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ABSTRACT

Optimization has been a basic tool in most of the areas of theoretical and ap-

plied sciences. Optimal design theory focuses on identifying an experimental

design that makes the variances of a model’s parameter estimates as small as

possible, thereby allowing the model to make the most accurate predictions.

In this thesis, we have tried to address an important problem in optimal

regression design, namely the application of a clustering approach to solve

optimization problems with respect to several probability distributions and

to further improve the convergence of a class of algorithms using the prop-

erties of directional derivatives. When we run a multiplicative algorithm to

construct an optimal design, the design turns out to be a distribution defined

on a disjoint set of clusters of points. This situation arises when many design

weights converge to zero at the optimum. We replace the single distribution

by conditional distributions and a marginal distribution across the clusters.

Motivated by this, we transform this clustering approach to a general prob-

lem of optimization with respect to several distributions. The number of

probability distributions depends on the number of parameters in the model.

We focus on constructing designs for two criteria of interest such as D-

optimality and Ds-optimality criteria. The D-optimality is the most im-

portant and popular design criterion in the literature. The Ds-optimality

is also quite important when we are interested in a subset of parameters.

This situation arises when we are more interested in some of the terms (for

example, the even or odd power terms) in the model. We also constructed

some Ds-optimal designs using analytic approach. We explore several mod-
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els both in one and two design variables. The graphical interpretation was

carried out using the plots of weights versus design points as well as plots of

variance functions versus design points. We did a powerful improvement in

the convergence of the algorithms by combining the clustering approach and

the properties of the directional derivatives. The results are promising. This

approach is instrumental in improving the convergence of the algorithm and

allowing the model to obtain the optimal design saving cost and time.
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Chapter 1

Introduction

It might lead us to answer several questions when we are conducting research

with an experimental design problem, since it might have specific constraints

and objectives. Questions arise such as “(i) Which design is the best? (ii)

How to reduce the sampling cost (iii) Can we reduce the sample size further

by making the design as efficient as possible at minimal cost? (iv) Can I use

this fitted model to make inferences about the people older than 30 years?”

Optimal design theory is an useful tool in such situations. It offers a

good foundation to our design by answering those questions. This theory

helps to identify the best design using computer algorithms and it can be

done analytically for simpler problems. Moreover, the optimal design theory

enables a researcher to construct flexible designs in a way that they meet the

goals of the studies more realistically.
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1.1 Optimal Design Theory in Linear Regres-

sion

In regression analysis, we are interested in finding the relationship between

two or more variables (X’s as independent variables and Y as the dependent

variable). Here our primary interest is to obtain the parameter estimators

efficiently. In general, the efficiency of an estimator increases as its variance

becomes smaller since it expresses less uncertainty. There are 3 approaches

to measure the uncertainty of estimators:

� The variance of the estimators.

� Confidence interval for the parameters.

� The variance of the predicted response ŷ for an arbitrary value of x.

A confidence ellipse is a figure that contains all the above information

about the uncertainty of parameters. In Figure 1.1, the intersection of the

dotted axes represents the point estimators. Their lengths are related to

the variances of estimators. The covariance of the estimators determines

the direction of the axes. When adding more parameters to the model, this

ellipse can be extended to form an ellipsoid in more than two dimensions.

Generally, the volume or contour of such ellipsoids and the length of their axes

can be used to measure the uncertainty. The most significant fact about this

ellipsoid is that it can be used to find an optimal design for the simultaneous

estimation of the parameters. It has been proved that the variance covariance

14



Figure 1.1: Confidence ellipse for two parameters β0 and β1 in a simple linear
regression

matrix of parameter estimators can be used to determine the shape and the

form of the confidence ellipsoid as well as to measure the efficiency of a design.

In the literature several optimality criteria have been discussed which can be

explained by the properties of confidence ellipsoid and these will be discussed

later under Section 1.5.

Next, we will study some methodological concepts of the linear models

along with the basic concepts of optimal design theory such as definition of

a design, variance function, information matrix including their properties.

Consider a model in the following form:

y ∼ p(y|x, θ, σ) (1.1)

where

� y : response variable.
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� p(.) : probability model.

� x : design variables such that x = (x1, x2, ....., xm)T which can be cho-

sen by the experimenter. Values of these variables fall under a m-

dimensional space called a design space and it is denoted by X where

x ∈ X ∈ Rm. In most cases, this is considered compact.

� θ : a k-dimensional vector of unknown parameters such that θ =

(θ1, θ2, ....., θk)
T .

� σ : a nuisance parameter which is fixed and unknown. Generally, this is

supposed to be independent of x. (Nuisance parameter is a parameter

which is not of our main interest. But it has to be accounted in the

analysis of the parameters of interest)

The expected value of a linear model can be expressed in the form:

E(y|x, θ, σ) = fT (x)θ (1.2)

where f(x) = (f1(x), · · · , fk(x))T and f1, f2, ..., fk are the regression func-

tions defined on X .

As mentioned earlier, our primary interest is to obtain ‘best’ point esti-

mates of θ̂ for some or all the parameters of θ. Hence, the selection of x has

to be made carefully. This allocation of observations, say n to the elements

of X is identified as an optimal design.

For the moment, let us assume that the inferences are made using point

estimation and θ̂ is an unbiased estimator for θ . So, the dispersion matrix

16



of θ̂ about θ can be expressed as D(θ̂) = E([θ̂ − θ][θ̂ − θ]T ). For a reliable

and accurate value for θ̂, D(θ̂) has to be as small as possible.

Suppose that y1, y2, ..., yn are the observations obtained at the same x

value. If they are independent with equal variance σ2, then model 1.2 can

be expressed in the following form:

E(Y ) = Xθ, D(Y ) = σ2In. (1.3)

Here,

� Y = (y1, y2, · · · , yn)

� X : n× k design matrix

� In : n× n identity matrix

� D(Y ) : Dispersion/Covariance matrix of Y .

The Best Linear Unbiased Estimators of θ can be obtained using the

equation

(XTX) θ̂ = XTY. (1.4)

But, if the interest is on all the parameters of θ, (XTX) has to be non-singular

and the least squares estimators of θ̂ are given by

θ̂ = (XTX)−1XTY (1.5)

17



with, E(θ̂) = θ, D(θ̂) = σ2(XTX)−1.

Let ŷ(x) be the predicted value of the response at x and it can be expressed

as

ŷ(x) = f1(x)θ̂1 + f2(x)θ̂2 + · · ·+ fk(x)θ̂k

= fT (x)θ̂
(1.6)

where f(x) = (f1(x), f2(x), · · · , fk(x))T .

1.2 Exact Designs versus Approximate De-

signs

Suppose that we are dealing with a sample whose total sample size is N . Let

dj where j = 1, 2, ...,m be the design points from a pre-selected design space

and nj be the number of observations taken from each design point. So that,∑m
j=1 nj = N . So, the design can be written as

ξ =

{
d1 d2 · · · dm

n1 n2 · · · nm

}
.

This design tells us how many subjects are assigned to each design point.

The subjects are given as integers. Hence it is identified as an “exact or

discrete design”. Usually, for the implementation, every design has to be

discrete since whole units to be assigned for each and every design point.

The term “approximate or continuous designs” comes at this point. It is

18



a mathematically convenient way over exact designs. Generally, an approx-

imate design is defined in terms of proportions and can be denoted in the

following way:

ξ =

{
d1 d2 · · · dm

w1 w2 · · · wm

}
.

Here, wj = nj/N , j = 1, 2, ...,m,
∑m

j=1wj = 1 and 0 ≤ wj ≤ 1 for all j.

An approximate design can be converted to an exact design before imple-

mentation. Typically, an exact design formation is done by multiplying each

and every weight of an approximate design by the total sample size N of the

particular sample and rounding up to the nearest integer, in a way that the

summation of those rounded values will be equal to the total sample size N .

Kiefer (1985) mentioned these three significant reasons below to highlight the

importance of working with approximate designs instead of exact designs.

� It is very difficult to find optimal exact designs and they mostly depend

on the sample size N . This results in different optimal designs for

different sample N . As for the case of approximate designs, they are

independent of the sample size N .

� Since there is a rounding involve in implementing optimal approximate

designs, it will have a similarity and closeness with an optimal exact

design. It can be shown that the difference between those two designs

will vanish when increasing the sample size N .

� Implementation of exact designs requires complex mathematical theo-

ries and most of the times it is even difficult to find an exact design
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for simple problems. On the other hand, optimal approximate designs

can be found analytically or with the use of iterations in computer

algorithms.

So, in summary, an approximate optimal design will be preferred over an

exact optimal design.

1.3 Discretization of the Design Space

Consider the alternative form of model 1.2 given below

E(y|v, θ, σ) = vT θ (1.7)

where v = (f1(x), · · · , fk(x))T , v ∈ V , V = {v ∈ Rk : v = (f1(x), · · · , fk(x))T ,

x ∈ X}.

Generally, the original design space is continuous. Hence, we need to

discretize the design space which will be easy to work with. After discretiza-

tion, the design space is identified as an “induced design space” and it can be

assumed to be discrete. Here V is an induced design space. Suppose that V

is made up of J distinct vectors v1, v2, ...., vJ . Let us suppose that, nj obser-

vations out of n observations have been taken at vj such that
∑J

j=1 nj = n.

Then, the matrix (XTX) can be expressed as

XTX = M(n), n = (n1, n2, · · · , nJ)T (1.8)
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Here,

M(n) =
J∑
j=1

njvjv
T
j

= V NV T (1.9)

where V = [v1, v2, ..., vJ ] and N = diag(n1, n2, ..., nJ).

Our goal in here is to make M(n) large by choosing n efficiently. This

design can be identified as an exact design since nj’ s are expressed in integers.

As mentioned earlier, it will be flexible and simpler to solve, if we can convert

it to an approximate design. Let us look at the following conversion

M(n) = nM(p). (1.10)

Here,

M(p) =
J∑
j=1

pjvjv
T
j = V PV T

where P = diag(p1, p2, ..., pJ) and pj = nj/n, the proportions of observations

taken at vj such that pj ≥ 0,
∑J

j=1 pj = 1.

We have to make sure to choose p in a way that M(p) becomes large.

Additionally, this can be converted to the nearest exact design using np∗ and

by doing that it can be preferred to the original exact design.

Furthermore, using the definition of expectation, M(p) = Ep[vv
T ], where

pj is the probability corresponding to the vertex such that P (v = vj) = pj.
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The matrix M(p) is identified as the information matrix.

1.3.1 Specific Properties of the Information Matrix

As we discussed, the information matrix M(p) can be written as

M(p) =
J∑
j=1

pjvjv
T
j = V PV T .

� The first property is that M(p) is symmetric. This follows from its

definition.

� M(p) is non-negative definite. The proof is given below.

xTM(p)x = xTEp[vv
T ]x

= Ep[x
TvvTx]

= Ep[(x
Tv)2] ≥ 0.

� The inverse of the dispersion matrix [D(θ̂)] is the information matrix.

So these two matrices have the reciprocity property. This implies,

minimizing the variance is the same as maximizing the information.
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1.4 Important Definitions in Optimal Design

1.4.1 Design Measure

Any design measure can be denoted in the following notation

ξ =

{
x1 x2 · · · xJ

p1 p2 · · · pJ

}
.

Here, the first line denotes the locations of the design points xj ; xj ∈ X

whereas the second line gives the associated design weights pj such that∑J
j=1 pj = 1 and 0 ≤ pj ≤ 1 for all j.

1.4.2 Support of a Design Measure

Suppose we want to denote support of a design measure in the design space

V . What we actually denote here are the vertices vj with non-zero weights

under p. The support is given by

Supp(ξ) = {vj ∈ V : pj > 0, j = 1, 2, · · · , J}.

1.4.3 Standardized Variance of the Predicted Response

Another important term that we will need in optimal designs is, the stan-

dardized variance of the predicted response y at x and which is defined as
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follows:

d(x, p) = fT (x)M−1(p)f(x) (1.11)

where M(p) is the information matrix. We will discuss about it in Chapter 3.

1.5 Design Criteria

We intend to obtain the best inference on the unknown parameters θ and to

make the information matrix M(p) as large as possible. At this point, the

term “Criterion Function” comes in. It can be denoted as, φ(p) = ψ{M(p)}

where φ(p) is the criterion function. Here, φ is known as φ-optimality whereas

the design maximizing the φ(p) is identified as a φ-optimal design.

In this chapter, different types of optimality criteria which use variance-

covariance matrix in a unique way (Box, 1982) will be discussed. Atkinson

and Donev (1992) have reviewed about the design optimality criteria such as

D, A, G and E which will be discussed next.

1.5.1 D-optimality Criterion

Our goal is to obtain more accurate estimators by minimizing the volume of

a confidence ellipsoid. This criterion minimizes the volume of the ellipsoid

by minimizing the product of the squared lengths of the axes of the ellipsoid.

D-optimality criterion is defined as the determinant of variance-covariance
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matrix cov(θ̂). By reciprocity property of the variance-covariance matrix

and the information matrix, this will be equivalent to maximization of the

determinant of the information matrix. Hence, it can be written as

φD(p) = ψD{M(p)} = log det{M(p)} = −log det{M−1(p)}. (1.12)

Kiefer and Wolfowitz (1960) have shown a relationship between the D-

optimal design and the standardized variance of the predicted response

inf sup d(x, p) = sup d(x, p∗). (1.13)

Here, sup d(x, p∗) = k, where k is the number of parameters and d(x, p) is

the standardized variance of the predicted response.

Furthermore, this criterion can be expressed in terms of the eigenval-

ues of the information matrix (M(p)) as well. The eigenvalues of M−1(p)

are proportional to the lengths of the axes of the confidence ellipsoid that

we mentioned earlier. So, if the eigenvalues of M(p) are λ1, λ2, ....., λk the

D-optimal design will minimize the product of the eigenvalues of M−1(p):

M−1(p) :
∏k

i=1 1/λi. The studies related to this theory have been conducted

by Mandal, Torsney and Carriere (2005), Atkinson and Donev (1992), Atkin-

son, Donev and Tobias (2007).
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Advantages of D-optimality Criterion

� This is a concave function of the positive definite symmetric matrices

and is differentiable when it is finite. Suppose, dj is the first partial

derivative of this criterion and it is given by

dj =
∂φD
∂pj

= vTjM
−1(p)vj. (1.14)

� D-optimal design is invariant under the linear transformation of the

scale of the independent variable.

Drawbacks of D-optimality Criterion

� Minimizing determinant of variance-covariance matrix may lead to an

elongation in the direction of one axis of the ellipsoid. Therefore only

one of the parameters is estimated efficiently while the others are not.

� May be inefficient in estimating certain linear functions of the param-

eters.

1.5.2 DA-optimality Criterion

This criterion can be used when our interest is on some linear combinations

of the parameters of the linear model. Let us say we are interested in s

linear combinations where the elements of the vector α = Aθ such that A is

a s× k matrix of rank s ≤ k. Then the variance-covariance matrix of Aθ̂ is
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AM−1(p)AT . The criterion function is defined as

φDA
(p) = ψDA

{M(p)} = −log det{AM−1(p)AT}. (1.15)

The criterion function was named as DA-optimality by Sibson (1974). Fur-

thermore, the partial derivatives of this criterion are given by

∂φDA

∂pj
= vTjM

−1(p)AT [AM−1(p)AT ]−1AM−1(p)vj. (1.16)

1.5.3 Ds-optimality Criterion

Ds-optimality criterion can be used when we are interested in estimating

a subset of s parameters accurately [Karlin and Studden (1966), Atwood

(1969)]. In DA-optimality, matrix A is composed of s×s identity matrix and

s× (k− s) zero matrix. In this criterion, interest is on the first s parameters

θ1, θ2, ...., θs. Rhode (1965) partitioned M(p) matrix as follows.

Suppose our matrix A = [Is : O] and M(p) can be partitioned as below

M(p) =

M s×s
11 M

s×(k−s)
12

MT
12 M

(k−s)×(k−s)
22

 .
We need to choose the design that maximizes the following criterion

φDs(p) = log det{M11 −M12M
−1
22 M

T
12}. (1.17)
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1.5.4 A-optimality Criterion (Average Criterion)

This criterion minimizes the sum of squared lengths of the axes by minimizing

the trace of variance-covariance matrix cov(θ̂). It can be expressed in the

following notation.

φA(p) = ψA{M(p)} = −Trace{M−1(p)} (1.18)

One significant feature of this criterion is that it neglects the correlations

between the estimates. The partial derivatives of this criterion are given by

∂φA
∂pj

= vTjM
−2(p)vj. (1.19)

Advantages of A-optimality Criterion

� Easy to evaluate since it takes only the diagonal entries of the variance-

covariance matrix M−1(p).

Drawbacks of A-optimality Criterion

� This is variant under linear transformation of the scale of the indepen-

dent variables.

1.5.5 G-optimality Criterion (Global Criterion)

This is useful when the researcher is interested in predicting the response

variable Y efficiently over the design space. It has been proved that to
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obtain an accurate prediction for Y , we need to have a design that gives the

smallest possible standardized variance of the predicted response. So, this

is defined as a design that minimizes the maximum standardized variance of

the predicted response over the design space. It is given by

φG(p) = ψG{M(p)} = −Maxv∈V v
TM−1(p)v. (1.20)

Kiefer and Wolfowitz (1960) proved a similarity between this criterion and

D-optimality criterion. The partial derivative of this G-criterion is given

below

∂φG
∂pj

= [vTjM
−1(p)vj]

2. (1.21)

Advantages of G-optimality Criterion

� Efficient in predicting the response variable over the design space by

minimizing the maximum standardized variance of the predicted re-

sponse d(x, p). Hence, d(x, p∗) ≤ k where p∗ is a G-optimal design and

k is the number of parameters in the model. Moreover, this inequality

can be used to check whether a given design is D-optimal or not.

� This is also invariant under linear transformation of the scale of the

independent variables as in D-optimal designs.
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1.5.6 E-optimality Criterion

This criterion minimizes the squared length of the largest or the extreme axis

of the confidence ellipsoid. It can be shown algebraically that, this is same

as minimizing the maximum eigenvalues of the variance-covariance matrix

cov(θ̂). So, this will maximize the following criterion function

φE(p) = ψE{M(p)} = −λmax{M−1(p)} (1.22)

where λmax{M−1(p)} is the largest eigenvalue of M−1(p).

Generally, this is more suitable for a design where all the factors are

qualitative like a block design.

1.5.7 Linear Optimality Criterion

Suppose we have L, a k x k matrix of coefficients. Consider the criterion

φL(p) = ψL{M(p)} = −tr{M−1(p)L}. (1.23)

The maximization of the criterion function given above leads to a linear-

optimum (L-optimum) design. Here what is meant by linear is, linearity

in the elements of the covariance matrix M−1(p). If L = ATA, then the

criterion function above can be expressed as

φL(p) = −tr{M−1(p)L} = −tr{M−1(p)ATA} = −tr{AM−1(p)AT} (1.24)
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where A is a s × k matrix of rank s ≤ k. The partial derivatives of linear

optimality can be written as

∂φL
∂pj

= vTjM
−1(p)ATAM−1(p)vj. (1.25)

Next, we will focus on a special case of linear optimality which is identified

as c-optimality.

1.5.8 c-optimality Criterion

This is the case where A = cT in linear optimality where c is a k × 1 vector.

As mentioned in literature, this is also a standard criterion which is identified

as c-optimality criterion. This maximizes the criterion function given below

φc(p) = ψE{M(p)} = −cTM−1(p)c. (1.26)

Hence our goal is to estimate the linear parametric function cT θ with

minimum variance. The partial derivative for this criterion can be expressed

as

∂φc
∂pj

= [cTM−1(p)vj]
2. (1.27)
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Chapter 2

Optimality Conditions and a

Class of Algorithms

So far, we have learnt about some fundamental theory of optimal design and

different optimality criteria. In this chapter, we will determine the optimality

conditions and a class of algorithms.

