
A Visual Query Langr-rage

for a

Federation of Databases

N¡Iartin Andreas Jacobs

A thesis

presented to the IJniversity of Nlanitoba

:- -^-+:^r atifilment of theIII Pd,I tr Id,I I u

requirements for the degree of

Master of Science

in

Computer Science

Winnipeg, Manitoba, Canada, 1996

@Martin Andreas Jacobs 1996

by

t*t N,flonar Librav
3f3iffi3ä"

nationare

AcquisitionsandDirectiondes.acquisitionset
elntiograpnìÑerv¡ces Branch des services bibliographiques

395 Wellington Street 395, rue Wellington
ö-ttãwa-' oñtano ottarya (ontario)

flÀOÑ¿ K1A0N4 yourt¡re vorrcÉtërence

Our hle Notre télércnce

The author has granted an L'auteur a accordé une licence

irrevocable non-exclusive licence irrévocable et non exclus¡ve

allowing the National Library of permettant à la Bibliothèque

Canada to reproduce, loan, nationale du Canada de

distribute or sell copies of reprodu¡re, prêter, distribuer ou

his/her thesis by any means and vendre des copies de sa thèse

in any form or format, making de quelque manière et sous

this thesis available to interested quelque forme que ce so¡t pour

persons. mettre des exemPlaires de cette
thèse à la disPosition des
person nes intéressées.

The author retains ownership of L'auteur conserve la propriété du

the copyright in his/her thesis. droit d'auteur qui protège sa

Neither the thesis nor substantial thèse. Ni la thèse ni des extraits

extracts from it may be printed or substantiels de celle'ci ne

otherwise reproduced without doivent être imprimés ou

his/her permission. autrement reproduits sans son

autorisation.

ISBN 0-612-13208-0

C,anadä

Díssrtotion Æslrads lnlamatíonol onÅ lvlosters Abstræ'E lnlernolional ore orronged by brood' generol zub¡ea cotegories'

Pleose s¿leA lha one subiect wh¡ch nrcst neoty describes lhe content of your dissertotion or thesis. Enter the corresponding

burdigit code in üe spoces provided.

Cn,, q4e, Sc;eq c'e

Nome

sUUECT¡ET.M

Subiect CoÞgories

fHE HUltf,ÂNlrIES ¿qND SOCI^Â! SCIENCES

l,Fl-eF-l UMI
SU&JECT CODE

^nd€.ú
............- --..... -.-..-.-0

g9
Mediwo|-... 0581
lvtodem--... 0582
Bhck -..-............................ 0328
Áfricm--... 0Tl I
A¡io, Au:¡rolio ond Occon¡o 0332
Conodio091¿
Eurcpeør,........................... 0335
[o]in Á¡ricm .-...............-.03:ló
Middle Eo:¡em-............. 0333
uoired Stors ..-...................03f¡7

His¡¡y of S<ieæe 0585
lsr..:...--...........-................... 0398
PoliËcol Scícæe

cgfrl -.......................-... 0ó1 5
lnr*nabml tnv ond

RCaioro-. 0ól ó
Public Ad-inL¡roticn 0ól 7

Ræiion,..,. 081 ¿
sa€'d wdl -. -..................0452

lndu:¡rid ond LcÀor
Reldioæ-... -. 0ó?9

Public oJ Socid Wdfom....0ó30
Saiol Stru¿ure cnd

Dcrcloomsr -......-..-...... 07OO
üæry ohJ ra"*oå-...-. 03¿¿

Tronsrràfun -..-.-.....-...-..-.0709
Urboå and Re{iorpl Ph¡rnim0999
Wocs¡'¡ Sþdíc:...... 0/53

Enqrm{lnd-Gffil05l.7
Aerspoce-.0538
Aqri@lþrc1.........-.........-... 0539
lü¡rnorive-. 05¿0
Bbmedicol-........ 05¿l
Chgnicol-..................... 0512
Gvil --.....--..........-.....--. 0543
Écdorúõ ond Elcan'eol OS¿¿
He¿ qnd Tlmoó¡mi€ -.03¿8
Hyd¡lu¡¡€-..-'...--.....-. 05¿5
lnltrs¡riol--.-.-.-..-...-. 05¿ó
Mqrim--..-..-.05Å7
l¡lctriol¡ S<íerce .. -.... -.--.079Á
rt {chøicol ...--..-..--............ 05¿8
I't¡¡dlurev-......--. 074t
M¡¡r¡¡n -1i.....-.-..........-..--. 0551
Nud€ä-..-.....---...-. 0552
Podoci¡lq'...----*.....--.-- 05¿9
Pe'rolãcm'.--.. --- - --. -.. - -- -07 65
Sq¡þrY €nJ MurúciÞ€l ---. 055¿
Sr,¡s¡r'scisre ..-...'.....-.--. 0790

Crcródræ|oc.r-.-.........--. 0¿28
ò¡r¡in R-¡åændr---.-. 079ó
Plqr¡-c¡ Iedræ bcv.. -......---. 0795
TexdL T.¿¡æbdl..-.......--...-. 0ç9¿

PSYq{OTOGY
G*trd -....-........-....-----. 062t
B€¡ìcrio,o¡ ..-................-----. 0384
dir'¡col..--........ -......... -.. -. 0ó22
Donbonrmtol-. 0ó20
Êcciå¡tol-. 0ó23
fn¿!¡ùiol -.-...062l
P€ñotr¡¡ty................................ 0ó25
Phv¡ioboicd 0989
P¡'ítlrobóbcv....-..---.......-.-....... 03¡19
Èyd'oÍrcriä-. 0ó32
Scicl..-................-............,..... 0¡51

(0fiil[ur{t(An0ils AilD IHE ARIS
A¡chite¿r¡æ ..-.. -.. - - -.-...---.. OTæ
Art Hislry..-..- -. -- -- - -...-.-.Ogl7Gma ..-..-.-.--....-......--.---. 09OO
Do¡æo--......-..-- 0378
Ém A¡t¡ ...--.035/
f nfomfbn Scierr<e..-.....-.-..-.O78
Jor¡molism ..-....-..............---. O39l
libo:r Scixe---......-..-... 0399
t'{e¡ Comur¡i¡dr'æ..---...-. 0708
Mu¡ic..- .o413
Seh C.omu¡úcotlm ...---..-. 0459
Tfie<¡c..-...--..-...--.---...-... O¿ó5

EDU(ANONGmsel ..--...o55
Adminl¡trctim-....-..-. O5l,¿
Aduh onJ Catiroi¡rq ..--..-......O51 ó
Aoríolturcl ..-.......:.---.....--. O5l 7
Æ ..--......................-...----. o273
Bilimuol gr¿ Multicuhuml-..-Oæ2
Bsr¡Ëg .---.0ó8{t
Comu¡riÞ Cof feoe - - - -. - - - -.Ot 5
Curriculuní o"d I,úma;,*

---.O72JEqrþ Ctúldlrcd-----..-. 051 I
elcmsrtorv -.__O52Á
Fllprxe ..1..-..........-.. - -... -,--.OT7Gui.lone qd Couæclinq ..---.05I9
HælA .---.-...-..----i--..-. o¿eo
Hlalle----.--...---.07¿5
Hi¡oryof --.o52o
Hooc' Eøpmie -.. -- -.. - - - - O7 I
InJu¡tr;d --.0521
Lonq¡oce ond Ul¡atun --. ----Où9Mcñeni¡i<¡------..---. O28O
Mu¡ic _.-..._.._-...________... OS22
Plrilqaolrv of-....------. ot98
Phyi€Ei¡ ..:........-.-----..--... 0523

lHE SCIENCES AND
Btotoc¡cÄL scHtcs
Aqicultvm' Gsml -------.----------OO3

Aarorænry--------. 0æ5
Aäimol drbur.cnJ

Nu¡ílion--. --..--..-.OA 5
A¡úmcl Paholo<v ------. 0g 6
Food sddìG.oñä

Te¿rÞbqv------ O359
Fo{d¡/ Ðãw¡ld¡fr -----. o¿a
PforCultun ---.-----.O99Ptot Paholoor --------- O.{8O
Plorr Pfrv¡oldiv ..-------.081 7
Rsne ¡áædin¡r - -----0777

-. ,woãd T.cånäos:r ---*-o7Áó
ÞE)fxty

Gcsal --..---------. O3oló
,Ahônry ----._-*--.9?f,,7
8¡o¿ats¡lc¡ ..-------- O3OA
Bêlory --------.-..(X¡O9c.¡l -'--..----------. G179
EÊobcv ..--------. oif29
Ê'bdã¡oqr .-..------. 0353
G¡¡rb l'--.--------. OSóc

o793
o¿lo
aæ7
crtT
o¿ló
04¡3
0821
07/8
og2
078ó
07&

P5/'dìo¡oo/ ...-.0525
Rædiæ î....-...............--...--. 0535
Relioir-¡ ..-.-.0527
Sddá<E-.......................... 071 ¿
Seødo¡v ..----.....-....--...... 0533
Sæiol Scíencs-...-..--.---.O53r'
Sæ'oloqv of-...-.....--. o3/0
Sæ'qlL'..-...........- -.-.-----... 0529
Tisl¡r Trcininq---. O53O
Tæh¡obcvI-..-...-*-.--... 071 0
Tc¡: 6d¡ç{Guûnent:-..... 0288
Voetb¡rf --..... - - - - -..... 07 47

I.AIIGUAGE, I¡IERATURE AHD
uHGUlSl¡(5
Lmcuaqe

Ëdãro1 -......Oó79
Aõo'6r 0289
ünoui¡tia-.................. O29O
lvldSem-..-.-............ 0291

lilscture
Gffi | 0lol
Ge:¡*csl -..-OæÁ
Co¡rpa¡dive,.......-..... 0295
lv{¡diwol .- -.........-...-.--..-.-Oæ7
Àr{odem-........................ 0298
Afnton 031 ó
A¡ng.icon............._............. o59l
Asion-.---...-.....-...... 03Os
ConoJiqn (E rqlitål-... 0352
Conodion (Fteìl'chi -..-.-...-. 0355
Enal¡sh-..........-..--.--. 0593
Gãrncn:c-...-....-...-... 03 ¡ I
totín Amcicsr.....---..-....O31 2
M¡ddl¡ Ee¡crn -.....-..--... 031 5
Ronr¡rce-.....-............. 031 3
S!¡vic ond Esl Eurcpsr.....O3l4

ENGINEERING

PHII,OSOPHY, RII.IG¡OII ÄND
illt0t0Gr
pl,¡fccphv....-.... ... -.- -.. ^........ 0422
Rdidoà '

öffio|-....-.........-. 031 I
8ûlicql srudis--...-.... o32l
dsqv'...'........-.......... 031 9
Hi¡¡oä of-.--....-.-..-...... 0320
Phihaåohv of-........... 0322

Tt'æ¡osy .
j...:...--.-...-...--. o/ø9

socÄt soEilcts
A¡ncio Studjs-........... 0323
A¡rrhoÞo¡oc/

^tðìê€¿Éq/
.......-..-........--- o3zl

Clhvrol ...11.................-..... o32ó
Phv¡iccf-....-0327

Bu:imÉs AJmini:lrq tion
Gryql-.--.-.,... 03 t 0
Aæuntim .-.-..-.......-... -..-0272
Bqùi¡rc ..I.........--_--..-_- o77O
Uàoõmd.......................O¿&l
Mqk#m-........-..--. 03:18

Cm*liq Stüdiq-.......-...0385
Eæmicr

Gs€rÉl .-....................*-... 05Ot
A€ri<rrlturql-.....-.--..... 0503
Cãm*ceBuims 05O5
Fna¡xe-.......-.......-. 0508
Hi¡bry..----.--...--...--... 0509
l¡Ëor'...................---...--. 051 0
1t€¡/....-----*--..---. 05 l I

Foruore ..:......--.-------.--. 0358
G€ctÐlv..'.-.- -...----.---. 03óó
Gno-.{dlog},----.----... O35 I
¡.IEþIY

C;årq¡ ..-....--.......-......-. 0518

Sa¡¡clr poúpbov-.--.... OÁÁO
Toxjæ¡oqv1i..........-.-... os83

Horne Ecorpäics-.--.--.--.038ó

PHYS¡(ÁI SqTHGS

Puro &ien<eó
ChGú¡lr/

G-É.1 .-....---.----.---. o /95
AcríorltuEl..--- .- - -. - - - -. o7a9
Añdricpl-...---...--. 0.¿8ó
lllxjimi¡¡ry ------*--. O¡{¡7
tæ.qai€ -:.-.--...--..---. O/8a
NurJeor -..--.--..------. 0738
Gqonic....-.---.------. O¿9O
PtrËrnoee,rticol ------- 0¿9 I
Pfiy¡icd ...-...--..--*- 0¿9¿
Po¡.ñr-----------. O¿95
Rdf aion -..--- --- - *. 07 U

l'{€dì.í¡dic¡ ..-**-,.---..-. 0¿O5
Phy¿3

' Gr-ol ---.----------oéo5
Aou¡¿icr -----..------. O9A5
A¡rro¡grv qnd

A¡topln¡:ic¡ ------- OóOó
ÀÈro:oh¡iic Scieræ¡ -----

0¿O8
AbmË..---*-.. - - - - * - 07 /ta
É.don¡c¡ od É€diciÌy --.W7Égndfl Pøfid.raõd

H¡ch Éfucv..---*--- 0798
fu idqd Plimc . - - - - - *. 07 59
l¡oLorkr -..--...------. 0óO9
Nud.d ..--...-.....-----. 0ól O
Oorie-,. -...---.07 52
Rådiaion -.-...-..-.--..o7 56
Solid Stae ..--.....-----...0ól I

Sldiris -.....-..--.-..---.---. 0/ó:l
Aooüsd *ie¡xes
A;[.¿ M€hoñb--.-.---. O3ló
Cåinouts Scierxe -..--.-...-..-. O98¿

oc70
0372
o373
0388
o¿l I

0¿t8
09ér5
0427
03ó8
0¡15

HE.AITH ÁilD IHVIROIIiITIITÂI
5C¡EflCS
Erimotd Scisr<æ - - -- - - -O7 æ
l-læld¡S<¡græ

Gssol -....----------. 05óó
A¡,d¡obc1/ -..-----..---. 03oo
Cf¡rrodÉwv ..-..-----. W2
D.naÈlry --;-------*. 05ó7
EdrralÉn -..---------. 0350
Ftocritol ¡¡{qroqen¡¡¡--.0769
HuJro Do¡loånsl ------ 0758
t¡rt¡nhêJoqv ..:------..-0ç82
l¡¡dcim ãäd Sc¡ocrv -..--.05él
L n d H€lth ..-l-l-----.oz'tz
Nunino ----,.--------. 05ó9
Nutitio-n -..-.-----....--. 090
OÈ¡¡¿rie md Gvnælocv .. 0380
occ¡reodqd l{.¿rltà ond'

T¡xúEÞv "--'--""'-'--"" 035¿l
GhAa¡mbcv ..--............. 038 I
PdÉobqy11..--..-.-.--. ogl
Pficnri;¡oq,/-.-....-.--. O¿l 9
Pfiæs ..:.'...---.....-.-...... 0.'2
Plìyr¡6¡ llraev--...-. 03{¡2
hÉl¡c Hælrh-...-....--... 0t3
RoJ¡<¡locv-.--.---....-... 05/¿
Ræ¡Ëh ..-.....-...---.--.. o.'5

03¿5
0Á26

B¡oaæ<+r.f,ù¡rt
cõdrci¡¡¡r.1.

