisms 137

5.1 Phylogenetic tree of the AY.25 lineage of the Delta variant of SARS-
CoV-2 . 157

5.2 Phylogenetic tree of the AY.27 lineage of the Delta variant of SARS-
CoV-2 . 158

5.3 Phylogenetic tree and heatmap of Omicron 160
5.4 Issues with MSA generation from consensus sequences 164
5.5 Different references for data simulation 168
5.6 Mismatches between reference leaf distances for input and GDI-

constructed phylogeny . 169

A.1 Directed Acyclic Graph of the GDI analysis pipeline 179
A.2 Entity-relations diagram for the GDI database 180

B.1 Longest path on the tree used for simulating genomes 182
B.2 Comparison of transition rate to largest substitution divergence . . . 183
B.3 Comparison of original reference tree to tree constructed using reads

with a coverage of 20X . 184
B.4 Comparison of original reference tree to tree constructed using as-

semblies . 185
B.5 Comparison of original reference tree to tree constructed using reads

with a coverage of 5X . 186
B.6 Comparison of original reference tree to tree constructed using as-

semblies and with a divergence of 1.88% 187
B.7 Comparison of original reference tree to tree constructed using reads

and with a divergence of 1.88% . 188
B.8 Comparison of original reference tree to tree constructed using as-

semblies and with a divergence of 4.20% 189

List of Figures xi

B.9 Comparison of original reference tree to tree constructed using reads
and with a divergence of 4.20% . 190

C.1 SARS-CoV-2 Augur pipeline tree compared to Pangolin lineages . . . 192
C.2 SARS-CoV-2 ML tree compared to Pangolin lineages 193
C.3 SARS-CoV-2 hierarchical cluster compared to Pangolin lineages for a

kmer size k = 51 . 194
C.4 SARS-CoV-2 hierarchical cluster compared to Pangolin lineages for a

kmer size k = 51 . 195
C.5 SARS-CoV-2 hierarchical cluster compared to Pangolin lineages for a

kmer size k = 71 . 196

D.1 Campylobacter jejuni reads-based dendrogram comparisons 198
D.2 Escherichia coli reads-based dendrogram comparisons 199
D.3 Listeria monocytogenes reads-based dendrogram comparisons 200
D.4 Salmonella enterica reads-based dendrogram comparisons 201

List of Algorithms

3.1 Cluster score for a set of leaves from a tree 89

3.2 Cluster scores for a tuple of sets of leaves from a tree 89

xii

List of Listings

3.1 Example code for logical operations on queries q and r 77

3.2 Code for constructing a phylogenetic tree or hierarchical cluster tree . 82

3.3 Example code for scoring clusters in the Python API 93

5.1 An example of sequence typing implemented as a combination of

queries . 175

xiii

List of Tables

2.1 Comparison of different workflow languages and implementations . . 43

3.1 Logical operations between two queries Q and R 76
3.2 Equivalent Python API and CLI commands for GDI 80

4.1 Transition rates, number of substitutions, and divergence between
reference and SH14-012 . 104

4.2 Dataset and organisms used for benchmarking with sequence reads . 127
4.3 Ability of a particular clustering method to group outbreak-related

isolates into a monophyletic clade . 136
4.4 Comparison of different software to GDI 139

xiv

Acknowledgments

I would like to begin by thanking my advisors, my committee, my parents, and all

the people who have supported me along the way. I would like to acknowledge the

support of the Visual and Automated Disease Analytics graduate training program

(VADA), which provided specialized courses, workshops, and training during my

studies. I would like to thank Dr. Andrew G. McArthur and the other members of

the McArthur laboratory for providing me with the opportunity to join as a visiting

student in the Department of Biochemistry and Biomedical Sciences at McMas-

ter University from July to August 2020. I would like to thank the members of the

Bioinformatics laboratory and other students within the Department of Computer

Science with the University of Manitoba for the amazing support and discussions

during my studies. I would like to thank the members of the Bioinformatics labora-

tory and other groups within the National Microbiology Laboratory under the Pub-

lic Health Agency of Canada for all the amazing support and opportunities I have

received. I would also like thank both Mohsen Yousefian and Kimia Shadkami—two

amazing students at the University of Manitoba who worked with me to develop

a benchmarking system and web interface for the software presented in this thesis

respectively.

Some of the figures in this thesis contain icons obtained from Font Awesome Free

6.1.2 by @fontawesome (https://fontawesome.com) Copyright 2022 Fonticons,

Inc. These are used under the CC BY 4.0 License - https://fontawesome.com/

license/free.

xv

https://fontawesome.com
https://fontawesome.com/license/free
https://fontawesome.com/license/free

This work is dedicated to my family, without which I would not have

been able to complete my Master’s degree. It is also dedicated to all

those who have been impacted by the COVID-19 pandemic.

xvi

Chapter 1

Introduction

Infectious disease investigations are increasingly relying on whole-genome sequenc-

ing (WGS)—where the genome of the infectious agent is read by a machine and

stored within a file—to aid in tracking the spread of the disease and identifying the

contaminated source [1]. WGS provides a significantly greater amount of informa-

tion over former methods, down to capturing single nucleotide variants (SNVs) in

the genetic code. These variants can be used to reconstruct the genealogy of mi-

crobes and classify them into different subtypes—helping to track the origin and

spread of an infectious disease. WGS is routinely used by many countries around

the world to help track foodborne [2; 1] or human-transmitted [3] diseases and has

experienced a significant uptake during the course of the COVD-19 pandemic [4].

While WGS is extremely useful, the process of translating the WGS data from large

numbers of bacteria or viruses into a human-interpretable form can be difficult and

time-consuming [1]. This requires the identification of genetic features, whether

SNVs or entire genes, and comparing large collections of these features to cluster

1

2 Chapter 1: Introduction

microbial genomes and assign human-readable identifiers to these clusters—defining

a subtype (or sequence type) [5; 6]. This has become all the more important dur-

ing the progress of the COVID-19 pandemic, where worldwide genomic sequencing

has significantly contributed to our understanding of the evolution of the SARS-

CoV-2 virus. The pandemic has lead to the extensive investigation into variation

of the viral genome, novel typing methods [6], and has brought terms like "variant

of concern"—variants of SARS-CoV-2 which are shown to have increased trans-

missiblity, virulence, or decrease the effectiveness of public health measures—into

mainstream usage [7].

Identifying features within microbial genomes and clustering or classifying these

genomes is part of the much broader topic of information retrieval [8]. Informa-

tion retrieval studies the different methods used for processing large collections of

data—from files on a personal computer to web pages on the internet—and pro-

vides mechanisms to quickly search through this data to find relevant information.

Information retrieval methods are used by people every day, such as searching for

information using search engines like Google or categorizing books found within a

library. This field provides a rich background of information to draw upon for solu-

tions to the management of large collections of genomics data.

1.1 Motivation

The primary motivation for this work is to aid the process of applying microbial

WGS to infectious disease investigations and surveillance and ultimately to improve

public health. The COVID-19 pandemic has brought microbial (in particular viral)

Chapter 1: Introduction 3

genomics into the mainstream, which has greatly contributed to our understand-

ing of the SARS-CoV-2 virus throughout the pandemic. Genomics has provided

real-time information on the global evolution of this virus, which has provided op-

portunities for early intervention and response to emerging variants or mutations

of concern [9]. However, prior to the COVID-19 pandemic, microbial genomics was

already routinely applied for monitoring a variety of other infectious or foodborne

illnesses. Organizations such as PulseNet [2] have adopted WGS for routine mon-

itoring of a variety of foodborne pathogens—from Salmonella enterica to Listeria

monocytogenes. The diversity of pathogens being monitored, desire for near real-

time results, and increasing amount of data being stored and analyzed worldwide

has led to unique challenges, which must be faced as the world continues to adapt

to the routine use of genomics for infectious disease monitoring.

1.2 Challenges

1.2.1 Large-scale comparisons

Comparison of genetic features and assigning subtypes using whole-genome se-

quence data introduces a number of challenges, with one major challenge being

scalability. Public archives contain petabytes of genomic sequence data and are

growing daily [10]. The COVID-19 pandemic has further expanded the amount

of data generated as part of the worldwide effort to sequence and archive SARS-

CoV-2 genomes. The largest archive—GISAID—holds on the order of ten million

genomes and is continually growing [11; 4]. Processing data at this scale requires

4 Chapter 1: Introduction

complicated systems [2] or innovative indexing and searching techniques [12].

Dynamic data analysis

A related challenge arises due to the dynamic nature of data for genomic surveil-

lance or outbreak investigations. Rather than being static and analyzed and pub-

lished as a single unit, microbial WGS in these situations is dynamic, with a contin-

ual stream of new data being delivered, requiring up-to-date reports. This leads to

situations where data analysis needs to be performed once for an earlier collection

of genomes, and then new data needs to be integrated into the existing results on

an on-going basis. However, some software used for genomic epidemiology [13] can-

not integrate new data into an existing set of results—leading to a situation where

analysis needs to be repeated from the beginning whenever new data is added. This

is inefficient as computational resources are wasted repeating the same work over

and over again.

1.2.2 Variety of analysis methods

Additionally, different types of use cases may benefit from different analysis

methods—using different genomic features such as genes or SNVs [2; 3]—to mon-

itor genetic changes over time and classify microbial samples into subtypes. For

example, monitoring SARS-CoV-2 samples makes use of nucleotide-level variation,

which is used to define different viral lineages [6]. However, monitoring Salmonella

enterica may benefit more from gene-level information [14] to classify genomes into

different subtypes in addition to nucleotide-level variation.

Chapter 1: Introduction 5

Likewise, clustering genomes using a variety of analysis methods and feature reso-

lutions is challenging due to the frequent use of different specialized software suited

to each unique feature (e.g., gene-level [15] vs. nucleotide-level [13] features). Some

clustering methods may be most appropriate for large-scale data collections due to

their lower computational resource requirements but may offer poor separation of

very closely related genomes [5]. It can be difficult to switch between these different

resolution levels in one single system and may require ad-hoc methods to load the

data (e.g., nucleotide-level features into a system designed for gene-level features).

1.2.3 Missing data

Missing or unknown data refers to portions of the genome where there is uncer-

tainty as to the exact nucleotide sequence. This could either be due to poor-quality

sequencing in a particular region, strict filtering thresholds for removing potential

false positive features, or could be related to the inherent limitations of different

sequencing platforms (e.g., short read lengths leading to gaps in the sequenced

genome at repetitive regions [16]). Missing regions can lead to ambiguities in phylo-

genetic analysis [17; 18] (i.e., collections of identically scoring trees, called a ter-

race) or can easily be misinterpreted as a region with no variation compared to

some other genome.

1.2.4 Data integration

Genomic feature data is not the only type of information that is useful for

infectious-disease data analysis. Epidemiological metadata (or contextual data)

6 Chapter 1: Introduction

is also extremely important for the proper interpretation of genomics data [19].

This can include information such as the collection date of a genomic sample, the

geographic region, or a variety of additional information. Additionally, genomics-

derived results such as phylogenetic trees are a useful aid in interpreting the

metadata [20].

Integration of genomic-derived data (genetic features) and these other types of data

can be a multi-step process. For metadata, one method is to export genetic infor-

mation into a tabular data structure and then load it within existing statistical

data analysis packages for further processing (such as Python or R). For phyloge-

netic trees, packages such as the ETEToolkit [21] can be used to load and manip-

ulate the tree. Once additional data is loaded, both R and Python provide pro-

grammatic APIs [22] to manipulate data to produce summaries or visualizations.

Likewise, software such as Jupyter (https://jupyter.org/) [23] provide interactive

web-based environments for writing and executing code for data analysis. However,

the initial step of loading all the information into a common platform can be chal-

lenging as it requires defining and structuring multiple sources of data.

1.3 Solution

In this work, I focus on addressing the challenges of using WGS for infectious

disease surveillance and investigations. I have designed and developed software

which breaks WGS data up into individual genomic features, indexes the microbial

genomes using a variety of feature types, and provides mechanisms to cluster and

query indexed genomes. I have implemented a method to handle missing data by

https://jupyter.org/

Chapter 1: Introduction 7

extending the standard boolean operations (true, false) to include a third truth

value (unknown), which can be used for querying. I have implemented the ability to

index based not just on a single type of feature, but on all of the common feature

types used for microbial genomics (nucleotide variants, kmers, and genes). I also

provide both a command-line interface and a Python-based API, which allows

the integration and analysis of genomic and external data in a single system. An

overview of the components of the software is provided in Figure 1.1 and listed

below.

1. WGS data analysis. This component translates raw WGS data into collec-

tions of individual genomic features to be used for indexing.

2. Genomics index. This component loads the genomic features into a data

structure that enables easy comparison across many genomes.

3. Querying. This component provides a mechanism to query the index of ge-

nomic features to ask questions such as “which genomes are closest to genome

X” or “which genomes contain a particular feature”?

4. Clustering. This component clusters genomes using a variety of methods

from the identified genomic features.

5. Visualization. This component provides summary statistics and visualiza-

tion capabilities of the data stored in the index.

The software is called the Genomics Data Index (GDI) and is available

on GitHub (https://github.com/apetkau/genomics-data-index). I have

https://github.com/apetkau/genomics-data-index

8 Chapter 1: Introduction

also included tutorials on the usage of this software with example data (https:

//github.com/apetkau/genomics-data-index-examples). This system should

help as the world continues to adopt WGS as a routine technique for infectious

disease investigations.

Genomic
features

A. Data analysis B. Indexing

D. Clustering

Genomes that have a SNV?
Genomes closest to genome X?

C. Querying E. Visualization

Figure 1.1: An overview of the Genomics Data Index software components. (A)
Data Analysis. Whole-genome sequencing is performed on nucleic acids (DNA
and RNA) derived from microbes and the sequence data is processed to produce
sets of genomic features. (B) Indexing. The genomic features are used to con-
struct an index for fast querying. (C) Querying. The index can be queried to
find subsets of genomes which match specific criteria. (D) Clustering. Genomes
loaded into the index can also be clustered to find closely related genomes. (E) Vi-
sualization. Data stored in the index can be visualized using the provided API.

https://github.com/apetkau/genomics-data-index-examples
https://github.com/apetkau/genomics-data-index-examples

Chapter 2

Background & Literature Review

In order to design the Genomics Data Index, I used a combination of existing work

that intersects with both the Information Retrieval and Microbial Genomics

fields of study. I introduce both of these topics and review existing methods. Fi-

nally, I end with an introduction to different Workflow Management software,

which are useful when combining together many existing software components into

a single data analysis pipeline.

2.1 Information retrieval

Information retrieval consists of the collection and searching through documents

to find information of interest [8]. Information retrieval systems are found across a

wide variety of use cases, from large-scale, like web search engines, to smaller and

more specific cases, like searching through files on a personal computer. I provide a

brief overview of topics and common terminology in this field.

9

10 Chapter 2: Background & Literature Review

2.1.1 Documents and terms

One key concept in information retrieval is a document, which is a unit of infor-

mation that is of interest for a particular use case [8]. A document could refer to a

book, a web page, a file on a desktop computer, a movie, or a song. Documents can

be broken up into a smaller unit of information referred to as a token [8; 24]. For

example, a particular book (document) consists of paragraphs, sentences, phrases,

and words—each of which could be considered a token. Alternatively, a particular

page within a book could be considered a document, while the words within a page

could be considered tokens. The particular scale used to define a document (book,

page, etc.) or a token (sentence, word, etc.) can vary depending on the use case.

One of the goals of an information retrieval system is to retrieve documents rel-

evant for a particular purpose. This can be accomplished through the use of a

query, which can consist of one or more search terms. A term can be distin-

guished from a token in that a term refers to the common name we give to the

same class of token across many documents (e.g., the same word across many docu-

ments). A token is a particular instance of a term (e.g., a word within a particular

document) [8]. The set of all terms is referred to as a vocabulary.

2.1.2 Indexing

A common method of returning results related to a particular query is to first pre-

process the documents to construct a data structure—an index—and use this index

to aid in executing the query. A common index type used for information retrieval

is referred to as an inverted index.

Chapter 2: Background & Literature Review 11

An inverted index is a data structure which matches terms found within collec-

tions of documents to information about the documents, such as a document iden-

tifier or the respective locations of the terms within each document [8]. Documents

are first split into the individual tokens, a process called tokenization, and these

tokens are organized into a dictionary of terms and information about the terms

in the documents—the postings list.

A postings list can be schema-dependent, where the division of tokens into sep-

arate documents (the schema) is defined at the index time [8]. If the postings list

matches terms to only the document identifiers containing these terms, then the in-

dex is called a docid index. If the frequency of the term is included alongside the

document identifier, then the index is a frequency index. If the positions of the

term within a document are included, then the index is a positional index. Fi-

nally, a schema-independent index is one where there is no division of terms into

their respective documents defined at index time and thus instead must be defined

at query time. This provides a mechanism to change the definition of a document

for a particular query.

An index can also be static, that is the set of documents and terms does not

change following the indexing process. By contrast, in a dynamic index, the doc-

uments and terms may change over time (e.g., new documents may be added, or

documents may be modified or removed).

In contrast to an inverted index, a forward index matches documents to the set of

terms contained within that document. This can be used to produce summaries of

terms within a particular document or set of documents.

12 Chapter 2: Background & Literature Review

Query ¬ “dog”
(NOT)

“dog” ∧ “cat”
(AND) “dog” ∨ “cat” (OR)

Result

R

C.

R = D ∩ C

 = {2, 3}

R = D ∪ C

 = {1, 2, 3, 4}

A.
AND t f

t t f

f f f

OR t f

t t t

f t f

NOT t f

f t
Term Documents

dog D = {1, 2, 3}

cat C = {2, 3, 4}

All documents U = {1, 2, 3, 4, 5}

D ∩ C

2 3 41

R = U - D
 = {4, 5}

U54

1-3 D

D ∪ C

2 3 41

B.

D. Document 1 2 3 4

Score 0.9 0.2 0.5 0.7

Ranked results 1, 4, 3, 2

Complement Intersection Union

Figure 2.1: Basic information retrieval querying methods. (A-C) Boolean re-
trieval. (D) Ranked retrieval. (A) Boolean truth tables used for boolean re-
trieval. (B) An example set of terms which act as identifiers for sets of documents
in boolean retrieval. Documents are numbered 1 to 5 and the letter U represents
the universe of documents (i.e., the collection of all documents in the index). (C)
A set of example queries using boolean operators (NOT, AND, OR). These are im-
plemented as operations on the sets of documents matching each term (complement,
intersection, union), which are visually depicted using Venn diagrams with green
representing the set of matching documents to a query. (D) In Ranked retrieval,
scores are assigned to documents for a particular query which are used to order
query results to return the most relevant results first.

2.1.3 Querying

Querying is the process where we search for the occurrence of particular terms

within the inverted index and return a list of results. There are a number of dif-

ferent methods for query processing, with two basic categories being boolean re-

trieval and ranked retrieval (Figure 2.1).

Chapter 2: Background & Literature Review 13

Boolean retrieval

In boolean retrieval, terms are interpreted as referring to sets of matching docu-

ments and combinations of terms can be specified using boolean operations (AND,

OR, NOT). These are converted to operations on the sets of associated documents

(union, intersection, inversion/complement) to produce the final results [8]. As an

example, let the term "dog" refer to the set of document identifiers D = {1, 2, 3}

and "cat" refer to the documents C = {2, 3, 4} (Figure 2.1.B). In boolean retrieval,

the query "dog AND cat" can then be converted to the set operation D ∩ C =

{1, 2, 3} ∩ {2, 3, 4} = {2, 3}. The query "dog OR cat" can be converted to D ∪ C =

{1, 2, 3} ∪ {2, 3, 4} = {1, 2, 3, 4} (Figure 2.1.C).

Ranked retrieval

Ranked retrieval is used to rank the results of a query and return only the most-

relevant (best-ranked) results. This can be applied all on its own to respond to a

query or can be applied following boolean retrieval to further refine the set of re-

sults, which may be unreasonably large. Ranking can be performed using a va-

riety of information, such as the proximity of query terms in a document. As an

example, consider the query "dog OR cat" shown above, which results in the doc-

uments D ∪ C = {1, 2, 3, 4}. These could be further refined to assign a score to

each document based on some measure of how well it matches the query. For exam-

ple {(1, 0.9), (2, 0.2), (3, 0.5), (4, 0.7)} (given as (docid, score)). These ranked results

can then be sorted to return only the most relevant results first [(1, 0.9), (4, 0.7),

(3, 0.5), (2, 0.2)] (Figure 2.1.D).

14 Chapter 2: Background & Literature Review

2.1.4 Categorization, classification, and clustering

Categorization is the process of assigning labels to documents to group them into

particular categories [8]. The categories to use are provided ahead of time and de-

pend on the particular use case. When categorization is performed automatically

by first learning to distinguish between patterns in a set of example data, it can be

termed classification, which is a machine-learning approach to automatically as-

sign items (e.g., documents) to a particular class [8; 25].

Classification can be both supervised, where the learning dataset includes the

class labels, or unsupervised, where the learning dataset does not include the

class labels. An alternative term for unsupervised classification is clustering [25].

As there is no prior knowledge of the categories to assign to an item, the categories

could be termed clusters, and the goal is to learn from only the information con-

tained in the dataset which clusters an item should be assigned to.

Classification and clustering may make use of features—properties about a doc-

ument that could be useful for clustering—which can be organized into a vector.

Features may consist of tokens in a document, frequencies of tokens, or other infor-

mation. There are a number different types of clustering techniques [25], with two

of these types being hierarchical clustering and partitioning.

Hierarchical clustering

In hierarchical clustering, clusters are built iteratively from the data, making use

of some distance measure between pairs of data elements [25]. Building clusters

from the bottom-up, where each data element is initially considered its own clus-

Chapter 2: Background & Literature Review 15

ter and these clusters are joined based on some distance criteria, is called agglom-

erative clustering. Conversely, divisive clustering is a top-down approach where

all the data is considered initially in the same cluster and then iteratively split into

separate clusters based on some distance measure. The hierarchical structure of

these clusters leads to a representation of these clusters within a tree, which can be

drawn as a dendrogram. Leaf nodes in the tree represent individual data elements

while internal nodes represent clusters of more than one element.

The iterative process of merging or splitting clusters requires some definition of dis-

tances between clusters in addition to distances between data elements—a linkage

distance. These linkage distances can be one of three varieties: single-linkage,

complete-linkage, and average-linkage. In single-linkage clustering, the dis-

tance between two clusters is defined as the minimum (i.e., closest) distance be-

tween any pair of points, where one point is in each cluster. Complete-linkage,

by contrast, defines the distance between clusters as the maximum (i.e., furthest)

distance between any pair of points, one point in each cluster. Average-linkage

clustering defines the distance between clusters as the average distance between all

pairs of points, one point per cluster. If similarity scores are used instead of dis-

tances, then these linkage categories still apply but would have to be slightly ad-

justed (e.g., by using the maximum similarity for single-linkage as opposed to the

minimum distance).

Due to the hierarchical nature of this approach, a single data item can be contained

in multiple clusters of increasing size (from a cluster containing only the item itself

to a cluster containing all items in the dataset). To convert this cluster hierarchy

16 Chapter 2: Background & Literature Review

into a flat partition—a partition of the dataset where each item is contained only

in a single cluster—we can choose different portions of the cluster hierarchy to di-

vide our dataset [26]. This can be illustrated using a dendrogram where construct-

ing a flat partition could be considered as equivalent to cutting the dendrogram at

some particular distance threshold (or multiple distance thresholds).

Partition clustering

In contrast to the multiple levels of nested clusters generated from hierarchical clus-

tering, in partition clustering, data elements are assigned to one of a number of

clusters without any hierarchical structure [25]. One method is k-means cluster-

ing, which iteratively partitions the data items into k different clusters. This can

be visualized by imagining that each data element exists as a point in some multi-

dimensional space with distances between data elements corresponding to distances

between points. The number of clusters, k, is chosen ahead of time and k random

data points are chosen initially to represent the centers of each cluster (the cen-

troids). The distance between every item in the dataset and the centroids is com-

puted (using a distance metric, often Euclidean [27]) and each item is assigned to

the cluster with the closest centroid. New centroids are computed for each of the

k clusters based on the data points within each cluster. Every item in the dataset

can then be re-assigned to clusters based on these new centroids. This process is

iteratively repeated until the centroids converge to some stable position. The data

elements assigned to each of the k centroids forms the k different clusters.

Chapter 2: Background & Literature Review 17

2.2 Microbial genomics

2.2.1 Microbial whole-genome sequencing

Whole-genome sequencing (WGS) is the process of converting the entire genome of

an organism from its genetic material into a form that can be used for further anal-

ysis [28]. The genome of an organism consists of the nucleic acid, typically DNA

but sometimes RNA, that encodes the instructions for the molecular machinery

used to perform different functions within the organism. This code consists of long

chains of linked units in a polymer—the nucleotides—consisting of four different

types: Adenine (A), Thymine (T), Guanine (G), and Cytosine (C) [29]. In RNA,

Thymine (T) is replaced with Uracil (U). The order of the nucleotides defines the

genetic code and can be represented as a string (e.g., ATCGG). Hence, the output

of whole-genome sequencing consists of strings from the alphabet {A, T, C, G} (or

{A, U, C, G} for RNA)—often broken into small fragments called reads that are

hundreds to tens of thousands of characters long, depending on the underlying tech-

nology used to generate the sequence [30]. Microbial WGS focuses specifically on

the genomes of microbes (bacteria, viruses, etc.).

There are a number of different instruments and methods for performing whole-

genome sequencing. One common method is sequencing by synthesis using the

Illumina-based sequencing instruments (https://www.illumina.com), which

produce shorter reads (few hundred base pairs), but the reads often have fewer

errors than other sequencing technologies [30]. Two common methods to sequence

genomes using Illumina instruments are single-end sequencing or paired-end

https://www.illumina.com

18 Chapter 2: Background & Literature Review

sequencing. Single-end sequencing starts from only one of the two ends of a

DNA/RNA fragment to produce a single read. Paired-end sequencing will read a

DNA/RNA fragment once from both ends, producing a pair of reads from opposite

ends of the fragment. This pair of reads provides more information than a single

read, and this additional information can be used downstream to improve data

analysis [31]. Another sequencing technology is Oxford Nanopore [30], which pro-

duces much longer reads than Illumina (thousands of base pairs) but suffers from a

larger number of errors.

Translating these genomic sequence reads into useful results requires careful data

analysis, which can be broken up into a number of broad stages: primary analy-

sis, secondary analysis, and tertiary analysis [16].

2.2.2 Primary analysis

This first stage involves assessing the quality of the sequence reads and possibly

removing poor-quality reads from downstream analysis. During the sequencing pro-

cess, it is possible that errors are introduced, which means that sequence reads will

not necessarily match the nucleotides in the DNA/RNA molecule (e.g., the reads

could have an A in a particular location when the underlying DNA molecule actu-

ally has a T in this location).

To account for these errors, reads are often combined with an additional set of

quality scores, which represents the probability of a particular nucleotide being in-

correct. These scores are represented using a logarithmic scale called the phred

scale [32], which relates the probability of an error in a nucleotide, P , to a qual-

Chapter 2: Background & Literature Review 19

ity score, Q, according to the formula Q = −10 log10(P). These scores are dis-

tributed together with the sequence reads using a file format—called FASTQ [32]—

which uses an ASCII encoding to represent both the nucleotides (e.g., A, C, T, G

for DNA) and quality scores (which are converted to an integer and stored starting

with ASCII 33 or ! representing a score of 0).

A second method to account for errors in the nucleotides of individual reads is to

increase the redundancy of the reads. That is, to generate an entire collection of

overlapping reads with the idea that even if one nucleotide character in a single

read is incorrect it can be accounted for by other overlapping reads to generate a

consensus sequence that is, ideally, error-free. This redundancy is referred to as the

depth of coverage (or sometimes just coverage), which refers to the amount of

redundancy from overlapping reads for any given nucleotide in a genome [16]. For

example, a coverage value of 10X for a particular nucleotide on a genome means

that there are 10 reads overlapping this particular nucleotide (so if a single read has

an error in this position it can be detected and accounted for by the other 9 reads).

If there are N reads that are the same length, L, then the mean coverage, C, across

an entire genome of length G can be estimated as C = LN/G [33; 16]. If the reads

do not all have identical lengths, then the sum of lengths of all reads can be used in

place of LN [13] (i.e., C =
∑

r∈Rlength(r)/G, for the set of reads R).

2.2.3 Secondary analysis

Once the primary analysis is complete and the sequence reads are validated to be of

a high-enough quality, data processing can proceed to the secondary analysis. This

20 Chapter 2: Background & Literature Review

includes two separate, but sometimes complementary, data analysis paths, referred

to as genome assembly and reference alignment.

Genome assembly

Genome assembly is the processes where the small sequence fragments (reads) are

fit together to attempt to re-construct a string of characters representing the full

genome [16]. The output of the genome assembly process is long contiguous se-

quences of characters—called contigs—which represent, as closely as possible, the

biochemical organization of the original DNA or RNA molecule. It is not always

possible to reconstruct the order of nucleotides for the entire molecule in one single

contiguous sequence due to repetitive regions, which create ambiguities on how the

reads derived from the DNA/RNA molecule fit together [34].

Genome assembly can be further categorized as de novo assembly or as refer-

ence guided assembly. In de novo assembly there is no reference genome used

as an aid during the assembly process [16] and instead the final set of contigs are

constructed using only the sequence reads. Common de novo assembly software of-

ten makes use of a graph, with two broad categories being overlap-layout-consensus

(OLC) and de Bruijn approaches [34]. In OLC, a graph is constructed which en-

codes overlaps between reads as edges between nodes (overlap). This graph is then

used to determine the order of the reads within the original genome (layout) and fi-

nally produce a collection of contigs representing the genome (consensus). Alterna-

tively, de Bruijn approaches first break reads up into smaller fragments of size k—

called a kmer—and construct a special graph (a de Bruijn graph) which joins se-

Chapter 2: Background & Literature Review 21

quential kmers together with an edge. Paths through the de Bruijn graph can then

be followed to reconstruct the original genome (as a set of contigs). Many modern

de novo genome assembly software follow the de Bruijn graph approach, with some

examples being SPAdes [35] and SKESA [31].

Reference alignment

As an alternative (or complementary) approach to genome assembly, reference

alignment can be used when a reference genome is available that is closely related

to the sequenced genome [16]. The reference genome provides a guide for the lo-

cations where individual sequence reads (or read pairs) should be best positioned.

The choice of reference genome for this analysis can have a large impact on the

results, with the ideal reference genome being as closely related to the sequenced

genome in question. More distantly related reference genomes can lead to issues

with aligning reads to the reference or can result in reads that do not align to any

region on the reference genome as the particular region of the genome they are

derived from does not exist in the reference genome.

There is a varied collection of software for read alignment to a reference genome,

which often relies on breaking up reads into short fragments (e.g., kmers) to aid in

finding the best position to place a read. Examples include BWA [36] for aligning

short reads, BWA-MEM [37] or Bowtie2 [38] for longer reads and Minimap2 [39].

One of the advantages of Minimap2 is the ability to also align full-length genomes

against a reference genome. This can be useful if reads are not available and you

wish to treat a genome assembly the same as other read datasets.

22 Chapter 2: Background & Literature Review

2.2.4 Tertiary analysis

Tertiary analysis refers to any analysis that completes the final step from processing

WGS reads into some human-interpretable result [16]. This can include a variety of

applications, such as identifying genes within an assembled genome or comparisons

of large collections of genomes. When these genomes are derived from microbes re-

lated to an an infectious-disease outbreak, the genetic content can be used to infer

epidemiological relatedness of the pathogens (i.e., the transmission network of the

disease) [30].

Worldwide organizations—such as PulseNet International [1; 5] or GenomeTrakr

[40]—have been increasingly using WGS for infectious-disease investigations, and

the ongoing COVID-19 pandemic has accelerated the application of WGS for

infectious-disease tracking [6]. Two major methods are often applied for infectious

disease investigations or monitoring [20; 5]: microbial sequence typing and phy-

logenetics. Microbial sequence typing is where genomes are categorized into

separate groups based on shared genetic content [20]. This is a form of categoriza-

tion and classification (Section 2.1.4) applied to microbial whole-genome sequencing

data. Assigning a sequence type can be useful during an infectious-disease outbreak

investigation, as it provides a simple identifier to aid in communication [5]. This

method can be applied both to bacterial genomes (such as identifying subtypes of

Salmonella enterica [14]) as well as to viral genomes (such as the Pangolin system

[6] for typing SARS-CoV-2, the virus causing COVID-19). Alternatively, phyloge-

netics is the process of constructing a hypothetical model of the geneaology of a

collection of genomes—represented as a phylogenetic tree. This could be considered

Chapter 2: Background & Literature Review 23

a form of hierarchical clustering applied to whole-genome sequence data (Sec-

tion 2.2.5). Phylogenetics—like other clustering methods—does not require specific

labels (sequence types) to be defined ahead of time. This means phylogenetics can

be used to aid in identifying and naming novel clusters [41], which can then be used

to help build a classifier to automatically assign sequence types to genomes [6].

Both phylogenetic and microbial sequence typing methods are specific applications

of classification and clustering that are part of machine learning. As such, they

both require as input sets of features [25]—properties derived from the genomics

data. A variety of features and algorithms that make use of these features have

been developed. These can be divided into three different approaches: nucleotide

variant, kmer-based, and gene-based methods [5]. Each feature type may be

used for both microbial sequence typing or for phylogenetic analysis (Figure 2.2).

Nucleotide variant approaches

A nucleotide variant is some variation at the nucleotide-level between genomes [42].

This could include single-nucleotide variants (SNVs)—where a single nucleotide in

the genome is substituted for another nucleotide (e.g., an A is substituted for a

T)—or insertions/deletions of nucleotides (indels). These methods commonly focus

on SNVs and so could also be called SNV-based approaches. SNVs can be referred

to as a Single Nucleotide Polymorphisms (SNP) if the substitution occurs above

some threshold frequency in a population [43], but sometimes SNV and SNP are

used interchangeably [13]. Nucleotide variant approaches use WGS data to identify

SNVs (or other variants) between organisms and use the SNVs to infer their evolu-

24 Chapter 2: Background & Literature Review

Nucleotide variants
(e.g., SNVs)

A A A
T
T

A → T
substitution

Genes

1 1 1

2 1 1

2 3 1

Genes

Alleles

Kmers

A T GA

AA
A T

T G

kmers
k = 2

Phylogenetics (clustering)

Type 1 Type 2

Sequence typing (classification)

Figure 2.2: Microbial comparison and typing methods. Three different types of
features can be used for comparing genomes at differing levels of resolution: nu-
cleotide variants, kmers, and genes. Each feature can be used either for phylo-
genetic analysis (clustering of genomes), or for microbial sequence typing (classify-
ing genomes into existing categories).

tionary relationship, represented as a phylogenetic tree [20].

Software implementing the nucleotide variant approach include the CFSAN SNP

Pipeline [44], Lyve-SET [45], SNVPhyl [13], and snippy [46]. These software pro-

grams operate by comparing the WGS data to a reference genome to identify nu-

cleotide variants (using the reference alignment approach). Often, one of the main

outputs is a phylogenetic tree that, when combined with epidemiological metadata,

can be used to help understand the transmission of a particular disease [20].

To facilitate the storage and querying of identified nucleotide variants, the Snap-

perDB system [47] provides a database for indexing and searching through collec-

tions of identified SNVs, along with a method to assign hierarchical codes to differ-

ent SNV (SNP) combinations—called a SNP address. While SnapperDB was pri-

Chapter 2: Background & Literature Review 25

marily designed for microbial genomes, it is capable of handling a wide variety of

organisms through user-provided reference genomes used to identify SNVs. There

also exists organism-specific databases as well, such as NextStrain [3], CovidCG

[48] and outbreak.info [49] for the storage and investigation of SNVs derived from

SARS-CoV-2 (or other viral) genomes.

Storing nucleotide variant-level data has an advantage beyond sequence typing,

where individual variants can be monitored to see if they are increasing in fre-

quency, which could potentially be an indication of a variant associated with a

higher transmissiblity or immune escape [9].

Kmer-based approaches

Whereas nucleotide variant approaches operate on single nucleotide differences be-

tween genomes (or other small variants), kmer-based approaches break up genomes

into fragments of length k, a kmer, and compare these kmers to help classify or

cluster bacteria. While many traditional data analysis methods, such as genome

assembly or reference alignment , may rely on breaking up sequences into kmers or

small fragments, they often have additional steps which transform the kmers into

some final result (e.g., a de novo assembly). The advantage of kmer approaches

for clustering or classification of microbial genomes is that they operate directly

on kmers to produce their final result, with few intermediate steps. Thus, they can

skip some of the secondary analysis methods to save on time or memory.

Mash [50] is one such kmer-based approach, based on the MinHash [51] algorithm

originally developed to detect similarities in documents. In Mash, genomes are

26 Chapter 2: Background & Literature Review

broken up into kmers and MinHashing is applied to select a subset of kmers and

store the associated hash codes in a reduced dataset called a sketch. Sketches

have the advantage of greatly reducing the number of kmers to record for each

genome, while still retaining the ability to approximate the similarity between two

genomes (defined as the Jaccard index [52] or the proportion of shared kmers be-

tween genomes). The similarity scores procured from the sketches can be used to

hierarchically cluster genomes into related groups [53]. More recent software us-

ing the MinHashing approach includes sourmash [54], which includes the ability to

construct and save a sketch using multiple kmer sizes, which can be useful to help

balance speed vs. accuracy when performing MinHash comparisons.

A second method, which focuses on indexing large amounts of genomics data, is

BIGSI [12]. BIGSI indexes kmers using a bit-sliced signature index—previously

used by web search engines such as Bing [55]—to develop a system for rapidly

searching for genes or other small sequences of interest within hundreds of thou-

sands of bacterial genomes. COBS [56]—an extension of BIGSI—attempts to

reduce the storage space required for generating these large indexes through

variable-sized (as opposed to fixed-sized) Bloom filters used by the bit-sliced

signature indexes.

Another interesting method—that intersects with kmer based and nucleotide

variant-based approaches—is BioHansel [57]. BioHansel identifies SNVs which

differentiate bacterial subtypes and organizes the SNVs into a SNV scheme, which

associates sets of SNVs with particular subtypes. Next, kmers which contain the

SNVs are used to rapidly screen and classify new WGS data, assigning each dataset

Chapter 2: Background & Literature Review 27

a subtype derived from the pre-defined SNV scheme.

Gene-based methods

Gene-based methods operate at the level of genes—a fundamental unit of a genome

consisting of a sequence of nucleotides that encodes some particular component

of the machinery used by the organism [29]. Genes are of variable length and are

much larger than the typical value of k chosen for kmers. Gene-based approaches

include multi-locus sequence typing (MLST)—used to classify bacteria based on dif-

ferences within particular genes [58]. In MLST, each gene represents a particular

locus (location on the genome) to examine for variation, and the set of loci (genes)

together define a scheme. Every unique variant of a gene (called an allele) is as-

signed a number (e.g., allele 1). The set of allele numbers for all loci together are

assigned a specific multi-locus sequence type. Different sequence types can be used

to delineate different lineages of an organism.

While originally proposed to operate on small numbers of loci, MLST has since

been extended to include many more loci—up to all the genes in a particular or-

ganism [59]. These extended MLST schemes are referred to as core-genome MLST

or whole-genome MLST. In core-genome MLST only those genes shared among a

group of organisms (the core genes) are used. Whole-genome MLST includes both

the core genes of a group of organisms (such as a species) as well as genes that may

only be found in a subset of this group of organisms (the accessory genes) [20].

There is a diverse set of software packages for identifying the MLST types of a col-

lection of bacteria. One of the earlier programs is SRST2 [15], which identifies se-

28 Chapter 2: Background & Literature Review

quence types by comparing WGS reads to a curated set of reference loci (using ref-

erence alignment). More recent software—such as MentaLiST [60] and STing [61]—

avoid the complexity of reference alignment used by SRST2 by directly working

with kmers. Finally, there exists species-specific software, such as SISTR [14] for

Salmonella, which uses core-genome MLST alongside additional classification meth-

ods. Comparison of MLST-based methods to SNV-based methods suggests that

they tend to produce fairly concordant results when classifying closely related or-

ganisms [45]. For more distantly related organisms, SNV-based methods may detect

a greater variation since they can account for multiple nucleotide differences within

a single gene.

Central data repositories are used to to compare and track large numbers of MLST

schemes and data. One popular repository is PubMLST.org, which hosts MLST

schemes for a large collection of bacteria and other organisms [62]. Originally

designed to work with basic 7-gene MLST, PubMLST—backed by the software

BIGSdb [63]—has grown to encompass both core-genome and whole-genome

MLST schemes. A similar repository is Enterobase [64], which focuses on main-

taining whole-genome and core-genome MLST schemes and classifications of

enteric bacteria—for example containing classifications for over 100,000 Salmonella

genomes. One interesting feature of Enterobase is the hierarchical division of bac-

teria into clusters (called HierCC) based on similarities in their identified MLST

alleles at differing thresholds [65].

Chapter 2: Background & Literature Review 29

2.2.5 Phylogenetics

Phylogenetic trees are a model of the genealogy of some particular biological entity

as a tree [66; 67]. One example is the relationship of all living organisms on earth,

which can be modeled with a tree where leaf nodes correspond to specific named

species and internal nodes in the tree corresponding to known or hypothetical an-

cestors. Such a tree would be considered a species tree—as it models the genealogy

of different species—with internal nodes corresponding to speciation events. An al-

ternative type of phylogeny would be a gene tree, where the tree is a model of the

genealogy of a collection of genes. Phylogenetic trees can either be rooted—where

one node is a parent of all other nodes—or unrooted. A clade (or monophyletic

group/clade) is a collection of organisms which all share the same ancestor, repre-

sented on a tree as a node and all of its descendants [68] (i.e., a sub-tree rooted at

a chosen node). There have been a number of different approaches for constructing

a phylogeny, but two large categories are distance-based and character-based.

Distance-based methods

In distance-based methods, only the pairwise distances between different genomes

are considered for constructing a phylogenetic tree. These distances can be calcu-

lated using a number of methods and evolutionary models. When pairwise dis-

tances are all defined, then constructing a tree can proceed through a variety of

methods, which include the hierarchical clustering algorithms already discussed. In

particular, the UPGMA method (unweighted pair group method with arithmetic

averages) is a type of agglomerative hierarchical clustering for constructing a phy-

30 Chapter 2: Background & Literature Review

logenetic tree that uses average-linkage distances [67; 26] and produces a rooted

tree. The cluster-tree can be interpreted as a phylogeny, where leaf-nodes corre-

spond to individual sampled genomes, while internal nodes correspond to hypothet-

ical ancestors. UPGMA, due to its use of average-linkage distances, also produces

an ultrametric tree, which can be interpreted to represent a scenario of a constant

molecular clock (i.e., all genomes evolve at the same rate with respect to time)

[67]. This assumption may or may not be realistic. An alternative algorithm, which

does not require this molecular clock assumption, is neighbor-joining [67; 66].

Unlike UPGMA, neighbor-joining is a form of divisive hierarchical clustering ,

which does not produce a rooted tree, and so a root would have to be identified us-

ing some other method (such as including an outgroup in the tree). Both UPGMA

and neighbor-joining still require the assumption of distances being additive, which

means that the distance between genomes should be equal to the sum of distances

along the path in the tree connecting them [67]. The additive property may or may

not hold depending on the distance measure between genomes.

Character-based methods

In contrast to distance-based methods, character-based methods make use of the

actual character data (either nucleotide or amino acid) [66]. This character data is

provided in the form of a multiple sequence alignment, where the individual char-

acters are organized into columns (a site in the alignment) containing homologous

characters. Ideally these homologous characters should all have some shared an-

cestry (a common ancestor), which is what lets us use the sites of the alignment to

Chapter 2: Background & Literature Review 31

infer a phylogeny reflecting the shared ancestry of the sequences as a whole. For

microbial whole-genome sequence data, these multiple sequence alignments can be

constructed either using the assembled genome or through a reference-alignment

approach.

Three common character-based methods include: maximum parsimony, maxi-

mum likelihood, and Bayesian. Maximum parsimony takes the approach of as-

signing characters to internal nodes of a tree (representing hypothetical ancestors)

to minimize the number of character changes required to explain the observed se-

quences in the leaves of the tree. The tree requiring the fewest character changes

(and hence maximal parsimony) is chosen as the tree that best represents the ge-

nealogy of the sequences [66].

In contrast to maximum parsimony, both maximum-likelihood and Bayesian meth-

ods are probabilistic methods [67]. If we let T represent a tree (i.e., a model of

the shared ancestry of sequences) and let D represent our input data (the align-

ment), then P (D|T) represents the probability of our data given a particular tree.

