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Abstract

The thesis is based on the use of mathematical theories and techniques to gain qual-

itative and quantitative insight into the transmission dynamics of hepatitis C virus

(HCV) in an IDU (injecting drug user) population. A deterministic model, which

stratifies the IDU population into eight mutually-exclusive compartments (based on

epidemiological status), is considered. Rigorous qualitative analysis of the model

(both in the absence or presence of anti-HCV treatment) establishes, for the first

time, the presence of the phenomenon of backward bifurcation in HCV transmission

dynamics. The presence of the backward bifurcation phenomenon, which is char-

acterized by the co-existence of asymptotically-stable HCV-free and HCV-present

equilibria when the associated reproduction number of the model is less than unity,

makes effective control of the disease difficult (since, in a backward bifurcation situa-

tion, the classical epidemiological requirement of having the associated reproduction

number of the model to be less than unity, while necessary, is no longer sufficient for

such effective control (or elimination)). Three routes (or causes) to such a dynamic

phenomenon have been established. Furthermore, five main parameters that play

a dominant role on the transmission dynamics of the disease have been identified.

Numerical simulations of the model show that the re-infection of recovered individu-

als has marginal effect on the HCV burden (as measured in terms of the cumulative

incidence and prevalence of the disease) in the IDU community.
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Chapter 1

Introduction

Hepatitis C, a blood-borne viral infectious disease caused by the single-strained RNA

Hepatitis C virus (HCV) [2, 10], continues to pose major public health challenges

globally. The World Health Organization (WHO) recently estimated the HCV preva-

lence to be between 2-3% (i.e., 130-170 million people currently live with HCV in-

fection globally) [35, 43, 54, 56]. Countries in Africa and Asia have the highest

reported prevalence rates, while industrialized countries in North America, Northern

and Western Europe and Australia have lower prevalence (Germany (0.6%), Canada

(0.8%), France (1.1%), and Australia (1.1%) have relatively low rates of HCV sero-

prevalence, with the USA (1.8%), Japan (1.5-2.3%), and Italy (2.2%) having slightly

higher seroprevalence rates) [43, 54]. A global map of HCV, showing the geographic

spread of the disease, is depicted in Figure 1.1.

The primary mode of HCV transmission is through blood contact [1, 56]. In par-

ticular, there are three main age-specific transmission patterns [1, 48]. The first is the

30-49 year age (middle age) group in developed countries (such as the United King-

dom and USA) [35, 48]. For this age group, injecting drug use (IDU) is the major

cause of HCV infection (via needle and syringe-sharing; with over 80% of new cases

attributed to injecting drugs use) [35, 48]. The second transmission pattern is for
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Figure 1.1: Estimated prevalence of HCV infection by WHO region [43].

the elderly (as is the case in Japan [30, 39, 48, 53]). The third transmission pattern

entails all age groups. For these two later categories, the causes (or risk factors) of

HCV infection include unsafe therapeutic injections (performed by both healthcare

professionals and non-professionals) and blood transfusion from unscreened donors.

In addition to the aforementioned HCV risk factors, other factors, such as expo-

sure to blood by the healthcare workers (mostly through contact with contaminated

needles), mother-to-child transmission, sex with an infected partner, sex with mul-

tiple partners and other healthcare-related procedures, further contribute to HCV

transmission [43].

The common symptoms of HCV infection include jaundice, dark urine, fatigue,

nausea, vomiting, and abdominal pain [14, 28]. While the majority of patients with

acute HCV will progress to chronic infection [2, 10, 14], about 25% of cases clear

the virus and build natural immunity against re-infection [21]. The mean incu-

bation period for acute HCV infection is 7 weeks [27]. Unfortunately, up to 90%
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of HCV-infected individuals (acute or chronic) may not be aware of their infec-

tion status (i.e., they are asymptomatically-infected). Consequently, if undetected

and untreated, about 7− 18% of these (asymptomatically-infected) individuals will

progress to develop liver disease, such as liver fibrosis, cirrhosis, hepatocellular car-

cinoma, within 20 years (and about 5%-7% of these patients may ultimately die)

[2, 10, 14, 17, 28, 35, 54, 56].

1.1 Control Strategies

HCV-infected individuals can be treated using a combination therapy with pegylated

interferon and ribavirin (having a response rate of 40% to 80%) [14, 19] (furthermore,

several new anti-HCV drugs have recently been approved and/or are undergoing

various stages of clinical trials [33]). Although there is currently no safe and effective

vaccine for use against HCV infection in humans, efforts are underway to develop

one [14, 17]. Another intervention strategy for controlling HCV transmission among

IDUs is increasing the access to unused syringes and needles, aimed at reducing

the frequency of sharing/unsafe injection needles (it should, however, be mentioned

that although this approach may have positive effect on reducing HCV transmission,

there is no evidence for substantial reductions in HCV prevalence) [36, 46, 49].

1.2 Literature Review

Several mathematical and statistical models have been developed and used to gain

insight into the transmission dynamics of HCV in an IDU population [8, 9, 31, 35,

45, 51, 52]. Corson et al. [9] developed a deterministic compartmental mathematical

model for the spread of HCV in an IDU population that has been separated into two

groups (naive and experienced) based on the time since the onset of injection (and

includes measures that allow for the prevention of HCV infection). Sutton et al. [45]
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used statistical modelling to estimate the force of infection of HCV and hepatitis B

virus in England and Wales (using saliva sample of IDUs) for 1998-2003.

Vickerman et al. [51] used a deterministic model to simulate the transmission of

HCV in IDUs in London, England and assessed the impact of intervention measures

that reduced string and needle sharing in some of the targeted IDU populations. El-

basha [14] introduced the effect of the re-infection of recovered chronically-infected

individuals (and associated heterogeneity between re-infected individuals and pri-

mary infected individuals) on HCV transmission dynamics via the use of a deter-

ministic model. Furthermore, Elbasha [14] provided a rigorous qualitative analysis of

a special case of the model in [14] (where re-infected individuals behave in the same

manner as primary infected individuals, with respect to disease infectivity, recovery,

progression and treatment).

1.3 Objectives of the Thesis

The main purpose of this thesis is to gain qualitative insight into the effect of treat-

ment on the transmission dynamics of HCV in an IDU population. To achieve

this objective, the treatment model developed in [14] will be considered (and fully

analysed, unlike the special case considered in [14]). Furthermore, the effect of

uncertainties on the associated parameters of the model (on the overall simulation

results obtained) will be assessed using Latin Hypercube Sampling (LHS) and Partial

Ranked Correlation Coefficients (PRCC) [4, 34, 41]. Some of the specific questions

to be addressed in the thesis include:

(1) What are the main qualitative features of a basic HCV transmission model

(in the absence of treatment), which allows for the re-infection of recovered

individuals? The aim here is to determine conditions for the existence and

asymptotic stability of the associated equilibria of the basic model, as well as

4



to characterize the types of bifurcation the model may undergo.

(2) What is the qualitative impact of the use of anti-HCV drugs in HCV transmis-

sion dynamics? In particular, considering the fact that a few active IDUs are

treated [36], does the use of anti-HCV treatment in the IDU population offer

considerable effect on HCV prevalence in the population?

(3) What is the qualitative (and public health) impact of the heterogeneity be-

tween primary infection and re-infection (of recovered individuals) in HCV

transmission dynamics? In particular, does the resulting model (which al-

lows for such a heterogeneity) exhibit the phenomenon of backward bifurcation

[24, 25, 38, 40, 42]? If yes, what are the main drivers (causes) of this dynamic

behaviour?

(4) What is the qualitative, and quantitative, impact of the effectiveness levels of

an anti-HCV treatment strategy implemented within the IDU population?

Since the models to be considered in this thesis monitor human populations, all their

associated parameters are assumed to be non-negative.

1.4 Thesis Outline

The thesis is organized as follows. Chapter 1 covers the introductory epidemiological

aspects of HCV transmission dynamics. The basic mathematical concepts relevant

to the thesis are reviewed in Chapter 2. A basic treatment-free model for HCV

transmission dynamics in an IDU population is considered, and rigorously analysed,

in Chapter 3. The basic model is extended, in Chapter 4, to incorporate the effect of

anti-viral drug treatment. The resulting treatment model is also rigorously analysed.

Uncertainty and sensitivity analyses of both treatment-free and treatment models

5



are carried out in Chapters 3 and 4, respectively. Numerical simulation results are

also presented.
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Chapter 2

Mathematical Preliminaries

This chapter introduces some of the basic mathematical definitions, theories and

methodologies relevant to the thesis.

2.1 Equilibria of Autonomous Systems of Ordi-

nary Differential Equations (ODEs)

It should be mentioned that, in this thesis, only autonomous systems of ODEs, given

by (where a dot represents differentiation with respect to time t)

ẋ = f(x), x ∈ Rn, (2.1)

are considered.

Definition 2.1. A point x̄ ∈ Rn is called an equilibrium point of the autonomous

system (2.1) if f(x̄) = 0.

Theorem 2.1. (Fundamental Existence- Uniqueness Theorem [40]). Let E be an

open subset of Rn containing x0 and assume that f ∈ C1(E). Then, there exists an
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a > 0 such that the initial value problem:

ẋ = f(x), x(0) = x0,

has a unique solution x(t) on the interval [−a, a].

Definition 2.2. [40]. The Jacobian matrix of f at the equilibrium x̄, denoted by

Df(x̄), is the matrix,

J(x̄) =


∂f1
∂x1

(x̄) · · · ∂f1
∂xn

(x̄)

...
...

...

∂fn
∂x1

(x̄) · · · ∂fn
∂xn

(x̄)

 ,

of partial derivatives of f evaluated at x̄.

Definition 2.3. [40]. The linear system ẋ = Ax, with the matrix A = Df(x̄), is

called the linearization of the system (2.1) at the equilibrium x̄.

Definition 2.4. [40]. An equilibrium point x̄ is called a hyperbolic equilibrium point

of the autonomous system (2.1) if none of the eigenvalues of Df(x̄) has zero real

part.

Definition 2.5. [40]. An equilibrium point that is not hyperbolic is called non-

hyperbolic.

2.2 Hartman-Grobman Theorem

Let,

ẋ = f(x), x ∈ Rn, (2.2)

ẏ = g(y), y ∈ Rn,
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be two Cr (r ≥ 1) vector fields on Rn.

Definition 2.6. [55]. The dynamics generated by the vector fields f and g of (2.2)

are said to be locally Ck conjugate (k ≤ r) if there exists a Ck diffeomorphisim h

which takes the orbits of the flow generated by f , φ(t, x), to the orbits of the flow

generated by g, ψ(t, y), preserving orientation and parameterization by time.

Theorem 2.2. (Hartman-Grobman Theorem [55]). Consider a Cr(r ≥ 1) vector

field

ẋ = f(x), x ∈ Rn, (2.3)

with domain of f to be a large open subset of Rn. Suppose also that (2.3) has

equilibrium solutions which are hyperbolic. Consider the associated linear vector

field

ξ̇ = Df(x̄)ξ, ξ ∈ Rn. (2.4)

Then the flow generated by (2.3) is C0 conjugate to the flow generated by the lin-

earized system (2.4) in a neighbourhood of the equilibrium point x = x̄.

It should be noted that the Hartman-Grobman Theorem guarantees a homomor-

phism between the flow of the non-linear ODE system and that of its linearization.

In general, near a hyperbolic equilibrium point x̄, the non-linear system ẋ = f(x)

has the same qualitative structure as the linear system ẋ = Ax with A = Df(x̄).

2.3 Stability Theory

Definition 2.7. [55]. The equilibrium x̄ is said to be stable if given ε > 0, there exists

a δ = δ(ε) > 0 such that, for any solution y(t) of (2.1) satisfying |x̄− y(t0)| < δ,

|x̄− y(t)| < ε for t > t0, t0 ∈ R.

Definition 2.8. [55]. The equilibrium x̄ is said to be asymptotically-stable if it is

9



stable and there exists a constant c > 0 such that, for any solution y(t) of (2.1)

satisfying |x̄− y(t0)| < c, then lim
t→∞
|x̄− y(t)| = 0.

Definition 2.9. [55]. An equilibrium solution which is not stable is said to be un-

stable.

Theorem 2.3. [55]. Suppose all the eigenvalues of Df(x̄) have negative real parts.

Then the equilibrium solution x = x̄ of the system (2.1) is locally asymptotically

stable, and unstable if at least one of the eigenvalues has positive real part.

2.4 Center Manifold Theory

Center Manifold theory is a mathematical technique for reducing the dimensionality

of a given non-linear system near an equilibrium point. Consider the non-linear

dynamical system (2.1). Let,

ẋ = Ax, (2.5)

be the corresponding linearized system (with A = Df(x̄)) near a hyperbolic equilib-

rium point x̄.

Definition 2.10. [55]. The stable, unstable, and center subspaces of the linear sys-

tem (2.5) are defined by (where A ∈Mnn(R))

Es = span {uj, vj; aj < 0} ,

Eu = span {uj, vj; aj > 0} ,

Ec = span {uj, vj; aj = 0} ,

where wj = uj ± ivj are eigenvectors corresponding to the eigenvalues λj = aj ± ibj.

Remark 2.1. [55]. For a hyperbolic flow of a linear system, Rn = Es ⊕ Ec. These

subspaces become manifolds for nonlinear ODEs.
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Theorem 2.4. (Stable Manifold Theory [40]). Let f ∈ C1(E) where E is an open

subset of Rn containing the origin, and let φt be the flow of non-linear system (2.1).

Suppose that f(0) = 0 and Df(0) has k eigenvalues with negative real parts, and

q = n − k eigenvalues with positive real parts. Then, there exists a k-dimensional

differentiable manifold S tangent to the stable subspace Es of the linear system (2.5)

at 0 such that for all t ≥ 0, φt(S) ⊂ S and for all x0 ∈ S

lim
t→∞

φt(x0) = 0,

and there exists a q-dimensional differentiable manifold U tangent to the unstable

subspace Eu of the linear system (2.5) at 0 such that for all t ≥ 0, φt(U) ⊂ U and

for all x0 ∈ U

lim
t→−∞

φt(x0) = 0.

Definition 2.11. [40]. Let φt be the flow of non-linear system (2.1). The global

stable and unstable manifolds of (2.5) at 0, defined, respectively, by

W s(0) =
⋃
t≤0

φt(S),

and,

W u(0) =
⋃
t≥0

φt(U),

are also, respectively, referred to as the global stable and unstable manifolds of the

origin.

Theorem 2.5. [40]. Let f ∈ Cr(E) where E is an open subset of Rn containing

the origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0) has k eigenvalues

with negative real parts, j eigenvalues with positive real parts, and m = n − k −

j eigenvalues with zero real parts. Then, there exists an m− dimensional center

manifold W c(0) of class Cr tangent to center subspace Ec of (2.5) which is invariant
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under the flow φt of (2.1).

Lemma 2.1. [40]. The local center manifold of the system (2.1) at 0,

W c
loc(0) = {(x, y) ∈ Rm × Rk | y = h(x) for |x| < δ}, (2.6)

for some δ > 0, where h ∈ Cr(Nδ(0)), h(0) = 0 and Dh(0) = 0 since W c(0) is

tangent to the center subspace

Ec = {(x, y) ∈ Rm × Rk | y = 0},

at the origin.

Theorem 2.6. (Center Manifold Theory [40]). Let f ∈ Cr(E) where E is an open

subset of Rn containing the origin and r ≥ 1. Suppose that f(0) = 0 and that Df(0)

has m eigenvalues with zero real parts and k eigenvalues with negative real parts,

where m+ k = n. The system (2.1) then can be written in diagonal form

ẋ = Cx+ F (x, y),

ẏ = Py +G(x, y),

where (x, y) ∈ Rm × Rk, C is a square matrix with m eigenvalues having zero real

parts, P is a square matrix with k eigenvalues with negative real parts, and F (0) =

G(0) = 0, DF (0) = DG(0) = 0; furthermore, there exists a δ > 0 and a function

h ∈ Cr(Nδ(0)) that defines the local center manifold (2.6) and satisfies

Dh(x)[Cx+ F (x, h(x))]− Ph(x)−G(x, h(x)) = 0

for |x| < δ; and the flow on the center manifold W c(0) is defined by the system of
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differential equations

ẋ = Cx+ F (x, h(x))

for all x ∈ Rmwith |x| < δ.

