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Abstract

We consider linear perturbations of the background type IIB SUGRA solutions and find the equa-

tions of motion for the moduli. In particular, we allow for spacetime fluctuations of the positions

of D3-branes in the compact dimensions. We postulate an ansatz for the 5-form flux due to the

motion of the D3-branes, and a corresponding first-order part of the metric. The movement of the

D3-branes is then shown to affect the warp factor at linear order. Using the equations of motion for

the D3-branes, the universal volume modulus, and the universal axion, we construct a second-order,

effective action. Finally, based on the form of the effective action, we examine a Kähler potential

for the moduli space.
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1 Introduction

1.1 String Theory

For more than a century, physicists have searched for the laws and constituents that best describe

the universe at its most fundamental level. Their success can be summarized in the Standard

Model (SM), which unites electromagnetism with the strong and weak nuclear forces in terms of an

SU(3)× SU(2)× U(1) gauge group. There are twelve gauge bosons that mediate the fundamental

forces and act on the two primary forms of matter: quarks and leptons. The SM also predicts that

the Higgs field gives mass to the fundamental particles we observe. The SM can be written in the

language of quantum field theory and has proven robust over decades of experimental verification.

Together, the SM and Einstein’s General Relativity (GR) successfully describe the vast majority of

matter and interactions in the universe through a Lagrangian containing almost 20 dimensionless

parameters, each of which require experimental determination.

However, despite numerous successes (notably, the prediction of the Higgs boson and its sub-

sequent verification at the LHC), the SM + GR description fails to address some other important

areas. For instance, the fact that gravity cannot be incorporated into the SM in a renormalizable

way indicates that there will be new physics to consider at very high energies. Also, there are no

predictions for why the free parameters take the values that they do. Finally, spacetime singulari-

ties, such as those found in the centre of a black hole, are not resolvable classically. For these and

additional reasons, alternative theories that incorporate the successes of the SM + GR description,

but seek to resolve its unanswered questions, have been proposed.

String theory is an example of a theory that attempts to reach beyond the scope of the SM

+ GR description of the universe. By starting with a fundamentally different description of the
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universe – as strings instead of points – what arises is an elegant framing of the laws of nature.

By constructing a quantum field theory from fundamental strings, we can recover the structures of

GR and Quantum Field Theory (QFT) without the set of dimensionless constants; string theory

contains no dimensionless parameters. These are the essential ingredients for any theory whose

purpose is to describe the universe on both its largest and its smallest scales. There are additional

features that string theory brings to light: the existence of extra dimensions, a consistent quantum

theory of gravity, and the resolution of spacetime singularities, to name a few.

In order to see how the simple assertion of fundamental strings can effortlessly unite previously

incompatible theories, we will summarize the introductions of [1] and [2] to the quantization of an

open string in the light-cone gauge. A one-dimensional string in a D-dimensional spacetime will

sweep out a two-dimensional world-sheet, which we can parameterize in terms of some τ and σ, so

that the position of the world-sheet is given by Xµ(τ, σ). Since these parameters are arbitrary, any

physical quantity must be independent of our choice of parameters; indeed, any action must depend

only on the embedding in spacetime. One of the simplest invariant actions we can write involves

defining some world-sheet metric, γab where {a, b} = {τ, σ}, and is called the Polyakov action:

SP = − 1

2πα′

∫
M
dτdσ

√
− det(γab) γ

ab∂aX
µ∂bXµ , (1.1)

where M is the string world-sheet and α′ is a constant with units [length]2. In fact, the constant

outside the integral in (1.1) is the string tension: T = (2πα′)−1. The high degree of symmetry in

the Polyakov action, e.g. D-dimensional Poincaré invariance, diffeomorphism invariance, etc. will

be transferred to the two-dimensional field theory that it describes on the string world-sheet. In

this theory, Xµ(τ, σ) is a massless Klein-Gordon scalar field coupled to γab. In order to describe the

amplitudes of spacetime processes, we compute the matrix elements of the quantum field theory on

the world-sheet.

For illustrative purposes, we choose to quantize the system in the light-cone gauge, i.e. where

the coordinates of the spacetime are x± = 1/
√

2(x0 ± x1) and xi for i = 2, . . . , D − 1, so that

m2x+ = p+τ . We then find that the equations of motion yield a wave equation for the transverse
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components of the open string

∂2
τX

i =

(
`

2πα′p+

)2

∂2
σX

i , (1.2)

where ` is the length of the string. From this point, we are able to invoke the normal principles of

quantum field theory to quantize the string and so express X i in terms of a sum of creation and

annihilation operators. By requiring invariance among the transverse Lorentz generators, Mµν =

M−i such that [M−i,M−j] = 0, we find that the number of dimensions, D, is fixed to D = 26.

We can now construct the state space via acting on the vacuum state with creation operators.

While the state space of a single, open string is not a realistic model, it does serve to illustrate

the main features of a string spectrum. We find that the ground state for these strings is, in fact,

a scalar state with m2α′ = −1. This unstable state is called the tachyon. The first excited state

of the theory is a massless vector with (D − 2) possible polarizations. This state is reminiscent of

the vector potential of electromagnetism, which carries with it (4 − 2) = 2 possible polarizations

in four dimensions. The next set of excited states have masses of m2α′ = 1 and are massive tensor

states. If we were to repeat the quantization procedure above for closed strings instead of open

strings, we would find massless tensor states that would decompose into a symmetric-traceless part,

an antisymmetric part, and a scalar trace part. Incredibly, the symmetric-traceless massless tensor

states of closed strings are precisely the states required to represent gravitons. The antisymmetric

portion of the tensor states correspond to a Kalb-Ramond field (a tensor generalization of a Maxwell

gauge field), while the trace portion of the states represents a massless scalar field called the dilaton.

Thus, from the first few states of the most näıve constructions of open and closed strings, we

have already recovered the field content of GR as well as a SM-like theory, all from a single, one-

dimensional object. From here it is not difficult to see how we could construct more physical models

for the universe from fundamental strings and their interactions.

While string theory is able to resolve many issues that plague contemporary physics, it brings

along with it some issues of its own. Primarily, direct observation of fundamental strings would

require experiments at or near the Planck scale, and so remain entirely implausible. Indirect tests
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must contend with the fact that, although string theory can uniquely describe the universe, the

predicted classical solutions span a vast space called the string landscape. Each configuration in

the string landscape yields a different four-dimensional theory which is not necessarily stable. This,

in turn, leads to universal nucleation: the tunnelling from one vacuum solution to another, producing

a universe wherein new universes spontaneously form within one another and then expand in size

at the speed of light.

Despite these unresolved issues, string theory has made considerable theoretical progress. The

simple example of the bosonic string outlined above can be extended to a more general theory that

incorporates supersymmetry (a symmetry that unifies bosons and fermions), called superstrings.

Through a similar process to the one that set the critical dimension previously, in the case of

superstrings, we find that D = 10. Additionally, the negative mass-squared tachyon states are no

longer present. The types of theories that are derived from superstrings are grouped based on their

inclusion of open/closed strings, the number of spacetime supersymmetry charges (N ) they carry,

and whether or not the strings are oriented (i.e. does the direction of increasing σ play a role). The

main theories – all of which contain gravity – that preserve 10-dimensional Poincaré invariance are

summarized in Table 1.1.

Type Open/Closed Oriented N Gauge Group

I Open & Closed No 1 SO(32)

IIA Closed Yes 2 U(1)

IIB Closed Yes 2 None

Heterotic Closed Yes 1 E8 × E8

Heterotic Closed Yes 1 SO(32)

Table 1.1: The primary superstring theories and their characteristics.

Although these theories may seem distinct, additional considerations due to extra dimensions

lead us to the conclusion that there exists some mapping between the supersymmetric theories.

Consider that, since the extra dimensions are not readily observable, it is reasonable to postulate

that they might be compact with some small radius R. One of the effects that compact dimensions
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have on strings is to introduce R into the mass formula for the states that move in the compact

dimensions. However, the mass spectrum is invariant under the transformation

R↔ α′

R
. (1.3)

That is, the physics of strings in compact dimensions where R �
√
α′ is indistinguishable from

compact dimensions where R �
√
α′. The coincidence of the physics when R ↔ α′/R is called

T-duality. In addition to T-duality, there is also S-duality, which relates the physics of a system

with coupling strength g to that of one with coupling strength 1/g. Altogether, the combination

of the two duality relations, allowing single or multiple dimensions to be compact, and – as we

will explain below – the existence of other string-type objects, act to create a “web” on which the

supersymmetric theories of Table 1.1 lie. This way, all five superstring theories can be mapped

to one another. For example, Heterotic SO(32) can be mapped directly to Heterotic E8 × E8 by

T-duality; however, type IIB with D3-branes is no longer purely type IIB, but rather is some closely

related theory. We also find that an additional theory emerges: M-theory. M-theory, as opposed to

the other superstring theories, lives in 11 dimensions and may be the most fundamental description

of the other superstring theories [3]. The web of supersymmetric theories and their mappings is

illustrated in Figure 1.1.

In addition to the open and closed strings already discussed, another fundamental object in

string theory is the D-brane. D-branes, or Dirichlet Branes, are defined as the plane upon which

open string endpoints are constrained to lie on. They are derived from the Dirichlet boundary

conditions that arise in the variation of (1.1) for a relativistic, open string. The simplest kind

of D-brane is one that fills all of the space it is embedded in; however, a Dp-brane is a spatial,

p-dimensional hyperplane within the d-dimensional space. The motion of the endpoints of open

strings is free along the Dp-brane because these points obey Neumann boundary conditions.

When we quantize open strings in the presence of a Dp-brane, we find that the world-volume

of the brane supports a U(1) gauge field and a massless scalar for each coordinate direction normal

to the brane (these coordinates satisfy Dirichlet boundary conditions) [2]. Furthermore, stacking
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Figure 1.1: Directional mapping between the five major D = 10 superstring theories and M-Theory.
Dashed lines correspond to additional objects or operations required in conjunction with the corresponding
duality.

N branes on top of one another produces a U(N) gauge field on the brane world-volume. This

means that Dp-branes can support different types of charges for the different types of gauge fields

that exist on their world-volume. In this work, we set these world-volume gauge groups to zero for

simplicity.

D-branes also have tension, charge, and mass. In the case of a static Dp-brane, the tension,

Tp, times the volume, Vp, gives the mass of the brane. We can therefore consider fixed branes to

be very massive, i.e. semi-classical, objects. The tension of a Dp-brane is related to the tension

of a D(p − 1)-brane by Tp(g) = Tp−1(g) · 2π
√
α′ and is a function of the string coupling, g. By

convention, we choose the string coupling such that the tension of a D1-brane is T1(g) · 2πα′g = 1.

Having outlined some of the basic types and characteristics of superstrings, we now wish to

focus our attention on type IIB superstring theory. In particular, we wish to see how the low-energy

limit of this theory naturally leads into a theory of supergravity, i.e. type IIB SUGRA.
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1.2 Type IIB SUGRA

Type IIB superstrings have a number of spacetime fields corresponding to string states built from an

increasing number of creation operators acting on the vacuum. However, when we are considering

the low-energy limit of this theory, we are only concerned with the lightest states. Since there are

states with zero mass, we take these to be of primary importance and therefore consider any state

with m > 0 to be too heavy to interact.

Recall that, as mentioned in §1.1, all string theories posses a metric, an anti-symmetric tensor,

BMN , and the dilaton, φ, as massless scalar fields. There also exists a ten-dimensional scalar axion

C0, a 2-form1 potential CMN , and a 4-form field CMNPQ. It is conventional to define the axio-

dilaton τ = C0 + ie−φ and to combine the 3-forms F3 = dC2 and H3 = dB2 into the complex 3-form

G3 = F3 − τH3. From these, we construct the field strength F̃5 = dC4 − C2 ∧ H3, which must

obey the self-duality condition F̃5 = ?F̃5 [4, 5]. In doing so, we arrive that the action for type IIB

superstrings in the form given by [6]:

SIIB =
1

2κ2
10

∫
d10x
√
−g
(
R− ∂Mτ∂

M τ̄

2 (Im τ)2

)
− 1

2κ2
10

∫ [
G3 ∧ ?Ḡ3

12 Im τ
+

1

4
F̃5 ∧ ?F̃5

+
i

4 Im τ
C4 ∧G3 ∧ Ḡ3

]
+ . . .+ Sloc , (1.4)

where R is the 10D Ricci scalar, and κ10 is the 10D Newton’s constant. The terms denoted by dots

are those with more than two derivatives (these do not contribute to the low-energy limit). The

action due to local sources is Sloc and is contributed to by D3-branes. These are governed by an

action that we shall refer to as the Dirac-Born-Infield (DBI) action2

SDBI =

∫
d10x
√
−g
(
−T3

2

∫
d4ξ
√
−γ [γabP (g)ab − (3− 1)]

)
δ10(x,X(ξ)) , (1.5)

1 The language of differential forms is used extensively throughout this work. Appendices A.3 and A.4 provide
the reader with some background on forms and differential geometry.

2 In fact, this action reduces to the DBI action when electromagnetism on the brane world-volume is turned off [2].
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and the Wess-Zumino coupling of the D3-brane’s charge

SWZ = −µ3

∫
d10x
√
−g
∫
ξ

P (C4)δ10(x,X(ξ)) . (1.6)

The actions in (1.5) and (1.6) will be discussed in more detail in Chapter 2.

Unlike flat space, where field lines can continue to infinity, compact spaces must have pairs of

opposing charges. Since the D3-brane has a charge µ3 (which is known to equal the tension, T3)

that lives in the compact dimensions, there must exist some source of opposite charge where the

brane field lines can end. These sources of opposite charge are Orientifold planes, or O-planes. The

properties of the compact dimensions are such that O-planes are located at points that are invariant

under geometric symmetry transformations [7].

Since these massive, charged D3-branes are located in the compact space, there will be warping

due to their presence. The most general 10D metric that preserves 4D Poincaré invariance is

ds2
10 = e2A(y)η̂µνdx

µdxν + e−2A(y)g̃mndy
mdyn , (1.7)

where the warp factor, A, is a function of the internal space only. We initially take g̃mn to be the

metric of an unspecified, 6D compact manifold. Also, we adopt the convention that the spacetime

coordinates are xµ and the compact dimensions have coordinates ym.

Let us consider a background solution to (1.4) where fluxes and local sources are set to zero.

This means that only the geometry of the compact dimensions contributes. From the Bianchi

identities and the (sourceless) Einstein equations, we find that the warp factor must be a constant,

and so can be set to zero without loss of generality. A similar constraint for τ sets its background

value to be e−φ. From the Einstein equations we find that R̃mn = 0, i.e. the compact manifold must

be Ricci-flat. The most general compact, Ricci-flat manifold is the Calabi-Yau 3-fold3; henceforth,

g̃mn will be taken to be the metric of a Calabi-Yau 3-fold.

Now consider the inclusion of D3-branes, which will affect the value of the warp factor. If the

ith D3-brane has embedding coordinates Y
/b

(i) and charge T3, then the Einstein equations yield a

3 See Appendix A.4 for additional information regarding these types of manifolds.
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Poisson equation for A [6], given by

∇̃2e−4A = −gs
2

∣∣G(0)
3

∣∣2 − 2κ2
10T3

N∑
i

δ̃6(y, Y(i))− 2κ2
10T

′
3ρloc , (1.8)

where G
(0)
3 is the background value for the complex 3-form, T ′3 is the tension of additional (neg-

atively) charged local sources which are not D3-branes, and ρloc is the density of these sources.

The role of D3-branes in the warping of the extra dimensions was outlined first in [8] and has been

explored in a variety of contexts. In this work, we need only consider the case of a single D3-brane,

since, provided that the branes are sufficiently spaced apart, extending our solutions to N branes

is trivial.

Like any potential, C4 can be gauge transformed by some dβ3 without changing the form of the

field strength (F̃5). However, unlike in flat space, there also exist shifts that are non-trivial gauge

transformations (i.e. cannot be written as a globally-defined dβ3 over the entire manifold) and have

zero field strength. These shifts correspond to harmonic forms on the Calabi-Yau and are significant

in the dimensionally-reduced theory due to their relation to the geometry of the compact space.

These types of non-trivial effects translate into massless scalar fields in the dimensionally-reduced

theory and are referred to as moduli. Let us now turn to the types of moduli present in type IIB

SUGRA.

1.3 Moduli in Type IIB SUGRA

The moduli to contend with in type IIB SUGRA correspond to non-trivial shifts of background

values – and therefore background solutions – that do not enter into the equations of motion.

Quantitatively, moduli follow from the variation of some quantity Q → Q + δQ, that satisfies a

second-order differential equation O2δQ = 0. For example, the allowed deformations of the Calabi-

Yau manifold, δg, are those that change the manifold’s size and shape, but not its Ricci-flatness, and

are governed by the Lichnerowicz equation (A.5.4). Appendix A.5 discusses the moduli space for a

more general class of manifolds – Kähler manifolds – and then specializes to Calabi-Yau 3-folds.
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From Yau’s theorem (§A.5), we know that the moduli space of Calabi-Yau manifolds is that of

Ricci-flat Kähler metrics. This space can be separated into Kähler moduli and complex structure

moduli, and is itself Kähler. Therefore, by the Kähler condition, we can describe the moduli space

in terms of a Kähler potential, K. Being able to describe the moduli space in terms of a Kähler

potential is a requirement for a consistent 4D supersymmetric theory.

To see this more explicitly, we follow the discussion of [9], which considers a 10-dimensional

metric that preserves 4-dimensional maximal symmetry. First, we let uA(x) parameterize the com-

plex and Kähler moduli of the compact manifold. After dimensional reduction, the kinetic action

(up to factors of the 10-dimensional Planck mass) for the moduli is

SK = − 1

κ2
4

∫
d4x
√
−η ηµν∂µuA∂νuB̄GAB̄(u) , (1.9)

where η is the metric of the 4D space [9]. The Kähler metric, GAB̄, is related to the Kähler potential,

K, by GAB̄ = ∂A∂̄BK. In Chapter 6, we compare the form of the second-order effective action built

explicitly with the moduli to the result from an ansatz for the Kähler potential. By matching the

terms in each, we are able to write an expression for K and therefore produce a theory consistent

with a 4D supersymmetric theory.

Besides via geometric variations of the internal manifold, moduli are also produced by the

compactification of fields in the presence of extra dimensions. Kaluza and Klein first used the

compactification model to unify gravity and electromagnetism (see [10] for a review of this topic).

A side-effect of this is the production of zero-modes, i.e. moduli, in the 4D theory. To illustrate this

effect, we consider the simple example of a flat, 5-dimensional spacetime with one spatial dimension

y compactified into a circle of radius R. Following the example in [11], we start with the action for

a real, massless scalar field

S = −1

2

∫
d5x ∂Mϕ∂

Mϕ , (1.10)

where ϕ is periodic in the compact dimension, such that ϕ(x, y) = ϕ(x, y + 2πR), and satisfies the
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5D wave equation �5ϕ = 0. Using the periodicity of ϕ in y, we can rewrite the scalar field in terms

of its eigenstates in the compact dimension

ϕ(x, y) =
1√
2πR

∞∑
n=−∞

ϕn(x)einy/R . (1.11)

Using this expression for ϕ in the equation of motion yields

∂µ∂
µϕn(x)− n2

R2
ϕn(x) = 0 , (1.12)

i.e. the ϕn are spacetime fields with massess n/R. After integrating over y, the action becomes

S = −1

2

∫
d4x ∂µϕ0∂

µϕ∗0 −
∞∑
n=1

∫
d4x

[
∂µϕn∂

µϕ∗n +
n2

R2
ϕnϕ

∗
n

]
. (1.13)

As we can see, this action indicates that the scalar field has acquired a mass term for n 6= 0.

However, there is a single massless mode, ϕ0, that persists. In the limit of R→ 0, the masses of the

non-zero states become infinitely large, and can therefore be neglected. The massless scalar field,

on the other hand, must be considered in more detail. It was long thought that these zero modes

had to be fixed by quantum corrections to the theory. However, [6] found that some moduli could

be fixed classically by fluxes in the extra dimensions. This process in called flux compactification,

and is the focus of our next section.

In terms of the fields and geometry of type IIB SUGRA, the moduli that we are concerned

with are the perturbations around the background solutions described in § 1.2. For example, the

axio-dilaton, τ , has a constant background value, as determined by the 10D Einstein equations.

We must consider what effects the first-order perturbation τ → τ + δτ have on the dimensionally-

reduced theory. As we will see, some moduli will be fixed by flux compactification, e.g. τ ; however,

some moduli will remain free, such as the positions of the D3-branes in the extra dimensions.

11



1.4 Flux Compactification

Let us first examine a simplified scenario involving the classical fixing of zero modes by flux compact-

ification. Following the discussion of [2], we consider a 6D theory of gravity and electromagnetism

where two the spatial dimensions are compact, but with a volume that can vary in spacetime. We

take the metric to be of the form

ds2
6 = gµν(x)dxµdxν +R2(x)ḡab(y)dyadyb , (1.14)

where a, b = 1, 2 and the scale factor R(x) has been has been separated from the internal space

metric. The volume of the compact space is then given by R2(x)V2, where V2 is computed with

ḡab. Qualitatively, the resulting potential V (R) from integration over the compact space will be

proportional to the Euler number of the manifold, χ, and inversely proportional to R4: V (R) =

−ag χ/R4 with ag > 0. If the compact space has χ ≥ 1, such as for a 2-sphere, the potential is

negative definite, which will cause the radius to tend to zero. In the case of a 2-torus, i.e. χ = 0,

the potential vanishes and R(x) is a modulus of the theory. Furthermore, when χ < 0 the potential

is positive definite and the radius will tend to infinity. Integration over the compact space, i.e.

dimensional reduction, will also affect the gravitational constant, G. Dimensional analysis tells us

that the dimensionally-reduced constant, G(4), is equal to the higher-dimensional constant, G(6),

divided by the volume of the compact dimensions. Since the volume can vary in time, a redefinition

of gµν(x) is required to keepG(4) constant. This introduces the Weyl factor, Ω(x), into the 4D metric.

The Weyl factor is the time-dependant ratio of the changing volume of the compact dimensions to

the static volume:

e−2Ω(x) =
V2(R(x))

V2

. (1.15)

In the presence of compact dimensions, the magnetic flux is quantized and can be utilized to

stabilize the radius. If Φ = 2πn with n ∈ Z, then we know that the B field goes like B ∼ n/R2.

12



After a similar redefinition of the 4D metric, we find that the flux contributes a term that goes like

V (R) ∼ n2/R6. Therefore, the total potential is

V (R) = −ag
χ

R4
+ af

n2

R6
, (1.16)

where af > 0. After dimensional reduction, the action for the radius,

SR(x) =
1

2κ2
4

∫
d4x [∂µR(x)∂µR(x) + V (R)] , (1.17)

will always have a (positive) non-zero potential provided there is a non-zero magnetic flux. Thus,

the addition of magnetic flux has stabilized the radius by providing V (R∗) with a stable equilibrium

point for some R∗ > 0.

Having demonstrated flux compactifications in a simple theory, we now consider this effect in

the case of type IIB SUGRA by turning on the flux sources for G3. The moduli we consider will now

have some background value, plus a first-order perturbation. In this case, we find that the 3-form

flux must satisfy the imaginary self-duality condition ?̃G3 = iG3. As shown in [12], the equation of

motion for δτ picks up a mass term

∂µ∂
µδτ =

igs
4
δgmnG

m
pqG

npq +
g2
s

2
δτ |G3|2 , (1.18)

where gs is the string coupling. The first term above corresponds to the mixing between the dilaton

and the geometric moduli, while the second term is a mass generated by the flux. Thus, in the

presence of flux, δτ obtains a mass and so is fixed. Via a similar process, some of the complex

structure moduli described in § 1.3 obtain mass terms and are fixed in the presence of fluxes.

