The Effect of Disease Co-occurrence Measurement on Multimorbidity Networks

by

Barret A. Monchka

A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of

# MASTER OF SCIENCE

Department of Community Health Sciences Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg

Copyright © 2021 by Barret A. Monchka

# Abstract

**Background:** Network analysis, a technique for describing relationships, can provide insights into patterns of co-occurring chronic diseases. The effect that co-occurrence measurement has on disease network structure and resulting inferences has not been well studied.

**Objectives**: The research objectives were to (1) compare structural differences among chronic disease networks constructed from different co-occurrence measures, and (2) demonstrate how co-occurrences among three or more chronic diseases can be analyzed using network techniques.

**Methods:** A retrospective cohort study was conducted using four years of Manitoba administrative health data (2015/16 - 2018/19, 1.5 million individuals). Association rule mining was used to identify disease triads. Separate disease networks were constructed using seven cooccurrence measures: lift, relative risk, phi, Jaccard, cosine, Kulczynski, and joint prevalence. Influential diseases were identified using degree centrality and community detection was used to identify disease clusters. Community structure similarity was measured using the adjusted Rand index (ARI). Network edges were described using disease prevalence categorized as low (<1%), moderate (1% to <7%), and high ( $\geq$ 7%).

**Results:** Relative risk and lift highlighted co-occurrences between pairs of low prevalent diseases. Kulczynski emphasized relationships between conditions of high and low prevalence. Joint prevalence focused on highly prevalent conditions. Phi, Jaccard, and cosine emphasized associations with moderately prevalent conditions. Co-occurrence measurement differences significantly affected how disease clusters were defined, including the number of clusters identified. When limiting the number of edges to produce visually interpretable graphs, networks had significant dissimilarity in the percentage of co-occurrence relationships in common, and in their selection of the highest degree nodes.

**Conclusion:** Multimorbidity network analyses are sensitive to disease co-occurrence measurement. Co-occurrence measures should be selected considering research objectives and the prevalence relationships of greatest interest. Researchers should be cautious in their interpretation of findings from network analysis and should conduct sensitivity analyses using different co-occurrence measures. Many chronic diseases co-occur in groups of three or more and these higher-order associations can be visualized and analyzed using hypergraphs.

ii

#### Acknowledgements

This contribution to scientific literature was made possible through the guidance and mentorship of Dr. Lisa Lix, who demonstrated her strong dedication to scholarship excellence as thesis advisor; and through the insightful and constructive feedback provided by advisory committee members Dr. Nathan Nickel and Dr. Carson Leung, who remarkably enriched this project with their respective expertise in epidemiology and computational methods.

This research was financially supported through a Frederick Banting and Charles Best Canada Graduate Scholarship from the Canadian Institutes of Health Research (CIHR), Research Manitoba Master's Studentship, University of Manitoba Graduate Fellowship, Research Manitoba and Rady Faculty of Health Sciences Graduate Entrance Scholarship, Visual and Automated Disease Analytics (VADA) Program Studentship, and a research fellowship provided by Dr. Lix.

The author acknowledges the Manitoba Centre for Health Policy for use of data contained in the Population Health Research Data Repository (Health Information Privacy Committee project # 2020/2021-01). The results and conclusions are those of the author and no official endorsement by the Manitoba Centre for Health Policy, Manitoba Health and Seniors Care, or other data providers is intended or should be inferred.

| Abstractii                                                                |
|---------------------------------------------------------------------------|
| Acknowledgementsiii                                                       |
| List of Tables vi                                                         |
| List of Figures                                                           |
| List of Abbreviations xi                                                  |
| Chapter 1: Introduction                                                   |
| 1.1 Background1                                                           |
| 1.2 Purpose and Objectives                                                |
| Chapter 2: Review of Literature                                           |
| 2.1 Disease Co-occurrence Measurement in Network Studies                  |
| 2.2 Association Rule Mining for Extracting Disease Co-occurrence Patterns |
| 2.3 Higher-order Disease Associations                                     |
| Chapter 3: Methods                                                        |
| 3.1 Study Design and Data Source                                          |
| 3.2 Cohort                                                                |
| 3.3 Disease Ascertainment                                                 |
| 3.4 Disease Co-occurrence Measurement 15                                  |
| 3.5 Covariates                                                            |
| 3.6 Network Analysis                                                      |
| 3.7 Evaluating and Comparing Disease Networks17                           |
| Chapter 4: Results                                                        |
| 4.1 Cohort                                                                |
| 4.1.1 Demographic and Healthcare Utilization Characteristics              |
| 4.1.2 Chronic Disease Characteristics                                     |
| 4.2 Disease Association Analysis                                          |
| 4.3 Global Network Properties                                             |
| 4.4 Network Visualization                                                 |
| 4.5 Co-occurrence Relationships Characterized by Disease Prevalence       |
| 4.6 Network Edge Similarity                                               |
| 4.7 Community Structure                                                   |
| 4.8 Nodes of Importance                                                   |

# **Table of Contents**

| 4.9 Sex-stratified Network Complexity61                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter 5: Discussion                                                                                                                                                                                                    |
| 5.1 Summary of Key Findings                                                                                                                                                                                              |
| 5.1 Context of Study Findings within Literature                                                                                                                                                                          |
| 5.2 Study Strengths                                                                                                                                                                                                      |
| 5.3 Study Limitations                                                                                                                                                                                                    |
| 5.4 Applications and Next Steps                                                                                                                                                                                          |
| 5.5 Conclusion                                                                                                                                                                                                           |
| Literature Cited                                                                                                                                                                                                         |
| Appendix A. Diagnosis codes for chronic disease ascertainment, based on the Elixhauser comorbidity index, in the Medical Services and Hospital Abstracts databases                                                       |
| Appendix B. Frequency and prevalence of disease categories ascertained using the Elixhauser comorbidity index                                                                                                            |
| Appendix C. Frequency and prevalence of chronic disease categories ascertained using the Johns<br>Hopkins Adjusted Clinical Groups (ACG) System                                                                          |
| Appendix D. Frequency and prevalence of Expanded Diagnostic Clusters, ascertained using the Johns Hopkins Adjusted Clinical Groups (ACG) System, stratified by sex                                                       |
| Appendix E. Demographic and healthcare utilization characteristics of Manitoba residents (2015/16-2018/19) stratified by number of chronic conditions ( <i>N</i> =1,510,678)                                             |
| Appendix F. Percentage of the strongest 200 statistically significant pairwise chronic disease co-<br>occurrence relationships characterized by prevalence, among select co-occurrence measures 90                       |
| Appendix G. Number (%) of the strongest 200 statistically significant pairwise chronic disease co-occurrence relationships characterized by prevalence, among select co-occurrence measures                              |
| Appendix H. Percentage of the strongest 50 percent ( $n=3,922$ ) of statistically significant pairwise chronic disease co-occurrence relationships characterized by prevalence, among select co-occurrence measures. 92  |
| Appendix I. Number (%) of the strongest 50 percent ( <i>n</i> =3,922) of statistically significant pairwise chronic disease co-occurrence relationships characterized by prevalence, among select co-occurrence measures |

# List of Tables

| Table 1. Characteristics of studies using network analysis to analyze patterns of co-occurring disease.       4                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2. Characteristics of studies using association rule mining to analyze disease co-occurrence patterns.      10                                                                                                                                                                      |
| Table 3. Demographic and chronic disease characteristics of Manitoba residents with         multimorbidity (n=617,911), 2015/16-2018/19.                                                                                                                                                  |
| Table 4. Frequency and prevalence of Major Expanded Diagnosis Clusters, ascertained using theJohns Hopkins ACG System, stratified by sex.24                                                                                                                                               |
| Table 5. Number of disease co-occurrences identified, before and after statistically non-significant associations and negative correlations were excluded.       24                                                                                                                       |
| Table 6. Global properties for pairwise networks constructed with select co-occurrence measures and limited to the strongest 200 statistically significant associations and the strongest 50 percent $(n=3,922)$ of all statistically significant associations                            |
| Table 7. Global properties for chronic disease hypergraphs constructed with select co-occurrence measures and limited to the strongest 200 statistically significant associations and the strongest 50 percent ( $n$ =3,922) of all statistically significant associations                |
| Table 8. Number (%) of the strongest 200 statistically significant pairwise chronic disease co-<br>occurrence relationships characterized by prevalence, among select co-occurrence measures 41                                                                                           |
| Table 9. Number (%) of the strongest 50 percent ( $n=3,922$ ) of statistically significant pairwise chronic disease co-occurrence relationships characterized by prevalence, among select co-occurrence measures. 42                                                                      |
| Table 10. Summary of effect size, joint prevalence, and prevalence difference distributions among pairwise chronic disease co-occurrence networks constructed from the strongest 200 statistically significant associations, among select co-occurrence measures                          |
| Table 11. Summary of effect size, joint prevalence, and prevalence difference distributions among pairwise chronic disease co-occurrence networks constructed from the strongest 50 percent ( $n$ =3,922) of statistically significant associations, among select co-occurrence measures. |
| Table 12. Percent (%) of the strongest 200 statistically significant pairwise chronic disease co-<br>occurrence relationships in common between networks constructed using different co-occurrence<br>measures                                                                            |

| Table 13. Percent (%) of the strongest 50 percent ( $n$ =3,922) of all statistically significant pairwise chronic disease co-occurrence relationships in common between networks constructed using different co-occurrence measures                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 14. Community structure properties for networks constructed with the strongest 200 and strongest 50 percent ( $n$ =3,922) of all statistically significant pairwise chronic disease co-occurrence relationships measured using the Johns Hopkins ACG System, and all statistically significant pairwise co-occurrences measured using the Elixhauser index |
| Table 15. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures and limited to the strongest 200 statistically significant pairwise relationships                                                                                                    |
| Table 16. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures and limited to the strongest 50 percent ( $n$ =3,922) of all statistically significant pairwise relationships. 51                                                                    |
| Table 17. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures, including all statistically significant pairwise relationships                                                                                                                      |
| Table 18. Top 20 chronic disease categories with highest degree centrality (i.e., most co-<br>occurrence relationships) in pairwise networks limited to the strongest 200 co-occurrence<br>relationships as measured using relative risk, phi, and joint prevalence                                                                                              |
| Table 19. Comparison of the top 20 chronic disease categories with highest degree centrality (i.e., most co-occurrence relationships) between a pairwise network, and a hypergraph that included both pairwise and triad associations                                                                                                                            |
| Table 20. Global properties pairwise networks constructed with select co-occurrence measuresand limited to the strongest 50 percent and the strongest 200 of all statistically significantassociations, stratified by sex.61                                                                                                                                     |

# List of Figures

| Figure 1. Prevalence distribution of chronic disease categories for all study participants (top), and females (bottom left) and males (bottom right) separately                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. Participant flow diagram indicating the number of individuals excluded from the current study with explanation                                                                                                                      |
| Figure 3. Pairwise chronic disease network constructed using all statistically significant associations ( $n=7,845$ ), with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi        |
| Figure 4. Pairwise chronic disease network constructed using all statistically significant associations ( $n$ =449), with diseases ascertained using the Elixhauser comorbidity index and co-occurrence relationships measured using phi      |
| Figure 5. Pairwise chronic disease network with co-occurrence relationships measured using lift and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations              |
| Figure 6. Pairwise chronic disease network with co-occurrence relationships measured using relative risk and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations     |
| Figure 7. Pairwise chronic disease network with co-occurrence relationships measured using phi and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations               |
| Figure 8. Pairwise chronic disease network with co-occurrence relationships measured using Jaccard and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations           |
| Figure 9. Pairwise chronic disease network with co-occurrence relationships measured using cosine and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations            |
| Figure 10. Pairwise chronic disease network with co-occurrence relationships measured using Kulczynski and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations       |
| Figure 11. Pairwise chronic disease network with co-occurrence relationships measured using joint prevalence and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations |

| Figure 12. Chronic disease hypergraph constructed from the 30 strongest statistically significant pairwise and triad associations, with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 13. Parallel Aggregated Ordered Hypergraph (PAOH) visualization of a chronic disease hypergraph constructed from the 100 strongest statistically significant pairwise and triad associations, with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi                   |
| Figure 14. Percentage of the strongest 200 statistically significant pairwise chronic disease co-<br>occurrence relationships characterized by prevalence, among select co-occurrence measures 41                                                                                                                                      |
| Figure 15. Percentage of the strongest 50 percent ( $n$ =3,922) of statistically significant pairwise chronic disease co-occurrence relationships characterized by prevalence, among select co-occurrence measures. 42                                                                                                                 |
| Figure 16. Prevalence difference between pairs of co-occurring chronic conditions in pairwise networks limited to the strongest 200 statistically significant associations (left) and limited to the strongest 50 percent ( $n$ =3,922) of all statistically significant associations (right), among select co-occurrence measures. 43 |
| Figure 17. Percent (%) of the strongest 200 statistically significant pairwise chronic disease co-<br>occurrence relationships in common between networks constructed using different co-occurrence<br>measures                                                                                                                        |
| Figure 18. Percent (%) of the strongest 50 percent ( $n$ =3,922) of all statistically significant pairwise chronic disease co-occurrence relationships in common between networks constructed using different co-occurrence measures                                                                                                   |
| Figure 19. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures and limited to the strongest 200 statistically significant pairwise relationships                                                                         |
| Figure 20. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures and limited to the strongest 50 percent ( $n$ =3,922) of all statistically significant pairwise relationships. 51                                         |
| Figure 21. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures, including all statistically significant pairwise relationships                                                                                           |
| Figure 22. Comparison of community structure for chronic disease networks based on the Elixhauser comorbidity index with disease co-occurrence measured using relative risk (left) and Jaccard (right)                                                                                                                                 |

| Figure 23. Node degree distribution for chronic disease networks constructed using select co-<br>occurrence measures and limited to the strongest 200 statistically significant pairwise<br>associations                                                               | 5      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Figure 24. Node degree distribution for chronic disease networks constructed using select co-<br>occurrence measures and limited to the strongest 50 percent ( $n$ =3,922) of all statistically<br>significant pairwise associations                                   | 6      |
| Figure 25. Percent of the top 20 chronic disease categories, with highest degree centrality, in common between pairs of select co-occurrence measures in networks limited to strongest 200 statistically significant pairwise associations                             | 7      |
| Figure 26. Percent of the top 20 chronic disease categories, with highest degree centrality, in common between pairs of select co-occurrence measures in networks limited to strongest 50 percent ( $n$ =3,922) of all statistically significant pairwise associations | 8      |
| Figure 27. Female pairwise chronic disease network constructed from the strongest 200 statistically significant associations, with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi                          | 2      |
| Figure 28. Male pairwise chronic disease network constructed from the strongest 200 statistically significant associations, with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi                            | y<br>3 |

| List | of | Abb    | reviations |
|------|----|--------|------------|
|      | •  | 1 10 0 |            |

| Abbreviation | Definition                                                              |
|--------------|-------------------------------------------------------------------------|
| ACG          | Adjusted Clinical Group                                                 |
| AIDS         | Acquired immunodeficiency syndrome                                      |
| AMI          | Acute myocardial infarction                                             |
| ARI          | Adjusted Rand index                                                     |
| ARM          | Association rule mining                                                 |
| COPD         | Chronic obstructive pulmonary disease                                   |
| EDC          | Expanded Diagnostic Cluster                                             |
| ENT          | Ear, nose, and throat                                                   |
| ESRD         | End-stage renal disease                                                 |
| FP-Growth    | Frequent Pattern Growth algorithm                                       |
| HIV          | Human immunodeficiency virus                                            |
| ICD          | International Statistical Classification of Diseases and Related Health |
|              | Problems                                                                |
| ICD-10-CA    | International Statistical Classification of Diseases and Related Health |
|              | Problems, 10th Revision, Canada                                         |
| ICD-9-CM     | International Statistical Classification of Diseases and Related Health |
|              | Problems, 9th Revision, Clinical Modification                           |
| MEDC         | Major Expanded Diagnostic Cluster                                       |
| OR           | Odds ratio                                                              |
| РАОН         | Parallel Aggregated Ordered Hypergraph                                  |
| RR           | Relative risk                                                           |
| SARS         | Severe acute respiratory syndrome                                       |
| SCI          | Salton Cosine Index                                                     |
| WHO          | World Health Organization                                               |
| $\phi$       | Pearson phi correlation coefficient                                     |
| $\chi^2$     | Chi-square statistic                                                    |

#### **Chapter 1: Introduction**

### 1.1 Background

Multimorbidity, the co-existence of two or more chronic health conditions within an individual, where none are considered more central than the others, is becoming increasingly common in Canada, as well as globally.<sup>1,2</sup> An aging population and increased life expectancy are two main drivers of the increasing prevalence of multiple chronic conditions in Canada.<sup>1</sup> Rising rates of behavioral risk factors, including physical inactivity, substance abuse, stress, and poor diet are also contributing to the rise in multimorbidity.<sup>1,3</sup> Those living with multiple chronic conditions tend to experience poorer quality of life, have increased disability and mortality, and face many challenges accessing healthcare services: conflicting medical advice, duplicative and unnecessary testing, drug interactions, and a heavy treatment burden.<sup>1,4,5</sup> Multimorbidity also places a strain on healthcare systems since individuals with multiple chronic conditions have higher healthcare utilization and costs.<sup>6,7</sup>

Network analysis, the study of relationships amongst connected entities, has been proposed as a method to shed new light on patterns of chronic disease in the population. Network analysis models disease co-occurrence using graph structures characterized by nodes (e.g., diseases) and connecting edges (i.e., relationships or interactions). Network edges may be directed, to include temporal disease progression information, or undirected; and weighted, to incorporate the strength of association, or unweighted. Several recent studies applied network analysis to electronic health data, to examine associations among co-occurring diseases at the population level.<sup>8–20</sup> Network analysis is appealing for chronic disease research, in part because of its reliance on graphical techniques to present disease associations, which can efficiently convey information in a non-technical manner to clinicians, patients, and decision makers. Network analysis also enables 1) the detection of important nodes or hubs, that is, diseases that are influential in a population or among a set of other diseases; 2) the identification of community structure, which represents clusters of highly-connected diseases; and 3) comparisons between population subgroups by contrasting subnetwork properties such as complexity measures.

Measuring disease association, or co-occurrence, is foundational for constructing the links that form the structure of disease networks. There are many co-occurrence measures

available to choose from, and network analyses conducted to date have used a variety of different measures for constructing disease networks. The effect that the choice of co-occurrence measurement has on disease network structure and any resulting inferences has not been well studied. Although data mining techniques have been proposed for constructing disease networks based on associations of three or more diseases,<sup>21</sup> most network analyses construct disease networks using pairwise associations and few studies have incorporated knowledge from higher-order associations (i.e.,  $\geq$  3 diseases). Network studies that extracted higher-order sets of co-occurring conditions did not incorporate all available information since only pairwise links were used to represent the higher-order associations.<sup>20–30</sup> Incorporating knowledge of higher-order disease combinations may provide additional insight useful for identifying clusters and central nodes.

Two recent systematic reviews found great variation in multimorbidity research methods, which could challenge the comparability of research findings<sup>31,32</sup> Research comparing different methodological approaches, for studying patterns of multimorbidity, has been recommended to improve study validity and generalizability.<sup>32</sup> Comparing techniques for constructing networks could aid in determining how different techniques affect our understanding of population-level chronic disease patterns. Since subgroup network comparisons and the identification of hubs and communities are three of the main components of network analysis, it is important to examine the effects that different disease co-occurrence methods have on network complexity, node centrality, and community structure. Comparing the effects of different disease co-occurrence methods could help develop guidelines for network analyses and direct future multimorbidity research.

# **1.2 Purpose and Objectives**

The research purpose was to compare methods for measuring chronic disease cooccurrence in network analysis. The objectives were to (1) compare structural differences among chronic disease networks constructed from different co-occurrence measures, and (2) demonstrate how co-occurrences among three or more chronic diseases can be represented and analyzed using network techniques.

# **Chapter 2: Review of Literature**

# 2.1 Disease Co-occurrence Measurement in Network Studies

Twenty-four studies were identified that used network techniques to analyze comorbidity and multimorbidity patterns in a variety of populations (Table 1, Table 2). These network analyses identified many known patterns of disease co-occurrence, as well as potentially novel disease associations for further investigation. Six different co-occurrence measures were used across the fourteen studies not employing association rule mining (Table 1), with the Pearson phi correlation coefficient (n=6, Equation 1), relative risk (n=3, Equation 2), and the odds ratio (n=3) being the most commonly used measures.

$$\phi = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$
(1)

$$RR = \frac{a(c+d)}{c(a+b)}$$
(2)

(relative risk of disease x if diagnosed with disease y)

# given contingency table

| Disease y |       | Yes     | No      | Total   |
|-----------|-------|---------|---------|---------|
|           | Yes   | а       | b       | (a + b) |
|           | No    | С       | d       | (c + d) |
|           | Total | (a + c) | (b + d) | Ν       |

| Disease | Х |
|---------|---|
|---------|---|

where N = total number of study participants

Hidalgo et al. stated the phi ( $\phi$ ) coefficient reliably measures associations between two diseases of similar prevalence (i.e. both highly prevalent or both rare), but is likely to underestimate associations between rare and prevalent diseases; whereas relative risk is stated as underestimating associations between two highly prevalent diseases, and overestimating

| Table 1. | Characteristics | of studies usin | ng network ana | lysis to analyze | patterns of co- | occurring disease. |
|----------|-----------------|-----------------|----------------|------------------|-----------------|--------------------|
|          |                 |                 | 0              | 2 2              | 1               | 0                  |

|                                             |                | <b>.</b>                       | Data Source                       |                         | Disease co-occurrence measure(s)                                         | Association set size |
|---------------------------------------------|----------------|--------------------------------|-----------------------------------|-------------------------|--------------------------------------------------------------------------|----------------------|
| Study (year)                                | Study type     | Index condition(s)             | Туре                              | Country                 | (effect size threshold)                                                  |                      |
| Chmiel et al. (2014) <sup>8</sup>           | Multimorbidity |                                | Administrative health data        | Austria                 | Adjusted phi (not stated)                                                | 2                    |
| Divo et al. $(2015)^{33}$                   | Comorbidity    | COPD                           | Study                             | Spain,<br>United States | Phi (not stated)                                                         | 2                    |
| Davis & Chawla (2011) <sup>12</sup>         | Multimorbidity |                                | Electronic medical/health records | United States           | Mutual information weighting (not stated)                                | 2                    |
| Duarte et al. $(2017)^9$                    | Comorbidity    | Cancer, cardiovascular disease | Administrative health data        | United Kingdom          | Odds ratio (> 1)                                                         | 2                    |
| Hanauer & Ramakrishnan (2013) <sup>10</sup> | Multimorbidity |                                | Electronic medical/health records | United States           | Odds ratio (≥300, ≥800)                                                  | 2                    |
| Hidalgo et al. (2009) <sup>11</sup>         | Multimorbidity |                                | Administrative health data        | United States           | Phi (> 0.06),<br>relative risk (> 20)                                    | 2                    |
| Jeong et al. $(2017)^{13}$                  | Multimorbidity |                                | Administrative health data        | South Korea             | Relative risk (>4)                                                       | 2                    |
| Jiang et al. (2018) <sup>14</sup>           | Multimorbidity |                                | Administrative health data        | Taiwan                  | Phi (not stated)                                                         | 2                    |
| Kalgotra et al. (2017) <sup>15</sup>        | Multimorbidity |                                | Electronic medical/health records | United States           | Salton Cosine Index ( $\geq 0.04$ )                                      | 2                    |
| Khan et al. (2018) <sup>16</sup>            | Comorbidity    | Type 2 diabetes                | Administrative health data        | Australia               | Frequency $(\geq 1)$                                                     | 2                    |
| Kim et al. (2016) <sup>17</sup>             | Multimorbidity |                                | Administrative health data        | South Korea             | Odds ratio (> 5)                                                         | 2                    |
| Lai (2016) <sup>18</sup>                    | Comorbidity    | HIV/AIDS                       | Administrative health data        | Taiwan                  | Phi (> 0.06)                                                             | 2                    |
| Moni & Liò (2014) <sup>19</sup>             | Comorbidity    | HIV-1, SARS                    | Administrative health data        | United States           | Phi ( $\geq$ 0.06),<br>relative risk ( $\geq$ 10, $\geq$ 20, $\geq$ 100) | 2                    |
| Schäfer et al. (2014) <sup>20</sup>         | Multimorbidity |                                | Administrative health data        | Germany                 | Observed-to-expected ratio $(\geq 2)$                                    | 3                    |