Theorems 2.5 and 2.6 can be used to determine the flow near non-hyperbolic equi-

librium points [5, 40].

2.5 Bifurcation Theory

Real-life systems arising in the natural and engineering sciences typically involve pa-

rameters which appear in their governing system of equations. As these parameters

are varied, changes may occur in the qualitative structures of the solutions of the sys-

tem of equations (modelling the real-life phenomenon) for certain parameter values.

These changes are called bifurcations [26]. The parameter values where bifurcations

occur are called bifurcation values (or bifurcation points). A formal definition of

bifurcation at a point is given below.

Definition 2.12. [55]. Let

ẋ = f(x, µ), x ∈ Rn, µ ∈ R, (2.7)

be a one-parameter family of one-dimensional ODEs. An equilibrium solution of

(2.7) given by (x, µ) = (0, 0) is said to undergo bifurcation at µ = 0 if the flow for

µ near zero and x near zero is not qualitatively the same as the flow near x = 0 at

µ = 0.

There are numerous types of bifurcations, including saddle-node, forward (trans-

critical), pitchfork, Hopf, and backward bifurcation [24, 25, 38, 40, 42]. Two of

these bifurcations (forward and backward) are relevant to the thesis, and are briefly

discussed below.
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2.5.1 Forward bifurcation

The dynamics of disease transmission models is often characterized by the reproduc-

tion number (R0), a threshold quantity which measures the average number of new

cases generated by a typical infected individual when introduced into a completely-

susceptible population [3, 12, 25]. Typically, when R0 is less than unity, a small

stream of infected individuals will not generate large outbreaks (and the disease dies

out in time). In such a case, the disease-free equilibrium (DFE) of the model is

asymptotically-stable. On the other hand, the disease persists in the population if

R0 exceeds unity (where, in this case, an asymptotically-stable endemic equilibrium

point (EEP) exists [3, 25]). This phenomenon, where the DFE and an EEP of a model

exchange their stability at R0 = 1, is known as forward bifurcation [22, 25, 42, 57].

Figure 2.1 depicts a forward bifurcation diagram.

Figure 2.1: Forward bifurcation diagram, showing the infection rate (λ) as a function
of the basic reproduction number (R0).
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2.5.2 Backward bifurcation

In general, for models that exhibit forward bifurcation, the requirement R0 < 1 is

necessary and sufficient for effective community-wide control (or elimination) of the

disease being modelled. However, it has been observed in some other modelling stud-

ies, that although R0 < 1 is necessary for effective disease control (or elimination),

the condition may not be sufficient. This is owing to a dynamic phenomenon known

as backward bifurcation [24, 25, 38, 40, 42], where two stable attractors (typically the

DFE and an asymptotically-stable EEP) of the model co-exist when R0 < 1. The

public health implication of backward bifurcation is that disease control (or elimina-

tion), when R0 < 1, is dependent on the initial sizes of the sub-populations of the

model. Thus, the presence of backward bifurcation in the transmission dynamics of

a disease in a population makes its effective community-wide control difficult. Figure

2.2 depicts a backward bifurcation diagram.

Figure 2.2: Backward bifurcation diagram, showing the co-existence of a stable DFE
and two branches of endemic equilibria (a stable and an unstable branch).

The following theorem will be used to explore the possibility of the presence of
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backward bifurcation in the models to be considered in Chapters 3 and 4 of this

thesis.

Theorem 2.7. [6, 13, 50]. Consider the following general system of ordinary differ-

ential equations with a parameter φ

dx

dt
= f(x, φ), f : Rn × R→ Rn and f ∈ C2 (Rn × R) , (2.8)

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ) and

assume

A.1) A = Dxf(0, 0) =
(
∂fi
∂xj

(0, 0)
)

is the linearization matrix of the system (2.8)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of

A and other eigenvalues of A have negative real parts;

A.2) Matrix A has a right eigenvector w and a left eigenvector v (each corresponding

to the zero eigenvalue).

Let fk be the k-th component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0),

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0).

Then the local dynamics of the system around the equilibrium point 0 is totally de-

termined by the signs of a and b. Particularly, if a > 0 and b > 0, then a backward

bifurcation occurs at φ = 0.
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2.6 Lyapunov Function Theory

Definition 2.13. [40]. A point x0 ∈ Rn is called an ω−limit point of x ∈ Rn,

denoted by ω(x), if there exists a sequence {ti} such that

φ(ti, x)→ x0 as ti →∞.

Definition 2.14. [40]. A point x0 ∈ Rn is called an α−limit point of x ∈ Rn,

denoted by α(x), if there exists a sequence {ti} such that

φ(ti, x)→ x0 as ti → −∞.

Definition 2.15. [40]. The set of all ω−limit points of a flow is called the ω−limit

set. Similarly, The set of all α−limit points of a flow is called the α−limit set.

Definition 2.16. [55]. Let S ⊂ Rn be a set. Then, S is said to be invariant under

the flow generated by ẋ = f(x) if for any x0 ∈ S we have φ(t, x0) ∈ S for all t ∈ R.

Lemma 2.2. [55]. A set S ⊂ Rn is positively-invariant if for every x0 ∈ S, φ(t, x0) ∈

S, ∀t ≥ 0.

Definition 2.17. [55]. A function V : Rn → R is said to be positive-definite if:

• V (x) > 0 for all x 6= 0,

• V (x) = 0 if and only if x = 0.

Definition 2.18. [55]. Consider the system (2.1). Let, x̄ be an equilibrium solution

of (2.1) and let V : U → R be a C1 function defined on some neighbourhood U of x̄

such that

i) V is positive-definite,

ii) V̇ (x) ≤ 0 in U \ {x̄}.
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Corollary 2.1. [55]. Any function, V, that satisfies Conditions (i) and (ii) above is

called a Lyapunov function.

Theorem 2.8. (LaSalle’s Invariance Principle [24]). Consider the system (2.1). Let,

S = {x ∈ Ū : V̇ (x) = 0} (2.9)

and M be the largest positive invariant set of (2.1) in S. If V is a Lyapunov function

on U and γ+(x0) is a bounded orbit of (2.1) which lies in S, then the ω−limit set of

γ+(x0) belongs to M ; that is, x(t, x0)→M as t→∞.

Corollary 2.2. If V (x)→∞ as |x| → ∞ and V̇ ≤ 0 on Rn, then every solution of

(2.1) is bounded and approaches the largest invariant set M of (2.1) in the set where

V̇ = 0. In particular, if M = {0}, then the solution x = 0 is globally-asymptotically

stable (GAS).

2.7 Comparison Theorem

Consider the autonomous system

ẋ = f(x), x ∈ Rn, (2.10)

where f is continuously-differentiable on an open subset D ⊂ Rn. Let φt(x) denote

the solution of the system (2.10) with initial value x.

Definition 2.19. [44]. f is said to be Type K in D if for each i, fi(a) < fi(b) for

any two points in D satisfying a ≤ b and ai = bi.

The Type K Condition can be identified from the sign structure of the associated

Jacobian matrix of the system (2.10), as described above.

Definition 2.20. [44]. D is P-convex if tx+ (1− t)y ∈ D for all t ∈ [0, 1] whenever

x, y ∈ D and x < y.
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It is clear that if D is a convex set, then it is also p-convex. Furthermore, if D is a

p-convex subset of Rn and

∂fi
∂xj
≥ 0, i 6= j, x ∈ D,

then f is of Type K in D.

Another approach for establishing the global asymptotic stability of equilibria of

dynamical systems is by using the comparison theorem [44]. This entails comparing

the solution of the non-linear system

ẋ = f(t, x), (2.11)

with the solution of the differential inequality system,

ż ≤ f(t, z), (2.12)

or,

ẏ ≥ f(t, y), (2.13)

on an interval. This method requires that the solution of the system (2.11) is unique,

and that f is of Type K.

Theorem 2.9. (Comparison Theorem [44]). Let f be continuous on R × D and of

Type K. Let x(t) be a solution of (2.11) defined on [a, b]. If z(t) is a continuous

function on [a, b] satisfying (2.12) on (a, b) with z(a) ≤ x(a), then z(t) ≤ x(t) for all

t in [a, b]. If y(t) is continuous on [a, b] satisfying (2.13) on (a, b) with y(a) ≥ x(a),

then y(t) ≥ x(t), for all t in [a, b].
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2.8 Next Generation Operator Method

The next generation operator method [11, 50] is popularly used in the mathematical

biology literature to compute the reproduction number (R0) of disease transmission

models (and, subsequently, to establish the local asymptotic stability of the associ-

ated disease-free equilibrium of the model). The reproduction number (R0) measures

the average number of new infection generated by a typical infected individual in-

troduced into a completely susceptible population [11, 50]. The formulation given in

[50] is briefly described below.

Suppose the given disease transmission model, with non-negative initial condi-

tions, can be written in terms of the following autonomous system:

ẋi = f(x) = Fi(x)− Vi(x), i = 1, ..., n, (2.14)

where Vi = V −i − V +
i and the functions satisfy the following axioms below. First of

all, let

{Xs = x ≥ 0 | xi = 0; i = 1, ...,m},

be the set of disease-free states (non-infected state variables) of the model, where

x = (x1, ..., xn)t, xi ≥ 0 represents the number of individuals in each compartment

of the model. Furthermore, consider the following axioms [50]:

(A1) If x ≥ 0, then Fi, V
+
i , V −i ≥ 0 for i = 1, ...,m.

(A2) If xi = 0, then V −i = 0. In particular, if x ∈ Xs then V −i = 0 for i = 1, ...,m.

(A3) Fi = 0 if i > m.

(A4) If x ∈ Xs, then Fi(x) = 0 and V +
i (x) = 0 for i = 1, ...,m.

(A5) If F (x) is set to zero, then all eigenvalues of D(f(x0)) have negative real parts.
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In the formulation above, Fi(x) represents the rate of appearance of new infections in

compartment i, V +
i (x) represents the rate of transfer of individuals into compartment

i. It is assumed that these functions are at least twice continuously-differentiable in

each variable [50].

Definition 2.21. [44] (M-Matrix). An n× n matrix A is an M-matrix if and only

if every of off-diagonal entriy of A is non-positive and the diagonal entries are all

positive.

Lemma 2.3. (van den Driessche and Watmough [50]). If x̄ is a DFE of (2.14) and

fi(x) satisfy (A1)− (A5), then the derivative DF (x̄) and DV (x̄) are partitioned as

DF (x̄) =

F 0

0 0

 , DV (x̄) =

V 0

J3 J4

 ,

where F and V are the m×m matrices defined by,

F =

[
∂Fi
∂xj

(x̄)

]
and V =

[
∂Vi
∂xj

(x̄)

]
with 1 ≤ i, j ≤ m.

Furthermore, F is non-negative, V is non-singular M-matrix and J3 and J4 are

matrices associated with the transition terms of the model, and all eigenvalues of J4

have positive real parts.

Theorem 2.10. (van den Driessche and Watmough [50]). Consider the disease

transmission model given by (2.14) with f(x) satisfying axioms (A1)-(A5). If x̄ is

a DFE of the model, then x̄ is LAS if R0 = ρ(FV −1) < 1 (where ρ is the spectral

radius), but unstable if R0 > 1.
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2.9 Latin Hypercube Sampling and Partial Rank

Correlation Coefficients

Realistic disease transmission models often involve a large number of parameters

(biological, demographic etc.). Consequently, uncertainties in the precise values of

these parameters generally exist. The effect of such uncertainties on the numerical

simulation results of the associated disease transmission model is often accounted

for using an appropriate sampling technique, such as Latin Hyperbolic Sampling

(LHS) [4, 41]. Furthermore, the sensitivity of each of these parameters (to a speci-

fied response/output function) can be accounted for using Partial Rank Correlation

coefficients (PRCC). These methods are briefly described below.

Let X1, . . . , Xd be input parameter values that are randomly chosen from a spec-

ified sample space (i.e., they are random variables). Furthermore, appropriate prob-

ability distribution functions (PDFs) [4, 37, 41] for each of the these parameters

are chosen (based on the biology and/or epidemiology of the disease being mod-

elled). Any specified PDF describes the range of possible values and the probability

of occurrence of any specific value.

Definition 2.22. [37]. Latin Hypercube Sampling (LHS) is a stratified sampling

method for sampling the input parameter values. Using stratified sampling, the sam-

ple space S (possible range of each parameter) of Xi are partitioned into N disjoint

strata of equal marginal probability 1/N . LHS ensures us that all portions of sample

space are sampled, and each of the input variables has all portions of its distribution

represented by input parameter values.

Definition 2.23. [4, 41]. Uncertainty Analysis technique is used to investigate the

uncertainty in the model output variable(s) that is generated from uncertainty in

estimating the input parameter values.

Definition 2.24. [4, 41]. Sensitivity analysis follows uncertainty analysis to identify
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critical inputs (parameters and initial conditions) of a model and quantify how input

uncertainty impacts model outcome(s).

Definition 2.25. [4]. Partial Rank Correlation Coefficient (PRCC) can be used to

evaluate the statistical relationships between each input parameter and each outcome

variable, while keeping all of the other input parameters constant at their expected

value.

PRCC can only be used to assess the sensitivity of outcome variables that are mono-

tonically related to the input parameters [4].

A PRCC between an input parameter Xj, and an output variable Y , can be

calculated using the formula [4, 34]:

rXjY =
Cov(Xj, Y )√
V ar(Xj)V ar(Y )

=

N∑
i=1

(Xij − X̄)(Yi − Ȳ )√√√√ N∑
i=1

(Xij − X̄)2

N∑
i=1

(Yi − Ȳ )2

, (2.15)

where, Cov(Xj, Y ) represents the covariance between Xj and Y , while Var(Xj) and

Var(Y ) are the variance of Xj and Y , respectively (the quantities X̄ and Ȳ are the

respective sample means).

It is worth mentioning that PRCC always varies between −1 and +1. The sign

of PRCC indicates the specific qualitative relationship between input and output

variables. Furthermore, the magnitude of the PRCC indicates the importance of the

uncertainty in estimating the value of the input variable due to the imprecision in

predicting the value of the outcome variable [4, 41]. The relative importance of the

input variables can be directly evaluated by comparing the PRCC values [4, 41].
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Chapter 3

HCV Transmission Model with

Differential Infectivity

3.1 Introduction

As stated in Chapter 1, a combination therapy with pegylated interferon and ribavirin

are known to be quite effective against HCV infection [35]. Although the prevailing

opinion among public health and medical practitioners in the US and UK, prior to

2002, was against treating active IDUs [35], IDUs are now not excluded from receiving

anti-HCV treatment (owing to the increasing evidence showing that IDUs exhibit a

similar response to anti-HCV treatment with non-IDUs [36]). Nevertheless, despite

this fact, and the high number of IDUs infected, very few active IDUs have ever been

treated [35]. Therefore, it is worthwhile to study the transmission dynamics of HCV

among IDUs in both scenarios (with or without treatment of IDUs).

The aim of this chapter is to formulate a basic model for HCV spread in an

IDU population in the absence of treatment (the case with treatment is studied in

Chapter 4). The resulting treatment-free deterministic model, which allows for the

re-infection of recovered individuals and loss of infection-acquired immunity (so that
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re-infected individuals can revert to acute and chronic re-infection stages), will be

rigorously analysed. Another notable feature of this model is that primary (newly)-

infected individuals are assumed to behave different (vis-a-vis the infectiousness,

recovery and progression of the disease) in comparison to re-infected individuals [14].

The public health impact of this (transmission) heterogeneity (between primary-

infected and re-infected individuals) will be qualitatively analysed.