In maximum-likelihood, we are treating P (D|T) as a function of T (we are search-

ing for a particular tree T where we already have the data D), hence P (D|T) is

referred to as a likelihood (instead of a probability), and our goal is to find the tree

that maximizes this likelihood. Conversely, for Bayesian methods, we are interested

in P (T |D), which we can related to P (D|T) through Bayes’ theorem. Additional

details on these methods can be found in [66; 67].

32 Chapter 2: Background & Literature Review

Evolutionary models

For the probabilistic character-based methods (as well as for distance methods) we

can make use of different models of evolution to define distances between sequences

(genomes) [66; 67] and make corrections to better reflect the true evolutionary dis-

tance. For nucleotide data, these models attempt to account for real-world differ-

ences in rates between nucleotide substitutions (e.g., possible differences between

an A → T vs. A → G substitution). The simplest model is JC69 [69], which as-

sumes an equal rate for all possible substitutions from one nucleotide to another.

More complicated models such as K80 [70] (different rates between transitions and

transversions) or HKY85 [71] (extends K80 to include differences in equilibrium

frequencies of nucleotides) introduce additional parameters to capture differences

in substitution rates. The GTR [72] model (General Time Reversible) is the most

complicated model that is also time-reversible (i.e., the rate of any substitution

like A → T is the same as its reverse T → A [66]). GTR includes the previous de-

scribed models within it by assuming certain parameters are fixed (e.g., equal rates

for all substitutions and equilibrium frequencies for the JC69 model).

Phylogenetics and clustering

As described in Section 2.1.4, clustering is an unsupervised machine-learning ap-

proach to partition data into different categories (called clusters). Of the different

methods for clustering, hierarchical clustering will group data into separated clus-

ters by organizing these clusters into a larger tree, which can be drawn as a den-

drogram. Both UPGMA and neighbor-joining are forms of hierarchical clustering

Chapter 2: Background & Literature Review 33

where the constructed clustering tree can be interpreted as a phylogeny. Addition-

ally, we can construct flat clusters/partitions (as opposed to hierarchical clusters)

from either of these trees (or any hierarchically clustered tree) by cutting this tree

at different distance thresholds [26]. This method works the best when the tree is

ultrametric (all path lengths from the root to the leaves are the same), which is the

situation for UPGMA-produced trees but not neccessarily for other types of phylo-

genies (like neighbor-joining or maximum-likelihood) [73].

There has been a number of other methods developed to attempt to group genomes

into flat clusters by making use of a phylogenetic tree and which do not need the

tree to satisfy the ultrametric property. One such method is Cluster Picker [74],

which identifies flat clusters from a rooted phylogenetic tree by searching for mono-

phyletic clades (sub-trees) that match user-defined thresholds. Cluster Picker starts

from the root of a phylogeny and examines each node through a depth-first search,

pruning the clades rooted at each node that fail either branch support or pairwise-

distance thresholds. The nodes (and corresponding clades) that pass these thresh-

olds are returned as separate clusters, with leaves of each clade corresponding to

the members of each cluster. An alternative method is TreeCluster [73], which at-

tempts to cut a phylogenetic tree (either rooted or unrooted) into the minimal

number of sub-trees such that each sub-tree satisfies some defined constraint (such

as a maximum pairwise-distance threshold). With a rooted tree, TreeCluster can

use the additional constraint of restricting each cluster to a monophyletic clade.

34 Chapter 2: Background & Literature Review

2.3 Feature identification and storage

To identify, store, and operate on features from the three identified levels—

nucleotide variants, kmers, and genes—there is a need for standard data

models and file formats. A number of these have been previously identified and

described, particularly for nucleotide variant data.

2.3.1 Nucleotide variant models

A nucleotide-level variant describes some variation in the underlying nucleotide se-

quence that make up either the DNA or RNA molecules found within an organism

[75; 76]. Often, these are described as a change from a reference sequence to some

sequence of interest (the alternative sequence) at some particular location. For ex-

ample, A → T at position 10 describes a substitution where the reference nu-

cleotide, A , changes to a nucleotide T at position 10 of the reference genome.

For microbial WGS-based analysis, the reference sequence could be a previously

sequenced genome that is stored on public archives (e.g., RefSeq [77]), or could be

some particular chosen organism within a collection that has undergone de novo

assembly (Section 2.2.3) but is not otherwise available in public archives. A number

of common data models and file formats for describing nucleotide-level variation are

shown in Figure 2.3 and are described below.

VCF

One common storage format for nucleotide-level variants is the Variant Call For-

mat (VCF) [75] (Figure 2.3.B), which is a text-based format for storing nucleotide

Chapter 2: Background & Literature Review 35

A. Coordinates
Base

(residue)
coordinates

Interbase
(inter-residue)
coordinates

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

T T G G C - AA

T T A G C G AAreference

genome X

0-indexed

0-indexed

1-indexed

B. VCF

1-indexed base coordinates

##...
#CHROM ID POS REF ALT ...
reference . 4 A G
reference . 6 CG C

C. SPDI

0-indexed interbase coordinates

reference:3:1:G
(reference:3:A:G)

reference:5:2:C
(reference:5:CG:C)

sequence:position:deletion:insertion

D. HGVS

1-indexed base coordinates

reference:g.4A>G
reference:g.6del

g. = genome reference
c. = coding region
p. = first amino acid

F. BED*

0-indexed base coordinates

reference 3 4
reference 6 7

Chrom Start (≤) End (<)

E. VRS

0-indexed interbase coordinates

{ "type": "Allele",
 "state": {"sequence": "G", "type": "LiteralSequenceExpression"},
 "location": {
 "sequence_id": "refseq:reference", "type": "SequenceLocation",
 "interval": {"type": "SequenceInterval",
 "start": {"type": "Number", "value": 3},
 "end": {"type": "Number", "value": 4}}}}

Figure 2.3: An overview of different nucleotide-level variation representation mod-
els, with an emphasis on the coordinate systems used (labeled at the bottom of
each box). (A) The different classes of coordinate systems used by each model.
These are either base (or residue) coordinates, which count each nucleotide in a
sequence, and interbase (or inter-residue) coordinates, which count the spaces
in between each nucleotide in a sequence. These classes can then either be 0-
indexed (starts counting from 0) or 1-indexed (starts counting from 1). Two ex-
ample nucleotide-level variants are represented, labelled by a red circle (a substi-
tution) and a blue square (a deletion). (B) The VCF [75] model and file format.
Each nucleotide-level variant is represented as a separate row in a tab-delimited
file, which records the sequence identifier (CHROM), position (POS), reference
nucleotides (REF) and alternative nucleotides (ALT). (C) The SPDI [42] model.
Each variant is represented by four attributes (sequence, position, deletion, inser-
tion) concatenated by a : that describes how to transform a reference sequence
into the sequence with the variant. The deletion string can have two different repre-
sentations, either as the number of nucleotides to delete from the reference (the top
identifier) or the nucleotide-string to delete (the bottom identifier). (D) The HGVS
[78] model. This represents each variant by a sequence identifier (reference) fol-
lowed by the type of sequence (g. for a genomic reference) and the position and
type of variation. (E) The VRS [76] model. Each variant is represented by a hier-
archical data structure written as JSON that stores the type of variation and the
location. Only the red-circle substitution variant is shown. (F) The BED [79] for-
mat. This stores intervals on a genome given as a sequence identifier (Chrom) a
Start and an End in a tab-delimited file format. The intervals are inclusive of the
start, but exclude the end (i.e. the half-open interval: start ≤ p < end for all in-
tegers p). *BED differs from the other models in that it is primarily used to store
intervals on a genome and not variants.

36 Chapter 2: Background & Literature Review

feature records—one record per line. Each record is divided up into a number of

columns separated by tab characters. The columns include a name for the chromo-

some (CHROM), the position of the variant (POS), the reference genome sequence

(REF), and a list of alternative alleles that replace the reference sequence (ALT).

VCF files can also be used to store a lot of additional statistical or other informa-

tion related to a variant. They can even be used to store a list of samples that have

a particular variant (and so could be used as an inverted index that matches vari-

ants to sets of samples).

SPDI

A second, but related, model for storing nucleotide features is the Sequence Po-

sition Deletion Insertion (SPDI) model [42] (Figure 2.3.C). The SPDI model

identifies each nucleotide variant with four different attributes that define

how a reference sequence is transformed to contain the named nucleotide

variant. Each attribute is concatenated by the : character to form a single

string that identifies a variant. Specifically, a single identifier would look like:

[sequence]:[position]:[deletion]:[insertion] (e.g., seq1:5:G:T or

seq1:5:1:T). The attributes consist of: (1) the name of the sequence (e.g.,

seq1), (2) the position of the variant (e.g., 5), (3) the nucleotides deleted from

the reference sequence or the length of deletion (e.g., G or 1 to represented a

deletion of 1 nucleotide), and (4) the inserted nucleotides that replace the deleted

portion (e.g,. G).

Chapter 2: Background & Literature Review 37

HGVS

A third model is the Human Genome Variation Society (HGVS) model [78] (Fig-

ure 2.3.D), which describes a method of identifying variants in a human-readable

string. These aren’t necessarily restricted to nucleotide-level variants, but can be

applied to other types of variation as well, such as amino-acid variants, or RNA

variants. An example of an HGVS-identified variant is seq1:g.5G>T . This vari-

ant identifier consists of (1) a sequence identifier (seq1), (2) the type of sequence

identified (g. for a genomic reference), (3) the position on the sequence (5 for

position 5), and (4) the variation at this position (G>T for a substitution of G →

T). There are many different modifications to this basic HGVS identifier that pro-

vide more details on the variant. For example p. can be used in place of g. to

describe an amino-acid level variant, or 5_10del can be used to describe a deletion

from positions 5 to 10.

VRS

A fourth model is the Variant Representation Specification (VRS) [76] (Fig-

ure 2.3.E), which is developed as part of the Global Alliance for Genomics and

Health (GA4GH, https://www.ga4gh.org). This model is also more general

than just a representation of nucleotide variation, such as substitutions or inser-

tions/deletions (all part of what is termed "molecular variation"), but can also

include copy-number or genotype variation (part of "systemic variation"). These

different variation types are represented using a number of abstract components

that are structured according to a JSON schema. The top-level component is

https://www.ga4gh.org

38 Chapter 2: Background & Literature Review

"Variation", which can be further divided into "MolecularVariation" and then

"Allele". An Allele is used to represent a particular nucleotide-level variant, which

is described by a "SequenceLocation" on a sequence and a "SequenceExpression"

describing the substitution/insertion/deletion. One issue that can arise is that

it is possible to represent the same variant using different JSON data structures

(e.g., if you use different sequence identifiers for the same genome). To combat

this issue, the VRS system also includes a method to condense the variant iden-

tifier into URI (called a CURIE), which will be identical for identical variants

regardless of their JSON representation. The CURIE for a variant is structured like

[namespace]:[type][base64 encoded hash] (e.g., ga4gh:VA.2X6ThYd...).

This also has a benefit of reducing the verbosity of the full JSON definition of a

variant, though at the expense of losing human-readability.

BED

Finally, a related format which is commonly used to describe blocks of contiguous

regions on a genomic sequence is the Browser Extensible Data (BED) format (Fig-

ure 2.3.F). While originally developed to define regions to display in the Human

Genome Browser at UCSC [79], the development of suites of software such as BED-

Tools [80] and pybedtools [81] for working with this format makes it useful for op-

erations on intervals of genomic data (e.g., unions, intersections, subtractions). The

format stores a sequence identifier along with a start and end position for an inter-

val (as the half-open interval start ≤ p < end for all integers p) in a tab-delimited

file, one interval per line. This format is not used to store nucleotide-level variation

Chapter 2: Background & Literature Review 39

like the other formats.

Coordinate systems

One complexity of all these different variation models and file formats is the dif-

ferent coordinate systems used to number nucleotides (Figure 2.3). These can be

divided into two broad categories: base (or residue) coordinates, where it is the nu-

cleotides that are numbered, and interbase (or inter-residue) coordinates, where it

is the spaces in-between nucleotides that are numbered. The numbering can also

further be sub-divided to be 0-indexed (counting starting from 0) and 1-indexed

(counting starting from 1). Both VCF and HGVS used a 1-indexed base coordi-

nate system (so they count the nucleotide bases and start counting with a 1). Both

SPDI and VRS use a 0-indexed inter-base coordinate system (so they count the

spaces in between nucleotides and start counting with 0 prior to the first nucleotide

in the sequence). The BED format uses 0-indexed base coordinates (counts the nu-

cleotides and starts with a 0). No variation system reviewed here uses a 1-indexed

interbase coordinate system. Care should be taken to account for these coordinate

system differences to avoid off-by-one errors when mixing and matching these varia-

tion models.

Storage models and other data

So far, I have only described how to name and store nucleotide variants—that is

some transformation that changes a reference nucleotide sequence to an alterna-

tive nucleotide sequence (e.g., an A → T substitution). However, there is other

information that may be of importance that could be stored alongside nucleotide

40 Chapter 2: Background & Literature Review

variants. In general, there are four different classes of information that could be de-

scribed:

1. Variants. These are any variation in the nucleotide sequence of a reference

genome that transforms it into an alternative genome (e.g., an A → T sub-

stitution).

2. Reference. These are regions on the reference genome that are identical to

regions on the alternative genome.

3. Missing/unknown. These are regions on the reference genome where there

is missing data on the alternative genome. Thus, these regions cannot be de-

scribed as either variants or reference.

4. Novel. These are regions on the alternative genome that are missing on the

reference genome (i.e., novel regions).

In order to account for these additional regions, a number of different variant

storage models have been proposed [82]. The simplest model would be to store

only variant nucleotides—the Variant Only Storage Model. This minimizes

the amount of information stored, but may lead to misinterpretations of data

in non-variant positions (where it cannot be determined if the nucleotide is the

reference nucleotide, or is of poor quality/missing). Alternatively, every posi-

tion on the reference genome could be assigned either as variant, reference, or

missing and stored all together—the Full Storage Model. This provides a

way to differentiate between reference and missing data, but at the expense of

increased storage space (in the models described in [82] novel regions are not

Chapter 2: Background & Literature Review 41

considered). A more compact form could be termed the Block Storage Model,

where contiguous blocks of reference or missing regions are stored as a single en-

try with a range of positions (e.g., 100-200) instead of separate entries per each

nucleotide. This model is very similar to the Genomic VCF (gVCF) format [83]

(https://github.com/sequencing/gvcftools)—an extension of the VCF format

to include blocks of contiguous reference or missing nucleotides in a single VCF

record. Finally, the Negative Storage Model stores variant nucleotides and

contiguous blocks of missing data, while leaving reference genome blocks unstored.

This is because they can be inferred as those positions on the reference that are

neither variant nor missing (assuming the full reference genome sequence is stored

elsewhere).

2.4 Workflow management

Microbial genomics data analysis can often involve running a collection of different

software—feeding the output of one component to the input of another—as data

progresses through the different analysis stages (i.e., primary → secondary → ter-

tiary). The variety of methods and software choices available for analysis can lead

to complexity in defining and maintaining a full analysis pipeline. Further compli-

cations arise when attempting to install and execute all this software in a portable

manner across different execution environments (e.g., on a single machine or in a

cloud computing environment).

Workflow management software is one solution to this problem. These software are

designed to simplify the overhead of common tasks when designing a data analy-

https://github.com/sequencing/gvcftools

42 Chapter 2: Background & Literature Review

sis pipeline and provide a mechanism for executing the software through a com-

mon interface [84]. Additional benefits of workflow managers are the support for

installation of individual software components and dependencies through the use of

package managers, such as Conda [85] and Bioconda [86], or container technologies,

such as Docker [87] or Singularity [88].

A comparison of some different workflow systems can be found in Table 2.1, which

is derived from existing literature [84; 89] and the documentation provided by each

workflow manager. The table is divided into two main categories of comparison cri-

teria: development and execution.

2.4.1 Development

The design and development of a workflow is one major way to compare different

workflow managers (Table 2.1). Each evaluated workflow manager is able to exe-

cute workflows defined in some text-based language (e.g., YAML for Snakemake

and Pegasus or Groovy for Nextflow). These languages provide the capability to

join together the inputs and outputs of multiple existing software to define the

flow of data across multiple stages from input to a final output. Most workflow

managers provide the capability to easily write these stages as small collections of

command-line tools (e.g., grep "string" input.txt | sort), which provides

an easy transition for developers familiar with working in a command-line environ-

ment to begin writing a workflow using these languages. One exception is Galaxy

[92], which operates at the more abstract level of a tool wrapper that must be pre-

defined in Galaxy prior to incorporating it into a workflow (though the Galaxy

Chapter 2: Background & Literature Review 43

Category Criteria Snakemake

[90]

Nextflow

[91]

Galaxy

[92]

Pegasus

[93]

Cromwell

[94]

Development Language YAML/

Python

Groovy JSON YAML/

XML /

API

WDL/

CWL

Supports CWL

[95] or WDL [96] a

CWLf CWLf CWLf CWLf CWL/

WDL

Flow-controlb ! ! ! !

Designc T T TGC T T

Execution Environmentd LHC LHC LHC LHC LHC

Dependenciese CDS CDS CDS DS DS

Interface CLI/ API CLI GUI/ API

/ CLI

CLI CLI/ API

Resuming ! ! ! ! !

Table 2.1: Comparison of different workflow languages and implementations.

a CWL = Common Workflow Language (https://www.commonwl.org),

WDL = Workflow Description Language (https://openwdl.org)

b Flow-control is the ability to enable or disable parts of the workflow to control data flow.

c T = text-based workflow design, G = graphical workflow design, C = command-line software for aiding design

d L = local, H = high performance computational cluster, C = cloud

e C = conda (https://conda.io), D = docker (https://docker.io), S = singularity (https://sylabs.io)

f Partial implementation or conversion scripts for CWL

community provides an enormous variety of tool wrappers contributed by bioin-

formaticans).

In addition to software-specific languages, two other languages for defining work-

flows include both the Common Workflow Language (CWL) [95] and the Workflow

Description Language (WDL) [96]. These are intended to be software-independent

https://www.commonwl.org
https://openwdl.org
https://conda.io
https://docker.io
https://sylabs.io

44 Chapter 2: Background & Literature Review

standards which can be executed within a variety of workflow engines. Most work-

flow engines support CWL to some extent, though often only a partial implementa-

tion or by providing scripts to convert their custom language to a CWL workflow.

WDL is supported by fewer workflow managers, with one notable exception being

Cromwell [94], where it is the primary language used to define workflows.

Some workflow managers are able to directly incorporate code from existing pro-

gramming languages. In particular, Snakemake [90] can incorporate Python code

within a workflow while Nextflow [91] uses an existing programming language—

Groovy—which is derived from Java. These provide greater flexibility to fine-tune

the operation of the workflow when there does not exist command-line tools for the

particular task at hand. This also ties into the capability to include advanced flow-

control logic (such as if-else statements) for controlling the execution of different

branches of a workflow. Most workflow managers support these flow-control struc-

tures except for Galaxy, which is limited in how different branches of a workflow

can be executed.

One criteria of designing workflows where Galaxy excels is the large vari-

ety of tools and resources for designing workflows. Workflows are primar-

ily designed using a graphical user interface (the Galaxy web application),

but there is also experimental support for a text-based design of workflows

(https://github.com/galaxyproject/gxformat2). In addition, there are a

collection of command-line tools (the Planemo suite [97]) to assist in developing,

testing, and sharing workflows or individual tools. Most other workflow managers

primarily rely on writing workflow files in text editors which can then be executed

https://github.com/galaxyproject/gxformat2

Chapter 2: Background & Literature Review 45

by the workflow manager.

2.4.2 Execution

The second major category for comparing workflow managers is in how workflows

are executed (Table 2.1). Every workflow manager is capable of executing the same

workflow on either a local computer, a high-performance computational cluster,

or in a cloud-based environment. This is one of the advantages of using workflow

managers—the capability of executing the same code in a variety of environments.

Additionally, nearly every workflow manager provides multiple ways to automat-

ically install and manage software dependencies required by a workflow. Both

Docker [87] and Singularity [88] are container solutions that are supported by

every workflow manager. Containers provide the capability to encapsulate a piece

of software and all its dependencies and isolate it from the main host machine,

which makes it portable across a wide variety of computational environments. An

additional method of software dependency management is via conda and the bio-

conda project [86], which is a package manager and repository of software packages,

respectively, that are popular with bioinformaticians. All workflow managers except

Pegasus and Cromwell support dependency management using conda.

All workflow managers provide a command-line interface for the execution of a

workflow. A few (Snakemake, Galaxy, and Cromwell) also provide programmatic

APIs for the execution of workflows. Galaxy alone provides a full web-based and

graphical interface for the execution of workflows and management of data. In any

method of executing workflows, all management software also provides the capa-

46 Chapter 2: Background & Literature Review

bility to resume workflows that have either failed or paused for some reason or an-

other.

Chapter 3

Software design

I have chosen to implement an indexing, querying, clustering, and visualization

framework for microbial genomics using Python, which includes both a Python-

based API as well as a command-line interface. The software is named Genomics

Data Index (GDI) (https://github.com/apetkau/genomics-data-index, ver-

sion 0.6.0, doi: 10.5281/zenodo.6485506). It is available for installation as a Python

package using pip (pip install genomics-data-index). It requires some addi-

tional non-Python dependencies as described in the installation guide (it is recom-

mended to use conda to install these). Example code and tutorials are available

on GitHub (https://github.com/apetkau/genomics-data-index-examples)

and provide a walkthrough of some of the features of the software using example

datasets.

The overall design of this software falls into five separate components (Figure 3.1).

These can be divided up into the mandatory components and optional com-

ponents. The mandatory components consists of indexing genomic features that

47

https://github.com/apetkau/genomics-data-index
https://github.com/apetkau/genomics-data-index-examples

48 Chapter 3: Software design

have been identified elsewhere and then querying this index for features or other in-

formation of interest. The optional components include a data analysis pipeline for

identifying genomic features prior to indexing as well as clustering and visualiza-

tion. These are described in more detail below:

1. Data analysis pipelines. This takes the microbial genomes (either as as-

sembled genomes or as WGS reads) and processes them to identify the un-

derlying genomic features to be indexed. These features consist of one of:

nucleotide variants, genes, or kmers. Identifying these genomic features

requires specialized software organized into a data analysis pipeline to move

from genomics data to genomics features.

2. Indexing genomics features. This stage indexes the identified features

to help speed up the querying stage. That is, the features are loaded, trans-

formed, and stored within a special data structure (an inverted index stored

in a relational database). This stage can either process files identified from

the previous Data analysis pipelines stage or from External data analy-

sis (where genomic features are generated and saved independently).

3. Querying. This stage provides support for searching for genomes with par-

ticular features. Optionally, querying for closely related genomes can be per-

formed using data from the Clustering stage.

4. Clustering. This stage groups together genomes stored in the index into

clusters based on shared features.

Chapter 3: Software design 49

5. Visualization. This stage implements methods to visualize genomes, fea-

tures, or clusters of genomes.

1. Data analysis
(gdi analysis)

3. Querying
(gdi query)

5. Visualization
(API)

Mandatory data flow

Optional processing steps

2. Indexing
(gdi load)

4. Clustering/
phylogenetics

(gdi rebuild tree)

Genomes
(reads/

assemblies)

Genomic
features

External
data

analysis

Figure 3.1: An overview of the indexing software and data flow. There are two cat-
egories of analysis stages: the mandatory stages (in green), which go from ge-
nomic features to a query-able index, and optional stages (in blue), which either
help to identify features in genomics data or cluster the data for additional query-
ing options. Names of the commands in the command-line interface used to per-
form each stage are given in brackets below the stages. Each command can addi-
tionally be initiated from the Python API. The visualization stage can only be
performed from the Python API. External data analysis refers to the ability to
generate genomic features from external software before indexing.

3.1 Data analysis pipelines

The first step in the overall software design is transforming raw WGS data into col-

lections of genomic features that can be indexed. The main input format for GDI

50 Chapter 3: Software design

is microbial genome sequence reads in the FASTQ [32] format (either compressed

or uncompressed), or assembled genomes. Additionally, for performing sequence

read alignment to a reference genome, a reference genome is needed as input (as a

FASTA or Genbank file).

Once the input files are provided, the next step is running all the necessary under-

lying bioinformatics software needed to identify the genomic features. I chose to

make use of Snakemake [90], which is a Python-based workflow language that pro-

vides a mechanism to write a workflow and schedule the individual tools for execu-

tion in a variety of environments (described in detail in Section 2.4).

3.1.1 Pipeline design

The overall data analysis pipeline is designed as a single workflow, written using

Snakemake, which will either enable or disable certain stages depending on the type

of input data and parameters (Figure 3.2). For example, if sequence reads or as-

sembled genomes are given as input, then the respective portions of the analysis

pipeline will be executed (Figure 3.2.A for reads and Figure 3.2.B for assemblies).

Regardless of whether input data was reads or assemblies, kmer-based sketching

(using sourmash [54]) can also be performed. These sourmash sketches are saved as

gzipped JSON files for every input genome and combined with the additional out-

put described in details below.

Chapter 3: Software design 51

Nucleotide
variants

(VCF)

Alignment
(minimap2)

Variants/
invariants
(bcftools)

Variant effects
(snpEff)

Assembled
genome

(Genbank,
FASTA)

Masked
regions
(BED)

Complement of
variants/invariants

(bedtools)

Reference
genome

(Genbank,
FASTA)

Genes
(mlst)

Genes/
MLST

results
(TSV)

Variants only
(bcftools)

A

snippy

Nucleotide
variants

(VCF)

Variant effects
(snpEff)

Sequence
reads

(single/pair
FASTQ)

Masked
regions
(BED)

Reference
genome

(Genbank,
FASTA)

Alignment
(bwa)

Variants
(freebayes/bcftools)

aligned.fa
(samtools/bcftools)

Create genome mask
(bedtools)

B

Sketch
(gzipped
JSON)

Reads or
assembly
(FASTQ,
FASTA)

MinHash Sketch
(sourmash)

C
Input

Processing stage

Output

Optional processing

Optional output

Figure 3.2: An overview of the data analysis pipelines for transforming ge-
nomics data into genomics features. Each section is combined together within a
single Snakemake [90] workflow, but are shown separately for clarity. Text shown in
braces underneath each stage name shows the software or file format being used.
(A) The genome assembly pipeline which processes assembled genomes to pro-
duce files containing nucleotide and gene (MLST) features. (B) The sequence reads
analysis pipeline, which processes WGS reads to produce nucleotide features (this
process excludes gene features). (C) The pipeline stages for constructing MinHash
sketches (kmer features).

52 Chapter 3: Software design

Genome assembly input

When genome assemblies are given as input (Figure 3.2.A), the pipeline uses min-

imap2 [39] to perform a pairwise alignment for every input genome assembly to a

chosen reference genome. Minimap2 was chosen as it can align both reads as well as

assembled genomes, and produce as output a BAM file [98], which is a file format

used to store alignments. The aligned genomes are next passed to a combination

of SAMtools and BCFtools [99] with specific filtering criteria to identify nucleotide

variants and reference genome entries in the VCF format. The nucleotide variants

are next passed—assuming the reference genome is in Genbank format and con-

tains gene annotations—to SnpEff [100] to identify nucleotide variant effects (such

as amino acid changes). This will produce a new VCF file with these effects en-

coded inside. If the reference genome does not include gene annotations, then the

SnpEff stage is skipped (and so no variant effects, like amino acid changes, will be

associated with the nucleotide variants).

To handle missing data, I produce as part of this pipeline a BED file which con-

tains the coordinates of missing regions in the alignment or those regions with am-

biguous bases on the input genome (e.g., N). This is constructed using the output

of BCFTools (a VCF file) that contains records for both nucleotide variants and

positions identical to the reference genome, but excludes missing regions. Thus, co-

ordinates in the the complement of this VCF file are the missing regions, which are

processed using bedtools [80] to produce the BED file.

An optional step in this portion of the pipeline is to also include gene-level features.

This is accomplished using the mlst software [101], which makes use of databases

Chapter 3: Software design 53

from PubMLST [63; 62]. This only produces traditional MLST results and core-

genome (or whole-genome) MLST is not included.

The final output of this portion of the pipeline is a tab-delimited file which lists the

VCF and BED files for each genome (the nucleotide-level variants) along with a

tab-delimited MLST file.

Sequence reads input

When input is given as sequence reads (Figure 3.2.B), then the main analysis

method for nucleotide variants is snippy [46]. Snippy internally makes use of the

software bwa [98; 102; 37] for read alignment and freebayes [103], bcftools, and sam-

tools [99] for variant identification. As output, snippy provides a VCF file for each

genome, recording the high-quality nucleotide variants (e.g., those that passed the

quality thresholds defined by snippy). I use this VCF file as input to SnpEff [100]

to annotate the VCF file with variant effects. Snippy also includes a stage where

SnpEff is used, but I disable this and run SnpEff myself so that I have greater

control over the parameters being used.

To handle missing data, I make use of the snps.aligned.fa file produced by

snippy that contains gaps - and ambiguous bases N aligned to the reference

genome for missing or low-quality data. I convert the positions of these gaps and

ambiguous bases to a BED file containing coordinates of missing regions. I then

subtract off any variants found in the VCF file produced by snippy (to include

deletions as part of the nucleotide variants and not as part of missing data).

The final output of this portion of the pipeline is a tab-delimited file which lists the

54 Chapter 3: Software design

VCF and BED files for each genome. There is no gene-level (MLST) analysis of any

kind performed in this stage.

3.1.2 Parallelization of the Analysis stage

The use of the Snakemake [90] workflow language provides automatic support for

parallel processing of genomes. Snakemake makes use of the provided list of input

genomes alongside the defined workflow to construct a Directed Acyclic Graph

(DAG) showing dependencies among all the individual stages of the workflow.

Figure 3.2 shows a descriptive overview of a DAG for the GDI workflow and Fig-

ure A.1 shows an automatically-constructed DAG from Snakemake for three input

genomes.

The constructed DAG is used to schedule and execute jobs for each stage. A sin-

gle path through the DAG defines a set of jobs that must be executed sequentially,

while parallel paths define jobs that can be executed in parallel. Snakemake exe-

cutes individual jobs according to the DAG, which will involve a combination of

sequentially-executed and parallel-executed jobs. The maximum number of jobs

that can be executed in parallel is controlled by a parameter passed to Snakemake

(the --jobs parameter), which is ultimately derived from the maximum number

of cores provided to the GDI command-line interface.

Analysis sample batching

When running large numbers of samples (e.g., tens of thousands) within a single

Snakemake workflow, a significant amount of time may be spent inferring the very

Chapter 3: Software design 55

large DAG prior to executing jobs. To speed up processing, Snakemake provides a

mechanism to process input files in batches (using the --batch argument) to split

the analysis into smaller collections of files. I make use of Snakemake’s mechanism

of sample batching for processing large datasets, which is ultimately controlled by

the --batch-size argument passed to the GDI command-line interface.

3.2 Indexing

Once the data analysis pipeline (or an external source) has broken up genomes into

individual features, the next step is to index these features. Indexing is the pro-

cess of constructing a data structure which can make it more efficient to search for

particular items of interest (Section 2.1.2). Two large challenges to be addressed

by GDI are to provide a mechanism to 1) search through and 2) compare large col-

lections of genomes using a variety of different genomic features commonly used

within microbial genomics (Section 1.2). To support these operations, I make use of

a data structure often used within the field of information retrieval—an inverted

index (Section 2.1.2).

An inverted index is a data structure which provides a way to match a particular

term to a set of documents containing that term. For my use case, the documents

correspond to genomic samples while terms correspond to genomic features. Hence,

I need to implement a way to associate a feature identifier with a set of genomes.

This requires a method to uniquely identify a specific genomic feature to be used as

a key in the index. This is handled for each type of feature separately.

56 Chapter 3: Software design

3.2.1 Feature identifiers

I define a feature as some particular region of a genome of interest. There are three

broad classes of features that are to be stored within GDI: nucleotide variants,

kmers, and genes (described in Section 2.2.4). In order to work with these types

of features, I need a consistent way of naming and talking about them.

Nucleotide variants

To identify nucleotide variants, I chose a concatenated version of the four at-

tributes of a VCF variant identifier (CHROM:POS:REF:ALT). This corresponds

nearly identically to the the Sequence Position Deletion Insertion (SPDI) model

[42], but instead uses a 1-indexed base coordinate system instead of the 0-indexed

interbase coordinate system used by SPDI (Figure 2.3). However, I adopt the ter-

minology of the SPDI model (sequence, position, deletion, insertion), since it uses

more generic terminology (not every sequence in a reference genome is a chromo-

some). Additionally, I borrow the aspect of the SPDI model where a deletion string

can be represented either as a string of nucleotides to delete or as the length of the

deletion (which is useful for long deletion strings to make them more compact).

Some examples are given below:

• A substitution seq1:100:A:T . This represents a transformation on the se-

quence with the name seq1 by moving to nucleotide 100 , deleting the nu-

cleotide A and inserting the nucleotide T in its place. That is, it identifies

an A→T substitution at position 100 of seq1.

• An insertion seq1:20:A:AT . This represents a transformation on the se-

Chapter 3: Software design 57

quence with the name seq1 by moving to nucleotide 20 , deleting the nu-

cleotide A and inserting the nucleotides AT in its place. Since A is both

deleted and inserted, the net effect is no change in this nucleotide, which

leaves only an insertion of T immediately following position 20.

• A deletion seq1:40:GC:G . This represents a transformation on the se-

quence with the name seq1 by moving to nucleotide 40 , deleting the

nucleotides GC and inserting the nucleotides G in its place. Since G is both

deleted and inserted, the net effect is no change in this nucleotide, which

leaves only a deletion of C immediately following position 40. An acceptable

alternative representation of this nucleotide variant would be seq1:40:2:G ,

where the nucleotides to delete GC is replaced with the length to delete 2 .

This representation is used internally by GDI as part of the primary key in

the table of variants where it is more efficient to store the number of nu-

cleotides to delete (e.g., storing only the number 500 rather than a string of

all 500 nucleotides). Using an identifier with the string of characters to delete

is used elsewhere where human-readability is of greater importance.

I purposely chose to differ from the SPDI standard due to the expectation that

these variant identification strings will be used by humans (e.g., during querying).

If I was to strictly use the SPDI model, I would have to remind users (and myself),

who copy/paste variant identification strings into a query in the Python API (Sec-

tion 3.3.1), to always convert any VCF coordinates (or HGVS coordinates) to SPDI

coordinates. This would likely lead to many off-by-one issues. Hence, to avoid this

issue, I chose to modify the SPDI standard slightly.

58 Chapter 3: Software design

Genes and alleles

In order to name features consisting of alleles of genes (as defined by the

gene/MLST method) I developed a model, inspired by SPDI [42], that I call

the Scheme Locus Allele (SLA) model. The SLA model requires three different

values to uniquely define a particular gene-allele (the Scheme, Locus, and Allele),

and these are joined together into a single string separated by the character : .

For example, ecoli:adk:100 would be a name for allele 100 of gene adk on the

ecoli scheme.

Kmers

With the current version of GDI, identifying and searching for specific kmers is

not supported, hence I have no specific identifier for a kmer. However, I store sour-

mash [54] sketches within my index. These are stored as gzipped JSON files which

contain a list of the hash values derived from a subset of all kmers within a par-

ticular genome for some given value k. These are stored as a list of integers (e.g.,

[10, 45, 200, ...] in JSON) and would be the closest values that correspond

to kmer identifiers stored in my index. However, these are not loaded into the in-

verted index like the other features as I store only a subset of all hashes from all

kmers (a selection of the minimum hash values as specified in the MinHash/Mash

[51; 50] algorithm).

Chapter 3: Software design 59

Unknown/missing data

In some situations, it’s possible to encounter genomic features which are unknown

or missing. For example, with nucleotide variants it is possible for certain regions

of a genome to be missing or ambiguous (represented by an N , meaning it could

be any one of {A, T, C,G}). Or, for gene/MLST results, missing data may be rep-

resented by the number 0 as an allele identifier (or possibly an empty string or an

NA value).

In order to account for this, I define an explicit mechanism to name these un-

known/missing data. I choose the character ? to represent unknown/missing data

for both nucleotide variants and gene-allele variants. I decided against the character

N as this represents any one of {A, T, C,G} (for nucleotide variants), but I also

want to represent a case of a gap - . The missing data character ? would be used

by my defined feature identifiers as follows:

1. Nucleotide variants: Here, a nucleotide feature which is unknown/missing

is named like CHROM:POS:REF:? , where ? is used for the ALT value of

the identifier to indicate that this position on a reference sequence is miss-

ing/unknown. As an example, seq1:10:A:? , which means that position 10

on sequence seq1 consists of an A to ? change (that is, it is unknown what

is on position 10).

2. Gene alleles: Here, the identifier would look like Scheme:Locus:? , which

indicates that there is missing data for the locus in a particular MLST

scheme. For example, ecoli:adk:? , which can be read as an unknown allele

? for gene adk on scheme ecoli .

60 Chapter 3: Software design

This method of storing both variant features and missing features within an in-

verted index is similar to a Negative Storage Model [82] (Section 2.3.1). Since

I store the reference genome sequence elsewhere (Section 3.2.3), the unstored se-

quence for a particular variant/sample can be inferred from the reference as those

which are not missing and non-variant. One difference between this model and the

original negative storage model [82] is that the authors are not using an inverted

index for this model.

3.2.2 Storing sets of genomic samples

In an inverted index, each key/identifier (a term) is associated with a set of ge-

nomic samples (the documents). Genomic samples often have a name associated

with them (e.g., SampleA). However, it’s often more efficient to work with inte-

gers rather than arbitrary strings, so each of these sample names are first associ-

ated with a numerical identifier. Once I have numerical identifiers, I can reduce the

problem down to storing sets of integers rather than sets of strings.

In order to efficiently store sets of integers I made use of Roaring bitmaps [104],

which are designed as an efficient data structure and collection of operations to

work with sets of (unsigned) integers. While Roaring bitmaps are called bitmaps,

they are specifically a mixed data structure for storing sets of 32-bit integers to

address some of the issues with bitmaps (primarily the storage space). Roaring

bitmaps divide the storage of integers into three separate classes:

1. Lists of integers (e.g., [1, 5, 9, ...])

2. Lists of Runs of integers. A run consists of a starting integer and the length

Chapter 3: Software design 61

of the run (e.g., 8,3 is used to store the integers 8, 9, 10)

3. Bitmaps of integers (e.g., 0110 , which has the second and third bit set to 1

and so stores the integers 1, 2)

To make use of these different classes, Roaring divides up the space of all 32-bit in-

tegers into blocks of 16-bits each (capable of storing 65,536 integers) and chooses

one of the above three classes (lists, runs, or bitmaps) to store each 16-bit block.

Heuristics are used to choose which type of method to use for storing integers based

on the distribution of integers in each block. Separate implementations are used

for set operations on integers stored in each block type (e.g., intersections of a run

of integers with a list of integers). Roaring also provides a mechanism to serial-

ize/deserialize a set of integers into a string of bytes.

In order to use Roaring bitmaps, I first map a sample name (as a string, like

SampleA) to a sample identifier (as a number, like 1) through a table in relational

database software (e.g., SQLite or MariaDB). In other words, I define a table

with a sample identifier as the primary key. These identifiers are then added to

a Roaring bitmap and serialized into a string of bytes. I store this string of bytes

in a relational table with the primary key of the table consisting of the feature

identifiers described above (Figure 3.3, Figure A.2). To lookup the set of samples

that contain a particular genomic feature, I use this feature as a key and lookup the

Roaring bitmap corresponding to this key.

62 Chapter 3: Software design

Alternative method (foreign keys)

An alternative method for associating sets of sample identifiers to a genomic feature

would have been to explicitly include these identifiers as a foreign key in a table

that maps feature identifiers to samples containing those features (in other words

a table with two columns: feature identifier, the primary key, and sample identi-

fier, the foreign key referencing the samples table). However, I chose to not use this

method as it would have greatly increased the number of rows in my inverted index

table in a relational database. In particular, this method of storage means that the

rows grow as rows = samples ∗ features (the two columns in the table).

A rough estimate of the number of rows required if I wished to store the global

SARS-CoV-2 genome dataset would be 10 million genomes (from GISAID [4] as

of April 2022) multiplied by 30,000 different features (30,000 is the approximate

length of the SARS-CoV-2 genome and I assume I store one feature per nucleotide

to account for unknown/missing data). This gives me ≈ 3 ∗ 1010 or on the order of

tens of billions of rows.

However, if I instead used Roaring bitmaps as described above, then the number of

rows grows with respect to only the number of features (rows = features). A rough

estimate of the number of rows for storing the same set of SARS-CoV-2 genomes

in this case would be ≈ 30, 000 rows (one row per feature identifier). This is on

the order of tens of thousands of rows (as opposed to tens of billions). Additionally,

the number of rows no longer grows with respect to the number of samples in my

database (as each sample identifier is encapsulated within a Roaring bitmap instead

of explicitly represented as a row in the database).

Chapter 3: Software design 63

Feature Name Sample IDs
(Roaring-encoded)

reference:1:A:G {1, 2}

reference:5:G:GT {1, 2, 3}

reference:1:A:? {3}

Sample ID Name

1 SampleA

2 SampleB

3 SampleC

Samples

Nucleotide features

Feature Name Sample IDs
(Roaring-encoded)

ecoli:adk:50 {1, 3}

ecoli:adk:100 {1, 2}

ecoli:fumC:? {1}

Gene features

Unknown/missing
features

Figure 3.3: An overview of how feature names are associated with sample identifiers
in the database. The Sample table stores sample names associated with a unique,
incremental identifier in a relational database. Additional feature tables (for Nu-
cleotide and Gene features) store a Feature Name per row, with each name
associated with a set of Sample identifiers, encoded as a Roaring bitmap. Un-
known/missing features are stored in their respective tables, but using the symbol
"?" to identify them.

Given these rough estimates for the number of rows, I ended up choosing to use

Roaring bitmaps to store sets of sample identifiers. However, this has the disad-

vantage of shifting the logic for associating an integer in the Roaring bitmap to a

sample from the database/SQL to my Python code (i.e., I must implement joins

between sample identifiers and sample names in Python rather than using SQL).

Some of these disadvantages are discussed in the limitations section (Section 5.3.4).

64 Chapter 3: Software design

3.2.3 Index storage

The inverted index and associated information is stored within a mixture of a re-

lational database as well as files on a file system (Figure 3.4). This information is

all grouped together within a common directory, which is referred to as a project

in GDI. An empty project directory can be created using the gdi init command

and stores a configuration file containing connection information for a relational

database, as well as the location of directories containing additional files on the file

system. Within a project directory there are three main categories of data stored:

Relational database, Reference genome storage, and files on a File system.

One advantage of storing all data within a single project directory is that the entire

index can be copied and distributed to separate machines.

Relational database

The main database is constructed and queried using the Python package

SQLAlchemy [106], which provides a common API for interacting with a vari-

ety of relational database management software. The default relational database

software used is SQLite (https://www.sqlite.org/), which stores data in a self-

contained file that does not need external database management software to be

installed. SQLite was chosen to minimize dependencies for using GDI and provide

the capability to copy an index to other machines with minimal overhead. How-

ever, support for MariaDB (https://mariadb.org/) or other relational database

software is also provided.

https://www.sqlite.org/
https://mariadb.org/

Chapter 3: Software design 65

project/

gdi-config.yaml
(Project config)

.gdi-data/
(Project data)

gdi-db.sqlite

Main database
(SQLite)

reference/ variation/mlst/kmer/

Variation files
(VCF, BED)

Reference
genomes

(SeqRepo)
MLST (gene)

files

Sourmash
signatures

Figure 3.4: The directory structure and files used by GDI to store data. The main
directory is a project , which contains a configuration file (gdi-config.yaml)
and a sub-directory of additional files (.gdi-data). Underneath this directory is
the main SQLite database file (gdi-db.sqlite), a directory containing the refer-
ence genome storage (reference containing SeqRepo [105] data). Additionally,
there are sub-directories (kmer , mlst , and variation) containing additional ge-
nomic feature files stored by GDI.

Reference genome storage

Indexing genomes using nucleotide variants requires the use of a reference genome

to provide a common genomic sequence to compare to other genomes. In order

to store and access reference genome sequence data, I make use of SeqRepo [105],

which is a Python library for storage and access of large collections of genomic se-

quence data. SeqRepo uses a combination of a SQLite database as well as files (se-

66 Chapter 3: Software design

quence files in FASTA format) stored on the file system. SeqRepo is itself accessed

with the help of the GA4GH Variation Representation System (VRS) [76], which

provides Python libraries for working with data from SeqRepo in addition to nu-

cleotide variants. The entire SeqRepo database files are stored within a reference

directory (Figure 3.4).