Note: Studies using association rule mining were excluded. AIDS = acquired immunodeficiency syndrome, COPD = chronic obstructive pulmonary disease, HIV = human immunodeficiency virus, SARS = severe acute respiratory syndrome.

associations between two rare diseases.<sup>11</sup> Considering this, small estimates of correlation may indicate truly weak associations between two diseases, or instead be the result of large differences in prevalence estimates.<sup>8</sup> Hidalgo et al. compared disease networks constructed using RR and  $\phi$  and found the network constructed with RR contained a higher number of low prevalence conditions, while the network constructed using  $\phi$  contained a greater number of highly prevalent conditions.<sup>11</sup> Links between disease nodes and the resulting network modules (i.e., community structure) differed between the two networks: the  $\phi$ -based network had more connections between different disease categories, while the RR network contained more connections within disease categories.<sup>11</sup> This suggests the choice of association measure can impact inferences made using network analysis. Hidalgo et al. indicated that each association measure provided a different representation of a disease network, and did not recommend one over the other.<sup>11</sup> Chmiel et al. applied an adjustment for the bias inherent in the  $\phi$  coefficient by dividing the estimate, between a rare and prevalent disease, by the typical correlation strength for the rare disease.<sup>8</sup>

Other alternatives to  $\phi$  and RR have also been used in network analyses of co-occurring disease. Kalgotra et al. used the Salton Cosine Index (SCI) because they suggested it is not influenced by the number of observations, unlike the chi-square statistic ( $\gamma^2$ ) which is affected by sample size.<sup>15</sup> Davis and Chawla used mutual information weighting, which compares the joint probability of two diseases with the product of their marginal probabilities, to minimize bias based on disease prevalence when constructing their disease network.<sup>12</sup> Schafer et al. measured association using observed-expected ratios, and extended their analysis beyond co-occurring disease pairs to disease triads.<sup>20</sup> None of the reviewed network analyses estimated disease cooccurrence using a null-invariant measure. Unlike  $\phi$  and RR, associations between diseases measured using null-invariant measures are not affected by increasing the number of individuals containing none of the diseases under inspection. It has been suggested that null-invariant measures may be more appropriate for association analysis performed in large databases that contain a large proportion of null transactions (observations that do not contain any of the events of interest).<sup>34,35</sup> This suggests null-invariant measures of association may be applicable for disease co-occurrence studies since disease status matrices contain mainly null values. Jaccard (Equation 3), cosine (Equation 4), and Kulczynski (Equation 5) are three null-invariant measures that differ in the types of relationships they assign higher weights towards.<sup>34</sup> Jaccard tends to

prefer relationships between two events of similar frequency, Kulczynski assigns higher weights towards skewed relationships (i.e., between frequent and rare events), and cosine tends to compromise between these two approaches.<sup>36</sup>

$$Jaccard(X,Y) = \frac{P(X \cap Y)}{P(X) + P(Y) - P(X \cap Y)}$$
(3)

where X and Y are itemsets (i.e., sets of disease categories)

$$cosine(X,Y) = \sqrt{P(X|Y)P(Y|X)}$$
(4)

$$Kulczynski(X,Y) = \frac{1}{2}(P(X|Y) + P(Y|X))$$
(5)

Since multimorbidity is modified by sociodemographic variables such as age and sex, disease associations that are adjusted for these factors may be beneficial. Duarte et al. adjusted for demographic and lifestyle factors in a logistic regression model to produce adjusted odds ratios (ORs) of disease pairings.<sup>9</sup> Other studies used stratification to create separate networks for demographic factors, such as sex.<sup>15,20</sup> Divo et al. used a case-control study design and stratified results by creating separate disease networks based on the presence of an index condition.<sup>33</sup> However, most network analyses used crude measures of association with no adjustment for confounders or other covariates.

Due to the large number of statistical tests of association that are typically performed in a network analysis, there is an increased likelihood of obtaining statistically significant association estimates for disease patterns with little clinical or practical significance. Researchers may wish to reduce the number of associations by using effect size cut-offs, adjusting the nominal level of statistical significance (i.e.,  $\alpha$ ), applying family-wise error adjustment (e.g., Bonferroni correction), or by decreasing the false discovery rate (e.g., Benjamini-Hochberg Procedure<sup>37</sup>). Celli et al. used a strict p-value cut-off of 0.01 to account for the increased Type I error rate,<sup>38</sup> while Kim et al. used a Bonferroni correction ( $p < 1.38 \times 10^{-7}$ ) when performing  $\chi^2$  tests of odds ratios.<sup>17</sup> The downside to using conservative p-value cut-offs, family-wise error adjustments, or false discovery rates is the increased possibility of discarding interesting associations;<sup>17</sup> and even

with a multiple comparisons adjustment, statistically significant disease co-occurrences are not necessarily clinically or practically significant.<sup>39</sup>

# 2.2 Association Rule Mining for Extracting Disease Co-occurrence Patterns

Association rule mining is a data mining technique for extracting interesting patterns among dataset variables. In comparison to pairwise statistical association analysis, ARM offers the potential to discover associations among higher-order sets (i.e.,  $\geq 3$  diseases). Chen et al. suggested ARM is less susceptible to the biases inherent in RR and  $\phi$  when there are large differences in prevalence for the disease pairs being considered.<sup>24</sup>

ARM consists of two main steps: (1) find all frequent itemsets of interest (e.g., the most frequently observed co-occurrence relationships) using a frequent pattern mining algorithm (e.g., Apriori<sup>40</sup>), and (2) generate association rules from the mined frequent itemsets. Association rules are directional, consisting of an antecedent and a consequent, and represent relationships between two sets of variables. In the case of analyzing disease co-occurrence, the antecedent and consequent are sets of diagnosis codes, or disease categories. For example, the association rule  $\{x, y\} \rightarrow \{z\}$  represents the tendency of individuals diagnosed with disease x and disease y (antecedent) to also be diagnosed with disease z (consequent). Although association rules are directional, they do not imply causality but instead represent co-occurrence relationships between the antecedent and the consequent.<sup>41</sup>

The strength of an association rule has traditionally been determined by its support and confidence measurements. Support is defined as the proportion of observations (i.e., individuals) that contain all items (i.e., diagnosis codes) appearing in both the antecedent (X) and the consequent (Y) itemsets. This is equivalent to measuring the joint probability of certain diagnosis codes occurring within an individual's health record (Equation 6).<sup>41</sup>

$$support(X \Longrightarrow Y) = P(X \cup Y)$$
(6)

In epidemiological terminology, support is synonymous with the joint prevalence of all diseases listed in an association rule. The confidence measure represents the proportion of observations containing the antecedent, which also contain the consequent. Confidence is defined as the conditional probability of the consequent, given the antecedent (Equation 7);<sup>41</sup> which is

synonymous to the prevalence of a set of comorbidities (X) among individuals in a population with a specific set of index conditions (Y).

$$confidence(X \Longrightarrow Y) = P(X|Y)$$
(7)

Higher confidence values indicate a higher likelihood for observations to include all the items in an association rule.

Frequent pattern mining algorithms, such as the Apriori algorithm, require a user-defined support threshold to be set. Only itemsets with a frequency greater than the minimum support threshold are included in the extracted results. If the minimum support threshold is set too high, strongly associated items that occur infrequently may be excluded.<sup>42</sup> This situation is known as the rare item problem and could be reduced if a low support threshold is chosen.<sup>42</sup> However, lower support thresholds may generate too many uninteresting associations.<sup>41</sup> Association rule mining also requires a minimum confidence threshold to be supplied, and generated association rules are only considered interesting if their confidence value is greater than this minimum. Minimum support and confidence thresholds are not trivial to define; and their choice should be based on the length of the dataset, sparseness of the data, and domain knowledge.<sup>43</sup> Support and confidence measurements alone are unable to adequately distinguish between interesting and non-interesting associations.<sup>44</sup> Using only support and confidence measures to discard uninteresting patterns can lead to the inclusion of uninteresting results and the rejection of practically significant patterns.<sup>41</sup>

Correlation measures, such as the lift measure, can be used to improve upon the classical support-confidence framework and filter out misleading strong associations using the concept of probabilistic independence.<sup>41,44</sup> Lift is defined as the ratio of the support of an association rule to what would be expected under statistical independence (Equation 8).

$$lift(X \Longrightarrow Y) = \frac{P(X \cup Y)}{P(X) * P(Y)}$$
(8)

The range of possible lift values differs between association rules and depends upon the support of the antecedent and consequent.<sup>45</sup>

Traditionally in data mining, tests of statistical significance are not used when determining the "interestingness" of an association rule. As a result, there is no assumed

underlying probability distribution in the classical use of the support, confidence, or lift interestingness measures. This is in contrast to the use of statistical significance testing seen with other association measures such as RR and  $\phi$ , which assume an underlying probability distribution for the test statistic. However, some health-related studies have used the chi-square statistic (Equation 9) to assess the statistical significance of association rules.<sup>46,47</sup>

$$\chi^{2}(X \Longrightarrow Y) = n(lift - 1)^{2} \frac{supp * conf}{(conf - supp)(lift - conf)}$$
(9)  
where sup = support(X \Rightarrow Y),  
conf = confidence(X \Rightarrow Y),  
lift = lift(X \Rightarrow Y)

Several studies have used association rule mining to analyze patterns of disease cooccurrence (Table 2). Of the twenty studies identified, the majority (n=13, 65%) analyzed comorbidities in relation to an index condition; while multimorbidity was investigated in seven (35%) of the studies. The majority of the studies used U.S.-based data (n=8, 40%), while only one study used Canadian data.

Most of the ARM-based studies defined support and confidence thresholds to limit the number of association rules. All of the studies that defined support thresholds did so at a low level ( $\leq 10\%$ ), with a range of 0.1% to 10%; while confidence thresholds varied greatly among the studies, ranging from 0.5% to 90%. Held et al. left support unbounded;<sup>25</sup> while Hernandez et al. and Shen et al. left support and confidence unbounded and relied on lift cut-offs to filter potentially uninteresting association rules.<sup>26,48</sup> 35% (*n*=7) of the studies used lift to either rank the mined associations or to exclude association rules. Three studies required association rules to have lift > 1, while one study used lift  $\geq$  2. Hernandez et al. excluded association rules having standardized lift values  $\leq 0.2$ .<sup>26</sup> Apriori was the most commonly used frequent pattern mining algorithm (*n*=10), while four studies used the Frequent Pattern Growth algorithm (FP-Growth)<sup>49</sup> and one was based on the Eclat algorithm.<sup>50</sup>

Ten (50%) of the identified studies used network techniques to visualize or analyze the disease co-occurrence relationships obtained using ARM. Four of these network analyses studied multimorbidity, but none were conducted using population-based diagnostic health records. Seven of the network analyses extracted higher-order associations (i.e.,  $\geq$  3 diseases); however,

# Table 2. Characteristics of studies using association rule mining to analyze disease co-occurrence patterns.

|                                                  | Study type Inde                | <b>T 1 1 1 1 1 1</b>                        | Network      | Data Source                          |                | Frequent pattern                                                                          | Interestingness measure(s)                                                      | Maximum                   |
|--------------------------------------------------|--------------------------------|---------------------------------------------|--------------|--------------------------------------|----------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------|
| Study (year)                                     |                                | Index condition(s)                          |              | Туре                                 | Country        | algorithm <sup>1</sup>                                                                    | (thresholds) <sup>2</sup>                                                       | itemset size <sup>3</sup> |
| Chen & Xu (2014) <sup>23</sup>                   | Comorbidity                    | Cancer                                      | √            | Adverse event reports                | United States  | FP-growth                                                                                 | Support (N≥5),<br>confidence (>10%)                                             | 3                         |
| Chen et al. $(2015)^{24}$                        | Comorbidity                    | Colorectal cancer, obesity                  | $\checkmark$ | Adverse event reports                | United States  | Not specified                                                                             | Confidence (>50%)                                                               | Not specified             |
| Held et al. (2015) <sup>25</sup>                 | Comorbidity,<br>multimorbidity | Frailty, falls                              | ~            | Study                                | Australia      | Eclat                                                                                     | Support (unbounded),<br>confidence (>10%),<br>lift ( $\geq 2$ )                 | Unbounded                 |
| Hernandez et al. $(2019)^{26}$                   | Multimorbidity                 |                                             | $\checkmark$ | Study                                | Ireland        | Not specified Support (unbounded),<br>confidence (unbounded),<br>standardized lift (>0.2) |                                                                                 | 3                         |
| Ho et al. (2019) <sup>51</sup>                   | Multimorbidity                 |                                             |              | Electronic medical/health<br>records | United States  | Apriori                                                                                   | Support (>0.1%),<br>confidence (>5%)                                            | 3                         |
| Kang'ethe & Wagacha (2014) <sup>52</sup>         | Multimorbidity                 |                                             |              | Electronic medical/health records    | United States  | Apriori                                                                                   | Support (varied),<br>confidence (varied)                                        | Not specified             |
| Kim et al. (2012) <sup>53</sup>                  | Comorbidity                    | Type 2 Diabetes Mellitus                    |              | Electronic medical/health records    | South Korea    | Apriori                                                                                   | Support (>3%),<br>confidence (>5%)                                              | 3                         |
| Kim & Myoung (2018) <sup>27</sup>                | Comorbidity                    | Attention-deficit<br>Hyperactivity Disorder | $\checkmark$ | Administrative health data           | South Korea    | Apriori                                                                                   | Support (≥1%),<br>confidence (≥50%)                                             | 3                         |
| Madlock-Brown & Reynolds<br>(2019) <sup>54</sup> | Comorbidity                    | Obesity                                     |              | Electronic medical/health records    | United States  | FP-growth                                                                                 | Support (>10%),<br>confidence (>60%)                                            | 3                         |
| Nassar & Richter (2018) <sup>55</sup>            | Comorbidity                    | Gastroparesis                               |              | Electronic medical/health<br>records | United States  | Apriori                                                                                   | Not specified                                                                   | 2                         |
| Peng et al. (2018) <sup>56</sup>                 | Data quality                   |                                             |              | Administrative health data           | Canada         | Apriori                                                                                   | Support (≥0.19%),<br>confidence (≥50%)                                          | 5                         |
| Shen et al. (2017) <sup>48</sup>                 | Comorbidity                    | Borderline personality disorder             |              | Administrative health data           | Taiwan         | Apriori                                                                                   | Support (0%),<br>confidence (0%),<br>lift (>1)                                  | 4                         |
| Shin et al. (2010) <sup>28</sup>                 | Comorbidity                    | Essential hypertension                      | $\checkmark$ | Electronic medical/health records    | South Korea    | Apriori                                                                                   | Support ( $\geq$ 5%),<br>confidence ( $\geq$ 15%),<br>lift(unbounded)           | 3                         |
| Tai & Chiu (2009) <sup>21</sup>                  | Comorbidity                    | Attention-deficit<br>Hyperactivity Disorder | $\checkmark$ | Administrative health data           | Taiwan         | Apriori                                                                                   | Support (>4%),<br>confidence (>90%)                                             | 3                         |
| Valent et al. (2013) <sup>57</sup>               | Comorbidity                    | Diabetes Mellitus                           |              | Administrative health data           | Italy          | Not specified                                                                             | Support (>0.5%),<br>confidence (>5%)                                            | 3                         |
| Wang et al. (2019) <sup>58</sup>                 | Comorbidity                    | Mental disorders                            |              | Administrative health data           | Taiwan         | Apriori                                                                                   | Support (>2%)                                                                   | 3                         |
| Yao et al. (2019) <sup>59</sup>                  | Multimorbidity                 |                                             |              | Study                                | China          | Not specified                                                                             | Support (>2%),<br>confidence (>10%),<br>lift (>1)                               | 2                         |
| Zemedikun et al. (2018) <sup>29</sup>            | Multimorbidity                 |                                             | ~            | Study                                | United Kingdom | Not specified                                                                             | Support (not specified),<br>confidence (not specified),<br>lift (not specified) | 3                         |
| Zheng & Xu (2018) <sup>30</sup>                  | Multimorbidity                 |                                             | √            | Adverse event reports                | United States  | FP-growth                                                                                 | Support (>12),<br>confidence (>0.5)                                             | Not specified             |
| Zheng & Xu (2019) <sup>22</sup>                  | Comorbidity                    | Alzheimer's disease                         | √            | Adverse event reports                | United States  | FP-growth                                                                                 | Support (>12),<br>lift (>1)                                                     | Not specified             |

1. Computational algorithm for extracting frequently co-occurring disease sets; 2. Measure of association rule importance (minimum value cut-off); 3. Maximum number of frequently co-occurring diseases extracted

all of these studies used pairwise edges to represent these relationships. None of the ARM-based network studies used hypergraph structures, generalizations of graphs where edges can connect any number of nodes, to represent associations amongst higher-order disease sets.

# 2.3 Higher-order Disease Associations

Network data is commonly modeled with pairwise links to indicate relationships between pairs of entities.<sup>60</sup> These relationships are visually expressed using binary edges, which connect pair of nodes within graph structures. However, many real-world phenomena contain relationships between three or more entities and traditional binary networks are unable to fully model the complexity of these real-world systems.<sup>60,61</sup> Network analysis limited to pairwise associations may not identify the desired community structure and nodes of importance in complex systems that feature many higher-order co-occurrence relationships (i.e., associations amongst three or more entities). Fotouhi et al. suggest analyzing associations among higher-order sets, in comparison to pairwise associations, in order to more accurately capture disease progression in network analyses.<sup>62</sup> Doulis suggested higher-order disease associations have the potential to provide additional insight into disease association and progression, and proposed studying the effects of higher-order disease groups in future work.<sup>63</sup>

Hypergraphs are generalizations of graphs that are not restricted to pairwise links, and support the modeling of higher-order co-occurrence relationships. Edges in hypergraphs, known as hyperedges, are able to link any number of network nodes; and are commonly visualized using coloured bounding containers, containing the nodes they link together. A hypergraph (H) is formally defined as a pair H = (V, E) containing a set of vertices (V) and a set of hyperedges (E); while a hyperedge is defined by the set of vertices that it links (i.e.,  $E_1 = \{v_1, v_2, v_3\}$ ). Unlike edges in traditional graphs, hyperedges are not restricted to a set of only two nodes. Alternative visual representations include the use of non-binary edges, capable of connecting any number of nodes (i.e., one-to-many network edges); and the Parallel Aggregated Ordered Hypergraph (PAOH) visualization, a figure that visually represents hyperedges using vertical lines.<sup>64</sup> Hypergraphs can be analyzed using standard pairwise graphs if converted to their bipartite representations, where a hyperedge is represented by an additional node that links all of its respective vertices.<sup>65</sup>

Although hypergraphs are able to represent complex systems, most research using network techniques have continued to use pairwise networks. Few health studies have modeled higher-order interactions among network entities using hypergraphs.<sup>60</sup> A select number of studies employed hypergraph structures to analyze human disease;<sup>66–68</sup> however, no known studies used hypergraphs to model disease co-occurrence and instead modeled these multi-way relationships using pairwise graphs. Belyi et al. used the bipartite representation of a hypergraph to model higher-order combinations of prescription drugs frequently taken together.<sup>69</sup> However, using a bipartite graph artificially increases node and edge counts, alters network structure, and hampers visual interpretations of networks. The addition of nodes to represent hyperedges may also adversely affect community detection and the identification of central nodes.

A substantial percentage of Canadians are living with three or more chronic conditions,<sup>70</sup> and several multimorbidity studies identified frequent patterns of three or more co-occurring diseases in their study populations.<sup>31</sup> For example, a U.S.-based study by Majumdar et al. found the disease triad of diabetes, hypertension and hyperlipidaemia to commonly occur in their study population with a prevalence of 10%.<sup>71</sup> Network analyses using hypergraphs are able to model disease triads and larger combinations of co-occurring conditions, and incorporate that additional knowledge into the analysis.

#### **Chapter 3: Methods**

### 3.1 Study Design and Data Source

This retrospective cohort study was conducted using four fiscal years (April 1, 2015 – March 31, 2019) of administrative health data from the Manitoba Population Health Research Data Repository at the Manitoba Centre for Health Policy. Data sources were linked using a unique personal health identification number. The Health Research Ethics Board for the University of Manitoba approved this study and approval for data access was provided by the Health Information Privacy Committee for Manitoba Health and Seniors Care.

Study data sources included the Manitoba Health Services Insurance Plan Registry (Population Registry), the Hospital Abstracts Database, and the Medical Services Database. The Population Registry stores data on health care coverage for all insured Manitobans, and was used to determine eligibility for inclusion in this study. The Registry also includes demographic information (e.g., age and sex), which was used to characterize the study cohort and stratify the analyses. Chronic disease information was obtained from inpatient hospital discharge abstracts and billing claims from ambulatory encounters.

The Hospital Abstracts Database contains information on discharges from hospitals in Manitoba. Diagnoses within hospital discharge abstracts are coded using the International Statistical Classification of Diseases and Related Health Problems, 10<sup>th</sup> Revision with Canadian Enhancements (ICD-10-CA), since April 1, 2004. The Medical Services Database contains information on services provided in physician offices, and diagnoses are recorded using 5-digit ICD-9-CM codes since April 1, 2015. The 4-year study period (April 1, 2015 – March 31, 2019) was chosen to maximize diagnostic precision, since Medical Services diagnoses were recorded using only 3-digit ICD-9-CM codes prior to April 1, 2015.

# **3.2 Cohort**

The study cohort included all Manitoba residents with complete or partial Manitoba Health insurance coverage during the 4-year study period (April 1, 2015 – March 31, 2019). Individuals entered the study on April 1, 2015 or the date that coverage started, and were followed until the end of the study period or until their insurance coverage ceased due to death, moving away from Manitoba, or other reasons. Chronic disease data obtained in subsequent

coverage periods, for individuals that lost and later re-gained Manitoba Health insurance coverage, were included in the analysis.

Males with female-specific conditions and females with male-specific conditions were excluded since the presence of this inconsistency suggests either errors in diagnosis or demographic coding. Specifically, males were excluded if they were assigned a diagnosis of endometriosis; malignant neoplasms of the cervix, uterus, or ovary; or other female gynecologic conditions. Females were excluded if they recorded diagnoses of prostatitis, prostatic hypertrophy, malignant neoplasms of the prostate, or other male genital disease.

Since disease networks were formed from disease co-occurrence relationships, the network analysis was limited to individuals with diagnoses for at least two chronic conditions in the study observation period.