3.2 Model Formulation

The HCV transmission model to be considered in this study, which is a special case

of the model given in [14], is based on splitting the total IDU population at time t,

denoted by Nwt(t), into the mutually-exclusive compartments of susceptible (S(t)),

acutely-infected (I(t)), chronically-infected (P(t)), recovered with partial immunity

(R(t)), acutely re-infected (V(t)) and chronically re-infected (W(t)) individuals, so

that

Nwt(t) = S(t) + I(t) + P (t) +R(t) + V (t) +W (t).

The population of susceptible individuals (S) is increased by the recruitment of the

new IDU individuals into the IDU population (at a rate Λ). It is further increased by

the loss of infection-acquired immunity of recovered individuals (at a per capita rate,

γ ). It is decreased by infection, following effective contacts with infected individuals,

at a rate λwt, given by

λwt =
β(I + πP + υV + ωπW )

Nwt

. (3.1)

In (3.1), β is the effective contact rate, π, υ and ω are modification parameters ac-

counting for the relative infectiousness of chronically-infected, acutely-re-infected and
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chronically-re-infected individuals, respectively (in comparison to acutely-infected

individuals). This population is further decreased by natural death (at a rate µ;

this rate is assumed, for mathematical convenience, to be the same for each of the

epidemiological compartments). Thus,

dS

dt
= Λ + γR− λwtS − µS.

The population of acutely-infected individuals (I) is increased by the infection of

susceptible individuals (at the rate λwt). It is decreased by recovery (at a rate σ),

progression to chronic stage (at a rate ε) and natural death. Thus,

dI

dt
= λwtS − (σ + ε+ µ)I.

The population of chronically-infected individuals (P) is generated at the rate ε. It

is decreased by recovery (at a rate δ) and natural death. Hence,

dP

dt
= εI − (δ + µ)P.

The population of recovered individuals (R) is generated by recovery of acutely-

infected individuals (at the rate σ), chronically-infected individuals (at the rate δ),

acutely-re-infected individuals (at a rate ασ, where α > 1 is the modification param-

eter that accounts for the assumption that acutely-re-infected individuals recover at a

faster rate in comparison to acutely-infected individuals), and chronically-re-infected

individuals (at a rate ηδ where η > 1 is the modification parameter that accounts

for the assumption that chronically-re-infected individuals recover at a faster rate

in comparison to chronically-infected individuals) [14]. This population is decreased

by infection (at a reduced rate ψλwt, where the modification parameter 0 < ψ < 1

accounts for the assumption that recovered individuals acquire HCV infection at a

rate lower than wholly-susceptible individuals). It is further decreased by the loss of
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infection-acquired immunity (at the rate γ) and natural death. Thus,

dR

dt
= σI + δP + ασV + ηδW − (ψλwt + γ + µ)R.

The population of the acutely re-infected individuals is increased by the re-infection

of recovered individuals at the rate ψλwt. It is decreased by progression to the chronic

re-infection stage (at a rate κε, where 0 < κ < 1 is the modification parameter

accounting for the assumption that acutely-re-infected individuals progress to the

chronically-re-infection stage (W) at a slower rate in comparison to acutely-infected

individuals), recovery (at the rate ασ) and natural death. Hence,

dV

dt
= ψλwtR− (ασ + κε+ µ)V.

The population of the chronically-reinfected individuals is increased by the progres-

sion of acutely-reinfected individuals (at the rate κε). It diminishes by recovery (at

the rate ηδ) and natural death. Thus,

dW

dt
= κεV − (ηδ + µ)W.

Based on the above assumptions and derivations, the treatment-free model for HCV

transmission dynamics within an IDU population is given by the following determin-

istic system of non-linear differential equations [14]:
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dS

dt
= Λ + γR− λwtS − µS,

dI

dt
= λwtS − (σ + ε+ µ)I,

dP

dt
= εI − (δ + µ)P,

dR

dt
= σI + δP + ασV + ηδW − ψλwtR− (γ + µ)R, (3.2)

dV

dt
= ψλwtR− (ασ + κε+ µ)V,

dW

dt
= κεV − (ηδ + µ)W,

where,

λwt =
β(I + πP + υV + ωπW )

Nwt

. (3.3)

It is worth noting that the treatment-free model (3.2) reduces to an SIR model in the

absence of re-infection of recovered individuals (ψ = 0) and loss of infection-acquired

immunity (γ = 0). Furthermore, it can be shown that the model (3.2) reduces to an

SIS model if recovered individuals acquire HCV infection at the same rate as wholly-

susceptible individuals (ψ = 1). A flow diagram of the model is depicted in Figure

3.1, and the associated variables and parameters are tabulated in Table 3.1. The

treatment-free model (3.2) will now be analysed to gain insight into its qualitative

features.

3.2.1 Basic properties

Theorem 3.1. Let the initial data for the treatment-free model (3.2) be S(0) >

0, I(0) > 0, P (0) > 0, R(0) > 0, V (0) > 0 and W (0) > 0. Then, the solutions

(S(t), I(t), P (t), R(t), V (t),W (t))

28



of the treatment-free model (3.2), with positive initial data, will remain positive for

all time t > 0.

Proof. Let

t1 = sup {t > 0 : S(t) > 0, I(t) > 0, P (t) > 0, R(t) > 0, V (t) > 0,W (t) > 0} > 0.

It follows from the first equation of the model (3.2) that

dS

dt
= Λ− λwtS − µS + γR ≥ Λ− λwtS − µS,

which can be written as,

d

dt

{
S(t)exp

[
µt+

∫ t

0

λwt(τ)dτ

]}
≥ Λ

{
exp

[
µt+

∫ t

0

λwt(τ)dτ

]}
.

Thus,

S(t1)exp

[
µt1 +

∫ t1

0

λwt(τ)dτ

]
− S(0) ≥

∫ t1

0

Λ

{
exp

[
µy +

∫ y

0

λwt(τ)dτ

]}
dy,

so that,

S(t1) ≥ S(0)exp

[
−µt1 −

∫ t1

0

λwt(τ)dτ

]
+

{
exp

[
−µt1 −

∫ t1

0

λwt(τ)dτ

]}∫ t1

0

Λ

{
exp

[
µy +

∫ y

0

λwt(τ)dτ

]}
dy > 0.

Similarly, it can be shown that I(t) ≥ 0, P (t) ≥ 0, R(t) ≥ 0, V (t) ≥ 0 and W (t) ≥ 0

for all time t > 0. Hence, all solutions of the model (3.2) remain positive for all non-

negative initial conditions, as required.
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Theorem 3.2. The closed set

Dwt =

{
(S, I, P,R, V,W ) ∈ R6

+ : Nwt ≤
Λ

µ

}

is positively-invariant and attracts all positive solutions of the model (3.2).

Proof. Adding the equations of the treatment-free model (3.2) gives

dNwt

dt
= Λ− µNwt, (3.4)

from which it is clear that dNwt

dt
is negative if Nwt(t) >

Λ
µ

. It follows from the solution

of Equation (3.4), given by

Nwt(t) =
Λ

µ
+

[
Nwt(0)− Λ

µ

]
e−µt,

that if Nwt(0) < Λ
µ

, then Nwt(t) ≤ Λ
µ

for all t > 0. That is, all orbits of the treatment-

free model (3.2) with initial conditions in Dwt remain in Dwt for all t > 0. Thus,

the region Dwt is positively-invariant. Furthermore, if Nwt(0) > Λ
µ

, then either the

solution enters Dwt in finite time or Nwt(t) approaches Λ
µ

as t → ∞. Hence, the

region Dwt attracts all solutions in R6
+.

Since the region Dwt is positively-invariant, the unique solution of the treatment-free

model (3.2) exists and depends continuously on the initial data of the model (hence,

it is sufficient to study its asymptotic dynamics in the region Dwt [25]).
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3.3 Existence and Stability of Equilibria

3.3.1 Local asymptotic stability of DFE

The DFE of the treatment-free model (3.2), obtained by setting the right-hand side

of the equations in the model to zero, is given by

Ewt0 = (S∗, I∗, P ∗, R∗, V ∗,W ∗) =

(
Λ

µ
, 0, 0, 0, 0, 0

)
. (3.5)

Using the next generation operator method [50], the matrices Fwt (of the new infec-

tion terms) and Hwt (of the transition terms) associated with the model (3.2) are

given, respectively, by

Fwt =



β πβ υβ πωβ

0 0 0 0

0 0 0 0

0 0 0 0


, Hwt =



G1 0 0 0

−ε G2 0 0

0 0 G3 0

0 0 −κε G4


,

where, G1 = µ+ σ+ ε, G2 = µ+ δ, G3 = µ+ασ+ κε, and G4 = µ+ ηδ. It follows,

from Theorem 2 in [50], that the basic reproduction number of the treatment-free

model (3.2), defined by R0 = ρwt(FwtH−1
wt ) (where ρwt is the spectral radius of the

next generation matrix FwtH−1
wt ), is given by

R0 =
β

ε+ µ+ σ

(
1 +

επ

δ + µ

)
. (3.6)

The result below follows from Theorem 2 of [50].

Theorem 3.3. The DFE, Ewt0 , of the treatment-free model (3.2), given by (3.5), is

locally-asymptotically stable (LAS) if R0 < 1, and unstable if R0 > 1.

The epidemiological implication of Theorem 3.3 is that HCV can be effectively con-

trolled in the community (when R0 < 1) if the initial sizes of the sub-populations of
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the model (3.2) are in the basin of attraction of the DFE. As stated in Chapter 2, the

threshold quantity, R0, represents the average number of secondary infections that

one HCV-infected individual can generate if introduced into a completely-susceptible

IDU population [50].

3.3.2 Existence of EEP

In this section, the possible existence of an endemic equilibrium (that is, an equilib-

rium of the treatment-free model (3.2) when the infected components are non-zero

will be explored). Let,

Ewt1 = (S∗∗, I∗∗, P ∗∗, R∗∗, V ∗∗,W ∗∗), (3.7)

be an arbitrary endemic equilibrium of the treatment-free model (3.2), where S∗∗, I∗∗,

P ∗∗, R∗∗, V ∗∗, and W ∗∗ are obtained from setting the right-hand-sides of the equa-

tions in the model (3.2) to zero, given by

S∗∗ =
γR∗∗ + Λ

λ∗∗wt + µ
, I∗∗ =

λ∗∗wtS
∗∗

σ + ε+ µ
, P ∗∗ =

εI∗∗

δ + µ
,

R∗∗ =
σI∗∗ + δP ∗∗ + ασV ∗∗ + ηδW ∗∗

µ+ γ + ψλ∗∗wt
, (3.8)

V ∗∗ =
ψλ∗∗wtR

∗∗

ασ + κε+ µ
, W ∗∗ =

κεV ∗∗

ηδ + µ
.

Furthermore, let

λ∗∗wt =
βµ(I∗∗ + πP ∗∗ + υV ∗∗ + πωW ∗∗)

Λ
, (3.9)

(where the total population, Nwt(t), is now replaced by its limiting value, N∗wt = Λ
µ

)

be the force of infection of the treatment-free model 3.2 at an endemic steady-state.

Substituting the equations in (3.8) into (3.9), and simplifying, gives the following
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quadratic equation (in terms of λ∗∗wt)

c2(λ∗∗wt)
2 + c1λ

∗∗
wt + c0 = 0, (3.10)

where,

c2 = ψ(µ+ δ)(µ+ δη + ε)(µ+ σ + ε),

c1 = µψ(δ + µ)(δη + ε+ µ)(ε+ µ+ σ)(1−R0) (3.11)

+(µ+ δ)(µ+ σ + ε) {(µ+ ασ + κε)(µ+ ηδ)− βψ [υ(µ+ ηδ) + ωπκε]} ,

c0 = (γ + µ)(δ + µ)(δη + µ)(ε+ µ+ σ)(ε+ µ+ ασ) (1−R0) .

The components of the endemic equilibrium are then obtained by solving for λ∗∗wt

from the quadratic equation (3.10), and substituting the positive values of λ∗∗wt into

the expressions in 3.8. Furthermore, it follows from (3.11) that the coefficient c2,

of the quadratic (3.10), is always positive, and c0 is positive (negative) if R0 is less

(greater) than unity. Hence, it follows from (3.11) that the quadratic (3.10) has

a unique positive equilibrium (an endemic equilibrium) whenever R0 > 1. These

results are summarized below.

Theorem 3.4. The treatment-free model (3.2) has:

(i) a unique endemic equilibrium if c0 < 0⇔ R0 > 1;

(ii) a unique endemic equilibrium if c1 < 0 and c0 = 0 or c2
1 − 4c0c2 = 0;

(iii) two endemic equilibria if c0 > 0, c1 < 0 and c2
1 − 4c0c2 > 0;

(iv) no endemic equilibrium otherwise.

Item (iii) of Theorem 3.4 suggests the possibility of backward bifurcation (see, for

instance, [7, 15, 18, 22, 25, 38, 42, 57], and some of the references therein) in the

treatment-free model (3.2). As discussed in Chapter 2, the phenomenon of backward
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bifurcation is characterized by the co-existence of a stable DFE and a stable EEP

when the associated reproduction number of the model (R0) is less than unity. The

epidemiological consequence of backward bifurcation is that disease control (when

R0 < 1) is dependent on the initial sizes of the sub-populations of the model (see,

for example, [42]). Hence, the presence of backward bifurcation in the transmission

dynamics of a disease makes its effective control (or elimination) difficult. Conse-

quently, it is instructive to explore the possibility of backward bifurcation in the

treatment-free model (3.2). Before doing so, it is worth checking for the existence

of an EEP of the model (3.2) when R0 ≤ 1 (which is a signature for a backward

bifurcation in disease transmission models [7, 15, 18, 22, 25, 38, 42, 57]). This is

done below.

3.3.3 Existence of backward bifurcation

Theorem 3.5. The treatment-free model (3.2) undergoes a backward bifurcation at

R0 = 1 whenever the Inequality (A.5), given in Appendix A, holds.

The proof of Theorem 3.5, based on using center manifold theory [5, 6, 13, 50], is given

in Appendix A. A schematic description of the backward bifurcation phenomenon of

the model (3.2) is depicted in Figure 3.4. It is worth stating that, to the author’s

knowledge, this is the first time the phenomenon of backward bifurcation has been

established in the transmission dynamics of HCV in a population.

3.3.4 Non-existence of backward bifurcation

First of all, it should be mentioned that setting the re-infection parameter ψ, to

zero reduces the treatment-free model (3.2) to an SIRS model, which is known not

to undergo backward bifurcation [22]. That is, as in the case of other disease, such

as TB [22], the re-infection of recovered individuals causes backward bifurcation in
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HCV transmission dynamics.

Case (i) Effect of relative rate of progression of acute re-infected individ-

uals (κ).

Consider the treatment-free model (3.2) for the case when acutely-re-infected indi-

viduals (V) progress to chronic re-infection stage (W) at the same rate as acutely-

infected (I) individuals (i.e., κ = 1). For this case, the coefficients c0, c1 and c2, of

the quadratic (3.10), reduce to:

c2 = ψ(µ+ δ)(µ+ δη + ε)(µ+ σ + ε),

c1 = µψ(δ + µ)(δη + ε+ µ)(ε+ µ+ σ)(1−R0) (3.12)

+(µ+ δ)(µ+ σ + ε) {(µ+ ασ + ε)(µ+ ηδ)− βψ [υ(µ+ ηδ) + ωπε]} ,

c0 = (γ + µ)(δ + µ)(δη + µ)(ε+ µ+ σ)(ε+ µ+ ασ) (1−R0) ,

from which the result below follows.

Theorem 3.6. Consider the treatment-free model (3.2) with κ = 1. The model has a

unique positive equilibrium if R0 > 1, and no positive endemic equilibrium otherwise.

