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Abstract

Recently, stochastic geometry has been shown to be a very powerful tool to model,

analyze, and design networks with random topologies such as wireless ad hoc and sen-

sor networks as well as multi-tier cellular networks. In stochastic geometry analysis,

point processes are used to model the positions and the channel access behaviors of

the nodes. The thesis develops analytical frameworks to characterize the performance

of large-scale wireless networks with random topologies. In particular, I use stochastic

geometry tools to model, analyze, and design ad hoc networks, star-connected sensor

networks, and infrastructure-based two-tier cellular networks. I have optimized the

tradeoff between outage probability and spatial frequency reuse efficiency in carrier-

sensing-multiple-access based ad hoc networks. I have developed a novel spectrum-

efficient design paradigm for star-connected wireless sensor networks. For downlink

transmission in cellular networks with cognitive femto access points (FAPs), I have

quantified the performance gain imposed by cognition and developed a paradigm to

optimize the spectrum sensing threshold for cognitive FAPs. Finally, I have developed

a novel modeling paradigm for uplink transmission in cellular networks and obtained

simple expressions for network performance metrics including the outage probability

and average rate. Furthermore, I have revealed a transition point in the behavior of

uplink transmission in cellular networks that depends on the relative values of the

network parameters.
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Chapter 1

Introduction

1.1 Introduction

A basic wireless communication system consists of a transmitter (source of informa-

tion), receiver (destination), and a communication channel. The transmitter modu-

lates an electromagnetic carrier signal based on the information and sends the modu-

lated carrier signal through the propagation medium. In case of free space propagation

(i.e., with no obstacle between the transmitter and the receiver), the power of the

electromagnetic signal1 decays with the propagation distance according to the power

law r−η, where r is the distance between the transmitter and receiver and η is the

path-loss exponent. Note that for correct data recovery from the carrier, the signal

power received at the receiver should exceed the thermal noise power with a certain

threshold. That is, the signal-to-noise power ratio (SNR) should be greater than

a certain threshold defined for correct information recovery. Therefore, the trans-

mitter is required to transmit the signal with a sufficient power to compensate for

the path-loss attenuation such that the signal power is received at the receiver with

1For brevity, electromagnetic signal is denoted hereafter as signal.
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the required SNR. Hence, the transmit power is an important design parameter in

wireless communication.

In wireless communications, the available spectrum is divided into frequency chan-

nels. Each frequency channel is specified by two parameters, the centre frequency and

the bandwidth. Non-overlapping frequency channels represent independent communi-

cation links. That is, if different transmitters transmit their data over non-overlapping

channels, the data transmitted from each transmitter can be recovered at its intended

receiver if the SNR threshold is satisfied. Therefore, the higher the number of chan-

nels, the higher the number of independent wireless communication links that can be

established. The data rate (also referred to as link capacity) is given by Shannon’s

formula as follows:

C = W log2(1 + SNR) bits/sec (1.1)

where W is the bandwidth of a channel. Shannon’s formula shows the relationship

between the bandwidth, the SNR and maximum data rate supported by each channel.

Shannon’s formula defines an important tradeoff, namely, tradeoff between the

number of channels and the data rate supported on each channel. To accommodate

the increasing number of wireless devices and technologies, the tradeoff between the

number of channels and the channel bandwidth should be designed carefully and

the channels should be shared and reused by multiple wireless links. In that case, if

multiple signals from more than one transmitter are transmitted on the same channel,

the signals interfere with each other which may lead to the loss of all of the transmitted

data. From a receiver’s perspective, if multiple signals are received on the same

channel, the data from the signal with dominating power can be recovered. That

is, on a channel shared by several signals, only one signal can be recovered at a
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given receiver if that signal power is sufficiently greater than the interfering signals

powers plus the thermal noise power. In other words, a receiver can recover the

data transmitted from its intended transmitter on a shared wireless channel if the

received signal-to-interference-plus-noise (SINR) ratio is above the threshold defined

for correct signal recovery. Wireless networks where multiple links sharing the same

frequency spectrum are called multi-access networks. For a multi-access network,

when the interference is treated as noise, the Shannon’s formula for a generic link can

be written as

C = W log2(1 + SINR) bits/sec. (1.2)

In a wireless system with a single link, the required signal-to-noise ratio (SNR)

can be maintained through a proper transmission power to compensate for the signal

attenuation with distance. In a shared spectrum scenario, increasing the power of all

transmitters increases the desired signal level as well as the interference level, which

may degrade the SINR, and hence link capacity. Therefore, in a multi-access network,

the SINR cannot be maintained above the required threshold by simply increasing the

transmission powers of the coexisting transmitters. Instead, a design paradigm that

accounts for the network characteristics can be developed to balance the tradeoffs

among the different network parameter and achieve the required SINR performance.

In the next two subsections, I discuss two fundamental network parameters that

highly affect the SINR.

1.1.1 Network Geometry

The first network parameter that highly affects the SINR is the network geometry. In

wireless communications systems, the transmitter-receiver pairs (i.e., network nodes)

are distributed over the spatial domain. The pattern formed by the network nodes
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over the spatial domain is called the network geometry (also denoted as network

topology). That is, the network geometry defines the positions of the network nodes

with respect to (w.r.t.) each other. The network geometry is highly affected by

the network characteristics such as the network type, application, and infrastructure.

For instance, sensor networks often have a random network topology. On the other

hand, cellular networks with base stations carefully planned and deployed by a service

provider often have a regular network topology.

In a wireless network where multiple links share the same radio spectrum, the

SINR at any receiver is a function of the locations of the transmitting nodes (i.e.,

network geometry) and the transmit powers of the transmitters using the same chan-

nel. Therefore, the network geometry has a fundamental impact on the performance

of wireless networks. Note that, although the rapid signal power attenuation with

the distance is a limiting factor for any communication link, it also creates more

opportunities to reuse the spectrum by other communication links over the spatial

domain.

1.1.2 Medium Access Control

In a wireless network, the locations of the simultaneously active (interfering) nodes

can be controlled and manipulated via network design parameters (e.g., those related

to medium access control techniques, frequency planning, cognition2 and coordination

techniques). Therefore, in a multi-access network, it is very important to coordinate

the access of the transmitters to the shared wireless spectrum in order to maintain

sufficient SINRs at the network receivers. The medium access is coordinated via a

2A cognitive network node is an intelligent transmitter which is able to monitor the spectrum,
identify spectrum access opportunities, learn from its past experience, and adapt its parameters to
opportunistically access the spectrum without harming other network receivers.
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medium access control (MAC) protocol. The main function of the MAC protocol is

to select the links that can simultaneously share the same channel. A MAC protocol

can select relatively dispersed links in the spatial domain to share the same channel

in order to maintain a sufficient SINR at each link. Another important objective of

the MAC protocol is to ensure fair access of all links to the shared wireless spectrum.

That is, each transmitter having data to transmit should have a guaranteed access

to the shared spectrum at some point in time. Depending on the network type and

application, the MAC protocol can be implemented via a centralized or distributed

scheme. A centralized MAC protocol has a coordinator entity that controls the spec-

trum access of all the network nodes. On the other hand, in a distributed MAC

protocol, the network nodes contend for the spectrum access or coordinate with each

other (e.g., through message passing) for spectrum access.

1.1.3 Key Performance Indicators (KPIs)

SINR is one of the main performance metrics in multiple-access wireless networks.

Many KPIs are related to the SINR at the receiver. In the following I define some

fundamental KPIs in wireless networks and their relation with the SINR.

• Outage Probability: is the probability that the SINR at the receiver goes be-

low the threshold (β) defined for correct signal recovery. The outage probability

is a function of the SINR defined as O = P {SINR ≤ β}.

• Spectral Efficiency: is the average data rate supported per channel per hertz.

The spectral efficiency is a function of the SINR defined as R = log2(1+SINR).

• Spatial Frequency Reuse Efficiency: is a KPI that reflects how often the

same frequency is reused over the spatial domain. If the required SINR thresh-
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old β for correct data recovery is high, the same frequency channel should be

reused over a larger spatial interval which degrades the spatial frequency reuse

efficiency, and vice versa.

• Delay: determine the number of retransmissions required to successfully trans-

mit a massage to its destination. The average delay can be defined as O−1.

• Energy Efficiency: is defined as the data rate delivered per unit power. Re-

ducing interference without increasing the power of the intended signal increases

energy efficiency. This is because low interference implies high SINR, high data

rate, and low outage probability which increases the data rate delivered with

the same transmit power.

From the previous definition of the KPIs, the effect of SINR on the network

performance can be clearly observed. In the next sections, I will discuss how to

develop a design paradigm to engineer the SINR in large-scale wireless networks.

1.2 Modeling, Analysis, and Design of Wireless Networks

As mentioned before, in a multi access network, the SINR cannot be simply increased

by increasing the transmit powers of the transmitters. Instead, the network param-

eters (e.g., MAC protocol, transmit powers, etc.) should be carefully engineered via

a design paradigm. A design paradigm for wireless networks is developed in three

steps, namely, modeling, analysis, and design, which are three related processes for

the practical implementation, maintenance, or expansion of wireless networks. The

modeling phase aims at obtaining some expressions that govern the network behavior.

The inputs for the modeling expressions are the network parameters (i.e., network

geometry, MAC protocol, propagation environment, etc.) and the outputs are the
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KPIs (e.g., outage probability, spectral efficiency, etc.). The modeling expressions

should capture the network type, characteristics, MAC protocol, and network ge-

ometry. After modeling the network and obtaining the expressions that govern the

network behavior, the analysis phase starts. In the analysis phase, the system re-

sponse to different network parameters is analyzed, via the expression obtained from

the modeling phase, to understand the system behavior. Hence, the performance

tradeoffs can be highlighted and the design insights are obtained. Note that with

simpler expressions obtained from the analysis, insights can be obtained for the net-

work design. Finally, in the design phase, the network parameters that balance the

tradeoffs among the different KPIs are determined. The tradeoffs among the different

KPIs are determined based on the operator policy, regulator constraints, customer

expectations, application requirements, or a combination of all. In the next section,

I discuss different approaches used in the literature to model and analyze the SINR

performance in wireless networks.

1.3 Different Approaches for Modeling and Analysis of Wire-

less Networks

In the literature, researchers either ignore the effects of network topology by incorpo-

rating the distance-dependent path-loss into the channel fading (e.g., Wyner model)

or assume simple and deterministic network topology (e.g., specific coexistence model

and grid-based models). Wyner model completely ignores the network geometry and

uses very simplistic assumptions which lead to disputable results and insights for

the network performance [11]. For a known network topology, a specific coexistence

model can be developed and analyzed, however, the analysis is only limited to the

developed coexistence model and cannot be generalized to large-scale network de-
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ployments. The grid models are widely accepted and used in large-scale wireless

networks. However, grid-based models highly complicate the analytical modeling and

analysis for the network and do not capture the actual topology for emerging large-

scale wireless networks (e.g., multi-tier cellular networks) as will be discussed in this

section.

1.3.1 Infrastructure-based Networks

Infrastructure-based networks are networks constituted from access points and nodes

such that a link between any two nodes must be established via the access point.

Grid-based models (e.g., hexagonal grid, square grid, triangular lattice) have been

extensively used and are widely accepted to model infrastructure-based networks. For

instance, the hexagonal grid model for the cellular networks. In the network shown

Fig. 1.1, if each user associates in the downlink to the nearest BS, the hexagons

determine the service range of each BS. Hence, a user cannot be further than the

hexagon radius from her serving BS. Furthermore, the association scheme guarantees

that none of the interfering BSs can be closer to the intended user than her serving

BS. Moreover, if a frequency reuse scheme of 3 is adapted to the network model, no

user receives interference from her adjacent hexagon cells, which significantly reduce

interference.

Grid-based models for modern cellular networks are considered too idealistic and

do not capture actual network topology. Fig. 1.2 shows an actual BSs’ deployment

for the same cellular operator in Nottingham downtown, UK3. Another studies on

actual BSs’ deployments were conducted in [12, 13] which confirm that the cellular

topology significantly deviates from the grid-based model. Instead, it was shown that

3This data is obtained via the open source website of Ofcom available at
http://sitender.ofcom.org.uk/search
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Figure 1.1: Grid-based network models.

the BSs’ locations form random patterns which change from one location to another.

The main reason for this deviation is the capacity variation across the service area

and the infeasibility to exactly follow a gird model for the BSs’ deployment. Further-

more, the deployment of multi-tier cellular networks with different types of BSs (e.g.,

macro, micro, pico, and femto) will impose more uncertainties to the network topo-

logical structure. Therefore, a grid-based model represents a very idealistic network

deployment for cellular networks and cannot capture the multi-tier network deploy-

ments. Moreover, the grid-based modeling for cellular networks highly complicates

the analysis and result in complicated expressions with multiple integrals which ne-

cessitate computationally complex Monte Carlo evaluations [11]. Note that complex

expressions for the performance metrics significantly decrease the insights that can

be obtained via the model.
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Figure 1.2: Actual deployment of BSs in a 800 m × 450 m in Nottingham downtown,
UK.

1.3.2 Infrastructure-less Networks

In contrast to the infrastructure-based networks, any two nodes can directly com-

municate together in the infrastructure-less based network (also denoted by ad hoc

network). Although ad hoc network topologies are inherently random, the grid-based

models have been widely used in ad hoc networks with coordinated spectrum access

to reflect the worst-case interference [14–16]. For instance, in a carrier sensing multi-

ple access (CSMA) network, the sensing threshold for the CSMA protocol guarantees

a minimum distance between any two simultaneously active transmitters. Therefore,

the triangular lattice shown in Fig. 1.3 represents the worst-case packing density

for CSMA networks with deterministic channel gains. The grid-based models in this

case can be only used to model the worst-case performance which may lead to a very

pessimistic and conservative network design.

Therefore, in addition to the complicated analysis, the grid-based model does not
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rmin 

Figure 1.3: Worst-case interference for the centre node (black node) in a CSMA
network with deterministic channel gain.

capture the actual topology of either the infrastructure-based networks or the ad hoc

networks. That is, both the infrastructure-based networks and the ad hoc networks

have uncertainties in their node locations. Given the impact of the network geometry

on the network performance, the modeling expressions should be able to capture

the actual network topology more precisely. Furthermore, the modeling expressions

should be simple enough to facilitate the analysis and design phases. That is, simple

expressions clearly characterize the network performance and highlight the tradeoffs,

which facilitate the network design. In the next section, I will discuss the challenges

to model random wireless networks.

1.4 Challenges in Modeling Random Wireless Networks

Given the impact of distance on the received signal power, the modeling expressions

for the SINR should explicitly account for the network geometry. It is straightfor-
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ward to incorporate location information for networks with deterministic topology

(e.g., grid-based models). However, in random wireless networks, the SINR of a

generic receiver may change form one time instant to another and from one loca-

tion to another, therefore, it is required to average the modeling expressions over all

possible network realizations, each weighted by its probability of occurrence. Note

that averaging the modeling expressions over all possible network realizations cannot

be done via elementary probability theory. The modeling expressions that explic-

itly account for the random geometry is necessary for a design that is robust to the

network’s topological variations.

For random networks with dynamic topology, static design parameters averaged

over all network topologies may lead to a very conservative network operation. There-

fore, sophisticated and adaptive multi-access schemes for interference coordination

and mitigation are required to improve the network performance. These techniques

aims at developing a new generation of networks denoted as self-organizing networks

(SONs), which are able to self-optimize, self-maintain, and self-recover their opera-

tion. The randomized topology of the SON necessitates the development of rigorous,

general, topology-aware analytical tools for its modeling, design, analysis, and per-

formance assessment.

1.5 Motivation and Objective

Motivated by the impact of network geometry on the network performance, I aim at

developing rigorous topology-aware models for wireless networks which can be used

to optimize the network performance. Note that the topology-awareness cannot be

obtained via any of the techniques discussed in Sec. 1.3. That is, the Wyner model

completely ignores the network geometry effect. A coexistence model with arbitrary
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locations of nodes cannot be generalized to large-scale deployments. The grid-based

models are not analytically tractable and also fail to capture realistic network topolo-

gies. Therefore, I adopt the stochastic geometry approach for modeling, analysis, and

design for large-scale wireless networks. Stochastic geometry is the only4 analytical

tool that can capture the uncertainties in the locations of network elements and aver-

age over all network realizations [1–10]. Furthermore, stochastic geometry has proven

to be very powerful to deal with large-scale networks with randomized topologies lead-

ing to simple expressions for the performance metrics which help understanding the

network behavior with variations in the network design parameters.

The main objective of this thesis is to develop a general framework that accounts

for the network geometry in the design and analysis of large-scale wireless networks.

Stochastic geometry is a powerful tool that will be used throughout this work to

model, analyze, design, and obtain the performance metrics for different types of

wireless networks, all characterized with their randomized topologies. Particularly,

in this work, I address a broad range of large-scale wireless networks such as ad hoc

networks, star-connected sensor networks, and multi-tier cellular networks.

For more than three decades, stochastic geometry has been used to model large-

scale ad hoc wireless networks, and it has succeeded to develop tractable models

to characterize and better understand the performance of these networks. Recently,

stochastic geometry models have been shown to provide tractable yet accurate perfor-

mance bounds for multi-tier and cognitive cellular wireless networks. Using stochastic

geometry for ad hoc networks analysis can be traced back to the late 70’s [17], since

then, it has been used to model and analyze ad hoc systems with random chan-

4Note that stochastic geometry is not necessarily the best tool to model wireless networks because
each modeling tool has its merits and limitations. However, as long as capturing the topological
randomness in the analysis is required, stochastic geometry is the only analytical tool that could be
used.
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nel access (e.g., ALOHA [17–39] and CSMA [40–51]), single- and multi-tier cellular

networks [11,12,52–79], and networks with cognitive elements [75–85].

For the sake of an organized presentation, I postpone the detailed discussion of

the related work to the analysis chapters. That is, for each type of network addressed

in this thesis, the related work is presented and the novelty is highlighted.

1.6 Scope and Contribution of the Thesis

In this thesis, I will exploit tools from stochastic geometry to model, analyze, and de-

sign a wide-range of wireless networks. More specifically, I adapt and extend stochas-

tic geometry models to practical networks and scenarios that have not been addressed

in the literature, and thereby increase the applications of the stochastic geometry

models to wireless communications. For ad hoc networks, most of the stochastic geom-

etry models existing in the literature address networks without coordinated spectrum

access. Only very little efforts have been invested in ad hoc networks with coordinated

spectrum access. For infrastructure-based networks, most of the literature addresses

downlink systems without cognitive elements. The uplink and cognitive networks

are not sufficiently addressed in the literature. Furthermore, for both infrastructure-

based and ad hoc networks, all of the existing stochastic geometry models are for a

single-channel environment. In this thesis I extend the stochastic geometry analysis

for coordinated spectrum access ad hoc networks, networks with cognitive elements,

uplink systems, and multi-channel environments. I have also shown how stochastic

geometry modeling approach can be incorporated into a unified network design for a

practical sensor networks scenario.

The main contribution of this thesis is the development of general, flexible, and

rigorous modeling paradigms for different types of large-scale wireless networks. The
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developed paradigms are used for understanding the system behavior with variations

to the system design parameters. Hence, many design insights and tradeoffs for

the considered wireless networks are obtained and the network performance can be

optimized via the proposed models. In the following I present a detailed discussion

about the contributions of the work done in this thesis for each type of the considered

networks:

1.6.1 Ad hoc and Sensor Networks

Chapters 2 and 3 present a design framework for large scale CSMA wireless networks.

In Chapter 2, I show that the conventional stochastic geometry analysis (i.e., using

the Matérn hard core point process type II5) for CSMA networks results in underes-

timating the probability of spectrum access and the intensity of active transmitters,

hereafter referred as the underestimation error. Note that the underestimation error

of the Matérn hard core point process type II is a well known open problem [86,87].

In Chapter 2, I provide a thorough discussion for the underestimation error, quantify

it, show its dependence of the system parameters, and provide a solution to mitigat-

ing it, namely, the modified hard core point process. Although, the provided solution

does not completely solve the underestimation error, it broadens the application of

the hard core process to a wider range of system parameters values.

In Chapter 3, I exploit stochastic geometry to engineer a large scale random star-

connected sensor networks (SNCs). The design aims at maximizing the spatial fre-

quency reuse efficiency subject to constraints on the data rates and outage probability

per SCN. The design paradigm developed in Chapter 3 was proposed as a potential

solution to design large scale body area networks used for e-Health application.

5The Matérn hard core point process type II is defined later in Sec. 2.1.5
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1.6.2 Cellular Networks

Chapters 4 and 5 present a design paradigm for distributed interference management

in multi-tier cellular networks. While centralized interference management in multi-

tier cellular networks is infeasible due to complexity and signaling issues, cognition

is envisioned as a potential solution for distributed interference management. Note

that, different from legacy cognitive networks with primary and secondary spectrum

users, cognition is mainly implemented in multi-tier cellular networks for interference

management. Hence, there is no notion of priority in the spectrum access and there

should be some performance guarantee for all network elements (i.e., the cognitive and

non-cognitive). Chapters 4 and 5 quantify the performance gain imposed by cognition

capabilities and optimize the design tradeoffs for cognitive downlink cellular networks.

Finally, Chapter 7 provides a rigorous paradigm for modeling, analysis, and design

of uplink cellular networks. The main contribution in Chapter 7 is that the outage

probability and mean achievable rate for a generic user in uplink transmission have

been obtained in simple closed forms. The simple closed forms enabled a complete

characterizations for the uplink behavior in response to the network parameters. To

the best of my knowledge this is the first modeling paradigm for uplink transmission

that can obtain the outage probability and mean achievable rate for a generic user

in a simple form with one integral and an incomplete gamma function in the general

case, and in closed form for some special cases.

1.6.3 Summary of Contributions

The contributions of the thesis are shown in Fig. 1.4 and summarized in the following

points:

• CSMA-based wireless ad hoc networks
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Figure 1.4: Thesis contributions.

– Quantify the intensity underestimation problem of the traditional stochas-

tic geometry models when applied to CSMA-based wireless networks.

– Propose a novel technique to mitigate the intensity underestimation prob-

lem.

– Model the tradeoff imposed by the spectrum sensing threshold on the out-

age probability and the spatial frequency reuse efficiency.

– Optimize the spectrum sensing threshold (or equivalently the spectrum

sensing region [SSR]) that maximizes transmission capacity.

• Large-scale star-connected wireless sensor networks

– Propose a complete topology-aware and spectrum-efficient design

paradigm for large-scale star-connected wireless sensor network.

– Reveal the conservativeness of the IEEE 802.15.4-based wireless sensor
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networks and the resulting spectrum under-utilization.

– Optimize the long term superframe scheduling and the spectrum sensing

threshold (or equivalently the SSR) for the IEEE 802.15.4 standard-based

beacon enabled mode to maximize the coexistence capability of the IEEE

802.15.4-based networks in the congested ISM band.

– Reveal the nonlinear relationship between the number of channels and the

intensity of coexisting nodes that can be accommodated by the system.

• Downlink transmissions in two-tier macrocell-femtocell networks

– Provide a framework for the design and analysis of cellular networks with

cognitive small cells.

– Quantify the performance gain, in terms of outage probability, for cellular

networks with cognitive femto access points (FAP).

– Optimize the spectrum sensing threshold (or equivalently the SSR) for the

cognitive femto-access points that maximizes the spatial frequency reuse.

– Highlight the tradeoffs between the resource allocation in cellular networks

and opportunistic spectrum access in FAPs.

– Extend the downlink modeling to the multi-channel environment.

• Uplink transmissions in multi-tier cellular networks

– Provide a novel framework for modeling uplink transmission with trun-

cated channel inversion power control in multi-tier cellular networks.

– Characterize the uplink transmission for multi-tier cellular networks and

show that there exists a transfer point in the system behavior that depends

on the relative values of the design parameters.
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1.7 Organization of the Thesis

In Chapter 2, I present a high level overview on stochastic geometry analysis and the

different modeling/analysis techniques used in the literature. In Chapter 3, I present

the stochastic geometry analysis for ad hoc CSMA wireless networks. In Chapter 4, I

present the modeling paradigm for large-scale star-connected wireless sensor networks

using the IEEE 802.15.4 technology. Chapter 5 and Chapter 6 present the downlink

modeling framework for multi-tier cellular networks with cognitive small cells. Chap-

ter 7 presents the uplink modeling framework for multi-tier cellular networks. Finally,

in Chapter 8 I summarize and conclude the work done in this thesis and point out

some directions for future research.

It is worth noting that, tuning the spectrum sensing threshold to optimize the

tradeoff between the spatial frequency reuse efficiency and the SINR outage probabil-

ity is a common theme in Chapters 3, 4, 5, 6 but for different types of networks (cf.

Fig 1.4). Chapter 7 complements Chapters 5, 6 and highlights the difference between

the uplink and downlink transmission performances in cellular networks.
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Chapter 2

Overview on Stochastic Geometry

Analysis

2.1 Stochastic Geometry Analysis

As discussed in Chapter 1, the network geometry has a significant impact on the

interference experienced by the network receivers. According to the network model,

the aggregate interference I, seen from a generic receiver perspective, can be either

resulting from a finite or infinite number of interferers, and the locations and the

intensity of the interferers (i.e., the number of interferers per unit area) depend on

the network characteristics (e.g., network topology, number of channels, association

criterion, etc.) and medium access control (MAC) layer protocol (e.g., ALOHA,

CSMA, TDMA, CDMA, etc.). In the following, I give two examples to elaborate the

effect of user association and spectrum access method (i.e., MAC protocol) on the

locations and/or intensities of the interferers.

• In a cellular network, a user may select the BS providing the highest signal power

to be her serving BS. Therefore, when all the BSs have the same transmit powers
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(i.e., single-tier cellular network), the distance between a generic user and her

nearest interfering BS will be greater than the distance between that user and

her serving BS. In a multi-tier cellular network, different network entities have

different transmit powers. Therefore, as shown in Fig. 2.1(a), given that the

distance between a macro-cell user and her serving MBS is r and the transmit

power of the serving MBS is Pm, the nearest interfering MBS transmitting with

the same power Pm will be located at a distance rm > r. On the other hand,

assuming the same path-loss exponent η for macro and small cell tiers, the

nearest interfering small base station (SBS) with transmit power Ps will be

located at a distance rs > r
(
Ps
Pm

) 1
η
. Similarly, Fig. 2.1(b) shows the relation

between the desired link distance for a small cell user (i.e., the distance between

the small cell user and her serving SBS) and the nearest interference sources.

• A cognitive spectrum access method affects both the locations of the interfer-

ence sources as well as their intensity. In a cognitive network, each network

element performs spectrum sensing and accesses a channel if and only if the

received power on that channel is less than a given threshold (υs). If determin-

istic channel gains are assumed, the spectrum sensing threshold (υs) translates

to a minimum exclusion distance re =
(
PtA
υs

) 1
η

between the network elements

using the same channel, where Pt is the transmit power and A is a propagation

constant. Fig. 2.2(a) shows the locations of the cognitive network elements and

Fig. 2.2(b) shows the potential locations of the simultaneously transmitting

network elements on the same channel. Fig. 2.2(b) shows that there is a mini-

mum distance between any two network elements using the same channel which

controls both the minimum distance between a receiver and her interference

sources as well as the intensity of the interference sources.
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Figure 2.1: The relation between the desired link distance and the nearest interference
sources: (a) macro-cell user, (b) small-cell user.

At a generic time instant, the SINR experienced by each receiver depends on its

location, the positions of the interference sources as well as the instantaneous channel

gains. Hence, given the effect of network geometry on interference, the SINR is a

random variable that strongly depends on the network geometry and significantly

varies from one receiver to another and from one time instant to another.

Stochastic geometry is a mathematical tool that provides spatial averages, i.e., av-

erages taken over large number of nodes at different locations or1 over many network

realizations, for the quantities of interest (e.g., interference, SINR, outage probabil-

ity, and achieved data rate) [3]. In other words, the stochastic geometry averages

over all network topologies seen from a generic node weighted by their probability

of occurrence [8, 82]. Fig. 2.3 shows a schematic diagram for stochastic geometry

analysis. Point process is a branch of the stochastic geometry used to statistically

describe patterns produced by points in the D-dimensional space. In my models,

point process will be used to model the spatial distribution of the network elements.

In this section, I will overview some basics of the point process and introduce the

1If the point process is ergodic, the spatial averages (across points) equal the ensemble averages
(across realizations) [8, Ch. 2].
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(a)
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(b)

Figure 2.2: (a) The locations of the cognitive network elements, (b) the potential
locations of the simultaneously transmitting network elements on the same channel
(the shaded network elements cannot simultaneously transmit on the same channel
due to the cognitive nature of the spectrum access).
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Figure 2.3: Schematic diagram for stochastic geometry analysis.

most commonly users point processes in wireless communication, namely, Poisson

point process (PPP), the Binomial point process (BPP), the Poisson cluster process

(PCP), and the Matérn hard core point process (HCPP).

2.1.1 Point Process

Point process is a tool used to statistically describe the patterns produced by points

existing in a d-dimensional space Rd. These points can represent trees in a forest,

stars in the space, or wireless nodes in a network. For instance, the call arrival times

to a network can be represented using a 1-D point process, where the location of each
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point on the time axis represents the call request time. If the type of call was also

of interest, and each call type can be represented by a unique mark form the space

M , then a new dimension is added to the model and a 2-D point process (R ×M)

can be used to model this stochastic process. In this point process, each point on

the time access will have a mark (m ∈M) to determine its type. If the call location

rather than the call arrival time and type was the parameter of interest, then a point

process on a R2 map can be used to model this stochastic process. If the type of call is

added to the model, then the 3-D point process (R2×M) can be used. These simple

examples show the relation between a stochastic process and its modeling using a

point process with the proper dimensions. For more applications of point processes

see [1, 2].

2.1.2 Poisson Point Process

Poisson point process (PPP) is the simplest and most widely used point process. The

simplicity of the PPP is due to the independence between the points of the process.

For a PPP, the number points existing in any bounded area is a Poisson random

variable, and the numbers of points in disjoint areas are independent. A point process

is defined using a random set Ψ = {xi; i = 1, 2, 3, ...}, where xi is the location of the

ith node in the Rd space. For a PPP in R2 plane, N(A) = |Ψ ∩A| ∼ Poisson(λ).

That is, for any A ⊂ R2 the number of point N(A) has the pmf:

P {N(A) = k} =
(λL(A))ke−λL(A)

k!
(2.1)
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where L(.) denotes the Lebesgue measure2, and λ is the intensity of the point process

and has the units points
m2 .

The independence between the points of the PPP simplifies its analysis. For

example, the reduced Palm probability P !x of the PPP is the distribution of the PPP

itself (Slivnyak’s theorem) [1–3]. This means that the point process seen from an

arbitrary location u ∈ R2 is the same whether a condition on having a point at that

location is present or not (i.e., P !x = P ).

2.1.3 Binomial Point Process

The Binomial Point Process (BPP) models the random patterns produced by a fixed

number of points (N) in a set A ⊂ Rd with a finite Lebesgue measure L(A) <∞. Let

Ψ = {xi; i = 1, 2, 3, . . .} and Ψ ⊂ A, then Ψ is a BPP if the number of points inside a

compact set b ⊆ A is a binomial random variable with the parameters
(
N, p = L(b)

L(A)

)
,

and the numbers of points in disjoint sets are related via a multinomial distribution.

A BPP can be obtained by conditioning on the number of points in a PPP over

a finite area. That is, each realization of the PPP over a finite area gives a different

BPP realization.

2.1.4 Poisson Cluster Process

The Poisson Cluster Process (PCP) models the random patterns produced by random

clusters. The Poisson cluster process is constructed from a parent PPP Ψ = {xi; i =

1, 2, 3, . . .} by replacing each point xi ∈ Ψ with a cluster of points Mi, ∀xi ∈ Ψ,

where the points in Mi are independently and identically distributed in the spatial

2In measure theory, the Lebesgue measure is the standard way of assigning a measure to subsets
of an n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the standard measure of
length, area, or volume.
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domain. There are two type of PCP, namely, the Matérn cluster process and the

Thomas cluster processes. In the Matérn cluster process, each point x ∈ Ψ from

the parent PPP is replaced by a cluster of point uniformly distributed in a disc with

fixed radius centered at the parent point location x ∈ R2. On the other hand, in the

Thomas cluster processes, each point x ∈ Ψ from the parent PPP is replaced by a

cluster of points normally distributed over the plane R2 around the parent point x.

2.1.5 Matérn Hard Core Process

The hard core point process (HCPP), is a repulsive point process which models the

pattern of points that are prohibited to coexist with a distance less than a predeter-

mined value rmin. Conditioning on having a minimum distance between the points

of the process, correlates their positions. The HCPP is constructed from a parent

PPP Ψ = {xi; i = 1, 2, 3, . . .} by dependent thinning. Matérn has introduced two

approaches to construct an HCPP from a PPP, namely, the Matérn hard core process

type I and type II. Both the Matérn hard core processes (i.e., type I and type II)

provide a legitimate HCPP but with different packing density. Since the HCPP is

an essential point process for wireless communication that will be extensively used in

my work, I will give more elaborations for the two types of the HCPP.

Matérn Hard Core Process Type I

Matérn hard core process type I models the pattern of points that are prohibited to

coexist with a distance less than a certain value rmin. In this section, I show how to

construct the Matérn hard core process type I for a parent PPP. Let Ψ be a PPP in

R2 with intensity λ. The Matérn hard core process type I (ΨI
H) is constructed from

Ψ by deleting all points that coexist with a distance less than the minimum distance
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rmin. For a generic point xi ∈ Ψ, the retaining probability for that point in ΨI
H is

given by the probability that xi exists alone in the disc with a radius rmin centered

at xi. Hereafter, I will denote that disc by Bxi(rmin). Using the Palm probability,

P !xi(dist(xi,Ψ
′) ≥ rmin) = P (dist(xi,Ψ

′) ≥ rmin), where Ψ′ = Ψ\xi and dist(xi,Ψ
′)

is the distance between xi and the closest point in Ψ′. Then, the retaining probability

is given by:

PI = P
{
xi ∈ ΨI

H |xi ∈ Ψ
}

= e−λπr
2
min . (2.2)

Having the retaining probability (PI), the HCPP type I intensity is given by

λI = PIλ = λe−λπr
2
min [1, 2]. It can be seen that limλ→∞ λe

−λπr2
min = 0, which means

that at high intensity of the PPP all the points will be coexisting with a distance less

than rmin. Hence, all the points will be deleted and ΨI
H = φ. Therefore, Matérn hard

core process type I is too conservative and results in a point process with a very low

intensity. Matérn hard core process type II overcomes this flaw and results in a point

process with much higher intensity.

Matérn Hard Core Process Type II

The Matérn hard core process type II also models the pattern of points that are

prohibited to coexist with a distance less than a certain value rmin. In this section

I show how to construct the Matérn hard core process type II from a parent PPP.

Let Ψ be a PPP in R2 with intensity λ. Matérn hard core point process type II is

derived from Ψ in two steps. At first, the marked point process Ψm is constructed

by applying an independent mark uniformly distributed from [0, 1] to Ψ. Then, a

point (xi,mi) ∈ Ψm is selected to be in ΨII
H (retained in ΨII

H ) if and only if it has

the lowest mark mi in the ball of radius rmin centered at xi (Bxi(rmin)). That is,
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Figure 2.4: Comparing the Matérn HCPP Type I and Type II.

(mi > mj∀j|xj ∈ Bxi(rmin) ∩Ψ). Conditioning on that xi coexist with n points in

Bxi(rmin), due to the independent marking and the uniform distribution of the marks,

the probability that xi has the lowest mark is 1/(n + 1). Hence, averaging over all

possible probabilities (law of total probability), the probability of retaining a generic

point xi ∈ Ψ in ΨII
H is given by:

PII = P
{
xi ∈ ΨII

H |xi ∈ Ψ
}

=
∞∑
n=1

1

n+ 1

(λπr2
min)ne−λπr

2
min

n!

=
1− e−λπr2

min

λπr2
min

. (2.3)

Having the retaining probability (PII), the HCPP type II intensity is given by

λII = PIIλ = 1−e−λπr
2
min

πr2
min

. It can be seen that limλ→∞
1−e−λπr

2
min

πr2
min

= 1
πr2
min

, which

means that at high intensity of the PPP, the intensity of the HCPP type II converges

to a constant (one point every Bxi(rmin)). Hence, Matérn hard core process type

II overcomes the conservativeness flaw of type I and results in a HCPP with much

higher intensity as shown in Fig. 2.4.

28



Chapter 2. Overview on Stochastic Geometry Analysis

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(a)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(b)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

(c)

Figure 2.5: (a) PPP in a 20m × 20m region with intensity 0.1 points/m2, (b) the
corresponding HCPP type II with rmin = 2m, each point of the HCPP lies at the
center of a non-overlapping circles with radius rmin/2 represented by the dashed
circles, (c) the corresponding Matérn cluster process where the clusters have a Poisson
distributed number of points with mean 2, the parent PPP points are plotted in
crosses“+” while the added cluster points are plotted in dots.

From the previous definitions of the point processes, it can be seen that the PPP

is a fundamental point process for two reasons. The first is that all point processes

which are commonly used in wireless communication are somehow related to the

PPP. The second is that the PPP is the only point process with uncorrelated points’

location which highly simplifies its analysis. Fig. 2.5 shows a realization for a PPP

and its corresponding HCPP and PCP.

2.2 Performance Metrics & Analysis

Interference is one of the main network parameters to characterize using the stochastic

geometry analysis. The aggregate interference can be considered as a function of the

point processes. That is, given that the signal power decays with distance at the rate

r−η, where η is the path loss exponent, the aggregate interference seen by a generic

node located at x ∈ R2 is given by I =
∑
y∈ΨI

Pt(y)Ah(x, y) ‖x− y‖−η, where ΨI is the
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point processes constituted by the set of interfering network elements, Pt(y) is the

transmit power of the network element located at y ∈ R2, A is a frequency dependent

propagation constant, h(x, y) is the random channel gain between the two locations

x and y, and ‖.‖ is the Euclidean norm. The aggregate interference is a stochastic

process that depends on the time variant locations of the interfering network elements

captured by the point process ΨI = {xi} and the time variant random channel gains

h(x, y). Note that point processes of the interfering network elements’ locations ΨI

is defined by the network properties and the medium access control (MAC) layer as

discussed in Sec. 2.1.

While the aggregate interference is a stochastic process which varies according

to the test location and time, stochastic geometry analysis gives the statistics of

the interference (averaged w.r.t. the spatial domain) behavior experienced by the

nodes existing in the network. Interference can be completely characterized by its

pdf (or equivalently, its cumulative distribution function (cdf)). Generally, there is

no known expression for the pdf of the aggregate interference in large-scale wireless

networks. Hence, the aggregate interference is usually characterized by using the

Laplace transform (LT) of the pdf (or equivalently its characteristic function [CF]

or moment generation function [MGF])3. The Laplace transform of the aggregate

interference is given by

LI(s) = E[e−sI ]. (2.4)

Since the aggregate interference is a strictly positive random variable, its Laplace

transform always exists. Stochastic geometry provides a systematic way to obtain the

LT, CF, or MGF for the aggregate interference associated with the PP of interest. At

this point, I have not yet introduced enough preliminaries that allow delving into the

3Hereafter, I will use “the Laplace transform of the random variable” to denote the Laplace
transform of its pdf.
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details of how to derive the LT, CF, or MGF for the aggregate interference associated

with the PP of interest. Therefore, the derivation details of the LT, CF, or MGF

for the aggregate interference will be postponed to the analysis chapters. However,

to give a broad overview on the stochastic geometry modeling, it is important to

highlight how the LT, CF, or MGF for the aggregate interference can be used to

characterize some performance metrics in wireless networks. Since the expressions

for the LT, CF, or MGF, cannot be inverted in general, the LT, CF, or MGF, can

only be used to generate the moments (if they exist) of the aggregate interference as

E[In] = (−1)n L(n)
I (s)

∣∣∣
s=0

, where L(n)
I (s) is the nth derivative of LI(s). Consequently,

in the general case, it is not possible to derive the exact performance metrics (e.g.,

outage probability, transmission capacity, average achievable rate) from the LT, CF,

or the MGF. In the next section, I will show the different techniques used in the

literature to utilize the LT, CF, or the MGF and go beyond the moments of the

aggregate interference to evaluate the performance of large-scale wireless networks.

2.3 Techniques to Analyze Network Performance

In the literature, there are five main techniques to utilize the LT, CF, or the MGF

and go beyond the moments of interference and model the network performance

metrics. In the following, I will discuss the techniques which were used in the literature

to overcome the obstacle imposed by the non-existence of any useful closed-form

expression for the pdf of the interference.

2.3.1 Technique #1: Resort to the Rayleigh Fading Assumption

Because of its analytical tractability, the Rayleigh fading assumption is the most

popular assumption in the literature to overcome the obstacle imposed by the non-
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existence of any closed-form expression for the pdf of the aggregate interference [25,27].

Although the interference statistics cannot be obtained, by assuming Rayleigh fading

on the desired link (i.e., the link between the test receiver and its serving transmitter),

the exact distribution for the SINR can be obtained. That is, if the desired link is

impaired by Rayleigh fading, the expression for the cdf of the SINR can be obtained

from the LT of the aggregate interference evaluated at some value.

Without loss of generality, let r = ‖x0 − y‖ be the constant distance between

the transmitter and the test receiver, h0 ∼ exp(µ) be the channel power gain of the

desired link, then I have

FSINR(β) = P {SINR ≤ β}

= P
{
PtAh0r

−η

σ2 + I
≤ β

}
= P

{
h0 ≤

(σ2 + I)βrη

PtA

}
=

∫
u

Fh0

(
(σ2 + u)βrη

PtA

)
fI(u)du

(i)
= 1− EIagg

[
exp

(
−(σ2 + Iagg)µβrη

PtA

)]
= 1− exp

(
−σ

2µβrη

PtA

)
EI
[
exp

(
−Iµβr

η

PtA

)]
= 1− exp

(
−σ

2µβrη

PtA

)
LI(s)|s=µβrη

PtA

= 1− exp
(
−σ2cβ

)
LI(s)|s=cβ (2.5)

where Fh0(.) is the cdf of h0, fI(.) is the pdf of the aggregate interference, the expecta-

tion in (i) is w.r.t. both the point process and the channel gains between the interfer-

ence sources and the test receiver, and c = µrη

PtA
is a constant. Relaxing the constant

distance r is straightforward [12]. As will be shown later, the LT for the aggregate
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interference can be found in a systematic manner (cf. [6, 7, 9, 10]). For interference-

limited networks (i.e., I � σ2), the effect of noise can be ignored and the cdf reduces

to FSINR(β) = 1− LIagg(s)
∣∣
s=cβ

, which is the LT of the aggregate interference is eval-

uated at some constant c multiplied by the parameter β of the cdf of SINR. With the

exact cdf of the SINR, different performance metrics such as the outage probability,

transmission capacity, and the achievable data rate (i.e., obtained using Shannon’s

formula) can be quantified. Some examples where technique #1 is used can be found

in [11,12,25–27,32–35,37,39,54–59,61–65,67,76,77,79,80,82,84,85,88,89].

The main drawback of this technique is that it is only valid with the Rayleigh

fading assumption for the desired link, which may not always be the case of interest.

We can relax the Rayleigh fading assumption at the expense of the tractability of the

model. As a result, it is possible to get only approximate solutions or tight bound on

the SINR distribution.

2.3.2 Technique #2: Resort to Dominant Interferers by Region

Bounds or Nearest n Interferers

Technique #2 is also a very popular technique because of its simplicity and accuracy.

Technique #2 is based on the idea of obtaining a lower bound on the outage prob-

ability by only considering the subset of dominant interferers. The set of dominant

interferers can be determined by a region bound or by considering only the closest n

interferers. In the literature, it has been shown that, under a high path-loss expo-

nent (e.g., η = 4), both the approaches (i.e., approaches based on region bounds and

nearest n interferers) give tight lower bounds on the outage probability. However,

when the path-loss exponent decreases and approaches 2 (in the planar case), the

contribution of distant interferers to the outage events increases and becomes over-
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whelming, and hence, both the approaches lose their accuracy, and therefore, should

not be applied.

Assuming deterministic channel gains, the region bound is determined by the

vulnerability circle around the test receiver. The vulnerability circle is the region

where the signal power of any active transmitter measured at the test receiver is

greater than the desired signal power at the test receiver multiplied by a certain

threshold β [4]. In other words, for a given SINR threshold β, the vulnerability circle

contains all transmitters where the transmission of any of them can alone corrupt

the signal received at the test receiver. The notion of the vulnerability circle can be

extended to random channel gains as in [76].

In the vulnerability region analysis, it is not required to derive the Laplace trans-

form of the aggregate interference. Instead, only the spatial statistics of the PP are

studied over the vulnerability region corresponding to the desired signal strength and

the SINR threshold. That is, the outage probability (i.e., the cdf of the SINR) can

be lower bounded by the probability that the vulnerability region is non-empty.

The approach based on the nearest n interferers leads to the same results (i.e.,

lower bounds), however, since the distribution of the distances for the n nearest

interference sources needs to be determined, the analysis here is significantly more

involved than the vulnerability region analysis. The distribution of distances for the

PPP and BPP was derived in [36,38].

Since the moments of the aggregate interference can be generated from the LT,

CF, or the MGF, an upper bound for the outage probability can be obtained using

the Markov inequality, Chebyshev’s inequality, or the Chernoff bound. The Markov

inequality is the easiest to compute, however, it gives the loosest bound. On the other

hand, the Chernoff bound is quite tight for the tail probability, but its computation is
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more involved and requires the knowledge of the MGF to be optimized. Generally, the

lower bounds provided by the region bounds or the n nearest interferers are tighter

than these upper bounds [26]. The lower bound obtained based on the vulnerability

analysis was used in [17,18,21–26,39,43–45,66,68]. The bound based on the nearest

n interferers was used in [19, 20, 35, 38, 80]. The Markov upper bound was used

in [22, 25, 26, 39]. The Chebyshev’s upper bound was used in [20–22, 26, 43, 68], and

the Chernoff upper bound was used in [26].