# **3.3 Disease Ascertainment**

Chronic diseases were ascertained using diagnoses identified from inpatient discharge records in the Hospital Abstracts Database, and from physician visit records in the Medical Services Database. Surgeries recorded in both data sources were also included. Prenatal and pregnancy-related records were excluded to minimize overstating disease co-occurrence among females. A single diagnosis code was used to ascertain whether an individual was considered as having a specified condition in the study observation period. Individual diagnosis codes were grouped using two different methods: 1) into 31 categories based on the Elixhauser<sup>72</sup> comorbidity index (Appendix A, Appendix B), and 2) grouped into 201 Expanded Diagnostic Clusters (EDC) and 27 higher-level Major Expanded Diagnostic Clusters (MEDC) of the Johns Hopkins Adjusted Clinical Group (ACG) System (Appendix C).<sup>73</sup> Diagnoses were loaded into the Johns Hopkins System as World Health Organization (WHO) ICD-9 or ICD-10 codes. 5digit ICD-10-CA codes from the Hospital Abstracts Database were truncated to the first four digits to improve compatibility with the Johns Hopkins System, which supports the WHO ICD system but not the Canadian revision. There were a total of 49 unique Canadian-specific ICD-10-CA codes relevant to chronic disease status that were not captured by the Johns Hopkins System. These 49 Canadian-specific diagnosis codes were first translated to WHO ICD-10 codes for inclusion. 17 additional Canadian-specific ICD-10-CA codes were not captured; however they were irrelevant to disease status since they indicated location of occurrence or activity engaged

in during occurrence. Chronic conditions classified as separate EDC categories based on severity or presence of complications were combined into single disease categories including asthma with or without asthmaticus, hypertension with or without complications, type 1 diabetes with or without complications, and type 2 diabetes with or without complications. As well, 25 EDC categories that were non-descriptive, or referred to non-chronic medical conditions or to the neonatal period were removed from the analysis (Appendix C). Two categories indicating severity of malignant neoplasms, already classified elsewhere, were also excluded. Since co-occurrences with frequencies less than 15 were excluded from the association analysis to minimize statistical errors, seven EDC categories with low frequencies were removed: heart murmur, lymphadenopathy, thrombophlebitis, tuberculosis infection, sinusitis, other inflammatory conditions of skin, and other female gynecologic conditions. After a total of 34 EDC categories were excluded, 167 EDC categories remained for the network analysis.

# 3.4 Disease Co-occurrence Measurement

Disease co-occurrence was defined as two or more conditions recorded at any time during the 4-year study observation period, for the same individual. Disease association was measured using seven different co-occurrence measures: joint prevalence, relative risk (RR), phi  $(\phi)$ , lift, cosine, Jaccard, and Kulczynski.<sup>36,74–76</sup> Phi and relative risk are two of the most commonly used measures in disease network analysis, while lift is commonly used in conjunction with association rule mining. Cosine, Jaccard, and Kulczynski are null-invariant measures commonly recommended for sparse data such as disease status datasets. Joint prevalence was included due to its ease of interpretation. Disease co-occurrence was measured for the entire multimorbidity cohort, as well as for males and females separately. Statistical significance was assessed using the chi-square test when expected frequencies were greater than five, while Fisher's exact test was used when the chi-square assumption did not hold. Associations that were not statistically significant using  $\alpha$ =0.01 were excluded. Since the focus of our study was on co-occurring disease, the analysis was limited to positive associations, and negative correlations and protective associations were excluded. Since RR is an asymmetric measure of association, the maximum of the two RR measures was used.

The association analysis was limited to disease dyads and triads, while associations among four or more diseases were excluded. The Apriori<sup>40</sup> algorithm was used to extract

associations amongst sets of three co-occurring conditions. Minimum joint frequency (called support in association rule mining) was limited to 15 to minimize statistical errors, and the minimum confidence parameter of association rule mining was left unbounded. Data preprocessing and disease ascertainment was conducted using SAS, while R and the arules<sup>77</sup> package (v1.6-7) was used to perform the association analysis.

## **3.5** Covariates

The study cohort was characterized by age, sex, number of chronic conditions (based on the Johns Hopkins ACG System), residence location (urban or rural), socioeconomic status, and healthcare utilization. Since patterns of chronic disease differ by sex, separate disease networks were constructed for males and females.

The most recent demographic information submitted to Manitoba Health was assumed correct: birthdate and sex were extracted from the most recent insurance coverage period, while socioeconomic and urban/rural status were based on the latest residence recorded during the study period. Age was calculated at exit date (i.e., the study index date) and categorized as <20, 20-39, 40-59, 60+. Income quintile was calculated using the most recent available Canadian Census data (2016) and was based on residence location at the study index date. Hospital utilization was measured in binary format indicating whether an individual had at least one inpatient hospitalization during the 12 months prior to the study index date. Physician utilization was defined as the number of ambulatory visits recorded during the 12 months prior to the study index date. Prenatal and pregnancy diagnosis codes were excluded from hospital and physician utilization measures.

## **3.6 Network Analysis**

Weighted, undirected pairwise disease networks were separately constructed using the seven disease co-occurrence measures, and separately for Johns Hopkins EDC and Elixhauser<sup>72</sup> disease categories. Hypergraph structures were constructed using both pairwise and triad associations, and separately for each disease co-occurrence measure. Pairwise networks and hypergraphs based on EDC categories were further stratified by the number of associations (i.e., edges) included: all associations, strongest 50 percent of associations (i.e., highest effect size), and the strongest 200 associations. Networks were limited to the strongest 200 associations to

examine differences in less complex networks that have higher visual interpretability, while the strongest 50 percent cut-off was chosen to examine how network similarity changes as a larger number of associations are included. Effect size estimates were used as edge weights and were bounded between 0 and 1 for networks measured using phi, Jaccard, cosine, and Kulczynski association measures; and unbounded for lift, relative risk, and joint prevalence.

Community structure in traditional pairwise networks was identified using a weighted and non-overlapping community detection algorithm developed by Blondel et al.<sup>78</sup> Hypergraph communities were identified using a community detection algorithm developed by Kamiński et al., using the SimpleHypergraphs.jl library in Julia.<sup>79</sup> Central nodes in pairwise and hypergraph network structures were identified using degree centrality (the number of co-occurrence relationships). Pairwise disease network visualizations were constrained to the strongest 200 associations, in order to produce visually interpretable network diagrams, and visualized using the Fruchterman-Reingold<sup>80</sup> force-directed network layout algorithm. Node size and node label text are proportional to disease prevalence, while edge thickness is proportional to effect size. Node and edge colours were assigned to indicate community structure. Pairwise network analysis was performed in Java using Gephi Toolkit (v0.9.2), and pairwise networks were visualized using Gephi (v0.9.2). The hypergraph constructed using phi was visualized using Python and HyperNetX<sup>81</sup> v1.0.2 (limited to the strongest 30 hyperedges), and as a Parallel Aggregated Ordered Hypergraph diagram using PAOHVis<sup>64</sup> v1.0.0 (limited to the strongest 100 hyperedges).

## 3.7 Evaluating and Comparing Disease Networks

Pairwise disease networks, constructed using different co-occurrence measures, were compared using network complexity measures, proportion of associations in common, and in terms of the joint prevalence and prevalence difference distributions of the network edges. Network edges were also compared by comparing categorized prevalence of co-occurring disease pairs. Based on the distribution across all 167 Johns Hopkins disease categories and sexspecific differences, disease prevalence was categorized as low (<1%), moderate (1 to <7%), and high ( $\geq$ 7%) (Figure 1). A sensitivity analysis was also performed by categorizing prevalence as low (<0.5%), moderate (0.5 to <5%), and high ( $\geq$ 5%). Global network properties used for characterizing and comparing networks included network density (the ratio of the number of

edges present in a network to the number of possible edges between all node pairs), modularity (a measure of how well network nodes divide into communities), degree distribution, and node and edge counts. Important nodes, identified using degree centrality, were compared across networks by calculating the agreement percentage among the top 20 most central nodes. Community structure similarity was calculated using the adjusted Rand index (ARI) with the R package aricode (v1.0.0).<sup>82</sup> ARI measures the similarity between two data clusterings based on the number of pairs assigned to the same or different clusters, and adjusted for chance. ARI ranges from -1 to +1, with +1 indicating perfect similarity, 0 indicating cluster agreement is no better than random, and negative values indicating cluster similarity is worse than what would be expected for two random partitions. Pairwise networks and hypergraphs, constructed using the same co-occurrence measure, were contrasted with each other by comparing community structure and degree centrality distributions. The two network structures were also compared by extracting the binary relationships from the higher-order hyperedges and calculating the percentage of pairwise network associations that are represented in the respective hypergraph.

Figure 1. Prevalence distribution of chronic disease categories for all study participants (top), and females (bottom left) and males (bottom right) separately.



Note: Chronic diseases were ascertained using the Johns Hopkins ACG System. 1% and 7% vertical lines indicate cut-off points used for categorizing disease prevalence as low (<1%), moderate (1 to <7%), and high ( $\geq$ 7%).

#### **Chapter 4: Results**

## 4.1 Cohort

#### 4.1.1 Demographic and Healthcare Utilization Characteristics

Out of 1,510,678 Manitoba residents with Manitoba Health insurance coverage between fiscal years 2015/16 and 2018/19, 610,427 (40.4%) had no chronic disease diagnosis recorded, 282,340 (18.7%) recorded a single chronic condition diagnosis, and 617,911 (40.9%) had two or more chronic condition diagnoses and were included in the network analysis (Table 3, Appendix E). Fifteen individuals recorded sex-specific diagnoses that were inconsistent with their Manitoba Health Insurance Registry record and were excluded from the study (Figure 2). The median age of individuals with multimorbidity was considerably higher (57 years, Q1-Q3: 41-70) than individuals with one chronic condition (33 years, Q1-Q3: 18-49) or without any chronic disease (24, Q1-Q3: 11-37). There were a higher percentage of females (54.1%) and urban residents (64.1%) with multimorbidity than without (47.1% female, 61.3% urban). There were only minor differences in the distribution of socioeconomic status (income quintile) between those with and without multimorbidity. Individuals with a diagnosed chronic disease were higher users of physician services: 86.8% (n=245.091) of individuals living with one chronic condition and 97.4% (n=601,899) of those with multimorbidity recorded an ambulatory visit during the last year of follow-up; while 59.2% (n=361,628) of individuals without a diagnosed chronic disease had at least one ambulatory encounter. The percentage of individuals with a recorded inpatient hospitalization during the last 12 months of follow-up was significantly higher for those with multimorbidity (13.6%, *n*=83,934) compared with individuals without multimorbidity (4.1%, *n*=36,619).

| Sex                       |                |
|---------------------------|----------------|
| Male                      | 283,674 (45.9) |
| Female                    | 334,237 (54.1) |
| Age (years)               |                |
| <20                       | 43,072 (7.0)   |
| 20-39                     | 102,750 (16.6) |
| 49-59                     | 189,300 (30.6) |
| 60+                       | 282,789 (45.8) |
| Residence locality        |                |
| Rural                     | 221,923 (35.9) |
| Urban                     | 395,907 (64.1) |
| Unknown                   | 81 (<0.1)      |
| Income quintile           |                |
| Q1 (lowest)               | 120,654 (19.5) |
| Q2                        | 121,899 (19.7) |
| Q3                        | 127,697 (20.7) |
| Q4                        | 119,901 (19.4) |
| Q5 (highest)              | 115,384 (18.7) |
| Unknown                   | 12,376 (2.0)   |
| Healthcare utilization    | ,              |
| Inpatient hospitalization | 83,934 (13.6)  |
| Ambulatory visits         | 6 (3-10)       |
| Chronic conditions        |                |
| 2-3                       | 304,084 (49.2) |
| 4-5                       | 150,938 (24.4) |
| 6+                        | 162,889 (26.4) |

Table 3. Demographic and chronic disease characteristics of Manitoba residents with multimorbidity (n=617,911), 2015/16-2018/19.

Data are presented as N (%) or median (Q1-Q3).

Demographic and chronic disease characteristics were measured at exit date. Healthcare utilization was measured during the last 12 months of follow-up. Figure 2. Participant flow diagram indicating the number of individuals excluded from the current study with explanation.



Note: Chronic disease ascertainment was performed using the Johns Hopkins ACG System.

# 4.1.2 Chronic Disease Characteristics

The five most prevalent MEDC categories were cardiovascular (29.1%), psychosocial (17.0%), endocrine (17.0%), musculoskeletal (12.7%), and allergy (9.4%). Hypertension was the most prevalent EDC category (22.5%) (Appendix C), followed by depression (11.1%), disorders of lipid metabolism (9.8%), degenerative joint disease (9.1%), type 2 diabetes mellitus (9.0%), and asthma (9.0%). Hypertension was the most prevalent EDC category among both males (22.2%) and females (22.9%) (Table 4). Following hypertension, the most prevalent EDC categories among males were disorders of lipid metabolism (10.5%), type 2 diabetes (9.4%), asthma (8.2%), depression (7.7%), and degenerative joint disease (7.5%); while depression (14.4%), degenerative joint disease (10.7%), asthma (9.9%), disorders of lipid metabolism (9.1%), and hypothyroidism (8.9%) were the next most prevalent conditions among females (Appendix D).

When the MEDC analyses were stratified by sex (Table 4), males had higher prevalence of genito-urinary (4.8% vs. 2.3%) and respiratory (8.1% vs. 7.5%) disorders; while females had higher prevalence in several MEDC categories including allergies (10.2% vs. 8.5%), endocrine disorders (20.5% vs. 13.6%), psychosocial disorders (20.2% vs. 13.9%), neurologic disorders (9.1% vs. 8.3%), musculoskeletal disorders (14.3% vs. 11.1%), gastrointestinal and hepatic disorders (8.1% vs. 6.4%), and hematologic disorders (4.6% vs. 3.0%). Compared with males, females had 7.2 times the amount of osteoporosis diagnoses, 3.1 times the amount of hypothyroidism diagnoses, and 2.5 times the number of rheumatoid arthritis diagnoses (Appendix D). Males had a significantly larger number of diagnoses for cardiomyopathy (80% higher), aortic aneurysm (60% higher), ischemic heart disease (50% higher), and acute myocardial infarction (50% higher).

| Major Expanded Diagnosis   | Male                 | Female         |  |  |
|----------------------------|----------------------|----------------|--|--|
| Cluster                    | ( <i>n</i> =756,198) | (n=754,480)    |  |  |
| Allergy                    | 64,376 (8.5)         | 76,943 (10.2)  |  |  |
| Cardiovascular             | 219,840 (29.1)       | 219,047 (29.0) |  |  |
| Dental                     | 259 (0.0)            | 421 (0.1)      |  |  |
| Ear, Nose, Throat          | 27,134 (3.6)         | 32,707 (4.3)   |  |  |
| Endocrine                  | 102,885 (13.6)       | 154,348 (20.5) |  |  |
| Eye                        | 56,998 (7.5)         | 75,213 (10.0)  |  |  |
| Female Reproductive        | 0 (0.0)              | 9,791 (1.3)    |  |  |
| Gastrointestinal/Hepatic   | 48,297 (6.4)         | 61,394 (8.1)   |  |  |
| General Signs and Symptoms | 3,090 (0.4)          | 5,417 (0.7)    |  |  |
| General Surgery            | 38,088 (5.0)         | 57,654 (7.6)   |  |  |
| Genetic                    | 24,304 (3.2)         | 22,615 (3.0)   |  |  |
| Genito-urinary             | 36,006 (4.8)         | 17,472 (2.3)   |  |  |
| Hematologic                | 22,471 (3.0)         | 34,778 (4.6)   |  |  |
| Infections                 | 1,408 (0.2)          | 998 (0.1)      |  |  |
| Malignancies               | 32,778 (4.3)         | 34,266 (4.5)   |  |  |
| Musculoskeletal            | 83,620 (11.1)        | 108,246 (14.3) |  |  |
| Neurologic                 | 62,605 (8.3)         | 68,668 (9.1)   |  |  |
| Nutrition                  | 36,965 (4.9)         | 48,901 (6.5)   |  |  |
| Psychosocial               | 105,299 (13.9)       | 152,086 (20.2) |  |  |
| Reconstructive             | 8,532 (1.1)          | 8,034 (1.1)    |  |  |
| Renal                      | 17,848 (2.4)         | 15,833 (2.1)   |  |  |
| Respiratory                | 61,071 (8.1)         | 56,713 (7.5)   |  |  |
| Rheumatologic              | 35,052 (4.6)         | 32,984 (4.4)   |  |  |
| Skin                       | 9,782 (1.3)          | 10,676 (1.4)   |  |  |

Table 4. Frequency and prevalence of Major Expanded Diagnosis Clusters, ascertained using the Johns Hopkins ACG System, stratified by sex.

Data are presented as N (%).

Table 5. Number of disease co-occurrences identified, before and after statistically non-significant associations and negative correlations were excluded.

| Disease ascertainment method     | Total<br>before<br>exclusions | Non-<br>significant | Negative correlations | Total<br>included | Pairwise<br>associations | Triad<br>associations |
|----------------------------------|-------------------------------|---------------------|-----------------------|-------------------|--------------------------|-----------------------|
| Johns Hopkins EDC categorization | 118,124                       | 2,930               | 410                   | 114,784           | 7,845                    | 106,939               |
| Elixhauser comorbidity index     | 4,407                         | 28                  | 4                     | 4,375             | 449                      | 3,926                 |
|                                  |                               |                     |                       |                   |                          |                       |

Note: EDC = Expanded Diagnostic Cluster.

# 4.2 Disease Association Analysis

A total of 114,784 disease co-occurrences were identified using the Johns Hopkins ACG System, after non-significant (i.e., p-value > 0.01) and non-positive (i.e., phi < 0) associations were excluded (2.8%, n=3,340) (Table 5). Using the Elixhauser comorbidity index, 4,407 cooccurrences were identified after 0.7% (n=32) of associations were excluded (non-significant or non-positive). Hypergraphs were constructed using all 114,784 associations (both pairwise cooccurrences and triad associations). Pairwise disease networks were formed using 6.8% (n=7,845) and 10.3% (n=449) of all co-occurrences measured using the ACG System and Elixhauser index, respectively.

#### **4.3 Global Network Properties**

Since network density is not affected by edge weight, network density was constant (0.57) for all seven networks constructed with different co-occurrence measures when all edges (n=7,845) were included (Johns Hopkins ACG System, N nodes = 166). Similarly, network density was constant at 0.97 for the seven networks constructed based on the Elixhauser index (N nodes = 31). The smaller number of nodes included in the Elixhauser network, combined with a smaller number of low prevalent conditions (Appendix B), contributed to the Elixhauser-based network being significantly denser than the network based on the Johns Hopkins ACG System.

Networks constructed by limiting the number of associations using effect size cut-offs differed in network density and number of nodes (Table 6, Table 7). For pairwise networks constructed using the strongest 200 associations, the network with the least number of nodes (n=56, joint prevalence) had the highest network density (0.13), while the two networks with the greatest number of nodes (n=114, relative risk; n=123, Kulczynski) had the lowest network density at 0.03 (Table 6). As more associations were included, variation in the number of nodes and network density decreased between the networks. For the pairwise networks constructed with the strongest 50 percent of associations (n=3,922), the number of nodes ranged from 150 to 166 and network density varied between 0.29 and 0.35.

Among hypergraphs constructed using a defined number of hyperedges, the number of nodes and the percentage of triad associations varied (Table 7). In hypergraphs constructed from the top 200 associations, number of nodes ranged from 47 to 109 and the percentage of triad
associations ranged from 28.5% to 99.0%. The hypergraph constructed using relative risk contained the smallest percentage of hyperedges relating to disease dyads (1.0%) and also contained the largest number of nodes (n=109); while the hypergraph based on joint prevalence had the smallest number of nodes (n=47) and also contained the largest percentage of dyad associations (71.5%). Hypergraphs constructed from the top 50 percent of associations had triad percentages ranging from 86.9% to 98.3% and had between 163 and 165 nodes.

Table 6. Global properties for pairwise networks constructed with select co-occurrence measures and limited to the strongest 200 statistically significant associations and the strongest 50 percent (n=3,922) of all statistically significant associations.

| Association          | Тор   | 200 assoc | ciations | <b>Top 50</b> | Top 50 percent of associations |         |  |  |
|----------------------|-------|-----------|----------|---------------|--------------------------------|---------|--|--|
| measure              | N     | Ν         | Donsity  | N             | Ν                              | Density |  |  |
| measure              | nodes | edges     | Density  | nodes         | edges                          | Density |  |  |
| Lift                 | 108   | 200       | 0.04     | 165           | 3,922                          | 0.29    |  |  |
| <b>Relative risk</b> | 114   | 200       | 0.03     | 166           | 3,922                          | 0.29    |  |  |
| Phi                  | 87    | 200       | 0.05     | 164           | 3,922                          | 0.29    |  |  |
| Jaccard              | 72    | 200       | 0.08     | 150           | 3,922                          | 0.35    |  |  |
| Cosine               | 73    | 200       | 0.08     | 161           | 3,922                          | 0.31    |  |  |
| Kulczynski           | 123   | 200       | 0.03     | 166           | 3,922                          | 0.29    |  |  |
| Joint prevalence     | 56    | 200       | 0.13     | 151           | 3,922                          | 0.35    |  |  |

Note: Chronic diseases where ascertained using the Johns Hopkins ACG System.

Table 7. Global properties for chronic disease hypergraphs constructed with select co-occurrence measures and limited to the strongest 200 statistically significant associations and the strongest 50 percent (n=3,922) of all statistically significant associations.

| Association          | Г     | op 200 associ | ations     | Top 50 percent of associations |            |               |  |  |
|----------------------|-------|---------------|------------|--------------------------------|------------|---------------|--|--|
| measure              | N     | Ν             | N (%)      | N                              | Ν          | N (%)         |  |  |
| measure              | nodes | hyperedges    | triads     | nodes                          | hyperedges | triads        |  |  |
| Lift                 | 97    | 200           | 195 (97.5) | 165                            | 57,392     | 55,597 (96.9) |  |  |
| <b>Relative risk</b> | 109   | 200           | 198 (99.0) | 165                            | 57,392     | 56,060 (97.7) |  |  |
| Phi                  | 55    | 200           | 125 (62.5) | 164                            | 57,392     | 53,157 (92.6) |  |  |
| Jaccard              | 65    | 200           | 57 (28.5)  | 163                            | 57,392     | 49,891 (86.9) |  |  |
| Cosine               | 53    | 200           | 107 (53.5) | 164                            | 57,392     | 52,284 (91.1) |  |  |
| Kulczynski           | 107   | 200           | 195 (97.5) | 165                            | 57,392     | 56,440 (98.3) |  |  |
| Joint prevalence     | 47    | 200           | 57 (28.5)  | 163                            | 57,392     | 51,273 (89.3) |  |  |

#### 4.4 Network Visualization

Including all statistically significant pairwise associations for the 167 disease categories obtained using the Johns Hopkins ACG System (Figure 3) and the 31 Elixhauser comorbidities (Figure 4), produced dense network visualizations that are difficult to interpret. Reducing complexity by selecting the strongest (i.e., highest effect size) 200 EDC associations produced more interpretable network diagrams (Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11). Visual interpretability of the disease networks limited to the top 200 co-occurrence relationships varied depending on the association measure used to construct the network.