..__.__---......0¿25

THE UNIVERSITY OF MANITOBA

FACUTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

A VISUAL QIIERY T,ANGUAGE FOR A FEDERATTON OF DAT^A,BASES

}IARTII{ ÄNDREÁ,S JACOBS

A ThesisÆracticum submitted to the Faculty of Graduate Studies of the University of Manitoba in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Hartin Andreas Jacobs @ f996

Permission has been granted to the LIBRARY OF TIIE UNTVERSITY OF MÄNITOBA to lend or sell copies

of this thesis/practicum, to the NATIONAL LIBRARY OF CA¡IADA to microfTlm this thesis/practicum and

to lend or selt copies of the film, and to UNIVERSITY MICROFILMS INC. to publish an abstract of this
thesis/practicum..

This reproduction or copy of this thesis has been made available by authority of the copyright owner solely

for the purpose ofprivate study and research, and may only be reproduced and copied as permitted by

copyright laws or with express written authorization from the copyright owner.

BY

Abstract

This thesis presents a system for querying a federation of databases easy enough
to use so that even people with very limited computer knowledge can produce mean-
ingful queries. To achieve this goal a simple Visual Query Language (VQL) has been
designed.

Most VQLs simplify access to database systems by displaying the contents or
schema of the underlying databases graphically. The two most common flavours of
VQLs, diagrammatic and iconic, will be described, as well as arguments given, why
iconic languages are more suitable for novice users. Examples of different VQLs are
provided.

Several problems of federated database systems will be addressed. Among those
are schema level integration, instance level integration and the need for a common
data model. Some solutions to these problems are outlined.

A detailed description of the implemented system is given. The query language
designed for this system is implemented in the Hyper Text Marl<up Language (HTML)

"vhich
is generated based on user input. The HTNIL approach combines ease of use

with ease of programming.

Acknowleclgments

There are many people that I would like to thank. First I wouid like to thank my
supervisor Dr. Ken Barker for having the basic idea for this thesis and being there
when it was necessary. I would also like to thank the members of my thesis committee
Dr. David Blight, Dr. Ma¡k Giesbrecht, Dr. Peter Graham, and Dr. Ken Barker
for making the thesis defense possible at a very eariy date. Another "Thank You" to
Len Dacombe and Dr. Clint Gibler of TRtrøós for providing me with a great research
environment (and a steady supply of doughnuts). Thank you also to Glencla Stark
for reading and correcting the thesis. Other people that were helpful in the creation
and design of the program described in this thesis are Dr. Ken Ferens. Martin Vleier
and Darryl Dueck. A miscellaneous thank you to Heather Hnatiuk, Dan Erickson and
Shamit Bal. A very big Thank You to my girl friencl Christine Crisan for- waiting
a very long time until the VI.Sc. degree was finally achieved. Also to be thanked
in general are my parents. Finally a thank you to TF"Labs as an organization for
providing the necessary financial support.

Contents

Introduction
1.1 Thesis Orsanization

1

Visual Query Languages 6
2.1 Diagrammatic Query Languages g

2.1.1 ljnderstanding the Concept of Interest 10
2.I.2 Query Formulation 18
2.1.3 Query Assessment
Iconic Query Languages
Examples of Visual Query Languages

2.2
.)e

T4

15

i9
202.3.1 QBD*

2.3.2 LOOKS
2.3.3 Hybrid
2.3.4 QBrC
2.3.5 SUPER

Query Language
22
9?

'A
27

28

29
Ð1ùI

2.3.6 DOODLB
2.3.7 HTML

2.4 Comparison of a DQL with SQL

Non Local Data Repositories
3.1 Client-Server Computing
3.2 Distributed Database Management Systems
3.3 Federated Database Management Systems
3.4 The Integration of Disjoint Databases

3.4.1 Schema Level Integratìon
3.4.2 Instance Level Integration
3.4.3 A Common Data Model

3.5 Examples of Federated Database Management Systems

fmplementation of the CDNA Project
4.I Modularity

4.1.1 The System

33
'2 /1dT

JO

4T

TU

JJ

ðo

Ðð

62
o4

o4

oÐ4.1.2 The Database

4.1.3 The Common Data Model 66
4.I.4 Extensibility of the CDNA project 68
4.1.5 The CDNA Schema TI

4.2 Ease of Use T2
4.2.I ljser Interface TB

4.2.2 Database Entry T5
4.2.3 Database Integration 76
4.2.4 User Queries . 88

4.3 Scalability 88

Conclusions and F\rture Work
5.1 Recommendations for Future Work

89
q1

List of Figures

A diagram conforming to the grid
A diagram conforming to the line
Initial screen of a DQL system
The schema of the personnel database in a DQL
Query formulation in DQL system
Initial screen of an IQL system
Contents of the personnel database

Query formulation in an IQL system
Identification of main concept of interest in QBD*[SaSog3]
Query formulation in QBD*[SaSogS]
Three stages of icon examination in LOOKS [O2+eo]
Example query in HQL[AnEn95]
Query formulation in QBIC[NBEF+93]
Result of the QBIC query[NBEF+9J]

3.1 A client-server database system
3.2 The three levels of the ANSI/SPARC architecture
3.3 Four level schema architecture for distributed database systems
3.4 A distributed database system
3.5 Five level schema of a federated database system according to Sheth

and Larson[ShLa90]
3.6 A federated database system

A conceptual overview of the architecture of the CDNA system
An overview of the realized architecture of the CDNA system
conceptual addition of a transaction manager to the CDNA system
Schema of the CDNA system
An overview of the interrelationships between different tables in the
CDNA system
Necessary inputs to integrate a new
A suggestion for the placement of a
Seiection of a parent for a new node

4.9 Creation of a new node
4.10 The first level of choices

2.1

2.2

2.3
,/1

2.5
2.6

2.7
2.8
t0
2.70

2.IL
2.12

2.13

2.r4

4.7

',| ,
/Ð+.J
4.4

/F

+.Ð

4.6

4.7
4.8

standard
standard

I
q

l1
11

L2

I7
18
1q

20

27

23
.)K

26

27

dù

0l
38

40

4T

44

77
70

80

81

63

o+
(U

7I

database into the system
product generated by the system

presented to a user
83

85

Iil

4.11 The final result of a query BT

IV

Chapter 1-

ïntroduction

Ever since the advent of the first commercial computers ìn the early 1950s computers

have been used to process, store and retrieve information. Over time the techniques

for storing data evolved and developed. The earliest method of storing information

was the use of application specific storage files, which did not have a standard inter-

face, so they could only be accessed by the one special application they were developed

for.

The next step in information storage techniques was the introduction of databases.

Databases are specialized appiications that store information independent of any par-

ticular application program. They have a well defined interface through which ap-

plications can store or retrieve information. The networlt, model was one of the first

data models used in databases. It stores the relationships that exist between the

information explicitiy. This means that only relationships that are predefined can be

extracted from the system. The reiationships between the data are of a form where

one record type "owns" another record type. For example the record type "student"

owns the record type "course", which models a student taking a particular course.

The hierarchical model is a subset of the network model and emerged at about the

same time. In contrast to the network model, it only allows a record type to be owned

by exactly one "patent" record type. The most popular data model today is the re-

lational model, which was developed next. It stores the information in tables that

aggregate related information, rather than as individual records. The main benefit of

this data model is that the relationships that exist between the information do not

have to be predefined. Through the Structured Query Language (SQL) it is possibie

to associate the information in different tables without explicitly hard coding the

relationship in the database. Another benefit is that the access to information is less

dependent on the physical storage compared to the oider models. The mosr recenr

data model is the object-oriented model. This model more readily stores and manipu-

lates complex information than previous ones because of its properties of inheritance,

polymorphism and encapsuiation.

AII of these methods of data storage have a common disadvantage, in the way the

store and retrieve information. In all cases a special access method or query language

has to be utilized. If the database access is embedded in an application program, then

the programmer has to know the query language and the structure of the database. If

the query is posed directly to the database, in an ad-hoc query, then the end user has

to have substantial experience. In either case, training in the use of a query language

in general, and the structure of the database under consideration in particular, is

necessary. This poses a problem if the information contained in the database is to be

made available to the general public, where it cannot be expected that every person

trying to gain access to the information has the necessary background to formulate

correct queries.

Visual query languages (VQLs) have been developed to r-emedy this problem.

VQLs can be subdivided into two classes: graphical query languages and iconic query

languages. Of these two classes, iconic query languages are especially well suited for

novice users. Iconic languages allow the user to point-and-click on an icon representing

certain information, so more detailed data can be retrieved.

One example of where such a query ianguage is needed is an info'rrnation ki,osk in

a shopping mall. Information kiosks are interactive displays, that guide the shopper

towards a store that carries an item of interest. In contrast to a conventional mall

directory, which can only display the location of the stores in the mall, an infolmation

kiosk can also display an inventory of the merchandise each individual store has to

offer. To effectively use the kiosk access must be easy and intuitive and it must

provide up-to-date information on the merchandise available.

Accuracy of the data describing the merchandises' availability and pricing, com-

bined with the stores'reluctance to hand over their data to a central repository, rules

out a centralized approach. Instead the information must remain in each individual

store's database. This presents the problem that while the information is retained

in different databases it should be accessible to the information kiosk user without

undue overhead or the need for substantial user expertise.

This problem can be decomposed into two subproblems. The first problem is

that of simplifying access to a database. The second is that of integrating multiple

independent databases into one coherent system, while maintaining the independence

of the databases. The first problem can be solved with the use of an iconic query

language, while the second problem can be overcome by building a federation of

databases. Sheth and Larson describe a federated database rno,nagerrlent systern as :

"A collection of cooperating but autonomous component database systems".

This thesis describes the Community Data Network Architecture (CDNA), which

is an approach to supporting user access to muitiple data repositories. An example of

this approach is an information kiosk system which has been developed.,,vhe,.*e the data

is not transferred to a singie data repository, but remains at each store's database.

The store databases therefore form a federation of databases. The centrat CDNA

system contains only a "directory" of the information available. The user interface is

simple, so an average computer-naive shopper having no database knowleclge can use

it effectiveiy. The user interface is a simple visuai query language and the information

about the merchandise is structured in a hierarchical fashion, so the user is first

presented with a very general selection of product categories. Selecting any of these

categories yields more detailed ìnformation about the categories. The information

about an actual product is retrieved from the store databases.

1-.1- Thesis Organization

The thesis is olganized in the following manner:

e Chapter 2 introduces visual query languages. It begins by describing graphical

query languages, which are more suitable for the experienced user, since they

manipulate the schema of the database. The chapter also describes iconic query

Ianguages, which are more useful to inexperienced and naive users) since the

concepts contained in the database are represented by familiar smali images.

Finally some examples of visual query languages are given.

o Chapter 3 outlines the probiems encountered in the construction of a feder-

ation of databases. It describes schema level integration as well as instance

level integration. It aiso outlines the need for a common data model to have a

common representation of the data present in the federated database system.

o Chapter 4 describes the implementation of the CDNA system. This inciudes

the development of a quasi iconic query language, and a method of support

for the construction of a federation of databases, based on relational databases.

The user interface is based on the Hyper Text Markup Language (HTNIL). This

makes the CDNA system portable from one shopping mall iike application to

another and scalabie to a virtual mall on the Internet.

c Chapter 5 contains concluding remarks and suggestions for future extensions

of the CDNA project.

Chapten 2

Visual Query Languages

The trend in operatìng systems is to use graphical user interfaces (GIJIs) because

they are more intuitive to both novice and expert users. GUIs present the user with

choices in a pictorial form thereby increasing ease of use. Most text based systems on

the other hand require users to memorize complex commands that must be carefully

entered to avoid errors.

Traditional database query languages operate without a GUI. They are text based

and not easily accessibie io the uninitiated. An example is SQL which was designecl

to be a user friendly query language used by end-users to directly access database

management systems (DBIVIS). While it is structured and fairly easy to learn for

technical users, it is not intuitive to novice database users. There are many reasons

for this. One is the need to memorizethe commands of the query language. Another

reason is that the structure of the database has to be known in advance. Structural

knowledge includes table names and coiumn names in the database and their inter-

relationship between the different tables, including foreign keys. This requirement to

know the exact database structure presents a problem for expert users because of the

database's complexity, that is fulther compounded for novice or naive users.

Visual Query Languages (VQL), as described in depth by Batini, eú ai. [BCCL91],

try to overcome some of these problems. VQLs can be subdivided into several different

classes. One is the class of diagrammatic query languages. These query languages

represent the schema, or logical structure, of the database under consideration using

diagrams. An example of these kinds of diagrams is the Entity-Relationship (E-R)

diagram, as described by lVlcFadden and Hoffer [McHogl].

E-R diagrams are often used to model relational databases. In an E-R diagram

database entities are visualized with boxes, while the relationships among entities are

shown as diamonds. These are connected through lines that show how the entities

and relationships are related to each other.

Other forms of visual query languages include iconic languages. Here, the concepts

of interest, are shown in the form of icons, small pictures that capture and symbolize

a specific abstract idea or concrete entity.

Both approaches to visual query languages are described in more detail in the fol-

lowing sections. Additional exampies are provided for these query languages. Finally,

a comparison between SQL and diagrammatic query languages is presented.