Another effect that quantized fluxes have is the stabilization of the Calabi-Yau against geometric

singularities, which was first shown in [6] and will be summarized here. Consider a manifold with

a singularity described by a deformed conifold geometry, and in the presence of fluxes. A deformed

conifold is a cone over a space with topology S2 × S3, and is described by the complex coordinates

13



(w1, . . . , w4) such that

w2
1 + w2

2 + w2
3 + w2

4 = z , (1.19)

where z is a complex structure modulus that controls the size of S3. When z = 0, the conifold is

singular. However, near the conifold there are two important cycles4: cycle A lives on the S3 and

corresponds to taking the wi in (1.19) to be real; cycle B is the 6D dual of A and corresponds to

taking w1, w2, w3 to be imaginary and w4 to be real [13]. Over these cycles, the fluxes F3 and H3

are quantized so that

2πM =
1

2πα′

∫
A

F3 and − 2πK =
1

2πα′

∫
B

H3 , (1.20)

where M,K ∈ Z+. Solving the equations of motion requires that z approaches a small, but non-zero

value given by

z ∼ exp

[
−2πK

gsM

]
, (1.21)

which prevents the conifold from becoming singular. This resolution of the conifold singularity also

fixes the minimum value of the warp factor to

eAmin ∼ z1/3 ∼ exp

[
− 2πK

3gsM

]
. (1.22)

What are the implications of an exponential warp factor with a small, but finite, minimum?

Primarily, strings that exist in regions of small warping can represent the Standard Model. This

is because the graviton state is maximal in regions of large warping, and so strings away from

these regions will support light modes [14]. Furthermore, for a theory with n compact dimensions,

the effective 4D Planck scale, MPl = 2 × 1018 GeV, is related to the fundamental (4 + n) Planck

scale through the geometry of the extra dimensions. Barring the case of large extra dimensions,

4 See Appendix A.3 for additional information regarding cycles.
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the fundamental Planck scale is exceedingly high. However, owing to the exponential scaling of

the warp factor, we are able to establish a large mass hierarchy for very reasonable values of the

flux quanta. This hierarchy may manifest itself through scattering events at seemingly low energies

being able to probe the fundamental Planck scale.

Moduli, both fixed and un-fixed by compactification, have a wide range of applications in 4D

effective theories. One such subject – which we will not explore in this work – is in string cosmology.

Here, the free moduli are taken as candidates for the inflaton field. Before the start of inflation,

the inflaton is constrained by the quantum fluctuations that dominate that epoch. As the universe

expands, these fluctuations are no longer sufficient to constrain the inflaton and so it becomes

perturbatively unstable. The period in our universe when inflation occurred would correspond to

the movement of this modulus down some shallow potential, with inflation ceasing when the field

encounters a local minimum. While some progress has been made on this subject, e.g. [15] and [16],

no definitive model for string inflation has been discovered.

Having seen the power of flux compactification to fix moduli, we now turn to the focus of this

thesis: moduli that are not fixed at the classical level. As mentioned in §1.3, the 4D supersymmetric

theory that results from the dimensional reduction of the full, 10D one possess a quadratic action

for the moduli that can be described in terms of a Kähler potential, K. Due to its importance in

the 4D theory, a direct calculation of K is an essential part of establishing a consistent theory. In

this work, we will derive the Kähler potential in the presence of warping.

1.5 Mobile D3-Branes as Moduli

As discussed in the previous sections, there are specific moduli that are not fixed at the classical

level and so will contribute to the Kähler potential. One such modulus is the universal volume

modulus, which corresponds to a rescaling of the internal Calabi-Yau metric g̃ → e2u(x)g̃ under

zero warping. However, in the presence of warping there are additional factors to consider, such as

non-trivial constraints. In [17], the contribution of the volume modulus to the Kähler potential in

the presence of warping was explicitly calculated. We will review these results in § 5.1.
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Another modulus being considered is the universal axion. The axion corresponds to a shift

in the 4-form potential, C4, by a harmonic form. Again, their role in the determination of K is

complicated by the presence of warping. In § 5.2 we review the results of [18], which considers a

scalar axion (i.e. shifts by a non-trivial 4-form). Using these results as a guideline, we then derive

the kinetic action for a 2-form axion in § 5.3.

Finally, the focus of this work is on introducing mobile D3-branes as moduli into type IIB

SUGRA. In order to illustrate how D3-branes can constitute a modulus in type IIB SUGRA, we

can imagine a configuration of D3-branes at various positions in the compact dimensions. The fully

10D theory will be affected by the existence of the D3-branes through their influence on the warp

factor, as in (1.8). In order to determine the dimensionally-reduced, 4D theory, we must integrate

over the compact dimensions, and, therefore, the positions of the D3-branes. However, since these

branes are taken to be static, their contributions are only through delta functions and so the theory

remains independent of the positions of the branes.

In order to address the role that the positions of the D3-branes play in the 4D theory, we

consider small perturbations of the D3-brane’s positions by taking Y(i) → Y(i) + δY(i)(x). After

solving the 10D system, the dimensional reduction of the theory to 4D will produce a kinetic action

for the modulus, δY(i)(x). This scenario is illustrated in Figure 1.2

When considering the effects due to D3-branes, the difficulties posed by warping in solving the

equations of motion for the 10D system were first outlined in [19]; a general solution to these issues

was framed in [20]. Attempts at deriving the Kähler potential in [21] and [22] were not successful

at incorporating the influence of the warp factor and its dependence on the moduli.

A direct derivation of the impact of stringy objects on the 4D effective theory has been hampered

by the difficulties resulting from including fluxes and/or non-trivial warping. The treatment of type

IIB SUGRA with O3- and O7-planes in zero warping, but with fluxes, was covered in [23]. However,

since warping was shown to generate the large scale hierarchies discussed in § 1.4, trivial warping

solutions present little additional insight. There have also been a number of incomplete attempts

to properly account for warping in the presence of fluxes, including those by [24–30].

In order to derive the quadratic action for the D3-branes, we start with two primary ingredients:
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(b) The first-order perturbation Y(i) → Y(i) +
δY(i)(x) introduces a modulus into the 4D theory.

Figure 1.2: The positions of D3-branes in the compact dimensions are moduli of the system [manifold

visualization © User: Jbourjai / Wikimedia Commons / CC-BY-SA-3.0].

ansätze for the 10D metric and the 5-form flux. We require that the ansatz for the background

metric preserves 4D Poincaré variance, as in (1.7). The first-order contributions to the metric due

to the modulus δY (x), are expressed, in part, by including a metric compensator in the off-diagonal

part of the 10D metric [20]. Also, the Minkowski space metric is further rescaled by the Weyl

factor, Ω(x), as we discussed in § 1.4, to maintain a time-independent, 4D Newton’s constant. It is

understood that both Ω(x) and the warp factor contain background and first-order contributions.

The metric is then

ds2
10 = e2Ωe2Aη̂µνdx

µdxν + 2e2Ωe2A∂̂µBm(x, y)dxµdym + e−2Ag̃mndy
mdyn , (1.23)

where A = A(x, y), Ω = Ω(x), and B1(x, y) is the compensator field. Choosing the compensator to

be in the off-diagonal part of the metric preserves the Ricci-flatness of the internal metric, g̃mn(y).

Of course, we are free to choose a gauge where this term appears in the (m,n) component of the

metric, however we find in practice that the off-diagonal gauge is preferable computationally.

The 4-form potential, C4, will also require additional first-order terms that are related to the

metric compensator. However, it is easier in practice to begin with an ansatz for F̃5 (which must
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satisfy the self-duality condition). Due to this self-duality condition, half of the degrees of freedom

in the flux are redundant at the level of the equations of motion. Therefore, we are free to choose

whichever half of these degrees are most convenient.

We have seen that G3 acts to stabilize the complex structure moduli; furthermore, the volume

modulus, universal axion, and D3-branes are decoupled from the moduli that are fixed by G3.

Indeed, a non-zero 3-form would only serve to complicate the ansatz for the D3-brane motion.

Thus, we take G3 to be zero in this work, knowing that the complex structure moduli could be fixed

by its presence5.

This thesis is organized as follows: in Chapter 2, an introduction to D3-branes as electromag-

netic sources is given, and the procedure for solving the type IIB SUGRA system is outlined. This

includes establishing the Einstein equations and the equations of motion for the D3-brane position

and its flux, F̃5. Next, Chapter 3 introduces the particular ansätze used for the metric and the

flux. The Einstein equations are then established for this choice of gMN and F̃5, and the constraint

equations that descend from them are identified and solved. Then, the equations of motion for

the D3-brane position and the flux are solved with the given ansätze. These equations hint that

there are local terms due to gauge transformations that must be separated from F̃5 and, therefore,

the potential. To do so, we establish a new ansatz for the flux that is equivalent to the previous

one when evaluated on-shell. This new ansatz allows the local terms to be separated out and the

global degrees of freedom to be written in a closed form. Using the non-trivial Bianchi identity,

local contributions to the flux are identified, up to second order. Finally, we establish that these

local contributions will not enter the equations of motion at first-order and so can be dropped.

In Chapter 4, the results of the Einstein equations and equations of motion are gathered and

used to construct a second-order quadratic action for the D3-brane position modulus. This action is

then dimensionally-reduced to a 4D effective action for the scalar field descending from the D3-brane

position. Chapter 5 reviews similar calculations of the effective action for the volume modulus and

scalar axion. Then, the scalar axion is reformulated as a 2-form (for reasons that will become clear

5 The response of G3 to variations of the other Kähler metric moduli has been considered by the author and may
be included in a later work.
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later), and the effective theory for this modulus is established.

Finally, Chapter 6 establishes the quadratic action in the presence of all three moduli. Using

ansätze motivated by the D3-brane flux, we are able to combine the degrees of freedom for each

modulus. We then calculate the quadratic action for all the moduli. Using an ansatz for the Kähler

potential, K, that includes all moduli, we determine the effective action for the total moduli space

and compare it to the result of dimensionally-reducing the quadratic action. The self-duality of F̃5

means that the degrees of freedom in the flux can be chosen to be in any set of complementary

components. Therefore, in Chapter 7 the opposite set of components are chosen to contain the

relevant degrees of freedom. The quadratic action for this choice of components is computed and

compared to the previous results.

As a final note, there is a wide variety of notation used throughout this work. Since we are

most often working with objects that exist in either the extended, 4-dimensional Minkowski space

or in compact, 6-dimensional Calabi-Yau space, we adopt a notation to differentiate between the

two regions. The coordinates assigned to the flat, 4D space are xµ and any mathematical objects,

operators, etc. are denoted by hats: ∂̂ or η̂. The coordinates in the compact, 6D space are ym

and objects or operators there are denoted by tildes: ∇̃ or g̃. When this notation is used, no warp

factors are present in the object’s definition. Conversely, when describing the entire 10-dimensional

space, we use capital lettered coordinates XM and any 10D object or operator will be devoid of

accent. These objects will have warping implied in their definitions. In the event that a mixture

of internal/external objects are used, the dimensionality of each object may be indicated by their

subscript, e.g. the 10D exterior derivative is denoted d10. When considering the embedding of the

D3-branes (see Appendix A.2 for notes regarding embedding coordinates and parallel propagators

on compact spaces) in the compact space, we adopt a slashed notation. For example, the first-order

displacement of the D3-branes can be written in covariant form in the compact space via the use of a

parallel propagator: g̃mnΛn
/bδY

/b. Whenever possible, background information for topics is provided

in the Appendices, with references to this material throughout.
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2 Solving Type IIB SUGRA With D3-Branes

2.1 D3-Branes as Electromagnetic Sources

As mentioned in Chapter 1, D3-branes are able to source a variety of gauge fields on their world-

volumes. One such gauge field in type IIB strings is the massless Kalb-Ramond (KR) field, described

by the antisymmetric field strength Bµν . In fact, the KR field has an associated conserved current

on the brane world-volume whose density is tangent to the surface of the brane. Furthermore, the

Kalb-Ramond field couples to the Maxwell gauge field, Aµ, that already lives on the brane. The

overall field strength for the combined gauge fields is Fµν = Fµν + Bµν , where Fµν is the regular

electromagnetic field strength, Fµν = ∂µAν − ∂νAµ. F will then follow a Maxwell-like equation,

such as dF2 = ?J1, where J1 is an “electric” current density that is contributed to by Maxwell and

KR charges.

However, the Kalb-Ramond field is not the only gauge field sourced by D3-branes. Other gauge

fields of higher dimensions are also present, and their field strengths will also conform to equations

similar to classical Maxwell equations. For example, the 5-form field strength F̃5 obeys Maxwell-like

condition that goes like d10 ?10 F̃5 = ?10J
e
4 for some 4-form “electric” current, Je4 . Of course, since

D3-branes are point sources in the compact dimensions, Je4 will be similar to a Maxwell current due

to a point charge.

A unique feature of type IIB SUGRA is the self-duality condition for the field strength F̃5. This

condition, written as ?10F̃5 = F̃5, must be imposed by hand at the level of the equations of motion.

What this tells us is that half of the degrees of freedom in F̃5 are redundant; we conventionally

double the contribution of whichever half of the degrees we choose to be the “actual” degrees of

freedom and neglect the other terms. In terms of the gauge groups sourced by the D3-branes, the
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self-duality condition is equivalent to doubling either the electric or magnetic portion of the 4-form

current and setting the other portion to zero.

In choosing where the relevant degrees of freedom lie in our ansatz for the field strength, we

will in fact be choosing how to characterize the D3-brane. This will, in turn, effect equations such

as the Bianchi identity for F̃5 and may pose or resolve certain issues. However, it is important to

remember that – in principle, at least – either choice is valid.

Choosing to take the D3-brane to be an electric source sets the relevant degrees of freedom to

the (4,0), (3,1), and (2,2) legs of C4
1. Conversely, a magnetic description for the D3-branes entails

setting the degrees of freedom to lie in the (0,4), (1,3), and (2,2) legs of C4. In this chapter, we

will outline the calculations required to build a second-order action for either characterization of

the D3-brane charge.

2.2 Einstein Equations

Let us outline the process of solving the type IIB SUGRA system where the time-dependent positions

of the D3-branes in the extra dimensions is the modulus being considered. Since the D3-branes

are semi-classical, we can use the regular Einstein equations to describe the geometry of the full,

ten-dimensional space. Letting A ∈ [0, 9], the 10D Ricci tensor is given in terms of the Christoffel

symbols

RMN = ∂AΓAMN − ∂NΓAAM + ΓAABΓBNM − ΓANBΓBAM , (2.1)

where each 10D Γ is given by ΓABC = 1/2 gAD(∂BgDC + ∂CgDB − ∂DgBC). The Ricci scalar is built

from the inverse metric and (2.1): R = gMNRMN . Both the Ricci tensor and scalar are used to

define the Einstein tensor

GMN = RMN −
1

2
gMNR . (2.2)

1 An overall factor of 1/2 is included in the (2,2) component, as this will also contribute to the description of the
D3-brane as a magnetic source.

21



The energy-momentum tensor receives contributions from the 5-form flux and from the branes

themselves. Just as in classical electromagnetism, the contribution from the flux , F̃5, to TMN is

T 5
MN =

1

4 · 4!
F̃MPQRSF̃N

PQRS . (2.3)

The additional contribution to TMN is due to the fact that the D3-branes are a dynamical source

of energy density. To determine this contribution we vary the action given in (1.5) with respect to

the metric. A short calculation shows that the pullback due to the metric is

P (g)ab = gMN∂aX
M∂bX

N . (2.4)

Then, noting that δgMN/δg
PQ = −gPMgQN , the contribution from the D3-branes is

TD3
PQ ≡ −

2√
−g

δSDBI
δgPQ

= −T3

2

∫
d4ξ
√
−γ γabgPMgQN∂aXM∂bX

Nδ10(x,X(ξ)) . (2.5)

Above, and throughout our calculations, we denote the coordinates of the D3-brane world-volume

by ξ, which feel the pullback γab, which is equal to the induced metric on-shell.

The Einstein equations relate the effects of the curvature to the stress-energy from the relevant

sources. Given the discussion above, we have that

EMN = RMN −
1

2
gMNR− (T 5

MN + TD3
MN) . (2.6)

Setting EMN = 0 gives the equation for the metric of the system; however, we will use (2.6)

along with an ansatz for the 10D metric to determine dynamic and constraint equations for the

compensator field, Bm(x, y), and the warp and Weyl factors, A(x, y) and Ω(x).
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2.3 Equations of Motion

The movement of the D3-branes will be affected not only by the geometry of the background, but

also by the coupling of the charge to the field strength. As given by (1.5), the so-called “DBI-like”

action is the geometric contribution from each brane and relies on the pullback given by (2.4),

SDBI = −T3

2

∫
d10x
√
−g
∫
d4ξ
√
−γ
[
γabP (g)ab − 2

]
δ10(x,X(ξ)) .

The coupling of the charge of each D3-brane to the flux is given by the Wess-Zumino coupling,

(1.6)

SWZ = −µ3

∫
d10x
√
−g
∫
ξ

P (C4)δ10(x,X(ξ)) ,

and relies on a different pullback: the pullback due to the potential, P (C4). This pullback is a

4-form and has components

[P (C4)]abcd = CMNPQ∂aX
A∂bX

B∂cX
C∂dX

D . (2.7)

To find the equation of motion for the D3-brane position, we will vary these two actions with

respect to the XA coordinate. Since we know that the constant terms in SDBI will vanish under vari-

ation, we can disregard that portion of the action in establishing SD3 = SDBI +SWZ . Furthermore,

we will write the Wess-Zumino action in component notation by using

∫
βp ∧ ?αp =

1

p!

∫
dnx
√
−g αµ1...µpβµ1...µp(−1)p(n−p)+1 , (2.8)

for any n-dimensional p-forms α and β. Then,

SD3 = −T3

2

∫
d10x
√
−g
∫
d4ξ
√
−γ γabP (g)ab δ

10(x,X(ξ))

+

∫
d10x
√
−g
(
−µ3

4!

∫
d4ξ εabcdCMNPQ∂aX

M∂bX
N∂cX

P∂dX
Q

)
δ10(x,X(ξ)) , (2.9)
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where ε is the totally antisymmetric Levi-Civita tensor. After varying with respect to the 10D

coordinates, we find that

δSD3 =

∫
d10x
√
−g
∫
d4ξ δXM

[
T3∂a(

√
−γ γabgMN∂bX

N)

+
µ3

3!
∂a(ε

abcdCMNPQ∂bX
N∂cX

P∂dX
Q)
]
δ10(x,X(ξ)) . (2.10)

We choose to work in the static gauge, which aligns the world-volume coordinates with the external

Minkowski space, so that the induced metric, γab, equal to the 4D metric, gµν . This gauge choice

also collapses the spacetime portion of the 10D delta distribution δ10(x,X(ξ)),2 leaving only the

integral over the internal space intact.

After choosing the static gauge, we can define the equation of motion for the D3-brane, EM , by

EM =

∫
d6y
√
g̃
[
T3∂̂µ(

√
−g4 g

µνgMN ∂̂νX
N)

+
µ3

3!
∂̂a(ε

abcdCMNPQ∂̂bX
N ∂̂cX

P ∂̂dX
Q)
]
δ̃6(y, Y ), (2.11)

where the delta distribution is now a density, i.e. δ̃6(y, Y ) = δ6(y, Y )/
√
g̃, which is non-zero only at

the position of the D3-brane, Y /b. Furthermore, the warp factors that are in the definition of gmn,

the 6D metric, have been factored out so that gmn = e−2Ag̃mn. This way, the delta distribution

density satisfies

∫
d6y
√
g̃ f(y) δ̃6(y, Y ) = f(Y ) . (2.12)

There is also the equation of motion for the flux to consider. In addition to the normal free-field

action,

Sfree = − 1

2κ2

∫
1

4
F̃5 ∧ ?10F̃5 , (2.13)

the flux also has a coupling to the charged branes given by SWZ . We can use (2.7) to express P (C4)

2 See Appendix A.2 for a more detailed discussion on this and related topics.
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explicitly, and then use (2.8) to show that

SWZ =
T3

2

∫
d10x
√
−g
∫
C4 ∧ ?10 εξ δ

10(x,X(ξ)) , (2.14)

where [εξ]MNPQ ≡ 1/
√
−γ εabcd∂aXM∂bXN∂cXP∂dXQ. A factor of 1/2 is introduced into SWZ

because the charge of the brane is split between an electric type and a magnetic type; therefore,

the overall brane charge coupling is µ3 = T3/2. We can vary both (2.13) and (2.14) with respect to

the potential to find that

δSfree =
1

4κ2

∫
δC4 ∧ d10 ?10 F̃5 , (2.15)

δSWZ =
T3

2

∫
d10x
√
−g
∫
δC4 ∧ ?10 εξ δ

10(x,X(ξ)) . (2.16)

Finally, setting δSfree + δSWZ = 0 for all δC4, we can write the equation of motion for the flux,

E6 = d10 ?10 F̃5 + 2κ2T3

∫
d4ξ
√
−γ ?10 εξ δ

10(x,X(ξ)) . (2.17)

All the requisite equations for solving the 10D system have now been established, and hold for

any particular choice of flux or metric. In the proceeding chapter, we will see that these equations

give two categories of results: dynamic equations – which are only valid on-shell and will be used in

Chapter 4 to construct a quadratic action – and constraint equations, which are always valid and

will be used to relate the warp factor to the positions of the D3-branes.
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3 Mobile D3-Branes: an Ansatz

3.1 Results of the Einstein Equations

Using the general method established in § 2.2, we can now take perturbations of the static D3-

brane configuration. We must first determine the Einstein equations up to first order, taking the

background warp factor to be given by the static solution Poisson equation (1.8). The full, 10D

metric will be as in (1.23):

ds2
10 = e2Ωe2Aη̂µνdx

µdxν + 2e2Ωe2A∂̂µBm(x, y)dxµdym + e−2Ag̃mndy
mdyn .

The computation of the Einstein Equations to first-order includes determining the Ricci tensor

to the same order. Due to the presence of both background and first-order contributions, the

calculation of RMN is sufficiently detailed that it is included in Appendix A.1. The full expressions

for the components of the Ricci tensor come from (2.1), and are

Rµν = ∂̂µ∂̂ν(4A− 2Ω)− η̂µν ∂̂2(A+ Ω) + e4Ae2Ω
(
∂̃`A∂̂

2B`η̂µν − ∇̃2Aη̂µν + ∂̂µ∂̂ν∇̃`B`

)
, (3.1)

Rµm = 2∂̂µ∂̃mA− 8∂̂µA∂̃mA+ e4Ae2Ω
(
∂̂µ∇̃`∇̃[mB`] − ∇̃2A∂̂µBm + 4∇̃`A∂̂µ∂̃[mB`]

)
, (3.2)

Rmn = ∂̂2∇̃(mBn) + 4∇̃(mA∂̂
2Bn) − ∂̂2B`∇̃`Ag̃mn + ∇̃2Ag̃mn + e−4Ae−2Ω∂̂2Ag̃mn

−8∂̃mA∂̃nA+ R̃mn . (3.3)

Using these, we can calculate the Ricci curvature, R, to first order

R = 6e−2Ae−2Ω∂̂2(A− Ω) + 2e2A
(
∂̂2∇̃`B` + ∇̃`A∂̂2B` + ∇̃2A− 4∇̃`A∇̃`A

)
, (3.4)
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and the components of the Einstein tensor, as per (2.2),

Gµν = (∂̂µ∂̂ν − η̂µν ∂̂2)(4A− 2Ω + e4Ae2Ω∇̃`B`) + 2e4Ae2Ωη̂µν(2∇̃`A∇̃`A− ∇̃2A) , (3.5)

Gµm = 2∂̂µ∂̃mA− 8∂̂µA∂̃mA+ e4Ae2Ω∂̂µ

(
∇̃`∇̃[mB`] + 4∇̃`A∂̃[mB`]

+2Bm(2∇̃`A∇̃`A− ∇̃2A)
)
, (3.6)

Gmn = ∂̂2∇̃(mBn) + 4∇̃(mA∂̂
2Bn) − 8∂̃mA∂̃nA+ g̃mn(4∇̃`A∇̃`A− 2∇̃`A∂̂2B` − ∂̂2∇̃`B`)

+e−4Ae−2Ωg̃mn∂̂
2(3Ω− 2A) . (3.7)

Having determined the Einstein tensor, we must now consider the contributions to the energy-

momentum tensor from both the flux and the mobile D3-brane. To do so, we introduce the ansatz

for the field strength; we propose1

F̃5 = e4Ωε̂ ∧ d̃e4A + ?̃d̃e−4A − e−4Ae2Ω?̃(d̂B1 ∧ d̃e4A)

+e4Ωd10(e4A?̂d̂B1) + e4Ω ?10 d10(e4A?̂d̂B1) . (3.8)

Recall that a valid ansatz for F̃5 must obey the ten-dimensional self-duality condition, ?10F̃5 = F̃5.