Suppose our general problem is to maximize a criterion function φ(p)

subject to the constraints pj ≥ 0 and
∑J

j=1 pj = 1 where j = 1, 2, ..., J . Our

goal here is to find an optimizing distribution (p∗) by considering this general

problem. This means, we are going to find an optimal design according to a

particular criterion function.
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2.1 Determining Optimality Conditions

When constructing an optimal design, first thing to be done is determining

the optimality conditions. We will determine optimality conditions using

some directional derivatives. We will consider the following two kinds of

directional derivatives.

2.1.1 Directional Derivatives

Suppose that we want to find the directional derivatives of a particular cri-

terion function at p in the direction of q (Whittle, 1973).

Fφ{p, q} = limε↓0
φ{(1− ε)p+ εq} − φ(p)

ε
. (2.1)

2.1.2 Gâteaux Derivative

Kiefer (1974), in one of his design, used this concept. This is another type of

directional derivative of a particular criterion function at p in the direction

of m which can be denoted by Gφ{p,m} and expressed as

Gφ{p,m} = limε↓0
φ{p+ εm} − φ(p)

ε
. (2.2)

Some significant properties of the directional derivatives are discussed below.

� Let p, q ∈ S given that S is a convex set. Then {(1− ε)p + εq} is also

in S. This is very useful if we want to find Fφ{p, q} where p, q ∈ S.
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But Gφ{p, q} does not have this property.

� Given that φ(.) is concave, the following inequality can be presented.

Fφ{p, q} ≥ φ(q)− φ(p).

If φ(.) is differentiable, then Fφ{p, q} can be expressed as

Fφ(p, q) = (q − p)T ∂φ
∂p

=
J∑
j=1

(qj − pj) dj, where dj = ∂φ/∂pj, j = 1, 2, . . . , J.

If q = ej, where ej is the jth unit vector in RJ , we can simplify

Fj = Fφ(p, ej) =
∂φ

∂pj
−

J∑
i=1

pi
∂φ

∂pi

Here Fj’s are the vertex directional derivatives of φ(.).

2.1.3 General Equivalence Theorem

Suppose φ(p) is differentiable at an optimizing distribution p∗, and we are

going to find the first-order conditions for φ(p∗) to be a local maximum of

φ(p) in the feasible region in the general problem. The conditions are given

as follows:

F ∗j = Fφ{p∗, ej}


= 0 if p∗j > 0

≤ 0 if p∗j = 0

(2.3)
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When φ(p) is a concave function, the first-order stationarity condition men-

tioned above is necessary and sufficient for optimality. This is identified as

“The General Equivalence Theorem in Optimal Design” by Kiefer in 1974.

2.2 A Class of Algorithms to find an Optimal

Design for a Given Model Defined on a

Given Design Space

Research on the optimal design construction has a long history. Theoretical

method of constructing an optimal design is with the use of mathematical

derivation based on model assumptions. However, this theoretical approach

can have some limitations in terms of usability. In theoretical approach, the

optimal design is constructed using a particular set of assumptions. Hence

the results are only appropriate to a specific setting of conditions. This

means, analytical results of a particular setting have a limited use in practice

when the conditions or the assumptions are changed.

Algorithms of constructing optimal designs have been introduced to over-

come these problems associated with theoretical approach. We provide a

review on some such algorithms. Wynn (1970) in one of his article, has men-

tioned about this sequential algorithm of constructing optimal approximate

designs. Generally, the algorithm consists of a starting point along with a

stopping rule. When running the algorithm, it will proceed further by adding

a point to the current design until the stopping rule conditions are met.
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In exchange algorithms, the current design is iteratively modified by delet-

ing existing design points and adding new points from the design space. Since

this poses some issues related to local maximizers, the algorithm is run mul-

tiple times using different starting designs. Fedorov’s exchange algorithm is

one of the earliest and significant algorithm that falls in this category. Yang

et al (2012) proposed a method to obtain optimal designs for generalized

linear models by modifying this algorithm. Furthermore, Wynn’s (1972) al-

gorithm, modified Fedorov’s algorithm by Cook and Nachtsheim (1980) and

k-exchange algorithms by Johnson and Nachtsheim (1983) also can be in-

cluded in this category. These algorithms differ from each other in the basic

step which is the selection of exchanging the design point in current design.

Another algorithm is Fedorov-Wynn type algorithm (Mandal and Wong

(2015)) which has become more popular as one of the earliest algorithm

converging to an optimal design even with a large number of runs. The

convergence of this algorithm has proved only for the linear models.

2.2.1 Multiplicative Algorithm

Another significant class of algorithms of constructing optimal designs is

the class of multiplicative algorithm which has become more popular in the

last decade. This algorithm was initially proposed by Torsney (1977). Later

Mandal and Torsney (2006) modified this algorithm to increase the efficiency

of the design construction. Torsney and Martin (2009) used this algorithm to

find optimal designs when responses are correlated. Dette (2008) made some
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modifications in this algorithm in order to take larger steps at each iteration

even maintaining monotonic convergence. My current research work is based

on the construction of optimal designs using the multiplicative algorithms.

We will now discuss about the multiplicative algorithm and its properties.

There are two basic constraints of optimal weights that has to be satisfied by

an algorithm. One is the weights p1, p2, ..., pJ must be non-negative and the

next one is their summation should be equal to 1. The form of multiplicative

algorithm is given below:

p
(r+1)
j =

p
(r)
j f(x

(r)
j )∑J

i=1 p
(r)
i f(x

(r)
i )

. (2.4)

Here, x
(r)
j = d

(r)
j or F

(r)
j , the partial derivatives or the directional deriva-

tives of the criterion function. It also has to be noted that the function f(x)

may depend on a free positive parameter δ. The function is positive and

strictly increasing in x.

The algorithm has the following properties:

� p(r) is always feasible.

� Fφ{p(r), p(r+1)} ≥ 0 where equality occurs when the dj’s corresponding

to nonzero pj’s are equal.

� supp(p(r+1)) ⊆ supp(p(r)) will be satisfied under the above mentioned

iteration and some weights will converge to zero.

� If the derivatives corresponding to nonzero p
(r)
j are all equal, an iterate
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p(r) is identified as a fixed point of the iteration.

As f(x) depends on a parameter δ, let us denote it by f(x, δ). This

function plays a major role in the algorithm of constructing optimal designs.

By selecting a symmetric function which is centered around zero, we can

improve the convergence rate of the algorithm. The function f(x) for x = d is

not symmetric nor centered around zero. But if we replace partial derivatives

d of the criterion function by directional derivatives F in the function, our

goal can be achieved.

Consider the normal cumulative distribution function f(x, δ) = Φ(δx)

and the logistic function f(x, δ) = eδx/1 + eδx. These two functions satisfy

the conditions of the above mentioned algorithm and change quickly at x =

F = 0. But for the function f(x, δ) = eδx, it does not make any difference in

the performance if we replace x = d by x = F .
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Chapter 3

Construction of D-optimal

Designs using Traditional

Approach

In this chapter we are going to focus on the construction of D-optimal designs

using traditional approach. First we discuss some analytic solution for this

approach. Next we will learn about the application of a class of algorithms

in D-optimal design construction.
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3.1 Analytic Solutions for the Construction

of D-optimal Designs

Let us consider a polynomial regression model of order k−1 for a one variable,

which is given by

E(y|x) = θ0 + θ1x+ θ2x
2 + ...+ θk−1x

k−1 = vTx θ. (3.1)

Here, vx = (1, x, x2, ..., xk−1)T , x ∈ [−1, 1], θ = (θ0, θ1, · · · , θk−1)T and the

induced design space is given by,

vx ∈ V = {vx : vx = (1, x, x2, · · · , xk−1)T , −1 ≤ x ≤ 1}.

This design space is a standardized continuous design space. Fedorov

(1972) stated about the discrete D-optimal designs. He mentioned that they

are unique and consist of k number of minimal support points which can be

found using the k roots of the polynomials, (1 − x2)P ′k−1(x). In here Pk(x)

is the kth Legendre polynomial:

Pk(x) =
N∑
n=0

[
(−1)n(2k − 2n)!xk−2n

2kn!(k − n)!(k − 2n)!

]
(3.2)

where N = k/2 when k is even and N = (k − 1)/2 when k is odd. Since

there are k support points in a minimal support design, there has to be (1/k)

weight assigned to each of these design points.

Let us consider the analytic solutions for cubic regression model where

k = 3 and quartic regression model where k = 4.
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3.1.1 Analytic Solution for the Cubic Regression Model

The model is given by

E(y|x) = θ0 + θ1x+ θ2x
2 + θ3x

3.

The design space X is [−1, 1]. We will find the D-optimal design for the

cubic regression model.

� Here, the total number of parameters is k = 4. This means we have to

consider (1− x2)P ′k−1(x) = (1− x2)P ′3(x).

� First we need to find P3(x).

� By using the conditions of Legendre polynomial N = (k − 1)/2 =

(3− 1)/2 = 1; Pk(x) = P3(x).

� By substituting k = 3 and N = 1 in Legendre polynomial equation 3.1,

P3(x) =
∑1

n=0

[
(−1)n(6−2n)!x3−2n

23n!(3−n)!(3−2n)!

]
.

� By solving the above,

P3(x) = (5x3 − 3x)/2.

� Next we have to calculate the first partial derivative of the above solu-

tion to obtain P ′3(x)

P ′3(x) = (15x2 − 3)/2.

� The support points are found using (1− x2)P ′k−1(x) = 0. Therefore,

(1− x2)P ′3(x) = (1− x2)(15x2 − 3)/2 = 0
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� The solutions for x are ±1,±0.447

� Therefore, the D-optimal design for the cubic regression model is

P ∗ =

{
−1.00 −0.447 −0.447 1.00

0.250 0.250 0.250 0.250

}
.

3.1.2 Analytic Solution for the Quartic Regression Model

The model is given by

E(Y |x) = θ0 + θ1x+ θ2x
2 + θ3x

3 + θ4x
4.

The design space X is [−1, 1]. We need to find the D-optimal design for

the quartic regression model. That means a design space of optimal design

points with their corresponding probabilities.

� Here, the total number of parameters is k = 5. So, we have to consider

(1− x2)P ′k−1(x) = (1− x2)P ′4(x).

� First we need to find P4(x).

� By using the conditions of Legendre polynomial N = k/2 = 4/2 = 2;

Here Pk(x) = P4(x).

� By substituting k = 4 and N = 2 in Legendre polynomial equation 3.1,

P4(x) =
∑2

n=0

[
(−1)n(8−2n)!x4−2n

24n!(4−n)!(4−2n)!

]
.
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� By solving the above,

P4(x) = (35x4 − 30x2 + 3)/8.

� Next we have to calculate the first partial derivative of the above solu-

tion to obtain P ′4(x)

P ′4(x) = 5x(7x2 − 3)/2.

� The support points are found using (1− x2)P ′k−1(x) = 0. Therefore,

(1− x2)P ′4(x) = (1− x2)5x(7x2 − 3)/2 = 0.

� The solutions for x are 0,±1,±0.655.

� Therefore, the D-optimal design for the quartic regression model is,

P ∗ =

{
−1.00 −0.655 −0.00 0.655 1.000

0.20 0.20 0.20 0.20 0.20

}
.

3.2 Construction of D-optimal Designs using

a Class of Algorithms

In Chapter 2, we have discussed about the class of algorithms including mul-

tiplicative algorithm used to find optimal design for a given model defined on

a given design space. In this section we are going to focus specifically on the

construction of D-optimal designs using a class of multiplicative algorithms

based on a function of the derivatives of D-optimality criterion.
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3.2.1 Multiplicative Algorithm for D-optimal Design

Construction

A general introduction on the class of algorithms was given in Chapter 2.

We have learnt about the multiplicative algorithm and its properties. As

for the function used in the algorithm, we know that it depends on a free

positive parameter δ which may differ according to the regression model being

considered. The algorithm is given here in the following:

p
(r+1)
j =

p
(r)
j f(x

(r)
j , δ)∑J

i=1 p
(r)
i f(x

(r)
i , δ)

(3.3)

where, x
(r)
j = d

(r)
j or F

(r)
j , the partial derivatives and the directional deriva-

tives of the criterion function. Furthermore,

� d
(r)
j =

∂φ

∂pj

∣∣∣
p=p(r)

, the partial derivatives at rth iteration.

� F
(r)
j = d

(r)
j −

∑J
i=1 p

(r)
i d

(r)
i , the vertex directional derivatives at p = p(r).

All the properties of this algorithm are similar to the ones we discussed in

Section 2.2.1. The performance of the algorithm for each model will be tested

by taking f(x, δ) where x = d. Later, the results are reported by replacing

the partial derivatives in the function with directional derivatives. This will

improve the convergence of the algorithms.
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3.3 Construction of Optimal Designs for One

Variable Regression Models using Differ-

ent Functions

The optimal designs have been constructed for quadratic regression model,

cubic regression model and quartic regression model. The four functions

being considered when constructing these models are xδ, eδx, eδx/1 + eδx and

normal cumulative distribution function. The results are reported in the

tables including the best choices for δ with bold font.

Moreover, the results have been interpreted graphically using the plots of

weights versus design points and variance function versus design points. The

plots have been drawn running the algorithm for small number of iterations

and at the optimum. As for the plot of variance function versus design

points, the standardized variance of the predicted responses at a given x

were recorded. This is defined as

d(x, p) = fT (x)M−1(p)f(x).

The proof of this equation is as follows.

Consider equation (1.6) defined in Chapter 1. So we have, ŷ(x) = fT (x)θ̂.

We also have D(θ̂) = σ2(XTX)−1. Furthermore we know that M(n) =

XTX = nM(p). Then, the standardized variance of the predicted response
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on y at x can be expressed as

D(ŷ) = D(fT (x)θ̂)

= fT (x)D(θ̂)f(x)

= fT (x)σ2(XTX)−1f(x)

=
σ2

n
fT (x)M−1(p)f(x)

=
σ2

n
d(x, p)

After we scale the variance σ2 and the number of trials n, the variance

function is

d(x, p) = D(ŷ)/(σ2/n).

3.3.1 Quadratic Regression Model

Let us consider the quadratic regression model which is given by

E(Y |x) = θ0 + θ1x+ θ2x
2.

The initial design space consists of 101 points equally spaced at intervals of

0.01 between -1.00 and 1.00. Total number of iterations is 100 000.

We report the results in the following tables, first by taking the argument

of f(x, δ) as x = d. We record for t = 1, . . . , 6 the number of iterations

needed to achieve max
1≤j≤J

{Fj} ≤ 10−t, where Fj’s are the vertex directional
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Table 3.1: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for quadratic regression model

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.600 34 245 2494 21763 49740 75549
1.000 21 148 1497 13058 29844 45330
1.250 17 118 1197 10447 23875 36264
1.375 16 108 1089 9497 21705 32968
1.400 15 106 1069 9327 21318 32379
1.900 15 79 788 6873 15708 23858

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 31 244 2491 21757 49736 75547
0.375 17 131 1329 11604 26526 40292
0.425 15 115 1172 10239 23405 35552
0.475 13 103 1049 9161 20941 31810
0.500 12 98 996 8703 19894 30219
0.575 15 84 866 7567 17299 26277

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.300 77 564 5748 50189 114716 174245
0.375 75 532 5425 47356 108237 164403
0.400 75 529 5385 47007 107439 163190
0.450 76 528 5383 46983 107380 163099
0.500 79 537 5468 47720 109063 165655
0.575 84 563 5737 50059 114404 173764

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.150 81 609 6208 54210 123912 188215
0.250 71 503 5122 44710 102190 155218
0.255 71 501 5108 44592 101920 154807
0.290 73 499 5084 44373 101417 154042
0.300 73 500 5097 44490 101683 154445
0.350 78 519 5289 46155 105484 160217
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derivatives.

According to the results obtained in Table 3.1, the best choices of δ for

x = d for the four different functions are

� 1.900 for f(x, δ) = xδ

� 0.500 for f(x, δ) = eδx

� 0.450 for f(x, δ) = eδx/1 + eδx

� 0.255 for f(x, δ) = Φ(δx).

In addition to that it can be seen, when moving away from this δ value, the

number of iterations needed have been increased. Moreover, for the logistic

cumulative density function (CDF) eδx/1 + eδx and normal CDF the total

number of iterations were taken as 200 000 unlike for the other two functions.

The D-optimal design obtained for the quadratic regression model is given

below. The optimal design corresponding to a particular model in a prede-

termined design space will be the same, even though the function in the

algorithm is different.

P ∗ =

{
−1 0 1

0.333 0.333 0.333

}

Next we are going to check the convergence of the algorithm by replacing

x = d by x = F . This means we are replacing partial derivatives of the

criterion function f(x, δ) with the directional derivatives. It is noticeable
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that, the results and the convergence rate will not be changed for the function

f(x, δ) = eδx. It can be proved theoretically using functional form of the

algorithm. In addition, we cannot use f(x, δ) = xδ for x = F because the

directional derivatives could take negative values.

The number of iterations used to reach max
1≤j≤J

{Fj} ≤ 10−t by replacing

partial derivatives with directional derivatives for quadratic regression model

using different δ values are given in Table 3.2.

Table 3.2: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for quadratic regression model

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.300 44 326 3323 29013 66317 100731
0.375 36 261 2659 23211 53054 80585
0.400 34 245 2493 21761 49738 75549
0.450 31 218 2216 19343 44212 67155
0.575 25 171 1735 15139 34601 52556
0.575 25 171 1735 15139 34601 52556

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.150 54 409 4164 36362 83115 126247
0.250 34 246 2499 21818 49870 75749
0.255 34 241 2450 21391 48892 74264
0.290 30 212 2155 18810 42992 65301
0.300 30 205 2083 18183 41559 63124
0.350 26 176 1786 15586 35622 54107
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3.3.2 Cubic Regression Model

Consider the application of D-optimality to the cubic regression model given

below

E(Y |x) = θ0 + θ1x+ θ2x
2 + θ3x

3.

A discretized design space of 101 points equally spaced at intervals of 0.01

between -1.00 and 1.00 is considered in here.

For the logistic CDF eδx/1+eδx, the design space being considered is 0.00

and 1.00, which was approximated by a grid of 101 points equally spaced at

intervals of 0.01.

The best choices of δ for the four different functions are obtained as

� 1.750 for f(x, δ) = xδ

� 0.375 for f(x, δ) = eδx

� 0.325 for f(x, δ) = eδx/1 + eδx

� 0.200 for f(x, δ) = Φ(δx)

The D-optimal design obtained using the functions xδ, eδx and Φ(δx) will

be the same since their design space is [-1,1]. It is as follows:

P ∗ =

{
−1.00 −0.45 −0.44 0.44 0.45 1.00

0.250 0.231 0.019 0.019 0.231 0.250

}
.
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Table 3.3: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = d

for cubic regression model

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.900 23 217 2028 10867 30890 71850
1.000 21 196 1825 9781 27801 64665
1.250 17 157 1460 7825 22241 51732
1.500 14 131 1217 6521 18534 43110
1.750 13 112 1043 5590 15886 36951
1.900 19 104 961 5148 14632 34034

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.180 29 270 2532 13580 38608 89809
0.200 26 243 2279 12222 34747 80828
0.250 21 195 1823 9778 27798 64662
0.300 17 162 1519 8148 23165 53884
0.325 16 149 1402 7521 21382 49739
0.375 13 128 1213 6516 18529 43105

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 74 688 4684 15984 32925 51445
0.300 71 666 4536 15476 31879 49811
0.325 70 665 4526 15441 31806 49696
0.350 70 668 4550 15523 31975 49960
0.375 71 676 4605 15711 32363 50564
0.500 79 776 5287 18034 37146 58038

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.190 70 666 6235 33427 95021 221024
0.199 70 663 6206 33271 94576 219988
0.200 70 663 6204 33259 94543 219912
0.230 72 666 6233 33412 94975 220914
0.240 83 724 6778 36325 103249 240154
0.259 76 686 6418 34398 97774 227423
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The D-optimal design obtained using the logistic probability density func-

tion eδx/1 + eδx in the design space [0,1] is given below.

P ∗ =

{
0.00 0.27 0.28 0.72 0.73 1.00

0.250 0.058 0.192 0.192 0.058 0.250

}

It is noticeable that in both of the above situations, the support points

consist of 4 clusters of points. These clusters can be a pair of neighboring

points or a single point. It should be kept in mind; the design space obtained

here is the discretized design space. Therefore, the desired solution for the

continuous design space has to be a 4-point design. By taking the convex

combinations of the particular cluster members, the following solution can

be obtained.