2.L Diagrammatic Query Languages

As with all visual query languages, the main goal of diagrammatic query languages

(DQLs) is to make accessing a database easier for the user. In this section, first

the visuai representation of the database is described, then the mechanisms of query

formulation are discussed and finally the suitability of diagrammatic query languages

for different classes of users is outlined.

Diagrammatic query languages usually display the database schema using a dia-

gram. This makes complex schemas much more accessible to the user. The visual-

ization is achieved by assigning a limited set of geometrical figures to the different

components of the database. As mentioned above, the E-R diagram is a good example

of this, where only rectangles, diamonds, Iines and circles are used. The number of

geometric figures should be limited so that the user is not overwhelmed. Other pos-

sibilities for representing the database include the visualization of the actual content

of the tables in contrast to the schema of the database.

There are two slightly different representations used to display geometric figures

on the screen. One is the grid standard, where the lines, connecting differenr conceprs

are ailowed to have corners in them. Figure 2.1 is an example of a diagram which

conforms to the grid standard. The advantage of this representation is that it is very

compact and can fit many concepts in a limited area. The disadvantage is that more

concepts make it diffi,cult to differentiate concepts, especially if the lines connecting

the concepts have many corners in them. Therefore the straight line standard seems

Figure 2.i:

appropriate. Figure

A diagram conforming to the grid standard

2.2 depicts a line standard diagram. Another important

Figule 2.2: Ã diagram conforming to the line standard

aspect is the reduction of line crossings. It enhances diagram readability so it is easier

to distinguish which concepts reiate.

Queries are formulated through pointing and clicking with a mouse. A user clicks

on a concept of interest to examine it more ciosely. For example in a relational

database a concept can be a table. Query formulation for diagrammatic languages

can be thought of as a three step process. The first step is to understand the concept

of interest, the second step is the actual query formuiation, and finally the query is

tested to ensure the results are those the user desires.

z.L.L Understanding the Concept of Interest

The process of understanding the concept of interest can be done in different ways.

One possibility is to take a top-down approach. Here. the user selects a high-level

concept of interest in the database. After a high-level concept has been chosen, it is

further examined. For example, the examination can be based on finding out which

columns in the table are of interest. Finally the rows are selected. Each time a

selection is made, the process zooms in on the final goal. The top-down approach

is really a method of iterative refinement, where, with each iteration, the user gets

closer to the final goal of the query.

Another possibiiity is to use selectiue zoo'm'ing. Here too the concepts that the

user is intelested in are zoomed in on, but other concepts remain visible on the screen

but minimized. The advantage is that the user is still shown the context in which

the query is being formulated, while avoiding overcrowding on the screen.

The hierarchical zoomis yet another approach to database querying. Here different

concepts of interest can be looked at with varying degrees of zooming incrementally

increasing the degree of detail. For example in object-oriented databases, the user

might be examining one instance of an object while looking at the type structure of

a different class.

An example of the top-down approach is presented in Figures 2.3, 2.4, and 2.5.

The query that the user wants to pose on the Database Management System (DBMS)

is: "What are the names of the employees working on projects that have a deadline

10

ÊÊ
I Personnel | | Inventory

I

k_j bj

Figure 2.3: Initial screen of a DQL system

4")
P erson Bsnef¡ls

. works on

P roiect

4"\
{"7 Customer

Figure 2.4: The schema of the personnel database in a DQL

of iVfay 15, 1996 ?".

Figure 2.3 shows the initial graphical representation of the DBMS. There are two

databases in the DBMS, one dealing with Personnel data and the other containing

data on the inventory of the company. Since the user is interested in employee data

the personnel database is clicked on. The user is then presented with a high level

representation of the contents of the Personnel database (see Figure 2.4). Since the

user is interested in names of empioyees working on a certain Project, this part of

the database is selected (see Figure 2.5). This diagram contains the necessary detail

l1

P ro ject

Figure 2.5: Query formulation in DQL system

to pose the query that answers the user's question. To obtain the desired result,

t'he Deadline attribute of the project relation is chosen. as well as the relationship

between project and person. in addition to the Narne attribute in the petson relation.

Finally, the user supplies the system with the deadline of interest.

Another way of finding the concept of interest, instead of the top-down approach

outlined above, is to browse the graphical representation of the database. Browsing is

appropriate when users have little knowledge about a database and have to familiarize

themselves with the concepts and structure of the database. Since they are not

familiar r,vith the database, these users usually do not have a predetermined goal, so

they have to be provided with a method of exploring the different concepts and their

relationships. As with the top-down approach, there are several different strategies

for browsing. Intensional browsing on the database schema shows the user how the

t2

different concepts are interrelated. An example from reiational databases is showing

the user which tables have foreign keys into other tables. Anoiher kind of browsing

involves inspecting the actual contents of the database. Here the user can examine

the different concepts more closely. Finaily, there is the possibility of mixing both

kinds of browsing, so the user first browses the schema of the database and then when

an interesting concept has been located, examines the content of that concept.

The difference between the two approaches is that in the top-down approach

the user has a clear understanding of what type of information is desired, and conse-

quently tries to locate this information immediateìy. With browsing, the user explores

more concepts and their connections to locate the information of interest.

2.L.2 Query Formulation

After the concept of interest has been located, either through the top-down approach

or through browsing, the query itself must be formulated. Here again several mecha-

nisms exist.

The first is to specify the query in a top-down fashion. This means that the user

first locates the concept of interest and then narrows down to the exact instances of

interest. For example, the rows of a table in a relational environment, can be selected

by pointing and ciicking.

Another possibility is to formulate a query in a bottom-up fashion. The user

creates query libraries that form the lowest level of the querv. These libraries are

1Ð
1,)

reused whenever the query is issued. In effect the user only has to choose which

concepts to pose a query on and let the query library generate the appropriate low

ievel queries. Other strategies for formulating a query are closely related to browsing

while finding the concept of interest. The user specifies a concept of interest and uses

it as a starting point to relate other concepts to it.

Finally, it is aiso possible to combine different forms of query formulation. An

example would be the combination of the top-down and bottom-up approaches. The

user first zooms in on the concept or instances of concepts of interest and then invokes

one of the previously created query libraries.

2.I.3 Query Assessment

The final step of the three step process of constructing a queïy fol diagramrnatic

ianguages is to determine whether the query generated is correct and cioes what is

desired. This can be done by translating the query, given that a relational database

is being queried, into SQL, which is then inspected by the user. This is only useful

if the user knows SQL so the system designer would make use of this approach. A

more user friendly approach for the testing stage is to translate the query into natural

language. Here the query system reformulates the diagram into an Engtish sentence

stating the names of the tables and columns involved.

Diagrammatic query languages are more directed at the expert user. The reason

for this is that diagrammatic query languages work on the database schema predom-

aï

inantly. Thus this class of visual query languages is not suitable for the Community

Data Network (CDNA) project.

2.2 lconic Query Languages

As with diagrammatic languages, iconic query languages (IQL) are designed to sim-

plify the database querying process. Many similarities exist between the two visual

querying strategies. The differences that exist between the strategies will be described

in this section.

Iconic quety languages, in contrast to diagrammatic query languages, usually do

not display the database schema, but rather the actual data values. The icons are

visual symbols of the entity or idea tirey represent. An example wouid be an icon

depicting a person, which represents a personnel record in a company's database. The

user clicks on this icon and is provided with additionai icons, representing different

levels of employees and the actions that can be performed on their records.

IJnderstanding the concept of interest in iconic languages is mostly achieved

through browsing. Here browsing does not mean browsing the schema but brows-

ing the available data. One data item might lead to another data item. In the

example with the personnel records, the record of a specific employee might lead to

another record representing the employee's spouse. This record in turn might lead to

yet another record representing their child, for example. In this fashion, it is possible

to give the user suggestions for a non-goal directed search when the user is not sure

what is needed.

Queries in iconic languages are usually formulated by associating the icon of the

concept of interest with an icon lepresenting an action that is supposed to be carried

out on the concept of interest. By way of example) a personnel record might be

selected and then an icon representing "delete" might be selected. This permits the

employee record to be deleted from the database. The icon for the action "delete"

might be depicted by a trash can or a shredder rvhich are natural representations of

similar activities in the user's physical environment.

The main difficulty with iconic query languages is flnding icons that are generally

understandable. It is very difficult to find iconic representations that carry the same

meaning for all users without further explanation. Even for concrete objects it might

be difficult to find a self-explanatory icon. The reason is that the users may not be

familiar with the object represented by the icon. For example, the icon can have a

clear visual representation of a ùIanila foider on it, but it will not be understandable

to a user who is not familiar with this way of organizing sheets of paper.

The first principle for creating meaningful icons is to draw ideas from an envi-

ronment surrounding the intended user. For a database in an office environment this

might be office toois. Thus a shredder can be used to represent deleting instances

from the database, a Manila folder can represent the aggregation of certain instances

of the database, and so forth.

Other ways of making the icons more meaningful include the use of special colours

16

and/or highlighting parts of the icon. This way the user's attention can be directed

towards certain icons. They can be used, for example, to infolm the user that the

status of a query has changed from processing to cornpleted.

Finally, by combining icons with descriptive text, they become much more under-

standable. Thus, the user has a character based reminder of what the icon stands

for. The disadvantage of this approach is that, the user must be at least rudimen-

tarily literate. This can pose a problem in certain circumstances. as for example in

a shopping mali environment, where all prospective customers must be able to use

the system. Aiso, once text is introduced to the system it becomes more culturally

dependent than with icons. If the system is exported to a different country the text

describing the icons has to be translated.

Iconic languages are aimed at a different class of users than diagrammatic query

languages. Iconic languages are more suited to the casual user who does not have any

training in using databases. For these users the language and its functionality have

to be immedia,tely obvious. Since these users usuaily do not specify very complex

queries, it is acceptabie that iconic ianguages sacrifice some expressiveness for ease of

ltcê

Personnel Inventory

Figure 2.6: Initial screen of an IQL system

17

w
Person

Benefits

Figure 2.7: Contents of the personnel database

An example of an iconic query is shown in Figures 2.6, 2.7 and 2.8. Both the

database and the query are the same as with the example presented for diagrammatic

query languages. The query is again: "What are the names of the employees working

on projects that have a deadline of May 15, 1996 ?".

The user is first presented with the content of the DBN4S. Figure 2.6 shows that

there are two databases to choose from. Since the user is interested in data on

certain employees, the Personnel icon will be chosen. After the user ciicks on the

icon representing Personnel, the content of this database will be displayed. There

are foul tables in this database, a table on people in the organization, a table on the

benefits these people receive, a table on the projects ihat the employees work on, and

finalìy a table on the project's customers.

The query asks for the the names of empioyees, so the user will select lhe Person

icon, as well as the project icon. Then a text dialog box will appear, in which the

user will have to type in the date of the deadline. As well the user has to mark which

attributes of the selected tables are of interest. This is shown in Fieure 2.8. The

w
ustomer

#
Project

18

:#
Benefits

w
Custome

ffi
IPEHs;o'rll

ffi
I

Pr,oi,e,ot
I

Person
ID
Name X
Office

Project
tn
Name
Deadline 15/05/96

Figure 2.8: Query formulation in an IQL system

result of the query will also be presented in a textual form, stating the names of the

employees working on projects whose deadline is on lVlay 15, 1996.

2.3 Examples of Visual Query Languages

In this section several different visual query languages r,vill be briefly described. The

first query system to be described is QBD*, which is a diagrammatic query language

that can store queries in a query database. The second system is LOOKS, a user

interface generator for the object-oriented database system O2. HqL, a hybrid query

language whose main concept is to restrict the visual interaction to more complex

queries, is presented, as well as QBIC, a system for querying image databases. Finally

the Hyper Text Markup Language (HTUIL), the language in which Worid Wide Web

pages are written, wìll be presented. HTML can be used as a special form of an iconic

query language. The queries that it allows cannot be as complex as a full featured

iconic query language, but it is also easier to use, as fewer choices can be made by

1q

the user.

2.3.L QBD*

Figure 2.9: Identification of main concept of interest in QBD*[saSo93]

Query by Diagram (QBD*) described by Santucci and Sottile [SaSo93] is a diagram-

matic query system. It is based on a relational database and uses the E-R diagram of

the database schema as the database's graphical representation. The system is fully

visual so that the need for the user to type in commands on the keyboard is reduced

greatly.

The concept of interest is found through top-down browsing as described in Sec-

tion 2.1' The user zooms in on the part of the schema that contains the data of

interest.

20

Figure 2.10: Query formulation in QBD*[SaSo93]

Once the concept of interest has been located, it can be further refined so that

only particular instances of this concept participate in the query. These particular

instances can then be related to other concepts by connecting the concepts through

edges. Finally the results of the query specification can be stored in a library so that

they can be reused.

Figures 2.9 and 2.10 show an exampie query in QBD*. After the main concept

of interest has been identifred, a second concept is selected, and a condition for the

query is specified. In Figure 2.9 the selection of the concepts PERSON and STATE is

shown. The specification of the condition is shown in Figure 2.10. In SQL, it could be

specified as select * from PERSON, STATE where PERSON.NAME = STATE.SIIAME.

2T

2.3.2 LOOKS

LOOIß is a user interface generator used to build visual query interfaces for the

object-oriented database O2lO2+90]. The interfaces generated by LOOKS act very

much like iconic languages, even though they are not purely iconic. The generated

interfaces also make extensive use of character based explanation to make the icons

more understandable.

The user finds the concept of interest by browsing the available icons. Each icon

r-epresents a certain object in the database. A mouse click on one of the icons reveals

more information on the concept represented by that icon. Associated with each icon

are the methods that can be invoked on the obiects. This defines the results of the

mouse clicks.

The query is formulated by associating icons with each other, or through text

input when desirable. This might be used when restricting the range of a query to

an age Sroup in a personnel database. Othe¡ possibilities that LOOKS provides are

cut, copy, paste and create operations. For example if, a user wants to enter a new

employee into the personnel data structure, an icon for that new employee, will be

pasted onto the personnel icon after its creation. These operations are restricted by

the methods associated with the icon, so it would be impossible to paste an item

beionging to an inventory data structure into a personnel structure.

LOOKS does not provide a specific facility for testing the correctness of the query

that was formulated. The user is expected to know whether the results obtained

22

correspond to the needs.

Figure 2.11: Three stages of icon examination in LOOKS [O2+g0l

Figure 2.11 illustrates iconic expioration using LOOKS. The icon represents a

hotel object that can be examined at three different stages. Each of these stages

yields more information about the hotel.

