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ABSTRACT

Lattice Gas Automata (LGA) can be considered as an altemative to the conventional

differential equation description of problems in electromagnetics. LGAs are discrete

dynamical systems that are based on a microscopic model of the physics being simulated.

The basic constituents of an LGA are discrete cells. These cells are interconnected accord-

ing to certain symmetric requirements to form an extremely large regular lattice. The cells

of an LGA are extremely simple, requiring only a few bits to completely describe their

states. Even though they are simple, the collective behaviour of LGA microscopic systems

is capable of exhibiting those behaviours described by partial differential equations for

real physical systems. The inherent parallelism and simplicity of LGA algorithms make

them ideally suited to implementation in a parallel processing architecture which can be

effectively realized with special-purpose cellular automata machines. The objective of

this research is to explore and develop the potential of cellular automata as mathematical

tools for electromagnetic modelling.

In two-dimensional applications, a new HPP-type mixture LGA algonthm is pre-

sented for modelling wave propagation in inhomogeneous media. It can be analytically

shown that change in sound speed of an LGA can be achieved by incorporating rest bits at

a lattice site, as well as moving or interaction bits. It will also be shown that a simple mix-

ture LGA will behave according to the linear scalar wave equation. Thus, by making an

analogy between a fluid and two-dimension electromagnetic field parameters, we can uti-

lize this simple particle interaction paradign as a tool for two-dimensional inhomogene-

ous electromagnetic problems.

However, the problem of developing LGA vector models for modelling three dimen-

sional electromagnetic phenomena is more difficult since there is no a direct analogy

between fluid and three-dimensional vector electromagnetic fields. By considering the

inherent property of electromagnetic fields, an LGA vector algorithm for modelling

three-dimensional vector electromagnetic fields is constructed. We show how, in the

macroscopic limit, the three-dimensional Maxwell's equations can be derived from the

LGA vector model.
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Chapter 1. Introduction

The objective of this research is to explore and develop the potential of cellular autom-

ata as mathematical tools for electromagnetic modelling. Investigation of electromagnetic

phenomena have conventionally been based on partial differential equations, Maxwell's

equations. Two general techniques can be applied to the solution of Maxwell's equations.

These are analytical and numerical methods. Numerical methods can be further classified in

two classes[]. The first involves the numerical solution of integral-equation formulations

and the second involves the numerical solution of differential-equation formulations.

Analytical techniques are limited to specific geometries, which conform to specific coor-

dinates systemsf2]. It is generally not possible to obtain complete solutions to an arbitrary

problem. In most cases one must resort to a variety of numerical approaches with the aid of

digital computers.

lntegral-equation formulations are obtained through the use of source representations

for the unknown field distributions. A detail review of numerical methods based on integral-

equation formulations of electromagnetic field problems can be found in [,3,4]. Using

physical or physical-equivalent sources (corresponding to electrical and magnetic currents

and densities), and a Green's function (to take into account any analytically solvable geo-

metrical aspects of the problem [5]), a mathematical statement can be made in the form of

an intergral equation. The unknowns are usually current and charge densities, and are deter-



mined through the discretization of the mathematical formulation using the Method of

Moments or Boundary element method for example. The discretization is limited within

defined regions or on their surfaces with finite geometric dimensions. This usually results in

a system with a dense matrix equation.

Differential-equation formulations involves the determination of approximate solutions

by direct approximation of Maxwell's equations. The direct approximation can be consid-

ered as the formulation which applies Maxwell's equations locally. Due to the locality of the

formulations, it is capable of treating medium heterogeneities, nonlinearities, and time vari-

ations in a straightforward manner. A detailed review of these methods can be found in

[6,7,8]. The numerical solution of these equations is obtained via the application of tech-

niques such as the time-domain finite-element, time-domain finite-difference, and transmis-

sion-line matrix methods. Since Maxwell's equations are satisfied throughout the entire

spatial domain of a problem, the region of discretization is all space in which a non-zero

field distribution exists. For a open region problems, an absorbing boundary condi-

tion(ABC) is required to limit the spatial domain of the problem to a finite size and enforce

the radiation condition on the field distributions.

Based on the spatially discrete fonn of the mathematical formulations, selection of time

or frequency domain for the solution is required. Solutions to the time dependent formula-

tions described above (time-domain finite-elements and finite-difference) yield transient

solutions for a given excitation. For certain electromagnetic compatibility and electromag-

netic interference (EMC/EMI) problems, the transient response analysis is required. For

most antenna application and radar-cross-section analysis, however, frequency domain



results are desired due to their time harmonic excitation (single frequency).

Although many differences in the above techniques appear, computation is not directly

considered in the development of the numerical models. The assumption is made that the

implementation (programming and hardware) will be performed on a general-purpose com-

puter. This is partially due to the availability, flexibility, and low-cost of general-purpose

computers.The computers can, however, represent such formulations only approximately.

While formulations involve continuous variables, digital computers can only treat discrete

digital quantities. The real numbers that correspond to continuous variables in the formula-

tions must be represented on the computer by packets of bits, typically in the form of 32- or

64-bit numbers in floating point format. In current computational physics, much effort has

been spent both to show that, with sufficiently fine grids, solutions to continuum equations

can be found, and also to study error in these solutionsf9,10]. For many complex applica-

tions, computational physics increasingly requires computational resources. For instance,

high-performance computers are often measured in terms of the rate at which they can carry

out the floating points operations needed. The situation leads to view that the traditional

fonnulation of physical problems in terms of differential equations is not a computationally

reasonable representation of physical phenomena and alternative representation should be

pursuded[9, I 0].

The Cellular Automata (CA) approach is a departure from traditional formulation. It

may offer a rrore efficient computational technique. A cellular automaton consists of dis-

crete lattice cells. Each cell takes on a finite set of discrete values. Thus the system can be

described by binary variables. The values ofeach cell are updated in a sequence ofdiscrete

timesteps according to logical rules which depend only on the values of cells in a local



neighbourhood. The inherent parallelism and simplicity of processing elements make cellu-

lar automata attractive for simulating and studying physical processes. In the early 1980's,

Wolfram demonstrated that, even with very simple rules, it is possible for cellular automata

to exhibit complex dynamical behaviour [0]. Often these behaviours show striking similar-

ities to the forms observed in many natural systems. Toffoli [11]noted the phenomena and

indicated that cellular automata can serve as models to simulate many complex physical and

mathematical systems. Some examples include studies of time-reversible automatafl2],

quantum lattice-gas models for the many-particle Schrodinger equation[3] and simulation

of cellular automata for quantum field problem[4].

One of the most remarkable results of studies on cellular automata was the success-

ful application of the lattice gas automata (LGA) (a class of cellular automata to be intro-

duced later in this chapter) to the modelling of fluid dynamics[ 5,16,17f. This was the first

concrete example of a cellular automata model reproducing partial-differential equations

(Navier-Stokes equations) in the macroscopic limit. Frisch, Hasslacher, and Pomeau showed

how the Navier-Stokes equations could be derived from a microdynamics consisting of an

artificial set of rules for collision and propagation of identical particles. Since then, many

authors and researchers modified, refined and extended cellular automata approaches in dif-

ferent areas involving many interesting ramifications in hydrodynamics. LGA gave rise to

some new ideas for constructing models to predict certain complex fluids, including fluid

mixtures involving multiphase flows, phase transitions and complex turbulent phenomena of

fluidsf I 7 ,18,19,20f .

Research efforts have been made by some authors toward modelling electromagnetic

phenomena with cellular automata approaches. For example, Bomholdt and Tatalias [21]



presented some background information and strategies for the development of possible rules

regarding the modelling of scalar waves. Thiele [22] discussed the optimal parallel architec-

ture of cellular automata for simulating electromagnetic phenomena. However, concrete

examples about computational experiments or details regarding the application to modelling

electromagnetic phenomena are not available. Recently, N. Simons and G.Bridges et a/. suc-

cessfully exploited the use of lattice gas automata for the analysis of complex electromag-

netic field problems. In their papers 123,241and N.Simons' Thesis[25], they presented

concrete algorithms for two-dimensional HPP LGA [26] models, and implemented these

models on the CAM-\ cellular automata machine (CAI4)1271. Experiments for some elec-

tromagnetic field problems were carried out using the machine. Their experimental results

showed correct quantitative behaviour and reasonable accuracy. Based on their basic LGA

algorithm, they extended the theory to modelling electrically large and spatially inhomoge-

neous two-dimensional electromagnetic field problems, such as the interaction of an electro-

magnetic wave with complex biological systems. Their work [28] showed how an LGA

algorithm is capable of simulating inhomogeneous dielectric structures with a wide range of

dielectric constant. Most recently, initial success in modelling three-dimensional electro-

magnetic field problems has been achieved 1291. Several three-dimensional vector LGA

models have been developed for the modelling of electromagnetic phenomena.

Exploitation of cellular automata as a mathematical tool for electromagnetic model-

ling includes three main aspects. These aspects can be considered in the following progres-

sion:

. Development of a specific lattice gas automata model.



. Implementation on a cellular automata machine (CAM).

. Simulations on the CAM and analysis of the model.

The development of an LGA model involves finding an optimal microscopic

dynamic description for the physical system(s) in terms of a cellular automata algorithm. An

LGA is a discrete dynamic system which consists of a lattice of identical cells. The time evo-

lution of the system is governed by a local dynamic law (or rule) which acts on all cells

simultaneously in parallel, and is the same throughout space for all times. Such a description

involves the specification of a rule. This rule determines how the state of each cell at the next

timestep can be determined by the current states of a finite number of its neighbours. In

addition to this basic lattice gas format, other properties such as the geometrical symmetry

of the lattice, reversibility and conservation of some physical quantities may also be

imposed. The most important problem when developing a lattice gas model is the specifica-

tion of a rule that yields the desired underlying physical phenomena while maintaining these

constraints.

Computational experiments are intended to be carried out on cellular automata

machines (CAMs) which are specifically designed for simulating cellular automata. The lat-

est machine available isthe CAM-\1271. CAM-ï is implemented with simple l6-bit logical

operations at each of 32 million computing sites (cells). It can perform 200 million site

updates per second. This performance is equivalent to that of a Connection Macltine oÍ a

Cray supercomputer, but the CAM-9 can be used to simulate cellular automata at a fraction

of the cost of using a Connection Machine or Cray supercomputer [30]. Thus the machine

provides an ideal computational environment for cellular automaton modelling of complex



electromagnetic field problems.

The final step in the above progression, simulation on a CA followed by analysis of

the model(s), is required to study the macroscopic behaviour in a physical system. This can

be done by considering values of collective quantities, such as particle density or momen-

tum density, or other macroscopic quantities (polarization and so on). These are obtained by

averaging over a large lattice region. If the CA model(s) is well constructed, one can expect

that the collective behaviour should be capable of exhibiting that behaviour described by

partial differential equations for a real physical system. In addition to observing the macro-

scopic behaviour, the validity of CA model(s) can be analysed by considering some funda-

mental physical principles such as reversibility, conservation laws and so on. This is

because, if a CA model is explicitly constructed, each step or feature of the construction is

specifically designed to have particular known consequences relating to these principles. As

well, a study of spurious behaviour and non-dualities has to be considered. The former, due

to the LGA algoithm, causes a problem of spurious conservation laws [31,33], while the lat-

ter, resulting from the lattice discritization, leads to the anisotropy of a physical field repre-

sented by an LGA model.

Another very important aspect in developing an LGA approach in computational

physics is the provision of a mathematical analysis of the LGA model. This analysis is based

on using fundamental physical principles to demonstrate how a simple LGA model can be

used to simulate a real physical system, and determining the limitations of the LGA model.

Much development in this direction has been done in the modelling of ffuid dynamics

131,32,33,34], but only a few efforts 128,291have been made in computational electromag-

netics. One of the most important aspects of the research is to provide the provision of math-



ematical analysis and demonstrate that our LGAs models are indeed solving the requisite

partial differential equations.

In two dimensional cases, the analysis involves proving the validity of the simplest

HPP LGA for modelling electromagnetic propagation and scattering in lossless inhomoge-

neous media, and deriving a comprehensive expression for the sound speed defined on our

mixture lattices. This expression indicates how to model the media with different sound

speeds, analogous to the modelling of different dielectric constants in lossless inhomogene-

ous media of electromasnetics.

The problem of developing LGA vector models for modelling three dimensional

electromagnetic phenomena, and providing physical interpretation for these models, is more

challenging than two-dimensional LGA models, where a great number of theoretic analyses

have been done for applications to fluid dynarnics. Some concepts, methods and simulating

algorithms of these analyses have been used in two-dimensional electromagnetic modelling.

For three-dimensional modelling, initial success has been achieved by setting up a vector

LGA mod,el which conserves energy and polarization. Some simulation experiments for

some electromagnetic problems have been designed and carried out. These show close

agreement with those results obtained using the traditional numerical electromagnetic

method. A theoretical analysis in the three-dimensional case has been made by using LGA

theory and the mathematical method, which is similar to the Transmission Line Matrix

Method QLA4) method[8,35]. This analysis shows how the three dimensional Maxwell's

equations can be derived from the model.

Chapter 2 of the thesis introduces cellular lattice gas automata (LGA), and reviews some

of the rnodels that have been developed and used to rnodel computational electromagnetic



problems. In this chapter, the basic format of these models and their applications in two and

three-dimensional problems are presented. Microscopic and macroscopic descriptions of

these LGA models are then given. Some of the basic concepts of LGA theory such as ensem-

ble average, detailed and semi-detailed balance and the equilibrium particle distribution

function, are also briefly discussed. Finally, in chapter 2, an introduction to the CA machine

is presented. A CA machine is equipped with special hardware to undertake cellular autom-

aton simulation.

A mixture LGA model which is not limited to a uniform or a concrete configuration of

rest particles is presented in chapter 3. Detailed analysis is developed to show how this

model can be applied to the simulation of two-dimensional electromagnetic phenomena in

lossless inhomogeneous media. In the analysis, fundamental principles of geometric sym-

metry of the lattice, equilibrium distribution of particles are considered.

The damping effect associated with the viscosity of the LGA can generally not be analo-

gously used to model the conductivity coefficient of lossy media for the wave attenuation in

electromagneticsf28]. Thus, the analysis will be concentrated on the modelling of linear

wave behaviour, and ended up with an Euler's equation [3 1,33]. Results for particle density

and sound speed obtained from specially designed numerical experiments are compared

with the theory to confirm the validity of the model. A great number of simulations using

various mixture models for the electromagnetic wave propagation in inhomogeneous media

has been finished by other researchers, D. Cule [36] and N.Adnani[37)et al. Some of these

simulation results are reported in the thesis. Electromagnetic wave interaction with a human

cross section model as simulated by D. Cule[36] is presented as an application of the mix-

ture model to the modelling of complex inhomogenous structures.



In chapter 4 one of the important inherent properties of three-dimensional electro-

magnetic fields is considered. An LGA vector model is constructed by endowing each

abstract particle not only with the unit mass and propagating velocity vecto¡ but also with

unit polarization. The rules governing the interactions among these particles conserve parti-

cle's polarization which relate to electromagnetic field vectors in macroscopic limit. A theo-

retical analysis is developed using LGA theory, the Chapman-Enskog expansion, and

appropriate mathematical methods. The analysis gives a first-order solution for the LGA

system. The solution is then used to show how, in the macroscopic limit, three-dimensional

Maxwell's equations can be derived. Some applications of the model to vector electromag-

netic propagation are presented, and the resulting values are compared with those obtained

by using the TLM method.

In chapter 5, a summary of the research is given. An initial benchmark about the issues

such as computational stability, accuracy, and complexity are briefly discussed by making a

comparison between a lattice gas automata and TLM method. We then suggest further stud-

ies and possible solution methods or approaches.

l0



Chapter 2. Lattice Gas Automata

2.I INTRODUCTION

Recently, cellular Automata has received more and more attention in physics. Of the

greatest current interest are the lattice gas automata LGAl3\l. The term LGA refers to the

class of cellular automata that obey specific collision and advection rules; i.¿. some conser-

vation properties are enforcedl3S]. LGA were used first for the simulation of fluid dynamics,

where the bits of a cell mimic the movements of particles.

The basic constituents of an LGA are discrete cells. These cells are interconnected

according to certain symmetric requirements to form an extremely large regular lattice. Only

a few variables (bits) are needed to describe the states of each cell. These bits mimic the

interacting particles and their evolution. The primary characteristic of an LGA is this: it

evolves in discrete timesteps and its cells are simultaneously updated according to a simple

rule that satisfies some conservation properties.

Sections 2.2 and 2.3 discuss both LGA models and concrete forms used in the rnodelling

of two and three-dimensional electromagnetic problems. Microscopic and macroscopic

descriptions of these LGA systems are then introduced in these sections. As a preparation for

the following theoretical analysis, a brief review of lattice gas theory (ensemble average,

detailed and semi-detailed balance and equilibrium particle distribution) is given in section

2-4. A brief introduction to CA machines is presented in section 2.5.

IIII



2.2"IWO Dimensional Lattice Gas Model

2.2.lThe IIPP Model

The geometric structure of a basic cell of a two-dimensional HPP lattice is square with

unit spacing /(size of the cell). HPP represents the initials of Hardy, Pazzis and Pomeau

126l,the inventors of the model. Fig.2.l shows a small portion of a lattice (without rest par-

ticles). Each cell has four links, with each link representing a possible velocity or momen-

tum state (moving particle has unit mass) in which a moving particle can exist. Particles

obey an exclusion principle, that is, only one moving particle is allowed to reside in a partic-

ular velocity or momentum state. Therefore each cell in the lattice can contain up to a maxi-

mum of four moving particles. The lattice operates in two phases; a collision phase in which

the particles interact and the state of each cell is updated, and an advection phase in which

particles are passed to adjacent cells, as shown in Fig.2.l.

trtrYr trtrvr rlrlrl-l-T-t -t-T-t -4r r-T-t -t-T-t - -t-T-t -aT-l -

-rï.-'t' ri.-.r.- -rt.-.i-l-
-t-+-j-t--1--1- -F+-l-t-1.--¡- -F+1-F*+--l-
-l- I f jJl-f J - conision -l- I --]---l--I --l -Advection -l- J.-l*l- I --l -
-t- l-t :t I l- ¡--r--t- | t-1-l-l - -----D--l- l-l -l- l-l ---;-' -' ,-' ---'-'-, -' 

'-' 
-ttrlrl

(a) (b) (c)

Fig.2.l: Operation of the HPP gas automaton (a small portion) over a single time step. In (a),

the state of the lattice is shown before collisions. In (b), the state of the lattice is shown after

the collisions have taken place. In (c), the particles have been transferred to adjacent cells.

