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ABSTRACT

Lattice Gas Automata (LGA) can be considered as an alternative to the conventional
differential equation description of problems in electromagnetics. LGAs are discrete
dynamical systems that are based on a microscopic model of the physics being simulated.
The basic constituents of an LGA are discrete cells. These cells are interconnected accord-
ing to certain symmetric requirements to form an extremely large regular lattice. The cells
of an LGA are extremely simple, requiring only a few bits to completely describe their
states. Even though they are simple, the collective behaviour of LGA4 microscopic systems
is capable of exhibiting those behaviours described by partial differential equations for
real physical systems. The inherent parallelism and simplicity of LG4 algorithms make
them ideally suited to implementation in a parallel processing architecture which can be
effectively realized with special-purpose cellular automata machines. The objective of
this research is to explore and develop the potential of cellular automata as mathematical
tools for electromagnetic modelling.

In two-dimensional applications, a new HPP-type mixture LGA algorithm is pre-
sented for modelling wave propagation in inhomogeneous media. It can be analytically
shown that change in sound speed of an LGA can be achieved by incorporating rest bits at
a lattice site, as well as moving or interaction bits. It will also be shown that a simple mix-
ture LGA will behave according to the linear scalar wave equation. Thus, by making an
analogy between a fluid and two-dimension electromagnetic field parameters, we can uti-
lize this simple particle interaction paradigm as a tool for two-dimensional inhomogene-
ous electromagnetic problems.

However, the problem of developing LGA vector models for modelling three dimen-
sional electromagnetic phenomena is more difficult since there is no a direct analogy
between fluid and three-dimensional vector electromagnetic fields. By considering the
inherent property of electromagnetic fields, an LGA vector algorithm for modelling
three-dimensional vector electromagnetic fields is constructed. We show how, in the
macroscopic limit, the three-dimensional Maxwell's equations can be derived from the

LGA vector model.
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Chapter 1. Introduction

The objective of this research is to explore and develop the potential of cellular autom-
ata as mathematical tools for electromagnetic modelling. Investigation of electromagnetic
phenomena have conventionally been based on partial differential equations, Maxwell’s
equations. Two general techniques can be applied to the solution of Maxwell’s equations.
These are analytical and numerical methods. Numerical methods can be further classified in
two classes[1]. The first involves the numerical solution of integral-equation formulations
and the second involves the numerical solution of differential-equation formulations.

Analytical techniques are limited to specific geometries, which conform to specific coor-
dinates systems[2]. It is generally not possible to obtain complete solutions to an arbitrary
problem. In most cases one must resort to a variety of numerical approaches with the aid of
digital computers.

Integral-equation formulations are obtained through the use of source representations
for the unknown field distributions. A detail review of numerical methods based on integral-
equation formulations of electromagnetic field problems can be found in [1,3,4]. Using
physical or physical-equivalent sources (corresponding to electrical and magnetic currents
and densities), and a Green’s function (to take into account any analytically solvable geo-
metrical aspects of the problem [5]), a mathematical statement can be made in the form of

an intergral equation. The unknowns are usually current and charge densities, and are deter-



minéd through the discretization of the mathematical formulation using the Method of
Moments or Boundary element method for example. The discretization is limited within
defined regions or on their surfaces with finite geometric dimensions. This usually results in
a system with a dense matrix equation.
Differential-equation formulations involves the determination of approximate solutions
by direct approximation of Maxwell’s equations. The direct approximation can be consid-
_ered as the formulation which applies Maxwell’s equations locally. Due to the locality of the
formulations, it is capable of treating medium heterogeneities, nonlinearities, and time vari-
ations in a straightforward manner. A detailed review of these methods can be found in
[6,7,8]. The numerical solution of these equations is obtained via the application of tech-
niques such as the time-domain finite-element, time-domain finite-difference, and transmis-
sion-line matrix methods. Since Maxwell’s equations are satisfied throughout the entire
spatial domain of a problem, the region of discretization is all space in which a non-zero
field distribution exists. For a open region problems, an absorbing boundary condi-
tioﬁ(ABC) is required to ﬁmit the spatial domain of the problem to a finite size and enforce
the radiation condition on the field distributions.

Based on the spatially discrete form of the mathematical formulations, selection of time
or frequency domain for the solution is required. Solutions to the time dependent formula-
tions described above (time-domain finite-elements and finite-difference) yield transient
solutions for a given excitation. For certain electromagnetic compatibility and electromag-
netic interference (EMC/EMI) problems, the transient response analysis is required. For

most antenna application and radar-cross-section analysis, however, frequency domain



results are desired due to their time harmonic excitation (single frequency).

Although many differences in the above techniques appear, computation is not directly
considered in the development of the numerical models. The assumption is made that the
implementaﬁon (programming and hardware) will be performed on a general-purpose com-
puter. This is partially due to the availability, flexibility, and low-cost of general-purpose
computers.The computers can, however, represent such formulations only approximately.
While formulations involve continuous variables, digital computers can only treat discrete
digital quantities. The real numbers that correspond to continuous variables in the formula-
tions must be represented on the computer by packets of bits, typically in the form of 32- or
64-bit numbers in floating point format. In current computational physics, much effort has
been spent both to show that, with sufficiently fine grids, solutions to continuum equations
can be found, and also to study error in these solutions[9,10]. For many complex applica-
tions, computational physics increasingly requires computational resources. For instance,
high-performance computers are often measured in terms of the rate at which they can carry
out the floating points operations needed. The situation leads to view that the traditional
formulation of physical problems in terms of differential equations is not a computationally
reasonable representation of physical phenomena and alternative representation should be
pursuded[9,10].

The Cellular Automata (CA) approach is a departure from traditional formulation. It
may offer a more efficient computational technique. A cellular automaton consists of dis-
crete lattice cells. Each cell takes on a finite set of discrete values. Thus the system can be
described by binary variables. The values of each cell are updated in a sequence of discrete

timesteps according to logical rules which depend only on the values of cells in a local



neighbourhood. The inherent parallelism and simplicity of processing elements make cellu-
lar automata attractive for simulating and studying physical processes. In the early 1980’s,
Wolfram demonstrated that, even with very simple rules, it is possible for cellular automata
to exhibit complex dynamical behaviour [10]. Often these behaviours show striking similar-
ities to the forms observed in many natural systems. Toffoli [11]noted the phenomena and
indicated that cellular automata can serve as models to simulate many complex physical and
mathematical systems. Some examples include studies of time-reversible automata[12],
quantum lattice-gas models for the many-particle Schrodinger equation[13] and simulation
of cellular automata for quantum field problem[14].

One of the most remarkable results of studies on cellular automata was the success-
ful application of the lattice gas automata (LGA) (a class of cellular automata to be intro-
duced later in this chapter) to the modelling of fluid dynamics[15,16,17]. This was the first
concrete example of a cellular automata model reproducing partial-differential equations
(Navier-Stokes equations) in the macroscopic limit. Frisch, Hasslacher, and Pomeau showed
how the Navier-Stokes equations could be derived from a microdynamics consisting of an
artificial set of rules for collision and propagation of identical particles. Since then, many
authors and researchers modified, refined and extended cellular automata approaches in dif-
ferent areas involving many interesting ramifications in hydrodynamics. LG4 gave rise to
some new ideas for constructing models to predict certain complex fluids, including fluid
mixtures involving multiphase flows, phase transitions and complex turbulent phenomena of
fluids[17,18,19,20].

Research efforts have been made by some authors toward modelling electromagnetic

phenomena with cellular automata approaches. For example, Bornholdt and Tatalias [21]



presented some background information and strategies for the development of possible rules
regarding the modelling of scalar waves. Thiele [22] discussed the optimal parallel architec-
ture of cellular automata for simulating electromagnetic phenomena. However, concrete
examples about computational experiments or details regarding the application to modelling
electromagnetic phenomena are not available. Recently, N. Simons and G.Bridges et al. suc-
cessfully exploited the use of lattice gas automata for the analysis of complex electromag-
netic field problems. In their papers [23,24] and N.Simons’ Thesis[25], they presented
concrete algorithms for two-dimensional HPP LGA [26] models, and implemented these
models on the CAM-8 cellular automata machine (CAM)[27]. Experiments for some elec-
tromagnetic field problems were carried out using the machine. Their experimental results
showed correct quantitative behaviour and reasonable accuracy. Based on their basic LG4
algorithm, they extended the theory to modelling electrically large and spatially inhomoge-
neous two-dimensional electromagnetic field problems, such as the interaction of an electro-
magnetic wave with complex biological systems. Their work [28] showed how an LGA
algorithm is capable of simulating inhomogeneous dielectric structures with a wide range of
dielectric constant. Most recently, initial success in modelling three-dimensional electro-
magnetic field problems has been achieved [29]. Several three-dimensional vector LGA

models have been developed for the modelling of electromagnetic phenomena.

Exploitation of cellular automata as a mathematical tool for electromagnetic model-
ling includes three main aspects. These aspects can be considered in the following progres-
sion:

¢ Development of a specific lattice gas automata model.



* Implementation on a cellular automata machine (CAM).

* Simulations on the CAM and analysis of the model.

The development of an LGA model involves finding an optimal microscopic
dynamic description for the physical system(s) in terms of a cellular automata algorithm. An
LGA is a discrete dynamic system which consists of a lattice of identical cells. The time evo-
lution of the system is governed by a local dynamic law (or rule) which acts on all cells
simultaneously in parallel, and is the same throughout space for all times. Such a description
involves the specification of a rule. This rule determines how the state of each cell at the next
timestep can be determined by the current states of a finite number of its neighbours. In
addition to this basic lattice gas format, other properties such as the geometrical symmetry
of the lattice, reversibility and conservation of some physical quantities may also be
imposed. The most important problem when developing a lattice gas model is the specifica-
tion of a rule that yields the desired underlying physical phenomena while maintaining these
constraints.

Computational experiments are intended to be carried out on cellular automata
machines (CAMs) which are specifically designed for simulating cellular automata. The lat-
est machine available is the CAM-8 [27]. CAM-8 is implemented with simple 16-bit logical
operations at each of 32 million computing sites (cells). It can perform 200 million site
updates per second. This performance is equivalent to that of a Connection Machine or a
Cray supercomputer, but the CAM-8 can be used to simulate cellular automata at a fraction
of the cost of using a Connection Machine or Cray supercomputer [30]. Thus the machine

provides an ideal computational environment for cellular automaton modelling of complex



electromagnetic field problems.

The final step in the above progression, simulation on a CA followed by analysis of
the model(s), is required to study the macroscopic behaviour in a physical system. This can
be done by considering values of collective quantities, such as particle density or momen-
tum density, or other macroscopic quantities (polarization and so on). These are obtained by
averaging over a large lattice region. If the CA inodel(s) is well constructed, one can expect
that the collective behaviour should be capable of exhibiting that behaviour described by
partial differential equations for a real physical system. In addition to observing the macro-
scopic behaviour, the validity of CA model(s) can be analysed by considering some funda-
mental physical principles such as reversibility, conservation laws and so on. This is
because, if a CA model is explicitly constructed, each step or feature of the construction is
specifically designed to have particular known consequences relating to these principles. As
well, a study of spurious behaviour and non-dualities has to be considered. The former, due
to the LGA algorithm, causes a problem of spurious conservation laws [31,33], while the lat-
ter, resulting from the lattice discritization, leads to the anisotropy of a physical field repre-
sented by an LGA model.

Another very important aspect in developing an LGA approach in computational
physics is the provision of a mathematical analysis of the LGA model. This analysis is based
on using fundamental physical principles to demonstrate how a simple LG4 model can be
used to simulate a real physical system, and determining the limitations of the LGA model.
Much development in this direction has been done in the modelling of fluid dynamics
[31,32,33,34], but only a few efforts [28,29] have been made in computational electromag-

netics. One of the most important aspects of the research is to provide the provision of math-



ematical analysis and demonstrate that our LGAs models are indeed solving the requisite
partial differential equations.

In two dimensional cases, the analysis involves proving the validity of the simplest
HPP LGA for modelling electromagnetic propagation and scattering in lossless inhomoge-
neous media, and deriving a comprehensive expression for the sound speed defined on our
mixture lattices. This expression indicates how to model the media with different sound
speeds, analogous to the modelling of different dielectric constants in lossless inhomogene-
ous media of electromagnetics.

The problem of developing LGA vector models for modelling three dimensional
electromagnetic phenomena, and providing physical interpretation for these models, is more
challenging than two-dimensional LG4 models, where a great number of theoretic analyses
have been done for applications to fluid dynamics. Some concepts, methods and simulating
algorithms of these analyses have been used in two-dimensional electromagnetic modelling.
For three-dimensional modelling, initial success has been achieved by setting up a vector
LGA model which coﬁsefves energy and polarization. Some simulation experiments for
some electromagnetic problems have been designed and carried out. These show close
agreement with those results obtained using the traditional numerical electromagnetic
method. A theoretical analysis in the three-dimensional case has been made by using LGA
theory and the mathematical method, which is similar to the Transmission Line Matrix
Method (7LM) method[8,35]. This analysis shows how the three dimensional Maxwell’s
equations can be derived from the model.

Chapter 2 of the thesis introduces cellular lattice gas automata (LGA), and reviews some

of the models that have been developed and used to model computational electromagnetic



problems. In this chapter, the basic format of these models and their applications in two and
three-dimensional problems are presented. Microscopic and macroscopic descriptions of
these LGA models are then given. Some of the basic concepts of LGA theory, such as ensem-
ble average, detailed and semi-detailed balance and the equilibrium particle distribution
function, are also briefly discussed. Finally, in chapter 2, an introduction to the C4 machine
is presented. A CA machine is equipped with special hardware to undertake cellular autom-
aton simulation.

A mixture LGA model which is not limited to a uniform or a concrete configuration of
rest particles is presented in chapter 3. Detailed analysis is developed to show how this
model can be applied to the simulation of two-dimensional electromagnetic phenomena in
lossless inhomogeneous media. In the analysis, fundamental principles of geometric sym-
metry of the lattice, equilibrium distribution of particles are considered.

The damping effect associated with the viscosity of the LG4 can generally not be analo-
gously used to model the conductivity coefficient of lossy media for the wave attenuation in
electromagnetics[28]. Thus, the analysis will be concentrated on the modelling of linear
wave behaviour, and ended up with an Euler’s equation [31,33]. Results for particle density
and sound speed obtained from specially designed numerical experiments are compared
with the theory to confirm the validity of the model. A great number of simulations using
various mixture models for the electromagnetic wave propagation in inhomogeneous media
has been finished by other researchers, D. Cule [36] and N.Adnani[37]et al. Some of these
simulation results are reported in the thesis. Electromagnetic wave interaction with a human
cross section model as simulated by D. Cule[36] is presented as an application of the mix-

ture model to the modelling of complex inhomogenous structures.



In chapter 4 one of the important inherent properties of three-dimensional electro-
magnetic fields is considered. An LGA vector model is constructed by endowing each
abstract particle not only with the unit mass and propagating velocity vector, but also with
unit polarization. The rules governing the interactions among these particles conserve parti-
cle’s polarization which relate to electromagnetic field vectors in macroscopic limit. A theo-
retical analysis is developed using LGA theory, the Chapman-Enskog expansion, and
appropriate mathematical methods. The analysis gives a first-order solution for the LGA
system. The solution is then used to show how, in the macroscopic limit, three-dimensional
Maxwell's equations can be derived. Some applications of the model to vector electromag-
netic propagation are presented, and the resulting values are compared with those obtained
by using the 7LM method.

In chapter 5, a summary of the research is given. An initial benchmark about the issues
such as computational stability, accuracy, and complexity are briefly discussed by making a
comparison between a lattice gas automata and TLM method. We then suggest further stud-

ies and possible solution methods or approaches.
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Chapter 2. Lattice Gas Automata

2.1 INTRODUCTION

Recently, cellular Automata has received more and more attention in physics. Of the
greatest current interest are the lattice gas automata LGA[38]. The term LGA refers to the
class of cellular automata that obey specific collision and advection rules; i.e. some conser-
vation properties are enforced[38]. LGA were used first for the simulation of fluid dynamics,
where the bits of a cell mimic the movements of particles.

The basic constituents of an LGA are discrete cells. These cells are interconnected
according to certain symmetric requirements to form an extremely large regular lattice. Only
a few variables (bits) are needed to describe the states of each cell. These bits mimic the
interacting particles and their evolution. The primary characteristic of an LGA is this: it
evolves in discrete timesteps and its cells are simultaneously updated according to a simple
rule that satisfies some conservation properties.

Sections 2.2 and 2.3 discuss both LGA models and concrete forms used in the modelling
of two and three-dimensional electromagnetic problems. Microscopic and macroscopic
descriptions of these LGA systems are then introduced in these sections. As a preparation for
the following theoretical analysis, a brief review of lattice gas theory (ensemble average,
detailed and semi-detailed balance and equilibrium particle distribution) is given in section

2.4. A brief introduction to CA4 machines is presented in section 2.5.
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2.2 TWO Dimensional Lattice Gas Model

2.2.1 The HPP Model

The geometric structure of a basic cell of a two-dimensional HPP lattice is square with
unit spacing /(size of the cell). HPP represents the initials of Hardy, Pazzis and Pomeau
[26], the inventors of the model. Fig.2.1 shows a small portion of a lattice (without rest par-
ticles). Each cell has four links, with each link representing a possible velocity or momen-
tum state (moving particle has unit mass) in which a moving particle can exist. Particles
obey an exclusion principle, that is, only one moving particle is allowed to reside in a partic-
ular velocity or momentum state. Therefore each cell in the lattice can contain up to a maxi-
mum of four moving particles. The lattice operates in two phases; a collision phase in which
the particles interact and the state of each cell is updated, and an advection phase in which

particles are passed to adjacent cells, as shown in Fig.2.1.