2.3.3 Hybrid Query Language

Andries and Engels [AnEn95] describe the Hybrid Query Language (HQL), which

addresses query language problems that arise when queries become too compiex to

express graphically. This directly contradicts the reason for developing visual query

languages which is to simplify user interaction with the database.

HQL is a query language which offers diagrammatic and textual formulation of

Rltèln llo¿ct

Qsui¡|lrng lool Qbar Oslmlng pool +bàr

queries. The capabilities of the textual query language remain but are supplemented

with visual querying. For complex queries the user can switch at any point between

visual and character based querying. It is not possible to specify very basic operations

Iike aggregate functions graphically so these operations must be typed. The diagram-

matic query language used in HQL is based on an extension of the LR diagram. This

extension allows the ÞR diagram to contain, among other things, specializations and

generalizations.

Figure 2.12 shows an example query in HQL. The user navigates the E-R diagram

of the underlying database until a concept of interest is reached. The user selects this

concept of interest and copies ìt to the bottom query window, where the constraints

for the querv are entered.

2.3.4 QBIC

Query By Image Content (QBIC) is described by Niblavk, et ø/.[NBEF+93]. It is

a visual strategy that is totaily different from the other strategies outlined in this

chapter. While the other strategies are mainly concerned with a visual representation

of the underlying database schema (the diagrammatic languages), or with a visual

representation of the database instances of the database (the iconic languages); QBIC

is a visual query language in the truest sense of the word. QBIC is a query system

that allows irnage retrieval in a database based on the colour, shape or texture of

that image. QBIC tries to overcome the inadequacies of current large scale image

,/1

Figure 2.12: Bxample query in HQL[AnEn95]

databases, where the only way of retrieving an image of interest is based on the

textual description of the image that is stored alongside it. For smaller scale image

databases the authors recommend the use of thumbnail images for selecting a picture.

In contrast to other querying systems, QBIC does not provide a definitive answer,

but a range of images that might fit the current query, so the user has the final choice

as to which image best fits the query.

25

The system consists of two parts. The first is the database population part, while

the second is concerned with the formulation of a query. During database population

the user can highiight certain parts of the image to be subsequently queried. There

can be muitiple regions highiighted for each image. For each highlighted area, their

shape, texture and colour scheme will be analyzed and stored with the image. In the

querying part of the system, it is possible to specify shapes, textures and colouring

schemes that should be present in the retrieved images. Each of the conditions can be

used alone or in conjunction with each other. It is, for example, possible to request

an image that contains a certain shape and a certain colour. To specify shapes that

should be present in the retrieved images, a user can sketch a shape using a mouse

or other input device. A colour picker is provided to select the desired colours.

Finally, these inputs are matched against the images in the database. They can

either be matched against the complete image or against the regions highlighted in

the database population part.

Figure 2.13: Query formulation in QBIC[NBEF+93]

An example of the query by sketch part of the system is shown in Figure 2.13

and 2.L4. For this query, a shape that should be present in the desired images is

sketched. Figure 2.13 shows a sketch that a user entered.

26

Figure 2.14: Result of the QBIC qLrery[NBEF+93]

Figure 2.14 shows the result of the query. The images that are Leturned are those

images in the database that most closely match the sketch enterecl b;' the user, with

the best match in the top left hand corner-.

2.3.5 SUPER

The SUPEB visual querying facility by Auddino,et al.[AADD+g2] has a diagram-

matic query language, based on an extended E-R diagram model (ERC+). The main

benefit of the system is the modularity of its implementation.

The BRC* is extended to encompass object-orientedness. In addition to the usual

projection and selection operators, ERC* supports generalization and specialization

as well as object identity and compiex objects.

27

The SUPER system is designed to be very moduiar. It has a kernel, which is a

layer between the database accessed and the display facility. The kernel can access

either relational or object-oriented databases. On top of the kernei a display facility

for both UNIX and a Vlacintosh has been implemented. The display facility consists

of several different tools, including the design editor and the query editor. With the

design editor it is possibie to create a new database schema. In the query editor new

queries for the database can be created.

The query editor consists of several different windows. One window is for the

dispiay of the E-R diagram. The query editor does not allow browsing of the schema,

it presents the complete schema to the user. The user copies the concepts of interest

to a query composition window. The instances of interest are then selected from the

concepts, which have been selected in the previous step.

2.3.6 DOODLE

DOODLE by Cruz [Cru292] is a visuai query language for object-oriented database.

Its most distinguishing feature is its extensibility. It allows the users to adapt the

visual representation of the data to their individual needs, although some represen-

tations for the data are already predefined. These representations can be modified

using an object-oriented language, or completely overwritten with different data rep-

resentations.

To overwrite the predefined visualizations, the user has to define a mapping be-

28

tween the objects in the database and theìr visual representation. These modifications

can be done in a graphical fashion.

F-Logic [Cru292], a language for reasoning about objects, is used as a theoretical

representation of the system. The visual representation, both the already imple-

mented features, as well as the representations given by the user are translated into

F-Logic.

2.3.7 HTML

Although the Hypertert Marltup Language (HTML) [BeCo95], is not a visual query

ianguage by itself, it creates a user interface, which can be used to create query-

ing tools that act much like the iconic languages described above. Actions can be

associated with icons in HTML.

HTIVIL is a simplified version of the page description language SGVIL [Gold90].

HTIVIL allows the programmer to specify the general characteristics of the page. It

is possible, for exampie, to format the text on the page in paragraphs and to create

headings for each paragraph. Most of the final formating is done by the HTML

browser so it is impossible to predict the exact appearance of a page when creating

HTML code. This browser (eg. Netscape, Nlosaic, or Arena) is an application that

interprets the HTML and displays it as pages. The most important feature of HTML

is that it is possible to link certain words or phrases in a page to other HTML pages.

The user clicks with the mouse on these phrases and a new HTML page is retrieved.

29

Through the use of the HyperText Transfer Protocol (HTTP) it is possible not only

to create a link to a page that resides in the same computer but to one on any computer

on a network that runs an HTTP daemon (HTTPd). By linking together many pages

on computers connected via the Internet, the World Wide Web (WWW)[BeCa92] is

formed.

Through the growing popularity of the Internet and the WWW in particular many

users already work with HTML based svstems. Users who are not familiar with the

WWW concept, will find the interface very intuitive. The only action that users can

take is to click the mouse on a certain phrase of interest, and they will be presented

with material related to the item.

So far WWW pages, as described in this section, have been assumed to be static

pages created by a human programmer. Another approach creates WWW pages using

the Common Gateway Interface (CGI)[CGI96, BeCa92]. The CGi permits users to

execute programs through a mouse click on a WWW page. CGI facilitates WIVW

pages creation "on the fly" by an application that runs on the same server as the

HTTPd.

One of the applications that could be provided by the CGI is a front-end to a

text based database. This enables the user to interact with the database through

simple pointing and clicking on phrases or words in the generated pages. Another

feature of HTML is that not oniy can words be linked to other pages or program

executions through the CGI, but graphics can be linked as well. The combination

30

of these two features (CGI and links through graphics) makes an HTML-based user

interface very similar to the iconic querying svstems described above. The advantage

of an HTÙIL-based user interface is that it is very easy to use because the user only

chooses whether to click on an icon or not.

2.4 Comparison of a ÐQL with SQL

A study by Catarci and Santucci [CaSa95] has shown that both novice and expert

users benefit from the use of visual query languages. SQL and QBD* were compared

for their ease of use.

The study measured both the effectiveness of the query language, and the effi-

ciency achieved while using a particular style of query facility. The effectiveness was

measured by the accuracy with which the users managed to formulate the queries nec-

essary to answer the test questions. The efficiency measures how much time the users

needed, on average, to complete a certain task. Other iess tangibie differences such

as the level of users' contentedness with a specific query system were not considered.

In the study, three different classes of users were selected: novice, intermediate,

and expelt. The users were differentiated by whether they had no prior knowl-

edge of computer science whatsoever, programming experience but no knowledge of

databases, or whether they had a good knowledge of databases. The users were

subdivided into two groups. One group had to solve problems in SQL, while the

other group solved problems in QBD*. Each group was taught the respective query

q1,ft

language extensively before the experiment so that any differences in the levels of

effectiveness or efficiency could not result from lack of prepar.edness.

In the experiment itself three categories of questions, with increasing levels of dif-

ficulties, were prepared. Novice users were only expected to solve the easiest category

of questions, intermediate users had to solve questions of easy and medium difficuity,

while expert users were asked to solve all three categories of questions. The ievel of

difficulty was measured by assigning a weight to each of the SQL constructs neces-

sary to solve the query. "Joins" were assigned the highest weight followed by nested

queries and so forth. The questions themselves were natural language descriptions

of problems that had to be solved. The descriptions were the same for both users of

SQL and QBD*.

The resuits of the experiment were that all levels of users can benefit from a

visual query language like QBD*. In both measures of effectiveness and efficiency,

users of QBD* surpassed the test candidates expressing the queries in SQL. Even

expert users expressing simple queries fared better using QBD* than using SQL. The

reason for this is that with a visual query language the user is freed from remembering

cumbersome details about the database, like the exact names of tables and columns

involved in the queries.

?Ð

Chapter 3

Non Local l)ata R"positories

Traditionally enterprises had one mainframe-type computer. These computers were

accessed by terminals and all processing was done on the mainframe. since the ter-

minals had no processing power of their own. With the advent of PCs the situation

changed. Instead of using them as a mere replacement for terminals, the processing

power of these machines is utilized. The mainframe is used as a data repository, while

the data are either totally or partially processed by the PC. Ttre advantage of this

client/server architecture, where the PC is the client and the mainframe is the server,

is that the workload is shared. This reduces the need for costly mainframe upgrades.

Ideally, the mainframe can be completely replaced by a cheaper kind of machine, Iike

a high end workstation or a ciuster of workstations.

If an enterprise is very iarge it will have regional headquarters or plants in different

parts of the country. It is advantageous to the enterprise if the data that is stored

at diferent locations is accessible throughout the organization. This is one of the

reasons for distributed databases. Anther reason is that reliability can be increased

through the distribution of the databases, since there is no single point of failure.

Both client-server computing and distributed database management systems are

briefly described in the subsequent sections. The main part of this chapter is the

description of federated database management systems (FDBMSs) and how disjoint

DBMSs can be integrated into FDBMSs. An FDBIVIS is a system that consists of

two or more independent DBMSs, which remain independent, but still cooperate to

give the user of the FDBMS the impression that a homogeneous system is accessecl.

Finally two examples of FDBMSs are given.

3.1- Client-Server Computing

Client-server computing [Sinh92] means that the task of producing a certain result is

shared by different machines. Usually this task is shared between personal comput-

ers, which are relatively cheap and therefore on every employee's desk, and a more

powerful, central machine. Different types of servers exist. For example database

servers only distribute data to the clients and compute servers, may pre-process the

data in some way for the clients. The foilowing discussion considers database servers

only.

The database resides on a central compurer sysrem, connected via a network to

the clients. The clients access the central system if they want to retrieve or update

data from the database. Figure 3.1 shows a schematic of the client/server model

q^
,)+

Figure 3.1: A client-server database system.

described. IVlachine A is the server and the other machines are the clients.

An example of ciient/server computing is described in the following way: The

user on machine D needs data to complete a task. Machine D then sends a request

to server A, this request will be in the server's query language. After the server has

processed the query, the result is sent back to machine D, which processes it further

as specified by the user.

In a single database environment, the database is characterized by the three levei

ANSI/SPARC schema architecture as depicted in Figure 3.2. An explanation of this

can be found in Desai [Desa90l. The three levels of the architecture are:

JÐ

Internal Scherna is the lowest level of abstraction in the database. It describes

the physical location of the data on the disks. This schema is needed to optimize

the data access speed on the disks. For example speed improvements can be

made by clustering related data in close physical proximity, if it is often accessed

together.

Conceptual Scherna is the next highest level in the hierarchy. Its function is to

describe the data structure in the database and the relationships that the data

has with each other. The conceptual schema can be used to reason about the

data on a more abstract level.

External Scherna is a stili higher abstraction of the database. It provides subsets

of the conceptual schema, customized for a specific user or group of users. The

external schema can be used to simplify reasoning about the database because

only the relevant details for a specific database use are presented.

This architecture can be extended for the case of distributed databases.

3.2 Distributed Database Management Systems

In a distributed database management system (DDBMS)[OzVa91] there is no cen-

tral database, as in a client/server environment, the data is instead distributed

among all participating computer systems. This makes processing different than in

a client/server architecture. To make the architecture truly distributed, each partic-

Figure 3.2: The three levels of the ANSI/SPARC architecture

ipating site has to store part of the database. This does not preclude the possibility

that the distributed database also has clients attached to it but this is not the central

characteristic. In this scenario all machines participating in the distributed database

can be collectively considered to constitute the server.

A DDBMS can be characterized by a four level schema architecture. Figure 3.3

shows such an architecture. In addition to the components of the three level schema

architecture used for a single database, a Global Conceptual Schema (GCS) is needed.

The GCS consists of the conceptual schemas of the component databases. It is an

integration of the locai conceptual schemas and is used to reason about the coilection

of data contained in all participating local databases. The external schemas provide

a simpiification of the collection of databases which are integrated into a DDBNIS.

Building a centralized database management system requires a data directory,

.Jt

Figure 3.3: Four level schema architecture for distributed database systems

containing information about the concrete database. It tells a stand-alone system

which part of a disk contains the required information. For a distributed system a

global data directory (GDD) is necessaly. It provides the distributed database system

with information about which of its component databases contains the desired data

item.

Both the distribution of data and the distribution of the GDD can be implemented

in diverse ways. The data can be fully replicated so that each site has its own copy of

the data, it can be non-replicated, so that each site has a distinct set of data, or it can

be partiaily replicated so that there is some degree of overlap between the contents

of the local databases at each site. Each of these different ways of distribution has its

advantages and disadvantages. The easiest to manage is a fully replicated or a non-

replicated database system. For the fully replicated system, updates to the database

have to be propagated to all sites, while updates for the non-replicated databases,

do not have to be propagated at all. For the partially replicated database, updates

have to be propagated only to some of the sites. The difficulty is to find an efñcient

way to determine which sites require propagating of updates. The disadvantage of

non-replication is its lack of robustness because there is a single point of failure

in the system. Full replication wastes a lot of disk space and is not particularly

better than a non-distributed database. The increase in reliabìlity offered by a fully

replicated distributed database over a non-distributed database can be achieved via

local replication. This can be the replication of disks (disk mirroring) up to the

complete replication of the computer system (clustering).