Proof. It is clear from (3.12) that c2 > 0 and c0 ≥ 0 if R0 ≤ 1. Furthermore, it can

be shown that (since ψ ≤ 1, υ ≤ 1 and ω ≤ 1)

c1 = µψ(δ + µ)(δη + ε+ µ)(ε+ µ+ σ)(1−R0) (3.13)

+ (µ+ δ)(µ+ σ + ε) {(µ+ ασ + κε)(µ+ ηδ)− βψ [υ(µ+ ηδ) + ωπκε]} ,

> µψ(δ + µ)(δη + ε+ µ)(ε+ µ+ σ)(1−R0)

+ (µ+ δ)(µ+ σ + ε) {(µ+ ασ + κε)(µ+ ηδ)− β [(µ+ ηδ) + πκε]} .
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Hence, it follows from the inequality R0 < 1 that β < (µ+σ+ε)(µ+δ)
πε+µ+δ

. Thus, the

coefficient c1 can be re-written as

c1 > µψ(δ + µ)(δη + ε+ µ)(ε+ µ+ σ)(1−R0) + (µ+ δ)(µ+ σ + ε){
(µ+ ασ + κε)(µ+ ηδ)− (µ+ σ + ε)(µ+ δ) [(µ+ ηδ) + πκε]

πε+ (µ+ δ)

}
, (3.14)

= µψ(δ + µ)(δη + ε+ µ)(ε+ µ+ σ)(1−R0) + (µ+ δ)(µ+ σ + ε){
(µ+ ασ + κε)(µ+ ηδ)[πε+ (µ+ δ)]− (µ+ σ + ε)(µ+ δ) [(µ+ ηδ) + πκε]

πε+ (µ+ δ)

}
,

= µψ(δ + µ)(δη + ε+ µ)(ε+ µ+ σ)(1−R0) + (µ+ δ)(µ+ σ + ε)M,

where,

M =
M1 +M2

πε+ µ+ δ
,

with,

M1 = πε[(µ+ ασ + κε)(µ+ ηδ)− (µ+ σ + ε)(µ+ δ)],

M2 = (µ+ δ)(µ+ ηδ)(ασ + κε− σ − ε).

The sign of coefficient c1 can be deduced from (3.14) as follows. Since η > 1 and

α > 1, it follows that (µ+ασ+ε) > (µ+σ+ε), (µ+ηδ) > (µ+δ) and (ασ+ε) > (σ+ε).

Consequently, if R0 < 1 and κ = 1, then c1 > 0 (and the quadratic (3.10) will have

no endemic equilibrium for this special case).

The above analysis (along with Theorem 3.6) reveals that the relative rate of

progression of acute re-infected individuals to the chronic re-infection stage (κ) play

a critical role in the existence of the phenomenon of backward bifurcation in the

treatment-free model (3.2). In fact, setting κ = 1 in (3.11), and using the assump-
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tions that η ≥ 1, α ≥ 1 and υ ≤ 1, ω ≤ 1 and ψ ≤ 1, it can be shown that the

backward bifurcation coefficient (a), given by (A.3) in Appendix A, becomes neg-

ative (and, consequently, in line with Theorem 4.1 of [6], the treatment-free model

(3.2) does not undergo backward bifurcation in this case). To do so, we just need to

show that S2, in the expression for the backward bifurcation coefficient a (given by

(A.3) in Appendix A) is positive (in which case, a < 0). This is shown below.

S2 = G3G4 −
G1G2ψ(πεκω +G4υ)

(πε+G2)
=
G3G4(πε+G2)−G1G2ψ(πεκω +G4υ)

(G2 + πε)
,

>
G3G4(πε+G2)−G1G2(πεκ+G4)

(πε+G2)
, (3.15)

=
πε(G3G4 −G1G2) +G2G4(G3 −G1)

(πε+G2)
> 0,

since, assuming κ = 1, G3 = µ+ασ+ε > G1 = µ+σ+ε and G4 = µ+ηδ > G2 = µ+δ

(so that, G3G4 −G1G2 > 0 and G3 −G1 > 0). Thus, it follows, based on Theorem

3.6 and Item (iv) of Theorem 4.1 in [6], that the treatment-free model (3.2) does not

undergo backward bifurcation in this case (with κ = 1). Hence, this thesis shows,

for the first time, that the relative rate of progression from acute re-infection to

chronic re-infection stage (κ) induces the phenomenon of backward bifurcation in

HCV transmission dynamics.

Case (ii) Effect of infectiousness of acute and chronic re-infected individ-

uals (υ, ω)

Consider, now, the special case of the treatment-free model (3.2) where acute and

chronic re-infected individuals do not transmit HCV infection (i.e., υ = ω = 0). For

this special case, it follows from (3.15) that S2 = G3G4 > 0. Consequently, the

backward bifurcation parameter, a (given by (A.3) in Appendix A), is negative (so

that backward bifurcation does not occur in this case, in line with Theorem 2.7). It
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is worth emphasizing that, for this scenario (υ = ω = 0), backward bifurcation does

not occur in the treatment-free model even in the presence of re-infection (ψ 6= 0).

Hence, this thesis shows, for the first time, that disease transmission by acute and

chronic re-infection individuals also induces the phenomenon of backward bifurcation

in HCV transmission dynamics.

3.4 Uncertainty and Sensitivity Analysis

The treatment-free model (3.2) contains 14 parameters, and the effect of the uncer-

tainties in the estimates of the parameter values used in the numerical simulations of

the model (3.2) [4, 41] will be assessed using Latin Hypercube Sampling (as discussed

in Chapter 2). The LHS method involves defining baseline values and ranges for each

of the parameters of the model (as in Table 3.2), where each parameter is assumed

to obey a uniform distribution [14], and carrying out multiple runs (NR = 1000) of

the sampled data for the response output (the basic reproduction threshold, R0, in

this case) [4, 41].

A boxplot of the basic reproduction number (R0) of the treatment-free model

(3.2), as a function of the number of LHS runs carried out, is depicted in Figure

3.5, showing a range of R0 from 1.49 to 1.52 (which is consistent with the range

reported in [14]). Furthermore, partial rank correlation coefficients (PRCC) [29] are

used to measure the sensitivity of the parameters of the model (withR0 as a response

variable). It follows from Table 3.3 that the parameters that most affect the value of

R0 (hence, drive the HCV transmission dynamics within the IDU population) are the

effective contact rate (β), the rate of progression to chronic infection (ε), the rate of

recovery from acute infection (σ), the death or retirement rate from the population

(µ) and the relative infectivity of chronically-infected individuals (π). Thus, this

study identifies the main parameters that play a dominant role in the dynamics of
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the disease within the IDU population.

The sensitivity of the aforementioned top-five PRCC-ranked parameters, on the

cumulative incidence and prevalence of HCV, is further assessed by simulating the

treatment-free model (3.2) for the case where the baseline values of these (top-five)

parameters (given in Table 3.2) are increased or decreased by 10%. The results

obtained, depicted in Figures 3.6 and 3.7, show that a 10% increase in the base-

line values of these parameters leads to a corresponding increase in the cumulative

incidence and prevalence of HCV in the population, respectively. However, a 10%

decrease leads to a decrease in the cumulative incidence and prevalence of the disease

during the first few years (about 10 years), and a marginal increase shortly there-

after. These simulations further confirm the sensitivities such uncertainties (of the

input parameters) have on the simulation result (output/response) obtained, in line

with the results tabulated in Table 3.3 and Figure 3.8.

3.5 Numerical Simulations

The treatment-free model (3.2) is further simulated, using the parameter values

given in Table 3.2 (unless otherwise stated), to assess the impact of re-infection on

the transmission dynamics of HCV among IDUs. The following initial data (relevant

to an IDU population [14]) is used in the numerical simulations of the treatment-free

model (3.2):

(S(0), I(0), P (0), R(0), V (0),W (0)) = (439000, 550, 350, 50, 30, 20).

Figure 3.9 shows the cumulative number of new HCV cases, as a function of time,

for various values of the re-infection parameter (ψ), from which it is evident that

re-infection has little or no effect on the cumulative incidence of HCV during the first

few years (the effect is, however, noticeable after about 10 years). In other words,
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this study shows that re-infection has marginal effect on HCV burden (as measured

in terms of cumulative number of new cases) in the community in the short-term.

Similar results are obtained for the prevalence of HCV (Figure 3.10). Although the

progression rate from acute-re-infection to the chronic-re-infection stage (κ) plays an

important role on the dynamics of HCV transmission, its effect on the cumulative

incidence and prevalence of the disease is marginal (as shown in Figures 3.11 and

3.12, respectively).

3.6 Summary of the Chapter

This chapter focuses on the rigorous analysis of the treatment-free model of the

HCV transmission model presented by Elbasha [14] (where only a special case of the

model was analysed), with the aim of exploring the role of differential infectiousness

of the infected and re-infected individuals in the dynamics of HCV which is not

analysed in [14]. By using centre manifold theory, it was shown, unlike in [14], that

the model undergoes the phenomenon of backward bifurcation when the associated

basic reproduction number (R0) of the model is less than unity. This phenomenon is

well-known to play a major role in the persistence or elimination of the disease [6]. In

particular, in a backward bifurcation situation, disease control (when the associated

basic reproduction number is less than unity) is dependent on the initial sizes of the

sub-populations of the model. Hence, backward bifurcation makes effective disease

control difficult. This thesis, arguably, represents the first time the phenomenon of

backward bifurcation is established in the transmission dynamics of HCV.

The main result, derived from this chapter, is that two main cases where the

backward bifurcation property of the HCV transmission dynamics can be removed

are identified. The first is the absence of heterogeneity between primary infected

and re-infected individuals with regard to infectivity. In other words, the model
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will not undergo backward bifurcation if acutely-re-infected individuals progress to

chronically-re-infection stage in the same rate of the progression of the acutely-

infected individuals to the chronically-infection stage. Hence, this study shows that

heterogeneity between primary infected individuals and re-infected individuals with

regard to infectiousness can induce the phenomenon of backward bifurcation in the

transmission dynamics of a disease (such as HCV). The second is that, in the presence

of such heterogeneity, it is shown that the backward bifurcation phenomenon can be

removed when acute and chronic re-infected individuals do not transmit infection

(i.e., υ = ω = 0).

The treatment-free model (3.2) is shown to have a unique endemic equilibrium

when the associated reproduction number (R0) exceeds unity (numerical simulations

show that HCV will persist in the population when such an equilibrium exists).

Results in this chapter provide answers to Questions 1 and 3 raised in Section 1.3.

Further simulations show that the re-infection of recovered individuals has marginal

effect on the disease burden (as measured in terms of HCV cumulative incidence and

prevalence in the community). It is also shown that, despite the fact that the param-

eter κ, (for the variability of progression to chronic stage between acutely re-infected

and acutely infected individuals) plays a crucial role in the existence of backward bi-

furcation, it (κ) has only marginal effect on the cumulative incidence and prevalence

of HCV in the IDU population.
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Symbol Description

Variables

S(t) Population of susceptible individuals
I(t) Population of acutely-infected individuals
P (t) Population of chronically-infected individuals
R(t) Population of recovered individuals with partial immunity
V (t) Population of acutely-reinfected individuals
W (t) Population of chronically-reinfected individuals

Parameters

Λ Recruitment rate
µ Natural death rate
β Contact rate
σ Recovery rate from acute infection
δ Recovery rate from chronic infection
ε Rate of progression from acute to chronic infection
ψ Relative susceptibility of recovered individuals
α Relative rate of recovery from acute re-infection
η Relative rate of recovery from chronic re-infection
κ Relative rate of progression from acute re-infection to chronic re-infection
γ Rate of waning immunity
π Relative infectivity of chronically-infected individuals
υ Relative infectivity of acutely-re-infected individuals
ω Relative infectivity of chronically-re-infected individuals

Table 3.1: Variables and parameters of the treatment-free model (3.2) [14].
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Parameters Baseline Values [14] Ranges [14]

Λ 39, 600 year−1 [35640, 43560]
µ 0.09 year−1 [0.081, 0.099]
β 2.68 year−1 [2.444, 2.948]
σ 0.5 year−1 [0.45, 0.55]
δ 0.002 year−1 [0.0018, 0.0022]
ε 1.5 year−1 [1.35, 1.65]
ψ 0.5 [0.45, 0.55]
α 3.3 [2.97, 3.36]
η 3.3 [2.97, 3.36]
κ 1/3.3 [0.2727, 0.3333]
γ 0.025 year−1 [0.0225, 0.0275]
π 0.01 [0.009, 0.011]
υ 1/6.5 [0.1386, 0.1694]
ω 1/6.5 [0.1386, 0.1694]

Table 3.2: Baseline values and ranges of the parameters of the treatment-free model
(3.2).

Parameters PRCC(R0)
β 0.988565581
ε -0.968324197
σ -0.847998641
µ -0.763220923
π 0.691031894
δ -0.030469363
Λ 0.018299972
η 0.015971663
γ 0.028006153
κ -0.023995766
υ -0.037000483
α -0.007482013
ψ -0.013614862
ω -0.042066892

Table 3.3: PRCC values of the parameters of the treatment-free model (3.2), with
R0 as the output. Parameter values and ranges used are as given in Table 3.2.
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Figure 3.1: Schematic diagram of the treatment-free model (3.2) [14].

Figure 3.2: Simulations of the treatment-free model (3.2), showing the total number
of infected individuals as a function of time, using various initial conditions. Param-
eter values used are as given in Table 3.2, with β = 1.48 (so that, R0 = 0.8036).

44



Figure 3.3: Simulations of the treatment-free model (3.2), showing the total num-
ber of infected individuals as a function of time, using various initial conditions.
Parameter values used are as given in Table 3.2 (so that, R0 = 1.4914).
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Figure 3.4: Backward bifurcation diagram for the treatment-free model (3.2), show-
ing the prevalence as a function of the basic reproduction number (R0). Parame-
ter values used are: Λ = 40640, β∗ = 3.324462329, µ = 0.091, σ = 0.255, δ =
0.0025, ε = 3.5, ψ = 0.70, α = 3.3, η = 4.050, κ = 0.0827, γ = 0.0225, π =
0.019, υ = 0.89999 and ω = 0.89999 (so that, a = 0.0001180441877 > 0; R0 = 1 ).
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Figure 3.5: Boxplots of the basic reproduction number (R0), as a function of the
number of LHS runs (NR) carried out, for the treatment-free model (3.2).
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Figure 3.6: Simulations of the treatment-free model (3.2), showing the cumulative
number of new infected individuals as a function of time, for various values of the
top-five PRCC-ranked parameters in Table 3.3 (β, ε, σ, µ and π): green curve
(10% decrease in the baseline values of the top-five PRCC-ranked parameters); blue
curve (baseline values); red curve (10% increase in the baseline values of the top-five
PRCC-ranked parameters). Parameter values used are as given in Table 3.2.

48



Figure 3.7: Simulations of the treatment-free model (3.2), showing the prevalence of
HCV as a function of time, for various values of the top-five PRCC-ranked parameters
in Table 3.3 (β, ε, σ, µ and π): green curve (10% decrease in the baseline values of
the top-five PRCC-ranked parameters); blue curve (baseline values); red curve (10%
increase in the baseline values of the top-five PRCC-ranked parameters). Parameter
values used are as given in Table 3.2.
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Figure 3.8: Distribution of PRCC values for the parameters of the treatment-free
model (3.2). Parameter values and ranges used are as given in Table 3.2.
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Figure 3.9: Simulations of the treatment-free model (3.2), showing the cumulative
number of new infected individuals as a function of time, for various values of the
re-infection parameter (ψ): green curve (ψ = 0.0), blue curve (ψ = 0.5) and red
curve (ψ = 1.0). Parameter values used are as given in Table 3.2.
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Figure 3.10: Simulations of the treatment-free model (3.2), showing the prevalence
of HCV as a function of time, for various values of the re-infection parameter (ψ):
green curve (ψ = 0.0), blue curve (ψ = 0.5) and red curve (ψ = 1.0). Parameter
values used are as given in Table 3.2.
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Figure 3.11: Simulations of the treatment-free model (3.2), showing the cumulative
number of new infected individuals as a function of time, for various values of the
relative rate of progression from acute to chronic infection stage (κ): green curve
(κ = 1/3.3), blue curve (κ = 0.65) and red curve (κ = 1.0). Parameter values used
are as given in Table 3.2.
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Figure 3.12: Simulations of the treatment-free model (3.2), showing the prevalence of
HCV as a function of time, for various values of the relative rate of progression from
acute to chronic infection stage (κ): green curve (κ = 1/3.3), blue curve (κ = 0.65)
and red curve (κ = 1). Parameter values used are as given in Table 3.2.
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Chapter 4

Analysis of HCV Model With

Treatment

4.1 Introduction

In this chapter, the treatment model considered in Chapter 3 is extended to incor-

porate the effect of the use of anti-viral drug treatment (for chronically infected and

re-infected IDUs) on the spread of HCV within an IDU population. As stated in

Chapter 1, despite the fact that various effective drugs are currently being used to

treat people infected by HCV, very few active IDUs are actually treated (less than

4% [36]). Furthermore, re-infection is one of the major challenges associated with

the treatment of IDUs (since the currently available anti-HCV drugs only provide

partial immunity against re-infection) [36]. However, recent results [36] (supported

with the numerical simulations to be carried out in this chapter) suggest that despite

the effect of re-infection, the low treatment rate of active (chronically infected and

re-infected) IDUs can significantly reduce the burden of HCV in the IDU community.