P ∗ =

{
−1.00 −0.447 −0.447 1.00

0.250 0.250 0.250 0.250

}

P ∗ =

{
0.00 0.275 0.725 1.00

0.250 0.250 0.250 0.250

}

Here, the first solution can be obtained under the design space [-1, 1]

while the second solution can be obtained under the design space [0, 1].

Next we will see the convergence rate by replacing partial derivatives

with directional derivatives in the function (Table 3.4). Here also, by the

same argument as before, when using x = F we do not use the functions

f(x, δ) = xδ and f(x, δ) = eδx.
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Table 3.4: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for cubic regression model

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 40 370 2519 8597 17709 27670
0.300 34 309 2100 7164 14758 23058
0.325 31 285 1938 6613 13622 21285
0.350 29 265 1800 6141 12649 19764
0.375 27 247 1680 5732 11806 18446
0.500 21 186 1261 4299 8855 13835

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.190 34 322 3008 16127 45844 106637
0.199 32 307 2872 15398 43771 101814
0.200 32 306 2858 15321 43552 101305
0.230 28 266 2485 13323 37872 88092
0.240 27 255 2382 12768 36294 84421
0.259 26 236 2207 11832 33632 78228

3.3.3 Quartic Regression Model

We now apply the D-optimality to the quartic regression model:

E(Y |x) = θ0 + θ1x+ θ2x
2 + θ3x

3 + θ4x
4.

The design space was considered as a grid of 101 points, i.e., equally spaced

at intervals of 0.01 between -1.00 and 1.00.

For the logistic cumulative density function and normal distribution, ap-

proximately 150 000 iterations have been used unlike for the other two func-

tions. The results obtained for the total number of iterations when using
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Table 3.5: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = d

for quartic regression model

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.300 83 815 8308 38630 66634 93923
0.500 50 490 4985 23178 39981 56354
0.550 46 445 4532 21071 36346 51231
0.650 39 377 3835 17830 30755 43349
0.950 27 258 2624 12200 21043 29660
1.000 26 245 2493 11590 19991 28177

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.190 27 257 2622 12197 21041 29660
0.200 26 244 2491 11587 19989 28177
0.230 22 212 2166 10075 17382 24501
0.250 20 195 1992 9269 15991 22541
0.260 18 187 1915 8912 15375 21673
0.265 17 182 1878 8743 15084 21263

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.100 133 1294 13197 61384 105893 149265
0.200 93 909 9265 43089 74327 104769
0.250 89 878 8952 41630 71809 101218
0.275 89 881 8981 41763 72038 101539
0.300 90 893 9108 42352 73053 102970
0.350 94 943 9620 44733 77157 108754

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.100 99 960 9786 45518 78520 110679
0.130 88 864 8809 40967 70668 99611
0.145 86 841 8580 39904 68833 97024
0.150 85 837 8533 39682 68450 96483
0.190 85 839 8559 39803 68656 96772
0.200 86 849 8666 40296 69506 97970
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these functions where x = d are displayed in Table 3.5. Since the design

space is [-1,1] for all four functions, the D-optimal design obtained for the

quartic regression model is as follows.

P ∗ =

{
−1.00 −0.66 −0.65 0.00 0.65 0.66 1.00

0.200 0.085 0.115 0.200 0.115 0.085 0.200

}

Here also, the convex combinations of the particular cluster members

yield the solution

P ∗ =

{
−1.00 −0.655 0.00 0.655 1.00

0.200 0.200 0.200 0.200 0.200

}

Additionally, by the results obtained, the best choices of δ for the four

different functions are

� 1.000 for f(x, δ) = xδ

� 0.265 for f(x, δ) = eδx

� 0.250 for f(x, δ) = eδx/1 + eδx

� 0.150 for f(x, δ) = Φ(δx)

The results obtained using x = F instead of x = d in the function for the

quartic regression model is given in the Table 3.6.
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Table 3.6: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for quartic regression model

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.100 101 977 9965 46350 79958 112708
0.200 51 489 4983 23176 39979 56354
0.250 41 391 3987 18541 31984 45083
0.275 37 356 3625 16856 29076 40985
0.300 34 326 3323 15451 26653 37569
0.350 29 280 2848 13244 22846 32202

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.100 63 613 6245 29046 50106 70629
0.130 49 471 4804 22344 38544 54330
0.145 44 423 4307 20033 34556 48710
0.150 43 409 4164 19365 33405 47086
0.190 34 323 3288 15289 26372 37173
0.200 32 307 3123 14524 25054 35315

3.3.4 Application of D-optimality Criterion to a Prac-

tical Problem in Chemistry

This practical model was considered by Torsney and Alahmadi (1995), and

Mandal, Torsney and Chowdhury (2017). The main objective of this problem

was to study the relationship between the viscosity and the concentration of a

chemical solution using a three parameter regression model. They wanted to

construct a design in a way that the parameters of interest are as uncorrelated

as possible. The model is

E(y|x) = θ0x+ θ1x
1/2 + θ2x

2. (3.4)
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Here, the viscosity is the response variable y and the concentration of a chem-

ical solution is the explanatory variable x. The design space is (0,0.2] which

is so short. Therefore, minimizing the covariance between the parameters of

interest is very challenging under any design.

The initial design space consists of 20 points equally spaced at intervals of

0.01 between 0.0 and 0.2. The functions being considered are xδ, eδx, logistic

CDF eδx/1 + eδx and normal CDF f(x, δ) = φ(δx) where x = d, partial

derivatives.

The results obtained for the total number of iterations when using the

above mentioned functions where x = d are displayed in Table 3.7.

The D-optimal design obtained for the chemistry model is as follows.

P ∗ =

{
0.02 0.11 0.12 0.20

0.333 0.255 0.079 0.333

}

Moreover, the best choices for the δ for each of the functions are,

� 1.800 for f(x, δ) = xδ

� 0.550 for f(x, δ) = eδx

� 0.450 for f(x, δ) = eδx/1 + eδx

� 0.250 for f(x, δ) = Φ(δx)

Next we will observe the convergence rate of obtaining an D-optimal

design when using x = F , the directional derivatives with the function. The

promising results were achieved with logistic CDF, eδx/1 + eδx and normal
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Table 3.7: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = d

for practical model in chemistry

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.500 32 167 789 1958 3297 4661
0.600 27 139 657 1632 2747 3883
0.750 22 112 526 1305 2197 3106
0.950 18 88 415 1030 1734 2451
1.500 12 56 263 652 1097 1551
1.800 9 47 219 543 914 1292

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.100 51 278 1316 3266 5498 7772
0.250 21 112 526 1306 2198 3107
0.300 18 93 439 1088 1831 2588
0.450 12 62 292 725 1220 1724
0.500 11 56 263 652 1098 1551
0.550 11 51 239 592 997 1410

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.350 58 306 1448 3597 6057 8563
0.450 57 300 1417 3522 5931 8385
0.500 58 304 1439 3576 6023 8516
0.650 66 342 1619 4027 6784 9592
0.750 75 386 1831 4558 7679 10858
0.900 95 484 2308 5748 9686 13698

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.150 65 346 1638 4067 6848 9680
0.250 54 285 1349 3352 5645 7980
0.350 57 294 1390 3457 5824 8235
0.400 61 315 1492 3713 6256 8846
0.500 78 396 1883 4692 7909 11185
0.600 110 553 2652 6619 11162 15790
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CDF where x = F . The iterations needed to achieve max{Fj} ≤ 10−t for

1 ≤ j ≤ J are given in Table 3.8.

Table 3.8: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for practical model in chemistry

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.350 31 159 751 1865 3140 4438
0.400 27 139 657 1631 2747 3883
0.500 22 112 525 1304 2196 3105
0.650 17 86 403 1003 1689 2387
0.800 15 70 327 814 1371 1939
0.950 13 59 275 685 1154 1632

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 33 175 824 2045 3444 4868
0.350 20 100 470 1167 1966 2779
0.400 18 87 411 1021 1720 2431
0.500 15 70 328 816 1375 1944
0.650 12 54 252 627 1057 1494
0.800 8 44 205 509 858 1213

When comparing the results of logistic CDF and normal CDF, it can be

seen that the convergence rate has increased when using directional deriva-

tives instead of partial derivatives.
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3.4 Construction of D-optimal Designs for Re-

gression Models with Two Variables

So far we discussed only about one design variable. When working with

statistical models, we also need to focus on models with more than one design

variable. In this section, we are going to focus on polynomial regression

models with two design variables. The design variables are defined as x1 and

x2. The full model we are considering is given by

E(y|x) = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2 = vTx θ. (3.5)

Here, vx = (1, x1, x2, x1x2, x
2
1, x

2
2)
T , x ∈ [−1, 1], θ = (θ0, θ1, θ2, θ3, θ4, θ5)

T and

the induced design space is given by vx ∈ V = {vx : vx = (1, x1, x2, x1x2, x
2
1, x

2
2)
T ,

−1 ≤ xi ≤ 1} where i = 1, 2.

We are going to construct D-optimal designs for the two variable full

model and two variable reduced models. First model we are going to con-

sider is defined as simple model which does not include squared terms and

interaction term. Next we are going to focus on the reduced model without

the interaction term. Finally, the full model will be considered. For all three

situations, the discretized design space will consist of all the pairs (x1, x2)

where values of xi, i = 1, 2, will be between -1.0 and 1.0 at intervals of 0.1.

In total the design space will consist of (21)2 = 441 pairs of (x1, x2). The

results will be reported in the same way as in for one variable model using

the functions xδ, eδx, eδx/(1 + eδx) and normal CDF. The convergence rate of
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the algorithms are compared by replacing partial derivatives of the criterion

function with directional derivatives.

3.4.1 Two Variable Model with θ0, θ1 and θ2 as the Pa-

rameters of Interest

The D-optimal design for the following two variable model is constructed.

E(y|x) = θ0 + θ1x1 + θ2x2 (3.6)

The design space is approximated by 441 pairs of (x1, x2). The convergence

of the algorithms is assessed using directional derivatives of D-optimality

criterion instead of partial derivatives. The number of iterations needed

when using the above mentioned functions withe x = d are displayed in

Table 3.9.

The optimal design obtained for this model is as follows.

P ∗ =


−1.00 1.00 −1.00 1.00

−1.00 −1.00 1.00 1.00

0.25 0.25 0.25 0.25


Moreover, the best choices for the δ for each of the functions are,

� 0.400 for f(x, δ) = xδ

� 0.900 for f(x, δ) = eδx
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� 0.400 for f(x, δ) = eδx/1 + eδx

� 0.250 for f(x, δ) = Φ(δx)

We will observe the convergence rate when using x = F , the directional

derivatives. The promising results were achieved with logistic CDF, eδx/1 +

eδx and normal CDF. The iteration values need to achieve max{Fj} ≤ 10−t

for 1 ≤ j ≤ J are given in Table 3.10.
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Table 3.9: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for two variable regression model with θ0, θ1 and θ2 as the parameters
of interest

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 93 223 369 518 666 815
0.300 87 208 343 480 617 754
0.400 85 199 324 451 578 705
0.500 89 205 332 459 587 715
0.650 105 236 377 519 660 802
0.750 122 270 429 587 746 905

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 35 86 146 206 267 327
0.350 20 50 84 118 153 187
0.500 15 35 59 83 107 131
0.600 12 29 49 69 90 110
0.725 10 24 41 58 74 91
0.900 8 20 33 46 60 73

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 93 223 369 518 666 815
0.300 87 208 343 480 617 754
0.400 85 199 324 451 578 705
0.500 89 205 332 459 587 715
0.650 105 236 377 519 660 802
0.750 122 270 429 587 746 905

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.175 86 206 341 478 615 753
0.250 81 189 308 429 550 672
0.300 83 191 309 429 548 668
0.400 98 220 350 480 611 742
0.500 132 286 448 609 771 932
0.600 196 415 637 859 1080 1302
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Table 3.10: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for two variable regression model with θ0, θ1 and θ2 as the parameters
of interest

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 59 142 236 332 428 524
0.450 35 82 134 186 239 292
0.550 30 68 110 153 196 239
0.625 27 61 98 135 173 211
0.700 25 55 88 121 155 188
0.800 22 49 78 107 136 165

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.350 29 67 109 151 193 235
0.450 24 53 86 118 151 184
0.600 19 42 66 90 114 138
0.700 17 37 57 78 98 119
0.850 15 31 48 65 81 98
0.900 15 30 45 61 77 93

When comparing the results of logistic CDF and normal CDF, it can be

seen that the convergence rate has increased when using directional deriva-

tives of the criterion function instead of partial derivatives.
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3.4.2 Two Variable Model with θ0, θ1, θ2, θ3 and θ4 as the

Parameters of Interest

Let us now consider the two variable regression model consisting of the

squared terms of the variables.

E(y|x) = θ0 + θ1x1 + θ2x2 + θ3x
2
1 + θ4x

2
2 (3.7)

Here also, the design space was approximated by 441 pairs of (x1, x2) The

number of iterations recorded for x = d are displayed in Table 3.11. The

optimal design obtained for the model including the best choices for the δ

for each of the functions are as follows.

P ∗ =


−1.00 0.00 1.00 −1.00 0.00 1.00 −1.00 0.00 1.00

−1.00 −1.00 −1.00 0.00 0.00 0.00 1.00 1.00 1.00

0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111


� 0.925 for f(x, δ) = xδ

� 0.575 for f(x, δ) = eδx

� 0.270 for f(x, δ) = eδx/1 + eδx

� 0.200 for f(x, δ) = Φ(δx)

Next we will find about the convergence rate of obtaining the D-optimal

design when using x = F , the directional derivatives with the function. The

iterations needed to reach max{Fj} ≤ 10−t for 1 ≤ j ≤ J with logistic CDF,
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eδx/1 + eδx and normal CDF where x = F are given in Table 3.12.

According to the results, it can be seen that the convergence rate has

increased when using the directional derivatives of the criterion function.

3.4.3 Two Variable Full Model

Let us consider the full model (3.5) with all the possible terms

E(y|x) = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2 = vTx θ.

As in for the earlier situations, the design space was approximated by 441

pairs of (x1, x2) where each variable was equally spaced spaced between -1.0

and 1.0 with 0.1 intervals. The results for x = d are displayed in Table 3.13.

The D-optimal design and the best choices of δ for each of the functions are

as follows.

P ∗ =


−1.00 0.00 1.00 −1.00 0.00 1.00 −1.00 0.00 1.00

−1.00 −1.00 −1.00 0.00 0.00 0.00 1.00 1.00 1.00

0.1458 0.0802 0.1458 0.0802 0.0962 0.0802 0.1458 0.0802 0.1458


� 0.950 for f(x, δ) = xδ

� 0.350 for f(x, δ) = eδx

� 0.200 for f(x, δ) = eδx/1 + eδx

� 0.200 for f(x, δ) = Φ(δx)
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The results for x = F are displayed in Table 3.14. When comparing

the results of these two tables, it can be seen that the convergence rate has

improved when using directional derivatives.

Generally, when we run the multiplicative algorithm for a few number

of iterations for all these regression models, we will be left with a number

of disjoint set of clusters. This means clustering starts happening in early

iterations. We will deal with this matter in next chapter.
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Table 3.11: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x =

d for two variable regression model with θ0, θ1, θ2, θ3 and θ4 as the parameters
of interest

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.400 121 763 1435 2081 2725 3368
0.500 97 610 1148 1665 2180 2695
0.600 81 509 957 1388 1817 2246
0.725 67 421 792 1149 1504 1859
0.800 61 382 718 1041 1363 1684
0.925 53 330 621 901 1179 1457

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 49 303 573 833 1091 1350
0.275 36 221 417 606 794 982
0.300 33 202 382 555 728 900
0.400 25 152 287 417 546 675
0.500 20 122 229 333 437 540
0.575 13 105 199 289 379 469

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.100 257 1608 3036 4409 5776 7143
0.270 174 1098 2066 2995 3921 4846
0.350 185 1181 2217 3213 4204 5195
0.425 210 1352 2535 3671 4802 5932
0.500 249 1619 3032 4387 5737 7085
0.600 327 2161 4043 5845 7639 9433

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.090 201 1262 2380 3456 4527 5598
0.125 173 1089 2053 2979 3901 4824
0.200 167 1062 1997 2894 3788 4682
0.250 187 1200 2251 3260 4265 5269
0.300 226 1475 2762 3996 5225 6452
0.400 404 2793 5207 7516 9813 12110
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Table 3.12: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for two variable regression model with θ0, θ1, θ2, θ3 and θ4 as the
parameters of interest

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.500 39 245 460 667 872 1078
0.600 33 205 384 556 727 898
0.725 28 170 318 461 602 744
0.800 25 155 289 418 546 674
0.900 23 138 257 372 486 599
1.000 21 125 232 335 437 540

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.375 33 205 385 557 729 901
0.500 25 155 290 419 547 676
0.575 22 136 252 365 476 588
0.650 20 121 224 323 422 520
0.725 19 109 202 290 378 467
0.800 18 99 183 263 343 423
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Table 3.13: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for the full model (3.5)

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.300 196 1097 1991 2855 3716 4577
0.500 118 659 1195 1713 2230 2746
0.650 91 507 919 1318 1715 2113
0.700 85 471 854 1224 1593 1262
0.800 74 412 747 1071 1394 1717
0.950 63 347 629 902 1174 1446

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.090 110 607 1104 1586 2067 2547
0.100 99 546 994 1428 1860 2293
0.150 66 364 663 952 1240 1529
0.200 50 273 497 714 930 1146
0.250 40 219 398 571 744 917
0.350 28 156 284 408 531 655

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.090 201 1262 2380 3456 4527 5598
0.125 173 1089 2053 2979 3901 4824
0.200 167 1062 1997 2894 3788 4682
0.250 187 1200 2251 3260 4265 5269
0.300 226 1475 2762 3996 5225 6452
0.400 404 2793 5207 7516 9813 12110

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.100 278 1543 2806 4029 5247 6465
0.175 217 1208 2194 3147 4097 5047
0.200 212 1185 2150 3083 4014 4944
0.250 215 1204 2183 3130 4073 5015
0.300 229 1292 2340 3353 4362 5371
0.500 400 2326 4200 6008 7808 9609
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Table 3.14: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for the full model (3.5)

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 99 548 995 1428 1859 2290
0.350 57 314 570 816 1062 1308
0.400 50 275 499 714 930 1145
0.500 42 221 400 572 744 916
0.600 34 185 334 477 620 763
0.725 29 154 277 396 514 632

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.150 83 458 832 1193 1553 1913
0.200 62 344 624 895 1165 1435
0.250 50 276 500 716 932 1148
0.300 42 231 417 597 777 956
0.400 32 174 314 448 583 717
0.450 29 155 279 399 518 638
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Chapter 4

Construction of D-optimal

Designs using Clustering

Approach

Traditional method of constructing an optimal design will usually result in

higher number of iterations which is not easy to implement. Sometimes,

with many number of nonsupport points with zero weights, convergence of

the algorithm obtaining an optimal design becomes slow. In the previous

chapter, we noted that, in some discretized design spaces of the regression

models, the optimal support points consist of number of clusters. Therefore,

we hope to enhance the convergence rate of the algorithm with the use of

clustering approach. With the clustering approach, the number of iterations

will be reduced a great deal, and it will save time, cost and resources of the

experimenter.
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We will consider a general regression problem to explain the idea behind

the clustering approach.

4.1 General Problem

Suppose we run the multiplicative algorithm for a small number of iterations

and obtain the plots of weights and the variance function with relative to

the design points. These plots will be curves with a number of maximal and

minimal turning points.

For an example, consider the following plots of weights and variance func-

tion obtained for the quartic regression model after 10 iterations. In Figure

(a) Weights vs design points (b) Variance vs design points

Figure 4.1: Weights and variance function vs design points for the quartic
regression model

4.1, the plots clearly depict curves with three maximal and four minimal

turning points. The minimal turning points are related to the regions of zero

weights. The weights on these regions of minimal turning points are converg-

ing to zero. With the assumption of such zero weights, we will be having a
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number of disjoint clusters of points that include the optimal support points.