The traditional hypergraph visualization (Figure 12), which uses coloured bounding containers to represent hyperedges, has reduced visual interpretability compared with pairwise graphs even with a reduced number of visualized co-occurrence relationships (n=30). Visual interpretability of hypergraphs is reduced due to increased network complexity, overlapping elements, and the need to reuse colours for multiple hyperedges. Compared with pairwise graphs, the increased complexity of hypergraph figures makes it more difficult to visualize edge weights and incorporate inline node labels. The PAOH visualization (Figure 13), an alternative hypergraph visualization which uses vertical bars to represent hyperedges, allows for the incorporation of a higher number of relationships (n=100) and produces more visually discernable patterns, but currently does not provide support for edge weights.

Figure 3. Pairwise chronic disease network constructed using all statistically significant associations (n=7,845), with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). COPD = chronic obstructive pulmonary disease; ENT = ear, nose, and throat; ESRD = end-stage renal disease; HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency syndrome.

Figure 4. Pairwise chronic disease network constructed using all statistically significant associations (n=449), with diseases ascertained using the Elixhauser comorbidity index and co-occurrence relationships measured using phi.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency syndrome.

Figure 5. Pairwise chronic disease network with co-occurrence relationships measured using lift and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). ENT = ear, nose, and throat; ESRD = end-stage renal disease; HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency syndrome.

Figure 6. Pairwise chronic disease network with co-occurrence relationships measured using relative risk and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). ESRD = end-stage renal disease, HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency syndrome.

Figure 7. Pairwise chronic disease network with co-occurrence relationships measured using phi and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). COPD = chronic obstructive pulmonary disease, ESRD = end-stage renal disease.

Figure 8. Pairwise chronic disease network with co-occurrence relationships measured using Jaccard and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). COPD = chronic obstructive pulmonary disease, ESRD = end-stage renal disease.

Figure 9. Pairwise chronic disease network with co-occurrence relationships measured using cosine and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). COPD = chronic obstructive pulmonary disease, ESRD = end-stage renal disease.

Figure 10. Pairwise chronic disease network with co-occurrence relationships measured using Kulczynski and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). COPD = chronic obstructive pulmonary disease; ENT = ear, nose, and throat; ESRD = end-stage renal disease.

Figure 11. Pairwise chronic disease network with co-occurrence relationships measured using joint prevalence and diseases ascertained using the Johns Hopkins ACG System, limited to the strongest 200 statistically significant associations.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). COPD = chronic obstructive pulmonary disease.

Figure 12. Chronic disease hypergraph constructed from the 30 strongest statistically significant pairwise and triad associations, with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi.



Note: Coloured bounding containers (hyperedges) indicate co-occurrence relationships amongst chronic disease nodes. AMI = acute myocardial infarction, COPD = chronic obstructive pulmonary disease, ESRD = end-stage renal disease.

Figure 13. Parallel Aggregated Ordered Hypergraph (PAOH) visualization of a chronic disease hypergraph constructed from the 100 strongest statistically significant pairwise and triad associations, with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi.

Note: AMI = acute myocardial infarction, COPD = chronic obstructive pulmonary disease, ESRD = end-stage renal disease.

| Congestive heart failure          |     |    |   |                 |
|-----------------------------------|-----|----|---|-----------------|
| Peripheral vascular disease       |     |    |   |                 |
| Repair disorders, other           |     |    |   |                 |
| Tuno 2 disheter                   |     |    |   |                 |
| Cardiac arrhythmia                |     |    |   | 0               |
| Hypertension                      |     |    |   | Ĭ.              |
| Chronic repal failure             |     |    |   | J and           |
|                                   |     |    |   |                 |
| Disorders of linid metabolism     |     |    |   |                 |
| Emphysema chronic bronchitis COPD |     |    |   |                 |
| Aortic aneurysm                   |     |    |   |                 |
| Degenerative joint disease        |     |    | Ĭ |                 |
| Dementia                          |     |    |   | Ŭ Ŭ             |
| Generalized atherosclerosis       |     |    |   |                 |
| Diabetic retinonathy              | 0   |    |   |                 |
| Asthma                            |     |    |   |                 |
| Cataract, aphakia                 | 000 |    | Ŭ |                 |
| Cerebrovascular disease           |     |    |   | 0 00            |
| Cardiomyopathy                    |     | 6  |   | 0 0             |
| Depression                        |     |    |   | 00              |
| Obesity                           |     |    |   | 8 8 1 1 1 1     |
| Neurologic disorders, other       |     |    |   | 00              |
| Chronic ulcer of the skin         |     |    |   | 60              |
| Malignant neoplasms, stomach      |     | 66 |   |                 |
| Malignant neoplasms, esophagus    |     | 6  |   |                 |
| Hypothyroidism                    |     |    |   | 6               |
| Anxiety, neuroses                 |     |    |   | 6               |
| Other endocrine disorders         |     |    |   | 6               |
| Glaucoma                          |     |    |   | 6               |
| Sleep apnea                       |     |    |   | P               |
| Low back pain                     |     |    |   | <u>Р</u>        |
| Prostatic hypertrophy             |     |    |   | <u>       ?</u> |
| Major depression                  |     |    |   | ٥    ١          |
| Musculoskeletal disorders, other  |     |    |   | ۵     I         |
| Eye, other disorders              |     |    |   | 6               |
| Type 1 diabetes                   | ó   |    |   |                 |
| Malignant neoplasms, prostate     |     |    |   | ٥<br>ا          |
| Malignant neoplasms, lung         |     |    |   | P               |
| Chronic pancreatitis              |     |    |   | 6               |
| Paralytic syndromes, other        |     |    |   | 6               |
| Malignant neoplasms, pancreas     |     |    |   | ó               |

#### 4.5 Co-occurrence Relationships Characterized by Disease Prevalence

Different co-occurrence measures estimate higher association strengths for different types of relationships, in terms of the prevalence difference between disease pairs. These preferences by association measures result in certain pairwise chronic disease relationships being emphasized more than other disease combinations, when limiting networks to the strongest associations. Differences based on disease prevalence were more pronounced when using a smaller number of the strongest associations (Figure 14, Figure 16, Table 8) and decreased when including a larger number of all measured associations (Figure 15, Figure 16, Table 9). The overall patterns remained consistent while percentages varied for the sensitivity analysis, in which prevalence was classified as low (<0.5%), moderate (0.5 to <5%), and high ( $\geq5\%$ ) (Appendix F, Appendix G, Appendix I).

Networks based on lift and relative risk accentuated co-occurrence relationships between pairs of low prevalent (<1%) conditions, at 72.5% and 59.0% respectively (Figure 14, Table 8). The percentage of edges highlighting co-occurrences between two low prevalent conditions in the other five networks ranged from 0% (joint prevalence) to 9.5% (phi). Lift and relative risk also highlighted a higher proportion of relationships between moderately prevalent (1 to <7%) and low prevalent conditions, compared with the other co-occurrence measures.

Relationships between two moderately prevalent conditions were emphasized more by phi, Jaccard, and cosine based networks: 36.5%, 46.0%, 30.0%, respectively. Phi, Jaccard, and cosine also emphasized relationships between highly and moderately prevalent diseases: 27.5%, 28.5%, 39.5%. The majority of the edges in the Kulczynski-based network represented relationships between conditions of high and low prevalence (40.0%), and between highly prevalent and moderately prevalent conditions (28.5%). Relationships between conditions of high and low prevalence in the other six networks.

Measuring co-occurrence using joint prevalence resulted in the highest percentage of edges connecting highly prevalent and moderately prevalent disease nodes (69.5%). Joint prevalence and Jaccard, resulted in the most connections between two highly prevalent conditions (7.5%). Correspondingly, the joint prevalence network had the highest median joint prevalence (0.7%, Q1-Q3: 0.6%-1.2%) (Table 10). Lift and relative risk based networks did not contain any edges between two highly prevalent disease nodes, while associations between pairs

39

of highly prevalent conditions accounted for 3.0% to 6.5% of the edges in networks built using phi, cosine, and Kulczynski.

The median difference in prevalence between pairs of co-occurring conditions was lowest for lift (0.3%, Q1-Q3: 0.1-0.8%) and relative risk (0.4%, Q1-Q3: 0.1-1.3%); and highest for Kulczynski (17.9%, Q1-Q3: 3.6-22.0%) (Table 10). There was less variation in the distribution of prevalence differences among the seven co-occurrence measures when 50% of all statistically significant associations were included (Table 11). Figure 14. Percentage of the strongest 200 statistically significant pairwise chronic disease cooccurrence relationships characterized by prevalence, among select co-occurrence measures.



Disease co-occurrence measure

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System; and prevalence was categorized as low (<1%), moderate (1 to <7%), and high ( $\geq$ 7%).

Table 8. Number (%) of the strongest 200 statistically significant pairwise chronic disease cooccurrence relationships characterized by prevalence, among select co-occurrence measures.

| Prevalence        | Lift       | Relative risk | Phi       | Jaccard   | Cosine    | Kulczynski | Joint<br>prevalence |
|-------------------|------------|---------------|-----------|-----------|-----------|------------|---------------------|
| High-High         | 0 (0.0)    | 0 (0.0)       | 6 (3.0)   | 15 (7.5)  | 13 (6.5)  | 8 (4.0)    | 15 (7.5)            |
| High-Moderate     | 0 (0.0)    | 3 (1.5)       | 55 (27.5) | 57 (28.5) | 79 (39.5) | 57 (28.5)  | 139 (69.5)          |
| High-Low          | 0 (0.0)    | 5 (2.5)       | 8 (4.0)   | 1 (0.5)   | 8 (4.0)   | 80 (40.0)  | 8 (4.0)             |
| Moderate-Moderate | 5 (2.5)    | 10 (5.0)      | 73 (36.5) | 92 (46.0) | 60 (30.0) | 20 (10.0)  | 38 (19.0)           |
| Moderate-Low      | 50 (25.0)  | 64 (32.0)     | 39 (19.5) | 22 (11.0) | 29 (14.5) | 32 (16.0)  | 0 (0.0)             |
| Low-Low           | 145 (72.5) | 118 (59.0)    | 19 (9.5)  | 13 (6.5)  | 11 (5.5)  | 3 (1.5)    | 0 (0.0)             |

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System; prevalence was categorized as low (<1%), moderate (1 to <7%), and high ( $\geq$ 7%).

Figure 15. Percentage of the strongest 50 percent (n=3,922) of statistically significant pairwise chronic disease co-occurrence relationships characterized by prevalence, among select co-occurrence measures.



Note: Chronic diseases were ascertained using the Johns Hopkins ACG System; and prevalence was categorized as low (<1%), moderate (1 to <7%), and high ( $\geq$ 7%).

Table 9. Number (%) of the strongest 50 percent (n=3,922) of statistically significant pairwise chronic disease co-occurrence relationships characterized by prevalence, among select co-occurrence measures.

| Prevalence        | Lift         | Relative<br>risk | Phi          | Jaccard      | Cosine       | Kulczynski   | Joint<br>prevalence |
|-------------------|--------------|------------------|--------------|--------------|--------------|--------------|---------------------|
| High-High         | 1 (0.0)      | 6 (0.2)          | 15 (0.4)     | 15 (0.4)     | 15 (0.4)     | 15 (0.4)     | 15 (0.4)            |
| High-Moderate     | 78 (2.0)     | 105 (2.7)        | 250 (6.4)    | 255 (6.5)    | 255 (6.5)    | 255 (6.5)    | 255 (6.5)           |
| High-Low          | 122 (3.1)    | 188 (4.8)        | 339 (8.6)    | 225 (5.7)    | 414 (10.6)   | 577 (14.7)   | 476 (12.1)          |
| Moderate-Moderate | 389 (9.9)    | 392 (10.0)       | 801 (20.4)   | 864 (22.0)   | 857 (21.9)   | 769 (19.6)   | 864 (22.0)          |
| Moderate-Low      | 1,861 (47.5) | 1,827 (46.6)     | 1,837 (46.8) | 1,761 (44.9) | 1,887 (48.1) | 2,020 (51.5) | 2,004 (51.1)        |
| Low-Low           | 1,471 (37.5) | 1,404 (35.8)     | 680 (17.3)   | 802 (20.4)   | 494 (12.6)   | 286 (7.3)    | 308 (7.9)           |

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System; prevalence was categorized as low (<1%), moderate (1 to <7%), and high ( $\geq$ 7%).

Figure 16. Prevalence difference between pairs of co-occurring chronic conditions in pairwise networks limited to the strongest 200 statistically significant associations (left) and limited to the strongest 50 percent (n=3,922) of all statistically significant associations (right), among select co-occurrence measures.



Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Table 10. Summary of effect size, joint prevalence, and prevalence difference distributions among pairwise chronic disease cooccurrence networks constructed from the strongest 200 statistically significant associations, among select co-occurrence measures.

|             |                | Lift             | Relative risk    | Phi           | Jaccard       | Cosine        | Kulczynski      | Joint prevalence |
|-------------|----------------|------------------|------------------|---------------|---------------|---------------|-----------------|------------------|
| Effect size | e              |                  |                  |               |               |               |                 |                  |
| Ν           | Median (Q1-Q3) | 23.4 (17.9-33.4) | 29.5 (22.6-46.1) | 0.2 (0.1-0.2) | 0.1 (0.1-0.1) | 0.2 (0.2-0.2) | 0.3 (0.2-0.4)   | 0.7 (0.6-1.2)    |
| F           | Range          | 15.9-405.0       | 19.3-8,627.8     | 0.1-0.4       | 0.1-0.3       | 0.1-0.5       | 0.2-0.5         | 0.4-6.5          |
| Joint prev  | valence        |                  |                  |               |               |               |                 |                  |
| Ν           | Median (Q1-Q3) | 0.0 (0.0-0.0)    | 0.0 (0.0-0.1)    | 0.4 (0.2-0.9) | 0.5 (0.3-1.1) | 0.6 (0.3-1.2) | 0.4 (0.1-0.9)   | 0.7 (0.6-1.2)    |
| F           | Range          | 0.0-0.6          | 0.0-2.2          | 0.0-6.5       | 0.0-6.5       | 0.0-6.5       | 0.0-6.5         | 0.4-6.5          |
| Prevalence  | e difference   |                  |                  |               |               |               |                 |                  |
| Ν           | Median (Q1-Q3) | 0.3 (0.1-0.8)    | 0.4 (0.1-1.3)    | 2.2 (0.6-6.3) | 2.0 (0.5-5.0) | 3.2 (1.1-7.7) | 17.9 (3.6-22.0) | 6.8 (3.4-12.9)   |
| F           | Range          | 0.0-4.7          | 0.0-22.5         | 0.0-21.7      | 0.0-20.6      | 0.0-21.8      | 0.0-22.5        | 0.0-21.8         |

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Table 11. Summary of effect size, joint prevalence, and prevalence difference distributions among pairwise chronic disease cooccurrence networks constructed from the strongest 50 percent (n=3,922) of statistically significant associations, among select cooccurrence measures.

|                       | Lift             | Relative risk | Phi           | Jaccard       | Cosine        | Kulczynski    | Joint prevalence |
|-----------------------|------------------|---------------|---------------|---------------|---------------|---------------|------------------|
| Effect size           |                  |               |               |               |               |               |                  |
| Median (Q1-Q3         | a) 4.1 (3.2-6.2) | 4.5 (3.5-7.0) | 0.0 (0.0-0.0) | 0.0 (0.0-0.0) | 0.0 (0.0-0.1) | 0.1 (0.0-0.1) | 0.0 (0.0-0.1)    |
| Range                 | 2.7-405.0        | 2.9-8,627.8   | 0.0-0.4       | 0.0-0.3       | 0.0-0.5       | 0.0-0.5       | 0.0-6.5          |
| Joint prevalence      |                  |               |               |               |               |               |                  |
| Median (Q1-Q3         | 6) 0.0 (0.0-0.0) | 0.0 (0.0-0.0) | 0.0 (0.0-0.1) | 0.0 (0.0-0.1) | 0.0 (0.0-0.1) | 0.0 (0.0-0.1) | 0.0 (0.0-0.1)    |
| Range                 | 0.0-6.5          | 0.0-6.5       | 0.0-6.5       | 0.0-6.5       | 0.0-6.5       | 0.0-6.5       | 0.0-6.5          |
| Prevalence difference |                  |               |               |               |               |               |                  |
| Median (Q1-Q3         | 6) 0.9 (0.4-1.9) | 1.0 (0.4-2.1) | 1.4 (0.6-3.4) | 1.1 (0.4-2.4) | 1.5 (0.6-3.8) | 2.3 (1.1-4.7) | 1.7 (0.7-4.1)    |
| Range                 | 0.0-22.5         | 0.0-22.5      | 0.0-22.5      | 0.0-22.3      | 0.0-22.5      | 0.0-22.5      | 0.0-22.5         |

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

# 4.6 Network Edge Similarity

Disease networks constructed using different co-occurrence measures were dissimilar in terms of the edges included in the top 200 associations (Figure 17, Table 12). Edge agreement ranged from 1.5% for lift and joint prevalence to 86.5% for lift and relative risk. Phi- and Jaccard-based networks had moderate agreement with the cosine-based network (83.0% and 79.5%). Phi and Jaccard had moderate agreement (78.0%), while the remaining network pairs had lower agreement; it ranged from 5.0% to 63.5%. Median agreement (37.0%, Q1-Q3: 20.0%-53.5%) among the network pairs was much lower when limited to the strongest 200 associations, than when the top 50 percent of all statistically significant associations were used to construct the networks (68.5%, Q1-Q3: 58.7%-83.9%) (Figure 18, Table 13).

When comparing the strongest 200 associations between the pairwise networks and their respective hypergraphs, by extracting the binary relationships from the higher-order hyperedges, the percentage of pairwise network associations also represented within the respective hypergraph ranged from 28.5% (lift) to 74.5% (Jaccard) and the median agreement was 57.0% (Q1-Q3: 41.0%-65.0%).

Figure 17. Percent (%) of the strongest 200 statistically significant pairwise chronic disease cooccurrence relationships in common between networks constructed using different co-occurrence measures.



Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Table 12. Percent (%) of the strongest 200 statistically significant pairwise chronic disease cooccurrence relationships in common between networks constructed using different co-occurrence measures.

|                  | Lift  | Relative<br>risk | Phi   | Jaccard | Cosine | Kulczynski | Joint<br>prevalence |
|------------------|-------|------------------|-------|---------|--------|------------|---------------------|
| Lift             | 100.0 |                  |       |         |        |            |                     |
| Relative risk    | 86.5  | 100.0            |       |         |        |            |                     |
| Phi              | 22.5  | 29.5             | 100.0 |         |        |            |                     |
| Jaccard          | 15.0  | 20.0             | 78.0  | 100.0   |        |            |                     |
| Cosine           | 16.5  | 23.0             | 83.0  | 79.5    | 100.0  |            |                     |
| Kulczynski       | 14.0  | 22.5             | 50.0  | 37.0    | 52.0   | 100.0      |                     |
| Joint prevalence | 1.5   | 5.0              | 46.5  | 53.5    | 63.5   | 44.5       | 100.0               |

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Figure 18. Percent (%) of the strongest 50 percent (n=3,922) of all statistically significant pairwise chronic disease co-occurrence relationships in common between networks constructed using different co-occurrence measures.



Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Table 13. Percent (%) of the strongest 50 percent (n=3,922) of all statistically significant pairwise chronic disease co-occurrence relationships in common between networks constructed using different co-occurrence measures.

|                  | Lift  | Relative<br>risk | Phi   | Jaccard | Cosine | Kulczynski | Joint<br>prevalence |
|------------------|-------|------------------|-------|---------|--------|------------|---------------------|
| Lift             | 100.0 |                  |       |         |        |            |                     |
| Relative risk    | 96.8  | 100.0            |       |         |        |            |                     |
| Phi              | 66.6  | 68.5             | 100.0 |         |        |            |                     |
| Jaccard          | 55.5  | 56.5             | 83.9  | 100.0   |        |            |                     |
| Cosine           | 57.6  | 59.5             | 91.0  | 87.1    | 100.0  |            |                     |
| Kulczynski       | 58.7  | 61.5             | 80.3  | 68.0    | 80.6   | 100.0      |                     |
| Joint prevalence | 47.7  | 49.6             | 81.1  | 85.7    | 90.0   | 77.2       | 100.0               |

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

# 4.7 Community Structure

Community structure differed considerably amongst networks constructed using different co-occurrence measures. The number of communities (i.e., clusters) detected had the largest range (3 to 17) between networks limited to 200 of all statistically significant associations (Table 14). However, networks containing 50 percent of all EDC-based associations (2 to 6), all EDC-based associations (3 to 7), and based on all Elixhauser-based associations (2 to 5) also had considerable dissimilarity in the number of communities detected. Modularity, a measure of how well a network separates into communities, also widely varied between networks constructed using different co-occurrence measures. Variation in modularity between the networks decreased, as more associations were included. When all EDC associations were included, modularity ranged from 0.07 (joint prevalence) to 0.36 (relative risk) for the pairwise networks, but no community structure was identified in any of the seven hypergraphs that incorporated triad associations (modularity=0).

Table 14. Community structure properties for networks constructed with the strongest 200 and strongest 50 percent (n=3,922) of all statistically significant pairwise chronic disease co-occurrence relationships measured using the Johns Hopkins ACG System, and all statistically significant pairwise co-occurrences measured using the Elixhauser index.

| Association      | Top 200 a  | ssociations      | Top 50 p<br>associ        | percent of<br>ations | All associations<br>(Elixhauser index) |                  |  |
|------------------|------------|------------------|---------------------------|----------------------|----------------------------------------|------------------|--|
| measure          | Modularity | N<br>communities | N<br>mmunities Modularity |                      | Modularity                             | N<br>communities |  |
| Lift             | 0.72       | 13               | 0.30                      | 6                    | 0.09                                   | 5                |  |
| Relative risk    | 0.60       | 13               | 0.43                      | 5                    | 0.21                                   | 4                |  |
| Phi              | 0.43       | 17               | 0.19                      | 4                    | 0.11                                   | 3                |  |
| Jaccard          | 0.37       | 14               | 0.16                      | 5                    | 0.11                                   | 4                |  |
| Cosine           | 0.37       | 11               | 0.15                      | 4                    | 0.07                                   | 3                |  |
| Kulczynski       | 0.37       | 8                | 0.14                      | 5                    | 0.08                                   | 3                |  |
| Joint prevalence | 0.08       | 3                | 0.07                      | 2                    | 0.03                                   | 2                |  |

Community structure similarity, as measured using the adjusted Rand index, was strongest between phi and cosine in networks limited to the top 200 associations (ARI=0.68) (Figure 19, Table 15). The strongest similarity among networks limited to the top 50 percent of associations, was between relative risk and lift (ARI=0.49) and between phi and cosine (ARI=0.48) (Figure 20, Table 16). Phi and Kulczynski had perfect agreement (ARI=1) in networks constructed using all associations based on the Elixhauser index (Figure 21, Table 17).

Overall, co-occurrence measurement differences resulted in poor similarity: the median ARI was 0.08 (Q1-Q3: 0.06-0.24) for networks including the top 200 associations, and the median was 0.26 (Q1-Q3: 0.24-0.32) for networks consisting of the top 50 percent of associations. When all statistically significant associations (disease ascertainment using the Elixhauser index algorithms) were included, the median ARI was 0.38 (Q1-Q3: 0.28-0.67). Similarities and differences in community structure between relative risk and Jaccard-based chronic disease networks are shown in Figure 22.