2.3.3 Technique #3: Resort to the Approximation of the pdf of the

Aggregate Interference

In technique #3, the pdf of the aggregate interference power is approximated by one of

the known pdfs. The parameters of the approximate pdf are obtained via the LT, CF,

or MGF. For instance, if the pdf of the aggregate interference is approximated by the

Gaussian distribution, then the mean and the standard deviation will be obtained

from LT, CF, or the MGF of the aggregate interference. The main drawback of

this method is that there is no known criterion to choose which pdf to use and the

approximation error can be only quantified by simulations.

In the literature, different papers used different pdfs according to the problem

in hand and the results were verified via simulations. For a PPP, it was discussed

in [25,27] that under the bounded path-loss or a guard zone around the receiver, the

moments of aggregate interference exist and the distribution of the aggregate interfer-

ence approaches the Gaussian distribution. In [37, 43, 46], the aggregate interference

was approximated via a Gaussian distribution. However, in [81] it was shown that

the pdf of interference from a PPP with an exclusion region around the test receiver

is skewed and hence deviates from normality. The authors in [81] showed that the
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shifted log-normal distribution gives a better approximation than the Gaussian ap-

proximation for the pdf of the secondary users’ aggregate interference in a cognitive

network. In [83], the pdf of aggregate interference power was approximated by a

truncated stable distribution, and in [75] by log-normal and shifted log-normal dis-

tributions. In [6, Sec. 5.5], the gamma, inverse Gaussian, and the inverse gamma

distributions were used to model interference powers under general PPs. In [70], the

pdf of the amplitude of the aggregate interference was approximated with a circularly

symmetric complex Gaussian distribution.

2.3.4 Technique #4: Resort to the Plancherel-Parseval Theorem

The Plancherel-Parseval theorem [90] states that if f1(t) and f2(t) are square inte-

grable complex functions, then

∫
R
f1(t)f ∗2 (t)dt =

∫
R
F1(ω)F∗2 (ω)dω (2.6)

where F1(ω) is the Fourier transform (FT) of f1(t), F2(ω) is the FT of f2(t), and

f ∗(t) denotes the conjugate of f(t). The Fourier transform of a pdf is equivalent to

the CF of that pdf, which is a special case of the Laplace transform and is obtained

as F(ω) = L(s)|s=−iω, where i =
√
−1. The Plancherel-Parseval theorem precludes

the need of inverting the LT (i.e., obtaining the pdf of the interference) obtained from

the stochastic geometry analysis to obtain the performance metrics. For instance, the

outage probability can be written as:
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FSINR(β) = P {SINR ≤ β}

= P
{
PtAh0r

−η

σ2 + I
≤ β

}
= P

{
I ≥ PtAh0r

−η − βσ2

β

}
=

∫
x

1

{
I ≥ PtAh0r

−η − βσ2

β

}
fI(x)dx (2.7)

where 1 {.} is the indicator function. Using the Plancherel-Parseval theorem, the

integral in (2.7) can be evaluated via the CF of the aggregate interference as in (2.6).

Therefore, with the aid of the Plancherel-Parseval theorem, results for general fading

environment can be obtained by stochastic geometry analysis. However, the main

drawback here is that the integrals are quite involved due to the complex nature

of the characteristic function of the aggregate interference. Hence, the stochastic

geometry analysis loses its main merit which is the analytical tractability that leads

to simple closed-form equations, and in turn, helps understanding the behavior of

the tested system in response to variations in the design variables. Nevertheless, the

Plancherel-Parseval theorem provides a mathematically elegant technique to extend

all of the existing stochastic geometry results for general fading environments. It was

used in [9, 10,32,42].

2.3.5 Technique #5: Inversion

In this technique, the LT, CF, or MGF is inverted to obtain the pdf of the interference

[28–31, 40, 41, 69, 70]. Due to the complex nature of the expressions for the LT,

CF, or MGF, generally the pdf of the aggregate interference cannot be obtained in

closed form. This technique is only useful for very special cases of the PPP where
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the expressions for LT, CF, or MGF are invertible or match the LT, CF, or MGF

of a known distribution [28, 29, 31, 69, 70]; otherwise, inversion is done numerically

[30,40,41]. For instance, the LT of the aggregate interference, measured at a receiver

located at an arbitrary origin in Rd, associated with an infinite PPP that starts

from that arbitrary origin (i.e., there is no interference protection region around the

receiver defined by the MAC layer) with unbounded path-loss function matches the

LT of an alpha-stable distribution4 [3,4,6,7]. Although this result looks promising, it

is not very useful because the unbounded path-loss results in a significant deviation

from reality due to the singularity at the origin [30]. Hence, the interference does not

have finite moments. Moreover, dealing with alpha-stable distributions is tricky since

they do not provide a closed-form expression for the pdf. The only two exceptions

where the pdf of interference has a closed-form expression can be found in [28] for

deterministic channels, and in [29] for Rayleigh fading channels. Both the closed-

form pdfs were obtained under the assumptions of an unbounded path-loss model, an

infinite PPP, and path-loss exponent η = 4.

2.3.6 Summary and Taxonomy

Fig. 2.6 and Table 2.1 provide a taxonomy for the literature according to the target

network model, the point process used, and the technique to utilize the LT, CF, or the

MGF for performance evaluation. Note that if the same reference appears in different

categories of the taxonomy, this means that this reference uses all of these techniques.

The contributions of the thesis to each of the network types, analysis techniques, and

point processes in Fig. 2.6 and Table 2.1 are highlighted, where the abbreviation “Ch”

is used to denote the chapter which utilizes each technique and point process for the

4Alpha-stable distributions generalize Gaussian distributions and have heavier tails [8, Sec. 5.1],
[4].
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Figure 2.6: Taxonomy of the stochastic geometry-based models available in the liter-
ature for wireless networks.

given network type. The point processes and modeling techniques used for each of

the networks addressed in this thesis are shown in Fig. 2.7.

The taxonomy in Fig. 2.6 and Table 2.1 clearly shows the popularity of each

point process and each performance modeling technique. Fig. 2.6 and Table 2.1 show

that the PPP is the most popular point process used in the literature because of its

simplicity. Furthermore, the PPP provides accurate performance bounds and it is the

parent point process for the HCPP and the PCP. The HCPP has also been extensively

used to model wireless communication systems due to the hard core condition (i.e., the

minimum distance rmin) which captures the contention-based spectrum access [40–51].
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Figure 2.7: Point processes and techniques used in the thesis.

Furthermore, in [13], the authors showed that, compared to the PPP, the HCPP better

captures the spatial distribution of the base stations in a real network deployment.

To summarize, in stochastic geometry modeling the locations of the network ele-

ments is modeled using point processes (PP). Then, the LT, CF, or the MGF of the

aggregate interference is obtained. Up to this point, I have not shown how to obtain

the LT, CF, or the MGF of the aggregate interference associated with the PP of inter-

est because I have not yet introduced the required preliminaries to do the derivation.

Finally, according to the accuracy, tractability, and practicability tradeoffs, one of the

five techniques in the literature as discussed above is chosen to derive the performance

metrics of interest from the LT, CF, or the MGF of the aggregate interference. Some

examples that show when to use each of the five performance evaluation techniques

are provided below.

• For a network with general fading in the interference links and Rayleigh fading
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in the desired link, technique #1 is the right technique to use. As shown in

Fig. 2.6 and Table 2.1, technique #1 has been extensively used in the literature

because it is simple and gives the exact distribution for the SINR.

• If general fading is observed on the useful link, then a lower bound via technique

#2 can be obtained. It is worth mentioning that the lower bound in technique

#2 is generally tighter than the upper bounds [26]. Note that the accuracy of

the lower bound increases for higher values of the path-loss exponent due to the

faster signal power decay with distance which makes the effect of far interferers

negligible.

• On the other hand, for lower values of the path-loss exponent, it is better to use

technique #3 and have an approximate analysis. It has been shown that for the

approximation of the pdf of interference, the shifted log-normal distribution is

better than both the Gaussian and log-normal distributions [75, 81]. However,

there is no known method to validate the approximation except by simulations.

• With general fading in the direct (i.e., useful) link, if an exact analysis is re-

quired, then technique #4 has to be used, but the analysis will be highly in-

volved. From Fig. 2.6 and Table 2.1 it can be observed that technique #4 has

not been frequently used in the literature due to its analytical complexity.

• Finally, technique #5 is only limited to some special cases as far as only the

analytical evaluation is concerned.

To this end, I have introduced stochastic geometry modeling and classified the

different modeling techniques used in the literature. The next chapter is the first

chapter presenting the core contribution of the thesis. In the next chapter, I model
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CSMA based ad hoc networks via the stochastic geometry and propose a paradigm

to optimize the spectrum sensing threshold for the CSMA protocol.
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Chapter 3

Characterizing Random CSMA Ad

Hoc Networks

In this chapter, I characterize the random carrier sensing multiple access (CSMA)

wireless networks by statistically quantifying the intensity of simultaneously active

nodes and outage probability experienced by a generic node in the network. At first,

I will show how the effect of the CSMA medium access control (MAC) protocol on

the network topology is captured by the stochastic geometry analysis. In particu-

lar, I will show that the CSMA MAC protocol coordinates the spectrum access and

brings correlations between the spatial locations of the set of simultaneously active

transmitters. Consequently, the simple PPP (defined in Sec. 2.1.2) cannot be used

for modeling, analysis, and design of CSMA protocol. Instead, the HCPP (defined in

Sec. 2.1.5) is used because it captures the correlations imposed by the CSMA proto-

col. The Matérn HCPP type II (defined in Sec. 2.1.5) has been extensively used to

model the spatial distribution of the simultaneously active nodes in CSMA networks.

However, Matérn HCPP type II suffers from underestimating the intensity of simul-

taneously active transmitters [48, 51, 86, 87], and its intensity underestimation flaw
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has not been really addressed in the literature. In this chapter, I propose a second

order estimation method to determine the intensity of the hard core process, namely,

the Modified HCPP (MHCPP). The MHCPP mitigates the well-known problem of

underestimating the intensity of the simultaneously active nodes. Using the proposed

MHCPP, I will show that the spectrum-sensing threshold is a very critical design

parameter that should be chosen very carefully to maintain the balance between the

spatial frequency reuse efficiency and the outage probability. To this end, I will

provide insights for the spectrum-sensing (also denoted by carrier-sensing) threshold

optimization.

3.1 Introduction

In distributed wireless networks with random node locations (e.g., ad-hoc/sensor

networks, cognitive femtocell networks), a decentralized MAC protocol is required

to control the access of the network nodes to the shared wireless spectrum in order

to limit the mutual interference. CSMA protocols are very popular for this type of

networks. In comparison to other popular multiple access techniques such as time-

division multiple access (TDMA), frequency-division multiple access (FDMA), code-

division multiple access (CDMA), and orthogonal frequency-division multiple access

(OFDMA) [91], CSMA distinguishes itself with its distributed nature in coordinating

the spectrum access. Moreover, with the introduction of cognitive radio, CSMA

protocols will be used by secondary users on top of other multiple access protocols

such as OFDMA to avoid interfering with primary users and coordinate spectrum

access among the secondary users.

In CSMA networks, each transmitter having a packet to transmit generates a

random backoff timer that decreases only when the channel is sensed idle and freezes
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when the channel is sensed busy. The transmitter cannot access the channel to

transmit its packet until the backoff timer expires. The channel busy/idle decision

is based on the spectrum-sensing threshold defined by the CSMA protocol. From a

geometric point of view, the spectrum-sensing threshold defines both the contention

domain for each transmitter and the minimum distance between simultaneously active

transmitters. The lower the spectrum-sensing threshold the higher the sensitivity

of each transmitter to other transmissions occurring in the spatial domain, which

increases the distances between simultaneously active transmitters and decreases the

mutual interference at the expense of decreasing the spatial frequency reuse. Due

to the randomness of the node locations as well as the channel fading conditions,

the signal-to-interference-plus-noise ratio (SINR) experienced by a generic receiver in

the network is random. Therefore, for a chosen spectrum-sensing threshold, there is

a non-zero probability that the received SINR falls below the threshold for correct

signal reception and the receiver goes into an outage. We define the frequency reuse

efficiency as the ratio between the intensity of simultaneously active transmitters

and the total intensity of the coexisting transmitters. In order to study the trade-off

between the spatial frequency reuse efficiency and the outage probability, both of these

performance metrics should be accurately estimated in terms of the spectrum-sensing

threshold. As I will show later, the spectrum-sensing threshold is a very critical

parameter that should be chosen very carefully to maintain the balance between the

frequency reuse efficiency and the outage probability.

3.1.1 Stochastic Geometry Modeling for CSMA Networks

The CSMA protocol coordinates the spectrum access and thereby correlates the po-

sitions of the simultaneously active transmitters. Therefore, the HCPP (defined in
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Sec. 2.1.5), is used to model the positions of the simultaneously transmitting nodes.

There are two types of the HCPP, the Matérn HCPP type I and the Matérn HCPP

type II (or simply type I and type II). Although the construction of these two types

of HCPP are different, both result in a legitimate HCPP but with different intensities

(i.e., no two points will coexist within a distance less than rmin). Starting from a

primary PPP, type I is the secondary point process constructed by deleting all the

primary points that coexist with a distance less than the hard core parameter rmin.

Assuming that there is a time mark attached to each primary point, type II is the sec-

ondary point process constructed by deleting the primary points that coexist within

a distance less than the hard core parameter rmin from another primary point having

a lower time mark. It can be observed that type I only accounts for retaining the

isolated primary points (i.e., points which are at least rmin away from every other

point in the process). However, type II captures the contention among the primary

points to be retained in the secondary HCPP. The contention is performed by means

of the random time mark, where a primary point in the primary PPP is retained in

the secondary type II point process if and only if (iff) it has the lowest time mark

among the primary points coexisting within a distance of rmin, and deleted otherwise.

Projecting to the CSMA networks, the primary PPP corresponds to the locations of

the complete set of coexisting transmitters contending to access the spectrum, the

time mark corresponds to the backoff timer randomly generated by the CSMA pro-

tocol for each transmitter, and the secondary type II point process can be used to

model the locations of the subset of simultaneously active transmitters that win the

contention and access the spectrum. The estimated intensity of the simultaneously

active transmitters reflects the spatial frequency reuse efficiency and can be used to

estimate the outage probability.
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However, type II model suffers from underestimating the intensity of simultane-

ously active transmitters [48,51,86,87]. The main reason for this underestimation flaw

is that type II accounts only for the points having the lowest mark in their contention

domains. This means that the freezing property of the backoff counter in the CSMA

protocol is not captured in the model to calculate the intensity of the simultaneously

active transmitters. In a CSMA network, a transmitter can still access the channel if

it does not have the lowest backoff timer in its contention domain given that all of the

transmitters with lower backoff timers have frozen their timers due to transmissions

in their own contention domains. The property of freezing the backoff counter can be

captured by a third type of the repulsive HCPP, named, Matérn HCPP type III (or

simply type III). Assuming that there is a time mark attached to each primary point,

type III is constructed by deleting the primary points that coexist within a distance

less than the hard core parameter rmin from another secondary point having a lower

mark. The main difference between type III and type II is that type III involves a

condition on the deleting probability (i.e., the complement of the retaining probabil-

ity). That is, for constructing a type III process, a primary point (pi) is deleted iff

it lies within a distance rmin from another primary point (pj) conditioning that the

latter primary point (pj) will not be deleted, and retained otherwise. Projecting to

CSMA networks, a transmitter (t1) will not access the spectrum (i.e., freeze its back-

off counter) iff it lies within the sensing range of another transmitter (t2) with a lower

backoff timer conditioning on that the timer of the later transmitter (t2) is not frozen

(i.e., conditioning on that transmitter t2 will succeed to access the spectrum). This

condition will completely capture the freezing property of the CSMA backoff counter,

however, it involves a chain of correlations among the primary points (transmitters)

which terminates when it reaches a point (transmitter) which has the lowest mark
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among all points (transmitters) with a separating distance less than rmin. This is why

Matérn stopped discussing type III point process and stated that ‘even an attempt to

find its packing density tends to rather formidable mathematics’. However, inspired

by the definition of type III HCPP, I go one step in the correlation chain and propose

my modified HCPP, as will be presented later.

3.1.2 Motivation and Contribution

In the context of wireless communications, type II has been extensively used to model

the spatial distribution of the simultaneously active nodes in CSMA networks. How-

ever, the intensity underestimation flaw of type II has not been really addressed in the

literature. This flaw was only mentioned in [48,51], but there was no effort to mitigate

this flaw. In this chapter, my objective is to shed light on the underestimation flaw of

type II point process, quantify it, and provide a one step towards mitigating it. We

propose a second-order intensity estimation method that partially takes the backoff

counter freezing property into consideration and reduces the underestimated inten-

sity due to type II modeling (i.e., the gap between type II intensity and the actual

intensity obtained by simulation) by at least 30%. The proposed method is general-

ized for a general fading environment. For brevity, hereafter I will use the classical

HCPP (CHCPP) and the Modified HCPP (MHCPP) to denote, respectively, type

II HCPP and the proposed 2nd order estimation for the HCPP under general fading

environment. Since I am using point processes to model the spatial distribution of

nodes, I will use the terms ‘a node in the network’ and ‘a point in the point process’

interchangeably.

The main contributions of this work are as follows:

• The CHCPP model is generalized for fading channels.

49



Chapter 3. Characterizing Random CSMA Ad Hoc Networks

• We demonstrate the node intensity underestimation flaw of the CHCPP model

and propose a novel MHCPP which is generalized for general fading channels.

• Closed-form expressions are obtained for the intensity of the simultaneously

active transmitters for both the point processes, namely, the CHCPP and the

MHCPP.

• An expression for the approximate outage probability is obtained, and subse-

quently, the transmission capacity of the network is analyzed.

3.2 Related Work

In the literature, interference modeling for PPP has been sufficiently addressed, char-

acterized and well understood (cf. Fig. 2.6). On the other hand, due to the added

complexity, only a few works on HCPP exist. In the following, I review the work

closely related to the work presented in this chapter.

In [40, 42], the authors extended the hard core point process model to Rayleigh

fading environment. Then, an approximate expression for the Laplace functional of

the aggregate interference experienced by the test node at the origin was obtained.

In [41], the authors extended the model in [40] beyond the spatial averages of the

performance metrics and obtained their distributions. They also relaxed the PPP

assumption for the initial network setup. In [44], the authors incorporated Poisson

distributed traffic into their model and optimized the spectrum-sensing threshold to

maximize the spatial frequency reuse subject to an outage probability constraint.

However, the intensity of the simultaneously active transmitters in CSMA networks

was obtained via an iterative algorithm and only deterministic channel gains were

assumed. In [92], the authors were able to extend the HCPP to capture the logical
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carrier sensing for CSMA/CA protocol. A common approach in all of these works

is that the contention-resolution process follows type II point process which suffers

from the node intensity underestimation problem.

In [43], the authors derived the transmission capacity when applying a guard zone

around the active receivers. However, the expression for Matérn hard core point

process type I was used which highly underestimates the nodes intensity [48, 49].

In [88], the authors developed a model to characterize the asymptotic behavior of

the outage probability in a large-scale ad-hoc network for a wide range of MAC

protocols and general spatial distribution of nodes; however, it is valid only for high

SINR regime (i.e., when intensity → 0). Different from all of the above work in the

literature, in this chapter, I propose a novel method to modify the classical HCPP in

order to mitigate the well-known node intensity underestimation flaw.

3.3 System Model and Assumptions

We consider that the transmitter-receiver pairs in the network are distributed in

an infinite 2-D plane according to a marked Poisson bipolar model [21, 32, 44]. In

this model, ΨT = {(xi,mi); i = 1, 2, 3, ...} is a marked PPP, where the points X =

{xi; i = 1, 2, 3, ...} constitute a PPP with intensity λT in the R2 plane, and the time

marks {mi; i = 1, 2, 3, ...} are independent from each other, independent from X and

uniformly distributed in the range [0, 1]1. The point process X represents the spatial

distribution of the potential transmitters in the network, where xi denotes the position

of the ith transmitter in the R2 plane2. Throughout this chapter, I will say that the

1As proved in [87], assuming a uniform distribution for the time marks does not affect the
generality of the model.

2We will use xi to denote both the location of the ith transmitter and the transmitter itself, and
the notation rxi

to denote both the location of the receiver attached to the transmitter xi and the
receiver itself.
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transmitter xi is older than the transmitter xj (or equivalently xj is younger than

xi) to denote that mi > mj. Each transmitter xi has an associated receiver rxi

located at a fixed distance R in a random direction (the receivers are not part of the

PPP). R can be viewed as the average hop distance in a distributed multi-hop ad

hoc network. Relaxing this assumption complicates the analysis without providing

additional insights [21]. There is only one channel for the network operation, and

each transmitter accesses this channel by means of a physical CSMA protocol to

transmit infinitely-backlogged packets (i.e., saturation conditions are assumed) and

all transmitters transmit with the same power Pt.

Let P (x, y) = PtD(x, y)h(x, y)) denote the power received at a location y from a

transmitter located at x, where D(x, y) is the power gain due to bounded path-loss

channel model between the two positions x and y and is given by [27]

D(x, y) =

 Ar−ηo , ‖x− y‖ < ro

A ‖x− y‖−η , ‖x− y‖ ≥ ro

(3.1)

where A is a propagation constant, ro > 0 (e.g., ro = 1), η is the path-loss exponent

(η > 2), and ‖.‖ is the Euclidean norm. In order to simplify the notations, I will denote

max (ro, ‖x− y‖) by dist(x, y). The random variable h(x, y) represents the random

channel (power) gain due to multi-path fading between the two locations x and y.

The channel gains are assumed to be stationary, ergodic, symmetrical, independent

from each other, independent from the locations (x and y), and identically distributed

(i.i.d.) with probability density function (pdf) fh(h), cumulative distribution function

(cdf) Fh(h), and have finite first moment (i.e.,
∫∞
−∞ hfh(h) <∞). Block channel fading

is assumed, where the channel gains are constant during the contention-resolution

process and packet transmission. In other words, the channel coherence time is greater
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than or equal to the contention resolution time plus the packet transmission time.

Each transmitter in the network contends with its neighbor nodes via the CSMA

protocol to access the shared wireless channel3. For a generic transmitter (xi,mi) ∈

ΨT , the neighborhood set Nxi = {(xj,mj) ∈ ΨT |P (xi, xj) ≥ υs}j 6=i is defined as the

set containing the nodes which receive xi’s signal power with a value greater than the

spectrum-sensing threshold υs. Due to the symmetric channel gain, if a node is in

the neighborhood set of xi, then xi is in the neighborhood set of that node. As will

be discussed later, due to the system complexity, I will resort to the region bounds

(i.e., technique #2 described in Sec. 2.3) to get the performance metrics. Therefore,

I define the set of dominant interferers I
(d)
xi =

{
xj ∈ X|h(xi,rxi ) dist(xj ,rxi )

η

h(xj ,rxi ) Rη
< β

}
j 6=i

as

the set in which each of its members can alone corrupt the signal received at the

receiver associated with xi. In other words, a dominant interferer is a transmitter

located within the vulnerability region of the receiver under observation.

3.4 Methodology of Analysis

In the considered network model, there are two sources of randomness. One is due

to the random spatial distribution of the nodes and the other is due to the random

channel gains. On the contrary, when assuming deterministic channel gains [43,44,51],

there is only one source of randomness due to the spatial distribution of the nodes.

Hence, it is possible to study certain events through studying the spatial statistics

over a regular shaped area. For instance, if deterministic channel gains are assumed,

the neighborhood set Nxi of a generic node (xi,mi) ∈ ΨT consists of the nodes which

coexist with xi in Bxi(rs), where rs is the spectrum-sensing range and is computed

as rs =
(
PtA
υs

)1/η

. In the same manner, the crescent shaped area where the nodes

3For a generic transmitter xi, I will use the term “neighborhood” to denote its contention domain
and the term “neighbors” to denote the set of nodes belonging to that contention domain.
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Figure 3.1: (a) Due to random channel gains there is no regular shaped separator be-
tween the neighbors (darker nodes) and non-neighbors (represented by lighter nodes)
of the node at the centre of the circle, (b) a schematic representation for the random
shape containing the neighbors of the center node.

in the set of dominant interferers I
(d)
xi are located can be determined (sec. IV in

[44]). Consequently, the average can be only taken over the spatial distribution in

the area where the event of interest is located to obtain the probability that this

event occurs. On the other hand, when considering fading channels, the previously

mentioned methodology is not applicable, since the event of interest can not be related

to a regular shaped area. Instead, each event is related to a dynamically changing

random-shaped area (as shown in Fig. 3.1) which is determined by the instantaneous

channel gains.

The main idea to overcome this difficulty is to bound my observation region (e.g.,

a circle with deterministic radius rd) and search for the nodes that contribute to the

event of interest. Hence, the spatial statistics within the deterministic observation

region can be obtained. Then, the contribution of each node within the deterministic

observation region to the event of interest will be Bernoulli distributed with a pa-
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rameter that accounts for both the large-scale distance (location)-dependent fading

and the small-scale fading. For instance, the neighborhood set of a generic trans-

mitter xi lies in a random shaped region which is unbounded in theory due to the

infinite support domain of the pdf of channel power gain. However, the distribu-

tion of the number of transmitters in the neighborhood set can still be determined

by bounding my observation region by Bxi(rd), where rd is sufficiently large such

that the probability for a transmitter located beyond rd to become a neighbor of

xi is negligible (i.e., P
{
PtAh(xi,xj)

dist(xi,xj)η
≥ υs|dist(xi, xj) > rd

}
≈ 0). Then, due to small-

scale fading, a transmitter xj ∈ ΨT ∩ Bxi(rd) is in Nxi iff h(xi, xj) ≥ υsdist(xi,xj)
η

PtA

(i.e., xj have a sufficiently high channel gain to keep the received signal power above

υs when received at xi). Mathematically, rd can be calculated as follows: take a

small value ε (e.g., ε = 10−6) such that P
{
PtAh(xi,xj)

rηd
≥ υs

}
≤ ε and calculate rd as:

rd =
(
PtA
υs
F̄−1
h (ε)

)1/η

, where F̄−1
h (.) is the inverse of the complementary cumulative

distribution function (ccdf) of the fading distribution. Now the neighborhood set

can be redefined as Nxi = {(xj,mj) ∈ ΨT ∩Bxi(rd)|P (xi, xj) ≥ υs}j 6=i as shown in

Fig. 3.1. Due to the infinite support domain of the pdf of channel power gain, no

matter how big rd is, the bounding approach will give a lower bound to the number

of transmitters in the neighborhood set of xi. However, due the finite first moment

of the pdf of channel power gain, it can be proven (cf. Appendix A.1) that with

the properly chosen rd the probability P{xj ∈ Nxi | ‖xi − xj‖ > rd} becomes negli-

gible and my approach is almost exact (as will be shown through numerical results

presented later in this chapter).

Hereafter, the term neighborhood success probability is used to denote the

probability that two transmitters in the primary PPP become neighbors. Note

that different neighborhood success probabilities are defined based on the po-
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sitions of the two transmitters with respect to (w.r.t.) each other (see

Fig. 3.4). For instance, Pυ = P {P (xi, xj) ≥ υs|xj ∈ Bxi(rd)} is the neigh-

borhood success probability between xi and any other transmitter located in-

side Bxi(rd), P∗υ = P {P (xj, xk) ≥ υs|xj, xk ∈ Bxi(rd)} is the neighborhood suc-

cess probability between any two transmitters located inside Bxi(rd), and P∗∗υ =

P
{
P (xj, xk) ≥ υs|xj ∈ Bxi(rd), xk ∈ Bxj(rd) \Bxi(rd)

}
is the neighborhood success

probability between a transmitter xj located in Bxi(rd) and any other transmitter

located in the crescent shaped area defined by Bxj(rd) \Bxi(rd). The three probabil-

ities (Pυ, P∗υ , and P∗∗υ ) are calculated in Sec. 3.5.3.

Although the bounding approach is not the only method to deal with the random

fading problem (see Sec. 3 in [40] and Sec. 4.1 in [7]), the bounding approach used in

this chapter is exact (cf. Appendix A.1), independent of rd when chosen properly,

and facilitates analysis of the modified HCPP.

3.5 Modeling CSMA Networks by the Classical and Modified

Hard Core Point Processes

The aim of this section is to derive the intensity of the simultaneously active trans-

mitters through constructing the classical HCPP and the modified HCPP in a general

fading environment. For the sake of better readability and ease of understanding, I

divide the analysis of both the HCPPs into two main parts. In the first part, the

problem is formulated and solved in terms of some parameters that are assumed to

be available. In the second part, I calculate these parameters. These parameters are

the three neighborhood success probabilities defined in the system model (i.e., Pυ,

P∗υ , and P∗∗υ ).
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3.5.1 Generalizing the Classical Hard Core Point Process (CHCPP)

Let ΨC
CSMA be the secondary point process derived from the primary PPP ΨT using

the CHCPP approach. To generalize the CHCPP to general fading environments, the

notion of the minimum distance rs, which is used in the construction of the CHCPP,

should be replaced with the notion of the received signal power. However, the same

construction methodology is used. A generic transmitter (xi,mi) ∈ ΨT is retained in

ΨC
CSMA if and only if it has the lowest mark in its neighborhood set Nxi , where the

neighborhood set Nxi is bounded by a dynamically changing random-shaped region

defined by the instantaneous channel gains. Applying the spatial and channel gain

statistics to ΨT , I obtain the following theorem:

Theorem 3.5.1. In a random CSMA network under general fading environment, the

retaining probability of a generic node (xi,mi) ∈ ΨT in ΨC
CSMA is given by PC

CSMA =

1−e−NPυ
NPυ , where N = λTπr

2
d is the expected number of nodes in the disc Bxi(rd) and

the deterministic radius rd is defined in Sec. 3.3. The intensity of ΨC
CSMA (i.e.,

simultaneously active transmitters) is given by λCCSMA = λTP
C
CSMA = 1−e−NPυ

πr2
dPυ

.

Proof. A generic point (xi,mi) ∈ ΨT is retained in ΨC
CSMA if and only if it has the

lowest mark in its neighborhood set Nxi . If xi has n neighbors, due to the uniform

distribution of the marks among xi’s neighbors, the probability that xi has the lowest

mark is 1
n+1

. Let Pk be the probability of having k points coexisting with xi in

Bxi(rd). From the PPP assumption, I have Pk =
e−λT πr

2
d (λT πr

2
d)k

k!
= e−NN k

k!
. Averaging

57



Chapter 3. Characterizing Random CSMA Ad Hoc Networks

over both spatial and channel gain statistics I obtain

PC
CSMA = P

{
xi is retained in ΨC

CSMA

}
=
∞∑
n=0

1

n+ 1

∞∑
k=n

Pk

(
k

n

)
Pnυ (1− Pυ)k−n

(∗)
=

∞∑
n=0

1

(n+ 1)!
Pnυ

∞∑
m=0

e−NNm+n

m!
(1− Pυ)m

=
e−N

NPυ

∞∑
n=0

(NPυ)n+1

(n+ 1)!

∞∑
m=0

(N (1− Pυ))m

m!

=
1− e−NPυ
NPυ

(3.2)

where
(
k
n

)
Pnυ (1−Pυ)k−n in the second line of (3.2) means that out of the k coexisting

nodes in Bxi(rd), only n of them satisfy the neighborhood requirement (i.e., have

sufficiently high channel gain to keep the received power at xi from each of these n

nodes greater than the spectrum-sensing threshold υs). In (∗) in (3.2), let m = k−n,

and then substitute every k with m+ n.

It is worth mentioning that if a deterministic channel gain is assumed (i.e., rd = rs

and Pυ = 1), the model reduces to type II [1]. The main drawback of the CHCPP is

that the contention-resolution process is resolved locally and the backoff timer freezing

property is not captured. That is, a transmitter qualifies for transmission if and only

if it has the lowest mark among its neighbors. Hence, the CHCPP underestimates

the intensity of the simultaneously active transmitters [48,86,87].

As an example, in Fig. 3.2, according to the definition of the CHCPP, only the

points with marks 0.1, 0.2, 0.9 are retained. The point with the mark 0.5 is deleted

because it does not have the lowest mark in its contention domain (despite the fact

that the point with the mark 0.3 will be deleted). It can be observed that the unse-
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lected points (i.e., points which will be deleted) of the primary PPP still play a role

in the selection process for the points to be retained in the secondary CHCPP. The

role of the unselected points results in the underestimation problem of the CHCPP.

Therefore, just looking into the contention domain of the point with the mark 0.5

does not convey the fact that the point with the mark 0.3 will be deleted. However,

including the own contention domain of the point with the mark 0.3 conveys this

fact. This means that there are spatial correlations among points lying in different

contention domains, which is not captured by the CHCPP. Projecting this problem to

the CSMA network, if the node with the backoff timer value of 0.2 qualifies for trans-

mission4, the node with the backoff timer value 0.3 should freeze its backoff counter

which enables the node with the backoff timer value 0.5 to qualify for transmission

as well.

Intuitively, the scenario described above may not appear for small intensities of

the primary PPP, high values of the spectrum-sensing threshold, or for environments

with severe channel fading conditions. However, when the intensity of the primary

PPP increases, and/or the spectrum-sensing threshold decreases, and/or the channel

condition becomes better, the number of nodes involved in the contention-resolution

process increases, and it becomes more likely to have events similar to the one de-

scribed in Fig. 3.2. Therefore, as the number of transmitters involved in the contention

domain increases, the underestimation problem of the CHCPP aggravates and highly

reduces the estimated density of the CHCPP (as will be evident from the numerical

results). The inaccurate estimation of the number of interferers directly affects the

estimation of the aggregate interference and the outage probability.

4This can be interpreted as a normalized version of the backoff timer value, which is an integer
in practice.
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Figure 3.2: The underestimation flaw of the CHCPP.

3.5.2 The Generalized Modified Hard Core Point Process (MHCPP)

The main idea to mitigate the flaw of the CHCPP modeling approach is to reduce

the role of the unselected points in the retaining probability by going one step further

into the correlation chain defined by type III. Let ΨM
CSMA be the secondary point

process derived from the primary PPP ΨT using the MHCPP. The role of unselected

points can be reduced by adding following condition to the definition of the CHCPP.

A generic point (xi,mi) ∈ ΨT is retained in ΨM
CSMA if it has the lowest mark among

its neighbors Nxi , or if it has the second-lowest mark among its neighbors Nxi given

that the point with the lowest mark is freezing its backoff counter. (i.e., the point

with the lowest mark will be deleted). More formally, a generic point (xi,mi) ∈ ΨT

is retained in ΨM
CSMA if and only if: (i) (mi < mj,∀(xj,mj) ∈ Nxi), or (ii) (mi >

mL|(xL,mL) ∈ Nxi) and (mi < mj,∀(xj,mj) ∈ Nxi \ {(xL,mL)}) given that (mL >

mm,∃(xm,mm) ∈ NxL \Nxi). The last condition (mL > mm,∃(xm,mm) ∈ NxL \Nxi)

means that there exist at least one younger point than xL in NxL\Nxi . Note that I am

only considering the points NxL \Nxi to have lower marks than xL as I have already

conditioned that xL has the lowest mark in Nxi . It is clear that the added condition
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to the retaining probability in the MHCPP brings correlation between a node xi and

its second degree neighbors5 w.r.t. xL and takes the model one step towards type III.

Hereafter, I will denote by xL the node with the lowest mark in Nxi when xi has the

second lowest mark. From the perspective of a CSMA network, this means that one

of the 2nd degree neighbors of xi w.r.t. xL is transmitting. Consequently, xL freezes

its backoff timer, and therefore, xi is able to access the channel.

One of the main problem introduced by fading for the MHCPP is to estimate the

number of the 2nd degree neighbors of xi w.r.t. xL (i.e., the set NxL \Nxi). In this

context, one of the main problems is that there is no closed-form expression (even

for the simple Rayleigh fading channels) for the distribution of distance between

two neighboring transmitters xi and xL considering the spatial correlation due to

random fading (i.e., channel gain statistics). Therefore, I will ignore the effect of

fading on the distribution of distance between the two neighboring transmitters xi

and xL
6. That is, I will assume that the distribution of the random distance (z)

between the two neighbor transmitters xi and xL is given byfz(z) = 2z
r2
d
, 0 ≤ z ≤ rd

as given in [28] for deterministic channel gains. Then, I divide the set of xi’s 2nd

degree neighbors w.r.t. xL (i.e., NxL \ Nxi) into two subsets. The first subset is

Nin
xL

= NxL ∩ (Bxi(rd)\ (Nxi ∪{xi})) that contains the neighbors of xL inside the disc

Bxi(rd) which are not in the neighborhood set of xi (such as point x1 in Fig. 3.3). The

second subset is Nout
xL

= NxL \ Bxi(rd), which contains the neighbors of xL outside

Bxi(rd) but inside the shaded region Ar(z) in Fig. 3.3 (such as point x2). Applying

the spatial and channel gain statistics to ΨT , I have the following theorem:

Theorem 3.5.2. In a random CSMA network under general fading environment,

5A generic point xj is denoted as a 2nd degree neighbor to xi w.r.t. xL if xj ∈ NxL
\Nxi

, given
that xL ∈ Nxi

.
6The effect of this approximation will be discussed in Sec. 3.7.2.
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the retaining probability of a generic node (xi,mi) ∈ ΨT in ΨM
CSMA is given by:

PM
CSMA = PC

CSMA+Pin+Pout−PinPout, where Pin and Pout denote the probabilities that

a younger point than xL exists in Nin
xL

and Nout
xL

, respectively, when xi has the second

lowest mark in Nxi(i.e., xL freezes its backoff timer and postpones its transmission).

Pin is given by

Pin =
N ∗υ
(
1− e−(Nυ+N ∗υ )

)
Nυ(Nυ +N ∗υ )

+ e−Nυ
(

(N ∗υ −Nυ)(e−N
∗
υ − 1)

NυN ∗υ
− 1

)
(3.3)

and Pout is given by

Pout =
N ∗∗υ

(
1− e−(Nυ+N ∗∗υ )

)
Nυ(Nυ +N ∗∗υ )

+ e−Nυ
(

(N ∗∗υ −Nυ)(e−N
∗∗
υ − 1)

NυN ∗∗υ
− 1

)
(3.4)

where Nυ = NPυ, N ∗υ = P∗υN (1 − Pυ), N ∗∗υ = λTP∗∗υ Ez[Ar(z)], Ar(z) = πr2
d −

2r2
d cos−1( z

2rd
) + 1

2
z
√

4r2
d − z2 and Ez[.] is the expectation over the random distance z

between xi and xL. The intensity of ΨM
CSMA is given by: λMCSMA = λT × PM

CSMA.

Proof. PC
CSMA is the probability that xi has the lowest mark among its neighborhood

set Nxi given in Theorem 3.5.1. Pin, which is the probability that a point younger
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than xL exists in Nin
xL

, is given by

Pin =
∞∑
n=1

1

n+ 1

∞∑
k=n

Pk

(
k

n

)
Pnυ (1− Pυ)k−n

k−n∑
t=0(

t

n+ t+ 1

)(
k − n
t

)
(P∗υ)t(1− P∗υ)k−n−t

=
e−N

NPυ

∞∑
n=1

(NPυ)n+1

(n+ 1)!

∞∑
t=0

t

n+ t+ 1

(
P∗υ

1− P∗υ

)t ∞∑
m=t(

m

t

)
(N (1− Pυ)(1− P∗υ))m

m!

=
e−N

NPυ

∞∑
n=1

(NPυ)n+1

(n+ 1)!

∞∑
t=1

1

(n+ t+ 1)(t− 1)!

(P∗υN (1− Pυ))t e(N (1−Pυ)(1−P∗υ))

(a)
=
N ∗υ
(
1− e−(Nυ+N ∗υ )

)
Nυ(Nυ +N ∗υ )

+

e−Nυ
(

(N ∗υ −Nυ)(e−N
∗
υ − 1)

NυN ∗υ
− 1

)

where Pk
(
k
n

)
Pnυ (1−Pυ)k−n in the first line is the probability that xi has n neighbors out

of k coexisting points in Bxi(rd). Then, I divide it by n+ 1 to obtain the probability

that xi has the second lowest mark. In the same line,
(
k−n
t

)
(P∗υ)t(1−P∗υ)k−n−t is the

probability that t out of the k − n non-neighbors of xi are neighbors to xL. Then, I

multiply it by t
n+t+1

to obtain the conditional probability (i.e., conditioning that xL

has the lowest mark in Nxi) that any of these t points has a mark lower than xL. The

proof of (a) in the last line of (3.3) is given in (cf. Appendix A.2).

Following the definition of the PPP, the number of points existing in Ar(z) is

independent of the number of points existing in Bxi(rd), but is dependent on the

area Ar(z), which is a function of the random distance z between xi and xL. Let

N1 = λTE [Ar(z)] and Ps = N1e−N1

s!
. Then averaging over both spatial and channel

gain statistics, Pout, which is the probability that a point younger than xL exists in
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Nout
xL

, can be written as

Pout =
∞∑
n=1

1

n+ 1

∞∑
k=n

Pk

(
k

n

)
Pnυ (1− Pυ)k−n

∞∑
t=1

(
t

n+ t+ 1

) ∞∑
s=t

Ps

(
s

t

)
(P∗∗υ )t(1− P∗∗υ )s−t

=
N1P∗∗υ e−(N+N1)

NPυ

∞∑
n=1

(NPυ)n+1

(n+ 1)!

∞∑
m=0

(N (1− Pυ))m

m!

∞∑
t=1

(N1P∗∗υ )t−1

(n+ t+ 1)(t− 1)!

∞∑
u=0

(N1(1− P∗∗υ ))u

u!

=
N1P∗∗υ e−(NPυ+N1P∗∗υ )

NPυ

∞∑
n=1

(NPυ)n+1

(n+ 1)!

∞∑
t=1

(N1P∗∗υ )t−1

(n+ t+ 1)(t− 1)!

(b)
=
N ∗∗υ

(
1− e−(Nυ+N ∗∗υ )

)
Nυ(Nυ +N ∗∗υ )

+

e−Nυ
(

(N ∗∗υ −Nυ)(e−N
∗∗
υ − 1)

NυN ∗∗υ
− 1

)
.

The first line in the expression for Pout has the same interpretation as that of the

first line in the expression for Pin. However, the only difference is that the number of

nodes (s) existing in the area Ar(z) is independent of the number of nodes existing

in Bxi(rd). Therefore, I have the extra summation in Pout for the random variable s

in order to average over all possible probabilities. For the proof of (b) in the last line,

see (cf. Appendix A.2).

Following the terminology in [86], an mth-generation point is a retained point in

the secondary HCPP that has the mth lowest mark in its neighborhood in the primary

PPP. For instance, type II captures the 1st-generation points only, while the MHCPP

takes one step towards type III and captures the 1st and 2nd-generation points. We
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Figure 3.3: Determining the neighborhood set of the point with the lowest mark xL.

can further refine the accuracy of the MHCPP by including more generations in the

intensity calculation and thereby getting closer to type III point process. However,

considering any generation beyond the 2nd generation highly complicates the analysis.

Therefore, for analytical tractability, I consider only the 1st and 2nd generations.

In [86], it was shown by simulations that type II saturates at around 50% of the total

intensity of type III, while considering the 2nd-generation points mitigates at least

30% of the underestimated intensity by type II. It was also shown in [86] that no

points beyond the 7th-generation contribute to the intensity of type III point process.

3.5.3 Derivation of the Probabilities Pυ, P∗υ, and P∗∗υ

Pυ, P∗υ , and P∗∗υ are the neighborhood success probabilities between two nodes in a

PPP. The differences among them lie in the positions of the nodes w.r.t. each other.

At first, I define three random variables z, w, and l. The random variable z denotes

the random distance between a point xi and any other point existing in Bxi(rd). The

random variable w denotes the distance between any two points existing in Bxi(rd).

The random variable l denotes the random distance between a point xj existing in

Bxi(rd) and any other point existing in Bxj(rd) \ Bxi(rd). Fig. 3.4 shows the three
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Figure 3.4: Distances between nodes.

random variables. Each of these three probabilities (i.e., Pυ, P∗υ , and P∗∗υ ) is governed

by a relation between two random variables, namely, the random channel gain and

the random distance between the two points.

Following the definition of PPP, the locations of the points are independent and

uniformly distributed across the area of interest. Using this fact, the distribution of

the random distance w can be obtained as fw(w) = 2w
r2
d
−w2
√

(2rd)2−w2

πr4
d

− 4w
πr2
d

sin−1
(

w
2rd

)
,

0 ≤ w ≤ 2rd (cf. Appendix A.3) and the distribution of the random distance l can

be obtained as fl(l) = 4l
r2
d

ln
(
rd+l
rd

)
, 0 ≤ l ≤ rd (cf. Appendix A.4). Given that the

random channel gain distribution is fh(h), Pυ, P∗υ , and P∗∗υ can be derived as follows.

First, I condition on the distance between the two nodes under consideration (i.e.,

conditioning on that dist(xi, xj) = r) to obtain the expression for their neighborhood

success probability, which is in fact the complementary cdf of the channel gain (i.e., 1−

Fh(
υsrη

PtA
)). Then, removing the condition on the random distance, the unconditional

neighborhood success probability is obtained.

