A Visual Query Language
for a

Federation of Databases

Martin Andreas Jacobs

A thesis
presented to the University of Manitoba
in partial fulfilment of the
requirements for the degree of
Master of Science
in

Computer Science
Winnipeg, Manitoba, Canada, 1996

(©Martin Andreas Jacobs 1996



National Li
B+l e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch  des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your file  Votre référence

Our file  Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
metire des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-13208-0

Canada



Name _

Dissertation Absiracts International and Masters Abstracts Infernational are arranged by broad, general subject categories.
Please select the one subject which most nearly describes the content of your dissertation or thesis. Enter the corresponding
four-digit code in the spaces provided.

olalof

Com p u Fey Lceren ce

SUBJECT TERM

THE HUMANITIES AND SOCIAL SCIENCES

Subject Categories
COMMUNICATIONS AND THE ARTS
ASChilOQUIS evers v v e emenene 0729

ati 0708
Music 0413
S h t 0459
et 0445
EDUCATION
Genortl ..oeereerecenererceeresnssnsasas 0515
Administrat 0514
Adult and Conlinuing ..cccasssees 0514
Agricultural ..c.oeeoiseesenicaes 0517
Art 0273
Bilingual and Multicubtural .........0282
L1107 OO - .04688
Community College .
Curriculum and Instru
Elc Childhood ..eveeerreenne -
Finance
Guidanca and Courseing
e
i
Hislory of ..ccvceveicececerncinseseasas
Homa Beonomi
La.ngmgo and Literature ............0279
M ati 0280
Music 0522
Philosophy of 0998
Physicai 0523

Agriculture
gnGeneru -

Geochemistry 0996

=~ L Py
; xcher Training
Tasts mfl{oas’ UrMONIS .ccoveavens
\J, fis

LANGUAGE, LITERATURE AND
LUNGUISTICS

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy

SOCAL SCIENCES

American StUdies ....eceiseressaes

Speach Patho 0440
$ooech Pathology 0383
Home E i 0386

PHYSICAL SQENGCES

.;; “L ati 0405

G { 0605

A 4 0986
Astronomy and

11 SURU o . ¢

Atmespheric 0608

AJOMIC 12 re carncvgsens sommssosssnsovans 0748

Elecironics and Eledirigly .....0607

S h By o o798

Fluid and PIsma oo 0759

Mol 0409

S o752

€3 cevenerenresseensrsnesnessases

Rodiati 0756

. _Solid SHU@ .eervecrsmscecesnreanases 0611
Applied Sciences

ied 1= SRUIN ¢ x 7. 7.

tor Sci 0984

L

SUBJECT CODE

Industrial and Labor

Dol 0629
Public and Social Welfare ....0630
Social Strudure and

DWOLDPMO(\‘

Theory and Mathods .
Tronsportahon .....e.. reveees 0709
Urban end R?ional Planning ....0999
Women’s Studies

Podias:
outr r‘Q,.AM L
Sysf::yS:imco e om0
Contochnal
hons R
R Tochoalogy o
Taxtile Tachnology .. eeecesemsersennes
PSYCHOLOGY
Ganaral 0621
Bohavior .....cceeeesncrnerecssasansanas 0384
Clinical 0622
Davelopmantal 0620
imental 0423
INGUSHIGE cocverrerervenessraesnasensennns 0624
oy 2035
ysiological ..covemeceniniccuainnians
Psychobiology .secesecsseesscessesnons 0349
Psych E.gsy 0432
Soxcial 0451




THE UNIVERSITY OF MANITOBA
FACUTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

A VISUAL QUERY LANGUAGE FOR A FEDERATION OF DATABASES

BY

MARTIN ANDREAS JACOBS

A Thesis/Practicum submitted to the Faculty of Graduate Studies of the University of Manitoba in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Martin Andreas Jacobs © 1996

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies
of this thesis/practicum, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis/practicum and
to lend or sell copies of the film, and to UNIVERSITY MICROFILMS INC. to publish an abstract of this
thesis/practicum..

This reproduction or copy of this thesis has been made available by authority of the copyright owner solely
for the purpose of private study and research, and may only be reproduced and copied as permitted by
copyright laws or with express written authorization from the copyright owner.



Abstract

This thesis presents a system for querying a federation of databases easy enough
to use so that even people with very limited computer knowledge can produce mean-
ingful queries. To achieve this goal a simple Visual Query Language (VQL) has been
designed.

Most VQLs simplify access to database systems by displaying the contents or
schema of the underlying databases graphically. The two most common flavours of
VQLs, diagrammatic and iconic, will be described, as well as arguments given, why
iconic languages are more suitable for novice users. Examples of different VQLs are
provided.

Several problems of federated database systems will be addressed. Among those
are schema level integration, instance level integration and the need for a common
data model. Some solutions to these problems are outlined.

A detailed description of the implemented system is given. The query language
designed for this system is implemented in the Hyper Text Markup Language (HTML)
which is generated based on user input. The HTML approach combines ease of use
with ease of programming.



Acknowledgments

There are many people that I would like to thank. First I would like to thank my
supervisor Dr. Ken Barker for having the basic idea for this thesis and being there
when it was necessary. I would also like to thank the members of my thesis committee
Dr. David Blight, Dr. Mark Giesbrecht, Dr. Peter Graham, and Dr. Ken Barker
for making the thesis defense possible at a very early date. Another ”Thank You” to
Len Dacombe and Dr. Clint Gibler of TRLabs for providing me with a great research
environment (and a steady supply of doughnuts). Thank you also to Glenda Stark
for reading and correcting the thesis. Other people that were helpful in the creation
and design of the program described in this thesis are Dr. Ken Ferens, Martin Meier
and Darryl Dueck. A miscellaneous thank you to Heather Hnatiuk, Dan Erickson and
Shamit Bal. A very big Thank You to my girl friend Christine Crisan for waiting
a very long time until the M.Sc. degree was finally achieved. Also to be thanked
in general are my parents. Finally a thank you to TR.Labs as an organization for
providing the necessary financial support.



Contents

1 Introduction 1
1.1 Thesis Organization . . . . . . . ... ... ... . ... .. ... ... 5

2 Visual Query Languages 6
2.1 Diagrammatic Query Languages . . . . .. ... ... ... ...... 8
2.1.1  Understanding the Concept of Interest . . . . ... ... ... 10

2.1.2 Query Formulation . . . ... ... ... .. ... . ... .. . 13

2.1.3 Query Assessment . . . . . .. .. ... ... ... 14

2.2 Iconic Query Languages . . .. ... ... ... ... ... ... ... 15
2.3 Examples of Visual Query Languages . . . .. ... .. ... ..... 19
231 QBD* ..o, 20

232 LOOKS . . ... 22

2.3.3 Hybrid Query Language . . .. .. ... ... ... ... ... 23

234 QBIC ... 24

235 SUPER .. ... ..., 27

236 DOODLE . .. ... ... .. . . 28

237 HTML . .. ... o 29

2.4 Comparison of a DQL with SQL . . . . . ... ... ... .. .. .. . 31

3 Non Local Data Repositories 33
3.1 Client-Server Computing . . . . .. .. .. .. ... ... ... .. .. 34
3.2 Distributed Database Management Systems . . . ... .. .. ... . 36
3.3 Federated Database Management Systems . . . . .. .. ... .... 41
3.4 The Integration of Disjoint Databases . . . . . .. ... . ... ... . 45
3.4.1 Schema Level Integration . . . . .. ... ... .. .. .. ... . 45

3.4.2 Instance Level Integration . . .. ... ... ... ... ... . 53

3.4.3 A Common Data Model . . .. ... ..... .. ... .. .. 56

3.5 Examples of Federated Database Management Systems . . . . . . . . 58

4 Implementation of the CDNA Project 62
4.1 Modularity . . ... ... 64
4.1.1 The System . . . . . .. . 64

4.1.2 TheDatabase . . . ... ... ... ... ... ... ... 65



4.1.3 The Common Data Model . . . . . . . . .. .. ... ... .. 66

4.1.4 Extensibility of the CDNA project . . ... ... ... ... . 68

415 The CDNA Schema.. . . . . ... .. ... ... .. ... ... 71

42 Easeof Use . . .. .. . . . . . .. . 72
4.2.1 User Interface . . . . . . . . .. ... ... ... ... ... .. 73

4.2.2 Database Entry . . . .. .. ... 75

4.2.3 Database Integration . . . . .. ... ... ... ... .. ... 76

424 UserQueries. . . . . . . . . ... 83

4.3 Scalability . . . .. .. 88

5 Conclusions and Future Work 89
5.1 Recommendations for Future Work . . . . . .. .. ... ... ... . 91

i



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
3.4
3.5

3.6

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9

A diagram conforming to the grid standard . . . . . . . ... .. ...
A diagram conforming to the line standard . . . . . .. .. ... ...
Initial screen of a DQL system . . . . . . . .. ... .. .. ..., ..
The schema of the personnel database ina DQL . . . . ... ... ..
Query formulation in DQL system . . . . . . . ... ... ... ....
Initial screen of an IQL system . . . . .. .. ... .. ... .....
Contents of the personnel database . . .. ... ... ... ... .. .
Query formulation in an IQL system . . . . .. .. ... . ... ...
Identification of main concept of interest in QBD*[SaS093] . . . . . .
Query formulation in QBD*[SaS093] . . .. ... ... .. ... ...
Three stages of icon examination in LOOKS [02+490] . . . ... ...
Example query in HQL[AnEn95] . .. ... ... . .. ... ... ..
Query formulation in QBICINBEF+93] . . . . ... .. ... .....
Result of the QBIC query[NBEF+93] . . . ... . ... ... .....

A client-server database system. . . . . .. .. ... ... ... ...
The three levels of the ANSI/SPARC architecture . . . . ... ... .
Four level schema architecture for distributed database systems

A distributed database system . . . .. . ... ... ... ... ...
Five level schema of a federated database system according to Sheth
and Larson[ShLa90] . . . . . . ... ... ... .. ... .. .. .. ..

A federated database system . . . . .. .. ... ... ... ... ...

A conceptual overview of the architecture of the CDNA system

An overview of the realized architecture of the CDNA system
Conceptual addition of a transaction manager to the CDNA system .
Schema of the CDNA system . . . .. ... ... ... ... .....
An overview of the interrelationships between different tables in the
CDNAsystem . . . . ... ... . ... .
Necessary inputs to integrate a new database into the system . . . . .
A suggestion for the placement of a product generated by the system
Selection of a parent foranewnode . . . . . ... ... . ... ... .
Creation ofanewnode . . . . . .. .. ... ... ... . .. ..., .

11l

41
44

63
64
70
71



4.11 The final result of a query

v



Chapter 1

Introduction

Ever since the advent of the first commercial computers in the early 1950s computers
have been used to process, store and retrieve information. Over time the techniques
for storing data evolved and developed. The earliest method of storing information
was the use of application specific storage files, which did not have a standard inter-
face, so they could only be accessed by the one special application they were developed
for.

The next step in information storage techniques was the introduction of databases.
Databases are specialized applications that store information independent of any par-
ticular application program. They have a well defined interface through which ap-
plications can store or retrieve information. The network model was one of the first
data models used in databases. It stores the relationships that exist between the
information explicitly. This means that only relationships that are predefined can be

extracted from the system. The relationships between the data are of a form where



one record type “owns” another record type. For example the record type “student”
owns the record type “course”, which models a student taking a particular course.
The hierarchical model is a subset of the network model and emerged at about the
same time. In contrast to the network model, it only allows a record type to be owned
by exactly one “parent” record type. The most popular data model today is the re-
lational model, which was developed next. It stores the information in tables that
aggregate related information, rather than as individual records. The main benefit of
this data model is that the relationships that exist between the information do not
have to be predefined. Through the Structured Query Language (SQL) it is possible
to associate the information in different tables without explicitly hard coding the
relationship in the database. Another benefit is that the access to information is less
dependent on the physical storage compared to the older models. The most recent
data model is the object-oriented model. This model more readily stores and manipu-
lates complex information than previous ones because of its properties of inheritance,
polymorphism and encapsulation.

All of these methods of data storage have a common disadvantage, in the way the
store and retrieve information. In all cases a special access method or query language
has to be utilized. If the database access is embedded in an application program, then
the programmer has to know the query language and the structure of the database. If
the query is posed directly to the database, in an ad-hoc query, then the end user has

to have substantial experience. In either case, training in the use of a query language



in general, and the structure of the database under consideration in particular, is
necessary. This poses a problem if the information contained in the database is to be
made available to the general public, where it cannot be expected that every person
trying to gain access to the information has the necessary background to formulate
correct queries.

Visual query languages (VQLs) have been developed to remedy this problem.
VQLs can be subdivided into two classes: graphical query languages and iconic query
languages. Of these two classes, iconic query languages are especially well suited for
novice users. Iconic languages allow the user to point-and-click on an icon representing
certain information, so more detailed data can be retrieved.

One example of where such a query language is needed is an information kiosk in
a shopping mall. Information kiosks are interactive displays, that guide the shopper
towards a store that carries an item of interest. In contrast to a conventional mall
directory, which can only display the location of the stores in the mall, an information
kiosk can also display an inventory of the merchandise each individual store has to
offer. To effectively use the kiosk access must be easy and intuitive and it must
provide up-to-date information on the merchandise available.