1|||+| ||||¢| I N A

Illlll$[ oy I SR

T T T AT o ey W e e i o e " el e e
S - N T e et -
e L A 50E L 1 coltision —|— 1 | _5le | _|_ Advection _|_ S I T

(a) (b) (c)
Fig.2.1: Operation of the HPP gas automaton (a small portion) over a single time step. In (a),

the state of the lattice is shown before collisions. In (b), the state of the lattice is shown after

the collisions have taken place. In (c), the particles have been transferred to adjacent cells.

The summarization of the collision events associated with the HPP model is given in



Fig.2.2. A transformation of momentum states occurs only when two and exactly two parti-
cles arrive at a site from opposite directions (head-on collision). The result of the collision is
two particles in the momentum state orthogonal to the initial pair and previously unoccu-
pied. For all other possible cases - a single particle, two particles at right angles, three parti-
cles, or four particles- the particle configuration remains unchanged after the collisions.
They can be simply treated as passing through one another. Collisions in the HPP model

conserve mass and momentum locally (within each cell), and thus conserve them globally.

’.17 —

(a) single particle A‘X— e +
+ — - (d) three particles
(b) two head-on particles ' l
(e) four particles

Jf:—_b

(c) two particles at right angle

e

Figs.2.2. Collision rules for the HPP LGA. Only two particles in opposing velocity
states result in a transformation of velocity states. There are 24 = 16 total rules.

These can all be obtained by rotation of the above.

It is worthwhile to note that the dynamics of the HPP model is invariant under all dis-

crete transformations that conserve the square lattice. These transformations include dis-

crete translations, rotations by 90° and mirror symmetry. The HPP rule shown in Fig.2.2 is

13



charécterized by the invariance of 90° rotations. Thus there are a total of 16 collision rules
associated with this model. The PP model is able to model the Euler’s equation and yield
correct sound speed for the media. However, it is not able to model the complete Navier-
Stokes equation and it gives incorrect viscosity[16]. This is due to non-physical extra con-

servation inherent to the square lattice and a low symmetry of the lattice.

2.2.2 The FHP Model

The residing lattice of the FHP model is triangular with unit lattice constant / as shown
in Fig.2.3. This structure is a variant of the above HPP model and was first introduced by
Frisch, Hasslacher, and Pomeau [15,16]. The important characteristic of this model is that it
has a larger invariance group. It is able to yield the standard Navier-Stokes equations and
give a correct expression for viscosity. On the lattice, each cell is now connected with six
neighbours. Thus, six bit vgriables per cell are required to specify the velocity or momentum
states (without rest particles). Updating again involves two phases: collision and advection.

In this model, collisions that result in a change in the momentum of particles are only
associated with two situations: two head-on particles and three particles which enter a site in
the symmetric arrangement shown in Fig.2.4. The two-body collisions have two possible

outcomes. Each outcome occurs with equal probability of 1/ 2 to maintain symmetry

14
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Fig.2.3: Operation on the FHP gas automaton over a single time step. In (a), the state of the

lattice is shown before the collisions occur. In (b), the state of the lattice is shown after the
collisions have taken place (two head-on and one triple collisions outlined with circles).

In(c), the particles have been transferred to adjacent cells.

It can be observed that the triangular lattice has the invariant discrete transformations: rota-

tions by m/3 and mirror symmetry with respect to a lattice line. Under the transformations
the dynamical characteristics of the FHP models are invariant. It should also be noted that,

in the model, head-on collisions conserve, in addition to total particle number (mass), the
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difference of particle numbers in any pair of opposite directions. This leads to a spurious
conservation law. The large-scale dynamics of such a model will differ drastically from ordi-
nary hydrodynamics unless the spurious effect is removed. To achieve this, one can intro-
duce the three particle collision as shown in Fig.2.4b, or incorporate rest particles (with zero
velocity). A model with the rest particles has the desired property, which allow us to control
different sound speeds, analogous to different dielectric constants in the modelling of elec-
tromagnetic problem. The details of a lattice gas model with rest particles will be discussed

in the following subsections.
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172 \ /

(a) Head-on collision

S e

(b) Triple collision

Fig.2.4: Examples of possible FHP lattice collision rules. (a): Heéd-on

collision. (b): Triple collision.

2. 2. 3 Mixture Model of HPP or FHP

An LGA model without zero-velocity “rest particles” as depicted in the previous subsec-
tions can only yield a uniform sound speed. To enable the LGA lattice to model media with
different sound speeds (analogous to modelling different dielectric constants in electromag-

netics), certain rest particles are incorporated within sites of the lattice. It will be seen in the
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analysis in chapter 3 that there are only a few restrictions (conservations of mass and
momentum, and semi-detail balance) imposed on constructing such mixture models, and
thus there are many ways for them to be employed. One can also specify that certain regions
of the lattice have different rest particle numbers and masses. Thus the energy exchanges
between moving and rest particles in the regions are different, and a lattice with different
sound speeds can be realized. This inhomogeneous lattice model was first introduced in
[23]. It is called a mixture model. In the subsection, the configuration and the notation of the
model will be given, and the analysis will be developed in Chapter 3.

In Fig.2.5, one of many rest particle models is shown, where a stack (length of the stack
is 3) of particles of various masses(4, 8 and 16) can be created. For example, a rest particle
of mass 4 is created when four unit mass moving particles collide and where there is initially
no mass 4 rest particle. Alternatively, if a mass 4 rest particle already exists at a site, and
there are no initial moving particles, four moving particles will be created after the collision

phase, and the rest particle will be annihilated.

In principle, one can extend the stack to an arbitrary length, b,., and use a spatial distri-

bution of different rest particle models such that b, is a function of position, or even incor-

porate stochastic rules which probabilistically allow rest particles to be created or

annihilated. Therefore, we can construct a mixture LG4 in a very general way. Fig.2.6

shows some example cells of a mixture model with b, probabilistically weighted rest parti-
cles, where pz(k =1, ...b,) describes the creation or annihilation probability of the rest

particle with mass m, . The p; also could be a spatial or temporal function. The details of
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the model will be discussed in the next subsection.
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Fig.2.5: LGA rule with three weighted rest particles

/mbo@:;r)\\ ,/mZo_ —(p;)\\
|

re
|

’"ké (e

|

| 3. |

QD I

: m3d  (p) : : ms & (1513') :

| M0 (P | | m;0 (5 |

\mo_ @)/ \mo (o))
- B e -

() (b)

Fig.2.6: LGA mixture model with b, probabilistically weighted rest particles

(a): HPP two-dimension mixture model.(b): FHP two-dimension mixture model.

224 Microdynamiés and Macroscopic Obersevarbles

2.2.4.1 Microdynamic states of LGAs

A lattice gas automata is generally described by a set of Boolean variables (bits) and a
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set of time-independent rules. The set of binary (bit) variables n; (x,t) (i= I,..N;) is associ-
ated with bit i of the cell at position x of the LGA at time t. The bit variable n;(x,7) takes values

1 or 0, representing the presence or absence of the particle in the ith velocity state (or other physi-

cal quantity) at a particular site and time t. N, is the maximum number of particles which the cell

can hold. This number is determined by the exclusion principle (only one particle is allowed to
reside in a particular state) and all possible particle states per cell. The notation of particle states

in terms of bit variables for each of the above models is given below.

A: HPP lattice gas

The HPP has four possible velocity states per cell. Four bits, n,(x,t) (i=1,2,3,4), are used to

describe these states. The four velocity vectors correspond to the four link vectors and can be cal-

culated by:
_ T, . . T, . . .
c; =1 [cos-2-(1~1)x +sm§(z—1)y] (i=1,2 3, 4). .(2.1)

where [ is the characteristic length spacing (cell size) and/e;=c; and e, = £%,+y For exam-

ple, for the case of i =/, ¢, = I[x. Thusthe bit n; (x,t) represents the presence or absence of

the particle moving along positive x-direction and at site x and time ¢.

1n5(x,1)

ny(x) (th) %)

n,(x,1)
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B: FHP lattice gas
In the FHP lattice, six bits(n; (x,t) i =1,.. 6) per cell represent six velocity states.

The six velocity vectors are associated to the six link vectors (see Fig.2.4) and can be calcu-

lated by:

¢, =1 [cos%t(i——l)i + sin%‘( i-)§] (i=1,.....6). 2.2)

C: Mixture HPP or FHP model

A mixture model is capable of modelling different materials. The model is constructed
by incorporating rest particles with moving particles in a particular lattice site. For each rest

particle, one extra bit should be added to represent its states. In what follows, we use two
subscript variables #; , to represent the particle states in the mixture lattice. The first sub-
script, /, is used to describe the velocity of particles and the second one, £, represents the
mass of the particles. For the rest particle, i = 0,and the moving particle (unit mass)k=0.
This notation will be used throughout the remainder of the thesis.

Fig.2.7 shows mixture HHP and FHP models, both with an arbitrary stack 5, (the maxi-

mum number of rest particles per cell). We define two new sets of bit variables in each cell

of the lattice. The firstset {n, ,, k=1 ... b, } is used to describe the states of rest parti-

cles. For example, if the bit n,; is on (=1) or off (=0), a rest particle of mass m,, is present
or absent. The second set { nf Jh=1.... b,} contains stochastic bit variables. At each cell

and each time step, any stochastic bit nf is randomly sampled to determine whether or not a
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rest particle with mass m, (k= 1....b,) may be created or annihilated. These random bits

have the average values of (nf> =p, (k=1... b.). Here, the average value p; serves

as the creation or annihilation probability of the rest particle m, , and these values satisfy the

b,
limitations of p'x+1 < pgand Y pp<1.
k=1
[ o P [ P
| mpO (ny o, M ) l mp O (nb,,o’ ”b,.)\
Lm0 (ny g, 1) Lm0 (g g, 1)
| E Py | S Py |
Ho o | M30 (ng ¢, 13) | | ™30 (n3 4> 13) |
P
: my0 (13 0 13) | ny 3 nozl my0 (13, 13) |
Py Py |
93 \mo (Mo, ), Ao o ),
n n
ny 4 04 01
Bo4 "
nys 06
(a): HPP two-dimension mixture model (b): FHP two-dimension mixture model

Fig.2.7: LGA rule with b, probabilistically weighted rest particles

2.2.4.2 Microdynamics of the LGAs

The notations for the different models introduced above will be retained throughout the

rest of the thesis. In the following subsection, we desire to obtain mathematical descriptions

of the microdynamics of the LGAs. In an LGA, the dynamic states of particles are character-
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ized by their binary bit variables at each timestep. The dynamical state of a particle at the

next timestep (¢ + At) depends on the current state of the particle itself, and the states of its
neighbouring particles. In the case where the particle does not interact with its neighbours,
the moving ‘particle just passes through its current residing cell and keeps its original
dynamical state, while the rest particles with zero-velocity do not advect over time. If the
interaction with its neighbouring particles occurs, the dynamical state of the particle is
changed according to the collision rules. In what follows, we present the dynamical descrip-

tion for each of the LGA models discussed in the previous sections.

2. 2. 4. 3 Dynamical description for HPP LGA

The dynamical equations for a HPP lattice gas can be obtained according to the colli-

sion rules shown in Fig.2.2, where the states for the four moving particles are characterized

by bit variables n, , n, , n; and n,, respectively. These equations are:

n(x+l,yt+ A= n(xpyt)+o, (2.3)
ny(x, y+HL t+ A= ny(x, p,t) + @, , (2.4)
ny(x-1,y, t + At)= ny(x, y, 1)+ @3, (2.5)
ng(x,y-Lt+At)= nyu(x, y,t)+ @, » (2.6)

where ®,(x, y,t)(i=1, 2, 3 and 4) are the four collision operators of the model. These
operators take the values of £1 or 0, and are given by

O (x, y,t)= W3(x, p,t)= nynghyng—nyngn ny , 2.7

Oy( %3, 1)= @4(x, . 1)= -0 (%), 1) , (2.8)
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where the symbol ;7, = | —n; stands for the complement of bit n;.

These four microdynamical equations can be written in a compact form, that is

n{x+c;, t+A)= nix, 1) +o; 2.9

and the compact form of the collision operators w;(x, ) is given by

OX, 1)= AR R B3 — R (R 3R

: (2.10)

where the index i is defined as module four, i.e., i+4=i.

2. 2. 4. 4 Dynamic description of FHP
It is easy to extend the microdynamic formalism to the FHP lattice gas. Based on the

collision rules illustrated in Fig.2.4, the microdynamic equations can be written as:
ni(x+c;, t+A)= ni(x, 1)+ o, . (2.11)

where i =1,2... 6, and the collision operator can be obtained as

O (%, 1)=& ny oMy 3y s Mg H(1=8) M 3l gl oM s

Rl 3l Mg gy gPivs TR i gy Py 3T s = il oy gl B 3P s
(2.12)
Here, & is a random bit which is sampled at each lattice site and timestep with the average
value(E) . The average values (&) and (1 -§&) represent the respective probabilities that
the head-on colliding particles are to be rotated clockwise and counter-clockwise. Note that
the subscript 7 is defined as module six. If (&) is chosen not to be 0.5 then the media will be

chiral. Several other possible models for chiral phenomena have been studied [31,32].
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2. 2. 4. 5 Dynamic description of the Mixture Model

For the mixture HPP or FHP lattice gas (shown in Fig.2.7), the microdynamic equations

can be formally written as:
(a) for the moving particles (i=1, 2,..., b, ):
no(x+e¢;, t+AN= n;y(x, N+, o(nf(x, 1)) , (2.13)
(b) for the rest particles (k=7, 2,...,b,.):
n, (%, t+AD= n, (x, 1)+ @, (17 (x, 1) , (2.14)

where b, is the maximum number of moving particles per cell. The symbol nt(x, t)
stands for the complete set of bit variables located at site x and time . Explicitly, the colli-

sion operator @, O(nJ"(x, £)) 1is the shorthand for®, , (1 o(x, £), ... ny (x, 8) n,(x, 7)
...... n,, (x, 1)) . We are not going to give the explicit forms of the collision operators

here, since there is a great variety of forms that can be obtained by designing different inter-
actions between the moving and rest particles. In chapter 3, it will be seen that the details of
the collision rules are important in hydrodynamic applications [31,34], but not for the mod-
elling of the electromagnetic waves in no-loss media. The dielectric constant (analogous to
the speed of sound in a lattice gas) is a macroscopic physical quantity and is not sensitive to
these details either. However, the viscosity of the LGA can generally not be analogously
used to model the conductivity coefficient of lossy media, except for some special problems.

In the problems, the geometric structure are simple and excited with steady excitations[29].
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Thus, for the wave attenuation in those problems in electromagnetics the details of the colli-

sion rules become very important.
2.2.4.6 Conserved Quantities of Two Dimensional LGAs

A characteristic feature of LGA4s is the presence of some form of conservation. In a two-
dimensional lattice gas model, mass and momentum are conserved in each collision, i.e, at
the microscopic level. As a result, after propagation, mass and momentum are conserved
macroscopically. At each cell in a collision event, conservation of mass and momentum can

be expressed in terms of the collision operators as

Y o (nf)=0, (2.15)

and ch-(ol.(}1+)= 0. (2.16)

This implies important conservation relations for lattice gas automata:

Y m(t+Anx+c)=Y nlt,x) , (2.17)
i i

and Znici(t + AL, x+ )= Znici(z‘ ,X) , (2.18)
i i

where the equations (2.15) and (2.16) give the conservations of mass and momentum in bit
form, and indicate that the conservation laws are independent of spatial position and
timestep. In what follows, some examples for models are discussed for conservation.

In HPP model, from the equations (2.7) and (2.8), it follows that,

W+ Oy F 03+ 0,= 0 (2.19)
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(0, —w3)x= 0 (2.20)

(0, —wy)y= 0, (2.21)
where the equation(2.19) indicates the conservation of mass while (2.20) and (2.21) repre-
sent the conservation of momentum in the x and y directions respectively. At the micro-
scopic level, the conserved quantities could be defined in terms of the bit variables at a
particular site. For instance, in the case of the mixture two-dimensional LGA described in

Section 2.2.3, the mass and the momentum are calculated by equations (2.22) and (2.23)

respectively.
blll b
= p

My eal™ Z myh; z myn, (Hy (2.22)

i=1 k=

(k=0) (i=
"local 2 ’n()nl oSi (2~23)

(k 0)

In the expression of (2.22) the first term is summed over for the moving particles (unit mass

m, = 1) and the second term is over rest particles.

2.3 Three-Dimensional Lattice Gas Model

2.3.1 Three-Dimensional Vector LGA Model(3-d LGA)

In this subsection, a three-dimensional Fermi-type vector LGA model is constructed to

model three-dimensional electromagnetic field problems. The residing lattice is cubic with
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the length / as illustrated in Fig.2.8. Unlike the previous two-dimensional models, the vector
model incorporates polarization with each particle. This concept is quite different than the
scalar particle models of fluid dynamics. We assume that, in the vector model, each particle
has unit mass, polarization vector e (associated with electrical field in the macroscopic limit)
and velocity k. Each cubic cell has six links, with each representing a possible velocity k. In
addition, each velocity state associates with four polarization vectors es. Thus there are a

total of 24 particles in a cell, each particle propagating in the direction of velocity k and
polarized in the state of e. If we denote these six velocity vectors by ke {+X, +¥, +7},
the corresponding four polarizations can be expressed as: for k = +X, ee {tj,+2}, for
k=+V, ec {*%,+3) and for k==%Z,ee {+% *j}. Fig.2.9. shows a case of four parti-
cle propagating in -z direction k= -Z, polarized in +X and %j directions. Furthermore, the
relation between polarization vector e and velocity k for each particle is defined to sat-

isfyk x e= h, where the vector k is defined as an inherent magnetic vector associated with

each particle. Note that only two of these three vectors are independent. Hence each state of

particle is characterized by two vectors (, e).
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Fig.2.8: A small portion of a three-dimensional cubic lattice.
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Fig.2.9 Four polarization vectors of a given velocity vector. (1): up-polarization.
(2):down-polarization. (3): right-polarization. (4):left-polarization. Here
k is the velocity vector of particles, and e and £ are the polarization and

magnetic vectors, respectively.