File system

The final category of data stored is additional files on the file system. These are

divided into separate directories: kmer , mlst , and variation . The kmer direc-

tory contains sourmash [54] signature files, one file per genome, stored as gzipped

JSON. The mlst directory is available for additional MLST (gene-level) data. The

variation directory stores nucleotide features—stored as a pair of gzipped VCF

(nucleotide variants) and BED (missing/unknown regions) files for each genome.

3.2.4 Parallelization of the indexing stage

The indexing stage supports parallel processing through the Python multiprocessing

package. This is used during two stages of indexing: saving features and con-

structing a feature DataFrame.

Saving features

Saving features involves pre-processing feature data (e.g., nucleotide variant files)

to convert to a standardized form and saving these files into the GDI-managed

directory. This involves executing external software, such as BCFTools [99] and

Chapter 3: Software design 67

BEDTools [80], for every sample to be loaded into the index. I use Python’s

multiprocessing package to spawn a number of sub-processes to handle a

collection of genomes in parallel during this stage.

Constructing a feature DataFrame

Constructing a feature DataFrame involves loading features for each sample (e.g.,

a VCF file) into a pandas [22] DataFrame prior to constructing the inverted index.

I make use of the Python multiprocessing package to split this task up among

a collection of sub-processes for every sample to be loaded (e.g., every VCF file to

convert to a DataFrame). Once a new DataFrame is constructed for every sample,

these DataFrames are concatenated together to construct a single DataFrame con-

taining every sample to index. The combined DataFrame is used to construct the

inverted index that matches a particular feature to a set of samples containing that

feature.

Index sample batching

The two multiprocessing stages of GDI are further sub-divided to process batches of

samples (e.g., 2000 samples in a batch). This is to avoid large memory usage that

would occur if a very large number of samples were loaded at once (e.g., loading

tens of thousands of samples into a nucleotide variants DataFrame). This is con-

trolled by the --sample-batch-size argument to the GDI command-line inter-

face.

68 Chapter 3: Software design

3.3 Querying

Two major challenges for applying microbial WGS to infectious disease investiga-

tions are to perform large-scale comparisons and to integrate multiple types of data

(e.g., epidemiological metadata or phylogenetic trees) to aid in the analysis and vi-

sualization of this data (Section 1.2). To address these challenges, I have devised

a query language which provides the capability to search through the constructed

index to select subsets of genomic samples that match particular criteria. Query-

ing is exposed through two separate user interfaces: the Python API and the

command-line interface (CLI).

3.3.1 Query API

The GDI Python API provides the capability to select subsets of genomic sam-

ples by using Python code. This API was inspired by both pandas [22] and

SQLAlchemy [106], which provide their own API to query for data. In particular,

the GDI Python API is intended to be used alongside pandas and Python-based

visualization packages such as matplotlib [107] and the ETEToolkit [21] for easy

analysis and visualization of genomics data and phylogenetic trees. This ad-

dresses one of the challenges of working with large amounts of genomics data and

metadata—mainly integration into a common system (Section 1.2).

Query objects

A query in the GDI Python API is initiated from a connection to the genomics in-

dex database (Section 3.2.3). The query is encapsulated in an instance of a Python

Chapter 3: Software design 69

SamplesQuery class I have defined. An instance of this class is referred to as a

query object, and stores sets of matching genomic samples alongside additional in-

formation used to further refine the query (Figure 3.5.A). There are three types of

additional information that can be attached (or joined) to a query:

1. Genomics index: This is the default object attached to a query and pro-

vides a connection to the inverted index used to further refine a query.

2. Tree: This consists of a phylogenetic (or hierarchical clustering) tree loaded

using the ETEToolkit [21]. The tree can be used to further refine a query us-

ing the distances or topology of the tree between genomic samples.

3. Metadata: This consists of additional metadata associated with genomic

samples stored as a pandas DataFrame [22]. Adding metadata to a query re-

quires a join-column in the metadata table used to match up samples in the

index with rows in the metadata table (e.g., a column of sample names in the

metadata table).

Each query can be refined using one of three different operations (Figure 3.5.B).

Each operation uses the attached additional data from a query to select a subset of

the samples in the query and returns a new SamplesQuery instance encapsulating

this subset. The operations consist of:

1. q.hasa("[FEATURE]") : This can be read as “select all samples in query q

that have a (has a) feature named [FEATURE] ” (e.g., a nucleotide variant

or gene-allele). This makes use of the attached inverted index (Section 3.2).

As an example, q.hasa("seq1:10:A:T") would return a query object that

70 Chapter 3: Software design

has selected all genomes that have an A→T substitution at position 10 on

sequence seq1 (uses the feature identifiers from Section 3.2.1).

2. q.isa([EXPRESSION]) : This can be read as “select all samples in query q

that are a (is a) result of [EXPRESSION] ”. The [EXPRESSION] can either

be a sample name (e.g., SampleA) or, if metadata is attached to the query,

a particular value in a column of the metadata (e.g., if a column is called

lineage then one could use q.isa("X", isa_column="lineage") to se-

lect all samples belonging to lineage X).

3. q.isin([EXPRESSION]) : This can be read as “select all samples that are

in (is in) the result of [EXPRESSION] ”. The [EXPRESSION] could ei-

ther be a list of sample names or a query involving a phylogenetic tree.

The expressions involving a phylogenetic tree can either be based on dis-

tance (in units of substitutions/site or substitutions) or selections based

on the most recent common ancestor of a group of samples. For example

q.isin(["Sample A", "Sample B"], kind="mrca") would select all sam-

ples in the query q that are found in the clade rooted at the most recent

common ancestor to samples Sample A and Sample B .

Missing/unknown features

One challenge that arises, in particular with querying for genomic features (us-

ing the hasa() operation), is how to handle missing or unknown features (Sec-

tion 3.2.1). This can result in cases where it is unknown if a particular genomic

Chapter 3: Software design 71

Query
objectA.

Query
operationsB.

Selection Additional data

Query q Query r

1 2

3

q.hasa()
q.isa()
q.isin()

2

3
Select using

additional data

Genomic
sample set

1 2
3

Genomic
index MetadataTree

Figure 3.5: An overview of the Query API. (A) A query starts with a query ob-
ject in Python (an instance of the SamplesQuery class). The object consists of
sets of selected genomic sample identifiers (as integers) along with connections to
additional data structures to assist in querying. These additional data structures
include: the Genomics index itself, an optional Phylogenetic tree, and an optional
metadata table storing additional data associated with the genomic samples. (B)
Different operations (isa() , hasa() , and isin()) can be performed on a query
object, q , to select subsets of samples using the additional data joined to query
q . The operations return a new query object, r , which consists of a subset of the
samples from the original query q .

sample has a particular feature (e.g., if a genome has an "N" on position 10 then

it cannot be determined if the A→T variant exists at position 10).

As an example, consider a genomic sample SampleA which has missing data at po-

sition 10 on the sequence seq. Also consider a query r = q.hasa("seq:10:A:T")

that is used to select samples that have an A→T variant at position 10 of sequence

seq. A problem arises if we try to determine whether or not SampleA should be se-

72 Chapter 3: Software design

lected by this query. This is equivalent to asking the question “is it True or False

that SampleA has variant seq:10:A:T ” (by the definition of q.hasa() above). It

would not make sense to say that this statement is True, nor would it make sense

to say that this is False since both of these are saying more than what is known.

All that is known is that it is unknown if SampleA has mutation seq:10:A:T . It

would be useful to have a third truth-value, Unknown, in addition to True and

False to better capture these situations. This is described more formally below

alongside the introduction of logical operations between queries.

Logical operations

Querying an index can be implemented using a variety of methods—two cate-

gories of which are Boolean retrieval and Ranked retrieval (Section 2.1.3).

In Boolean retrieval, a query can be broken down into logical operations on

different terms (e.g., “dog OR cat”), which can be implemented by searching for

matching sets of documents to each term in the inverted index and combining these

terms using set operations (union, intersection, complement) to return the final set

of documents (Figure 2.1).

To provide a similar method of searching for genomic samples using queries, I

have implemented an extension of Boolean retrieval which operates on the features

stored in GDI. A feature is analogous to search term and a genomic sample

is analogous to a document. Hence, Boolean retrieval is implemented by con-

verting logical operations (i.e., NOT, AND, OR) on a query combining genomic

features to sets of matching genomes. However, as introduced in Section 3.3.1,

Chapter 3: Software design 73

I am not using two-valued logic, {True, False}, but I instead add a third truth

value, {True, False, Unknown}, to account for missing or unknown genomic

information. I extend the ordinary two-valued Boolean logic truth tables to in-

corporate a third truth value by using Kleene’s strong logic of indeterminacy

[108; 109]. This provides a way to extend the methods used for regular Boolean

retrieval (Figure 2.1) to incorporate a third truth value. This requires the addi-

tion of a third set of genomic samples (to represent the set of Unknown samples

in addition to True and False). Using a third truth value (Unknown) to account

for missing data has also been used by the pandas [22] library by defining a Nul-

lable Boolean data type to handle missing values (indicated with NA) in a table

(https://pandas.pydata.org/docs/user_guide/boolean.html). Below, I formally

define the structure of a query to satisfy three-valued logical operations.

I define a query, Q = (T,N, U), as a tuple of three different sets of integers (Fig-

ure 3.6.A). Each integer corresponds to a unique identifier for a sample in the index

(in my implementation, these identifiers are assigned by a relational database and

stored as Roaring bitmaps [104]). These three sets can be used to derive a fourth

set, F , all of which are defined as follows:

1. T : The set of samples for which the query Q is True.

2. N : The set of samples for which the query Q is Unknown.

3. U : The Universe set of all samples for a query Q.

4. F : The set of samples for which the query Q is False. This is not needed as

part of the definition of a query but can be derived from the other sets from

https://pandas.pydata.org/docs/user_guide/boolean.html

74 Chapter 3: Software design

the relations below.

Given the above definitions, the following relations hold on a query Q:

1. T ⊆ U : That is, the set of samples for which a query is True, T , is part of

the universe of samples U .

2. N ⊆ U : That is, the set of samples for which a query is Unknown, N , is

part of the universe of samples U .

3. T ∩ N = ∅: That is, the sets of True and Unknown samples are mutually

exclusive (a sample cannot be both True and Unknown).

4. F = U − T − N : That is, the set of samples in universe U for query Q that

are not True and not Unknown must be False.

From these definitions of a query, I can define logical operations—NOT, AND, and

OR—on queries. Let Q = (TQ, NQ, UQ) and R = (TR, NR, UR) be two separate

queries. Let S = Q|R be a new query which is the result of some logical operation

| on Q and R. The defined logical operations are | ∈ {¬,∧,∨} (NOT, OR, AND),

which correspond to Kleene’s truth tables [108] (shown in Figure 3.6.B). Table 3.1

contains the formulas for logical combinations of the queries Q and R using set op-

erations on the underlying sample identifiers. Figure 3.6 shows a detailed view of

these formulas with example queries.

From the formulas in Table 3.1 it can be seen that the universe of a combined

query S = Q|R is given by US = UQ ∪ UR. That is the universe of the combined

query is the union of the universes of the two original queries Q and R. One as-

sumption required for this to be true is that if a sample x is in the universe of Q

Chapter 3: Software design 75

S = ¬Q (NOT) Q ∧ R (AND) Q ∨ R (OR)

TS
(True)

NS
(Unknown)

US
(Universe)

A.

Query: Q = (T, N, U)
False (absent): F = U - T - N

C.

UQ ∪ UR

1–5 6
US = UQ ∪ UR

 = {1–6}

NS = {3, 4}

(NQ ∪ NR) (TQ ∪ TR)-

34
2

1

TS = TQ ∩ TR

 = {1}TQ ∩ TR

1 2

NS = union of cases = {2, 3}

NQ ∩ NR NQ ∩ TR TQ ∩ NR

32
4 2 13

4 ∅1 3

1–5

US = UQ = {1–5}

UQ

NQ

NS = NQ = {2–4}

2 3
4

FQ

TS = FQ = {5}

5

TQ ∪ TR

1 2
TS = TQ ∪ TR

 = {1, 2}

UQ ∪ UR

1–5 6
US = UQ ∪ UR

 = {1–6}

B.
AND t n f

t t n f

n n n f

f f f f

OR t n f

t t t t

n t n n

f t n f

NOT t n f

f n t

First query Q = TQ = {1} NQ = {2, 3, 4} UQ = {1, 2, 3, 4, 5}

Second query R = TR = {1, 2} NR = {3} UR = {1, 2, 3, 4, 5, 6}

Result query S = TS (True) NS (Unknown) US (Universe)

Universe U

True
(present)

T

False
(absent)

F

Unknown
N

Figure 3.6: An overview of the definition of a query and logical operations on
queries (green is True, red is False, light gray is Unknown, dark gray is Uni-
verse). (A) The samples operated on by a query, Q, can be defined as an ordered
tuple of three sets: Q = (T,N, U). These correspond to sets of sample identifiers for
those samples where the query holds true, T , where the query has an unknown sta-
tus, N , and the universe U of all samples that are a part of the query. The samples
where a query is false, F , can be derived from F = U − T − N . (B) Some of the
extended truth tables from Kleene’s strong logic of indeterminacy [108; 109]. Here,
t is True, n is Unknown, and f is False. (C) Two example queries, Q and R,
along with the logical operations used to create a new query S = operation(Q,R).
The queries, Q and R, consist of sets of sample identifiers (integers). The table
showing the resulting query, S, consists of columns correspond to different logical
operators—NOT, AND, OR—and rows correspond to the underlying sets of sample
identifiers for S = (TS, NS, US). Each cell in the table shows the set operations used
to define the sample identifier sets for query S.

76 Chapter 3: Software design

Result

S =

¬Q (NOT) Q ∧R (AND) Q ∨R (OR)

TS = FQ = UQ−TQ−NQ TQ ∩ TR TQ ∪ TR

NS = NQ (NQ ∩ NR) ∪ (NQ ∩ TR) ∪

(TQ ∩NR)

(NQ ∪ NR) −

(TQ ∪ TR)

US = UQ UQ ∪ UR UQ ∪ UR

Table 3.1: Logical operations between two queries Q and R.

but not R (x ∈ UQ and x /∈ UR) then it is assumed that sample x has a status of

False for query R (since x /∈ UR so x /∈ TR and x /∈ NR).

The above definitions of a query Q and logical operations on combinations of

queries are implemented as three different sets of genomic sample identifiers and

logical operations on instances of a SamplesQuery class. The logical operations

overload the behaviour of the & (AND), | (OR), and ˜ (NOT) operators in

Python. This provides a concise syntax to write queries in the Python API (List-

ing 3.1).

Chapter 3: Software design 77

Listing 3.1 Example code for logical operations on queries q and r

1 import genomics_data_index.api as gdi
2

3 # Load database/index from directory "db1"
4 db = gdi.GenomicsDataIndex.connect("db1")
5

6 # q is an instance of SamplesQuery
7 # consisting of genomes with a (hasa) particular nucleotide feature
8 q = db.samples_query().hasa("ref:20:A:T")
9

10 # r is an instance of SamplesQuery
11 # consisting of genomes with a (hasa) particular gene (MLST) feature
12 r = db.samples_query().hasa("mlst:ecoli:adk:100")
13

14 # s is a query selecting samples in q AND r
15 s = q & r
16

17 # s is a query selecting samples in q OR r
18 s = q | r
19

20 # s is a query selecting samples in the complement of q
21 s = ~q
22

23 # Returns the selected (True) samples from query s
24 # stored in-memory as a Roaring bitmap
25 s.sample_set
26

27 # Returns the unknown/missing samples from query s
28 # stored in-memory as a Roaring bitmap
29 s.unknown_set
30

31 # Returns the universe set from query s
32 # stored in-memory as a Roaring bitmap
33 s.universe_set
34

35 # Returns the unselected (False) samples from query s
36 # derived from the other sets and returned as a Roaring bitmap
37 s.absent_set

78 Chapter 3: Software design

3.3.2 Query CLI

In addition to the Python API, I also provide a command-line interface (CLI) for

managing genomics indexes. The command-line interface is initiated by the main

command gdi and consists of a number of sub-commands. Four large categories of

sub-commands include the following:

1. Managing genomic indexes: This consists of gdi init which can be

used to create a new index (SQLite database and directories on a file sys-

tem) within a directory (e.g., gdi init index to create an index in direc-

tory index/). This directory is also referred to as a project in the GDI inter-

face. Subsequent commands can refer to this index/project directory (e.g.,

gdi --project-dir index ...). Additionally, gdi db can be used to re-

port information about the data stored in an index (e.g., size on disk).

2. Analysis: This consists of gdi analysis , which will run the data analy-

sis pipeline on a set of input data to identify genomic features. Additionally,

gdi input or gdi input-split-file can be used for preparing the input

data files for analysis.

3. Loading data: This includes gdi load for loading genomic features from a

variety of files and gdi rebuild for constructing and saving a new phyloge-

netic tree from indexed data.

4. Querying: These commands include gdi list for listing sample names or

reference file names, and gdi query for querying the index.

Chapter 3: Software design 79

The gdi query command is implemented using the GDI Python API (Sec-

tion 3.3.1) and provides a mechanism for using a simplified set of operations to

query for particular genomes or summarize results. Table 3.2 shows a set of API

and CLI equivalent commands.

3.4 Phylogenetics and clustering

Once genomes are indexed, the data stored within GDI can be used to cluster

genomes or to construct a phylogenetic tree (Figure 3.1). As described in Section

2.2.5, both phylogenetic analysis and hierarchical clustering methods share a lot of

similarities. Primarily they will group genomes into a hierarchical structure (a tree)

which can be depicted as a dendrogram. One major difference is that phylogenetic

analysis is explicitly attempting to infer the ancestry of genomes, where internal

nodes of a tree represent hypothetical ancestors, and will often correct distances

on branches of the tree to better reflect realistic models of evolution. Clustering

algorithms, in general, do not have this requirement, though some phylogenetic

analysis methods are also hierarchical clustering methods (e.g., UPGMA).

Given this overlap between these two topics, I will at times refer to a phylogenetic

tree as a clustering of genomes, with the intended meaning being that a phyloge-

netic tree (when rooted) could be viewed as a hierarchical clustering of genomes,

which could be converted to a flat clustering through methods described in Section

2.2.5. This allows me to use a common codebase for both phylogenetic trees and

hierarchically clustered genomes.

When the features indexed are nucleotide-level features (i.e., SNVs or inser-

80 Chapter 3: Software design

API command CLI command Description

q.hasa(feature) gdi query "hasa:feature"

Finds all genomic samples in the

index that have a particular fea-

ture.

q.isa(sample) gdi query "isa:sample"

Finds the specific named sample.

q.isin("sample", kind="distance",

unit="substitutions", distance=5)↪→

gdi query

"isin_5_substitutions:

sample"

↪→

↪→

Searches for all genomes that are

within 5 substitutions of the sam-

ple "sample".

q.hasa(feature1) & q.hasa(feature2) gdi query "hasa:feature1"

"hasa:feature2"↪→

Searches for genomes that have

both "feature1" and "feature2".

q.hasa(feature1) | q.hasa(feature2)

Not defined Searches for genomes that have

either "feature1" or "feature2".

~q.hasa(feature1)

Not defined Searches for genomes that do not

have "feature1".

q.summary() gdi query --summary

Summarizes the number of Present,

Unknown, and Absent samples in

query.

q.features_summary(kind="mutations") gdi query

--features-summary

mutations

↪→

↪→

Summarizes counts of all features

found among all samples in the

query (replace "mutations" with

"mlst" for gene/MLST features).

q.features_comparison(

sample_categories="variable",

categories_kind="dataframe",

kind="mutations", unit="percent")

↪→

↪→

↪→

Not defined Groups samples into categories

as defined in a column named

"variable" in a dataframe and

summarizes the percent of sam-

ples that have a particular feature

(kind="mutations" in this case).

Table 3.2: Equivalent Python API and CLI commands for GDI.

In this table, q is a query initiated in the Python API.

Chapter 3: Software design 81

tions/deletions) I make use of the maximum-likelihood phylogenetic method to

construct a phylogenetic tree to cluster genomes. In other scenarios (in particular,

for kmer-based features), I make use of hierarchical clustering methods to cluster

genomes and return the cluster-tree, which can be visualized as a dendrogram

similar to a phylogenetic tree.

In both cases, clustering can be initiated by the Python API, which makes use of

a query object (described in Section 3.3) to select the set of genomes for cluster-

ing. Clustering geomes through phylogenetic analysis can also be initiated via the

CLI. In the Python API, running query.build_tree() will return a new query

that has been associated with the cluster tree. This new query can now be used to

access the cluster-tree or for additional querying commands that make use of this

cluster-tree (such as querying by distance). Listing 3.2 shows a snippet of code for

clustering using the Python API.

82 Chapter 3: Software design

Listing 3.2 Code for constructing a phylogenetic tree or hierarchical cluster tree

1 import genomics_data_index.api as gdi
2

3 # Load database/index from directory "db1"
4 db = gdi.GenomicsDataIndex.connect("db1")
5

6 # Select a set of samples to cluster from the database
7 query = db.samples_query().isa(["SampleA", "SampleB", "SampleC"])
8

9 # Build a kmer tree from the selected samples
10 cluster_query = query.build_tree(kind="kmer", kmer_size=31)
11

12 # Build a maximum-likelihood tree from the selected samples
13 # Using the selected reference genome named "reference"
14 cluster_query = query.build_tree(kind="mutation", scope="reference")
15

16 # The tree object is associated with the new query object
17 cluster_query.tree
18

19 # The "cluster_query" object can now be used to query
20 # based on distances in the tree
21 cluster_query.isin("genome", kind="distance",
22 distance=1e-7, units="substitutions/site")

3.4.1 Building phylogenies from nucleotides

The maximum likelihood approach to phylogenetic analysis provides a way to con-

struct a hypothetical evolutionary tree using the genomic sequencing data. This

approach is used when there are nucleotide features available for all genomes in

question and where each genome is already aligned to the same reference genome.

These conditions provide a mechanism to construct a multiple sequence alignment,

one of the key inputs to the maximum-likelihood approach for constructing a phy-

Chapter 3: Software design 83

logeny.

Constructing a multiple sequence alignment

In order to construct a multiple sequence alignment, I first make use of the

VCF [75] and BED [79] file formats as well as the SAMtools and BCFtools

suite of software [99]. I use the bcftools consensus command (https:

//samtools.github.io/bcftools/bcftools.html#consensus) to create a con-

sensus sequence for each genome by applying substitutions and deletions (I exclude

insertions) stored in a VCF file to the corresponding reference genome. BCFtools

includes an additional parameter to mask out regions stored in a BED file with an

N character, which is also applied to the consensus sequence to indicate regions on

a genome where data is missing/unknown.

To construct a multiple sequence alignment from each individual consensus se-

quence, I could use alignment software such as MAFFT [110]. However, as a short-

cut to avoid running this software (which would require additional time and re-

sources), I instead concatenate each consensus sequence together into a single file,

which should be equivalent to a multiple sequence alignment. This works under the

condition that each nucleotide in every consensus sequence is homologous (and so

concatenating each consensus sequence constructs an alignment where every site in

the alignment is homologous). I am (mostly) able to satisfy this condition due to

the following constraints imposed when constructing each consensus sequence with

bcftools consensus :

1. Every consensus sequence is constructed from the same reference genome.

https://samtools.github.io/bcftools/bcftools.html#consensus
https://samtools.github.io/bcftools/bcftools.html#consensus

84 Chapter 3: Software design

This means that any substitutions introduced are in the same position on the

reference genome (and so are homologous).

2. I do not include insertions. Insertions would change the coordinates of down-

stream substitutions (and so substitutions would no longer remain homolo-

gous).

3. I replace deletions with a - (gap) character. If I had instead removed the

actual sequence in the place of a deletion, I would change downstream coor-

dinates of substitutions and so consensus sequences would no longer remain

homologous.

Given that these conditions hold due to my parameter choices for bcftools consensus ,

the concatenated alignment should align different homologous sites with each other.

One possible exception is in regions with many substitutions or other criteria which

could lead to a sub-optimal alignment. This is discussed in more detail in the

limitations section (Section 5.3.3).

Constructing the phylogenetic tree

Once a multiple sequence alignment is constructed, I use the software iqtree [17] to

generate a phylogenetic tree using the maximum likelihood method. This phylo-

genetic tree can either be saved to a separate file on the file system (as a Newick

formatted file [111]), or stored in the relational database. In my CLI, the com-

mand to build a maximum-likelihood tree is gdi build tree [OPTIONS] . Al-

ternatively, the command gdi rebuild tree [OPTIONS] [REFERENCE]... can

Chapter 3: Software design 85

be used to build a maximum-likelihood tree and save the corresponding tree to the

relational database associated with the selected reference genome. Alternatively,

in the Python-based API the command to build a tree is query.build_tree() ,

where query is a query that selects a set of samples to be used for building a tree.

3.4.2 Hierarchical clustering

When nucleotide sequence data is not available (e.g., when examining genomes us-

ing kmers or genes), character-based methods for constructing phylogenetic trees to

cluster genomes will not work. In these cases, I instead rely on algorithms derived

from distance-based methods of phylogenetic analysis (hierarchical clustering algo-

rithms in particular). I have implemented this for clustering genomes using kmers

as identified using sourmash [54].

Clustering with kmer distances

Clustering by kmers can be initiated using the query.build_tree() command

in the Python API (where query is a query object which has selected the set of

genomes to cluster). Unlike the maximum-likelihood method, there is currently

no facility in GDI to save the kmer-based hierarchical cluster. However, gener-

ating these clusters is much quicker when compared to constructing a maximum-

likelihood phylogenetic tree.

The first step to clustering genomes by their kmer content is to calculate and

record all pairwise distances between different genomes into a distance matrix. I

use the sourmash compare command to construct a pairwise distance matrix

86 Chapter 3: Software design

of Mash distances (which are approximations of the Jaccard distances between

genomes using kmer content). This pairwise distance matrix is then clustered using

the scipy.cluster.hierarchy module from scipy [112] to construct a single-

linkage hierarchical cluster of the kmer distances. This is further refined by the

scikit-bio [113] Python package to convert the cluster to a tree in Newick format.

The tree can then be passed to the ETEToolkit [21] to visualize as a dendrogram or

saved as a newick file.

3.4.3 Parallelization of the clustering stage

To support parallel processing of the clustering stage, I make use of the built-in

mechanisms for parallel processing provided by some of the software used for clus-

tering. For constructing a maximum-likelihood phylogeny using iqtree [17], I

make use of the --threads-max and -T AUTO command-line arguments, which

will specify the maximum number of threads to use when constructing a tree and

auto-detect an appropriate number of threads respectively. The auto-detected num-

ber of threads may be less than the maximum and is measured internally by iqtree.

When constructing a distance-based kmer tree, I make use of the --processes

argument, which is passed to sourmash compare during construction of the pair-

wise similarity matrix (which is then converted to a distance matrix).

The number of processes (or threads) to use when clustering genomes is provided

by the number of processes passed to the GDI command-line interface. Or, alter-

natively, when using the GDI Python API, each clustering method provides an

ncores parameter which can be used to set the number of processing cores.

Chapter 3: Software design 87

3.4.4 Flat clusters to tree comparison

To (partly) facilitate the evaluation of how well a hierarchical cluster or phyloge-

netic tree corresponds to a flat cluster of genomes, I have developed and imple-

mented a mechanism to compare a flat cluster to a rooted tree. There exists op-

tions to evaluate how well two different flat clusters correspond to each other (such

as Silhouette scores [114]), but a hierarchical cluster could be converted to many

different flat clusters depending on how the tree is cut ([73] and Section 2.2.5). In

order to avoid the issue of how to best cut a tree into clusters prior to comparing

different flat partitions to each other, I developed a scoring system to directly com-

pare a flat partition to a phylogenetic (or hierarchical clustering) tree.

In order to construct a scoring system, I first define a way to map a single set of

leaves from a tree T to a score represented by a number from 0 to 1. This score

reflects how well the set of leaves match the structure of the tree (i.e., are the cho-

sen leaves scattered across the entire tree or do they group together under a single

branch). Next, I define a way to examine collections of sets of leaves from a tree

(representing different clusters of genomes) by either examining the distribution of

the corresponding scores or defining a single numerical score (e.g., mean or median)

from a list of scores. An example of this scoring system is shown in Figure 3.7.

Defining the score for a single set of genomes to a tree

Let T be some arbitrary rooted tree and let L be a chosen set of leaves from this

tree. To define a mechanism to assign a score to the leaves L for tree T , I first de-

fine the following requirements:

88 Chapter 3: Software design

1. Given a rooted cluster/phylogenetic tree, T , and a set of genomes (leaves) on

the tree L, I wish to define a function, S, which maps this set of genomes to

some number between 0 and 1. That is S(T, L) is a function which returns

some number in the interval [0, 1].

2. The highest possible score, S(T, L) = 1, is achieved if and only if all genomes

L are the leaves of a monophyletic clade on the tree T .

3. The value S(T, L) = 0 represents the lowest possible score for genomes L.

From these requirements, I define this cluster scoring according to Algorithm 3.1.

This algorithm will satisfy these three requirements (proof in Appendix E), with

the caveat that the minimum score S(T, L) = 0 is only achieved in the limit as

the size of the tree T increases (specifically the minimum score is 2/N where N is

the number of leaves in the tree T and is achieved when a pair of leaves has a most

recent common ancestor of the root of the tree, see Appendix E).

Defining the score of a collection of sets of genomes to a tree

To extend Algorithm 3.1 to a scoring system for a collection of genomes compared

to a tree let us first make a few definitions. Let T be some tree containing a col-

lection of genomes (represented as leaves L of the tree). Let G = (g1, g2, ..., gn) be

some tuple of n subsets of genomes such that gm ∈ G is some subset of leaves of

the tree T (i.e., gm = {l1, l2, ...} where lx is a leaf on tree T). I define a cluster scor-

ing function, R, to be a function that maps this n-tuple of genomes to an n-tuple of

scores. In other words, R(T,G) returns some n-tuple of scores for the G clusters on

tree T .

Chapter 3: Software design 89

Algorithm 3.1 Cluster score for a set of leaves from a tree
Require: A non-empty set of leaves L from a rooted tree T .

1: if |L| = 1 then

2: Lm ← L

3: else

4: m← the most recent common ancestor of L in T .

5: Lm ← the set of descendant leaves of node m.

6: end if

7: S ← |L ∩ Lm|/|L ∪ Lm| . S is the Jaccard index of Lm and L

8: return The score S.

Algorithm 3.2 Cluster scores for a tuple of sets of leaves from a tree
Require: An n-tuple of sets of non-empty leaves G = (g1, g2, ..., gn) from a rooted

tree T .

1: A← empty list

2: for each g ∈ G do

3: Append S(g, T) to A . S is from Algorithm 3.1

4: end for

5: return A

The scoring function in Algorithm 3.2 implements this function R and will return

an n-tuple of numbers from 0 to 1. To assign an overall score to a tree T , I can ei-

ther calculate statistical summaries of this list of numbers (e.g., mean or median)

or I can examine the distribution of these numbers as a whole (Figure 3.7.D).

90 Chapter 3: Software design

B Clusters Gb = (b1, b2)

b1 = {1, 2}

b2 = {3}

1

2

3

mrca(b1)

Lmb1 leaves under mrca(b1) =

= {1, 2}

Lmb2 b2 =

= {3}

Scores Gb = (1.0, 1.0)

S(T, b1) jaccard(b1, Lmb1)=

= 2 / 2 = 1.0

S(T, b2) jaccard(b2, Lmb2)=

= 1 / 1 = 1.0

✔

S(T, c1) jaccard(c1, Lmc1)=

= 1 / 1 = 1.0

S(T, c2) jaccard(c2, Lmc2)=

= 2 / 3 = 0.67

Scores Gc = (1.0, 0.67) x

D
Clusters Gc = (c1, c2)

c1 = {1}

c2 = {2, 3}

1

2

3

mrca(c2)

Lmc2 leaves under mrca(c2) =

= {1, 2, 3}

Lmc1 c1 =

= {1}

C

Rooted
tree T

1

2

3

Leaves L
A

Figure 3.7: An example of calculating different cluster scores for the same tree ac-
cording to Algorithms 3.1 and 3.2. (A) A rooted tree T which has three leaves
L = {1, 2, 3}. (B) Two clusters Gb = (b1, b2) consisting of sets of leaves are shown
on the tree T . The most recent common ancestor to b1 (mrca(b1)) is labeled on
the tree. The leaves that are descendants of mrca(b1) are used to define the set
Lmb1, which is used in Algorithm 3.1 for calculating a score for this cluster. The
value Lmb2 is equal to the set b2 since it consists of a single leaf. (C) Two clus-
ters Gc = (c1, c2) consisting of sets of leaves are shown on the tree T . The most
recent common ancestor to c2 (mrca(c2)) is labeled on the tree. The leaves that
are descendants of mrca(c2) are used to define the set Lmc2, which is used in Algo-
rithm 3.1 for calculating a score for this cluster. The value Lmc1 is equal to the set
c1 since it consists of a single leaf. (D) The rest of the calculations for the scores
for clusters Gb and Gc. The label jaccard(b1, Lmb1) is shorthand for the Jaccard
index of sets b1 and Lmb1. These result in two ordered pairs of numbers (labeled
Scores Gb and Scores Gc), which can be compared against each other to show
that the clusters Gb match the tree better than Gc (the minimum score of 1.0 in
the ordered pairs is greater than 0.67). This is indicated with a green check-mark
next to Scores Gb and a red x next to Scores Gc.

Chapter 3: Software design 91

Implementation of the cluster scoring system

These two algorithms (Algorithms 3.1 and 3.2) are implemented in my indexing

software through a class ClusterScorer . This takes as input a query that must

select some set of genomes and must have an attached tree (whether a phylogenetic

or hierarchical cluster tree). This version of ClusterScorer will return a single

score for the selected genomes from the query for the tree using Algorithm 3.1. Al-

ternatively, ClusterScorer can also take as input a collection of queries which

select sets of genomes. In this case, ClusterScorer will return a list of scores for

each query using Algorithm 3.2. Example code is given in Listing 3.3.

3.5 Visualization

A visualization component is included in the Python API to visualize phyloge-

netic trees and highlight arbitrary queries on these trees. This is implemented by

using the ETEToolkit [21], but includes functionality to more easily construct a

visualization using queries. The phylogenetic tree to visualize can be loaded di-

rectly from a tree saved in the index, or a tree can be attached to a query using

the join_tree() method—providing support for visualizing samples on trees gen-

erated from external methods.

Figure 3.8 shows the two main methods used to display the output of a query on a

tree: highlight and annotate . The highlight method will colour the back-

ground of leaves of a tree (corresponding to samples from a query). The annotate

method will add a track next to the leaves of a tree and colour this track based on

92 Chapter 3: Software design

q_mut = q.hasa(
 "NC_011083.1:4482211:C:A")

ts = q.tree_styler(...)
ts = ts.annotate(q_mut, ...)
ts.render()

q_mrca = q.isin(
 ["SH14-014", "SH12-010"],
 kind="mrca")

ts = q.tree_styler(...)
ts = ts.highlight(q_mrca, ...)
ts.render()

q_mlst = q.hasa(
"mlst:sistr_330:NZ_AOXE01000034
.1_103:1944731850")

ts = q.tree_styler(...)
ts = ts.annotate(q_mut, ...)
ts = ts.highlight(q_mrca, ...)
ts = ts.annotate(q_mlst, ...)
ts.render()

Visualization functionQuery Query Operation

A. B. C.

Code

Figure 3.8: An overview of the Python API used to visualize queries on a phy-
logenetic tree. The lower portion shows the code while the upper portion shows
the visual produced by the code. A visualization is initiated by running the
q.join_tree(tree).tree_styler() method on a query q. (A) The annotate()
method is used to construct a heatmap showing the status of samples in the query
aligned with the tree (status is one of presence, absence, or unknown). (B) The
highlight() method colours the background of the leaves of a tree based on the
status of samples in the query. (C) The highlight() and annotate() methods
can be combined together to visualize arbitrary sets of samples.

the status of a query (effectively letting you display a heatmap next to the dendro-

gram). The visualization component will colour samples in a query using the three

different states: True (present), Unknown, and False (absent). Colours and other

display options can be modified using the Python API.

Chapter 3: Software design 93

Listing 3.3 Example code for scoring clusters in the Python API

1 import genomics_data_index.api as gdi
2 import ete3
3

4 # Load database/index from directory "db1"
5 db = gdi.GenomicsDataIndex.connect("db1")
6

7 # Load a phylogenetic tree from a newick file using the ete3 package
8 # I assume this tree is rooted
9 tree = ete3.Tree("tree.nwk")
10

11 # Initiate a query containing all samples in the index
12 query = db.samples_query()
13

14 # The query must have a joined phylogenetic/cluster tree
15 # Which can be achieved using "join_tree" on a query
16 query = query.join_tree(tree)
17

18 # Create a ClusterScorer from the query
19 scorer = ClusterScorer(query)
20

21 # Select some subset of genomes on the tree
22 # That have a (hasa) particular feature
23 q1 = query.hasa(...)
24

25 # Score this subset of genomes based on
26 # how well it corresponds to a monophyletic group in the tree
27 scorer.score(q1)
28 # Returns a single number (e.g., 0.5)
29

30 # Define a list of subsets of genomes on the tree
31 # as a list of queries
32 q1 = query.hasa(...)
33 q2 = query.isa(...)
34 queries_list = [q1, q2]
35

36 # Score the list of queries (by passing a list to score())
37 scorer.score([q1, q2])
38 # Returns a table of scores, one row for each query.

Chapter 4

Evaluation

In order to evaluate GDI, I used three separate scenarios consisting of different

data. I included an additional fourth evaluation consisting of a qualitative com-

parison of GDI to other, similar-functioning, software.

1. Data simulation. Here, I evaluated the software using simulated nucleotide

variants. I processed this simulated data using the Data analysis pipeline, In-

dexing, Clustering, and Querying stages, and examined the sensitivity and

precision of GDI at detecting nucleotide variants and constructing phyloge-

netic trees.

2. Real-world genome assemblies. I evaluated GDI by measuring computa-

tional resource usage for processing real-world SARS-CoV-2 genome assembly

data.

3. Real-world genome sequence reads. I evaluated GDI by measuring com-

putational resource usage for processing real-world WGS reads from a variety

94

Chapter 4: Evaluation 95

of different microbial organisms.

4. Comparison to existing software. I qualitatively compare GDI to existing

software.

The code for the evaluations is available as a set of Bash, Python, and Jupyter

notebooks (https://github.com/apetkau/genomics-data-index-evaluation,

version 1.0.1, doi: 10.5281/zenodo.7021387). All of these evaluations were run us-

ing GDI version 0.6.0 (doi: 10.5281/zenodo.6485506). Recording resource usage

(run time and peak memory) was performed using the CMDBench [115] software

package. The evaluations were run using a computer with 62 GB of memory, a 1

TB solid state drive (Samsung SSD 860), and 2 physical processors (2 x Intel(R)

Xeon(R) Gold 5120 CPU @ 2.20 GHz) with 14 cores each (hyper-threaded to 28)

for a total of 2 ∗ 28 = 56 processing units.

Unless otherwise stated, I ran all of the data analysis and indexing using GDI with

32 processing cores. These processing cores are used for parallel processing of each

of the different stages of GDI (Figure 3.1). The Data analysis stage performs

parallel processing through Snakemake’s construction of a DAG and scheduling of

jobs (Section 3.1.2). The Indexing stage performs parallel processing by spawn-

ing sub-processes to handle saving data for individual samples and constructing a

large DataFrame prior to creating an inverted index (Section 3.2.4). The Cluster-

ing/phylogenetics stage performs parallel processing by using the built-in argu-

ments to the underlying software for tree construction (Section 3.4.3). The Query-

ing and Visualization stages do not have any parallel processing implemented,

but they also tend to execute much quicker than any of the other stages.

https://github.com/apetkau/genomics-data-index-evaluation

96 Chapter 4: Evaluation

4.1 Data simulation

In order to test out how well the software is able to read nucleotide variants and

reconstruct a phylogenetic tree, I evaluated the software using a simulated dataset.

The simulations were performed using Jackalope [116], which provides a mechanism

to simulate genomes and sequence reads corresponding to a provided phylogenetic

tree. The leaves of the provided tree correspond to genomes to simulate, while the

branch lengths and topology of the tree are used to control the generation of sub-

stitutions, insertions, and deletions. As output, Jackalope produces a set of WGS

reads corresponding to simulated genomes represented by leaves of the provided

tree.

4.1.1 Methods

I constructed the simulated dataset by first using an input phylogenetic tree con-

sisting of 59 genomes plus a reference genome which was constructed from already

published WGS data derived from multiple outbreaks of Salmonella enterica [117].

This phylogenetic tree was used as a template to simulate substitutions and inser-

tions/deletions that scale with the branches of the tree. The particular tree was

chosen as it contained multiple clades derived from different outbreaks of the same

organism and is representative of a tree that would be constructed during a real-

world outbreak investigation (the particular organism here does not matter as I am

simulating genomes from this tree). I constructed a random reference genome using

Jackalope [116] with length 19,699 bp (composed of two sequences of lengths 10,834

bp and 8,865 bp, respectively) to be used as the starting point for simulating nu-

Chapter 4: Evaluation 97

cleotide variants. I chose a random reference genome so I could adjust the length of

the genome to speed up the data simulations and I chose to simulate two sequences

to represent a scenario a bit more complicated than just a single sequence.

To simulate data I used the input phylogenetic tree, reference genome, and the

HKY85 [118; 71] evolutionary model to simulate 59 different sets of substitutions

(and insertions/deletions) using the reference genome as a template and following

the topology and branch lengths of the input phylogenetic tree. I saved each sim-

ulated genome to a consensus sequence file (in FASTA format). As these consen-

sus sequence files are derived directly from the Jackalope simulations (as opposed

to being assembled from reads), they represent an idealized assembly that is unaf-

fected by any artifacts introduced by de novo assembly of reads. However, for ad-

ditional validation, I also simulated Illumina paired-end reads from these consensus

sequences (2 X 250 bp read length, mean fragment length 550 bp, standard devia-

tion fragment length 100 bp). Nucleotide variant and sequence read simulation was

repeated for two separate sets of scenarios: 1) I simulated a single collection of 59

genomes with a fixed transition rate of 0.2 in the HKY85 model and adjusted the

coverage of the simulated sequence reads to be: 5X, 10X, 20X, 30X, 40X, 50X; 2) I

simulated multiple collections of 59 genomes with a fixed coverage of 30X and ad-

justed the transition rate in the HKY85 model to be: 0.05, 0.1, 0.2, 0.5, 1.0, 2.0,

5.0. In each case the transversion rate was set to be half the transition rate.

I next indexed each set of simulated data using my software and the default

pipeline (gdi analysis ...). This was repeated in each of the above scenarios

for both the saved consensus sequences (the assemblies scenario, which represents

98 Chapter 4: Evaluation

a case of an idealized, perfect assembly) as well as the sequence reads (the reads

scenario). As part of the indexing process, I also constructed a maximum-likelihood

phylogenetic tree of the 59 genomes plus the reference genome by exporting a

whole-genome alignment of nucleotide data from the index and using this alignment

as input to the software iqtree [17] with the --fast option and the GTR+F+R4

evolutionary model (see Section 3.4.1 for details).

To compare the nucleotide features detected by my analysis pipeline and in-

dexing process, I used the index to construct a table of all detected nucleotide

features following indexing. I then defined a (sample, feature) pair by concate-

nating the sample identifier with the feature name (e.g., SampleA:Feature1 ,

SampleA:Feature2 , ..., SampleB:Feature1 , ...). Each of these (sample, feature)

pairs was used to determine True Positives (TP), False Positives (FP), and False

Negatives (FN) (where the Truth set is defined by the (sample, feature) pairs sim-

ulated by Jackalope). As most positions on the reference genome are not associated

with features, there is a large imbalance between the relatively few true positives

and the much larger number of true negatives. In such a scenario, it is recom-

mended to make use of sensitivity (i.e., recall) and precision instead of specificity to

evaluate performance [119]. Sensitivity (SN) is defined as SN = TP/(TP + FN),

while precision (PR) is defined as PR = TP/(TP +FP). A third measure is the F1

score, which combines sensitivity and precision into a single value and is defined as

F1 = 2 ∗ PR ∗ SN/(PR + SN). As none of these measures require True Negatives

(TN), I do not record TN.

In order to compare the constructed phylogenetic trees, I used the APE [120] pack-

Chapter 4: Evaluation 99

age in the R programming language to load up and manipulate the phylogenetic

trees. I computed a pairwise distance between each tree and the initial reference

tree (taken to represent the True tree). I computed two different distance measures:

the normalized Robinson-Foulds distance [121] as implemented in phangorn [122]

and the Kendall-Colijn metric [123] as implemented in treespace [124].