Accuracy of the data describing the merchandises’ availability and pricing, com-
bined with the stores’ reluctance to hand over their data to a central repository, rules
out a centralized approach. Instead the information must remain in each individual

store’s database. This presents the problem that while the information is retained



in different databases it should be accessible to the information kiosk user without
undue overhead or the need for substantial user expertise.

This problem can be decomposed into two subproblems. The first problem is
that of simplifying access to a database. The second is that of integrating multiple
independent databases into one coherent system, while maintaining the independence
of the databases. The first problem can be solved with the use of an iconic query
language, while the second problem can be overcome by building a federation of
databases. Sheth and Larson describe a federated database management system as :
“A collection of cooperating but autonomous component database systems”.

This thesis describes the Community Data Network Architecture (CDNA), which
is an approach to supporting user access to multiple data repositories. An example of
this approach is an information kiosk system which has been developed where the data
is not transferred to a single data repository, but remains at each store’s database.
The store databases therefore form a federation of databases. The central CDNA
system contains only a “directory” of the information available. The user interface is
simple, so an average computer-naive shopper having no database knowledge can use
it effectively. The user interface is a simple visual query language and the information
about the merchandise is structured in a hierarchical fashion, so the user is first
presented with a very general selection of product categories. Selecting any of these
categories yields more detailed information about the categories. The information

about an actual product is retrieved from the store databases.



1.1 Thesis Organization

The thesis is organized in the following manner:

e Chapter 2 introduces visual query languages. It begins by describing graphical
query languages, which are more suitable for the experienced user, since they
manipulate the schema of the database. The chapter also describes iconic query
languages, which are more useful to inexperienced and naive users, since the
concepts contained in the database are represented by familiar small images.

Finally some examples of visual query languages are given.

e Chapter 3 outlines the problems encountered in the construction of a feder-
ation of databases. It describes schema level integration as well as instance
level integration. It also outlines the need for a common data model to have a

common representation of the data present in the federated database system.

e Chapter 4 describes the implementation of the CDNA system. This includes
the development of a quasi iconic query language, and a method of support
for the construction of a federation of databases, based on relational databases.
The user interface is based on the Hyper Text Markup Language (HTML). This
makes the CDNA system portable from one shopping mall like application to

another and scalable to a virtual mall on the Internet.

e Chapter 5 contains concluding remarks and suggestions for future extensions

of the CDNA project.



Chapter 2

Visual Query Languages

The trend in operating systems is to use graphical user interfaces (GUIs) because
they are more intuitive to both novice and expert users. GUIs present the user with
choices in a pictorial form thereby increasing ease of use. Most text based systems on
the other hand require users to memorize complex commands that must be carefully
entered to avoid errors.

Traditional database query languages operate without a GUI. They are text based
and not easily accessible to the uninitiated. An example is SQL which was designed
to be a user friendly query language used by end-users to directly access database
management systems (DBMS). While it is structured and fairly easy to learn for
technical users, it is not intuitive to novice database users. There are many reasons
for this. One is the need to memorize the commands of the query language. Another
reason is that the structure of the database has to be known in advance. Structural

knowledge includes table names and column names in the database and their inter-

6



relationship between the different tables, including foreign keys. This requirement to
know the exact database structure presents a problem for expert users because of the
database’s complexity, that is further compounded for novice or naive users.

Visual Query Languages (VQL), as described in depth by Batini, et al. [BCCL91],
try to overcome some of these problems. VQLs can be subdivided into several different
classes. One is the class of diagrammatic query languages. These query languages
represent the schema, or logical structure, of the database under consideration using
diagrams. An example of these kinds of diagrams is the Entity-Relationship (E-R)
diagram, as described by McFadden and Hoffer [McHo91].

E-R diagrams are often used to model relational databases. In an E-R diagram
database entities are visualized with boxes, while the relationships among entities are
shown as diamonds. These are connected through lines that show how the entities
and relationships are related to each other.

Other forms of visual query languages include iconic languages. Here, the concepts
of interest, are shown in the form of icons, small pictures that capture and symbolize
a specific abstract idea or concrete entity.

Both approaches to visual query languages are described in more detail in the fol-
lowing sections. Additional examples are provided for these query languages. Finally,

a comparison between SQL and diagrammatic query languages is presented.



2.1 Diagrammatic Query Languages

As with all visual query languages, the main goal of diagrammatic query languages
(DQLs) is to make accessing a database easier for the user. In this section, first
the visual representation of the database is described, then the mechanisms of query
formulation are discussed and finally the suitability of diagrammatic query languages
for different classes of users is outlined.

Diagrammatic query languages usually display the database schema using a dia-
gram. This makes complex schemas much more accessible to the user. The visual-
ization is achieved by assigning a limited set of geometrical figures to the different
components of the database. As mentioned above, the E-R diagram is a good example
of this, where only rectangles, diamonds, lines and circles are used. The number of
geometric figures should be limited so that the user is not overwhelmed. Other pos-
sibilities for representing the database include the visualization of the actual content
of the tables in contrast to the schema of the database.

There are two slightly different representations used to display geometric figures
on the screen. One is the grid standard, where the lines, connecting different concepts
are allowed to have corners in them. Figure 2.1 is an example of a diagram which
conforms to the grid standard. The advantage of this representation is that it is very
compact and can fit many concepts in a limited area. The disadvantage is that more
concepts make it difficult to differentiate concepts, especially if the lines connecting

the concepts have many corners in them. Therefore the straight line standard seems



Figure 2.1: A diagram conforming to the grid standard

more appropriate. Figure 2.2 depicts a line standard diagram. Another important

I

Figure 2.2: A diagram conforming to the line standard

aspect is the reduction of line crossings. It enhances diagram readability so it is easier
to distinguish which concepts relate.

Queries are formulated through pointing and clicking with a mouse. A user clicks
on a concept of interest to examine it more closely. For example in a relational
database a concept can be a table. Query formulation for diagrammatic languages
can be thought of as a three step process. The first step is to understand the concept
of interest, the second step is the actual query formulation, and finally the query is

tested to ensure the results are those the user desires.



2.1.1 Understanding the Concept of Interest

The process of understanding the concept of interest can be done in different ways.
One possibility is to take a top-down approach. Here, the user selects a high-level
concept of interest in the database. After a high-level concept has been chosen, it is
further examined. For example, the examination can be based on finding out which
columns in the table are of interest. Finally the rows are selected. Each time a
selection is made, the process zooms in on the final goal. The top-down approach
is really a method of iterative refinement, where, with each iteration, the user gets
closer to the final goal of the query.

Another possibility is to use selective zooming. Here too the concepts that the
user is interested in are zoomed in on, but other concepts remain visible on the screen
but minimized. The advantage is that the user is still shown the context in which
the query is being formulated, while avoiding overcrowding on the screen.

The hierarchical zoom is yet another approach to database querying. Here different
concepts of interest can be looked at with varying degrees of zooming incrementally
increasing the degree of detail. »For example in object-oriented databases, the user
might be examining one instance of an object while looking at the type structure of
a different class.

An example of the top-down approach is presented in Figures 2.3, 2.4, and 2.5.
The query that the user wants to pose on the Database Management System (DBMS)

is: “What are the names of the employees working on projects that have a deadline

10



Personnel M

Figure 2.3: Initial screen of a DQL system

receives

Person Benefits

Project
has
ordered Customer

Figure 2.4: The schema of the personnel database in a DQL

of May 15, 1996 7”.

Figure 2.3 shows the initial graphical representation of the DBMS. There are two
databases in the DBMS, one dealing with Personnel data and the other containing
data on the inventory of the company. Since the user is interested in employee data
the personnel database is clicked on. The user is then presented with a high level
representation of the contents of the Personnel database (see Figure 2.4). Since the
user is interested in names of employees working on a certain Project, this part of

the database is selected (see Figure 2.5). This diagram contains the necessary detail

11



EnyZgeS

\ 4

|
2 &

Person

Project

Figure 2.5: Query formulation in DQL system

to pose the query that answers the user’s question. To obtain the desired result,
the Deadline attribute of the project relation is chosen, as well as the relationship
between projecﬁ and person, in addition to the Name attribute in the person relation.
Finally, the user supplies the system with the deadline of interest.

Another way of finding the concept of interest, instead of the top-down approach
outlined above, is to browse the graphical representation of the database. Browsing is
appropriate when users have little knowledge about a database and have to familiarize
themselves with the concepts and structure of the database. Since they are not
familiar with the database, these users usually do not have a predetermined goal, so
they have to be provided with a method of exploring the different concepts and their
relationships. As with the top-down approach, there are several different strategies

for browsing. Intensional browsing on the database schema shows the user how the

12



different concepts are interrelated. An example from relational databases is showing
the user which tables have foreign keys into other tables. Another kind of browsing
involves inspecting the actual contents of the database. Here the user can examine
the different concepts more closely. Finally, there is the possibility of mixing both
kinds of browsing, so the user first browses the schema of the database and then when
an interesting concept has been located, examines the content of that concept.

The difference between the two approaches is that in the top-down approach
the user has a clear understanding of what type of information is desired, and conse-
quently tries to locate this information immediately. With browsing, the user explores

more concepts and their connections to locate the information of interest.

2.1.2 Query Formulation

After the concept of interest has been located, either through the top-down approach
or through browsing, the query itself must be formulated. Here again several mecha-
nisms exist.

The first is to specify the query in a top-down fashion. This means that the user
first locates the concept of interest and then narrows down to the exact instances of
interest. For example, the rows of a table in a relational environment, can be selected
by pointing and clicking.

Another possibility is to formulate a query in a bottom-up fashion. The user

creates query libraries that form the lowest level of the query. These libraries are

13



reused whenever the query is issued. In effect the user only has to choose which
concepts to pose a query on and let the query library generate the appropriate low
level queries. Other strategies for formulating a query are closely related to browsing
while finding the concept of interest. The us\er specifies a concept of interest and uses
it as a starting point to relate other concepts to it.

Finally, it is also possible to combine different forms of query formulation. An
example would be the combination of the top-down and bottom-up approaches. The
user first zooms in on the concept or instances of concepts of interest and then invokes

one of the previously created query libraries.

2.1.3 Query Assessment

The final step of the three step process of constructing a query for diagrammatic
languages is to determine whether the query generated is correct and does what is
desired. This can be done by translating the query, given that a relational database
1s being queried, into SQL, which is then inspected by the user. This is only useful
if the user knows SQL so the system designer would make use of this approach. A
more user {riendly approach for the testing stage is to translate the query into natural
language. Here the query system reformulates the diagram into an English sentence
stating the names of the tables and columns involved.

Diagrammatic query languages are more directed at the expert user. The reason

for this is that diagrammatic query languages work on the database schema predom-

14



inantly. Thus this class of visual query languages is not suitable for the Community

Data Network (CDNA) project.

2.2  Iconic Query Languages

As with diagrammatic languages, iconic query languages (IQL) are designed to sim-
plify the database querying process. Many similarities exist between the two visual
querying strategies. The differences that exist between the strategies will be described
in this section.

Iconic query languages, in contrast to diagrammatic query languages, usually do
not display the database schema, but rather the actual data values. The icons are
visual symbols of the entity or idea they represent. An example would be an icon
depicting a person, which represents a personnel record in a company’s database. The
user clicks on this icon and is provided with additional icons, representing different
levels of employees and the actions that can be performed on their records.

Understanding the concept of interest in iconic languages is mostly achieved
through browsing. Here browsing does not mean browsing the schema but brows-
ing the available data. One data item might lead to another data item. In the
example with the personnel records, the record of a specific employee might lead to
another record representing the employee’s spouse. This record in turn might lead to
yet another record representing their child, for example. In this fashion, it is possible

to give the user suggestions for a non-goal directed search when the user is not sure

15



what is needed.

Queries in iconic languages are usually formulated by associating the icon of the
concept of interest with an icon representing an action that is supposed to be carried
out on the concept of interest. By way of example, a personnel record might be
selected and then an icon representing “delete” might be selected. This permits the
employee record to be deleted from the database. The icon for the action “delete”
might be depicted by a trash can or a shredder which are natural representations of
similar activities in the user’s physical environment.

The main difficulty with iconic query languages is finding icons that are generally
understandable. It is very difficult to find iconic representations that carry the same
meaning for all users without further explanation. Even for concrete objects it might
be difficult to find a self-explanatory icon. The reason is that the users may not be
familiar with the object represented by the icon. For example, the icon can have a
clear visual representation of a Manila folder on it, but it will not be understandable
to a user who is not familiar with this way of organizing sheets of paper.

The first principle for creating meaningful icons is to draw ideas from an envi-
ronment surrounding the intended user. For a database in an office environment this
might be office tools. Thus a shredder can be used to represent deleting instances
from the database, a Manila folder can represent the aggregation of certain instances
of the database, and so forth.

Other ways of making the icons more meaningful include the use of special colours

16



and/or highlighting parts of the icon. This way the user’s attention can be directed
towards certain icons. They can be used, for example, to inform the user that the
status of a query has changed from processing to completed.

