
lmproved Distributed File Transfer (DFT)

on lnternet

By

Yuhong Li

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer engineering

University of Manitoba

Winnipeg, Manitob a, Canada

Copyright O 2005 Yuhong Li

l*!

NOTICE:
The author has granted a non-
exclusive license alloWing Library
and Archives Canada to reproduce,
publish, archive, preserye, conserye,
communicate to the public by
tefecommunication or on the lnternet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

0-494-08895-B

Your file Votre référence
/SA/Vi

Our file Norre retércnae
/SB¡úi

AVIS:
L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarderi conserver, transmettre au public
par télécommunication ou par I'lnternet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
eUou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loÍ canadienne
sur la protection de ta vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient incfus dans la pagination,
il n'y aura aucun contenu manquant.

Library and
Archives Canada

Published Heritage
Branch

395 Wellinoton Street
Ottawa ONIKIA 0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellinoton
Ottawa ON K1Ã0N4
Canada

ln compliance with the Canadian
Privacy Act some supporling
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canacla

THE UNIVERSITY OF MANITOBA

F'ACULTY OF GRADUATB STUDMS

cop,.Rrc"t ;;J;ssroN
'AGE

Improved Distributed File Transfer (DFT) on Internet

BY

Yuhong Li

A ThesisiPracticum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial furfiilment of the requirements of the degree

of

MASTER OF SCMNCE

YUHONG LI O2OO5

Permission has been granted to the Library of The University of Manitoba to lend or sell copies
of this thesis/practicum, to the National Library of Canada tô microfitm this thesis and to lend
or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesis/practicum.

The author reserYes other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author,s lvritten
permission.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by

photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of schorarly research.

Improved Distributed File Transfer (DFT) on lnternet

To my beloved parents.

@@àffi48i

,I

DÍstributed File Transfer (

Abstract

File transfers happen every moment on the Internet. The File Transfer protocol

(FTP) is one of the most commonly used protocols on the Internet. FTp has some

limits and problems such as being server-centered and single-threaded. Server-

centered cha¡acteristics can easily degrade the performance of the server and in

the worst case crash the server. Nowadays there are usually multiple copies of a

frle scattered on the Internet. Using traditional FTP, some of them are very busy

and the others may be very quiet. In addition, single threaded downloading is very

inefficient. Improving the reliability and effrciency of FTP is the motivation and

goals of this thesis.

To achieve this goal, a mechanism called Distributed File Transfer (DFT) is

designed and implemented in this thesis. In DFT, multiple servers holding the

s¿ìme copy of files are used as FTP servers. The client connects to a Load

Distributing Server (LDS) to get FTP server information by an Internet search or

through a local database. Connections are made to these FTP servers and the file

is downloaded in parallel. The user uses multiple threads to download from each

of the servers. This overcomes server-centered FTP drawbacks. The user can still

continue the download from the other servers even when some of them experience

bottlenecks or go down. The experiments done on the files with size less than i

GB shows the reliability and efficiency trends when using different server

combination and using different number th¡eads from each server.

ill

roved Distr¡buted Filo Transfer (DFT) on Internet

Acknowledgements

During the days I was working on this thesis, many people have contributed to it.

First of all, I thank my advisor, Dr. Robert D. Mcleod, for his guidance and

advice on this thesis and my study through these years. I really appreciate his

kindness and all the help that he has given to me.

Thanks to Dr. Rasit Eskicioglu and Dr. Ekram Hossain for taking the time to be

on my thesis committee for reading my thesis and for their efforts.

I want to thank my parents, brothers and husband for their persistent

encouragement, inspiration and support.

I would also like to thank all the people whose names are not mentioned here but

provided me with all the encouragement and support.

IV

toved Disttibuted File Transfar (DFT) on Internet

Figures

Chapter 1 : lntroduction

1.1. The lnternet.....1
1.2. TCPAP3
1.3. The Creation of Javas
1.4. Understanding FTP..........6

1.4.1..FTP Protocol6
1.4.2. A Sample FTp Session7
1.4.3. FTP Common Commands10
1.4.4. File Transfer Resume......13
1.4.5. Active FTP vs. passive FTp.............14

1.4.5.1. Active FTp............14
1.4.5.2. Passiye FTp16

1.4.6. The Probtems of FTp18
1.5. Exploration on the lmprovement of File Download1g

1.5.1. One Serverwith One Thread Model20
1.5.2. lmproved One Serverwith Multiple Threads Model.........20
1.5.3. Peer-to-Peer File-Sharing21
1.5.4. Distributed File Download Model21
1.5.5. lmproved Distributed File Download Model22

1.6. Digital Signatures23
1.6.1. lntroduction to Digital Signature23
1.6.2. Message Digests and Digest Algorithms24
1.6.3. Signature Algorithms..............24
1.6.4. Digital Signatures in Java........26

1.7. Summary...........27

Chapter 2: DFT System Objectives and Requirements2g

Chapter 3: DFT System Architecture.............30
3.1. System Architecture Diagram.30
3.2. Distributed Architecture of DFT31
3.3. Distributed File Transfer (DFT) Ctient........32
3.4. Two-Layer Multi-Thread parallel Download33
3.5. Load-Distributing Server (LDS) Server......36
3.6. DFT File Query and Response Model32
3.7. DFT Two-Layer Control Connection Model3g
3.8. DFT Data Connection Model43

lmproved Distributed File Transfer (DFT) on Internet

3.9. Failure Detection43
3.9.1. Two kinds of failures........44

3.9.1.1. Network failures.......44
3.9.1.2. Application failures........44

3.9.2. Two kinds of failure detection methods.....45
3.9.2.1. Timeout detection45
3.9.2.2. Application failure code detection.................46

3.10. Failure Recovery40
3.11. Checkpoint Resume....42
3.12. Local Directory48
3.13. Digital Signature48
3.14. Error Handling49
3.15. Summary...........S0

Chapter 4: lmplementation51

4.1. lmplementation Too1s........S1
4.1.1. Java Programming Language51
4.1.2. Java Foundation Classes (JFC)..........53
4.1.3. JCreator lntegrated Development Environment..............54

4.2. DFf Package lmplementation...........55
4.2.1. DFT Package Directory StructureSs
4.2.2. DFT Packages....56

4.2.2.1. Package dft.Tui.........56
4.2.2.2. Package dft.client56
4.2.2.3. Package dft.server....57
4.2.2.4. Package dft.uti|.........5a
4.2.2.5. Package dft.gensig59
4.2.2.6. Package dft.versig....59

4.3. DFT Modules lmplementation58
4.3.1. DFT Client Side lmplementation.............59

4.3.1.1. DFT Client Workflow.....59
4.3.1.2. Download Process lmplementation.............59
4.3.1.3. Download Thread lmplementation.............62
4.3.1.4. Sub-Download Thread Implementation.............63
4.3.1.5. DataConnection lmplementation64
4.3.1.6. ControlConnection lmplementation.............65
4.3.1.7. Timer lmplementation...66
4.3.1.8. check) lmplementation67
4.3.1.9. LogTimer lmplementation.............6A
4. 3. 1 . 1 0. Su b-Dow nload SpeedTi mer Th read I mple me ntation 69

4.3.2. DFT Server Side lmplementation......70
4.3.2.1. LDS Server lmplementation70
4.3.2.2. Search Engine lmplementatÌon71

i Í 35J,î:;)"''*ill illl :: :: : : i1
Chapter 5: Experiment and Data Analysis..........75

5. 1 . Experiment Goals and Design7S
5.1.1. Experiment Goals:..................75
5.1.2. Experiment Design:................76

5.1.2.1. Reliability Test:76
5.1.2.2. Digital Signature Generation and Verification Test77
5.1.2.3. Efficiency ì-esf77
5.1.2.4. Auto Optimization Test77

VI

Improved Distributed File Transfer (DFT) on lnternet

5.2. Experiment Env¡ronment.....77
5.2.1. Networks78
5.2.2. Downloaded Fi1es............79
5.2.3. FTP Servers:90
5.2.4. LDS Server and DFT Client:81

5.3. Reliability test.....82
5.3.1. Server Failure Recovery92
5.3.2. Network Failure84

5.4. Signing a File and Verify a Signatureg4
5.4.1. Signing a Fi|e.......84
5.4.2.Yeritying a Si9nature..............g6

5.5. Efficiency Test on Files Less Than 100 M8.....97
5.5.1. Test Resultsgg
5.5.2. Experiment 4na1ysis...............91

5.5.2.1. Single server Download - one vs. muttipte threads91
5.5.2.2. Multiple servers Download - one thread vs. muttiple threads..........g2
5.5.2.3. One Server vs. Multiple Seryers.......93
5.5.2.4. Elements Affecting Download Speed........94
5.5.2.5. Low Speed Server 5witch.........9s

5.6. Efficiency Test on Bigger Fi|es.........95
5.6.1. Test Results9S
5.6.2. Experiment 4na1ysis...............96

5.7. Summary...........,...97

Chapter 6: Conclusions and Future Work9g

References 101

Appendix104

VI'

oved Distributed File Transfer (D on lnternet

Figures

Figure 1.1 lnternet growth trends.........2

Figure 1.4.5.1 Active FTP Client and Server Connection15

Figure 1.4.5.2 Passiye FTP Client and Seruer Connection17

Figure 1.5.1 One Seruerwith One Thread........20

Figure 1.5.2 One Seruerwith Multiple Threads......20

Figure 1.5.3 P2P File Sharing and Down\oad..............,21

Figure 1.5.4 Multiple Seryers with One Thread........22

Figure 1.5.5 Multiple Seryers with Muttiple Threads Modet22

Figure 1.6.3 Producing and Verifying a DSA Signature....26

Figure 3.1 DFT Sysfem Architecture Diagramg0

Figure 3.4a DFT Multi-Thread Paratlel processing Diagram33

Figure 3.4b DFT Mutti-Thread Parattet processing Diagram35

Figure 3.6 DFT File Query and Response Modet Diagram......37

Figure 3.7 DFT Two- layer Control Connection Modet40

Figure 4.3.1.1 DFT Client Side Workf\ow.................59

Figure 4.3.1.2a Download Process Workflow (1)60

Figure 4.3.1.2b Download Process Workflow (2)...............61

Figure 4.3.1.3 Download Thread Workflow.....62

Figure 4.3.1.4 Sub-Download Thread Workflow....63

Figure 4.3.1.5 DataConnection Workftow64

Figure 4.3.1.6 ControlConnection Workftow65

Figure 4.3.1.7 Timer Workf\ow.............66

Figure 4.3.1.9 LogTimerWorl<flow....6g

Figure 4.3.1 .10 Sub-Download SpeedTimer Thread WorMIow69

Figure 4.3.2.1LDS Server Workftow.....70

Figure 4.3.2.2 FTP Search Engine AdaptorWorl<ftow....72

Figure 5.2.1 DTF Sysfem Test Networks7g

Figure 5.3.1a Pick up the internal seruer and an external oneg2

Figure 5.3.1b internal server Switched to the external Server....83

Figure 5.4.1a Find and choose the file being signed on...............8s

Figure 5.4.1b Successfu/ signature generation /nessage....8s

Figure 5.4.1c Key and signature files are generatedg6

Figure 5.4.2a Looks in the folder where the 3 files are..............97

Figure 5.4.2b Signature is verified successfutty97

vil,

ved D¡str¡buted File Transfer (DFT) on lnternet

Figure 5.4.2c Fail to verify the signature....g7

Figure 5.5.2.2 Duration vs. Thread Numbers....92

Figure 5.5.2.3 Download Time vs. Server Numbers....94

IX

lmproved Distributed File Transfer (DFT) on lnternet

Tables

Table 1.2 OSlT Layers and TCP/IP Sutúe..........4

Table 4.4: Sysfem Unit Module List Tabte73

Table 5.2.3: FTP Servers Used in the Experiments and 7-esfs...........81

Table 5.3.1: Resu/fs of Two
.]-esfs...........

.................g3

Table 5.5.1a: Testing Data on Downloading mysqt-4.1.12a-win32.2ip............................98

Table 5.5.1b: Testing Data on Downtoading ooo_1.1.4_win32tntet_instatt.zip90

Table 5.6.1: Testing Data on Downtoading Big Files..95

lmproved Distributed File Transfü (DFT) on lnternet

Ghapter 1
=
Introduction

1.1. The lntemet

The Internet started from the ARPANET back in the late 1960s in the United

States. ARPANET was sponsored by the US Defense Advanced Research

Projects Administration (DARPA). It was designed and implemented as a

decentralized packet-switching network that could creafe a way for network

communications to occur between two systems in such a way that reliance on a

single link wasn't required. In other words the network communication system

could find altemative paths through complex matrices of wires if some or most of

the wires were broken during an attack.

The protocol used to communicate between hosts on the ARPANET at its early

stage was the Network Control Protocol (NCP), which enabled hosts running on

the same network to transfer data. In 1973, development began on a protocol suite

now known as the Transmission Control Protocol/Intemet Protocol (TCPÃP). The

major goal of this protocol was to enable separate computer networks to

interconnect and communicate with one another.

In 1982, the term'internet'was defined as a connected set of separate networks

using the TCP/IP protocol suite. The 'Internet' was defined as connected TCP/IP

intemets. In 1983, the ARPANET changed its core networking protocols from

NCP to TCP/P officially, marking the start of the Internet as we know it today.

Copyright @ 2005 Yuhong Li

lmproved Distributed File Transter (DFT) on lnternet

By this time, ARPAnet was connecting machines across the continent (US) with

an estimated rate of connection of one new machine every 2O-days [1].

with the technology advances such as the NSFNET, T1, Asynchronous

Transmission Mode (ATM) and the enhancement of the TCP/P protocol suite,

the Internet's pace of growth has been spectacular since the early 1990s.In7992,

the nodes on the Internet counted 1 million; in January 200I, the number reached

100 million; in September 2002, the number jumped to 200 million and in January

2005, the number reached to 350 million. By September 2002, there were g40

million people using the Internet from more than 218 of 246 cotxftries on the

eafh. Figure l.l shows the Internet growth trends indicated by the host count [2].

Hobbes'lnternet Timeline Copyright @005 Robert H Zakon
http://www. za kon. org/robert/inte rn et/timeline/

ö 150.000 000

&

3 00,00 0,000

2 50,00 0,000

2 00,0û0,000

1 00,000,000

50,000,00 0

LZ/694los/82235
06/?0 9 I 08,i e3 s6z
LO/1O IJ. I I0,i84 I,O24
L2/7O .r3 I t0,/8s 1,961.

L 23 I 02/86 2,308
ro/72 3J. I tt,/86 5,089
I/'13 3s I 12/8'1 Z8.L'¡4
/74 62 I O'?/88 33.000

3/77 lLl I 10,/88 s6,000
12/79 I88 I O?/89 130,000
08,/81 2L3 I 10,/89 159,000

Q r N NO ç ç V, @@ N @@ O OO
-N

N O gÉo o o oo o o o oo o ooot õo o o o o é oË: pËE FËÊ pÈ58ËåEË ÊÉÈ gEË

Frcune 1.1 lxren¡ter GRowrH rRE\rDs

The Intemet began as a network for physicists and researchers and has evolved

into a network for all kinds of people around the globe. The growth is not simply

a mafÍer of the increase in the number of new members who join the Internet

Copyright @ 2005 Yuhong Li

lmproved Distributed File Transfer (DFT) on lnternet

community, but the manner in which the Internet continues to invade every aspect

of the modem life, reshaping business priorities, consumer requirements, and

general commercial attitudes.

File transfer over the Internet has been a big contributor to the growth of Intemet.

This thesis provides a design and implementation on how to transfer files over the

Internet in a more reliable and effective way.

