Improved Distributed File Transfer (DFT)
on Internet

By

Yuhong Li

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree of
MASTER OF SCIENCE

Department of Electrical and Computer engineering
University of Manitoba
Winnipeg, Manitoba, Canada

Copyright © 2005 Yuhong Li

Ld

Library and
Archives Canada

Published Heritage Direction du

Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

NOTICE:

The author has granted a non-
exclusive license alloWing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,

loan, distribute and sell theses

worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission. :

Bibliothéque et
Archives Canada

0-494-08895-8

Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN:
Our file Notre rerérence
1SBN:

AVIS:
L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives

~ Canada de reproduire, publier, archiver,

sauvegarder, conserver, transmettre au public
par télecommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, & des fins commerciales ou autres,
sur support microforme, papier, électronique

" et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément 4 la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

Fekkkk

COPYRIGHT PERMISSION PAGE

Improved Distributed File Transfer (DFT) on Internet

BY

Yuhong Li

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of

MASTER OF SCIENCE

YUHONG LI ©2005

Permission has been granted to the Library of The University of Manitoba to lend or sell copies
of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend
or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesis/practicam.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by

photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

(DFT) on Internet

To my beloved parents.

Improved Distributed File Transfer (DFT) on Internet

Abstract

File transfers happen every moment on the Internet. The File Transfer protocol
(FTP) is one of the most commonly used protocols on the Internet. FTP has some
limits and problems such as being server-centered and single-threaded. Server-
centered characteristics can easily degrade the performance of the server and in
the worst case crash the server. Nowadays there are usually multiple copies of a
file scattered on the Internet. Using traditional FTP, some of them are very busy
and the others may be very quiet. In addition, single threaded downloading is very
inefficient. Improving the reliability and efficiency of FTP is the motivation and

goals of this thesis.

To achieve this goal, a mechanism called Distributed File Transfer (DFT) is
designed and implemented in this thesis. In DFT, multiple servers holding the
same copy of files are used as FTP servers. The client connects to a Load
Distributing Server (LDS) to get FTP server information by an Internet search or
through a local database. Connections are made to these FTP servers and the file
is downloaded in parallel. The user uses multiple threads to download from each
of the servers. This overcomes server-centered FTP drawbacks. The user can still
continue the download from the other servers even when some of them experience
bottlenecks or go down. The experiments done on the files with size less than 1

GB shows the reliability and efficiency trends when using different server

combination and using different number threads from each server.

Improved Distributed File Transfer (DFT) on Internet

Acknowledgements

During the days I was working on this thesis, many people have contributed to it.
First of all, I thank my advisor, Dr. Robert D. McLeod, for his guidance and
advice on this thesis and my study through these years. I really appreciate his

kindness and all the help that he has given to me.

Thanks to Dr. Rasit Eskicioglu and Dr. Ekram Hossain for taking the time to be

on my thesis committee for reading my thesis and for their efforts.

I want to thank my parents, brothers and husband for their persistent

encouragement, inspiration and support.

I would also like to thank all the people whose names are not mentioned here but

provided me with all the encouragement and support.

Improved Distributed File Transfer (DFT) on Internet

o s,

Contents
ADSITACE........ooiii e iii
ACKNOWIBAGEMENES ... iv
CONMENTS ... e e Y
FIQUIES ... e viii
TABIES ..o e X
Chapter 1: IntrodUCtionc...oovoiiioiie e 1
1 The INterNet. ..o 1
T2 TCOP/IP .o e e e 3
1.3. The Creation of JaVa............cocvovieiioeeeeee oo 5
1.4. Understanding FTPo.ooiioiiioiee e 6
141 FTP ProtOCO!iviviiiiicece e 6
1.4.2. A Sample FTP SESSIONoimimiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeooeoo 7
1.4.3. FTP Common COMMENGSo.oooiueeremeeeeeeeeeeeeeeeeoeeoooooo 10
1.4.4. File Transfer RESUME..........c.o.oivoiieeeeeeeeeeeeeeeeeeeeeeeoeeooooo 13
1.4.5. Active FTP vS. Passive FTP..........oovveoeeeeeoeeeeooeeoooo 14
1459, ACHVE FTP ..o 14
1.4.5.2. PASSIVE FTP ..o 16
1.4.6. The Problems of FTPc.c.oooiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeoo 18
1.5. Exploration on the Improvement of File Downloadoovovoovivi] 19
1.5.1. One Server with One Thread Modelcocoooeeeeooeoeeeoeoeooo 20
1.5.2. Improved One Server with Multiple Threads Model...............ocoovov 20
1.5.3. Peer-to-Peer File-Sharingcoooovoveeoeeeeoeoeeeeeeeeeeeeooo 21
1.5.4. Distributed File Download Modelcocooveiooooooeoooo 21
1.5.5. Improved Distributed File Download Modelovooooo 22
1.8. Digital SIgNatUuresoovovieviis oo 23
1.6.1. Introduction to Digital SIgNatureccoevevoeeeeeeeeseeeeoeeoo 23
1.6.2. Message Digests and Digest AIGorithmscococoooeoooeooeoo, 24
1.6.3. Signature AlGOrthMSoooiiiiiieeeeeeeeeeeee oo 24
1.6.4. Digital Signatures in JavVa...............cocoeoeeeroeeeeeeeeeeeeeeeeeoeeo 26
17 SUMMATY Lo e 27
Chapter 2: DFT System Objectives and Requirements............................ 28
Chapter 3: DFT System ArchiteCture..............cocoovoeeeeeeeeeeeeeeo 30
3.1. System Architecture Diagram...............coocooeoooeeeeeeoeee oo 30
3.2. Distributed Architecture of DFTc.oovoiiioeeeeeeeooeoe oo 31
3.3. Distributed File Transfer (DFT) CHeNt............coooeveeeeoeeoeooeeeo 32
3.4. Two-Layer Multi-Thread Parallel Download...........c..coooooooooeoo] 33
3.5. Load-Distributing Server (LDS) SEIVer..........ccocoeeoeeeeeooooo] 36
3.6. DFT File Query and Response Modelccoouvovoeeeoeeeoo . 37
3.7. DFT Two-Layer Control Connection Modelocoeveveeeeeereei . 39

3.8. DFT Data Connection Modelcoveeeeeeeeeeeoeee 43

/

3.9.1.2. Application FailUresS.........c..ccceeeeeeieeeeiieeeeeee e 44

3.9.2. Two kinds of failure detection methods............cccooiiviiiiioe e, 45
3.9.2.1. Timeout deteCHONceecveeeeeeeeeeeeees et e, 45

3.9.2.2. Application failure code deteCtion..............cccccoviuueeeeeeecrireveceann. 46

3.10. Failure RECOVETYeeiiiiiiie e 46
3.11. Checkpoint RESUME ..ot 47
3.12. LoCaI DIFECIOIY ...coiiiiie e e 48
3.13. Digital SIgnature..........cooooiiiiiii e 48
3.4, Error HandliNgooocvviie i 49
B T8, SUMMANY oot 50
Chapter 4: Implementationccooeeoiiii e, 51
4.1, Implementation TOOIS..........cc.oiiiiiiiie e, 51
4.1.1. Java Programming LanguUagec.ccvovioeieoiiiiioeeoeeeee e, 51
4.1.2. Java Foundation Classes (JFC)........ccooviirimiioe e 53
4.1.3. JCreator Integrated Development Environment...........ccooovoveeevceeeeceecenn, 54
4.2. DFT Package Implementation...............cocvveeeiioiiicinie e, 55
4.2.1. DFT Package Directory Structureocooeveeviiiiiie e 55
4.2.2. DFT PACKAGES.ooiiiieiiiiicie ettt 56
4.2.2.1. PaCKage dft.QUi.........ccoooeeeieeiioiioeeeeeeeeeeeeeeeeee e, 56

4.2.2.2. Package dft.ClIentc.ooueoioe oot 56

4.2.2.3. Package Aft.SEIVEI........c..cceeeeeeeieeeeeeeeee e, 57

4.2.2.4. Package Aft.Utilcccceveceeieieeeeeeeeeeeeeeeeeeeeeee e 58

4.2.2.5. Package dff.geNSIqoce oo, 58

4.2.2.6. PaCKage dff.VOISIG ...c...cveeeeeeeeeeeeeeeeeeeeeeeeee e, 58

4.3. DFT Modules Implementationccocveiiiiiiiiii e, 58
4.3.1. DFT Client Side Implementationcccooii oo 59
4.3.1.1. DFT Client WOIKAIOW............ccooeieireeiiieeeeeeeeeeeeeeeeaeeeeeeereean 59

4.3.1.2. Download Process Implementation.................c..ccocuvveveeeveeeeaannn, 59

4.3.1.3. Download Thread Implementation..............c..cccccoueeeeeesccreeeeeeeeaenn, 62

4.3.1.4. Sub-Download Thread Implementation............cc.ccccccoecmvcevecenen... 63

4.3.1.5. DataConnection Implementationccccoocvcvevvveeiieceeeann. 64

4.3.1.6. ControlConnection Implementationcocoeceeueeeecesereeeenan, 65
4.3.1.7. Timer Implementationcc..cocoeeeicueeeieecieeieeeeeeeeeeeeeeeeeeeeeeeee, 66
4.3.1.8. check() Implementationcccooooviieo oo 67

4.3.1.9. LogTimer Implementation..................c..cccooceooeecveeeeeeeeeeeeeeee e, 68
4.3.1.10. Sub-Download SpeedTimer Thread Implementation 69

4.3.2. DFT Server Side Implementation.............ccocoveiovomee oo 70
4.3.2.1. LDS Server Implementationccccocueiiiviveoeeeeeceieeeeeeee 70

4.3.2.2. Search Engine Implementationccoccovvueeeeovevreeeeeeeennnn 71

4.4. DFT System Module List............coooviiiii e, 73
4.5, SUMMANY ..ottt 74
Chapter 5: Experiment and Data Analysis..............coooovveeemmoeeeeeeeeeee 75
5.1. Experiment Goals and Design.........c...oooovviiiiiiiiiiiii e 75
5.1.1. EXPeriment GOalS:coocooiiiiiiiiiiece e, 75
5.1.2. EXperiment DeSIGN:cooiiie e 76
5.1.2.1. Reliability TOSL:covoeeeieee ettt 76

5.1.2.2. Digital Signature Generation and Verification Test 77

5.1.2.3. EffICIENCY TOSE .ot 77

5.1.2.4. Auto Optimization TStc.ccecevovaviriereseieiiieteeeeeeee e, 77

Improved Distributed Flle Transfer (DFT) on Internet

5.2, Experiment ENVIrONmMENt...............ooooioiioioioe oo 77
S.2. 1 NBEWOTKS ...t 78
5.2.2. DownIoaded FileS.........ooviuiiiiiiiiiiceceeeeeeeeeeeeeeeeeeeeeeeee e 79
8.2.3. FTP SEIVEIS: ...ttt 80
5.2.4. LDS Server and DFT CHENt:cocoovoviueioeeeeeeeeeeeeeeeeeeeeeeeeeeeee) 81

5.3. Reliability test..........cccooiiiiiiiii e 82
5.3.1. Server Failure RECOVETYooiimiuiiicieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 82
8.3.2. NEtWOrK FailUrec.covoviieiic e 84

5.4. Signing a File and Verify @ Signatureccooov oo, 84
5.4.1.8IgNING @ File......cooiiiiiiiie e 84
9.4.2. Verifying @ SIGNatUrecocoovoviioieeeeeeeeceee oo 86

5.5. Efficiency Test on Files Less Than 100 MB........coooovoovoe oo 87
9.5 1. TESERESUIES ...t 88
9.5.2. EXPeriment ANAIYSIS........cccooiiuiuireirieiiceeeeeee e 91

5.5.2.1. Single server Download — one vs. multiple threads 91
5.5.2.2. Multiple servers Download — one thread vs. multiple threads......... 92
5.5.2.3. One Server vs. Multiple SEIVErs............cccovvooveoeeieeeeeeesseee 93
5.5.2.4. Elements Affecting Download Speed............c.cocccoececroerecoeseerrnon) 94
5.5.2.5. Low Speed Server SWItCh...............c.ccccuomesoeeeeeeeeeeeeeeeee] 95

5.8. Efficiency Test on Bigger FileSc..ooemeeeoeeeeoeeoe oo 95
5.6.1. TESERESUMS ..ot 95
5.6.2. EXperiment ANaIYSIS............ooovovivieiieceeeeeeee oo 96

BT SUMIMENY ...ttt 97

Chapter 6: Conclusions and Future Workccooveeooeoooeeeoeo . 98
REfEIENCES ... e e e 101

Improved Distributed File Transfer (DFT) on Internet

Figures
Figure 1.1 Internet growth trendsc.cocoovoeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeee 2
Figure 1.4.5.1 Active FTP Client and Server Connectionc.cocoeeeeuieeeeeoeoo, 15
Figure 1.4.5.2 Passive FTP Client and Server Connectionccooueececeirereo 17
Figure 1.5.1 One Server with One TAread..................cccocceeeoeeeeeeeeeeeeeseseeeeeeoeeeer) 20
Figure 1.5.2 One Server with Multiple TRI€ads.................ccocovveeeeeoeeeseseoeeoeoese) 20
Figure 1.5.3 P2P File Sharing and DOWNIOAQ....................cccocooeeeeereoeseseoeeeeeeoe) 21
Figure 1.5.4 Multiple Servers with One TAread...............cccccoovoveesooeeoseeeeoeesoos) 22
Figure 1.5.5 Multiple Servers with Multiple Threads MOG€!c.ccoveoooeoeoeeeoes, 22
Figure 1.6.3 Producing and Verifying @ DSA SIQnature.............cooveeeeeeeeeoeeeeeoeeeeoe 26
Figure 3.1 DFT System Architecture DIiagramcoooveeomereremeeeoeeeeeeooeoo 30
Figure 3.4a DFT Multi-Thread Parallel Processing Diagramc.ooooeoeeveveooooeo 33
Figure 3.4b DFT Multi-Thread Parallel Processing Diagramc.cccccoveeevecuvirian. .. 35
Figure 3.6 DFT File Query and Response Model Diagram...............cocoooooeooooeooo 37
Figure 3.7 DFT Two- layer Control Connection MOQelccooeoeeoeooooeoeoo 40
Figure 4.3.1.1 DFT Client Side WOIKHOWccocoeeeeeoeeeseeeeeeeseoeeoeoeeoooo 59
Figure 4.3.1.2a Download Process WOrKFOW (1)ccoweoeoeoeeeeeeeeeeeoeeeoeoeeoo 60
Figure 4.3.1.2b Download Process WOrKFIOW (2)........coowoveeeeeoeeeeeeeeeeeesoeoeoooeo 61
Figure 4.3.1.3 Download Thread WOrKIIOW.............coocoeeeeeeoeeeeeeoeeeoeoo 62
Figure 4.3.1.4 Sub-Download Thread WOrKFIOWc.cccooeeeeeeeoeeeeeooeooo 63
Figure 4.3.1.5 DataConnection WOrKFOWc..c.cooeooeeesoeeeeoeeoeeeeo 64
Figure 4.3.1.6 ControlConnection WOrKFOWcocoovooooeseeeeeoeeeeeeoeoo 65
Figure 4.3.1.7 Timer WOIKFIOWccocooveieeeoeoo 66
Figure 4.3.1.9 LOGTImer WOIKFIOWc.c.ccvueeeeeseeeseeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeee, 68
Figure 4.3.1.10 Sub-Download SpeedTimer Thread WOrKfIOWooiooooooo 69
Figure 4.3.2.1 LDS S€rver WOrKIIOW...................c.cocoeeeeseeeseseseeeeeseeeseeeeeeeeeeeeeooo 70
Figure 4.3.2.2 FTP Search Engine Adaptor WOrKFOWccocoeveeoeeeesooeeso 72
Figure 5.2.1 DTF System Test NEIWOIKSc.ccccoveeeeereeeeeeeeeeeeseeeeeeeeeeeoeeoe . 78
Figure 5.3.1a Pick up the internal server and an external onecocoooovevevvvv. 82
Figure 5.3.1b internal server Switched to the external S@IVer.............c.ocoomeeeeeveooe., 83
Figure 5.4.1a Find and choose the file being Signed Oncoocovoeeeeeeooeeooo 85
Figure 5.4.1b Successful signature generation MeSSageocvoweveeeeeeeeeoeeoeoo) 85
Figure 5.4.1c Key and signature files are generated ..o, 86
Figure 5.4.2a Looks in the folder where the 3 fileS @reccoovoeoeeeoeeoeeeee 87

Figure 5.4.2b Signature is verified SUCCESSIUNYccovveeeereeeeereeeeeeeeeoeeeeeoo 87

Improved Distributed File Transfer (DFT) on Internet

Figure 5.4.2c¢ Fail to verify the signature

... 87
Figure 5.5.2.2 Duration vs. Thread NUMDBEIS............cocooveeoeeeoeeeeeoeeeeeeeeeoe 92
Figure 6.5.2.3 Download Time vs. Server NUMDEISc.coeeevereveveeeeeeoeeeoees, 94

ed File Tra

nsfer (DFT) on Internet

S A T

Tables
Table 1.2 OSI 7 Layers and TCP/IP SUIEcccooueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 4
Table 4.4: System Unit Module LiSt TADIEcooeeceeeeeeeeeeeeeeeeeeeeeeeeeeeeeoeoe 73
Table 5.2.3: FTP Servers Used in the Experiments and TeStS..........ocovcevveveeerrsn 81
Table 5.3.1: RESUIES OF TWO TEOSES........ccvoveveeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeeeee oo 83
Table 5.5.1a: Testing Data on Downloading mysql-4.1.12a-win32.zip............cc..o........ 88
Table 5.5.1b: Testing Data on Downloading OOo_1.1.4_Win32intel_install.zip 90

Table 5.6.1: Testing Data on Downloading Big FileSccc.cocovoeeeeoeoeoeeesee 95

Improved D/stnbuted File Transfer (DFT) on lnternet

e U T

Chapter 1: Introduction

1.1. The Internet

The Internet started from the ARPANET back in the late 1960s in the United
States. ARPANET was sponsored by the US Defense Advanced Research
Projects Administration (DARPA). It was designed and implemented as a
decentralized packet-switching network that could create a way for network
communications to occur between two systems in such a way that reliance on a
single link wasn’t required. In other words the network communication system
could find alternative paths through complex matrices of wires if some or most of

the wires were broken during an attack.