Figure 19. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures and limited to the strongest 200 statistically significant pairwise relationships.



Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Table 15. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures and limited to the strongest 200 statistically significant pairwise relationships.

|                  | Lift  | Relative<br>risk | Phi  | Jaccard | Cosine | Kulczynski | Joint<br>prevalence |
|------------------|-------|------------------|------|---------|--------|------------|---------------------|
| Lift             | 1.00  |                  |      |         |        |            |                     |
| Relative risk    | 0.58  | 1.00             |      |         |        |            |                     |
| Phi              | 0.12  | 0.10             | 1.00 |         |        |            |                     |
| Jaccard          | 0.18  | 0.06             | 0.52 | 1.00    |        |            |                     |
| Cosine           | 0.08  | 0.08             | 0.68 | 0.54    | 1.00   |            |                     |
| Kulczynski       | 0.08  | 0.06             | 0.07 | 0.05    | 0.07   | 1.00       |                     |
| Joint prevalence | -0.01 | 0.00             | 0.23 | 0.24    | 0.40   | 0.05       | 1.00                |

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Figure 20. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures and limited to the strongest 50 percent (n=3,922) of all statistically significant pairwise relationships.



Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Table 16. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures and limited to the strongest 50 percent (n=3,922) of all statistically significant pairwise relationships.

|                  | Lift | Relative<br>risk | Phi  | Jaccard | Cosine | Kulczynski | Joint<br>prevalence |
|------------------|------|------------------|------|---------|--------|------------|---------------------|
| Lift             | 1.00 |                  |      |         |        |            |                     |
| Relative risk    | 0.49 | 1.00             |      |         |        |            |                     |
| Phi              | 0.28 | 0.33             | 1.00 |         |        |            |                     |
| Jaccard          | 0.26 | 0.21             | 0.28 | 1.00    |        |            |                     |
| Cosine           | 0.25 | 0.27             | 0.48 | 0.26    | 1.00   |            |                     |
| Kulczynski       | 0.29 | 0.21             | 0.32 | 0.20    | 0.40   | 1.00       |                     |
| Joint prevalence | 0.20 | 0.24             | 0.25 | 0.24    | 0.34   | 0.21       | 1.00                |

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Figure 21. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures, including all statistically significant pairwise relationships.



Note: Chronic diseases were ascertained using the Elixhauser comorbidity index.

Table 17. Community structure similarity, measured using the adjusted Rand index (ARI), between chronic disease networks constructed using different co-occurrence measures, including all statistically significant pairwise relationships.

|                  | Lift | Relative<br>risk | Phi  | Jaccard | Cosine | Kulczynski | Joint<br>prevalence |
|------------------|------|------------------|------|---------|--------|------------|---------------------|
| Lift             | 1.00 |                  |      |         |        |            |                     |
| Relative risk    | 0.38 | 1.00             |      |         |        |            |                     |
| Phi              | 0.63 | 0.79             | 1.00 |         |        |            |                     |
| Jaccard          | 0.32 | 0.18             | 0.19 | 1.00    |        |            |                     |
| Cosine           | 0.30 | 0.77             | 0.67 | 0.28    | 1.00   |            |                     |
| Kulczynski       | 0.63 | 0.79             | 1.00 | 0.19    | 0.67   | 1.00       |                     |
| Joint prevalence | 0.20 | 0.47             | 0.37 | 0.22    | 0.67   | 0.37       | 1.00                |

Note: Chronic diseases were ascertained using the Elixhauser comorbidity index.

Figure 22. Comparison of community structure for chronic disease networks based on the Elixhauser comorbidity index with disease co-occurrence measured using relative risk (left) and Jaccard (right).



## 4.8 Nodes of Importance

Since degree centrality is a non-weighted measure, networks that included all statistically significant edges, without limiting inclusion by effect size, had identical degree distributions. When network complexity was reduced by excluding edges by effect size to create a visually interpretable network diagram, degree distribution varied considerably amongst pairwise networks constructed using different co-occurrence measures (Figure 23, Figure 24).

The selection of the top 20 disease categories with the highest degree centrality varied amongst networks constructed using different co-occurrence measures. Agreement between the networks limited to the top 200 co-occurrence relationships varied, with a median of 55.0% (Q1-Q3: 25.0%-75.0%, Figure 25) and a median of 55.0% (Q1-Q3: 30.0%-75.0%, Figure 26) when limited to the strongest 50 percent of associations. When limited to the top 200 co-occurrences, agreement ranged from 5% between lift and joint prevalence to 95% between Jaccard and cosine. Agreement between two of the most commonly used measures among disease network studies, relative risk and phi, agreed on only 30% of the top 20 central nodes. When 50 percent of all statistically significant associations were included, agreement was strongest between Kulczynski and joint prevalence (95% agreement), and weakest between lift and Kulczynski (20%) and between lift and joint prevalence (20%). Table 18 compares the top 20 disease nodes with the highest degree centrality (i.e., most commonly co-occurring with other conditions) among networks limited to the top 200 co-occurrences measured using phi, relative risk, and joint prevalence.

When including all statistically significant associations, the five chronic disease categories with the highest degree centrality in the pairwise network were "other endocrine disorders," depression, major depression, sleep apnea, and asthma (Table 19). Meanwhile, the five most central nodes in the hypergraph built using both dyad and triad associations were hypertension, degenerative joint disease, depression, type 2 diabetes, and ischemic heart disease (excluding acute myocardial infarction). The pairwise network and the hypergraph had poor agreement (20%) when considering the top 10 most central nodes and moderate agreement (65%) when comparing the top 20 most central nodes.

54



Figure 23. Node degree distribution for chronic disease networks constructed using select cooccurrence measures and limited to the strongest 200 statistically significant pairwise associations.

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.



Figure 24. Node degree distribution for chronic disease networks constructed using select cooccurrence measures and limited to the strongest 50 percent (n=3,922) of all statistically significant pairwise associations.

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.

Figure 25. Percent of the top 20 chronic disease categories, with highest degree centrality, in common between pairs of select co-occurrence measures in networks limited to strongest 200 statistically significant pairwise associations.



Note: chronic diseases were ascertained using the Johns Hopkins ACG System.

Figure 26. Percent of the top 20 chronic disease categories, with highest degree centrality, in common between pairs of select co-occurrence measures in networks limited to strongest 50 percent (n=3,922) of all statistically significant pairwise associations.



Note: chronic diseases were ascertained using the Johns Hopkins ACG System.

Table 18. Top 20 chronic disease categories with highest degree centrality (i.e., most co-occurrence relationships) in pairwise networks limited to the strongest 200 co-occurrence relationships as measured using relative risk, phi, and joint prevalence.

|    | Relative risk                                | Phi                                    | Joint prevalence                       |
|----|----------------------------------------------|----------------------------------------|----------------------------------------|
| 1  | Aortic aneurysm                              | Hypertension                           | Hypertension                           |
| 2  | Congestive heart failure                     | Peripheral vascular disease            | Type 2 diabetes                        |
| 3  | Peripheral vascular disease                  | Congestive heart failure               | Degenerative joint disease             |
| 4  | ESRD                                         | Ischemic heart disease (excluding AMI) | Disorders of lipid metabolism          |
| 5  | Vesicoureteral reflux                        | Cardiac arrhythmia                     | Depression                             |
| 6  | Cerebral palsy                               | Type 2 diabetes                        | Ischemic heart disease (excluding AMI) |
| 7  | Cardiomyopathy                               | Degenerative joint disease             | Asthma                                 |
| 8  | Renal disorders, other                       | Renal disorders, other                 | Cardiac arrhythmia                     |
| 9  | Personality disorders                        | Cataract, aphakia                      | Hypothyroidism                         |
| 10 | Acute myocardial infarction                  | Chronic ulcer of the skin              | Cataract, aphakia                      |
| 11 | Quadriplegia and paraplegia                  | Emphysema, chronic bronchitis, COPD    | Congestive heart failure               |
| 12 | Cardiac arrest, shock                        | Dementia                               | Obesity                                |
| 13 | Acute respiratory failure                    | Cerebrovascular disease                | Emphysema, chronic bronchitis, COPD    |
| 14 | Cardiovascular signs and symptoms            | Generalized atherosclerosis            | Anxiety, neuroses                      |
| 15 | Malignant neoplasms, liver and biliary tract | Chronic renal failure                  | Dementia                               |
| 16 | Dementia                                     | Depression                             | Glaucoma                               |
| 17 | Chronic renal failure                        | Neurologic disorders, other            | Sleep apnea                            |
| 18 | Malignant neoplasms, stomach                 | Cardiovascular disorders, other        | Other endocrine disorders              |
| 19 | Urinary symptoms                             | Diabetic retinopathy                   | Deficiency anemias                     |
| 20 | Hypertension                                 | Disorders of lipid metabolism          | Cerebrovascular disease                |

AMI = acute myocardial infarction, COPD = chronic obstructive pulmonary disease, ESRD = end-stage renal disease. Chronic diseases were ascertained using the Johns Hopkins ACG System. Table 19. Comparison of the top 20 chronic disease categories with highest degree centrality (i.e., most co-occurrence relationships) between a pairwise network, and a hypergraph that included both pairwise and triad associations.

|    | Pairwise network                          | Hypergraph                             |
|----|-------------------------------------------|----------------------------------------|
| 1  | Other endocrine disorders                 | Hypertension                           |
| 2  | Depression                                | Degenerative joint disease             |
| 3  | Major depression                          | Depression                             |
| 4  | Sleep apnea                               | Type 2 diabetes                        |
| 5  | Asthma                                    | Ischemic heart disease (excluding AMI) |
| 6  | Obesity                                   | Cardiac arrhythmia                     |
| 7  | Cardiovascular disorders, other           | Disorders of lipid metabolism          |
| 8  | Anxiety, neuroses                         | Emphysema, chronic bronchitis, COPD    |
| 9  | Emphysema, chronic bronchitis, COPD       | Congestive heart failure               |
| 10 | Respiratory disorders, other              | Hypothyroidism                         |
| 11 | Degenerative joint disease                | Obesity                                |
| 12 | Hypertension                              | Cataract, aphakia                      |
| 13 | Musculoskeletal disorders, other          | Asthma                                 |
| 14 | Neurologic disorders, other               | Anxiety, neuroses                      |
| 15 | Autoimmune and connective tissue diseases | Cerebrovascular disease                |
| 16 | Cardiac arrhythmia                        | Renal disorders, other                 |
| 17 | Dementia                                  | Sleep apnea                            |
| 18 | Type 2 diabetes                           | Peripheral vascular disease            |
| 19 | Hypothyroidism                            | Other endocrine disorders              |
| 20 | Deafness, hearing loss                    | Dementia                               |

AMI = acute myocardial infarction, COPD = chronic obstructive pulmonary disease. Chronic diseases were ascertained using the Johns Hopkins ACG System.

## 4.9 Sex-stratified Network Complexity

When including all statistically significant associations and measuring disease status using the ACG System, the male and female disease networks had similar network density: 0.52 for the female disease network compared with an estimated density of 0.51 for the male network. Network density was also similar when the Elixhauser index was used for disease ascertainment, with the male network estimated to have slightly higher density (0.96) compared with the female network (0.94). Male and female disease networks were also similar in density when the number of included associations was reduced to the strongest 50% and the strongest 200 of all statistically significant pairwise associations (Table 20, Figure 27, Figure 28).

| Disease                                | Disease                |            | Female     |         |            | Male       |         |  |  |
|----------------------------------------|------------------------|------------|------------|---------|------------|------------|---------|--|--|
| co-occurrence<br>inclusion<br>criteria | Association<br>measure | N<br>nodes | N<br>edges | Density | N<br>nodes | N<br>edges | Density |  |  |
| Top 50%                                | Lift                   | 160        | 3,279      | 0.26    | 158        | 3,134      | 0.25    |  |  |
|                                        | Relative risk          | 160        | 3,279      | 0.26    | 158        | 3,134      | 0.25    |  |  |
|                                        | Phi                    | 157        | 3,279      | 0.27    | 152        | 3,134      | 0.27    |  |  |
|                                        | Jaccard                | 142        | 3,279      | 0.33    | 135        | 3,134      | 0.35    |  |  |
|                                        | Cosine                 | 155        | 3,279      | 0.28    | 147        | 3,134      | 0.29    |  |  |
|                                        | Kulczynski             | 160        | 3,279      | 0.26    | 158        | 3,134      | 0.25    |  |  |
|                                        | Joint prevalence       | 144        | 3,279      | 0.32    | 141        | 3,134      | 0.32    |  |  |
| Top 200                                | Lift                   | 101        | 200        | 0.04    | 106        | 200        | 0.04    |  |  |
|                                        | Relative risk          | 104        | 200        | 0.04    | 112        | 200        | 0.03    |  |  |
|                                        | Phi                    | 83         | 200        | 0.06    | 83         | 200        | 0.06    |  |  |
|                                        | Jaccard                | 70         | 200        | 0.08    | 72         | 200        | 0.08    |  |  |
|                                        | Cosine                 | 72         | 200        | 0.08    | 74         | 200        | 0.07    |  |  |
|                                        | Kulczynski             | 117        | 200        | 0.03    | 119        | 200        | 0.03    |  |  |
|                                        | Joint prevalence       | 56         | 200        | 0.13    | 53         | 200        | 0.15    |  |  |

Table 20. Global properties pairwise networks constructed with select co-occurrence measures and limited to the strongest 50 percent and the strongest 200 of all statistically significant associations, stratified by sex.

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System.
Figure 27. Female pairwise chronic disease network constructed from the strongest 200 statistically significant associations, with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). COPD = chronic obstructive pulmonary disease, ESRD = end-stage renal disease. Figure 28. Male pairwise chronic disease network constructed from the strongest 200 statistically significant associations, with diseases ascertained using the Johns Hopkins ACG System and co-occurrence relationships measured using phi.



Note: Node diameter and font size are proportional to disease prevalence, edge weight (thickness) is proportional to effect size, and node and edge colour indicate community structure (i.e., disease clusters). COPD = chronic obstructive pulmonary disease, ESRD = end-stage renal disease.

#### **Chapter 5: Discussion**

Measuring disease co-occurrence is essential when constructing chronic disease networks to determine the connecting links between disease nodes and the strengths of these co-occurrence relationships. Different association measures highlight different co-occurrence relationships, in terms of disease prevalence, based on which relationships are assigned higher association estimates. In weighted disease networks where effect size estimates are used as edge weights, differences in co-occurrence measurement will influence community detection algorithms and node centrality measures that use edge weights in their calculations. Unweighted measures such as network density and degree centrality will not be affected by choice of co-occurrence measure unless network links are excluded based on effect size cut-offs. When limiting the number of edges in a network by effect size, to produce a visually interpretable diagram, the choice of co-occurrence measure can have a significant impact on network structure and network analysis inferences. Evaluating the accuracy or validity of a network requires a ground truth against which to compare network structure. Since there is no ground truth for a chronic disease co-occurrence measurement has on network analysis.

## **5.1 Summary of Key Findings**

This study showed the majority of the highest associations measured using lift and relative risk pertained to co-occurrence relationships between pairs of low prevalent conditions. In contrast, the strongest associations in the joint prevalence network included highly prevalent conditions, while the Kulczynski measure emphasized relationships between high and low prevalent diseases. Phi, Jaccard, and cosine emphasized associations with moderately prevalent conditions. Comparing Jaccard and cosine, Jaccard tended to prefer co-occurrence relationships between diseases of similar prevalence, while cosine assigned slightly less emphasis to events of similar frequency. Distinctions in the prevalence difference distributions resulted in significant dissimilarities in community detection and centrality analysis, two of the main components of a network analysis. However, choice of co-occurrence measure was not found to considerably affect comparisons of network density between male and female disease networks.

Many chronic diseases co-occur in groups of three or more and limiting network analyses to pairwise associations does not adequately depict the real-world complexity of multimoribidty.

Higher-order disease associations can be extracted using association rule mining and modeled using hypergraphs. Parallel Aggregated Ordered Hypergraph (PAOH) diagrams, alternative hypergraph visualizations, have higher visual interpretability than traditional hypergraph diagrams while depicting a larger number of associations. When comparing hypergraph-based disease networks with their respective pairwise networks constructed using the same cooccurrence measure, significant differences were observed in terms of their agreement on the most central nodes and the pairwise relationships held in common.

### 5.1 Context of Study Findings within Literature

The results from the current study concur with the results of the study by Hidalgo et al., who compared disease co-occurrence networks constructed using RR and  $\phi$  and found the network constructed with RR to have a greater number of low prevalence conditions and the  $\phi$ -based network to be characterized by more prevalent conditions.<sup>11</sup> In addition to describing network edges by disease prevalence, the current study also showed the impact that co-occurrence measurement has on community structure, node centrality, and subgroup comparisons—items not discussed previously in literature. Along with contrasting RR and  $\phi$ , this study also compared disease networks constructed using lift, a measure commonly used in conjunction with association rule mining, and null-invariant measures suggested for use with sparse datasets such as disease status matrices. The differences amongst the null-invariant measures observed in the current study agree with Wu et al., who described the preference of Jaccard for relationships between events of similar frequency, Kulczynski for relationships between frequent and rare events, and cosine as being situated between these two in terms of the relationships that receive the highest association estimates.<sup>83</sup>

Several previous network analyses identified associations amongst combinations of three or more diseases, but limited network visualizations to pairwise graphs by flattening the higherorder associations into their respective binary relationships; this results in a loss of information.<sup>20–30</sup> The current study went a step further and demonstrated how the additional information present in multi-way disease associations could be modeled and analyzed using hypergraphs; future research involving higher-order disease co-occurrence relationships could benefit from visualizations that depict complex multimorbidity relationships.

## **5.2 Study Strengths**

The current study has a number of strengths. Extracting diagnoses from both hospital and physician data aids in providing a comprehensive picture of chronic disease patterns in the Manitoba population. Furthermore, the administrative health data used in this study had excellent population coverage since the data are based on a single public insurer that effectively captures healthcare system encounters for all Manitoba residents, with few exceptions—resulting in excellent generalizability of the observed chronic disease patterns at the population level. Utilizing 5-digit ICD diagnostic codes minimized misclassification errors and allowed for the definition of certain disease categories that cannot be distinguished from one another when only using 3-digit codes.

The large number of chronic disease categories under analysis facilitated the examination of many potentially interesting disease patterns that are obscured when using a more limited number of disease categories based on a comorbidity index. Using a relatively large number of chronic disease categories is beneficial for hypothesis generation. By reporting results separately for different network sizes (i.e., when including the top 200 associations, top 50 percent of associations, and all associations) and stratifying by disease ascertainment method (i.e., Elixhauser comorbidity index, or Johns Hopkins ACG System), the results from this study are applicable to many different types of network analyses.

Besides exploring the effect that co-occurrence measurement has on disease networks and demonstrating the use of hypergraphs, this study also provides insight into patterns of cooccurring chronic disease at the population level and is available for further exploration by chronic disease researchers or policy makers. Finally, the included literature review adds to the work done by Brunson and Laubenbacher<sup>84</sup> to summarize the methodology of published disease network analyses and link together this body of literature.

#### **5.3 Study Limitations**

Despite the strengths of this study, there are some limitations. The true distribution of chronic disease in the underlying population can differ significantly from disease patterns observed within administrative claims data, where disease status accuracy is dependent upon individuals coming into contact with the healthcare system and upon billing codes accurately

portraying patient health profiles. Factors leading to non-representative reporting of disease patterns within this retrospective claims-based study include differential healthcare utilization patterns, observation period limitations, "rule out" diagnostic practices, and diagnostic coding errors.

Because diseases were defined through contact with the healthcare system, disease information may have been inadequately captured for individuals with limited access to healthcare services or conditions for which individuals are less likely to seek treatment. Resulting bias would have been incurred if disease patterns were significantly different for the individuals that are less likely to seek treatment, in comparison to the general population. Consequently, there will be missing links or underestimated edge weights for relationships involving underreported health conditions within the structure of the disease co-occurrence networks. To increase diagnostic precision, this study was constrained to the 4-year period of time when physician billing claims were coded with 5-digit ICD codes; but in doing so this study did not capture diagnoses that were only recorded in earlier time periods. This reduced observation period may have resulted in understating co-occurrence for less prevalent conditions or conditions that are infrequently documented in billing claims.

All diagnoses observed during the 4-year study period for a specific individual were treated as persisting during the entire time period and assumed to co-occur with one another. This may have resulted in overstating certain co-occurrence relationships, since diseases that may have been in remission were still considered as co-occurring with other conditions after the point of remission. Diagnoses that did not map to any of the 167 EDC categories or the 31 Elixhauser comorbidities were also excluded from the analysis, resulting in missing network links between network nodes and any omitted chronic condition categories. Due to the relatively large number of disease categories under consideration, it was not feasible to use complex case definitions to ascertain disease status based on diagnosis code counts. Simplified case definitions based on single diagnosis codes were used to mark disease status and misclassification may have occurred due to diagnostic coding errors, or the presence of "rule out" diagnoses when clinicians are working with patients to resolve health concerns—leading to overestimating co-occurrence with conditions overreported within billing claims.

This study contrasted seven co-occurrence measures in the context of a chronic disease network analysis, but it was not feasible to also investigate all other association measures of potential interest to researchers. For the same reason, this analysis limited community detection to a single non-overlapping detection algorithm, centrality analysis to node degree, and network complexity to density measurement. Evaluating other community detection algorithms, and different centrality measures such as eigenvector or betweenness centrality, would provide additional insight into the effect of co-occurrence measurement on network analysis. Descriptive analysis was used to quantify differences in network metrics among networks constructed using different association measures, but statistical significance testing was not used since the research purpose was to describe the overall effect of co-occurrence measurement and the research was not focused on testing hypotheses of differences between individual networks or drawing inferences on the underlying population. Furthermore, software restrictions within the secure data environment, which houses the Manitoba Population Health Research Data Repository, posed challenges for calculating empirical standard error estimates of network measures.

#### **5.4 Applications and Next Steps**

The differences observed between disease networks constructed with different association measures suggest researchers should select co-occurrence measures based on the prevalence relationships of greatest interest, and their specific research objectives (e.g., hypothesis generation, data visualization). If researchers are seeking to explore associations between highly prevalent and low prevalent conditions, then Kulczynski may be an appropriate choice based on its tendency to assign high association estimates towards skewed relationships. Whereas, the preference of relative risk and lift make these measures suitable for exploring relationships between pairs of low prevalent conditions. Phi, Jaccard, and cosine are appropriate for analyzing co-occurrence relationships involving moderately prevalent diseases. Joint prevalence has an interpretability advantage over many of the other co-occurrence measures, which may make it more suitable for knowledge translation activities with non-technical audiences, specifically if relationships between the most prevalent conditions are of interest. Knowing the tendencies of different co-occurrence measures will allow researchers to make an informed choice based on their research goals. Although this study highlighted differences when networks were limited to the strongest associations, researchers may instead choose other effect

size ranges such as the lowest or intermediate estimates, depending upon on their study objectives.

Software implementations of hypergraph analytic techniques are available for researchers seeking to incorporate knowledge of higher-order associations into a network analysis. Bipartite representations promote the analysis of hypergraphs using standard network analysis software, but converting hypergraphs to bipartite graphs modifies the network structure, which may not be desirable. Current software supports the visualization of hyperedges as standard coloured bounding containers or as vertical lines in the alternative PAOH figure, but hypergraph visualizations may be more difficult to interpret than pairwise network diagrams and analysts should consider which approach is best given their objectives. Further development of hypergraph analytic software will improve the viability of multi-way association analysis and visualization.