Depending on the probability of interest, dist(xi, xj) should be replaced with
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distance z, w, or l. For Pυ, dist(xi, xj) is replaced with z. Therefore, Pυ is given by

Pυ =

∫ ro

0

(
1− Fh

(
υsr

η
o

PtA

))
fz(z) dz +

∫ rd

ro

(
1− Fh

(
υsz

η

PtA

))
fz(z) dz

=

∫ ro

0

2z

r2
d

(
1− Fh

(
υsr

η
o

PtA

))
dz +

∫ rd

ro

2z

r2
d

(
1− Fh

(
υsz

η

PtA

))
dz. (3.5)

For P∗υ , dist(xi, xj) is replaced with w. Therefore, P∗υ is given by

P∗υ =
∫ ro

0

(
1− Fh

(
υsr

η
o

PtA

))
fw(w) dw +

∫ 2rd
ro

(
1− Fh

(
υswη

PtA

))
fw(w) dw

=
∫ ro

0

(
2w
r2
d
− w2
√

(2rd)2−w2

πr4
d

− 4w
πr2
d

sin−1
(

w
2rd

))(
1− Fh

(
υsr

η
o

PtA

))
dw

+
∫ 2rd
ro

(
2w
r2
d
− w2
√

(2rd)2−w2

πr4
d

− 4w
πr2
d

sin−1
(

w
2rd

))(
1− Fh

(
υswη

PtA

))
dw. (3.6)

For P∗∗υ , dist(xi, xj) is replaced with l. Therefore, P∗∗υ is given by

P∗∗υ =

∫ ro

0

(
1− Fh

(
υsr

η
o

PtA

))
fl(l) dl +

∫ rd

ro

(
1− Fh

(
υsl

η

PtA

))
fl(l) dl

=

∫ ro

0

4l

r2
d

ln

(
r + l

r

)(
1− Fh

(
υsr

η
o

PtA

))
dl +∫ rd

ro

4l

r2
d

ln

(
r + l

r

)(
1− Fh

(
υsl

η

PtA

))
dl. (3.7)

To summarize, given the intensity of the contending transmitters and the pdf of

the channel power gain, rd is computed as rd =
(
PtA
υs
F̄−1
h (ε)

)1/η

. Then, the three

neighborhood success probabilities (i.e., Pυ, P∗υ , and P∗∗υ ) are obtained, respectively,

by numerically evaluating the integrals given in (3.5), (3.6), and (3.7). Then, the

intensity of the MHCPP can be calculated by using Theorem 3.5.2.
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3.6 Analysis of Outage Probability and Transmission Capac-

ity

Up to this point I have estimated the intensity of the simultaneously active transmit-

ters. In this section, I will estimate the outage probability for a generic receiver in the

network given that its associated transmitter is transmitting. In order to study the

outage probability, I assume that the test receiver rxi is located at an arbitrary origin

“o” and its transmitter located at xi = (R, θ) is retained in ΨM
CSMA. This assumption

is valid because an HCPP is invariant under translation (i.e., stationary) [3]. Ignoring

the effect of noise, the outage probability for the test receiver rxi located at the origin

is then defined as follows: O = P
{
PtAh(xi,o)R

−η

I ≤ β
}

, where β is the required signal-

to-interference ratio (SIR) for correct reception, I is the aggregate interference from

the simultaneously active transmitters. Note that the effect of noise could be promi-

nent only when the spectrum-sensing threshold is equal to the receiver sensitivity. In

such a case, the interference will be very low and comparable with the noise. However,

the spatial reuse of the channel would be very low. On the other hand, if I am trying

to optimize the spectrum-sensing threshold to maximize the spatial reuse efficiency

subject to an outage probability constraint, then the interference becomes the major

performance limiting factor and the background noise can be neglected [21], [26].

The main difficulty in computing the outage probability lies in obtaining the

distribution of the aggregate interference I. As discussed before in Sec. 2.2, there is

no useful expression for the pdf of the aggregate interference in large scale wireless

networks. The only known closed-form expression for the distribution of the aggregate

interference I was derived for ALOHA networks with deterministic channel model and

no interference protection for η = 4 [28]. For a random CSMA network, since there

is no known expression for the probability generating functional for the HCPP, it is
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extremely difficult (if not impossible) to find the exact distribution of the aggregate

interference [40,49]. However, I can find tight lower bound on the outage probability

by only considering the set of dominant interferers (i.e., technique #2 in Sec. 2.3)

retained in ΨM
CSMA after the contention resolution. Hence, the lower-bound on the

outage probability can be expressed as Ol = P
{
Idxi ∩ΨM

CSMA 6= φ
}

. This expression

is a direct consequence of the construction of the set of dominant interferers and the

fact that the interference from only one dominant interferer will corrupt the signal

received at the test receiver (i.e., the SIR will decrease below β).

Since the set of retained dominant interferers Idxi ∩ΨM
CSMA constitutes an HCPP

in the vulnerability region of the test receiver rxi , it is still very difficult to find an

exact expression for the probability of the event Idxi ∩ΨM
CSMA = φ [44]. Therefore,

following [40, 44, 49], the set of retained dominant interferers Idxi ∩ ΨM
CSMA will be

approximated by a PPP of intensity λMCSMA in the vulnerability region of rxi but

outside the contention domain of xi. Note that the contention domain of xi is ex-

cluded because, according to the CSMA protocol, if xi is transmitting, none of its

neighbors can simultaneously transmit. Physically, this approximation means that I

am partially ignoring the contention among the dominant interferers. The contention

among the coexisting transmitters has been already captured in the intensity λMCSMA,

and the condition on the minimum distance between the test transmitter and any of

the interference sources is captured by excluding xi’s contention domain. However,

the condition on having a minimum distance between interference sources is the only

ignored parameter in the computed lower-bound. Since the PPP does not bound the

number of points coexisting in a bounded region and the derived lower bound (Ol) is

very tight [26], the lower-bound on outage probability Ol increases and becomes an

approximate solution for the outage probability as will be evident from the results.7

7Similar results were also shown in [44].
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Due to random channel fading, the vulnerability region of the test re-

ceiver has a random shape. Therefore, I bound my observation region

to search for dominant interferers by a deterministic radius rvul such that

P
{

h(xi,o)R
−η

h(xj ,o)dist(xj ,o)−η
≤ β|dist(xj, o) > rvul

}
≈ 0. Note that rvul can be calculated in

the same manner as rd as follows: rvul = R

(
βF̄−1

h(xj,o)

h(xi,o)

(ε)

)1/η

, where F̄−1
h(xj,o)

h(xi,o)

(.) is the

ccdf if the random variable
h(xj ,o)

h(xi,o)
[93]. Averaging over the spatial and channel gain

distributions, I have the following theorem:

Theorem 3.6.1. In a random CSMA network under general fading environment, the

outage probability can be approximated as

O ≈ 1− e−NcsmaPβ
(

1−P(R)
υ

)
(3.8)

where Ncsma = λMCSMAπr
2
vul is the expected number of transmitters in Brxi

(rvul),

Brxi
(rvul) is the set that bounds the vulnerability region of the intended receiver rxi,

and Pβ is the probability that a transmitter in Brxi
(rvul) has sufficiently high channel

gain with rxi to violate the SIR constraint at rxi. Pβ is given by

Pβ =

∫ r
η
vul
βRη

0

(βRηh(xi, o))
2
η

r2
vul

fh(xj,o)

h(xi,o)

(h) dh+

∫ ∞
r
η
vul
βRη

fh(xj,o)

h(xi,o)

(h) dh (3.9)

where fh(xj,o)

h(xi,o)

(h) is the pdf of random variable
h(xj ,o)

h(xi,o)
.8 P(R)

υ =

P
{
xj ∈ Nxi |xj ∈ Brxi

(rvul)
}

is the neighborhood success probability for the

8Note that fh(xj,o)

h(xi,o)

(h) was derived in [93] for Rayleigh, log-normal, and Nakagami fading.
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transmitters existing in Brxi
(rvul) with the test transmitter xi and is given by

P(R)
υ =

∫ ro

0

2v

r2
vul

(
1− Fh

(
υs
PtA

))
dv +

∫ rvul−R

ro

2v

r2
vul

(
1− Fh

(
υsv

η

PtA

))
dv

+

∫ rvul+R

rvul−R

(
v

r2
vul

− 2v

πr2
vul

sin−1

(
v2 +R2 − r2

vul

2vR

))(
1− Fh

(
υsv

η

PtA

))
dv.

(3.10)

Proof. The outage probability can be approximated by the probability to find an

active interferer hidden from the intended transmitter and located inside the vul-

nerability region of the intended receiver. Using the PPP approximation for the

interferers [44] and averaging over the spatial and channel statistics, I have

O ≈
∞∑
n=1

∞∑
k=n

e−NcsmaN k
csma

k!

(
k

n

)(
1− P(R)

υ

)n (P(R)
υ

)k−n
n∑
t=1

(
n

t

)
P t
β(1− Pβ)n−t

= e−Ncsma
∞∑
n=1

n∑
t=1

(
n

t

)
P t
β(1− Pβ)n−t

∞∑
k=n

N k
csma

k!

k!

n!(k − n)!(
1− P(R)

υ

)n (P(R)
υ

)k−n
= e−Ncsma ×

(
e
Ncsma

(
1−P(R)

υ

)
− 1

)
eNcsmaP

(R)
υ −

e−Ncsma ×
(
e
Ncsma

(
1−P(R)

υ

)
(1−Pβ) − 1

)
eNcsmaP

(R)
υ

=

(
1− e−Ncsma

(
1−P(R)

υ

))
−(

e
−NcsmaPβ

(
1−P(R)

υ

)
− e−Ncsma

(
1−P(R)

υ

))
= 1− e−NcsmaPβ

(
1−P(R)

υ

)

where Pβ is the probability that a transmitter located in Brxi
(rvul) can alone corrupt

the received signal at the receiver and P(R)
υ is the neighborhood success probability
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between the test transmitter xi and the transmitters located in the vulnerability

region of the test receiver rxi . The first equation reflects that a transmitter is only

considered in the outage probability calculation if it is not a neighbor of xi (with

probability
(

1− P(R)
υ

)
) and can alone corrupt the signal of rxi (with probability Pβ).

Since the test receiver (rxi) is located at the origin ’o’, Pβ can be expressed as

Pβ = P
{

Pth(xi, o)R
−η

Pth(xj, o) ‖xj‖−η
< β

}
= P

{
h(xj, o)

h(xi, o)
>
‖xj‖η

βRη

}
. (3.11)

From the PPP approximation for the dominant interferers, xj is uniformly dis-

tributed in the vulnerability circle of the test receiver rxi located at the origin. There-

fore, z̃ = ‖xj‖ is a random variable with pdf fz̃(z) = 2z
r2
vul

, z ≤ rvul. Let zβ = z̃η

βRη
, then

the pdf of zβ is fzβ(z) = 2βRη(βRηz)
2
η−1

ηr2
vul

, and the cdf of zβ is Fzβ(z) = (βRηz)
2
η

r2
vul

, where

0 ≤ z ≤ rηvul

βRη
. Then Pβ is given by

Pβ =

∫ ∞
0

fh(xj,o)

h(xi,o)

(h)Fzβ(h) dh

=

∫ r
η
vul
βRη

0

(βRηh)
2
η

r2
vul

fh(xj,o)

h(xi,o)

(h) dh+

∫ ∞
r
η
vul
βRη

fh(xj,o)

h(xi,o)

(h) dh (3.12)

where fh(xj,o)

h(xi,o)

(h) is the pdf of the random variable
h(xj ,o)

h(xi,o)
[93].

Let v be the random distance between xi and any other transmitter uniformly

distributed in Brxi
(rvul). The pdf of v can be obtained as follows (see (cf. Ap-

pendix A.5):
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fv(v) =


2v
r2
vul
, 0 ≤ v ≤ (rvul −R)

v
r2
vul
− 2v

πr2
vul

sin−1
(

v
2R

+
R2−r2

vul

2vR

)
, (rvul −R) < v ≤ (rvul +R).

(3.13)

Due to the piecewise nature of both the path-loss model in (3.1) and the pdf of

the random distance v, the neighborhood success probability between a transmitter

xj ∈ Brxi (rvul) and the test transmitter xi is given by

P(R)
υ = P

{
PtAh(xi, xj)

vη
> υs

}
= P

{
h(xi, xj) >

υsv
η

PtA

}
=

∫ ro

0

2v

r2
vul

(
1− Fh

(
υs
PtA

))
dv +

∫ rvul−R

ro

2v

r2
vul

(
1− Fh

(
υsv

η

PtA

))
dv

+

∫ rvul+R

rvul−R

(
v

r2
vul

− 2v

πr2
vul

sin−1

(
v2 +R2 − r2

vul

2vR

))(
1− Fh

(
υsv

η

PtA

))
dv(3.14)

It is worth mentioning that the outage probability given by O in Theorem 3.6.1

is the general case of the lower-bound on outage probability given by (23) in [26] for

ALOHA networks. The expression of O can be interpreted as follows: λMCSMAπr
2
vul

gives the expected number of active transmitters within the area πr2
vul, Pβ gives the

portion of the area πr2
vul where the dominant interferers are located, and (1 − P(R)

υ )

excludes the area where xi’s neighbors are located. Hence, O gives the probability

that the region that bounds the dominant interferers is not empty. For an ALOHA

network with deterministic path-loss, the area will be π
(
Rβ

1
η

)2

and every node is

an active transmitter which gives (23) in [26].

The transmission capacity (T ) is defined as the number of successful transmissions
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per unit area and is given by T = λMCSMA(1 − O). In random CSMA networks,

the spectrum-sensing threshold is a very critical parameter that highly affects the

transmission capacity. The optimal value of the spectrum-sensing threshold can be

obtained numerically from the following optimization problem:

maximize T = λMCSMA(1−O)

subject to O ≤ ρ
(3.15)

where ρ is the outage probability threshold. We numerically solve this optimization

problem and show the existence of an optimal value for the spectrum-sensing threshold

(υ∗s) which maximizes the transmission capacity.

3.7 Results and Discussions

3.7.1 Numerical and Simulation Results

We compare the classical hard core point process (CHCPP) and the modified hard

core point process (MHCPP) in a Nakagami fading environment via Monte Carlo

simulations using MATLAB to check the accuracy of both the modeling approaches.

With Nakagami fading, the pdf and the cdf of channel power gain are defined, re-

spectively, as fh(h) = hk−1e−x/s

skυ(k)
and Fh(h) = 1 − Γu(k,h/s)

Γ(k)
, where Γ(.) is the gamma

function, Γ(s, x) =
∫∞
x
ts−1e−1dt is the upper incomplete gamma function, k is the

shape parameter, s is the scale parameter, and µch = ks is the mean channel gain due

to fading. Note that any other fading environment can be considered as long as the

pdf and the cdf of the corresponding channel power gain exist and the first moment of

the channel power gain is finite. With the carrier frequency fc = 2.4 GHz, assuming

isotropic antennas with unit gains for all transmitters, the propagation constant is
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computed as A = 9.9× 10−5. We choose rd such that ε = 10−6.

In each simulation run, I realize the transmitters according to a PPP with in-

tensity λT in a circle with radius equal to 20 m. Then, beginning with a random

transmitter, I simulate the contention resolution process. A transmitter in the re-

alized PPP is retained in the HCPP if the received power from all the previously

retained transmitters is less than the spectrum-sensing threshold υs. The simulation

is repeated 2000 times and the average number of nodes and the average aggregate

interference are compared with those obtained from analysis of the CHCPP and the

MHCPP. To simulate the outage probability, I divide the number of times the signal-

to-interference ratio (SIR) at the test receiver falls below the SIR threshold β (= 2

dB as in the IEEE 802.15.4 MAC [94]) by the total number of simulation runs. The

transmitted power is chosen as Pt = 1 mW, the reference distance is chosen as ro = 1

m, the Tx-Rx distance is chosen as R = 1 m, and the path-loss exponent is chosen to

be η = 4.

Fig. 3.5 shows the effect of the primary intensity of the transmitters on the in-

tensity of the simultaneously active transmitters as well as its effect on the outage

probability. Fig. 3.5(a) compares the CHCPP and the MHCPP modeling approaches

with the HCPP realization via Monte Carlo simulation. The figure shows the effect

of λT on the node intensity underestimation problem of the CHCPP. As the primary

intensity λT increases, the role of unselected points increases and the underestima-

tion problem aggravates. Fig. 3.5(b) shows that as the primary intensity λT increases,

more active transmitters are retained, which adds to the aggregate interference and

increases the outage probability. This figure also shows the accuracy of the analyti-

cally derived expression (via technique #2 Sec. 2.3) for outage probability.

Fig. 3.6 shows the effect of fading on the intensity of the simultaneously active
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Figure 3.5: (a) Number of nodes vs. λT (for µch = 0.3 and υs = 10−5), (b) outage
probability vs. λ (for µch = 0.3 and υs = 10−5).

transmitters as well as its effect on the outage probability. Fig. 3.6(a) compares

the CHCPP and the MHCPP modeling approaches with the HCPP realization via

Monte Carlo simulation. The figure shows the effect of the mean channel gain µch

on the underestimation problem of the CHCPP. As fading conditions become bet-

ter, more nodes are considered in the contention-resolution and the underestimation

problem aggravates. Fig. 3.6(b) shows that as the mean channel gain becomes higher,

fewer number of nodes are retained which decreases the aggregate interference and

the hidden node problem. On the other hand, the average channel gain between a

transmitter and its intended receiver becomes higher. These two events decrease the

outage probability with the increase of the mean channel gain. The figure also vali-

dates the accuracy of the analytically derived expression (via technique #2 Sec. 2.3)

for outage probability.

Fig. 3.7 shows the effect of the spectrum-sensing threshold υs on the intensity of

the simultaneously active transmitters as well as its effect on the outage probabil-

ity. Fig. 3.7(a) shows the effect of υs on the intensity of the simultaneously active

transmitters. As υs decreases, the CSMA protocol becomes more conservative and
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Figure 3.6: (a) Number of nodes vs. µch (for λ = 0.5 and υs = 10−5), (b) outage
probability vs. µch (for λ = 0.5 and υs = 10−5).

the intensity of the simultaneously active transmitters as well as the frequency reuse

efficiency decrease, and vice versa. The figure also shows the effect of υs on the

underestimation problem of the CHCPP. As υs decreases, more nodes are involved

in the contention resolution process and the role of the unselected points dominates

which aggravates the node intensity underestimation problem. Fig. 3.7(b) shows that

decreasing υs decreases the intensity of the simultaneously active transmitters as well

as the hidden node problem (i.e., the CSMA protocol becomes more conservative).

On the other hand, increasing υs makes the CSMA protocol more aggressive, and

consequently, the outage probability increases.

Fig. 3.8 shows the existence of an optimal υs which depends on the operating

conditions of the network. Fig. 3.8(a) shows the effect of the mean channel gain on

υs. From Fig. 3.6(b), as the channel condition deteriorates, the outage probability

increases. This means that the CSMA protocol should be more conservative to attain

the same outage probability. The maximum transmission capacity does not change

dramatically since the conservativeness of the CSMA protocol is compensated by the

low average channel gain which increases the coexistence capability of the network
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Figure 3.7: (a) Number of nodes vs. υs (for λ = 0.5 and µch = 0.5), (b) outage
probability vs. υs (for λ = 0.5 and µch = 0.5).

nodes (see Fig. 3.6(a)). Fig. 3.8(b) shows the effect of the primary intensity of the

transmitters λT on the transmission capacity. As λT increases, the transmission

capacity increases and the transmission capacity saturates with the increase of λT

because the intensity of the simultaneously active transmitters saturates (Fig. 3.5).

Fig. 9 shows the effect of the bounding approach on my model. To see the rate

of decay of ε with the distance r I plot Fig. 3.9(a). The figure shows that the

value of rd which gives ε = 10−6 will be different for different fading and path-

loss conditions. However, the probability to have a neighbor transmitter beyond

rd decays very rapidly. To show the accuracy of the bounding approach used in the

analysis, I compare the exact and the approximated probability mass functions (pmfs)

of the number of transmitters in the neighborhood domain of a generic transmitter.

Fig. 3.9(b) shows that the pmf obtained via the bounding approach matches exactly

with the actual pmf.

As has been mentioned before, the underestimation flaw depends on the spectrum-

sensing threshold, the fading parameters and the intensity of the transmitters con-

tending for accessing the spectrum. Since the effects of all these three parameters are
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Figure 3.8: (a) Transmission capacity vs. υs (for λ = 0.5), (b) transmission capacity
vs. υs (for µch = 0.5).

reflected in the mean number of transmitters in the contention domain, I quantify

the underestimation flaw against the mean number of transmitters in the contention

domain as in [86]. As shown in Fig. 3.10(a), the mean number of transmitters in

the contention domain reflects all of these variables, namely, the spectrum-sensing

threshold, fading parameters, and intensity of transmitters. Fig. 3.10(b) shows the

estimated intensity obtained by using each analytical model normalized w.r.t. the

simulations (i.e., normalized with w.r.t. the actual retained transmitters). The fig-

ure shows that the CHCPP saturates at 50% of the total intensity of simulation.

That is, the CHCPP underestimates up to 50% of the intensity of the simultaneously

active transmitters. The figure also shows that the MHCPP reduces the underesti-

mated intensity (i.e., the gap between type II intensity and the intensity obtained

from simulation) by at least 30%. Given the system parameters, the mean number

of transmitters in the contention domain (N = λTπr
2
dPυ) can be easily calculated.

Then, the underestimation error can be observed as shown in Fig. 3.10(b). For in-

stance, with N = 5 nodes, the MHCPP and the CHCPP estimate (underestimate),

respectively, 95% and 75% (5% and 25%) of the intensity of the simultaneously ac-
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Figure 3.9: a) The decay of ε with r for µch = 1, υs = - 60 dBm, and λT = 1, b)
exact vs. approximated pmf of the number of transmitters in the neighborhood set
of a generic transmitter Nxi for µch = 1, η = 4, υs = - 60 dBm, and λT = 1.

tive transmitters. However, with N = 10 nodes, the MHCPP and the CHCPP

estimate (underestimate), respectively, 82% and 62% (18% and 38%) of the intensity

of the simultaneously active transmitters. It is worth mentioning that the results in

Fig. 3.10(b) match with the results in [86].

3.7.2 Summary and Discussions

As a result of ignoring the freezing property of the backoff timer in the CSMA protocol,

there exists a node intensity underestimation flaw in the classical HCPP (CHCPP)

which aggravates when the mean number of transmitters involved in the contention

resolution process increases. The modified HCPP (MHCPP) presented in this work

mitigates the intensity underestimation flaw of CHCPP by at least 30%. For instance,

when the mean number of transmitters in a contention domain is 5 (i.e., N = 5),

the intensity underestimation flaw is reduced by about 80%. The intensity underes-

timation flaw still exists in the MHCPP since it only goes one step towards type III

HCPP and partially captures the freezing property of the CSMA backoff timer.
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Figure 3.10: (a) Normalized estimated intensity, (b) mean number of neighbors in
the contention domain N .

The presented model can be used to optimize the tradeoff between the spatial fre-

quency reuse and the outage probability, hence, maximizing the transmission capacity.

The obtained results reveal that significant amount of spectrum opportunities could

be missed in a practical CSMA wireless network if the spectrum-sensing threshold is

not optimized. For instance, with µch = 0.2 and λT = 0.5, a transmission capacity

gain of at least 6.4 dB can be obtained if the optimal sensing threshold is used rather

that adjusting the carrier sensing threshold to the receiver sensitivity (i.e., υs < −80

dBm). On the other hand, with µch = 0.5 and λT = 0.8, a transmission capacity

gain of 11 dB can be achieved if the optimal sensing threshold is used rather than an

aggressive spectrum access threshold (i.e., υs > −30 dBm).

Given a required link quality, as the fading conditions become worse, two neigh-

boring nodes should be closer to each other. Therefore, ignoring the effect of fading

between the two neighbors xi and xL results in an overestimation of the distance be-

tween them. This results in an underestimation of the number of common neighbors

between xi and xL (i.e., |NxL ∩Nxi |), and hence, an overestimation of the number of

2nd-degree neighbors of xi w.r.t. xL (i.e., |NxL \Nxi |). As a result, the probability
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that xi will access the channel given that it has the 2nd lowest mark in its neigh-

borhood will be overestimated. This is due to the fact that the chance for having a

transmitter in the NxL \Nxi with a mark lower than xL increases with the number

of transmitters in NxL \ Nxi . This leads to an increase in the probability that xL

will freeze its counter and xi will access the channel given that xi has the 2nd lowest

mark in its contention domain. Since the intensity underestimation flaw still exists

in the MHCPP, overestimating the probability that a generic transmitter xi will ac-

cess the spectrum should have a positive impact on the MHCPP (i.e., decreases the

underestimation flaw).

The results shown in Fig. 3.6(b) and Fig. 3.8(a) are particularly insightful. In-

tuitively, channel fading should add to the signal attenuation and hence decrease

the aggregate interference and the outage probability. However, the results show

that the outage probability increases when the channel condition becomes worse.

This behavior can be explained as follows. As the channel condition deteriorates,

although the aggregate interference reduces, the hidden node problem aggravates and

dominates the outage probability. To avoid this problem, as the channel condition

deteriorates (e.g., the average channel gain decreases), the CSMA protocol needs to

be more conservative in order to achieve the optimal transmission capacity (as shown

in Fig. 3.8(b)). That is, each transmitter needs to increase its transmission range to

protect its receiver from interference caused due to the hidden node problem.

3.8 Chapter Summary

We have applied stochastic geometry tools for characterizing CSMA ad hoc networks.

We have shown how the effect of the CSMA mac protocol on the network topology has

been captured be the HCPP. To this end, I have presented a framework for modeling
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the intensity of simultaneous active transmitters, the outage probability, and the

transmission capacity of random CSMA wireless networks ad hoc under general fading

environments. First, I have generalized the Matérn hard core point process type II

and demonstrated the node intensity underestimation flaw of this model to capture

the spatial distribution of the simultaneously active transmitters in random CSMA

networks. To mitigate this flaw, I have then proposed a generalized modified hard

core point process model. Based on this model, an approximate expression for the

outage probability based on the region bounds (i.e., technique #2 Sec. 2.3) has been

obtained and its accuracy has been validated by simulations. It has been also shown

that, for a given set of network parameters, there exists an optimal spectrum-sensing

threshold. The proposed framework will be useful for optimizing the performance of

large-scale CSMA wireless networks.

In this chapter I developed a modeling paradigm for ad hoc networks using CSMA

protocol in a single channel environment. In the next chapter I incorporate the

stochastic geometry modeling into a complete design paradigm for star-connected

sensor networks. We also extend the stochastic geometry analysis to multi-channel

environment.
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Chapter 4

Spectrum Efficient Design for

Star-Connected Wireless Sensor

Networks

In this chapter, I use stochastic geometry analysis to develop a novel spectrum-efficient

design framework for random large scale star connected wireless sensor networks in a

multi-channel environment. Although I use the IEEE 802.15.4 standard as my case

study for the sensor network, the framework can be applied to different technologies.

The proposed framework maximizes both spatial and time domain frequency utiliza-

tion under channel gain uncertainties to minimize the number of frequency channels

required to accommodate a certain population of coexisting IEEE 802.15.4 networks.

The performance metrics are the outage probability and the self-admission failure

probability. We relax the single channel assumption that has been used traditionally

in the stochastic geometry analysis. We show that the intensity of the admitted net-

works does not increase linearly with the number of channels and the rate of increase

of the intensity of the admitted networks decreases with the number of channels.
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By using graph theory, I obtain the minimum required number of channels to ac-

commodate a certain intensity of coexisting networks under a self-admission failure

probability constraint. To this end, I design a superframe structure for the coexisting

IEEE 802.15.4 networks and a method for time-domain interference alignment.

4.1 Introduction

The IEEE 802.15.4-based wireless personal area networks (WPANs) offer high power

efficiency when operating in the beacon-enabled mode, and therefore, they are suit-

able for applications having critical power efficiency constraints [95]. However, due to

their limited power capabilities, the IEEE 802.15.4-based WPANs are considered to be

the most affected networks by mutual interference in the ISM (Industrial, Scientific,

and Medical) band [96]- [98]. The significant impact of mutual interference on the

IEEE 802.15.4 WPANs from other networks coexisting in the ISM band limits their

coexistence capability and drastically degrades their performance. Furthermore, in

the beacon enabled mode, the IEEE 802.15.4 WPANs follow long term periodic super-

frame structures that determine their sleep/active patterns (see Fig. 4.1). Therefore,

an IEEE 802.15.4 WPAN operating in the beacon enabled mode cannot efficiently

utilize the randomized short term spectrum opportunities as proposed in [99]. On

the contrary, it requires a channel that does not have any strong interference (e.g.,

interference from Wi-Fi networks)1. Therefore, for the operation of the IEEE 802.15.4

WPANs in beacon enabled mode in the crowded ISM band, a vacant channel2 (i.e.,

not utilized by other technologies such as the IEEE 802.11b) is considered to be a

1The IEEE 802.11 WLANs can have a maximum of 3 non-overlapping channels, which leaves
at least four channels for the IEEE 802.15.4 WPANs without interference from the IEEE 802.11
WLANs [100].

2Hereafter, the term vacant channel is used to denote a channel with relatively low heterogeneous
interference (i.e., interference from systems other than those using the IEEE 802.15.4 standard) in
the ISM band. More discussions on heterogeneous interference are provided in Sec. 4.8.2.
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very precious resource that has to be utilized carefully. This motivates me to de-

velop a design framework for the IEEE 802.15.4 networks that maximizes both the

spatial and time domain utilizations of each vacant channel available for the opera-

tion of these networks. In other words, my goal is to increase the number of IEEE

802.15.4 WPANs that can coexist in the same frequency channel, hence, increase their

coexistence capability in the crowded ISM band.

We consider the IEEE 802.15.4-based ad-hoc and sensor networks that are spa-

tially distributed in the form of star-connected networks (SCNs) and operating in the

beacon-enabled mode. One example of such a network is a wireless body-area sensor

network (WBASN) implemented using a two-hop communication system, where a

body control unit (BCU) acts as a coordinator for light-weight low-power biomedical

sensors attached to the human body. The BCU and the associated biomedical sensors

form an SCN. Each coexisting SCN consists of a master coordinator node (CN) and

some slave network nodes (SNs).

4.1.1 The IEEE 802.15.4 Operation

In the IEEE 802.15.4 network, the CN is responsible for coordinating the traffic within

its SCN. Each CN and its attached SNs follow a periodic superframe structure (as

shown in Fig. 4.1) for their communications. The members of the SCN become active

for the intra-network communication during the active period in a superframe, and

for power saving, they go to the sleep mode during the inactive period. The active

period in a superframe is divided into three main parts: the beacon, the contention

access period (CAP), and the contention free period (CFP). In a coexistence scenario

where many independent SCNs coexist in the same vicinity, if the active periods of

different SCNs overlap, the transmissions will interfere with each other and thus cause
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Figure 4.1: IEEE 802.15.4 superframe structure. The superframe’s active period is
divided into three main parts: the beacon, the contention-access period (CAP), and
the contention-free period (CFP).

transmission errors.

In an IEEE 802.15.4 network, each coexisting CN listens to the spectrum, mea-

sures the power level, and compares it to a spectrum sensing threshold3. The access

policy in the IEEE 802.15.4 standard requires that a CN does not access a frequency

channel unless the power measured on that channel is less than the spectrum sens-

ing threshold. The spectrum sensing threshold is a very crucial design parameter

that should be adjusted very carefully. The lower the spectrum sensing threshold,

the more conservative the system is and the same channel is reused after larger spa-

tial intervals. Hence, the aggregate interference and the outage probability decrease.

The outage probability refers to the probability that the signal-to-interference-plus-

noise-ratio (SINR) at the intended receiver falls below the threshold level required for

correct reception. On the other hand, the higher the spectrum sensing threshold, the

more aggressive the system becomes and the same channel can be reused after smaller

spatial intervals. Hence, the aggregate interference and outage probability increase.

Therefore, the spectrum sensing threshold must be carefully tuned to achieve the re-

quired tradeoff between the spatial reuse efficiency and the outage probability. Note

that the superframe scheduling decision taken by the CN is a long term decision and

3The power level is measured using the ED (energy detection) service specified by the physical
layer of the standard.
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has to account for the channel gain uncertainties. That is, the channel gains realiza-

tion will change over the time from the channel gains at the time instant when the

CN listened to the spectrum and obtained the beacons information and power levels

of the coexisting SCNs to schedule its superfame. Therefore, for efficient and reliable

operation of the IEEE 802.15.4 beacon enabled WPANs, it is of primary importance

that the sensing threshold optimization accounts for the channel gain uncertainties.

According to the IEEE 802.15.4 standard, the spectrum sensing threshold is very

low as its value is set within 10 dB of the receiver sensitivity (i.e., the spectrum

sensing threshold will always be less than -75 dBm) which lead to a very conservative

operation and degraded frequency reuse efficiency [94, 98]. Moreover, from the time-

domain perspective, the access policy in the standard requires that each IEEE 802.15.4

SCN will be exclusively operating in a given frequency channel, and therefore, the

entire inactive period of the superframe is wasted.

4.1.2 Motivation and Contribution

Motivated by the conservativeness of the IEEE 802.15.4 standard, its vulnerability to

interference, and the requirement for a spectrum-efficient operation of a large-scale

deployment of IEEE 802.15.4 networks, I use stochastic geometry analysis to design

a framework for multi-channel coexistence of IEEE 802.15.4 WPANs operating in

the beacon-enabled mode. The proposed framework optimizes the spectrum sensing

threshold while accounting for the channel gain uncertainties to maximize the spatial

frequency reuse, optimizes the superframe structure to maximize the time domain

utilization, and calculates the minimum number of channels required for a certain

population of the IEEE 802.15.4 WPANs to coexist and operate properly (i.e., subject

to some performance constraints). Intuitively, if there are m channels available, the
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total number of SCNs that can coexist in the same vicinity will be the m fold of the

number of SCNs coexisting in one channel. In other words, if there are N networks to

coexist in a certain area, then a total of m channels are needed to accommodate the N

coexisting networks when one channel can accommodate N/m networks. While this

is true for grid-based networks, I will show that it is not true for random networks.

The major contributions of the work can be summarized as follows:

• development of a unified framework for the design of a multi-channel coexistence

model for random IEEE 802.15.4-based networks,

• account for the channel gain uncertainties for the long term superframe schedul-

ing decision,

• calculation of the optimal sensing threshold and the optimal number of channels

required for the operation of the coexisting SCNs,

• derivation of a closed-form expression for the intensity of SCNs that can coexist

in multiple channels and the coexistence gain offered by each extra channel,

• discovery of the fact that the relationship between the number of channels and

the total number of coexisting networks is non-linear. More precisely, due to

the randomness of the network topology, the added value of each extra channel

to the coexistence gain decreases, and therefore, the traditional one channel

analysis can be quite misleading for the design of multi-channel carrier sensing-

based random wireless networks.
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4.2 Related Work

Since carrier sensing-based protocols such as the carrier sense multiple access with

collision avoidance (CSMA/CA) protocol is a fundamental multiple access protocol

that is extensively used in modern wireless networks, CSMA has been the main point

of interest of many research work in the literature. In the following I divide the

related work into two sections. The first section reviews the related work on stochastic

geometry and random ad hoc and sensor networks. The second section reviews the

related work on the IEEE 802.15.4 and multi-channel analysis of ad hoc and sensor

networks where the network topology is either abstracted or follows a grid model.

4.2.1 Random Network Topologies

Most of the available results for random network topologies are for ALOHA MAC

protocol [21, 25–28, 32] because the tractable PPP directly fits to model the spatial

distribution of the network nodes. On the other hand, due to correlation among the

points of the HCPP, it is more complicated to model the CSMA networks. Hence,

there are fewer results related to random CSMA network and I will highlight some

of them in this section. In [44], the authors compared the performances of pure

ALOHA, slotted ALOHA, and two versions of CSMA protocols to study the effect of

the MAC protocol on the outage probability. An optimization problem was formu-

lated and solved numerically to optimize the sensing threshold in order to minimize

the outage probability in CSMA networks. However, the vulnerability circle model

was used for the outage probability, and the intensity of simultaneously active users

was obtained via an iterative solution. In [40], the authors used a modified HCPP

to model the spatial distribution of the simultaneously active transmitters in a ran-

dom CSMA network. Then approximate expressions for the Laplace functional of
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the aggregate interference experienced by the test node at the origin as well as the

coverage probability were obtained. In [42], the authors proposed and analyzed two

channel-aware versions of the CSMA protocol based on a modified HCPP which was

used in [40]. The modified version of the HCPP, namely, the modified Matérn CSMA

process introduced in [40, 42] defines the retaining probability of HCPP in terms of

channel gains rather than distances. In [41], the authors extended the model pre-

sented in [40] to obtain the distribution of the throughput achieved by the nodes

rather than just its spatial average. In [89], the authors characterized the asymptotic

behavior of the outage probability in random ad hoc networks by Poutage ∼ aλb when

λ→ 0 (λ is the intensity of concurrent transmitters). The two constants a and b were

obtained for general fading and general node distribution. In [51], a novel modified

HCPP was proposed to model the spatial distribution of the simultaneously active

nodes in a CSMA network in order to overcome the well-known underestimation flaw

of the Matérn HCPP type II. In [50], the Matérn HCPP type II was generalized to a

general fading environment. A common assumption in all of the above work is that

only one channel in available for the coexisting nodes. Different from all the above

work in the literature, in this work, I consider that m channels are available for the

coexisting CSMA nodes. Then, I obtain the optimal number of channels subject to

a self-admission failure probability constraint.

4.2.2 Abstracted and Grid Model for Network Topologies

Maximizing the spatial frequency reuse of IEEE 802.11 WLANs has been a hot re-

search topic for more than two decades. In Sec. 4.2.1 I have cited most of the related

work which use the stochastic geometry approach accounting for the random network

topology explicitly. Another stream of work in the literature either considered the
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worst-case packing (i.e., the hexagonal gird model) [14,15,102] or assumed arbitrary

locations for the nodes [98,105]. For instance, [102] examined the effect of controlling

the transmit power control vs. adjusting the CSMA sensing threshold to maximize the

network throughput. In [14], the authors obtained an upper bound for the spectrum

sensing threshold for the safe network operation under cumulative interference in a

grid-based network model. However, both [14,102] considered a hexagonal grid-based

model which corresponds to the most dense packed network topology to consider the

worst-case scenario. In such a setup, very conservative operating parameters will be

obtained (i.e., 0% outage regime) and the spatial frequency reused is not optimized

(as shown in Fig. 4.4).

In [98], comprehensive experiments were performed to quantify the effect of IEEE

802.11g/n coexistence on the packet delivery ratio of an IEEE 802.15.4 pair. In the

experimental setup, the transmitter was configured to transmit a certain amount of

payload and the receiver calculated the number of correctly received packets. The

packet delivery ratio at the receiver can be affected by either reporting a channel

busy or due to SINR outage. It was concluded that the conservative spectrum sens-

ing threshold (-77 dBm) significantly degrades the packet delivery ratio due to re-

porting the channel busy. It was also observed that increasing the spectrum sensing

threshold from -77 dBm to -65 dBm gives higher performance gain than increasing

it from -65 dBm to -55 dBm. This is because, at higher sensing threshold, although

the channel is usually reported idle, the SINR outage degrades the packet delivery

ratio which confirms my results. For the IEEE 802.15.4 MAC, the concept of utilizing

the inactive period in a superframe was first proposed in [101]. However, in [101],

the network topology was abstracted and the collision model was assumed. The pro-

posed spectrum sharing method in [101] requires global information about the traffic
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requirements of all of the coexisting WPANs and does not take the GTS transmissions

into considerations. The work in [100] extended the idea in [101] for the SINR capture

model, however, only simulations were presented to reveal the conservativeness of the

IEEE 802.15.4 standard.

In [106, 107], multi-channel MAC protocols were analyzed for ad hoc and sensor

networks. In this type of multi-channel access, the coexisting nodes communicate on

all the available channels through coordination or hopping patterns. We emphasize

that in my network model, each SCN tries to access any of the available frequency

channels, and once it succeeds to access the channel it remains on it using the su-

perframe structure shown in Fig. 4.1 and Fig. 4.3. That is, to comply with the

IEEE 802.15.4 standard, the multiple available channels are used for accommodating

multiple SCNs and they are not used for interference avoidance through frequency

hopping.

4.3 System Model and Assumptions

4.3.1 Network Model

The network model considered in this chapter consists of multiple stationary SCNs

(each with a CN and one or multiple SNs) coexisting in the R2 Euclidean space as

shown in Fig. 4.2. All of the coexisting SCNs have identical traffic load requirement

and use the IEEE 802.15.4-based medium access control (MAC) in the beacon-enabled

mode. Let Ψ = {xi; i = 1, 2, 3, ...} be the point process modeling the spatial locations

of the CNs, where xi is the location of the ith CN in the R2 Euclidean space4. Each

CN located at xi has a set of associated SNs randomly located within a fixed distance

Rmax, where Rmax is the maximum radius of the star network. It is assumed that

4We will use xi to denote both the location of the ith CN as well as the CN itself.
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Figure 4.2: The red dots (dots with larger radius) represents the CNs while the blue
dots (dots with smaller radius) represents the SNs.

the locations of all CNs are independent, hence, the network can be modeled via a

Poisson cluster process [8].

To simplify the analysis, I exploit the fact that, according to the IEEE 802.15.4

standard, in the beacon enabled mode, each CN coordinates the spectrum access

within its SCN. Hence, at any generic time instant there is only one active link within

any SCN. Therefore, a Poisson bipolar model with a transmitter receiver separation

of Rmax is used to model the spatial distribution of the coexisting SCNs [32]. The

maximum link distance Rmax is used in the Poisson bipolar model [32] to ensure that

the optimized spectrum sensing threshold maintains the outage probability for all

links within the coexisting SCNs. Therefore, Ψ is a Poisson point process (PPP)

with intensity λ and the SNs are not a part of that PPP. Since I am using point

processes to model the CNs, hereafter, I will use the notations “a point in the point

process” and “a CN in the network” interchangeably. We will also denote an SCN by

its CN.
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4.3.2 Channel Model

We consider a general power-law path loss model in which the signal power decays

at the rate Ar−η with the distance r, where A is a frequency dependent propaga-

tion constant, and η is the path-loss exponent. For analysis, only Rayleigh fading

environment is assumed5. The channel (power) gains from a generic location x ∈ R2

to another generic location y ∈ R2 is denoted by h(x, y), where h(x, y) ∼ Exp (µ)

with mean 1
µ
. All the channel gains are assumed to be independent from each other,

independent from the locations, symmetric, and identically distributed. Hence, for

the brevity of exposition, hereafter, the spatial index (x, y) is dropped. A receiver can

successfully decode a signal if the received signal power exceeds the received aggre-

gate interference power plus the noise power by a certain threshold β. In other words,

the signal-to-interference-plus-noise-ratio (SINR) of a signal should be greater that a

certain threshold β for the signal to be successfully decoded by its intended receiver.

Otherwise, the intended receiver will experience an outage. All the nodes transmit

with the same transmit power Pt and every active SCN always have an active link

(i.e., saturation conditions are assumed).

4.3.3 Spatial and Time-Domain Co-existence

According to the IEEE 802.15.4, the CN is responsible to find the channel to schedule

the superframe for its SCN’s operation. When an SCN is activated, the CN scans the

available frequency channels in a sequential order until it finds a channel to schedule

its superframe [94]. At each frequency, the CN listens and stores all broadcasted

beacons and uses an algorithm similar to the one provided in [100, 101] (which is

discussed in Sec. 4.7.2) to choose a time offset such that its active period does not

5Rayleigh fading provides tractable ans exact results for the system behavior, techniques to relax
the Rayleigh fading assumption is discussed in Sec. 2.3
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overlap with the active period of any other SCN within its contention domain. The

contention domain is defined by the spectrum sensing threshold υs. As discussed in

Sec. 3.4, due to channel fading, there is no regular shaped region to determine the

contention domain of a CN. Instead, the contention domain of each CN is a random

shaped region that depends on the realization of the channel gains. Therefore, I define

the set containing the CNs in the contention domain of a test CN located at a generic

position x ∈ R2 as Nx =
{
y : PtAh ‖x− y‖−η ≥ υs

}
, where ‖.‖ denotes the Euclidean

norm. Fig. 4.3 shows the spatial and time-domain coexistence strategy per frequency

channel for the coexisting SCNs. As shown in this figure, if deterministic channel

gains are assumed, re is the minimum distance where the same logical channel can be

reused. On the contrary, if channel fading is considered, re will be a random variable

which depends on the channel gain realizations. A logical channel is determined by

a frequency channel and a time offset [100,101].

Ideally, in the time domain, the coexisting SCNs should align their superframes

such that no two SCNs operate in the same frequency channel at the same time if

they are in the same contention domain (as shown in Fig. 4.3)6. However, since

the superframe scheduling is a long term decision and the channel gains are time-

varying stochastic processes, an overlap-free operation between SCNs in the same

contention domain is impossible. That is, at the time instant a generic test CN

is sensing the channel to schedule its superframe, a nearby CN could have a poor

channel gain that excludes it from being in the contention domain of the test CN.

On the long run, due to the time variations of the channel gains, the test CN will

experience high interference from that nearby CN. Interference from nearby CNs can

be limited by tuning the sensing threshold to be more conservative, hence, it is less

likely that a nearby CN is excluded from being in the contention domain of the test

6The idea of time domain superframe alignment is inspired by the idea presented in [101].
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Figure 4.3: Spatial and time-domain coexistence model.

CN. However, a conservative spectrum sensing threshold will decrease the spatial

frequency reuse efficiency and increase the self-admission failures of the coexisting

SCNs. A self-admission failure is declared if there is insufficient space in the time

domain over all available frequency channels for a certain CN to align its superframe

without overlapping its active period with the CNs in its contention domain. The

self-admission failure reflects the spatial frequency reuse efficiency. That is, the higher

the spatial frequency reuse efficiency the lesser the self-admission failures, and vice

versa. In a distributed network, the self-admission failure probability is analogous to

the blocking probability in a centralized network. When an SCN is activated the CN

searches for a logical channel to schedule its superframe. If there exists a time offset

that ensures an overlap-free operation of active periods, the CN transmits its beacon

and starts its SCN operation. Otherwise, the CN scans the next channel. If the CN

cannot align its superframe in the time domain over all available channels, it declares

a self-admission failure.

Perfect coordination is assumed within each of the coexisting SCNs. That is,

an outage occurs due to the interference from the coexisting SCNs only, not from

collisions within the SCN. In my model, the contention resolution process takes place

among the coordinator nodes, and the slave nodes are not involved in the contention
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resolution process. For optimizing the spectrum sensing threshold, I consider the

uplink transmission scenario. However, I would like to emphasize that although I am

modeling the interference in the uplink at the CN, the spectrum access coordination

among the SCNs (i.e., superframe scheduling) is also performed by the CNs as defined

by the IEEE 802.15.4 standard [94].