The protocol used to communicate between hosts on the ARPANET at its early
stage was the Network Control Protocol (NCP), which enabled hosts running on
the same network to transfer data. In 1973, development began on a protocol suite
now known as the Transmission Control Protocol/Internet Protocol (TCP/IP). The
major goal of this protocol was to enable separate computer networks to

interconnect and communicate with one another.

In 1982, the term ‘internet’ was defined as a connected set of separate networks
using the TCP/IP protocol suite. The ‘Internet’ was defined as connected TCP/IP
internets. In 1983, the ARPANET changed its core networking protocols from

NCP to TCP/IP officially, marking the start of the Internet as we know it today.

Copynght © 2005 Yuhong Ll 1

Improved Distributed File Transfer (DFT,

By this time, ARPAnet was connecting machines across the continent (US) with

an estimated rate of connection of one new machine every 20-days [1].

With the technology advances such as the NSFNET, TI, Asynchronous

Transmission Mode (ATM) and the enhancement of the TCP/IP protocol suite,

the Internet's pace of growth has been spectacular since the early 1990s. In 1992,

the nodes on the Internet counted 1 million; in January 2001, the number reached

100 million; in September 2002, the number jumped to 200 million and in January

2005, the number reached to 350 million. By September 2002, there were 840

million people using the Internet from more than 218 of 246 countries on the

earth. Figure 1.1 shows the Internet growth trends indicated by the host count [2].

300,000,000

Hobbes' Internet Timeline Copyright ©2005 Robert H Zakon

http:/Avww. zakon. org/robert/intemet/timeline/

250,000,000

200,000,000 4.

150,000,000 4

#Hosts

100,000,000 -

Oct-80 4
Jun-91

DATE HOSTS | DATE __ HOSTS | w New survey | o |
|12/69 4 | o0s5/82 235 “| +0ld Survey
06/70 s | 08/83 562 . -
J10/70 11 | 10/84 1,024

12770 13 | 10/85 1,961

04/71 23 | 02/86 2,308
|10/72 31 | 11786 5,089

lo1/73 35 1 12/87 28,174

06/74 62 | 07/88 33,000

03/77 111 | 1lo/88 56,000

12/79 188 | 07/89 130,000

I

2108/81

50,000000 4

Feb-92

213 10/89 159,000

: fos S L L ———
o~ ™M - 2] O W P~ 0 o o o o - o~ fard = =
s s e s ol P oS
o & £ U £ 2 8 £ 2 35 £ 2 3 c 98 ¢ 9 8

= L1} s 3 QO = D = :1] > s3] 3 11}
© = w © C I T © = o = o = W © = w o

FIGURE 1.1 INTERNET GROWTH TRENDS

The Internet began as a network for physicists and researchers and has evolved

into a network for all kinds of people around the globe. The growth is not simply

a matter of the increase in the number of new members who join the Internet

Improved Distributed File Transfer (DFT) on Internet

community, but the manner in which the Internet continues to invade every aspect
of the modern life, reshaping business priorities, consumer requirements, and

general commercial attitudes.

File transfer over the Internet has been a big contributor to the growth of Internet.
This thesis provides a design and implementation on how to transfer files over the

Internet in a more reliable and effective way.

1.2. TCP/IP

A protocol is an agreement used for communication between two networked
computers. It defines how data should be packaged for transmission on the
network so the receiving host can unpackage it on the reception. For two hosts to
communicate on a network, the hosts must be using the same protocol. As
mentioned above, TCP/IP replaced NCP in 1983 beginning the new era of the
Internet. Because of the success of the Internet, TCP/IP has become the standard
of today’s network: the Internet, local and wide area networks. TCP/IP is the most
widely used protocol. The TCP/IP protocol establishes the technical foundation of

the Internet.

The Transmission Control Protocol and Internet Protocol (TCP/IP) are the two
protocols in the TCP/IP protocol suite. Internet Protocol (IP) specifies how data is
routed from one computer to another. The Transmission Control Protocol (TCP)

verifies whether or not the information arrived at the designated computer and if

e O

glLi

e ot <

ght © 2005 Yuhon

Copyri

Improved Distributed File Transfer (DFT) on Internet

m— T

not, makes sure that the information is sent again. So the protocols of TCP/IP
define the network communication process and, more importantly, define how a
unit of data should look and what information it should contain so that a receiving
computer can interpret the message correctly. TCP/IP and its related protocols
form a complete system defining how data should be processed, transmitted, and

received on a TCP/IP network.

The protocols in the TCP/IP suite function primarily in the Network layer (layer
3), Transport layer (layer 4) and Application layer (layer 7) based on the OSI
network reference model. TCP/IP supports all popular layer 2 protocols as well.
The applications in the TCP/IP suite are normally operating directly on top of the
Transport layer protocol TCP or UDP without the support of the Presentation

layer (layer 6) and Session layer (layer 5). Table 1.2 shows the OSI 7 layers and

TCP/IP suite.
TABLE 1.2 OSI 7 LAYERS AND TCP/IP SuUITE
Layer TCP/IP Suite
7 — Application HTTP, SMTP, SNMP, FTP, Telnet, NFS, NTP
6 - Presentation XDR, SSL, TLS
S — Session Session establishment for TCP
4 — Transport TCP, UDP, RTP, SCTP
3 — Network IP, ICMP, IPsec, ARP, RIP, OSPF, BGP
2 - Data Link ARP, IARP, RARP, SLIP
1 —Physical

Copyright © 2005 Yuhong Li 4

Improved Distributed File Transfer (DFT) on Internet

O A PSS sy

1.3. The Creation of Java

The explosive growth of the Internet has dramatically transformed not only the
way people do business and get entertainment, but it also has forced programmers
to think about programs in new ways. Since networks consist of many different
kinds and sizes of computers, all information and programs on the Internet must
be usable without modification due to the variety of computers. There was a need
to write programs that can run on any of these machines so that the look and feel
doesn’t change substantially across computers running different operating systems

(platform independence).

Java arose as a new programming language under these circumstances. Java
evolved from Oak, a language developed by Sun Microsystems in the early 1990s.
Oak was intended to be a platform independent language for use in consumer
electronic devices (for example the handheld devices and set-top boxes).

However, Oak was unsuccessful in its initial intension.

It was the advent of the World Wide Web (www) that propelled Java into
prominence. With people running different operating systems and wishing to
access programs available on the Internet, platform independent programming
became very important. Sun realized that they had been working on a
programming language that had the capability to embed intelligent, interactive
content into a web page. The focus of the language development changed from

consumer electronics to Internet programming. In 1995, Sun changed the name

Copyright © 2005 Yuhong Li 5

Improved Distributed File Transfer (DFT) on Internet

.

Oak to Java. Java has taken the software community by storm and achieved

phenomenal success.

Java provides developers with many features such as object-orientation,
simplicity, robustness, security, multi-thread, platform independence etc. While
most of these are present in other languages, Java combines all of these together
into one language [3]. Java is a programming language expressly designed for use
in the distributed environment of the Internet. It has a rich library for network
programming. In this thesis, Java was chosen as the programming language to
implement the system functions. More detailed information about Java will be

given in the implementation section.

1.4. Understanding FTP

1.4.1. FTP Protocol

File Transfer Protocol, also known as FTP, is the protocol for exchanging files
over the Internet. FTP works in the same way as HTTP for transferring Web
pages from a server to a user's browser and SMTP for transferring electronic mail
across the Internet in that, like these technologies, FTP uses the TCP/IP protocols
to enable data transfer. FTP is most commonly used to download a file from a

server or to upload a file to a server through the Internet.

Copyright © 2005 Yuhong Li 6

Improved Distributed File Transfer (DFT) on Internet

An FTP server is the site where the user logs in and downloads files from. An
FTP client is the software the user uses to download files with the FTP client

installed on the user’s machine. The following sections describe how FTP works.

1.4.2. A Sample FTP Session

The client program connects to a FTP server on the network. Once connected, the
FTP server sends a welcome message to the client over the open socket (network)

connection.

Server: 220 Sample FTP server ready. Please give user—-name
Client: USER anonymous

Server: 331 User name OK. Please give your emaill address as
password

Client: PASS joe@nowhere.comm

Server: 230 User logged in

From the above, the client and server are communicating in plain text. The digits
in the server replies are reply-codes' defined by the FTP protocol. The uppercase
words in the beginning of the client commands are command verbs that also are
defined by RFC 959 [4]. The protocol is designed in a way that mvakes it easy for
machines and humans to understand the dialog. In most cases, the client programs

don't have to interpret the text after the reply code.

If the user wants to see the available files and directories, they would issue a LIST

command in the client program.

pyright © 2005 Yuhong Li 7

Co

Improved Distributed File Transfer (DFT) on Internet

sz

Client: TYPE A

Server: 200 Type set to A

Client: PASV

Sexrver: 227 Entering passive mode (130,179,16,12,28,46)
Client: LIST

Server: 150 Opening ASCII mode data connection for /bin/ls

Server: 226 Transfer complete

The command ‘“TYPE A’ tells the server to send the directory/file listing as plain

ASCIL

The command ‘PASV” tells the server to prepare for a new socket connection by
creating a new socket and listens for a connection from the client. Now, things get
a little more complicated. The server reply includes an IP address and a port
number, encoded as 6 digits, separated by commas. The client must find and

understand this address in order to receive the listing.

The LIST command tells the server to give a directory/file listing. Now the server
replies with two lines. The first line tells the client that the listing is ready, and the
client can go on and make a new connection to the server. The client connects to
the IP address given by the PASV reply, and receives data until there is no more
data to get. Then it closes the temporary data connection and switches back to the
control connection to get the second reply line, which tells if the server has

transferred the whole listing.

i

opyright © 2005 Yuhong Li 8

c

Improved Distributed File Trans

fer (DFT) on Internet

s

In order to receive a directory listing, the client and server use two socket
connections, one for the control flow (client sends commands, the server replies in
plain text) and one for the data connection (which is continuous and goes in one
direction only). Next time a directory-listing is sent, the server and client will use

another new (temporary) socket connection for the transfer.

When the users find an interesting file, they give the FTP server the command to

get it.

Client: TYPE I

Server: 200 Type set to I

Client: PASV

Server: 227 Entering passive mode (130,179,16,12,28,46)
Client: RETR test.zip

Server: 150 Opening BINARY mode data connection for test.zip

Server: 226 Transfer complete

As you see, the server and client use the exact same method to get a file as to get a
directory listing. The only change is that the RETR command is used instead of
the LIST command. In this case the file was a .zip archive which was in binary
format, and since such files can't be translated to text, the FTP client switched to
binary mode (TYPE I). Files and directory listings can be transferred in both

binary and text-mode.

N R

Copyright © 2005 Yuhong Li 9

Improved

sm——

Distributed File Transfer (DFT) on Internet

) S PO

It is easy to connect to an FTP server with a telnet client and give commands, but
due to the fact that the file-transfers use a separate socket connection, it is not

easy to transfer files without an FTP client.

1.4.3. FTP Common Commands

The FTP commands listed in this section are the typical FTP commands. Each one
of these commands is commonly used by FTP clients and should be supported in

some fashion by all FTP servers.

USER (USER NAME)

All FTP communications begin with the USER command. This command takes a
single argument: the username that the client wishes to be authenticated with. In a
Windows NT environment, this may include both the domain name and the
username. For example, when logging onto an NT server that is a member of a

domain, the client may transmit the command:

USER domain\username

The most common argument to the USER command is anonymous. Anonymous
logons to FTP are common on the Internet, where a large percentage of FTP

servers carry information for the general public.

PASS (PASSWORD)

Copyright © 2005 Yuhong Li 10

Improved Distributed File Transfer

(DFT) on Internet

S TR

The PASS is generally the second command transmitted by a client to the server.
It carries an argument the password for the user already specified by the USER
command. This command is as simple as it seems: There is nb encoding or
encryption of the password, it is simply clear text. An example of transmitting a

password from a client to a server:
PASS password

CD (change working directory)
The CD command changes the directory the FTP server is working with. The only

argument for this command is the new directory, in either absolute form or

relative form. Examples of both of these forms are given here:

cd /usr/root
cd /usr/root/

cd documents

The first command changes the current directory to /usr/root, regardless of what
the current directory is. The second command illustrates an optional slash at the
end of the directory name. The third command moves fnto a child directory of the
current directory named documents; it only works from directories that have a

subdirectory called documents.

LS (DIRECTORY LISTING)

Copyright © 2005 Yuhong Li 11

Improved Distributed File Transfer (DFT) on Internet

o,

The LIST command causes a data transfer to occur that will contain the directory
listing for the current working directory. An absolute or relative path can be given

as an optional argument if a directory listing for another directory is desired.

RETR (DOWNLOAD)

When the RETR command is issued from the client, a data transfer connection is
established. The RETR command takes as an argument the path to the file to be
transferred. For example, to use the RETR command to transfer the file

/documents/file. html, issue the command:

RETR /documents/file.html

STOR (UPLOAD)

Similar in function and execution to the RETR command, the STOR command
sends a file from the client to the server. The only argument for the STOR
command is the destination location on the server. If the file already exists in the
destination directory, it is automatically overwritten. To upload the file file.html

to the /documents directory, issue the command:

STOR /documents/file.html

REST (RESTART)

The REST command is used to continue a session that has been interrupted. The

REST command has an argument, an integer that represents the position in the file

Copyright © 2005 Yuhong Li 12

Improved Distributed File Transfer (DFT) on Internet

where transfer should begin. For example, to restart a transfer at byte 4096 in a

file, the client would issue the following commands to the server:

REST 4096

RETR /documents/file.zip

It is important to understand that the command that follows the REST command

must be a transfer of some kind, either a STOR or RECV.

QUIT (LOG OUT)

The QUIT command is sent to the server to indicate that the FTP session is over.

This command takes no arguments.

1.4.4. File Transfer Resume

FTP can resume the interrupted file transfer session by sending a REST command
to FTP Server. REST command takes a parameter as the offset where transfer

should resume.

REST <offset>

RETR <file path and name>

These two commands will set the checkpoint <offser> first and then download the

file <file path and name> from that point on.

Li 13

Copyright © 2005 Yuhong

Improved Distributed File Transfer (DFT) on Internet

SRS B sy st

1.4.5. Active FTP vs. Passive FTP

FTP is a peculiar protocol because it uses two sockets. The main socket (TCP port
21) handles the commands the FTP client sends to the server as well as the
associated response from the server. The other port, which is at port 20 by defaul,
handles data. Depending on the transfer mode used, the data port is not always on

port 20. It can be a different port number.

Active and passive are two kinds of FTP transfer modes. It is necessary to
differentiate active and passive mode FTP to deal with firewalls and other Internet
connectivity. For example, when the DFT client was first developed, it ran well
with no firewalls set up on the client. But when run from within a firewall, a
problem was encountered that the outside FTP server cannot connect to the local
port of the client machine. The reason was that all the server’s attempts to connect
to the client machine on a random unprivileged port are blocked by the firewall.