The summarization of the collision events associated with the HPP model is siven in
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Fi9.2.2. A transformation of momentum states occurs only when two and exactly two parti-

cles arrive at a site from opposite directions (head-on collision). The result of the collision is

two particles in the momentum state orthogonal to the initial pair and previously unoccu-

pied. For all other possible cases - a single particle, two particles at right angles, three parti-

cles, or four particles- the particle configuration remains unchanged after the collisions.

They can be simply treated as passing through one another. Collisions in the //PP model

conserve mass and momentum locally (within each cell), and thus conserve them globally.

+
(a) single particle

----D-

-Þ* +r +:".,+
I

(b) nvo head-on particles 
j j

I ' 
*Ï* ----D- -*Ï'-

Yt¡l
-- 

*l 
(e) fourparticlestl

(c) two particles at right angle

Figs.2.2. Collision rules for the HPP LGA. Only two particles in opposing velocity

states result in a transformation of velocity states. There are 2a : 16 total rules.

These can all be obtained bv rotation of the above.

It is worthwhile to note that the dvnamics of the HPP model is invariant under all dis-

crete transformations that conserve the square lattice. These transformations include dis-

crete translations, rotations by 90u and mirror symmetry. The HPP rule shown in Fig.2.2 is
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charactenzed by the invariance of 90o rotations. Thus there are a total of l6 collision rules

associated with this model. The HPP model is able to model the Euler's equation and yield

correct sound speed for the media. However, it is not able to model the complete Navier-

Stokes equation and it gives inconect viscosityfl6].This is due to non-physical extra con-

servation inherent to the square lattice and a low syrnmetry of the lattice.

2.2.2The FHP Model

The residing lattice of the FHP model is triangular with unit lattice constant / as shown

in Fig.2.3. This structure is a variant of the above HPP model and was first introduced by

Frisch, Hasslacher, and Pomeau [15,16]. The important characteristic of this model is that it

has a larger invariance group. It is able to yield the standard Navier-Stokes equations and

give a correct expression for viscosity. On the lattice, each cell is now connected with six

neighbours. Thus, six bit variables per cell are required to specify the velocity or momentum

states (without rest particles). Updating again involves two phases: collision and advection.

In this model, collisions that result in a change in the momentum of particles are only

associated with two situations: two head-on particles and three particles which enter a site in

the symmetric arrangement shown in Fi9.2.4. The two-body collisions have two possible

outcomes. Each outcome occurs with equal probability of ll 2 to maintain symmetry
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Fig.2.3: Operation on the FHP gas automaton over a single time step. In (a), the state of the

lattice is shown before the collisions occur. In (b), the state of the lattice is shown after the

collisions have taken place (two head-on and one triple collisions outlined with circles).

In(c), the particles havebeen transferred to adjacent cells.

It can be observed that the triangular lattice has the invariant discrete transformations: rota-

tions by n/3 and mirror symmetry with respect to a lattice line. Under the transformations

the dynamical characteristics of the FHP models are invariant. It should also be noted that,

in the model, head-on collisions conserve, in addition to total particle number (mass), the
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difference of particle numbers in any pair of opposite directions. This leads to a spurious

conservation law. The large-scale dynamics of such a model will differ drastically from ordi-

nary hydrodynamics unless the spurious effect is removed. To achieve this, one can intro-

duce the three particle collision as shown in Fig.2.4b, or incorporate rest particles (with zero

velocity). A model with the rest particles has the desired properly, which allow us to control

different sound speeds, analogous to different dielectric constants in the modelling of elec-

tromagnetic problem. The details of a lattice gas model with rest particles will be discussed

in the following subsections.
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t/2
æ

(a) Head-on collision

æ

(b) Triple collision

Fig.2.4: Examples of possible FHPlatlice collision rules. (a): Head-on

collision. (b): Triple collision.

2.2.3 Mixture Model of HPP or FHP

An LGA model without zero-velocity "rest particles" as depicted in the previous subsec-

tions can only yield a uniform sound speed. To enable the LGA lattice to model media with

different sound speeds (analogous to modelling different dielectric constants in electromag-

netics), certain rest particles are incorporated within sites of the lattice. It will be seen in the
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analysis in chapter 3 that there are only a few restrictions (conservations of mass and

momentum, and semi-detail balance) imposed on constructing such mixture models, and

thus there are many ways for them to be employed. One can also specify that certain regions

of the lattice have different rest particle numbers and masses. Thus the energy exchanges

between moving and rest particles in the regions are different, and a lattice with different

sound speeds can be realized. This inhomogeneous lattice model was first introduced in

[23]. It is called a mixture model. In the subsection, the configuration and the notation of the

model will be given, and the analysis will be developed in Chapter 3.

In Fig.2.5, one of many rest particle models is shown, where a stack (length of the stack

is 3) of particles of various masses(4, 8 and l6) can be created. For example, a rest particle

of mass 4 is created when four unit mass moving particles collide and where there is initially

no mass 4 rcst particle. Altematively, if a mass 4 rest particle already exists at a site, and

there are no initial moving particles, four moving particles will be created after the collision

phase, and the rest particle will be annihilated.

In principle, one can extend the stack to an arbitrary length, å,., and use a spatial distri-

bution of different rest particle models such that å,. is a function of position, or even incor-

porate stochastic rules which probabilistically allow rest particles to be created or

annihilated. Therefore, we can construct a mixture LGA in a very general way. Fig.2.6

shows some example cells of a mixture model with ó,. probabilistically weighted rest parti-

cles, where p';(k:1,...b,.) describes the creation or annihilation probability of the rest

particle with mass mo. The p'¡ also could be a spatial or temporal function. The details of
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the model will be discussed in the next subsection.

Fig.2.5: LGA rule with three weighted rest particles
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Fig.2.6: LGA mixture model with å,. probabilistically weighted rest particles

(a): HPP two-dimension mixture model.(b): FflP two-dimension mixfure model.

2.2.4 Microdynamics and Macroscopic Obers evarbles

2.2.4.1 Microdynamic states of LGAs

A lattice gas automata is generally described by a set of Boolean variables (bits) and a
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set of time-independent rules. The set of binary þit) variables n, ( x , t ) (i: 1,...N ¡) is associ-

ated with bit i of the cell at position x of the LGA at time t. The bit variable n,(x,t) takes values

I or 0, representing the presence or absence of the particle in the ith velocity state (or other physi-

cal quantity) at a particular site and time t. N, is the maximum number of particles which the cell

can hold. This number is determined by the exclusion principle (only one particle is allowed to

reside in a particular state) and all possible particle states per cell. The notation of particle states

in terms of bit variables for each of the above models is siven below.

A: HPP løttice gøs

The HPP has four possible velocity states per cell. Fourbits, n,(x,t) (i:1,2,3,4), are used to

describe these states. The four velocity vectors correspond to the four link vectors and can be cal-

culated by:

c¡ : I ¡ cost(;- l)i + sinf( r- I )il 0:1,2,3,4). (2.t)

where / is the characteristic length spacing (cell size) andle,= c¡ and e, : !i,!y For exam-

ple, forthecase ofi:1, c, : li. Thusthebitn, (x,t) representsthepresenceorabsenceof

the particle moving along positive x-direction and at site x and time r.

no(x,t)
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B: FHP lattice gas

In the FHP lattice, six bits(n¡ ( x, t ) i :1,... 6) per cell represent six velocity states.

The six velocity vectors are associated to the six link vectors (see Fig.2.4) and can be calcu-

lated by:

ci : I ¡ cosf {i- l)i + rinf( r- I )il 6:r,......6). (2.2)

C: Mixture HPP or FHP model

A mixture model is capable of modelling different materials. The model is constructed

by incorporating rest particles with moving particles in a particular lattice site. For each rest

particle, one extra bit should be added to represent its states. In what follows, we use two

subscript variables n,o to represent the particle states in the mixture lattice. The first sub-

script, i, is used to describe the velocity of particles and the second one, k, represents the

mass of the particles. For the rest particle, i = 0 ,and the moving particle (unit mass) k:- 0 .

This notation will be used throughout the remainder of the thesis.

Fig.2.7 shows mixture HHP and FHP models, both with an arbitrary stack ó,.(the maxi-

mum number of rest particles per cell). We define two new sets of bit variables in each cell

of the lattice. The first set { ro k, k: , ..... U,.} is used to describe the states of rest parti-

cles. For example, if the bit noo is on (:l) or off(:0), a rest particle of mass m¿ is present

orabsent.Thesecond set {npo,k: L..... ó,.} containsstochasticbitvariables.Ateachcell

and each time step, any stochastic bit nf, is randomly sampled to determine whether or not a
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rest particle with mass m o (k : 1.....b ,.) may be created or annihilated. These random bits

havethe averagevalues of Gp¡) : pe ft : | ...... b,.). Here, theaverage value pi serves

as the creation or annihilation probability of the rest particle m¡, ãnd these values satisfy the

b,

limitations of p'' k* r < piand \ pi< t .

k: I

--\
(*u? (no, o' nï,)\,

t m¡ô qno o, nf) '¡

tlo 2

no3

no4

(a): HPP two-dimension mixture model (b): FHP two-dimension mixture model

Fig.2.7: LGA rule with å,. probabilistically weighted rest particles

2.2.4.2 Microdynamics of the LGAs

The notations for the different models introduced above will be retained throuehout the

rest of the thesis. In the following subsection, we desire to obtain mathematical descriptions

of the microdynamics of the LGAs. ln an LGA, the dynamic states of particles are character-
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izedby their binary bit variables at each timestep. The dynamical state of a particle at the

next timestep (r + Ar ) depends on the current state of the particle itself, and the states of its

neighbouring particles. In the case where the particle does not interact with its neighbours,

the moving particle just passes through its current residing cell and keeps its original

dynamical state, while the rest particles with zero-velocity do not advect over time. If the

interaction with its neighbouring particles occurs, the dynamical state of the particle is

changed according to the collision rules. In what follows, we present the dynamical descrip-

tion for each of the LGA models discussed in the previous sections.

2.2.4.3 Dynamical description for HPP LGA

The dynamical equations for a HPP lattice gas can be obtained according to the colli-

sion rules shown inFig.2.2, where the states for the four moving particles are characterized

by bit variables n | , nz , n, and no , respectively. These equations are:

na(x, y -1, t + Al): na( x, y, t ) -r oo,

where trl,( x, ),, t )(i:1, 2, 3 and 4) are the four collision operators of the model. These

operators take the values of*l or 0, and are given by

nr(x* I, y, t + Ar): ny( x, y, t ) r @t,

n2( x, y+1, t + Ar): n2( x, y, t ) + @2,

n3(x-l ,y,t+Lt): n3(x,y,t )*o¡,

cù¡( x, y, t ): ro3( x, y, t ): ntn3nzn4- n2n4nlx3

ror( x, y, t ): o4( x, !, t ): -a1( x,l, t ) ,

(2.3)

(2.4)

(2.s)

(2.6)

(2.7)

(2.8)
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where the symbol n¡ : l-rz, stands forthe complement ofbit nr.

These four microdynamical equations can be written in a compact form, that is

n¡(x+c¡, t+At): n,(x,l)+o¡ (2.9\

and the compact form of the collision operators o:¡(x, r) is given by

a,(x, t ): n¡n¡*2lx¡+ lni+3- I't¡a 1tt¡+3nifri*2 , (2.10)

where the index i is defined as module four, i.e., i*4:i.

2.2.4.4 Dynamic description of FHP

It is easy to extend the microdynamic formalism to the FHP lattice gas. Based on the

collision rules illustrated in Fig.Z.4, the rnicrodynamic equations can be written as:

n¡(x*c¡, t+At): n,(x,/)+o¡. (2.11)

where i :1,2... 6, and the collision operator can be obtained as

co,(x, I ): \ n,n,+2fli+3nì+sni+tfli+¿ +(l- \) n,n,¡1t't¡a3I'Ii+4t'ti+zfti+5

- fl¡n¡*rt't¡+ lni+4txi+2trì+ t * n,n,*rtx¡+4ni+ lt'ti+31'ti+ 5 - fl,n,+2fri+4n¡+ ltx¡+3n¡+ 5

(2.r2)

Here, f is a random bit which is sampled at each lattice site and timestep with the average

value((). The average values (Ð and (l -Ð represent the respective probabilities that

the head-on colliding particles are to be rotated clockwise and counter-clockwise. Note that

the subscript i is defined as module six. If (9 is chosen not to be 0.5 then the media will be

chiral. Several other possible models for chiral phenomena have been studied 131,321.

a^



2.2. 4.5 Dynamic description of the Mixture Model

For the mixture HPP or FHP lattice gas (shown in Fig.2.7), the microdynamic equations

can be formally written as:

(a) for the moving particles (i:1, 2,..., b,,,):

n,s(xr c¡, t + Al)= n, s(x,l) + or o@r(x, t)) ,

(b) for the rest particles (k: I, 2,...,b,.):

no ¡(x, t + At): no ¡(x, t) + ao ¡@'(x, t)) ,

(2.13)

(2.r4)

where b,,, is the maximum number of moving particles per cell. The symbol rlJ'(x, r)

stands for the complete set of bit variables located at sitex and time /. Explicitly, the colli-

sion operator cù, s(r?"(x, l)) is the shorthand forol, s (r 1 g(x, t), ...nb,,o(x, /) no {x, t)

...... no 6,(x, t) ) . We are not going to give the explicit forms of the collision operators

here, since there is a great variety of forms that can be obtained by designing different inter-

actions between the moving and rest particles. In chapter 3, it will be seen that the details of

the collision rules are important in hydrodynamic applications [31,34], but not for the mod-

elling of the electromagnetic waves in no-loss media. The dielectric constant (analogous to

the speed of sound in a lattice gas) is a macroscopic physical quantity and is not sensitive to

these details either. However, the viscosity of the LGA can generally not be analogously

used to model the conductivity coefficient of lossy media, except for some special problems.

In the problems, the geometric structure are simple and excited with steady excitationsf29].
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Thus, for the wave attenuation in those problems in electromagnetics the details of the colli-

sion rules become very important.

2.2.4.6 Conserved Quantities of Two DimensionalLGAs

A characteristic feature of LGAs is the presence of some form of conservation. In a two-

dimensional lattice gas model, mass and momentum are conserved in each collision, i.e, at

the microscopic level. As a result, after propagation, mass and momentum are conserved

macroscopically. At each cell in a collision event, conservation of mass and momentum can

be expressed in terms of the collision operators as

)co,{nr): o , (2.15)
I

fc,co,{nt): o . (2.16)

This implies important conservation relations for lattice gas automata:

and

and

\n,(t + Lt, x ¡ c¡): )ru,(r ,x) , (2.17\
ii

\n,c¡(t + Lt, x+ c,):Ln,",{, ,*) , (2.18)

where the equations (2.15) and (2.16) give the conservations of mass and momentum in bit

form, and indicate that the conservation laws are independent of spatial position and

timestep. In what follows, some examples for models are discussed for conservation.

In HPP model, from the equations (2.7) and (2.8), it follows that,

0t *OJZ+(Ð3+04:0
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where the equation(2.19) indicates the conservation of mass while (2.20) and (2.21) repre-

sent the conservation of momentum in the x and )r directions respectively. At the micro-

scopic level, the conserved quantities could be defined in terms of the bit variables at a

particular site. For instance, in the case of the mixture two-dimensional LGA described in

Section 2.2.3, the mass and the momentum are calculated by equations (2.22) and (2.23)

respectively.

(cor - o3).i: 0

(coz-cùa)_rr:0,

b, b,.

\a\aprfllo"nl: L tl1 ofiÌ,o+ ¿ nt¡no.¡n'¡ t

¡:l k:l
(k: 0) (¡ = 0)

bu,

s1
u local: L tl'totî i,oci.

,.- t

(fr=0)

(2.20)

(2.21)

(2.22)

(2.23)

In the expression of Q.22) the first term is summed over for the moving particles (unit mass

t'r't o : | ) and the second term is over rest particles.

2.3 Three-Dimensional Lattice Gas Model

2.3.1 Three-Dimensional Vector LGA Model(3-d LGA')

In this subsection, a three-dimensional Fermi-type vector LGA model is constructed to

rnodel three-dirnensional electromagnetic field problems. The residing lattice is cubic with
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the length / as illustrated in Fig.2.8. Unlike the previous two-dimensional models, the vector

model incorporates polarization with each particle. This concept is quite different than the

scalar particle models of fluid dynamics. We assume that, in the vector model, each particle

has unit mass, polarization vector e (associated with electrical field in the macroscopic limit)

and velocity k.Each cubic cell has six links, with each representing a possible velocity fr. In

addition, each velocity state associates with four polarization vectors ¿s. Thus there are a

total of 24 particles in a cell, each particle propagating in the direction of velocity /s and

polarized in the state of ¿. If we denote these six velocity vectors by k e 1tX, +Y , LZ L

the corresponding four polarizations can be expressed as: for k : tX, ee {_y,!2}, for

k: ty,ee {+*,t2} and for/¿: *2,ee {tî,ti}. Fig.2.g.showsacaseoffourparti-

cle propagating in -z direction k-- -2, polarized in +î and tj' directions. Furthermore, the

relation between polarization vector e and velocity /r for each particle is defined to sat-

isfofr x e: Ix, where the vector å is defined as an inherent magnetic vector associated with

each particle. Note that only two of these three vectors are independent. Hence each state of

particle is characterized by two vectors (k, e).
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Fig.2.8: A small portion of a three-dimensional cubic lattice.
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Fig.2.9 Four polari zation vectors of a given velocity vector. ( I ): up-polarization.

(2):down-polarization. (3): right-polarization. (4):left-polarization. Here

/r is the velocity vector of particles, and e and h are the polarization and

magnetic vectors, respectively.

To specify the states of the vector model, we need a total of 24 bits per cell (there is a

total of 6 velocities and 4 polarizations per velocity) to describe the particle states. When
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constructing collision rules for the model, two types of the two-body collision events have

been considered. The first type is the head-on collision. The interaction configuration

between two particles is defined to be the same as that used in the HPP or FllP models. In

the three-dimensional vector LGA model, however, the head-on collisions conserve the

polarization ¿ and the magnetic vector å (Figs.2.l0a and2.1 I a). The other type is the right-

angle collision. In this case, collisions occur if and only if exactly two particles enter a cell

at right angles. The collisions result in the exchange of the vector å between the two incom-

ing particles, and each of two outgoing particles leaves the cell in the direction opposite to

its initial direction as shown in Figs.2.l0b and 2.llb. Again, these collisions conserve polar-

ization vector e and magnetic vector /¡.