Finally, by combining icons with descriptive text, they become much more under-
standable. Thus, the user has a character based reminder of what the icon stands
for. The disadvantage of this approach is that, the user must be at least rudimen-
tarily literate. This can pose a problem in certain circumstances, as for example in
a shopping mall environment, where all prospective customers must be able to use
the system. Also, once text is introduced to the system it becomes more culturally
dependent than with icons. If the system is exported to a different country the text
describing the icons has to be translated.

Iconic languages are aimed at a different class of users than diagrammatic query
languages. Iconic languages are more suited to the casual user who does not have any
training in using databases. For these users the language and its functionality have
to be immediately obvious. Since these users usually do not specify very complex
queries, it is acceptable that iconic languages sacrifice some expressiveness for ease of

use.

Personnel  Inventory

Figure 2.6: Initial screen of an IQL system

17



Benefits

Project Customer

Figure 2.7: Contents of the personnel database

An example of an iconic query is shown in Figures 2.6, 2.7 and 2.8. Both the
database and the query are the same as with the example presented for diagrammatic
query languages. The query is again: “What are the names of the employees working
on projects that have a deadline of May 15, 1996 ?”.

The user is first presented with the content of the DBMS. Figure 2.6 shows that
there are two databases to choose from. Since the user is interested in data on
certain employees, the Personnel icon will be chosen. After the user clicks on the
icon representing Personnel, the content of this database will be displayed. There
are four tables in this database, a table on people in the organization, a table on the
benefits these people receive, a table on the projects that the employees work on, and
finally a table on the project’s customers.

The query asks for the the names of employees, so the user will select the Person
icon, as well as the project icon. Then a text dialog box will appear, in which the
user will have to type in the date of the deadline. As well the user has to mark which

attributes of the selected tables are of interest. This is shown in Figure 2.8. The

18



// Person
7
2 : ID
,’7’,2 S Name X
N Benefits Office

/ Project

: ID
/5 Name

Project Customer Deadline  15/05/96

Figure 2.8: Query formulation in an IQL system

result of the query will also be presented in a textual form, stating the names of the

employees working on projects whose deadline is on May 15, 1996.

2.3 Examples of Visual Query Languages

In this section several different visual query languages will be briefly described. The
first query system to be described is QBD*, which is a diagrammatic query language
that can store queries in a query database. The second system is LOOKS, a user
interface generator for the object-oriented database system O,. HQL, a hybrid query
language whose main concept is to restrict the visual interaction to more complex
queries, is presented, as well as QBIC, a system for querying image databases. Finally
the Hyper Text Markup Language (HTML), the language in which World Wide Web
pages are written, will be presented. HTML can be used as a special form of an iconic
query language. The queries that it allows cannot be as complex as a full featured

iconic query language, but it is also easier to use, as fewer choices can be made by

19



the user.

2.3.1 QBD*

173

Figure 2.9: Identification of main concept of interest in QBD*[SaS093]

Query by Diagram (QBD*) described by Santucci and Sottile [SaS093] is a diagram-
matic query system. It is based on a relational database and uses the E-R diagram of
the database schema as the database’s graphical representation. The system is fully
visual so that the need for the user to type in commands on the keyboard is reduced
greatly.

The concept of interest is found through top-down browsing as described in Sec-
tion 2.1. The user zooms in on the part of the schema that contains the data of

interest.

20



e’ [ [ | (@8[&a] JeJeo] [ T[771 1
BRIDGE ]
4| Person o >]>= <[] <] STATE A
SURNAME S_NAME
NAME / S_INHABI
FISCAL_C
DRIV_LIC
DATE_DIR
P
1] y ]
T STATE
| PR
<q] 1= |

Figure 2.10: Query formulation in QBD*[SaS093]

Once the concept of interest has been located, it can be further refined so that
only particular instances of this concept participate in the query. These particular
instances can then be related to other concepts by connecting the concepts through
edges. Finally the results of the query specification can be stored in a library so that
they can be reused.

Figures 2.9 and 2.10 show an example query in QBD*. After the main concept
of interest has been identified, a second concept is selected, and a condition for the
query is speciﬁed. In Figure 2.9 the selection of the concepts PERSON and STATE is
shown. The specification of the condition is shown in Figure 2.10. In SQL, it could be

specified as select * from PERSON, STATE where PERSON.NAME = STATE.S_NAME.

21



2.3.2 LOOKS

LOOKS is a user interface generator used to build visual query interfaces for the
object-oriented database O,[02+90]. The interfaces generated by LOOKS act very
much like iconic languages, even though they are not purely iconic. The generated
interfaces also make extensive use of character based explanation to make the icons
more understandable.

The user finds the concept of interest by browsing the available icons. Each icon
represents a certain object in the database. A mouse click on one of the icons reveals
more information on the concept represented by that icon. Associated with each icon
are the methods that can be invoked on the objects. This defines the results of the
mouse clicks.

The query is formulated by associating icons with each other, or through text
input when desirable. This might be used when restricting the range of a query to
an age group in a personnel database. Other possibilities that LOOKS provides are
cut, copy, paste and create operations. For example if, a user wants to enter a new
employee into the personnel data structure, an icon for that new employee, will be
pasted onto the personnel icon after its creation. These operations are restricted by
the methods associated with the icon, so it would be impossible to paste an item
belonging to an inventory data structure into a personnel structure.

LOOKS does not provide a specific facility for testing the correctness of the query

that was formulated. The user is expected to know whether the results obtained

22



correspond to the needs.

T ES &
ritter
name Ritter Hotel
address - ritter-addrass
struet {Via del Corso
clty rORE
nane Roma
nap roma-nap
3 =X
pitter
name Ritter Hotel : hatels Oiritter|Obiarre|
address rittor-address £
= B = =
facilitliss L swimming pool Dbar ) facilities D swimming pool Hbar
stars stars
rate 100. 000 {rate 100. 000

Figure 2.11: Three stages of icon examination in LOOKS [02+90]

Figure 2.11 illustrates iconic exploration using LOOKS. The icon represents a
hotel object that can be examined at three different stages. Each of these stages

yields more information about the hotel.

2.3.3 Hybrid Query Language

Andries and Engels [AnEn95] describe the Hybrid Query Language (HQL), which
addresses query language problems that arise when queries become too complex to
express graphically. This directly contradicts the reason for developing visual query
languages which is to simplify user interaction with the database.

HQL is a query language which offers diagrammatic and textual formulation of

23



queries. The capabilities of the textual query language remain but are supplemented
with visual querying. For complex queries the user can switch at any point between
visual and character based querying. It is not possible to specify very basic operations
like aggregate functions graphically so these operations must be typed. The diagram-
matic query language used in HQL is based on an extension of the E-R diagram. This
extension allows the E-R diagram to contain, among other things, specializations and
generalizations.

Figure 2.12 shows an example query in HQL. The user navigates the E-R diagram
of the underlying database until a concept of interest is reached. The user selects this
concept of inferest and copies it to the bottom query window, where the constraints

for the query are entered.

2.3.4 QBIC

Query By Image Content (QBIC) is described by Niblavk, et al[NBEF+93]. It is
a visual strategy that is totally different from the other strategies outlined in this
chapter. While the other strategies are mainly concerned with a visual representation
of the underlying database schema (the diagrammatic languages), or with a visual
representation of the database instances of the database (the iconic languages); QBIC
1s a visual query language in the truest sense of the word. QBIC is a query system
that allows image retrieval in a database based on the colour, shape or texture of

that image. QBIC tries to overcome the inadequacies of current large scale image

24



rogran Diag

Select

Move
Copy
&
Paste

Undo

[SURFER surfs_on_lake LAKE

Redo

Delete

Yar QGass
Attr

dass| Insert
+— Attr

- Select

Where

Figure 2.12: Example query in HQL[AnEn95]

databases, where the only way of retrieving an image of interest is based on the
textual description of the image that is stored alongside it. For smaller scale image
databases the authors recommend the use of thumbnail images for selecting a picture.
In contrast to other querying systems, QBIC does not provide a definitive answer,
but a range of images that might fit the current query, so the user has the final choice

as to which image best fits the query.

25



The system consists of two parts. The first is the database population part, while
the second is concerned with the formulation of a query. During database population
the user can highlight certain parts of the image to be subsequently queried. There
can be multiple regions highlighted for each image. For each highlighted area, their
shape, texture and colour scheme will be analyzed and stored with the image. In the
querying part of the system, it is possible to specify shapes, textures and colouring
schemes that should be present in the retrieved images. Each of the conditions can be
used alone or in conjunction with each other. It is, for example, possible to request
an image that contains a certain shape and a certain colour. To specify shapes that
should be present in the retrieved images, a user can sketch a shape using a mouse
or other input device. A colour picker is provided to select the desired colours.
Finally, these inputs are matched against the images in the database. They can
either be matched against the complete image or against the regions highlighted in

the database population part.

Figure 2.13: Query formulation in QBIC[NBEF+93]

An example of the query by sketch part of the system is shown in Figure 2.13
and 2.14. For this query, a shape that should be present in the desired images is
sketched. Figure 2.13 shows a sketch that a user entered.

26



|

Figure 2.14: Result of the QBIC query[NBEF+93]

Figure 2.14 shows the result of the query. The images that are returned are those
images in the database that most closely match the sketch entered by the user, with

the best match in the top left hand corner.

2.3.5 SUPER

The SUPER visual querying facility by Auddino,et al.[AAD‘D-i—Q‘Z] has a diagram-
matic query language, based on an extended E-R diagram model (ERC+). The main
benefit of the system is the modularity of its implementation.

The ERC+ is extended to encompass object-orientedness. In addition to the usual
projection and selection operators, ERC+ supports generalization and specialization

as well as object identity and complex objects.



The SUPER system is designed to be very modular. It has a kernel, which is a
layer between the database accessed and the display facility. The kernel can access
either relational or object-oriented databases. On top of the kernel a display facility
for both UNIX and a Macintosh has been implemented. The display facility consists
of several different tools, including the design editor and the query editor. With the
design editor it is possible to create a new database schema. In the query editor new
queries for the database can be created.

The query editor consists of several different windows. One window is for the
display of the E-R diagram. The query editor does not allow browsing of the schema,
it presents the complete schema to the user. The user copies the concepts of interest
to a query composition window. The instances of interest are then selected from the

concepts, which have been selected in the previous step.

2.3.6 DOODLE

DOODLE by Cruz [Cruz92] is a visual query language for object-oriented database.
Its most distinguishing feature is its extensibility. It allows the users to adapt the
visual representation of the data to their individual needs, although some represen-
tations for the data are already predefined. These representations can be modified
using an object-oriented language, or completely overwritten with different data rep-
resentations.

To overwrite the predefined visualizations, the user has to define a mapping be-

28



tween the objects in the database and their visual representation. These modifications
can be done in a graphical fashion.

F-Logic [Cruz92], a language for reasoning about objects, is used as a theoretical
representation of the system. The visual representatioﬁ, both the already imple-
mented features, as well as the representations given by the user are translated into

F-Logic.

2.3.7 HTML

Although the Hypertext Markup Language (HTML) [BeCo95], is not a visual query
language by itself, it creates a user interface, which can be used to create query-
ing tools that act much like the iconic languages described above. Actions can be
associated with icons in HTML.

HTML is a simplified version of the page description language SGML [Gold90].
HTML allows the programmer to specify the general characteristics of the page. It
1s possible, for example, to format the text on the page in paragraphs and to create
headings for each paragraph. Most of the final formating is done by the HTML
browser so it is impossible to predict the exact appearance of a page when creating
HTML code. This browser (eg. Netscape, Mosaic, or Arena) is an application that
interprets the HTML and displays it as pages. The most important feature of HTML
is that it is possible to link certain words or phrases in a page to other HTML pages.

The user clicks with the mouse on these phrases and a new HTML page is retrieved.

29



Through the use of the HyperTezt Transfer Protocol (HTTP) it is possible not only
to create a link to a page that resides in the same computer but to one on any computer
on a network that runs an HTTP daemon (HTTPd). By linking together many pages
on computers connected via the Internet, the World Wide Web (WWW)[BeCa92] is
formed.

Through the growing popularity of the Internet and the WWW in particular many
users already work with HTML based systems. Users who are not familiar with the
WWW concept, will find the interface very intuitive. The only action that users can
take is to click the mouse on a certain phrase of interest, and they will be presented
with material related to the item.

So far WWW pages, as described in this section, have been assumed to be static
pages created by a human progfammer. Another approach creates WWW pages using
the Common Gateway Interface (CGI)[CGI96, BeCa92]. The CGI permits users to
execute programs through a mouse click on a WWW page. CGI facilitates WWW
pages creation “on the fly” by an application that runs on the same server as the
HTTPd.

One of the applications that could be provided by the CGI is a front-end to a
text based database. This enables the user to interact with the database through
simple pointing and clicking on phrases or words in the generated pages. Another
feature of HTML is that not only can words be linked to other pages or program

executions through the CGI, but graphics can be linked as well. The combination

30



of these two features (CGI and links through graphics) makes an HTML-based user
interface very similar to the iconic querying systems described above. The advantage
of an HTML-based user interface is that it is very easy to use because the user only

chooses whether to click on an icon or not.