To specify the states of the vector model, we need a total of 24 bits per cell (there is a

total of 6 velocities and 4 polarizations per velocity) to describe the particle states. When
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constructing collision rules for the model, two types of the two-body collision events have
been considered. The first type is the head-on collision. The interaction configuration
between two particles is defined to be the same as that used in the HPP or FHP models. In
the three-dimensional vector LG4 model, however, the head-on collisions conserve the
polarization e and the magnetic vector h (Figs.2.10a and2.11a). The other type is the right-
angle collision. In this case, collisions occur if and only if exactly two particles enter a cell
at right angles. The collisions result in the exchange of the vector & between the two incom-
ing particles, and each of two outgoing particles leaves the cell in the direction opposite to
its initial direction as shown in Figs.2.10b and 2.11b. Again, these collisions conserve polar-
ization vector e and magnetic vector &.

By investigating the above rules, we note that, due to the collisions, a particle with posi-
tive polarization can never be changed into a particle with negative polarization because of
the conservation of polarization. Thus all particles on the lattice can be classified into inde-
pendent positive and negative polarization particle groups. On an infinite homogeneous lat-
tice, the positive particles do not interact with the negative particles even on the same lattice,
and each group of particles obey the collision rules independently. If the lattice is truncated
at, for example, boundaries of objects, then the two-group particles can be coupled. How-
ever in the situation of perfect magnetic conducting (PMC) boundaries, these two group par-
ticles can still remain uncoupled. A PMC boundary condition can be modelled by forcing
the tangential magnetic field along the boundary to be zero. Particles incident on a magnetic
conductor are reflected onto the same group (i.e, a positive particle is reflected onto the pos-
itive group and a negative particle back onto the negative group)[21,25]. Hence, when mod-

elling an electromagnetic field problem with PMC boundaries, we need only one (positive or
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negative) of two group particles such that the vector model can be simplified to two (positive
or negative) polarizations es per velocity as shown in Fig.2.12, requiring a total of only 12
particles per cell. If a PEC boundary is required, the coupling between those two particle
groups is required. The concrete implementation of PEC boundary is described by N.
Simons[25]. Thus, a total of 24 particles per cell is needed to describe the states. Two ques-
tions remain to be answered: are there any other types of collision events? And, if there are,
what is the effect of these collision events on the dynamics and macroscopic behaviour

(electromagnetic phenomena)?

(a): Head-on collision
S -Yx

Xy X

h
%Yx

e

(b): Right-angle collision.

Fig.2.10: One example of the collision rules for the positive vector lattice
gas automata. The collision rules conserve the mass, polarization and the
physical quantities A.
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(b): Right-angle collision.

Fig.2.11: One example of the collision rules for the negative vector lattice

gas automata. The collision rules conserve the mass, polarization and the

physical quantities A.
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2. 3. 2 Dynamic States of 3-d Vector LGA

For the three dimension cubic lattice shown in Figs.2.8 and 2.12,the two-subscript bit varia-

ble Sj ; describes the state of a particle, where the first index K indicates the kth velocity

vector, with X taking the value in the set of {£X, £¥, +Z}, and the second index i stands for

the ith polarization related to the Kth velocity. Explicitly the set of bits can be written as:

(S-X,V’S-Xz’ SX_V’ SXZ’ S-Yx’ S-Yz’ SYx’ SYz’ S-Zx’ S-Zy’SZ}"
S, . ).For example the bit S_y |, represents the presence or absence of the particle moving

along —X direction and polarized in y-direction at site x and time ¢.

zZ
>§ S_y
/“, gSZv h
h A

X e
i
: O
h S_Zx S—/‘ v
©
b /g\‘ %SY x € S—X z
SY z
Fig.2.12: Twelve particles of the three-dimensional vector LGA.
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2.3.3 Dynamic Description of 3-d Vector LGA

For the simplified 3-d vector lattice gas shown in Fig.2.12, two types of collision rules

for head-on collisions and right-angle collisions have been defined and shown in Fig.2.10. It

is noted that the rules are characterized by +90° rotational symmetry with respect to the

three axes, %,y and Z.This means that the rules are invariant when input particle configura-
tions are performed with any of the rotational transformations. Hence we have a total of 6

collision rules for each type. To obtain the dynamic description, first consider the change in

a particular bit Sy ,(x, #) due to collisions. The bit represents a particle travelling in the % -
direction and polarized in the direction of j. At the next timestep (¢ + At), the state of the

particle will be changed to the state of Sy ,( x + Ly, z, t+At) due to the two collision events,

head-on or right-angle, as illustrated in Figs.2.10(a) and 2.10(b). The microscopic dynamics
for the particle could be written as

head ight
Sk (x+ 1,y 2t + A= Sy (X, 3,2 1)+, +oys,

head -igh s . . .
where ® }e,a and (D}If " are the operators describing the contributions respectively from the

head-on and right-angle collisions, and obtained as

head _

Wy ¥ - SZ _\'S~Z ySX yS—X - S—X _\’SX _\’SZ _vS—Z y 9

and

right _
O)X_v - S——/\’ yS—Y xSy XSX y T S—X .\’S—Y xSyXSXy .

In the same way, we note that the change of any particle state in the model can always
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be associated with two collision events (a head-on and a right-angle event). We combine
these two events as pairs to describe the change of a particular particle state. Hence, we have
a total of twelve such event pairs, listed in Appendix A. Referring to the interacting rules in

Appendix A, we have the following microdynamic equations for each particle state:

Sx(x-Lyzt+At)= Sy (xyzt)+0,(S(x,1)), (2.24)
Sxx-1,y,z,t+A)= Sy, (x, vz t)+ 0 4 .(ST(x, 1)), (2.25)
Sy (x+1L,yzt+ A= Sy (x,pzt)+ 0, (S(x,0)) , (2.26)
Sy Ax+1,y,z,t+ At)= Si,(x 3z 1)+ 0y, (S(x, 1)), (2.27)
Syx,y-Lzt+ A= S, (x vz )+, (S(x 1), (2.28)
Sy x,y-Lzt+ A= S,,(x vz t)+0,,(S(x, 1), (2.29)
Sy x ,y+lz,t+ A= Sy, (x, 3.zt )+ 0y, (ST(x, 1)) , (2.30)
SyAx ,y+Lz t+ A= Sy, (xyzt)+0,,(S(x, 1) , (2.31)
So(x,y,z-Lit+AD)= S, (x vz t)+w_, . (S(x, 1), (2.32)

Sz (x,y,z-Lt+A)=S , (x,yzt)+ m_zy(ST(x, 1) , (2.33)

..Z’V
Sz(x,y,z+Lt+AD=S, (x,pz 1)+ 0, (S(x,0)) , (2.34)
S;x ,y,z+Lt+A)=S8, (x,pz.1)+@,(S(x,0) , (2.35)

where ST(x, ¢) has the same meaning as n'(x, t) used in the previous subsection. The

twelve operators ®; ,(J =*X, *Y, 7 and k =x, y, z) are specified by,
@ 5= Sy [ 82,8 7,Sx, +Sx,8r.8_, 1 - Sy [52,52,Sx, + 86,51, 1,2.36)

Oy, = Soxo [y, SvaSvs + S8, 8, .1 - Sox, [y .5, Sxs + 56,8, 5., 12.37)
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= Scy [ 82,8 2,85 xy + Sk, SoyiSy 1= Sy [ S22, 4y + S8 v, 1, (238)
Oy, = Sx2 [Sy,Sr2S x2 +Sx28 5, .S, 1-Ska [ Sy oSy Sexs +S_x25_, .S, . 1,2.39)
O_y= Sy, [ 8.8 2:8vx +SxuSrSoxy 1= Sy, [82.8 7.8y, + 84,8y, 84,1, (2.40)
@y .= Sy, [SxuSoxeSre +S2ySv.S 5, 1-Soyu [ Sy SoxoSya +5¢.82,82, 1, (2.41)
ve= Sra [ 828 2.8 1, +8.4,8r,Sxy 1= Sy [ 878 7.8v, + 8 5,81k, 1,(2:42)
Oy ;= Sy, [ SxaSxSors + 82,845, 1-Sv, [ Sk Sx.Soy, +5,,5,,8,,1,(2.43)
®_7 = Sz [SrSy oSz + 858285, 1= Szy [ 818582, +50,8,.84,1,(2.44)
= Sz y [Sx,ScySzy +82,81.80.1- 82, [ SaySxySzy +50,5:,5,.1,(2.45)

©z,= Sz, [ SxSox ySezy +S2,Sy2Sr. 1= Sz, [ SxySx Sz y +581.52,5,.1.(2.46)

7= Sz [SreSy oS ze +Sox2S7:8x2 1~ Sz [ SyeSoyeSozx + S x2S z:Sx2 1 (2.47)

2.3.4 Conserved Quantities of 3-d Vector LGA

The conserved quantities in the 3-d vector model correspond to the six components of
polarization vector e and magnetic vector k. The two vectors are conserved at both the
microscopic and macroscopic levels. It follows from the equations (2.36) through (2.47) that

the conservations of six components can be written as

(O, to, to_, +tw,)x=0, (2.48)
(m—X v + ('OX y + (D—Z v + mZ y)j): O ’ (249)
(0)—X:+O)X:+(D»Y:+(DY:)2: 07 (2'50)
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((D)’z_u)—)’z-*_m—Zy—mZy)&: 0 s (251)
(O_y:~ O, —O_,, +©, )= 0, (2.52)
((DX)'“('O—X)'_'-m_}’z"m)/z)%z Oa (253)

where the first three equations indicate the conservation of three components of polarization
vectors e, and the last three denote the conservation of magnetic vector 4 in the x-, y-and z-
directions respectively. Their components in a particular cell can be calculated in terms of
the bit variables as,

Ioca/

= (S_, t S, + S, +5,0%,

[ocal
vl

(Sv/\\+S/\x+SZ\+SZy)y9

local

(Sx-+Sy-+S8y.+S8 )2,
local A
(S)z )Z+S—Z_1'_SZy)xa

uy2 = (S~Xz_S _S SZ\)j)

Uy = (Sxv=Sx,tSy,—Sy)2.

2.4 Macroscopic Observables

Within a lattice gas, macroscopic physical observables such as density and flow can be
determined by an average over an ensemble of possible microscopic particle configurations.
In practical cellular automaton simulation experiments, we strive to obtain enough experi-

mental samples. To avoid limitation of averaging only over a few specific microscopic con-
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ﬁgufations, the samples should be randomly created. Based on the samples, statistical
averaging is carried out. The process of numerical experiments designed in such a way is a
good approximation to the standard statistical procedure [9].

As described in above sections, various microscopic observables for a particular cell
can be defined in terms of the bit variables associated with the cell. For instance, when mod-
elling the two-dimensional HPP lattice gas, the microscopic density at a particular cell j will

be defined as the density of the particles in the cell,

4
. )
DLy )= Y, i(x,,) (2.54)

i=1
where 4 is the total number of the bit variables of the moving particles, (x;,y; ) indicates the
coordinates of the cell j, and nk,-(x »¥;) 1s the ith bit variable. The superscript & represents

the order number of the experimental samples obtained by running N, times on C4 machine

(to be introduced in section 2.7). This summation in (2.54) is simply equivalent to counting
the particles inside cell j. For a given sample £, the sample macroscopic density pk ata par-

ticular spatial location (x, y) can be determined by averaging the values of pi ek] ; 8s,

4
k 1 k .
Y (xzy) = N_TZZ”,(X],}’J) 7]69{'
Ri=1

where R describes a neighbourhood of cells centered around (x, y), (x;, ) is the location
of a particular cell within the area R, and N is the total number of bit variables within R.

The density p can be obtained by averaging a total of N, macroscopic samples, that is,
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N 4
2 2 ni(x,y,) s (2.55)

Fig.2.13: Macroscopic quantities as obtained through spatial averaging of

microscopic states over a region R.

The averaging process described above is the method of encoding the observables. The
complete microscopic bit information is retained at each timestep in the lattice gas autom-
ata. The dynamic range of macroscopic variables is thus proportional to the number of bits
of memory[24]. If a sufficiently large window size is used, a continuum approximation is
obtained. The dynamic range and accuracy of the observable quantity depends on the num-

bers of possible states contributing to the quantity and an inherent noise (is proportional to
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. LN) respectively. Generally, a larger dynamic range and better statistical accuracy can be
T

attained by using a larger sampling window. However, there is a trade-off between dynamic
range, statistical accuracy and spatial averaging accuracy, since a larger size window always
results in a spatial error range centred around a particular observation points. Although the
lattice spacing used in our simulation is ten times finer than that of the transmission-line
matrix mesh [40]. The graph below illustrates the spatial error associated with the averaging

process.

Observation point (x,y)
— ~
—~ ~
P -~ g

.—> _.EJ_.____

Sampling Window TLL Mesh

Averaging Error

2.5 Review of Lattice Gas Theory
2.5.1 Collision Operator

In what follows, we will not, for convenience, use the different notations for the different
LGA models. The discussion presented below is valid for all above models except those spe-
cifically indicated.

The state of a particular cell at a timestep can be fully specified by a collection of the

values of its n bit variables:
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5 = (S), - 05,), (2.56)
where s; represents the value of the it/ bit in the state s. If the particle 7 is present in the state

s, its value s; takes the value of one (s; = 1), otherwise s; equals to zero (s; = 0). For

example, in the HPP lattice gas, the pattern of the state s=(7,0,1,0) indicates that two parti-

cles with velocities +% are present in the cell.

For a particular cell with # bits, we can have a total of 2" different collections, denoted

by the set S. If s = (s, ... ,5,) € S as an in-state, then, after updating the bit variables, we

have an out-state, expressed by the collection of s” = (s,”, ....,s), ) € S. Therefore, in the lat-

tice gas, the transition process from an in-state to an out-state could be specified by 2" by

2" Boolean transmission matrix a. The element a(s — s') characterizes the transition rules
from anin-state s={s; = O or 1, i=/,..., n} toanout-state s" = {s,"=0or 1,i=1,...,n }.

In the case of deterministic collisions, a( s — s') is unity if and only if the particles in states
collide to yield particles in states s'. Here the head-on collisions in HPP and those collisions
in the 3-d vector models are examples of deterministic collisions, In the case of a non-deter-
ministic collision, a( s — s')=&, where § is a time and site-dependent random bit variable

£ with average value of (€)= p. The example of non-deterministic collisions can be found
in a FHP model where there are two possible out-states corresponding to every in-state of a
head-on collision event. Thus one can use the random bit £ probabilistically to describe the
event.

Since each in-state s gives rise to exactly only one out-state s',we have the relation:
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Ya(s—s)=1 (2.57)

This is simply a statement of conservation of probability.

Now we consider the production function[31,33]

p(n,s)= [] 7 (1-n)"™, (2.58)

j=1

where the arguments (n, ...,n,) € S represent all possible states of a particular site, and the
collection of s = (s, ...,s,) € S describes the pattern of an in-state. Note that if the pattern
of n j’s matches a given the pattern of input states j’s, the function is equal to one

(p(n,s)= 1), otherwise p(n,s)= 0. Thus the function p(n, s) defines a Kronecker delta

function of two bit collections:

1 ifs=n
p(n,s)= 8(n,s)= { . (2.59)

0 otherwise
Note that the function p(n,s) defined in (2.58) has the selecting function which can pick up
one state from all possible states (1, ...,n,) € S of a particular cell. In addition to this, the

Kronecker delta p(n,s), like the conventional Kronecker delta functions with continue argu-

ments, has the following two properties[31]:

Zp(n =Y [I#7-n)" =1, (2.60)

s j=1
and Zsip(n, s)=2si H nj.j(l—izj)(]_sj)= n; , (2.61)
s s j=1

1 1
where the summation 2 denotes Z Z

=] Sy
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With the aid of the above properties, the microdynamic equation can be generally rewritten

as

. I=s,
n(t+ At x+ ci)=2s'ia(s — 5')0(n, s)=2si' a(s — s’)( H nj.’( l—nj)( S’))
s, s’ s, s j=1

(2.62)
The equation (2.62) has the following physical meaning[31]:
(1) Before the collision, if the current pattern of » j's matches that ofs j's , then the
pattern is chosen by the term 6(n, s) .

(2) Through the collision, the input state describing the pattern of »n j’s is transferred
to the out-state with the pattern of ' j’s characterized by the element of
<a(s - s5')>.

(3) Finally, the value n] at next timestep of the ith bit of the out-state n” is deter-

mined by the factor 57 .

Using the equation (2.61), we can have the microdynamical equation in a form that brings

out the lattice collision operator:
n(t+ At x+e)= nft,x)+o(n'(t,x)) , (2.63)

and the collision operator:

(Di(nT(t ,X)): 2 (S’, - Si) a(S - s')(

nj.f(l—nj)“'sf’) L (2.64)
j=1
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2.5.2 Semi-Detailed Balance and Ensemble Average

2.5.2.1 Ensemble Average

A macroscopic description of an LGA can be obtained as an average over an ensemble of
possible microscopic particle configurations. But an actual LGA simulation involves the
evolution of just a single, specific, microscopic configuration. Nevertheless, many investiga-
tions show that suitable space or time average of this specific configuration can yield results
which are close to those obtained from averages over the whole ensemble[9]. We denote the

averages over this ensemble used in a LGA simulation by angular brackets <>, i.e.,

Ni(x,0)={n(x,1), (2.65)
where #; is a binary value while the average N (x, ) of biti is a real number and is called

the mean population of bit i, taking a value ranging from 0 to 1.