Consequently, the aim of this chapter is to study the qualitative impact of treat-

ment of chronically infected and re-infected individuals (especially for the scenario
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where heterogeneity between primary infection and re-infection exists) on the trans-

mission dynamics of HCV in an IDU population.

4.2 Model Formulation

The HCV transmission model to be considered in this chapter is based on extending

the treatment-free model (3.2) to include anti-HCV treatment. The model, developed

in [14], is formulated by splitting the total IDU population at time t, denoted by

N(t), into mutually-exclusive compartments of susceptible (S(t)), acutely-infected

(I(t)), chronically-infected (P(t)), treated chronically infected (T(t)), recovered with

partial immunity (R(t)), acutely re-infected (V(t)), untreated chronically re-infected

(W(t)) and treated chronically re-infected (Q(t)) individuals, so that

N(t) = S(t) + I(t) + P (t) +R(t) + V (t) +W (t) + T (t) +Q(t).

The model is given by the following deterministic system of non-linear differential

equations (denoted by treatment model) [14]
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dS

dt
= Λ + γR− λS − µS,

dI

dt
= λS − (σ + ε+ µ) I,

dP

dt
= εI + ρT − (δ + τ + µ)P, (4.1)

dR

dt
= σI + δP + ασV + ηδW + θT + θQ− ψλR− (γ + µ)R,

dV

dt
= ψλR− (ασ + κε+ µ)V,

dW

dt
= κεV + ζQ− (ηδ + φ+ µ)W,

dT

dt
= τP − (ρ+ θ + µ)T,

dQ

dt
= φW − (ζ + θ + µ)Q,

where,

λ =
β (I + πP + υV + πωW + πχTT + πχQQ)

N
, (4.2)

is the infection rate. A flow diagram of the model is given in Figure 4.1, and the

associated variables and parameters are tabulated in Table 4.1. The detailed deriva-

tion of the equations of the treatment model (4.1) are given in Appendix B (it closely

follows the formulation in [14]).

The HCV transmission model (4.1) extends the treatment-free model (3.2) by,

inter alia,

(a) adding the treatment of chronically-infected individuals (T(t));

(b) adding the treatment of chronically-re-infected individuals (Q(t));

(c) incorporating the effect of disease transmission by treated individuals.

It is worth stating that Elbasha [14] studied a special case of the HCV treatment

model (4.1), where re-infection plays the same role as primary infection (i.e., the

57



model (4.1) with κ = α = η = ω = υ = 1, χQ = χT , ζ = ρ and φ = τ), given by

(the reduced model)

dS

dt
= Λ− λS − µS + γR,

dI

dt
= λS − (µ+ σ + ε) I,

dP

dt
= εI + ρT − (µ+ δ + τ)P, (4.3)

dR

dt
= σI + δP + σV + δW + θT + θQ− ψλR− (µ+ γ)R,

dV

dt
= ψλR− (µ+ σ + ε)V,

dW

dt
= εV + ρQ− (µ+ δ + τ)W,

dT

dt
= τP − (µ+ ρ+ θ)T,

dQ

dt
= φW − (µ+ ρ+ θ)Q,

where, now,

λ =
β(I + πP + V + πW + πχTT + πχTQ)

N
.

The above simplifications, made in [14], allow for the change of variables, Ī = I+V ,

P̄ = W + P , T̄ = T + Q (and, for consistency, R̄ = R and S̄ = S), so that the

reduced model (4.3) can be re-written as [14]:
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dS̄

dt
= Λ− λ̄S̄ − µS̄ + γR̄,

dĪ

dt
= λ̄S̄ + ψλ̄R̄− (µ+ σ + ε) Ī ,

dP̄

dt
= εĪ + ρT̄ − (µ+ δ + τ) P̄ , (4.4)

dR̄

dt
= σĪ + δP̄ + θT̄ − ψλ̄R̄− (µ+ γ) R̄,

dT̄

dt
= τ P̄ − (µ+ ρ+ θ) T̄ ,

with,

λ̄ =
β
(
Ī + πP̄ + πχTT

)
N̄

and N̄ = S̄ + Ī + P̄ + +R̄ + T̄ .

It was shown in [14] that the DFE of the model (4.4) is globally-asymptotically stable

whenever the associated reproduction number, given by,

R̄c =
β

ε+ µ+ σ

[
1 +

πε(θ + µ+ ρ+ τχT )

(δ + µ)(θ + µ+ ρ) + (θ + µ)τ

]
,

is less than unity. It is further shown, for the special case of the treatment model

(4.4) in the absence of re-infection (ψ = 0), that the unique endemic equilibrium of

the reduced model (4.4) is globally asymptotically stable whenever it exists [14].

Unlike in [14], however, the full treatment model (4.1) will be rigorously analysed

in this chapter (in particular, to determine whether or not it exhibits some dynamical

features not seen in the reduced model (4.4), studied in [14]).

4.2.1 Basic properties

The following results can be proved using the approaches in Section 3.2.

Theorem 4.1. Let the initial data for the treatment model (4.1) be S(0) > 0, I(0) >
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0, P (0) > 0, R(0) > 0, V (0) > 0,W (0) > 0, T (0) > 0and Q > 0. Then, the solutions

(S(t), I(t), P (t), R(t), V (t),W (t), T (t), Q(t))

of the model (4.1), with positive initial data, will remain positive for all time t > 0.

Theorem 4.2. The closed set

DT =

{
(S, I, P,R, V,W, T,Q) ∈ R8

+ : N ≤ Λ

µ

}

is positively-invariant and attracts all positive solutions of the treatment model (4.1).

4.3 Existence and Asymptotic Stability of Equi-

libria

4.3.1 Local asymptotic stability of DFE

The DFE of the treatment model (4.1) is given by

ET0 = (S∗, I∗, P ∗, R∗, V ∗,W ∗, T ∗, Q∗) =

(
Λ

µ
, 0, 0, 0, 0, 0, 0, 0

)
. (4.5)

Using the next generation operator method [50], as in Chapter 3, the matrices FT

and HT , associated with the treatment model (4.1), are given, respectively, by
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FT =



β πβ υβ πωβ πχTβ πχQβ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, HT =



K1 0 0 0 0 0

−ε K2 0 0 −ρ 0

0 0 K3 0 0 0

0 0 −κε K4 0 −ζ

0 −τ 0 0 K5 0

0 0 0 −φ 0 K6


,

where, K1 = µ+ σ+ ε, K2 = µ+ δ+ τ, K3 = µ+ασ+ κε, K4 = µ+ ηδ+ φ, K5 =

µ + ρ + θ, and K6 = µ + ζ + θ. It follows, from Theorem 2 in [50], that the control

reproduction number of the model (4.1), defined by RT = ρ(FTH−1
T ), is given by

(where K2K5 − ρτ = (µ+ δ + τ)(µ+ θ) + µρ+ δρ > 0, so that RT > 0)

RT = ρ
(
FTH−1

T

)
=

β (K2K5 − ρτ + πεK5 + χTπετ)

K1(K2K5 − ρτ)
. (4.6)

It should be mentioned that the expression for RT is the same as that of R̄c in [14].

The result below follows from Theorem 2 of [50].

Theorem 4.3. The DFE, ET0 , of the treatment model (4.1), given by (4.5), is LAS

if RT < 1, and unstable if RT > 1.

4.3.2 Existence of EEP

As in Chapter 3, let

ET1 = (S∗∗, I∗∗, P ∗∗, R∗∗, V ∗∗,W ∗∗, T ∗∗, Q∗∗), (4.7)
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be an arbitrary endemic equilibrium of the treatment model (4.1). Furthermore, let

λ∗∗ =
βµ(I∗∗ + πP ∗∗ + υV ∗∗ + πωW ∗∗ + πχTT

∗∗ + πχQQ
∗∗)

Λ
, (4.8)

(where the total population, N(t), is now replaced by its limiting value, N∗ = Λ
µ

) be

the force of infection at steady-state.

Solving the equations of the treatment model (4.1) at the endemic steady-state

gives:

S∗∗ =
γR∗∗ + Λ

λ∗∗ + µ
, I∗∗ =

λ∗∗S∗∗

K1

, P ∗∗ =
εI∗∗ + ρT ∗∗

K2

,

R∗∗ =
σI∗∗ + δP ∗∗ + ασV ∗∗ + ηδW ∗∗ + θT ∗∗ + θQ∗∗

(µ+ γ + ψλ∗∗)
, (4.9)

V ∗∗ =
ψλ∗∗R∗∗

K3

, W ∗∗ =
κεV ∗∗ + ζQ∗∗

K4

, T ∗∗ =
τP ∗∗

K5

, Q∗∗ =
φW ∗∗

K6

.

Substituting the expressions in (4.9) into (4.8) gives:

(B1 +B2λ
∗∗)(B3 +B4λ

∗∗) = B5B6λ
∗∗, (4.10)

where,

62



B1 = γK3(K2K5 − ρτ)(K4K6 − ζφ)(µ+ γ)

B2 = γ(K2K5 − ρτ)[K3ψ(K4K6 − ζφ)− ψ(ασ(K4K6 − ζφ) +K6ηδκε+ θφκε)],

B3 = µγK3(K4K6 − ζφ)[K1(K2K5 − ρτ)− β(K2K5 − ρτ + πεK5 + χπετ),

B4 = γK1K3(K2K5 − ρτ)(K4K6 − ζφ), (4.11)

B5 = γK3(K2K5 − ρτ)(K4K6 − ζφ)

+ βµψ(K2K5 − ρτ)[υ(K4K6 − ζφ) + κεωπK6 + χQπφκε],

B6 = γK3(K4K6 − ζφ)[σ(K2K5 − ρτ) + δεK5 + θετ ].

It follows that the non-zero (endemic) equilibria of the treatment model (4.1) satisfy

the following polynomial (in terms of λ∗∗),

a2(λ∗∗)2 + a1λ
∗∗ + a0 = 0, (4.12)

where,

a2 = γ2K1K3A1(K4K6 − ζφ)(K2K5 − ρτ)2,

a1 = µγ2K1K3A1(K4K6 − ζφ)(K2K5 − ρτ)2(1−RT )

+ γ2K2
3K1(µ+ γ)(K4K6 − ζφ)2(K2K5 − ρτ)2 (4.13)

− A2[γK3(K4K6 − ζφ)(σ(K2K5 − ρτ) + δεK5 + θετ)],

a0 = Λγ2K1K
2
3(µ+ γ)(1−RT )(K4K6 − ζφ)2(K2K5 − ρτ)2,

with,
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A1 = ψ(K4K6 − ζφ)(µ+ κε) +K6ψηδκε+ ψθφκε, (4.14)

A2 = (K2K5 − ρτ) {γK3(K4K6 − ζφ) + βµ [υψ(K4K6 − ζφ)

+ κεψωπK6 + χπφκεψ]} .

The endemic equilibria of the treatment model (4.1) can then be obtained by solving

for λ∗∗ from (4.8), and substituting the positive values of λ∗∗ into the steady-state

expressions in (4.9). Furthermore, it follows from (4.13) that the coefficient a2, of

the quadratic (4.12), is always positive (it should be recalled, from Section 3.1, that

K4K6 − ζφ = (µ + ηδ + φ)(µ + θ) + ζ(µ + ηδ) > 0 and K2K5 − ρτ > 0) and a0 is

positive (negative) if RT is less (greater) than unity. The quadratic has a unique

endemic equilibrium whenever RT > 1. These results are summarized below.

Theorem 4.4. The treatment model (4.1) has:

(i) a unique endemic equilibrium if a0 < 0⇔ RT > 1;

(ii) a unique endemic equilibrium if a1 < 0 and a0 = 0 or a2
1 − 4a0a2 = 0;

(iii) two endemic equilibria if a0 > 0, a1 < 0 and a2
1 − 4a0a2 > 0;

(iv) no endemic equilibrium otherwise.

Here, too, Item (iii) of Theorem 4.4 suggests the possibility of the backward bifur-

cation in the model (4.1). The backward bifurcation phenomenon in the treatment

model (4.1) is explored below.

Theorem 4.5. The treatment model (4.1) undergoes backward bifurcation at RT = 1

whenever the Inequality (C.5), given in Appendix C, holds.

The proof of Theorem 4.5 is given in Appendix C (and a schematic description of

the backward bifurcation phenomenon of the treatment model (4.1) is depicted in
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Figure 4.4). It should be recalled that this (backward bifurcation) phenomenon

does not occur in the reduced model (4.4), considered in [14]. In other words, the

treatment model (4.1) has at least one dynamical feature (backward bifurcation) that

is not present in the reduced model (4.4). Thus, like in the case of the treatment-

free model (3.2), it is instructive to explore the possible causes of the backward

bifurcation phenomenon in the treatment model (4.1). This is done below.

4.3.3 Non-existence of backward bifurcation

Two main cases will be considered, as follows.

Case 1: Absence of re-infection of recovered individuals (ψ = 0)

Consider the treatment model (4.1) in the absence of re-infection (i.e., ψ = 0).

Setting the re-infection parameter (ψ) to zero in the expression of the backward

bifurcation coefficient, a, given by (C.3) in Appendix C (it should be recalled that

K4K6 − ζφ > 0 and K2K5 − ρτ > 0) shows that

a =
−2µv2w

2
2K1

ΛK3(K4K6 − ζφ)(K2K5 − ρτ)(µ+ γ)
[K3(K4K6 − ζφ)(µ+ γ)

(K2K5 − ρτ + εK5 + τε) + K3(K4K6 − ζφ)F ] < 0. (4.15)

Thus, it follows from (4.15) and Appendix C (where the eigenvector v2 > 0 and F >

0) that, in the absence of re-infection (ψ = 0), the bifurcation coefficient, a (given

by (C.3)), is negative. Hence, based on the Item (iv) of Theorem 4.1 in [6], it can be

concluded that the treatment model (4.1) dose not undergo backward bifurcation in

the absence of re-infection. Hence, the re-infection of recovered individuals causes

backward bifurcation in the treatment model (4.1). The reason that the treatment

model (4.1) exhibits backward bifurcation, while the model (4.4) (considered in [14])
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does not, is (clearly) the heterogeneity between primary infection and re-infection.

In the model (4.4), re-infection and primary infection behave the same way (and, in

such a case, re-infection does not cause backward bifurcation). To further confirm the

absence of backward bifurcation for this special case, the following result is proved

for the DFE of the model (4.1).

Theorem 4.6. The DFE (ET0 ) of the treatment model (4.1), with ψ = 0, is GAS in

DT whenever RT < 1.

The proof, based on using Comparison Theorem [32], is given in Appendix D. Figure

4.2 depicts the solutions profile of the model (4.1) generated for the case when ψ = 0

and RT < 1, using various initial conditions, showing the convergence to the DFE

(in line with Theorem 4.6).

Case 2: Presence of re-infection (ψ 6= 0).

Consider the treatment model (4.1) in the presence of re-infection of recovered indi-

viduals (ψ 6= 0). There are two cases to consider here, as follows:

(i) No heterogeneity between primary infection and re-infection.