1.2. TCPflP

A protocol is an agreement used for communication between two networked

computers. It defines how data should be packaged for transmission on the

network so the receiving host can unpackage it on the reception. For two hosts to

communicate on a network, the hosts must be using the same protocol. As

mentioned above, TCP/IP replaced NCP in 1983 beginning the new era of the

Internet. Because of the success of the Intemet, TCP/IP has become the standard

of today's network: the Internet, local and wide area networks. TCP/P is the most

widely used protocol. The TCP/IP protocol establishes the technical foundation of

the Internet.

The Transmission Control Protocol and Internet Protocol (TCP/IP) are the two

protocols in the TCP/IP protocol suite. Intemet Protocol (IP) specifies how data is

routed from one computer to another. The Transmission Control Protocol (TCP)

verifies whether or not the information arrived at the designated computer and if

Copyright @ 2005 Yuhong Li

lmprovød Distributed File Transfer (DFT) on lnternet

not, makes swe that the information is sent again. So the protocols of TCP/P

define the network communication process and, more importantly, define how a

unit of data should look and what information it should contain so that a receiving

computer can interpret the message correctly. TCP/IP and its related protocols

form a complete system defining how data should be processed, transmitted, and

received on a TCP/IP network.

The protocols in the TCP/IP suite function primarily in the Network layer (layer

3), Transport layer (layer 4) and Application layer (layer 7) based on the osl

network reference model. TCP/P supports all popular layer 2 protocols as well.

The applications in the TCP/IP suite are normally operating directly on top of the

Transport layer protocol TCP or UDP without the support of the Presentation

layer (layer 6) and Session layer (layer 5). Table 1.2 shows the oSI T layers and

TCP/IP suite.

TesÆ 1.2 OSIT I-AYERS ANDTCP4IP SUITE

Layer TCP/IP Suite

7 - Application HTTP, SMTP, SNMP, FTP, Telnet, NFS, NTP

6 - Present¿tion XDR, SSL, TLS

5 - Session Session establishment for TCP

4 - Transport TCP, UDP, RTP, SCTP

3 - Network IP,ICMP,IPsec, ARP,RIP, OSPF, BGP

2 - Data Link ARP,IARP, RARP, SLIP

I - Physical

Copyright @ 2005 Yuhong Li

Improved Distributed File Transfer (DFT) on lnternet

1.3. The Creation of Java

The explosive growth of the Internet has dramatically transformed not only the

way people do business and get entertainment, but it also has forced programmers

to think about programs in new ways. Since networks consist of many different

kinds and sizes of computers, all information and programs on the Internet must

be usable without modification due to the variety of computers. There was a need

to write programs that can run on any of these machines so that the look and feel

doesn't change substantially across computers rururing different operating systems

(platform independence).

Java arose as a new programming language under these circumstances. Java

evolved from Oak, a language developed by Sun Microsystems in the early 1990s.

Oak was intended to be a platform independent language for use in consumer

electronic devices (for example the handheld devices and set-top boxes).

However, Oak was unsuccessful in its initial intension.

It was the advent of the World Wide Web (www) that propelled Java into

prominence. With people running different operating systems and wishing to

access programs available on the Internet, platform independent programming

became very important. Sun realized that they had been working on a

programming language that had the capability to embed intelligent, interactive

content into a web page. The focus of the language development changed from

consumer electronics to Internet programming. In 1995, Sun changed the name

CopyrÍght @ 2005 Yuhong Li

lmproved Distributed File Transfer (DFT) on lnternet

Oak to Java. Java has taken the software community by storm and achieved

phenomenal success.

Java provides developers with many features such as object-orientation,

simplicity, robustness, security, multi-thread, platform independence etc. while

most of these are present in other languages, Java combines all of these together

into one language [3]. Java is a programming language expressly designed for use

in the distributed environment of the Internet. It has a rich library for network

programming. In this thesis, Java was chosen as the programming language to

implement the system functions. More detailed information about Java will be

given in the implementation section.

1.4. Understanding FTP

1.4.1. FTP Protocol

File Transfer Protocol, also known as FTP, is the protocol for exchanging files

over the Internet. FTP works in the same way as HTTP for transferring Web

pages from a server to a user's browser and SMTP for transferring electronic mail

across the Internet in that, like these technologies, FTP uses the TCP/P protocols

to enable data transfer. FTP is most commonly used to download a file from a

server or to upload a file to a server through the Internet.

Copyright @ 2005 Yuhong Li

lmproved Distributed File Transfer (DFT) on lnternet

An FTP server is the site where the user logs in and downloads files from. An

FTP client is the software the user uses to download files with the FTP client

installed on the user's machine. The following sections describe how FTP works.

1.4.2. A Sample FTP Session

The client program connects to a FTP server on the network. Once connected, the

FTP server sends a welcome message to the client over the open socket (network)

connection.

Server: 220 SampJ-e FTP server ready. Please give user-name

Cl-ient: USER anonymous

Server: 331 User name OK. Please give your emaif address as
password

Cfient: PASS joe@nowhere.conÌm

Server: 230 User logged in

From the above, the client and server are communicating in plain text. The digits

in the server replies are 'reply-codes' defined by the FTP protocol. The uppercase

words in the beginning of the client commands are command verbs that also are

defined by RFC 959 l4l. The protocol is designed in a way that makes it easy for

machines and humans to understand the dialog. In most cases, the client programs

don't have to interpret the text after the reply code.

If the user wants to see the available files and directories, they would issue a LIST

command in the client program.

Copyright O 2005 Yuhong Li

lmproved Distributed File Transfer (DFT) on lnternet

Client: TYPE A

Server: 200 Type set to A

Clíent: PASV

Server: 22'l Entering passive mode (130, 179,L6,12,28, 46ir

Client: LIST

Server: 150 Opening ASCII mode data connect_ion for ./bin/_Is

Server: 226 Transfer compÌete

The command 'TYPE A' tells the server to send the directorylfile listing as plain

ASCII.

The command 'PASV' tells the server to prepare for a new socket connection by

creating a new socket and listens for a connection from the client. Now, things get

a little more complicated. The server reply includes an IP address and a port

number, encoded as 6 digits, separated by commas. The client must find and

understand this address in order to receive the listing.

The LIST command tells the server to give a directory/file listing. Now the server

replies with two lines. The first line tells the client that the listing is ready, and the

client can go on and make a new connection to the server. The client connects to

the IP address given by the PASV reply, and receives data until there is no more

data to get. Then it closes the temporary data connection and switches back to the

control connection to get the second reply line, which tells if the server has

transferred the whole listing.

Copyright @ 2005 Yuhong Li

lmproved Distributed File Transfer (DFT) on lnternet

In order to receive a directory listing, the client and server use two socket

connections, one for the control flow (client sends commands, the server replies in

plain text) and one for the data connection (which is continuous and goes in one

direction only). Next time a directory-listing is sent, the server and client will use

another new (temporary) socket corurection for the transfer.

When the users find an interesting file, they give the FTP server the command to

get it.

Client: TYPE I

Server: 200 Type set to I

Client: PASV

Server: 22'7 EnLertng passive mode (130, 179,16,12,28, 46lt

CIient: RETR test.zip

Server: 150 Opening BINARY mode data connection for test.zip

Server: 226 Transfer complete

As you see, the server and client use the exact same method to get a file as to get a

directory listing. The only change is that the RETR command is used instead of

the LIST command. In this case the file was a .zip archive which was in binary

format, and since such files can't be translated to text, the FTP client switched to

binary mode (TYPE I). Files and directory listings can be transferred in both

binary and text-mode.

Copyright @ 2005 Yuhong Li

lmproved Distributed File Transfer (DFT) on lnternet

It is easy to connect to an FTP server with a telnet client and give commands, but

due to the fact that the file-transfers use a separate socket connection, it is not

easy to transfer files without an FTP client.

1.4.3. FTP Common Commands

The FTP commands listed in this section are the typical FTP commands. Each one

of these commands is commonly used by FTP clients and should be supported in

some fashion by all FTP servers.

usER (usER NAME)

All FTP communications begin with the USER command. This command takes a

single argument: the username that the client wishes to be authenticated with. In a

windows NT environment, this may include both the domain name and the

usemame. For example, when logging onto an NT server that is a member of a

domain, the client may transmit the command:

USER domain\username

The most common argument to the USER command is anonymous. Anonymous

logons to FTP are common on the Internet, where a large percentage of FTP

servers carry information for the general public.

PASS (PASSWORD)

Copyright @ 2005 Yuhong Li 10

lmproved Distributed File Transfer (DFT) on lnternet

The PASS is generally the second command transmitted by a client to the server.

It carries an argument the password for the user already specified by the USER

command. This command is as simple as it seems: There is no encoding or

encryption of the password, it is simply clear text. An example of transmitting a

password from a client to a server:

PASS password

CD (change working directory)

The CD command changes the directory the FTP server is working with. The only

argument for this command is the new directory, in either absolute form or

relative form. Examples of both of these forms are given here:

/¿sr / root

/usr / rooL /

documents

The first command changes the current directory to /usr/root, regardless of what

the current directory is. The second command illustrates an optional slash at the

end of the directory name. The third command moves into a child directory of the

current directory named documents; it only works from directories that have a

subdirectory called documents.

LS (DIRECTORY LISTING)

cd

cd

cd

Copyright A 2005 Yuhong Li 11

lmproved Distributed Fils Transfer (DFT) on lnternet

The LIST command causes a data transfer to occur that will contain the directory

listing for the current working directory. An absolute or relative path can be given

as an optional argument if a directory listing for another directory is desired.

RETR (DO\ilNLOAD)

When the RETR command is issued from the client, a data transfer connection is

established. The RETR command takes as an argument the path to the f,rle to be

transferred. For example, to use the RETR command to transfer the file

/documents/fi1e. html, issue the command:

RETR ,/documents/f il-e. htmf

sToR (rrPLoAD)

Similar in function and execution to the RETR command, the STOR command

sends a file from the client to the server. The only argument for the STOR

command is the destination location on the server. If the file already exists in the

destination directory, it is automatically overwritten. To upload the file file.html

to the /documents directory, issue the command:

STOR /documents/fi1e. html

REST (RESTARÐ

The REST command is used to continue a session that has been intemrpted. The

REST command has an argument, an integer that represents the position in the file

Çopyright A 2005 Yuhong Li 12

lnprovad Distributed File Transfer (DFT) on Internet

where transfer should begin. For example, to restart a transfer at byte 4096 in a

file, the client would issue the following commands to the server:

REST 4096

RETR /documents/file. zip

It is important to understand that the command that follows the REST command

must be a transfer of some kind, either a STOR or RECV.

QUrr (LOc OUr)
The QUIT command is sent to the server to indicate that the FTP session is over.

This command takes no arguments.

1.4.4. File Transfer Resume

FTP can resume the interrupted file transfer session by sending a REST command

to FTP Server. REST command takes a parameter as the offset where transfer

should resume.

REST <offset>

RETR <fil-e path and name>

These two commands will set the checkpoint <ffiet> first and then download the

fJJe <file path and nøme) from that point on.

Copyright @ 2005 Yuhong Li 13

lmproved Distributed File Transfer (DFT) on lnternet

1.4.5. Active FTP vs. Passive FTP

FTP is a peculiar protocol because it uses two sockets. The main socket (TCP port

21) handles the commands the FTP client sends to the server as well as the

associated response from the server. The other port, which is at port 20 by default,

handles data. Depending on the transfer mode used, the data port is not always on

port 20. It can be a different port number.

Active and passive are two kinds of FTP transfer modes. It is necessary to

differentiate active and passive mode FTP to deal with firewalls and other Internet

connectivity. For example, when the DFT client was first developed, it ran well

with no firewalls set up on the client. But when run from within a firewall, a

problem was encountered that the outside FTP server car¡rot connect to the local

port of the client machine. The reason was that all the server's attempts to connect

to the client machine on a random unprivileged port are blocked by the fîrewall.

The solution to this problem was using passive FTp connection.

1.4.5.1. Active FTP

In the active mode FTP, the client connects from a random unprivileged port N Qri

> 1024) to the FTP server's command port, port 21. Then, the client starts

listening on port N+1 and sends the FTP command PORT N+ I to the FTP server.

The server will then connect back to the client's specified data port from its local

data port.

Copyright O 2005 Yuhong Li 11

lmproved Distributed File Transfer (DFT) on lnternet

In the eyes of the server side firewall, the connections from the client to its

command port, port 2l and to its data port, port 20 are regarded as normal

connections and thus neither will be blocked. But in the eyes of the client side

firewall, the connections from the server are not to its ports, port 2I and port 20,

rather to its random unprivileged ports, port N OI > 1024) and N+1. These

connections are usually considered as something that should be blocked. Figure

1.4.5.1 depicts the connections in active FTP mode:

S err¡er CIiÊrf

Frcune 1.4.5.1 Acrur FTP Cuenr e¡'to SsRyen Co¡tnrcno¡'t

In the above figure, the communication steps are:

Step 1: The client connects from port 1026 (a random unprivileged port N)

to FTP server's command por|21, and sends FTP command PORT 1027

(N+1) to the FTP server, then listens to port 1027 OI+1)

Step 2: The FTP server sends back ACK command to the client

Copyright @ 2005 Yuhong Li 15

lmproved Distributed File Transter (DFT) on lnternet

. Step 3: The server initiates connection from data port 20 to the client's

specified port 1027

. Step 4: The client sends back ACK command to server

In the active mode FTP, the FTP client doesn't make the actual connection to the

data port of the server. It merely tells the server what port it is listening on and the

server connects back to the specified port on the client. It is the server that

initializes a connection to the client. If the client is behind firewall, the server's

attempt will be blocked by the firewall. So the active mode FTP is beneficial to

the FTP server, but causes problems for the client.

1.4.5.2. Passive FTP

The passive mode (PASV) was developed to solve the problem of active mode

FTP. In passive mode, the client initiates both connections to the server, thus

solves the problem that the client's firewall filters the incoming data port

connection from the server.

In passive mode, the client first opens two random unprivileged ports locally (1.{ >

1024 and N+l). The port N contacts the server on its command port, port 2l,but

instead of then issuing a PORT command and allowing the server to connect back

to its data port, the client issues the PASV command. The server then opens a

random unprivileged port (P > 1024) and sends the PORT P command back to the

CopyrÍght @ 2005 Yuhong Li 16

lmproved Distributed File Transfer (DFT) on lnternet

client. The client then initiates the connection from port N+l to port P on the

server to transfer data.

Since both connections are initialized by the client, there is no incoming

connections being considered as abnormal and blocked. In the case of the server-

side firewall, the control connection from the client to its command port, port 21

is normal. But the data connection to its data port, port P which is a random

unprivileged will be blocked.

Figure 1.4.5.2 depicts how the communication process happens between client

and server in passive mode.

Frcune 1.4.5.2 Pessue FTP Cue¡'tre¡to SeRyeR Conuecno¡l

. Step 1: The client opens two unprivileged ports: 1026 and 1027;1026

connects to the server's port2l, and sends command PASVto server

Copyright @ 2005 Yuhong Li 17

lmproved Distributed File Transfer (DFT) on lnternet

. Step 2: The server opens an unprivileged port 2024 and sends command

PORT 2024 back to client which tells the client what port it is listening on

for the data connection.

. Step 3: The client initiates the data connection from port 1027 to the

specified server data port 2024

. Step 4: The server sends back command ACK to the client's data port

1027.

The passive mode relieves the problem from the client, but causes a server side

problem. Fortunately, many FTP servers allow the administrator to specify a

range of ports which the FTP server will use and thus allows remote clients to

make connections without being blocked.

Since the DFT system runs behind firewalls, it will use the passive FTP mode.