The solution to this problem was using passive FTP connection.

1.4.5.1. Active FTP

In the active mode FTP, the client connects from a random unprivileged port N (N
> 1024) to the FTP server's command port, port 21. Then, the client starts
listening on port N+1 and sends the FTP command PORT N+1 to the FTP server.
The server will then connect back to the client's specified data port from its local

data port.

t © 2005 Yuhong Li

o

Copyrig

Improved Distributed File Transfer (DFT) on Internet

T

In the eyes of the server side firewall, the connections from the client to its
command port, port 21 and to its data port, port 20 are regarded as normal
connections and thus neither will be blocked. But in the eyes of the client side
firewall, the connections from the server are not to its ports, port 21 and port 20,
rather to its random unprivileged ports, port N (N > 1024) and N+1, These
connections are usually considered as something that should be blocked. Figure

1.4.5.1 depicts the connections in active FTP mode:

Server Cliert
20 z1 1026 1027
Data Cmd Cmd Daca

FIGURE 1.4.5.1 ACTIVE FTP CLIENT AND SERVER CONNECTION

In the above figure, the communication steps are:

* Step 1: The client connects from port 1026 (a random unprivileged port N)
to FTP server’s command port 21, and sends FTP command PORT 1027
(N+1) to the FTP server, then listens to port 1027 (N+1)

* Step 2: The FTP server sends back ACK command to the client

PR

Copyright © 2005 Yuhong Li 15

lmproved Dlstrlbuted F:Ie Transfer (DFT) on Internet

= Step 3: The server initiates connection from data port 20 to the client’s

specified port 1027

= Step 4: The client sends back ACK command to server

In the active mode FTP, the FTP client doesn't make the actual connection to the
data port of the server. It merely tells the server what port it is listening on and the
server connects back to the specified port on the client. It is the server that
initializes a connection to the client. If the client is behind firewall, the server’s
attempt will be blocked by the firewall. So the active mode FTP is beneficial to

the FTP server, but causes problems for the client.

1.4.5.2. Passive FTP

The passive mode (PASV) was developed to solve the problem of active mode
FTP. In passive mode, the client initiates both connections to the server, thus
solves the problem that the client’s firewall filters the incoming data port

connection from the server.

In passive mode, the client first opens two random unprivileged ports locally (N >
1024 and N+1). The port N contacts the server on its command port, port 21, but
instead of then issuing a PORT command and allowing the server to connect back
to its data port, the client issues the PASV command. The server then opens a

random unprivileged port (P > 1024) and sends the PORT P command back to the

Copynght © 2005 Yuhong Ll 16

Improved

S B st

client. The client then initiates the connection from port N+1 to port P on the

server to transfer data.

Since both connections are initialized by the client, there is no incoming

connections being considered as abnormal and blocked. In the case of the server-

side firewall, the control connection from the client to its command port, port 21

is normal. But the data connection to its data port, port P which is a random

unprivileged will be blocked.

Figure 1.4.5.2 depicts how the communication process happens between client

and server in passive mode.

20
Data

FIGURE 1.4.5.2 PASSIVE FTP CLIENT AND SERVER CONNECTION

= Step 1: The client opens two unprivileged ports: 1026 and 1027; 1026

connects to the server’s port 21, and sends command PASV to server

it

Copyright © 2005 Yuho

ng Li

Server

Client

2024

1027
Dara

Improved Distributed File Transfe

A

r (DFT) on Internet

R

= Step 2: The server opens an unprivileged port 2024 and sends command
PORT 2024 back to client which tells the client what port it is listening on
for the data connection.

» Step 3: The client initiates the data connection from port 1027 to the
specified server data port 2024

» Step 4: The server sends back command ACK to the client’s data port

1027.

The passive mode relieves the problem from the client, but causes a server side
problem. Fortunately, many FTP servers allow the administrator to specify a
range of ports which the FTP server will use and thus allows remote clients to

make connections without being blocked.

Since the DFT system runs behind firewalls, it will use the passive FTP mode.

1.4.6. The Problems of FTP

Though FTP is widely used and easy to implement, it also faces problems with
reliability, performance and scalability. FTP is typically a single-threaded, server-
centered downloading mechanism which means a server hosts a file, and clients

connect to the server for downloading the file. Problems arising include:

e When multiple clients connect to the server at the same time, the load can
easily exceed the capacity of the server and cause server congestion or a

server crash.

Copyright © 2005 Yuhong Li

Improved Distributed File Transfer (DFT) on Internet

o,

e When the server is brought down for upgrade or maintenance, all users
will lose their connections with the server and the FTP sessions will be

interrupted.

» With the growth of the Internet, it is common that the same copy of file is
mirrored on different servers scattered on the Internet. Since people like to
download files from servers they are familiar with, the load may not be

distributed among the main server and its mirror sites.

Looking into the problems, if there is a way to improve the mechanism of
traffic allocations, the problems that FTP faces can be solved. If the user can
download a file from multiple servers that are holding the same copy of file
(mirrors), when one or some of servers are down or busy, the user can still
download the file without being aware of server failure. The users will not

rely on any one server. Resolving FTP problem is the motivation of my thesis.

1.5. Exploration on the Improvement of File Download

With the growth of Internet, exploring how to improve the reliability and
efficiency of file download has never stopped. Technologies and software for file
transfer can be grouped into two categories: server-centered download and server-
scattered download. The difference is whether the download is from a single

server or from multiple scattered servers.

Copyright © 2005 Yuhong Li 19

1.5.1. One Server with One Thread Model

This is the traditional model. All downloads are from a central server each with
one thread (Figure 1.5.1). The classic command line FTP clients under Windows

and Linux behave in this way.

Traditional Server-Centered Single-Threaded Download

FIGURE 1.5.1 ONE SERVER WITH ONE THREAD

1.5.2. Improved One Server with Multiple Threads Model

This is an improvement for the one server with one thread model (Figure 1.5.2).
In this model, the download is still from a central server but with multiple threads.
There are many download managers such as FlashGet [5] and Internet Download

Manager [6] that work in this way [7].

Improved Server-Centered with Multiple Threads Download

FIGURE 1.5.2 ONE SERVER WITH MULTIPLE THREADS

Copyright © 20

05 Yuhong Li 20

Improved

1.5.3. Peer-to-Peer File-Sharing

Figure 1.5.3 is a typical peer-to-peer file-sharing protocol (P2P) download model
[9]. In this model, direct connections are set up in between users. Each user lets
other users download from their computer while they are downloading from other
users’ computers. They behave as both client and sort of a server at the same time.
But this ‘server’ is not a dedicated server. When the P2P client shuts down, this
server disappears. Thus this kind of server’s availability is not stable. eDonkey [9]
and Bittorrent [10] are two of the top P2P software that provide this kind of file

sharing and download functionality.

P2P File Sharing and Download
&
&

FIGURE 1.5.3 P2P FILE SHARING AND DOWNLOAD

1.5.4. Distributed File Download Model

This is a distributed file transfer (DFT) (Figure 1.5.4). Downloads are from
multiple servers instead of a single central server. The servers are dedicated which

are not like the ‘servers’ in P2P file-sharing model. The user sets up one

connection to each server. Compared to the server-centric download, this

Improved Distributed File Transf

improves the availability, reliability and efficiency of FTP downloads. The
download manager GetRight [11] has this functionality. Xin Fang described a

mechanism of this model in her thesis [12].

Multiple-Server with Single Thread Download

)
., H
N, H
., H 4
s, .
. 0
1y 0
Y v

P

\‘ "l'
;@ '

FIGURE 1.5.4 MULTIPLE SERVERS WITH ONE THREAD

1.5.5. Improved Distributed File Download Model

This is the improvement of the above DFT model (Figure 1.5.5). In this
distributed download model, the user can download from multiple servers and
establish multiple connections with each server. Its mechanism, functionalities,

architecture and implementation will be described in details in the following

chapters.

Multiple-Server with Multiple Threads Download

'i (N
h¢ .

-
S

O S
- Oy

N »

A

FIGURE 1.5.5 MULTIPLE SERVERS WITH MULTIPLE THREADS MODEL

Copyright © 2005 Yuhong Li

Improved Dlstnbuted File Transfer (DFT) on lnternet

This thesis focuses on improving the efficiency of transferring files of size less

than 1Gigbyte.

1.6. Digital Signatures

One big concern in the file transfer on the Internet is how to make sure the
transferred file is from the purported sender and has not been altered during the

transit. Digital signature addresses this concern.

1.6.1. Introduction to Digital Signature

A digital signature is a way of digitally signing a file or program to ensure it has
not been tampered with and that the author is the author claimed. It is analogous
to ordinary physical signatures on paper, but implemented using techniques from

the field of public key cryptography [14].

There are three common reasons for applying a digital signature to

communications;

e Authenticity — allow the recipient of a message to be confident that the

sender is who the sender claims to be;

e Integrity — the recipient examines the message to make sure it has not been

altered in transit which is called data integrity checking;

¢ Non-repudiation — the signer cannot later disclaim any knowledge of the

message.

Copynght © 2005 Yuhong Ll 23

Improved D:str:buted F:Ie Transfer (DFT) on Internet

TS ——

1.6.2. Message Digests and Digest Algorithms

Since the public-key cryptography is pretty slow, it is better to encrypt a
representative of the data instead of encrypting the entire data. The representative
of the data is called message digest in cryptography. The use of a digital signature

requires a digest algorithm.

There are many digest algorithms but three important digest algorithms have
dominated the market, MD2, MD5 and SHA-1. Ron Rivest created MD2, MD5

and played a role in the design of SHA-1.

MD2 and MDS5 are 16-byte digests. Since flaws and collisions have been
discovered with MD2, it is not recommended to use MD2 in new applications.
MDS5 is much faster and much stronger than MD2, and as such it has become the

dominant algorithm and still in common use.

SHA-1 contains stronger internals than MD5 and it produces a 20-byte digest
which is longer than that of MDS5. So it is highly recommended by the

cryptographic community. In the DFT system, SHA-1 algorithm is used.

1.6.3. Signature Algorithms

A general digital signature scheme consists of three algorithms:

e A key generation algorithm

Copyright © 2005 Yuhong Li 24

Improved Distributed File Transfer (DFT) on Internet

e A signing algorithm

e A verification algorithm

RSA, DSA and ECDSA are the three most successful signature algorithms. With
RSA, the algorithm encrypts the digest with a private key to produce a digital

signature.

With DSA, the signer digests the message with SHA-1. DSA does not encrypt the
digest. It has three inputs: The digest which is a number 160 bits long; a random
or pseudo-random value, usually called k; and the private key. The algorithm then
performs some mathematical operations. The output of DSA is two numbers,
usually called » and s. These two numbers are the signature. When verifying the
signature, the verifier computes the SHA-1 digest of the message. Using the
digest as a number, along with the public key and s, the verifier performs some
mathematical operations. The result of the computation is a number called v. If v
is the same as r, the signature is verified. Figure 1.6.3 depicts the producing and

verifying a DSA signature.

Producing and Verifying a DSA Signature

Message SHAT Machine

i

Random or pseudo-
random value K

Equal???

Public Key
Received
" DSA Verify
Message 1 - > >
g SHA-1 Machine Digest : Operation o v

L

FIGURE 1.6.3 PRODUCING AND VERIFYING A DSA SIGNATURE

ECDSA looks a lot like DSA. It has the same inputs and output numbers as DSA
does. If the final v is not equal to r, something went wrong. The difference is the

math underlying DCDSA are Elliptic Curve algorithms.

1.6.4. Digital Signatures in Java

The Java class java.security.Signature provides signature service and has methods
to generate and verify signatures. In the system described here, this class and
other classes in the package java.security are used to implement the signature

generation and verification functionality.

pizgee

Copyright © 2005 Yuhong Li 26

Improved Distributed File Transfer (DFT) on Internet

e 2 /S

1.7. Summary

This chapter provided an introduction to the knowledge needed to understand this
thesis. First a brief introduction to the history of the Internet, the TCP/IP protocols
and the birth of Java were given. Then the FTP protocol, its active and passive
modes, and its problems in reliability and efficiency were introduced. Lastly the
digital signatures and the difference between the mechanism described in this
thesis and other download mechanisms is dealt with briefly. Based on this
knowledge and the FTP download problems, an improved distributed file

download mechanism is proposed in the next section.

Copyright © 2005 Yuhong Li 27

Improved Dlstrlbuted File Transfer (DFT) on Internet

Chapter 2: DFT System Objectives and

Requirements

Distributed File Transfer (DFT) is designed to improve the traditional FTP and
solve the problems that the FTP has. DFT can allocate server resources according
to their availability and performance. Therefore, reliability, scalability and
efficiency can be improved by making better use of multiple file servers on the
Internet. The design objectives and requirements of DFT are briefly described as

follows:

1) The system should allow a user to enter a file name. The system should
prompt for the file name the user wants to download with a friendly

interface.

2) The system should be able to search for the file on the Internet and give

the user the option to search a local directory first.

3) The system should display a list of FTP servers that have the required file

and let user to select downloading servers from the list.

4) The system should be able to download the file from the selected FTP

SCrvers.

Copynght © 2005 Yuhong LI » 28

lmproved Dlstnbuted Flle Transfer (DFT) on Internet

3)

6)

7)

8)

9)

The system should be able to download the file from each of the selected
FTP servers using multiple threads. Each thread downloads one part of the
file in parallel. The system should be able to put all downloaded parts of

the file together as a complete file.

The system should be able to test each FTP servers’ speed before

downloading.

The system should be able to switch to a faster server if a server degrades,

or the connection becomes very slow.

The system should check whether the files on the selected FTP servers are
identical or not before starting the download; if they are not, it will notify

the user and download only from the file servers with identical copies.

The system should be able to save visited FTP file server information to a

local database (info.txt file).

10) The system should allow user to generate a file’s digital signature and

verify a downloaded file’s digital signature.

11) The system should handle exceptions and error properly and log errors

into local log file.

Based on these objectives and requirements, the DFT architecture is designed in

the next chapter.

Copyrlght © 2005 Yuhong Ll 2§

Improved Dlstrlbuted File Transfer (DFT) on Internet

Chapter 3: DFT System Architecture

This chapter describes the overall architecture of the DFT system. DFT is a
distributed system which includes a DFT client, a Load-Distributing Server

(LDS), and multiple outside FTP search engines and FTP servers.

3.1. System Architecture Diagram

Figure 3.1 is the system architecture diagram. It depicts the objects in the system

and how they interact with each other.

Distributed File Transfer System Architecture Diagram

Internet

Internet

FTP sarver 8

—
FTP Server A

Copynght © 2005 Yuhong L: 30

Improved Distributed File Transfer (D

R R

FT) on Internet

e M A

3.2. Distributed Architecture of DFT

DFT is a distributed system. It contains three components: the DFT client, Load-
Distributing Server (LDS), and multiple file servers. The DFT client first connects
to the LDS server and gets locations of the FTP servers. The DFT client then
connects to multiple FTP servers by opening multiple sockets and downloads the
file from multiple locations. More specifically, the LDS server receives a request
from a DFT client. The LDS server then either retrieves target file location
information from its local directory, or goes to an outside FTP search engine to
search for target file locations. The user has the option to select from a list of FTP
servers for the download. In this scenario, the DFT system depends on the outside

FTP search engines for target file location information.
DFT has the following distribution properties:

¢ Data Distribution-In order to achieve reliability, a file is replicated on
many file servers. Each file server supports a segmented transfer of the
file. Segmented transfer means a user can request a segment of the file to
be transferred from a file server. Thus, a user can request different
segments from different servers and assemble those segments together to

get an integrated file.

e Geographic Distribution-All components of the DFT system can be
distributed across the Internet. The DFT client and LDS servers are
connected through socket connections. The LDS server connects to FTP
search engines using the HTTP protocol. The DFT client connects to FTP

servers using the FTP protocol.

P e

Copyright © 2005 Yuhong Li 31

Improved Distributed File Transfer (DFT) on Internet

D o sy

e Heterogeneous System—Since the DFT system components can be
distributed across the Internet, the DFT system can run on different
platforms. The DFT client and the LDS server are implemented in Java,

which generates platform independent code.

3.3. Distributed File Transfer (DFT) Client

A DFT client is a software application deployed on a client’s computer. The DFT
client displays a user interface that allows a user to enter the file name to
download and sends the file name to the LDS server to get a list of available FTP
servers on Internet. The DFT client then opens multiple TCP connections to
multiple FTP servers simultaneously. From each server, the DFT client only
downloads a segment of the file. All segments are then assembled into the target
file and saved in the local file system. Depending on each FTP server’s speed, the
DFT client will intelligently allocate the size of each segment. Each segment can
be further divided into equal pieces and downloaded simultaneously by multiple
sub-threads. The DFT client also monitors the progress of the download and

provides the user with feedback.