For this case (with κ = α = η = ω = υ = 1, χQ = χT , ζ = ρ and φ = τ), the

treatment model (4.1) reduces to the model (4.4). Elbasha [14] proved the GAS

property of the DFE of the model for this special case (ruling out the possibility

of backward bifurcation in the model (4.4)). The result in [14] is further verified

by applying the centre manifold theory on the model (4.4), as detailed in Appendix

E (from which it is clear that the reduced model (4.4) does not undergo backward

bifurcation). Thus, the analysis in Appendix E shows that the absence of the hetero-

geneity between re-infected and primary infected individuals removes the backward

bifurcation property of the model (4.1), even in the presence of the re-infection of
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recovered individuals.

(ii) Effect of infectivity of acute, chronic and treated re-infected individuals (υ 6=

0, ω 6= 0, χQ 6= 0).

Consider the case of the treatment model (4.1) where acute, chronic and treated

re-infected individuals do not transmit infection (i.e., υ = ω = χQ = 0). For this

case,

λ̂ = λ|υ=ω=χQ=0 =
β(I + πP + χTπT )

N
,

where, N = S + I + P + R + V + W + T + Q. Setting υ = ω = χQ = 0 in the

expression of the backward bifurcation coefficient, a (given by (C.3) in Appendix C),

and simplifying, shows that

a =
−2µv2w

2
2K1

ΛK3(K4K6ζφ)(K2K5 − ρτ)(µ+ γ)
[K3(K4K6 − ζφ)(µ+ γ)

(K2K5 − ρτ + εK5 + τε) +K3(K4K6 − ζφ)F ] < 0. (4.16)

Thus, it follows, from (4.16) and Appendix C, that disease transmission by re-

infected individuals causes backward bifurcation in HCV transmission dynamics.

The above results are summarized below.

(a) The treatment model (4.1) does not undergo backward bifurcation in the absence

of re-infection of recovered individuals (ψ = 0).

(b) In the presence of re-infection of recovered individuals (ψ 6= 0), the phenomenon

of backward bifurcation can be removed via any of the following scenarios:
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(i) the absence of heterogeneity between re-infected and primary infected in-

dividuals (i.e., κ = α = η = ω = υ = 1, χQ = χT , ζ = ρ, and φ = τ);

(ii) if re-infected individuals do not transmit HCV infection (i.e., υ = ω =

χQ = 0).

Furthermore it is shown, in Item (ii) of Case (b) above, that if individuals in the

re-infected classes (V,W,Q) are not able to transmit the infection, then the treat-

ment model (4.1) does not undergo backward bifurcation even in the presence of

re-infection (ψ 6= 0). This fact is further illustrated by proving the global asymp-

totic stability of the DFE of the treatment model (4.1) for this special case, as below.

Theorem 4.7. The DFE, ET0 , of the treatment model (4.1), with υ = ω = χQ = 0,

is GAS in DT whenever RT < 1.

The proof, based on using Comparison Theorem [32], is given in Appendix F. As

in Chapter 3, the result given in Theorem 4.7 shows that HCV can be effectively-

controlled (or eliminated) in the IDU population if the infectivity of re-infected

individuals is negligible (or, for instance, cured IDUs change their behaviour, and

cease being IDUs). Moreover, numerical simulations of the treatment model (4.1),

for the case when RT > 1 (Figure 4.3), suggests that the associated unique endemic

equilibrium (ET1 ) is stable when it exists.

4.4 Assessment of Treatment Impact

Following Elbasha [14], the reproduction threshold (RT ) is differentiated partially

with respect to the treatment rate of chronically-infected individuals (τ), giving

∂RT

∂τ
= − β

(µ+ σ + ε)

πε(µ+ ρ+ θ)4
[(µ+ δ)(µ+ θ + ρ) + τ(µ+ θ)]2

, (4.17)

where,
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4 = (µ+ θ)− χT (µ+ δ).

Thus, RT is a decreasing (increasing) function of τ whenever 4 > 0 (< 0). Further-

more, ∂RT

∂τ
= 0 if 4 = 0. This leads to the following result (same result was also

derived for the reduced model considered in [14]).

Theorem 4.8. Consider the treatment model (4.1) in the absence of backward bi-

furcation. The treatment of chronically-infected individuals offers

(i) a positive population-level impact whenever 4 > 0 ;

(ii) no-population level impact if 4 = 0;

(iii) a detrimental impact population-level (increase disease burden) if 4 < 0.

As noted by Elbasha [14], the threshold quantity,4, is expected to always be positive

since the cure rate (θ) is expected to exceed the natural recovery for chronically-

infected individuals (δ), and that the relative infectiousness of treated individuals is

small (χT < 1). Similarly, differentiating the reproduction threshold (RT ) partially

with respect to the treatment failure rate for chronically-infected individuals (ρ)

gives:

∂RT

∂ρ
=

β

(µ+ σ + ε)

πετ4
[(µ+ δ)(µ+ θ + ρ) + τ(µ+ θ)]2

, (4.18)

so that RT is an increasing function of ρ whenever 4 > 0, as expected.

4.5 Uncertainty and Sensitivity Analysis

As in Chapter 3, the impact of the uncertainties of the estimates of the parameters

values (given in Table 4.2 and used in the numerical simulations of the treatment

model (4.1)) are assessed. Furthermore, the sensitivity of the parameters of the
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treatment model (4.1) is measured by finding PRCC between each parameter and

control reproduction number (RT ).

A boxplot of the control reproduction number (RT ), as a function of the number

of LHS runs carried out, is depicted in Figure 4.6, showing a range of RT from 1.44

to 1.48 (which is consistent with the range in [14]). It is worth mentioning that

the RT range is marginally lower than the R0 range (given in Section 3.4) because

a small treatment rate (4%) is used in the simulations for the boxplots in Figure

4.6. The boxplot corresponding to an increased treatment rate (70%) is depicted in

Figure 4.7, showing a markedly decreased RT range (of RT ∈ [1.33, 1.37]).

Furthermore, Table 4.3 and Figure 4.5 give the PRCC values of the parameters

of the model, from which it follows that the parameters that most affect RT (hence,

drive the HCV transmission dynamics) are the effective contact rate (β), the rate

of progression to chronic infection (ε), the rate of recovery from acute infection (σ),

the death or retirement rate from the population (µ) and the relative infectivity

of chronically-infected individuals (π). As in the case of the treatment-free model

(3.2), further numerical simulations of the treatment model (4.1) (Figures 4.8 and

4.9) show that a 10% increase in the baseline values of these top-PRCC ranked

parameters (β, ε, σ, µ and π) increases the cumulative incidence and prevalence

of HCV in the community (and that a 10% decrease leads to a decrease in the

cumulative incidence and prevalence of the disease during the first few years (about

10 years), and a marginal increase shortly thereafter).

4.6 Numerical Simulations

As in Chapter 3, the treatment model (4.1) is simulated using the parameters values

given in Table 4.2 (unless otherwise stated). The following initial data (relevant to

HCV dynamics in an IDU population [14]) is also used:
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(S(0), I(0), P (0), R(0), V (0),W (0), T (0), Q(0)) = (439000, 550, 350, 50, 20, 10, 10, 10).

The cumulative number of new cases, as a function of time, for various values of

the re-infection rate (ψ) is shown in Figure 4.10. It is evident from Figure 4.10 that

re-infection has little or no effect on the cumulative incidence of HCV for the first

few years. The effect is, however, noticeable after about 7 years. In other words,

this study shows that re-infection has marginal effect on HCV burden (as measured

in terms of cumulative number of new cases) in the community. Similar results are

obtained for the prevalence of HCV (Figure 4.11).

The effect of treatment of chronically-infected individuals on the cumulative inci-

dence and prevalence of the disease is depicted in Figures 4.12 and 4.13, respectively.

It follows from these figures that, as expected, the treatment of chronically-infected

individuals significantly reduces the cumulative incidence and prevalence of HCV in

the community. Furthermore, Figure 4.14 shows that the treatment of active IDU’s,

even if only a tiny percentage is treated, has a positive population-level impact (i.e.,

minimizes HCV burden in the IDU population). This figure also shows that the

treatment of a sizeable proportion of chronically-infected individuals (e.g., τ = 70%)

significantly reduces the prevalence of HCV in the population.

These simulations provide the answer to Question 4 in Section 1.3.

4.7 Summary of the Chapter

This chapter focuses on the rigorous analysis of the HCV transmission model in

the presence of treatment, presented by Elbasha [14]. The aim was to extend the

qualitative analyses in [14] (where only a special case of the treatment model was

analysed) and explore new dynamical features (of the model) not observed or estab-
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lished in [14]. It was shown that the treatment model undergoes the phenomenon

of backward bifurcation when the associated control reproduction number (RT ) is

less than unity. One of the notable contributions of this chapter is that three main

scenarios where the backward bifurcation property of the treatment model can be

removed are identified as follows.

The first is the absence of heterogeneity between primary infected and re-infected

recovered individuals. In other words, the model will not undergo backward bifur-

cation if newly-infected and re-infected recovered individuals behave the same way

(with respect to the rates of the infectivity recovery, disease progression and treat-

ment). This result supports, and extends, the results reported in [14], where a special

case (5-dimensional) of the 8-dimensional model (4.1) is analysed. Hence, this study

shows that heterogeneity between primary infected individuals and reinfected in-

dividuals can induce the phenomenon of backward bifurcation in the transmission

dynamics of a disease (such as HCV).

The second is in the presence of such heterogeneity, the backward bifurcation

phenomenon can be removed via two cases, namely, (i) when re-infection of re-

covered individuals does not occur (ψ = 0); (ii) when acute, chronic and treated

re-infected individuals do not transmit infection (i.e., υ = ω = χQ = 0). For the case

when re-infection does not occur, a comparison theorem is used to prove the global

asymptotic stability of the disease-free equilibrium of the model when the associated

reproduction number is less than unity.

The treatment model is shown to have a unique endemic equilibrium when the

associated control reproduction number (RT ) exceeds unity. In such a case, numeri-

cal simulations show that HCV will persist in the IDU population. These simulation

results also provide answers to Questions 2 and 3 raised in Section 1.3.

Further simulations show that the re-infection of recovered individuals has marginal

effect on the disease burden (as measured in terms of HCV cumulative incidence
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and prevalence in the community). Moreover, it is shown (as expected) that the

treatment of chronically-infected individuals significantly reduces the cumulative in-

cidence and prevalence of HCV in the IDU community.
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Symbol Description

Variables

S(t) Population of susceptible individuals
I(t) Population of acutely-infected individuals
P (t) Population of chronically-infected individuals
R(t) Population of recovered individuals with partial immunity
V (t) Population of acutely-reinfected individuals
W (t) Population of chronically-reinfected individuals
T (t) Population of chronically-infected treated individuals
Q(t) Population of chronically-reinfected treated individuals

Parameters

Λ Recruitment rate
µ Natural death rate
β Contact rate
σ Recovery rate from acute infection
δ Recovery rate from chronic infection
ε Rate of progression from acute infection to chronic infection
ψ Relative susceptibility of recovered individuals
α Relative rate of recovery from acute re-infection
η Relative rate of recovery from chronic re-infection
κ Relative rate of progression from acute re-infection to chronic re-infection
τ Treatment rate of chronically-infected individuals
φ Treatment rate of chronically-re-infected individuals
θ Treatment cure rate
ρ Treatment failure rate of chronically-infected individuals
ζ Treatment failure rate of chronically-re-infected individuals
γ Rate of waning immunity
π Relative infectivity of chronically-infected individuals
υ Relative infectivity of acutely-re-infected individuals
ω Relative infectivity of chronically-re-infected individuals
χT Relative infectivity of treated infected individuals
χQ Relative infectivity of treated re-infected individuals

Table 4.1: Description of variables and parameters of the treatment model (4.1) [14].
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Parameters Baseline Values [14] Ranges [14]

Λ 39, 600 year−1 [35640, 43560]
µ 0.09 year−1 [0.081, 0.099]
β 2.68 year−1 [2.444, 2.948]
σ 0.5 year−1 [0.45, 0.55]
δ 0.002 year−1 [0.0018, 0.0022]
ε 1.5 year−1 [1.35, 1.65]
ψ 0.5 [0.45, 0.55]
α 3.3 [2.97, 3.36]
η 3.3 [2.97, 3.36]
κ 1/3.3 [0.2727, 0.3333]
τ 0.04 year−1 [0.036, 0.044]
φ 0.04 year−1 [0.036, 0.044]
θ 0.67 year−1 [0.603, 0.737]
ρ 0.82 year−1 [0.738, 0.902]
ζ 0.82 year−1 [0.738, 0.902]
γ 0.025 year−1 [0.0225, 0.0275]
π 0.01 [0.009, 0.011]
υ 1/6.5 [0.1386, 0.1694]
ω 1/6.5 [0.1386, 0.1694]

χT = χQ = χ 0.5 [0.45, 0.55]

Table 4.2: Baseline values and ranges of the parameters of the treatment model (4.1).
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Parameters PRCC(RT )
β 0.989521805
ε -0.972702393
σ -0.852219599
µ -0.703177587
π 0.637106865
θ -0.11532655
τ -0.097537395
δ 0.054609189
ρ 0.053632664
Λ 0.035866564
η 0.033461692
γ -0.031457596
κ -0.017800737
υ -0.014450844
χ 0.011501931
ζ -0.010004813
α -0.006900158
ψ 0.004427847
ω 0.004084257
φ 0.002943497

Table 4.3: PRCC values of the parameters of the treatment model (4.1), with RT as
the output. Parameter values and ranges used are as given in Table 4.2.

Figure 4.1: Schematic diagram of the treatment model (4.1) [14].
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Figure 4.2: Simulations of the treatment model (4.1), showing the total number of
infected individuals as a function of time, using various initial conditions. Parameter
values used are as given in Table 4.2, with β = 1.68 (so that, RT = 0.8323).
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Figure 4.3: Simulations of the treatment model (4.1), showing the total number of
infected individuals as a function of time, using various initial conditions. Parameter
values used are as given in Table 4.2 (so that, RT = 1.4574).

78



Figure 4.4: Backward bifurcation diagram for the treatment model (4.1), showing
the prevalence as a function of the control reproduction number (RT ). Parame-
ter values used are: Λ = 40640, β∗ = 3.324462329, µ = 0.091, σ = 0.255, δ =
0.0025, ε = 3.5, ψ = 0.70, α = 3.3, η = 4.050, κ = 0.0827, τ = 0.70, φ =
0.36, θ = 0.7603, ζ = 0.902, ρ = 0.638, γ = 0.0225, π = 0.019, υ = 0.89999, ω =
0.89999 χT = 0.35, and χQ = 0.745 (so that, a = 0.0001180441877 > 0; RT = 1 ).
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Figure 4.5: Distribution of PRCC values for the parameters of the treatment model
(4.1). Parameter values and ranges used are as given in Table 4.2.
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Figure 4.6: Boxplots of the control reproduction number (RT ), as a function of the
number of LHS runs (NR) carried out, for the treatment model (4.1). Parameter
values and ranges used are as given in Table 4.2.