By investigating the above rules, we note that, due to the collisions, a particle with posi-

tive polarization can never be changed into a particle with negative polarization because of

the conservation of polarization. Thus all particles on the lattice can be classified into inde-

pendent positive and negative polarization particle groups. On an infinite homogeneous lat-

tice, the positive particles do not interact with the negative particles even on the same lattice,

and each group of particles obey the collision rules independently. If the lattice is truncated

a! for example, boundaries of objects, then the two-group particles can be coupled. How-

ever in the situation of perfect magnetic conducting (PMC) boundaries, these two group par-

ticles can still remain uncoupled. A PMC boundary condition can be modelled by forcing

the tangential magnetic field along the boundary to be zero. Particles incident on a magnetic

conductor are reflected onto the same group (i.e, a positive particle is reflected onto the pos-

itive group and a negative particle back onto the negative group)[21,25]. Hence, when mod-

elling an electromagnetic field problem with PMC boundaries, we need only one (positive or
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negative) of two group particles such that the vector model can be simplified to two (positive

or negative) polarizations es per velocity as shown in Fig.2. 12, requiring a total of only l2

particles per cell. If a PEC boundary is required, the coupling between those two particle

groups is required. The concrete implementation of PEC boundary is described by N.

Simons[25]. Thus, a total of 24 particles per cell is needed to describe the states. Two ques-

tions remain to be answered: are there any other types of collision events? And, if there are,

what is the effect of these collision events on the dynamics and macroscopic behaviour

(electromagnetic phenomena)?

(a): Head-on collision

(b): Right-angle collision.

Fig.2.l0: One example of the collision rules for the positive vector lattice

gas automata. The collision rules conserve the mass, polarization and the

physical quantities å.
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(a): Head-on collision
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(b): Right-angle collision.

Fig.2.l l: One example of the collision rules for the negative vector lattice

gas automata. The collision rules conserve the mass, polarization and the

physical quantities ú.
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2.3.2 Dynamic States of 3-dYector LGA

For the three dimension cubic lattice shown in Figs.2.8 andZ.lL,the two-subscript bit varia-

ble S* , describes the state of a particle, where the first index K indicates the kth velocity

vector, with K taking the value in the set of{tX, lY,+Z}, and the second index i stands for

the ith polarization related to the Kth velocity. Explicitly the set of bits can be written as:

(S-x,u,S-xr, Sx.u, Sx., S-y*, S-y., ,Sy*, Syr, S-z*, S-zy,57y,

57 * ).For example the bit ,S_* ,, represents the presence or absence of the particle moving

along -X direction and polarized in y-direction at site x and tirne r.

:ú

ñ-,.the

Fig.2.l2: Twelve particles of the three-dimensional vector LGA.
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2.3.3 Dynamic Description of 3-dYector LGA

For the simplified 3-d vector lattice gas shown in Fig.2.l2, two types of collision rules

for head-on collisions and right-angle collisions have been defined and shown in Fig.2.l0. It

is noted that the rules are characterized by +Qgo rotational symmetry with respect to the

three axes, i,y and 2.This means that the rules are invariant when input particle configura-

tions are performed with any of the rotational transformations. Hence we have a total of 6

collision rules for each type. To obtain the dynamic description, first consider the change in

a particular bit Sr , (x, l) due to collisions. The bit represents a particle travelling in the î -

direction and polarized in the direction of y . At the next timestep (t + Lt ), the state of the

particle will be changed to the state of S*.,( x + l,y, z, t+ Lt) due to the two collision events,

head-on or right-angle, as illustrated in Figs.2.l0(a) and 2. l0(b). The microscopic dynamics

for the particle could be written as

S",,(" + I,y,z, t+ A,t): Sr,,(¿ y,z,t)+atf,lo *r!f,"',

where atlu,ld and, ru,';1,Ì" ur"the operators describing the contributions respectively from the

head-on and right-angle collisions, and obtained as

oJI",:'t : s, ,,s-r,.sr.,J*,, - s_x ,,sr..,,s z ys-'z v ,

and

,';t"' : s-¡. ,s-r *{-*sr, - s-x J-r "sr*s* ,.

In the same way, we note that the change of any particle state in the model can always
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be associated with two collision events (a head-on and a right-angle event). We combine

these two events as pairs to describe the change of a particular particle state. Hence, we have

a total of twelve such event pairs, listed in Appendix A. Referring to the interacting rules in

Appendix A, we have the following microdynamic equations for each particle state:

S-*,,( x - l, y, z, t + At): S-.r,( x, y,z, t )+ o-x,,(Sf(x, r))

S-r,(x -l,y,z,t+ Lt): S-*,(x, y,z,t)+o-x,(Sf(x, r)) ,

(2.24)

(2.2s)

(2.26)

(2.27)

(2.28)

(2.2e)

(2.30)

(2.3r)

(2.32)

(2.33)

(2.34)

(2.3s)

S",(.r + l, y, z, t + Lt): S".,,( r, ),,2, t )+ cor,.(,Si(x, l))

Sr,( x + l, y, z, t + Lt): S",( x, y,z, t )+ úJ¡..(S+(n, l))

S,r*(x ,y-l,z,t+ Lt): S-r*(r, y,z,t) +ú)-r"(SÉ(x, r)) ,

S-r,( " ,! -1, z, t + Lt): S-r,( ¡, ),,2, t ) + (Ð-r,(S:r(x, l)) ,

Sr*(x ,y +1,2, t* At): Sr^(x, y,z, t) +cor-(,ft(x,t)) ,

Sr,(n ,y+l,z,t-r Lt): Sr,(x, y,z,t) +cor,(Sf(x, t)) ,

S,r^(x ,y,z-1, t + At): S-r^(x,),,2, t)+ú)-z-(S:f(x, r))

S_rr(x ,!,2-1, t + Lt): S-r,,(x,),,2, t)+o)_zr(Sl(x, r))

Srr(x ,y,z+ l, t+ A,t):,Sr,,(x, y,z, t) +r¡rr(.Ii(x, t)) ,

Sr*(x ,y,z+l,t+ Lt): Sr_.(x, y,z,t)+cor-(SÉ(x,t)) ,

where,ff(x, r) hasthesamemeaningas nr(x,t) usedintheprevioussubsection.The

twelve operators aL t(J : !.X, +Y, +Z and k =x, y, z) are specified by,

1¡-.ú,: S_*." t Sr,S-rrÇ + Sr.,Sr^,9; ]

Ø_^.r: S_r-, I Sy,S_y,Sx, * Sx.Sz,S_r, ]

- s_r.,, I s, ,s_rrs*.,, * sr.,,s, *s_, _. I,(2.36)

J)

- S-r, I Sr,S_, 
=Sr. 

+ Sx,Sz,..S-rr ],(2.37)



Ox_,,: Sr 
" [ 

,tz.,S-zy^S-x " 
f S-x.rS-r 

^Sr .. I - S* ,,[ S, ,S-rrS-",, * ,S-x ,,S-r *Sr., J , (2.38)

@x ,: Ç tS, .S-y.S-x, + S-x .S-r rÇ ] - S.,-,

o-r*: S-r- [ St^S-t"Sr* *S",,Sr*S-"r]-S-y*

I St,S-, ,S-r, * S-x.S_z..Sr, ] ,(2.39)

I sr..s_r*sr^ * sr."sr*s_", ], (2.40)

o-y,: S-- t Sx.S-x,Ç.

oyr: Sr- [ Sr..S r-.t;

@y ,: Sr, I Sx.^S-x.,S-r,

* SzvSy ,Y.¿"l - S-r. I S" ,S-r,Sr, * Sr,Sr,,S-r" ] ,(2.41)

* S-x.'S-r-S* ] - Sr- [ s, ,s_r*s_, , * s_,r. ,s_, *s, 
" ] 

,(2.42)

*s_zys_r,Ç1-sr. I Sr,S-r.S-r, * S-r.S-r,,Sr" ] ,(2.43\

@_z r: s; tsr..s-, -Ç * sr.sr-s; ] - s-r* I sr..s_r*sr* * s.r.sr*s_^., ], (2.44)

(Ð-zy: S', tS*,S-r rSr, *SrrSr,S-r,]

uJzy: Sr rl S*,S_* ,S_r, * S_rrS_,,Sr.l

- s_z v I s"rs_^- ,sr, t sr,.srrs_r, ] ,(2.45)

- sr, Isrrs, ,s_r, *.sr,s_zrsr, ] ,(2.46)

@z r: S: - tSr,S-,. ,,S-r^ + S-",S-r-Ç ] -,Sr, I Sr.'S-t*S-r* * S-x.S-z*Sr' ] .(2.47)

2.3.4 Conserved Quantities of 3-dYector LGA

The conserved quantities in the 3-d vector model correspond to the six components of

polarization vector e and magnetic vector h. The two vectors are conserved at both the

microscopic and macroscopic levels. It follows from the equations (2.36) through (2.47)that

the conservations of six components can be written as

(o-r-, * 0r:, * @-rr* (')r-r)i: o,

( cù_".,, * (ùx.,, + úJ_z ,,-l @z ) !:

(o_, , * ú)x, + (Ð-r . -l 1Jr )2:
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(2.4e)

(2.s0)



(orr-(D-rr* @-z.r-1¡7r)*: 0 ,

(lÐ-*, -@xr-a-rr+ corr)i: 0,

(cù*.,- ú)-x.r,+ a_y.- tÐy.)2: 0,

(2.s 1)

(2.s2)

(2.s3)

where the first three equations indicate the conservation of three components of polarization

vectors e, and the last three denote the conservation of magnetic vector /¡ in the x-, y-and z-

directions respectively. Their components in a particular cell can be calculated in terms of

the bit variables as,

Iocal
Llrl :

localur,, :

Iocaluzl :

loca I
Ll 12

local
u:'2

Iocalur2 :

(s_r., + s,,, * s_r_, +,sz.r)i ,

(S_r. + Sr., * S_r,, * Sr r)j,,

(S_*, * Sr, * S_r, * Sr,)2,

(Sr, - S-,., * S-2.,.- S, ,)k ,

(s_r, - sr, - s_r., t s r,)i,

(Sr. ,, - S-",,, * S _y ,- S y )2 .

2.4 Macroscopic Observables

Within a lattice gas, macroscopic physical observables such as density and flow can be

determined by an average over an ensemble of possible microscopic particle configurations.

In practical cellular automaton simulation experiments, we strive to obtain enough experi-

mental samples. To avoid limitation of averaging only over a few specific microscopic con-
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figurations, the samples should be randomly created. Based on the samples, statistical

averaging is carried out. The process of numerical experiments designed in such a way is a

good approximation to the standard statistical procedure [9].

As described in above sections, various microscopic observables for a particular cell

can be defined in terms of the bit variables associated with the cell. For instance, when mod-

elling the two-dimensional HPPlattice gas, the microscopic density at a particular cellj will

be defined as the density of the particles in the cell,

4
ik. . E- k

P'""'¡¡(x¡)'¡ ): ). n" i(x¡, !¡) ,

i = I

(2.s4)

where 4 is the total number of the bit variables of the moving particles, (*¡,y¡ ) indicates the

coordinates of the celli, and nk i(x¡,-/r) is the ith bit variable. The superscript Æ represents

the order number of the experimental samples obtained by running N. times on CA machine

(to be introduced in section 2.7). This summation in (2.5Q is simply equivalent to counting

the particles inside cell j. For a given sample k, the sample macroscopic density p¿ at a par-

ticular spatial location (x, y) can be determined by averaging the values of ol!,, as,

k. I 
¿

pr(rJ ): #>I rr,{r,,t) ,ie!1.
R 

': 
I

where R describes a neighbourhood of cells centered around (x, y), (x¡,1) is the location

of a particular cell within the area.R, and l/, is the total number of bit variables within R.

The density p can be obtained by averaging a total of N" macroscopic samples, that is,
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lS k Ip(x,v ,: *,ÈrP 
: N¡, 

o

In Fig.2.l3, a circular neighbourhood 9l is depicted.

ï>É
:=lRi:l

no,{rr,l¡ , (2.ss)

Fig.2.l3: Macroscopic quantities as obtained through spatial averaging of

microscopic states over a region R.

The averaging process described above is the method of encoding the observables. The

complete microscopic bit information is retained at each timestep in the lattice gas autom-

ata. The dynamic range of macroscopic variables is thus proportional to the number of bits

of memoryl24l. lf a sufficiently large window size is used, a continuum approximation is

obtained. The dynamic range and accuracy of the observable quantity depends on the num-

bers of possible states contributing to the quantity and an inherent noise (is proportional to
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-å I respectively. Generally, a larger dynamic range and better statistical accuracy can be
nltv r

attained by using a larger sampling window. However, there is a trade-offbetween dynamic

range, statistical accuracy and spatial averaging accuracy, since a larger size window always

results in a spatial error range centred around a particular observation points. Although the

lattice spacing used in our simulation is ten times finer than that of the transmission-line

matrix mesh [40]. The graph below illustrates the spatial error associated with the averaging

process.

O_bs;nltion point (x,y) 
|././l_> \F

,rlr r",n

Averaging Error

2.5 Review of Lattice Gas Theory

2.5.1 Collision Operator

In what follows, we will not, for convenience, use the different notations for the different

LGA models. The discussion presented below is valid for all above models except those spe-

cifically indicated.

The state of a particular cell at a timestep can be fully specified by a collection of the

values of its r¡ bit variables:

Sampling Windorv
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s' : (sl, ... ,.9r,), (2.s6)

where s, represents the value of the ithbit in the state.r. If the particle i is present in the state

s,itsvalue s, takesthevalueof one(r, : 1/, otherwise s, equals tozero (", : 0). For

example, in the HPP lattice gas, the pattern of the state s:(1,0, 1,0) indicates that two parti-

cles with velocities *.t are present in the cell.

For a particular cell with n bits, we can have a total of 2" different collections, denoted

by the set,S. If s : (s¡, ... ,"r) e ,S as an in-state, then, after updating the bit variables, we

have an out-state, expressed by the collection of s' : (s¡', ...,sj ) e S.Therefore, in the lat-

tice gas, the transition process from an in-state to an out-state could be specified by 2" by

2" Boolean transmission matrix a. The element a(s -+ s') characterizes the transition rules

fromanin-states:{s, : 0 or l,i:I,..., n}toanout-states': {s¡':0 or l,i: 1,...,n }.

In the case of deterministic collisions, a( s -+ s') is unity if and only if the particles in states

collide to yield particles in states s' . Here the head-on collisions in HPP and those collisions

in the -3-d vector models are examples of deterministic collisions, In the case of a non-deter-

ministic collision, a( s -+ s'):8, where ( is a time and site-dependent random bit variable

( with average value of((): p. The example of non-deterministic collisions can be found

in a FHP model where there are two possible out-states corresponding to every in-state of a

head-on collision event. Thus one can use the random bit ( probabilistically to describe the

event.

Since each in-state s gives rise to exactly only one out-state s',we have the relation:
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\-r

ào,r 
-l s'): 1

This is simply a statement of conservation of probability.

Now we consider the production function[31,33]

(2.s7)

(2.6r)

(2.s8)

where the arguments (n 1, ...,flr) e .S represent all possible states of a particular site, and the

collection of s: (s¡,...,s,,) e S describes the pattern of an in-state. Note that if the pattem

of nr's matches a given the pattern of input statesr's, the function is equal to one

(p(n,s): I ), otherwise pQt,s): 0. Thus the function p(n, s) defines a Kroneckerdelta

function of two bit collections:

p(n,s): ll ,rl( r-,t¡)(r-"') ,

(2.se\

Note that the function p(n,s) defined in (2.58) has the selecting function which can pick up

one state from all possible states (n 1,...,fi,,) e ,S of aparticular cell. In addition to this, the

Kronecker delta p(n,s), like the conventional Kronecker delta functions with continue argu-

ments, has the following two propertiesl3l]:

ZpQr,s):I E r'i(t-n¡)(r-5;): I, (2.60)
r -/- |

and

where the summation ) denotes
sJ

p(n, s): ô(r, s): J 
t if s :n

lo otherwise

f s,p(n, s):Is¡ I:I r'j tl -nr¡( 
I -';):

.t .ç j:l
fri,

ll

l= I .tr: I

À't



With the aid of the above properties, the microdynamic equation can be generally rewritten

as

(2.62\

The equation (2.62) has the following physical meaning[31]:

( I ) Before the collision, if the current pattem of n r' s matches that ofsr's , then the

pattern is chosen by the term ô(n, s) .

(2) Through the collision, the input state describing the pattern oî n ,'s is transferred

to the out-state with the pattern of s'r's charactenzed by the element of

<a(s -+ s')>.

(3) Finally, the value nj at next timestep of the ithbit of the out-state rz' is deter-

mined by the factor si .

Using the equation (2.61), we can have the microdynamical equation in a form that brings

out the lattice collision onerator:

n,(t+Lt,x*c,): n,(t,x)+a,(nr(t,x)), (2.63)

and the collision operator:

0'i..,-+(t,x)): ).(sí - s,) a(s - r')( lI,;;tt-rr)(r-',)) e.64)
s,s' 'j= I

/ 
- 

.r, (l-s,)\
ni(t + Lt, x+ ",):Is',a(s -+ s')ô(n, s):Isi a(s - r')[ n;i(l-nr)''-"i' 1

J,s' s,s' t/: I /

+)



2.5.2 Semi-Detailed Balance and Ensemble Average

2.5.2.1 Ensemble Average

A macroscopic description of an LGA can be obtained as an average over an ensemble of

possible microscopic particle configurations. But an actual LGA simulation involves the

evolution ofjust a single, specific, microscopic configuration. Nevertheless, many investiga-

tions show that suitable space or time average of this specific configuration can yield results

which are close to those obtained from averages over the whole ensemble[9]. We denote the

averages over this ensemble used in a LGA simulation by angular brackets 1), i.€.,

N,(x,ù=(n¡@,Ð), (2.65)

where ir, is a binary value while the average N,(x, l) of bit i is a real number and is called

the mean population of bit i, taking a value ranging from 0 to I .