When considering a non-linear function of bits n; to be those terms appearing in the col-

lision operators, the average of the function is not in general expressible as a function of the

averaged quantities, since the correlations among these bits 7; must be considered. How-

ever, in many applications, we can reduce the complexity of the problem using the Boltz-
mann Molecular Chaos Assumption. The current lattice gas version of this assumption relies
on the streaming (advection) phase of the simulation to effectively decorrelate the différent
bits at every site. In other words, the colliding particles have never had any prior effect on
each other [31,33]. The theoretical analysis [33] shows that this assumption is reasonably

valid in three or more dimensional lattice gases. In two dimensions, however, we must con-
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sider corrections and employ some type of renormalization [33]. In this research we are
most interested in an LGA system involving small perturbation to an equilibrium state (uni-
form background distribution) with low fluid velocity, such that the correction among the

particles is small enough to be neglected [31]. Under this condition, for any combination of
particles n | s the ensemble average could be
(ny..ny)=(n)..ny. (2.66)

It would then follow that {w(rn")) = Q({n")) =~ Q(N¥) , whereNT stands for the complete
set of mean population at site x and time .
Thus, by taking the ensemble averages of the microdynamic equations for the lattice gas,

the lattice gas Boltzmann equation can be obtained as
Nyt+ 8t x+c)= Nt x)+ QN1 x) (i=1..... ™y (2.67)

and the average of the collision operator

Qe x)= X (57-5) As 5 TINJA-N)' ™) L e

=1
where A(s — s') is the ensemble average of the element of the matrix element a(s — s'") ,
that is,
A(s—>s) = {a(s > s) . (2.69)

A(s —s') now represents the transition probability from an in-state

s = {s;i= 1,..,n} toanout-state s* = {s';i= 1,.., n} ina collision event. Again,

note that a Boltzmann equation is in terms of real number variables, N,(x, t), while a

microdynamic equation is in terms of binary variablesn; .
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2.5.2.2 Semi-Detailed Balance and Equilibrium Distribution

One of the important criteria used to obtain the equilibrium solution for the Boltzmann
equation is the Semi-Detailed Balance. Simply stated, it means that before collision, if all
states which lead to a particular out-state have equal probabilities, they stay so after collision

[31,33]. Explicitly, it can be written as

> A(s > s)=1 Vs’ . (2.70)

Here an important difference between the semi-detailed balance (2.70) and ZA(S —sh =1
Sl

should be noted: the latter represents the conservation probability while the former is the
condition which is required to obtain the steady state solution of the Boltzmann equation.
Also note that semi-detailed balance is a weaker condition than detailed balance. Detailed
balance describes the deterministic, one-to-one and reversible collision process, and can be
stated as:

If a lattice gas is said to obey detailed balance, its transition matrix satisfies

A(s > 5)= A(s" = s), Vs, s (2.70)

Theoretical analyses, for example [16,31,33] have shown that, for kinetic systems of lat-
tice gases which are finite and periodically wrapped around, there are very simple statistical
equilibrium solutions in which the Boolean variables at all sites are independent due to their
purely local collisions on the lattices. The analytical results presented in [31] will be quoted

as the following lemma:
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Lemma: if any lattice gas at an equilibrium obeys semi-detailed balance, then the solu-

tion to the mean population N;(i=1...... b,) satisfies the set of equations for the b, colli-

sion operators, i.e.,

(1=s))_

QN (e x))= Y (5] - spA(s =) [[N/(A-N) /=0 (i=1....b,) , (7D
5,8 j=1

and the solutions N,(i=1...... b,) are given by the Fermi-Dirac distribution

1
N= ,
" l+exph+gq-c)

(2.72)

where h is an arbitrary real number and q is an arbitrary D-dimensional vector.

The important consequence of the lemma is that the mean populations given by (2.72)

are independent of time and spatial coordinates. The equilibrium solutions are then universal
over the lattices, and are only dependent on the density p and the mass current (momentum

density) j = pu. The Lagrange multipliers / and ¢ can be calculated in terms of the

dependence of the Fermi- Dirac distribution on the mass and momentum density.

2.6 The CAM-8 Cellular Automata Machine

The computational inefficiency of simulating CA on conventional serial computers
(such as a workstation or PC) is a concern. The Information Mechanics Group at the MIT
Laboratory for Computer Science has been involved in the development of special purpose
computational hardware for the efficient evaluation of CA [24,27]. CAM-8 is a cellular
automata machine newly developed by this group. CAM-8 is an implementation of a parti-

tioning cellular automata (PCA) in which hardware is organized as 16 separate bit-planes.
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Each plane stores exactly / bit of state information of a particular cell, thus the 16 bits ofv
state of every cell are distributed across the 16 bit-planes. The CAM- 8 machine operates in
two alternating stages:

(1) Data-update stage, during which PCA partition the space into individual sites, and
each particular site’s state is isolated and is not allowed to have any influence on the new
state of any other site. At this time, the new state of a particular site is a function merely of
its current state. In the most elementary case, the state information of the site is described by
16 bits, and using the values of 16 bits as an index into a look up table, a new 16 bit values of
the new state is extracted, and then restored to the original position of the site. This updates
the state of all the sites in parallel. The format follows the lattice gas models and corre-
sponds to the collision phase.

(2) Data-transport stage, during which isolation among sites is eliminated, allowing the
state information of one site to be exchanged with another. Every site’s state is separated
into 16 bit-planes, and the contents of any bit-plane can be moved relative to the contents of
the other bit-planes by a data-movement facility, kicking [27], which is performed by offset-
ting memory registers rather than physically moving the bits around. This process realizes
the transfer of data to its neighbouring sites, and therefore corresponds to the advection

phase of lattice gas models. Fig.2.14 show this basic operation for cells.
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— Look up Table (LUT)
'\
LUT
1
Address 0 o
New Cell Data
to DRAM Address (replace old data) e —

Fig.2.14. Basic operations of CAM-§ [27].
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Chapter 3. Mixture Lattice Gas Automata

3.1 Ihtroduction

In this chapter the mixture HPP LGA model which is not limited to a concrete config-
uration of rest particles is presented. Detailed analysis is developed to show how this model
can be applied to the simulation of two-dimensional electromagnetic phenomena in inhomo-
geneous media.

Considering the relative rigour and the exclusion of viscosity in the analysis, we begin
the analysis with the more complex FHP lattice and limit it to the Euler equation derived
from the lowest order of the Chapman-Enskog expansions. With the small perturbation
assumption, in Euler equation the non-linear terms involved with more than the third rank
symmetry can be ignored. At this point, there will be no difference between HPP and FHP
models and both of the lattices can lead to a linear wave équation.

An important aspect of this chapter is the development of an algorithm showing how to
model the media with different sound speeds, analogous to modelling different dielectric
constants in inhomogeneous media of electromagnetics. An LGA model without zero-veloc-
ity “rest particles” can only yield an uniform sound speed. Change in sound speed of an
LGA can be achieved by incorporating rest particles at a lattice site with moving particles.
We note that the form of macroscopic wave equation is in fact insensitive to microscopic
details. It will be seen in the following analysis that there are only a few restrictions, such as

conservations of mass and momentum and semi-detail balance, that are imposed when con-
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structing an LG4 model. A wide range of dielectric constants can be modelled by specifying
various interaction models. One can specify that certain regions of the LGA are different in
the rest particle number and mass, so that energy exchange between the rest and moving par-
ticles in the regions are different, and an LGA with inhomogeneous sound speeds can be
realized.

In the following section, the derivation of the kinetic and hydrodynamical equations
of the model is presented in a more detailed way. Section 3 gives some results of the
numerical experiments. Two of the experiments are designed to check the validity of the
mixture model. A variety of applications of this model for problems of wave interaction
with dielectric objects, from a simple heterogeneous dielectric cylinder to complex biolog-

ical structures, are reported and compared with traditional numerical methods.

3.2 Theoretical Analysis for the Mixture Model

The mixture lattice gas models are described in Subsection 2.2.3 and illustrated in
Figs.2.4 and 2.7. The dynamic description for the models is given in the Subsection 2.2.4.5.
The notations used in the sequence analysis can be referred to those subsections and figures.

3.2.1 Lattice Boltzmann Equation

Consider the FHP lattice gas model shown in Fig.2.7(b). The Boltzmann equations for

the lattice dynamic system can be written for moving and rest particles respectively as,

N (xte, t+A) =N, (x,)+Q; J[IN'(x,t)] (i =1,...,b,), 3.1)
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and

N, (6 t+AD) = Ny (6, )+ Q) ([N, )] (k=1,...,b). (32

r

Note that the rest particles always reside at some sites, and have zero velocity ¢; (=0). Again,

the symbol f(NT(x,t)) indicates that dependency of the function f on the mean popula-

tions N, , of all bit variables at site x and timestep ¢.

3.2.2 The Equilibrium Distribution

In what follows, we are interested in obtaining the solutions of the physical system
around equilibrium (at quasi-equilibrium), since the uniform equilibrium lattice gas can not
be used to simulate the wave propagation. However, to study an LG4 around an equilibrium,
we must first consider the solutions at equilibrium. Thereafter the solutions of the system at
quasi-equilibrium can be obtained through a Chapman-Enskog expansion [31,41] in terms
of mass density and momentum at equilibrium.

Now, if the system is at an equilibrium, according to the Lemma in chapter 2[31], the

collision operators for the moving and rest particles satisfy
Qi,o[]\ﬁeq(x,t)]= Qk,o[meq(x,t)]= 0, (3.3)

and the equilibrium solutions for the moving and rest particles, respectively, are expressed

as:

eq _ 1
ho 1+exp(ht+q-c)’

(3.4)
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q _ 1

and Noh= T+exp(h) (3.5)

where the subscript eg stresses that the mean populations are evaluated at equilibrium. The
Lagrange multipliers 4 and g can be calculated in terms of the relations of the conserved

macroscopic physical quantities with the mean populations at equilibrium.

In the system, the two conserved macroscopic quantities, density p and momentum
pu, are related to the local mean population N, , of particles with mass m,, velocity
c;and mixture ratio p, by

Ill

= YN+ mk , (3.6)
i=1 k=
(k=0) (i=
and pu= ZN, e, (3.7)
k= 0)

where p and u are mass density and fluid flow velocity per cell, respectively. Note that the

distinction between the mixture ratio p, and the random bit probability of p, discussed in

chapter 2. p, represents that the percentage of sites in a particular region is filled with rest

particles m,, while p; is related with the local collision rules and represents the probability
of the creation or annihilation of the rest particle m, in each collision event.

To calculate the equilibrium distributions, we consider the equilibrium with low flow
speed u = |u| « ¢ (c the speed of moving particles), such that the microscopic collisions can

approximately maintain a local equilibrium [31]. In a CA numerical experiment, the equilib-

rium is easy to realized by operating the LGA near a local equilibrium state[32,33]. With
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consideration of the symmetry of the density and velocity of the lattice[31],the % and ¢

functions can be formally expanded as the following series of velocity u

h(p,u) = hy+hpl +OG*) , (3.8)

g(p,u)=qu+ O(’) . (3.9)

Note that the /4 is an even function and ¢ is an odd function due the symmetry of the LGA.

When u = 0, the average density for all particles with mass m, is same, and denoted by
d, . If taking the mass of the lightest particles (moving particles) as unit, and denoting its
density byd, = d, we have the following expression for the moving particles

1

9 p V= g =
Nio(ho) d 1+exp(hy) ’

(3.10)

and for rest particle

]

NI (hy) =d = ————— .
0,470 k I+ exp(m;h)

(3.11)

Thus, the density of rest particle d, can be related to the moving particle d at u=0 through

the relation:

o
d=—9 (3.12)

k - n,
A+ (1 —ad)™

Now, to determine the coefficients of#,, 4, andg, in the equations(3.8) and (3.9), we

can calculate the equilibrium distribution functions perturbationally in powers of u. Con-

sider the Fermi-Dirac type function:
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1

= . 3.1
FE+50) = TG (3.13)
If the function is expanded around xjand x « x, then
1, 2
f(xo +x)= f(xo)+f(x0)X+§f (xo)x to., (3.14)

where f'(xg) = —f(x)(1 - f(xg)) and f"(xg) = f(xp)(1=f(xp))(1=-2f(xp)) .
Using the above formulas, the expansion of the equilibrium distribution function (3.4) for

moving particles can be written as
’ 1. ., 2 3
NEb =Nio(h) + Nj o (ho)(q (- ¢) + hyl ) +5N7 o (ho)dy (u-e) +O(u) (3.15)

where

1
N9 (hy) = —————— =
o (o) 1+ exp(hg)

2

N7 (ho) = =NG (h)(1 =N (hg))

~d(1-d),
N;'f)q ) =Nz‘g (ho)(l—Nj"O (ho))(l—ZNqu (hy))

= d(1-d)(1-2d) .

The expansion of the equilibrium distribution function for moving particles can thus be

found up to the second order O(uz) as:

(1 —d)gl ~2d)

N = d[1 - (1=d)(q, (- e;) + hpu’) + (- F1+0(0)

(3.16)

A similar expansion can be obtained for a rest particle with mass m, by letting ¢, = 0,
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that is,
N = A= (1 —dphyp?m]+0@5) . (3.17)
The two unknowns ¢, and %, in (3.16) and (3.17) can be determined through the relation-

ships of the density p and momentum pu to the distribution functions(3.16). It follows

from (3.5) and (3.7) that

by b, b
£ € \
p=3 mN + N mp N =db,+ Y mpd,, (3.18)
i=1 k=1 k=1
(k=0) (i=o0)
and
b," b. eq blll
- eq = q
Puy = Z moN; "¢ o F 2 DN, 1 Co o= Z Nioci’a, (3.19)
i=1 k=1 i=1
(k=0) (i=0)

where ¢, ,= 0 for the rest particles has been used in (3.19). The Greek index o represents

the spatial components of velocity of the particles. For the case of two dimensional lattice

o€ (x,y) , butin general o is valid in the N-dimensional case. Since d and d,, represent

the mean population of the moving and rest particles per site, the first and second terms in

(3.18), respectively, can be identified as the density of the moving and rest particles, that is,
b,

Pp = b,d and p, = 2 mp,d, , thus, p=p +p,. (3.20)
k=1

Substituting the expansion expressions of (3.16) and (3.17) in (3.18) and (3.19), the two

unknowns ¢, and %, can be found as:

_ 2p
. (3.21)
(1-d )p, ¢
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(1-2d)c 399
hzszqzl M ( . )
where c, is defined below as. It will be shown in Subsection 3.2.5 that the parameter c, rep-

resents the sound speed of the lattice gas.

d(1-d)b,c?
s b . (3.23)
2[d(1-d)b,+ Y, mEp,dy(1-dy)]
k=1
When formulating the above expressions, the following specific properties related to the

symmetry of the tensors have been used. Generally, for the modelling of fluid dynamic prob-
lems, it is a basic requirement that all tensor formed from outer products of the lattice vec-
tors be isotropic through all of four ranks, and so yield the standard hydrodynamic equations
and correct viscosity coefficient for LGAs [16,31,33]. For the HPP lattice gas model, how-
ever, the tensors formed from outer products only satisfy the first three isotropic require-
ments. Fortunately, it will be seen in subsequent discussion that, for the problem of model-
ling wave propagation (i.e. not requiring a correct viscosity), we do not need to involve
those terms obtained from the evaluation of the fourth rank tensor. Therefore, the simple

HPP model 1s valid for our applications of linear wave propagation. Mathematically, the

tensor products to the fourth order rank for the present model with b, moving particles can

be expressed as

b
Y ey =0, (3.24)

CiaCip = —5Oap (3.25)
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by
> cialiptis = 0, (3.26)
i=1

and

b 4
. bmc
2 CiaCipCisCiy ~ —8'”(801[3687 + 60185[37 + S(X'YSBS)
=1 , (3.27)

where equations (3.24) to (3.27) are the first, second, third and fourth order vector outer
product, respectively. The summation on the repeated Greek indices is implied.

Using the above relations of (3.24) to (3.27), the expansion for mean populations at an
equilibrium state can be obtained for moving and rest particles up to the second order of u.