2.4 Comparison of a DQL with SQL

A study by Catarci and Santucci [CaSa95] has shown that both novice and expert
users benefit from the use of visual query languages. SQL and QBD* were compared
for their ease of use.

The study measured both the effectiveness of the query language, and the effi-
ciency achieved while using a particular style of query facility. The effectiveness was
measured by the accuracy with which the users managed to formulate the queries nec-
essary to answer the test questions. The efficiency measures how much time the users
needed, on average, to complete a certain task. Other less tangible differences such
as the level of users’ contentedness with a specific query system were not considered.

In the study, three different classes of users were selected: novice, intermediate,
and expert. The users were differentiated by whether they had no prior knowl-
edge of computer science whatsoever, programming experience but no knowledge of
databases, or whether they had a good knowledge of databases. The users were
subdivided into two groups. One group had to solve problems in SQL, while the

other group solved problems in QBD*. Each group was taught the respective query

31



language extensively before the experiment so that any differences in the levels of
effectiveness or efficiency could not result from lack of preparedness.

In the experiment itself three categories of questions, with increasing levels of dif-
ficulties, were prepared. Novice users were only expected to solve the easiest category
of questions, intermediate users had to solve questions of easy and medium difficulty,
while expert users were asked to solve all three categories of questions. The level of
difficulty was measured by assigning a weight to each of the SQL constructs neces-
sary to solve the query. “Joins” were assigned the highest weight followed by nested
queries and so forth. The questions themselves were natural language descriptions
of problems that had to be solved. The descriptions were the same for both users of
SQL and QBD*.

The results of the experiment were that all levels of users can benefit from a
visual query language like QBD*. In both measures of effectiveness and efficiency,
users of QBD* surpassed the test candidates expressing the queries in SQL. Even
expert users expressing simple queries fared better using QBD* than using SQL. The
reason for this is that with a visual query language the user is freed from remembering
cumbersome details about the database, like the exact names of tables and columns

involved in the queries.

32



Chapter 3

Non Local Data Repositories

Traditionally enterprises had one mainframe-type computer. These computers were
accessed by terminals and all processing was done on the mainframe, since the ter-
minals had no processing power of their own. With the advent of PCs the situation
changed. Instead of using them as a mere replacement for terminals, the processing
power of these machines is utilized. The mainframe is used as a data repository, while
the data are either totally or partially processed by the PC. The advantage of this
client/server architecture,‘ where the PC is the client and the mainframe is the server,
is that the workload is shared. This reduces the need for costly mainframe upgrades.
Ideally, the mainframe can be completely replaced by a cheaper kind of machine, like
a high end workstation or a cluster of workstations.

If an enterprise is very large it will have regional headquarters or plants in different
parts of the country. It is advantageous to the enterprise if the data that is stored

at different locations is accessible throughout the organization. This is one of the

33



reasons for distributed databases. Anther reason is that reliability can be increased
through the distribution of the databases, since there is no single point of failure.
Both client-server computing and distributed database management systems are
briefly described in the subsequent sections. The main part of this chapter is the
description of federated database management systems (FDBMSs) and how disjoint
DBMSs can be integrated into FDBMSs. An FDBMS is a system that consists of
two or more independent DBMSs, which remain independent, but still cooperate to
give the user of the FDBMS the impression that a homogeneous system is accessed.

Finally two examples of FDBMSs are given.

3.1 Client-Server Computing

Client-server computing [Sinh92] means that the task of producing a certain result is
shared by different machines. Usually this task is shared between personal comput-
ers, which are relatively cheap and therefore on every employee’s desk, and a more
powerful, central machine. Different types of servers exist. For example database
servers only distribute data to thé clients and compute servers, may pre-process the
data in some way for the clients. The following discussion considers database servers
only.

The database resides on a central computer system, connected via a network to
the clients. The clients access the central system if they want to retrieve or update

data from the database. Figure 3.1 shows a schematic of the client/server model

34



I
IR

Figure 3.1: A client-server database system.

described. Machine A is the server and the other machines are the clients.

An example of client/server computing is described in the following way: The
user on machine D needs data to complete a task. Machine D then sends a request
to server A, this request will be in the server’s query language. After the server has
processed the query, the result is sent back to machine D, which processes it further
as specified by the user.

In a single database environment, the database is characterized by the three level
ANSI/SPARC schema, architecture as depicted in Figure 3.2. An explanation of this

can be found in Desai [Desa90]. The three levels of the architecture are:

35



e Internal Schema is the lowest level of abstraction in the database. It describes
the physical location of the data on the disks. This schema is needed to optimize
the data access speed on the disks. For example speed improverﬁents can be
made by clustering related data in close physical proximity, if it is often accessed

together.

e Conceptual Schema is the next highest level in the hierarchy. Its function is to
describe the data structure in the database and the relationships that the data
has with each other. The conceptual schema can be used to reason about the

data on a more abstract level.

o External Schema is a still higher abstraction of the database. It provides subsets
of the conceptual schema, customized for a specific user or group of users. The
external schema can be used to simplify reasoning about the database because

only the relevant details for a specific database use are presented.

This architecture can be extended for the case of distributed databases.

3.2 - Distributed Database Management Systems

In a distributed database management system (DDBMS)[0zVa91] there is no cen-
tral database, as in a client/server environment, the data is instead distributed
among all participating computer systems. This makes processing different than in

a client/server architecture. To make the architecture truly distributed, each partic-

36



External
Schema

External
Schema

Conceptual
Schema

Internai
Schema

Figure 3.2: The three levels of the ANSI/SPARC architecture

ipating site has to store part of thé database. This does not preclude the possibility
that the distributed database also has clients attached to it but this is not the central
characteristic. In this scenario all machines participating in the distributed database
can be collectively considered to constitute the server.

A DDBMS can be characterized by a four level schema architecture. Figure 3.3
shows such an architecture. In addition to the components of the three level schema
architecture used for a single database, a Global Conceptual Schema (GCS) is needed.
The GCS consists of the conceptual schemas of the component databases. It is an
integration of the local conceptual schemas and is used to reason about the collection
of data contained in all participating local databases. The external schemas provide
a simplification of the collection of databases which are integrated into a DDBMS.

Building a centralized database management system requires a data directory,

37



External External
Schema Schema

Global Conc.
Schema

Conceptual
Schema

Conceptual
Schema
internal
Schema

- Internal
Schema

Figure 3.3: Four level schema architecture for distributed database systems

containing information about the concrete database. It tells a stand-alone system
which part of a disk contains the required information. For a distributed system a
global data directory (GDD) is necessary. It provides the distributed database system

with information about which of its component databases contains the desired data

Both the distribution of data and the distribution of the GDD can be implemented
in diverse ways. The data can be fully replicated so that each site has its own copy of
the data, it can be non-replicated, so that each site has a distinct set of data, or it can
be partially replicated so that there is some degree of overlap between the contents

of the local databases at each site. Each of these different ways of distribution has its

33



advantages and disadvantages. The easiest to manage is a fully replicated or a non-
replicated database system. For the fully replicated system, updates to the database
have to be propagated to all sites, while updates for the non-replicated databases,
do not have to be propagated at all. For the partially replicated database, updates
have to be propagated only to some of the sites. The difficulty is to find an efficient
way to determine which sites require propagating of updates. The disadvantage of
non-replication is its lack of robustness because there is a single point of failure
in the system. Full replication wastes a lot of disk space and is not particularly
better than a non-distributed database. The increase in reliability offered by a fully
replicated distributed database over a non-distributed database can be achieved via
local replication. This can be the replication éf disks (disk mirroring) up to the
complete replication of the computer system (clustering).

Choices must be made about the placement of the GDD. The GDD can be stored
on a single site or it can be distributed. The problems with the distribution of the
GDD are the same as with the distribution of the data. A central GDD presents a
single point of failure, while a distributed GDD is more difficult to manage.

For a pictorial representation of one type of distributed database system see Fig-
ure 3.4. It is a distributed database with a central GDD, which acts as a server to
several PCs. A query might be issued at machine E. This query is first processed
by machine B, since it contains the GDD. By querying machine B, it is found that

machines A and C contain the data necessary to answer the query. After these sites

39



have been queried, the result is returned to machine E.

A

Data GDD Data

[
[

Data

Figure 3.4: A distributed database system

Another aspect of distributed databases is the heterogeneity of the systems that
participate in the database. For a distributed relational database system, heterogene-
ity poses significant problems, but for a distributed object base system, the problems
of heterogeneity are even more severe because different systems have to be able to

interpret the objects and run methods attached to the objects.

40



3.3 Federated Database Management Systems

A federated database is a collection of databases that were developed independently
but must subsequently cooperate while remaining relatively independent. Reasons
for this might be the merger of two companies whose databases now have to interact
so that management can make decisions based on the contents of both databases.
Joining the two distinct databases systems is necessary but it is too costly and time
intensive to build a new database containing data from both companies from the

ground up.

External
Schema

External
Schema

External
Schema

i
i
i

Federated
Schema

Federated
Schema

i
U

® 5
@

Export
Schema

Component
Schema

Component
Schema

Y

Local Local
Schema Schema
Component Component
DBMS DBMS

Figure 3.5: Five level schema of a federated database system according to Sheth and
Larson[ShLa90] :

41



Sheth and Larson[ShLa90] suggest that for a federated database the 3 level ANSI/SPARC
schema is not enough. Instead, they propose a 5 level schema as depicted in Figure 3.5.
The five levels are the local schema, the component schema, the ezport schema, the
federated schema and the external schema. Each will be described briefly below.

The local schema is the conceptual schema of the underlying database system as
defined in the ANSI/SPARC architecture. It describes the logical structure of the
database.

The component schema is derived by transforming a local schema into a common
data model. A common data model is a common representation of the different
schemas. Common data models will be further discussed later. The transformation
from a local schema to a component schema is achieved by a mapping function which
translates commands for the component schema to commands for the local schema.
Additionally, the results of the local schemas are transformed into the component
schema representation.

The ezport schema restricts access by the federation’s users to the data of the
component schema. This is necessary, as there might be situations where not all the
data in the local schema should be made public. The export schema is an easy way
to control access to the component schema.

The federated schema integrates the export schemas of different databases. The
federated schema is responsible for providing distribution information. Distribution

information is the knowledge about which of the underlying databases contain the

42



required information.

The external schema provides a restricted schema on the complete federation. The
external schema can be used to simplify the federation schema, or it can be used to
restrict the schema for certain users.

The databases participating in a federation can have very different data models.
While one database system might be constructed according to the hierarchical data
model another database might be relational. These systems have both differing query
languages and differing ways of presenting query results. To still be able to perform
queries in a consistent fashion on such divergent systems a common data model is
needed. The data model will act as an intermediate layer between the users of the
federation and the actual databases and queries will be translated into the appropriate
query languages and the results translated into a canonical form. The final goal is a
federation that appears as one single database to the user.

A GDD is needed when a federated database system is built so a query can be
directed at the appropriate component databases. One approach to accessing the
federated system as a single database is the use of a so called mediator stage as
described by Chakravarthy, et al. [CKTL93]. The mediator examines the query and
decides, based upon the entries in the GDD, which of the databases contains the
necessary data to satisfy the query. The mediator is also responsible for translating
the query from the common data model representation into the appropriate data

models and back.

43



Figure 3.6: A federated database system

Figure 3.6 is an example federation of databases. It consists of two disjoint
database systems, A and B. If a query to the system is issued by machine D, a
client to the federation, the GDD will be queried first. The GDD resides on machine
C. Based on the result of the query to the GDD, the query will have to be formed

appropriately for the target system. This query formulation is also done by system

C.

44



3.4 The Integration of Disjoint Databases

There are two levels of integration to be considered when trying to amalgamate two or
more independent databases into a federated database system, as described by Lim,
et al. [LSPR93]. The first level of integration is schema integration. Here the schemas
of the databases are aligned, so that the structure of the tables and the naming of
the columns is understood by the mediator stage. The second level of integration is
the integration of instances in the databases. This is necessary to determine if two
instances, occurring in the component databases, are actually referring to the same
or to different, real-world entities. Each of these two integration approaches will be

described in more detail in the following subsections.

3.4.1 Schema Level Integration

Schema level integration is the process by which the schemas, or logical descriptions,
of two or more databases are aligned so that it is possible to reason about the different
databases as if they were components of one, global database. During this process,
it 1s necessary to identify the common concepts, if they are present at all, in the
schemas of the participating databases. For example, a concept in the relational
model is an entity or a relationship between two entities. Concepts here do not
represent instances, whose integration will be described in the next section, but rather
a grouping of instances.