4.1.2 Comparison across coverages

Figure 4.1 shows the counts of TP, FP, and FN (sample, feature) pairs across a

range of depth of coverage values, and Figure 4.2 shows the sensitivity, precision,

and F1 scores. From these figures it can be seen that for lower depth of cover-

age values, the number of TP and FP is also low for reads [415 TP and 19 FP

(sample, feature) pairs for a coverage of 5X, a sensitivity of 0.025]. At this same

coverage value, the number of FN is very high (16,517 FN for a coverage of 5X).

However, as the coverage increases above the minimum depth of coverage value of

10X, the TP, FP, and FN’s quickly plateau at a depth of coverage of 20X (twice

that of the minimum coverage of 10X). These values reach 14,401 TP, 666 FP,

and 2,531 FN for a depth of coverage of 20X—resulting in a sensitivity of 0.851

and precision of 0.956. Further increase in coverage does not appear to impact the

sensitivity or precision as dramatically, with a sensitivity of 0.886 and precision of

0.957 for 50X. The assemblies are unaffected by the depth of coverage and hence

appear as a horizontal line across all possible coverage values. These consistently

perform better than the read dataset—16,762 TP, 0 FP, and 170 FN—which shows

that detecting nucleotide variants using reads is less effective than using the ide-

100 Chapter 4: Evaluation

10 20 30 40 50
Coverage

0

5000

10000

15000

Co
un

t

min coverage = 10

variable = True Positives

10 20 30 40 50
Coverage

0

200

400

600

min coverage = 10

variable = False Positives

10 20 30 40 50
Coverage

0

5000

10000

15000 min coverage = 10

variable = False Negatives

Type
reads
assemblies

Figure 4.1: A comparison of the counts of true positive/false positive/false nega-
tive (sample, feature) pairs across different simulated read coverages. These are
divided up into two different data types: reads and (idealized or perfect) assem-
blies. As read coverage does not apply to assemblies, the values appear as a hori-
zontal line (with each data point a replication of constructing the same index). The
gray dotted line corresponds to a coverage value of 10X, which is the default mini-
mum depth of coverage used to detect a nucleotide variant in GDI. True Negatives
are not shown due to the reason described in the Methods (section 4.1.1).

alized assembled genomes simulated by Jackalope. These results are mirrored in

the scores from Figure 4.2, which also plateau at a depth of coverage of 20X, but

where the reads are consistently worse than the assemblies (sensitivity of 0.851 and

precision of 0.956 for reads at 20X compared to a sensitivity of 0.990 and precision

of 1.00 for assemblies).

Figure 4.3 shows the impact that adjusting the read coverage depth has on a phy-

logenetic tree constructed from the detected nucleotide variants. The phylogenetic

tree was compared to the initial phylogenetic tree used to simulated data to deter-

mine a distance using two different measures: Normalized Robinson-Foulds (NRF)

[121] and the Kendall-Colijn (KC) metric [123] (with λ = 0.5, meaning that both

branch lengths and topology of the tree contribute equally to the computed dis-

tance). Similar to the case of detected variants, the tree distances are higher for

a lower coverage value for the reads scenario (NRF = 0.948 and KC = 135 for a

read coverage of 5X). However, these distances drop as the coverage increases (NRF

Chapter 4: Evaluation 101

10 20 30 40 50
Coverage

0.00

0.25

0.50

0.75

1.00
Sc

or
e

min coverage = 10

variable = Sensitivity

10 20 30 40 50
Coverage

0.96

0.97

0.98

0.99

1.00

min coverage = 10

variable = Precision

10 20 30 40 50
Coverage

0.25

0.50

0.75

1.00

min coverage = 10

variable = F1 Score

Type
reads
assemblies

Figure 4.2: A comparison of the sensitivity/precision/F1 scores for detected
(sample, feature) pairs across different simulated read coverages. These are divided
into two different data types: reads and (idealized or perfect) assemblies. As read
coverage does not apply to assemblies, the values appear as a horizontal line (with
each data point a replication of constructing the same index). The gray dotted line
corresponds to a coverage value of 10X, which is the default minimum depth of cov-
erage used to detect a nucleotide variant in GDI.

= 0.724 and KC = 79.3 for a read coverage depth of 20X), indicating that as the

depth of coverage increases, the constructed phylogenetic tree more closely resem-

bles the original simulated phylogenetic tree. For the (idealized or perfect) assem-

blies scenario, the constructed phylogenetic tree is unaffected by the read depth of

coverage, similar to Figure 4.1. However, construction of a phylogenetic tree may

vary depending on initial conditions for the maximum-likelihood approach, leading

to variability in the distance scores. Hence, for the assemblies scenario, I chose to

repeat the construction of the tree 6 times and selected the tree with the maximum

NRF score (and thus the worst-performing tree, shown on Figure 4.3 as an orange

dotted line). The scores for the worst-performing assemblies tree is NRF = 0.707

and KC = 70.2, which is lower than all the trees constructed from the reads sce-

nario (Figure 4.3). Since this is the worst-performing (most distant) tree of 6 tri-

als for the (idealized or perfect) assemblies scenario, this suggests that building a

tree from nucleotide variants identified from an assembled genome (even the worst-

102 Chapter 4: Evaluation

10 20 30 40 50
Coverage

0.70

0.75

0.80

0.85

0.90

0.95

Di
st

an
ce

min coverage = 10
Measure = Normalized Robinson-Foulds

10 20 30 40 50
Coverage

80

100

120

min coverage = 10
Measure = Kendall-Colijn

Type
reads
assembly
(max NRF over 6 trials)

Figure 4.3: A comparison of the distances between the initial input tree and the
constructed phylogenetic trees over different read depth of coverages. The results
are divided up into two different data types: reads, and (idealized or perfect) as-
semblies. Two different distance measures are employed: Normalized Robinson-
Foulds (NRF) and Kendall-Colijn (KC). As read coverage does not apply to
assemblies, the values appear as an orange horizontal line corresponding to a tree
with a maximum NRF score out of 6 replicates. The gray dotted line corresponds
to a coverage value of 10X, which is the minimum depth of coverage used to detect
a nucleotide variant in GDI for the reads scenario.

performing tree) outperforms directly using reads to identify nucleotide variants re-

gardless of the read coverage. Supplemental figures Figure B.3 and Figure B.4 show

a comparison of the initial phylogenetic tree and the best constructed phylogenetic

tree for reads (at coverage 20X) and assemblies (max NRF score out of 6 replicates,

hence worst tree) respectively. Figure B.5 shows a comparison of the worst phyloge-

netic tree for reads (a coverage of 5X) to the initial reference genome.

4.1.3 Comparison across substitution divergences

To examine how well GDI performs across a range of substitution divergences

among genomes, I also simulated data where I kept the read coverage depth con-

stant at 30X and varied the rate of substitutions. To vary the rate of substitutions,

I adjusted the transition rate parameter as part of the HKY85 model using the

Chapter 4: Evaluation 103

values {0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}. The transversion rate was set to be half the

transition rate in all cases. I converted the transition rate values to an observed

substitution divergence value in order to make the data interpretation easier. To do

this, I pre-selected the genome in the initial input phylogenetic tree which had the

longest path to the reference genome (SH14-012, see Figure B.1). I then counted

the number of substitutions inserted into SH14-012 across different transition

rates. I normalized the number of substitutions to be a percentage of the reference

genome length, which I use as the substitution divergence values (i.e., 0% repre-

sents 0 observed substitutions between the reference and SH14-012, while 100%

represents 19,699 observed substitutions, the same length as the reference genome).

Table 4.1 shows the transition rate and corresponding substitution divergence

values. Figure B.2 shows a plot of these values. Due to time constrains I only

simulated one collection of genomes for every transition rate.

Figure 4.4 shows the counts of TP, FP, and FN (sample, feature) pairs across a

range of substitution divergence values. From this figure it can be seen that the

number of TP increases with larger substitution divergences (which is expected as

a larger divergence means a larger number of TP). However, this hits a peak and

then drops off again. This is especially apparent for the (idealized or perfect) as-

semblies, where a peak TP value (49,552) is found for a divergence of 6.77% but

then drops off to 1,395 for a divergence of 10.4%. This is reflected in the sensitiv-

ity value of 0.948 for 6.77% divergence, but then dropping to 0.0164 for 10.4% di-

vergence (Figure 4.5). An explanation for this is provided at the end of this sec-

tion (Section 4.1.3) and involves parameters passed to the Minimap2 [39] software

104 Chapter 4: Evaluation

Transition rate Number of substitutions Substitution

divergence

0.05 310 1.57%

0.1 371 1.88%

0.2 473 2.40%

0.5 827 4.20%

1.0 1,333 6.77%

2.0 2,049 10.4%

5.0 3,481 17.7%

Table 4.1: Transition rates, number of substitutions, and divergence between ref-
erence and SH14-012. Reference genome length is 19,699 bp. I only performed a
single simulation for every transition rate.

used for aligning assemblies. This same trend is not observed for reads, where a di-

vergence of 6.77% has a sensitivity of 0.663 and falls to 0.519 for a divergence of

10.4%. However, looking at the FP counts, for assemblies, these remain constant

at 0 FP for all divergence values (hence precision is constant at 1.0). For reads, the

FP increase for larger divergence values and the precision decreases for higher di-

vergence values (with the lowest precision of 0.590 for a divergence of 17.7%). Ex-

amining the F1 score (Figure 4.5) we can observe that the (idealized or perfect)

assemblies outperform reads for lower divergence values (at 6.77% there is an F1

score of 0.973 for assemblies to 0.736 for reads). However the F1 score for assem-

blies drops to a score of near 0.0 beyond a substitution divergence of 6.77% (at

10.4% an F1 score of 0.0323 for assemblies compared to 0.608 for reads).

Chapter 4: Evaluation 105

5.0% 10.0% 15.0%
Largest substitution divergence

0

20000

40000

Co
un

t
variable = True Positives

5.0% 10.0% 15.0%
Largest substitution divergence

0

5000

10000

15000

20000

variable = False Positives

5.0% 10.0% 15.0%
Largest substitution divergence

0

50000

100000

150000
variable = False Negatives

Type
reads
assemblies

Figure 4.4: A comparison of the counts of true positive/false positive/false negative
(sample, feature) pairs across different simulated substitution divergences between
SH14-012 and the reference genome. Substitution divergences were controlled by
adjusting the transition rate from 0.05 to 5.0 (see Table 4.1). The results are di-
vided up into two different data types: reads, and (idealized or perfect) assem-
blies. True negatives are not shown due to the reason described in the methods
(section 4.1.1).

5.0% 10.0% 15.0%
Largest substitution divergence

0.00

0.25

0.50

0.75

1.00

Sc
or

e

variable = Sensitivity

5.0% 10.0% 15.0%
Largest substitution divergence

0.6

0.7

0.8

0.9

1.0
variable = Precision

5.0% 10.0% 15.0%
Largest substitution divergence

0.00

0.25

0.50

0.75

1.00
variable = F1 Score

Type
reads
assemblies

Figure 4.5: A comparison of the scores of (sample, feature) pairs across different
simulated substitution divergences between SH14-012 and the reference genome.
Substitution divergences were controlled by adjusting the transition rate from 0.05
to 5.0 (see Figure B.2). The results are divided up into two different data types:
reads, and (idealized or perfect) assemblies.

Figure 4.6 shows the impact that adjusting the substitution divergence has on a

phylogenetic tree constructed from the detected nucleotide variants. This figure

shows the distance between the initial phylogenetic tree and the tree constructed

by GDI after detecting and loading all the nucleotide variants. For lower substitu-

tion divergence values, the (idealized or perfect) assembly trees appear to have a

lower distance (and so are a closer match to the original tree) than the reads trees.

106 Chapter 4: Evaluation

The best performing assembly tree (measured by the NRF score) occurs with a di-

vergence value of 1.88% (NRF = 0.672, KC = 78.4). This can be contrasted with

the reads tree, which is the worst performing for this divergence value (divergence

= 1.88%, NRF = 0.759, KC = 87.6). Supplemental figures Figure B.6 (assembly)

and Figure B.7 (reads) show a comparison of the initial phylogenetic tree and the

constructed phylogenetic trees for each of these cases respectively.

For a divergence of 6.77% and beyond the (idealized or perfect) assemblies trees

failed to be constructed by GDI and hence are missing from Figure 4.6. The assem-

bly tree that gets successfully built with the highest divergence occurs with diver-

gence 4.20% and has NRF=0.741 and KC=70.3. By contrast, the reads tree at this

divergence actually has a lower NRF distance but a higher KC distance (divergence

= 4.20%, NRF = 0.724, KC = 93.0). Supplemental figures Figure B.8 (assembly)

and Figure B.9 (reads) show a comparison of the initial phylogenetic tree and the

constructed phylogenetic trees for each of these cases respectively.

Investigation of poor performance for assemblies at high divergences

To examine a bit more closely what is going on with (idealized or perfect) assem-

blies at a divergence greater than 4.20%, I inspected the nucleotide variants listed

in the VCF file for SH14-012 (the file stored in my index which lists all the iden-

tified nucleotide variants) and the proportion of unknown/missing sites listed in

the corresponding BED file for this sample (the file in my index that lists ranges of

positions that are unknown/missing for the nucleotide-level features). For a diver-

gence of 4.20% I find that there are 712 records in the VCF file, and the BED file

Chapter 4: Evaluation 107

5.0% 10.0% 15.0%
Largest substitution divergence

0.68

0.70

0.72

0.74

0.76
Di

st
an

ce
Measure = Normalized Robinson-Foulds

5.0% 10.0% 15.0%
Largest substitution divergence

70

75

80

85

90

Measure = Kendall-Colijn

Type
reads
assembly

Figure 4.6: A comparison of the distance to constructed phylogenetic trees over
different substitution divergences between SH14-012 and the reference genome.
Substitution divergences were controlled by adjusting the transition rate from 0.05
to 5.0 (see Figure B.2). The results are divided up into two different data types:
reads, and (idealized or perfect) assemblies. Two different distance measures are
employed: Normalized Robinson-Foulds and Kendall-Colijn. Data points for
divergence values ≥ 4.20% for the assembly case are missing as iqtree [17] was
unable to construct phylogenetic trees for these divergence values.

lists 0.02% of the reference genome as being missing/unknown (4/19,699 bp). How-

ever, for a divergence of 6.77% I find 0 records in the VCF file and 100% of the ref-

erence genome is missing/unknown from the BED file (19,699/19,699 bp). Hence,

when exporting a multiple sequence alignment used for constructing a phylogenetic

tree, genome SH14-012 is marked as consisting entirely of missing/unknown nu-

cleotides (indicated with an N character in the alignment). When I run iqtree [17]

on this multiple sequence alignment to construct a maximum-likelihood tree I see

the message "Sequence SH14-012 contains only gaps or missing data". Hence, I

conclude that this is the reason why I cannot construct phylogenetic trees for as-

semblies for divergences greater than 4.20%. This is also reflected by the large

drop in F1 score for higher divergences for assemblies (Figure 4.5).

To investigate why I got 0 records in the VCF file for a divergence of 6.77%, I

108 Chapter 4: Evaluation

examined the output of minimap2 [39], which is used for alignment prior to identi-

fying nucleotide variants. I ran minimap2 for genomic sample SH14-012 (using the

command minimap2 -t 1 -a -x asm5 reference.fasta.mmi SH14-012.fasta.gz),

which produces a SAM file [98] storing the genome alignment. Part of the SAM

file format is an encoding of matches/mismatches/insertions/deletions between

genomes encoded in a string using the CIGAR format [98]. For SH14-012 and the

above parameters for minimap2, the output SAM file has no data in the CIGAR

string field. However, if I adjust the minimap2 parameter -x asm5 to -x asm10 ,

I do find a valid CIGAR string entry. The parameter asm10 impacts the sequence

divergence for mapping (from the minimap2 usage statement: "asm5/asm10/asm20

- asm-to-ref mapping, for 0.1/1/5% sequence divergence"). Hence, I conclude that

the parameter -x asm5 in minimap2, used by default in my analysis pipeline, is

the cause of failure for higher-divergence datasets.

4.2 SARS-CoV-2 data analysis

4.2.1 Methods

Data preparation

In order to test out the applicability of this software to real-world data, I evalu-

ated indexing and querying a collection of SARS-CoV-2 genomes. SARS-CoV-2 is

an RNA virus with a genome length of ∼ 30 kbp. I downloaded a set of 1,095,217

publicly available genomes from GenBank (and processed by Nextstrain [3]) as of

August 12, 2021 (https://docs.nextstrain.org/projects/ncov/en/latest/

https://docs.nextstrain.org/projects/ncov/en/latest/reference/remote_inputs.html#summary-of-available-genbank-open-files
https://docs.nextstrain.org/projects/ncov/en/latest/reference/remote_inputs.html#summary-of-available-genbank-open-files

Chapter 4: Evaluation 109

reference/remote_inputs.html#summary-of-available-genbank-open-files).

I first removed any genomes where the number of ambiguous or undetermined bases

was ≥ 50% of the length of the reference genome (NC_045512 with length 29,903

bp). I then selected a subset of 100,000 random genomes from this collection to act

as a pool of genomes from which I draw subsets for testing.

Data analysis and indexing

In order to evaluate the run time and performance of indexing and querying on in-

creasing numbers of genomes, I divided the 100,000 test genomes into cases of 10,

20, 50, 100, 200, 500, 1,000, 2,000, 5,000, 10,000, and 20,000 genomes. These were

divided up such that each larger collection of genomes contains all the previous

smaller collections (e.g., the case of 20 genomes contains the same genomes from

the case of 10 plus 10 additional genomes). I ran GDI to process and load these

sets of genomes into an index. The processing by GDI can be divided up into three

different stages: Data analysis, Indexing, and Clustering (Figure 1.1 and Fig-

ure 3.1). These are referred to in the evaluation results as Analysis, Index, and

Tree, respectively.

The Analysis stage consists of alignment and identification of small variants

(single-nucleotide variants and indels) of the SARS-CoV-2 genomes with respect to

the reference genome (NC_045512). This also includes steps to construct sourmash

sketches using kmer sizes of k ∈ {31, 51, 71}. This stage uses parallel processing

provided by Snakemake during the execution of the DAG (defining portions of the

data analysis workflow that can be executed in parallel, see Section 3.1.2). The

https://docs.nextstrain.org/projects/ncov/en/latest/reference/remote_inputs.html#summary-of-available-genbank-open-files
https://docs.nextstrain.org/projects/ncov/en/latest/reference/remote_inputs.html#summary-of-available-genbank-open-files

110 Chapter 4: Evaluation

Index stage consists of constructing an inverted index of the individual nucleotide

features. This stage uses parallel processing while pre-processing VCF and BED

files and loading the data into a DataFrame prior to constructing an inverted in-

dex (Section 3.2.4). The Tree stage consists of constructing a multiple sequence

alignment of the identified variants followed by building a phylogenetic tree using

iqtree [17] using the --fast option and the GTR+F+R4 evolutionary model.

This stage uses parallel processing by passing appropriate arguments to iqtree

(--threads-max and -T AUTO , see Section 3.4.3). Due to the time it takes to

build a phylogenetic tree, I only ran the Tree stage for up to 500 genomes and

skipped this stage for the cases with more than 500 genomes. I used 32 processing

cores to run each of the Analysis, Index, and Tree stages and I recorded the run

time, peak memory, and disk usage (repeated 3 times). I also calculated the Total

time, which is the sum of the previous three stages.

Querying

To evaluate querying performance, for each of these indexes I recorded the run time

(using the Python timeit function) for a number of different query operations in

the Python API (repeated 10 times). These query operations include: q.isa() ,

q AND r , q.summary() , q.join() , q.features_summary() , q.hasa() ,

q.toframe() , q.features_comparison() (see Table 3.2 for a description of

these operations). I did not record memory usage in this case as it was difficult to

determine how to separate out the memory usage of my query operation from the

memory usage of the rest of the application (i.e., it is difficult to measure the mem-

Chapter 4: Evaluation 111

ory usage of calling a single Python function). To evaluate querying performance

using the command-line interface, I recorded the run time and memory usage

of a number of operations. These operations include query hasa , query isa ,

query --summary , query --features-summary , and list samples (see Ta-

ble 3.2 for a description of these operations). Here, I could record the memory

usage, which is defined as the peak memory used by the entire Python applica-

tion. In all cases, query operations use only a single processing core (they are not

multi-process or multi-threaded).

Clustering and phylogenetic analysis

To evaluate how well a phylogenetic tree (or hierarchical cluster tree) constructed

using the nucleotide variants indexed by my software groups related genomes into

clades, I compared these clades to independently defined Pangolin lineages [41],

which themselves are defined using phylogenetics and machine learning models

[6]. The phylogenetic tree was constructed using 500 samples and a maximum

likelihood approach where the whole-genome alignment of the samples is exported

and used to construct a phylogenetic tree with iqtree [17] (details in Section 3.4.1).

The hierarchical cluster was defined using a kmer-based MinHash method for

k ∈ {31, 51, 71} [50; 54] (details in Section 3.4.2). Pangolin lineages were identified

using the pangolin software [41] (version 3.1.20, pangoLEARN 2022-02-28, pango-

designation v1.2.127), which was run on the SARS-CoV-2 genome assemblies. I

also included a comparison to a phylogenetic tree constructed from the Augur

pipeline—a phylogenetic pipeline that is part of Nextstrain [3] and which oper-

112 Chapter 4: Evaluation

ates independently of GDI by constructing a multiple sequence alignment (using

MAFFT [110]) and a maximum-likelihood tree (using iqtree [17]). The tree con-

structed using Augur is used to provide an independently constructed phylogenetic

tree for comparison to GDI.

The hierarchical structure of Pangolin lineages are recorded in the lineage names

using a dotted-decimal notation [41] (e.g,. lineage B.1.1 is part of B.1, which is

part of lineage B). I split these lineages based on their hierarchical levels (the al-

phanumeric portion in between the period .) and assign genomes to every level.

That is, if genome X is part of lineage B.1 I split this into two clusters—B.1 and

B—and I assign genome X to be a part of both clusters. Consequently, the clusters

I define using these lineages are not mutually exclusive (a genome can and likely

does belong to more than one cluster). An additional complexity in this process

is that some lineages are aliases of others (e.g., AY.1 is an alias of B.1.617.2.1). I

solve this by first replacing each alias with the expanded version of a lineage code

prior to splitting lineages (e.g., I substitute AY.1 with B.1.617.2.1). The pangolin

lineage aliases are derived from the table located at https://cov-lineages.org/

lineage_list.html.

In order to quantify how well a lineage-level (cluster) is accurately grouped together

by a phylogenetic or hierarchical clustering tree, I assign scores to every lineage

based on how well it forms a monophyletic group in the tree. The scores range

from 0 to 1, with a score of 1 meaning that all samples form a monophyletic group.

Scores of < 1 mean that samples in a cluster do not form a monophyletic group,

with scores closer to 0 being interpreted as mixing more samples from other clusters

https://cov-lineages.org/lineage_list.html
https://cov-lineages.org/lineage_list.html

Chapter 4: Evaluation 113

within the cluster-in-question. This scoring system is described in more detail in

Section 3.4.4.

I evaluated each tree (whether a phylogenetic tree or hierarchical cluster tree)

through this scoring system by scoring each lineage-level to produce a distribu-

tion of scores for each tree, one per lineage-level. I removed scores derived from

lineage-levels consisting of only a single genome, as these will always be assigned

the maximum score of 1 for every tree, thus I did not consider them informative for

comparing different tree-building methods. Considering only lineage-levels with 2

or more genomes results in 41 lineage-levels and thus 41 different scores (numbers

from 0 to 1) for each tree. I compared the distribution of these scores for each tree

(Figure 4.17).

4.2.2 Data analysis and indexing

To evaluate the performance for data analysis and indexing, I constructed genomics

indexes for batches of genomes up to 20,000 and measured the run time, peak

memory, and disk usage when using 32 processing cores. The run time of indexing

genomes is dominated by the run time used to build a phylogenetic tree (Fig-

ure 4.7, Type = Include Tree). With 500 genomes, this took 5.26 ± 0.41 hours out

of the total run time of 5.35 ± 0.41 hours or 97% of the time (mean ± standard de-

viation over 3 trials). When ignoring building a phylogenetic tree (Figure 4.7, Type

= Exclude Tree), the major contributor to the total run time was the Analysis

stage, which for 20,000 genomes took 2.17 ± 0.00 hours out of a total of 2.55 ± 0.01

hours or 85% of the total (mean ± standard deviation over 3 trials).

114 Chapter 4: Evaluation

0 100 200 300 400 500
Samples

0

50

100

150

200

250

300

350

Ti
m

e
(m

in
ut

es
)

Type = Include Tree

0 2500 5000 7500 10000 12500 15000 17500 20000
Samples

0

20

40

60

80

100

120

140

160
Type = Exclude Tree

Stage
Analysis
Index
Tree
Total

Figure 4.7: Time to index different numbers of SARS-CoV-2 genomes (using 32
processing cores). The time is divided into three different stages: Analysis, In-
dex, and Tree. The left plot shows the time spent including building a phyloge-
netic tree. The right plot shows the time spent when building of a tree is skipped.
The mean over 3 different trials is shown, with confidence intervals corresponding
to ± one standard deviation from the mean (most are too small to see).

Unlike run time, the peak memory usage (Figure 4.8) is primarily driven by the

peak memory of the Index stage. For 500 genomes, the peak memory usage oc-

curred in the Index stage with 5.63 ± 0.01 GB and the next highest peak was in

the Analysis stage with 1.90± 0.46 GB.

Interestingly, between 2,000 genomes and 5,000 genomes there was a large jump

in the peak memory usage in the Index stage from 6.15 ± 0.01 GB to 23.6 ± 0.23

GB (Figure 4.8). One hypothesis for this jump is that I process genomes in batches

during the Index stage to avoid constructing very large data structures (Sec-

tion 3.2.4). The default batch size is 2,000 genomes, so moving from 2,000 genomes

to 5,000 genomes would mean the Index stage goes from processing all genomes in

one batch to requiring three batches. In order to confirm this hypothesis I re-ran

the entire indexing process (starting from 2,000 genomes) with a batch size of

Chapter 4: Evaluation 115

0 100 200 300 400 500
Samples

0

1

2

3

4

5

Pe
ak

 M
em

or
y

(G
B)

Type = Include Tree

0 2500 5000 7500 10000 12500 15000 17500 20000
Samples

0

5

10

15

20

25

30

35 Type = Exclude Tree

Stage
Analysis
Index
Tree

Figure 4.8: The peak memory used to index different numbers of SARS-CoV-2
genomes. The memory is divided into three different stages: Analysis (identify-
ing nucleotide variants), Index (loading nucleotide variants into a database), and
Tree (building a maximum-likelihood phylogenetic tree). The left plot shows the
peak memory when including building a phylogenetic tree. The right plot shows the
peak memory when building of a tree is skipped. The mean over 3 different trials
is shown, with confidence intervals corresponding to ± one standard deviation from
the mean.

10,000 (instead of 2,000) and compared the memory usage between both scenarios

(Figure 4.9). As can be seen, moving from a batch size of 2,000 to 10,000 shifts the

large jump in memory to between 10,000 and 20,000 genomes. Hence, I conclude

that the batch size is the likely cause of this jump in memory.

The disk usage of indexing is primarily driven by the Analysis stage (Figure 4.10).

For 500 genomes, the Analysis disk usage is 3.52 ± 0.00 GB out of a total of

3.53 ± 0.00 GB or 99.7% of the total. For 20,000 genomes, the Analysis disk usage

is 7.10 ± 0.00 GB out of a total of 7.45 ± 0.00 GB, or 95% of the total. The Index

disk usage for 20,000 genomes is only 0.34 ± 0.00 GB, or only 4.6% of the total.

Hence, the vast majority of the disk space used for indexing is only temporary, as

the files used by the Analysis stage are cleaned up after the full index has been

116 Chapter 4: Evaluation

2500 5000 7500 10000 12500 15000 17500 20000
Samples

5

10

15

20

25

30

35

40
Pe

ak
 M

em
or

y
fo

r I
nd

ex
 (G

B) samples = 5000 samples = 20000

Sample Batch Size
2000
10000

Figure 4.9: The peak memory used for the Indexing stage across sample batch
sizes of 2,000 and 10,000. For the case of a batch size of 2,000, the large increase
in memory occurs when indexing 5,000 samples (more than 2,000). For the case of
a batch size of 10,000, the large increase in memory occurs when indexing 20,000
samples (more than 10,000 samples). The mean over 3 different trials is shown,
with confidence intervals corresponding to ± one standard deviation from the
mean.

constructed. Additionally, unlike for the peak memory, there are no obvious jumps

or irregularities as the number of genomes increase.

4.2.3 Querying

In order to evaluate the performance when querying an index or summarizing

information from the index, I chose a set of 7 different operations in the GDI

Python API and used the Python timeit module to evaluate the run time over

10 different iterations. I also evaluate a subset of these 7 operations using the GDI

command-line interface. All query operations use only a single processing core for

execution.

Chapter 4: Evaluation 117

0 2500 5000 7500 10000 12500 15000 17500 20000
Samples

0

1

2

3

4

5

6

7

Di
sk

 (G
B)

Disk usage for different stages of indexing

Stage
Analysis
Index
Total

Figure 4.10: The disk space used to index different numbers of SARS-CoV-2
genomes. The disk space is divided into two different stages: Analysis (identifying
nucleotide variants) and Index (loading nucleotide variants into the database). The
mean over 3 different trials is shown, with confidence intervals corresponding to ±
one standard deviation from the mean (these are too small to see on this figure).

Python API

Figure 4.11 shows the relationship between the number of genomic samples in the

index and the run time. This is divided up into three different time scales: Short,

Medium, and Long. In the Short time-scale the q AND r and q.summary()

operations appear fairly constant across a large range of samples—taking only

0.024 ± 0.000 ms and 0.35 ± 0.01 ms respectively (mean ± standard deviation).

Both of these operations depend primarily on set operations using Roaring bitmaps

[104] and thus should be expected to be fairly fast. In particular, the sample iden-

tifiers are stored in a Roaring bitmap, which stores sets of 32-bit integers organized

into blocks of 16-bits (the first 16-bits of an integer is used as a key to identify the

block) [104]. Given that I am storing up to 20,000 samples where the identifiers are

defined sequentially (from 1 to 20,000) then I am only ever manipulating a single

roaring-bitmap block with all sample identifiers in it (16-bit blocks can store a

118 Chapter 4: Evaluation

0 5000 10000 15000 20000
Samples

0.00
0.25
0.50
0.75
1.00
1.25

Ti
m

e
(m

s)

Time scale = Short

0 5000 10000 15000 20000
Samples

0

250

500

750

1000

1250
Time scale = Medium

0 5000 10000 15000 20000
Samples

0

10000

20000

30000

40000 Time scale = Long

Kind
q.isa
q AND r

q.summary
q.join

q.features_summary
q.hasa

q.toframe
q.features_comparison

Figure 4.11: The time spent during different operations of the query API compared
to the number of samples. The three plots compare query API calls, which use dif-
ferent lengths of time: Short, Medium, and Long. The mean over 10 different
trials is shown, with confidence intervals corresponding to ± one standard deviation
from the mean (confidence intervals are too small to see in these figures).

maximum of 216 = 65, 536 unsigned integers). Hence, even with 20,000 samples I

would not expect the time taken to perform set operations for Roaring bitmaps to

change much, and it should only change as I get closer to 65,536 samples stored in

an index. By contrast, the q.isa() operation requires connecting to the SQLite

database and this is reflected in the increased time as the number of samples in-

crease, reaching 1.38 ± 0.00 milliseconds for 20,000 samples (mean ± standard

deviation).

For the Medium time-scale query operations, the largest-increasing operation is

q.features_summary() , which takes 1, 310 ± 3.4 ms for 20,000 samples. For the

Long time-scale operations there is only one operation q.features_comparison() ,

which takes 36, 500 ± 1, 700 ms for 20,000 samples. Both q.features_summary()

and q.features_comparison() involve summarizing information for all features

found in all samples, and hence take much longer to execute.

Chapter 4: Evaluation 119

In order to get a better idea on the query run time, I also compared the time to

the number of genomic features. Genomic nucleotide features can be divided up

into two classes: nucleotide variants (referred to as known features and shown on

Figure 4.12) and missing/unknown features (referred to as unknown features and

shown on Figure 4.13). Nucleotide variants consist of features corresponding to sin-

gle or multiple nucleotide variants (e.g., an A to G mutation at position 100) or

insertions/deletions. The unknown/missing features consist of entries in my index

representing samples where it is unknown what the nucleotide is on a particular re-

gion. The figures are divided into the same three time-scale of query operations:

Short, Medium, and Long.

For the nucleotide variants (known features shown on Figure 4.12), we can see that

most operations increase with increasing number of features except for q AND r

and q.summary() . The operation q AND r consists of a logical operation on

sets of samples (samples in query q and samples in query r), and so are not

directly related to the number of features. The operation q.summary() prints

summary statistics for a particular query and so is also unrelated to the num-

ber of features. Every other query increases with the number of features, with

the greatest increases for each of the three time scales consisting of: q.isa() ,

q.features_comparison() , and q.features_summary() .

For the unknown/missing features (unknown features shown on Figure 4.13), we

see that most operations appear fairly constant except for q.features_summary()

and q.hasa() , which increase slightly with respect to the number of un-

known/missing features. Neither of these operations depend on the number

120 Chapter 4: Evaluation

0 5 10 15
Number of known features (x1000)

0.00
0.25
0.50
0.75
1.00
1.25

Ti
m

e
(m

s)

Time scale = Short

0 5 10 15
Number of known features (x1000)

0

250

500

750

1000

1250
Time scale = Medium

0 5 10 15
Number of known features (x1000)

0

10000

20000

30000

40000 Time scale = Long

Kind
q.isa
q AND r

q.summary
q.join

q.features_summary
q.hasa

q.toframe
q.features_comparison

Figure 4.12: The time spent during different operations of the query API com-
pared to the number of nucleotide variant features (excluding unknown features).
The three plots compare query API calls using different lengths of time: Short,
Medium, and Long. The mean over 10 different trials is shown, with confidence
intervals corresponding to ± one standard deviation from the mean (confidence in-
tervals are too small to see in these figures).

of unknown/missing features by default, but the increase could potentially be

explained by a correlation between the number of nucleotide variants and un-

known/missing features (that is increasing the number of samples increases both

types of features, see Figure 4.14). Another interesting aspect is the large spike in

run time at around 30,000 unknown/missing features (Figure 4.13). The number

of unknown/missing features stored in my index is limited by the length of the

reference genome (one unknown/missing feature entry per position on the reference

genome), which for the NC_045512 reference genome is 29,903 bp. This means

that the number of unknown/missing features becomes saturated at the reference

genome length, which occurs at around 500 samples for this dataset (Figure 4.14).

Any further increase in the number of genomic samples leads to an increase in

the number of indexed nucleotide variants but no increase in the number of un-

known/missing features. Since increases in the number of nucleotide variants lead

Chapter 4: Evaluation 121

10 20 30
Number of unknown features (x1000)

0.00

0.25

0.50

0.75

1.00

1.25

Ti
m

e
(m

s)

Time scale = Short

10 20 30
Number of unknown features (x1000)

0

250

500

750

1000

1250 Time scale = Medium

10 20 30
Number of unknown features (x1000)

0

10000

20000

30000
Time scale = Long

Kind
q.isa
q AND r

q.summary
q.join

q.features_summary
q.hasa

q.toframe
q.features_comparison

Figure 4.13: The time spent during different operations of the query API compared
to the number of unknown/missing nucleotide features. The three plots compare
query API calls using different lengths of time: Short, Medium, and Long. The
mean over 10 different trials is shown, with confidence intervals corresponding to ±
one standard deviation from the mean (confidence intervals are too small to see in
these figures).

0 5000 10000 15000 20000
Number samples

0

20000

40000

Co
un

t

samples = 500

genome length = 29903

Feature type = All (Known + Unknown)

0 5000 10000 15000 20000
Number samples

samples = 500

genome length = 29903

Feature type = Known

0 5000 10000 15000 20000
Number samples

samples = 500

genome length = 29903

Feature type = Unknown

Figure 4.14: The number of features stored in the index compared to the number
of samples for the SARS-CoV-2 dataset. Features are divided into two classes:
the Known type, which includes single/multiple nucleotide variants and indels,
as well as the Unknown features type, which corresponds to missing or unknown
positions on the reference genome. The All features type includes the count of
both unknown and known features. The number of unknown features is limited by
the length of the reference genome (29,903 bp) since there can only exist one un-
known/missing feature per position on the genome. For this dataset, the number of
unknown features reaches nearly the genome length when indexing 500 samples.

to an increase in run time, this provides an explanation for why there is a large

spike near 30,000 features for the unknown/missing features figure (Figure 4.13).

122 Chapter 4: Evaluation

0 5000 10000 15000 20000
Samples

2500

3000

3500

4000

4500

5000

Ti
m

e
(m

s) Kind
query hasa
query isa
query --summary
query --features-summary
list samples

Figure 4.15: The run time of selected operations in the command-line interface
(CLI) as the number of samples in the index increases. The mean over 10 different
trials is shown, with confidence intervals corresponding to ± one standard deviation
from the mean.

Command-line interface

In addition to examining the run time of the API, I also evaluated the run time

of the command-line interface (CLI) (Figure 4.15). Not all operations available in

the API are also available in the CLI (Table 3.2), so only a subset of equivalent

operations are shown. The overall trend in increasing run time as the number of

samples increases also holds for the CLI, but the plot starts with 2,500 milliseconds

instead of 0 milliseconds. This reflects the overhead introduced by using the CLI to

start up the application. For example, for two equivalent operations (q.hasa())

with 20,000 samples the API takes 184 ± 0.69 milliseconds, while the CLI takes

3, 750 ± 180 milliseconds (mean ± standard deviation over 10 trials). This means

the CLI is ∼ 20X slower than the API in this particular case due to the overhead of

starting up the application.

In addition to the run time, I also evaluated the memory usage for the CLI (Fig-

ure 4.16). In general, there is an increasing memory usage for querying using the

Chapter 4: Evaluation 123

0 5000 10000 15000 20000
Samples

220

240

260

280

300

M
em

or
y

(M
B) Kind

query hasa
query isa
query --summary
query --features-summary
list samples

Figure 4.16: The peak memory usage of selected operations in the command-line
interface (CLI) as the number of samples in the index increases. The mean over
10 different trials is shown, with confidence intervals corresponding to ± one stan-
dard deviation from the mean (confidence intervals are too small to be seen in this
figure).

CLI as the number of samples increases. For a case of 20,000 samples, the highest

memory used is by the query --features-summary command with 296± 0.33 MB

(mean ± standard deviation over 10 trials). Measuring the memory of the individ-

ual GDI Python API commands is more difficult and thus was not performed for

these evaluations.

4.2.4 Phylogenetics and clustering

As a final set of evaluations of the SARS-CoV-2 dataset, I examined how well dif-

ferent tree-building methods group genomes into clades corresponding to indepen-

dently defined clusters. These clusters are defined as the different Pangolin lineages

[41]. For 500 samples, I had a total of 41 different lineages (or lineage-levels), each

of which was assigned a numerical score from 0 to 1. Figure 4.17 shows the distri-

bution of these scores. Here, it can be seen that the maximum-likelihood trees (con-

structed both from Augur as well as GDI) both have the majority of the lineages

124 Chapter 4: Evaluation

lying within monophyletic or near-monophyletic clades (scores all are equal to or

close to 1.0). The median score for both my internal maximum-likelihood approach

as well as the Augur pipeline is 1.0. This is in contrast to the kmer trees, which all

tend to have scores closer to 0 (the highest median is for k = 51 with a median

score of 0.058). Hence, the topology of the tree for both maximum-likelihood ap-

proaches are a much better match to the externally defined (Pangolin) clusters than

for any kmer-based clustering (with k ∈ {31, 51, 71}). Figures C.1, C.2, C.3, C.4,

and C.5 show the dendrograms alongside a heatmap of genomes and lineages for

the Augur pipeline, GDI-constructed maximum-likelihood tree, and the three kmer

trees respectively.

4.3 Read data

4.3.1 Methods

To evaluate the analysis and indexing of features derived directly from sequence

reads, I made use of a standard benchmarking dataset [125] consisting of four col-

lections of WGS reads derived from different bacterial organisms involved in real-

world infectious disease outbreaks. These consist of 22 Campylobacter jejuni, 9

Escherichia coli, 31 Listeria monocytogenes, and 23 Salmonella enterica genomes.

Each of the four different datasets from the different organisms can be further sub-

divided into a collection of genomes derived from bacteria that were confirmed to

be epidemiologically related to a single outbreak (and so should be expected to be

similar to each other) as well as genomes derived from bacteria that are more dis-

Chapter 4: Evaluation 125

0.0 0.2 0.4 0.6 0.8 1.0
Score

Score (Augur pipeline)

Score (ML)

Score (kmer = 31)

Score (kmer = 51)

Score (kmer = 71)

M
et

ho
d

Constructed in GDI
No
Yes

Figure 4.17: A comparison of the distribution of cluster scores from different meth-
ods of clustering genomes. Each of the 5 categories shows the distribution of all 41
lineages with assigned scores as a violin plot scaled to have identical areas. Each
violin plot has an internal box-and-whisker plot. Scores range from 0 to 1, with 1
representing a situation where all genomes form a monophyletic clade. The Au-
gur pipeline category shows the distribution of scores generated from construct-
ing a multiple sequence alignment and a maximum-likelihood tree using the Augur
pipeline [3] instead of GDI. The other 4 methods show the scores for a phylogenetic
tree or hierarchical clusters constructed using GDI.

tantly related (the outgroup). For each organism, an additional reference genome is

provided or recommended. I chose this dataset as one of the goals of this evaluation

is to examine the differences in clustering genomes between a maximum-likelihood

approach and a kmer approach as implemented in GDI. Specifically, I will show

that clustering by both kmers and nucleotide variants are necessary, depending on

the resolution desired for clustering data. Table 4.2 summarizes the dataset infor-

mation.

In order to compare clustering of the genomes using kmers vs. a maximum-

likelihood phylogenetic approach, I also processed and inserted the data for all

126 Chapter 4: Evaluation

four datasets into the same GDI index. I then constructed maximum-likelihood

phylogenetic trees for each of the four datasets separately using iqtree [17] with

the --fast option and the GTR+F+R4 evolutionary model. I also constructed

a single kmer-based tree (a hierarchical cluster tree using single-linkage clustering

from pairwise distances calculated by sourmash [54] using a kmer size of k = 71 and

a kmer scale factor of 1000).

In order to evaluate the resource usage of indexing this data, each of the four

datasets was divided into a number of cases by selecting a random subset of ge-

nomic samples from each dataset corresponding to 4, 8, 16, and the full number of

samples. For the 1405WAEXK-1 (Escherichia coli) dataset, the case of 16 samples

was ignored as there are only 9 samples in this dataset. In each case, the genomes

were processed and inserted into a separate index for each individual dataset (so

there were four GDI indexes in total). The run time, memory, and disk usage was

recorded for each of these test cases over 3 separate iterations. The disk usage for

the Index stage corresponds to the disk usage of also storing a phylogenetic tree

(which is part of the GDI index and stored in the relational database). I do not

divide up the disk usage of the GDI index into both an Index (without tree) and

a Tree stage since the size of the phylogenetic tree (Newick file) is negligible when

compared to the size of the rest of the index.

For each dataset and testing scenario, I ran the analysis pipeline to identify

nucleotide variants from reads along with a sourmash sketch consisting of

k ∈ {31, 51, 71} and inserted the data into a GDI index. I used 4 cores for the

data analysis, which was chosen to be equal to the smallest sample size (4 samples)

Chapter 4: Evaluation 127

Dataset Organism Reference genome Reference

length (bp)

Number genomes

(Outbreak +

Outgroup)

Cases (number

samples)

0810PADBR-1 Campylobacter je-

juni

ASM187918v2 1,634,890 22 (14 + 8) {4, 8, 16, 22}

1405WAEXK-1 Escherichia coli Ec2011C-3609 5,412,686 9 (3 + 6) {4, 8, 9}

1408MLGX6-3WGS Listeria monocyto-

genes

ASM104771v2 2,939,733 31 (28 + 3) {4, 8, 16, 31}

1203NYJAP-1 - Tuna

Scrape Outbreak

Salmonella enterica ASM43941v1 4,808,805 23 (18 + 5) {4, 8, 16, 23}

Table 4.2: Dataset and organisms used for benchmarking with sequence reads

to make sure I’m always using the maximum number of processing cores assigned

to the application no matter how many samples I am processing. All three of the

Analysis, Index, and Tree stages perform parallel processing of the data (Sec-

tion 3.1.2, Section 3.2.4, and Section 3.4.3 respectively). If I were to increase the

maximum allowable cores from 4 to 8, for example, then when running GDI on

only 4 samples, there would still be 4 unused processing cores that could have been

occupied by work on processing additional samples (as the maximum allowable

cores to use is 8). Hence, I set the maximum allowable cores to 4 so that there are

no unused processing cores for any case I evaluate. This is to avoid any biases in

my run time (or memory usage) that could come about due to unoccupied cores.