If we consider the designs obtained after running the algorithm for small

number of iterations using traditional approach, they consist of same num-

ber of clusters as the number of support points in the design space of the final

solution. This was observed by Mandal and Torsney (2006). We make use

of this approach and attempt to further improve the convergence, generalize

this approach to optimizing distributions with respect to several distributions

as well as to apply other criteria. A similar feature related to this is presented

in Wynn(1990) algorithm. Torsney (1983) ran this algorithm for more than

100 iterations in solving a problem related to trigonometric regression.

4.1.1 Transformation of Weights to Within Cluster and

Total Cluster Weights

Suppose that for a particular model and a given design space, there are g

number of clusters C1, C2, ..., Cg. Any point within a cluster is denoted by

(l,m). This means the mth point in lth cluster (Cl). Let pl,m be the weight

such that 1 ≤ l ≤ g, 1 ≤ m ≤ nl and nl is the lth cluster size where

l = 1, 2, ..., g.

Next step is to obtain within cluster weights and total cluster weights

which are denoted by sl,m and tl respectively. First, we have to divide the

weights pl,m into g number of clusters. The summation of weights pl,m in

each of the clusters will be the total cluster weight for a particular cluster.

The within cluter weights are formed by dividing the weights pl,m in each of
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the clusters by its total cluster weight. Consider the following formulas of

forming total cluster weights and within cluster weights respectively

tl =

nl∑
m=1

pl,m, 1 ≤ l ≤ g (4.1)

sl,m = pl,m/tl, 1 ≤ m ≤ nl, 1 ≤ l ≤ g (4.2)

Here, tl denotes the total cluster weight such that l = 1, 2, ..., g and sl,m

is the mth within cluster weight for cluster l (Cl) such that l = 1, 2, ..., g and

m = 1, 2, ..., nl.

As in for the traditional approach of constructing optimal designs, there

are some constraints that has to be considered in clustering approach also.

They are,

g∑
l=1

tl = 1, tl ≥ 0, l = 1, 2, ..., g

nl∑
m=1

sl,m = 1, sl,m ≥ 0, l = 1, 2, ..., g,m = 1, 2, ..., nl

Next step is to formulate the optimization problem using the total cluster

weights tl and the within cluster weights sl,m. Then, the criterion function

φ(p) becomes a function of tl and sl,m and it can be stated as given below

φ(p) = φ̃(t, s1, s2, ..., sg) (4.3)

where,

t = (t1, t2, ..., tg)
T
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sl = (sl,1, sl,2, ..., sl,nl
)T , l = 1, 2, ..., g.

Here, we have to select t, s1, s2, ..., sg optimally. Then our optimization

problem can be denoted as maximizing φ̃(t, s1, s2, ..., sg) subject to the con-

straints

g∑
l=1

tl = 1, tl ≥ 0, l = 1, 2, ..., g

nl∑
m=1

sl,m = 1, sl,m ≥ 0, l = 1, 2, ..., g,m = 1, 2, ..., nl

Next we will consider the algorithm of constructing optimal designs using

clustering approach.

4.1.2 Algorithm for Constructing Optimal Designs us-

ing Clustering Approach

The algorithm has to be modified according to different sets of probability

distributions. In clustering approach, we have to use two separate algorithms

corresponding to total cluster weights tl and within cluster weights sl,m

t
(n+1)
l = t

(n)
l ft(x̃

(n)
l )/

g∑
k=1

t
(n)
k ft(x̃

(n)
k ), 1 ≤ l ≤ g (4.4)

s
(n+1)
l,m = s

(n)
l,mfl(x̃

(n)
l,m)/

nl∑
h=1

s
(n)
l,h fl(x̃

(n)
l,h ), 1 ≤ m ≤ nl, 1 ≤ l ≤ g (4.5)

Here,

� t(n) = Total cluster weight at nth iteration.
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� s
(n)
l = Within cluster weight for Cl at nth iteration where l = 1, 2, ..., g.

� x̃l = d̃l =
∂φ̃

∂tl
=
∑nl

m=1 dl,msl,m where d̃l is the partial derivative of φ̃

with respect to tl.

� x̃l,m = d̃l,m =
∂φ̃

∂sl,m
= tldl,m where d̃l,m is the partial derivatives of φ̃

with respect to sl,m.

� The above partial derivatives d̃l and d̃l,m are defined using the partial

derivatives dl,m of original weights pl,m.

� ft(.) and fl(.) are strictly increasing positive functions. They might

depend on free positive parameters like δt and δl where l = 1, 2, ..., g

respectively.

The properties related to this algorithm is similar to the properties of the

algorithm in traditional approach (Mandal and Torsney, 2006; Mandal et al.,

2017).

� t(n), s
(n)
1 , ..., s

(n)
g are always feasible.

� Fφ̃t
(n), s

(n)
1 , ..., s

(n)
g ; t(n+1), s

(n+1)
1 , ..., s

(n+1)
g ≥ 0

� When the partial derivatives related to nonzero weights of the distri-

butions t and s are all equal, an iterate t(n), s
(n)
1 , ..., s

(n)
g will be a fixed

point of the iteration. This is applied similarly for the situation where

corresponding vertex directional derivatives are zero.
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4.2 Quadratic Regression Model

The optimal design for the quadratic regression model was constructed using

clustering approach algorithm. The model is given by

E(Y |x) = θ0 + θ1x+ θ2x
2.

The functions we considered in here are xδ, logistic cumulative density func-

tion eδx/1 + eδx and normal cumulative density function φ(δx).

The design space was approximated by a grid of 201 points equally spaced

at intervals of 0.01 between -1.00 and 1.00. In order to form the clusters, δ

was taken as 0.5 and total number of iterations between 100 and 150 for the

function f(x, δ) = xδ when x = d were considered. For the logistic CDF and

normal CDF where x = F , δ was taken as 0.575.

The results were first obtained for the function f(x, δ) = xδ when x = d,

partial derivatives. For the logistic CDF and normal CDF, the best results

were obtained when we replaced partial derivatives of optimality criterion in

the function f(x, δ) by the directional derivatives.

The number of iterations needed to achieve max{Fj} ≤ 10−t for 1 ≤ j ≤

J when using the function f(x, δ) = xδ where x = d are displayed in Table

4.1. Moreover, the number of iterations needed to achieve max{Fj} ≤ 10−t

for 1 ≤ j ≤ J when using the functions logistic CDF f(x, δ) = eδx/1 + eδx

and normal CDF f(x, δ) = φ(δx) where x = F are displayed in Table 4.2.

The D-optimal design obtained for the quadratic regression model with
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Table 4.1: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for quadratic regression model with the use of clustering approach

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

12 1 2 41 80 116 152
15 1 2 33 64 93 122
18 1 2 28 54 78 102
20 1 2 25 49 71 92
23 1 2 22 43 62 80
25 1 2 21 39 57 74

Table 4.2: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for quadratic regression model with the use of clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

50 1 1 4 73 147 217
70 1 1 3 52 105 155
80 1 1 3 46 92 135
95 1 1 3 39 77 114
100 1 1 3 37 73 108
120 1 1 2 31 61 90

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

55 1 1 3 41 82 120
65 1 1 3 35 69 101
70 1 1 3 33 64 94
80 1 1 3 29 56 82
90 1 1 2 26 50 73
100 1 1 2 23 45 65

the function f(x, δ) = xδ when x = d, using clustering approach is as follows.

This means, we obtained the same design as traditional approach.
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P ∗ =

{
−1 0 1

0.333 0.333 0.333

}

The D-optimal designs obtained for the quadratic regression model with

the functions f(x, δ) = eδx/1 + eδx and normal CDF f(x, δ) = φ(δx) when

x = F , using clustering approach is as follows.

P ∗ =

{
−1.00 −0.01 0.00 0.01 1.00

0.333 0.015 0.303 0.015 0.333

}

It is noticeable that, the support points consist of three clusters of points

which is either of neighboring points or a single point. Since this is a solution

for a discretized design space, the solution for a continuous design space

should be a 3-point design. Therefore, by taking the convex combinations of

the relevant cluster elements, the solution below can be obtained.

P ∗ =

{
−1 0 1

0.333 0.333 0.333

}

The best choices of δ for the above three functions are,

� 25 for f(x, δ) = xδ when x = d

� 120 for f(x, δ) = eδx/1 + eδx when x = F

� 100 for f(x, δ) = Φ(δx) when x = F

According to the results, it can be seen that when increasing the δ value,

the number of iterations needed to achieve max{Fj} ≤ 10−t for 1 ≤ j ≤ J

have been decreased. This will increase the convergence rate.
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Graphical Interpretation

Consider the optimal design construction for the quadratic model using D-

optimality criterion. The construction is done using multiplicative algorithm

where the function is logistic cumulative density function and δ is 0.45. Fig-

ure 4.2 provides the graphs that we obtained after running the algorithm for

few iterations(10 iterations (Figure 4.2 (a)) at first and thereafter 100 itera-

tions (Figure 4.2 (b)), 1000 iterations (Figure 4.2 (c))) and at the optimum

(Figure 4.2 (d)).

The plot 4.2 (a) clearly depicts curves with two minimal and one maximal

turning points. Two peak points are visible at the design point x = 1.00 and

x = −1.00. The weights on the minimal turning points are converging to zero.

It is noticeable in plot 4.2 (d), all the minimal turning points have converged

to zero when increasing the total number of iterations in the algorithm. It

can be seen that at the optimum the weights corresponding to the data points

x = −1.00, 0.00, 1.00 have converged to 0.333 and the rest have converged to

zero.

Figure 4.3 shows the plots of variance function versus design points after

running algorithm for 10 iterations (Figure 4.3 (a)) and at the optimum

(Figure 4.3 (b)). In here also plot 4.3 (a) depicts curves with two minimal

and one maximal turning points including two peaks at the design points

−1.00 and 1.00 as in the previous weights versus design points plot (a). At

the optimum, the variance function values corresponding to design points

1.00 and -1.00 have converged to 3. The variance function corresponding to
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(a) After 10 iterations (b) After 100 iterations

(c) After 1000 iterations (d) At the optimum

Figure 4.2: Weights vs design points for the quadratic regression model

this quadratic model is,

d(x, p) = fT (x)M−1(p)f(x)

= 3− 4.5x2 + 4.5x4
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(a) After 10 iterations (b) At the optimum

Figure 4.3: Variance function vs design points for the quadratic regression
model

4.3 Cubic Regression Model

The optimal design construction was done for the cubic regression model

given below using clustering approach.

E(Y |x) = θ0 + θ1x+ θ2x
2 + θ3x

3

Here also, the design space was equally spaced at intervals of 0.01 between

-1.00 and 1.00. To form the clusters at the beginning, δ was taken as 1.5

and total number of iterations as 85 for the function f(x, δ) = xδ where

x = d. Then δ = 0.5 and total number of iterations as 250 were considered

for logistic CDF and normal CDF where x = F . In Table 4.3, the number of

iterations are recorded for the function f(x, δ) = xδ where x = d are used.

The D-optimal design obtained for the cubic regression model using the

function f(x, δ) = xδ where x = d is given below.
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Table 4.3: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for cubic regression model with the use of clustering approach

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1.5 1 1 822 1740 2574 3392
1.7 1 1 725 1535 2271 2993
1.9 1 1 649 1374 2032 2678
2.05 1 1 602 1274 1884 2483
3 1 1 412 871 1288 1697
3.5 1 1 353 747 1104 1455

P ∗ =

{
−1.00 −0.45 −0.44 0.44 0.45 1.00

0.250 0.230 0.020 0.020 0.230 0.250

}

Here also, it is noticed that the design space is composed of four clusters

with a pair of neighboring points or a single point. Therefore, by taking

the convex combinations of the relevant cluster members, the following D-

optimal design for the cubic regression model can be obtained.

P ∗ =

{
−1.00 −0.447 −0.447 1.00

0.250 0.250 0.250 0.250

}

The iterations needed to achieve max{Fj} ≤ 10−t for 1 ≤ j ≤ J when

using the functions logistic CDF f(x, δ) = eδx/1 + eδx and normal CDF

f(x, δ) = φ(δx) where x = F are displayed in Table 4.4.

Here also, the D-optimal designs were constructed using the logistic CDF

and normal CDF. We obtained the same number of clusters consist of pair

of neighboring points or a single point. The only difference can be seen in

the weights of the middle design points. The results are shown below.
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Table 4.4: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for cubic regression model with the use of clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

55 1 1 9 50 77 103
65 1 1 7 42 65 87
70 1 1 7 39 60 81
85 1 1 6 32 50 66
95 1 1 6 29 44 59
100 1 1 5 28 42 56

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

60 1 1 9 25 37 50
75 1 1 8 20 30 39
80 1 1 8 19 28 37
85 1 1 7 18 26 34
90 1 1 7 17 25 32
100 1 1 7 15 22 29

P ∗ =

{
−1.00 −0.45 −0.44 0.44 0.45 1.00

0.250 0.145 0.105 0.105 0.145 0.250

}

If we take the convex combinations of the cluster points, these two yield

the same solution. Next we report the the best choices of δ values for the

above three situations.

� 3.5 for f(x, δ) = xδ when x = d

� 100 for f(x, δ) = eδx/1 + eδx when x = F

� 100 for f(x, δ) = Φ(δx) when x = F .
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Graphical Interpretation

Figure 4.4 provides the plots of weights versus design points corresponding to

several iterations and at the optimum. According to the figure 4.4 (a), it can

be seen that, there are three minimal and two maximal turning points in the

curve. When increasing the number of iterations, the weights corresponding

to these minimal turning points are converging to zero. The weights corre-

sponding to the design points 0.00 and 1.00 have converged to 0.25 at the

optimum. It is noticeable that, in the plot 4.4 (d), the weights are arranged

as clusters, specifically in the middle between the design points 0.25 and 0.75.

This explains the design space for the cubic regression model obtained with

the four clusters of points.

Figure 4.5 provides the corresponding plots of variance function versus

design points of the above model. Here in the plot 4.5 (a), the after running

the algorithm for 10 iterations, a curve with three minimal and two maximal

turning points has been obtained. Two peaks can be seen at the design

points 0.00 and 1.00. Then at the optimum, the variance function values

corresponding to the design points 0.00 and 1.00 have converged to 4. The

variance function corresponding to this cubic regression model is,

d(x, p) = fT (x)M−1(p)f(x)

= 4−47.8924x+528.4343x2−2166.3436x3+4096.3219x4−3615.78x5+

1205.26x6.
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(a) After 10 iterations (b) After 100 iterations

(c) After 1000 iterations (d) At the optimum

Figure 4.4: Weights vs design points for the cubic regression model

(a) After 10 iterations (b) At the optimum

Figure 4.5: Variance function vs design points for the cubic regression model
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4.4 Quartic Regression Model

The D-optimal design was constructed using clustering approach for the

quartic regression model given below.

E(Y |x) = θ0 + θ1x+ θ2x
2 + θ3x

3 + θ4x
4

When using the clustering approach for the quartic regression model,

the best results for the function f(x, δ) = xδ were obtained with x = d, the

partial derivatives and for the logistic CDF and normal CDF with x = F , the

directional derivatives. The results were the same even if we use directional

derivatives instead of partial derivatives with the function f(x, δ) = xδ. The

iterations needed to achieve max{Fj} ≤ 10−t for 1 ≤ j ≤ J when using the

function f(x, δ) = xδ where x = d are displayed in the Table 4.5.

Table 4.5: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for quartic regression model with the use of clustering approach

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

15 1 1 97 180 262 345
20 1 1 73 136 197 259
22 1 1 67 123 179 236
25 1 1 59 109 158 208
26 1 1 57 105 152 200
27 1 1 55 101 147 193

Here also, the design space consists of 5 clusters of points which are either

with few neighboring points or a single point.
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P ∗=

{
−1 −0.66 −0.65 −0.01 0.00 0.01 0.65 0.66 1

0.2 0.085 0.115 0.003 0.194 0.003 0115 0.085 0.2

}

Here also, taking the convex combinations of the relevant cluster members

yields the following solution,

P ∗ =

{
−1.00 −0.655 0.00 0.655 1.00

0.200 0.200 0.200 0.200 0.200

}

Now we will focus on the results obtained for quartic regression model

using the functions logistic CDF f(x, δ) = eδx/1 + eδx and normal CDF

f(x, δ) = φ(δx) where x = F .

The number of iterations needed to achieve max{Fj} ≤ 10−t for 1 ≤ j ≤

J when using the functions logistic CDF and normal CDF where x = F are

displayed in Table 4.6.

According to the results obtained in Table 4.5 and Table 4.6, it is noticed

that the convergence rate of obtaining the optimal design increases when

increasing the δ value. The D-optimal design space obtained for these two

functions is as follows.

P ∗ =

{
−1.00 −0.66 −0.65 0.00 0.65 0.66 1.00

0.2 0.1 0.1 0.2 0.1 0.1 0.2

}

We can obtain the following optimal design by taking the convex combi-

nations of the cluster members as earlier.

P ∗ =

{
−1.00 −0.655 0.00 0.655 1.00

0.200 0.200 0.200 0.200 0.200

}
.
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Table 4.6: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for quartic regression model with the use of clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

55 1 1 20 38 54 71
65 1 1 17 32 46 59
80 1 1 14 26 37 48
90 1 1 13 24 33 43
95 1 1 12 22 31 40
100 1 1 12 21 30 38

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

50 1 1 13 25 34 44
55 1 1 12 22 31 40
60 1 1 12 21 29 37
75 1 1 10 17 23 29
85 1 1 9 15 20 25
90 1 1 8 13 17 22

Graphical Interpretation

Next we will consider the graphical interpretation related to the construc-

tion of optimal design for the quartic regression model using D-optimality

criterion. The function being considered in here is logistic cumulative den-

sity function and the δ value is 1.15. Figure 4.6 denotes the plots of weights

versus design points for several number of iterations and at the optimum.

The plot 4.6 (a) shows a curve with four minimal and three maximal

turning points. In addition to that, it can be seen there are two peak at x =

−1.00 and x = 1.00 design points. As for the previous cubic and quadratic

regression models, here also when increasing the number of iterations, the
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weights corresponding to minimal turning points are converging to zero. At

the optimum, the weights corresponding to the design points -1.00, 0.00 and

1.00 have converged to 0.2. But, some of the weights are arranged as clusters

between some design points. In the plot 4.6 (d), it can be seen clearly. That

means, the design space for the quartic regression model has been obtained

with 5 clusters of points.

(a) After 10 iterations (b) After 100 iterations

(c) After 1000 iterations (d) At the optimum

Figure 4.6: Weights vs design points for the quartic regression model

Figure 4.7 displays the plots of variance function versus design points for

this optimal design construction. The plot 4.7 (a) depicts the curve after

running the algorithm for 10 iterations. This curve includes four minimal
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and three maximal turning points. In addition to that there are two peak

points at x = 1.00 and x = −1.00 design points. It can be seen that, at the

optimum the variance function values corresponding to these design points

have converged to 5.0. The variance function related to this quartic regression

model is,

d(x, p) = fT (x)M−1(p)f(x)

= 5− 3.8351x2 + 21.7167x4 − 38.72x6 + 20.8385x8

(a) After 10 iterations (b) At the optimum

Figure 4.7: Variance function vs design points for the quartic regression
model
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4.5 Application of Clustering Approach to the

D-optimal Design Construction for the

Practical Model in Chemistry

In this section we are going to discuss about the application of clustering

approach to the practical problem in chemistry that we mentioned in the

previous chapter. The model is denoted as

E(y|x) = θ0x+ θ1x
1/2 + θ2x

2.

As we have done earlier for the previous models, here also we considered

three functions xδ, logistic cumulative density function eδx/1+eδx and normal

cumulative density function φ(δx).

The same initial design space used in the traditional approach was consid-

ered. That means, a grid of 20 points equally spaced at the intervals of 0.01

between 0.0 and 0.2. The best result for the function xδ was obtained when

using x = d, the partial derivatives. But for the other two functions, the best

results were obtained with the use of x = F , the directional derivatives.