1.4.6. The Problems of FTP

Though FTP is widely used and easy to implement, it also faces problems with

reliability, performance and scalability. FTP is typically a single-threaded, server-

centered downloading mechanism which means a server hosts a file, and clients

connect to the server for downloading the file. Problems arising include:

o When multiple clients connect to the server at the same time, the load can

easily exceed the capacity of the server and cause server congestion or a

server crash.

Copyright @ 2005 Yuhong Li 18

lmproved Distributed File Transfer (DFT) on lnternet

When the server is brought down for upgrade or maintenance, all users

will lose their connections with the server and the FTP sessions will be

intemrpted.

With the growth of the Internet, it is common that the same copy of file is

mirrored on different servers scattered on the Internet. Since people like to

download files from servers they are familiar with, the load may not be

distributed among the main server and its mirror sites.

Looking into the problems, if there is a way to improve the mechanism of

traffic allocations, the problems that FTP faces can be solved. If the user can

download a file from multiple servers that are holding the same copy of file

(mirrors), when one or some of servers are down or busy, the user can still

download the file without being aware of server failure. The users will not

rely on any one server. Resolving FTP problem is the motivation of my thesis.

1.5. Exploration on the lmprovement of File Download

with the growth of Internet, exploring how to improve the reliability and

effrciency of file download has never stopped. Technologies and software for file

transfer can be grouped into two categories: server-centered download and server-

scattered download. The difference is whether the download is from a single

server or from multiple scattered servers.

Copyright @ 2005 Yuhong Li 19

lmproved Distributed File Transfer (DFT) on Internet

1.5.1. One Server w¡th One Thread Model

This is the traditional model. All downloads are from a central server each with

one thread (Figure 1.5.1). The classic command line FTP clients under Windows

and Linux behave in this way.

Traditional Server-Centered Single-Threaded Download

sÐ----.-..-.. s
R-Js'iss

Frcune 1.5.1 Oue SrRyen wrn Our Tnneao

1.5.2.lmproved One Server with Multiple Threads Model

This is an improvement for the one server with one thread model (Figure 1.5.2).

In this model, the download is still from a central server but with multiple threads.

There are many download managers such as FlashGet [5] and Intemet Download

Manager [6] that work in this way [7].

Frcune 1.5.2 Onr SeRyeR wru MutnpteTnntaos

Copyright @ 2005 Yuhong Li 20

lmproved Distributed File Transfer (DFT) on lnternet

1.5.3. Peer-to-Peer File€har¡ng

Figure 1.5.3 is a typical peer-to-peer file-sharing protocol (P2P) download model

[9]. In this model, direct cormections are set up in between users. Each user lets

other users download from their computer while they are downloading from other

users' computers. They behave as both client and sort of a server at the same time.

But this 'server' is not a dedicated server. V/hen the P2P client shuts down, this

server disappears. Thus this kind of server's availability is not stable. eDonkey [9]

and Bittonent [10] are two of the top P2P software thatprovide this kind of file

sharing and download functionality.

P2P File Sharing and Download

Frcune 1.5.3 P2P FttE SHARIN9 AHD Dowwtoeo

1.5.4. Distributed File Download Model

This is a distributed file transfer (DFT) (Figure 1.5.4). Downloads are from

multiple servers instead of a single central server. The servers are dedicated which

are not like the 'servers' in P2P file-sharing model. The user sets up one

connection to each server. Compared to the server-centric download, this

&

Copyright @ 2005 Yuhong LÍ 21

tÛ

Frcune 1.5.4 MuLTtpLe SeRyeRs wnn Oue Tuneao

1.5.5. lmproved Distributed File Download Model

This is the improvement of the above DFT model (Figure 1.5.5). In this

distributed download model, the user can download from multiple servers and

establish multiple connections with each server. Its mechanism, functionalities,

architecture and implementation will be described in details in the following

chapters.

lmproved Distributed File Transfer (DFT) on lnternet

improves the availability, reliability and efficiency of FTP downloads. The

download manager GetRight [11] has this functionality. Xin Fang described a

mechanism of this model in her thesis [12].

Multiple-Server with Single Thread Download

Multiple-Server with Multiple Threads Download

ÇqilÚ
"'.:::.... ii' .'..."'

"..-"\ ,i-../''s,'
Frcune 1.5.5 Mustpte SeRwRs wru Mutnpte Tuneeos Mooet

Copyright @ 2005 Yuhong Li 22

Improved Distributed File Transfer (DFT) on lnternet

This thesis focuses on improving the efficiency of transferring files of size less

than lGigbyte.

1.6. Digital Signatures

One big concem in the file transfer on the Intemet is how to make sure the

transferred file is from the purported sender and has not been altered during the

transit. Digital signature addresses this concern.

1.6.1. lntroduction to Digital Signature

A digital signature is a way of digitally signing a file or program to ensure it has

not been tampered with and that the author is the author claimed. It is analogous

to ordinary physical signatures on paper, but implemented using techniques from

the field of public key cryptography [14].

There are three common reasons for applying a. digital signature to

communications:

¡ Authenticity - allow the recipient of a message to be confident that the

sender is who the sender claims to be;

e Integrity - the recipient examines the message to make sure it has not been

altered in transit which is called data integrity checking;

o Non-repudiation - the signer cannot later disclaim any knowledge of the

message.

Copyright @ 2005 Yuhong Li 23

lmproved Distributed File Transfer (DFT) on lnternet

1.6.2. Message Digests and Digest Algorithms

Since the public-key cryptography is pretty slow, it is better to encrypt a

representative of the data instead of encrypting the entire data. The representative

of the data is called message digest in cryptography. The use of a digital signature

requires a digest algorithm.

There are many digest algorithms but three important digest algorithms have

dominated the market, MD2, MD5 and SHA-I. Ron Rivest created MD2, MD5

and played a role in the design of SHA-I.

MD2 and MD5 are 16-byte digests. Since flaws and collisions have been

discovered with MD2, it is not recommended to use MD2 in new applications.

MD5 is much faster and much stronger than MD2, and as such it has become the

dominant algorithm and still in common use.

SHA-i contains stronger internals than MD5 and it produces a 2}-byfe digest

which is longer than that of MD5. So it is highly recommended by the

cryptographic community. In the DFT system, SHA-I algorithm is used.

1.6.3. Signature Algorithms

A general digital signature scheme consists of three algorithms:

o A key generation algorithm

Copyright @ 2005 Yuhong Ll 21

lmproved Distributed File Transfer (DFT) on lnternet

A signing algorithm

A verification algorithm

RSA, DSA and ECDSA are the th¡ee most successful signature algorithms. With

RSA, the algorithm encrypts the digest with a private key to produce a digital

signature.

with DSA, the signer digests the message with sHA-1. DSA does not encrypt the

digest. It has three inputs: The digest which is a number 160 bits long; a random

or pseudo-random value, usually called k; and the private key. The algorithm then

performs some mathematical operations. The output of DSA is two numbers,

usually called r and s. These two numbers are the signature. when verifliing the

signature, the verifier computes the SHA-I digest of the message. Using the

digest as a number, along with the public key and s, the verifier performs some

mathematical operations. The result of the computation is a number called v. If v

is the s¿lme as r,the signature is verified. Figure 1.6.3 depicts the producing and

verifying a DSA signature.

Copyright @ 2005 Yuhong Li 25

Improved Distributed File Transler (DFT) on Intørnet

Produc¡ng and Verifying a DSA Signature

Frcuae 1.6.3 Pnooucrtc ANDVERtFytNcA DSA Slen¡nruRe

ECDSA looks a lot like DSA. It has the same inputs and output numbers as DSA

does. If the final v is not equal to r, something went wrong. The difference is ths

math underlying DCDSA are Elliptic Curve algorithms.

1.6.4. DigitalSignatures in Java

The Java class java.security.Signature provides signature service and has methods

to generate and verify signatures. In the system described here, this class and

other classes in the package java.security are used to implement the signature

generation and verification functionality.

Randoñ ot pseud@
Êndom value K

Copyright @ 2005 Yuhong Li 26

lmproved Distributed File Transter (DFT) on Internet

1,7. Summary

This chapter provided an introduction to the knowledge needed to understand this

thesis. First a brief introduction to the history of the Intemet, the TCP/IP protocols

and the birth of Java were given. Then the FTP protocol, its active and passive

modes, and its problems in reliability and efficiency were introduced. Lastly the

digital signatures and the difference between the mechanism described in this

thesis and other download mechanisms is dealt with briefly. Based on this

knowledge and the FTP download problems, an improved distributed file

download mechanism is proposed in the next section.

Copyright @ 2005 Yuhong Li 27

lmproved Distributed FÍle Transfer (DFT) on lnternet

Ghapter 2= DFT System Objectives and

Requirements

Distributed File Transfer (DFT) is designed to improve the traditional FTP and

solve the problems that the FTP has. DFT can allocate server resources according

to their availability and performance. Therefore, reliability, scalability and

efficiency can be improved by making better use of multiple file servers on the

Intemet. The design objectives and requirements of DFT are briefly described as

follows:

1) The system should allow a user to enter a file name. The system should

prompt for the file name the user wants to download with a friendly

interface.

The system should be able to search for the f,rle on the Intemet and give

the user the option to search a local directory first.

The system should display a list of FTP servers that have the required file

and let user to select downloading servers from the list.

The system should be able to download the file from the selected FTP

sewers.

2)

3)

4)

Copyright @ 2005 Yuhong Li 28

Improved Distributed File Transfer (DFT) on lnternet

5) The system should be able to download the file from each of the selected

FTP servers using multiple threads. Each thread downloads one part of the

file in parallel. The system should be able to put all downloaded parts of

the file together as a complete f,rle.

6) The system should be able to test each FTP servers' speed before

downloading.

7) The system should be able to switch to a faster server if a server degrades,

or the connection becomes very slow.

8) The system should check whether the files on the selected FTP servers are

identical or not before starting the download; if they are not, it will notiff

the user and download only from the file servers with identical copies.

9) The system should be able to save visited FTP f,ile server information to a

local database (info.txt file).

10)The system should allow user to generate a file's digital signature and

verify a downloaded file's digital signature.

i i) The system should handle exceptions and error properly and log erïors

into local log file.

Based on these objectives and requirements, the DFT architecture is designed in

the next chapter.

qw

Copyright @ 2005 Yuhong Li 29

Improved Distributed File Transter (DFT) on lnternet

Ghapter 3: DFT System Architecture

This chapter describes the overall architecture of

distributed system which includes a DFT client,

(LDS), and multiple outside FTP search engines and

the DFT system. DFT is a

a Load-Distributing Server

FTP servers.

3.1. Sysfem Architecture Diagram

Figure 3.1 is the system architecture diagram.

and how they interact with each other.

It depicts the objects in the system

D istributed File Transfer System A rch¡tecture D iagram

DFT Cllont

Frcune 3.1 DFT SysrEM ARcHtrEcruRe Dnc,neu

lnternet I lnternet

Copyright @ 2005 Yuhong LÍ 30

lmproved Distrihuted File Transfer (DFT) on lnternet

3.2. Distributed Architecture of DFT

DFT is a distributed system. It contains three components: the DFT client, Load-

Distributing Server (LDS), and multiple file servers. The DFT client first connects

to the LDS server and gets locations of the FTP servers. The DFT client then

connects to multiple FTP servers by opening multiple sockets and downloads the

file from multiple locations. More specifically, the LDS server receives a request

from a DFT client. The LDS server then either retrieves target f,rle location

information from its local directory, or goes to an outside FTP search engine to

search for target file locations. The user has the option to select from a list of FTP

servers for the download. In this scenario, the DFT system depends on the outside

FTP search engines for target file location information.

DFT has the following distribution properties:

Data Distribution-In order to achieve reliability, a file is replicated on

many file servers. Each file server supports a segmented transfer of the

file. Segmented transfer means a user can request a segment of the f,rle to

be transferred from a file server. Thus, a user can request different

segments from different servers and assemble those segments together to

get an integrated file.

Geographic Distribution-All components of the DFT system can be

distributed across the Internet. The DFT client and LDS servers are

connected through socket connections. The LDS server connects to FTP

search engines using the HTTP protocol. The DFT client connects to FTP

servers using the FTP protocol.

Copyright @ 2005 Yuhong Li 31

Improved Distributed FÍle Transfer (DFT) on lnternet

o Heterogeneous System-Since the DFT system components can be

distributed across the Internet, the DFT system can run on different

platforms. The DFT client and the LDS server are implemented in Java,

which generates platform independent code.

3.3. Distributed File Transfer (DFT) ClÍent

A DFT client is a software application deployed on a client's computer. The DFT

client displays a user interface that allows a user to enter the file name to

download and sends the file name to the LDS server to get a list of available FTP

servers on Internet. The DFT client then opens multiple TCP connections to

multiple FTP servers simultaneously. From each server, the DFT client only

downloads a segment of the file. All segments are then assembled into the target

file and saved in the local file system. Depending on each FTP server's speed, the

DFT client will intelligently allocate the size of each segment. Each segment can

be fuither divided into equal pieces and downloaded simultaneously by multiple

sub-threads. The DFT client also monitors the progress of the download and

provides the user with feedback.

A DFT client can test the speed of the specified FTP server. The speed is used to

determine the target segment size. The faster the server is, the bigger the segment

size the DFT client gets. On the other hand, the slower the server is, the smaller

the segment size it gets. The DFT client tests the server speed by sending a

request to transfer 10240 b¡es of the target file from each FTP server. The DFT

client calculates the speed of the transfer using following formula:

Copyright @ 2005 Yuhong Li 32

Improved Distributed File Transîer (DFT) on lnternet

Speed (byte per second) = 10240 bytes x 1000 / (start time-end time) (ms)

When a FTP server is not available to download or an error occurs, the DFT client

will not use that server for download. The load will be distributed to other

available seryers automatically without the user being aware.

3.4. Two-Layer M u lti-Th read Paral lel Download

DFT is considered as a two-layer multi-threaded parallel downloading system.

The reason it is two-layer is because it has two layers of threads.

Distibuúed File Transfer Sysbm
Parallel Download Model

FtcuRE 3.4A DFT Munt-Tnneeø Panettet PRocsssrvc DTAGRAM

At the beginning of the download, a DFT client sends a query containing the

target filename to an LDS server for file server information. The LDS server

responses with a list of available file servers that contain the target file. The DFT

client then parses the response from the LDS server and determines which file

Copyright @ 2005 Yuhong Li 33

lmproved Distributed FÍle Transfer (DFT) on lnternet

sewers to connect to. There is one more step to be completed before the real

download starts. The DFT client sends a command to each file server and asks for

the first 10240 bytes of the target file. The DFT client records the downloading

time for this 10240 b¡es and calculates the speed of each file server. The DFT

client then allocates a segment size for each file server based on the servet's

speed.

The DFT client creates one thread for each FTP server that the user has selected

to download from. The DFT client uses that thread to download a segment of file

from that FTP server. This is first layer of parallelism.

For each downloading thread, the DFT client gives the user the option to set the

number of sub-threads. The DFT client then opens a number of sub-threads for

that f,rrst layer downloading thread. Each sub-thread will download an equal sized

sub-segment of the segment. All sub-segments are assembled into the segment.

This is the second layer of parallelism. Then all segments are assembled into the

whole file. Here, the DFT client uses the checkpoint technique to download a

segment of a file.

By using this two-layer multi-threaded downloading, DFT takes full advantage of

its parallel processing power. Parallel download enhances the performance and

reliability of the download.

Copyright @ 2005 Yuhong Li 34

lmproved Distributed File Transfer (DFT) on Internet

Ff Fiþ Segnænúaúiqr And &æserlCe

This sanple dìagran sl'ìo € ho,v DFI splits a file into thrce segnents, do nl€ds eádt
segnrent frøn a drffermt sener, ard tlen reasseniCes tiert bÊck into tte øi$rel file.