'The common concepts can be classified in several different ways [BaLN86]. The

45



concepts can be identical, in that two entities describe exactly the same collection
of real world objects with exactly the same attributes. The next possibility is that
two concepts are equivalent. Here there are different types of equivalence. There is
behavioural equivalence, which means that for each relation in one database there is a
relation in another database, that will produce the same answer for any given query.
Then there is mapping equivalence. This equivalence means that for relations in one
database there is one corresponding relation in another database. Another kind of
equivalence is transformational equivalence. In this case it is possible to obtain a
relation through a number of transformations from a relation in another database. If
two concepts do not fulfill the criteria for identity or equivalence then they can still be
compatible. This means that the two concepts are not directly contradictory to each
other. The last category that common concepts can fall into is that of incompatibility.
Here two concepts from different databases contradict each other.

Integrating the schemas of participating databases generally requires the four steps
described by Batini et al. [BaLN86]. These steps are pre-integration, comparison of
schemas, conforming the schemas, and merging and restructuring.

In the pre-integration step the schemas are analyzed and it is decided in which se-
quence the schemas are to be integrated. The sequence of integration can be handled
in a binary fashion, where two schemas are integrated at one time to form interme-
diate schemas, which in turn are integrated two at a time, until the final schema

emerges. Another possibility for binary integration is to integrate each new schema

46



with the existing intermediate schema. This method has the advantage that the
schemas, which are considered to be the most important, can be integrated first. An-
other possibility is to integrate the schemas in a non-binary fashion, as for example,
integrate all schemas in one step. The advantage of the binary methods is that the
complexity of integration is reduced, because only a limited number of concepts have
to be examined in each step. The disadvantage of the binary method, is that the
integration steps have to be repeated quite often. For the non-binary method there
are fewer integration steps involved but each step is more complex.

The comparison of schemas is the step after pre-integration. In this step all
conflicts that occur in the representation of the different schemas are found. It is
important to discover conflicts between the schemas, because only after the conflicts
have been removed is it possible to determine the equivalence between them. The
conflicts can be subdivided into two different classes: naming conflicts and structural
conflicts. Naming conflicts arise, because the schemas for the different databases are
created by different people, who refer to the same real world object by different names.
On the one hand there is the problem of homonyms; where the same term is used in
the schemas to refer to different objects. This can be solved by fully qualifying the
attribute or entity name by prefixing it with an identifier for the schema it comes
from. This way all objects with the same name in different schemas are uniquely
identified. Further, synonyms occur when two or more names are given to the same

object. This problem can only be found and solved through manual inspection of the

47

e,



schemas.

Structural conflicts are based on differences in modeling “real-world” entities when
the schemas were developed. There are four different kinds of structural conflicts to
be considered. The first is a type conflict, which occurs when different abstractions
are used to model the same real world object. An object could be modeled in one
schema as an entity and in another merely as an attribute. The next kind of conflict is
the dependency conflict. This means that the schemas differ in the way entities relate
to one another. An example is when one schema models a relationship as 1:1 while
another schema models the same relationship as m : n. Key conflicts must also be
considered. These occur when the schemas use different attributes, or even a differing
number of attributes as keys to an entity. Finally, there are behavioural conflicts.
These are conflicts that occur when schemas have differing insertion or deletion rules
assoclated with them. For example, this could mean that a certain attribute of an
entity might be left blank in one schema, while its value was mandatory in another
schema.

The third step in schema integration is conforming the schemas. In this step the
participating schemas are remodeled in such a way that they are easily integrated.
This means that conflicts identified in the previous steps are resolved. In the remod-
eling of the schemas, the concepts under consideration (i.e. entities and relationships)
are transformed to a common canonical representation. The goal of this step is to

arrive at a common schema representation for the participating schemas.

48



The last step in the schema integration process is merging and restructuring the
schemas by superimposing the common concepts. The resulting schema is restruc-
tured for instance by finding generalizations and subset relationships in the schema.
There are three qualities that the final schema should have: completeness, minimal-
ity and understandability. Completeness in the resultant schema is achieved among
other methods by finding subset relationships in the new schema. These relationships
can occur when one schema contains an entity that is a subset of an entity described
in another schema. For example, there could be a person entity in one schema, and
an employee entity in another schema. In this case, employee is clearly a subset of
person. Another method is a join between concepts in two schemas to produce a com-
mon sub-concept. Minimality refers to the desire to create a schema with the least
number of concepts possible. This is achieved by identifying and deleting redundant
relationships and entities from the schema. Finally, it is preferable to produce the
most understandable schema possible. This means that the graphical representation
of the resultant schema should be easy to read by a human analyst. The same prop-
erties that are described in the chapter on visual query languages with regards to
readability of a diagram apply here too.

Hammer, et al.[HaMS94] suggest a different approach to schema level integration.
They describe a system for the integration of object-oriented databases, which is less
geared towards producing a federation that is to be used by external users, but more

towards building a peer-to-peer federation, where participants in the federation in-

49



corporate parts of the federation into their local schemas. The integration of different
object-oriented databases is achieved with the help of a sharing advisor. The shar-
ing advisor has knowledge of all export schemas of the different component DBMSs.
It can be divided into four parts. These parts are registration, discovery, semantic
heterogeneity resolution, and unification. The registration part is responsible for ad-
mitting new databases into the federation. The discovery part is used to decide which
of the federation’s data to integrate with the local schema of the database joining the
federation. Semantic heterogeneity resolution resolves the differences in semantics
between the local schema and the data types of interest found by the discovery part.
The unification part finally integrates data of the federation into the local schema of
the component database.

The databases that want to participate in the federation make themselves known
to the federation in the registration part. They register the types that are in their
export schema. The registration part builds up a semantic dictionary describing the
registered types of the component databases. In the semantic dictionary, concept
hierarchies are built. A concept hierarchy contains related type information of the
registered types. If two types from different databases contain information about
a similar subject, a concept is formed that contains the attributes that both types
have in common, and the types form sub-concepts of the newly formed concept. The
system determines if a new type is similar to existing concepts by comparing it with

already registered concepts in a top down fashion (i.e. it compares it with the most

30



general concept first, if similarities are found with the descendents of that concept
and so forth until its place in the concept hierarchy has been found). User interaction
is required, if the registration part cannot determine by itself whether a type in a
newly added database is related to any of the concepts that are already present. The
similarity between the concepts is established by attribute names and types.

The discovery part of the sharing advisor is responsible for finding concepts of
interest that can be incorporated into the local schema of one of the component
databases participating in the federation. To find sﬁitable concepts to integrate,
Hammer, et al. define three types of relationships that the new concepts might
have with the data in the local schema. These types of relationships are similarity,
complementation and overlap. Similar concepts contain information that is related
to the information already present in the local schema. Similar concepts are found
by examining the semantic dictionary built up in the registration phase. All concepts
that are at the same level in the concept hierarchy and have the same ancestor as
a concept in the local schema are similar schemas. Complementary concepts are
those that contain additional information to the information already contained in the
concepts in the local schema. These concepts are found by examining the concept
hierarchy and choosing those concepts that have different attributes than a local
concept, but still having a common ancestor in the hierarchy. Overlapping concepts
have some attributes in common. These concepts can be found by examining all

descendents in the hierarchy and comparing them.

o1



After concepts have been discovered that are suitable for integration into the local
schema, the semantic differences between the attributes of the discovered concepts
and the attributes of the concepts in the local schema have to be resolved. This
is done in the semantic heterogeneity resolution (SHR) part of the sharing advisor.
To achieve this, there is a lexicon present in each of the component systems which
describes the relationships between the concepts present in the component system and
the concepts known to the federation through the registration part. The relationships
that can be specified are identity, equality, specialization, etc. The knowledge about
the relationships is provided by the semantic dictionary. With the help of the SHR
part of the sharing advisor it is now possible to find out more about concepts that
were discovered as similar and how they are related.

The unification part of the sharing advisor is responsible for the integration of
the newly discovered concepts into the local schema. The demands on the resultant
schema are, as described by Batini, et al. [BaLN86]: completeness, minimality and
understandability. To integrate a concept that is equivalent with one of the other
concepts already present in the local database, the new one is made a subtype of
the already present concept. This keeps all attributes that the two concepts have in
common, while the new subtype has the attributes that are not present in the local
concept but are present in the new concept. If a new concept is only related to the
local concept, then a new supertype is created that has the attributes that the two

concepts have in common. Both concepts will be descendents of the newly created

52



supertype and will retain the attributes that they do not have in common.

3.4.2 Instance Level Integration

After the schema level integration has been achieved, instance level integration may
be necessary. Several differenf methods to perform instance level integration are
described in [LSPR93]. The first possibility is the use of key equivalence. Here
instances in the component databases are assumed to be the same if the key values
in these component databases are the same. The problem with this approach is that
there can be situations in which the keys of the respective tables do not match, but
the instances in the tables still refer to the same real world entity. If the keys in
the tables are composite keys, then it possible that, even though one attribute of
the candidate keys matches, it still cannot be assumed with absolute certainty that
the relations refer to the same entity. A method that will always provide the correct
mapping between the two databases is user specified equivalence. Here the user or
integrator of the databases specifies the mapping between the keys of the different
tables in a separate table. The disadvantage of this method is that this table has to
be constructed manually.

Other possibilities described in [LSPR93] are probabilistic approaches. In these
approaches, the composite keys are considered equivalent even if only the components
that describe the same characteristic of an entity match. It must have been established

during the schema integration process, that these components describe the same

53



characteristic. For example, consider two tables, one an employee table, the other
a customer table. The employee table’s composite key is defined by the person’s
name and employee number. For the customer table, the key is defined by a name
and a customer number. If during schema integration it has been determined that
the two name columns of the composite key describe the same characteristic, (i.e.
a person’s name) then probabilistic key equivalence will define the relations in the
two tables to be equivalent since they have a common name. Probabilistic attribute
equivalence works in a similar fashion, only in this case not only the key attributes
are considered, but all attributes that describe the same characteristic are taken into
consideration. Both of these probabilistic methods have the disadvantage that they
are not guaranteed to produce correct results. It is quite possible that specific keys
or attributes have the same value but still do not describe the same entity.

For the method that Lim, et al. [LSPR93] suggest, they first define the notion of an
extended key (Kgxr). The extendedr key is the minimal key that can uniquely identify
the described entity in the federated database. Usually this extended key is the union
of the keys of the tables which describe the entity. Furthermore, they develop the
idea of an instance level functional dependency (ILFD). The ILFD specifies that an
instance in one table is dependent on an attribute of an instance in another table.
This is best explained with an example.

Table 3.2 does not contain the attribute specialty as Table 3.1 does. If it is

known that Football Shoes are a product used for a sporting event rather than sold

o4



name specialty street

JoeBobs | Sporting Goods | Portage Ave.

JoeBobs Flectronics Main St.

Table 3.1: Table R

name items_sold city

JoeBobs | Football Shoes | Winnipeg

Table 3.2: Table S

in an electronics store, then it can be inferred that the JoeBobs store in Table 3.1 is
the same as the JoeBobs store in Table 3.2. In this way the tuple in Table 3.1 has an
ILFD on the tuple in Table 3.2 based on the items_sold attribute.

To identify which tuples are equivalent Lim, et al. suggest extending the partici-
pating table by the attributes of Kgx7 that are not present in the respective tables.
In the example, Table 3.1 is to be extended by Kgx7_s, or the attribute items_sold,
and Table 3.2 is extended by Kgxr_pg or the attribute specialty with the values of
these attributes being NULL. NoW each table has been extended to have Kgxr as the
key. The next step is to fill in the columns for the newly created attributes. These
are derived by applying the ILFD to the tuples. Now each tuple that agrees in Kgxr
is deemed equivalent. This process is used for entity identification only, so that the
original tables remain unchanged.

While this instance level integration approach has the advantage over the proba-

35



bilistic approaches in that it guarantees correct results, it still has the disadvantage
that it is based on the semantics of the contents of the component databases. There-

fore, it is also very time consuming since the ILFD have to be determined manually.

3.4.3 A Common Data Model

In the previous sections a need for a common data representation has been established.
To reiterate, a common data model is necessary to overcome the possible divergence
between systems that are to be integrated. There are a multitude of different data
models in existence. The most common ones are the hierarchical model, employed
by such DBMS as IBM’s IMS, and the relational model, used by DBMS like DB/2,
ORACLE and Sybase. A data model just beginning to emerge in the market place is
the object based model [KiLo89]. It has many advantages over both the hierarchical
and the relational model. It is capable of capturing very complex data much more
easily and modeling it more naturally than the others. Such data exist in geographic
information systems and CAD systems [BiOr94](among others). In addition to being
able to model these complex kinds of data, it is also possible to model the same data
structures that exist in relational databases using an object model. Thus an object
based model is a superset of the relational and hierarchical models.

The capability to form a superset of many data models is important if several het-
erogeneous data models are to be integrated. With an object based model it becomes

possible to provide consistent access to both a DBMS based on the relational model,

o6



as well as an object-oriented DBMS, since an object model is able to capture the
features of both data models. A relational model on the other hand is not capable of
modeling an object based data model without substantial difficulties and extensions.

One data model that might be used as a common data model for a federation
of databases is the RISC object model described by Manola, et al. [MaHe93]. It is
designed é,s a common object model that can be used to map one object model to
another. It has only a few fundamental building blocks upon which the mapping can
be based, hence the name RISC in reference to reduced instruction set computers.
The components of the model are the object state, object methods, object interfaces,
object identity, types, and object construction. Some of these will be summarized
below.