Researchers must make several methodological choices when seeking to conduct a network analysis. In addition to choosing a measure of association, researchers must choose from many different community detection techniques, and node centrality and network complexity measures. While this study discusses approaches to choosing an association measure, researchers seeking to conduct an analysis of a disease co-occurrence network will also benefit from additional guidelines on choosing from these other network methods.

Administrative health data is available in all jurisdictions within Canada. The methodology used in the current study can be readily applied to compare population-level chronic disease patterns across the Canadian provinces and territories and within population sub-groups defined by determinants of health.

## **5.5 Conclusion**

Disease co-occurrence measurement has a significant effect on the structure of chronic disease co-occurrence networks and influences which diseases are considered dominant within a population (i.e., node centrality), how disease clusters are defined (i.e., network community structure), and characterizations of disease network complexity. Choice of co-occurrence measure considerably affects our understanding of population-level chronic disease patterns obtained using network analysis. Co-occurrence measures should be selected considering

research objectives and the prevalence relationships of greatest interest. Researchers should be cautious when interpreting results from network analyses of co-occurring chronic disease and should conduct sensitivity analyses using different co-occurrence measures. Finally, many chronic diseases co-occur in groups of three or more and these higher-order associations can be effectively visualized and analyzed using hypergraph techniques.

## **Literature Cited**

- 1. Koné Pefoyo, A. J. *et al.* The increasing burden and complexity of multimorbidity disease epidemiology Chronic. *BMC Public Health* **15**, 1–11 (2015).
- 2. Afshar, S., Roderick, P. J., Kowal, P., Dimitrov, B. D. & Hill, A. G. Multimorbidity and the inequalities of global ageing: A cross-sectional study of 28 countries using the World Health Surveys. *BMC Public Health* **15**, 776 (2015).
- 3. Roberts, K. C., Rao, D. P., Bennett, T. L., Loukine, L. & Jayaraman, G. C. Prevalence and patterns of chronic disease multimorbidity and associated determinants in Canada. *Heal. Promot. chronic Dis. Prev. Canada Res. policy Pract.* **35**, 87–94 (2015).
- 4. Tsasis, P. & Bains, J. Management of complex chronic disease: facing the challenges in the Canadian health-care system. *Heal. Serv. Manag. Res.* **21**, 228–235 (2008).
- 5. Moffat, K. & Mercer, S. W. Challenges of managing people with multimorbidity in today's healthcare systems. *BMC Fam. Pract.* **16**, 129 (2015).
- 6. Thavorn, K. *et al.* Effect of socio-demographic factors on the association between multimorbidity and healthcare costs: A population-based, retrospective cohort study. *BMJ Open* **7**, (2017).
- 7. Reid, R. *et al.* Conspicuous consumption: Characterizing high users of physician services in one Canadian province. *J. Heal. Serv. Res. Policy* **8**, 215–224 (2003).
- 8. Chmiel, A., Klimek, P. & Thurner, S. Spreading of diseases through comorbidity networks across life and gender. *New J. Phys.* **16**, 115013 (2014).
- 9. Duarte, C. W., Lindner, V., Francis, S. A. & Schoormans, D. Visualization of Cancer and Cardiovascular Disease Co-Occurrence With Network Methods. *JCO Clin. cancer informatics* **1**, 1–12 (2017).
- 10. Hanauer, D. A. & Ramakrishnan, N. Modeling temporal relationships in large scale clinical associations. *J. Am. Med. Informatics Assoc.* **20**, 332–341 (2013).
- 11. Hidalgo, C. A., Blumm, N., Barabási, A.-L. & Christakis, N. A. A dynamic network approach for the study of human phenotypes. *PLoS Comput. Biol.* **5**, e1000353 (2009).
- 12. Davis, D. A. & Chawla, N. V. Exploring and exploiting disease interactions from multirelational gene and phenotype networks. *PLoS One* **6**, e22670 (2011).
- 13. Jeong, E., Ko, K., Oh, S. & Han, H. W. Network-based analysis of diagnosis progression patterns using claims data. *Sci. Rep.* **7**, 1–12 (2017).
- 14. Jiang, Y., Ma, S., Shia, B. C. & Lee, T. S. An epidemiological human disease network derived from disease Co-occurrence in Taiwan. *Sci. Rep.* **8**, 1–12 (2018).
- 15. Kalgotra, P., Sharda, R. & Croff, J. M. Examining health disparities by gender: A multimorbidity network analysis of electronic medical record. *Int. J. Med. Inform.* **108**, 22–28 (2017).
- 16. Khan, A., Uddin, S. & Srinivasan, U. Comorbidity network for chronic disease: A novel

approach to understand type 2 diabetes progression. Int. J. Med. Inform. 115, 1–9 (2018).

- 17. Kim, J. H. *et al.* Network analysis of human diseases using Korean nationwide claims data. *J. Biomed. Inform.* **61**, 276–282 (2016).
- 18. Lai, Y. H. A network approach for the comorbidities of HIV/AIDS in Taiwan. in *Technology and Health Care* vol. 24 S377–S383 (IOS Press, 2016).
- 19. Moni, M. A. & Liò, P. Network-based analysis of comorbidities risk during an infection: SARS and HIV case studies. *BMC Bioinformatics* **15**, 333 (2014).
- 20. Schäfer, I. *et al.* Reducing complexity: A visualisation of multimorbidity by combining disease clusters and triads. *BMC Public Health* **14**, 1285 (2014).
- Tai, Y.-M. & Chiu, H.-W. Comorbidity study of ADHD: Applying association rule mining (ARM) to National Health Insurance Database of Taiwan. *Int. J. Med. Inform.* 78, e75–e83 (2009).
- 22. Zheng, C. & Xu, R. The Alzheimer's comorbidity phenome: mining from a large patient database and phenome-driven genetics prediction. *JAMIA Open* **2**, 131–138 (2019).
- 23. Chen, Y. & Xu, R. Mining Cancer-Specific Disease Comorbidities from a Large Observational Health Database. *Cancer Inform.* **13s1**, CIN.S13893 (2014).
- 24. Chen, Y., Li, L. & Xu, R. Disease Comorbidity Network Guides the Detection of Molecular Evidence for the Link Between Colorectal Cancer and Obesity. *AMIA Jt. Summits Transl. Sci. proceedings. AMIA Jt. Summits Transl. Sci.* **2015**, 201–6 (2015).
- 25. Held, F. P. *et al.* Association rules analysis of comorbidity and multimorbidity: The Concord Health and Aging in Men Project. *Journals Gerontol. Ser. A Biomed. Sci. Med. Sci.* **71**, 625–631 (2015).
- 26. Hernández, B., Reilly, R. B. & Kenny, R. A. Investigation of multimorbidity and prevalent disease combinations in older Irish adults using network analysis and association rules. *Sci. Rep.* **9**, 1–12 (2019).
- 27. Kim, L. & Myoung, S. Comorbidity Study of Attention-deficit Hyperactivity Disorder (ADHD) in Children: Applying Association Rule Mining (ARM) to Korean National Health Insurance Data. *Iran. J. Public Health* **47**, 481–488 (2018).
- 28. Shin, A. M. *et al.* Diagnostic Analysis of Patients with Essential Hypertension Using Association Rule Mining. *Healthc. Inform. Res.* **16**, 77 (2010).
- 29. Zemedikun, D. T., Gray, L. J., Khunti, K., Davies, M. J. & Dhalwani, N. N. Patterns of multimorbidity in middle-aged and older adults: an analysis of the UK Biobank data. in *Mayo Clinic Proceedings* vol. 93 857–866 (Elsevier, 2018).
- 30. Zheng, C. & Xu, R. Large-scale mining disease comorbidity relationships from postmarket drug adverse events surveillance data. *BMC Bioinformatics* **19**, 500 (2018).
- Prados-Torres, A., Calderón-Larrañaga, A., Hancco-Saavedra, J., Poblador-Plou, B. & van den Akker, M. Multimorbidity patterns: a systematic review. J. Clin. Epidemiol. 67, 254– 266 (2014).

- 32. Ng, S. K., Tawiah, R., Sawyer, M. & Scuffham, P. Patterns of multimorbid health conditions: a systematic review of analytical methods and comparison analysis. *Int. J. Epidemiol.* **47**, 1687–1704 (2018).
- 33. Divo, M. J. et al. COPD comorbidities network. Eur. Respir. J. 46, 640–650 (2015).
- 34. Wu, T., Chen, Y. & Han, J. Association mining in large databases: A re-examination of its measures. in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)* vol. 4702 LNAI 621–628 (Springer Verlag, 2007).
- Kim, S., Barsky, M. & Han, J. Efficient mining of top correlated patterns based on nullinvariant measures. in *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)* vol. 6912 LNAI 177– 192 (Springer, Berlin, Heidelberg, 2011).
- 36. Wu, T., Chen, Y. & Han, J. Re-examination of interestingness measures in pattern mining: A unified framework. *Data Min. Knowl. Discov.* **21**, 371–397 (2010).
- 37. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *J. R. Stat. Soc. Ser. B* **57**, 289–300 (1995).
- 38. Celli, R., Divo, M., Colunga, M., Celli, B. & Mitchell-Richards, K. Network analysis of autopsy diagnoses: Insights into the "cause of death" from unbiased disease clustering. *J. Pathol. Inform.* **9**, 35 (2018).
- 39. Cao, H., Hripcsak, G. & Markatou, M. A statistical methodology for analyzing cooccurrence data from a large sample. *J. Biomed. Inform.* **40**, 343–352 (2007).
- 40. Agrawal, R. & Srikant, R. Fast algorithms for mining association rules. in *Proceedings of the 20th International Conference on Very Large Data Bases* vol. 1215 487–499 (1994).
- 41. Tan, P.-N., Steinbach, M. & Kumar, V. *Introduction to Data Mining*. (Pearson Addison Wesley, 2005).
- 42. Koh, Y. S. & Rountree, N. *Rare association rule mining and knowledge discovery : technologies for infrequent and critical event detection*. (Information Science Reference, 2010).
- 43. Brijs, T., Vanhoof, K. & Wets, G. Defining interestigness for association rules. (2003).
- 44. Han, J., Kamber, M. & Pei, J. *Data mining : concepts and techniques*. (Elsevier Science, 2011).
- 45. McNicholas, P. D., Murphy, T. B. & O'Regan, M. Standardising the lift of an association rule. *Comput. Stat. Data Anal.* **52**, 4712–4721 (2008).
- 46. Hatahira, H. *et al.* Analysis of fall-related adverse events among older adults using the Japanese Adverse Drug Event Report (JADER) database. *J. Pharm. Heal. Care Sci.* **4**, 32 (2018).
- 47. Yildirim, P. Association patterns in open data to explore ciprofloxacin adverse events. *Appl. Clin. Inform.* **6**, 728–747 (2015).

- 48. Shen, C.-C., Hu, L.-Y. & Hu, Y.-H. Comorbidity study of borderline personality disorder: applying association rule mining to the Taiwan national health insurance research database. *BMC Med. Inform. Decis. Mak.* **17**, 8 (2017).
- 49. Han, J., Pei, J. & Yin, Y. Mining frequent patterns without candidate generation. in *Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data* vol. 29 1–12 (SIGMOD '00, 2000).
- 50. Zaki, M. J. Scalable algorithms for association mining. *IEEE Trans. Knowl. Data Eng.* **12**, 372–390 (2000).
- 51. Ho, V. P., Schiltz, N. K., Reimer, A. P., Madigan, E. A. & Koroukian, S. M. High-Risk Comorbidity Combinations in Older Patients Undergoing Emergency General Surgery. J. Am. Geriatr. Soc. 67, 503–510 (2019).
- 52. M. Kang'ethe, S. & W. Wagacha, P. Extracting Diagnosis Patterns in Electronic Medical Records using Association Rule Mining. *Int. J. Comput. Appl.* **108**, 19–26 (2014).
- 53. Kim, H. S., Shin, A. M., Kim, M. K. & Kim, Y. N. Comorbidity study on type 2 diabetes mellitus using data mining. *Korean J. Intern. Med.* **27**, 197–202 (2012).
- 54. Madlock-Brown, C. & Reynolds, R. B. Identifying obesity-related multimorbidity combinations in the United States. *Clin. Obes.* **9**, e12336 (2019).
- 55. Nassar, Y. & Richter, S. Gastroparesis in Non-Diabetics: Associated Conditions and Possible Risk Factors. *Gastroenterol. Res.* **11**, 340–345 (2018).
- 56. Peng, M. *et al.* Exploration of association rule mining for coding consistency and completeness assessment in inpatient administrative health data. *J. Biomed. Inform.* **79**, 41–47 (2018).
- 57. Valent, F., Tillati, S. & Zanier, L. Prevalence and comorbidities of known diabetes in northeastern Italy. *J. Diabetes Investig.* **4**, 355–360 (2013).
- Wang, C.-H., Lee, T.-Y., Hui, K.-C. & Chung, M.-H. Mental disorders and medical comorbidities: Association rule mining approach. *Perspect. Psychiatr. Care* 55, 517–526 (2019).
- 59. Yao, S.-S. *et al.* Prevalence and Patterns of Multimorbidity in a Nationally Representative Sample of Older Chinese: Results From the China Health and Retirement Longitudinal Study. *Journals Gerontol. Ser. A* (2019) doi:10.1093/gerona/glz185.
- 60. Estrada, E. & Rodriguez-Velazquez, J. A. Complex networks as hypergraphs. *arXiv Prepr. physics/0505137* (2005).
- 61. Benson, A. R. Three hypergraph eigenvector centralities. *SIAM J. Math. Data Sci.* **1**, 293–312 (2019).
- 62. Fotouhi, B., Momeni, N., Riolo, M. A. & Buckeridge, D. L. Statistical methods for constructing disease comorbidity networks from longitudinal inpatient data. *Appl. Netw. Sci.* **3**, 46 (2018).
- 63. Doulis, M. Robustness of disease association measures and network structure in an

evolving synthetic cohort. (2016).

- 64. Valdivia, P., Buono, P., Plaisant, C., Dufournaud, N. & Fekete, J.-D. Analyzing Dynamic Hypergraphs with Parallel Aggregated Ordered Hypergraph Visualization. *IEEE Trans. Vis. Comput. Graph.* (2019).
- 65. Hypergraph. *Encyclopedia of Mathematics* https://encyclopediaofmath.org/index.php?title=Hypergraph.
- 66. Niu, Y.-W., Qu, C.-Q., Wang, G.-H. & Yan, G.-Y. RWHMDA: Random Walk on Hypergraph for Microbe-Disease Association Prediction. *Front. Microbiol.* **10**, 1578 (2019).
- 67. Jie, B., Wee, C. Y., Shen, D. & Zhang, D. Hyper-connectivity of functional networks for brain disease diagnosis. *Med. Image Anal.* **32**, 84–100 (2016).
- 68. Mukhopadhyay, S., Palakal, M. & Maddu, K. Multi-way association extraction and visualization from biological text documents using hyper-graphs: applications to genetic association studies for diseases. *Artif. Intell. Med.* **49**, 145–154 (2010).
- 69. Belyi, E. *et al.* Combining association rule mining and network analysis for pharmacosurveillance. *J. Supercomput.* **72**, 2014–2034 (2016).
- 70. Feely, A., Lix, L. M. & Reimer, K. Estimating multimorbidity prevalence with the Canadian Chronic Disease Surveillance System. *Health Promotion and Chronic Disease Prevention in Canada* vol. 37 215–222 (2017).
- 71. Majumdar, U. B. *et al.* Multiple chronic conditions at a major urban health system: A retrospective cross-sectional analysis of frequencies, costs and comorbidity patterns. *BMJ Open* **9**, (2019).
- 72. Elixhauser, A., Steiner, C., Harris, D. R. & Coffey, R. M. Comorbidity Measures for Use with Administrative Data. *Med. Care* **36**, 8–27 (1998).
- 73. The Johns Hopkins University Bloomberg School of Public Health. *The Johns Hopkins* ACG® System Version 12.0 User Documentation. (2019).
- 74. Tan, P. N., Kumar, V. & Srivastava, J. Selecting the right objective measure for association analysis. in *Information Systems* vol. 29 293–313 (Pergamon, 2004).
- 75. Brin, S., Motwani, R., Ullman, J. D. & Tsur, S. Dynamic Itemset Counting and Implication Rules for Market Basket Data. *SIGMOD Rec. (ACM Spec. Interes. Gr. Manag. Data)* **26**, 255–264 (1997).
- 76. Aschengrau, A. & Seage, G. R. *Essentials of Epidemiology in Public Health*. (Jones & Bartlett Learning, 2014).
- 77. Hahsler, M., Grün, B. & Hornik, K. arules A Computational Environment for Mining Association Rules and Frequent Item Sets. *J. Stat. Software; Vol 1, Issue 15* (2005) doi:10.18637/jss.v014.i15.
- 78. Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. *J. Stat. Mech. Theory Exp.* **2008**, (2008).

- 79. Kamiński, B., Poulin, V., Prałat, P., Szufel, P. & Théberge, F. Clustering via hypergraph modularity. *PLoS One* **14**, (2019).
- 80. Fruchterman, T. M. J. & Reingold, E. M. Graph drawing by force-directed placement. *Softw. Pract. Exp.* **21**, 1129–1164 (1991).
- 81. Joslyn, C. *et al.* High Performance Hypergraph Analytics of Domain Name System Relationships. in *Hawaii International Conference on System Sciences 2019 Symposium on Cybersecurity Big Data Analytics* (2019).
- 82. Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218 (1985).
- 83. Wu, T., Chen, Y. & Han, J. Re-examination of interestingness measures in pattern mining: A unified framework. *Data Min. Knowl. Discov.* **21**, 371–397 (2010).
- 84. Brunson, J. C. & Laubenbacher, R. C. Applications of network analysis to routinely collected health care data: A systematic review. *Journal of the American Medical Informatics Association* vol. 25 210–221 (2018).

# Appendix A. Diagnosis codes for chronic disease ascertainment, based on the Elixhauser comorbidity index, in the Medical Services and Hospital Abstracts databases.

| Chronic disease category                  | Medical Services ICD-9-CM diagnosis codes                                                                                                                           | Hospital Abstracts ICD-10-CA diagnosis codes                                                                                                                                                                                                                       |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alcohol abuse                             | 265.2, 291.1, 291.2, 291.3, 291.5, 291.8, 291.9, 303.0, 303.9, 305.0, 357.5, 425.5, 535.3, 571.0, 571.1, 571.2, 571.3, 980, V11.3                                   | F10, E52, G62.1, I42.6, K29.2, K70.0, K70.3, K70.9, T51, Z50.2, Z71.4, Z72.1                                                                                                                                                                                       |
| Blood loss anemia                         | 280.0                                                                                                                                                               | D50.0                                                                                                                                                                                                                                                              |
| Cardiac arrhythmia                        | 426.0, 426.13, 426.7, 426.9, 426.10, 426.12,<br>427.0, 427.1, 427.2, 427.3, 427.4, 427.6, 427.8,<br>427.9, 785.0, 996.01, 996.04, V45.0, V53.3                      | I44.1, I44.2, I44.3, I45.6, I45.9, I47, I48, I49, R00.0, R00.1, R00.8, T82.1, Z45.0, Z95.0                                                                                                                                                                         |
| Chronic pulmonary disease                 | 416.8, 416.9, 490, 491, 492, 493, 494, 495, 496, 500, 501, 502, 503, 504, 505, 506.4, 508.1, 508.8                                                                  | 127.8, 127.9, J40, J41, J42, J43, J44, J45, J46, J47, J60, J61, J62, J63, J64, J65, J66, J67, J68.4, J70.1, J70.3                                                                                                                                                  |
| Coagulopathy                              | 286, 287.1, 287.3, 287.4, 287.5                                                                                                                                     | D65, D66, D67, D68, D69.1, D69.3, D69.4, D69.5, D69.6                                                                                                                                                                                                              |
| Congestive heart failure                  | 398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 425.4, 425.5, 425.7, 425.8, 425.9, 428                                              | I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5,<br>I42.6, I42.7, I42.8, I42.9, I43, I50, P29.0                                                                                                                                                                    |
| Deficiency anemia                         | 280.1, 280.8, 280.9, 281                                                                                                                                            | D50.8, D50.9, D51, D52, D53                                                                                                                                                                                                                                        |
| Depression                                | 296.2, 296.3, 296.5, 300.4, 309, 311                                                                                                                                | F20.4, F31.3, F31.4, F31.5, F32, F33, F34.1,<br>F41.2, F43.2                                                                                                                                                                                                       |
| Diabetes, with complications              | 250.4, 250.5, 250.6, 250.7, 250.8, 250.9                                                                                                                            | E10.2, E10.3, E10.4, E10.5, E10.6, E10.7,<br>E10.8, E11.2, E11.3, E11.4, E11.5, E11.6,<br>E11.7, E11.8, E12.2, E12.3, E12.4, E12.5,<br>E12.6, E12.7, E12.8, E13.2, E13.3, E13.4,<br>E13.5, E13.6, E13.7, E13.8, E14.2, E14.3,<br>E14.4, E14.5, E14.6, E14.7, E14.8 |
| Diabetes, without complications           | 250.0, 250.1, 250.2, 250.3                                                                                                                                          | E10.0, E10.1, E10.9, E11.0, E11.1, E11.9,<br>E12.0, E12.1, E12.9, E13.0, E13.1, E13.9,<br>E14.0, E14.1, E14.9                                                                                                                                                      |
| Drug abuse                                | 292, 304, 305.2, 305.3, 305.4, 305.5, 305.6, 305.7, 305.8, 305.9, V65.42                                                                                            | F11, F12, F13, F14, F15, F16, F18, F19, Z71.5, Z72.2                                                                                                                                                                                                               |
| Fluid and electrolyte disorders           | 253.6, 276                                                                                                                                                          | E22.2, E86, E87                                                                                                                                                                                                                                                    |
| HIV/AIDS                                  | 042, 043, 044                                                                                                                                                       | B20, B21, B22, B24                                                                                                                                                                                                                                                 |
| Hypertension, with complications          | 402, 403, 404, 405                                                                                                                                                  | 111, 112, 113, 115                                                                                                                                                                                                                                                 |
| Hypertension, without complications       | 401                                                                                                                                                                 | I10                                                                                                                                                                                                                                                                |
| Hypothyroidism                            | 240.9, 243, 244, 246.1, 246.8                                                                                                                                       | E00, E01, E02, E03, E89.0                                                                                                                                                                                                                                          |
| Liver disease                             | 070.22, 070.23, 070.32, 070.33, 070.44, 070.54,<br>070.6, 070.9, 456.0, 456.1, 456.2, 570, 571,<br>572.2, 572.3, 572.4, 572.8, 573.3, 573.4, 573.8,<br>573.9, V42.7 | B18, I85, I86.4, I98.2, K70, K71.1, K71.3,<br>K71.4, K71.5, K71.7, K72, K73, K74, K76.0,<br>K76.2, K76.3, K76.4, K76.5, K76.6, K76.7,<br>K76.8, K76.9, Z94.4                                                                                                       |
| Lymphoma                                  | 200, 201, 202, 203.0, 238.6                                                                                                                                         | C81, C82, C83, C84, C85, C88, C96, C90.0,<br>C90.2                                                                                                                                                                                                                 |
| Metastatic cancer                         | 196, 197, 198, 199                                                                                                                                                  | C77, C78, C79, C80                                                                                                                                                                                                                                                 |
| Neurological disorders, other             | 331.9, 332.0, 332.1, 333.4, 333.5, 333.92, 334, 335, 336.2, 340, 341, 345, 348.1, 348.3, 780.3, 784.3                                                               | G10, G11, G12, G13, G20, G21, G22, G25.4,<br>G25.5, G31.2, G31.8, G31.9, G32, G35, G36,<br>G37, G40, G41, G93.1, G93.4, R47.0, R56                                                                                                                                 |
| Obesity                                   | 278.0                                                                                                                                                               | E66                                                                                                                                                                                                                                                                |
| Paralysis                                 | 334.1, 342, 343, 344.0, 344.1, 344.2, 344.3, 344.4, 344.5, 344.6, 344.9                                                                                             | G04.1, G11.4, G80.1, G80.2, G81, G82, G83.0, G83.1, G83.2, G83.3, G83.4, G83.9                                                                                                                                                                                     |
| Peptic ulcer disease (excluding bleeding) | 531.7, 531.9, 532.7, 532.9, 533.7, 533.9, 534.7, 534.9                                                                                                              | K25.7, K25.9, K26.7, K26.9, K27.7, K27.9,<br>K28.7, K28.9                                                                                                                                                                                                          |
| Peripheral vascular disorders             | 093.0, 437.3, 440, 441, 443.1, 443.2, 443.8, 443.9, 447.1, 557.1, 557.9, V43.4                                                                                      | I70, I71, I73.1, I73.8, I73.9, I77.1, I79.0, I79.2, K55.1, K55.8, K55.9, Z95.8, Z95.9                                                                                                                                                                              |
| Psychoses                                 | 293.8, 295, 296.04, 296.14, 296.44, 296.54, 297, 298                                                                                                                | F20, F22, F23, F24, F25, F28, F29, F30.2,<br>F31.2, F31.5                                                                                                                                                                                                          |
| Pulmonary circulation disorders           | 415.0, 415.1, 416, 417.0, 417.8, 417.9                                                                                                                              | 126, 127, 128.0, 128.8, 128.9                                                                                                                                                                                                                                      |
| Renal failure                             | 403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 404.92, 404.93, 585, 586, 588.0, V42.0, V45.1, V56                                                          | I12.0, I13.1, N18, N19, N25.0, Z49.0, Z49.1, Z49.2, Z94.0, Z99.2                                                                                                                                                                                                   |