When considering a non-linear function of bits n, to be those terms appearing in the col-

lision operators, the average of the function is not in general expressible as a function of the

averaged quantities, since the correlations among these bits n, must be considered. How-

ever, in many applications, we can reduce the complexity of the problem using the Boltz-

mann Molecular Chaos Assumption. The current lattice gas version of this assumption relies

on the streaming (advection) phase of the simulation to effectively decorrelate the different

bits at every site. In other words, the colliding particles have never had any prior effect on

each other [31,33]. The theoretical analysis [33] shows that this assumption is reasonably

valid in three or more dimensional lattice gases. in two dimensions, however, we must con-
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sider corrections and employ some type of renormalization [33]. In this research we are

most interested in an LGA system involving small perturbation to an equilibrium state (uni-

form background distribution) with low fluid velocity, such that the correction among the

particles is small enough to be neglected [31]. Under this condition, for any combination of

particles n | ...n b, the ensemble average could be

It would then follow that (rrl(nt)) = O( (ni)) = O(^Ë) , whereM' stands for the complete

set of mean population at site x and time t.

Thus, by taking the ensemble averages of the microdynamic equations for the lattice gas,

the lattice gas Boltzmann equation can be obtained as

(2.66)

(2.67)i/,{r + Lt, x+ c,): N,(t,r) + ç)r(¡/+(r ,r)) (t : 1... ...b"') ,

and the average of the collision operator

o,(^r(r ,x)): | (sí - s,) A1s -+ s'¡[f[ ¡Ìt t-lr,)(r-")) , e.6B)
.'J' \rat J J /

where A(s -+ s') is the ensemble average of the element of the rnatrix element a(s -t s') ,

that is,

A(s -+ s') : (a(s -+ s')) Q.69)

l(s + s') now represents the transition probability from an in-state

s : {sr;i: 1,..., fr} to an out-state 5/ : {5-' ;i: 1,..., fr} in a collision event. Again,

note that a Boltzmann equation is in terms of real number variables, N,(x, t) , while a

microdynamic equation is in terms of binary variablesr,.
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2.5.2.2 Semi-Detailed Balance and Equilibrium Distribution

One of the important criteria used to obtain the equilibrium solution for the Boltzmann

equation is the Semi-Detailed Balance. Simply stated, it means that before collision, if all

states which lead to a particular out-state have equal probabilities, they stay so after collision

[31,33]. Explicitly, it can be written as

Irt" -+ s'): 1 Vs'. (2.70)

Here an important difference between the semi-detailed balance (2.70\ and ),a{s -) s'¡ :1
s'

should be noted: the latter represents the conservation probability while the former is the

condition which is required to obtain the steady state solution of the Boltzmann equation.

Also note that semi-detailed balance is a weaker condition than detailed balance. Detailed

balance describes the deterministic, one-to-one and reversible collision process, and can be

stated as:

If a lattice gas is said to obey detailed balance, its transition matrix satisfies

A(s -+ s'): A(s'+ s), V,s , ,s' (2.70)

Theoretical analyses, for example [ 16,3 I ,33] have shown that, for kinetic systems of lat-

tice gases which are finite and periodically wrapped around, there are very simple statistical

equilibrium solutions in which the Boolean variables at all sites are independent due to their

purely local collisions on the lattices. The analytical results presented in [31] will be quoted

as the followins lemma:
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Lemma: ,f any lattice gas at an equilibrium obqts semi-detailed balance, then the solu-

tiott to the mean population N,(i : I .. . ... b,,,) satisfies the set of equations for the b,,,colli-

síon operators, i.e.,

oj(^/t(/,x)): |{sí - s,)l(s-r') ll { f r-nrl1r-s')- 0 (i = t......b,,)
s,s' j=l

and the solutions N ,(i : I ... ... b,,,) are given by the Fermi-Dirac distribution

N,: 

--1
l+exp(å+q'c¡)'

whet"e h is an arbin"ary real number and q is an arbitrarlt D-dimensional vector.

(2.7 r)

(2.72)

The important consequence of the lemma is that the mean populations given by (2.72\

are independent of time and spatial coordinates. The equilibrium solutions are then universal

over the lattices, and are only dependent on the density p and the mass current (momentum

density) j : pu.The Lagrange rnultipliers /z and q can be calculated in terms of the

dependence of the Fermi- Dit"ac distribution on the mass and momentum density.

2.6 The CAM-8 Cellular Automata Machine

The computational inefficiency of simulating CA on conventional serial computers

(such as a workstation or PC) is a concern. The Information Mechanics Group at the MIT

Laboratory for Computer Science has been involved in the development of special purpose

computational hardware for the efficient evaluation of CA 124,271. CAM-9 is a cellular

automata machine newly developed by this group. CAM-ï is an implementation of a parti-

tioning cellular automata (PCA) in which hardware is organized as l6 separate bitplanes.
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Each plane stores exactly l bit of state information of a particular cell, thus the l6 bits of

state of every cell are distributed across the l6 bifplanes. The CAM- 8 machine operates in

two alternating stages:

(1) Data-update stage, during which PCA partition the space into individual sites, and

each particular site's state is isolated and is not allowed to have any influence on the new

state of any other site. At this time, the new state of a particular site is a function merely of

its current state. In the most elementary case, the state information of the site is described by

l6 bits, and using the values of l6 bits as an index into a look up table, a new l6 bit values of

the new state is extracted, and then restored to the original position of the site. This updates

the state of all the sites in parallel. The format follows the lattice gas models and corre-

sponds to the collision phase.

(2) Data-transport stage, during which isolation among sites is eliminated, allowing the

state information of one site to be exchanged with another. Every site's state is separated

into l6 bit-planes, and the contents of any bit-plane can be moved relative to the contents of

the other bit-planes by a data-movement facility, kicking [27], which is performed by offset-

ting memory registers rather than physically moving the bits around. This process realizes

the transfer of data to its neighbouring sites, and therefore corresponds to the advection

phase of lattice gas models . Fig.2.l4 show this basic operation for cells.
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Chapter 3. Mixture Lattice Gas Automata

3.1 Introduction

In this chapter the mixture HPP LGA model which is not limited to a concrete config-

uration of rest particles is presented. Detailed analysis is developed to show how this model

can be applied to the simulation of two-dimensional electromagnetic phenomena in inhomo-

geneous rnedia.

Considering the relative rigour and the exclusion of viscosity in the analysis, we begin

the analysis with the more complex FHP lattice and limit it to the Euler equation derived

from the lowest order of the Chapman-Enskog expansions. With the small perturbation

assumption, in Euler equation the non-linear terms involved with more than the third rank

symmetry can be ignored. At this point, there will be no difference between HPP and FHP

models and both of the lattices can lead to a linear wave equation.

An important aspect of this chapter is the development of an algorithm showing how to

model the media with different sound speeds, analogous to modelling different dielectric

constants in inhomogeneous media of electromagnetics. An LGA model without zero-veloc-

ity "rest particles" can only yield an uniform sound speed. Change in sound speed of an

LGA can be achieved by incorporating rest particles at a lattice site with moving particles.

We note that the form of macroscopic wave equation is in fact insensitive to microscopic

details. It will be seen in the following analysis that there are only a few restrictions, such as

conservations of mass and momentum and semi-detail balance, that are imposed when con-
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structing an LGA model. A wide range of dielectric constants can be modelled by speciffing

various interaction models. One can speciS that certain regions of the LGA are different in

the rest particle number and mass, so that energy exchange between the rest and moving par-

ticles in the regions are different, and an LGA with inhomogeneous sound speeds can be

realized.

In the following section, the derivation of the kinetic and hydrodynamical equations

of the model is presented in a more detailed way. Section 3 gives some results of the

numerical experiments. Two of the experiments are designed to check the validity of the

mixture model. A variety of applications of this model for problems of wave interaction

with dielectric objects, from a simple heterogeneous dielectric cylinder to complex biolog-

ical structures, are reported and compared with traditional numerical methods.

3.2 Theoretical Analvsis for the Mixture Model

The mixture lattice sas models are described in Subsection 2.2.3 and illustrated in

Figs.2.4 and2.7. The dynamic description for the models is given in the Subsection 2.2.4.5.

The notations used in the sequence analvsis can be referred to those subsections and fisures.

3.2.1 Lattice Boltzmann Equation

Consider the FHP lattice gas model shown in Fig.2.7(b). The Boltzmann equations for

the lattice dynamic system can be written for moving and rest particles respectively as,

N,,o(x * c,, t+ Âl) : N,,o(x,/) + Qi,o[M(x, t) J , brr) ,

5l

(i : l, (3.1)



and

N o, ¡(x, t + At) : N o, ¡(x, t) * Qr, o[Nr(x , t ) ] (k : 1 , . . . , b,) . (3.2)

Note that the rest particles always reside at some sites, and have zero velocity c¡ (:0). Again,

the symbol "f(Nt(x , t ) ) indicates that dependency of the function/on the mean popula-

tions l/,, ¿ of all bit variables at site x and timestep r.

3.2.2 The Equilibrium Distribution

In what follows, we are interested in obtaining the solutions of the physical system

around equilibrium (at quasi-equilibrium), since the uniform equilibrium lattice gas can not

be used to simulate the wave propagation. However, to study an LGA around an equilibrium,

we must first consider the solutions at equilibrium. Thereafter the solutions of the system at

quasi-equilibrium can be obtained through a Chapman-Enskog expansion [31,41] in terms

of mass density and momentum at equilibrium.

Now, if the system is at an equilibrium, according to the Lemma in chapter 2[31], the

collision operators for the moving and rest particles satisfy

ol,o[^f"ø(x, t) ]: Q¿,o[M"4(x, t ) ]: o, (3.3)

and the equilibrium solutions for the moving and rest particles, respectively, are expressed

AS:

.,eq
lY i,'o:
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and ^fq- 
I

"o,k- t+e-p(/Ð (3.s)

equilibrium. The

of the conserved

and momentum

where the subscript eq stresses that the mean populations are evaluated at

Lagrange multipliers h and q can be calculated in terms of the relations

macroscopic physical quantities with the mean populations at equilibrium.

In the system, the two conserved macroscopic quantities, density p

pu, are related to the local mean population N,,o of particles with mass mo,velocity

c, and mixture ratio p o by

and

b,,

pu: \N",,qo",
t: I
(¿:0)

distinction between the mixture ratio p¡ and the random

chapter 2. p¡ represents that the percentage of sites in a

(3.6)

(3.7)

bit probability of pf discussed in

particular region is filled with rest

b,,

p: L'ví,n"
i: I
(e=0)

b,.

+ \,r,.lfq, o,.
L¿ fr O,KI K

k: I
(¡=0)

where p and ø are mass density and fluid flow velocity per cell, respectively. Note that the

particles mr,while pf is related with the local collision rules and represents the probability

of the creation or annihilation of the rest particle m¡ in each collision event.

To calculate the equilibrium distributions, we consider the equilibrium with low flow

speed u : lul << c (c the speed of rnoving particles), such that the microscopic collisions can

approxirnately maintain a local equilibriurn 13l l. In a CA numerical experiment, the equilib-

rium is easy to realized by operatingthe LGA near a local equilibrium state[32,33]. With
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consideration of the symmetry of the density and velocity of the lattice[31],the /z and q

functions can be formally expanded as the following series of velocity a

Note that the å is an even function and q is an odd function due the symmetry of the LGA.

When u : 0, the average density for all particles with mass mo is same, and denoted by

dk.If taking the mass of the lightest particles (moving particles) as unit, and denoting its

density bydo : d,we have the following expression for the moving particles

h(p, u) : hoi hrt| + O@4) ,

q(p,v):Qru+ OQ; ) .

(3.8)

(3.e)

(3. l o)

and for rest particle

: dk:
| + exp(m¡ho)

(3.1l)

Thus, the density of rest particle d o can be related to the moving particle d at u:0 through

the relation:

d"t*+(l-d¡"'r
(3.r2)

Niq k(ho)

d''^)Ut-

Now, to determine the coefficients ofå,, h, andq, in the equations(3.8) and (3.9), we

can calculate the equilibrium distribution functions perturbationally in powers of ¿¿. Con-

sider the Fermi-Dirac type function:
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f (x +xo) : (3.13)
l+exp(x+xs)

If the function is expanded around xo and x << xo, then

f(xo+ x): f(xs)+|çxo)x+)f'Qs)xz+ ... , (3.14)

where f (rù: -¡(x6)(t -/(xo)) and f'(xs) : ¡(xs)(t -/(xo))(t-2f(xù) .

Using the above formulas, the expansion of the equilibrium distribution function (3.a) for

moving particles can be written as

Ní,ï :N¡, o(/zo) + Ni,o ths)(ør(u . c1) + h¡?) *lNí,, (tto)q1 @ . crJ + oçr|),(3.1s)

where

N:n^ (/¡n) : 
=---1--t--.= 

: d," r + exp(l¡o)

N;i[ (hù : -*í!o (åo)(t -Ní,'o (hù)

: -d(t-d),

N:,"{ (hù: N:,q' (å0)(l -N",10 (ft'))(t-2N",qo (å0))

: d(t - d)(r -2d) .

The expansion of the equilibrium distribution function for moving particles can thus be

found up to the second order O(zz2) as:

N'n^: dlt - (t - d)(qt@' c) + trru2) +(r - d)Lt -2d) ú (o. 
"tY l+o1i )¡,0/\rl\r/'¿"/2

(3.16)

A similar expansion can be obtained for a rest particle with mass mo by letting ck: 0,
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that is,

*íir = d tÍl - (l - d¡)h¡? mol + O(r3) (3.17)

thus, p:p,,,*p,.. (3.20)

in (3.18) and (3.19), the two

The two unknowns q , and h, in (3.1 6) and (3. I 7) can be determined through the relation-

ships of the density p and momentum pø to the distribution functions(3.16). It follows

from (3.5) and (3.7) that

bu,
st -,eaP: ). m¡N.'^ +- 
- 

" I,U
i: I

(Å=0)

and

b..

P,,, : bnrd and P, : \ m¡P¡d¡ ,
l,- |

Substituting the expansion expressions of (3.16) and (3.17)

unknowns q, and h, canbe found as:

¡b,

Z *opoNíno : dbn,+ \ m¡p¡,d¡, (3.18)
k=l k= |

(¡:o)

b^ b, b,

Pua:
r:t k:l t=l

(k = 0) (i: o)

where co,u-: 0 for the rest particles has been used in (3.19). The Greek index cx represents

the spatial components of velocity of the particles. For the case of two dimensional lattice

o. e (x, y) , but in general cx is valid in the l/-dimensional case. Since d and d,n represent

the mean population of the moving and rest particles per site, the first and second terms in

(3.18), respectively, can be identified as the density of the moving and rest particles, that is,
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,r:" -T'4 û, ' (3'22)
L

where c" is defined below as. It will be shown in Subsection3.2.5 that the parameter cs rep-

resents the sound speed ofthe lattice gas.

d(l - d)b,,c2
c":

When formulating the above expressions, the following specific properties related to the

symmetry of the tensors have been used. Generally, for the modelling of fluid dynamic prob-

Iems, it is a basic requirement that all tensor formed from outer products of the lattice vec-

tors be isotropic through all of four ranks, and so yield the standard hydrodynamic equations

and correct viscosity coefficient for LGAs [6,31,33]. For the HPP lattice gas model, how-

ever, the tensors formed from outer products only satisfu the first three isotropic require-

ments. Fortunately, it will be seen in subsequent discussion that, for the problem of model-

ling wave propagation (i.e. not requiring a correct viscosity), we do not need to involve

those terms obtained from the evaluation of the fourth rank tensor. Therefore, the simple

HPP model is valid for our applications of linear wave propagation. Mathematically, the

tensor products to the fourth order rank for the present model with b nr moving particles can

be expressed as

b,

zld(t - d) b,,,+ \ tnl p od o0 - d ùl

h

I t,o : o,
¡: I

')
D..-CtilI

"lûLrp - -ã-'oÞ'

(3.23)

(3.24)

bu,

j- I

57

(3.2s)



b^

L',o",þ',ô:0,
i = |

(3.26)

and

! ,,or,r",ôciy : t',u-uuõy + õo6ôp, + ôorôpo)
r: l , Q.27\

where equations (3.24) to (3.27) are the first, second, third and fourth order vector outer

product, respectively. The summation on the repeated Greek indices is implied.

Using the above relations of Q.Z$ to (3.27\, the expansion for mean populations at an

equilibrium state can be obtained for moving and rest particles up to the second order of ø.