Objects have a state in most object models. This state is essentially the private-
memory of the objects. In the RISC model this state is represented through another
object, which in turn has another object to represent its own state. This recursion
ends when the state is of some primitive type defined in the model.

Methods are the functions that manipulate the objects. For the RISC model the
methods are objects themselves. This feature gives them greater flexibility. Each has
an invoke operation in its behaviour so that it can be called to perform its function.

The object interface describes how an object can communicate with other ob jects
and methods in the system. The RISC object model does not have predetermined

interfaces for the objects. The interfaces will be modeled after the interfaces of the

37



object models that are to be integrated. Therefore, it is left to the user of the model
to determine which style of object interface fits best.

New objects are created in some object based systems by explicit object construc-
tors (and deleted by object destructors). Object construction in the RISC model is
also achieved via a new() method that creates objects for the primitive objects (e.g.

the object state) that make up a RISC object.

3.5 Examples of Federated Database Management

Systems

This section focuses on work described in the literature which is similar to the work
proposed in this thesis. The first approach discussed is described [CKTL93], which
outlines an integration approach for medical databases at the University of Florida.
Another system similar to what is being proposedvin this thesis is presented in
[Meda95]. It is a graphical querying facility for a multi-media news server.

The challenge described in [CKTL93] is to create a federated multi-media database
for medical research. The federation consists of three component databases, that
contain very different kinds of data. One database stores the patients records and
histories; the next database holds X-rays in digital format; while the last participating
database is a general imaging database. The limitation of the initial setup was that

these databases did not cooperate. They had to be queried separately to retrieve a

58



patient’s medical history and the accompanying X-rays and other diagnostic images.
The authors identified the requirements for a system that proposes to unify these
three systems as follows: uniform access to all componentbdata,bases, ad hoc query
capabilities, and a customizable user interface. Since the component databases are
also needed in their original form, it is not feasible to fully integrate all the com-
ponents into a unified database system, but rather a federation of databases has to
be developed. Differences in schemas among the components or the lack of a schema
must be overcome by partitioning requests based on the type of data needed. In other
words, the mediator knows where to find the data, based on their type.

The mediator providing the integration has two layers. The first layer is a mapping
layer based on a global data directory that determines the database holding the needed
data and translates the query from the federated system to a query that is appropriate
for the specific database. The second layer is an access layer that interacts directly
with the component databases and returns the results to the mediator layer. The
clients of this database federation can also be subdivided into two categories: real-time
clients and regular clients. Real-time clients are machines that might be used in an
operating room. Due to the nature of their use, these clients need immediate answers
to the queries, but have only a narrow query domain (i.e. the patient currently
being operated on). Additionally the queries will be mostly browsing queries and
not update queries. The proposed solution is to use clients that cache the data from

the federation. In other words, the clients can be preloaded with the relevant data.

59



Regular clients, which are the other variety of clients considered by the authors, need
access to broader ranges of data that may be updated and which therefore can not be
practically preloaded. These clients have to retrieve the data as it is needed from the
federation of databases. For performance reasons these clients also store data locally
for processing. Therefore, this data has to be updated if a change in the federation
occurs. The user interface on these clients has to ge customizable so different kinds
of applications are accommodated. It must also be capable of supporting the display
and browsing of multi-media content.

The system proposed in [Meda95] provides a visual interface for distributed, multi-
media capable news servers. The system follows the client/server model with the
client having the visual querying capabilities and running the actual database client.
The visual query facility allows the user to specify the kind of news article of interest.
It is also possible to specify the desired medium of the news article. For example,
video clips can be excluded from the returned results. The results can have hypertext
links embedded in them, that lead to other articles. Therefore a browsing capability
exists in addition to directly specifying the area of interest. The underlying servers
can be continuous media servers (i.e. servers providing audio and video) or they
can be non-continuous media servers for text. It is possible to specify a quality of
service parameter for continuous media news articles. This can be used as one of the
parameters for billing the user of the service. Unfortunately 'an explicit explanation

of how the schemas of the underlying databases are integrated is not given by the

60



author of [Meda95].

61



Chapter 4

Implementation of the CDNA

Project

The system described in this thesis models an information kiosk in a shopping mall.
An information kiosk is a device located at central points in the mall that informs
shoppers which stores carry desired merchandise. This system is an improvement
over the currently existing signs in a mall, that only have maps telling the customer
where a certain store is located, but cannot provide a complete inventory list of the
different stores. The information kiosk tries to remedy this problem by providing
the shopper with information about where to find an item of interest. The shopper
is provided with a selection of items that the shops in the mall carry. A necessary
condition for this is that all stores that participate in this system have a database

that can be queried over a network.

62



info Kiosk Info Kiosk Info Kiosk Info Kiosk

W

CDNA Server

Graphicat User Interface

Query Formulator | GDD Access

Figure 4.1: A conceptual overview of the architecture of the CDNA system

Figure 4.1 illustrates the system. The user enters the questions at one of the
kiosk terminals, the questions are then processed by the Community Data Network
Architecture (CDNA) system, which transforms the questions into queries for the
database management systems of the stores, and displays the results that are obtained
on the terminal.

This chapter will describe the implementation of a CDNA system. The main
goals in the construction of the system were modularity, ease of use for the user, and

scalability. The chapter is subdivided to reflect these goals.

63



4.1 Modularity

Modularity is desirable because this makes the system easier to maintain. This section

describes ways in which modularity is achieved in the implemented system.

4.1.1 The System

WWW Server
GDD

CDNA Server

o |
< ==
LuAnn's JoeBob's
Zports Korner Sportorium

Figure 4.2: An overview of the realized architecture of the CDNA system

Figure 4.2 shows the architecture of the CDNA system as it is implemented. It is
implemented on the local area network at TRLabs. The system consists of a Sun
SPARC Station 5, which is used as a database server for one store (i.e. Joe Bob’s
Sportorium), while a 486 based PC running Linux is used as a database server for the
second store (i.e. LuAnn’s ZportsKorner). The CDNA system consists of a database

64



server that contains the tables needed for running CDNA, as well as an HTTP server.
The database server is implemented on a DEC Alpha 3000/300. The HTTP server
1s running on the TRLabs WWW Server. The HTTP server and the database server
can be run on the same machine but to reduce the load on the machine which runs
the HTTP server, the tasks were distributed.

Through the HTTP server it is possible to make any machine on the Internet,

which has a WWW Browser, into a terminal for the CDNA system.

4.1.2 The Database

Each of the participating stores must have a database, that is able to answer queries
sent to it over a network. In the current state of the system, these databases are
modeled by mSQL[Hugh96], a relational database.

mSQL was chosen to model the store databases because it has several desirable

features:

o It is a relational database. Relational databases are not as powerful as object
oriented databases, but their modeling abilities are sufficient for most business

applications and they are in widespread use.

e It can be queried remotely. It can act as a server in a client /server scenario.
This models the fact that the stores in the system keep autonomy over their

data and database.

e It is multi-user capable. Up to 25 users can use the database engine concur-

65



rently, which means that up to 25 requests from the HTML terminals can be

processed at the same time.

e It is free for academic use !

For each of the store databases a view should be created. This view would restrict
access to data that is proprietary to the store, as for example, the wholesale price
of their merchandise. Secondly the view would integrate the data needed by the
CDNA system into one table. With mSQL it is unfortunately not possible to create
views, so the views are simulated by tables that contain the same information that
the views would have contained. In schema terminology, the conceptual schema of
the databases is equal to the external schema. In a “real life” implementation, this

would not be the case.

4.1.3 The Common Data Model

The common data model employed in this implementation is modeled in an object-
oriented fashion so changing parts of the model is greatly simplified. Adding different
capabilities to the data model is aided by this approach as well. So far a relational
table based model is implemented. The reasons for this are that the underlying
databases in a real world scenario are most likely relational as well. It is highly un-
likely that business data would yet be stored in an object-oriented database as the
relational model is adequate to support the needs that business has for databases.

Business data is usually not very complex and can be categorized very well by re-

66



lational tables. Another reason for choosing a relational data model is that the
databases that are used in the implementation are strictly relational and therefore an
object-oriented data model cannot really be tested or utilized.

This object-oriented implementation of the relational data model still benefits the
common data model. The benefits that can be derived from this are the usual benefits
of using an object-oriented approach to programming. The code that is produced can
be reused and it is easier to maintain and modify. This is achieved through the use
of inheritance, polymorphism, and encapsulation.

Each of these points is important for the implementation of the CDNA project.
Inheritance provides the reusability of code, as many of the me/thods that are being
used to access the store databases are being used in communicating with the CDNA
database server as well. Also the code that exists can be incorporated into further
enhancements of the project, when access to different types of databases is required.

' To incorporate different databases into the system the polymorphism property
is important because the new access methods needed can be based on the existing
methods. In conjunction with the common data model developgd these methods will
provide a consistent way to access the new data sources.

Encapsulation is important for consistent access because the data is requested
from the object instead of being read from a variable. This request can remain the
same regardless of what data model the database containing the information uses.

The data model, as it is implemented for the project, supports the insertion of the

67



results that are obtained from a query and the subsequent access to these results. The
method of accessing the results is independent of the database the result is obtained
from, so they can be accessed consistently regardless of how the database access is

implemented.

4.1.4 Extensibility of the CDNA project

‘The CDNA project is designed so it is possible to extend the current project. One such
extension is a global transaction manager. In a centralized database environment, a
transaction manager is responsible for ensuring the consistency of the database and
controls concurrent accesses to the database. Both of these issues are very important
if the database is not a read-only database, but it also permits updates.

Fach operation on the database must leave the database in a consistent state.
This means that whatever failures occur, the operation must be completed. An
example might be that while trying to update many records a system crash occurs.
The transaction manager is responsible for ensuring that these updates are continued
or undone when the system is restarted. To achieve this, logs must be kept of all
operations and how far they proceeded. When the system is restarted after a crash
these logs are consulted and the consistent database state is re-established. The
recovery is achieved either by redoing certain operations that have not yet been written
to a disk or by undoing those that have been pre-maturally written to a disk. An

example of an undo operation is when a customer account has been debited, but the

68



item to be purchased is found not to be in stock.

In a multi-user environment, concurrency control becomes important because,
multiple queries must not interfere with one another. For example, when part of one
query writes to a data item that is being read by another query, care must be taken.
The system must ensure that writing and reading occurs in a way that is equivalent
to the serial execution of the two queries. There are many different protocols for
making certain that the accesses occur in the correct order. One such protocol is the
2-phase locking protocol, based on locking records that are to be subsequently written
or read. A write lock means that only the query, which has been granted the lock,
is able to write to the specified record. A read lock means that the record cannot
be changed, while a query has a read lock on it. With the 2-phase locking protocol,
the first phase is for acquiring the locks, while the second phase is for freeing up the
locked records. In other words, as soon as locks are being freed up no new locks can
be acquired by this query. This protocol guarantees that the execution of the queries
is equivalent to some serial execution.

These problems also exist in federated database systems. Here each of the partic-
ipating databases will have its own transaction manager, but it is also necessary to
ensure consistency between the different databases, so a global transaction manager
is needed. For example, when a business transaction is made, where an item has been
sold and the customer’s bank account must be debited, while the vendor’s bank ac-

count must be credited and a balance owing must be reset. Here it is very important

69



that this operation leaves the federation in a globally consistent state, where either
both accounts are adjusted, or neither account is changed and the balance owing

remains.

CDNA Server

Graphical User Interface

Query Formulator | GDD Access

Transaction Manager

Figure 4.3: Conceptual addition of a transaction manager to the CDNA system

The CDNA project is designed so that a transaction manager can be easily inte-
grated into the system. This would enable the system to go from a kiosk system, to
an online shopping system, which is also capable of updating databases, while main-
taining global consistency. Figure 4.3 shows how this would conceptually be attached
to the system. Instead of accessing the databases directly, as is currently done, the
queries would be sent to the transaction manager, which would in turn query the
databases and return the results to the current CDNA system. In practice, this is
achieved by calling a transaction management method or even a separate program,
with the query and the final query destination (i.e. the store databases that the
query is intended for) as arguments. After the transaction manager finishes process-
ing the results can be returned in one of two ways: Either the results are returned

as objects, if the CDNA system and the transaction manager are integrated into one

70



program, or the results can be stored in a temporary table, if the CDNA system and

the transaction manager are two separate programs.

4.1.5 The CDNA Schema

In contrast to the general federated schema described by Sheth and Larson [ShLa90]
the CDNA project does not need a five level schema. In the CDNA case a three level
schema is sufficient to describe the system. Figure 4.4 shows the schemas that are
needed. These schemas are the local external schema, the component schema and the

federated schema.