For moving particles, using (3.16),(3.21) and (3.22),

NE = d{1+ 52 c,--u+G(p>[nys+(%2—c% )%}uy“s} - (G328

m
2
where i=1 t0b,,, Q5 = cI-Yc,.5~%8Y5 and function G(p)

2p’(1-2d)

Glp) = 5
cp, (1-d)

For rest particles, using (3.17),(3.21) and (3.22),

(1-dy)
N = dk[l ——G(p)(—lj—éﬁ)—uzmkcﬂ : (3.29)

where k=1 tob 3
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3.2.3 Chapman-Enskog Expansion and Conservation Laws

In the above subsections, the mean equilibrium population with low speed has been
obtained. In the subsequent derivation of lattice gas hydrodynamical equations we are inter-
ested in an LGA system at a local equilibrium with density and momentum slowly changing
in space and time. From the conservations of mass and momentum, the macrodynamic equa-
tions can be derived by using Chapmann-Enskog expansion and multi-scale tech-
nique[31,41]. This analytical process is almost the same method as that used in real fluid
dynamics. The Chapmann-Enskog expansion is a perturbation solution to Boltzmann equa-
tions (3.1) and (3.2) near an equilibrium state. Let the solution be expanded as a series in

powers of € (very small number €->0) [33]:

Niw = NOUEN NG+ O (3.30)

where N folz= quk is the mean population distribution at equilibrium. The multi-scale tech-

nique used here is called wave ordering since the ordering is appropriate for wave propaga-

tion[31]. The multi-scale technique can be introduced by assuming that the gradients of the

N 1(',"/2 and the differential with respect to time d¢ are very small. Thus the postulation could

be written for the first order derivative as
V~odt = O(g),

and for the nth order derivative as

V(n) _ 0(8,7) ’
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such that N(”) v = o(e" .
In what follows, we insert the expansion (3.30) in the Boltzmann equations(3.1) and

(3.2), and use the above multi-scale technique. By collecting the terms at order O(¢), the

first order equations for the moving particles leo) and rest particles N f)l,) can be respec-

tively obtained as,

AN + c59gN'°) = 2’: AL N+ 2 AR (3.31)
J=1 k=1
and N = ZA/( 1N(l) 2 Ay ,N(l) , (3.32)
=1 i=1
Q. 0Q.
h m ( 1,0) mo_ ( 1,0)
where A; aNjo s Ak N, )
el VL N = e
. 519 . 0Q
¥ o, k } o, k
= (Elok dAL = (=2
Ak,] (aNO I) an k,_/ (aNJ 0)
Sl YY) N PV

3.2.3.1 Mass Conservation

Now the conservation of mass and the series expansions obtained in the above subsec-
tion could be used to derive a partial differential equation which describes the macroscopic
density of mass for the lattice. In order to do this, taking the summation of equations (3.1)

and (3.2) over the indices 7 and & respectively, and adding the resultant equations, we get,

60



by, b,
Y N (xte,t+An+ Y N, ((x,1+A1)=
i=1 k=1

iN, 1)+ 2 N, (%, 1)+ XQ{NT(X t)] + 2 Q [N'G,0)] .
i=1 k=1 i=1 k=1
(3.33)
Note that in (3.33) the terms on the left hand side and the first two terms on the right hand
side represent the mass density at times + A¢ and ¢ respectively. Since the mass conservation

is independent of spatial position and time, i.e.

bm br bm b
p=F N, (x+qt+A)+ S N, (51440 =Y N, (x,00+ S N, (x,1) ,
i=1 =] i=1 k=1
(3.34)
this leads to
b, b,
29 [NT(x,t)] +ZQ [N‘f(x,t)]=o. (3.35)
i=1 k=1

Inserting the perturbation expansion of (3.30) in the equation (3.35) and expanding the

resultant expression at the equilibrium stateNf 7, we have

b III
ZQ,o(Neq) + ZQ k(Neq)+Z ZAnz ﬁlo) n 2 zAm (1) N
i=1 = dis Pt
b, b, b, b,
Y X AGNDE Y Y AN = 0. (3.36)
= lk=1 k=1i=1
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blll br
Since, at equilibrium state Z Qi’ O(Neq') = Z Qo, k(Ne q')= 0 , such that
i=1 k=1
bl" bl"
1 1 (1 =
2 ZAuNﬁ-,O) - Z ZA:kN” * 2 Z’& Noy ™ 2 > ANt = 0.
Jj=li=1 k=1i=1 I= k=1 k=1i=1

(3.37)

Similarly, if we multiply the equation (3.1) withc,, , and take the summation over the mov-

i
ing particle index i, then

by b b
Y cioN; (Xt et AD= Y ¢ N (%, 0+ Y ;@ JINT(x,0)] . (3.38)

i=1 i=1 i=1

" m

It follows from the conservation of momentum (the first and second terms in (3.38) are
equal) that we have

b mn

Y i€ [NT(x,1)]= 0. (3.39)

i=1

Substituting the perturbation expansion given in (3.30) into (3.39), and expanding it, we get

b m b m b

ZC,aQ, NN+ N N iy + 3 2 A"N)= 0. (3.40)

i=1 j=1li=1 [=1i=1

b

n

The first term 2 CioQ; o(N*?) = 0 due to the conservation of momentum at an equilibrium
i=1

state. Thus we have

bl"

blll
Y S e AN+ z Z AN = 0. (3.41)
=li=1

J I=1i=
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Now, by taking the summation of equation(3.31) over index i and equation (3.32) over
index £, and then adding the two resultant equations, we obtain

o by b
o (Tt 3oy S ettt $ 3 aay +

i=1 i=1 i=1j=1
I
z 2 ATNED + Z ZAk N+ 2 ZAk N Ga)
i=lk=1 k=11=1 k=1j=1
It then follows from (3.37) and the definition of mass and momentum per cell, which is
given as

m b m
= Y N L+ Y N and pug = Y cpNyt (3.43)
i=1 k=1 i=1

thus we end up with the following equation:

d,p+V-(pu)= 0. (3.44)

This is the macroscopic equation for conservation of mass.
3.2.3.2 Momentum Conservation (Euler Equation)

Similarly, it follows from the conservation of momentum and the series expansion(3.30)

that the macroscopic behaviour of the flow momentum (Eu/er equation) can be derived. To

do this, we multiply the equation(3.31) with ¢, , and take summation over index i, such that

IORIVVIEN e 2 S eadl N+ 3 3 ekl VY.

i=1 i=1 1j=1 i=lk=1

(3.45)
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By using the equation(3.41), the above equation can be written as

t°'i,0

b
Y cind V) + 3 2 CioCigNin =0, (3.46)

i=1 i=1
where N Ne 7 . Substituting the expression for N o given in (3.28) in the above equa-

tion and using the relations of the tensor products to the fourth order rank described in
expressions (3.24) to (3.27), the macrodynamic equation for momentum (Euler equation) up

to the second order can be obtained as:

3,(pug) + dp(pg(Pitgug) = -dP(p,1u’) (3.47)
or in vector form,

3,(pu) + V - (pg(p)uu) = ~VP(p,u’) , (3.48)
where the pressure

p 2
P(p, %) = 225 _pg <p>~[2—19—(1 +1)]u2 , (3.49)
220 2
_lpi-2d '

and g(p 2p 1-d (3.50)

It should be noted that the simple HPP model does not satisfy the fourth rank tensor
product relation given in (3.27) which has been used in the above derivation. But, by care-
fully inspecting the proceeding analysis, only the first two rank isotropic properties given in
(3.24) and (3.25) have been used in the evaluation of the first term of the expression(3.49)
for pressure. In the next subsection, it will be shown that, under the regime of undamped
sound waves, the simple HPP model is valid for the modelling of the linear wave propaga-

tion.
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3.2.4 Undamped Sound Wave Propagation

Consider a case in which a small perturbation(p’, u”) is superimposed onto an equilib-

rium state with density p, and zero velocity u,= 0, explicitly
p=p,tp’andu=u’,
where p, is the uniform background density, and p” and u” are weak density and flow per-

turbation respectively. For this case, at order O(g) the conservation of mass equation
(3.44) can be rewritten as
20"+ PV - u’ = 0. (3.51)
and the Euler equation for the conservation of momentum (3.38) as
2

a,u'+;—svp' -0, (3.52)

o

where the sound speedc, can be found from (3.49) as follows

2
2 aP _C apm
i (55)| - 5(‘55‘)’,,=0 ' (.33)

=0
If equations(3.51) and (3.52) are combined to eliminate u”, then the linear wave equation in
terms of p” could be obtained as

3p -tV =0 (3.54)

Here, since the regime of undamped sound wave involves only tensor calculations up to the

second order, at this point, there is no difference between the simple HPP and FHP models.

Thus the simple HPP is valid for modelling linear wave propagation. For the subsequent
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discussion we need only to focus on the HAPP model.

We can now make an analogy between the above two-dimensional wave equation (3.54)

and two-dimensional TM or TE electromagnetic fields. For TM, case, the macroscopic per-
turbation density, p”, can be equated to the electric field £, and the x- and y- components
of the perturbation flow velocity, u” = (u’,, u’_‘,) , can be equated to magnetic field compo-
nents, H, and H _, respectively. Similarly, for the case of TE,, p’ can be equated to the
magnetic field /,, and u’= (u’,,u4’,) can then be equated to electric field components

E, andE  respectively.

3.2.5 Sound Speed and Dielectric Constant

For our present mixture /PP model, the mass density is p= p,, + p,., where

b,
pm - bmd ’ P,-: 2 mkpkdks (355)
k=1
my
and d, = —_— d —,
d'+(1-dy*

where d and d, were previously defined as the equilibrium density of moving and rest parti-
cles per cell, respectively, and p, as the existing probability (mixture ratio) of the rest parti-

cle of mass m,, .

From the definition of the sound speed (3.53), we have
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P, 1

e (a_o)'
o

It follows from the above expressions (3.12) and (3.55) and p= p,, + p, that we get

r

P 1 /9P, dad
(ﬁn) - Hb_(ad) =1+ ”k;mkpk( ").

ad,
Using the expression (3.12) the partial differential ( 3 d) can be obtained as

od, md (1-d,)
(ad) d(1-d) ~°

whence

(apm) _ b,,d(1 - d)

b,

2
b, d(1—d)+ Y mypd(1-d))
k=1

Consequentially the square of the sound speed ¢, can be found as,

2
2= ¢ bnd(1-d) . (3.56)

b,
z[bmd(l —d)y+ Y mpdy(1 - dk)J

k=1

This is a general formula of sound speed for the mixture LGA.

The sound speed c, on a lattice without rest particles (plain LG4) is obtained by letting

m, = 0 (k=1..b,), that is

c.=c, = (3.57)

(5
s 0 ﬁ’

where ¢, is defined as the sound speed on a plain LG4, analogous to the light speed in vac-
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uum, and c is the speed of moving particle. The dielectric constant €, corresponding to the

sound speed ¢, (3.56) of the mixture model, can then be found as:

b,
[bmd(l —dy+ Y mypd(1- dk)}

k=1
g, = , 3.5
! b,d(1-d) (3.58)
for the HPP mixture model, b,, = 4 i.e. 4 moving particles per cell, then

b,
[4d(1 —d)+ Y m,fpkdk(l —dk)}

_ k=1
g, = =T . (3.59)

Here several special cases commonly used in LG4 simulation are concerned below.

Casel: The background density is 50%(d=0.5). It follows from the expression of
(3.12) that d, = 1/2 and this simplifies equation(3.59) to:
b,
_ 1 2
g, =1+7 > my py (3.60)

k=1

Note that regions with an arbitrary desired €, value can be created by probablis-
tically assigning cells with different rest particles n, based on the mixture ratio

Py - The Fig.3.1 shows some €, values for various mixture ratios.

68



Case2: The background density is 50%(d=0.5), and in some regions all cells are

assigned with rest particle(s) m, ie. p, = 1. This further simplifies equa-

tion(3.59) to:

For example, if a desired €,

formula, this can be realized by

b,
1 2
1+Zk§_ 1m,{. (3.61)

5 is to be modelled in a region, using the above

assigning a rest particle with m, = 4 per cell.

Again, if €= 21, two rest particles with m, = 4 andm; = 8 are required

with each cell.

90
1A Py =P P2=Ps =0 )
80 1 --e"" p] =1 N pZ = pk, p3 =() P
1% p,=1,p, =1, p3=p, ) .
70 /-’x-/
60 - e
:-50 B -/_,_,/X'
w ] .
40 -
) X
30
o »
| o o--—--"""" o----"""" 3]
w0l .
— : A : A A A A—t
’ IR T T T T T T |
0 10 20 30 40 50 6 70 80 90 100

Mixture Ratio p, ( %)

Fig. 3.1 Theoretical results for dielectric constants €, versusthe combinations of rest

particle mixture ratios.

Based on the above discussion, it has been noted that a mixture HPP LGA has the ability

to control the sound speed (dielectric constant) in a very flexible way. The general formula
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mula for the sound speed enables a wide range of dielectric constant to be modelled by

specifying various interaction models.

3.3 Numerical Simulation and Results

In this section, to validate the mixture HPP model, we design two simple numerical
experiments with different collision models. The two group of collision rules describe the
models given in the Tables 3.1 and 3.2, each with the cases of (A), (B), (C) and (D). Case

(A) defines the collision rule of the sites without rest particle, case (B) with one rest particle

of m, = 2, case (C) with one rest particle of m; = 4 and case (D) with two rest particles

of m,, = 2 and m; = 4.Inthose tables a transformation of velocity states of site occurs for

two particle head-on collisions, the creation of moving particles from rest particles and the

annihilation of moving particles after the interaction among them. For the mixture HPP

models there are a total of 2° = 64 states per site, the rules describing the change of parti-
cle states after collision are listed below, and all other states not listed are streamed (i.e.,
without the change of particle states after one step evolution).

Note that there is a difference between the two collision models. In collision model
I(Tables 3.1(a), 3.1(b), 3.1(c) and 3.1(d)), for each incoming state there are two possible
outcoming states, each with an equal probability of 1/2. However, in collision model 2
(Tables 3.2(a), 3.2(b), 3.2(c) and 3.2(d)) there are three possible outcoming states, corre-
sponding to each incoming moving particle state. The first two possible outcoming states are
the same as those outcoming states described in model 7, but each with the probability of 7/
3. In the third possible outcoming state, also with the probability of 1/3, the moving particles

are allowed to keep their original states. For example, in Table 3.1(b) if two incoming mov-
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ing particles exist in opposing velocity states (head-on), with an equal probability of 1/2, the

collision results in either transferring moving particles in the opposing velocity states verti-

cal to the incoming particle pair, or creating one rest particle with mass m, = 2 where ini-

tially there is no mass 2 rest particle. Alternatively, if a mass 2 rest particle already exists at
a site without other moving particles, two moving particles are created in pair either in the
vertical or horizontal direction, each with a probability of //2. But, Table 3.2(b) defines
three possible outcoming states, in which the first two possible outcoming states are the
same as those outcoming states illustrated in Table 3.1(b), but each with the probability of 1/
3. In the third possible outcoming state, also with the probability of 1/3, the two incoming
moving particles will just stream through the cell.

In the numerical simulations for the collision models described in the above tables, a

two-dimension lattice with size 1024x256 cells has been employed. Reflecting (perfect mag-

netic conductor in theT'M, case) boundary conditions[25] are applied to both x and y axes.

Different uniform background densities d ranging from 0.7 to 0.9 are applied to the lattice.

This mixture LG4 can be constructed by probabilistically assigning cells a rest particle with

2 mass units based on the mixture ratio of 30%( p, ) and assigning cells a rest particle with 4
mass units based on the ratio of 40%(p, ).

A TM,, field at cutoff frequency is used as an exciting source. The source with the

maximum initial perturbation of 15% above the background is superimposed on the top of
the background density. With the source, we can study both equilibrium and quasi-equilib-
rium behaviours of the system. The equilibrium behaviour can be obtained by taking time

average of the macroscopic quantities. An observation window is chosen with the size of
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59x59 cells, and is located at x=94 [ and y=128I.

The simulations were evolved for 15,000 time steps. As an example with d = 0.5 , the

standing wave responses at the observation window for the moving and rest particles are
recorded and shown in Fig.3.2. The experimental results at equilibrium for the rest particle

density were obtained by counting their numbers at the observation window, and taking the

time average of the numbers. For example, in the case of d = 0.5 shown in Fig.3.2, the
two numbers were 745(m, = 2)and 534(m, = 4), thus the equilibrium density for rest

particles was (745 X2+ 534 x4)/(59 % 59) = 1.042 . The experimental results for the

density of rest particles at equilibrium, as well as the analytic values calculated using (3.12)

are shown in Fig.3.3.
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Collision Model 1: case A*

Qutcoming States s’

A(s,sl) f 4m
'

2Zm .
00|20, | o0 |0 ©

+oO 0 1721 1/2] 0

o121 o | 1/2] 0

“ saje3g Sunwoouy

“’*m 0 0 0 1

Table 3.1(a): Collision rule for the sites of incoming

states without rest particles

Collision Model 2: case A *

Outcoming States 5”

A(s,s) ioo 20| o lo0

00| 1/3l 3| 3| 0

— -—

- 1/3 | 1/3|1/3 0

“ sajers Surwoduy
O

->*m 0 0 0 1

Table 3.2(a): Collision rule for the sites of incoming

states without rest particles

* Symbols used in the tables: a) o =>no rest particle( m;, = 2)

b) O =>no rest particle( m, = 4)
2m

c) o => with rest particle(;, = 2)

4m

d) => with rest particle( m; = 4)
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Collision Model 1: case B*

Outcoming States s’

A(s,s,) * 4m
'

2m
oQO o QO O o0

+oO 0 1/72 | 1/2 0

}

Dol 12 o 121 0

2m

oO | 1/211/2]| O 0

'

**m 0 0 0 1

Y sayeyg Surwodug

Table 3.1(b): Collision rule for the sites of incoming

states with a rest particle of n = 2

Collision Model 2: case B *

Outcoming States s’

A(s,s,) f 4m
'

2m
°O<2<—3> o0 | ©°0

‘oO 1731 1/3 | 1/3 0

A

O sl sl oo

2m

oO | 1/3]|1/3 131 0

'

->*;5 0 0 0 1

“ sayeyg Surwodug

Table 3.2(b): Collision rule for the sites of incoming

states with a rest particle of m; = 2
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Collision Model 1: case C *

Outcoming States s’

) ool 20 3o 1+ tn

- —p>

XOO 0 172 ] 1/2 0

>t 1/2 0 1/2 0

“ sayemyg Surwodu|
o

Table 3.1(c): Collision rule for the sites of incoming

states with a rest particle of m; = 4

Collision Model 2: case C*

Qutcoming States s’

A(s,s .
(s,5) 00|20, | 00 "1’65

- )

*OO 1/3 | 1/3 1 1/3 0

el 173 1/3 1 1/3] O

“ sayeyg Sunwoduj
O

Table 3.1(c): Collision rule for the sites of incoming

states with a rest particle of m; = 4
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Collision Model 1: case D *

Outcoming States s’

VICESE JON

00 3"0 <—*—> o4
-~ +oo

+oO 0 1/72 | 1/2 0 0

WD 12 0 | 12] 0O 0

ocO | 1,/211/2]| O 0 0

“ sayeyg Burwoouy

Table 3.1(d): Collision rule for the sites of incoming states with two rest

particles of m;, = 2 and m; = 4

Collision Model 2: case D *

Outcoming States s’
2m * 4m
)
(o] o O [ O 1—*3-5 (o)

-— —p

+oO 173 | 1/3 | 1/3 0 0

W13 s 1/3] 0 0

oO | 1/3|1/3]| 13 0 0

“ soyu)g Supwoduy

Table 3.2(d): Collision rule for the sites of incoming states with two rest

particles of m; = 2 and m; = 4

76



Number of Particles in Sampling window (x10°)

2p,d, *+ 4p,d, ( Density of Rest Particles )
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Time Steps(At) (x10%)

Fig.3.2: Time domain waveforms for model 1.Note that the number

of moving particles has been divided by 4.
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Theorical Result
4 o] Experiment Model |
A Experiment Model 2
2 -
1.5
l —
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d ( Density of Moving Particles)

Fig.3.3: Equilibrium for the models with two rest particles described

in Tables 3.1 and 3.2. Theoretical results calculated using

(3.12) are compared with the experimental results.
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Next we examine the propagation speed of the mixture models. The experimental values
obtained from the two local collision models are given in Fig.3.4. The theoretical results by
using (3.55) are also given for comparison. The propagation speed was calculated by meas-

uring the resonant frequency in the T'M,, cavity, an example of which was shown in Fig

3.2.