| Rheumatoid arthritis            | 446, 701.0, 710.0, 710.1, 710.2, 710.3, 710.4, 710.8, 710.9, 711.2, 714, 719.3, 720, 725, 728.5, 728.89, 729.30                                                                                                                                                                   | L94.0, L94.1, L94.3, M05, M06, M08, M12.0,<br>M12.3, M30, M31.0, M31.1, M31.2, M31.3,<br>M32, M33, M34, M35, M45, M46.1, M46.8,<br>M46.9                                                                                                                                                                                                                                          |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solid tumor, without metastasis | 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195 | C00, C01, C02, C03, C04, C05, C06, C07, C08,<br>C09, C10, C11, C12, C13, C14, C15, C16, C17,<br>C18, C19, C20, C21, C22, C23, C24, C25, C26,<br>C30, C31, C32, C33, C34, C37, C38, C39, C40,<br>C41, C43, C45, C46, C47, C48, C49, C50, C51,<br>C52, C53, C54, C55, C56, C57, C58, C60, C61,<br>C62, C63, C64, C65, C66, C67, C68, C69, C70,<br>C71, C72, C73, C74, C75, C76, C97 |
| Valvular disease                | 093.2, 394, 395, 396, 397, 424, 746.3, 746.4, 746.5, 746.6, V42.2, V43.3                                                                                                                                                                                                          | A52.0, I05, I06, I07, I08, I09.1, I09.8, I34, I35, I36, I37, I38, I39, Q23.0, Q23.1, Q23.2, Q23.3, Z95.2, Z95.3, Z95.4                                                                                                                                                                                                                                                            |
| Weight loss                     | 260, 261, 262, 263, 783.2, 799.4                                                                                                                                                                                                                                                  | E40, E41, E42, E43, E44, E45, E46, R63.4, R64                                                                                                                                                                                                                                                                                                                                     |

ICD = International Statistical Classification of Diseases and Related Health Problems, HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency syndrome.

| Chronic disease category                  | Frequency | Prevalence (%) |
|-------------------------------------------|-----------|----------------|
| Hypertension, without complications       | 338,647   | 22.42          |
| Chronic pulmonary disease                 | 231,748   | 15.34          |
| Depression                                | 191,666   | 12.69          |
| Diabetes, without complications           | 146,939   | 9.73           |
| Deficiency anemia                         | 94,175    | 6.23           |
| Hypothyroidism                            | 90,843    | 6.01           |
| Obesity                                   | 70,856    | 4.69           |
| Cardiac arrhythmia                        | 67,772    | 4.49           |
| Solid tumor, without metastasis           | 65,667    | 4.35           |
| Neurological disorders, other             | 41,243    | 2.73           |
| Congestive heart failure                  | 40,346    | 2.67           |
| Diabetes, with complications              | 39,268    | 2.60           |
| Fluid and electrolyte disorders           | 37,678    | 2.49           |
| Liver disease                             | 34,125    | 2.26           |
| Psychoses                                 | 33,303    | 2.20           |
| Rheumatoid arthritis                      | 32,776    | 2.17           |
| Peripheral vascular disorders             | 27,797    | 1.84           |
| Renal failure                             | 23,130    | 1.53           |
| Alcohol abuse                             | 21,798    | 1.44           |
| Weight loss                               | 18,315    | 1.21           |
| Drug abuse                                | 17,490    | 1.16           |
| Coagulopathy                              | 16,154    | 1.07           |
| Metastatic cancer                         | 13,606    | 0.90           |
| Valvular disease                          | 13,023    | 0.86           |
| Peptic ulcer disease (excluding bleeding) | 10,236    | 0.68           |
| Pulmonary circulation disorders           | 7,660     | 0.51           |
| Lymphoma                                  | 6,991     | 0.46           |
| Paralysis                                 | 6,502     | 0.43           |
| Hypertension, with complications          | 4,511     | 0.30           |
| Blood loss anemia                         | 3,767     | 0.25           |
| HIV/AIDS                                  | 1,771     | 0.12           |

# Appendix B. Frequency and prevalence of disease categories ascertained using the Elixhauser comorbidity index.

HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency syndrome.

| High-level disease category | Chronic disease category                                          | Frequency | Prevalence<br>(%) | Excluded     |
|-----------------------------|-------------------------------------------------------------------|-----------|-------------------|--------------|
| Administrative              | Administrative concerns and non-specific laboratory abnormalities | 423       | 0.03              | ✓            |
|                             | Surgical aftercare                                                | 366       | 0.02              | $\checkmark$ |
|                             | Transplant status                                                 | 1,221     | 0.08              | $\checkmark$ |
| Allergy                     | Asthma                                                            | 136,609   | 9.04              |              |
|                             | Disorders of the immune system                                    | 5,743     | 0.38              |              |
| Cardiovascular              | Acute myocardial infarction                                       | 1,315     | 0.09              |              |
|                             | Cardiac arrest, shock                                             | 943       | 0.06              |              |
|                             | Cardiac arrhythmia                                                | 61,786    | 4.09              |              |
|                             | Cardiac valve disorders                                           | 11,836    | 0.78              |              |
|                             | Cardiomyopathy                                                    | 6,769     | 0.45              |              |
|                             | Cardiovascular disorders, other                                   | 17,018    | 1.13              |              |
|                             | Cardiovascular signs and symptoms                                 | 2,639     | 0.17              |              |
|                             | Congenital heart disease                                          | 1,989     | 0.13              |              |
|                             | Congestive heart failure                                          | 38,157    | 2.53              |              |
|                             | Disorders of lipid metabolism                                     | 147,942   | 9.79              |              |
|                             | Generalized atherosclerosis                                       | 22,978    | 1.52              |              |
|                             | Heart murmur                                                      | <6        | < 0.01            | $\checkmark$ |
|                             | Hypertension                                                      | 340,572   | 22.54             |              |
|                             | Ischemic heart disease (excluding acute myocardial infarction)    | 72,660    | 4.81              |              |
| Dental                      | Disorders of mouth                                                | 680       | 0.05              |              |
| Ear, Nose, Throat           | Chronic pharyngitis and tonsillitis                               | 16,672    | 1.1               |              |
|                             | Deafness, hearing loss                                            | 33,015    | 2.19              |              |
|                             | ENT disorders, other                                              | 2,570     | 0.17              |              |
|                             | Otitis externa                                                    | 168       | 0.01              |              |
|                             | Otitis media                                                      | 464       | 0.03              |              |
|                             | Temporomandibular joint disease                                   | 9,402     | 0.62              |              |
| Endocrine                   | Hypothyroidism                                                    | 89,286    | 5.91              |              |
|                             | Osteoporosis                                                      | 21,384    | 1.42              |              |
|                             | Other endocrine disorders                                         | 43,315    | 2.87              |              |
|                             | Short stature                                                     | 798       | 0.05              | $\checkmark$ |
|                             | Type 1 diabetes                                                   | 14,237    | 0.94              |              |
|                             | Type 2 diabetes                                                   | 136,611   | 9.04              |              |
| Eye                         | Age-related macular degeneration                                  | 12,870    | 0.85              |              |
|                             | Blindness                                                         | 3,929     | 0.26              |              |
|                             | Cataract, aphakia                                                 | 66,427    | 4.4               |              |
|                             | Conjunctivitis, keratitis                                         | 4,199     | 0.28              |              |
|                             | Diabetic retinopathy                                              | 12,537    | 0.83              |              |
|                             | Disorders of the eyelid and lacrimal duct                         | 8,636     | 0.57              |              |
|                             | Eye, other disorders                                              | 20,487    | 1.36              |              |
|                             | Glaucoma                                                          | 42,365    | 2.8               |              |
|                             | Ophthalmic signs and symptoms                                     | 1,203     | 0.08              |              |
|                             | Refractive errors                                                 | 539,941   | 35.74             | $\checkmark$ |
|                             | Retinal disorders (excluding diabetic retinopathy)                | 11,055    | 0.73              |              |

# Appendix C. Frequency and prevalence of chronic disease categories ascertained using the Johns Hopkins Adjusted Clinical Groups (ACG) System.

\_

|                            | Strabismus, amblyopia                     | 4,367  | 0.29   | $\checkmark$ |
|----------------------------|-------------------------------------------|--------|--------|--------------|
| Female Reproductive        | Endometriosis                             | 9,787  | 0.65   |              |
|                            | Female gynecologic conditions, other      | 12     | < 0.01 | $\checkmark$ |
| Gastrointestinal/Hepatic   | Acute hepatitis                           | 118    | < 0.01 | $\checkmark$ |
|                            | Chronic liver disease                     | 23,151 | 1.53   |              |
|                            | Chronic pancreatitis                      | 3,967  | 0.26   |              |
|                            | Diverticular disease of colon             | 35,755 | 2.37   |              |
|                            | Gastroenteritis                           | 36     | < 0.01 |              |
|                            | Gastroesophageal reflux                   | 5,568  | 0.37   |              |
|                            | Gastrointestinal signs and symptoms       | 2,311  | 0.15   |              |
|                            | Gastrointestinal/hepatic disorders, other | 13,607 | 0.9    |              |
|                            | Hepatitis C                               | 1,386  | 0.09   |              |
|                            | Inflammatory bowel disease                | 13,975 | 0.93   |              |
|                            | Irritable bowel syndrome                  | 28,283 | 1.87   |              |
|                            | Lactose intolerance                       | 1,529  | 0.1    |              |
| General Signs and Symptoms | Debility and undue fatigue                | 8,503  | 0.56   |              |
|                            | Lymphadenopathy                           | <6     | < 0.01 | ✓            |
|                            | Nonspecific signs and symptoms            | 1,231  | 0.08   | $\checkmark$ |
| General Surgery            | Anorectal conditions                      | 1,540  | 0.1    |              |
|                            | Aortic aneurysm                           | 1,552  | 0.1    |              |
|                            | Benign and unspecified neoplasm           | 36,277 | 2.4    |              |
|                            | Cholelithiasis, cholecystitis             | 21,440 | 1.42   |              |
|                            | Chronic cystic disease of the breast      | 3,669  | 0.24   |              |
|                            | Gastrointestinal obstruction/perforation  | 46     | < 0.01 |              |
|                            | Peripheral vascular disease               | 20,448 | 1.35   |              |
|                            | Varicose veins of lower extremities       | 18,603 | 1.23   |              |
| Genetic                    | Chromosomal anomalies                     | 2,619  | 0.17   |              |
|                            | Inherited metabolic disorders             | 44,445 | 2.94   |              |
| Genito-urinary             | Genito-urinary disorders, other           | 7,713  | 0.51   |              |
|                            | Incontinence                              | 11,002 | 0.73   |              |
|                            | Other male genital disease                | 614    | 0.04   |              |
|                            | Prostatic hypertrophy                     | 32,176 | 2.13   |              |
|                            | Prostatitis                               | 1,183  | 0.08   |              |
|                            | Renal calculi                             | 749    | 0.05   |              |
|                            | Urinary symptoms                          | 635    | 0.04   |              |
|                            | Urinary tract infections                  | 1,510  | 0.1    |              |
|                            | Vesicoureteral reflux                     | 2,189  | 0.14   |              |
| Hematologic                | Aplastic anemia                           | 1,302  | 0.09   |              |
|                            | Deep vein thrombosis                      | 369    | 0.02   |              |
|                            | Deficiency anemias                        | 42,885 | 2.84   |              |
|                            | Hematologic disorders, other              | 3,688  | 0.24   |              |
|                            | Hemophilia, coagulation disorder          | 6,984  | 0.46   |              |
|                            | Neonatal jaundice                         | 111    | < 0.01 | ✓            |
|                            | Other hemolytic anemias                   | 2,996  | 0.2    |              |
|                            | Sickle cell disease                       | 531    | 0.04   |              |
|                            | Thrombophlebitis                          | 14     | < 0.01 | $\checkmark$ |
| Infections                 | Fungal infections                         | 26     | < 0.01 |              |
|                            |                                           |        |        |              |

|                 | HIV, AIDS                                      | 1,816   | 0.12   |              |
|-----------------|------------------------------------------------|---------|--------|--------------|
|                 | Infections, other                              | 271     | 0.02   |              |
|                 | Sexually transmitted diseases                  | 300     | 0.02   |              |
|                 | Tuberculosis infection                         | <6      | < 0.01 | $\checkmark$ |
| Malignancies    | Acute leukemia                                 | 1,233   | 0.08   |              |
|                 | High impact malignant neoplasms                | 19,059  | 1.26   | $\checkmark$ |
|                 | Low impact malignant neoplasms                 | 19,812  | 1.31   | $\checkmark$ |
|                 | Malignant neoplasms of the skin                | 12,626  | 0.84   |              |
|                 | Malignant neoplasms, bladder                   | 3,883   | 0.26   |              |
|                 | Malignant neoplasms, breast                    | 11,789  | 0.78   |              |
|                 | Malignant neoplasms, cervix, uterus            | 3,549   | 0.23   |              |
|                 | Malignant neoplasms, colorectal                | 9,859   | 0.65   |              |
|                 | Malignant neoplasms, esophagus                 | 924     | 0.06   |              |
|                 | Malignant neoplasms, kidney                    | 2,882   | 0.19   |              |
|                 | Malignant neoplasms, liver and biliary tract   | 1,816   | 0.12   |              |
|                 | Malignant neoplasms, lung                      | 7,724   | 0.51   |              |
|                 | Malignant neoplasms, lymphomas                 | 6,077   | 0.4    |              |
|                 | Malignant neoplasms, ovary                     | 1,791   | 0.12   |              |
|                 | Malignant neoplasms, pancreas                  | 1,713   | 0.11   |              |
|                 | Malignant neoplasms, prostate                  | 11,072  | 0.73   |              |
|                 | Malignant neoplasms, stomach                   | 1,328   | 0.09   |              |
| Musculoskeletal | Acquired foot deformities                      | 3,307   | 0.22   |              |
|                 | Acute sprains and strains                      | 848     | 0.06   | $\checkmark$ |
|                 | Amputation status                              | 256     | 0.02   | ✓            |
|                 | Bursitis, synovitis, tenosynovitis             | 8,254   | 0.55   |              |
|                 | Cervical pain syndromes                        | 5,639   | 0.37   |              |
|                 | Congenital anomalies of limbs, hands, and feet | 93      | < 0.01 | $\checkmark$ |
|                 | Congenital hip dislocation                     | 16      | < 0.01 | ✓            |
|                 | Degenerative joint disease                     | 137,076 | 9.07   |              |
|                 | Fracture of neck of femur (hip)                | 16      | < 0.01 | ✓            |
|                 | Fractures (excluding digits)                   | 34      | < 0.01 | $\checkmark$ |
|                 | Joint disorders, trauma related                | 14,288  | 0.95   |              |
|                 | Kyphoscoliosis                                 | 2,535   | 0.17   |              |
|                 | Low back pain                                  | 34,195  | 2.26   |              |
|                 | Musculoskeletal disorders, other               | 21,863  | 1.45   |              |
|                 | Musculoskeletal signs and symptoms             | 1,975   | 0.13   |              |
| Neonatal        | Disorders of newborn period                    | 205     | 0.01   | $\checkmark$ |
|                 | Newborn status, complicated                    | 70      | < 0.01 | ✓            |
| Neurologic      | Autism Spectrum Disorder                       | 5,122   | 0.34   |              |
|                 | Central nervous system infections              | 411     | 0.03   |              |
|                 | Cerebral palsy                                 | 1,971   | 0.13   |              |
|                 | Cerebrovascular disease                        | 31,280  | 2.07   |              |
|                 | Delirium                                       | 252     | 0.02   |              |
|                 | Dementia                                       | 29,036  | 1.92   |              |
|                 | Developmental disorder                         | 11,459  | 0.76   |              |
|                 | Head injury                                    | 178     | 0.01   |              |
|                 | Migraines                                      | 1,419   | 0.09   |              |
|                 |                                                |         |        |              |

|                | Multiple sclerosis                         | 4,480   | 0.3    |              |
|----------------|--------------------------------------------|---------|--------|--------------|
|                | Muscular dystrophy                         | 2,231   | 0.15   |              |
|                | Neurologic disorders, other                | 20,979  | 1.39   |              |
|                | Neurologic signs and symptoms              | 5,252   | 0.35   |              |
|                | Organic brain syndrome                     | 12,393  | 0.82   |              |
|                | Paralytic syndromes, other                 | 2,916   | 0.19   |              |
|                | Parkinsons disease                         | 5,746   | 0.38   |              |
|                | Peripheral neuropathy, neuritis            | 15,342  | 1.02   |              |
|                | Quadriplegia and paraplegia                | 1,000   | 0.07   |              |
|                | Seizure disorder                           | 12,642  | 0.84   |              |
|                | Sleep problems                             | 719     | 0.05   |              |
|                | Spinal cord injury/disorders               | 10,474  | 0.69   |              |
|                | Vertiginous syndromes                      | 99      | < 0.01 |              |
| Nutrition      | Failure to thrive                          | 15,003  | 0.99   |              |
|                | Nutritional deficiencies                   | 552     | 0.04   |              |
|                | Nutritional disorders, other               | 3,256   | 0.22   |              |
|                | Obesity                                    | 68,231  | 4.52   |              |
| Psychosocial   | Anxiety, neuroses                          | 73,751  | 4.88   |              |
|                | Attention deficit disorder                 | 30,692  | 2.03   |              |
|                | Bipolar disorder                           | 11,770  | 0.78   |              |
|                | Depression                                 | 167,133 | 11.06  |              |
|                | Eating disorder                            | 809     | 0.05   |              |
|                | Impulse control                            | 256     | 0.02   |              |
|                | Major depression                           | 28,737  | 1.9    |              |
|                | Personality disorders                      | 8,957   | 0.59   |              |
|                | Post traumatic stress disorder             | 6,465   | 0.43   |              |
|                | Psychologic signs and symptoms             | 1,181   | 0.08   |              |
|                | Psychological disorders of childhood       | 6,303   | 0.42   |              |
|                | Psychosexual                               | 1,797   | 0.12   |              |
|                | Psych-physiologic and somatoform disorders | 3,578   | 0.24   |              |
|                | Schizophrenia and affective psychosis      | 10,633  | 0.7    |              |
|                | Sleep disorders of nonorganic origin       | 594     | 0.04   |              |
|                | Substance use                              | 15,414  | 1.02   |              |
| Reconstructive | Chronic ulcer of the skin                  | 16,369  | 1.08   |              |
|                | Cleft lip and palate                       | 197     | 0.01   |              |
| Renal          | Accute renal failure                       | 21      | < 0.01 | $\checkmark$ |
|                | Chronic renal failure                      | 15,592  | 1.03   |              |
|                | ESRD                                       | 3,250   | 0.22   |              |
|                | Fluid/electrolyte disturbances             | 834     | 0.06   |              |
|                | Nephritis, nephrosis                       | 3,345   | 0.22   |              |
|                | Renal disorders, other                     | 22,647  | 1.5    |              |
| Respiratory    | Acute lower respiratory tract infection    | 12      | < 0.01 | $\checkmark$ |
|                | Acute respiratory failure                  | 259     | 0.02   | $\checkmark$ |
|                | Chronic respiratory failure                | 8,969   | 0.6    |              |
|                | Cystic fibrosis                            | 399     | 0.03   |              |
|                | Emphysema, chronic bronchitis, COPD        | 55,611  | 3.68   |              |
|                | Pulmonary embolism                         | 590     | 0.04   |              |
|                |                                            |         |        |              |

|                                  | Respiratory disorders, other                    | 33,318 | 2.21   |              |
|----------------------------------|-------------------------------------------------|--------|--------|--------------|
|                                  | Respiratory signs and symptoms                  | 1,271  | 0.08   |              |
|                                  | Sinusitis                                       | 12     | < 0.01 | $\checkmark$ |
|                                  | Sleep apnea                                     | 40,007 | 2.65   |              |
|                                  | Tracheostomy                                    | 220    | 0.01   | $\checkmark$ |
| Rheumatologic                    | Arthropathy                                     | 5,014  | 0.33   |              |
|                                  | Autoimmune and connective tissue diseases       | 20,356 | 1.35   |              |
|                                  | Gout                                            | 33,846 | 2.24   |              |
|                                  | Raynauds syndrome                               | 85     | < 0.01 |              |
|                                  | Rheumatoid arthritis                            | 16,132 | 1.07   |              |
| Skin                             | Other inflammatory conditions of skin           | 11     | < 0.01 | $\checkmark$ |
|                                  | Other skin disorders                            | 1,025  | 0.07   |              |
| Toxic Effects and Adverse Events | Psoriasis                                       | 19,452 | 1.29   |              |
|                                  | Adverse effects of medicinal agents             | 194    | 0.01   | ✓            |
|                                  | Adverse events from medical/surgical procedures | 397    | 0.03   | $\checkmark$ |
|                                  | Complications of mechanical devices             | 230    | 0.02   | ✓            |
|                                  | Toxic effects of nonmedicinal agents            | 33     | < 0.01 | $\checkmark$ |

ENT = ear, nose, and throat; HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency syndrome; ESRD = end-stage renal disease; COPD = chronic obstructive pulmonary disease.