Mnorsen¡eæ

FtcuRE 3.48 DFT Murn-TnneeD PARALLEL PRocgssrlc Dneneu

The segment length is calculated in such a way that all data connections should

last approximately the same amount of time. This will maximize the overall

downloading performance. However, the server's speed may vary over time. As

such, the speed calculation is just an estimate. It is very often that one thread

finishes faster than another thread.

While downloading is in progress, all data connections have a timeout value.

When the server timeout value is reached and no data is transferred, the data

cormection will terminate its download and report to the control connection. The

end user will be notified about the failure.

l-Er'ìtHt
tHil-t

tËilt il
liiiilirllHl

FïPSú\Ær
Uìfrripeg

trL'r".+
lr ¡.-cltEt

DFTO¡€rl

lEiìtEfl_lHllr-rl
tffitLrt

,!!io:lrli==-
FIPSenÆr

Toronto

CopyrÍght @ 2005 Yuhong Li 35

lmproved Distributed File Transfer (DFT) on lnternet

3.5. Load-Distributing Seruer (LDS) Seruer

With FTP, the user has to know where the target file is located. Typically the user

can only download a file from one known FTP server. In the DFT system, the

user doesn't have to know where the target file is located. They just need to know

the file name and the LDS server will find the locations of the f,ile for them.

The LDS server has two major functions. One is looking for the target file in a

local directory or acÍoss the Intemet. The other is to maintain a local directory.

For the former, the DFT client sends a request including the file name to the LDS

server through a socket connection. The LDS server reads the download file name

from the DFT client. Depending on the user's options, the LDS server will search

a local directory or skip the local search. If the LDS server finds the file name in

local directory, it will send the file location information (including FTP server

address, path, f,rle name, size and time) back to the DFT client. If the LDS server

finds more than one entry in the local directory, it sends back all the entries. If the

file is not found in the local directory or the user selects skip the local directory to

search the Intemet directly, the LDS server will open an HTTP connection to one

of the registered FTP search engines. The LDS server sends an HTTP request to

the FTP search engine, and gets the HTTP response back. The response HTML

page is parsed and a list of available FTP server addresses will be sent back to the

DFT client through a socket connection. If one FTP search engine failed to find

the file, the LDS server will try another search engine. If all search engines fail to

find the file, the user will be notified.

Copyright @ 2005 Yuhong Li 36

lmproved Distributed File Transfer (DFT) on lnternet

The second main function of LDS server is to maintain a local directory that

contains information about recent downloaded files. The local directory is in a

text file called info.txt. Each entry contains information about the target file.

Information includes the file n¿une, FTP server address, path, user name,

password, file size and time stamp.

3.6. DFT File Query and Response Model

Figure 3.6 depicts the DFT system file query and response model.

t[sûih¡bd File Transftr Q¡ctern
FileQæry and Resporse tttbdd

FIP SerwB

Frcune 3.8 DFT Fte Quenv eno Resporuse Mooet Dnenen

The above diagram illustrates the steps how DFT client sends out a file query

request and finally gets the file.

S¡ü Érglm

1"t

lll

=U

Copyright @ 2005 Yuhong Li 37

Improved Distributed Fíle Transfer (DFT) on lnternet

i) The DFT client sends a socket query request to the LDS server asking for

a specific file.

2) The LDS server receives the request.

3) The LDS server creates a FTP search engine adaptor and makes a call to

do a search.

4) The FTP search engine adaptor sends a HTTP request to an FTP search

engine.

5) The FTP search engine finds the specified file in its database and returns a

HTTP response.

6) The FTP search engine adaptor receives and parses the HTTP response.

7) The FTP search engine adaptor retums a list of file servers back to the

LDS server.

8) The LDS server gets the retumed list of file servers.

9) The LDS server sends the list of file servers back to the DFT client.

10) The DFT client creates multiple threads and starts the download.

11) Each download th¡ead sends an FTP request to one of the FTP file servers.

I2)The FTP file server responds with an OK status and starts sending the file.

13)Each download thread reads its segment of file from the FTP server data

port.

14) The DFT client reassembles all segments into a complete file.

15)The user can stop and resume the download at any time during the

download.

i6) The download ends.

The FTP search engines play an important role in the DFT system. Since the user

doesn't know where target file is located prior to their download, the DFT system

Copyright @ 2005 Yuhong Li 38

lmproved Distributed File Transfer (DFT) on Internet

depends on a search engine to find file locations. An FTP search engine generates

an HTML page that contains a list of FTP server addresses and sends back an

HTML page as a response.

A general list of FTP search engines from Intemet may not be working in the

future as they are not well-maintained production websites. In this work a few

working ones were selected as the search engines. As better ones are found, the

list can be updated.

The DFT client gets the list of FTP server addresses and uses them to open FTP

sessions. The DFT client opens one session for each server. The DFT client uses

standard FTP commands to send requests and receive data.

By using multiple FTP servers for downloading, a kind of redundancy is added to

the system. A target file could be available on many mirror sites. Should one or

more FTP servers fail to operate, DFT can always go to other FTP servers for

downloading the same file.

3.7. DFT Two-Layer Control Connection Model

Figure 3.7 depicts the DFT two-layer control connection model.

Copyright @ 2005 Yuhong LÍ 39

lmproved Distributed Fíle Transfer (DFT) on lnternet

Distributed File Transfer System
Two-Layer Gontrol Gonnection Model

Sôarch Englno

A
t_

Èg
+o

Iil=ll Y
llHllt-r-ft
IiffiILJI1000¡û¡ûL-Ë-

LDs soryer FTP Seryor B

1
o

ø

<------>
,/t N

Control Connectlon

D¡tå connsctlon

DFT Cll€nt

Frcune 3.7 DFT Two. ueven Cournot CoNNEcrtoN Mooet

Traditional FTP uses two TCP connections. One is control connection at port 27

to send FTP control commands and receive responses. Another one is a data

connection that transfers a file between client and server. The traditional FTP

connection model was illustrated in a previous chapter. Here the DFT connection

model is explained.

As the DFT system is a distributed reliable file transfer architecture (i.e. there is

more than one file server involved), it is necessary to enhance the control

connection part of FTP to work for this distributed architecture.

Copyright @ 2005 Yuhong Li 40

lmproved Dístributed File Transter (DFT) on lnternet

The control layer of DFT includes control commands from the DFT client to a

FTP server as well as control command from the DFT client to the LDS server.

Before a DFT client begins downloading a file, it does not know where the f,rle is

located. Through a control layer connection, the DFT client sends a query to the

LDS server and gets a list of FTP servers and target f,rle locations. Then the DFT

client makes control layer connections to the FTP servers and gets their responses.

Then the DFT client makes data connections to the FTP servers and starts the file

downloading.

When the data transfer is finished, the DFT client sends the download FTP server

information to the LDS server through control-layer connections. The LDS server

then updates its local directory information.

Generally control-layer connections are established between a DFT client and the

LDS server. However, when the target file is not found in the LDS's local

database, the LDS will make a connection to one of the search engines and look

for the target file in that search engine. This kind of connection is classified as a

control-layer connection as well.

Before downloading starts, the DFT client will retrieve a small part of the target

file to calculate the speed of the file server. If the server is not available, the DFT

client will delete the server from the list and use other file servers. This is done by

establishing traditional FTP control and data connections between the LDS server

and file server. This is considered another kind of DFT control-layer connection.

Copyright @ 2005 Yuhong Li 11

lmproved Distributed File Transfer (DFT) on lntemet

If the target file is downloaded from more than one file server, the DFT system

has the ability to check if the files on the selected mirror sites are identical by

comparing their file sizes and the first 10240 b¡es. If they are not, download will

be aborted. Alternatively a digital signature could be implemented as discussed.

Implementing digital signature is not possible on commercial FTP servers.

The following functions are integrated into the control layer.

1) LDS request/reply

2) Server status check

3) Download process monitoring

4) Server speed calculation

5) Server availability

6) Download task allocation

7) Failure detection

8) Download resume/recovery

The control layer and data layer establish their own connections. Connections

between a DFT client and an LDS server are control layer connections.

Connections between the DFT client and the file servers are both control and data

connections.

With this model, multiple data connections can be established between the DFT

client and several file servers.

Copyright @ 2005 Yuhong Li 42

lmproved Distributed File Transfer (DFT) on lnternet

3.8. DFT Data Connection Model

When a DFT client downloads a file from one of the file servers, it establishes a

data cormection with the file server. The target file is transferred through a data

connection. Since a multiple-thread parallel download model is used, the DFT

client can establish multiple data connections to each f,rle server. Each data

connection is responsible for one segment of the target file.

While the data connections are performing the file download, the control-layer

keeps monitoring the status of each data connection. If there is any abnormal

behavior, the status will be reported to the end user.

The data layer concentrates on the following functions.

File downloading

Status reporting

Failure detection

3.9. Failure Detection

Because of the distributed architecture of the DFT system, different components

are connected to each other using HTTP, FTP, or pure socket connections. It is

important to design a mechanism to detect network failures, and application

failures.

1)

2)

3)

CopyrÍght @ 2005 Yuhong Li 43

lmproved Distributed File Transter (DFT) on Internet

Failure detection can take place on both the control layer and data layer. When

failure happens on the control layer, the control layer tries to recover from it

immediately or reports to a log file or the end user. When failure happens on the

data layer, the data layer will stop the download process and notify the control

layer.

When something is not working well, the DFT system normally generates one of

two kinds of failures: network failures and application failures.

3.9.1. Two kinds of failures

This section discusses network failures, application failures and responses to

those events.

3.9.1.1. Network faílures

Network failures are caused by network hardware failure, data connection

timeout, or control connection timeout. When this kind of failure happens, the

client and server are disconnected. The server cannot receive requests from the

client and in the meantime, the client cannot receive response from the server.

3.9.1 .2. Appli cation fail ures

Application failures are less severe than network failures. When application

failures occur, the client and server are still connected. It's just that the response

Copyright @ 2005 Yuhong LÍ 44

lmproved Distributed File Transfer (DFT) on lnternet

from server is not what client is expecting. The client and server can still

communicate to each other and tell each other what is wrong.

3.9.2. Two kinds of failure detection methods

Network failures and application failures are handled differently.

3.9.2.1. Timeout detection

When network failure occurs, there will be no messages transferred between the

client and server. TCP timeouts will try to recover the connection by requesting a

retransmission. However, this doesn't work if the network is down. The client

will be waiting for the server response indefinitely. To solve this problem, the

DFT client sets a timeout value on each connection. DFT also sets a timer to

periodically monitor if the timeout value is reached. When timeout is reached, the

DFT client will stop the download process and notiff end user of the timeout.

There are two types of timeouts, control layer timeouts (command-response

timeout) and data layer timeouts. Command-response timeouts occur on control

connections. After a DFT client sends out a FTP command, it starts a timer. If a

timeout occurs before it receives the response, the DFT client stops this control

connection. Data layer timeouts occur on data connections. A timeout is set when

a data socket connection is opened. If the elapse time between two packets is

longer than the timeout, the client assumes the data connection is broken or the

network is congested.

Copyright @ 2005 Yuhong Li 15

lmproved Distributed File Transfer (DFT) on lnternet

3.9.2.2. Application failure code detection

Application failure code is used to detect application erors. A common scenario

is as follows. When a DFT client makes a connection or sends a FTP command to

a file server, it expects to receive a response in the form of a string. The string has

a certain format that follows the FTP protocol standard. The string will begin with

three-digit number followed by a space and an effor message. A typical response

is "226 Transfer complete". The three-digit number can be parsed and thus it is

known what error code it is. A code larger than 400 generally indicates an

incomplete service. A list of FTP error codes is provided in Appendix C.

Through application failure code detection, all application failures can be detected

immediately once they happen. Such failures include:

o Server not available

o File not found

o Too many users

. Login failure

o Connection closed

o Cannot open a connection

¡ Broken Pipe

3.10. Failure Recovery

When the control layer detects a failure or receives a failure report from the data

layer, it will do the following steps.

1) Record the latest status of the failed connection

Copyright @ 2005 Yuhong Li 46

lmproved Distributed File Transfer (DFT) on Internet

Terminate the failed connection

Choose another connection that can do the terminated job

Switch the job to that connection

If a hardware failure occurs, the DFT client itself will be terminated. In this case,

the DFT client has to be run again to resume the terminated download process. To

recover from such a failure, the checkpoint of the last download and connection

status information must be recorded. The recover process will read these status

records and resume all previous connections. To implement such a recovery

mechanism, the DFT client periodically records the status of all connections on

the user's hard drive.

3.1 1. Checkpoint Resume

The DFT client uses the Checkpoint Resume service to implement the multi-

threaded parallel download function. The DFT client cuts the file into multiple

segments based on the FTP servers' speed and each server is assigned to a

segment. The DFT client creates multiple threads to download the segment of a

file from each server. The segment is divided into sub-segments based on the

thread number. Each thread opens one session and dorvnloads a part of the

server's segment of the file. The DFT client remembers the checkpoint of each

segment for each thread. When resuming the download, it restarts according to the

checkpoint of each thread.

2)

3)

4)

Copyright @ 2005 Yuhong Li 47

Improved Distributed File Transfer (DFT) on lnternet

3.12. Local Directory

DFT maintains searched results into a local directory (info.txt file). Info.txt is a

text file following a certain format. Each line of the file represents one target

file's information. Each line contains multiple f,relds separated by a colon. The

format of each line is:

[File Name]:[P Address]:[Full Path]:[User Name]:[Password]:[File Size]:[Time]:

Sample line:

icqpro2003b.exe:192.168.123.1:/yuhong:anonymous:a@a.com:2000:12312003:

Here each line contains enough information for DFT to download the target file

from a specified file server. The purpose of Local Directory is to store searched

results locally as a kind of cache so that DFT doesn't have to go to a search

engine every time and thus improves the overall download time. The user has the

option not to save searched results into the Local Directory.

3.1 3. Digital Signature

The DFT system has the ability to download files as well as their digital signature

and veriff their digital signatures. The DFT system has the ability to generate a

file's digital signature and upload it to the file server. An assumption is that the

file server is responsible for providing a digital signature for the target file.

Because of circumstance limitations, an environment is imitated for testing. An

IIS FTP server is set up and the test frles and their digital signature f,rles are

Copyright @ 2005 Yuhong Li 18

lmproved Distributed File Transter (DFT) on lnternet

uploaded to the server. The DFT client is run and downloads the target files as

well as its digital signature. Finally, the downloaded file is verified against its

digital signature. Thus it can be made certain whether the target file is the one

expected.

The operation of the IIS FTP server is maintained throughout the development

cycle.

3.14. Enor Handling

Each module in a DFT application handles errors and exception in a consistent

way. All errors and exceptions are written to a local log file called

LDS Logfile.yyyy.mm.dd.

Each line in log file contains following fields.

[Time Stamp]
| [evel] l[Module Name] lIFunction Name] l[Message]

Sample log file:

LDS_Logfi 1e.2004.07 .10

2004-07-10-03:57:03-PDTllevel=infolmodule=LDSConnectionlmethod:getFilelnfol Target

file is sent to lds

2004-07-10-03:57:03-PDTIlevel=infolmodule=LDSServerThreadlmethod=runl

TargetFileName is icqpro2003a.exe

2004-07 -10-03:57:04-PDTIlevel=errorlmodule:FreeWareWeblmethod:doSearchl found target

file on ftp server -

ftp.carrier.kiev.ua./pub/windows/icq/ICQ/ICQ_Win95_98_NT4/lCQ2000a/icqpro2003a.exe

CopyrÍght @ 2005 Yuhong Li 19

lmproved DistrÍbuted Fíle Transfer (DFT) on Internet

3.15. Summary

This chapter has presented the overall architecture of DFT that was developed for

this thesis. Three major parts of DFT system and their relations were introduced.