A DFT client can test the speed of the specified FTP server. The speed is used to
determine the target segment size. The faster the server is, the bigger the segment
size the DFT client gets. On the other hand, the slower the server is, the smaller
the segment size it gets. The DFT client tests the server speed by sending a
request to transfer 10240 bytes of the target file from each FTP server. The DFT

client calculates the speed of the transfer using following formula:

Improved Distributed File Transfer (DFT) on Internet

ez, AR v R

Speed (byte per second) = 10240 bytes x 1000 / (start time-end time) (ms)

When a FTP server is not available to download or an error occurs, the DFT client
will not use that server for download. The load will be distributed to other

available servers automatically without the user being aware.

3.4. Two-Layer Multi-Thread Parallel Download

DFT is considered as a two-layer multi-threaded parallel downloading system.

The reason it is two-layer is because it has two layers of threads.

Distributed File Transfer System
Parallel Download Model

.| Sub Download
Download Thread
| Sub Download
.| Sub Download
> Thread FTP Data FTP Server
DFTCllent | —»{ Flle Download » Download Thread
.| Sub Download
> Thread FTP Data FTP Server
.| Sub Download
Download Thread
.| Sub Download

FIGURE 3.4A DFT MULTI~THREAD PARALLEL PROCESSING DIAGRAM

At the beginning of the download, a DFT client sends a query containing the
target filename to an LDS server for file server information. The LDS server
responses with a list of available file servers that contain the target file. The DFT

client then parses the response from the LDS server and determines which file

e

Copyright © 2005 Yuhong Li _ 33

Improved Distributed File Transfer (DFT) on Internet

servers to connect to. There is one more step to be completed before the real
download starts. The DFT client sends a command to each file server and asks for
the first 10240 bytes of the target file. The DFT client records the downloading
time for this 10240 bytes and calculates the speed of each file server. The DFT
client then allocates a segment size for each file server based on the server’s

speed.

The DFT client creates one thread for each FTP server that the user has selected
to download from. The DFT client uses that thread to download a segment of file

from that FTP server. This is first layer of parallelism.

For each downloading thread, the DFT client gives the user the option to set the
number of sub-threads. The DFT client then opens a number of sub-threads for
that first layer downloading thread. Each sub-thread will download an equal sized
sub-segment of the segment. All sub-segments are assembled into the segment.
This is the second layer of parallelism. Then all segments are assembled into the
whole file. Here, the DFT client uses the checkpoint technique to download a

segment of a file.

By using this two-layer multi-threaded downloading, DFT takes full advantage of
its parallel processing power. Parallel download enhances the performance and

reliability of the download.

A

Copyright © 2005 Yuhong Li 34

Improved Distributed File Transfer (DFT) on Internet

DFT File Segmentation And Reassemble

This sample diagram shows how DFT splits a file info three segments, downloads each
segment from a different server, and then reassembles them back into the original file.

Miror servers

Segimmﬁﬁon/

123.dat 123.dat 123.dat

FTP

merrble/z \ 123 dat

-%m

DFT Client

FIGURE 3.4B DFT MULTI~THREAD PARALLEL PROCESSING DIAGRAM

The segment length is calculated in such a way that all data connections should
last approximately the same amount of time. This will maximize the overall
downloading performance. However, the server’s speed may vary over time. As
such, the speed calculation is just an estimate. It is very often that one thread

finishes faster than another thread.

While downloading is in progress, all data connections have a timeout value.
When the server timeout value is reached and no data is transferred, the data
connection will terminate its download and report to the control connection. The

end user will be notified about the failure.

RS S

Copyright © 2005 Yuhong Li 35

Improved D:stnbuted Flle Transfer (DFT) on Internet

3.5. Load-Distributing Server (LDS) Server

With FTP, the user has to know where the target file is located. Typically the user
can only download a file from one known FTP server. In the DFT system, the
user doesn’t have to know where the target file is located. They just need to know

the file name and the LDS server will find the locations of the file for them.

The LDS server has two major functions. One is looking for the target file in a

local directory or across the Internet. The other is to maintain a local directory.

For the former, the DFT client sends a request including the file name to the LDS
server through a socket connection. The LDS server reads the download file name
from the DFT client. Depending on the user’s options, the LDS server will search
a local directory or skip the local search. If the LDS server finds the file name in
local directory, it will send the file location information (including FTP server
address, path, file name, size and time) back to the DFT client. If the LDS server
finds more than one entry in the local directory, it sends back all the entries. If the
file is not found in the local directory or the user selects skip the local directory to
search the Internet directly, the LDS server will open an HTTP connection to one
of the registered FTP search engines. The LDS server sends an HTTP request to
the FTP search engine, and gets the HTTP response back. The response HTML
page is parsed and a list of available FTP server addresses will be sent back to the
DFT client through a socket connection. If one FTP search engine failed to find
the file, the LDS server will try another search engine. If all search engines fail to

find the file, the user will be notified.

Copynght © 2005 Yuhong Li 36

Improved Distributed File Tr

ansfer (DFT) on Internet

s

The second main function of LDS server is to maintain a local directory that
contains information about recent downloaded files. The local directory is in a
text file called info.txt. Each entry contains information about the target file.
Information includes the file name, FTP server address, path, user name,

password, file size and time stamp.

3.6. DFT File Query and Response Model

Figure 3.6 depicts the DFT system file query and response model.

Distributed File Transfer System
File Query and Response Model

FIGURE 3.6 DFT FILE QUERY AND RESPONSE MODEL DIAGRAM

The above diagram illustrates the steps how DFT client sends out a file query

request and finally gets the file.

Copyright © 2005 Yuhong Li ' 37

e

Improved Dlstnbuted Flle Transfer (DFT) on Internet

1) The DFT client sends a socket query request to the LDS server asking for

a specific file.
2) The LDS server receives the request.

3) The LDS server creates a FTP search engine adaptor and makes a call to

do a search.

4) The FTP search engine adaptor sends a HTTP request to an FTP search

engine.

5) The FTP search engine finds the specified file in its database and returns a

HTTP response.
6) The FTP search engine adaptor receives and parses the HTTP response.

7) The FTP search engine adaptor returns a list of file servers back to the

LDS server.
8) The LDS server gets the returned list of file servers.
9) The LDS server sends the list of file servers back to the DFT client.
10) The DFT client creates multiple threads and starts the download.
11) Each download thread sends an FTP request to one of the FTP file servers.
12) The FTP file server responds with an OK status and starts sending the file.

13) Each download thread reads its segment of file from the FTP server data
port.

14) The DFT client reassembles all segments into a complete file.

15) The user can stop and resume the download at any time during the

download.

16) The download ends.

The FTP search engines play an important role in the DFT system. Since the user

doesn’t know where target file is located prior to their download, the DFT system

Copyr:ght © 2005 Yuhong Ll 38

depends on a search engine to find file locations. An FTP search engine generates

an HTML page that contains a list of FTP server addresses and sends back an

HTML page as a response.

A general list of FTP search engines from Internet may not be working in the
future as they are not well-maintained production websites. In this work a few
working ones were selected as the search engines. As better ones are found, the

list can be updated.

The DFT client gets the list of FTP server addresses and uses them to open FTP
sessions. The DFT client opens one session for each server. The DFT client uses

standard FTP commands to send requests and receive data.

By using multiple FTP servers for downloading, a kind of redundancy is added to
the system. A target file could be available on many mirror sites. Should one or
more FTP servers fail to operate, DFT can always go to other FTP servers for

downloading the same file.

3.7. DFT Two-Layer Control Connection Model

Figure 3.7 depicts the DFT two-layer control connection model.

Improved Dlstrlbuted F:Ie Transfer (DFT) on lnternet

Distributed File Transfer System
Two-Layer Control Connection Model

I

IR
[

™
Server B

<}:i> Data Connection

D

T Cllent

FIGURE 3.7 DFT Two- LAYER CONTROL CONNECTION MODEL

<—> Control Connection

Traditional FTP uses two TCP connections. One is control connection at port 21

to send FTP control commands and receive responses. Another one is a data

connection that transfers a file between client and server. The traditional FTP

connection model was illustrated in a previous chapter. Here the DFT connection

model is explained.

As the DFT system is a distributed reliable file transfer architecture (i.e. there is

more than one file server involved), it is necessary to enhance the control

connection part of FTP to work for this distributed architecture.

Copynght © 2005 Yuhong Ll

Improved Dlstrlbuted F:Ie Transfer (DFT) on Internet

The control layer of DFT includes control commands from the DFT client to a
FTP server as well as control command from the DFT client to the LDS server.
Before a DFT client begins downloading a file, it does not know where the file is
located. Through a control layer connection, the DFT client sends a query to the
LDS server and gets a list of FTP servers and target file locations. Then the DFT
client makes control layer connections to the FTP servers and gets their responses.
Then the DFT client makes data connections to the FTP servers and starts the file

downloading.

When the data transfer is finished, the DFT client sends the download FTP server
information to the LDS server through control-layer connections. The LDS server

then updates its local directory information.

Generally control-layer connections are established between a DFT client and the
LDS server. However, when the target file is not found in the LDS’s local
database, the LDS will make a connection to one of the search engines and look
for the target file in that search engine. This kind of connection is classified as a

control-layer connection as well.

Before downloading starts, the DFT client will retrieve a small part of the target
file to calculate the speed of the file server. If the server is not available, the DFT
client will delete the server from the list and use other file servers. This is done by
establishing traditional FTP control and data connections between the LDS server

and file server. This is considered another kind of DFT control-layer connection.

Copynght @ 2005 Yuhong Ll 41

Improved D:stnbuted File Transfer (DFT) on Internet

If the target file is downloaded from more than one file server, the DFT system
has the ability to check if the files on the selected mirror sites are identical by
comparing their file sizes and the first 10240 bytes. If they are not, download will
be aborted. Alternatively a digital signature could be implemented as discussed.

Implementing digital signature is not possible on commercial FTP servers.
The following functions are integrated into the control layer.

1) LDS request/reply

2) Server status check

3) Download process monitoring
4) Server speed calculation

5) Server availability

6) Download task allocation

7) Failure detection

8) Download resume/recovery

The control layer and data layer establish their own connections. Connections
between a DFT client and an LDS server are control layer connections.
Connections between the DFT client and the file servers are both control and data

connections.

With this model, multiple data connections can be established between the DFT

client and several file servers.

Copynght © 2005 Yuhong Li

3.8. DFT Data Connection Model

When a DFT client downloads a file from one of the file servers, it establishes a
data connection with the file server. The target file is transferred through a data
connection. Since a multiple-thread parallel download model is used, the DFT
client can establish multiple data connections to each file server. Each data

connection is responsible for one segment of the target file.

While the data connections are performing the file download, the control-layer
keeps monitoring the status of each data connection. If there is any abnormal

behavior, the status will be reported to the end user.

The data layer concentrates on the following functions.

1) File downloading
2) Status reporting

3) Failure detection

3.9. Failure Detection

Because of the distributed architecture of the DFT system, different components
are connected to each other using HTTP, FTP, or pure socket connections. It is
important to design a mechanism to detect network failures, and application

failures.

T

opyright © 2005 Yuhong Li 43

Improved Dis

oo g

ributed File Transfer (DFT) on Internet

e

Failure detection can take place on both the control layer and data layer. When
failure happens on the control layer, the control layer tries to recover from it
immediately or reports to a log file or the end user. When failure happens on the
data layer, the data layer will stop the download process and notify the control

layer.

When something is not working well, the DFT system normally generates one of

two kinds of failures: network failures and application failures.

3.9.1. Two kinds of failures

This section discusses network failures, application failures and responses to

those events.

3.9.1.1. Network failures

Network failures are caused by network hardware failure, data connection
timeout, or control connection timeout. When this kind of failure happens, the
client and server are disconnected. The server cannot receive requests from the

client and in the meantime, the client cannot receive response from the server.

3.9.1.2. Application failures

Application failures are less severe than network failures. When application

failures occur, the client and server are still connected. It’s just that the response

st B TS

Copyright © 2005 Yuhong Li 44

Improved Distributed File Transfer (DFT) on Internet

Sy

from server is not what client is expecting. The client and server can still

communicate to each other and tell each other what is wrong.

3.9.2. Two kinds of failure detection methods

Network failures and application failures are handled differently.

3.9.2.1. Timeout detection

When network failure occurs, there will be no messages transferred between the
client and server. TCP timeouts will try to recover the connection by requesting a
retransmission. However, this doesn’t work if the network is down. The client
will be waiting for the server response indefinitely. To solve this problem, the
DFT client sets a timeout value on each connection. DFT also sets a timer to
periodically monitor if the timeout value is reached. When timeout is reached, the

DFT client will stop the download process and notify end user of the timeout.

There are two types of timeouts, control layer timeouts (command-response
timeout) and data layer timeouts. Command-response timeouts occur on control
connections. After a DFT client sends out a FTP command, it starts a timer. If a
timeout occurs before it receives the response, the DFT client stops this control
connection. Data layer timeouts occur on data connections. A timeout is set when
a data socket connection is opened. If the elapse time between two packets is
longer than the timeout, the client assumes the data connection is broken or the

network is congested.

Copyright © 2005 Yuhong Li . 45

3.9.2.2. Application failure code detection

Application failure code is used to detect application errors. A common scenario
is as follows. When a DFT client makes a connection or sends a FTP command to
a file server, it expects to receive a response in the form of a string. The string has
a certain format that follows the FTP protocol standard. The string will begin with
three-digit number followed by a space and an error message. A typical response
is “226 Transfer complete”. The three-digit number can be parsed and thus it is
known what error code it is. A code larger than 400 generally indicates an

incomplete service. A list of FTP error codes is provided in Appendix C.

Through application failure code detection, all application failures can be detected

immediately once they happen. Such failures include:

e Server not available

e File not found

e Too many users

o Login failure

¢ Connection closed

e Cannot open a connection

¢ Broken Pipe

3.10. Failure Recovery

When the control layer detects a failure or receives a failure report from the data

layer, it will do the following steps.

1) Record the latest status of the failed connection

Copyright © 2005 Yuhong Li

Improved Distributed File Transfer (DFT) on Int

2) Terminate the failed connection

3) Choose another connection that can do the terminated job

4) Switch the job to that connection
If a hardware failure occurs, the DFT client itself will be terminated. In this case,
the DFT client has to be run again to resume the terminated download process. To
recover from such a failure, the checkpoint of the last download and connection
status information must be recorded. The recover process will read these status
records and resume all previous connections. To implement such a recovery
mechanism, the DFT client periodically records the status of all connections on

the user’s hard drive.

3.11. Checkpoint Resume

The DFT client uses the Checkpoint Resume service to implement the multi-
threaded parallel download function. The DFT client cuts the file into multiple
segments based on the FTP servers’ speed and each server is assigned to a
segment. The DFT client creates multiple threads to download the segment of a
file from each server. The segment is divided into sub-segments based on the
thread number. Each thread opens one session and downloads a part of the
server’s segment of the file. The DFT client remembers the checkpoint of each
segment for each thread. When resuming the download, it restarts according to the

checkpoint of each thread.

Copyright © 2005 Yuhong Li 47

Improved Distributed File Transfer (DFT) on Internet

3.12. Local Directory

DFT maintains searched results into a local directory (info.txt file). Info.txt is a
text file following a certain format. Each line of the file represents one target
file’s information. Each line contains multiple fields separated by a colon. The

format of each line is:

[File Name]:[IP Address]:[Full Path]:[User Name]:[Password]:[File Size]:[Time]:

Sample line:

icqpro2003b.exe:192.168.123.1:/yuhong:anonymous:a@a.com:2000:12312003:

Here each line contains enough information for DFT to download the target file
from a specified file server. The purpose of Local Directory is to store searched
results locally as a kind of cache so that DFT doesn’t have to go to a search
engine every time and thus improves the overall download time. The user has the

option not to save searched results into the Local Directory.

3.13. Digital Signature

The DFT system has the ability to download files as well as their digital signature
and verify their digital signatures. The DFT system has the ability to generate a
file’s digital signature and upload it to the file server. An assumption is that the
file server is responsible for providing a digital signature for the target file.
Because of circumstance limitations, an environment is imitated for testing. An

IIS FTP server is set up and the test files and their digital signature files are

Copyright © 2005 Yuhong Li 48

Improved Distributed File Transfer (DFT)

on Internet

uploaded to the server. The DFT client is run and downloads the target files as
well as its digital signature. Finally, the downloaded file is verified against its
digital signature. Thus it can be made certain whether the target file is the one

expected.