4.4 Design Methodology

The proposed multi-channel network design is performed in the following steps. First,

given an outage probability constraint at a CN, analysis for a single channel network

is performed to obtain the optimal spectrum sensing threshold for the CNs that

maximizes the spatial frequency reuse for each channel. Then, using the optimal

spectrum sensing threshold, I obtain the minimum number of channels required to

accommodate the coexisting IEEE 802.15.4-based SCNs subject to a self-admission

failure probability constraint. To this end, the superframe structure of the IEEE

802.15.4 is designed for an SCN to maximize spectrum utilization through time-

domain interference alignment taking the traffic load requirements in that SCN into

account, where the traffic load is defined in terms of the minimum data rate required to

be supported by the SCN. Note that for the IEEE 802.15.4 operating in the beacon-

enabled mode, the ratio of the active and inactive periods in the superframe is a

design parameter that can be manipulated by setting the beacon order (BO) and

the superframe order (SO) [94]- [101]. This ratio determines the data rate delivered

within the network as well as the number of IEEE 802.15.4 networks that can coexist

in the same frequency channel in the same contention domain [100, 101]. Having

the number of required channels and the number of logical channels available per

frequency, the number of frequency channels required for the network operation can
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be easily calculated.

4.5 Optimization of the spectrum sensing threshold

4.5.1 Problem Formulation

The efficiency of a carrier sensing protocol depends on the accurate choice of the

spectrum sensing threshold υs. Increasing the spectrum sensing threshold decreases

the contention domain of each CN, hence, increases the number of CNs that can use

the same logical channel which increases the spatial frequency reuse. However, it

increases the interference level and the outage probability. Taking this trade-off into

account, I optimize the spectrum sensing threshold to maximize the spatial frequency

reuse for a single channel subject to an outage probability constraint. Note that the

spatial frequency reuse is maximized through maximizing the intensity of SCNs that

can operate in the same logical channel. The spectrum sensing threshold is optimized

through the following optimization problem:

maximize
υs

λC(υs, 1)

subject to O(υs) ≤ q

(4.1)

where λC(υs, 1) is the intensity of simultaneously active CNs in one channel, O(υs) is

the outage probability, and q is the maximum tolerable outage probability. In order to

solve this optimization problem, I should first estimate the intensity of simultaneously

active CNs and the outage probability in terms of the sensing threshold.
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4.5.2 Estimating the Intensity of the Simultaneously Active SCNs Per

Channel

A carrier sensing protocol bounds the mutual interference and guarantees a maxi-

mum outage probability by conditioning that no two nodes, belonging to the same

contention domain, simultaneously use the same logical channel. This condition on

the simultaneously active CNs brings correlations among them, and hence, a PPP

cannot be directly used to model their spatial distribution. Instead, the Matérn hard

core point process (HCPP) can be used since it can capture the condition of having

a minimum separation among the points of the process [8].

Matérn HCPP type II is an analytical method used to construct an HCPP (ΨC)

from a parent PPP (Ψ). In my case, the PPP is the complete set of CNs contending for

one channel and the HCPP is the subset of simultaneously active CNs on that channel

(i.e., the CNs which have won the contention process). Matérn HCPP type II defines

two steps to derive ΨC from the parent PPP Ψ. At first, the marked point process Ψ̃ is

constructed by applying an independent mark uniformly distributed from [0, 1] to Ψ.

Then, a marked point (xi,Mxi) is selected to be in ΨC (i.e., retained in ΨC) if and only

if it has the lowest mark in its contention domain (i.e., Mxi < Mxj ,∀j : xj ∈ Nxi). In

my model, since I am including the Rayleigh channel fading, the contention domain

of each CN is a random shaped region which is unbounded in theory due to the

infinite support domain of the exponential distribution. Following the definition of

the Matérn HCPP type II, the intensity of the simultaneously active nodes is given

by the following lemma

Lemma 4.5.1. In a Rayleigh fading environment, for a spectrum sensing threshold
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υs, the intensity of CNs that can access the same logical channel is given by

λC(υs, 1) =
λ
(
1− e−N (υs)

)
N (υs)

(4.2)

where N (υs) = πλ
(
PtA
µυs

) 2
η

Γ(1 + 2
η
) is the mean number of CNs in the contention

domain of a generic CN for a given spectrum sensing threshold υs.

Proof. In order to obtain an expression for the intensity of CNs that can simultane-

ously access the same logical channel, I have to drive the distribution of the number

of CNs existing in the contention domain of a generic CN. Without loss in generality,

I will derive the distribution of the number of CNs in the contention domain of a

test CN conditioned on having that test CN at the origin. By Slivnyak’s theorem,

the results will hold for a generic CN [8]. A generic CN located at xi ∈ R2 is in

the contention domain of the test CN located at the origin (o = (0, 0)) if and only

if PtAhi ‖xi‖−η > υs. Hence, the random variable |No|, where |.| denotes the set

cardinality, can be expressed as a sum of indicator functions as follows:

|No| =
∑
xi∈Ψ

1{PtAhi ‖xi‖−η > υs}. (4.3)

Since the distribution of a random variable is uniquely characterized by its moment

generating function (mgf), I will derive the mgf of |No| to infer its distribution. The
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mgf of |No| can be expressed as

E
[
et|No|

]
= E

[
e
t
∑
xi∈Ψ

1{PtAhi‖xi‖−η>υs}
]

= EΨ

[∏
xi∈Ψ

Ehi
[
et1{PtAhi‖xi‖

−η>υs}
]]

(i)
= exp

−Eh
∫ 2π

0

∫ (PtAhυs
)

1
η

0

(1− et)λrdrdθ


= exp

{
−λπEg

[
h

2
η

](Pt
υs

) 2
η

(1− et)

}

= exp

{
−(1− et)πλ

(
PtA

µυs

) 2
η

Γ

(
1 +

2

η

)}
(4.4)

where EΨ[.] is the expectation w.r.t. the point process Ψ and Eh[.] is the expectation

w.r.t. the channel gain h. The equality (i) is obtained by the probability generating

functional of the PPP and switching the order of the integration and the expectation.

Differentiating (4.4) and equating with zero, the first moment of |Nx| is obtained as

E[|No|] = πλ
(
PtA
µυs

) 2
η

Γ(1 + 2
η
). Hence, the moment generating function of |No| is in

the form E
[
et|No|

]
= exp {(et − 1)E[|No|]} which is the moment generating function

of the Poisson distribution. By Slivnyak’s theorem, |Nx|
d
= |No|, where

d
= denotes

the equality in distribution.

Having the distribution of the number of CNs in the contention domain of a generic

CN, it is easy to derive its channel access probability. According to the HCPP, a CN

can access the channel if and only if it has the lowest mark in its contention domain.

Therefore, according to the law of total probability, the channel access probability for

a generic CN given that there is only one channel available can be expressed as:
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Pac(υs, 1) =
∞∑
n=0

1

n+ 1

(
πλ
(
PtA
µυs

) 2
η

Γ(1 + 2
η
)

)n
e−πλ(

PtA
µυs

)
2
η Γ(1+ 2

η
)

n!

=

(
µυs
PtA

) 2
η 1− e−πλ(

PtA
µυs

)
2
η Γ(1+ 2

η
)

πλΓ(1 + 2
η
)

. (4.5)

Having the channel access probability, the intensity of the CNs that can use the same

logical channel can be expressed as λP(υs, 1) and Lemma 4.5.1 is proved.

Note that, as discussed in Chapter 3, the HCPP suffers from the intensity un-

derestimation problem for relatively high intensity of CNs (e.g., E[|Nx|] ≥ 5). This

underestimation problem can be corrected by an intensity dependent correction factor

using Fig. 3.10.

4.5.3 Modeling the Aggregate Interference and Outage Probability

Carrier sensing and the contention based access are meant to limit the aggregate

interference and outage probability. According to system model, the CN senses the

spectrum and schedules its superframe to guarantee an overlap free operation with

the set of CNs in its contention domain. The main problem is that the superframe

scheduling is a long term decision, while, for a given sensing threshold, the contention

domain is random and dynamically changing with the channel gain variations for

each CN. Therefore, the CN decision for scheduling its superframe cannot guarantee

a 100% overlap-free operation with all other CNs coexisting in the different realization

of its contention domain. Instead, it only guarantees an overlap-free operation with

the CNs belonging to the contention domain realized at the point of time when

the CN listens to the spectrum and acquires the beacons information to schedule
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its superframe. Therefore, in the long run, an SCN may suffer unexpectedly high

interference due to the time variation of the channel gains. In this section, I will

account for the time-varying channel gains and derive the outage probability as a

function of the spectrum sensing threshold.

At the time instant when the test CN located at an arbitrary origin is sensing the

channel and scheduling its superframe, the interference from the set of CNs defined

as Nx =
{
xi : PtAhi ‖xi‖−η > υs

}
is avoided. Hence, interference is only experi-

enced from the set of CNs defined as Ψ \Nx =
{
xi : PtAhi ‖xi‖−η < υs

}
. Therefore,

based on the location of the CN and the corresponding instantaneous channel gain,

it can be determined whether it is in the contention domain of the test CN or not.

That is, a generic CN located at a distance r away from the test CN is not in the

contention domain of the test CN with probability Fh

(
υsrη

PtA

)
, where Fh(.) denotes

the cumulative distribution function (cdf) of the channel (power) gains. Since all

channel gains are i.i.d. and the CNs access the same logical channel by contention,

the interference sources will constitute a non-homogenous PPP ΨI with intensity

λI = λC(υs, 1)Fh

(
υsrη

PtA

)
. Note that the interference sources constitute a PPP (not an

HCPP) due to the channel gain variations with time. That is, due to the channel gain

variations, the condition that no two CNs in the same contention domain operate on

the same logical channel does not hold throughout the operation of the CNs. With

this interpretation of the aggregate interference, the outage probability for a generic

CN at a generic time instant can be given by the following lemma:

Lemma 4.5.2. In a Rayleigh fading environment, for a spectrum sensing threshold
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υs, the outage probability of a generic CN is given by:

O(υs) = 1−exp

−σ2µβRηmax
PtA

− 2πλC(υs, 1)

η

(
PtA

υsµ

) 2
η
∫ ∞

0

x
2
η
−1(

1 + PtAx
µβυsR

η
max

) (1− e−x) dx
 .

(4.6)

where σ2 is the thermal noise variance.

Proof. The outage probability of a generic CN can be written as

O(υs) = P {SINR ≤ β}

= P
{
PtAhR

−η
max

σ2 + I
≤ β

}
= 1− P

{
h >

(σ2 + I)βRη
max

PtA

}
= 1− EI

[
exp

(
−(σ2 + I)µβRη

max

PtA

)]
= 1− exp

(
−σ

2µβRη
max

PtA

)
EI
[
exp

(
−IµβR

η
max

PtA

)]
= 1− exp

(
−σ

2µβRη
max

PtA

)
LI(s)|

s=
µβR

η
max

PtA

(4.7)

where I is the aggregate interference experienced by the test CN, and LI(.) is the

Laplace transform of the probability density function (pdf) of the aggregate interfer-

ence. The aggregate interference experienced by the test CN from the interference

sources can be written as

I =
∑
xi∈ΨI

PtAhi ‖xi‖−η . (4.8)

The Laplace transform of the pdf of aggregate interference can be written as
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LI(s) = E
[
e−sI

]
= E

[
e
−s

∑
xi∈ΨI

PtAhi‖xi‖−η
]

= EΨ

[ ∏
xi∈ΨI

Ehxi
[
e−sPtAhi‖xi‖

−η
]]

(ii)
= exp

{
−Eh

[∫ 2π

0

∫ ∞
0

(1− e−sPtAhr−η)λC(υs, 1)Fh

(
υsr

η

PtA

)
rdrdθ

]}
= exp

{
−2πλC(υs, 1)Eh

[∫ ∞
0

(1− e−sPtAhr−η)Fh
(
υsr

η

PtA

)
rdr

]}
= exp

{
−2πλC(υs, 1)

[∫ ∞
0

(1− Lh
(
sPtAr

−η))Fh(υsrη
PtA

)
rdr

]}
(iii)
= exp

{
−2πλC(υs, 1)

η

(
PtA

υsµ

) 2
η
∫ ∞

0

sυsx
2
η
−1

sυs + x

(
1− e−x

)
dx

}
.

(4.9)

where (ii) is obtained similar to (i) in (4.4), and (iii) is obtained by writing the ex-

pressions for the Laplace transform of the pdf of the channel gains Lh(s) =
(

1 + s
µ

)−1

,

the cdf of the channel gains Fh(g) = 1 − e−µg, and changing variables x = υsrη

PtA
. By

substituting the expression for the Laplace transform in (4.9) into (4.7), the outage

probability is obtained.

It is very hard to find an explicit form for the optimal exclusion region due to the

complicated nature of the intensity and the outage probability expressions. However,

since both the objective function and the constraint in (4.1) are non-decreasing in υs,

a unique optimal value exists at the extreme boundary of the constraint (i.e., when the

constraint is satisfied with equality). Hence, the optimal spectrum sensing threshold

(υs
∗) which maximizes the spatial frequency reuse can be obtained numerically.
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4.6 Coexistence Analysis for the Multi-channel Scenario

In a multi-channel environment, let Ψm
C denote the point process which models the

spatial distribution of the admitted CNs in all of the m channels. It is straightforward

to extend the HCPP definition from one channel to the m-channel case. Due to the

availability of m channels, there is no contention in the contention domain as long

as the number of channels is greater than or equal to the number of contending

nodes. Therefore, the only modification (of the one channel case) is that a marked

point (xi,Mxi) will be selected to be in Ψm
C if and only if it has any of the lowest m

marks in its contention domain (Nxi). According to this definition, I can specify the

probability of retaining a point as follows: a random point xi ∈ Ψ is retained in Ψm
C

if it coexists with (m − 1) or fewer number of points in Nxi , or if it coexists with n

points (n ≥ m) in Nxi given that it has one of the mth lowest marks among all of the

coexisting n points. Due to the uniform distribution of the marks among the n points

coexisting with xi in Nxi , the probability that xi has one of the lowest m marks is

given by m/(n+1). Hence, by the law of total probability, I have the following result.

Theorem 4.6.1. In an m channel carrier sensing-based random network in a

Rayleigh fading environment, the retaining probability of a generic CN xi ∈ Ψ in

Ψm
C is given by

Pac(υs,m) =
e−N (υs)

N (υs)

[
m
(
eN (υs) − 1

)
−

m∑
n=1

(m− n) (N (υs))
n

n!

]
(4.10)

where N (υs) is as defined in (4.2). Since the intensity of the m-channel point process

is given by λC(υs,m) = P(υs,m)λ, I have

λC(υs,m) =
λe−N (υs)

N (υs)

[
m
(
eN (υs) − 1

)
−

m∑
n=1

(m− n) (N (υs))
n

n!

]
. (4.11)
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Proof. Since the contention resolution process takes place only when the number of

channels is less than the number of nodes, the retaining probability of a generic node

xi ∈ Ψ in Ψm
C can be written as

Pac(υs,m) =
m−1∑
n=0

(N (υs))
n e−N (υs)

n!
+
∞∑
n=m

m

n+ 1

(N (υs))
n e−N (υs)

n!

= e−N (υs)

[
m
(
eN (υs) − 1

)
N (υs)

−
m−1∑
n=0

(m− (n+ 1)) (N (υs))
n

(n+ 1)!

]

=
e−N (υs)

N (υs)

[
m
(
eN (υs) − 1

)
−

m∑
n=1

(m− n) (N (υs))
n

n!

]
.

It can be observed that the intensity of an m-channel point process is less

than or equal to the m-fold intensity of the one channel HCPP (i.e., λC(υs,m) ≤

m×λC(υs, 1)). The equality is only obtained when λ→∞. That is, lim
λ→∞

λC(υs,m) =

m lim
λ→∞

λC(υs, 1) = m

π(PtAµυs
)

2
η Γ(1+ 2

η
)
. This is quite intuitive because as λ→∞ each con-

tention domain within the network will always have some unadmitted nodes. There-

fore, each extra channel accommodates as many SCNs as any of the previously added

channels did. It is worth mentioning that, for m = 1, the model reduces to the Matérn

HCPP type II (see equation (4.2)).

The m-th channel coexistence gain G(m) is defined as the additional intensity

that can be accommodated by the system if the number of channels is increased from

(m− 1) to m. G(m) is given by

G(m) = λC(υs,m)− λC(υs,m− 1)

=
λ
(
1− e−N (υs)

)
N (υs)

−
m∑
n=1

λ (N (υs))
n−1 e−N (υs)

N (υs)n!
. (4.12)

In order to obtain the minimum number of channels that can accommodate the
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coexisting SCNs subject to the self-admission failure probability constraint ψ, I for-

mulate an optimization problem as follows:

minimize m

subject to
m∑
k=1

G(k) ≥ (1− ψ)λ

m ∈ Z+

(4.13)

where Z+ is the set of all positive integers. Due to the nature of G(m), it is hard to find

an explicit expression for the optimal number of channels required to accommodate

(1 − ψ) percent of the total number of coexisting SCNs. Therefore, the optimal

number of channels can be obtained by solving (4.13) numerically. However, I can

find bounds on m as well as a good initial value of m for the numerical solution of

(4.13).

Using graph theory, the optimization problem in (4.13) can be reduced to a vertex

coloring problem. The Graph G = {V,E} is said to be m-colorable if each vertex

v ∈ V can be colored with one of the m colors and no two adjacent vertices share the

same color. For any realization of the PPP, a graph G = {V,E} can be constructed.

Each SCN is considered as a vertex and there are edges connecting the star networks

(vertices) in the same contention domain. The chromatic number (minimum number

of colors required to color G) for the graph G corresponds to the minimum number

of channels required to accommodate the coexisting SCNs. According to the graph

theory, the chromatic number for any graph G is upper bounded by ∆max + 1, where

∆max is the maximum degree of a vertex in the graph G [104]. According to the

original PPP problem, the degree ∆ of any vertex v ∈ V is a Poisson random variable.

The maximum degree ∆max is chosen such that Prob {∆ > ∆max} ≤ ψ is satisfied.
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Then, the optimization problem in (4.13) can be rewritten as follows:

minimize m

subject to
m∑
k=1

G(k) ≥ (1− ψ)λ

1 ≤ m ≤ ∆max + 1.

(4.14)

Two good initial values can be used for (4.14). First, ∆max can be used as the

initial value, however, due to the nature of the cumulative distribution function (CDF)

of the Poisson distribution, ∆max does not have a closed-form expression. Second,

the average degree value (E[∆] = N (υs)) can be used as the initial value since it has

an explicit expression. Since the achievable intensity λC(υs,m) is a non-decreasing

function of the number of channels (m), there is a global optimal value for m which

just satisfies the self-admission failure constraint in (4.14). Note that the optimal

value m∗ here is the optimal number of channels if each of the coexisting SCNs

chooses a random channel upon availability.

4.7 Superframe Design and Time-Domain Interference

Alignment

Up to this point, I have optimized the sensing threshold υs and calculated the total

number of channels (m∗) required for the operation of the coexisting SCNs. In this

section, I complete my framework and design the superframe structure by choosing

the values of BO and SO. Then, I calculate mt, which is the number of SCNs that

can align their superframes per frequency channel. Finally, the number of required

frequency channels is given by mf = m∗/mt.
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4.7.1 Superframe Design

According to the application supported by the SCN, a minimum data rate of

δ is required to be supported. Given the required data rate of δ Mb/s for

each SCN, the superframe of the IEEE 802.15.4 can be designed. According to

the standard, the superframe duration is defined in terms of the standard value

aBaseSuperframeDuration = aBaseSlotDuration × aNumSuperframeSlots as

shown in Fig. 4.1. Regardless of the active period duration, aNumSuperframeSlots

is always equal to 16 time slots. The time slot duration is given by

aBaseSlotDuration × 2SO, where aBaseSlotDuration = 60 symbols. Each sym-

bol consists of 4 bits. Therefore, the total number of bits transmitted per su-

perframe Bs = 4 × 60 × 16 × 2SO. The beacon interval BI is given by BI =

aBaseSuperframeDuration × 2BO symbols = 4 × 60 × 16 × 2BO. According to

the standard, the bit duration is equal to 4 µs. Then, BI = 16 × 60 × 16 × 2BOµs.

Hence, the total data rate served within each SCN is Dt = Bs
BI

= 2SO−BO−2 Mb/s.

Since (0 ≤ SO ≤ BO ≤ 14), if I let BO = SO (i.e., the SCN is always active),

then the maximum achievable data rate Dmax = 2−2 Mb/s = 250 kb/s which is the

maximum achievable bit rate defined by the IEEE 802.15.4 standard.

From the previous analysis, the values of BO and SO should be chosen to satisfy

the following:

BO − SO ≤ log
2

(
1

δ

)
− 2 (4.15)

where δ is in Mb/s. According to the standard, I have 0 ≤ SO ≤ BO ≤ 14, hence,

there are feasible solutions for (4.15) unless δ ≥ 0.25 Mb/s, which is the maximum

achievable data rate for the IEEE 802.15.4 technology. It is worth mentioning that

the supported data rate is independent of the actual values of BO and SO. Instead, it

depends on their difference as shown in (4.15) which is consistent with the experiment
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done in [101].

4.7.2 Time-Domain Interference Alignment

According to the IEEE 802.15.4 standard, two SCNs coexisting in the same contention

domain can operate simultaneously in the same frequency channel without any mutual

interference if they avoid overlapping the active periods of their superframes. This

overlap-free operation can be achieved through time-domain superframe alignment.

Let me consider a general scenario where there are n SCNs coexisting and operating in

the same contention domain of the incoming SCN. The incoming SCN can coexist with

an overlap-free operation if and only if
(
2BO − 2SO

)
≥
∑n

i=1 2SOi . In other words, at

most 2BO−SO SCNs can coexist and operate simultaneously in one frequency channel

without overlapping their superframes if perfect superframe alignment is ensured

(as shown in Fig. 4.3 for BO − SO = 2). Due to the exponential nature of the

superframe duration (SD) and the beacon interval (BI), perfect superframe alignment

can be easily achieved if the time offset to align the superframes of the coexisting

SCNs is chosen to be a multiple of the superframe duration, that is: Toffset = k ×

aBaseSuperframeDuration× 2SO, for 0 ≤ k ≤ 2BO−SO − 1.

The main idea of the coexistence strategy proposed in this work is that each SCN

should avoid interfering with SCNs within its contention domain (i.e., major inter-

ferers). But it can interfere with SCNs outside its contention domain. Interference

with major interferers can be avoided using the time-domain superframe alignment

discussed above. Consequently, an incoming SCN located at x ∈ Ψ divides the co-

existing SCNs (according to the received beacon power from each CN) into two sets

Nx and Ψ \Nx for neighbors and non-neighbors SCNs, respectively. Each coexist-

ing SCN is considered to be a neighbor SCN if the received power of its beacon is
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greater than υs
∗ (i.e., the major interference source that should be avoided), and is

considered to be a non-neighbor SCN if the received power of its beacon is less than

the spectrum sensing threshold υs
∗ (i.e., the minor interference source that can be

tolerated). An incoming SCN listens to the beacons and obtains their time offsets.

Then, the incoming SCN will try to align its superframe with the SCNs in Nx, and

will access the channel if an overlap free operation is ensured. If not, the SCN will try

a different channel. If it fails to coexist in any of the available channels, it declares a

self-admission failure.

The channel listening period is controlled through the scan duration

(ScanDuration) field in (MLME − SCAN.request) generated by the network layer

of the standard [94]. According to the IEEE 802.15.4 standard, the scan duration

is defined by aBaseSuperframeDuration × (2y + 1), where 0 ≤ y ≤ 14. It can

be observed that y has the same range of values as BO. Therefore, by simply re-

placing y with BO used for the coexisting SCN superframes, the incoming WPAN

will listen to the channel for a time equal to the beacon interval, and register the

time offset for each beacon. Then, it calculates the set of time offsets to schedule its

superframe. It is worth mentioning that it is sufficient to characterize the channel

occupancy by a single BI duration, as what will follow is just a repeated version of

this duration [100,101].

According to the proposed time-domain superframe alignment, the number of

channels available per frequency is equal to the total number of superframes that can

be aligned per frequency channel. Therefore, the number of channels available per
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frequency (mt) can be maximized through the following simple optimization problem:

maximize
BO,SO

mt = 2BO−SO

subject to BO − SO ≤ log
2

(
1

δ

)
− 2

(BO − SO) ∈ {0, 1, 2, ..., 14} .

(4.16)

The solution for this optimization problem is given by any values of BO and SO

that satisfies BO − SO =
⌊
log

2

(
1
δ

)
− 2
⌋
. Then, the number of frequency channels

required for the coexisting SCNs operation is given by mf = dm/mte.

4.8 Performance Evaluation

4.8.1 Numerical Results

For the numerical evaluation (using Matlab), a unit transmit power is chosen for

every transmitter, η = 4 for the path-loss exponent, and β = 2 for the SIR threshold

to insure bit error rate less than 10−6 [94]. The noise power is ignored due to the

interference power dominance [26].

Fig. 4.4 shows the behavior of the objective function and the constraint of the

sensing threshold optimization problem in (4.1) for different mean channel gains as

the sensing threshold varies. Note that the success probability is just (1 − O(υs)).

The figure shows that there is a unique optimal solution which is at the boundary of

the constraint. That is, if the outage probability threshold is q ≤ 0.1 (i.e., success

probability ≥ 0.9 ), then the optimal sensing threshold is υs
∗ = - 65 dBm, -56 dBm,

and -54 dBm, respectively, for 1
µ

= 0.1, 0.5, and 1 (which are the spectrum sensing

thresholds corresponding to success probability of 0.9). The figure also confirms the

conservativeness of the IEEE 802.15.4 standard (where the sensing threshold is less

114



Chapter 4. Spectrum Efficient Design for Star-Connected Wireless Sensor Networks

than −75 dBm) and shows the importance of spatial frequency reuse. For instance,

the figure shows that, with 1
µ

= 0.5, the intensity of the coexisting SCNs can be tripled

(from its original value at υs = −75 dBm) by sacrificing 1% outage probability and

can by increased 10 times by sacrificing 5% outage probability. Note that the proposed

design paradigm will enable SCNs with intensity of 2BO−SOλC(υs
∗, 1) to coexist per

channel instead of intensity λC(−75, 1).

An insightful observation from fig. 4.4 is that as the mean channel gain decreases,

the CNs are required to be more conservative to attain the same success probability.

To explain this behavior, in Fig. 4.5, I plot the intensity of interference sources vs the

distance from the test CN7 for different mean channel gains and spectrum sensing

thresholds. In Fig. 4.5, as the mean channel gain decreases, it is more likely to have

nearby CNs excluded from the contention domain, hence, during the operation of

the intended CN, the interference sources may start from a relatively near distance.

Therefore, the CNs are required to be more conservative to avoid interference from

nearby SCNs. Note that the intensity of the non-homogenous PPP of the interference

sources saturates at λC(υs, 1).

It is worth mentioning that my results on optimal spectrum sensing threshold

are consistent with the experimental results in [98] for coexistence between the IEEE

802.15.4 and IEEE 802.11 networks. In [98], the authors reported that the spectrum

sensing threshold defined in the standard is very conservative for coexistence between

the IEEE 802.15.4 and IEEE 802.11 networks. The optimal sensing threshold in

[98] falls within the same range of the optimal sensing thresholds reported in this

work. Although, the authors in [98] did not provide any analytical technique to

obtain the optimal sensing threshold, their results confirm the conservativeness of the

IEEE 802.15.4 standard for choosing a very low spectrum sensing threshold which

7By Slivnyak’s theorem [8], the results hold for any CN.
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Figure 4.4: Behavior of the normalized intensity λc and the success probability with
the spectrum sensing threshold υs.

significantly degrades the spatial reuse intensity.

Fig. 4.6 shows that for relatively high intensity of the parent PPP (e.g., λ ≥ 0.5),

the main factor controlling the outage probability as well as the intensity of simulta-

neously active nodes λC(υs, 1) is the spectrum sensing threshold υs. This means that

with the proper choice of υs, the SIR experienced by any node in the network be-

comes independent of the intensity of the nodes contending for the spectrum. Hence,

the spectrum sensing threshold υs is the only design parameter for the single channel

design of carrier sensing-based distributed random networks.

Fig. 4.7 compares λC(υs,m) and m × λC(υs, 1) to the m-channel point process

realization for m = 2. The results show that the m × λC(υs, 1) is quite inaccurate

as it highly overestimates the number of nodes that can coexist in 2 channels. Note

that the λ curve shows the maximum intensity of SCNs that can coexist; hence,

m × λC(υs, 1) gives an infeasible solution. On the other hand, the proposed model

(i.e., λC(υs, 2)) can estimate the intensity of the simultaneously active SCNs in 2

channels.
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Figure 4.5: Intensity of interfering SCNs vs. the distance from the test CN.

Fig. 4.8 shows that nonlinear relationship between number of channels and the

intensity of coexisting SCNs. Fig. 4.8(a) shows the normalized achievable intensity

λC(υs,m)
λ

with the number of channels for different intensities of SCNs. The results

show that the achievable coexistence intensity (λC(υs,m)) does not linearly increase

with the number of channels. The rate of increase in the achievable intensity decreases

with the number of channels and then it saturates when all of the SCNs can be

admitted. Fig. 4.8(b) shows the normalized added value of each extra channel G(m)
λ

for different intensities of SCNs. The results show that for low intensities, the value

of each extra channel decreases in terms of the coexistence gain. On the other hand,

for high intensities, the value of each extra channel remains constant until a certain

value, and then it begins to decrease. This is due to the fact that, for high intensities

(see Fig. 4.8(b) for the λ = 2 node/m2 case), when adding the first 4 channels, each

contention domain still contains the unadmitted SCNs. Therefore, the value of each

extra channel remains almost constant. Then, for each extra channel after the fourth,

some contention domains have been already saturated since all of the coexisting SCNs

within it are admitted. Therefore, this extra channel is wasted in some contention
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Figure 4.6: Effect of spectrum sensing threshold υs under different node intensities
(for m = 1 channel).

Table 4.1: The optimal number of channels (m∗)
ψ = 0.1 ψ = 0.01

λ dE[∆]e m∗ ∆max + 1 m∗ ∆max + 1

0.1 1 2 2 3 3
0.5 2 3 4 6 6
1 4 4 6 7 9

1.5 5 6 9 9 11
2 7 8 11 10 14

domains.

Finally, Table 4.1 shows that the optimal number of channels m∗ is always upper-

bounded by ∆max + 1 and that the average degree dE[∆]e gives a good initial point

for solving (4.14) numerically.

4.8.2 Discussions

The main focus of this work is to develop a distributed approach to orchestrate the

superfames (i.e., the active periods) and to adjust the sensing thresholds of the coex-

isting IEEE 802.15.4 SCNs in order to maximize the time and spatial domain utiliza-

tion of radio spectrum, and hence, maximize the number of IEEE 802.15.4 SCNs that
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µ
= 0.1.

can operate in each vacant channel in the crowded ISM band. However, it is worth

mentioning that in the ISM band, in certain scenarios, it could be very hard to find

a completely vacant channel for the operation of IEEE 802.15.4 SCNs. An in-depth

study on heterogeneous interference (i.e., interference from radios having different pa-

rameters such as transmission bandwidth and power) in the ISM band was conducted

in [108] using stochastic geometry. Given the independence between the technologies

coexisting in the ISM band, the total outage probability for an SCN will be the union

of the two outage events, namely, the outage due to homogenous interference (i.e.,

the interference resulting from other IEEE 802.15.4 SCNs) calculated in this chapter

and the outage due to heterogeneous interference sources (e.g., IEEE 802.11 nodes or

microwave ovens) as calculated in [108].

Another important contribution of the developed paradigm is the calculation of

the minimum number of channels required to accommodate a certain intensity of

IEEE 802.15.4 SCNs subject to a certain self-admission failure probability. In some

scenarios, the number of channels is not a design parameter and the network designer
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Figure 4.8: a) Normalized achievable intensity per channel at υs = 10−5 dBm and
1
µ

= 0.1, b) Normalized coexistence gain per channel at υs = 10−5 dBm and 1
µ

= 0.1.

is limited by a certain number channels. For those scenarios, my model can be

used to quantify the performance degradation due to the unavailability of sufficient

number of channels and to choose where to sacrifice the performance (i.e., sacrifice

the outage probability, the supported data rate per SCN, or the self-admission failure

probability).

The results shown in Figures/figs-ch3. 4.4-4.6 highlight the criticality of the choice

of the spectrum sensing threshold. For instance, with 1
µ

= 0.5, from Fig. 4.4, it can

be observed that for spectrum sensing threshold in the range of −80 to −60 dBm,

the achievable intensity of SCNs per channel (spatial-domain efficiency) is increased

10 times from its original value at −80 dBm with a small increase (i.e., 5%) in outage

probability. On the other hand, due to the sharp increase in the outage probability

when υs > −60 dBm, a 1 dBm difference in the sensing threshold can cause up to

10% more outage for a negligible increase in the achievable intensity of SCNs per

channel. Note that according to the IEEE 802.15.4 standard, the sensing threshold

is equal to the receiver sensitivity which is less than or equal to −75 dBm, and this

is very far from optimal. Note that the coexistence experiments between the IEEE
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802.15.4 and the IEEE 802.11 WLAN done in [98] confirmed the conservativeness of

the IEEE 802.15.4 standard in choosing the spectrum sensing threshold.

The sensing threshold is optimized through a one channel analysis for two reasons.

The first reason is to bound the worst-case scenario where all of the coexisting SCNs

choose the same channel for their operation. Second, for relatively high intensity

of the coexisting SCNs, the sensing threshold is the only limiting parameter for the

interference as well as the achievable intensity as shown in Fig. 4.6. Therefore, for

relatively high intensities of SCNs, the optimality of the sensing threshold in one

channel holds for multiple channels.

Another very insightful observation is that the results reveal how misleading the

one channel results can be for the multi-channel planning of random wireless networks.

That this, if the one channel analysis results in the admission of 50% of the total

coexisting SCNs, then, the network designer may think that 2 channels should be

enough to accommodate the total coexisting SCNs. However, looking into the results

(see Fig. 4.8(a) for λ = 0.5 node/m2 case), while the first channel can accommodate

53% of the total coexisting SCNs, the second channel will only accommodate an

additional 29% of the total coexisting SCNs, resulting in a total admission of 82% of

the coexisting SCNs. That is, 18% of the coexisting SCN will encounter self-admission

failure. The same observation applies to all other intensities of SCNs. This insightful

observation illustrates the importance of the developed framework in the design and

analysis of multi-channel random networks.

4.9 Chapter Summary

We have addressed the problem of multi-channel analysis and spectrum-efficient

design of IEEE 802.15.4-based random wireless networks operating in the beacon-
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enabled mode. A novel framework has been developed to optimize the spectrum

sensing threshold under channel gains uncertainties to maximize the spatial-domain

utilization, obtain the minimum number of channels required for the coexistence of

802.15.4 networks, and design the optimal superframe structure that maximizes the

time-domain utilization. The results have showed that as the channel conditions de-

teriorate, the SCNs should be more conservative to decrease the probability of having

nearby interference sources during its operation. For the single channel case, the

spectrum sensing threshold is the performance limiting design parameter that has

to be chosen very carefully. For the multi-channel case, the intensity of the accom-

modated network nodes does not linearly increase with the number of channels - a

concept that is counter intuitive and different from that for the grid-based networks.

The results have also showed how the one channel analysis can be misleading for the

network designers and can result in a high probability of self-admission failure for the

coexisting networks.

To this end, I have applied stochastic geometry analysis to ad hoc and sensor

networks. Starting from the next chapter, I apply stochastic geometry analysis to

multi-tier cellular networks.
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Chapter 5

Downlink Two-tier Cellular

Networks with Cognitive

Femtocells

Modern cellular networks are foreseen as network with random topologies rather than

a grid infrastructure. That is, the variations of the capacity demand across the ser-

vice areas and the infeasibility to exactly follow a grid based deployment for cellular

networks have brought uncertainties to the base stations’ (BSs) locations [12, 54].

Therefore, modeling and analysis of cellular networks via stochastic geometry has

recently received much attention due to its tractability and accuracy [5]. Stochastic

geometry not only captures the uncertainties in the BSs’ locations, but also results in

simple expressions which help to characterize and understand the network behavior.

In this chapter, I use stochastic geometry to model and analyze performance of two-

tier cellular networks composed of macro BSs and cognitive FAPs in a multichannel

environment. The proposed model explicitly accounts for the spatial distribution of

the macro BSs, FAPs, and users in a Rayleigh fading environment. We quantify the
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performance gain in outage probability obtained by introducing cognition into the

femto-tier, provide design guidelines, and show the existence of an optimal spectrum

sensing threshold for the cognitive FAPs which depends on the cellular network pa-

rameters. We also show that looking into the overall performance of the network is

quite misleading in the scenarios where the majority of users are served by the macro

BSs. Therefore, the performance of femto-tier needs to be explicitly accounted for

and optimized.

5.1 Introduction

In a multi-tier cellular network, different network tiers, which may differ in terms of

supported data rate, channel access protocol, transmission power, coverage range and

mobility support, coexist in the same vicinity and operate simultaneously. In a typical

two-tier cellular network scenario consisting of macro base stations (BSs) and femto

access points (FAPs), the transmission power of a macro BS can be up to 1000 times

higher than that of a FAP. Therefore, the inter-tier (or cross-tier) interference from

the macro BSs to the femtocell users can be very significant. Introducing cognition

into the FAPs helps them avoiding major interference sources and improving their

performance [109–111]. A cognitive FAP will sense the spectrum and avoid using the

same frequency channels which are used simultaneously by major interference sources.

Based on a spectrum sensing threshold, an interference source (which can be either

a macro BS or a FAP) is considered either a major interference source that should

be avoided or a minor interference source that can be tolerated. From a geometric

perspective, the spectrum sensing threshold of a cognitive FAP defines the spectrum

sensing range (SSR) around the FAP where no interference sources exist (i.e., the

interference exclusion region). The spectrum sensing threshold is a very critical design
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parameter that should be carefully tuned to achieve the desired tradeoff between the

aggregate interference (and hence outage probability) and the spatial frequency reuse

efficiency. The lower the spectrum sensing threshold, the larger is the SSR and the

lower is the aggregate interference, however, the same frequency channel is reused

after larger spatial intervals which results in a poor spatial frequency reuse efficiency.

Modeling and analysis of this tradeoff in a two-tier cellular network with cognitive

femtocells is the focus of this work.

5.1.1 Topology Abstraction

As discussed before, the Poisson point process (PPP) is the most popular and well-

understood point process in the literature due to its simplicity and tractability. Be-

cause the PPP assumes that the positions of the points are uncorrelated, the PPP

might be valid to abstract the spatial locations for the FAPs which are deployed ac-

cording to the customer needs without any network planning. On the other hand,

although there is randomness in the locations of the BSs due to the variable capac-

ity demand across the coverage area, it might seem unrealistic to assume that the

positions of the BSs are completely uncorrelated and follow a PPP. This is because

the BSs are deployed through a sophisticated network planning procedure and there

are correlations among their locations. However, in [12], it was shown that the PPP

assumption for the spatial locations of the BSs provides a lower bound on coverage

probability (i.e., the complement of the outage probability) and the average achievable

rate, which is as much tight as the upper bound provided by the idealized grid-based

model. The PPP modeling approach is more favorable than the grid-based model

due to its simplicity and analytical tractability. To model and analyze the perfor-

mance of cellular networks with cognitive femtocells, I will assume that both network
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tiers follow the PPP. In [54], it was shown that the PPP assumption is accurate to

within 1-2 dB of the performance of an actual LTE network overlaid by heterogeneous

tiers modeled as PPP. Further validations of stochastic geometry-based modeling of

cellular networks via PPP can be found in [11,13,119]

5.1.2 Motivation and Contribution

Although different techniques for uplink and downlink communications in cognitive

femtocells have been proposed in the literature [113–115], the problem of optimizing

the carrier sensing threshold for cognitive femtocells has not been addressed consid-

ering multiple macro BSs, multiple FAPs, multiple users, and multiple channels in

a two-tier cellular network environment. In this chapter, I propose a framework for

optimizing the carrier (i.e., spectrum) sensing threshold and show that the optimal

spectrum sensing threshold depends on the network parameters such as the number of

channels, the relative transmit powers of macro BSs and FAPs, and the intensities of

FAPs and macro BSs. The proposed optimization framework may be used at the net-

work service provider side (e.g., upon a change in the intensities of macro BSs/FAPs

and/or other system parameters) and the optimal spectrum sensing threshold can be

broadcast to the FAPs. The contributions of this work can be summarized as follows:

• Using stochastic geometry analysis, I model the outage probability for macrocell

users as well as femtocell users for downlink transmission in a multi-channel

environment when cognition is introduced into the FAPs.

• We quantify the performance gain due to cognition and show the existence of

an optimal spectrum sensing threshold (which can be obtained numerically via

the presented model) for the cognitive FAPs to minimize the outage probability.

126



Chapter 5. Downlink Two-tier Cellular Networks with Cognitive Femtocells

• We comprehensively analyze the outage performance of the two-tier cellular net-

work with cognitive femtocells under different intensities of the macro BSs and

FAPs, their relative transmission powers, different number of channels and spec-

trum sensing thresholds for cognitive FAPs, and different signal-to-interference

(SIR) threshold requirements.

• We show that it is quite misleading to account only for the overall outage

probability (i.e., the outage probability for a generic user) and not explicitly

consider the outage of the femtocell users.

We would like to emphasize that my model is completely different from the legacy

cognitive radio analysis models (e.g., the work presented in [83, 116]). In a two-tier

cellular network with open-access femtocells, both femto users and macro users are

licensed users and there is no notion of priority. Therefore, in my model, there is

no priority for the transmissions of macro BSs. However, the FAPs are burdened

with the cognitive radio processing due to the self-organizing network (SON) feature

recommended by the standards [109,110] to avoid infeasible (in terms of complexity)

centralized interference management, and to insure backward compatibility with the

legacy cellular BSs and handsets. The absence of the priorities changes the optimiza-

tion objective, and hence, changes the analysis. For instance, in the legacy cognitive

radio systems, it is desirable to maximize the secondary users’ performance subject

to a tolerable degradation in the primary users’ performance. On the contrary, in my

model, performances of both femtocell and macrocell users are considered to maximize

the overall network performance (e.g., in terms of outage probability).
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5.2 Related Work

Although the idea of modeling infrastructure-based cellular networks via stochastic

geometry dates back to the late 90’s [52], much attention has been brought to this

modeling technique after more than a decade because of the pioneering work in [12].

In [12], the authors were able to use the PPP to derive a tractable yet accurate

model for important performance metrics for cellular networks such as the coverage

probability and the average achievable rate. Following [12], many work have been

done in the literature using the same methodology to adapt and extend the stochastic

geometric approach to different network scenarios. For instance, [54] extended the

model to HetNets with k-tiers and [58] extended the model to capture the effect

of offloading the users from the macro-tier to femto-tier via biasing. [61] and [62]

extended the model to capture the performance of the cellular networks deploying

fractional frequency reuse, respectively. Parallel to these works, [65] derived the

distribution for the SINR of a generic user in a multi-tier cellular network environment

assuming that the user can instantly handover its connection between the candidate

BSs from each network tier. In [63], the authors developed a capacity extension policy

for a two-tier heterogeneous network and determined which type of base stations

should be added or switched off to achieve the optimal base station density. In [71],

the authors used the method in [118] to relax the Rayleigh channel assumption for the

link to the serving BS, which was assumed in [12], to obtain the average achievable

rate when the channel gain to the serving BS has a Nakagami distribution.

A common assumption in all of these works is that there is only one channel in the

entire network and none of the network tiers is cognitive. Different from all of these

works, I introduce cognition into the network model and use stochastic geometry for

performance analysis and also relax the commonly used single channel assumption
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in the network. In [67], the authors studied two subchannel allocation schemes in a

two-tier cellular network under open and closed-access femtocell operations. In [67],

the available subchannels are either aggressively used by both the network tiers or

each network tier has its own subset of the available subchannels. Different from [67],

in my work, the FAPs are cognitive and I consider the spatial reuse of channels, which

is optimized through optimizing the spectrum sensing threshold.

5.3 System model, assumptions, and methodology

5.3.1 Network Model

We consider a two-tier cellular network consisting of macro BSs and FAPs. We assume

that the two network tiers are independent and each is represented by an independent

homogeneous PPP in the R2 plane. That is, the macro BSs are spatially distributed

according to the homogeneous PPP Ψb = {bi; i = 1, 2, 3, ...} with intensity B where

bi is the location of the ith BS1. The FAPs are spatially distributed according to

an independent homogeneous PPP Ψa = {ai; i = 1, 2, 3, ...} with intensity A, where

ai denotes the location of the ith FAP2. The user equipments (UEs) are spatially

distributed according to an independent homogeneous PPP Ψu = {ui; i = 1, 2, 3, ...}

with intensity U . Both the network tiers share the same set of channels3 S. The

channels have a specific order known to all macro BSs. All macro BSs transmit with

the same power Pb, all FAPs transmit with the same power Pa, and the macro BSs and

FAPs always have packets to transmit in the downlink (i.e., saturation conditions are

assumed). All FAPs operate in the open access mode and each user will be associated

1The intensity of a homogeneous PPP is a positive constant measured as the number of points
per unit area.

2With a slight abuse of notation I will use bi to denote both the location of the ith macro BS and
the ith BS itself, and the same for ai.

3A channel can be, for example, one or multiple resource blocks (RB) in LTE-Advanced systems.
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Figure 5.1: Time slot structure.

to the macro BS or the FAP providing the highest received signal strength (RSS)

measured on the pilot signals from that macro BS or FAP. All other macro BSs and

FAPs using the same channel are considered as interference sources.

Note that an associated user does not necessarily have an assigned channel since

the macro BSs or FAPs will assign channels to their associated users only upon

availability, however, association means that the user is registered in the user list

of the serving network entity (i.e., a macro BS or a FAP), synchronized to it, and

receives its control information. The users associated to a macro BS are assigned

orthogonal channels, and therefore, there is no intra-cell interference experienced by

the macro cell users.

5.3.2 Cognitive FAP

The FAPs are cognitive. Each FAP uses spectrum sensing to choose the channel which

it will use for downlink transmission to its associated users to avoid interference with

nearby BSs as well as nearby FAPs. A FAP uses a channel si ∈ S, i = 1, 2, ..., |S| if and

only if the received power from any neighboring macro BS/FAP on this channel4 is less

than the spectrum sensing threshold υs, where υs is a design parameter that should

be carefully determined. The spectrum sensing threshold υs defines the spectrum

sensing region (SSR) around each FAP and balances between the spatial frequency

4Note that this assumption, which does not consider the total aggregate power sensed on a
channel, will lead to a tight lower bound on the probability that the channel is busy [21].
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reuse efficiency and the experienced aggregate interference. The higher the value of

the spectrum sensing threshold, the lower is the SSR and the more aggressive will be

the FAPs in accessing the channels, and vice versa.