The iterations needed to achieve max{Fj} ≤ 10−t for 1 ≤ j ≤ J are

displayed in the Table 4.7. The D-optimal design was obtained as given

below

P ∗ =

{
0.02 0.11 0.12 0.20

0.333 0.255 0.079 0.333

}
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Table 4.7: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for the chemistry model with the use of clustering approach

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

7.750 1 1 89 732 1381 2014
8.000 1 1 87 709 1338 1952
8.500 1 1 82 667 1260 1837
8.750 1 1 79 648 1224 1784
9.000 1 1 77 630 1190 1735
9.500 1 1 73 597 1127 1648

The total number of iterations needed to achieve max{Fj} ≤ 10−t for 1 ≤

j ≤ J when using the functions logistic CDF and normal CDF where x = F

are displayed in Table 4.8.

D-optimal designs obtained for the chemistry model with the functions

f(x, δ) = eδx/1 + eδx and normal CDF f(x, δ) = φ(δx) when x = F , using

clustering approach are shown respectively below.

P ∗ =

{
0.02 0.11 0.12 0.20

0.333 0.240 0.094 0.333

}

P ∗ =

{
0.02 0.11 0.12 0.20

0.333 0.248 0.086 0.333

}

Graphical Interpretation

Let us consider the graphical display of weights and variance function related

to the construction of D-optimal design for the chemistry model. The design
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Table 4.8: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for the chemistry model with the use of clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

50 1 1 16 90 178 264
60 1 1 13 75 148 219
70 1 1 12 65 127 187
75 1 1 11 60 119 175
80 1 1 11 57 111 163
90 1 1 10 51 99 145

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

55 1 1 3 62 134 203
60 1 1 3 52 113 171
70 1 1 3 49 105 158
75 1 1 2 46 98 147
80 1 1 2 43 92 138
85 1 1 2 40 86 130

construction was done using the logistic CDF eδx/1 + eδx where x = d. The

design space being considered is 0.0 to 0.2. The δ value was taken as 0.45.

The plots of weights versus design points after several number of iterations

and at the optimum are displayed in Figure 4.8. According to the plot 4.8

(a), it is noticeable that there are two maximal and two minimal turning

points in the curve. Here also, the weights lie in the minimal turning points

converged to zero when increasing the number of iterations. These weights at

the minimal turning points converged to zero at the optimum as shown in the

plot 4.8 (d). In this plot, the weights corresponding to the design points 0.02

and 0.20 have converged to 0.333 as in D-optimal design obtained earlier.

The weights and the design points corresponding the D-optimal design for
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the chemistry model can be seen clearly in plot 4.8 (d).

(a) After 10 iterations (b) After 100 iterations

(c) After 1000 iterations (d) At the optimum

Figure 4.8: Weights vs design points for the practical model in chemistry

The plots of variance function versus design points after several number of

iterations and at the optimum are denoted in the Figure 4.9. Here also in plot

4.9 (a), two minimal and two maximal turning points can be seen like in our

weights versus design points plot for chemistry model. When increasing the

number of iterations the variance function values around maximal turning

points are converging to 3.00. In addition to that there is a peak point at
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the design point x = 0.20 which has converged to 3.00 at the optimum as in

the plot 4.9 (c). The variance function related to the chemistry model is,

d(x, p) = fT (x)M−1(p)f(x)

= 789.4313x+16552.652x2+1742.154x3/2−89578.72x3+8706.886x5/4+

131921.815x4.

(a) After 10 iterations (b) After 100 iterations

(c) At the optimum

Figure 4.9: Variance function vs design points for the practical model in
chemistry
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4.6 Application of Clustering Approach to Two

Variable Regression Models

In this section we are going to discuss about the D-optimal design construc-

tion for the two variable models with the use of clustering approach. We

will consider two models (model 3.6 and model 3.7) mentioned in Chapter

3. The functions being considered in the algorithm are eδx, eδx/1 + eδx and

φ(δx). The total number of iterations needed to achieve max{Fj} ≤ 10−t for

1 ≤ j ≤ J will be displayed. Additionally, the convergence of the algorithm

was improved by using directional derivatives of D-optimality criterion.

4.6.1 Model with Parameters θ0, θ1 and θ2

We have constructed the optimal design for the reduced model below with

parameters θ0, θ1 and θ2 using clustering approach.

E(y|x) = θ0 + θ1x1 + θ2x2

The design space was approximated by a grid of 441 (x1, x2) pairs where

each variable takes values between -1.0 to 1.0 with 0.1 intervals. The best

results were obtained for the function f(x, δ) = eδx when x = d, partial

derivatives. But for the logistic CDF and normal CDF, the best results

were obtained when we replaced partial derivatives in the function f(x, δ)

by the directional derivatives. The number of iterations needed to achieve

max{Fj} ≤ 10−t for 1 ≤ j ≤ J when using the function f(x, δ) = eδx where
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x = d are displayed in Table 4.9. Moreover, the number of iterations for

logistic CDF f(x, δ) = eδx/1 + eδx and normal CDF f(x, δ) = φ(δx) where

x = F are displayed in Table 4.10.

The δ values and the total number of iterations which were used to form

clusters are

� eδx where x = d : δ = 0.8 , n = 30

� eδx/(1 + eδx) where x = F : δ = 0.5 , n = 80

� Normal CDF where x = F : δ = 0.5 , n = 30

Table 4.9: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for the reduced model with parameters θ0, θ1 and θ2 using clustering
approach

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

10 1 1 18 28 38 48
15 1 1 12 19 26 33
20 1 1 10 15 20 25
25 1 1 8 12 16 20
30 1 1 7 11 14 17
35 1 1 7 9 12 15

The D-optimal design obtained for this reduced regression model with the

function f(x, δ) = eδx when x = d, using clustering approach is as follows.
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Table 4.10: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for the reduced model with parameters θ0, θ1 and θ2 using clustering
approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

8 1 1 23 33 42 52
10 1 1 18 26 33 41
15 1 1 12 17 22 26
18 1 1 10 14 18 21
20 1 1 9 13 16 19
25 1 1 8 10 12 15

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1.50 1 7 26 45 64 83
1.60 1 7 24 42 60 78
1.80 1 6 22 37 53 69
2.00 1 5 20 34 48 62
2.25 1 5 17 30 42 54
2.40 1 5 15 27 39 51

P ∗ =


−1.00 1.00 −1.00 1.00

−1.00 −1.00 1.00 1.00

0.25 0.25 0.25 0.25


TheD-optimal designs obtained for this model with the functions f(x, δ) =

eδx/1 + eδx and normal CDF f(x, δ) = φ(δx) when x = F , using clustering

approach is as follows.
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P ∗ =


−1.00 1.00 1.00 −1.00 −1.00 1.00

−1.00 −1.00 −0.90 0.90 1.00 1.00

0.25 0.23 0.02 0.02 0.23 0.25


It is noticeable that, the support points consist of four clusters of points

which is either of neighboring points or a single point. Since this is a solution

for a discretized design space, the solution for a continuous design space

should be a 4-pair design. Therefore, by taking the convex combinations of

the relevant cluster elements, the solution below can be obtained.

P ∗ =


−1.00 1.00 −1.00 1.00

−1.00 −1.00 1.00 1.00

0.25 0.25 0.25 0.25


The best choices of δ for the above three functions are,

� 35 for f(x, δ) = eδx when x = d

� 25 for f(x, δ) = eδx/1 + eδx when x = F

� 2.40 for f(x, δ) = Φ(δx) when x = F

Graphical Interpretation

Next we will consider the graphical display of weights and variance function

versus design points for the above model. The function being considered
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was logistic CDF eδx/(1 + eδx) and δ was taken as 0.50. Figure 4.10 denotes

the plots of weights versus design points after running the algorithm for 10

iterations and at the optimum respectively.

(a) After 10 iterations (b) At the optimum

Figure 4.10: Weights vs design points for the two variable model with θ0, θ1
and θ2 as the parameters of interest

According to the plot 4.10 (b), the D-optimal design have weights only at

the corners (−1,−1), (−1, 1), (1, 1) and (1,−1). Each of them take a weight

of 0.25. All the other weights have converged to zero at the optimum.

Figure 4.11 depicts the plots of variance function versus design points for

the same model after 10 iterations and at the optimum. It is noticeable that

at the optimum (plot 4.11 (b)) the variance function values corresponding

to the design pairs (−1,−1), (−1, 1), (1, 1) and (1,−1) have converged to 0.

The variance function related to this quartic regression model is,

d(x, p) = fT (x)M−1(p)f(x)

= 1 + x21 + x21.
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(a) After 10 iterations (b) At the optimum

Figure 4.11: Variance function vs design points for the two variable model
with θ0, θ1 and θ2 as the parameters of interest

4.6.2 Model with Parameters θ0, θ1, θ2, θ3 and θ4

Here we are going to focus on the construction of optimal design for the

model with parameters θ0, θ1, θ2, θ3 and θ4 using clustering approach.

E(y|x) = θ0 + θ1x1 + θ2x2 + θ3x
2
1 + θ4x

2
2

The iterations needed to achieve max{Fj} ≤ 10−t for 1 ≤ j ≤ J when

using the function f(x, δ) = eδx where x = d are displayed in Table 4.11.

Furthermore, the number of iterations needed to achieve max{Fj} ≤ 10−t

for 1 ≤ j ≤ J when using the functions logistic CDF f(x, δ) = eδx/1 + eδx

and normal CDF f(x, δ) = φ(δx) where x = F are displayed in Table 4.12.
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The δ values and total number of iterations used in forming clusters are

� eδx where x = d : δ = 0.27 , n = 70

� eδx/(1 + eδx) where x = F : δ = 0.50 , n = 70

� Normal CDF where x = F : δ = 0.60 , n = 55

Table 4.11: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for the reduced model with parameters θ0, θ1, θ2, θ3 and θ4 using
clustering approach

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

55 1 3 8 12 17 24
60 1 3 7 11 16 23
70 1 3 6 10 15 21
75 1 3 6 10 14 20
80 1 3 6 9 14 20
90 1 2 5 8 13 19

The D-optimal design obtained for this regression model is as follows.

P ∗ =


−1.00 0.00 1.00 −1.00 0.00 1.00 −1.00 0.00 1.00

−1.00 −1.00 −1.00 0.00 0.00 0.00 1.00 1.00 1.00

0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111


The best choices for the δ for each of the functions are as follows.

� 90 for f(x, δ) = eδx when x = d

� 90 for f(x, δ) = eδx/1 + eδx when x = F
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Table 4.12: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for the reduced model with parameters θ0, θ1, θ2, θ3 and θ4 using
clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

50 1 6 17 28 40 54
65 1 5 15 25 40 56
70 1 5 14 25 41 58
74 1 5 13 25 43 61
80 1 4 13 25 46 67
90 1 4 12 27 55 83

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

45 1 4 24 50 72 93
50 1 4 21 41 59 76
68 1 3 15 24 33 42
75 1 3 13 21 28 35
80 1 3 12 19 25 31
90 1 3 10 15 20 25

� 90 for f(x, δ) = Φ(δx) when x = F

According to the results, it can be seen that when increasing the δ value,

the number of iterations needed to achieve max{Fj} ≤ 10−t for 1 ≤ j ≤ J

have been decreased. This will increase the convergence rate of the optimal

design.

Graphical Interpretation

Let us consider the graphical display of weights and variance function versus

design points for this model. The function being considered was logistic CDF
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eδx/(1+eδx) and δ was taken as 0.27. Figure 4.12 denotes the plots of weights

versus design points after running the algorithm for 10 iterations and at the

optimum.

(a) After 10 iterations (b) At the optimum

Figure 4.12: Weights vs design points for the two variable model with
θ0, θ1, θ2, θ3 and θ4 as the parameters of interest

It is noticeable that in the D-optimal design the weights corresponding

to the pairs (−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0) , (−1, 1), (0, 1),

(1, 1) have converged to 0.111. All the other weights have converged to zero

at the optimum.

Moreover, the Figure 4.13 depicts the plots of variance function versus

design points for this model after 10 iterations and at the optimum. It is

noticeable that at the optimum (plot 4.13 (b)) the variance function values

corresponding to the nine design pairs we mentioned earlier have converged
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to 0. The variance function related to this quartic regression model is,

d(x, p) = fT (x)M−1(p)f(x)

= 5− 0.0008x21x
2
2 + 4.5x42 + 4.5x41 − 4.5x22 − 4.5x21

(a) After 10 iterations (b) At the optimum

Figure 4.13: Variance function vs design points for the two variable model
with θ0, θ1, θ2, θ3 and θ4 as the parameters of interest
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4.6.3 Full Model

Next we are going to focus on the construction of D-optimal design for the

two variable full model using clustering approach. The model is given by

E(y|x) = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2 = vTx θ.

The best results were obtained for the function f(x, δ) = eδx when x = d,

partial derivatives. But for the logistic CDF and normal CDF, the best

results were obtained when we replaced partial derivatives in the function

f(x, δ) by the directional derivatives. Results are given in Tables 4.13 and

4.14.

The δ values and the total number of iterations which were used to form

clusters are,

� eδx where x = d : δ = 0.300 , n = 150

� eδx/(1 + eδx) where x = F : δ = 0.725 , n = 120

� Φ(δx) where x = F : δ = 0.450 , n = 120

The optimal design is obtained as

P ∗ =


−1.00 0.00 1.00 −1.00 0.00 1.00 −1.00 0.00 1.00

−1.00 −1.00 −1.00 0.00 0.00 0.00 1.00 1.00 1.00

0.146 0.080 0.146 0.086 0.082 0.086 0.146 0.080 0.146


The D-optimal designs obtained for this model with the functions f(x, δ) =

eδx/1 + eδx and normal CDF f(x, δ) = φ(δx) when x = F , using clustering
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Table 4.13: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for the two variable full model using clustering approach

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

60 1 1 12 38 60 83
65 1 1 12 35 55 75
74 1 1 11 30 48 65
80 1 1 11 28 44 59
85 1 1 10 26 41 55
90 1 1 10 25 38 51

Table 4.14: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for the two variable full model using clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

64 1 1 17 67 113 158
70 1 1 16 60 101 141
75 1 1 16 56 92 129
80 1 1 15 52 85 118
86 1 1 15 47 78 108
90 1 1 14 45 73 101

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

55 1 1 15 46 76 105
65 1 1 13 38 61 84
70 1 1 13 34 55 76
78 1 1 12 30 48 65
86 1 1 11 27 42 57
92 1 1 10 24 38 51

approach is as follows.

P ∗ =


−1.00 0.00 1.00 −1.00 0.00 1.00 −1.00 0.00 1.00

−1.00 −1.00 −1.00 0.00 0.00 0.00 1.00 1.00 1.00

0.146 0.080 0.146 0.087 0.080 0.087 0.146 0.080 0.146


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The best choices of δ for the above three functions are,

� 90 for f(x, δ) = eδx when x = d

� 90 for f(x, δ) = eδx/1 + eδx when x = F

� 92 for f(x, δ) = Φ(δx) when x = F .

Graphical Interpretation

Consider the graphical display of weights and variance function versus design

points for the full model (3.5). The function being considered was logistic

CDF eδx/(1 + eδx) and δ was taken as 0.20. Figure 4.14 gives the plots of

weights versus design points after running the algorithm for 10 iterations

and at the optimum. At the optimum (plot 4.14 (b)), D-optimal design have

same weights on the pairs (−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0) ,

(−1, 1), (0, 1), (1, 1) which are similar to the weights we obtained before.

(a) After 10 iterations (b) At the optimum

Figure 4.14: Weights vs design points for the two variable full model
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Figure 4.15 depicts the plots of variance function versus design points

for the same model after 10 iterations and at the optimum. The variance

function related to this quartic regression model is,

d(x, p) = fT (x)M−1(p)f(x)

= 6− 4.5936x21x
2
2 + 5.3801x41 + 5.3801x42 − 5.38x22 − 5.38x21

In all of the results we see that after combining the clustering approach with

the properties of the directional derivatives of the criterion, the convergence

is improved a lot.

(a) After 10 iterations (b) At the optimum

Figure 4.15: Variance function vs design points for the two variable full model
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Chapter 5

Construction of Ds-optimal

Designs using both Analytic

and Algorithmic Approaches

We are going to focus on Ds optimality criterion which is a special case of

DA-optimality from this chapter onward. Ds optimality is quite important

when we are interested in a subset of parameters.

Suppose we are interested in s parameters θ1, θ2, ..., θs of θ ∈ Θ. In

DA-optimality, suppose that the A matrix is expressed in terms of a s × s

identity matrix (Is) and s × (k − s) zero matrix(O) such that A = [Is : O].

This converts to Ds optimality. Thus, with the above choice of A, M(p)
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matrix can be partitioned in the following manner

M(p) =

M s×s
11 M

s×(k−s)
12

MT
12 M

(k−s)×(k−s)
22

 .
Then in Ds optimality the matrix (AM−1(p)AT )−1 is expressed as M11 −

M12M
−1
22 M

T
12 (Rhode (1965)). So the criterion can be written as

φDs(p) = log det{M11 −M12M
−1
22 M

T
12}. (5.1)

This is known as Ds-optimality criterion as in Karlin and Studden (1966),

Atwood (1969) and Silvey (1980). This criterion has similar properties as

D-optimality criterion since this is a special case of DA-optimality.

5.1 Analytic Solutions for the Construction

of Ds-optimal Designs

In this section we are going to discuss some analytical solutions for polyno-

mial regression models. If we have the support points for a given model, we

can derive the optimal solution for Ds-optimality criterion.

First we consider the analytical solution to quadratic regression model

taking θ2 as the parameter of interest. So our model can be rearranged to

the following format.

E(y|x) = θ2x
2 + θ1x+ θ0
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The Ds-optimal design is,

P ∗ =

{
−1.00 0.00 1.00

0.25 0.50 0.25

}

Proof:

Let the weights corresponding to support points -1.00, 0.00 and 1.00 be p1,

p2 and p3 respectively. V T
j and A matrices for the model are expressed as

V T
j = [x2j xj 1]; j = 1, 2, 3

A =
[
1 0 0

]
.

� First we find the information matrix M(p) for the model.

M(p) =
4∑
j=1

pjvjv
T
j

=
3∑
j=1

pj


x4j x3j x2j

x3j x2j xj

x2j xj 1


� Then by substituting x1 = −1.00, x2 = 0.00 and x3 = 1.00 in M(p),

a 3× 3 M(p) matrix is obtained. The elements of this matrix include
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expressions in terms of p1 and p3. As p1 + p2 + p3 = 1, p2 = 1− p1− p3.

M(p) =


p3 + p1 p3 − p1 p3 + p1

p3 − p1 p3 + p1 p3 − p1

p3 + p1 p3 − p1 1

 (5.2)

� Next, we partition the M(p) matrix in the way we discussed earlier.

M11 =
[
p3 + p1

]

M12 =
[
p3 − p1 p3 + p1

]

M21 =

p3 − p1
p3 + p1



M22 =

p3 + p1 p3 − p1

p3 − p1 1


� Then, we obtain Ds-optimality criterion using the equation (5.1).

φDs(p) = log det{M11 −M12M
−1
22 M

T
12}

� We calculate partial derivatives of the criterion function obtained, with

respect to p1 and p3.

∂φDs(p)

∂p1
= − p3 (3p1 + p3 − 1) (p1 − p3 + 1)

(p1 + p3 − 1) p1 (p21 + (−2p3 − 1) p1 + p23 − p3)
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∂φDs(p)

∂p1
=

p3 (p1 + 3p3 − 1) (p1 − p3 − 1)

p3 (p1 + p3 − 1) (p21 + (−2p3 − 1) p1 + p23 − p3)

� Then, we solve following three algebraic equations and calculate the

values of p1, p2, and p3.

∂φDs(p)

∂p1
= 0

∂φDs(p)

∂p3
= 0

p1 + p2 + p3 = 1

� We obtain the answers: p1 = 0.25, p2 = 0.50 and p3 = 0.25.