81



Figure 4.7: Boxplots of the control reproduction number (RT ), as a function of the
number of LHS runs (NR) carried out, for the treatment model (4.1) with increased
treatment rate (τ = 70%). Parameter values and ranges used are as given in Table
4.2.
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Figure 4.8: Simulations of the treatment model (4.1), showing the cumulative number
of new infected individuals as a function of time, for various values of the top-five
PRCC-ranked parameters in Table 4.3 (β, ε, σ, µ and π): green curve (10% decrease
in the baseline values of the top-five PRCC-ranked parameters); blue curve (baseline
values); red curve (10% increase in the baseline values of the top-five PRCC-ranked
parameters). Parameter values used are as given in Table 4.2.
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Figure 4.9: Simulations of the treatment model (4.1), showing the the prevalence of
HCV as a function of time, for various values of the top-five PRCC-ranked parameters
in Table 4.3 (β, ε, σ, µ and π): green curve (10% decrease in the baseline values of
the top-five PRCC-ranked parameters); blue curve (baseline values); red curve (10%
increase in the baseline values of the top-five PRCC-ranked parameters). Parameter
values used are as given in Table 4.2.
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Figure 4.10: Simulations of the treatment model (4.1), showing the cumulative num-
ber of new infected individuals as a function of time, for various values of the re-
infection parameter (ψ): green curve (ψ = 0.0), blue curve (ψ = 0.5) and red curve
(ψ = 1.0). Parameter values used are as given in Table 4.2.
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Figure 4.11: Simulations of the treatment model (4.1), showing the prevalence of
total infected individuals as a function of time, for various values of the re-infection
parameter (ψ): green curve (ψ = 0.0), blue curve (ψ = 0.5) and red curve (ψ = 1.0).
Parameter values used are as given in Table 4.2.
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Figure 4.12: Simulations of the treatment model (4.1), showing the cumulative num-
ber of new infected individuals as a function of time, for various values of the treat-
ment rate of chronically-infected individuals (τ): green curve (τ = 0.04), blue curve
(τ = 0.4) and red curve (τ = 0.7). Parameter values used are as given in Table 4.2.
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Figure 4.13: Simulations of the treatment model (4.1), showing the the prevalence
of HCV as a function of time, for various values of the treatment rate of chronically-
infected individuals (τ): green curve (τ = 0.04), blue curve (τ = 0.4) and red curve
(τ = 0.7). Parameter values used are as given in Table 4.2.
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Figure 4.14: Simulations of the model (4.1), showing the prevalence of HCV as a
function of time, in presence and absence of anti-HCV treatment: green curve shows
the prevalence of HCV without treatment (τ = φ = ζ = ρ = θ = χT = χQ = 0), blue
curve exhibit the prevalence where only 4% of chronically-infected IDUs are treated
(τ = 0.04) and red curve shows the prevalence of HCV for the case where 70% of
chronically-infected IDUs are treated (τ = 0.7). Other parameter values used are as
given in Table 4.2.
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Appendix A

Proof of Theorem 3.4

Proof. It is convenient to let

S = x1, I = x2, P = x3, R = x4, V = x5, W = x6,

so that the treatment-free model (3.2) can be re-written as:

dx1

dt
=f1= Λ− λwtx1 − µx1 + γx4,

dx2

dt
=f2= λwtx1 − (µ+ σ + ε)x2,

dx3

dt
=f3= εx2 − (µ+ δ)x3, (A.1)

dx4

dt
=f4= σx2 + δx3 + ασx5 + ηδx6 − ψλwtx4 − (µ+ γ)x4,

dx5

dt
=f5= ψλx4 − (µ+ ασ + κε)x5,

dx6

dt
=f6= κεx5 − (µ+ ηδ)x6,

where,
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λwt =
β(x2 + πx3 + υx5 + πωx6)

6∑
i=1

xi

,

and f = [f1, · · · , f6]T represents the vector field of the model (3.2). Evaluating the

Jacobian of the system (A.1) at the DFE (Ewt0 ) gives:

J(Ewt0 ) =



−µ −β −βπ γ −βυ −βωπ

0 β −G1 βπ 0 βυ βωπ

0 ε −G2 0 0 0

0 σ δ −µ− γ ασ ηδ

0 0 0 0 −G3 0

0 0 0 0 κε −G4


.

Consider the case of the model (A.1) with R0 = 1. Suppose, also, that β is chosen

as the bifurcation parameter. Solving for β from R0 = 1 gives (where G1 and G2 are

as defined in Subsection 3.3.1)

β∗ =
G1G2

πε+G2

. (A.2)

The transformed system (A.1), with β = β∗, has a simple eigenvalue with zero real

part (and all other eigenvalues have negative real parts). Hence, the centre manifold

theory [6] can be used to analysed the dynamics of (A.1) near β∗. To apply the

theory, the following computations are necessary.

Eigenvectors of J(Ewt0 )|β=β∗ :

Let J(Ewt0 )|β=β∗ = Jβ∗ . In order to apply the method described in [6], the following

computations are necessary. The matrix Jβ∗ has a left eigenvector (associated with

the zero eigenvalue) given by,
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v = [v1, v2, v3, v4, v5, v6],

where,

v1 = 0, v2 = v2 > 0, v3 =
β∗π

G2

v2, v4 = 0,

v5 =
β∗(πκεω + υG4

G3G4

v2, v6 =
β∗πω

G4

v2.

Furthermore, the matrix Jβ∗ has a right eigenvector (associated with the zero eigen-

value) given by,

w = [w1, w2, w3, w4, w5, w6]T ,

where,

w1 = −β
∗(µ+ γ)(πε+G2)− γ(σG2 + δε)

µG2(µ+ γ)
w2, w2 = w2 > 0,

w3 =
ε

G2

w2, w4 =
σG2 + δε

G2(µ+ γ)
w2, w5 = 0, w6 = 0.

Computation of bifurcation coefficients, a and b:

It follows from Theorem 4.1 of [6] that, for the system (A.1), the associated non-zero

partial derivatives of (A.1) (at the DFE, Ewt0 ) are given by

∂2f1

∂x2∂x2

=
2β∗µ

Λ
,

∂2f1

∂x3∂x2

=
β∗µ

Λ
+
β∗πµ

Λ
,

∂2f1

∂x4∂x2

=
β∗µ

Λ
,

∂2f1

∂x5∂x2

=
β∗µ

Λ
+
β∗υµ

Λ
,

∂2f1

∂x6∂x2

=
β∗µ

Λ
+
β∗ωπµ

Λ
,
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∂2f1

∂x2∂x3

=
β∗πµ

Λ
+
β∗µ

Λ
,

∂2f1

∂x3∂x3

=
2β∗πµ

Λ
,

∂2f1

∂x4∂x3

=
β∗πµ

Λ
,

∂2f1

∂x5∂x3

=
β∗πµ

Λ
+
β∗µυ

Λ
,

∂2f1

∂x6∂x3

=
β∗πµ

Λ
− β∗πµω

Λ
,

∂2f1

∂x2∂x4

=
β∗µ

Λ
,

∂2f1

∂x3∂x4

=
β∗πµ

Λ
,

∂2f1

∂x5∂x4

=
β∗µυ

Λ
,

∂2f1

∂x6∂x4

=
β∗πµω

Λ
,

∂2f1

∂x2∂x5

=
β∗υµ

Λ
+
β∗µ

Λ
,

∂2f1

∂x3∂x5

=
β∗υµ

Λ
+
β∗πµ

Λ
,

∂2f1

∂x5∂x5

=
β∗υµ

Λ
,

∂2f1

∂x5∂x5

=
2β∗υµ

Λ
,

∂2f1

∂x6∂x5

=
β∗υµ

Λ
+
β∗πµω

Λ
,

∂2f1

∂x2∂x6

=
β∗ωπµ

Λ
+
β∗µ

Λ
,

∂2f1

∂x3∂x6

=
β∗ωπµ

Λ
+
β∗πµ

Λ
,

∂2f1

∂x4∂x6

=
β∗ωπµ

Λ
,

∂2f1

∂x5∂x6

=
β∗ωπµ

Λ
+
β∗υµ

Λ
,

∂2f1

∂x6∂x6

=
2β∗ωπµ

Λ
,

∂2f2

∂x2∂x2

= −2β∗µ

Λ
,

∂2f2

∂x3∂x2

= −β
∗µ

Λ
− β∗πµ

Λ
,

∂2f2

∂x4∂x2

= −β
∗µ

Λ
,

∂2f2

∂x5∂x2

= −β
∗µ

Λ
− β∗µυ

Λ
,

∂2f2

∂x6∂x2

= −β
∗µ

Λ
− β∗πµω

Λ
,

∂2f2

∂x2∂x3

= −β
∗πµ

Λ
− β∗µ

Λ
,

∂2f2

∂x3∂x3

= −2β∗πµ

Λ
,

∂2f2

∂x4∂x3

= −β
∗πµ

Λ
,

∂2f2

∂x5∂x3

= −β
∗πµ

Λ
− β∗µυ

Λ
,

∂2f2

∂x6∂x3

= −β
∗πµ

Λ
− β∗πµω

Λ
,

∂2f2

∂x2∂x4

= −β
∗µ

Λ
,

∂2f2

∂x3∂x4

= −β
∗πµ

Λ
,

∂2f2

∂x5∂x4

= −β
∗µυ

Λ
,

∂2f2

∂x6∂x4

= −β
∗πµω

Λ
,

∂2f2

∂x2∂x5

= −β
∗υµ

Λ
− β∗µ

Λ
,

∂2f2

∂x3∂x5

= −β
∗υµ

Λ
− β∗πµ

Λ
,

∂2f2

∂x4∂x5

= −β
∗υµ

Λ
,

∂2f2

∂x5∂x5

= −2β∗υµ

Λ
,

∂2f2

∂x6∂x5

= −β
∗υµ

Λ
− β∗πµω

Λ
,

∂2f2

∂x2∂x6

= −β
∗ωπµ

Λ
− β∗µ

Λ
,

∂2f2

∂x3∂x6

= −β
∗ωπµ

Λ
− β∗πµ

Λ
,

∂2f2

∂x4∂x6

= −β
∗ωπµ

Λ
,

∂2f2

∂x5∂x6

= −β
∗ωπµ

Λ
− β∗υµ

Λ
,

∂2f2

∂x6∂x6

= −2β∗ωπµ

Λ
,

∂2f4

∂x4∂x2

= −β
∗ψµ

Λ
,

∂2f4

∂x4∂x3

= −β
∗ψπµ

Λ
,

∂2f4

∂x2∂x4

= −β
∗ψµ

Λ
,

∂2f4

∂x3∂x4

= −β
∗ψπµ

Λ
,

∂2f4

∂x5∂x4

= −β
∗ψµυ

Λ
,

∂2f4

∂x6∂x4

= −β
∗ψπµω

Λ
,

∂2f4

∂x4∂x5

= −β
∗ψυµ

Λ
,

∂2f4

∂x4∂x6

= −β
∗ψωπµ

Λ
,

∂2f5

∂x4∂x2

=
β∗ψµ

Λ
,

∂2f5

∂x4∂x3

=
β∗ψπµ

Λ
,
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∂2f5

∂x2∂x4

=
β∗ψµ

Λ
,

∂2f5

∂x3∂x4

=
β∗ψπµ

Λ
,

∂2f5

∂x5∂x4

=
β∗ψµυ

Λ
,

∂2f5

∂x6∂x4

=
β∗ψπµω

Λ
,

∂2f5

∂x4∂x5

=
β∗ψυµ

Λ
,

∂2f5

∂x4∂x6

=
β∗ψωπµ

Λ
.

It can be shown, by computing the non-zero partial derivatives of the right-hand

side functions in (A.1), that the associated backward bifurcation coefficients, a and

b, are given, respectively, by (see Theorem 4.1 in [6]):

a =
6∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(Ewt0 , β∗) =
−2µv2w

2
2β
∗

ΛG3G4G2
2(µ+ γ)

[S1 + (εδ +G2σ)S2] , (A.3)

where,

S1 = G3G4(µ+ γ)(G2 + ε) > 0, S2 = G3G4 −
G1G2ψ(πεκω +G4υ)

G2 + πε
, (A.4)

and,

b =
6∑

k,i=1

vkwi
∂2fk
∂xi∂β

(Ewt0 , β∗) =
(G2 + πε)

G2

v2w2 > 0.

It follows from (A.3) that the bifurcation coefficient, a, is positive whenever

S2 > 0, (A.5)

Thus, it follows, from Theorem 4.1 of [6], that the treatment-free model (3.2) (or,

equivalently, (A.1)) undergoes backward bifurcation at R0 = 1 whenever Inequality

(A.5) holds.
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Appendix B

Model Formulation of the

Treatment Model (4.1)

The population of susceptible individuals (S) is increased by the recruitment of new

IDUs into the IDU population (at a rate Λ). It is further increased by the loss of

infection-acquired immunity of recovered individuals (at a per capita rate γ ). It

is decreased by infection, following effective contacts with infected individuals, at a

rate λ, given by

λ =
β(I + πP + υV + ωπW + πχTT + πχQQ)

N
, (B.1)

In (B.1), β is the effective contact rate, π, υ, ω, χT and χQ are modification pa-

rameters accounting for the relative infectivity of chronically-infected, acutely-re-

infected, chronically-re-infected, treated infected and treated re-infected individuals,

in comparison to acutely infected individuals, respectively. This population is fur-

ther decreased by natural death (at a rate µ; this rate is assumed, for mathematical

convenience, to be the same for all of the epidemiological compartments). Thus,

dS

dt
= Λ + γR− λS − µS.
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The population of acutely-infected individuals (I) is increased by the infection of

susceptible individuals (at the rate λ). It is decreased by recovery (at a rate σ),

progression to chronic stage (at a rate ε) or natural death. Thus,

dI

dt
= λS − (σ + ε+ µ)I.

The population of chronically-infected individuals (P) is generated by progression

of acutely-infected individuals to the chronically-infection (at the rate ε). It is also

increased by treatment failure of chronically-infected individuals (at a rate ρ). This

population is decreased by treatment (at a rate τ), recovery (at a rate δ) or natural

death. Hence,

dP

dt
= εI + ρT − (δ + τ + µ)P.

The population of recovered individuals (R) is generated by the recovery of acutely-

infected individuals (at the rate σ), chronically-infected individuals (at the rate δ),

acutely-re-infected individuals (at a rate ασ, where α > 1 is the modification param-

eter accounting for the assumption that acutely-re-infected individuals recover at a

faster rate in comparison to acutely-infected individuals), and chronically-re-infected

individuals (at a rate ηδ where, η > 1 is the modification parameter accounting for

the assumption that chronically-re-infected individuals recover at a faster rate in

comparison to chronically-infected individuals) [14]. It is also increased by the suc-

cessfully treatment of chronically-infected and chronically-re-infected individuals (at

a rate θ). This population is decreased by infection (at a reduced rate ψλ, where

0 < ψ < 1 accounting for the assumption that recovered individuals acquire HCV

infection at a rate lower than susceptible individuals). It is further decreased by the

loss of infection-acquired immunity (at the rate γ) and natural death. Thus,
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dR

dt
= σI + δP + ασV + ηδW + θT + θQ− ψλR− (γ + µ)R.

The population of acutely re-infected individuals (V) is increased by the re-infection

of recovered individuals (at the rate ψλ). It is decreased by progression to the chronic

re-infection stage (at a rate κε, where 0 < κ < 1 is the modification parameter

accounting for the assumption that acutely-re-infected individuals progress to the

chronically-re-infection stage (W) at a slower rate in comparison to acutely-infected

individuals), recovery (at the rate ασ) or natural death. Hence,

dV

dt
= ψλR− (ασ + κε+ µ)V.

The population of chronically-reinfected individuals (W) is increased by the progres-

sion of acutely-reinfected individuals (at the rate κε) and by the failure of treatment

in chronically-re-infected individuals (at a rate ζ). It diminishes by recovery (at

the rate ηδ), treatment of chronically-re-infected individuals (at a rate φ) or natural

death. Thus,

dW

dt
= κεV + ζQ− (ηδ + φ+ µ)W.

The population of chronically-infected treated individuals (T) is increased by the

treatment of the chronically-infected individuals (at the rate τ). It is decreased by

treatment failure or successful treatment of the chronically-infected individuals (at

the rates ρ and θ, respectively) or by natural death. Thus,

dT

dt
= τP − (ρ+ θ + µ)T.