For rnoving particles, using (3.16),(3.21) and (3.22),

(3.2e)

N:,'": o{, . 
#,,", 

z + c(p)[ e,y¿+(í - tt)urr],r,u] , (3.28)

where í:1tob,,,, Q,$ : c¡.tc¡E- ï'ôru and function G(p)

G(P) : z,Pz(t -zd)

'oPrr'(l-d)

For rest particles, using (3.17),(3.21) and (3.22),

Ni,,o: ool, c@) 
rt _al9ur*'4) ,

where k:l tobk
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3.2.3 Chapman-Enskog Expansion and Conservation Laws

In the above subsections, the mean equilibrium population with low speed has been

obtained. In the subsequent derivation of lattice gas hydrodynamical equations we are inter-

ested in an LGA system at a local equilibrium with density and momentum slowly changing

in space and time. From the conservations of mass and momentum, the macrodynamic equa-

tions can be derived by using Chaprnann-Enskog expansion and multi-scale tech-

niquef31,41]. This anal¡ical process is almost the same method as that used in real fluid

dynamics. The Chapmann-Enskog expansion is a perturbation solution to Boltzmann equa-

tions (3.1) and (3.2) near an equilibrium state. Let the solution be expanded as a series in

powers of e(very small number e->0) [33]:

N¡,t : lvliì*¡¿Í,'l* uliì* oG3) , (3.30)

where N::ì: N',.q* is the mean population distribution at equilibrium. The multi-scale tech-

nique used here is called wave ordering since the ordering is appropriate for wave propaga-

tionf3 I ]. The multi-scale technique can be introduced by assuming that the gradients of the

,nfj"f and the differential with respect to time â¡ are very small. Thus the postulation could

be written for the first order derivative as

V- ðr : O(e),

and for the nth order derivative as
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such rhar Ny:Ì: v(') : o(e")

In what follows, we insert the expansion (3.30) in the Boltzmann equations(3.1) and

(3.2), and use the above multi-scale technique. By collecting the terms at order O(e ), the

first order equations for the moving particles ¡¿!D and rest particles ,nf!l/ .un be respec-

tively obtained as,

ò,Nl:)+c,uau,rrj"j : y,¡'il,ur,,) * f n'i,o'lt.)
j:t k:l

(3.3 1)

and ð,Nf,)o:

/ðQ¡" \l . r,t|""il,t

\ã1t,. ";l ' "r,k -
"'" llrl, - It*",

ln'i,,*'"',ì . 1., ni,,N:') , (3.32)
t=t j:l

lðo,,, ll
(ãr%url*: 

*",

lðOr.¿l| -Å¡t'-lðO,.tl|[ã¡il]l uno 1\Ä..i : l.a¡¿-;Jl
lltt* : lrln"'t l^t* : Ìrtr"q

where L'Ï ¡ :

/t',. , :

3.2.3.1 Mass Conservation

Now the conservation of mass and the series expansions obtained in the above subsec-

tion could be used to derive a partial differential equation which describes the macroscopic

density of mass for the lattice. In order to do this, taking the summation of equations (3. I )

and (3.2) over the indices i and k respectively, and adding the resultant equations, we get,
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bn, b,

I ¡¿,, o(x + c¡, t *^r) + I N o,¡,(x, t + Lt) :
i: I k=l

b,, b, b," b,

I¡¿,, o(x,t)* I¡r,, ¡(x,t)+ Iar,lffx,t)l + f Qo,u[M(*,t)] .

j:l k=t j:l k--l

(3.33)

Note that in (3.33) the terms on the left hand side and the first two terms on the right hand

side represent the mass density at timer + Â¡ and / respectively. Since the mass conservation

is independent of spatial position and time, i.e.

b, b, bu, b,.

p:> N,,o(x*c¡,t+A/)+ ),4'lr, t(x,t+Ar¡: It,, o(x,t)* I¡¿r, ¡(x,t) ,

i=l k:t i:l k:l

(3.34)

this leads to

b, b,'

)o ¡M1x,t¡1 +t.o,tM'(*,t)l:0. (3.3s)

,7, r'o F, o'K

Inserting the perturbation expansion of (3.30) in the equation (3.35) and expanding the

resultant expression at the equilibrium statelf,.q*, we have

b, b, b, b, b,. bn,
..+I o,, o(N"n' ) + I çro, k(tf'|' ) + I I nl)rj,'l + I > ¡'ii yr"t,ì +

i=l k:l i:li:l k:ll:l

b, b, b, b,,

+ t. t. d' . ¡¿(')* ). ). ni.r(.r) : e. (3.36).L/ Ll k, j " o,k Ll L¿ ",J" j,o
l: tk=l k = lr= I
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Since, at equilibrium state I o,, o{N'q'): I Qo, t]rl"q* ): 0 , such that

b, b,, b, b, b, b, b,. b,,

t t^T,v(rl +) )ni',rutr) +t tr\' ru(rJ+) Iní,¡¡(r):g..L¿ ,l-¿ I'JNj,o L¿ L¿ t,r"o,k 'L'¿ z-¿ k,j"o,k .LJ L¿ n.t"j,o
j=li:t k:lr:l l:tk:t k:l¡=l

(3.37)

Similarly, if we multiply the equation (3 . I ) with cia , ârìd take the summation over the mov-

ing particle index i, then

bn, b,, b^

I ",oN,, o(x + c,, t-r At): I ",oN,, o(x, t) * I ",oQ,, o[ÀÊ(x, r)J . (3.38)

l=l ¡:l i:l

It follows from the conservation of momentum (the first and second tems in (3.38) are

equal) that we have

b,,

\ . Q, 
^[Àf 

(x, ¡)]: 0 . (3.39)

'4"'..n''o[lv'(x' 

¡)]: o'

Substituting the perturbation expansion given in (3.30) into (3.39), and expanding it, we get

bu, bu, bu b,. b,

I",oo,,o{ÀÊ'q)+ I > r,ot',i'.¡Nl) + I > c,,"lt"'i.rNl:/: o. (3.40)
j=l i:l¡=l - t=lr=l

b,,

The first term) c,of),.o(Nt"q) : 0 due to the conservation of momentum at an equilibrium

state. Thus we have

bu, bu, b, b*

I I c,olt"'i,¡N(,]j. > Lr,olr"',,rwlt,l: o. (3.41)
j:ti=t l=lr:l

b,
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Noq by taking the summation of equation(3.31) over index i and equation (3.32) over

index k, and then adding the two resultant equations, we obtain

a,(>
i: I

b, b,, 
¿

Nl,no* L wil,¡+ ðB ( 2r,rwi,q"): f I
k= |

bn, h

> t ni'olvlt,) +

i:lk=l

i: t¡ = 1

y, y,^i,,NL',ì. f !,n';,,N:') (3.42)
L- 1 : - |

Li¡ u,\t,) +

It then follows from (3.37) and the definition of mass and momentum per cell, which is

given as

b, b,' bu,

p : I NÏjo* L,wi\o and prB : 
,ì 

,,þNIjo ,

thus we end up with the following equation:

ð,p+V.(pø):0.

This is the macroscopic equation for conservation of mass.

(3.43)

(3.44)

3.2.3.2 Momentu m Conservation (E u le r Equation)

Similarly, it follows from the conservation of momentum and the series expansion(3.30)

that the macroscopic behaviour of the flow momentum (Euler equation) can be derived. To

do this, we multiply the equation(3.3 I ) with c,o, and take summation over index i, such that

b, bu, b^ bu, b, b,

) c,oð,.v)il*AB) c,,,c,Bru::l: > 2",*rr',ü,,w(,t) . L t ,,*rti,owl',] .

i=l i=l i:li:l i:lk:l
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By using the equation(3.41), the above equation can be written as

t= |

where Nl:ì: {ø0. s"urtituting the expression for ,nrj"j given in (3.28) in the above equa-

tion and using the relations of the tensor products to the fourth order rank described in

expressions (3.24) to (3.27), the macrodynamic equation for momentum (Euler equation) up

to the second order can be obtained as:

à,(Puo) + ðu(os(o) uouB) : -ð.,P(p, u¿¡ ,

! ","a,u!..'l 
* ap ! ",or,Bwl:) 

: o,

ð,(pr)+V. (pg(p)uu) : -YP(p,f),

22't O---C c^
P(p,u') :'+- -ps(p) ,'¿c

or ln vector ÏorÏn.

where the pressure

(3.46)

(3.47)

(3.48)

(3.4e)

(3.s0)

^ l12(, , l\l z

'-r-lt-,)lu ,

-c.r t -/ /

and

It should be noted that the sirnple HPP model does not satisfo the fourth rank tensor

product relation given in (3.27) which has been used in the above derivation. But, by care-

fully inspecting the proceeding analysis, only the first two rank isotropic properties given in

(3.24) and (3.25) have been used in the evaluation of the first term of the expression(3.49)

for pressure. In the next subsection, it will be shown that, under the regime of undamped

sound waves, the simple HPP model is valid for the modelling of the linear wave propaga-

tion.
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3.2.4 Undamped Sound Wave Propagation

Consider a case in which a small perfurbation(p', u') is superimposed onto an equilib-

rium state with density po and zero velocity uo: 0, explicitly

p=po+p'and u=u' ,

where po is the uniform background density, and p' and u' are weak density and flow per-

turbation respectively. For this case, at order O(e) the conservation of mass equation

(3.44) can be rewritten as

ò,p'+ Pñ .u' : 0,

and the Euler equation for the conservation of momenturn (3.38) as

(3.5 l )

(3.s2)

(3.s4)

where the sound speedc.

z
I

ð,u'+ iVp' : 0,, 
Qo

can be found from (3.49) as follows

(3.s3)

If equations(3.51) and (3.52) are combined to eliminate u', then the linear wave equation in

terms of p' could be obtained as

ò?p'-r2,v2p':o

z (ðP\l ,2/ôP,,,\l

" 
: 

[Ð.il¡,: o z[ãp Jl,,: o 
'

Here, since the regime of undamped sound wave involves only tensor calculations up to the

second orde¡ at this point, there is no difference between the simple HPP and FllP models.

Thus the simple HPP is valid for modelling linear wave propagation. For the subsequent
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discussion we need onlv to focus on the HPP model.

We can now make an analogy between the above two-dimensional wave equation (3.54)

and two-dimensional TM ot ZE electromagnetic fields. For T M, case, the macroscopic per-

turbation density, p', can be equated to the electric freld Er, and the x- and y- components

of the perturbation flow velocity, u' : (u'¡, u' ,,) , can be equated to magnetic field compo-

nents, H, and I1r, respectively. Similarly, for the case of TEr, p' can be equated to the

magnetic freld H r, and u': (u' ,, tt' ,,) can then be equated to electric field components

8,,, andÐ * respectively.

3.2.5 Sound Speed and Dielectric Constant

For our present mixture HPP model, the mass density is p: p,, * p,., where

b,.

Pur: brrd , P,': \ m¡Pod¡,

k: I

d,.
,lfr ka

(3.ss)

and

d"'^+(l-d¡"r'

where d and do were previously defined as the equilibrium density of moving and rest parti-

cles per cell, respectively, and po as the existing probability (mixture ratio) of the rest parti-

cle of mass rn o.

From the definition of the sound speed (3.53), we have
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òp*: I

ðp laplt-l
\dP o,)

It follows from the above expressions (3.12) and (3.55) and p: Q rr* P, that we get

(*Þ) :,+*(*) : ,+ 
+,þ,*ror(*%)

Using the expression (3.12) the partial differential (#) can be obtained as

whence

Consequentially the square of the sound speed c.ç can be found as,

(òdt\
t ã71

nt¡d¡(l - dk)

d(r - d)

b,,d(l - d)
b,.

b,,d(l - d) + L *î,0 o¿ o0 - d k)
L- |

,'b,,rd(r - d)

rðP,,\
\apl

2
C,: (3.s6)

zlt,,art -d). 
þ,mf,p¡d¡(, 

-r-,]

This is a general formula of sound speed for the mixture LGA.

The sound speed cs on a lattice without rest particles (plain LGA) is obtained by letting

mt : 0 (k :1...å,.), that is

? :?'s -'o (3.s7):C
-tl1

where co is defined as the sound speed on a plain LGA, analogous to the light speed in vac-
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(c o\2t,.:l-l. \c./

r :? I
It *¿(t - d) * L *íp od kQ - dù 

|L ¿:r Itr:- , (3.58)

for the HPP mixture model, br, : 4 i.e. 4 moving particles per cell, then

uum, and c is the speed of moving particle. The dielectric constant 8,., corresponding to the

sound speed c, (3.56) of the mixture model, can then be found as:

Here several special cases commonly used in LGA simulation are concerned below.

Casel: The background density is 50%(d:0.5).lt follows from thd expression of

(3.12) that d, : | /2 and this simplifies equation(3.59) to:

b..

- l=- 2Ê,: l+;>,,mípt. (3.60), 4L,,_ |

Note that regions with an arbitrary desired e,. value can be created by probablis-

tically assigning cells with different rest particles m o based on the mixture ratio

p¡.The Fig.3.l shows some 9,. values for various mixture ratios.
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Case2: The background density is 50%(d:0.5), and in some regions all cells are

assigned with rest particle(s) mo i.e. Pt : l. This further simplifies equa-

tion(3.59) to:

b,
. ls. zÊr: l*4L*¡. (3.61)

For example, if a desired Ê, : 5 is to be modelled in a region, using the above

formula, this can be realized by assigning a lest particle with nto: 4 per cell.

Again, if e,. : 2l , two rest particles with nto : 4 andmr: 8 are required

with each cell.
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Fig. 3.1 Theoretical results for dielectric constants e,. versusthe combinations of rest

particle mixture ratios.

Based on the above discussion, it has been noted that a mixture HPP LGAhas the ability

to control the sound speed (dielectric constant) in a very flexible way. The general formula

--4- pr = pr, pz:p¡ =0
--9-- Pr :1, Pz: Pr, P¡ =o
- -¡- - Pr : l, Pz 

:1, P¡ =Pr.
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mula for the sound speed enables a wide range of dielectric constant to be modelled by

specifying various interaction models.

3.3 Numerical Simulation and Results

In this section, to validate the mixture I{PP model, we design two simple numerical

experiments with different collision models. The two group of collision rules describe the

models given in the Tables 3.1 and 3.2, each with the cases of (A), (B), (C) and (D). Case

(A) defines the collision rule of the sites without rest particle, case (B) with one rest particle

of mo : 2, case (C) with one rest particle of m¡ : 4 and case (D) with two rest particles

of mo : 2 and mk : 4. In those tables a transformation of velocity states of site occurs for

two particle head-on collisions, the creation of moving particles from rest particles and the

annihilation of moving particles after the interaction among them. For the mixture FIPP

models there are a total of 2u : 64 states per site, the rules describing the change of parti-

cle states after collision are listed below, and all other states not listed are streamed (i.e.,

without the change of particle states after one step evolution).

Note that there is a difference between the two collision models. In collision model

/(Tables 3.1(a),3.1(b),3.1(c) and 3.1(d)), for each incoming state there are two possible

outcoming states, each with an equal probability of I/2. However, in collision model 2

(Tables 3.2(a),3.2(b),3.2(c) and 3.2(d)) there are three possible outcoming states, coffe-

sponding to each incoming moving particle state. The first two possible outcoming states are

the same as those outcoming states described in model 1, but each with the probability of l/

-3. In the third possible outcoming state, also with the probability of I /3, the rnoving particles

are allowed to keep their original states. For example, in Table 3.1(b) if two incoming mov-
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ing particles exist in opposing velocity states (head-on), with an equal probability of l/2,the

collision results in either transferring moving particles in the opposing velocity states verti-

cal to the incoming particle pair, or creating one rest particle with mass mt : 2 where ini-

tially there is no mass 2 rest particle. Altematively, if a mass 2 rest particle already exists at

a site without other moving particles, two moving particles are created in pair either in the

vertical or horizontal direction, each with a probability of 1/2. But, Table 3.2(b) defines

three possible outcoming states, in which the first two possible outcoming states are the

same as those outcoming states illustrated in Table 3.1(b), but each with the probability of ,l/

-1. In the third possible outcoming state, also with the probability of I/3, the two incoming

moving particles will just stream through the cell.

In the numerical simulations for the collision models described in the above tables, a

two-dimension lattice with size 1024x256 cells has been employed. Reflecting (perfect mag-

netic conductor in theTM, case) boundary conditions[25] are applied to both x andy axes.

Different uniform background densities d rcnging from 0. I to 0.9 are applied to the lattice.

This mixture LGA can be constructed by probabilistically assigning cells a rest particle with

2 mass units based on the mixture ratio of 30%(pl ) and assigning cells a rest particle with 4

mass units based on the ratio of 4}o/o(pr).

A TM20 field at cutoff frequency is used as an exciting source. The source with the

maximum initial perturbation of I 5o/o above the background is superimposed on the top of

the background density. With the source, we can study both equilibrium and quasi-equilib-

rium behaviours of the system. The equilibrium behaviour can be obtained by taking time

average of the macroscopic quantities. An observation window is chosen with the size of
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59x59 cells, and is located atx:94 I andy:1281.

The simulations were evolved for 15,000 time steps. As an example with d : 0.5 , the

standing wave responses at the observation window for the moving and rest particles are

recorded and shown in Fig.3.2. The experimental results at equilibrium for the rest particle

density were obtained by counting their numbers at the observation window, and taking the

time average of the numbers. For example, in the case of d : 0.5 shown in Fig.3.2, the

two numbers were 745(m¡ : 2)and 534(m¡ : 4), thus the equilibrium density for rest

particles was (745 x2 + 534x$/(59x 59) : 1.042 . The experimental results for the

density of rest particles at equilibrium, as well as the analytic values calculated using (3.12)

are shown in Fig.3.3.
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Collision Model l: case A*

l(s,s )
Outcoming States ,s'

f"o
oO{- --ù

2m
oO

4m

o@

oa
(t)

^s

f". 0 r/2 t/2 0

o{> <- 1/2 0 t/2 0

t- 
+ãt

0 0 0 I

Table 3.1(a): Collision rule for the sites of incoming

states without rest oarticles

Collision Model 2: case A *

l(s,s )

Outcoming States .t'

f"o 3q 2m
oO

4m

o@

ò

ûa
U)

6

s

f.. It3 lIaUJ U3 0

o++ U3 U3 r/3 0

t-+fr 0 0 0 I

Table 3.2(a): Collision rule for the sites of incoming

states without rest oarticles

* Symbols used in the tables: a) o :> no rest particle(** : 2)

b) O :> no rest particle( mt : 4)
Zm

c) o :>with rest Particle(nto 
: 2)

4m

d)

I)



Collision Model l: case B*

l(s,s )

Outcoming States Ji'

[.o ¿g 2m
oO

4m

o@

oo
(h

s

f". 0 t/2 t/2 0

o++. t/2 0 t/2 0

2m

oO t/2 t/2 0 0

t-+fr 0 0 0

Table 3.1(b): Collision rule for the sites of incoming

states with a rest particle of ntt : 2

Collision Model 2: case B *

l(s,s )
Outcoming States S'

f.o
oO++

2m
oO

4m

o@

o

ùa
U)

.ç

f.. v3 t/3 t/3 0

o+<- t/3 lt3 t/3 0

2m

oO t/3 t/3 U3 0

t-+fr 0 o 0

Table 3.2(b): Collision rule for the sites of incoming

states with a rest particle sf rtt¡ : 2
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Collision Model 1: case C t

l(s,s )

Outcoming States .S'

f"o ¿g 2m
oO *1-*

too

0'a

U)

s

f". 0 t/2 t/2 0

o++ t/2 0 t/2 0

4m

o@ 0 0 0 I

Table 3.1(c): Collision rule for the sites of incoming

states with a rest Particle sf m* : 4

Collision Model 2: case Cx

l(s,s )

Outcoming States .s'

f"o ¿q 2m
oO *1*

loo

Õ

{tq
(n

s

f.. t/3 r/3 r/3 0

od>+ t/3 t/3 t/3 0

4m

o@ 0 0 0

Table 3.1(c): Collision rule for the sites of incoming

states with a rest particle of mk -- 4
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Collision Model l: case D *

l(s,s )

Outcoming States ^s'

f.o
oOa-+

2m
oO .-1*

too

4m

o@

ê

(u

s

f.. 0 t/2 t/2 0 0

o++ r/2 0 r/2 0 0

2m

oO l/2 r/2 0 0 0

t-+fr 0 0 0 0
¡I

4m

o@ 0 0 0 I 0

Iable 3.1(d): Collision rule for the sites of incoming states with two rest

Particles of mt, : 2 and rtto: 4

Collision Model2: case D *

Iable 3.2(d): Collision rule for the sites of incoming states with two rest

Particles of mk : 2 and mo : 4

l(s,s )

Outcoming States .t'

f"o
oOa-+

2ñ
oO *t*

loc

4m

o@

(rc

U)

,S

f.. U3
| la1/ J t/ ) 0 0

o+<- r/3 U3 r/3 0 0

2m

oO r/3 l/3 v3 0 0

tù+
+ot

0 0 0 0

4m

o@ 0 0 0 I 0
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Fig.3.2: Time domain waveforms for model l.Note that the number

of moving particles has been divided by 4.
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Fig.3.3: Equilibrium for the models with two rest particles described

in Tables 3.1 and 3.2. Theoretical results calculated using

(3.12) are compared with the experimental results.
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Next we examine the propagation speed of the mixture models. The experimental values

obtained from the two local collision models are given in Fig.3.4. The theoretical results by

using (3.55) are also given for comparison. The propagation speed was calculated by meas-

uring the resonant frequency in the TMzo cavity, an example of which was shown in Fig

J.¿.

a

^

Thcoretical Result
Experirnent Model I

Experiment Model 2

750

lzoo
X
-650
C)

õ 600
C)

V)
g 550

8o soo

^ 
¿+CU

400
0.1 0.2

Fig.3.4: Propagation speed

o.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d ( Density of Moving Parlicles )

for the two mixture models described in Tables 2.1 and2.2'

The above results indicate a very good agreement between the two local collision mod-

els and the analytical ones. We confirmed that the mixture HPP LGA model can be applied

to modelling the linear wave equation in inhomogeneous media, and that macroscopic quan-

tities (such as density, mass flow, density of rest particles and sound speed) do not depend on

the details of the microscopic difference.