All channels are reused in all macro BSs (i.e., universal frequency reuse) where a

macro BS assigns the channels to the users associated to it in a sequential manner

(i.e., channel si ∈ S will be assigned before channel si+1 ∈ S and so on until s|S| is

reached) and no channel is reused within the cell (i.e., no intra-cell interference). The

assumption of the sequential channel assignment within the macro BSs balance the

tradeoff between the macro users’ performance and the opprtunistic channel access

of the FAPs as will be discussed in Chapter 6.

Time is assumed to be divided into time slots. The time slot structure is shown is

Fig. 5.1. A macro BS assigns channels to its associated users at the beginning of each

time slot. The user who arrives to the macro BS or requests a session in the middle of a

time slot will be assigned a channel in the next time slot. The FAPs are cognitive and

access the available channels opportunistically. At the beginning of each time slot,

a FAP senses the spectrum during the sensing time τs and determines the available

channels (i.e., channels not used by the macro BSs within the SSR of this FAP).

Then, the FAP will randomly choose one of the available channels and persistently

sense it for a random duration uniformly distributed in the range [0, τc] (Fig. 5.1)5.

If the channel is still available after the random sensing duration elapses (i.e., not

used by another FAP), it will access the channel for downlink transmission6 during

the transmission interval τt. The random sensing duration before acquiring a channel

minimizes the probability of interference with nearby FAPs (i.e., the probability that

5The random sensing duration is similar to the random backoff timer generated in a traditional
carrier-sense multiple access (CSMA) protocol discussed in Chapter 3.

6Since my focus is on the analysis of outage, the actual method of sharing the accessed channel
among the femto users for downlink transmission is not considered here.
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two FAPs within the sensing range of each other use the same channel). In this work,

I assume perfect spectrum sensing. All time slots have the same structure and the

same spectrum access procedure is repeated in each time slot.

5.3.3 Radio Channel Model

We consider a general power-law path loss model in which the signal power decays

at the rate r−η with the distance r, where η is the path-loss exponent. Although, in

practice, different network tiers may have different path-loss exponents, I assume the

same path-loss exponent for both the macro and femto tiers for analytical tractability.

However, the favorable channel conditions towards the FAPs due to their indoor

deployment can still be captured via assuming higher mean channel gain for the

femto links. All the channel gains are assumed to be independent and the channels

have a coherence time greater than or equal to a time slot. For analysis, only Rayleigh

fading environment is assumed (i.e., technique #1 in Sec. 2.3). The channel (power)

gains from a generic location x ∈ R2 to the macro BS bi and the FAP ai are denoted

by hbi(x) ∼ Exp (µb) and hai(x) ∼ Exp (µa) with mean 1
µb

and 1
µa

, respectively.

Note that for the brevity of exposition, hereafter, the spatial index x is dropped.

A receiver can successfully decode a signal if the received signal power exceeds the

received aggregate interference power plus the noise power by a certain threshold β.

In other words, the signal-to-interference-plus-noise-ratio (SINR) of a signal should

be greater that a certain threshold β for the signal to be successfully decoded by its

intended receiver. We will use the notation χ to denote the serving network entity

for a generic user. That is, χ = a if the user is associated to a FAP, and χ = b if the

user is associated to a macro BS.

Without any loss in generality, the performance analysis is conducted for a typ-

132



Chapter 5. Downlink Two-tier Cellular Networks with Cognitive Femtocells

ical user located at the origin. According to Slivnyak’s theorem, conditioning on

having a user at the origin does not change the statistical properties of the coexisting

PPPs. Hence, the analysis holds for any generic user located at a generic location [1].

Therefore, the SINR at the typical user located at the origin (which also holds for

any generic user) served by a macro BS or a FAP is given by

SINR =
PχhχR

−η
χ∑

bi∈Ψ̃bχ

Pbhbi ‖bi‖
−η +

∑
ai∈Ψ̃aχ

Pahai ‖ai‖
−η + σ2

(5.1)

where Rχ is the distance from the user to the serving network entity (i.e., a macro

BS or a FAP), Ψ̃bχ denotes the set of BSs interfering with the serving network entity,

Ψ̃aχ denotes the set of FAPs interfering with the serving network entity, ‖.‖ denotes

the Euclidean norm, and σ2 is the noise power.

5.3.4 Methodology of Analysis

For the system model described above, I intend to analyze the outage probability of

the macro users and the femto users. The methodology of my analysis is as follows.

At first, I need to calculate the tier association probability, the probability mass

function (pmf) of the number of free channels, as well as the opportunistic spectrum

access probability for cognitive FAPs. Then, I will calculate the outage probability

of a generic user. The tier association probability is defined as the probability that a

generic user is connected to either a macro BS or a FAP. The pmf of the number of free

channels gives the probability to haveKf ∈ {0, 1, 2, ..., |S|} free channels (i.e., not used

by macro BSs) in a specific region (e.g., within the SSR of a FAP) for opportunistic

access by FAPs. Since the FAPs are cognitive, they access the available channels

opportunistically, and therefore, finding an available channel is not guaranteed. The
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opportunistic spectrum access probability for cognitive FAPs is the probability that

a generic FAP finds an available channel and succeeds to use it during a time slot.

Finally, the overall outage probability (i.e., the outage probability of a generic user)

is obtained by considering the outage probabilities of both a femto user and a macro

user each weighted by the corresponding tier association probability. Note that the

femto users experience two types of outage. The first type is due to the opportunistic

spectrum access of the cognitive FAPs. The second type is due to the inter-tier and

intra-tier interference.

5.4 Calculation of Tier Association Probability

In this section, I derive the tier association probability for a generic user. Each

network tier consists of either macro BSs or FAPs spatially distributed according to

a PPP. Therefore, the coverage of each tier forms a Voronoi tessellation7 and the

network can be modeled via a weighted Voronoi tessellation as shown in Fig. 5.2(a).

For simplicity, the network model can be approximated as a superposition of two

independent Voronoi tessellations, one for the macro BSs and the other for the FAPs

as shown in Fig. 5.2(b). By construction, the Voronoi cells belonging to the same

tier do not intersect, hence, each user will fall in an intersection between two Voronoi

cells belonging to different tiers (i.e., one of a macro BS and the other of a FAP).

Based on the RSS level, each user will be associated to either the macro BS or the

FAP of the Voronoi cells covering her (i.e., the user will always be connected to the

nearest macro BS/FAP). The tier association probability can be obtained from the

following lemma.

7A Voronoi tessellation is the planar graph constructed by perpendicular lines bisecting the
distances between the points of a point process. The Voronoi cell corresponds to the BS coverage.
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Figure 5.2: (a) The network modeled as a weighted Voronoi tessellation, (b) the
network modeled as a superposition of two independent Voronoi tessellations (the
diamond dots with the dashed Voronoi represent the macro network tier).

Lemma 5.4.1. In a Rayleigh fading environment, the probability that a generic user

is associated to the femto network is given by

ξa = 1−
∫ ∞

0

µaµbB

(µb + µah)2

((
Pa
Pb
h
) 2
η

A+ B
)dh (5.2)

and the probability that a generic user is associated to the macro network is given by

ξb = 1− ξa =

∫ ∞
0

µaµbB

(µb + µah)2

((
Pa
Pb
h
) 2
η

A+ B
)dh. (5.3)

Proof. Exploiting the result of Slivnyak’s theorem for PPP, I can perform all of the

analysis on a typical user located at the origin (i.e., conditioning on having that user

at the origin) while maintaining the same properties of all coexisting PPPs. Let

Ra = min
i

(‖ai‖), ∀ai ∈ Ψa and Rb = min
i

(‖bi‖), ∀bi ∈ Ψb denote, respectively, the

distance between the tagged user located at the origin and the nearest FAP and the
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nearest macro BS. Then, the probability that a typical user (u) is covered by the

femto network can be written as

ξa = P
{
PahaiR

−η
a > PbhbiR

−η
b

}
(∗)
=

∫
h≥0

F
Ra/b

(
Pa
Pb
h

)
fha/b(h)dh

= 1−
∫ ∞

0

(
µa
µb

)
B

(1 + µa
µb
h)2

((
Pa
Pb
h
) 2
η

A+ B
)dh.

In (∗), Ra/b =
(
Ra
Rb

)η
, ha/b =

hai
hbi

, FRa/b(r) is the cumulative distribution function

(cdf) of Ra/b, and fha/b(h) is the probability density function (pdf) of ha/b. Both the

pdfs fRa/b(r) and fha/b(h) are derived in Appendix B.1.

Note that Lemma 5.4.1 can be easily generalized to any fading environment (see

[60]). Accounting for the random channel fading in the tier association probability has

two merits. Firstly, the tier association probability is more generalized and captures

the long term average association probability (i.e., based on the average channel

gains) as in [58]. Secondly, I can explicitly account for the effect of the favorable

channel conditions from the users towards the FAPs. The association probability can

be directly interpreted as the probability that a generic user will be associated to

one of the two network tiers. Also, the association probability can be viewed as the

share that each network tier serves from the complete set of users, or can be viewed

as the portion of the plane which each tier is serving. From these interpretations of

the association probability and the fact that independently thinning a PPP produces

another PPP [1], the PPP representing the complete set of users Ψu can be divided

into two independent PPPs: Ψua with intensity Ua = Uξa and Ψub with intensity

Ub = Uξb, which denote, respectively, the PPP for the users associated to the FAPs
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and the users associated to the macro BSs.

5.5 Calculation of the Opportunistic Spectrum Access Prob-

ability for Cognitive FAPs

5.5.1 Assumptions and Procedure

In each time slot, a cognitive FAP opportunistically uses a channel which is not used

within its SSR. Due to the low transmission power of the FAPs, the high transmission

power of macro BSs, and the unified sensing threshold υs, there are two different SSRs

for each FAP, namely, the femto SSR (i.e., the SSR of a FAP with respect to [w.r.t.]

other FAPs) and the macro SSR (i.e., the SSR of a FAP w.r.t. the macro BSs),

as shown in Fig. 5.3. The spectrum sensing threshold along with the transmission

power defines the region around the FAP where none of the used channels can be

reused. That is, a FAP should not reuse any channel used by a macro BS within the

macro SSR, or any channel used by a FAP within the femto SSR. Due to the higher

transmission power of the macro BSs w.r.t. the FAPs, a FAP should keep a larger

spatial channel reuse distance from macro BSs than that from FAPs as shown in Fig.

5.3. Therefore, the macro SSR is larger than the femto SSR. The macro BSs perform

the channel assignment at the beginning of each time slot. Therefore, by sensing the

spectrum at the beginning of each time slot for the spectrum sensing duration τs, the

FAPs can identify the available spectrum opportunities (i.e., the channels that are

not used by the macro BSs).

On the other hand, interference among the FAPs within the same femto SSR is

avoided via a contention resolution procedure. As has been mentioned before, each

FAP will randomly choose one of the available channels and persistently sense it for
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rsa 

rsb 

Figure 5.3: The two SSRs for a generic FAP (the black dot at the centre): the outer
dotted circle and the inner dashed circle represent, respectively, the macro SSR and
the femto SSR.

a random duration uniformly distributed in the range [0, τc]. If the chosen channel is

still available (i.e., not used by another FAP within the femto SSR during the random

sensing duration) the FAP will use it for the rest of the current time slot, otherwise,

the FAP experiences an outage due to the channel unavailability in the current slot.

Computing the opportunistic spectrum access probability for cognitive FAPs is

a twofold problem. Given that there are Kf free channels (i.e., not utilized by the

macro BSs) in the macro SSR of the test FAP, I have to model the contention be-

tween the test FAP and the other FAPs present in the test FAP’s femto SSR for these

channels in order to compute the conditional opportunistic access probability. Also,

I have to compute the pmf of the number of free channels Kf in order to obtain the

unconditional opportunistic spectrum access probability for cognitive FAPs. Exploit-

ing Slivnyak’s theorem it is possible to conduct the analysis for a FAP ai existing at

the origin (i.e., ai = (0, 0)) and the results will hold for the entire set of FAPs [1].
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5.5.2 Availability of Channels for Opportunistic Spectrum Access

In this section, for a test FAP located at the origin, I derive the pmf of the number

of free channels within its macro SSR. The pmf of the number of free channels is

calculated in three steps. First, the pmf of the number of channels used by a generic

macro BS is obtained. Then, the pmf of the channels used by all macro BSs within

the macro SSR of the test FAP is calculated. Finally, the pmf of the number of free

channels within the macro SSR of the test FAP is calculated. As defined in the system

model, users associated to the same macro BS will be assigned orthogonal channels,

and therefore, the number of channels used in a generic macro cell is equal to the

number of users associated to it. The distribution of the number of users associated

to a generic macro BS is obtained from the following lemma:

Lemma 5.5.1. Let Nv be the number of macro users associated to a generic BS.

Then Nv has the following cumulative mass function (cmf):

FNv(k) ≈
k∑

n=0

Γ(n+ c)

Γ(n+ 1)Γ(c)

(Ub)n (Bc)c

(cB + Ub)n+c
, 0 ≤ k <∞ (5.4)

where Γ(z) =
∫∞

0
tz−1e−tdt is the gamma function and c = 3.575 is a constant for

Voronoi tessellation in R2.

Proof. See Appendix B.2.

Note that the expression in (5.4) is an approximation because the exact distribu-

tion of the Voronoi cell area is not known (its derivation is an open problem [117,

Chapter 5]), and the network model is approximated by the superposition of two in-

dependent Voronoi tessellations. Fig. 5.4 shows the accuracy of the cmf of the number

of macro users Nv associated to a generic BS.
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Figure 5.4: The accuracy of the proposed FNv(k) at B = 1 BS/km2, A = 10 FAP/km2,
U = 30 user/km2.

Now I calculate the pmf of the number of channels used by all macro BSs within the

macro SSR of the test FAP. Shown in Fig. 5.3, rsb =
(
Pbµb
υs

)1/η

and rsa =
(
Paµa
υs

)1/η

are the average radii for the macro SSR and the femto SSR, respectively (here υs is

the spectrum sensing threshold). Due to the Rayleigh fading assumption, the macro

SSR and the femto SSR are random shaped regions (i.e., not circles) which depend on

the instantaneous channel gains between the test FAP and the coexisting BSs/FAPs.

That is, there could be a macro BS which is very far from the test FAP but still within

its macro SSR due to good channel gain. On the other hand, there could be a macro

BS near the test FAP but not included within its macro SSR due to poor channel

gain. Since the Lebesgue measure of a random shaped region is hard to determine, I

cannot directly study the spatial statistics of the macro BSs within the macro SSR.

Moreover, in theory, the macro SSR may not be bounded due the infinite support

domain of the exponential distribution. Let Nb be the number of macro BSs within

the macro SSR of the test FAP. Then the distribution of Nb can be obtained from

the following lemma:
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Lemma 5.5.2. Let Nb be the number of macro BSs in a generic FAP’s macro SSR

determined by the sensing threshold υs in a Rayleigh fading environment. Then, Nb

has a Poisson distribution with the parameter ϕb = πB
(

Pb
µbυs

) 2
η

Γ(1 + 2
η
).

Proof. See Appendix B.3.

Having the distribution of Nb, the distribution of the number of busy channels

used by all macro BSs within the macro SSR of a generic FAP is obtained from the

following lemma.

Lemma 5.5.3. Let Ku be the number of channels used by all macro BSs within the

macro SSR of a generic FAP located at ai, ai ∈ R2. The distribution function of Ku

is given by

FKu(k) = e−ϕb(1−FNv (k)), 0 ≤ k <∞. (5.5)

The pmf of Ku is given by

fKu(k) =

 e
−ϕb

(
1−
(

cB
cB+Ub

)c)
, k = 0

e−ϕb(1−FNv (k)) − e−ϕb(1−FNv (k−1)), otherwise.
(5.6)

Proof. See Appendix B.4.

Now the distribution of the number of free channels within the macro SSR of a

generic FAP can be obtained from the following Corollary.

Corollary 5.5.1. Let |S| be the total number of channels, Kf be the number of free

channels out of |S| within the macro SSR of a generic FAP located at ai, ai ∈ R2.

Then, the distribution of Kf can be obtained from
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FKf (k) = P {Kf ≤ k}

= 1− 1{k < |S|}e−ϕb(1−FNv (|S|−k−1)), 0 ≤ k ≤ |S| (5.7)

where 1{.} is an indicator function which takes the value 1 when the statement

{.} is true and takes the value 0 otherwise. The pmf of Kf is given by

fKf (k) = e−ϕb(1−FNv (|S|−k))1{k>0} − 1{k < |S|}e−ϕb(1−FNv (|S|−k−1)), 0 ≤ k ≤ |S| .

(5.8)

Proof. Exploiting the fact that the probability for k or fewer channels being free

is equal to the probability that |S| − k or more channels are used, I can write

P {Kf ≤ k} = 1 − FKu(|S| − k − 1), and hence, Corollary 5.5.1 is proved. Note

that, since Ku is a discrete random variable, 1 − FKu(|S| − k − 1) is the probability

that |S| − k or more channels are used.

5.5.3 Opportunistic Spectrum Access Probability for FAPs

In this section, I model the contention among different FAPs to access the available

channels in order to obtain the conditional opportunistic spectrum access probability

for FAPs (i.e., conditioning on the number of free channels). As shown in Fig. 5.3, the

test FAP will contend to access the spectrum with all other FAPs within its femto

SSR. For analytical tractability, I assume that all the FAPs coexisting within the

femto SSR of the test FAP have the same set of free channels. This assumption can

be justified by the smaller femto SSR w.r.t. the macro SSR. Each FAP will generate a
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random backoff timer and persistently sense a randomly chosen channel out of the Kf

free channels. If the chosen channel is still available after the backoff timer elapses,

the FAP acquires it and uses it for downlink transmission. Otherwise, it encounters

an outage in the current time slot. Only FAPs with associated users will contend for

channel access.

Similar to Lemma 5.5.1, it can be shown that the intensity of FAPs with at least

one associated user is given by Aa = A
(

1−
(

cA
cA+Ua

)c)
. Since each FAP randomly

chooses one of the available channels to contend for, given that there are Kf channels

available for contention in the test FAP’s macro SSR, the intensity of FAPs with at

least one associated user that are contending with the test FAP for accessing the same

channel is given by

Ac(Kf ) =
Aa
Kf

=
A
Kf

(
1−

(
cA

cA+ Ua

)c)
. (5.9)

Due to the carrier sensing-based channel access, the cognitive FAPs which si-

multaneously access the same channel constitute a Matérn hard core point process

(HCPP) [1, 40, 50, 51]. As discussed in Sec. 2.1.5, a Matérn HCPP is a repulsive

point process where no two points can coexist if their distance is less than the hard

core radius rmin. The Matérn HCPP is derived from a PPP via dependent thinning.

The dependent thinning is applied in two steps. First, an independent and uniformly

distributed time mark is applied to the PPP. Then, a point is chosen to be in the

Matérn HCPP if and only if it has the lowest mark in its contention domain. The

contention domain of a point is defined by a circle of radius rmin around that point.

Projecting to my network model, the PPP is the complete set of FAPs contending to

access the same channel, the time mark corresponds to the backoff timer generated

by each FAP for contention, and the HCPP corresponds to the FAPs that succeed
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to access the spectrum. Similar to Lemma 5.5.2, it can be shown that the number

of active FAPs (i.e., FAPs with at least one associated user) contending for the same

channel within the femto SSR of a generic FAP has a Poisson distribution with pa-

rameter ϕa(Kf ) = πAc(Kf )
(

Pa
µbυs

) 2
η

Γ(1+ 2
η
). It can be shown that the opportunistic

spectrum access probability for a generic FAP is given by (see [1, 40, 50,51]):

Pac(Kf ) =
1− e−ϕa(Kf )

ϕa(Kf )

=

Kf

(
1− e−π

A
Kf

(1−( cA
cA+Ua )

c
)
(

Pa
µbυs

) 2
η

Γ(1+ 2
η

)

)

πA
(

1−
(

cA
cA+Ua

)c)(
Pa
µbυs

) 2
η

Γ(1 + 2
η
)

. (5.10)

The intensity of the FAPs which succeed to access the same channel si ∈ S can be

calculated from the probability that the test FAP will access the given channel si. The

channel si is available for the test FAP to contend for if it is not used by the macro

BSs within its macro SSR. Due to the sequential channel assignment of the macro

BSs, the channel si is available for contention for the test FAP if (Kf ≥ |S|− (i−1)),

i = 1, 2, 3, ..., |S|. Given that there are Kf free channels within the macro SSR of the

test FAP, the test FAP will choose one of the available channels to contend for with

probability 1
Kf

and will succeed to access it with probability Pac(Kf ). Therefore, the

probability that the test FAP succeeds to access the channel si is given by

Psi =

|S|∑
k=|S|−(i−1)

P {Kf = k} Pac(k)

k
.

Note that, different from Psi , Pac(Kf ) gives the probability that a FAP succeeds to

access the spectrum on any of the free channels and not on a specific channel si. The
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intensity of the FAPs succeeded to access the same channel si is given by

Asi = AaPsi = Aa
|S|∑

k=|S|−(i−1)

P {Kf = k} Pac(k)

k
. (5.11)

5.6 Analysis of Outage Probability

5.6.1 Assumptions and Methodology

Due to the sequential assignment of channels in the macro BSs, each channel si has

its own interference statistics. That is, channel s1 will have all macro BSs with one or

more associated users causing interference to it. On the other hand, channel si will

only have macro BSs with i or more associated users causing interference to it. In this

section, I consider the worst-case scenario from interference point of view and model

the outage on the channels experiencing the highest amount of interference from the

macro-tier. For the macro-tier, I model outage on channel s1, and for the femto-tier,

given that there are Kf available channels, I model outage on channel s|S|−(Kf−1).

Before going into the details of the outage probability, I give the following lemma

which I will use as a building block in my analysis.

Lemma 5.6.1. Following (sec. 3.7.1, [6]), in a Rayleigh fading environment, the

Laplace transform of the pdf of the aggregate interference measured at the origin from

a PPP with intensity λ and existing outside Bx(re) is given by

LI(s) = exp

{
−λπ

(
(Ps)

2
ηEh

[
h

2
η γ

(
1− 2

η
, sPhr−ηe

)]
− Psr2

e

Ps+ µrηe

)}
. (5.12)

where γ(z, y) =
∫ y

0
tz−1e−tdt is the lower incomplete gamma function, P is the trans-

mission power of each interferer, η is the path-loss exponent, h is instantaneous chan-

145



Chapter 5. Downlink Two-tier Cellular Networks with Cognitive Femtocells

nel power gain, and µ is the mean channel power gain.

Based on the RSS, a generic user first associates to either a macro BS or a FAP.

The user can be associated to a FAP with probability ξa and to a macro BS with

probability ξb. The outage probability Ob of a macro user is due to the SINR falling

below the reception threshold β. On the other hand, given that the serving FAP has

Kf free channels within its macro SSR (i.e., the channels not used by other macro BSs

within the macro SSR of the FAP), the outage probability Oa(Kf ) of the associated

femto user is due to the SINR falling below the reception threshold β, or due to the

unavailability of any spectrum access opportunity for the serving FAP. The outage

probability of a femto user is a function of Kf . As Kf increases, the intensity of

the FAPs contending for and accessing the same channel decreases, and hence, both

the outage probabilities (i.e., due to the unavailability of channels and due to the

insufficient SINR) decrease. Therefore, the outage probability of a generic user (i.e.,

the overall outage probability) is given by

Ot =

|S|∑
k=0

P {Kf = k}O(k), where (5.13)

O(Kf ) = ξaOa(Kf ) + ξbOb

= ξa
[
(1−Oaccessa (Kf ))OSINR

a (Kf ) +Oaccessa (Kf )
]

+ ξbOb (5.14)

in which Oaccessa (Kf ) is the outage probability of a femto user due to channel un-

availability and OSINR
a (Kf ) is the outage probability of a femto user due to the SINR

falling below the reception threshold β. Exploiting Slivnyak’s theorem for PPP, I can

perform the analysis for a typical user located at the origin and the results hold for
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any generic user located at a generic location.

5.6.2 Outage Probability of a Macro User

For a user associated to a macro BS, according to the system model, the serving

macro BS is the nearest BS to that user in the macro network tier. Also, the serving

macro BS is outside the macro SSR of all interfering FAPs. Following [12], the outage

probability of this user is given by

Ob = P {SINR < β}

= P
{
PbhbR

−η
b

I + σ2
< β

}
=

∫ ∞
0

2πBre−Bπr2P
{
hb <

βr
η

(I + σ2)

Pb

}
dr

= 1−
∫ ∞

0

2πBre−Bπr2LIab
(
µbβr

η

Pb

)
LIbb

(
µbβr

η

Pb

)
exp

{
−µbβr

η (σ2)

Pb

}
dr

(5.15)

where LIab
(
µbβr

η

Pb

)
and LIbb

(
µbβr

η

Pb

)
are the Laplace transforms of the pdf of the

interference, respectively, from the femto network tier and the macro network tier to

the macro user evaluated at
(
µbβr

η

Pb

)
. Then, following [12], the Laplace transform of

the pdf of interference from other macro BSs can be obtained as

LIbb(s) = exp

{
−2πBac

∫ ∞
r

(
1

µbxη

sPb
+ 1

)
xdx

}
(5.16)

where Bac =
(

1−
(
Bc
Bc+Ub

)c)
B is the intensity of macro BSs interfering on channel s1

(i.e., the macro BSs with at least one associated user). Now, plugging in s = µbβr
η

Pb
, I

have
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LIbb
(
µbβr

η

Pb

)
= exp

−2πBac
∫ ∞
r

 1(
β−1/ηx

r

)η
+ 1

xdx


(∗∗)
= exp

{
−πBacr2β2/η

∫ ∞
β−2/η

(
1

y
η
2 + 1

)
dy

}
(5.17)

where (∗∗) is obtained by changing variables y =
(
β−1/ηx

r

)2

. For η = 4, I have

LIbb
(
µaβr

η

Pa

)
= exp

{
−πBacr2

√
β

[
π

2
− arctan

(√
1

β

)]}
= exp

{
−πBacr2

√
β arctan

(√
β
)}

. (5.18)

Now I calculate the interference caused to a macro user from the femto network

tier. Since all FAPs are cognitive, the set of interfering FAPs constitute an HCPP, and

on average, the nearest interfering FAP to the serving BS will be rsb away, hence, it will

be (rsb−Rb) away from the test macro receiver. However, the exact Laplace transform

of the pdf of the aggregate interference from FAPs cannot be calculated because the

probability generating functional of the HCPP does not exist. Conventionally, the

Laplace transform of the pdf of the aggregate interference due to an HCPP has been

always approximated by the Laplace transform of the pdf of the aggregate interference

due to a PPP with the same intensity but existing outside the contention domain of

the test transmitter [40, 44, 49, 51]. The rationale behind this approximation is that

the main factors affecting the aggregate interference are the number of interferers and

their locations w.r.t. the test node. However, the locations of the interferers w.r.t.

each other have minimal effect on the interference at the test node. The number

of interferers has been captured in the calculation of the intensity of the HCPP
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and the locations of the interferers w.r.t. the test receiver have been captured by

conditioning on having the PPP outside the contention domain of the test transmitter.

In [49], it was proved that the mean interference from an HCPP can be accurately

approximated with the mean interference from a PPP with the same intensity and

existing outside the exclusion region of the test transmitter and the approximation

error never exceeds 1 dB. Therefore, using Lemma 5.6.1, the Laplace transform of

the pdf of the aggregate interference resulting from the FAPs can be approximated

by

LIab(s) ≈ exp

{
−As1π

(
(Pas)

2
ηEhai

[
h

2
η
aiγ

(
1− 2

η
, sPahai(rsb − r)−η

)]
− Pas(rsb − r)2

Pas+ µa(rsb − r)η

)}
(5.19)

where As1 is the intensity of FAPs interfering on channel s1 and is calculated in (5.11).

For η = 4, in Appendix B.5, I show that

LIab(s) ≈ exp

{
−As1π

√
Pas

µa
arctan

( √
Pas

r2
sb

√
µa

)}
. (5.20)

Now plugging in s = µbβr
η

Pb
, I have

LIab
(
µbβr

4

Pb

)
≈ exp

{
−As1πr2

√
pβ arctan

(
r2
√
pβ

(rsb − r)2

)}
(5.21)

where p = Paµb
Pbµa

. Substituting back in (5.15) for η = 4, I have

Ob = 1−
∫ ∞

0
2πBre−Bπr2

exp

{
−As1πr2

√
pβ arctan

(
r2
√
pβ

(rsb − r)2

)
− πBacr2

√
β arctan

(√
β
)

−
µbβr

η
(
σ2
)

Pb

}
dr.
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Due to the relatively large value of rsb, small value of Pa, and low intensity As1 , the

interference from FAPs can be ignored. In interference-limited networks (i.e., ignoring

noise), the outage probability of a macro user is given by

Ob = 1−
∫ ∞

0

2πBre−Bπr2

e−πBacr
2
√
β arctan(

√
β)dr

= 1− B
B + Bac

√
β arctan

(√
β
) =

Bac
√
β arctan

(√
β
)

B + Bac
√
β arctan

(√
β
) . (5.22)

5.6.3 Outage Probability of a Femto User

Now I calculate the outage probability of a femto user. Similar to (5.15), the outage

probability of a femto user due to the SINR falling below the reception threshold β

is given by

O(SINR)
a (Kf ) = P {SINR < β}

= P
{
PahaiR

−η
a

I(k) + σ2
< β

}
= 1−

∫ ∞
0

2πAre−Aπr2LIaa
(
µaβr

η

Pa
, Kf

)
LIba

(
µaβr

η

Pa
, Kf

)
exp

{
−µaβr

η (σ2)

Pa

}
dr (5.23)

where LIaa
(
µaβrη

Pa
, Kf

)
and LIba

(
µaβrη

Pa
, Kf

)
represent the Laplace transforms of the

pdf of the interference, respectively, from the femto network tier and the macro net-

work tier to the femto user, evaluated at µaβrη

Pa
given that there are Kf channels

available to the serving FAP. Given that the user is associated to a FAP, from the

system model, the serving FAP is the nearest FAP to that user in the femto network

tier. Also, the interfering BSs and FAPs are outside the macro SSR and femto SSR

of the serving FAP, respectively. Therefore, on average, the nearest interfering BSs
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and FAPs to the test user are, respectively, rsb−Ra and rsa−Ra away from the test

femto receiver. Similar to (5.20), for η = 4, the Laplace transform of the aggregate

interference from FAPs is given by

LIaa
(
µaβr

4

Pa
, Kf

)
≈ exp

{
−As|S|−(Kf−1)

πr2
√
β arctan

(
r2
√
β

(rsa − r)2

)}
(5.24)

where As|S|−(Kf−1)
is the intensity of simultaneously active FAPs on the channel

s|S|−(Kf−1) and is given in (5.11), and the Laplace transform of the pdf of the ag-

gregate interference from macro BSs is given by

LIba
(
µaβr

4

Pa
, Kf

)
= exp

−Bin(Kf )πr
2

√
β

p
arctan

 r2
√

β
p

(rsb − r)2

 (5.25)

where p is defined in (5.21) and Bin(Kf ) in the intensity of the interfering macro

BSs on channel s|S|−(Kf−1) (i.e., BSs with at least |S| − (Kf − 1) associated users).

The Laplace transform of the pdf of the aggregate interference from macro BSs

is exact because the interfering BSs constitute a PPP with intensity Bin(Kf ) =

(1− v(|S| −Kf − 1))B outside the macro SSR rsb of the test FAP. Substituting back

in (5.23), I have

O(SINR)
a (Kf ) =1−

∫ ∞
0

2πAr exp

−Aπr2 − Bin(Kf )πr2

√
β

p
arctan

 r2
√

β
p

(rsb − r)2


−As|S|−(Kf−1)

πr2
√
β arctan

(
r2
√
β

(rsa − r)2

)
−
βrη

(
σ2
)

Pa

}
dr. (5.26)

Conditioning on having Kf available channels for the serving FAP, the outage prob-

ability of a femto user due to the unavailability of channels is given by
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O(access)
a (Kf ) = 1− Pac(Kf ) = 1−

Kf

(
1− e−π

A
Kf

(1−( cA
cA+Ua )

c
)
(

Pa
µbυs

) 2
η

Γ(1+ 2
η

)

)

πA
(

1−
(

cA
cA+Ua

)c)(
Pa
µbυs

) 2
η

Γ(1 + 2
η
)

.

(5.27)

The unconditional outage probability of the femtocell user can be calculated as

Oa =

|S|∑
k=0

P {Kf = k}
[
(1−Oaccessa (Kf ))OSINR

a (Kf ) +Oaccessa (Kf )
]

(5.28)

After calculating the outage probability of a generic user in each network tier, the

overall outage can be calculated by using (5.13).

5.7 Performance Evaluation Results

5.7.1 Parameters and Assumptions

In this section I present the numerical results obtained from the previous analysis.

In the numerical evaluations, unless otherwise stated, I choose Pa = 20 dBm, B = 1

BS/km2, |S| = 25 channels, all the channel gains to have unit mean (i.e., 1
µa

= 1
µb

= 1),

and η = 4. We usually vary the intensity of the FAPs A and the transmission power

of the macro BSs Pb. The effect of noise is ignored (i.e., the network is interference-

limited) [12,54]. Based on the analysis presented earlier in this chapter, the numerical

results are obtained using MATLAB.
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Figure 5.5: (a) The macro-tier association probability vs. the normalized macro-
tier transmission power Pb

Pa
for different normalized macro-tier intensities BA , (b) the

macro-tier association probability vs. intensity of each tier at Pb = 10Pa.

5.7.2 Numerical Results

Tier Association and Opportunistic Channel Access

Fig. 5.5 shows the variations in the macro BS association probability ξb (note that

1−ξb gives the femto tier association probability) with the intensities and transmission

powers of the FAPs and macro BSs. It can be seen that the association probability

with a given network tier is directly proportional to the intensity of corresponding

macro BSs/FAPs and the transmission power. As shown in Fig. 5.5(a), if the two

network tiers have the same parameters, then they will have equal association prob-

ability (i.e., ξa = ξb = 0.5). It can be also observed in Fig. 5.5(b) that the intensity

of macro BSs/FAPs has a greater impact on the tier association probability than the

relative transmission power. For instance, as shown in Fig. 5.5(b), a 10 dB power

gain of the macro BSs over the FAPs can be equalized with only 5 dB intensity gain

for the FAPs. That is, if Pb = 10Pa and A = 3.1B, then ξa = ξb = 0.5.

Fig. 5.6(a) shows (1−FNv(k)) at k = 10 (i.e., the probability of having more than
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Figure 5.6: (a) The probability of having more than 10 users in a BS’s Voronoi cell,
(b) the probability of having more than 10 channels used in the macro SSR of a
generic FAP (for µch = 1, Pb = 5 W, and υs = −45 dBm).

10 users associated to a generic BS) for different BS and user intensities. The figure

shows that as the intensity of macro BSs (B) increases, (1−FNv(k)) decreases because

the areas of the Voronoi cells decrease with increasing B, hence, each BS will cover a

fewer number of users. Fig. 5.6(b) shows (1− FK(k)) at k = 10 (i.e., the probability

of having more than 10 channels used within the macro SSR of a generic FAP) for

different BS and user intensities. This figure is insightful because it shows that as B

increases, (1 − FK(k)) increases up to a certain point and then it starts decreasing.

This behavior can be interpreted as follows. For very low values of B, despite the fact

that the area of the Voronoi cell of a macro BS is very large, it is a very rare event

to find any macro BS within the macro SSR of the FAP. However, as B increases, it

becomes more likely to find macro BSs within the macro SSR of the FAP, and hence

(1− FK(k)) increases. Finally, when B becomes high enough, it becomes a very rare

event not to find a macro BS within the macro SSR of the FAP. Therefore, the areas

of the Vononoi cells of the macro BSs, which decrease with increasing B, become the
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Figure 5.7: (a) The cmf Fkf (k) of the number of free channels within the macro SSR
of a generic FAP (for µb = 1, Pb = 5 W, and υs = −45 dBm), (b) the pmf fkf (k) of
the number of free channels within the macro SSR of a generic FAP (for the same
parameters).

dominating factor for (1 − FK(k)). On the other hand, Fig. 5.6 shows that both

(1− FNv(k)) and (1− FK(k)) always increase with U .

Fig. 5.7 shows the cmf and the pmf of the number of free channels within the

macro SSR of a generic FAP. As shown in the figure, at lower B, it is more likely

to find a lower number of free channels, however, there is a non-zero probability to

find all the channels free. This is because the lower the value of B, the larger are the

Voronoi cells of macro BSs and the higher are the number of users associated to a

macro BS. Since there is no intra-cell interference within a macrocell, a larger number

of users associated to a macro BS implies that a larger number of channels are being

used by that BS. However, at lower intensity of macro BSs, it is more likely that there

will be no macro BS within the macro SSR of the FAP, and hence, all the channels

are available for FAP usage. On the other hand, for higher intensity of macro BSs,

it is very unlikely that there will be no macro BS within the macro SSR of a FAP,

and therefore, the probability that all of the channels will be free for FAP usage will

155



Chapter 5. Downlink Two-tier Cellular Networks with Cognitive Femtocells

be very low. At higher B, the Voronoi cells of the macro BSs are smaller and a fewer

number of users are associated to a BS, and hence, a lesser number of channels are

used in each BS. Therefore, increasing the intensity of the macro BSs increases the

spectrum opportunities for the cognitive FAPs.

Performance Gain Due to Cognition and Optimal Spectrum Sensing

Threshold

Fig. 5.8 shows the performance gain in outage probability obtained by introducing

cognition into the femto-tier for different values of SIR (signal-to-interference-ratio)

threshold. Fig. 5.8(a) shows that for lower values of the spectrum sensing thresh-

old, despite that the aggregate interference will be very low, the effect of channel

unavailability dominates the outage probability and it results in a degraded outage

performance. On the other hand, for higher values of spectrum sensing threshold,

the spectrum opportunities for FAPs increase, however, the aggregate interference in-

creases and dominates the outage probability and it also results in a degraded outage

performance. For very high values of spectrum sensing threshold, the performance of

cognitive FAPs saturates and matches that of the non-cognitive FAPs.

Fig. 5.8(b) shows that introducing cognition decreases the overall outage prob-

ability, however, its impact on the overall outage probability is not as much as its

impact to the femto-tier. This is because the majority of users are served by the

macro network tier due to the higher transmission power of the macro BSs and the

comparable intensity of FAPs to the macro BSs. This figure shows the existence of

an optimal spectrum sensing threshold which gives around 60% performance gain in

outage probability for femto-tier and around 15% for the overall network performance.
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Figure 5.8: The effects of cognition on the outage probability for different spectrum
sensing thresholds for Pb/Pa = 50, A/B = 2, |S| = 25, and U = 2(A+ B).

Macro BS/FAP Intensity and Outage Probability

Fig. 5.9 shows the effects of both the macro BS/FAP intensity and the spectrum

sensing threshold on the outage probability. Fig. 5.9(a) shows that when the intensity

of FAPs is smaller w.r.t. that of macro BSs, the FAPs should be conservative to avoid

massive interference from macro BSs and maintain an acceptable outage probability.

On the other hand, when the FAP intensity is higher w.r.t. the deployed macro BSs

(i.e., in a heavily deployed FAP scenario), the FAPs are required to be more aggressive

to maintain an acceptable outage probability. This behavior can be interpreted by

the tradeoff between the outage probability due to the aggregate interference and the

outage probability due to contention among the FAPs to access the channels.

In a sparsely deployed FAP scenario, the distance between a femto user and its

serving FAP is relatively large (i.e., when compared to the highly deployed scenario).

Hence, the useful signal received at the user equipment is weak and the FAPs should

be more conservative to provide protection (i.e., interference exclusion region) around
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the user equipment to avoid massive interference from macro BSs. Moreover, because

of the relatively low intensity of the FAPs, the outage due to the aggregate interfer-

ence dominates the outage due to the unavailability of channels resulting from the

contention among the FAPs coexisting within the same femto SSR. On the other

hand, in a heavily deployed FAP scenario, the distance between the FAP and its

user is relatively small and hence the useful signal is strong enough to stabilize the

SINR. Moreover, due to the relatively high intensity of the FAPs in a heavily de-

ployed FAP scenario, the outage due to the unavailability of channels resulting from

the contention among FAPs dominates the outage due to the aggregate interference.

Fig. 5.9(b) shows that the overall outage probability (i.e., the outage probability

of a generic user) can be quite misleading and does not convey the poor performance

of the femto users. For instance, at A = B, for a varying spectrum sensing threshold

(υs), the outage probability of a FAP ranges from 30% to 95% while the overall outage

probability is almost constant (i.e., the outage probability of a FAP is not reflected in

the overall outage probability). This behavior can be understood by looking into the

tier association probability. Due to the higher transmission powers of the macro BSs,

for equal intensities of FAPs and macro BSs, the majority of the users are served by

the macro BSs. Therefore, despite the fact that the femto users experience a higher

outage probability, due to their small numbers compared to the macro users, their

performance does not affect the overall outage probability. However, as shown in

Fig. 5.9, by explicitly accounting for the performance of the femto users, the femto-

tier network can be optimized without affecting the performance of the macro-tier

network. On the other hand, in a heavily deployed FAP scenario, due to the high

intensity of FAPs, the majority of the users are served by the femto-tier and the

performance of the femto-tier highly affects the overall network performance.
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Figure 5.9: The effects of the intensities of the macro BSs/FAPs and the spectrum
sensing threshold on the outage probability for Pb/Pa = 50, β = 2, |S| = 25, and
U = 2(A+ B).

Although I have introduced cognition and relaxed the single channel assumption

used in [12, 54], I am still able to compare my results with those in [12, 54]. This is

because the overall outage probability is not much affected by the outage probability

of femto users (i.e., when the FAP intensity is relatively low). It is worth mentioning

that the results on the outage probabilities presented here match with those presented

in [12,54] and the high values of outage probabilities are due to the high value of target

SINR (β = 2).

Variation in Outage Probability with Spectrum Sensing Threshold and

Required SIR

Fig. 5.10(a) shows that for high SIR requirements, the outage due to aggregate

interference dominates the outage due to unavailability of channels and the FAPs are

required to be more conservative to maintain a lower outage probability. When the

SINR requirement is relaxed, the FAPs can be more aggressive to decrease outage
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Figure 5.10: The effects of the required SIR and the spectrum sensing threshold on
the outage probability for Pb/Pa = 50, |S| = 25, A/B = 2, and U = 2(A+ B).

due to the unavailability of channels. Fig. 5.10(b) shows that due to the higher

transmission powers of the macro BSs, the overall outage probability does not clearly

convey the performance of the FAPs. Fig. 5.10(b) also shows that as the SINR

constrains become more stringent, the outage probability increases.

Effects of Number of Channels and Spectrum Sensing Threshold on

Outage Probability

Fig. 5.11 shows that the optimal spectrum sensing threshold for the FAPs depends

on the number of available channels. Fig. 5.11(a) clearly shows the tradeoff between

the outage due to aggregate interference and the outage due to the unavailability of

channels. Increasing the number of available channels increases the spectrum oppor-

tunities for the FAPs and decreases the outage probability due to the unavailability of

channels. Hence, the femtocells can be more conservative to mitigate the aggregate

interference. Fig. 5.11(b) shows that due to the higher transmission power of the

160



Chapter 5. Downlink Two-tier Cellular Networks with Cognitive Femtocells

−80 −70 −60 −50 −40 −30 −20 −10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

υ
s
 (dBm)

F
em

to
 u

se
r 

ou
ta

ge
 p

ro
ba

bi
lit

y

 

 

Number of channels = 15
Number of channels = 30
Number of channels = 45
Number of channels = 60

(a)

−80 −70 −60 −50 −40 −30 −20 −10 0
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

υ
s
 (dBm)

G
en

er
ic

 u
se

r 
ou

ta
ge

 p
ro

ba
bi

lit
y

 

 

Number of channels = 15
Number of channels = 30
Number of channels = 45
Number of channels = 60

(b)

Figure 5.11: The effects of the number of channels and the spectrum sensing threshold
on the outage probability (for Pb/Pa = 50, A/B = 2, β = 2, and U = 2(A+ B)).

macro BSs and the higher association probability of the users to the macro BSs, the

femto-tier network performance does not have a strong impact on the overall outage

probability. However, in a heavily deployed FAP scenario, the effect of the perfor-

mance of the femto users on the overall outage performance will be prominent (as

shown in Fig. 5.9).

Effects of Relative Transmission Power and Spectrum Sensing Thresh-

old on Outage Probability

In Fig. 5.12, the transmission power of the macro BSs is increased while the trans-

mission power of the FAPs is kept constant. The figure shows that the optimal

spectrum sensing threshold is almost the same despite increasing transmission power

of the macro BSs. This is because the higher the transmission power of the macro

BSs w.r.t. the FAPs’ transmission power, the larger will be the macro SSR to stabi-

lize the aggregate interference while the femto SSR remains the same. An increased
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Figure 5.12: The effects of the relative transmission power of macro BSs to FAPs and
the spectrum sensing threshold on the outage probability (for |S| = 25, A/B = 2,
β = 2, and U = 2(A+ B)).

macro SSR implies a higher number of macro BSs in the macro SSR. However, due

to the sequential assignment of the channels in the macro BSs, increasing the number

of BSs within the macro SSR does not highly affect the availability of channels, and

hence, does not affect the opportunistic spectrum access probability for FAPs. The

factor that highly affects the opportunistic spectrum access probability for FAPs is

the femto SSR.

Fig. 5.12(b) shows that increasing the transmission power of the macro BSs de-

creases the impact of the femto users on the total outage probability. This is because,

increasing the transmission power of the macro BSs offloads more users from the femto

tier to the macro tier, hence, decreases the weight of the femto users’ performance in

the total network performance.

In Fig. 5.12, keeping in mind that the transmission power of the FAPs is kept

constant, some insightful observations can be obtained from the intersection of curves.