� Hence, the Ds-optimal design is,

P ∗ =

{
−1.00 0.00 1.00

0.25 0.50 0.25

}

Next we will consider the application of Ds-optimality criterion to the

practical model in chemistry we discussed before. Suppose we are taking θ1

and θ2 as the parameters of interest. So, the model can be written in the
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following format.

E(y|x) = θ1x
1/2 + θ2x

2 + θ0x

Suppose that we know the support points of this Ds-optimal design are

0.02, 0.10 and 0.20. Then the optimal design is

P ∗ =

{
0.02 0.10 0.20

0.49 0.34 0.17

}

Proof:

Let the weights corresponding to support points 0.02, 0.10 and 0.20 be p1,

p2 and p3. The matrices A and V T
j can be expressed as

A =

1 0 0

0 1 0


V T
j = [x

1/2
j x2j xj]; j = 1, 2, 3.

� First we obtain information matrix M(p) for this model.

M(p) =
3∑
j=1

pjvjv
T
j

=
3∑
j=1

pj


xj x

5/2
j x

3/2
j

x
5/2
j x4j x3j

x
3/2
j x3j x2j


� Then by substituting x1 = 0.02, x2 = 0.10 and x3 = 0.20 in M(p) the
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following is obtained as the M(p) matrix.


0.02p1 + 0.1p2 + 0.2p3 0.0032p2 + 0.0179p3 0.0028p1 + 0.0316p2 + 0.0894p3

0.0032p2 + 0.0179p3 0.0001p2 + 0.0016p3 0.001p2 + 0.008p3

0.0028p1 + 0.0316p2 + 0.0894p3 0.001p2 + 0.008p3 0.0004p1 + 0.01p2 + 0.04p3

 .

� Next, we partition the M(p) matrix as we discussed in earlier section.

So the results are,

M11 =

0.02p1 + 0.1p2 + 0.2p3 0.0032p2 + 0.0179p3

0.0032p2 + 0.0179p3 0.0001p2 + 0.0016p3



M12 =

0.0028p1 + 0.0316p2 + 0.0894p3

0.001p2 + 0.008p3


M21 =

[
0.0028p1 + 0.0316p2 + 0.0894p3 0.001p2 + 0.008p3

]
M22 =

[
0.0004p1 + 0.01p2 + 0.04p3

]
� Next we find the solution of M11 −M12M

−1
22 M

T
12. It is a 2× 2 matrix.

� Then, we obtain Ds-optimality criterion:

φDs(p) = log det{M11 −M12M
−1
22 M

T
12}

� We obtain partial derivatives of the criterion function obtained, with

respect to p1, p2 and p3.
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� Then, we have following four algebraic equations which can be solved

in order to get the answers for p1, p2 and p3.

∂φDs (p)

∂p1
= 0

(−(2.0(1074) ∗ ((1.0(10−42) ∗ (−2.583(1074) ∗ p31 + 1.13(1089) ∗ p21 ∗ p2 +

2.047(1090) ∗ p21 ∗ p3 + 4.549(1089) ∗ p1 ∗ p22− 1.606(10102) ∗ p1 ∗ p2 ∗ p3 +

1.227(1092)∗p1∗p23+1.676(1080)∗p32−1.912(1092)∗p22∗p3−3.894(1091)∗

p2∗p23+3.965(1081)∗p33))/(2.0(1032)∗p1+5.0(1033)∗p2+2.0(1034)∗p3)2−

(5.0(10−75)∗ (−7.748(1074)∗p21 +2.259(1089)∗p1 ∗p2 +4.094(1090)∗p1 ∗

p3+4.549(1089)∗p22−1.606(10102)∗p2∗p3+1.227(1092)∗p23))/(2.0(1032)∗

p1 + 5.0(1033) ∗ p2 + 2.0(1034) ∗ p3)) ∗ (2.0(1032) ∗ p1 + 5.0(1033) ∗ p2 +

2.0(1034) ∗ p3))/(−2.583(1074) ∗ p31 + 1.13(1089) ∗ p21 ∗ p2 + 2.047(1090) ∗

p21 ∗ p3 + 4.549(1089) ∗ p1 ∗ p22− 1.606(10102) ∗ p1 ∗ p2 ∗ p3 + 1.227(1092) ∗

p1 ∗ p23 + 1.676(1080) ∗ p32− 1.912(1092) ∗ p22 ∗ p3− 3.894(1091) ∗ p2 ∗ p23 +

3.965(1081) ∗ p33)) = 0.0

∂φDs (p)

∂p2
= 0

(2.0(1074)∗((5.0(10−75)∗(1.13(1089)∗p21+9.098(1089)∗p1∗p2−1.606(10102)∗

p1∗p3+5.029(1080)∗p22−3.825(1092)∗p2∗p3−3.894(1091)∗p23))/(2.0(1032)∗

p1 + 5.0(1033) ∗ p2 + 2.0(1034) ∗ p3)− (2.5(10−41) ∗ (−2.583(1074) ∗ p31 +

1.13(1089) ∗ p21 ∗ p2 + 2.047(1090) ∗ p21 ∗ p3 + 4.549(1089) ∗ p1 ∗ p22 −

1.606(10102) ∗ p1 ∗ p2 ∗ p3 + 1.227(e + 92) ∗ p1 ∗ p23 + 1.676(1080) ∗ p32 −

1.912(1092)∗p22∗p3−3.894(1091)∗p2∗p23+3.965(1081)∗p33))/(2.0(1032)∗

p1 + 5.0(1033) ∗ p2 + 2.0(1034) ∗ p3)2) ∗ (2.0(1032) ∗ p1 + 5.0(1033) ∗ p2 +
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2.0(1034) ∗ p3))/(−2.583(1074) ∗ p31 + 1.13(1089) ∗ p21 ∗ p2 + 2.047(1090) ∗

p21 ∗ p3 + 4.549(1089) ∗ p1 ∗ p22− 1.606(10102) ∗ p1 ∗ p2 ∗ p3 + 1.227(1092) ∗

p1 ∗ p23 + 1.676(10e + 80) ∗ p32 − 1.912(1092) ∗ p22 ∗ p3 − 3.894(1091) ∗ p2 ∗

p23 + 3.965(1081) ∗ p33) = 0.0

∂φDs (p)

∂p3
= 0

−(2.0(1074) ∗ ((5.0(10−75) ∗ (−2.047(1090) ∗ p21 + 1.606(10102) ∗ p1 ∗ p2−

2.454(1092)∗p1 ∗p3 +1.912(1092)∗p22 +7.789(1091)∗p2 ∗p3−1.19(1082)∗

p23))/(2.0(1032) ∗ p1 + 5.0(1033) ∗ p2 + 2.0(1034) ∗ p3) + (1.0(10−40) ∗

(−2.583(1074)∗p31+1.13(1089)∗p21∗p2+2.047(1090)∗p21∗p3+4.549(1089)∗

p1∗p22−1.606(10102)∗p1∗p2∗p3+1.227(1092)∗p1∗p23+1.676(1080)∗p32−

1.912(1092)∗p22∗p3−3.894(1091)∗p2∗p23+3.965(1081)∗p33))/(2.0(1032)∗

p1 + 5.0(1033) ∗ p2 + 2.0(1034) ∗ p3)2) ∗ (2.0(1032) ∗ p1 + 5.0(1033) ∗ p2 +

2.0(1034) ∗ p3))/(−2.583(1074) ∗ p31 + 1.13(1089) ∗ p21 ∗ p2 + 2.047(1090) ∗

p21 ∗ p3 + 4.549(1089) ∗ p1 ∗ p22− 1.606(10102) ∗ p1 ∗ p2 ∗ p3 + 1.227(1092) ∗

p1 ∗ p23 + 1.676(1080) ∗ p32− 1.912(1092) ∗ p22 ∗ p3− 3.894(1091) ∗ p2 ∗ p23 +

3.965(1081) ∗ p33) = 0.0

p1 + p2 + p3 = 1

� These equations are too complex to solve by hand. Therefore, we used

MATLAB software for the expressions. The answers are p1 = 0.49,

p2 = 0.34 and p3 = 0.17.
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� The optimal design is,

P ∗ =

{
0.02 0.10 0.20

0.49 0.34 0.17

}
.

5.2 Algorithmic Approach for the Construc-

tion of Ds-optimal Designs

We have constructed Ds-optimal designs for some regression models analyt-

ically. Now we will use the multiplicative algorithm. Here also we use the

functions such as xδ, eδx, eδx/(1 + eδx) and Φ(δx).

Moreover, to interpret the results graphically the plots of weights and

variance function versus design points are used. The standardized variance

for a Ds-optimal design can be expressed in the following manner.

d(x, p) = fT (x)M−1(p)f(x)− fT
2

(x)M−1
22 (p)f

2
(x)

Consider the partitioned information matrix M(p) we mentioned earlier.

The matrix M22 is the lower right corner part of the information matrix

which does not include the information about the parameters of interest.

Furthermore, fT
2

(x) denotes the vector including the design variable terms

corresponding to the parameters which are not of our interest.
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5.2.1 Cubic Regression Model with θ1 and θ3 as the

Parameters of Interest

For the cubic regression model, consider the polynomial regression model

(3.1) in chapter 3 where k = 4. Then vx = (1, x, x2, x3)T , x ∈ [−1, 1], θ =

(θ0, θ1, θ2, θ3)
T . First, the Ds-optimal designs have been constructed for the

parameters θ1 and θ3 using x = d, the partial derivatives of Ds-optimality

criterion in the function. Then, the model can be rearranged as below.

E(Y |x) = θ1x+ θ3x
3 + θ0 + θ2x

2

The functions being considered are eδx, eδx/(1 + eδx) and normal CDF. The

number of iterations needed to achieve max
1≤j≤J

{Fj} ≤ 10−t for each of these

functions are recorded in Table 5.1. The design space was approximated by a

grid of 201 points equally spaced between -1.00 and 1.00 with 0.01. Then, we

will see the convergence rate by replacing partial derivatives with directional

derivatives (Table 5.2). Regardless of the function, the support points and

the corresponding weights converged to the same optimal design shown below

P ∗ =

{
−1.00 −0.58 0.58 1.00

0.250 0.250 0.250 0.250

}
.
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Table 5.1: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = d

for cubic regression model with θ1 and θ3 as the parameters of interest using
Ds-optimality criterion

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 22 196 1795 10141 24058 38286
0.300 18 164 1496 8451 20049 31905
0.350 16 140 1282 7244 17185 27348
0.400 14 123 1122 6339 15037 23930
0.450 12 109 997 5635 13367 21271
0.500 11 98 897 5071 12030 19144

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.350 49 425 3868 21859 51821 82446
0.400 47 399 3624 20475 48535 77215
0.500 45 369 3343 18891 44769 71217
0.550 45 361 3274 18498 43833 69725
0.600 45 358 3239 18299 43355 68962
0.700 47 359 3250 18361 43492 69175

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 46 388 3530 19947 47284 75225
0.300 44 360 3263 18441 43704 69524
0.350 43 344 3119 17626 41763 66431
0.400 44 338 3060 17291 40961 65150
0.450 45 339 3067 17330 41046 65279
0.500 48 347 3131 17693 41895 66625

5.2.2 Quartic Regression Model with θ3 as the Param-

eter of Interest

For the quartic regression model consider the model 3.1 in chapter 3, where

k = 5. So, we have vx = (1, x, x2, x3, x4)T , x ∈ [−1, 1], θ = (θ0, θ1, θ2, θ3, θ4)
T .
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Table 5.2: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for cubic regression model with θ1 and θ3 as the parameters of interest using
Ds-optimality criterion

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.350 32 282 2567 14505 34389 54713
0.400 29 247 2246 12695 30094 47878
0.500 24 198 1798 10161 24081 38303
0.550 23 181 1635 9240 21895 34828
0.600 21 166 1499 8472 20073 31928
0.700 19 143 1286 7266 17209 27371

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 29 248 2252 12728 30173 48004
0.300 25 207 1878 10611 25149 40008
0.350 22 178 1610 9099 21561 34296
0.400 20 156 1409 7965 18869 30013
0.450 18 139 1253 7083 16776 266681
0.500 17 125 1128 6377 15101 24016

We have constructed Ds-optimal design for this model considering θ3 as the

only parameter of interest. So, the model will be,

E(Y |x) = θ3x
3 + θ0 + θ1x+ θ2x

2 + θ4x
4

Here also we considered the three functions eδx, eδx/(1+eδx) and normal CDF

where x = d, the partial derivatives of Ds-optimality criterion. The results

are recorded in the Table 5.3 and Table 5.4. Eventually, the support points

and the corresponding weights converged to the same optimal design shown

below with different functions and derivatives.
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P ∗ =

{
−1.00 −0.50 0.50 1.00

0.1667 0.3333 0.3333 0.1667

}

Table 5.3: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = d

for quartic regression model with θ3 as the parameter of interest using Ds-
optimality criterion

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 25 243 2488 12865 22788 32418
0.300 17 163 1659 8577 15192 21612
0.400 13 122 1245 6433 11394 16209
0.500 11 98 996 5146 9115 12967
0.600 9 81 830 4289 7596 10806
0.700 8 69 711 3676 6510 9262

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.500 30 260 2640 13635 24147 34348
0.650 27 221 2237 11547 20447 29084
0.800 26 199 2012 10381 18380 26144
0.900 25 190 1919 9898 17524 24925
1.000 25 184 1857 9575 16952 24110
1.200 26 179 1799 9272 16414 23344

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 39 362 3689 19061 33759 48022
0.500 25 194 1960 10113 17907 25470
0.650 25 175 1765 9103 16117 22923
0.700 25 172 1732 8931 15811 22488
0.800 26 169 1703 8777 15535 22093
0.950 27 171 1717 8848 15660 22271
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Table 5.4: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for quartic regression model with θ3 as the parameter of interest using Ds-
optimality criterion

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.500 23 196 1993 10295 18233 25936
0.650 19 151 1534 7920 14026 19951
0.800 16 123 1247 6436 11397 16211
0.900 15 110 1109 5721 10131 14410
1.000 14 99 998 5150 9118 12969
1.200 12 83 832 4292 7599 10808

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 33 306 3121 16127 28562 40631
0.500 16 124 1250 6453 11427 16254
0.650 13 96 962 4965 8791 12503
0.700 13 89 894 4610 8163 11610
0.800 12 78 783 4035 7143 10159
0.950 10 66 660 3398 6015 8555

5.2.3 Quartic Regression Model with θ2 and θ4 as the

Parameters of Interest

For the quartic regression model, consider the model 3.1 in chapter 3, where

k = 5. So, we have vx = (1, x, x2, x3, x4)T , x ∈ [−1, 1], θ = (θ0, θ1, θ2, θ3, θ4)
T .

The Ds-optimal design was constructed for this model considering θ2 and θ4

as the parameters of interest. The rearranged model will be,

E(Y |x) = θ2x
2 + θ4x

4 + θ0 + θ1x+ θ3x
3
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The results are reported in Tables 5.5 and 5.6. The Ds-optimal design ob-

tained for this model for the parameters θ2 and θ4 is as follows.

P ∗ =

{
−1.00 −0.71 0.00 0.71 1.00

0.1667 0.1667 0.3333 0.1667 0.1667

}

5.3 Application of Ds-optimality Criterion to

the Practical Model in Chemistry

In this section, we are going to consider the application of Ds-optimality cri-

terion to the practical model (3.4) in chemistry. We have vx = (x, x1/2, x2)T ,

x ∈ (0, 0.2], θ = (θ0, θ1, θ2)
T .We considered θ1 and θ2, the parameters cor-

responding to the design variable terms x1/2 and x2 as the parameters of

interest. The model can be denoted as follows.

E(y|x) = θ1x
1/2 + θ2x

2 + θ0x

The design space was approximated by a grid of 20 points equally spaced

between 0.01 and 0.20 with 0.01 interval. Results are reported in Tables 5.7

and 5.8. As we see using the directional derivatives improves the convergence

a lot. The Ds-optimal design obtained for the chemistry model is as follows.

P ∗ =

{
0.02 0.10 0.20

0.49 0.34 0.17

}
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5.4 Ds-optimal Designs for Two Variable Re-

gression Models

In this chapter, we are going to focus on the construction of Ds-optimal

designs for polynomial regression models with two design variables. The

design variables are x1 and x2. Consider the following two variable full model

which we discussed earlier.

E(y|x) = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2 = vTx θ

First we are going to consider the two variable reduced model obtained by

excluding the interaction term. Then we are considering the full model. The

discretized design space will consist of all the pairs (x1, x2) where values of xi

will be between -1.0 and 1.0 at intervals of 0.1. The design space will consist

of (21)2 = 441 pairs of (x1, x2). The results will be reported in the same

way as in for one variable model using the functions xδ, eδx, eδx/(1 + eδx) and

normal CDF. The convergence of the algorithms were compared by replacing

partial derivatives of the criterion function with directional derivatives.
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5.4.1 Two Variable Reduced Model taking θ3 and θ4 as

the Parameters of Interest

Consider the following reduced model.

E(y|x) = θ0 + θ1x1 + θ2x2 + θ3x
2
1 + θ4x

2
2

The Ds-optimal design for this model was constructed taking θ3 and θ4 as

the parameters of interest. Results are reported in Tables 5.9 and 5.10 and

the optimal design is obtained as

P ∗ =


−1.00 0.00 1.00 −1.00 0.00 1.00 −1.00 0.00 1.00

−1.00 −1.00 −1.00 0.00 0.00 0.00 1.00 1.00 1.00

0.0625 0.1250 0.0625 0.1250 0.2500 0.1250 0.0625 0.1250 0.0625


Best δ values are

� 0.800 for f(x, δ) = eδx where x = d

� 0.600 for f(x, δ) = eδx/1 + eδx where x = d

� 0.440 for f(x, δ) = Φ(δx) where x = d

� 0.900 for f(x, δ) = eδx/1 + eδx where x = F

� 0.800 for f(x, δ) = Φ(δx) where x = F

When comparing the results of logistic CDF and normal CDF, it can be

seen that the convergence rate has increased when using directional deriva-

tives of the criterion function instead of partial derivatives.
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5.4.2 Two Variable Full Model taking θ1 and θ2 as the

Parameters of Interest

Next we will consider the application of Ds-optimality criterion to the two

variable full model. The model is given by

E(y|x) = θ0 + θ1x1 + θ2x2 + θ3x1x2 + θ4x
2
1 + θ5x

2
2 = vTx θ.