The operation of the IIS FTP server is maintained throughout the development

cycle.

3.14. Error Handling

Each module in a DFT application handles errors and exception in a consistent
way. All errors and exceptions are written to a local log file called

LDS Logfile.yyyy.mm.dd.

Each line in log file contains following fields.
[Time Stamp]|[level]|[Module Name]|[Function Name]|[Message]
Sample log file:

LDS_Logfile.2004.07.10

2004-07-10-03:57:03-PDT]level=infojmodule=LDSConnection|method=getFileInfo| Target

file is sent to Ids

2004-07-10-03:57:03-PDT|level=infojmodule=L.DSServerThread|method=run|
TargetFileName is icqpro2003a.exe

2004-07-10-03:57:04-PDT|level=errorjmodule=FreeWare Web|method=doSearch| found target
file on ftp server -
ftp.carrier.kiev.ua/pub/windows/icq/ICQ/ICQ_Win95 98 NT4/ICQ2000a/icqpro2003a.exe

mprov

!

ed Distributed File Transfer (DF'T) on Internet

S Y TS

3.15. Summary

This chapter has presented the overall architecture of DFT that was developed for
this thesis. Three major parts of DFT system and their relations were introduced.
A two-layer control model, which is different from a traditional FTP control
model, is described. In addition, parallel download, failure detection and recovery
is described as well. A brief overview of digital signature implementation is also
given. Based on this architecture, the DFT system implementation is described in

the next chapter.

Copyright

© 2005 Yuhong Li 50

Improved Distrib

i

uted File Transfer (DFT) on Internet

e S Bl P S ST

Chapter 4: Implementation

This chapter describes implementation details of all DFT components.

4.1. Implementation Tools

Java was chosen as the programming language to implement the DFT client and
the LDS server. In Chapter 1, the birth of Java was discussed. Here further
exploration in depth of the language itself will be given. The Java IDE used in the

implementation of the DFT system is also mentioned.

4.1.1. Java Programming Language

Java provides developers with many features. They include:

e Object-orientation. Java is an Object Oriented programming language. All
executable code must be contained within a class. Java incorporates such

object-oriented concepts as inheritance, encapsulation, and polymorphism.

e Portability. Java was designed and developed to produce code that would
run on variety of CPU’s and under different operating environments

without alteration. Java Programs are platform-independent.

e Multi-threaded. Java supports multi-threaded programming. This is
important when designing interactive, networked programs or when

running multiple applets in a web page.

Copyright © 2005 Yuhong Li 51

Improve

R A

d Distributed File Transfer (DFT) on Internet

———————————————

Automatic garbage collection. In C++, once a programmer has created and
used an object he needs to destroy it to avoid using unnecessary memory.
This is not the case with Java. Java has a build-in garbage collector — the
Java virtual machine runs a garbage collection algorithm in the
background. The programmers don’t have to write destructors which may

lead to logical errors in the cleanup code.

Secure. Java is intended to be secure. Java enables the construction of
virus-free, tamper-free programs. A Java program cannot corrupt memory
outside of its process space. Java applets cannot access the disks of other

computers.

Network and "Internet" aware. One of the reasons for the popularity of
Java is that Java is the first programming language to exploit the
networked programming environment. It provides extensive classes that

making network programming easy.

Simplicity and ease-of-use. Java borrowed a good deal of syntax from C
and C++. The developers of Java wanted to produce a simple language, so
many of the less useful, on more esoteric features of C and C++ were

removed.

Java comes with extensive built-in libraries which are called packages. The

packages that come with the Java Development Kit (JDK) contain many hundreds

of built-in classes with many thousands of methods. These classes and methods

contain commonly used functionality, meaning that a good deal of the

programming work has already been done. It remains for the programmers to

integrate the built-in classes for their applications.

e R O Rt

opyright © 2005 Yuhong Li 52

fer (DFT) on Int

Java is uniquely suited for network programming and distributed computing.

Since connecting machines was one of the main purposes of Java, it was designed
and created with extensive networking features. These features make it much
easier to access the Internet than any other language. Java’s java.net package
provides cross-platform abstractions for simple networking operations, including
connecting and retrieving files by using common web protocols and creating basic
Unix-like sockets. Used in conjunction with its elegant stream-based I/O classes
and its easy-to-use multithreading capability, reading and writing files over the
network becomes almost as easy as reading or writing files on disk. Network
programming has turned from a difficult, highly fiddly black art into a more

straightforward process.

4.1.2. Java Foundation Classes (JFC)

The Java Foundation Classes (JFC) are a collection of standard Java APIs for
client-side graphics, graphical user interfaces (GUIs), and related programming

tasks. It is a part of Java 2 Platform, Standard Edition (J2SE).

The JFC covers the Swing component classes such as those defining buttons and
menus, the classes for 2D drawing from the java.awt.geom package, and classes
that support drag-and-drop capability in the java.awt.dnd package. It also includes

an API defined in the javax.accessiblitlity package that allows applications to be

implemented that provide for users with disabilities.

Improved Distributed File Transfer (DFT) on Internet

Swing Component APIs extend the AWT to provide a rich, extensible GUI
component library with a pluggable look and feel. The pluggable look and feel
lets programmers design a single set of GUI components that can automatically
have a similar look and feel of any OS platform. Swing components include both
100% Pure Java versions of the existing AWT component set (Button, Scrollbar,
Label, etc.), plus a rich set of higher-level components (such as tree view, list box,

and tabbed panes).

Swing Component APIs and the other APIs in JFC are used together to enable
programmers to build fully functional GUI client applications that run and
integrate on any client machine that supports the J2SE platform, including
Microsoft Windows, Solaris, Linux, and Mac OSX [15]. The GUIs in this DFT
client system was implemented using Swing components. It is thus platform

independent and runs on different operating systems that support J2SE.

4.1.3. JCreator Integrated Development Environment

The IDE (Integrated Development Environment) provides great convenience for
programmers in their code development. In this project, JCreator was chosen as
the Java IDE [16]. JCreator is a powerful IDE for Java development. It is written
entirely in C++, which makes it very fast and efficient compared to the Java based
editors or IDEs. JCreator provides users with a wide range of functionality such
as: Project management, project templates, code-completion, debugger interface,

editor with syntax highlighting, wizards and a fully customizable user interface.

Copyright © 2005 Yuhong Li ' 54

With JCreator users can directly compile or run the Java program without
activating the main document first. JCreator will automatically find the file with
the main method or the html file holding the java applet, and then it will start the

appropriate tools.

JCreator has following benefits compared with other Java IDEs:

o Managing projects with an easy to use interface
o Defining customized color schemes for unlimited ways to organize code

o Wrapping around existing projects and allowing user to use different JDK
profiles

o TFacilitating writing code quickly with project templates.

e Viewing projects with the class browser

« Debugging with an easy, intuitive interface instead of DOS prompts
» Easy configuration of Java tools

o Lower system requirements, but with faster speed

4.2. DFT Package Implementation

In this section, the DFT client and LDS server package implementations are

described in detail.

4.2.1. DFT Package Directory Structure

The DFT project is developed under package named dft.

The DFT project is split into six sub-packages.

i

L V 55

Copyright © 2005 Yuong

ed File Transfer (DFT) on Internet

s oy

Improved Distribut

o dft.gui - contains modules to build GUI interface

e dft.client - contains modules to perform client side tasks

o dft.server - contains modules to perform server side tasks

o dft.util - contains common utility modules to be shared by other
modules in DFT

e dft.gensig - contains modules to generate digital signature

o dft.versig - contains modules to verify digital signature

4.2.2. DFT Packages

This section introduces each package in detail.

4.2.2.1. Package dft.gui

This package contains modules to create client side GUI interface including
Frames, Panels, Tables, Dialog boxes. User interacts with these GUI interfaces

when performing a file download.

SelectPanel.java
DFTFrame.java
SelectionTableModel. java
SelectFrame. java
DFTFrame_AboutBox.java
DFTClient.java

4.2.2.2. Package dft.client

This package contains client side modules to perform download tasks. These

modules make connections to the LDS server, or FTP servers, create download

o e - s e R B S B S GG T A

Copyright © 2005 Yuhong L 56

Improved Distributed File Transfer (DFT) on Internet

e

threads, send control commands, read server response, and get data from file

SCrvers.

SubDownloadThread. java
CommandException.java
FileDownloader.java
ControlConnection.java
DataConnection.java
DownloadThread. java
FileInfo.java
LDSConnection. java

LogRecord. java

4.2.2.3. Package dft.server

This package contains the server side modules to perform the target file query and
search functions. These modules listen for the query requests from the clients and

make connections to the search engines to find out the target file locations, or read

file information from a local directory.

FileWatcher. java
FTPSearchEngine. java
FileSearching. java
FreeWareWeb. java
OreonRu. java
LDSServerThread. java
Veoda.java
Elmundo.java

LDSServer.java

et

Copyright © 20

05 Yuhong Li

Improved Distributed File Transfer (DFT) on Internet

AT

4.2.2.4. Package dft.util

This package includes some common utility modules. LogManager defines
common logging functions. LDSConstants defines public constants shared among

all modules.

LogManager.java

LDSConstants.java

4.2.2.5. Package dft.gensig

This package defines a module to generate digital signatures.

GenSig.java

4.2.2.6. Package dft.versig
This package defines a module to verify digital signatures.

SigChecker.java

4.3. DFT Modules Implementation

This section talks about major DFT modules and their workflows in detail.

Copyright © 2005 Yuhong Li 58

Improved Distributed File Transfer (DFT) on Internet

4.3.1. DFT Client Side Implementation

4.3.1.1. DFT Client Workflow

DFT Client Workflow (Main Diagram)

DFTClient
e
User 8
e
@)
Users interact with the DFTClient by DFTFrame
clicking on buttons or menu items. i
This diagram illustrates ali events
that are triggered in DFTClient. Each Define Timer and LogTimer.
event triggers another process which Timers are used to monitor the
h . download progress and report
could b.e opening a frame, or d!alog, status to user.
or starting a thread. We are going to ; LogTim
discuss each event and related ¢ er
process in details in the following Create GUI controls including
diagrams. Frame, Panels, Menu ltems, |«
Buttons, and Tables.
User clicks on button

Generate
signature

Event

Set the Verify
. Save the number of Display dialog Generate
. Main download Stop the recent FTP | |sub-download| | box showing digital downlqade‘d
Terminate process starts download . y . file against its
servers to threads. This | | DFT version signature for o
program here. progress y : : ; . . digitat
local directory!| | is usedin file information specified file. signature
segmentation 9 :
Goto load After a process is finished, DFTClient returns to
Downloa N
Process Workflow W :t:tpd-by state. Wait for user to perform another
on.

FIGURE 4.3.1.1 DFT CLIENT SIDE WORKFLOW

4.3.1.2. Download Process Implementation

hong Li 59

Copyright © 2005 Yuhong

Improved Distributed File Transfer (DFT) on Internet

LL

User clicks button

Download Process Workflow (1)

Download

Event

User enter download file
name, Search Local first,
save as file name

Call fileExist()

Yes

ile is downloaded before:
Do you want to recover 2

TargetFile
.Log file

Call LDSConnection.recoverFroml.og()

Get Filelnfo array (FlArray) from LDS
server. This array contains file server
information where target file can be
found on Intermet.

Start a fresh download

earch local

Yes:

v

target file location first?

database fol

No

rl

Call LDSConnection.getFileinfo
(filename, boolean=true)

@«gs sewy

Call LDSConnection.getFilelnfo

(filename, boolean=false)

/

Search in ‘info.txt

—Not Found—»|

P —

Public FTP Search Engine

Call DFTFrame.prepareForDownload()

v

Initialize all Ul controls

v

This will create a thread for file
download

Create new FileDownloader thread.

v

Start FileDownloader thread

v

Start timer threads

y

LDSConnection.getFilelnfo()
retumns FileInfo array that
contains available file server
information

h 4

Click Ok btn

Call SelectPanel.createAndShowGUI()

Create a new frame and display all
available file server and target file path
information in a table. User will select
file servers from the list and download
file from selected servers.

Create)

Select

Panel

A4
User selects a list
of servers and
clicks OK button

./~ Download Process

L

Go to

"__ Workflow (2)

)

FIGURE 4.3.1.2A DOWNLOAD PROCESS WORKFLOW (1)

Copyright © 2005 Yuhong Li

60

Improved Distributed File Transfer (DFT) on Internet

Download Process Workflow (2)

From Download
Process Worldiow (1)

FileDownloader thread starts

:

Call SetDownloadTask()
This will create mutiple Download

threads
Is this resumed
No download ? Y*‘l
v
Create muttiple Download threads Create multiple Download threads
Get file server's speed Y
Resume download from the previous
l checkpoint
Cet file size from file server, if file size is
zero, that means server is not available.
file size zerofora
g)
Remove the file Add the file server
server from list tothe list
I I A4
! Start all Download Threads
one
. ; Go to Downioad
Get alist of available file servers by one. Thread Workflow,

Split file into segments. Calculate each
segment’s length.

of the downloading Tife
Verify if all mirrors are
idertical 7

()

Cdlculate the checkpoint
of each segment

!

Sort Download threads
according to speed

|

FIGURE 4.3.1.28 DOWNLOAD PROCESS WORKFLOW (2)

Copyright © 2005 Yuhong Li 61

ted File Transfer (DFT) on Internet

RIS

4.3.1.3. Download Thread Implementation

Download Thread Workflow

; Go to
DownloadThread.Login() .
Creates ControlConnection Go to Contsflﬁ:frll::’ctlon :

:

DownloadThread.run()

v

Split segment into sub-
segments. Calculate each
sub-segment’s length and

checkpoint.

4

Create multiple
SubDownloadThreads.

h 4

SubDownloadThread login

v
‘ Go to
SubDownloadThread start Go to SubDownloadThread
| workflow
4
Wait for
SubDownloadThread finish
Y

(Thread end

FIGURE 4.3.1.3 DOWNLOAD THREAD WORKFLOW

Copyright © 2005 Yuhong Li

Improved Distributed File Tran

sfer (DFT) on Internet

T

4.3.1.4. Sub-Download Thread Implementation

SubDownload Thread Workflow

. Go to
Start SubDownloadThread.Loqnn() Go to ControlConnection
Creates ControlConnection workfiow

SubDownloadThread.run()

v

Send PASV command to
FTP server

Parse response from passive
command and get FTP
server adress.

I

Create DataConnection Go to Go to DataConnection
thread. | workfiow

Start DataConnection thread.
Listen on the server data
port.

Send REST command to set
checkpoint

y

Start speedTimer

)

Send RETR command to
retrieve data from FTP
server

!

Data is transferred from FTP
server to local machine
through DataConnection

'

Wait for DataConnection
thread to complete. Thread end

FIGURE 4.3.1.4 SUB-DOWNLOAD THREAD WORKFLOW

Copyright © 2005 Yuhong Li

Improved Distributed File Transfer (DFT) on Internet

4.3.1.5. DataConnection Implementation

DataConnection Workflow

Create Server socket

h 4

Set socket timeout value

v

Listen on server’s data port

v

Create DatalnputStream

s there data to be
read ?

Read Data Stream

Yes

4

Read data into local file
No

y

Close socket connection
Close local file

y

Thread end

FIGURE 4.3.1.5 DATACONNECTION WORKFLOW

Copyright © 2005 Yuhong Li 64

4.3.1.6. ControlConnection Implementation

ControlConnection Workflow

Login:
This is all about setting up a
session with the FTP server
peer process

A4

Send USER command to
FTP server

A 4

Read server response

A 4

Update Ul control values

\ 4

Send PASS command to
FTP server

;

Read server response

A

Update Ul control values

A 4

Thread end

FIGURE 4.3.1.6 CONTROLCONNECTION WORKFLOW

Copyright © 2005 Yuhong Li 65

Improved Distributed File Transfer (DFT) on Internet

4.3.1.7. Timer Implementation

Timers play an important role in the DFT system. A Timer periodically checks the
download status and if it sees that the download is complete, the timer will stop
itself, close speedLog and display status information to the end user whether it is

a success or failure.

Timer Workflow

:@-——\M’len Timer rings next time

Call DownloadThread.check() Check()
Check download progress Go to
in fixed intervals. i

If DownloadThread is done and
LogTimer is NOT running ?