Fig. 5.12(a) shows that the curves reverse their order at approximately −50 dBm.
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That is, in the range from −70 dBm to −50 dBm, the femto user performance is

enhanced by decreasing the macro BSs’ transmission power. On the other hand, in

the range from −70 dBm to −50 dBm, the femto user performance is degraded by

decreasing the macro BSs’ transmission power. This behavior can be interpreted by

looking into the offloading effect on the network performance. In the range from −70

dBm to −50 dBm the cognitive FAPs are too conservative and the macro SSR is

large. Increasing the transmission power of the macro BSs not only increases the

macro SSR, but also offloads users from the femto network tier to the macro network

tier which increases the load of users per macro BSs. Hence, increases the channel

consumed by the macro network tier and decreases the opportunistic channel access

probability. On the other hand, in the range −50 dBm to −30 dBm, the FAPs are too

aggressive in accessing the spectrum which results in a degraded SINR performance.

Although decreasing the transmission power of the macro BSs decreases the macro

SSR which should increase the opportunistic spectrum access, it also offloads users

to the femto network tier and increase the number of active FAPs which degrade

the SINR performance even more. The two crossing points in Fig. 5.12(b) can be

interpreted in the same manner. That is, when the FAPs’ outage performance is better

than the macro BS outage performance, decreasing the macro BSs’ transmission power

offloads users to the femto network tier and enhance the overall network performance

and vice versa.

As seen in Fig. 5.12, offloading control can be utilized to optimize the network

performance. For instance, in a congested macro network scenario where the number

of users per macro BS is relatively high, FAPs will experience degraded opportunistic

spectrum access probability. At this point, offloading may be utilized to increase the

FAPs’ opportunistic spectrum access probability. For instance, increasing the relative
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transmission power of FAPs, or increasing their relative intensity (i.e., deploying more

FAPs) with the proper manipulation of the spectrum sensing threshold will offload

users from the macro network tier to the femto network tier while maintaining the

SINR performance. Hence, the load of each macro BS decreases, which decreases the

number of channels used within each macro BS and creates spectrum opportunities for

the FAPs, and consequently, increases their opportunistic channel access probability.

5.8 Chapter Summary

We have provided a framework for modeling and analysis of two-tier cellular networks

with cognitive femtocells. We have shown that cognition is an important feature

that can boost up the overall network performance. The performance gain due to

cognition depends on the network operating parameters. The results have shown

that the spectrum sensing threshold is a critical parameter which should be tuned

carefully. We have observed that the correct choice of the spectrum sensing threshold

can decrease the outage probability by 60% for the femtocell users. In general, more

users are associated to macro BSs due to the high transmission power of the macro

BSs. More efficient offloading for the users from the macro-tier to the femto-tier can

be achieved by increasing the intensity of the FAPs. We have observed that a 10 dB

gain of the transmission power of the macro BSs over that of femto access points can

be compensated by increasing the intensity of the FAPs by 5 dB. The results have also

showed that it can be quite misleading to look into the overall outage performance as

it does not convey the performance of the femtocell users and it is recommended to

explicitly account for the outage probability of femtocell users in order to optimize

the spectrum sensing threshold.

In this chapter, I used the sequential channel assignment assumption at the MBSs
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to develop the modeling paradigm for a two tier cellular network with cognitive FAPs.

In the next chapter I analyze the effects of different channel assignment techniques

at the MBSs on the opportunistic channel access of the FAPs to show the motivation

behind the sequential channel assignment assumption. We also show in the next chap-

ter that implementing cognition at the FAP significantly improves the performance

of the macro users.
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Chapter 6

Channel Assignment Techniques in

Two-tier Cellular Networks with

Cognitive Femtocells

As discussed in the previous chapter, cognitive femtocells using opportunistic spec-

trum access (OSA) are envisioned to be a key technology for future generation multi-

tier cellular wireless networks. In a multi-tier cellular network with universal fre-

quency reuse, macrocell users may suffer performance degradation due to inter-tier

interference caused by closed-access femtocells. On the other hand, when the traffic

load served by the macro network tier is high, the OSA performance of the femtocells

will be poor. However, similar to that for the macrocell users, the quality-of-service

(QoS) performance of the femtocell users needs to be guaranteed. Therefore, efficient

channel sharing mechanisms need to be developed for macrocell and femtocell users.

In this chapter, I use tools from stochastic geometry to inspect two extremal down-

link channel assignment techniques, namely, the random channel assignment (RCA)

and the sequential channel assignment (SCA) techniques in the macro tier in order to
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accommodate the overlaid cognitive femtocells with an acceptable OSA performance.

We show that, for downlink transmission, while the RCA scheme offers low intra-tier

interference for macro users, it results in a degraded OSA performance (in terms

of probability of successful channel access) for the femtocells. On the other hand,

the SCA scheme enhances the OSA performance of the femtocells at the expense of

increased intra-tier interference for macro users. To quantify the performance gain

achieved due to OSA by the femtocells for these two channel assignment schemes,

I compare the coverage probability of a generic macro user when the femtocells are

cognitive and when the femtocells aggressively use the spectrum.

6.1 Introduction

In the context of cellular networks, overlaying the macro base stations (MBSs) with

femtocells is a key technique to increase the spectral efficiency and network capacity.

In a two-tier network adopting universal frequency reuse for macrocells and femto-

cells, macro users’ performance is expected to deteriorate due to high cross-tier in-

terference from closed-access femtocells. Therefore, efficient channel assignment and

sharing mechanisms will be required. Since centralized control of spectrum access and

interference management is infeasible (in terms of complexity, delay, and scalability),

opportunistic spectrum assess (OSA) via cognition (e.g., spectrum sensing) is highly

desirable for the femtocells [109]. However, cognitive femtocells may suffer from dete-

riorated spectrum access performance when the traffic load in the macro network tier

is high. Note that, since both the macrocell and femtocell users are licensed users,

there should be some performance guarantee for users in both network tiers. This

can be achieved by using efficient techniques for channel assignment at the macro tier

and OSA at the femtocell tier.

167



Chapter 6. Channel Assignment Techniques in Two-tier Cellular Networks with
Cognitive Femtocells

In this chapter, I investigate the effect of channel assignment techniques in the

macro network tier on the OSA performance of the cognitive femtocells. For a two-tier

cellular network with cognitive femtocells, I consider two channel assignment schemes

at the MBSs, namely, the random channel assignment (RCA) scheme and the sequen-

tial channel assignment (SCA) scheme. In the RCA scheme, each MBS, independent

of the other MBSs, randomly and uniformly chooses one channel for each of its as-

sociated users such that no two users associated to the same MBS are assigned the

same channel. The main motivation for considering the RCA scheme is that there

is no loss in generality in assuming uniform distribution for the channel selection.

That is, if each MBS follows a channel quality index (CQI) based assignment (i.e.,

based on the channel gain between the MBS and the user) to exploit the multiuser

diversity in the macrocells and all the channel gains are identically distributed, then,

for a generic user at a generic time instant, each of the channels will have the same

probability to be the channel with the highest CQI. However, the RCA scheme may

degrade the OSA performance for femtocell users due to the fewer spectrum opportu-

nities. On the contrary, the SCA scheme is a conservative channel assignment scheme

which minimizes the number of unique channels accessed by the MBSs to maximize

the probability of successful channel access (or OSA probability) for the cognitive

femtocells. In the SCA scheme, the available channels have a specific order and each

MBS assigns the channels to its associated users in a sequential manner. However,

SCA will increase the intra-tier interference for the macrocell users.

We quantify the user performance in the macro network tier if the femtocells

use OSA under the two channel assignment techniques. The performance metric

for the macro users is the coverage probability in the downlink, which is defined

as the probability that the signal-to-interference-plus-noise-ratio (SINR) exceeds the
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threshold defined for correct signal reception. For the femtocells, I analyze the OSA

probability for the two channel assignment techniques by the MBSs.

6.2 System Model and Assumption

6.2.1 Network Model

The MBSs are spatially distributed according to the homogeneous PPP Ψb =

{bi; i = 1, 2, 3, . . . } with intensity B, where bi is the location of the ith MBS. Each

MBS b is assumed to serve a random number of users (denoted by Nb) with a mean

directly proportional to its coverage range. It was shown in Lemma 5.5.1 that if the

macro users are assumed to be spatially distributed according to a homogenous PPP

with intensity Ub, the probability mass function (pmf) of the number of users served

by a generic MBS b is given equation (5.4). The FAPs are spatially distributed ac-

cording to an independent homogeneous PPP Ψa = {ai; i = 1, 2, 3, ...} with intensity

A, where ai denotes the location of the ith FAP.

The access policy of the coexisting femtocells (i.e., open access and closed access)

is independent of their locations, and a fraction pc (0 ≤ pc ≤ 1) of all the femtocells

employ the closed access policy. Therefore, the closed access femtocells constitute a

PPP with intensity Ac = pcA, and the open access femtocells constitute a PPP with

intensity Ao = (1− pc)A. It is assumed that all the femtocells are active and each of

them has at least one associated user.

We assume that each user is associated to the base station (i.e., a MBS or a

FAP) that provides the highest received signal strength (RSS) [58, 76] among all the

MBSs and open access FAPs, and all other base stations using the same channel

are considered as interference sources. Both the network tiers share the same set of
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channels1 S. All MBSs transmit with the same power Pb, all FAPs transmit with the

same power Pa, and a saturation condition is assumed for all the base stations for

downlink transmission.

6.2.2 Radio Channel Model

A general power-law path loss model is considered. The signal power decays at the

rate r−η with the propagation distance r, where η is the path-loss exponent. The

channel (power) gains between a generic location x ∈ R2 and the MBS bi and the

FAP ai are denoted by hbi(x) and hai(x), respectively. All the channel gains are

assumed to be independent from each other, independent from the spatial locations,

and are identically distributed (i.i.d.). Hence, for the brevity of exposition, hereafter,

the spatial index x is dropped. For analysis, only Rayleigh fading environment is

assumed2, hence, the channel gains hbi and hai are exponentially distributed with

means 1
µb

and 1
µa

, respectively. A receiver is said to be covered if the SINR at the

receiver is greater than a certain threshold β.

6.2.3 Channel Allocation in the Macro Tier

Both network tiers share the same set of available channels denoted by S. We will

denote by Sbi ⊆ S the set of channels selected by the MBS bi for its associated users.

In the RCA scheme, each MBS randomly and uniformly chooses a channel sj ∈ S for

each associated user such that no two users are assigned the same channel. Note that,

since all channel gains are assumed to be i.i.d., there is no loss in generality if I assume

a uniform distribution for the channel assignment. For instance, if the channels

are assigned based on the channel gain realization and there is no preference from

1A channel can be, for example, one or multiple resource blocks (RB) in LTE-Advanced systems.
2Techniques to generalize the model for general fading environment are discussed in Sec. 2.3.
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one channel to another, the channel selection in a generic time instant is uniformly

distributed. For the SCA scheme, I assume that the channels have a specific order

known to all MBSs in the network and each MBS assigns the channels to its associated

users in a sequential manner (i.e., channel sj is assigned before channel sj+1).

6.2.4 Opportunistic Spectrum Access by femtocells

All of the FAPs are cognitive and access the channels opportunistically. That is, an

FAP ai ∈ Ψa accesses a channel sj ∈ S if the received power from any MBS bk ∈ Ψb at

the FAP ai is greater than the sensing threshold υs. Let Nai =
{
bj | Pbhbj ‖ai − bj‖

−η}
denote the set of neighboring MBSs to the FAP ai (i.e., the set of MBSs in which the

transmit power of each of them received at ai is greater that the sensing threshold

υs), then the FAP ai would not reuse any channel used by an MBS bj ∈ Nai .

The spectrum sensing threshold υs is a design parameter for the FAPs. Decreas-

ing (increasing) υs increases (decreases) the sensitivity of the cognitive FAPs to the

transmission from MBSs in the spatial domain and results in a low (high) cross-tier

interference but conservative (aggressive) spatial frequency reuse. From a geometric

perspective, υs defines a spectrum sensing region (SSR) around each FAP where no

channel can be reused if it is used by an MBS within that region. Note that the spec-

trum sensing region is a random shaped region which is dynamically varying according

to the channel gain realizations. Following Lemma 5.5.2, |Na| ∼ Poisson(ϕa), and

ϕa = πB
(

Pb
µbυs

) 2
η

Γ(1 + 2
η
), where |.| denotes the set cardinality.

Note that a non-cognitive FAP can be considered as a special case of a cognitive

FAP with Na = φ. Perfect spectrum sensing is assumed for all FAPs. Each cognitive

FAP uses all the channels that are not used by its neighbor MBSs. That is, let Sai

be the set of channels used by the FAP ai at a generic time instant, then, the set of
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channels used by a generic FAP ai is given by Sai = S \

{ ⋃
bi∈Nai

Sbi

}
.

6.3 Opportunistic Spectrum Access Probability for Cogni-

tive FAPs

Since the FAPs are cognitive, the number of channels available for each FAP is a

random variable with a mean proportional to the sensing threshold but inversely

proportional to the mean number of users served by each MBS. This is because the

lower the sensing threshold, the higher the number of neighbor MBSs which leads

to a higher number of channels used by those MBSs. Furthermore, since each MBS

assigns orthogonal channels for its associated users, the higher the number of users

associated to the MBSs, the higher the number of channel used per MBS. In this

section, I aim at deriving the distribution of the number of free channels for a generic

FAP. For an FAP ai, a free channel refers to a channel which is not used by any of

the MBSs within the SSR of ai (i.e., not used by an MBS bj ∈ Nai).

6.3.1 OSA Probability for the RCA Scheme

In the RCA scheme, each MBS randomly and uniformly chooses one channel for

each of its associated users such that no two users associated to the same MBS are

assigned the same channel. The number of channels used within the SSR of a generic

FAP s is given by Ku =

∣∣∣∣ ⋃
bi∈Ns

Sbi

∣∣∣∣. Note that Ku 6=
∑

bi∈Na

|Sbi | because each MBS

is independently choosing the channels for its associated users from the finite set of

channels S, and hence, ties may occur. The random variable Ku is not indexed by

the spatial location of the test FAP because, by Slivnyak’s theorem [6, 8], all FAPs

will have the same distribution for the number of used channels within their SSRs.
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The pmf of the number of channels used within the SSR of a generic FAP can be

obtained from the following lemma:

Lemma 6.3.1. Let |S| be the total number of available channels. Then, the pmf of

the number of channels Ku used within the SSR of a generic FAP located at s ∈ R2

is given by:

P {Ku = k} = 1{k=0}P {|Na| = 0}+
∞∑
n=1

P {|Na| = n}Pn(k), 0 ≤ k ≤ |S| (6.1)

where Pn(k) =
∑k

t=0Pn−1(t)
∑k

p=k−t P {Nb = p}Bi
(
p, p− (k − t), t

|S|

)
, where

Bi (x, y, z) =
(
x
y

)
(z)y (1− z)(x−y) and P1(t) = P {Nb = t}.

Proof. See Appendix C.

Note that the pmf of Ku cannot be found in a closed form due to the high com-

plexity introduced by the random number of ties (i.e., the probability that two MBSs

choose the same channel). From Lemma 6.3.1, to calculate the probability that

there are k channels used within the SSR of a generic FAP (i.e., P {Ku = k}), all

possible realizations of |Na| in the SSR of the FAP should be considered and all the

combinations and permutations that lead to the usage of k unique channels for every

realized value of Na should be accounted for. However, the probability that Ku = k

can still be obtained with an approximation error less than ε by terminating the sum-

mation in (6.1) at nmax, where nmax is chosen such that P {|Na| ≥ nmax} ≤ ε. The

pmf of the number of free channels (Kf ) within the SSR of a generic FAP is given by

P {Kf = k} = P {Ku = |S| − k}.

To obtain the interference statistics on a given channel, I calculate the intensity of

network entities using that channel. The probability that a generic MBS accesses a

certain channel depends on the distribution of the number of users associated to that
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MBS. Hence, the probability that a generic MBS accesses a generic channel sk ∈ S is

given by

κ
(k)
b = P {sk ∈ Sbi}

=

|S|∑
n=1

n

|S|
P {|Sbi | = n}+

∞∑
n=|S|+1

P {|Sbi | = n}

= 1−
|S|∑
n=0

(
1− n

|S|

)
P {|Sbi | = n} . (6.2)

Note that, due to the orthogonal channel assignment for the users associated with

each MBS, |Sbi |
(d)
= Nb, where (

(d)
=) denotes the equality in distribution. Since each

MBS independently chooses the set of channels for its operation, the MBSs using the

same channel sk form a PPP with intensity BI = κ
(k)
b B. Equation (6.2) shows that all

channels have the same probability for being used by all of the MBSs. Given that an

MBS bi is using channel sk, I will consider the worst case scenario and assume that

all non-neighbor FAPs {ai ∈ Ψa : bi /∈ Nai} will be using that channel.

6.3.2 OSA Probability for the SCA Scheme

The SCA scheme is a distributed channel assignment scheme where the channels have

a specific order known to all MBSs. In this scheme, each MBS assigns the channels

to its users in a sequential manner (i.e., channel si is assigned before channel si+1),

and hence, ties between assigned channels in different MBSs occur with probability

one. Therefore, the number of channels used Ku within the SSR of a generic FAPs

ai is equal to the number of channels used by the MBS with the highest number of

associated users Ku = max
j

(
∣∣Sbj ∣∣), ∀bj ∈ Nai . Due to the simple relation between the

number of used channels in the SSR of a test FAP and the number of channels used
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by each MBS within that SSR, the distribution of the free channels within the SSR

of a generic FAP can be obtained in a simple form. From Lemma 5.5.3, the pmf of

Ku for a generic FAP in the SCA scheme is obtained by:

P {Kf = k} = e
−ϕa

(
1−
∑|S|−k
t=0 P{Nb=t}

)
1{k>0}

− 1{k<|S|}e
−ϕa

(
1−
∑|S|−k−1
t=0 P{Nb=t}

)
, 0 ≤ k ≤ |S| . (6.3)

Different from the RCA, the channel allocation in the SCA is deterministic and

the probability of using a certain channel depends on the index of that channel. That

is, the channels s1, s2, .., sn will be used with probability one by all MBSs having n

or more associated users. Hence, the probability that a MBS is accessing a generic

channel sk ∈ S is given by

κ
(k)
b = 1−

k−1∑
t=0

P {Nb = t} . (6.4)

Hence, the MBS using the same channel sk ∈ S is a PPP with intensity BI = κ
(k)
b B.

Equation (6.4) shows that each channel has a different probability to be accessed by

the MBSs (i.e., κ
(i)
b < κ

(j)
b for i > j ). Hence, each channel has different intensities of

MBSs using it and the interference statistics is a function of the channel index. For

the FAPs, I will also consider the worst case scenario as in Sec. 6.3.1.

6.4 Coverage Probability for the Macro Users

In this section, I derive the coverage probability of a generic macro user for each

channel assignment scheme. Note that for the SCA scheme, since the interference

statistics varies with the channels index, I will calculate the coverage probability on

the channel with the lowest index to insure that the channel with highest interference
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satisfies the performance guarantee. A generic macro user u ∈ R2 will be covered on

a given channel if the SINR on that channel is above the threshold β. Let rb be the

random distance between a generic macro user and his serving MBS, then the user

coverage probability can be given by:

P {SINR > β} = P

{
Pbhbr

−η
b

σ2 + Imm + Icm + Iom
> β

}

= P
{
hb >

βrηb
Pb

(
σ2 + Imm + Icm + Iom

)}
(i)
=

∫ ∞
0

2πrBe−πBr
2−σ

2µbβr
η

Pa LImm
(
βµbr

η

Pb

)
LIom

(
βµbr

η

Pb

)
LIcm

(
βµbr

η

Pb

)
dr (6.5)

where LX(.) denotes the Laplace transform of the pdf of the random variable X, Imm,

Iom, and Icm are the random variables denoting the aggregate interference from the

MBSs, the open access FAPs, and the closed access FAPs, respectively. Note that (i)

follows from the exponential distribution of hb, the definition of the Laplace transform,

and integrating over the pdf of rb, frb(r) = 2πBre−πBr2
, r ≥ 0 [12, 54, 58, 76]. The

Laplace transform of the aggregate interference for each point process can be obtained

from Lemma 5.6.1. For η = 4, Lemma 5.6.1 reduces to (see Appendix B.5)

LI(t) =e
−πλ

√
Pt
µ

arctan

(√
Pt
µ

r2e

)
. (6.6)

For non-cognitive closed-access FAPs, there is no exclusion distance (i.e., re = 0)

and the Laplace transform of the pdf of the aggregate interference is obtained in the

form

LIcm
(
βµbr

η

Pb

)
= e

−π
2

2
Acr2

√
βPaµb
Pbµa . (6.7)

For non-cognitive open-access FAPs, based of the association criterion, there should
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not be an interferer closer than re =
(
Paµb
Pbµa

) 1
η
rb [58,76]. Hence, the Laplace transform

of the pdf of the aggregate interference is obtained in the form

LIom
(
βµbr

η

Pb

)
= e

−πAor2

√
βPaµb
Pbµa

arctan(
√
β)
. (6.8)

For MBSs, based of the association criterion, there should not be an interferer closer

than re = rb. Hence, the Laplace transform of the pdf of the aggregate interference is

obtained in the form

LImm
(
βµbr

η

Pb

)
= e−πBIr

2
√
β arctan(

√
β). (6.9)

where BI = κ
(k)
b B is obtained based on the channel assignment scheme. For cognitive

FAPs (both closed access and open access), on average the exclusion region around a

generic macro user is calculated as re =
(

Pb
µbυs

) 1
η−rb, and hence, the Laplace transform

of the pdf of the aggregate interference from the entire set of FAPs is obtained in the

form

LIsm
(
βµbr

η

Pb

)
= e

−πAr2

√
βPaµb
Pbµa

arctan

 r2
√
βPaµb
Pbµa√
Pb
µbυs

−r


. (6.10)

Substituting back in (6.5), for interference-limited networks (i.e., ignoring noise), the

coverage probability for a generic macro user with non-cognitive FAPs is given by:

P {SINR > β} = B

(
B +

π

2
Ac

√
βPaµb
Pbµa

+

Ao

√
βPaµb
Pbµa

arctan
(√

β
)

+ BI
√
β arctan

(√
β
))−1

(6.11)

and the coverage probability for a generic macro user with cognitive FAPs is given
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by:

P {SINR > β} =

∫ ∞
0

2πrB exp
{
−πBr2 − πBIr2

√
β

arctan
(√

β
)
− πAr2

√
βPaµb
Pbµa

arctan

 r2
√

βPaµb
Pbµa√

Pb
µbυa
− r

 dr. (6.12)

6.5 Numerical Results and Discussions

6.5.1 Numerical Results

For the numerical evaluations (using Matlab), I choose Pb = 5 W, Pa = 20 dBm,

B = 1 MBS/km2, A = 25 FAP/km2, λb = 10 macro user/km2, pc = 0.5, |S| = 30

channels, all the channel gains to have unit mean (i.e., 1
µa

= 1
µb

= 1), ε = 10−10, and

η = 4. The effect of noise is ignored (i.e., the network is interference-limited) [54].

Fig. 6.1 shows the coverage probability of a generic macro user vs. spectrum sens-

ing threshold υs and the SINR threshold β. The figure demonstrates the performance

gain due to OSA by the femtocells. When the FAPs are not cognitive, the interfer-

ence from the femtocells dominates and the two channel assignment techniques in the

MBSs have approximately similar performance. On the other hand, when the FAPs

are cognitive, the intra-tier interference is the performance limiting factor and the

RCA technique always outperforms the SCA technique. Fig. 6.1(a) shows that there

is a critical sensing threshold value (−90 dBm in my case) after which the coverage

probability saturates. On the other hand, when the sensing threshold is too high, the

FAPs become aggressive in accessing the spectrum and match the performance of the

non-cognitive FAPs.

Fig. 6.2 shows that independent random channel assignment highly degrades the

OSA probability for the FAPs. Fig. 6.2(a) shows the pmf of Kf for a generic FAP
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Figure 6.1: (a) Macro user coverage probability vs. spectrum sensing threshold (υs)
at β = 0 dB, (b) Macro user coverage probability vs. SINR threshold defined for
correct reception (β) at (υs = −90 dBm).

at υs = −90 dBm. The figure shows that if the MBSs are using RCA, a generic

FAP will not find any channel to access with probability 31%. The figure also shows

that the probability that a generic FAP accesses a higher number of channels under

the SCA scheme is quite larger than that of the RCA scheme. Fig. 6.2(b) shows

the probability that Kf ≥ n vs. the sensing threshold υs for different values of n.

Note that n = 1 shows the OSA probability for the FAPs. The figure shows that the

sensitivity of the OSA probability to the sensing threshold under the RCA scheme is

much higher than under the SCA scheme. Moreover, it shows that the SCA scheme

offers much higher OSA probability compared to that by the RCA scheme.

6.5.2 Discussions

The developed model, for the two extremes of the channel assignment techniques, is

capable of capturing the effect of tradeoffs offered by splitting the spectrum into two

subsets Sr and Ss. The subset of channels Sr will be assigned by the MBSs based
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Figure 6.2: (a) The pmf of the number of available channels for OSA for a generic
FAP at (υs = −90 dBm), (b) The probability of having n or more available channels
for OSA by generic FAP (i.e., P {Kf ≥ n}) at (υs = −90 dBm).

on the CQI to exploit the multiuser diversity, while the subset of channels Ss will be

assigned using the SCA if the MBSs has consumed all the channels in Sr. Optimal

splitting of the channels will insure that lightly loaded MBSs (i.e., |Nb| < |Ss|) avoid

massive intra-tier interference while achieving an acceptable OSA performance for

the FAPs. In that case, the lightly loaded MBSs will constitute a PPP with intensity

P {|Nb| < |Ss|} B and the corresponding analysis will follow the RCA scheme. On the

other hand, heavily loaded MBSs will constitute an independent PPP with intensity

(1− P {|Nb| < |Ss|})B and the analysis will follow the SCA scheme. Note that the

total interference for a generic user will be the summation of the aggregate interference

from the two PPPs.

The load served by the macro tier has a significant effect on the OSA of the FAP.

That is, the higher the user population served by the MBSs, the higher the number of

channels used by the MBSs which deteriorate the OSA performance of the femtocells.

Therefore, offloading users to the FAPs [58,76] is a potential solution to enhance the
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OSA performance of femtocells.

6.6 Chapter Summary

We have used stochastic geometry tools to develop a paradigm that captures the

effect of two channel assignment techniques at the macro tier on both the macro

users’ coverage probability and the opportunistic spectrum access performance of

cognitive femtocells. The results have shown that, although the coverage probability

of the macro users is always higher under random channel assignment at the macro

tier, conservative channel assignment techniques can enhance the spectrum access

performance of the femtocells.

To this end, I have applied stochastic geometry analysis for downlink cellular

networks. The next chapter presents the stochastic geometry analysis for the uplink

case.
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Chapter 7

Uplink Transmissions in Multi-tier

Cellular Networks

In this chapter, I exploit tools from stochastic geometry to develop a tractable uplink

model for multi-tier cellular wireless networks with truncated channel inversion power

control. The analysis accounts for per user equipment (UE) power control as well as

the maximum power limitations for UEs. My model gives simple expressions for the

outage probability and spectral efficiency which characterize the network performance

in terms of the design parameters. In particular, the model reveals a transfer point

in the uplink system behavior that depends on the tuple: BS intensity (λ), maximum

transmit power of UEs (Pu), and power control cutoff threshold ρo. More specifically,

when Pu is a tight operational constraint with respect to [w.r.t.] λ and ρo, the uplink

performance highly depends on the values of λ and ρo. In contrast, when Pu is a

non-binding operational constraint w.r.t. λ and ρo, the uplink performance becomes

independent of λ and ρo.
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7.1 Introduction

There have been significant developments in the stochastic geometry modeling of

cellular wireless networks. However, most of the available literature focuses on mod-

eling and analysis of downlink transmissions due to its relative simplicity. As shown

in Chapter 5, in a multi-tier cellular network, if the users associate to the BSs in

the downlink based on their average received signal strength, the average useful sig-

nal power received at each user equipment (UE) from its corresponding BS will be

strictly greater than the average interference power from any individual interfering

BS. Therefore, power control is not crucial1 for the network operation, and hence,

power control is ignored in most of the stochastic geometry models on downlink cel-

lular networks and it is generally assumed that all the BSs in the same tier transmit

with equal power [5,12,54,63,65,67,74–77]. In contrast, uplink analysis is quite more

involved due to the following reasons:

• Per user power control: in the uplink, due to the random cell sizes, an

interfering UE in a neighboring cell can be much closer to a BS than its tagged

UE (cf. Fig. 7.1). Therefore, power control per UE is crucial for basic uplink

operation in order to mitigate the inter-cell interference. As will be shown later,

per UE power control introduces a new source of randomness to the uplink

system model which makes the uplink analysis more involved.

• Correlation among interferers: orthogonal channel assignment per BS en-

sures no channel reuse in the same Voronoi cell. That is, given that a UE is

transmitting in the uplink on a certain channel, this channel cannot be reused

1Indeed power control is important in downlink to enhance the network performance (see [120])
but not crucial for the basic network operation due to the inherent interference protection introduced
by the association criterion.
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Figure 7.1: Uplink network model representing the UEs served per channel, where
the BSs are represented by squares, the UEs are represented by stars, and the lines
denote the UEs’ association. BSs having an interfering UE closer than their tagged
UE are highlighted in red.

within the coverage of its serving BS, and hence, the locations of the UEs using

the same uplink channel are correlated.

7.1.1 Related Work

Compared to the downlink, only few efforts were invested to understand and model

the uplink transmissions in cellular networks. Uplink modeling has been done in an

ad hoc manner where different works in the literature made different assumptions

based on the problem in hand. For instance, [69] derived the uplink network capacity

region for a two-tier cellular network consisting of macro BSs (MBSs) modeled via

the hexagonal grid, femto access points (FAPs) modeled via PPP, and UEs modeled

via an independent PPP. Due to the small coverage radius of the FAPs, in [69], the

interference seen from all uplink UEs associated with the same FAP was approximated

by an isotropic point source of interference with the worst-case sum transmit powers
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of the FAP UEs (i.e., power control was ignored). [68] investigated the spectrum

sharing between a cellular network uplink and a mobile ad hoc network. In [68],

the service areas of all BSs were approximated by circles and power control was

ignored. Note that the assumption of circular coverage areas for the BSs eliminates

the aforementioned interference problem in the uplink where an interfering UE can be

much closer to a BS than the tagged UE which communicates to that BS. Therefore,

under the assumption of circular coverage area, power control can be ignored.

In [121], the authors modeled uplink transmission with fractional channel inversion

power control in a single-tier cellular network. However, for analytical tractability and

to avoid the singularity at the origin imposed by the unbounded path-loss model [5],

the authors in [121] approximated the entire network model and assumed that the

Voronoi cells are divided w.r.t. the users (rather than with respect to (w.r.t.) the BSs)

and each user has her own serving BS randomly located in her Voronoi cell. In [122],

the authors modeled uplink UEs with channel inversion power control. However,

the authors assumed that the tagged UE is uniformly distributed in the tagged BS’s

coverage which is approximated by a circle having the radius 1√
πλ

, where λ is the

BS intensity2. Each of the available stochastic geometry models [68, 69, 121, 122]

approximates the system model in a different way to simplify the analysis and none

of them accounts for the maximum transmit power of the UEs.

7.1.2 Motivation and Contribution

Motivated by the lack of any rigorous model that characterizes the uplink transmission

in cellular networks, I present a tractable model for uplink analysis to help under-

stand uplink system performance in both single and multi-tier cellular networks. The

2More discussions on the work presented in [121,122] will be provided in Sec. 7.5.
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proposed model accounts for the maximum transmit power of the UEs. We aim at

providing a unified uplink modeling framework for multi-tier cellular networks to fill

in the gap between the well-understood downlink performance and the lagging uplink

analysis. For an organized exposition, I first develop the baseline uplink paradigm

for a single-tier cellular network. Then, I show that the developed single-tier uplink

analysis is flexible and can be easily generalized to multi-tier cellular networks.

The contributions of this work can be summarized in the following points:

• We present a tractable framework for uplink modeling and analysis in a Pois-

son cellular network. The model is general and extends to multi-tier cellular

networks. The model accounts for limited transmit power of the UEs, per UE

power control, and cutoff threshold for the power control.

• Simple closed-form equations are derived for the outage probability and simple

forms with only one numerical integral are derived for the spectral efficiency.

• We discuss the tradeoffs introduced by the cutoff threshold and the maximum

transmit power and show that there exists an optimal cutoff threshold for the

power control that minimizes the outage probability and power consumption

(i.e., transmit power) of the UEs.

• We characterize the uplink performance and show the commonalities and dif-

ferences between the downlink and uplink performances in cellular networks. In

particular, I show the existence of a transfer point in the uplink system perfor-

mance which depends on the tuple (λ, Pu, ρo), where λ is the BS intensity, Pu

is the maximum transmit power of a UE, and ρo is the average received power

required at the serving BS. That is, when the relative values of λ, Pu, and ρo

lead to a binding maximum transmit power constraint for the uplink operation,
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the uplink operation is quite different from the downlink operation and depends

on both the cutoff threshold and the BS intensity. In contrast, when the rel-

ative values of λ, Pu, and ρo lead to a non-binding maximum transmit power

constraint for the uplink operation (i.e., transmissions are not constrained by

the maximum transmit power), the uplink operation becomes analogous to the

downlink operation (i.e., becomes independent of the BS intensity and cutoff

threshold).

7.2 System Model and Assumptions

7.2.1 Network Model

We consider an independent K-tier Poisson cellular network. That is, the BSs of

each tier are spatially distributed in R2 according to an independent homogenous

PPP Ψk = {bi; i = 1, 2, 3, ...}, k ∈ {1, 2, 3, ..., K} with intensity λk, where bi ∈ Ψk is

the location of the ith BS in the kth tier. The users’ equipments (UEs) are spatially

distributed in R2 according to an independent PPP Φ = {ui; i = 1, 2, 3, ...} with

intensity U . It is assumed that the intensity of the UEs is high enough such that

each BS will have at least one user served per channel and that UEs have data to

transmit in the uplink (i.e., saturation conditions are assumed). The BSs in each tier

k have equal receiver sensitivity ρ
(k)
min, however, two BSs from different tiers do not

necessarily have the same receiver sensitivity. For successful uplink communication,

it is required that the received signal power at the BS is greater than the receiver

sensitivity. Therefore, each of the UEs associated to tier k controls its transmit power

such that the average signal received at the corresponding serving BS is equal to the

threshold ρ
(k)
o , where ρ

(k)
o > ρ

(k)
min.
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It is assumed that all the UEs have the same maximum transmit power of Pu. Due

to the maximum transmit power constraint Pu, for uplink communications, the UEs

use truncated channel inversion power control where the transmitters compensate

for the path-loss to keep the average received signal power equal to the threshold

ρ
(k)
o [91, Chapter 4]. That is, an uplink connection is established between a UE and

its serving BS if and only if the transmit power required for the path-loss inversion is

less than Pu. Otherwise, the UE does not transmit and goes into an outage (denoted

hereafter as truncation outage) due to the insufficient transmit power.

It is worth mentioning that the truncated channel inversion power control mech-

anism is a realistic power control scheme for code-division multiple access (CDMA)

networks to eliminate the near-far effect. Moreover, for orthogonal frequency-division

multiple access (OFDMA) networks, it has been shown in [123] that if the edge users

(i.e., users with insufficient power to compensate for their channel inversions) are al-

lowed to transmit with their maximum power, the interference in the system increases

significantly. Consequently, the entire network performance is deteriorated without

much improvement in the cell edge user performance. Hence, in this chapter I consider

the truncated channel inversion power control with the cutoff threshold ρ
(k)
o , where

the cutoff threshold ρ
(k)
o is a network design parameter that highly impacts the sys-

tem behavior. As will be shown later, the relative values of the BS intensity, Pu, and

ρ
(k)
o control the tradeoff between transmit power efficiency, signal-to-interference-plus-

noise-ratio (SINR), and truncation outage (i.e., outage due to insufficient transmit

power).

Fig. 7.2 shows the network model for different values of ρo for a single-tier cellular

network. As shown in Fig. 7.2(a) if the value of ρo is relatively high (i.e., relative to

λ and Pu), not all the UEs can compensate for the path-loss inversion and the cell
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Figure 7.2: Network model showing the served users on all channels in [0, 3000]2 m2;
the black squares represent the BSs, the blue dots represent the active UEs, the blue
lines denote the UEs’ associations, and the red dots are the inactive UEs due to the
insufficient transmit power. The simulation parameters are λ = 5 BS/km2, U = 100
UE/km2, and (a) ρo = −70 dBm, (b) ρo = −90 dBm.

edge UEs suffer from truncation outage. In contrast, Fig. 7.2(b) shows that if the

value of ρo is relatively low (or equivalently, the BSs are dense enough and/or the

maximum transmit power is high enough), all of the UEs can compensate for the path-

loss inversion and none of the UEs suffers from truncation outage. Hereafter, I will

denote the scenario in Fig. 7.2(a) as the uplink operation under binding maximum

transmit power constraint and the scenario in Fig. 7.2(b) as the uplink operation

under non-binding maximum transmit power constraint. Universal frequency reuse

is used within each tier and across different tiers. Within a network tier, there is no

intra-cell interference. That is, in a network tier, each BS assigns a unique channel

to each of its associated UEs.
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7.2.2 Radio Channel Model

A general power-law path-loss model is considered in which the signal power decays at

the rate r−η with the propagation distance r, where η is the path-loss exponent. For

simplicity, it is assumed that all BSs in all tiers share the same path-loss exponent η.

The case where each network tier has its own path-loss exponent ηk will be discussed

in Sec. 7.4. The channel (power) gain between two generic locations x, y ∈ R2 is

denoted by h(x, y). All the channel gains are assumed to be independent of each other,

independent of the spatial locations, symmetric, and are identically distributed (i.i.d.).

Therefore, for the brevity of exposition, hereafter, the spatial indices x, y are dropped.

For analysis, only Rayleigh fading (i.e., technique #1 in Sec. 2.3) environment is

assumed3, hence, the channel power gain h is assumed to be exponentially distributed

with unit mean. An SINR model is considered where a message can be successfully

decoded at the tagged BS in tier k if and only if the SINR of the useful signal is

greater than a certain threshold βk. If the SINR at the tagged BS does not exceed

the threshold βk, the link experiences an outage (hereafter referred to as SINR outage).

7.2.3 Criterion for Uplink Association

Without loss of generality, all BSs in all tiers are assumed to have an open access

policy4, and hence, all UEs can associate with all BSs. The UEs are assumed to

associate to the BSs according to their average link quality. That is, a generic UE u

associates with its nearest BS (i.e., bi if ‖u− bi‖ < min
mj∈{Ψk\bi}

‖u−mj‖, ∀k), where

‖.‖ denotes the Euclidean norm. It is worth mentioning that, in a multi-tier network,

due to the heterogeneous transmit powers of the BSs in different network tiers, the

3Techniques to relax the Rayleigh fading assumption to general fading channels is discussed in
Sec. 2.3.

4Closed access policy can be easily captured by thinning the PPP representing the complete set
of BSs in the association analysis and simple modifications in the interference analysis [77].
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downlink association regions of the BSs form a weighted Voronoi tessellation [54,

76]. In contrast, in the uplink, the homogenous transmit powers of the UEs result

in association regions in the form of a Voronoi tessellation. Therefore, the uplink

association is different from the downlink association in multi-tier cellular networks

[124]. That is, the UE might not be associated to the same BS in the uplink and

the downlink. Note that the LTE-A standard defines the coordinated multi-point

(COMP) transmission to allow flexible and different uplink and downlink association

[125, Chapter 13].

7.2.4 Modeling Methodology

The SINR is a very important parameter in wireless networks that affects many per-

formance metrics such as outage, rate, delay, and energy efficiency. We characterize

the SINR by driving its cumulative distribution function (cdf) [5]. Due to the ran-

domized network topology, the distances between the UEs and their serving BSs are

random. Therefore, the transmit powers of the UEs are random (due to the truncated

channel inversion power control).

We will first characterize the transmit power of active UEs (i.e., users not in

truncation outage) by deriving its probability density function (pdf) and moments.

Then, I derive the cdf of SINR. We first develop the modeling paradigm for single-tier

cellular networks. Then, I show that the developed modeling paradigm for single-tier

cellular networks can be naturally extended to multi-tier networks.

7.3 Uplink Modeling in a Single-tier Cellular Network

In this section, I develop the baseline uplink modeling framework for a single-tier

cellular network. For the sake of an organized presentation, I further divide this
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section into two subsections, namely, transmit power analysis and SINR analysis.

7.3.1 Transmit Power Analysis

Due to the random network topology and the use of truncated channel inversion power

control, each UE will transmit with a different power to invert the path-loss towards its

serving BS. In this section, I derive the distribution and the moments of the transmit

power of a generic UE. Fig. 7.2 shows the uplink association for a single-tier cellular

network for different values of the cutoff threshold ρo. As shown in Fig. 7.2(a), due to

the truncated channel inversion power control, not all of the UEs can communicate

in the uplink when the cutoff threshold is relatively high (i.e., relative to Pu and λ).

That is, the UEs located at a distance greater than
(
Pu
ρo

) 1
η

from their nearest BS are

unable to communicate in the uplink due the insufficient transmit power. Therefore,

the complete set of UEs is divided into two non-overlapping subsets, namely, the

subset of active UEs and the subset of inactive UEs. The inactive UEs do not transmit

and experience outage due to insufficient transmit power. The distribution for the

transmit power of a generic active UE is obtained from the following lemma.

Lemma 7.3.1. In a single-tier Poisson cellular network with truncated channel in-

version power control with the cutoff threshold ρo, the pdf of the transmit power of a

generic active UE in the uplink is given by

fP (x) =
2πλx

2
η
−1e−πλ(

x
ρo

)
2
η

ηρ
2
η
o

(
1− e−πλ(

Pu
ρo

)
2
η

) , 0 ≤ x ≤ Pu.
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The moments of the transmit power can be obtained as

E [Pα] =

ραo γ

(
αη
2

+ 1, πλ
(
Pu
ρo

) 2
η

)
(πλ)

αη
2

(
1− e−πλ(

Pu
ρo

)
2
η

) (7.1)

where γ(a, b) =
∫ b

0
ta−1e−tdt is the lower incomplete gamma function.

Proof. See Appendix D.1.

Lemma 7.3.1 shows that the smaller the cutoff threshold ρo, the lower the power

consumption (i.e., transmit power) of the UEs. That is, when the maximum transmit

power is unlimited (i.e., lim
Pu→∞

E [Pα] =
ραo Γ(αη2 +1)

(πλ)
αη
2

, where Γ(.) is the gamma func-

tion), the expected transmit power linearly increases with ρo. This is because as ρo

increases the UEs are required to transmit at a higher power which increases the

power consumption in the UEs. Lemma 7.3.1 also shows that the average transmit

power decreases with λ. That is, as the BS intensity increases, the distance between a

generic UE and the corresponding serving BS decreases, and hence, a lower transmit

power is required to invert the path-loss. The truncation outage probability (i.e., the

probability that a UE experiences outage due to the insufficient power) is given by

Op = e−πλ(
Pu
ρo

)
2
η

(7.2)

which is decreasing in ρo. From Lemma 7.3.1 and equation (7.2) it appears that

the lower the cutoff threshold, the better is the network performance in terms of

truncation outage probability and power consumption. However, as will be discussed

later, a low ρo may highly deteriorate the SINR outage and spectral efficiency, and

hence, ρo introduces a tradeoff for the network performance. Equation (7.2) shows
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that the truncation outage probability exponentially decreases with increasing BS

intensity.

7.3.2 SINR Analysis

In this section I derive the SINR outage probability for active UEs (i.e., users not

in truncation outage). Note that the inactive UEs do not transmit any power and

are in truncation outage due to the insufficient transmit power. Without any loss

in generality, the SINR analysis is conducted on a tagged BS located at the origin.

According to Slivnyak’s theorem [8], conditioning on having a BS at the origin does

not change the statistical properties of the coexisting PPPs. Hence, the analysis holds

for a generic BS located at a generic location. For the tagged active UE operating

on a tagged channel, the SINR experienced at the BS located at the origin can be

written as

SINR =
ρoho

σ2 +
∑
ui∈Φ̃

Pihi ‖ui‖−ηd︸ ︷︷ ︸
I

(7.3)

where the useful signal power is equal to ρoho due to the truncated channel inversion

power control, σ2 is the noise power, and the random variable I denotes the aggregate

interference at the tagged BS from the uplink transmissions by other active UEs on

the tagged channel. Note that I is not identified with the channel index because all

channels have i.i.d. interference. The SINR outage probability can be calculated as

P {SINR ≤ β} = P
{
ρoho ≤ β

(
σ2 + I

)}
= E

[
1− exp

{
− β
ρo

(
σ2 + I

)}]
= 1− exp

{
− β
ρo
σ2

}
LI
(
β

ρo

)
(7.4)
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where the expectation in the second line of (7.4) is w.r.t. I, and LI(.) denotes the

Laplace transform (LT) of the pdf of the random variable I5.

As discussed in Sec. 7.1, in the uplink, the interfering UEs do not constitute a

PPP due to the correlations among them. The correlation among the UEs is due to

the unique channel assignment per user in each BS. Hence, the interfering UEs are

better modeled using a Strauss processes (i.e., soft-core processes) to capture the pair-

wise correlations among the locations of the active UEs per channel. Unfortunately,

Strauss processes are not analytically tractable [5,8], and hence, an exact expression

for the LT of the aggregate interference cannot be obtained. For this reason, I will

approximate the locations of the interfering UEs with a PPP of the same intensity.

Note that this approximation only partially ignores the correlations introduced by

the system model because the correlation with the tagged BS and the tagged UE

is captured by the model. It is worth mentioning that the PPP assumption for the

interference sources has been widely exploited in the literature (even with the hard

core point processes which introduce stronger pairwise correlation between points)

and has been proved to be accurate if the correlation among the interfering nodes

and the tagged receiver is captured [40, 45, 49, 121, 122]. The accuracy of this as-

sumption is also validated in this results section via simulations. Exploiting the PPP

approximation for the set of interfering UEs in the uplink, the outage probability for

a generic active UE can be given by the following theorem.