A variety of applications of the mixture HPP LGA models to two-dimensional electro-

magnetic problems in inhomogeneous media have been investigatedl3í,37,42l. The applica-

tions demonstrate that by concretely constructing different local appropriate collision
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models, an LGA algorithm is capable of simulating electromagnetic wave propagation and

scattering in inhomogeneous dielectric structures with a large range of dielectric constant.

Some examples are presented below.

Among the examples, we examined a plane wave propagating through dielectric solid

cylinders and cylindrical shells with different dielectric constants er. Figs.3.5 and 3.6 show

the snapshots of a gaussian plane wave propagating through a dielectric solid cylinder with

Êr:5(radius a:201) andacylindrical shellwith t,:21 (innerradiusa:80 / and

outer radius b:100 /),respectivelyl4Zl. The time-domain electric field intensity inside a die-

lectric cylinder and shell with e,. : 5 and e,. : 2l are given in Figs. 3.7 and 3.8. The cyl-

inder or shell was embedded in a lattice of size 20481 x 40961 and the circular sampling

window is chosen at the center of each seometry. The radius of the window was a function

of its location. Theradius insidethe solid cylinder was 251for e,. : 5 and I5lfor e,. : 21 ,

respectively. The window at the center of cylinder shell had a radius of 501. The dielectric

constants t,. : 5 canbecreatedusinga singlerestparticlemodel of m, : 4,ande,. : 2l

created using two rest particle model of m, : 4 and rn2 : 8. The construction of the two

models can be referred to the formula of (3.61) and the related discussion in Section 2.25.

The results obtained using a TLM 18,351numerical approach are also given for comparison.

To assess the difference of the mixture model with respect to TLM based on the above

results, the knowledge of the effor sources for the two techniques should be considered. The

damping effect and spatial averaging error (described in Subsection2.4) are two main errors

in the lattice gas model. The damping effect is the dispersion associated with viscosity in a

fluid model, and can not correctly predicted with the linear lattice gas model. In the simula-
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tions, the small perturbations (plane wave pulse) were imposed on an equilibrium state, so

that the damping effects can be neglected as described in Subsecfion3.2.4. The spatial aver-

aging error and a l0:l lattice gas cell to TLM cell discretization resulted in the field sam-

pling locations not matched up exactly, and did cause the difference between the two

approaches. However, a comparison can be made between the results shown in Figs.3.7(A

and B) (solid cylinders) or in Figs.3.8(A and B) (cylinder shells), even the simulations with

the same plane wave pulse and numerical schemes. The case of t,. : 2l gave a poor agree-

ment between the two methods on each geometry. Conversely, the case of e,. : 5 gave a

good agreement between the two methods on each geometry. This indicates the major differ-

ences are due to the stair-stepping errors present in the TLM discretization. A more detailed

discussion of the effors can be found in 136].

Next as an example of wave interaction with a complex biological structure as simu-

lated by D. Cule[36]. The scattering field from a human body cross-section model is shown.

In this simulation, only the dielectric constant of a tissue has been considered. Unfortu-

nately, the conductivity of the tissue has not been involved since the current fluid dynamics

based mixture LGA model can not describe the dissipative property related to a lossy media

in electromagnetics. In this body cross-section model more than eight tissues with differ-

ent dielectric constants ranging from ó to 62 were constructed using a 3.4mm resolution grid

of electrical parametervaluesf36l, as shown in Fig.3.9 and Table 3.3. Also included in this

Table are the details of the mixture ratios po of rest particles related to the different mixture

models for the modelling of dielectric constants. Note that the combination of the mixture

ratio p ¡s given in Table 3.3 for the modelling of the human body cross-section is just one of

80



many possible combinations. As discussed in Section 2.2.5, a desired arbitrary dielectric

constant value e,. can be created by non-uniquely constructing the mixture models with dif-

ferent rest particles nt¡ andmixture ratio p¡. This can be found in Fig.3.l and the formula

(3.59). The image of the instantaneous field intensity for harmonic plane wave incident on

the human torso model at975 MHz is simulated and given in Fig.3.10[36].

8l
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Fig. 3.7: Time-domain electric field intensity inside the dielectric cylinder with a):

t. : 5 and b): et. : 21. Comparison of the results obtained using TLM

method is provided for an observation location a central region of cylinder.
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Table 3.3: Body cross-section model[36]

Material
Et.

Mixture
p nt1= 4 P',|tn', = ó P 3\tt13 = to

Skin 35.0 .000 1.000 0.21 88

Sninal Cord 49.0 000 L000 0.4375

Spine 8.0 .000 0. 1875 0.000

Ribs 8.0 .000 0.1 875 0.000

Long Bones 8.0 000 0.1875 0.000
Skeletal Muscle 58.0 .000 .000 0.5781
Liver 48.0 .000 .000 0.42t9
Kidney 43.0 000 .000 0.3488

Stomach 43.0 .000 .000 0.3488

Small Bowel 43.0 .000 000 0.3488

Colon 43.0 .000 000 0.3488
Pancreas 43.0 .000 000 0.3488

Fat 6.0 000 0.0625 0.000

Blood Pool 62.0 .000 1.000 0.854

Bone Manow 62.0 .000 1.000 0.854
Spleen 62.0 000 1.000 0.8s4





Chapter 4

Three-Dimensional Vector Lattice Gas Automata

4.1: Introduction

In this chapte¡ we show how the three-dimensional vector LGA (3-d vector LGA)

model described in Section 2.3 can be used to model vector electromagnetic fields in tkee

dimensions. Because polarization has been introduced in the model as an important inher-

ent property, the mathematical analysis used here is somewhat different from that used in

two-dirnensional scalar wave models, where the Euler equations under the regime of the

undamped wave have analogy with the two-dimensional Maxwell's equations of TE or TM

types. For three-dimensional problems, it seems that one is not able to find direct analogy

between the three hydrodynarnical equations and Maxwell's equations. As discussed in

chapter 2, the present 3-d vector LGA model is still based on the interaction of Fermi-type

particles. Each particle is endowed with the inherent physical quantities: a propagating

vector k, polarization ¿ as well as rnagnetic vector å. The collision rules conserve the

mass, polarization vector ¿ and magnetic vector ú, but do not conserve propagating vector

*, The analysis begins with setting up the Boltzmann equations of the -3-d vector LGA.lhe

perturbation solution to the Boltzmann equations is developed using the Chapman-Enskog

expansion, and appropriate mathematical methods. The solution characterizes how small

perturbation of the mean population of particles vary with time and space. We show how



in the macroscopic limit the three-dimensional Maxwell's equations can be derived from

the LGA mode|

In the following sections, the Boltzmann equations lor lhe 3-d vector LGA are pre-

sented in section 4.2. Based on the equations, a group ofperturbation equations at the first

order O(e) can be obtained. Section 4.3 shows how the Maxwell's equations could be

derived from the perturbation equations. Some numerical simulation results conducted on

Cl machines are presented in section 4.4. As well, comparison is made to the results

obtained using the TLM melhod.

4,2 Macrodynamics and Solution for 3-d vector LGA

By taking the ensemble average of the microdynarnical equations of (2.24) through

(2.35) the Boltzmann equations of 3-d vector LGA can be obtained as:

N 
",.(.t- 

l,),,r, t+ Âr)= ir'-.ç,.( x, )),2, t) +Q.ï..(Àff(.r, /)),

N-r'.(.t - I,),,t,t+ 
^f)= 

N.r',( x, )',2, t ) + O-x.(iW(.r, ¡)) ,

N¡,,(.;r + l,¡t,7, ¡+ Âr)= N",.( x, ),,2, t) + O.r',.(1!d(x, /)),

N¡,(;r + I ,1,,7, ¡ + 
^r): 

N.r.,( \ )1,2, t) +O',(lW(x, t)) ,

N-y,(x ,¡,-l,z,t+ Lt)= N y*(x, 1,,2, /)+O-).-(lW(r,¡)),

N-y.(x ,¡t-!,2,t+ At)= N y.(x, 1,,2, ¡)+O-1 "(iW(¡,/)) ,

Nr"(-r ,l, II, z, t r 
^f): 

N),( x, )t,2, t ) + Or',(^ñ(x, 1)),

N1.,( .r' , ¡r +1, z, î + Lt): Nr'.( x, y,z, t ) + O, ,(iw(ir, l)) ,

(4. 1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)



N_r^(x,y,z-l,t+ 
^/): 

N z.y( x,)',2, t) +N-l"(M(r, /)) ,

N-rr(x ,),,2-t,t+ Lt¡= N-rr,(x,f,z, t )+ Q-zy(lw(.r, 1)),

Nrr(x,y, z + 1, t + Lt): Nr r,( x, y,z, 1 )+Qzy(iW(.{, f)),

N, "(x ,y,z+ l, !+ 
^/)= 

Nz,\( x,y,z, t) +Oz"(iW(.r, f)),

(4.e)

(4. r 0)

(4.1l)

(4.t2)

where the symbol ?W has the same meaning as used in the previous chapters. The

OJ¡(^¡) ; (,/ € xx,xv,¡z and i e x, y, z), represents the ensemble average of the colli-

sion operators given in the expressions of (2.36) through (2.47), and can be explicitly writ-

ten as

o ¿,= ¡v r,t Nr,,N-zrÑ1, + Nl ,N) ^fu--.. 1- N 
",[ 

Ñl-rrN-rrN^,+ n1 ,rrrr"ru-,. . J ,

(4. r 3)

a-x, : N-t. I N r' "N 
-r'.ry.+ N) .Nz *N; I - N r't Nr'rv-- N r.+ N, 4,N-, ., 1,

(4.t4)

Or= 
^lt,t 

Nr,N-rrNu,+N-i,N ) "Nf ...l- 
¡¿',t¡¡r¡v."¡¿-.t,+ N-*¡-r-N,',1 ,

(4.1s)

ar; Nr.lN,..N-,'.N=.+ N 
^,N -z ,N z .,1-N, .¡ N--, ¡-*N- r.+Ñu¡u,N, '1,

(4.r6)

O_y..: N;[ Nr,N,r,ry,+ ¡/r,.//,."¡V-j y ]- tr_y^[ w-Jv.,U,.,+ lø*.¡rr"lf-rr1 ,

(4.t7)

a 
- y,: N .,[ N 

^-, 
N - 

^', 
ry,+ N z, N, . N 

- z -l' N-,', ¡ N-r ¡** N r',+ N,' . ry, N - r 11,

(4, l8)



Oy.= Nr-[ Nr,N-r,U;-, + lf-r',.N ,."N- ]- ¡¿, -t ¡L..¡¿-^N-, 
^+ 

.1r'-* ¡r-, "N" 11 ,

(4. l e)

ay r: N r.[ N r.N-r.N -,+ N-zyN-t.Nzy]- N r',tÑ r N- '¡f-,'.+ N-r,Nu,Nr11,

(4.20)

a_2,: N-z -tNr,N , "N;"+ 
N.r.Nr,N-x.l- N-r"[¡Vr-¡V r"¡¿r,+ ¡¡rNr,W r.],

(4.2t)

O-zy: N. ,lN^ rN.,' ,N^+ NrrN,.N..l- N-r rl wrrry rlVr r+ W,.¡V^w ,.,1,

4,.,:

(4.22)

ry r¡ w r,u r rN-u + N -z yN -t..Ñ;.1- Nr rt N.,rN-, Nr, + N, .N -^N r' 
"1,

(4.23)

(4.24)

where ()rr,: (or., ¡) ,NtL ¡= (Srr,) and Ñu ,: | - Nu ¡: (S¡, ), and N, repre-

sents the mean population ofthe particle polarized in i-direction and travelling along the -I-

direction. Here o., , and ,9r,, were defined previously in Subsections 2.3.2 and2.3.3.

For convenience, we prefer to write the above equations in a compact form, that is,

N¡,,(x+ cr,t+ Lt)= N¿7,(:r', / )+Or/r(iw(x, /)) , (4.25)

oo ,: No., I N*x iN+ (¡t; + Nr/iN+1jN+/ i ] -

- N.,i IN-.^,N*¡,N*,' + w*,,,lçultl.r, 1, (4.26)



where the vector c, is defined as

l¡ù.t^
cL = 

lxte,,

lilè,

(4.27)

J=

J=

J= +Z

where / is the lattice spacing and +èi G = r,l, and z) are the unit direction vectors. The

notation used here means that the indices i and i take the value of the circular set of

{x,),,2} withj=i+1,that is, if i =.r, j: l'; i = y, j : z and i = z, j : )(. Thecap-

ital indices I, J and K are defined as: I=cap(i), J=cap(i+ l) and K= cap(i+2),

where the symbol capQ means "to take the capital letter ofthe argument", i.e., cap(y) =Y.

it is important to note that every collision event definedin the 3-d vector LGA model is

one-to-one and reversible. The collision rules are illustrated in Appendix A as a reference.

Thus the IGI obeys detailed balance, a stronger condition than the semi-detailed balance.

Applying the lemma of chapter 2, the equilibrium mean population Nfl , of the particles

could be specified as Fenni-Dirac distribution

¡fÇ -
I + exp(go + Q¡.at)+ @,'q))

(4.28)

where there are three Lagrange rnultipliers Bo, 81andqr.

For subsequent discussion, we denote u, and u, to be the macroscopic conserved

quantities which correspond to the microscopic conserved quantities e and ú, respectively.

With consideration of the symmetry of the latticel3 ] l, q t anð 4, could be formally

expanded as a series in odd porvers ofthe conserved vectors of a 

' 
and 12.Now,ifthelat



tice is assumed to be at an equilibrium and rvith lø 1l < lel and lurl<lhl, then the equilib-

rium mean population N"l, ofthe particles could be expressed as a series in powers of ø'

and u2 as

N"J,= fG)+ O(u,) + O(tr) + ... (4.2e)

.l
where /(go): ç;j1*; is evaluated at lrll : 0 and larl : 0, and is settobethe

background density of particles.

Next, ifwe consider the lattice gas at near-equilibrium, the mean population ly'.r, are

close to the equilibrium values of {] , and can be expanded in a perturbation series in

powers of e (very small e -+ 0 )about the equilibrium as

Nu,: ñr1-+elfl¡+o1e2), (4.30)

For this assumption, it is requiled that a large lattice size Z be at least O(e-l) , such that the

change ofrnacroscopic quantities (density ofparticles and the vectors of a, and trr) on

the lattice is sufficiently regular [31]. Now substituting the expression (4.30) for N- r in

the Boltzmann equation (4.25) and expanding the operators (4.26) in a perturbation series

in powers of e, we get

^,t"1 ,1 x+ cr,t + Lt)+eløS,( x+ cr,t + 
^r) 

+ o(e2) = lfl ,(x,t)+

+eru$¡( :r , r ) + o*r,[M "n (*, t)l. r), N!i1,,,(H)lr, 
_ r",. 

o(¿2) , (c.tt)
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where the prime over the symbol of summation indicates that t is over the values of
K, nt

m: y andm =zwhen K = !X; over the values of m = x andz whenK: +)' ;and

over the values oî m : x and y when K : tZ. Recall that at equilibrium the mean pop-

ulation distribution is spatially uniform and independent of /, such that

N"1,,( x + cr, t + At): N"J,( r, t ) =.fG.)

Q¿7,[Àfqr(x, r¡1= I .