Yes

Stop the Timer
Close speediog
Set Stop button to false

When Timer rings next time Enable Download button

if DoenloadThread is finished

Yes successfully ? No
Display dialog box Display dialog box
showing success showing failure
information information

Exit

FIGURE 4.3.1.7 TIMER WORKFLOW

Copyright © 2005 Yuhong Li 66

4.3.1.8. check() Implementation

The method check() checks the status of all download threads and updates the
recover log. Each time it is called, the recover log is cleared first and the current
download status is written into the recover log so that recover log only contains
the latest status. It then checks whether there is any stalled threads. If there is, it
will find the fastest server that is being downloaded from and switch the stalled

server’s task to it.

Check() Workflow

Clear recover log,
Write the current
downloading status into log

v

Check the status of next

download thread 4_\

veos{ Fowm |

Is this the only server?
No
v

Yes , Find the fastest server I

Stop ali the threads that are
downloading from this stalled
server

A

Switch to the server by
starting new thread
downloading from the fasted
server

More server to check?

No

FIGURE 4.3.1.8 CHECK WORKFLOW

Copyright © 2005 Yuhong Li

Improved Distributed File Transfer (DFT) on Internet

4.3.1.9. LogTimer Implementation

LogTimer plays an important role in the DFT system. LogTimer periodically
updates the DFT Client Ul display while the download is in progress. The user
can see how the progress bar is moving as the download file size is increasing.
The FTP command and response are shown in the display window. All of these

are triggered by LogTimer.

LogTimer Workflow

> Start

Set progress bar value

}

Invoke Data Change Event for the
ThreadTable by calling
TableModel.dataChanged().
TableModel will refresh table
display when receiving this event.

l

Write to speedlLog

Is download finished?

Yes

When Timer rings next time

Stop the LogTimer

A4

Exit

FIGURE 4.3.1.9 LOGTIMER WORKFLOW

Copyright © 2005 Yuhong Li 68

Improv

4.3.1.10. Sub-Download SpeedTimer Thread Implementation

A SpeedTimer started in sub-download thread plays an important role in the DFT
System. A SpeedTimer periodically checks the download speed of each thread.
When the speed drops to less than half of the original test speed, it sets a flag in
the thread and stops the control and data connection of this thread. Then the timer

thread will switch the task that the threads are downloading from this server to a

fast server.,

When Timer rings next time

Copyright

SRR

© 2005 Yuhong Li

SpeedTimer Workflow

NG Control Connectio Stop CC && DC,

No login | Abort |

Yes®» Stop the SpeedTimer;

Stalled | Finished 2 return;
No
Yes—> firstEntry set to false
No

peed less than half o ves

speed?

Stop the SpeedTimer

A4

——@

FIGURE 4.3.1.10 SUB-DOWNLOAD SPEEDTIMER THREAD WORKFLOW

69

Improved Distributed File Transfer {DFT) on Internet

4.3.2. DFT Server Side Implementation

This section describes the LDS server side implementation in detail.

4.3.2.1. LDS Server Implementation

LDS Server Workflow

! Create server socketon port 6666 |

¥

l Listen on port 6666 l

¥

l CreateLDSServerThread l

2

Read downiload file name from port 6666.
read a boolean value thatindicates if user
wants to search local database,

¢ youwant to searc
locally ?

No

Search local
database

arget file is found
ocaldatabase ?

h 4

Search targetfile on FTP search
engines.
No.Gotosearch engine g www.freewareweb.com
files.oreon.ru
ftpsearch.elmundo.es

¥

Open HTTP Connectionto search
engine

¥

Send HTTP requestto search
engine

v

Parse response from search
engine and generate FTP server
information.

¥

N : Constructfile serverand path
Yes. Skipsearch engine informationintostandardform at

¥

Send formatted serverand path
inform ationbacktoLDSConnection
through socket connection

Terminate

FIGURE 4.3.2.1 LDS SERVER WORKFLOW

Copyright © 2005 Yuhong Li 70

Improved Dlstrlbuted Flle Transfer (DFT) on Internet

4.3.2.2. Search Engine Implementation

There are many kinds of FTP search engines available on Internet. When a user
goes to a public FTP search engine, for example, www.freewareweb.com, they
enter a file name and will get a response HTML page that contains all available
FTP servers that they can download the target file from. In order to take
advantage of public search engines, a search engine adaptor is defined that can
send HTTP requests to the search engine, read response HTML page, and parse
the HTML page for file server information. Then the adaptor sends file server
information in a certain format back to the DFT client. Since each search engine
returns an HTML page in a different format, it is necessary to define individual

search engine adaptors for each engine.

For example, these are three separate search engine adaptors. They have similar

structure but they process different HTML pages.

FTPSearchEngine. java
FileSearching.java

FreeWareWeb. java

Following diagram illustrates how search engine adaptor works.

Copyr:ght © 2005 Yuhong LI 71

Improved Distributed File Transfer (DFT) on Internet

FTP Search Engine Adaptor

Open socket connection
on server port 80

v

Send HTML request
as a query string to
FTP search engine

N

Read HTML response into a
buffer

Start reading buf%r and search for
certain patterns that matches
target file

Afe there more lines to read
Are there more pattern matc

Yes

4

Parse buffer and construct a response line
in the format of
fileName:server:path;user name;password;size

v

Add each response line into
response buffer

Send response buffer back to
DFT client through socket <
connection

v

Close socket connection

End

FIGURE 4.3.2.2 FTP SEARCH ENGINE ADAPTOR WORKFLOW

Copyright © 2005 Yuhong Li 72

4.4. DFT System Module List

DFT) on |

nternet

Table 4-1 lists all the DFT system modules including the packages that they

belong to and their functions.

TABLE 4.4: SYSTEM UNIT MODULE LIST TABLE

Package Module Name Functon

dft.gui

dft.qui SelectPanel.java Allow user to select file server from a
list

dft.gui DFTFrame java The main DFT client window

dft.gui SelectionTableModel java The table model for SelectPanel

dft.gui SelectFrame.java The window frame for SelectPanel

dft.gui DFTFrame_AboutBox java Define the Help|About dialog box

dft.gui DFTClient.java The main DFT client starting point.
Create DFTFrame.

dft.client

dft.client SubDownloadThread.java Define the sub-download thread

dft.client CommandException.java Define the CommandException

dft.client FileDownloader.java Most of download logic is defined here.
This module creates all download
threads.

dft.client ControlConnection.java Contain logic to make control layer
connection to FTP server and read
response from FTP server.

dft.client DataConnection.java Contain logic to make data layer
connection to FTP server download file
form data port.

dft.client DownloadThread java The thread to perform download

dft.client Filelnfo.java Define target file and server information
for each file server for downloading
purpose.

dft.client LDSConnection.java Contain logic to make socket
connection to LDS server.

dft.client LogRecord java Utility module to write to log record

dft.server

dft.server FileWatcher java One of the search engine adaptor

dft.server FTPSearchEngine.java One of the search engine adaptor

dft.server FileSearching.java One of the search engine adaptor

dft.server FreeWareWeb.java One of the search engine adaptor

dft.server OreonRu java One of the search engine adaptor

Copyright © 2005 Yuhong Li

Improved Distributed File Transfer (DFT) on Internet

s

Package Module Name | Function

dft.server LDSServerThread.java The thread to perform the file query and
response task for LDS server.

dft.server Veoda.java One of the search engine adaptor

dft.server Elmundo java One of the search engine adaptor

dft.server LDSServer.java Defines the LDS server class. LDS

server creates LDSServerThread to
complete file query tasks.

dft.util

dft.util LogManager java The logging utility class

dft.util LDSConstants.java Define all constants used in DFT project

dft.gensig

dft.gensig GenSig.java Contain logic to generate digital
signature

dft.versig

dft.versig SigChecker.java Contain logic verify digital signature

4.5. Summary

In this chapter, the implementation of the DFT system was described. First, the
implementation tools which include the Java language, Java Swing and JCreator
(which is the Java IDE) are introduced. Then, the DFT packages and DFT client side
and LDS server side implementations are described. How each part of the system
works and how they interact with each other are explained in detail. A series of tests

of the DFT system will be discussed next.

A

Copyright © 2005 Yuhong Li 74

Improved Distributed File Transfer (DFT) on Internet

Chapter 5: Experiment and Data Analysis

Based on the DFT system design, architecture and implementation of all its
functionalities described in previous chapters, a series of experiments will be
carried out in this chapter. Through the experiment, the functionalities and
features of the system described in the preceding chapters will be tested. The
analysis of the experiment data will be done and a conclusion about the system

will be presented at the end.

5.1. Experiment Goals and Design

5.1.1. Experiment Goals:

To improve the reliability and efficiency of the file transferring on Internet is the
main motivation of the design of the DFT system. Testing the system’s reliability
and efficiency is the main part of the goals in this experiment. Since the system is
designed for downloading from multiple servers and each with multiple threads,
how the file transfer efficiency (speed) has been impacted by the multiple threads

in different scenarios will be tested as the most important part.

N T G R G S A0S

Li ‘ 75

Copyright © 2005 Yuhong

Improved D:stnbuted FlIe Transfer (DFT) on Internet

5.1.2. Experiment Design:

5.1.2.1. Reliability Test:

Failure recovery is the indicator of the reliability. The system should be robust
and be capable of detecting and recovering from different failures (described in

Chapter 3)

In this test, the FTP server and the DFT client failures will be simulated and tested
by stopping the FTP server and unplugging the DFT client network cable from it.
The data of when these failures happen, how soon the DFT client detects these

failures and how quickly it acts to switch is recorded.

In the server failure situation, the DFT client should be able to detect this
disconnection from the server and switch its downloading task to the fastest server
from which it is downloading. Behind the scene the DFT client will kill all the
threads working on this server which include the threads for data connections and
control connections. Then it will check all the other working servers that it has
been downloading from and find the fastest server of them, then establish a new
connection to this server, and continue downloading the file from the point where

it was at when the former server failure happened.

In the client network failure, the client should be able to detect and prompt the

user with a message and stop all the downloading tasks from all the threads.

Copynght © 2005 Yuhong L: T 76

Improved Distributed File Transfer (DFT) on Internet

—

5.1.2.2, Digital Signature Generation and Verification Test

Because the buttons of the both functionalities are on the GUI interface of the
DFT client, the test is straightforward. The generator is used to generate a digital
signature for downloaded file. The verifier is for the downloading user to verify

the downloaded file. The functionality was only tested locally.

5.1.2.3. Efficiency Test

The efficiency test is to test how the system performs. As mentioned before, the
system was designed for downloading from multiple servers, each with multiple
threads. How the efficiency changes when the number of servers and the number

of threads change is tested.

5.1.2.4. Auto Optimization Test

The test is bound to the efficiency test. When a server from which the DFT is
downloading is becoming slow or halts because of traffic congestion or other
reasons, the system should be capable of switching from this degraded server to

another faster server.

5.2. Experiment Environment

In this section, the experiment environment including networks, download files,
the requirements for running the DFT client and the LDS server are described in

detail.

N e A R A R 3oL

2005 Yuhong Li 77

Copyright

Improved Distributed File Transfer (DFT) on Internet

5.2.1. Networks

The Internet will be the network platform for the experiment. Since The DFT
system is designed to download files from FTP servers scattered on the Internet, it
must be able to download files from FTP servers running on the Internet. The
network in the experiment will be the Internet rather than a limited local network.
The DFT client will run on a Windows XP PC which is connected to the Internet
through broadband Internet Connection (Shaw cable was the ISP when the
experiment was being carried on). Figure 5.2.1 is the diagram of the networks (the

local network and the Internet) for the DFT system test.

DFT System Test Networks
192.168.2.3 192.168.2.7
Win2000 Server, IS Win2000 Server, IIS
AMD 2400+ Pentium Celeron 366
Ram: 128 DDR Ram: 256 SDRAM

Intemet

i “FIP Sever
FTP Sever

Catlo
Moden

192.168.2.9
Windows XP
DFT Client & LDS
AMD 2200+
Ram: 384MB DDR

FIGURE 5.2.1 DTF SYSTEM TEST NETWORKS

A

Copyright © 2005 Yuhong

Li

Improved Distributed File Transfer (DFT) on Internet

oo e e RSt

5.2.2. Downloaded Files

Two groups of files are selected for the download tests. In the first group, two

different files are used as the download test files in this experiment. They are

mysql-4.1.12a-win32.zip (about 37.0 MB) and OOo_1.1.4 Win32Intel install.zip

(about 64.2MB). There are a lot of FTP servers holding these files across the

Internet. Some of these FTP servers are chosen to download from.

1

2)

mysql-4.1.12a-win32.zip. This ZIP file is the MySQL database server for
windows. MySQL database server is the world's most popular open source
database. This file is its official release of version 4.1.12a with the new
windows installer as well as the Server Instance Configuration Wizard.
The file size is about 37.0 MB. More info about MySQL database server

can be obtained from its website [17].

0OO0o_1.1.4_Win32Intel_install.zip. This ZIP file is the OpenOffice.org
suite for Windows. OpenOffice.org is both a multi-platform and multi-
lingual office suite and an open-source project. It is compatible with all
other major office suites, the product is free to download, use, and
distribute. This file is its official release of version 1.1.4. The file size is
64.2MB. More info about OpenOffice.org can be obtained from its

website [18].

The reason why these two files were selected is that they are popular on the

Internet. The changing trends of the download speed on files less than 100MB can

Copyright © 2005 Yuhong Li 79

Improved Di

So—

ed File Transfer (DFT) on Intern

O O sy

be obtained by repeating the download of the two files. The download tests on

these two file are on the external FTP servers that holding them.

The other group of files chosen for the test is some files that were purposely made
for the DFT system test. Their sizes are bigger than the above two files. Their
sizes are about 200MB (200m.rar), 450MB (400m.rar), 680MB (600m.rar) and
960MB (900m.rar) respectively. They are put on the internal FTP servers and are
downloaded repeatedly for checking the download efficiency change trends when

the file sizes increase. These tests are only within the local network.

5.2.3. FTP Servers:

There are many FTP servers across the Internet. The user can get the FTP server

list by using the build-in FTP server search engine function in the DFT client.

The FTP servers holding the FTP download files used in the experiments are
primarily the official mirror sites of the two applications (mysql and openoffice)

listed in their download pages.

A few local FTP servers are also setup on the local network. They are used to
simulate network failures in the relevant experiments and for the tests of the
bigger file download. Table 5.2.3 lists the external and internal FTP servers that

are used for the download tests.

73

Copyright © 2005 Yuhong Li 80

Improved Distributed File Transfer (DFT) on Internet

TABLE 5.2.3: FTP SERVERS USED IN THE EXPERIMENTS AND TESTS

Server
File Name Symbol Server Address
mysql-4.1.12a-win32.zip Anl Mirror.mcs.anl.gov
Banner mysql.bannerlandia.com.ar
Berlin ftp.fu-berlin.de
Ovh mirl.ovh.net
Sunsite sunsite.informatik.rwth-aachen.de
Wolf ftp.m-wolfenbueftel.de
00o_1.1.4_Win32Intel_install.zip | uni-w (1) ftp.uni-wuppertal.de
Sunsite (2) sunsite.informatik.rwth-
aachen.de
tu-bs (3) openoffice.tu-bs.de
Berlin (4) ftp.fu-berlin.de
Funet (5) ftp.funet.fi
uni-k (6) ftp.uni-kl.de
Arnes (7) ftp.arnes.si
Kulnet (8) ftp.kulnet.kuleuven.ac.be
e-tech (9) ftp.e-technik.th-muenchen.de
200m.rar, 400m.rar, 600m.rar,
900m.rar
3 192.168.2.3 (local FTP server)
7 192.168.2.7 (local FTP server)

5.2.4. LDS Server and DFT Client;

Both the LDS server and DFT client run on a Windows XP PC which is
connected to the local network. Its IP address is 192.168.2.9. The Java Runtime
Environment installed is Java(TM) 2 Runtime Environment, Standard Edition
1.4.2_07. The Java IDE JCreator 3.5 is used to manage and launch the LDS server
and DFT client. The LDS server runs under a DOS prompt. The DFT client is an

intuitive and easy to use application with a friendly GUI interface. During the

P

Copyright © 2005 Yuhong Li 81

Improved D:strlbuted File Transfer (DFT) on Internet

downloading test process, a lot of information is displayed on the GUI interface

for the user. The server related information can be checked from the server DOS

window.

5.3. Reliability test

5.3.1. Server Failure Recovery

While the DFT client (IP: 192.168.2.9) is downloading from 2 FTP servers with
one a local FTP server with IP address 192.168.2.7, and the other from the
Internet with address ftp.uni-wuppertal.de, the local FTP server is stopped

purposely to cause server failure (Figure 5.3.1a).