128 Chapter 4: Evaluation

4.3.2 Running time

Figure 4.18 shows the mean time across each of the different sample scenarios for

each of the four separate datasets, divided up into the separate data processing

stages of my software. For 8 samples (the largest number of samples with tim-

ing information for all 4 datasets), the dataset that takes the longest total time

is Campylobacter jejuni (22.5 ± 0.9 minutes, mean ± standard deviation). This

is primarily driven by the time taken for the Analysis stage, which is 97% of the

total time (21.9 ± 0.09 minutes). Surprisingly, while Campylobacter jejuni takes

the most time overall, for the Index and Tree stage it takes the least amount of

time with 0.346 ± 0.008 minutes and 0.320 ± 0.024 minutes respectively. Compare

this to the dataset that takes the most amount of time for the Index and Tree

stages—Escherichia coli—which takes 3.51 ± 0.21 minutes for the Index stage and

0.493± 0.018 minutes for the Tree stage. This is ∼ 10X longer for the Index stage

when compared to Campylobacter jejuni for 8 samples.

One hypothesis for why the Index stage has such a dramatically different order of

running time when compared to the Analysis stage is related to the number of ge-

nomic features identified during the Analysis stage. The Index stage consists of

constructing an inverted index, which requires constructing a large table consist-

ing of samples and collections of features contained in each sample and "inverting"

this data structure (to construct a table of features and collections of samples con-

taining those features). This means that we should expect run time (and memory

usage) to depend both on the number of samples as well as number of features con-

tained in each dataset. Figure 4.19 shows the relationship between samples and fea-

Chapter 4: Evaluation 129

10

20

30

40

50

Ti
m

e
(m

in
ut

es
)

Stage = Analysis

1

2

3

4

5

Stage = Index

5 10 15 20 25 30
Number samples

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

Ti
m

e
(m

in
ut

es
)

Stage = Tree

5 10 15 20 25 30
Number samples

10

20

30

40

50

Stage = Total

Dataset
0810PADBR-1
(Campylobacter jejuni)
1405WAEXK-1
(Escherichia coli)

1408MLGX6-3WGS
(Listeria monocytogenes)
1203NYJAP-1 - Tuna Scrape Outbreak
(Salmonella enterica)

Figure 4.18: The running time for processing the read data from a set of four differ-
ent organisms over a number of sample sizes and when processed using a maximum
of 4 processing cores. Each of the four different figures shows the running time of
one of the three different stages of GDI (Analysis, Indexing, Tree) plus the sum
of the times over all stages (Total). The x-axis shows the number of genomic sam-
ples being indexed, which are divided up among the four different datasets (one
dataset per organism). The time for indexing data from each dataset is divided
into four different sample sizes: 4, 8, 16, and the full dataset size. The case of Es-
cherichia coli lacks a data point for 16 samples as there are only 9 samples in this
dataset. Each plot shows the mean over 3 trials with the confidence interval corre-
sponding to ± one standard deviation from the mean.

130 Chapter 4: Evaluation

tures for each dataset. From this figure we can see that Escherichia coli has by far

the largest number of features in the case of 8 samples (549, 134 features), while

Campylobacter jejuni has the fewest (44, 494). Hence, this is one possible explana-

tion for why there is this inversion of running time for each dataset between the

Analysis and Index stages. More detailed analysis (with a greater number of test

cases) would have to be performed to confirm this hypothesis.

The relationship between the number of features and run time could also explain

why the order of running time for the Tree stage matches the order for the Index

stage (with Escherichia coli and Salmonella enterica taking the most amount of

time, Figure 4.18). I would expect the time spent building a phylogenetic tree to

depend on the number of features (amount of variation) between genomes, which is

highest for Escherichia coli and Salmonella enterica. However, I would also expect

the run time of tree-building to depend on the length of the reference genome used

in the multiple sequence alignment (which is also highest for Escherichia coli and

Salmonella enterica, Table 4.2). An additional factor that could play a role here

is the number of unknown/missing features, which is highest for Escherichia coli

(Figure 4.19). Missing data in a multiple sequence alignment leads to collections of

trees with identical likelihood scores (called terraces, [18; 17]) which could have an

impact on the time needed by iqtree. However, determining which of these factors

plays a role in the run time of building a tree would require additional testing.

As a general trend, the running time increases with the number of samples (Fig-

ure 4.18) and appears to be ordered from the longest stage to the shortest as Anal-

ysis, Index, and Tree. One example is the running time for Listeria monocyto-

Chapter 4: Evaluation 131

5 10 15 20 25 30
Number samples

100000

200000

300000

400000

500000

Co
un

t

Type = Number features (all)

5 10 15 20 25 30
Number samples

100000

200000

300000

400000

500000

Type = Number features (unknown)

5 10 15 20 25 30
Number samples

0

200

400

600

800

1000

Type = Number features (known)

Dataset
0810PADBR-1
(Campylobacter jejuni)

1405WAEXK-1
(Escherichia coli)

1408MLGX6-3WGS
(Listeria monocytogenes)

1203NYJAP-1 - Tuna Scrape Outbreak
(Salmonella enterica)

Figure 4.19: The relationship between the number of samples in a dataset and
the number of features stored in the inverted index for this dataset. The three
figures correspond to the case of counting all features (all), counting only un-
known/missing features (unknown), and counting known features (i.e., SNVs or
indels, known). Each of the three datasets are shown as separate colours/data
point styles on the figures. The features from each dataset are divided into four dif-
ferent sample sizes: 4, 8, 16, and the full dataset size. The case of Escherichia coli
lacks a data point for 16 samples as there are only 9 samples in this dataset.

genes (the dataset with the highest number of genomes at 31), which is 40.0 ± 0.1,

minutes, 1.94 ± 0.09 minutes, and 0.581 ± 0.019 minutes for the Analysis, In-

dex, and Tree stages respectively. However, as observed in the SARS CoV-2 data

analysis section, constructing a phylogenetic tree dominates the overall run time

for a large number of samples. I would expect the read datasets to follow a simi-

lar trend, which is likely not observed due to the lower number of samples being

indexed (31 samples for the reads compared to 500 samples for SARS-CoV-2 and

building a phylogenetic tree).

4.3.3 Memory

Figure 4.20 shows the peak memory usage for each of the four separate datasets

over the differing number of samples and divided up into the separate data pro-

132 Chapter 4: Evaluation

cessing stages. For 8 samples during the Analysis stage, the peak memory is the

largest for the Campylobacter jejuni dataset (10.0 ± 0.3 GB) and smallest for the

Escherichia coli dataset (4.87 ± 0.01 GB). The peak memory for the Analysis

stage for 8 samples here is also the peak memory across all stages. The stage with

the second largest peak memory for 8 samples is the Index stage, with 3.33 ± 0.00

GB for Escherichia coli and 1.09 ± 0.01 GB for Campylobacter jejuni. Similar to

the running time section, Campylobacter jejuni goes from the largest memory us-

age in the Analysis stage to the smallest memory usage for the Index stage while

Escherichia coli moves to the highest spot for the Index stage. This is likely due

to a similar mechanism as for running time, where the greater number of features

for Escherichia coli (Figure 4.19) leads to a greater amount of memory used when

constructing the inverted index.

Similar to the running time scenario, the general order of memory usage among the

three stages appears to be (from highest to lowest): Analysis, Index, and Tree.

For the dataset with the most samples (Listeria monocytogenes with 31 samples)

this would be 9.27± 0.36 GB, 2.54± 0.28 GB, and 0.927± 0.000 GB respectively.

4.3.4 Disk usage

Figure 4.21 shows the disk usage for each of the four separate datasets, divided up

into the Analysis and Index stages. I did not include a separate Tree stage as the

size of each phylogenetic tree (a Newick file) is negligible when compared to the size

of the GDI index (0.004 MB compared to 38.1 MB or 0.01% of the index size for

the case of 31 samples for the Listeria monocytogenes dataset, which would have

Chapter 4: Evaluation 133

5 10 15 20 25 30
Number samples

4

6

8

10

12

14

Pe
ak

 M
em

or
y

(G
B)

Stage = Analysis

5 10 15 20 25 30
Number samples

1

2

3

4

5

6

7
Stage = Index

5 10 15 20 25 30
Number samples

0.4

0.6

0.8

1.0

1.2
Stage = Tree

Dataset
0810PADBR-1
(Campylobacter jejuni)

1405WAEXK-1
(Escherichia coli)

1408MLGX6-3WGS
(Listeria monocytogenes)

1203NYJAP-1 - Tuna Scrape Outbreak
(Salmonella enterica)

Figure 4.20: The peak memory usage for processing the read data from a set of
four different organisms over a number of sample sizes and when processed using
a maximum of 4 processing cores. Each of the three different figures shows the
peak memory of one of the three different stages of indexing (Analysis, Indexing,
Tree). The x-axis shows the number of genomic samples being indexed, which are
divided up among the four different datasets (one dataset per organism). The peak
memory for indexing data from each dataset is divided into four different sample
sizes: 4, 8, 16, and the full dataset size. The case of Escherichia coli lacks a data
point for 16 samples as there are only 9 samples in this dataset. Each plot shows
the mean peak memory over 3 trials with the confidence interval corresponding to
± one standard deviation from the mean.

the largest phylogenetic tree).

Of the two stages, the Analysis stage takes up by far the largest amount of disk

space (an Analysis size of 6, 970 ± 0.00 MB compared to the Index size of 18.5 ±

0.01 MB for 8 samples of the Campylobacter jejuni dataset). However, the Anal-

ysis stage is temporary, needed only for converting the genomic sequence reads to

genomic features prior to loading into the index. Out of the four datasets, Campy-

lobacter jejuni requires the most amount of disk space for the Analysis stage but

is closer to requiring the least amount of disk space for the Index stage (it requires

the least amount of space for 4 samples, but for ≥ 8 samples the Listeria monocyto-

genes dataset requires the least disk space for the Index stage). This difference in

disk space between the Analysis and Index stages is likely due to the same cause

134 Chapter 4: Evaluation

5 10 15 20 25 30
Number samples

6000

8000

10000

Di
sk

 (M
B)

Stage = Analysis

5 10 15 20 25 30
Number samples

20

40

60

80
Stage = Index

Dataset
0810PADBR-1
(Campylobacter jejuni)
1405WAEXK-1
(Escherichia coli)
1408MLGX6-3WGS
(Listeria monocytogenes)
1203NYJAP-1 - Tuna Scrape Outbreak
(Salmonella enterica)

Figure 4.21: The total disk usage for processing the read data from a set of four
different organisms over a number of sample sizes and when processed using a max-
imum of 4 processing cores. The two different figures show the disk usage over two
of the indexing stages: Analysis and Indexing. The x-axis shows the number
of genomic samples being indexed, which are divided up among the four different
datasets (one dataset per organism). The disk usage for indexing data from each
dataset is divided into four different sample sizes: 4, 8, 16, and the full dataset size.
The case of Escherichia coli lacks a data point for 16 samples as there are only 9
samples in this dataset. Each plot shows the mean disk usage over 3 trials with the
confidence interval corresponding to ± one standard deviation from the mean (in-
tervals are too small to see).

as described in the running time section—mainly that Campylobacter jejuni con-

sists of the fewest number of features overall across all sample sizes and so the GDI

index is the smallest (Figure 4.19). The dataset with the largest disk usage for the

Index stage is Escherichia coli with 81.5 ± 0.04 MB for 8 samples. This also mir-

rors what is observed in the running time section.

4.3.5 Clustering

Each organism’s dataset is divided into a group of genomes from bacteria con-

firmed to be epidemiologically related alongside a number of outgroup genomes

(Table 4.2). The genomes that are epidemiologically related should be expected

to all cluster together based on shared genomic content as there has not been

enough time for any individual bacterial genome to evolve significantly from the

Chapter 4: Evaluation 135

others to contribute to a larger genetic distance. This is confirmed by the existing

publication on this data [125], which presents phylogenetic analysis to confirm

that the outbreak-derived genomes all cluster together on a phylogenetic tree (and

form a monophyletic group). I use this existing information to evaluate how well

either the phylogenetic tree-building or kmer clustering mechanisms I included

in GDI perform at clustering related genomes. To measure this, I construct a

tree which clusters the genomes using either a maximum-likelhood (ML) method

(from nucleotide features) or single-linkage method (from kmers). I evaluated each

method based on whether or not it is able to group the outbreak-related isolates

into a monophyletic clade. Results are shown in Table 4.3 with the trees shown in

Figures D.1,D.2,D.3,D.4.

The maximum-likelihood method outperforms the kmer-based method at group-

ing outbreak-related genomes into monophyletic clades, with 4/4 of the organism

datasets grouping outbreak-related genomes into a monophyletic clade for the ML

approach compared to 1/4 for the kmer approach (Table 4.3). This suggests that a

maximum-likelihood approach using nucleotide variants should be preferred when

clustering or performing phylogenetic analysis of closely related genomes. How-

ever, one downside to this approach is that it relies on the choice of a reference

genome with which to align sequence reads (Figure 3.2), and cannot be used to

construct phylogenetic trees for more distantly related genomes (e.g., across dif-

ferent organisms)—at least not without significant modifications, such as aligning

key genes in common among all organisms rather than whole genomes. As these

modifications for constructing maximum-likelihood phylogenies of distantly related

136 Chapter 4: Evaluation

Number in Monophyletic

Organism Outbreak Outgroup ML Kmer

Campylobacter jejuni 14 8 !

Escherichia coli 3 6 ! !

Listeria monocytogenes 28 3 !

Salmonella enterica 18 5 !

Table 4.3: Ability of a particular clustering method to group outbreak-related iso-
lates into a monophyletic clade.

organisms are not implemented in my software, I do not evaluate them.

To evaluate clustering a more diverse set of organisms, I also tested clustering

genomes using a kmer approach. In this approach, all organisms were grouped into

their own separate clades in the overall tree (Figure 4.22). Hence, while a kmer

approach is not as accurate for closely related genomes (Table 4.3), it can be used

to cluster genomic samples which are more distantly related. This demonstrates

that both a maximum-likelihood and kmer based approach are useful depending on

the level of resolution at which you wish to examine the data.

4.4 Existing software

GDI fits within a collection of other existing bioinformatics software for either in-

dexing genomes by features or storing genomic features or metadata about genomes

in a database. I compare and contrast a collection of this software to GDI (Ta-

ble 4.4). I divide this comparison up along four broad dimensions: Usage, Index-

Chapter 4: Evaluation 137

MOD1_LS997_Listeria	monocytogenes
MOD1_LS989_Listeria	monocytogenes
MOD1_LS985_Listeria	monocytogenes
MOD1_LS1005_Listeria	monocytogenes
MOD1_LS995_Listeria	monocytogenes
MOD1_LS998_Listeria	monocytogenes
MOD1_LS1006_Listeria	monocytogenes
MOD1_LS1003_Listeria	monocytogenes
MOD1_LS1000_Listeria	monocytogenes
MOD1_LS996_Listeria	monocytogenes
MOD1_LS1008_Listeria	monocytogenes
MOD1_LS1009_Listeria	monocytogenes
MOD1_LS994_Listeria	monocytogenes
MOD1_LS982_Listeria	monocytogenes
MOD1_LS1004_Listeria	monocytogenes
MOD1_LS1010_Listeria	monocytogenes
CFSAN023471_Listeria	monocytogenes
MOD1_LS1011_Listeria	monocytogenes
CFSAN023463_Listeria	monocytogenes
CFSAN023464_Listeria	monocytogenes
PNUSAL000730_Listeria	monocytogenes
CFSAN002349_Listeria	monocytogenes
PNUSAL000870_Listeria	monocytogenes
CFSAN023465_Listeria	monocytogenes
CFSAN023469_Listeria	monocytogenes
CFSAN023470_Listeria	monocytogenes
PNUSAL001024_Listeria	monocytogenes
CFSAN023468_Listeria	monocytogenes
CFSAN023467_Listeria	monocytogenes
CFSAN023466_Listeria	monocytogenes
PNUSAL000957_Listeria	monocytogenes
2014C-3600_Escherichia	coli
2014C-3599_Escherichia	coli
2014C-3598_Escherichia	coli
2014C-3656_Escherichia	coli
2014C-3857_Escherichia	coli
2014C-3850_Escherichia	coli
2014C-3840_Escherichia	coli
2014C-3907_Escherichia	coli
2014C-3655_Escherichia	coli
D5663_Campylobacter	jejuni
D7331_Campylobacter	jejuni
D7316_Campylobacter	jejuni
2014D-0189_Campylobacter	jejuni
2014D-0067_Campylobacter	jejuni
2014D-0068_Campylobacter	jejuni
2014D-0070_Campylobacter	jejuni
PNUSA000196_Campylobacter	jejuni
PNUSA000194_Campylobacter	jejuni
PNUSA000195_Campylobacter	jejuni
D7330_Campylobacter	jejuni
D7324_Campylobacter	jejuni
D7329_Campylobacter	jejuni
D7321_Campylobacter	jejuni
D7328_Campylobacter	jejuni
D7323_Campylobacter	jejuni
D7333_Campylobacter	jejuni
D7327_Campylobacter	jejuni
D7320_Campylobacter	jejuni
D7319_Campylobacter	jejuni
D7322_Campylobacter	jejuni
D7334_Campylobacter	jejuni
CFSAN000951_Salmonella	enterica
CFSAN000952_Salmonella	enterica
CFSAN000954_Salmonella	enterica
CFSAN000189_Salmonella	enterica
CFSAN000228_Salmonella	enterica
CFSAN000970_Salmonella	enterica
CFSAN000968_Salmonella	enterica
CFSAN001115_Salmonella	enterica
CFSAN001112_Salmonella	enterica
CFSAN000960_Salmonella	enterica
CFSAN000963_Salmonella	enterica
CFSAN000211_Salmonella	enterica
CFSAN000961_Salmonella	enterica
CFSAN000752_Salmonella	enterica
CFSAN000753_Salmonella	enterica
CFSAN000958_Salmonella	enterica
CFSAN001118_Salmonella	enterica
CFSAN001140_Salmonella	enterica
CFSAN000212_Salmonella	enterica
CFSAN000700_Salmonella	enterica
CFSAN000669_Salmonella	enterica
CFSAN000191_Salmonella	enterica
CFSAN000661_Salmonella	enterica

Organism
Campylobacter	jejuni
Escherichia	coli
Listeria	monocytogenes
Salmonella	enterica

0.0333333

Figure 4.22: The kmer-based tree clustering genomes across four different organ-
isms (shown in the legend at the top). Each branch leading to a leaf in the tree is
coloured by the particular organism the leaf represents. The name of the leaf corre-
sponds to the specific name of the genomic sample followed by the organism.

138 Chapter 4: Evaluation

ing, Querying, and Clustering and Visualization.

4.4.1 Usage

Usage refers to any aspects related to either a regular user or system administrator

to use or install the software. GDI provides both a command-line interface (CLI)

as well as a Python-based API for using the software (the Interface column in Ta-

ble 4.4). A large collection of other software packages also provide either a CLI or

an API, however some software may also provide a graphical-user interface (GUI)—

in particular: BIGSdb, Enterobase, outbreak.info, covidcg, and NCBI Pathogens.

The GUI in these cases are provided as a website and in each case these software

are available as a central web application for people to submit data to or to query

existing data (the Availability column). All software compared is available for lo-

cal installation except for the NCBI Pathogens project [126], which is only available

as a web application hosted by NCBI (https://www.ncbi.nlm.nih.gov/pathogens,

though certain components of their data analysis pipelines are available to install

locally).

Input refers to the type of genomics data used as input for the software, either

reads (R) or assemblies (A). About half the software can support both reads

and assemblies (GDI, BIGSI, COBS, BCFTools). BCFTools differs slightly from

the others as it does not directly take as input reads or assemblies, but it can

work with data (a VCF file) generated from either reads or assemblies. BIGSI

accepts reads or assemblies as input, although it requires these data files to be

pre-processed to identify kmers prior to indexing. Enterobase, while it accepts only

https://www.ncbi.nlm.nih.gov/pathogens

Chapter 4: Evaluation 139

Software Usage1 Indexing2 Querying3 Clustering and Vis.4

Inter.a Avail.b Inputc Multi-

species

Diff.o Feat.d Inc.

add.e

Samp. Feat. Dist. Meta. Unk. Clust. Lin. Vis.

GDI CLI/

API

L RA ! • NGKg ! ! ! ! ! ! ! !

BIGSI [12] CLI/

API

LW RAj ! •• K !

COBS [56] CLI/

API

L RA ! • K !

BCFTools

[99]

CLI/

API

L RAj ! •• N ! ! ! !i

BIGSdb [63] GUI/

API

LW A ! ••• G ! ! ! ! ! !k ! ! !

SnapperDB

[47]

CLI L R ! •• N ! ! ! ! !

Enterobase

[3]

GUI/

API

LW R ! ••• NGl ! ! !l ! ! !k !l ! !

outbreak.info

[49]

GUI/

API

LW A ••• N ! !h ! !

covidcg [48] GUI LW A •• N ! ! ! !m !

NCBI

Pathogens

[126]

GUI W R ! N/A NGKg ! ! ! ! !n ! ! !

Table 4.4: Comparison of different software to GDI.
1 Inter. = Interface, Avail. = Availability, Diff. = Difficulty to install and use local version

2 Feat. = Features, Inc. add. = Incremental addition

3 Samp. = Samples, Feat. = Features, Dist. = Distance, Meta. = Metadata, Unk. = Unknown/missing features

4 Clust. = Clustering of indexed data, Lin. = Assignment of lineages/sequence types, Vis. = Visualization

a CLI = Command-line interface, API = Application programming interface, GUI = Graphical user interface

b W = web application, L = local installation

c R = whole-genome sequence reads, A = genome assembly

d N = nucleotide, G = gene (multi-locus sequence typing), K = Kmer

e Incremental addition refers to incrementally adding new genomes to the same index/database.

f Multiple species refers to indexing multiple different species within the same index/database.

g Here, K means support for clustering using kmers and not querying for individual kmers.

h Here, querying by feature produces only summary information.

i VCF files can be filtered to mark low-quality variant calls, which could indicate missing regions.

j Reads and assemblies require pre-processing with external software.

k Unknown/missing data is handled via methods such as partial matches or excluding missing data for pairwise distances.

l N is for nucleotide-level features (SNPs), which are used primarily for clustering and only limited support is provided for querying.

m Clustering here is only for building a tree of lineages, not individual genomes.

n Some support for representing partial matches of genes (for antimicrobial resistance).

o Difficulty ranking: •= low, ••= medium, •••= high

140 Chapter 4: Evaluation

reads as input, will perform a de novo assembly on these reads using a standardized

pipeline prior to processing the data. The rest of the software operates on either

reads or assemblies, but not both.

Multi-species refers to the ability for the indexing and querying components to

operate on multiple different organism species. Some software (outbreak.info and

covidcg) only work for a particular type of organism (SARS-CoV-2). The rest of

the software, including GDI, is not specific to any particular organism and can

store and process a wide variety of WGS data.

Finally, another way to compare each software is how difficult or easy it is to install

and use a local version (Difficulty to install/use). The provided results in Ta-

ble 4.4 are based on how many steps are required for installing the software, how

detailed the documentation is, or how much additional external software is required

(such as relational database management software). The easiest to install and use

includes GDI and COBS, which have minimal external dependencies and can di-

rectly take as input sequence reads or assemblies from a command-line interface.

The medium level of difficulty includes: BIGSI, BCFTools, SnapperDB, and covidcg.

These each require some additional dependencies to be installed (web servers or

external database management software) or require pre-processing of input data

prior to loading the data. The most complex software is BIGSdb, Enterobase, and

outbreak.info, all of which have a more complicated installation process such as cre-

ating and modifying configuration files and setting up database management soft-

ware. Finally, NCBI Pathogens is not available to install locally and so it cannot be

ranked according to this category.

Chapter 4: Evaluation 141

Notably, there is no simple way to rank difficulty-to-use as it depends on the use

cases for the software. I chose to rank according to the difficulty to install locally,

but if instead I chose to rank according to the difficulty to use the publicly avail-

able web applications, then any software which provides a web application (e.g.,

NCBI Pathogens, BIGSdb, outbreak.info) would outrank any other software package

(including GDI, which has no public website with data available).

4.4.2 Indexing

Indexing refers to any aspect related to breaking up genomes into features and stor-

ing these features in some data structure to provide either querying functionality

or to cluster genomes based on shared features. The Features column (Table 4.4)

contains three different categories of features being compared: nucleotide (N), gene

(G), or kmers (K). Both GDI and the NCBI Pathogens pipeline are able to sup-

port indexing by all three features, though with the caveat that kmer-based in-

dexing does not record all kmers in a genome and is primarily used for clustering

genomes. Both BIGSI and COBS index based on kmers and—unlike GDI or NCBI

Pathogens—they record information about all kmers and provide support for query-

ing using all these kmers. Enterobase supports indexing by two features (nucleotide

and genes/MLST), but with the caveat that nucleotide-level features are primar-

ily used to construct a phylogenetic tree rather than being recorded in an index for

later querying. All other software supports indexing by only one type of feature. In

particular, BCFTools is a suite of command-line software which is focused on nu-

cleotide variants only and can construct indexes of these variants for faster querying

142 Chapter 4: Evaluation

as well as set operations on nucleotide variants across samples. BCFTools itself is

used as part of the GDI software to initially construct sets of nucleotide features

from genomes.

Incremental addition refers to the ability to add new genomes into an existing

index without having to re-construct the entire index. GDI supports this feature

along with most other software. The exception is BIGSI and COBS, which both

operate on kmers and require reconstructing an entire index if you want to add new

genomes into it.

4.4.3 Querying

Querying refers to any operation where you input a request for data and a collec-

tion of results are returned. There are a number of different data types by which

you can query within these software. Querying by Samples will provide a way to

search for information related to a particular sample or set of samples. Most soft-

ware supports this query method except for BIGSI and COBS (which are primar-

ily intended to query by a kmer or collection of kmers in a sequence). The other

type of software which does not support this feature is outbreak.info and covidcg,

which are intended more to provide summary statistics of the worldwide collection

of SARS-CoV-2 genomes rather than searching for individual genomes.

Alternatively, you can query by Features, which will return results of all genomic

samples which contain a particular feature. Most software supports this method of

querying except for SnapperDB (which is used more for clustering and assigning

SNP types to genomes) and NCBI Pathogens (used more for clustering collections

Chapter 4: Evaluation 143

of genomes and assigning SNP or kmer types).

Querying by Distance refers to the ability to search for genomes within some par-

ticular distance of each other. Only about half the software compared here provides

support for this method of querying. Software that does not support this feature

includes BIGSI and COBS (used mainly for querying by genes or small sequences),

BCFTools (a tool suite more for manipulating collections of nucleotide variants),

outbreak.info, and covidcg (used more for showing summary information of collec-

tions of SARS-CoV-2 genomes).

Querying by Metadata refers to the ability to select genomes based on associated

metadata (such as collection dates, externally assigned lineages/sequence types, or

other information). Only about half the software provides support for this method

of querying.

Support for Unknown (or missing) features while querying refers to the ability

to differentiate genomes which lack a particular feature compared to those where

data is missing (so it is uncertain if they have the feature not). GDI supports this,

alongside about half the other software. However, all the other software that sup-

ports this come with caveats or have differences compared to how GDI handles this

situation. GDI uses a three-valued logic system (Section 3.3.1) to represent cases

where it is True that a genome has a feature, False that it has the feature, or Un-

known if it has a feature or not. No other software supports such a three-valued

logic system, and instead uses other methods to handle missing or unknown fea-

tures. With BCFTools, there is a way to represent missing data by marking partic-

ular entries in a VCF file as failing to pass particular filters (whether they are nu-

144 Chapter 4: Evaluation

cleotide variants or reference nucleotides), which would indicate low-quality (miss-

ing) regions on a genome. With BIGSdb and Enterobase—both of which are pri-

marily used for gene-level data—there is support for representing missing data or

partial matches of genes in an MLST scheme. Finally, for NCBI Pathogens, there

is also support for partial matches of genes, primarily when recording antimicrobial

resistance.

4.4.4 Clustering and Visualization

Clustering refers to either clustering genomes by shared features or the assign-

ment of new Lineages of genomes (i.e., assignment of labels to clusters). GDI sup-

ports clustering of genomes—using both kmers and nucleotide features—however it

does not support assigning lineages/labels to individual clusters. This is the only

feature missing from GDI that other software packages support shown in Table 4.4.

Only about a half of the other software supports clustering: BIGSdb, SnapperDB,

Enterobase, covidcg, and NCBI Pathogens. The software covidcg only partially sup-

ports clustering, which is applied to the SARS-CoV-2 lineages (using CoVizu [127])

instead of individual genomes. Slightly less than half of the surveyed software sup-

ports the assignment of new lineages, which includes all software that supports

clustering except for covidcg (and GDI).

Visualization refers to built-in support for visualizing collections of genomes, ei-

ther through dendrograms or other visualization techniques. GDI supports visual-

ization (both as dendrograms as well as support to easily work with data through

existing packages like matplotlib). Both covidcg and outbreak.info provide a lot of

Chapter 4: Evaluation 145

different visualization methods to summarize SARS-CoV-2 genomic data. BIGSdb

and Enterobase provide visualization of bacterial gene-level (MLST) data. Finally,

NCBI Pathogens provides visualization of a number of bacterial pathogen genomic

data, including an integrated web-based phylogenetic tree viewer.

Chapter 5

Discussion

With the increasing relevance on whole-genome sequencing of microbial genomes for

infectious disease surveillance there is a need for innovative methods for the man-

agement and analysis of large collections of these genomes. The most relevant ex-

ample is the COVID-19 pandemic, which has lead to the generation of millions of

SARS-CoV-2 viral genomes and development of highly specialized resources to in-

vestigate this data [48; 49; 3]. While a large collection of software exists to handle

this data (Table 4.4), there are still a number of challenges for the large-scale appli-

cation of microbial genomics to infectious disease surveillance.

I developed the Genomics Data Index (GDI) to help address some of these

challenges by providing components for pre-processing, indexing, querying, clus-

tering, and visualization of genomes. Chapter 1 described in detail some of these

challenges and Chapter 2 described existing solutions and background concepts.

Next I described how I address these challenges with the design of my software

(Chapter 3). I then evaluated the performance of GDI (Chapter 4) using three sep-

146

Chapter 5: Discussion 147

arate datasets: a simulated dataset, a collection of SARS-CoV-2 genomes, and a

collection of WGS reads derived from four different bacterial organisms. I included

a fourth method of evaluation where I compared GDI to existing software for in-

fectious disease data analysis. I now turn to a discussion of the implications of my

evaluation and I present some cases where I have applied GDI to the task of study-

ing SARS-CoV-2.

5.1 Evaluation

5.1.1 Data simulation

I have evaluated GDI using simulated data to assess the capability of identifying

nucleotide-level variants and using these variants to construct phylogenetic trees. I

used a simulated reference genome (consisting of two sequences 10,843 bp and 8,865

bp long, respectively) and simulated a set of 59 genomes such that substitutions

and indels match the topology of a reference phylogenetic tree. This data was then

indexed by my software under a number of different scenarios: 1) fixing the tran-

sition and transversion rate and adjusting the sequence coverage for the reads and

2) fixing the coverage and adjusting the transition rate. In each of these scenarios,

I ran my data analysis pipeline and indexing stage (stage 1 and 2 in Figure 3.1) on

both the simulated FASTA files with nucleotide variants (the idealized or perfect

assemblies scenario) and the simulated reads from these FASTA files (the reads sce-

nario).

I found that for sequence reads, the sequencing depth of coverage can have a large

148 Chapter 5: Discussion

impact on the amount of nucleotide variants detected, with a sensitivity of 0.025

for 5X coverage compared to 0.851 for 20X coverage (Figure 4.2). However, this

quickly plateaus with less gain in sensitivity as coverage increases (0.886 for 50X

compared to 0.851 for 20X). As the value of 20X is twice that of the minimum read

coverage of the data analysis pipeline for identifying nucleotide variants (minimum

coverage of 10X), it is recommended to verify that WGS reads are at least twice

this minimum coverage value to avoid large numbers of false negatives.

Indexing genome assemblies is not impacted by read coverage since there are no

reads being used as input. However, when varying the amount of sequence diver-

gence, I found that my indexing system is capable of identifying more true posi-

tive and less false positive nucleotide variants for assemblies when the substitution

divergence is low to moderate (up to 6.77%), which is reflected in the greater F1

score values (F1 score of 0.973 for assemblies compared to 0.736 for reads at 6.77%,

see Figure 4.5). However, I did find that for high sequence divergences (greater

than 6.77%), GDI was incapable of identifying most true positives using genome

assemblies, which is reflected in the large drop in F1 scores (0.0323 for assemblies

compared to 0.608 for reads at 10.4%, see Figure 4.5). For reads, the drop in F1

scores is much more gradual as the substitution divergence increases (Figure 4.5).

This was also reflected in the increase in tree distances for assemblies (or failure to

build beyond a divergence of 4.20%, see Figure 4.6). Some additional investigation

revealed that the large drop in assembly sensitivity is possibly caused by param-

eters to the minimap2 software (the -x asm5 parameter), which may need to be

adjusted as the diversity of the genomic data increases.

Chapter 5: Discussion 149

Overall, this suggests that for very closely related organisms or where a high pre-

cision and sensitivity is important, it would be recommended to process genome

assemblies for best results. In particular, I note that the assemblies scenario re-

sulted in 0 false positives no matter how high the divergence was between simulated

genomes (Figure 4.4). However, this should be interpreted with caution as these as-

sembly test cases were an idealized or perfect scenario, where there is no missing

data or errors introduced due to the de novo assembly process. Alternatively, in-

dexing using reads would be recommended as a general-purpose type of input data

as the sensitivity and precision are less susceptible to specific parameter settings

in the underlying software. However, I give this recommendation with the caveat

that this is based on a test of a very small genome (∼ 20 kb) and bacterial-sized

genomes (millions of bp) may show different results.

5.1.2 SARS-CoV-2 data analysis

I evaluated GDI using a set of real-world SARS-CoV-2 genomes available in public

archives. I divided up a set of SARS-CoV-2 genomes into subsets of 10, 20, 50, 100,

200, 500, 1,000, 2,000, 5,000, 10,000, and 20,000. Each of these subsets were pro-

cessed through the GDI data analysis pipeline and indexing system (Data analy-

sis and Indexing in Figure 3.1, referred to as Analysis and Index in the evalua-

tion). For subsets of 500 or fewer genomes I also built a maximum-likelihood phy-

logenetic tree (Clustering/phylogenetics in Figure 3.1, referred to as Tree in

the evaluation). I measured the run time, peak memory, and disk usage of all three

of these stages. I next measured the run time and peak memory for querying the

150 Chapter 5: Discussion

index using the query API and CLI. Finally, I examined how well the constructed

phylogenetic tree for 500 genomes matched pre-existing classes of genomes (Pan-

golin lineages of SARS-CoV-2) by using the scoring system implemented in GDI

(described in Section 3.4.4).

Analysis, indexing, and building a tree

I found that when it comes pre-processing and indexing genomes, building a phylo-

genetic tree of all genomes takes up an increasing proportion of the time of the full

data analysis process (97% of the time for 500 genomes, see Figure 4.7). This sug-

gests that building a tree should be performed with a bit more thought as to when

it is really necessary, perhaps only for smaller datasets. However, this was per-

formed with only one software package (iqtree [17]) and a fixed evolutionary model.

There is potential that some fine-tuning of the evolutionary model and other pa-

rameters of the phylogenetic software could significantly speed up tree-building.

Additionally, constructing a phylogenetic tree is not necessary to query the tree

with GDI, as externally generated trees can be combined with an existing index

instead of an internally constructed tree (using the query.join_tree() method in

the GDI Python API).

The stage that took the largest amount of memory was the Index stage (Fig-

ure 4.8). There was an interesting trend that was detected, where a large spike in

memory was found at a particular number of samples (from 2,000 to 5,000 sam-

ples). This was found to correspond to the batch size for loading genomes into the

index (Figure 4.9). Increasing the batch size from 2,000 to 10,000 genomes delayed

Chapter 5: Discussion 151

this large spike in memory usage. I included this batch size parameter since, while

testing, I found that indexing larger datasets (tens of thousands of genomes) would

overwhelm the amount of memory in the machine I was using. The capability

to limit the number of genomes to index at any given time fixes this issue, but

introduces some different issues, such as how to best set the batch size to optimize

performance. Optimizing the batch-processing to use less memory would likely

require some additional work.

Querying

I investigated the performance of querying using both the GDI Python API and

the CLI. For the API, the query operations have a large range in their evaluated

running time—from fractions of a millisecond to half a minute (Figure 4.11). Two

of the operations that increase at a large rate are q.features_summary() (reach-

ing 1.3 seconds for 20,000 samples) and q.features_comparison() (reaching

36 seconds for 20,000 samples). Both of these operations involve summarizing all

genomic features in the index, which fits with the trend of increasing running time

as more samples (and features) are added to the index. Other operations (e.g.,

q.hasa()) increase at a much more moderate rate (reaching 0.18 seconds for

20,000 samples, Figure 4.11). This has implications when working with large-scale

data in an interactive environment (e.g., Jupyter), where individual query opera-

tions (like q.hasa()) may remain very quick while data summary operations (like

q.features_comparison()) may start to take a significant enough time that their

results may have to be pre-computed and cached.

152 Chapter 5: Discussion

One noticeable difference between the API and the CLI is that querying in the CLI

has an overhead of a few seconds, likely due to starting up Python and loading the

GDI application (Figure 4.15). This renders some query operations significantly

slower with the CLI (∼20X slower for the CLI for q.hasa()). It could be bene-

ficial to further investigate how to speed up the CLI. However, the Python API is

designed to integrate with other Python-backed statistical analysis and visualiza-

tion packages (pandas [22] or the ETEToolkit [21]) to aid in moving from simple

queries to a final figure or table in the same environment. Hence, for optimal per-

formance when performing repeated queries, it would be recommended to work di-

rectly with the Python API as opposed to something like the CLI within a Bash

script.

Clustering

I also examined the capability of a maximum-likelihood tree to group genomes into

monophyletic groups that corresponded to pre-existing lineages. This was measured

using a tree-to-cluster scoring system I implemented as part of GDI (described in

Section 3.4.4). I found that the maximum-likelihood trees constructed using GDI

grouped genomes into clades that correspond to SARS-CoV-2 lineages just as well

as the existing Augur pipeline [3] (Figure 4.17). However, the kmer-based single-

linkage clustering methods were not able to cluster genomes into clades (when in-

terpreting the hierarchical clustering tree as a phylogenetic tree) nearly as well, re-

gardless of the kmer-size (k ∈ {31, 51, 71}). This suggests that kmer-based cluster-

ing is not appropriate for very closely related genomes (as is the case with SARS-

Chapter 5: Discussion 153

CoV-2 genomes). However, the maximum-likelihood approach implemented in GDI

is just as capable as existing software to construct a phylogenetic tree consistent

with the Pangolin lineage classification scheme.

5.1.3 Read data

I evaluated the data analysis (Analysis), indexing (Index), and phylogeny-

building (Tree or clustering) components of GDI using sequence read data

derived from a previously published dataset intended for benchmarking [125]. This

consisted of 22 Campylobacter jejuni, 9 Escherichia coli, 31 Listeria monocytogenes,

and 23 Salmonella enterica genomes. I subsampled these datasets and ran these

genomes through the data analysis, indexing, and clustering stages. I measured

the running time, memory, and disk usage of processing the data with GDI. The

kmer and maximum-likelihood trees were compared with respect to how well they

were able to group genomes at the organism level as well as at the pre-established

division of genomes into outbreak and outgroup categories for each organism.

Analysis and indexing

Similar to the SARS-CoV-2 assemblies dataset, I found the data analysis stage,

where I identify nucleotide variants, to occupy the majority of the overall process-

ing time (the Analysis takes up 97% of the Total time for 8 samples of Campy-

lobacter jejuni, Figure 4.18). However, there was a large amount of variability with

regards to the running time among the different organisms and across different pro-

cessing stages. For the Analysis stage, I found Campylobacter jejuni to take the

154 Chapter 5: Discussion

longest time, but for the Index stage I found Escherichia coli to require the most

amount of time. This trend was repeated for the peak memory and the total disk

usage. By examining the relationship between the number of samples and number

of features (Figure 4.19) I was able to determine that the large running time for

Campylobacter jejuni for the Index stage is likely due to the larger number of nu-

cleotide variants (features) per sample. Hence, the relationship between running

time and the particular data being indexed is a bit complicated. Isolating the spe-

cific relationships would likely require testing different datasets from a variety of

organisms.

Tree or clustering

I examined how well GDI is able to cluster genomes using both the kmer-based

and the maximum-likelihood approaches. I found that kmer-based approaches are

able to group genomes at a higher taxonomic rank (such as the species level, Fig-

ure 4.22). However, for use cases where there are more closely related genomes, the

kmer-based approach is unable to classify genomes appropriately (Table 4.3). This

means that while kmer-based approaches have their uses for a higher-level overview

of a large number of genomes, they are not an appropriate method for identifying

which genomes are part of, or outside of, an infectious disease outbreak based on

only a small number of nucleotide variants. In this case, a maximum-likelihood ap-

proach would be recommended.

Chapter 5: Discussion 155

5.2 Applications

The ongoing COVID-19 pandemic has provided a unique set of problems to at-

tempt to address, as well as a large collection of real-world data to help test out

GDI. During the pandemic, I used the challenges faced by others at processing this

data as guidance on how to structure GDI and the sort of commands I should pro-

vide. Some examples include providing analysis pipelines which can support SARS-

CoV-2 genomes, providing support for querying by the amino-acid change result-

ing from a nucleotide variant, supporting missing data, as well as supporting a

phylogenetic-based visualization system for viewing nucleotide variants alongside

a tree. Each of these features was inspired by challenges faced by myself or others

when trying to make sense of the growing collection of SARS-CoV-2 genomes. Solv-

ing these challenges has provided opportunities to apply GDI to help make sense of

the data being gathered throughout this pandemic. Here, I present two cases where

I have applied GDI to COVID-19 data.

5.2.1 The SARS-CoV-2 Delta variant in Canada

The Delta variant of SARS-CoV-2 was first listed as a variant of concern by the

World Health Organization on May 11, 2021 [7]. This variant quickly took hold

worldwide and become the dominant variant. This includes within Canada, where

the Delta variant was the dominant variant during the Summer and Fall of 2021,

prior to Omicron. The term Delta is assigned by the World Health Organization,

but an alternative name is B.1.617.2, which is assigned in the Pangolin [6] naming

system. B.1.617.2 is also alternatively named AY in this system, with sub-lineages

156 Chapter 5: Discussion

being recorded in a dotted-decimal notation (e.g., AY.1, AY.2, ...).

In Canada, two sub-lineages of Delta that were found to be represented in greater

proportions than the rest were AY.25 and AY.27. To better understand the evolu-

tion and spread of these Delta sub-lineages I collaborated with a team of people to

use GDI to investigate the nucleotide variation within AY.25 and AY.27 and visual-

ize the data on a phylogenetic tree [128].

Figure 5.1 and Figure 5.2 show two phylogenetic trees of the AY.25 and AY.27

sub-lineages of the Delta variant respectively, as found in [128]. The phyloge-

netic analysis itself was performed using the Augur pipeline (part of Nextstrain

[3]) along with data of the SARS-CoV-2 virus derived from GISAID [4]. I ran

GDI on the downloaded assemblies of the genomes (using the gdi analysis

command) and joined the constructed index with the phylogenetic tree produced

from Augur alongside metadata provided by GISAID listing the dates and loca-

tions of each genome. These were combined together into the final figures shown

using the GDI Python-based API. These figures provide a visual representation

(as a heatmap) of which nucleotide variants are associated with which SARS-

CoV-2 genomes. The figures, alongside associated data analysis, were then used

to identify a new sub-lineage of the Delta variant of SARS-CoV-2 (AY.25.1,

https://github.com/cov-lineages/pango-designation/issues/313). Doc-

umentation and Jupyter notebooks showing all the code used to construct these

figures is available on GitHub (https://github.com/phac-nml/ay25ay27).

https://github.com/cov-lineages/pango-designation/issues/313
https://github.com/phac-nml/ay25ay27

Chapter 5: Discussion 157

Figure 5.1: Phylogenetic tree of the AY.25 lineage of the Delta variant of SARS-
CoV-2 from [128] and visualized using GDI. The inner track shows a time-scaled
dendrogram representing the inferred ancestry of a collection of SARS-CoV-2
viruses. The next track indicates whether a particular virus was sampled in Canada
(dark gray) or outside of Canada (light-gray) or is not AY.25 (white). The next
tracks indicate whether a nucleotide variant is present (coloured), absent (trans-
parent), or missing/unknown (black), with the particular variants listed in the
Legend.