A two-layer control model, which is different from a traditional FTP control

model, is described. In addition, parallel download, failure detection and recovery

is described as well. A brief overview of digital signature implementation is also

given. Based on this architecture, the DFT system implementation is described in

the next chapter.

Copyright @ 2005 Yuhong Li 50

lmproved Dístributed File Transfer (DFT) on Internet

Ghapter 4: lm plementation

This chapter describes implementation details of all DFT components.

4.1. lmplementation ïools

Java was chosen as the programming language to implement the DFT client and

the LDS server. In Chapter 1, the birth of Java was discussed. Here further

exploration in depth of the language itself will be given. The Java IDE used in the

implementation of the DFT system is also mentioned.

4.1.1. Java Programming Language

Java provides developers with many features. They include:

Object-orientation. Java is an Object Oriented programming language. All

executable code must be contained within a class. Java incorporates such

obj ect-oriented concepts as inheritance, encapsulation, and polymorphism.

Portability. Java was designed and developed to produce code that would

run on variety of CPU's and under different operating environments

without alteration. Java Programs are platform-independent.

Multi-threaded. Java supports multi-threaded programming. This is

important when designing interactive, networked programs or when

running multiple applets in a web page.

Copyright @ 2005 Yuhong Li 51

lmproved Distributed File Transfer (DFT) on lnternet

Automatic garbage collection. In C++, once a programmer has created and

used an object he needs to destroy it to avoid using unnecessary memory.

This is not the case with Java. Java has a build-in garbage collector - the

Java virtual machine runs a garbage collection algorithm in the

background. The programmers don't have to write destructors which may

lead to logical errors in the cleanup code.

Secure. Java is intended to be secure. Java enables the construction of

virus-free, tamper-free programs. A Java program cannot comrpt memory

outside of its process space. Java applets cannot access the disks of other

computers.

Network and "Intemet" aware. One of the reasons for the popularity of

Java is that Java is the first programming language to exploit the

networked programming environment. It provides extensive classes that

making network programming easy.

Simplicity and ease-of-use. Java borrowed a good deal of syntax from C

and C++. The developers of Java wanted to produce a simple language, so

many of the less useful, on more esoteric features of C and C** were

removed.

Java comes with extensive built-in libraries which are called packages. The

packages that come with the Java Development Kit (JDK) contain many hundreds

of builçin classes with many thousands of methods. These classes and methods

contain commonly used functionality, meaning that a good deal of the

programming work has already been done. It remains for the progtammers to

integrate the builtin classes for their applications.

Copyright @ 2005 Yuhong LÍ 52

lmproved Distributed File Transfer (DFT) on lnternet

Java is uniquely suited for network programming and distributed computing.

Since connecting machines was one of the main purposes of Java, it was designed

and created with extensive networking features. These features make it much

easier to access the Intemet than any other language. Java's java.net package

provides cross-platform abstractions for simple networking operations, including

connecting and retrieving files by using common web protocols and creating basic

Unix-like sockets. Used in conjunction with its elegant stream-based I/O classes

and its easy-to-use multithreading capability, reading and writing files over the

network becomes almost as easy as reading or writing files on disk. Network

programming has tumed from a diffrcult, highly fiddly black art into a more

straightforward process.

4.1.2. Java Foundation Classes (JFC)

The Java Foundation Classes (JFC) are a collection of standard Java APIs for

client-side graphics, graphical user interfaces (GUIs), and related programming

tasks. It is a part of Java 2 Platform, Standard Edition (J2SE).

The JFC covers the Swing component classes such as those defining buttons and

menus, the classes for 2D drawing from the jøva.awt.geom package, and classes

that support drag-and-drop capability in theTøva.owt.dnd package. It also includes

an API defined in the javax.accessiblitlíty package that allows applications to be

implemented that provide for users with disabilities.

Copyright @ 2005 Yuhong Li 53

Improved Distributed File Transfer (DFf) on lnternet

Swing Component APIs extend the A'WT to provide a rich, extensible GUI

component library with a pluggable look and feel. The pluggable look and feel

lets programmers design a single set of GUI components that can automatically

have a similar look and feel of any OS platform. Swing components include both

100% Pure Java versions of the existing AWT component set (Button, Scrollbar,

Label, etc.), plus a rich set of higher-level components (such as tree view, list box,

and tabbed panes).

Swing Component APIs and the other APIs in JFC are used together to enable

programmers to build fully functional GUI client applications that run and

integrate on any client machine that supports the J2SE platform, including

Microsoft Windows, Solaris, Linux, and Mac OSX [i5]. The GUIs in this DFT

client system was implemented using Swing components. It is thus platform

independent and runs on different operating systems that support J2SE.

4.1 .3. J G reator I nteg rated Development Envi ronment

The IDE (Integrated Development Environment) provides great convenience for

programmers in their code development. In this project, JCreator was chosen as

the Java IDE [16]. JCreator is a powerful IDE for Java development. It is written

entirely in C++, which makes it very fast and efficient compared to the Java based

editors or IDEs. JCreator provides users with a wide range of functionality such

as: Project management, project templates, code-completion, debugger interface,

editor with syntax highlighting, wizards and a fully customizable user interface.

Copyright @ 2005 Yuhong LÍ 51

lmproved Distributed File Transter (DFT) on lnternet

With JCreator users can directly compile or run the Java program without

activating the main document first. JCreator will automatically find the file with

the main method or the html file holding the java applet, and then it will start the

appropriate tools.

JCreator has following benefits compared with other Java IDEs:

. Managing projects with an easy to use interface

. Defining customized color schemes for unlimited ways to organize code

. Wrapping around existing projects and allowing user to use different JDK
profiles

. Facilitating writing code quickly with project templates.

. Viewing projects with the class browser

. Debugging with an easy, intuitive interface instead of DOS prompts

. Easy configuration of Java tools

. Lower system requirements, but with faster speed

4.2. DFT Package lmplementatÍon

In this section, the DFT client and LDS server package implementations are

described in detail.

4.2.1. DFT Package Directory Structure

The DFT project is developed under package narned dft.

The DFT project is split into six sub-packages.

Copyright @ 2005 Yuhong Li 55

lmproved Distributed File Transter (DFT) on Internel

¡ dft.gui - contains modules to build GUI interface

r dft.client - contains modules to perform client side tasks

. dft.server - contains modules to perform server side tasks

o dft.util - contains common utility modules to be shared by other
modules in DFT

. dft.gensig - contains modules to generate digital signature

o dft.versig - contains modules to veriff digital signature

4.2.2. DFT Packages

This section introduces each package in detail.

4.2.2.1. Package dft.gui

This package contains modules to create client side GUI interface including

Frames, Panels, Tables, Dialog boxes. User interacts with these GUI interfaces

when performing a file download.

Se-IectPaneJ- . j ava

DFTFrame . j ava

SelectionTableModel . j ava

Sel-ectFrame. j ava

DFTFrame_AboutBox . j ava

DFTClient. j ava

4.2.2.2. Package dft.client

This package contains client side modules to perform download tasks. These

modules make connections to the LDS server, or FTP servers, create download

Copyright @ 2005 Yuhong Li 56

Improved Distributed File Transfer (DFT) on lnternet

threads, send control commands, read server response, and get data from file

servers.

SubDownl-oadThread. j ava

CommandException . j ava

Fil-eDownl-oader . j ava

Controf Connection . j ava

Dataconnection. j ava

Down-LoadThread. j ava

Fil-elnfo. j ava

LDSConnection.java

LogRecord. j ava

4.2.2.3. Package dft.seruer

This package contains the server side modules to perform the target file query and

search functions. These modules listen for the query requests from the clients and

make connections to the search engines to find out the target file locations, or read

file information from a local directory.

FileVüatcher. java

FTPSearchEngine . j ava

Fil-eSearching. java

FreeWarel{eb. j ava

OreonRu. j ava

LDSServerThread. j ava

Veoda . j ava

EÌmundo . j ava

LDSServer. j ava

Copyright @ 2005 Yuhong Li 57

lmproved Distributed File Transfer (DFT) on lnternet

4.2.2.4. Package dft.util

This package includes some cornmon utility modules. LogManager defines

common logging functions. LDSConstants defines public constants shared among

all modules.

LogManager. j ava

LDSConstants . j ava

4.2.2.5. Package dft.gensig

This package defines a module to generate digital signatures.

GenSig. j ava

4.2.2.6. Package dft.versig

This package defrnes a module to verify digital signatures.

SigChecker. j ava

4.3. DFT Modules lmplementation

This section talks about major DFT modules and their workflows in detail.

Copyright A 2005 Yuhong Li 58

oved D¡str¡buted F¡le Transfer (on lnternet

4.3.1. DFT Glient Side lmplementation

4.3.1.1. DFT Client Worl<flow

DFT Client WorKlow (Main Diagram)

Users interact with the DFTClient by
clicking on buttons or menu items.
This diagram illustrates all events
that are tdggered in DFTClient. Each
event triggers another process wirich
could be opening a frame, or dialog,
or starting a thread. \ ie are going to
discuss each event and related
process in details in the following
diagrams.

User clicks on button

FIGURE 4.3.1 .1 DFT CueuT SIDE WoRKFLow

4.3.1 .2. Download Process Implementation

Define ïmer and Log]jnEr.
ïrners are used to monitor the
do,vnload progress and report

status to uær.

Create GUI controls ¡ncluding
FËme, Panels. Menu ltero,

Buttons. and Tables.

Afrer a process is ñnished, DFTClient retums to
stand-by state. Wait for user to perform another
action.

Copyright @ 2005 Yuhong Li 59

lmproved Distributed File Transfer (DFT) on Internet

Download Process Workflow (1)

User cl¡cks button

target file locâtion first?

Call LDSConnect¡on.getFilelnfo
(fllename, boolean=trua)

Public FTP Search Engine

LDSConnection.getFilelnfo0
retums Filelnfo anay that

contains available file server
infomation

User selects a l¡st
of servers and

clicks OK button

Call DFTFrame.prepareForDownload0

lnit¡alize all Ul controls

Create new F¡leDownloader thread.
This w¡ll create a thread for file

download

Click Ok btn
Call SelectPanel.createAndShowcUI0

Create a new frame and display all
ava¡lable file server and target file path
informat¡on in a table. User will select
fìle servers from the list and download

file from selected servers.

Frcunr 4.3.1.2e Dow¡rtoeD PRocEss Wonxrrcw(1)

Copyright @ 2005 Yuhong LÍ 60

Improved Distributed File Transfer (DFT) on Internet

Donidæd Prtæ tl¡bdd o¡t (21

FrsnDo,rnl@d
Proc€ss U,lorldqv(1)

Fl I eDo^nlæds tfìræd dãts

Call SdDoÀnlodÍæK)
'This r¿lill crette íultìple Do^nlod

threads

ls lh¡s resrrÞd
doi\nlod?

Frcune 4.3.1.28 DowNLoAD PRocEss Wonxrrcw(2)

Oeâte nl'rltiple Do^nlod threads

@ f¡le serveds spe€d

Gd file $ze frtn ñle s€rì/er. lf fìle size ¡s

zero, that nears s€rvs is rd a/¿úlaHe.

--rsl-1".¡r"r""-ìæ"----€"*gZ

Gd a lid d availaHe f¡le sen€rs

Cdorlde tlìe dleoço-rl
dedì segûErü

Copyright @ 2005 Yuhong Li 61

lnproved Distributed File Transfer (DFT) on lnternet

4.3.1.3. Download Thread lmplementation

Download Thread Workflow

Frcune 4.3.1 .3 DowNLoAD Tnneao Wonxrtow

Split segment into sub-
segments. Calculate each
sub-segment's length and

checkpoint.

Copyright @ 2005 Yuhong Li 62

lmproved Distributed File Transfer (DFT) on lnternet

4.3.1.4. Sub-Download Thread lmplementation

SubDownload Thread Workflow

Frc une 4.3.1 .1 S us-D owNtoeo Tu neao Wo nxrtow

S ubD ownloadThread.Log¡n0
C reates ControlC onnection

Go to
ControlConnoctlon

workflow

S u bD ow n loadTh read.ru n 0

Send PASV command to
FTP server

Parse response from passive
command and get FTP

server ad res s.

G o to DataConnoctlon
workflow

Create DataConnection
thread.

Start DataConnect¡on thread,
Listen on the server data

Send REST command to set
checkpoint

Start speedTimer

Send RETR command to
retrieve data from FTP

servef

Data is transferred from FTP
server to localmachine

through DataConnection

Wait for DataC onnection
thread to complete. Thread end

CopyrÍght @ 2005 Yuhong Li 63

lmproved Distributed File Transfer (DFT) on lnternet

4.3.1.5. DataConnection lmplementation

DataGon nect¡on Workflow

Read Data Stream

Frcune 4.3.1.5 DaraCo¡tuecnon Wonxrtow

Create Server socket

Set socket t¡meout value

Listen on server's data port

Create Data lnputSlream

s there data to be

Close socket connection
Close local file

Thread end

Copyright @ 2005 Yuhong Li 61

Improved Distributed File Transfer (DFT) on lnternet

4.3.1.6. ControlConnection Implementation

ControlGon nection Workflow

Heunr 4,3.1.6 ConrnotCouugcrtou Wonxrtow

Login:
This is all about setting up a
session with the FTP server

peer process

Update Ul control values

CopyrÍght @ 2005 Yuhong Li 65

lmproved Distributed File Transler (DFT) on Internet

4.3.1.7. Timer lmplementation

Timers play an important role in the DFT system. A Timer periodically checks the

download status and if it sees that the download is complete, the timer will stop

itself, close speedlog and display status information to the end user whether it is

a success or failure.

Timer Workflow

FTGURE 4.3.1.7 Tmen Wonxrtow

Starl T¡mêr rings nên time

Chgck download progress
¡ñ fixed ¡nteruals.

Go to Chccko

lf DownloadThread ls done and
LogTimor is NOT running ?

Yes

Ex¡t

Stop tho T¡mer
Closo spøedLog

Set Stop button to falso
Enable Download bulton

lf DoenloâdThrosd ¡s fìn¡shod
suæossfully ?

Copyright @ 2005 Yuhong Li 66

lmproved DistrÍbuted File Transfer (DFT) on Internet

4.3.1.8. checkQ lmplementation

The method check0 checks the status of all download threads and updates the

recover log. Each time it is called, the recover log is cleared first and the current

download status is written into the recover log so that recover log only contains

the latest status. It then checks whether there is any stalled threads. If there is, it

will find the fastest server that is being downloaded from and switch the stalled

server's task to it.

Check0 Workflow

v"->f-n.t*n I

Sta rt

Clear reæver log.
Write the current

download¡ng status into log

Chæk the status of ne)d
download thread

<

--------\
ls this download thread stalled?

F¡nd the fastest seruer

Stop all the threads thât are
downloading from this stalled

seruer

Sw¡tch to lhê server by
starting new thread

download¡ng from the fasted
seruef

:/wuæeruerto.È.r-ã--

No

Copyright @ 2005 Yuhong Li

Frcune 4.3.1.8 Cnrcx WoRKFLow

67

Inproved Distributed File Transfer (DFT) on lnternet

4.3.1 .9. LogTimer lmplementatíon

LogTimer plays an important role in the DFT system. LogTimer periodically

updates the DFT Client UI display while the download is in progress. The user

can see how the progress bar is moving as the download file size is increasing.

The FTP command and response are shown in the display window. All of these

are triggered by LogTimer.

LogTimer Workflow

When Timer r¡ngs

F rc une 4.3.1 .9 Lo eTw en Wonxrtow

Start

Set progress bar value

lnvoke Data Change Event for the
ThreadTable by call¡ng

TableModel.dataChanged0.
IableModel w¡ll reiresh table

display when receiving th¡s event.

nexl time Write to speedLog

ls download fin¡shed?