Theoretical Resuit
o Experiment Model |
A Experiment Model 2

Propagation Speed C (x107%)

450 —

400 T B — e N EE S B S L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
d ( Density of Moving Particles )

Fig.3.4: Propagation speed for the two mixture models described in Tables 2.1 and 2.2.

T

The above results indicate a very good agreement between the two local collision mod-
els and the analytical ones. We confirmed that the mixture /PP LGA model can be applied
to modelling the linear wave equation in inhomogeneous media, and that macroscopic quan-
tities (such as density, mass flow, density of rest particles and sound speed) do not depend on
the details of the microscopic difference.

A variety of applications of the mixture HPP LGA models to two-dimensional electro-
magnetic problems in inhomogeneous media have been investigated[36,37,42]. The applica-

tions demonstrate that by concretely constructing different local appropriate collision
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models, an LGA algorithm is capable of simulating electromagnetic wave propagation and
scattering in inhomogeneous dielectric structures with a large range of dielectric constant.
Some examples are presented below.

Among the examples, we examined a plane wave propagating through dielectric solid
cylinders and cylindrical shells with different dielectric constants €,.. Figs.3.5 and 3.6 show
the snapshots of a gaussian plane wave propagating through a dielectric solid cylinder with
g, = 5(radius a = 20/) and a cylindrical shell with €, = 21 (inner radius =80 / and
outer radius b=100 /),respectively[42]. The time-domain electric field intensity inside a die-
lectric cylinder and shell with €, = 5 and €, = 21 are given in Figs. 3.7 and 3.8. The cyl-
inder or shell was embedded in a lattice of size 2048/ x 4096/ and the circular sampling
window is chosen at the center of each geometry. The radius of the window was a function
of its location. The radius inside the solid cylinder was 25/ for €, = 5 and /5/for g, = 21,
respectively. The window at the center of cylinder shell had a radius of 50/. The dielectric

constants €, = 5 can be created using a single rest particle model of m; = 4,and ¢, = 21

created using two rest particle model of m; = 4 and m, = 8. The construction of the two

models can be referred to the formula of (3.61) and the related discussion in Section 2.25.
The results obtained using a TLM [8,35] numerical approach are also given for comparison.

To assess the difference of the mixture model with respect to 7LM based on the above
results, the knowledge of the error sources for the two techniques should be considered. The
damping effect and spatial averaging error (described in Subsection2.4) are two main errors
in the lattice gas model. The damping effect is the dispersion associated with viscosity in a

fluid model, and can not correctly predicted with the linear lattice gas model. In the simula-
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tioné, the small perturbations (plane wave pulse) were imposed on an equilibrium state, so
that the damping effects can be neglected as descﬁbed in Subsection 3.2.4. The spatial aver-
aging error and a 10:1 lattice gas cell to TLM cell discretization resulted in the field sam-
pling locations not matched up exactly, and did cause the difference between the two
approaches. However, a comparison can be made between the results shown in Figs.3.7(A

and B) (solid cylinders) or in Figs.3.8(A and B) (cylinder shells), even the simulations with

the same plane wave pulse and numerical schemes. The case of €, = 21 gave a poor agree-

ment between the two methods on each geometry. Conversely, the case of €. = 5 gave a

good agreement between the two methods on each geometry. This indicates the major differ-
ences are due to the stair-stepping errors present in the TLM discretization. A more detailed
discussion of the errors can be found in [36].

Next as an example of wave interaction with a complex biological structure as simu-
lated by D. Cule[36]. The scattering field from a human body cross-section model is shown.
In this simulation, only the dielectric constant of a tissue has been considered. Unfortu-
nately, the conductivity of the tissue has not been involved since the current fluid dynamics
based mixture LGA model can not describe the dissipative property related to a lossy media
in electromagnetics. In this body cross-section model more than eight tissues with differ-
ent dielectric constants ranging from 6 to 62 were constructed using a 3.4mm resolution grid

of electrical parameter values[36], as shown in Fig.3.9 and Table 3.3. Also included in this

Table are the details of the mixture ratios p, of rest particles related to the different mixture

models for the modelling of dielectric constants. Note that the combination of the mixture

ratio p, s given in Table 3.3 for the modelling of the human body cross-section is just one of
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many possible combinations. As discussed in Section 2.2.5, a desired arbitrary dielectric

constant value €, can be created by non-uniquely constructing the mixture models with dif-

ferent rest particles m, and mixture ratio p, . This can be found in Fig.3.1 and the formula

(3.59). The image of the instantaneous field intensity for harmonic plane wave incident on

the human torso model at 975 MHz is simulated and given in Fig.3.10[36].
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Fig.3.5: Snapshot of gaussian plane wave propagating through a dielectric solid

cylinder with €, = 5 (radius R = 20/)[42].



Fig.3.6: Snapshot of gaussian plane wave propagating through a dielectric solid

cylindrical shell with €. = 21 (inner radius a=80 / and outer

radius b=10017)[42].

83



— LGA
--ae-- TLM Method

--------- e=5

1.5 4

Electric Field ( At Center of Cylinder)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (A t)

Fig. 3.7(A)

1.5 - —  icA

--<-- TLM Method
g=21

Electric Field ( At Center of Cylinder)

-1 . . . . B} . . . . . . R . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (At)

Fig. 3.7(B)

'Fig. 3.7: Time-domain electric field intensity inside the dielectric cylinder with a):

€, = 5 andb): €. = 21. Comparison of the results obtained using TLM

method is provided for an observation location a central region of cylinder.
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Fig. 3.8: Time-domain electric field intensity inside a dielectric cylindrical shell

with a): &, = 5 and b): €, = 21. Comparison of the results obtained using

TLM method is provided for an observation location a central region of shell.
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Fig. 3.9: Cross section of human torso model for a 3.4 mm resolution lattice used

in the LGA simulation by D. Cule[36]. Permittivity values for eight different

tissue range from €, = 6 for fatto €, = 62 for blood, the details given in

Table 3.3.
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Table 3.3: Body cross-section model[36]

Material Mixture
E, p(m, = 4)| py(my = 8)ips(m3 = 16)

Skin 35.0 1.000 1.000 0.2188
Spinal Cord 49.0 1.000 1.000 0.4375
Spine 8.0 1.000 0.1875 0.000
Ribs 8.0 1.000 0.1875 0.000
Long Bones 8.0 1.000 0.1875 0.000
Skeletal Muscle | 58.0 | 1 gog 1.000 0.5781
Liver 48.0 1 1.000 1.000 0.4219
Kidney 43.0 1.000 1.000 0.3488
Stomach 43.0 1.000 1.000 0.3488
Small Bowel 43.0 1.000 1.000 0.3488
Colon 43.0 1.000 1.000 0.3488
Pancreas 43.0 1.000 1.000 0.3488
Fat 6.0 1.000 0.0625 0.000
Blood Pool 62.0 1.000 1.000 0.854
Bone Marrow 62.0 1.000 1.000 0.854
Spleen 62.0 1.000 1.000 0.854
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Fig. 3.10: Image of the instantaneous field intensity for harmonic plane wave

incidence on the cross section of the human torso model at 975MHz[36].
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Chapter 4

Three-Dimensional Vector Lattice Gas Automata

4.1: Introduction

In this chapter, we show how the three-dimensional vector LGA (3-d vector LGA)
model described in Section 2.3 can be used to model vector electromagnetic fields in three
dimensions. Because polarization has been introduced in the model as an important inher-
ent property, the mathematical analysis used here is somewhat different from that used in
two-dimensional scalar wave models, where the Euler equations under the regime of the
undamped wave have analogy with the two-dimensional Maxwell’s equations of TE or TM
types. For three-dimensional problems, it seems that one is not able to find direct analogy
between the three hydrodynamical equations and Maxwell’s equations. As discussed in
chapter 2, the present 3-d vector LGA model is still based on the interaction of Fermi-type
particles. Each particle is endowed with the inherent physical quantities: a propagating
vector k, polarization e as well as magnetic vector /1. The collision rules conserve the
mass, polarization vector e and magnetic vector &, but do not conserve propagating vector
k. The analysis begins with setting up the Boltzmann equations of the 3-d vector LGA. The
perturbation solution to the Boltzmann equations is developed using the Chapman-Enskog
expansion, and appropriate mathematical methods. The solution characterizes how small

perturbation of the mean population of particles vary with time and space. We show how
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in the macroscopic limit the three-dimensional Maxwell's equations can be derived from
the LGA model.

In the following sections, the Boltzmann equations for the 3-d vector LGA are pre-
sented in section 4.2. Based on the equations, a group of perturbation equations at the first
order O(g) can be obtained. Section 4.3 shows how the Maxwell’s equations could be
derived from the perturbation equations. Some numerical simulation results conducted on
CA machines are presented in section 4.4. As well, comparison is made to the results

obtained using the 7LM method.

4.2 Macrodynamics and Solution for 3-d vector LGA

By taking the ensemble average of the microdynamical equations of (2.24) through

(2.35) the Boltzmann equations of 3-d vector LGA can be obtained as:

Nadx-1,yzt+ A= N (xpz1t)+Q , (N'(x, 1), 4.1
N o (x-1,yz.t+ A= Ny (x, vz 1)+ Q (N (x, D), (4.2)
Ny l(x+1y,z 6+ A0= Ny (x, 0z, t)+Qp (N'(x, 1)), (4.3)
Ny (x+1, vz t+ A= Ny (x, 32 t )+ Qv (N (x, 1), (4.4)
Nydx,y-lLzt+ A= Ny (x 0z t)+Q, (N (x, 1)), 4.5)
Ny (x,y-Lzt+AD= Ny, (xpzt)+Q, (N (x, 1), (4.6)
Ny (x ,y+lz t+ A= Ny (x, 02 1) +Qp (NT(x, 1)), @7
Ny (x ,y+Lz,t+ A= Ny (3,02 1)+ Qp (NT(x, 1) , (4.8)
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N—Zx(x s Y. Z- ]’ t+ Ar): N_z_\'( X, .z, t ) +N~ZX(N+(xs t)) ’ (49)

N (x,y, z-Lt+ A= N_ZJ,( xyzt)+ Q‘Z),(N‘;'(x, ), (4.10)
Nz(x,y,z+tlLt+ A= NZJ,( x, 32,1 )+ Q, (NT(x, 1)), 4.11)
Ny {x,y.z+Lt+ A= N, (x,yzt)+ Q, (NT(x, 1)), (4.12)

where the symbol N¥ has the same meaning as used in the previous chapters. The
Q. (N);(Je =zxzrrzrzandie x,y,z), represents the ensemble average of the colli-

sion operators given in the expressions of (2.36) through (2.47), and can be explicitly writ-

ten as
Q y,= N[ NsyN 2 Ney+ Ny Ny N_, 1-N o [ NN, No A N NN LT
4.13)
Q,,= Ny, [N, Ny Ne# Ny, N, N, 1- N [Ny N, N +No N, N, T,
(4.14)
Q= Ny [Ny N N #N_« Ny Ny - N, [N, N, Noy + Ny N, N, ],
(4.15)
Q= Ny [N, Ny Nt Nx N, N, 1-Ny [Ny N N+ Noe N, N, L,
(4.16)
Q y= Ny [N, Ny Ny Ny Ny Ny 1- Ny [N, N Ny ot N N Nyl
(4.17)

Q_}’ 2: N-}' z[ NXZN—,\' ZAT’Z-{_ NZ yN)' 2N~z y]' N—}' z[ NX zN—X :N}’ z+ N}'ZNZ )‘N~Z y] ’

(4.18)
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Q= Ny [N Nz Ny + Ny Ny Ny, 1-Ny [N, N, Ny Noy Ny Ny,
(4.19)
Qy,= Ny I Nx Ny Nyt Ng Ny :Nzy)- Nyl Ny N Ny 4 Ny N Np L,

(4.20)

Q, =N, [Ny Ny Ny+ NeoNy Ny, 1- Ny [ Ny Ny Nt No NN ],

—Z X

(4.21)

sz)r: N—Z y[ NX_VN—,\' ym_*. NZyN}'zN—P’z ]' N—Z y[ NXyN—,\' yNZ y+ N}'ZNZyN—)'?_]s

(4.22)

Qy = Ny LN Ny N+ N Ny Ny 1- No LN N N+ Ny N N

(4.23)

Q.= Nyl Ny Ny \Nop b N N NS l- N [ Ny Ny N+ NN 5 N
(4.24)

where Q,, = (@, ),Ny,,= (S, tand Ny, = 1 =Ny, = (5., 2, and N, ; repre-

sents the mean population of the particle polarized in i-direction and travelling along the J-

direction. Here m,; ; and S, ; were defined previously in Subsections 2.3.2 and 2.3.3.
For convenience, we prefer to write the above equations in a compact form, that is,
Ny (xte, t+AD= Ny, x 6)+Q, j(Ni(x, 1), (4.25)
and

Qupi= Nuyi [ Neg iNypgiNasi T NoyiVgy iNy i -

- Nyyi [Neg iNggiNsi + NyyiNg iNygj 1, (4.26)
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where the vector ¢; is defined as

tle, — J=x
¢, = \tle, = tv, (4.27)
*/e J= %z

where / is the lattice spacing and £&; (i = x, y and z) are the unit direction vectors. The
notation used here means that the indices i and j take the value of the circular set of
{x,y,;} with j=i+1thatis,ifi = x,j = y;i=y,j=zandi =z, j = x. The cap-
ital indices [, J and K are defined as: I=cap(i), J=cap(i+1) and K= cap(i+2),
where the symbol cap() means “to take the capital letter of the argument”, i.e., cap(y) =Y.
It is important to note that every collision event defined in the 3-d vector LGA model is

one-to-one and reversible. The collision rules are illustrated in Appendix A as a reference.

Thus the LGA obeys detailed balance, a stronger condition than the semi-detailed balance.

Applying the lemma of chapter 2, the equilibrium mean population N 7 . of the particles
pp +Jf

could be specified as Fermi-Dirac distribution

g 1
_ , (4.28
+J i 1+exp(go+(hf'ql)'l'(ef'qz)) )

where there are three Lagrange multipliers g_, ¢, andg,.

For subsequent discussion, we denote u, and u, to be the macroscopic conserved

quantities which correspond to the microscopic conserved quantities e and i, respectively.

With consideration of the symmetry of the lattice[31], ¢, and g, could be formally

expanded as a series in odd powers of the conserved vectors of #, and u, . Now, if the lat-
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tice is assumed to be at an equilibrium and with |u,| «|e| and !"2[ « |A| , then the equilib-

rium mean population Nf_g . of the particles could be expressed as a series in powers of u,

and u, as
N = flg) + Ou)) + Ouy) + .. (4.29)

where f(g, )= is evaluated at )] = 0 and |u,| = 0, and is set to be the

1
I+ exp(g,)

background density of particles.

Next, if we consider the lattice gas at near-equilibrium, the mean population N, , are

close to the equilibrium values of Ni(j ; and can be expanded in a perturbation series in

powers of € (very small € — 0)about the equilibrium as
I 2
Ny, = N +en) +o0@?), (4.30)

For this assumption, it is required that a large lattice size L be at least 0(8_]) , such that the

change of macroscopic quantities (density of particles and the vectors of #, and u,) on

the lattice is sufficiently regular [31]. Now substituting the expression (4.30) for N, ; in

the Boltzmann equation (4.25) and expanding the operators (4.26) in a perturbation series

in powers of €, we get

N (x+e,t+ A +eN(x+e, 1+ Any+O(E?) = N, (0

() e (aQi’J") +0(e") , (431)

+8Nﬂ I'( X, ! ) + Qi‘]i[N—feq(x, f)] + 82, Nikm aw—
K,m +Km

N = NTT
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where the prime over the symbol of summation indicates that Z is over the values of

K, m
m = y and m =z when K = £X; over the values of m = x and z when K = %V ; and
over the values of m = x and y when K = +Z. Recall that at equilibrium the mean pop-

ulation distribution is spatially uniform and independent of ¢, such that

N (x+c,t+ A= N (x 1)~ f(g,)
and QN (x,0]= 0.