Consider ?10 acting on each term in F̃5: the terms in the second line of (3.8) are trivially self-dual,

so we need only consider those terms in the first line. Using the background part of the metric on

the first term in (3.8) gives

?10(e4Ωε̂ ∧ d̃e4A) = ?̃d̃e−4A , (3.9)

and using the off-diagonal part gives

?10(e4Ωε̂ ∧ d̃e4A) = −e2Ωe−4A?̃(d̂B1 ∧ d̃e4A) . (3.10)

1 This ansatz was established previous to this author’s involvement in a work currently in progress with A. R.
Frey and B. Underwood.
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Similarly, the dual of the second term is

?10(?̃d̃e−4A) = e4Ωε̂ ∧ d̃e4A + e4Ω?̂(d̂B1 ∧ d̃e4A) . (3.11)

Lastly,

?10(−e−4Ae2Ω?̃(d̂B1 ∧ d̃e4A)) = −e4Ω?̂(d̂B1 ∧ d̃e4A) , (3.12)

exactly cancelling the second term in (3.11). Thus, (3.8) is a valid ansatz for the field strength.

Using (2.3), the background contributions to T 5
MN that come from the ansatz for F̃5 are those

that arise from the e4Ωε̂∧ d̃e4A and ?̃d̃e−4A terms in (3.8), while the first-order contributions coming

from the remaining parts. Taking only the background pieces, we quickly find that the background

components of T 5 are

T 5
µν = −4e4Ae2Ωη̂µν∇̃`A∇̃`A , (3.13)

T 5
µm = 0 , (3.14)

T 5
mn = 4g̃mn∇̃`A∇̃`A− 8∂̃mA∂̃nA . (3.15)

The first-order contributions to T 5
MN come from expanding (2.3) to first order:

δT 5
MN =

1

96
(F̃MPQRSδF̃N

PQRS + δF̃MPQRSF̃N
PQRS + 4F̃MPQRSF̃N

PQR
T δg

ST ) . (3.16)

Contributions to δT 5
µν come from both the F̃µPQRSδF̃ν

PQRS and δF̃µPQRSF̃ν
PQRS terms and result

in

δT 5
µν = 2e4Ae2Ωη̂µν∇̃`A∂̂2B` . (3.17)
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The off-diagonal contribution comes from all three terms in (3.16). To wit,

F̃µPQRSδF̃n
PQRS = −8(4!)e2Ωe4A∇̃`A(4∂̂µB[n∇̃`]A− ∂̂µ∇̃[nB`]) , (3.18)

δF̃µPQRSF̃n
PQRS = 4(4!)e2Ωe4A(∂̂µ∇̃nB`∇̃`A− ∂̂µ∇̃`Bn∇̃`A) , (3.19)

and F̃µPQRSF̃n
PQR

T δg
ST = −4(4!)e2Ωe4A ∇̃nA ∂̂µB` ∇̃`A , (3.20)

such that the total δT 5
µm is

δT 5
µm = 4e2Ωe4A(∇̃`A∂̂µ∇̃[mB`] − ∇̃`A∇̃`A∂̂µBm) . (3.21)

Lastly, δT 5
mn contains two contributions each from both F̃mPQRSδF̃n

PQRS and δF̃mPQRSF̃n
PQRS

terms. These are

F̃mPQRSδF̃n
PQRS = 4(4!)

(
∇̃mA ∂̂

2Bn + ∇̃nA ∂̂
2Bm − g̃mn∇̃`A ∂̂2B`

)
, (3.22)

and δF̃mPQRSF̃n
PQRS = 4(4!)

(
∂̂2Bm∇̃nA+ ∂̂2Bn∇̃mA− g̃mn∇̃`A ∂̂2B`

)
. (3.23)

Summing the contributions gives

δT 5
mn = 4∇̃(mA∂̂

2Bn) − 2g̃mn∇̃`A∂̂2B` . (3.24)

Finally, the total energy-momentum tensor for the 5-form F̃5 is the sum of the background and

first-order pieces and has components

T 5
µν = 2e4Ae2Ωη̂µν(∇̃`A∂̂2B` − 2∇̃`A∇̃`A) , (3.25)

T 5
µm = 4e2Ωe4A(∇̃`A∂̂µ∇̃[mB`] − ∇̃`A∇̃`A∂̂µBm) , (3.26)

T 5
mn = 4∇̃`A∇̃`Ag̃mn − 8∂̃mA∂̃nA+ 4∇̃(mA∂̂

2Bn) − 2∇̃`A∂̂2B`g̃mn . (3.27)

As we saw previously, the charged D3-branes contribute to the stress-energy tensor via (2.5),
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which is

TD3
PQ = −T3

2

∫
d4ξ
√
−γ γabgPMgQN∂aXM∂bX

Nδ10(x,X(ξ)) .

Since we are working in the static gauge, γab is the 4D metric, gµν . This means that the relevant

components of TD3
MN are

TD3
µν = −T3e

8Ae2Ωη̂µν δ̃
6(y, Y ) , (3.28)

TD3
µm = −T3

(
e8Ae2Ω∂̂µBm + e4Ag̃mnΛn

/b ∂̂µδY
/b
)
δ̃6(y, Y ) , (3.29)

TD3
mn = 0 . (3.30)

N.B. The first-order part of the brane position is written out in terms of a parallel propagator,

Λn
/b
, which takes vectors from the static brane to the mobile brane, located at the position Y /b

on the surface of the manifold. Thus, the first-order part of the 10D vector XM is technically a

sum over the embedding coordinates: Λm
/b
δY /b(x). However, we often suppress the summed indices

in scenarios where they are not pertinent to the calculation at hand, and focus primarily on the

spacetime dependence of the perturbation.

Following the form of (2.6), the contributions to the stress-energy tensor are summed and then

subtracted from the Einstein tensor to give the Einstein equations. For the given ansatz, we find

that the Einstein equations have components

Eµν = Gµν − Tµν = (∂̂µ∂̂ν − η̂µν ∂̂2)(4A− 2Ω + e2Ωe4A∇̃`B`)

+2e4Ae2Ωη̂µν(4∇̃`A∇̃`A− ∇̃2A− ∇̃`A∂̂2B`)

+T3κ
2e8Ae2Ωη̂µν δ̃

6(y, Y ) , (3.31)

Eµm = Gµm − Tµm = 2∂̂µ∂̃mA− 8∂̂µA∂̃mA

+e4Ae2Ω
(
∂̂µ∇̃`∇̃[mB`] + 2∂̂µBm(4∇̃`A∇̃`A− ∇̃2A)

)
+T3κ

2(e8Ae2Ω∂̂µBm + e4Ag̃mnΛn
/b ∂̂µδY

/b)δ̃6(y, Y ) , (3.32)

Emn = Gmn − Tmn = ∂̂2(∇̃(mBn) − g̃mn∇̃`B`) + e−4Ae−2Ωg̃mn∂̂
2(3Ω− 2A) . (3.33)
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Setting EMN = 0, we can see that the terms present in (3.31) - (3.33) fall into two main categories:

those terms that contain second-order spacetime derivatives (dynamic terms), and those that contain

up to first-order spacetime derivatives (constraint terms). The constraint terms must always be set

to zero, while the dynamic terms are zero when the equations of motion are satisfied, but are non-

zero when working off-shell. We will use these dynamic terms in Chapter 4 to help construct the

dimensionally-reduced effective theory.

The constraint equations come from Eµν and Eµm components, since Emn is totally dynamic.

From Eµν we see that

4A− 2Ω + e4Ae2Ω∇̃`B` = 0 . (3.34)

N.B. Since B1 is first-order, the above equation is actually a first-order constraint. Thus, we must

take

A→ δA and Ω→ δΩ . (3.35)

The result of (3.34) is that the first line of (3.31) disappears. The other terms in Eµν can be rewritten

using the help of the background solution for the warp factor, which, for stationary D3-branes, is

∇̃2e−4A = −2T3κ
2δ̃6(y, Y ) . (3.36)

Using the Poisson equation for the warp factor, (3.31) becomes

Eµν =
1

2
e8Ae2Ωη̂µν(−2T3κ

2δ̃6(y, Y )) + T3κ
2e8Ae2Ωη̂µν δ̃

6(y, Y )− 2e4Ae2Ωη̂µν∇̃`A∂̂2B` . (3.37)

Thus, the dynamic term in Eµν is simply −2e4Ae2Ωη̂µν∇̃`A∂̂2B`. We can also use (3.36) to simplify

Eµm. Doing so results in zero dynamic contribution but, rather, the constraint equation

2∂̂µ∂̃mA− 8∂̂µA∂̃mA+ e4Ae2Ω∂̂µ∇̃`∇̃[mB`] + e4AT3κ
2g̃mnΛn

/b ∂̂µδY
/b δ̃6(y, Y ) = 0 . (3.38)
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From inspection, we can see that (3.33) is entirely dynamic.

3.2 Solving the Constraint Equations

By solving the constraint equations, we are able to relate the warping of the internal manifold to

the presence of the D3-branes and their flux. The first-order constraint (3.38) from the off-diagonal

components of the Einstein equations can be written as

−1

2
∂̂µ∇̃m(δe−4A) +

1

2
e2Ω∂̂µ∇̃`(d̃B1)m` + κ2T3g̃mnΛn

/b ∂̂µδY
/b δ̃6(y, Y ) = 0 . (3.39)

By noting that ?̃d̃?̃αp = (−1)p(d−p)∇̃mαmn2...np for some p-form αp, we can write (3.39) as

d̃(δe−4A) + e2Ω?̃d̃?̃d̃B1 − 2κ2T3 δY1δ̃
6(y, Y ) = 0 , (3.40)

with δY1 = g̃mnΛn
/b
δY /b. Taking ?̃d̃?̃ of both sides causes the term proportional to B1 to vanish and

leaves

?̃d̃?̃d̃(δe−4A) = 2κ2T3 ?̃d̃?̃(δY1δ̃
6(y, Y )) . (3.41)

Converting back to component notation, this is

∇̃2(δe−4A) = 2κ2T3g̃mnδY
/b∇̃m(Λn

/b δ̃
6(y, Y )) . (3.42)

Since the first-order D3-brane position is only a function of spacetime, it is covariantly constant

and has moved outside of the brackets. What remains inside is a particular combination of the

parallel propagator and the Dirac distribution. In (A.2.2), we see that this is related to the partial

derivative of δ̃6(y, Y ) with respected to the slashed coordinates. This means that

∇̃2(δe−4A) = −2κ2T3δY
/b∂/b δ̃

6(y, Y ) , (3.43)
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which is precisely the first-order variation of the Poisson equation that determines the background

value of the warp factor if δ = δY , i.e. the variation is with respect to the embedding coordinates

Y /b. This consistency means that (3.39) is, in principal, solvable.

There are two important constraints to solve: the constraint for the first-order variation of

the warp factor due to the D3-branes, and the constraint from the (µ, ν) component of Einstein

equations, (3.34). To solve these constraints, we adopt the following proposed solution the warp

factor based on (3.43)

e−4A(x,y) = e−4A0 − 2κ2T3G(y, Y ) , (3.44)

where G(y, Y ) is a bi-scalar Green’s function. We must also consider the first-order part of the

Weyl factor. By examining its definition in terms of the warp factor, varying with respect to the

D3-brane coordinates gives

δY e
−2Ω = −2δY Ωe−2Ω0 =

1

Ṽ

∫
d6y
√
g̃ δY e

−4A . (3.45)

Recall that the background value for the Weyl factor, e−2Ω0 , is a constant. Then, using (3.44), we

find that

δY Ω ∝
∫
d6y
√
g̃ δYG(y, Y ) =

∫
d6y
√
g̃
δG(y, Y )

δY /b
δY /b =

∫
d6y
√
g̃ ∂/bG(y, Y )δY /b . (3.46)

An important relationship between a bi-scalar Green’s function and a bi-tensor Green’s function is

given by (A.2.15); namely, that the two are related via

∇̃`G/b`(y, Y ) = −∂/bG(y, Y ) . (3.47)

Using this, we can relate the partial derivative with respect to the embedding coordinates to the total

derivative over the compact space. Since ∇̃mδY /b = 0, the integral over the total derivative vanishes.

Thus, δY Ω = 0. In Appendix A.6, we motivate this assertion without requiring an explicit solution
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for the warp factor, but by making certain simplifying assumptions about the compact space.

We can now we turn our attention back to the constraint given by (3.34), with δY Ω = 0

4δYA+ e4Ae2Ω∇̃`B` = 0 ⇒ δY e
−4A = e2Ω∇̃`B` . (3.48)

This allows us to use (3.39) to determine an equation for B1,

∇̃m(δY e
−4A)− e2Ω∇̃`(d̃B1)m` − 2κ2T3g̃mnΛn

/b δY
/b δ̃6(y, Y ) = 0 . (3.49)

Then, using the relation for δY e
−4A above, we find that

∇̃m(e2Ω∇̃`B`)− e2Ω∇̃`
(
∇̃mB` − ∇̃`Bm

)
= 2κ2T3g̃mnΛn

/b δY
/b δ̃6(y, Y ) . (3.50)

We can collect the first two terms and note that these are simply g̃`nR̃nmB`, which vanishes on the

Ricci-flat Calabi-Yau. What we are left with is a Poisson equation for B1:

∇̃2Bm = 2κ2T3e
−2Ωg̃mnΛn

/b δY
/b δ̃6(y, Y ) . (3.51)

Therefore, B1 is given by a bi-tensor Green’s function,

Bm = 2κ2T3e
−2ΩδY /bG/bm(y, Y ) , (3.52)

that solves the equation

∇̃2G/bm = g̃mnΛn
/b δ̃

6(y, Y ) . (3.53)

Plugging this solution back into δY e
−4A = e2Ω∇̃`B`, and using (A.2.15), we find that

δY e
−4A = −2κ2T3δY

/b∂/bG(y, Y ) , (3.54)
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which exactly matches the ansatz in (3.44) since the bi-scalar Green’s function satisfies ∇̃2G(y, Y ) =

δ̃6(y, Y ).

3.3 Equations of Motion: Brane Position and Flux

Recall that, as discussed in §2.1, we are able to chose to describe the D3-branes as either electric or

magnetic sources, thereby setting the relevant degrees of freedom to either half of the components

of C4. Given the expression for F̃5 in (3.8), we will choose the (4,0), (3,1), and (2,2) components of

C4 to correspond to the global degrees of freedom, as these can be written as d10C4 in closed form.

With the degrees of freedom set, we can refer to § 2.3 to determine the equation of motion for the

D3-brane position up to first order. Recall (2.11):

EM =

∫
d6y
√
g̃
[
T3∂̂µ(

√
−g4 g

µνgMN ∂̂νX
N)

+
µ3

3!
∂̂a(ε

abcdCMNPQ∂̂bX
N ∂̂cX

P ∂̂dX
Q)
]
δ̃6(y, Y ).

Let us first consider M = ρ and examine the background contribution. Using the metric ansatz

of (1.23) we have

Eρ =

∫
d6y
√
g̃
[
T3∂̂µ(

√
−g4 g

µνgρN ∂̂νX
N)

+
µ3

3!
∂̂a(ε

abcdCρNPQ∂̂bX
N ∂̂cX

P ∂̂dX
Q)
]
δ̃6(y, Y ) . (3.55)

To all orders, only the (4,0) component of C4 will contribute. Thus, by setting Eρ = 0,

∫
d6y
√
g̃
[
T3∂̂µ(e4Ae4Ωδµρ )− µ3∂̂µ(e4Ae4Ωδµρ )

]
δ̃6(y, Y ) = 0 . (3.56)

Since the background solution represents static D3-branes, the left-hand side of the above equation

must vanish. Indeed, this is a trivial constraint provided that µ3 = T3, as was discussed in § 1.2

(recall that the charge coupling of the D-brane has previously been halved in the definition of the

Wess-Zumino action).
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Next, we consider M = /b. In this case, we are looking for first-order contributions from the

metric and the 4-form potential. The contribution from C4 is via the (3,1) component, which is

e4Ae4Ω?̂d̂B1. This will exactly cancel the contribution from the off-diagonal metric, leaving

E/b = T3

∫
d6y
√
g̃ e2Ωg̃mn∂̂µ(Λm

/b Λn
/a ∂̂

µY /a(x))δ̃6(y, Y ) . (3.57)

N.B. the presence of the delta distribution indicates that the equation of motion is to be evaluated

at coincidence, i.e. when Y /b(x) = y. From Appendix A.2, we know that the parallel propagator

evaluated at coincidence is [Λm
/b

] = δm/b . Thus, terms such as ∂̂µ[Λm
/b

] = ∂̂µδ
m
/b

= 0. Therefore, the

first-order equation of motion for the D3-brane position is

E/b = T3

∫
d6y
√
g̃ e2Ωg̃mnΛm

/b Λn
/a ∂̂

2Y /aδ̃6(y, Y ) . (3.58)

We also wish to determine E6 given the ansätze presented. Recall (2.17):

E6 = d10 ?10 F̃5 + 2κ2T3

∫
d4ξ
√
−γ ?10 εξ δ

10(x,X(ξ)) .

The integral over the string coordinates, i.e. the source term, is evaluated using the definition of εξ

given in § 2.3, and becomes

2κ2T3(−e−6A ε̃+ e−6Ad̂?̃δY1)δ̃6(y, Y ) , (3.59)

where δY1 ≡ g̃mnΛn
/b
Y /b(x). This means that the equation of motion for the flux takes the form

d10 ?10 F̃5 = S6 , (3.60)

where S6 is a six-dimensional point source.

By substituting (3.8) into the equation of motion for the flux, we can find a relation between

the source term and the off-diagonal compensator, Bm. An important calculational tool at this
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level (i.e. the level of the equations of motion) is the 10D self-duality of the flux. This allows us

to use ?10F̃5 = F̃5 when determining (3.60). In calculating d10F̃5, we note that there is one term in

particular requires extra attention: e4Ωd10 ?10 d10(e4A?̂d̂B1). We shall calculate this term in steps;

applying the innermost exterior derivative first results in

d10(e4A?̂d̂B1) = e4Ad̂?̂d̂B1 + 4e4Ad̃A ?̂d̂B1 + e4Ad̃?̂d̂B1 . (3.61)

The three terms that result from ?10 acting on (3.61) are

e4A ?10 (d̂?̂d̂B1) = e−4Ae−4Ω?̃∂̂2B1 , (3.62)

4e4A ?10 (d̃A?̂d̂B1) = 4e−2Ω?̃(d̂B1 ∧ d̃A) , (3.63)

and e4A ?10 (d̃?̂d̂B1) = −e−2Ω?̃(d̃d̂B1) . (3.64)

Finally, the outermost d10 acting on (3.62)-(3.64) gives

d10(e4A?̃d̂B1) = e−4Ad10(?̃∂̂2B1) + 4e2Ωd̃?̃(d̂B1 ∧ d̃A)− e2Ωd̃(?̃d̃d̂B1) . (3.65)

Calculating the other terms in d10F̃5 is more straightforward, and we find that

d10F̃5 = d10(?̃d̃e−4A) + d10(e−4A?̃∂̂2B1)− e2Ωd̃(?̃d̃d̂B1) . (3.66)

Thus, when E6 = 0, we have

d10

(
?̃d̃e−4A + e−4A?̃∂̂2B1 − e2Ω?̃d̃d̂B1

)
= 2κ2T3(e−6A ε̃+ e−6A?̃d̂δY1)δ̃6(y, Y ) . (3.67)

We will return to this equation later to extract the dynamic contribution to the quadratic action

from E6. We can also see that the constraint equation, (3.39), is reproduced here by taking any

terms with one or fewer spacetime derivatives.
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3.4 Local vs. Global Degrees of Freedom

Of particular importance is the ability to separate the contributions to C4 due to the D3-branes as

point sources from those that are from global degrees of freedom. We wish to write F̃5 as d10C
′
4 +S5,

where the globally-defined degrees of freedom are contained in C ′4. This is because only the globally-

defined degrees of freedom (those degrees able to be written entirely as d10C
′
4) contribute to the

four-dimensional theory [18]. However, when considering the (4,0), (3,1), and (2,2) components of

C4 to be the relevant legs, the Bianchi identity is trivial; all components are globally defined.

As mentioned in § 2.1, type IIB SUGRA allows us to characterize the D3-branes as either

magnetic or electric sources. Furthermore, both characterizations must produce the same effective

theory. The effect of the Hodge star acting on any set of components is to map them to the

complementary set, e.g. the (4,1) component of F̃5 is mapped to the (0,5) component by ?10F̃5.

At the end of the previous section, we saw that d10 ?10 F̃5 6= 0, which means that the magnetic

characterization of the D3-branes produces a non-trivial Bianchi identity. From this, we know that

– in the magnetic description – not all components are globally defined.

By drawing a comparison between the flux in the magnetic brane characterization and the field

strength in classical electrodynamics, we know that the right-hand side of (3.67) must be the source

term for the magnetic flux. This source term will necessarily depend explicitly on the brane position,

Y . In order to write a potential that contains only globally-defined terms, we must separate out

those terms in the flux that depend on Y from those that can be written as d10C
′
4.

The issue of the existence of local terms arises from the nature of the compact manifold: the

manifold must be defined in coordinate patches, causing the potentials in the overlapping region

to be related by a non-trivial gauge transformation. We can see this effect clearly in the case of

a magnetic monopole in classical electrodynamics. For a magnetic monopole, Gauss’ Law gives

~∇ · ~B = 4πqmδ
3(~x), where qm is the “magnetic charge” of the monopole. Solving this, we find that

~B =
qm
r2
r̂ , (3.68)
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which has the vector potential

~A =
qm(1− cos θ)

r sin θ
φ̂ . (3.69)

We can see immediately that ~A is singular when θ = π. Thus, we define (3.69) in coordinate

patches:

~AN =
qm(1− cos θ)

r sin θ
φ̂ for 0 ≤ θ ≤ π/2

~AS = −qm(1 + cos θ)

r sin θ
φ̂ for π/2 ≤ θ ≤ π . (3.70)

This means that, in the region of overlap, the potentials differ by a gauge transformation, i.e.

[
~AN − ~AS

∣∣∣
θ=π/2

= ~∇(2qmφ) , (3.71)

that is directly related to the magnetic charge. Similarly, the SUGRA potential C4 contains non-

global contributions due to gauge transformations in the overlapping coordinate patches of the

Calabi-Yau manifold.

To separate out the local contributions, it is advantageous to propose a new ansatz for the

flux that maintains the relevant degrees of freedom in the (0,5), (1,4), and (2,3) components.