Similarly, the population of chronically-re-infected individuals (Q) is generated by

the successful treatment of chronically-re-infected individuals (at the rate φ). It
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diminishes by the treatment failure or successful treatment of the chronically-re-

infected individuals (at the rates ζ or θ, respectively). It is further decreased by the

natural death. Thus,

dQ

dt
= φW − (ζ + θ + µ)Q.
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Appendix C

Proof of Theorem 4.5

Proof. It is convenient to let

S = x1, I = x2, P = x3, R = x4, V = x5, W = x6, T = x7, Q = x8,

so that the treatment model (4.1) can be re-written as:

dx1

dt
=f1= Λ− λx1 − µx1 + γx4,

dx2

dt
=f2= λx1 − (µ+ σ + ε)x2,

dx3

dt
=f3= εx2 + ρx7 − (µ+ δ + τ)x3, (C.1)

dx4

dt
=f4= σx2 + δx3 + ασx5 + ηδx6 + θx7 + θx8 − ψλx4 − (µ+ γ)x4,

dx5

dt
=f5= ψλx4 − (µ+ ασ + κε)x5,

dx6

dt
=f6= κεx5 + ζx8 − (µ+ ηδ + φ)x6,

dx7

dt
=f7= τx3 − (µ+ ρ+ θ)x7,

dx8

dt
=f8= φx6 − (µ+ ζ + θ)x8,
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where,

λ =
β(x2 + πx3 + υx5 + πωx6 + πχTx7 + πχQx8)

8∑
i=1

xi

,

and f = [f1, · · · , f8]T represents the vector field of the model (4.1). Evaluating the

Jacobian of the system (C.1) at the DFE (ET0 ) gives:

J(ET0 ) =



−µ −β −βπ γ −βυ −βωπ −βχTπ −βχQπ

0 β −K1 βπ 0 βυ βωπ βχTπ βχQπ

0 ε −K2 0 0 0 ρ 0

0 σ δ −µ− γ ασ ηδ θ θ

0 0 0 0 −K3 0 0 0

0 0 0 0 κε −K4 0 ζ

0 0 τ 0 0 0 −K5 0

0 0 0 0 0 φ 0 −K6



.

Consider the case of the model (C.1) with RT = 1. Suppose, also, that β is chosen

as the bifurcation parameter. Solving for β from RT = 1 gives

β∗ =
K1(K2K5 − ρτ)

K2K5 − ρτ + πεK5 + πχT τε
. (C.2)

The transformed system (C.1), with β = β∗, has a simple eigenvalue with zero real

part (and all other eigenvalues have negative real parts). Hence, the centre manifold

theory [6] can be used to analysed the dynamics of (C.1) near β∗.

As in Appendix A, let J(ET0 )|β=β∗ = Jβ∗ . Define the left and right eigenvectors
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of Jβ∗ , respectively, by

v = [v1, v2, v3, v4, v5, v6, v7, v8], and w = [w1, w2, w3, w4, w5, w6, w7, w8]T ,

where,

v1 = 0, v2 = v2 > 0, v3 =
β∗(πK5 + πχT τ)

(K2K5 − ρτ)
v2, v4 = 0,

v5 =
β∗(K6πκεω + υ(K4K6 − ζφ) + πφκεχQ)

K3(K4K6 − ζφ)
v2,

v6 =
β∗(πωK6 + πχQφ)

(K4K6 − ζφ)
v2, v7 =

β∗(πχTK2 + πρ)

(K2K5 − ρτ)
v2, v8 =

β∗(πχQK4 + πζω)

K4K6 − ζφ
v2.

and,

w1 = −β
∗(µ+ γ)(K2K5 − ρτ + πεK5 + πχT τε)− γ(σ(K2K5 − ρτ) + δεK5 + τεθ)

µ(µ+ γ)(K2K5 − ρτ)
w2,

w2 = w2 > 0, w3 =
εK5

(K2K5 − ρτ)
w2, w4 =

σ(K2K5 − ρτ) + δεK5 + τεθ

(K2K5 − ρτ)(µ+ γ)
w2,

w5 = 0, w6 = 0, w7 =
τε

(K2K5 − ρτ)
w2, w8 = 0.

It can be shown (by computing the associated non-zero partial derivatives of (C.1)

at the DFE (ET0 )) that the associated backward bifurcation coefficients, a and b, are

given, respectively, by:
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a =
8∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(ET0 , β∗),

=
−2µv2w

2
2K1

ΛK3(K4K6 − ζφ)(K2K5 − ρτ)(µ+ γ)
(C1 + C2F − β∗∗ψFC3) , (C.3)

where,

C1 = K3(K4K6 − ζφ)(µ+ γ)(K2K5 − ρτ + εK5 + τε),

C2 = K3(K4K6 − ζφ), (C.4)

C3 = (K4K6 − ζφ)υ +K6εκπω + φεκπχQ,

F = σ(K2K5 − ρτ) + δK5ε+ τεθ,

and (noting that K2K5 − ρτ > 0 and K4K6 − ζφ > 0),

b =
8∑

k,i=1

vkwi
∂2fk
∂xi∂β

(ET0 , β∗) =
(K2K5 − ρτ + πεK5 + πχT τε)

(K2K5 − ρτ)
v2w2 > 0.

It follows from (C.3), with (C.4), that the bifurcation coefficient, a, is positive when-

ever

J2 > J1, (C.5)

where,
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J1 = K3(K4K6 − ζφ)F +K3(µ+ γ)(K4K6 − ζφ)(K2K5 − ρτ + εK5 + τε),

J2 = β∗ψ[(K4K6 − ζφ)υ +K6εκπω + φεκπχQ]F.

Thus, it follows, from Theorem 4.1 of [6], that the treatment model (4.1) (or, equiv-

alently, (C.1)) undergoes backward bifurcation at RT = 1 whenever Inequality (C.5)

holds.
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Appendix D

Proof of Theorem 4.6

Proof. It should, first of all, be mentioned that the system (D.1) satisfies the Type K

condition [44] (hence, Comparison Theorem can be used [32]). Furthermore, consider

the following reduced model (D.1) of the treatment model (4.1) for the special case

with ψ = 0, given by:

dS

dt
= Λ− λS − µS + γR,

dI

dt
= λS − (µ+ σ + ε) I,

dP

dt
= εI + ρT − (µ+ δ + τ)P, (D.1)

dR

dt
= σI + δP + ασV + ηδW + θT + θQ− (µ+ γ)R,

dV

dt
= − (µ+ ασ + κε)V,

dW

dt
= κεV + ζQ− (µ+ ηδ + φ)W,

dT

dt
= τP − (µ+ ρ+ θ)T,

dQ

dt
= φW − (µ+ ζ + θ)Q.
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It follows from (D.1) that V (t) → 0 as t → ∞. Hence, the equation for dV
dt

can be

temporal removed from (D.1). The infected components of the model (D.1) (with

the equation for dV
dt

removed) can be re-written as:

d

dt
x = (F1 −H1)x− Jx, (D.2)

where,

x = [I(t), P (t),W (t), T (t), Q(t)]T ,

F1 =



β πβ ωπβ χTπβ χQπβ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, H1 =



K1 0 0 0 0

−ε K2 0 −ρ 0

0 0 K4 0 −ζ

0 −τ 0 K5 0

0 0 −φ 0 K6


,

(with K1, K2, K4, K5 and K6 as defined in Section 4.1) and,

J =

[
1− µS(t)

Λ

]


β πβ ωπβ χTπβ χQπβ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.

Thus, J is a non-negative matrix since

S(t) ≤ N(t) ≤ Λ

µ
in DT .
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Hence, it follows from (D.2) that

d

dt
x ≤ (F1 −H1)x. (D.3)

Since RT |ψ=0 = ρ(F1H−1
1 ) = RT ≤ 1 (or, equivalently, the eigenvalues of the matrix

F1 − H1 all have negative real parts), it follows that the linearized differential in-

equality system (D.3) is stable whenever RT < 1 . Thus, it follows, by Comparison

Theorem [32], that

lim
t→∞

(I(t), P (t),W (t), T (t), Q(t))→ (0, 0, 0, 0, 0).

Substituting I(t) = P (t) = W (t) = T (t) = Q(t) = 0 into the (D.1) and using the fact

that V (t)→ 0 as t→∞ show that S(t)→ S∗ as t→∞ (for RT < 1). Therefore,

lim
t→∞

(S(t), I(t), P (t), V (t),W (t), T (t), Q(t))→ (S∗, 0, 0, 0, 0, 0, 0) = ET0 |ψ=0.

Hence, the DFE (ET0 ) of the reduced model (D.1) is GAS inDT wheneverRT < 1.
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Appendix E

Proof of Non-existence of

Backward Bifurcation in the

Reduced Model (4.4)

Proof. Consider the reduced model (4.4). For this model [14], the disease-free equi-

librium is

Ē0 = (S̄∗, Ī∗, P̄ ∗, R̄∗, T̄ ∗) = (
Λ

µ
, 0, 0, 0, 0),

and,

R̄c =
β(K̄2K̄3 − ρτ + πεK̄3 + πχT τε)

K̄1(K̄2K̄3 − ρτ)
,

where K̄1 = µ + σ + ε, K̄2 = µ + δ + τ, K̄3 = µ + ρ + θ. It can be shown, as

in Appendix C, that the associated backward bifurcation coefficients, a and b, are

given, respectively, by (see Theorem 4.1 in [6]):
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ā =
−2µv̄2w̄

2
2

Λ(K̄2K̄3 − ρτ)2(µ+ γ)

[
K̄1(K̄2K̄3 − ρτ)(µ+ γ)(K̄2K̄3 − ρτ + εK̄3 + τε)

+K̄1(K̄2K̄3 − ρτ)F̄ − β̄∗ψ(K̄2K̄3 − ρτ + πεK̄3 + πχT τε)F̄
]
, (E.1)

where,

β̄∗ =
K̄1(K̄2K̄3 − ρτ)

K̄2K̄3 − ρτ + πεK̄3 + πχT τε
, F̄ = σ(K̄2K̄3 − ρτ) + δK̄3ε+ τεθ, (E.2)

b̄ =

(
K̄2K̄3 − ρτ + πεK̄3 + πχT τε

)
(K̄2K̄3 − ρτ)

v̄2w̄2 > 0, (E.3)

where v̄ and w̄ are, respectively, the left and right eigenvectors corresponding to zero

eigenvalue of the Jacobian of the system (4.4), evaluated at the associated disease-

free equilibrium (Ē0), given by:

J̄ |β̄∗(Ē0) =



−µ −β̄∗ −β̄∗π γ −β̄∗χTπ

0 β̄∗ − K̄1 β̄∗π 0 β̄∗χTπ

0 ε −K̄2 0 ρ

0 σ δ −µ− γ θ

0 0 τ 0 −K̄3


,

with v̄ = [v̄1, v̄2, v̄3, v̄4, v̄5], where,

v̄1 = 0, v̄2 = v̄2 > 0, v̄3 =
β∗(πK̄3 + πχT τ)

(K̄2K̄3 − ρτ)
v̄2, v̄4 = 0, v̄5 =

β̄∗(πχT K̄2 + πρ)

(K̄2K̄5 − ρτ)
v̄2,

and w̄ = [w̄1, w̄2, w̄3, w̄4, w̄5]T , with,
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w̄1 = − β̄
∗(µ+ γ)(K̄2K̄3 − ρτ + πεK̄3 + πχT τε)− γ[σ(K̄2K̄3 − ρτ) + δεK̄3 + τεθ]

µ(µ+ γ)(K̄2K̄3 − ρτ)
w̄2,

w̄2 = w̄2 > 0, w̄3 =
εK̄3

(K̄2K̄3 − ρτ)
w̄2, w̄4 =

σ(K̄2K̄3 − ρτ) + δεK̄3 + τεθ

(K̄2K̄3 − ρτ)(µ+ γ)
w̄2,

w̄5 =
τε

(K̄2K̄3 − ρτ)
w̄2.

Substituting (E.2) into (E.1) gives:

ā =
−2µv̄2w̄

2
2

Λ(K̄2K̄3 − ρτ)2(µ+ γ)

[
K̄1(K̄2K̄3 − ρτ)(µ+ γ)(K̄2K̄3 − ρτ + εK̄3 + τε)

+ K̄1(K̄2K̄3 − ρτ)F̄ − ψK̄1(K̄2K̄3 − ρτ)F̄
]
,

=
−2µv̄2w̄

2
2

Λ(K̄2K̄3 − ρτ)2(µ+ γ)

[
K̄1(K̄2K̄3 − ρτ)(µ+ γ)(K̄2K̄3 − ρτ + εK̄3 + τε)

+K̄1(K̄2K̄3 − ρτ)(1− ψ)F̄
]
.

Since ψ < 1, the bifurcation coefficient ā is always negative. Furthermore, the

bifurcation coefficient b̄ is always positive. Thus, it follows from Item (iv) of Theorem

4.1 in [6], that the reduced model (4.4) does not undergo backward bifurcation in

this case.
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Appendix F

Proof of Theorem 4.7

Proof. Consider the treatment model (4.1) for the special case υ = ω = χQ = 0.

It follows, from the next generation operator method [50] that R̂T (the associated

control reproduction number of the treatment model (4.1) with λ = λ̂) is given by:

R̂T = ρ
[
F̂Ĥ−1

]
=
β [(K2K5 − ρτ) + πεK5 + χTπετ ]

K1(K2K5 − ρτ)
= RT , (F.1)

where, the matrices F̂ (of new infection terms), and Ĥ (of the transition terms)

evaluated at the DFE (ET0 ) are given, respectively, by:

F̂ =


β πβ χTπβ

0 0 0

0 0 0

 , and Ĥ =


K1 0 0

−ε K2 0

0 −τ K5

 ,

with, K1, K2 and K5, as defined in Section 4.1.

The proof is based on the Comparison Theorem [32]. First of all, as in Appendix

D, it should be mentioned that the equations of the infected components of the

treatment model (4.1), with λ = λ̂, satisfies the Type K condition [44] (hence,

Comparison Theorem can be used [32]). Furthermore, the infected components of
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the treatment model (4.1), with λ = λ̂, can be re-written as:

d

dt
x = (F̂ − Ĥ)x− Ĵx, (F.2)

where,

x = [I(t), P (t), T (t)]T ,

and,

Ĵ =

[
1− µS(t)

Λ

]
β πβ χTπβ

0 0 0

0 0 0

 .

Thus, Ĵ is a non-negative matrix since

S(t) ≤ N(t) ≤ Λ

µ
in DT .

Hence, it follows from (F.2) that

d

dt
x ≤ (F̂ − Ĥ)x. (F.3)

Since R̂T = ρ(F̂Ĥ−1) = RT ≤ 1 (or, equivalently, the eigenvalues of the matrix (F̂ −

Ĥ) all have negative real-parts), it follows that the linearized differential inequality

system (F.3) is stable whenever RT < 1. Thus, it follows, by Comparison Theorem

[44], that

lim
t→∞

(I(t), P (t), T (t))→ (0, 0, 0).

It should be noted that setting I(t) = P (t) = T (t) = 0 implies λ̂ = 0. Hence,

substituting λ̂ = 0 into the equation for dv
dt

in (4.1) gives V (t)→ 0, as t→∞.
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Substituting (I(t), P (t), V (t), T (t)) = (0, 0, 0, 0) into the model (4.1) gives the

following system of linear equations

dW

dt
= ζQ− (µ+ ηδ + φ)W, (F.4)

dQ

dt
= φW − (µ+ ζ + θ)Q,

from which it is clear that the system (F.4) has only one equilibrium, (W ∗, Q∗) =

(0, 0), which is stable (hence, globally-asymptotically stable, since the system is

linear and eigenvalues of the associated Jacobin evaluated at (0, 0) have negative

real part). Thus, (W (t), Q(t))→ (0, 0), as t→∞. Finally, substituting

(I(t), P (t), V (t),W (t), T (t), Q(t)) = (0, 0, 0, 0, 0, 0),

into the equations for dR
dt

and dS
dt

in the treatment model (4.1) shows that R(t)→ 0

and S → S∗ = Λ
µ

, as t→∞ when RT < 1. Therefore,

lim
t→∞

(S(t), I(t), P (t), R(t), V (t),W (t), T (t), Q(t))→ (S∗, 0, 0, 0, 0, 0, 0, 0)

= ET0 |υ=ω=χQ=0.

Hence, the DFE (ET0 ), of the treatment model (4.1), with λ = λ̂, is GAS in DT

whenever RT < 1.
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