Using the above expressions and (4.3 1), the first order equations for N E_L)i can be found as

0Q, ,;

N xep i a0 =N n e SN (5572 . 432)
+K

Kt

N = N

We can rewrite the equation(4.32) in a compact matrix form:

95



N (x-1,y, 21+ A1) N (xpzt)
NO(x-1,y,2 1+ A1) NG (xpz )
NO(x+1,y, 21+ A1) N(xpz 1)
NN x+ 1,z 0+ AD N (xpz 1)
N(_l},)x( x,y-lz t+ A N(_ly)x( x, 1z, 1)
N(Jr)z( x,y-lz t+ A Ngl),)z( X, 3z 1)
N (x  y+Lz ¢+ Af) = I+ 1b) ey (439
y X VT L Ny (xnyzt)
N(ylz)( x,y+lz 1+ Af) N(ylj( X, 0z 1)
NElz)x(x Y.zt AL NEIZ)X( X, vz t)
NG (x .y 201+ AD NG (x 2 t)
N(zl))r( x,y,z+t+ Ar) N(Zlg( X, .z 1)
_N(zli( x,y,z+lt+ Ar) N(Zlg( X,z t)

where the matrix /1is a /2 x /2 unit matrix, corresponding to the “streaming” process of the

evolution of the lattice gas while the matrix 7', is derived from the differential of collision

operators £, ; ; with respect to N, ,, , thus describing the “the interaction” among parti-

can be calculated by the expressions
NY =N

o 0Q,
cles. The elements of (T, = (8 m =l )
o K m

of (4.13) through (4.24), and can be written below (the more details about the calculation is

given in Appendix B).
Tp = flgg)(1=flgNTy, (4.34)

where the collision matrix T, is
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-20 0 0-101 00110
¢6-20001U0T1-1001
6 0-20190-10201T1F®0
000-201201T1T20°0-1
-101 02020201001
T, = 01 0610-202020-11 O. (4.35)
1 0-1000-20T1 0 0 1
0101 00O0-201-1¢0
0-101 101 0-20200
101 00-1010-2020
101 0010-1020-=2090
01 011 01 00 0 0 -2

For convenience in the following discussion, we define a scattering matrix

T.=1+Ty =1+ f(1-/)T, Note that if the lattice is almost fully filled, or almost

vacant (i.e. f=1 or0), the effective mean free path [41] of particles on the lattice is
extremely long such that the streaming event is most dominate in the evolution of the lat-
tice gas. In this case T, =/ and T = 0, and the interactions among particles rarely hap-
pen as it should be in the real world of fluid dynamics. For the almost half filled lattice

(f = 0.5), the scattering matrix will be
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2000-10100T110
020001 0T1-1001
00201 0-100T1T1S20
0002010110 0-l
101020001001
r. sT,=1+1T,=1010102000*”0 (436)
r=05 3 47 41 0-1000201 00 I
01 0100020 1-10
0-101 10102000
1 01 00-10102200
1 01 001010020
01 0-11010000 2]

4.3 Macroscopic Property and Conserved Quantity
To understand the macroscopic behaviour of the 3-d vector LGA, we proceed by
exploring the equation(4.33).

Using the definition of the matrix 7 (4.34) we rewrite the equation of (4.33) as

NOD(x+epr+an=TND (x 1), (4.37)

+J

and the scattering matrix 7', as:

T =I+f(1-f)T, = (1+%T,j+[f(l —f)—ﬂT, = T YT, (438)

where y = f(l~f)—£l;.

Note that the /2x/2 matrix T, is singular due to only six conserved quantities being

enforced in the collision events. To understand the collision, rewrite the collision matrix

T[ as

T[ = 4T, 1),
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In reference to the generalized inverse of the linear transformations [43], the 7', could be

constructed as the product of a /2x6 matrix and its generalized 6x/2 inverse matrix A
[43], that is

T, = AA", (4.39)
where the number 6 is related to the six conserved vector components. This will be seen
later. It can be found that the rank two singular matrix 7, has two eignvalues, 0 and 4,

each with six eignvectors. The six eignvectors associated with eignvalue 0:

[0,0,0,-2,1,1,1,1,0,0,0,-2] - [0,0,0,0,-1,0,-1,0,1,0,0,1] »
[1,0,0,-1,1,1,0,0,0,0,—1,-1] »  [0,0,1,-1,0,1,1,0,0,0,1,~1] -
[0,1,0,-1,1,0,1,0,0,0,0,-3] - [0,0,0,-2,1,2,1,1,0,0,1,2] »

and the other six eignvectors with eignvalue /:
T T
[0,0,0,0,1,0,1,0,1,0,0,1] [-1,0,1,0,1,0,-1,0,0,0,0, 1]
T T
[-2,0,0,0,1,-1,-1,1,0,0,-2,0] » [2,0,0,0,-1,0,1,0,0,1,1,0] >

T T
[1,0,0,1,-1,1,0,0,0,0,1,-1] [1,1,0,0,0,1,1,0,0,0,1,1] -
Also, T, has a 6-dimensional null space whose basis can be formed by the six independ-

ent vectors:

[,-2,-1,0,2,1,0,1,-2,0,0,0] »  [0,-1,-1,0,1,1,0,0,1,1,0,0] »
[1,0,1,0,-1,0,1,0,0,0,0,0] » [1,0,1,0,-2,0,0,0,1,0,0, 1] »

T T
[-1,1,0,0,-1,-1,0,0,1,0,1,0] »  [1,-1,-1,2,0,0,0,-2,0,0,0] - (4.40)
Where 7" denotes the transpose of a matrix.

In what follows, the matrix 4 could define as a linear transformation A from a vector
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space U with dimension 6 to another vector space 9\[(1) with dimension 72, and its inverse
A" as the inverse transformation. In the vector space of U, each element [u, u, p Ui
Uy lly,, Uy, ]]r is the six components of macroscopic conserved vector of #, and u,,
which are related to two local microscopic conserved vectors{e, /1 }, as indicated before.
On the other hand, the space 9\[(1) is defined as a population vegtor space. In this space,
any vector N has twelve components which correspond to the mean populations of
twelve particle states, i.e., VNf_j])i € 9\[(1) (J=x,=y, z;J=VY,i=z, xand J = Z,

J = Z.,i=x,y).

Explicitly, these two transformations could be expressed as:
. (1 + (N
A (U-N") andd: (N '->U), (4.41)
or in matrix form, for VA" & 9\[“) and Vit € U, that is,

MY = au o u=4a"NY. (4.42)

Note that a Moore-Penrose generalized inverse [43] has the properties:

1) AA A = A, (4.43)
2 AAAT =4, (4.44)
3y (44D = aa’, (4.45)
8. A =44, (4.46)

where the superscript H denotes the operation of taking the conjugate transpose of a

matrix.

Now, by using the above properties, we can show that the vector space U is a con-
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served vector space with respect to the scattering matrix 7'_. To do this, at a particular site

on the lattice, let (uf’ ) e U bean arbitrary vector before one updating (or collision) and
(uy"*” e U be the vector after the updating, such that

) = AN = AT AN

where the property 2} (4.43) has been applied. Note that 7', is singular matrix with a

dimension six null-space with the basis vectors given in (4.40). This allows us to choose

another constraint for A" Jthat is, AT ; =0, then

()= 4" 44" +4T, IN(1)
where v could be an arbitrary real number, i.e.,Vy € & . In the present case,
Y = f(1-f)—1/4,such that we get

T= A4 +yT,  and  (0)"= 4T N") .

It follows from T .N"(r)= NV(t+Ar) and A NO(t+ A= (uf *27  that, we

end with
(115') = (u()HA’) =u . (4.47)

Thus, u is a conserved vector with respect to transformation 7', but . (1) #
NY(+Ar) ducto 44" #1.
A straightforward solution to the equation A4 = T,,, for the matrices 4 and A+,

which satisfies the constraint: 4" T ; = 0 and the properties given in expressions of (4.43)

through (4.46), is very difficult. Nevertheless, referring to [43], one special solution for the

matrix 4 which meets all conditions and the constraint, could be found as
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010
001
010
001
100
Lglo0t-x 0 0f (4.48)
2 11000 0 —x

001 x 0
100 0 —x
010k O
010-x 0

1000 «

(o= oo R s BN o [
o oA O

]

=R e R oo B o B s

. . . +
and its inverse matrix 4 as

00010
01000
101 01

o O - O
o - o
o oo -,

00 0 0—

R
Al—m © — O

» (449)

o e

0ololoo 0022
X K K

o
)
A=

Lol olo looooo
| x kK K

where K is a parameter to be determined later. It can be verified that 44 T = T\, and

4.4 3-d Vector LGA and Maxwell’s Equation

Based on the above discussion, it has been shown that for each updating of the LG4,
the macroscopic quantity u is conserved. Now, it is desired to get the equations, describing

the variation of the conserved vector quantity # with time and space. Thereafter Maxwell’s
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differential curl equations in conservation law form will be derived from the equations.
Recall that the small perturbation components of NE:IJ); (J=Xx,i=y, z; J =Y, =Xz

and J = Z ,i=x,y) describe the particles polarized in i-direction and independently travel-

ling along +/ in the lattice. As discussed earlier, if the perturbation component is small

enough, at spatial sites, the continuity of mean population NELI ) (particle density per cell
P )i yp

would be satisfied by assuming only the first order corrections among particles. Thus, the

following continuity equations for the mean population N;L,)i could be written as:

1
For the components N‘(_t[)\)'i € N( ) (i=y and z), we have

aN'Y —caxNY, = 0

IN'Y, —c.oxN'Y), = 0

| ! ; (4.50)
BtNI(Y)),+c_\‘axNg,3, =0
UNY)+eaxNY) =0
or, in the matrix form:
] T 1 [y
Noyyl l-e, 0 0 0 [Ny,
D1 10 <, 00 W
3| Ve 4 R F R 4.51)
~e) 0 0 e OF )
0 0 0c,
NE\EE - “x _N (\l;

Similarly, for the components NE_L!);; (f=x and z) and NE_L]Z)i (i=x and y), we have
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M r A
Ny, —, 0 00 Ny,

¥V

MY 1o =, 0 0], [N

| e+ Ay =0, (4.52)
W {00 e o
0 0 0c
n = (n
Ny, - = _Nyz
and
I (l)- r 3 i (f)-
Nzy |-, 0 0 0] [Nz
(n M
N 0 —, 0 0|.|N
ol L]+ “ 3z 2y = o, (4.53)
NOL |00 e of | N
0 0 0c
W) L0 0 [

where ¢, ¢, and ¢, denote the propagating speed of the particle travelling along x-, y-

and z-directions, respectively. The lattice under consideration is homogeneous, thus sym-

metric. Thisleadstoc, = ¢, = ¢, = ¢.

. : 1
Again, under Boltzmann assumption the wave vector space 9\[( ) could be decom-

. 1 1 I . .
posed into three wave subspaces N(i )3, Eﬂ) and 9\[;2) respectively, each corresponding

to the wave spaces travelling along +3-, +- and +Z- directions and each with dimension 4,
ie.,

1 1 1 1
A = e al) e Wiy, (4.54)

1 .
where for example, { Nf_LlX) € 17\[5_, ,3, with components { N (yl)y , N_( }()Z, NS(]!),, N )((]2 )}

Correspondingly, with reference to the above subspaces, the conserved vector space U

could be decomposed into the three subspaces Uy, U, and U,,ie, U= U, S U, &
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U, , each with dimension 4 and containing the conserved vectors associated with one of

the three wave subspaces. For instance, for any conserved vector uy € U, , the compo-

. 1 . .
nents of #, could be related to the mean population N(;A) € 9\[; } of particles travelling

in +%-directions, that is,

il

u_v I

U,

Z

My

)

Similarly, for Vu € Uy and Vu, e Uy,

M,

1

U
Uy

xl

zl

U,y

and

i

il

(4.55)

(4.56)

X . . 1
Referring to the transformation 4 between the wave function space 9\[( ) and the con-

served vector space U (see (4.41)), the mapping between the subspaces 9\[;&) € NE_LIA) and

Uy e U could be set up by the transformation 4, the mapping between subspaces

Ns}? € 9\[(1) and Uy, e U by the transformation 4, and the mapping between sub-

{1

1 . . .
spaces N7 € 9\[( > and U, € U by the transformation A4_. That is, for the particle trav-

elling in the x-direction,

(1)

A +x = Uy

X

and A;l:

Uy — N

(4.57)

The transformation 4, could be written in a matrix form. The matrix 4 corresponds to

the composition which associates with the particles travelling in +x directions in matrix
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A.For Vuye U and VNE,” € Nﬁ_f} , we have

-]
N~X1 ]
(l) ul}"
N\, 10 0 —«x
- u,
N(;) _ l 0 x 0
Xy 210 0 x| [Y2°
@)

Ny, 01-x 0| [
~ = S —_—
N_(ilf\), A" Wy

or its inverse form A;l

1ot ol [,m]

rooA N~X1'
u 010 1 .
ly N(l)

: l 1 -Xz
‘Iz 0 0 (N
1[2‘, - ] 1 N/".l'

' 20+ 0 (1)
|22 Tk ox | | Vx]
H—/ M——V—J
Uy ”;l Ny

Similarly, for the particles travelling in y- and z- directions, we get

(n -1 (1)
d A, N d 47 Az
an 7 +7 = U, an 7+ U;—> Ny

. . 1
Or, in the matrix form, for Vu e U, and VNS,” € il) ; Yuye U and

1 1 . .
VNE_,Z) € 5‘\[;2) , the transformations 4, and 4, could be written as
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(4.59)

(4.60)

4.61)




and

and

Uy
100 x
i,
1101 —x 0
2010 0 —| |“]°
01 x 0 [ #2;]
S
Ay Hey
",
10 0 —x !
Uy,
ol x 0 !
2110-x 0 “2x
01 0 «x _”2);
JH—-—/
AZ i
1 6 10 NSI})‘
01 01 "
N
05 04 (:)
K K M
1 1
-0 —0 (N
K 0 K __NYZ_
i i
-1 I
A}, N(i}l
—l 00 1~ i (i)—
N
0100 (IZ)
| 1 N‘Z,\'
0 X x 0 M
T | (M
- - n
K ¢ 0 X _NZ.\'_
~ = e
-1
z NE:lz)
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Now, using the expression N(il\) = A,u, in the equation (4.51), we have

Hiyp — 000 "y
R B WP
Uy, 0 0cO Uy,
13, ] 0 00c¢ Uy, ]
where the matrix
< 000 100 —«x||-¢c 000
A~IO—COOA=101K0 0 00
X
0 0cO 21100 x|[0 0cO
0 00c¢ 01 -x 0({0 0 0c¢
0 0 0 x
o 9 0 -x0
0 -1/« 00
/¢ 0 00
Thus we have
Uy, 0 0 0 ¥ Uy,
Y i, +e 0 0 —x0 Ox iy,
iy, 0 -1/« 0 0 iy,
| U/ 00000y

=0

3

0

(4.66)

(4.67)

Similarly, using the NS}? = Ayuy and NE;Z) = A,u,, respectively, in the wave equations

(4.51) and (4.52), we get
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"), 0 0 0 -k Uy,
¥+l O 0 x Otz — o, (4.68)
Uy, 0 1/x00 Uy,
and
al“tlre| O 0 KOGy = . (4.69)
Uy, 0 -1/« 0 0 Uy,
E7 I LV U I Y

Now it can be shown that the equations (4.67), (4.68) and (4.69) are equivalent to the
Maxwell’s curl equations. To do this, we will consider the Maxwell’s curl equations writ-
ten as system of hyperbolic conservation laws on a discrete numerical space -time grid
(lattice) [35]. The Maxwell’s equations in terms of continuous variables can be written as

the following three systems of equations:

Ef To o o 14 [|B
E _ E
i R R I i IR (4.70)
Hi |0 -17e 0 0 H,
H, 17¢ 0 0 0 H,
Ey o 0 0 —ispl |Ex
E E
or|Ce|+] O 0 I/ 0 e B L g (4.71)
Hl | 0 17e 0 0 H,
| l-ie 0 0 0 1,

and
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Ed 1o o o 1/u

aylErl ] 0 0 —l/n 0,

-E.\‘
E,
H 0 -17e 0 o0/ |H,
H,

i
<

(4.72)

gl live 0 0 0

To proceed, for a fine space-time discretization we can assume that, in each cell, the
wave propagation along the x-direction involves no variation with respect to the y- and z-
directions, the wave propagation along the y-direction involves no variation with respect to
the x- and z-directions and the wave propagation alone the z-direction involves no variation
with respect to the x- and y-directions, and equations(4.70) through(4.72) still héld
true[35].

Note that the macroscopic behaviour described by the equations (4.67) though (4.69)
are equivalent to Maxwell’s differential curl equations(4.70) to (4.72) in conservation law
form. Thus we conclude that the 3-d vector lattice gas model can be utilized to simulate the

three -dimensional vector electromagnetic fields. The analogy between the macroscopic

conserved quantities (#,, #,) can be recognized, and yields the following equivalence and

relationships between the parameters,

7 E.
uy, EJ,
HE PN (4.73)
M, H,
Uyy Hy
Uy _Hz

and

cke 1/ e/xe 1/,
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= ( lattice wave speed ) o 8_11_1 R

= (the parameter) X > f-é .

4.4 Results of Numerical Experiments

In this section, primary results for experiments conducted on CAM-8 using the 3-d
vector LGA model are provided. The experiments are designed to examine the collision
rules of the model, boundary conditions and dispersion property, as well as the related
implement technique on CAM-8. These results demonstrate the wave propagating, and are
compared with those results obtained from 7LM simulation for the same problems.

The first experiment examines the collision rules of the model and dispersion property.
The geometry of the structure is illustrated in Fig.4,1. Within a cavity of 0<x <256/,

0<y<64]/ and 0<z<64] ,aGaussian-pulsed plane wave was excited at the center of

cavity(x=128/, y=32/ and z=32/). The wrapped around boundary conditions are applied to

the six walls of the cavity simulating periodic boundaries. A uniform background density
of f=0.5(ce= 0.25) (all possible states are randomly filled) is applied to the lattice. The

plane wave (perturbation components) is superimposed based on the Gaussian distribution
poexp((x—xo)z/’l:-z) {centred on the plane x,=128/ with the pulse of T = 32/) of
particles on top of the background distribution, atf = 0. Where, p, = 0.25 so 25% of

the unoccupied states above the background level on the plan of x =128/ . All perturba-

tion component particles, at / = 0, are assumed to be in the states S, , _ (polarized in z-
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direction and travelling along +% directions). A cubic sampling window with the size of
207/ %201 x 207 is located at the coordinates (7281, 32/, 32[), and used to measure the
macroscopic field £,. To reduce the statistical noise, a total of 15 random samples based
on the method given in Section 2.4 are obtained, taking the averaging value. The transient

electric field components in both propagation directions % are presented in Fig.4.2. Also
in this figure, the results obtained from a 7LM simulation of the same problem are shown
for comparison. Overall, the results indicate a good agreement between the 3-d vector LGA
and TLM methods, but the results of the LGA appear to have lower peak values than those
obtained from TLM method. This may indicate that at the peak-time points, a larger fluctu-
ation of particle density led to the transient and slight state deviation from the quasi-equi-
librium state (An LGA working state). Thus, extra non-linear dispertive effects were
introduced, and reduced the amplitude of field.