Federated
Schema

Component
Schema

Component
Schema

Local Ext. Local Ext.
Schema Schema
Component Component
DBMS DBMS

Figure 4.4: Schema of the CDNA system

The schemas are similar to the schemas described by Sheth and Larson. The

local external schema is a part of the complete conceptual schema of the underlying

71



database, which only grants access to those parts of the database, that should be
visible to the public. The component schema is the same as Sheth and Larson’s com-
ponent schema, it is the local external schema in a common data model description.
Finally, the federated schema is the integration of the different component schemas.
Both the export schema and the external schema described by Sheth and Larson are
not necessary for the CDNA project. The export schema in their model is responsi-
ble for restricting access to the local schema of the underlying databases. It is not
necessary because the access restriction to the data residing in the local databases
is done at the database level by only exporting pertinent data to external schema.
Similarly the external schema, which is responsible for restricting access to parts of
the federated database system is not necessary in the CDNA project in its current
form, because the access restriction is being done at the local schema level. None
of the data that is being exported by the local databases needs any further access
restriction, quite to the contrary, the stores will want the customers to look at them,

so that a sale can be made.

4.2 FEase of Use

Since the system is targeted at the average shopper, no prior knowledge about com-
puters or databases may be assumed. The querying of the system should therefore be
as simple as possible. This is provided in the system by the use of HTML as a lan-

guage to construct the user interface. With HTML it is possible to have a quasi-iconic

72



query language for the system.

The set of database systems that represent the stores can be viewed as a federation
of databases because they have to remain separate, while in the context of CDNA it
is necessary that they can be queried together.

Both of these points will be addressed in the following sections.

4.2.1 User Interface

The main goal of the user interface is to create a system that is as easy as possible
to use. An information kiosk will only be accepted by the average shopper if it is
extremely easy to use. To facilitate this ease of use a graphical user interface was
chosen. This GUI has many of the capabilities of iconic languages. Recall that
iconic languages have the benefit that the user clicks on the iconic representation of
a concept and is presented with more information about this concept.

With HTML, which was chosen as a language to create the GUI for the system,
it 1s possible to create such a visual query interface. It is also possible to mix the
visual representation of concepts, with a textual representation. Textual and iconic
representations are functionally equivalent as both can be linked to another page.
Linking entails that a mouse click by the user leads to the display of a new page that
is associated with the text or image. Since these two forms of display are equivalent,
mainly the textual display is used in this system. The reason for this is that it is rather

difficult to create meaningful icons as discussed in the section on iconic languages.

73



There are two ways of producing HTML pages, one is to create a page manually,
the other is to have the HTML code created by a program. The manual writing of
code is appropriate for pages that remain static, because their content does not have
to be updated frequently. An example for this is the introductory page of the CDNA
system. This page is rarely changed. It is only used as an introductory page to the
system. The program based generation of HTML on the other hand is more suited
to pages that change continually. An examples of this are pages that display the
number of items a store has in stock, or in fact all pages that display the output of an
external program. If these outputs are translated into HTML, they can be displayed
by an HTML browser.

Very few parts of the CDNA system use static HTML pages. The entry page is
static, as are the documentation pages. Where changes occur only very infrequently.
Most of the HTML is created by a program that translates the user’s mouse clicks
into the query language of the underlying databases. The results from the queries
are then translated back into HTML so that they can be displayed in an informative
and visually pleasing fashion.

Each of the underlined words and phrases that the user can click on is a link to
a CGI program. This CGI program is executed on the machine running the HTTP
server when the user clicks on one of the underlined items. The CGI program then
queries the CDNA server for more information on the subject that was represented

by the phrase the user clicked on. New pages are created, based on the information

74



that is retrieved from the CDNA server. For information on the actual merchandise,

the store databases are consulted.

4.2.2 Database Entry

One of the main benefits of the CDNA system over currenﬂy existing shopping mall
systems is that the participating stores retain autonomy over their data because they
do not ship the data to a single central site. Keeping the data at the stores ensures
that the data remains as accurate as possible; it also does not allow any competitor
to tamper with the data. Furthermore, since the data remains in the databases of
the stores, all updates made to the data, like price changes or changes of the number
of items in stock are immediately reflected in the system.

Since there are different stores, each with its own database, participating in the
system, the CDNA system can be regarded as a federation of databases. Here the
component databases clearly have to remain autonomous, since they are owned by
the stores, and the stores will not give up the autonomy over their data. However,
the data has to be accessible to the shopper in a simple and consistent fashion. The
federation needs the integration of the component databases. Both schema level
integration and instance level integration are necessary. The CDNA system provides
support for both of these activities. Since instance level integration is always based on
the semantics of the entities in the relations, some user input is required for it. The

system tries to help the user with the input by providing hints for how the instances

75




could be integrated. The integration process of a new database into the system is also
based on WWW pages, so that there is a consistent interface for both the shopper and
the database administrator of the store’s system. This means that the integration of

a new database can be done from anywhere on the CDNA network.

4.2.3 Database Integration

There are separate tables in the system that contain the information necessary for the
integration process. These tables are shown in Figure 4.5. First their functionality
will be described and then a description of how they are built will be given.

The Decision Tree table contains a specialization hierarchy that is presented to
the shopper. The shopper is given a choice between different high level categories of
goods. After the initial choice the descendent nodes in the tree will be presented as
the next choices that the shopper can make. This process continues until a leaf node
in the decision tree has been reached. In the example this leaf node is football.

A hierarchical representation was chosen because it makes a goal directed search
for merchandise very easy. It also corresponds to how a shopper shops for products
in a regular store[BalLe93].

The Product Index table, the next table in Figure 4.5, is queried, when a leaf
node has been reached. The query will select all instances that have the leaf node
in the decision tree as their parent node. For each product in the store databases

there is one instance in the product index table. These instances contain information

76



Decision Tree

v , g

Sporting Goods Hardware Clothing

|

Football

[Eootbat] Juann_w _T1] Product Index

-
<<
—_
o))
©
©
®
-

product sale_price]...
r«& 1 _|Footbali, red| 15.00

Store Databases

Figure 4.5: An overview of the interrelationships between different tables in the

CDNA system

about which products the CDNA system knows. This is achieved by storing the key
attribute of the actual store database. Should the key in the store database be a
composite key then these columns can be amalgamated into one column through the
view provided on the store database by the store. The next item of information stored
in the product index table is which stores sell the particular item, and a reference to
the stores that carry the item. This reference is a foreign key into the wrapper table,

described in the next paragraph. Finally the product index also has an attribute that

7



specifies which leaf node of the decision tree is its predecessor. In the example given
there are two products that are football related and they are sold by two different
stores.

The Wrappertable holds meta data about the store databases. It contains the data
that is entered through the web page shown in Figure 4.6. This table is responsible
for schema level integration. Only certain columns in the view or table accessible
to CDNA will be used. These columns are the minimal set of columns necessary to
produce a meaningful overview of the merchandise that the stores offer. Furthermore,
this is information that can reasonably be expected to be provided by the stores. The
columns are a descriptive column, a price column, and an availability column. The
descriptive column will contain the name of the item and some useful comments about
the item. The idea for a wrapper table is taken from Tomasic, et al. [ToRV96] who
present a similar structure.

Figure 4.6 shows the CONA WWW page in which the necessary information has
to be entered. In addition to the columns described above, other information is needed
as well. The Server name and Database name information is needed specifically for
mSQL. Since mSQL is capable of running on different machines and having several
databases on each machine, this information has to be specified so the system can
access the correct tables. With the knowledge about the naming scheme for the
different tables, it becomes possible to formulate queries in a consistent and generic

fashion, where the appropriate columns of the wrapper table are used in a fashion

78



http:/ /www.wintrlabs.ca/“mjacobs /htmi/entry htm)

Databasze entry page

In this page & naw database can be sdded v the CONA system.
Help Please enter the required information:

Frappor name Lettoriwn e =
redits
Server name W——_
Database nuve m:rs——
Table name W_——
Key coluan name );;;_—t.__- ------------
Product column name W;—-——_
Price column name Er_xge—-——q
Availability column name {still there

Store name Flardersleftoriun

iy

These pages are generated by & program by Martin Jecobs,
The research is sponsored by

Figure 4.6: Necessary inputs to integrate a new database into the system

similar to pointers.

The Store databases refer to the actual store databases which will provide the final
answers to the queries. In the example provided, the result of querying for football
related items, if we follow the decision tree to the football leaf node, we would find
brown football shoes sold by one store and a red football sold by another.

After the functionality of the tables shown in Figure 4.5 has been described, the

79



Insertion of 'Football Shoes, brown'

i The following Jeaf nodes are svggested as parents for 'Football Shoes, brown’® :

Football

c its If you would like 10 enter the iem under these leaf nodes click here.
If you would prefer it 1o be under ansthar heading please click here.

The research is sponsored dy:

These peges axe genarated by a program by Martin Jacobs.

Figure 4.7: A suggestion for the placement of a product generated by the system

process in which these tables are created will be shown.

The database administrator for a store database that is newly entered into the
system must first fill out the form shown in Figure 4.6. This information, as men-
tioned above, is stored in the wrapper table. With this, all the schema integration
information that is necessary for the CDNA system has been acquired. Schema
level integration is simplified in many respects in the CDNA system in comparison

to schema level integration as described earlier. The pre-integration step for exam-

80




ple is not necessary because the sequence of integration is predetermined. The new
databases are integrated one by one into the existing system. The comparison of
schemas and conforming of schemas steps that are usually necessary for schema inte-
gration are also not needed here because it is known before integration which columns

are provided by the database.

Insertion of 'Levis 550 36 30, 1t
blue'

Choase from smong the fobiowing posstbilities &3 a predecessor of fism ‘Levis 550 36 30,
Ttblue'

: Hemvar
redits Cloting
Sporting_Goods
Please enter a na v node under which the prodact might be entered

¥ew Fode Nune
Chack box if leaf node [}

‘These pages are generated by o program by Martin Jacobs,
‘The research is sponsored by:

Figure 4.8: Selection of a parent for a new node

The next step is to provide instance level integration into the system. This means
that for each item in the database a suitable leaf node in the decision tree has to
be found. The system provides some help for the database administrator to simplify

81



this part of the integration process. After the initial information about the database
itself has been provided, the system will query the store database for each item that
is contained in the specified table. The contents of the column that describes the
item is then compared against all leaf nodes in the decision tree. If the name of a
leaf node is contained in the description of the product, this leaf node is suggested
to the database administrator as parent to the particular item. This is shown in
Figure 4.7. It is also possible to place the product under another leaf node. If this
option is selected by the database administrator, a new node in the decision tree can
be created. This is similar to the situation where the product name does not contain
any of the names of the leaf nodes in the tree. To create new nodes, the database
administrator first navigates through the decision tree, to find a place where a new
node is needed. Then a new node can be created and sub-nodes of this new node
can be made. This continues until a level of specialization has been reached where
the product can be entered. Figure 4.8 shows the start of the navigation through the
decision tree, while Figure 4.9 shows the creation of a new node. After the new node
has been created, the product can be entered underneath it.

The product is entered into the system by storing the key value and the wrapper
name of the store database in the product index table. Additionally, the decision tree

leaf node that acts as the predecessor is stored in the row.

82



Insertion of 'Levis 550 36 30, 1t
blue'

Pleass enwsra nev nods under which ty produoct might be entered

. New Fode Fame idna
Credits :

Chack box 12 leat node P

Thesz pages are genersied by a program by Martin Jacobs.
Tesearch i3 sponsored dy:

Figure 4.9: Creation of a new node

4.2.4 User Queries

The second part of the CDNA system, after the addition of databases to the system,
is the querying of the system by shoppers. This querying of the system will be now
be described.

The shopper is first presented with a high level choice of products that are on
offer by the different participating stores. This presentation corresponds to the first

level of nodes in the decision tree of Figure 4.5. At system startup, when the initial

83



HTML page is first called up, the decision tree is queried for the descendents of the
root node. This is done via a CGI program that takes the root node, in this case
“Cdna”, as an argument and queries the decision tree table on the CDNA server. (In
Figure 4.5 and also in the actual table, the Cdna node is the root node.) The root
node does not carry any information but has to be present, as the system always
queries for the descendents of a node. The result of the query for the descendents
of the root node will be the top level hierarchy of products that are on offer. This
top level hierarchy can consist of such items as Sporting Goods, Clothing, etc. These
results are then translated into HTML. This is achieved by showing the result and
attaching the invocation of the CGI program with a corresponding argument as an
HTML link to the results shown.

Figure 4.10 is an example of the results of the initial query. This means that
in this case the shopper can choose between three categories of products. All the
products that the implemented system knows about fit under these categories. Each
of these categories represents a node in the decision tree.

From this initial list the shopper can then select a category of interest. The
selection of a category is accomplished simply by clicking on the desired underlined
word. A query is issued on the decision tree which finds the descendent nodes of the
node representing the product category that the shopper is interested in. The issuing
of the query is again done via a CGI program that runs on the WWW machine,

querying the decision tree table on the CDNA server. The results of the query are

34



‘Netscape: CONR query page:

These pages are generawd by a program by Martin Jacobs,
“The research is sponsored by:

Figure 4.10: The first level of choices presented to a user

again shown on the HTML page and a CGI program with this node as argument is
linked to it. As a result, the shopper is presented with the next layer of nodes in
the decision tree. Further clicking on the category of interest will present a more
specialized selection of categories. This process of the selection continues until the
shopper has reached a leaf node in the decision tree.