-----r--/

I

Yes

Copyright @ 2005 Yuhong Li 68

lmproved Distributed File Transfer (DFT) on lnternet

4.3.1.1 0. Sub-Download SpeedTimer Thread lmplementation

A SpeedTimer started in sub-download thread plays an important role in the DFT

System. A SpeedTimer periodically checks the download speed of each thread.

When the speed drops to less than half of the original test speed, it sets a flag in

the thread and stops the control and data connection of this thread. Then the timer

thread will switch the task that the threads are downloading from this server to a

fast server.

SpeedTimer Workflow

fìrstEntry set to false

When Timer r¡ngs next time

FtcuRE 4,3.1 .10 Sus-Dowtttono SperoTmen Tnneap Wonxrtow

No login lAbort I

Stop CC && DC,
Stop the SpeedTimer;

return;

Copyright @ 2005 Yuhong Li 69

Improved Distributed File Transfer (DFT) on lnternet

4.3.2. DFT Server Side lmplementation

This section describes the LDS server side implementation in detail.

4.3.2.1. LDS Serve r lmplementation

LDS Server Workflow

Frc u ne 4.3.2. 1 LD S SrRveR Wonxrtow

Listen on porl 6666

C reat€ LD S Serv erThread

R ead download file nam e from port 6666.
read a booleañ v alu€ that indicates ¡f user

wanls to search local database,

o you want lo searc
locally?

Search Iocal
datâbâse

et f¡le is foun
aldatabase ?

Soarch target file on FTP search
eng¡nes.

www.fre€wareweb.com
files.oreon,ru

ftpsearch.€lm undo.es

Open H'fTP Conneclionlo search
eng¡ne

Send H TTP requost lo search
engine

Parse response ffom search
6ngine and generate FTP serv er

¡nform at¡on.

C onstruct file serv erãnd path
¡nf orm al¡on into standard f orm al

Send formêlled serverand path
inform at¡onback loLD Sc onnection

through socket connection

Term ¡nate

No. Go to search engine

Y es. Skip search ong¡ne

Copyright @ 2005 Yuhong LÍ 70

Improved Distributed File Transfer (DFT) on Internet

4.3.2.2. Search Engine Implementation

There are many kinds of FTP search engines available on Internet. When a user

goes to a public FTP search engine, for example, www.freewareweb.com, they

enter a file name and will get a response HTML page that contains all available

FTP servers that they can download the target file from. In order to take

advantage of public search engines, a search engine adaptor is defined that can

send HTTP requests to the search engine, read response HTML page, and parse

the HTML page for file server information. Then the adaptor sends file server

information in a certain format back to the DFT client. Since each search engine

retums an HTML page in a different format, it is necessary to define individual

search engine adaptors for each engine.

For example, these are three separate search engine adaptors. They have similar

structure but they process different HTML pages.

FTPSearchEngine . j ava

FifeSearching. j ava

FreeWareWeb. j ava

Following diagram illustrates how search engine adaptor works.

Copyright @ 2005 Yuhong Li 71

Improved Distributed File Transfer (DFT) on lnternet

Start

Open socket connection
on server port 80

Send HTML request
as a query str¡ng to
FTP searPh engine

Read HTML response into a
buffer

Start reading bufler and search for
certain patterns that matches

target f¡le

-oí66f^ o,." r ¡ nìììàÐ-'--*{clt-
ïre

Pa*)!9y

Yes

Parse buffer and construct a response line
in the format of

f¡leName:server:path;user name;password;size

Add each response line into
response buffer

FTP Search Engine Adaptor

FtcuRE 4.3.2.2 FTP SEARaH ENctNE ADApToRWoRKFLow

Send response buffer back to
DFT client through socket

connection

Copyright @ 2005 Yuhong Li 72

lnproved Distributed File Transfer (DFT) on lnternet

4.4. DFT Sysfem Module List

Table 4-1 lists all the DFT system modules including the packages that they

belong to and their functions.

Teaæ 4.4: Svsrer Uur Moourc Ltsr TeBæ

Package Module Name Function

dft.gui

dft.gui SelectPaneljava Allow user to select file server from a
list

dft.gui DFTFramejava The main DFT client window

dft.gui SelectionTableModel j ava The table model for SelectPanel

dft.gui SelectFrame java The window frame for SetectPanel

dft.gui DFTFrame_AboutB ox j ava Defìne the HelplAbout dialog box

dft.gui DFTClientjava Ihe main DFT client starting point.
Create DFTFrame.

dft.client

dft.client SubDown loadThread j ava Define the sub-download thread

dft.client CommandException java Defìne the Command Exception

dft.client FileDownloaderjava Most of download logic is defined here.
This module creates all download
threads.

dft.client ControlConnection j ava Contain logic to make control layer
connection to FTP server and read
response from FTP server.

dft.clienl DataConnectionjava Contain logic to make data layer
connection to FTP server download file
form data port.

dft.client DownloadThread java The thread to perform download

dft.client Filelnfo java Defìne target file and server information
for each fìle server for downloading
purpose.

dft.client LDSConnection java Contain logic to make socket
connection to LDS server.

dft.clieni LogRecordjava Utility module to write to log record

dft.server

dft.server FileWatcherjava One of the search engine adaptor

dft.server FTPSearchEnginejava One ofthe search engine adaptor

dft.server FileSearchingj ava One ofthe search engine adaptor

dft.server FreeWareWebjava One of the search engine adaptor

dft.server OreonRu java One ofthe search engine adaptor

Copyright @ 2005 Yuhong Li 73

lmproved Distributed File Transfer (DFT) on lnternet

Package Module Name Function

dft.server LDSServerTh readj ava The thread to perform the file query and
response task for LDS server.

dft.server Veodajava One of the search engine adaptor

dft.server Elmundo java One of the search engine adaptor

dft.server LDSServerjava Defines the LDS server class. LDS
server creates LDSServerThread to
complete fìle query tasks.

dft.util

dft.util LogManagerjava The logging utility class

dft.util LDSConstants java Define all constants used in DFï project

dft.gensig

dft.gensig GenSigjava Contain logic to generate digital
signature

dft.versig

dft.versig SigCheckerjava Contain logic verify digital signature

4.5. Summary

In this chapter, the implementation of the DFT system was described. First, the

implementation tools which include the Java language, Java Swing and JCreator

(which is the Java IDE) are introduced. Then, the DFT packages and DFT client side

and LDS server side implementations are described. How each part of the system

works and how they interact with each other are explained in detail. A series of tests

of the DFT system will be discussed next.

Copyright @ 2005 Yuhong LÍ 74

lmproved Distributed File Transfer (DFT) on Internet

Ghapter 5: Experiment and Data Analysis

Based on the DFT system design, architecture and implementation of all its

functionalities described in previous chapters, a series of experiments will be

carried out in this chapter. Through the experiment, the functionalities and

features of the system described in the preceding chapters will be tested. The

analysis of the experiment data will be done and a conclusion about the system

will be presented at the end.

5.1. Experiment Goals and Design

5.1.1. Experiment Goals:

To improve the reliability and efficiency of the file transferring on Internet is the

main motivation of the design of the DFT system. Testing the system's reliability

and eff,rciency is the main part of the goals in this experiment. Since the system is

designed for downloading from multiple servers and each with multiple threads,

how the file transfer efficiency (speed) has been impacted by the multiple threads

in different scenarios will be tested as the most important part.

Copyright @ 2005 Yuhong Li 75

lmproved Distributed File lransfer (DFT) on lnternet
æ@t

5.1.2. Experiment Design:

5.1.2.1. Reliability Test:

Failure recovery is the indicator of the reliability. The system should be robust

and be capable of detecting and recovering from different failures (described in

Chapter 3)

In this test, the FTP server and the DFT client failures will be simulated and tested

by stopping the FTP server and unplugging the DFT client network cable from it.

The data of when these failures happen, how soon the DFT client detects these

failures and how quickly it acts to switch is recorded.

In the server failure situation, the DFT client should be able to detect thrs

discorurection from the server and switch its downloading task to the fastest server

from which it is downloading. Behind the scene the DFT client will kill all the

threads working on this server which include the threads for data connections and

control connections. Then it will check all the other working servers that it has

been downloading from and find the fastest server of them, then establish a new

connection to this server, and continue downloading the f,rle from the point where

it was at when the former server failure happened.

In the client network failure, the client should be able to detect and prompt the

user with a message and stop all the downloading tasks from all the threads.

Copyright @ 2005 Yuhong Li 76

lmproved Dístributed File Transfer (DFT) on Internet

5.1.2.2. Digital Signature Generation and Verification Test

Because the buttons of the both functionalities are on the GUI interface of the

DFT client, the test is straightforward. The generator is used to generate a digital

signature for downloaded file. The verifier is for the downloading user to verify

the downloaded f,rle. The functionality was only tested locally.

5.1 .2.3. Efficien cy Test

The efficiency test is to test how the system performs. As mentioned before, the

system was designed for downloading from multiple servers, each with multiple

threads. How the efficiency changes when the number of servers and the number

of threads change is tested.

5.1.2.4. Auto Optímization Test

The test is bound to the efficiency test. When a server from which the DFT is

downloading is becoming slow or halts because of traffic congestion or other

reasons, the system should be capable of switching from this degraded server to

another faster server.

5.2. Experi m ent Envi ron m ent

In this section, the experiment environment including networks, download files,

the requirements for running the DFT client and the LDS server are described in

detail.

CopyrÍght @ 2005 Yuhong Li 77

Improved Distributed File Transfer (DFT) on lnternet

5.2.1. Networks

The Intemet will be the network platform for the experiment. Since The DFT

system is designed to download files from FTP servers scattered on the Internet, it

must be able to download files from FTP servers running on the Intemet. The

network in the experiment will be the Internet rather than a limited local network.

The DFT client will run on a Windows XP PC which is corurected to the Internet

through broadband Intemet Corurection (Shaw cable was the ISP when the

experiment was being carried on). Figure 5.2.1 is the diagram of the networks (the

local network and the Internet) for the DFT system test.

DFT System Test Networks

Hcune 5.2.1 DTF SvsrcnTest NerwoRKs

Copyright @ 2005 Yuhong Li 78

lmproved DistrÍbuted File Transfer (DFT) on lnternet

5.2.2. Downloaded Files

Two groups of files are selected for the download tests. In the first group, two

different files are used as the download test files in this experiment. They are

mysql-4.1 .I2a-win32.zip (about 37.0 MB) and OOo_1 .1.4_Win32lntel install.zip

(about 64.2M8). There are a lot of FTP servers holding these files across the

Internet. Some of these FTP servers are chosen to download from.

1) mysql-4.1.12a-win32.zip. This ZIP file is the MySQL database server for

windows. MySQL database server is the world's most popular open source

database. This file is its offrcial release of version 4.1.12a with the new

windows installer as well as the Server Instance Configuration Wizard.

The file size is about 37.0 MB. More info about MySQL database server

can be obtained from its website [17].

2) OOo_1 .1.4_Win32lntel_install.zip. This ZIP fi\e is the OpenOfflrce.org

suite for Windows. OpenOffice.org is both a multi-platform and multi-

lingual office suite and an open-source project. It is compatible with all

other major office suites, the product is free to download, use, and

distribute. This file is its official release of version 1.1.4. The file size is

64.2M8. More info about OpenOfÍice.org can be obtained from its

website [18].

The reason why these two files were selected is that they are popular on the

Internet. The changing trends of the download speed on files less than 100M8 can

Copyright @ 2005 Yuhong LÍ 79

lnproved Distributed File Transfer (DFT) on lnternet

be obtained by repeating the download of the two files. The download tests on

these two file are on the external FTP servers that holding them.

The other group of files chosen for the test is some files that were purposely made

for the DFT system test. Their sizes are bigger than the above two files. Their

sizes are about 200M8 (200m.rar), 450M8 (400m.rar), 680MB (600m.rar) and

960M8 (900m.rar) respectively. They are put on the intemal FTP servers and are

downloaded repeatedly for checking the download effrciency change trends when

the file sizes increase. These tests are only within the local network.

5.2.3. FTP Servers:

There are many FTP servers across the Intemet. The user can get the FTP server

list by using the build-in FTP server search engine function in the DFT client.

The FTP servers holding the FTP download files used in the experiments are

primarily the official mirror sites of the two applications (mysql and openoffice)

listed in their download pages.

A few local FTP servers are also setup on the local network. They are used to

simulate network failures in the relevant experiments and for the tests of the

bigger file download. Table 5.2.3 lists the external and intemal FTP servers that

are used for the download tests.

Copyright @ 2005 Yuhong Li 80

lmproved Distributed File Transfer (DFT) on lnternet

TeaÆ 5.2.3: FTP SERvÊRs USED IN THE E)GER,ME ÚrS A,VD TESrS

File Name
Serrer
SymboI Server Address

mysql-4. 1 . 1 2a-win32.zip Anl Mirror.mcs.anl.gov

Banner mysql.bannerlandia.com.ar

Berlin ftp.fu-berlin.de

Ovh mirl.ovh.net

Sunsite sunsite. informatik.rwth-aachen.de

Wolf ftp. ft -wo I fenbuette I. de

OOo 1.1.4 Win32lntel install.zip unl-w (1) ftp.uni-wuppertal.de

Sunsite (2) sunsite.informatik.rwth-
aachen.de

tu-bs (3) openoffi ce.tu-bs.de

Berlin (4) ftp.fu-berlin.de

Funet (5) ftp.funet.fì

uni-k (6) ftp.uni-kl.de

Arnes (7) ftp.arnes.si

Kulnet (8) ftp.kulnet.kuleuven.ac.be

e-tech (9) ftp.e-technik.ftr-muenchen.de

200m.rar, 400m.rar, 600m.rar,
900m.rar

3 192.168.2.3 (local FTP server)

7 192.168.2.7 (local FTP server)

5.2.4. LDS Server and DFT Client:

Both the LDS server and DFT client run on a Windows XP PC which is

connected to the local network. Its IP address is 192.168.2.9. The Java Runtime

Environment installed is Java(TM) 2 Runtime Environment, Standard Edition

1.4.2_07. The Java IDE JCreator 3.5 is used to manage and launch the LDS servet

and DFT client. The LDS server mns rmder a DOS prompt. The DFT client is an

intuitive and easy to use application with a friendly GUI interface. During the

Copyright @ 2005 Yuhong Li 81

lmproved Distributed File Transfer (DFT) on lnternet

downloading test process, a lot of information is displayed on the GUI interface

for the user. The server related information can be checked from the server DOS

window.

5.3. Reliability test

5.3.1. Server Failure Recovery

While the DFT client (IP: 192.168.2.9) is downloading from 2 FTP servers with

one a local FTP server with IP address 192.168.2.7, ffid the other from the

Intemet with address ftp.uni-wuppertal.de, the local FTP server is stopped

purposely to cause server failure (Figure 5.3.1a).

Frcunr 5.3.1A PtcK up rHE INTERNAL SERvER AND AN EKTERNAL oNE

The DFT client detected the server problem and does the switch successfully.

Copyright @ 2005 Yuhong Li 82

ved D¡stributed File Transfer (DFT) on lnternet

l Fle cmfuúalon SrgrìaDJe HS

.' $ search @ srop E Save t Ge¡ercle rb verrfy û Help

np.uni-wpperta¡.de 192 168 2 7 i

Segment Lenglh (Bytes) Bytes DMloaded Spe.ed (bpÐ

aifE'G l:5 Lìiil? crnr,úci !¡ alr?ndy úfrr, ìf¿n3íçr !lnfli¡!
ilÊa,lÉiiÈ ,1:'b ù0rì¡ect:¡f clss¡d, lr¿n3icr ¡¡únú0

SEND: IYPE I

Frcuae 5.3.1a NTERNAL SERyER SwrcurororHE EKTER TÁL SERyER

In this test, the time the FTP server stopped, the time the DFT client detected the

server unavailability and the time the switch finished are recorded (Table 5.3.i).