Choices must be made about the placement of the GDD. The GDD can be stored

on a single site or it can be distributed. The problems with the distribution of the

GDD are the same as with the distlibution of the data. A central GDD presents a

single point of failure, while a distributed GDD is more difficult to manage.

For a pictorial representation of one type of distributed database system see Fig-

ure 3.4. it is a distributed database with a central GDD, which acts as a server to

several PCs. A query might be issued at machine E. This query ìs first processed.

by machine B, since it contains the GDD. By querying machine B, it is found that

machines A and C contain the data necessary to answer the query. After these sites

39

have been queried, the result is returned to machine B.

Figule 3.4: A distributed database system

Another aspect of distributed databases is the heterogeneity of the systems that

participate in the database. For a distributed relational database system, heterogene-

ity poses significant problems, but for a distributed object base system, the problems

of heterogeneity are even more severe because different systems have to be able to

interpret the objects and run methods attached to the objects.

40

3.3 Federated Database Management Systems

A federated database is a collection of databases that were developed independently

but must subsequently cooperate while remaining relatively independent. Reasons

for this might be the merger of two companies whose databases now have to interact

so that management can make decisions based on the contents of both databases.

Joining the two distinct databases systems is necessary but it is too costly and time

intensive to build a new database containing data from both companies from the

ground up.

External
Schema

External
Schema

External
Schema

Federated
Schema

Federated
Schema

Export
Schema

Export
Schema

Export
Schema

Component
Schema

Component
Schema

Local
Schema

Local
Schema

Componenl
DBMS

Component
DBMS

Figure 3.5: Five levei schema of a federated database system according to Sheth and
LarsonIShLa90]

^1=f

Sheth and Larson[Shla90] suggest that for a federated database the 3 level ANSI/SPARC

schema is not enough. Instead, they propose a 5 level schema as depicted in Figule 3.5.

The five levels are the local schemø, the cornponent schema, tlte erport schema, the

federated scherna and the erternal scherna. Each will be described briefly below.

The local scherna is the conceptual schema of the underlying database system as

defined in the ANSI/SPARC architecture. It describes the iosical structure of the

database.

The cornponent schem¿ is derived by transforming a local schema into a common

data model. A common data model is a common representation of the different

schemas. Common data models will be further dìscussed later. The transformation

from a local schema to a component schema is achieved by a mapping function which

translates commands for the component schema to commands for the local schema.

Additionally, the results of the local schemas are transformed into the component

schema represent ation.

The export schema restricts access by the federation's usels to the data of the

component schema. This is necessary, as there might be situations where not all the

data in the local schema shouid be made public. The export schema is an easy way

to control access to the component schema.

The federated schema integrates the export schemas of different databases. The

federated schema is responsible for providing distribution information. Distribution

information is the knowledge about which of the underlying databases contain the

/11

required information.

The external scherna provides a restricted schema on the complete federation. The

external schema can be used to simplify the federation schema, or it can be used to

restrict the schema for certain users.

The databases participating in a federation can have very different data models.

While one database system might be constructed according to the hierarchical data

model another database might be relational. These systems have both differing query

Ianguages and differing ways of presenting query results. To still be able to perform

queries in a consistent fashion on such divergent systems a common data model is

needed. The data model will act as an intermediate layer between the users of the

federation and the actual databases and queries will be translated into the appropriate

query languages and the lesults translated into a canonicai form. The fina1 soai is a

federation that appears as one single database to the user.

A GDD is needed when a federated database system is built so a query can be

directed at the appropriate component databases. One approach to accessing the

federated system as a single database is the use of a so called mediator staqe as

described by Chakravarthy, et al. lCKTLg3]. The mediatorexamines the query and

decides, based upon the entries in the GDD, which of the databases contains the

necessary data to satisfy the query. The mediator is aiso responsible for translating

the query from the common data model representation into the appropriate data

models and back.

+,J

Figure 3.6: A federated database system

Figure 3.6 is an example federation of databases. It consists of two disjoint

database systems, A and B. If a query to the system is issued by machine D, a

client to the federation, the GDD will be queried first. The GDD resides on machine

C. Based on the result of the query to the GDD, the query will have to be formed

appropriately for the target system. This query formulation is also done by system

C.

44

3.4 The Integration of Disjoint Databases

There are two levels of integration to be considered when trying to amalgamate two or

more independent databases into a federated database system, as described by Lim,

et at. lLSPRg3]. The first level of integration is schema integration. Here the schemas

of the databases are aligned, so that the structure of the tabies and the naming of

the columns is understood by the mediator stage. The second level of integration is

the integration of instances in the databases. This is necessary to determine if two

instances, occurring in the component databases, are actuaiiy referring to the same

or to different, real-world entities. Each of these two integration approaches will be

described in more detaii in the followins subsections.

3.4.L Schema Level Integration

Schema level integration is the process by which the schemas, or Ìogical descriptions,

of two or more databases are aligned so that it is possibie to reason about the different

databases as if they were components of one, globai database. During this process,

it is necessary to identify the common concepts, if they are present at all, in the

schemas of the participating databases. For example, a concept in the relational

model is an entity or a relationship between two entities. Concepts here do not

represent instances, whose integration wiil be described in the next section, but rather

a grouping of instances.

The common concepts can be classifred in several different ways lBaLNS6]. The

+Ð

concepts can be identical, in that two entities describe exactly the same collection

of real rvorld objects with exactly the same attributes. The next possibility is that

two concepts are equivalent. Here there are different types of equivalence. Ther-e is

behavioural equivalence, which means that for each relation in one database there is a

relation in another database, that will produce the same answer for any given query.

Then there is mapping equivalence. This equivalence means that for relations in one

database there is one corresponding relation in another database. Another kind of

equivalence is transformational equivalence. In this case it is possible to obtain a

reiation through a numbe¡ of transformations from a relation in another database. If

two concepts do not fulfill the criteria for identity or equivalence then they can still be

compatible. This means that the two concepts are not directly contradictory to each

other. The last category that common concepts can fall into is that of incompatibility.

Here two concepts from different databases contradict each other.

Integrating the schemas of participating databases generally requires the four steps

described by Batini et al. [BaLN86]. These steps are pre-integration, comparison of

schemas, conforming the schemas, and merging and restructuring.

In the pre-integration step the schemas are analyzed and it is decided in which se-

quence the schemas are to be integrated. The sequence of integration can be handled

in a binary fashion, where two schemas are integrated at one time to form interme-

diate schemas, which in turn are integrated two at a time, until the final schema

emerges. Another possibility for binary integration is to integrate each new schema

40

with the existing intermediate schema. This method has the advantage that the

schemas, which are considered to be the most important, can be integrated first. An-

other possibility is to integrate the schemas in a non-binary fashion, as for example,

integrate all schemas in one step. The advantage of the binary methods is that the

compiexity of integration is reduced, because only a limited number of concepts have

to be examined in each step. The disadvantage of the binary method, is that the

integration steps have to be repeated quite often. For the non-binary method there

are fewer integration steps involved but each step is more complex.

The comparison of schemas is the step after pre-integration. In this step all

conflicts that occur in the representation of the different schemas are found. It is

important to discover conflicts between the schemas, because only after the conflicts

have been removed is it possible to determine the equivalence betrveen them. The

conflicts can be subdivided into two different classes: naming conflicts and structural

conflicts. Naming conflicts arise, because the schemas for the different databases are

created by different people, who refer to the same real world object by different names.

On the one hand there is the problem of homonyms; where the same term is used in

the schemas to refer to different objects. This can be solved by fully qualifying the

attribute or entity name by prefixing it with an identifier for the schema it comes

from. This way ail objects with the same name in different schemas are uniquely

identified. Further, synonyms occuï when two or more names are given to the same

object' This problem can only be found and solved through manual inspection of the

47

scnemas.

Structural conflicts ar-e based on differences in modeling "real-world" entities when

the schemas were developed. There are four different kinds of structural conflicts to

be considered. The first is a type confl.ict, which occurs when different abstractions

are used to model the same real world object. An object could be modeled in one

schema as an entity and in another merely as an attribute. The next kind of conflict is

the dependency confl,icú. This means that the schemas differ in the way entities relate

to one another. An example is when one schema modeis a relationship as 1:1 while

another schema models the same relationship as rn : n. I{ey confl,icús must also be

considered. These occur when the schemas use different attributes, or even a differing

number of attributes as keys to an entity. Finally, there are behauioural confl,icts.

These are conflicts that occur when schemas have differing insertion or deletion rules

associated with them. For example, this could mean that a certain attribute of an

entity might be left blank in one schema, while its value was mandatory in another

schema.

The third step in schema integration is conforming the schemas. In this step the

participating schemas are remodeled in such a way that they are easily integrated.

This means that conflicts identified in the previous steps are resolved. In the remod-

eling of the schemas, the concepts under consideration (i.e. entities and relationships)

are transformed to a common canonical representation. The goal of this step is to

arrive at a common schema representation for the participating schemas.

48

The last step in the schema integration process is merging and restructuring the

schemas by superimposing the common concepts. The resulting schema is restruc-

tured for instance by finding generalizations and subset reiationships in the schema.

There are three qualities that the final schema should have: completeness, minimal-

ity and understandability. Completeness in the resultant schema is achieved among

other methods by finding subset relationships in the new schema. These relationships

can occur when one schema contains an entity that is a subset of an entity described

in another schema. For example, there could be a person entity in one schema, and

an employee entity in another schema. In this case, empioyee is clearly a subset of

person' Anoiher method is a join between concepts in two schemas to produce a com-

mon sub-concept. Minimality refers to the desire to create a schema with the least

number of concepts possible. This is achieved by identifying and deleting reclundant

relationships and entities from the schema. Finally, it is preferable to produce the

most understandable schema possible. This means that the graphical representation

of the resultant schema should be easy to r-ead by a human analyst. The same prop-

erties that are described in the chapter on visual query languages wiih regards to

readability of a diaglam apply here too.

Hammer, et al.lHaNISg4] suggest a different approach to schema level integration.

They describe a system for the integration of object-oriented databases, which is Less

geared towards producing a federation that is to be used by external users, but more

towards building a peer-to-peer federation, where participants in the federation in-

49

corporate parts of the federation into their local schemas. The integration of different

object-oriented databases is achieved with the help of a sharing aduisor. The shar-

ing advisor has knowledge of all export schemas of the different component DBMSs.

It can be divided into four parts. These parts are registration,, d,iscouery, semantic

heterogeneity resolution, and unif,cation The registration part is responsible for ad-

mitting new databases into the federation. The discovery part is used to decide which

of the federation's data to integrate with the local schema of the database joining the

federation. Semantic heterogeneity resolution resolves the differences in semantics

between the local schema and the data types of interest found by the discovery part.

The unification part finally integrates data of the federation into the local schema of

the component database.

The databases that want to participate in the federation make themselves known

to the federation in the registratìon part. They register the types that are in their

export schema. The registration part builds up a semantic dictionary describing the

registered types of the component databases. In the semantic dictionary, concept

hierarchies are built. A concept hierarchy contains related type information of the

registered types. If two types from different databases contain information about

a simiiar subject, a concept is formed that contains the attributes that both types

have in commor, and the types form sub-concepts of the newiy formed concept. The

system determines if a new type is similar to existing concepts by comparing it with

already registered concepts in a top down fashion (i.e. it compares it with the most

bU

Seneral concept first, if similarities are found with the descendents of thar concepr

and so forth until its place in the concept hierarchy has been found). User interaction

is required, if the registration part cannot determine by itself whether a type in a

newly added database is related to any of the concepts that are already present. The

similarity between the concepts is established by attribute names and types.

The discovery part of the sharing advisor is responsible for finding concepts of

interest that can be incorporated into the local schema of one of the component

databases participating in the federation. To find suitable concepts to integrate,

Hammer, et al. define three types of relationships that the new concepts might

have with the data in the local schema. These types of relationships are similarity,

complementation and overlap. Similar concepts contain information that is related

to the information already present in the local schema. Similar concepts are found

by examining the semantic dictionary built up in the registration phase. All concepts

that are at the same level in the concept hierarchy and have the same ancestor as

a concept in the local schema are simiÌar schemas. Complementary concepts are

those that contain additional information to the information already contained in the

concepts in the local schema. These concepts are found by examining the concept

hierarchy and choosing those concepts that have different attributes than a local

concept, but still having a common ancestor in the hierarchy. Overlapping concepts

have some attributes in common. These concepts can be found by examining ali

descendents in the hierarchy and comparing them.

'fl

After concepts have been discovered that are suitable for integration into the local

schema, the semantic differences between the attributes of the discovered concepts

and the attributes of the concepts in the local schema have to be resolvecl. This

is done in the semantic heterogeneity resolution (SHR) part of the sharing advisor.

To achieve this, there is a lexicon present in each of the component systems which

describes the relationships between the concepts present in the component system ancl

the concepts known to the federation through the registration part. The relationships

that can be specified are identity, equality, specialization, etc. The knowledge about

the relationships is provided by the semantic dictionary. With the help of the SHR

palt of the sharing advisor it is now possible to find out more about concepts that

were discovered as similar and how they are related.

The unification part of the sharing advisor is responsible for the integration of

the newiy discovered concepts into the local schema. The demands on the resultant

schema are, as described by Batini, eú ø/. [BaLN86]: completeness, minimality and

understandability. To integrate a concept that is equivalent with one of the other

concepts aiready present in the iocal database, the new one is made a subtype of

the already present concept. This keeps all attributes that the two concepts have in

common' while the new subtype has the attributes that are not present in the local

concept but are present in the new concept. If a new concept is only related to the

local concept, then a new supertype is created that has the attributes that the two

concepts have in common. Both concepts will be descendents of the newly created

52

supertype and will retain the attributes that they do not have in common.

3.4.2 Instance Level Integration

After the schema level integration has been achieved, instance ievel integration may

be necessary. Several difierent methods to perform instance level integration are

described in [LSPR93]. The first possibility is the use of key equivalence. Here

instances in the component databases are assumed to be the same if the key values

in these component databases are the same. The problem with this approach is that

there can be situations in which the keys of the respective tables do not match, but

the instances in the tabies still refer to the same real worid entity. If the keys in

the tabies are composite keys, then it possible that, even though one attribute of

the candidate keys matches, it stilt cannot be assumed ,,vith absolute certainty that

the relations refer to the same entity. A method that will always provide the correct

mapping between the two databases is user speci,fied equiualence. Here the user or

integrator of the databases specifies the mapping between the keys of the different

tables in a separate table. The disadvantage of this method is that this tabie has to

be constructed manually.