Furthermore, since the the constraint equations of § 3.2 are true at all times, they must remain

unchanged. But can a different ansatz correspond to the same on-shell solution? The answer to

this is best illustrated by a simplified example. Consider a real scalar field ϕ subject to

S = −1

2

∫
d4xL where L = ∂µϕ∂µϕ−m2ϕ2 . (3.72)

Under the field redefinition

ϕ→ ϕ+ λϕ2 , (3.73)
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the ϕϕ → ϕϕ scattering amplitude remains zero [31]. Thus, the on-shell theory is unaffected by a

field redefinition that is proportional to the equations of motion.

In a similar way, the flux F̃5 is also defined only up to terms that disappear on-shell (and do

not violate the self-duality condition). Recall that the dynamic term from (3.67) was proportional

to ?̃∂̂2B1; this means that any ansätze for F̃5 that differ only by terms proportional to the dynamic

equation of motion for B1 will describe equivalent on-shell solutions. To wit, we may propose some

F̃ new
5 such that

F̃ new
5 = F̃5 + e4Ae4Ωd̂?̂d̂B1 + e−4A?̂d̂?̂d̂?̃B1 . (3.74)

A short calculation shows that the last two terms above are 10D duals, and so F̃ new
5 reduces to F̃5

on-shell. Explicitly, this new ansatz is

F̃ new
5 = e4Ωε̂ ∧ d̃e4A + ?̃d̃e4A − e2Ωd̂?̃d̃B1 + e4Ω?̂d̂B1 ∧ d̃e4A − e4Ae4Ω?̂d̂d̃B1 . (3.75)

In order to be a valid ansatz, (3.75) must also satisfy the 10D self-duality condition. To show this,

we factor so that

F̃ new
5 = e4Ωε̂ ∧ d̃e4A + ?̃d̃e−4A − e4Ω?̂d̂d̃(e4AB1)− e2Ω?̃d̃d̂B1 . (3.76)

By comparing these terms with those present in (3.8) we can see that the ten-dimensional star

produces the above terms, plus one positive copy and one negative copy of the term e−4Ae2Ω?̃(d̂B1∧

d̃e4A), which then cancels out. Thus, F̃ new
5 is 10D self-dual, as required.

The other requirement for this new ansatz is that it produce the same constraint equations as

the previous one. Let us now prove that F̃ new
5 yields the same constraint equations as the previous

ansatz. Once we have established that both ansätze are valid, we will then use (3.75) and separate

out the non-global degrees of freedom.

40



3.5 Equivalence of Ansätze for F̃5

In order to show that F̃ new
5 produces the same constraint equations as those derived previously, we

must repeat the procedure of § 3.1. The contributions to the energy-momentum tensor from (3.75)

are

T 5
µν = −4e4Ae2Ω∇̃`A∇̃`A η̂µν (3.77)

T 5
µm = −4e4Ae2Ω(∇̃`A∂̂µ∇̃[mB`] − ∇̃`A∇̃`A∂̂µBm) (3.78)

T 5
mn = 4∇̃`A∇̃`Ag̃mn − 8∂̃mA∂̃nA . (3.79)

These contributions are nearly identical to those from the previous 5-form, but terms with two

spacetime derivatives acting on B1 are now absent. Combining these results with the Einstein

tensor derived previously, we find that the new components of the Einstein equations are

Eµν = (∂̂µ∂̂ν − η̂µν ∂̂2)(4A− 2Ω + e4Ae2Ω∇̃`B`)

+e4Ae2Ωη̂µν(8∇̃`A∇̃`A− 2∇̃2A− T3κ
2e4Aδ̃6(y, Y )) (3.80)

Eµm = 2∂̂µ∂̃mA− 8∂̂µA∂̃mA+ e4Ae2Ω
(
∂̂µ∇̃`∇̃[mB`] + 2∂̂µBm(4∇̃`A∇̃`A− ∇̃2A)

)
−T3κ

2e4A(e4Ae2Ω∂̂µBm + ∂̂µδY
/bΛn

/b g̃mn)δ̃6(y, Y ) (3.81)

Emn = ∂̂2(∇̃(mBn) + 4∇̃(mABn) − 2g̃mn∇̃`AB` − g̃mn∇̃`B`)

+e−4Ae−2Ωg̃mn∂̂
2(3Ω− 2A) . (3.82)

From these, we are able to extract the constraint equations, which are identical to those given by

the previous ansatz, i.e.

4A− 2Ω + e4Ae2Ω∇̃`B` = 0 (3.83)

and e2Ω∇̃`(d̃B1)m` − ∇̃m(δe−4A) = −2T3κ
2g̃mnΛn

/b δY
/b δ̃6(y, Y ) . (3.84)

There is a difference, however, in the dynamic contributions from the new ansatz. In this case,
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only the (m,n) component of the Einstein equations will contribute to the second-order action; that

is

δEMN = ∂̂2(∇̃(mBn) + 4∇̃(mABn) − 2g̃mn∇̃`AB` − g̃mn∇̃`B`)

+e−4Ae−2Ωg̃mn∂̂
2(3Ω− 2A) . (3.85)

Finally, the dynamic contribution from the equation of motion for F̃5 is now

δE6 = −e4Ωd̂?̂d̂d̃(e4AB1) . (3.86)

To illuminate the local nature of some of the terms in our new ansatz, we use the solutions

to the constraint equations found in § 3.2 to rewrite the (0,5) and (1,4) components – those that

contain the relevant degrees of freedom – as

F̃ new
5 = ?̃d̃δe−4A − e2Ω?̃d̃d̂B1 + . . . = −e2Ω?̃d̃(?̃d̃?̃B1)− e2Ω?̃d̃d̂B1 + . . . , (3.87)

Where the dots represent the other components of the flux. Furthermore, recall that the solution

for the compensator field, Bm, was given by

∇̃2Bm = 2κ2T3e
−2Ωg̃mnΛn

/b δY
/b δ̃6(y, Y ) = e−2ΩδỸm , (3.88)

for an appropriately defined δỸm. Next, we use the definition of the Hodge-de Rahm operator as

outlined in Appendix A.3 to see that

∆B1 = ?̃d̃?̃d̃B1 + d̃?̃d̃?̃B1 = −∇̃2B1 . (3.89)

Substituting this into (3.87) gives

−e2Ω?̃[−∇̃2B1 − ?̃d̃?̃d̃B1]− e2Ω?̃d̃d̂B1 . (3.90)

42



Distributing the ?̃ into the brackets and permuting the d̂ through the final term, we can write these

degrees of freedom as

e2Ω?̃∇̃2B1 − e2Ω(d̂+ d̃)?̃d̃B1 . (3.91)

Thus, the relevant degrees of freedom in F̃ new
5 can be written as

F̃ new
5 = d10C

′
4 − S5 , (3.92)

where the source term is such that S5 = ?̃δỸ1 and the globally-defined degrees of freedom are given

by

C ′4 = −e2Ω?̃d̃B1 . (3.93)

3.6 Second-Order Local Terms in F̃5

We are now able to see the local contributions to the field strength up to first order; however, our

goal is to create a second -order action in ten dimensions. In order to properly count the degrees of

freedom, we must find the local contributions to F̃5 up to second order. To do so, we turn to the

equation of motion for F̃5 as derived in § 2.3.

We wish to consider all contributions to F̃5 up to second order in δY (x), while also accounting

for the expansion of the six-dimensional delta function near the static brane position. First, recall

(2.17), which – after performing the integration over the world-volume – can be written on-shell as

d10F̃5 = −2κ2T3 ?10 ε̂
µ1...µ4 ∂̂µ1X

M ∂̂µ2X
N ∂̂µ3X

P ∂̂µ4X
Qδ6(y, Y ) . (3.94)

The contributions to d10F̃5 up to second order in the brane position are

d10F̃5 = 2κ2T3

(
?̃− ?̃d̂Y1 +

1

2
?̃(d̂Y1 ∧ d̂Y1)

)
δ̃6(y, Y ) , (3.95)
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where Ym = g̃mnΛn
/b
δY /b. However, we must also expand the delta function about the brane position,

Y /b. If we allow the brane position to be Y /b, we can expand in the neighbourhood of this point in

terms of Synge’s world-function, σ (see Appendix A.2 for additional information regarding this).

In the context of our previous calculations, we let the difference between the position of the mobile

brane and the static solution be δY /b(x). When expanding in the neighbourhood of the mobile

brane, the first-order brane position is ∂̂µYm = g̃mnΛn
m∂̂µσ

m(x), where the first-order brane position

is described in terms of the time-dependent, underlined coordinates. Using parallel propagators

again, we can relate σm to σ/b so that ∂̂µYm = −g̃mnΛn
/b
∂̂µσ

/b.

Using the generic expansion for any tensor in the near-coincident limit (given by (A.2.11)), we

can express the delta function in the neighbourhood of Y0 in terms of derivatives with respect to

the slashed coordinates as

δ̃6(y, Y ) = δ̃(y, Y0)− ∂/b δ̃6(y, Y0)σ/b +
1

2
∂/a∂/b δ̃

6(y, Y0)σ/aσ/b +O(σ3) . (3.96)

We denote σ/b = ∂/bσ as a vector with respect to the slashed coordinates. Using the properties of the

parallel propagator, we can relate the derivative of the delta function with respect to the slashed

coordinates to the covariant derivative with respect to the internal coordinates:

∂/b δ̃
6(y, Y ) = −∇̃m(Λm

/b δ̃
6(y, Y )) . (3.97)

We are also able to note that, for some one-form α1 on the Calabi-Yau manifold, ?̃d̃?̃α1 = −∇̃`α`.

Using both of these facts, the second term of (3.96) can be written as

∂/b

(
δ̃6(y, Y0)σ/b

)
= ?̃d̃?̃

(
σ̃1δ̃

6(y, Y0)
)
, (3.98)

where σ̃m ≡ g̃mnΛn
/b
σ/b. Using this expansion for the delta function in (3.95), the terms up to second
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order in σ are

d10F̃5 = 2κ2T3

(
?̃δ̃6(y, Y0)− d̃?̃(σ̃1δ̃

6(y, Y0))− d̂?̃(σ̃1δ̃
6(y, Y0))− ?̃d̂σ̃1?̃d̃?̃(σ̃1δ̃

6(y, Y0))

+
1

2
?̃σ/b∂/b?̃d̃?̃(σ̃1δ̃

6(y, Y0)) +
1

2
?̃(d̂σ̃1 ∧ d̂σ̃1)δ̃6(y, Y0)

)
. (3.99)

In order to simplify further, we wish to be able to write d10F̃5 in terms of ten-dimensional derivatives.

To this end, we consider what terms arise from the expression d̃?̃(d̂σ̃1 ∧ σ̃1δ̃
6(y, Y0)). Using the

associativity of the Hodge star, and the fact that the partial derivatives of the parallel propagators

vanish at coincidence, i.e. when Ym = g̃mnΛn
/b
Y
/b

0 , we find that

d̃?̃(d̂σ̃1 ∧ σ̃1δ̃
6(y, Y0)) = ?̃σ̃1d̂σ

/b∂/b δ̃
6(y, Y0)) + d̂(?̃σ̃1)σ/b∂/b δ̃

6(y, Y0)) . (3.100)

Likewise, we propose an additional term and find that it has two contributions:

d̂(?̃σ̃1σ
/b∂/b δ̃

6(y, Y0)) = d̂(?̃σ̃1)σ/b∂/b δ̃
6(y, Y0)− ?̃σ̃1(d̂σ/b∂/b δ̃

6(y, Y0)) . (3.101)

By adding (3.100) and (3.101), we find that

d̂(?̃σ̃1)σ/b∂/b δ̃
6(y, Y0) =

1

2
d̃?̃(d̂σ̃1 ∧ σ̃1δ̃

6(y, Y0)) +
1

2
d̂(?̃σ̃1σ

/b∂/b δ̃
6(y, Y0)) . (3.102)

Finally, by substituting this result into the last term of the first line in (3.99), we can see that

d10F̃5 = 2κ2T3

(
?̃δ̃6(y, Y0)− d10[?̃σ̃1δ̃

6(y, Y0)]

+
1

2
d10[?̃σ̃1σ

/b∂/b δ̃
6(y, Y0)] +

1

2
d10[?̃(σ̃1 ∧ d̂σ̃1)δ̃6(y, Y0)]

)
. (3.103)

This form of the equation of motion for F̃5 allows us to easily separate the global and local contri-
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butions to the flux. In particular, we see that

F̃5 = d10C
′
4 + d10S

0
4 − 2κ2T3?̃σ̃1δ̃

6(y, Y0) + κ2T3?̃σ̃1σ
/b∂/b δ̃

6(y, Y0)

+κ2T3?̃(σ̃1 ∧ d̂σ̃1)δ̃6(y, Y0) , (3.104)

where S0
4 is the monopole source term, defined in patches such that d2

10S
0
4 = 2κ2T3?̃δ̃

6(y, Y0). The

reason this does not vanish is because S0
4 is not a globally defined form, and therefore the usual

identity d2α = 0 does not apply. As a check, we can compare the terms found in (3.104) to those

that would be generated by the expansion of the delta distribution in (3.92). Indeed, these two

expressions agree when we remember that ∂̂µỸm = −∂̂µσ̃m.

3.7 Effects of Local Terms In the Equations of Motion

We have already seen that the global degrees of freedom correspond to those that can be written

as F̃5 = d10C
′
4 and lie in the (0,5), (1,4), and half of the (2,3) components. However, in § 3.4

we demonstrated that the non-global term can be separated from the global terms in (3.75). It

is important to determine what affect these local terms have on the equation of motion for the

D3-brane position.

To investigate this further, we consider only the local terms of F̃5, as given by (3.104). Using

these degrees of freedom, there is no contribution from the Wess-Zumino action and so the total

action for the brane position is

S = − 1

2κ2

∫
d10x
√
−g 1

2
|F̃5|2 −

T3

2

∫
d10x
√
−g
∫
d4ξ
√
−γ(γabP [g]ab − 2)δ10(x,X(ξ)) .(3.105)

We have already seen that, in the static gauge, the induced metric is equal to the 4D metric.

For this calculation, it suffices to point out that γµν depends only on the spacetime coordinates.

Furthermore, we can write the pullback P [g]ab in terms of a set of general metrics that are functions
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of spacetime and the brane position. This will make the pullback’s dependence on Y m(x) manifest:

P [g]µν = gµν(x, Y ) + 2gµn(x, Y )∂̂νY
n + gmn(x, Y )∂̂µY

m∂̂νY
n . (3.106)

Thus, we define L by

− 1

2κ2

∫
d10xL ≡ − 1

2κ2

∫
d10x
√
−g
[

1

2

1

5!
F̃MNPQRF̃

MNPQR

−T3

2
e6A
{
γµν(gµν + 2gµn∂̂νY

n + gmn∂̂µY
m∂̂νY

n)− 2
}
δ̃6(y, Y )

]
. (3.107)

Using the Euler-Lagrange equations to compute the equation of motion requires that we take

partial derivatives of L with respect to Y m and ∂̂µY
m. Let us first examine these partial derivatives

acting on the relevant components of the flux. First, we have

∂F̃`1...`5
∂Y m

= κ2T3

[
2Λp

mε̃`1...`5pδ̃
6(y, Y0)− Λp

mε̃`1...`5pσ
/a∂/aδ̃

6(y, Y0)

−Λ/a
mΛp

/b
ε̃`1...`5pσ

/b∂/aδ̃
6(y, Y0)

]
, (3.108)

where we have noted that ∂σ/b/∂Y m = −Λ/b
m +O(2). The other partial derivative of F5 to consider

is

∂F̃`1...`4µ
∂Y m

= −κ2T3Λm
mΛn

/b ε̃`1...`4mn∂̂µσ
/b δ̃6(y, Y0) . (3.109)

The only non-zero derivative with respect to ∂̂µY
m is

∂F̃`1...`4µ

∂(∂̂µY m)
= κ2T3Λm

mΛn
/b ε̃`1...`4mnσ

/b δ̃6(y, Y0) . (3.110)
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Now we can state the contributions to the Euler Lagrange equations; namely,

1√
−g

∂L
∂Y m

=
1

5!

[
∂F̃`1...`5
∂Y m

F̃ `1...`5 +
∂F̃`1...`4µ
∂Y m

F̃ `1...`4µ

]
+∂mδ̃

6(y, Y0)
{
e6AT3

[
γµν(gµν + 2gµn∂̂νY

n + gpn∂̂µY
p∂̂νY

n)− 2
]}

+e6AT3γ
µν(∂mgµν + 2∂mgµn∂̂νY

n + ∂mgpn∂̂µY
p∂̂νY

n)δ̃6(y, Y0) , (3.111)

and

1√
−g

∂L
∂(∂̂µY m)

=
1

5!

[
∂F̃`1...`4ν

∂(∂̂µY m)
F̃ `1...`4ν

]
+ e6AT3γ

µν(2gνm + 2gmn∂̂νY
n)δ̃6(y, Y0) . (3.112)

Consider the term with the curly braces of (3.111). We know that the derivative acting on the delta

distribution can be converted to the ym coordinates via

∂mδ̃
6(y, Y0) = −∇̃`(Λ

`
mδ̃

6(y, Y0)) . (3.113)

This means that the variation of the total action with respect to the D3-brane position is

δS

δY m
= −T3

2

∫
d10x
√
−g δY mΛ`

mδ̃
6(y, Y0)∇̃`{. . . } , (3.114)

where everything within the braces depends only on xµ and Y m. Thus, the we can factor out the

total derivative, which means that is a boundary term that does not contribute to the equation of

motion. Since we now know that there will be no contribution from that line of (3.111), we are free

to drop it from our calculation.

The equation of motion for the first-order brane position is generated via the Euler-Lagrange

equation

∂L
∂Y m

− ∂̂µ

(
∂L

∂(∂̂µY m)

)
= 0 , (3.115)

and includes only terms up to first order. As discussed earlier, σ/b is the brane displacement away
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from the static position Y0 and is necessarily first-order. If it were not, then a shift of coordinates

on the compact space would set σ/b = 0. This means that, since all the terms involving the flux

are at least second order, the first-order equation of motion for the brane position must come from

only terms that are defined globally.

Importantly, when we consider the static background, i.e. Y m = δ/bmY
/b

0 , the equation of motion

is

0 =
∂L
∂Y m

∝ δ̃6(y, Y0)
[
γµν∂mgµν + 2Λm

m∂mF̃`1...`5F̃
`1...`5

]
. (3.116)

The background solution is evaluated in the static gauge, and so γµν = e−2Ae−2Ωη̂µν and gµν =

e2Ae2Ωη̂µν ; furthermore, [F̃5](0,5) = ?̃d̃e−4A. Thus, (3.116) becomes

∂L
∂Y m

∝ δ̃6(y, Y0)
[
4e−2A∂me

2A + 2Λm
me

4A∂me
−4A
]

= 0 . (3.117)

This further confirms that the position of the D3-brane is a modulus of the theory, since the equation

of motion is satisfied at any position. The non-trivial vanishing of the equation of motion at the

level of the background is an important consistency check, as this result was established in § 3.3

when considering the opposite degrees of freedom.

Having established that local terms do not contribute to the equation of motion (and, therefore,

the quadratic action), we can now turn our attention towards constructing an effective action for

mobile D3-branes.
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4 Effective Action for D3-Branes

4.1 Contributions to the Quadratic Action

In order to produce a properly quadratic effective action, we must first construct a ten-dimensional

action comprised of the product of first-order quantities, then perform dimensional reduction over

the compact dimensions. We will follow the prescription given in [18] for writing the kinetic action of

a modulus and thereby produce the ten-dimensional action for the D3-brane position. In Chapter 6,

we will consider all three of the volume modulus, universal axion, and brane position, and construct

an effective action for that system.

To begin, we first consider a theory with fields ΨA and a Lagrangian density that includes, at

most, two derivatives of the fields such that

S =

∫
dnxL(Ψ, ∂MΨ, ∂M∂NΨ) . (4.1)

It can be shown that the second-order action is given by the first-order fluctuations contracted with

the linearized equations of motion. Collecting the respective contributions to the first-order parts

of the Einstein equations (δEMN) and the metric (δgMN) from each modulus, the first contribution

to (4.1) is

SR =
1

4κ2

∫
d10x
√
−g δgMNδEMN , (4.2)

i.e. the gravity sector quadratic action. Likewise, using the first-order parts of the equation of

motion for the flux (δE6) and the 4-form potential (δC4) from each modulus, the next contribution

50



to (4.1) is

S5 =
1

4κ2

∫
δC4 ∧ δE6 , (4.3)

i.e. the 5-form sector quadratic action. The equation of motion of the D3-brane position, EM , also

contributes to the quadratic action. We construct this action from the dynamic portions of brane

equation of motion, given by δEM , contracted with the first-order brane coordinate, δXM , to give

SD3 =
1

4κ2

∫
d10x
√
−g δXMδEM , (4.4)

i.e. the brane sector quadratic action. The total quadratic action is then the sum of all the

contributions,

S =
1

4κ2

∫
d10x
√
−g

(
δgMNδEMN + δXMδEM + ?10(δC4 ∧ δE6)

)
. (4.5)

We will begin assembling the total quadratic action by first constructing the action for each

sector separately. Then, upon combining all sectors, we will determine the overall effective action

and commence with the dimensional reduction.

4.2 Quadratic Action Sectors

In order to determine the quadratic action for the mobile D3-branes, we must decide on which legs

of the potential – and, therefore, the flux – will contain the relevant degrees of freedom. In this

section, we will choose the (4,0), (3,1), and (2,2) legs of the potential to represent the global degrees

of freedom. For now, we use the flux ansatz given by (3.8), with

F̃5 = e4Ωε̂ ∧ d̃e4A + e4Ωd10(e4A?̂d̂B1) + . . . , (4.6)
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where the dots represent the components of the flux that do not contain “electric” degrees of

freedom.

4.2.1 Gravity Sector

To construct the gravity sector action, we collect the contributions to the first-order pieces of the

metric and Einstein equations. By directly varying (1.23), we can see that

δgµν = δ(e−2Ae−2Ωη̂µν) = −2δYAe
−2A0e−2Ω0 η̂µν (4.7)

δgmn = δ(e2Ag̃mn) = 2δYAe
2A0 g̃mn , (4.8)

where the exponentials now only contain background parts. Recall from § 3.1 that there are no

dynamic contributions from Eµm; therefore, we do not need to consider δgµm. Going forward, we

will always factor out the first-order contributions from the exponentials, and so – for notational

simplicity – we will drop the subscripts when appropriate. Furthermore, since the first-order part

of the warp factor is only due to the D3-branes here, we can drop the subscript on the delta and

understand that δYA = δA.