|                                                  | Ma                  | Female      |               |              |
|--------------------------------------------------|---------------------|-------------|---------------|--------------|
| Expanded Diagnostic Cluster                      | $\frac{(N=750)}{N}$ | <u>9/</u>   | (N=754        | <u>,480)</u> |
| A convinced for at deformations                  | 1 097               | <b>70</b>   | 2 220         | <u>%0</u>    |
| A cute leukemie                                  | 1,087               | 0.14        | 2,220<br>520  | 0.29         |
| Acute reukenina<br>A cute muccondial information | 703                 | 0.09        | 530           | 0.07         |
| Acute myocardial infarction                      | 182                 | 0.1         | 555<br>124    | 0.07         |
| Acute respiratory failure                        | 135                 | 0.02        | 124           | 0.02         |
| Age-related macular degeneration                 | 4,971               | 0.00        | 7899          | 1.05         |
| Anorectal conditions                             | /00                 | 0.1         | /80           | 0.1          |
| Anxiety, neuroses                                | 20,488              | 5.5<br>0.12 | 47,201<br>508 | 0.20         |
| A ortic aneurysm                                 | 954                 | 0.13        | 598           | 0.08         |
| Aplastic anemia                                  | 699                 | 0.09        | 003           | 0.08         |
| Arthropathy                                      | 2,063               | 0.27        | 2,951         | 0.39         |
| Asthma                                           | 62,134              | 8.22        | /4,4/4        | 9.87         |
| Attention deficit disorder                       | 20,454              | 2.7         | 10,237        | 1.36         |
| Autism spectrum disorder                         | 3,970               | 0.52        | 1,152         | 0.15         |
| Autoimmune and connective tissue diseases        | 6,932               | 0.92        | 13,424        | 1.78         |
| Benign and unspecified neoplasm                  | 15,469              | 2.05        | 20,808        | 2.76         |
| Bipolar disorder                                 | 4,772               | 0.63        | 6,998         | 0.93         |
| Blindness                                        | 1,811               | 0.24        | 2,118         | 0.28         |
| Bursitis, synovitis, tenosynovitis               | 3,571               | 0.47        | 4,683         | 0.62         |
| Cardiac arrest, shock                            | 544                 | 0.07        | 399           | 0.05         |
| Cardiac arrhythmia                               | 33,174              | 4.39        | 28,612        | 3.79         |
| Cardiac valve disorders                          | 6,415               | 0.85        | 5,421         | 0.72         |
| Cardiomyopathy                                   | 4,359               | 0.58        | 2,410         | 0.32         |
| Cardiovascular disorders, other                  | 7,502               | 0.99        | 9,516         | 1.26         |
| Cardiovascular signs and symptoms                | 1,393               | 0.18        | 1,246         | 0.17         |
| Cataract, aphakia                                | 28,320              | 3.75        | 38,107        | 5.05         |
| Central nervous system infections                | 217                 | 0.03        | 194           | 0.03         |
| Cerebral palsy                                   | 1,063               | 0.14        | 908           | 0.12         |
| Cerebrovascular disease                          | 15,378              | 2.03        | 15,901        | 2.11         |
| Cervical pain syndromes                          | 2,796               | 0.37        | 2,842         | 0.38         |
| Cholelithiasis, cholecystitis                    | 6,856               | 0.91        | 14,584        | 1.93         |
| Chromosomal anomalies                            | 1,073               | 0.14        | 1,544         | 0.2          |
| Chronic cystic disease of the breast             | 36                  | < 0.01      | 3,633         | 0.48         |
| Chronic liver disease                            | 12,171              | 1.61        | 10,979        | 1.46         |
| Chronic pancreatitis                             | 1,786               | 0.24        | 2,181         | 0.29         |
| Chronic pharyngitis and tonsillitis              | 7,280               | 0.96        | 9,392         | 1.24         |
| Chronic renal failure                            | 8,369               | 1.11        | 7,223         | 0.96         |
| Chronic ulcer of the skin                        | 8,430               | 1.11        | 7,939         | 1.05         |
| Cleft lip and palate                             | 102                 | 0.01        | 95            | 0.01         |
| Congenital heart disease                         | 1,053               | 0.14        | 934           | 0.12         |
| Congestive heart failure                         | 19,007              | 2.51        | 19,150        | 2.54         |
| Conjunctivitis, keratitis                        | 1,625               | 0.21        | 2,574         | 0.34         |
| Cystic fibrosis                                  | 203                 | 0.03        | 196           | 0.03         |

# Appendix D. Frequency and prevalence of Expanded Diagnostic Clusters, ascertained using the Johns Hopkins Adjusted Clinical Groups (ACG) System, stratified by sex.

| Deafness, hearing loss                    | 16,485  | 2.18   | 16,529  | 2.19   |
|-------------------------------------------|---------|--------|---------|--------|
| Debility and undue fatigue                | 3,087   | 0.41   | 5,416   | 0.72   |
| Deep vein thrombosis                      | 180     | 0.02   | 189     | 0.03   |
| Deficiency anemias                        | 15,780  | 2.09   | 27,105  | 3.59   |
| Degenerative joint disease                | 56,654  | 7.49   | 80,422  | 10.66  |
| Delirium                                  | 116     | 0.02   | 136     | 0.02   |
| Dementia                                  | 11,560  | 1.53   | 17,475  | 2.32   |
| Depression                                | 58,476  | 7.73   | 108,651 | 14.4   |
| Developmental disorder                    | 7,141   | 0.94   | 4,317   | 0.57   |
| Diabetic retinopathy                      | 6,484   | 0.86   | 6,053   | 0.8    |
| Disorders of lipid metabolism             | 79,433  | 10.5   | 68,507  | 9.08   |
| Disorders of mouth                        | 259     | 0.03   | 421     | 0.06   |
| Disorders of the eyelid and lacrimal duct | 3,033   | 0.4    | 5,603   | 0.74   |
| Disorders of the immune system            | 2,655   | 0.35   | 3,088   | 0.41   |
| Diverticular disease of colon             | 16,697  | 2.21   | 19,058  | 2.53   |
| Eating disorder                           | 104     | 0.01   | 704     | 0.09   |
| Emphysema, chronic bronchitis, COPD       | 27,029  | 3.57   | 28,582  | 3.79   |
| Endometriosis                             | 0       | 0      | 9,779   | 1.3    |
| ENT disorders, other                      | 1,104   | 0.15   | 1,466   | 0.19   |
| ESRD                                      | 1,860   | 0.25   | 1,390   | 0.18   |
| Eve, other disorders                      | 9,556   | 1.26   | 10,931  | 1.45   |
| Failure to thrive                         | 7,538   | 1      | 7,464   | 0.99   |
| Female gynecologic conditions, other      | 0       | 0      | 12      | < 0.01 |
| Fluid/electrolyte disturbances            | 333     | 0.04   | 501     | 0.07   |
| Fungal infections                         | 10      | < 0.01 | 16      | < 0.01 |
| Gastroenteritis                           | 16      | < 0.01 | 20      | < 0.01 |
| Gastroesophageal reflux                   | 3,279   | 0.43   | 2,289   | 0.3    |
| Gastrointestinal obstruction/perforation  | 27      | < 0.01 | 19      | < 0.01 |
| Gastrointestinal signs and symptoms       | 990     | 0.13   | 1,320   | 0.17   |
| Gastrointestinal/hepatic disorders, other | 5,344   | 0.71   | 8,262   | 1.1    |
| Generalized atherosclerosis               | 12,369  | 1.64   | 10,608  | 1.41   |
| Genito-urinary disorders, other           | 2.222   | 0.29   | 5.486   | 0.73   |
| Glaucoma                                  | 17,479  | 2.31   | 24,886  | 3.3    |
| Gout                                      | 24,187  | 3.2    | 9,659   | 1.28   |
| Head injury                               | 109     | 0.01   | 69      | < 0.01 |
| Heart murmur                              | 0       | 0      | <6      | < 0.01 |
| Hematologic disorders, other              | 1,565   | 0.21   | 2,123   | 0.28   |
| Hemophilia, coagulation disorder          | 3,307   | 0.44   | 3,677   | 0.49   |
| Hepatitis C                               | 805     | 0.11   | 581     | 0.08   |
| HIV, AIDS                                 | 1,149   | 0.15   | 667     | 0.09   |
| Hypertension                              | 167,982 | 22.21  | 172,588 | 22.88  |
| Hypothyroidism                            | 21,834  | 2.89   | 67,452  | 8.94   |
| Impulse control                           | 136     | 0.02   | 120     | 0.02   |
| Incontinence                              | <6      | < 0.01 | 11,000  | 1.46   |
| Infections, other                         | 119     | 0.02   | 152     | 0.02   |
| Inflammatory bowel disease                | 6,217   | 0.82   | 7,758   | 1.03   |
| Inherited metabolic disorders             | 23,309  | 3.08   | 21,136  | 2.8    |
|                                           | -       |        |         |        |

| Irritable bowel syndrome                                       | 8,655  | 1.14   | 19,628 | 2.6    |
|----------------------------------------------------------------|--------|--------|--------|--------|
| Ischemic heart disease (excluding acute myocardial infarction) | 44,168 | 5.84   | 28,492 | 3.78   |
| Joint disorders, trauma related                                | 7,178  | 0.95   | 7,110  | 0.94   |
| Kyphoscoliosis                                                 | 807    | 0.11   | 1,728  | 0.23   |
| Lactose intolerance                                            | 690    | 0.09   | 839    | 0.11   |
| Low back pain                                                  | 16,384 | 2.17   | 17,810 | 2.36   |
| Lymphadenopathy                                                | <6     | < 0.01 | <6     | < 0.01 |
| Major depression                                               | 10,299 | 1.36   | 18,436 | 2.44   |
| Malignant neoplasms of the skin                                | 6,773  | 0.9    | 5,853  | 0.78   |
| Malignant neoplasms, bladder                                   | 2,794  | 0.37   | 1,089  | 0.14   |
| Malignant neoplasms, breast                                    | 154    | 0.02   | 11,635 | 1.54   |
| Malignant neoplasms, cervix, uterus                            | 0      | 0      | 3,549  | 0.47   |
| Malignant neoplasms, colorectal                                | 5,218  | 0.69   | 4,641  | 0.62   |
| Malignant neoplasms, esophagus                                 | 640    | 0.08   | 284    | 0.04   |
| Malignant neoplasms, kidney                                    | 1,837  | 0.24   | 1,045  | 0.14   |
| Malignant neoplasms, liver and biliary tract                   | 1,020  | 0.13   | 796    | 0.11   |
| Malignant neoplasms, lung                                      | 3,749  | 0.5    | 3,975  | 0.53   |
| Malignant neoplasms, lymphomas                                 | 3,303  | 0.44   | 2,774  | 0.37   |
| Malignant neoplasms, ovary                                     | 0      | 0      | 1,791  | 0.24   |
| Malignant neoplasms, pancreas                                  | 839    | 0.11   | 874    | 0.12   |
| Malignant neoplasms, prostate                                  | 11,072 | 1.46   | 0      | 0      |
| Malignant neoplasms, stomach                                   | 784    | 0.1    | 544    | 0.07   |
| Migraines                                                      | 317    | 0.04   | 1,102  | 0.15   |
| Multiple sclerosis                                             | 1,386  | 0.18   | 3,094  | 0.41   |
| Muscular dystrophy                                             | 1,210  | 0.16   | 1,021  | 0.14   |
| Musculoskeletal disorders, other                               | 10,839 | 1.43   | 11,024 | 1.46   |
| Musculoskeletal signs and symptoms                             | 891    | 0.12   | 1,084  | 0.14   |
| Nephritis, nephrosis                                           | 1,712  | 0.23   | 1,633  | 0.22   |
| Neurologic disorders, other                                    | 9,299  | 1.23   | 11,680 | 1.55   |
| Neurologic signs and symptoms                                  | 2,367  | 0.31   | 2,885  | 0.38   |
| Nutritional deficiencies                                       | 232    | 0.03   | 320    | 0.04   |
| Nutritional disorders, other                                   | 1,579  | 0.21   | 1,677  | 0.22   |
| Obesity                                                        | 28,072 | 3.71   | 40,158 | 5.32   |
| Ophthalmic signs and symptoms                                  | 534    | 0.07   | 669    | 0.09   |
| Organic brain syndrome                                         | 4,967  | 0.66   | 7,425  | 0.98   |
| Osteoporosis                                                   | 2,629  | 0.35   | 18,755 | 2.49   |
| Other endocrine disorders                                      | 12,640 | 1.67   | 30,675 | 4.07   |
| Other hemolytic anemias                                        | 1,346  | 0.18   | 1,650  | 0.22   |
| Other inflammatory conditions of skin                          | <6     | < 0.01 | 7      | < 0.01 |
| Other male genital disease                                     | 614    | 0.08   | 0      | 0      |
| Other skin disorders                                           | 366    | 0.05   | 659    | 0.09   |
| Otitis externa                                                 | 69     | < 0.01 | 99     | 0.01   |
| Otitis media                                                   | 205    | 0.03   | 259    | 0.03   |
| Paralytic syndromes, other                                     | 1,540  | 0.2    | 1,375  | 0.18   |
| Parkinsons disease                                             | 3,160  | 0.42   | 2,586  | 0.34   |
| Peripheral neuropathy, neuritis                                | 7,199  | 0.95   | 8,143  | 1.08   |
| Peripheral vascular disease                                    | 12,062 | 1.6    | 8,386  | 1.11   |

| Personality disorders                              | 3,267  | 0.43   | 5,688  | 0.75   |
|----------------------------------------------------|--------|--------|--------|--------|
| Post traumatic stress disorder                     | 2,429  | 0.32   | 4,036  | 0.53   |
| Prostatic hypertrophy                              | 32,176 | 4.25   | 0      | 0      |
| Prostatitis                                        | 1,181  | 0.16   | 0      | 0      |
| Psoriasis                                          | 9,424  | 1.25   | 10,028 | 1.33   |
| Psychologic signs and symptoms                     | 835    | 0.11   | 346    | 0.05   |
| Psychological disorders of childhood               | 3,770  | 0.5    | 2,533  | 0.34   |
| Psychosexual                                       | 1,039  | 0.14   | 748    | 0.1    |
| Psych-physiologic and somatoform disorders         | 1,334  | 0.18   | 2,244  | 0.3    |
| Pulmonary embolism                                 | 269    | 0.04   | 321    | 0.04   |
| Quadriplegia and paraplegia                        | 665    | 0.09   | 335    | 0.04   |
| Raynauds syndrome                                  | 21     | < 0.01 | 64     | < 0.01 |
| Renal calculi                                      | 435    | 0.06   | 314    | 0.04   |
| Renal disorders, other                             | 12,244 | 1.62   | 10,403 | 1.38   |
| Respiratory disorders, other                       | 15,623 | 2.07   | 17,695 | 2.35   |
| Respiratory signs and symptoms                     | 647    | 0.09   | 624    | 0.08   |
| Retinal disorders (excluding diabetic retinopathy) | 5,217  | 0.69   | 5,838  | 0.77   |
| Rheumatoid arthritis                               | 4,678  | 0.62   | 11,454 | 1.52   |
| Schizophrenia and affective psychosis              | 6,113  | 0.81   | 4,520  | 0.6    |
| Seizure disorder                                   | 6,460  | 0.85   | 6,182  | 0.82   |
| Sexually transmitted diseases                      | 134    | 0.02   | 166    | 0.02   |
| Sickle cell disease                                | 248    | 0.03   | 283    | 0.04   |
| Sinusitis                                          | 8      | < 0.01 | <6     | < 0.01 |
| Sleep apnea                                        | 24,305 | 3.21   | 15,701 | 2.08   |
| Sleep disorders of nonorganic origin               | 218    | 0.03   | 375    | 0.05   |
| Sleep problems                                     | 403    | 0.05   | 316    | 0.04   |
| Spinal cord injury/disorders                       | 5,505  | 0.73   | 4,967  | 0.66   |
| Substance use                                      | 8,654  | 1.14   | 6,760  | 0.9    |
| Temporomandibular joint disease                    | 3,107  | 0.41   | 6,293  | 0.83   |
| Thrombophlebitis                                   | 10     | < 0.01 | <6     | < 0.01 |
| Tuberculosis infection                             | <6     | < 0.01 | <6     | < 0.01 |
| Type 1 diabetes                                    | 7,502  | 0.99   | 6,735  | 0.89   |
| Type 2 diabetes                                    | 71,138 | 9.41   | 65,473 | 8.68   |
| Urinary symptoms                                   | 318    | 0.04   | 317    | 0.04   |
| Urinary tract infections                           | 261    | 0.03   | 1,249  | 0.17   |
| Varicose veins of lower extremities                | 5,368  | 0.71   | 13,235 | 1.75   |
| Vertiginous syndromes                              | 19     | < 0.01 | 80     | 0.01   |
| Vesicoureteral reflux                              | 1,267  | 0.17   | 922    | 0.12   |

ENT = ear, nose, and throat; HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency syndrome; ESRD = end-stage renal disease; COPD = chronic obstructive pulmonary disease.

|                           | Number of chronic conditions |                           |  |  |
|---------------------------|------------------------------|---------------------------|--|--|
|                           | <2                           | 2+                        |  |  |
|                           | <i>n</i> =892,767 (59.1%)    | <i>n</i> =617,911 (40.9%) |  |  |
| Sex                       |                              |                           |  |  |
| Male                      | 472,524 (52.9)               | 283,674 (45.9)            |  |  |
| Female                    | 420,243 (47.1)               | 334,237 (54.1)            |  |  |
| Age (years)               |                              |                           |  |  |
| <20                       | 323,359 (36.2)               | 43,072 (7.0)              |  |  |
| 20-39                     | 326,582 (36.6)               | 102,750 (16.6)            |  |  |
| 49-59                     | 182,116 (20.4)               | 189,300 (30.6)            |  |  |
| 60+                       | 60,710 (6.8)                 | 282,789 (45.8)            |  |  |
| Residence locality        |                              |                           |  |  |
| Rural                     | 345,109 (38.7)               | 221,923 (35.9)            |  |  |
| Urban                     | 547,080 (61.3)               | 395,907 (64.1)            |  |  |
| Unknown                   | 578 (0.1)                    | 81 (<0.1)                 |  |  |
| Income quintile           |                              |                           |  |  |
| Q1 (lowest)               | 188,982 (21.2)               | 120,654 (19.5)            |  |  |
| Q2                        | 175,021 (19.6)               | 121,899 (19.7)            |  |  |
| Q3                        | 170,872 (19.1)               | 127,697 (20.7)            |  |  |
| Q4                        | 177,267 (19.9)               | 119,901 (19.4)            |  |  |
| Q5 (highest)              | 175,741 (19.7)               | 115,384 (18.7)            |  |  |
| Unknown                   | 4,884 (0.6)                  | 12,376 (2.0)              |  |  |
| Healthcare utilization    |                              |                           |  |  |
| Inpatient hospitalization | 36,619 (4.1)                 | 83,934 (13.6)             |  |  |
| Ambulatory visits         | 1 (0-3)                      | 6 (3-10)                  |  |  |

# Appendix E. Demographic and healthcare utilization characteristics of Manitoba residents (2015/16-2018/19) stratified by number of chronic conditions (*N*=1,510,678).

Data are presented as N (%) or median (Q1-Q3).

Demographic characteristics were measured at exit date.

Healthcare utilization was measured during the last 12 months of follow-up.



# Appendix F. Percentage of the strongest 200 statistically significant pairwise chronic disease cooccurrence relationships characterized by prevalence, among select co-occurrence measures.

Disease co-occurrence measure

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System; prevalence was categorized as low (<0.5%), moderate (0.5 to <5%), and high ( $\ge5\%$ ).

# Appendix G. Number (%) of the strongest 200 statistically significant pairwise chronic disease cooccurrence relationships characterized by prevalence, among select co-occurrence measures.

| Prevalence        | Lift       | Relative<br>risk | Phi       | Jaccard    | Cosine    | Kulczynski | Joint<br>prevalence |
|-------------------|------------|------------------|-----------|------------|-----------|------------|---------------------|
| High-High         | 0 (0.0)    | 0 (0.0)          | 8 (4.0)   | 20 (10.0)  | 18 (9.0)  | 9 (4.5)    | 21 (10.5)           |
| High-Moderate     | 0 (0.0)    | 4 (2.0)          | 61 (30.5) | 57 (28.5)  | 84 (42.0) | 77 (38.5)  | 149 (74.5)          |
| High-Low          | 0 (0.0)    | 4 (2.0)          | 1 (0.5)   | 0 (0.0)    | 0 (0.0)   | 60 (30.0)  | 0 (0.0)             |
| Moderate-Moderate | 16 (8.0)   | 23 (11.5)        | 96 (48.0) | 109 (54.5) | 76 (38.0) | 24 (12.0)  | 30 (15.0)           |
| Moderate-Low      | 78 (39.0)  | 88 (44.0)        | 26 (13.0) | 9 (4.5)    | 18 (9.0)  | 28 (14.0)  | 0 (0.0)             |
| Low-Low           | 106 (53.0) | 81 (40.5)        | 8 (4.0)   | 5 (2.5)    | 4 (2.0)   | 2 (1.0)    | 0 (0.0)             |

Note: chronic diseases were ascertained using the Johns Hopkins ACG System; prevalence was categorized as low (<0.5%), moderate (0.5 to <5%), and high ( $\geq$ 5%).



Appendix H. Percentage of the strongest 50 percent (n=3,922) of statistically significant pairwise chronic disease co-occurrence relationships characterized by prevalence, among select co-occurrence measures.

Disease co-occurrence measure

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System; and prevalence was categorized as low (<0.5%), moderate (0.5 to <5%), and high ( $\geq$ 5%).

Appendix I. Number (%) of the strongest 50 percent (*n*=3,922) of statistically significant pairwise chronic disease co-occurrence relationships characterized by prevalence, among select co-occurrence measures.

| Prevalence        | Lift         | Relative risk | Phi          | Jaccard      | Cosine       | Kulczynski   | Joint<br>prevalence |
|-------------------|--------------|---------------|--------------|--------------|--------------|--------------|---------------------|
| High-High         | 1 (0.0)      | 8 (0.2)       | 21 (0.5)     | 21 (0.5)     | 21 (0.5)     | 21 (0.5)     | 21 (0.5)            |
| High-Moderate     | 119 (3.0)    | 166 (4.2)     | 444 (11.3)   | 468 (11.9)   | 468 (11.9)   | 468 (11.9)   | 468 (11.9)          |
| High-Low          | 104 (2.7)    | 161 (4.1)     | 231 (5.9)    | 81 (2.1)     | 294 (7.5)    | 492 (12.5)   | 367 (9.4)           |
| Moderate-Moderate | 889 (22.7)   | 865 (22.1)    | 1,610 (41.1) | 2,079 (53.0) | 1,822 (46.5) | 1,336 (34.1) | 2,016 (51.4)        |
| Moderate-Low      | 2,198 (56.0) | 2,128 (54.3)  | 1,362 (34.7) | 1,021 (26.0) | 1,168 (29.8) | 1,522 (38.8) | 1,027 (26.2)        |
| Low-Low           | 611 (15.6)   | 594 (15.1)    | 254 (6.5)    | 252 (6.4)    | 149 (3.8)    | 83 (2.1)     | 23 (0.6)            |

Note: Chronic diseases were ascertained using the Johns Hopkins ACG System; prevalence was categorized as low (<0.5%), moderate (0.5 to <5%), and high ( $\geq$ 5%).