Using the above expressions and (4.3 1), the first order equations for N$, can be found as

n$,1'+ ct, t + at)= ¡v!?,t.., 1 ) + t¡/!rl,(*-',4*)l 
n,"" 

(4.32)

We can rewrite the equation(4.32) in a compact matrix form:

and



¡¿!l.lr'- t, y, z, I + a,t)

¡¿!|.t'- t,y,z,î+ Lt)

I'r!111" * t,),,2,t+ Lt)

¡¿llf x+ l,),,2,t+ Lt)

¡¿!'/"t.',y-¿ 7, ¡ + a,t)

u\t,).1, ,y-t,2,r+ Lt)

¡¿l,'lf .',y +t,z,t+ Lt)

¡¿1,']t.',r +1, z, t + Lt)

u!)-t, ,y,z-t,t+ Lt)

N\))¡x,y,z-t,t+ 
^t)

uL'l(, ,y,z+t,t+ at)

NL')f , ,y,z+t,t+ Lt)

¡'t\)r),( *, y,,, t )

u(-tr) ¡ t, y,t, t

w\)11,, y,', t ¡

u(|)1 x. y,z, t ¡

= (+TD)

tu\,),1 ,, y,,, t

u\1,).1 x, y,z, t

N\N 
^( 

x, 1,,2, t

w\)),( x, ¡,,2, t

ult11,, y,', t ¡

uLt)( x, y,', t )

ru!,r]1 .', r,", r )

w(rt){ r, y,', t )

(4.33)

(4.34)

where the rnatrix I is a I 2 x 12 unit matrix, corresponding to the "streaming" process of the

evolution ofthe lattice gas while the matrix 7, is derived from the differential ofcollision

operators Q*, , with respect to N+ñ,,, thus describing the "the interaction" among parti-

cles. The elements of ç ofr,',,, 
/ ôQ*r' \l= lãñ ,Jl-, 

- N,n 

câh be calculated bv the expressions

of (4. I 3) through (4.24), and can be written below (the more details about the calculation is

given in Appendix B).

ro: fEù(t-f@ù)r,,

where the collision matrix 1, is



-2000-r0r
0-20 0 010
0 0-2010-l
0 0 0-2010
-l 010-200
0l0l 0-20
I 0-l 0 0 0-2

001l0
l-l 001
001l0
I I 0 0 -l
0 r 00 r

00-ll0
0 r 001

(4.3s)

0101000-201-l 0

0-l 0ll0r0-2000
10100-l 010-200
l 0 r 0 0 l 0-r 0 0-20
0 I 0-r r 0 r 0 0 0 0-2

For convenience in the following discussion, we define a scattering matrix

T"=l+To= I+f(l-f)Tr Note that if the lattice is almost fully filled, or almost

vacant (i.e. f = | or 0 ), the effective mean fi'ee path [41] of particles on the lattice is

extremely long such that the streaming event is most dominate in the evolution of the lat-

tice gas. In this case T , = I and, T o = 0 , and the interactions among particles rarely hap-

pen as it should be in the real world of fluid dynarnics. For the almost half filled lattice

(f = 0.5), the scattering matrix will be



T'lr=o.r=r': t*)r'-- j

000-r0r00ll0
2000101-l 001
0 2 0l 0-l 0 0 I I 0

0 0 2 0l 0l I 0 0-l
01020001001
I 0 | 0 2 0 0 0-l I 0

0-l 000201001
101000201-l 0

-l 0rr0102000
0100-l 010200
0 l 0 0 l 0-l 0 0 2 0

I 0-l l 0l 0 0 0 0 2

. (4.36)

(4.37)

= T, + yT,, (4.38)
2

2

0

0

0

-l
0

I

0

0

I

I

0

4.3 Macroscopic Property and Conserved Quantity

To understand the macroscopic behaviour ofthe 3-d vector LGA, we proceed by

exploring the equation(4.33).

Using the definition of the matrix f ,$.34) we rewrite the equation of (4.33) as

lø!),1 
"+ 

cr, t + at) : r"lr$,(;, r ),

and the scattering matrix I" as:

r"=t+f(t-f)r,

l
wherel = f(t-"f)-;.

Note that the I 2xl 2 matrix Z, is singular due to only six conserved quantities being

enforced in the collision events. To understand the collision, rewrite the collision matrix

T,as

Tr: 4(Tt/2-l),
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In reference to the generalized inverse ofthe linear transformations [43], the ?", could be

constructed as the product of a I2x6 matnx and its generalized óx12 inverse m atrìx A+

[43], that is

T ¡¡2 = AA*, (4.3e)

where the number ó is related to the six conserved vector components. This will be seen

later. It can be found that the rank two singular malnx T, has two eignvalues, 0 and 4,

each with six eignvectors. The six eignvectors associated with eignvalue 0:

[0,o,o,-2, r,l, l,l, o,o,o,-zfr, [0,o,o,o,-r,0,-r,0, r,0,0, r]',

[r, o, o,-r, r, 1,0,0,0,0,-r,-l]r, [0, o, r,-r,0, l, r,0,0,0,-1, -r] 
r,

[0, r,o,-r, r,0,1,0,0,0,0,-2]r, [o,o,o,-2, t,2,t,t,o,o,t,-2)r,

and the other six eignvectors with eignvalue 1:

[0,0,0,0,1,0,r,0,r,0,0,1]r, fr,0,r,0,r,0,-r,0,0,0,0,1]r,

l-2,o,0,0, r,-l,-l, l,0,0,-2,0]r, [2,o,o,o,-r,0, r,0,0, r, r,0]',

[r, o, o, r,-r, r,0,0,0,0, r, -r]t, [r, r, o,0,0, r, r,0,0.0, r, r]r.

Also, Z, has a 6-dir¡ensional null space whose basis can be fonned by the six independ-

ent vectors:

It, -2, -,r, 0,2, t, 0,r, -2, 0, 0, 0] 
r' 

[0, -r, -r. 0, r, r, 0, 0. -r, r, 0, 0] 
r'

[-r,0, r,0,-r,0, r,0,0,0,0,0]r, [-r,0, r,0,-2.0,0,0, r,0,0, r]r,

[-r, r, o, 0, -1, -r, 0, 0, l, 0, l, 0] 
r, 

[t, -t, -t, 2, 0, 0, 0, -2, o, o,o] 
t. 

{+.+o)

Where I denotes the transpose of a matrix.

In what follows, the matrix I could define as a linear transformation ,4 from a vector



space {l with dimension 6 to another vector space {(l ) with dimension 12, and its inverse

,4+ as the inverse transformation. In the vector space of t{ each element lut,,u,,:out,,

u2r,u2)u trrr lr is the six cornponents of macroscopic conserved vector of u, and u2,

which are related to two local microscopic conserved vectors{e, ú }, as indicated before.

On the other hand, the .pu." {(t)i, defined as a population vector space. In this space,

any vector N(l) hu, twelve components which correspond to the mean populations of

twelve particle states, i.e., VN$, e N(t) (¡: x,i:y, z;J = Y,i:2, xandJ: z,

J = z ,i:x,y).

Explicitl¡ these two transformations could be expressed as:

A: ('¿1- N.(t)) and A': (N(t) - 11),

or in matrix form, for VN(l) e {( l) und Vu e (U., that is,

N(t) : Au or ¡1 = tr+ ¡Y(t) .

Note that a Moore-Penrose generalized inverse [43] has the properties:

l): AAA:4,

2): A'AA:A,
.H3): (AA) =AA,

tH4): (AA) =AA,

(4.4t)

(4.42)

(4.43)

(4.44)

(4.4s)

(4.46)

rvhere the superscript ll denotes the operation oftaking the conjugate transpose ofa

matrix.

Now, by using the above properties, we can show that the vector space tl is a con-



served vector space with respect to the scattering matrix 2". To do this, at a particular site

on the lattice, let @Jt) e tL be an arbitrary vector before one updating (or collision) and

(uJ'*o') e tl be the vector afïer the updating, such that

(,){tl - ,**', t): A+AA+Ñt)o) ,

where the property 2) (4.43) has been applied. Note that I, is singular matrix with a

dimension six null-space with the basis vectors given in (4.40). This allows us to choose

another constraint for l+,that is, A'T,: 0, then

(u)()- A'( AA+ + rT t )ñttU)

where 1 could be an arbitrary real number, i.e.,Vy e (. In the present case,

Y : "f(l - f) -l / 4,such that we get

T,= AA* +yT, and 1u¡(')= A*7,ñ"1t¡

It lollows from r"Àlr)1r¡= Àl')11+ ar¡ and l*¡l')(r+^¡)= (rry+^/) that, we

end with

|/f) :6(¡*t't = ,' (4.47)

Thus, lr is a conserved vector with respect to transformation I, , but Mr)1r¡ +

Àl')1r + Âr¡ due to AA+ + L

A straightforward solution to the equation AA*: Ttn for the matrices A and A+ ,,

which satisfies the constraint: A* T , = g and the properties gìven in expressions of @a3)

through (4.46), is very difficult. Nevertheless, referring to [43], one special solution for the

matrtx A which meets all conditions and the constraint, could be found as
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0
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0
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0

0

0

0

0
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0100 0-
0010 K

0r0 0 0

0010-x
r00 0 0

001-K 0
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001K 0

1000-rc
0l0K 0

010-r< 0

100 0 K

il
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(4.48)

and its inverse m alrix A* as

e*: 6'r| r' : )

0 00 0 r 0 l 0 l 0 0

10100000011
01010101000

rlll0 00 0 0-:0:0:*-
KKKK

lrr0:0-:0 0 0 0-:0 0KKK

-1 ol o 1.0 -1 o o o oKKKK

(4.4e)

where r is a paralneter to be detennined later. It can be verified that AA* = Tr, and

A*7,= g.

4,4 3-d Yector LG,4 and Maxrvell's Equation

Based on the above discussion, it has been shown that for each updating of the LGA,

the macroscopic quantity ¡/ is conserved. Norv, it is desired to get the equations, describing

the variation of the conserved vector quantity a with time and space. Thereafter Maxwell's



differential curl equations in conservation law form will be derived from the equations.

Recall that the small perturbation components of .rø$,("1 = x ,i:y, z; J : Y, i=x,z

and J = z ,i:x,y) describe the particles polarized in Èdirection and independently travel-

ling along t/ in the lattice. As discussed earlier, if the perturbation component is small

enough, at spatial sites, the continuity of mean population N$, (particle density per cell)

would be satisfied by assuming only the first order corrections among particles. Thus, the

following continuity equations for the mean population N!!, could be written as:

For the components Nllìre {(l) 1i=.¡, ¿¡¿ z), we have

[arru!l), - ""a.'n!rf , = o

J 
a,r,,!?. - ",a'rø!l). 

: o

I arr,,lll+ c.a.rrv\ll = o

I a,rvlll* c,ð'rvlll : o

(4.s0)

or, in the matrix form

Similarly, for the componenl

|îiï|.['-: ::],,fîïJ , (4s,
I'fil.l ' o'"* olo'1,

Lu:l [o o o cJ 
t;i.]]

:s .arfrf , 1i:.r and z) and Nl) , (i =-r and y), we have



(4.s2',)

and

['l:l !c. o o o.] l"gl
u,l"!?,|*lo -"' o olr,ltl?,| 

= 0, (4s3)

lNtll lo o c,ol l"tll
i"!ll lo o o c/ 

Lull

where c- , c ,, and c, denote the propagating speed of the particle travelling along x-, y-

and z-directions, respectively. The lattice under consideration is hotnogeneous, thus sym-

metric. This leads to c,. : c! = cz = c .

Again, under Boltzrnann assumption the wave vector space {(t) could be decom-

posed into three wave subspu"", ø{!tl , 1¿!f) una {!} respectively, each conesponding

to the wave spaces travelling along rr-, tj'- and ú- directions and each with dimension 4,

¡¿('): {!'?oro!'/oru!'1, (4.s4)

where for exampr., { d'l . ry!t^), *itt' components I l"(.tl} ,lv1i)., ¡r!1, ¡uÍ']l I

Correspondingl¡ with reference to the above subspaces, the consewed vector space tl

could be decomposed into the three subspaces tl.r¡, '[J, and'1J2,i.e., 'ti = Ax@ Ar,@

lrllJ t" o o ot l"tll

"[i].1, î;']'['Í '



ÍJ7, each with dimension 4 and containing the conserved vectors associated with one of

the three wave subspaces. For instance, for any conserved vector u* e {1", the compo-

nents of u,, could be related to the mean population lvtlr) e {!!) of particles travelling

in ¿t- directions, that is,

llÀ= (4.ss)

[rl
Sirnilarly, for Vn'e u, and,Yu,e '1J2,

|-,,,.,.l

'=l:,:rland

1,,)

[',. ¡

',=1""1.lu.zl

1,.,,1

(4.s6)

Referring to the transformation ,4 between the wave function ,pu". {(l) and the con-

served vector space tl (see (a.41)), the mapping between the subspaces {!tt) . {!t^) ""¿

'lJre'U could be set up by the transformation ,4,, the rnapping between subspaces

{!1) . {( t) and 'tJ, e 'u by the transfonnation A, , and the mapping between sub-

rpu..s n{!tf . {(l) und 'ure 'ü by the transfonnation A -. Thatis, for the particle trav-

ellíng in the.r-direction,

A*t Nl)-ur and A,t' ur-+Nl). (4.s7)

The transformation ,4* could be written in a matrix form. The matrix 1.. conesponds to

the composition which associates with the particles travelling in i¡ directions in matrix



[',,J
1,,.1

1,,,,,1 '

1,,)

ll t¡'

A.ForYure u and V¡vll)e {1

["1,.l

l''zl
ll¿rtttrli,l
LN^'l

\---1J

"'( 
l)

''1t'

r,:;t li Til lî:u
l''l = l" r" rl ln'(j)|.

l,',) I*'* '] L;ii]-; --;, i?
Similarly, for the particles travelling in.},- ¿n¿ -- directions, we get

Ay: n¡N) - a, and Ar', ur-+ n{1,),

and Az: Nl) - u, and Ar', ur- Nl).

Or, in the matrix fonn, for Vu,,e'Il, and Vruf,r). ry!]] t Vure'(1 and

vlvf'/ . {ltl , ttt" t.unr¡ormations A,, and A, coutd be written as

1) , we have

(4.s8)

(4.s9)

(4.60)

(4.6 r )

Loo-*l
rlor * ol
2lro o *l
Lo'-* o]

or its inverse form lll



(4.62)

(4.63)

(4.64)

(4.6s)

Il xY

k:il
l:,i;l
I 
'lil,l -

Uu vrl

ryf ',)

lr'l'-l

l"riil
I .., 

"1lNz, l -

t frllr-

,1y

[r o o -*-l
rlo t * ol
ãl' o -. o I

þ'o '.]

Or, their inverse forms A,t and A rt

Il
ll tz



we haveNow, using the expression ¡,1\.'.) = lru* in the equation (4.51),

,,lill . 
^,,1í 

!"1 l],.,"[,''

l::,,,1 L3 3 ;l [:l
where the matrix

Thus we have

f-" o ool

¿;tlo -" o olo,
I 0 0 c 0l

Lo o o.l

=0 ! (4.66)

(4.67)

Ir o r o'l
lroo-*ll-cooollo ro rltlor* ollo-"ooll ' ,l=)lro o *llo o "ollo,.o-il[o'-* o][o o oll_lnr nlLr( t( I

orl
-* ol

ool
od

; | ,.[il
o ol 

1,,:,)

''[,l."1,!.

0

0

-l/K
0

Io
lo
lo
lt,*

0

0

-l/r
0

Similarly, using the Nl) = 4u, and ,rV!! : A2u 2,respectively, in the wave equations

(4.5 I ) and (4.52), we get



(4.68)

0

0

-l /r
0

Norv it can be shown that the equations (a.67), (4.68) and (4.69) are equivalent to the

Maxwell's curl equations. To do this, we will consider the Maxwell's curl equations writ-

ten as system of hyperbolic conselation laws on a discrete numerical space -time grid

(lattice) [35]. The Maxwell's equations in tenns of continuous variables can be written as

the following three systems ofequations:

00
0 -t/V

-l/e 0

00

(4.70)

[,'l Io o o-r]rl;i 
:,

"[11."[î. ':"i l] [t

o r.l [",J
-*ol ,,1',,"1 =0. (4.6s)
o ol lur,l
o o.l 

1,,,J

"[,l."1,i.

il 
,Ld '

[',] [ o

"lil.l,î,

(4.71)

þ.1 [o o o -rzu'l tt;]
a,lu,l*l o o t/p o la,lt,l =0.

Ël l-1,,'l': :l Ël

and



00
0 -I/¡t

-l/¿ 0

00

To proceed, for a fine space-time discretization we can assume that, in each cell, the

wave propagation along the x-direction involves no variation with respect to they- and z-

directions, the wave propagation along they-direction involves no variation with respect to

the x- and z-directions and the wave propagation alone the z-direction involves no variation

with respect to the x- and ¡'directions, and equations(4.70) through(4.72) still hold

true[35].

Note that the macroscopic behaviour described by the equations (4.67) though (4.69)

are equivalent to Maxwell's differential curl equations(4.70) to Ø.72) ín conservation law

form. Thus we conclude that the 3 -d vector laltice gas model can be utilized to simulate the

three -dimensional vector electromagnetic fields. The analogy between the macroscopic

conserved quantities (ur, ør) can be recognized, and yields the follorving equivalence and

relationships between the parameters,

E,

E)'

E,

H,

ttt)'

lllt
tt z''

ll'¡ 
"

(4.73)

H

.,22 H

ttttf ÞJ
o'I ,lu,.l : o. (4.72)

:l Ël

,,l;l.ll
lr) lrt'

and

cr <-> | /1t; c/r <+ l/e,



( lattice wave speed ¡ c2 e I ,

+ (the parameteO r <+ 
¡fE.

4.4 Results of Numerical Experiments

In this section, primary results for experitnents conducted on CAM-9 using the 3-d

vector LGA model are provided. The experiments are designed to examine the collision

rules of the model, boundary conditions and dispersion property, as rvell as the related

implement technique on CAM-8. These results demonstrate the wave propagating, and are

compared with those results obtained from IIM sirnulation for the same problems.

The first experiment examines the collision rules ofthe tnodel and dispersion property.

The geornetry of the structure is illustrated in Fig.4,l. Within a cavity of 0 < x <2561 ,

0 < ), < 641 and 0 < z < 64l , a Gaussian-pulsed plane wave was excited at the center of

cavity(x=I28/, ),'=321 and z:321). The wrapped around boundary conditions are applied to

the six walls of the cavity simulating periodic boundalies. A unifonn background density

of f:0.5(a= 0.25) (all possible states are randomly filled) is applied to the lattice. The

plane rvave (perturbation components) is superirnposed based on the Gaussian distribution

poexp((x- x)27'¡?) (centred on the plane )t o=1281 rvith the pulse of t = 321) of

particles on top of the background distribution, atf : 0. Where, po = 0.25 so 25Yo of

the unoccupied states above the background level on the plan of .r =128/ . All perturba-

tion corrponent parlicles, at ¡ = 0 , are assumed to be in the states S*",, (polarized in z-



direction and travelling along +t directions). A cubic sampling window with the size of

20lx20lx 20/ is located at the coordinates (1281, 321, 321), and used to measure the

macroscopic field E, . To reduce the statistical noise, a total of I 5 random samples based

on the method given in Section 2.4 are obtained, taking the averaging value. The transient

electric field components in both propagation directions t.t are presented in Fig.4.2. Also

in this figure, the results obtained from a TLM simulation of the same problern are shown

for comparison. Overall, the results indicate a good agreement between the 3-d vector LGA

and TLM methods, but the results of the LGA appear to have lower peak values than those

obtained from IlMmethod. This rnay indicate that at the peak-time points, a larger fluctu-

ation of particle density led to the transient and slight state deviation from the quasi-equi-

libriurn state (An LGA working state). Thus, extra non-linear dispertive effects were

introduced, and reduced the amplitude offield.