Theorem 7.3.1. In a single-tier Poisson cellular network with truncated channel

inversion power control with the cutoff threshold ρo, in the uplink, the SINR outage

5With a slight abuse of terminology, I will denote the LT of the pdf of a random variable X by
the LT of X.
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probability for a generic active UE is given by

Os = 1− exp

−
βσ2

ρo
−

2β
2
η γ

(
2, πλ

(
Pu
ρo

) 2
η

)
(

1− e−πλ
(
Pu
ρo

) 2
η

) ∫ ∞
β
−1
η

y

yη + 1
dy

 . (7.5)

Proof. See Appendix D.2.

Generally, it can be shown that the SINR outage Os is non-increasing in ρo (c.f.

7.3). Recalling (from Sec. 7.3.1) that both the truncation outage and the average

transmit power are non-decreasing in ρo, it is concluded that ρo introduces a tradeoff

in the system performance as will be shown in the numerical results.

The SINR statistics also controls the average uplink spectral efficiency obtained

via Shannon’s formula. The average uplink spectral efficiency can be obtained from

the following theorem.

Theorem 7.3.2. In a single-tier Poisson cellular network with truncated channel
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inversion power control with the cutoff threshold ρo, in the uplink, the average spectral

efficiency for active UEs is given by

R =

∫ ∞
0

1

x+ 1
exp

−
xσ2

ρo
−

2x
2
η γ

(
2, πλ

(
Pu
ρo

) 2
η

)
(

1− e−πλ
(
Pu
ρo

) 2
η

) ∫ ∞
x
−1
η

y

yη + 1
dy

 dx. (7.6)

Proof. See Appendix D.3.

Equation (7.6) incorporates the tradeoff between ρo and spectral efficiency. The

spectral efficiency and the SINR outage improve with increasing ρo, however, in-

creasing ρo deteriorates the truncation outage probability and increases the power

consumption of the UEs. In the following, I show some interesting special cases that

help understanding the uplink system performance.

Special case 1 (Infinite Pu)

The case of infinite maximum transmit power Pu is of particular interest because it

captures the scenario where the transmit power is not a binding constraint for the

uplink communication (cf. Fig.7.2(b)). In other words, the BSs are dense enough

(with respect to the required cutoff threshold) such that the distance between a

generic UE and its serving BS is relatively small, and hence, the transmit power will

be less than the maximum value Pu almost surely (i.e., Pu is a non-binding operational

constraint). In the analysis, the case of non-binding transmit power can be captured

by setting Pu =∞. In this case, the SINR is given by

Os = 1− exp

{
−βσ

2

ρo
− 2β

2
η

∫ ∞
β
−1
η

y

yη + 1
dy

}
(7.7)
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and the spectral efficiency reduces to

R =

∫ ∞
0

exp
{
−xσ2

ρo
− 2x

2
η
∫∞
x
−1
η

y
yη+1dy

}
x+ 1

dx. (7.8)

Equations (7.7) and (7.8) show that when the transmit power is not a binding

constraint, the SINR outage and the average spectral efficiency in a single-tier cellular

network are independent of the BS intensity. This result is in compliance with the

results in [12] and it can be concluded that both the uplink performance (in case

of non-binding maximum transmit power constraint) and the downlink performance,

in terms of SINR outage and average spectral efficiency, are independent of the BS

intensity.

It is quite insightful to see that the SINR outage probability and the average

spectral efficiency are independent of the intensity of the BSs. That is, when the

maximum transmit power Pu is not a binding operational constraint for the UEs,

increasing the intensity (number) of the BSs neither degrades nor improves the SINR

outage probability and the average spectral efficiency within the cell. For the uplink,

this behavior can be explained as follows: since each BS will be serving one user per

channel, as the intensity of the BSs increases, the intensity of the interfering UEs

increases; however, the average distance between a UE and its serving BS decreases

which decreases the transmit power required to maintain the received signal power

at ρo. Hence, the increased intensity of interfering UEs is compensated by the de-

creased transmit power per interfering UE, and the SINR statistics does not change

if ρo
σ2 is kept constant, and vice versa. Therefore, the coverage probability and the

average spectral efficiency in the uplink and downlink can only be improved through

interference management techniques such as frequency reuse [61], interference can-

cellation [126], multiple-input-multiple-output (MIMO) antennas [73], interference
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avoidance via cognition [78], or multi-cell cooperation [127]. Although these results

are only valid for the PPP network model, they are insightful because they reflect the

worst-case network performance. More specifically, deploying more BSs, in the worst

case, will not degrade the SINR statistics.

Special case 2 (η = 4)

The integral in (7.5) can be found in closed form for integer values of η. For instance,

if η = 4, the SINR outage probability reduces to the following closed form:

Os = 1− exp

−
βσ2

ρo
−

√
βγ
(

2, πλ
√

Pu
ρo

)
(

1− e−πλ
√
Pu
ρo

) arctan(
√
β)

 (7.9)

and the spectral efficiency reduces to the following:

R =

∫ ∞
0

exp

−
xσ2

ρo
−
√
xγ
(

2,πλ
√
Pu
ρo

)
1−e

−πλ
√
Pu
ρo

 arctan(
√
x)


x+ 1

dx. (7.10)

Special case 3 (η = 4, infinite Pu, interference-limited scenario)

In the interference-limited case, ρo is assumed to be large enough such that βσ2

ρo
<< I

and hence noise can be ignored. In this case, the SINR outage reduces to the following

simple closed form:

Os = 1− exp
{
−
√
β arctan(

√
β)
}

(7.11)
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and the spectral efficiency reduces to

R =

∫ ∞
0

exp {−
√
x arctan(

√
x)}

x+ 1
dx. (7.12)

Equations (7.11) and (7.12) give expressions for the outage probability and average

rate in their simplest forms. These equations clearly show that when Pu is not a

binding constraint and the interference is much larger than the noise, both the SINR

outage and the spectral efficiency are independent of the cutoff threshold as well as

the BS intensity.

7.4 Uplink Modeling in Multi-tier Cellular Networks

In this section, I show that the developed baseline model for uplink transmission

in single-tier cellular networks can be extended for uplink transmission in multi-tier

cellular networks. First, I present the analysis for multi-tier cellular networks with

common path-loss exponent. Then, I will show and comment on the case with different

path-loss exponents in the different tiers.

7.4.1 Common Path-loss Exponent

The developed model naturally captures multi-tier cellular networks with different

intensities λk and different cutoff thresholds ρ
(k)
o for the different tiers but with a

common path-loss exponent η. In this case, the distribution of the transmit power

for the active UEs is obtained from the following lemma.

Lemma 7.4.1. In a K-tier Poisson cellular network with a common path-loss expo-

nent η and a truncated channel inversion power control where each tier has the BS

intensity of λk and the cutoff threshold ρ
(k)
o , the distribution of the transmit power of
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the active UEs in the uplink in the jth tier is given by

fPj(x) =
2πΛx

2
η
−1e
−πΛ

(
x

ρ
(j)
o

) 2
η

η(ρ
(j)
o )

2
η

1− e
−πΛ

(
Pu

ρ
(j)
o

) 2
η

 , 0 ≤ x ≤ Pu

where Λ =
∑K

k=1 λk. The moments of the transmit power of a UE in the jth tier can

be obtained as

E
[
Pα
j

]
=

(ρ
(j)
o )αγ

(
αη
2

+ 1, πΛ
(
Pu

ρ
(j)
o

) 2
η

)

(πΛ)
αη
2

1− e
−πΛ

(
Pu

ρ
(j)
o

) 2
η

 . (7.13)

Proof. Since the UEs associate to the BSs based on the average uplink link quality,

following the superposition theorem of the PPP [8], the association regions for the

BSs form a Voronoi tessellation for a PPP with intensity Λ. Note that, for the uplink

in a multi-tier network, the association regions form a Voronoi tessellation rather than

a weighted Voronoi tessellation due to the homogenous transmit powers of the UEs.

The rest of the proof follows the same steps as in Appendix D.1.

The truncation outage probability at the jth tier is given by

O(j)
p = e

−πΛ

(
Pu

ρ
(j)
o

) 2
η

. (7.14)

Without loss of generality, let SINRj be the SINR experienced by a tagged BS in

the jth tier and the BS is located at the origin. By Slivnyak’s theorem, the analysis

holds for any BS in the jth tier. Let each tier has its own SINR threshold βk, then,

following (7.4), the SINR outage in the jth tier can be expressed as
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P {SINRj ≤ βj} = E

[
1− exp

{
− βj

ρ
(j)
o

(
σ2 +

K∑
k=1

Ik

)}]

= 1− exp

{
− βj

ρ
(j)
o

σ2

}
K∏
k=1

LIk

(
βj

ρ
(j)
o

)
(7.15)

where Ik is the aggregate interference from the kth tier, and the second line of equation

(7.15) follows from the independence of Ik and Ii ∀i 6= k. Note that Ij represents

the co-tier interference and Ik for k 6= j represents the cross-tier interference. As

discussed in the single-tier case, the interfering UEs do not constitute a PPP. Hence,

for analytical tractability, similar to the single-tier case, I approximate the interfering

UEs in each tier with a PPP. The SINR outage for a generic active UE in the jth tier

is then given by the following theorem.

Theorem 7.4.1. In a K-tier Poisson cellular network with a common path-loss expo-

nent η and truncated channel inversion power control where each tier has BS intensity

λk and cutoff threshold ρ
(k)
o , in the uplink, the SINR outage probability for a generic

active UE in the jth tier is given by

O(j)
s = 1− exp


−βjσ

2

ρ
(j)
o

−
K∑
k=1

(
βj(ρ

(k)
o )

ρ
(j)
o

) 2
η

2λkγ

(
2, πΛ

(
Pu

ρ
(k)
o

) 2
η

)

Λ

1− e
−πΛ

(
Pu

ρ
(k)
o

) 2
η


∫ ∞(

βjρ
(k)
o

ρ
(j)
o

)−1
η

y

yη + 1
dy


.

(7.16)

Proof. See Appendix D.3.

The SINR outage in (7.16) reduces to the single-tier case given in (7.5), but with
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intensity Λ, when all tiers have the same cutoff threshold ρo despite of their different

intensities. The spectral efficiency in the multi-tier case can be obtained from the

following theorem.

Theorem 7.4.2. In a K-tier Poisson cellular network with a common path-loss expo-

nent η and truncated channel inversion power control where each tier has BS intensity

λk and cutoff threshold ρ
(k)
o , in the uplink, the average spectral efficiency for active

UEs in the jth tier is given by

Rj =

∫ ∞
0

exp


−xσ2

ρ
(j)
o

−
∑K

k=1

(
xρ

(k)
o

ρ
(j)
o

) 2
η

2λkγ

2,πΛ

(
Pu

ρ
(k)
o

) 2
η



Λ

1−e
−πΛ

 Pu

ρ
(k)
o

 2
η



∫∞(
xρ

(k)
o

ρ
(j)
o

)−1
η

y
yη+1dy


x+ 1

dx.

(7.17)

Proof. The proof is similar to the one in Appendix D.3.

For brevity, I consider only one special case. For infinite Pu, interference-limited

network scenario, and η = 4, the SINR outage and average spectral efficiency in the

uplink in the jth tier reduce to the following:

O(j)
s = 1− exp

−
K∑
k=1

λk
Λ

√√√√βjρ
(k)
o

ρ
(j)
o

arctan


√√√√βjρ

(k)
o

ρ
(j)
o

 (7.18)

Rj =

∫ ∞
0

exp

{
−
∑K

k=1
λk
Λ

√
xρ

(k)
o

ρ
(j)
o

arctan

(√
xρ

(k)
o

ρ
(j)
o

)}
x+ 1

dx. (7.19)
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Equations (7.18) and (7.19) show that, in general, the SINR outage probability

and spectral efficiency in a certain tier depend on the relative cutoff thresholds and the

relative BS intensities. The SINR outage probability and spectral efficiency improve

as the cutoff threshold in the target tier increases and the cutoff thresholds in the

other tiers and/or the BS intensities in the other tiers decrease. This is because, a

higher cutoff threshold in the target tier increases the useful signal power and lower

cutoff thresholds and/or lower BS intensities in the other tiers reduce the cross-tier

interference.

Theorems 7.4.1 and 7.4.2 show an important difference between multi-tier and

single-tier cellular networks. That is, regardless of the maximum transmit power

value Pu (i.e., binding or non-binding maximum transmit power constraint), the SINR

outage probability and spectral efficiency in multi-tier cellular networks depend on

the relative values of the cutoff thresholds and the relative BS intensities. However,

note that if all the tiers have the same cutoff threshold, regardless of the relative BSs

intensities, (7.18) and (7.19) reduce to (7.11) and (7.12), respectively. Hence, the

multi-tier cellular network can be reduced to a single-tier with intensity Λ and both

the SINR outage probability and the average spectral efficiency become independent

of the BS intensities in the different tiers if Pu in non-binding.

7.4.2 Different Path-loss Exponents

In the previous section, it has been shown that when all network tiers share the

same path-loss exponent, the association of the UEs does not change from that in

the single-tier cellular networks. That is, the association regions of the BSs will form

a Voronoi tessellation. On the other hand, if different tiers have different path-loss

exponents, the association of UEs in the multi-tier case deviates from that in the
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single-tier case where the association regions of the BSs form a weighted Voronoi

tessellation. That is, the BSs in tiers with lower path-loss exponents will have larger

service areas than BSs in tiers with higher path-loss exponents. The transmit power

in a multi-tier cellular network with different path-loss exponents can be characterized

by the following lemma.

Lemma 7.4.2. In a K-tier Poisson cellular network with truncated channel inversion

power control where each tier has BS intensity λk, cutoff threshold ρ
(k)
o , and path-loss

exponent ηk, the pmf of the transmit power of the active UEs in the uplink in the jth

tier is given by

fPj(x) =

∑K
k=1

2πλkx
2
ηk
−1

ηk(ρ
(j)
o )

2
ηk

1− e
−
∑K
b=1 πλb

(
Pu

ρ
(j)
o

) 2
ηb

e
−
∑K
a=1 πλa

(
x

ρ
(j)
o

) 2
ηa

. (7.20)

The moments of the transmit power of a UE in the kth tier can be obtained as

E
[
Pα
j

]
=

∫ Pu

0

∑K
k=1

2πλkx
2
ηk

+α−1

ηk(ρ
(j)
o )

2
ηk

1− e
−
∑K
b=1 πλb

(
Pu

ρ
(j)
o

) 2
ηb

e
−
∑K
a=1 πλa

(
x

ρ
(j)
o

) 2
ηa

. (7.21)

Proof. See Appendix D.5.

The truncation outage probability in the uplink for a UE at the jth tier is given

by

O(j)
p = e

−
∑K
k=1 πλk

(
Pu

ρ
(k)
o

) 2
ηk

. (7.22)

Lemma 7.4.2 shows that the moments of the transmit power of the UEs cannot be

obtained in closed form due to the complications introduced by the different path-loss

exponents. Note that, since the transmit power appears in the LT of the interference
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as E[P
2
ηk
k ], the calculations of outage probability and spectral efficiency do not require

obtaining the moments of the transmit power in closed forms. It can be shown

that, for a common path-loss exponent, Lemma 7.4.2 reduces to Lemma 7.4.1.

Similar to the previous cases, the interfering UEs do not constitute a PPP. Therefore,

for analytical tractability, I will approximate the locations of the interfering UEs

by a PPP. The SINR outage in multi-tier cellular networks with different path-loss

exponents can be characterized by the following theorem.

Theorem 7.4.3. In a K-tier Poisson cellular network with truncated channel in-

version power control where each tier has BS intensity λk, cutoff threshold ρ
(k)
o , and

path-loss exponent ηk, the SINR outage probability in the uplink for a generic active

UE in the jth tier is given by

O(j)
s = 1− exp

−βjσ
2

ρ
(j)
o

−
K∑
k=1

2πλk

(
βj

ρ
(j)
o

) 2
ηj

EPk

[
P

2
ηj

k

] ∫ ∞(
βjρ

(k)
o

ρ
(j)
o

) 1
ηj

y

yηj + 1
dy

 . (7.23)

Proof. See Appendix D.6.

The spectral efficiency can be characterized via the following theorem.

Theorem 7.4.4. In a K-tier Poisson cellular network with truncated channel inver-

sion power control where each tier has the BS intensity λk, cutoff threshold ρ
(k)
o , and

path-loss exponent ηk, the average spectral efficiency in the uplink for active UEs in

the jth tier is given by

Rj =

∫ ∞
0

1

x+ 1
exp

−βjσ2

ρ
(j)
o

−
K∑
k=1

2πλk

(
x

ρ
(j)
o

) 2
ηj

EPk

[
P

2
ηk
k

] ∫ ∞(
xρ

(k)
o

ρ
(j)
o

) 1
ηj

y

yηj + 1
dy

 dx.

(7.24)

Proof. The proof is similar to the one in Appendix D.3.
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Due to the complicated expressions for the moments of the transmit power as given

in Lemma 7.4.2, Theorems 7.4.3 and 7.4.4 do not give simple formulas for the

SINR outage and spectral efficiency. However, Theorems 7.4.3 and 7.4.4 do give

general formulas that reduce to all of the previously presented special cases. Note that

without simple expressions, significant insights may not be extracted from the results

obtained in Theorems 7.4.3 and 7.4.4 and Lemma 7.4.2 for multi-tier networks

with different path-loss exponents. In contrast, with a common path-loss exponent,

Theorems 7.4.3 and 7.4.4 and Lemma 7.4.2 simplify to Theorems 7.4.1 and

7.4.2 and Lemma 7.4.1, respectively. The main conclusion from this section is that

the developed paradigm is general and flexible to capture different practical system

parameters.

7.5 Results and Discussions

7.5.1 Results

In this section, I validate my model against simulations and present some numerical

results for a single-tier cellular network (or equivalently, a multi-tier cellular network

with common cutoff threshold ρo and path-loss exponent η). Unless otherwise stated,

I set the BS intensity to λ = 2 BSs/km2, the maximum transmit power Pu = 1 W,

the receiver sensitivity ρmin = −90 dBm, the cutoff threshold ρ = −70 dBm, the

SINR threshold β = 1, σ2 = −90 dBm, and the number of channels S = 1.

First, I validate my model against simulation results obtained for a Poisson cellular

network and compare it with the circular approximation of the target BS coverage as

used in [68, 122]. The reason for the model validation is that the derived cdf of the

SINR assumes that the set of active UEs constitutes a PPP. This assumption partially
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Figure 7.4: The cdf of the SINR for λ = 2 BS/km2 and |S| = 1.

ignores the correlation among the simultaneously active UEs on the same channel.

That is, given that a UE is transmitting on a tagged channel, all other active UEs

should be outside the Voronoi cell of its serving BS. Note that my model partially

ignores these correlations because the correlation with the tagged BS is captured by

the fact that the average received interference power from any interfering UE is less

than the cutoff threshold ρo (cf. Facts #1–#3 in Appendix D.2).

Fig. 7.4 shows that the derived model accurately captures the SINR outage. The

figure also shows that approximating the coverage area of the tagged BS with a circle

with the radius 1√
πλ

underestimates the outage at ρo ≤ −70 dBm and overestimates

the outage at ρo = −90 dBm. The reason is that at low cutoff threshold ρo, the inter-

ference exclusion region around each BS is large (cf. Fact #2 in Appendix D.2), and

hence, the radius 1√
πλ

estimates a more aggressive interference. On the other hand,

for high cutoff threshold ρo, the interference exclusion region around the tagged BS

is small, and hence, the radius 1√
πλ

estimates a more conservative interference.

Fig. 7.5 shows the tradeoff introduced by ρo on the total outage probability Ot =

Op+(1−Op)Os. As shown in the figure, ρo tunes the tradeoff between the two outage
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Figure 7.5: Total outage probability for β = 1 and |S| = 1.

probabilities and there exists an optimal cutoff threshold ρ∗o that minimizes the total

outage probability. That is, at lower values of ρo, the SINR outage dominates the

outage probability. On the other hand, at high values of ρo, the truncation outage

dominates the outage probability. The figure shows the two regions of operation for

the uplink, namely, when Pu is a binding constraint and when Pu is a non-binding

constraint. Note that Pu becomes binding when the truncation outage probability is

not zero. For small values of ρo, Pu induces a non-binding constraint, and hence, for

relatively high BS intensity (e.g., λ = 10 and λ = 100) the SINR outage is independent

(i.e., the two curves for λ = 10 and λ = 100 coincides) of the BS intensity (which

reinforces case #1 in Sec. 7.3.2). Note that when ρo is comparable to the noise power

σ2, the SINR outage depends on ρo. However, when ρo is much greater the noise

and Pu is non-binding, the SINR outage is independent of both the cutoff threshold

ρo and BS intensity (case #3 in Sec. 7.3.2). In contrast, for high values of ρo, Pu

becomes a binding constraint and the SINR outage depends on both the BS intensity

and cutoff threshold.

To show the two regions of operation for the uplink more clearly, I plot Fig. 7.6
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Figure 7.6: Total outage probability for σ2 = −110 dBm, β = 1, and |S| = 1.

with a negligible noise power value of σ2 = −110 dBm. This figure shows that when

Pu is non-binding (i.e., the truncation outage probability is almost zero), the SINR

outage is completely independent of both the cutoff threshold ρo and BS intensity

(case #3 in Sec. 7.3.2). Note that the independence w.r.t. the BS intensity can be

seen from the coincidence of the curves for λ = 10 and λ = 100 as long as Pu is non-

binding for both intensities (i.e., the truncation outage is equal to zero). In contrast,

when Pu becomes binding (i.e., the truncation outage is not zero), the SINR outage is

highly affected by both the BS intensity and cutoff threshold (case #2 in Sec. 7.3.2).

Fig. 7.7 shows the tradeoff introduced by ρo on the effective spectral efficiency

defined as (1−Op)R. The effective spectral efficiency captures the average spectral

efficiency for active users (i.e., users with no truncation outage). As shown in the

figure, when Pu is a non-binding constraint (i.e., for ρo ≤ −75 with λ = 10 and

ρo ≤ −55 with λ = 100 [cf. Fig. 7.5]), the effective spectral efficiency is independent

of the BS intensity. Note that the effective spectral efficiency depends on ρo when Pu

induces a non-binding constraint due to the relatively (i.e., relative to ρo) high noise

power (case #1 in Sec. 7.3.2). However, for λ = 100 the effective spectral efficiency is
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Figure 7.7: Effective spectral efficiency σ2 = −90 dBm and |S| = 1.

independent of the cutoff threshold in the range of −70 ≤ ρo ≤ −55 dBm because Pu

induces a non-binding constraint and the noise power is negligible w.r.t. the value of

ρo (case #3 in Sec. 7.3.2). On the other hand, when Pu becomes a binding constraint,

the effective spectral efficiency depends on both the BS intensity and cutoff threshold.

This figure also shows the existence of an optimal cutoff threshold ρ∗o which maximizes

the effective spectral efficiency.

To show the tradeoff introduced by ρo on the effective spectral efficiency more

clearly, I plot Fig. 7.8 for negligible noise power σ2 = −110 dBm. This figure shows

that when Pu induces a non-binding constraint, the effective spectral efficiency is

completely independent of the BS intensity and cutoff threshold. On the other hand,

when Pu induces a binding constraint, the effective spectral efficiency depends on

both the BS intensity and the cutoff threshold.

Fig. 7.9 shows the average transmit power of the UEs vs. the cutoff threshold

ρo. As the cutoff threshold ρo increases, the UEs are required to transmit at higher

powers to invert their path-loss and maintain a high threshold ρo at their serving BSs.

Therefore, the average transmit power is non-decreasing in ρo. Note that the average
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Figure 7.8: Effective spectral efficiency for σ2 = −110 dBm, U
λ

= 50, and |S| = 1.

transmit power saturates at lim
ρo→∞

E[P ] = Pu
3

.

7.5.2 Discussions

In the light of the proposed uplink framework and the results provided in [12, 54], I

highlight the commonalities and differences between the uplink and downlink trans-

mission performances. The criticality of the power control is the first main difference

between the uplink and downlink transmission performances. While power control en-

hances the downlink transmission performance, it is not crucial for the basic network

operation due to the inherent interference protection provided by the user association

policy. On the other hand, power control is essential for the case of uplink opera-

tion to mitigate severe interference caused by the arbitrary close interfering UEs (cf.

Fig. 7.1).

The second difference between the uplink and downlink operation is the maximum

transmit power constraint for the UEs. For a single-tier cellular network, the relative

values of λ, Pu, and ρo may lead to a binding maximum transmit power constraint for
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Figure 7.9: Expected transmit power in the uplink.

the uplink operation. In this case, the uplink performance is highly affected by the

intensity of the BSs as well as the cutoff threshold for power control. On the other

hand, when the relative values of λ, Pu, and ρo lead to an uplink operation under non-

binding maximum transmit power constraint, the uplink transmission performance is

analogous to the downlink transmission performance. More specifically, the uplink

network can be transformed into an equivalent network where all UEs have a constant

transmit power of E
[
P

2
η

]
(see (D.2)). Hence, the uplink performance is the same

as the downlink performance with BS transmit power of E
[
P

2
η

]
and a constant

downlink distance of

(
E[P

2
η ]

ρo

) 1
η

. Therefore, as discussed in [12] in the context of

downlink performance, the presented results also show that the SINR outage and

spectral efficiency performances for the uplink communication in a single-tier cellular

network with a loose maximum transmit power constraint are independent of the BS

intensity. Therefore, in the worst case (because of the PPP assumption), deploying

more BSs will not affect the SINR statistics in either the uplink or the downlink.

For multi-tier cellular networks, regardless of whether Pu is binding or not, the
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uplink performance depends on the relative cutoff thresholds and relative BS intensi-

ties in the network tiers. However, if all of the tiers share a common cutoff threshold,

the uplink performance becomes independent of the relative BS intensities in the case

of a loose maximum transmit power constraint. In this case, as discussed in [54] in

the context of downlink communication, the presented results show that the SINR

outage and the spectral efficiency performances for uplink communications in a multi-

tier cellular network with a common cutoff threshold, a common path-loss exponent,

and a loose maximum transmit power constraint, are independent of the BS intensity.

Therefore, in the worst case (because of the PPP assumption), deploying more BSs

or more tiers will not affect the SINR statistics in either the uplink or the downlink.

Another important difference between the uplink and the downlink is the UE

association. The heterogeneity in the downlink transmit powers of BSs in a multi-tier

cellular network leads to a coverage in the form of a weighted Voronoi tessellation. On

the other hand, in the uplink, the homogeneity of the transmit powers of the UEs leads

to a coverage in the form of Voronoi tessellation in a multi-tier cellular network with

a common path-loss exponent. The simple association in the uplink highly simplifies

the analysis in the case of multi-tier cellular network. It is worth mentioning that if

the different tiers have different path-loss exponents, the uplink association regions

will follow a weighted Voronoi tessellation. However, the association in the downlink

is still different from the association in the uplink due to the homogeneous transmit

powers of the UEs in the latter case and the heterogeneous transmit powers of the

BSs in the former case.

In addition to its practicality, the channel inversion power control with the cutoff

threshold highly facilitates the analysis in this work and leads to simple expressions

for the outage probability and rate. However, the presented analysis can be con-
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sidered as a special case of the fractional channel inversion power control (i.e., full

inversion) and cannot be used to capture the fractional channel inversion power con-

trol. Nevertheless, the presented analysis provides design insights and helps under-

standing the uplink system behavior. In addition, in contrast to fractional channel

inversion power control, the channel inversion power control with the cutoff threshold

results in a location independent outage probability and average rate for active users

(i.e., homogenous performance for all active users.). The fractional channel inver-

sion power control imposes a location dependent performance for the active users.

Furthermore, the fractional channel inversion power control highly complicates the

system model, and hence, necessitates more approximations as in [121] in order to

maintain the tractability. Although [121] provided a mathematically elegant tech-

nique to deal with uplink cellular networks with fractional channel inversion power

control, the results reveal that the model provided in [121] will not be accurate when

considering the maximum transmit power constraint for the UEs and the UEs operate

in a binding maximum transmit power scenario. This is because, in [121] the system

model was approximated and it was assumed that the Voronoi cells are realized w.r.t.

the users not the BSs. In other words, the uplink system model was converted to an

equivalent downlink (i.e., the users are treated as BSs) which, as I have shown here,

is inaccurate if Pu is a binding operational constraint. Moreover, the model presented

in [121] resulted in relatively more complex expression for the outage probability6.

7.6 Chapter Summary

We have introduced a novel modeling approach for uplink transmission in Poisson cel-

lular networks with truncated channel inversion power control. The model assumes

6Note that, the expressions presented in [121] for the outage probability and rate do not reduce
to the expression presented in this work due to the system model approximation used in [121].
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a practical system model and accounts for power control, maximum transmit power

of the UEs, and cutoff threshold for the power control. The developed modeling

approach is general and captures the uplink performance of multi-tier cellular net-

works. The results show that the cutoff threshold introduces tradeoffs in the system

performance and there exists an optimal cutoff threshold that minimizes the outage

probability. When multiple outage optimal cutoff thresholds exist, the minimum cut-

off threshold minimizes the average power consumption of the users. Closed-form

simple expressions for the outage probability and simple forms with one numerical

integral for the spectral efficiency have been obtained.

We have characterized the uplink performance and showed the existence of a

transfer point for the uplink operation which depends on the relative values of the BS

intensity, the maximum transmit power of the UEs, and the cutoff threshold for power

control. When the BSs are dense enough such that the maximum transmit power is

not a binding constraint to establish an uplink connection with the nearest BS, the

SINR outage and the spectral efficiency are independent of the BS intensity. Since the

maximum transmit power Pu is, in general, not a binding constraint in dense cellular

networks, deploying more tiers and more BSs may decrease the power consumption

for UEs, improve the spatial frequency reuse and system capacity, but will neither

improve nor deteriorate the SINR outage probability and spectral efficiency. Hence,

the SINR outage probability and the spectral efficiency in the uplink and downlink

could only be improved via interference management/avoidance techniques.

In the next chapter, I conclude the work done in this thesis and highlight some

future directions.
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Conclusion and Future Direction

8.1 Conclusion

Stochastic geometry is the only mathematical technique available that provides a

rigorous analytical approach to the modeling, analysis, and design of networks with

random topologies. While it is extremely powerful when applied to networks modeled

as PPPs with Rayleigh fading, leading to short and general closed-form expressions,

generalizing the network models diminishes its tractability. That said, it has been

shown that stochastic geometry modeling helps understanding the effects of the funda-

mental design parameters on the system behavior. Furthermore, I exploited stochastic

geometry models to optimize the network design. For instance, in Chapter 3, I used

stochastic geometry to study the effect of CSMA MAC protocol on the SINR and to

optimize the spectrum sensing threshold to maximize the transmission capacity. In

Chapter 4, stochastic geometry was utilized to develop a spectrum efficient design

paradigm to increase the coexistence capability of IEEE 801.15.4 in the crowded ISM

band. In Chapters 5 and 6, for a two-tier downlink cellular network, I have studied

the effect of opportunistic spectrum access via cognition on the performance of both
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the macro users and femto users. We have also developed a paradigm to optimize the

spectrum sensing threshold of the cognitive femto-access points. Finally, in Chap-

ter 7, for uplink multi-tier cellular networks, I have revealed a transition point in the

system behavior that depends on the system parameters. Furthermore, I have shown

that when the transmit power of the UEs are not a binding constraint for the uplink

operations, the SIR statistics do not depend on the intensity of the BSs or the cutoff

threshold of the power control.

8.2 Future Research Direction

There are two main research directions for stochastic geometry modeling. The first

direction is to go beyond the coverage probability and the performance metrics based

only on the Shannon’s formula. For instance, if the queuing dynamics can be incor-

porated in the analysis, useful performance metrics such as the transmission delay

can be obtained. Another future direction is to adopt point processes that capture

the characteristics of wireless networks with more accuracy and thus provide better

modeling approaches. A detailed discussion on these potential research directions is

provided below.

8.2.1 Adapting New Point Processes

Although spatial randomness in the topology is an intrinsic characteristic of both

large-scale ad hoc networks and cellular networks, sophisticated distributed MAC

protocols in ad hoc networks as well as sophisticated planning and interference man-

agement protocols in cellular networks bring some structure to the network topology.

That is, the independence assumption for the positions of simultaneously active trans-

mitters is not realistic. Hence, the repulsive point processes such as the Matérn HCPP
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provide more realistic and accurate modeling for wireless networks.

For instance, for cellular networks, [13] examined four point processes to find which

of them better models the spatial distribution of Bss in an actual cellular network,

namely, the PPP, the HCPP, the Strauss process (SP), and the perturbed triangular

lattice. The Strauss process belongs to the general class of Gibbs processes, which

first appeared in statistical physics [8, Sec. 3.6]. It captures the pairwise interactions

between nearby BSs by making it less likely that two BSs are located close to each

other, i.e., Strauss processes are soft-core processes. The authors in [13] showed that,

compared to the PPP, the three non-Poisson models can model the spatial locations

of the deployed BSs more accurately. The Gibbs processes were also used in [128].

The authors compared the spatial characteristics of two actual cellular deployments

in a coastal city and sprawling landlocked city to the spatial characteristics of the

PPP, the hexagonal grid as well as to the Gibbs models, and it was shown that the

Gibbs model, in particular the so-called Geyer saturation process, better captures (i.e.,

better than both the PPP and the hexagonal grid models) the spatial characteristics

of the actual cellular deployments. However, the main problem with Gibbs processes

is that they are not analytically tractable [8, Sec. 3.6].

The tractability issue of the Gibbs processes makes the HCPP of special inter-

est. The HCPP is relatively more tractable than the Gibbs process and has been

frequently used for modeling ad hoc networks and the existing results may facilitate

its application in the context of cellular networks. However, as show in Chapter 3,

the HCPP suffer for the intensity underestimation flaw which aggravates with the

intensity and/or the SSR. Furthermore, the derivation of the distribution of the dis-

tance between a generic location and the nearest point in the HCPP is still an open

problem. Note that the distribution of this distance is crucial if the HCPP is used

219



Chapter 8. Conclusion and Future Direction

to model a cellular network because this distance refers to the distance between a

user and her serving network entity. An approximate expression for this distance

was derived in [41]. Another challenge for the HCPP is to obtain an expression for

the probability generating functional in order to obtain the LT of the interference

associated with a HCPP. This problem is reported in [40, 49] and in Chapters 3 and

5 in this thesis. One interesting future direction is to address the challenges of the

HCPP and extend the existing results in the literature for more accurate modeling of

wireless networks.

In [88, 89], an asymptotic approach for the outage characterization of wireless

networks with general node distribution and general fading was presented. This

includes the PPP, HCPP, clustered PPs, and grid models as special cases, and permits

arbitrary MAC schemes. However, the results are restricted to the high-SIR case.

In [129], the method of factorial moment expansion [130] was used to characterize

and approximate interference in networks with general spatial distribution of nodes.

The proposed model has a high potential for more accurate modeling of wireless

networks and presents a clear tradeoff between the accuracy and complexity of the

obtained expressions. The initiatives proposed in [88, 89, 128, 129] open the road for

discovering new stochastic geometry tools for more accurate, flexible, and general

modeling of wireless networks.

8.2.2 Performance Metrics Beyond Coverage and Rate

Coverage probability and average rate are the key performance indicators (KPIs) for

most of the stochastic geometry models available in the literature. Therefore, another

interesting future direction is to go beyond these KPIs and incorporate the queueing

dynamics into the stochastic geometry models. Note that most of the work in the
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literature assumes saturation conditions for the traffic. That is, the buffers of all net-

work elements are always full, which might not be true and will provide a pessimistic

view of the aggregate interference as well as some other performance metrics (e.g.,

spectrum access probability in cognitive and CSMA networks). Moreover, no insights

regarding the packet delays can be obtained since the queuing dynamics are ignored.

The commonly used saturation conditions were relaxed in [44, 131, 132] for ad hoc

networks. However, to the best of my knowledge, there has not been any work that

incorporates the queueing dynamics into the stochastic geometry models for cellular

networks. [44] proposed a three-dimensional PPP to model the traffic flow for the

coexisting network nodes in a CSMA network. The locations of the network nodes

were modeled via a two-dimensional PPP while the traffic arrivals were modeled via

a one-dimensional PPP. However, [44] only modeled the outage probability and no

insights on the packet delay performance was given. In [131], the stability and delay

performances were analyzed for nodes with infinite queues in a PPP ad hoc network

with one and two classes of nodes. In [132], the authors calculated bounds on the end-

to-end delay, the optimum hop lengths, and the number of hops in a TDMA/ALOHA

multi-hop network in the presence of a PPP field of interferers.

221



Bibliography

[1] D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and its Applications.

John Wiley & Sons, 1995.

[2] A. J. Baddeley, “Spatial Point Processes and their Applications,” in Lecture Notes

in Mathematics: Stochastic Geometry, Springer Verlag , Berlin Heidelberg, 2007,

pp. 1–75.

[3] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti,

“Stochastic Geometry and Random Graphs for the Analysis and Design of Wire-

less Networks,” IEEE Journal on Selected Areas of Communications, Sept. 2009.

[4] P. Cardieri, “Modeling Interference in Wireless Ad Hoc Networks,” IEEE Com-

munications Surveys & Tutorials, vol.12, no. 4, pp. 551–572, Fourth Quarter 2010.

[5] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic Geometry for Modeling,

Analysis, and Design of Multi-tier and Cognitive Cellular Wireless Networks: A

Survey,” IEEE Communications Surveys and Tutorials, vol. 15, pp. 996–1019,

July 2013

[6] M. Haenggi and R. Ganti, Interference in Large Wireless Networks, in Foundations

and Trends in Networking, NOW Publishers, 2008, vol. 3, no. 2, pp. 127–248.

222



Bibliography

[7] S. Weber and J. G. Andrews, Transmission Capacity of Wireless Networks in

Foundations and Trends in Networking, NOW Publishers, February 2012.

[8] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge University

Press, 2012.

[9] F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks in

Foundations and Trends in Networking, Volume 1, Now Publishers, 2009.

[10] F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless Networks in

Foundations and Trends in Networking, Volume 2, NOW Publishers, 2009.

[11] J. Xu, J. Zhang, and J. G. Andrews, “On the Accuracy of the Wyner Model

in Cellular Networks,” IEEE Transactions on Wireless Communications, vol. 10,

no. 9, pp. 3098–3109, September 2011.

[12] J. Andrews, F. Baccelli, and R. Ganti, “A Tractable Approach to Coverage and

Rate in Cellular Networks,” IEEE Transactions on Communications, vol. 59, no.

11, pp. 3122–3134 November 2011.

[13] A. Guo and M. Haenggi, “Spatial Stochastic Models and Metrics for the Struc-

ture of Base Stations in Cellular Networks,” IEEE Transactions on Wireless Com-

munications, accepted.

[14] L. Fu, S. C. Liew, and J. Huang, “Effective Carrier Sensing in CSMA Networks

under Cumulative Interference,” IEEE Transactions on Mobile Computing, vol.

12, no. 4, pp.748–760, April 2013.

[15] T. Lin and J.C. Hou, “Interplay of Spatial Reuse and SINR-determined Data

Rates in CSMA/CA-Based, Multi-Hop, Multi-Rate Wireless Networks,” in Proc.

223



Bibliography

26th IEEE International Conference on Computer Communications (INFO-

COM’07), pp. 803–811, May 2007.

[16] T. Yang, G. Mao, and W. Zhang, “Connectivity of Large-Scale CSMA Net-

works,” IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 2266–

2275, June 2012.

[17] L. Kleinrock and J. A. Silvester, “Optimum Transmission Radii for Packet Ra-

dio Networks or Why Six is a Magic Number,” in Conference Record: National

Telecommunication Conference, December 1978, pp. 4.3.1-4.3.5.

[18] T. Hou and V. Li, “Transmission Range Control in Multihop Packet Radio Net-

works,” IEEE Transactions on Communications, vol. 34, no. 1, pp. 38–44, January

1986.

[19] R. Mathar and J. Mattfeldt, “On the Distribution of Cumulated Interference

Power in Rayleigh Fading Channels,” Wireless Networks, vol. 1, pp. 31–36, Febru-

ary 1995.

[20] S. Weber, J. G. Andrews and N. Jindal, “The Effect of Fading, Channel In-

version and Threshold Scheduling on Ad Hoc Networks,” IEEE Transactions on

Information Theory, vol. 53, no. 11, pp. 4127–4149, November 2007.

[21] S. Weber, X. Yang, J. G. Andrews, and G. de Veciana, “Transmission Capacity

of Wireless Ad hoc Networks with Outage Constraints,” IEEE Transactions on

Information Theory, vol. 51, no. 12, pp. 4091–4102, December 2005.

[22] S. Weber, J. Andrews, X. Yang, and G. de Veciana, “Transmission Capacity

of Wireless Ad Hoc Networks with Successive Interference Cancellation,” IEEE

Transactions on Information Theory, vol. 53, no. 8, pp. 2799–2814, August 2007.

224



Bibliography

[23] N. Jindal, S. Weber and J. G. Andrews, “Fractional Power Control for Decentral-

ized Wireless Networks,” IEEE Transactions on Wireless Communications, vol.

7, no. 12, pp. 5482–5492, December 2008.

[24] A. M. Hunter, J. G. Andrews and S. P. Weber, “Transmission Capacity of Ad

Hoc Networks with Spatial Diversity,” IEEE Transactions on Wireless Commu-

nications, vol. 7, no. 12, pp. 5058–71, December 2008.

[25] J. Venkataraman, M. Haenggi, and O. Collins, “Shot Noise Models for Out-

age and Throughput Analyses in Wireless Ad Hoc Networks,” in Proc. of IEEE

Military Commun. Conf. (MILCOM’06), Washington, DC, USA, October 2006.

[26] S. Weber, J. G. Andrews, and N. Jindal, “An Overview of the Transmission

Capacity of Wireless Networks,” IEEE Transactions on Communications, vol. 58,

no. 12, December 2010.

[27] J. Venkataraman, M. Haenggi, and O. Collins, “Shot Noise Models for the Dual

Problems of Cooperative Coverage and Outage in Random Networks,” in Proc.

44th Annual Allerton Conf. Commun., Control, and Comput. (Allerton’06), Mon-

ticello, IL, USA, September 2006.

[28] E. S. Sousa, “Optimum Transmission Range in a Direct-sequence Spread Spec-

trum Multihop Packet Radio Network,” IEEE Journal on Selected Areas in Com-

munications, vol. 8, no. 5, pp. 762–771, 1990.

[29] M. Souryal, B. Vojcic and R. Pickholtz, “Ad hoc, Multihop CDMA Networks

with Route Diversity in a Rayleigh Fading Channel,” in Proc. IEEE Military

Commun. Conf. (MILCOM’01) pp. 1003–1007, October 2001.

225



Bibliography

[30] H. Inaltekin, S. B. Wicker, M. Chiang, and H. V. Poor, “On Unbounded Path-loss

Models: Effects of Singularity on Wireless Network Performance,” IEEE Journal

on Selected Areas in Communications, pp. 1078–1092, 2009.

[31] M. Z. Win, P. C. Pinto, and L. A. Shepp, “A Mathematical Theory of Network

Interference and Its Applications,” in Proceedings of the IEEE, vol. 97, no. 2, pp.

205–230, 2009.

[32] F. Baccelli, B. Blaszczyszyn, and P. Mühlethaler, “Stochastic Analysis of Spa-

tial and Opportunistic ALOHA,” IEEE Journal on Selected Areas in Communi-

cations, vol. 27, no. 7, pp. 1105–1119, September 2009.

[33] X. Zhang and M. Haenggi, “Random Power Control in Poisson Networks,” IEEE

Transactions on Communications, vol. 60, pp. 2602–2611, Sept. 2012.

[34] X. Zhang and M. Haenggi, “Delay-optimal Power Control Policies,” IEEE Trans-

actions on Wireless Communications, vol. 11, pp. 3518–3527, Oct. 2012.

[35] Z. Gong and M. Haenggi, “Interference and Outage in Mobile Random Networks:

Expectation, Distribution, and Correlation,” IEEE Transactions on Mobile Com-

puting, 2012. Accepted.

[36] M. Haenggi, “On Distances in Uniformly Random Networks,” IEEE Transactions

on Information Theory, vol. 51, pp. 3584–3586, October 2005.

[37] S. Srinivasa and M. Haenggi, “Modeling Interference in Finite Uniformly Ran-

dom Networks,” in International Workshop on Information Theory for Sensor

Networks (WITS 2007), Santa Fe, NM, June 2007.

226



Bibliography

[38] S. Srinivasa and M. Haenggi, “Distance Distributions in Finite Uniformly Ran-

dom Networks: Theory and Applications,” IEEE Transactions on Vehicular Tech-

nology, vol. 59, pp. 940–949, February 2010.

[39] R. K. Ganti and M. Haenggi, “Interference and Outage in Clustered Wireless

Ad Hoc Networks,” IEEE Transactions on Information Theory, vol. 55, pp. 4067–

4086, September 2009.

[40] H. Nguyen, F. Baccelli, and D. Kofman, “A Stochastic Geometry Analysis of

Dense IEEE 802.11 Networks,” in Proc. 26th IEEE International Conference on

Computer Communications (INFOCOM’07), May 2007, pp. 1199–1207.

[41] G. Alfano, M. Garetto, and E. Leonardi, “New Insights into the Stochastic Ge-

ometry Analysis of Dense CSMA Networks,” in Proc. 30th Annual IEEE Inter-

national Conference on Computer Communications (INFOCOM’11), April 2011,

pp. 2642–2650.

[42] Y. Kim, F. Baccelli, and G. de Veciana, “Spatial Reuse and Fairness of Mobile

Ad-hoc Networks with Channel-aware CSMA Protocols,” in Proc. 17th Workshop

on Spatial Stochastic Models for Wireless Networks, May 2011.

[43] A. Hasan and J. G. Andrews, “The Guard Zone in Wireless Ad hoc Networks,”

IEEE Transactions on Wireless Communications, vol. 4, no. 3, pp. 897–906,

March 2007.

[44] M. Kaynia, N. Jindal, and G. Oien, “Improving the Performance of Wireless

Ad hoc Networks through MAC Layer Design,” IEEE Transactions on Wireless

Communications, vol. 10, no. 1, pp. 240–252, January 2011.