We consider θ1 and θ2 as the parameters of interest. Then, the con-

vergence of the algorithms was assessed using directional derivatives of Ds-

optimality criterion instead of partial derivatives. Results are reported in

Tables 5.11 and 5.12 and the optimal design is obtained as

P ∗ =


−1.00 1.00 −1.00 1.00

−1.00 −1.00 1.00 1.00

0.25 0.25 0.25 0.25


Moreover, the best choices for the δ for each of the functions are

� 0.500 for f(x, δ) = eδx where x = d

� 0.500 for f(x, δ) = eδx/1 + eδx where x = d

� 0.400 for f(x, δ) = Φ(δx) where x = d

� 1.000 for f(x, δ) = eδx/1 + eδx where x = F

� 0.650 for f(x, δ) = Φ(δx) where x = F
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Table 5.5: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = d

for quartic regression model with θ2 and θ4 as the parameters of interest using
Ds-optimality criterion

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.500 20 198 1995 7837 16402 27602
0.600 17 165 1663 6531 13669 23002
0.700 15 142 1425 5598 11716 19716
0.800 13 124 1247 4899 10252 17252
0.900 12 111 1109 4354 9113 15335
1.000 11 100 998 3919 8202 13802

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.180 29 271 2764 10877 22762 38320
0.200 26 244 2487 9789 20486 34488
0.250 21 195 1990 7831 16389 27590
0.300 17 163 1658 6526 13657 22992
0.350 15 139 1421 5594 11706 19707
0.400 12 122 1243 4894 10242 17243

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.400 41 397 4017 15794 33062 55642
0.450 39 378 3830 15058 31524 53051
0.500 38 366 3706 14567 30495 51318
0.550 37 359 3628 14261 29857 50242
0.650 36 355 3582 14074 29465 49579
0.700 37 357 3601 14149 29624 49844

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 40 386 3913 15386 32209 54208
0.300 37 357 3617 14220 29769 50098
0.350 35 342 3457 13587 28446 47868
0.400 34 336 3391 13324 27899 46943
0.450 35 337 3398 13351 27955 47035
0.500 38 344 3469 13626 28533 48003
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Table 5.6: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for quartic regression model with θ2 and θ4 as the parameters of interest using
Ds-optimality criterion

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.400 26 246 2490 9792 20499 34500
0.450 23 219 2214 8704 18223 30668
0.500 21 197 1993 7834 16402 27602
0.550 19 179 1812 7122 14912 25094
0.650 17 152 1534 6027 12620 21235
0.700 16 141 1424 5597 11719 19719

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 26 246 2496 9818 20553 34591
0.300 22 206 2081 8182 17130 28828
0.350 19 177 1784 7014 14684 24712
0.400 17 155 1562 6138 12851 21624
0.450 15 138 1388 5456 11424 19223
0.500 14 124 1250 4911 10283 17302
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Table 5.7: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = d

for practical model in chemistry using Ds-optimality criterion

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.400 26 201 529 951 1395 1841
0.550 19 146 385 692 1015 1339
0.600 18 134 353 634 930 1228
0.750 14 108 283 507 744 982
0.800 14 101 265 476 698 921
1.000 22 79 211 381 558 737

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 22 159 422 762 1119 1479
0.300 18 133 352 635 933 1232
0.350 16 114 302 544 800 1056
0.400 14 100 264 476 700 924
0.450 13 89 235 424 622 822
0.500 28 91 209 381 560 740

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.350 45 344 910 1638 2406 3177
0.550 38 292 770 1384 2032 2682
0.700 37 290 764 1373 2014 2658
0.800 38 299 787 1414 2073 2736
0.900 39 315 828 1487 2181 2877
1.000 42 337 887 1592 2334 3079

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 41 314 830 1495 2195 2898
0.300 38 290 767 1381 2028 2677
0.400 36 273 719 1293 1898 2505
0.500 36 279 735 1321 1938 2557
0.600 38 306 803 1442 2113 2788
0.800 49 429 1125 2015 2951 3891
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Table 5.8: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for practical model in chemistry using Ds-optimality criterion

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.350 31 228 604 1088 1597 2109
0.550 20 146 385 692 1016 1342
0.700 16 115 302 544 798 1054
0.800 14 101 265 476 698 922
0.900 12 90 235 423 621 819
1.000 12 80 212 381 558 737

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.250 27 200 530 954 1401 1850
0.300 23 167 442 795 1168 1542
0.400 17 126 332 596 875 1156
0.450 15 112 295 530 778 1027
0.500 14 101 265 477 700 924
0.600 12 85 221 398 583 770
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Table 5.9: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = d

for two variable reduced regression model with θ3 and θ4 as the parameters
of interest

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 48 323 628 920 1211 1502
0.300 32 216 419 614 802 1002
0.400 24 162 314 461 606 751
0.600 16 108 210 307 404 501
0.720 14 90 175 256 337 418
0.800 11 81 157 230 303 376

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.350 84 563 1086 1587 2086 2584
0.450 75 504 972 1418 1863 2307
0.600 71 475 912 1329 1745 2159
0.750 73 486 928 1351 1771 2191
0.820 75 500 954 1387 1818 2249
0.900 78 523 997 1448 1897 2345

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.300 71 476 918 1339 1759 2178
0.440 67 451 863 1256 1648 2039
0.500 69 463 884 1285 1685 2084
0.620 77 522 992 1440 1885 2329
0.700 86 592 1120 1623 2122 2621
0.800 103 724 1364 1970 2574 3176
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Table 5.10: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for two variable reduced regression model with θ3 and θ4 as the
parameters of interest

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.350 56 373 721 1053 1385 1716
0.450 44 291 561 820 1077 1334
0.600 33 219 422 616 808 1001
0.750 27 176 338 493 647 801
0.820 25 162 310 451 592 733
0.900 23 148 283 411 539 668

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.300 41 274 528 771 1013 1254
0.440 29 188 361 526 691 855
0.500 25 166 318 463 608 753
0.620 21 135 257 374 491 607
0.700 19 120 228 332 435 538
0.800 17 105 200 291 381 471
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Table 5.11: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for two variable full model with θ1 and θ2 as the parameters of interest

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.050 137 343 580 822 1064 1306
0.100 69 172 291 411 532 654
0.200 35 86 146 206 267 327
0.300 24 58 97 138 178 219
0.400 18 44 73 104 134 164
0.500 15 35 59 83 107 131

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.400 63 148 242 337 432 527
0.500 60 139 225 312 399 486
0.800 66 145 229 314 399 487
1.000 77 167 260 354 447 541
1.200 95 202 312 421 531 640
1.500 138 288 438 587 735 883

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.200 67 160 265 370 476 582
0.300 58 135 219 304 390 475
0.400 58 130 208 287 366 445
0.500 62 137 216 295 374 453
0.650 78 165 255 345 434 524
0.700 86 180 277 373 468 564
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Table 5.12: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for two variable full model with θ1 and θ2 as the parameters of interest

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.400 39 91 150 209 269 328
0.500 32 74 121 168 216 263
0.700 25 55 88 121 155 188
0.800 22 49 78 107 136 165
0.900 20 44 70 95 121 147
1.000 19 40 63 86 110 133

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.150 61 148 247 346 446 547
0.200 47 113 186 261 336 410
0.300 33 77 126 175 225 274
0.400 26 59 96 132 169 206
0.500 22 49 78 107 136 165
0.650 18 39 61 83 105 128
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Chapter 6

Construction of Ds-optimal

Designs using Clustering

Approach

As mentioned earlier, Ds-optimality is quite important when we are inter-

ested in a subset of parameters. This happens sometimes when we are more

interested in some terms (for example, even power terms or odd power terms)

in the model. In this situation we can simply construct Ds-optimal designs

for the corresponding parameters.

Also, it is good to apply the clustering approach for Ds-optimality be-

cause clusters can be formed according to the design points as well as the

convergence will be faster.

Promising results are obtained using the clustering approach along with
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using the logistic CDF and normal CDF and using directional derivatives in

the algorithmic function.

6.1 Cubic Regression Model with θ1 and θ3 as

the Parameters of Interest

The Ds-optimal designs are constructed using clustering approach for the

cubic regression model by taking θ1 and θ3 as the parameters of interest.

The rearranged model is given by

E(Y |x) = θ1x+ θ3x
3 + θ0 + θ2x

2.

We considered the three functions xδ, eδx/(1 + eδx) and normal CDF. The

design space was equally spaced between -1.00 and 1.00 with 0.01 intervals.

Therefore, at the beginning the total number of 201 design points were there.

Results were obtained for the function xδ when using x = d, the partial

derivatives of Ds-optimality criterion. But for the logistic CDF and normal

CDF the best results were obtained when using directional derivatives in the

function. The δ values and the total number of iterations which were used

to form the clusters at the beginning are given below.

� xδ where x = d : δ = 0.9 , n = 100

� eδx/(1 + eδx) where x = F : δ = 0.6 , n = 100

� Normal CDF where x = F : δ = 0.35 , n = 100
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In Table 6.1, the number of iterations needed to achieve max
1≤j≤J

{Fj} ≤ 10−t

for 1 ≤ j ≤ J when using the function f(x, δ) = xδ where x = d are displayed.

Table 6.2 gives results for x = F .

Table 6.1: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for the Ds-optimal design of cubic regression model with θ1 and θ3 as
the parameters of interest using clustering approach

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

12 1 1 14 225 372 515
13 1 1 13 208 343 475
14 1 1 12 193 319 441
15 1 1 11 180 298 412
18 1 1 10 151 248 344
20 1 1 9 136 224 310

The Ds-optimal design obtained for the cubic regression model is given

below.

P ∗ =

{
−1.00 −0.58 0.58 1.00

0.250 0.250 0.250 0.250

}

In here, we noticed that the support points consist of four clusters of

points which is either of neighboring points or a single point. As we have

mentioned earlier, since this solution is for a discretized design space, the

solution for a continuous design space should be a 4-point design. Therefore,

by taking convex combinations of particular clusters of points, we obtained

the same optimal design.
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Table 6.2: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for the Ds-optimal design of cubic regression model with θ1 and θ3 as the
parameters of interest using clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

50 1 1 14 49 77 104
60 1 1 12 41 64 86
75 1 1 10 35 51 69
85 1 1 9 29 45 61
90 1 1 9 28 43 57
100 1 1 8 25 38 51

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

30 1 1 16 49 76 102
40 1 1 12 37 57 76
50 1 1 10 30 45 61
65 1 1 8 23 35 46
70 1 1 8 22 32 43
80 1 1 7 19 28 37

Graphical Interpretation

Let us consider the graphical interpretation for the construction ofDs-optimal

design for the cubic regression model taking θ1 and θ3 as the parameters of

interest. For the construction the function being considered is eδx where

x = d, the partial derivatives of Ds-optimality criterion and δ was taken as

0.2. Figure 6.1 provides the plots of weights versus design points obtained

after running the algorithm for few number of iterations and at the optimum.

The curve in plot 6.1 (a), depicts three minimal and two maximal turning

points. Two peak points can be seen at the design points -1.00 and 1.00. The

weights in the minimal turning points converge to zero when increasing the
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number of iteration. The converging pattern is noticeable when observing

graphs from plot 6.1 (a) to plot 6.1 (d). By plot 6.1 (d), it can be seen that,

the weights corresponding to the design points -1.00, -0.58, 0.58 and 1.00

converged to 0.25 at the optimum.

Figure 6.2 gives the plots of variance function versus design points after

running the algorithm for 10 iterations and at the optimum. It can be seen

that, the curve in plot 6.2 (a) have three minimal and two maximal turning

points as in our weights versus design point plots in figure 6.1. At the opti-

mum, the variance function values corresponding to design points -1.00, 1.00

and two maximal turning points converged to 2.0 (plot 6.2 (b)).

The variance function corresponding to this cubic Ds-optimal design is,

d(x, p) = fT (x)M−1(p)f(x)− fT
2

(x)M−1
22 (p)f

2
(x)

= −4.9045x6 − 8.1689x4 + 3.6337x2 + 0.1095

6.2 Quartic Regression Model with θ3 as the

Parameter of Interest

In this section we are going to discuss about the application of clustering ap-

proach to quartic regression model by taking θ3 as the parameter of interest.
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(a) After 10 iterations (b) After 100 iterations

(c) After 1000 iterations (d) At the optimum

Figure 6.1: Weights vs design points for the cubic regression model with θ1
and θ3 as the parameters of interest

The model can be denoted as follows.

E(Y |x) = θ3x
3 + θ0 + θ1x+ θ2x

2 + θ4x
4

We observe the convergence of the algorithm using x = d, and then compared

these results using x = F . The results are given in Tables 6.3 and 6.4. The

δ values and the number of iterations which were used to form the clusters
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(a) After 10 iterations (b) At the optimum

Figure 6.2: Variance function vs design points for the cubic regression model
with θ1 and θ3 as the parameters of interest

at the beginning are given below.

� xδ where x = d : δ = 0.9 , n = 50

� eδx where x = d : δ = 0.7 , n = 150

� eδx/(1 + eδx) where x = d : δ = 0.75 , n = 100

� Normal CDF where x = d : δ = 0.85 , n = 200

� eδx/(1 + eδx) where x = F : δ = 0.85 , n = 150

� Normal CDF where x = F : δ = 1.2 , n = 80

The optimal design obtained for the functions xδ and eδx is given below.

P ∗ =

{
−1.00 −0.50 0.50 1.00

0.1667 0.3333 0.3333 0.1667

}
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As for the logistic CDF and normal CDF, the support points of the final

designs consist of four clusters of points with neighbouring points or a single

point. The design spaces for the two functions are given below respectively

P ∗ =

{
−1.00 −0.50 −0.49 0.49 0.50 1.00

0.1667 0.2159 0.1179 0.2159 0.1179 0.1667

}

P ∗ =

{
−1.00 −0.51 −0.50 −0.49 0.49 0.50 0.51 1.00

0.1667 0.0547 0.2166 0.0625 0.0625 0.2166 0.0547 0.1667

}

By taking convex combinations of the relevant clusters, these functions also

yield the same solution as earlier.

P ∗ =

{
−1.00 −0.50 0.50 1.00

0.1667 0.3333 0.3333 0.1667

}

Graphical Interpretation

In this section, we are going to discuss about the graphical interpretation for

the Ds-optimal design construction for the quartic regression model taking

θ3 as the parameter of interest. The construction was done using a class of

algorithms. The function eδx, where x = d, the partial derivatives of Ds-

optimality criterion and δ value 0.2 were considered. Figure 6.3 displays the

plots of weights versus design points for several number of iterations and

at the optimum. There are three minimal and two maximal turning points

in the plot 6.3 (a). When increasing the number of iterations, the weights

corresponding to the minimal turning points converged to zero as in the plot
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6.3 (d). In addition to that, it is noticeable the weights corresponding to

the design points -1.00 and 1.00 have approached to 0.1667 while the weights

corresponding to maximal turning points have converged to 0.3333.

(a) After 10 iterations (b) After 100 iterations

(c) After 1000 iterations (d) At the optimum

Figure 6.3: Weights vs design points for the quartic regression model with
θ3 as the parameter of interest

The plots of variance function versus design points for this quartic Ds-

optimal design is shown in Figure 6.4. After running the algorithm for 10

iterations, a curve with two maximal and three minimal turning points was
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obtained. Two peak points can be seen in plot 6.4 (a) which are correspond-

ing to the design points -1.00 and 1.00. The variance function values of these

two peak points and maximal turning points converged to 1.00 at the opti-

mum as in plot 6.4 (b). The variance function corresponding to this quartic

Ds-optimal design is given below

d(x, p) = fT (x)M−1(p)f(x)− fT
2

(x)M−1
22 (p)f

2
(x)

= −0.005x7 +4.3493x6−0.2904x5−6.5205x4−0.0094x3 +

2.4423x2 − 0.1378x+ 0.0030.

(a) After 10 iterations (b) At the optimum

Figure 6.4: Variance function vs design points for the quartic regression
model with θ3 as the parameter of interest
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6.3 Quartic Regression Model with θ2 and θ4

as the Parameters of Interest

The Ds-optimal design was constructed for the quartic regression model with

the use of clustering approach by taking θ2 and θ4 as the parameters of

interest. The considered model is given below.

E(Y |x) = θ2x
2 + θ4x

4 + θ0 + θ1x+ θ3x
3

The results are given in Tables 6.5 and 6.6. The δ values and the total

number of iterations used in forming clusters for each of the scenarios are

given below.

� eδx where x = d : δ = 0.4 , n = 100

� eδx/(1 + eδx) where x = F : δ = 0.5 , n = 100

� Normal CDF where x = F : δ = 0.5 , n = 100

TheDs-optimal design obtained with the clustering approach is as follows.

P ∗ =

{
−1.00 −0.71 0.00 0.71 1.00

0.1667 0.1667 0.3333 0.1667 0.1667

}

Here also we noticed that the Ds-quartic optimal design obtained con-

sisted of five clusters of support points with neighbouring or a single points.

But after taking the convex combinations of the relevant clusters we obtained

the same design for all functions.
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Graphical Interpretation

We now focus on the graphical interpretation for the Ds-optimal design for

the above model. The function being considered in here is eδx, where x =

d, the partial derivatives of Ds-optimality criterion and δ value 0.2. The

construction was done using a class of algorithms. Figure 6.5 provides the

plots of weights versus design points after running algorithm for a several

number of iterations and at the optimum. The plot 6.5 (a) depicts a curve

with four minimal and three maximal turning points. The weights in minimal

regions converged to zero at the optimum as in plot 6.5 (d). The weights

corresponding to the design points -1.00, -0.71, 0.71 and 1.00 have converged

to 0.1667 whereas the weight corresponding to the design point 0.00 has

converged to 0.3333.

Figure 6.6 provides you with two plots of variance function versus design

points for this design. Here also, a curve with three maximal and four mini-

mal turning points was obtained after running the algorithm for 10 iterations.

The variance function values of the two peak points and three maximal turn-

ing points converged to 2.00 at the optimum as in plot 6.6 (b). The variance

function related to this quartic Ds-optimal design is

d(x, p) = fT (x)M−1(p)f(x)− fT
2

(x)M−1
22 (p)f

2
(x)

= 19.5747x8 − 39.1280x6 + 33.0549x4 − 17.9026x2 + 7.4501
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(a) After 10 iterations (b) After 100 iterations

(c) After 1000 iterations (d) At the optimum

Figure 6.5: Weights vs design points for the quartic regression model with
θ2 and θ4 as the parameters of interest

6.4 Application of Ds-optimality Criterion to

the Practical Model in Chemistry with

the use of Clustering Approach

In Chapter 5, we did an application of Ds-optimality to the practical model

in chemistry using θ1 and θ2 as the parameters of interest. We now construct

151



(a) After 10 iterations (b) At the optimum

Figure 6.6: Variance function vs design points for the quartic regression
model with θ2 and θ4 as the parameters of interest

this design using clustering approach. The rearranged model is

E(y|x) = θ1x
1/2 + θ2x

2 + θ0x

As in for the previous quartic model, the results were obtained when

using x = d with the functions xδ and eδx and x = F with logistic and

normal CDF. The results are given in Tables 6.7 and 6.8. The δ values

and the total number of iterations used in forming clusters for each of the

scenarios are given below.

� xδ where x = d : δ = 0.8 , n = 80

� eδx where x = d : δ = 0.4 , n = 80

� eδx/(1 + eδx) where x = F : δ = 0.7 , n = 100

� Normal CDF where x = F : δ = 0.5 , n = 100
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The Ds-optimal design obtained for this model is as follows.

P ∗ =

{
0.02 0.10 0.20

0.49 0.34 0.17

}

Graphical Interpretation

The function eδx where δ equals to 0.4 and x = d, the partial derivatives of

Ds-optimality criterion were used in the design construction. The construc-

tion was carried out using class of algorithms. The plots of weights versus

design points after several number of iterations (10, 100 and 400) and at the

optimum are displayed in Figure 6.7. There are two maximal and two mini-

mal turning points in the curve. When increasing the number of iterations,

the weights lie in the minimal turning points converge to zero as in plot 6.7

(d). According to plot 6.7 (d), we see that the weights related to the design

points 0.02, 0.10 and 0.20 have converged to 0.49, 0.34 and 0.17 respectively.

The convergence pattern can be visualized when going through the plots in

ascending order of the iterations.

The plots of variance function versus design points are given in Figure

6.8. In plot 6.8 (a), we see two minimal and two maximal turning points.

When increasing the iterations the variance function values around maximal

points are converging to 2.00. In addition to that there is a peak point at

the design point x = 0.20 in which the variance function has converged to

2.00 at the optimum as in the plot 6.8 (b). The variance function related to
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the chemistry model using Ds-optimality criterion is

d(x, p) = fT (x)M−1(p)f(x)− fT
2

(x)M−1
22 (p)f

2
(x)

= 13690x4 − 84820x2 + 14619.9896x2 + 15448x5/2 − 5756x3/2 + 612.6x.

(a) After 10 iterations (b) After 100 iterations

(c) After 400 iterations (d) At the optimum

Figure 6.7: Weights vs design points for the practical model in chemistry
with θ1 and θ2 as the parameters of interest
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(a) After 10 iterations (b) At the optimum

Figure 6.8: Variance function vs design points for the practical model in
chemistry with θ1 and θ2 as the parameters of interest

6.5 Application of Ds-optimality Criterion to

Two Variable Regression Models using

Clustering Approach

We are going to discuss about the Ds-optimal design construction for the

two variable models with the use of clustering approach. We will consider

two models in sections 5.4.1 and 5.4.2.

155



6.5.1 Two Variable Reduced Model taking θ3 and θ4 as

the Parameters of Interest

The model is given by

E(y|x) = θ3x
2
1 + θ4x

2
2 + θ0 + θ1x1 + θ2x2

The design space was approximated by a grid of 441 (x1, x2) pairs where each

variable takes values between -1.0 to 1.0 with 0.1 intervals. The best results

were obtained for the function f(x, δ) = eδx when x = d, partial derivatives.