The dynamic parts of the Einstein tensor are given by (3.31) and (3.33) and are

δEµν = −2e4Ae2Ωη̂µν ∂̂
2B`∇̃`A , (4.9)

δEmn = ∂̂2
(
∇̃(mBn) − g̃mn∇̃`B`

)
− 2e−4Ae−2Ωg̃mn∂̂

2δA . (4.10)

Plugging these into (4.2), the gravity sector action becomes

SR =
1

4κ2

∫
d10x
√
−g δgMNδEMN =

1

4κ2

∫
d4x
√
−η̂
∫
d6y
√
g̃ e−2Ae4ΩδgMNδEMN

=
1

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ω

[
16δA∇̃`A∂̂2B` − 10δA∂̂2∇̃`B` − 24δAe−4Ae−2Ω∂̂2δA

]
. (4.11)

Note that we can write δA = −1/4 e4Aδe−4A, and – recalling the constraint equation (3.48) –
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∇̃`B` = e−2Ωδe−4A. Using these substitutions, we find that

SR =
1

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ω

[
e4A∇̃`{(δe−4A)∂̂2B`}+ e4Ae−2Ω(δe−4A)∂̂2(δe−4A)

]
. (4.12)

4.2.2 5-Form Sector

To compute the quadratic action for the 5-form sector, we collect the dynamic contributions to δE6

and the complementary first-order pieces of δC4. For the D3-brane, these are

δE6 = d10(e−4A?̃∂̂2B1) and δC4 = e4Ω(δe−4Aε̂+ e4A?̂d̂B1) . (4.13)

Note that “complimentary” here means that the wedge product δE6 ∧ δC4 has four spacetime and

six internal indices. This means that the appropriate term is

δE6 ∧ δC4 = 4δAe4Ae4Ωε̂ ∧ d̃(e−4A?̃∂̂2B1) . (4.14)

Given the formula for S5 in (4.3), we will be integrating the above over all ten dimensions and then

adding to the other contributions to the total action (4.5). Thus, it will be useful to convert the

integral of the forms into component notation:

∫
δE6 ∧ δC4 =

∫
d4x
√
−η̂
∫
d6y
√
g̃ 4e4ΩδA(∂̂2∇̃`B` − 4∇̃`A∂̂2B`) . (4.15)

Finally, we again rewrite δA in terms of the direct variation of the exponential, so that

S5 =
1

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ω

[
−e4A∇̃`{(δe−4A)∂̂2B`} − e4Ae−2Ω(δe−4A)∂̂2(δe−4A)

]
. (4.16)

4.2.3 Brane Sector

The final contribution to the total quadratic action is from the brane sector. In §2.3, we determined

the equation of motion for the D3-brane position from directly varying the sum of the DBI and
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WZ actions. We then defined EA with the integral over the compact dimensions intact; however,

to match the definitions in § 4.1, EA should really be only

EA = 2κ2T3

[
∂̂µ(e2Ae2Ωη̂µνgMNΛM

A ΛN
B ∂̂νX

B)

+
1

6
∂̂a(ε̂

abcdCMNPQΛM
A ΛN

BΛP
CΛQ

D ∂̂bX
B∂̂cX

C ∂̂dX
D)

]
δ̃6(y, Y ) . (4.17)

Using this definition, and the fact that A = ρ component gave a trivial constraint, we need only

consider the A = m component (as opposed to the slashed coordinates, the underlined coordinates

are a more precise measure of the brane displacement):

Em = 2κ2T3Λm
m

[
∂̂µ(e2Ae2Ωη̂µνgmNΛN

B ∂̂νX
B)

+
1

6
∂̂a(ε̂

abcdCmbcdΛ
N
BΛP

CΛQ
D ∂̂bX

B∂̂cX
C ∂̂dX

D)

]
δ̃6(y, Y ) . (4.18)

Given that we are considering only the “electric” degrees of freedom, only the (3,1) component of

C4 will contribute to the brane equation of motion, as evidenced by the form of F̃5 in (4.6). After

permuting indices and expanding both contributions from the metric, we find that

Em = 2κ2T3Λm
m

[
e4Ae4Ω∂̂2Bm + e2Ωg̃mnΛn

n∂̂
2Y n − (e4Ae4Ω∂̂2Bm)

]
δ̃6(y, Y ) . (4.19)

Thus, the contributions from the potential and the off-diagonal metric exactly cancel one another.

This is an important consistency check, since we know that the background equation of motion

for the D3-branes is simply a static solution. By taking Y m = y, we recover this background

configuration.

At last, we find that the brane sector action is

SD3 =
1

4κ2

∫
d4x

∫
d6y
√
g̃ 2T3κ

2e2ΩΛm
mΛn

nY
mg̃mn∂̂

2Y n δ̃6(y, Y ) . (4.20)

54



4.3 Total Quadratic Action for D3-Branes

We can now use (4.5) to determine the total quadratic action for the D3-brane position as a modulus.

Examining the results from Section 4.2, we can see that those terms that contain warping exactly

cancel, albeit in a highly non-trivial way. Since the first-order brane position depends only on the

spacetime variables, what we are left with is

S = −T3

2

∫
d4x e2Ω∂̂µY m∂̂µY

n

∫
d6y
√
g̃ g̃mnδ̃

6(y, Y ) . (4.21)

The remaining six-dimensional integral is simply the value of a background-dependent metric at

the brane position, and so does not contain any degrees of freedom. Therefore, it would seem that

the effect of the warping of the manifold on the D3-branes is exactly countered by the backreaction

of the branes with the potential, C4.

Having seen that mobile D3-branes remain as unfixed moduli in the four-dimensional effective

theory arising from type IIB SUGRA, we now want to consider the effects of the presence of multiple

moduli. We wish to see if introducing the volume modulus and axion into the 10D theory generates

coupling between the moduli that will, in turn, fix some or all of them in the effective theory. To

do so, we will repeat many of the procedures from the previous chapters, but will now include

contributions for all the moduli. When possible, we will refer to results already established in

Chapters 3 and 5.
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5 Other Moduli in Warped Compactifications

Thus far, we have encountered an effective action for the spacetime scalar Y , where the global

degrees of freedom are taken to be in the (4,0), (3,1), and (2,2) components of the potential. In

order to construct an effective theory for multiple moduli, we wish to write similar potentials for

the volume modulus and universal axion, where the relevant degrees of freedom for those scalars

are in similar components of the respective potentials.

Let us first present a summary of results for the other moduli being considered, namely the

universal volume modulus and the universal axion. In the first sections of this chapter we will

review the existing literature for the volume modulus and the scalar version of the universal axion.

We will then present an original calculation of the effective theory for the 2-form version of the

axion. This description of the axion ensures that the global degrees of freedom are in the same

components as those for the D3-brane and volume modulus.

5.1 The Universal Volume Modulus

Recall the universal volume modulus, c(x), as a modulus of type IIB SUGRA compactifications. Let

us briefly review the wavefunction for the volume modulus in the presence of warping as presented

in [17,18].

To begin, we take the metric ansatz to be

ds2
10 = e2Ae2Ωη̂µνdx

µdxν − 2e2Ae2Ω∂̂µc(x)∂̃mK(y)dxµdym + e−2Ag̃mndy
mdyn , (5.1)

where K(y) is a compensator field and the warp factor A, and Weyl factor Ω, are functions of the
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volume modulus. In the context of background versus first-order solutions, we take c(x) and its

associated compensator field K(y) to be first-order. Next, the 5-form field strength ansatz is

F̃5 = e4Ωε̂ ∧ d̃e4A + ?̃d̃e−4A − e4Ω?̂d̂c ∧ d̃K ∧ d̃e4A , (5.2)

and obeys the self-duality condition ?10F̃5 = F̃5. There are two constraints that arise from the

Einstein equations, namely

∂̂µ∂̂νc
(
∇̃2K − e−4A∂e

−2Ω

∂c
+ e−2Ω∂e

−4A

∂c

)
= 0 (5.3)

and ∂̂µc ∂̃m
∂e−4A

∂c
= 0 . (5.4)

Solving these constraints gives a Poisson equation for the compensator field

∇̃2K(y) = e−4A − e−2Ω . (5.5)

The first-order components of the metric field are now given by

δgµν = −e2Ae2Ω

(
e2Ω +

1

2
e4A

)
c(x)η̂µν , (5.6)

δgµm = −e2Ae2Ω∂̂µc(x)∂̃mK , (5.7)

δgmn =
1

2
e2Ac(x)g̃mn , (5.8)

and their inverses by

δgµν =

(
e−2A +

1

2
e2Ae−2Ω

)
c(x)η̂µν , (5.9)

δgµm = e2A∂̂µc(x)∂̃mK , (5.10)

δgmn = −1

2
e6Ac(x)g̃mn . (5.11)

The dynamical equations of motion for the first-order contributions come from the (m,n) com-
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ponent of the Einstein equations and from the exterior derivative of the field strength, i.e.

δEmn = ∂̂2c(x)
[
∇̃2Kg̃mn − ∇̃m∂̃nK − 4∂̃(mA∂̃n)K + 2∂̃`A∂̃`Kg̃mn

+
1

2
g̃mn(e−2Ω − 3e−4A)

]
, (5.12)

and δE6 = −e4Ωd̂?̂d̂c ∧ d̃K ∧ d̃e4A . (5.13)

Based on the form of F̃5 in (5.2), the components of C4 that carry the global degrees of freedom are

δC4 = e4Ae4Ωε̂ . (5.14)

The reason that the (3,1) component in not included in δC4 is because this would produce a term

in F̃5 that is proportional to the equation of motion for c(x). As we saw with the D3-branes, when

terms proportional to the equation of motion are present in the flux, it is an indication that the

other legs of the potential contain a local gauge transformation. Thus, we choose to contain the

global degrees of freedom within the (4,0) component of C4, such that [δC4](0,4) = 0.

As a check for the dimensional reduction to be done in Chapter 6, it is useful to note the result

for the dimensionally reduced kinetic action, which is

S = − 3Ṽ

4κ2

∫
d4xe4Ω∂̂µc(x)∂̂µc(x) = − 3

4κ2
4

∫
d4xe4Ω∂̂µc(x)∂̂µc(x) . (5.15)

N.B. Ṽ is the unwarped volume of the Calabi-Yau manifold.

5.2 The Axion As a Scalar

Let us now turn to the results of [18], where the scalar axion is the modulus being considered. Then

we will consider rewriting the axion as a 2-form and derive the relevant equations of motion and

constraints required to construct a dimensionally-reduced theory.

We again begin with a metric ansatz that is motivated by the gauge transformations of the
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nontrivial C4 background and the necessity for a metric compensator:

ds2
10 = e2Ae2Ωη̂µνdx

µdxν + 2e2Ae2Ω∂̂µb0(x)B′m(y)dxµdym + e−2Ag̃mndy
mdyn , (5.16)

where b0 and its compensator, B′1, are first-order, and, therefore, the warp factor and Weyl factor

both take their background values. The 4-form potential must depend on a different compensator

due to the gauge transformation properties of C4. We take the fluctuations of the potential (in the

absence of Chern-Simons terms) to be

δC4 = b0(x) ∧ ω4 − d̂b0(x) ∧K3(y) , (5.17)

where ω4 is harmonic. In the traditional formulation of this modulus, we can see that the (0,4)

and (3,1) legs of the potential contain the global degrees of freedom, opposite to the D3-brane and

volume modulus descriptions. It is for this reason that § 5.3 reformulates the axion with the global

degrees of freedom in the (4,0) and (3,1) components of the potential. The 5-form field strength

follows from (5.17), and the self-duality condition ?10F̃5 = F̃5, and is

F̃5 = e4Ωε̂ ∧ d̃e4A + ?̃d̃e−4A + d̂b0 ∧
(
ω4 + d̃K3

)
+e4Ω?̂d̂b0 ∧B′1 ∧ d̃e4A + e4Ae2Ω?̂d̂b0 ∧ ?̃

(
ω4 + d̃K3

)
. (5.18)

Using (5.18) to determine E6 = d10F̃5, we obtain a constraint equation from setting the non-dynamic

part to zero

e4A
(
?̃(ω4 + d̃K3) + e2Ωd̃B′1

)
= γ2 , (5.19)

with γ2 closed. Thus, the integrability condition is

e2Ωd̃?̃d̃B′1 = d̃e−4A ∧ ?̃γ2 , (5.20)
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which is the consistency equation necessary for (5.19) to be solvable. The dynamical equation of

motion comes from the (m,n) component of the Einstein equation and the dynamic parts of d10F̃5:

δEmn = ∂̂2b0

(
∇̃(mB

′
n) + 4∂̃(mAB

′
n) − 2g̃mnB

′
`∂̃
`A
)

(5.21)

δE6 = d̂
(
e2Ω?̂d̂b0

)
∧
[
γ2 − e2Ωd̃(e4AB′1)

]
. (5.22)

To determine the dimensionally reduced kinetic action for b0, we must evaluate

S = − 1

4κ2

∫
d4xe2Ω∂̂µb(x)∂̂µb(x)

∫
CY

ω4 ∧ γ2 . (5.23)

We can expand ω4 and γ2 in terms of a basis of (1,1) harmonic 2-forms by writing ωI4 = ?̃ω̃I2 and

γI2 = CIJ ω̃J2 . In the case of the universal axion (as opposed to generalized axions), it can be shown

that γI=1
2 = e2ΩJ̃ and ωI=1

4 = ?̃J̃1. This allows us to evaluate the integral over the Calabi-Yau

∫
CY

ω4 ∧ γ2 =

∫
CY

e2Ω?̃J̃ ∧ J̃ = 3e2ΩṼ . (5.24)

Therefore, the dimensionally reduced kinetic action for the universal axion is

S = − 3Ṽ

4κ2

∫
d4xe4Ω∂̂µb(x)∂̂µb(x) . (5.25)

N.B. As with the volume modulus, the axion’s dimensionally-reduced quadratic action is propor-

tional to the unwarped volume of the Calabi-Yau, Ṽ .

5.3 Reformulation of the Axion As a 2-Form

Let us now rewrite the normal scalar axion, b0(x), in terms of a 2-form, b2(x), in such a way that

the relevant degrees of freedom are contained in the (4,0), (3,1), and (2,2) components of C4. We

1 See Appendix A.4 for more on the Kähler form, J̃ , as well as other forms on complex manifolds.
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start by defining b2(x) such that

d̂b2(x) ≡ e−2Ω?̂d̂b0(x) . (5.26)

Thus, the metric compensator that appears in (5.16) is now

δgµm = e−2Ωe2A[?̂d̂b2]µB
′
m , (5.27)

where B′1 = B′1(y). With this redefinition in mind, the 5-form flux ansatz for the axion is

F̃5 = e4Ωε̂ ∧ d̃e4A + ?̃d̃e−4A + d̂b2 ∧ (ω2 + d̃K1) + e−4Ae−2Ω?̂d̂b2 ∧ ?̃(ω2 + d̃K1 +B′1 ∧ d̃e4A) , (5.28)

where ω2 is harmonic and K1 = K1(y). The self-duality of the background contributions in F̃5

follows from § 3.1. The first-order contribution from these terms are exactly canceled by the duals

of the latter terms.

Using this expression for F̃5, we can determine a new equation of motion from d10F̃5 = E6:

d10F̃5 = −4e−4Ad̃?̃d̃A+ e−4Ae−2Ω
(
(d̂?̂d̂b2 − 4d̃A?̂d̂b2) ∧ ?̃(ω2 + d̃K1 +B′1 ∧ d̃e4A)

−?̂d̂b2 ∧ d̃?̃(ω2 + d̃K1 +B′1 ∧ d̃e4A)
)
. (5.29)

(5.30)

The first-order piece of (5.29) gives a dynamical equation,

δE6 = e−2Ωe−4Ad̂?̂d̂b2 ∧ ?̃(ω2 + d̃K1 +B′1 ∧ d̃e4A) , (5.31)

and a constraint equation,

e−2Ω?̂d̂b2 ∧ d̃
(
e−4A?̃(ω2 + d̃K1 +B′1 ∧ d̃e4A)

)
= 0

i.e. e−4A?̃(ω2 + d̃K1 +B′1 ∧ d̃e4A) = γ4 , (5.32)
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for the closed 4-form γ4. Substituting (5.32) into (5.31) allows the pertinent dynamical equation to

be written as

δE6 = e−2Ωd̂?̂d̂b2 ∧ γ4 . (5.33)

Using (5.32) to define γ4 also allows for (5.28) to be written as

F̃5 = e4Ωε̂ ∧ d̃e4A + ?̃d̃e−4A + e4Ad̂b2 ∧ ?̃γ4 − d̂b2 ∧B′1 ∧ d̃e4A + e−2Ω?̂d̂b2 ∧ γ4 . (5.34)

As we have seen, this reformulation of b0 has altered the off-diagonal metric, and potentially will

also change the form of the Einstein equation. This, in turn, may affect the final determination of the

quadratic action via the contraction δgMNδEMN . We note that the generalized form of the Einstein

tensor from an off-diagonal modulus contribution is given in [18] and is based on the metric ansatz

δgµm = e2Ae2Ω∂̂µBm(x, y). It can be shown2 that the substitution ∂̂µBm = e−4Ω[?̂d̂b2]µB
′
m does not

require a re-derivation of the Einstein tensor, and thus is a valid direct substitution. Therefore,

we are able to directly quote the first order pieces of the Einstein equations and substitute the off-

diagonal metric given in (5.27) where applicable. We then find that the only non-zero contribution

to the Einstein tensor, GMN , comes from the off-diagonal component

δGµm =
1

2
e2Ω∇̃`

(
e4Ad̃(∂̂µB)m`

)
= −1

4
e−2Ω[?̂d̂b2]µ∇̃`

(
e4Ad̃B′1)m` . (5.35)

The first-order pieces of the stress tensor for the 2-form axion are determined in the usual

fashion, namely via δTMN = 1
96

(δF̃MPQRSF̃N
PQRS + F̃MPQRSδF̃N

PQRS + 4F̃MPQRSF̃N
PQR

T δG
ST ).

The only non-zero component is again found in the off-diagonal piece and is given by

δTµm = −e−2Ω[?̂d̂b2]µ∇̃`A
(
2ω[m`] + 4∇̃[mK`] + 2B′[m∇̃`]e

4A) . (5.36)

2 See Appendix A.7 for this calculation.
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Finally, we see that the only first-order piece of the Einstein equation for b2 is

δEµm = e−2Ω[?̂d̂b2]µ

(
∇̃`(e4Ad̃B′1)[m`] + 1

2
(?̃γ4)[m`]∇̃`(e4A)

)
. (5.37)

N.B. Since there are no ∂̂2 terms present, (5.37) is a constraint equation. This constraint to gives

?̃γ4 as a function of B′1 and A

(?̃γ4)[m`]∇̃`(e4A) = −2∇̃`(e4Ad̃B′1)[m`] . (5.38)

We can now determine the dimensionally-reduced kinetic action for the 2-form axion. Based

on the form of (5.34), and our choice of the relevant degrees of freedom, the first-order part of C4

for the axion is

δC4 = b2 ∧ (ω2 + d̃K1) . (5.39)

By recalling (5.33), we can see that the kinetic action is

S =
1

4κ2

∫
δC4 ∧ δE6 =

1

4κ2

∫
b2 ∧ (ω2 + d̃K1) ∧ e−2Ωd̂?̂d̂b2 ∧ γ4 . (5.40)

After integration by parts and noting that γ4 is closed, the action becomes

S =
1

4κ2

∫
e−2Ωb2 ∧ d̂?̂d̂b2 ∧ γ4 ∧ ω2 . (5.41)

As we saw in the previous section, in order to proceed we must expand γ4 and ω2 in terms of a

basis of (1,1) harmonic 2-forms3. It follows from § 5.2, and the discussion in [18], that γ4 = e−2Ω?̃J̃

and ω2 = J̃ . Thus, (5.41) becomes

S = − 3Ṽ

4κ2

∫
M4

e−4Ωd̂b2 ∧ ?̂d̂b2 , (5.42)

3 Although γ4 is initially taken to be closed, we can consider adding an exact piece to create some new harmonic
form γ′4 = γ4 + d̃K3. Taking γ4 → γ′4 in (5.41) results in a term that goes like ω2 ∧ d̃K3, which then vanishes after
integration by parts. Thus, only the closed part of the harmonic 4-form contributes, which is simply γ4.
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where M4 is Minkowksi space.

As a check, we will translate this 2-form axion back to a scalar axion, and compare this result

to the one derived by [18]. To do so, we define the 3-form h3 = d̂b2 such that d̂h3 = 0. This

constraint on d̂h3 must be introduced into the action via a scalar Lagrange multiplier that we shall

call (suggestively) b′0

S = − 3Ṽ

2κ2

∫
M4

(
1

2
(e−4Ωh3 ∧ ?̂h3)− b′0d̂h3

)
. (5.43)

The Euler-Lagrange equation for this action allows us to solve for h3 in terms of b′0

e−4Ω?̂h3 + d̂b′0 = 0 → h3 = −e4Ω?̂d̂b′0 . (5.44)

Substituting this into the action and simplifying, we find

S = − 3Ṽ

4κ2

∫
M4

e4Ωd̂b′0 ∧ ?̂d̂b′0 = − 3Ṽ

4κ2

∫
d4xe4Ω∂̂µb

′(x)∂̂µb′(x) . (5.45)

As we can see, this is precisely the form of (5.25). It is important to note that there is no relation

between the b0 in the definition of the 2-form b2 via (5.26) and the b′0 in the dimensionally-reduced

action above. The naming of the Lagrange multiplier introduced into (5.43) only reflects the fact

that the correct scalar axion that descends from the 2-form axion is the Lagrange multiplier. By

defining the 2-form axion in terms of the scalar axion in (5.26) we have, in effect, “destroyed” the

initial scalar axion.
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6 Effective Action for “Electric” Moduli

6.1 Electric Ansatz for All Moduli

Now that we have seen how to create the four-dimensional effective theory for the volume modulus

and axion (both scalar and 2-form versions), we can turn our attention back to the 10D SUGRA

system where the D3-branes and the other moduli are turned on. Following the procedure from

Chapter 4, we will gather the necessary contributions to construct the total quadratic action.

We wish to write each of the moduli in terms of their “electric” degrees of freedom; that is, by

taking the global degrees of freedom to be in the (4,0), (3,1), and (2,2) components for each of the

potentials. We can accomplish this by modelling our expression for F̃5 by the original D3-brane

ansatz in (3.8). However, we will find that there are additional terms for the volume modulus and

universal axion that are proportional to their dynamic equations of motion. As we saw in § 3.4,

terms that are proportional to the equation of motion disappear on shell and so can be absorbed

by a field definition.

Let us take

F̃5 = e4Aε̂ ∧ d̃e−4A + ?̃d̃e−4A − e−4Ae2Ω?̃(d̂B1 ∧ d̃e4A) + e4Ωd10(e4A?̂d̂B1)

+e4Ω ?10 d10(e4A?̂d̂B1) + d̂b2 ∧ (ω2 + d̃K1) + e−4Ae−2Ω?̂d̂b2 ∧ ?̃(ω2 + d̃K1) , (6.1)

where now

d̂B1(x, y) = −d̂c(x) ∧ d̃K + e−4Ω?̂d̂b2 ∧Ba
1 + e−2Ωd̂Y mG1,m , (6.2)
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to be the “electric” ansatz for the field strength, which now includes all the moduli. Based on this

formulation, the 10D metric

ds2
10 = e2Ae2Ωη̂µνdx

µdxν + 2e2Ae2Ω∂̂µBmdx
µdym + e−2Ag̃mndy

mdyn , (6.3)

also encompasses all the moduli under consideration when Bm is given by (6.2).

As discussed previously, changing the electromagnetic character of the D3-branes means that

the field strength will satisfy a set of corresponding Maxwell-like equations. In particular, (6.1)

now has a trivial Bianchi identity so that d10F̃5 = 0, i.e. there are no local contributions. This

also means that the Wess-Zumino action given by (1.6) is non-zero. We will see this effect when we

calculate the brane sector quadratic action.

Using this electric description of the moduli will enable us to write a quadratic action that is

entirely global. This means that the local terms identified in Chapter 3 will no longer exist. We will

find that proper dimensional reduction is now possible and an effective theory can be constructed.

6.2 Quadratic Action Sectors Revisited

As mentioned in § 4.1, there is an additional contribution to the quadratic action: a contribution

from a non-zero background axion that does not give a linearized term when integrated by parts and

so must be inserted by hand1. Contrary to an infinite, 4D Minkowski space – where a non-zero axion

with zero field strength vanishes – a non-trivial background value for the axion is permitted if the

internal dimensions are compactified on a torus. The integral that arises from this term is evaluated

at the D3-brane, and so can be written as a ten-dimensional integral with an accompanying six-

dimensional delta function; we will denote this by the D3 subscript.