5.2.2 The SARS-CoV-2 Omicron variant

The Omicron variant of SARS-CoV-2 was named and defined as a variant of

concern by the World Health Organization on November 26, 2021, after having

been first detected only a few days prior [9]. One of the unique aspects of Omi-

cron was the large number differences in the genome when compared to any other

SARS-CoV-2 variant. Over the months of November and December 2021, there

158 Chapter 5: Discussion

Figure 5.2: Phylogenetic tree of the AY.27 lineage of the Delta variant of SARS-
CoV-2 from [128] and visualized using GDI. The inner track shows a time-scaled
dendrogram representing the inferred ancestry of a collection of SARS-CoV-2
viruses. The next track indicates the location where the particular virus was sam-
pled, either in Canada (coloured by province), outside of Canada (light gray), or
non-AY.27 (white). The next tracks indicate whether a nucleotide variant is present
(coloured), absent (transparent), or missing/unknown (black), with the particular
variants listed in the Legend.

was a large shift worldwide to focusing investigation efforts to Omicron and the

nucleotide variation it contained. One issue with Omicron when compared to other

SARS-CoV-2 variants was the difficulty in sequencing particular regions of the

viral genome, which lead to large amounts of missing data in viral genomes being

uploaded to GISAID. I had already implemented methods to visualize nucleotide

variants on a phylogenetic tree as well as account for missing data on a genome. I

Chapter 5: Discussion 159

used GDI to process Omicron genomes of SARS-CoV-2 and visualize these genomes

as a phylogenetic tree alongside nucleotide variants (mutations) unique to Omicron

(Figure 5.3). This helped gain a better understanding of the diversity of nucleotide

variants in Omicron when compared to other SARS-CoV-2 variants-of-concern, as

well as providing insight into the particular regions that were more difficult to se-

quence within Omicron (appearing as "missing" data coloured black in Figure 5.3).

Of particular note is the S:K417N mutation (column 26), for which Canada had

a pre-existing RT-PCR-based diagnostic screen, but was originally thought to be

polymorphic in Omicron and thus not suitable for its detection; however, my anal-

ysis using GDI demonstrated that the apparent polymorphism was due to missing

sequence data, and was indeed suitable for Omicron detection. The screen was thus

deployed in Canada for the detection of Omicron.

5.3 Limitations

5.3.1 Contiguous nucleotide-level variants

One limitation of GDI is related to cases with complicated mixtures of nucleotide-

level variation, such as one variant contained within another variant. As an

example, consider the multiple nucleotide variant AT→GC , which contains both an

A→G and a T→C . In such a situation, you could use GDI to search for genomes

with AT→GC , but not for A→G or T→C individually. This is due to the way

nucleotide-level features are identified and stored in the VCF file format, which

may group contiguous nucleotide variants together into a single entry: AT→GC .

160 Chapter 5: Discussion

Data from 2021-12-08 (v2)

Spike

O
m

ic
ro

n
D

el
ta

A
lp

ha
B

et
a

G
am

m
a

Lineages

Mutations

Mutations

Phylogenetic tree (n=1545) of Omicron
(n=1067) and other variants. Lineages are

shown in colors on the tree with darker indicating
Canadian samples.

Presence (colored), absence (white) and missing
(black) mutations shown in heatmap.

Only mutations either present or unknown
(missing data) in ≥ 85% Omicron shown.

Figure 5.3: A phylogenetic tree and heatmap of the Omicron variant of SARS-CoV-
2 alongside related genomes. The figure was generated from data on December 8,
2021 and shows a time-scaled dendrogram representing the inferred ancestry of a
collection of SARS-CoV-2 viruses. The left-most portion shows the dendrogron
with a heatmap of nucleotide variants (mutations) shown alongside the dendro-
gram. The presence (coloured), absence (white), and unknown/missing status
(black) for each nucleotide variant is shown in the heatmap. The list of nucleotide
variants is defined as those where ≥ 85% of the selected Omicron genomes either
have the variant or the variant status is unknown.

This is, in part, related to the specific software and data analysis pipeline used to

identify nucleotide variants and construct a VCF file.

This issue is related to issues encountered when constructing inverted indexes of

English text, where a search for a word like "swim" should include both "swim" as

well as variants of the word like "swims", "swimming", or "swam" [8]. One solu-

tion here is to identify the root of the word to index ("swim" for the word "swim-

ming") and index this root alongside the encountered word (e.g., index "swim" and

"swimming"). Then at query time the query term can also be broken down into

Chapter 5: Discussion 161

its components and root word to match the different variations (e.g., a query for

"swimming" could match documents containing "swim" or vice versa). This tech-

nique is termed stemming [8] and is used in many information retrieval systems

including major search engines [129; 130]. Stemming could be adapted to solve the

issue with complex or contiguous nucleotide-level variants. These contiguous vari-

ants, like AT→GC , would be split up into their root variants A→G and T→C and

these get indexed alongside the contiguous entry AT→GC .

5.3.2 Matching nucleotide to amino-acid variants

A related issue arises when matching nucleotide-level variants to the amino-acid

level effects they cause within a genome. The current implementation handles this

through the SnpEff software [100], which operates using nucleotide-level variants in

a VCF [75] file. If there are two separate records in a VCF file for variants that af-

fect the same amino acid, then the variation impact, as predicted by SnpEff, will be

incorrect (it will predict the amino-acid level change for each VCF record indepen-

dently and will not merge them together).

As an example, consider a codon change in some DNA sequence, CAT → GAA ,

which corresponds to an amino acid change His → Glu . The nucleotide changes

may be recorded separately in a VCF file as: C → G and T → A . Running

SnpEff on such a VCF file would return the amino acid changes for each nu-

cleotide variant separately: His → Asp (CAT → GAT) and His → Gln

(CAT → CAA). In none of these entries is there listed the correct amino acid

change (His → Glu). I have observed this when working with SARS-CoV-2 data,

162 Chapter 5: Discussion

which requires corrections to the listed amino-acid changes after using GDI to

produce summaries of the nucleotide-level and amino-acid level changes between

genomes.

One possible solution in this case would be to look for alternative software for vari-

ant effect predictions to take this into account (such as bcftools csq , part of

BCFTools [99]). However, this relates to an additional problem, where I have as-

sumed there is a many-to-one correspondence between a nucleotide-level variant

and an amino-acid change in the GDI data model (many nucleotide variants can

result in the same amino acid change). While this works in many cases, the above

example is a case which breaks this assumption (the same nucleotide variant may

result in different amino acid changes depending on surrounding variation). Hence,

a re-design of the underlying data model for GDI may be required to account for

many-to-many correspondences between nucleotide-level variation and amino-acid

level variation.

5.3.3 Multiple sequence alignment

The method I implement in GDI to construct a multiple sequence alignment for use

in building a maximum-likelihood phylogeny is to first generate the consensus se-

quences for every genome, and then append every consensus sequence together into

a single file. This will construct a valid alignment where each column (site) in the

alignment consists of homologous nucleotides (Section 3.4.1). However, there are

two cases which could cause issues with the alignment: insertions and complex

variants.

Chapter 5: Discussion 163

With insertions, the issue is that they could lead to regions in the multiple se-

quence alignment where there are ambiguities. As an example, consider two in-

sertions at the same position (with respect to some reference genome) like the fol-

lowing: Sample 1: reference:5:A:ATA and Sample 2: reference:5:A:AG .

Since the insertions are of different sizes, there is no information above which lets

us know how these two insertions should be aligned with each other. This is shown

in Figure 5.4.A.

With complex (multiple nucleotide) variants, the consensus sequences may

not always correspond to the optimal alignment. Figure 5.4.B shows an example

of such a situation. As this type of situation could occur in the multiple sequence

alignments constructed by GDI, it is possible these could have an impact on the

phylogenies produced from these alignments.

One solution for both of these cases would be to construct a multiple sequence

alignment using software designed for this purpose (such as MAFFT [110]), which

will handle these ambiguities by taking into account all sequences/genomes in the

collection. However, this would also require a greater amount of time to run.

164 Chapter 5: Discussion

B
reference

Sample 3
Sample 4

Option 1

T C T G T

T T C T G

G

G

T A G C A G

1 5 6432
reference

Sample 3
Sample 4

Option 2

T C T G T G-

T C T G - GT

T A G C A G-

1 5 6432

A
reference

Sample 1
Sample 2

A T A G

A - - G

5 6

A G - G

Option 1

reference

Sample 1
Sample 2

A T A G

A - - G

5 6

A - G G

Option 2

Figure 5.4: Two issues that could arise from generating a multiple sequence align-
ment (MSA) from consensus sequences to a reference genome. (A) Insertion
limitations. Here, two insertions are depicted with different lengths: Sample 1:
reference:5:A:ATA and Sample 2: reference:5:A:AG . This leads to ambi-
guities in how the insertions should be aligned—shown as Option 1 and Option
2. (B) Complex variant limitations. Here, two complex multiple nucleotide
variants are depicted of equal lengths—Sample 3: reference:2:AGCA:CTGT and
Sample 4: reference:2:AGCA:TCTG . The alignment shown for Option 1 would
be returned by default if it is assumed that the consensus sequences, when con-
catenated, give a good alignment. However, Option 2 shows a different method of
aligning these two genomes in this regions which requires the insertion of gaps - .
Thus, even with complex variants of equal length, the consensus sequences may not
always produce the optimal alignment.

5.3.4 Roaring bitmap limitations

Another limitation is due to the use of Roaring bitmaps [104] to store collections

of genomic sample identifiers rather than relying on tables within a relational

database scheme. Roaring bitmaps were chosen as opposed to linking features to

samples in a relational database table due to the significant reduction in the num-

Chapter 5: Discussion 165

ber of rows required for the inverted index (scales according to features as opposed

to samples ∗ features, Section 3.2.2).

However, choosing this method means that some of the built-in mechanisms pro-

vided by many relational database software (such as cascading of queries, transac-

tions, rollbacks, deletions, etc) cannot be used as-is. Hence, at this current moment,

there is the potential for the database to be left in an inconsistent state if GDI was

to crash during the middle of indexing genomes (specifically, you could end up in

a scenario where features from some genomes are not properly added to the table

storing the inverted index even though the samples themselves are recorded in the

database).

An additional limitation comes out of the use of Roaring bitmaps, mainly that they

can only store sets of 32-bit integers. Hence, the maximum number of genomes that

can be stored in a single index is 232 ≈ 4 billion.

Finally, the argument I made for choosing Roaring bitmaps compared to model-

ing feature-sample relations directly in the relational database (Section 3.2.2) does

not account for all the major influential factors. I justified the choice of Roaring

bitmaps since it dramatically reduces the number of rows required for storing the

inverted index (from tens of billions to tens of thousands for SARS-CoV-2). How-

ever, reducing the number of rows falls under the larger goal of faster query times

for the inverted index. The query time can be impacted by factors other than the

number of rows, such as the number of sample identifiers in a Roaring bitmap, the

number of samples in a Samples table in the relational database, and the amount of

time for join operations between identifiers in a Roaring bitmap and sample names

166 Chapter 5: Discussion

in the relational database. Properly accounting for the resource usage of all these

factors could influence the justification for the use of Roaring bitmaps. In the fu-

ture, additional work could be done to account for all of these factors, or to per-

form empirical experiments to measure resource usage in different scenarios to aid

in future design decisions.

5.3.5 Gene-level clustering

While GDI supports clustering for both nucleotide variant and kmer features, it

lacks the support for clustering using gene-level (MLST) features. This functional-

ity could be provided by clustering gene-level data using a mechanism similar to

that of kmers (computing pairwise distances based on gene-allele pairs and per-

forming hierarchical clustering). Additionally, inspiration could be drawn from the

hierarchical clustering (HierCC) defined in Enterobase [65], which clusters genomes

at multiple distance thresholds. Providing support for clustering by genes as part

of GDI would complete one of the most notable elements of GDI that is currently

lacking when working with genomic features.

5.3.6 Reference genome mismatches for the data simulation

evaluations

In Section 4.1, I evaluated GDI using data simulations of nucleotide variation and

sequence reads constructed according to the structure of an initial phylogenetic tree

used as input to the software Jackalope [116]. I simulated nucleotide variants by

making use of a simulated reference genome (consisting of two sequences with a

Chapter 5: Discussion 167

combined length of approximately 20 kbp). However, the initial input phylogenetic

tree includes a leaf which represents another reference genome, which was used pre-

viously to construct this tree. I will refer to these as the simulation reference

and tree reference respectively (Figure 5.5).

168 Chapter 5: Discussion

Tree reference

Simulation
reference

(root)

Figure 5.5: Two different reference genomes in the data simulation evaluations are
labeled in the initial input phylogeny to Jackalope [116]. The tree reference is the
reference genome that was included as part of the phylogenetic tree used to sim-
ulate nucleotide variants. The simulation reference is the location on the tree
where the simulated reference genome used as input to Jackalope would be placed
(the root of the tree). This shows that there is a small distance between the simula-
tion reference and the tree reference.

During the data evaluation, I identified nucleotide variants with respect to the sim-

ulated reference genome, which makes it easier to compare variants I detect in GDI

to those simulated by Jackalope. I removed the reads simulated from the tree ref-

Chapter 5: Discussion 169

erence genome from the final set of results. However, when comparing the two phy-

logenetic trees together using Robinson-Foulds and Kendall-Colijn distances, I am

comparing the tree reference in the initial input phylogeny with the simulation

reference in the constructed phylogeny. These two reference genomes are not iden-

tical, and I hypothesize that this leads to an increased distance between the ini-

tial phylogenetic tree used for simulation and the constructed trees from GDI (Fig-

ure 5.6).

Portion of initial input
phylogeny

Portion of GDI-constructed
phylogeny

Tree reference Simulation reference

Figure 5.6: This shows the resulting difference in the branch lengths leading to
the reference leaf for the initial input phylogeny for Jackalope (left) and the GDI-
constructed phylogeny (right, constructed from the scenario of a read coverage of 20
and transition rate of 0.2). I hypothesize that this is a consequence of a mismatch
in the particular reference genome I use for comparing phylogenies (the tree refer-
ence and the simulation reference). This figure is a portion of the phylogenetic
tree comparison depicted in the appendix (Figure B.3).

While a mismatch between the reference genomes being compared in both scenarios

affects the resulting trees, the reference mismatch impacts only one of the 60 leaves

in each tree, and the mismatch occurs consistently for all evaluation scenarios. Ad-

170 Chapter 5: Discussion

ditionally, since the Robinson-Foulds distance metric only compares the topology

of trees [121] and since the topology appears unaffected by the mismatch in refer-

ence genomes (Figure 5.6 and Figure B.3), I conclude that the Robinson-Foulds dis-

tances are likely unaffected by the reference mismatch. The Kendall-Colijn metric

[123] does incorporate branch lengths into its distance calculations, hence this mea-

sure may be affected by the reference mismatch. However, for the Kendall-Colijn

distances, I have set λ = 0.5, which means both branch lengths and topology con-

tribute equally to the distance calculations. Hence, due to all of these reasons, I

conclude that it is still appropriate to perform relative comparisons of distances be-

tween trees with each other (as presented in Figure 4.3 and Figure 4.6). However,

these distance measures could be improved by either directly comparing the tree

reference with the one produced by Jackalope (that I removed prior to loading the

data in GDI), or by removing the reference genome leaf from both trees altogether.

5.3.7 Uncontrolled variables for read data evaluation

In Section 4.3, I evaluated GDI by using real-world WGS data from four different

organisms. I measured resource usage for indexing differing amounts of samples

across all four organisms (such as run time presented in Figure 4.18 or peak mem-

ory usage presented in Figure 4.20). However, disentangling the influence of differ-

ent variables on resource usage (e.g., reference genome length, organism, number of

features) proved challenging. This lead to an inability to properly explain the influ-

ence of all these variables on resource usage.

A better approach would have been to make use of simulated data, which would

Chapter 5: Discussion 171

have provided an opportunity to better control and isolate the influence of each of

these variables. This would have been similar to the initial set of data simulations I

performed for evaluation (Section 4.1) and thus a better choice for read data eval-

uation may have been to expand this section with additional data to test different

scenarios (such as the influence of reference genome length, or number of samples).

5.4 Future work

Some of the limitations discussed previously highlight different opportunities for fu-

ture work on improving GDI. This includes better support for querying overlapping

nucleotide variants and matching nucleotide variants to amino acids. A number of

other possible directions would include the following.

5.4.1 Index tools

This would consist of a suite of command-line tools (or a Python API) for working

with individual indexes. This could include commands to merge two indexes to-

gether, split indexes apart (perhaps by organism). Or a package command to

construct an archive (e.g,. a zip file) of a genomics index for re-distribution. These

commands would be useful in situations where multiple indexes were constructed

separately and now there is a desire to join them together (or the opposite, perhaps

split one large index apart into multiple smaller ones to improve speed).

172 Chapter 5: Discussion

5.4.2 Development of a web application

Web interface

Additionally, another area of improvement would be to develop a web-based in-

terface for interacting with and visualizing the data stored in GDI. This interface

could be used both for locally processed data or it could be deployed as a pub-

licly available web-application for specific datasets to provide a method to explore

the data and query for specific subsets of the data to visualize clusters and sum-

mary statistics. One possible dataset could be SARS-CoV-2, which is readily avail-

able and could be compared to existing applications for summarizing this data

[49; 48; 3]. However, the benefit here is that the web application could be expanded

to include data from a variety of organisms as it is not limited to SARS-CoV-2.

Initial work on developing a web application has already been performed by Kimia

Shadkami as part of her studies at the University of Manitoba. Kimia developed

the code to integrate GDI’s Python-based API into a web application using Flask

(https://palletsprojects.com/p/flask/) and D3 (https://d3js.org/) and has

made the code available on GitHub (https://github.com/kimiashadkami/UI-

for-a-Microbial-Genomics-Database). This web application loads data from

an existing genomics index and provides an interface to query for specific features

and visualizing summary statistics of the set of samples containing those features.

This application could be extended to provide additional querying and visualiza-

tion capabilities, or even provide the capability to upload and index data through a

web-based interface.

https://palletsprojects.com/p/flask/
https://d3js.org/
https://github.com/kimiashadkami/UI-for-a-Microbial-Genomics-Database
https://github.com/kimiashadkami/UI-for-a-Microbial-Genomics-Database

Chapter 5: Discussion 173

Web API

Additionally, a web-based API could be constructed as an additional interface

alongside the Python API and CLI. This would primarily be targeted at developers

who wish to interact with GDI to execute queries. This would provide a mechanism

to integrate GDI into other applications by only operating at the level of this web-

based API, which could provide a mechanism for remote users to integrate data

indexed by GDI into their local software without having to use the Python API or

CLI.

As an example, the software IRIDA [131] provides a web-based platform for the

storage, management, and analysis of microbial WGS data. A web-based API

for GDI could provide the capability to both load WGS data stored by IRIDA

into GDI as well as execute queries on this data in GDI and display the results

in IRIDA—all without having to adapt the Python-based API of GDI to the

Java-based IRIDA application. One possible method for implementing this would

be to make use of the BioThings SDK (https://biothings.io/) to construct a

web-based API for accessing data stored in GDI.

5.4.3 Sequence typing and classification

One large feature lacking from GDI, but found in some other similar software, is

the ability to assign sequence types (lineages) to a collection of genomic samples

(the Lin. column in Table 4.4). When the sequence types are defined ahead of time

(and used to train a classifier) then this would be a form of classification since the

goal is to group the genomes into particular sequence types (i.e., classes; see Sec-

https://biothings.io/

174 Chapter 5: Discussion

tion 2.1.4).

Given the capability of GDI to join together different kinds of features alongside

different sorts of data related to genomes (such as phylogenetic trees or metadata,

Figure 3.5), this could be implemented as a type of query within the GDI Python

API, which returns a set of genomes that are part of a particular sequence type.

In fact, under this system, a sequence type could be defined as some named

combination of queries. This could all be encapsulated into an abstract class,

SequenceTyper , which maps the sequence type to the queries defining it. The

SequenceTyper class could have concrete implementations depending on the

typing (i.e., classification) system used. This would provide a common API for

implementing different types of classification systems that could use any number of

combinations of genomic features (nucleotide variants, kmers, genes) or could be

based on phylogenetic trees or metadata that is attached to a query.

Listing 5.1 shows an example implementation of this SequenceTyper class and

how it would be used. It shows how to select only a particular set of genomes be-

longing to a single sequence type, but this could be extended to also return a collec-

tion of queries associated with each defined sequence type. Or, alternatively, to re-

turn a table that matches each genomic sample with the associated sequence type.

I had already begun work on such a system, which makes use of the Scorpio [132]

method for classifying SARS-CoV-2 genomes according to the presence or absence

of collections of nucleotide variants. The SARS-CoV-2 typer is implemented as a

class in Python, ExperimentalSARSCov2ConstellationsTyper , and works similar

to the code in Listing 5.1. However, this implementation was never completed and

Chapter 5: Discussion 175

Listing 5.1 An example of sequence typing implemented as a combination of

queries

1 # Extends abstract class SequenceTyper
2 class MySequenceTyper(SequenceTyper):
3

4 # The sequence typing method which classifies genomes selected by
5 # the input "query" to a particular type "name" (by executing
6 # a series of sub-queries)
7 def isa_type(self, name: str, query: SamplesQuery) -> SamplesQuery:
8 if name == "type1":
9 # "type1" is shorthand for the below set of queries
10 return query.hasa("mlst:ecoli:adk:100") & query.hasa("ref:20:A:T")
11 elif name == "type2":
12 # "type2" is shorthand for the below set of queries
13 return query.hasa("mlst:ecoli:adk:5")
14

15 # Create a new instance of the above defined MySequenceTyper
16 typer = MySequenceTyper()
17

18 # Assume query is some defined query selecting some genomes in an index
19 query
20

21 # query1 is a query that selects all genomes in the database
22 # that are of type "type1" according to the sequence typing implementation
23 query1 = typer.isa_typer("type1", query)
24

25 # query2 is a query that selects all genomes in the database
26 # that are of type "type2" according to the sequence typing implementation
27 query2 = typer.isa_typer("type2", query)

is left for future work.

Chapter 6

Conclusion

Microbial whole-genome sequencing has been increasingly used as a key part of rou-

tine surveillance of infectious diseases or outbreak investigations. WGS provides a

wealth of information over previous techniques, down to individual nucleotide vari-

ants within the microbes causing an illness. This information can be used to track

the spread of diseases and cluster microbial genomes based evolutionary distances.

However, managing and interpreting the large amount of data generated from WGS

experiments introduces unique challenges, which I introduced in Chapter 1.

One challenge is large-scale data analysis—with worldwide collections of microbial

genomes already reaching millions of individuals. This data is continually being

produced and uploaded to archives, which requires methods to dynamically pro-

cess and integrate this data into existing reporting systems. Another challenge is

the identification and interpretation of collections of genomes across a variety of

feature-types—from individual nucleotide variants to collections of genes. Analy-

sis methods also need to account for missing information—caused by poor-quality

176

Chapter 6: Conclusion 177

sequencing data, leading to uncertainty about the exact genetic content. The ge-

nomics data also needs to be integrated with epidemiological metadata or exter-

nally provided information in order to properly interpret the results and identify

clusters of related microbes.

In Chapter 3, I presented my solution—the Genomics Data Index (GDI)—to ad-

dress these challenges by drawing on inspiration from the fields of information re-

trieval and microbial genomics introduced in Chapter 2. I divided this software up

into a number of components: (1) data analysis to break apart microbial WGS

into a variety of genomic features; (2) indexing to construct an inverted index of

genomic features; (3) querying to provide a mechanism to search for and select

subsets of genomes; (4) clustering to group genomes into clusters based on shared

features; and (5) visualization to provide built-in capability to visualize large col-

lections of genomes. I provided both a command-line interface and a Python API

for constructing and querying genomics indexes.

In Chapter 4, I evaluated this software using three datasets. I simulated a set of

genomes and show that GDI is capable of accurately detecting nucleotide variants

and clustering genomes over a wide range of input data types and divergences. I

next used a real-world dataset of SARS-CoV-2 genomes, where I measured the rela-

tionship between the number of samples indexed and the run time, memory usage,

and disk usage. I also compared clustering using both kmers and nucleotide vari-

ants and demonstrated that nucleotide variant clustering is the method which is

most accurately able to group together genomes with their assigned lineages. I next

evaluated the software using a collection of WGS read data from four different bac-

178 Chapter 6: Conclusion

terial species. I evaluated differences in run time, memory, and disk usage across

all four species. I also clustered the bacterial species using both kmers and nu-

cleotide variants and demonstrated that kmer-clustering is able to group the bacte-

ria by species, but is unable to differentiate between closely related bacteria within

a species, whereas a maximum-likelihood approach is better suited to the task. Fi-

nally, I compared and contrasted my software to other existing software packages.

In Chapter 5, I examined the limitations of GDI and provided recommendations

for the best ways to process different types of data. I also presented two different

applications of this software to investigate viral variants from the COVID-19 pan-

demic. These included an analysis of the SARS-CoV-2 Delta variant in Canada

during 2021 and an examination of the unique nucleotide variants in the SARS-

CoV-2 Omicron variant.

Through both the evaluations and applications of GDI, I have shown the utility

of an indexing system which can process and store features derived from WGS

data for multiple different microbial species. I believe this software will be of great

benefit to the larger scientific community for storing and processing microbial

genomes and linking genomic data to contextual metadata to aid in infectious dis-

ease surveillance. This form of data analysis has become a routine part of infectious

disease monitoring during the COVID-19 pandemic and will continue to increase in

importance in the future.

Appendix A

Software design

all

gdi_input_fofn

assembly_variant_snpeff

prepare_snpeff_database

reads_variant_paired_snpeff reads_variant_single_snpeff

assembly_variant

assembly_variant_all

assembly_mask

prepare_reference

index_reference

reads_paired_snippy
sample: SampleA-paired

reads_single_snippy
sample: SampleA-single

reference_genome_bedtoolsassembly_align
sample: SampleA-assembly

reads_paired_mask_snippy reads_single_mask_snippy assembly_sourmash_sketch
sample: SampleA-assembly

reads_paired_sourmash_sketch
sample: SampleA-paired

reads_single_sourmash_sketch
sample: SampleA-single

Figure A.1: A Directed Acyclic Graph (DAG) of the GDI analysis pipeline on
three different samples: SampleA-single, SampleA-paired, and SampleA-
assembly. This shows the dependencies among different stages of the analysis
pipeline, which is used by Snakemake [90] to schedule jobs either sequentially
(those stages on the same path in the graph) or in parallel (those stages on par-
allel paths in the graph). The final stage gdi_input_fofn is used to gather all
the required files by GDI for the indexing stage (i.e., VCF, BED, and sourmash
sketches) into a single tab-delimited file of file-paths. This figure was constructed
using the snakemake --dag | dot -Tpdf command as described in the Snake-
make documentation.

179

180 Appendix A: Software design

mlst_alleles_samples

scheme [VARCHAR(255)]

locus [VARCHAR(255)]

allele [VARCHAR(255)]

sla [VARCHAR(255)]

_sample_ids [BLOB]

mlst_scheme

id [INTEGER]

name [VARCHAR(255)]

alleles_dir [VARCHAR(255)]

sequence_types_file [VARCHAR(255)]

sample_mlst_alleles

sample_id [INTEGER]

scheme_id [INTEGER]

alleles_file [VARCHAR(255)]

{0,1}0..N

nucleotide_variants_samples

sequence [VARCHAR(255)]

position [INTEGER]

deletion [INTEGER]

insertion [VARCHAR(255)]

spdi [VARCHAR(255)]

var_type [VARCHAR(255)]

_sample_ids [BLOB]

annotation [VARCHAR(255)]

annotation_impact [VARCHAR(255)]

annotation_gene_name [VARCHAR(255)]

annotation_gene_id [VARCHAR(255)]

annotation_feature_type [VARCHAR(255)]

annotation_transcript_biotype [VARCHAR(255)]

annotation_hgvs_c [VARCHAR(255)]

annotation_hgvs_p [VARCHAR(255)]

id_hgvs_c [VARCHAR(255)]

id_hgvs_p [VARCHAR(255)]

reference

id [INTEGER]

name [VARCHAR(255)]

length [INTEGER]

tree [TEXT(1000000)]

tree_alignment_length [INTEGER]

reference_sequence

id [INTEGER]

reference_id [INTEGER]

sequence_name [VARCHAR(255)]

sequence_length [INTEGER]

{0,1}

0..N

sample_nucleotide_variation

sample_id [INTEGER]

reference_id [INTEGER]

masked_regions_file [VARCHAR(255)]

nucleotide_variants_file [VARCHAR(255)]
{0,1}

0..N

sample

id [INTEGER]

name [VARCHAR(255)]

{0,1}

0..N

{0,1}

0..N

sample_kmer_index

sample_id [INTEGER]

kmer_index_path [VARCHAR(255)]
{0,1}0..N

Figure A.2: An entity-relations diagram for the Genomics Data Index relational
database. The diagram was generated using ERAlchemy version 1.2.10 [133].

Appendix B

Simulated data

181

182 Appendix B: Simulated data

0.04

SH12-002

SH10-001

SH10-002

SH13-003

SH14-013

SH14-016

SH13-004

SH14-018

SH14-006

SH14-022

SH12-005

SH12-010

SH14-027

SH12-011

SH10-30

SH14-017

SH14-004

SH12-001

SH14-007

SH14-026

SH12-006

SH14-011

SH14-020

SH14-005

SH14-023

SH14-002

SH10-015

SH14-001

SH14-008

SH13-006

SH14-021

SH14-010

SH14-025

SH14-019

SH13-008

reference (start)

SH13-007

SH12-003

SH10-014

SH12-008

SH14-014

SH12-004

SH14-012 (end)

SH11-002

SH12-009

SH11-001

SH14-009

SH12-014

SH14-028

SH14-015

SH12-012

SH14-024

SH08-001

SH14-003

SH13-001

SH13-002

SH09-29

SH12-013

SH13-005

SH12-007

0

0.013

0.0103

0

0

0

0

0

0

0

0

0.0034

0

0

0.0139

0.0139

0

0

00

0

0

0

0

0

0

0.0637

0

0

0

0

0

0

0

0.1128

0

0.0068
0.0034

0

0

0

0.0655

0

0

0

0.0626

0

0

0

0

0.0358

0

0

0

0.05

0

0

0

0.075

0.0034

0

0

0

0

0

0

0.0265

0.0034

0.0173

0

0.0138

0

0.0577

0

0.0034

0

0

0

0

0

0

0.0034

0.0968

0

0

0

0

0.0034

0

0

0.0034

0.1486

0.0265

0

0

0.0068

0

0

0

0

0

0.0034

0

0.0034

0

0.0974

0

0.0458

0

0

0

0

0

0

0.0069

0.0034

0

0

Figure B.1: The longest path to the reference genome on the tree used for simulat-
ing genomes. The longest path is highlighted in light purple with branch lengths
shown. This path starts at the reference genome (start) and ends at SH14-012
(end). This is used to translate the transition rate to an observed substitution di-
vergence. The figure was constructed using FigTree [134].

Appendix B: Simulated data 183

0 1 2 3 4 5
Transition rate

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

La
rg

es
t s

ub
st

itu
tio

n
di

ve
rg

en
ce

Figure B.2: A comparison of the transition rate to the largest observed substitu-
tion divergence. The transition rate is one of the parameters in the HKY85 model I
used to simulate nucleotide variants (with the transversion rate set to 1/2 the tran-
sition rate). The largest observed substitution divergence is defined as the percent-
age of observed substitutions between SH14-012 and the reference genome (so 0%
means no substitutions were observed and 100% means the entire 19,699 bp of the
simulated SH14-012 genome is different from the reference genome). This is used to
adjust the axis scales to one of observed substitution divergence from the reference
genome.

184 Appendix B: Simulated data

SH09−29
SH10−30

SH14−001
SH14−010
SH14−017
SH14−012
SH14−027
SH14−025
SH14−022
SH14−019
SH14−018
SH14−015
SH14−013
SH14−011
SH14−009
SH14−005
SH14−003
SH14−002
SH14−028
SH14−004
SH14−006
SH14−007
SH14−008
SH14−014
SH14−016
SH14−020
SH14−021
SH14−023
SH14−024
SH14−026
SH10−001
SH11−001
SH12−011
SH12−010
SH12−002
SH12−007
SH12−001
SH12−009
SH12−003
SH12−004
SH12−005
SH12−006
SH12−008
SH08−001
SH10−002
SH12−012
SH10−014
SH11−002
SH13−006
SH13−001
SH13−007
SH13−002
SH13−003
SH13−005
SH13−004
SH13−008
SH10−015
SH12−014
SH12−013

reference

SH09−29
SH10−30
SH14−001
SH14−010
SH14−019
SH14−017
SH14−002
SH14−025
SH14−009
SH14−022
SH14−003
SH14−027
SH14−012
SH14−013
SH14−018
SH14−005
SH14−015
SH14−011
SH14−021
SH14−008
SH14−007
SH14−020
SH14−023
SH14−026
SH14−014
SH14−024
SH14−006
SH14−004
SH14−016
SH14−028
SH10−001
SH11−001
SH12−011
SH12−010
SH12−001
SH12−002
SH12−007
SH12−009
SH12−003
SH12−006
SH12−005
SH12−008
SH12−004
SH08−001
SH10−002
SH12−012
SH10−014
SH11−002
SH13−006
SH13−001
SH13−007
SH13−004
SH13−002
SH13−003
SH13−005
SH13−008
SH10−015
SH12−014
SH12−013
reference

0.10.1 0.010.01

Comparison of original tree to tree constructed from reads
 (cov = 20, transition rate = 0.2, divergence = 2.4%, NRF = 0.72, KC = 79.3)

O
rig

in
al

 tr
ee

C
on

st
ru

ct
ed

 tr
ee

 (
re

ad
s)

Figure B.3: A comparison of the original reference tree to a tree constructed using
reads with a coverage of 20X. Parameters used are listed at the top of the figure.
The figure was constructed using the cophylo function from the phytools [135] pack-
age in R. NRF is the Normalized Robinson-Foulds and KC is the Kendall-Colijn
distance metric. Divergence is the substitution divergence between SH14-012 and
the reference genome measured as a percentage difference in nucleotides to the ref-
erence genome.

Appendix B: Simulated data 185

SH09−29
SH14−001
SH14−027
SH14−026
SH14−025
SH14−021
SH14−015
SH14−014
SH14−013
SH14−011
SH14−009
SH14−008
SH14−007
SH14−005
SH14−004
SH14−002
SH14−028
SH14−003
SH14−006
SH14−016
SH14−018
SH14−019
SH14−020
SH14−022
SH14−023
SH14−024
SH14−012
SH14−017
SH14−010
SH10−30

SH10−001
SH11−001
SH12−008
SH12−006
SH12−004
SH12−001
SH12−009
SH12−003
SH12−005
SH12−002
SH12−007
SH12−010
SH12−011
SH08−001
SH10−002
SH12−012
SH10−015
SH10−014
SH11−002
SH13−003
SH13−001
SH13−007
SH13−002
SH13−005
SH13−006
SH13−004
SH13−008
SH12−014
SH12−013

reference

SH09−29
SH14−001
SH14−027
SH14−026
SH14−015
SH14−025
SH14−021
SH14−014
SH14−013
SH14−002
SH14−008
SH14−004
SH14−005
SH14−007
SH14−011
SH14−009
SH14−020
SH14−024
SH14−018
SH14−016
SH14−019
SH14−006
SH14−023
SH14−028
SH14−022
SH14−003
SH14−012
SH14−017
SH14−010
SH10−30
SH10−001
SH11−001
SH12−008
SH12−006
SH12−001
SH12−004
SH12−009
SH12−005
SH12−003
SH12−002
SH12−007
SH12−010
SH12−011
SH08−001
SH10−002
SH12−012
SH10−015
SH10−014
SH11−002
SH13−003
SH13−001
SH13−007
SH13−006
SH13−005
SH13−002
SH13−004
SH13−008
SH12−014
SH12−013
reference

0.10.1 0.010.01

Comparison of original tree to tree constructed from assembly
 (Max NRF, transition rate = 0.2, divergence = 2.4%, NRF = 0.71, KC = 70.2)

O
rig

in
al

 tr
ee

C
on

st
ru

ct
ed

 tr
ee

 (
as

se
m

bl
y)

Figure B.4: A comparison of the original reference tree to a tree constructed using
assemblies. Parameters used are listed at the top of the figure. The tree was chosen
to be the tree which produced the maximum Normalized Robinson-Foulds distance
(and so worst-performing tree) out of 6 trials with the same parameters. The fig-
ure was constructed using the cophylo function from the phytools [135] package in
R. NRF is the Normalized Robinson-Foulds and KC is the Kendall-Colijn distance
metric. Divergence is the substitution divergence between SH14-012 and the ref-
erence genome measured as a percentage difference in nucleotides to the reference
genome.

186 Appendix B: Simulated data

SH10−014
SH11−002
SH13−004
SH13−008
SH13−006
SH13−002
SH13−001
SH13−007
SH13−003
SH13−005
SH10−015
SH08−001
SH10−002
SH12−012
SH11−001
SH12−011
SH12−008
SH12−005
SH12−001
SH12−009
SH12−003
SH12−004
SH12−006
SH12−010
SH12−007
SH12−002
SH10−001
SH09−29
SH10−30

SH14−001
SH14−017
SH14−012
SH14−025
SH14−019
SH14−016
SH14−013
SH14−008
SH14−007
SH14−003
SH14−002
SH14−028
SH14−004
SH14−005
SH14−006
SH14−009
SH14−011
SH14−014
SH14−015
SH14−018
SH14−020
SH14−021
SH14−022
SH14−023
SH14−024
SH14−026
SH14−027
SH14−010
SH12−014
SH12−013

reference

SH08−001
SH12−008
SH14−017
SH10−014
SH13−002
SH13−006
SH11−001
SH12−007
SH12−011
SH10−30
SH11−002
SH13−001
SH13−004
SH13−008
SH12−005
SH12−001
SH09−29
SH12−009
SH12−003
SH13−007
SH12−010
SH14−007
SH14−001
SH14−019
SH14−012
SH14−013
SH14−002
SH14−003
SH14−008
SH14−025
SH10−001
SH13−003
SH10−002
SH12−012
SH10−015
SH14−028
SH14−016
SH14−020
SH14−018
SH14−009
SH14−006
SH12−006
SH14−015
SH14−021
SH14−005
SH14−010
SH14−022
SH14−011
SH14−024
SH13−005
SH12−002
SH12−014
SH14−004
SH14−014
SH12−004
SH14−027
SH14−026
SH14−023
SH12−013
reference

0.10.1 0.010.01

Comparison of original tree to tree constructed from reads
 (cov = 5, transition rate = 0.2, divergence = 2.4%, NRF = 0.95, KC = 135.5)

O
rig

in
al

 tr
ee

C
on

st
ru

ct
ed

 tr
ee

 (
re

ad
s)

Figure B.5: A comparison of the original reference tree to a tree constructed us-
ing reads with a coverage of 5X. Parameters used are listed at the top of the figure.
The figure was constructed using the cophylo function from the phytools [135] pack-
age in R. NRF is the Normalized Robinson-Foulds and KC is the Kendall-Colijn
distance metric. Divergence is the substitution divergence between SH14-012 and
the reference genome measured as a percentage difference in nucleotides to the ref-
erence genome.

Appendix B: Simulated data 187

SH09−29
SH14−001
SH14−027
SH14−026
SH14−025
SH14−024
SH14−022
SH14−021
SH14−020
SH14−019
SH14−018
SH14−016
SH14−015
SH14−014
SH14−011
SH14−006
SH14−005
SH14−002
SH14−028
SH14−003
SH14−004
SH14−007
SH14−008
SH14−009
SH14−013
SH14−023
SH14−012
SH14−017
SH14−010
SH10−30

SH10−001
SH11−001
SH12−004
SH12−001
SH12−009
SH12−003
SH12−005
SH12−006
SH12−008
SH12−010
SH12−002
SH12−007
SH12−011
SH08−001
SH10−002
SH12−012
SH10−015
SH10−014
SH11−002
SH13−006
SH13−005
SH13−001
SH13−007
SH13−002
SH13−003
SH13−004
SH13−008
SH12−014
SH12−013

reference

SH09−29
SH14−001
SH14−020
SH14−025
SH14−021
SH14−027
SH14−026
SH14−022
SH14−024
SH14−002
SH14−015
SH14−019
SH14−006
SH14−005
SH14−016
SH14−018
SH14−014
SH14−011
SH14−023
SH14−028
SH14−007
SH14−004
SH14−009
SH14−008
SH14−013
SH14−003
SH14−012
SH14−017
SH14−010
SH10−30
SH10−001
SH11−001
SH12−004
SH12−001
SH12−009
SH12−005
SH12−008
SH12−006
SH12−003
SH12−010
SH12−002
SH12−007
SH12−011
SH08−001
SH10−002
SH12−012
SH10−014
SH10−015
SH11−002
SH13−006
SH13−001
SH13−005
SH13−007
SH13−003
SH13−002
SH13−004
SH13−008
SH12−014
SH12−013
reference

0.10.1 0.010.01

Comparison of original tree to tree constructed from assembly
 (transition rate = 0.1, divergence = 1.9%, NRF = 0.67, KC = 78.4)

O
rig

in
al

 tr
ee

C
on

st
ru

ct
ed

 tr
ee

 (
as

se
m

bl
y)

Figure B.6: A comparison of the original reference tree to a tree constructed using
assemblies and with a divergence of 1.88% (transition rate of 0.1). Parameters used
are listed at the top of the figure. The figure was constructed using the cophylo
function from the phytools [135] package in R. NRF is the Normalized Robinson-
Foulds and KC is the Kendall-Colijn distance metric. Divergence is the substitution
divergence between SH14-012 and the reference genome measured as a percentage
difference in nucleotides to the reference genome.

188 Appendix B: Simulated data

SH09−29
SH10−30

SH14−001
SH14−010
SH14−017
SH14−012
SH14−027
SH14−026
SH14−020
SH14−019
SH14−018
SH14−015
SH14−014
SH14−011
SH14−009
SH14−004
SH14−028
SH14−002
SH14−003
SH14−005
SH14−006
SH14−007
SH14−008
SH14−013
SH14−016
SH14−021
SH14−022
SH14−023
SH14−024
SH14−025
SH10−001
SH12−004
SH12−001
SH12−009
SH12−003
SH12−005
SH12−006
SH12−008
SH12−002
SH12−007
SH12−010
SH12−011
SH11−001
SH08−001
SH10−002
SH12−012
SH10−015
SH10−014
SH11−002
SH13−006
SH13−001
SH13−007
SH13−002
SH13−003
SH13−005
SH13−004
SH13−008
SH12−014
SH12−013

reference

SH09−29
SH10−30
SH14−010
SH14−001
SH14−014
SH14−028
SH14−012
SH14−020
SH14−018
SH14−026
SH14−017
SH14−019
SH14−004
SH14−011
SH14−002
SH14−027
SH14−009
SH14−015
SH14−025
SH14−005
SH14−023
SH14−013
SH14−016
SH14−006
SH14−022
SH14−024
SH14−021
SH14−008
SH14−003
SH14−007
SH10−001
SH12−004
SH12−001
SH12−009
SH12−005
SH12−006
SH12−008
SH12−002
SH12−003
SH12−010
SH12−007
SH12−011
SH11−001
SH08−001
SH10−002
SH12−012
SH10−014
SH10−015
SH11−002
SH13−006
SH13−001
SH13−007
SH13−005
SH13−003
SH13−002
SH13−004
SH13−008
SH12−014
SH12−013
reference

0.10.1 0.010.01

Comparison of original tree to tree constructed from reads
 (cov = 30, transition rate = 0.1, divergence = 1.9%, NRF = 0.76, KC = 87.6)

O
rig

in
al

 tr
ee

C
on

st
ru

ct
ed

 tr
ee

 (
re

ad
s)

Figure B.7: A comparison of the original reference tree to a tree constructed using
reads and with a divergence of 1.88% (transition rate of 0.1). Parameters used are
listed at the top of the figure. The figure was constructed using the cophylo func-
tion from the phytools [135] package in R. NRF is the Normalized Robinson-Foulds
and KC is the Kendall-Colijn distance metric. Divergence is the substitution di-
vergence between SH14-012 and the reference genome measured as a percentage
difference in nucleotides to the reference genome.