227



Bibliography

[45] H. ElSawy and E. Hossain, “A Modified Hard Core Point Process for Analysis

of Random CSMA Wireless Networks in General Fading Environments,” IEEE

Transactions on Communications, accepted.

[46] H. ElSawy, E. Hossain, and S. Camorlinga, “Spectrum-efficient Multi-channel

Design for Coexisting IEEE 802.15.4 Networks: A Stochastic Geometry Ap-

proach,” submitted to the IEEE Transactions on Mobile Computing.

[47] H. ElSawy, E. Hossain, and S. Camorlinga, “Multi-channel Design for Random

CSMA Wireless Networks: Stochastic Geometry Approach,” in Proc. IEEE Int.

Conference on Communications (ICC’13), Budapest, Hungary, 9-13 June, 2013.

[48] P. Mühlethaler and A. Najid, “Throughput Optimization of a Multihop CSMA

Mobile Ad hoc Network,” INRIA, Research Report 4928, September 2003.

[49] M. Haenggi, “Mean Interference in Hard-core Wireless Networks,” IEEE Com-

munications Letters, vol. 15, pp. 792–794, August 2011.

[50] H. ElSawy and E. Hossain, “Modeling Random CSMA Wireless Networks in

General Fading Environments,” in Proc. IEEE Int. Conf. on Communications

(ICC 2012), Ottawa, Canada, 10-15 June 2012.

[51] H. ElSawy, E. Hossain, and S. Camorlinga, “Characterizing Random CSMA

Wireless Networks: A Stochastic Geometry Approach,” in Proc. IEEE Int. Conf.

on Communications (ICC 2012), Ottawa, Canada, 10-15 June 2012.

[52] F. Baccelli, M. Klein, M. Lebourges, and S. Zuyev, “Stochastic Geometry and

Architecture of Communication Networks,” Journal of Telecommunication Sys-

tems, vol. 7, no. 1, pp. 209–227, 1997.

228



Bibliography

[53] T. X. Brown, “Cellular Performance Bounds via Shotgun Cellular Systems,”

IEEE Journal on Selected Areas in Communications, vol. 18, no. 11, Nov. 2000,

pp. 2443–2455.

[54] H. Dhillon, R. Ganti, F. Baccelli, and J. Andrews, “Modeling and Analysis of

K-Tier Downlink Heterogeneous Cellular Networks,” IEEE Journal on Sel. Areas

in Comm., vol. 30, no. 3, pp. 550–560, April 2012.

[55] S. Singh, H. S. Dhillon, and J. G. Andrews, “Offloading in Heterogeneous Net-

works: Modeling, Analysis, and Design Insights,” IEEE Transactions on Wireless

Communications, accepted.

[56] H. Dhillon, T. Novlan, J. Andrews, “Coverage Probability of Uplink Cellular

Networks,” in Proc. IEEE Global Communications Conference (Globecom 2012),

3-7 December, Anaheim, CA, USA, 2012.

[57] H. S. Dhillon, R. K. Ganti and J. G. Andrews, “Load-Aware Modeling and

Analysis of Heterogeneous Cellular Networks”, IEEE Transactions on Wireless

Communications, vol. 12, no. 4, April 2013.

[58] H. Jo, Y. Sang, P. Xia, and J. Andrews, “Outage Probability for Heterogeneous

Cellular Networks with Biased Cell Association,” in Proc. IEEE Global Commu-

nications Conference (Globecom 2011), 5-9 December, Houston, TX, USA, 2011.

[59] H. Jo, Y. Sang, P. Xia, and J. Andrews, “Heterogeneous Cellular Networks With

Flexible Cell Association: A Comprehensive Downlink SINR Analysis,” IEEE

Transactions on Wireless Communications, vol. 11, no. 9, pp. 3484–3495, October

2012.

229



Bibliography

[60] H. ElSawy, E. Hossain, and S. Camorlinga, “Offloading Techniques in Two-

tier Femtocell Networks,” in Proc. IEEE Int. Conference on Communications

(ICC’13), Budapest, Hungary, 9-13 June 2013.

[61] T. Novlan, R. Ganti, A. Ghosh, and J. Andrews, “Analytical Evaluation of

Fractional Frequency Reuse for OFDMA Cellular Networks,” IEEE Transactions

on Wireless Communications, vol. 10, no. 12, pp. 4294–4305, December 2011.

[62] T. Novlan, R. Ganti, A. Ghosh, and J. Andrews, “Analytical Evaluation of Frac-

tional Frequency Reuse for Heterogeneous Cellular Networks,” IEEE Transactions

on Communications, vol. 60, no. 7, pp. 2029–2039, July 2012.

[63] D. Cao, S. Zhou, and Z. Niu, “Optimal Base Station Density for Energy-efficient

Heterogeneous Cellular Networks,” in Proc. IEEE Int. Conf. on Communications

(ICC 2012), Ottawa, Canada, 10-15 June 2012.

[64] Y. Zhong and W. Zhang, “Downlink Analysis of Multi-channel Hybrid Access

Two-tier Networks,” in Proc. IEEE Int. Conf. on Communications (ICC 2012),

Ottawa, Canada, 10-15 June 2012.

[65] S. Mukherjee, “Distribution of Downlink SINR in Heterogeneous Cellular Net-

works,” IEEE Journal on Sel. Areas in Comm., vol. 30, no. 3, pp. 575–585, April

2012.

[66] V. Chandrasekhar and J. Andrews, “Spectrum Allocation in Tiered Cellular

Networks,” IEEE Transactions on Communications, vol. 57, no. 10, pp. 3059–

3068, October 2009.

230



Bibliography

[67] W. Cheung, T. Quek, and M. Kountouris, “Throughput Optimization, Spectrum

Allocation, and Access Control in Two-tier Femtocell Networks,” IEEE Journal

on Sel. Areas in Comm., vol. 30, no. 3, pp. 561–574, April 2012.

[68] K. Huang, V. Lau, and Y. Chen, “Spectrum Sharing between Cellular and Mobile

Ad Hoc Networks: Transmission-capacity Tradeoff,” IEEE Journal on Sel. Areas

in Comm., vol. 27, no. 7, pp. 1256–1266, September 2009.

[69] V. Chandrasekhar and J. Andrews, “Uplink Capacity and Interference Avoidance

for Two-tier Femtocell Networks,” IEEE Transactions on Wireless Communica-

tions, vol. 8, no. 7, pp. 3498–3509, July 2009.

[70] P. Pinto, A. Giorgetti, M. Win, and M. Chiani, “A Stochastic Geometry Ap-

proach to Coexistence in Heterogeneous Wireless Networks,” IEEE Journal on

Sel. Areas in Comm., vol. 27, no. 7, pp. 1268–1282, September 2009.

[71] A. Guidotti, M. Di Renzo, G. Corazza, and F. Santucci, “Simplified Expression

of the Average Rate of Cellular Networks Using Stochastic Geometry,” in Proc.

IEEE Int. Conf. on Communications (ICC 2012), Ottawa, Canada, 10-15 June

2012.

[72] R. W. Heath, M. Kountouris, “Modeling heterogeneous network interference,”

in Proc. Information Theory and Applications Workshop (ITA), pp.17–22, 5-10

Feb. 2012

[73] H. Dhillon, M. Kountouris, J. Andrews, “Downlink Coverage Probability in

MIMO HetNets,” in Proc. 46th Annual Asilomar Conference on Signals, Systems,

and Computers, 4-7 November, Pacific Grove, CA, USA, 2012.

231



Bibliography

[74] R. W. Heath, M. Kountouris, and T. Bai, “Modeling Heterogeneous Network

Interference With Using Poisson Point Processes,” submitted to IEEE Trans. on

Signal Processing, July 2012. Available Online: (http://arxiv.org/abs/1207.2041).

[75] C. Lima, M. Bennis, and M. Latva-aho, “Coordination Mechanisms for Self-

Organizing Femtocells in Two-Tier Coexistence Scenarios,” IEEE Transactions

on Wireless Communications, vol. 11, no. 6, pp. 2212–2223, June 2012.

[76] H. ElSawy and E. Hossain, “Two-Tier HetNets with Cognitive Femtocells: Down-

link Performance Modeling and Analysis in a Multi-Channel Environment,” IEEE

Transactions on Mobile Computing, accepted.

[77] H. ElSawy and E. Hossain, “On Cognitive Small Cells in Two-tier Heterogeneous

Networks,” in Proc. 9th Workshop on Spatial Stochastic Models for Wireless Net-

works (SpaSWiN 2013), Tsukuba Science City, Japan, May 13-17, 2013.

[78] H. ElSawy, E. Hossain, and D. I. Kim, “HetNets with Cognitive Small Cells:

User Offloading and Distributed Channel Allocation Techniques,” IEEE Commu-

nications Magazine, Special Issue on “Heterogeneous and Small Cell Networks

(HetSNets),” vol. 51, no. 6, pp. 28–36, June 2013.

[79] H. ElSawy and E. Hossain, “Channel Assignment and Opportunistic Spectrum

Access in Two-tier Cellular Networks with Cognitive Small Cells,” submitted to

IEEE Global Communications Conference (Globecom 2013), Atlanta, GA, USA,

9-13 December 2013.

[80] M. Khoshkholgh, K. Navaie, and H. Yanikomeroglu, “Outage Performance of the

Primary Service in Spectrum Sharing Networks,” IEEE Transactions on Mobile

Computing, accepted, 2012.

232



Bibliography

[81] A. Ghasemi and E. Sousa, “Interference Aggregation in Spectrum Sensing Cog-

nitive Wireless Networks,” IEEE J. on Sel. Topics in Signal Processing, vol. 2,

no. 1, pp. 41–56, February 2008.

[82] C.-H. Lee and M. Haenggi, “Interference and Outage in Poisson Cognitive Net-

works,” IEEE Transactions on Wireless Communications, vol. 11, pp. 1392–1401,

April 2012.

[83] A. Rabbachin, T. Q. S. Quek, H. Shin, and M. Z. Win, “Cognitive Network

Interference,” IEEE Journal on Sel. Areas in Comm., vol. 29, no. 2, pp. 480–493,

February 2011.

[84] T. Nguyen and F. Baccelli, “A Probabilistic Model of Carrier Sensing Based Cog-

nitive Radio,” in Proc. IEEE Symposium on New Frontiers in Dynamic Spectrum

Access Networks, pp. 1–12, April 2010.

[85] T. Nguyen and F. Baccelli, “Stochastic Modeling of Carrier Sensing Based Cog-

nitive Radio Networks,” in Proc. 8th International Symposium on Modeling and

Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 472–480,

June 2010.

[86] J. Møller, M. L. Huber, and R. L. Wolpert, “Perfect Simulation and Moment

Properties for the Matérn Type III Process,” Stochastic Processes and Their Ap-

plications, vol. 120, no. 11, November 2010, pp. 2142–2158.

[87] M. L. Huber and R. L. Wolpert, “Likelihood Based Inference for Matérn Type

III Repulsive Point Processes,” Advances in Applied Probability, vol. 41, no. 4,

2009, pp. 958–977.

233



Bibliography

[88] R. K. Ganti, J. G. Andrews, and M. Haenggi, “High-SIR Transmission Capacity

of Wireless Networks with General Fading and Node Distribution,” IEEE Trans-

actions on Information Theory, vol. 57, pp. 3100–3116, May 2011.

[89] R. Giacomelli, R. K. Ganti, and M. Haenggi, “Outage Probability of General

Ad Hoc Networks in the High-reliability Regime,” IEEE/ACM Transactions on

Networking, vol. 19, pp. 1151–1163, August 2011.
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A.1 Deriving the distribution of |N|

Let Nxi = {xj ∈ ΨT \ xi|Ahj ‖xi − xj‖−η ≥ υ} be the set of neighbor nodes to

a generic transmitter xi, where hj = h(xi, xj), where hj are i.i.d corresponding to

channel gain between a transmitter xj ∈ ΨT and the test transmitter xi, and hj ∼

Gamma(m, k). We are interested to calculate the pmf of the number of neighbors

|Nxi |. Without loss of generality, I will condition on having xi at the origin (Slivnyak’s

theorem [1]). For notational simplicity, hereafter I will use N to denote Nxi (i.e.,

index xi is dropped) because, by Slivnyak’s theorem, the results hold for any generic

xi ∈ ΨT . A node xj ∈ ΨT is a neighbor to xi = (0, 0) if and only if Ahj ‖xj‖−η ≥ υs.

Due to the random variable hj, I cannot determine a regular shaped region that

contains the neighbors set N. However, if I limit my observation area to Bxi(rd)

(where rd sufficiently large), I can characterize N very accurately.

Let Ñ = N ∩ Bxi(rd) denote the set of neighbors of xi within the observation

area Bxi(rd). Due to the infinite support range of the gamma distribution, Ñ ⊆

N. However, if rd is sufficiently large, for any realization of the point process, the

probability that |Ñ| < |N| will be negligible (i.e., P
{
PtAhj
‖xj‖η ≥ υs| ‖xj‖ > rd

}
≈ 0).

One way to choose rd is to use a small number ε = 10−6 and then choose rd such that
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rd =
(
PtA
υs
F̄−1
h (ε)

)1/η

. Let Pυs = P{Ahj ‖xj‖−η ≥ υs} be the probability that a generic

node xj ∈ {ΨT ∩Bxi(rd)} is a neighbor to xi = (0, 0). Let Pk =
(λπr2

d)ke−λπr
2
d

k!
= N e−Nk

k!
,

then the pmf of Ñ is given by:

P{|Ñ| = n} =
∞∑
k=n

Pk

(
k

n

)
Pnυs(1− Pυs)

k−n

=
Pnυse

−N

n!

∞∑
k=n

N k

k − n!
(1− Pυs)k−n

=
(NPυs)

n e−N

n!

∞∑
m=0

(1− Pυs)Nm

m!

=
(NPυs)

n e−NPυs

n!
(A.1)

where
(
k
n

)
Pnυs(1−Pυs)

k−n in the first equality means that out of the k coexisting nodes

in Bxi(rd), only n of them satisfy the neighborhood requirement (i.e., have sufficiently

high channel gain to keep the received power at xi greater than the carrier-sensing

threshold υs). Equation (A.1) shows that |Ñ| has a Poisson distribution with the

mean NPυ.

The probability Pυ is the neighborhood success probability between xi = (0, 0)

and xj ∈ ΨT ∩ Bxi(rd). Let the random variable z denote the random distance

between point xi = (0, 0) and any other point existing in Bxi(rd). The probability

Pυ is governed by a relation between two random variables, namely, the random

channel gain (h) and the random distance (z) between the two points. Following the

PPP definition, the locations of the points are independent and uniformly distributed

across the area of interest. Using this fact, the distribution of the random distance z

can be obtained as fz(z) = 2z
r2
d
, 0 ≤ z ≤ rd [28].

First, I condition on the distance between the two nodes under consideration

(i.e., conditioning on that ‖xj‖ = r) to obtain the expression for their neighborhood
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success probability, which is in fact the complementary cdf of the channel gain (i.e.,

1−Fg(υsr
η

PtA
)). Then, removing the condition on the random distance, the unconditional

neighborhood success probability is obtained as follows:

Pυs =

∫ rd

0

2z

r2
d

(
1− Fh

(
υsz

η

PtA

))
dz =

∫ rd

0

2z

r2
d

Γu(k,
υszη

sPtA
)

Γ(k)
dz. (A.2)

Now I will perform an exact analysis for the distribution of |N|. We will con-

dition on having the test transmitter at the origin (i.e., xi = (0, 0)), and by using

Slivnyak’s theorem, the results will hold for a generic FAPs [1]. A transmitter xj ∈ ΨT

is inside the neighborhood domain of xi if and only if {Ahj ‖xj‖−η > υs}, where hj

are i.i.d. indicating the random channel gain (small scale fading) associated with each

transmitter xj (note that hj is also independent from the location xj). Hence, the

random variable |N| can be expressed as a sum of indicator functions as follows:

|N| =
∑

xj∈ΨT \xi

1{Ahj ‖xj‖−η > υs}. (A.3)

Since the distribution of a random variable is uniquely characterized by its moment

generating function, I will derive the moment generating function of |N| to infer its
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distribution. The moment generating function of |N| can be expressed as

E
[
et|N|

]
= E

[
e
t
∑

xj∈ΨT

1{Ahj‖xj‖−η>υs}
]

= EΨ

 ∏
xj∈ΨT

Ehj
[
e1{Ahj‖xj‖

−η>υs}
]

(i)
= exp

−Eh
∫ 2π

0

∫ (Ahυs )
1
η

0

(1− et)λrdrdθ




(ii)
= exp

{
−
∫ ∞
−∞

πλT

(
Ah

υs

) 2
η

(1− et)fh(h)dh

}

= exp

{
−
∫ ∞

0

πλT

(
Ah

υs

) 2
η

(1− et)h
k−1e−x/s

skυ(k)
dh

}

= exp

{
(et − 1)πλT

(
As

υs

) 2
η Γ(k + 2

η
)

υ(k)

}
(A.4)

where EΨT
[.] is the expectation w.r.t. the point process ΨT and Ehj [.] is the ex-

pectation w.r.t. the channel gain hj. The equality in (i) is due to the probability

generating functional of the PPP and switching the order of the integration and the

expectation [6]. Differentiating (A.4) and equating to zero, the first moment of |N|

is obtained as E[|N|] = πλT

(
As
υs

) 2
η
υ(1 + 2

η
). Hence, the moment generating function

of |N| is in the form E
[
et|N |

]
= exp {(et − 1)E[|N|]} which is the moment generating

function of the Poisson distribution. Note that from (ii), since (η > 2), the only

condition required to hold in order to have a finite mean number of nodes (i.e., finite

mean for |N|) is to have the finite first moment for g.

Fig. 1 shows the effect of the bounding approach on my model. To see the rate

of decay of ε with the distance r I plot Fig. 3.9(a). The figure shows that the

value of rd which gives ε = 10−6 will be different for different fading and path-loss

conditions. However, the probability to have a neighbor transmitter beyond rd decays
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very rapidly. To show that the bounding approach used in the analysis is exact, I

compare the exact and the approximated probability mass functions (pmfs) of the

number of transmitters in the neighborhood domain of a generic transmitter. We

observe in Fig. 3.9(b) that the pmf obtained via the bounding approach matches

exactly with the actual pmf.

A.2 Analysis for (a) and (b) in Pin and Pout

Both (a) in Pin and (b) in Pout have the following form:

P =
ye−(x+y)

x


∞∑
n=1

xn+1

(n+ 1)!

∞∑
t=1

(
1

n+ t+ 1

)
yt−1

(t− 1)!︸ ︷︷ ︸
S
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where x = NPυ, y = NP∗υ(1 − Pυ) for (a) in Pin, while y = NP∗∗υ for (b) in Pout.

Then

S =
∞∑
n=1

xn+1

(n+ 1)!

∞∑
t=1

(
1

n+ t+ 1

)
yt−1

(t− 1)!

=
∞∑
t=1

yt−1

(t− 1)!

∞∑
n=1

(
1

n+ t+ 1

)
xn+1

(n+ 1)!

=
∞∑
t=1

yt−1

(t− 1)!

 −x
t+ 1

+
ex
(∑t

m=0(−1)mxt−m (t−1)!
(t−m−1)!

)
+ (−1)t(t− 1)!

xt
− 1

t


= (−x)

∞∑
t=1

yt−1

(t+ 1)(t− 1)!
+
ex

y

∞∑
t=1

t−1∑
m=0

(−1)mxt−m−1
(
y
x

)t
(t−m− 1)!

+
1

y

∞∑
t=1

(
−y
x

)t
− 1

y

∞∑
t=1

yt

t!

=
x (−1− ey(y − 1))

y2
+
ex

y

∞∑
t=1

t−1∑
m=0

(−1)mxt−m−1
(
y
x

)t
(t−m− 1)!

− 1

x+ y
− (ey − 1)

y

=
x (−1− ey(y − 1))

y2
+

ex+y

x+ y
− 1

x+ y
− ey − 1

y

=
ex+y − 1

x+ y
+

(y − x)(1− ey)− xyey

y2
.

Substituting back in P I have

P =
ye−(x+y)

x

(
ex+y − 1

x+ y
+

(y − x)(1− ey)− xyey

y2

)
=
y
(
1− e−(x+y)

)
x(x+ y)

+ e−x
(

(y − x)(e−y − 1)

xy
− 1

)
.

A.3 The distribution of the random distance w

In this section, the distribution of the random distance (w) between two of xi’s neigh-

bors (as shown in Fig. A.1) is calculated. As both xL and xj are neighbors of the
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xi 
xj 

xL 

z1 

z2 

w 

 

Figure A.1: The distribution of xi’s potential neighbors around xL given that xi and
xL are neighbors.

point xi, both random distances z1 and z2 have the same distribution fz(z) = 2z
r2
d
,

where 0 ≤ z ≤ rd, and the angle θ is uniformly distributed with the pdf, fθ(θ) = 1
π
,

where 0 ≤ θ ≤ π. In order to tackle this problem, I will convert the coordinate

system from the polar coordinates to the Cartesian coordinates. Let xi be the origin

of the Cartesian coordinate and z1 lie on the positive side of the x-axis such that

the point xj will always be on the positive side of the y-axis. Then, xj will always

have the coordinates (a1, 0), where a1 = ‖xi − xj‖ is a random variable which has the

same distribution of z1 given by fa1 = 2a1

r2
d

, 0 ≤ a1 ≤ rd. The point xL will have the

coordinates (a2, b2), where a2 = z2 cos(θ) and b2 = z2 sin(θ). We can obtain the joint

distribution of the two random variables a2 and b2 using the fact that the elementary

probability of an event in a differential area is independent of the coordinate system.

Therefore, I have
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fa2b2(a2, b2)da2db2 = fz2(z2)fθ(θ)dz2dθ

fa2b2(a2, b2)z2dz2dθ =
2z2

r2
d

1

π
dz2dθ

fa2b2(a2, b2) =
2

πr2
d

,


−rd ≤ a2 ≤ rd

0 ≤ b2 ≤ rd

0 ≤ a2
2 + b2

2 ≤ r2
d

(A.5)

The random distance w can be calculated as w2 = (a2− a1)2 + b2
2. Let u = b2 and

v = a1. Then I have a2 = v ±
√
w2 − u2. The Jacobian can be written as

J =

∣∣∣∣∣∣∣∣∣∣
∂a2

∂w
∂a2

∂u
∂a2

∂v

∂b2
∂w

∂b2
∂u

∂b2
∂v

∂a1

∂w
∂a1

∂u
∂a1

∂v

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
w√

w2−u2

−u√
w2−u2 1

0 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
=

w√
w2 − u2

. (A.6)

Then the joint pdf of w, u, and v is given by

fwuv(w, u, v) =
4

πr4
d

wv√
w2 − u2

,



0 ≤ u ≤ rd

0 ≤ v ≤ rd

−rd ≤
(
v ±
√
w2 − u2

)
≤ rd

0 ≤
(
v ±
√
w2 − u2

)2
+ u2 ≤ r2

d.

(A.7)

Although, in general, obtaining the marginal pdf from the joint pdf is straight-

forward, it is very tedious in this particular case. Therefore, the deviation of the

marginal pdf of w is not shown here. After the proper integration of the joint pdf and
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Figure A.2: The distribution of the random distance w.

several manipulation, the marginal pdf of w is given by

fw(w) =
2w

r2
d

−
w2
√

(2rd)2 − w2

πr4
d

− 4w

πr2
d

sin−1

(
w

2rd

)
, 0 ≤ w ≤ 2rd. (A.8)

Fig. A.2 shows that the analytical pdf obtained in (A.8) accurately matches the

histogram obtained from simulations.
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A.4 The distribution of the random distance l

In this section, I derive the distribution of the random distance (l) between the point

xL and any of its neighbors which coexist in the random area Ar(z) (the diagonally

shaded region in Fig. A.3(a)). For the sake of analytical tractability, I approximate

the problem of finding the random distance l when the other points coexist in the

area Ar(z) by including the two areas B and C to Ar(z). Hence, the problem reduces

to finding the distribution of the random distance l between xL and its neighbor

which coexist in the random annulus sector Ãr(z) = Ar(z) + B + C as shown in

Fig. A.3(b). The same approximation was used in [44] to calculate the area of the

random distance Ar(z). Although this approximation was not explicitly sated in [44],

the authors integrated the sector’s angle over the inner and outer radii to calculate

the area of Ar(z). This means that they approximated the area of the random area

Ar(z) with the area of an annular sector as assumed in this paper. The validity of

this assumptions is proved via simulations in Fig. A.4.

�

���

�

�

�
���

��� ���

�
�
���

	




Figure A.3: Approximating the problem to obtain the pdf of the random distance l:
(a) the problem before approximation, (b) the approximated problem.
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Conditioning on z, the cdf of the random distance l can be written as

Pr {x ≤ l|z} =
φ
∫ l
r−z xdx

φ
∫ r
r−z xdx

=
l2 − (r − z)2

r2 − (r − z)2
=
l2 − (r − z)2

z(2r − z)
. (A.9)

Then differentiating with respect to l the conditional pdf if l is given as fl|z(l) =

2l
z(2r−z) .

Multiplying by the pdf of the random distance z, the joint pdf of l and z is given

by

fl,z(l, z) =
2l

z(2r − z)

2z

r2
=

4l

r2(2r − z)
, 0 ≤ z ≤ r, (r − z) ≤ l ≤ r. (A.10)

Finally, integrating over z I get the marginal pdf of the random distance l as

fl(l) =

∫ r

r−z

4l

r2(2r − z)
=

4l

r2
ln

(
r + l

r

)
, 0 < l < r. (A.11)

Fig. A.4 shows that the analytical pdf obtained in (A.11) accurately matches the

histogram obtained from simulations.

A.5 The distribution of the random distance v

In this appendix, I calculate the distribution of the random distance v. The random

distance v is the distance is between a node in the vulnerability circle of the receiver

Rxi and the transmitter xi. The transmitter xi is always located at distance R form

its receiver in a random direction. To derive the distribution of the random distance

v, I will convert the coordinate system from the polar coordinates to the Cartesian

coordinates. Let Rxi always be my origin and xi lie on the positive side of the x-axis.

Then xi will have the coordinates (R, 0) while xj will have the coordinates (x, y).
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Figure A.4: The distribution of the random distance l.

Since the elementary probability of an event in a differential area is independent of

the coordinate system, I have

fxy(x, y)dxdy = fz(z)fθ(θ)dzdθ

fxy(x, y)zdzdθ =
2z

r2
vul

1

π
dzdθ

fxy(x, y) =
2

πr2
vul

,


−rvul ≤ x ≤ rvul

0 ≤ y ≤ rvul

0 ≤ x2 + y2 ≤ r2
vul.

(A.12)
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The random distance v can be calculated as v2 = (x2−R)2 +y2
2. Let u = x2, then

I have y =
√

v2 − (u−R)2. The Jacobian can be written as

J =

∣∣∣∣∣∣∣
∂y
∂v

∂y
∂u

∂x
∂v

∂x
∂u

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
v√

v2−(u−R)2

−u√
v2−(u−R)2

0 1

∣∣∣∣∣∣∣ =
v√

v2 − (u−R)2
. (A.13)

Then the joint pdf of v and u is given by

fvu(v, u) =
2

πr2
vul

v√
v2 − (u−R)2

,


−rvul ≤ u ≤ rvul

0 ≤
√

v2 − (u−R)2 ≤ rvul

0 ≤ v2 − (u−R)2 + u2 ≤ r2
vul.

(A.14)

The marginal pdf of v is given by

fv(v) =


∫ v+R

−v+R
2

πr2
vul

v√
v2−(u−R)2

, 0 ≤ v ≤ (rvul −R)∫ r2+R2−v2

2R

−v+R
2

πr2
vul

v√
v2−(u−R)2

, (rvul −R) < v ≤ (rvul +R)

(A.15)

which can be expressed as

fv(v) =


2v
r2
vul
, 0 ≤ v ≤ (rvul −R)

v
r2
vul
− 2v

πr2
vul

sin−1
(

v2+R2−r2
vul

2vR

)
, (rvul −R) < v ≤ (rvul +R).

(A.16)

Fig. A.5 shows that the analytical pdf obtained in (A.16) accurately matches the

histogram obtained from simulations.
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Figure A.5: The distribution of the random distance v.
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B.1 Derivation of pdfs for the Random variables Ra/b and ha/b

The cdf of the distance Ra = min
i

(‖ai‖), ∀ai ∈ Ψ can be easily derived from the PPP

null probability as follows:

FRa(r) = P {Ra ≤ r} = 1− e−Aπr2

, r > 0. (B.1)

Differentiating the cdf of Ra, the pdf of Ra is obtained as

fRa(r) =
dFRa(r)

dr
= 2πAre−Aπr2

, r > 0. (B.2)

Similarly, the pdf of Rb is obtained as

fRb(r) = 2πBre−Bπr2

, r > 0. (B.3)
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Let Ra/b =
(
Ra
Rb

)η
, then the cdf of Ra/b can be written as

FRa/b(r) = P
{
Ra/b < r

}
= P

{(
Ra

Rb

)η
< r

}
=

∫
FRa(r

1
ηRb)fRb(Rb)dRb

=

∫ ∞
0

(1− e−πAr
2
η R2

b )2πBRbe
−πBR2

bdRb

= 1−
∫ ∞

0

2πBRbe
−πR2

b(r
2
η A+B)dRb

= 1− B
r

2
ηA+ B

, 0 ≤ r ≤ ∞. (B.4)

Differentiating the cdf of Ra/b, the pdf of Ra/b is obtained as

fRa/b(r) =
2r

2
η−1AB

η
(
r

2
ηA+ B

)2 , 0 ≤ r ≤ ∞. (B.5)

Let ha/b =
hai
hbi

, then the cdf of ha/b is given by

Fha/b(h) = P
{
ha/b < h

}
= P

{
ha
hb

< h

}
=

∫
Fha(hhb)fhb(hb)dhb

=

∫ ∞
0

(1− e−hhbµa)µbe−hbµbdhb

= 1− µb
hµa + µb

, 0 ≤ h ≤ ∞. (B.6)

Differentiating the cdf of ha/b, the pdf of ha/b is obtained as

fha/b(h) =
µaµb

(hµa + µb)
2 , 0 ≤ h ≤ ∞. (B.7)
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B.2 Proof of Lemma 5.5.1

Conditioning on a Voronoi cell area V , the number of macro users Nv in that Voronoi

cell is a Poisson random variable with the probability mass function (pmf) given by

P {Nv = n} =
(UbV )ne−UbV

n!
. (B.8)

Note that in (B.8) I account only for macro users by considering Ub. The Voronoi

cell area V is a random variable that is accurately approximated by the gamma

distribution fv(v) ≈ (Bc)cvc−1e−cBv

Γ(c)
, 0 ≤ v < ∞, where c = 3.575 is a constant defined

for the Voronoi tessellation in the R2 [63, 117]. Therefore, the unconditional pmf of

Nv is given by

fNv(n) =

∫ ∞
0

(Ubv)n e−Ubv

n!
fV (v)da

fNv(n) =
(Ub)n

n!

∫ ∞
0

vne−Ubv
(Bc)cvc−1e−cBv

Γ(c)
da

=
(Ub)n (Bc)c

(n)!Γ(c)

∫ ∞
0

vn+c−1e−v(cB+Ub)dv

(i)
=

(Ub)n (Bc)c

(n)!Γ(c)

Γ(n+ c)

(cB + Ub)n+c

∫ ∞
0

(cB + Ub)n+c

Γ(n+ c)
vn+c−1e−v(cB+Ub)dv︸ ︷︷ ︸
C

=
Γ(n+ c)

Γ(n+ 1)Γ(c)

(Ub)n (Bc)c

(cB + Ub)n+c

where the integration C = 1 in (i) because it is an integration of a gamma pdf over

its entire support domain. We will denote the cdf of Nv by FNv(k) and it is given by

FNv(k) =
k∑

n=0

Γ(n+ c)

Γ(n+ 1)Γ(c)

(Ub)n (Bc)c

(cB + Ub)n+c
, 0 ≤ k <∞. (B.9)
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B.3 Proof of Lemma 5.5.2

Without loss in generality I will condition of having the test FAP at the origin,

by Slivnyak’s theorem, the results will hold for a generic FAP [8]. A macro BS

bi ∈ Ψb is inside the macro SSR of the test FAP located at the origin if and only if

{Pbhbi ‖bi‖
−η > υs}. Hence, the random variable Nb can be expressed as a sum of

indicator functions as

Nb =
∑
bi∈Ψb

1{Pbhbi ‖bi‖
−η > υs}. (B.10)

Since the distribution of a random variable is uniquely characterized by its moment

generating function (mgf), I will derive the mgf of Nb to infer its distribution. The

mgf of Nb can be expressed as

E
[
etNb

]
= E

[
e
t
∑

bi∈Ψb

1{Pbhbi‖bi‖
−η>υs}

]

= EΨb

[ ∏
bi∈Ψb

Ehbi
[
et1{Pbhbi‖bi‖

−η>υs}
]]

(iii)
= exp

−Ehb
∫ 2π

0

∫ (
Pbhb
υs

) 1
η

0

(1− et)Brdrdθ


= exp

{
−
∫ ∞

0

Bπ
(
Pbhb
υs

) 2
η

(1− et)µbe−µbhbdhb

}

= exp

{
−(1− et)πB

(
Pb
µbυs

) 2
η

Γ(1 +
2

η
)

}
(B.11)

where EΨb
[.] is the expectation w.r.t. the point process Ψb and Ehbi [.] is the expec-

258



Appendix B

tation w.r.t. the channel gain hbi . The equality (iii) is by the probability generating

functional of the PPP and switching the order of the integration and the expecta-

tion [6, 12]. Differentiating (B.11) and equating with zero, the first moment of Nb is

obtained as E[Nb] = πB
(

Pb
µbυs

) 2
η

Γ(1 + 2
η
). Hence, the moment generating function

of Nb is in the form E
[
etNb

]
= exp {(et − 1)E[Nb]} which is the moment generating

function of the Poisson distribution.

B.4 Proof of Lemma 5.5.3

Due to the sequential assignment of the channels, conditioning on the number of BSs

in the macro SSR to be Nb, the number of occupied channels is equal to the number

of users in the most congested BS (i.e., the BS with the highest number of associated

users). Since each BS bi ∈ Ψb has Nvi users1, I have

P {Ku ≤ k} = P
{

max
i=1,2,...,Nb

(Nvi) ≤ k

}
= (FNv(k))Nb . (B.12)

According to the theory of total probability, I have

P {Ku ≤ k} =
∞∑
j=0

P {Nb = j}P
{

max
i=1,2,...,j

(Nvi) ≤ k

}

=
∞∑
j=0

(ϕb)
je−ϕb

j!
(FNv(k))j

= e−ϕb(1−FNv (k)). (B.13)

1The random variables Nvi are i.i.d. and follow the distribution of Nv.
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B.5 Reduction of Lemma 5.6.1 for η = 4

For η = 4, I have

Eh
[
(Ph)

2
η γ

(
1− 2

η
, sPhr−ηs

)]
=

∫ ∞
0

(Ph)
1
2γ

(
1− 1

2
, sPhr−4

s

)
µe−µhdh

=

∫ ∞
0

µ(Ph)
1
2

∫ sPr−4
s

0

(uh)−
1
2 e−uhhdue−µhdh

=

∫ sPr−4
s

0

√
Pµ(u)−

1
2

(u+ µ)2
du

=
√
Pµ

[
r−2
s

√
Ps

µ(µ+ sPr−4
s )

+
1

2µ

(
2
√
µ

arctan

(√
Psr−2

s√
µ

))]

=
r2
sP
√
s

(µr4
s + Ps)

+

√
P
√
µ

(
π

2
− arctan

(
r2
s

√
µ

√
Ps

))
. (B.14)
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C.1 Proof of Lemma 6.3.1

We will derive the distribution of the number of channels used within the SSR of a

generic SBS by induction. Conditioning on having 2 MBSs in the SSR of the FAP

s ∈ Ψa, the probability that there are k channels used in the SSR is given by:

P {Ku = k | |Sb1 | = t, t ≤ k, |Na| = 2} =

k∑
p=k−t

P {|Sb2 | = p}

(
p

p− (k − t)

)(
t

|S|

)p−(k−t)(
1− t

|S|

)(k−t)
.

Unconditioned on the number of channels used within the MBS b1, I have

P {Ku = k | |Na| = 2} =

k∑
t=0

P {|Sb1 | = t}
k∑

p=k−t
P {|Sb2 | = p}

(
p

p− (k − t)

)(
t

|S|

)p−(k−t)(
1− t

|S|

)(k−t)
= P2(k).
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Similarly, conditioning that there are 3 MBSs within the SSR of the test SBS, the

probability that there are k channels used in the SSR is given by:

P {Ku = k | |Sb1 ∪ Sb2 | = t, t ≤ k, |Na| = 3} =

k∑
p=k−t

P {|Sb3 | = p}
(

p

p− (k − t)

)(
t

|S|

)p−(k−t)(
1− t

|S|

)(k−t)
.

Unconditioned on the number of channels used within the MBSs b1 and b2, I have

P {Ku = k| |Na| = 3} =

k∑
t=0

P2(t)

k∑
p=k−t

P {|Sb3 | = p}

(
p

p− (k − t)

)(
t

|S|

)p−(k−t)(
1− t

|S|

)(k−t)
= P3(k).

By induction and deconditioning on |Na|, Lemma 6.3.1 can be obtained.
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D.1 Proof of Lemma 7.3.1

For a generic UE u, let ro = min
bi∈Ψ
‖u− bi‖. The uplink distance ro has the Rayleigh

distribution fro(r) = 2πλre−πλr
2
, 0 ≤ r ≤ ∞ [8,12]. The transmit power for a generic

UE is given by P = ρor
η
o such that 0 ≤ P ≤ Pu. Therefore, the pdf of P is given by

fP (x) =
2πλx

2
η
−1e−πλ(

x
ρo

)
2
η

ηρ
2
η
o

∫ Pu
0

2πλ

ηρ
2
η
o

y
2
η
−1e−πλ(

y
ρo

)
2
η

dy

=
2πλx

2
η
−1e−πλ(

x
ρo

)
2
η

ηρ
2
η
o

(
1− e−πλ(

Pu
ρo

)
2
η

) , 0 ≤ x ≤ Pu.

Note that the pdf of P is normalized due to the truncated channel inversion power

control. The αth moment of P is given by
∫ Pu

0
xαfP (x)dx and the lemma is obtained.

D.2 Proof of Theorem 7.3.1

For the interference experienced by a cellular uplink, I find the Laplace Transform

(LT) of the aggregate interference at a tagged BS located at the origin. Note that

orthogonal channel assignment per BS brings correlations among the locations of the
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interfering UEs as well as with the location of the tagged BS, which highly complicates

the analysis. The derivation here is based on the three facts and a key assumption

listed below:

• Fact #1: the average useful signal received at any BS is equal to the cutoff

threshold ρo.

• Fact #2: the average interference received from any single interfering UE is

strictly less than ρo.

• Fact #3: at any time instant each BS will have a single user served per channel,

and hence, the intensity of interfering UEs on each channel is λ.

• Key assumption: the interfering UEs constitute a PPP.

Note that Fact #1 and Fact #2 are a direct consequence of the association policy

and power control, while Fact #3 is because each BS assigns a unique channel for

each of its associated users. Hence, the aggregate interference received at the tagged

BS can be written as

I =
∑

ui∈Φ̃\{o}

1
(
Pi ‖ui‖−η < ρo

)
Pihi ‖ui‖−η (D.1)

where Ψ̃ is a PPP with intensity λ representing the interfering UEs, and 1(.) is

the indicator function which takes the value 1 if the statement (.) is true and zero

otherwise. Note that the indicator function in (D.1) captures the correlation between

the interfering UEs and the tagged BS. The LT of the aggregate interference from the
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interfering UEs received at the tagged BS is obtained as

LI(s) = E
[
e−sI

]
= E

[
e
−s

∑
ui∈Φ̃\{o}

1(Pi‖ui‖−η<ρo)Pihi‖ui‖−η
]

(i)
= EΦ̃

 ∏
ui∈Φ̃\{o}

EPi,hi

e−s1
(
‖ui‖>

(
Pi
ρo

) 1
η

)
Pihi‖ui‖−η




(ii)
= exp

(
−2πλ

∫ ∞(
P
ρo

) 1
η
EP,h

[(
1− e−sPhx−η

)]
xdx

)
(iii)
= exp

(
−2πλ

∫ ∞(
P
ρo

) 1
η
EP
[(

1− 1

1 + sPx−η

)]
xdx

)

= exp

(
−2πλ

∫ ∞(
P
ρo

) 1
η
EP
[

sPx

xη + sP

]
dx

)
(iv)
= exp

(
−2πλs

2
ηEP

[
P

2
η

] ∫ ∞
(sρo)

−1
η

y

yη + 1
dy

)
(D.2)

where Ex[.] is the expectation with respect to the random variable x, (i) follows

from independence between Φ̃, P , and h, (ii) follows for the probability generation

functional of the PPP [8], (iii) follows from the LT of h, and (iv) follows by changing

the variables y = x
(SP ) 1

η

. The theorem is obtained be substituting (D.2) in (2.5) for

s = β
ρo

and substituting the value of E[P
2
η ] from Lemma 4.5.1.

D.3 Proof of Theorem 7.3.2

Since the SINR is a strictly positive random variable, the average spectral efficiency

can be obtained as
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R = E[ln (1 + SINR)]

=

∫ ∞
0

P {ln (1 + SINR) > t} dt

=

∫ ∞
0

P
{

SINR >
(
et − 1

)}
dt

(v)
=

∫ ∞
0

e−
(et−1)σ2

ρo LI
(

(et − 1)

ρo

)
dt

(vi)
=

∫ ∞
0

1

x+ 1
e−

xσ2

ρo LI
(
x

ρ0

)
dx (D.3)

where (v) follows from (7.4), and (vi) is obtained by changing the variables x =

(et − 1). The theorem is obtained by substituting the value of LI (s) from (D.2) in

(D.3) for s = x
ρo

and substituting the value of E[P
2
η ] from Lemma 4.5.1.

D.4 Proof of Theorem 7.4.1

For the interference experienced by a cellular uplink from UEs in tier j, I find the

LT of the aggregate interference at a tagged BS located at the origin. Similar to

Appendix D.2, this proof is based on the 3 facts and a key assumption listed below:

• Fact #1: the average useful signal received at any BS in the jth tier is equal

to the cutoff threshold ρ
(j)
o .

• Fact #2: the average interference received from any single interfering UE in

the kth tier is strictly less than ρ
(k)
o .

• Fact #3: at any time instant each BS in tier k will have a single user served

per channel, and hence, the intensity of interfering UEs from the kth tier on

each channel is λk.
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• Key assumption: the interfering UEs from the kth tier constitute a PPP with

intensity λk.

Hence, the aggregate interference from UEs in tier k received at the tagged BS

can be written as

Ik =
∑

ui∈Φ̃k\{o}

1
(
Pki ‖ui‖−η < ρ(k)

o

)
Pkihi ‖ui‖−η (D.4)

where Ψ̃k is a PPP with intensity λk representing the interfering UEs. Note that the

indicator function in (D.4) captures the correlation among the locations of the inter-

fering UEs and the location of the tagged BS. The LT of the aggregate interference

from UEs in tier k received at the tagged BS in tier j is obtained as

LIk(s) = E

e−s ∑
ui∈Φ̃k\{o}

1

(
Pki‖ui‖−η<ρ

(k)
o

)
Pkihi‖ui‖−η


= exp

−2πkλk

∫ ∞(
Pk

ρ
(k)
o

) 1
η
EPk,h

[(
1− e−sPkhx−η

)]
xdx


= exp

−2πkλk

∫ ∞(
Pk

ρ
(k)
o

) 1
η
EPk

[
sPkx

xη + sPk

]
dx


= exp

(
−2πkλks

2
ηEPk

[
P

2
η

k

] ∫ ∞
(sρ

(k)
o )

−1
η

y

yη + 1
dy

)
. (D.5)

The theorem is obtained by substituting (D.5) in (7.5) for s = β

ρ
(j)
o

and substituting

the value of E[P
2
η

k ] from Lemma 4.5.2.

D.5 Proof of Lemma 7.4.2

Let rk = min
bi∈Ψk

(‖u− bi‖) be the distance from a UE to its nearest BSs from each of

the coexisting tiers. Then, frk(r) = 2πλkre
−πλkr2

, 0 ≤ r ≤ ∞. Since a UE connects
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to the BS with the best link quality, then given that a generic UE u is connected to

a generic BS from the jth tier, I have r
ηj
j ≤ rηkk ∀k, k 6= j. Using this fact, I can write

r
ηj
j = min

k
(rηkk ), and hence, the transmit power of a generic UE connected to a generic

BS in the jth tier is given by Pj = ρ
(j)
o min

k
(rηkk ) such that 0 ≤ Pj ≤ Pu. Hence, the

cdf of the transmit power can be written as

FPj(x) =
1− e

−
∑K
k=1 πλk

(
x

ρ
(j)
o

) 2
ηk

1− e
−
∑K
b=1 πλb

(
Pu

ρ
(j)
o

) 2
ηb

(D.6)

and the pdf of the transmit power is given by

fPj(x) =

∑K
k=1

2πλkx
2
ηk
−1

ηk(ρ
(j)
o )

2
ηk

1− e
−
∑K
b=1 πλb

(
Pu

ρ
(j)
o

) 2
ηb

e
−
∑K
a=1 πλa

(
x

ρ
(j)
o

) 2
ηa

. (D.7)

The αth moment of Pk cannot be obtained in closed from except for a common

path-loss exponent η.

D.6 Proof of Theorem 7.4.3

This proof is based on the 3 facts and key assumption listed in Appendix D.4. The

aggregate interference from UEs in tier k received at the tagged BS from tier j can

be written as

Ik =
∑

ui∈Φ̃k\{o}

1
(
Pki ‖ui‖−ηj < ρ(k)

o

)
Pkihi ‖ui‖−ηj . (D.8)

Note that, although the path-loss exponents are different, as long as the UEs associate

based on the link quality, (D.8) will hold ture. Similar to Appendix D.4, after some
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mathematical manipulations, the theorem can be proved.
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