1 This type of term is dropped in [18] in an implied integration by parts; we reintroduce it here as a correction to
that work.
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The total quadratic action is now comprised of four contributions:

S =
1

4κ2

∫
d10x
√
−g δgMNδEMN +

1

4κ2

∫
d10x
√
−g Y mEm +

1

4κ2

∫
δC4 ∧ δE6

−T3

∫
D3

b2 ∧ ωmnd̂Y md̂Y n . (6.4)

In order to determine the 4D effective action from the dimensional reduction of (6.4), we must

repeat the procedures of Chapters 3 and 4. Luckily, the calculation of the Einstein tensor in §2.2 is

sufficiently general that it will still apply when ∂̂µBm is given by (6.2), and so will not be repeated

here.

6.2.1 Gravity Sector: All Moduli

Let us start by collecting the contributions to the first-order piece of the metric, δgMN . Then, the

dynamic parts of the Einstein equations, δEMN , will be contracted with the inverse of the first-order

metric.

By directly varying gMN , we find that:

δgµν = δ
(
e−2Ae−2Ωη̂µν

)
= −2(δΩ + δA)e−2Ae−2Ωη̂µν (6.5)

δgmn = δ
(
e2Ag̃mn

)
= 2δAe2Ag̃mn , (6.6)

where the terms δA and δΩ are the variations of the warp and Weyl factors with respect to all

the moduli. Note that, once again, there is no contribution from δEµm from any of the moduli;

therefore, we do not need to calculate δgµm. Again, all exponentials will have their first-order

contributions factored out, and so are written implicitly as only the background values.

Using the results from § 3.1, we find that the dynamic portions of the Einstein equations are

δEµν = −2e4Ae2Ωη̂µν∇̃`A∂̂2B` (6.7)

δEµm = 0 (6.8)

δEmn = ∂̂2
(
∇̃(mBn) − g̃mn∇̃`B`

)
+ e−4Ae−2Ωg̃mn∂̂

2(3Ω− 2A) . (6.9)
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Plugging into (4.2), we find

SR =
1

4κ2

∫
d10x
√
−g δgMNδEMN =

1

4κ2

∫
d4x
√
−η̂
∫
d6y
√
g̃ e−2Ae4ΩδgMNδEMN

=
1

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ω

[
16(δA+ δΩ)∇̃`A∂̂2B` − 10δA∂̂2∇̃`B`

+12e−4Ae−2ΩδA∂̂2(3δΩ− 2δA)
]
. (6.10)

6.2.2 5-Form Sector: All Moduli

To evaluate the 5-form sector action, we must determine the dynamic parts of E6, as well as the

corresponding parts of C4. Since we know that the equation of motion for F̃5 includes a non-dynamic

“electric source” for the D3-branes, the only dynamic contributions come from d10F̃5 and are

δE6 = d10(e−4A?̃∂̂2B1) + e−4Ae−2Ωd̂?̂d̂b2 ∧ ?̃(ω2 + d̃K1) . (6.11)

The global components of C4 are those in the (4,0), (3,1) and (2,2) legs of C4, and can written as

d10C4 = F̃5. These are

C4 = e4Ae4Ωε̂+ e4Ae4Ω?̂d̂B1 + b2 ∧ (ω2 + d̃K1) . (6.12)

The relevant wedge products – those that ensure δC4 ∧ δE6 has four legs in Minkowski space and

six in the compact space – are

δE6 ∧ δC4 = 4(δA+ δΩ)e4Ae4Ωε̂ ∧ d̃(e−4A?̃∂̂2B1) + e4Ae4Ω?̂d̂B1 ∧ d̂(e−4A?̃∂̂2B1)

+e−4Ae−2Ωb2 ∧ (ω2 + d̃K1) ∧ d̂?̂d̂b2 ∧ ?̃(ω2 + d̃K1) . (6.13)

The last term in (6.13) is a pure axion term was shown in § 5.3 to contribute

− 3Ṽ

4κ2

∫
e−4Ω?̂d̂b2 ∧ d̂b2 (6.14)
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to the 5-form sector action. However, we must examine the result of other terms in (6.13), after

being incorporated into (4.3). Translating the integrals of the forms into component notation gives

∫
δe4Ae4Ωε̂ ∧ d̃(e−4A?̃∂̂2B1) =

∫
d4x

∫
d6y
√
g̃ 4e4Ω(Ω + δA)(∂̂2∇̃`B` − 4∇̃`A∂̂2B`) (6.15)

and

∫
e4Ω?̃∂̂2B1 ∧ d̂?̂d̂B1 =

∫
d4x

∫
d6y
√
g̃ e4Ω∂̂2B`∂̂2B` . (6.16)

Adding together the contributions, we see that the final expression for the 5-form sector action

is

S5 =
1

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ω

[
4(δA+ δΩ)(∂̂2∇̃`B` − 4∇̃`A∂̂2B`) + ∂̂2B`∂̂2B`

]
− 3Ṽ

4κ2

∫
e−4Ω?̂d̂b2 ∧ d̂b2 . (6.17)

We can immediately combine the terms of (6.10) and (6.17) and note that, after substantial can-

cellation, the quadratic terms for the volume modulus the axion are recovered (c.f. Chapter 5):

SR + S5 =
1

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ω

[
3c(x)∂̂2c(x) + ∂̂2B`∂̂2B`

]
− 3

4κ2

∫
e−4Ω?̂d̂b2 ∧ d̂b2 . (6.18)

The term proportional to ∂̂2B`∂̂2B` is a higher-derivative contribution than those considered in this

work. What we see is that, even in the presence of mobile D3-branes, the sum of the gravity and

5-form sectors is identical to the static brane case. The mixing of the moduli and the effects of the

branes will manifest instead in the contribution to the quadratic action from the background axion.
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6.2.3 Brane Sector: All Moduli

In § 4.2, we saw that the linearized equation of motion for the brane position, Em, in the static

gauge is

Em = 2κ2T3Λm
m

[
∂̂µ(e2Ae2Ωη̂µνgmNΛN

B ∂̂νX
B)

+
1

6
∂̂a(ε̂

abcdCmNPQΛN
BΛP

CΛQ
D∂̂bX

B∂̂cX
C ∂̂dX

D

]
δ̃6(y, Y ) . (6.19)

Since Em will be contracted with the first-order brane position, Y m, we take only terms in (6.19)

up to first order. This means that, because of the ∂̂a that acts on the (2,2) component of C4,

the background axion becomes first-order, and the resulting term in Em will be second order.

Furthermore, we once again find that contributions from the off-diagonal part of the metric will

exactly those from the (4,1) component of C4. The result is that the linearized equation of motion

is

Em = 2κ2T3e
2ΩΛm

mΛn
ng̃mn∂̂

2Y nδ̃6(y, Y0) . (6.20)

N.B. The delta function δ̃6(y, Y ) has been expanded using (3.96) and we have retained only the

terms that keep Em first-order. Thus, we find that the brane sector quadratic action is

SD3 =
1

4κ2

∫
d4x

∫
d6y
√
g̃Λm

mΛn
n 2κ2T3e

2ΩY ng̃mn∂̂
2Y nδ̃6(y, Y0) . (6.21)

6.3 Total Quadratic Action Revisited

The total quadratic action is the sum of the gravity, 5-form, and brane sector quadratic actions. As

noted above, there is significant cancellation between the gravity and 5-form sectors. The remaining
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contributions to the total quadratic action are

S = − 3Ṽ

4κ2

∫
d4x e4Ω∂̂µc(x)∂̂µc(x)− 3Ṽ

4κ2

∫
e−4Ωd̂b2 ∧ ?̂d̂b2

+
1

4κ2

∫
d4x

∫
d6y
√
g̃Λm

mΛn
n 2T3κ

2e2ΩY ng̃mn∂̂
2Y nδ̃6(y, Y0)− T3

∫
D3

b2 ∧ d̂Y md̂Y nωmn .(6.22)

What remains is to convert the 2-form axion into a scalar axion following the procedure outlined

in § 5.3, which also showed that ω2 = J̃2 for the universal axion. Afterwards, we will perform the

dimensional reduction required to generate the effective theory. However, we will want to compare

this effective theory to the one derived from a Kähler potential. Let us now determine what kind

of interactions are predicted by the standard Kähler potential presented in [22].

6.4 Kähler Metric

Consider the kinetic action for a set of moduli described by some Kähler potential,

SK = − 1

κ2
4

∫
d4x
√
−ηLK = − 1

κ2
4

∫
d4x
√
−η ηµν∂µuA∂νuB̄GAB̄(u) , (6.23)

where the Kähler metric is given by GAB̄ = ∂A∂B̄K. We take the ansatz for the Kähler potential in

terms of the complex moduli basis fields ρ and φ to be

K = −3 log
[
−i(ρ− ρ̄)− γk(φ, φ̄)

]
, (6.24)

where ρ = b0 + i(c0 + γ
2
k(φ, φ̄)) and k(φ, φ̄) is the Kähler potential of the internal space. The moduli

kinetic action then has

LK = ∂ρ∂ρ̄K ∂ρ∂ρ̄+ ∂ρ∂φ̄K ∂ρ∂φ̄+ ∂ρ̄∂φK ∂ρ̄∂φ+ ∂φ∂φ̄K ∂φ∂φ̄ , (6.25)
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Using (6.24), each term is

∂ρ∂ρ̄K ∂ρ∂ρ̄ =
3

4c2
0

(
(∂b0)2 + (∂c0)2 + γ∂c0(∂φk ∂φ+ ∂φ̄k ∂φ̄) +

γ2

4
(∂φk ∂φ+ ∂φ̄k ∂φ̄)2

)
(6.26)

∂ρ∂φ̄K ∂ρ∂φ̄ = i
3γ∂φ̄k

4c2
0

(
∂b0 + i∂c0 + i

γ

2
(∂φk ∂φ+ ∂φ̄k ∂φ̄)

)
∂φ̄ (6.27)

∂ρ̄∂φK ∂ρ̄∂φ = −i3γ∂φk
4c2

0

(
∂b0 − i∂c0 − i

γ

2
(∂φ̄k ∂φ̄+ ∂φk ∂φ)

)
∂φ (6.28)

∂φ∂φ̄K ∂φ∂φ̄ =
3γ

2c0

( ∂2k

∂φ∂φ̄
+
γ∂φk∂φ̄k

2c0

)
∂φ∂φ̄ . (6.29)

Adding everything together gives

LK =
3

4c2
0

(
(∂b0)2 + (∂c0)2

)
+

3γ

2c0

∂φ̄∂φk ∂φ∂φ̄−
3iγ

4c2
0

∂b0(∂φk ∂φ− ∂φ̄k ∂φ̄)

− 3γ2

16c2
0

(∂φk∂φk ∂φ∂φ− 2∂φk∂φ̄k ∂φ∂φ̄+ ∂φ̄k∂φ̄k ∂φ̄∂φ̄) . (6.30)

Based on the form of (6.30), what we anticipate seeing in the quadratic action are: separate

quadratic terms for the scalar axion, volume modulus, and the D3-brane positions; a second-

derivative of the internal Kähler potential; sets of derivatives (real, imaginary, and mixed) acting

on k; a coupling between the first derivatives of k and the first derivative of the scalar axion. Let

us now return to calculating the effective action. Once that is complete, we will compare the form

of (6.30) to our result.

6.5 Comparison of the Effective & Kähler Actions

In order to more clearly see the role of k in the quadratic action, we will transform the real ym

coordinates into the zI complex coordinates of the Calabi-Yau 3-fold. Recall2 that the metric of

the manifold (either Calabi-Yau or moduli space) is related to the Kähler form by

J̃2 =
1

2
J̃k

`g̃`mdy
k ∧ dym = ig̃i̄ dz

i ∧ dz ̄ , (6.31)

2 For additional information on Kähler manifolds and moduli spaces, see Appendix A.5
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and the Kähler form is related to the internal Kähler potential by

J̃2 = i∂∂̄k(z, z̄) . (6.32)

We can set the brane position Y m to be the complex coordinate ZI by converting to m = I = (i, ı̄) =

({1, 2, 3}, {1̄, 2̄, 3̄}). Thus, the internal Kähler potential is implicitly dependent on xµ through its

dependence on the brane position (complex coordinates):

d̂k̄ = ∂ik̄ d̂Z
i + ∂ı̄k̄ d̂Z

̄ . (6.33)

N.B. We have denoted the partial derivative of k with respect to ̄ as k̄ ≡ ∂̄k.

Next, we can rewrite the sum over the embedding coordinates (after taking Λm
mΛn

nωmn = ωmn =

J̃mn) as d̂Y md̂Y nJ̃2 = 2d̂Zid̂Z ̄ J̃i̄. Then, using the anti-symmetry of the Kähler form, we can see

that

J̃i̄ d̂Z
i ∧ d̂Z ̄ =

1

2
(J̃i̄ d̂Z

i ∧ d̂Z ̄ + J̃j̄i d̂Z
̄ ∧ d̂Zi) . (6.34)

Relating the Kähler form to k(Z, Z̄), and using (6.33), we find that

d̂Y md̂Y n ωmn = i(d̂k̄ ∧ d̂Z ̄ − kı̄̄ d̂Z ı̄ ∧ d̂Z ̄ − d̂kj ∧ d̂Zj + kij d̂Z
i ∧ d̂Zj) . (6.35)

However, the terms proportional to kı̄̄ and kij both vanish identically because the partial derivatives

commute while the wedge products anti-commute. So, the overall contribution to the effective action

from the brane-axion coupling is

−T3

∫
D3

b2 ∧ d̂Y md̂Y n ωmm = iT3

∫
d̂b2 ∧ (k̄ d̂Z

̄ − kj d̂Zj) = iT3

∫
d̂b2 ∧ kI d̂ZI , (6.36)

where we have denoted kI d̂Z
I ≡ k̄d̂Z

̄ − kj d̂Zj. Furthermore, we have evaluated the integral over
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the compact coordinates using

∫
d6y
√
g̃ δ̃6(y, Y0) = 1 , (6.37)

such that SD3 is now only an integral over the Minkowski spacetime.

We now wish to convert the 2-form axion in (6.22) into a scalar axion. Consider the parts of

the action containing the 2-form axion:

− 3Ṽ

4κ2

∫
e−4Ωd̂b2 ∧ ?̂d̂b2 + iT3

∫
d̂b2 ∧ kI d̂ZI . (6.38)

By defining h3 ≡ d̂b2 – such that the condition d̂h3 = 0 is enforced by the Lagrange multiplier,

b0(x) – (6.38) becomes

− 3Ṽ

2κ2

[∫
1

2
e−4Ωh3 ∧ ?̂h3 −

2iζ

3
h3 ∧ kI d̂ZI + b0d̂h3

]
, (6.39)

where ζ = κ2T3/Ṽ . The Euler-Lagrange equation equation that arises from (6.39) gives

h3 = e4Ω

[
2iζ

3
kI ?̂d̂Z

I − ?̂d̂b0

]
. (6.40)

Substituting back in for h3 and simplifying, we find that

− 3Ṽ

4κ2

∫
d4xe4Ω∂̂µb0∂̂

µb0 +
3Ṽ

4κ2

(
2ζ

3

)2 ∫
d4xe4ΩkIkJ ∂̂

µZI ∂̂µZ
J

+i
Ṽ ζ

κ2

∫
d4xe4ΩkI ∂̂

µb0∂̂µZ
I . (6.41)

We can see that there is a regular quadratic axion term, a quadratic coordinate term, and a mixing

term. This is precisely the form given by the ansatz for the Kähler potential in (6.30).

Converting the remaining term in (6.22) that contains the brane position requires again setting

the brane position to be the complex coordinate Z and rewriting the Calabi-Yau metric in terms of

holomorphic and antiholomorphic indices that anti-commute: Λm
mΛn

ng̃mnY
n∂̂2Y m = 2g̃i̄Z

i∂̂2Z ̄. In
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doing so, the action becomes

S = − 3Ṽ

4κ2

∫
d4xe4Ω

(
∂̂µb0∂̂µb0 + ∂̂µc(x)∂̂µc(x)

)
+
κ2T3

3Ṽ

∫
d4xe4Ω

[
kikj ∂̂

µZi∂̂µZ
i − 2kik̄ ∂̂

µZi∂̂µZ
̄ + kı̄k̄ ∂̂

µZ ı̄∂̂µZ
̄
]

+T3

∫
d4xe4Ω

[
− i

2
∂̂µb0(ki∂̂

µZi − kı̄∂̂µZ ı̄) + e−2Ωg̃i̄ ∂̂
µZi∂̂µZ

̄

]
. (6.42)

N.B. All terms containing the internal Kähler potential, k, and its derivatives are implicitly evalu-

ated at the brane position, y = Y . Note also that the quadratic actions for the volume modulus and

scalar axion are exactly as they appeared in Chapter 5, thus providing an important consistency

check.

We can now compare this quadratic action directly with that predicted in §6.4 from the Kähler

potential, and determine the constant γ. Equating the coefficients for the quadratic terms in either

equation allows us to find that

γ =
2T3κ

2

3Ṽ
=

2T3κ
2
4

3
. (6.43)

Furthermore, we can see that each type of coupling anticipated in § 6.4 has been realized. We can

now conclusively state that the Kähler potential for the moduli is given by (6.24).
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7 Effective Action for “Magnetic” Moduli

7.1 Magnetic Ansätze and Degrees of Freedom

Having established a theory for the moduli of type IIB SUGRA in Chapter 6 for the “electric”

description, i.e. using the (4,0), (3,1), and (2,2) components of the 4-form potential, we now

wish to confirm this result in the case when the opposite set of degrees of freedom is considered.

As discussed in Chapter 3, the “magnetic” description of the moduli places the global degrees

of freedom in the (0,4), (1,3), and (2,2) components of the potential. This raises certain issues

regarding the gauge transformations of the potential in overlapping coordinate patches. However,

these local contributions were separated out from the global ones in § 3.5. Having ensured that we

are considering only global degrees of freedom, the effective action for the “magnetic” moduli can

now be determined.

The relevant terms in C4 for all moduli (the axion can now be written in its original scalar

form) are those that are globally defined:

C4 = −e2Ω?̃d̃BD3
1 + b0 ∧ ω4 − d̂b0 ∧K3 . (7.1)

The other relevant equations can be expressed in terms of a total B1, equal to the sum of the

individual metric compensators, that obeys the constraint equation

∇̃`B` = e−4Ae−2Ω(2δΩ− 4δA) , (7.2)

where the variations are with respect to all moduli, and – as before – all exponentials terms take
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their background values.

7.2 Quadratic Action Sector for Magnetic Moduli

The total action for all the moduli in the magnetic description will be given by (4.5), and does not

require additional contributions. We can instead examine the dynamic equations for each modulus

to try to write the contributions to each sector in a concise way. For example, the contribution to

the Einstein equation from the volume modulus was given in (5.12) to be

δEmn = ∂̂2c(x)[2g̃mn∇̃`A∇̃`K − 4∇̃(mA∇̃n)K − ∇̃m∇̃nK + g̃mn∇̃2K − 3

2
g̃mne

−4A +
1

2
g̃mne

−2Ω] .

Now, by defining ∂̂µB
c
m ≡ −∂̂µc∇̃mK, and noting that δcΩ = −1/2e2Ωc(x) and δcA = −1/4e4Ac(x),

we are able to write δEmn for the volume modulus in a form more reminiscent of the dynamic

contribution to the Einstein equation from the D3-branes:

δEmn = 4∇̃(mA∂̂
2Bc

n) + ∇̃m∂̂
2Bc

n − g̃mn∇̃`∂̂2Bc
` − 2g̃mn∇̃`A∂̂2Bc

`

+g̃mne
−4Ae−2Ω∂̂2(3δcΩ− 2δcA) . (7.3)

The dynamic contribution from the scalar axion can be rewritten in a similar way by making use

of the fact that ∂̂µB
a
m ≡ ∂̂µb0B

′
m ⇒ ∇̃`Ba

` = 0.

Let us now examine the contributions to each sector of the quadratic action from the moduli

in terms of the total B1, δA, and δΩ.

7.2.1 Gravity Sector: All Moduli

When written as magnetic sources, the moduli only contribute dynamic terms to the Einstein

equation through the (m,n) component. Therefore, we need only consider the corresponding first-

order component of the metric; that is

δgmn = δ(e2Ag̃mn) = 2δAe2Ag̃mn . (7.4)
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The total Einstein equation for all moduli is

δEmn = ∂̂2[4∇̃(mABn) − 2g̃mn∇̃`AB` + ∇̃(mBn)] + e−4Ae−2Ωg̃mn∂̂
2(δΩ + 2δA) . (7.5)

Contracting δgmn with δEmn and substituting into the equation for SR yields the gravity sector

quadratic action for these moduli,

SR =
1

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ω

[
16δA(e−4Ae−2Ω∂̂2(δΩ + δA)− ∇̃`A∂̂2B`)

]
. (7.6)

7.2.2 5-Form Sector for Magnetic Moduli

The method of writing the flux equation of motion for all moduli is similar to the one for writing

the Einstein equation: we express the sum of the flux equations for each modulus in terms of a

total B1. It is important to note that the flux equation of motion is E6 = d10 ?10 F̃5 + (sources), i.e.

taking the (0,5), (1,4), and (2,3) components of F̃5 to be the global degrees of freedom means the

flux equation will only have global terms in the (4,2), (3,3), and (2,4) components. To wit,

δE6 = −e4Ωd̂?̂d̂d̃(e4AB1) + e2Ωd̂?̂d̂b0 ∧ ?̃γ2 , (7.7)

where γ2 is the harmonic 2-form described in §5.2. The 5-form sector quadratic action is formed by

wedging this flux equation of motion with the total 4-form potential, given by (7.1). This produces

δC4 ∧ δE6 = e6Ω?̃d̃BD3
1 ∧ d̂?̂d̂d̃(e4AB1)− e4Ω?̃d̃BD3

1 ∧ d̂?̂d̂b0 ∧ γ2 − e4Ωb0 ∧ ω4 ∧ d̂?̂d̂d̃(e4AB1)

+e2Ωb0 ∧ ω4 ∧ d̂?̂d̂b0 ∧ γ2 . (7.8)

We can immediately recognize the regular quadratic term for the scalar axion as the last term above.

Furthermore, we know that the last term on the first line of (7.8) will vanish after integration by

parts over the compact space because ω4 is harmonic. This leaves only the first two terms to
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consider. Using (A.3.12), the second term contributes

− 1

4κ2

∫
e4Ωd̂?̂d̂b0 ∧ d̃BD3

1 ∧ ?̃γ2 (7.9)

to the 5-form sector action. Since γ2 is harmonic, so too is ?̃γ2. After integration by parts, the

above term vanishes because d̃?̃γ2 = 0.

The non-vanishing terms in the 5-form sector are now

S5 = − 1

4κ2

∫
e4Ae6Ωd̃?̃d̃BD3

1 ∧ d̂?̂d̂B1 −
3Ṽ

4κ2

∫
d4x e4Ω∂̂µb(x)∂̂µb(x) . (7.10)

In order to simplify the mixing term, it is useful to recall the solution for the metric compensator

for the D3-branes, given by (3.51):

∇̃2BD3
` = 2κ2T3e

−2Ωg̃`mΛm
n Y

nδ̃6(y, Y0) .