To examine the decay due to the damping effects associated with the dispersion in the
model, a series of simulations were carried out with the different values of background
density f(or the parameter o.= f{/-f)). The results of the simulations show that fast decay
exhibits as values o deviates from 0.25. For example, the results for the case of /=0.7

(0.=0.21) are provided in Fig. 4.3. This could mean that the equilibrium state with back-

ground f=0.5 (0.=0.25) is an optimal state for the vector model. On the other hand, the
current vector model based on the first order solution of Boltzmann equations could not be
accurate enough to gives the correct decay. If this is the case, a higher order solution should
be developed.

The next numerical experiment examines the perfect magnetic conducting boundaries
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and dispersion property of the model. A cavity was excited with 7'M, mode, as illus-

trated in Fig.4.4. The geometrical size of the cavity is 64/ x 64/ x64 /. Perfect magnetic
conducting boundary conditions are applied to all of six walls. At r=0, a uniform back-

ground density of £ =0.5 is applied to the lattice. The lattice is then excited by superimpos-

ing the TM,,, wave on the top of the exciting background. Again, at initial time f = 0,

all perturbation component particles are assumed to be in the states S, , The source with

the maximum initial perturbation of 15% above the background. Three observation win-
dows are located along the line of (x=/6/ and z=32/} at y= 16/, 32/ and 48/, each window

with the size of 8/ x 8/ x8 /. Notice that at initial time of =0, with respect to the known

TM,,, wave the first observation location(/6/,/6/,32/) and the third location (/6/,48/,32])

are mirror-symmetric with respect to the plane of y=32. When a simulation proceeding,
the interactions between the initialized particles (propagating in a special direction) and
background particles (propagating in an arbitrary direction) occurs. At any time snapshot,
the responses obtained respectively from the first and third locations should have the same

amplitude, but with a 180 degree phase difference. Also at the second location

(161,481,321), the expected response E should be almost zero (very slightly fluctuating

around an equilibrium state) through a whole running process. With this special geometric
configuration and the known excitation, we examine the collision rules and the numerical
scheme more detail and effectively.

The experiment was randomly conducted thirty times, involving each of the simulation

1000 At time steps. The averaging results for the electric field £, at each observation loca-

tion is provided in Fig.4.5. The responses obtained respectively from the points
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(161,161,321) and (161,481, 32]) exhibit an actual mirror-symmetry with respect to the plane
of y=32, as expected they should be. Also, noted in Fig.4.5, the expected zero-response at
the second location (/6/,48/,32]) can be noticed. The results obtained from a 7LM simula-
tion of the same problem are shown for comparison, which indicates a good agreement

between the 3-d vector LGA and TLM methods.

The T'M |, mode and plane wave examples already shown above are a limited set of

results. They indicate that the 3-d vector LGA model operates as proposed and predicated
by theory. The spurious solutions do not appear in the results. These results do not prove
linearity, however, and convincingly prove a unique solution in all cases.

To further validate the 3-d vector LGA, more numerical experiments should be consid-
ered. For instance, the linearity and convergence of the Solution could be examined by
exciting a given structure with some arbitrary excitation, and observing the response of
source superimposed modes. Another experiment proposed here is a pulsed plane wave
propagating within a sufficient large size of lattice. In this experiment, several observation
locations are specified along the direction of the pulsed plane wave propagating. The
responses obtained from the locations can provide the information of the propagating
speed, and the shape of waveform obtained from each location can be used to analyse the
dispersion properties. However, the numerical experiments require a more powerful cellu-

lar automata machine in order for these experiments to be conducted.
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Gaussian Pulsed Plane Wave
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Fig.4.1: Gaussian pulsed plane wave propagating in a cavity with wrapped

around boundaries.
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PMC Boundary Conditions for Six Walls
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Fig4.4 TM,  Mode wave propagating in a cubic cavity
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Fig.4.5 Time-Domain electric field intensity in a cavity excited by 7M;, mode.
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Chapter 5 Summary and Proposed Future Works

In this research, the potential of lattice gas automata as a mathematical tool for the
computational electromagnetics has been considered. Lattice gas automata may offer some
advantages for the computational electromagnetics. One of these advantages is that only a
few or even a single bit(s) per variable per site are needed to describe the very simple
microdynamic states in an LGA, This enables complex geometric structures to be meshed
with finer grid structures, and with less computational memory requirement. In addition to
this, they are intrinsically parallel models of computation. This makes them particularly
suited to implementation in a parallel processing computing architecture. Furthermore, the
computation of the rules of LGA at each cell requires only a simple processor performing
logical operation, rather than the more complex floating processor required in a general
purpose computer conducting computations according to common numerical technique.
For the present, it is impossible to provide a rigorous evaluation of the new technique as
compared to the other time-domain differential equation based methods such as FDTD and
TLM since the issue is hardware-related, and many of theoretic analyses of the algorithms
remain to be explored. The issues such as computational complexity, accuracy and stability

are briefly discussed here with comparison of the LGA method to the 7LM.

5.1 Preliminary Benchmarks
1): Stability

Dispersive errors exist in all time-domain differential equation based numerical
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schemes. A stability criterion usually characterizes the discrete approximations (spatial
and temporal discretization) to the various differential equation formulations so that the
appropriate wave behaviour can emerge. TLM does not have a stability criterion, but does
have the same dispersion characteristics as D7D algorithm when the spatial and temporal
discretization of 7LM are selected to satisfy a relation given in [25]. For a TLM scheme,
the scheme does not dissipate the energy from a propagating wave, but does disperse a part
of its energy. Thus, the time-domain waveform changes shape as the wave propagates. The
dispersive energy can not be tracked, and is exhausted. When the scheme is enforced to
reverse from a given states, the original waveform can approximately be recovered only if
the dispersive effect within the scheme is enough small. Therefore a TLAM scheme is condi-
tionally reversible.

The HPP- type and 3-d LGA models on the other hand are exactly reversible, and
unconditionally stable. Fundamentally, the collision rules defined in the two models sat-
isfy the detailed balance (the one-by-one mapping between input and output particle
states). Due to the non-linear dispersion in LGA, a part of the observable wave propagating
energy is dispersed into the background and stored there on the lattices. When the models
are enforced to run in a backward process, the dispersed energy will be sequentially
tracked and recovered, and so will be the waveforms, and finally the initial states of lat-
tices will emerge as they were at very beginning.

2): Errors and Accuracy

Two main errors, dispersion and averaging error, affect the accuracy of the lattice gas

automata for the modelling linear wave behaviour. The dispersion usually results in a fast

wave damping behaviour. For linear wave behaviour to be supported by an LG4, the LGA
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must work at an quasi-equilibrium state. A larger fluctuation causes the deviation from the
quasi-cquilibrium state, and undesired non-linear behaviour is introduced. The non-linear
behaviour appears to be the dispersion associated with the viscosity in a fluid model, dis-
tinct from the numerical dispersion errors inherent with difference equation approxima-
tions. The dispersion can not be correctly predicted by the linear LGA models considered.
As discussed in Subsection 2.4, the LGA requires statistical convergence- averaging over a
large number of particles and a lattice of sufficient size. This usually leads to a trade-off
between the dynamic range, statistical error and spatial averaging error. The problem can
be partially solved by taking multiple random samples averaging (equivalent to ensemble
averaging) at expense of the increasing of computing time. Thus, how to quantitatively
describe the small perturbation in order to reduce the dispersion while maintaining an LGA
working at appropriate states, and how to obtain a sufficient computational dynamic range
without the excessive increase in the computing cost and averaging error, are two important

topics for further consideration.

3): Computational Complexity

The computational complexity involved in the binary operation of an LGA cell (16 bit
per cell) is considerably less than that of a 7ZM unit cell which involves floating-point
operations[24]. However, in accordance with experimental observations[36], a ten to thirty
times finer lattice spacing than that of the equivalent TLM mesh is often required to model

observables in the simulations considered in this research. Consequently, the total number

of cell updates in LGA massively increases by at least a factor of 10° of the two-dimen-

sional TLM case and by at least a factor of 10* of the three-dimensional 7LM case. The
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memory hardware per cell also increases by factors of 10> and 10° for each case, respec-
tively. To compound the problem, LG4 simulation as used in this thesis, often requires
ensemble average (as described in Section 2.4). Even with the pessimistic comparisons,
since the unit lattice cell acts only two very simply operations, look up table and kicking
as described in Section 2.6, the use of special-purpose computational hardware may still
yield a computational advantage[24,27].

4): Computational Cost

The CAM-8 machine (developed in the early of 1990s} is currently available and well
suited to the simulation of lattice gas algorithms owing the nature of its architecture as
presented in Section 2.6. When making a comparison of computational cost between an
LGA and TLM simulation, N. Simons ef al.[24] indicated: “There are two issues related to
benchmarking the lattice gas automata approach. The first involves comparing the cost of
simulating cellular automata on a traditional general-purpose computer as compared to
using CAM-8. The second aspect involves comparing the computational cost of simulating
lattice gas automata on CAM-8 to traditional method on general-purpose computers”. For
example, their analysis shows that the computing times required for the two-dimensional
lattice gas simulations on CAM-8 is in the order of 10s of seconds. It is almost the same
order as that of the 7LM method to simulate the same applications on a traditional general-
purpose computer (SPARCstation 10). The required computing times, however, for an
LGA program on a traditional general-purpose computer is in the order of hours. This
indicates the enormous benefit in using CAM-8 for simulating LG/ in order to be compet-
itive with the traditional numerical approaches. For the simulation of the three-dimen-

sional vector LGA, only one initial data is provided and the geometric structures are as
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shown in Fig.4.1. 1In this simple simulation, a periodic (wrapped around) boundary condi-
tion is specified. Less than 16 bits per cell are required, therefore the complex sub-cell
assembling technique[27] is not necessary for this case. For this problem, it took 20 min-
utes for the CAM-8 to complete the analysis. The TLM simulation program took about 40
minutes on SPARC station 10. For more complex three dimensional structures, the suffi-

cient size of the lattice is required in the massively increasing cell numbers by a factor of

10" with respect to 7LM mesh, employing the sub-cell assembling technique. This proce-
dure will stretch the current CAM-8 resources and it is time-consuming too. To effectively
simulate three-dimensional problems, a more powerful cellular automata machine is essen-

tial.

5.2 Main Contributions

This research mainly focuses on the development of lattice gas automata models in
computational electromagnetics and on the mathematical analyses to validate these mod-
els. These analyses have been made by considering fundamental microdynamical models,
formulating the appropriate equations with Chapman - Enskog method, and verifying the
models by conducting simulations on the CAM-8 machine. The main contributions of this

research are:

» Formulated rules and a theory for 2-D HPP lattice gas mixtures. We have identi-

fied the fact that the macroscopic wave behaviour emerging from an LGA hydro-

dynamic system is not sensitive to microscopic interaction details, and is only
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limited by the semi-detailed balance and the conservation law.

» Performed the mathematical analysis and numerical experiments to show the
validity of the simple HPP mixture model in the modelling of the scale wave
propagation. Obtained a general formula for the sound speed which enables a
wide range of dielectric constants to be modelled by specifying various interac-

tion models in an LGA.

» Constructed one possible three-dimensional vector LG4 model that is capable
of simulating three-dimensional electromagnetic phenomena in homogeneous

media.

» Performed the mathematical analysis to show how the developed 3-d vector
LGA model can be used to solve the requisite three-dimensional Maxwell’s
equations. Formulated the Boltzmann equations based on the Chapman-Enskog

expansion and the associated mathematics.

+ Implemented the 3-d vector LGA model on the CAM-8 machine, and conducted
numerical simulations for some simple electromagnetic wave propagation prob-
lems.

5.3 Discussion and Proposed Future Works

Lattice gas automata as a new computational electromagnetics technique has been

considered. However, current success in this area is preliminary. There are a number of
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theoretical and computer simulating problems to be explored. Several topics which are

promising candidates for further LG4 research are indicated below:

+ We have only performed simple numerical experiments to validate the vector 3-
d model. We can extend the applications to other vector time-domain electro-
magnetic field problems, such as waveguide, finned cavity, scattering and radi-
ation problems. However, the general approach to the analysis of the above
problems using the model will be essentially the same as that employed with
the time-domain differential equation based methods such as FDTD and TLM.
The entire spatial domain of the problems requires discretization, and thus
absorbing boundary conditions will be required for open region problems. As
well, for the application of lattice gas automata to the modelling of radiation
problems, an algorithm for the modelling of excitation is required. Also, prob-
lems resulting from limitations on the maximum number of bits per cell in the

current CA machine have to be solved.

» We can explore modification of the current 3-¢ LGA vector model or developed
a new L. GA model which has the ability to model the inhomogeneous media in
three-dimensions. In the first case, we may incorporate a new transfer event
before each current collision event occurs. The new transfer event will allow
the moving particles to exchange energy with the background on a lattice. By
specifying regions of the lattice to have different mechanisms of energy

exchange, a lattice with an inhomogeneous dielectric constant may be mod-

elled.
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As an alternative to the 3-d vector lattice described in this document, one
of the new trial models capable of modelling inhomogeneous media is the
model developed by G.Bridges and N.Simons [28]. In their model, the basic
constituent cell is the same cubic cell as used in FDTD method[44]. Each
cubic cell is decomposed into six sub-cells based on the three coordinate
planes. On each sub-cell the simple two-dimensional /PP model may be used
to specify the collision rules. This then allows us to easily incorporate rest par-
ticles with the lattice framework, and to model the different dielectric as dis-
cussed in chapters 2 and 3.

The problem of reducing statistical noise and dissipation effects exhibited in
LGA simulations has been noticed. As discussed in section 2.4, statistical aver-
aging over a group of cells (say, NV cells) is necessary to obtain macroscopic field
quantities. Thus, according to statistical theory, the statistical noise associated

with the situation of n bits per cell of an LGA model averaging over blocks of N

cells is of order ~ 1/./nN. To reduce the noise to a reasonable amount and
yield a reasonable dynamic range for macroscopic variables, a higher density of
mesh is required than when using a numerical method based on differential
equations. Experimental simulations with various field problems indicate that
the increased density is on the order of ~/0-30 per dimension for an LGA tech-
nique with respect to TLM or finite-difference time-domain mesh [40]. To solve
the two problems without a massively increasing in the mesh density, a multi-bit
variable LGA (/LGA) model may be an approach to be considered. In an /GLA

model, more than one bit per lattice direction (per particle state) will be allowed
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to exist, in contrast with one bit per direction in a common LGA4. A mathematical
analysis has been presented by B.M. Boghosian et.al [39] for the /LGA models in
fluids. Their analysis shows that the /.GA models indeed allow for a reduction
both in dispersion and statistical noise to some extent. It can be expected that a
similar model [45] will serve our purposes in electromagnetics applications.
However, the difference between the model presented in[45] and the Boghosian

ILGA model [39] still needs to be explored.
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APPENDIX A

Appendix A

The collision rules of the 3-d vector LGA model are listed below for the reference.
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(b): Right - angle collision.
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APPENDIX B

Appendix B Interaction Mixture Calculation

This appendix gives details of calculation of the interaction matrix which is given as

Equations(4.33) and (4.34) in Section 4.2. The elements are defined as the differential of

collision operators £, , ; with respect to Ny !

AP aQ_Jr
(TDZ‘:’..m = (aN_:( )i

=V (B.1)
whereif Je (£X), ie (y-2),Je (2Y),ie(z-x) and Je (XZ), i€ (x-y).TheNT

stands for the complete set of variables N, ,,, and if at an equilibrium, N* = N “I=f (back-
ground density).
Here the calculation for the elements of the first and sixth rows in the matrix 7' is given

below as a reference.

1): The elements of the first row of T, are related with the collision operator Q y,.

From the expression of (4.13), that is,

Q_y=

¥

N*/\’ _r[NZ )'N-Z )ﬁ; + NX _1'N)’ xN_}"\- ]- N—X _1'[ NZ )'N—Z yA'rA' _1'+ N,\' _\'N)' x]v—y.\- ] .

(B.2)

Using (B.2), the elements can be calculated below.

0Q X!,) 0Q_y,

S mesaen, ()] <o
(aN_)(j' Nrr:f aN_/\: N"i':f
Cer T )| -

W |y, Wy,
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) IR )
&), o ),
@i_;) o 0, (gf,‘)z() o -9,
G, oo Gl

Thus, the elements on the first row of 7', are obtained as:

f(l _f)(_zs O: Oa 0’—150’ 1:0) 0: I: 170)

2): For the elements of the sixth row of T, it follows from the collision operator

Q y,(4.18);

Q Y = N—}’z[ N,X'ZN—A'ZJ-\[—}:+ NZ yN}'zN_Z y]' N—}'z[ NX zN—‘\':N)'z-*_ N}’ZNZJ-N—Z)']

¥ Z

(B.3)

that we have

o, ) 2., )
(a———N_X ) -0, (BN_X,) = sueh,
SANT=f CANT= S
o, oQ
(aN—}z) = O) (aN_YZj :f(l—f)5
Xy Nt=f X: Nt =g
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(BQ_YZ _ o 0Q_y,
oN ) o (BN )
~¥x N =g -Yz Nt =f
(aQ—Yz =0 aQ—Yz
ON ) o ( oN )
Yx N ! Yz N = !
(894»2) o (BQ_YZ)
Ny, N2,
aQ-Yz) aQ~ ¥z
= (1= 1), (——)

and the elements as:

f(l —f)(oa 150: 190: '2: 09 09 0,‘1, laO)

=-2/(1-1),

=0,
=-f(1-1),
-0,

The other row elements can be straightforwardly calculated in the same way.
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