If a leaf node in the decision tree has been encountered, the product index table

of Figure 4.5 will be queried for all instances existing in this table, that have a leaf

85



node in the decision tree table associated with them. The results of this query on the
product index table are all the products that the system knows about and that are
classified as fitting in the category represented by the leaf node. The results are then
ordered by the contents of the wrapper column. The wrapper column again contains
a foreign key into the wrapper table, that contains the information about the different
stores represented in the system. The results from the query to the product index
table have to be ordered by the wrapper column so subsequent queries to the store
databases can be issued together. This is important because the products that each
store carries can be presented together in a single HTML table for each store.

After a leaf node in the decision tree has been reached and the product index table
has been queried, the store databases have to be queried for the actual information
of interest to the customer. These queries are formed based on the results from the
product index table. The results contain the key values of the products desired. To
form a correct query, information about the database is necessary which is contained
in the wrapper table. Thus, for each store the wrapper table is queried for the names
of the columns and table that contain the product information. The wrapper table
only has to be queried once per store because the information obtained from the
product index table is ordered by wrapper name. Based on the key values of the
products of interest, a store database is queried. The result of that query is then
transformed into a row of an HTML table. Such a table is shown in Figure 4.11.

There is a separate table for each store. The information about the store, displayed

36



in the table (e.g. the store name) is contained in the wrapper table as well.

Football

about ? JoeBobs Sportorium

; Product
- :Football, red
Football, purpis
Footall Shoes, small
iFoatvall Shoes, medium  §
+/iPootbell Shoes, large

Thess pages are generated by & program by Magtin Jecods.
“The research is sponsored by:

Figure 4.11: The final result of a query

Figure 4.11 shows the final result of a query posed to the CDNA system. It shows
that there are two stores carrying items of interest to the user. Each of these two
stores has a separate table on the HTML page, describing the products that they
have for sale by a descriptive column, a column that contains the price, and a column

that contains the number of items available.

87



4.3 Scalability

Another main feature of the CDNA system is its scalability. Through the choice of
HTML as representation language, the system is not restricted to a physical mall
setting. Since the HTTP protocol is associated with HTML, it is possible to connect
the CDNA server to the Internet, and thereby have a world wide audience. Also,
based on the size of the Internet mall and on the number of accesses that the system
must handle, it is possible to have the CDNA server run on a different computer
than the one that runs the HTTP server. This will reduce the load on the HT'TP
machine and enable it to handle more accesses. Another advantage of HTML is
that the programming of the GUI has been greatly simplified. It is much easier to
produce HTML, which will then be interpreted and displayed by the browser, than
to create a GUI on Microsoft Windows, Macintosh OS, or the X-Window system
directly. The HTML browser acts as an interface between these windowing systems
and the programmer. Also the browser does not have to be programmed or maintained
because there are many commercial HTML browsers available, that are maintained
and constantly enhanced by their respective companies. A further benefit of using

HTML is that HTML browsers are available for many different operating systems.

38



Chapter 5

Conclusions and Future Work

Formulating a query for a database management system is a non-trivial task for a
person who has not been trained in the use of computers. Therefore, traditional query
languages like SQL are not appropriate in an environment where the general public
is supposed to gain knowledge from a DBMS.

This thesis presents an overview of currently existing techniques in the field of
visual query languages, that try to simplify the use of databases. Both the diagram-
matic query language approach and the iconic query language approach are described.
Diagrammatic query languages are more suitable for users that have at least a little
training in the use of databases because these languages usually require knowledge
about the meaning of a database schema. Iconic languages are suitable for users who
are not familiar with any kind of database, because they represent all entities con-
tained in the data repository in a pictorial format. The actions that can be performed

on the entities are also symbolized by icons. The user interaction is no more difficult

89



than simple pointing and clicking on the icons displayed. The thesis also presents
arguments that an interface generated in HTML can be regarded as equivalent to a
simple iconic query language because it is possible to use icons in HTML to represent
entities on which certain actions can be performed.

To integrate multiple databases that must remain autonomous into a system that
can be queried in a consistent manner requires a federation of databases to be estab-
lished. The access to such a federation should appear to the user as if only a single
DBMS is being accessed. User transparency is provided by a mediator stage [ToRV96]
conceptually situated between the user access stage and the component databases.
The user queries the federation by formulating queries that the mediator stage can
process. The mediator stage in turn then formulates queries that are appropriate
for the component database that contains the information necessary to answer the
user’s query. The component database returns the result to the mediator stage which
transforms it into a common data model. The answer to the query is returned in a
format understandable by the user. An overview of techniques for building federated
database systems is presented.

The thesis then describes an implementation of the CDNA system which offers
iconic access to a federation of databases. In its current implementation the CDNA
system is an HTML based front-end to multiple relational databases that guides a
shopper in a physical or virtual shopping mall towards products of interest. The

information about the merchandise is retained at the store’s site. An extensible data

90



model is developed based on the relational model but that can easily be modified to

reflect different data models.

5.1 Recommendations for Future Work

There are several ways in which the CDNA project can be improved. One of these
is the addition of a Transaction Manager, as briefly explained in Chapter 4. The
transaction manager allows the system to be transformed from a read-only informa-
tion system to a fully interactive electronic “mail order” system because a transaction
manager allows on-line updates to take place. A possible scenario would be that an
order is being taken, causing the amount of available units at the vendor’s database to
be decreased while the vendor’s bank account is increased by the appropriate amount.
At the same time the customer’s bank account has to be decreased by the amount
payable.

In the current system updates can only take place in an off-line fashion. This
means that updates to the system can only occur when there is no user interaction,
otherwise the system might not be consistent and the user might not get the correct
results from the queries. Also it is not possible for the shopper to update the databases
for reasons of possible inconsistencies. Adding a transaction manager to the system
should be fairly easy because it is designed to be open to such an addition.

Another area where the system can be improved is by the use of Java [Java96,

Lind96] as an enhancement of the current HTML based system. Java is an object-

91



oriented language that can be used to create applications which are called from an
HTML page. The difference between Java and CGIs is that Java applications are not
executed on the machine running the HTTP server but locally on the machine that
requested the application. This gives the application much more flexibility in what
it can do. All Java applications are executable on any platform that support a Java
capable WWW browser. The application does not have to be modified according
to which machine it is executed on. It is compiled into a byte-code that can be
understood by the WWW browser which in turn interprets the byte-code for the
appropriate architecture. The Java language itself is very similar to C++ so it is
easy to learn for someone familiar with that programming language. In contrast to
C++ it does not use pointers or explicit memory allocation but rather a garbage
collection process. This avoids many of the commonly made mistakes when using
C++.

The advantage of Java over HTML is that it is much more interactive. With
Java 1t should be possible to implement a completely iconic language where one icon
can affect another icon. As an example the user should be able to select the item of
interest and drag this icon onto a cash register icon to specify that the item is being
bought.

A further improvement to the system would be to introduce support for more
databases than just mSQL. For relational databases this involves additions to the

database access classes of the project. Academically more interesting is adding sup-

92



port for databases with entirely different data models. For example an object-oriented
database is of interest, because this will require a common data model capable of
translating a common query language into the appropriate database specific query
language. Also a translation from the specific data model of the added database into

the common data model will be necessary.

93



Bibliography

[AADD+92] A. Auddino, E. Amiel, Y. Dennebouy, Y. Dupont, E. Fontana, S. Spac-

[AnCs91]

[AnEn95]

[BaLNS6]

[Bale93]

[BCCLY1]

[BeCo95]

[BeCa92]

[BiOr94]

capietra, Z. Tari, Database Visual Environments based on Advanced
Data Models, In Advanced Visual Interfaces, T.Catarci, M.F.Costabile,
S.Levialdi (Eds.), World Scientific, pp. 156-170, 1992.

M. Angelaccio, T. Catarci, G. Santucci, QBD*: A Fully Visual Query
System, In Journal on Visual Languages and Computing, Vol. 1, No. 2
, Pp- 255-273, 1991.

M. Andries, G.Engels, A Hybrid Query Language for an Extended
Entity-Relationship Model, Technical Report, University of Leiden, TR
95-03, 1995.

C. Batini, M. Lenzerini, S. B. Navathe, A Comparative Analysis of
Methodologies for Database Schema Integration, In ACM Computing
Surveys Vol 18, No.4, pp. 323-364, December 1986.

J. Baty, R. Lee, Electronic Shopping Infrastructures, a Design Repre-
sentation, Technical Report, University of Rotterdam, RM-1993-01-03,
1993.

C. Batini, T. Catarci, M. Costabile, S. Levaldi, Visual Query Systems,
Technical Report, University of Rome, TR-04.91, 1991.

T. Berners-Lee, D.  Conolly, Hypertext  Markup  Lan-
guage - 2.0, Work in Progress, W3, 1995. Available
Online:http://www.w3.org/hypertext/ WWW/MarkUp /html-spec/html-

spec.ps.

T. Berners-Lee, R. Cailliau, World-Wide Web, Computing in High En-
ergy Physics 92, Annecy, 1992.

A. Biliris, J. Orenstein, Object Storage Managment Architectures, In
Advances in Object-Oriented Database Systems, A. Dogac, M.T. Ozsu,
A. Biliris, T. Sellis (Eds.), NATO ASI Series: Springer-Verlag, Vol. 130,
pp. 185-200, 1994.

94



[CaSa95]

[CGI96]

[CKTL93]

[Cruz92]

[Desa90]

[Gold90]

[HaMS94]

[Hugh96]

[KiLo89]

[Java96]

[Lind96]

[LSPR93]

[MaHe93]

[McHo91]

[Meda95]

T. Catarci, G. Santucci, Diagrammatic Vs Textual Query Languages:
A Comparative Experiment, In Proceedings of IFIP W.G. 2.6 Working
Conference on Visual Databases, Lausanne, 27-29 March, 1995.

The Common Gateway Interface, Available Online:

http://hoohoo.ncsa.uiuc.edu/cqgi/overview. html, 1996.

S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, F. Lambay, A Fed-
erated Multi-media DBMS for Medical Research: Architecture and
Functionality, Technical Report, University of Florida, TR93-006, 1993.

I. Cruz, DOODLE: A Visual Language for Object-Oriented Databases,
In ACM SIGMOD, June 1992.

B. Desai, An Introduction to Database Systems, West Publishing Com-
pany, 1990.

C.Goldfarb, The SGML Handbook, Ed. Yuri Rubinsky. Oxford, New
York: Oxford University Press Inc, 1990.

J. Hammer, D. McLeod, A. Si, Object Discovery and Unification in
Federated Database System, Technical Report University of Southern
California, USC-CS-94-574, 1994.

D. Hughes, mSQL, Available Online: Attp://www.hughes.com.au, 1996.

W. Kim, F. Lochovsky (Eds.),Object-Oriented Concepts, Databases,
and Applications, ACM Press, 1989.

Java - Programming for the Internet, Available Online:

http://java.sun.com, 1996.
P. van der Linden Just Java, The SunSoft Press, 1996.

E.-P. Lim, J. Srivastava, S. Prabhakar, J. Richardson, Entity Identi-
fication in Database Integration, In Proc. IEEE Int’l. Conf. on Data
Eng. pp. 294-301, Vienna, April, 1993.

F. Manola, S. Heiler, A “RISC” Object Model for Object System In-
teroperation: Concepts and Applications, Technical Report GTE Lab-
oratories Inc. TR-0231-08-93-165, 1993.

F. McFadden, J. Hoffer, Database Management, Benjamin Cummings
Publishing Company, 1991.

G. El-Medani, A Visual Query Facility for Multimedia Databases, Tech-
nical Report, University of Alberta, TR 95-18, 1995.

95



[NBEF+93]

[02+90]

[OzVa9l]

[SaS093]

[ShLa90]

[Sinh92]

[ToRV96]

[Vois94]

W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,D.
Petkovic, P. Yanker, C. Faloutsos, G. Taubin, The QBIC Project:
Querying Images By Content Using Color, Texture, and Shape, In Pro-
ceedings of 1998 SPIE/ISE&T Conference on Storage and Retrieval for
Image and Video Databases, 1993.

O. Deux et al., The Story of Oz, In IFEFE Transactions on Knowledge
and Data Engineering, March 1990.

M. Ozsu, P. Valduriez, Principles of Distributed Database Systems,
Prentice Hall, 1991.

G.Santucci, P. A. Sottile, Query By Diagram: a Visual Environment
for Querying Databases, In Software Practice and Fzperience, Vol. 23,
No. 3, 1993.

A. Sheth, J. Larson, Federated Database Systems for Managing Dis-
tributed Heterogeneous, and Autonomous Databases, In ACM Com-
puting Surveys Vol 22, No 3, pp. 183-236, September 1990.

A. Sinha, Client-Server Computing, In Communications of the ACM
Vol 35, No 7, pp. 77-98, July 1992.

A. Tomasic, L. Raschid, P. Valduriez, Scaling Heterogeneous Databases
and the Design of DISCO , To appear in International Conference on
Distributed Computer Systems 1996, 1996.

A. Voisard, Designing and Integrating User Interfaces of Geographic
Database Applications, International Computer Science Institute,

Berkeley, CA, TR-94-015, 1994.

96