Using the definition of the Hodge-deRahm operator, and noting that ∆α1 = −∇̃2α1 for any 1-form

α1 on the compact manifold, we find that

−d̃?̃d̃BD3
1 = e−2Ω?̃(d̃δY e

−4A − 2κ2T3Λ1Y δ̃
6(y, Y0) , (7.11)

where Λ1 is a 1-form with respect to the ym coordinates, and δY denotes the variation with respect

to the mobile D3-branes. Using this relation in the expression for the 5-form sector action, and

converting the integral to component notation, we find that

S5 =
1

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ae4Ω∂̂2B`

(
∇̃`δY e

−4A − 2κ2T3Λ`
mY

mδ̃6(y, Y0)
)

− 3Ṽ

4κ2

∫
d4x e4Ω∂̂µb(x)∂̂µb(x) . (7.12)
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7.2.3 Brane Sector for Magnetic Moduli

The final contribution to the total quadratic action comes from contracting the equation of motion

for the brane position with the first-order brane position. Once again, we examine (2.11) to deter-

mine the first-order terms. However, unlike the result from § 6.2, our choice of which components

of C4 contain the relevant degrees of freedom means that there is no longer cancellation between

the off-diagonal part of the metric and the potential. Instead, we find that

Em = T3

∫
d6y
√
g̃Λm

m(e4Ae4Ω∂̂2Bm + e2Ωg̃mnΛn
n∂̂

2Y n)δ̃6(y, Y0) . (7.13)

This means that the brane sector quadratic action is

SD3 =
1

4κ2

∫
d4x

∫
d6y
√
g̃Λm

m2T3κ
2Y m(e4Ae4Ω∂̂2Bm + e2Ωg̃mnΛn

n∂̂
2Y n)δ̃6(y, Y0) . (7.14)

7.3 Total Quadratic Action for Magnetic Moduli

In adding each contribution to the total quadratic action, we can see that the term in (7.14)

proportional to ∂̂2Bm is exactly cancelled by the similar term in (7.12). We are then left with

S =
1

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ω

[
16e−4Ae−2ΩδA∂̂2(δA+ δΩ)− 16δA∇̃`∂̂2B` + e4A∂̂2B`∇̃`δY e

−4A

+2κ2T3e
−2ΩΛm

mΛn
ng̃mnY

m∂̂2Y nδ̃6(y, Y0)
]
− 3Ṽ

4κ2

∫
d4x e4Ω∂̂µb(x)∂̂µb(x) . (7.15)

We can now write the variations of the warp and Weyl factors in terms of each of the moduli, such

that

δA = −1

4
e4A(c(x) + δY e

−4A) and δΩ = −1

2
e2Ωc(x) . (7.16)

By writing out the moduli explicitly like this, it is clear which terms will depend on the internal

coordinates and which will simply be functions of spacetime. After using the constraint in (7.2)
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and substituting for δA, we find that the term −16δA∇̃`A∂̂2B` gives

−e−2Ω∂̂2c(x)(2δΩ− 4δA)− e4A∂̂2B`∇̃`δY e
−4A − e4AδY e

−4A∂̂2∇̃`B` . (7.17)

Thus, the term proportional to e4A∇̃`δY e
−4A that arises from the 5-form sector action is exactly

cancelled.

After additional simplification, we also recover the quadratic term for the volume modulus and

a coupling between the D3-brane position and volume modulus that is

−6e−2ΩδΩ∂̂2δY e
−4A . (7.18)

Since δΩ is a function of spacetime only, and since (3.54) tells us that δY e
−4A ∝ −Y m(x)∂mG(y, Y ) =

Y m(x)∇̃`Gm`(y, Y ) = ∇̃`(Y m(x)Gm`(y, Y )), (7.18) is proportional to the integral of a total deriva-

tive and therefore vanishes on the compact Calabi-Yau. Hence, the total quadratic action for the

magnetic description of the moduli is

S = − 3Ṽ

4κ2

∫
d4x

∫
d6y
√
g̃ e4Ω

[
3∂̂µc(x)∂̂µc(x) + 3∂̂µb(x)∂̂µb(x)

]
−T3

2

∫
d4x

∫
d6y
√
g̃ e2ΩΛm

mΛn
ng̃mn∂̂µY

m∂̂µY nδ̃6(y, Y0) . (7.19)

Comparing this to the corresponding action for the electric description of the moduli in (6.22),

there is complete agreement amongst the kinetic terms, however a key ingredient missing: coupling

between the axion and the mobile D3-branes.
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8 Discussion

We have used the conventional description of moduli in type IIB SUGRA to investigate the effects of

mobile D3-branes in flux compactifications. We constructed the Einstein equations and separated

from them the dynamic contributions and constraint equations. We then solved the constraint

equations and expressed the warping of the compact manifold in terms of the position of a D3-

brane. Owing to the non-trivial nature of the Bianchi identity for the flux, the local degrees of

freedom were isolated at linear order. By using a related (but equivalent) expression for the flux

ansatz, the second-order local terms were successfully written in closed form. This required adding

terms to the flux ansatz that were proportional to the equations of motion, and so vanished on shell.

Classically, this meant that the descriptions were equivalent. We then showed that the local terms

do not contribute to the equations of motion to the order considered. Furthermore, we recovered

the non-trivial cancellation in the equations of motion at the level of the background, an important

consistency check with the equation of motion from the opposite characterization of the D3-branes.

When considered on its own, the effective action built from the first-order position of the

D3-branes showed no dependence on the warp factor, although the cancellation of the warping was

highly non-trivial. Regardless, the brane position remained a modulus of the theory. After reviewing

the formulation of effective actions for similar moduli, the inclusion of additional moduli that could

couple with the D3-branes was considered. A flux ansatz was then proposed that described all the

moduli using similar degrees of freedom. This required establishing an equivalent theory for the

universal axion in terms of a 2-form.

With these steps completed, the quadratic action for all moduli was determined. An important

difference was the inclusion of a term that was not captured in a linearized equation of motion. The

dimensional reduction of the quadratic action again displayed non-trivial cancellations of the warp

82



factor. In fact, we saw that the effective action was precisely of the form suggested by the kinetic

action for a set of complex moduli described by a Kähler potential. The brane position was shown

to corresponded to the complex coordinates of the Calabi-Yau 3-fold and entered the moduli space

Kähler potential through the internal Kähler potential of the manifold, and complex moduli basis

fields.

Owing to the self-duality of the flux in type IIB SUGRA, choosing the global degrees of freedom

to be in any set of independent components should yield the same result. To confirm this, we went

on to describe the D3-branes as magnetic sources, and – after proper consideration of the local

source terms – endeavoured to reproduce the effective action in (6.42). We were able to produce

the correct quadratic action terms for each of the moduli individually, however the mixing terms

predicted in § 6.4 did not appear. So far, attempts to cast the D3-brane as magnetic sources have

been unsuccessful.

We anticipate that the required mixing term between the axion and the D3-branes should arise

from terms in the D3-brane equation of motion, as presented in § 3.7. Although we asserted that

∂σ/b/∂Y m = −Λ/b
m+O(2), it could be that the Synge’s world-function, σ/b, is able to take a non-zero

background value. This would mean that terms that originally appeared to be second order would,

in fact, contribute at first order, and thus be relevant to the quadratic action. Work continues on

examining this possibility in the hopes that these issues can be resolved and the results obtained in

Chapter 6 can be confirmed using the magnetic degrees of freedom.

83



A Appendices

A.1 The Ricci Tensor

Here we will include the details of the derivations for equations (3.1), (3.2), and (3.3) from §3.1. We

start by examining the particular components of the Ricci tensor: Rµν , Rµm, and Rmn. In terms of

10-dimensional indices {A,B, . . .}, these are

Rµν = ∂AΓAνµ − ∂̂νΓAAµ + ΓAABΓBνµ − ΓAνBΓBAµ (A.1.1)

Rµm = ∂AΓAmµ − ∂̃mΓAAµ + ΓAABΓBmµ − ΓAmBΓBAµ (A.1.2)

Rmn = ∂AΓAmn − ∂̃nΓAAm + ΓAABΓBnm − ΓAnBΓBAm . (A.1.3)

Using the metric in (1.23), we can determine the relevant terms to first order. In particular, the

terms to be included in Rµν , by (A.1.1), are:

∂̂λΓ
λ
νµ = (2∂̂µ∂̂ν − η̂µν ∂̂2)(A+ Ω) + e4Ae2Ω∂̂2B`∂̃`Aη̂µν (A.1.4)

∂̃`Γ
`
νµ = e4Ae2Ω(4∂̃`A∂̂ν ∂̂µB

` + ∂̂ν ∂̂µ∂̃`B
` − 4∂̃`A∂̃

`Aη̂µν − ∂̃2Aη̂µν) (A.1.5)

∂̂νΓ
λ
λµ = 4∂̂ν ∂̂µ(A+ Ω) + e4Ae2Ω∂̃`A∂̂ν ∂̂µB

` (A.1.6)

∂̂νΓ
`
`µ = −6∂̂ν ∂̂µA− e4Ae2Ω∂̃`A∂̂ν ∂̂µB

` (A.1.7)

Γρρ`Γ
`
νµ = 4e4Ae2Ω(∂̃`A∂̂ν ∂̂µB

` − ∂̃`A∂̃`Aη̂µν) (A.1.8)

Γmm`Γ
`
νµ = e4Ae2Ω(Γ̃mm`∂̂ν ∂̂µB

` − Γ̃mm`∂̃
`Aη̂µν − 6∂̃`A∂̂ν ∂̂µB

` + 6∂̃`A∂̃
`Aη̂µν) (A.1.9)

Γλν`Γ
`
λµ = e4Ae2Ω(∂̃`A∂̂ν ∂̂µB

` − ∂̃`A∂̃`Aη̂µν) (A.1.10)

ΓmνρΓ
ρ
mµ = e4Ae2Ω(∂̃mA∂̂ν ∂̂µB

m − ∂̃mA∂̃mAη̂µν) . (A.1.11)
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N.B. Terms higher than first-order have been excluded; the Christoffel symbols on the Calabi-Yau,

Γ̃, contribute at the background level. Plugging (A.1.4) - (A.1.11) into (A.1.1) gives Rµν as in (3.1).

Next, we calculateRµm. It is convenient to define the first-order term Φm
µn ≡ e4Ae2Ωg̃`m(∂̃`A∂̂µBn+

∂̂µ∂̃[`Bn]), since it is common to many of the following calculations. Thus, the contributions to Rµm

from (A.1.2) are:

∂̂νΓ
ν
µm = ∂̂µ∂̃mA (A.1.12)

∂̃`Γ
`
µm = −∂̃m∂̂µA− ∂̃`Φ`

µm (A.1.13)

∂̃mΓνµν = 4∂̃m∂̂µA+ e4Ae2Ω
(

4∂̃mA∂̃`A∂̂µB
` + ∂̃m(∂̃`A∂̂µB

`)
)

(A.1.14)

∂̃mΓ``µ = −6∂̃m∂̂µA− e4Ae2Ω
(

4∂̃mA∂̃`A∂̂µB
` + ∂̃m(∂̃`A∂̂µB

`)
)
. (A.1.15)

It is convenient to note the sum of (A.1.14) and (A.1.15) at this point, as it will reduce potential

confusion later on

∂̃mΓννµ + ∂̃mΓ``µ = −2∂̃m∂̂µA . (A.1.16)

There are additional terms that benefit from summing before plugging into (A.1.2), and they will

be calculated as such in the following. Continuing with the contributions to Rµm, we find that

(Γννλ + Γ``λ)Γ
λ
mµ = ∂̃mA∂̂µ(4A− 2Ω) (A.1.17)

(Γννn + Γ``n)Γnmµ = 2∂̃mA∂̂µA+ 2∂̃nAΦn
µm − Γ̃``nΦn

µm (A.1.18)

ΓνmλΓ
λ
νµ = 4∂̃mA∂̂µ(A+ Ω) + e4Ae2Ω∂̃mA∂̃

`A∂̂µB` (A.1.19)

Γνm`Γ
`
νµ = −e4Ae2Ω∂̃`A[∂̂µ∇̃(mB`) + 4∂̃(mA∂̂|µ|B`) − g̃m`∂̂νBk∂̃

kA

+e−4Ae−2Ω∂̂µAg̃m`] (A.1.20)

ΓnmλΓ
λ
nµ = −∂̃mA∂̂µA− ∂̃nAΦn

µm (A.1.21)

Γnm`Γ
`
nµ = −Γ̃nm`Φ

`
µn + 6∂̂µA∂̃mA+ ∂̃`AΦ`

µm + ∂̃mAΦ`
µ` − ∂̃nAg̃m`Φ`

µn . (A.1.22)

Plugging (A.1.12) - (A.1.22) into (A.1.2) gives Rµm as in (3.2).
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Finally, the terms that contribute to Rmn from (A.1.3) are:

∂̂µΓµmn = ∂̂2∇̃(mBn) + 2∂̃(mA∂̂
2Bn) − ∂̂2B`∂̃

`Ag̃mn (A.1.23)

∂̃`Γ
`
mn = ∂̃`Γ̃

`
mn − 2∂̃m∂̃nA+ ∂̃`(g̃mn∂̃

`A) (A.1.24)

∂̃nΓµµm = 4∂̃n∂̃mA (A.1.25)

∂̃nΓ``m = ∂̃nΓ̃``m − 6∂̃n∂̃mA (A.1.26)

(Γµµk + Γ``k)Γ
k
nm = Γ̃``kΓ̃

k
nm − ∂̃mAΓ̃``n − ∂̃nAΓ̃``m + g̃nm∂̃

kAΓ̃``k − 2∂̃kAΓ̃``k + 4∂̃nA∂̃mA

−2∂̃`A∂̃
`Ag̃mn (A.1.27)

ΓµnνΓ
ν
`m = 4∂̃nA∂̃mA (A.1.28)

Γ`nkΓ
k
`m = Γ̃`nkΓ̃

k
`m − 2(∂̃(mAΓ̃`n)` + ∂̃`AΓ̃`nm) + ∂̃kA(g̃`mΓ̃`nk + g̃`nΓ̃`mk)

+8∂̃mA∂̃nA− 2∂̃`A∂̃`Ag̃mn . (A.1.29)

Likewise, plugging (A.1.23) - (A.1.29) into (A.1.3) yields Rmn as in (3.3). The the Ricci tensor on

the Calabi-Yau, R̃mn, is defined in terms of the Christoffel symbols there: R̃mn = ∂̃`Γ̃
`
mn − ∂̃nΓ̃``m +

Γ̃``kΓ̃
k
nm − Γ̃`nkΓ̃

k
`k = 0.

A.2 Delta Distributions, Parallel Propagators, and Synge’s

World-Function in Curved Space

An essential part of solving the constraint equations in Chapter 3 is understanding the role that

the geometry of the compact manifold plays in the equations. Our näıve treatment of vectors, delta

functions, and Green’s functions fails to capture some of the subtleties involved in extra dimensions.

For this reason, we will review the portions of [32] that provide the mathematical groundwork for

a proper treatment of bi-tensors, i.e. tensorial functions of two points in spacetime.

First, we introduce the invariant, n-dimensional Dirac distribution δn(x, x′) via the definition

∫
M
dnx
√
−g f(x)δn(x, x′) = f(x′) . (A.2.1)
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The Dirac distribution is symmetric in its arguments, so that taking M→M′ and f(x) → f(x′)

in (A.2.1) results in f(x′)→ f(x).

Next, we consider some parallel propagator, Λα
α′(x, x′). Λα

α′ is used to parallel transport any

vector from x to x′ along the geodesic, β, that links these two points. The inverse operation, parallel

transporting a vector from x′ to x along β, is performed by Λα′
α. The combination of the invariant

Dirac distribution and Λα
α′ can be shown to satisfy the identities:

∇α(Λα
β′(x, x′)δn(x, x′)) = −∂β′δn(x, x′) (A.2.2)

∇β′(Λα
β′(x, x′)δn(x, x′)) = −∂αδn(x, x′) . (A.2.3)

Synge’s world-function is a scalar function of two points on a curved manifold and is defined

by

σ(x, x′) =
1

2
(λ1 − λ0)

∫ λ1

λ0

gµν(z)tµtνdλ , (A.2.4)

where the tangent vector, tµ = dzµ/dλ, obeys the geodesic equation

Dtµ

dλ
= 0 . (A.2.5)

We take zµ(λ) to be the set of relations that describes the unique geodesic, β, connecting the two

points. We can see that (A.2.4) describes σ to numerically be half the squared geodesic distance

between x and x′.

Synge’s world-function can be used to create a dual vector with respect to either sets of coordi-

nates by taking its partial derivative, σα ≡ ∂σ/∂xα. By taking repeated derivatives, we can create

a bi-tensor of any rank. However, the most useful quantity for our purposes is the single derivative,

σα, since this corresponds to a vector with respect to xα that is tangent to β. We can then use

parallel propagators to evaluate this vector at the x′ position. For example, we can express σα in
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terms of σα
′

via

σα = −Λα
α′σα

′
. (A.2.6)

This scenario is illustrated in the context of the first-order perturbation of the D3-brane postion by

Figure A.1.

  

Figure A.1: The geodesic β connects the stationary brane position, Y
/b

0 (y), to the perturbed positon,
Y m(x). Derivatives of σ produce dual vectors with respect to one set of coordiantes.

In the coincidence limit of x → x′, we find that the parallel propagator collapses to a Dirac

delta,

[Λα
α′ ] = δαα′ , (A.2.7)

its first derivatives vanish,

[∇γΛ
α
α′ ] = [∇γ′Λ

α
α′ ] = 0 , (A.2.8)
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and its second derivatives evaluate to the Ricci tensor,

[
∇δ∇γΛ

α
β′

]
=
[
∇δ∇γ′Λ

α
β′

]
= −1

2
Rα′

β′γ′δ′ , (A.2.9)[
∇δ′∇γΛ

α
β′

]
=
[
∇δ′∇γ′Λ

α
β′

]
= +

1

2
Rα′

β′γ′δ′ . (A.2.10)

Finally, in the near-coincidence limit, we are able to expand any tensor at x in terms of Synge’s

world-function and the tensor’s value at x′ via

Aαβ(x) = Λα
α′Λ

β
β′(Aα′β′(x′)−∇γ′Aα′β′(x′)σγ

′
+

1

2
∇δ′∇γ′Aα′β′(x′)σγ

′
σδ

′
+ . . .) , (A.2.11)

where the dots represent terms of higher order in σ.

Consider some electromagnetic vector potential, Aα, in a curved, 4D spacetime. In the Lorenz

gauge, Aα satisfies the wave equation

�Aα −Rα
βA

β = −4πjα , (A.2.12)

where Rα
β is the Ricci tensor and jα is the current density. We can write the generic solution to

(A.2.12) as

Aα(x) =

∫
d4x′

√
−g′Gα

β′(x, x′)jβ
′
(x′) , (A.2.13)

where the bi-tensor Green’s function Gα
β′(x, x′) satisfies

�Gα
β′(x, x′)−Rα

βG
β
β′(x, x′) = −4πΛα

β′(x, x′)δ4(x, x′) . (A.2.14)

The conventional solutions to (A.2.14) involve defining the Green’s function in two causal regions:

the retarded bi-tensor Green’s function, G+
α
β′(x, x′), and the advanced bi-tensor Green’s function,
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G−
α
β′(x, x′). In the case of a Ricci-flat manifold, the Green’s functions satisfy

∇αG±
α
β′(x, x′) = −∂β′G±(x, x′) , (A.2.15)

where G±(x, x′) are the associated scalar Green’s functions. We will find that this relation is crucial

to solving the constraint equations for the D3-brane system.

A.3 Introduction to Differential Forms

Differential forms are a powerful notational tool used to provide coordinate-independent descriptions

of tensors with many indices on higher dimensional manifolds. By generalizing concepts such as

scalars and vector fields to zero- and one-forms, respectively, we can use form notation to perform

calculations that would be otherwise hampered by component considerations. Of particular use

are the concepts of exterior differentiation and Hodge duals, which naturally encode the metric.

Furthermore, the skew symmetric properties of forms can be used to produce the simplifications

that are used throughout this work.

To compile a list of useful identities, we will follow the developments outlined in [9] and [33].

Then, we provide an example of the form notation in the context of four-dimensional electromag-

netism.

We define a p-form αp as a totally skew-symmetric covariant tensor of rank p. Thus, a zero-form

is a scalar, while a one-form is a vector. The wedge product of a p-form αp and a q-form βq is a

(p+ q)-form given by

(
αp ∧ βq

)
µ1...µp+q

=
(p+ q)!

p!q!
α[µ1...µpβµp+1...µp+q ] . (A.3.1)

The wedge product has the property that

αp ∧ βp = (−1)pqβq ∧ αp . (A.3.2)
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The space of p-forms at x is a vector space and has a basis

{dxm1 ∧ dxm2 ∧ . . . ∧ dxmp}, m1 < m2 < . . . < mp . (A.3.3)

Thus, the components of a p-form, αp are given by

αp =
1

p!
αm1m2...mpdx

m1 ∧ dxm2 ∧ . . . ∧ dxmp , (A.3.4)

with αm1m2...mp skew symmetric.

Exterior differentiation on a form is essentially taking the curl of a skew symmetric tensor and

maps a p-form to a (p+ 1)-form

(
dαp
)
µ1...µp+1

= (p+ 1)∂[µ1αµ2...µp+1] . (A.3.5)

Crucially, due to the skew symmetry, dαp is covariant because the Christoffel symbols cancel. This

means that the exterior derivative of a form is covariant regardless of the metric. Another important

consequence of the skew symmetry is that

d
(
dαp
)

= 0 . (A.3.6)

By defining Mp to be a p-dimensional manifold with a boundary ∂Mp, we can restate Stokes’

theorem for a (p− 1)-form in a coordinate-invariant way, i.e. that

∫
Mp

dαp−1 =

∫
∂Mp

αp−1 . (A.3.7)

The Hodge star ? in an d-dimensional space is a map from p-forms to (n − p)-forms and is

defined by its action on the basis elements

?(dxm1 ∧ . . . ∧ dxmp) =
1

(n− p)!
√
g gm1k1 . . . gmpkpεk1...kpkp+1...kndx

kp+1 ∧ . . . ∧ dxkn , (A.3.8)
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where ε is the totally antisymmetric Levi-Civita tensor density. An alternative definition (which is

used throughout this work) includes the factor of the square root of the determinant of the metric

in the definition of the tensor ε,

ε0...n = −1/
√
g . (A.3.9)

N.B. This is for a space with a Minkowski signature metric; the internal Calabi-Yau has a Euclidean

signature metric and so ε̃ 4...9 = 1/
√
g̃. The Hodge dual also has a simplifying identity when acting

on a p-form:

? ? αp = (−1)p(n−p)+1αp Minkowski signature (A.3.10)

? ? αp = (−1)p(n−p)αp Euclidean signature . (A.3.11)

Using the Hodge star we can define an inner product on the space of real forms

(αp, βp) = (βp, αp) =

∫
αp ∧ ?βp =

1

p!