Spead(ms)

enal, de/publapp/OpenOfiice/stablo/1,1.4/000_ 1,

arnal.de/pub/app/OpenOfiice/stabiesi.1.4/000_1...,) oW
7pub/O00_1.1.4_Win32intel Y
f
8, 01 214 ... Unknown I-
ﬂp uri- kI.da/pub/OpsnOﬂ'ce/slablsM L 4/000 1.1.4_Win32In... Ui -
iftp.arnes. s/packages/OpenOfice. cvg/slable/1.1.d/000 1.1.4... Unknown i~
ce Unknown |-
Unknown |-
-|1001 Unknown |-
ic: ble/1.1. 4/000 1 3 Win...|1000 Unknown [
/pu stable/1.1.4/000,1.1.4 Wi... 11000 ! Unknown i
de/pub/Mirrors/fip. org/stable/... 11000 Unknown |-

{ Check'All Stop i+ Downloa'd\ Cluss'

FIGURE 5.3.1A PICK UP THE INTERNAL SERVER AND AN EXTERNAL ONE

The DFT client detected the server problem and does the switch successfully.

Copyright © 2005 Yuhong Li 82

Improved Distributed File Transfer (DFT) on Internet

fle -Configuration Sgnatre Hep

& Search P Stop Save % Generate &3 Verify § Help

SEND; TYPE]

File Server - . i Path - Segment Length (Bytes) .Bytes Downloaded : Speed (bps) -
Thread [1]: Downloading 000 _1.1.4 Win32Intel nstall. zi... |
Parent Download thread on fip.unt [.de (2 child th...!/pub/app/OpenOfiice/stable/1.1.4 48363076 14477804 1884
->Child Download thread on fip.uni-wuppertal.de /publapp/OpenOfiice/stable/1.1.4 24180736 17552072 1984
->Child Download thread on fip.uni-wupperal.de /publapp/OpenOfiice/stable/1.1.4 24182340 925732 1984
Thread {2]: Downloading O00_1.1.4_Win32lntel_install.zi.. i -
Parent Download thread on fip.uni-wuppertal.de (2 child th...//pub/app/OpenQfiice/stable/1.1.4 119022848 17988508 1984
->Child Download thread on fip.uni-wuppertal.de /pub/app/CpenOfice/stable/in .4 9510912 9452848 1984
->Child Download thread on fip.uni-wuppental.de Inub/anniOnenOfice/siahie/1”S, 9511936 8505360 1984

FTP server 192.168.2.7
Switching server from
192.168.2.7
o
ftp unk-wuppertal.de
Close
|
vy "

SEND: TYPEI i
GECIEVE: 200 Type settol

SEND: PASY

RECIEVE. 227 Entwming Fassive Mode (192,168 2 718,140}

SEND: RETR /pub/O00_1.1.4_Win32irdel_install.zip

RE > 125 Data connechion already open; Transfer staring.

RE E 428 Connection closad; lransier aborted.

Vi

FIGURE 5.3.1B INTERNAL SERVER SWITCHED TO THE EXTERNAL SERVER

In this test, the time the FTP server stopped, the time the DFT client detected the

server unavailability and the time the switch finished are recorded (Table 5.3.1).

TABLE 5.3.1: RESULTS OF Two TESTS

Server Stop at Client Detect at Switch at Overhead
Tue Jul 26 15:53:52 | Tue Jul 26 15:53:56 | Tue Jul 26 15:53:57 | 5 sec.
Tue Jul 26 15:50:21 Jul 26 15:50:23 Tue Jul 26 15:50:26 5 sec.

In both tests in the table, the period of time between the server stop and the DFT

client finishes the switch is 5 seconds. The time between when the server stops

Copyright © 2005 Yuhong Li

Improved Dlstrlbuted Flle Transfer (DFT) on Internet

and when the client detects and does the switch can vary greatly. These response
times are affected by many elements such as the server response, the network

traffic and the DFT client performance.

5.3.2. Network Failure

The network failure on client side was simulated by unplugging the network
cable from NIC of the DFT client PC. The time from the unplugging to the client
detecting this failure and popping out the error message is about 10 seconds. The
time is recorded by a timer and includes a period of time from the client detection
to the GUI error message popping up. The client is able to resume the download

when re-downloading the file from the point the download was halted.

5.4. Signing a File and Verify a Signature

5.4.1. Signing a File

From the toolbars of the main window in the DFT client, clicking the ‘Generate’
button pops up a Windows Explorer. The file the user wants to sign
(O0o0_1.1.4_Win32Intel install.zip in this experiment, Figure 5.4.1a) is thereby

located.

Copynght © 2005 Yuhong Ll 84

Improved Distributed File Transfer (DFT) on Internet

Fle Configuration. Signatre “Hep
: B Search Tl 3 Gve & Generate ¥ Verify @ Help
File Server Path Segment Length {Byles) Bytes Downloaded - Speed (bps)
Recent
Desktop
My
av. Computer |
"% Filoname; . {000 1.0.4 Win32intelinstalizip "1 open
My Network s : 5
Places Fites of type:. Al Files vi{ Cancel]

FIGURE 5.4.1A FIND AND CHOOSE THE FILE BEING SIGNED ON

The user then clicks the ‘Open’ button. A successful signature generate message

is then displayed (Figure 5.4.1b).

Successfully.generated signature file for. C:\Inetpub\fiproot\pUb\O00-1.1.4 Win32intel-install.zip :
C\Inetpub\fiproot\pub\000_1.1.4 *Win32Intel Instal zip.sig]
C:\Inetpub\iproot\pub\000_1,1.4_:Win32intel. Instal.zip.key

FIGURE 5.4.1B SUCCESSFUL SIGNATURE GENERATION MESSAGE

Two files, 0Oo_1.1.4 Win32Intel install.zip.sig and
0OO0Oo_1.1.4_Win32Intel install.zip.key are generated in the same folder as the
original file OOo_1.1.4 Win32Intel install.zip (Figure 5.4.1c). These two files

are the signature of the original file.

Copyright © 2005 Yuhong Li 85

Improved Distributed File Transfer (DFT) on Internet

FIGURE 5.4.1c KEY AND SIGNATURE FILES ARE GENERATED

5.4.2. Verifying a Signature

When downloading a file, its digital signature files which are files with extensions
of sig and key also need to be downloaded. In this case, they are
000 _1.1.4 Win32Intel install.zip.sig and
00o0_1.1.4 Win32Intel install.zip.key. After finishing the download, the user
puts the signature files with the original file in the same folder. Then from the
main window of the system, click the ‘Verify’ button, and the Windows Explorer
window pops up. The user then selects OOo_1.1.4 Win32Intel install.zip (Figure
5.4.2a) and clicks the ‘Open’ button. The file is then verified against the public

key and the signature.

Copyright © 200

I

5 Yuhong Li 86

Improved Distributed File Transfer (DFT) on Internet

f./) oy = _Win32Intel_install.zip.key
Recent {5 OC0_1.1.4_Win32Intet_install.zip.sig

Desktop

v g
My H
Documents |
Lo
LA
i Computer 1|

(& Fila .nama: i O00_1.1.4_Win32Intel_install. zip i ‘ Open B
My Notwork s T ,.
Places Filos of type: Al Filos

FIGURE 5.4.2A LOOKS IN THE FOLDER WHERE THE 3 FILES ARE

If it is successful, a message is displayed (Figure 5.4.2b).

, Successfully verified signature for C:\Inetpub\ftproot\pub\O00 1. 1.4-Win32intel install.zip

C:\Inetpub\fiprootipub\O0o_ 1. 1.4_Win32Inte! install.zip.sig
C:\Inetpub\ftproot\pub\oOo_1. 1.4__Win321nte|__lnstall.zip,key :

|

FIGURE 5.4.2B SIGNATURE IS VERIFIED SUCCESSFULLY

If the file OO0 _1.1.4 Win32Intel install.zip is replaced by a different zip file, the
verifying procedure and an unsuccessful verification message will pop up (Figure

5.4.2¢).

‘\i) Falled to verify signature for C:\Documents and Settings\Owner\Desktop\OQo_1. 1.4_Win32Intel_instal.zip .|

cl

ARSI BRI -

FIGURE 5.4.2C FAIL TO VERIFY THE SIGNATURE

5.5. Efficiency Test on Files Less Than 100 MB

To test the efficiency of the system and get more accurate tendency results, a

series of downloading tests from the selected external servers in different

T A ST

uvhong Li 87

5

Y

ey

Copyright © 200

Improved Dlstnbuted F:Ie Transfer (DFT) on Internet

combinations for each file are performed. They can be categorized into the

following groups:

1) To download with one, two and three threads from each server

respectively;

2) To download from a combination of multiple servers with one, two and

three threads respectively.

All the downloading tests on mysql-4.1.12a-win32.zip and
OOo_1.1.4 Win32Intel install.zip are from the selected servers outside the local

network. That is, no local FTP servers are involved in this part.

The data of each download test is recorded. The downloading time when using a

different number of threads to download from different servers is calculated.

5.5.1. Test Results

Table 5.5.1a is the test results on the file mysql-4.1.12a-win32.zip and table

5.5.1b is the test results on the file OO0 _1.1.4 Win32Intel install.zip.

TABLE 5.5.1A: TESTING DATA ON DOWNLOADING MYSQL-4.1.12A-WIN32.ZIP

Performance
One Two Three 2vs.1/3vs. 1
Server(s)
1 Server
Anl 1 min 40 sec 1 min 1 sec 51 sec +39% / +49%

Copyright © 2005 Yuhong Li 88

Improved Distributed File Transfer (DFT) on Internet

Banner 3 min 1 min 21 sec 52 sec +55% /+71%
Berlin 2 min 10 sec 1 min 20 sec 1 min +38% / +54%
Ovh 7 min 10 sec 4 min 12 sec 2 min 42 sec +41% / +77%
Sunsite 2 min 10 sec 1 min 30 sec 1 min 11 sec +31% / +47%
Wolf 3 min 20 sec 2 min 21 sec 1 min 30 sec +31% / +55%
1 Server Average 3 min 15 sec 1 min 58 sec 1 min 23 sec +39% / +59%
2 Servers

sunsite + banner 1 min 40 sec 1 min 2 sec 1 min 1 sec +38% / +39%
anl +ovh 5 min 51 sec 2 min 51 sec 2 min 1 sec +51% / +66%
sunsite + berlin 1 min 40 sec 1 min 1 min 1 sec +40% / +39%
Wolf + ovh 5 min 50 sec 2 min 51 sec 1 min 42 sec +51% /+71%
Wolf + anl 1 min 20 sec 1 min 21 sec 1 min 22 sec -1%* / -3%*
Wolf + banner 3 min 20 sec 2 min 1 min 51 sec +40% / +45%
Wolf + sunsite 2 min 30 sec 1 min 29 sec 1 rﬁin 2 sec +41% / +59%
Wolf + berlin 3 min 2 min 10 sec 1 min 23 sec +28% / +87%
2 Servers Average 3 min 9 sec 1 min 51 sec 1 min 25 sec +36% /+50%
3 Servers

Wolf+sunsite+an! 1 min 30 sec 1 min 2 sec 1 min 1 sec +31% /+32%
Wolf+sunsite+ovh 1 min 50 sec 1 min 1 sec 1 min 11 sec +45% / +35%
Wolf+sunsite+banner 1 min 30 sec 1 min 21 sec 1 min 2 sec +10% /+31%
Wolf+sunsite+berlin 51 sec 1 min 11 sec 52 sec -39%* / -2%*
Berlin+sunsite+anl 1 min 10 sec 1 min 52 sec +14% / +26%
Berlintsunsitetbanner | 1 min 1 min 1 sec 52 sec -2%* /+13%
Berlin+sunsite+ovh 1 min 51 sec 1 min 21 sec 1 min 2 sec +27% / +44%
Berlin+banner+anl 1 min 51 sec 51 sec +15% / +15%
Berlin+banner+ovh 2 min 10 sec 1 min 30 sec 1 min 2 sec +31% /+52%
banner+anl+ovh 2 min 20 sec 1 min 31 sec 1 min 15 sec +35% / +46%
3 Servers Average 1 min 34 sec 1 min 11 sec 1 min +17% /+29%

*: Downloading time with 2 threads or 3 threads is longer than that with 1 thread from each server

Copyright © 2005 Yuhong Li

89

Impr

oisces

oV

.

ed Distributed File Transfer (DF

st

T)

e

n Internet

TABLE 5.5.1B: TESTING DATA ON DOWNLOADING O00_1.1.4_WIN32INTEL_INSTALL.ZIP

Thread#

Duration Performance
One Two Three 2vs.1/3vs. 1

Server(s)
1 Server
Arnes 6 min 30 sec 3 min 11 sec 2 min 22 sec +51% / +64%
e-tech 5 min 30 sec 2 min 20 sec 1 min 41 sec +58% / +69%
Funet 3 min 50 sec 2 min 52 sec 2 min 31 sec +25% / +34%
Berlin 4 min 20 sec 2 min 10 sec 1 min 41 sec +50% / +61%
Kulnet 13 min 40 sec 7 min 41 sec 4 min 31 sec +44% / +67%
Sunsite 5 min 10 sec 2 min 40 sec 1 min 51 sec +48% / +64%
tu-bs 9 min 40 sec 3 min 51 sec 2 min 30 sec +60% / +74%
Uni-w 5 min 3 min 22 sec 1 min 40 sec +33% / +67%
Uni-kl 3 min 20 sec 2 min 1 min 41 sec +40% / +50%
1 Server Average 6 min 20 sec 3 min 21 sec 2 min 16 sec +45% /+61%
2 Servers
Sunsite + tu-bs 3 min 30 sec 2 min 10 sec 1 min 51 sec +38% /+52%
Sunsite + berlin 5 min 30 sec 2 min 30 sec 2 min 30 sec +55% / +55%
Sunsite + funet 4 min 2 min 11 sec 2 min +45% / +50%
Sunsite + uni-k 3 min 50 sec 2 min 11 sec 3 min 33 sec +43% / +7%
Sunsite + arnes * 3 min 41 sec 2 min 2 sec 1 min 52 sec +45% / +49%
Arnes + kulnet 6 min 10 sec 3 min 21 sec 2 min 33 sec +46% / +59%
Sunsite + uni-w 3 min 20 sec 2 min 1 min 41 sec +40% / +50%
Uni-k + uni-w 2 min 1 min 42 sec 1 min 44 sec +15% /+13%
2 Servers Average 4 min 2 min 16 sec 2 min 13 sec +41% /+42%
3 Servers
Uni-w+sunsite+kulnet | 5 min 30 sec 2 min 30 sec 2 min 2 sec +55% / +63%
uni-w-+sunsite+arnes 2 min 30 sec 1 min 40 sec 1 min 42 sec +33% / +32%
uni-w-sunsite+uni-k 2 min 11 sec 1 min 32 sec 1 min 43 sec +30% / +21%
uni-w+sunsite+berlin 1 min 40 sec 1 min 41 sec 1 min 40 sec -1%*/0
uni-w-tu-bs+berlin 2 min 1 sec 1 min 45 sec 1 min 40 sec +13%/+17%
uni-w+sunsite+tu-bs 3 min 2 min 1 min 43 sec +33% /+43%
Arnes+kulnet+e-tech 6 min 40 sec 3 min 11 sec 2 min 30 sec +52% / +63%

e

Copyright © 2005 Yu

90

Improved Distributed File Transfer (DFT) on Internet

sunsite+berlin+e-tech 1 min 40 sec 1 min 41 sec 1 min 41 sec -1%* / -1%*

3 Servers Average 3 min 9 sec 2 min 1 min 50 sec +27% [+30%

*; Downloading time with 2 threads or 3 threads is longer than that with 1 thread from each server

5.5.2. Experiment Analysis

After studying the data collected in the above two tables, it is easy to find that the
relations between efficiency of the system and the number of servers and/or the

number of threads used to download from each server.

5.5.2.1. Single server Download — one vs. multiple threads

Compared with multiple threads, downloading from a single server with one
thread is the least efficient. The data in the “1 server section” of each table above
shows that download from a server with 2 threads or 3 threads improves the
download speed greatly. The average improvement rate is 39% with 2 threads,
59% with 3 threads from 1 server for downloading mysql-4.1.12a-win32.zip. The
rates are 45% better with 2 threads and 61% with 3 threads from 1 server for
downloading OOo_1.1.4 Win32Intel install.zip. So a conclusion can be reached
that downloading from a single server with multiple threads is more efficient than

using only one thread.