TABLE 5.3.1 : Rrsu¿rs oF Two Tgsrs

Server Stop at Client Detect at Switch at Overhead

Tue Jul 2615:53:52 Tue Jul 2615:53:56 Tue Jul 2615:53:57 5 sec.

Tue Jul 2615:50:21 Jul 2615:50:23 Tue Jul 2615:50.,26 5 sec.

l3ú A.no¡y¡rous uger Ì¡qqed in

SEI'lDr IYPE I

lìELìlÊ\€ :(ìll lyp! sel lú I

SEND: PASV

LllEVE. :27 ãûi?¡ìn¿ Fj!ìeitÊ l¡údn (l 9:,168.2,7,13,ì r0)

SEI'lD: RETR /prh/o00_1 .1 .4_Win32k,lsl_insl àlf. z rp

In both tests in the table, the period of time

client finishes the switch is 5 seconds. The

between the server stop and the DFT

time between when the server stops

Copyright @ 2005 Yuhong LÍ 83

lmproved Distributed File Transfer (DFT) on lnternet

and when the client detects and does the switch can vary greatly. These response

times are affected by many elements such as the server response, the network

traffic and the DFT client performance.

5.3.2. Network Failure

The network failure on client side was simulated by unplugging the network

cable from NIC of the DFT client PC. The time from the unplugging to the client

detecting this failure and popping out the error message is about 10 seconds. The

time is recorded by a timer and includes a period of time from the client detection

to the GUI enor message popping up. The client is able to resume the download

when re-downloading the file from the point the download was halted.

5.4. Signing a File and Verify a Signature

5.4.1. Signing a File

From the toolbars of the main window in the DFT client, clicking the 'Generate'

button pops up a Windows Explorer. The file the user wants to sign

(OOo_1.1.4_Win32lntel_install.zip in this experiment, Figure 5.4.1a) is thereby

located.

Copyright @ 2005 Yuhong Li 84

Improved Distributed File Transler (DFT) on lnternet

:.1--:iL+31

Ëa.*-r rr"grÏ (8les) Eles oMloaded Spe€d (bps)

Filsnamsr :OOo-t.1.¿-Wñ21¡loLinsrâll.zip

Files oftype: Àt Fitss

Frcuae 5.4.1e Fwo e¡to cHoosETHE FILE BEING srcrvgD ow

The user then clicks the 'Open' button. A successful signature generate message

is then displayed (Figure 5.4.1b).

Two files, OOo_1 .1.4_Win32lntel_install.zip.sig and

OOo_1 .1.4_Win32lntel_install.zip.key are generated in the same folder as the

original file OOo_l .1.4_Win32lntel_install.zip (Figure 5.4.1c). These two files

are the signature of the original file.

Copyright @ 2005 Yuhong Li 85

lmproved Distributed File Transfer (DFT) on Internet

Frcunr 5.1.1c Key auo STGNATURE FtLEs ARE GENERA¡ED

5.4.2. Verifying a Signature

When downloading a file, its digital signature files which are files with extensions

of sig and key also need to be downloaded. In this case, they are

OOo_ 1 .1 .4 _W in3Zlntel_install. zip. sig and

OOo_l .1.4_Win32lntel_install.zip.key. After finishing the download, the user

puts the signature files with the original file in the same folder. Then from the

main window of the system, click the 'Verify' button, and the Windows Explorer

window pops up. The user then selects OOo_1.1.4_Win32lntel_install.zip (Figure

5.4.2a) and clicks the 'Open' button. The file is then verified against the public

key and the signature.

Copyright @ 2005 Yuhong Lì 86

lmproved Distributed File Transfer (DFT) on Internet

Look ¡n: .: . ñproot

, g:rffffi¡affitrffqird
,) :y ooo_1.1.¡_wú21ñror_rñsr.ll.r¡p.k6t

Rocoñr iiÈooo-1.r.¡-w¡"ælñrol_ìñst.ll-z¡p.si9

a1
oâskop

l,))
Mvi

I ;ê li
My

ql
Filo naÞo: OOo_l 1.4_wÉ:lnrcl_in6l¡lì zip

MyNotwork : - ":
ptacos Fitûs ot typo: lAt F¡to6

If it is successful, a message is displayed (Figure 5.4.2b).

i f) Successtully verified signaurre for C:\lneþub\þrootþub\Ooo-1.1,4-Wrì3Antel-hstall.zlp
\l c:UneÞub\Þrootþub\ooo-1.1,4-wh32lntel install.zip,sig

c :VneÞub\Þrootþub\ooo_1. 1,4_Wh32lntel lnstall.zip.key

@
Frcunr 5.4.2e SrGrvA ruRE rs vERtFtED succEssFu¿¿y

If the f,rle OOo_l.l .4_V/in32lntel_install.zip is replaced by a different zip file, the

verifying procedwe and an rinsuccessful verification message will pop up (Figure

5.4.2c).

':
Fded to vãlry sçnab.re fcr C:\Documents and

FtcuRE 5.4.2c Fnt ro vERtFy rHE SIGNATURE

5.5. Efficiency Test on Files Less Than 100 MB

To test the efficiency of the system and get more accurate tendency results, a

series of downloading tests from the selected external sewers in different

- ,g ;PiEl Í3

1.. .:..:.
i,; : :.¡ i-
1..-

rI)\¡,
t@

FIGURE 5.4.2A Looxs I¡'I THE FoLDER WTIERE THE 3 FILES ARE

Copyright @ 2005 Yuhong Li 87

lmproved Distributed File Transfer (DFT) on lnternet

combinations for each file are performed. They can be categorized into the

following groups:

1) To download with one, two and three threads from each server

respectively;

2) To download from a combination of multiple servers with one, two and

three threads respectively.

All the downloading tests on mysql-4.l.I2a-win32.zip and

OOo_1 .1.4_Win32lntel_install.zip are from the selected servers outside the local

network. That is, no local FTP servers are involved in this part.

The data of each download test is recorded. The downloading time when using a

different number of threads to download from different servers is calculated.

5.5.1. Test Results

Table 5.5.1a is the test results on the file mysql-4.1.T2a-win32.zip and table

5.5.ib is the test results on the file OOo 1.1.4 Win32lntel install.zip.

TeaÆ 5. 5.1 e.' fEsrr|c Dere o u DowN toADtNc nvsot4.l .1 Za-wtNg2.ztp

----Iluration \
s..""ò-\

One Two Three

Performance

2vs.1/3vs.1

1 Server

Anl I min 40 sec I min I sec 51 sec +39% / +49Yo

Copyríght @ 2005 Yuhong Li 88

lmproved Distributed File Transfer (DFT) on lnternet

Banner 3 min I min 21 sec 52 sec +55o/o I +7lyo

Berlin 2 min 10 sec 1 min 20 sec l min +38% / +54%

Ovh 7 min 10 sec 4 min 12 sec 2min 42 sec +47o/o / +77o/o

Sunsite 2 min l0 sec 1 min 30 sec I min 11 sec +37%o I +47o/o

Wolf 3 min 20 sec 2 min 21 sec I min 30 sec +31o/o / +55o/o

I Server Averaqe 3 min 15 sec 1 min 58 sec 1 min 23 sec +39o/o I +59o/o

2 Se¡vers

sunsite + banner I min 40 sec I min 2 sec 1 min I sec +38o/o I +39o/o

anl +ovh 5 min 5l sec 2 min 51 sec 2 min I sec +5lo/o / +66%;o

sunsite + berlin 1 min 40 sec I min I min 1 sec +40% / +39%

Wolf + ovh 5 min 50 sec 2 min 5l sec 1 min 42 sec +51y;o / +71%

Wolf + anl I min 20 sec I min 21 sec 1 min 22 sec _lo/o>k / _3o/o*

Wolf + banner 3 min 20 sec 2 min I min 5l sec +40o/o / +45o/o

Wolf + sunsite 2 min 30 sec I min 29 sec I min 2 sec +41% I +59%

Wolf + berlin 3 min 2 min 10 sec I min 23 sec +28o/o I +87Vo

2 Servers Average 3 min 9 sec 1 min 51 sec I min 25 sec *360/o I *50o/o

3 Servers

Wolf+sunsite+anl I min 30 sec 1 min 2 sec I min I sec +37Yo / +32o/o

Wolf+sunsite+ovh I min 50 sec 1 min 1 sec 1 min 11 sec +45Vo / +35o/o

Wo If+sunsite+banner I min 30 sec I min 21 sec I min 2 sec +70Yo / +31o/o

Wolf+sunsite+berlin 51 sec I min ll sec 52 sec _39o/o,k I _2o/o*

Berlin+sunsite*anl I min l0 sec I min 52 sec +l4o/o / *260/o

B erlin+sunsite*banner I min I min I sec 52 sec -2o/o* / +l3o/o

Berlin+sunsitefovh 1 min 5l sec I min 21 sec I min 2 sec +27o/o / +44o/o

Berl in+banner*anl I min 51 sec 51 sec +75Vo / +75o/o

Berlin*banner+ovh 2 min l0 sec 1 min 30 sec I min 2 sec +3lo/o I +52Yo

banner+anl+ovh 2 min 20 sec I min 31 sec I min 15 sec +35% / +46%

3 Servers Average 1 min 34 sec I min 11 sec l min +l7Yo I +29o/o

*: Downloading time with 2 threads or 3 threads is longer than that with I thread from each server

Copyright @ 2005 Yuhong LÍ 89

Inproved Distributed File Transfer (DFT) on lnternet

Teste 5.5.1e.' Ieszruc DATAoN DoWNLo.AD|,NG OOo 1.1.1 W¡'t32lurn INsrALL.zp

Thread#

Duration

Server(s)

One Two Three

Performance

2vs.1/3vs.l

I Server

Ames 6 min 30 sec 3 min 11 sec 2 min22 sec +51% / +64Vo

e*tech 5 min 30 sec 2 min 20 sec I min 41 sec +58% / +69%

Funet 3 min 50 sec 2 min 52 sec 2 min 31 sec +25o/o I l-34o/o

Berlin 4 min 20 sec 2 min 10 sec I min 41 sec +50%o I +670/o

Kulnet l3 min 40 sec 7 min 41 sec 4 min 3l sec +44o/o I +67V;o

Sunsite 5 min l0 sec 2 min 40 sec 1 min 5l sec +48% / +64Yo

tu-bs 9 min 40 sec 3 min 51 sec 2 min 30 sec +60Yo / +74o/o

Uni-w 5 min 3 min 22 sec I min 40 sec +33o/o / +67%o

Uni-kl 3 min 20 sec 2 mín I min 41 sec +40o/o I +50o/o

1 Server Average 6 min 20 sec 3 min 21 sec 2 min 16 sec +45o/o I +610/o

2 Servers

Sunsite + tu-bs 3 min 30 sec 2 min 10 sec I min 51 sec +38% I +52%

Sunsite + berlin 5 min 30 sec 2 min 30 sec 2 min 30 sec +55o/o / +55o/o

Sunsite + funet 4 min 2 min 11 sec 2 min +45o/o I +50o/o

Sunsite + uni-k 3 min 50 sec 2 min 11 sec 3 min 33 sec +43Yo / +7o/o

Sunsite * ames 3 min 4l sec 2 minZ sec I min 52 sec +45o/o / +49o/o

Arnes + kulnet 6 min 10 sec 3 min 21 sec 2 min 33 sec +460/o I +59o/o

Sunsite * uni-w 3 min 20 sec 2 min I min 41 sec +40% / +50Yo

Uni-k + uni-w 2 min I min 42 sec 1 min 44 sec +15% / +l3o/o

2 Servers Average 4 min 2 min 16 sec 2 min 13 sec +4lo/o I + 42Vo

3 Servers

Uni-w+sunsite+kulnet 5 min 30 sec 2 min 30 sec 2 min 2 sec +55% I +63%

uni-w+suns ite*ames 2 min 30 sec I min 40 sec I min 42 sec +33Yo / +32Yo

uni-w+sunsite+uni-k 2 min 1l sec I min 32 sec I min 43 sec +30o/o / +2lo/o

uni-w*sunsite+berlin I min 40 sec I min 4l sec I min 40 sec 7o/o* / 0

uni-w+tu-bs*berlin 2 min 1 sec I min 45 sec 1 min 40 sec +l3o/o / +l7o/o

uni-w+sunsite+tu-bs 3 min 2 min I min 43 sec +33o/o /+43%o

Ames+kulnet*e-tech 6 min 40 sec 3 min ll sec 2 min 30 sec +52% I +63%

Copyright @ 2005 Yuhong Li 90

lmproved Distributed File Transter (DFT) on lnternet

sunsite+berl in*e-tech I min 40 sec 1 min 41 sec I min 4l sec 7o/o'|* / -lo/o*

3 Serwers Averaqe 3 min 9 sec 2 min 1 min 50 sec +27o/o I +30o/o

*: Downloading time with 2 threads or 3 threads is longer than that with 1 thread from each server

5.5.2. Experiment Analysis

After studying the data collected in the above two tables, it is easy to find that the

relations between efficiency of the system and the number of servers and/or the

number of threads used to download from each sewer.

5.5.2.1. Srngle server Download - one vs. multiple threads

Compared with multiple threads, downloading from a single server with one

thread is the least efficient. The data in the "l server section" of each table above

shows that download from a server with 2 threads or 3 threads improves the

download speed greatly. The average improvement rate is 39o/o with 2 threads,

59o/owith 3 th¡eads from 1 server for downloading mysql-4.1.12a-win32.zip.The

rates are 45Yo betfer with 2 threads md 610/o with 3 threads from i server for

downloading OOo_1.1.4_Win32lntel_install.zip. So a conclusion can be reached

that downloading from a single server with multiple threads is more efficient than

using only one thread.

Copyright @ 2005 Yuhong Li 91

lmproved Distributed File Transfer (DFT) on lnternet

5.5.2.2. Multiple seryens Download - one thread vs. multiple threads

From 2 and 3 server selections of the above tables, the download speed from

different combination of selected servers with 2 or 3 threads is generally faster

than that with just one thread. The average improvement rate is 36%o with 2

threads, 50% with 3 threads from 2 servers, l7%o and 29Yo from 3 servers for

downloading mysql-4.1.12a-win32.zip. The rates are 47o/o better with 2 threads,

42% with 3 threads from 2 servers, 27o/o and 30%o from 3 servers for downloading

OOo_1 .1.4_Win32lntel_install.zip. In general, using 3 threads makes the

download speed even faster than using 2 threads.

Figure 5.5.2.2 shows how the download time changes with download thread

numbers when using 1 thread, 2 threads and 3 threads to download the two files.

Axis x is the change of thread numbers and axis y is the change of download time.

Durat¡on vs. Tlrread #for downloading
rlysql.l.1.12rr-win32.zíÞ ß7.0 ilB)

Duration vs. Thread #for downloading
0üo_1.f .{_Win32lnrel_íDrall.z¡p (6t.2 HB)

I

Frcune 5.5.2.2 Dunenou vs. Tnneeo Nungpns

The shapes in the above two graphs are not the same, though ideally they should

@+ **--._
Copyright @ 2005 Yuhong Lí 92

200

't50

^a,"t* 1oo
È

50

0
I 2 2

N I Server 195 118 83

E 2 Seryers 189 111 85

E 3 Servers 94 tt 60

Thread #

400

300

^(\

.."tç 2oo

o-
100

0

il
:ñ

F
=l- æ

Ïi.iffi
I 2 J

ú I Server 380 201 rJÔ

t2 Servers 240 136

E 3 Seryers 189 120 t10

Tlrread #

lmproved Distributed File Transter (DFT) on lnternet

be. This is because during the download procedure, the download speeds were not

constant but were affected by some elements such as the discrepancy of the test

speed and real download speed, the overhead that was caused by random access

file mechanism.