∫
αµ1...µpβ

µ1...µp
√
g dx1 ∧ . . . ∧ dxn . (A.3.12)

We are also able to define the adjoint of the exterior derivative, d†, that maps p-forms to

(p− 1)-forms and obeys

(αp, dβp−1) = (d†αp, βp−1) . (A.3.13)

Explicitly, (A.3.13) tells us that

(α, dβ) =

∫
dβ ∧ ?α =

∫ (
d(β ∧ ?α)− (−1)p−1β ∧ d ? α

)
. (A.3.14)

On a compact manifold, ∂M = 0 and so the first term vanishes. We are left with

(α, dβ) = (−1)p
∫
β ∧ d ? α = (−1)p+p(n−p)

∫
β ∧ ? (? d ? α) . (A.3.15)
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We recover (A.3.13) by defining d† ≡ (−1)p+p(n−p) ? d ? so that

(α, dβ) =

∫
β ∧ ? d†α = (d†α, β) . (A.3.16)

As with the exterior derivative, the successive applications of the adjoint on a form gives zero:

d†d†αp = ? d ? ? d ? αp = (−1)p(n−p) ? d2 ? αp = 0 . (A.3.17)

The natural second-order differential operator in form notation is the Hodge-deRahm operator

that takes p-forms to p-forms

∆ ≡ d d† + d†d . (A.3.18)

Using ∆ we can classify different types of forms on a manifold. One special type of form is a

harmonic form, which is annihilated by ∆: ∆ω = 0. Thus, if ω is harmonic,

(ω,∆ω) = 0

(ω, (d d† + d†d)ω) = 0

(d†ω, d†ω) + (dω, dω) = 0 . (A.3.19)

Since the inner product is positive semi-definite, then both dω = 0 and d†ω = 0. It can also be

shown that the reciprocal is true; thus,

∆ω = 0 ⇐⇒ dω = 0 and d†ω = 0 . (A.3.20)

Consider the smooth, connected manifold M. We can define the p-chain αp as the sum

αp =
∑
i

ciNi , (A.3.21)

where ci ∈ C and Ni is a smooth, p-dimensional, oriented sub-manifold of M. Various types of
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chains can be considered for the various values of ci. Now consider acting on the p-chain αp with

the ∂ operator

∂αp =
∑
i

ci∂Ni , (A.3.22)

where ∂Ni is the oriented boundary of Ni. Thus, ∂αp is a (p − 1)-chain. In order to explore the

relationship between forms – which relate to elements of volume – and chains – which relate to

boundaries – let C denote some small p-cube of volume

C ∈ Cn : {a1 ≤ x1 ≤ b1, . . . , ap ≤ xp ≤ bp, xp+1 = cp+1, . . . , xn = cn} , (A.3.23)

and let ηc be some (n− p)-form given by

ηc = θ(x1 − a1)θ(b1 − x1) . . . θ(xp − ap)θ(bp − xp)

×δ(xp+1 − cp+1) . . . δ(xn − cn)dxp+1 ∧ . . . ∧ dxn , (A.3.24)

where θ(x− a) is the heavy-side step function. Then, if ωp is an arbitrary p-form, we find that

∫
M
ωp ∧ ηc =

∫
C

ω12...p dx
1 ∧ . . . ∧ dxp =

∫
C

ω . (A.3.25)

This can be extended to any volume by taking an appropriate linear combination of cubes. Thus,

we define the inner product of a p-form, ωp, with a p-chain, Cp, by

π(ω,C) =

∫
C

ω . (A.3.26)

Using the form-version of Stokes’ theorem given by (A.3.7), we can see that

(−1)p+1

∫
M
ω ∧ dηc =

∫
C

dω =

∫
∂C

ω , (A.3.27)

i.e. (−1)p+1dηc ∼ ∂C for any chain C. We can therefore define a cycle as a chain with no
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boundary; any two cycles C and C ′ are considered to be equivalent if they differ by a boundary,

e.g. C ′p ∼ Cp + ∂Cp+1. This equivalence in cycles is illustrated in Figure A.2 for the case of the

torus T2. The number of independent cycles on a manifold is equal to the simplical homology of

the manifold, given by the ratio of the set of cycles over the set of chains that comprise boundaries.

Homologies and cohomologies are addressed in detail in § A.4.

Figure A.2: Curves z and z′ are cycles because they have no boundary and are not themselves boundaries.
These two cycles are equivalent because they differ only by the boundary of U .

A.3.1 Example: Electromagnetism

As an example of the use of forms in an already familiar problem, we review the procedure outlined

in [34] for the formulation of classical electromagnetism in terms of a one-form gauge field A1 and

a 2-form field strength F2 = dA1. Maxwell’s equations in the presence of sources are

dF2 = ?Jm1 and d ? F2 = ?Je1 , (A.3.28)
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where Je1 is the electric current density 4-vector and Jm1 is the magnetic one. For a point-like electric

source with charge e and density ρe = eδ3(x), we can write the charge in terms of the field strength:

e =

∫
S2

?F2 . (A.3.29)

N.B. The closure of R3 is the two-sphere S2. In the sourceless case, (A.3.28) becomes

dF2 = 0 and d ? F2 = 0 . (A.3.30)

Here, the self-duality condition F2 = ?F2 is manifest; furthermore, this condition is still required

for higher-dimensional analogues.

A.4 Forms on Complex Manifolds

A standard model for the internal dimensions in a 10D SUGRA theory is the Calabi-Yau 3-fold.

This choice is set by the Einstein equations for the background metric, and results in some crucial

restrictions on the types of forms permitted in the extra dimensions. Since the resultant 4D theory

is determined via dimensional reduction, we postulate that the exact form of the 6D manifold

should not affect the final result. We will briefly review some important properties that are used

throughout this work by following the summaries provided in [11], [35], and [9].

Following the review of form notation above, we first examine some properties of forms on

compact manifolds. For a compact manifold without boundary and positive definite metric, Hodge’s

theorem states that any p-form can be uniquely decomposed into harmonic, exact, and co-exact

parts, i.e.

ω = α + dβ + d†γ . (A.4.1)

Note that a closed form is one whose exterior derivative is zero, while an exact form is one that

can be written in terms of the exterior derivative of another form. Thus, all exact forms are closed.
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In general, we are able to write closed forms as an exact form within any local coordinate patch.

However, this may not be the case globally.

One way we classify different manifolds is in terms of topological invariants, such as cohomology

classes. For some manifoldM, we define the deRham cohomology class in terms of the set of closed

p-forms Zp and the set of exact p-forms Bp to be

Hp =
Zp

Bp
. (A.4.2)

Thus, Hp is the set of closed p-forms where any two elements are considered equivalent if they differ

by an exact form: αp ∼ αp + dβp−1. Importantly, each cohomology class contains precisely one

harmonic form, although this form will depend on the metric of M.

The cohomology class also determines the number of linearly independent harmonic p-forms by

the Betti numbers, bp = dim(Hp). We can then build the Euler characteristic χ of an n-dimensional

manifold by the alternating sum of the Betti numbers

χ =
n∑
p=0

(−1)pbp . (A.4.3)

We will see that Calabi-Yau manifolds are a subset of a much more general class of manifolds and

are identified by their values of χ and bp.

Let us specify M to be a complex manifold with local coordinates zµ. We define the mixed

tensor (also known as the complex structure) Jm
n as

Jm
n = idzµ ⊗ ∂

∂zµ
− idzµ̄ ⊗ ∂

∂zµ̄
, (A.4.4)

where the complex coordinates zµ have µ = {1 . . . n} and zµ̄ = ¯(zµ). Jm
n is a real tensor with the

identity

Jm
nJn

p = −δmp . (A.4.5)
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The complex structure corresponds to variations of the components of the metric of mixed type,

i.e. one real and one imaginary index. Another important structure corresponds to variations of

the components of the metric of pure type, i.e. all real or all imaginary indices, and is denoted Ω.

In the case of a Calabi-Yau manifold (see below), Ω is a nonzero, holomorphic (3,0)-form1 given by

Ω =
1

3!
Ωµνρ(x)dxµ ∧ dxν ∧ dxρ , (A.4.6)

where each component is a function of position. Furthermore, Ω is harmonic and covariantly

constant. We discuss the relationship between variations of the metric and the moduli space of the

manifold in Appendix A.5.

On a hermitian manifold there exists a unique connection that allows for the covariant deriva-

tives of both the metric and the complex structure to vanish. Furthermore, the torsion Γ[mn]
r is

pure (all real or all imaginary) in its lower indices. It can be shown that the existence plus the

uniqueness conditions for this connection imply that

Γµν
κ = gκρ̄∂µgνρ̄ . (A.4.7)

Thus, only a few terms in the Riemann tensor are non-vanishing:

Rµν̄ρ̄
σ̄ = −Rν̄µρ̄

σ̄ = ∂µΓν̄ρ̄
σ̄ . (A.4.8)

Since the Riemann tensor is already antisymmetric, it is straightforward to define a Ricci-form R

as

R = iRµν̄ρ̄
ρ̄ dzµ ∧ dzν̄ . (A.4.9)

1 Previously, the notation (m,n) would have referred to m 4D indices and n 6D indices; in the context of complex
manifolds this refers to m holomorphic and n anti-holomorphic indices.
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Using (A.4.7) and noting that ∂∂̄ = −1
2
d(∂ − ∂̄), we see that

R = i∂∂̄ log
√
g , (A.4.10)

and that Ricci-form is closed, i.e. dR = 0. This defines a cohomology class via

c1 =
1

2π
R (A.4.11)

known as the first Chern class, which is invariant under smooth changes to the complex structure

of the manifold.

A Calabi-Yau manifold is a compact Kähler manifold with c1 = 0. A Kähler manifold is a type

of Hermitian manifold whose associated complex structure is closed. A Calabi-Yau manifold with

nonzero Euler number, χ, has Betti numbers b1,0 = b0,1 = 1/2 b1 = 0. Since b1 is a topological

invariant, we are permitted to establish results in the case of a Ricci-flat metric that will apply

to all other Calabi-Yau manifolds with χ 6= 0. The Ricci-flatness of the Calabi-Yau motivates the

inclusion of compensator fields in our metric ansatz so that this condition is met.

A.5 Kähler Manifolds and Their Moduli

Recall the definition of a Calabi-Yau manifold as a compact Kähler manifold with vanishing first

Chern class and closed Kähler form, J . Following the definition of the complex structure in (A.4.4),

we define the Kähler form of a compact manifold to be

J =
1

2
Jk

`g`mdx
k ∧ dxm = igµν̄dx

µ ∧ dxν̄ . (A.5.1)

Furthermore, any metric that has a closed fundamental form is called a Kähler metric. Since J is

closed, we find immediately that dJ = 0 ⇒ ∂J = ∂̄J = 0, and, using (A.5.1), we arrive at the
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Kähler condition:

∂λgµν̄ = ∂µgλν̄ and ∂̄λgµν̄ = ∂̄νgµλ̄ . (A.5.2)

The Kähler condition implies that the metric (of Kähler type) can be expressed in terms of a local

Kähler potential, K; and thus, so too can the Kähler form

gµν̄ = ∂µ∂̄νK ⇒ J = i∂∂̄K . (A.5.3)

Yau’s theorem states that for, a Calabi-Yau manifold M with Kähler form J0, there exists a

unique, Ricci-flat Kähler metric for M whose associated Kähler form J is in the same cohomology

class as J0. This means that the parameter space of a Calabi-Yau manifold is equivalent to the

parameter space of Ricci-flat metrics. By perturbing the parameter space of Ricci-flat metrics from

gmn → gmn+δgmn such that Rmn(g) = 0 and Rmn(g+δg) = 0, we obtain the Lichnerowicz equation:

∇`∇`δgmn + 2Rm
p
n
qδgpq = 0 . (A.5.4)

The zero modes of (A.5.4) of pure type, δgµν and δgµ̄ν̄ , and those of mixed type, δgµ̄ν , solve the

equation separately. Thus, there are two main types of metric variations to consider: those of

mixed type, which are associated with a real, harmonic (1,1)-form, and those of pure type, which

are associated with a complex, harmonic (2,1)-form. Due to Yau’s theorem, there is a one-to-one

correspondence between the metric variations and the elements of the cohomology class of the same

type.

As described in Appendix A.4, the dimension of a cohomology class is defined as the Betti

number, b. Similarily, modes of mixed type correspond to variations of the Kähler class and are

defined by Hodge numbers h1,1 = dim(H1,1) real parameters; modes of pure type correspond to

variations of the complex structure and yield h2,1 = dim(H2,1) complex parameters.

Let us first consider the space of (2,1)-forms. Let each χα define a (2,1) cohomology class

via χα = 1/2χακλµ̄dx
κ ∧ dxλ ∧ dxµ̄, and let these H2,1 be indexed by α = {1, 2, . . . , h2,1}. Each
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deformation within a cohomology class is then given by

χακλµ̄ = −1

2
Ωκλ

ν̄ ∂δgµ̄ν̄
∂zα

, (A.5.5)

where the zα are the parameters for the complex structure. N.B. Ωµν
λ̄ = Ωµνσg

σλ̄. We can then

express the variations of the metric of pure type by the inverse of the previous relation

δgµ̄ν̄ = − 1

||Ω||2
Ω̄µ̄

ρσχαρσν̄δz
α . (A.5.6)

In order to describe the moduli space, we can consider endowing the space with some metric G

that has both pure and mixed indices. This makes the correspondence between the variations of

the metric and the elements of the cohomology classes manifest. Using (A.5.6), we can show that

the mixed metric in the moduli space, Gαβ̄, can be given by

Gαβ̄ = − ∂

∂zα
∂

∂zβ̄
log

(
i

∫
M

Ω ∧ Ω̄

)
, (A.5.7)

i.e., the moduli space is itself Kähler. The moduli space, by (A.5.3), therefore has its own Kähler

potential that is given by

k = − log

(
i

∫
M

Ω ∧ Ω̄

)
. (A.5.8)

Next, we examine the space of (1,1)-forms. Note that, for the real (1,1)-forms %, ϑ, the inner

product on the moduli space is given by

G(%, ϑ) =
1

2V

∫
M
d6x
√
g %µν̄ϑρσ̄g

µσ̄gρν̄ =
1

2V

∫
% ∧ ?ϑ . (A.5.9)

It can be shown that, by defining the triple intersection κ as

κ(%, ϑ, τ) ≡
∫
% ∧ ϑ ∧ τ , (A.5.10)
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then it follows from the identity

V =
1

3!
κ(J, J, J) (A.5.11)

and a relation for ?ϑ in terms of J and κ, that the inner product can be written as

G(%, ϑ) = −3

[
κ(%, ϑ, J)

κ(J, J, J)
− 3

2

κ(%, J, J)κ(ϑ, J, J)

κ2(J, J, J)

]
. (A.5.12)

In terms of the cohomology class H2(M,Z), parameterized by ωA, A = {1, . . . , b1,1}, we can see

that the metric for the space of (1,1)-forms is given by

GAB̄ = − ∂

∂ωA
∂

∂ωB̄
log κ(J, J, J) , (A.5.13)

i.e. the Kähler potential for this space is the logarithm of the volume of the Calabi-Yau manifold.

A.6 Calculation of δΩ

We wish to determine how the first-order part of the Weyl factor, e2Ω, contributes to the constraint

equation

4δA− 2δΩ + e4Ae2Ω∇̃`B` = 0 . (A.6.1)

To do so, we first recall that e2Ω = ṼCY /ṼW , where the unwarped volume of the Calabi-Yau is ṼCY

and is given by

ṼCY =

∫
d6y
√
g̃ , (A.6.2)
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while the warped volume of the Calabi-Yau, which depends on the background solution for A0(y),

is

ṼW =

∫
d6y
√
g̃ e−4A0(y) . (A.6.3)

Thus, the first-order Weyl factor can be expressed as

e−2Ω =
1

ṼCY

∫
d6y
√
g̃ e−4A . (A.6.4)

Furthermore, the background Einstein equation leads to a constraint that gives the warp factor

in terms of the positions of the D3-branes via

∇̃2e−4A0 = −2
∑
i

T3κ
2δ̃6(y, Yi) , (A.6.5)

The solution to (A.6.5) in flat space is a 6-dimensional Green’s function that goes as r−4. Thus, in

order to determine the first-order part of the Weyl factor, we consider perturbing the solution of

(A.6.5) for two D3-branes by moving the position of one of the branes by some δ~y and substituting

this into (A.6.4):

−2e−2ΩδΩ =
1

ṼCY

∫
d6y
√
g̃

(
1

|~y − ~y0 − δ~y|4
− 1

|~y − ~y0|4

)
. (A.6.6)

Without specifying more about the manifold, this is as far as we can proceed; however, it is instruc-

tive to consider a flat, finite-radius manifold. Using spherical symmetry, and taking |δ~y| � |~y− ~y0|

so that ε = |δ~y|/|~y − ~y0| � 1, (A.6.6) can be expanded to linear order in ε to give

∫
d6y

(
1

|~y − ~y0 − δ~y|4
− 1

|~y − ~y0|4

)
≈
∫
d6y

4ε cos θ

|~y − ~y0|4
. (A.6.7)

Provided that this space has a finite radius, i.e. |~y − ~y0| ≤ R, (A.6.6) vanishes.

Although this example is instructive, we have made a number of simplifying assumptions in
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order to evaluate the integral over the Calabi-Yau. In §3.2 we are able to see that, in the case of the

warp factor being described by a bi-scalar Green’s function, we find the same conclusion without

having to make any assumptions regarding the internal manifold.

A.7 Einstein Equations for the 2-Form Axion

We wish to determine if the reformulation of the universal axion as a 2-form includes any new terms

into the Einstein equations. If so, there will be additional considerations for the 2-form axion. We

begin by specifying the metric ansatz for b2(x),

ds2
10 = e2Ae2Ωη̂µνdx

µdxν + 2e2Ae−2Ω[?̂d̂b2]B′m(y)dxµdym + e−2Ag̃mndy
mdyn , (A.7.1)

where B′1 is co-closed, i.e. ∇̃`B′` = 0. For simplicity, we denote [?̂d̂b2]µ by tµ so that ∂µtµ =

∂µ[?̂d̂b2]µ = −?̂d̂?̂(?̂d̂b2) = −?̂d̂d̂b2 = 0. Using (A.1.1), the terms (up to first order) that contribute

to Rµν are

∂̂λΓ
λ
νµ = (2∂̂µ∂̂ν − η̂µν ∂̂2)(A+ Ω) (A.7.2)

∂̃`Γ
`
νµ = e4Ae−2Ω∂̂(µtν)(4∂̃`AB

′` + ∂̃`B
′`)− e4Ae2Ωη̂µν(4∂̃`A∂̃

`A+ ∇̃2A) (A.7.3)

∂̂νΓ
λ
λµ = 4∂̂ν ∂̂µ(A+ Ω) + e4Ae−2Ω∂̂νtµ `̃AB

′` (A.7.4)

∂̂νΓ
`
`µ = −e4Ae−2Ω∂̂νtµ∂̃

`AB′` − 6∂̂ν ∂̂µA (A.7.5)

(Γλλn + Γmmn)Γnνµ = e4A(Γ̃mmn − 2∂̃nA)(e−2ΩB′n∂̂(νtµ) − e2Ω∂̃nAη̂νµ) (A.7.6)

ΓρµmΓmνρ = e4Ae−2Ω∂̃mAB′m∂̂νtµ − e4Ae2Ωη̂νµ∂̃mA∂̃
mA (A.7.7)

ΓλµnΓnλν = e4Ae−2Ω∂̃nAB′n∂̂µtν − e4Ae2Ωη̂νµ∂̃nA∂̃
nA . (A.7.8)

The result of these contributions is that

Rµν = ∂̂µ∂̂ν(4A− 2Ω)− η̂µν ∂̂2(A+ Ω)− e4Ae2Ω∇̃2A . (A.7.9)

104



The more difficult of the three components of RMN for the 2-form axion is the off-diagonal

component. To ease the calculation, we will again define some Ψm
µn ≡ e4Ae−2Ωtµg̃

`m(∂̃`AB
′
n+ ∂̃[`B

′
n])

and compute the sums of certain combinations of Christoffel symbols whenever it is convenient to

do so. The contributions to Rµm are given by (A.1.2) and include

∂̂λΓ
λ
mµ = ∂̂µ∂̃mA (A.7.10)

∂̃`Γ
`
mµ = −∂̂µ∂̃mA− ∂̃`Ψ`

µm (A.7.11)

∂̃mΓ``µ = −6∂̂µ∂̃mA− ∂̃mΨ`
µ` (A.7.12)

∂̃mΓννµ = 4∂̂µ∂̃mA+ e4Ae−2Ωtµ

(
4∂̃mA∂̃`AB

′` + ∂̃m(∂̃`AB
′`)
)

(A.7.13)

(Γρρλ + Γqqλ)Γ
λ
mµ = 4∂̃mA∂̂µ(A+ Ω) + e4Ae−2Ωtµ∂̃mA∂̃

`AB′` − ∂̃mAΨ`
µ` − 6∂̃mA∂̂µA (A.7.14)

(Γνν` + Γqq`)Γ
`
mµ = 2∂̃`AΨ`

µm + 2∂̃mA∂̂µA− Γ̃qq`Ψ
`
µm − Γ̃``m∂̂µA (A.7.15)

ΓρmλΓ
λ
ρµ = 4∂̃mA∂̂µ(A+ Ω) + e4Ae−2Ωtµ∂̃mA∂̃

`AB′` (A.7.16)

Γρm`Γ
`
ρµ = −∂̂µA∂̃mA− e4Ae−2Ωtµ∂̃

`A
(
∇̃(mB

′
`) + 4∂̃(mAB

′
`) − g̃`m∂̃qAB′q

)
(A.7.17)

ΓqmλΓ
λ
qµ = −∂̃`AΨ`

µm − ∂̃mA∂̂µA (A.7.18)

Γqm`Γ
`
qµ = ∂̃`AΨ`

µm + ∂̃mAΨ`
µ` − g̃m`∂̃qAΨ`

µq + 6∂̃mA∂̂µA− Γ̃qm`Ψ
`
µq

−Γ̃`m`∂̂µA . (A.7.19)

Combining these and using the definition of Ψ results in

Rµm = 2∂̂µ∂̃mA− 8∂̂µA∂̃mA− e4Ae−2Ωtµ(∇̃2B′m + ∇̃2AB′m + 4∇̃`A∂̃[`B
′
m]) . (A.7.20)
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The final component is Rmn, which is made up of

∂̂µΓµmn = e−4Ae−2Ωg̃mn∂̂
2A (A.7.21)

∂̃`Γ
`
mn = ∂̃`(g̃mn∂̃

`A)− 2∂̃m∂̃nA+ ∂̃`Γ̃
`
mn (A.7.22)

∂̃nΓµµm = 4∂̃n∂̃mA (A.7.23)

∂̃nΓ``m = −6∂̃n∂̃mA+ ∂̃nΓ̃``m (A.7.24)

(Γµµq + Γppq)Γ
q
nm = ∂̃qAg̃nmΓ̃``q − 2g̃nm∂̃

`A∂̃`A+ 4∂̃mA∂̃nA− 2∂̃`AΓ̃`nm − 2∂̃(mAΓ̃`n)`

+Γ̃qnmΓ̃``q (A.7.25)

ΓµnνΓ
ν
µm = 4∂̃nA∂̃mA (A.7.26)

ΓpnqΓ
q
pm = 8∂̃mA∂̃nA− 2∂̃(mAΓ̃`n)` + 2∂̃`AΓ̃`nm + 2∂̃pAg̃`(mΓ̃`n)p − 2g̃mn∂̃

`A∂̃`A

+Γ̃`npΓ̃
p
`m , (A.7.27)

and is given by (A.1.3). We therefore find that

Rmn = −8∂̃mA∂̃nA+ e−4Ae−2Ωg̃mn∂̂
2A+ g̃mn∇̃2A+ R̃mn , (A.7.28)

where R̃mn is the Ricci tensor of the internal space; for the Calabi-Yau R̃mn = 0.

Using (A.7.9), (A.7.20), and (A.7.28), the Ricci scalar is

R = 6e−2Ae−2Ω∂̂2(A− Ω) + 2e2A(∇̃2A− 4∇̃`A∇̃`A) , (A.7.29)

which means that the components of the Einstein tensor, given by GMN = RMN − 1/2gMNR, are

Gµν = (∂̂µ∂̂ν − η̂µν ∂̂2)(4A− 2Ω) + 2e4Ae2Ωη̂µν(2∇̃`A∇̃`A− ∇̃2A) (A.7.30)

Gµm = 2∂̂µ∂̃mA− 8∂̂µA∂̃mA− e4Ae−2Ωtµ[∇̃2B′m + 2∇̃2AB′m

+4∇̃`A(∂̃[`B
′
m] − ∇̃`AB′m)] (A.7.31)

Gmn = −8∂̃mA∂̃nA+ 4∇̃`A∇̃`Ag̃mn + e−4Ae−2Ωg̃mn∂̂
2(3Ω− 2A) . (A.7.32)
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We can compare this Einstein tensor to the one calculated for the D3-brane in § 3.1 under the sub-

stitution ∂̂µBm → e−4Ω[?̂d̂b2]µB
′
m. Indeed, there is complete agreement between (A.7.30)-(A.7.32)

and (3.5)-(3.7). Furthermore, the stress tensor, TMN , does not require taking derivatives, so it too

will remain valid under direct substitution. Thus, reformulation of the scalar axion into a 2-form

axion does not require a re-derivation of the Einstein equations.
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