Copyright © 2005 Yuhong Li 91

Improved Distributed File Transfer (DFT) on Internet

e

5.5.2.2. Multiple servers Download — one thread vs. multiple threads

From 2 and 3 server selections of the above tables, the download speed from
different combination of selected servers with 2 or 3 threads is generally faster
than that with just one thread. The average improvement rate is 36% with 2
threads, 50% with 3 threads from 2 servers, 17% and 29% from 3 servers for
downloading mysql-4.1.12a-win32.zip. The rates are 41% better with 2 threads,
42% with 3 threads from 2 servers, 27% and 30% from 3 servers for downloading
OOo_1.1.4_Win32Intel install.zip. In general, using 3 threads makes the

download speed even faster than using 2 threads.

Figure 5.5.2.2 shows how the download time changes with download thread
numbers when using 1 thread, 2 threads and 3 threads to download the two files.

Axis x is the change of thread numbers and axis y is the change of download time.

Duration vs. Thread # for downloading Duration vs. Thread #for downloading
mysql4.1.12a-win32.zip (37.0 MB) 00o0_1.1.4_Win32intel_install.zip (4.2 ¥B)
200 -
150 1
S
& 100
)
W)
50 A
0 e o - X
1 2
B 7 Server B 7 Server 380 201 i36
032 Servers 32 Servers 240 136 133
B 3 Servers B 3 Servers 789 120 770

Thread # Thread #

FIGURE 5.5.2.2 DURATION vS. THREAD NUMBERS

The shapes in the above two graphs are not the same, though ideally they should

005 Yuhong Li 92

Copyright © 2

Improved Distributed File Transfer (DFT) on Internet

B e

be. This is because during the download procedure, the download speeds were not
constant but were affected by some elements such as the discrepancy of the test
speed and real download speed, the overhead that was caused by random access

file mechanism.

5.5.2.3. One Server vs. Multiple Servers

As discussed in the previous sections, the advantage in downloading from
multiple servers over just one server is its robustness and improvement in
reliability. In other words, when downloading from multiple servers, if one or
some of the servers fail to provide the file download, the system can still finish

the download from other working server(s) unless all the servers are down.

In the experiment, only downloads from one server, two-server and three-server
combination are tested. For each download, 1 thread, 2 threads and 3 threads are
tested. As far as the limited test data tells, on average, downloading from 3
servers is faster than downloading from two servers and downloading from two
servers is faster than downloading from one server, though this is not always true

for a specific download.

Figure 5.5.2.3 shows how the download time changes with download server
numbers when using 1 thread, 2 threads and 3 threads to download the two files.

Axis x is the change of server numbers and axis y is the change of download time.

Copyrlght © 2005 Yuhong L: 93

Improved Distributed File Transfer (DFT) on Internet

Duration vs. Server # for downloading Duration vs. Server # for downloading
mysql4.1.12a.win32.zlp 37.0MB) 000_1.1.4_Win32intel_nstall.zip §4.248)
250 400
350 \
200 N\\ 300
c 250
H 150 S
© -
g g 200 +— \\.
5 e — 5
[} 100 ¥ [s] 150 h——ll%
._,——-ﬁ.%‘ 100
50
50
0
0 1 2 3 1 2 3
—&— 1 Thread 195 189 94 —e— 1 Thread 380 240 189
—=— 2 Threads 118 111 71 —=— 2 Threads 201 136 120
—&— 3 Threads B3 85 60 —&— 3 Threads 136 133 110
Server# Server #

FIGURE 5.5.2.3 DOWNLOAD TIME vS. SERVER NUMBERS

Once again, the shapes of these two graphs are different, though they indicate the
same trend. The overhead that was caused by the random access file mechanism
and the difference between the test speed and the real download speed are the

main contributors to this discrepancy.

5.5.2.4. Elements Affecting Download Speed

1) Not all the FTP servers have the same performance. The servers with
lower performance make the whole download period longer, and the
servers with higher performance will make the whole download period

shorter.

2) The task allocation among the FTP servers is based on the detected speed
before the downloading starts by downloading 10k of data from each
server. Thereafter if the download speed does not change much, then all

downloads from different servers should finish at almost the same moment.

Copyright © 2005 Yuhong Li v 94

Improved Distributed File Transfer (DFT) on Internet

s TS0

If the server’s speed increases, it will make the download faster. If the

server’s speed decreases, it will make the download slower.

5.5.2.5. Low Speed Server Switch

The system has a functionality to monitor all the download threads’ speed. It
employs an independent thread called SpeedTimer to check the download threads’
speed every 10 seconds. If the speed which is the total download amount of every
10 second span is divided by 10 seconds is lower than half of the original detected
speed, the slower download thread is stopped and switches its task to a server and

carries on the downloading from the new server.

5.6. Efficiency Test on Bigger Files

To test how the file sizes affect the download speed in the DFT system, the tests
on the bigger files with sizes of 200MB, 450MB, 680MB and 960MB
respectively were carried out. All the downloading tests on bigger files were
within the local network and these downloads were from 2 local FTP servers with
IP 192.168.2.3 and 192.168.2.7. The download processes were done repeatedly

and the average download time was calculated.

5.6.1. Test Results

TABLE 5.6.1: TESTING DATA ON DOWNLOADING BIG FILES

Thread#
Duration Performance

One Two Three 2vs.1/3vs. 1

s S

Copyright © 2005 Yuhong Li

Improved Distributed File Transfer (D

FT) on Internet

Servers

1 Server: (3)

200m.rar 58 sec 50 sec 49 sec +14% / +16%
450m.rar 2 min 07 sec 2 min 03 sec 2 min 0 sec +0.03% / +0.06%
680m.rar 4 min 17 sec 3 min 56 sec 4 min 10 +8% / +3%
960m.rar 4 min 26 sec 4 min 58 sec 6 min 07 sec -10% /-38%
1 Server: (7)

200m.rar 3 min 10 sec 3 min 08 sec 3 min 07 sec +1% / +2%
450m.rar 6 min 52 sec 7 min 03 sec 7 min 12 sec -3% /-5%
680m.rar 10 min 09 sec 10 min 02 sec 11 min 0 sec +1%/-8%
960m.rar 14 min 56 sec 15 min 05 sec 15 min 25 sec -1%/-3%

2 Servers: (3)+(7)

200m.rar 2 min 04 sec 1 min 28 sec 1 min 55 sec +21% / +7%
450m.rar 5 min 52 sec 5 min 51 sec 6 min 07 sec +0% / -4%
680m.rar 7 min 11 sec 8 min 59 sec 9 min 38 sec -16%/-34%
960m.rar 13 min 45 sec 14 min 22 sec 21 min 20 sec -4% / -54%

5.6.2. Experiment Analysis

The data in the above table shows how the download speed changes with 1 thread,
2 threads and 3 threads on files with different sizes. Like the tests on smaller files,
the increase of server number means the increase on the reliability. But the multi-
thread download speed is not always increased when the download size gets

bigger.

When downloading a file with size less than 680MB, the 2-thread download
speed from 1 server generally increases the single thread download, but this

increase is smaller than that when downloading the mysql and OpenOffice in the

roress

Copyright © 2005 Yuhong Li 96

Improved Distributed File Tra

smaller files tests above. The 3-thread download usually takes more time than
using 1 or 2 threads. When downloading the file of 960MB using either 2-threads
or 3-threads takes more time than a single thread download, independent of

whether the download is from a single server or 2 servers.

The main reason why the multi-threaded download does not improve the
download speed on big files like 960MB is that the overhead caused by random
access file counters the advantage that the multiple-threads would bring. In the
random access mechanism, the file pointer does not move in a sequential but
random order to read or write. Before reading or writing, each download thread
needs to move the file pointer to the proper place before it can start to operate.
The bigger the download file, the more time needed to do this movement. In
addition, this test was only local, whereas DFT presumably would work better in

a WAN.

5.7. Summary

In this section, a series of experiments and tests are designed and implemented.
Through the tests and experiments, the system’s reliability, efficiency, and other
features are tested. As far as the results show, the system can recover from
failures, make and verify the signatures. It can improve the download speed by
using multiple threads to download from multiple servers concurrently on files of

size less than certain sizes (< 100MB).

b ope A S A S b e A0

t © 2005 Yuhong Li 97

Copyrigh

Improved Distributed File Transf

D

er (DFT) on |

s

Chapter 6: Conclusions and Future Work

Reliability and efficiency are the two most important concerns of file transfer over
the Internet. This thesis provides the design and implementation of a mechanism
for the reliable, efficient file transfer from FTP servers scattered over the Internet.
The authenticity, data integrity and failure recovery philosophy of the file transfer

are also described and implemented to a degree.

Distributed file transfer increases the reliability of the file transfer over the
Internet. Generally speaking, the more servers the file is being downloaded from
simultaneously, the higher the reliability. The file is divided into different
segments and each server is assigned a segment according to its transfer speed.
When one server stops during this time, its task will be switched to another server.

The reliability of the file transfer increases when the number of servers increases.

Efficiency is another important concern regarding file transfer over the Internet.
Here, download speed is its indicator. Through the experiments and tests, it is
noticed that when the download file size is less than a certain size, the download
speed can be improved by multiple-thread download, independent of whether the
download is from a single server or from multiple servers. However, this

improvement gets weaker and diminishes with the increase of the file size. Many

elements can impact the download speed. These elements include the network

Improved Distributed File Transfer (DFT) on Internet

e T

connection speeds, the client hardware and software, the servers’ hardware and
software and especially the download file size. The overhead generated by
multiple servers and multiple threads should be taken into account when assessing
the improvement. The download speed does not always increase with the increase
of the server number and thread number. The multi-threaded download speed

degrades when the download file size is over a certain point.

Future work on the DFT system may include:

1) The user can configure whether the DFT system should switch a stalled server
or keep monitoring the server’s speed. If they decide to keep monitoring the
server’s speed, when the stalled server recovers, the download from this server
should resume. This is meaningful when the download file size is big or does not

have extra mirrors to switch to.

2) Let each download thread have a separate ‘saveas’ file rather than share one
random access file with others. The system joins all these separate files together
when all downloads finish. This may reduce the overhead caused by the random

access mechanism on a huge file.

3) For the digital signature, the public key is currently assumed to be stored on the
download ftp servers and should be downloaded as a separate file. For the further
development, it can be implemented in this way: store the public keys on the LDS

server. When the file and its signature are downloaded, the DFT system will get

D A A it

Copyright © 2005 Yuhong Li '

Improved Distributed

the corresponding public key from the LDS server and then verify the signature

automatically.

4) Improve the DFT system’s intelligence so that it is smart enough to decide
what FTP servers are the best for the user’s download and launch proper number

of threads according to the download file size.

ez

Copyright © 200

R I e S R RS

Yuhong Li 100

[1]

[2]

[5]
[6]

(8]

[9]

[10]

[11]

[12]

[13]

lmproved Dlstrlbuted Flle Transfer (DFT) on lnternet

References

T. Parker, Teach Yourself TCP/IP in 14 Days, 2nd Ed., USA: Sams Pub.,
1996.

R. Zakon, “Hobbes' Internet Timeline v8.0”, [Online document] Jan. 2005,
Auvailable at HTTP: http://www.zakon.org/robert/internet/timeline/#2000s
D. Reilly, “Inside Java: The Java Programming Language”, [Online
document] Nov. 1992, Available at HTTP:
http://www.javacoffeebreak.com/articles/inside java/insidejava-nov99.html
RFC959, “Internet RFC/STD/FYI/BCP Archives”, [Online document],
Advameg, 2003, Available at HTTP: http://www.fags.org/rfcs

FlashGet, amazesoft, 2005, Available at HTTP: http://www.amazesoft.com
Internet Download Manager, Tonec, 2005, Available at HTTP:
http://www.internetdownloadmanager.com

SnapFiles, WebAttack, 2005, Available at HTTP: http://www.snapfiles.com/

M. Miller, Discovering P2P, Alameda: SYBEX, 2001.

eDonkey, MetaMachine, 2005, Available at HTTP:
http://www.edonkey2000.com/

Bittorrent, 2005, Available at HTTP: http://www.bittorrent.com
GetRight, Headlight, 2005, Available at HTTP: http://www.getright.com
X. Fang, “Reliable File Transfer on the Internet Using Distributed File
Transfer (DFT)”, University of Manitoba, 2000

Bittorrent, 2005, Available at HTTP: http://www.bittorrent.com

Copyright © 2005 Yuhong Li 101

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Improved Distributed File Transfer (DFT) on Internet

T —— e A e

R. Whittle, “Cryptography for encryption, digital signatures and
authentication”, [Online document], 1996 December 19, Available at
HTTP: http://members.ozemail.com.au/~ﬁrstpr/crypt0/index.html
Sun, “J2SE: Java Foundation Classes (JEC) Overview”, [Online
document], Available at HTTP:

http://java.sun.com/products/jfc/overview.html

JCreator, “A Java IDE”, Xinox, 2005, Available at HTTP:
http://www.jcreator.com
Mysgl, “Open Source Database”, MySQL AB, 2005, Available at HTTP:

http://www.mysql.com

000, “Open Source Office Suite”, Available at HTTP:
http://www.openoffice.org

C. Leiden and M. Wilensky, TCP/IP for Dummies, 5th Ed., New York:
Wiley, 2003.

D. Comer, Internetworking with TCP/IP — Vol.1, 3rd Ed., Prentice Hall,
1995.

Wikipedia, “Digital Signature”, Available at HT'TP:

http://en.wikipedia.org/wiki/Digital _signature

R. Cadenhead and L. Lemay, Sams Teach Yourself Java 2 in 21 Days, 4th
Ed., USA: Sams, 2004.

S. Burnett and S. Paine, RSA Security’s Official Guide to Cryptography,

Berkeley: McGraw-Hill, 2001.

Copynght @ 2005 Yuhong LI

[24] A. Williams, Java2 Network Protocols Black Book, Scottsdale: Coriolis,

2001.

[25] 1. Horton, Beginning Java 2, SDK 1.4 Ed., Birmingham: Wrox, 2003.

[26] C. Horstmann and G. Cornell, Core Java™ 2 Vol. I - Fundamentals, 7th
Ed., Prentice Hall, 2004.

[27] C. Horstmann and G. Cornell, Core Java™ 2 Vol. II - Advanced Features,
7th Ed., Prentice Hall, 2004.

[28] M. Tulloch, IIS 6 Administration, Osborne/McGraw-Hill, 2003.

Copyright © 2005 Yuho

ng Li

103

Improved Distributed File Transfer (DFT) on Internet

Appendix

A. RFC FTP Protocol, [Online document], Available at FTP:
ftp://nic.merit.edu/documents/rfc/rfc0959.txt

B. FTP Command List, [Online document], Available at HTTP:
http://www.nsftools.com/tips/RawF TP .htm

C. FTP Error Codes Explained, [Online document], Available at HTTP:

http://www.the-eggman.com/seminars/ ftp_error_codes.html

100 Codes

110
120
125
150
200 Codes
200
202
211
212
213

214

215

220
221
225
226
227
230
250

257

The requested action is being taken. Expect a reply before proceeding with
a new command.

Restart marker reply.

Service ready in (n) minutes.

Data connection already open, transfer starting.
File status okay, about to open data connection.
The requested action has been successfully completed.
Command okay.

Command not implemented

System status, or system help reply.

Directory status.

File status.

Help message.

NAME system type. (NAME is an official system name from the list in the Assigned
Numbers document.)

Service ready for new user.

Service closing control connection. (Logged out if appropriate.)

Data connection open, no transfer in progress.

Closing data connection. Requested file action successful (file transfer, abort, etc.).
Entering Passive Mode

User logged in, proceed.

Requested file action okay, completed.

"PATHNAME" created.

Copyright © 2005 Yuhong Li 104

300 Codes

331

332

350
400 Codes

421

425
426
450
451
452

500 Codes

500

501
502
503
504
530
532
550
552
553

Improved Distributed File Tran

Copyright © 2

The command has been accepted, but the requested action is being held
pending receipt of further information.

User name okay, need password.
Need account for login.
Requested file action pending further information.

The command was not accepted and the requested action did not take
place. The error condition is temporary, however, and the action may be
requested again.

Service not available, closing control connection. (May be a reply to any command if
the service knows it must shut down.)’

Can't open data connection.

Connection closed, transfer aborted.

Requested file action not taken. File unavailable (e.g., file busy).
Requested action aborted, local error in processing.

Requested action not taken. Insufficient storage space in system.

The command was not accepted and the requested action did not take
place.

Syntax error, command unrecognized. This may include errors such as command line
too long.

Syntax error in parameters or arguments.

Command not implemented.

Bad sequence of commands.

Command not implemented for that parameter.

User not logged in.

Need account for storing files.

Requested action not taken. File unavailable (e.g., file not found, no access).
Requested file action aborted, storage allocation exceeded

Requested action not taken. Illegal file name.

e

05 Yuhong Li 105