Appendix B: Simulated data 189

SH09−29
SH10−30

SH14−001
SH14−017
SH14−025
SH14−024
SH14−022
SH14−021
SH14−020
SH14−019
SH14−018
SH14−016
SH14−011
SH14−008
SH14−006
SH14−004
SH14−002
SH14−028
SH14−003
SH14−005
SH14−007
SH14−009
SH14−013
SH14−014
SH14−015
SH14−023
SH14−026
SH14−027
SH14−012
SH14−010
SH10−001
SH11−001
SH12−011
SH12−008
SH12−004
SH12−001
SH12−009
SH12−003
SH12−005
SH12−006
SH12−002
SH12−007
SH12−010
SH10−015
SH10−014
SH11−002
SH13−005
SH13−003
SH13−001
SH13−007
SH13−002
SH13−006
SH13−008
SH13−004
SH08−001
SH10−002
SH12−012
SH12−014
SH12−013

reference

SH09−29
SH10−30
SH14−001
SH14−017
SH14−018
SH14−024
SH14−020
SH14−022
SH14−019
SH14−021
SH14−025
SH14−002
SH14−006
SH14−008
SH14−011
SH14−004
SH14−016
SH14−028
SH14−007
SH14−027
SH14−005
SH14−015
SH14−023
SH14−026
SH14−013
SH14−014
SH14−009
SH14−003
SH14−010
SH14−012
SH10−001
SH11−001
SH12−011
SH12−008
SH12−004
SH12−001
SH12−009
SH12−005
SH12−006
SH12−003
SH12−002
SH12−007
SH12−010
SH10−015
SH10−014
SH11−002
SH13−005
SH13−003
SH13−001
SH13−007
SH13−006
SH13−002
SH13−008
SH13−004
SH08−001
SH10−002
SH12−012
SH12−014
SH12−013
reference

0.10.1 0.010.01

Comparison of original tree to tree constructed from assembly
 (transition rate = 0.5, divergence = 4.2%, NRF = 0.74, KC = 70.3)

O
rig

in
al

 tr
ee

C
on

st
ru

ct
ed

 tr
ee

 (
as

se
m

bl
y)

Figure B.8: A comparison of the original reference tree to a tree constructed using
assemblies and with a divergence of 4.20% (transition rate of 0.5). Parameters used
are listed at the top of the figure. The figure was constructed using the cophylo
function from the phytools [135] package in R. NRF is the Normalized Robinson-
Foulds and KC is the Kendall-Colijn distance metric. Divergence is the substitution
divergence between SH14-012 and the reference genome measured as a percentage
difference in nucleotides to the reference genome.

190 Appendix B: Simulated data

SH09−29
SH10−30

SH14−001
SH14−024
SH14−023
SH14−021
SH14−019
SH14−016
SH14−008
SH14−006
SH14−004
SH14−003
SH14−002
SH14−028
SH14−005
SH14−007
SH14−009
SH14−011
SH14−013
SH14−014
SH14−015
SH14−018
SH14−020
SH14−022
SH14−025
SH14−026
SH14−027
SH14−012
SH14−017
SH14−010
SH10−001
SH11−001
SH12−006
SH12−003
SH12−009
SH12−001
SH12−004
SH12−005
SH12−008
SH12−010
SH12−002
SH12−007
SH12−011
SH10−014
SH11−002
SH13−006
SH13−002
SH13−001
SH13−007
SH13−003
SH13−005
SH13−004
SH13−008
SH10−015
SH08−001
SH10−002
SH12−012
SH12−014
SH12−013

reference

SH09−29
SH10−30
SH14−023
SH14−024
SH14−001
SH14−021
SH14−019
SH14−006
SH14−002
SH14−016
SH14−004
SH14−008
SH14−003
SH14−007
SH14−005
SH14−015
SH14−009
SH14−018
SH14−013
SH14−027
SH14−022
SH14−028
SH14−011
SH14−020
SH14−010
SH14−017
SH14−014
SH14−025
SH14−026
SH14−012
SH10−001
SH11−001
SH12−003
SH12−009
SH12−006
SH12−001
SH12−010
SH12−008
SH12−005
SH12−004
SH12−002
SH12−007
SH12−011
SH10−014
SH11−002
SH13−002
SH13−001
SH13−006
SH13−004
SH13−007
SH13−008
SH13−003
SH13−005
SH10−015
SH08−001
SH10−002
SH12−012
SH12−014
SH12−013
reference

0.10.1 0.010.01

Comparison of original tree to tree constructed from reads
 (cov = 30, transition rate = 0.5, divergence = 4.2%, NRF = 0.72, KC = 93.0)

O
rig

in
al

 tr
ee

C
on

st
ru

ct
ed

 tr
ee

 (
re

ad
s)

Figure B.9: A comparison of the original reference tree to a tree constructed using
reads and with a divergence of 4.20% (transition rate of 0.5). Parameters used are
listed at the top of the figure. The figure was constructed using the cophylo func-
tion from the phytools [135] package in R. NRF is the Normalized Robinson-Foulds
and KC is the Kendall-Colijn distance metric. Divergence is the substitution di-
vergence between SH14-012 and the reference genome measured as a percentage
difference in nucleotides to the reference genome.

Appendix C

SARS-CoV-2 evaluation

191

192 Appendix C: SARS-CoV-2 evaluation

Figure C.1: A tree constructed using the Augur pipeline [3] on 500 SARS-CoV-2
genomes. The dendrogram is shown at the left (branch length in units of substi-
tutions/site) with those SARS-CoV-2 genomes belonging to either the Alpha or
Delta lineages coloured in shades of blue. The right displays a heatmap of the
Pangolin lineages each genome belongs to, with one lineage per column and only
including lineages with at least 2 genomes in the tree. Each lineage is assigned a
score based on how many additional genomes are included underneath the most-
recent common ancestor of all genomes within an individual lineage (scores range
from 0 to 1, with 1 being the best possible score indicating that all genomes belong-
ing to the particular Pangolin lineage are within a single monophyletic clade). The
bars within the heatmap are coloured if the corresponding genome belongs to that
lineage, with dark green indicating scores > 0.9 and light green indicating scores
≤ 0.9. There are 7 genomes which were unable to be assigned a lineage and these
show up under the (1) None column in the heatmap. The median score across all
lineages here is 1.00.

Appendix C: SARS-CoV-2 evaluation 193

Figure C.2: A tree constructed using the maximum-likelihood method (using iqtree
[17]) on 500 SARS-CoV-2 genomes indexed by GDI. The dendrogram is shown
at the left (branch length in units of substitutions/site) with those SARS-CoV-2
genomes belonging to either the Alpha or Delta lineages coloured in shades of
blue. The right displays a heatmap of the Pangolin lineages each genome belongs
to, with one lineage per column and only including lineages with at least 2 genomes
in the tree. Each lineage is assigned a score based on how many additional genomes
are included underneath the most-recent common ancestor of all genomes within an
individual lineage (scores range from 0 to 1, with 1 being the best possible score in-
dicating that all genomes belonging to the particular Pangolin lineage are within a
single monophyletic clade). The bars within the heatmap are coloured if the corre-
sponding genome belongs to that lineage, with dark green indicating scores > 0.9
and light green indicating scores ≤ 0.9. There are 7 genomes which were unable
to be assigned a lineage and these show up under the (1) None column in the
heatmap. The median score across all lineages here is 1.00.

194 Appendix C: SARS-CoV-2 evaluation

Figure C.3: A hierarchical cluster (shown as a dendrogram) constructed using pair-
wise sourmash [54] distances with a kmer size k = 31. The dendrogram is shown at
the left with those SARS-CoV-2 genomes belonging to either the Alpha or Delta
lineages coloured in shades of blue. The right displays a heatmap of the Pangolin
lineages each genome belongs to, with one lineage per column and only including
lineages with at least 2 genomes in the tree. Each lineage is assigned a score based
on how many additional genomes are included underneath the most-recent common
ancestor of all genomes within an individual lineage (scores range from 0 to 1, with
1 being the best possible score indicating that all genomes belonging to the par-
ticular Pangolin lineage are within a single monophyletic clade). The bars within
the heatmap are coloured if the corresponding genome belongs to that lineage, with
dark green indicating scores > 0.9 and light green indicating scores ≤ 0.9. There
are 7 genomes which were unable to be assigned a lineage and these show up under
the (1) None column in the heatmap. The median score across all lineages here is
0.034.

Appendix C: SARS-CoV-2 evaluation 195

Figure C.4: A hierarchical cluster (shown as a dendrogram) constructed using pair-
wise sourmash [54] distances with a kmer size k = 51. The dendrogram is shown at
the left with those SARS-CoV-2 genomes belonging to either the Alpha or Delta
lineages coloured in shades of blue. The right displays a heatmap of the Pangolin
lineages each genome belongs to, with one lineage per column and only including
lineages with at least 2 genomes in the tree. Each lineage is assigned a score based
on how many additional genomes are included underneath the most-recent common
ancestor of all genomes within an individual lineage (scores range from 0 to 1, with
1 being the best possible score indicating that all genomes belonging to the par-
ticular Pangolin lineage are within a single monophyletic clade). The bars within
the heatmap are coloured if the corresponding genome belongs to that lineage, with
dark green indicating scores > 0.9 and light green indicating scores ≤ 0.9. There
are 7 genomes which were unable to be assigned a lineage and these show up under
the (1) None column in the heatmap. The median score across all lineages here is
0.058.

196 Appendix C: SARS-CoV-2 evaluation

Figure C.5: A hierarchical cluster (shown as a dendrogram) constructed using pair-
wise sourmash [54] distances with a kmer size k = 71. The dendrogram is shown at
the left with those SARS-CoV-2 genomes belonging to either the Alpha or Delta
lineages coloured in shades of blue. The right displays a heatmap of the Pangolin
lineages each genome belongs to, with one lineage per column and only including
lineages with at least 2 genomes in the tree. Each lineage is assigned a score based
on how many additional genomes are included underneath the most-recent common
ancestor of all genomes within an individual lineage (scores range from 0 to 1, with
1 being the best possible score indicating that all genomes belonging to the par-
ticular Pangolin lineage are within a single monophyletic clade). The bars within
the heatmap are coloured if the corresponding genome belongs to that lineage, with
dark green indicating scores > 0.9 and light green indicating scores ≤ 0.9. There
are 7 genomes which were unable to be assigned a lineage and these show up under
the (1) None column in the heatmap. The median score across all lineages here is
0.049.

Appendix D

Reads

197

198 Appendix D: Reads

A B

2014D-0070_outgroup_0810PADBR-1
2014D-0189_outgroup_0810PADBR-1
2014D-0068_outgroup_0810PADBR-1
2014D-0067_outgroup_0810PADBR-1

D5663_outgroup_0810PADBR-1
PNUSA000194_outgroup_0810PADBR-1
PNUSA000195_outgroup_0810PADBR-1
PNUSA000196_outgroup_0810PADBR-1
D7328_0810PADBR-1
D7331_0810PADBR-1
D7319_0810PADBR-1
D7329_0810PADBR-1
D7321_0810PADBR-1
D7322_0810PADBR-1
D7316_0810PADBR-1
D7323_0810PADBR-1
D7324_0810PADBR-1
D7333_0810PADBR-1
D7320_0810PADBR-1
D7330_0810PADBR-1
D7327_0810PADBR-1
D7334_0810PADBR-1

Cluster

0810PADBR-1

outgroup_0810PADBR-1

Campylobacter jejuni (ML)

9.36634e-05

2014D-0070_outgroup_0810PADBR-1
2014D-0068_outgroup_0810PADBR-1
2014D-0067_outgroup_0810PADBR-1
PNUSA000196_outgroup_0810PADBR-1
PNUSA000194_outgroup_0810PADBR-1
PNUSA000195_outgroup_0810PADBR-1
2014D-0189_outgroup_0810PADBR-1
D7316_0810PADBR-1
D7331_0810PADBR-1
D5663_outgroup_0810PADBR-1
D7330_0810PADBR-1
D7324_0810PADBR-1
D7329_0810PADBR-1
D7321_0810PADBR-1
D7328_0810PADBR-1
D7323_0810PADBR-1
D7333_0810PADBR-1
D7327_0810PADBR-1
D7320_0810PADBR-1
D7319_0810PADBR-1
D7322_0810PADBR-1
D7334_0810PADBR-1

Cluster

0810PADBR-1

outgroup_0810PADBR-1

Campylobacter jejuni (Kmer)

0.204058

Figure D.1: A comparison between two trees constructed following the analysis
and indexing of 22 Campylobacter jejuni genomes (processed from read data).
The dataset is derived from a group of epidemiologically-linked bacterial isolates
from an outbreak event (shown in red) alongside a group of outgroup genomes not
linked to the outbreak (shown in blue). (A) A phylogenetic tree constructed using
a maximum-likelihood method using nucleotide variants, which groups isolates de-
rived from the outbreak into a monophyletic clade (reference genome not shown).
(B) A tree depicting a single-linkage hierarchical clustering of shared kmers (de-
rived from sourmash [54]), which does not group the isolates derived from the out-
break into a monophyletic clade.

Appendix D: Reads 199

A B

2014C-3907_outgroup_1405WAEXK-1
2014C-3655_outgroup_1405WAEXK-1
2014C-3656_outgroup_1405WAEXK-1

2014C-3840_outgroup_1405WAEXK-1
2014C-3857_outgroup_1405WAEXK-1

2014C-3850_outgroup_1405WAEXK-1
2014C-3598_1405WAEXK-1
2014C-3599_1405WAEXK-1
2014C-3600_1405WAEXK-1

Cluster

1405WAEXK-1

outgroup_1405WAEXK-1

Escherichia coli (ML)

9.18792e-06

2014C-3907_outgroup_1405WAEXK-1
2014C-3655_outgroup_1405WAEXK-1
2014C-3840_outgroup_1405WAEXK-1
2014C-3850_outgroup_1405WAEXK-1
2014C-3857_outgroup_1405WAEXK-1
2014C-3656_outgroup_1405WAEXK-1
2014C-3598_1405WAEXK-1
2014C-3599_1405WAEXK-1
2014C-3600_1405WAEXK-1

Cluster

1405WAEXK-1

outgroup_1405WAEXK-1

Escherichia coli (Kmer)

0.199876

Figure D.2: A comparison between two trees constructed following the analysis and
indexing of 9 Escherichia coli genomes (processed from read data). The dataset
is derived from a group of epidemiologically-linked bacterial isolates from an out-
break event (shown in red) alongside a group of outgroup genomes not linked to the
outbreak (shown in blue). (A) A phylogenetic tree constructed using a maximum-
likelihood method using nucleotide variants, which groups isolates derived from the
outbreak into a monophyletic clade (reference genome not shown). (B) A tree de-
picting a single-linkage hierarchical clustering of shared kmers (derived from sour-
mash [54]), which does group the isolates derived from the outbreak into a mono-
phyletic clade.

200 Appendix D: Reads

A B

PNUSAL000730_outgroup_1408MLGX6-3WGS
CFSAN002349_outgroup_1408MLGX6-3WGS

PNUSAL000957_outgroup_1408MLGX6-3WGS
MOD1_LS1000_1408MLGX6-3WGS
CFSAN023466_1408MLGX6-3WGS
PNUSAL001024_1408MLGX6-3WGS
CFSAN023467_1408MLGX6-3WGS
MOD1_LS1005_1408MLGX6-3WGS
MOD1_LS995_1408MLGX6-3WGS

MOD1_LS1008_1408MLGX6-3WGS
CFSAN023469_1408MLGX6-3WGS
MOD1_LS982_1408MLGX6-3WGS
CFSAN023463_1408MLGX6-3WGS
CFSAN023468_1408MLGX6-3WGS
PNUSAL000870_1408MLGX6-3WGS
MOD1_LS1011_1408MLGX6-3WGS
MOD1_LS997_1408MLGX6-3WGS
MOD1_LS989_1408MLGX6-3WGS
CFSAN023471_1408MLGX6-3WGS
CFSAN023464_1408MLGX6-3WGS
CFSAN023465_1408MLGX6-3WGS
CFSAN023470_1408MLGX6-3WGS
MOD1_LS985_1408MLGX6-3WGS

MOD1_LS1009_1408MLGX6-3WGS
MOD1_LS994_1408MLGX6-3WGS
MOD1_LS996_1408MLGX6-3WGS
MOD1_LS998_1408MLGX6-3WGS
MOD1_LS1010_1408MLGX6-3WGS
MOD1_LS1006_1408MLGX6-3WGS
MOD1_LS1003_1408MLGX6-3WGS
MOD1_LS1004_1408MLGX6-3WGS

Cluster

1408MLGX6-3WGS

outgroup_1408MLGX6-3WGS

Listeria monocytogenes (ML)

6.22676e-06

PNUSAL000730_outgroup_1408MLGX6-3WGS
CFSAN002349_outgroup_1408MLGX6-3WGS
PNUSAL000870_1408MLGX6-3WGS
CFSAN023465_1408MLGX6-3WGS
CFSAN023469_1408MLGX6-3WGS
CFSAN023470_1408MLGX6-3WGS
PNUSAL001024_1408MLGX6-3WGS
CFSAN023468_1408MLGX6-3WGS
CFSAN023467_1408MLGX6-3WGS
CFSAN023466_1408MLGX6-3WGS
PNUSAL000957_outgroup_1408MLGX6-3WGS
CFSAN023464_1408MLGX6-3WGS
CFSAN023463_1408MLGX6-3WGS
MOD1_LS1011_1408MLGX6-3WGS
CFSAN023471_1408MLGX6-3WGS
MOD1_LS1010_1408MLGX6-3WGS
MOD1_LS1004_1408MLGX6-3WGS
MOD1_LS982_1408MLGX6-3WGS
MOD1_LS994_1408MLGX6-3WGS
MOD1_LS1009_1408MLGX6-3WGS
MOD1_LS1008_1408MLGX6-3WGS
MOD1_LS996_1408MLGX6-3WGS
MOD1_LS1000_1408MLGX6-3WGS
MOD1_LS1003_1408MLGX6-3WGS
MOD1_LS1006_1408MLGX6-3WGS
MOD1_LS998_1408MLGX6-3WGS
MOD1_LS995_1408MLGX6-3WGS
MOD1_LS1005_1408MLGX6-3WGS
MOD1_LS985_1408MLGX6-3WGS
MOD1_LS989_1408MLGX6-3WGS
MOD1_LS997_1408MLGX6-3WGS

Cluster

1408MLGX6-3WGS

outgroup_1408MLGX6-3WGS

Listeria monocytogenes (Kmer)

0.202413

Figure D.3: A comparison between two trees constructed following the analysis
and indexing of 31 Listeria monocytogenes genomes (processed from read data).
The dataset is derived from a group of epidemiologically-linked bacterial isolates
from an outbreak event (shown in red) alongside a group of outgroup genomes not
linked to the outbreak (shown in blue). (A) A phylogenetic tree constructed using
a maximum-likelihood method using nucleotide variants, which groups isolates de-
rived from the outbreak into a monophyletic clade (reference genome not shown).
(B) A tree depicting a single-linkage hierarchical clustering of shared kmers (de-
rived from sourmash [54]), which does not group the isolates derived from the out-
break into a monophyletic clade.

Appendix D: Reads 201

A B

CFSAN000212_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak
CFSAN000211_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak

CFSAN000191_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak
CFSAN000228_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak

CFSAN000189_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak
CFSAN000661_1203NYJAP-1
CFSAN000963_1203NYJAP-1
CFSAN000669_1203NYJAP-1
CFSAN000960_1203NYJAP-1
CFSAN000753_1203NYJAP-1
CFSAN001118_1203NYJAP-1
CFSAN000951_1203NYJAP-1
CFSAN000954_1203NYJAP-1
CFSAN000968_1203NYJAP-1
CFSAN000970_1203NYJAP-1
CFSAN000700_1203NYJAP-1
CFSAN000752_1203NYJAP-1
CFSAN000958_1203NYJAP-1
CFSAN000952_1203NYJAP-1
CFSAN001112_1203NYJAP-1
CFSAN000961_1203NYJAP-1
CFSAN001115_1203NYJAP-1
CFSAN001140_1203NYJAP-1

Cluster

1203NYJAP-1

outgroup_1203NYJAP-1 - Tuna Scrape Outbreak

Salmonella enterica (ML)

5.92815e-06

CFSAN000212_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak
CFSAN000700_1203NYJAP-1
CFSAN000669_1203NYJAP-1
CFSAN000191_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak
CFSAN000661_1203NYJAP-1
CFSAN001140_1203NYJAP-1
CFSAN001118_1203NYJAP-1
CFSAN000958_1203NYJAP-1
CFSAN000753_1203NYJAP-1
CFSAN000752_1203NYJAP-1
CFSAN000961_1203NYJAP-1
CFSAN000211_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak
CFSAN000963_1203NYJAP-1
CFSAN000960_1203NYJAP-1
CFSAN001112_1203NYJAP-1
CFSAN001115_1203NYJAP-1
CFSAN000968_1203NYJAP-1
CFSAN000970_1203NYJAP-1
CFSAN000228_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak
CFSAN000189_outgroup_1203NYJAP-1 - Tuna Scrape Outbreak
CFSAN000954_1203NYJAP-1
CFSAN000952_1203NYJAP-1
CFSAN000951_1203NYJAP-1

Cluster

1203NYJAP-1

outgroup_1203NYJAP-1 - Tuna Scrape Outbreak

Salmonella enterica (Kmer)

0.197843

Figure D.4: A comparison between two trees constructed following the analysis
and indexing of 23 Salmonella enterica genomes (processed from read data). The
dataset is derived from a group of epidemiologically-linked bacterial isolates from
an outbreak event (shown in red) alongside a group of outgroup genomes not linked
to the outbreak (shown in blue). (A) A phylogenetic tree constructed using a
maximum-likelihood method using nucleotide variants, which groups isolates de-
rived from the outbreak into a monophyletic clade (reference genome not shown).
(B) A tree depicting a single-linkage hierarchical clustering of shared kmers (de-
rived from sourmash [54]), which does not group the isolates derived from the out-
break into a monophyletic clade.

Appendix E

Proof of requirements of

cluster-to-tree scoring

This goes through a detailed proof of the three requirements (Requirements 1, 2,

and 3) for Algorithm 3.1.

1. Since this algorithm returns the Jaccard index between two sets, then Re-

quirement 1 is satisfied since the Jaccard index will always be between 0

and 1.

2. To prove Requirement 2 (highest score if and only if L are the leaves of a

monophyletic clade) we can consider this statement in both directions.

(a) Assume all genomes in L are leaves of a monophyletic clade. Then the

descendants of the most recent common ancestor to L is just L; that is,

Lm = L. From line 7 of Algorithm 3.1, the score is the Jaccard index of

L and Lm, which must be 1 in this case (since the sets are equal).

202

Appendix E: Proof of requirements of cluster-to-tree scoring 203

(b) Now assume we have a score of S(T, L) = 1. Then |L ∩ Lm| = |L ∪

Lm|, which means that L = Lm, which means there is no additional

genomes/leaves under the most recent common ancestor of L and so L

consists of the leaves of a monophyletic clade.

(c) These two statements, together, prove Requirement 2.

3. Requirement 3 holds in the limit as the size of the tree T increases. This is

due to the following:

(a) For a given set of leaves L, the lowest possible score is |L|/N where N

is the number of leaves in the tree T and where L is more than one leaf

(that is |L| > 1). The argument is given below.

i. More generally, for a given set of leaves L (where |L| > 1), the score

is |L ∩ Lm|/|L ∪ Lm| (line 7 in Algorithm 3.1).

ii. This will achieve its lowest value when |L ∩ Lm| is minimized while

|L ∪ Lm| is maximized.

iii. Also, L ⊆ Lm (Lm is the set of leaves under the most recent common

ancestor to all leaves L, hence it must contain L).

iv. So |L ∩ Lm| = |L| (since L ⊆ Lm from above).

v. So we can simplify the score for a given set of leaves L as S =

|L|/|L ∪ Lm|.

vi. So to achieve the lowest possible score we need to minimize |L| and

maximize |L ∪ Lm|.

vii. |L∪Lm| is maximized for a given L when Lm contains the most num-

204 Appendix E: Proof of requirements of cluster-to-tree scoring

ber of items. This occurs when the most recent common ancestor to

leaves L is the root of the tree and so |Lm| = N . Given that L ⊆ Lm

(from above), this implies that |L ∪ Lm| = N .

viii. Therefore, for a given set of leaves L, the lowest possible score is

|L|/N (and is achieved when the most recent common ancestor to

leaves L is the root of the tree).

(b) For the case of a single leaf L = (l1), the score will be S(L, T) = 1 (from

lines 1-2 of Algorithm 3.1). Since this is the maximum score, we must

rule out the case of a single leaf when looking for the minimum score.

(c) So, for any possible set of leaves L from tree T (where |L| > 1), the low-

est possible score will therefore be achieved when |L| is minimized (so we

would minimize the value |L|/N).

(d) This would be achieved when we consider a pair of leaves L = (l1, l2). So

|L| = 2 and the minimal score would be S(T, L) = 2/N .

(e) Since limN→∞ 2/N = 0, then this requirement holds in the limit of an

increasingly large tree T .

Bibliography

[1] E. M. Ribot, M. Freeman, K. B. Hise, and P. Gerner-Smidt, “PulseNet:

Entering the Age of Next-Generation Sequencing,” Foodborne Pathogens and

Disease, vol. 16, no. 7, pp. 451–456, Jul. 2019, doi: 10.1089/fpd.2019.2634.

[Online]. Available: https://doi.org/10.1089/fpd.2019.2634

[2] B. Tolar, L. A. Joseph, M. N. Schroeder, S. Stroika, E. M.

Ribot, K. B. Hise, and P. Gerner-Smidt, “An Overview of PulseNet

USA Databases,” Foodborne Pathogens and Disease, vol. 16, no. 7, pp.

457–462, Jul. 2019, doi: 10.1089/fpd.2019.2637. [Online]. Available:

https://doi.org/10.1089/fpd.2019.2637

[3] J. Hadfield, C. Megill, S. M. Bell, J. Huddleston, B. Potter, C. Callender,

P. Sagulenko, T. Bedford, and R. A. Neher, “Nextstrain: real-time

tracking of pathogen evolution,” Bioinformatics, vol. 34, no. 23, pp.

4121–4123, Dec. 2018, doi: 10.1093/bioinformatics/bty407. [Online]. Available:

https://doi.org/10.1093/bioinformatics/bty407

[4] S. Khare, C. Gurry, L. Freitas, M. B Schultz, G. Bach, A. Diallo, N. Akite,

J. Ho, R. TC Lee, W. Yeo, GISAID Core Curation Team, and S. Maurer-Stroh,

205

10.1089/fpd.2019.2634
https://doi.org/10.1089/fpd.2019.2634
10.1089/fpd.2019.2637
https://doi.org/10.1089/fpd.2019.2637
10.1093/bioinformatics/bty407
https://doi.org/10.1093/bioinformatics/bty407

206 Bibliography

“GISAID’s Role in Pandemic Response,” China CDC Weekly, vol. 3, no. 49,

pp. 1049–1051, 2021, doi: 10.46234/ccdcw2021.255. [Online]. Available:

https://doi.org/10.46234/ccdcw2021.255

[5] C. Nadon, I. Van Walle, P. Gerner-Smidt, J. Campos, I. Chinen,

J. Concepcion-Acevedo, B. Gilpin, A. M. Smith, K. M. Kam, E. Perez,

E. Trees, K. Kubota, J. Takkinen, E. M. Nielsen, H. Carleton, and

FWD-NEXT Expert Panel, “PulseNet International: Vision for the

implementation of whole genome sequencing (WGS) for global food-borne

disease surveillance,” Eurosurveillance, vol. 22, no. 23, p. 30544, Jun.

2017, doi: 10.2807/1560-7917.ES.2017.22.23.30544. [Online]. Available:

https://doi.org/10.2807/1560-7917.ES.2017.22.23.30544

[6] Á. O’Toole, E. Scher, A. Underwood, B. Jackson, V. Hill, J. T. McCrone,

R. Colquhoun, C. Ruis, K. Abu-Dahab, B. Taylor, C. Yeats, L. du Plessis,

D. Maloney, N. Medd, S. W. Attwood, D. M. Aanensen, E. C. Holmes,

O. G. Pybus, and A. Rambaut, “Assignment of Epidemiological Lineages

in an Emerging Pandemic Using the Pangolin Tool,” Virus Evolution,

p. veab064, Jul. 2021, doi: 10.1093/ve/veab064. [Online]. Available:

https://doi.org/10.1093/ve/veab064

[7] World Health Organization, “Tracking SARS-CoV-2 variants,” 2022, Accessed:

August 24, 2022. [Online]. Available: https://www.who.int/en/activities/

tracking-SARS-CoV-2-variants/

[8] S. Büttcher, C. Clarke, and G. Cormack, Information Retrieval: Implementing

10.46234/ccdcw2021.255
https://doi.org/10.46234/ccdcw2021.255
10.2807/1560-7917.ES.2017.22.23.30544
https://doi.org/10.2807/1560-7917.ES.2017.22.23.30544
10.1093/ve/veab064
https://doi.org/10.1093/ve/veab064
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

Bibliography 207

and Evaluating Search Engines. MIT Press, 2010. [Online]. Available:

https://books.google.ca/books?id=epD6AQAAQBAJ

[9] S. Kannan, P. Shaik Syed Ali, and A. Sheeza, “Omicron (B.1.1.529) –

variant of concern – molecular profile and epidemiology: a mini review,”

European Review for Medical and Pharmacological Sciences, vol. 25, no. 24,

pp. 8019–8022, Dec. 2021, doi: 10.26355/eurrev_202112_27653. [Online].

Available: https://doi.org/10.26355/eurrev_202112_27653

[10] I. Karsch-Mizrachi, T. Takagi, G. Cochrane, and on behalf of the International

Nucleotide Sequence Database Collaboration, “The international nucleotide

sequence database collaboration,” Nucleic Acids Research, vol. 46, no. D1,

pp. D48–D51, Jan. 2018, doi: 10.1093/nar/gkx1097. [Online]. Available:

https://doi.org/10.1093/nar/gkx1097

[11] S. Elbe and G. Buckland-Merrett, “Data, disease and diplomacy: GISAID’s

innovative contribution to global health: Data, Disease and Diplomacy,”

Global Challenges, vol. 1, no. 1, pp. 33–46, Jan. 2017, doi: 10.1002/gch2.1018.

[Online]. Available: https://doi.org/10.1002/gch2.1018

[12] P. Bradley, H. C. den Bakker, E. P. C. Rocha, G. McVean,

and Z. Iqbal, “Ultrafast search of all deposited bacterial and viral

genomic data,” Nature Biotechnology, vol. 37, no. 2, pp. 152–

159, Feb. 2019, doi: 10.1038/s41587-018-0010-1. [Online]. Available:

https://doi.org/10.1038/s41587-018-0010-1

[13] A. Petkau, P. Mabon, C. Sieffert, N. C. Knox, J. Cabral, M. Iskander,

https://books.google.ca/books?id=epD6AQAAQBAJ
10.26355/eurrev_202112_27653
https://doi.org/10.26355/eurrev_202112_27653
10.1093/nar/gkx1097
https://doi.org/10.1093/nar/gkx1097
10.1002/gch2.1018
https://doi.org/10.1002/gch2.1018
10.1038/s41587-018-0010-1
https://doi.org/10.1038/s41587-018-0010-1

208 Bibliography

M. Iskander, K. Weedmark, R. Zaheer, L. S. Katz, C. Nadon, A. Reimer,

E. Taboada, R. G. Beiko, W. Hsiao, F. Brinkman, M. Graham, and

G. Van Domselaar, “SNVPhyl: a single nucleotide variant phylogenomics

pipeline for microbial genomic epidemiology,” Microbial Genomics, vol. 3,

no. 6, Jun. 2017, doi: 10.1099/mgen.0.000116. [Online]. Available:

https://doi.org/10.1099/mgen.0.000116

[14] C. E. Yoshida, P. Kruczkiewicz, C. R. Laing, E. J. Lingohr, V. P. J.

Gannon, J. H. E. Nash, and E. N. Taboada, “The Salmonella In Silico Typing

Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and

Subtyping Draft Salmonella Genome Assemblies,” PLOS ONE, vol. 11, no. 1,

p. e0147101, Jan. 2016, doi: 10.1371/journal.pone.0147101. [Online]. Available:

https://doi.org/10.1371/journal.pone.0147101

[15] M. Inouye, H. Dashnow, L.-A. Raven, M. B. Schultz, B. J. Pope, T. Tomita,

J. Zobel, and K. E. Holt, “SRST2: Rapid genomic surveillance for public

health and hospital microbiology labs,” Genome Medicine, vol. 6, no. 11,

p. 90, Dec. 2014, doi: 10.1186/s13073-014-0090-6. [Online]. Available:

https://doi.org/10.1186/s13073-014-0090-6

[16] T. Lynch, A. Petkau, N. Knox, M. Graham, and G. Van Domselaar, “A Primer

on Infectious Disease Bacterial Genomics,” Clinical Microbiology Reviews,

vol. 29, no. 4, pp. 881–913, Oct. 2016, doi: 10.1128/CMR.00001-16. [Online].

Available: https://doi.org/10.1128/CMR.00001-16

[17] B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D.

10.1099/mgen.0.000116
https://doi.org/10.1099/mgen.0.000116
10.1371/journal.pone.0147101
https://doi.org/10.1371/journal.pone.0147101
10.1186/s13073-014-0090-6
https://doi.org/10.1186/s13073-014-0090-6
10.1128/CMR.00001-16
https://doi.org/10.1128/CMR.00001-16

Bibliography 209

Woodhams, A. von Haeseler, and R. Lanfear, “IQ-TREE 2: New

Models and Efficient Methods for Phylogenetic Inference in the

Genomic Era,” Molecular Biology and Evolution, vol. 37, no. 5, pp.

1530–1534, May 2020, doi: 10.1093/molbev/msaa015. [Online]. Available:

https://doi.org/10.1093/molbev/msaa015

[18] M. J. Sanderson, M. M. McMahon, and M. Steel, “Terraces in

Phylogenetic Tree Space,” Science, vol. 333, no. 6041, pp. 448–

450, Jul. 2011, doi: 10.1126/science.1206357. [Online]. Available:

https://doi.org/10.1126/science.1206357

[19] E. J. Griffiths, R. E. Timme, A. J. Page, N.-F. Alikhan, D. Fornika,

F. Maguire, C. I. Mendes, S. H. Tausch, A. Black, T. R. Connor,

G. H. Tyson, D. M. Aanensen, B. Alcock, J. Campos, A. Christoffels,

A. Gonçalves da Silva, E. Hodcroft, W. W. Hsiao, L. S. Katz, S. M. Nicholls,

P. E. Oluniyi, I. B. Olawoye, A. R. Raphenya, A. T. R. Vasconcelos,

A. A. Witney, and D. R. MacCannell, “The PHA4GE SARS-CoV-2

Contextual Data Specification for Open Genomic Epidemiology,” Preprints,

Aug. 2020, doi: 10.20944/preprints202008.0220.v1. [Online]. Available:

https://doi.org/10.20944/preprints202008.0220.v1

[20] L. Uelze, J. Grützke, M. Borowiak, J. A. Hammerl, K. Juraschek,

C. Deneke, S. H. Tausch, and B. Malorny, “Typing methods based

on whole genome sequencing data,” One Health Outlook, vol. 2, no. 1,

10.1093/molbev/msaa015
https://doi.org/10.1093/molbev/msaa015
10.1126/science.1206357
https://doi.org/10.1126/science.1206357
10.20944/preprints202008.0220.v1
https://doi.org/10.20944/preprints202008.0220.v1

210 Bibliography

p. 3, Dec. 2020, doi: 10.1186/s42522-020-0010-1. [Online]. Available:

https://doi.org/10.1186/s42522-020-0010-1

[21] J. Huerta-Cepas, F. Serra, and P. Bork, “ETE 3: Reconstruction, Analysis,

and Visualization of Phylogenomic Data,” Molecular Biology and Evolution,

vol. 33, no. 6, pp. 1635–1638, Jun. 2016, doi: 10.1093/molbev/msw046.

[Online]. Available: https://doi.org/10.1093/molbev/msw046

[22] Wes McKinney, “Data Structures for Statistical Computing in Python,”

in Proceedings of the 9th Python in Science Conference, Stéfan van der Walt

and Jarrod Millman, Eds., 2010, pp. 56 – 61. [Online]. Available:

https://doi.org/10.25080/Majora-92bf1922-00a

[23] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,

J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, P. Ivanov,

D. Avila, S. Abdalla, C. Willing, and Jupyter Development Team,

“Jupyter notebooks - a publishing format for reproducible computational

workflows.” in Positioning and Power in Academic Publishing: Players,

Agents and Agendas, 2016, doi: 10.3233/978-1-61499-649-1-87. [Online].

Available: https://doi.org/10.3233/978-1-61499-649-1-87

[24] N. Tonellotto, C. Macdonald, and I. Ounis, “Efficient Query Processing for

Scalable Web Search,” Foundations and Trends® in Information Retrieval,

vol. 12, no. 4-5, pp. 319–500, 2018, doi: 10.1561/1500000057. [Online].

Available: https://doi.org/10.1561/1500000057

[25] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari,

10.1186/s42522-020-0010-1
https://doi.org/10.1186/s42522-020-0010-1
10.1093/molbev/msw046
https://doi.org/10.1093/molbev/msw046
https://doi.org/10.25080/Majora-92bf1922-00a
10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
10.1561/1500000057
https://doi.org/10.1561/1500000057

Bibliography 211

M. J. Er, W. Ding, and C.-T. Lin, “A review of clustering

techniques and developments,” Neurocomputing, vol. 267, pp. 664–

681, Dec. 2017, doi: 10.1016/j.neucom.2017.06.053. [Online]. Available:

https://doi.org/10.1016/j.neucom.2017.06.053

[26] F. Nielsen, Hierarchical Clustering. Cham: Springer International Publishing,

2016, pp. 195–211. [Online]. Available: https://doi.org/10.1007/978-3-319-

21903-5_8

[27] T. M. Ghazal, M. Zahid Hussain, R. A. Said, A. Nadeem,

M. Kamrul Hasan, M. Ahmad, M. Adnan Khan, and M. Tahir Naseem,

“Performances of K-Means Clustering Algorithm with Different Distance

Metrics,” Intelligent Automation & Soft Computing, vol. 29, no. 3, pp.

735–742, 2021, doi: 10.32604/iasc.2021.019067. [Online]. Available:

https://doi.org/10.32604/iasc.2021.019067

[28] P. R. Wielinga, R. S. Hendriksen, F. M. Aarestrup, O. Lund, S. L.

Smits, M. P. G. Koopmans, and J. Schlundt, “Global Microbial Identifier,”

in Applied Genomics of Foodborne Pathogens, X. Deng, H. C. den Bakker,

and R. S. Hendriksen, Eds. Cham: Springer International Publishing,

2017, pp. 13–31, doi: 10.1007/978-3-319-43751-4_2. [Online]. Available:

https://doi.org/10.1007/978-3-319-43751-4_2

[29] L. M. Prescott, J. P. Harley, and D. A. Klein, Microbiology, 6th ed. Dubuque,

IA: McGraw-Hill Higher Education, 2005.

[30] J. Besser, H. Carleton, P. Gerner-Smidt, R. Lindsey, and E. Trees,

10.1016/j.neucom.2017.06.053
https://doi.org/10.1016/j.neucom.2017.06.053
https://doi.org/10.1007/978-3-319-21903-5_8
https://doi.org/10.1007/978-3-319-21903-5_8
10.32604/iasc.2021.019067
https://doi.org/10.32604/iasc.2021.019067
10.1007/978-3-319-43751-4_2
https://doi.org/10.1007/978-3-319-43751-4_2

212 Bibliography

“Next-generation sequencing technologies and their application to the study

and control of bacterial infections,” Clinical Microbiology and Infection,

vol. 24, no. 4, pp. 335–341, Apr. 2018, doi: 10.1016/j.cmi.2017.10.013. [Online].

Available: https://doi.org/10.1016/j.cmi.2017.10.013

[31] A. Souvorov, R. Agarwala, and D. J. Lipman, “SKESA: strategic k-mer

extension for scrupulous assemblies,” Genome Biology, vol. 19, no. 1,

p. 153, Dec. 2018, doi: 10.1186/s13059-018-1540-z. [Online]. Available:

https://doi.org/10.1186/s13059-018-1540-z

[32] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice,

“The sanger FASTQ file format for sequences with quality scores, and

the solexa/illumina FASTQ variants,” Nucleic Acids Research, vol. 38,

no. 6, pp. 1767–1771, 2010, doi: 10.1093/nar/gkp1137. [Online]. Available:

https://doi.org/10.1093/nar/gkp1137

[33] E. S. Lander and M. S. Waterman, “Genomic mapping by fingerprinting

random clones: A mathematical analysis,” Genomics, vol. 2, no. 3, pp.

231–239, Apr. 1988, doi: 10.1016/0888-7543(88)90007-9. [Online]. Available:

https://doi.org/10.1016/0888-7543(88)90007-9

[34] J. T. Simpson and M. Pop, “The Theory and Practice of Genome Sequence

Assembly,” Annual Review of Genomics and Human Genetics, vol. 16, no. 1,

pp. 153–172, Aug. 2015, doi: 10.1146/annurev-genom-090314-050032. [Online].

Available: https://doi.org/10.1146/annurev-genom-090314-050032

[35] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S.

10.1016/j.cmi.2017.10.013
https://doi.org/10.1016/j.cmi.2017.10.013
10.1186/s13059-018-1540-z
https://doi.org/10.1186/s13059-018-1540-z
10.1093/nar/gkp1137
https://doi.org/10.1093/nar/gkp1137
10.1016/0888-7543(88)90007-9
https://doi.org/10.1016/0888-7543(88)90007-9
10.1146/annurev-genom-090314-050032
https://doi.org/10.1146/annurev-genom-090314-050032

Bibliography 213

Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V.

Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A. Alekseyev, and P. A.

Pevzner, “SPAdes: A New Genome Assembly Algorithm and Its Applications

to Single-Cell Sequencing,” Journal of Computational Biology, vol. 19, no. 5,

pp. 455–477, May 2012, doi: 10.1089/cmb.2012.0021. [Online]. Available:

https://doi.org/10.1089/cmb.2012.0021

[36] H. Li and R. Durbin, “Fast and accurate short read alignment with

Burrows-Wheeler transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–

1760, Jul. 2009, doi: 10.1093/bioinformatics/btp324. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btp324

[37] H. Li, “Aligning sequence reads, clone sequences and assembly

contigs with BWA-MEM,” arXiv:1303.3997 [q-bio], May 2013, doi:

10.48550/arXiv.1303.3997. [Online]. Available: https://doi.org/10.48550/

arXiv.1303.3997

[38] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with

Bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359, Apr. 2012, doi:

10.1038/nmeth.1923. [Online]. Available: https://doi.org/10.1038/nmeth.1923

[39] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,”

Bioinformatics, vol. 34, no. 18, pp. 3094–3100, Sep. 2018, doi:

10.1093/bioinformatics/bty191. [Online]. Available: https://doi.org/10.1093/

bioinformatics/bty191

[40] M. W. Allard, E. Strain, D. Melka, K. Bunning, S. M. Musser, E. W. Brown,

10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021
10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997
10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191

214 Bibliography

and R. Timme, “Practical value of food pathogen traceability through building

a whole-genome sequencing network and database,” Journal of Clinical

Microbiology, vol. 54, no. 8, pp. 1975–1983, 2016, doi: 10.1128/JCM.00081-16.

[Online]. Available: https://doi.org/10.1128/JCM.00081-16

[41] A. Rambaut, E. C. Holmes, Á. O’Toole, V. Hill, J. T. McCrone, C. Ruis,

L. du Plessis, and O. G. Pybus, “A dynamic nomenclature proposal for

SARS-CoV-2 lineages to assist genomic epidemiology,” Nature Microbiology,

vol. 5, no. 11, pp. 1403–1407, Nov. 2020, doi: 10.1038/s41564-020-0770-5.

[Online]. Available: https://doi.org/10.1038/s41564-020-0770-5

[42] J. B. Holmes, E. Moyer, L. Phan, D. Maglott, and B. Kattman, “SPDI:

data model for variants and applications at NCBI,” Bioinformatics, vol. 36,

no. 6, pp. 1902–1907, Mar. 2020, doi: 10.1093/bioinformatics/btz856. [Online].