To examine the decay due to the damping effects associated with the dispersion in the

rnodel, a series of simulations were carried out rvith the different values ofbackground

density/(or the parameter d:"f(f -n. The results of the sir¡ulations show that fast decay

exhibits as values clt, deviates from 0.25. For exarnple, the results for the case off=0.7

(o =0.21) are provided in Fig. 4.3. This could mean that the equilibrium state with back-

ground/=O.J (ü=0.25) is an optimal state for the vector model. On the other hand, the

cunent vector model based on the first order solution of Boltzmann equations could not be

accurate enough to gives the conect decay. Ifthis is the case, a higher order solution should

be developed.

The next numerical experiment examines the perfect magnetic conducting boundaries

|2



and dispersion property of the model. A cavity was excited with TM,rrmode, as illus-

trated in Fig.4.4. The geometrical size of the cavity is 641 x 641 x64 /. Perfect magnetic

conducting boundary conditions are applied to all of six walls. At ¡:0, a uniform back-

ground density of"f =0.5 is applied to the lattice. The lattice is then excited by superimpos-

ing lhe TMrrrwave on the top of the exciting background. Again, at initial time t : 0,

all perturbation component particles are assumed to be in the states ,9ar.,, The source rvith

the maximum initial perturbation of l5% above the background. Three observation win-

dows are located along the line of (;r=1ól andz=321) aly= 16Ì,321 and,481, each window

with the size of 8/ x 8/ x8 /. Notice that at initial time of /:0, with respect to the known

TM rrrwave the first observation location(1ól l6l,32l) and the third location (l6l,48l,j2l)

are minor-symmetric with respect to the plane of ¡t:32. When a simulation proceeding,

the interactions between the initialized particles (propagating in a special direction) and

background particles (propagating in an arbitrary direction) occurs. At any time snapshot,

the responses obtained respectively from the first and third locations should have the same

amplitude, but with a 180 degree phase difference. Also at the second location

(161,481,321), the expected response E, should be ahnost zero (very slightly fluctuating

around an equilibrium state) through a whole running process. With this special geometric

configuration and the known excitation, we examine the collision rules and the numerical

scheme lnore detail and effectively.

The experiment was randomly conducted thirty tilnes, involving each of the simulation

1000 Á¡ time steps. The averaging results for the electric field E, at each observation loca-

tion is provided in Fig.4,5. The responses obtained respectively from the points



(161,161,321) and (161,481,321) exhibit an actual mirror-symrnetry with respect to the plane

ofy=i2, as expected they should be. Also, noted in Fig.4.5, the expected zero-response at

the second localion (161,481,321) can be noticed. The results obtained fiom a lZM simula-

tion of the same problem are shown for comparison, which indicates a good agreement

between the 3-d vector LGA and IZM methods.

The TM,r, mode and plane wave examples already shown above are a limited set of

results. They indicate that lhe 3-d vector LGA model operates as proposed and predicated

by theory. The spurious solutions do not appear in the results. These results do not prove

linearity, however, and convincingly prove a unique solution in all cases.

To further validate the 3-d vector LGA, more numerical experiments should be consid-

ered. For instance, the linearity and convergence of the solution could be examined by

exciting a given structure with some arbitrary excitation, and observing the response of

source superimposed modes. Another experiment proposed here is a pulsed plane wave

propagating within a sufficient large size of lattice. In this experiment, several observation

Iocations are specified along the direction of the pulsed plane wave propagating. The

responses obtained from the locations can provide the information of the propagating

speed, and the shape of waveform obtained from each location can be used to analyse the

dispersion properties. However, the numerical experiments require a more powerful cellu-

lar automata machine in order for these experirnents to be conducted.



Gaussian Pulsed Plane Wave

Fig.4.I : Gaussian pulsed plane wave propagating in a cavity with wrapped

around boundaries.
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Fig.4.3: Transient electric field intensity for cx : 0.21 ( "f = 0.7 ),Comparison

is made to the results obtained by using the TLM approach.



PMC Boundary Conditions for Six Walls

Fig.4.4 TM rrrMode wave propagating in a cubic cavity
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Chapter 5 Summary and Proposed Future Works

In this research, the potential of lattice gas automata as a mathematical tool for the

computational electromagnetics has been considered. Lattice gas automata may offer some

advantages for the computational electromagnetics. One ofthese advantages is that only a

few or even a single bit(s) per variable per site are needed to describe the very simple

microdynamic states in an LGA, This enables complex geometric structures to be meshed

with finer grid structures, and with less computational memory requirement. In addition to

this, they are intrinsically parallel models of computation. This makes them particularly

suited to implementation in a parallel processing computing architecture. Fufhermore, the

computation of the rules of LGA at each cell requires only a simple processor performing

logical operation, rather than the more complex ffoating processor required in a general

purpose computer conducting computations according to common numerical technique.

For the present, it is impossible to provide a rigorous evaluation of the new technique as

compared to the other time-domain differential equation based methods such as FDID and

TLM since the issue is hardware-related, and many of theoretic analyses ofthe algorithms

rernain to be explored. The issues such as computational complexity, accuracy and stability

are briefly discussed here with comparison of the LGA method to lhe TLM.

5.1 Preliminary Benchmarks

I ): Stability

Dispersive errors exist in all time-domain differential equation based numerical



schemes. A stability criterion usually characterizes the discrete approximations (spatial

and temporal discretization) to the various differential equation formulations so that the

appropriate wave behaviour can emerge. TLM does not have a stability criterion, but does

have the same dispersion characteristics as FDZD algorithm rvhen the spatial and temporal

discretization of TLM arc selected to satisfl., a relation given in [25]. For a TLM scheme,

the scheme does not dissipate the energy from a propagating wave, but does disperse a part

of its energy. Thus, the time-domain waveform changes shape as the wave propagates. The

dispersive energy can not be tracked, and is exhausted. When the scheme is enforced to

reverse from a given states, the original waveform can approximately be recovered only if

the dispersive effect within the scheme is enough small. Therefore a ZIM scheme is condi-

tionally reversible.

The HPP- type and 3-d LGA models on the other hand are exactly reversible, and

unconditionally stable. Fundarnentally, the collision rules defined in the two models sat-

is¡, the detailed balance (the one-by-one mappíng between input and output particle

states). Due to the nonJinear dispersion in ZGl, a part ofthe observable wave propagating

energy is dispersed into the background and stored there on the lattices. When the models

are enforced to run in a backward process, the dispersed energy will be sequentially

tracked and recovered, and so will be the waveforms, and finally the initial states of lat-

tices will emerge as they were at very beginning.

2): Errors and Accuracy

Two main errors, dispersion and averaging error, affect the accuracy of the lattice gas

automata for the modelling linear wave behaviour. The dispersion usually results in a fast

wave darnping behaviour. For linear wave behaviour to be supported by an LGA,the LGA

t2t



must work at an quasi-equilibrium state. A larger fluctuation causes the deviation f¡om the

quasi-equilibrium state, and undesired nonlinear behaviour is introduced. The non-linear

behaviour appears to be the dispersion associated with the viscosity in a fluid model, dis-

tinct from the numerical dispersion errors inherent with difference equation approxima-

tions. The dispersion can not be correctly predicted by lhe linear LGA models considered'

As discussed in Subsection 2.4,lhe LGA requires statistical convergence- averaging over a

large number of particles and a lattice of sufficient size. This usually leads to a trade-off

between the dynamic range, statistical enor and spatial averaging enor. The problem can

be partially solved by taking multiple random samples averaging (equivalent to ensemble

averaging) at expense of the increasing of computing tirne. Thus, how to quantitatively

describe the small perturbation in order to reduce the dispersion while maintaining an LGA

working at appropriate states, and how to obtain a sufficient computational dynamic range

without the excessive increase in the computing cost and averaging error, are two important

topics for further consideration.

3) : Cornputational Complexity

The cornputational complexity involved in the binary operation of an LGA cell (16 bit

per cell) is considerably less than that of a TLM unit cell which involves floating-point

operations[24]. However, in accordance with experimental observations[36], a ten to thirty

times finer lattice spacing than that of the equivalent TLM mesh is often required to model

observables in the simulations considered in this research. Consequently, the total number

of cell updates in ZGI massively increases by at least a factor of l0r of the two-dimen-

sional TLM case and by at least a factor of toa of the three-dimensional TLM case. The
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memory hardware per cell also increases by factors of lo2 and l0r for each case, respec-

tively. To compound the problem, ZG,4 simulation as used in this thesis, often requires

ensemble average (as described in Section 2.4). Even with the pessimistic comparisons,

since the unit lattice cell acts only two very simply operations, look up table and kicking

as described in section 2.6, the use of special-purpose computational hardware may still

yield a computational advantagel24,27 ).

4): Computational Cost

The CAM-\ machine (developed in the early of 1990s) is currently available and well

suited to the simulation of lattice gas algorithms owing the nature of its architecture as

presented in Section 2.6. When making a comparison of computational cost between an

LGA and ZZM simulation, N. Simons et al.l24l indicated: "There are tn'o issues rclated 1o

benchmarking the latlice gas autonnta approach. The frst ituolves conrparing the cost of

sinn ating cellular autonata on a lraditiofial general-purpose conlpuler as conrpared to

using CAM-8. The second aspect involves contparing the conpulalional cost of simulatíng

latlice gas ( ttotlnta on CAM-8 to traditional ntethod on genetal-purpose contputers". For

example, their analysis shows that the computing tirnes required for the two-dimensional

lattice gas simulations on CAM-\ is in the order of l0s of seconds. It is almost the same

order as that ofthe TLM melhod to simulate the same applications on a traditional general-

purpose computer (SPARCstation l0). The required computing times, however, for an

LGA program on a traditional general-purpose computer is in the order of hours. This

indicates the enormous benefit in using CIM-8 for simul aTing LGA in order to be compet-

itive rvith the traditional numerical approaches. For the simulation of the three-dimen-

sional vector LGA, only one initial data is provided and the geometric structures are as
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shown in Fig.4.l. In this simple simulation, a periodic (wrapped around) boundary condi-

tion is specified. Less than l6 bits per cell are required, therefore the complex sub-cell

assembling technique[27] is not necessary for this case. For this problem, it took 20 min-

utes for the CAM-\ to complete the analysis. The TLM sinulation program took about 40

minutes on SPARC station 10. For more complex three dimensional structures, the suffi-

cient size of the lattice is required in the massively increasing cell numbers by a factor of

lor with respect lo TLM mesh, employing the sub-cell assernbling technique. This proce-

dure will stretch the cunent CAM-8 resources and it is time-consuming too. To effectively

simulate three-dimensional problems, a more powerful cellular autornata machine is essen-

tial.

5.2 ùIain Contributions

This research mainly focuses on the development of lattice gas autolnata models in

computational electromagnetics and on the mathematical analyses to validate these mod-

els. These analyses have been made by considering fundamental microdynamical models,

formulating the appropriate equations with Chapman - Enskog method, and verif,ing the

models by conducting simulations on the CAM-8 machine. The main contributions of this

research are:

Formulated rules and a theory for 2-D HPP lattice gas mixtures. We have identi-

fied the fact that the macroscopic wave behaviour ernerging from an LGA hydro-

dynamic system is not sensitive to microscopic interaction details, and is only



limited by the semi-detailed balance and the conservation law.

Performed the mathematical analysis and numerical experiments to show the

validity of the simple HPP mixture model in the modelling of the scale wave

propagation. Obtained a general formula for the sound speed which enables a

wide range ofdielectric constants to be modelled by specifying various interac-

tion models in an LGA.

Constructed one possible three-dimensional veclor LGA model that is capable

of simulating three-dimensional electromagnetic phenomena in homogeneous

media.

Performed the mathematical analysis to show how the developed J-d vector

LGA model can be used to solve the requisite three-dimensional Maxwell's

equations. Formulated the Boltzmann equations based on the Chapman-Enskog

expansion and the associated mather¡atics.

Implemented the 3-d vector LGÀ model on the CAM-8 machine, and conducted

numerical simulations for some simple electromagnetic wave propagation prob-

lems.

5.3 Discussion and Proposed Future Works

Lattice gas automata as a new computational electromagnetics technique has been

considered, However, cunent success in this area is preliminary. There are a nurnber of
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theoretical and computer sirnulating problems to be explored. Several topics which are

promising candidates for further LGA research are indicated below:

We have only performed simple numerical experiments to validate the vector 3-

d model. We can extend the applications to other vector time-domain electro-

magnetic field problems, such as waveguide, finned cavit% scattering and radi-

ation problems. However, the general approach to the analysis of the above

problems using the model will be essentially the same as that employed with

the tirne-domain differential equation based methods such as FDID and TLM'

The entire spatial domain of the problems requires discretization, and thus

absorbing boundary conditions will be required for open region problems. As

well, for the application of lattice gas automata to the modelling of radiation

problems, an algorithrn for the modelling ofexcitation is required. Also, prob-

lems resulting from limitations on the maximutn number of bits per cell in the

current CA machine have to be solved.

We can explore modification ofthe cunent 3-d LGA vector model or developed

a new LGA rnodel which has the ability to model the inhomogeneous media in

three-dimensions. In the first case, we may incorporate a new transfer event

before each cunent collision event occurs. The new transfer event will allow

the moving particles to exchange energy with the background on a lattice. By

specifuing regions of the lattice to have different mechanisms of energy

exchange, a lattice with an inhomogeneous dielectric constant may be mod-

elled.
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As an altemative to the -?-d vector lattice described in this document, one

of the new trial models capable of modelling inhomogeneous media is the

model developed by G.Bridges and N.Simons [28]. In their model, the basic

constituent cell is the same cubic cell as used in FDTD method[44]. Each

cubic cell is decomposed into six sub-cells based on the three coordinate

planes. On each sub-cell the simple two-dimensional IIPP model may be used

to specifu the collision rules. This then allows us to easily incorporate rest par-

ticles with the lattice framervork, and to model the different dielectric as dis-

cussed in chapters 2 and 3.

. The problem of reducing statistical noise and dissipation effects exhibited in

IGI simulations has been noticed. As discussed in section 2.4, statistical aver-

aging over a group ofcells (sa¡ Ncells) is necessary to obtain macroscopic field

quantities. Thus, according to statistical theory the statistical noise associated

with the situation of n bits per cell of an LGA model averaging over blocks of N

cells is of order - | / ^/;Ñ . To reduce the noise to a reasonable amount and

yield a reasonable dynamic range for rnacroscopic variables, a higher density of

mesh is required than when using a numerical method based on differential

equations. Experimental sirnulations with various field problerns indicate that

the increased density is on the order of -10-30 per dirnension for an LGA tech-

nique with respect to ZtM or finite-difference time-domain mesh [40]. To solve

the two problems without a massively increasing in the mesh density, a multi-bit

variable LGA (ILGA) model may be an approach to be considered.In an IGLA

model, more than one bit per lattice direction (per particle state) will be allowed
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to exist, in contrast with one bit per direction in a common ZGl. A mathematical

analysis has been presented by B.M. Boghosian et.al l39l lor the ILGA models in

fluids, Their analysis shows that the ILGA models indeed allow for a reduction

both in dispersion and statistical noise to some extent. It can be expected that a

similar model [a5] will serye our purposes in electromagnetics applications.

However, the difference between the model presented in[45] and the Boghosian

ILGA model [39] still needs to be explored.
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APPENDIX A

Appendix A

The collision rules of the 3-d vector IGI model are listed below for the reference.

}þî

(a): Head - on collision

k:
(b): Right - angle collision
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(b): Right - angle collision
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APPENDIX B

Appendix B Interaction Mixture Calculation

This appendix gives details of calculation of the interaction matrix which is given as

Equations(4.33) and (4.34) in Section 4.2. The elements are defined as the differential of

collision operators Ot , with respect to Na¡ ,,, :

eoyi,. = (#)l_ 
,""

whereif Je(tx), ie(1t'z),Je(tY),,.r)r= -), a¡nd ¡ef¡z),,e (¡ v).;ï'

stands for the complete setof variables N1¡,,, and if at an equilibrium, M = N"q=f (back'

ground density).

Here the calculation for the elements of the first and sixth rows in the matrix Tris given

below as a reference.

l): The elements ofthe first row of ?"D are related with the collision operator Ç)-r-,,.

From the expression of (4. I 3), that is,

O-x..: N-,t.,[N,l'N,,,N,., + Nx,.N, -^L]:. ]- N, 
' 
tNr.lv z,,rtr",+ Itrt [,,,lf-,." 1.

(8.2)

Using (8.2), the elements can be calculated below

(ffJl^"=,: -zr(t-h, (fu)|^.,=,,
^, tN=f

lao *Lìl . ,ao "..r1 : 0.
\ã,v,./¡ , = o' l;¡4,.'Jl -^) ll\tr=l .'- tM f



lao_*rll ., fðo_rilll.ãr;]l = r(t-"r)' lú,ll = o

- r¡\" = J "' lyt'= J

Thus, the elements on the first row of T, are obtained as:

"f(t - f)(-2,0, 0, 0, -1, 0, l, 0, 0, l, l, o)

2): For the elements ofthe sixth row of I¿, it follows from the collision operator

o_r, (4.18):

A-yr: N..l N^-.N r,Nr,+ NzyNt.N..yl' N-,.t N-",lL*Nr'.+Ñ,,ry,N,11

(8.3)

that we have

(ffi"^)l-_, o, (F-)l-=,=0,

(#+)l :0,
. -.^.tM=f

uâO - rl
('ðt -"--'ll 

: r(t-"r)'
-., t/.r _ Í

(**4=91^,,=,=., (ff)l- _r= 
r('\--r),

(ff)|,.=,=', (ff)¡^,,=.r('\-.r),
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râO - rl /ðO ',\llñîJI . .=0, tãFîll _ .:-2.t(t-.f),tN.=J -'''lÌf =I

/ðQ-v,\l /ðO-y,\ll;¡;ll = o, tãN,-.ll = u,
' ,,.l¡,t I '_ tt.¡ =.î

and the elements as:

f(t - f)(0,1,0, 1,0, -2,o,0,0, -1, l,0).

The other row elements can be straightforwardly calculated in the same way.