But for the logistic CDF and normal CDF, the best results were obtained

when we replaced partial derivatives in the function f(x, δ) by the directional

derivatives. The results are given in Tables 6.9 and 6.10. The δ values and

the total number of iterations which were used to form clusters are,

� eδx where x = d : δ = 0.4 , n = 160

� eδx/(1 + eδx) where x = F : δ = 0.75 , n = 160

� Φ(δx) where x = F : δ = 0.6 , n = 130

The Ds-optimal design obtained for this reduced regression model for

every above situations using clustering approach is as follows.

P ∗ =


−1.00 0.00 1.00 −1.00 0.00 1.00 −1.00 0.00 1.00

−1.00 −1.00 −1.00 0.00 0.00 0.00 1.00 1.00 1.00

0.0625 0.1250 0.0625 0.1410 0.2180 0.1410 0.0625 0.1250 0.0625


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The best choices of δ for the above three functions are

� 64 for f(x, δ) = eδx when x = d

� 92 for f(x, δ) = eδx/1 + eδx when x = F

� 94 for f(x, δ) = Φ(δx) when x = F

Graphical Interpretation

The function being considered was logistic CDF eδx/(1+eδx) and δ was taken

as 0.6. Figure 6.9 gives the plots of weights versus design points after running

the algorithm for 10 iterations and at the optimum.

(a) After 10 iterations (b) At the optimum

Figure 6.9: Weights vs design points for the two variable reduced model
taking θ3 and θ4 as the parameters of interest

At the optimum (plot 6.9 (b)), D-optimal design have some weights on

the pairs (−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0) , (−1, 1), (0, 1),
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(1, 1) which are similar to the weights in the design space we obtained. All

the other weights have converged to zero at the optimum. Figure 6.10 depicts

the plots of variance function versus design points for the same model after

10 iterations and at the optimum. The variance function related to this this

model is

d(x, p) = fT (x)M−1(p)f(x)

= 4x41 + 4x42 − 4x21 − 4x22 + 2.

(a) After 10 iterations (b) At the optimum

Figure 6.10: Variance function vs design points for the two variable reduced
model taking θ3 and θ4 as the parameters of interest
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6.5.2 Two Variable Full Model taking θ1 and θ2 as the

Parameters of Interest

The model is given by

E(y|x) = θ1x1 + θ2x2 + θ0 + θ3x1x2 + θ4x
2
1 + θ5x

2
2

Results were obtained for the function f(x, δ) = eδx when x = d, partial

derivatives. But for the logistic CDF and normal CDF, the best results were

obtained when we replaced partial derivatives in the function f(x, δ) by the

directional derivatives. The results are reported in Tables 6.11 and 6.12. The

δ values and total number of iterations which were used to form clusters are

� eδx where x = d : δ = 0.300 , n = 60

� eδx/(1 + eδx) where x = F : δ = 0.500 , n = 70

� Normal CDF where x = F : δ = 0.500 , n = 50

The Ds-optimal design obtained for the two variable full model using

clustering approach is given below:

P ∗ =


−1.00 1.00 −1.00 1.00

−1.00 −1.00 1.00 1.00

0.25 0.25 0.25 0.25


The best choices of δ for the above three functions are
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� 8.4 for f(x, δ) = eδx when x = d

� 12.5 for f(x, δ) = eδx/1 + eδx when x = F

� 12.0 for f(x, δ) = Φ(δx) when x = F

According to the results, we see that when increasing the δ value and

using clustering approach, the number of iterations need to reach optimality

have been decreased. Thus the convergence rate is improved by using the

clustering aspproach.

Graphical Interpretation

The function being considered was logistic CDF eδx/(1+eδx) and δ was taken

as 0.5. Figure 6.11 provides the plots of weights versus design points after

running the algorithm for 10 iterations and at the optimum.

(a) After 10 iterations (b) At the optimum

Figure 6.11: Weights vs design points for the two variable full model taking
θ1 and θ2 as the parameters of interest

At the optimum (plot 6.11 (b)), Ds-optimal design have same weights

as we obtained earlier. All the other weights have converged to zero at the
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optimum. Figure 6.12 depicts the plots of variance function versus design

points for the same model after 10 iterations and at the optimum. The

variance function related to this this model is

d(x, p) = fT (x)M−1(p)f(x)

= x21 + x22.

In all of the results it is clear that after combining the clustering ap-

proach with the properties of the directional derivatives of the criterion, the

convergence is improved a lot.

(a) After 10 iterations (b) At the optimum

Figure 6.12: Variance function vs design points for the two variable full model
taking θ1 and θ2 as the parameters of interest
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Table 6.3: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for the Ds-optimal design of quartic regression model with θ3 as the
parameter of interest using clustering approach

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

0.700 1 1 563 1004 1414 1820
0.800 1 1 493 878 1238 1592
0.950 1 1 415 740 1043 1341
1.000 1 1 395 703 991 1274
1.200 1 1 572 779 965 1218
1.500 1 1 646 827 1008 1193

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1.500 1 1 119 2951 5970 8569
1.600 1 1 112 2766 5597 8033
1.700 1 1 105 2604 5268 7561
1.800 1 1 99 2459 4975 7141
1.900 1 1 94 2330 4713 6765
2.000 1 1 90 2214 4478 6427

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1.000 1 1 1734 3213 4581 5940
1.200 1 1 1649 3057 4363 5660
1.400 1 1 1625 3014 4305 5588
1.500 1 1 1629 3024 4322 5612
1.650 1 1 1655 3074 4397 5712
2.000 1 1 1790 3335 4780 6216

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1.200 1 1 1676 3084 4397 5701
1.300 1 1 1760 3243 4628 6005
1.400 1 1 1872 3456 4937 6410
1.500 1 1 2017 3730 5336 6933
1.650 1 1 2307 4283 6139 7985
2.100 1 1 4069 7659 11053 14428

162



Table 6.4: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for the Ds-optimal design of quartic regression model with θ3 as the
parameter of interest using clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

8.450 1 1 269 365 455 544
8.500 1 1 268 363 453 541
8.750 1 1 258 350 437 523
9.000 1 1 254 344 428 512
9.250 1 1 247 335 416 498
9.500 1 1 243 328 407 487

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

3.000 1 1 241 464 662 858
3.500 1 1 207 397 567 735
4.000 1 1 181 348 496 643
5.000 1 1 145 278 397 514
5.300 1 1 254 333 408 483
5.400 1 1 136 258 368 475

Table 6.5: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for the Ds-optimal design of quartic regression model with θ2 and θ4 as the
parameters of interest using clustering approach

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

10 1 1 47 319 2117 4324
30 1 1 17 108 707 1442
35 1 1 15 92 606 1236
40 1 1 13 81 530 1082
70 1 1 8 47 304 619
80 1 1 7 41 266 541
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Table 6.6: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for the Ds-optimal design of quartic regression model with θ2 and θ4 as the
parameters of interest using clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

50 1 1 22 128 988 2236
62 1 1 18 103 798 1805
70 1 1 16 92 707 1600
76 1 1 15 85 652 1475
80 1 1 14 81 619 1402
95 1 1 12 68 522 1182

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

60 1 1 11 68 491 2334
70 1 1 10 58 421 2003
76 1 1 9 54 387 1846
85 1 1 8 48 346 1652
95 1 1 8 44 310 1480
100 1 1 7 41 294 1407
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Table 6.7: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = d

for the Ds-optimal design of chemistry practical model with θ1 and θ2 as the
parameters of interest using clustering approach

f(x, δ) = xδ

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

8 1 1 77 130 182 233
10 1 1 62 105 146 187
12 1 1 52 87 122 156
16 1 1 39 66 92 117
18 1 1 35 59 82 105
20 1 1 32 53 74 94

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

8 1 1 49 76 102 127
10 1 1 40 61 82 102
15 1 1 27 42 55 69
18 1 1 23 35 46 58
20 1 1 21 32 42 52
25 1 1 17 26 34 42
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Table 6.8: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with x = F

for the Ds-optimal design of chemistry practical model with θ1 and θ2 as the
parameters of interest

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

10 1 1 77 120 161 201
12 1 1 65 100 134 168
15 1 1 52 80 107 134
18 1 1 44 67 89 111
22 1 1 36 55 73 91
25 1 1 32 48 64 80

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

10 1 1 49 76 102 128
14 1 1 35 54 73 91
18 1 1 28 42 57 71
20 1 1 25 38 51 63
25 1 1 20 31 41 50
28 1 1 18 28 36 45

Table 6.9: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for two variable reduced model taking θ3 and θ4 as the parameters of
interest using clustering approach

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

10 1 1 48 146 269 391
20 1 1 25 74 135 196
35 1 1 15 43 78 113
40 1 1 13 38 68 99
52 1 1 10 29 53 76
64 1 1 9 24 43 62
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Table 6.10: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for two variable reduced model taking θ3 and θ4 as the parameters of
interest using clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

55 1 1 16 85 199 307
64 1 1 14 74 171 264
70 1 1 13 68 157 242
75 1 1 12 63 147 226
84 1 1 11 57 131 202
92 1 1 10 52 120 185

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

40 1 1 15 43 76 109
50 1 1 13 35 61 87
62 1 1 11 29 50 70
75 1 1 9 24 41 58
80 1 1 9 23 39 55
94 1 1 8 20 33 47

Table 6.11: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = d for the two variable full model taking θ1 and θ2 as the parameters of
interest using clustering approach

f(x, δ) = eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

4.0 1 1 23 33 42 52
5.0 1 1 19 26 34 41
6.5 1 1 15 21 26 32
7.0 1 1 14 19 24 30
8.0 1 1 12 17 22 26
8.4 1 1 12 16 21 25
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Table 6.12: Number of iterations need to achieve max
1≤j≤J

{Fj} ≤ 10−t with

x = F for the two variable full model taking θ1 and θ2 as the parameters of
interest using clustering approach

f(x, δ) = eδx/1 + eδx

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

3.0 1 1 48 68 87 107
4.0 1 1 36 50 65 79
5.0 1 1 29 40 51 62
8.0 1 1 18 25 31 38
10.0 1 1 14 19 24 29
12.5 1 1 12 15 19 23

f(x, δ) = Φ(δx)

δ t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

4.0 1 1 27 38 49 60
5.0 1 1 21 30 39 47
6.6 1 1 16 23 29 35
8.0 1 1 13 18 23 28
10.0 1 1 11 15 18 22
12.0 1 1 9 12 15 18
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have tried to address an important problem in optimal

regression design, namely the application of optimal design theory to solve

optimization problems with respect to several probability distributions and

to improve the convergence of algorithms using the properties of directional

derivatives. The focus was on constructing optimal designs using clustering

approach, using the properties of the directional derivatives and on modifying

the algorithms according to some criteria of interest such as D-optimality and

Ds-optimality criteria. In particular, Ds-optimality is quite important when

we are interested in a subset of parameters. This situation arises when we

are more interested in some of the terms (for example, even or odd power

terms) in the model.
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We first gave a detailed introduction on optimal design theory including

the definitions and different terms in optimal design. We discussed about

two main types of designs, namely exact designs and approximate designs.

In our study, we used approximate designs since it is mathematically conve-

nient over exact designs. We did not need to worry about integer program-

ming problem. Moreover we can use calculus in order to solve optimization

problems. Then we discussed about the way of discretizing a design space,

a way of finding an optimal design space and thereby learnt some specific

properties of the information matrix. Next we focused on standardized vari-

ance of the predicted response and subsequently applied this knowledge to

obtain variance function plots for several optimal designs. We then discussed

about several optimality criteria. Our main interest is on D-optimality and

Ds-optimality criteria, under which the full set or a sub-set of parameters

are of interest. D-optimality is the widely using criterion in optimal design

theory because of its invariant nature under linear transformation of the scale

of independent variables. Ds-optimality is a special case of DA-optimality

since it possess the same properties as D-optimality.

We formulated optimal design construction using three approaches, namely

analytic approach, traditional approach and clustering approach. Analytic

approach is quite challenging. We tried to solve some optimal designs for

some models including one practical model in chemistry. We discussed the

solutions using a class of algorithms (multiplicative algorithm). When work-

ing with class of algorithms we have to define a function which has to be

positive and strictly increasing. This depends on a positive parameter which

170



is defined as δ in our thesis. All the other significant properties related to

multiplicative algorithm have been mentioned prior to the results. As for

the functions, we considered xδ, eδx, logistic CDF eδx/(1 + eδx) and normal

CDF Φ(δ, x). The optimal design construction was done for the models such

as quadratic, cubic, quartic regression models including a practical model

in chemistry. Later, we also used some two variable models (reduced and

full models). Moreover, we investigated the convergence of the algorithm

using the properties of directional derivatives of the criterion function. We

compared the results for each regression model using different functions.

The graphical interpretation was carried out using the plots of weights

versus design points and variance function versus design points. The pur-

pose of producing the different graphics was that we made sure each of the

constructed design was correct by satisfying the fact that maximum of the

variance functions cannot exceed the number of parameters of interest and

the maximum occurs at the optimal support points.

The traditional approach of constructing an optimal design uses multiple

iterations to assess the criterion. The other approach called the clustering

approach in which the main idea is that when we run an algorithm to con-

struct optimal design, the design turns out to be a distribution defined on

disjoint sets of clusters of the design points. So we replaced the single dis-

tribution by conditional distributions and a marginal distribution across the

clusters. We transformed this clustering approach to a general problem of

optimization with respect to several distributions.

Finally, we did a powerful improvement in the convergence of the algo-
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rithms by combining the clustering approach and the properties of the di-

rectional derivatives. The results were promising. This approach was instru-

mental in improving the convergence of the algorithm and thereby allowed

the model to obtain the optimal design saving more time.

7.2 Future Work

As we have seen that the clustering approach is a very powerful approach

for constructing optimal design as well as for improving convergence of al-

gorithms. We focussed on using a class of multiplicative algorithms. Note

that in order to use this approach we do not have to stick with a particular

algorithm. So we plan to explore the clustering approach for other types of

algorithms such as Wynn’s algorithm, steepest ascent, EM algorithm and

Newton type iterations. In particular, in our context, Wynn’s algorithm will

be more appropriate as this algorithm is useful when many weights are zero

at the optimum as happens in our design problems. At other contexts, when

all weights are positive at the optimum (for example, if we start with a small

set of design points with a prior knowledge that they are more likely to be

the support points, as we considered some designs in Chapter 5), constrained

steepest ascent or Newton type iterations will be appropriate.

Another possible future work could be to explore other types of optimiza-

tion problems (e.g., Mandal et al. 2017) when the criterion is neither convex

nor concave. This type of optimization problems are quite challenging in the

sense that we cannot directly use the general equivalence theorem (optimality
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conditions) as the criterion is not concave. However, we could easily explore

the Hessian matrix to determine the optimality conditions.

173



Bibliography

Al Labadi, L. and Z. Wang (2010). Modified wynn’s sequential algorithm for

constructing d-optimal designs: Adding two points at a time. Communi-

cations in Statistics—Theory and Methods 39 (15), 2818–2828.

Atkinson, A., A. Donev, and R. Tobias (2007). Optimum experimental de-

signs, with SAS, Volume 34. Oxford: Oxford University Press.

Atkinson, A. C. and A. N. Donev (1992). Optimum experimental designs.

Oxford: Oxford University Press.

Atwood, C. L. (1969). Optimal and efficient designs of experiments. Ann.

Math. Statist. 40, 1570–1602.

Box, G. E. (1982). Choice of response surface design and alphabetic optimal-

ity. In Proceedings of the... Conference on the Design of Experiments in

Army Research, Development and Testing, Volume 28, pp. 237. US Army

Research Office.

Cook, R. D. and C. J. Nachtrheim (1980). A comparison of algorithms for

constructing exact d-optimal designs. Technometrics 22 (3), 315–324.

174



Dette, H., A. Pepelyshev, and A. Zhigljavsky (2008). Improving updating

rules in multiplicative algorithms for computing d-optimal designs. Com-

putational Statistics & Data Analysis 53 (2), 312–320.

Fedorov, V. V. (1972). Theory of optimal experiments. New York and Lon-

don: Academic Press.

Johnson, M. E. and C. J. Nachtsheim (1983). Some guidelines for construct-

ing exact d-optimal designs on convex design spaces. Technometrics 25 (3),

271–277.

Karlin, S. and W. J. Studden (1966). Optimal experimental designs. Ann.

Math. Statist. 37 (4), 783–815.

Kiefer, J. (1959). Optimum experimental designs. Journal of the Royal

Statistical Society: Series B (Methodological) 21 (2), 272–304.

Kiefer, J. (1974). General equivalence theory for optimum designs (approxi-

mate theory). Annals of Statistics 2, 849–879.

Kiefer, J. and J. Wolfowitz (1960). The equivalence of two extremum prob-

lems. Canadian Journal of Mathematics 12 (5), 363–365.

Mandal, A., W. K. Wong, and Y. Yu (2015). Algorithmic searches for optimal

designs. Handbook of design and analysis of experiments , 755–783.

Mandal, S. and B. Torsney (2000). Algorithms for the construction of op-

timizing distributions. Communications in Statistics-Theory and Meth-

ods 29, 1219–1231.

175



Mandal, S. and B. Torsney (2006). Construction of optimal designs using a

clustering approach. Journal of statistical planning and inference 136 (3),

1120–1134.

Mandal, S., B. Torsney, and K. Carriere (2005). Constructing optimal designs

with constraints. Journal of statistical planning and inference 128 (2), 609–

621.

Mandal, S., B. Torsney, and M. Chowdhury (2017). Optimal designs for

minimising covariances among parameter estimators in a linear model.

Australian & New Zealand Journal of Statistics 59 (3), 255–273.

Rohde, C. A. (1965). Generalized inverses of partitioned matrices. Journal

of the Society for Industrial and Applied Mathematics 13 (4), 1033–1035.

Sibson, R. (1974). DA-optimality and duality. progress in statistics. Colloq.

Math. Soc. Janos. Bolyai 9, 677–692.

Silvey, S. and D. Titterington (1974). A lagrangian approach to optimal

design. Biometrika 61 (2), 299–302.

Titterington, D. M. (1976). Algorithms for computing D-optimal designs on

a finite design space. In Proc. 1976 Conf. on Information Sciences and Sys-

tems, pp. 213–216. Dept. of Elect. Eng., John Hopkins Univ., Baltimore,

MD.

Torsney, B. (1977). Contribution to discussion of “maximum likelihood from

incomplete data via the EM algorithm” by dempster et al. Journal of the

Royal Statistical Society B 39, 26–27.

176



Torsney, B. (1983). A moment inequality and monotonicity of an algorithm.

In Semi-infinite programming and applications, pp. 249–260. Springer.

Torsney, B. (1988). Computing optimising distributions with applications in

design, estimation and image processing. optimal design and analysis of

experiments (edited by y. dodge, v. v. fedorov and h. p. wynn). Elsevier

Science Publishers B. V., North Holland , 361–370.

Torsney, B. and A. Alahmadi (1992). Further development of algorithms for

constructing optimizing distributions. Model oriented data analysis 215,

121–129.

Torsney, B. and R. Mart́ın-Mart́ın (2009). Multiplicative algorithms for

computing optimum designs. Journal of Statistical Planning and Infer-

ence 139 (12), 3947–3961.

Whittle, P. (1973). Some general points in the theory of optimal experimen-

tal design. Journal of the Royal Statistical Society: Series B (Methodolog-

ical) 35 (1), 123–130.

Wu, C.-F. and H. P. Wynn (1978). The convergence of general step-length

algorithms for regular optimum design criteria. The Annals of Statistics ,

1273–1285.

Wynn, H. P. (1970). The sequential generation of d-optimum experimental

designs. The Annals of Mathematical Statistics , 1655–1664.

Wynn, H. P. (1972). Results in the theory and construction of d-optimum

177



experimental designs. Journal of the Royal Statistical Society: Series B

(Methodological) 34 (2), 133–147.

Yang, J., A. Mandal, and D. Majumdar (2012). Optimal designs for 2ˆ k fac-

torial experiments with binary response. arXiv preprint arXiv:1109.5320 .

178