Available: https://doi.org/10.1093/bioinformatics/btz856

[43] D. H. Spencer, B. Zhang, and J. Pfeifer, “Single Nucleotide Variant Detection

Using Next Generation Sequencing,” in Clinical Genomics. Elsevier, 2015,

pp. 109–127, doi: 10.1016/B978-0-12-404748-8.00008-3. [Online]. Available:

https://doi.org/10.1016/B978-0-12-404748-8.00008-3

[44] S. Davis, J. B. Pettengill, Y. Luo, J. Payne, A. Shpuntoff, H. Rand, and

E. Strain, “CFSAN SNP Pipeline: an automated method for constructing

SNP matrices from next-generation sequence data,” PeerJ Computer Science,

vol. 1, p. e20, Aug. 2015, doi: 10.7717/peerj-cs.20. [Online]. Available:

https://doi.org/10.7717/peerj-cs.20

10.1128/JCM.00081-16
https://doi.org/10.1128/JCM.00081-16
10.1038/s41564-020-0770-5
https://doi.org/10.1038/s41564-020-0770-5
10.1093/bioinformatics/btz856
https://doi.org/10.1093/bioinformatics/btz856
10.1016/B978-0-12-404748-8.00008-3
https://doi.org/10.1016/B978-0-12-404748-8.00008-3
10.7717/peerj-cs.20
https://doi.org/10.7717/peerj-cs.20

Bibliography 215

[45] L. S. Katz, T. Griswold, A. J. Williams-Newkirk, D. Wagner, A. Petkau,

C. Sieffert, G. Van Domselaar, X. Deng, and H. A. Carleton, “A

Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for

Genomic Epidemiology of Foodborne Pathogens,” Frontiers in Microbiology,

vol. 8, Mar. 2017, doi: 10.3389/fmicb.2017.00375. [Online]. Available:

https://doi.org/10.3389/fmicb.2017.00375

[46] T. Seemann, “snippy: fast bacterial variant calling form ngs reads,”

2015, Accessed: August 24, 2022. [Online]. Available: https:

//github.com/tseemann/snippy

[47] T. Dallman, P. Ashton, U. Schafer, A. Jironkin, A. Painset, S. Shaaban,

H. Hartman, R. Myers, A. Underwood, C. Jenkins, and K. Grant,

“SnapperDB: a database solution for routine sequencing analysis of

bacterial isolates,” Bioinformatics, vol. 34, no. 17, pp. 3028–3029,

Sep. 2018, doi: 10.1093/bioinformatics/bty212. [Online]. Available:

https://doi.org/10.1093/bioinformatics/bty212

[48] A. T. Chen, K. Altschuler, S. H. Zhan, Y. A. Chan, and B. E. Deverman,

“COVID-19 CG enables SARS-CoV-2 mutation and lineage tracking by

locations and dates of interest,” eLife, vol. 10, p. e63409, 2021, doi:

10.7554/eLife.63409. [Online]. Available: https://doi.org/10.7554/eLife.63409

[49] G. Tsueng, J. L. Mullen, M. Alkuzweny, M. Cano, B. Rush, E. Haag, Outbreak

Curators, A. A. Latif, X. Zhou, Z. Qian, E. Hufbauer, M. Zeller, K. G.

Andersen, C. Wu, A. I. Su, K. Gangavarapu, and L. D. Hughes, “Outbreak.info

10.3389/fmicb.2017.00375
https://doi.org/10.3389/fmicb.2017.00375
https://github.com/tseemann/snippy
https://github.com/tseemann/snippy
10.1093/bioinformatics/bty212
https://doi.org/10.1093/bioinformatics/bty212
10.7554/eLife.63409
https://doi.org/10.7554/eLife.63409

216 Bibliography

research library: A standardized, searchable platform to discover and explore

covid-19 resources,” bioRxiv, 2022, doi: 10.1101/2022.01.20.477133. [Online].

Available: https://doi.org/10.1101/2022.01.20.477133

[50] B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman,

S. Koren, and A. M. Phillippy, “Mash: fast genome and metagenome

distance estimation using MinHash,” Genome Biology, vol. 17, no. 1,

p. 132, Dec. 2016, doi: 10.1186/s13059-016-0997-x. [Online]. Available:

https://doi.org/10.1186/s13059-016-0997-x

[51] A. Broder, “On the resemblance and containment of documents,”

in Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.

No.97TB100171). Salerno, Italy: IEEE Comput. Soc, 1998, pp.

21–29, doi: 10.1109/SEQUEN.1997.666900. [Online]. Available: https:

//doi.org/10.1109/SEQUEN.1997.666900

[52] P. Jaccard, “Etude comparative de la distribution florale dans une portion

des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547–579, 1901.

[Online]. Available: https://cir.nii.ac.jp/crid/1570009750546179712

[53] L. Katz, T. Griswold, S. Morrison, J. Caravas, S. Zhang, H. den

Bakker, X. Deng, and H. Carleton, “Mashtree: a rapid comparison of

whole genome sequence files,” Journal of Open Source Software, vol. 4,

no. 44, p. 1762, Dec. 2019, doi: 10.21105/joss.01762. [Online]. Available:

https://doi.org/10.21105/joss.01762

[54] C. Titus Brown and L. Irber, “sourmash: a library for MinHash sketching of

10.1101/2022.01.20.477133
https://doi.org/10.1101/2022.01.20.477133
10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-016-0997-x
10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://cir.nii.ac.jp/crid/1570009750546179712
10.21105/joss.01762
https://doi.org/10.21105/joss.01762

Bibliography 217

DNA,” The Journal of Open Source Software, vol. 1, no. 5, p. 27, Sep. 2016, doi:

10.21105/joss.00027. [Online]. Available: https://doi.org/10.21105/joss.00027

[55] B. Goodwin, M. Hopcroft, D. Luu, A. Clemmer, M. Curmei, S. Elnikety,

and Y. He, “BitFunnel: Revisiting Signatures for Search,” in Proceedings of

the 40th International ACM SIGIR Conference on Research and Development

in Information Retrieval - SIGIR ’17. Shinjuku, Tokyo, Japan: ACM Press,

2017, pp. 605–614, doi: 10.1145/3077136.3080789. [Online]. Available:

https://doi.org/10.1145/3077136.3080789

[56] T. Bingmann, P. Bradley, F. Gauger, and Z. Iqbal, “COBS: A Compact

Bit-Sliced Signature Index,” in String Processing and Information Retrieval,

N. R. Brisaboa and S. J. Puglisi, Eds. Cham: Springer International

Publishing, 2019, vol. 11811, pp. 285–303, doi: 10.1007/978-3-030-32686-9_21.

[Online]. Available: https://doi.org/10.1007/978-3-030-32686-9_21

[57] G. Labbé, P. Kruczkiewicz, J. Robertson, P. Mabon, J. Schonfeld, D. Kein,

M. A. Rankin, M. Gopez, D. Hole, D. Son, N. Knox, C. R. Laing,

K. Bessonov, E. N. Taboada, C. Yoshida, K. Ziebell, A. Nichani, R. P.

Johnson, G. Van Domselaar, and J. H. E. Nash, “Rapid and accurate

SNP genotyping of clonal bacterial pathogens with BioHansel,” Microbial

Genomics, vol. 7, no. 9, 2021, doi: 10.1099/mgen.0.000651. [Online]. Available:

https://doi.org/10.1099/mgen.0.000651

[58] M. C. J. Maiden, J. A. Bygraves, E. Feil, G. Morelli, J. E. Russell,

R. Urwin, Q. Zhang, J. Zhou, K. Zurth, D. A. Caugant, I. M. Feavers,

10.21105/joss.00027
https://doi.org/10.21105/joss.00027
10.1145/3077136.3080789
https://doi.org/10.1145/3077136.3080789
10.1007/978-3-030-32686-9_21
https://doi.org/10.1007/978-3-030-32686-9_21
10.1099/mgen.0.000651
https://doi.org/10.1099/mgen.0.000651

218 Bibliography

M. Achtman, and B. G. Spratt, “Multilocus sequence typing: A portable

approach to the identification of clones within populations of pathogenic

microorganisms,” Proceedings of the National Academy of Sciences, vol. 95,

no. 6, pp. 3140–3145, Mar. 1998, doi: 10.1073/pnas.95.6.3140. [Online].

Available: https://doi.org/10.1073/pnas.95.6.3140

[59] M. C. J. Maiden, M. J. J. van Rensburg, J. E. Bray, S. G. Earle, S. A.

Ford, K. A. Jolley, and N. D. McCarthy, “MLST revisited: the gene-by-gene

approach to bacterial genomics,” Nature Reviews Microbiology, vol. 11, no. 10,

pp. 728–736, Oct. 2013, doi: 10.1038/nrmicro3093. [Online]. Available:

https://doi.org/10.1038/nrmicro3093

[60] P. Feijao, H.-T. Yao, D. Fornika, J. Gardy, W. Hsiao, C. Chauve, and

L. Chindelevitch, “MentaLiST – A fast MLST caller for large MLST schemes,”

Microbial Genomics, vol. 4, no. 2, Feb. 2018, doi: 10.1099/mgen.0.000146.

[Online]. Available: https://doi.org/10.1099/mgen.0.000146

[61] H. F. Espitia-Navarro, A. T. Chande, S. D. Nagar, H. Smith, I. K.

Jordan, and L. Rishishwar, “STing: accurate and ultrafast genomic profiling

with exact sequence matches,” Nucleic Acids Research, vol. 48, no. 14,

pp. 7681–7689, 07 2020, doi: 10.1093/nar/gkaa566. [Online]. Available:

https://doi.org/10.1093/nar/gkaa566

[62] K. A. Jolley, J. E. Bray, and M. C. J. Maiden, “Open-access

bacterial population genomics: BIGSdb software, the PubMLST.org

website and their applications,” Wellcome Open Research, vol. 3, p.

10.1073/pnas.95.6.3140
https://doi.org/10.1073/pnas.95.6.3140
10.1038/nrmicro3093
https://doi.org/10.1038/nrmicro3093
10.1099/mgen.0.000146
https://doi.org/10.1099/mgen.0.000146
10.1093/nar/gkaa566
https://doi.org/10.1093/nar/gkaa566

Bibliography 219

124, 2018, doi: 10.12688/wellcomeopenres.14826.1. [Online]. Available:

https://doi.org/10.12688/wellcomeopenres.14826.1

[63] K. A. Jolley and M. C. Maiden, “BIGSdb: Scalable analysis of bacterial

genome variation at the population level,” BMC Bioinformatics, vol. 11,

no. 1, p. 595, Dec. 2010, doi: 10.1186/1471-2105-11-595. [Online]. Available:

https://doi.org/10.1186/1471-2105-11-595

[64] N.-F. Alikhan, Z. Zhou, M. J. Sergeant, and M. Achtman, “A genomic

overview of the population structure of Salmonella,” PLOS Genetics, vol. 14,

no. 4, p. e1007261, Apr. 2018, doi: 10.1371/journal.pgen.1007261. [Online].

Available: https://doi.org/10.1371/journal.pgen.1007261

[65] Z. Zhou, N.-F. Alikhan, K. Mohamed, Y. Fan, the Agama Study

Group, and M. Achtman, “The EnteroBase user’s guide, with case

studies on Salmonella transmissions, Yersinia pestis phylogeny, and

Escherichia core genomic diversity,” Genome Research, vol. 30, no. 1,

pp. 138–152, Jan. 2020, doi: 10.1101/gr.251678.119. [Online]. Available:

https://doi.org/10.1101/gr.251678.119

[66] Z. Yang and B. Rannala, “Molecular phylogenetics: principles and practice,”

Nature Reviews Genetics, vol. 13, no. 5, pp. 303–314, May 2012, doi:

10.1038/nrg3186. [Online]. Available: https://doi.org/10.1038/nrg3186

[67] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Eds., Biological sequence

analysis: probabalistic models of proteins and nucleic acids. Cambridge, UK :

New York: Cambridge University Press, 1998.

10.12688/wellcomeopenres.14826.1
https://doi.org/10.12688/wellcomeopenres.14826.1
10.1186/1471-2105-11-595
https://doi.org/10.1186/1471-2105-11-595
10.1371/journal.pgen.1007261
https://doi.org/10.1371/journal.pgen.1007261
10.1101/gr.251678.119
https://doi.org/10.1101/gr.251678.119
10.1038/nrg3186
https://doi.org/10.1038/nrg3186

220 Bibliography

[68] P. Kapli, Z. Yang, and M. J. Telford, “Phylogenetic tree building

in the genomic age,” Nature Reviews Genetics, vol. 21, no. 7, pp.

428–444, Jul. 2020, doi: 10.1038/s41576-020-0233-0. [Online]. Available:

https://doi.org/10.1038/s41576-020-0233-0

[69] T. H. Jukes and C. R. Cantor, “Evolution of protein molecules,” Mammalian

protein metabolism, vol. 3, pp. 21–132, 1969.

[70] M. Kimura, “A simple method for estimating evolutionary rates

of base substitutions through comparative studies of nucleotide

sequences,” Journal of Molecular Evolution, vol. 16, no. 2, pp. 111–

120, Jun. 1980, doi: 10.1007/BF01731581. [Online]. Available: https:

//doi.org/10.1007/BF01731581

[71] M. Hasegawa, H. Kishino, and T.-a. Yano, “Dating of the human-ape splitting

by a molecular clock of mitochondrial DNA,” Journal of Molecular Evolution,

vol. 22, no. 2, pp. 160–174, Oct. 1985, doi: 10.1007/BF02101694. [Online].

Available: https://doi.org/10.1007/BF02101694

[72] S. Tavaré et al., “Some probabilistic and statistical problems in the analysis

of dna sequences,” Lectures on mathematics in the life sciences, vol. 17, no. 2,

pp. 57–86, 1986.

[73] M. Balaban, N. Moshiri, U. Mai, X. Jia, and S. Mirarab, “TreeCluster:

Clustering biological sequences using phylogenetic trees,” PLOS ONE, vol. 14,

no. 8, pp. 1–20, 08 2019, doi: 10.1371/journal.pone.0221068. [Online].

Available: https://doi.org/10.1371/journal.pone.0221068

10.1038/s41576-020-0233-0
https://doi.org/10.1038/s41576-020-0233-0
10.1007/BF01731581
https://doi.org/10.1007/BF01731581
https://doi.org/10.1007/BF01731581
10.1007/BF02101694
https://doi.org/10.1007/BF02101694
10.1371/journal.pone.0221068
https://doi.org/10.1371/journal.pone.0221068

Bibliography 221

[74] M. Ragonnet-Cronin, E. Hodcroft, S. Hué, E. Fearnhill, V. Delpech, A. J. L.

Brown, and S. Lycett, “Automated analysis of phylogenetic clusters,” BMC

Bioinformatics, vol. 14, no. 1, p. 317, Dec. 2013, doi: 10.1186/1471-2105-14-317.

[Online]. Available: https://doi.org/10.1186/1471-2105-14-317

[75] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A.

DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry,

G. McVean, R. Durbin, and 1000 Genomes Project Analysis Group, “The

variant call format and VCFtools,” Bioinformatics, vol. 27, no. 15, pp.

2156–2158, Aug. 2011, doi: 10.1093/bioinformatics/btr330. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btr330

[76] A. H. Wagner, L. Babb, G. Alterovitz, M. Baudis, M. Brush, D. L. Cameron,

M. Cline, M. Griffith, O. L. Griffith, S. E. Hunt, D. Kreda, J. M. Lee, S. Li,

J. Lopez, E. Moyer, T. Nelson, R. Y. Patel, K. Riehle, P. N. Robinson,

S. Rynearson, H. Schuilenburg, K. Tsukanov, B. Walsh, M. Konopko, H. L.

Rehm, A. D. Yates, R. R. Freimuth, and R. K. Hart, “The GA4GH Variation

Representation Specification: A computational framework for variation

representation and federated identification,” Cell Genomics, vol. 1, no. 2,

p. 100027, Nov. 2021, doi: 10.1016/j.xgen.2021.100027. [Online]. Available:

https://doi.org/10.1016/j.xgen.2021.100027

[77] N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh,

B. Rajput, B. Robbertse, B. Smith-White, D. Ako-Adjei, A. Astashyn,

A. Badretdin, Y. Bao, O. Blinkova, V. Brover, V. Chetvernin, J. Choi,

10.1186/1471-2105-14-317
https://doi.org/10.1186/1471-2105-14-317
10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
10.1016/j.xgen.2021.100027
https://doi.org/10.1016/j.xgen.2021.100027

222 Bibliography

E. Cox, O. Ermolaeva, C. M. Farrell, T. Goldfarb, T. Gupta, D. Haft,

E. Hatcher, W. Hlavina, V. S. Joardar, V. K. Kodali, W. Li, D. Maglott,

P. Masterson, K. M. McGarvey, M. R. Murphy, K. O’Neill, S. Pujar,

S. H. Rangwala, D. Rausch, L. D. Riddick, C. Schoch, A. Shkeda, S. S.

Storz, H. Sun, F. Thibaud-Nissen, I. Tolstoy, R. E. Tully, A. R. Vatsan,

C. Wallin, D. Webb, W. Wu, M. J. Landrum, A. Kimchi, T. Tatusova,

M. DiCuccio, P. Kitts, T. D. Murphy, and K. D. Pruitt, “Reference

sequence (RefSeq) database at NCBI: current status, taxonomic expansion,

and functional annotation,” Nucleic Acids Research, vol. 44, no. D1, pp.

D733–D745, Jan. 2016, doi: 10.1093/nar/gkv1189. [Online]. Available:

https://doi.org/10.1093/nar/gkv1189

[78] J. T. den Dunnen, R. Dalgleish, D. R. Maglott, R. K. Hart, M. S. Greenblatt,

J. McGowan-Jordan, A.-F. Roux, T. Smith, S. E. Antonarakis, P. E. Taschner,

and on behalf of the Human Genome Variation Society (HGVS), the Human

Variome Project (HVP), and the Human Genome Organisation (HUGO),

“HGVS Recommendations for the Description of Sequence Variants: 2016

Update,” Human Mutation, vol. 37, no. 6, pp. 564–569, Jun. 2016, doi:

10.1002/humu.22981. [Online]. Available: https://doi.org/10.1002/humu.22981

[79] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.

Zahler, and D. Haussler, “The Human Genome Browser at UCSC,” Genome

Research, vol. 12, no. 6, pp. 996–1006, Jun. 2002, doi: 10.1101/gr.229102.

[Online]. Available: https://doi.org/10.1101/gr.229102

10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
10.1002/humu.22981
https://doi.org/10.1002/humu.22981
10.1101/gr.229102
https://doi.org/10.1101/gr.229102

Bibliography 223

[80] A. R. Quinlan and I. M. Hall, “BEDTools: a flexible suite of utilities

for comparing genomic features,” Bioinformatics, vol. 26, no. 6, pp.

841–842, Mar. 2010, doi: 10.1093/bioinformatics/btq033. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btq033

[81] R. K. Dale, B. S. Pedersen, and A. R. Quinlan, “Pybedtools: a flexible Python

library for manipulating genomic datasets and annotations,” Bioinformatics,

vol. 27, no. 24, pp. 3423–3424, Dec. 2011, doi: 10.1093/bioinformatics/btr539.

[Online]. Available: https://doi.org/10.1093/bioinformatics/btr539

[82] G. Gonzalez-Calderon, R. Liu, R. Carvajal, and J. K. Teer, “A negative

storage model for precise but compact storage of genetic variation data,”

Database, vol. 2020, p. baz158, Jan. 2020, doi: 10.1093/database/baz158.

[Online]. Available: https://doi.org/10.1093/database/baz158

[83] C. Raczy, R. Petrovski, C. T. Saunders, I. Chorny, S. Kruglyak, E. H.

Margulies, H.-Y. Chuang, M. Källberg, S. A. Kumar, A. Liao, K. M. Little,

M. P. Strömberg, and S. W. Tanner, “Isaac: ultra-fast whole-genome secondary

analysis on Illumina sequencing platforms,” Bioinformatics, vol. 29, no. 16, pp.

2041–2043, Aug. 2013, doi: 10.1093/bioinformatics/btt314. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btt314

[84] L. Wratten, A. Wilm, and J. Göke, “Reproducible, scalable, and shareable

analysis pipelines with bioinformatics workflow managers,” Nature Methods,

vol. 18, no. 10, pp. 1161–1168, Oct. 2021, doi: 10.1038/s41592-021-01254-9.

[Online]. Available: https://doi.org/10.1038/s41592-021-01254-9

10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
10.1093/bioinformatics/btr539
https://doi.org/10.1093/bioinformatics/btr539
10.1093/database/baz158
https://doi.org/10.1093/database/baz158
10.1093/bioinformatics/btt314
https://doi.org/10.1093/bioinformatics/btt314
10.1038/s41592-021-01254-9
https://doi.org/10.1038/s41592-021-01254-9

224 Bibliography

[85] Anaconda, Inc., “Conda,” 2017, Accessed: August 24, 2022. [Online]. Available:

https://conda.io

[86] B. Grüning, R. Dale, A. Sjödin, B. A. Chapman, J. Rowe, C. H. Tomkins-

Tinch, R. Valieris, J. Köster, and The Bioconda Team, “Bioconda: sustainable

and comprehensive software distribution for the life sciences,” Nature Methods,

vol. 15, no. 7, pp. 475–476, Jul. 2018, doi: 10.1038/s41592-018-0046-7.

[Online]. Available: https://doi.org/10.1038/s41592-018-0046-7

[87] Docker, Inc., “Docker,” 2022, Accessed: August 24, 2022. [Online]. Available:

https://docker.com/

[88] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific

containers for mobility of compute,” PLOS ONE, vol. 12, no. 5, p.

e0177459, May 2017, doi: 10.1371/journal.pone.0177459. [Online]. Available:

https://doi.org/10.1371/journal.pone.0177459

[89] E. Larsonneur, J. Mercier, N. Wiart, E. L. Floch, O. Delhomme,

and V. Meyer, “Evaluating Workflow Management Systems: A

Bioinformatics Use Case,” in 2018 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM). Madrid, Spain: IEEE, Dec.

2018, pp. 2773–2775, doi: 10.1109/BIBM.2018.8621141. [Online]. Available:

https://doi.org/10.1109/BIBM.2018.8621141

[90] F. Mölder, K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-

Tinch, V. Sochat, J. Forster, S. Lee, S. O. Twardziok, A. Kanitz,

A. Wilm, M. Holtgrewe, S. Rahmann, S. Nahnsen, and J. Köster,

https://conda.io
10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7
https://docker.com/
10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
10.1109/BIBM.2018.8621141
https://doi.org/10.1109/BIBM.2018.8621141

Bibliography 225

“Sustainable data analysis with Snakemake,” F1000Research, vol. 10,

p. 33, Apr. 2021, doi: 10.12688/f1000research.29032.2. [Online]. Available:

https://doi.org/10.12688/f1000research.29032.2

[91] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,

and C. Notredame, “Nextflow enables reproducible computational workflows,”

Nature Biotechnology, vol. 35, no. 4, pp. 316–319, Apr. 2017, doi:

10.1038/nbt.3820. [Online]. Available: https://doi.org/10.1038/nbt.3820

[92] E. Afgan, D. Baker, B. Batut, M. van den Beek, D. Bouvier, M. Čech,

J. Chilton, D. Clements, N. Coraor, B. A. Grüning, A. Guerler,

J. Hillman-Jackson, S. Hiltemann, V. Jalili, H. Rasche, N. Soranzo, J. Goecks,

J. Taylor, A. Nekrutenko, and D. Blankenberg, “The Galaxy platform for

accessible, reproducible and collaborative biomedical analyses: 2018 update,”

Nucleic Acids Research, vol. 46, no. W1, pp. W537–W544, 05 2018, doi:

10.1093/nar/gky379. [Online]. Available: https://doi.org/10.1093/nar/gky379

[93] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.

Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny,

and K. Wenger, “Pegasus, a workflow management system for science

automation,” Future Generation Computer Systems, vol. 46, pp. 17–

35, May 2015, doi: 10.1016/j.future.2014.10.008. [Online]. Available:

https://doi.org/10.1016/j.future.2014.10.008

[94] K. Voss, G. V. D. Auwera, and J. Gentry, “Full-stack genomics

pipelining with gatk4 + wdl + cromwell [version 1; not peer

10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
10.1093/nar/gky379
https://doi.org/10.1093/nar/gky379
10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008

226 Bibliography

reviewed],” 2017, doi: 10.7490/f1000research.1114634.1. [Online]. Available:

https://f1000research.com/slides/6-1381

[95] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić,

H. Ménager, S. Soiland-Reyes, B. Gavrilović, C. Goble, and The CWL

Community, “Methods included: Standardizing computational reuse and

portability with the common workflow language,” Commun. ACM, vol. 65,

no. 6, p. 54–63, may 2022, doi: 10.1145/3486897. [Online]. Available:

https://doi.org/10.1145/3486897

[96] J. Gentry, C. Llanwarne, M. Lin, P. Magee, B. O’Connor, O. Rodeh,

G. Van der Auwera, B. Chapman, and A. Prabhakaran, “OpenWDL,” 2022,

Accessed: August 24, 2022. [Online]. Available: https://openwdl.org

[97] S. Bray, M. Bernt, N. Soranzo, M. van den Beek, B. Batut, H. Rasche,

M. Čech, P. Cock, A. Nekrutenko, B. Grüning, and J. Chilton, “Planemo: a

command-line toolkit for developing, deploying, and executing scientific data

analyses,” bioRxiv, 2022, doi: 10.1101/2022.03.13.483965. [Online]. Available:

https://doi.org/10.1101/2022.03.13.483965

[98] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,

G. Abecasis, R. Durbin, and 1000 Genome Project Data Processing Subgroup,

“The Sequence Alignment/Map format and SAMtools,” Bioinformatics,

vol. 25, no. 16, pp. 2078–2079, Aug. 2009, doi: 10.1093/bioinformatics/btp352.

[Online]. Available: https://doi.org/10.1093/bioinformatics/btp352

[99] P. Danecek, J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard,

10.7490/f1000research.1114634.1
https://f1000research.com/slides/6-1381
10.1145/3486897
https://doi.org/10.1145/3486897
https://openwdl.org
10.1101/2022.03.13.483965
https://doi.org/10.1101/2022.03.13.483965
10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352

Bibliography 227

A. Whitwham, T. Keane, S. A. McCarthy, R. M. Davies, and H. Li,

“Twelve years of SAMtools and BCFtools,” GigaScience, vol. 10, no. 2, p.

giab008, Jan. 2021, doi: 10.1093/gigascience/giab008. [Online]. Available:

https://doi.org/10.1093/gigascience/giab008

[100] P. Cingolani, A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang,

S. J. Land, X. Lu, and D. M. Ruden, “A program for annotating and

predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in

the genome of Drosophila melanogaster strain w 1118 ; iso-2; iso-3,” Fly,

vol. 6, no. 2, pp. 80–92, Apr. 2012, doi: 10.4161/fly.19695. [Online]. Available:

https://doi.org/10.4161/fly.19695

[101] T. Seemann, “mlst,” 2022, Accessed: August 24, 2022. [Online]. Available:

https://github.com/tseemann/mlst

[102] H. Li and R. Durbin, “Fast and accurate long-read alignment with

Burrows–Wheeler transform,” Bioinformatics, vol. 26, no. 5, pp. 589–

595, Mar. 2010, doi: 10.1093/bioinformatics/btp698. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btp698

[103] E. Garrison and G. Marth, “Haplotype-based variant detection from short-read

sequencing,” arXiv, 2012, doi: 10.48550/ARXIV.1207.3907. [Online]. Available:

https://doi.org/10.48550/ARXIV.1207.3907

[104] D. Lemire, G. Ssi-Yan-Kai, and O. Kaser, “Consistently faster and smaller

compressed bitmaps with Roaring,” Software: Practice and Experience, vol. 46,

10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
10.4161/fly.19695
https://doi.org/10.4161/fly.19695
https://github.com/tseemann/mlst
10.1093/bioinformatics/btp698
https://doi.org/10.1093/bioinformatics/btp698
10.48550/ARXIV.1207.3907
https://doi.org/10.48550/ARXIV.1207.3907

228 Bibliography

no. 11, pp. 1547–1569, Nov. 2016, doi: 10.1002/spe.2402. [Online]. Available:

https://doi.org/10.1002/spe.2402

[105] R. K. Hart and A. Prlić, “SeqRepo: A system for managing local

collections of biological sequences,” PLOS ONE, vol. 15, no. 12, p.

e0239883, Dec. 2020, doi: 10.1371/journal.pone.0239883. [Online]. Available:

https://doi.org/10.1371/journal.pone.0239883

[106] M. Bayer, “Sqlalchemy,” in The Architecture of Open Source Applications

Volume II: Structure, Scale, and a Few More Fearless Hacks, A. Brown and

G. Wilson, Eds. aosabook.org, 2012. [Online]. Available: http:

//aosabook.org/en/sqlalchemy.html

[107] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in

Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007. [Online]. Available:

https://doi.org/10.1109/MCSE.2007.55

[108] S. C. Kleene, “On notation for ordinal numbers,” Journal of Symbolic Logic,

vol. 3, no. 4, pp. 150–155, Dec. 1938, doi: 10.2307/2267778. [Online]. Available:

https://doi.org/10.2307/2267778

[109] S. Wintein, “On All Strong Kleene Generalizations of Classical Logic,” Studia

Logica, vol. 104, no. 3, pp. 503–545, Jun. 2016, doi: 10.1007/s11225-015-9649-5.

[Online]. Available: https://doi.org/10.1007/s11225-015-9649-5

[110] K. Katoh, K. Misawa, K. Kuma, and T. Miyata, “MAFFT: a novel method

for rapid multiple sequence alignment based on fast Fourier transform,”

10.1002/spe.2402
https://doi.org/10.1002/spe.2402
10.1371/journal.pone.0239883
https://doi.org/10.1371/journal.pone.0239883
http://aosabook.org/en/sqlalchemy.html
http://aosabook.org/en/sqlalchemy.html
https://doi.org/10.1109/MCSE.2007.55
10.2307/2267778
https://doi.org/10.2307/2267778
10.1007/s11225-015-9649-5
https://doi.org/10.1007/s11225-015-9649-5

Bibliography 229

Nucleic Acids Research, vol. 30, no. 14, pp. 3059–3066, 07 2002, doi:

10.1093/nar/gkf436. [Online]. Available: https://doi.org/10.1093/nar/gkf436

[111] J. Archie, W. H. Day, W. Maddison, C. Meacham, F. J. Rohlf, D. Swofford,

and J. Felsenstein, “The newick tree format,” 1986, Accessed: August 24,

2022. [Online]. Available: https://evolution.genetics.washington.edu/phylip/

newicktree.html

[112] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,

D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van

der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson,

E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore,

J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A.

Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van

Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms

for Scientific Computing in Python,” Nature Methods, vol. 17, pp. 261–272,

2020. [Online]. Available: https://doi.org/10.1038/s41592-019-0686-2

[113] J. R. Rideout, G. Caporaso, E. Bolyen, D. McDonald, Y. V. Baeza,

J. C. Alastuey, A. Pitman, J. Morton, J. Navas, K. Gorlick, J. Debelius,

Z. Xu, Llcooljohn, Adamrp, J. Shorenstein, L. Luce, W. Van Treuren,

Charudatta-Navare, A. Gonzalez, C. Brislawn, W. Patena, K. Schwarzberg,

Teravest, J. Reeder, Shiffer1, I. Sfiligoi, Nbresnick, D. K. D. Murray,

K. Sharma, and Alexbrc, “biocore/scikit-bio: scikit-bio 0.5.7: Performance and

10.1093/nar/gkf436
https://doi.org/10.1093/nar/gkf436
https://evolution.genetics.washington.edu/phylip/newicktree.html
https://evolution.genetics.washington.edu/phylip/newicktree.html
https://doi.org/10.1038/s41592-019-0686-2

230 Bibliography

maintenance,” Apr. 2022, doi: 10.5281/ZENODO.6403781. [Online]. Available:

https://doi.org/10.5281/ZENODO.6403781

[114] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation

and validation of cluster analysis,” Journal of Computational and Applied

Mathematics, vol. 20, pp. 53–65, Nov. 1987, doi: 10.1016/0377-0427(87)90125-7.

[Online]. Available: https://doi.org/10.1016/0377-0427(87)90125-7

[115] M. Yousefian, “CMDBench,” 2020, Accessed: August 24, 2022. [Online].

Available: https://github.com/manzik/cmdbench

[116] L. A. Nell, “jackalope: A swift, versatile phylogenomic and high-throughput

sequencing simulator,” Molecular Ecology Resources, vol. 20, no. 4, pp.

1132–1140, Jul. 2020, doi: 10.1111/1755-0998.13173. [Online]. Available:

https://doi.org/10.1111/1755-0998.13173

[117] S. Bekal, C. Berry, A. R. Reimer, G. Van Domselaar, G. Beaudry, E. Fournier,

F. Doualla-Bell, E. Levac, C. Gaulin, D. Ramsay, C. Huot, M. Walker,

C. Sieffert, and C. Tremblay, “Usefulness of High-Quality Core Genome

Single-Nucleotide Variant Analysis for Subtyping the Highly Clonal and the

Most Prevalent Salmonella enterica Serovar Heidelberg Clone in the Context

of Outbreak Investigations,” Journal of Clinical Microbiology, vol. 54, no. 2,

pp. 289–295, Feb. 2016, doi: 10.1128/JCM.02200-15. [Online]. Available:

https://doi.org/10.1128/JCM.02200-15

[118] M. Hasegawa, T.-a. Yano, and H. Kishino, “A new molecular clock of

mitochondrial DNA and the evolution of hominoids,” Proceedings of the Japan

10.5281/ZENODO.6403781
https://doi.org/10.5281/ZENODO.6403781
10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/0377-0427(87)90125-7
https://github.com/manzik/cmdbench
10.1111/1755-0998.13173
https://doi.org/10.1111/1755-0998.13173
10.1128/JCM.02200-15
https://doi.org/10.1128/JCM.02200-15

Bibliography 231

Academy, Series B, vol. 60, no. 4, pp. 95–98, 1984, doi: 10.2183/pjab.60.95.

[Online]. Available: https://doi.org/10.2183/pjab.60.95

[119] T. Saito and M. Rehmsmeier, “The Precision-Recall Plot Is More

Informative than the ROC Plot When Evaluating Binary Classifiers

on Imbalanced Datasets,” PLOS ONE, vol. 10, no. 3, p. e0118432,

Mar. 2015, doi: 10.1371/journal.pone.0118432. [Online]. Available:

https://doi.org/10.1371/journal.pone.0118432

[120] E. Paradis and K. Schliep, “ape 5.0: an environment for modern phylogenetics

and evolutionary analyses in R,” Bioinformatics, vol. 35, no. 3, pp.

526–528, Feb. 2019, doi: 10.1093/bioinformatics/bty633. [Online]. Available:

https://doi.org/10.1093/bioinformatics/bty633

[121] D. Robinson and L. Foulds, “Comparison of phylogenetic trees,”

Mathematical Biosciences, vol. 53, no. 1-2, pp. 131–147, Feb. 1981, doi:

10.1016/0025-5564(81)90043-2. [Online]. Available: https://doi.org/10.1016/

0025-5564(81)90043-2

[122] K. P. Schliep, “phangorn: phylogenetic analysis in R,” Bioinformatics, vol. 27,

no. 4, pp. 592–593, Feb. 2011, doi: 10.1093/bioinformatics/btq706. [Online].

Available: https://doi.org/10.1093/bioinformatics/btq706

[123] M. Kendall and C. Colijn, “Mapping Phylogenetic Trees to Reveal Distinct

Patterns of Evolution,” Molecular Biology and Evolution, vol. 33, no. 10, pp.

2735–2743, Oct. 2016, doi: 10.1093/molbev/msw124. [Online]. Available:

https://doi.org/10.1093/molbev/msw124

10.2183/pjab.60.95
https://doi.org/10.2183/pjab.60.95
10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
10.1093/bioinformatics/bty633
https://doi.org/10.1093/bioinformatics/bty633
10.1016/0025-5564(81)90043-2
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1016/0025-5564(81)90043-2
10.1093/bioinformatics/btq706
https://doi.org/10.1093/bioinformatics/btq706
10.1093/molbev/msw124
https://doi.org/10.1093/molbev/msw124

232 Bibliography

[124] T. Jombart, M. Kendall, J. Almagro-Garcia, and C. Colijn, “treespace:

Statistical exploration of landscapes of phylogenetic trees,” Molecular Ecology

Resources, vol. 17, no. 6, pp. 1385–1392, Nov. 2017, doi: 10.1111/1755-

0998.12676. [Online]. Available: https://doi.org/10.1111/1755-0998.12676

[125] R. E. Timme, H. Rand, M. Shumway, E. K. Trees, M. Simmons,

R. Agarwala, S. Davis, G. E. Tillman, S. Defibaugh-Chavez, H. A. Carleton,

W. A. Klimke, and L. S. Katz, “Benchmark datasets for phylogenomic

pipeline validation, applications for foodborne pathogen surveillance,”

PeerJ, vol. 5, p. e3893, 2017, doi: 10.7717/peerj.3893. [Online]. Available:

https://doi.org/10.7717/peerj.3893

[126] National Center for Biotechnology Information, “The NCBI Pathogen

Detection Project,” 2016, Accessed: August 24, 2022. [Online]. Available:

https://www.ncbi.nlm.nih.gov/pathogens

[127] R.-C. Ferreira, E. Wong, G. Gugan, K. Wade, M. Liu, L. M. Baena,

C. Chato, B. Lu, A. S. Olabode, and A. F. Y. Poon, “CoVizu: Rapid analysis

and visualization of the global diversity of SARS-CoV-2 genomes,” Virus

Evolution, vol. 7, no. 2, 11 2021, doi: 10.1093/ve/veab092. [Online]. Available:

https://doi.org/10.1093/ve/veab092

[128] C. L. Murall, R. Poujol, A. Petkau, B. Sobkowiak, A. Zetner, S. A.

Kraemer, A. N’Guessan, S. Naderi, E. E. Gill, J. Fritz, F. S. Brinkman,

J. Hussin, N. Prystajecky, T. Lynch, M. A. Croxen, R. McDonald,

K. MacKenzie, C. Colijn, G. Van Domselaar, S. P. Otto, B. J. Shapiro,

10.1111/1755-0998.12676
10.1111/1755-0998.12676
https://doi.org/10.1111/1755-0998.12676
10.7717/peerj.3893
https://doi.org/10.7717/peerj.3893
https://www.ncbi.nlm.nih.gov/pathogens
10.1093/ve/veab092
https://doi.org/10.1093/ve/veab092

Bibliography 233

and The Canadian COVID-19 Genomics Network (CanCOGeN) Virus

Sequencing Consortium, “Monitoring the evolution and spread of delta

sublineages AY.25 and AY.27 in canada,” Virological, 2021. [Online].

Available: https://virological.org/t/monitoring-the-evolution-and-spread-of-

delta-sublineages-ay-25-and-ay-27-in-canada/767

[129] A. Uyar, “Google stemming mechanisms,” Journal of Information Science,

vol. 35, no. 5, pp. 499–514, Oct. 2009, doi: 10.1177/1363459309336801.

[Online]. Available: https://doi.org/10.1177/1363459309336801

[130] F. Şentürk and G. Gunduz, “A framework for investigating search engines’

stemming mechanisms: A case study on Bing,” Concurrency and Computation:

Practice and Experience, vol. 34, no. 9, Apr. 2022, doi: 10.1002/cpe.6562.

[Online]. Available: https://doi.org/10.1002/cpe.6562

[131] T. C. Matthews, F. R. Bristow, E. J. Griffiths, A. Petkau, J. Adam,

D. Dooley, P. Kruczkiewicz, J. Curatcha, J. Cabral, D. Fornika, G. L.

Winsor, M. Courtot, C. Bertelli, A. Roudgar, P. Feijao, P. Mabon, E. Enns,

J. Thiessen, A. Keddy, J. Isaac-Renton, J. L. Gardy, P. Tang, The IRIDA

Consortium, J. A. Carriço, L. Chindelevitch, C. Chauve, M. R. Graham, A. G.

McArthur, E. N. Taboada, R. G. Beiko, F. S. Brinkman, W. W. Hsiao, and

G. V. Domselaar, “The Integrated Rapid Infectious Disease Analysis (IRIDA)

Platform,” bioRxiv, p. 381830, Jan. 2018, doi: 10.1101/381830. [Online].

Available: https://doi.org/10.1101/381830

[132] R. Colquhoun, Á. O’Toole, A. Rambaut, and B. Jackson, “Scorpio,”

https://virological.org/t/monitoring-the-evolution-and-spread-of-delta-sublineages-ay-25-and-ay-27-in-canada/767
https://virological.org/t/monitoring-the-evolution-and-spread-of-delta-sublineages-ay-25-and-ay-27-in-canada/767
10.1177/1363459309336801
https://doi.org/10.1177/1363459309336801
10.1002/cpe.6562
https://doi.org/10.1002/cpe.6562
10.1101/381830
https://doi.org/10.1101/381830

234 Bibliography

2022, Accessed: August 24, 2022. [Online]. Available: https:

//github.com/cov-lineages/scorpio

[133] A. Benoist, “ERAlchemy,” Feb. 2018. [Online]. Available: https:

//github.com/Alexis-benoist/eralchemy

[134] A. Rambaut, “FigTree,” 2007, Accessed: August 24, 2022. [Online]. Available:

http://tree.bio.ed.ac.uk/software/figtree/

[135] L. J. Revell, “phytools: an R package for phylogenetic comparative biology

(and other things): phytools: R package,” Methods in Ecology and Evolution,

vol. 3, no. 2, pp. 217–223, Apr. 2012, doi: 10.1111/j.2041-210X.2011.00169.x.

[Online]. Available: https://doi.org/10.1111/j.2041-210X.2011.00169.x

https://github.com/cov-lineages/scorpio
https://github.com/cov-lineages/scorpio
https://github.com/Alexis-benoist/eralchemy
https://github.com/Alexis-benoist/eralchemy
http://tree.bio.ed.ac.uk/software/figtree/
10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1111/j.2041-210X.2011.00169.x

	Abstract
	Table of Contents
	List of Figures
	List of Algorithms
	List of Listings
	List of Tables
	Acknowledgments
	Dedication
	Introduction
	Motivation
	Challenges
	Large-scale comparisons
	Dynamic data analysis

	Variety of analysis methods
	Missing data
	Data integration

	Solution

	Background & Literature Review
	Information retrieval
	Documents and terms
	Indexing
	Querying
	Boolean retrieval
	Ranked retrieval

	Categorization, classification, and clustering
	Hierarchical clustering
	Partition clustering

	Microbial genomics
	Microbial whole-genome sequencing
	Primary analysis
	Secondary analysis
	Genome assembly
	Reference alignment

	Tertiary analysis
	Nucleotide variant approaches
	Kmer-based approaches
	Gene-based methods

	Phylogenetics
	Distance-based methods
	Character-based methods
	Evolutionary models
	Phylogenetics and clustering

	Feature identification and storage
	Nucleotide variant models
	VCF
	SPDI
	HGVS
	VRS
	BED
	Coordinate systems
	Storage models and other data

	Workflow management
	Development
	Execution

	Software design
	Data analysis pipelines
	Pipeline design
	Genome assembly input
	Sequence reads input

	Parallelization of the Analysis stage
	Analysis sample batching

	Indexing
	Feature identifiers
	Nucleotide variants
	Genes and alleles
	Kmers
	Unknown/missing data

	Storing sets of genomic samples
	Alternative method (foreign keys)

	Index storage
	Relational database
	Reference genome storage
	File system

	Parallelization of the indexing stage
	Saving features
	Constructing a feature DataFrame
	Index sample batching

	Querying
	Query API
	Query objects
	Missing/unknown features
	Logical operations

	Query CLI

	Phylogenetics and clustering
	Building phylogenies from nucleotides
	Constructing a multiple sequence alignment
	Constructing the phylogenetic tree

	Hierarchical clustering
	Clustering with kmer distances

	Parallelization of the clustering stage
	Flat clusters to tree comparison
	Defining the score for a single set of genomes to a tree
	Defining the score of a collection of sets of genomes to a tree
	Implementation of the cluster scoring system

	Visualization

	Evaluation
	Data simulation
	Methods
	Comparison across coverages
	Comparison across substitution divergences
	Investigation of poor performance for assemblies at high divergences

	SARS-CoV-2 data analysis
	Methods
	Data preparation
	Data analysis and indexing
	Querying
	Clustering and phylogenetic analysis

	Data analysis and indexing
	Querying
	Python API
	Command-line interface

	Phylogenetics and clustering

	Read data
	Methods
	Running time
	Memory
	Disk usage
	Clustering

	Existing software
	Usage
	Indexing
	Querying
	Clustering and Visualization

	Discussion
	Evaluation
	Data simulation
	SARS-CoV-2 data analysis
	Analysis, indexing, and building a tree
	Querying
	Clustering

	Read data
	Analysis and indexing
	Tree or clustering

	Applications
	The SARS-CoV-2 Delta variant in Canada
	The SARS-CoV-2 Omicron variant

	Limitations
	Contiguous nucleotide-level variants
	Matching nucleotide to amino-acid variants
	Multiple sequence alignment
	Roaring bitmap limitations
	Gene-level clustering
	Reference genome mismatches for the data simulation evaluations
	Uncontrolled variables for read data evaluation

	Future work
	Index tools
	Development of a web application
	Web interface
	Web API

	Sequence typing and classification

	Conclusion
	Software design
	Simulated data
	SARS-CoV-2 evaluation
	Reads
	Proof of requirements of cluster-to-tree scoring
	Bibliography