Other possibilities described in [LSPR93] are probabilistic approaches. In these

approaches, the composite keys are considered equivalent even if only the components

that describe the same characterìstic of an entity match. It must have been established

during the schema integration process, that these components describe the same

53

characteristic. For example, consider two tables, one an employee table, the other

a customer table. The employee table's composite key is defined by the person's

name and employee number. For the customer table, the key is defined by a name

and a customer number. If during schema integration it has been determined that

the two name columns of the composite key describe the same characteristic, (i.e.

a petson's name) then probabilistic key equivalence will define the relations in the

two tables to be equivalent since they have a common name. Probabilistic attribute

equivalence works in a similar fashion, only in this case not only the key attributes

are considered, but all attributes that describe the same characteristic are taken into

consideration. Both of these probabilistic methods have the disadvantage that they

are not guaranteed to produce correct resuits. It is quite possible that specific keys

or attributes have the same value but stiil do not describe the same entity.

For the method that Lim, et al. [LSPR93] suggest, they first define the notion of an

extendecl key (KBy7). The extended key is the minimal key that can uniquely identify

the described entity in the federated database. Usually this extended key is the union

of the keys of the tables which describe the entity. Furthermore, they develop the

idea of an instance ievel functional dependency (ILFD). The ILFD specifies that an

instance in one table is dependent on an attribute of an instance in another table.

This is best explained with an example.

Table 3.2 does not contain the attribute specialty as Table 3.1 does. If it is

known that Football Shoes are a product used for a sporting event rather than sold

ù'r

name specialty street

JoeBobs Sporting Goods Portage Ave.

JoeBobs Electronics Vlain St.

Table 3.1: Table R

name items-sold city

JoeBobs Football Shoes Winnipeg

Table 3.2: Table S

in an electronics store, then it can be inferred ihat the JoeBobs store in Table 3.1 is

the same as the JoeBobs store in Table 3.2. In this way the tuple in Table 3.1 has an

iLFD on the tuple in Table 3.2 based on the items_sotd attribute.

To identify which tuples are equivalent Lim, et al. suggest extending the partici-

pating table by the attributes of Ksxr that are not present in the respective tables.

In the example, Table 3.1 is to be extendedby KByT-s, or the attribute items-sold,

and Table 3.2 is extended by l{øxr-p or the attribute specialty with the values of

these attributes being NULL. Now each table has been extended to have KsyTas the

key. The next step is to fill in the columns for the newly created attributes. These

are derived by applying the ILFD to the tuples. Now each tuple that agrees in K6y7

is deemed equivalent. This process is used for entity identification only, so that the

original tables remain unchanged.

While this instance level integration approach has the advantage over the proba-

,lÐ

bilistic approaches in that it guarantees correct results, it still has the disadvantage

that it is based on the semantics of the contents of the component databases. There-

fore, it is also very time consuming since the ILFD have to be determined manually.

3.4.3 A Common Data Mode1

In the previous sections a need for a common data representation has been established.

To reiterate, a common data model is necessary to overcome the possible divergence

between systems that are to be integrated. There are a multitude of different data

models in existence. The most common ones are the hierarchicai model, employecl

by such DBN4S as IBNI's iMS, and the relational model, used by DBMS like DB/2,

ORACLE and Sybase. A data model just beginning to emerge in the market place is

the object based model [I{iLo89]. It has many advantages over both the hierarchical

and the relational model. It is capable of capturing very complex data much more

easily and modeling it more naturally than the others. Such data exist in geographic

information systems and CAD systems [BiOrga](among others). In acldition to being

able to model these complex kinds of data, it is aiso possibie to model the same data

structures that exist in relational databases using an object model. Thus an object

based model is a superset of the relational and hierarchical models.

The capability to form a superset of many data models is important if several het-

erogeneous data models are to be integrated. With an object based model it becomes

possible to provide consistent access to both a DBMS based on the relational model,

Ðo

as well as an object-oriented DBNÍS, since an object model is able to capture the

features of both data models. A relational model on the other hand is not capable of

modeling an object based data model without substantial difficulties and extensions.

One data model that might be used as a common data model for a fecleration

of databases is the RISC object model described by Manola, et al. [lVIaHeg3]. It is

designed as a common object model thai can be used to map one object model to

another. It has only a few fundamental building blocks upon which the mapping can

be based, hence the name RISC in reference to reduced instruct,ion set cornputer"s.

The components of the model are the object state, object methods, object interfaces,

object identity, types, and object construction. Some of these will be summarized.

below.

Objects have a state in most object models. This state is essentially the private

memory of the objects. In the RISC model this state is represented through another

object, which in turn has another object to represent its own state. This recursion

ends when the state is of some primitive type defined in the model.

Methods are the functions that manipulate the objects. For the RISC model the

methods are objects themselves. This feature gives them greater flexibility. Each has

an invoke operation in its behaviour so that it can be called to perform its function.

The object interface describes how an object can communicate with other objects

and methods in the system. The RISC object model does not have predetermined

interfaces for the objects. The interfaces will be modeied after the interfaces of the

ÙT

object models that are to be integrated. Therefore, it is left to the user of the model

to determine which style of object interface fits best.

New objects are created in some object based systems by explicit object construc-

tors (and deleted by object destructors). Object construction in the RISC model is

also achieved via a ner¡O method that creates objects for the primitiveobjects (e.g.

the object state) that make up a RISC object.

3.5 Examples of Federated Database Management

Systems

This section focuses on work described in the literature which is similar to the work

proposed in this thesis. The first approach discussed is described [CKTL$3], which

outlines an integration approach for medical databases at the University of Florida.

Another system similar to what is being proposed in this thesis is presented in

lMedagS]. It is a graphical querying facility for a multi-media news server.

The challenge described in ICKTL93] is to create a federated multi-media database

for medical research. The federation consists of three component databases, that

contain very different kinds of data. One database stores the patients records ancl

histories; the next database holds X-rays in digital format; whiie the last participating

database is a general imaging database. The limitation of the initial setup was that

these databases did not cooperate. They had to be queried separately to retrieve a

Ðö

patient's medical history and the accompanying X-rays and other diagnostic images.

The authors identified the requirements for a system that proposes to unify these

three systems as foiiows: uniform access to all component databases, ad hoc query

capabilities, and a customizabie user interface. Since the component databases are

also needed in their original form, it is not feasible to fully integrate all the com-

ponents into a unified database system, but rather a federation of databases has to

be developed. Differences ìn schemas among the components or the lack of a schema

must be overcome by partitioning requests based on the type of data needed. In other

words, the mediator knows where to find the data, based on their type.

The mediator providing the integration has two layers. The first layer is a mapping

layer based on a global data directory that determines the database holding the needed

data and translates the query from the federated system to a query that is appropriate

for the specific database. The second layer is an access layer that interacts dilectly

with the component databases and returns the results to the mediator layer. The

clients of this database federation can also be subdivided into two categories: real-time

clients and regular ciients. Real-time ciients are machines that might be used in an

operating room. Due to the nature of their use, these clients need immediate answers

to the queries, but have only a narrow query domain (i.e. the patient currently

being operated on). Additionally the queries will be mostly browsing queries and

not update queries. The proposed solution is to use clients that cache the data from

the federation. In other words, the clients can be preloaded with the relevant data.

hu

Regular clients, which are the other variety of clients consiclered by the authors, need

access to broader ranges of data that may be updated and which therefore can not be

practically preloaded. These clients have to retrieve the data as it is neecled from the

federation of databases. For performance reasons these clients also store data locally

for processing. Therefore, this data has to be updated if a change in the federation

occurs. The user interface on these clients has to be customizable so different kinds

of applications are accommodated. It must also be capable of supporting the display

and browsing of multi-media content.

The system proposed in [MedagS] provides a visual interface for distributed, multi-

media capable news servers. The system follows the client/server model with the

client having the visual querying capabilities and running the actual database client.

The visual query facility allows the user to specify the kincl of news articie of interest.

It is also possible to specify the desired medium of the ne,,vs article. For example,

video ciips can be excluded from the returned results. The results can have hypertext

links embedded in them, that lead to other articles. Therefore a browsing capability

exists in addition to directly specifying the area of interest. The underlying servers

can be continuous media servers (i.e. servers providing audio and video) or they

can be non-continuous media servers for text. It is possible to specify a quality of

service parameter for continuous media news articles. This can be used as one of the

parameters for billing the user of the service. Unfortunately an explicit explanation

of how the schemas of the underlying databases are integrated is not given by the

60

author of [1Vleda95].

61

Chapten 4

ïrnplernentation of the CDI\A

Project

The system described in this thesis models an information kiosk in a shopping mall.

An information kiosk is a device located at central points in the mall that informs

shoppers which stores carry desired merchandise. This system is an improvement

over the currently existing signs in a mall, that only have maps telling the customer

where a certain store is located, but cannot provide a complete inventory iist of the

different stores. The information kiosk tries to remedy this problem by providing

the shopper with information about where to find an item of interest. The shopper

is provided with a selection of items that the shops in the mall carry. A necessary

condition for this is that all stores that participate in this system have a database

that can be queried over a network.

62

CDNA Seruer

Figure 4.1: A conceptual overview of the architecture of the CDNA system

Figure 4.1 illustrates the system. The user enters the questions at one of the

kiosk terminals, the questions are then processed by the Community Data Netrvork

Architecture (CDNA) system, which transforms the questions into queries for the

database management systems of the stores, and dispiays the results that are obtained

on the terminai.

This chapter will describe the implementation of a CDNA system. The main

goals in the construction of the system were modularity, ease of use for the user, and

scalability. The chapter is subdivided to reflect these eoals.

oó

4.L Modularitv

Nlodularity is desirable because this makes the svstem easier-to maintain. This section

describes ways in which modularity is achieved in the implemented system.

4.L.L The System

LuAnn's
Zports Korner

JoeBob's
Sportorium

Figure 4.2: An overview of the realized architecture of the CDNA system

Figure 4.2 shows the architecture of the CDNA system as it is implemented. It is

implemented on the local area network at TRLabs. The system consists of a Sun

SPARC Station 5, which is used as a database server for one store (i.e. Joe Bob's

Sportorium), while a 486 based PC running Linux is used as a database server for the

second store (i.e. LuAnn's ZportsKorner). The CDNA system consists of a database

server that contains the tables needed for running CDNA, as well as an HTTP server.

The database server is implemented on a DEC Atpha 3000/300. The HTTP server

is running on the TR"Labs W\,V\,V Server. The HTTP server and the database server

can be run on the same machine but to reduce the load on the machine which runs

the HTTP server, the tasks were distributed.

Through the HTTP server it is possible to make any machine on the Internet,

which has a W\,V\,V Browser, into a terminai for the CDNA system.

4.L.2 The Database

Each of the participating stores must have a database, that is able to answer queries

sent to it over a network. In the current state of the system, these databases are

modeled by mSQL[Hugh96], a relational database.

mSQL was chosen to model the store databases because it has several desirable

features:

o It is a reiational database. Relational databases are not as powerful as object

oriented databases, but their modeling abilities are suffi.cient for most business

applications and they are in widespread use.

o It can be queried remotely. It can act as a server in a client/server scenario.

This modeis the fact that the stores in the system keep autonomy over their

data and database.

o It is multi-user capable. Up to 25 users can use the database engine concur-

rently, which means that up to 25 requests from the HTML terminals can be

processed at the same time.

o It is free for academic use !

For each of the store databases a view should be created. This view would restrict

access to data that is proprietary to the store, as for example, the wholesaìe price

of their merchandise. Secondly the view would integrate the data needed by the

CDNA system into one table. With mSQL it is unfortunately not possible ro create

views, so the views are simulated by tables that contain the same information that

the views would have contained. In schema terminoiogy, the conceptual schema of

the databases is equal to the external schema. In a "real life" impiementation, this

would not be the case.

4.L.3 The Common Data Model

The common data model employed in this implementation is mocleled in an object-

oriented fashion so changing parts of the model is greatly simplified. Adding different

capabilities to the data model is aided by this approach as well. So far a relational

table based model is implemented. The reasons for this are that the underlying

databases in a real world scenario are most likely relational as well. It is highly un-

likely that business data would yet be stored in an object-oriented database as the

relational model is adequate to support the needs that business has for databases.

Business data is usuaily not very complex and can be categorized very well by re-

oo

Iational tables. Another reason for choosing a relational data model is that the

databases that are used in the implementation are strictiy relational and therefore an

object-oriented data model cannot really be tested or utilized.

This object-oriented implementation of the relational data modei still benefits ihe

common data model. The benefits that can be derived from this are the usual benefiis

of using an object-oriented approach to programming. The code that is produced can

be reused and it is easier to maintain and modify. This is achieved through the use

of inheritance, polymorphism, and encapsulation.

Each of these points is important for the implementation of the CDNA project.

Inheritance provides the reusability of code, as many of the methods that are being

used to access the store databases are being used in communicating with the CDNA

database server as well. Also the code that exists can be incorporated into further

enhancements of the project, when access to different types of databases is required.

To incorporate different databases into the system the polymorphism property

is imporiant because the new access methods needed can be based on the existing

methods. In conjunction with the common data model developecl these methods will

provide a consistent way to access the new data sources.

Encapsulation is important for consistent access because the data is requested

from the object instead of being read from a variable. This request can remain the

same regardless of what data model the database containing the information uses.

The data model, as it is implemented for the project, supports the insertion of the

67

results that are obtained from a query and the subsequent access to these results. The

method of accessing the results is independent of the database the result is obtained

from, so they can be accessed consistentiv regaldless of how the database access is

implemented.

4.L.4 Extensibility of the CDNA project

The CDNA project is designed so it is possible to extend the current project. One such

extension is a global transaction manager. In a centralized database environment, a

transaction manager is responsible for ensuring the consistency of the database and

controls concurrent accesses to the database. Both of these issues are very important

if the database is not a read-only database, but it also permits updates.

Each operation on the database must leave the database in a consistenr state.

This means that r,vhatever failures occur, the operation must be completed. An

example might be that while trying to update many records a system crash occurs.