5.5.2,3. One Seruervs. Multiple Servers

As discussed in the previous sections, the advantage in downloading from

multiple servers over just one server is its robustness and improvement in

reliability. In other words, when downloading from multiple servers, if one or

some of the servers fail to provide the file download, the system can still finish

the download from other working server(s) unless all the servers are down.

In the experiment, only downloads from one server, two-server and th¡ee-server

combination are tested. For each download, 1 thread, 2 threads and 3 threads are

tested. As far as the limited test data tells, on aveÍage, downloading from 3

servers is faster than downloading from two servers and downloading from two

servers is faster than downloading from one server, though this is not always true

for a specific download.

Figure 5.5.2.3 shows how the download time changes with download server

numbers when using 1 thread, 2 threads and 3 threads to download the two files.

Axis x is the change of server numbers and axis y is the change of download time.

Copyright @ 2005 Yuhong Li 93

lmproved Distributed File Transfer (DFT) on Internet

200

150

100

50

0
2

---+- 1 Thread 195 189 94

---¡- 2 Threads 118 r11 71

--.*- 3 Threads öJ 85 60

Server #

Duration vs. Server # for download¡ng
tÌys(tl J.1.12a-win32.zlp FI.ouB)

Duration vs. Server # for downloading
0Oo_1.1.J_Wiil32lrrel_ltrst¡ll.zlp (6{,2H8)

400

Frcune 5.5.2.3 Dow¡ttoeo Twe vs. SeRven
^ruÍrsrRs

Once again, the shapes of these two graphs are different, though they indicate the

same trend. The overhead that was caused by the random access file mechanism

and the difference between the test speed and the real download speed are the

main contributors to this discrepancy.

5.5.2.4. Elements Atrecting Download Speed

1) Not all the FTP servers have the same performance. The servers with

lower performance make the whole download period longer, and the

servers with higher performance will make the whole download period

shorter.

2) The task allocation among the FTP servers is based on the detected speed

before the downloading starts by downloading 10k of data from each

server. Thereafter if the download speed does not change much, then all

downloads from different servers should finish at almost the same moment.

E
o

o

350

300

250

200

150

100

50

0

t

____t

a

--:- 1 Thread 380 240 189

-3- 2 Threads 201 136 120

-+- 3 Threads 136 133 110

Server fl

Copyright @ 2005 Yuhong Li 91

lmproved Distributed File Transler (DFT) on lnternet

If the server's speed increases, it will make the download faster. If the

server's speed decreases, it will make the download slower.

5.5.2.5. Low Speed Seruer Switch

The system has a functionality to monitor all the download threads' speed. It

employs an independent thread called SpeedTimer to check the download threads'

speed every 10 seconds. If the speed which is the total download amount of every

10 second span is divided by 10 seconds is lower than half of the original detected

speed, the slower download thread is stopped and switches its task to a server and

carries on the downloading from the new server.

5.6. Efficiency Test on B¡gger Files

To test how the file sizes affect the download speed in the DFT system, the tests

on the bigger files with sizes of 200M8, 450M8, 680MB and 960M8

respectively were carried out. All the downloading tests on bigger f,tles were

within the local network and these downloads were from 2local FTP servers with

IP 192.168.2.3 and 192.168.2.7. The download processes were done repeatedly

and the average download time was calculated.

5.6.1. Test Results

Teate 5.6.1: Tesnxe DeraoN DowMLoAowe Brc Ftes

Thread#

Duration

One Two Three

Performance

2vs.l/3vs.1

***S
Convrìohf @ 2005 Yu 95pv ng

oved Distributed File Transfer (DFT) on Internet

5.6.2. Experiment Analysis

The data in the above table shows how the download speed changes with i thread,

2 threads and 3 threads on files with different sizes. Like the tests on smaller files,

the increase of server number means the increase on the reliability. But the multi-

thread download speed is not always increased when the download size gets

bigger.

When downloading a file with size less than 680M8, the 2{hread download

speed from I server generally increases the single thread download, but this

increase is smaller than that when downloading the mysql and OpenOffice in the

Servers

1 Server: (3)

200m.rar 58 sec 50 sec 49 sec +140/0 I +76yo

450m.rar 2 min 07 sec 2 min 03 sec 2 min 0 sec +0.030/o / +0.06%

680m.rar 4 min l7 sec 3 min 56 sec 4 min l0 +8o/o / +3Yo

960m.rar 4 min 26 sec 4 min 58 sec 6 min 07 sec -70o/o I -38o/o

I Server: (7)

200m.rar 3 min l0 sec 3 min 08 sec 3 min 07 sec +7o/o I +2o/o

450m.rar 6 min 52 sec 7 min 03 sec 7 min 12 sec -3% I -5%

680m.rar 10 min 09 sec l0 min 02 sec 1l min 0 sec +7o/o I -8%o

960m.rar 14 min 56 sec l5 min 05 sec 15 min 25 sec t% l-3%

2 Servers: (3)+(Ð

200m.rar 2 min 04 sec I min 28 sec 1 min 55 sec +2lo/o I +7o/o

450m.rar 5 min 52 sec 5 min 51 sec 6 min 07 sec +0% / -4%

680m.rar Tminllsec 8 min 59 sec 9 min 38 sec 16% / -34%

960m.rar 13 min 45 sec 14 min22 sec 21 min 20 sec -4o/o / -54%o

Copyright @ 2005 Yuhong Li 96

lnproved Dístributed File Transfer (DFT) on lnternet

smaller files tests above. The 3-thread download usually takes more time than

using I or 2 threads. When downloading the f,rle of 960M8 using either 2-threads

or 3-threads takes more time than a single thread download, independent of

whether the download is from a single server or 2 servers.

The main reason why the multi-threaded download does not improve the

download speed on big files like 960M8 is that the overhead caused by random

access file counters the advantage that the multiple-threads would bring. In the

random access mechanism, the file pointer does not move in a sequential but

random order to read or write. Before reading or writing, each download thread

needs to move the file pointer to the proper place before it can start to operate.

The bigger the download file, the more time needed to do this movement. In

addition, this test was only local, whereas DFT presumably would work better in

a WAN.

5.7. Summary

In this section, a series of experiments and tests are designed and implemented.

Through the tests and experiments, the system's reliability, efficiency, and other

features are tested. As far as the results show, the system can recover from

failures, make and verifu the signatures. It can improve the download speed by

using multiple threads to download from multiple servers concurrently on files of

size less than certain sizes (< l00MB).

Copyright @ 2005 Yuhong Li 97

Inproved Distributed File Transfer (DFT) on Internet

Chapter 6: Gonclusions and Future Work

Reliability and efficiency are the two most important concems of file transfer over

the Internet. This thesis provides the design and implementation of a mechanism

for the reliable, efficient file transfer from FTP servers scattered over the Internet.

The authenticity, data integrity and failure recovery philosophy of the file transfer

are also described and implemented to a degree.

Distributed file transfer increases the reliability of the file transfer over the

Intemet. Generally speaking, the more servers the file is being downloaded from

simultaneously, the higher the reliabilify. The file is divided into different

segments and each server is assigned a segment according to its transfer speed.

When one server stops during this time, its task will be switched to another server.

The reliability of the file transfer increases when the number of servers increases.

Efficiency is another important concern regarding file transfer over the Internet.

Here, download speed is its indicator. Through the experiments and tests, it is

noticed that when the download file size is less than a certain size, the download

speed can be improved by multiple-thread download, independent of whether the

download is from a single server or from multiple Servers. However, this

improvement gets weaker and diminishes with the increase of the file size. Many

elements can impact the download speed. These elements include the network

Copyright @ 2005 Yuhong Li 98

lmproved Distributed File Transfer (DFT) on lnternet

connection speeds, the client hardware and software, the servers' hardware and

software and especially the download file size. The overhead generated by

multiple servers and multiple threads should be taken into account when assessing

the improvement. The download speed does not always increase with the increase

of the server number and thread number. The multi-threaded download speed

degrades when the download file size is over a certain point.

Future work on the DFT system may include:

1) The user can configure whether the DFT system should switch a stalled server

or keep monitoring the server's speed. If they decide to keep monitoring the

server's speed, when the stalled server recovers, the download from this server

should resume. This is meaningful when the download file size is big or does not

have extra mirrors to switch to.

2) Let each download thread have a separate 'saveas' f,rle rather than share one

random access file with others. The system joins all these separate files together

when all downloads finish. This may reduce the overhead caused by the random

access mechanism on a huge file.

3) For the digital signature, the public key is currently assumed to be stored on the

download ftp servers and should be downloaded as a separate file. For the further

development, it can be implemented in this way: store the public keys on the LDS

server. When the file and its signafure are downloaded, the DFT system will get

Copyright @ 2005 Yuhong Li 99

Inproved Distributed File Transfer (DFT) on Internet

the corresponding public key from the LDS server and then verify the signature

automatically.

4) Improve the DFT system's intelligence so that it is smart enough to decide

what FTP servers are the best for the user's download and launch proper number

of threads according to the download file size.

Copyright @ 2005 Yuhong Lí 100

Improved Distributed File Transfer (DFT) on Internet

References

tll T. Parker, Teach Yourself TCP/P in 14 Days,ZndBd., USA: Sams Pub.,

t996.

l2l R. Zakon, "Hobbes' Intemet Timeline v8.0", fOnline document] Ian.2005,

Availabl e at HTTP : http : //www .zakon. or ghoberlinterneltimeline/#20 0 0 s

t3] D. Reilly, "Inside Java: The Java Programming Language", fOnline

documentl Nov. 1992, Available at HTTP:

http://wwwjavacoffeebreak.com/articles/insidljava/insidejava-nov99.html

t4] RI'C959, "lnternet RFC/STD/FYVBCP Archives", fOnline document],

Advameg, 2003, Available at HTTP : http ://www.faqs.org/rfcs

15] FlashGet, amazesoft, 2005, Available at HTTP: http://www.amazesoft.com

16] Internet Download Manager, Tonec, 2005, Available at HTTP:

http : //www. internetdownlo admanager. com

l7l SnapFiles, WebAttack,2005, Available at HTTP: http://www.snapfiles.com/

t8l M. Miller, Discovering P2P, Alameda: SYBEX, 2001.

19] eDonkey, MetaMachine, 2005, Available at HTTP:

http ://www. edonkey2 0 00. com/

[1 0] Bittorrent, 2005, Available at HTTP: http://www.bittorrent.com

[11] GetRight, Headlight, 2005, Available at HTTP: http:i/www.getright.com

[12] X. Fang, "Reliable File Transfer on the Internet Using Distributed File

Transfer (DFT)", University of Manitoba,2000

[1 3] Bittorrent, 200 5, Available at HTTP : http ://www.bittorrent.com

Copyright @ 2005 Yuhong Li 101

lmproved Distributed file Tr"n"fe, (DFT) on Int.

t14] R. Whittle, "Cryptography for encryption, digital signatures and

authentication", fOnline document], 1996 December 19, Available at

HTTP : http ://members.ozemail.com.ar-l-firstpr/crypto/index.html

115] Sun, "J2SE: Java Foundation Classes (JFC) Overview", fOnline

document], Available at HTTP:

http : I I j av a.sun. c o m/pro ducts/j fclo verv iew. html

t16] JCreator, "A Java IDE", Xinox, 2005,Available at HTTP:

http : //www j creator. com

Íl7l Mysql, ,,open source Database", MysQL AB, 2005, Available at HTTP:

htþ://www.mysql.com

tl8] OOo, "Open Source Off,rce Suite", Available at HTTP:

http : //www. openoffice. o r g

tl9l c. Leiden and M. wilensky, TCP/P for Dummies, 5th Ed., New York:

Wiley,2003.

l20l D. Comer, Internetworking with TCP/P - Vol.l, 3rd Ed., Prentice Hall,

r99s.

l21l V/ikipedia, "Digital Signature", Available at HTTP:

http ://en. wikipedia. org/wiki/Digital-si gnature

l22l R. Cadenhead and L. Lemay, Sams Teach Yourself Java2 in 2i Days, 4th

Ed., USA: Sams, 2004.

l23l S. Bumett and S. Paine, RSA Security's Official Guide to Cryptography,

Berkeley: McGraw-Hill, 2001.

Copyright @ 2005 Yuhong Li 102

Improved Distributed File Transfer (DFT) on lnternet

t}4l A. William s, Java2Network Protocols Black Book, Scottsdale: Coriolis,

2001.

l25l I. Horton, Beginning Java}, sDK 1 .48d., Birmingham: wrox, 2003.

126l C. Horstmann and G. Cornell, Core JavarM 2 Vol. I - Fundamentals, 7th

Ed., Prentice Hall, 2004.

l27l C. Horstmann and G. Cornell, Core JavarM 2 Vol. II - Advanced Features,

7th Ed., Prentice Ha11,2004.

t28l M. Tulloch, IIS 6 Administration, Osborne/McGraw-Hill, 2003.

Copyright @ 2005 Yuhong Li 103

Improved Distributed File Transfer (DFT) on lnternet

Appendix

A. RFC FTP Protocol, fOnline document], Available at FTP:

ftp://nic.merit.edu/documents/rfclrfc095 9.fxt

B. FTP Command List, [Online document], Available at HTTP:

htþ ://www.nsft ools. com/tips/RawFTP.htm

C. FTP Error Codes Explained, fOnline document], Available at HTTP:

htþ ://www.the-e ggman. com/seminars/ftp-error-codes'html

100 Codes

11()

12()

|'25

150

200 Codes

2()()

2()2

z!1

2l2

243

214

2l.5

22()

227.

225

zz6

227

230

250

257

The requested action is being taken. Expect a reply before proceeding with
a new command.

Restaft marker rePlY.

Service ready in (n) minutes.

Data connection already open, transfer starting.

File status okay, about to open data connection.

The requested action has been successfully completed'

Command okay.

Command not imPlemented

System status, or system help reply.

Directory status,

File status.

Help message.

NAME system type. (NAME is an offlcial system name from the list in the Assigned

Numbers document.)

Seruice ready for new user.

Service closing control connection. (Logged out if appropriate')

Data connection open, no transfer in progress'

Closing data connection. Requested file action successful (file transfer, abort, etc.).

Entering Passive Mode

User logged in, Proceed.

Requested fìle action okay, completed'

"PATHNAME" created.

Copyright @ 2005 Yuhong Li 104

lmproved Distributed File Transfer (DFT) on lnternet

3OO Codes The command has been accepted, but the rcquested action is being held
pending receipt of further infonnation.

381 User name okay, need password.

332 Need account for login.

35o Requested file action pending further information.

4O0 Codes The command was not accepted and the rcquested action did not take
place. The enor condition is temporary, however, and the action may be
requested again.

^Da Service not available, closing control connection. (May be a reply to any command ifT-¡ the service knows it must shut down.)'

4zE Can't open data connection.

426 Connection closed, transfer aborted.

45o Requested file action not taken. File unavailable (e.9., file busy).

45r Requested action aborted, local error in processing.

452 Requested action not taken. Insuffic¡ent storage space in system.

500 Codes The command was not accepted and the requested action did not take
ptace.

6.,., Syntax errorf command unrecognized. This may include errors such as command line
" too long.

sot Syntax error in parameters or arguments.

So2 Command not implemented.

5oB Bad sequence of commands.

5o4 Command not implemented for that parameter.

5Bo User not logged in.

532 Need account for storing files.

55o Requested action not taken. File unavailable (e.9., file not found, no access).

552 Requested file action aborted, storage allocation exceeded

553 Requested action not taken. Illegal file name.

Copyright @ 2005 Yuhong Li 105