The transaction manager is responsibie for ensuring that these updates are continued

or undone when the system is restarted. To achieve this, logs must be kept of ali

operations and how far they proceeded. When the system is restarted after a crash

these logs are consulted and the consistent database state is re-establisheci. The

recovery is achieved either by redoing certain operations that have not yet been written

to a disk or by undoing those that have been pre-maturally written to a disk. An

example of an undo operation is when a customer account has been debited, but the

68

item to be purchased is found not to be in stock.

In a multi-user environment, concurrency control becomes important because,

multiple queries must not interfere with one another. For example. when part of one

query writes to a data item that is being read by another query, care must be taken.

The system must ensure that writing and reading occurs in a way that is equivalent

to the serial execution of the two queries. There are many different protocois for

making certain that the accesses occur in the correct order. One such protocol is the

2-phase locking protocol, based on locking records that are to be subsequentiy written

or read. A write lock means that only the query, which has been granted the lock,

is able to write to the specified record. A read lock means that the record cannot

be changed, while a query has a read lock on it. With the 2-phase locking protocol,

the first phase is for acquiring the locks, while the second phase is for freeing up the

locked records. In other words, as soon as locks are being freed up no new locks can

be acquired by this quely. This protocol guarantees that the execution of the queries

is equivalent to some seriai execution.

These problems also exist in federated database systems. Here each of the partic-

ipating databases will have its own transaction manager, but it is also necessary to

ensure consistency between the different databases, so a global transaction manager

is needed. For example, when a business transaction is made, where an item has been

sold and the customer's bank account must be debited, while the vendor's bank ac-

count must be credited and a balance owing must be reset. Here it is very important

69

that this operation

both accounts are

remains.

leaves the federation

adjusted, or neither

in a globally consistent

account is changed and

state, where either

the balance owing

CDNA Server

Transact¡on Manager

Figure 4.3: Conceptual addition of a transaction manager to the CDNA system

The CDNA project is designed so that a transaction manager can be easily inte-

graied into the system. This would enable the system to go from a kiosk sysrem) ro

an online shopping system, which is also capable of updating databases, while main-

taining global consistency. Figure 4.3 shows how this would conceptually be attached

to the system. Instead of accessing the databases directly, as is currently done, the

queries would be sent to the tlansaction manager, which would in turn query the

databases and return the resuits to the current CDNA system. In practice, this is

achieved b5' calling a transaction management method or even a separate program)

with the query and the final query destination (i.e. the store databases that the

query is intended for) as arguments. After the transaction manager finishes process-

ing the results can be returned in one of two ways: Either the results are returned

as objects, if the CDNA system and the transaction manager are integrated into one

70

program' or the results can be stored in a temporary tabie, if the CDNA system ancl

the transaction manager are two separate programs.

4.L.5 The CDNA Schema

In contrast to the general federated schema described by Sheth and Larson lShlag0]

the CDNA project does not need a five level schema. In the CDNA case a three level

schema is sufficient to describe the system. Figure 4.4 shows the schemas that are

needed' These schemas are the local external schema, the component schemø and the

federated schema.

Figure 4.4: Schema of the CDNA system

The schemas are similar to the schemas described by Sheth and Larson. The

local external schema is a part of the complete conceptuai schema of the underlying

77

database, which only grants access to those parts of the database, that shouid be

visible to the public. The component schema is the same as Sheth and Larson's com-

ponent schema, it is the local external schema in a common data model description.

Finally, the federated schema is the integration of the different component schemas.

Both the export schema and the external schema described by Sheth and Larson a¡e

not necessary for the CDNA project. The export schema in their model is responsi-

ble for restricting access to the local schema of the underlying databases. It is not

necessary because the access restriction to the data residing in the local databases

is done at the database level by only exporting pertinent data to external schema.

Simiiarly the external schema, which is responsibie for restricting access to parts of

the federatecl database system is not necessary in the CDNA project in its current

form, because the access restriction is being done at the local schema level. None

of the data that is being exported by the local databases needs any further access

restriction, quite to the contrary, the stores will want the customers to look at them,

so that a sale can be made.

4.2 Ease of IJse

Since the system is targeted at the aveïage shopper, no prior knowledge about com-

puters or databases may be assumed. The querying of the system should therefore be

as simple as possible. This is provided in the system by the use of HTML as a lan-

guage to construct the user interface. With HTML it is possible to have a quasi-iconic

72

query language for the system.

The set of database systems that represent the stores can be viewed as a federation

of databases because they have to remain separate, while in the context of CDNA it

is necessary that they can be queried together.

Both of these points will be addressed in the following sections.

4.2.L lJser Interface

The main goal of the user interface is to create a system that is as easy as possible

to use. An information kiosk will only be accepted by the average shopper if it is

extremely easy to use. To facilitate this ease of use a graphicai user interface was

chosen. This GUI has many of the capabilities of iconic languages. Recall that

iconic languages have the benefit that the user clicks on the iconic representation of

a concept and is presented with more informaiion about this concept.

With HTVIL, which was chosen as a ianguage to create the GUI for the system,

it is possible to create such a visual query interface. It is also possible to mix the

visual representation of concepts, with a textual representation. Textual and iconic

representations are functionally equivalent as both can be linked to another page.

Linking entails that a mouse click by the user leads to the display of a new page that

is associated with the text or image. Since these two forms of display are equivalent,

mainly the textual display is used in this system. The reason for this is that it is rather

difficult to create meaningful icons as discussed in the section on iconic languages.

t,)

There are two ways of producing HTML pages, one is to create a page manually,

the other is to have the HTiVIL code created by a program. The manual writing of

code is appropriate for pages that remain static, because their content does not have

to be updated frequently. An example for this is the introductory page of the CDNA

system. This page is rarely changed. It is only used as an introductory page to the

system. The program based generation of HTML on the other hand is more suited

to pages that change continually. An examples of this are pages that display the

number of items a store has in stock, or in fact all pages that display the output of an

external program. If these outputs are translated into HTML, they can be displayed

by an HTML browser.

Very few parts of the CDNA system use static HTTVIL pages. The entry page is

static, as are the documentation pages. Where changes occur only very infrequently.

Most of the HTML is created by a program that translates the user's mouse clicks

into the query language of the underlying databases. The resuits from the queries

are then translated back into HTN4L so that they can be displayed in an informative

and visually pleasing fashion.

Each of the underlined words and phrases that the user can click on is a link to

a CGI program. This CGI program is executed on the machine running the HTTP

server when the user clicks on one of the underlined items. The CGI program then

queries the CDNA server for more information on the subject that was represented

by the phrase the user clicked on. New pages are created, based on the information

74

that is retrieved from the CDNA server. For information on the actual merchandise.

the store databases are consulted.

4.2.2 Database Entrv

One of the main benefits of the CDNA system over currently existing shopping mall

systems is that the participating stores retain autonomy over their data because they

do not ship the data to a single central site. Keeping the data at the stores ensures

that the data remains as accurate as possible; it also does not allow any competitor

to tamper with the data. Furthermore, since the data remains in the databases of

the stores, all updates made to the data, like price changes or changes of the number

of items in stock are immediately reflected in the system.

Since there are different stores, each with its orvn database, participating in the

system, the CDNA system can be regarded as a federation of databases. Here the

component databases clearly have to remain autonomous, since they are owned by

the stores, and the stores wiil not give up the autonomy over their data. However,

the data has to be accessible to the shopper in a simple and consistent fashion. The

federation needs the integration of the component databases. Both schema level

integration and instance level integration are necessary. The CDNA system provides

support for both of these activities. Since instance level integration is always based on

the semantics of the entities in the relations, some user input is required for it. The

system tries to help the user with the input by providing hints for how the instances

IÙ

could be integrated. The integration process of a new database into the system is also

based on WIVW pages, so that there is a consistent interface for both the shopper and

the database administrator of the store's system. This means that the integration of

a new database can be done from anywhere on the CDNA network.

4.2.3 Database Integration

There are separate tables in the system that contain the information necessarv for the

integration process. These tables are shown in Figure 4.5. First their functionality

will be described and then a description of how they are built will be given.

The Decision Tree table contains a specialization hierarchy that is presented to

the shopper. The shopper is given a choice between different high level categories of

goods. After the initial choice the descendent nodes in the tree will be presented as

the next choices that the shopper can make. This process continues until a leaf node

in the decision tree has been reached. In the example this leaf node is football.

A hierarchical representation was chosen because it makes a goal directed search

for merchandise very easy. It also corresponds to how a shopper shops for products

in a regular store[Baleg3].

The Product Inder table, the next table in Figure 4.5, is queried, when a leaf

node has been reached. The query will seiect ail instances that have the leaf node

in the decision tree as their parent node. For each product in the store databases

there is one instance in the product index table. These instances contain information

76

Decision Tree

Product lndex

rapper

Store Databases

Figure 4.5: An overview of the interrelationships between different tables in the
CDNA system

about which products the CDNA system knows. This is achieved by storing the key

attribute of the actual store database. Should the kev in the store database be a

composite key then these columns can be amalgamated into one column through the

view provided on the store database by the store. The next item of information stored

in the product index table is which stores sell the particular item, and a reference to

the stores that carry the item. This reference is a foreign key into the wrapper table,

described in the next paragraph. Finally the product index also has an attribute that

77

specifies which leaf node of the decision tree is its predecessor. In the example given

there are two ploducts that are football r-elated and they are sold by two different

stores.

The Wrappertable holds meta data about the store databases. It contains the data

that is entered through the web page shown in Figure 4.6. This table is responsible

for schema level integration. Only certain columns in the view or table accessible

to CDNA will be used. These columns are the minimal set of columns necessary to

produce a meaningful overview of the merchandise that the stores offer. Furthermore,

this is information that can reasonably be expected to be provided by the stores. The

columns are a descriptive column, a price column, and an availability column. The

descriptive column will contain the name of the item and some useful comments about

the item. The idea for a wrapper table is taken from Tom asic, et ø/. [ToRV96] who

present a similar structure.

Figure 4.6 shows the CDNA WWW page in which the necessary information has

to be entered. In addition to the columns described above, other information is needed

as well. The Seruer narneand Database naTne information is needed specifically for

mSQL' Since mSQL is capable of running on different machines and having several

databases on each machine, this information has to be specified so the system can

access the correct tables. With the knowledge about the naming scheme for the

different tables, it becomes possible to formulate queries in a consistent and generic

fashion, where the appropriate columns of the wrapper table are used in a fashion

78

N
:ììiiì
ii,Èr

Whåt is all this
about ?

HelD

CrediG

Databæe entry p¿ge

ì.ì.]::.,jn:j!:@

In ùb Dqê oDvdÀubdc cùlê ôddêd b ùE CDNA5ÞÞÞ.

PÞæc cnÞt ûD æqujEd i¡fomüo[

s!¡r¡e! ND. [i;ru'iry

sêrvcr Mne FbÐ.w

D¡r.bÉ úùo IIM

-
Î¡ble Mre F@

þy corqÀ Mæ Fq;---- - - --

¡lodrc! colun ùüe F*

Pricê ælún Èñê lt*-

Àv¡ildility colun mie Fü_M

s¿o¡e Þne fFkder*tun*

tGb^tq*tltæqEÐ

rc p¡gé æ gcËEEfl byr DþgM byM@ J@bs.
mæhg rloMnd Ùy

Figur-e 4.6: Necessary inputs to integrate a new database into the system

similar to pointers.

The Store databases refer to the actual store databases which wiil provide the finai

answers to the queries. In the example provided, the result of querying for football

related items, if we follow the decisìon tree to the football leaf node, we would find

brown football shoes sold by one store and a red football sold by another.

After the functionaiity of the tables shown in Figure 4.5 has been described, the

70

Figure 4.7: A suggestion for the placement of a product generated by the system

process in which these tables are created will be shown.

The database administrator for a store database that is newly entered into the

system must first filI out the form shown in Figure 4.6. This information, as men-

tioned above, is stored in the wrapper table. With this, all the schema integration

information that is necessary for the CDNA system has been acquired. Schema

level integration is simplified in many respects in the CDNA system in comparison

to schema level integration as described earlier. The pre-integration step for exam-

80

ple is not necessary because the sequence of integration is predetermined. The new

databases are integlated one by one into the existing system. The comparison of

schemas and conforming of schemas steps that are usually necessary for schema inte-

gration are also not needed here because it is known before inteqration which columns

are provided bv the database.

Figure 4.8: Selection of a parent for a new node

The next step is to provide instance level integration into the system. This means

that for each item in the database a suitable leaf node in the decision tree has to

be found. The system provides some heip for the database administrator to simplify

81

this part of the integration process. After the initial information about the database

itself has been plovided, the system wiil query the store database for each item that

is contained in the specified table. The contents of the column that describes the

item is then compared against ali leaf nodes in the decision tree. If the name of a

leaf node is contained in the description of the product, this leaf node is suggested

to the database administrator as parent to the particular item. This is shown in

Figure 4.7. It is also possible to place the product under another leaf node. If this

option is selected by the database aclministrator, a new nod.e in the decision tree can

be created. This is similar to the situation where the product name does not contain

any of the names of the ieaf nodes in the tree. To create new nodes, the database

administlator first navigates through the decision tree, to find a place where a new

node is needed. Then a new node can be created and sub-nodes of this new node

can be made. This continues until a level of speciali zation has been reached where

the product can be entered. Figure 4.8 shows the start of the navigation through the

decision tree, while Figure 4,9 shows the creation of a new node. After the new node

has been created, the product can be entered underneath it.

The product is entered into the system by storing the key value and the wrapper

name of the store database in the product index table. Additionally, the decision tree

ieaf node that acts as the predecessor is stored in the row.

82

Figure 4.9: Creation of a new node

4.2.4 lJser Queries

The second part of the CDNA system, after the addition of databases to the system,

is the querying of the system by shoppers. This querying of the system will be now

be described.

The shopper is first presented with a high tevel choice of products that are on

offer by the different participating stores. This presentation corresponds to the first

Ievel of nodes in the decision tree of Figure 4.5. At system startup, when the initial

83

HTN4L page is first called up, the decision tree is queried for the descendents of the

root node. This is done via a CGI program that takes the root node, in this case

"Cdna", as an argument and queries the decision tree table on the CDNA server. (In

Figure 4.5 and also in the actual table, the Cdna node is the root node.) The root

node does not carry any information but has to be present, as the system always

queries for the descendents of a node. The result of the query for the descendents

of the root node will be the top ievel hierarchy of products that are on offer. This

top level hierarchy can consist of such items as Sporting Goods, Clothing, etc. These

results are then transiated into HTNIL. This is achieved by showing the result and

attaching the invocation of the CGI program with a corresponding argument as an

HTX4L iink to the results shown.

Figure 4.10 is an example of the results of the initial query. This means that

in this case the shopper can choose between three categories of products. AII the

products that the impiemented system knows about fit under these categories. Bach

of these categories represents a node in the decision tree.

From this initial list the shopper can then seiect a categoly of interest. The

seiection of a category is accomplished simply by clicking on the desired underlined

word. A query is issued on the decision tree which finds the descendent nodes of the

node representing the product category that the shopper is interested in. The issuing

of the query is again done via a CGI program that runs on the WWW machine,

querying the decision tree table on the CDNA server. The results of the querv are

84

Figure 4.10: The first levei of choices presented to a user

again shown on the HTÌVIL page and a CGI program with this node as argument is

linked to it. As a result, the shopper is presented with the next layer of nodes in

the decision tree. Further clicking on the category of interest will present a more

specialized selection of categories. This process of the selection continues untii the

shopper has reached a leaf node in the decision tree.

If a leaf node in the decision tree has been encountered, the product index table

of Figure 4.5 will be queried for all instances existing in this table, that have a leaf

õÐ

node in the decision tree table associated with them. The resuits of this query' on the

pr-oduct index table are all the ploducts that the system knows about and that are

classified as fitting in the category represented by the leaf node. The results are then

ordered by the contents of the wrapper column. The wrapper column again contains

a foreign key into the wrapper table, that contains the information about the different

stores represented in the system. The results from the query to the product index

table have to be ordered by ihe wrapper column so subsequent queries to the store

databases can be issued together. This is important because the products that each

store carries can be presented together in a singie HTX{L table for each store.

After a leaf node in the decision tree has been reached and the product index table

has been queried, the store databases have to be queried for the actual information

of interest to the customer. These queries are formed based on the lesults from the

product index tabie. The results contain the key values of the products desired. To

form a correct query, information about the database is necessary which is contained

in the wrapper table. Thus, for each store the wrapper table is queried for the names

of the columns and table that contain the product information. The wlapper table

oniy has to be queried once per store because the information obtained from the

product index table is ordered by wrapper name. Based on the key values of the

products of interest, a stote database is queried. The result of that quer)/ is then

transformed into a row of an HTNIL table. Such a table is shown in Figure 4.11.

There is a separate table for each store. The information about the store, displayed

86

in the table (e.g. the store name) is contained in the wrapper table as well.

Figure 4.11: The final resuit of a query

Figure 4.11 shows the finaì result of a query posed to the CDNA system. It shows

that there are two stores carrying items of interest to the user. Each of these two

stores has a separate table on the HTNIL page, describing the products that they

have for sale by a descriptive column, a column that contains the price, and a column

that contains the number of items available.

87

4.3 Scalabilitv

Another main feature of the CDNA system is its scalability. Through the choice of

HTil4L as representation language, the system is not restricted to a physical mall

setting. Since the HTTP protocol is associated with HTML, it is possible to connect

the CDNA server to the Internet, and thereby have a world wide audience. Also,

based on the size of the Internet mall and on the number of accesses that the svstem

must handle, it is possible to have the CDNA server run on a different computer

than the one that runs the HTTP server. This will reduce the load on the HTTP

machine and enabie it to handle more accesses. Another advantage of HTIVIL is

that the programming of the GUI has been greatiy simplified. It is much easier to

produce HTNIL, which will then be interpreted and displayed by the browser, than

to create a GUI on Microsoft Windows, Macintosh OS, or the X-Window system

directly. The HTML browser acts as an interface between these windowing systems

and the programmer. Also the browser does not have to be programmed or maintained

because there are many commerciai HTML browsers available, that are maintained

and constantly enhanced by their respective companies. A further benefit of using

HTML is that HTML browsers are available for many different operating systems.

88

Chapter 5

Conclusions and Future \Monk

Formulating a query for a database management system is a non-trivial task for a

person who has not been trained in the use of computers. Therefore, traditional query

languages like SQL are not appropriate in an environment where the general public

is supposed to gain knowledge from a DBMS.

This thesis presents an overview of currently existing techniques in the freld of

visrial query languages, that try to simplify the use of databases. Both the diagram-

matic query language approach and the iconic query language approach are described.

Diagrammatic query languages are more suitable for users that have at least a iittle

training in ihe use of databases because these languages usually require knowledge

about the meaning of a database schema. Iconic languages are suitable for users who

are not familiar with any kind of database, because they represent all entities con-

tained in the data repository in a pictorial format. The actions thai can be performed

on the entities are also svmboiized by icons. The user interaction is no more difficult

than simple pointing and ciicking on the icons displayed. The thesis also presents

arguments that an interface generated in HTML can be r-egarded as equivalent to a

simple iconic query language because it is possible to use icons in HTML to represent

entities on r,vhich certain actions can be performed.

To integrate multipie databases that must remain autonomous into a system that

can be queried in a consistent manner requires a federation of databases to be estab-

lished. The access to such a federation should appear io the user as if only a single

DBMS is being accessed. User transparency is provided by a mediator stage [ToRV96]

conceptually situated between the user access stage and the component databases.

The user queries the federation by formulating queries that the mediator stage can

process. The mediator stage in turn then formulates queries that are appropriate

for the component database that contains the information necessary to answer the

user's query. The component database returns the result to the mediator stage which

transforms it into a common data model. The answer to the querv is returned in a

format understandable by the user. An overview of techniques for building federated

database systems is presented.

The thesis then describes an impiementation of the CDNA system which offers

iconic access to a federation of databases. In its current implementation the CDNA

system is an HTML based front-end to multiple relational databases that guides a

shopper in a physical or virtual shopping mall towards products of interest. The

information about the merchandise is retained at the store's site. An extensible data

90

model is developed based on the relational model

reflect different data models.

but that can easily be modified to

5.1 Recommendations for Future Work

There are severai ways in which the CDNA project can be improved. One of these

is the addition of a Transaction Manager, as briefly explained in Chapter 4. The

transaction manager allows the system to be transformed from a read-only informa-

tion system to a fully interactive electronic "mail order" system because a transaction

manager allows on-iine updates to take place. A possible scenario would be that an

order is being taken, causing the amount of available units at the vendor's database to

be decreased while the vendor's bank account is increased by the appropriate amount.

At the same time the customer's bank account has to be decreased by the amount

payable.

In the current system updates can only take place in an off-iine fashion. This

means that updates to the system can only occur when there is no user interaction,

otherwise the system might not be consistent and the user might not get the correct

results from the queries. Also it is not possibie for the shopper to update the databases

for reasons of possible inconsistencies. Adding a transaction manager to the system

should be fairly easy because it is designed to be open to such an addition

Another area where the system can be improved is by the use of Java [Java96,

Lind96] as an enhancement of the current HTNIL based system. Java is an object-

q1

oriented language that can be used to create applications which are called from an

HTML page. The difference between Java and CGIs is that Java applications are not

executed on the machine running the HTTP server but iocally on the machine that

requested the application. This gives the application much more flexibility in what

it can do. All Java applications are executabÌe on any piatform that support a Java

capable W\,VW browser. The application does not have to be modified according

to which machine it is executed on. It is compiÌed into a byte-code that can be

understood by the WWW browser which in turn interprets the byte-code for the

appropriate architecture. The Java language itself is very similar to C** so it is

easy to learn for someone familiar with that programming language. In contrast to

C++ it does not use pointers or explicit memory allocation but rather a garbage

collection process. This avoids many of the commonly made mistakes when using

C++.

The advantage of Java over HTML is that it is much more interactive. With

Java it should be possible to implement a completely iconic language where one icon

can affect another icon. As an example the user should be able to select the item of

interest and drag this icon onto a cash register icon to specify that the item is being

bought.

A further improvement to the system would be to introduce support for more

databases than just mSQL. For relational databases this involves additions to the

database access classes of the project. Academically more interesting is adding sup-

92

port for databases with entirely different data models. For example an object-oriented

database is of interest, because this will require a common data model capabie of

transiating a common query language into ihe appropriate database specific query

language. Also a translation from the specific data model of the added database into

the common data model will be necessary.

93

Bibliography

[AADD+e2]

[AnCs91]

IAnEn95]

[BaLN86]

[BaLe93]

[BCCLel]

IBeCo95]

[BeCa92]

[BiOrea]

A. Auddino, E. Amiel, Y. Dennebouy, Y. Dupont, E. Fontana, S. Spac-
capietra, Z. Tari, Database Visual Environments based on Advanced
Data Models, In Aduanced Vi,sual Interfaces, T.Catarci, lVI.F.Costabile,
S.Levialdi (Eds.), World Scientific, pp. 156-170, L992.

NI. Angelaccio, T. Catarci, G. Santucci, QBD*: A Fully Visual Query
System, In JournaL on Visual Languages and Computing, Vol. 1, No.2
, pp. 255-273, 1991.

lVi. Andries, G.Engels, A Hybrid Query Language for an Extended
Entity-Relationship Model, Technical Report, University of Leiden, TR
95-03, 1995.

C. Batini, VI. Lenzerini, S. B. Navathe, A Comparative Analysis of
Methodologies for Database Schema Integration. In ACM Cornputing
Surueys Vol 18, No.4, pp. 323-364, December 1986.

J. Baty, R. Lee, Electronic Shopping Infrastructures, a Design Repre-
sentation, Technical Report, University of Rotterdam, RNI- 1 993-01-03,
1993.

C. Batini, T. Catarci, NI. Costabile, S. Levaldi, Visual Query Systems,
Technical Report, University of Rome, TR-04.91, 199i.

T. Berners-Lee, D. Conolly, Hypertext Markup Lan-
guage - 2.0, lVork in Progress, W3, 1995. Availabie
Online: Aúú p : / /www. w3. org /hypert ert/ WWW / fuI ark Up /html- spec/html-
spec.ps.

T. Berners-Lee, R. Cailliau, World-Wide !Veb, Computing in High En-
ergy Physics 92, Annecy, 1992.

A. Biliris, J. Orensteìn, Object Storage Managment Architectures, In
Aduances in Object-Oriented Database Systerns, A. Dogac, M.T. Özsu,
A. Biliris, T. Sellis (Eds.), NATO ASI Series: Springer-Verlag, Vol. 130,
pp. 185-200, 1994.

94

[CaSa95] T. Catarci, G. Santucci, Diagrammatic Vs Textual Query Languages:
A Compalative Experiment, In Proceedings of IFIP W.G. 2.6 Working
Conference on Visual Databases, Lausanne, 27-29 March, 1995.

[CGI96] The Common Gateway Interface, Available Online:
http : / /hoohoo. ncs a.uiuc. edu/ cgi / ou eruiew.htrnl, 1996.

[CKTL93] S. Chakravarthy, V. Krishnaprasad, Z. Tamizuddin, F. Lambay, A Fed-
erated Multi-media DBMS for Nledical Research: Archiiecture and
Functionality, Technical Repori, IJniversity of Florida, TR93-006, 1 993.

[Cruz92] I. Cruz, DOODLE: A Visual Language for Object-Oriented Databases,
In ACM SIGNIOD, June 1992.

[Desa90] B. Desai, An Introduction to Database Systems, lVest Publishing Com-
pany, 1990.

[Gold90] C.Goldfarb, The SGAIL Handbook, Ed. Yuri Rubinsky. Oxford, New
Yorlc: Oxford University Press Inc, 1990.

[HaMSg] J. Hammer, D. Mcleod, A. Si, Object Discovery and Unification in
Federated Database System, Technical Report University of Southern
California, USC-CS-9 4-57 4, 1994.

[Hugh96] D. Hughes, mSQL, Available Online: http://www.hughes.com.au, Lgg6.

[KiLoBg] W. Kim, F. Lochovsky (Eds.) ,Object-Oriented Concepts, Databases,
and Applications, ACIVI Press, 1989.

[Java96] Java - Programming for. the Internet, Available Online:
http : / /j au a. sun. com, 1996.

[Lind96] P. van der Linden Just Jaua, The SunSoft Press, 1996.

[LSPR93] E.-P. Lim, J. Srivastava, S. Prabhakar, J. Richardson, Entity Identi-
fication in Database Integration, In Proc. IEEE Int'\. Conf. on Data
Eng. pp. 294-30I, Vienna, April, igg3.

[MaHe93] F. Manola, S. Heiler, A URISC" Object Nlodel for Object System In-
teroperation: Concepts and Applications, Technical Report GTE Lab-
oratories Inc. TR-0231-08-93-165, 1993.

[McHo9l] F. McFadden, J. Hoffer, Database Managemenú, Benjamin Cummings
Publishing Company, 1991.

[Meda95] G. El-Medani, A Visual Query Facility for Multimedia Databases, Tech-
nical Report, University of Alberta, TR 95-18, 1995.

[NBEF+93] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,D.
Petkovic, P. Yanker, C. Faloutsos, G. Taubin, The QBIC Project:
Querying Images By Content lJsing Color, Texture, and Shape,In Pro-
ceedings of 1993 SPIEIS€jT Conference on Storage and Retrieual for
Image and Video Databases, 7993.

[02+90] O. Deux et ai., The Story of Oz,In IEEE Trønsactions on l{nowledge
and Data Engineeri,nc, IVIarch 1990.

[OzVagi] M. Özsu, P. Valduriez, Principles of Di,stributed Database Systems,
Prentice Hall, 1991.

[SaSo93] G.Santucci, P. A. Sottile, Query By Diagram: a Visual Environment
for Querying Databases, In Software Practi,ce and Erperience, Vol. 23,
No. 3, 1993.

[ShLa9O] A. Sheth, J. Larson, Federaied Database Systems for Managing Dis-
tributed Heterogeneous, and Autonomous Databases, In ACd[Corn-
puting Surueys Vol22, No 3, pp. 183-236, September 1990.

[Sinh92] A. Sinha, Client-Server Computing, In Cornmun'ications of the ACM
Vol 35, No 7, pp. 77-98, July 1992.

[ToRV96] A. Tomasic, L. Raschid, P. Valduriez, Scaling Heterogeneous Databases
and the Design of DISCO , To appear in Internati,onal Conference on
Distributed Computer Systems 1996, L996.

[Voisga] A. Voisard, Designing and Integrating User Interfaces of Geographic
Database Applications, International Computer Science Institute,
Berkeley, CA, TR-94-0i5, 1994.

q6

